PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |
X(64001) lies on these lines: {1, 50701}, {2, 5715}, {3, 142}, {4, 57}, {5, 5745}, {7, 1490}, {9, 6864}, {10, 5709}, {20, 8726}, {30, 5806}, {40, 443}, {58, 53599}, {63, 6835}, {78, 55109}, {117, 53828}, {165, 37407}, {226, 3149}, {354, 6253}, {355, 2095}, {405, 63438}, {411, 5249}, {499, 1699}, {515, 942}, {517, 11793}, {519, 24474}, {527, 5777}, {553, 1071}, {580, 3008}, {581, 3664}, {603, 53592}, {631, 41867}, {908, 6915}, {936, 5735}, {943, 6905}, {944, 3296}, {950, 37468}, {962, 6282}, {971, 24470}, {1158, 21628}, {1389, 34485}, {1393, 40950}, {1466, 1836}, {1467, 4293}, {1473, 37387}, {1482, 12437}, {1730, 63397}, {1837, 40271}, {1838, 3075}, {2051, 51759}, {2262, 51490}, {2816, 52824}, {2817, 44545}, {2829, 16616}, {2949, 62777}, {3091, 5744}, {3218, 6894}, {3306, 6836}, {3333, 12573}, {3358, 63973}, {3428, 19520}, {3452, 5812}, {3474, 12705}, {3487, 52026}, {3586, 5804}, {3587, 5493}, {3600, 12650}, {3601, 5603}, {3634, 6881}, {3636, 24299}, {3656, 34707}, {3668, 57276}, {3671, 6261}, {3683, 7958}, {3811, 60895}, {3817, 6824}, {3911, 6831}, {3916, 8226}, {4294, 10383}, {4295, 54198}, {4297, 6869}, {4301, 6885}, {4304, 6934}, {4311, 34489}, {4312, 63962}, {4355, 63981}, {4652, 6837}, {4847, 12704}, {5044, 5762}, {5122, 22835}, {5219, 6927}, {5290, 64148}, {5436, 59345}, {5437, 6865}, {5587, 12527}, {5691, 5768}, {5703, 30275}, {5705, 6843}, {5708, 5787}, {5714, 63966}, {5719, 40262}, {5728, 12671}, {5755, 63978}, {5759, 17582}, {5771, 9956}, {5791, 10175}, {5798, 40942}, {5842, 11018}, {5850, 63967}, {5882, 12577}, {5930, 34042}, {6001, 37544}, {6259, 18541}, {6260, 19541}, {6284, 17603}, {6361, 37551}, {6684, 7680}, {6692, 6922}, {6700, 6911}, {6705, 7681}, {6734, 6839}, {6737, 37625}, {6796, 13405}, {6827, 9843}, {6828, 59491}, {6832, 21165}, {6841, 12571}, {6846, 31424}, {6848, 9612}, {6849, 7330}, {6851, 26333}, {6854, 55104}, {6857, 8227}, {6861, 10171}, {6895, 27003}, {6924, 58461}, {6956, 31231}, {6962, 31266}, {6988, 25525}, {6989, 10164}, {6991, 54357}, {7354, 37566}, {7367, 20263}, {7683, 15762}, {7956, 22793}, {7988, 38306}, {8732, 37434}, {9799, 21454}, {9812, 21164}, {9841, 52835}, {9842, 37822}, {9945, 64192}, {10123, 37447}, {10202, 28164}, {10310, 37270}, {10445, 54405}, {10532, 31397}, {10572, 30274}, {10857, 64005}, {10884, 50695}, {10893, 37545}, {11012, 37306}, {11019, 48482}, {11036, 54051}, {11227, 28150}, {11246, 12688}, {11372, 64190}, {11499, 59722}, {11500, 21620}, {11522, 30282}, {11826, 17612}, {12447, 31806}, {12575, 13464}, {12599, 26040}, {12664, 52819}, {12680, 52783}, {12684, 31672}, {13407, 44425}, {15325, 15911}, {15908, 37363}, {16004, 28174}, {17102, 40960}, {18482, 34862}, {19860, 64079}, {19925, 37532}, {20205, 39585}, {24178, 37570}, {25526, 37418}, {28194, 31793}, {28228, 37585}, {30424, 54227}, {33597, 63274}, {37273, 60634}, {37526, 41869}, {37530, 40940}, {37583, 44675}, {37584, 43174}, {37837, 64110}, {38073, 50739}, {38454, 58637}, {40273, 61534}, {40658, 52542}, {41854, 43177}, {44178, 55105}, {50205, 61595}, {52265, 58463}, {54318, 64075}, {63318, 63382}, {63980, 64124}
X(64001) = midpoint of X(i) and X(j) for these {i,j}: {4, 4292}, {942, 20420}, {950, 37468}, {1071, 63998}, {6737, 37625}, {10123, 37447}, {64003, 64004}
X(64001) = reflection of X(i) in X(j) for these {i,j}: {3, 12436}, {5882, 12577}, {6738, 31870}, {12572, 5}, {12575, 13464}, {31806, 12447}, {57284, 37281}, {63999, 13374}
X(64001) = complement of X(64004)
X(64001) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58993, 514}
X(64001) = pole of line {21172, 21173} with respect to the incircle
X(64001) = pole of line {12688, 54198} with respect to the Feuerbach hyperbola
X(64001) = pole of line {1819, 4184} with respect to the Stammler hyperbola
X(64001) = pole of line {6, 278} with respect to the dual conic of Yff parabola
X(64001) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6245), X(63186)}}, {{A, B, C, X(14377), X(55110)}}
X(64001) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64003, 64004}, {3, 55108, 1125}, {3, 5805, 946}, {4, 57, 6245}, {5, 37623, 5745}, {7, 50700, 1490}, {20, 9776, 8726}, {515, 31870, 6738}, {516, 12436, 3}, {553, 63998, 1071}, {936, 5735, 5758}, {942, 20420, 515}, {946, 31730, 11496}, {962, 6904, 6282}, {1699, 15803, 6847}, {1838, 3075, 34050}, {4293, 11023, 1467}, {4295, 63992, 54198}, {5709, 6826, 10}, {5759, 17582, 61122}, {6705, 18483, 8727}, {6849, 7330, 63970}, {6869, 18443, 4297}, {8727, 37582, 6705}, {19541, 57282, 6260}, {31424, 38150, 6846}, {31870, 40249, 942}, {37532, 44229, 51755}, {44229, 51755, 19925}
X(64002) lies on these lines: {1, 5905}, {2, 4292}, {3, 908}, {4, 63}, {5, 3916}, {6, 50065}, {7, 452}, {8, 144}, {9, 377}, {10, 191}, {12, 4640}, {20, 78}, {21, 226}, {29, 307}, {30, 72}, {31, 13161}, {33, 54289}, {34, 22464}, {35, 16154}, {36, 21616}, {37, 49745}, {40, 3436}, {46, 24982}, {56, 24703}, {57, 2478}, {65, 17768}, {75, 1890}, {79, 5251}, {84, 6836}, {100, 16113}, {142, 5047}, {145, 10624}, {165, 5552}, {190, 3710}, {200, 64005}, {213, 50175}, {224, 41854}, {225, 283}, {228, 37425}, {238, 23536}, {255, 1785}, {306, 1330}, {318, 18750}, {376, 4855}, {382, 3419}, {388, 5250}, {392, 18990}, {394, 64057}, {404, 3452}, {405, 5249}, {406, 56457}, {411, 6260}, {442, 31445}, {443, 3305}, {475, 56456}, {497, 62874}, {513, 22299}, {515, 3869}, {517, 16980}, {518, 6284}, {527, 950}, {529, 3057}, {535, 3878}, {540, 2901}, {550, 5440}, {631, 30852}, {651, 5930}, {664, 50563}, {748, 24178}, {758, 10572}, {894, 26117}, {896, 21935}, {912, 7491}, {936, 4190}, {938, 9965}, {942, 11113}, {944, 11682}, {946, 2975}, {956, 12699}, {958, 1836}, {960, 7354}, {962, 3872}, {964, 4357}, {971, 60979}, {993, 12047}, {997, 4299}, {1001, 10404}, {1012, 5812}, {1043, 4101}, {1058, 62832}, {1071, 31789}, {1072, 3073}, {1074, 3074}, {1104, 3782}, {1125, 16865}, {1155, 1329}, {1210, 3218}, {1211, 50054}, {1220, 24723}, {1259, 6259}, {1260, 48664}, {1385, 51409}, {1394, 57477}, {1453, 19785}, {1468, 24210}, {1473, 37415}, {1478, 12514}, {1479, 26015}, {1503, 43216}, {1512, 37821}, {1519, 11249}, {1532, 37623}, {1621, 21620}, {1657, 3940}, {1697, 60965}, {1699, 10527}, {1707, 5230}, {1709, 10522}, {1724, 23537}, {1737, 55873}, {1750, 50695}, {1759, 5179}, {1760, 1861}, {1761, 1826}, {1762, 1869}, {1782, 21368}, {1817, 27412}, {1834, 4641}, {1842, 24310}, {1877, 37591}, {1885, 12689}, {1891, 8680}, {1896, 1947}, {1959, 46483}, {1999, 20077}, {2003, 3193}, {2093, 5554}, {2096, 6865}, {2476, 5745}, {2549, 54406}, {2550, 60949}, {2551, 3474}, {2792, 4499}, {2817, 41733}, {2829, 14110}, {3011, 54354}, {3058, 34791}, {3085, 35258}, {3091, 5744}, {3149, 37822}, {3191, 48897}, {3220, 37231}, {3241, 12575}, {3243, 41864}, {3306, 5084}, {3421, 6361}, {3428, 64119}, {3434, 41869}, {3487, 11111}, {3488, 11520}, {3522, 27383}, {3523, 5748}, {3529, 3984}, {3543, 5175}, {3555, 15171}, {3560, 37826}, {3579, 17757}, {3583, 6763}, {3586, 12649}, {3601, 28609}, {3616, 4298}, {3647, 3822}, {3650, 18480}, {3662, 17697}, {3663, 5262}, {3671, 14450}, {3681, 28150}, {3682, 61220}, {3683, 25466}, {3687, 50697}, {3717, 5300}, {3742, 52783}, {3811, 4302}, {3812, 11246}, {3816, 32636}, {3825, 4973}, {3838, 24953}, {3847, 61649}, {3870, 4294}, {3873, 63999}, {3876, 17579}, {3877, 10106}, {3883, 4968}, {3889, 64162}, {3890, 34605}, {3897, 64160}, {3911, 4193}, {3912, 31015}, {3914, 5247}, {3924, 33098}, {3925, 5302}, {3928, 9581}, {3935, 20066}, {3962, 44669}, {3983, 49732}, {4001, 10449}, {4018, 37730}, {4067, 12532}, {4185, 24320}, {4186, 37581}, {4187, 37582}, {4188, 6700}, {4189, 13411}, {4192, 22345}, {4194, 56367}, {4195, 27184}, {4198, 18655}, {4200, 27509}, {4201, 27064}, {4202, 17353}, {4217, 17274}, {4220, 54337}, {4252, 17720}, {4293, 19861}, {4295, 19860}, {4297, 4511}, {4301, 4861}, {4304, 15680}, {4311, 20067}, {4313, 64143}, {4340, 5287}, {4355, 10582}, {4385, 63134}, {4414, 5530}, {4415, 37539}, {4419, 5716}, {4420, 21060}, {4450, 4696}, {4512, 5290}, {4645, 56311}, {4654, 5436}, {4662, 34612}, {4679, 25524}, {4683, 54331}, {4847, 51118}, {4853, 9589}, {4857, 49627}, {4880, 37702}, {4996, 21635}, {4999, 17605}, {5010, 59719}, {5015, 63147}, {5016, 32933}, {5044, 11112}, {5059, 20007}, {5081, 54107}, {5082, 63135}, {5086, 11684}, {5087, 5433}, {5122, 13747}, {5129, 9776}, {5134, 21073}, {5174, 52844}, {5176, 11362}, {5177, 5273}, {5183, 8256}, {5204, 25681}, {5219, 6910}, {5225, 24477}, {5248, 13407}, {5257, 14005}, {5259, 51706}, {5260, 20292}, {5265, 26129}, {5271, 6994}, {5279, 8804}, {5288, 49600}, {5294, 16062}, {5295, 49716}, {5303, 10165}, {5316, 17531}, {5325, 6175}, {5330, 63987}, {5434, 58679}, {5435, 6919}, {5438, 31142}, {5439, 24470}, {5441, 41696}, {5442, 31263}, {5445, 31160}, {5493, 6736}, {5534, 37000}, {5587, 54290}, {5657, 63144}, {5687, 63145}, {5692, 10483}, {5695, 10371}, {5703, 17576}, {5705, 6871}, {5706, 55400}, {5710, 64016}, {5714, 6857}, {5715, 6837}, {5717, 28606}, {5720, 6934}, {5730, 18481}, {5731, 56387}, {5759, 52684}, {5777, 37468}, {5791, 17532}, {5794, 12943}, {5811, 50701}, {5814, 50044}, {5815, 17784}, {5836, 28534}, {5840, 46685}, {5841, 5887}, {5842, 14872}, {5857, 12711}, {5882, 62826}, {5927, 20420}, {5932, 10433}, {6001, 11827}, {6147, 50241}, {6198, 52362}, {6245, 6840}, {6684, 11681}, {6690, 18977}, {6705, 6943}, {6737, 28164}, {6743, 28158}, {6745, 12512}, {6762, 9580}, {6765, 20075}, {6769, 64078}, {6825, 21165}, {6827, 63399}, {6850, 55104}, {6856, 55867}, {6868, 18446}, {6890, 52027}, {6894, 60970}, {6899, 7171}, {6902, 26877}, {6904, 18228}, {6920, 55108}, {6921, 30827}, {6923, 26921}, {6928, 24467}, {6929, 37532}, {6931, 31231}, {6936, 18443}, {6938, 37531}, {6947, 37534}, {6951, 26878}, {6962, 63966}, {6986, 61115}, {6987, 10884}, {6992, 8726}, {6998, 60701}, {7013, 44696}, {7080, 9778}, {7183, 51364}, {7292, 24171}, {7293, 37431}, {7308, 37462}, {7675, 61010}, {7682, 13729}, {7688, 49178}, {7962, 36977}, {8165, 26062}, {8544, 52457}, {8616, 28027}, {8666, 30384}, {8669, 21093}, {9597, 39248}, {9614, 10529}, {9780, 18250}, {9809, 54227}, {9812, 64081}, {9840, 30076}, {9843, 27003}, {9945, 12103}, {10032, 50796}, {10164, 27529}, {10436, 37314}, {10441, 26892}, {10448, 24725}, {10461, 14956}, {10528, 61763}, {10543, 28645}, {10895, 26066}, {10914, 28174}, {10915, 11010}, {10950, 44663}, {11012, 12608}, {11015, 12437}, {11107, 51382}, {11108, 18541}, {11115, 26580}, {11194, 11376}, {11239, 53053}, {11240, 51785}, {11319, 17184}, {11374, 16370}, {11518, 60933}, {11523, 50244}, {11551, 30143}, {11679, 54429}, {11680, 18483}, {11826, 17615}, {12053, 54391}, {12246, 63984}, {12433, 24473}, {12513, 12701}, {12573, 52653}, {12577, 38314}, {12579, 43223}, {12607, 37568}, {12618, 16566}, {12625, 60977}, {12679, 64077}, {12702, 51433}, {12704, 26333}, {13369, 28459}, {13408, 16585}, {13724, 30078}, {13731, 22060}, {13740, 54311}, {14020, 50116}, {14206, 41013}, {14213, 56875}, {14923, 28194}, {15326, 59691}, {15338, 56176}, {15717, 46873}, {16048, 51400}, {16049, 57281}, {16086, 52354}, {16091, 56382}, {16127, 50528}, {16143, 41690}, {16859, 27186}, {16948, 33133}, {17016, 33100}, {17023, 37076}, {17139, 54356}, {17257, 50408}, {17276, 37549}, {17332, 49734}, {17351, 50050}, {17526, 25527}, {17609, 49736}, {17676, 26223}, {17732, 17742}, {18193, 28074}, {18230, 37436}, {18669, 22005}, {19335, 22376}, {19513, 22344}, {19514, 23205}, {19540, 23085}, {19543, 23206}, {19648, 23169}, {20060, 31397}, {20101, 41261}, {21287, 52396}, {21578, 30144}, {22010, 56538}, {22129, 41344}, {22793, 24390}, {23151, 49130}, {23661, 30807}, {24231, 28082}, {24248, 54418}, {24430, 40950}, {24474, 37290}, {24695, 54421}, {24913, 25677}, {24929, 41571}, {25006, 41229}, {25083, 49132}, {25237, 49476}, {26364, 58887}, {26790, 40872}, {26792, 37256}, {27388, 37250}, {27410, 40880}, {27413, 37180}, {27504, 28774}, {27505, 28739}, {27559, 35991}, {27725, 37158}, {28146, 34790}, {28238, 30006}, {28628, 61716}, {29574, 50234}, {29817, 51724}, {29967, 37225}, {30264, 37837}, {30305, 36846}, {30332, 56936}, {30985, 52241}, {31141, 37828}, {31259, 41867}, {31775, 64107}, {31793, 51379}, {31993, 49728}, {33151, 34937}, {33864, 36007}, {34471, 34647}, {34632, 63133}, {34862, 37374}, {37002, 37611}, {37229, 64152}, {37285, 54430}, {37286, 41550}, {37524, 58405}, {37563, 49626}, {37584, 51432}, {40270, 62854}, {41228, 61003}, {41249, 50166}, {41325, 55337}, {41338, 52860}, {41540, 59321}, {41543, 44238}, {44694, 48890}, {44706, 56814}, {45701, 59316}, {48870, 50066}, {49721, 50046}, {50031, 64128}, {50055, 50127}, {50093, 50171}, {50306, 64184}, {50307, 59305}, {50725, 61006}, {50737, 53620}, {51090, 60969}, {54433, 56082}, {56078, 57808}, {56879, 63137}, {59355, 63998}, {62837, 63993}, {63211, 64123}, {63962, 64150}, {63985, 64111}, {63988, 64075}, {63992, 64079}, {64047, 64163}
X(64002) = reflection of X(i) in X(j) for these {i,j}: {8, 12527}, {20, 64004}, {65, 57288}, {145, 10624}, {1071, 31789}, {1770, 10}, {3555, 15171}, {3868, 950}, {4018, 37730}, {4292, 12572}, {7354, 960}, {10483, 17647}, {11826, 63976}, {24474, 37290}, {37468, 5777}, {41228, 61003}, {41575, 10572}, {45287, 3878}, {57287, 72}, {59355, 63998}, {64003, 4}, {64047, 64163}
X(64002) = anticomplement of X(4292)
X(64002) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {40407, 7}, {57392, 3868}
X(64002) = pole of line {8058, 59926} with respect to the DeLongchamps circle
X(64002) = pole of line {17604, 26476} with respect to the Feuerbach hyperbola
X(64002) = pole of line {3239, 7265} with respect to the Steiner circumellipse
X(64002) = pole of line {648, 653} with respect to the Yff parabola
X(64002) = pole of line {57045, 57064} with respect to the dual conic of incircle
X(64002) = pole of line {14996, 33150} with respect to the dual conic of Yff parabola
X(64002) = intersection, other than A, B, C, of circumconics {{A, B, C, X(267), X(3062)}}, {{A, B, C, X(502), X(8806)}}, {{A, B, C, X(1029), X(10405)}}, {{A, B, C, X(1034), X(62883)}}, {{A, B, C, X(7282), X(39130)}}, {{A, B, C, X(21075), X(34922)}}
X(64002) = barycentric product X(i)*X(j) for these (i, j): {312, 64055}
X(64002) = barycentric quotient X(i)/X(j) for these (i, j): {64055, 57}
X(64002) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11415, 51423}, {3, 58798, 908}, {4, 63, 6734}, {7, 452, 54392}, {8, 144, 3951}, {9, 9579, 377}, {20, 329, 78}, {30, 72, 57287}, {40, 3436, 6735}, {56, 24703, 41012}, {79, 5251, 12609}, {144, 3146, 8}, {191, 3585, 10}, {382, 3927, 3419}, {388, 5698, 5250}, {405, 57282, 5249}, {442, 31445, 54357}, {527, 950, 3868}, {535, 3878, 45287}, {758, 10572, 41575}, {993, 12047, 24541}, {1043, 33066, 4101}, {1330, 7283, 306}, {1478, 12514, 24987}, {1479, 62858, 26015}, {1724, 23537, 26723}, {2975, 5057, 946}, {3218, 5046, 1210}, {3421, 6361, 63130}, {3436, 44447, 40}, {3487, 11111, 62829}, {3543, 54398, 5175}, {3586, 54422, 12649}, {3648, 5080, 56288}, {3868, 11114, 950}, {3876, 17579, 57284}, {3935, 20066, 64117}, {4188, 27131, 6700}, {4189, 31053, 13411}, {4190, 31018, 936}, {4292, 12572, 2}, {4298, 40998, 3616}, {4415, 64159, 37539}, {4847, 51118, 52367}, {4861, 5180, 4301}, {5247, 24851, 3914}, {5493, 6736, 63136}, {5691, 60905, 12526}, {5692, 10483, 17647}, {5714, 6857, 31266}, {5905, 6872, 1}, {6260, 63438, 411}, {6871, 55868, 5705}, {12649, 20078, 54422}, {12702, 64087, 51433}, {15680, 17484, 34772}, {15680, 34772, 4304}, {16865, 31019, 1125}, {17768, 57288, 65}, {17781, 57287, 72}, {21075, 31730, 100}, {27003, 37162, 9843}, {31164, 62829, 3487}, {31547, 31548, 45738}, {33151, 62802, 34937}, {37821, 59318, 1512}, {41869, 57279, 3434}, {60905, 64197, 144}, {64111, 64190, 63985}
X(64003) lies on these lines: {1, 7}, {2, 5715}, {3, 5249}, {4, 63}, {5, 54357}, {8, 20223}, {9, 6835}, {10, 6839}, {21, 946}, {27, 283}, {30, 1071}, {40, 377}, {57, 6836}, {72, 5762}, {78, 5758}, {84, 10431}, {142, 6986}, {165, 10198}, {191, 12617}, {224, 6934}, {225, 412}, {226, 411}, {255, 1838}, {307, 7513}, {329, 50700}, {405, 5805}, {443, 5759}, {497, 62836}, {515, 3868}, {517, 5562}, {518, 6253}, {527, 12528}, {550, 24299}, {580, 26723}, {908, 1259}, {944, 11520}, {950, 62864}, {958, 5832}, {971, 14054}, {1004, 10310}, {1006, 55108}, {1012, 11249}, {1072, 3072}, {1076, 3075}, {1125, 37106}, {1210, 6840}, {1212, 5829}, {1385, 44238}, {1479, 62810}, {1490, 5905}, {1512, 10526}, {1519, 37302}, {1698, 6993}, {1699, 6837}, {1724, 53599}, {1729, 5179}, {1754, 23537}, {1836, 26357}, {1839, 15656}, {1998, 6223}, {2000, 37104}, {2077, 35976}, {2096, 12116}, {2886, 15823}, {2894, 4847}, {2949, 3219}, {3091, 5273}, {3146, 9799}, {3182, 56544}, {3218, 6245}, {3305, 6864}, {3306, 6865}, {3428, 37228}, {3452, 6915}, {3474, 37550}, {3523, 12436}, {3543, 28610}, {3562, 5930}, {3583, 54432}, {3587, 6897}, {3647, 12558}, {3753, 31799}, {3817, 6884}, {3911, 6943}, {3916, 8727}, {4190, 6282}, {4197, 6684}, {4652, 6847}, {5046, 7682}, {5057, 63989}, {5219, 6962}, {5234, 5833}, {5279, 10445}, {5440, 5763}, {5493, 37163}, {5535, 12616}, {5536, 10916}, {5563, 16155}, {5584, 5880}, {5603, 59345}, {5691, 49168}, {5713, 37419}, {5745, 6828}, {5777, 17781}, {5784, 7957}, {5806, 11113}, {5842, 12671}, {5882, 63159}, {6260, 36002}, {6284, 10391}, {6361, 6916}, {6598, 24391}, {6824, 21165}, {6826, 55104}, {6831, 37623}, {6838, 9612}, {6851, 63399}, {6855, 55867}, {6869, 18446}, {6870, 55868}, {6886, 38150}, {6890, 15803}, {6899, 37534}, {6900, 26878}, {6905, 27385}, {6909, 37583}, {6917, 37584}, {6925, 9579}, {6927, 30852}, {6985, 37826}, {6987, 54392}, {6988, 31266}, {7354, 64043}, {7411, 10902}, {7549, 54337}, {7580, 57282}, {7680, 47516}, {7681, 37358}, {7686, 11827}, {7958, 15254}, {7989, 31446}, {8226, 31445}, {8557, 57286}, {9616, 45650}, {9776, 37423}, {9778, 10268}, {9812, 10527}, {9940, 37428}, {9943, 11246}, {10123, 33557}, {10167, 24470}, {10267, 37426}, {10306, 63145}, {10529, 54052}, {10572, 18389}, {10680, 48661}, {10724, 13243}, {10883, 18483}, {11020, 63999}, {11112, 31793}, {11220, 28150}, {11362, 59356}, {11415, 63992}, {11496, 20835}, {11826, 17616}, {12053, 62873}, {12512, 37105}, {12527, 54398}, {12609, 59320}, {12650, 20076}, {12688, 17768}, {12701, 26437}, {12705, 44447}, {13442, 64126}, {13739, 51382}, {14217, 48694}, {14798, 15228}, {15852, 49745}, {15931, 51706}, {17529, 31658}, {17558, 40998}, {17579, 28194}, {17590, 61595}, {19541, 58798}, {19645, 37530}, {20070, 37435}, {21077, 44425}, {21620, 62800}, {22753, 37248}, {22793, 26202}, {23144, 64057}, {23536, 37570}, {24320, 37387}, {26201, 28146}, {26921, 44229}, {28174, 31775}, {28198, 37429}, {28381, 30078}, {28452, 31837}, {28534, 34742}, {29639, 37443}, {34789, 48713}, {37194, 37581}, {37281, 64107}, {37374, 37582}, {37462, 61122}, {37579, 64074}, {37591, 40950}, {41228, 63146}, {41572, 44547}, {45700, 50865}, {49164, 64084}, {49170, 62874}, {51423, 63986}, {52783, 58567}, {52835, 60990}, {54289, 57276}, {57284, 61002}, {59323, 64155}, {61024, 63970}, {63995, 64046}
X(64003) = midpoint of X(i) and X(j) for these {i,j}: {3868, 59355}
X(64003) = reflection of X(i) in X(j) for these {i,j}: {20, 4292}, {72, 20420}, {11827, 7686}, {12528, 63998}, {33557, 10123}, {41575, 37625}, {57287, 37468}, {64002, 4}, {64004, 64001}
X(64003) = anticomplement of X(64004)
X(64003) = pole of line {354, 26475} with respect to the Feuerbach hyperbola
X(64003) = pole of line {2328, 10902} with respect to the Stammler hyperbola
X(64003) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(1105)}}, {{A, B, C, X(77), X(775)}}, {{A, B, C, X(84), X(4341)}}, {{A, B, C, X(269), X(55105)}}, {{A, B, C, X(347), X(43740)}}, {{A, B, C, X(10884), X(34402)}}
X(64003) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 5709, 6734}, {7, 20, 10884}, {20, 11036, 5731}, {84, 41869, 10431}, {515, 37625, 41575}, {516, 4292, 20}, {527, 63998, 12528}, {946, 11012, 24541}, {946, 63438, 21}, {1071, 24474, 39772}, {1699, 31424, 6837}, {3146, 9965, 9799}, {3149, 5812, 908}, {3218, 6895, 6245}, {3868, 59355, 515}, {5603, 59345, 62829}, {5905, 50695, 1490}, {6361, 6916, 63141}, {10431, 43740, 48482}, {11012, 49177, 946}, {64001, 64004, 2}
X(64004) lies on these lines: {1, 5758}, {2, 5715}, {3, 226}, {4, 9}, {7, 8726}, {20, 78}, {30, 5777}, {57, 6865}, {63, 6245}, {72, 515}, {144, 9799}, {165, 498}, {198, 9122}, {201, 40950}, {210, 6253}, {212, 225}, {228, 37409}, {255, 1076}, {376, 28609}, {389, 517}, {405, 946}, {411, 908}, {442, 6684}, {443, 61122}, {452, 962}, {497, 10396}, {519, 42456}, {527, 1071}, {553, 9940}, {580, 40940}, {602, 1072}, {631, 12436}, {936, 50701}, {938, 12848}, {942, 5762}, {943, 10902}, {944, 11523}, {954, 12573}, {971, 61003}, {997, 64075}, {1006, 1125}, {1068, 59645}, {1155, 50031}, {1210, 1708}, {1260, 11500}, {1385, 63274}, {1478, 59340}, {1479, 1728}, {1698, 6843}, {1699, 6846}, {1713, 40963}, {1750, 5811}, {1764, 63397}, {1785, 38857}, {1794, 1838}, {1836, 5584}, {1864, 6284}, {1935, 53592}, {2077, 3651}, {2096, 9841}, {2324, 9121}, {2328, 37383}, {2385, 52359}, {2478, 7682}, {2792, 10381}, {2817, 41600}, {2829, 13227}, {2894, 2949}, {2900, 37000}, {3085, 10268}, {3149, 3452}, {3219, 6895}, {3305, 6835}, {3419, 11362}, {3430, 30266}, {3474, 37560}, {3487, 3576}, {3488, 7982}, {3579, 6907}, {3586, 7991}, {3587, 6850}, {3601, 59345}, {3634, 6829}, {3817, 6832}, {3876, 59355}, {3911, 6922}, {3916, 6705}, {3927, 5787}, {4185, 26935}, {4294, 6769}, {4295, 30503}, {4297, 18446}, {4300, 41011}, {4301, 6936}, {4304, 6868}, {4311, 37611}, {4314, 37569}, {4652, 6890}, {4847, 48482}, {5044, 20420}, {5129, 60959}, {5175, 59417}, {5219, 6988}, {5249, 6986}, {5285, 7412}, {5316, 6918}, {5436, 5603}, {5552, 9778}, {5554, 20070}, {5705, 6844}, {5714, 35242}, {5717, 37528}, {5720, 6869}, {5722, 61014}, {5728, 63999}, {5732, 61010}, {5735, 60987}, {5745, 6831}, {5750, 5798}, {5755, 57719}, {5763, 24929}, {5768, 54422}, {5805, 11108}, {5806, 60972}, {5842, 63146}, {5905, 10884}, {5927, 11826}, {5928, 63436}, {5930, 7078}, {6244, 11499}, {6259, 64156}, {6260, 6745}, {6700, 6905}, {6738, 37625}, {6828, 54357}, {6833, 21165}, {6847, 31424}, {6851, 7330}, {6860, 55867}, {6864, 7308}, {6877, 51073}, {6878, 19862}, {6883, 55108}, {6889, 10164}, {6894, 27065}, {6899, 63399}, {6913, 12699}, {6916, 9579}, {6925, 63141}, {6926, 15803}, {6927, 30827}, {6928, 10395}, {6943, 59491}, {6947, 9843}, {6962, 30852}, {6990, 12571}, {6992, 54392}, {7013, 40657}, {7070, 7952}, {7085, 37194}, {7491, 37585}, {7680, 47510}, {7681, 14022}, {7992, 60905}, {8226, 15908}, {8227, 16845}, {8232, 37108}, {8273, 10404}, {8544, 54178}, {8727, 31445}, {8728, 31658}, {8807, 52097}, {9119, 12241}, {9441, 24851}, {9668, 10392}, {9943, 17768}, {9960, 60979}, {10056, 16208}, {10106, 31786}, {10123, 31659}, {10320, 58887}, {10572, 18397}, {10860, 64190}, {11019, 12704}, {11113, 28194}, {11227, 24470}, {11249, 44675}, {11415, 54198}, {11491, 59722}, {11496, 13615}, {12047, 59320}, {12053, 22770}, {12245, 12625}, {12246, 58808}, {12528, 17781}, {12565, 63962}, {13161, 37570}, {13257, 24466}, {13329, 23537}, {13407, 15931}, {14647, 54290}, {15796, 52954}, {15972, 48899}, {17857, 21060}, {18228, 50700}, {18650, 52673}, {19861, 64079}, {21015, 37368}, {21153, 37407}, {22003, 59163}, {22300, 58690}, {22753, 37244}, {24474, 28459}, {24703, 63989}, {26006, 36023}, {26364, 59614}, {26921, 51755}, {28146, 31777}, {28174, 31798}, {28198, 31797}, {30264, 50371}, {31018, 50695}, {33597, 44238}, {36029, 57281}, {37364, 37582}, {37426, 63413}, {37468, 57284}, {37530, 39595}, {37537, 50065}, {40212, 44696}, {41561, 41854}, {41572, 62864}, {43177, 61011}, {44447, 63985}, {50528, 54227}, {51706, 52769}, {54305, 57276}
X(64004) = midpoint of X(i) and X(j) for these {i,j}: {20, 64002}, {6284, 7957}, {7491, 37585}, {11827, 14110}
X(64004) = reflection of X(i) in X(j) for these {i,j}: {4, 12572}, {950, 31789}, {4292, 3}, {6737, 31806}, {7982, 12575}, {10106, 31786}, {20420, 5044}, {22300, 58690}, {37468, 57284}, {37625, 6738}, {52819, 51489}, {63146, 63976}, {63998, 5777}, {64003, 64001}
X(64004) = complement of X(64003)
X(64004) = anticomplement of X(64001)
X(64004) = X(i)-Dao conjugate of X(j) for these {i, j}: {64001, 64001}
X(64004) = pole of line {12, 1864} with respect to the Feuerbach hyperbola
X(64004) = pole of line {25259, 57245} with respect to the Steiner circumellipse
X(64004) = pole of line {3239, 60494} with respect to the Steiner inellipse
X(64004) = pole of line {101, 653} with respect to the Yff parabola
X(64004) = pole of line {21172, 36054} with respect to the dual conic of DeLongchamps circle
X(64004) = pole of line {4000, 37543} with respect to the dual conic of Yff parabola
X(64004) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(15830)}}, {{A, B, C, X(4), X(41514)}}, {{A, B, C, X(9), X(57643)}}, {{A, B, C, X(19), X(3345)}}, {{A, B, C, X(281), X(1034)}}, {{A, B, C, X(972), X(6197)}}, {{A, B, C, X(1826), X(8806)}}
X(64004) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64003, 64001}, {3, 5812, 226}, {4, 55104, 10}, {4, 5759, 40}, {7, 37423, 8726}, {20, 329, 1490}, {30, 5777, 63998}, {63, 6836, 6245}, {165, 9612, 6908}, {226, 54430, 13411}, {255, 1076, 34050}, {515, 31806, 6737}, {516, 12572, 4}, {517, 31789, 950}, {950, 15556, 64163}, {3916, 37374, 6705}, {5709, 6827, 1210}, {5758, 6987, 1}, {5762, 51489, 52819}, {5842, 63976, 63146}, {6260, 31730, 7580}, {6922, 37623, 3911}, {6992, 55109, 54392}, {7580, 11517, 6796}, {7580, 58798, 6260}, {9579, 37551, 6916}, {11415, 64150, 54198}, {11827, 14110, 515}, {24703, 64077, 63989}, {31561, 31562, 8804}, {37468, 64107, 57284}
X(64005) lies on these lines: {1, 7}, {2, 10248}, {3, 1699}, {4, 165}, {5, 19872}, {8, 5059}, {10, 3146}, {12, 35445}, {21, 12511}, {28, 52840}, {30, 40}, {35, 7580}, {36, 9614}, {43, 50694}, {46, 2955}, {55, 5290}, {56, 9580}, {57, 6284}, {63, 5178}, {72, 5696}, {79, 59337}, {80, 7285}, {84, 5842}, {144, 6743}, {145, 28228}, {200, 64002}, {354, 31805}, {376, 946}, {377, 4512}, {381, 31423}, {382, 3579}, {388, 53053}, {392, 56998}, {405, 11495}, {411, 5010}, {443, 63413}, {484, 920}, {485, 9582}, {497, 3361}, {498, 37421}, {511, 39878}, {515, 3529}, {517, 1657}, {518, 48872}, {519, 15683}, {527, 3189}, {528, 6762}, {529, 2136}, {546, 54447}, {548, 5886}, {549, 50812}, {550, 3576}, {551, 62120}, {553, 18217}, {631, 7988}, {758, 9961}, {846, 48890}, {936, 50695}, {942, 5918}, {944, 11001}, {950, 3339}, {952, 62155}, {958, 11661}, {960, 17668}, {971, 5904}, {978, 50702}, {1001, 35202}, {1012, 59320}, {1071, 3894}, {1097, 24014}, {1125, 3522}, {1131, 49618}, {1132, 49619}, {1151, 13888}, {1152, 13942}, {1155, 9581}, {1203, 37537}, {1210, 53056}, {1385, 3534}, {1386, 59411}, {1420, 12701}, {1478, 51784}, {1479, 15803}, {1482, 15681}, {1483, 7982}, {1490, 16127}, {1503, 9899}, {1571, 7747}, {1572, 7756}, {1593, 37557}, {1614, 9586}, {1697, 7354}, {1702, 6560}, {1703, 6561}, {1706, 57288}, {1724, 9441}, {1727, 59324}, {1750, 5811}, {1766, 16545}, {1768, 5709}, {1836, 3601}, {1837, 5128}, {1885, 7713}, {1902, 37196}, {2077, 6985}, {2093, 10572}, {2475, 35258}, {2478, 64112}, {2548, 31421}, {2550, 5234}, {2777, 2948}, {2792, 54209}, {2794, 12408}, {2829, 5541}, {3062, 5759}, {3070, 9616}, {3085, 31508}, {3091, 10164}, {3149, 59326}, {3241, 62148}, {3244, 62149}, {3245, 37711}, {3333, 15171}, {3336, 64129}, {3338, 9841}, {3359, 7491}, {3419, 54290}, {3434, 62824}, {3436, 63145}, {3485, 53054}, {3486, 18421}, {3523, 3817}, {3524, 30308}, {3528, 10165}, {3530, 61268}, {3543, 19875}, {3560, 7688}, {3583, 6836}, {3585, 6925}, {3616, 50693}, {3617, 50692}, {3622, 62124}, {3623, 16191}, {3626, 61252}, {3627, 18492}, {3634, 3832}, {3636, 62125}, {3647, 31446}, {3648, 3951}, {3651, 5715}, {3653, 15690}, {3655, 19710}, {3656, 15686}, {3681, 63280}, {3689, 48664}, {3751, 29181}, {3753, 50242}, {3828, 50687}, {3830, 9956}, {3839, 19876}, {3841, 10883}, {3843, 11231}, {3853, 61261}, {3855, 10172}, {3858, 61614}, {3861, 61263}, {3869, 9859}, {3870, 20066}, {3874, 11220}, {3876, 31871}, {3899, 14110}, {3911, 5225}, {3947, 5281}, {3973, 10443}, {4190, 8583}, {4197, 12558}, {4229, 25526}, {4652, 5231}, {4654, 37080}, {4668, 49140}, {4669, 62168}, {4677, 34632}, {4745, 62051}, {4816, 5881}, {4855, 5057}, {4880, 41709}, {4882, 12527}, {5056, 58441}, {5068, 51073}, {5070, 61265}, {5071, 50813}, {5073, 18480}, {5076, 38140}, {5086, 63144}, {5119, 9613}, {5122, 9669}, {5180, 56387}, {5204, 50443}, {5217, 5219}, {5221, 37723}, {5223, 63146}, {5229, 5726}, {5248, 7411}, {5250, 17579}, {5251, 5584}, {5268, 50698}, {5269, 50065}, {5272, 50699}, {5285, 15951}, {5302, 38200}, {5426, 44238}, {5434, 37556}, {5436, 5880}, {5438, 24703}, {5439, 10178}, {5475, 31422}, {5506, 61122}, {5531, 13199}, {5536, 63399}, {5537, 11500}, {5538, 6261}, {5550, 21734}, {5561, 59421}, {5563, 63991}, {5586, 11246}, {5603, 17538}, {5657, 31673}, {5692, 12688}, {5693, 37585}, {5697, 17644}, {5698, 45085}, {5705, 6895}, {5708, 31795}, {5727, 37567}, {5745, 51576}, {5789, 36999}, {5790, 33697}, {5818, 15682}, {5841, 49163}, {5844, 58203}, {5847, 14927}, {5882, 11224}, {5895, 40660}, {5902, 9943}, {5925, 6001}, {5927, 58637}, {5930, 34033}, {6173, 51715}, {6197, 15942}, {6264, 38753}, {6282, 6869}, {6459, 19004}, {6460, 19003}, {6744, 21454}, {6767, 31776}, {6827, 10270}, {6835, 21153}, {6840, 18514}, {6850, 10268}, {6868, 30503}, {6899, 16209}, {6904, 40998}, {6909, 7280}, {6934, 63992}, {6986, 38150}, {6996, 31183}, {6999, 17284}, {7171, 12704}, {7288, 50444}, {7379, 9746}, {7387, 9590}, {7406, 16832}, {7416, 39578}, {7737, 9593}, {7741, 37374}, {7745, 9574}, {7964, 31445}, {7965, 8728}, {7967, 16189}, {7993, 12248}, {7994, 63981}, {8148, 61291}, {8185, 39568}, {8226, 41859}, {8275, 10944}, {8580, 12572}, {8703, 38021}, {8804, 18594}, {8983, 42638}, {9575, 63548}, {9577, 64054}, {9578, 12943}, {9583, 42260}, {9587, 34148}, {9611, 18447}, {9622, 61752}, {9624, 13624}, {9626, 12083}, {9668, 37582}, {9670, 32636}, {9671, 61649}, {9779, 15717}, {9780, 17578}, {9782, 54392}, {9801, 54433}, {9819, 10106}, {9845, 34719}, {9860, 23698}, {9896, 9904}, {9897, 64189}, {9911, 21312}, {9948, 14646}, {10085, 58808}, {10124, 50807}, {10167, 18398}, {10171, 10303}, {10222, 62143}, {10246, 62131}, {10247, 62142}, {10283, 62126}, {10310, 37411}, {10389, 10404}, {10394, 12432}, {10431, 31424}, {10434, 37425}, {10574, 31757}, {10595, 51705}, {10724, 37718}, {10726, 14690}, {10789, 12203}, {10826, 17613}, {10857, 64001}, {10882, 37331}, {10895, 51790}, {10896, 31231}, {10912, 34716}, {10980, 63999}, {11106, 59412}, {11112, 31435}, {11260, 34620}, {11278, 61288}, {11362, 28172}, {11372, 20420}, {11413, 49553}, {11496, 15931}, {11523, 17768}, {12047, 30282}, {12053, 13462}, {12085, 15177}, {12103, 22791}, {12111, 31737}, {12119, 13253}, {12261, 38788}, {12263, 22676}, {12514, 59355}, {12526, 44447}, {12579, 39586}, {12635, 28534}, {12645, 28208}, {12653, 64145}, {12705, 37468}, {12717, 29291}, {12778, 34584}, {13442, 24342}, {13464, 30392}, {13528, 52851}, {13607, 46333}, {13893, 23251}, {13911, 42272}, {13912, 23249}, {13947, 23261}, {13971, 42637}, {13973, 42271}, {13975, 23259}, {14100, 37544}, {14217, 38761}, {14664, 44984}, {14872, 15104}, {14942, 44760}, {14986, 51783}, {15015, 24466}, {15017, 34474}, {15022, 31253}, {15072, 31732}, {15178, 62134}, {15305, 31752}, {15484, 31430}, {15640, 34648}, {15680, 19860}, {15684, 50821}, {15685, 28204}, {15687, 50826}, {15689, 51709}, {15691, 50820}, {15692, 50802}, {15697, 51110}, {16116, 16143}, {16117, 32613}, {16118, 33557}, {16132, 37533}, {16159, 31651}, {16173, 38759}, {16200, 28216}, {16208, 26332}, {16239, 61266}, {16371, 25522}, {16475, 44882}, {17502, 18493}, {17529, 42356}, {17554, 38204}, {17605, 63756}, {17606, 51792}, {18357, 62041}, {18513, 37437}, {18525, 28168}, {18527, 37545}, {18990, 31393}, {18991, 42258}, {18992, 42259}, {19065, 42413}, {19066, 42414}, {19645, 53591}, {19854, 37434}, {19861, 37256}, {19877, 50689}, {19878, 61820}, {19883, 50816}, {20007, 63975}, {20067, 36846}, {20077, 49495}, {20127, 33535}, {20292, 62829}, {21627, 34610}, {23512, 37603}, {23536, 62875}, {23708, 59319}, {24178, 60846}, {24309, 37399}, {24467, 24468}, {24851, 37552}, {24914, 63207}, {24987, 31295}, {25440, 36002}, {28082, 63583}, {28186, 61245}, {28190, 61246}, {28212, 37727}, {28224, 62156}, {28609, 34626}, {28850, 64184}, {29012, 39885}, {29024, 61087}, {29054, 49532}, {29598, 37416}, {30323, 36975}, {30343, 40270}, {31151, 52858}, {31158, 51698}, {31399, 62021}, {31441, 39590}, {31447, 62008}, {31658, 41872}, {31728, 64051}, {31789, 37560}, {31837, 61705}, {33179, 62140}, {33923, 38034}, {34379, 61044}, {34611, 62832}, {34627, 62165}, {34718, 62163}, {34747, 62153}, {34823, 45281}, {35004, 54145}, {35774, 42266}, {35775, 42267}, {37328, 63968}, {37400, 61124}, {37422, 52680}, {37524, 64128}, {37529, 48897}, {37531, 50528}, {37553, 49745}, {37569, 41854}, {37624, 62137}, {37692, 59325}, {37698, 48916}, {37705, 62164}, {37826, 49178}, {38022, 62101}, {38023, 50971}, {38028, 44245}, {38029, 48892}, {38042, 62026}, {38047, 51163}, {38066, 62046}, {38068, 41099}, {38074, 62049}, {38076, 62007}, {38083, 61993}, {38112, 62047}, {38220, 38747}, {38314, 50815}, {38454, 41863}, {39531, 52846}, {40663, 41348}, {41339, 64055}, {41430, 61109}, {42263, 49227}, {42264, 49226}, {42275, 49602}, {42276, 49601}, {43151, 59385}, {43174, 49135}, {43577, 43830}, {44682, 61269}, {44841, 52783}, {44903, 50831}, {46264, 64084}, {46853, 61272}, {46933, 50690}, {46934, 62102}, {47273, 62493}, {47357, 51723}, {47745, 50810}, {48482, 52027}, {48881, 64085}, {49132, 54287}, {49134, 61256}, {49719, 63135}, {50190, 58567}, {50419, 59311}, {50796, 62042}, {50799, 62015}, {50803, 62005}, {50806, 62088}, {50824, 62139}, {50825, 61978}, {50829, 50873}, {50862, 53620}, {50864, 62166}, {50869, 61985}, {51069, 62030}, {51071, 62145}, {51076, 61927}, {51084, 62068}, {51086, 61778}, {51088, 61883}, {51103, 62132}, {51109, 62099}, {51119, 61806}, {52026, 64119}, {52653, 56999}, {53057, 64124}, {54051, 54227}, {57278, 59323}, {57282, 63282}, {58188, 58215}, {58206, 61248}, {58219, 62075}, {58834, 64144}, {59388, 62171}, {59418, 63973}, {59503, 61250}, {61258, 62038}, {61262, 62006}, {61267, 61853}, {61270, 62062}, {61274, 62113}, {61275, 62121}, {61276, 62123}, {61524, 62036}, {62858, 63984}, {63138, 64087}, {63310, 63386}
X(64005) = midpoint of X(i) and X(j) for these {i,j}: {8, 5059}, {3529, 6361}, {12702, 17800}, {18525, 49137}, {34627, 62165}, {34632, 62160}, {34718, 62163}, {37705, 62164}, {50810, 62161}, {50864, 62166}
X(64005) = reflection of X(i) in X(j) for these {i,j}: {1, 20}, {2, 34638}, {4, 31730}, {8, 5493}, {382, 3579}, {962, 4297}, {3062, 5759}, {3146, 10}, {3543, 50808}, {3586, 10860}, {3632, 7991}, {3655, 19710}, {3656, 15686}, {3901, 15071}, {4312, 2951}, {4677, 34632}, {5073, 18480}, {5531, 13199}, {5691, 40}, {5693, 37585}, {5881, 12702}, {5895, 40660}, {5904, 7957}, {6253, 31777}, {6264, 38753}, {7982, 18481}, {7991, 6361}, {7992, 64190}, {7993, 12248}, {9589, 1}, {9812, 59420}, {9897, 64189}, {10724, 46684}, {10726, 14690}, {11531, 944}, {12111, 31737}, {12653, 64145}, {12688, 31793}, {12699, 550}, {13253, 12119}, {14217, 38761}, {15640, 34648}, {15684, 50821}, {16118, 33557}, {16159, 31651}, {18481, 15704}, {22791, 12103}, {28609, 34626}, {31162, 3534}, {33535, 20127}, {33703, 31673}, {34628, 11001}, {34773, 62144}, {34789, 24466}, {41869, 3}, {44984, 14664}, {48661, 1385}, {49136, 33697}, {50811, 15681}, {50824, 62139}, {50865, 376}, {51093, 34628}, {51118, 12512}, {52835, 11495}, {52851, 13528}, {52860, 10310}, {58245, 145}, {62036, 61524}, {62041, 18357}, {62042, 50796}, {62048, 50862}, {64000, 31799}, {64051, 31728}, {64084, 46264}, {64085, 48881}
X(64005) = anticomplement of X(51118)
X(64005) = X(i)-Dao conjugate of X(j) for these {i, j}: {51118, 51118}
X(64005) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56146, 1}
X(64005) = pole of line {4802, 44408} with respect to the circumcircle
X(64005) = pole of line {514, 39547} with respect to the Conway circle
X(64005) = pole of line {28155, 48407} with respect to the excircles-radical circle
X(64005) = pole of line {514, 39540} with respect to the incircle
X(64005) = pole of line {44432, 48174} with respect to the orthoptic circle of the Steiner Inellipse
X(64005) = pole of line {354, 50443} with respect to the Feuerbach hyperbola
X(64005) = pole of line {514, 44409} with respect to the Suppa-Cucoanes circle
X(64005) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {8, 5059, 36154}
X(64005) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1443), X(7285)}}, {{A, B, C, X(1458), X(44760)}}, {{A, B, C, X(9589), X(14942)}}, {{A, B, C, X(56382), X(60243)}}
X(64005) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1770, 4312}, {1, 4292, 4355}, {1, 516, 9589}, {2, 10248, 12571}, {2, 12512, 16192}, {3, 1699, 3624}, {3, 22793, 8227}, {3, 28146, 41869}, {3, 41869, 1699}, {4, 165, 1698}, {4, 31730, 165}, {4, 6684, 7989}, {8, 5059, 28164}, {8, 5493, 63468}, {10, 28158, 3146}, {10, 9778, 63469}, {20, 962, 4297}, {30, 31777, 6253}, {30, 31799, 64000}, {30, 40, 5691}, {40, 1709, 191}, {40, 5691, 3679}, {40, 7701, 26921}, {55, 9579, 5290}, {56, 9580, 51785}, {145, 28228, 58245}, {165, 7989, 6684}, {376, 50865, 25055}, {376, 946, 7987}, {382, 3579, 5587}, {515, 6361, 7991}, {515, 64190, 7992}, {516, 4297, 962}, {550, 12699, 3576}, {550, 28178, 12699}, {631, 18483, 7988}, {944, 28194, 11531}, {950, 3474, 3339}, {1125, 3522, 58221}, {1125, 59420, 3522}, {1385, 28202, 48661}, {1385, 48661, 31162}, {1448, 4319, 1}, {1478, 61763, 51784}, {1836, 15338, 3601}, {3522, 9812, 1125}, {3523, 3817, 34595}, {3529, 6361, 515}, {3534, 48661, 1385}, {3576, 12699, 11522}, {3579, 28154, 382}, {3579, 5587, 9588}, {3585, 59316, 31434}, {3627, 26446, 18492}, {3634, 3832, 61264}, {3832, 64108, 3634}, {5119, 10483, 9613}, {5475, 31422, 31428}, {5657, 31673, 37714}, {5657, 33703, 31673}, {5790, 49136, 33697}, {6253, 34630, 31777}, {7987, 50865, 946}, {8227, 41869, 22793}, {9779, 15717, 19862}, {10310, 37411, 44425}, {10404, 63273, 10389}, {11001, 28194, 34628}, {11246, 11518, 5586}, {11495, 52835, 38052}, {11496, 37426, 15931}, {11531, 34628, 944}, {12512, 51118, 2}, {12571, 51118, 10248}, {12701, 15326, 1420}, {12702, 17800, 28160}, {12702, 28160, 5881}, {12943, 37568, 9578}, {15681, 28198, 50811}, {15704, 28174, 18481}, {18481, 28174, 7982}, {18493, 62100, 17502}, {18525, 49137, 28168}, {19883, 50816, 62063}, {24466, 34789, 15015}, {28150, 31730, 4}, {28194, 34628, 51093}, {28216, 62144, 34773}, {34618, 64000, 31799}, {34638, 51118, 12512}, {37022, 64077, 36}, {38314, 62129, 50815}, {44447, 57287, 12526}, {53620, 62048, 50862}
X(64006) lies on these lines: {1, 256}, {2, 23638}, {8, 30092}, {10, 50580}, {11, 48888}, {12, 24220}, {35, 48929}, {36, 48886}, {37, 8679}, {38, 18210}, {39, 21760}, {42, 3917}, {43, 3819}, {51, 3720}, {55, 103}, {56, 573}, {63, 40966}, {65, 3664}, {69, 35628}, {72, 34379}, {75, 35104}, {181, 940}, {182, 20958}, {226, 21334}, {373, 20962}, {388, 10446}, {394, 54312}, {495, 48934}, {497, 48878}, {516, 3057}, {517, 50307}, {518, 3688}, {674, 49478}, {692, 4265}, {750, 51377}, {756, 61640}, {899, 5650}, {960, 4416}, {968, 26892}, {970, 37607}, {971, 11997}, {984, 2810}, {986, 17114}, {995, 50592}, {999, 48875}, {1001, 3271}, {1125, 50594}, {1193, 4263}, {1197, 3787}, {1201, 23659}, {1216, 37698}, {1350, 37580}, {1357, 17595}, {1365, 3782}, {1401, 3666}, {1402, 22097}, {1458, 2269}, {1463, 3663}, {1468, 22076}, {1478, 48902}, {1479, 48938}, {1697, 1742}, {1993, 20959}, {2092, 2274}, {2175, 36740}, {2292, 23154}, {2356, 12294}, {2646, 40944}, {2841, 17461}, {2876, 3242}, {2979, 17018}, {3030, 4413}, {3060, 29814}, {3098, 37576}, {3240, 7998}, {3295, 48908}, {3585, 48940}, {3601, 50658}, {3616, 63498}, {3622, 63523}, {3690, 32912}, {3736, 56837}, {3743, 23156}, {3750, 7186}, {3751, 3781}, {3775, 26012}, {3784, 17594}, {3786, 33297}, {3792, 4260}, {3794, 29839}, {3869, 17364}, {3874, 49564}, {3875, 54338}, {3878, 17770}, {3883, 9025}, {3931, 11573}, {3937, 4414}, {4014, 24248}, {4259, 52020}, {4271, 20470}, {4293, 48918}, {4334, 37555}, {4517, 5223}, {4553, 49524}, {4666, 63513}, {5052, 23660}, {5188, 18758}, {5220, 7064}, {5283, 23630}, {5542, 20358}, {5691, 10862}, {5697, 29309}, {5712, 10473}, {5718, 50362}, {5784, 40965}, {5919, 29353}, {5943, 26102}, {6007, 49470}, {6018, 47006}, {6688, 25502}, {7066, 22132}, {7143, 15832}, {7295, 47038}, {9026, 49515}, {9037, 15569}, {9052, 49490}, {9309, 52653}, {9310, 51436}, {9564, 14829}, {9957, 15310}, {10582, 63511}, {11793, 37699}, {12053, 45305}, {13405, 20359}, {14839, 24282}, {15082, 62711}, {15489, 37608}, {15644, 37529}, {16980, 59305}, {17365, 20718}, {17778, 35614}, {17794, 30547}, {18178, 25466}, {18671, 60586}, {19765, 50646}, {20036, 50577}, {20460, 63571}, {20961, 21969}, {20967, 25941}, {23155, 28606}, {23841, 50578}, {25306, 29843}, {25385, 38484}, {25917, 63978}, {26098, 35645}, {26893, 62819}, {27846, 28403}, {29661, 61643}, {30778, 51407}, {35633, 50623}, {37492, 60722}, {37568, 41430}, {37633, 56878}, {40419, 56154}, {40952, 62821}, {41228, 52562}, {43650, 61357}, {47021, 59807}, {50593, 58469}, {50597, 59301}
X(64006) = midpoint of X(i) and X(j) for these {i,j}: {3057, 49537}, {3869, 17364}
X(64006) = reflection of X(i) in X(j) for these {i,j}: {8, 64007}, {65, 3664}, {4416, 960}, {21746, 1}
X(64006) = pole of line {512, 4378} with respect to the incircle
X(64006) = pole of line {1912, 45902} with respect to the Brocard inellipse
X(64006) = pole of line {3666, 4356} with respect to the Feuerbach hyperbola
X(64006) = pole of line {512, 21343} with respect to the Suppa-Cucoanes circle
X(64006) = pole of line {28366, 30097} with respect to the dual conic of Yff parabola
X(64006) = intersection, other than A, B, C, of circumconics {{A, B, C, X(103), X(256)}}, {{A, B, C, X(1284), X(40419)}}, {{A, B, C, X(7015), X(36056)}}, {{A, B, C, X(21746), X(56154)}}
X(64006) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50617, 58535}, {1, 511, 21746}, {1001, 37516, 3271}, {3057, 49537, 516}, {3057, 8581, 12721}, {3664, 29311, 65}, {3751, 3781, 20683}, {3792, 4649, 4260}, {20962, 30950, 373}
X(64007) lies on circumconic {{A, B, C, X(9442), X(60320)}} and on these lines: {1, 28350}, {2, 21746}, {7, 56542}, {8, 30092}, {9, 1742}, {10, 511}, {37, 6007}, {39, 1740}, {43, 4263}, {51, 26037}, {72, 50307}, {75, 3688}, {86, 52020}, {101, 8424}, {141, 2876}, {190, 7064}, {210, 4416}, {219, 24264}, {256, 2664}, {261, 3110}, {319, 4111}, {513, 17332}, {516, 960}, {518, 3664}, {524, 22271}, {538, 21080}, {573, 1376}, {594, 4553}, {674, 3739}, {730, 59565}, {894, 20683}, {899, 23659}, {936, 6210}, {958, 991}, {978, 50616}, {993, 48929}, {995, 50620}, {997, 31394}, {1010, 10822}, {1015, 24575}, {1045, 1500}, {1086, 56537}, {1125, 39543}, {1329, 48888}, {1654, 3888}, {1958, 37586}, {1959, 21804}, {2223, 28287}, {2234, 21035}, {2388, 25124}, {2550, 10446}, {2551, 48878}, {2807, 3040}, {2808, 59620}, {2810, 49457}, {2886, 24220}, {3056, 4384}, {3271, 17277}, {3294, 45705}, {3452, 45305}, {3661, 25279}, {3678, 17770}, {3681, 17364}, {3686, 9025}, {3690, 4418}, {3696, 35104}, {3729, 4517}, {3740, 29353}, {3741, 3819}, {3779, 10436}, {3781, 50314}, {3786, 4645}, {3789, 17272}, {3878, 29309}, {3917, 31330}, {3963, 53338}, {4014, 6646}, {4260, 50302}, {4443, 17053}, {4447, 21061}, {4472, 22279}, {4640, 41430}, {4648, 35892}, {4667, 22312}, {4670, 22277}, {4871, 15082}, {4890, 16826}, {4972, 17202}, {5044, 15310}, {5650, 30942}, {5737, 50646}, {5745, 50658}, {5836, 29311}, {6682, 40649}, {7174, 54338}, {7227, 21865}, {9018, 17239}, {9024, 58379}, {9052, 24325}, {9054, 13476}, {9620, 33781}, {9708, 48908}, {9709, 48875}, {10176, 29349}, {10544, 16824}, {12782, 16571}, {13576, 17183}, {16569, 50613}, {17023, 61034}, {17065, 31198}, {17245, 57024}, {17331, 63961}, {17390, 44671}, {19858, 50597}, {20106, 25137}, {20358, 24199}, {20372, 25100}, {20544, 21246}, {21299, 30830}, {21320, 29382}, {21369, 25061}, {22299, 49734}, {22325, 49732}, {23638, 59296}, {25108, 62398}, {25120, 27076}, {25144, 29604}, {25440, 48886}, {26806, 62872}, {31419, 48934}, {32932, 40966}, {34379, 34790}, {40099, 61421}, {41276, 64170}, {41350, 43059}, {49738, 58571}, {50577, 59295}, {58679, 63977}
X(64007) = midpoint of X(i) and X(j) for these {i,j}: {8, 64006}, {72, 50307}, {75, 3688}, {3888, 20670}, {4416, 49537}
X(64007) = reflection of X(i) in X(j) for these {i,j}: {3686, 58655}, {17049, 3739}, {17332, 40607}, {39543, 1125}, {63977, 58679}
X(64007) = complement of X(21746)
X(64007) = X(i)-complementary conjugate of X(j) for these {i, j}: {3449, 37}, {40419, 10}, {63148, 142}, {63188, 1}
X(64007) = pole of line {512, 625} with respect to the Spieker circle
X(64007) = pole of line {52614, 57056} with respect to the Steiner inellipse
X(64007) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 59562, 44418}, {75, 3688, 14839}, {141, 23305, 17047}, {256, 2664, 21796}, {513, 40607, 17332}, {674, 3739, 17049}, {960, 15587, 18252}, {9025, 58655, 3686}
X(64008) lies on circumconic {{A, B, C, X(3262), X(6713)}} and on these lines: {2, 104}, {3, 10728}, {4, 3035}, {5, 100}, {8, 11729}, {10, 10698}, {11, 1058}, {20, 38760}, {30, 38762}, {80, 10175}, {140, 10742}, {141, 10759}, {149, 5056}, {214, 5587}, {373, 58508}, {376, 52836}, {381, 10724}, {474, 18861}, {485, 19112}, {486, 19113}, {498, 6975}, {515, 31263}, {517, 64141}, {528, 5071}, {547, 1484}, {549, 38753}, {551, 50907}, {569, 3045}, {590, 19082}, {615, 19081}, {631, 2829}, {944, 34123}, {946, 64136}, {952, 1656}, {1006, 64188}, {1125, 12751}, {1145, 5603}, {1156, 38108}, {1317, 59388}, {1320, 5886}, {1329, 6949}, {1387, 31479}, {1537, 5328}, {1587, 13991}, {1588, 13922}, {1698, 2800}, {1768, 38133}, {2771, 15059}, {2783, 14061}, {2787, 64089}, {2801, 20195}, {2802, 8227}, {2828, 31257}, {2932, 6913}, {3060, 58522}, {3086, 10956}, {3091, 5840}, {3523, 38761}, {3524, 38759}, {3525, 12248}, {3526, 38602}, {3530, 38754}, {3544, 35023}, {3545, 6174}, {3560, 17100}, {3576, 58453}, {3614, 6901}, {3624, 11715}, {3628, 11698}, {3634, 21635}, {3679, 25485}, {3681, 58674}, {3740, 58613}, {3742, 58687}, {3814, 6905}, {3817, 14217}, {3819, 58543}, {3825, 64173}, {3828, 50908}, {3832, 64186}, {3851, 22938}, {3855, 59390}, {3873, 58604}, {4193, 11491}, {4413, 12332}, {4996, 6911}, {5054, 38756}, {5055, 10707}, {5067, 6667}, {5068, 10993}, {5070, 12773}, {5072, 38141}, {5079, 51517}, {5087, 48363}, {5094, 12138}, {5154, 11499}, {5219, 12736}, {5284, 59382}, {5432, 6965}, {5433, 12763}, {5541, 7988}, {5550, 38032}, {5552, 6981}, {5562, 58504}, {5660, 10172}, {5705, 46694}, {5714, 24465}, {5790, 12531}, {5817, 10427}, {5848, 40330}, {5854, 10595}, {5901, 64140}, {6068, 59386}, {6154, 61921}, {6246, 7989}, {6264, 32557}, {6265, 7504}, {6326, 6702}, {6594, 38150}, {6684, 34789}, {6825, 32554}, {6829, 8068}, {6830, 64154}, {6834, 64111}, {6850, 55297}, {6920, 10058}, {6940, 48695}, {6941, 12775}, {6946, 7951}, {6951, 12761}, {6959, 11681}, {6968, 59572}, {6969, 35514}, {6983, 10588}, {7173, 13274}, {7484, 9913}, {7486, 10587}, {7489, 38722}, {7509, 54065}, {7704, 63130}, {7705, 45770}, {7741, 10087}, {7808, 12199}, {7866, 38646}, {7914, 12499}, {8252, 48701}, {8253, 48700}, {8674, 64101}, {9306, 58056}, {9624, 64137}, {9940, 17661}, {10109, 61601}, {10165, 64145}, {10171, 21630}, {10516, 51157}, {10598, 59591}, {10755, 14561}, {10767, 36518}, {10768, 36519}, {10769, 23514}, {10775, 36520}, {10778, 23515}, {11230, 12737}, {11231, 12515}, {11571, 20117}, {12119, 19925}, {12245, 64192}, {12247, 34122}, {12611, 26446}, {12739, 17606}, {12752, 15184}, {12762, 24953}, {12767, 19876}, {12776, 26363}, {13226, 50726}, {13253, 19875}, {13271, 64123}, {13464, 64056}, {13913, 32785}, {13977, 32786}, {14450, 61530}, {14639, 53729}, {14644, 53743}, {14853, 51007}, {14872, 58591}, {15022, 20095}, {15558, 31434}, {16239, 61605}, {17566, 37821}, {17619, 21740}, {17660, 58631}, {19914, 38042}, {20418, 61886}, {30852, 64139}, {31262, 31399}, {31423, 46684}, {31659, 37162}, {33812, 38155}, {37071, 38643}, {38021, 50841}, {38072, 51158}, {38074, 50843}, {38076, 50844}, {38077, 61932}, {38084, 61908}, {38119, 63119}, {38128, 46933}, {38182, 62354}, {38636, 61970}, {38637, 61855}, {42262, 48714}, {42265, 48715}, {45310, 61899}, {47034, 58449}, {49176, 59419}, {51529, 55857}, {53055, 61017}, {55856, 61566}, {58666, 61686}, {59376, 61895}, {63344, 63346}
X(64008) = midpoint of X(i) and X(j) for these {i,j}: {1698, 15017}
X(64008) = reflection of X(i) in X(j) for these {i,j}: {631, 31235}, {31272, 1656}
X(64008) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 153, 6713}, {4, 3035, 34474}, {5, 100, 59391}, {5, 61562, 10738}, {104, 119, 10711}, {119, 58421, 2}, {119, 6713, 153}, {140, 10742, 38693}, {149, 5056, 23513}, {153, 6713, 104}, {381, 33814, 10724}, {952, 1656, 31272}, {1698, 15017, 2800}, {2829, 31235, 631}, {3090, 20400, 38665}, {3525, 12248, 21154}, {3526, 38755, 38602}, {3628, 11698, 57298}, {5055, 12331, 60759}, {5072, 48680, 38141}, {5541, 7988, 16174}, {6667, 38758, 37725}, {7989, 15015, 6246}, {10738, 38752, 61562}, {10738, 61562, 100}, {11698, 57298, 38669}, {12331, 60759, 10707}, {12611, 26446, 64189}, {21154, 38757, 12248}
X(64009) lies on these lines: {1, 9809}, {2, 104}, {4, 1484}, {8, 1768}, {11, 3600}, {20, 952}, {23, 9913}, {80, 4293}, {100, 3522}, {144, 2801}, {145, 2800}, {149, 2829}, {193, 48692}, {376, 12331}, {388, 63270}, {390, 1317}, {452, 13257}, {515, 3218}, {516, 7993}, {519, 12767}, {528, 15683}, {631, 11698}, {944, 2771}, {962, 6264}, {1320, 10307}, {1587, 35856}, {1588, 35857}, {1656, 61605}, {2096, 17654}, {2783, 20094}, {2787, 5984}, {2802, 20070}, {2826, 20097}, {2827, 20098}, {2828, 31293}, {2830, 20099}, {2932, 3421}, {2950, 12648}, {3035, 61820}, {3090, 38755}, {3091, 10742}, {3241, 13253}, {3474, 17636}, {3476, 17638}, {3486, 17660}, {3523, 38602}, {3524, 61562}, {3530, 38637}, {3543, 10738}, {3552, 38657}, {3616, 21635}, {3617, 12751}, {3622, 11715}, {3623, 10698}, {3830, 61601}, {3839, 22799}, {4294, 7972}, {4297, 4420}, {4299, 9897}, {4313, 37736}, {4317, 37718}, {5056, 57298}, {5059, 5840}, {5068, 20418}, {5129, 34123}, {5261, 12763}, {5274, 12764}, {5434, 42356}, {5541, 9778}, {5550, 15017}, {5603, 16128}, {5640, 58543}, {5731, 6326}, {6154, 62125}, {6174, 15705}, {6839, 18519}, {6872, 64191}, {6888, 26321}, {6894, 18990}, {6904, 13226}, {6906, 32213}, {6930, 19907}, {6942, 35451}, {6948, 19914}, {6960, 32153}, {6995, 12138}, {7080, 17100}, {7486, 61580}, {7585, 48700}, {7586, 48701}, {7967, 48667}, {8674, 64102}, {9024, 61044}, {9541, 35882}, {9812, 21630}, {9952, 50890}, {10074, 14986}, {10265, 59387}, {10303, 38752}, {10304, 33814}, {10465, 13244}, {10528, 48695}, {10529, 48694}, {10707, 50687}, {10728, 17578}, {10759, 51170}, {10993, 62124}, {11114, 30283}, {11219, 54448}, {12087, 13222}, {12114, 20060}, {12246, 36977}, {12247, 37002}, {12515, 59417}, {12531, 17784}, {12667, 22775}, {12690, 50696}, {12736, 21454}, {15022, 31272}, {15558, 60934}, {15717, 37725}, {17580, 34122}, {18861, 37307}, {19081, 63016}, {19082, 63015}, {20007, 46685}, {20050, 64076}, {20075, 52116}, {20400, 61848}, {21154, 61834}, {21734, 34474}, {22560, 34610}, {22938, 38631}, {24466, 62120}, {26792, 37611}, {32454, 44434}, {32965, 38646}, {33703, 48680}, {34126, 46936}, {34628, 50838}, {37421, 54441}, {37781, 51565}, {38133, 46931}, {38629, 58195}, {38636, 46853}, {38665, 38761}, {38754, 51525}, {38760, 61804}, {41819, 63346}, {43511, 48715}, {43512, 48714}, {45310, 61930}, {48684, 62987}, {48685, 62986}, {49176, 64079}, {50689, 59391}, {50690, 64186}, {56880, 63983}, {58613, 64149}, {58687, 63961}, {59377, 61944}, {62837, 64000}
X(64009) = midpoint of X(i) and X(j) for these {i,j}: {48692, 48693}
X(64009) = reflection of X(i) in X(j) for these {i,j}: {4, 12773}, {8, 1768}, {20, 12248}, {149, 38669}, {153, 104}, {962, 6264}, {3146, 149}, {5531, 4297}, {6224, 64145}, {9802, 7993}, {9809, 1}, {10728, 37726}, {10742, 51529}, {12667, 22775}, {13199, 38753}, {20085, 9803}, {20095, 20}, {22938, 38631}, {33703, 48680}, {38665, 38761}, {38756, 1484}
X(64009) = anticomplement of X(153)
X(64009) = X(i)-Dao conjugate of X(j) for these {i, j}: {153, 153}
X(64009) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57769, 2}
X(64009) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34182, 8}, {57769, 6327}
X(64009) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 952, 20095}, {104, 10711, 6713}, {104, 153, 2}, {149, 2829, 3146}, {515, 9803, 20085}, {516, 7993, 9802}, {952, 38753, 13199}, {1484, 38756, 4}, {2801, 64145, 6224}, {2829, 38669, 149}, {12248, 13199, 38753}, {12773, 38756, 1484}, {13199, 38753, 20}, {38755, 61566, 3090}
X(64010) lies on these lines: {1, 39711}, {2, 3712}, {8, 30}, {10, 32936}, {21, 4647}, {31, 49474}, {35, 42031}, {36, 4717}, {43, 41242}, {55, 28605}, {63, 2941}, {75, 1621}, {79, 21081}, {81, 740}, {86, 27804}, {88, 3840}, {98, 100}, {141, 33102}, {171, 4365}, {190, 4651}, {210, 4756}, {306, 20292}, {310, 874}, {333, 4427}, {345, 33108}, {354, 49485}, {516, 33075}, {519, 32940}, {528, 33090}, {536, 3920}, {594, 33083}, {612, 42044}, {614, 50126}, {726, 32945}, {758, 4720}, {846, 5235}, {893, 52893}, {894, 3896}, {896, 4921}, {1010, 64071}, {1043, 17164}, {1086, 33173}, {1211, 28530}, {1255, 3993}, {1278, 3891}, {1376, 4671}, {1738, 33157}, {1836, 33077}, {1962, 5333}, {2308, 4716}, {2321, 4987}, {2475, 3704}, {2550, 32862}, {2796, 4683}, {2886, 33168}, {2895, 4046}, {2975, 4221}, {3120, 30831}, {3175, 5297}, {3210, 24552}, {3218, 3706}, {3219, 3696}, {3315, 24165}, {3434, 33089}, {3661, 32950}, {3681, 3729}, {3685, 4359}, {3687, 5057}, {3702, 5253}, {3703, 33110}, {3711, 4942}, {3720, 4693}, {3741, 32845}, {3743, 14005}, {3744, 4686}, {3745, 28484}, {3757, 4980}, {3773, 32948}, {3782, 33175}, {3838, 27757}, {3869, 20223}, {3870, 4659}, {3873, 3886}, {3875, 62807}, {3914, 32779}, {3923, 32860}, {3925, 32849}, {3938, 49493}, {3957, 49483}, {3967, 4767}, {3969, 4645}, {3980, 32915}, {3996, 17165}, {4011, 37687}, {4023, 26792}, {4030, 20095}, {4037, 37675}, {4061, 17781}, {4062, 33097}, {4065, 25526}, {4184, 4436}, {4234, 39766}, {4358, 9342}, {4361, 17127}, {4363, 17018}, {4425, 31247}, {4430, 49460}, {4431, 63134}, {4461, 11683}, {4641, 49468}, {4653, 46895}, {4673, 62837}, {4685, 32938}, {4702, 29817}, {4706, 17020}, {4709, 32864}, {4722, 50016}, {4918, 49734}, {4954, 31161}, {4966, 26842}, {4970, 32772}, {4972, 62392}, {5014, 29032}, {5047, 28612}, {5260, 7283}, {5263, 17147}, {5271, 62838}, {5295, 56288}, {5311, 49452}, {5739, 24280}, {5880, 32858}, {5988, 30760}, {5992, 31089}, {6057, 49732}, {6535, 33079}, {7191, 42051}, {7262, 50086}, {8013, 24697}, {9791, 41809}, {10327, 50107}, {10436, 62840}, {11246, 32863}, {11680, 17740}, {11681, 30444}, {14450, 41014}, {14923, 35659}, {15523, 24715}, {15674, 59592}, {16736, 58401}, {16948, 24850}, {17016, 50054}, {17019, 49462}, {17024, 48805}, {17135, 32939}, {17140, 62863}, {17143, 33764}, {17150, 17160}, {17151, 62834}, {17155, 32941}, {17156, 62795}, {17162, 41629}, {17281, 29679}, {17301, 29648}, {17495, 32942}, {17536, 28611}, {17593, 31241}, {17719, 48642}, {17764, 32947}, {17889, 33156}, {19796, 26230}, {19822, 64168}, {20056, 44367}, {20653, 24851}, {21949, 29873}, {23407, 32104}, {24248, 32782}, {24592, 56658}, {24594, 26103}, {24693, 29854}, {24723, 56810}, {24943, 33149}, {25507, 27811}, {26227, 42029}, {26241, 31130}, {26280, 42034}, {28522, 32928}, {28606, 50314}, {29113, 63139}, {29634, 50102}, {29641, 50105}, {29667, 50048}, {29815, 49453}, {29846, 48643}, {29874, 50103}, {31037, 44006}, {31301, 50277}, {31330, 32934}, {32777, 33131}, {32778, 33094}, {32783, 33145}, {32842, 63979}, {32848, 33109}, {32855, 33104}, {32857, 33081}, {32912, 49459}, {32917, 62226}, {32921, 62855}, {32923, 50117}, {32924, 49482}, {32930, 37680}, {33067, 49560}, {33084, 33098}, {33091, 34612}, {33129, 59692}, {33136, 33167}, {33139, 44416}, {33146, 33171}, {37595, 49461}, {37685, 49486}, {39962, 58467}, {41812, 58380}, {41817, 46896}, {41915, 52653}, {42058, 50088}, {48863, 54315}, {49469, 62821}, {50302, 62851}, {54309, 59596}, {56082, 63961}, {57280, 64184}
X(64010) = reflection of X(i) in X(j) for these {i,j}: {81, 4418}, {2895, 4046}, {4683, 21085}, {33100, 1211}
X(64010) = anticomplement of X(4854)
X(64010) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {38811, 7}, {38825, 2895}, {63191, 2893}
X(64010) = pole of line {48389, 53257} with respect to the circumcircle
X(64010) = pole of line {644, 4115} with respect to the Kiepert parabola
X(64010) = pole of line {48580, 57059} with respect to the Steiner circumellipse
X(64010) = pole of line {3873, 17393} with respect to the Wallace hyperbola
X(64010) = intersection, other than A, B, C, of circumconics {{A, B, C, X(98), X(10308)}}, {{A, B, C, X(1821), X(56947)}}
X(64010) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 3648, 49716}, {8, 63996, 11684}, {10, 32936, 33761}, {75, 32929, 1621}, {321, 32932, 100}, {740, 4418, 81}, {846, 21020, 5235}, {1043, 17164, 34195}, {1211, 28530, 33100}, {1962, 24342, 5333}, {2796, 21085, 4683}, {3120, 33160, 30831}, {3685, 4359, 5284}, {3729, 63131, 3681}, {3923, 32860, 32911}, {3980, 32915, 37633}, {3996, 17165, 62236}, {4046, 17768, 2895}, {4427, 17163, 333}, {4683, 21085, 31143}, {6057, 49732, 60459}, {17135, 32939, 62235}, {17155, 32941, 62814}, {21949, 50104, 29873}, {24165, 32943, 3315}, {24850, 27368, 16948}, {31330, 32934, 62796}, {33100, 46918, 1211}, {42051, 49484, 7191}
X(64011) lies on these lines: {1, 528}, {2, 80}, {8, 50841}, {10, 50844}, {11, 13384}, {30, 6265}, {36, 100}, {57, 1317}, {104, 15931}, {149, 38314}, {320, 4597}, {376, 2800}, {515, 5660}, {527, 4867}, {529, 41689}, {535, 4511}, {549, 952}, {551, 6175}, {662, 56950}, {678, 24864}, {758, 35596}, {900, 30580}, {1125, 50889}, {1145, 4677}, {1320, 5425}, {1385, 47033}, {1387, 51105}, {1537, 50865}, {1644, 10713}, {1698, 62616}, {2094, 11570}, {2098, 34707}, {2771, 28460}, {2801, 5692}, {2802, 3241}, {2829, 34628}, {2932, 4421}, {3035, 9897}, {3036, 51066}, {3058, 12740}, {3065, 17525}, {3244, 50894}, {3416, 51158}, {3476, 41553}, {3524, 12247}, {3534, 48667}, {3545, 6246}, {3582, 10073}, {3584, 10057}, {3624, 12019}, {3626, 50845}, {3632, 50842}, {3633, 13996}, {3636, 50892}, {3653, 62354}, {3654, 33814}, {3656, 14217}, {3751, 51008}, {3828, 59415}, {3830, 12611}, {3878, 37299}, {4293, 60984}, {4311, 41696}, {4315, 14151}, {4316, 28534}, {4370, 16554}, {4428, 63281}, {4643, 25690}, {4669, 12531}, {4745, 64141}, {4855, 37707}, {4870, 13273}, {5010, 51636}, {5054, 12619}, {5055, 12747}, {5064, 12137}, {5131, 5855}, {5249, 9963}, {5251, 60986}, {5258, 6986}, {5270, 13272}, {5289, 57006}, {5434, 12739}, {5443, 17577}, {5531, 64191}, {5563, 35979}, {5730, 34620}, {5840, 31162}, {5854, 34747}, {5882, 6940}, {5904, 34610}, {6154, 11034}, {6264, 18443}, {6326, 28459}, {6922, 37725}, {7208, 63054}, {7865, 12498}, {7982, 10993}, {8703, 12515}, {9024, 47356}, {9845, 41229}, {9881, 53729}, {10199, 37702}, {10246, 31140}, {10265, 50828}, {10269, 12331}, {10304, 46684}, {10385, 15558}, {10483, 56387}, {10698, 28194}, {10738, 51709}, {10742, 28208}, {10755, 51005}, {10769, 12258}, {10896, 51577}, {10950, 17564}, {11015, 34649}, {11113, 45764}, {11114, 30144}, {11237, 18976}, {11238, 12743}, {11571, 44663}, {11729, 38021}, {12690, 25525}, {12730, 30379}, {12732, 51097}, {12737, 34612}, {12738, 34606}, {12749, 45701}, {12750, 21842}, {12751, 22935}, {12767, 38759}, {13146, 49736}, {13199, 25485}, {13253, 24466}, {13462, 41556}, {13846, 49240}, {13847, 49241}, {14799, 17549}, {15228, 36005}, {15679, 51569}, {15699, 61553}, {15702, 38133}, {15703, 38182}, {15863, 53620}, {15933, 18240}, {17528, 34471}, {17647, 24926}, {18395, 34700}, {18857, 64140}, {19077, 32788}, {19078, 32787}, {19876, 34122}, {19883, 31272}, {19914, 50821}, {20095, 64137}, {20119, 51100}, {20400, 37714}, {20418, 30389}, {22836, 34605}, {25558, 60963}, {31525, 50921}, {33709, 51109}, {34123, 37718}, {34544, 36910}, {35597, 37230}, {37298, 37616}, {37430, 40257}, {37438, 37726}, {37727, 51525}, {38161, 61936}, {38197, 63109}, {38484, 48858}, {47043, 53739}, {47359, 51157}, {48694, 59320}, {49524, 51199}, {49732, 51112}, {50808, 64189}, {50910, 64136}, {50950, 51007}, {50952, 51198}, {51035, 51062}, {55929, 62838}, {56425, 62703}, {63343, 63365}
X(64011) = midpoint of X(i) and X(j) for these {i,j}: {2, 6224}, {100, 10031}, {3534, 48667}, {5541, 51093}, {6326, 50811}, {10609, 50843}, {12119, 50908}, {13996, 50846}, {36005, 62826}, {50842, 62617}, {50910, 64136}
X(64011) = reflection of X(i) in X(j) for these {i,j}: {1, 50843}, {2, 214}, {8, 50841}, {10, 50844}, {80, 2}, {104, 51705}, {1320, 51071}, {3065, 17525}, {3241, 11274}, {3416, 51158}, {3626, 50845}, {3632, 50842}, {3633, 50846}, {3654, 33814}, {3656, 19907}, {3679, 6174}, {3751, 51008}, {3830, 12611}, {4677, 1145}, {7972, 10031}, {9881, 53729}, {10031, 33337}, {10265, 50828}, {10707, 551}, {10738, 51709}, {10755, 51005}, {10769, 12258}, {11219, 3576}, {12515, 8703}, {12531, 4669}, {12737, 50824}, {14217, 3656}, {15228, 36005}, {15679, 51569}, {19914, 50821}, {20119, 51100}, {21630, 51103}, {26726, 51093}, {34789, 50908}, {37718, 34123}, {47359, 51157}, {49524, 51199}, {50865, 1537}, {50889, 1125}, {50890, 10}, {50891, 1}, {50892, 3636}, {50893, 8}, {50894, 3244}, {50908, 6265}, {50921, 31525}, {50950, 51007}, {50952, 51198}, {51035, 51062}, {51071, 33812}, {51093, 1317}, {60963, 25558}, {64145, 50811}, {64189, 50808}
X(64011) = pole of line {23884, 48571} with respect to the Steiner circumellipse
X(64011) = pole of line {1638, 23884} with respect to the Steiner inellipse
X(64011) = pole of line {2826, 39771} with respect to the Suppa-Cucoanes circle
X(64011) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {7424, 36005, 62826}
X(64011) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3254), X(24858)}}, {{A, B, C, X(34578), X(37222)}}
X(64011) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 34701, 34719}, {1, 528, 50891}, {30, 50908, 34789}, {30, 6265, 50908}, {80, 214, 64012}, {100, 10031, 519}, {100, 33337, 7972}, {100, 7972, 64056}, {214, 6224, 80}, {519, 33337, 10031}, {528, 50843, 1}, {551, 10707, 16173}, {952, 3576, 11219}, {952, 6174, 3679}, {1125, 50889, 59377}, {1317, 5541, 26726}, {1317, 9945, 5541}, {2802, 11274, 3241}, {3679, 15015, 6174}, {6154, 12735, 12653}, {10609, 50843, 528}, {12119, 50908, 30}, {38104, 58453, 2}
X(64012) lies on circumconic {{A, B, C, X(320), X(6702)}} and on these lines: {1, 1145}, {2, 80}, {3, 12611}, {5, 12119}, {9, 25558}, {10, 7972}, {11, 3601}, {21, 51569}, {36, 908}, {40, 11729}, {72, 58591}, {100, 1125}, {104, 5251}, {119, 3576}, {140, 6265}, {142, 10090}, {149, 5550}, {153, 54445}, {165, 1537}, {373, 58501}, {404, 5443}, {442, 38410}, {515, 31263}, {517, 38762}, {519, 64141}, {528, 20195}, {549, 12515}, {551, 1320}, {590, 19078}, {615, 19077}, {631, 2800}, {632, 952}, {946, 34474}, {960, 11571}, {1001, 2932}, {1156, 38059}, {1317, 3679}, {1319, 51362}, {1385, 12751}, {1387, 5541}, {1420, 10956}, {1484, 3925}, {1699, 24466}, {1768, 21154}, {2771, 25917}, {2801, 18230}, {2802, 3616}, {2829, 7987}, {3036, 19875}, {3065, 15670}, {3090, 6246}, {3523, 46684}, {3525, 12247}, {3526, 12619}, {3555, 58663}, {3582, 5440}, {3612, 39692}, {3622, 64137}, {3632, 12735}, {3634, 33337}, {3681, 58698}, {3814, 4881}, {3817, 10724}, {3825, 5441}, {3828, 10031}, {3869, 5442}, {3873, 58625}, {3911, 4867}, {4187, 37616}, {4316, 5087}, {4413, 12331}, {4511, 6681}, {4647, 58397}, {4679, 16128}, {4855, 37720}, {4996, 31019}, {4999, 41689}, {5044, 17660}, {5054, 48667}, {5056, 38161}, {5070, 12747}, {5083, 5904}, {5086, 20107}, {5094, 12137}, {5131, 51409}, {5150, 17248}, {5218, 15558}, {5248, 17100}, {5253, 37731}, {5258, 6700}, {5259, 10058}, {5428, 47034}, {5432, 12740}, {5433, 12739}, {5438, 5533}, {5445, 17566}, {5531, 20418}, {5563, 27385}, {5587, 58421}, {5657, 25485}, {5692, 5744}, {5703, 18240}, {5794, 53616}, {5840, 8227}, {5886, 14217}, {5902, 64139}, {5903, 6921}, {6068, 59372}, {6264, 38032}, {6326, 6713}, {6594, 38053}, {6667, 10609}, {6675, 34600}, {6684, 10698}, {6789, 33115}, {6878, 12691}, {7280, 25681}, {7483, 45764}, {7484, 9912}, {7808, 12198}, {7914, 12498}, {7951, 35262}, {7991, 64192}, {8252, 49241}, {8253, 49240}, {8983, 19112}, {8988, 32785}, {9624, 64138}, {9780, 15863}, {9897, 34122}, {9963, 59377}, {10057, 17614}, {10073, 47033}, {10164, 64189}, {10176, 12532}, {10179, 17652}, {10200, 37571}, {10707, 19883}, {10711, 50828}, {10738, 11230}, {10742, 13624}, {10755, 38049}, {11231, 19914}, {11274, 50893}, {11813, 13587}, {12524, 37308}, {12690, 45310}, {12701, 63752}, {12729, 15184}, {12732, 38026}, {12737, 38028}, {12738, 24953}, {12749, 21842}, {12750, 26363}, {12763, 37605}, {12764, 37600}, {12775, 59326}, {12832, 31231}, {13199, 16174}, {13253, 64193}, {13462, 34690}, {13464, 64136}, {13922, 18992}, {13971, 19113}, {13976, 32786}, {13991, 18991}, {14151, 61016}, {14740, 27383}, {15178, 64140}, {15325, 51463}, {15931, 64188}, {15950, 17564}, {16126, 34753}, {16371, 18393}, {16475, 51007}, {17502, 38753}, {17661, 58567}, {17728, 36867}, {18481, 61580}, {19862, 31254}, {19872, 62616}, {19878, 59419}, {19907, 26446}, {20095, 32558}, {20119, 38204}, {20400, 30389}, {20586, 47742}, {21578, 31160}, {21616, 59319}, {21635, 38693}, {22935, 24299}, {22938, 61268}, {24926, 24982}, {24954, 38602}, {25440, 37735}, {25542, 46816}, {28628, 38063}, {30478, 46694}, {32109, 40878}, {34126, 62354}, {34719, 37704}, {36936, 61478}, {38023, 51158}, {38197, 63119}, {38213, 46933}, {38220, 53729}, {38314, 50841}, {38759, 58221}, {41012, 59325}, {44675, 48696}, {55856, 61553}, {58659, 61686}, {63344, 63365}
X(64012) = midpoint of X(i) and X(j) for these {i,j}: {7987, 15017}
X(64012) = reflection of X(i) in X(j) for these {i,j}: {1698, 31235}, {31272, 19862}
X(64012) = pole of line {23884, 30725} with respect to the Steiner inellipse
X(64012) = pole of line {2323, 37680} with respect to the dual conic of Yff parabola
X(64012) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1145, 26726}, {2, 214, 80}, {2, 6224, 6702}, {10, 33812, 12531}, {80, 214, 64011}, {100, 1125, 16173}, {119, 3576, 64145}, {149, 5550, 32557}, {214, 58453, 2}, {214, 6702, 6224}, {952, 31235, 1698}, {1001, 2932, 63281}, {1145, 26726, 64056}, {1385, 38752, 12751}, {1387, 5541, 50891}, {1387, 6174, 5541}, {3035, 34123, 1}, {3525, 12247, 38133}, {3624, 15015, 11}, {3634, 33337, 59415}, {3814, 4881, 36975}, {5070, 12747, 38182}, {5087, 35271, 4316}, {5541, 25055, 1387}, {5886, 33814, 14217}, {6326, 6713, 11219}, {6667, 10609, 37718}, {7987, 15017, 2829}, {10090, 64154, 35204}, {11274, 53620, 50893}, {11729, 38760, 40}, {11813, 13587, 15228}, {12531, 33812, 7972}, {17566, 30144, 5445}, {19883, 50844, 10707}, {22935, 57298, 49176}, {38028, 61562, 12737}
X(64013) lies on these lines: {1, 651}, {2, 35281}, {3, 16686}, {4, 595}, {9, 61086}, {11, 109}, {31, 1699}, {36, 3000}, {40, 9519}, {44, 517}, {55, 45885}, {56, 4014}, {58, 946}, {80, 23592}, {98, 727}, {100, 5400}, {101, 15507}, {102, 759}, {103, 105}, {104, 106}, {149, 1331}, {153, 24222}, {165, 748}, {171, 3817}, {212, 9580}, {238, 516}, {244, 1768}, {255, 9614}, {386, 11496}, {511, 49706}, {513, 37815}, {515, 40091}, {528, 3939}, {572, 31394}, {576, 1482}, {580, 12699}, {582, 48661}, {601, 8227}, {602, 41869}, {603, 50443}, {614, 1709}, {650, 2291}, {675, 20295}, {741, 29310}, {750, 7988}, {761, 2700}, {812, 56896}, {896, 5536}, {899, 5537}, {902, 44425}, {917, 59074}, {952, 24828}, {962, 1724}, {971, 1279}, {984, 60911}, {990, 7290}, {991, 1001}, {993, 24708}, {995, 1012}, {1054, 46684}, {1064, 4653}, {1086, 15251}, {1104, 9856}, {1146, 45282}, {1158, 24046}, {1411, 10703}, {1421, 7004}, {1456, 43044}, {1468, 11522}, {1471, 4312}, {1496, 51785}, {1497, 9612}, {1532, 17734}, {1647, 11219}, {1736, 4318}, {1742, 15485}, {1743, 43166}, {1750, 62875}, {1754, 9812}, {1771, 10591}, {1777, 3086}, {1836, 55086}, {1935, 12053}, {2006, 2342}, {2078, 2635}, {2170, 10697}, {2263, 15299}, {2340, 60885}, {2382, 29352}, {2718, 28233}, {2723, 59019}, {2725, 28848}, {2726, 31286}, {2807, 3271}, {2810, 36280}, {2835, 16560}, {2975, 4499}, {3052, 19541}, {3062, 16487}, {3072, 18483}, {3074, 10624}, {3091, 5264}, {3120, 34789}, {3242, 5779}, {3246, 15726}, {3315, 13243}, {3583, 56419}, {3646, 35658}, {3667, 24813}, {3685, 29016}, {3722, 5531}, {3744, 5927}, {3756, 13226}, {3757, 59637}, {3883, 12618}, {3915, 5691}, {3961, 15064}, {4257, 22753}, {4300, 5259}, {4301, 5247}, {4307, 38037}, {4432, 24294}, {4512, 25885}, {4644, 5603}, {4674, 64189}, {4675, 5886}, {4858, 24410}, {5219, 52428}, {5255, 19925}, {5263, 48888}, {5272, 64129}, {5732, 60846}, {5805, 64016}, {5853, 23693}, {6001, 30117}, {6127, 63281}, {6180, 42884}, {6210, 63968}, {6244, 37679}, {6264, 10700}, {6909, 49997}, {6913, 30116}, {7045, 62723}, {7221, 15430}, {7299, 12701}, {7681, 45939}, {7743, 52407}, {7956, 37646}, {7993, 17460}, {8226, 63979}, {8692, 11495}, {9440, 30331}, {9442, 61480}, {9779, 17126}, {9809, 33148}, {10085, 28011}, {10164, 17123}, {10171, 17122}, {10310, 17749}, {10571, 62333}, {10738, 45926}, {12608, 24160}, {12764, 52383}, {13257, 17724}, {14511, 61476}, {14665, 53900}, {14942, 43672}, {15071, 28082}, {15253, 38357}, {15626, 23404}, {15908, 24880}, {15955, 45776}, {16020, 63971}, {16469, 24644}, {16486, 30283}, {16610, 17613}, {16670, 62182}, {17365, 20330}, {17719, 21635}, {20999, 38389}, {21214, 63983}, {23703, 60782}, {23858, 61672}, {24159, 63962}, {24227, 37607}, {24695, 60895}, {24833, 53792}, {27627, 59326}, {28345, 52084}, {28476, 53892}, {28485, 53899}, {29309, 37510}, {29315, 36716}, {30223, 34036}, {31849, 38674}, {33536, 41230}, {33771, 37732}, {34862, 52541}, {35338, 64154}, {35514, 37650}, {37076, 52653}, {37570, 51118}, {37610, 59387}, {37817, 63992}, {38031, 50677}, {38390, 53279}, {38531, 38575}, {39531, 60685}, {41166, 43048}, {44675, 62789}, {45035, 58738}, {45305, 49482}, {45763, 50371}, {45946, 61732}, {48900, 50300}, {49515, 64198}, {53296, 53307}, {60718, 64155}, {63969, 63970}
X(64013) = midpoint of X(i) and X(j) for these {i,j}: {1, 9355}
X(64013) = reflection of X(i) in X(j) for these {i,j}: {1086, 15251}, {13329, 238}, {53298, 53302}
X(64013) = perspector of circumconic {{A, B, C, X(9503), X(37139)}}
X(64013) = pole of line {891, 53297} with respect to the circumcircle
X(64013) = pole of line {3887, 35636} with respect to the Conway circle
X(64013) = pole of line {3887, 11028} with respect to the incircle
X(64013) = pole of line {1647, 4475} with respect to the orthoptic circle of the Steiner Inellipse
X(64013) = pole of line {103, 1155} with respect to the Feuerbach hyperbola
X(64013) = pole of line {17191, 62756} with respect to the Stammler hyperbola
X(64013) = pole of line {3887, 18413} with respect to the Suppa-Cucoanes circle
X(64013) = pole of line {673, 909} with respect to the dual conic of Yff parabola
X(64013) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 1054, 5540}, {11, 3022, 3271}, {190, 14888, 15343}
X(64013) = intersection, other than A, B, C, of circumconics {{A, B, C, X(103), X(36086)}}, {{A, B, C, X(516), X(2254)}}, {{A, B, C, X(517), X(3960)}}, {{A, B, C, X(650), X(2801)}}, {{A, B, C, X(651), X(2717)}}, {{A, B, C, X(1156), X(46649)}}, {{A, B, C, X(1168), X(6185)}}, {{A, B, C, X(2316), X(52377)}}, {{A, B, C, X(7045), X(44858)}}, {{A, B, C, X(9357), X(51766)}}, {{A, B, C, X(9441), X(61480)}}, {{A, B, C, X(9442), X(61477)}}
X(64013) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 51768, 2310}, {1, 651, 44858}, {1, 9355, 2801}, {104, 32486, 106}, {238, 516, 13329}, {513, 53302, 53298}, {651, 53055, 1}, {946, 3073, 58}, {1742, 15485, 52769}, {7290, 11372, 990}, {9812, 17127, 1754}, {30223, 34036, 62811}
X(64014) lies on these lines: {2, 154}, {3, 11147}, {4, 575}, {6, 3543}, {20, 524}, {30, 1351}, {69, 74}, {98, 11172}, {141, 15692}, {146, 34319}, {147, 11150}, {159, 15078}, {165, 50781}, {182, 3545}, {193, 15683}, {381, 3618}, {382, 63062}, {511, 11001}, {516, 49543}, {541, 11061}, {547, 12017}, {549, 3619}, {550, 55602}, {576, 33703}, {597, 3839}, {599, 5921}, {631, 11178}, {671, 54859}, {962, 47356}, {1350, 11160}, {1352, 3524}, {1513, 63107}, {1899, 32225}, {2393, 15072}, {2482, 50641}, {2777, 41720}, {2794, 8593}, {3090, 10168}, {3091, 47352}, {3146, 5032}, {3522, 15069}, {3523, 21358}, {3525, 18553}, {3528, 34507}, {3529, 19924}, {3533, 55687}, {3534, 3564}, {3546, 51933}, {3589, 61936}, {3620, 62063}, {3629, 62166}, {3655, 39898}, {3763, 15721}, {3818, 5071}, {3830, 14853}, {3832, 53093}, {3845, 5050}, {3850, 55701}, {3853, 53092}, {4995, 39891}, {5026, 37690}, {5054, 40330}, {5055, 39884}, {5056, 10541}, {5059, 11477}, {5067, 20190}, {5092, 15702}, {5093, 62040}, {5102, 62051}, {5182, 16041}, {5298, 39892}, {5477, 43619}, {5480, 50687}, {5485, 38664}, {5596, 52069}, {5621, 10298}, {5622, 18918}, {5642, 16051}, {5655, 18531}, {5661, 51880}, {5731, 47358}, {5870, 33338}, {5871, 33339}, {5965, 51179}, {5999, 9770}, {6055, 58883}, {6146, 34621}, {6329, 61994}, {6353, 32267}, {7426, 37643}, {7492, 16010}, {7493, 9140}, {7735, 53499}, {8182, 10991}, {8584, 15640}, {8703, 10519}, {8718, 44470}, {8721, 11156}, {9143, 16063}, {9744, 63025}, {9830, 11177}, {10109, 50957}, {10336, 63006}, {10575, 15073}, {10989, 37645}, {11003, 31105}, {11008, 15681}, {11151, 47061}, {11155, 33215}, {11157, 61097}, {11158, 61096}, {11188, 64100}, {11317, 46034}, {11427, 31133}, {11456, 22151}, {11482, 62036}, {11646, 62992}, {11812, 55682}, {11898, 15689}, {12007, 62032}, {12100, 33750}, {12101, 50963}, {12154, 41023}, {12155, 41022}, {12156, 14912}, {12203, 33190}, {12279, 50649}, {12290, 44479}, {12324, 15062}, {13669, 39887}, {13789, 39888}, {13857, 64177}, {14269, 18583}, {14458, 62888}, {14561, 41099}, {14810, 62086}, {14826, 43957}, {14831, 64023}, {14848, 15687}, {15074, 64030}, {15077, 59349}, {15303, 36201}, {15533, 15697}, {15534, 29181}, {15577, 37941}, {15581, 22467}, {15677, 63070}, {15684, 21850}, {15685, 50962}, {15686, 33878}, {15688, 48876}, {15690, 50969}, {15694, 18358}, {15698, 55667}, {15701, 50954}, {15708, 20582}, {15709, 24206}, {15710, 55662}, {15716, 50980}, {15719, 17508}, {15740, 38323}, {16092, 36894}, {16646, 37172}, {16647, 37173}, {17538, 55597}, {17800, 64067}, {18911, 26255}, {18914, 34726}, {18928, 31383}, {19124, 62975}, {19130, 61980}, {19459, 54992}, {19708, 50977}, {19709, 38110}, {19710, 34380}, {20080, 48881}, {20192, 52301}, {20194, 63097}, {20583, 51163}, {20791, 29959}, {21167, 50958}, {21735, 40107}, {22165, 31884}, {22329, 60658}, {22487, 44667}, {22488, 44666}, {23046, 51732}, {23053, 40248}, {23269, 44656}, {23275, 44657}, {25555, 61964}, {25561, 61899}, {26864, 47097}, {26869, 37904}, {26883, 43815}, {26944, 33591}, {28194, 51192}, {28538, 34632}, {28708, 31180}, {29317, 51140}, {29323, 62049}, {30308, 38049}, {31152, 37669}, {31162, 39870}, {31166, 41257}, {31670, 55715}, {32124, 37909}, {32250, 45311}, {33251, 39141}, {33748, 51022}, {33749, 62021}, {34573, 61846}, {34628, 39878}, {34664, 34781}, {34776, 41256}, {34803, 58849}, {35237, 41617}, {36757, 41112}, {36758, 41113}, {37170, 41042}, {37171, 41043}, {37184, 53246}, {37517, 62169}, {37640, 53431}, {37641, 53443}, {37644, 37901}, {37952, 47556}, {38040, 50806}, {38072, 51171}, {38136, 61993}, {38165, 50797}, {38167, 50799}, {38314, 64085}, {38317, 50956}, {38335, 53091}, {38738, 50639}, {39561, 62009}, {40236, 63065}, {40341, 62122}, {40671, 54569}, {40672, 54570}, {41145, 52283}, {41149, 51166}, {41982, 55648}, {42085, 51203}, {42086, 51200}, {42602, 48780}, {42603, 48781}, {42850, 60654}, {43150, 62058}, {44280, 47473}, {44407, 51993}, {44456, 62158}, {45759, 61545}, {46267, 61947}, {46333, 48873}, {47355, 61912}, {47359, 50864}, {47545, 62288}, {48872, 62153}, {48874, 62137}, {48884, 62011}, {48889, 61967}, {48898, 55590}, {48901, 62029}, {48910, 51170}, {50664, 61973}, {50783, 59417}, {50801, 50953}, {50808, 50950}, {50811, 50999}, {50815, 51004}, {50865, 51005}, {50872, 51000}, {50959, 51185}, {50960, 61943}, {50961, 50966}, {50964, 61979}, {50973, 62132}, {50976, 50982}, {50981, 61779}, {50984, 51186}, {50986, 62154}, {50988, 61847}, {50989, 51134}, {50991, 51135}, {51025, 55703}, {51075, 51153}, {51077, 51146}, {51130, 51167}, {51132, 62168}, {51137, 61838}, {51143, 61805}, {51172, 62050}, {51181, 61956}, {51188, 55591}, {51211, 63125}, {52987, 62127}, {53142, 54996}, {55177, 63034}, {55580, 62144}, {55584, 62140}, {55595, 62123}, {55606, 62113}, {55614, 62110}, {55620, 62106}, {55622, 58194}, {55626, 62102}, {55629, 62098}, {55631, 62096}, {55638, 62090}, {55639, 62089}, {55646, 62081}, {55649, 62077}, {55654, 62072}, {55676, 61806}, {55679, 61817}, {55684, 55864}, {55688, 61868}, {55691, 61884}, {55692, 61887}, {55695, 61913}, {55697, 61920}, {55699, 61927}, {55706, 61961}, {55711, 61992}, {55722, 58204}, {55724, 62155}, {58445, 61889}, {60101, 60150}, {61044, 62148}, {62005, 63123}, {62145, 63116}, {62161, 62996}
X(64014) = midpoint of X(i) and X(j) for these {i,j}: {193, 15683}, {376, 39874}, {1992, 14927}, {11001, 50974}, {15681, 39899}, {15685, 50962}, {34628, 39878}, {44456, 62158}, {50986, 62154}, {51028, 62160}
X(64014) = reflection of X(i) in X(j) for these {i,j}: {2, 43273}, {4, 11179}, {69, 376}, {146, 34319}, {147, 51798}, {376, 46264}, {381, 48906}, {599, 44882}, {962, 47356}, {1992, 6776}, {3146, 54131}, {3543, 6}, {3830, 50979}, {5921, 599}, {9143, 32233}, {11160, 1350}, {11180, 3}, {11188, 64100}, {15069, 54169}, {15533, 50965}, {15534, 51136}, {15640, 51024}, {15682, 20423}, {15683, 48905}, {15684, 21850}, {18440, 549}, {22165, 50971}, {31162, 39870}, {32250, 45311}, {33878, 15686}, {36990, 597}, {39898, 3655}, {41735, 31166}, {41737, 5642}, {47353, 51737}, {50639, 38738}, {50641, 2482}, {50864, 47359}, {50865, 51005}, {50872, 51000}, {50950, 50808}, {50955, 8703}, {50967, 3534}, {50978, 15690}, {50989, 51134}, {50990, 50975}, {50991, 51135}, {50992, 50967}, {50994, 51177}, {50999, 50811}, {51004, 50815}, {51022, 63124}, {51023, 2}, {51024, 8584}, {51027, 22165}, {51028, 15534}, {51029, 63022}, {51163, 20583}, {51166, 41149}, {51211, 63125}, {51212, 1992}, {51214, 63064}, {51215, 15533}, {51216, 51185}, {51538, 14912}, {54131, 8550}, {54170, 20}, {62042, 31670}, {62048, 48910}, {62174, 59411}, {62288, 47545}, {63022, 51176}, {63064, 50974}, {63118, 50973}, {64023, 14831}
X(64014) = inverse of X(32817) in Wallace hyperbola
X(64014) = anticomplement of X(47353)
X(64014) = pole of line {3839, 7735} with respect to the Kiepert hyperbola
X(64014) = pole of line {2407, 35278} with respect to the Kiepert parabola
X(64014) = pole of line {1350, 1495} with respect to the Stammler hyperbola
X(64014) = pole of line {30, 32817} with respect to the Wallace hyperbola
X(64014) = pole of line {6333, 44552} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(64014) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {193, 15683, 36181}
X(64014) = intersection, other than A, B, C, of circumconics {{A, B, C, X(30), X(32817)}}, {{A, B, C, X(598), X(42287)}}, {{A, B, C, X(1494), X(3424)}}, {{A, B, C, X(35140), X(51023)}}, {{A, B, C, X(36890), X(54859)}}
X(64014) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1503, 51023}, {2, 43273, 25406}, {2, 64059, 35266}, {4, 11179, 59373}, {20, 524, 54170}, {30, 6776, 1992}, {182, 3545, 63109}, {376, 39874, 542}, {376, 542, 69}, {381, 55705, 38079}, {511, 63064, 51214}, {542, 46264, 376}, {597, 36990, 3839}, {599, 44882, 10304}, {616, 617, 32817}, {1503, 51737, 47353}, {1992, 14927, 30}, {3146, 5032, 54131}, {3534, 3564, 50967}, {3534, 51175, 55593}, {3564, 50967, 50992}, {3818, 38064, 5071}, {3830, 50979, 14853}, {5071, 38064, 63119}, {8550, 54131, 5032}, {8703, 50955, 10519}, {10516, 50983, 2}, {10519, 50955, 50990}, {10519, 50975, 8703}, {10602, 40196, 51212}, {11001, 50974, 511}, {11160, 62120, 1350}, {11179, 11645, 4}, {12101, 59399, 50963}, {14912, 15682, 20423}, {14912, 20423, 63022}, {14912, 29012, 51538}, {15533, 50965, 62174}, {15533, 59411, 50965}, {15534, 29181, 51028}, {15682, 51538, 51029}, {15690, 50978, 55610}, {15690, 55610, 50969}, {20423, 29012, 15682}, {20582, 53094, 15708}, {22165, 50971, 31884}, {29181, 51136, 15534}, {31884, 50971, 62094}, {38317, 50956, 61932}, {43273, 47353, 51737}, {50687, 63127, 5480}, {50965, 59411, 15697}, {50984, 55673, 61796}, {51022, 53023, 62007}, {51022, 63124, 53023}, {51025, 55703, 61958}, {51028, 62160, 29181}, {51171, 61985, 38072}, {51186, 55673, 50984}, {51537, 63109, 3545}, {64080, 64196, 20}
X(64015) lies on these lines: {2, 44}, {7, 391}, {8, 527}, {9, 4869}, {10, 35578}, {37, 62999}, {45, 29621}, {69, 144}, {75, 20059}, {85, 60975}, {145, 524}, {192, 20080}, {193, 3672}, {200, 3000}, {239, 4346}, {279, 17950}, {319, 4461}, {321, 20214}, {329, 4001}, {344, 17361}, {347, 63782}, {536, 3621}, {545, 31145}, {597, 26104}, {599, 54389}, {651, 23151}, {742, 31302}, {894, 5232}, {966, 17365}, {1086, 24599}, {1330, 54398}, {1743, 31191}, {1944, 27541}, {1992, 4389}, {2287, 6180}, {2321, 4488}, {2345, 17344}, {2895, 20078}, {2975, 24328}, {3161, 17296}, {3616, 4667}, {3617, 4363}, {3618, 17273}, {3620, 17350}, {3622, 4364}, {3629, 17255}, {3630, 17262}, {3632, 17132}, {3662, 37681}, {3664, 5296}, {3686, 31995}, {3687, 28610}, {3707, 6173}, {3729, 32099}, {3731, 29606}, {3869, 34371}, {3886, 63975}, {3912, 6172}, {3943, 15533}, {3945, 16826}, {3973, 21255}, {4000, 17345}, {4307, 17770}, {4310, 50023}, {4360, 11008}, {4361, 4373}, {4402, 4862}, {4409, 17362}, {4422, 30833}, {4440, 50074}, {4450, 20015}, {4452, 5839}, {4465, 30948}, {4470, 17251}, {4472, 46932}, {4480, 17294}, {4555, 53212}, {4645, 5686}, {4648, 17332}, {4655, 4753}, {4678, 4690}, {4681, 4916}, {4684, 52653}, {4702, 4779}, {4725, 20014}, {4781, 24683}, {4887, 16833}, {4888, 63978}, {4896, 16832}, {4912, 20052}, {4969, 49747}, {4971, 20054}, {5220, 39570}, {5222, 17274}, {5223, 10005}, {5233, 64142}, {5257, 36834}, {5308, 50093}, {5739, 9965}, {5749, 17272}, {5815, 6552}, {5905, 14552}, {6144, 17246}, {6542, 11160}, {6604, 60998}, {7222, 17275}, {7229, 17270}, {7232, 37650}, {7277, 17253}, {9740, 37764}, {10453, 24705}, {11679, 64143}, {14555, 21454}, {14986, 53020}, {15534, 17395}, {15589, 56555}, {15668, 30712}, {16670, 50092}, {16713, 26125}, {16823, 30340}, {16885, 53665}, {17133, 20053}, {17236, 51171}, {17254, 26626}, {17261, 29618}, {17269, 22165}, {17277, 62778}, {17288, 26685}, {17298, 18230}, {17302, 51170}, {17305, 59373}, {17314, 17334}, {17316, 17333}, {17321, 17329}, {17323, 32455}, {17330, 62223}, {17343, 31300}, {17346, 42697}, {17348, 33800}, {17354, 21356}, {17360, 50107}, {17375, 29589}, {17378, 29624}, {17380, 62995}, {17383, 63123}, {17771, 50295}, {17781, 34255}, {19825, 43990}, {20019, 50065}, {20348, 60737}, {21384, 52896}, {23942, 53501}, {24248, 50016}, {24594, 63003}, {24702, 24712}, {25101, 60983}, {25278, 40875}, {26840, 63037}, {27039, 27334}, {27184, 37666}, {29585, 50133}, {29605, 50090}, {29611, 50127}, {30332, 49451}, {32086, 60982}, {32087, 60976}, {32098, 60953}, {34379, 64168}, {37652, 62208}, {37658, 51351}, {37668, 60729}, {40333, 60731}, {49709, 50999}, {49748, 50992}, {50095, 52709}, {50101, 62231}, {56201, 58463}, {56927, 60934}, {57037, 63499}, {60939, 63152}, {62424, 63590}
X(64015) = reflection of X(i) in X(j) for these {i,j}: {145, 4419}, {4454, 8}, {4644, 4643}
X(64015) = anticomplement of X(4644)
X(64015) = perspector of circumconic {{A, B, C, X(4597), X(57928)}}
X(64015) = X(i)-Dao conjugate of X(j) for these {i, j}: {4644, 4644}
X(64015) = pole of line {4777, 47784} with respect to the Steiner circumellipse
X(64015) = pole of line {4777, 53573} with respect to the Steiner inellipse
X(64015) = pole of line {2398, 4781} with respect to the Yff parabola
X(64015) = pole of line {5235, 14953} with respect to the Wallace hyperbola
X(64015) = pole of line {39470, 49280} with respect to the dual conic of polar circle
X(64015) = pole of line {551, 64168} with respect to the dual conic of Yff parabola
X(64015) = intersection, other than A, B, C, of circumconics {{A, B, C, X(89), X(36101)}}, {{A, B, C, X(1275), X(29616)}}, {{A, B, C, X(18025), X(39704)}}, {{A, B, C, X(44551), X(53212)}}
X(64015) = barycentric product X(i)*X(j) for these (i, j): {190, 44551}
X(64015) = barycentric quotient X(i)/X(j) for these (i, j): {44551, 514}
X(64015) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4644, 4747}, {7, 4416, 391}, {8, 527, 4454}, {9, 21296, 4869}, {69, 17347, 144}, {69, 190, 29616}, {144, 29616, 190}, {190, 29616, 346}, {193, 6646, 3672}, {320, 54280, 2}, {329, 4001, 37655}, {524, 4419, 145}, {1992, 4389, 17014}, {2321, 60977, 4488}, {3686, 60933, 31995}, {3912, 6172, 62706}, {4000, 17345, 45789}, {4364, 63054, 3622}, {4470, 17251, 46933}, {4643, 4670, 4748}, {4643, 4715, 4644}, {4643, 4795, 4708}, {4644, 4748, 4670}, {5839, 17276, 4452}, {7277, 17253, 63055}, {11160, 20073, 6542}, {17257, 17364, 3945}, {17296, 60942, 3161}, {17334, 40341, 17314}, {20059, 63001, 75}, {32099, 60957, 3729}, {45789, 62985, 4000}
X(64016) lies on these lines: {1, 3255}, {6, 516}, {7, 1279}, {8, 17351}, {10, 16885}, {30, 63357}, {31, 1836}, {37, 4307}, {40, 4271}, {44, 2550}, {45, 51090}, {55, 41011}, {57, 3756}, {58, 12699}, {63, 63979}, {69, 28570}, {144, 49515}, {145, 3644}, {149, 62795}, {165, 37662}, {171, 24703}, {190, 50289}, {193, 28581}, {226, 3052}, {238, 5880}, {312, 20101}, {321, 20064}, {390, 4644}, {513, 1469}, {517, 37516}, {518, 24695}, {524, 3886}, {527, 3242}, {528, 3751}, {536, 24280}, {545, 49446}, {595, 57282}, {614, 11246}, {726, 49681}, {750, 4679}, {752, 3416}, {896, 33104}, {902, 17718}, {908, 37540}, {946, 4252}, {1001, 4675}, {1086, 4312}, {1100, 64168}, {1104, 4295}, {1108, 3332}, {1191, 4292}, {1284, 3941}, {1333, 5327}, {1386, 17301}, {1456, 4331}, {1468, 12701}, {1471, 60718}, {1616, 4298}, {1699, 37646}, {1707, 2886}, {1770, 16466}, {1834, 41869}, {1892, 8750}, {2163, 16173}, {2177, 61707}, {2245, 6210}, {2263, 53529}, {2305, 25354}, {2308, 33094}, {2549, 28897}, {2792, 64085}, {2796, 32921}, {2835, 32118}, {3011, 61716}, {3056, 20718}, {3058, 62819}, {3072, 64119}, {3218, 17721}, {3241, 4912}, {3243, 53534}, {3286, 31394}, {3419, 49500}, {3434, 4641}, {3474, 3752}, {3550, 33096}, {3600, 45219}, {3616, 17235}, {3629, 49495}, {3663, 38315}, {3666, 44447}, {3685, 4851}, {3729, 5846}, {3744, 5905}, {3759, 62392}, {3782, 62834}, {3815, 9746}, {3821, 50300}, {3823, 26685}, {3827, 12723}, {3875, 28530}, {3883, 4363}, {3915, 10404}, {3966, 4418}, {3973, 38200}, {4008, 16732}, {4133, 5695}, {4255, 31730}, {4257, 5886}, {4259, 15310}, {4260, 29349}, {4265, 63968}, {4277, 48918}, {4344, 4419}, {4349, 16777}, {4353, 49747}, {4356, 16884}, {4362, 48641}, {4414, 17723}, {4415, 5269}, {4427, 33070}, {4450, 26223}, {4454, 49525}, {4480, 49527}, {4512, 17056}, {4640, 26098}, {4643, 5263}, {4645, 4676}, {4646, 6361}, {4648, 52653}, {4650, 33106}, {4654, 62875}, {4655, 28508}, {4657, 24723}, {4660, 4672}, {4667, 63977}, {4673, 20077}, {4689, 63008}, {4715, 49467}, {4733, 17275}, {4779, 62999}, {4795, 49746}, {4849, 17784}, {4854, 62845}, {4863, 32912}, {4888, 38316}, {4891, 63057}, {4924, 5853}, {5021, 48944}, {5057, 17126}, {5096, 24309}, {5250, 49745}, {5264, 58798}, {5292, 22793}, {5313, 15228}, {5542, 62223}, {5710, 64002}, {5718, 35258}, {5762, 61086}, {5805, 64013}, {5839, 49468}, {5852, 16496}, {6173, 60846}, {6284, 54421}, {6327, 32777}, {7174, 17334}, {7262, 33109}, {7735, 44431}, {7968, 52805}, {7969, 52808}, {8557, 11372}, {8616, 33097}, {8818, 53424}, {9340, 29662}, {9580, 62812}, {9778, 63089}, {9791, 41312}, {9812, 37642}, {9965, 21342}, {11415, 37539}, {11496, 54431}, {12652, 38454}, {12722, 24476}, {13405, 21000}, {15492, 38057}, {15601, 17337}, {16468, 24715}, {16469, 17366}, {16686, 51687}, {17127, 20292}, {17132, 51000}, {17253, 19868}, {17262, 49476}, {17303, 50295}, {17350, 32850}, {17392, 50836}, {17469, 33098}, {17483, 62806}, {17491, 33122}, {17716, 33099}, {17724, 31164}, {17764, 49488}, {17766, 32935}, {17767, 49455}, {17770, 32941}, {17771, 49458}, {18481, 29301}, {18907, 28915}, {20072, 49450}, {21282, 33114}, {21747, 33128}, {24342, 50296}, {24349, 49709}, {24392, 62820}, {24691, 54291}, {24821, 49534}, {25681, 37603}, {28011, 52783}, {28146, 48837}, {28178, 48847}, {28198, 48870}, {28202, 48857}, {28329, 51001}, {28526, 49453}, {28546, 49472}, {28550, 49477}, {28558, 47358}, {28562, 47359}, {28580, 49486}, {28628, 54354}, {29671, 59536}, {30615, 32938}, {30652, 33133}, {30653, 33129}, {30741, 59769}, {30811, 35263}, {30828, 35261}, {31300, 49499}, {31489, 49631}, {33075, 50048}, {33083, 52786}, {33095, 62841}, {33100, 50068}, {33112, 62838}, {33863, 48900}, {34379, 49460}, {35227, 59372}, {35466, 36277}, {37650, 59412}, {37674, 40998}, {37817, 39542}, {38186, 53602}, {42314, 62789}, {44006, 50102}, {44417, 63140}, {47352, 49630}, {47595, 49706}, {48805, 49511}, {49462, 50284}, {49524, 50127}, {49680, 64073}, {49720, 60731}, {50065, 57280}, {50076, 50126}, {50118, 50783}, {50175, 63359}, {50865, 61661}, {51415, 64112}, {52682, 53599}, {61152, 62660}, {62240, 64162}, {62849, 64164}
X(64016) = midpoint of X(i) and X(j) for these {i,j}: {24280, 51192}
X(64016) = reflection of X(i) in X(j) for these {i,j}: {8, 17351}, {69, 49484}, {3242, 63969}, {3416, 3923}, {3755, 64017}, {4655, 49482}, {4660, 4672}, {17276, 1}, {17299, 5695}, {17301, 50303}, {24248, 1386}, {24476, 12722}, {49446, 51147}, {49453, 49684}, {49486, 51196}, {49495, 3629}, {49680, 64073}, {49688, 32935}, {49747, 50294}, {50076, 50126}, {50175, 63359}, {50783, 50118}
X(64016) = pole of line {18492, 62322} with respect to the Kiepert hyperbola
X(64016) = pole of line {60980, 62383} with respect to the dual conic of Yff parabola
X(64016) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17768, 17276}, {31, 1836, 3772}, {390, 4644, 49478}, {516, 64017, 3755}, {527, 63969, 3242}, {545, 51147, 49446}, {902, 24725, 17718}, {1001, 50307, 4675}, {1386, 24248, 17301}, {1386, 28534, 24248}, {3242, 63969, 50130}, {3416, 3923, 17281}, {3755, 64017, 6}, {4307, 5698, 37}, {4344, 63975, 4419}, {4645, 4676, 17279}, {4660, 4672, 38047}, {4672, 28494, 4660}, {5057, 17126, 17720}, {5695, 5847, 17299}, {7174, 60905, 17334}, {15601, 38052, 17337}, {17766, 32935, 49688}, {24248, 50303, 1386}, {24280, 51192, 536}, {28526, 49684, 49453}, {28580, 51196, 49486}, {31300, 49704, 49499}, {33100, 62807, 50068}, {49486, 51196, 50131}, {51090, 64174, 45}, {53529, 60883, 2263}
X(64017) lies on these lines: {1, 144}, {6, 516}, {7, 16469}, {9, 4349}, {10, 391}, {31, 13405}, {44, 64174}, {58, 86}, {81, 40998}, {171, 20103}, {329, 62842}, {386, 1742}, {387, 51118}, {519, 1992}, {527, 1386}, {551, 60846}, {595, 9440}, {614, 62240}, {651, 12573}, {726, 41622}, {740, 4856}, {902, 61652}, {995, 4334}, {1001, 4667}, {1086, 4989}, {1104, 12563}, {1191, 12577}, {1203, 4292}, {1279, 7277}, {1449, 4356}, {1453, 3671}, {1456, 52819}, {1471, 62789}, {1699, 37666}, {1738, 16477}, {2257, 54370}, {2271, 48925}, {2308, 3120}, {2550, 16670}, {2784, 5477}, {2796, 4991}, {2809, 12722}, {3008, 16468}, {3011, 21747}, {3242, 50294}, {3244, 4779}, {3332, 63973}, {3361, 62787}, {3416, 50115}, {3589, 28570}, {3626, 28512}, {3629, 49484}, {3634, 50304}, {3635, 3993}, {3663, 16475}, {3672, 60905}, {3686, 4733}, {3696, 4700}, {3756, 51435}, {3758, 3883}, {3773, 4672}, {3791, 48641}, {3817, 37642}, {3828, 50301}, {3874, 14523}, {3879, 4676}, {3946, 17768}, {3950, 50284}, {4000, 30424}, {4054, 50754}, {4061, 63009}, {4253, 6210}, {4260, 29353}, {4298, 6180}, {4312, 5222}, {4344, 5223}, {4383, 41422}, {4416, 19868}, {4512, 63007}, {4644, 5542}, {4648, 15601}, {4649, 63977}, {4655, 38049}, {4656, 62845}, {4660, 59408}, {4663, 5853}, {4759, 29606}, {4852, 28557}, {4888, 16020}, {5021, 48932}, {5269, 21060}, {5292, 12571}, {5294, 48647}, {5327, 40963}, {5711, 18250}, {5717, 18249}, {6700, 27381}, {6738, 54421}, {6745, 17126}, {7585, 49632}, {7586, 49633}, {7736, 49631}, {8557, 60911}, {9746, 37665}, {9778, 62181}, {10164, 63089}, {10171, 37646}, {10521, 62785}, {11019, 62812}, {11038, 16487}, {12447, 54386}, {12527, 57280}, {12572, 62805}, {12652, 28228}, {13329, 43151}, {16667, 64168}, {16834, 24280}, {17014, 63975}, {17132, 32921}, {17350, 49476}, {17365, 43180}, {17766, 41623}, {17781, 62807}, {19003, 52805}, {19004, 52808}, {20106, 32946}, {20156, 31211}, {24248, 50114}, {24725, 61647}, {28150, 48847}, {28158, 48837}, {28526, 49477}, {28580, 49489}, {28581, 32455}, {28897, 63633}, {29604, 33082}, {31034, 35263}, {32935, 49684}, {32941, 64073}, {34379, 49482}, {36277, 63008}, {37492, 63968}, {37502, 41430}, {37650, 38204}, {37662, 58441}, {37681, 38052}, {39595, 62841}, {43035, 60883}, {43179, 49478}, {44431, 63005}, {44839, 64084}, {48856, 50834}, {49474, 50019}, {49495, 51170}, {49511, 50300}, {49630, 59373}, {50020, 50117}, {50302, 63978}, {50802, 61661}, {64110, 64166}
X(64017) = midpoint of X(i) and X(j) for these {i,j}: {3629, 49484}, {3663, 24695}, {3751, 63969}, {3755, 64016}, {3923, 51196}, {32935, 49684}, {32941, 64073}
X(64017) = reflection of X(i) in X(j) for these {i,j}: {4353, 1386}, {17355, 4672}, {50304, 3634}, {53598, 1125}
X(64017) = perspector of circumconic {{A, B, C, X(4610), X(9057)}}
X(64017) = pole of line {4765, 17161} with respect to the Steiner circumellipse
X(64017) = pole of line {86, 14953} with respect to the dual conic of Yff parabola
X(64017) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1509), X(56043)}}, {{A, B, C, X(11599), X(53598)}}
X(64017) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 64016, 3755}, {238, 3664, 1125}, {527, 1386, 4353}, {1125, 17770, 53598}, {1449, 5698, 4356}, {1743, 4307, 10}, {2308, 41011, 40940}, {3751, 50303, 63969}, {3751, 63969, 519}, {3755, 64016, 516}, {4648, 15601, 38059}, {4672, 5847, 17355}, {4888, 16020, 38054}, {16468, 50307, 3008}, {21747, 61707, 3011}, {52653, 62997, 1}
X(64018) lies on these lines: {2, 187}, {3, 1007}, {4, 183}, {5, 32867}, {6, 32986}, {20, 99}, {30, 69}, {32, 32974}, {39, 33023}, {40, 55418}, {76, 3146}, {83, 33202}, {84, 55419}, {86, 48813}, {115, 37667}, {141, 14033}, {148, 9939}, {193, 754}, {194, 32997}, {230, 16041}, {274, 37435}, {325, 376}, {340, 49670}, {378, 15574}, {381, 34229}, {382, 7767}, {385, 33017}, {393, 40889}, {394, 3331}, {439, 3788}, {491, 9541}, {512, 62642}, {524, 44526}, {538, 20080}, {543, 11160}, {549, 34803}, {550, 6337}, {574, 62988}, {620, 35287}, {621, 44463}, {622, 44459}, {626, 32973}, {631, 7773}, {637, 49038}, {638, 49039}, {671, 9740}, {892, 53201}, {1078, 3091}, {1285, 7792}, {1350, 10008}, {1369, 20062}, {1384, 33184}, {1597, 63155}, {1657, 3933}, {1799, 7378}, {1968, 28724}, {1975, 3529}, {1992, 5077}, {2080, 9752}, {2386, 12220}, {2407, 35923}, {2548, 7830}, {2896, 14035}, {2996, 7751}, {3053, 14064}, {3096, 33198}, {3314, 33007}, {3329, 7791}, {3522, 7763}, {3523, 7752}, {3528, 32823}, {3534, 6390}, {3543, 7811}, {3545, 37688}, {3552, 53033}, {3618, 11287}, {3619, 11286}, {3620, 3734}, {3767, 7842}, {3793, 63034}, {3815, 33215}, {3830, 64093}, {3832, 32832}, {3839, 32885}, {3854, 32870}, {3934, 32979}, {4045, 51171}, {4340, 51356}, {4967, 48807}, {5013, 33226}, {5023, 32970}, {5024, 8354}, {5032, 61046}, {5056, 32883}, {5059, 7768}, {5149, 33014}, {5206, 31274}, {5207, 10519}, {5210, 33216}, {5224, 48817}, {5254, 33238}, {5286, 6655}, {5304, 7790}, {5319, 7872}, {5395, 7808}, {5468, 36163}, {5564, 48798}, {5939, 9862}, {5971, 16063}, {6101, 53796}, {6189, 35914}, {6190, 35913}, {6194, 39266}, {6392, 7748}, {6644, 34883}, {6658, 7929}, {6722, 7825}, {6776, 39099}, {6781, 7818}, {7396, 33651}, {7408, 40022}, {7620, 8597}, {7694, 8722}, {7710, 54993}, {7735, 7841}, {7736, 8356}, {7738, 7762}, {7739, 51170}, {7745, 16043}, {7746, 32980}, {7747, 7800}, {7749, 32988}, {7754, 19695}, {7756, 7758}, {7757, 63091}, {7769, 15717}, {7774, 7833}, {7775, 63077}, {7777, 33008}, {7778, 32985}, {7779, 33264}, {7780, 54097}, {7782, 32831}, {7783, 33253}, {7784, 14001}, {7785, 31400}, {7788, 11001}, {7789, 33239}, {7793, 14063}, {7795, 7873}, {7799, 62120}, {7803, 7910}, {7806, 33251}, {7809, 10304}, {7810, 62203}, {7812, 37665}, {7814, 21734}, {7815, 32987}, {7824, 31404}, {7827, 63005}, {7828, 33200}, {7832, 33201}, {7836, 33244}, {7840, 53142}, {7843, 31401}, {7845, 34511}, {7850, 10513}, {7857, 33199}, {7868, 14039}, {7871, 32841}, {7879, 19687}, {7881, 33250}, {7885, 16925}, {7891, 33254}, {7893, 33256}, {7897, 33265}, {7899, 33203}, {7900, 33260}, {7904, 16924}, {7906, 33267}, {7911, 33180}, {7912, 32964}, {7924, 16989}, {7928, 16898}, {7931, 33255}, {7938, 14037}, {7939, 33257}, {7941, 33275}, {7946, 33209}, {7947, 33268}, {8352, 63029}, {8353, 31859}, {8357, 30435}, {8359, 15484}, {8362, 14535}, {8591, 52943}, {8667, 53419}, {8716, 50771}, {8781, 38747}, {9723, 35243}, {9770, 35955}, {10303, 32884}, {11008, 22253}, {11111, 37664}, {11159, 21356}, {11179, 51396}, {11184, 47061}, {11295, 63105}, {11296, 63106}, {11317, 42850}, {11318, 63104}, {11359, 63014}, {11361, 16990}, {12042, 39647}, {14031, 46226}, {14041, 17008}, {14068, 31276}, {14532, 14927}, {14615, 16251}, {14731, 38940}, {14853, 37242}, {15031, 61982}, {15271, 32983}, {15640, 32892}, {15682, 37671}, {15696, 32891}, {16589, 33051}, {16999, 33032}, {17004, 33006}, {17128, 33280}, {17538, 32818}, {17578, 32834}, {17579, 45962}, {19691, 20081}, {22676, 51373}, {23055, 37350}, {26233, 31099}, {26288, 44364}, {26289, 44365}, {31295, 34284}, {32152, 58851}, {32805, 35256}, {32806, 35255}, {32819, 32878}, {32820, 62147}, {32821, 62127}, {32822, 32890}, {32840, 62152}, {32869, 62048}, {32871, 61804}, {32873, 62060}, {32874, 62032}, {32877, 49140}, {32886, 50688}, {32887, 62067}, {32888, 50691}, {32889, 62083}, {32893, 62005}, {32898, 61816}, {32976, 44535}, {32984, 37637}, {32991, 39590}, {33019, 43449}, {33228, 62992}, {33247, 63548}, {33263, 63017}, {33273, 63083}, {33278, 63048}, {33285, 46453}, {33532, 52437}, {34254, 59343}, {34604, 63045}, {34608, 45201}, {35297, 37690}, {35474, 55972}, {35930, 40330}, {36187, 47291}, {36891, 41522}, {36987, 51386}, {37187, 60428}, {37190, 56442}, {38741, 46236}, {40123, 52397}, {40680, 44128}, {44369, 63428}, {48838, 62999}, {48869, 63001}, {50057, 63013}, {50990, 59780}, {50992, 52229}, {52718, 61945}, {53491, 60204}, {53492, 60205}, {58188, 62362}, {59634, 62130}, {62427, 63536}, {62995, 63633}
X(64018) = reflection of X(i) in X(j) for these {i,j}: {193, 2549}, {1992, 5077}, {7737, 7761}, {11008, 22253}, {14927, 14532}, {32815, 69}, {43618, 3734}
X(64018) = anticomplement of X(7737)
X(64018) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {30541, 8}
X(64018) = pole of line {597, 32983} with respect to the Kiepert hyperbola
X(64018) = pole of line {34211, 35356} with respect to the Kiepert parabola
X(64018) = pole of line {574, 26864} with respect to the Stammler hyperbola
X(64018) = pole of line {3906, 6333} with respect to the Steiner circumellipse
X(64018) = pole of line {376, 599} with respect to the Wallace hyperbola
X(64018) = pole of line {3265, 9209} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(64018) = intersection, other than A, B, C, of circumconics {{A, B, C, X(376), X(11180)}}, {{A, B, C, X(598), X(35140)}}, {{A, B, C, X(1297), X(1383)}}, {{A, B, C, X(18023), X(32827)}}, {{A, B, C, X(23334), X(36882)}}, {{A, B, C, X(23582), X(37668)}}, {{A, B, C, X(41522), X(56687)}}, {{A, B, C, X(44552), X(51541)}}, {{A, B, C, X(50967), X(54667)}}
X(64018) = barycentric product X(i)*X(j) for these (i, j): {44552, 99}
X(64018) = barycentric quotient X(i)/X(j) for these (i, j): {44552, 523}
X(64018) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 316, 32827}, {3, 32006, 32816}, {4, 3785, 32828}, {4, 7750, 3785}, {20, 315, 3926}, {20, 37668, 99}, {30, 69, 32815}, {69, 54170, 51438}, {76, 3146, 32826}, {99, 315, 37668}, {148, 9939, 63046}, {193, 33272, 2549}, {315, 7802, 20}, {316, 11057, 14907}, {316, 14907, 2}, {385, 33017, 43448}, {550, 7776, 6337}, {625, 47101, 21843}, {754, 2549, 193}, {1078, 3091, 32838}, {1285, 33190, 7792}, {2548, 7830, 32990}, {3523, 7752, 32839}, {3543, 15589, 11185}, {3767, 7842, 32982}, {3849, 7761, 7737}, {5210, 44377, 33216}, {5304, 33210, 7790}, {6337, 7776, 32825}, {6655, 20065, 5286}, {7747, 7800, 32971}, {7748, 14023, 6392}, {7762, 33234, 7738}, {7785, 32965, 31400}, {7803, 7910, 33025}, {7811, 11185, 15589}, {7850, 32833, 10513}, {7898, 14976, 14712}, {8359, 15484, 63041}, {11287, 18907, 3618}, {15271, 53418, 32983}, {32831, 50693, 7782}, {33192, 63046, 148}
X(64019) lies on these lines: {2, 99}, {3, 11149}, {5, 12117}, {10, 9884}, {30, 38750}, {76, 8860}, {83, 42010}, {88, 29609}, {98, 5054}, {114, 3524}, {140, 8724}, {141, 8593}, {147, 15708}, {316, 27088}, {325, 26613}, {376, 38748}, {381, 21166}, {385, 5215}, {531, 36770}, {542, 631}, {547, 14639}, {549, 6054}, {590, 19058}, {597, 7807}, {599, 1078}, {615, 19057}, {625, 9855}, {635, 5464}, {636, 5463}, {662, 31144}, {691, 46986}, {1125, 9881}, {1153, 8587}, {1385, 50880}, {1551, 38704}, {1916, 60645}, {1992, 7763}, {2782, 15694}, {2794, 15692}, {2796, 19862}, {2936, 40916}, {3090, 9880}, {3314, 5569}, {3455, 7496}, {3523, 20399}, {3525, 12243}, {3526, 23235}, {3534, 61575}, {3543, 36519}, {3545, 6721}, {3619, 45018}, {3624, 12258}, {3763, 9830}, {3788, 7883}, {3839, 38738}, {3849, 7925}, {3934, 11152}, {3972, 11184}, {4413, 12326}, {4590, 9164}, {5026, 10488}, {5055, 33813}, {5066, 38730}, {5067, 10992}, {5070, 12355}, {5071, 23698}, {5094, 12132}, {5149, 33273}, {5432, 12351}, {5433, 12350}, {5459, 11308}, {5460, 11307}, {5503, 11174}, {5590, 33343}, {5591, 33342}, {5690, 50883}, {5969, 7786}, {5972, 11006}, {5976, 51588}, {5984, 61830}, {6033, 12100}, {6036, 15709}, {6055, 15702}, {6189, 22245}, {6190, 22244}, {6321, 15699}, {6390, 11054}, {6669, 9116}, {6670, 9114}, {6684, 50881}, {6778, 36768}, {7484, 9876}, {7752, 32985}, {7760, 62204}, {7769, 8369}, {7778, 50571}, {7782, 11318}, {7792, 12040}, {7796, 11160}, {7799, 22329}, {7801, 7907}, {7802, 35287}, {7808, 12191}, {7809, 22110}, {7810, 7909}, {7811, 33216}, {7812, 16925}, {7815, 58765}, {7817, 33245}, {7832, 20582}, {7833, 7899}, {7836, 34506}, {7840, 10352}, {7841, 7940}, {7846, 33197}, {7856, 33203}, {7857, 34511}, {7859, 8365}, {7868, 52088}, {7888, 9939}, {7914, 9878}, {7931, 8786}, {7934, 35955}, {7944, 8359}, {7970, 50821}, {7983, 25055}, {8252, 49215}, {8253, 49214}, {8352, 32459}, {8594, 44383}, {8595, 44382}, {8597, 32456}, {8598, 44377}, {8703, 10722}, {8781, 18842}, {8859, 39785}, {8997, 19053}, {9681, 39387}, {9741, 63104}, {9771, 35954}, {9862, 15719}, {9864, 50828}, {10124, 38224}, {10303, 14981}, {10753, 50977}, {10754, 47352}, {10769, 59376}, {10991, 61820}, {11053, 51226}, {11163, 11288}, {11177, 15721}, {11539, 11632}, {11623, 55864}, {11694, 15545}, {11711, 19875}, {11724, 50810}, {11812, 51872}, {12042, 15701}, {12093, 16175}, {12188, 26614}, {12347, 15184}, {12349, 24953}, {12356, 26364}, {12357, 26363}, {13172, 61899}, {13188, 61864}, {13586, 31173}, {13846, 19108}, {13847, 19109}, {13908, 32785}, {13968, 32786}, {13989, 19054}, {14067, 31457}, {14069, 55767}, {14568, 44401}, {14645, 63127}, {14651, 61859}, {14692, 14890}, {14869, 52090}, {14891, 38742}, {14916, 57216}, {14928, 63121}, {15031, 59545}, {15092, 61901}, {15682, 38736}, {15687, 38731}, {15688, 22505}, {15698, 38749}, {15700, 38743}, {15705, 38747}, {15706, 38744}, {15713, 38739}, {15717, 38745}, {15723, 34127}, {16508, 63647}, {16988, 43535}, {17023, 49549}, {17504, 38741}, {18800, 21356}, {18823, 31998}, {19883, 50886}, {20398, 61867}, {20774, 35486}, {21636, 50829}, {22515, 61920}, {23055, 32833}, {23514, 61895}, {25561, 37334}, {27195, 35103}, {31275, 32479}, {33220, 42849}, {33231, 62348}, {34229, 60103}, {35378, 41146}, {38229, 61880}, {38314, 50888}, {38635, 61925}, {38732, 61883}, {38733, 61908}, {38734, 61886}, {38740, 61856}, {38746, 61806}, {39061, 40553}, {39805, 43572}, {39809, 41106}, {39838, 62120}, {41139, 47286}, {41672, 50992}, {41985, 61600}, {44010, 57152}, {44580, 61599}, {46210, 54918}, {46219, 51524}, {46980, 47288}, {47005, 52034}, {47290, 53136}, {50567, 59373}, {50641, 51737}, {50990, 55820}, {50991, 64092}, {50993, 55730}, {51523, 55863}, {52094, 62686}, {53729, 59377}, {54494, 56064}, {54509, 54841}, {55726, 55813}, {55728, 55812}, {55740, 55807}, {55742, 55806}, {55743, 55805}, {55758, 55797}, {55761, 55796}, {55764, 55795}, {55768, 55793}, {55771, 55791}, {55783, 55786}, {55817, 55829}, {60073, 60200}, {61560, 61851}, {61576, 61887}, {63344, 63347}
X(64019) = reflection of X(i) in X(j) for these {i,j}: {2, 31274}, {14061, 2}, {38739, 15713}
X(64019) = inverse of X(5461) in Wallace hyperbola
X(64019) = pole of line {2793, 14424} with respect to the orthoptic circle of the Steiner Inellipse
X(64019) = pole of line {187, 20977} with respect to the Stammler hyperbola
X(64019) = pole of line {690, 14610} with respect to the Steiner inellipse
X(64019) = pole of line {524, 625} with respect to the Wallace hyperbola
X(64019) = pole of line {27759, 50755} with respect to the dual conic of Yff parabola
X(64019) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(44010)}}, {{A, B, C, X(111), X(10153)}}, {{A, B, C, X(115), X(9164)}}, {{A, B, C, X(523), X(14971)}}, {{A, B, C, X(524), X(5461)}}, {{A, B, C, X(543), X(36953)}}, {{A, B, C, X(671), X(57926)}}, {{A, B, C, X(4590), X(9166)}}, {{A, B, C, X(7617), X(9516)}}, {{A, B, C, X(8591), X(51226)}}, {{A, B, C, X(9180), X(36523)}}, {{A, B, C, X(14061), X(18823)}}, {{A, B, C, X(14360), X(52094)}}, {{A, B, C, X(18842), X(52450)}}, {{A, B, C, X(31125), X(42010)}}, {{A, B, C, X(41134), X(42349)}}, {{A, B, C, X(60239), X(63853)}}, {{A, B, C, X(60645), X(60863)}}
X(64019) = barycentric product X(i)*X(j) for these (i, j): {44010, 99}
X(64019) = barycentric quotient X(i)/X(j) for these (i, j): {44010, 523}, {57152, 9178}
X(64019) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 148, 14971}, {2, 31128, 42008}, {2, 32480, 7844}, {2, 41134, 99}, {2, 41135, 6722}, {2, 543, 14061}, {2, 620, 41134}, {2, 7618, 7790}, {2, 7664, 52141}, {2, 8591, 5461}, {2, 99, 9166}, {115, 14971, 41148}, {115, 8596, 671}, {549, 15561, 6054}, {549, 6054, 34473}, {620, 22247, 2482}, {2482, 22247, 2}, {2482, 5461, 8591}, {2482, 9167, 22247}, {5026, 21358, 11161}, {6722, 15300, 41135}, {7807, 62362, 55085}, {7883, 33274, 43459}, {11177, 15721, 38737}, {11539, 61561, 11632}, {11711, 19875, 50885}, {12188, 61843, 26614}, {14971, 36521, 148}, {15709, 64090, 6036}, {18823, 44397, 31998}, {19883, 51578, 50886}, {22110, 35297, 51224}, {22110, 51224, 7809}, {27088, 41133, 316}, {33376, 33377, 8593}, {39785, 58448, 8859}
X(64020) lies on these lines: {1, 90}, {3, 47}, {6, 19}, {8, 45729}, {11, 41344}, {12, 5711}, {25, 14529}, {31, 73}, {33, 1898}, {40, 54301}, {46, 36754}, {55, 581}, {56, 58}, {57, 1203}, {81, 3485}, {109, 386}, {171, 37694}, {184, 3556}, {201, 2911}, {212, 4300}, {223, 37550}, {225, 41011}, {226, 62805}, {238, 37523}, {255, 1064}, {278, 14016}, {388, 651}, {394, 960}, {405, 7299}, {497, 3562}, {517, 36747}, {578, 2818}, {595, 11510}, {601, 22350}, {602, 4303}, {603, 1193}, {611, 5252}, {613, 37549}, {774, 20277}, {920, 37565}, {940, 11375}, {958, 55400}, {959, 5323}, {999, 23070}, {1001, 54356}, {1038, 54386}, {1042, 1451}, {1046, 37591}, {1066, 1497}, {1106, 1450}, {1118, 3194}, {1124, 8978}, {1155, 36745}, {1181, 6001}, {1191, 1319}, {1214, 16471}, {1386, 23144}, {1388, 16483}, {1407, 32636}, {1411, 36750}, {1420, 5315}, {1421, 6126}, {1425, 5320}, {1452, 44086}, {1454, 1465}, {1457, 1468}, {1466, 2122}, {1467, 16469}, {1478, 8757}, {1479, 60691}, {1480, 5697}, {1498, 12688}, {1707, 54320}, {1724, 37558}, {1745, 3072}, {1771, 11502}, {1777, 63982}, {1788, 32911}, {1836, 1838}, {1837, 39574}, {1854, 17824}, {1950, 54423}, {1993, 3869}, {1994, 64047}, {2099, 15955}, {2323, 12526}, {2390, 11402}, {2646, 36746}, {2650, 61356}, {2964, 36152}, {2999, 37744}, {3057, 64069}, {3149, 5348}, {3193, 11415}, {3256, 5312}, {3295, 23071}, {3303, 39789}, {3339, 52423}, {3476, 62804}, {3516, 34935}, {3649, 37543}, {3812, 10601}, {3868, 45728}, {3924, 61396}, {4347, 15556}, {4383, 24914}, {4551, 5264}, {4559, 54416}, {4642, 61357}, {5021, 43039}, {5083, 30148}, {5119, 56535}, {5219, 37559}, {5221, 52424}, {5247, 24806}, {5292, 34029}, {5302, 55438}, {5396, 11507}, {5398, 59317}, {5399, 11508}, {5707, 12047}, {5902, 16472}, {5903, 16473}, {6147, 15253}, {6180, 10404}, {7074, 37568}, {7098, 17080}, {7288, 17074}, {7354, 64057}, {7355, 11428}, {7592, 64021}, {7686, 10982}, {7702, 23537}, {8071, 52407}, {8192, 8679}, {8270, 41538}, {9777, 58493}, {10106, 62828}, {10372, 28369}, {10693, 17847}, {10895, 52383}, {11425, 63435}, {11553, 54358}, {12161, 14988}, {12514, 45126}, {13567, 58459}, {13750, 37697}, {14110, 37498}, {14793, 58738}, {15071, 33178}, {16140, 20182}, {16790, 28037}, {17811, 25917}, {18360, 37541}, {18445, 40266}, {18451, 31937}, {18961, 64172}, {19860, 54444}, {19861, 22128}, {20306, 23292}, {20967, 22119}, {20992, 54411}, {22654, 26892}, {22766, 34586}, {22768, 37469}, {22769, 23154}, {24954, 25934}, {26098, 26481}, {26888, 37538}, {31165, 37672}, {34339, 36752}, {34435, 58737}, {36279, 37509}, {36749, 64044}, {37501, 37600}, {37542, 37738}, {37836, 52271}, {39150, 54402}, {39151, 54403}, {39523, 50193}, {40292, 52408}, {41687, 60689}, {44663, 63094}, {54339, 62841}, {54354, 60682}, {56634, 58741}
X(64020) = perspector of circumconic {{A, B, C, X(108), X(4565)}}
X(64020) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 56225}, {9, 60156}, {33, 57832}, {312, 46010}, {318, 57667}, {4086, 59130}, {6332, 59083}
X(64020) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 60156}, {5517, 4391}, {32664, 56225}
X(64020) = X(i)-Ceva conjugate of X(j) for these {i, j}: {959, 56}, {45126, 36744}
X(64020) = pole of line {1946, 2605} with respect to the circumcircle
X(64020) = pole of line {3, 33} with respect to the Feuerbach hyperbola
X(64020) = pole of line {513, 58888} with respect to the Orthic inconic
X(64020) = pole of line {8, 1812} with respect to the Stammler hyperbola
X(64020) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(52033)}}, {{A, B, C, X(6), X(1069)}}, {{A, B, C, X(19), X(58)}}, {{A, B, C, X(34), X(1412)}}, {{A, B, C, X(56), X(1880)}}, {{A, B, C, X(65), X(222)}}, {{A, B, C, X(406), X(859)}}, {{A, B, C, X(478), X(603)}}, {{A, B, C, X(607), X(2194)}}, {{A, B, C, X(608), X(1408)}}, {{A, B, C, X(915), X(3560)}}, {{A, B, C, X(1193), X(56905)}}, {{A, B, C, X(1409), X(7335)}}, {{A, B, C, X(1829), X(5739)}}, {{A, B, C, X(2178), X(60154)}}, {{A, B, C, X(2221), X(4185)}}, {{A, B, C, X(2262), X(57666)}}, {{A, B, C, X(2331), X(2360)}}, {{A, B, C, X(5341), X(34435)}}, {{A, B, C, X(7105), X(24430)}}, {{A, B, C, X(52413), X(57709)}}
X(64020) = barycentric product X(i)*X(j) for these (i, j): {1, 45126}, {56, 5739}, {222, 406}, {348, 44086}, {1408, 42707}, {1452, 63}, {12514, 57}, {14258, 1460}, {27174, 65}, {36744, 7}
X(64020) = barycentric quotient X(i)/X(j) for these (i, j): {31, 56225}, {56, 60156}, {222, 57832}, {406, 7017}, {1397, 46010}, {1452, 92}, {5739, 3596}, {12514, 312}, {27174, 314}, {36744, 8}, {44086, 281}, {45126, 75}, {52411, 57667}
X(64020) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3073, 62333}, {31, 73, 37579}, {34, 54421, 65}, {40, 54301, 61397}, {56, 8614, 222}, {57, 34043, 1406}, {109, 386, 11509}, {184, 42448, 3556}, {212, 4300, 37601}, {222, 16466, 56}, {255, 1064, 26357}, {602, 4303, 37578}, {603, 1193, 1470}, {651, 57280, 388}, {1042, 2308, 1451}, {1066, 1497, 33925}, {1191, 34046, 1319}, {1191, 62207, 34046}, {1203, 34043, 57}, {1457, 1468, 26437}, {1479, 63339, 60691}, {1771, 37732, 11502}, {4551, 5264, 11501}, {5710, 9370, 5252}, {5711, 34048, 12}, {5903, 16473, 44414}, {14529, 42450, 25}
X(64021) lies on these lines: {1, 104}, {2, 5887}, {3, 3417}, {4, 65}, {5, 10129}, {7, 10532}, {8, 912}, {10, 5693}, {11, 7704}, {20, 145}, {24, 3556}, {30, 9961}, {34, 45225}, {35, 40256}, {36, 40257}, {40, 758}, {46, 6261}, {55, 45288}, {56, 26877}, {57, 7971}, {72, 5657}, {74, 30250}, {78, 3359}, {84, 1389}, {100, 37700}, {119, 25005}, {153, 355}, {165, 31806}, {185, 2818}, {214, 59332}, {221, 1181}, {318, 38955}, {354, 10595}, {376, 9943}, {381, 61541}, {389, 42448}, {392, 9940}, {404, 45770}, {411, 59318}, {484, 6796}, {496, 1537}, {497, 64045}, {515, 1770}, {516, 4084}, {518, 12245}, {519, 37430}, {580, 49500}, {581, 4424}, {631, 960}, {938, 10531}, {942, 5603}, {946, 5902}, {952, 14923}, {962, 5768}, {971, 7672}, {986, 1064}, {997, 6940}, {1000, 10305}, {1006, 12514}, {1012, 62864}, {1125, 15016}, {1155, 6942}, {1210, 1519}, {1385, 3877}, {1479, 53615}, {1482, 3873}, {1483, 64191}, {1490, 2093}, {1512, 4848}, {1614, 14529}, {1621, 37615}, {1698, 20117}, {1699, 31870}, {1709, 21669}, {1735, 10571}, {1737, 6941}, {1771, 45272}, {1788, 6834}, {1854, 6198}, {2077, 22836}, {2099, 12114}, {2390, 5890}, {2646, 6950}, {2650, 37529}, {2778, 12244}, {2801, 5881}, {2802, 61296}, {2829, 10950}, {2975, 24467}, {3057, 4305}, {3062, 16615}, {3073, 3924}, {3085, 64041}, {3086, 18838}, {3090, 3812}, {3091, 31937}, {3149, 36279}, {3185, 37115}, {3218, 11249}, {3241, 23340}, {3295, 37287}, {3338, 45977}, {3339, 63992}, {3419, 12529}, {3474, 6934}, {3485, 6833}, {3486, 6938}, {3487, 12709}, {3488, 12711}, {3523, 40296}, {3524, 31165}, {3525, 25917}, {3567, 42450}, {3576, 3878}, {3577, 10308}, {3579, 33597}, {3616, 6892}, {3622, 13373}, {3649, 7680}, {3655, 26201}, {3656, 6583}, {3679, 63967}, {3681, 5690}, {3698, 58631}, {3753, 5177}, {3754, 5587}, {3817, 33815}, {3827, 6776}, {3838, 6874}, {3870, 49163}, {3871, 64189}, {3874, 7982}, {3876, 5694}, {3881, 16200}, {3889, 10222}, {3890, 10246}, {3894, 11531}, {3899, 7987}, {3901, 7991}, {3918, 15064}, {3919, 19925}, {3957, 37622}, {3962, 63976}, {4004, 5927}, {4067, 43174}, {4227, 62843}, {4294, 41537}, {4338, 5691}, {4640, 6875}, {4642, 37699}, {4744, 51118}, {4757, 41869}, {4855, 34474}, {4867, 59326}, {5044, 18231}, {5057, 6928}, {5086, 6923}, {5119, 64173}, {5128, 52026}, {5221, 22753}, {5250, 18443}, {5253, 37612}, {5534, 38665}, {5537, 41696}, {5658, 41539}, {5692, 6684}, {5697, 5882}, {5698, 6936}, {5709, 64150}, {5714, 10599}, {5727, 10728}, {5731, 13369}, {5770, 10527}, {5794, 6951}, {5836, 14872}, {5880, 6901}, {5883, 8227}, {5885, 5886}, {5901, 13226}, {5904, 11362}, {5918, 17538}, {6147, 63257}, {6197, 64022}, {6237, 37098}, {6256, 10573}, {6265, 18861}, {6326, 25440}, {6705, 30274}, {6827, 11415}, {6829, 12609}, {6830, 12047}, {6831, 33899}, {6832, 28629}, {6852, 28628}, {6853, 26066}, {6868, 44447}, {6895, 12699}, {6902, 24703}, {6909, 62830}, {6917, 20292}, {6920, 54318}, {6922, 51409}, {6924, 9352}, {6949, 24914}, {6952, 11375}, {6963, 21616}, {6968, 54361}, {6990, 12617}, {7098, 52270}, {7330, 19860}, {7501, 40660}, {7592, 64020}, {7705, 12619}, {7741, 10265}, {7992, 18421}, {8148, 30283}, {8166, 61660}, {8256, 37725}, {8666, 11014}, {9581, 12736}, {9612, 59392}, {9624, 58565}, {9778, 37585}, {9781, 58493}, {9803, 52367}, {9856, 31794}, {9946, 35262}, {9947, 38074}, {9952, 18357}, {9960, 37468}, {10085, 25415}, {10167, 31786}, {10176, 31423}, {10178, 21735}, {10199, 50908}, {10247, 62854}, {10267, 18444}, {10273, 40263}, {10284, 61287}, {10310, 12635}, {10391, 14646}, {10394, 37730}, {10598, 64131}, {10605, 63435}, {10806, 30305}, {10893, 61717}, {10894, 61716}, {10942, 12532}, {11041, 12246}, {11219, 37735}, {11248, 34772}, {11372, 30329}, {11376, 17638}, {11431, 44545}, {11500, 37567}, {11507, 45230}, {11509, 59366}, {11529, 12705}, {11682, 37611}, {11684, 26921}, {11826, 44669}, {11827, 17768}, {12248, 37740}, {12515, 26285}, {12526, 30503}, {12559, 37569}, {12650, 30304}, {12678, 41687}, {12831, 26482}, {12832, 26476}, {13464, 18398}, {13465, 18259}, {13528, 56176}, {13754, 46483}, {14450, 37826}, {14526, 37719}, {15622, 53252}, {15726, 33703}, {15803, 40249}, {15829, 37526}, {17016, 36742}, {17637, 37724}, {17660, 25414}, {17857, 54286}, {17916, 53560}, {18237, 37541}, {18242, 40663}, {18393, 63963}, {18395, 63964}, {18492, 31871}, {19861, 37534}, {20612, 37531}, {20718, 30273}, {21165, 54290}, {24476, 39898}, {24806, 44706}, {27383, 41389}, {27529, 37713}, {28194, 34719}, {30144, 37561}, {31787, 64107}, {31798, 37427}, {31835, 63961}, {31838, 54445}, {32214, 64138}, {32613, 33858}, {34043, 59285}, {34195, 37533}, {34789, 37702}, {34862, 50194}, {36746, 37614}, {37006, 40264}, {37305, 64040}, {37403, 63391}, {37535, 48667}, {37624, 62835}, {37721, 52860}, {41538, 64148}, {44861, 56273}, {50317, 62831}, {50371, 64128}, {51379, 59591}, {59330, 64188}, {64106, 64132}
X(64021) = midpoint of X(i) and X(j) for these {i,j}: {20, 64047}, {3901, 7991}, {5903, 15071}
X(64021) = reflection of X(i) in X(j) for these {i,j}: {1, 5884}, {4, 65}, {8, 37562}, {72, 31788}, {355, 35004}, {944, 1071}, {962, 24474}, {1482, 24475}, {3057, 12675}, {3869, 3}, {3885, 37727}, {3962, 63976}, {4067, 43174}, {5693, 10}, {5694, 13145}, {5697, 5882}, {5887, 34339}, {5904, 11362}, {7982, 3874}, {9856, 31794}, {10698, 11570}, {11372, 30329}, {12246, 17649}, {12247, 17654}, {12528, 355}, {12666, 6256}, {12672, 942}, {12688, 7686}, {12758, 15528}, {14110, 9943}, {14872, 5836}, {14923, 25413}, {31803, 3754}, {37625, 4084}, {39898, 24476}, {40266, 5}, {42448, 389}, {59387, 10273}, {61705, 3919}
X(64021) = inverse of X(7704) in Feuerbach hyperbola
X(64021) = anticomplement of X(5887)
X(64021) = perspector of circumconic {{A, B, C, X(37136), X(54240)}}
X(64021) = X(i)-Dao conjugate of X(j) for these {i, j}: {5887, 5887}
X(64021) = pole of line {48390, 53305} with respect to the circumcircle
X(64021) = pole of line {3738, 50332} with respect to the Conway circle
X(64021) = pole of line {3738, 6129} with respect to the incircle
X(64021) = pole of line {521, 16228} with respect to the polar circle
X(64021) = pole of line {4, 1319} with respect to the Feuerbach hyperbola
X(64021) = pole of line {860, 58889} with respect to the Jerabek hyperbola
X(64021) = pole of line {650, 22086} with respect to the Orthic inconic
X(64021) = pole of line {1459, 3738} with respect to the Suppa-Cucoanes circle
X(64021) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11, 1364, 15614}
X(64021) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(1795)}}, {{A, B, C, X(104), X(158)}}, {{A, B, C, X(318), X(6906)}}, {{A, B, C, X(522), X(5450)}}, {{A, B, C, X(603), X(1875)}}, {{A, B, C, X(1118), X(3417)}}, {{A, B, C, X(1243), X(1887)}}, {{A, B, C, X(1389), X(15501)}}, {{A, B, C, X(1857), X(2342)}}
X(64021) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1158, 6906}, {1, 1768, 5450}, {1, 63399, 104}, {3, 14988, 3869}, {20, 64047, 517}, {40, 12520, 3651}, {40, 18446, 11491}, {46, 6261, 6905}, {57, 7971, 63986}, {65, 12688, 7686}, {65, 1858, 18391}, {72, 31788, 5657}, {354, 45776, 10595}, {355, 2771, 12528}, {516, 4084, 37625}, {517, 1071, 944}, {517, 37727, 3885}, {912, 37562, 8}, {942, 12672, 5603}, {944, 2096, 37002}, {944, 6361, 37000}, {952, 25413, 14923}, {962, 5768, 12116}, {997, 59333, 6940}, {1155, 37837, 6942}, {1210, 54198, 1519}, {1482, 24475, 3873}, {1737, 12608, 6941}, {1837, 64119, 4}, {2646, 64118, 6950}, {2771, 17654, 12247}, {2771, 35004, 355}, {2800, 11570, 10698}, {2800, 15528, 12758}, {2800, 5884, 1}, {3057, 12675, 7967}, {3485, 14647, 6833}, {3486, 64190, 6938}, {3753, 5777, 5818}, {3754, 31803, 5587}, {4848, 6260, 1512}, {5534, 63130, 38665}, {5694, 13145, 26446}, {5836, 14872, 59388}, {5887, 34339, 2}, {5903, 15071, 515}, {6001, 7686, 12688}, {9943, 14110, 376}, {9943, 44663, 14110}, {11500, 37567, 48363}, {12047, 12616, 6830}, {12515, 37733, 26285}, {12526, 30503, 55104}, {12709, 50195, 3487}, {14986, 18419, 942}, {17660, 25414, 37738}, {18838, 64042, 3086}, {24467, 61146, 2975}, {33899, 39542, 6831}, {63391, 64129, 37403}
X(64022) lies on these lines: {1, 154}, {3, 1782}, {6, 19}, {8, 1503}, {10, 1853}, {20, 54107}, {40, 64}, {55, 976}, {56, 26934}, {92, 5786}, {145, 11206}, {159, 3242}, {161, 9798}, {165, 8567}, {184, 11396}, {198, 201}, {206, 38315}, {209, 2390}, {219, 18598}, {355, 64037}, {394, 64039}, {405, 1726}, {484, 10076}, {515, 17845}, {516, 5895}, {517, 1498}, {518, 9924}, {524, 34730}, {774, 20991}, {912, 17834}, {942, 21370}, {944, 34782}, {946, 64024}, {952, 9833}, {958, 1762}, {960, 10319}, {962, 2883}, {1118, 51421}, {1125, 61680}, {1181, 41722}, {1191, 40959}, {1211, 20306}, {1385, 17821}, {1386, 19132}, {1482, 6759}, {1619, 12410}, {1698, 61735}, {1714, 51410}, {1834, 52082}, {1836, 1869}, {1837, 1842}, {1902, 15811}, {2093, 3987}, {2098, 10535}, {2099, 10537}, {2192, 3057}, {2393, 16980}, {2771, 17835}, {2778, 17812}, {2818, 5752}, {2836, 32276}, {2935, 12778}, {2948, 17847}, {3101, 3869}, {3176, 6525}, {3303, 18621}, {3579, 10606}, {3611, 42448}, {3616, 10192}, {3617, 32064}, {3622, 35260}, {3623, 64059}, {3812, 9816}, {3868, 7291}, {3913, 62393}, {3927, 48882}, {4295, 54294}, {4498, 8676}, {4663, 17813}, {5090, 36990}, {5221, 32065}, {5550, 58434}, {5584, 7085}, {5596, 5846}, {5603, 16252}, {5657, 6247}, {5690, 14216}, {5709, 13095}, {5790, 18381}, {5878, 28174}, {5887, 8251}, {5893, 9812}, {5894, 9778}, {5928, 46878}, {6000, 12702}, {6197, 64021}, {6225, 20070}, {6254, 26893}, {6354, 37384}, {6361, 15311}, {7074, 52359}, {7713, 17810}, {7957, 7959}, {7968, 17820}, {7969, 17819}, {7982, 40658}, {7984, 15647}, {7991, 58795}, {8141, 14988}, {8148, 32063}, {8185, 56924}, {9536, 40571}, {9780, 23332}, {9899, 63468}, {9928, 37498}, {10060, 11010}, {10117, 49553}, {10246, 10282}, {10247, 14530}, {10533, 44635}, {10534, 44636}, {10536, 14529}, {11435, 42450}, {11471, 12688}, {11645, 34713}, {12135, 31383}, {12245, 34781}, {12324, 59417}, {12335, 23858}, {12645, 64033}, {12671, 36986}, {13094, 49163}, {14543, 27410}, {15071, 63434}, {15509, 37591}, {15583, 59406}, {17811, 37613}, {17822, 31788}, {17823, 61726}, {17824, 37625}, {18400, 18525}, {18405, 18480}, {18453, 40266}, {18493, 61747}, {19087, 49227}, {19088, 49226}, {22802, 48661}, {26446, 40686}, {28629, 58459}, {30503, 54305}, {31166, 51000}, {32345, 32371}, {34774, 51192}, {34780, 59503}, {36851, 49524}, {37260, 62811}, {37549, 41230}, {39690, 41320}, {40933, 47848}, {41362, 59387}, {41869, 61721}, {44662, 64069}, {59388, 64034}
X(64022) = midpoint of X(i) and X(j) for these {i,j}: {6225, 20070}, {12245, 34781}, {12645, 64033}
X(64022) = reflection of X(i) in X(j) for these {i,j}: {1, 40660}, {64, 40}, {944, 34782}, {962, 2883}, {1482, 6759}, {1854, 3556}, {2099, 10537}, {2935, 12778}, {3242, 159}, {5895, 12779}, {7973, 1498}, {7982, 40658}, {7984, 15647}, {14216, 5690}, {17847, 2948}, {32345, 32371}, {36851, 49524}, {37498, 9928}, {48661, 22802}, {51000, 31166}, {51192, 34774}, {64037, 355}
X(64022) = perspector of circumconic {{A, B, C, X(108), X(56235)}}
X(64022) = pole of line {521, 58333} with respect to the Bevan circle
X(64022) = pole of line {656, 1946} with respect to the circumcircle
X(64022) = pole of line {33, 1104} with respect to the Feuerbach hyperbola
X(64022) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(19), X(44692)}}, {{A, B, C, X(34), X(2184)}}, {{A, B, C, X(64), X(608)}}, {{A, B, C, X(72), X(30456)}}, {{A, B, C, X(200), X(7156)}}, {{A, B, C, X(4185), X(27404)}}, {{A, B, C, X(34187), X(52413)}}
X(64022) = barycentric product X(i)*X(j) for these (i, j): {27404, 65}
X(64022) = barycentric quotient X(i)/X(j) for these (i, j): {27404, 314}
X(64022) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40660, 154}, {40, 6001, 64}, {65, 2264, 54418}, {165, 12262, 8567}, {516, 12779, 5895}, {517, 1498, 7973}, {1829, 64040, 6}, {7713, 44547, 17810}
X(64023) lies on these lines: {2, 3313}, {4, 69}, {6, 22}, {20, 19161}, {23, 206}, {25, 20806}, {30, 10938}, {51, 3618}, {52, 6776}, {66, 7391}, {67, 13201}, {110, 20987}, {141, 2979}, {143, 5050}, {159, 1993}, {182, 3567}, {185, 14927}, {193, 2393}, {237, 50645}, {287, 60521}, {297, 40052}, {343, 3867}, {373, 63120}, {389, 25406}, {394, 7716}, {399, 10752}, {428, 13562}, {524, 9973}, {542, 7731}, {568, 48906}, {570, 37184}, {571, 37183}, {576, 11423}, {599, 41579}, {895, 32262}, {1007, 51412}, {1112, 19118}, {1154, 18440}, {1205, 11800}, {1216, 40330}, {1350, 7503}, {1351, 7387}, {1353, 14449}, {1503, 5889}, {1513, 39113}, {1609, 14060}, {1974, 22151}, {1992, 6467}, {1994, 64028}, {2781, 10733}, {2854, 6144}, {2871, 56017}, {3095, 20775}, {3098, 35921}, {3146, 20079}, {3547, 5446}, {3564, 6243}, {3580, 23300}, {3589, 5640}, {3619, 3917}, {3620, 29959}, {3629, 8705}, {3763, 7998}, {3819, 63121}, {3852, 7823}, {4259, 37231}, {5032, 22829}, {5085, 15043}, {5092, 15045}, {5093, 15074}, {5157, 6636}, {5166, 53059}, {5182, 39835}, {5392, 55028}, {5480, 13160}, {5523, 19595}, {5622, 12236}, {5890, 44831}, {5943, 63119}, {5946, 12017}, {5965, 13423}, {6101, 63475}, {6241, 29012}, {6353, 28708}, {6515, 36851}, {6660, 14575}, {6697, 31074}, {7403, 37484}, {7404, 10519}, {7517, 19139}, {7558, 9781}, {7566, 10516}, {7999, 24206}, {8681, 11008}, {9465, 16285}, {9730, 21852}, {9737, 44180}, {9818, 13391}, {9821, 22062}, {9909, 19125}, {9924, 11477}, {9936, 34382}, {10510, 56918}, {10565, 58550}, {10574, 44882}, {11002, 51171}, {11061, 13417}, {11328, 20819}, {11387, 64035}, {11422, 35707}, {11433, 41256}, {11451, 47355}, {11455, 48884}, {11465, 58445}, {11482, 16982}, {11513, 26894}, {11514, 26919}, {11646, 39836}, {11649, 37517}, {12086, 63431}, {12111, 36990}, {12160, 39879}, {12167, 37491}, {12223, 42258}, {12224, 42259}, {12225, 29181}, {12273, 14982}, {12282, 14531}, {12283, 63722}, {12329, 56878}, {13321, 55705}, {14118, 54374}, {14831, 64014}, {14957, 41760}, {15072, 48905}, {15577, 34148}, {15583, 34751}, {15760, 18438}, {16475, 31757}, {16981, 32366}, {18358, 23039}, {18374, 19122}, {18382, 50435}, {18436, 39884}, {18583, 34002}, {19124, 46730}, {19128, 44469}, {19136, 63069}, {19137, 34417}, {19197, 61362}, {19924, 22950}, {20022, 40073}, {20794, 48673}, {20960, 28710}, {21243, 46026}, {21849, 59373}, {22972, 55722}, {27375, 31360}, {30717, 54096}, {31099, 61664}, {31304, 36989}, {31810, 64033}, {32248, 64104}, {33879, 51128}, {33884, 61676}, {35500, 52987}, {36852, 47096}, {37446, 57805}, {37488, 39588}, {37511, 64096}, {39125, 53777}, {39571, 41257}, {40670, 44299}, {40673, 58555}, {40981, 50666}, {41584, 62382}, {45170, 64095}, {48892, 52989}, {50649, 59349}, {52276, 61629}, {53097, 63664}, {55629, 63414}, {58470, 63109}
X(64023) = reflection of X(i) in X(j) for these {i,j}: {20, 19161}, {69, 1843}, {110, 40949}, {1205, 11800}, {1351, 10263}, {1353, 14449}, {1992, 21969}, {2979, 9971}, {3313, 9969}, {6101, 63475}, {6776, 52}, {9967, 5446}, {11061, 13417}, {11412, 1352}, {12111, 36990}, {12220, 6}, {12272, 9973}, {12273, 14982}, {12283, 63722}, {12294, 13598}, {13201, 67}, {14927, 185}, {15073, 1351}, {18436, 39884}, {18438, 21850}, {32248, 64104}, {37484, 48876}, {39836, 11646}, {41716, 4}, {51212, 45186}, {62188, 29959}, {64014, 14831}, {64050, 1350}
X(64023) = anticomplement of X(3313)
X(64023) = perspector of circumconic {{A, B, C, X(827), X(6331)}}
X(64023) = X(i)-Dao conjugate of X(j) for these {i, j}: {3313, 3313}
X(64023) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {66, 21289}, {82, 5596}, {83, 21288}, {251, 21215}, {2156, 2896}, {2353, 21217}, {16277, 8}, {40404, 4329}, {46765, 6360}, {53657, 7192}, {58113, 4560}
X(64023) = pole of line {1899, 3618} with respect to the Jerabek hyperbola
X(64023) = pole of line {1180, 5133} with respect to the Kiepert hyperbola
X(64023) = pole of line {141, 184} with respect to the Stammler hyperbola
X(64023) = pole of line {850, 2485} with respect to the Steiner circumellipse
X(64023) = pole of line {3, 8024} with respect to the Wallace hyperbola
X(64023) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(20960)}}, {{A, B, C, X(6), X(1235)}}, {{A, B, C, X(76), X(1176)}}, {{A, B, C, X(251), X(264)}}, {{A, B, C, X(315), X(18124)}}, {{A, B, C, X(317), X(55028)}}, {{A, B, C, X(1501), X(1843)}}, {{A, B, C, X(5012), X(31360)}}, {{A, B, C, X(6664), X(19127)}}, {{A, B, C, X(17984), X(56975)}}, {{A, B, C, X(18049), X(44129)}}, {{A, B, C, X(33632), X(54412)}}, {{A, B, C, X(34207), X(44146)}}, {{A, B, C, X(44132), X(51862)}}
X(64023) = barycentric product X(i)*X(j) for these (i, j): {1, 18049}, {20960, 76}, {28710, 4}
X(64023) = barycentric quotient X(i)/X(j) for these (i, j): {18049, 75}, {20960, 6}, {28710, 69}
X(64023) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 511, 41716}, {6, 22, 1176}, {6, 9019, 12220}, {23, 63063, 206}, {51, 11574, 3618}, {69, 1843, 11188}, {193, 7500, 5596}, {511, 1352, 11412}, {511, 13598, 12294}, {511, 1843, 69}, {511, 45186, 51212}, {524, 9973, 12272}, {3186, 44443, 3260}, {3313, 9969, 2}, {3917, 9822, 3619}, {5085, 32191, 15043}, {5446, 9967, 14853}, {11002, 51171, 58471}, {11477, 15581, 15801}, {12294, 13598, 51538}, {20859, 31390, 6}, {20987, 64195, 110}, {34775, 48910, 52842}, {34777, 40318, 895}, {40673, 58555, 62995}, {47355, 58532, 11451}
X(64024) lies on these lines: {2, 64}, {3, 113}, {4, 154}, {5, 1498}, {6, 235}, {10, 7973}, {11, 221}, {12, 2192}, {20, 5893}, {25, 43831}, {30, 17821}, {54, 62974}, {69, 32605}, {125, 12174}, {140, 5878}, {155, 15761}, {156, 12293}, {159, 3574}, {161, 1598}, {184, 37197}, {185, 26958}, {206, 7507}, {373, 58492}, {376, 51491}, {381, 569}, {382, 10282}, {403, 1181}, {427, 15811}, {468, 1192}, {546, 9833}, {549, 20427}, {550, 61606}, {568, 63697}, {590, 19088}, {599, 64031}, {615, 19087}, {631, 8567}, {946, 64022}, {1125, 12779}, {1204, 37453}, {1249, 5922}, {1350, 28419}, {1495, 12173}, {1503, 3091}, {1568, 11414}, {1593, 51403}, {1614, 18396}, {1619, 11479}, {1656, 6000}, {1657, 11202}, {1660, 11424}, {1699, 40660}, {1854, 11375}, {2781, 11444}, {2888, 11061}, {2917, 7517}, {3070, 17820}, {3071, 17819}, {3089, 12233}, {3090, 5656}, {3146, 35260}, {3147, 37487}, {3357, 3526}, {3462, 41372}, {3523, 5894}, {3524, 64187}, {3525, 12250}, {3527, 43834}, {3533, 15105}, {3542, 9786}, {3545, 34781}, {3589, 41735}, {3624, 12262}, {3763, 34146}, {3818, 6145}, {3830, 34785}, {3832, 11206}, {3843, 14530}, {3851, 14862}, {3855, 23324}, {4413, 12335}, {4846, 16238}, {5054, 48672}, {5055, 12315}, {5056, 12324}, {5068, 32064}, {5070, 13093}, {5072, 23325}, {5079, 32767}, {5085, 6816}, {5094, 11381}, {5318, 17827}, {5321, 17826}, {5339, 11243}, {5340, 11244}, {5432, 12950}, {5433, 12940}, {5439, 6001}, {5448, 7387}, {5480, 9924}, {5587, 40658}, {5654, 37498}, {5706, 37372}, {5786, 52248}, {5907, 6293}, {6241, 15738}, {6353, 13568}, {6525, 6621}, {6616, 10002}, {6622, 13567}, {6623, 12241}, {6689, 9818}, {6804, 34944}, {6823, 17811}, {7378, 16656}, {7386, 32602}, {7484, 9914}, {7487, 41424}, {7505, 10605}, {7547, 14157}, {7566, 32395}, {7568, 32620}, {7592, 44958}, {7691, 45014}, {7729, 9729}, {7778, 59530}, {7808, 12202}, {7914, 12502}, {7958, 7959}, {8252, 49251}, {8253, 49250}, {8718, 31180}, {8798, 20208}, {8991, 32785}, {9781, 63737}, {9820, 37497}, {9934, 61574}, {9968, 61737}, {10024, 18451}, {10110, 34751}, {10151, 19467}, {10193, 55863}, {10201, 12163}, {10274, 15089}, {10303, 54050}, {10516, 13160}, {10533, 23261}, {10534, 23251}, {10535, 10895}, {10594, 56924}, {10675, 42095}, {10676, 42098}, {10896, 26888}, {10984, 16072}, {10996, 53415}, {11064, 37201}, {11204, 15720}, {11245, 45004}, {11403, 61743}, {11439, 31236}, {11449, 16165}, {11456, 15081}, {11457, 35487}, {11464, 35490}, {11563, 12161}, {11745, 31860}, {11799, 36747}, {12111, 37638}, {12164, 64060}, {12279, 30744}, {12290, 52296}, {12791, 15184}, {12930, 24953}, {12964, 42262}, {12970, 42265}, {13094, 26364}, {13095, 26363}, {13367, 44438}, {13406, 14852}, {13526, 13613}, {13881, 32445}, {13980, 32786}, {14094, 63695}, {14128, 44544}, {14249, 15274}, {14853, 17040}, {14864, 61937}, {15028, 32184}, {15046, 32743}, {15056, 41715}, {15068, 61750}, {15118, 19153}, {15125, 15139}, {15577, 48910}, {15581, 23049}, {15585, 51212}, {15760, 17814}, {16261, 63728}, {16619, 31815}, {17812, 23315}, {17834, 22660}, {17840, 45861}, {17843, 45860}, {17846, 20424}, {18376, 45185}, {18382, 63666}, {18386, 61139}, {18390, 19347}, {18435, 41725}, {18504, 43273}, {18913, 47296}, {19130, 39879}, {20791, 36983}, {21659, 26864}, {22051, 39522}, {22662, 22968}, {22804, 32379}, {23041, 37444}, {23047, 31383}, {25563, 35450}, {26105, 58459}, {26881, 32391}, {26882, 35480}, {30402, 42093}, {30403, 42094}, {30771, 46850}, {31267, 53094}, {31282, 64101}, {31636, 45031}, {31670, 61610}, {31804, 37984}, {31829, 59543}, {31884, 58437}, {32111, 37119}, {33546, 53852}, {34007, 35264}, {34469, 52292}, {34786, 50414}, {34787, 54131}, {35602, 44440}, {36518, 63716}, {37440, 40909}, {37672, 61607}, {39571, 44960}, {45248, 63631}, {46265, 61799}, {46372, 62947}, {47355, 63420}, {47391, 61608}, {49673, 64098}, {50689, 64059}, {52102, 61905}, {53097, 61683}, {54211, 55864}, {55856, 61540}, {56297, 59424}, {58652, 61686}, {63344, 63371}, {63671, 64036}
X(64024) = midpoint of X(i) and X(j) for these {i,j}: {3843, 14530}
X(64024) = reflection of X(i) in X(j) for these {i,j}: {8567, 631}, {40686, 1656}, {53094, 31267}
X(64024) = pole of line {1593, 3087} with respect to the Kiepert hyperbola
X(64024) = pole of line {2071, 8567} with respect to the Stammler hyperbola
X(64024) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6696), X(14615)}}, {{A, B, C, X(11744), X(31361)}}, {{A, B, C, X(14457), X(37878)}}, {{A, B, C, X(14528), X(40082)}}
X(64024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2883, 64}, {2, 6225, 6696}, {3, 22802, 5925}, {4, 154, 17845}, {4, 16252, 154}, {20, 5893, 61721}, {140, 5878, 10606}, {381, 64033, 18383}, {546, 9833, 18405}, {631, 15311, 8567}, {1614, 35488, 18396}, {1656, 6000, 40686}, {2883, 6696, 6225}, {3089, 12233, 17810}, {3090, 5656, 6247}, {3090, 6247, 61735}, {3525, 12250, 23328}, {3574, 5198, 53023}, {3589, 41735, 52028}, {3832, 11206, 41362}, {3843, 14530, 18400}, {3855, 64034, 23324}, {5054, 48672, 64027}, {5055, 12315, 20299}, {5070, 13093, 23329}, {5656, 6247, 58795}, {5893, 10192, 20}, {5894, 58434, 3523}, {5925, 22802, 5895}, {6759, 18383, 64033}, {7507, 26883, 36990}, {9729, 36982, 7729}, {11441, 34117, 17824}, {12111, 63657, 37638}, {13406, 32139, 14852}, {14862, 18381, 32063}, {17825, 41602, 1853}, {18383, 64033, 64037}, {22802, 61747, 64063}, {22802, 64063, 3}, {35450, 46219, 25563}, {61749, 64063, 22802}
X(64025) lies on circumconic {{A, B, C, X(6344), X(11270)}} and on these lines: {2, 185}, {3, 9544}, {4, 94}, {20, 6193}, {22, 12174}, {23, 1498}, {30, 34799}, {49, 32138}, {51, 11439}, {52, 3543}, {64, 1993}, {68, 50009}, {74, 1147}, {110, 1204}, {113, 26917}, {140, 61136}, {145, 2807}, {155, 2071}, {156, 21844}, {184, 11440}, {186, 32139}, {193, 34146}, {323, 11413}, {376, 10627}, {381, 58531}, {382, 14449}, {389, 3832}, {399, 37814}, {511, 5059}, {542, 12278}, {569, 43602}, {578, 15062}, {631, 5876}, {1131, 12239}, {1132, 12240}, {1154, 3529}, {1181, 11003}, {1192, 35264}, {1216, 10304}, {1425, 11446}, {1593, 1994}, {1614, 7689}, {1656, 45956}, {1885, 45968}, {2883, 3580}, {2979, 45187}, {3060, 11381}, {3090, 13630}, {3091, 5462}, {3146, 5889}, {3153, 11457}, {3167, 34469}, {3270, 19367}, {3357, 9716}, {3431, 9704}, {3515, 35265}, {3520, 9545}, {3522, 5562}, {3523, 11459}, {3524, 11591}, {3528, 23039}, {3533, 14128}, {3544, 45958}, {3545, 37481}, {3564, 52071}, {3567, 3839}, {3819, 61804}, {3854, 5640}, {3855, 5946}, {3861, 13321}, {3917, 21734}, {4550, 43596}, {5056, 9730}, {5067, 15060}, {5068, 13382}, {5071, 12006}, {5154, 34462}, {5169, 12233}, {5446, 11455}, {5447, 62067}, {5448, 16003}, {5654, 12281}, {5656, 41725}, {5878, 52403}, {5891, 10303}, {5892, 46936}, {6101, 17538}, {6225, 6293}, {6240, 34796}, {6243, 33703}, {6247, 31074}, {6254, 9536}, {6285, 9539}, {6640, 22584}, {6642, 15052}, {7352, 9538}, {7391, 12324}, {7464, 16266}, {7486, 15045}, {7488, 7712}, {7492, 7691}, {7509, 64097}, {7517, 12112}, {7526, 15032}, {7527, 7592}, {7729, 37645}, {7998, 61791}, {7999, 15692}, {8567, 40928}, {8718, 37478}, {9242, 31296}, {9306, 43601}, {9703, 10226}, {9707, 38448}, {9781, 16194}, {9786, 13595}, {9812, 31732}, {9820, 43607}, {10095, 41099}, {10110, 61985}, {10170, 61856}, {10248, 31757}, {10255, 10264}, {10263, 15682}, {10299, 15067}, {10539, 14094}, {10540, 44879}, {10605, 11441}, {10620, 11250}, {10628, 20427}, {10937, 16270}, {11001, 37484}, {11017, 61932}, {11411, 44440}, {11424, 62990}, {11442, 34007}, {11444, 15717}, {11449, 21663}, {11451, 15012}, {11454, 13367}, {11468, 12038}, {11469, 63031}, {11479, 15018}, {11592, 15715}, {11793, 20791}, {12084, 56292}, {12087, 17834}, {12103, 54048}, {12160, 13093}, {12161, 14865}, {12219, 17854}, {12244, 34350}, {12254, 22815}, {12270, 14683}, {12284, 64183}, {12294, 51170}, {12308, 45735}, {12363, 41726}, {12825, 18931}, {13340, 62127}, {13346, 13445}, {13348, 62102}, {13363, 61921}, {13391, 49138}, {13451, 61990}, {13474, 14831}, {13596, 36749}, {13598, 16981}, {14379, 14919}, {14531, 50692}, {14805, 64180}, {14855, 62097}, {14915, 49135}, {15021, 17853}, {15024, 61936}, {15026, 61945}, {15028, 61914}, {15083, 43574}, {15644, 52093}, {15683, 64050}, {16226, 61944}, {16621, 62963}, {16625, 32062}, {16836, 61834}, {16881, 61984}, {17704, 61816}, {17714, 32608}, {18451, 44802}, {18474, 43895}, {18559, 64036}, {18562, 45731}, {18565, 32423}, {18914, 52069}, {19206, 43768}, {20379, 45622}, {21849, 62005}, {21969, 62032}, {22802, 50435}, {23040, 32210}, {23293, 43831}, {25711, 54037}, {26864, 38438}, {26879, 62947}, {26882, 32110}, {27082, 41673}, {30552, 63174}, {31304, 34781}, {31728, 59387}, {31751, 54445}, {31752, 64108}, {31804, 34005}, {31978, 63092}, {32111, 41587}, {32142, 61138}, {32392, 36982}, {33586, 58795}, {34484, 37490}, {34545, 63664}, {34780, 52842}, {35494, 43844}, {35497, 47391}, {36987, 62125}, {37201, 45794}, {37498, 37944}, {37643, 52003}, {37784, 64031}, {37913, 46730}, {40247, 61848}, {41398, 61752}, {43392, 43838}, {43845, 63682}, {43903, 59553}, {44003, 57451}, {46106, 57517}, {46852, 61966}, {48675, 50006}, {52525, 63425}, {54001, 61702}, {54041, 62083}, {54042, 62092}, {54047, 62104}, {54376, 64177}, {58470, 61962}, {59373, 63723}, {61128, 61753}, {62130, 63414}, {63063, 63420}
X(64025) = reflection of X(i) in X(j) for these {i,j}: {3, 45957}, {4, 34783}, {20, 6241}, {146, 7722}, {3146, 5889}, {3529, 64030}, {5059, 12279}, {6225, 6293}, {11412, 10575}, {12111, 185}, {12219, 17854}, {12279, 64029}, {12290, 52}, {14683, 12270}, {18436, 13491}, {18439, 6102}, {18562, 45731}, {33703, 6243}, {36982, 32392}, {45187, 46850}, {49135, 64051}, {64183, 12284}
X(64025) = anticomplement of X(12111)
X(64025) = perspector of circumconic {{A, B, C, X(46456), X(47269)}}
X(64025) = X(i)-Dao conjugate of X(j) for these {i, j}: {12111, 12111}
X(64025) = pole of line {20, 13851} with respect to the Jerabek hyperbola
X(64025) = pole of line {382, 10539} with respect to the Stammler hyperbola
X(64025) = pole of line {41079, 52584} with respect to the Steiner circumellipse
X(64025) = pole of line {12086, 44136} with respect to the Wallace hyperbola
X(64025) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 43605, 9544}, {4, 12317, 32140}, {49, 32138, 35473}, {51, 11439, 50689}, {52, 12290, 3543}, {64, 1993, 12086}, {185, 12111, 2}, {185, 5907, 10574}, {389, 15305, 3832}, {511, 12279, 5059}, {511, 64029, 12279}, {1154, 64030, 3529}, {1181, 14118, 11003}, {2979, 46850, 50693}, {3060, 11381, 17578}, {3146, 5889, 62187}, {3522, 5562, 33884}, {5446, 11455, 50688}, {5562, 15072, 3522}, {5640, 44870, 3854}, {5663, 34783, 4}, {5663, 6102, 18439}, {5663, 7722, 146}, {5889, 6000, 3146}, {5890, 12162, 3091}, {6241, 11412, 10575}, {9730, 15058, 5056}, {9781, 16194, 61982}, {10574, 12111, 5907}, {10575, 11412, 20}, {10575, 13754, 11412}, {11444, 64100, 15717}, {11456, 12163, 7488}, {11468, 12038, 35493}, {11793, 20791, 61820}, {13491, 18436, 376}, {13630, 18435, 3090}, {14915, 64051, 49135}, {15030, 15043, 5068}, {15054, 34148, 3357}, {15644, 52093, 62120}, {16981, 50690, 13598}, {18439, 34783, 6102}, {32392, 36982, 41715}, {37481, 45959, 3545}, {45187, 46850, 2979}
X(64026) lies on these lines: {2, 43844}, {3, 13382}, {4, 11423}, {5, 542}, {6, 1598}, {20, 11422}, {24, 184}, {25, 50414}, {26, 16625}, {30, 32136}, {39, 39839}, {49, 9730}, {51, 1199}, {52, 2937}, {54, 74}, {64, 44731}, {110, 58498}, {140, 41597}, {154, 11432}, {155, 182}, {156, 5462}, {195, 10625}, {216, 14152}, {217, 30263}, {372, 8908}, {373, 43598}, {394, 37515}, {397, 35714}, {398, 35715}, {427, 12242}, {511, 12161}, {524, 16197}, {550, 1493}, {567, 12162}, {569, 5907}, {576, 7387}, {578, 1181}, {631, 3292}, {1092, 16836}, {1147, 9729}, {1173, 52294}, {1216, 5092}, {1495, 3567}, {1498, 11426}, {1503, 16198}, {1596, 14862}, {1597, 22334}, {1899, 32767}, {1993, 10984}, {1994, 12087}, {3047, 16223}, {3089, 44102}, {3167, 37514}, {3357, 11425}, {3518, 44110}, {3547, 63722}, {3574, 34224}, {3796, 12160}, {3819, 13336}, {3917, 56292}, {4232, 11431}, {5012, 5562}, {5050, 17814}, {5097, 5446}, {5449, 43588}, {5889, 11003}, {5890, 13367}, {5891, 13353}, {5892, 61753}, {5943, 10539}, {6101, 14810}, {6102, 15872}, {6146, 18383}, {6240, 10619}, {6467, 8537}, {6622, 14912}, {6636, 15801}, {6643, 11179}, {6644, 15012}, {6756, 45185}, {6776, 18381}, {7395, 40247}, {7488, 14831}, {7512, 14531}, {7514, 15083}, {7516, 20190}, {7517, 21849}, {7530, 22330}, {8681, 19458}, {8887, 41204}, {9306, 11695}, {9544, 15043}, {9545, 10574}, {9704, 37481}, {9705, 43600}, {9706, 15020}, {9716, 15717}, {9781, 34565}, {9786, 11202}, {9936, 34507}, {10018, 64064}, {10024, 61713}, {10112, 15760}, {10170, 55706}, {10263, 55716}, {10575, 37472}, {10594, 15004}, {11001, 53860}, {11004, 64050}, {11225, 41587}, {11264, 46029}, {11381, 15033}, {11412, 22352}, {11414, 63094}, {11424, 11456}, {11427, 14216}, {11438, 15750}, {11457, 61743}, {12006, 43586}, {12007, 16252}, {12022, 43831}, {12038, 13630}, {12088, 21969}, {12164, 37476}, {12233, 18400}, {12235, 58480}, {12241, 44226}, {12359, 58447}, {13335, 39805}, {13348, 16266}, {13352, 46850}, {13371, 18128}, {13419, 45089}, {13421, 23060}, {13434, 15030}, {13567, 64063}, {13598, 36749}, {13754, 32046}, {13861, 58470}, {14157, 44111}, {14530, 17810}, {14855, 37495}, {14865, 64029}, {15018, 43614}, {15037, 18350}, {15067, 55695}, {15068, 50664}, {15516, 46261}, {15761, 58806}, {16225, 58049}, {16226, 44802}, {16238, 61681}, {17836, 52016}, {18376, 18945}, {18420, 61751}, {18436, 37513}, {18909, 23329}, {18914, 20299}, {18925, 34785}, {18951, 61646}, {19122, 33748}, {19153, 44489}, {19362, 50649}, {19468, 21284}, {20958, 37699}, {20959, 37529}, {21663, 23040}, {24206, 31831}, {26882, 44108}, {26928, 62207}, {26938, 62245}, {32139, 44870}, {32379, 58489}, {34117, 44495}, {34148, 64100}, {34781, 63030}, {35921, 45187}, {36987, 55038}, {37471, 50461}, {37777, 58551}, {38633, 43807}, {39504, 45732}, {43130, 44494}, {43394, 43604}, {43592, 61900}, {43837, 64101}, {45298, 59659}, {45979, 58482}, {46030, 58807}, {46851, 57714}, {51031, 56298}, {58555, 64052}, {61607, 64038}, {63658, 63697}
X(64026) = midpoint of X(i) and X(j) for these {i,j}: {578, 1181}, {12160, 46728}, {12161, 64049}, {12227, 13198}, {12233, 31804}
X(64026) = pole of line {186, 578} with respect to the Jerabek hyperbola
X(64026) = pole of line {187, 1595} with respect to the Kiepert hyperbola
X(64026) = pole of line {1568, 3091} with respect to the Stammler hyperbola
X(64026) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(31504)}}, {{A, B, C, X(97), X(10110)}}, {{A, B, C, X(3527), X(56347)}}, {{A, B, C, X(13472), X(46090)}}, {{A, B, C, X(14528), X(34818)}}
X(64026) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 11423, 13366}, {4, 13366, 37505}, {6, 19347, 6759}, {6, 6759, 10110}, {49, 43845, 9730}, {54, 43602, 3520}, {155, 182, 11793}, {184, 389, 10282}, {184, 7592, 389}, {185, 11430, 64027}, {185, 44109, 54}, {569, 18445, 5907}, {578, 1181, 6000}, {1181, 11402, 578}, {1199, 1614, 51}, {1993, 10984, 15644}, {1994, 52525, 45186}, {3520, 15032, 43602}, {3520, 43602, 185}, {3796, 12160, 46728}, {6146, 18388, 18383}, {9306, 36752, 11695}, {9545, 10574, 51394}, {9704, 37481, 51393}, {10539, 36753, 5943}, {11424, 11456, 13474}, {12161, 64049, 511}, {12227, 13198, 10628}, {12233, 31804, 18400}, {13434, 43605, 15030}, {14862, 40240, 1596}, {15032, 44109, 11430}, {18914, 23292, 20299}, {43394, 45956, 43604}, {56292, 61134, 3917}
X(64027) lies on these lines: {2, 18504}, {3, 64}, {4, 11270}, {5, 1539}, {6, 44763}, {20, 11454}, {24, 13474}, {30, 5449}, {49, 10620}, {51, 14865}, {54, 74}, {66, 48898}, {110, 35497}, {113, 32415}, {125, 18560}, {140, 10193}, {143, 32184}, {159, 55649}, {182, 34778}, {184, 35477}, {186, 11381}, {206, 55674}, {235, 44673}, {343, 63441}, {373, 43597}, {376, 14216}, {378, 389}, {381, 5925}, {382, 23325}, {511, 7689}, {517, 58579}, {541, 43839}, {546, 44801}, {548, 1503}, {549, 2883}, {550, 6247}, {567, 17835}, {575, 2781}, {576, 10249}, {578, 3516}, {631, 5878}, {632, 30507}, {924, 14809}, {1181, 11410}, {1192, 1597}, {1216, 31978}, {1350, 9226}, {1495, 12290}, {1593, 10110}, {1598, 37487}, {1614, 64029}, {1620, 3517}, {1656, 5895}, {1657, 1853}, {1658, 14915}, {1971, 15513}, {1986, 43904}, {2071, 5562}, {2393, 15579}, {2693, 13997}, {2778, 5885}, {2779, 43901}, {2818, 26285}, {2917, 52099}, {2935, 9730}, {3098, 33543}, {3146, 18376}, {3426, 55570}, {3518, 32062}, {3522, 9833}, {3523, 12250}, {3524, 6225}, {3527, 3532}, {3528, 12324}, {3530, 10182}, {3534, 64037}, {3579, 12262}, {3627, 23332}, {3628, 5893}, {3843, 61735}, {3851, 61721}, {5010, 7355}, {5054, 48672}, {5085, 34779}, {5092, 15578}, {5204, 10060}, {5217, 10076}, {5351, 11244}, {5352, 11243}, {5448, 23336}, {5621, 50649}, {5643, 7527}, {5656, 15717}, {5663, 10226}, {5876, 34152}, {5890, 34566}, {5892, 63682}, {6001, 31663}, {6101, 37950}, {6143, 12244}, {6200, 49251}, {6221, 19087}, {6240, 32340}, {6241, 13367}, {6285, 7280}, {6288, 38788}, {6293, 37513}, {6396, 49250}, {6398, 19088}, {6455, 17819}, {6456, 17820}, {6636, 23358}, {6644, 44870}, {6697, 31830}, {7393, 46373}, {7488, 13445}, {7502, 14641}, {7503, 16836}, {7506, 46847}, {7514, 17704}, {7526, 9729}, {7691, 36987}, {7729, 10564}, {8549, 52987}, {8681, 12301}, {8703, 34782}, {8991, 42216}, {9818, 11695}, {9914, 33540}, {9919, 38633}, {9924, 55629}, {9927, 34350}, {9934, 43598}, {9968, 55679}, {10018, 51403}, {10117, 33539}, {10168, 63699}, {10192, 14862}, {10250, 11477}, {10274, 18364}, {10295, 61139}, {10298, 12279}, {10304, 34781}, {10533, 35865}, {10534, 35864}, {10535, 59319}, {10625, 12307}, {10990, 37118}, {11206, 21735}, {11216, 55721}, {11250, 13754}, {11413, 15644}, {11449, 35493}, {11455, 44879}, {11464, 23040}, {11550, 35471}, {11572, 34797}, {11645, 34118}, {11744, 38728}, {12085, 46730}, {12086, 45186}, {12106, 46849}, {12107, 63728}, {12108, 58434}, {12111, 51394}, {12163, 13346}, {12316, 37495}, {12383, 43895}, {13289, 15030}, {13352, 47524}, {13399, 34224}, {13403, 20417}, {13452, 44108}, {13491, 18475}, {13851, 23294}, {13980, 42215}, {14118, 41725}, {14157, 17506}, {14363, 40664}, {14516, 16163}, {15018, 43603}, {15033, 35478}, {15054, 43605}, {15058, 61128}, {15577, 55653}, {15581, 55647}, {15582, 55650}, {15583, 48874}, {15606, 37480}, {15688, 64033}, {15696, 17845}, {15704, 41362}, {15761, 20191}, {15811, 55572}, {16003, 44076}, {16105, 43823}, {16111, 24572}, {16194, 45735}, {16655, 37931}, {16976, 59659}, {17502, 40658}, {17508, 19149}, {17538, 32064}, {17800, 18405}, {17813, 55580}, {17825, 40284}, {17834, 54992}, {18390, 26937}, {18488, 38321}, {18553, 36201}, {18570, 32392}, {18909, 60765}, {18931, 39571}, {19124, 21851}, {19132, 55682}, {19153, 55687}, {19467, 35485}, {19506, 20127}, {20190, 34117}, {20300, 48895}, {21312, 46728}, {21659, 35491}, {21849, 37490}, {23041, 55672}, {23042, 53094}, {23300, 29317}, {23324, 62036}, {23330, 38323}, {26879, 61744}, {26883, 32534}, {26888, 59325}, {29323, 51756}, {32046, 46374}, {32205, 63737}, {32445, 37512}, {33282, 51521}, {33541, 37955}, {33878, 52028}, {33923, 45185}, {34484, 41448}, {34775, 48896}, {34777, 55587}, {34780, 62100}, {34783, 34986}, {34788, 53097}, {34864, 41580}, {35228, 55657}, {35260, 61138}, {35479, 44082}, {35494, 43844}, {37515, 54994}, {37853, 44240}, {38937, 61462}, {39125, 55719}, {39879, 55646}, {40928, 40932}, {41593, 55695}, {43574, 45187}, {43586, 43615}, {44226, 47296}, {44242, 44407}, {44247, 64035}, {44249, 44829}, {44668, 55594}, {44762, 62069}, {44958, 61691}, {47748, 56924}, {50693, 64034}, {50709, 62026}, {54211, 61820}, {58085, 59291}, {58188, 64059}, {61606, 61810}, {61680, 61811}
X(64027) = midpoint of X(i) and X(j) for these {i,j}: {3, 3357}, {5, 5894}, {20, 18381}, {64, 6759}, {66, 48898}, {74, 13293}, {182, 34778}, {548, 61540}, {550, 6247}, {1216, 31978}, {1657, 34786}, {2693, 13997}, {3098, 63420}, {3579, 12262}, {7689, 12084}, {8549, 52987}, {9927, 34350}, {10606, 11204}, {11202, 35450}, {11250, 32138}, {11598, 12041}, {12085, 46730}, {12163, 13346}, {14216, 34785}, {14677, 23315}, {15583, 48874}, {15704, 41362}, {19506, 20127}, {20427, 22802}, {34775, 48896}, {34777, 55587}, {34788, 53097}, {44883, 63431}, {54050, 61747}
X(64027) = reflection of X(i) in X(j) for these {i,j}: {4, 32767}, {5, 25563}, {143, 32184}, {206, 55674}, {1498, 50414}, {2883, 64063}, {5092, 15578}, {5448, 23336}, {5893, 3628}, {10282, 3}, {12038, 10226}, {14864, 6247}, {15577, 55653}, {15761, 20191}, {16252, 3530}, {18383, 20299}, {20299, 6696}, {34117, 20190}, {34785, 32903}, {48889, 6697}, {48895, 20300}, {52102, 61540}, {55719, 39125}, {61749, 140}
X(64027) = complement of X(22802)
X(64027) = pole of line {186, 1204} with respect to the Jerabek hyperbola
X(64027) = pole of line {20, 1568} with respect to the Stammler hyperbola
X(64027) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 3357, 53716}, {74, 2693, 13293}, {107, 6080, 53757}
X(64027) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(11202)}}, {{A, B, C, X(54), X(11589)}}, {{A, B, C, X(74), X(8798)}}, {{A, B, C, X(1073), X(44763)}}, {{A, B, C, X(5897), X(10282)}}, {{A, B, C, X(11270), X(14379)}}
X(64027) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20427, 22802}, {3, 10606, 3357}, {3, 12315, 17821}, {3, 13093, 154}, {3, 14059, 12096}, {3, 1498, 11202}, {3, 18350, 43898}, {3, 18439, 51393}, {3, 35450, 1498}, {3, 8567, 11204}, {4, 11468, 21663}, {4, 23329, 32767}, {5, 12041, 43604}, {5, 23328, 25563}, {30, 20299, 18383}, {30, 6696, 20299}, {64, 17821, 12315}, {74, 13293, 10628}, {74, 32607, 17855}, {140, 15311, 61749}, {185, 11430, 64026}, {185, 3520, 11430}, {185, 44109, 43602}, {376, 34785, 32903}, {382, 40686, 23325}, {548, 61540, 1503}, {549, 2883, 64063}, {550, 6247, 18400}, {578, 10605, 13382}, {631, 54050, 5878}, {631, 5878, 61747}, {1498, 11202, 50414}, {1503, 61540, 52102}, {1593, 11438, 10110}, {1657, 1853, 34786}, {2071, 11440, 5562}, {2777, 25563, 5}, {3357, 6759, 64}, {3516, 10605, 578}, {3530, 16252, 10182}, {5054, 48672, 64024}, {6247, 18400, 14864}, {10606, 11204, 6000}, {10620, 35498, 49}, {11202, 50414, 10282}, {11250, 32138, 13754}, {11410, 34469, 1181}, {11413, 63425, 15644}, {11598, 12041, 2777}, {12162, 43898, 18350}, {12162, 43907, 3}, {12290, 21844, 1495}, {12315, 17821, 6759}, {13293, 32401, 3520}, {15032, 43806, 185}, {15055, 15062, 22467}, {15062, 22467, 15030}, {15105, 15712, 14862}, {15578, 34146, 5092}, {18859, 63392, 10625}, {43394, 51522, 45957}, {43615, 45959, 43586}, {44883, 63431, 511}
X(64028) lies on these lines: {3, 43725}, {6, 25}, {32, 160}, {39, 157}, {49, 5050}, {54, 66}, {69, 5012}, {110, 3618}, {140, 141}, {156, 18583}, {185, 63431}, {193, 1176}, {237, 13345}, {389, 15577}, {511, 12161}, {518, 31811}, {524, 19126}, {526, 58317}, {542, 12228}, {567, 18440}, {569, 1352}, {570, 40947}, {571, 20775}, {575, 9822}, {576, 11536}, {578, 1503}, {597, 10128}, {1092, 5085}, {1154, 3098}, {1177, 17040}, {1181, 34146}, {1204, 32333}, {1205, 32226}, {1350, 10984}, {1353, 44470}, {1437, 36741}, {1576, 5065}, {1614, 14853}, {1899, 6697}, {1992, 19121}, {1993, 3313}, {1994, 64023}, {2781, 12227}, {2904, 45110}, {2909, 42444}, {3043, 5622}, {3044, 5182}, {3047, 52699}, {3048, 36696}, {3147, 14912}, {3148, 5421}, {3589, 9306}, {3629, 19127}, {3763, 43650}, {3796, 37485}, {5038, 41277}, {5039, 40643}, {5063, 14575}, {5480, 6759}, {5651, 47355}, {5889, 54374}, {5965, 44491}, {6146, 51756}, {6329, 25488}, {6403, 11423}, {6995, 43726}, {7078, 22769}, {7592, 19161}, {7669, 13351}, {8546, 11511}, {8548, 19141}, {8675, 58310}, {8717, 48880}, {8963, 44198}, {9002, 58315}, {9009, 57206}, {9010, 58314}, {9027, 58357}, {9544, 51171}, {9605, 33582}, {9677, 35841}, {9697, 39764}, {9703, 55705}, {9704, 53091}, {9744, 41770}, {9755, 61684}, {9968, 12294}, {9976, 55710}, {10272, 60764}, {10519, 61134}, {10539, 14561}, {11179, 15812}, {11422, 12220}, {11424, 36990}, {11425, 63420}, {11426, 39879}, {11427, 36851}, {11430, 44883}, {11438, 35228}, {11574, 34986}, {12007, 15585}, {12017, 22115}, {12166, 37514}, {12234, 44668}, {12329, 20986}, {13198, 32245}, {13346, 44882}, {13347, 21167}, {13352, 46264}, {13382, 14810}, {13567, 58437}, {13622, 19151}, {14528, 34817}, {15472, 36201}, {15580, 63688}, {15581, 37505}, {15582, 32191}, {15583, 51744}, {16187, 51127}, {16543, 19149}, {16776, 39561}, {17811, 31521}, {18382, 18388}, {18911, 28408}, {18925, 36989}, {18935, 23327}, {19124, 64080}, {19130, 46261}, {19131, 47525}, {19139, 44479}, {21660, 32341}, {21850, 61752}, {23042, 44489}, {23292, 23300}, {25406, 34148}, {26883, 53023}, {26926, 54347}, {29181, 31802}, {29317, 31815}, {29959, 63183}, {31810, 46728}, {32217, 47464}, {32375, 43838}, {33748, 43815}, {33872, 40981}, {34382, 44480}, {34945, 40146}, {35219, 41580}, {37645, 41256}, {38110, 61753}, {39588, 52432}, {39840, 41672}, {40330, 43651}, {41274, 64092}, {41622, 54332}, {41714, 44494}, {46288, 62194}, {47449, 51733}, {51212, 52525}, {51962, 52668}, {53022, 63612}, {63658, 63699}
X(64028) = midpoint of X(i) and X(j) for these {i,j}: {6, 19459}, {1350, 12160}, {13198, 32245}
X(64028) = reflection of X(i) in X(j) for these {i,j}: {182, 32046}
X(64028) = inverse of X(15435) in Stammler hyperbola
X(64028) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 43726}
X(64028) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 43726}, {26880, 3091}
X(64028) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39955, 32}
X(64028) = pole of line {3566, 23300} with respect to the 1st Brocard circle
X(64028) = pole of line {427, 7746} with respect to the Kiepert hyperbola
X(64028) = pole of line {3050, 8673} with respect to the MacBeath circumconic
X(64028) = pole of line {69, 3060} with respect to the Stammler hyperbola
X(64028) = pole of line {2485, 6563} with respect to the Steiner inellipse
X(64028) = pole of line {305, 5133} with respect to the Wallace hyperbola
X(64028) = pole of line {339, 34981} with respect to the dual conic of Wallace hyperbola
X(64028) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {6, 19459, 59796}
X(64028) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(58471)}}, {{A, B, C, X(25), X(7485)}}, {{A, B, C, X(32), X(44091)}}, {{A, B, C, X(51), X(66)}}, {{A, B, C, X(54), X(206)}}, {{A, B, C, X(69), X(9969)}}, {{A, B, C, X(1176), X(19136)}}, {{A, B, C, X(1843), X(5486)}}, {{A, B, C, X(2393), X(17040)}}, {{A, B, C, X(7716), X(14259)}}, {{A, B, C, X(9971), X(13622)}}, {{A, B, C, X(17810), X(34817)}}, {{A, B, C, X(19151), X(56918)}}, {{A, B, C, X(44079), X(52455)}}
X(64028) = barycentric product X(i)*X(j) for these (i, j): {6, 7485}, {5065, 52455}, {14259, 30435}
X(64028) = barycentric quotient X(i)/X(j) for these (i, j): {32, 43726}, {7485, 76}
X(64028) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 10602, 39125}, {6, 159, 9969}, {6, 184, 206}, {6, 19125, 41593}, {6, 19459, 2393}, {6, 206, 19136}, {6, 20987, 51}, {6, 32621, 32366}, {69, 5012, 5157}, {182, 52016, 141}, {184, 13366, 44077}, {193, 11003, 1176}, {11402, 19459, 6}, {12167, 34397, 1974}, {20775, 34396, 571}, {23042, 44489, 51730}, {30398, 30399, 182}
X(64029) lies on these lines: {3, 33556}, {4, 51}, {5, 13399}, {20, 45187}, {25, 58795}, {30, 14531}, {52, 45957}, {64, 184}, {74, 10282}, {125, 2883}, {140, 12162}, {154, 3532}, {373, 5068}, {382, 14831}, {468, 36982}, {511, 5059}, {541, 18563}, {542, 52071}, {546, 16226}, {550, 5562}, {567, 33541}, {568, 12002}, {1154, 62159}, {1181, 13093}, {1192, 44082}, {1204, 1495}, {1216, 62100}, {1425, 6285}, {1533, 41587}, {1593, 13366}, {1594, 52102}, {1614, 64027}, {1656, 15030}, {1657, 13754}, {1853, 22967}, {2777, 34224}, {2979, 62124}, {3060, 50690}, {3146, 21969}, {3270, 7355}, {3292, 11413}, {3357, 11456}, {3426, 10982}, {3517, 10605}, {3518, 43806}, {3519, 10293}, {3522, 3917}, {3523, 5650}, {3524, 40247}, {3533, 15058}, {3543, 16625}, {3819, 61791}, {3832, 15012}, {3850, 9730}, {3854, 5943}, {3858, 13630}, {5056, 9729}, {5073, 14915}, {5094, 31978}, {5446, 62023}, {5447, 62082}, {5462, 61970}, {5656, 26937}, {5876, 14855}, {5889, 49135}, {5891, 15712}, {5892, 61919}, {5895, 16879}, {6101, 62136}, {6102, 62026}, {6243, 49133}, {6247, 43831}, {6467, 30443}, {6759, 21663}, {7488, 15054}, {7998, 62060}, {7999, 62061}, {8550, 12294}, {8567, 26864}, {9707, 11204}, {9786, 44106}, {9899, 64040}, {9968, 44102}, {10018, 14862}, {10019, 41580}, {10170, 61832}, {10192, 43903}, {10295, 45185}, {10299, 11793}, {10540, 43604}, {10606, 44108}, {10619, 15105}, {10625, 62144}, {11403, 15004}, {11412, 62147}, {11424, 44111}, {11430, 35478}, {11444, 62067}, {11459, 21735}, {11585, 15063}, {11591, 62069}, {11695, 61136}, {12084, 43844}, {12086, 34986}, {12112, 47486}, {12250, 19467}, {13148, 13417}, {13348, 52093}, {13421, 62047}, {13433, 32339}, {13445, 43605}, {13452, 23040}, {13596, 16835}, {13598, 50691}, {14128, 61824}, {14641, 18436}, {14865, 64026}, {15010, 15752}, {15043, 46847}, {15056, 17704}, {15067, 62064}, {15311, 21659}, {15331, 51522}, {15606, 17538}, {15644, 62127}, {15720, 18435}, {15738, 17853}, {15761, 16003}, {15811, 34417}, {16982, 35404}, {17578, 21849}, {18364, 18475}, {18396, 48672}, {18859, 41597}, {18913, 61645}, {18914, 61744}, {18945, 54211}, {19206, 38808}, {19357, 35450}, {20791, 61856}, {21637, 63420}, {21639, 64031}, {21640, 49250}, {21641, 49251}, {21844, 50414}, {22112, 33537}, {23039, 62107}, {30439, 43424}, {30440, 43425}, {31834, 41981}, {32063, 55574}, {32111, 44959}, {32137, 45956}, {32139, 51394}, {32171, 43907}, {35487, 61749}, {37481, 46849}, {40928, 52293}, {43392, 43846}, {43577, 64036}, {43607, 64063}, {44960, 51403}, {45958, 61907}, {45959, 55856}, {50689, 58470}, {63670, 63728}
X(64029) = midpoint of X(i) and X(j) for these {i,j}: {12279, 64025}
X(64029) = reflection of X(i) in X(j) for these {i,j}: {52, 45957}, {185, 6241}, {5562, 10575}, {5895, 32392}, {11381, 185}, {12111, 46850}, {12162, 13491}, {12290, 389}, {18436, 14641}, {18439, 40647}, {21650, 17854}, {45186, 34783}, {45187, 20}, {62047, 13421}, {64036, 43577}
X(64029) = inverse of X(43592) in Jerabek hyperbola
X(64029) = pole of line {4, 1192} with respect to the Jerabek hyperbola
X(64029) = pole of line {647, 34569} with respect to the Orthic inconic
X(64029) = pole of line {1092, 3529} with respect to the Stammler hyperbola
X(64029) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1093), X(43719)}}, {{A, B, C, X(14249), X(14528)}}
X(64029) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64, 12174, 184}, {185, 11381, 51}, {185, 32062, 389}, {389, 12290, 32062}, {389, 6000, 12290}, {568, 62016, 12002}, {1204, 1498, 1495}, {5663, 10575, 5562}, {6000, 6241, 185}, {10574, 44870, 373}, {10605, 12315, 26883}, {11457, 22802, 13851}, {12162, 13491, 64100}, {12279, 64025, 511}, {12290, 32062, 11381}, {13596, 43602, 37505}, {14641, 18436, 36987}, {14862, 20417, 10018}, {14915, 34783, 45186}, {16835, 43602, 13596}, {18439, 40647, 15030}
X(64030) lies on these lines: {2, 45958}, {3, 64}, {4, 3521}, {5, 7703}, {20, 5663}, {22, 63392}, {30, 5889}, {49, 11456}, {51, 5076}, {52, 5073}, {68, 10293}, {74, 1658}, {140, 15305}, {143, 3543}, {155, 37477}, {156, 2071}, {185, 382}, {265, 11457}, {373, 46852}, {376, 5876}, {381, 11381}, {389, 3830}, {399, 1092}, {511, 17800}, {546, 10574}, {548, 11459}, {549, 15058}, {550, 12111}, {567, 1593}, {631, 45959}, {1075, 34334}, {1147, 18859}, {1154, 3529}, {1181, 37472}, {1192, 51519}, {1204, 2070}, {1216, 15696}, {1425, 9642}, {1495, 43604}, {1503, 40929}, {1597, 36753}, {1614, 11250}, {1656, 64100}, {1657, 13754}, {1899, 31725}, {2072, 2883}, {2777, 6293}, {2931, 2937}, {2979, 12103}, {3060, 62036}, {3091, 32137}, {3146, 6102}, {3520, 61752}, {3522, 11591}, {3523, 15060}, {3524, 14128}, {3526, 15030}, {3528, 15067}, {3530, 15056}, {3534, 5562}, {3548, 5656}, {3567, 3853}, {3581, 7387}, {3627, 5890}, {3628, 20791}, {3832, 12006}, {3839, 15026}, {3843, 9730}, {3845, 15043}, {3850, 15045}, {3851, 9729}, {3855, 13363}, {3857, 11451}, {3858, 15024}, {3861, 5640}, {3917, 62100}, {5055, 44870}, {5059, 13391}, {5066, 15028}, {5070, 16836}, {5072, 5892}, {5447, 15688}, {5449, 13399}, {5462, 32062}, {5650, 61799}, {5878, 7728}, {5895, 41725}, {5899, 22550}, {5943, 61970}, {5944, 35473}, {6225, 18531}, {6247, 10024}, {6285, 18447}, {6288, 12324}, {6688, 61935}, {7355, 18455}, {7391, 15800}, {7464, 43605}, {7486, 11017}, {7488, 32138}, {7502, 8718}, {7503, 64098}, {7505, 12292}, {7517, 10605}, {7540, 13568}, {7542, 61540}, {7556, 51522}, {7722, 34584}, {7723, 38788}, {7729, 18381}, {7998, 46853}, {7999, 33923}, {8703, 11444}, {9538, 32143}, {9781, 15687}, {9818, 37471}, {9968, 45016}, {10020, 43607}, {10110, 62008}, {10170, 61811}, {10226, 11464}, {10254, 20299}, {10255, 61749}, {10263, 33703}, {10298, 32210}, {10304, 32142}, {10625, 15681}, {10627, 17538}, {10897, 35864}, {10898, 35865}, {10984, 33541}, {11002, 62021}, {11270, 43720}, {11412, 15704}, {11413, 22115}, {11424, 43845}, {11438, 18378}, {11449, 34152}, {11465, 12811}, {11468, 15331}, {11472, 13339}, {11541, 62187}, {11562, 38790}, {11563, 26917}, {11585, 36983}, {11592, 62067}, {11597, 18466}, {11645, 37473}, {11695, 19709}, {11820, 12309}, {12041, 21844}, {12083, 12163}, {12085, 12174}, {12106, 43601}, {12112, 22467}, {12281, 14677}, {12308, 37480}, {12606, 20427}, {12825, 38723}, {13321, 62016}, {13346, 35452}, {13348, 15689}, {13364, 50689}, {13382, 62023}, {13406, 23294}, {13416, 64059}, {13564, 63425}, {13598, 15684}, {14070, 34469}, {14130, 14805}, {14157, 37814}, {14449, 62044}, {14531, 62170}, {14708, 46431}, {14831, 62040}, {14845, 61968}, {14865, 32046}, {15012, 61991}, {15041, 21650}, {15074, 64014}, {15311, 18563}, {15606, 62128}, {15644, 62131}, {15646, 26882}, {15692, 55286}, {15694, 17704}, {16111, 22584}, {16196, 54039}, {16226, 44863}, {16625, 62035}, {16655, 38321}, {16658, 31830}, {16835, 61134}, {16868, 45622}, {17702, 17856}, {17834, 44457}, {17853, 36253}, {17855, 38724}, {18128, 61744}, {18323, 51491}, {18400, 18565}, {18403, 22802}, {18438, 34146}, {18449, 64031}, {18457, 49250}, {18459, 49251}, {18534, 37490}, {18564, 44829}, {18570, 52525}, {18874, 41099}, {18912, 44276}, {19129, 63420}, {19357, 47524}, {21849, 62027}, {21969, 62045}, {23293, 61750}, {25739, 44279}, {26883, 45735}, {26913, 44235}, {32140, 44440}, {32254, 52987}, {33879, 61821}, {33884, 62113}, {34007, 34514}, {34351, 43903}, {34439, 45788}, {34782, 44246}, {34798, 61299}, {35495, 44110}, {36749, 47527}, {36987, 62134}, {37198, 64097}, {37478, 47748}, {37483, 61150}, {37511, 48662}, {37944, 56292}, {43577, 61139}, {43613, 49671}, {43809, 46261}, {44299, 61808}, {44324, 62091}, {44544, 64187}, {44866, 52102}, {44958, 51548}, {45186, 49136}, {45187, 54048}, {46847, 61953}, {50693, 54042}, {52863, 64037}, {54041, 62104}, {54044, 62092}, {54047, 62119}, {58470, 61996}, {62147, 62188}, {62155, 64050}, {63671, 63728}
X(64030) = midpoint of X(i) and X(j) for these {i,j}: {3529, 64025}, {6241, 12279}
X(64030) = reflection of X(i) in X(j) for these {i,j}: {3, 10575}, {4, 13491}, {265, 17854}, {382, 185}, {3146, 6102}, {5073, 52}, {5562, 14641}, {5889, 45957}, {5895, 41725}, {6243, 34783}, {11381, 40647}, {11412, 15704}, {12111, 550}, {12162, 46850}, {12281, 14677}, {12290, 5}, {18436, 20}, {18439, 3}, {18562, 11750}, {22584, 16111}, {33703, 10263}, {34783, 6241}, {37484, 1657}, {38790, 11562}, {46431, 14708}, {48662, 37511}, {49136, 45186}, {61139, 43577}, {62040, 14831}, {62044, 14449}, {62045, 21969}, {64050, 62155}, {64187, 44544}
X(64030) = pole of line {381, 1204} with respect to the Jerabek hyperbola
X(64030) = pole of line {20, 10540} with respect to the Stammler hyperbola
X(64030) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(10540)}}, {{A, B, C, X(64), X(15424)}}, {{A, B, C, X(3521), X(14379)}}, {{A, B, C, X(5897), X(18439)}}
X(64030) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1498, 10540}, {3, 18439, 18435}, {3, 6000, 18439}, {20, 18436, 13340}, {20, 5663, 18436}, {30, 34783, 6243}, {30, 45957, 5889}, {30, 6241, 34783}, {185, 14915, 382}, {185, 382, 568}, {373, 46852, 61946}, {1614, 13445, 11250}, {2777, 11750, 18562}, {2937, 10620, 7689}, {3853, 45956, 3567}, {5462, 32062, 61984}, {5562, 14641, 3534}, {5878, 18404, 7728}, {5889, 6241, 45957}, {6000, 46850, 12162}, {6241, 12279, 30}, {8718, 11440, 7502}, {9729, 16194, 3851}, {9730, 13474, 3843}, {10574, 11455, 546}, {10575, 12162, 46850}, {10620, 52100, 2937}, {11381, 40647, 381}, {11456, 12084, 49}, {11459, 52093, 548}, {12085, 12174, 18445}, {12085, 18445, 37495}, {12162, 46850, 3}, {12290, 15072, 5}, {14130, 64049, 14805}
X(64031) lies on these lines: {2, 63699}, {3, 1177}, {5, 61737}, {6, 64}, {20, 41719}, {25, 15139}, {30, 63702}, {54, 32357}, {66, 3527}, {154, 3292}, {155, 159}, {182, 34778}, {193, 41735}, {206, 1092}, {235, 63129}, {381, 34118}, {382, 1351}, {394, 41580}, {524, 2883}, {542, 12293}, {575, 3357}, {576, 6000}, {597, 6696}, {599, 64024}, {1181, 9914}, {1204, 44102}, {1498, 2393}, {1594, 63656}, {1598, 61723}, {1619, 1993}, {1657, 54215}, {1660, 37672}, {1853, 9777}, {1992, 6225}, {2003, 7169}, {2323, 3556}, {2937, 15577}, {3088, 51744}, {3098, 23041}, {3167, 37928}, {3515, 18374}, {3517, 63663}, {3827, 37625}, {5050, 14130}, {5085, 41593}, {5093, 45034}, {5095, 5895}, {5198, 9971}, {5476, 20299}, {5596, 51212}, {5621, 34469}, {5656, 62344}, {5663, 8548}, {5925, 43273}, {6090, 17847}, {6247, 11432}, {6285, 19369}, {6515, 41602}, {6776, 18560}, {7355, 8540}, {7973, 64070}, {8537, 12290}, {8538, 10575}, {8541, 11381}, {8550, 15311}, {8567, 10541}, {8743, 10766}, {9019, 39568}, {9786, 19136}, {9813, 44870}, {9818, 44480}, {9924, 55722}, {10110, 61664}, {10117, 26864}, {10169, 35484}, {10192, 62217}, {10250, 22330}, {10282, 52987}, {10519, 58437}, {10606, 53093}, {10628, 44493}, {10752, 11456}, {11179, 20427}, {11202, 55606}, {11204, 20190}, {11206, 37900}, {11245, 34944}, {11413, 22151}, {11416, 12279}, {11431, 14853}, {11441, 63180}, {11479, 63723}, {11482, 13093}, {11511, 46850}, {11744, 12165}, {12017, 15578}, {12063, 12112}, {12085, 41725}, {12111, 41614}, {12161, 44544}, {12163, 44470}, {12167, 32340}, {12316, 39879}, {13292, 21850}, {13293, 25556}, {13382, 44489}, {13754, 44492}, {14070, 15136}, {14216, 20423}, {14530, 15582}, {14810, 23042}, {14912, 61088}, {14982, 15063}, {14984, 32139}, {15274, 53569}, {15579, 35450}, {15581, 32063}, {15905, 63419}, {16252, 61683}, {16789, 59349}, {17811, 45979}, {17813, 58795}, {17824, 21660}, {18381, 23049}, {18449, 64030}, {18535, 63688}, {18917, 47571}, {18931, 47457}, {19132, 31884}, {19142, 43616}, {19151, 34438}, {19161, 45045}, {19459, 44439}, {19924, 34785}, {21639, 64029}, {23329, 25555}, {25406, 34005}, {26206, 43813}, {26869, 32125}, {26937, 62375}, {29181, 34774}, {29317, 34776}, {31166, 34726}, {32368, 64099}, {34507, 61749}, {34613, 34781}, {34775, 48901}, {34788, 55718}, {35228, 55610}, {37198, 54334}, {37485, 41716}, {37489, 41613}, {37784, 64025}, {38136, 61542}, {40107, 61747}, {40647, 44503}, {41729, 46264}, {41736, 45968}, {41761, 44704}, {43810, 53091}, {44656, 48766}, {44657, 48767}, {46372, 53019}, {47546, 62288}, {50414, 55583}, {50977, 64063}, {51739, 55571}, {51756, 53023}, {54131, 64037}, {59351, 62174}, {63673, 63728}
X(64031) = midpoint of X(i) and X(j) for these {i,j}: {193, 41735}, {1498, 11477}, {5596, 51212}, {5878, 63722}, {5895, 64080}, {7973, 64070}, {9924, 55722}, {11744, 64104}, {39879, 44456}
X(64031) = reflection of X(i) in X(j) for these {i,j}: {3, 34117}, {66, 5480}, {159, 19149}, {1350, 206}, {1498, 9968}, {3357, 575}, {8549, 576}, {12085, 44469}, {12163, 44470}, {13293, 25556}, {15141, 9970}, {19149, 34779}, {33878, 15577}, {34507, 61749}, {34775, 48901}, {34777, 1351}, {34778, 182}, {34787, 6759}, {34788, 55718}, {36989, 34774}, {46264, 41729}, {52987, 10282}, {63420, 6}, {63431, 41593}
X(64031) = pole of line {9517, 39228} with respect to the circumcircle
X(64031) = pole of line {2485, 8673} with respect to the cosine circle
X(64031) = pole of line {9517, 15451} with respect to the Stammler circle
X(64031) = pole of line {2485, 30211} with respect to the MacBeath circumconic
X(64031) = pole of line {858, 32064} with respect to the Stammler hyperbola
X(64031) = intersection, other than A, B, C, of circumconics {{A, B, C, X(64), X(18876)}}, {{A, B, C, X(1177), X(41489)}}
X(64031) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 34117, 19153}, {6, 34146, 63420}, {185, 11470, 6}, {511, 19149, 159}, {511, 34779, 19149}, {511, 6759, 34787}, {575, 3357, 10249}, {576, 6000, 8549}, {1351, 1503, 34777}, {1498, 11477, 2393}, {1993, 41715, 1619}, {2393, 9968, 1498}, {2781, 34117, 3}, {2781, 9970, 15141}, {5878, 63722, 1503}, {5895, 64080, 36201}, {8538, 10575, 54183}, {10602, 12174, 64080}, {19149, 34787, 6759}, {39879, 44456, 44668}
X(64032) lies on these lines: {2, 11750}, {3, 18432}, {4, 54}, {5, 26882}, {20, 3410}, {23, 9927}, {24, 25739}, {26, 58922}, {30, 11412}, {32, 15340}, {49, 44288}, {52, 34799}, {68, 31304}, {69, 3529}, {70, 74}, {110, 18569}, {125, 44879}, {146, 3146}, {154, 7547}, {155, 52842}, {156, 31724}, {185, 18559}, {186, 18381}, {265, 37440}, {378, 17845}, {382, 1993}, {403, 18394}, {468, 11704}, {542, 11663}, {546, 14389}, {550, 37636}, {567, 63672}, {568, 32165}, {631, 44829}, {1092, 46450}, {1141, 34449}, {1495, 16868}, {1498, 35480}, {1503, 6240}, {1594, 11464}, {1656, 13470}, {1657, 61299}, {1658, 23293}, {1853, 32534}, {1885, 16658}, {2888, 12380}, {2937, 48675}, {3060, 11819}, {3153, 10539}, {3357, 13619}, {3517, 61701}, {3520, 11550}, {3521, 50006}, {3533, 44862}, {3542, 12140}, {3567, 6146}, {3575, 5890}, {3581, 18356}, {3627, 32111}, {3818, 35500}, {5876, 41590}, {6000, 34797}, {6143, 11202}, {6243, 7731}, {6247, 10295}, {6288, 7502}, {6293, 13423}, {6756, 9781}, {7391, 12118}, {7487, 18912}, {7488, 18474}, {7507, 9707}, {7517, 50435}, {7540, 12370}, {7544, 43651}, {7566, 37506}, {7574, 61753}, {7577, 10282}, {7579, 58407}, {7592, 18494}, {7747, 41367}, {7999, 64035}, {8907, 12084}, {10024, 26881}, {10304, 17712}, {10540, 18377}, {10546, 50143}, {10574, 38321}, {10594, 18396}, {10733, 31725}, {11002, 58806}, {11423, 31804}, {11439, 52070}, {11449, 13371}, {11454, 44242}, {11455, 16655}, {11456, 12173}, {11457, 18533}, {11459, 12134}, {11465, 64038}, {11565, 15026}, {11816, 22261}, {11818, 13434}, {12038, 31074}, {12103, 35257}, {12112, 22802}, {12163, 43895}, {12250, 32247}, {12363, 18564}, {12383, 13346}, {12605, 15058}, {12897, 17578}, {13203, 43391}, {13367, 52295}, {13406, 18430}, {13851, 44958}, {14269, 15807}, {14530, 18386}, {14790, 43574}, {14805, 50138}, {14864, 21663}, {14940, 23325}, {15043, 31830}, {15072, 40241}, {15305, 18563}, {15581, 35502}, {15761, 18392}, {15801, 31815}, {16013, 37970}, {17506, 23329}, {17821, 52296}, {18390, 34484}, {18405, 35488}, {18420, 61134}, {18504, 46817}, {18531, 43598}, {18945, 37122}, {20299, 21844}, {22660, 46818}, {23324, 35487}, {26879, 37458}, {26913, 45735}, {31723, 34148}, {34780, 37196}, {34938, 43576}, {35472, 40686}, {37481, 38322}, {37779, 63652}, {37931, 43607}, {38848, 39571}, {39874, 43596}, {44234, 45622}, {44279, 52863}, {44665, 64051}, {47486, 61645}, {50688, 63082}, {54001, 61747}, {56292, 61751}
X(64032) = reflection of X(i) in X(j) for these {i,j}: {4, 61139}, {6241, 6240}, {11412, 14516}, {11750, 45286}, {12111, 64036}, {12225, 12134}, {12289, 4}, {12290, 16659}, {18560, 16655}, {21659, 13419}, {34224, 3575}, {34799, 52}, {40242, 18560}, {44076, 11819}
X(64032) = anticomplement of X(11750)
X(64032) = X(i)-Dao conjugate of X(j) for these {i, j}: {11750, 11750}
X(64032) = pole of line {389, 23294} with respect to the Jerabek hyperbola
X(64032) = pole of line {156, 5562} with respect to the Stammler hyperbola
X(64032) = pole of line {550, 52347} with respect to the Wallace hyperbola
X(64032) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(8884), X(57640)}}, {{A, B, C, X(16835), X(61362)}}
X(64032) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 12254, 578}, {4, 18400, 12289}, {4, 19467, 15033}, {4, 9833, 1614}, {24, 25739, 26917}, {24, 64037, 25739}, {30, 14516, 11412}, {30, 16659, 12290}, {30, 64036, 12111}, {186, 18381, 23294}, {403, 41362, 18394}, {1495, 18383, 16868}, {1503, 6240, 6241}, {1594, 34782, 11464}, {1853, 32534, 43608}, {3575, 34224, 5890}, {6146, 7576, 3567}, {6247, 10295, 11468}, {6756, 12022, 9781}, {10282, 11572, 7577}, {11455, 40242, 18560}, {11550, 34785, 3520}, {11819, 44076, 3060}, {12134, 12225, 11459}, {12173, 64033, 11456}, {13419, 18400, 21659}, {13419, 21659, 4}, {14216, 35471, 74}, {16655, 18560, 11455}, {18533, 64034, 11457}, {21659, 61139, 13419}
X(64033) lies on these lines: {3, 66}, {4, 11402}, {5, 11206}, {6, 13419}, {20, 13093}, {22, 2888}, {24, 26944}, {25, 18912}, {26, 18356}, {30, 6193}, {52, 39899}, {54, 5064}, {64, 3534}, {68, 9909}, {110, 40241}, {140, 32064}, {154, 1656}, {155, 44407}, {161, 2937}, {195, 382}, {206, 13353}, {381, 569}, {389, 9971}, {399, 40285}, {428, 3527}, {542, 17834}, {550, 12324}, {567, 34775}, {578, 36990}, {1147, 34609}, {1181, 18494}, {1216, 34750}, {1351, 5596}, {1593, 16659}, {1594, 26864}, {1595, 18925}, {1596, 18945}, {1597, 16655}, {1598, 6146}, {1614, 7507}, {1619, 7517}, {1657, 5925}, {1660, 18350}, {1853, 3526}, {1899, 3517}, {2393, 6243}, {2777, 49137}, {2883, 3830}, {3090, 64059}, {3167, 14790}, {3332, 7546}, {3357, 15696}, {3515, 11457}, {3518, 26869}, {3522, 61540}, {3564, 31305}, {3627, 5656}, {3628, 35260}, {3818, 37476}, {3843, 41362}, {3851, 16252}, {5050, 7528}, {5054, 17821}, {5056, 61606}, {5070, 10192}, {5072, 61747}, {5073, 5878}, {5076, 34786}, {5079, 23325}, {5093, 34774}, {5094, 9707}, {5198, 12022}, {5790, 40660}, {5890, 11387}, {5893, 62008}, {5894, 62131}, {5895, 49136}, {5921, 59346}, {6090, 47528}, {6240, 12174}, {6241, 37196}, {6445, 8991}, {6446, 13980}, {6756, 6776}, {7387, 12429}, {7401, 48906}, {7404, 39884}, {7405, 12017}, {7487, 18914}, {7526, 32354}, {7530, 45731}, {7540, 37493}, {7566, 11003}, {7715, 11433}, {7776, 57275}, {8549, 36753}, {8567, 52102}, {8780, 11585}, {8976, 10533}, {9545, 31133}, {9654, 26888}, {9669, 10535}, {9714, 25738}, {9715, 11442}, {9781, 62968}, {9825, 45073}, {9914, 44457}, {9919, 32423}, {9924, 11898}, {9934, 12902}, {10182, 61850}, {10193, 61793}, {10263, 41715}, {10295, 34469}, {10534, 13951}, {10606, 62100}, {10675, 42127}, {10676, 42126}, {11202, 14864}, {11204, 62082}, {11243, 42988}, {11244, 42989}, {11245, 37122}, {11403, 16658}, {11414, 14516}, {11427, 16198}, {11456, 12173}, {11482, 41719}, {11484, 64038}, {11550, 19357}, {11645, 13346}, {11750, 18451}, {12103, 54050}, {12111, 41590}, {12112, 35490}, {12241, 18535}, {12250, 15704}, {12254, 35502}, {12289, 44438}, {12359, 16195}, {12645, 64022}, {13142, 58764}, {13403, 15811}, {14070, 32140}, {14130, 63422}, {14156, 51933}, {14157, 37197}, {14627, 34117}, {14848, 31166}, {14862, 18376}, {15039, 15131}, {15069, 46728}, {15105, 62142}, {15311, 17800}, {15583, 53091}, {15644, 48905}, {15647, 38724}, {15681, 20427}, {15684, 51491}, {15688, 64027}, {16266, 61299}, {17814, 18536}, {17826, 42817}, {17827, 42818}, {18396, 26883}, {18405, 61749}, {18534, 44076}, {18909, 37458}, {18918, 44960}, {19149, 36749}, {20079, 48876}, {20850, 41587}, {21970, 37440}, {22051, 32346}, {22115, 44679}, {22660, 34725}, {22804, 32402}, {23236, 36201}, {23324, 61953}, {23329, 61811}, {23332, 46219}, {25563, 61803}, {26879, 55578}, {26882, 37453}, {26917, 62965}, {26937, 55570}, {29012, 37498}, {30402, 42132}, {30403, 42129}, {31810, 64023}, {32048, 37928}, {32306, 38885}, {32609, 63716}, {32767, 55857}, {34146, 37484}, {34776, 36752}, {37444, 46818}, {37505, 53023}, {37515, 43273}, {39568, 44665}, {40280, 58492}, {43605, 52842}, {44544, 64051}, {49138, 54211}, {50709, 58207}, {55858, 61735}, {55860, 58434}
X(64033) = midpoint of X(i) and X(j) for these {i,j}: {49138, 54211}
X(64033) = reflection of X(i) in X(j) for these {i,j}: {3, 9833}, {64, 34785}, {195, 32359}, {382, 1498}, {1351, 5596}, {1657, 17845}, {5073, 5878}, {5878, 44762}, {11898, 9924}, {12250, 15704}, {12315, 34781}, {12324, 550}, {12429, 7387}, {12645, 64022}, {12902, 9934}, {13093, 20}, {14216, 34782}, {18381, 45185}, {18440, 39879}, {20079, 48876}, {32306, 38885}, {34780, 3}, {37498, 61751}, {48672, 12315}, {49136, 5895}, {64034, 5}, {64037, 6759}, {64051, 44544}
X(64033) = pole of line {525, 37084} with respect to the circumcircle
X(64033) = pole of line {525, 15781} with respect to the Stammler circle
X(64033) = pole of line {3767, 16198} with respect to the Kiepert hyperbola
X(64033) = pole of line {22, 14530} with respect to the Stammler hyperbola
X(64033) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(14376), X(60161)}}, {{A, B, C, X(34168), X(34780)}}
X(64033) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1503, 34780}, {4, 31804, 11426}, {5, 11206, 14530}, {30, 12315, 48672}, {30, 34781, 12315}, {64, 34785, 3534}, {154, 18381, 1656}, {161, 32321, 2937}, {550, 12324, 35450}, {1181, 61139, 18494}, {1498, 18400, 382}, {1498, 18445, 48669}, {1503, 34782, 14216}, {1503, 39879, 18440}, {6000, 17845, 1657}, {6146, 31383, 1598}, {6240, 12174, 64094}, {6759, 18383, 64024}, {7487, 39874, 18914}, {9833, 14216, 34782}, {11202, 14864, 40686}, {11202, 40686, 15720}, {11206, 64034, 5}, {14216, 34782, 3}, {16655, 19467, 1597}, {18381, 45185, 154}, {18383, 64024, 381}, {18400, 32359, 195}, {18405, 61749, 61984}, {29012, 61751, 37498}, {32767, 61680, 55857}, {64024, 64037, 18383}
X(64034) lies on these lines: {2, 9833}, {3, 32064}, {4, 6}, {5, 11206}, {20, 2888}, {23, 32321}, {24, 23291}, {30, 11411}, {64, 3529}, {66, 10519}, {68, 31305}, {154, 3090}, {159, 7509}, {161, 7512}, {184, 43841}, {186, 58378}, {193, 34788}, {195, 31723}, {206, 43651}, {235, 18918}, {343, 59346}, {376, 6247}, {382, 6225}, {427, 18925}, {511, 20079}, {546, 32063}, {578, 7378}, {631, 1853}, {1092, 7396}, {1352, 44829}, {1370, 14516}, {1619, 10594}, {1656, 35260}, {1657, 54050}, {1660, 43598}, {1899, 7487}, {2393, 11412}, {2777, 49135}, {3088, 11550}, {3089, 31383}, {3091, 5012}, {3146, 5889}, {3424, 40448}, {3448, 31304}, {3517, 37643}, {3520, 63422}, {3522, 14864}, {3523, 20299}, {3524, 40686}, {3525, 17821}, {3528, 6696}, {3533, 61735}, {3534, 61540}, {3542, 25739}, {3543, 5878}, {3545, 16252}, {3547, 18474}, {3575, 18909}, {3619, 61542}, {3627, 12315}, {3832, 18383}, {3839, 61749}, {3855, 23324}, {5056, 23325}, {5059, 20427}, {5067, 10192}, {5068, 61747}, {5079, 61606}, {5446, 41715}, {5562, 5921}, {5667, 58797}, {5818, 40660}, {5894, 11001}, {5895, 15682}, {5925, 49138}, {6145, 7558}, {6193, 14790}, {6523, 6761}, {6623, 26883}, {6643, 12134}, {6756, 11433}, {6995, 13419}, {7383, 36989}, {7386, 64035}, {7391, 34799}, {7392, 64038}, {7395, 39879}, {7399, 25406}, {7400, 46264}, {7401, 15805}, {7408, 10110}, {7486, 64063}, {7525, 9920}, {7550, 15581}, {7553, 64048}, {7566, 63085}, {7576, 18916}, {8889, 19357}, {9781, 41580}, {9899, 28150}, {9909, 61544}, {10112, 31670}, {10182, 61856}, {10193, 61788}, {10303, 11202}, {10323, 63420}, {10535, 10591}, {10590, 26888}, {10606, 17538}, {10610, 32354}, {11003, 32379}, {11180, 11821}, {11204, 62097}, {11245, 11431}, {11414, 14927}, {11426, 16198}, {11427, 31804}, {11455, 36982}, {11457, 18533}, {11479, 39884}, {11645, 34621}, {11793, 34750}, {11819, 18951}, {12118, 41738}, {12362, 18440}, {12383, 63716}, {13203, 32423}, {13886, 17819}, {13939, 17820}, {14458, 60174}, {14788, 23300}, {14831, 15741}, {15022, 50414}, {15081, 15647}, {15105, 62171}, {15138, 35471}, {15311, 33703}, {15559, 41602}, {15595, 28717}, {15644, 33523}, {15692, 25563}, {15704, 35450}, {15717, 23329}, {16391, 37183}, {17578, 22802}, {18376, 50689}, {18494, 18914}, {18531, 64036}, {18912, 37122}, {21735, 23328}, {23294, 35486}, {26937, 37460}, {26944, 37458}, {31099, 34148}, {31802, 39899}, {32359, 61715}, {32816, 57275}, {32903, 62102}, {34146, 64051}, {34286, 40664}, {34664, 51023}, {34938, 44665}, {35864, 42275}, {35865, 42276}, {37498, 44442}, {38672, 45037}, {40241, 58922}, {40285, 43605}, {41736, 44076}, {43407, 49251}, {43408, 49250}, {43666, 54865}, {46729, 60166}, {47090, 53050}, {48672, 62036}, {50693, 64027}, {51491, 58795}, {54486, 60163}, {58434, 60781}, {59388, 64022}, {61680, 61886}, {61721, 62021}
X(64034) = reflection of X(i) in X(j) for these {i,j}: {20, 14216}, {3529, 64}, {5059, 20427}, {5878, 34786}, {6193, 14790}, {6225, 382}, {9833, 18381}, {12250, 12324}, {12315, 3627}, {12324, 34780}, {12383, 63716}, {17845, 6247}, {31305, 68}, {34781, 4}, {34785, 14864}, {48672, 62036}, {49138, 5925}, {58795, 51491}, {64033, 5}, {64187, 3146}
X(64034) = anticomplement of X(9833)
X(64034) = X(i)-Dao conjugate of X(j) for these {i, j}: {9833, 9833}
X(64034) = pole of line {1859, 10591} with respect to the Feuerbach hyperbola
X(64034) = pole of line {1632, 35311} with respect to the Kiepert parabola
X(64034) = pole of line {394, 9715} with respect to the Stammler hyperbola
X(64034) = pole of line {33294, 52585} with respect to the Steiner circumellipse
X(64034) = pole of line {3926, 59346} with respect to the Wallace hyperbola
X(64034) = intersection, other than A, B, C, of circumconics {{A, B, C, X(393), X(15319)}}, {{A, B, C, X(10002), X(40448)}}, {{A, B, C, X(10282), X(46728)}}
X(64034) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1503, 34781}, {4, 34224, 6776}, {4, 34781, 5656}, {5, 64033, 11206}, {30, 12324, 12250}, {30, 34780, 12324}, {68, 44407, 31305}, {1498, 8549, 7592}, {1899, 61139, 7487}, {3146, 6000, 64187}, {5878, 34786, 3543}, {6247, 17845, 376}, {6643, 12134, 14826}, {9833, 18381, 2}, {11442, 14216, 32337}, {11457, 18533, 18913}, {11457, 64032, 18533}, {11550, 19467, 3088}, {13419, 39571, 6995}, {14216, 18400, 20}, {16655, 18396, 4}, {23324, 64024, 3855}
X(64035) lies on these lines: {2, 6146}, {3, 66}, {4, 394}, {5, 578}, {6, 6193}, {20, 16655}, {24, 343}, {30, 1216}, {49, 15872}, {52, 524}, {54, 14788}, {68, 6642}, {69, 7487}, {110, 13160}, {140, 13561}, {154, 3547}, {155, 12233}, {182, 31804}, {184, 7399}, {265, 50143}, {287, 26155}, {297, 8884}, {376, 16659}, {378, 63631}, {382, 16656}, {389, 3564}, {403, 43598}, {427, 1092}, {428, 45186}, {511, 6756}, {539, 5462}, {542, 9729}, {547, 45970}, {569, 3589}, {631, 34224}, {632, 45731}, {952, 55307}, {1154, 31830}, {1181, 6815}, {1209, 7542}, {1350, 31305}, {1368, 18381}, {1506, 59558}, {1514, 15052}, {1568, 23047}, {1594, 11064}, {1595, 3818}, {1656, 44076}, {1658, 44201}, {1853, 3546}, {1885, 15030}, {1993, 7544}, {2072, 6288}, {2883, 18451}, {2888, 3580}, {3088, 28419}, {3090, 12022}, {3091, 16657}, {3146, 16654}, {3147, 37638}, {3292, 3574}, {3357, 44241}, {3410, 22467}, {3518, 32269}, {3529, 16658}, {3541, 35602}, {3542, 35259}, {3548, 23332}, {3549, 10192}, {3567, 61658}, {3575, 5562}, {3628, 5972}, {3629, 37493}, {3631, 37478}, {3796, 7383}, {3819, 44829}, {3917, 61139}, {5020, 12429}, {5133, 34148}, {5159, 32767}, {5447, 44407}, {5449, 16238}, {5480, 7528}, {5576, 22115}, {5876, 34798}, {5891, 12605}, {5892, 10116}, {5921, 18909}, {5943, 10112}, {5944, 7568}, {5946, 32358}, {5965, 16625}, {6000, 31829}, {6090, 7507}, {6101, 11819}, {6240, 11459}, {6639, 58434}, {6643, 17811}, {6644, 12359}, {6676, 10282}, {6677, 61544}, {6759, 6823}, {6776, 6803}, {6804, 18945}, {6816, 18396}, {6997, 10982}, {7386, 64034}, {7395, 19467}, {7400, 11206}, {7403, 13352}, {7404, 10516}, {7488, 37636}, {7506, 41587}, {7511, 10441}, {7529, 15873}, {7540, 37484}, {7546, 48902}, {7550, 12254}, {7552, 35266}, {7553, 10625}, {7558, 9707}, {7565, 40112}, {7575, 21230}, {7576, 11412}, {7706, 15083}, {7819, 15595}, {7999, 64032}, {8263, 34507}, {8550, 36752}, {8681, 46363}, {9545, 14389}, {9715, 43653}, {9786, 11411}, {9815, 11432}, {9818, 12118}, {9826, 32166}, {10024, 18350}, {10095, 23410}, {10110, 13142}, {10115, 16881}, {10263, 13490}, {10519, 59346}, {10539, 15760}, {10564, 18488}, {10961, 35836}, {10963, 35837}, {10996, 34781}, {11017, 15807}, {11180, 18913}, {11264, 13363}, {11387, 64023}, {11414, 31383}, {11426, 14561}, {11430, 18358}, {11442, 17928}, {11444, 12225}, {11487, 17845}, {11550, 43652}, {11585, 18474}, {11695, 45298}, {11746, 58496}, {11793, 12362}, {11818, 16266}, {12006, 43588}, {12007, 36753}, {12038, 52262}, {12106, 63734}, {12111, 38323}, {12140, 41673}, {12162, 15311}, {12166, 63180}, {12278, 15056}, {12290, 44458}, {12324, 61113}, {12383, 35500}, {12428, 37696}, {13348, 29012}, {13353, 15462}, {13383, 15448}, {13434, 37990}, {13488, 44870}, {13568, 13754}, {14128, 30522}, {14156, 32144}, {14457, 40917}, {14533, 19179}, {14786, 37506}, {14852, 61507}, {15043, 45968}, {15058, 18560}, {15060, 52070}, {15062, 16386}, {15066, 37444}, {15068, 22660}, {15305, 52071}, {15559, 43574}, {16196, 20299}, {16976, 25563}, {17810, 64048}, {18388, 61607}, {18436, 38321}, {18531, 41362}, {18565, 50709}, {18583, 37505}, {18912, 37648}, {18970, 37697}, {19176, 58408}, {20428, 54306}, {20429, 54307}, {21659, 34664}, {22804, 51391}, {22833, 44686}, {30714, 32274}, {31834, 45971}, {32139, 50008}, {33586, 37122}, {34573, 37513}, {34603, 64050}, {34726, 54173}, {34826, 44452}, {34938, 36990}, {35018, 43575}, {37119, 45303}, {37472, 50137}, {37480, 39884}, {37515, 48906}, {37814, 44158}, {43084, 53169}, {43130, 51994}, {43150, 44683}, {43607, 61128}, {43614, 50435}, {43821, 50139}, {43841, 64177}, {43995, 52280}, {44247, 64027}, {44261, 50991}, {44804, 46852}, {46029, 61608}, {46728, 48876}, {46817, 61750}, {46818, 52525}, {56965, 63649}, {58545, 63659}, {63667, 64063}, {64066, 64095}
X(64035) = midpoint of X(i) and X(j) for these {i,j}: {3, 12134}, {20, 16655}, {1216, 45286}, {3575, 5562}, {6101, 11819}, {6146, 14516}, {7553, 10625}, {7576, 64062}, {12140, 41673}, {13419, 15644}, {16654, 54040}, {31831, 31833}, {31834, 45971}
X(64035) = reflection of X(i) in X(j) for these {i,j}: {52, 11745}, {382, 16656}, {389, 9825}, {6146, 64038}, {12241, 5}, {12362, 11793}, {13142, 10110}, {13292, 5462}, {13488, 44870}, {13568, 31833}, {15807, 11017}, {18914, 9729}, {43575, 35018}, {43588, 12006}, {52073, 14128}
X(64035) = complement of X(6146)
X(64035) = anticomplement of X(64038)
X(64035) = X(i)-Dao conjugate of X(j) for these {i, j}: {64038, 64038}
X(64035) = pole of line {577, 3767} with respect to the Kiepert hyperbola
X(64035) = pole of line {22, 1181} with respect to the Stammler hyperbola
X(64035) = pole of line {3265, 57065} with respect to the Steiner inellipse
X(64035) = pole of line {315, 40680} with respect to the Wallace hyperbola
X(64035) = pole of line {421, 2501} with respect to the dual conic of DeLongchamps circle
X(64035) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {125, 16178, 45258}
X(64035) = intersection, other than A, B, C, of circumconics {{A, B, C, X(66), X(1217)}}, {{A, B, C, X(14376), X(60114)}}, {{A, B, C, X(27356), X(41168)}}
X(64035) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14516, 6146}, {2, 18925, 37476}, {2, 6146, 64038}, {3, 12134, 1503}, {3, 18440, 14216}, {3, 64033, 46264}, {4, 14826, 17814}, {5, 1147, 23292}, {5, 44665, 12241}, {5, 61753, 9820}, {5, 9306, 59659}, {54, 14788, 37649}, {68, 6642, 13567}, {69, 7487, 17834}, {141, 34782, 3}, {155, 18420, 12233}, {182, 61751, 31804}, {524, 11745, 52}, {539, 5462, 13292}, {542, 9729, 18914}, {569, 7405, 3589}, {1147, 9927, 23307}, {1209, 51393, 7542}, {1216, 45286, 30}, {1993, 7544, 45089}, {2888, 44802, 3580}, {3564, 9825, 389}, {3818, 13346, 1595}, {5020, 12429, 39571}, {5449, 16238, 47296}, {5449, 43586, 16238}, {6193, 7401, 6}, {6776, 6803, 37514}, {7528, 36747, 5480}, {7553, 10625, 29181}, {7558, 9707, 13394}, {9786, 15069, 11411}, {9815, 63722, 11432}, {10024, 18350, 51425}, {10127, 13292, 5462}, {10516, 11425, 7404}, {10539, 15760, 16252}, {12278, 15056, 52069}, {13565, 58407, 3628}, {13754, 31833, 13568}, {14128, 30522, 52073}, {17811, 64037, 6643}, {31831, 31833, 13754}
X(64036) lies on these lines: {3, 66}, {4, 1994}, {5, 1614}, {20, 15108}, {23, 63734}, {24, 32140}, {25, 25738}, {26, 11442}, {30, 11412}, {49, 427}, {51, 10116}, {52, 542}, {68, 7517}, {110, 13371}, {113, 18383}, {143, 45968}, {154, 6639}, {155, 31723}, {156, 1594}, {184, 5576}, {185, 38321}, {235, 265}, {343, 2937}, {381, 6146}, {382, 9936}, {389, 43129}, {399, 22660}, {428, 13292}, {524, 11663}, {539, 45186}, {546, 11423}, {550, 13445}, {567, 7403}, {568, 6756}, {569, 3818}, {858, 61753}, {1112, 46443}, {1147, 11550}, {1495, 5449}, {1595, 37472}, {1843, 12585}, {1853, 6640}, {1899, 7506}, {1907, 43595}, {1995, 18952}, {2070, 12359}, {2072, 10539}, {2883, 48669}, {2888, 12088}, {3060, 32358}, {3357, 44246}, {3410, 7512}, {3448, 3518}, {3548, 32064}, {3549, 11206}, {3564, 6243}, {3567, 13490}, {3575, 34783}, {3580, 18356}, {3627, 7728}, {3830, 16621}, {3843, 12241}, {3845, 45970}, {3858, 43575}, {5055, 64038}, {5076, 16654}, {5133, 32046}, {5448, 11572}, {5480, 14627}, {5562, 44407}, {5663, 6240}, {5876, 12225}, {5889, 11819}, {5890, 31830}, {5891, 44829}, {5907, 11750}, {5921, 31305}, {5946, 45732}, {6101, 61299}, {6102, 7576}, {6288, 15760}, {6644, 11457}, {6759, 10024}, {6776, 7528}, {7391, 16266}, {7401, 39874}, {7405, 37471}, {7487, 18917}, {7505, 61702}, {7525, 37636}, {7527, 12254}, {7555, 21230}, {7577, 61608}, {7592, 11818}, {9306, 37452}, {9544, 52295}, {9704, 23292}, {9707, 61700}, {9927, 11799}, {10018, 13561}, {10020, 23293}, {10110, 61713}, {10111, 46682}, {10254, 16252}, {10255, 51425}, {10263, 34603}, {10282, 32415}, {10295, 32138}, {10625, 29012}, {10627, 52397}, {11381, 17702}, {11411, 54149}, {11430, 18488}, {11440, 44242}, {11441, 18569}, {11444, 40241}, {11449, 23336}, {11468, 47335}, {11585, 18350}, {11645, 15644}, {12024, 61968}, {12086, 12383}, {12106, 26879}, {12112, 50009}, {12162, 12606}, {12289, 15305}, {12293, 31725}, {12429, 18534}, {12605, 18435}, {12897, 32062}, {13160, 61752}, {13198, 20303}, {13352, 61751}, {13399, 43604}, {13403, 16194}, {13470, 15060}, {13491, 38323}, {13567, 13621}, {13595, 43808}, {13754, 61139}, {13861, 18912}, {14157, 15761}, {14389, 50138}, {14449, 41628}, {14683, 56292}, {14787, 37476}, {14805, 63679}, {14940, 35265}, {15024, 23410}, {15058, 52073}, {15068, 37444}, {15069, 37486}, {15087, 45089}, {15311, 18565}, {15646, 43607}, {15704, 54040}, {16656, 62008}, {16657, 61984}, {16868, 46817}, {18323, 34786}, {18378, 41587}, {18394, 23323}, {18403, 41362}, {18404, 18451}, {18531, 64034}, {18559, 64025}, {18560, 30522}, {18859, 63631}, {18914, 37481}, {18925, 51023}, {18951, 37122}, {20299, 51393}, {21243, 45185}, {22115, 23335}, {22146, 27376}, {23039, 31831}, {23236, 37495}, {23294, 44452}, {23307, 41615}, {23315, 54073}, {24981, 41597}, {26886, 55534}, {26917, 44232}, {32111, 44279}, {32171, 37118}, {32321, 44259}, {35283, 55857}, {36747, 36990}, {36752, 64080}, {37347, 64049}, {37493, 39899}, {37505, 48889}, {37971, 61544}, {37981, 52432}, {41171, 52525}, {43577, 64029}, {44110, 44516}, {44795, 45177}, {44911, 45622}, {45730, 45967}, {45957, 45971}, {45959, 52069}, {46849, 61744}, {63671, 64024}
X(64036) = midpoint of X(i) and X(j) for these {i,j}: {12111, 64032}, {12278, 12290}, {14516, 16659}
X(64036) = reflection of X(i) in X(j) for these {i,j}: {3, 12134}, {52, 13419}, {185, 45286}, {382, 16655}, {5889, 11819}, {6243, 7553}, {10111, 46682}, {11750, 5907}, {12225, 5876}, {12289, 52070}, {18563, 12162}, {34224, 5}, {34783, 3575}, {34799, 12370}, {44076, 4}, {45731, 546}, {45957, 45971}, {64029, 43577}
X(64036) = pole of line {59744, 59932} with respect to the polar circle
X(64036) = pole of line {2965, 3767} with respect to the Kiepert hyperbola
X(64036) = pole of line {22, 156} with respect to the Stammler hyperbola
X(64036) = intersection, other than A, B, C, of circumconics {{A, B, C, X(66), X(11816)}}, {{A, B, C, X(13579), X(14376)}}, {{A, B, C, X(27361), X(41168)}}
X(64036) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 34799, 12370}, {52, 13419, 7540}, {68, 31383, 7517}, {399, 31724, 22660}, {542, 13419, 52}, {546, 45731, 12022}, {569, 3818, 50137}, {1503, 12134, 3}, {1594, 46818, 156}, {3564, 7553, 6243}, {6759, 18474, 10024}, {7403, 31804, 567}, {7405, 48906, 37471}, {7728, 52863, 3627}, {9927, 26883, 11799}, {10539, 18381, 2072}, {12111, 64032, 30}, {12162, 18400, 18563}, {12289, 15305, 52070}, {12370, 34799, 44076}, {13490, 43588, 3567}, {14157, 58922, 15761}, {16655, 44665, 382}, {18356, 37440, 3580}, {18451, 64037, 18404}, {23293, 26882, 10020}, {31804, 39884, 7403}
X(64037) lies on these lines: {2, 17821}, {3, 161}, {4, 6}, {5, 154}, {20, 343}, {22, 58922}, {24, 25739}, {25, 61139}, {26, 14852}, {30, 64}, {52, 382}, {66, 1350}, {98, 46729}, {125, 3515}, {140, 61735}, {155, 18569}, {159, 7395}, {184, 7507}, {185, 12173}, {221, 1478}, {235, 31383}, {265, 7517}, {355, 64022}, {376, 6696}, {378, 12289}, {381, 569}, {389, 18494}, {394, 14516}, {399, 19506}, {403, 20303}, {427, 11425}, {485, 17819}, {486, 17820}, {511, 12429}, {542, 12164}, {550, 8567}, {568, 41725}, {599, 34118}, {631, 23332}, {858, 35602}, {973, 5890}, {1147, 15139}, {1192, 18533}, {1204, 15138}, {1351, 10112}, {1352, 9924}, {1479, 2192}, {1529, 13854}, {1593, 11550}, {1594, 19357}, {1595, 41602}, {1597, 13403}, {1598, 1619}, {1614, 7547}, {1624, 38281}, {1656, 10282}, {1657, 3357}, {1658, 61702}, {1660, 16072}, {1699, 40658}, {1854, 10572}, {1899, 3575}, {1971, 13881}, {1993, 32346}, {2393, 5562}, {2777, 5073}, {2781, 25335}, {2854, 12271}, {2888, 17846}, {2931, 38450}, {2935, 9937}, {3089, 18918}, {3090, 10192}, {3091, 11206}, {3146, 6515}, {3153, 11441}, {3167, 61751}, {3172, 51363}, {3424, 60618}, {3448, 17835}, {3518, 61701}, {3522, 23328}, {3526, 11202}, {3529, 5894}, {3534, 64027}, {3543, 6225}, {3567, 41589}, {3574, 11402}, {3580, 31304}, {3627, 5878}, {3763, 7509}, {3796, 13160}, {3818, 11479}, {3827, 14872}, {3830, 12315}, {3832, 63085}, {3843, 18376}, {3851, 14530}, {5012, 32369}, {5050, 34776}, {5055, 64063}, {5056, 35260}, {5059, 54050}, {5064, 11424}, {5067, 58434}, {5068, 64059}, {5072, 50414}, {5085, 7399}, {5094, 13367}, {5449, 14070}, {5576, 37506}, {5587, 40660}, {5663, 52843}, {5691, 5903}, {5889, 52842}, {5904, 32356}, {5907, 9967}, {5922, 18017}, {6102, 40909}, {6193, 37672}, {6240, 10605}, {6241, 35480}, {6285, 12953}, {6353, 15153}, {6560, 19087}, {6561, 19088}, {6642, 45286}, {6643, 17811}, {6756, 17810}, {6823, 46264}, {6995, 15873}, {7355, 12943}, {7383, 53094}, {7387, 9927}, {7400, 44882}, {7401, 17825}, {7487, 13567}, {7488, 37638}, {7514, 13470}, {7526, 34514}, {7544, 10601}, {7550, 15582}, {7564, 32046}, {7566, 13434}, {7568, 61612}, {7569, 32391}, {7576, 18912}, {7577, 9707}, {7703, 51033}, {7706, 18128}, {7715, 31860}, {7729, 10575}, {7773, 57275}, {7973, 12699}, {8991, 9541}, {9657, 32065}, {9670, 11189}, {9714, 63735}, {9815, 45298}, {9914, 16010}, {9934, 10113}, {9935, 38433}, {10076, 10483}, {10110, 41580}, {10182, 46219}, {10264, 32316}, {10323, 44883}, {10463, 60018}, {10533, 42265}, {10534, 42262}, {10535, 10896}, {10540, 34116}, {10619, 61743}, {10895, 26888}, {10984, 43273}, {11204, 15696}, {11243, 42156}, {11244, 42153}, {11381, 44438}, {11403, 61744}, {11412, 40341}, {11413, 12278}, {11414, 48905}, {11433, 11745}, {11438, 26944}, {11442, 12225}, {11449, 30744}, {11464, 52296}, {11472, 52070}, {11482, 23048}, {11541, 50709}, {11585, 59767}, {11645, 44470}, {11744, 12295}, {11793, 18536}, {11827, 63435}, {12084, 30522}, {12118, 23335}, {12134, 17814}, {12160, 34777}, {12161, 17824}, {12235, 14915}, {12250, 33703}, {12254, 52295}, {12290, 22535}, {12370, 44413}, {12383, 23315}, {12664, 52849}, {12667, 60689}, {12688, 15942}, {12779, 31673}, {13142, 31670}, {13203, 64183}, {13289, 38724}, {13346, 34609}, {13352, 44679}, {13371, 47391}, {13399, 34469}, {13474, 36982}, {13561, 18324}, {13568, 18909}, {13851, 15125}, {14118, 61700}, {14157, 18394}, {14269, 43835}, {14458, 45300}, {14528, 44836}, {14561, 19132}, {14644, 15647}, {14788, 20300}, {14790, 37498}, {14831, 32392}, {14862, 61970}, {14927, 52404}, {15087, 32365}, {15105, 49135}, {15131, 30714}, {15270, 54004}, {15305, 63728}, {15585, 40330}, {15653, 44886}, {15682, 64187}, {15688, 32903}, {15704, 61540}, {16000, 37932}, {16195, 61646}, {16266, 17847}, {16419, 44862}, {17578, 63012}, {17800, 35450}, {17809, 31804}, {17813, 31802}, {17826, 18582}, {17827, 18581}, {18377, 32139}, {18386, 43831}, {18388, 19347}, {18392, 40241}, {18404, 18451}, {18420, 37514}, {18434, 40441}, {18439, 58789}, {18445, 31724}, {18925, 23292}, {18952, 31830}, {19457, 44795}, {19459, 45015}, {20079, 51212}, {21841, 41424}, {23293, 38444}, {23294, 32534}, {23327, 53093}, {25738, 37489}, {26881, 63657}, {26937, 37487}, {29012, 37488}, {30402, 42098}, {30403, 42095}, {31152, 43652}, {31166, 38072}, {31283, 32171}, {31723, 36747}, {31815, 32358}, {31833, 37475}, {31867, 57528}, {31884, 59778}, {32274, 38885}, {32344, 61134}, {32351, 32354}, {32609, 32743}, {33537, 34664}, {34146, 45186}, {34170, 51342}, {34286, 41425}, {34778, 48872}, {34938, 34944}, {35472, 43608}, {35503, 43607}, {39522, 45970}, {40448, 46727}, {41427, 47090}, {42263, 49250}, {42264, 49251}, {42457, 51358}, {43651, 47352}, {44479, 44870}, {44673, 55570}, {46265, 61840}, {46443, 57584}, {50691, 54211}, {52863, 64030}, {54131, 64031}, {55578, 61645}, {58492, 64100}, {58579, 63432}, {58762, 63441}
X(64037) = midpoint of X(i) and X(j) for these {i,j}: {382, 34780}, {3146, 12324}, {5073, 13093}, {12250, 33703}, {13203, 64183}, {20079, 51212}
X(64037) = reflection of X(i) in X(j) for these {i,j}: {3, 18381}, {20, 6247}, {64, 14216}, {155, 18569}, {159, 51756}, {161, 18474}, {382, 34786}, {399, 19506}, {1350, 66}, {1498, 4}, {1619, 18390}, {1657, 3357}, {2917, 6145}, {2935, 63716}, {3357, 14864}, {3529, 5894}, {5596, 5480}, {5878, 3627}, {5895, 382}, {5925, 64}, {6225, 51491}, {6293, 52}, {6759, 18383}, {6776, 15583}, {7387, 9927}, {7973, 12699}, {9833, 5}, {9924, 1352}, {9934, 10113}, {10117, 265}, {10606, 32064}, {11206, 23324}, {11744, 12295}, {12118, 23335}, {12163, 32140}, {12315, 22802}, {12383, 23315}, {12779, 31673}, {15704, 61540}, {17834, 68}, {17835, 3448}, {17845, 3}, {17846, 2888}, {19149, 18382}, {32063, 18376}, {32139, 18377}, {32354, 32351}, {32359, 3574}, {34781, 2883}, {34785, 20299}, {34787, 34118}, {36982, 13474}, {36989, 23300}, {37498, 14790}, {38885, 32274}, {39879, 3818}, {48669, 32365}, {48872, 34778}, {48905, 63420}, {58795, 5878}, {64022, 355}, {64033, 6759}
X(64037) = anticomplement of X(34782)
X(64037) = perspector of circumconic {{A, B, C, X(107), X(16039)}}
X(64037) = X(i)-Dao conjugate of X(j) for these {i, j}: {34782, 34782}
X(64037) = pole of line {6368, 39201} with respect to the circumcircle
X(64037) = pole of line {8799, 42733} with respect to the orthocentroidal circle
X(64037) = pole of line {6368, 53255} with respect to the Stammler circle
X(64037) = pole of line {1859, 10896} with respect to the Feuerbach hyperbola
X(64037) = pole of line {51, 7507} with respect to the Jerabek hyperbola
X(64037) = pole of line {394, 7488} with respect to the Stammler hyperbola
X(64037) = pole of line {6587, 60597} with respect to the Steiner inellipse
X(64037) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(64), X(8745)}}, {{A, B, C, X(68), X(1249)}}, {{A, B, C, X(393), X(6145)}}, {{A, B, C, X(6530), X(46729)}}, {{A, B, C, X(10002), X(60618)}}, {{A, B, C, X(15262), X(38260)}}, {{A, B, C, X(34438), X(52418)}}
X(64037) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 34782, 17821}, {3, 161, 2917}, {3, 18381, 1853}, {3, 18400, 17845}, {4, 12022, 10982}, {4, 16655, 15811}, {4, 18945, 12241}, {4, 34224, 1181}, {4, 34781, 2883}, {4, 5656, 5893}, {4, 6146, 6}, {4, 6776, 12233}, {5, 9833, 154}, {20, 32064, 6247}, {20, 6247, 10606}, {30, 14216, 64}, {30, 32140, 12163}, {30, 64, 5925}, {30, 68, 17834}, {52, 6000, 6293}, {68, 17834, 64060}, {159, 51756, 10516}, {184, 11572, 7507}, {381, 64033, 6759}, {382, 34780, 6000}, {1498, 18405, 4}, {1503, 15583, 6776}, {1503, 18382, 19149}, {1503, 2883, 34781}, {1503, 5480, 5596}, {1656, 10282, 61680}, {1899, 3575, 9786}, {2883, 34781, 1498}, {3091, 11206, 16252}, {3146, 12324, 15311}, {3543, 6225, 51491}, {3627, 5878, 61721}, {3830, 12315, 22802}, {3843, 32063, 61749}, {3851, 14530, 61747}, {5073, 13093, 2777}, {6000, 34786, 382}, {6240, 11457, 10605}, {6293, 34751, 52}, {6643, 64035, 17811}, {6756, 39571, 17810}, {6759, 18383, 381}, {7401, 64038, 17825}, {7517, 32321, 10117}, {9927, 44407, 7387}, {10282, 23325, 1656}, {11550, 21659, 1593}, {11750, 18474, 3}, {12118, 23335, 37497}, {12134, 18531, 17814}, {13419, 18390, 1598}, {13851, 26883, 37197}, {14157, 18394, 35488}, {14790, 44665, 37498}, {16252, 23324, 3091}, {17702, 63716, 2935}, {17845, 18381, 40686}, {18376, 61749, 3843}, {18381, 18474, 6145}, {18381, 34785, 20299}, {18383, 64033, 64024}, {18396, 34775, 18405}, {18400, 18474, 161}, {18400, 20299, 34785}, {18404, 64036, 18451}, {20300, 23041, 47355}, {23300, 36989, 5085}, {25739, 64032, 24}, {31723, 44076, 36747}, {34780, 34786, 5895}, {44288, 45731, 12161}, {45185, 61747, 14530}, {58795, 61721, 5878}
X(64038) lies on circumconic {{A, B, C, X(2980), X(14457)}} and on these lines: {2, 6146}, {3, 12241}, {4, 10601}, {5, 182}, {6, 6643}, {20, 16657}, {24, 37648}, {30, 5462}, {54, 11064}, {68, 141}, {140, 5449}, {155, 8550}, {184, 59659}, {185, 34664}, {235, 10984}, {323, 43838}, {343, 7509}, {373, 61139}, {381, 16621}, {389, 12362}, {403, 61134}, {441, 10600}, {511, 44862}, {524, 1216}, {546, 16656}, {549, 12370}, {550, 64095}, {567, 37452}, {569, 11585}, {576, 53022}, {578, 1368}, {631, 12022}, {858, 13434}, {1092, 30739}, {1147, 53415}, {1181, 6816}, {1350, 64048}, {1370, 10982}, {1498, 18537}, {1594, 37649}, {1598, 46264}, {1656, 8780}, {1853, 7404}, {1885, 64100}, {1899, 7395}, {2072, 13353}, {3066, 37122}, {3089, 25406}, {3090, 34224}, {3091, 16655}, {3526, 12024}, {3527, 31670}, {3530, 43575}, {3542, 3796}, {3545, 16659}, {3546, 11425}, {3547, 5085}, {3548, 37506}, {3564, 11793}, {3580, 37126}, {3628, 58435}, {3819, 10112}, {3832, 16654}, {3855, 16658}, {4846, 51491}, {5020, 9833}, {5055, 64036}, {5067, 35283}, {5092, 16197}, {5422, 37444}, {5446, 29181}, {5447, 58806}, {5480, 14790}, {5562, 11245}, {5892, 31833}, {5894, 49669}, {5907, 18914}, {5943, 6756}, {6193, 17811}, {6240, 15045}, {6243, 45967}, {6247, 9818}, {6642, 34782}, {6677, 10282}, {6696, 7526}, {6723, 16239}, {6776, 6804}, {6803, 18945}, {6815, 18396}, {6823, 18390}, {7386, 37498}, {7387, 15873}, {7392, 64034}, {7399, 43650}, {7401, 17825}, {7405, 18474}, {7487, 18928}, {7503, 18911}, {7505, 13394}, {7512, 32269}, {7514, 12359}, {7542, 37513}, {7550, 43808}, {7558, 61701}, {7568, 63839}, {7574, 15047}, {7576, 15024}, {7667, 45186}, {7829, 51746}, {7999, 64062}, {8718, 44803}, {9306, 31804}, {9715, 61506}, {9730, 12605}, {9815, 18494}, {9820, 32046}, {9825, 11695}, {10024, 37471}, {10116, 10170}, {10127, 45286}, {10151, 64179}, {10295, 43597}, {10540, 50139}, {10574, 52069}, {10610, 44452}, {10691, 13142}, {11179, 19347}, {11262, 11802}, {11412, 61658}, {11430, 16196}, {11432, 18536}, {11433, 17834}, {11444, 45968}, {11465, 64032}, {11479, 14216}, {11484, 64033}, {11487, 15069}, {11591, 43588}, {11819, 15026}, {12007, 12161}, {12225, 15043}, {12233, 18531}, {12429, 16419}, {13336, 15760}, {13339, 43821}, {13363, 13470}, {13403, 16836}, {13488, 46850}, {13630, 52073}, {14531, 61712}, {14788, 25739}, {14791, 44480}, {14896, 62490}, {15067, 32358}, {15153, 37347}, {15311, 40647}, {15606, 34380}, {15717, 54040}, {15805, 18420}, {16198, 19130}, {16238, 18475}, {16625, 32068}, {17810, 31305}, {18855, 52288}, {18874, 61299}, {19467, 54012}, {20299, 63679}, {20791, 52071}, {26879, 35921}, {26937, 54994}, {34002, 63735}, {34005, 43601}, {36153, 51391}, {37470, 44240}, {41588, 46728}, {43614, 46818}, {43836, 44569}, {44516, 44911}, {44920, 61749}, {45731, 55856}, {49673, 61619}, {50140, 61608}, {50143, 51425}, {58465, 64063}, {61607, 64026}
X(64038) = midpoint of X(i) and X(j) for these {i,j}: {3, 12241}, {389, 12362}, {1216, 13292}, {3530, 43575}, {5447, 58806}, {5907, 18914}, {6146, 64035}, {6756, 44829}, {10116, 31831}, {11591, 43588}, {12605, 13568}, {13142, 15644}, {13403, 31829}, {13470, 31830}, {13488, 46850}, {13630, 52073}
X(64038) = reflection of X(i) in X(j) for these {i,j}: {9825, 11695}, {11745, 5462}, {16656, 546}
X(64038) = complement of X(64035)
X(64038) = pole of line {14531, 54384} with respect to the Jerabek hyperbola
X(64038) = pole of line {32, 7401} with respect to the Kiepert hyperbola
X(64038) = pole of line {2979, 17834} with respect to the Stammler hyperbola
X(64038) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 12241, 14895}, {389, 12362, 14894}
X(64038) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6146, 64035}, {5, 48906, 6759}, {5, 64049, 16252}, {30, 5462, 11745}, {68, 7393, 141}, {1216, 13292, 524}, {1216, 43573, 13292}, {1594, 43651, 37649}, {5422, 37444, 45089}, {5943, 44829, 6756}, {6776, 6804, 17814}, {7509, 18912, 343}, {7514, 18952, 12359}, {7542, 43817, 47296}, {9730, 12605, 13568}, {10116, 10170, 31831}, {10691, 13142, 15644}, {12362, 45298, 389}, {13363, 13470, 31830}, {13403, 16836, 31829}, {15873, 44882, 7387}, {17825, 64037, 7401}, {18390, 37515, 6823}, {18531, 36752, 12233}, {37126, 43816, 3580}, {37513, 43817, 7542}
X(64039) lies on circumconic {{A, B, C, X(8048), X(43712)}} and on these lines: {1, 22}, {2, 1829}, {3, 11396}, {8, 1370}, {10, 858}, {20, 145}, {21, 41340}, {23, 11363}, {30, 12135}, {40, 11413}, {65, 81}, {69, 3827}, {72, 2895}, {74, 13397}, {92, 37191}, {100, 52359}, {109, 12089}, {110, 40660}, {172, 21861}, {283, 1782}, {355, 37444}, {394, 64022}, {515, 12225}, {516, 52071}, {518, 12220}, {519, 52397}, {857, 26157}, {901, 2694}, {912, 11412}, {942, 7520}, {960, 32782}, {962, 37201}, {1038, 24611}, {1060, 11337}, {1076, 1845}, {1214, 4225}, {1385, 7488}, {1386, 19121}, {1426, 37798}, {1482, 11414}, {1633, 38885}, {1698, 30744}, {1824, 2475}, {1828, 5046}, {1870, 37231}, {1871, 6839}, {1872, 37437}, {1902, 3146}, {1905, 35996}, {1935, 21368}, {1993, 64040}, {1995, 7713}, {2071, 3579}, {2771, 12219}, {2836, 3962}, {2915, 18447}, {2937, 51696}, {3007, 34434}, {3057, 3100}, {3060, 44547}, {3151, 6542}, {3152, 62314}, {3153, 18480}, {3534, 34729}, {3576, 38444}, {3616, 7493}, {3617, 7396}, {3622, 10565}, {3623, 59343}, {3877, 27505}, {4197, 9895}, {4216, 37565}, {4393, 7560}, {4456, 18669}, {4463, 7270}, {4640, 57590}, {4663, 11416}, {5044, 61726}, {5090, 7391}, {5285, 52362}, {5603, 59349}, {5903, 16474}, {6001, 12111}, {7293, 33178}, {7500, 7718}, {7512, 24301}, {7691, 14110}, {7957, 22528}, {7967, 59346}, {7968, 11418}, {7969, 11417}, {7982, 33524}, {7987, 38438}, {8227, 63657}, {9537, 31788}, {9538, 9957}, {9625, 51694}, {9627, 20872}, {9715, 10246}, {9778, 30552}, {9798, 26283}, {9840, 21318}, {10296, 33697}, {10298, 13624}, {10319, 59359}, {11230, 58805}, {11440, 12262}, {12245, 52398}, {12699, 44440}, {12702, 21312}, {14923, 52365}, {15178, 38435}, {16386, 31730}, {16826, 26252}, {17014, 37544}, {17441, 34772}, {17502, 38448}, {18455, 20833}, {18589, 26167}, {18659, 20911}, {19367, 62402}, {20080, 34381}, {20254, 28348}, {20291, 20718}, {22793, 50009}, {23361, 45916}, {24474, 36029}, {24584, 26203}, {25917, 41591}, {25962, 51410}, {26910, 64132}, {26911, 45120}, {30769, 46932}, {34603, 49542}, {34642, 47313}, {34773, 44239}, {37404, 37562}, {37405, 41502}, {38480, 56951}, {40959, 62802}, {41538, 56878}, {44450, 50821}, {44545, 63013}, {44661, 57287}, {47090, 61524}, {51223, 56050}, {52345, 53349}, {59348, 61286}, {59351, 61276}, {59357, 63159}
X(64039) = reflection of X(i) in X(j) for these {i,j}: {1829, 37613}, {3146, 1902}, {3868, 18732}, {3869, 41600}, {41722, 3}
X(64039) = inverse of X(20067) in DeLongchamps circle
X(64039) = anticomplement of X(1829)
X(64039) = X(i)-Dao conjugate of X(j) for these {i, j}: {1829, 1829}
X(64039) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3, 5484}, {961, 12649}, {1169, 3187}, {1220, 4}, {1240, 11442}, {1791, 8}, {1798, 1}, {2298, 5905}, {2359, 2}, {2363, 3868}, {6648, 46400}, {8707, 20293}, {14534, 17220}, {15420, 150}, {30710, 21270}, {32736, 25259}, {36098, 521}, {36147, 4391}, {57690, 4388}, {57853, 17135}
X(64039) = pole of line {513, 17496} with respect to the DeLongchamps circle
X(64039) = pole of line {7191, 11376} with respect to the Feuerbach hyperbola
X(64039) = pole of line {960, 52143} with respect to the Stammler hyperbola
X(64039) = pole of line {905, 15420} with respect to the Steiner circumellipse
X(64039) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {517, 18732, 3868}, {1829, 37613, 2}, {3101, 4296, 16049}, {3827, 41600, 3869}, {7270, 18719, 4463}
X(64040) lies on these lines: {1, 184}, {3, 63}, {6, 19}, {8, 6776}, {9, 37225}, {10, 1899}, {25, 40660}, {37, 44101}, {40, 185}, {41, 2312}, {43, 46}, {48, 201}, {51, 7713}, {57, 1425}, {73, 26934}, {125, 1698}, {154, 11363}, {165, 1204}, {197, 41538}, {212, 18673}, {217, 1572}, {355, 6146}, {377, 894}, {387, 52082}, {394, 37613}, {429, 5928}, {515, 19467}, {517, 1181}, {518, 8192}, {581, 1782}, {672, 23620}, {774, 2187}, {944, 18925}, {952, 31804}, {960, 37246}, {970, 24611}, {974, 12778}, {997, 37247}, {1011, 12514}, {1060, 1437}, {1158, 37195}, {1175, 14015}, {1211, 26066}, {1385, 19357}, {1386, 19125}, {1426, 34032}, {1452, 19366}, {1482, 19347}, {1498, 1902}, {1503, 5090}, {1571, 3269}, {1593, 6001}, {1697, 3270}, {1699, 43830}, {1708, 13738}, {1728, 13724}, {1788, 18915}, {1824, 5706}, {1837, 1884}, {1858, 3556}, {1864, 4186}, {1867, 5786}, {1868, 5776}, {1885, 12779}, {1992, 34730}, {1993, 64039}, {2083, 2200}, {2194, 17520}, {2268, 2292}, {2771, 19457}, {2836, 32251}, {3057, 19354}, {3145, 10393}, {3157, 18732}, {3176, 6618}, {3416, 26926}, {3516, 12262}, {3549, 12259}, {3576, 13367}, {3579, 10605}, {3622, 64058}, {3661, 63471}, {3751, 6467}, {3868, 37231}, {3869, 37399}, {3955, 54289}, {4196, 4295}, {4206, 62843}, {4224, 62864}, {4225, 55873}, {4663, 10602}, {5130, 37239}, {5657, 18909}, {5690, 18914}, {5691, 21659}, {5752, 59318}, {5767, 41013}, {6684, 26937}, {6910, 38000}, {7078, 17441}, {7289, 23154}, {7592, 41722}, {7718, 11206}, {7968, 19356}, {7969, 19355}, {9620, 39643}, {9780, 23291}, {9899, 64029}, {9905, 10619}, {10319, 22076}, {10394, 28029}, {11396, 11402}, {12609, 25453}, {12664, 37194}, {12785, 32377}, {13851, 18492}, {14054, 37547}, {14557, 36279}, {16049, 40571}, {16475, 21637}, {16560, 37523}, {18396, 18480}, {18397, 57281}, {18923, 19065}, {18924, 19066}, {18935, 59406}, {18945, 59387}, {18991, 21640}, {18992, 21641}, {19119, 51192}, {19360, 34339}, {19361, 61726}, {19362, 64044}, {20672, 53560}, {21663, 35242}, {24914, 26955}, {25055, 64064}, {26377, 37538}, {26866, 64132}, {26867, 45120}, {26890, 54305}, {28348, 62810}, {30076, 50426}, {31383, 49542}, {31811, 44662}, {32607, 33535}, {37305, 64021}, {37400, 56288}, {43218, 49500}, {45126, 54349}, {50581, 62393}, {52359, 61397}
X(64040) = perspector of circumconic {{A, B, C, X(108), X(1332)}}
X(64040) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7649, 59104}
X(64040) = pole of line {1946, 15313} with respect to the circumcircle
X(64040) = pole of line {33, 62333} with respect to the Feuerbach hyperbola
X(64040) = pole of line {1, 10974} with respect to the Jerabek hyperbola
X(64040) = pole of line {28, 1812} with respect to the Stammler hyperbola
X(64040) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(608)}}, {{A, B, C, X(6), X(1259)}}, {{A, B, C, X(19), X(78)}}, {{A, B, C, X(34), X(63)}}, {{A, B, C, X(65), X(3998)}}, {{A, B, C, X(72), X(1880)}}, {{A, B, C, X(607), X(1260)}}, {{A, B, C, X(1841), X(2217)}}, {{A, B, C, X(1876), X(25083)}}, {{A, B, C, X(14571), X(51379)}}
X(64040) = barycentric product X(i)*X(j) for these (i, j): {5230, 63}, {5336, 69}
X(64040) = barycentric quotient X(i)/X(j) for these (i, j): {906, 59104}, {5230, 92}, {5336, 4}
X(64040) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 64022, 1829}, {65, 2182, 4185}, {40660, 44547, 25}
X(64041) lies on these lines: {1, 90}, {2, 18419}, {4, 64043}, {5, 64045}, {8, 5555}, {10, 12}, {11, 51755}, {35, 16132}, {37, 1409}, {38, 1457}, {40, 11501}, {46, 31837}, {55, 6001}, {56, 63}, {57, 4880}, {73, 2292}, {78, 11509}, {109, 30115}, {191, 37583}, {201, 1042}, {354, 15950}, {377, 7702}, {388, 3869}, {392, 993}, {495, 14988}, {498, 34339}, {499, 942}, {515, 3057}, {517, 1478}, {518, 2099}, {527, 5434}, {551, 5083}, {612, 54400}, {651, 54292}, {846, 60682}, {946, 10957}, {950, 1898}, {984, 24806}, {986, 37694}, {997, 1470}, {1038, 1406}, {1046, 54339}, {1071, 2646}, {1104, 7299}, {1155, 64107}, {1210, 20117}, {1214, 1464}, {1317, 2801}, {1367, 1439}, {1376, 51379}, {1388, 58679}, {1399, 37539}, {1400, 3958}, {1452, 41609}, {1469, 34377}, {1479, 31937}, {1770, 37585}, {1776, 62873}, {1788, 3876}, {1837, 5777}, {1868, 1882}, {1880, 4016}, {2098, 45776}, {2357, 10901}, {2594, 3931}, {2771, 10058}, {2778, 12373}, {2792, 49537}, {2800, 10956}, {2836, 52392}, {3085, 64021}, {3189, 12529}, {3295, 40266}, {3340, 5904}, {3476, 3877}, {3485, 3868}, {3486, 12528}, {3555, 11011}, {3556, 10831}, {3584, 11571}, {3585, 49177}, {3586, 61705}, {3600, 20078}, {3601, 15071}, {3612, 13369}, {3616, 58578}, {3812, 31266}, {3827, 12588}, {3874, 64160}, {3878, 10106}, {3884, 63987}, {3911, 10176}, {3940, 37541}, {3955, 30285}, {4292, 31806}, {4415, 51421}, {4419, 56821}, {4424, 4551}, {4640, 5172}, {4642, 56198}, {4870, 24473}, {5044, 24914}, {5119, 50528}, {5204, 21165}, {5217, 9943}, {5219, 5902}, {5250, 11510}, {5261, 64047}, {5433, 5745}, {5570, 5886}, {5603, 18839}, {5697, 37709}, {5720, 11502}, {5728, 44840}, {5794, 18961}, {5795, 12059}, {5841, 45287}, {5884, 13411}, {5903, 9578}, {6261, 26357}, {6713, 10202}, {6906, 56941}, {7082, 57278}, {7098, 11684}, {7288, 55868}, {7354, 14110}, {7672, 61027}, {7686, 10895}, {7951, 53615}, {7957, 17634}, {7962, 11372}, {7965, 17642}, {8071, 45770}, {8543, 63159}, {9028, 39897}, {9370, 37614}, {9579, 30290}, {9612, 37625}, {9613, 40271}, {9654, 64044}, {9856, 12701}, {9957, 37738}, {10039, 26482}, {10167, 37600}, {10175, 12736}, {10320, 11374}, {10372, 41600}, {10572, 40263}, {10592, 61541}, {10914, 44784}, {10949, 12053}, {10950, 14872}, {10966, 63986}, {11237, 31164}, {11376, 50196}, {11507, 37700}, {11529, 18397}, {11715, 17660}, {12047, 24474}, {12115, 63962}, {12514, 37579}, {12520, 37601}, {12526, 37550}, {12532, 29007}, {12559, 14054}, {12675, 34471}, {12711, 37080}, {12721, 29069}, {12832, 18254}, {13601, 34790}, {14882, 56176}, {15253, 39544}, {15325, 61539}, {15326, 63438}, {17609, 62852}, {17614, 34880}, {17718, 50195}, {18967, 62874}, {18982, 46179}, {21867, 62753}, {22766, 24467}, {22768, 63399}, {24333, 36487}, {24475, 37737}, {25080, 63295}, {26437, 62858}, {26470, 39599}, {26741, 49992}, {26921, 59317}, {31821, 64131}, {31838, 37618}, {34048, 57277}, {34293, 52836}, {37564, 37837}, {37567, 63976}, {41003, 52385}, {41558, 47320}, {51792, 61740}, {54408, 63992}, {60936, 64139}, {63332, 63447}, {63396, 64055}, {63967, 64163}
X(64041) = midpoint of X(i) and X(j) for these {i,j}: {3869, 5905}
X(64041) = reflection of X(i) in X(j) for these {i,j}: {63, 960}, {65, 226}, {3555, 62822}, {18389, 64110}
X(64041) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 998}, {58, 30513}, {2194, 58028}, {3737, 9058}
X(64041) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 30513}, {1060, 11103}, {1214, 58028}, {40611, 998}
X(64041) = pole of line {4017, 4895} with respect to the incircle
X(64041) = pole of line {3, 950} with respect to the Feuerbach hyperbola
X(64041) = pole of line {41538, 51377} with respect to the Jerabek hyperbola
X(64041) = pole of line {60, 3193} with respect to the Stammler hyperbola
X(64041) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(21077)}}, {{A, B, C, X(10), X(90)}}, {{A, B, C, X(37), X(17757)}}, {{A, B, C, X(65), X(1470)}}, {{A, B, C, X(72), X(1069)}}, {{A, B, C, X(210), X(7072)}}, {{A, B, C, X(442), X(4227)}}, {{A, B, C, X(758), X(9001)}}, {{A, B, C, X(1211), X(26637)}}, {{A, B, C, X(2357), X(11383)}}, {{A, B, C, X(3560), X(60154)}}, {{A, B, C, X(3753), X(52148)}}, {{A, B, C, X(3754), X(60089)}}, {{A, B, C, X(17740), X(31993)}}
X(64041) = barycentric product X(i)*X(j) for these (i, j): {12, 26637}, {226, 997}, {1470, 321}, {4552, 9001}, {11383, 1231}, {17740, 65}, {26942, 4227}
X(64041) = barycentric quotient X(i)/X(j) for these (i, j): {37, 30513}, {226, 58028}, {997, 333}, {1400, 998}, {1470, 81}, {4227, 46103}, {4559, 9058}, {9001, 4560}, {11383, 1172}, {17740, 314}, {26637, 261}
X(64041) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5693, 1858}, {1, 5887, 64042}, {1, 7330, 22760}, {12, 45288, 65}, {65, 210, 40663}, {65, 72, 41538}, {392, 17625, 1319}, {950, 31803, 1898}, {1836, 5252, 64086}, {3057, 12688, 6284}, {3671, 4067, 15556}, {3962, 44782, 72}, {8581, 31165, 64106}, {8581, 64106, 5434}, {11529, 18397, 61663}, {11684, 57283, 7098}, {13601, 34790, 41687}, {18389, 64110, 354}, {25917, 37566, 5433}, {44840, 61722, 5728}
X(64042) lies on these lines: {1, 90}, {8, 30513}, {10, 10958}, {11, 65}, {31, 43703}, {37, 2288}, {40, 11502}, {55, 78}, {56, 6001}, {63, 10966}, {72, 519}, {210, 5837}, {354, 12563}, {390, 20013}, {392, 2646}, {496, 14988}, {497, 3869}, {499, 34339}, {515, 1898}, {517, 1479}, {518, 2098}, {595, 45272}, {758, 10959}, {774, 1457}, {920, 11249}, {942, 10072}, {958, 7082}, {999, 40266}, {1071, 1319}, {1158, 1470}, {1191, 1854}, {1201, 7004}, {1387, 24475}, {1388, 12675}, {1399, 1795}, {1420, 15071}, {1454, 22753}, {1476, 13243}, {1478, 31937}, {1482, 37493}, {1621, 45230}, {1697, 5692}, {1737, 26476}, {1776, 2975}, {1824, 34434}, {1831, 1856}, {1836, 9856}, {1871, 42385}, {2099, 44547}, {2771, 10074}, {2778, 12374}, {2801, 63987}, {3024, 10693}, {3086, 18838}, {3216, 45269}, {3244, 15558}, {3304, 62836}, {3340, 61663}, {3476, 12528}, {3486, 3877}, {3555, 5048}, {3556, 10832}, {3612, 31838}, {3616, 58585}, {3623, 40269}, {3753, 17606}, {3811, 26358}, {3827, 12589}, {3868, 11240}, {3870, 10965}, {3876, 58657}, {3890, 10394}, {3893, 17658}, {3913, 51379}, {3962, 10866}, {4067, 4342}, {4301, 15556}, {4640, 37564}, {4848, 61653}, {5119, 31837}, {5172, 37837}, {5204, 9943}, {5252, 5777}, {5274, 64047}, {5315, 33178}, {5432, 6700}, {5439, 10199}, {5570, 11373}, {5694, 9957}, {5697, 5727}, {5720, 11501}, {5836, 31140}, {5882, 41562}, {5884, 44675}, {5886, 13750}, {5902, 50443}, {5903, 9581}, {5904, 7962}, {5919, 37734}, {6261, 37579}, {6284, 14110}, {7069, 10459}, {7354, 12688}, {7686, 10896}, {7982, 18397}, {8069, 45770}, {8758, 10571}, {9613, 61705}, {9614, 37625}, {9624, 30274}, {9669, 64044}, {10106, 31803}, {10122, 17609}, {10167, 37605}, {10391, 34471}, {10531, 18391}, {10543, 14100}, {10593, 61541}, {10624, 31806}, {10914, 25414}, {10915, 18254}, {10944, 14872}, {10953, 24703}, {10955, 20117}, {10957, 51755}, {11011, 61722}, {11112, 17646}, {11238, 44663}, {11246, 17634}, {11375, 50195}, {11436, 40964}, {11508, 37700}, {11510, 18446}, {11928, 25413}, {12514, 26357}, {12520, 37578}, {12526, 54408}, {12640, 14740}, {12758, 23340}, {13369, 37618}, {13464, 18389}, {13601, 64157}, {16583, 38345}, {17604, 41539}, {17615, 32049}, {17625, 20323}, {17637, 30538}, {17660, 41554}, {18961, 64119}, {19861, 22768}, {21935, 35015}, {22767, 24467}, {24474, 26475}, {24914, 31788}, {26437, 62810}, {30323, 41686}, {34195, 53055}, {37550, 63992}, {37568, 64107}, {37711, 61709}, {37720, 53615}, {37722, 45288}, {40263, 45287}, {52541, 53525}, {54382, 62372}, {54386, 61397}, {63295, 63450}
X(64042) = midpoint of X(i) and X(j) for these {i,j}: {3869, 12649}, {30323, 41686}
X(64042) = reflection of X(i) in X(j) for these {i,j}: {65, 1210}, {78, 960}, {1837, 64131}, {17660, 41554}, {64045, 496}, {64046, 12053}
X(64042) = inverse of X(12616) in Feuerbach hyperbola
X(64042) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44765, 650}
X(64042) = pole of line {1769, 15313} with respect to the incircle
X(64042) = pole of line {3, 10} with respect to the Feuerbach hyperbola
X(64042) = pole of line {3193, 5323} with respect to the Stammler hyperbola
X(64042) = pole of line {1465, 40688} with respect to the dual conic of Yff parabola
X(64042) = intersection, other than A, B, C, of circumconics {{A, B, C, X(90), X(44040)}}, {{A, B, C, X(1036), X(30513)}}, {{A, B, C, X(7040), X(22758)}}
X(64042) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 30223, 22760}, {1, 5887, 64041}, {1, 7330, 22759}, {1, 90, 22758}, {65, 17638, 12672}, {392, 12711, 2646}, {497, 3869, 64043}, {517, 64131, 1837}, {758, 12053, 64046}, {950, 3878, 3057}, {1210, 2800, 65}, {1864, 3057, 10950}, {3057, 9848, 3058}, {3086, 64021, 18838}, {3962, 10866, 17642}, {10391, 58679, 34471}, {12688, 64106, 7354}, {44547, 45776, 2099}
X(64043) lies on these lines: {1, 3}, {4, 64041}, {8, 43740}, {11, 960}, {12, 1512}, {60, 3193}, {63, 22760}, {71, 8609}, {72, 1837}, {78, 11502}, {209, 22299}, {212, 3924}, {225, 1888}, {283, 18178}, {388, 55109}, {390, 64047}, {392, 11376}, {497, 3869}, {518, 10950}, {758, 950}, {908, 10958}, {912, 10572}, {946, 26481}, {952, 31831}, {1000, 10597}, {1104, 2361}, {1210, 31806}, {1329, 51379}, {1364, 10544}, {1479, 5887}, {1737, 31837}, {1776, 11684}, {1829, 1831}, {1836, 12709}, {1864, 3962}, {1898, 3586}, {1938, 11934}, {2264, 2323}, {2269, 2294}, {2292, 2654}, {2550, 14923}, {2650, 14547}, {2771, 12743}, {2778, 3028}, {2800, 10624}, {2802, 63146}, {3056, 3827}, {3058, 34695}, {3059, 3893}, {3189, 3885}, {3476, 64079}, {3486, 3868}, {3522, 18419}, {3555, 37740}, {3556, 10833}, {3562, 54292}, {3583, 16155}, {3753, 10198}, {3812, 5432}, {3876, 54361}, {3877, 10527}, {3878, 10916}, {3899, 51785}, {3925, 5836}, {4018, 12711}, {4084, 4314}, {4294, 41537}, {4304, 5884}, {4330, 11571}, {4342, 49627}, {5044, 17606}, {5252, 26332}, {5692, 9581}, {5705, 25522}, {5715, 10895}, {5727, 5904}, {5735, 8581}, {5806, 17605}, {6001, 6284}, {6046, 22464}, {6253, 10944}, {6598, 44782}, {6684, 12736}, {6738, 15556}, {6850, 7702}, {7078, 57277}, {7098, 62873}, {7354, 64003}, {8256, 51378}, {8557, 21871}, {9668, 40266}, {9943, 15338}, {10391, 10543}, {10393, 12559}, {10693, 12904}, {10947, 12672}, {10957, 45776}, {10959, 26015}, {11238, 31165}, {11240, 34744}, {11570, 13369}, {11997, 20718}, {12019, 31835}, {12116, 30305}, {12514, 62333}, {12526, 30223}, {12688, 12953}, {12721, 56819}, {12739, 33597}, {12740, 48713}, {12758, 37726}, {13274, 17638}, {13374, 15950}, {13375, 63256}, {13411, 31870}, {14988, 15171}, {15326, 64132}, {17097, 62800}, {17619, 62357}, {17622, 45700}, {17625, 64075}, {17636, 64056}, {17660, 64145}, {18239, 37001}, {18391, 41538}, {18395, 58630}, {18406, 37710}, {18673, 53557}, {20586, 48694}, {21616, 26476}, {21853, 54359}, {22072, 24443}, {22074, 40941}, {24541, 58679}, {24914, 64107}, {26470, 30384}, {29639, 34434}, {30143, 54430}, {34195, 45230}, {34791, 37734}, {37721, 41686}, {40663, 63976}, {43214, 44545}, {54418, 61397}, {54421, 61398}
X(64043) = midpoint of X(i) and X(j) for these {i,j}: {6284, 45288}
X(64043) = reflection of X(i) in X(j) for these {i,j}: {1858, 950}, {15556, 6738}
X(64043) = pole of line {1, 442} with respect to the Feuerbach hyperbola
X(64043) = pole of line {21, 64041} with respect to the Stammler hyperbola
X(64043) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(8), X(37579)}}, {{A, B, C, X(56), X(43740)}}, {{A, B, C, X(60), X(1470)}}, {{A, B, C, X(64), X(8069)}}, {{A, B, C, X(943), X(24299)}}, {{A, B, C, X(1000), X(10267)}}, {{A, B, C, X(5559), X(14798)}}, {{A, B, C, X(6598), X(37583)}}, {{A, B, C, X(40292), X(53089)}}, {{A, B, C, X(54339), X(60662)}}
X(64043) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5709, 56}, {65, 3057, 55}, {497, 3869, 64042}, {758, 950, 1858}, {3586, 5693, 1898}, {5697, 7962, 3057}, {6284, 45288, 6001}, {6738, 15556, 61663}, {10916, 12053, 26475}, {41012, 64139, 960}
X(64044) lies on these lines: {1, 3}, {2, 61541}, {4, 14988}, {5, 3869}, {8, 6917}, {30, 9961}, {47, 1411}, {49, 14529}, {52, 2818}, {72, 5790}, {145, 6934}, {221, 36747}, {355, 758}, {377, 12245}, {381, 5887}, {382, 6001}, {442, 5690}, {515, 4084}, {518, 11898}, {519, 34688}, {912, 4018}, {944, 24475}, {952, 3868}, {960, 1656}, {970, 994}, {997, 45976}, {1351, 3827}, {1389, 2975}, {1478, 45288}, {1483, 3873}, {1484, 37356}, {1709, 54145}, {1737, 6971}, {1766, 21863}, {1788, 6958}, {2650, 37698}, {2771, 5691}, {2778, 10620}, {2800, 10738}, {3218, 32153}, {3485, 6863}, {3526, 3812}, {3534, 9943}, {3556, 7517}, {3577, 6597}, {3617, 6984}, {3622, 58561}, {3654, 10197}, {3655, 12005}, {3679, 44782}, {3681, 61510}, {3698, 58630}, {3753, 31837}, {3754, 26446}, {3811, 12331}, {3830, 12688}, {3843, 31937}, {3874, 37727}, {3876, 38042}, {3877, 5901}, {3878, 5886}, {3881, 61287}, {3884, 61276}, {3889, 61286}, {3890, 10283}, {3892, 61284}, {3894, 61296}, {3898, 61277}, {3899, 8227}, {3901, 5881}, {3919, 6684}, {4004, 64107}, {4185, 41722}, {4295, 6923}, {4297, 4744}, {4301, 12616}, {4511, 6924}, {4757, 5884}, {5055, 31165}, {5070, 25917}, {5330, 45977}, {5439, 31838}, {5446, 42448}, {5587, 5694}, {5603, 6862}, {5657, 5761}, {5692, 9956}, {5693, 18480}, {5730, 6911}, {5754, 34465}, {5762, 7672}, {5812, 15556}, {5818, 31835}, {5836, 59503}, {5837, 55108}, {5841, 10950}, {5844, 14923}, {5918, 62131}, {6261, 62359}, {6796, 37733}, {6831, 22791}, {6842, 39542}, {6889, 59417}, {6905, 62830}, {6910, 10595}, {6914, 56288}, {6928, 18391}, {6929, 11415}, {6980, 12047}, {7489, 12514}, {7491, 37730}, {8261, 28443}, {8581, 51514}, {9654, 64041}, {9669, 64042}, {10107, 63976}, {10165, 33815}, {10178, 62085}, {10483, 11571}, {10526, 10573}, {10693, 38724}, {10827, 51518}, {11362, 12609}, {11374, 15865}, {11491, 34195}, {11499, 12635}, {11604, 12247}, {11928, 12672}, {12520, 16117}, {12736, 57298}, {12737, 62825}, {13747, 61530}, {14054, 18499}, {14663, 38579}, {15064, 61258}, {15071, 28160}, {15726, 49136}, {16616, 61984}, {17528, 34718}, {17638, 51517}, {17647, 28234}, {18389, 37739}, {18524, 37700}, {19362, 64040}, {19860, 26921}, {19914, 41687}, {20117, 61261}, {20306, 41587}, {20430, 20718}, {21147, 23070}, {24467, 26321}, {26201, 50811}, {28194, 34649}, {32049, 41688}, {32141, 34772}, {35976, 64136}, {36749, 64020}, {36750, 54421}, {37227, 41723}, {37251, 45770}, {37489, 63435}, {37509, 54418}, {37714, 56762}, {37721, 61722}, {37740, 62859}, {37820, 49168}, {38066, 50740}, {38752, 64139}, {48661, 64094}, {48667, 63986}, {51700, 64149}, {54400, 64053}, {55287, 58535}, {56691, 58739}, {61283, 62854}, {63159, 64173}
X(64044) = midpoint of X(i) and X(j) for these {i,j}: {4, 64047}, {3901, 5881}
X(64044) = reflection of X(i) in X(j) for these {i,j}: {3, 65}, {944, 24475}, {3869, 5}, {3878, 31870}, {5693, 18480}, {5884, 4757}, {5887, 7686}, {7491, 37730}, {18481, 5884}, {31806, 3754}, {37727, 3874}, {40266, 4}, {42448, 5446}, {55287, 58535}, {63976, 10107}
X(64044) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 10771, 64047}
X(64044) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(32613)}}, {{A, B, C, X(484), X(56148)}}, {{A, B, C, X(3576), X(6597)}}, {{A, B, C, X(11604), X(26286)}}
X(64044) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 14988, 40266}, {4, 64047, 14988}, {65, 517, 3}, {3878, 31870, 5886}, {5887, 7686, 381}, {7686, 44663, 5887}, {34772, 48363, 32141}
X(64045) lies on these lines: {1, 3}, {4, 12666}, {5, 64041}, {10, 12736}, {11, 5887}, {20, 18419}, {47, 1104}, {72, 1329}, {79, 54145}, {80, 14872}, {210, 18395}, {226, 31870}, {255, 3924}, {392, 4999}, {495, 61541}, {496, 14988}, {497, 64021}, {498, 3812}, {499, 960}, {518, 10573}, {529, 24473}, {613, 3827}, {758, 1210}, {912, 1837}, {920, 57278}, {938, 11415}, {950, 5884}, {971, 37001}, {1071, 2829}, {1406, 64053}, {1426, 1785}, {1437, 18178}, {1478, 7686}, {1479, 6001}, {1698, 58649}, {1781, 2262}, {1788, 10321}, {1828, 1844}, {1858, 5722}, {1864, 37702}, {1898, 2771}, {2778, 10081}, {2800, 12053}, {2955, 40953}, {3086, 3869}, {3157, 57277}, {3419, 41559}, {3436, 3868}, {3486, 37002}, {3555, 38455}, {3556, 10046}, {3562, 54315}, {3582, 31165}, {3583, 12688}, {3586, 15071}, {3698, 41859}, {3752, 54427}, {3753, 8256}, {3754, 31397}, {3873, 36977}, {3874, 64163}, {3878, 44675}, {3884, 18240}, {3901, 18397}, {3911, 31806}, {3918, 61029}, {4004, 25557}, {4084, 11019}, {4299, 64132}, {4302, 9943}, {4317, 63994}, {4324, 5918}, {4337, 15852}, {4744, 21625}, {4857, 11571}, {4880, 54432}, {5044, 31246}, {5083, 5882}, {5270, 8581}, {5439, 6691}, {5533, 17638}, {5693, 9581}, {5719, 61530}, {5728, 17768}, {5777, 10826}, {5784, 47033}, {5836, 12647}, {5854, 10914}, {5883, 13411}, {6738, 18389}, {6797, 10057}, {6923, 7702}, {7681, 12047}, {8068, 17606}, {8070, 17605}, {8679, 24476}, {9669, 40266}, {10050, 49171}, {10051, 10052}, {10058, 64118}, {10072, 44663}, {10090, 59691}, {10320, 24914}, {10483, 63995}, {10785, 14647}, {10896, 31937}, {10948, 12672}, {10954, 13407}, {11502, 37700}, {12758, 17622}, {12832, 32554}, {13375, 39779}, {13405, 33815}, {14986, 64047}, {15518, 41712}, {15733, 41709}, {16118, 31391}, {17625, 45287}, {17646, 52367}, {17861, 52385}, {18239, 41698}, {18594, 55120}, {22134, 40941}, {22350, 24443}, {22760, 24467}, {24248, 45963}, {24465, 31775}, {24475, 37730}, {25681, 41389}, {26364, 51379}, {28075, 36574}, {28645, 44547}, {31141, 41686}, {37708, 54134}, {37737, 61534}, {40985, 54368}
X(64045) = midpoint of X(i) and X(j) for these {i,j}: {3436, 3868}, {15071, 52860}
X(64045) = reflection of X(i) in X(j) for these {i,j}: {56, 942}, {72, 1329}, {4299, 64132}, {64042, 496}
X(64045) = pole of line {1, 6923} with respect to the Feuerbach hyperbola
X(64045) = pole of line {513, 2077} with respect to the Suppa-Cucoanes circle
X(64045) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(8069)}}, {{A, B, C, X(7), X(22766)}}, {{A, B, C, X(8), X(11508)}}, {{A, B, C, X(998), X(37550)}}, {{A, B, C, X(3478), X(40255)}}, {{A, B, C, X(5172), X(17101)}}, {{A, B, C, X(5665), X(59335)}}, {{A, B, C, X(36052), X(37583)}}, {{A, B, C, X(37531), X(42464)}}, {{A, B, C, X(37579), X(42019)}}
X(64045) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 45288, 5887}, {496, 14988, 64042}, {517, 942, 56}, {5902, 5903, 3339}, {10572, 11570, 1071}
X(64046) lies on these lines: {1, 3}, {10, 50208}, {11, 72}, {38, 2654}, {63, 62333}, {210, 1329}, {212, 28082}, {219, 39943}, {244, 22072}, {283, 18191}, {392, 24953}, {497, 1858}, {499, 31837}, {518, 1837}, {758, 10959}, {908, 26476}, {912, 1479}, {938, 61663}, {946, 10957}, {950, 3874}, {960, 10527}, {971, 12953}, {1071, 6284}, {1210, 41538}, {1364, 59809}, {1512, 26482}, {1698, 58645}, {1827, 1828}, {1836, 55109}, {1864, 14054}, {2194, 3193}, {2260, 17452}, {2771, 12374}, {2778, 12382}, {2829, 12680}, {2836, 32290}, {3056, 24476}, {3058, 12711}, {3254, 6598}, {3486, 3873}, {3555, 10950}, {3556, 10835}, {3583, 40263}, {3681, 54361}, {3698, 3826}, {3811, 11502}, {3827, 12595}, {3869, 10529}, {3876, 10589}, {3877, 30478}, {3893, 5854}, {3901, 51785}, {3927, 7082}, {3962, 26015}, {4084, 4342}, {4297, 5083}, {4302, 13369}, {4304, 12005}, {4420, 60782}, {5130, 12586}, {5225, 12528}, {5252, 7686}, {5432, 5439}, {5433, 64107}, {5692, 50443}, {5693, 9614}, {5694, 7743}, {5705, 31246}, {5722, 10953}, {5728, 60919}, {5735, 31391}, {5777, 10896}, {5806, 10895}, {5884, 10624}, {5887, 10943}, {5904, 9581}, {6001, 12116}, {6067, 21677}, {6260, 12831}, {7074, 17054}, {7354, 17625}, {7681, 17605}, {8261, 42819}, {8581, 45634}, {8609, 21871}, {9578, 38036}, {9580, 15071}, {9668, 41685}, {10167, 15338}, {10587, 38053}, {10593, 31835}, {10806, 30305}, {10936, 10941}, {10947, 12699}, {10949, 12672}, {10958, 21077}, {11019, 15556}, {11214, 45022}, {11238, 64131}, {11240, 44663}, {11362, 12736}, {11375, 13374}, {11684, 53055}, {11920, 12686}, {12675, 37002}, {12688, 48482}, {12739, 37837}, {12740, 13279}, {12764, 15094}, {12776, 20586}, {13081, 31588}, {13082, 31589}, {13122, 32383}, {14100, 16142}, {14872, 37821}, {14988, 32214}, {15171, 24475}, {17638, 37726}, {17658, 21031}, {18251, 31140}, {18389, 63999}, {18412, 37723}, {18419, 20070}, {18543, 40266}, {18544, 31937}, {20118, 32554}, {22277, 22298}, {22760, 62858}, {22798, 60384}, {24465, 31777}, {24914, 63976}, {25681, 51379}, {25917, 26363}, {30223, 54422}, {31165, 45700}, {31397, 31870}, {31806, 44675}, {34791, 36977}, {35262, 58585}, {36052, 52408}, {37828, 51378}, {38455, 41575}, {40659, 59414}, {43740, 46354}, {45230, 63159}, {46677, 55016}, {49168, 64087}, {53557, 54360}, {57277, 64069}, {58578, 62829}, {63327, 63396}, {63995, 64003}, {64047, 64151}
X(64046) = midpoint of X(i) and X(j) for these {i,j}: {3868, 11415}
X(64046) = reflection of X(i) in X(j) for these {i,j}: {46, 942}, {72, 21616}, {1898, 1479}, {3057, 2098}, {14872, 37821}, {36977, 34791}, {37002, 12675}, {41538, 1210}, {64042, 12053}
X(64046) = pole of line {513, 59977} with respect to the incircle
X(64046) = pole of line {21302, 44426} with respect to the polar circle
X(64046) = pole of line {513, 59977} with respect to the DeLongchamps ellipse
X(64046) = pole of line {1, 224} with respect to the Feuerbach hyperbola
X(64046) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(40505)}}, {{A, B, C, X(8), X(11510)}}, {{A, B, C, X(56), X(46354)}}, {{A, B, C, X(1000), X(16202)}}, {{A, B, C, X(2078), X(6598)}}, {{A, B, C, X(3254), X(37583)}}, {{A, B, C, X(7742), X(42019)}}, {{A, B, C, X(32760), X(56587)}}, {{A, B, C, X(34489), X(39943)}}, {{A, B, C, X(37569), X(42464)}}, {{A, B, C, X(37579), X(43740)}}
X(64046) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {354, 3057, 2646}, {497, 3868, 1858}, {517, 2098, 3057}, {517, 942, 46}, {758, 12053, 64042}, {912, 1479, 1898}, {1210, 41538, 61653}, {12053, 49627, 10959}, {31246, 58649, 61686}
X(64047) lies on these lines: {1, 89}, {2, 65}, {3, 62830}, {4, 14988}, {7, 21273}, {8, 79}, {10, 25958}, {20, 145}, {23, 3556}, {35, 62822}, {36, 45392}, {40, 34772}, {46, 4188}, {55, 34195}, {56, 18419}, {57, 11682}, {63, 3340}, {72, 3617}, {78, 2093}, {81, 37614}, {100, 12635}, {144, 7672}, {149, 151}, {191, 30147}, {192, 20718}, {193, 3827}, {210, 10107}, {214, 37524}, {221, 1993}, {244, 28370}, {329, 5554}, {346, 21853}, {354, 3890}, {388, 17483}, {390, 64043}, {392, 31794}, {404, 5730}, {405, 1159}, {484, 22836}, {512, 49303}, {516, 41575}, {518, 1278}, {519, 1770}, {535, 37706}, {760, 40868}, {908, 4848}, {942, 3622}, {958, 11684}, {994, 9534}, {997, 17572}, {999, 5330}, {1046, 49487}, {1104, 30653}, {1122, 33800}, {1125, 3899}, {1155, 37307}, {1158, 7982}, {1191, 55437}, {1210, 51423}, {1265, 60459}, {1320, 8148}, {1389, 22758}, {1479, 5180}, {1482, 6906}, {1616, 3315}, {1697, 3957}, {1698, 3919}, {1706, 3984}, {1722, 63096}, {1737, 5154}, {1829, 63009}, {1836, 5086}, {1837, 5057}, {1854, 9539}, {1938, 17494}, {1994, 64020}, {1999, 12435}, {2094, 4308}, {2098, 62837}, {2099, 2975}, {2262, 62985}, {2263, 63088}, {2306, 5239}, {2345, 21863}, {2390, 62187}, {2476, 39542}, {2551, 26792}, {2646, 17548}, {2650, 17018}, {2651, 11101}, {2771, 20084}, {2778, 64102}, {2802, 20050}, {2818, 5889}, {2899, 30578}, {3057, 3623}, {3060, 42448}, {3086, 53615}, {3090, 61541}, {3091, 5887}, {3146, 6001}, {3189, 20095}, {3210, 20040}, {3212, 20347}, {3219, 5234}, {3240, 4642}, {3241, 3874}, {3244, 3894}, {3245, 8715}, {3295, 37285}, {3306, 15829}, {3336, 30144}, {3339, 19861}, {3436, 17484}, {3474, 37256}, {3486, 15680}, {3522, 14110}, {3523, 34339}, {3580, 20306}, {3601, 63144}, {3616, 3878}, {3624, 33815}, {3632, 4338}, {3633, 4333}, {3651, 3871}, {3671, 24987}, {3678, 53620}, {3679, 4067}, {3681, 3962}, {3698, 63961}, {3727, 63066}, {3740, 3922}, {3746, 62860}, {3753, 3876}, {3754, 5692}, {3811, 63136}, {3832, 7686}, {3839, 31937}, {3870, 7991}, {3872, 54422}, {3880, 20014}, {3881, 20057}, {3884, 18398}, {3889, 9957}, {3895, 41863}, {3897, 3916}, {3898, 50190}, {3924, 17127}, {3935, 11523}, {3951, 9623}, {3959, 37657}, {3999, 45219}, {4004, 5044}, {4193, 51409}, {4296, 54400}, {4299, 6224}, {4301, 26015}, {4313, 39772}, {4323, 5744}, {4420, 54286}, {4424, 19767}, {4454, 34377}, {4525, 4691}, {4536, 51068}, {4537, 4745}, {4671, 17751}, {4855, 5128}, {4861, 25415}, {4867, 25440}, {4880, 8666}, {4881, 15803}, {4930, 13587}, {4973, 21842}, {5046, 11415}, {5059, 9961}, {5080, 10573}, {5083, 6049}, {5119, 12559}, {5141, 12047}, {5176, 41687}, {5183, 56176}, {5221, 5253}, {5240, 33654}, {5248, 5425}, {5249, 5837}, {5250, 11529}, {5255, 36565}, {5261, 64041}, {5265, 18838}, {5274, 64042}, {5303, 34471}, {5311, 11533}, {5535, 40257}, {5550, 5883}, {5603, 6888}, {5657, 26487}, {5690, 6937}, {5693, 59387}, {5694, 5818}, {5704, 12736}, {5710, 29815}, {5731, 5884}, {5770, 6847}, {5777, 54448}, {5794, 20292}, {5795, 17781}, {5835, 32782}, {5855, 7354}, {5918, 62124}, {5919, 62854}, {6553, 59263}, {6845, 22791}, {6850, 12245}, {6892, 10595}, {6908, 10528}, {7226, 10459}, {7673, 15185}, {7962, 62832}, {7967, 24475}, {8261, 15676}, {9335, 21214}, {9352, 59691}, {9536, 40571}, {9544, 14529}, {9578, 31164}, {9654, 59416}, {9778, 20612}, {9943, 50693}, {10176, 19877}, {10178, 62078}, {10273, 31837}, {10306, 64189}, {10381, 31037}, {10441, 37639}, {10480, 58820}, {10526, 12247}, {10587, 11036}, {10680, 10698}, {10914, 31145}, {10944, 34605}, {10950, 17768}, {11002, 42450}, {11010, 16126}, {11041, 13100}, {11114, 37730}, {11280, 22837}, {11509, 37293}, {11518, 29817}, {11526, 60990}, {11531, 36846}, {11681, 40663}, {11851, 19993}, {12432, 31018}, {12437, 63145}, {12513, 62235}, {12514, 16865}, {12532, 41686}, {12560, 60969}, {12688, 17578}, {13463, 51463}, {14497, 61148}, {14986, 64045}, {14997, 54386}, {15016, 54445}, {15692, 40296}, {15726, 50692}, {16150, 18525}, {16466, 54315}, {16610, 27645}, {16616, 61985}, {16704, 41723}, {16828, 22307}, {16859, 54318}, {17016, 37685}, {17024, 37549}, {17137, 24282}, {17154, 17480}, {17364, 29311}, {17479, 64071}, {17490, 34434}, {17495, 20036}, {17512, 46441}, {17521, 62843}, {17576, 62864}, {17609, 62835}, {17755, 30057}, {17784, 20013}, {18201, 32577}, {18412, 63975}, {18467, 37583}, {18607, 37548}, {18663, 20011}, {18664, 52364}, {19582, 46938}, {19784, 56463}, {19836, 56459}, {19998, 22300}, {20087, 51192}, {20109, 21216}, {21272, 36854}, {21281, 31130}, {21285, 33867}, {21677, 33108}, {21740, 59318}, {21767, 56000}, {21866, 27396}, {22299, 41839}, {23154, 45955}, {23839, 43983}, {24174, 27625}, {24471, 45789}, {24558, 64142}, {24982, 27131}, {25965, 26688}, {27086, 59317}, {27383, 64139}, {27525, 51379}, {27571, 61172}, {29350, 47676}, {29849, 49609}, {30329, 52653}, {30652, 62802}, {31393, 62861}, {33650, 34242}, {34040, 55399}, {34610, 35596}, {34698, 37430}, {34790, 50736}, {37433, 54161}, {37542, 62814}, {37556, 62815}, {37568, 61157}, {37700, 48363}, {37709, 60933}, {38074, 56762}, {41600, 63057}, {41712, 61026}, {41717, 44545}, {44840, 62870}, {49168, 52367}, {49492, 63996}, {52682, 59356}, {53356, 53562}, {54344, 62999}, {54382, 63004}, {54383, 62392}, {54418, 63074}, {58679, 64149}, {59265, 59760}, {59491, 64160}, {62370, 63524}, {62825, 63210}, {64002, 64163}, {64046, 64151}
X(64047) = reflection of X(i) in X(j) for these {i,j}: {1, 4084}, {4, 64044}, {8, 5903}, {20, 64021}, {72, 50193}, {144, 7672}, {145, 3868}, {962, 37625}, {3621, 14923}, {3868, 4018}, {3869, 65}, {3878, 4757}, {3885, 3555}, {3899, 4744}, {3962, 5836}, {5059, 9961}, {5697, 3874}, {6224, 11571}, {7673, 15185}, {12245, 25413}, {33650, 34242}, {37433, 54161}, {54213, 3651}, {63975, 18412}, {64002, 64163}
X(64047) = anticomplement of X(3869)
X(64047) = perspector of circumconic {{A, B, C, X(4604), X(15455)}}
X(64047) = X(i)-Dao conjugate of X(j) for these {i, j}: {3869, 3869}
X(64047) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2995, 2}
X(64047) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56, 56819}, {2217, 8}, {2995, 6327}, {10570, 3436}, {13478, 69}, {15232, 1330}, {15386, 100}, {19607, 20245}, {26704, 20293}, {32653, 514}, {36050, 513}, {40160, 2893}, {44765, 20295}, {54951, 512}, {57757, 3888}, {57906, 315}, {59005, 523}
X(64047) = pole of line {16228, 54244} with respect to the polar circle
X(64047) = pole of line {3486, 3622} with respect to the Feuerbach hyperbola
X(64047) = pole of line {6758, 53349} with respect to the Kiepert parabola
X(64047) = pole of line {4653, 17104} with respect to the Stammler hyperbola
X(64047) = pole of line {905, 1577} with respect to the Steiner circumellipse
X(64047) = intersection, other than A, B, C, of circumconics {{A, B, C, X(79), X(959)}}, {{A, B, C, X(89), X(30690)}}, {{A, B, C, X(2320), X(31359)}}, {{A, B, C, X(5267), X(60079)}}, {{A, B, C, X(6757), X(53114)}}, {{A, B, C, X(42485), X(44663)}}
X(64047) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5267, 2320}, {1, 56288, 4189}, {8, 14450, 1478}, {8, 17164, 28605}, {8, 4295, 2475}, {8, 5905, 20060}, {46, 4511, 4188}, {65, 31165, 3812}, {65, 3869, 2}, {65, 44663, 3869}, {145, 20067, 944}, {145, 20070, 20075}, {145, 3868, 4430}, {145, 9965, 20076}, {517, 3555, 3885}, {517, 4018, 3868}, {517, 64021, 20}, {518, 14923, 3621}, {758, 5903, 8}, {908, 4848, 25005}, {942, 3877, 3622}, {962, 12649, 149}, {962, 9803, 48482}, {1697, 11520, 3957}, {2650, 37598, 17018}, {2800, 37625, 962}, {3057, 3873, 3623}, {3245, 41696, 8715}, {3339, 19861, 27003}, {3486, 44447, 15680}, {3555, 3885, 145}, {3671, 24987, 31019}, {3753, 3876, 46933}, {3754, 5692, 9780}, {3868, 3885, 3555}, {3874, 5697, 3241}, {3878, 4757, 5902}, {3878, 5902, 3616}, {3884, 18398, 38314}, {3916, 50194, 3897}, {3962, 5836, 3681}, {4880, 11009, 8666}, {5221, 5289, 5253}, {5255, 49454, 36565}, {5730, 36279, 404}, {9957, 24473, 3889}, {11523, 63130, 3935}, {11531, 62823, 36846}, {12526, 18421, 19860}, {12635, 37567, 100}, {14988, 64044, 4}, {15803, 56387, 4881}, {17016, 54421, 37685}, {37549, 62804, 17024}
X(64048) lies on these lines: {2, 36747}, {3, 11433}, {4, 52}, {5, 69}, {6, 3547}, {20, 12022}, {24, 54217}, {25, 6193}, {26, 18925}, {30, 18909}, {49, 35260}, {51, 7401}, {54, 7493}, {140, 18928}, {143, 18420}, {155, 193}, {185, 18910}, {235, 12160}, {265, 38442}, {317, 1093}, {343, 7404}, {371, 24246}, {372, 24245}, {376, 43573}, {381, 31802}, {382, 12324}, {511, 6643}, {524, 15873}, {539, 7714}, {567, 47525}, {568, 63709}, {569, 7494}, {571, 56891}, {631, 13352}, {1092, 61506}, {1147, 6353}, {1181, 61658}, {1216, 6804}, {1350, 64038}, {1352, 10110}, {1353, 19347}, {1370, 18912}, {1596, 12164}, {1598, 3564}, {1899, 34938}, {1992, 12161}, {1993, 3542}, {2777, 18932}, {2794, 39804}, {2888, 7394}, {2895, 6846}, {3088, 12359}, {3090, 23061}, {3091, 45794}, {3146, 34796}, {3147, 34148}, {3167, 21841}, {3410, 63666}, {3528, 32110}, {3541, 3580}, {3546, 13567}, {3548, 37643}, {3549, 11427}, {3567, 6815}, {3629, 16252}, {3832, 37779}, {3855, 12325}, {5050, 16197}, {5422, 7383}, {5449, 8889}, {5462, 6803}, {5562, 18537}, {5654, 6622}, {5739, 6824}, {5890, 37201}, {6146, 31305}, {6225, 34783}, {6243, 18531}, {6337, 52278}, {6403, 11382}, {6503, 52014}, {6623, 22660}, {6676, 11426}, {6756, 12429}, {6759, 41719}, {6776, 7387}, {6816, 11412}, {6823, 11432}, {6862, 14555}, {6959, 18141}, {6964, 32863}, {6995, 12134}, {6997, 9781}, {7386, 10625}, {7393, 10519}, {7399, 9777}, {7400, 36752}, {7487, 44665}, {7492, 43838}, {7500, 34224}, {7505, 37645}, {7517, 11206}, {7529, 14826}, {7530, 32358}, {7544, 11002}, {7553, 64034}, {7558, 63085}, {7592, 59349}, {7689, 64096}, {9715, 47582}, {9730, 10996}, {9818, 64066}, {9820, 63092}, {9833, 10112}, {9896, 49542}, {9909, 31804}, {9936, 46261}, {10116, 39874}, {10201, 15806}, {10243, 19459}, {10263, 14790}, {10539, 63174}, {11003, 59351}, {11008, 15068}, {11245, 11414}, {11424, 41586}, {11441, 41628}, {11477, 63129}, {12084, 18931}, {12085, 18913}, {12106, 22550}, {12118, 64095}, {12241, 17834}, {12295, 12317}, {12605, 41465}, {13347, 32068}, {13383, 63656}, {13391, 18952}, {13450, 37192}, {13598, 14216}, {13630, 15740}, {14070, 43595}, {14449, 18569}, {14516, 37122}, {14912, 19121}, {15022, 15108}, {15043, 45073}, {15077, 16982}, {15741, 40909}, {15760, 37493}, {16051, 43817}, {16063, 43816}, {16266, 37669}, {16881, 50008}, {17702, 18947}, {17810, 64035}, {18381, 31670}, {18534, 34781}, {18911, 64050}, {18914, 39568}, {18915, 64053}, {18922, 64054}, {18950, 52398}, {19119, 64052}, {19357, 32269}, {19458, 40318}, {21850, 61544}, {23291, 23335}, {23698, 39833}, {24243, 49029}, {24244, 49028}, {25738, 32064}, {26871, 37532}, {34608, 61713}, {34780, 58764}, {35513, 40647}, {37444, 62187}, {37483, 63081}, {37672, 59659}, {37814, 53050}, {38282, 64181}, {39522, 63734}, {40698, 47731}, {43839, 52290}, {43995, 52448}, {44262, 63022}, {44275, 63064}, {44862, 52987}, {56292, 62961}, {58806, 59346}, {61607, 64067}, {62979, 63649}
X(64048) = reflection of X(i) in X(j) for these {i,j}: {6643, 39571}, {11411, 18934}, {17814, 15873}, {18909, 18951}
X(64048) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {62886, 4329}
X(64048) = pole of line {5013, 7404} with respect to the Kiepert hyperbola
X(64048) = pole of line {1147, 5892} with respect to the Stammler hyperbola
X(64048) = pole of line {631, 9723} with respect to the Wallace hyperbola
X(64048) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(317), X(11411)}}, {{A, B, C, X(847), X(8797)}}, {{A, B, C, X(3527), X(14593)}}, {{A, B, C, X(5962), X(38442)}}
X(64048) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 69, 11487}, {20, 37644, 18916}, {30, 18951, 18909}, {68, 5446, 4}, {193, 3089, 155}, {343, 10982, 7404}, {382, 18917, 12324}, {524, 15873, 17814}, {1899, 45186, 34938}, {6146, 33586, 31305}, {7387, 13292, 6776}, {10263, 14790, 51212}, {12359, 44413, 3088}, {13142, 41588, 3}, {13567, 37498, 3546}, {13754, 18934, 11411}, {18912, 64051, 1370}
X(64049) lies on these lines: {2, 1614}, {3, 49}, {4, 569}, {5, 182}, {6, 5446}, {20, 54}, {22, 52}, {23, 3567}, {24, 6800}, {25, 5462}, {26, 389}, {30, 578}, {51, 7517}, {68, 1176}, {69, 9936}, {74, 56071}, {110, 631}, {125, 6639}, {140, 156}, {141, 31831}, {143, 17714}, {154, 5892}, {186, 10574}, {195, 37484}, {215, 5217}, {216, 23128}, {217, 10316}, {343, 34002}, {371, 9687}, {372, 9677}, {376, 34148}, {378, 10575}, {381, 11572}, {382, 567}, {511, 12161}, {542, 44491}, {548, 37480}, {549, 13347}, {550, 13346}, {568, 2937}, {575, 7530}, {576, 8546}, {577, 46394}, {597, 63663}, {601, 52434}, {692, 10267}, {974, 12893}, {1154, 7525}, {1173, 63076}, {1199, 3060}, {1205, 45016}, {1209, 7558}, {1352, 5157}, {1368, 9820}, {1370, 17712}, {1495, 7506}, {1498, 9818}, {1499, 57206}, {1579, 8909}, {1593, 14915}, {1598, 1974}, {1656, 10540}, {1657, 37472}, {1658, 11438}, {1660, 6644}, {1899, 3549}, {1993, 10323}, {1994, 11423}, {2070, 37481}, {2194, 36754}, {2393, 44480}, {2477, 5204}, {2777, 12228}, {2794, 39805}, {2914, 13201}, {2917, 11802}, {2931, 11806}, {2979, 56292}, {3043, 15055}, {3044, 21166}, {3045, 34474}, {3046, 38690}, {3047, 15035}, {3048, 38698}, {3053, 9604}, {3089, 19128}, {3091, 14157}, {3098, 6101}, {3146, 8718}, {3200, 5351}, {3201, 5352}, {3202, 13334}, {3203, 5171}, {3205, 5237}, {3206, 5238}, {3309, 58314}, {3357, 10274}, {3518, 15043}, {3520, 15072}, {3521, 18562}, {3522, 9545}, {3523, 9544}, {3526, 5651}, {3527, 53091}, {3528, 9706}, {3534, 37495}, {3538, 64177}, {3544, 46865}, {3546, 14156}, {3548, 43839}, {3564, 12229}, {3574, 31723}, {3575, 7706}, {3867, 18583}, {3955, 24467}, {4550, 7503}, {5020, 14530}, {5067, 43614}, {5070, 22112}, {5085, 7393}, {5092, 7516}, {5133, 16659}, {5135, 5707}, {5198, 44863}, {5206, 9697}, {5320, 37509}, {5422, 10594}, {5432, 9652}, {5433, 9667}, {5448, 18531}, {5504, 15740}, {5576, 11550}, {5609, 32305}, {5622, 36253}, {5640, 34484}, {5654, 6643}, {5878, 49669}, {5889, 7512}, {5890, 7488}, {5891, 7509}, {5899, 11692}, {5907, 7514}, {5943, 13861}, {5944, 11202}, {5946, 37440}, {6000, 7526}, {6102, 7502}, {6146, 9927}, {6153, 9920}, {6193, 7400}, {6241, 14118}, {6243, 13564}, {6247, 44679}, {6413, 8961}, {6449, 9686}, {6636, 11412}, {6676, 12359}, {6689, 14216}, {6823, 31804}, {6862, 37527}, {6914, 13323}, {7193, 26921}, {7395, 18451}, {7399, 12134}, {7401, 11206}, {7403, 16655}, {7404, 34781}, {7464, 52093}, {7493, 18916}, {7494, 11411}, {7505, 18911}, {7527, 12290}, {7528, 31383}, {7529, 10601}, {7542, 13394}, {7545, 15047}, {7550, 15056}, {7552, 43808}, {7553, 45089}, {7569, 61700}, {7712, 43600}, {7987, 9587}, {7999, 15246}, {8151, 8723}, {8550, 13292}, {8883, 59172}, {9517, 58316}, {9586, 16192}, {9603, 15815}, {9622, 35242}, {9653, 15326}, {9666, 15338}, {9696, 15515}, {9705, 15717}, {9707, 17928}, {9715, 37489}, {9735, 52909}, {9736, 52910}, {9781, 34545}, {9786, 14070}, {9826, 15647}, {9833, 18420}, {9909, 11432}, {9934, 46686}, {10117, 11557}, {10192, 16238}, {10201, 18952}, {10298, 43611}, {10311, 41334}, {10535, 37696}, {10620, 11597}, {10661, 11516}, {10662, 11515}, {10665, 11514}, {10666, 11513}, {10982, 18534}, {11134, 22236}, {11137, 22238}, {11179, 39571}, {11245, 41587}, {11248, 20986}, {11402, 11414}, {11413, 14855}, {11422, 64050}, {11425, 12085}, {11426, 39568}, {11427, 34938}, {11429, 64054}, {11430, 12084}, {11439, 12112}, {11449, 20791}, {11459, 37126}, {11464, 22467}, {11472, 12315}, {11479, 32063}, {11565, 18379}, {11574, 19139}, {11695, 50414}, {11818, 13419}, {11935, 62085}, {12006, 12106}, {12042, 57011}, {12083, 13366}, {12111, 35921}, {12118, 12318}, {12160, 37486}, {12174, 54994}, {12235, 32048}, {12254, 12278}, {12279, 14865}, {12289, 34007}, {12362, 22660}, {12901, 44573}, {13160, 18474}, {13198, 17702}, {13247, 51536}, {13289, 14708}, {13335, 52278}, {13369, 47371}, {13371, 61619}, {13383, 13567}, {13391, 32136}, {13445, 35475}, {13470, 18377}, {13474, 31861}, {13482, 15683}, {13505, 14652}, {13509, 26216}, {13595, 15024}, {13598, 37505}, {13621, 44082}, {14130, 14805}, {14133, 37242}, {14389, 15559}, {14529, 34339}, {14531, 37494}, {14790, 46264}, {14810, 15606}, {14852, 19129}, {14861, 16867}, {14912, 19121}, {14940, 26913}, {15037, 18378}, {15045, 26882}, {15053, 44879}, {15067, 17508}, {15132, 20417}, {15139, 40686}, {15305, 35500}, {15462, 16534}, {15463, 16111}, {15580, 41579}, {15581, 43130}, {15644, 16266}, {15692, 43572}, {15696, 37477}, {15712, 40111}, {15761, 18390}, {15873, 51730}, {16187, 16239}, {16194, 63664}, {16226, 51519}, {17809, 35243}, {17821, 37475}, {18356, 45732}, {18374, 53093}, {18388, 18569}, {18404, 43831}, {18435, 34864}, {18438, 19362}, {18559, 41482}, {18580, 25563}, {18912, 63735}, {18917, 47525}, {18923, 19061}, {18924, 19062}, {18931, 43617}, {19123, 63069}, {19153, 44503}, {19365, 64053}, {19456, 19468}, {19458, 19459}, {19548, 34465}, {20191, 26937}, {20299, 58447}, {21243, 32140}, {21659, 64179}, {21841, 45298}, {21844, 43601}, {22234, 37967}, {22758, 55098}, {22802, 34114}, {23239, 58048}, {23292, 23335}, {23698, 39834}, {25337, 43588}, {26864, 43586}, {26884, 37612}, {26888, 37697}, {26889, 37532}, {26917, 58805}, {26925, 53061}, {30209, 58310}, {31725, 61744}, {31833, 34782}, {31834, 33533}, {31837, 42463}, {32110, 38444}, {32284, 32621}, {32338, 45839}, {32767, 40276}, {33540, 55692}, {33556, 43898}, {33586, 37493}, {33749, 44490}, {34117, 44479}, {34473, 58058}, {34513, 45956}, {34779, 44544}, {34786, 44263}, {35473, 51033}, {35477, 52416}, {36153, 39561}, {36742, 44085}, {36750, 44104}, {37198, 37483}, {37347, 64036}, {37510, 44120}, {37644, 59351}, {38064, 43811}, {38691, 58060}, {38692, 58057}, {38693, 58056}, {38694, 58053}, {38695, 58052}, {38696, 58050}, {38697, 58051}, {38699, 58049}, {38706, 58062}, {38710, 58068}, {38712, 58055}, {38713, 58054}, {38714, 58067}, {38715, 58063}, {38716, 58059}, {38717, 58064}, {38718, 58066}, {38728, 54073}, {40280, 43809}, {40320, 52438}, {40920, 61878}, {44489, 50979}, {45959, 49671}, {47528, 51392}, {48876, 52016}, {51739, 64196}, {55711, 56918}, {57482, 58925}, {58407, 61736}, {58465, 61606}, {58806, 59349}, {61701, 63657}
X(64049) = midpoint of X(i) and X(j) for these {i,j}: {3, 1181}, {6823, 31804}, {11414, 36747}, {12160, 37486}
X(64049) = reflection of X(i) in X(j) for these {i,j}: {578, 32046}, {3867, 18583}, {12161, 64026}, {46728, 7525}
X(64049) = inverse of X(11487) in Stammler hyperbola
X(64049) = X(i)-isoconjugate-of-X(j) for these {i, j}: {158, 42021}, {24006, 43351}
X(64049) = X(i)-Dao conjugate of X(j) for these {i, j}: {1147, 42021}
X(64049) = X(i)-Ceva conjugate of X(j) for these {i, j}: {5395, 32}, {5422, 13345}, {56338, 577}
X(64049) = pole of line {525, 10279} with respect to the 1st Brocard circle
X(64049) = pole of line {3, 54384} with respect to the Jerabek hyperbola
X(64049) = pole of line {8673, 57135} with respect to the Johnson circumconic
X(64049) = pole of line {32, 7403} with respect to the Kiepert hyperbola
X(64049) = pole of line {4, 1216} with respect to the Stammler hyperbola
X(64049) = pole of line {33294, 52584} with respect to the Steiner inellipse
X(64049) = pole of line {264, 1238} with respect to the Wallace hyperbola
X(64049) = pole of line {2970, 53575} with respect to the dual conic of Wallace hyperbola
X(64049) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 1181, 18338}
X(64049) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(1179)}}, {{A, B, C, X(4), X(1216)}}, {{A, B, C, X(68), X(3917)}}, {{A, B, C, X(69), X(5447)}}, {{A, B, C, X(394), X(5422)}}, {{A, B, C, X(1092), X(40441)}}, {{A, B, C, X(1147), X(1176)}}, {{A, B, C, X(3521), X(23039)}}, {{A, B, C, X(3527), X(62217)}}, {{A, B, C, X(3796), X(42065)}}, {{A, B, C, X(4846), X(5562)}}, {{A, B, C, X(5446), X(6504)}}, {{A, B, C, X(5504), X(43652)}}, {{A, B, C, X(13623), X(34783)}}, {{A, B, C, X(13754), X(15740)}}, {{A, B, C, X(14861), X(18436)}}, {{A, B, C, X(20574), X(41597)}}, {{A, B, C, X(32832), X(36212)}}, {{A, B, C, X(51394), X(56071)}}
X(64049) = barycentric product X(i)*X(j) for these (i, j): {3, 5422}, {184, 32832}, {10594, 394}, {13345, 69}
X(64049) = barycentric quotient X(i)/X(j) for these (i, j): {577, 42021}, {5422, 264}, {10594, 2052}, {13345, 4}, {32661, 43351}, {32832, 18022}
X(64049) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1614, 10539}, {2, 61134, 13336}, {3, 1181, 13754}, {3, 155, 1216}, {3, 184, 1147}, {3, 18445, 5562}, {3, 185, 7689}, {3, 19347, 155}, {3, 19357, 12038}, {3, 22115, 43652}, {3, 34783, 63425}, {3, 394, 5447}, {3, 49, 1092}, {3, 9704, 22115}, {4, 5012, 569}, {5, 61752, 6759}, {6, 7387, 5446}, {20, 11003, 54}, {20, 4846, 43577}, {20, 54, 13352}, {22, 7592, 52}, {25, 36752, 5462}, {26, 389, 64095}, {30, 32046, 578}, {68, 6776, 10116}, {140, 156, 9306}, {154, 37514, 6642}, {182, 19137, 38110}, {182, 61752, 46261}, {184, 1092, 49}, {382, 567, 11424}, {511, 64026, 12161}, {1154, 7525, 46728}, {1176, 6776, 19131}, {1181, 3796, 3}, {1199, 12088, 3060}, {1498, 37476, 9818}, {1658, 13630, 11438}, {1899, 3549, 5449}, {1993, 10323, 10625}, {2909, 40643, 206}, {2937, 43845, 568}, {3522, 9545, 43574}, {3526, 18350, 5651}, {3546, 64181, 14156}, {3547, 6776, 68}, {5012, 52525, 4}, {5085, 17814, 7393}, {5092, 11793, 7516}, {5447, 41597, 394}, {5449, 18128, 1899}, {5562, 18445, 15083}, {5889, 15080, 7512}, {5944, 37814, 11202}, {6102, 7502, 46730}, {6146, 15760, 9927}, {7393, 17814, 10170}, {7503, 11456, 12162}, {7505, 18911, 43817}, {7509, 11441, 5891}, {7512, 15032, 5889}, {7514, 32139, 5907}, {7516, 15068, 11793}, {7517, 36753, 51}, {8550, 19127, 44470}, {8718, 15033, 3146}, {9707, 17928, 51393}, {9833, 18420, 45286}, {10539, 13336, 2}, {10540, 37471, 1656}, {10610, 13491, 18570}, {11402, 11414, 36747}, {11423, 64051, 1994}, {11426, 39568, 44413}, {11430, 46850, 12084}, {11456, 37513, 4550}, {12083, 36749, 45186}, {12084, 64098, 46850}, {12162, 37513, 7503}, {12229, 12230, 19126}, {13160, 34224, 18474}, {13366, 45186, 36749}, {13491, 18570, 3357}, {13564, 15087, 6243}, {13598, 37505, 39522}, {14157, 43651, 3091}, {14805, 64030, 14130}, {15032, 15080, 37478}, {15043, 26881, 3518}, {15045, 26882, 44802}, {15644, 34986, 16266}, {16252, 64038, 5}, {16655, 37649, 7403}, {21844, 61136, 43601}, {25337, 43588, 63734}, {32621, 44492, 32284}, {37126, 43605, 11459}, {55692, 56516, 33540}
X(64050) lies on these lines: {2, 10110}, {3, 143}, {4, 1216}, {5, 7998}, {20, 185}, {22, 19357}, {23, 1092}, {24, 15107}, {26, 11449}, {30, 11412}, {51, 3523}, {52, 376}, {54, 15080}, {64, 44668}, {110, 7387}, {140, 9781}, {155, 12082}, {323, 6759}, {373, 55864}, {378, 6152}, {381, 7999}, {382, 6101}, {389, 3522}, {411, 37482}, {548, 568}, {549, 15024}, {550, 5890}, {578, 6636}, {631, 5446}, {1112, 15051}, {1147, 12088}, {1154, 1657}, {1181, 11577}, {1350, 7503}, {1351, 37198}, {1568, 18504}, {1593, 6403}, {1595, 37636}, {1598, 15066}, {1614, 12083}, {1656, 44299}, {1658, 37477}, {1843, 62174}, {1907, 48876}, {1941, 35474}, {1993, 11414}, {1994, 10984}, {2071, 46730}, {2393, 12324}, {2777, 12273}, {2781, 17845}, {2794, 39807}, {2888, 11550}, {2937, 11464}, {3090, 5447}, {3091, 3917}, {3098, 11424}, {3146, 5562}, {3313, 6815}, {3357, 37944}, {3520, 37478}, {3524, 5462}, {3528, 9730}, {3529, 12271}, {3534, 6102}, {3538, 63084}, {3543, 5907}, {3544, 44863}, {3564, 12274}, {3575, 54040}, {3627, 15058}, {3819, 5056}, {3830, 11591}, {3832, 11793}, {3843, 11017}, {3851, 32142}, {3853, 16261}, {3855, 10170}, {3858, 44324}, {5012, 10323}, {5054, 10095}, {5059, 6000}, {5067, 33879}, {5070, 12046}, {5073, 5876}, {5076, 15060}, {5189, 18381}, {5198, 62217}, {5650, 7486}, {5663, 17800}, {5691, 31737}, {5752, 6909}, {5892, 10299}, {5899, 61753}, {5943, 10303}, {6146, 52397}, {6515, 52398}, {6688, 61856}, {6696, 34751}, {6746, 11410}, {6800, 9706}, {6834, 33852}, {6850, 41723}, {6932, 37536}, {6960, 37521}, {7391, 33523}, {7393, 41462}, {7416, 48928}, {7464, 7689}, {7485, 10982}, {7488, 13346}, {7502, 37495}, {7509, 44413}, {7512, 13352}, {7525, 37472}, {7527, 52987}, {7530, 43598}, {7544, 31670}, {7556, 12038}, {7574, 18394}, {7592, 35243}, {7667, 13142}, {7731, 12121}, {7957, 9037}, {7987, 31757}, {8703, 14449}, {8718, 18445}, {9019, 15062}, {9047, 12680}, {9729, 10304}, {9821, 54003}, {9833, 20062}, {9927, 46450}, {9967, 10996}, {10282, 37913}, {10310, 56878}, {10441, 37437}, {10539, 37925}, {10546, 34484}, {10564, 21844}, {10575, 11001}, {10733, 15738}, {11002, 15717}, {11004, 64026}, {11270, 58871}, {11381, 49135}, {11413, 17834}, {11416, 44492}, {11422, 64049}, {11440, 12085}, {11441, 39568}, {11442, 34938}, {11446, 64054}, {11454, 12084}, {11457, 41724}, {11468, 18859}, {11592, 15694}, {11649, 55583}, {11695, 61820}, {11704, 37938}, {12002, 14845}, {12063, 38397}, {12086, 63425}, {12118, 41482}, {12162, 33703}, {12163, 13445}, {12173, 41590}, {12239, 42638}, {12240, 42637}, {12272, 63428}, {12282, 14984}, {12283, 34380}, {12284, 20127}, {12307, 13423}, {12824, 15020}, {12834, 15805}, {13201, 15100}, {13336, 44832}, {13347, 15004}, {13363, 61811}, {13364, 46219}, {13367, 38435}, {13382, 62124}, {13383, 63660}, {13421, 62100}, {13451, 14869}, {13491, 15681}, {13568, 44439}, {13630, 15696}, {13734, 48936}, {14118, 46728}, {14128, 61984}, {14216, 45794}, {14389, 16197}, {14641, 62147}, {14790, 58922}, {14831, 62120}, {14855, 62127}, {14915, 49138}, {15012, 62083}, {15026, 15720}, {15030, 15606}, {15036, 16222}, {15055, 16270}, {15057, 45237}, {15074, 43612}, {15318, 62308}, {15683, 64025}, {15684, 32137}, {15692, 21849}, {15704, 34783}, {15708, 58470}, {16063, 39571}, {16194, 62028}, {16196, 47582}, {16226, 62063}, {16621, 64062}, {16625, 62097}, {16658, 31831}, {16836, 16981}, {16868, 51392}, {16881, 40280}, {16978, 38701}, {16980, 59417}, {17538, 40647}, {17704, 62067}, {17710, 55722}, {17712, 61713}, {17714, 22115}, {17928, 33586}, {18392, 18569}, {18435, 62036}, {18438, 31829}, {18874, 55857}, {18911, 64048}, {18914, 41628}, {19122, 64052}, {19367, 64053}, {22467, 37480}, {23293, 23335}, {23294, 63734}, {23698, 39836}, {26883, 37945}, {26910, 37532}, {26913, 41587}, {27355, 46936}, {29181, 41716}, {29317, 61139}, {30438, 31806}, {31738, 41869}, {31760, 35242}, {31834, 62041}, {32006, 51439}, {32062, 50691}, {32138, 35452}, {32139, 44457}, {32191, 55646}, {32205, 55863}, {32338, 34797}, {33748, 58555}, {34545, 37515}, {34603, 64035}, {34782, 41715}, {36749, 61134}, {36752, 53863}, {36836, 36978}, {36843, 36980}, {36979, 42434}, {36981, 42433}, {37409, 48921}, {37444, 50435}, {37489, 43601}, {37497, 38444}, {38730, 39837}, {38741, 39808}, {43602, 64098}, {43613, 64105}, {43650, 45308}, {43652, 44802}, {44450, 48914}, {44479, 54132}, {44837, 51033}, {44870, 50688}, {45187, 49140}, {45956, 62123}, {45957, 62151}, {45958, 62008}, {46517, 61544}, {46849, 62021}, {47092, 61540}, {47748, 61752}, {50693, 64100}, {51024, 63723}, {54039, 64187}, {54445, 58469}, {55286, 62093}, {58378, 60774}, {58487, 64108}, {58533, 61799}, {61136, 62113}, {62155, 64030}
X(64050) = reflection of X(i) in X(j) for these {i,j}: {4, 10625}, {382, 6101}, {3146, 5562}, {5073, 5876}, {5691, 31737}, {5889, 20}, {6241, 1657}, {6243, 550}, {6403, 33878}, {7731, 12121}, {10263, 63414}, {11412, 37484}, {11455, 54048}, {12111, 11412}, {12272, 63428}, {12279, 3529}, {12284, 20127}, {12290, 18436}, {13423, 12307}, {14531, 46850}, {15100, 13201}, {15305, 62188}, {33703, 12162}, {34783, 15704}, {39808, 38741}, {39837, 38730}, {41869, 31738}, {45186, 15644}, {45957, 62151}, {49135, 11381}, {51212, 3313}, {55722, 17710}, {55724, 15074}, {62041, 31834}, {62187, 36987}, {64023, 1350}, {64030, 62155}, {64051, 3}
X(64050) = anticomplement of X(45186)
X(64050) = X(i)-Dao conjugate of X(j) for these {i, j}: {45186, 45186}
X(64050) = pole of line {13337, 63534} with respect to the Kiepert hyperbola
X(64050) = pole of line {140, 156} with respect to the Stammler hyperbola
X(64050) = pole of line {1232, 1975} with respect to the Wallace hyperbola
X(64050) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1173), X(9307)}}, {{A, B, C, X(5422), X(40684)}}, {{A, B, C, X(9289), X(31626)}}
X(64050) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10263, 3567}, {3, 13391, 64051}, {3, 143, 15045}, {3, 3060, 15043}, {3, 39522, 43651}, {3, 64051, 3060}, {4, 10625, 2979}, {4, 1216, 15056}, {20, 185, 52093}, {20, 511, 5889}, {22, 37498, 34148}, {30, 18436, 12290}, {30, 37484, 11412}, {51, 13348, 3523}, {51, 3523, 15028}, {52, 376, 10574}, {140, 9781, 11451}, {185, 52093, 15072}, {323, 12087, 6759}, {378, 37486, 7691}, {382, 11459, 11439}, {382, 6101, 11459}, {389, 36987, 3522}, {511, 46850, 14531}, {631, 5446, 5640}, {1147, 12088, 26881}, {1154, 1657, 6241}, {1216, 15056, 11444}, {1216, 46852, 5891}, {1598, 15066, 43614}, {1993, 11414, 52525}, {1994, 16661, 10984}, {2979, 15056, 1216}, {3146, 5562, 15305}, {3146, 62188, 5562}, {3529, 13754, 12279}, {3627, 23039, 15058}, {3832, 33884, 11793}, {3917, 13598, 3091}, {5054, 10095, 11465}, {5073, 54048, 5876}, {5073, 5876, 11455}, {5889, 52093, 185}, {10263, 63414, 3}, {11412, 12290, 18436}, {12083, 16266, 1614}, {12118, 44831, 41482}, {12290, 18436, 12111}, {13391, 63414, 10263}, {15026, 54044, 15720}, {16881, 46853, 40280}, {17714, 22115, 26882}, {19467, 48873, 20}, {36987, 62187, 20791}, {37494, 43576, 11454}
X(64051) lies on these lines: {2, 5446}, {3, 143}, {4, 69}, {5, 2979}, {6, 10323}, {20, 52}, {22, 54}, {23, 1147}, {24, 33586}, {26, 11464}, {30, 5889}, {49, 17714}, {51, 631}, {68, 7391}, {74, 12085}, {110, 7517}, {140, 5640}, {154, 9705}, {155, 14157}, {156, 5899}, {165, 31760}, {184, 12088}, {185, 3529}, {186, 13346}, {193, 12283}, {195, 61752}, {265, 13201}, {323, 10539}, {343, 15559}, {373, 3533}, {376, 389}, {378, 17834}, {381, 6101}, {382, 1154}, {394, 10594}, {428, 11387}, {477, 16978}, {524, 16655}, {546, 15056}, {548, 20791}, {549, 15028}, {550, 568}, {567, 7525}, {569, 6636}, {576, 1199}, {578, 7512}, {599, 63688}, {632, 13451}, {858, 26917}, {970, 6950}, {1092, 3518}, {1112, 3515}, {1181, 8718}, {1204, 7464}, {1209, 5169}, {1216, 3091}, {1350, 7509}, {1351, 7592}, {1370, 18912}, {1498, 44668}, {1568, 44958}, {1597, 43613}, {1614, 1993}, {1656, 7998}, {1657, 6102}, {1658, 37495}, {1699, 31738}, {1994, 11423}, {2070, 11449}, {2392, 37625}, {2393, 34781}, {2698, 16979}, {2777, 12284}, {2781, 25335}, {2794, 39808}, {2883, 62344}, {2888, 62967}, {2972, 38281}, {3088, 47328}, {3090, 3917}, {3146, 12282}, {3313, 7383}, {3516, 6746}, {3520, 46730}, {3522, 9730}, {3523, 5462}, {3524, 13348}, {3525, 5943}, {3526, 10095}, {3527, 7484}, {3528, 9729}, {3534, 13630}, {3543, 12162}, {3545, 11793}, {3564, 12285}, {3576, 31757}, {3580, 23294}, {3581, 11250}, {3627, 15305}, {3819, 5067}, {3830, 5876}, {3832, 5891}, {3843, 11591}, {3851, 15067}, {3853, 18435}, {3855, 15606}, {5012, 36749}, {5054, 15026}, {5055, 32142}, {5056, 33884}, {5059, 10575}, {5064, 11576}, {5068, 10170}, {5070, 13364}, {5073, 5663}, {5076, 45959}, {5102, 17710}, {5198, 58764}, {5449, 31074}, {5480, 14788}, {5587, 31737}, {5650, 61886}, {5752, 6906}, {5892, 15717}, {6000, 14531}, {6033, 39807}, {6143, 61646}, {6146, 29181}, {6152, 35502}, {6193, 7500}, {6247, 34751}, {6321, 39836}, {6515, 11457}, {6642, 38848}, {6662, 46977}, {6688, 61867}, {6759, 37925}, {6823, 18438}, {6905, 37482}, {6923, 41723}, {6932, 39271}, {6937, 18180}, {6941, 37536}, {6949, 37521}, {6959, 33852}, {7395, 33878}, {7399, 21850}, {7400, 9967}, {7403, 37636}, {7420, 48907}, {7486, 14845}, {7488, 13352}, {7502, 37472}, {7503, 37486}, {7526, 7691}, {7529, 15066}, {7530, 23061}, {7550, 52987}, {7553, 14516}, {7556, 13367}, {7689, 12086}, {7699, 10024}, {7703, 34826}, {7728, 12273}, {7731, 15102}, {7773, 51440}, {8537, 44492}, {8703, 16881}, {9047, 14872}, {9306, 34484}, {9541, 12239}, {9545, 37913}, {9707, 9909}, {9821, 54004}, {9826, 15036}, {9833, 41715}, {9862, 39817}, {9969, 10519}, {9973, 16621}, {10018, 32269}, {10112, 29317}, {10706, 16105}, {10733, 12281}, {11001, 14831}, {11017, 61968}, {11248, 56878}, {11381, 15682}, {11411, 43895}, {11413, 37489}, {11424, 35921}, {11425, 13482}, {11432, 37198}, {11441, 18534}, {11456, 12160}, {11458, 37784}, {11461, 64054}, {11468, 12084}, {11479, 55584}, {11563, 18504}, {11592, 55863}, {11649, 37946}, {11692, 44450}, {11704, 63735}, {12022, 13142}, {12046, 61892}, {12061, 16656}, {12083, 12161}, {12110, 41262}, {12112, 55723}, {12118, 31304}, {12134, 34603}, {12164, 12271}, {12219, 12295}, {12233, 44439}, {12236, 15055}, {12241, 37473}, {12244, 21649}, {12245, 16980}, {12272, 16658}, {12291, 15801}, {12293, 52842}, {12307, 32196}, {12316, 37949}, {12383, 13417}, {12824, 15034}, {12902, 15100}, {13172, 39846}, {13336, 34545}, {13358, 15041}, {13363, 15720}, {13368, 54202}, {13382, 62147}, {13383, 63661}, {13474, 45187}, {13488, 44935}, {13491, 17800}, {13564, 15080}, {13568, 44458}, {14118, 37478}, {14249, 62345}, {14269, 45958}, {14389, 34002}, {14641, 15683}, {14790, 25739}, {14865, 63425}, {14869, 58531}, {14915, 49135}, {15004, 37515}, {15012, 62092}, {15018, 45308}, {15032, 37517}, {15051, 16222}, {15060, 61984}, {15087, 47748}, {15110, 16622}, {15111, 36160}, {15360, 18281}, {15531, 64067}, {15687, 31834}, {15694, 32205}, {15695, 55286}, {15702, 58470}, {15704, 52093}, {15800, 32338}, {16194, 50688}, {16226, 17704}, {16624, 16880}, {16625, 17538}, {16836, 21735}, {17928, 37483}, {18378, 61753}, {18392, 31724}, {18394, 18569}, {18439, 62036}, {18475, 38435}, {18492, 31752}, {18916, 52398}, {19123, 63063}, {19368, 64053}, {19467, 44831}, {19924, 44829}, {20299, 41586}, {20574, 63172}, {21166, 39835}, {21653, 49048}, {21654, 49049}, {22115, 37440}, {22236, 36978}, {22238, 36980}, {22352, 37505}, {22467, 64095}, {22660, 47096}, {22712, 27375}, {23293, 63734}, {23698, 39837}, {26216, 41480}, {26879, 41588}, {26914, 37532}, {27082, 52000}, {30771, 43866}, {31101, 43817}, {31152, 43836}, {31423, 58474}, {31723, 58922}, {31728, 64005}, {31817, 61705}, {31833, 54040}, {31884, 32191}, {32062, 62021}, {32137, 62023}, {32138, 32608}, {32140, 41724}, {32411, 37948}, {32534, 37497}, {32816, 51439}, {32823, 51386}, {33873, 37466}, {33879, 55856}, {33923, 40280}, {34146, 64034}, {34473, 39806}, {34621, 51028}, {34799, 44407}, {35237, 43596}, {35243, 37493}, {35474, 56298}, {36753, 53863}, {36979, 42157}, {36981, 42158}, {37186, 47740}, {37453, 43823}, {37477, 37814}, {37490, 43601}, {37491, 39588}, {37496, 45735}, {37511, 61044}, {37732, 50599}, {37932, 63725}, {37945, 43605}, {39571, 47528}, {40241, 61299}, {40805, 62260}, {41673, 64101}, {43586, 48912}, {43608, 44441}, {43812, 54183}, {43896, 44442}, {44516, 59771}, {44544, 64033}, {44665, 64032}, {44879, 51394}, {45956, 62144}, {46450, 48914}, {46849, 50687}, {47093, 61607}, {47391, 63683}, {50593, 63982}, {50649, 54132}, {54044, 58533}, {58486, 61132}, {61136, 62127}, {61873, 63632}, {63684, 64182}
X(64051) = midpoint of X(i) and X(j) for these {i,j}: {49135, 64025}
X(64051) = reflection of X(i) in X(j) for these {i,j}: {3, 10263}, {4, 45186}, {20, 52}, {376, 21969}, {477, 16978}, {550, 14449}, {1657, 6102}, {2698, 16979}, {3529, 185}, {5059, 10575}, {5562, 13598}, {5889, 6243}, {5890, 62187}, {6102, 13421}, {6241, 5889}, {9862, 39817}, {10625, 5446}, {11001, 14831}, {11412, 4}, {12111, 382}, {12219, 12295}, {12220, 1351}, {12244, 21649}, {12245, 16980}, {12271, 12164}, {12273, 7728}, {12279, 34783}, {12281, 10733}, {12283, 193}, {12290, 3146}, {12291, 15801}, {12307, 32196}, {12383, 13417}, {13172, 39846}, {13201, 265}, {14516, 7553}, {15073, 11477}, {15100, 12902}, {15102, 7731}, {17800, 13491}, {18436, 3627}, {18439, 62036}, {32338, 15800}, {37484, 5}, {39807, 6033}, {39836, 6321}, {41716, 31670}, {44831, 54384}, {45187, 13474}, {46450, 48914}, {49048, 21653}, {49049, 21654}, {54202, 13368}, {61044, 37511}, {63414, 16982}, {64005, 31728}, {64033, 44544}, {64050, 3}
X(64051) = anticomplement of X(10625)
X(64051) = X(i)-Dao conjugate of X(j) for these {i, j}: {10625, 10625}
X(64051) = pole of line {1899, 3090} with respect to the Jerabek hyperbola
X(64051) = pole of line {5254, 18353} with respect to the Kiepert hyperbola
X(64051) = pole of line {140, 184} with respect to the Stammler hyperbola
X(64051) = pole of line {3, 1232} with respect to the Wallace hyperbola
X(64051) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(1232)}}, {{A, B, C, X(76), X(31626)}}, {{A, B, C, X(264), X(1173)}}, {{A, B, C, X(340), X(17711)}}, {{A, B, C, X(3260), X(38260)}}, {{A, B, C, X(59164), X(61378)}}
X(64051) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5446, 9781}, {3, 10263, 3060}, {3, 13321, 12006}, {3, 13391, 64050}, {3, 143, 15043}, {3, 3567, 15045}, {3, 39522, 13434}, {4, 11412, 11459}, {4, 511, 11412}, {4, 5562, 15058}, {4, 5907, 16261}, {5, 2979, 7999}, {5, 37484, 2979}, {6, 10323, 61134}, {20, 52, 5890}, {20, 62187, 52}, {22, 36747, 54}, {23, 1147, 26882}, {24, 37498, 43574}, {26, 34148, 11464}, {30, 34783, 12279}, {30, 6243, 5889}, {49, 17714, 26881}, {51, 631, 15024}, {140, 5640, 11465}, {381, 6101, 11444}, {382, 1154, 12111}, {382, 12111, 11455}, {394, 10594, 43598}, {511, 31670, 41716}, {511, 45186, 4}, {546, 23039, 15056}, {548, 37481, 20791}, {550, 14449, 568}, {550, 568, 10574}, {631, 15644, 54041}, {858, 41587, 26917}, {1181, 12082, 8718}, {1351, 11414, 7592}, {1370, 64048, 18912}, {1656, 10627, 7998}, {1657, 6102, 15072}, {1993, 7387, 1614}, {3060, 15043, 143}, {3146, 13754, 12290}, {3523, 11002, 5462}, {3526, 10095, 11451}, {3580, 23335, 23294}, {3627, 18436, 15305}, {3830, 5876, 11439}, {3843, 54048, 11591}, {3917, 10110, 3090}, {5446, 10625, 2}, {5562, 45186, 13598}, {5889, 12279, 34783}, {5946, 10263, 16982}, {6515, 34938, 11457}, {7517, 16266, 110}, {7526, 37494, 7691}, {9019, 11477, 15073}, {9729, 36987, 3528}, {10263, 13391, 3}, {10263, 64050, 3567}, {11412, 15058, 5562}, {11424, 46728, 35921}, {12083, 12161, 52525}, {12160, 39568, 11456}, {12164, 14984, 12271}, {12279, 34783, 6241}, {13391, 16982, 63414}, {13564, 32046, 15080}, {15024, 54041, 631}, {15107, 34148, 26}, {16982, 63414, 5946}, {18569, 50435, 18394}, {33586, 37498, 24}, {37486, 44413, 7503}, {37925, 56292, 6759}, {39568, 44456, 12160}, {49135, 64025, 14915}, {63063, 64052, 19123}
X(64052) lies on circumconic {{A, B, C, X(1485), X(45819)}} and on these lines: {3, 1974}, {4, 19121}, {5, 19126}, {6, 5446}, {20, 19128}, {22, 9967}, {23, 6403}, {24, 37511}, {26, 206}, {30, 182}, {49, 10244}, {66, 5449}, {68, 5596}, {69, 10539}, {110, 63428}, {140, 19137}, {141, 13383}, {154, 41619}, {155, 10243}, {156, 34380}, {159, 32048}, {184, 1351}, {193, 1614}, {382, 19124}, {539, 31166}, {567, 34726}, {569, 1176}, {576, 11536}, {577, 52967}, {578, 21850}, {611, 9645}, {1092, 16195}, {1177, 17702}, {1216, 37485}, {1350, 14070}, {1352, 46261}, {1353, 61752}, {1428, 64053}, {1503, 9927}, {1658, 3098}, {1660, 14984}, {1843, 7517}, {2080, 41277}, {2211, 10316}, {2330, 64054}, {2777, 19138}, {2781, 12893}, {2794, 39811}, {2854, 15580}, {2937, 11470}, {3167, 16199}, {3564, 6759}, {3589, 23335}, {3618, 13336}, {3620, 43598}, {3818, 15761}, {5012, 34608}, {5050, 10982}, {5085, 12085}, {5092, 12084}, {5097, 8547}, {5157, 14561}, {5622, 12295}, {5899, 8541}, {5921, 14157}, {6321, 41274}, {6644, 52520}, {6660, 30258}, {6776, 61713}, {7506, 44091}, {7689, 34146}, {8538, 12088}, {9306, 10154}, {9687, 19145}, {9813, 63475}, {9822, 13861}, {9925, 50414}, {9969, 44480}, {10201, 24206}, {10226, 55672}, {10245, 22115}, {10323, 26206}, {10540, 11898}, {10625, 20806}, {11178, 44278}, {11250, 17508}, {11255, 15520}, {11414, 19118}, {12038, 23041}, {12083, 44102}, {12107, 52987}, {12241, 48906}, {12283, 37784}, {12584, 20773}, {13346, 23042}, {13352, 51212}, {13371, 38317}, {13391, 19155}, {13417, 44078}, {13754, 19141}, {14530, 19588}, {14810, 18324}, {14912, 52525}, {14915, 41613}, {15331, 55649}, {15462, 38726}, {18281, 58445}, {18382, 29012}, {18440, 26883}, {18569, 19130}, {19119, 64048}, {19122, 64050}, {19123, 63063}, {19125, 36747}, {19132, 37498}, {19161, 64095}, {19459, 32284}, {21637, 45186}, {23698, 39840}, {26283, 44084}, {26923, 37532}, {26926, 41587}, {29181, 64061}, {31267, 43839}, {32144, 51126}, {33851, 55587}, {34350, 48892}, {34417, 37972}, {34609, 43650}, {34779, 46730}, {35268, 37928}, {37478, 41716}, {37480, 48874}, {37515, 38110}, {39871, 47093}, {40279, 61532}, {41593, 44469}, {41714, 44493}, {43572, 54174}, {43574, 61044}, {43652, 55610}, {44213, 50977}, {44242, 48880}, {44279, 48884}, {48895, 52843}, {51171, 61134}, {52404, 57388}, {58555, 64026}
X(64052) = midpoint of X(i) and X(j) for these {i,j}: {6, 7387}, {68, 5596}, {155, 37491}, {159, 44492}, {19149, 37488}, {34779, 46730}
X(64052) = reflection of X(i) in X(j) for these {i,j}: {66, 5449}, {141, 13383}, {182, 19154}, {1147, 206}, {3098, 1658}, {3818, 15761}, {11178, 44278}, {12084, 5092}, {12584, 20773}, {18569, 19130}, {23335, 3589}, {34350, 48892}, {44469, 41593}, {48880, 44242}, {48884, 44279}, {50977, 44213}, {52016, 156}, {52843, 48895}
X(64052) = pole of line {5475, 7403} with respect to the Kiepert hyperbola
X(64052) = pole of line {7386, 7998} with respect to the Stammler hyperbola
X(64052) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {6, 1316, 7387}
X(64052) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 19154, 182}, {156, 34380, 52016}, {206, 511, 1147}, {382, 19129, 19124}, {19149, 37488, 13754}, {32217, 44882, 51730}
X(64053) lies on circumconic {{A, B, C, X(79), X(42464)}} and on these lines: {1, 30}, {3, 34}, {4, 1060}, {5, 1038}, {12, 23335}, {20, 1062}, {26, 36}, {33, 382}, {35, 12084}, {40, 52408}, {46, 1399}, {55, 12085}, {56, 7387}, {65, 36742}, {72, 8757}, {73, 37533}, {92, 37157}, {109, 59318}, {140, 19372}, {221, 517}, {222, 24474}, {223, 37531}, {225, 6923}, {227, 11248}, {255, 37584}, {278, 6850}, {355, 8270}, {388, 34938}, {475, 52366}, {498, 44441}, {511, 7352}, {515, 4347}, {516, 59285}, {534, 4667}, {546, 9817}, {550, 1040}, {601, 1254}, {603, 37532}, {612, 9654}, {614, 5370}, {912, 64057}, {942, 1407}, {944, 4318}, {970, 52830}, {999, 4320}, {1012, 37565}, {1068, 6925}, {1069, 1498}, {1076, 1877}, {1147, 26888}, {1214, 3560}, {1385, 34036}, {1393, 37612}, {1394, 5709}, {1398, 11414}, {1406, 64045}, {1419, 7982}, {1425, 45186}, {1428, 64052}, {1455, 11249}, {1456, 14110}, {1478, 14790}, {1479, 4351}, {1490, 1807}, {1503, 18970}, {1657, 18455}, {1658, 7280}, {1718, 58887}, {1745, 37700}, {1766, 56906}, {1828, 37034}, {1829, 37241}, {1838, 6917}, {1875, 56414}, {1935, 26921}, {2003, 5903}, {2093, 8141}, {2263, 62183}, {2331, 38292}, {2777, 19469}, {2794, 39815}, {3100, 3529}, {3146, 6198}, {3419, 54289}, {3554, 42459}, {3564, 19473}, {3585, 18569}, {3627, 37729}, {3920, 44442}, {4252, 37582}, {4293, 31305}, {4295, 54292}, {4303, 37615}, {4324, 34350}, {4348, 9655}, {5010, 11250}, {5059, 9538}, {5088, 7210}, {5204, 14070}, {5268, 10592}, {5272, 10154}, {5307, 46704}, {5399, 37569}, {5433, 13383}, {5446, 19366}, {5722, 43036}, {6000, 6238}, {6149, 59324}, {6285, 14915}, {6851, 34231}, {6861, 54346}, {6897, 37800}, {6906, 17080}, {6914, 54320}, {6985, 46974}, {7078, 37585}, {7191, 34608}, {7355, 13754}, {7530, 54428}, {7562, 55875}, {7741, 15761}, {7951, 13371}, {9539, 49135}, {9632, 22644}, {9634, 13886}, {9641, 49137}, {9642, 49136}, {9643, 17800}, {9644, 33703}, {9931, 17702}, {9957, 61086}, {10055, 14216}, {10076, 12163}, {10895, 54401}, {11399, 18534}, {11436, 40647}, {11496, 15832}, {12107, 38458}, {12702, 22117}, {13391, 32143}, {13730, 40985}, {14986, 34621}, {15941, 41227}, {15951, 24929}, {17437, 52440}, {18324, 59319}, {18377, 18513}, {18514, 44279}, {18915, 64048}, {19349, 36747}, {19365, 64049}, {19367, 64050}, {19368, 64051}, {21842, 51696}, {23698, 39844}, {24467, 37591}, {24537, 56875}, {26611, 58798}, {26955, 41587}, {31837, 34048}, {34043, 37625}, {34120, 46878}, {34586, 63391}, {36011, 46883}, {36279, 54418}, {37022, 60415}, {37437, 37798}, {37438, 37695}, {37482, 39598}, {37613, 56960}, {51755, 53592}, {54400, 64044}, {55475, 55890}, {55481, 55885}, {56148, 63435}
X(64053) = reflection of X(i) in X(j) for these {i,j}: {1, 32047}, {3157, 64055}, {64054, 1}
X(64053) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 30, 64054}, {3, 34, 37697}, {4, 4296, 1060}, {30, 32047, 1}, {221, 37498, 3157}, {999, 39568, 9645}, {1394, 5709, 52407}
X(64054) lies on these lines: {1, 30}, {3, 33}, {4, 1062}, {5, 1040}, {11, 23335}, {19, 20831}, {20, 1060}, {26, 35}, {34, 382}, {36, 12084}, {55, 7387}, {56, 9629}, {78, 55917}, {84, 52407}, {90, 2361}, {140, 9817}, {355, 36985}, {406, 52365}, {485, 9631}, {497, 34938}, {499, 44441}, {511, 6238}, {517, 1854}, {534, 30145}, {546, 19372}, {550, 1038}, {582, 1728}, {602, 2310}, {612, 7302}, {614, 9669}, {920, 53524}, {942, 990}, {971, 1498}, {1068, 10431}, {1069, 2192}, {1071, 60691}, {1074, 44229}, {1103, 18528}, {1147, 10535}, {1478, 4354}, {1479, 14790}, {1503, 12428}, {1614, 9637}, {1657, 9642}, {1658, 5010}, {1722, 12019}, {1807, 3345}, {1824, 13730}, {1864, 36754}, {1870, 3146}, {1936, 24467}, {2000, 3916}, {2330, 64052}, {2654, 37615}, {2777, 12888}, {2794, 39822}, {3149, 60415}, {3270, 45186}, {3295, 4319}, {3465, 37700}, {3529, 4296}, {3553, 42459}, {3564, 12910}, {3583, 18569}, {3586, 33178}, {3920, 34608}, {4123, 7283}, {4294, 31305}, {4316, 34350}, {4347, 28150}, {5217, 14070}, {5268, 10154}, {5272, 10593}, {5432, 13383}, {5446, 11436}, {5691, 9576}, {5707, 10391}, {6000, 7352}, {6285, 9931}, {6644, 54428}, {6851, 7952}, {6923, 40950}, {6985, 17102}, {7004, 37532}, {7070, 7330}, {7071, 11414}, {7078, 40263}, {7129, 38292}, {7191, 44442}, {7221, 9668}, {7280, 11250}, {7355, 14915}, {7517, 52427}, {7580, 37565}, {7741, 13371}, {7745, 9594}, {7747, 9635}, {7756, 9636}, {7951, 15761}, {8141, 61763}, {9371, 11499}, {9577, 64005}, {9595, 63548}, {9627, 12943}, {9630, 12953}, {9632, 42260}, {9638, 34148}, {9640, 57288}, {9798, 44670}, {10060, 12163}, {10071, 14216}, {10118, 17702}, {11248, 51361}, {11363, 37241}, {11398, 18534}, {11429, 64049}, {11446, 64050}, {11461, 64051}, {12684, 23072}, {13369, 41344}, {13391, 32168}, {14872, 41339}, {18324, 59325}, {18377, 18514}, {18513, 44279}, {18922, 64048}, {19354, 36747}, {19366, 40647}, {21147, 28160}, {22793, 34036}, {23698, 39851}, {24430, 26921}, {26956, 41587}, {27378, 38462}, {27505, 56876}, {28164, 59285}, {31424, 56317}, {34351, 52793}, {34586, 63988}, {35194, 55104}, {37504, 56225}, {37525, 51696}, {37584, 44706}, {53592, 59647}, {55476, 55885}, {55482, 55890}
X(64054) = reflection of X(i) in X(j) for these {i,j}: {1, 8144}, {64053, 1}
X(64054) = pole of line {942, 64020} with respect to the Feuerbach hyperbola
X(64054) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3345), X(56844)}}, {{A, B, C, X(52372), X(55917)}}
X(64054) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 30, 64053}, {3, 33, 37696}, {4, 1062, 37697}, {4, 3100, 1062}, {20, 6198, 1060}, {30, 8144, 1}, {34, 9643, 18455}, {382, 18455, 34}, {550, 37729, 1038}, {1657, 9642, 18447}, {2192, 37498, 1069}, {3146, 9538, 1870}, {6198, 9539, 9644}, {9641, 18455, 9643}, {36985, 54295, 355}
X(64055) lies on these lines: {1, 971}, {3, 223}, {4, 18623}, {5, 34050}, {6, 1448}, {28, 1439}, {30, 5930}, {34, 222}, {40, 22117}, {56, 56848}, {58, 1427}, {65, 267}, {72, 651}, {73, 500}, {77, 405}, {109, 227}, {221, 517}, {225, 6357}, {226, 37594}, {241, 1724}, {269, 1453}, {278, 57282}, {307, 49716}, {355, 34049}, {443, 54425}, {478, 37613}, {518, 4347}, {603, 1465}, {610, 38292}, {664, 7283}, {859, 1410}, {912, 32047}, {948, 4340}, {1038, 5044}, {1040, 31805}, {1060, 5777}, {1071, 1870}, {1079, 8069}, {1103, 6244}, {1104, 4306}, {1214, 1935}, {1385, 1455}, {1386, 4298}, {1406, 57277}, {1413, 9940}, {1422, 6913}, {1426, 1437}, {1457, 24928}, {1461, 2360}, {1466, 56418}, {1482, 34039}, {1498, 56294}, {1745, 46974}, {1785, 22792}, {1828, 26884}, {1875, 7335}, {1876, 18732}, {1892, 18629}, {1943, 5295}, {2122, 31788}, {2771, 19469}, {3074, 31658}, {3468, 17102}, {3555, 4318}, {3560, 34052}, {3671, 4667}, {3745, 5290}, {3824, 37695}, {3916, 17080}, {3947, 4682}, {4292, 43035}, {4314, 30621}, {4320, 16466}, {4334, 16478}, {4663, 12432}, {5018, 5247}, {5045, 34036}, {5439, 17074}, {5709, 23072}, {5728, 34028}, {5787, 34231}, {5806, 41344}, {5814, 56367}, {5932, 7498}, {6001, 59285}, {6223, 63965}, {6259, 7952}, {6260, 15252}, {7013, 37408}, {7053, 13737}, {7078, 31793}, {7100, 52384}, {7282, 18631}, {7290, 60897}, {7330, 47848}, {8099, 34025}, {8100, 34034}, {8270, 9370}, {8727, 53592}, {8808, 52260}, {9121, 38288}, {9840, 51647}, {9947, 34041}, {9955, 34029}, {9956, 34030}, {9957, 34040}, {9959, 34027}, {10361, 34120}, {10441, 34044}, {11018, 36746}, {11214, 26888}, {11363, 56816}, {11700, 37837}, {12488, 34037}, {12489, 34038}, {12490, 34031}, {12491, 34026}, {12514, 15832}, {12709, 54292}, {15803, 36636}, {16869, 18243}, {18447, 40263}, {18480, 51421}, {18481, 56821}, {20122, 39791}, {20211, 24565}, {23070, 24474}, {23071, 37585}, {24025, 64128}, {26892, 40985}, {28160, 56819}, {30456, 59681}, {33178, 63995}, {33649, 61231}, {33697, 38945}, {34045, 35631}, {34491, 37565}, {34823, 36949}, {36118, 44698}, {37257, 51413}, {37305, 51490}, {37404, 52097}, {37424, 59613}, {37623, 52407}, {40152, 48882}, {40611, 43924}, {41339, 64005}, {48883, 63203}, {50193, 54400}, {54289, 64171}, {57477, 58798}, {63396, 64041}
X(64055) = midpoint of X(i) and X(j) for these {i,j}: {1, 64057}, {221, 21147}, {3157, 64053}
X(64055) = reflection of X(i) in X(j) for these {i,j}: {19904, 1385}
X(64055) = X(i)-Dao conjugate of X(j) for these {i, j}: {4292, 23661}
X(64055) = intersection, other than A, B, C, of circumconics {{A, B, C, X(267), X(3062)}}, {{A, B, C, X(972), X(12688)}}, {{A, B, C, X(5932), X(15881)}}, {{A, B, C, X(7037), X(57392)}}
X(64055) = barycentric product X(i)*X(j) for these (i, j): {57, 64002}
X(64055) = barycentric quotient X(i)/X(j) for these (i, j): {64002, 312}
X(64055) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 64057, 971}, {6, 1448, 37544}, {34, 222, 942}, {109, 227, 3579}, {221, 21147, 517}, {223, 1394, 3}, {223, 3182, 15881}, {603, 1465, 37582}, {1060, 8757, 5777}, {1104, 6610, 4306}, {6259, 59606, 7952}, {34036, 34046, 5045}
X(64056) lies on these lines: {1, 1145}, {2, 64137}, {8, 80}, {10, 1320}, {11, 3679}, {35, 25438}, {36, 100}, {40, 550}, {46, 18802}, {104, 5288}, {119, 7982}, {145, 214}, {165, 64191}, {244, 24864}, {355, 14217}, {392, 58663}, {484, 38455}, {515, 64136}, {517, 10742}, {518, 11571}, {528, 4677}, {551, 50894}, {643, 56950}, {956, 13205}, {958, 63281}, {960, 17652}, {1125, 64141}, {1317, 1420}, {1387, 1698}, {1484, 11524}, {1512, 4867}, {1537, 11531}, {1647, 10700}, {1737, 41702}, {1749, 44669}, {1788, 41554}, {1862, 54397}, {2093, 34690}, {2316, 21942}, {2550, 12647}, {2800, 5904}, {2829, 7991}, {2932, 12513}, {3036, 4668}, {3120, 4792}, {3241, 50841}, {3340, 10956}, {3583, 13271}, {3585, 32537}, {3617, 6702}, {3621, 6224}, {3622, 58453}, {3625, 11684}, {3626, 21630}, {3654, 38602}, {3656, 61580}, {3680, 5533}, {3689, 22935}, {3698, 58587}, {3746, 13278}, {3880, 10073}, {3885, 37702}, {3893, 19914}, {3913, 59334}, {4302, 34711}, {4530, 4752}, {4669, 10707}, {4678, 38213}, {4711, 58683}, {4745, 59377}, {4816, 62616}, {4863, 62354}, {4996, 8715}, {5119, 10050}, {5258, 10058}, {5425, 49626}, {5442, 56036}, {5445, 22837}, {5537, 48695}, {5587, 64138}, {5657, 11715}, {5687, 22560}, {5690, 12737}, {5727, 34719}, {5818, 16174}, {5840, 5881}, {5844, 6265}, {5853, 41700}, {5855, 41689}, {5882, 34474}, {5902, 11046}, {5903, 10052}, {6174, 12735}, {6246, 59388}, {6264, 11219}, {6667, 19875}, {6735, 63210}, {6788, 17460}, {7989, 38038}, {8148, 12611}, {8197, 13230}, {8204, 13228}, {8666, 17100}, {9024, 49688}, {9588, 21154}, {9589, 52836}, {9624, 58421}, {9780, 32557}, {9945, 62617}, {10057, 10914}, {10087, 12640}, {10222, 38752}, {10609, 58887}, {10728, 28194}, {10755, 49529}, {10912, 18395}, {10915, 11009}, {11024, 12736}, {11224, 15017}, {11249, 12331}, {11280, 12607}, {11698, 50908}, {11729, 16200}, {12248, 50810}, {12619, 59503}, {12702, 36972}, {12747, 51515}, {12750, 49168}, {12773, 34718}, {13143, 64200}, {13253, 37725}, {13464, 64008}, {14923, 37710}, {15178, 38762}, {15343, 62666}, {16189, 20400}, {16496, 51007}, {17636, 64043}, {17638, 34790}, {19077, 49233}, {19078, 49232}, {19876, 38026}, {20052, 20085}, {20095, 31145}, {20586, 40663}, {23153, 34151}, {24914, 47746}, {25055, 31235}, {25522, 34122}, {26725, 31397}, {30323, 39692}, {31419, 63270}, {31423, 38032}, {32157, 37616}, {32558, 46933}, {33814, 37727}, {34600, 41701}, {34641, 50890}, {34747, 35023}, {35616, 35636}, {36922, 52050}, {36975, 63136}, {36977, 37524}, {37546, 54065}, {37707, 59330}, {37711, 64202}, {38141, 61258}, {38665, 64188}, {38693, 43174}, {38757, 58245}, {38759, 63469}, {45310, 51066}, {46684, 59417}, {48680, 50798}, {49469, 51062}, {49681, 51157}, {58625, 62854}, {59400, 61553}
X(64056) = midpoint of X(i) and X(j) for these {i,j}: {3621, 6224}, {3632, 5541}
X(64056) = reflection of X(i) in X(j) for these {i,j}: {1, 1145}, {36, 51433}, {46, 18802}, {80, 8}, {104, 11362}, {145, 214}, {149, 15863}, {1320, 10}, {3241, 50841}, {3633, 1317}, {3679, 50842}, {5541, 13996}, {5697, 64139}, {5903, 39776}, {7972, 100}, {7982, 119}, {8148, 12611}, {9589, 52836}, {10707, 4669}, {10755, 49529}, {11219, 63143}, {11531, 1537}, {12531, 3625}, {12653, 11}, {12737, 5690}, {12751, 64140}, {12758, 14740}, {13143, 64200}, {13253, 37725}, {14217, 355}, {16496, 51007}, {17638, 34790}, {17652, 960}, {21630, 3626}, {23153, 34151}, {25416, 3035}, {26726, 1}, {30323, 55016}, {34747, 50843}, {34789, 12751}, {36975, 63136}, {37727, 33814}, {41702, 1737}, {49176, 19914}, {49469, 51062}, {49681, 51157}, {50890, 34641}, {50891, 3679}, {50893, 31145}, {50894, 551}, {51093, 6174}, {62617, 9945}, {63210, 6735}, {64145, 40}
X(64056) = anticomplement of X(64137)
X(64056) = X(i)-Dao conjugate of X(j) for these {i, j}: {64137, 64137}
X(64056) = pole of line {1537, 39771} with respect to the Suppa-Cucoanes circle
X(64056) = intersection, other than A, B, C, of circumconics {{A, B, C, X(36), X(2802)}}, {{A, B, C, X(80), X(2718)}}, {{A, B, C, X(765), X(50914)}}, {{A, B, C, X(5559), X(38544)}}, {{A, B, C, X(12641), X(52409)}}, {{A, B, C, X(18359), X(37222)}}
X(64056) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5854, 26726}, {8, 149, 15863}, {8, 3952, 50914}, {10, 1320, 16173}, {11, 12653, 50891}, {40, 952, 64145}, {100, 519, 7972}, {100, 7972, 64011}, {149, 15863, 80}, {517, 12751, 34789}, {517, 64140, 12751}, {519, 51433, 36}, {952, 13996, 5541}, {1145, 25416, 3035}, {1145, 26726, 64012}, {1145, 5854, 1}, {2802, 14740, 12758}, {2802, 15863, 149}, {2802, 64139, 5697}, {3035, 5854, 25416}, {3626, 21630, 59415}, {3632, 5541, 952}, {3633, 15015, 1317}, {3679, 12653, 11}, {4668, 37718, 3036}, {11224, 15017, 64192}, {12758, 14740, 5692}, {13278, 51506, 3746}, {39776, 49169, 12749}
X(64057) lies on circumconic {{A, B, C, X(3062), X(3362)}} and on these lines: {1, 971}, {3, 1745}, {4, 222}, {6, 4292}, {10, 55406}, {20, 651}, {30, 3157}, {34, 1071}, {40, 2956}, {46, 4641}, {55, 1777}, {73, 1012}, {84, 223}, {109, 11500}, {212, 37426}, {221, 515}, {226, 36746}, {227, 1158}, {238, 60897}, {241, 1728}, {255, 7580}, {269, 10396}, {280, 20211}, {377, 55400}, {382, 23070}, {394, 64002}, {405, 4303}, {443, 55432}, {475, 26932}, {513, 3556}, {516, 64069}, {603, 2635}, {610, 3182}, {912, 64053}, {940, 9612}, {944, 34040}, {946, 34046}, {1035, 61227}, {1038, 5777}, {1044, 5247}, {1060, 40263}, {1068, 6357}, {1076, 58798}, {1103, 10860}, {1191, 4311}, {1210, 1407}, {1214, 7330}, {1259, 61220}, {1394, 1490}, {1406, 1837}, {1413, 6260}, {1427, 62810}, {1433, 6223}, {1448, 44547}, {1455, 6261}, {1461, 37818}, {1464, 22760}, {1465, 63399}, {1466, 37732}, {1478, 5711}, {1498, 5930}, {1617, 3073}, {1657, 23071}, {1753, 51490}, {1763, 15498}, {1785, 6259}, {1838, 7534}, {1854, 59285}, {1936, 23072}, {2003, 5706}, {2122, 12667}, {2183, 37273}, {2801, 4347}, {2823, 7973}, {2829, 56819}, {3075, 19541}, {3091, 17074}, {3146, 3562}, {3173, 37498}, {3176, 32714}, {3330, 18641}, {3468, 12684}, {3576, 19904}, {3784, 37415}, {4185, 26892}, {4186, 26884}, {4200, 26871}, {4293, 16466}, {4295, 4644}, {4296, 12528}, {4306, 57278}, {4333, 56535}, {4383, 15803}, {4551, 10310}, {5691, 34043}, {5710, 9613}, {5784, 54305}, {5787, 56814}, {5881, 60689}, {5932, 40836}, {6001, 21147}, {6245, 34042}, {6256, 51421}, {6734, 22129}, {6759, 36059}, {6834, 43043}, {6891, 52659}, {6913, 37523}, {6985, 52407}, {7074, 31730}, {7299, 37578}, {7354, 64020}, {7497, 20122}, {7971, 34039}, {8270, 14872}, {8614, 12943}, {9121, 47848}, {9122, 40152}, {9799, 34035}, {9940, 19372}, {10404, 61398}, {10571, 12114}, {11573, 56960}, {12410, 15310}, {12436, 17825}, {12572, 17811}, {12675, 34036}, {13369, 37697}, {13411, 37501}, {15836, 34052}, {16127, 38357}, {18242, 34030}, {18541, 36750}, {19349, 37468}, {20744, 49130}, {22097, 37062}, {22350, 37022}, {23144, 64003}, {26888, 47371}, {34028, 36991}, {34029, 63980}, {34033, 63981}, {36984, 52097}, {37387, 45963}, {37404, 63436}, {37413, 63397}, {37507, 46887}, {37530, 64152}, {37537, 54301}, {37541, 37699}, {39796, 54394}, {40267, 56825}, {41227, 63434}, {48482, 51424}, {51616, 54227}, {56821, 64120}, {56940, 60876}
X(64057) = reflection of X(i) in X(j) for these {i,j}: {1, 64055}, {1854, 59285}
X(64057) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 8757, 34048}, {84, 223, 17102}, {603, 2635, 3149}, {1456, 12680, 1}, {2003, 9579, 5706}, {6223, 18623, 7952}, {23072, 37411, 1936}, {36742, 57282, 37543}
X(64058) lies on these lines: {2, 98}, {3, 40911}, {4, 14530}, {6, 4232}, {20, 6800}, {22, 61044}, {23, 47571}, {25, 63030}, {49, 3547}, {54, 3089}, {69, 13394}, {107, 40138}, {154, 5480}, {156, 7404}, {185, 7998}, {193, 7493}, {217, 9463}, {323, 62174}, {376, 64094}, {378, 38396}, {468, 14912}, {549, 44833}, {631, 6090}, {1147, 7400}, {1181, 3523}, {1204, 41462}, {1249, 37070}, {1370, 61655}, {1495, 14853}, {1503, 52284}, {1614, 3088}, {1992, 32269}, {1993, 10565}, {1995, 18919}, {2452, 46869}, {2883, 14528}, {3066, 35266}, {3090, 31804}, {3091, 14389}, {3146, 41482}, {3167, 7494}, {3292, 10519}, {3431, 10293}, {3522, 13367}, {3525, 18914}, {3533, 26944}, {3549, 9704}, {3618, 35259}, {3620, 7495}, {3622, 64040}, {3796, 37669}, {3832, 19467}, {3854, 10619}, {4233, 44094}, {4549, 18475}, {4846, 38726}, {5020, 51732}, {5032, 7426}, {5050, 40132}, {5056, 6146}, {5068, 18945}, {5093, 37897}, {5094, 39874}, {5265, 19349}, {5281, 19354}, {5640, 6467}, {5646, 50983}, {5656, 11430}, {6353, 11402}, {6618, 56297}, {6676, 11898}, {6755, 60161}, {7378, 11206}, {7386, 59553}, {7392, 8780}, {7398, 35264}, {7408, 44110}, {7409, 31383}, {7487, 9707}, {7585, 19356}, {7586, 19355}, {8550, 37643}, {8779, 14930}, {8972, 18924}, {9545, 59349}, {9777, 62979}, {9833, 43841}, {10132, 55897}, {10133, 55893}, {10154, 61624}, {10192, 11433}, {10303, 18909}, {10304, 40112}, {10602, 26255}, {10605, 15692}, {10721, 49670}, {10783, 62957}, {10784, 62956}, {11002, 15073}, {11064, 25406}, {11101, 19783}, {11160, 47596}, {11169, 51990}, {11245, 38282}, {11422, 21637}, {11464, 37460}, {13171, 35473}, {13352, 34621}, {13851, 61954}, {13941, 18923}, {15032, 35486}, {15360, 63027}, {15504, 44535}, {15705, 21663}, {16051, 48906}, {17578, 43831}, {17825, 59699}, {18913, 61820}, {18918, 61936}, {18950, 37453}, {19363, 63033}, {19364, 63032}, {20423, 32237}, {21640, 63016}, {21641, 63015}, {21659, 50689}, {25320, 62516}, {26869, 52290}, {26874, 61374}, {26937, 61834}, {31099, 59771}, {32621, 37962}, {33201, 46900}, {33522, 37672}, {33748, 63084}, {34148, 52404}, {35265, 63036}, {35283, 63119}, {35484, 41450}, {37665, 38918}, {40947, 54375}, {44109, 61506}, {44210, 63428}, {44212, 53091}, {47391, 61113}, {47597, 54218}, {48873, 59343}, {53093, 61507}, {58378, 61842}, {61657, 62981}
X(64058) = pole of line {511, 5032} with respect to the Jerabek hyperbola
X(64058) = pole of line {230, 52284} with respect to the Kiepert hyperbola
X(64058) = pole of line {511, 1597} with respect to the Stammler hyperbola
X(64058) = pole of line {325, 52284} with respect to the Wallace hyperbola
X(64058) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(46328)}}, {{A, B, C, X(98), X(1285)}}, {{A, B, C, X(287), X(60193)}}, {{A, B, C, X(647), X(22112)}}, {{A, B, C, X(5651), X(43718)}}, {{A, B, C, X(11653), X(55981)}}, {{A, B, C, X(43650), X(51336)}}, {{A, B, C, X(45088), X(53174)}}
X(64058) = barycentric product X(i)*X(j) for these (i, j): {184, 46328}, {1285, 69}
X(64058) = barycentric quotient X(i)/X(j) for these (i, j): {1285, 4}, {46328, 18022}
X(64058) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 26864, 64059}, {6, 35260, 4232}, {154, 11427, 6995}, {468, 14912, 63081}, {1495, 14853, 52301}, {6353, 11402, 63031}, {6800, 37645, 20}, {8550, 61680, 37643}, {10192, 11433, 62973}, {10192, 17809, 11433}, {11206, 23292, 7378}, {26864, 61690, 4}, {35264, 63085, 7398}, {37643, 61680, 53857}
X(64059) lies on these lines: {2, 154}, {3, 44833}, {4, 14530}, {6, 52301}, {20, 110}, {22, 62174}, {23, 159}, {25, 14912}, {30, 64177}, {64, 21734}, {107, 15258}, {125, 53857}, {145, 40660}, {156, 31305}, {161, 63012}, {184, 6995}, {206, 7693}, {323, 19149}, {376, 6090}, {390, 10535}, {394, 59343}, {468, 39874}, {523, 45292}, {550, 54211}, {1495, 4232}, {1498, 3522}, {1614, 7487}, {1619, 6636}, {1660, 7500}, {1899, 62973}, {1971, 5304}, {1995, 39879}, {2393, 5032}, {2883, 5059}, {3060, 34750}, {3079, 56296}, {3088, 9707}, {3089, 12022}, {3090, 64033}, {3091, 9833}, {3146, 34782}, {3167, 34608}, {3357, 41462}, {3426, 35483}, {3523, 10282}, {3525, 34780}, {3528, 12315}, {3566, 9168}, {3600, 26888}, {3620, 5596}, {3623, 64022}, {3832, 14389}, {3839, 18400}, {3854, 41362}, {5012, 7398}, {5056, 23325}, {5068, 64037}, {5071, 61606}, {5159, 21968}, {5286, 44116}, {5640, 33748}, {5650, 33750}, {5893, 50690}, {5894, 62102}, {5895, 62152}, {5921, 7493}, {5925, 62125}, {6000, 7998}, {6225, 50693}, {6247, 61820}, {6353, 26869}, {6696, 61804}, {6794, 61207}, {7378, 31383}, {7386, 8780}, {7392, 38110}, {7408, 11427}, {7409, 23292}, {7486, 18381}, {7492, 15577}, {7495, 61610}, {7496, 63420}, {7519, 63082}, {7585, 10533}, {7586, 10534}, {7605, 23327}, {7714, 11402}, {8549, 15018}, {8550, 41424}, {8567, 62060}, {8721, 35282}, {9143, 11160}, {9463, 32445}, {9485, 55121}, {9543, 19088}, {9909, 34380}, {9924, 51170}, {10117, 15582}, {10182, 10303}, {10193, 61805}, {10295, 41450}, {10519, 35268}, {10536, 17784}, {10537, 20075}, {10565, 26881}, {10606, 62063}, {11004, 34117}, {11064, 14927}, {11180, 61644}, {11202, 15692}, {11204, 62059}, {11241, 63059}, {11242, 63058}, {11243, 63079}, {11244, 63080}, {11245, 62979}, {11456, 37460}, {12007, 31860}, {12112, 35485}, {12225, 32605}, {12250, 62097}, {12283, 44084}, {12289, 46682}, {12324, 15717}, {12964, 43511}, {12970, 43512}, {13093, 21735}, {13171, 21844}, {13416, 64030}, {13419, 43841}, {14002, 15581}, {14227, 62956}, {14242, 62957}, {14528, 16656}, {14683, 15647}, {14862, 50691}, {14925, 37423}, {15139, 61088}, {15311, 62120}, {15428, 40884}, {15448, 37643}, {15580, 56924}, {15589, 57275}, {15683, 40112}, {15721, 23329}, {16063, 41735}, {16654, 19357}, {16657, 18925}, {16981, 44668}, {17576, 26637}, {17578, 17845}, {17813, 63000}, {17819, 63015}, {17820, 63016}, {18376, 61966}, {18533, 40114}, {18621, 61155}, {18919, 47459}, {18950, 62978}, {19132, 23326}, {19153, 63127}, {19708, 35450}, {20070, 40658}, {20079, 61737}, {20080, 34774}, {20299, 61856}, {20427, 62110}, {22802, 49140}, {23049, 63036}, {23061, 34779}, {23291, 61691}, {23324, 61944}, {30402, 63032}, {30403, 63033}, {31099, 36989}, {31101, 41602}, {32111, 49670}, {32237, 63722}, {33884, 34146}, {34785, 49135}, {35325, 41367}, {35356, 37668}, {35502, 38396}, {36851, 62937}, {37897, 39899}, {37904, 50974}, {37910, 44456}, {37980, 54184}, {40132, 48906}, {40686, 61842}, {40885, 53016}, {41374, 51358}, {41580, 62187}, {41715, 62188}, {44082, 61712}, {44442, 59553}, {44762, 61791}, {46034, 62950}, {46936, 64063}, {47313, 51028}, {48672, 62127}, {48912, 63026}, {50688, 61749}, {50689, 64024}, {51350, 54961}, {52404, 54040}, {56923, 63017}, {58188, 64027}, {58795, 62078}, {59767, 64196}, {61138, 61540}, {61655, 62964}, {61721, 62048}
X(64059) = midpoint of X(i) and X(j) for these {i,j}: {11206, 35260}
X(64059) = reflection of X(i) in X(j) for these {i,j}: {2, 35260}, {32064, 61735}, {35260, 154}, {61735, 10192}
X(64059) = pole of line {4240, 9189} with respect to the Kiepert parabola
X(64059) = pole of line {1350, 6000} with respect to the Stammler hyperbola
X(64059) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(3424)}}, {{A, B, C, X(42287), X(60193)}}
X(64059) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 26864, 64058}, {154, 1503, 35260}, {184, 6995, 63030}, {1495, 6776, 4232}, {1503, 10192, 61735}, {1503, 61735, 32064}, {3522, 15066, 40911}, {4232, 6776, 63081}, {10192, 32064, 2}, {10282, 34781, 3523}, {11206, 35260, 1503}, {12324, 17821, 15717}, {15448, 64080, 37643}
X(64060) lies on these lines: {2, 6}, {3, 10112}, {22, 41724}, {25, 15069}, {30, 64}, {51, 10516}, {52, 381}, {76, 54629}, {154, 3564}, {155, 10201}, {161, 542}, {376, 6146}, {427, 11477}, {428, 47353}, {441, 14023}, {511, 1853}, {539, 2917}, {549, 13292}, {569, 5054}, {1151, 11090}, {1152, 11091}, {1154, 14852}, {1209, 5055}, {1350, 1899}, {1351, 21243}, {1352, 17810}, {1370, 53097}, {1494, 47269}, {1498, 11411}, {1503, 34608}, {1620, 63631}, {2052, 54922}, {2781, 54038}, {2888, 52008}, {3060, 53023}, {3167, 5965}, {3292, 37453}, {3448, 48872}, {3519, 7506}, {3532, 30552}, {3534, 37478}, {3545, 45089}, {3592, 56506}, {3594, 56504}, {3796, 45968}, {3830, 18474}, {3917, 26869}, {4641, 53816}, {5020, 34507}, {5050, 11225}, {5064, 12294}, {5085, 11245}, {5392, 54666}, {5485, 54867}, {5562, 16072}, {6090, 61645}, {6145, 34725}, {6193, 17821}, {6293, 36982}, {6425, 56498}, {6426, 56497}, {6503, 8553}, {6509, 40995}, {6617, 15526}, {6676, 17809}, {7232, 54284}, {7494, 8550}, {7499, 53093}, {7507, 14531}, {7539, 15004}, {7571, 15019}, {7714, 11180}, {7734, 48876}, {7751, 52251}, {7768, 41235}, {7784, 40814}, {8280, 9974}, {8281, 9975}, {8538, 30771}, {8716, 35937}, {8780, 32223}, {9225, 63611}, {9306, 11898}, {9936, 13383}, {10192, 63174}, {10244, 45185}, {10302, 54910}, {10519, 18950}, {10605, 44458}, {10691, 54173}, {11178, 58470}, {11402, 61644}, {11412, 31180}, {11441, 46451}, {11442, 33586}, {11469, 50687}, {11550, 48910}, {11750, 15681}, {12085, 52104}, {12164, 64024}, {12359, 37498}, {12429, 17845}, {13361, 61545}, {13428, 23261}, {13439, 23251}, {13881, 60524}, {13966, 55471}, {14457, 34664}, {15068, 44270}, {15360, 51027}, {15644, 26944}, {15685, 20127}, {15693, 37513}, {16195, 61751}, {16266, 61736}, {16419, 40107}, {17814, 41587}, {18573, 63805}, {18951, 37514}, {20266, 62244}, {20977, 63541}, {21974, 51175}, {23061, 30744}, {23291, 63428}, {25738, 37486}, {25893, 33087}, {26932, 55405}, {26942, 55406}, {27376, 62955}, {29181, 32064}, {31236, 38397}, {31383, 47582}, {32000, 37873}, {32225, 44077}, {32599, 44260}, {32859, 48381}, {33522, 44882}, {33529, 42156}, {33530, 42153}, {34048, 63844}, {34351, 63649}, {34380, 61735}, {34477, 47391}, {34505, 52282}, {35603, 37943}, {36749, 48411}, {37197, 45187}, {37454, 53858}, {37487, 44268}, {37489, 38321}, {38317, 61677}, {39284, 54636}, {40996, 45200}, {41615, 44470}, {44518, 51481}, {47558, 55977}, {51024, 62964}, {54132, 62975}, {54772, 60221}, {54776, 54778}, {56456, 62245}, {56457, 62207}, {58434, 64177}, {58891, 63735}, {59343, 64196}, {59699, 62973}, {61700, 62187}
X(64060) = reflection of X(i) in X(j) for these {i,j}: {155, 10201}, {3167, 61646}, {10201, 63734}, {16266, 61736}, {34751, 61666}, {37498, 44441}, {44441, 12359}, {63174, 10192}, {63649, 34351}
X(64060) = isotomic conjugate of X(54496)
X(64060) = X(i)-complementary conjugate of X(j) for these {i, j}: {54930, 2887}
X(64060) = pole of line {6467, 15069} with respect to the Jerabek hyperbola
X(64060) = pole of line {2, 54930} with respect to the Kiepert hyperbola
X(64060) = pole of line {6, 9545} with respect to the Stammler hyperbola
X(64060) = pole of line {2, 54496} with respect to the Wallace hyperbola
X(64060) = pole of line {525, 7658} with respect to the dual conic of 2nd DrozFarny circle
X(64060) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(54629)}}, {{A, B, C, X(64), X(1993)}}, {{A, B, C, X(68), X(37669)}}, {{A, B, C, X(394), X(54922)}}, {{A, B, C, X(597), X(54910)}}, {{A, B, C, X(671), X(37672)}}, {{A, B, C, X(1992), X(54867)}}, {{A, B, C, X(1994), X(56361)}}, {{A, B, C, X(2052), X(61658)}}, {{A, B, C, X(2407), X(47269)}}, {{A, B, C, X(11427), X(14457)}}, {{A, B, C, X(13157), X(39113)}}, {{A, B, C, X(13854), X(37689)}}, {{A, B, C, X(37688), X(59756)}}, {{A, B, C, X(39284), X(63094)}}, {{A, B, C, X(41770), X(62545)}}, {{A, B, C, X(52154), X(53414)}}, {{A, B, C, X(54636), X(64062)}}
X(64060) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {68, 17834, 64037}, {68, 64066, 17834}, {343, 6515, 6}, {511, 61666, 34751}, {1352, 41588, 17810}, {3167, 61646, 61680}, {3292, 37453, 59551}, {5064, 21969, 54131}, {5965, 61646, 3167}, {6676, 63722, 17809}, {11442, 33586, 36990}, {12359, 37498, 40686}, {34751, 61739, 1853}
X(64061) lies on these lines: {2, 15139}, {3, 1177}, {4, 18374}, {5, 182}, {6, 24}, {25, 63688}, {26, 9019}, {30, 63699}, {49, 8262}, {50, 37114}, {64, 1176}, {110, 15069}, {140, 44491}, {141, 7542}, {154, 1995}, {156, 542}, {159, 5050}, {161, 5422}, {184, 468}, {186, 37473}, {216, 37813}, {427, 44078}, {511, 1658}, {524, 1147}, {567, 41613}, {569, 597}, {575, 2393}, {576, 7575}, {578, 11745}, {631, 41719}, {685, 52641}, {1350, 19121}, {1352, 6639}, {1498, 10249}, {1511, 44493}, {1614, 5622}, {1656, 32379}, {1660, 44212}, {1971, 5038}, {1974, 3575}, {1992, 9545}, {2854, 8548}, {2883, 10984}, {2937, 61723}, {3043, 64104}, {3044, 64091}, {3047, 64103}, {3060, 62291}, {3147, 63129}, {3202, 39840}, {3205, 51200}, {3206, 51203}, {3357, 9968}, {3398, 15270}, {3518, 9971}, {3526, 61737}, {3542, 63658}, {3564, 10020}, {3566, 39501}, {3618, 7544}, {3827, 5885}, {3852, 39750}, {5026, 59530}, {5092, 15578}, {5097, 21852}, {5157, 34774}, {5476, 34785}, {5621, 6241}, {5640, 56924}, {5944, 15074}, {5946, 44494}, {5965, 47360}, {5969, 39811}, {6000, 15579}, {6146, 62375}, {6247, 13336}, {6293, 37126}, {6642, 40441}, {6644, 44480}, {6696, 37515}, {6697, 58445}, {6756, 51744}, {6776, 7505}, {6800, 15647}, {7488, 22151}, {7493, 58357}, {7507, 63629}, {7512, 54334}, {7526, 63723}, {7530, 63737}, {7547, 36990}, {7555, 63714}, {7556, 10510}, {7568, 34177}, {7569, 47355}, {7577, 32353}, {7998, 17847}, {8540, 9666}, {8541, 12061}, {8743, 28343}, {8989, 11265}, {9306, 58434}, {9407, 54003}, {9653, 19369}, {9707, 32246}, {9833, 13353}, {9924, 55711}, {9977, 32367}, {10018, 62376}, {10117, 15080}, {10168, 20299}, {10182, 40107}, {10250, 55708}, {10274, 21230}, {10297, 64196}, {10516, 43614}, {10606, 55684}, {10628, 33533}, {11003, 35260}, {11204, 55681}, {11206, 62937}, {11216, 53092}, {11255, 11649}, {11444, 17824}, {11454, 51941}, {11456, 15738}, {11459, 52697}, {11477, 34148}, {12007, 15585}, {12017, 12315}, {12022, 47455}, {12111, 56568}, {12605, 44882}, {13198, 26864}, {13289, 34513}, {13352, 32217}, {13367, 44102}, {13434, 17845}, {14076, 24206}, {14216, 14787}, {14530, 55701}, {14561, 18382}, {14853, 56918}, {14984, 32171}, {15135, 37920}, {15274, 32713}, {15448, 44080}, {15516, 39125}, {15533, 43572}, {15580, 50664}, {16813, 58079}, {17508, 34779}, {17714, 63697}, {18377, 29012}, {18378, 45034}, {18380, 39569}, {18400, 25555}, {18404, 46264}, {18475, 44479}, {18504, 43273}, {18583, 31830}, {19122, 41716}, {19124, 23047}, {19161, 21637}, {19165, 22240}, {19596, 26882}, {20423, 37472}, {20987, 39588}, {22234, 34788}, {22352, 41580}, {23292, 44077}, {23332, 37454}, {29181, 64052}, {32184, 37514}, {32299, 39562}, {32445, 39560}, {34545, 34751}, {34777, 53091}, {34778, 53094}, {35225, 61378}, {36201, 61749}, {37488, 64195}, {37511, 43898}, {37644, 61685}, {39879, 55705}, {43574, 53097}, {43651, 47352}, {43652, 54169}, {43813, 55676}, {44232, 61610}, {44492, 47391}, {50414, 55704}, {52028, 55699}, {52432, 54347}, {58058, 64092}
X(64061) = midpoint of X(i) and X(j) for these {i,j}: {3, 34117}, {6, 15577}, {26, 44469}, {141, 41729}, {182, 206}, {575, 10282}, {1147, 44470}, {3357, 9968}, {8549, 15581}, {9977, 32367}, {12007, 15585}, {18382, 36989}, {19149, 44883}, {34776, 51756}, {34779, 63431}, {37488, 64195}
X(64061) = reflection of X(i) in X(j) for these {i,j}: {6697, 58445}, {15578, 5092}, {15582, 10282}, {20300, 3589}, {24206, 58450}, {39125, 15516}
X(64061) = inverse of X(38397) in Stammler hyperbola
X(64061) = complement of X(34118)
X(64061) = pole of line {525, 34507} with respect to the 1st Brocard circle
X(64061) = pole of line {9517, 15451} with respect to the circumcircle
X(64061) = pole of line {13366, 50649} with respect to the Jerabek hyperbola
X(64061) = pole of line {32, 1594} with respect to the Kiepert hyperbola
X(64061) = pole of line {343, 858} with respect to the Stammler hyperbola
X(64061) = pole of line {16040, 33294} with respect to the Steiner inellipse
X(64061) = pole of line {1236, 7796} with respect to the Wallace hyperbola
X(64061) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 18338, 34117}
X(64061) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(39575)}}, {{A, B, C, X(54), X(18876)}}, {{A, B, C, X(64), X(27366)}}, {{A, B, C, X(1176), X(33629)}}, {{A, B, C, X(1177), X(2980)}}, {{A, B, C, X(3527), X(60589)}}, {{A, B, C, X(6403), X(60527)}}, {{A, B, C, X(14533), X(19151)}}, {{A, B, C, X(19189), X(36823)}}, {{A, B, C, X(34787), X(63154)}}, {{A, B, C, X(42313), X(44668)}}
X(64061) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1576, 61748}, {3, 19153, 34117}, {3, 34117, 2781}, {4, 18374, 63663}, {6, 15577, 44668}, {6, 17821, 34787}, {6, 19128, 51730}, {26, 44469, 9019}, {154, 53093, 8549}, {154, 8549, 15581}, {182, 206, 1503}, {182, 23042, 206}, {575, 10282, 2393}, {1147, 44470, 524}, {1498, 10541, 10249}, {1503, 3589, 20300}, {1614, 5622, 64080}, {2393, 10282, 15582}, {5012, 43815, 53093}, {5085, 19132, 19149}, {5085, 19149, 44883}, {5092, 34146, 15578}, {5622, 38851, 32274}, {10192, 13567, 58439}, {13367, 44102, 50649}, {14561, 36989, 18382}, {17508, 34779, 63431}, {17821, 34787, 15577}, {23041, 34787, 17821}, {34776, 38317, 51756}, {51739, 63663, 4}
X(64062) lies on these lines: {2, 6}, {3, 9936}, {20, 15105}, {22, 15582}, {30, 5562}, {51, 10128}, {52, 10127}, {76, 52281}, {97, 1238}, {140, 1493}, {184, 48876}, {287, 57852}, {297, 7768}, {315, 52282}, {340, 52280}, {376, 63631}, {427, 34507}, {428, 511}, {465, 40712}, {466, 40711}, {472, 634}, {473, 633}, {487, 5406}, {488, 5407}, {539, 1216}, {542, 7667}, {549, 1092}, {553, 62402}, {576, 37439}, {671, 54922}, {1232, 6748}, {1352, 5064}, {1353, 43650}, {1370, 15069}, {1503, 2979}, {1531, 12101}, {1568, 5066}, {1899, 11898}, {3167, 13394}, {3260, 45793}, {3292, 6676}, {3519, 37452}, {3524, 35602}, {3564, 3917}, {3785, 59211}, {3796, 10519}, {3819, 5965}, {5133, 23061}, {5447, 43934}, {5485, 54785}, {5650, 45298}, {5651, 41588}, {5891, 16657}, {5907, 62962}, {6090, 62965}, {6504, 54776}, {6677, 41586}, {6688, 61657}, {6997, 11477}, {7484, 63722}, {7485, 8550}, {7499, 34986}, {7500, 53097}, {7576, 11412}, {7714, 14826}, {7767, 36212}, {7799, 34386}, {7811, 35937}, {7998, 45968}, {7999, 64038}, {8703, 63425}, {9306, 32269}, {9825, 14531}, {10154, 35266}, {10982, 11487}, {11140, 54783}, {11180, 44442}, {11206, 62174}, {11444, 12241}, {11540, 46452}, {11591, 15807}, {12100, 44683}, {12325, 26879}, {12359, 44752}, {14023, 37344}, {14831, 31810}, {14918, 53506}, {15004, 64067}, {15082, 32068}, {15311, 54040}, {15605, 32767}, {15690, 16163}, {16197, 43844}, {16266, 60763}, {16276, 51438}, {16621, 64050}, {17363, 54284}, {17713, 18282}, {17810, 54013}, {18553, 52285}, {20290, 23541}, {22115, 44201}, {22128, 26942}, {22129, 26872}, {23039, 44665}, {23140, 56457}, {23983, 42033}, {25962, 64072}, {26611, 33066}, {26871, 55466}, {27082, 62095}, {29181, 62188}, {31166, 37485}, {31383, 33878}, {31829, 45187}, {32000, 41244}, {32142, 32358}, {32820, 51350}, {32833, 35941}, {33524, 44762}, {34002, 41597}, {34116, 34351}, {34384, 44137}, {34565, 61624}, {34603, 41716}, {34608, 50967}, {34609, 50955}, {35259, 62979}, {36790, 42052}, {37943, 59659}, {39284, 54911}, {41008, 46832}, {41594, 58439}, {44078, 44213}, {44111, 51732}, {44134, 62953}, {44278, 51425}, {44324, 44325}, {44935, 46847}, {45089, 56965}, {45185, 59348}, {45303, 62980}, {47353, 62964}, {52193, 52348}, {52194, 52349}, {52283, 56865}, {53050, 62063}, {54496, 54636}, {54772, 60143}, {54867, 60114}, {56448, 62245}, {56449, 62207}, {59553, 61644}, {61677, 63632}
X(64062) = midpoint of X(i) and X(j) for these {i,j}: {7576, 11412}
X(64062) = reflection of X(i) in X(j) for these {i,j}: {52, 10127}, {7576, 64035}, {11245, 3819}, {16657, 5891}, {44935, 46847}, {62962, 5907}
X(64062) = isogonal conjugate of X(33631)
X(64062) = isotomic conjugate of X(39284)
X(64062) = complement of X(41628)
X(64062) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 33631}, {19, 1173}, {31, 39284}, {288, 2181}, {798, 33513}, {1096, 31626}, {1973, 40410}, {2179, 39286}, {2190, 59142}, {24019, 39180}, {31610, 62268}, {32676, 39183}
X(64062) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39284}, {3, 33631}, {5, 59142}, {6, 1173}, {140, 53}, {233, 4}, {1493, 6}, {5421, 15559}, {6337, 40410}, {6503, 31626}, {11792, 2501}, {15526, 39183}, {22052, 3518}, {31998, 33513}, {33549, 393}, {35071, 39180}, {35442, 12077}, {52032, 31610}, {62569, 62727}, {62573, 62724}, {62603, 39286}
X(64062) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1232, 140}, {14570, 52613}, {54911, 2}
X(64062) = X(i)-complementary conjugate of X(j) for these {i, j}: {661, 53986}, {2148, 39171}, {20185, 4369}
X(64062) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {54911, 6327}
X(64062) = X(i)-cross conjugate of X(j) for these {i, j}: {22052, 140}
X(64062) = pole of line {6467, 11577} with respect to the Jerabek hyperbola
X(64062) = pole of line {99, 33513} with respect to the Kiepert parabola
X(64062) = pole of line {6, 1173} with respect to the Stammler hyperbola
X(64062) = pole of line {523, 44450} with respect to the Steiner circumellipse
X(64062) = pole of line {2, 10979} with respect to the Wallace hyperbola
X(64062) = pole of line {525, 15340} with respect to the dual conic of polar circle
X(64062) = pole of line {115, 53986} with respect to the dual conic of Wallace hyperbola
X(64062) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(140)}}, {{A, B, C, X(3), X(5422)}}, {{A, B, C, X(6), X(6748)}}, {{A, B, C, X(69), X(1232)}}, {{A, B, C, X(86), X(17168)}}, {{A, B, C, X(97), X(1493)}}, {{A, B, C, X(230), X(55280)}}, {{A, B, C, X(287), X(3589)}}, {{A, B, C, X(302), X(40712)}}, {{A, B, C, X(303), X(40711)}}, {{A, B, C, X(325), X(57852)}}, {{A, B, C, X(333), X(20879)}}, {{A, B, C, X(343), X(34386)}}, {{A, B, C, X(524), X(54922)}}, {{A, B, C, X(525), X(37779)}}, {{A, B, C, X(671), X(61658)}}, {{A, B, C, X(966), X(21012)}}, {{A, B, C, X(1494), X(45198)}}, {{A, B, C, X(1799), X(37688)}}, {{A, B, C, X(1992), X(54785)}}, {{A, B, C, X(2303), X(17438)}}, {{A, B, C, X(3289), X(61355)}}, {{A, B, C, X(3519), X(13431)}}, {{A, B, C, X(3763), X(42313)}}, {{A, B, C, X(6515), X(54776)}}, {{A, B, C, X(10601), X(54910)}}, {{A, B, C, X(11433), X(44732)}}, {{A, B, C, X(14389), X(57875)}}, {{A, B, C, X(15066), X(36609)}}, {{A, B, C, X(17825), X(63154)}}, {{A, B, C, X(32078), X(59208)}}, {{A, B, C, X(34211), X(35311)}}, {{A, B, C, X(34545), X(36153)}}, {{A, B, C, X(34564), X(39284)}}, {{A, B, C, X(34897), X(37636)}}, {{A, B, C, X(35324), X(61198)}}, {{A, B, C, X(37672), X(54774)}}, {{A, B, C, X(41435), X(48261)}}, {{A, B, C, X(51171), X(56267)}}, {{A, B, C, X(54496), X(63094)}}, {{A, B, C, X(54772), X(59373)}}
X(64062) = barycentric product X(i)*X(j) for these (i, j): {140, 69}, {233, 34386}, {343, 59183}, {394, 40684}, {1232, 3}, {3265, 35311}, {3267, 35324}, {3926, 6748}, {3964, 44732}, {4143, 61217}, {4563, 55280}, {11064, 62730}, {13366, 305}, {15414, 35318}, {17168, 306}, {17206, 21012}, {17438, 304}, {18022, 61355}, {20879, 63}, {21103, 4561}, {22052, 76}, {32078, 34384}, {57811, 97}
X(64062) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39284}, {3, 1173}, {6, 33631}, {69, 40410}, {95, 39286}, {97, 288}, {99, 33513}, {140, 4}, {216, 59142}, {233, 53}, {343, 31610}, {394, 31626}, {520, 39180}, {525, 39183}, {1232, 264}, {1493, 3518}, {1799, 39289}, {3078, 62261}, {3265, 62724}, {3519, 1487}, {4563, 55279}, {6748, 393}, {11064, 62727}, {13366, 25}, {14978, 13450}, {17168, 27}, {17438, 19}, {19210, 20574}, {20879, 92}, {21012, 1826}, {21103, 7649}, {22052, 6}, {26861, 26862}, {32078, 51}, {34386, 31617}, {34483, 34110}, {35311, 107}, {35318, 61193}, {35324, 112}, {35441, 12077}, {36153, 34484}, {36422, 6748}, {40684, 2052}, {43704, 43657}, {44732, 1093}, {53386, 14569}, {55280, 2501}, {57811, 324}, {59164, 60828}, {59183, 275}, {61217, 6529}, {61355, 184}, {62730, 16080}
X(64062) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 394, 343}, {1232, 40684, 57811}, {3167, 43653, 13394}, {3819, 5965, 11245}, {9936, 42021, 3}, {10519, 63174, 3796}, {10625, 31831, 16655}, {11898, 62217, 1899}, {14826, 63428, 33586}, {34986, 40107, 7499}, {40711, 44718, 466}, {40712, 44719, 465}
X(64063) lies on these lines: {2, 6759}, {3, 113}, {4, 11202}, {5, 5944}, {17, 11244}, {18, 11243}, {24, 18388}, {30, 32903}, {49, 10112}, {51, 6152}, {52, 32223}, {54, 37943}, {64, 5054}, {107, 3462}, {110, 2888}, {125, 1614}, {140, 6000}, {143, 10096}, {154, 1656}, {155, 61646}, {156, 542}, {159, 38317}, {182, 31267}, {184, 7505}, {185, 10018}, {186, 43831}, {195, 51885}, {206, 24206}, {235, 11430}, {381, 17821}, {389, 468}, {403, 13367}, {436, 6750}, {511, 9820}, {523, 6663}, {541, 32210}, {546, 58407}, {548, 5893}, {549, 2883}, {550, 14156}, {576, 61683}, {578, 3542}, {620, 59530}, {631, 3357}, {632, 6247}, {1147, 10201}, {1154, 18282}, {1181, 37453}, {1209, 18350}, {1216, 45979}, {1352, 23042}, {1495, 1594}, {1498, 3526}, {1503, 3628}, {1506, 1971}, {1511, 61750}, {1533, 12086}, {1568, 7488}, {1620, 64094}, {1658, 5448}, {1853, 5070}, {2070, 15800}, {2072, 44829}, {2393, 25488}, {2781, 32142}, {2917, 13621}, {2937, 51392}, {3090, 9833}, {3091, 34786}, {3147, 11438}, {3518, 3574}, {3520, 51403}, {3521, 37955}, {3523, 5878}, {3524, 20427}, {3530, 15311}, {3533, 12324}, {3547, 59543}, {3549, 9306}, {3580, 43844}, {3589, 61610}, {3818, 23041}, {3819, 34002}, {3851, 17845}, {3934, 59706}, {4232, 43841}, {5055, 64037}, {5067, 11206}, {5072, 18405}, {5447, 25337}, {5462, 44232}, {5476, 34787}, {5642, 7552}, {5651, 7558}, {5654, 46730}, {5656, 10303}, {5663, 10125}, {5876, 16534}, {5891, 32348}, {5894, 15712}, {5907, 7542}, {5965, 41593}, {6053, 12111}, {6143, 14157}, {6241, 17853}, {6639, 10539}, {6676, 11793}, {6677, 11695}, {6699, 13491}, {6723, 60780}, {6756, 15448}, {6761, 38808}, {6863, 14925}, {7393, 32321}, {7486, 64034}, {7493, 46728}, {7540, 32267}, {7553, 32237}, {7568, 10170}, {7577, 26882}, {7592, 61645}, {7687, 11464}, {7749, 32445}, {8254, 13364}, {8567, 61811}, {8703, 51491}, {8960, 11242}, {8976, 17820}, {9704, 61713}, {9729, 16238}, {9920, 21308}, {10020, 13754}, {10024, 51393}, {10095, 44668}, {10110, 21841}, {10116, 63839}, {10224, 44407}, {10255, 11750}, {10257, 46850}, {10272, 10628}, {10516, 34776}, {10533, 10577}, {10534, 10576}, {10594, 61743}, {10606, 15720}, {10675, 33416}, {10676, 33417}, {11064, 15644}, {11230, 40660}, {11231, 40658}, {11241, 58866}, {11381, 37118}, {11423, 61712}, {11424, 62961}, {11440, 15063}, {11444, 52300}, {11550, 52296}, {11563, 12897}, {11565, 15088}, {12010, 32423}, {12038, 15761}, {12088, 51360}, {12241, 37942}, {12250, 61820}, {12254, 14644}, {12315, 15694}, {12900, 49673}, {13093, 55863}, {13154, 44883}, {13346, 64181}, {13348, 16618}, {13371, 29012}, {13399, 43608}, {13406, 17702}, {13434, 21451}, {13561, 34330}, {13567, 64026}, {13568, 37935}, {13598, 37971}, {13630, 44234}, {13851, 35487}, {13861, 15577}, {13951, 17819}, {14076, 32379}, {14249, 48361}, {14363, 56297}, {14641, 15122}, {14852, 61751}, {14864, 23332}, {14869, 23328}, {14915, 23336}, {15105, 61824}, {15585, 18583}, {15646, 43577}, {15647, 32743}, {15692, 64187}, {15693, 48672}, {15696, 61721}, {16163, 50009}, {16197, 53415}, {16655, 62958}, {16966, 30403}, {16967, 30402}, {17714, 29317}, {17826, 42129}, {17827, 42132}, {18369, 56924}, {18378, 61711}, {18390, 19357}, {18568, 34472}, {18909, 52290}, {18914, 47296}, {19153, 34507}, {19347, 26958}, {19506, 64101}, {20773, 33547}, {22467, 64179}, {22660, 34351}, {25338, 63737}, {26879, 61691}, {26883, 37119}, {32063, 40686}, {32064, 61886}, {32330, 54007}, {32340, 62982}, {32350, 38458}, {32401, 34864}, {32734, 58923}, {33549, 56298}, {34117, 40107}, {34224, 44110}, {34780, 55857}, {34986, 41587}, {35268, 47528}, {35450, 61832}, {36253, 45731}, {37471, 41603}, {37480, 59349}, {37505, 61690}, {37513, 50143}, {38848, 61715}, {39879, 47355}, {40647, 44452}, {41586, 56292}, {41729, 43150}, {43392, 52003}, {43573, 44282}, {43607, 64029}, {44236, 46849}, {44762, 55859}, {44870, 52262}, {44958, 61744}, {45089, 62978}, {45780, 58484}, {46114, 63414}, {46936, 64059}, {50709, 62123}, {50977, 64031}, {51756, 53999}, {52398, 62708}, {54050, 61814}, {54211, 61816}, {58454, 61609}, {58465, 64038}, {58795, 61850}, {63667, 64035}
X(64063) = midpoint of X(i) and X(j) for these {i,j}: {3, 61749}, {5, 10282}, {140, 16252}, {156, 5449}, {206, 24206}, {548, 5893}, {1498, 52102}, {1658, 5448}, {2883, 64027}, {3589, 61610}, {6759, 20299}, {9820, 13383}, {10020, 61608}, {10182, 61747}, {10201, 61681}, {11591, 41589}, {12038, 15761}, {13406, 32171}, {14076, 32379}, {14862, 25563}, {15577, 19130}, {15585, 18583}, {15647, 32743}, {18381, 45185}, {18383, 34782}, {20773, 33547}, {32767, 50414}, {34117, 40107}, {41597, 63734}, {41729, 43150}, {58434, 61606}, {58439, 61619}
X(64063) = reflection of X(i) in X(j) for these {i,j}: {14862, 16252}, {20191, 10125}, {25563, 140}, {32767, 3628}, {43839, 58435}, {58445, 58450}
X(64063) = complement of X(20299)
X(64063) = pole of line {13382, 35491} with respect to the Jerabek hyperbola
X(64063) = pole of line {2071, 7691} with respect to the Stammler hyperbola
X(64063) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1304, 53757, 53881}
X(64063) = intersection, other than A, B, C, of circumconics {{A, B, C, X(11744), X(15619)}}, {{A, B, C, X(40082), X(48361)}}
X(64063) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6759, 20299}, {3, 64024, 22802}, {5, 10192, 10282}, {5, 34782, 18383}, {5, 44516, 58447}, {30, 58435, 43839}, {49, 63735, 10112}, {140, 16252, 6000}, {140, 6000, 25563}, {140, 61606, 16252}, {154, 1656, 18381}, {154, 18381, 45185}, {156, 5449, 542}, {403, 13367, 13403}, {549, 2883, 64027}, {631, 3357, 10193}, {1495, 1594, 13419}, {1498, 23329, 52102}, {1498, 3526, 23329}, {1503, 3628, 32767}, {1503, 58450, 58445}, {3090, 35260, 9833}, {3523, 5878, 11204}, {3851, 17845, 18376}, {5070, 14530, 1853}, {5663, 10125, 20191}, {6000, 16252, 14862}, {6639, 10539, 21243}, {6676, 59659, 11793}, {7542, 51425, 5907}, {7577, 26882, 61139}, {9820, 13383, 511}, {10020, 61608, 13754}, {10096, 15806, 143}, {10182, 61747, 2777}, {10182, 61749, 3}, {10272, 34577, 11591}, {10282, 18383, 34782}, {11464, 16868, 21659}, {11563, 43394, 12897}, {13406, 32171, 17702}, {16252, 58434, 140}, {16868, 21659, 7687}, {18383, 34782, 18400}, {21841, 23292, 10110}, {22802, 61747, 64024}, {22802, 64024, 61749}, {32063, 46219, 40686}, {32767, 50414, 1503}, {34780, 55857, 61735}, {44232, 61619, 5462}, {61680, 61747, 10182}
X(64064) lies on these lines: {2, 98}, {3, 14861}, {5, 10619}, {6, 62965}, {30, 5944}, {49, 539}, {51, 10192}, {52, 44213}, {54, 37943}, {143, 21660}, {154, 5064}, {185, 549}, {381, 19357}, {395, 21647}, {396, 21648}, {427, 44110}, {428, 1495}, {436, 62261}, {468, 13366}, {511, 61655}, {524, 21637}, {547, 6146}, {550, 34563}, {578, 62961}, {597, 6467}, {599, 19125}, {1181, 5054}, {1204, 3524}, {1425, 5298}, {1493, 18282}, {1503, 44108}, {1568, 18475}, {1624, 16030}, {1994, 32223}, {3167, 61644}, {3270, 4995}, {3292, 6676}, {3431, 13202}, {3518, 12242}, {3545, 19467}, {3549, 63649}, {3574, 7576}, {3917, 13394}, {4175, 37894}, {5020, 44300}, {5066, 13851}, {5071, 18925}, {5189, 54036}, {5448, 18564}, {5449, 9704}, {5655, 32607}, {5890, 10182}, {5892, 59648}, {6102, 15330}, {6353, 8537}, {6689, 18350}, {7426, 21849}, {7484, 59551}, {7542, 43844}, {7667, 13857}, {7714, 35260}, {7753, 14585}, {8550, 52297}, {8779, 9300}, {9706, 10112}, {9707, 61139}, {10018, 64026}, {10095, 11577}, {10124, 18914}, {10128, 37649}, {10154, 21969}, {10539, 60763}, {10602, 51185}, {10605, 15693}, {10691, 11064}, {10984, 64181}, {10990, 35473}, {11245, 58434}, {11402, 61645}, {11423, 34564}, {11425, 62966}, {11427, 34417}, {11430, 51403}, {11464, 18388}, {11550, 26864}, {11694, 17701}, {12038, 64179}, {12100, 21663}, {13399, 37118}, {13450, 33549}, {13567, 44109}, {13621, 19468}, {13846, 19356}, {13847, 19355}, {14528, 37197}, {14831, 34351}, {14862, 14865}, {15032, 44673}, {15063, 18570}, {15116, 19151}, {15448, 44106}, {15559, 50414}, {15681, 61771}, {15694, 19347}, {15699, 31804}, {15702, 26937}, {15709, 18909}, {15721, 18913}, {15723, 26944}, {16226, 44211}, {16252, 62962}, {16644, 19364}, {16645, 19363}, {16657, 61606}, {17809, 37453}, {18396, 19709}, {18400, 62982}, {18918, 61926}, {18931, 61822}, {18945, 61924}, {19459, 47352}, {20582, 26926}, {21639, 63124}, {21640, 32788}, {21641, 32787}, {22660, 35240}, {25055, 64040}, {26881, 59771}, {30714, 46029}, {31383, 62975}, {32225, 61658}, {32340, 34782}, {34566, 61657}, {34986, 41586}, {37439, 59699}, {37672, 50973}, {37760, 53863}, {38795, 50140}, {41589, 43581}, {43653, 64177}, {43817, 58435}, {44091, 51745}, {44210, 54384}, {44407, 61711}, {44450, 52525}, {45185, 52295}, {48891, 51360}, {51393, 61619}, {52298, 64080}, {58378, 61846}, {61744, 61747}, {62073, 64094}
X(64064) = pole of line {511, 548} with respect to the Jerabek hyperbola
X(64064) = pole of line {511, 6242} with respect to the Stammler hyperbola
X(64064) = intersection, other than A, B, C, of circumconics {{A, B, C, X(98), X(14861)}}, {{A, B, C, X(43891), X(53174)}}
X(64064) = barycentric product X(i)*X(j) for these (i, j): {343, 40634}, {11064, 16243}
X(64064) = barycentric quotient X(i)/X(j) for these (i, j): {16243, 16080}, {40634, 275}
X(64064) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 61690, 61659}, {9544, 21243, 24981}, {9706, 58805, 10112}, {10192, 61690, 51}, {11245, 58434, 61691}, {11402, 61680, 61645}, {13394, 59553, 3917}
X(64065) lies on these lines: {2, 38080}, {3, 144}, {4, 51516}, {5, 9}, {7, 140}, {10, 38170}, {20, 60884}, {30, 5759}, {63, 13226}, {142, 632}, {165, 41705}, {390, 5844}, {442, 61025}, {480, 32141}, {495, 60883}, {496, 60919}, {511, 51144}, {516, 3627}, {517, 51090}, {518, 1353}, {527, 549}, {528, 50823}, {542, 51191}, {546, 5817}, {547, 61023}, {548, 59418}, {550, 971}, {590, 60915}, {615, 60916}, {631, 20059}, {912, 51489}, {942, 61014}, {952, 5223}, {954, 11048}, {1001, 10283}, {1125, 38041}, {1385, 5850}, {1482, 50243}, {1484, 5856}, {1536, 51352}, {1595, 60879}, {1656, 59386}, {2550, 38112}, {3219, 8727}, {3243, 61283}, {3526, 51514}, {3530, 21151}, {3564, 50995}, {3589, 38164}, {3628, 18230}, {3634, 38172}, {3845, 63970}, {3850, 59385}, {3858, 18482}, {3927, 5768}, {4187, 61026}, {4312, 26446}, {5054, 60984}, {5220, 37705}, {5446, 58534}, {5499, 17768}, {5542, 38028}, {5657, 63975}, {5686, 61510}, {5698, 37290}, {5708, 60941}, {5719, 61007}, {5728, 15935}, {5732, 8703}, {5733, 16675}, {5763, 31445}, {5845, 48876}, {5851, 33814}, {5852, 52769}, {6147, 52819}, {6173, 11539}, {6666, 38171}, {6667, 38173}, {6668, 38174}, {6883, 12848}, {6907, 60935}, {6914, 60940}, {6922, 60970}, {8236, 61597}, {8728, 26878}, {8981, 60913}, {10109, 38073}, {10124, 59374}, {10386, 14100}, {10398, 12433}, {10861, 17563}, {11038, 51700}, {11108, 61009}, {11372, 28174}, {11662, 21617}, {11812, 38065}, {12108, 60976}, {13329, 17334}, {13966, 60914}, {14869, 38122}, {15026, 58472}, {15171, 60910}, {15254, 20330}, {15325, 60924}, {15492, 53599}, {15587, 58630}, {15687, 52835}, {15694, 59375}, {15699, 60986}, {15704, 64197}, {15712, 21153}, {15713, 38067}, {16239, 60996}, {17502, 43176}, {17527, 61012}, {18990, 60909}, {20195, 55859}, {22117, 59611}, {22792, 43174}, {24393, 59400}, {24470, 60937}, {28194, 50837}, {28204, 50834}, {29007, 37438}, {30424, 38130}, {31663, 43182}, {31672, 62036}, {34380, 51190}, {37356, 61024}, {37424, 55104}, {37532, 51559}, {37582, 60961}, {38036, 61272}, {38057, 52682}, {38075, 61956}, {38082, 61910}, {38093, 61869}, {38110, 51150}, {38318, 61900}, {38454, 60911}, {40273, 63974}, {43177, 44682}, {44222, 60973}, {44455, 54204}, {50205, 60959}, {51732, 59405}, {58433, 61876}, {59389, 61988}, {60905, 61524}, {60962, 61837}, {60980, 61853}, {60999, 61874}, {61020, 61852}, {63374, 63384}
X(64065) = midpoint of X(i) and X(j) for these {i,j}: {3, 144}, {20, 60884}, {5759, 5779}, {44455, 54204}
X(64065) = reflection of X(i) in X(j) for these {i,j}: {5, 9}, {7, 140}, {3627, 60901}, {5446, 58534}, {5779, 61596}, {5805, 61511}, {15587, 58630}, {20330, 15254}, {31657, 31658}, {31671, 546}, {38111, 59381}, {43182, 31663}, {60901, 64198}, {60922, 61509}, {62036, 31672}, {63974, 40273}, {64198, 61000}
X(64065) = complement of X(60922)
X(64065) = anticomplement of X(61509)
X(64065) = X(i)-Dao conjugate of X(j) for these {i, j}: {61509, 61509}
X(64065) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 60922, 61509}, {3, 144, 5843}, {4, 61006, 51516}, {7, 140, 38111}, {9, 5735, 38108}, {9, 5805, 61511}, {30, 61596, 5779}, {142, 38113, 632}, {144, 21168, 3}, {516, 60901, 3627}, {516, 61000, 64198}, {516, 64198, 60901}, {527, 31658, 31657}, {631, 20059, 59380}, {1353, 51046, 1483}, {3526, 51514, 62778}, {5759, 5779, 30}, {5762, 61511, 5805}, {5779, 6172, 61596}, {5805, 61511, 5}, {5817, 31671, 546}, {6666, 38171, 55856}, {15254, 20330, 38043}, {18230, 38107, 3628}, {18482, 38139, 3858}, {31657, 31658, 549}
X(64066) lies on these lines: {2, 37493}, {3, 6515}, {4, 45383}, {5, 51}, {6, 140}, {24, 45794}, {25, 31831}, {26, 159}, {30, 64}, {54, 41628}, {69, 6642}, {141, 5462}, {154, 9936}, {155, 13383}, {156, 10154}, {161, 17714}, {186, 46443}, {195, 61690}, {235, 18436}, {323, 10018}, {394, 16238}, {427, 6243}, {467, 56303}, {468, 35603}, {511, 12235}, {524, 1147}, {539, 34782}, {549, 569}, {550, 1204}, {568, 7399}, {578, 44201}, {631, 63012}, {632, 37649}, {1181, 16618}, {1199, 7495}, {1216, 13567}, {1353, 19131}, {1368, 6101}, {1595, 10263}, {1596, 5876}, {1657, 46349}, {1894, 32128}, {1899, 37486}, {1906, 18435}, {1993, 7542}, {2883, 13754}, {2888, 7576}, {2917, 12107}, {2979, 26879}, {3060, 7403}, {3133, 52347}, {3517, 11898}, {3518, 12325}, {3526, 63085}, {3530, 37476}, {3542, 58891}, {3546, 63428}, {3549, 12160}, {3567, 7405}, {3580, 11412}, {3627, 18474}, {3630, 43586}, {5447, 44479}, {5663, 32263}, {5889, 15760}, {5965, 10282}, {6102, 6823}, {6193, 14070}, {6247, 52104}, {6676, 12161}, {6755, 14978}, {7387, 11411}, {7393, 11433}, {7488, 37779}, {7499, 36753}, {7502, 31804}, {7509, 37644}, {7512, 45968}, {7516, 45298}, {7517, 47582}, {7525, 43588}, {7526, 13142}, {7553, 11442}, {7555, 32599}, {7592, 34002}, {7691, 12022}, {8263, 12106}, {8703, 61713}, {9777, 14786}, {9818, 64048}, {9820, 61646}, {9935, 32423}, {9967, 10627}, {10020, 59553}, {10192, 41597}, {10201, 61607}, {10539, 32269}, {10990, 62159}, {11402, 47525}, {11414, 18917}, {11441, 37971}, {11695, 40107}, {11750, 15704}, {13346, 44158}, {13371, 61724}, {13391, 61666}, {13622, 40441}, {14449, 21850}, {14516, 41596}, {14864, 29317}, {15068, 21841}, {15083, 16252}, {15107, 16659}, {15559, 62187}, {15712, 37513}, {15912, 41523}, {16789, 63722}, {17712, 48881}, {17810, 23411}, {17814, 44233}, {17821, 63649}, {18128, 44882}, {18350, 62978}, {18569, 61544}, {18859, 43903}, {18909, 35243}, {20303, 37938}, {23307, 45780}, {25738, 37494}, {26937, 37483}, {26944, 33878}, {27361, 27364}, {27377, 37127}, {31833, 37489}, {31834, 46030}, {32110, 63631}, {32348, 37505}, {34116, 40111}, {34224, 41724}, {34785, 44665}, {36747, 52262}, {36752, 43653}, {37452, 54048}, {37672, 64181}, {38136, 50136}, {39522, 63679}, {41589, 44322}, {44076, 44239}, {44077, 61753}, {44277, 63612}, {45088, 64105}, {64035, 64095}
X(64066) = midpoint of X(i) and X(j) for these {i,j}: {68, 17834}, {7387, 11411}
X(64066) = reflection of X(i) in X(j) for these {i,j}: {5, 63734}, {155, 13383}, {6247, 52104}, {13346, 44158}, {15083, 16252}, {16266, 140}, {18569, 61544}, {23335, 12359}
X(64066) = perspector of circumconic {{A, B, C, X(14570), X(43351)}}
X(64066) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2169, 36612}, {2190, 38260}
X(64066) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 38260}, {14363, 36612}
X(64066) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8800, 5}
X(64066) = pole of line {5891, 6146} with respect to the Jerabek hyperbola
X(64066) = pole of line {570, 1656} with respect to the Kiepert hyperbola
X(64066) = pole of line {54, 5422} with respect to the Stammler hyperbola
X(64066) = pole of line {18314, 47122} with respect to the Steiner inellipse
X(64066) = pole of line {95, 32832} with respect to the Wallace hyperbola
X(64066) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(3147)}}, {{A, B, C, X(52), X(64)}}, {{A, B, C, X(54), X(9827)}}, {{A, B, C, X(343), X(42021)}}, {{A, B, C, X(1209), X(13622)}}, {{A, B, C, X(27361), X(41588)}}, {{A, B, C, X(27362), X(62545)}}, {{A, B, C, X(42459), X(46200)}}, {{A, B, C, X(45088), X(45089)}}
X(64066) = barycentric product X(i)*X(j) for these (i, j): {3147, 343}
X(64066) = barycentric quotient X(i)/X(j) for these (i, j): {53, 36612}, {216, 38260}, {3147, 275}
X(64066) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 6515, 13292}, {52, 1209, 45089}, {68, 17834, 30}, {140, 34380, 16266}, {343, 45089, 1209}, {511, 12359, 23335}, {1154, 63734, 5}, {3567, 37636, 7405}, {3580, 11412, 11585}, {5562, 41586, 41587}, {6146, 37478, 550}, {7502, 32358, 31804}, {7525, 43588, 48906}, {9937, 37488, 26}, {13142, 44683, 7526}, {17834, 64060, 68}
X(64067) lies on these lines: {2, 11482}, {3, 1992}, {4, 193}, {5, 524}, {6, 140}, {20, 55724}, {25, 9925}, {30, 11477}, {52, 5095}, {67, 13371}, {69, 1656}, {141, 5097}, {154, 47630}, {155, 63702}, {182, 15712}, {185, 54218}, {235, 15801}, {262, 50251}, {317, 59661}, {340, 42873}, {376, 55580}, {381, 63064}, {382, 54132}, {397, 51206}, {398, 51207}, {427, 8537}, {468, 1993}, {495, 19369}, {496, 8540}, {511, 550}, {517, 64073}, {542, 3627}, {546, 15069}, {547, 15533}, {548, 11179}, {549, 575}, {597, 632}, {599, 3628}, {631, 5032}, {1147, 15471}, {1154, 50649}, {1216, 44495}, {1350, 33923}, {1352, 3850}, {1368, 8538}, {1503, 34788}, {1513, 7837}, {1570, 7755}, {1595, 8541}, {1596, 11470}, {1657, 6776}, {1843, 13431}, {1899, 47315}, {1994, 7495}, {2393, 10263}, {3060, 10301}, {3090, 11160}, {3091, 50955}, {3098, 12007}, {3146, 50974}, {3167, 4232}, {3180, 37464}, {3181, 37463}, {3292, 44212}, {3416, 38165}, {3522, 14912}, {3523, 5050}, {3524, 55701}, {3525, 51179}, {3526, 59373}, {3528, 54174}, {3529, 51028}, {3530, 53093}, {3533, 51171}, {3541, 11405}, {3545, 63116}, {3580, 52293}, {3589, 15520}, {3618, 46219}, {3619, 55860}, {3620, 61886}, {3630, 24206}, {3631, 38317}, {3763, 61877}, {3818, 55717}, {3843, 11180}, {3845, 63115}, {3851, 11008}, {3853, 54131}, {3857, 47354}, {3858, 5480}, {3861, 47353}, {3933, 39099}, {4663, 5690}, {4857, 39873}, {5054, 63022}, {5055, 50992}, {5056, 7941}, {5066, 51187}, {5070, 21356}, {5071, 63118}, {5072, 51175}, {5073, 39899}, {5076, 51023}, {5085, 61792}, {5092, 61789}, {5094, 6515}, {5107, 5254}, {5189, 45968}, {5201, 52274}, {5270, 39897}, {5305, 63043}, {5446, 8681}, {5477, 10992}, {5486, 12161}, {5622, 37495}, {5844, 64070}, {5858, 52266}, {5859, 52263}, {5882, 51196}, {6101, 44479}, {6243, 15073}, {6329, 55714}, {6403, 46444}, {6676, 63094}, {6677, 37672}, {6696, 10250}, {6998, 63052}, {7380, 50074}, {7387, 53019}, {7426, 9716}, {7540, 11061}, {7575, 47549}, {7583, 9974}, {7584, 9975}, {7607, 22329}, {7608, 37688}, {7715, 34382}, {7752, 44369}, {7805, 11623}, {7862, 44395}, {7926, 39663}, {7982, 50952}, {8548, 36747}, {8703, 41149}, {9027, 43130}, {9740, 53099}, {9766, 10011}, {10018, 63063}, {10095, 29959}, {10096, 47448}, {10109, 51188}, {10124, 51185}, {10154, 34986}, {10168, 61837}, {10257, 47462}, {10299, 12017}, {10303, 63000}, {10304, 55602}, {10516, 61940}, {10519, 15720}, {10541, 12100}, {10542, 63633}, {10552, 63719}, {10602, 18914}, {10605, 47337}, {10625, 40673}, {10753, 52090}, {10993, 51198}, {11004, 52300}, {11245, 16063}, {11255, 23335}, {11422, 44210}, {11456, 47281}, {11539, 63124}, {11585, 18449}, {11645, 62041}, {12061, 32196}, {12103, 43273}, {12108, 38064}, {12584, 41595}, {12811, 38072}, {13169, 15027}, {13292, 14791}, {13330, 18907}, {13464, 34379}, {13860, 63093}, {13861, 63180}, {14216, 17813}, {14561, 35018}, {14614, 56370}, {14831, 44241}, {14864, 15583}, {14869, 20583}, {14927, 49139}, {15004, 64062}, {15066, 61657}, {15122, 44469}, {15178, 51005}, {15531, 64051}, {15582, 37936}, {15696, 54170}, {15699, 22165}, {15703, 50990}, {15704, 51140}, {15711, 55679}, {15714, 55644}, {15759, 55641}, {16239, 47352}, {16619, 34117}, {16981, 46818}, {17504, 55687}, {17800, 64014}, {18919, 26944}, {19116, 44501}, {19117, 44502}, {19136, 61753}, {19139, 21841}, {19924, 62155}, {20190, 44682}, {20299, 23326}, {20582, 55861}, {21167, 50664}, {21358, 48154}, {21554, 63049}, {21734, 55620}, {21735, 55610}, {21970, 64177}, {23061, 30739}, {23236, 41720}, {25338, 47276}, {25406, 55584}, {29012, 55719}, {29181, 55720}, {31670, 62026}, {31884, 62064}, {32244, 61543}, {32247, 39562}, {32273, 32365}, {32423, 64104}, {33586, 37910}, {33748, 61791}, {33749, 46853}, {33750, 55616}, {33751, 55586}, {33813, 41672}, {34200, 55614}, {34351, 53777}, {34774, 45185}, {35484, 45034}, {36749, 41614}, {36990, 62013}, {37118, 37784}, {37439, 53863}, {37450, 63038}, {37451, 41624}, {37473, 54215}, {37489, 37934}, {37645, 52292}, {37900, 62187}, {38040, 49511}, {38164, 47595}, {39561, 61824}, {39874, 49135}, {40330, 61919}, {41152, 61890}, {41585, 41597}, {41981, 55582}, {41991, 50959}, {42147, 51200}, {42148, 51203}, {44245, 50976}, {44452, 47460}, {44453, 61625}, {44500, 49111}, {45016, 56292}, {45186, 61692}, {45298, 46336}, {45759, 55631}, {46264, 55722}, {46267, 61851}, {47356, 61286}, {47358, 61278}, {47599, 50993}, {48310, 61876}, {48662, 51538}, {48873, 62136}, {48898, 55723}, {48905, 62156}, {50689, 51215}, {50954, 61955}, {50963, 61964}, {50965, 51180}, {50966, 62083}, {50970, 55611}, {50972, 55583}, {50982, 61852}, {50983, 55708}, {50987, 55704}, {50988, 61810}, {50989, 61896}, {50991, 61885}, {50994, 61887}, {51024, 62034}, {51136, 62162}, {51138, 55694}, {51143, 61879}, {51172, 51178}, {51173, 61968}, {51176, 62146}, {51181, 55698}, {51183, 61900}, {51186, 61880}, {52290, 63092}, {52301, 63174}, {53094, 61784}, {54347, 63734}, {55593, 62082}, {55597, 62079}, {55604, 62074}, {55626, 58190}, {55629, 62067}, {55637, 62062}, {55639, 62061}, {55643, 62060}, {55650, 62057}, {55678, 61783}, {55681, 61785}, {55682, 61787}, {55684, 61790}, {55697, 61794}, {55705, 61803}, {55711, 61813}, {55858, 63109}, {55863, 63062}, {61044, 62127}, {61607, 64048}, {61832, 63073}, {61834, 63122}, {61855, 63011}, {61856, 63123}, {61875, 63119}, {62217, 63031}
X(64067) = midpoint of X(i) and X(j) for these {i,j}: {20, 55724}, {193, 1351}, {381, 63064}, {1352, 6144}, {1992, 50962}, {6243, 15073}, {6776, 44456}, {11008, 11898}, {11160, 51174}, {11477, 63722}, {39899, 51212}, {46264, 55722}, {48898, 55723}
X(64067) = reflection of X(i) in X(j) for these {i,j}: {5, 576}, {6, 61624}, {69, 18583}, {141, 5097}, {155, 63702}, {182, 32455}, {549, 8584}, {550, 8550}, {1216, 44495}, {1353, 3629}, {3098, 12007}, {3630, 24206}, {5480, 55716}, {5690, 4663}, {6101, 44479}, {7575, 47549}, {11898, 18358}, {12584, 41595}, {15069, 546}, {15074, 32284}, {15122, 47464}, {15533, 547}, {21850, 1351}, {23335, 11255}, {24206, 55715}, {32244, 61543}, {33813, 41672}, {38136, 5102}, {39884, 21850}, {40107, 22330}, {40341, 61545}, {44453, 61625}, {47276, 25338}, {48874, 48906}, {48876, 6}, {48906, 1353}, {49111, 44500}, {50977, 20583}, {50978, 597}, {50979, 1992}, {50985, 599}, {53097, 548}, {55586, 33751}, {55606, 33749}, {62155, 64196}, {63612, 19139}
X(64067) = pole of line {1499, 39503} with respect to the nine-point circle
X(64067) = pole of line {574, 1656} with respect to the Kiepert hyperbola
X(64067) = pole of line {3167, 5422} with respect to the Stammler hyperbola
X(64067) = pole of line {14341, 47122} with respect to the Steiner inellipse
X(64067) = pole of line {3525, 6337} with respect to the Wallace hyperbola
X(64067) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {381, 9169, 63064}
X(64067) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2996), X(42021)}}, {{A, B, C, X(14248), X(34154)}}, {{A, B, C, X(22100), X(52454)}}, {{A, B, C, X(34208), X(53098)}}
X(64067) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 34380, 48876}, {6, 48876, 38110}, {69, 5093, 18583}, {141, 25555, 55856}, {141, 5097, 59399}, {193, 1351, 3564}, {511, 1353, 48906}, {511, 32284, 15074}, {511, 3629, 1353}, {511, 48906, 48874}, {511, 8550, 550}, {524, 576, 5}, {550, 1353, 8550}, {597, 40107, 632}, {631, 5032, 53092}, {1351, 3564, 21850}, {1993, 41588, 59553}, {3528, 54174, 55595}, {3564, 21850, 39884}, {5102, 6144, 1352}, {5480, 18553, 3858}, {5486, 44492, 16618}, {5965, 55716, 5480}, {10519, 62995, 53091}, {11008, 14853, 11898}, {11179, 53097, 548}, {11477, 15534, 63722}, {11898, 14853, 18358}, {14561, 40341, 61545}, {15069, 20423, 546}, {19924, 64196, 62155}, {20190, 54169, 44682}, {22330, 40107, 597}, {33749, 55606, 51737}, {34380, 61624, 6}, {38079, 50985, 599}, {42149, 42152, 44535}, {51170, 63428, 5050}, {51737, 55606, 46853}, {53093, 54173, 3530}, {55856, 59399, 25555}
X(64068) lies on these lines: {1, 142}, {2, 3303}, {3, 34607}, {4, 519}, {5, 34619}, {7, 9797}, {8, 210}, {9, 12575}, {10, 1058}, {11, 7080}, {20, 528}, {21, 10385}, {40, 24477}, {55, 30478}, {56, 17784}, {65, 36845}, {69, 17144}, {72, 30305}, {80, 56089}, {100, 7288}, {145, 388}, {149, 3436}, {153, 13271}, {200, 12053}, {278, 15954}, {329, 12701}, {355, 13600}, {376, 8666}, {377, 3241}, {390, 958}, {392, 45085}, {404, 11240}, {405, 47357}, {452, 3058}, {474, 52804}, {475, 56183}, {495, 31418}, {499, 48696}, {515, 12629}, {516, 6762}, {517, 5787}, {518, 962}, {522, 12534}, {527, 9589}, {529, 3146}, {535, 33703}, {548, 34707}, {631, 8715}, {936, 63993}, {938, 5836}, {944, 12520}, {946, 6765}, {950, 4853}, {952, 12667}, {956, 4294}, {966, 3169}, {999, 17563}, {1000, 6598}, {1001, 7674}, {1056, 3244}, {1125, 3158}, {1210, 63137}, {1320, 43740}, {1329, 5274}, {1376, 14986}, {1392, 43741}, {1478, 3633}, {1479, 3421}, {1482, 44229}, {1500, 31405}, {1697, 4847}, {1698, 24386}, {1706, 11019}, {1788, 26015}, {1953, 17314}, {2334, 63007}, {2476, 11239}, {2802, 6903}, {2900, 3487}, {2975, 20075}, {3085, 24390}, {3086, 5687}, {3090, 24387}, {3091, 11235}, {3214, 63126}, {3243, 3671}, {3295, 6675}, {3296, 3892}, {3297, 31413}, {3304, 6904}, {3419, 45039}, {3452, 4882}, {3474, 62874}, {3476, 36846}, {3485, 3870}, {3486, 3872}, {3522, 11194}, {3523, 4421}, {3555, 4295}, {3576, 64117}, {3616, 3748}, {3622, 56177}, {3623, 33110}, {3624, 59584}, {3625, 36922}, {3656, 6849}, {3674, 3875}, {3679, 5084}, {3689, 11376}, {3742, 11024}, {3746, 6857}, {3811, 5603}, {3812, 10580}, {3829, 5056}, {3832, 11236}, {3871, 5218}, {3895, 6734}, {3900, 48089}, {3928, 5493}, {4097, 16828}, {4190, 49719}, {4293, 56998}, {4297, 35514}, {4302, 5288}, {4309, 5258}, {4317, 57000}, {4323, 12630}, {4342, 6743}, {4428, 17558}, {4647, 24394}, {4677, 4857}, {4685, 6822}, {4695, 28074}, {4915, 5795}, {4999, 5281}, {5080, 20053}, {5086, 12648}, {5100, 54433}, {5129, 49736}, {5175, 5252}, {5177, 15888}, {5187, 10707}, {5204, 6154}, {5221, 64151}, {5229, 20050}, {5255, 37642}, {5270, 34747}, {5289, 20007}, {5302, 52653}, {5434, 37435}, {5436, 30331}, {5437, 21625}, {5552, 10589}, {5657, 10806}, {5691, 11519}, {5698, 10624}, {5704, 37828}, {5731, 11260}, {5734, 6835}, {5744, 37568}, {5745, 53053}, {5800, 49681}, {5809, 9848}, {5815, 24703}, {5818, 10596}, {5837, 9819}, {5838, 30618}, {5850, 28647}, {5880, 11037}, {5882, 6916}, {6361, 62858}, {6366, 48083}, {6555, 59598}, {6600, 17590}, {6604, 62790}, {6653, 54098}, {6700, 37704}, {6735, 54361}, {6736, 9581}, {6737, 7962}, {6745, 50443}, {6767, 31419}, {6821, 42057}, {6824, 37622}, {6826, 10222}, {6834, 38665}, {6850, 37727}, {6856, 10056}, {6864, 13464}, {6865, 11362}, {6872, 34611}, {6891, 37726}, {6899, 50810}, {6919, 11238}, {6942, 48713}, {6957, 32537}, {6986, 42842}, {7319, 56090}, {7736, 20691}, {7738, 17448}, {7967, 22837}, {7991, 24391}, {8164, 25639}, {8227, 59722}, {8236, 51715}, {8732, 51773}, {9580, 12527}, {9614, 21075}, {9623, 63999}, {9657, 34749}, {9670, 34606}, {9708, 15172}, {9776, 17609}, {9802, 18719}, {10072, 17567}, {10179, 59413}, {10431, 44663}, {10449, 35634}, {10525, 47746}, {10528, 10588}, {10531, 49169}, {10578, 28628}, {10587, 33108}, {10591, 17757}, {10595, 22836}, {10914, 18391}, {11036, 42871}, {11108, 15170}, {11278, 18517}, {11375, 63168}, {11512, 53618}, {12433, 40587}, {12635, 13463}, {12641, 15863}, {12642, 26117}, {12649, 14923}, {12700, 63962}, {13729, 34700}, {13736, 49746}, {14647, 49163}, {15676, 61155}, {15704, 34740}, {16610, 28016}, {17480, 62392}, {17528, 31420}, {17552, 38025}, {17576, 63273}, {17578, 34706}, {17580, 49732}, {17658, 64131}, {17728, 26062}, {17749, 61222}, {17762, 42696}, {20013, 62826}, {20014, 20060}, {20047, 63010}, {20095, 22560}, {20344, 39567}, {21384, 41325}, {24389, 31435}, {24803, 34860}, {24982, 63142}, {25439, 26363}, {25681, 64083}, {26007, 28756}, {26333, 47745}, {26364, 47743}, {28194, 54422}, {28234, 48482}, {30145, 56317}, {30283, 31777}, {30513, 56091}, {30748, 39581}, {31106, 33090}, {31295, 34605}, {31458, 50739}, {32049, 59387}, {33137, 37588}, {34626, 50693}, {34739, 50688}, {34748, 47032}, {35104, 56542}, {36574, 64176}, {37230, 50805}, {37433, 50872}, {37462, 38314}, {37567, 51463}, {40663, 63133}, {41709, 64203}, {48805, 56986}, {48837, 50637}, {49627, 54286}, {50581, 63089}
X(64068) = midpoint of X(i) and X(j) for these {i,j}: {8, 12541}, {962, 6764}, {3680, 12625}, {5691, 11519}
X(64068) = reflection of X(i) in X(j) for these {i,j}: {1, 21627}, {20, 12513}, {145, 10912}, {153, 13271}, {2136, 10}, {2550, 6601}, {3189, 1}, {3811, 49600}, {3913, 3813}, {6361, 62858}, {6765, 946}, {7674, 1001}, {7991, 24391}, {11523, 4301}, {12245, 49168}, {12437, 64205}, {12632, 3913}, {12635, 13463}, {12641, 15863}, {20095, 22560}, {34607, 34625}, {63962, 12700}, {64202, 11362}
X(64068) = complement of X(12632)
X(64068) = anticomplement of X(3913)
X(64068) = perspector of circumconic {{A, B, C, X(646), X(37206)}}
X(64068) = X(i)-Dao conjugate of X(j) for these {i, j}: {3913, 3913}
X(64068) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34860, 3436}, {39956, 329}, {40012, 21286}, {40151, 27835}, {42304, 69}, {56155, 8}
X(64068) = pole of line {3583, 3667} with respect to the anticomplementary circle
X(64068) = pole of line {3667, 43923} with respect to the polar circle
X(64068) = pole of line {8, 17642} with respect to the Feuerbach hyperbola
X(64068) = pole of line {4462, 7178} with respect to the Steiner circumellipse
X(64068) = pole of line {3676, 20317} with respect to the Steiner inellipse
X(64068) = pole of line {9, 24175} with respect to the dual conic of Yff parabola
X(64068) = pole of line {21945, 53540} with respect to the dual conic of Wallace hyperbola
X(64068) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(44720)}}, {{A, B, C, X(8), X(2191)}}, {{A, B, C, X(80), X(42020)}}, {{A, B, C, X(277), X(312)}}, {{A, B, C, X(341), X(6601)}}, {{A, B, C, X(1265), X(3680)}}, {{A, B, C, X(3701), X(43745)}}, {{A, B, C, X(4662), X(30479)}}, {{A, B, C, X(4723), X(43740)}}
X(64068) = barycentric product X(i)*X(j) for these (i, j): {28011, 312}
X(64068) = barycentric quotient X(i)/X(j) for these (i, j): {28011, 57}
X(64068) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 38052, 51723}, {1, 5082, 2550}, {1, 5853, 3189}, {2, 12632, 3913}, {7, 9797, 34791}, {8, 12541, 3880}, {8, 18228, 4662}, {8, 2899, 44720}, {8, 36926, 42020}, {8, 3702, 3974}, {8, 497, 2551}, {8, 9785, 960}, {10, 1058, 26105}, {20, 12513, 34610}, {55, 64081, 30478}, {100, 10529, 7288}, {145, 3434, 388}, {149, 3436, 5225}, {149, 3621, 3436}, {499, 48696, 59591}, {519, 4301, 11523}, {528, 12513, 20}, {946, 6765, 25568}, {962, 6764, 518}, {1479, 3632, 3421}, {1837, 3893, 8}, {2136, 24392, 10}, {2476, 64199, 11239}, {2802, 49168, 12245}, {3086, 5687, 59572}, {3304, 34612, 6904}, {3616, 64146, 56176}, {3680, 12625, 519}, {3689, 11376, 27383}, {3811, 49600, 5603}, {3813, 3913, 2}, {3871, 10527, 5218}, {4309, 5258, 11111}, {4342, 6743, 15829}, {4882, 51785, 3452}, {5046, 31145, 56879}, {5258, 34719, 4309}, {5853, 64205, 12437}, {5880, 58609, 11037}, {7991, 24391, 34744}, {8715, 45700, 631}, {10528, 11680, 10588}, {10624, 57279, 5698}, {10912, 44669, 145}, {11235, 12607, 3091}, {11238, 21031, 6919}, {11362, 64202, 34711}, {12116, 12245, 64111}, {12437, 21627, 64205}, {12437, 64205, 1}, {15888, 31140, 5177}, {24387, 45701, 3090}, {26015, 63130, 1788}, {36846, 57287, 3476}, {49719, 62837, 4190}, {56936, 64081, 55}
X(64069) lies on these lines: {1, 6}, {3, 947}, {4, 9370}, {8, 394}, {10, 17811}, {20, 23144}, {25, 16980}, {33, 14872}, {35, 37501}, {40, 222}, {42, 1496}, {46, 1407}, {47, 3052}, {55, 255}, {56, 1066}, {57, 1103}, {64, 2807}, {73, 3428}, {109, 1413}, {145, 1993}, {154, 9798}, {155, 952}, {184, 8192}, {221, 517}, {227, 5709}, {323, 3621}, {355, 17814}, {388, 5706}, {495, 5707}, {498, 37674}, {499, 37679}, {511, 12410}, {515, 1498}, {516, 64057}, {519, 22130}, {576, 58535}, {580, 1617}, {602, 10964}, {603, 10310}, {607, 20752}, {651, 962}, {692, 22654}, {774, 32912}, {912, 1854}, {940, 3085}, {942, 44414}, {944, 1181}, {946, 34048}, {961, 51497}, {971, 7959}, {999, 36754}, {1038, 63976}, {1040, 12675}, {1071, 54295}, {1074, 10404}, {1125, 17825}, {1167, 55086}, {1201, 61357}, {1350, 8193}, {1376, 3075}, {1385, 37514}, {1394, 6769}, {1398, 53548}, {1406, 24028}, {1433, 6765}, {1455, 37531}, {1465, 12704}, {1482, 23071}, {1483, 12161}, {1697, 2003}, {1745, 64077}, {1771, 5687}, {1783, 40836}, {1834, 10629}, {1935, 11496}, {1936, 11500}, {1994, 3623}, {2093, 7273}, {2123, 15501}, {2361, 11510}, {2594, 26357}, {2810, 42461}, {3057, 64020}, {3076, 19000}, {3077, 18999}, {3086, 4383}, {3149, 4551}, {3189, 22145}, {3241, 63094}, {3295, 22117}, {3303, 61398}, {3333, 52424}, {3445, 52186}, {3556, 8679}, {3616, 10601}, {3617, 15066}, {3622, 5422}, {3811, 46974}, {4252, 8069}, {4255, 8071}, {4292, 20744}, {4293, 37537}, {4295, 6180}, {4303, 5584}, {4306, 44858}, {5020, 23841}, {5022, 13006}, {5045, 39523}, {5119, 62207}, {5250, 55400}, {5255, 20745}, {5348, 11501}, {5452, 11022}, {5534, 51361}, {5550, 63128}, {5570, 17054}, {5603, 10982}, {5691, 15811}, {5711, 23131}, {5758, 34032}, {5844, 16266}, {5906, 23541}, {6149, 21000}, {6767, 36750}, {6851, 51424}, {7046, 40396}, {7080, 63068}, {7373, 37509}, {7592, 7967}, {7982, 34040}, {7991, 34043}, {8757, 12699}, {9052, 42460}, {9053, 64195}, {9371, 63399}, {9817, 58631}, {10246, 36752}, {10247, 36749}, {10267, 52408}, {10321, 37646}, {10571, 22770}, {10680, 34586}, {11248, 52407}, {11365, 17810}, {12001, 15306}, {12245, 60689}, {12514, 55406}, {12647, 63339}, {12680, 41339}, {12702, 23070}, {13138, 46355}, {13374, 19372}, {14110, 19349}, {14986, 32911}, {15068, 37705}, {15805, 38028}, {17102, 55405}, {17824, 32394}, {18445, 18526}, {18451, 18525}, {19855, 25878}, {19862, 59777}, {21620, 37543}, {22118, 37504}, {22128, 63130}, {22129, 56288}, {22753, 37694}, {22767, 54427}, {22791, 44413}, {23120, 41575}, {23129, 64163}, {23140, 63137}, {26935, 45963}, {28224, 32139}, {31884, 37557}, {34634, 43273}, {34657, 51024}, {35645, 37415}, {36753, 37624}, {37257, 51377}, {37546, 53097}, {37559, 51784}, {37576, 50630}, {38293, 51773}, {38866, 59813}, {38902, 40957}, {41227, 57193}, {44662, 64022}, {54286, 62244}, {55399, 62874}, {57277, 64046}
X(64069) = reflection of X(i) in X(j) for these {i,j}: {221, 3157}
X(64069) = inverse of X(62326) in MacBeath circumconic
X(64069) = X(i)-Dao conjugate of X(j) for these {i, j}: {7011, 347}
X(64069) = X(i)-Ceva conjugate of X(j) for these {i, j}: {280, 3}
X(64069) = pole of line {521, 3239} with respect to the MacBeath circumconic
X(64069) = pole of line {81, 14986} with respect to the Stammler hyperbola
X(64069) = pole of line {14344, 17494} with respect to the Steiner circumellipse
X(64069) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(53995)}}, {{A, B, C, X(6), X(52218)}}, {{A, B, C, X(9), X(947)}}, {{A, B, C, X(56), X(3554)}}, {{A, B, C, X(59), X(46355)}}, {{A, B, C, X(960), X(51497)}}, {{A, B, C, X(961), X(57278)}}, {{A, B, C, X(1002), X(44547)}}, {{A, B, C, X(1037), X(9119)}}, {{A, B, C, X(1433), X(22124)}}, {{A, B, C, X(1743), X(52186)}}, {{A, B, C, X(2334), X(3553)}}, {{A, B, C, X(16667), X(57709)}}, {{A, B, C, X(31435), X(51498)}}
X(64069) = barycentric product X(i)*X(j) for these (i, j): {312, 52218}, {1753, 63}, {56544, 9}
X(64069) = barycentric quotient X(i)/X(j) for these (i, j): {1753, 92}, {52218, 57}, {56544, 85}
X(64069) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3074, 1001}, {47, 11508, 3052}, {56, 61397, 36745}, {517, 3157, 221}, {1124, 1335, 9}, {5353, 5357, 3973}, {7074, 34046, 3}, {10306, 23072, 109}
X(64070) lies on these lines: {1, 6}, {8, 524}, {10, 599}, {31, 41711}, {40, 53097}, {42, 36263}, {43, 18201}, {55, 896}, {56, 4557}, {57, 4849}, {63, 4689}, {65, 9004}, {69, 3617}, {81, 4661}, {141, 9780}, {145, 190}, {165, 55614}, {193, 3621}, {210, 37674}, {239, 49499}, {312, 38473}, {354, 14924}, {355, 15069}, {511, 12702}, {515, 64080}, {517, 11477}, {519, 5695}, {528, 24695}, {536, 49495}, {537, 49453}, {542, 18525}, {551, 51185}, {575, 10246}, {576, 1482}, {597, 3616}, {726, 49486}, {740, 49680}, {750, 3711}, {894, 49450}, {899, 4860}, {940, 3681}, {944, 8550}, {952, 63722}, {982, 17779}, {999, 45763}, {1002, 2238}, {1046, 3913}, {1125, 47352}, {1155, 54281}, {1350, 3579}, {1351, 8148}, {1352, 18357}, {1353, 61295}, {1376, 5524}, {1385, 53093}, {1407, 41539}, {1445, 42314}, {1458, 4878}, {1469, 3214}, {1698, 21358}, {1707, 21000}, {1854, 32276}, {2097, 2810}, {2098, 8540}, {2099, 19369}, {2292, 2334}, {2393, 16980}, {2550, 17365}, {2836, 5903}, {2930, 32278}, {2999, 21342}, {3000, 3779}, {3008, 51002}, {3052, 3870}, {3056, 9049}, {3158, 62820}, {3189, 64159}, {3240, 17595}, {3241, 8584}, {3244, 47356}, {3245, 9037}, {3305, 4883}, {3315, 14997}, {3339, 21896}, {3416, 3626}, {3445, 62832}, {3564, 37705}, {3576, 10541}, {3589, 5550}, {3618, 46934}, {3619, 46931}, {3622, 59373}, {3623, 5032}, {3624, 51003}, {3625, 5847}, {3629, 9053}, {3632, 28538}, {3633, 4693}, {3634, 3763}, {3636, 38023}, {3664, 24393}, {3679, 15533}, {3696, 17118}, {3699, 37684}, {3715, 3720}, {3717, 4851}, {3729, 28581}, {3740, 37682}, {3752, 62823}, {3755, 5850}, {3756, 63126}, {3786, 18166}, {3790, 17309}, {3811, 4252}, {3823, 17298}, {3828, 51186}, {3873, 4383}, {3874, 17054}, {3875, 28582}, {3879, 4899}, {3886, 17351}, {3923, 49460}, {3932, 17311}, {3935, 37540}, {3938, 4722}, {3951, 37548}, {3967, 39594}, {3979, 4428}, {4026, 17253}, {4042, 32771}, {4134, 62844}, {4255, 37599}, {4260, 5708}, {4265, 5217}, {4307, 7277}, {4310, 17366}, {4360, 31302}, {4361, 24349}, {4387, 32938}, {4413, 21805}, {4421, 4650}, {4423, 62867}, {4429, 7232}, {4430, 17597}, {4437, 29583}, {4646, 54422}, {4648, 5686}, {4654, 21949}, {4655, 48829}, {4659, 49468}, {4660, 17771}, {4668, 50950}, {4669, 51188}, {4672, 48805}, {4677, 51187}, {4678, 11160}, {4684, 17279}, {4716, 49532}, {4724, 9029}, {4745, 50989}, {4753, 16825}, {4784, 9040}, {4848, 62789}, {4852, 49446}, {4863, 41011}, {4888, 38200}, {4891, 30568}, {4896, 38185}, {4924, 5853}, {4966, 17267}, {4981, 19701}, {5085, 13624}, {5095, 32298}, {5096, 5204}, {5102, 11278}, {5128, 7289}, {5135, 37606}, {5308, 50996}, {5476, 18493}, {5480, 39898}, {5529, 40726}, {5542, 17278}, {5698, 50997}, {5718, 64153}, {5790, 34507}, {5844, 64067}, {5848, 62616}, {5852, 24248}, {5880, 49772}, {6180, 7672}, {7226, 20182}, {7973, 64031}, {7987, 55684}, {8185, 19596}, {8192, 32621}, {8270, 62207}, {8541, 11396}, {8787, 9884}, {9015, 47721}, {9052, 37516}, {9620, 10542}, {9955, 38072}, {9974, 35641}, {9975, 35642}, {10005, 62999}, {10222, 53858}, {10247, 11482}, {10516, 61261}, {10980, 16602}, {11038, 37650}, {11179, 34773}, {11235, 33096}, {11364, 39560}, {12699, 54131}, {12782, 44453}, {13330, 14839}, {14561, 61272}, {15808, 59408}, {16020, 51099}, {16823, 51055}, {16830, 50075}, {16831, 51050}, {16834, 49463}, {16948, 41610}, {17012, 62868}, {17070, 33137}, {17119, 49483}, {17126, 62236}, {17151, 49525}, {17162, 17165}, {17243, 27549}, {17245, 38057}, {17259, 60731}, {17262, 49470}, {17318, 49447}, {17330, 39581}, {17334, 64168}, {17337, 38053}, {17364, 32850}, {17599, 61358}, {17718, 31187}, {17723, 61652}, {17724, 24597}, {17728, 60414}, {18480, 47353}, {18481, 43273}, {18483, 53023}, {19604, 24471}, {19862, 47355}, {19875, 50993}, {19877, 20582}, {19878, 38089}, {20011, 32933}, {20012, 32939}, {20014, 63027}, {20049, 63117}, {20053, 51001}, {20057, 20583}, {20423, 22791}, {21356, 46933}, {22165, 53620}, {23841, 29959}, {24476, 31794}, {24477, 37662}, {24725, 31140}, {24821, 49452}, {25557, 38086}, {25568, 37646}, {27065, 62866}, {29649, 59597}, {30332, 51190}, {30340, 51150}, {30567, 59596}, {30811, 33114}, {31145, 63064}, {31663, 55626}, {31673, 36990}, {31884, 35242}, {32113, 47506}, {32455, 51147}, {32921, 49685}, {33136, 61716}, {33682, 49504}, {34046, 41538}, {34253, 37138}, {34381, 50193}, {36480, 49449}, {37501, 63976}, {37624, 53092}, {37660, 46897}, {38029, 55711}, {38116, 48876}, {38165, 61545}, {38314, 63124}, {39567, 63086}, {39586, 51034}, {39587, 50835}, {39885, 61250}, {41869, 51024}, {42289, 60909}, {43180, 50011}, {44497, 51691}, {44498, 51689}, {44656, 45572}, {44657, 45573}, {47276, 47321}, {47455, 47477}, {47458, 51725}, {48922, 48927}, {49451, 49484}, {49455, 49489}, {49461, 55998}, {49477, 50283}, {49493, 50016}, {49510, 50302}, {49520, 50281}, {49560, 50313}, {49698, 50289}, {49747, 50282}, {49752, 49766}, {50587, 50591}, {51006, 63127}, {51066, 51189}, {51093, 63125}, {51198, 62617}, {52923, 62837}, {54173, 61524}, {55671, 58219}, {55682, 58224}, {55701, 58230}, {60446, 62998}, {60942, 63977}, {62814, 63074}, {62855, 63095}
X(64070) = midpoint of X(i) and X(j) for these {i,j}: {31145, 63064}
X(64070) = reflection of X(i) in X(j) for these {i,j}: {1, 4663}, {6, 3751}, {69, 49524}, {599, 47359}, {944, 8550}, {1469, 22277}, {1482, 576}, {1992, 51124}, {2930, 32278}, {3241, 8584}, {3242, 6}, {3416, 49529}, {3886, 17351}, {5695, 32935}, {7973, 64031}, {9884, 8787}, {11160, 50949}, {15069, 355}, {15533, 3679}, {17276, 3755}, {32113, 47506}, {32298, 5095}, {32921, 49685}, {39898, 5480}, {40341, 3416}, {44453, 12782}, {47276, 47321}, {49446, 4852}, {49451, 49484}, {49453, 49488}, {49455, 49489}, {49458, 4672}, {49460, 3923}, {49486, 49497}, {49679, 51192}, {49681, 51196}, {49688, 49536}, {49747, 50282}, {50790, 47356}, {50998, 20583}, {50999, 597}, {51000, 1992}, {51147, 32455}, {51192, 3629}, {51689, 44498}, {51691, 44497}, {53097, 40}
X(64070) = pole of line {55, 11284} with respect to the Feuerbach hyperbola
X(64070) = pole of line {521, 39521} with respect to the MacBeath circumconic
X(64070) = pole of line {4789, 17494} with respect to the Steiner circumellipse
X(64070) = pole of line {1018, 56797} with respect to the Yff parabola
X(64070) = pole of line {274, 17588} with respect to the Wallace hyperbola
X(64070) = pole of line {11927, 14300} with respect to the Privalov conic
X(64070) = pole of line {142, 17323} with respect to the dual conic of Yff parabola
X(64070) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(29573)}}, {{A, B, C, X(9), X(7241)}}, {{A, B, C, X(37), X(56314)}}, {{A, B, C, X(56), X(16784)}}, {{A, B, C, X(219), X(55977)}}, {{A, B, C, X(1001), X(43760)}}, {{A, B, C, X(1002), X(4663)}}, {{A, B, C, X(1279), X(42290)}}, {{A, B, C, X(1449), X(19604)}}, {{A, B, C, X(2334), X(16785)}}, {{A, B, C, X(2991), X(3242)}}, {{A, B, C, X(3731), X(56179)}}, {{A, B, C, X(5220), X(55935)}}, {{A, B, C, X(10308), X(56527)}}, {{A, B, C, X(16469), X(42315)}}, {{A, B, C, X(16503), X(55919)}}, {{A, B, C, X(16779), X(37129)}}, {{A, B, C, X(23704), X(37138)}}, {{A, B, C, X(38316), X(39273)}}
X(64070) = barycentric product X(i)*X(j) for these (i, j): {1, 29573}
X(64070) = barycentric quotient X(i)/X(j) for these (i, j): {29573, 75}
X(64070) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3751, 4663}, {1, 4663, 6}, {1, 5220, 45}, {6, 518, 3242}, {210, 62819, 37674}, {518, 4663, 1}, {519, 32935, 5695}, {537, 49488, 49453}, {599, 47359, 38087}, {726, 49497, 49486}, {899, 54352, 4860}, {1743, 3243, 1279}, {1992, 9041, 51000}, {3240, 62235, 17595}, {3416, 34379, 40341}, {3416, 49529, 59407}, {3629, 9053, 51192}, {3640, 5589, 7969}, {3641, 5588, 7968}, {3755, 5850, 17276}, {3870, 4641, 3052}, {3935, 62795, 37540}, {3979, 7262, 4428}, {4430, 32911, 17597}, {4672, 49458, 48805}, {5695, 32935, 49721}, {5847, 49536, 49688}, {9026, 22277, 1469}, {9041, 51124, 1992}, {9053, 51192, 49679}, {34379, 49529, 3416}, {38047, 49511, 3763}, {49451, 50127, 49484}, {49453, 49488, 50120}, {49470, 62222, 17262}
X(64071) lies on these lines: {1, 596}, {2, 3743}, {8, 192}, {10, 3995}, {21, 39766}, {37, 19874}, {42, 56318}, {58, 4427}, {65, 4552}, {72, 3896}, {75, 62831}, {79, 44006}, {81, 41813}, {99, 763}, {145, 758}, {191, 16704}, {194, 7985}, {312, 26030}, {321, 3931}, {386, 25253}, {442, 4442}, {519, 50165}, {523, 64199}, {525, 62399}, {536, 4968}, {595, 17150}, {690, 21222}, {726, 25295}, {846, 27368}, {964, 5695}, {986, 32915}, {1010, 64010}, {1089, 4868}, {1125, 17495}, {1193, 4970}, {1201, 14752}, {1203, 45222}, {1330, 33100}, {1468, 32934}, {1698, 27812}, {1834, 4918}, {1962, 3210}, {1999, 56288}, {2650, 3241}, {2667, 24349}, {2783, 15971}, {2796, 50234}, {2901, 4424}, {3120, 3178}, {3159, 3293}, {3161, 40977}, {3175, 3701}, {3187, 12514}, {3214, 3971}, {3244, 6758}, {3295, 3891}, {3303, 49453}, {3454, 27558}, {3523, 58392}, {3622, 58380}, {3623, 63354}, {3624, 58387}, {3666, 3702}, {3670, 29824}, {3672, 18697}, {3678, 19998}, {3685, 5262}, {3695, 4972}, {3704, 4854}, {3710, 3755}, {3712, 56778}, {3725, 4734}, {3746, 20045}, {3797, 26965}, {3868, 20718}, {3869, 18662}, {3871, 32926}, {3875, 5250}, {3878, 20040}, {3879, 20291}, {3881, 17154}, {3914, 57808}, {3915, 32921}, {3936, 63997}, {3951, 25237}, {3993, 56185}, {4016, 17314}, {4037, 27040}, {4062, 56949}, {4068, 32922}, {4075, 31855}, {4099, 16600}, {4356, 45744}, {4359, 6051}, {4360, 17141}, {4385, 42044}, {4387, 5192}, {4414, 17733}, {4425, 20653}, {4436, 35978}, {4452, 18698}, {4560, 38348}, {4642, 63800}, {4696, 64175}, {4717, 19863}, {4850, 26094}, {4903, 25123}, {5247, 32936}, {5255, 32928}, {5492, 48877}, {5550, 10180}, {5625, 16710}, {5710, 17318}, {5904, 20011}, {6048, 64178}, {7283, 17016}, {8720, 54310}, {9780, 21020}, {9957, 62401}, {10528, 23555}, {11239, 17874}, {11684, 56018}, {12632, 24394}, {12699, 33070}, {14210, 18600}, {14450, 17778}, {16705, 17762}, {16711, 41875}, {17034, 25248}, {17148, 50281}, {17162, 64072}, {17183, 39774}, {17479, 64047}, {17480, 20057}, {17539, 63292}, {17588, 54335}, {17756, 40986}, {17759, 25263}, {18135, 35544}, {19877, 27798}, {20691, 30730}, {20896, 50071}, {21081, 31037}, {21295, 37588}, {24159, 29830}, {24620, 53034}, {24883, 56313}, {25080, 64081}, {25268, 56311}, {25271, 48304}, {25294, 32925}, {25307, 33296}, {26097, 29840}, {28530, 49745}, {30122, 31031}, {30170, 31058}, {30438, 50579}, {31025, 42031}, {31036, 49488}, {31339, 49474}, {32845, 37607}, {35550, 50101}, {36845, 56839}, {37592, 50122}, {37614, 49492}, {40085, 52555}, {40091, 43993}, {41261, 63136}, {41814, 43990}, {43677, 62908}, {44661, 56936}, {44671, 49447}, {46901, 50608}, {49564, 64164}, {50043, 59760}, {52541, 58401}, {53037, 54389}, {53043, 62874}
X(64071) = reflection of X(i) in X(j) for these {i,j}: {1, 4065}, {8, 2292}, {4647, 3743}, {4968, 37548}, {17164, 1}, {24349, 2667}, {48877, 5492}
X(64071) = anticomplement of X(4647)
X(64071) = perspector of circumconic {{A, B, C, X(27805), X(37205)}}
X(64071) = X(i)-Dao conjugate of X(j) for these {i, j}: {4647, 4647}
X(64071) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7303, 26772}, {40438, 2}
X(64071) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {58, 2891}, {1126, 1330}, {1171, 69}, {1255, 21287}, {1333, 41821}, {1576, 14779}, {4596, 21301}, {4629, 20295}, {4632, 21304}, {6578, 512}, {28615, 2895}, {32014, 315}, {40438, 6327}, {47947, 21294}, {50344, 3448}, {52558, 17135}, {53688, 20558}, {57685, 1370}, {62535, 17217}
X(64071) = pole of line {46542, 54229} with respect to the polar circle
X(64071) = pole of line {3952, 4010} with respect to the Kiepert parabola
X(64071) = pole of line {661, 1019} with respect to the Steiner circumellipse
X(64071) = pole of line {15309, 25666} with respect to the Steiner inellipse
X(64071) = pole of line {4360, 17103} with respect to the Wallace hyperbola
X(64071) = pole of line {17184, 24199} with respect to the dual conic of Yff parabola
X(64071) = intersection, other than A, B, C, of circumconics {{A, B, C, X(256), X(39949)}}, {{A, B, C, X(257), X(6539)}}, {{A, B, C, X(596), X(6538)}}, {{A, B, C, X(3995), X(8025)}}, {{A, B, C, X(4451), X(41683)}}
X(64071) = barycentric product X(i)*X(j) for these (i, j): {24067, 86}
X(64071) = barycentric quotient X(i)/X(j) for these (i, j): {24067, 10}
X(64071) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4065, 27804}, {8, 9791, 26064}, {145, 31888, 20086}, {321, 3931, 26115}, {536, 37548, 4968}, {740, 2292, 8}, {1962, 49598, 3616}, {3704, 4854, 5051}, {17164, 27804, 1}, {21020, 58386, 9780}, {25253, 64161, 386}, {27784, 28611, 2}, {41813, 63996, 81}
X(64072) lies on these lines: {1, 333}, {2, 4658}, {6, 10479}, {8, 58}, {10, 81}, {21, 519}, {27, 54422}, {28, 24391}, {29, 55956}, {35, 56181}, {36, 59303}, {38, 43993}, {46, 18206}, {63, 64184}, {69, 1714}, {72, 18178}, {79, 17770}, {86, 1698}, {99, 28502}, {100, 4278}, {145, 4653}, {191, 740}, {239, 3670}, {274, 17731}, {283, 49168}, {284, 5839}, {314, 1089}, {386, 1150}, {387, 14552}, {405, 18185}, {442, 524}, {518, 18180}, {527, 31902}, {540, 2475}, {551, 17557}, {595, 17135}, {596, 62235}, {599, 56780}, {758, 27368}, {849, 7058}, {859, 12513}, {940, 56767}, {956, 4267}, {1010, 3679}, {1043, 3632}, {1046, 4647}, {1125, 5235}, {1126, 26115}, {1203, 3741}, {1210, 2287}, {1211, 25441}, {1333, 17362}, {1408, 40663}, {1412, 1788}, {1724, 10449}, {1737, 1812}, {1746, 10441}, {1778, 2321}, {1780, 51978}, {1834, 49716}, {1838, 56014}, {2303, 3686}, {2323, 34831}, {2360, 24477}, {2650, 54335}, {2895, 3454}, {2901, 3219}, {2975, 4276}, {3017, 3578}, {3085, 16713}, {3193, 10916}, {3214, 17187}, {3216, 14829}, {3218, 64185}, {3241, 17588}, {3286, 5687}, {3293, 3736}, {3555, 18165}, {3625, 4720}, {3634, 5333}, {3650, 28530}, {3678, 17763}, {3710, 50606}, {3811, 54356}, {3813, 37357}, {3828, 17551}, {3831, 27644}, {3841, 32949}, {3874, 32914}, {3913, 17524}, {3915, 50625}, {3936, 24880}, {4001, 23537}, {4038, 25512}, {4042, 5711}, {4066, 32938}, {4067, 24624}, {4078, 63158}, {4184, 8715}, {4205, 49724}, {4221, 11362}, {4225, 8666}, {4229, 63469}, {4234, 4677}, {4273, 4969}, {4362, 5904}, {4416, 56019}, {4641, 5295}, {4649, 27164}, {4669, 51669}, {4683, 36250}, {4685, 13588}, {4716, 56023}, {4753, 51285}, {4847, 62843}, {4848, 5323}, {4877, 17314}, {5084, 37654}, {5192, 63060}, {5259, 35633}, {5277, 50252}, {5292, 5739}, {5312, 32916}, {5315, 50608}, {5361, 19767}, {5439, 17348}, {5563, 37442}, {5692, 17733}, {5741, 45939}, {5752, 5769}, {5788, 10478}, {5847, 41610}, {6048, 18792}, {6734, 40571}, {6765, 17194}, {7751, 52257}, {7760, 52256}, {7991, 37422}, {8025, 9780}, {8258, 21085}, {8822, 17151}, {9534, 37522}, {9612, 56020}, {11108, 19723}, {11523, 25516}, {12514, 17156}, {12607, 47515}, {13407, 34379}, {14007, 19875}, {14008, 24387}, {15523, 41822}, {16047, 17310}, {16050, 17294}, {16053, 29573}, {16054, 16833}, {16454, 48852}, {16825, 18398}, {17162, 64071}, {17167, 21077}, {17178, 26029}, {17185, 41229}, {17197, 21075}, {17206, 62755}, {17313, 50207}, {17346, 52258}, {17514, 49730}, {17539, 31145}, {17553, 51071}, {17589, 53620}, {17751, 27660}, {17778, 25446}, {18163, 57279}, {18169, 50581}, {18192, 59294}, {18646, 49636}, {19280, 46922}, {20083, 32782}, {20086, 26131}, {20653, 41814}, {22299, 35636}, {24271, 50153}, {24902, 41878}, {24982, 26637}, {25543, 25548}, {25639, 32843}, {25645, 35466}, {25669, 41806}, {25962, 64062}, {26030, 27163}, {26051, 49744}, {26117, 49723}, {26643, 50095}, {26860, 46933}, {27174, 50306}, {27798, 41812}, {28612, 30599}, {29473, 33825}, {29633, 30966}, {29674, 33295}, {30171, 32861}, {30172, 32852}, {30939, 46937}, {30984, 33139}, {31330, 62805}, {32911, 50605}, {32917, 59301}, {32945, 39673}, {33296, 34016}, {33766, 50312}, {34378, 41718}, {35099, 54160}, {37373, 37720}, {37402, 43174}, {37685, 43531}, {37693, 62998}, {38456, 47033}, {40773, 49488}, {45923, 48887}, {48837, 54429}, {48862, 56992}, {49728, 64167}, {50159, 56968}, {50755, 56949}, {53594, 58786}, {59723, 63286}
X(64072) = reflection of X(i) in X(j) for these {i,j}: {35637, 18180}
X(64072) = pole of line {995, 1203} with respect to the Stammler hyperbola
X(64072) = pole of line {3624, 4389} with respect to the Wallace hyperbola
X(64072) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(996), X(1224)}}, {{A, B, C, X(2258), X(28502)}}, {{A, B, C, X(5331), X(18812)}}, {{A, B, C, X(17126), X(57705)}}, {{A, B, C, X(37870), X(55942)}}
X(64072) = barycentric product X(i)*X(j) for these (i, j): {17299, 86}, {24914, 333}, {48266, 99}, {50504, 799}
X(64072) = barycentric quotient X(i)/X(j) for these (i, j): {17299, 10}, {24914, 226}, {48266, 523}, {50504, 661}
X(64072) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 28619, 28618}, {2, 4658, 28619}, {8, 16704, 58}, {10, 81, 25526}, {72, 18178, 18417}, {333, 56018, 1}, {518, 18180, 35637}, {2895, 24883, 3454}, {9534, 37683, 37522}, {10449, 37652, 1724}, {33295, 33297, 33953}, {35466, 41014, 25645}
X(64073) lies on circumconic {{A, B, C, X(55949), X(56044)}} and on these lines: {1, 1992}, {6, 1125}, {8, 193}, {10, 524}, {31, 50744}, {69, 1698}, {81, 4104}, {141, 51073}, {145, 63027}, {226, 19369}, {306, 4722}, {511, 31728}, {515, 63722}, {516, 11477}, {517, 64067}, {518, 3244}, {519, 5695}, {527, 49488}, {542, 31673}, {551, 8584}, {575, 10165}, {576, 946}, {597, 19862}, {599, 3634}, {726, 13330}, {1150, 61652}, {1351, 12699}, {1352, 38146}, {1353, 34773}, {1386, 32455}, {1738, 17364}, {1757, 3879}, {2784, 64091}, {2836, 4084}, {3214, 53541}, {3241, 63117}, {3271, 3555}, {3416, 4691}, {3564, 18480}, {3616, 5032}, {3617, 50950}, {3618, 34595}, {3621, 51001}, {3622, 16475}, {3623, 16496}, {3624, 59373}, {3625, 28538}, {3626, 47359}, {3630, 3844}, {3633, 51192}, {3636, 47358}, {3663, 17771}, {3679, 63064}, {3696, 7277}, {3712, 4028}, {3755, 17770}, {3759, 24231}, {3828, 15533}, {3874, 9004}, {3914, 17491}, {3986, 5625}, {4001, 61358}, {4061, 4697}, {4133, 17351}, {4266, 62858}, {4297, 8550}, {4349, 49457}, {4416, 4649}, {4464, 49445}, {4480, 49452}, {4527, 50118}, {4655, 50091}, {4669, 63115}, {4676, 49763}, {4684, 16468}, {4689, 4831}, {4700, 16825}, {4743, 28558}, {4745, 51187}, {4746, 50783}, {4780, 17768}, {4852, 5852}, {4856, 5850}, {4924, 17765}, {4966, 16669}, {4969, 49483}, {4974, 5542}, {4982, 16973}, {5093, 18493}, {5102, 64085}, {5223, 50284}, {5550, 63127}, {5819, 51194}, {5846, 49536}, {5880, 50022}, {5886, 11482}, {8540, 12053}, {9780, 11160}, {9798, 53019}, {10175, 34507}, {10609, 51198}, {11008, 59406}, {11180, 18492}, {11711, 41672}, {12263, 44500}, {12512, 53097}, {12702, 50962}, {13624, 50979}, {14848, 61268}, {15069, 19925}, {15481, 17390}, {15808, 20583}, {16020, 63086}, {16473, 41614}, {16491, 63026}, {16823, 63049}, {16830, 63052}, {16980, 61692}, {17197, 21077}, {17330, 39580}, {18483, 20423}, {19875, 50992}, {19876, 50990}, {19878, 47352}, {19883, 63124}, {20080, 46933}, {20086, 60459}, {20090, 60731}, {21358, 31253}, {24695, 28580}, {24725, 50758}, {25055, 63022}, {28164, 64080}, {28526, 49486}, {29602, 50996}, {29959, 58474}, {31738, 44479}, {32938, 50292}, {32940, 50306}, {32941, 64017}, {34380, 61524}, {34381, 44545}, {35242, 50967}, {37639, 37762}, {37705, 50986}, {38023, 51156}, {38047, 40341}, {38118, 48876}, {38167, 61545}, {38187, 47595}, {39586, 63054}, {39878, 51212}, {41149, 51071}, {41610, 63259}, {41869, 54132}, {43180, 51002}, {46934, 63000}, {47549, 51693}, {49451, 50303}, {49453, 50131}, {49476, 49712}, {49493, 49770}, {49499, 49783}, {49560, 50115}, {49680, 64016}, {49987, 54352}, {50600, 50611}, {50955, 61261}, {51069, 51188}, {51103, 63125}, {51178, 61256}, {51190, 60905}, {53620, 63116}, {62819, 63009}, {63279, 63280}
X(64073) = midpoint of X(i) and X(j) for these {i,j}: {193, 3751}, {1992, 50952}, {3416, 6144}, {3679, 63064}, {24695, 49495}, {39878, 51212}, {49680, 64016}
X(64073) = reflection of X(i) in X(j) for these {i,j}: {10, 4663}, {551, 8584}, {946, 576}, {1386, 32455}, {3630, 3844}, {3663, 49489}, {3755, 49685}, {4133, 17351}, {4297, 8550}, {11711, 41672}, {12263, 44500}, {15069, 19925}, {15533, 3828}, {31738, 44479}, {32921, 4856}, {32941, 64017}, {39870, 1353}, {49505, 1386}, {49511, 6}, {49529, 3751}, {49684, 51196}, {50091, 50283}, {50611, 50600}, {51003, 20583}, {51004, 597}, {51005, 1992}, {51089, 47356}, {51196, 3629}, {51693, 47549}, {53097, 12512}
X(64073) = pole of line {6590, 26777} with respect to the Steiner circumellipse
X(64073) = pole of line {4789, 25594} with respect to the Steiner inellipse
X(64073) = pole of line {15668, 17304} with respect to the dual conic of Yff parabola
X(64073) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 34379, 49511}, {6, 49511, 38049}, {193, 3751, 5847}, {518, 3629, 51196}, {518, 51196, 49684}, {524, 4663, 10}, {1757, 3879, 4078}, {3751, 5847, 49529}, {4028, 4641, 59544}, {4416, 4649, 50290}, {4856, 5850, 32921}, {17770, 49685, 3755}, {17771, 49489, 3663}
X(64074) lies on circumconic {{A, B, C, X(346), X(9943)}} and on these lines: {1, 1407}, {2, 34630}, {3, 142}, {4, 1329}, {5, 35238}, {9, 58637}, {10, 6244}, {11, 6890}, {12, 6925}, {20, 55}, {21, 5584}, {30, 4421}, {31, 37537}, {34, 9371}, {35, 7580}, {36, 9589}, {40, 958}, {46, 17613}, {56, 962}, {57, 12651}, {63, 7957}, {65, 62836}, {72, 1709}, {78, 12688}, {84, 518}, {100, 3146}, {109, 41402}, {165, 405}, {197, 39568}, {355, 35448}, {376, 4428}, {382, 11499}, {404, 9812}, {411, 5217}, {412, 54394}, {474, 1699}, {480, 36991}, {497, 1466}, {511, 39877}, {515, 3913}, {517, 1158}, {519, 9948}, {529, 8668}, {550, 10267}, {601, 5706}, {631, 8167}, {692, 13346}, {908, 12679}, {936, 11372}, {939, 948}, {942, 64129}, {950, 37541}, {954, 2951}, {956, 7991}, {960, 6282}, {971, 3811}, {988, 12652}, {990, 5266}, {993, 5493}, {997, 9856}, {999, 4301}, {1071, 37569}, {1151, 13887}, {1152, 13940}, {1155, 62333}, {1259, 6253}, {1260, 63998}, {1470, 12701}, {1476, 4345}, {1479, 37374}, {1482, 3881}, {1490, 15726}, {1503, 12335}, {1593, 37577}, {1604, 21068}, {1621, 3522}, {1657, 11849}, {1721, 37552}, {1742, 37573}, {1770, 8069}, {1777, 7078}, {1802, 5781}, {1885, 11383}, {1935, 7074}, {1975, 20449}, {2077, 3149}, {2478, 50031}, {2550, 37434}, {2646, 64150}, {2777, 13204}, {2794, 12340}, {2801, 12684}, {2807, 37482}, {2829, 13205}, {2886, 6847}, {2932, 34789}, {2975, 20070}, {3035, 6848}, {3052, 37570}, {3073, 36745}, {3090, 61158}, {3091, 4413}, {3158, 63981}, {3189, 9799}, {3244, 30283}, {3295, 4297}, {3303, 5731}, {3333, 43166}, {3359, 7686}, {3361, 42884}, {3428, 6361}, {3436, 64000}, {3487, 8255}, {3523, 4423}, {3529, 11491}, {3534, 37621}, {3555, 10085}, {3560, 3579}, {3577, 10107}, {3586, 59329}, {3601, 12565}, {3627, 18491}, {3655, 12000}, {3656, 16203}, {3678, 5779}, {3742, 37526}, {3812, 37560}, {3816, 6926}, {3817, 16408}, {3826, 6846}, {3870, 12680}, {3880, 12650}, {3916, 41338}, {3925, 6837}, {3940, 31803}, {4068, 58389}, {4200, 25882}, {4267, 37422}, {4299, 11508}, {4300, 19765}, {4302, 11507}, {4333, 32760}, {4512, 19520}, {4999, 6935}, {5044, 54370}, {5047, 64108}, {5057, 38901}, {5068, 9342}, {5073, 18524}, {5080, 37001}, {5218, 37421}, {5220, 7330}, {5251, 63469}, {5258, 63468}, {5259, 16192}, {5265, 53055}, {5284, 15717}, {5285, 37046}, {5289, 12672}, {5293, 64134}, {5432, 6838}, {5433, 6966}, {5440, 63988}, {5450, 11194}, {5537, 5687}, {5538, 5730}, {5603, 37403}, {5657, 18253}, {5690, 18761}, {5709, 64118}, {5758, 17768}, {5777, 16112}, {5812, 12676}, {5840, 12332}, {5842, 6851}, {5881, 8168}, {5918, 10884}, {6001, 12635}, {6147, 60896}, {6223, 25568}, {6259, 21077}, {6261, 56177}, {6284, 6836}, {6459, 19000}, {6460, 18999}, {6684, 6913}, {6690, 6908}, {6765, 10864}, {6796, 28150}, {6833, 15908}, {6835, 7965}, {6840, 11502}, {6850, 7680}, {6864, 42356}, {6882, 10893}, {6883, 31663}, {6888, 31245}, {6891, 7681}, {6895, 36999}, {6911, 22793}, {6914, 35239}, {6916, 25466}, {6918, 18483}, {6922, 26333}, {6923, 10894}, {6934, 12775}, {6938, 11827}, {6943, 10896}, {6945, 31246}, {6962, 52793}, {6974, 24953}, {6985, 26285}, {7098, 22760}, {7171, 12675}, {7956, 10200}, {7958, 37462}, {7988, 16862}, {7992, 11523}, {7994, 57279}, {7996, 60723}, {8142, 8641}, {8158, 8666}, {8715, 28164}, {8726, 10178}, {8727, 31777}, {9441, 54354}, {9708, 43174}, {9709, 19925}, {9746, 16849}, {9779, 17531}, {9842, 20103}, {9961, 34772}, {10058, 59317}, {10164, 11108}, {10171, 16863}, {10198, 37424}, {10269, 22791}, {10525, 37356}, {10679, 18481}, {10827, 59328}, {10895, 37437}, {10902, 37426}, {11235, 63980}, {11246, 55109}, {11249, 28174}, {11490, 12203}, {11501, 12943}, {11510, 15326}, {12178, 23698}, {12260, 43178}, {12327, 12328}, {12329, 29181}, {12410, 63429}, {12514, 31793}, {12520, 24929}, {12545, 23853}, {12607, 12667}, {12702, 22758}, {13374, 37534}, {15228, 36152}, {15254, 61122}, {15852, 17594}, {16370, 59320}, {16371, 50865}, {16418, 50808}, {16853, 58441}, {17538, 61159}, {17582, 38037}, {17928, 20988}, {18540, 58631}, {19541, 25440}, {19763, 49130}, {19843, 35514}, {21628, 57284}, {22560, 48695}, {24328, 24683}, {24470, 60895}, {25681, 63989}, {25968, 27505}, {26086, 28202}, {26118, 30778}, {26286, 28198}, {26332, 31775}, {26446, 37234}, {28212, 32153}, {30304, 41863}, {30384, 40293}, {31162, 37561}, {31787, 54318}, {33597, 50528}, {33899, 49168}, {34247, 51063}, {34620, 34688}, {34647, 54198}, {34773, 37622}, {34791, 63430}, {35251, 63753}, {35258, 37228}, {35772, 42266}, {35773, 42267}, {36002, 62710}, {36746, 37529}, {37078, 61124}, {37267, 54348}, {37429, 63257}, {37544, 62839}, {37579, 64003}, {37592, 61086}, {37606, 51717}, {37611, 45776}, {37727, 44455}, {38150, 50203}, {41854, 42885}, {42258, 44590}, {42259, 44591}, {42843, 52026}, {43577, 43847}, {44431, 56774}, {44663, 54156}, {49140, 61154}, {50371, 63986}, {50688, 61152}, {50689, 61156}, {50693, 61155}, {57288, 64111}, {59301, 62183}, {59691, 63992}, {61157, 62152}, {63266, 64107}, {63304, 63386}, {64123, 64148}
X(64074) = midpoint of X(i) and X(j) for these {i,j}: {84, 6769}, {3189, 9799}, {5758, 64190}, {6765, 10864}, {7992, 11523}
X(64074) = reflection of X(i) in X(j) for these {i,j}: {1490, 56176}, {3913, 10306}, {5709, 64118}, {6259, 21077}, {6985, 26285}, {8158, 8666}, {10525, 37356}, {11500, 11248}, {12513, 12114}, {12635, 37531}, {12667, 12607}, {22560, 48695}, {22770, 5450}, {37411, 6796}, {49168, 33899}, {62858, 34862}, {64075, 550}, {64077, 3}
X(64074) = pole of line {4184, 8273} with respect to the Stammler hyperbola
X(64074) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10860, 9943}, {1, 37022, 63991}, {1, 9841, 58567}, {3, 11496, 1001}, {3, 12699, 22753}, {3, 31730, 11495}, {3, 516, 64077}, {3, 946, 25524}, {4, 10310, 1376}, {21, 9778, 5584}, {30, 11248, 11500}, {35, 64005, 7580}, {40, 1012, 958}, {84, 6769, 518}, {382, 35000, 11499}, {515, 10306, 3913}, {517, 12114, 12513}, {517, 34862, 62858}, {962, 6909, 56}, {1621, 3522, 8273}, {1699, 59326, 474}, {2077, 41869, 3149}, {3870, 63984, 12680}, {4301, 63983, 999}, {5248, 12512, 3}, {5450, 22770, 11194}, {5450, 28194, 22770}, {5918, 37080, 10884}, {6361, 6906, 3428}, {6796, 28150, 37411}, {6836, 64078, 6284}, {8666, 28228, 8158}, {10178, 51715, 8726}, {11248, 11500, 4421}, {15726, 56176, 1490}, {25440, 51118, 19541}, {26285, 28146, 6985}
X(64075) lies on these lines: {1, 7}, {3, 6690}, {4, 993}, {5, 35250}, {10, 50701}, {30, 10525}, {36, 6836}, {40, 6934}, {165, 4190}, {376, 10532}, {377, 59320}, {382, 26470}, {405, 7958}, {411, 1478}, {452, 3817}, {498, 14794}, {499, 6840}, {511, 49164}, {515, 5709}, {528, 8158}, {535, 12667}, {550, 10267}, {944, 3874}, {946, 6868}, {956, 6253}, {958, 20420}, {997, 64004}, {1012, 30264}, {1125, 5715}, {1151, 45650}, {1152, 45651}, {1376, 31799}, {1503, 49185}, {1657, 10680}, {1699, 6872}, {1885, 26377}, {1936, 56819}, {2777, 49203}, {2794, 49153}, {2801, 64144}, {2829, 37411}, {2975, 59355}, {3011, 50699}, {3146, 10527}, {3149, 11827}, {3428, 37468}, {3436, 44425}, {3485, 51717}, {3486, 62852}, {3529, 12116}, {3534, 16202}, {3576, 51706}, {3585, 6838}, {3624, 6992}, {3627, 45630}, {3814, 6927}, {3822, 6988}, {5059, 10529}, {5073, 18544}, {5129, 10171}, {5204, 37374}, {5230, 50702}, {5231, 50696}, {5248, 59345}, {5251, 6835}, {5267, 6847}, {5450, 6851}, {5536, 12649}, {5584, 11112}, {5603, 35016}, {5691, 6734}, {5705, 19925}, {5758, 22836}, {5762, 12635}, {5763, 56177}, {5812, 37837}, {5840, 48694}, {5841, 6256}, {5842, 22770}, {6284, 26437}, {6459, 26464}, {6460, 26458}, {6598, 24477}, {6684, 6885}, {6796, 45701}, {6827, 10200}, {6839, 19854}, {6890, 7280}, {6897, 7688}, {6899, 37561}, {6904, 10164}, {6905, 26364}, {6909, 36152}, {6916, 12511}, {6925, 10483}, {6930, 18483}, {6933, 52850}, {6936, 8227}, {6938, 41869}, {6948, 31730}, {6955, 35242}, {6962, 7951}, {6966, 59319}, {7354, 7580}, {7491, 26333}, {7982, 37000}, {9778, 37256}, {9799, 54302}, {9812, 15680}, {10268, 12512}, {10587, 50693}, {10597, 17538}, {10806, 11001}, {10894, 52265}, {10916, 28164}, {11106, 38037}, {11240, 15683}, {11269, 50694}, {11531, 20075}, {12001, 15681}, {12203, 26431}, {12248, 49176}, {12514, 63438}, {12595, 48872}, {12617, 31424}, {12675, 18481}, {12680, 14054}, {12704, 37002}, {12943, 26481}, {12953, 26475}, {13095, 17845}, {13907, 42638}, {13965, 42637}, {15326, 37022}, {15951, 63429}, {16371, 50031}, {17580, 58441}, {17625, 64043}, {17702, 49151}, {17800, 37726}, {18543, 49137}, {19049, 42259}, {19050, 42258}, {19541, 57288}, {20076, 41575}, {21077, 52026}, {21168, 45085}, {22753, 31789}, {23698, 49147}, {24390, 36999}, {25440, 64111}, {26308, 39568}, {28150, 40265}, {29181, 45728}, {29639, 50698}, {31452, 59421}, {32214, 62155}, {33108, 59356}, {34617, 64173}, {37550, 64129}, {37583, 63983}, {37821, 62359}, {41338, 57287}, {42266, 45640}, {42267, 45641}, {54318, 64001}, {63308, 63386}, {63988, 64002}
X(64075) = reflection of X(i) in X(j) for these {i,j}: {5758, 22836}, {5812, 37837}, {6256, 6985}, {6851, 5450}, {48482, 11249}, {49168, 5709}, {64074, 550}
X(64075) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 26332, 10198}, {4, 11012, 26363}, {20, 4293, 4297}, {20, 962, 4302}, {30, 11249, 48482}, {382, 35252, 26470}, {5709, 49170, 62858}, {5841, 6985, 6256}, {11249, 48482, 45700}
X(64076) lies on these lines: {1, 7}, {3, 3816}, {4, 2077}, {5, 35249}, {30, 4421}, {35, 6925}, {40, 6938}, {119, 382}, {165, 6872}, {376, 10531}, {452, 10164}, {497, 63983}, {498, 37437}, {511, 49165}, {515, 12640}, {519, 54156}, {550, 10269}, {758, 64190}, {908, 52860}, {946, 6948}, {950, 64129}, {958, 31777}, {1012, 11826}, {1151, 45652}, {1152, 45653}, {1158, 49168}, {1470, 6284}, {1479, 6909}, {1503, 49186}, {1519, 6934}, {1657, 10679}, {1699, 4190}, {1709, 57287}, {1768, 12649}, {1788, 46684}, {1837, 17613}, {1885, 26378}, {2096, 3874}, {2478, 59326}, {2777, 49204}, {2794, 49154}, {2801, 3189}, {2829, 10306}, {3146, 5552}, {3149, 24466}, {3359, 6868}, {3436, 5537}, {3529, 12115}, {3534, 16203}, {3583, 6890}, {3627, 45631}, {3647, 5657}, {3817, 6904}, {5010, 6838}, {5059, 10528}, {5073, 18542}, {5129, 58441}, {5248, 6916}, {5436, 64113}, {5440, 12679}, {5450, 45700}, {5538, 11415}, {5554, 9778}, {5584, 57002}, {5603, 51714}, {5687, 64000}, {5691, 6735}, {5722, 64128}, {5840, 48482}, {6244, 57288}, {6259, 56176}, {6459, 26465}, {6460, 26459}, {6684, 6930}, {6836, 59327}, {6850, 10198}, {6869, 12608}, {6885, 18483}, {6906, 26363}, {6935, 25639}, {6936, 35242}, {6943, 10724}, {6955, 8227}, {6962, 59325}, {6966, 7741}, {6976, 31423}, {6987, 10270}, {6992, 16192}, {7354, 26358}, {7580, 15338}, {7958, 56997}, {7982, 37002}, {8148, 38753}, {8715, 12667}, {9812, 37256}, {9961, 11015}, {10171, 17580}, {10572, 63985}, {10586, 50693}, {10596, 17538}, {10680, 38761}, {10805, 11001}, {10915, 28164}, {10916, 52027}, {10993, 18518}, {11239, 15683}, {11496, 31775}, {11531, 20076}, {12000, 15681}, {12203, 26432}, {12511, 59345}, {12594, 48872}, {12607, 40267}, {12648, 20066}, {12688, 41389}, {12703, 37000}, {12705, 17647}, {12751, 13199}, {12943, 26482}, {12953, 26476}, {13094, 17845}, {13906, 42638}, {13964, 42637}, {15171, 63991}, {15704, 37622}, {16127, 37700}, {17702, 49152}, {17757, 37001}, {18481, 23340}, {18545, 49137}, {19047, 42259}, {19048, 42258}, {20050, 64009}, {21164, 59420}, {21635, 27383}, {22836, 63962}, {23698, 49148}, {26309, 39568}, {27385, 50695}, {28154, 37713}, {28158, 59719}, {29181, 45729}, {30513, 50244}, {32213, 62155}, {34630, 57006}, {35000, 37821}, {35238, 37290}, {36977, 64145}, {37404, 49553}, {38037, 56999}, {42266, 45642}, {42267, 45643}, {50701, 51118}, {54370, 57284}, {55297, 64186}, {63309, 63386}
X(64076) = midpoint of X(i) and X(j) for these {i,j}: {3189, 12246}
X(64076) = reflection of X(i) in X(j) for these {i,j}: {6256, 11248}, {6259, 56176}, {12667, 8715}, {16127, 37700}, {40267, 12607}, {49168, 1158}, {49169, 49163}, {63962, 22836}, {64077, 550}
X(64076) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 26333, 10200}, {4, 2077, 26364}, {20, 4294, 4297}, {20, 962, 4299}, {30, 11248, 6256}, {382, 35251, 119}, {515, 49163, 49169}, {3146, 5552, 41698}, {3189, 12246, 2801}, {6256, 11248, 45701}
X(64077) lies on these lines: {1, 1427}, {2, 5584}, {3, 142}, {4, 958}, {5, 35239}, {8, 36002}, {10, 19541}, {11, 6836}, {12, 6838}, {20, 56}, {21, 9812}, {30, 10525}, {35, 9589}, {36, 9614}, {40, 936}, {55, 411}, {57, 9943}, {63, 12688}, {64, 24310}, {65, 64150}, {72, 41338}, {78, 7957}, {84, 15726}, {85, 62385}, {100, 20070}, {104, 3529}, {165, 474}, {221, 1936}, {354, 10884}, {376, 40726}, {382, 22758}, {388, 37421}, {390, 57283}, {392, 59340}, {404, 9778}, {405, 1699}, {499, 37374}, {511, 39883}, {515, 12513}, {517, 3811}, {518, 1490}, {519, 8158}, {527, 54227}, {529, 12667}, {535, 40267}, {550, 10269}, {940, 4300}, {942, 12520}, {954, 63974}, {956, 5691}, {971, 62858}, {978, 9441}, {988, 1721}, {990, 37592}, {993, 51118}, {997, 31793}, {999, 4297}, {1004, 19861}, {1012, 11012}, {1044, 1407}, {1058, 43161}, {1064, 5706}, {1071, 12704}, {1106, 3000}, {1151, 22763}, {1152, 22764}, {1155, 63985}, {1158, 37623}, {1191, 37570}, {1193, 37537}, {1259, 11415}, {1329, 6848}, {1350, 10476}, {1465, 54295}, {1466, 3474}, {1479, 57278}, {1496, 6180}, {1503, 22778}, {1593, 1848}, {1617, 12053}, {1657, 22765}, {1708, 64131}, {1709, 3916}, {1742, 37501}, {1745, 64069}, {1750, 57279}, {1754, 16466}, {1766, 25066}, {1770, 8071}, {1836, 26357}, {1854, 37591}, {1885, 22479}, {2095, 5884}, {2099, 45230}, {2550, 50700}, {2635, 9370}, {2777, 22586}, {2794, 19159}, {2807, 5752}, {2829, 22560}, {2883, 3556}, {2951, 3361}, {2975, 3146}, {3035, 6927}, {3189, 54051}, {3218, 9961}, {3286, 37422}, {3295, 4301}, {3304, 5731}, {3333, 5572}, {3338, 10167}, {3434, 6253}, {3522, 5253}, {3534, 37535}, {3560, 22793}, {3576, 37426}, {3579, 6911}, {3601, 12651}, {3616, 7411}, {3622, 35986}, {3627, 18761}, {3646, 21153}, {3649, 55109}, {3651, 5603}, {3655, 12001}, {3656, 16202}, {3742, 8726}, {3812, 30503}, {3816, 6865}, {3817, 11108}, {3826, 6864}, {3832, 5260}, {3838, 5715}, {3925, 6835}, {3927, 31803}, {3928, 7992}, {4188, 54348}, {4192, 5799}, {4267, 5327}, {4299, 22767}, {4302, 22766}, {4413, 6915}, {4421, 6796}, {4423, 6986}, {4428, 10902}, {4640, 12705}, {4847, 63998}, {4999, 6847}, {5047, 9779}, {5073, 26321}, {5120, 40963}, {5173, 10393}, {5204, 6909}, {5220, 5777}, {5250, 37229}, {5266, 61086}, {5289, 14110}, {5432, 6962}, {5433, 6890}, {5450, 28150}, {5493, 6244}, {5536, 15071}, {5687, 7991}, {5690, 18491}, {5693, 24468}, {5709, 6001}, {5719, 12260}, {5720, 63976}, {5744, 9800}, {5745, 21628}, {5758, 38454}, {5779, 31871}, {5787, 10916}, {5791, 12617}, {5806, 54318}, {5812, 12608}, {5840, 22775}, {5841, 40255}, {5842, 6869}, {5887, 37584}, {5918, 32636}, {5927, 41229}, {6147, 60895}, {6282, 59691}, {6361, 6905}, {6459, 19014}, {6460, 19013}, {6684, 6918}, {6690, 6988}, {6691, 6926}, {6762, 63981}, {6765, 6766}, {6769, 52026}, {6825, 7680}, {6827, 7681}, {6828, 31245}, {6837, 7965}, {6840, 10896}, {6842, 10894}, {6846, 42356}, {6851, 63980}, {6883, 9955}, {6894, 33108}, {6895, 11680}, {6907, 26332}, {6908, 25466}, {6913, 18483}, {6914, 63754}, {6924, 35238}, {6925, 7354}, {6928, 10893}, {6932, 10895}, {6934, 11826}, {6938, 30264}, {6979, 31246}, {7074, 37694}, {7330, 16112}, {7688, 8167}, {7742, 30384}, {7959, 55405}, {7964, 25917}, {7971, 44663}, {7987, 41853}, {7988, 16842}, {7995, 54290}, {8168, 12245}, {8226, 19854}, {8301, 12335}, {8583, 37270}, {8666, 28164}, {8715, 28228}, {8727, 26363}, {9580, 37583}, {9708, 19925}, {9709, 43174}, {9746, 16852}, {9799, 24477}, {9842, 18250}, {9856, 12514}, {10085, 41860}, {10164, 16408}, {10171, 16853}, {10178, 37526}, {10200, 37364}, {10246, 16117}, {10267, 22791}, {10431, 10527}, {10526, 37406}, {10680, 18481}, {10826, 59322}, {10860, 15803}, {11236, 18242}, {11248, 28174}, {11260, 12650}, {11372, 31424}, {11375, 37601}, {11376, 37578}, {11424, 55098}, {11499, 12702}, {11502, 37567}, {11517, 51409}, {11522, 15931}, {12047, 40292}, {12203, 22520}, {12607, 64148}, {12652, 37552}, {12675, 41854}, {12679, 64002}, {12680, 62874}, {12701, 37579}, {12943, 22759}, {12953, 22760}, {13205, 64188}, {13374, 18443}, {14100, 62836}, {15338, 22768}, {15622, 23853}, {16370, 50865}, {16371, 59326}, {16417, 50808}, {16435, 29598}, {16678, 37195}, {16845, 38037}, {16857, 50802}, {16863, 58441}, {17170, 59242}, {17531, 64108}, {17542, 30308}, {17613, 58887}, {17702, 22583}, {17733, 28850}, {17742, 44424}, {17768, 63962}, {18251, 55869}, {19517, 31191}, {19521, 38052}, {19544, 39586}, {19762, 49130}, {20835, 24541}, {20991, 27621}, {22504, 23698}, {22654, 39568}, {22769, 29181}, {23708, 59321}, {24470, 60896}, {24703, 63989}, {25055, 35202}, {25893, 37282}, {25968, 27379}, {26105, 37423}, {26285, 28198}, {26286, 28146}, {26319, 26413}, {26320, 26389}, {26333, 31789}, {26921, 31937}, {27802, 49132}, {28212, 32141}, {28610, 54228}, {29054, 64170}, {30283, 62825}, {30478, 37434}, {31423, 61158}, {31445, 54370}, {31798, 54286}, {31805, 43178}, {33597, 37569}, {34626, 34741}, {35250, 37290}, {35784, 42266}, {35785, 42267}, {36999, 52367}, {37244, 40998}, {37252, 63438}, {37258, 54394}, {37412, 57281}, {37531, 37837}, {37582, 64129}, {37585, 45770}, {38329, 53284}, {40270, 43175}, {42258, 44606}, {42259, 44607}, {42884, 51785}, {43577, 43848}, {44431, 56775}, {46730, 53291}, {50696, 64081}, {59387, 61032}, {59421, 63272}, {63316, 63386}
X(64077) = midpoint of X(i) and X(j) for these {i,j}: {6762, 63981}, {6765, 6766}, {22770, 37411}
X(64077) = reflection of X(i) in X(j) for these {i,j}: {1158, 37623}, {3913, 11500}, {5787, 10916}, {5812, 12608}, {6769, 56176}, {6851, 63980}, {10306, 6796}, {10526, 37406}, {11500, 6985}, {12114, 11249}, {12513, 22770}, {12635, 6261}, {12650, 11260}, {13205, 64188}, {37531, 37837}, {64074, 3}, {64076, 550}
X(64077) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12699, 11496}, {3, 22753, 25524}, {3, 516, 64074}, {3, 946, 1001}, {3, 9911, 20872}, {4, 3428, 958}, {20, 56, 63991}, {30, 11249, 12114}, {36, 64005, 37022}, {40, 3149, 1376}, {40, 936, 58637}, {57, 12565, 9943}, {517, 11500, 3913}, {517, 6261, 12635}, {517, 6985, 11500}, {1125, 12511, 3}, {1479, 59317, 57278}, {2951, 3361, 9841}, {3333, 5732, 58567}, {3434, 50695, 6253}, {3616, 7411, 8273}, {5493, 25440, 6244}, {6769, 52026, 56176}, {6796, 10306, 4421}, {6796, 28194, 10306}, {6925, 64079, 7354}, {7965, 24953, 6837}, {10860, 15803, 64128}, {11012, 41869, 1012}, {11249, 12114, 11194}, {12702, 62359, 11499}, {22770, 37411, 515}, {37282, 41012, 25893}, {37531, 37837, 56177}, {52367, 59355, 36999}
X(64078) lies on these lines: {1, 7}, {2, 2077}, {3, 10531}, {4, 100}, {5, 35251}, {8, 7330}, {11, 6966}, {30, 10679}, {35, 6838}, {40, 5554}, {55, 6925}, {56, 38759}, {104, 11240}, {145, 2800}, {146, 49204}, {147, 49202}, {148, 49148}, {149, 48695}, {153, 25438}, {165, 6992}, {193, 49165}, {355, 63266}, {376, 10269}, {377, 11496}, {382, 10942}, {388, 26358}, {405, 31777}, {452, 24982}, {497, 1470}, {511, 39902}, {515, 3895}, {517, 6938}, {550, 16203}, {944, 9961}, {946, 4190}, {950, 63985}, {1012, 3434}, {1151, 13906}, {1152, 13964}, {1158, 12649}, {1376, 6957}, {1479, 6890}, {1482, 37002}, {1484, 10785}, {1503, 13094}, {1519, 9812}, {1621, 6916}, {1657, 12000}, {1885, 11400}, {2096, 3873}, {2478, 10310}, {2550, 6912}, {2777, 13217}, {2794, 13118}, {2829, 13278}, {2886, 6974}, {2950, 9803}, {3058, 63991}, {3085, 37437}, {3086, 10058}, {3091, 26364}, {3146, 6256}, {3189, 12528}, {3359, 6987}, {3436, 10306}, {3448, 49152}, {3474, 18838}, {3522, 10586}, {3523, 10200}, {3529, 10805}, {3543, 41698}, {3579, 6936}, {3627, 18542}, {3868, 64190}, {3871, 12667}, {3913, 64000}, {4420, 5811}, {4855, 63989}, {5073, 18545}, {5217, 6962}, {5218, 6932}, {5225, 6943}, {5229, 26482}, {5248, 37112}, {5265, 17010}, {5450, 10529}, {5603, 6948}, {5657, 6930}, {5691, 10915}, {5693, 20013}, {5722, 17613}, {5819, 60419}, {5842, 10431}, {5886, 6955}, {5905, 37569}, {6244, 11113}, {6284, 6836}, {6361, 6868}, {6459, 19048}, {6460, 19047}, {6560, 45643}, {6561, 45642}, {6735, 17784}, {6769, 64002}, {6833, 10525}, {6834, 26285}, {6835, 42356}, {6847, 52367}, {6869, 33596}, {6888, 31418}, {6906, 10527}, {6910, 15908}, {6921, 7681}, {6929, 35000}, {6931, 10893}, {6934, 12699}, {6935, 11680}, {6945, 59572}, {6947, 35238}, {6953, 25440}, {6958, 10598}, {6959, 38762}, {6970, 34474}, {6972, 10591}, {6976, 26446}, {6978, 55297}, {7354, 10965}, {7956, 16371}, {7982, 20076}, {9668, 37374}, {9799, 49171}, {9841, 41864}, {9911, 16049}, {10270, 37423}, {10530, 48482}, {10786, 11849}, {10803, 12203}, {10834, 39568}, {10956, 12943}, {10958, 12953}, {11111, 35514}, {11114, 30513}, {11236, 52836}, {11415, 37531}, {11495, 34630}, {11684, 12245}, {11827, 50244}, {12189, 23698}, {12296, 49156}, {12297, 49158}, {12324, 49186}, {12381, 12430}, {12384, 49206}, {12512, 16209}, {12594, 29181}, {12607, 37001}, {12608, 41869}, {12679, 56176}, {12705, 57287}, {12751, 20095}, {13219, 49154}, {15171, 37022}, {15338, 22768}, {15680, 16113}, {18961, 63270}, {21077, 52860}, {22753, 24466}, {25722, 41389}, {26015, 52027}, {26332, 31295}, {27385, 50700}, {28164, 49626}, {31730, 59333}, {31799, 50242}, {34550, 49207}, {34772, 63962}, {35448, 37290}, {35816, 42266}, {35817, 42267}, {36845, 54052}, {41575, 54156}, {42258, 44643}, {42259, 44644}, {43577, 43861}, {45729, 51212}, {49169, 51897}, {51118, 59719}, {63341, 63386}
X(64078) = reflection of X(i) in X(j) for these {i,j}: {20, 4302}, {3434, 1012}, {5905, 37569}, {6925, 55}, {12115, 10679}, {12648, 12703}
X(64078) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(77), X(45393)}}, {{A, B, C, X(269), X(915)}}, {{A, B, C, X(279), X(37203)}}
X(64078) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 11248, 5552}, {20, 390, 5731}, {30, 10679, 12115}, {515, 12703, 12648}, {516, 4302, 20}, {3146, 10528, 6256}, {3522, 10586, 37561}, {6284, 64074, 6836}, {10679, 12115, 11239}, {11496, 11826, 377}
X(64079) lies on these lines: {1, 7}, {2, 11012}, {3, 10532}, {4, 2975}, {5, 35252}, {8, 5709}, {12, 6962}, {30, 10680}, {36, 6890}, {40, 4190}, {56, 6836}, {104, 6851}, {145, 37625}, {146, 49203}, {147, 49201}, {148, 49147}, {149, 48694}, {153, 48713}, {193, 49164}, {355, 64153}, {376, 10267}, {377, 3428}, {382, 10943}, {388, 411}, {404, 64111}, {452, 5715}, {474, 31799}, {497, 26437}, {511, 39903}, {515, 12649}, {517, 6934}, {550, 16202}, {944, 3873}, {946, 6872}, {956, 20420}, {958, 6835}, {993, 6837}, {1125, 6992}, {1151, 13907}, {1152, 13965}, {1478, 6838}, {1482, 37000}, {1503, 13095}, {1621, 59345}, {1657, 12001}, {1885, 11401}, {2096, 9961}, {2478, 11827}, {2551, 6915}, {2777, 13218}, {2794, 13119}, {2829, 13279}, {3086, 6840}, {3091, 26363}, {3146, 10529}, {3149, 3436}, {3434, 22770}, {3448, 49151}, {3476, 64043}, {3522, 10587}, {3523, 10198}, {3529, 10806}, {3543, 45700}, {3562, 56821}, {3579, 6955}, {3616, 6987}, {3627, 18544}, {3813, 36999}, {4511, 5758}, {4999, 6860}, {5073, 18543}, {5080, 6848}, {5204, 6966}, {5225, 26475}, {5229, 6932}, {5250, 63438}, {5251, 6886}, {5253, 6865}, {5260, 6864}, {5303, 6935}, {5536, 49168}, {5552, 6905}, {5603, 6868}, {5657, 6885}, {5691, 10916}, {5693, 20078}, {5696, 54204}, {5730, 5762}, {5840, 12776}, {5882, 62861}, {5886, 6936}, {5905, 6261}, {6253, 12513}, {6256, 10530}, {6284, 18967}, {6361, 6948}, {6459, 19050}, {6460, 19049}, {6560, 45641}, {6561, 45640}, {6734, 50700}, {6796, 10528}, {6828, 30478}, {6833, 26286}, {6834, 10526}, {6839, 19843}, {6863, 10599}, {6897, 35239}, {6899, 10269}, {6904, 24987}, {6909, 37579}, {6910, 7680}, {6925, 7354}, {6927, 11681}, {6933, 10894}, {6938, 12699}, {6943, 7288}, {6957, 57288}, {6960, 10590}, {6976, 9955}, {6985, 12115}, {6993, 19854}, {7491, 10531}, {7580, 18990}, {7982, 20075}, {9799, 49170}, {9800, 54052}, {9911, 35998}, {10431, 12114}, {10585, 52265}, {10724, 12248}, {10785, 22765}, {10804, 12203}, {10835, 39568}, {10941, 50528}, {10957, 12943}, {10959, 12953}, {11235, 52837}, {11239, 11491}, {11415, 63986}, {11496, 30264}, {11510, 15326}, {12190, 23698}, {12296, 49155}, {12297, 49157}, {12324, 49185}, {12382, 12431}, {12384, 49205}, {12512, 16208}, {12595, 29181}, {12667, 36002}, {12672, 44447}, {13219, 49153}, {14054, 64144}, {15680, 49177}, {17647, 41338}, {19860, 64001}, {19861, 64004}, {20060, 64148}, {20070, 37256}, {26015, 50696}, {26228, 50699}, {28164, 49627}, {31777, 56998}, {34486, 50693}, {35514, 57000}, {35818, 42266}, {35819, 42267}, {37112, 59320}, {37423, 54445}, {37530, 50702}, {42258, 44645}, {42259, 44646}, {43577, 43862}, {43740, 54391}, {45728, 51212}, {49176, 64009}, {55296, 59392}, {63342, 63386}, {63992, 64002}
X(64079) = midpoint of X(i) and X(j) for these {i,j}: {20076, 50695}
X(64079) = reflection of X(i) in X(j) for these {i,j}: {20, 4299}, {3436, 3149}, {6836, 56}, {11415, 63986}, {12116, 10680}, {12649, 12704}
X(64079) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 11249, 10527}, {20, 3600, 5731}, {30, 10680, 12116}, {515, 12704, 12649}, {516, 4299, 20}, {3146, 10529, 48482}, {3146, 20067, 64120}, {3522, 10587, 10902}, {5886, 35250, 6936}, {7354, 64077, 6925}, {10680, 12116, 11240}, {12687, 12704, 62874}, {20076, 50695, 515}
X(64080) lies on these lines: {2, 10541}, {3, 67}, {4, 6}, {5, 11179}, {20, 524}, {22, 41724}, {24, 15581}, {26, 45732}, {30, 11477}, {51, 62968}, {54, 51739}, {64, 5486}, {66, 14528}, {68, 16618}, {69, 3522}, {76, 45018}, {98, 7607}, {110, 59767}, {125, 26864}, {140, 1352}, {141, 3523}, {146, 25329}, {147, 7778}, {154, 468}, {155, 14791}, {156, 15114}, {159, 2929}, {182, 1656}, {183, 5984}, {184, 1853}, {185, 2393}, {186, 15582}, {193, 5059}, {230, 7710}, {235, 31166}, {253, 59246}, {262, 54857}, {287, 11331}, {376, 15533}, {381, 575}, {382, 576}, {383, 49948}, {389, 9971}, {394, 16063}, {427, 17809}, {511, 1657}, {515, 64070}, {516, 49486}, {518, 39878}, {539, 35243}, {546, 38072}, {548, 54173}, {549, 51186}, {550, 1350}, {578, 34780}, {597, 3091}, {611, 5270}, {613, 4857}, {631, 11180}, {754, 14532}, {1080, 49947}, {1151, 61097}, {1152, 61096}, {1192, 18909}, {1351, 5073}, {1353, 5102}, {1370, 37672}, {1386, 11522}, {1428, 39892}, {1495, 26869}, {1593, 32621}, {1614, 5622}, {1620, 18913}, {1691, 61754}, {1885, 58795}, {1992, 3146}, {1993, 5189}, {2076, 39882}, {2330, 39891}, {2548, 40927}, {2549, 10542}, {2777, 64104}, {2781, 5925}, {2784, 5695}, {2794, 44526}, {2836, 15071}, {2854, 15072}, {2916, 9937}, {3053, 8721}, {3090, 47354}, {3098, 11898}, {3242, 5882}, {3292, 31152}, {3416, 43174}, {3424, 7736}, {3448, 6800}, {3516, 10619}, {3517, 20987}, {3519, 34436}, {3520, 15579}, {3524, 50993}, {3525, 50983}, {3526, 11178}, {3527, 22336}, {3528, 54169}, {3529, 50974}, {3533, 40330}, {3534, 51188}, {3543, 8584}, {3545, 15153}, {3567, 63688}, {3589, 5056}, {3592, 36709}, {3594, 36714}, {3618, 5068}, {3619, 61834}, {3620, 21167}, {3627, 20423}, {3628, 38064}, {3629, 49135}, {3630, 55607}, {3631, 55656}, {3796, 7495}, {3815, 53015}, {3818, 3851}, {3830, 11482}, {3832, 59373}, {3839, 63124}, {3843, 5476}, {3850, 14561}, {3854, 51171}, {3858, 18583}, {4232, 11206}, {4301, 47356}, {4663, 5691}, {5013, 59363}, {5023, 15993}, {5026, 50641}, {5032, 17578}, {5054, 55687}, {5055, 55701}, {5064, 13366}, {5070, 10168}, {5072, 55708}, {5076, 22330}, {5079, 25561}, {5092, 15720}, {5093, 48901}, {5095, 5895}, {5097, 48884}, {5182, 7887}, {5422, 7533}, {5471, 54570}, {5472, 54569}, {5477, 7748}, {5493, 5847}, {5562, 54334}, {5663, 15074}, {5878, 54218}, {5889, 9019}, {5965, 33878}, {5999, 9766}, {6000, 50649}, {6033, 44507}, {6090, 24981}, {6222, 13882}, {6247, 18925}, {6329, 33748}, {6399, 13934}, {6409, 12257}, {6410, 12256}, {6419, 36711}, {6420, 36712}, {6425, 21736}, {6467, 30443}, {6593, 41737}, {6642, 18128}, {6759, 18374}, {6770, 16644}, {6773, 16645}, {6811, 13846}, {6813, 13847}, {7000, 32788}, {7374, 32787}, {7387, 10116}, {7390, 17330}, {7391, 63094}, {7486, 48310}, {7488, 35707}, {7500, 61658}, {7527, 8546}, {7544, 25488}, {7556, 54162}, {7574, 18445}, {7608, 53100}, {7610, 11177}, {7612, 60337}, {7716, 39871}, {7735, 59252}, {7755, 40825}, {7784, 12203}, {7841, 8593}, {7890, 40268}, {7901, 39141}, {7982, 51000}, {7991, 28538}, {8252, 45510}, {8253, 45511}, {8289, 43529}, {8537, 35480}, {8540, 12953}, {8541, 12173}, {8548, 12293}, {8667, 37182}, {8681, 46850}, {8703, 50989}, {8716, 54996}, {8960, 19145}, {9004, 12680}, {9140, 62516}, {9544, 30745}, {9716, 10989}, {9729, 29959}, {9730, 43130}, {9744, 9756}, {9755, 43460}, {9786, 9833}, {9830, 34505}, {9862, 44541}, {9919, 10114}, {9924, 17818}, {9968, 11470}, {9973, 13382}, {9974, 35820}, {9975, 35821}, {9976, 12902}, {9977, 48675}, {10018, 23041}, {10112, 39568}, {10151, 47460}, {10192, 23291}, {10249, 11457}, {10250, 18383}, {10282, 26944}, {10295, 10605}, {10296, 15826}, {10299, 55673}, {10301, 11245}, {10303, 20582}, {10304, 22165}, {10387, 39897}, {10519, 21735}, {10574, 11188}, {10601, 62937}, {10606, 35485}, {10706, 63694}, {11001, 51187}, {11003, 61700}, {11008, 61044}, {11063, 52276}, {11160, 50693}, {11255, 52843}, {11257, 32469}, {11305, 51012}, {11306, 51015}, {11318, 18800}, {11362, 50783}, {11381, 40673}, {11402, 11550}, {11410, 13399}, {11422, 31133}, {11425, 14216}, {11432, 13419}, {11433, 52301}, {11438, 12367}, {11541, 51132}, {11579, 14852}, {11623, 11646}, {12017, 24206}, {12103, 50973}, {12134, 37514}, {12162, 44479}, {12164, 44829}, {12177, 14880}, {12215, 32821}, {12254, 32247}, {12279, 15531}, {12283, 32339}, {12294, 32366}, {12315, 13403}, {12594, 49165}, {12595, 49164}, {12811, 38079}, {12943, 19369}, {13169, 15021}, {13367, 61737}, {13464, 38315}, {13473, 47462}, {13474, 44495}, {13491, 14984}, {13608, 57466}, {13622, 43719}, {13665, 44656}, {13785, 44657}, {14093, 55644}, {14157, 43812}, {14232, 31411}, {14458, 60142}, {14614, 40236}, {14683, 15066}, {14810, 62082}, {14848, 22234}, {14864, 44679}, {14915, 32284}, {14982, 16534}, {15004, 62976}, {15022, 51138}, {15028, 40670}, {15034, 49672}, {15043, 16776}, {15054, 34792}, {15063, 34319}, {15087, 45034}, {15105, 61088}, {15118, 19153}, {15122, 47391}, {15303, 38791}, {15305, 63723}, {15311, 49670}, {15321, 43908}, {15448, 37643}, {15520, 48895}, {15577, 32534}, {15640, 41149}, {15681, 55580}, {15682, 63125}, {15683, 63064}, {15688, 55631}, {15689, 55602}, {15692, 50991}, {15693, 55679}, {15696, 55606}, {15700, 55675}, {15704, 51182}, {15705, 50994}, {15708, 51143}, {15712, 55676}, {15717, 21356}, {16013, 35477}, {16196, 45248}, {16252, 62375}, {16270, 61665}, {16964, 51203}, {16965, 51200}, {17506, 35228}, {17508, 43150}, {17538, 50967}, {17702, 64103}, {17710, 41716}, {17800, 19924}, {17811, 46336}, {17821, 35486}, {18358, 55699}, {18381, 19347}, {18390, 32063}, {18451, 44503}, {18510, 44481}, {18512, 44482}, {18534, 61713}, {18911, 35259}, {18916, 54149}, {19124, 64028}, {19125, 51756}, {19127, 52525}, {19130, 53091}, {19136, 26883}, {19146, 58866}, {19708, 51189}, {20062, 41628}, {20080, 62124}, {20583, 50688}, {20775, 63421}, {20818, 41327}, {21850, 62026}, {21970, 32237}, {22151, 43605}, {22236, 41035}, {22238, 41034}, {22466, 63181}, {23292, 32064}, {23332, 62960}, {23698, 64091}, {24273, 35423}, {25331, 51941}, {25556, 38789}, {25565, 50957}, {26336, 44483}, {26346, 44484}, {26937, 61683}, {28164, 64073}, {29317, 44456}, {29323, 37517}, {30389, 51003}, {30771, 59551}, {31492, 37334}, {32113, 37487}, {32135, 38743}, {32139, 56568}, {32255, 34799}, {32273, 39562}, {32423, 64098}, {32455, 50691}, {33586, 37900}, {33703, 54132}, {33750, 61787}, {33751, 55639}, {33923, 48876}, {34147, 37072}, {34156, 34369}, {34380, 48873}, {34573, 61856}, {34609, 34986}, {34624, 54993}, {34778, 35491}, {34788, 64094}, {35018, 38110}, {35260, 47296}, {35283, 59777}, {36752, 64036}, {36757, 42992}, {36758, 42993}, {36992, 42127}, {36994, 42126}, {36997, 44499}, {37070, 51939}, {37197, 44102}, {37453, 44110}, {37727, 50790}, {37910, 41588}, {37931, 47446}, {37984, 47458}, {38005, 51745}, {38317, 55705}, {38397, 47596}, {38757, 51008}, {39561, 48889}, {39838, 41672}, {40947, 63419}, {41022, 41745}, {41023, 41746}, {41036, 42815}, {41037, 42816}, {41040, 42156}, {41041, 42153}, {41152, 62059}, {41153, 61958}, {41424, 61506}, {41731, 48679}, {41981, 55618}, {42096, 44667}, {42097, 44666}, {42262, 48467}, {42265, 48466}, {42271, 48477}, {42272, 48476}, {42431, 51206}, {42432, 51207}, {43537, 62992}, {43621, 62047}, {43845, 44494}, {44076, 44492}, {44245, 50961}, {44470, 45730}, {44500, 52854}, {44509, 45376}, {44510, 45375}, {44513, 48656}, {44514, 48655}, {46267, 61920}, {46935, 51126}, {47337, 58762}, {47455, 47474}, {47464, 61721}, {47549, 62288}, {47629, 59553}, {48874, 62136}, {48880, 55584}, {48881, 55591}, {48885, 55593}, {48891, 55587}, {48892, 55610}, {48904, 55716}, {48920, 55585}, {48942, 55715}, {49136, 51140}, {49137, 50962}, {49140, 51028}, {50664, 61937}, {50687, 63022}, {50689, 50959}, {50690, 51170}, {50692, 63027}, {50861, 62245}, {50950, 63469}, {50954, 55694}, {50958, 61820}, {50963, 61991}, {50971, 51215}, {50972, 58195}, {50975, 62092}, {50976, 50978}, {50982, 51177}, {50984, 61804}, {50985, 58196}, {50986, 62162}, {50987, 55861}, {50990, 62063}, {50992, 62120}, {50997, 64197}, {51130, 51216}, {51135, 62083}, {51137, 61831}, {51142, 61781}, {51164, 62028}, {51175, 55597}, {51178, 62146}, {51179, 62133}, {51732, 61940}, {51733, 61701}, {52102, 55575}, {52293, 61735}, {52298, 64064}, {53098, 60150}, {55583, 62143}, {55588, 62134}, {55595, 62121}, {55620, 62105}, {55622, 62096}, {55629, 62093}, {55637, 62085}, {55647, 62075}, {55649, 62074}, {55650, 62073}, {55654, 62069}, {55671, 61545}, {55674, 61794}, {55677, 61799}, {55681, 61811}, {55682, 61815}, {55692, 61855}, {55695, 61875}, {55697, 55860}, {55698, 55857}, {59399, 61976}, {60118, 60324}, {60147, 60328}, {62048, 63117}, {62129, 63118}, {62148, 63116}, {62160, 63115}
X(64080) = midpoint of X(i) and X(j) for these {i,j}: {193, 14927}, {6144, 48872}, {6241, 15073}, {11008, 61044}, {15683, 63064}, {17800, 55724}
X(64080) = reflection of X(i) in X(j) for these {i,j}: {4, 8550}, {6, 6776}, {20, 64196}, {69, 44882}, {146, 25329}, {382, 576}, {599, 43273}, {1350, 46264}, {1352, 48906}, {1992, 51136}, {2930, 32233}, {3543, 8584}, {5691, 4663}, {5895, 64031}, {5921, 141}, {9924, 36989}, {9973, 19161}, {10296, 15826}, {11160, 50965}, {11180, 51737}, {11477, 63722}, {11898, 3098}, {12162, 44479}, {12293, 8548}, {12294, 32366}, {12902, 9976}, {13474, 44495}, {15069, 3}, {15533, 376}, {16176, 32234}, {18440, 182}, {25335, 16010}, {31670, 1353}, {32250, 15118}, {32272, 49116}, {32306, 32305}, {33878, 48898}, {36992, 44498}, {36994, 44497}, {36997, 44499}, {37473, 185}, {39838, 41672}, {39879, 34776}, {40341, 1350}, {41716, 17710}, {41737, 6593}, {44439, 6467}, {44453, 11257}, {47276, 10295}, {47353, 11179}, {48662, 3818}, {48675, 9977}, {48679, 41731}, {48872, 48905}, {48884, 5097}, {48904, 55716}, {48910, 1351}, {48942, 55715}, {50641, 5026}, {51022, 20583}, {51023, 597}, {51024, 1992}, {51027, 599}, {51163, 32455}, {51212, 3629}, {52843, 11255}, {52854, 44500}, {53097, 20}, {55582, 48873}, {55584, 48880}, {55585, 48920}, {55587, 48891}, {55722, 193}, {62288, 47549}, {63428, 48881}, {64085, 39870}
X(64080) = perspector of circumconic {{A, B, C, X(107), X(17708)}}
X(64080) = pole of line {690, 9420} with respect to the 2nd Brocard circle
X(64080) = pole of line {690, 39201} with respect to the circumcircle
X(64080) = pole of line {525, 13196} with respect to the cosine circle
X(64080) = pole of line {690, 42658} with respect to the 2nd DrozFarny circle
X(64080) = pole of line {9191, 9209} with respect to the orthoptic circle of the Steiner Inellipse
X(64080) = pole of line {51, 5094} with respect to the Jerabek hyperbola
X(64080) = pole of line {4, 1384} with respect to the Kiepert hyperbola
X(64080) = pole of line {1632, 5467} with respect to the Kiepert parabola
X(64080) = pole of line {523, 47464} with respect to the Orthic inconic
X(64080) = pole of line {23, 394} with respect to the Stammler hyperbola
X(64080) = pole of line {6587, 14417} with respect to the Steiner inellipse
X(64080) = pole of line {316, 3146} with respect to the Wallace hyperbola
X(64080) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(8744)}}, {{A, B, C, X(4), X(34897)}}, {{A, B, C, X(67), X(393)}}, {{A, B, C, X(69), X(33630)}}, {{A, B, C, X(287), X(36990)}}, {{A, B, C, X(1249), X(5486)}}, {{A, B, C, X(2207), X(3455)}}, {{A, B, C, X(2697), X(15069)}}, {{A, B, C, X(3087), X(22336)}}, {{A, B, C, X(6530), X(7607)}}, {{A, B, C, X(8743), X(14528)}}, {{A, B, C, X(10002), X(53099)}}, {{A, B, C, X(14357), X(60428)}}, {{A, B, C, X(22466), X(43448)}}, {{A, B, C, X(33971), X(54857)}}, {{A, B, C, X(35907), X(53232)}}, {{A, B, C, X(38005), X(40065)}}, {{A, B, C, X(58070), X(59007)}}
X(64080) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15069, 599}, {3, 50955, 40107}, {3, 542, 15069}, {4, 15258, 1990}, {4, 6776, 8550}, {5, 11179, 53093}, {20, 524, 53097}, {20, 64014, 64196}, {24, 15581, 19596}, {30, 63722, 11477}, {69, 44882, 31884}, {125, 26864, 61680}, {141, 25406, 53094}, {154, 1899, 26958}, {182, 10516, 47355}, {182, 18553, 1656}, {185, 2393, 37473}, {193, 14927, 29181}, {193, 29181, 55722}, {382, 576, 54131}, {397, 398, 5286}, {511, 48905, 48872}, {524, 64196, 20}, {542, 16010, 25335}, {542, 32233, 2930}, {542, 32305, 32306}, {542, 49116, 32272}, {542, 599, 51027}, {548, 54173, 55626}, {576, 11645, 382}, {631, 51737, 55684}, {1181, 8549, 6}, {1350, 3564, 40341}, {1350, 46264, 59411}, {1351, 29012, 48910}, {1352, 48906, 5085}, {1352, 5085, 3763}, {1353, 31670, 5102}, {1503, 8550, 4}, {1614, 5622, 64061}, {1656, 18440, 18553}, {1656, 18553, 10516}, {2781, 32234, 16176}, {2883, 8550, 15471}, {3448, 6800, 37638}, {3564, 46264, 1350}, {3818, 25555, 3851}, {3843, 53092, 5476}, {3851, 5050, 25555}, {5050, 48662, 3818}, {5476, 33749, 53092}, {5870, 10783, 3070}, {5871, 10784, 3071}, {5921, 25406, 141}, {5965, 48898, 33878}, {6144, 48872, 511}, {6241, 15073, 2781}, {6467, 34146, 44439}, {6776, 34224, 8549}, {9744, 9756, 31489}, {9833, 18914, 9786}, {10249, 34118, 40686}, {10602, 12174, 64031}, {11179, 47353, 47352}, {11180, 51737, 21358}, {11245, 31383, 17810}, {11477, 63722, 15534}, {12174, 21659, 5895}, {12241, 34781, 15811}, {15069, 43273, 3}, {17800, 55724, 19924}, {18909, 34782, 1192}, {18911, 46818, 35259}, {21358, 55684, 631}, {34380, 48873, 55582}, {37643, 64059, 15448}, {39870, 64085, 38315}, {39899, 48905, 6144}, {47353, 53093, 5}, {48881, 63428, 55591}
X(64081) lies on these lines: {1, 2}, {3, 5082}, {4, 956}, {5, 3421}, {7, 54303}, {9, 12053}, {11, 2551}, {20, 2894}, {21, 390}, {36, 37267}, {40, 5744}, {55, 30478}, {56, 2550}, {63, 962}, {65, 24477}, {69, 55082}, {72, 5603}, {75, 280}, {100, 3523}, {140, 59591}, {144, 11415}, {149, 6872}, {210, 11376}, {219, 391}, {226, 6762}, {278, 318}, {279, 20880}, {321, 60157}, {329, 946}, {341, 28808}, {344, 31269}, {345, 4673}, {346, 3702}, {354, 28629}, {355, 6848}, {377, 3600}, {388, 2886}, {404, 1617}, {405, 1058}, {442, 1056}, {443, 999}, {452, 497}, {475, 7046}, {495, 6856}, {496, 5084}, {515, 5175}, {516, 62824}, {517, 6847}, {518, 3485}, {529, 5229}, {631, 5687}, {668, 32828}, {908, 5815}, {942, 64151}, {944, 3419}, {950, 24392}, {952, 6825}, {960, 17642}, {966, 2256}, {993, 4294}, {1006, 10806}, {1071, 12529}, {1108, 2345}, {1145, 6967}, {1150, 5706}, {1212, 56937}, {1259, 1621}, {1260, 16845}, {1329, 10589}, {1376, 7288}, {1385, 37407}, {1420, 57284}, {1468, 4307}, {1478, 5288}, {1479, 5258}, {1482, 6824}, {1519, 5811}, {1697, 5745}, {1699, 12527}, {1706, 3911}, {1788, 5836}, {2098, 21677}, {2185, 56945}, {2192, 20306}, {2242, 31416}, {2257, 5749}, {2475, 20076}, {2476, 5261}, {2478, 5274}, {2646, 3189}, {3059, 17609}, {3088, 56876}, {3090, 17757}, {3091, 3436}, {3146, 52367}, {3243, 63274}, {3295, 6857}, {3303, 24953}, {3304, 3925}, {3306, 11024}, {3332, 54429}, {3333, 9776}, {3340, 24391}, {3452, 26129}, {3475, 28628}, {3476, 5794}, {3487, 3555}, {3522, 43161}, {3541, 56877}, {3576, 63146}, {3598, 41826}, {3601, 5853}, {3614, 34689}, {3649, 42014}, {3668, 31995}, {3671, 62823}, {3681, 6886}, {3685, 26059}, {3698, 17728}, {3713, 63055}, {3714, 28830}, {3717, 56466}, {3740, 46677}, {3832, 5080}, {3868, 5173}, {3869, 6837}, {3871, 5281}, {3873, 11036}, {3876, 5686}, {3877, 17622}, {3880, 26066}, {3883, 27509}, {3885, 18231}, {3889, 11038}, {3895, 12541}, {3913, 4999}, {3916, 6361}, {3926, 17143}, {3927, 22791}, {3940, 5901}, {3951, 51423}, {3983, 24954}, {4187, 47743}, {4188, 7742}, {4189, 20075}, {4190, 33110}, {4193, 8165}, {4194, 5081}, {4208, 33108}, {4220, 8192}, {4224, 12410}, {4293, 8666}, {4295, 9965}, {4301, 12526}, {4317, 31420}, {4318, 54289}, {4342, 18249}, {4344, 62809}, {4388, 5906}, {4441, 32830}, {4461, 25252}, {4512, 12575}, {4514, 27505}, {4546, 47795}, {4652, 9778}, {4662, 25681}, {4665, 59609}, {4684, 25521}, {4855, 54445}, {4875, 6554}, {4901, 56446}, {4996, 17548}, {5044, 11373}, {5046, 10522}, {5056, 11681}, {5068, 56880}, {5086, 6838}, {5129, 5260}, {5176, 6953}, {5178, 37112}, {5204, 34612}, {5217, 31157}, {5223, 11522}, {5225, 11235}, {5234, 40998}, {5248, 31458}, {5249, 11037}, {5250, 5273}, {5253, 17580}, {5284, 17554}, {5286, 16975}, {5303, 10304}, {5433, 59572}, {5436, 64162}, {5558, 42015}, {5657, 6926}, {5690, 6891}, {5698, 12701}, {5710, 37642}, {5730, 6832}, {5731, 37108}, {5734, 11682}, {5748, 8227}, {5770, 37562}, {5790, 6944}, {5791, 9957}, {5795, 9581}, {5809, 24389}, {5818, 6964}, {5837, 7962}, {5844, 6862}, {5881, 64148}, {5886, 34790}, {5930, 52358}, {6154, 63756}, {6392, 21226}, {6502, 31413}, {6553, 37887}, {6653, 32965}, {6675, 6767}, {6684, 63137}, {6826, 10680}, {6827, 10943}, {6829, 10597}, {6833, 12245}, {6834, 59388}, {6842, 18545}, {6843, 10532}, {6844, 26470}, {6854, 45977}, {6855, 63257}, {6861, 10247}, {6863, 12645}, {6871, 20060}, {6881, 12001}, {6883, 32214}, {6884, 62826}, {6885, 22765}, {6889, 7967}, {6890, 14110}, {6892, 10679}, {6920, 10596}, {6935, 10306}, {6937, 10805}, {6948, 32153}, {6958, 59503}, {6959, 61510}, {6972, 64201}, {6987, 12116}, {6988, 55300}, {6989, 10246}, {7091, 60992}, {7173, 31141}, {7354, 31140}, {7373, 8728}, {7677, 37282}, {7738, 21956}, {7987, 43175}, {8158, 8727}, {8168, 64123}, {9614, 12572}, {9709, 15325}, {9710, 25524}, {9798, 35988}, {9799, 64150}, {9812, 64002}, {9858, 51774}, {10085, 63971}, {10106, 54366}, {10386, 17571}, {10430, 12565}, {10588, 12607}, {10590, 25639}, {10591, 24387}, {10624, 31424}, {10896, 34606}, {11111, 15171}, {11249, 50701}, {11281, 42871}, {11375, 25568}, {11523, 64160}, {12437, 13384}, {12514, 30305}, {12537, 18241}, {12573, 59412}, {12667, 15908}, {13279, 45043}, {14450, 20059}, {14552, 23151}, {14740, 16173}, {15170, 17561}, {15172, 16418}, {15299, 61009}, {15346, 30340}, {15717, 15931}, {15888, 31245}, {16284, 52422}, {16471, 19742}, {16704, 62843}, {17164, 56839}, {17552, 31494}, {17625, 18251}, {17740, 37528}, {18228, 41012}, {18481, 37427}, {18543, 28459}, {19582, 27549}, {20067, 31295}, {20070, 41338}, {20220, 56943}, {20999, 36510}, {22754, 37462}, {23542, 32773}, {23853, 27621}, {24320, 28028}, {24349, 30543}, {24552, 56986}, {24597, 62804}, {25009, 30235}, {25080, 64071}, {25083, 62857}, {25304, 62174}, {25917, 28778}, {26027, 43533}, {26036, 56530}, {26105, 37722}, {27334, 50314}, {27530, 28796}, {27540, 40960}, {28194, 54290}, {30282, 64117}, {30283, 37424}, {30384, 41229}, {31231, 63990}, {31272, 55016}, {31401, 52959}, {31402, 31466}, {31405, 54416}, {31408, 31484}, {31409, 31488}, {31435, 63993}, {31888, 52126}, {32942, 56987}, {34605, 50736}, {34611, 50742}, {34632, 63144}, {34720, 52793}, {35262, 59413}, {35466, 37542}, {35514, 37022}, {36844, 52364}, {37244, 42884}, {37313, 42842}, {37543, 37655}, {37602, 41859}, {37666, 57280}, {41863, 64110}, {41867, 51723}, {44189, 60599}, {44229, 62318}, {44447, 62827}, {44448, 47796}, {45036, 51102}, {50696, 64077}, {52366, 52404}, {53997, 55392}, {55905, 63134}, {55907, 63140}, {55910, 63147}, {59340, 63136}, {59491, 63130}, {62773, 64124}, {63974, 63975}, {63980, 64111}
X(64081) = anticomplement of X(3085)
X(64081) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 7160}
X(64081) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 7160}, {3085, 3085}, {7308, 4328}
X(64081) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {55105, 4}, {55106, 11442}, {55107, 317}, {58992, 513}
X(64081) = pole of line {4391, 20294} with respect to the DeLongchamps circle
X(64081) = pole of line {3057, 3189} with respect to the Feuerbach hyperbola
X(64081) = pole of line {58, 1617} with respect to the Stammler hyperbola
X(64081) = pole of line {514, 4131} with respect to the Steiner circumellipse
X(64081) = pole of line {86, 6604} with respect to the Wallace hyperbola
X(64081) = pole of line {3239, 4811} with respect to the dual conic of incircle
X(64081) = pole of line {4025, 57101} with respect to the dual conic of polar circle
X(64081) = pole of line {2, 24213} with respect to the dual conic of Yff parabola
X(64081) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1440)}}, {{A, B, C, X(2), X(9776)}}, {{A, B, C, X(4), X(31397)}}, {{A, B, C, X(8), X(309)}}, {{A, B, C, X(9), X(6765)}}, {{A, B, C, X(10), X(6601)}}, {{A, B, C, X(21), X(3870)}}, {{A, B, C, X(42), X(52384)}}, {{A, B, C, X(75), X(7080)}}, {{A, B, C, X(78), X(1219)}}, {{A, B, C, X(200), X(280)}}, {{A, B, C, X(278), X(2999)}}, {{A, B, C, X(333), X(34255)}}, {{A, B, C, X(347), X(1103)}}, {{A, B, C, X(348), X(64082)}}, {{A, B, C, X(386), X(51502)}}, {{A, B, C, X(596), X(59722)}}, {{A, B, C, X(899), X(14300)}}, {{A, B, C, X(936), X(59760)}}, {{A, B, C, X(1210), X(55076)}}, {{A, B, C, X(1320), X(19860)}}, {{A, B, C, X(3615), X(24564)}}, {{A, B, C, X(3680), X(9623)}}, {{A, B, C, X(4373), X(10528)}}, {{A, B, C, X(4882), X(42015)}}, {{A, B, C, X(5558), X(10578)}}, {{A, B, C, X(6553), X(34772)}}, {{A, B, C, X(6735), X(43533)}}, {{A, B, C, X(7318), X(14986)}}, {{A, B, C, X(10587), X(30712)}}, {{A, B, C, X(12260), X(18241)}}, {{A, B, C, X(12864), X(15998)}}, {{A, B, C, X(13405), X(51512)}}, {{A, B, C, X(15909), X(51784)}}, {{A, B, C, X(20007), X(51565)}}, {{A, B, C, X(23511), X(37887)}}, {{A, B, C, X(24987), X(43740)}}, {{A, B, C, X(25006), X(43745)}}, {{A, B, C, X(29611), X(41791)}}, {{A, B, C, X(31434), X(60158)}}, {{A, B, C, X(36845), X(60668)}}, {{A, B, C, X(44675), X(60164)}}, {{A, B, C, X(52158), X(56809)}}, {{A, B, C, X(56102), X(59296)}}
X(64081) = barycentric product X(i)*X(j) for these (i, j): {8, 9776}, {312, 3333}, {346, 62782}, {14300, 668}
X(64081) = barycentric quotient X(i)/X(j) for these (i, j): {9, 7160}, {3333, 57}, {9776, 7}, {14300, 513}, {62782, 279}
X(64081) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4847, 8}, {2, 8, 7080}, {3, 5082, 17784}, {8, 3616, 78}, {8, 4861, 145}, {10, 3086, 2}, {11, 2551, 6919}, {55, 64068, 56936}, {56, 2550, 6904}, {377, 54391, 3600}, {388, 2886, 5177}, {495, 31493, 6856}, {496, 9708, 5084}, {497, 958, 452}, {908, 63135, 5815}, {946, 57279, 329}, {956, 24390, 4}, {958, 3813, 497}, {993, 4294, 17576}, {999, 31419, 443}, {1698, 4915, 6736}, {1706, 3911, 26062}, {2646, 4863, 3189}, {2886, 12513, 388}, {2975, 3434, 20}, {3436, 11680, 3091}, {3452, 50443, 26129}, {3624, 4882, 6745}, {3869, 64153, 54398}, {3871, 6910, 5281}, {3913, 4999, 5218}, {4295, 62858, 9965}, {4853, 5231, 10}, {5234, 51785, 40998}, {5249, 62832, 11037}, {5273, 9785, 5250}, {5281, 12632, 3871}, {5657, 10785, 6926}, {5657, 10914, 63133}, {5703, 6764, 3870}, {5745, 21627, 1697}, {5794, 11260, 3476}, {5795, 24386, 9581}, {5837, 64205, 7962}, {8227, 21075, 5748}, {9709, 15325, 17567}, {9710, 25524, 26040}, {11235, 57288, 5225}, {12514, 49600, 30305}, {28628, 34791, 3475}, {30478, 64068, 55}, {43161, 59320, 3522}
X(64082) lies on these lines: {1, 2}, {3, 23168}, {6, 25091}, {9, 16577}, {20, 9121}, {34, 37279}, {40, 1817}, {48, 10319}, {57, 2289}, {63, 77}, {81, 2327}, {92, 27413}, {100, 7070}, {101, 1763}, {152, 2822}, {189, 53997}, {223, 329}, {241, 55405}, {269, 9965}, {278, 908}, {307, 6349}, {321, 56216}, {322, 2331}, {326, 345}, {333, 55392}, {440, 18446}, {464, 10884}, {469, 57276}, {511, 28379}, {515, 37185}, {517, 11347}, {527, 56848}, {610, 3101}, {651, 47848}, {664, 18750}, {914, 56456}, {940, 25939}, {1040, 1818}, {1073, 3692}, {1108, 4383}, {1172, 55478}, {1259, 6617}, {1260, 38288}, {1332, 3719}, {1385, 21483}, {1427, 6603}, {1442, 5273}, {1443, 28610}, {1445, 55399}, {1498, 63985}, {1630, 24611}, {1708, 2323}, {1801, 2328}, {1802, 37755}, {1813, 6507}, {1944, 20223}, {1953, 9816}, {2192, 9371}, {2256, 3666}, {2257, 26669}, {2318, 20277}, {2336, 56328}, {2910, 6260}, {2989, 39700}, {2990, 39947}, {3218, 4341}, {3219, 63088}, {3305, 40937}, {3306, 37543}, {3428, 11350}, {3434, 40960}, {3436, 5930}, {3452, 56418}, {3553, 5712}, {3576, 53815}, {3668, 5905}, {3752, 25934}, {3875, 17862}, {3929, 47057}, {3936, 25013}, {3949, 25915}, {3951, 56839}, {4350, 62799}, {4354, 56583}, {4552, 28950}, {4561, 52406}, {4641, 37672}, {5227, 18675}, {5249, 7190}, {5250, 16368}, {5294, 11427}, {5437, 26741}, {5534, 30809}, {5709, 37263}, {6360, 45738}, {6513, 52351}, {6611, 7368}, {6678, 37533}, {6769, 24604}, {7011, 7013}, {7290, 54348}, {7490, 37531}, {8257, 52423}, {8555, 54305}, {8747, 27412}, {8897, 20769}, {9370, 52384}, {9536, 18594}, {10025, 18663}, {10310, 40658}, {10601, 54358}, {11340, 59320}, {11349, 39592}, {11433, 25019}, {15500, 18678}, {16054, 37529}, {16413, 17614}, {16435, 31786}, {16438, 24590}, {17073, 26942}, {17147, 26651}, {17776, 26668}, {17825, 25067}, {17976, 20254}, {18134, 55391}, {18599, 21376}, {18621, 37577}, {18652, 56367}, {19542, 63986}, {19684, 25001}, {19822, 24553}, {20182, 25878}, {22119, 22132}, {22134, 23112}, {22136, 26921}, {22356, 26934}, {22770, 37269}, {23113, 23131}, {23292, 32777}, {24554, 62851}, {25243, 26223}, {25252, 56082}, {26065, 63092}, {27382, 56943}, {27411, 64194}, {28606, 37659}, {30852, 37695}, {31164, 55010}, {33116, 44179}, {35312, 45742}, {37248, 62809}, {37419, 64150}, {37887, 56352}, {40911, 63395}, {46352, 55015}, {46831, 52386}, {56178, 64135}, {57233, 57245}, {57287, 62970}, {61012, 63074}
X(64082) = isogonal conjugate of X(7129)
X(64082) = perspector of circumconic {{A, B, C, X(190), X(6516)}}
X(64082) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 7129}, {2, 7151}, {4, 1436}, {6, 40836}, {7, 7154}, {19, 84}, {21, 2358}, {25, 189}, {27, 2357}, {28, 1903}, {33, 1422}, {34, 282}, {55, 55110}, {56, 7003}, {57, 7008}, {92, 2208}, {162, 55242}, {268, 1118}, {273, 7118}, {278, 2192}, {280, 608}, {281, 1413}, {285, 1880}, {309, 1973}, {393, 1433}, {513, 40117}, {604, 7020}, {607, 1440}, {1096, 41081}, {1119, 7367}, {1172, 52384}, {1249, 60803}, {1256, 2331}, {1395, 34404}, {1396, 53013}, {1407, 57492}, {1474, 39130}, {1857, 55117}, {1974, 44190}, {2299, 8808}, {3064, 8059}, {3209, 46355}, {5317, 52389}, {6059, 34400}, {6591, 13138}, {6612, 7046}, {7337, 44189}, {7649, 36049}, {8747, 41087}, {8752, 56939}, {17924, 32652}, {18344, 37141}, {41084, 41489}
X(64082) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 7003}, {3, 7129}, {6, 84}, {9, 40836}, {57, 278}, {125, 55242}, {223, 55110}, {226, 8808}, {281, 158}, {3161, 7020}, {3351, 7149}, {5452, 7008}, {5514, 7649}, {6337, 309}, {6503, 41081}, {6505, 189}, {7078, 1741}, {11517, 282}, {14298, 7004}, {14390, 60799}, {14837, 4858}, {16596, 17924}, {22391, 2208}, {24018, 26932}, {24771, 57492}, {32664, 7151}, {36033, 1436}, {39026, 40117}, {40591, 1903}, {40611, 2358}, {51574, 39130}, {55044, 3064}, {55063, 522}, {57055, 24026}, {61075, 44426}, {62584, 34404}, {62647, 280}
X(64082) = X(i)-Ceva conjugate of X(j) for these {i, j}: {322, 40}, {326, 78}, {345, 63}, {7045, 1331}, {27398, 329}
X(64082) = X(i)-cross conjugate of X(j) for these {i, j}: {2324, 78}, {7011, 63}, {7078, 7013}, {16596, 57213}, {52097, 69}
X(64082) = pole of line {7649, 55242} with respect to the polar circle
X(64082) = pole of line {905, 57042} with respect to the MacBeath circumconic
X(64082) = pole of line {58, 84} with respect to the Stammler hyperbola
X(64082) = pole of line {514, 59973} with respect to the Steiner inellipse
X(64082) = pole of line {644, 56235} with respect to the Hutson-Moses hyperbola
X(64082) = pole of line {86, 309} with respect to the Wallace hyperbola
X(64082) = pole of line {4025, 17899} with respect to the dual conic of excircles-radical circle
X(64082) = pole of line {4025, 4391} with respect to the dual conic of polar circle
X(64082) = pole of line {52616, 57054} with respect to the dual conic of Orthic inconic
X(64082) = pole of line {2, 11023} with respect to the dual conic of Yff parabola
X(64082) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(222)}}, {{A, B, C, X(2), X(77)}}, {{A, B, C, X(3), X(936)}}, {{A, B, C, X(8), X(63)}}, {{A, B, C, X(10), X(40)}}, {{A, B, C, X(42), X(1409)}}, {{A, B, C, X(57), X(1210)}}, {{A, B, C, X(69), X(34255)}}, {{A, B, C, X(78), X(394)}}, {{A, B, C, X(81), X(938)}}, {{A, B, C, X(88), X(5704)}}, {{A, B, C, X(196), X(2982)}}, {{A, B, C, X(198), X(612)}}, {{A, B, C, X(200), X(219)}}, {{A, B, C, X(208), X(5230)}}, {{A, B, C, X(221), X(54418)}}, {{A, B, C, X(226), X(15836)}}, {{A, B, C, X(271), X(55987)}}, {{A, B, C, X(278), X(3086)}}, {{A, B, C, X(287), X(1999)}}, {{A, B, C, X(306), X(322)}}, {{A, B, C, X(312), X(7183)}}, {{A, B, C, X(345), X(7080)}}, {{A, B, C, X(387), X(3194)}}, {{A, B, C, X(499), X(37887)}}, {{A, B, C, X(614), X(6611)}}, {{A, B, C, X(905), X(44675)}}, {{A, B, C, X(997), X(45127)}}, {{A, B, C, X(1041), X(56345)}}, {{A, B, C, X(1193), X(7114)}}, {{A, B, C, X(1255), X(5703)}}, {{A, B, C, X(1737), X(14837)}}, {{A, B, C, X(1790), X(19861)}}, {{A, B, C, X(1797), X(36846)}}, {{A, B, C, X(1807), X(36609)}}, {{A, B, C, X(1814), X(36845)}}, {{A, B, C, X(1815), X(3870)}}, {{A, B, C, X(1998), X(60047)}}, {{A, B, C, X(2340), X(10397)}}, {{A, B, C, X(2989), X(3187)}}, {{A, B, C, X(2990), X(12649)}}, {{A, B, C, X(3011), X(6129)}}, {{A, B, C, X(3085), X(7952)}}, {{A, B, C, X(3577), X(52037)}}, {{A, B, C, X(3719), X(4564)}}, {{A, B, C, X(3872), X(22129)}}, {{A, B, C, X(4025), X(26001)}}, {{A, B, C, X(4047), X(4061)}}, {{A, B, C, X(4511), X(6513)}}, {{A, B, C, X(5271), X(8822)}}, {{A, B, C, X(5552), X(6505)}}, {{A, B, C, X(6510), X(6745)}}, {{A, B, C, X(6518), X(7360)}}, {{A, B, C, X(6734), X(18607)}}, {{A, B, C, X(6735), X(57245)}}, {{A, B, C, X(6765), X(54414)}}, {{A, B, C, X(7074), X(28043)}}, {{A, B, C, X(7177), X(14986)}}, {{A, B, C, X(10527), X(52381)}}, {{A, B, C, X(10529), X(27832)}}, {{A, B, C, X(13411), X(25430)}}, {{A, B, C, X(14919), X(34772)}}, {{A, B, C, X(15524), X(47848)}}, {{A, B, C, X(17896), X(39700)}}, {{A, B, C, X(20007), X(56355)}}, {{A, B, C, X(21482), X(40435)}}, {{A, B, C, X(21717), X(37755)}}, {{A, B, C, X(22350), X(57233)}}, {{A, B, C, X(27383), X(56234)}}, {{A, B, C, X(28118), X(40971)}}, {{A, B, C, X(40212), X(51375)}}, {{A, B, C, X(42287), X(56328)}}
X(64082) = barycentric product X(i)*X(j) for these (i, j): {3, 322}, {40, 69}, {72, 8822}, {196, 3719}, {198, 304}, {200, 57479}, {219, 40702}, {221, 3718}, {223, 345}, {227, 332}, {271, 55015}, {283, 57810}, {312, 7011}, {326, 7952}, {329, 63}, {347, 78}, {1214, 27398}, {1259, 342}, {1264, 208}, {1331, 17896}, {1332, 14837}, {1441, 1819}, {1444, 21075}, {1817, 306}, {2187, 305}, {2199, 57919}, {2289, 40701}, {2324, 348}, {2331, 3926}, {3194, 52396}, {3596, 7114}, {3964, 47372}, {3998, 41083}, {4552, 57213}, {4561, 6129}, {4563, 55212}, {4998, 53557}, {6516, 8058}, {7013, 8}, {7045, 7358}, {7074, 7182}, {7078, 75}, {7080, 77}, {10397, 4554}, {14256, 3692}, {16596, 4564}, {17206, 21871}, {20336, 2360}, {35518, 57118}, {40212, 44189}, {40417, 52097}, {40971, 7055}, {52406, 6611}, {55111, 85}, {55112, 57}, {55116, 7183}, {55241, 647}, {57101, 664}, {57233, 6335}, {57245, 651}
X(64082) = barycentric quotient X(i)/X(j) for these (i, j): {1, 40836}, {3, 84}, {6, 7129}, {8, 7020}, {9, 7003}, {31, 7151}, {40, 4}, {41, 7154}, {48, 1436}, {55, 7008}, {57, 55110}, {63, 189}, {69, 309}, {71, 1903}, {72, 39130}, {73, 52384}, {77, 1440}, {78, 280}, {101, 40117}, {184, 2208}, {198, 19}, {200, 57492}, {208, 1118}, {212, 2192}, {219, 282}, {221, 34}, {222, 1422}, {223, 278}, {227, 225}, {228, 2357}, {255, 1433}, {271, 46355}, {283, 285}, {304, 44190}, {322, 264}, {329, 92}, {332, 57795}, {345, 34404}, {347, 273}, {394, 41081}, {603, 1413}, {647, 55242}, {906, 36049}, {1071, 52571}, {1103, 7952}, {1214, 8808}, {1259, 271}, {1264, 57783}, {1331, 13138}, {1332, 44327}, {1400, 2358}, {1433, 1256}, {1802, 7367}, {1804, 56972}, {1813, 37141}, {1817, 27}, {1819, 21}, {2187, 25}, {2199, 608}, {2289, 268}, {2318, 53013}, {2324, 281}, {2331, 393}, {2360, 28}, {3194, 8747}, {3195, 1096}, {3342, 7149}, {3682, 52389}, {3718, 57793}, {3719, 44189}, {3990, 41087}, {3998, 56944}, {4563, 55211}, {4855, 56940}, {5440, 56939}, {6056, 2188}, {6129, 7649}, {6516, 53642}, {6611, 1435}, {7011, 57}, {7013, 7}, {7074, 33}, {7078, 1}, {7080, 318}, {7099, 6612}, {7114, 56}, {7125, 55117}, {7183, 34400}, {7358, 24026}, {7368, 7079}, {7952, 158}, {8058, 44426}, {8822, 286}, {10397, 650}, {14256, 1847}, {14298, 3064}, {14379, 60799}, {14837, 17924}, {15501, 36123}, {16596, 4858}, {17896, 46107}, {19614, 60803}, {21075, 41013}, {21871, 1826}, {23067, 61229}, {27398, 31623}, {32656, 32652}, {36059, 8059}, {37755, 13853}, {40152, 52037}, {40212, 196}, {40702, 331}, {40971, 1857}, {47372, 1093}, {47432, 2310}, {52097, 946}, {52386, 53010}, {52425, 7118}, {53557, 11}, {55015, 342}, {55044, 7004}, {55111, 9}, {55112, 312}, {55212, 2501}, {55241, 6331}, {57101, 522}, {57118, 108}, {57213, 4560}, {57233, 905}, {57241, 61040}, {57245, 4391}, {57479, 1088}, {57810, 57809}
X(64082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3190, 3870}, {1, 3682, 78}, {3, 23168, 23204}, {63, 6505, 77}, {223, 2324, 329}, {326, 37669, 41081}, {6349, 26872, 307}, {18607, 55466, 63}, {40399, 63068, 62798}
X(64083) lies on these lines: {1, 2}, {3, 5815}, {7, 480}, {9, 1200}, {20, 21075}, {40, 54199}, {55, 18228}, {63, 64108}, {72, 31787}, {75, 56331}, {100, 329}, {144, 165}, {210, 5218}, {226, 46917}, {318, 461}, {345, 3699}, {346, 19605}, {355, 5828}, {390, 3158}, {474, 11037}, {497, 3689}, {518, 5435}, {631, 34790}, {664, 31527}, {728, 2125}, {908, 9812}, {944, 37364}, {950, 8165}, {956, 54445}, {962, 5687}, {971, 11678}, {1088, 30806}, {1155, 28610}, {1215, 7229}, {1259, 7411}, {1320, 56090}, {1329, 3189}, {1699, 46873}, {1709, 60935}, {1837, 12536}, {2077, 54052}, {2094, 9352}, {2325, 59599}, {2550, 3838}, {2551, 4313}, {2886, 7679}, {2900, 5809}, {2968, 32862}, {3035, 14151}, {3059, 3740}, {3091, 63146}, {3160, 16284}, {3161, 3693}, {3218, 20588}, {3243, 6692}, {3421, 5440}, {3434, 5748}, {3474, 64143}, {3475, 4413}, {3486, 21031}, {3487, 9709}, {3488, 3820}, {3522, 12527}, {3523, 57279}, {3555, 17567}, {3600, 5438}, {3681, 5744}, {3684, 5838}, {3685, 8055}, {3694, 27382}, {3697, 6857}, {3701, 52346}, {3711, 5432}, {3713, 5296}, {3715, 4995}, {3717, 6555}, {3744, 63126}, {3751, 59593}, {3868, 26062}, {3869, 31798}, {3873, 17658}, {3880, 4345}, {3913, 8169}, {3930, 40127}, {3940, 5657}, {3947, 37161}, {3965, 5749}, {3996, 28808}, {4073, 26685}, {4308, 59691}, {4323, 5836}, {4344, 63089}, {4417, 43290}, {4421, 5698}, {4447, 17081}, {4488, 10025}, {4551, 18623}, {4640, 6172}, {4644, 25355}, {4661, 14740}, {4662, 30478}, {4671, 17860}, {4679, 10385}, {4734, 20895}, {4849, 37642}, {4863, 10589}, {4998, 7055}, {5015, 36682}, {5080, 10431}, {5081, 57534}, {5175, 8226}, {5223, 10164}, {5253, 16411}, {5261, 57284}, {5265, 6762}, {5274, 5853}, {5290, 56999}, {5316, 10389}, {5437, 11038}, {5534, 6926}, {5537, 64130}, {5686, 5745}, {5696, 15064}, {5728, 58650}, {5734, 10914}, {5758, 11499}, {5775, 26446}, {5811, 11248}, {5825, 46694}, {5850, 53056}, {5927, 25722}, {6223, 10310}, {6224, 55016}, {6557, 14942}, {6684, 54398}, {6690, 38057}, {6865, 64116}, {6913, 61628}, {6921, 46677}, {6935, 18908}, {6988, 58643}, {7046, 52412}, {8236, 26105}, {8727, 17757}, {9436, 21296}, {9776, 37271}, {9799, 17857}, {9874, 22991}, {9954, 10167}, {10307, 17613}, {10860, 60966}, {11106, 18250}, {11246, 61152}, {11415, 36002}, {11523, 63990}, {11680, 51416}, {11682, 63133}, {12053, 12632}, {14100, 18227}, {14450, 35990}, {15717, 62824}, {15733, 18236}, {17183, 56181}, {17296, 62388}, {17580, 21620}, {17718, 26040}, {18220, 21627}, {20075, 27131}, {20196, 64162}, {21454, 64112}, {24703, 30332}, {25525, 40333}, {25681, 64068}, {25718, 36620}, {27065, 42012}, {27398, 56182}, {27541, 51972}, {27542, 28826}, {30305, 48696}, {30628, 64157}, {31018, 58328}, {31508, 51090}, {31995, 40719}, {32099, 40999}, {32849, 53673}, {33144, 56009}, {33168, 53661}, {33677, 61413}, {34784, 62775}, {36624, 36626}, {36922, 38127}, {37669, 62391}, {38200, 58463}, {38255, 56088}, {39959, 44794}, {41012, 56936}, {41867, 46916}, {42014, 61023}, {42361, 51567}, {44785, 60971}, {50808, 60905}, {51362, 59388}, {51364, 53997}, {54051, 64111}, {54228, 63985}, {54389, 59596}, {54422, 59675}, {55998, 59732}, {56180, 56349}, {56201, 60668}, {60714, 64168}, {61012, 62839}, {62823, 64142}, {63961, 64171}
X(64083) = reflection of X(i) in X(j) for these {i,j}: {5274, 30827}, {5435, 59572}
X(64083) = isotomic conjugate of X(36620)
X(64083) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 61380}, {31, 36620}, {41, 60831}, {56, 3062}, {57, 11051}, {604, 10405}, {649, 61240}, {667, 53640}, {1106, 63165}, {1397, 44186}, {1407, 19605}, {1416, 56718}, {1436, 42872}, {9316, 60813}, {51641, 55284}
X(64083) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3062}, {2, 36620}, {7, 279}, {478, 61380}, {3160, 60831}, {3161, 10405}, {4130, 1146}, {5375, 61240}, {5452, 11051}, {6552, 63165}, {6631, 53640}, {7658, 11}, {13609, 3676}, {24771, 19605}, {39026, 53622}, {40133, 60992}, {40609, 56718}, {45252, 60813}, {55285, 4934}, {59573, 59170}, {62585, 44186}
X(64083) = X(i)-Ceva conjugate of X(j) for these {i, j}: {346, 8}, {1275, 644}, {16284, 144}
X(64083) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56355, 69}
X(64083) = X(i)-cross conjugate of X(j) for these {i, j}: {144, 8}, {45203, 31627}, {45228, 9}
X(64083) = pole of line {3057, 52653} with respect to the Feuerbach hyperbola
X(64083) = pole of line {190, 53640} with respect to the Yff parabola
X(64083) = pole of line {86, 36620} with respect to the Wallace hyperbola
X(64083) = pole of line {3239, 3900} with respect to the dual conic of incircle
X(64083) = pole of line {2, 4936} with respect to the dual conic of Yff parabola
X(64083) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(165)}}, {{A, B, C, X(2), X(144)}}, {{A, B, C, X(7), X(11019)}}, {{A, B, C, X(8), X(16284)}}, {{A, B, C, X(9), X(8580)}}, {{A, B, C, X(10), X(21060)}}, {{A, B, C, X(21), X(8583)}}, {{A, B, C, X(80), X(30286)}}, {{A, B, C, X(145), X(14942)}}, {{A, B, C, X(280), X(3616)}}, {{A, B, C, X(281), X(13405)}}, {{A, B, C, X(312), X(29616)}}, {{A, B, C, X(314), X(35613)}}, {{A, B, C, X(318), X(9780)}}, {{A, B, C, X(345), X(26006)}}, {{A, B, C, X(519), X(56090)}}, {{A, B, C, X(522), X(38254)}}, {{A, B, C, X(1026), X(31343)}}, {{A, B, C, X(1034), X(6734)}}, {{A, B, C, X(1193), X(3207)}}, {{A, B, C, X(1200), X(45228)}}, {{A, B, C, X(1210), X(41561)}}, {{A, B, C, X(1280), X(36846)}}, {{A, B, C, X(1419), X(2999)}}, {{A, B, C, X(2340), X(58835)}}, {{A, B, C, X(2398), X(3699)}}, {{A, B, C, X(3008), X(7658)}}, {{A, B, C, X(3241), X(51565)}}, {{A, B, C, X(3617), X(60668)}}, {{A, B, C, X(3621), X(56088)}}, {{A, B, C, X(3680), X(11519)}}, {{A, B, C, X(3693), X(56714)}}, {{A, B, C, X(3705), X(56349)}}, {{A, B, C, X(3870), X(41798)}}, {{A, B, C, X(3912), X(6557)}}, {{A, B, C, X(4384), X(56201)}}, {{A, B, C, X(4518), X(39570)}}, {{A, B, C, X(4847), X(50560)}}, {{A, B, C, X(4853), X(39959)}}, {{A, B, C, X(4998), X(5423)}}, {{A, B, C, X(5222), X(9533)}}, {{A, B, C, X(5552), X(36624)}}, {{A, B, C, X(6738), X(56144)}}, {{A, B, C, X(6745), X(57064)}}, {{A, B, C, X(7155), X(30567)}}, {{A, B, C, X(9778), X(55346)}}, {{A, B, C, X(10307), X(36620)}}, {{A, B, C, X(10580), X(21453)}}, {{A, B, C, X(17023), X(34277)}}, {{A, B, C, X(19861), X(56098)}}, {{A, B, C, X(21872), X(59305)}}, {{A, B, C, X(22117), X(22350)}}, {{A, B, C, X(26015), X(42361)}}, {{A, B, C, X(27383), X(36626)}}, {{A, B, C, X(29627), X(38255)}}, {{A, B, C, X(36845), X(51567)}}, {{A, B, C, X(40869), X(58877)}}
X(64083) = barycentric product X(i)*X(j) for these (i, j): {144, 8}, {165, 312}, {200, 31627}, {220, 50560}, {345, 63965}, {1419, 341}, {1697, 44797}, {2322, 50563}, {3160, 346}, {3207, 3596}, {3699, 7658}, {4554, 58835}, {5423, 9533}, {13609, 4998}, {16284, 9}, {17106, 30693}, {21060, 333}, {21872, 314}, {22117, 7017}, {45203, 56026}, {50559, 7046}, {50561, 728}, {50562, 56182}, {55285, 645}, {57064, 664}, {62533, 650}
X(64083) = barycentric quotient X(i)/X(j) for these (i, j): {2, 36620}, {7, 60831}, {8, 10405}, {9, 3062}, {40, 42872}, {55, 11051}, {56, 61380}, {100, 61240}, {101, 53622}, {144, 7}, {165, 57}, {190, 53640}, {200, 19605}, {312, 44186}, {346, 63165}, {497, 62544}, {645, 55284}, {1419, 269}, {3160, 279}, {3207, 56}, {3693, 56718}, {7658, 3676}, {9533, 479}, {13609, 11}, {16284, 85}, {17106, 738}, {21060, 226}, {21872, 65}, {22117, 222}, {31627, 1088}, {41006, 59170}, {43182, 60992}, {45203, 11019}, {45228, 40133}, {50559, 7056}, {50560, 57792}, {50561, 23062}, {50563, 56382}, {55285, 7178}, {57064, 522}, {58835, 650}, {58877, 7658}, {62533, 4554}, {63594, 24856}, {63965, 278}
X(64083) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 4511, 3241}, {9, 59584, 5281}, {55, 18228, 52653}, {78, 2057, 4420}, {100, 329, 9778}, {145, 6736, 8}, {165, 21060, 144}, {200, 6745, 2}, {210, 5218, 5273}, {329, 9778, 63975}, {345, 3699, 5423}, {497, 3689, 64146}, {518, 59572, 5435}, {908, 17784, 9812}, {908, 64135, 17784}, {1376, 25568, 7}, {2551, 56176, 4313}, {3035, 24477, 64114}, {3158, 3452, 390}, {3421, 5440, 5731}, {3434, 5748, 9779}, {3487, 9709, 11024}, {5328, 64146, 497}, {5745, 62218, 5686}, {5853, 30827, 5274}, {24703, 34607, 30332}, {57279, 59587, 3523}
X(64084) lies on circumconic {{A, B, C, X(937), X(1432)}} and on these lines: {1, 256}, {3, 16475}, {4, 5847}, {6, 40}, {10, 14853}, {20, 39870}, {57, 613}, {69, 946}, {78, 25304}, {141, 8227}, {165, 182}, {193, 962}, {265, 32261}, {355, 21850}, {376, 51005}, {381, 50950}, {515, 51192}, {516, 4780}, {517, 1351}, {518, 5693}, {519, 54132}, {524, 31162}, {542, 50865}, {551, 50967}, {575, 63469}, {576, 7991}, {599, 38021}, {611, 1697}, {631, 38049}, {674, 33536}, {936, 17792}, {944, 49684}, {966, 39605}, {990, 29353}, {1125, 10519}, {1350, 1386}, {1352, 1699}, {1353, 28174}, {1385, 16491}, {1428, 15803}, {1482, 16496}, {1503, 41869}, {1571, 5034}, {1572, 5028}, {1698, 14561}, {1721, 15310}, {1743, 6211}, {1770, 39901}, {1836, 39897}, {1902, 12167}, {1992, 28194}, {2077, 36741}, {2093, 8540}, {2330, 61763}, {2771, 48679}, {2781, 33535}, {2800, 10755}, {2802, 10759}, {2809, 10758}, {2817, 10764}, {2836, 51941}, {2948, 9970}, {2999, 20368}, {3094, 9592}, {3098, 7987}, {3241, 51028}, {3242, 16200}, {3333, 24471}, {3416, 5480}, {3428, 37492}, {3543, 51001}, {3545, 50781}, {3564, 12699}, {3579, 5050}, {3589, 31423}, {3616, 62174}, {3618, 6684}, {3679, 20423}, {3731, 7609}, {3779, 6769}, {3817, 40330}, {3827, 37625}, {3844, 54447}, {3875, 29057}, {4220, 62845}, {4259, 63391}, {4260, 6282}, {4301, 34379}, {4663, 5102}, {5032, 34632}, {5039, 12197}, {5052, 9620}, {5085, 35242}, {5092, 16192}, {5093, 12702}, {5097, 63468}, {5250, 15988}, {5272, 37521}, {5476, 19875}, {5603, 49511}, {5691, 31670}, {5731, 61044}, {5818, 38146}, {5846, 5881}, {5848, 14217}, {5886, 48876}, {5921, 9812}, {6326, 9024}, {6361, 14912}, {7289, 12704}, {7988, 24206}, {7989, 19130}, {9025, 63992}, {9589, 39878}, {9612, 12588}, {9614, 12589}, {9616, 19145}, {9625, 15577}, {9904, 11579}, {9911, 19459}, {9924, 40658}, {9943, 58621}, {10222, 55724}, {10246, 55584}, {10268, 19133}, {10319, 61398}, {11012, 36740}, {11178, 30308}, {11203, 62816}, {11224, 55720}, {11362, 59406}, {11531, 37517}, {12017, 31663}, {12164, 34381}, {12177, 13174}, {12194, 13355}, {12245, 49529}, {12555, 37676}, {12701, 39873}, {12703, 45729}, {12782, 35439}, {13605, 32247}, {13624, 55610}, {14810, 58221}, {14848, 50821}, {14927, 28150}, {15178, 55580}, {16189, 55721}, {16468, 18788}, {16834, 24257}, {17502, 55629}, {18440, 22793}, {18492, 53023}, {18583, 26446}, {19924, 34628}, {20070, 51170}, {22791, 34380}, {24728, 49477}, {25055, 54173}, {25406, 31730}, {28212, 61624}, {28538, 54131}, {29054, 49496}, {29311, 61086}, {30389, 52987}, {30392, 55587}, {31421, 50659}, {31666, 55602}, {31673, 51538}, {35774, 35841}, {35775, 35840}, {38023, 54169}, {38034, 61545}, {38036, 47595}, {38068, 63109}, {38118, 51171}, {38136, 61261}, {38314, 54174}, {38315, 53097}, {39899, 48661}, {43174, 59408}, {43216, 57279}, {44839, 64017}, {46264, 64005}, {47321, 47571}, {47356, 50811}, {49164, 64003}, {49524, 63143}, {49653, 53994}, {49681, 61296}, {51147, 61291}, {51705, 54170}, {55597, 58229}, {55623, 58225}, {55657, 58217}, {55663, 58215}, {55718, 58245}, {59399, 61524}, {63356, 63385}
X(64084) = midpoint of X(i) and X(j) for these {i,j}: {193, 962}, {1482, 44456}, {3241, 51028}, {3242, 55722}, {3543, 51001}, {9589, 39878}, {39899, 48661}, {51192, 51212}
X(64084) = reflection of X(i) in X(j) for these {i,j}: {20, 39870}, {40, 6}, {69, 946}, {355, 21850}, {376, 51005}, {944, 49684}, {1350, 1386}, {2948, 9970}, {3416, 5480}, {3679, 20423}, {3751, 1351}, {5691, 31670}, {6776, 51196}, {7289, 45728}, {9904, 11579}, {9924, 40658}, {9943, 58621}, {12245, 49529}, {12782, 35439}, {13174, 12177}, {16496, 1482}, {18440, 22793}, {19459, 31812}, {24728, 49477}, {32247, 13605}, {32261, 265}, {33878, 1385}, {39878, 63722}, {39885, 4}, {39898, 4301}, {47321, 47571}, {50811, 47356}, {50950, 381}, {50967, 551}, {54170, 51705}, {61296, 49681}, {63428, 49511}, {64005, 46264}
X(64084) = perspector of circumconic {{A, B, C, X(37137), X(58991)}}
X(64084) = pole of line {3063, 22154} with respect to the cosine circle
X(64084) = pole of line {3666, 9817} with respect to the Feuerbach hyperbola
X(64084) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 5847, 39885}, {141, 38035, 8227}, {516, 51196, 6776}, {517, 1351, 3751}, {1350, 1386, 3576}, {1702, 12698, 40}, {3098, 38029, 7987}, {3416, 5480, 5587}, {4301, 34379, 39898}, {51192, 51212, 515}
X(64085) lies on these lines: {1, 1503}, {4, 518}, {5, 38047}, {6, 946}, {10, 10516}, {30, 47358}, {40, 141}, {65, 12589}, {69, 962}, {74, 32238}, {113, 32278}, {182, 5886}, {354, 26118}, {355, 3818}, {376, 51003}, {381, 47359}, {497, 5928}, {511, 12699}, {515, 3242}, {516, 1350}, {517, 1352}, {519, 47353}, {524, 31162}, {542, 3656}, {551, 43273}, {597, 38021}, {599, 28194}, {611, 12047}, {613, 30384}, {944, 49465}, {952, 39884}, {960, 26939}, {1012, 22769}, {1125, 5085}, {1385, 46264}, {1386, 5603}, {1428, 11376}, {1469, 1836}, {1482, 18440}, {1519, 45729}, {1537, 5848}, {1699, 3751}, {1892, 53548}, {2098, 39891}, {2099, 39892}, {2330, 11375}, {2778, 2892}, {2784, 32921}, {2792, 64016}, {2807, 19161}, {3056, 12701}, {3057, 12588}, {3091, 59406}, {3149, 12329}, {3241, 51023}, {3543, 50999}, {3564, 22791}, {3576, 44882}, {3589, 8227}, {3616, 25406}, {3620, 20070}, {3654, 11178}, {3655, 11645}, {3679, 47354}, {3763, 6684}, {3827, 12586}, {3844, 5657}, {3873, 37456}, {3877, 63470}, {4260, 5805}, {4295, 24471}, {4297, 48905}, {4301, 5847}, {4307, 10401}, {4310, 30617}, {4643, 6210}, {4663, 14853}, {5050, 18493}, {5102, 64073}, {5250, 26543}, {5587, 49524}, {5596, 40658}, {5690, 18358}, {5691, 16496}, {5693, 9021}, {5731, 14927}, {5784, 11677}, {5820, 45776}, {5845, 11372}, {5846, 7982}, {5881, 9053}, {5901, 38029}, {5921, 51192}, {6001, 24476}, {6211, 17279}, {6361, 10519}, {7289, 12705}, {7983, 50641}, {7984, 41737}, {8196, 39881}, {8203, 39880}, {8550, 11522}, {9024, 14217}, {9812, 51212}, {9830, 50881}, {9856, 34381}, {9911, 37485}, {9943, 58581}, {9955, 14561}, {9956, 38116}, {10165, 53094}, {10247, 48662}, {10387, 10624}, {10404, 15971}, {10445, 50995}, {10595, 39874}, {11179, 38023}, {11180, 28538}, {11415, 43216}, {11477, 34379}, {11496, 36740}, {11579, 12261}, {11720, 32233}, {12197, 42534}, {12262, 61088}, {12512, 55646}, {12571, 38146}, {12594, 12608}, {13211, 32274}, {13464, 38315}, {13605, 16010}, {14848, 50806}, {15668, 39605}, {16200, 51147}, {17276, 29057}, {17301, 24257}, {17642, 36844}, {18481, 29012}, {18483, 53023}, {18583, 38034}, {18788, 33087}, {19542, 41338}, {19925, 38144}, {20330, 38046}, {21167, 35242}, {21279, 60926}, {21356, 34632}, {21850, 40273}, {22753, 36741}, {22793, 31670}, {24206, 26446}, {24851, 50612}, {25055, 51737}, {26929, 63994}, {28146, 48873}, {28150, 48872}, {28174, 48876}, {28178, 48874}, {28198, 54173}, {28212, 61545}, {29054, 49509}, {29181, 41869}, {29207, 61086}, {31423, 34573}, {31730, 31884}, {31803, 34378}, {33878, 48661}, {36728, 51002}, {37984, 47506}, {38036, 51150}, {38049, 53093}, {38072, 50802}, {38110, 61272}, {38118, 47355}, {38145, 42356}, {38165, 61259}, {38314, 64014}, {38317, 61268}, {47745, 49690}, {48881, 64005}, {48910, 49505}, {48922, 48931}, {49531, 64088}, {51414, 54408}, {51537, 59387}, {60895, 64126}
X(64085) = midpoint of X(i) and X(j) for these {i,j}: {4, 39898}, {69, 962}, {1482, 18440}, {3241, 51023}, {3242, 36990}, {3543, 50999}, {5691, 16496}, {5921, 51192}, {7982, 39885}, {7983, 50641}, {7984, 41737}, {33878, 48661}, {49505, 51118}
X(64085) = reflection of X(i) in X(j) for these {i,j}: {6, 946}, {40, 141}, {74, 32238}, {355, 3818}, {376, 51003}, {944, 49465}, {1350, 49511}, {3416, 1352}, {3654, 11178}, {3679, 47354}, {3751, 5480}, {5596, 40658}, {5690, 18358}, {6776, 1386}, {9943, 58581}, {11179, 51709}, {11579, 12261}, {13211, 32274}, {16010, 13605}, {21850, 40273}, {31670, 22793}, {32233, 11720}, {32278, 113}, {39870, 13464}, {39878, 8550}, {43273, 551}, {46264, 1385}, {47356, 3656}, {47359, 381}, {47506, 37984}, {48905, 4297}, {48906, 5901}, {48910, 51118}, {48922, 48931}, {49529, 19925}, {49531, 64088}, {49681, 1482}, {49688, 355}, {49690, 47745}, {61088, 12262}, {64005, 48881}, {64080, 39870}
X(64085) = pole of line {36844, 40959} with respect to the Feuerbach hyperbola
X(64085) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 39898, 518}, {6, 946, 38035}, {516, 49511, 1350}, {542, 3656, 47356}, {1699, 3751, 5480}, {3242, 36990, 515}, {5603, 6776, 1386}, {11179, 51709, 38023}, {11522, 39878, 16475}, {13464, 39870, 38315}, {16475, 39878, 8550}, {19925, 49529, 38144}, {22753, 39877, 36741}, {38315, 64080, 39870}
X(64086) lies on these lines: {1, 6917}, {2, 5172}, {3, 26481}, {4, 12}, {5, 8069}, {8, 18962}, {11, 6826}, {30, 40292}, {56, 377}, {65, 3419}, {145, 388}, {197, 1894}, {347, 39751}, {355, 1858}, {442, 37579}, {443, 5433}, {497, 6839}, {498, 6928}, {517, 1478}, {528, 10956}, {674, 12588}, {942, 10044}, {1056, 1317}, {1454, 6734}, {1457, 33104}, {1470, 11112}, {1479, 9955}, {1486, 1884}, {1617, 17528}, {1770, 37584}, {1824, 11392}, {1837, 50195}, {2098, 10532}, {2478, 6690}, {2550, 12848}, {2646, 48482}, {3057, 26332}, {3086, 6901}, {3295, 18499}, {3304, 10949}, {3428, 6850}, {3476, 18467}, {3485, 52367}, {3583, 5219}, {3585, 5119}, {3586, 18406}, {3614, 6893}, {3813, 18967}, {4185, 10831}, {4293, 6951}, {4295, 45288}, {4680, 6358}, {5046, 10588}, {5080, 5698}, {5173, 10404}, {5204, 6897}, {5217, 6836}, {5218, 6840}, {5225, 6894}, {5229, 37437}, {5261, 20075}, {5270, 25415}, {5432, 6827}, {5434, 31140}, {5587, 30223}, {5603, 10947}, {5693, 37710}, {5697, 49177}, {5721, 61398}, {5726, 18513}, {5800, 39897}, {5820, 34372}, {5880, 18838}, {6256, 12688}, {6835, 10896}, {6851, 15338}, {6862, 59334}, {6864, 7173}, {6865, 52793}, {6867, 10321}, {6899, 63756}, {6900, 10591}, {6916, 15326}, {6918, 26476}, {6925, 12943}, {6929, 7951}, {6934, 37564}, {6957, 12764}, {6959, 8070}, {7294, 17582}, {7497, 10833}, {7742, 37438}, {9579, 41338}, {9612, 37569}, {9654, 10679}, {9655, 47032}, {9659, 37117}, {9673, 36009}, {10039, 10526}, {10106, 22837}, {10522, 12607}, {10525, 12047}, {10572, 18517}, {10592, 61533}, {10596, 13274}, {10629, 15888}, {10826, 17699}, {10827, 37821}, {11372, 41698}, {11509, 15844}, {11510, 25466}, {12116, 34471}, {12678, 12859}, {16915, 28773}, {17605, 26333}, {17700, 45632}, {21859, 31409}, {22766, 26470}, {22768, 63980}, {24390, 26437}, {24806, 33109}, {26126, 56782}, {26326, 45627}, {26327, 45628}, {26357, 37468}, {26358, 63257}, {30116, 38945}, {30274, 49176}, {33111, 60682}, {37155, 57288}, {37550, 42012}, {37736, 56790}, {37738, 50194}, {38454, 60909}, {41538, 64171}, {45287, 61146}, {45625, 48454}, {45626, 48455}, {63326, 63393}, {63750, 63852}
X(64086) = pole of line {5722, 5812} with respect to the Feuerbach hyperbola
X(64086) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 3085, 10953}, {55, 10895, 7680}, {55, 36999, 6284}, {388, 2475, 18961}, {388, 3434, 2099}, {1836, 5252, 64041}, {3085, 37000, 55}, {18407, 24929, 1479}, {26388, 26412, 1}
X(64087) lies on these lines: {1, 1329}, {2, 24928}, {3, 6735}, {4, 8}, {5, 3872}, {6, 21074}, {7, 4004}, {10, 56}, {30, 63130}, {36, 37828}, {40, 1145}, {46, 529}, {55, 10915}, {63, 5690}, {78, 952}, {80, 3632}, {100, 18481}, {145, 5722}, {150, 16284}, {153, 6259}, {200, 5881}, {322, 41004}, {341, 21290}, {388, 3753}, {392, 2551}, {405, 5795}, {442, 9578}, {443, 4002}, {495, 19860}, {496, 36846}, {499, 5123}, {515, 5687}, {516, 37001}, {518, 10573}, {519, 1837}, {604, 21030}, {758, 41687}, {908, 1482}, {936, 37709}, {938, 16215}, {942, 5554}, {944, 5440}, {958, 8069}, {960, 12647}, {997, 10944}, {998, 5724}, {999, 24982}, {1056, 5439}, {1125, 31246}, {1146, 17742}, {1155, 37829}, {1265, 59586}, {1319, 26364}, {1320, 47744}, {1376, 40293}, {1385, 5552}, {1420, 13747}, {1478, 5836}, {1479, 3880}, {1483, 56387}, {1512, 22770}, {1657, 63145}, {1697, 11113}, {1698, 6691}, {1737, 12513}, {2057, 37611}, {2099, 21077}, {2136, 3586}, {2321, 54008}, {2390, 4680}, {2478, 9957}, {2646, 45701}, {2800, 12059}, {2802, 12701}, {2841, 13532}, {2886, 10827}, {2932, 63983}, {2975, 6940}, {3035, 12749}, {3036, 10057}, {3057, 41389}, {3086, 17619}, {3254, 43731}, {3303, 49626}, {3337, 34690}, {3416, 8679}, {3476, 17614}, {3486, 34619}, {3555, 18391}, {3612, 64123}, {3616, 5828}, {3617, 6904}, {3625, 4863}, {3626, 37567}, {3633, 37702}, {3654, 37430}, {3697, 58649}, {3754, 10404}, {3811, 10950}, {3813, 10826}, {3814, 11376}, {3820, 19861}, {3870, 14022}, {3884, 4679}, {3885, 5046}, {3895, 15171}, {3913, 10572}, {3916, 5657}, {3927, 59503}, {3940, 12645}, {3962, 36920}, {4193, 11373}, {4308, 17567}, {4311, 16371}, {4420, 61244}, {4511, 6963}, {4513, 5179}, {4652, 61524}, {4668, 5223}, {4678, 37435}, {4701, 63209}, {4853, 5587}, {4855, 34773}, {4861, 5886}, {4865, 20498}, {4875, 56746}, {4882, 37712}, {4915, 37714}, {5084, 20789}, {5087, 33895}, {5119, 57288}, {5126, 6921}, {5187, 7743}, {5258, 26066}, {5270, 5880}, {5288, 18395}, {5330, 27131}, {5533, 11256}, {5691, 63137}, {5697, 24703}, {5705, 38058}, {5725, 10459}, {5727, 6765}, {5731, 59591}, {5748, 10595}, {5790, 6734}, {5818, 6964}, {5844, 11682}, {5882, 6745}, {5901, 30852}, {5904, 41684}, {5905, 50193}, {6244, 52683}, {6261, 37725}, {6361, 63133}, {6554, 41391}, {6700, 63987}, {6737, 47745}, {6925, 31798}, {6929, 23340}, {6983, 9956}, {7354, 54286}, {7483, 31434}, {7967, 27383}, {7971, 13257}, {7982, 51409}, {7991, 52860}, {8050, 38955}, {8148, 51423}, {9580, 64202}, {9581, 12629}, {9654, 40587}, {9708, 24987}, {9940, 10805}, {10200, 20323}, {10246, 27385}, {10371, 41822}, {10528, 24929}, {10531, 13600}, {10624, 12640}, {10742, 39776}, {10896, 49600}, {10912, 30384}, {10942, 61146}, {11009, 34647}, {11236, 12047}, {11237, 12609}, {11362, 12527}, {11525, 18492}, {11680, 61261}, {11826, 63132}, {11827, 20588}, {12115, 31788}, {12514, 34606}, {12526, 63143}, {12531, 62354}, {12666, 17661}, {12702, 51433}, {13463, 64203}, {14110, 46677}, {14740, 31806}, {15813, 59327}, {15888, 54318}, {15955, 17720}, {16086, 44720}, {16980, 31778}, {17275, 21061}, {17299, 21078}, {17533, 50443}, {17606, 45700}, {17613, 64120}, {17671, 40872}, {17718, 30147}, {17721, 50637}, {17728, 62825}, {17781, 34718}, {18525, 35448}, {19537, 59675}, {19914, 46685}, {20060, 57282}, {20270, 21244}, {20895, 21286}, {22836, 37740}, {23831, 63139}, {24541, 31479}, {25005, 54391}, {25006, 37240}, {26127, 62835}, {28224, 64135}, {28628, 37719}, {30144, 37738}, {31160, 34640}, {31436, 57003}, {31786, 51380}, {32157, 59316}, {32213, 37615}, {32850, 56799}, {34123, 63208}, {34471, 59719}, {34625, 54361}, {34772, 37739}, {35262, 47742}, {37281, 37532}, {37585, 51378}, {37711, 44669}, {37717, 59310}, {38042, 61534}, {38126, 60970}, {38176, 64153}, {40663, 62858}, {41006, 56536}, {46937, 60452}, {49163, 56545}, {49168, 64046}, {49627, 61717}, {51984, 52478}, {54176, 61296}, {57002, 61763}, {63138, 64005}, {64139, 64140}
X(64087) = midpoint of X(i) and X(j) for these {i,j}: {8, 3436}, {2098, 36972}, {3632, 30323}, {5881, 63391}, {7991, 52860}, {18525, 35448}
X(64087) = reflection of X(i) in X(j) for these {i,j}: {1, 1329}, {46, 8256}, {56, 10}, {2098, 21616}, {3555, 50196}, {4311, 63990}, {5687, 6736}, {5730, 21075}, {8256, 33559}, {20076, 37582}, {36846, 496}, {36977, 24928}, {37738, 30144}, {54134, 47745}, {58798, 3436}, {61296, 54176}, {63987, 6700}
X(64087) = inverse of X(10914) in Fuhrmann circle
X(64087) = isogonal conjugate of X(15617)
X(64087) = complement of X(36977)
X(64087) = anticomplement of X(24928)
X(64087) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 15617}, {24928, 24928}
X(64087) = pole of line {2804, 57155} with respect to the Bevan circle
X(64087) = pole of line {513, 10914} with respect to the Fuhrmann circle
X(64087) = pole of line {1837, 10914} with respect to the Feuerbach hyperbola
X(64087) = pole of line {1437, 15617} with respect to the Stammler hyperbola
X(64087) = pole of line {1444, 15617} with respect to the Wallace hyperbola
X(64087) = pole of line {6692, 17720} with respect to the dual conic of Yff parabola
X(64087) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(15952)}}, {{A, B, C, X(69), X(12245)}}, {{A, B, C, X(92), X(60085)}}, {{A, B, C, X(318), X(996)}}, {{A, B, C, X(3680), X(5081)}}, {{A, B, C, X(3869), X(42019)}}, {{A, B, C, X(8050), X(53151)}}, {{A, B, C, X(10914), X(34406)}}
X(64087) = barycentric product X(i)*X(j) for these (i, j): {15952, 321}
X(64087) = barycentric quotient X(i)/X(j) for these (i, j): {6, 15617}, {15952, 81}
X(64087) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 36977, 24928}, {4, 8, 10914}, {8, 329, 12245}, {8, 3421, 72}, {8, 3436, 517}, {8, 355, 3419}, {8, 5080, 14923}, {8, 5176, 355}, {8, 56879, 34790}, {8, 56880, 3869}, {8, 59387, 5082}, {10, 10106, 474}, {10, 8666, 24914}, {46, 3679, 8256}, {515, 6736, 5687}, {517, 3436, 58798}, {519, 21075, 5730}, {529, 8256, 46}, {944, 7080, 5440}, {960, 32537, 12647}, {1329, 38455, 1}, {1385, 51362, 5552}, {1706, 9613, 11112}, {2098, 31141, 21616}, {2098, 36972, 519}, {2478, 12648, 9957}, {3632, 30323, 5854}, {3632, 9614, 3680}, {3679, 37710, 5794}, {3679, 9613, 1706}, {3814, 22837, 11376}, {4193, 38460, 11373}, {4311, 63990, 16371}, {4853, 5587, 24390}, {4861, 11681, 5886}, {5080, 14923, 12699}, {5123, 11260, 499}, {5795, 31397, 405}, {8256, 33559, 3679}, {9578, 9623, 442}, {10944, 21031, 997}, {20895, 21286, 64122}, {31141, 36972, 2098}, {51433, 64002, 12702}
X(64088) lies on these lines: {2, 30273}, {3, 3739}, {4, 75}, {5, 37}, {10, 29054}, {20, 4699}, {30, 4688}, {65, 23690}, {72, 20236}, {114, 14680}, {119, 25642}, {140, 31238}, {192, 3091}, {262, 32453}, {346, 36694}, {354, 23689}, {355, 518}, {376, 51049}, {381, 536}, {382, 4739}, {389, 58499}, {511, 21443}, {515, 24325}, {517, 3696}, {537, 50796}, {546, 4686}, {547, 51045}, {549, 51042}, {631, 4751}, {726, 6248}, {740, 946}, {742, 5480}, {942, 17861}, {952, 49478}, {971, 48938}, {984, 5587}, {1071, 48937}, {1210, 4032}, {1278, 3832}, {1427, 20256}, {1479, 11997}, {1482, 28581}, {1503, 49481}, {1656, 4698}, {1699, 49474}, {1733, 12723}, {1824, 14213}, {1867, 6734}, {1882, 37591}, {1893, 22464}, {2182, 24332}, {2345, 36670}, {2805, 10738}, {3090, 4687}, {3146, 4772}, {3149, 54410}, {3543, 51044}, {3545, 4664}, {3576, 40328}, {3644, 3855}, {3655, 51061}, {3672, 36695}, {3752, 37365}, {3797, 7384}, {3817, 3993}, {3821, 17062}, {3839, 4740}, {3842, 10175}, {3843, 4726}, {3850, 4718}, {3851, 4681}, {3854, 4788}, {3914, 5515}, {4008, 12722}, {4192, 31993}, {4301, 4709}, {4411, 8760}, {4463, 20886}, {4704, 5068}, {4732, 11362}, {4755, 5055}, {4764, 61964}, {4812, 36557}, {4821, 50689}, {5056, 27268}, {5066, 61623}, {5071, 51043}, {5295, 15488}, {5307, 37581}, {5603, 49470}, {5709, 5788}, {5720, 27471}, {5817, 51052}, {5832, 54008}, {5881, 49490}, {5886, 15569}, {5887, 20718}, {6327, 54151}, {6817, 54284}, {6835, 20171}, {7201, 9612}, {7982, 49459}, {8229, 49512}, {8680, 15762}, {9955, 49462}, {10222, 49475}, {10436, 37474}, {10516, 49509}, {11178, 51050}, {11499, 15624}, {11522, 49469}, {12571, 28522}, {12618, 36654}, {12675, 58583}, {13464, 49471}, {14206, 61662}, {14853, 49496}, {15687, 51048}, {15852, 15973}, {15908, 21926}, {15971, 20892}, {16200, 49678}, {16732, 24476}, {17225, 50959}, {17280, 36692}, {17302, 36693}, {17321, 36672}, {17348, 37510}, {17441, 20242}, {17755, 29243}, {18357, 49515}, {18480, 49483}, {18492, 49493}, {18531, 37820}, {19540, 44417}, {19546, 30818}, {20544, 24269}, {21279, 24701}, {22791, 49468}, {24209, 32118}, {24212, 37592}, {24220, 29016}, {24257, 48900}, {24349, 59387}, {24357, 36526}, {24828, 63970}, {24993, 52245}, {25384, 36530}, {25939, 37370}, {26011, 47522}, {26470, 37361}, {27483, 63402}, {27487, 63444}, {28194, 50096}, {29057, 45305}, {29069, 48888}, {29331, 48934}, {31162, 50086}, {31302, 54448}, {33878, 43169}, {34627, 51055}, {34648, 51060}, {34718, 51036}, {37712, 49498}, {37714, 49448}, {38034, 49461}, {38074, 50075}, {38076, 50777}, {38140, 49523}, {38150, 51058}, {38155, 49510}, {49450, 59388}, {49503, 61256}, {49531, 64085}, {51047, 61942}, {51051, 54131}, {51064, 61985}, {58655, 63976}, {63318, 63398}
X(64088) = midpoint of X(i) and X(j) for these {i,j}: {4, 75}, {376, 51065}, {381, 51040}, {3543, 51044}, {4301, 4709}, {5881, 49490}, {6327, 54151}, {7982, 49459}, {15687, 51048}, {30271, 52852}, {31162, 50086}, {34627, 51055}, {34648, 51060}, {49531, 64085}, {51051, 54131}, {51063, 63427}
X(64088) = reflection of X(i) in X(j) for these {i,j}: {3, 3739}, {37, 5}, {376, 51049}, {381, 51041}, {389, 58499}, {3655, 51061}, {11362, 4732}, {12675, 58583}, {34718, 51036}, {49471, 13464}, {49475, 10222}, {51038, 381}, {51042, 549}, {51045, 547}, {51046, 61522}, {51050, 11178}, {63976, 58655}
X(64088) = complement of X(30273)
X(64088) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 75, 10779}
X(64088) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 63427, 51063}, {5, 29010, 37}, {5, 51046, 61522}, {75, 51063, 63427}, {355, 5805, 1352}, {381, 536, 51038}, {536, 51041, 381}, {4688, 52852, 30271}, {5071, 51043, 51488}, {29010, 61522, 51046}, {30271, 52852, 30}
X(64089) lies on these lines: {2, 98}, {3, 7899}, {4, 620}, {5, 99}, {8, 11724}, {10, 7970}, {20, 38748}, {30, 38750}, {69, 9754}, {115, 3090}, {140, 6033}, {141, 10753}, {148, 5056}, {183, 54103}, {262, 5976}, {316, 37459}, {325, 10011}, {373, 58502}, {376, 9167}, {381, 10723}, {485, 19108}, {486, 19109}, {511, 7925}, {543, 5071}, {546, 38730}, {547, 8724}, {549, 38741}, {551, 50880}, {569, 3044}, {575, 16984}, {576, 63021}, {590, 19056}, {597, 64091}, {615, 19055}, {619, 36765}, {625, 11676}, {631, 2794}, {632, 31268}, {671, 5055}, {690, 64101}, {842, 36170}, {1007, 9753}, {1125, 9864}, {1503, 40336}, {1513, 5103}, {1587, 13989}, {1588, 8997}, {1656, 2782}, {1916, 7608}, {1995, 39828}, {2023, 31489}, {2080, 7809}, {2482, 3545}, {2783, 31272}, {2784, 19862}, {2787, 64008}, {2790, 31255}, {3035, 10768}, {3054, 12830}, {3055, 12055}, {3060, 58517}, {3091, 23698}, {3146, 38736}, {3523, 38749}, {3524, 22247}, {3525, 7914}, {3526, 12042}, {3530, 38742}, {3533, 10991}, {3544, 35022}, {3614, 13182}, {3624, 11710}, {3627, 38731}, {3628, 7859}, {3634, 21636}, {3679, 50883}, {3742, 58681}, {3788, 37446}, {3815, 44534}, {3817, 51578}, {3819, 58537}, {3828, 50881}, {3832, 39809}, {3851, 22515}, {4193, 38556}, {4413, 12178}, {4993, 39814}, {5020, 39803}, {5026, 10516}, {5054, 22566}, {5067, 6722}, {5068, 10992}, {5070, 7943}, {5072, 38733}, {5079, 15092}, {5094, 12131}, {5097, 36859}, {5133, 39816}, {5149, 37334}, {5171, 7912}, {5219, 24472}, {5418, 50719}, {5420, 50720}, {5422, 39810}, {5432, 12185}, {5433, 12184}, {5461, 61899}, {5476, 50639}, {5503, 14494}, {5562, 58503}, {5587, 11711}, {5640, 39806}, {5886, 7983}, {5943, 39817}, {5965, 63047}, {5978, 52266}, {5979, 52263}, {5988, 17593}, {5999, 29323}, {6114, 42580}, {6115, 42581}, {6248, 32967}, {6390, 39663}, {6656, 61104}, {6669, 61634}, {6670, 36776}, {6811, 12123}, {6813, 12124}, {6997, 39813}, {7173, 13183}, {7308, 24469}, {7484, 9861}, {7509, 39857}, {7527, 39831}, {7607, 60073}, {7697, 8179}, {7709, 7844}, {7741, 10086}, {7752, 12110}, {7775, 10788}, {7777, 36849}, {7778, 22712}, {7808, 12176}, {7828, 32467}, {7835, 37348}, {7858, 20576}, {7866, 38642}, {7887, 11257}, {7888, 12251}, {7901, 13334}, {7907, 54393}, {7909, 49111}, {7919, 11171}, {7931, 15819}, {7951, 10089}, {7988, 13174}, {8252, 49213}, {8253, 49212}, {8290, 15850}, {8591, 61924}, {8980, 32785}, {9749, 33386}, {9750, 33387}, {9751, 22664}, {9752, 63098}, {9771, 9877}, {9880, 52695}, {10109, 61600}, {10153, 53103}, {10171, 11599}, {10175, 13178}, {10185, 60136}, {10256, 54996}, {10272, 15545}, {10358, 39652}, {10601, 39820}, {10754, 14561}, {10769, 23513}, {10896, 15452}, {11184, 42536}, {11318, 63424}, {11412, 39835}, {11539, 14830}, {11606, 53108}, {11623, 61886}, {11632, 15699}, {11668, 60103}, {11793, 39846}, {12181, 15184}, {12183, 24953}, {12189, 26364}, {12190, 26363}, {12243, 14971}, {12355, 61925}, {12829, 37637}, {13335, 33245}, {13449, 13586}, {13967, 32786}, {14137, 36763}, {14643, 15342}, {14644, 53735}, {14853, 50567}, {14872, 58590}, {15022, 20094}, {15024, 39808}, {15081, 50711}, {15300, 61926}, {15703, 49102}, {15723, 26614}, {16239, 61599}, {16760, 36173}, {17004, 34507}, {17006, 36864}, {20398, 46936}, {20774, 37453}, {21445, 58448}, {23515, 33512}, {30745, 62490}, {31839, 34512}, {32152, 33259}, {32829, 62348}, {32970, 36998}, {33219, 52771}, {34803, 46236}, {35005, 60192}, {35018, 38229}, {35921, 39854}, {35951, 62203}, {36521, 61932}, {36523, 61913}, {36770, 41023}, {37690, 58883}, {38634, 61855}, {38635, 61970}, {38740, 60781}, {39804, 63084}, {39812, 63664}, {39825, 44802}, {39834, 43651}, {41135, 61912}, {42010, 54920}, {42262, 49266}, {42265, 49267}, {43150, 53104}, {43460, 56370}, {44972, 46987}, {47290, 57307}, {48657, 61887}, {50726, 52821}, {51387, 59397}, {51388, 59398}, {51523, 55857}, {52090, 55856}, {53729, 59391}, {54978, 60213}, {58661, 61686}, {58728, 60504}, {60144, 60280}, {61911, 62427}, {63344, 63345}
X(64089) = reflection of X(i) in X(j) for these {i,j}: {631, 31274}, {14061, 1656}, {38739, 632}
X(64089) = inverse of X(24981) in orthoptic circle of the Steiner Inellipse
X(64089) = pole of line {690, 24981} with respect to the orthoptic circle of the Steiner Inellipse
X(64089) = pole of line {230, 5111} with respect to the Kiepert hyperbola
X(64089) = pole of line {325, 5965} with respect to the Wallace hyperbola
X(64089) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {99, 15342, 58098}, {115, 15357, 45161}
X(64089) = intersection, other than A, B, C, of circumconics {{A, B, C, X(98), X(60034)}}, {{A, B, C, X(182), X(52091)}}, {{A, B, C, X(262), X(51820)}}, {{A, B, C, X(287), X(56064)}}, {{A, B, C, X(325), X(6036)}}, {{A, B, C, X(1976), X(5966)}}, {{A, B, C, X(5967), X(11669)}}, {{A, B, C, X(7608), X(40820)}}, {{A, B, C, X(8781), X(46806)}}
X(64089) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 147, 6036}, {2, 23234, 6054}, {4, 620, 21166}, {5, 15561, 99}, {5, 61561, 6321}, {5, 99, 14639}, {98, 23234, 114}, {114, 6036, 147}, {114, 6721, 2}, {140, 6033, 34473}, {148, 5056, 23514}, {325, 10011, 38227}, {381, 33813, 10723}, {620, 36519, 4}, {2794, 31274, 631}, {3090, 20399, 23235}, {3525, 9862, 38737}, {3526, 38743, 12042}, {3628, 51872, 38224}, {5055, 13188, 61576}, {5070, 12188, 34127}, {5079, 38732, 15092}, {5640, 39807, 39806}, {6321, 15561, 61561}, {6722, 14981, 14651}, {6722, 38746, 14981}, {7752, 37466, 12110}, {10723, 33813, 12117}, {11177, 35021, 98}, {13188, 61576, 671}, {15092, 51524, 38732}, {38224, 51872, 38664}, {38737, 38745, 9862}, {52695, 61936, 9880}
X(64090) lies on these lines: {2, 2782}, {3, 11177}, {4, 543}, {5, 41135}, {20, 51524}, {30, 147}, {69, 74}, {98, 2482}, {114, 671}, {115, 5071}, {148, 381}, {186, 2936}, {385, 37461}, {524, 11676}, {530, 36776}, {531, 61634}, {538, 9890}, {549, 12188}, {599, 60653}, {620, 15702}, {631, 6055}, {1285, 5477}, {1327, 35698}, {1328, 35699}, {1352, 57633}, {1513, 52229}, {1569, 7739}, {1634, 37991}, {1916, 54826}, {1992, 10788}, {2080, 44367}, {2784, 50811}, {2793, 63250}, {2794, 11001}, {2796, 21636}, {3023, 12350}, {3027, 12351}, {3090, 9166}, {3146, 38628}, {3523, 51523}, {3525, 9167}, {3528, 10991}, {3529, 10992}, {3533, 38751}, {3543, 6033}, {3564, 8598}, {3817, 50887}, {3839, 6321}, {3845, 12355}, {3855, 38734}, {4027, 33255}, {4226, 9143}, {5054, 61561}, {5066, 38732}, {5067, 14971}, {5182, 12176}, {5461, 61899}, {5463, 6773}, {5464, 6770}, {5476, 7757}, {5478, 22577}, {5479, 22578}, {5485, 9877}, {5587, 50884}, {5603, 50886}, {5613, 51482}, {5617, 51483}, {5642, 22265}, {5969, 32474}, {5976, 32836}, {5984, 10304}, {5988, 48818}, {5989, 59634}, {6036, 15709}, {6298, 41042}, {6299, 41043}, {6337, 53765}, {6390, 61102}, {6721, 61889}, {6722, 61888}, {6776, 51798}, {7470, 32820}, {7665, 14694}, {7783, 37345}, {7799, 39266}, {7801, 11257}, {7970, 34631}, {8550, 35950}, {8584, 22521}, {8593, 50974}, {8716, 47353}, {8719, 15533}, {8787, 64091}, {8859, 37459}, {9114, 41022}, {9116, 41023}, {9140, 35922}, {9302, 60099}, {9740, 16508}, {9753, 32469}, {9830, 11180}, {9864, 34627}, {9875, 50796}, {9876, 39803}, {9880, 41099}, {9881, 50810}, {9884, 50818}, {10086, 10385}, {10303, 26614}, {10553, 34245}, {10722, 62042}, {10723, 62017}, {11165, 13860}, {11178, 52691}, {11179, 35925}, {11599, 38021}, {11656, 33512}, {12042, 15692}, {12184, 18969}, {12185, 12354}, {13174, 28194}, {13178, 38074}, {14061, 61895}, {14639, 41106}, {14831, 39808}, {14912, 18800}, {15092, 61927}, {15534, 39656}, {15682, 23698}, {15683, 38730}, {15687, 38733}, {15694, 61560}, {15697, 38731}, {15698, 34473}, {15708, 38750}, {15715, 35022}, {15716, 38634}, {15719, 38748}, {15721, 38739}, {19708, 21166}, {19905, 21356}, {19911, 63029}, {20398, 61886}, {21445, 27088}, {22247, 61861}, {22505, 50687}, {22515, 35369}, {23514, 61926}, {31274, 61865}, {32480, 37242}, {32516, 46226}, {32815, 35705}, {33260, 34510}, {34505, 37446}, {34507, 55164}, {35750, 36362}, {35751, 36319}, {35930, 63028}, {35951, 63722}, {35954, 50979}, {35955, 50955}, {36318, 47867}, {36320, 36769}, {36329, 36344}, {36331, 36363}, {36519, 36523}, {37939, 39828}, {38071, 61600}, {38229, 61920}, {38627, 61820}, {38635, 62073}, {38654, 51737}, {38737, 61822}, {38738, 62130}, {38740, 61867}, {38741, 62120}, {38742, 62094}, {38746, 61913}, {38747, 62086}, {39652, 63093}, {39809, 62011}, {39838, 62029}, {43572, 57011}, {44237, 51860}, {47367, 57628}, {47368, 57629}, {50639, 63428}, {50885, 59388}, {51795, 63993}, {55009, 60201}, {61575, 61936}, {61576, 61924}
X(64090) = midpoint of X(i) and X(j) for these {i,j}: {147, 8591}, {3543, 20094}, {6054, 23235}, {13188, 48657}, {14692, 14830}
X(64090) = reflection of X(i) in X(j) for these {i,j}: {2, 8724}, {4, 6054}, {98, 2482}, {147, 48657}, {148, 381}, {376, 99}, {381, 51872}, {385, 37461}, {671, 114}, {1992, 12177}, {3543, 6033}, {5485, 9877}, {5984, 14830}, {6054, 14981}, {6321, 22566}, {6770, 5464}, {6773, 5463}, {6776, 51798}, {8591, 13188}, {8596, 6321}, {9740, 16508}, {9862, 376}, {9875, 50796}, {11001, 12117}, {11177, 3}, {11656, 33512}, {12117, 15300}, {12188, 549}, {12243, 2}, {12355, 3845}, {13172, 8591}, {14830, 33813}, {15683, 38730}, {15687, 61599}, {22265, 5642}, {22577, 5478}, {22578, 5479}, {31162, 21636}, {34627, 9864}, {34631, 7970}, {38664, 6055}, {38733, 15687}, {39808, 14831}, {44367, 2080}, {50810, 9881}, {50818, 9884}, {50974, 8593}, {51482, 5613}, {51483, 5617}, {62042, 10722}, {63029, 19911}, {63428, 50639}, {64091, 8787}
X(64090) = anticomplement of X(11632)
X(64090) = X(i)-Dao conjugate of X(j) for these {i, j}: {11632, 11632}
X(64090) = pole of line {44822, 53247} with respect to the circumcircle
X(64090) = pole of line {804, 9125} with respect to the orthoptic circle of the Steiner Inellipse
X(64090) = pole of line {2407, 53379} with respect to the Kiepert parabola
X(64090) = pole of line {1495, 2080} with respect to the Stammler hyperbola
X(64090) = pole of line {3268, 39905} with respect to the Steiner circumellipse
X(64090) = pole of line {30, 39099} with respect to the Wallace hyperbola
X(64090) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {99, 12074, 47288}, {147, 8591, 9143}
X(64090) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(46316)}}, {{A, B, C, X(1494), X(43532)}}, {{A, B, C, X(12243), X(46142)}}, {{A, B, C, X(14494), X(36890)}}, {{A, B, C, X(45018), X(54501)}}
X(64090) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 12243, 14651}, {2, 2782, 12243}, {30, 13188, 8591}, {30, 48657, 147}, {98, 2482, 3524}, {99, 542, 376}, {114, 671, 3545}, {115, 23234, 5071}, {147, 13188, 13172}, {376, 542, 9862}, {543, 14981, 6054}, {599, 63424, 60653}, {2794, 12117, 11001}, {2794, 15300, 12117}, {2796, 21636, 31162}, {5461, 64089, 61899}, {5984, 10304, 14830}, {6036, 64019, 15709}, {6054, 23235, 543}, {6055, 41134, 631}, {6321, 22566, 3839}, {11177, 52695, 3}, {12355, 38743, 3845}, {13188, 48657, 30}, {14692, 33813, 5984}, {14830, 33813, 10304}, {14981, 23235, 4}, {15561, 49102, 2}, {38664, 41134, 6055}, {51524, 52090, 20}, {51898, 51899, 54173}
X(64091) lies on these lines: {6, 114}, {98, 524}, {99, 8550}, {115, 15069}, {147, 1992}, {182, 38750}, {193, 1916}, {511, 38741}, {542, 1351}, {575, 15561}, {576, 6033}, {597, 64089}, {599, 6036}, {620, 53093}, {671, 54475}, {690, 64103}, {1350, 14645}, {1352, 6034}, {1353, 12177}, {1503, 10723}, {2393, 39817}, {2782, 7737}, {2784, 64073}, {2794, 11477}, {3044, 64061}, {3564, 5111}, {3629, 10753}, {4663, 9864}, {5026, 14912}, {5085, 50567}, {5182, 12007}, {5480, 50641}, {5621, 39831}, {5969, 6776}, {5986, 41628}, {6054, 8584}, {6055, 15533}, {6721, 47352}, {7762, 38664}, {7776, 11623}, {8540, 12185}, {8724, 11842}, {8787, 64090}, {9830, 50974}, {9971, 39806}, {9974, 50720}, {9975, 50719}, {9976, 15545}, {10541, 38748}, {11177, 63064}, {11179, 33813}, {11482, 38743}, {11632, 31173}, {12184, 19369}, {12243, 23334}, {12829, 63043}, {13188, 51798}, {14692, 51140}, {14830, 47618}, {14848, 25562}, {14981, 30435}, {15073, 39808}, {19120, 39872}, {19569, 51212}, {20423, 22505}, {23234, 63124}, {23698, 64080}, {29959, 58502}, {32532, 60176}, {32621, 39803}, {34507, 38224}, {35021, 40341}, {38738, 43273}, {38739, 40107}, {38742, 52987}, {38745, 53858}, {38749, 53097}, {39804, 63129}, {50639, 51737}, {50979, 61561}
X(64091) = midpoint of X(i) and X(j) for these {i,j}: {11177, 63064}, {15073, 39808}
X(64091) = reflection of X(i) in X(j) for these {i,j}: {99, 8550}, {6033, 576}, {6054, 8584}, {9864, 4663}, {10753, 3629}, {12177, 1353}, {14981, 41672}, {15069, 115}, {15533, 6055}, {15545, 9976}, {50639, 51737}, {50641, 5480}, {53097, 38749}, {64090, 8787}, {64092, 63722}
X(64091) = pole of line {6321, 56370} with respect to the Kiepert hyperbola
X(64091) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2782, 63722, 64092}, {49040, 49041, 3424}
X(64092) lies on these lines: {2, 8587}, {4, 60176}, {6, 13}, {30, 8586}, {32, 52090}, {53, 20774}, {69, 5026}, {98, 3815}, {99, 524}, {110, 1648}, {112, 32234}, {114, 15069}, {141, 5182}, {147, 7735}, {148, 1992}, {182, 9696}, {187, 8724}, {193, 5969}, {230, 6054}, {325, 12151}, {385, 35705}, {511, 38730}, {530, 41746}, {531, 41745}, {543, 10488}, {574, 14830}, {575, 7603}, {576, 6321}, {590, 13640}, {597, 11161}, {599, 620}, {615, 13760}, {671, 8584}, {690, 64104}, {694, 25046}, {732, 50249}, {1285, 50974}, {1350, 38736}, {1351, 38733}, {1352, 61575}, {1384, 48657}, {1499, 44677}, {1503, 5111}, {1506, 33749}, {1569, 38741}, {1641, 10554}, {1691, 3564}, {1915, 45968}, {1993, 62298}, {2023, 5984}, {2076, 5965}, {2079, 2930}, {2393, 39846}, {2482, 5210}, {2502, 6792}, {2548, 51523}, {2782, 7737}, {2794, 44526}, {3044, 62289}, {3053, 14981}, {3054, 23234}, {3094, 3269}, {3124, 14683}, {3292, 39602}, {3314, 4027}, {3448, 8288}, {3629, 10754}, {3630, 52886}, {4663, 13178}, {5013, 10991}, {5017, 44532}, {5107, 11645}, {5461, 18584}, {5463, 9117}, {5464, 9115}, {5480, 54571}, {5609, 15546}, {5613, 6782}, {5617, 6783}, {5621, 39860}, {5648, 48654}, {5913, 9225}, {5939, 7774}, {5976, 63046}, {5986, 14153}, {6032, 11422}, {6036, 53093}, {6055, 31489}, {6114, 22509}, {6115, 22507}, {6144, 14645}, {6722, 47352}, {6770, 61331}, {6772, 41621}, {6773, 61332}, {6775, 41620}, {6779, 6780}, {6791, 20998}, {6811, 33430}, {6813, 33431}, {7736, 11177}, {7745, 38664}, {7762, 53765}, {7777, 58765}, {7779, 8289}, {7837, 14931}, {8030, 10717}, {8540, 13183}, {8591, 63064}, {8592, 44367}, {8596, 63117}, {8627, 37779}, {9140, 41939}, {9146, 62658}, {9166, 63124}, {9167, 50993}, {9169, 58854}, {9971, 39835}, {9974, 37839}, {10418, 46276}, {10541, 38737}, {10765, 41720}, {10987, 12350}, {11061, 48945}, {11152, 14712}, {11179, 12042}, {11477, 23698}, {11482, 38732}, {12007, 53484}, {13182, 19369}, {13653, 32787}, {13773, 32788}, {13881, 38745}, {14561, 15092}, {14567, 41724}, {15073, 39837}, {15300, 51187}, {15342, 25329}, {15514, 29012}, {15545, 32761}, {15561, 32135}, {15820, 34986}, {16010, 34866}, {16529, 36766}, {16530, 60069}, {18553, 39601}, {19108, 58033}, {19109, 58032}, {19780, 36776}, {19781, 61634}, {19905, 50979}, {20399, 44535}, {20423, 22515}, {21358, 31274}, {22165, 41134}, {22247, 51186}, {22330, 39590}, {22501, 22502}, {22512, 47863}, {22513, 47864}, {22566, 43620}, {23004, 44498}, {23005, 44497}, {29959, 58503}, {31415, 49102}, {32525, 35279}, {32552, 45880}, {32553, 45879}, {32621, 39832}, {33876, 56788}, {34369, 60504}, {35022, 40341}, {35324, 63700}, {35356, 45291}, {35369, 63027}, {35948, 49267}, {35949, 49266}, {36521, 51188}, {36883, 56760}, {38731, 52987}, {38734, 53858}, {38738, 53097}, {38749, 43273}, {38750, 40107}, {38940, 45672}, {39809, 54131}, {39833, 63129}, {40866, 62551}, {41060, 42094}, {41061, 42093}, {41135, 63022}, {41274, 64028}, {46249, 53132}, {47276, 47326}, {50641, 53475}, {50991, 64019}, {50992, 52695}, {58058, 64061}
X(64092) = midpoint of X(i) and X(j) for these {i,j}: {8591, 63064}, {10488, 15534}, {10754, 45018}, {15073, 39837}
X(64092) = reflection of X(i) in X(j) for these {i,j}: {2, 8787}, {6, 5477}, {69, 5026}, {98, 8550}, {115, 41672}, {599, 18800}, {671, 8584}, {5104, 53499}, {6321, 576}, {6772, 41621}, {6775, 41620}, {10754, 3629}, {11161, 597}, {11646, 6}, {13178, 4663}, {15069, 114}, {15342, 25329}, {15533, 2482}, {19905, 50979}, {22512, 47863}, {22513, 47864}, {23004, 44498}, {23005, 44497}, {34507, 32135}, {40341, 50567}, {44453, 1569}, {47276, 47326}, {51798, 8593}, {53097, 38738}, {64091, 63722}
X(64092) = inverse of X(34155) in cosine circle
X(64092) = inverse of X(18424) in orthocentroidal circle
X(64092) = isogonal conjugate of X(14565)
X(64092) = perspector of circumconic {{A, B, C, X(476), X(9170)}}
X(64092) = pole of line {690, 34155} with respect to the cosine circle
X(64092) = pole of line {690, 18424} with respect to the orthocentroidal circle
X(64092) = pole of line {30, 9166} with respect to the Kiepert hyperbola
X(64092) = pole of line {9182, 53274} with respect to the Kiepert parabola
X(64092) = pole of line {323, 2502} with respect to the Stammler hyperbola
X(64092) = pole of line {9168, 11176} with respect to the Steiner circumellipse
X(64092) = pole of line {543, 7799} with respect to the Wallace hyperbola
X(64092) = intersection, other than A, B, C, of circumconics {{A, B, C, X(265), X(53605)}}, {{A, B, C, X(843), X(11060)}}, {{A, B, C, X(1989), X(8587)}}, {{A, B, C, X(7608), X(14356)}}, {{A, B, C, X(45103), X(51226)}}
X(64092) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 11646, 6034}, {6, 542, 11646}, {115, 41672, 6}, {115, 5477, 41672}, {524, 53499, 5104}, {524, 8593, 51798}, {2782, 63722, 64091}, {5471, 43457, 14}, {5472, 43457, 13}, {6777, 6778, 6033}, {6792, 9143, 2502}, {10488, 15534, 543}, {12188, 15484, 115}, {22501, 22502, 22505}, {22997, 22998, 8724}, {31862, 31863, 18424}, {32135, 34507, 15561}, {47859, 47860, 6321}, {50719, 50720, 381}
X(64093) lies on these lines: {2, 2418}, {3, 32815}, {4, 7767}, {5, 76}, {11, 3761}, {12, 3760}, {20, 32872}, {30, 183}, {32, 50774}, {39, 15491}, {69, 381}, {75, 3820}, {99, 549}, {115, 141}, {140, 1975}, {148, 8356}, {187, 13468}, {193, 15484}, {194, 31406}, {230, 3734}, {235, 1235}, {264, 1596}, {274, 17527}, {298, 31694}, {299, 31693}, {302, 37351}, {303, 37352}, {308, 16098}, {310, 37355}, {311, 339}, {315, 546}, {316, 3845}, {350, 495}, {376, 32893}, {382, 3785}, {384, 63047}, {385, 8370}, {427, 39998}, {442, 18135}, {491, 18538}, {492, 18762}, {496, 1909}, {524, 3363}, {538, 3815}, {543, 11168}, {547, 32833}, {550, 1078}, {574, 58446}, {597, 5355}, {599, 7615}, {620, 3054}, {621, 41017}, {622, 41016}, {626, 63534}, {637, 6215}, {638, 6214}, {671, 7831}, {754, 53418}, {1003, 17008}, {1007, 5055}, {1153, 36521}, {1236, 46030}, {1329, 20888}, {1368, 40022}, {1384, 14033}, {1565, 20925}, {1595, 54412}, {1656, 3926}, {1657, 32826}, {1906, 44142}, {2482, 15597}, {2549, 8359}, {2782, 37451}, {2886, 6381}, {2896, 33229}, {2996, 16043}, {3090, 32830}, {3091, 7776}, {3143, 44155}, {3265, 14566}, {3314, 33228}, {3329, 19570}, {3523, 32822}, {3525, 32870}, {3526, 6337}, {3533, 32897}, {3545, 32874}, {3564, 37348}, {3589, 5309}, {3620, 16041}, {3627, 7750}, {3628, 7763}, {3629, 7753}, {3630, 7845}, {3631, 7818}, {3767, 7819}, {3793, 7737}, {3830, 64018}, {3843, 32006}, {3850, 7773}, {3851, 32816}, {3858, 7768}, {3934, 4045}, {3972, 19661}, {4187, 34284}, {4441, 17757}, {5020, 22241}, {5054, 32885}, {5056, 32818}, {5066, 7788}, {5067, 32831}, {5068, 32823}, {5070, 32829}, {5071, 32869}, {5072, 32888}, {5077, 7620}, {5224, 16052}, {5305, 7770}, {5306, 7804}, {5468, 57618}, {5480, 14994}, {6031, 47313}, {6376, 31419}, {6392, 9605}, {6623, 32000}, {6656, 16986}, {6661, 7806}, {6683, 9607}, {6722, 7880}, {6787, 20326}, {6823, 41009}, {7405, 28706}, {7486, 32840}, {7530, 15574}, {7603, 7813}, {7610, 21843}, {7617, 7908}, {7694, 15069}, {7735, 11286}, {7736, 22253}, {7745, 7751}, {7746, 7789}, {7749, 59545}, {7754, 16924}, {7761, 18546}, {7762, 16044}, {7765, 31239}, {7766, 53489}, {7769, 32820}, {7771, 8703}, {7774, 44543}, {7775, 50771}, {7778, 43620}, {7779, 33013}, {7782, 15712}, {7792, 14568}, {7793, 19687}, {7794, 39565}, {7795, 8361}, {7797, 16987}, {7798, 9300}, {7799, 15699}, {7800, 8357}, {7801, 44377}, {7802, 62036}, {7807, 17128}, {7809, 38071}, {7810, 15598}, {7811, 15687}, {7812, 50251}, {7815, 63548}, {7826, 39590}, {7828, 33185}, {7832, 33186}, {7836, 33249}, {7839, 33020}, {7841, 16990}, {7848, 47617}, {7850, 23046}, {7851, 8364}, {7860, 61976}, {7865, 63543}, {7868, 8360}, {7879, 14063}, {7881, 32961}, {7893, 33018}, {7898, 8352}, {7904, 19695}, {7906, 33002}, {7913, 34573}, {7929, 14062}, {7930, 33212}, {7939, 32993}, {7941, 33024}, {7942, 33211}, {8024, 37439}, {8354, 8556}, {8363, 46226}, {8367, 11174}, {8584, 9731}, {8728, 18140}, {8859, 35954}, {9606, 32450}, {9723, 18462}, {9766, 31415}, {9771, 39785}, {10170, 51386}, {10301, 26233}, {10303, 52718}, {11007, 51258}, {11054, 63101}, {11057, 33699}, {11064, 33509}, {11113, 37670}, {11159, 63029}, {11287, 43448}, {11288, 62992}, {11539, 59634}, {11548, 34254}, {11799, 44135}, {12188, 48906}, {12215, 38110}, {13877, 53480}, {13930, 53479}, {14039, 37689}, {14041, 63044}, {14532, 46034}, {14535, 51171}, {14651, 37450}, {14829, 36728}, {14928, 51737}, {15022, 32882}, {15067, 51439}, {15655, 35927}, {15703, 32837}, {15980, 18906}, {16921, 20081}, {17004, 35297}, {17556, 45962}, {18122, 52628}, {18142, 44150}, {18145, 37664}, {18152, 47514}, {18531, 41008}, {18840, 33180}, {18859, 34883}, {20094, 33273}, {20112, 22165}, {21031, 32104}, {21309, 63034}, {24206, 51397}, {24240, 42055}, {25278, 64200}, {26235, 30739}, {27269, 33033}, {30435, 32971}, {30444, 44140}, {31026, 37096}, {31455, 59546}, {31467, 32975}, {31489, 34511}, {32455, 41748}, {32456, 34506}, {32458, 61576}, {32821, 35018}, {32824, 32867}, {32825, 32878}, {32835, 61886}, {32839, 55857}, {32841, 46936}, {32871, 61881}, {32875, 61903}, {32877, 61911}, {32880, 61914}, {32883, 55858}, {32884, 61878}, {32892, 61920}, {32896, 61901}, {33016, 63046}, {33025, 55732}, {33416, 59540}, {33417, 59539}, {34127, 62348}, {36719, 58804}, {36733, 58803}, {37347, 52347}, {37638, 44216}, {37663, 62755}, {37678, 48847}, {37984, 44134}, {38907, 44224}, {43459, 46853}, {44180, 54006}, {46999, 62431}, {48874, 60702}, {48913, 61956}, {50955, 57634}, {51389, 59197}, {51441, 52145}, {54488, 60212}, {54718, 60217}, {58445, 59552}, {59773, 59776}, {61876, 62362}
X(64093) = midpoint of X(i) and X(j) for these {i,j}: {183, 11185}, {5475, 17131}
X(64093) = reflection of X(i) in X(j) for these {i,j}: {574, 58446}
X(64093) = isotomic conjugate of X(11169)
X(64093) = complement of X(31859)
X(64093) = perspector of circumconic {{A, B, C, X(35179), X(57813)}}
X(64093) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 11169}, {560, 57817}
X(64093) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 11169}, {6374, 57817}
X(64093) = pole of line {25423, 37350} with respect to the nine-point circle
X(64093) = pole of line {669, 34014} with respect to the orthoptic circle of the Steiner Inellipse
X(64093) = pole of line {538, 599} with respect to the Kiepert hyperbola
X(64093) = pole of line {6334, 37350} with respect to the MacBeath inconic
X(64093) = pole of line {1384, 34396} with respect to the Stammler hyperbola
X(64093) = pole of line {1499, 9148} with respect to the Steiner inellipse
X(64093) = pole of line {182, 1992} with respect to the Wallace hyperbola
X(64093) = pole of line {523, 39099} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(64093) = pole of line {3134, 9191} with respect to the dual conic of Stammler hyperbola
X(64093) = pole of line {6784, 6791} with respect to the dual conic of Wallace hyperbola
X(64093) = intersection, other than A, B, C, of circumconics {{A, B, C, X(262), X(373)}}, {{A, B, C, X(327), X(5485)}}, {{A, B, C, X(15048), X(17983)}}
X(64093) = barycentric product X(i)*X(j) for these (i, j): {305, 33842}, {373, 76}
X(64093) = barycentric quotient X(i)/X(j) for these (i, j): {2, 11169}, {76, 57817}, {373, 6}, {33842, 25}
X(64093) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 47286, 15048}, {5, 76, 3933}, {76, 59635, 5}, {99, 37688, 549}, {115, 141, 33184}, {115, 9466, 141}, {183, 11185, 30}, {193, 32983, 15484}, {194, 32992, 31406}, {230, 3734, 8369}, {316, 37671, 14929}, {339, 15760, 41005}, {385, 8370, 18907}, {599, 7615, 37350}, {1078, 32819, 550}, {1975, 32832, 140}, {2549, 15271, 8359}, {3845, 14929, 316}, {3934, 32457, 4045}, {3934, 5254, 8362}, {4045, 32457, 5254}, {5475, 17131, 524}, {6337, 32838, 3526}, {6392, 32968, 9605}, {7603, 14711, 7813}, {7620, 42850, 5077}, {7737, 8667, 3793}, {7746, 17130, 7789}, {7761, 18546, 53419}, {7795, 13881, 8361}, {7800, 44518, 8357}, {8367, 63633, 11174}, {14033, 37667, 1384}, {15271, 34505, 2549}, {16044, 17129, 7762}, {16509, 59780, 2}, {20112, 22165, 31173}, {32815, 32828, 34229}, {32815, 34229, 3}
X(64094) lies on these lines: {3, 4549}, {4, 3426}, {5, 18931}, {6, 2777}, {20, 19347}, {22, 34796}, {24, 43905}, {25, 32111}, {30, 1351}, {64, 32395}, {74, 5094}, {125, 381}, {146, 1995}, {155, 43577}, {184, 3534}, {185, 382}, {195, 1181}, {262, 43956}, {287, 11159}, {376, 64058}, {378, 12244}, {389, 5895}, {399, 19403}, {427, 35450}, {512, 53320}, {525, 62350}, {546, 18913}, {550, 41465}, {578, 5925}, {974, 38790}, {1112, 5890}, {1192, 61749}, {1204, 1656}, {1499, 58346}, {1514, 61506}, {1593, 18431}, {1594, 34469}, {1595, 12250}, {1597, 5480}, {1598, 5878}, {1620, 64063}, {1885, 11432}, {1899, 3830}, {1990, 38920}, {2453, 32417}, {2883, 3517}, {3070, 19044}, {3071, 19043}, {3088, 32601}, {3146, 18914}, {3269, 15484}, {3521, 34801}, {3526, 32620}, {3527, 13488}, {3529, 31804}, {3537, 40911}, {3566, 62339}, {3567, 43599}, {3575, 12315}, {3627, 18909}, {3845, 23291}, {3851, 26937}, {5050, 49669}, {5054, 21663}, {5073, 6146}, {5076, 34563}, {5093, 64096}, {5169, 64102}, {5562, 11850}, {5622, 14848}, {5640, 16270}, {5656, 37458}, {5663, 11188}, {5667, 37070}, {5894, 55575}, {6000, 9971}, {6102, 22979}, {6225, 6756}, {6240, 12174}, {6241, 7730}, {9786, 22802}, {10295, 26864}, {10606, 18388}, {10706, 47597}, {10745, 37072}, {10982, 19361}, {10990, 61743}, {11165, 60704}, {11402, 35481}, {11455, 62976}, {11456, 37196}, {11799, 21970}, {11898, 13754}, {12121, 18445}, {12160, 52071}, {12233, 20427}, {12429, 34783}, {12902, 61724}, {13352, 34622}, {13367, 62100}, {13419, 58795}, {13851, 38335}, {14912, 49670}, {15054, 61700}, {15061, 40920}, {15063, 35259}, {15341, 21309}, {15448, 55572}, {15687, 18918}, {15696, 19357}, {15704, 18925}, {16252, 55570}, {17702, 39899}, {17800, 19467}, {18390, 61721}, {18533, 32063}, {18536, 64100}, {18550, 34802}, {18569, 18948}, {18877, 60588}, {18919, 21850}, {18923, 42225}, {18924, 42226}, {18929, 42144}, {18930, 42145}, {18945, 62036}, {20417, 61735}, {21659, 49136}, {23039, 40912}, {23251, 44639}, {23261, 44640}, {29317, 33534}, {34788, 64080}, {35260, 37934}, {35485, 61690}, {35513, 61044}, {37197, 43589}, {37487, 61747}, {37643, 37984}, {37644, 62288}, {38726, 47391}, {38789, 45019}, {39571, 51491}, {41398, 47596}, {46349, 47092}, {47474, 63129}, {48661, 64044}, {50008, 64097}, {52101, 61990}, {62073, 64064}
X(64094) = midpoint of X(i) and X(j) for these {i,j}: {35512, 64187}
X(64094) = reflection of X(i) in X(j) for these {i,j}: {3, 4846}, {382, 40909}, {1657, 35237}, {3426, 4}, {10938, 185}, {11472, 7706}, {41465, 550}, {64097, 50008}
X(64094) = inverse of X(381) in Jerabek hyperbola
X(64094) = pole of line {3049, 9033} with respect to the cosine circle
X(64094) = pole of line {7687, 9003} with respect to the orthocentroidal circle
X(64094) = pole of line {373, 381} with respect to the Jerabek hyperbola
X(64094) = pole of line {16303, 37984} with respect to the Kiepert hyperbola
X(64094) = pole of line {9003, 9209} with respect to the Orthic inconic
X(64094) = pole of line {378, 6090} with respect to the Stammler hyperbola
X(64094) = pole of line {32817, 35483} with respect to the Wallace hyperbola
X(64094) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3521), X(51471)}}, {{A, B, C, X(3527), X(58082)}}, {{A, B, C, X(4846), X(44556)}}, {{A, B, C, X(10293), X(56270)}}, {{A, B, C, X(11064), X(61135)}}, {{A, B, C, X(52452), X(61116)}}
X(64094) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {185, 14915, 10938}, {541, 7706, 11472}, {5878, 13568, 1598}, {6240, 12174, 64033}, {6241, 12173, 34780}, {7706, 11472, 381}, {12233, 20427, 55571}, {14915, 40909, 382}
X(64095) lies on these lines: {2, 37478}, {3, 51}, {4, 5449}, {5, 11745}, {6, 14070}, {20, 12897}, {22, 9730}, {23, 5890}, {24, 52}, {25, 13754}, {26, 389}, {30, 11438}, {54, 62990}, {68, 7487}, {74, 3543}, {110, 47485}, {113, 62961}, {125, 31723}, {140, 46728}, {141, 10127}, {143, 578}, {155, 3517}, {182, 5946}, {184, 568}, {185, 7517}, {186, 3060}, {193, 63649}, {376, 15053}, {378, 32110}, {381, 1531}, {382, 1204}, {394, 43586}, {511, 6644}, {517, 9639}, {539, 6515}, {547, 33533}, {549, 3098}, {550, 64038}, {567, 13321}, {569, 3567}, {571, 5961}, {576, 7575}, {912, 41611}, {1092, 6243}, {1112, 12893}, {1154, 9306}, {1181, 9714}, {1192, 12085}, {1209, 7544}, {1216, 6642}, {1351, 44102}, {1495, 14831}, {1511, 34155}, {1595, 44158}, {1598, 12163}, {1899, 44407}, {1974, 2931}, {1994, 11464}, {1995, 5891}, {2072, 61645}, {2355, 40263}, {2777, 44276}, {2917, 10115}, {2937, 10984}, {3090, 7691}, {3091, 38848}, {3133, 15827}, {3147, 43839}, {3357, 3627}, {3515, 12038}, {3516, 12002}, {3518, 5889}, {3522, 43597}, {3524, 43584}, {3529, 43601}, {3541, 20191}, {3542, 5448}, {3564, 41585}, {3574, 6639}, {3575, 9927}, {3580, 7576}, {3818, 13490}, {3843, 63392}, {3853, 32138}, {3917, 37494}, {4232, 16534}, {4549, 18537}, {5012, 7556}, {5020, 10170}, {5071, 10545}, {5198, 46849}, {5422, 37513}, {5447, 37486}, {5480, 52262}, {5504, 63184}, {5562, 7506}, {5640, 35921}, {5651, 23039}, {5654, 6353}, {5888, 61859}, {5907, 13861}, {5943, 7514}, {6000, 7530}, {6102, 6759}, {6238, 54428}, {6403, 37784}, {6623, 46686}, {6636, 15045}, {6699, 31670}, {6756, 12359}, {7387, 9786}, {7512, 13336}, {7516, 11695}, {7519, 16003}, {7525, 12006}, {7526, 10110}, {7540, 11550}, {7542, 45089}, {7545, 18435}, {7550, 11451}, {7687, 18568}, {7706, 15760}, {8717, 12083}, {9715, 36752}, {9737, 44221}, {9777, 37506}, {9781, 14118}, {9818, 17810}, {9820, 31802}, {9833, 10116}, {9973, 12412}, {10117, 11806}, {10201, 18388}, {10255, 15800}, {10263, 13346}, {10264, 48884}, {10282, 12161}, {10298, 11002}, {10540, 44082}, {10564, 15078}, {10574, 12088}, {10594, 12162}, {10605, 14915}, {10625, 17928}, {11064, 44211}, {11262, 32196}, {11412, 44802}, {11422, 37953}, {11430, 18324}, {11432, 16195}, {11433, 43573}, {11439, 26863}, {11454, 13596}, {11459, 13595}, {11470, 15136}, {11472, 18535}, {11649, 44490}, {11750, 18912}, {11818, 21243}, {11819, 18381}, {12082, 14855}, {12084, 13598}, {12107, 16881}, {12111, 34484}, {12118, 64048}, {12160, 41597}, {12227, 20773}, {12233, 13383}, {12235, 19908}, {12236, 13289}, {12370, 34785}, {12828, 17702}, {13292, 34782}, {13364, 49671}, {13367, 36749}, {13391, 37480}, {13419, 32140}, {13445, 15682}, {13621, 18436}, {13630, 17714}, {14516, 63652}, {14561, 54374}, {14641, 39568}, {14805, 15038}, {14852, 18494}, {14984, 41618}, {15024, 37126}, {15030, 44106}, {15032, 26881}, {15035, 16981}, {15072, 37925}, {15074, 44489}, {15305, 52294}, {15361, 44287}, {15473, 46085}, {15702, 41462}, {16222, 22109}, {16226, 22352}, {16657, 44249}, {18128, 18916}, {18281, 44673}, {18378, 26883}, {18418, 58885}, {18531, 61506}, {18559, 50435}, {18911, 44831}, {18917, 31383}, {18952, 44829}, {19130, 60763}, {19161, 64052}, {19357, 37493}, {19467, 58806}, {20300, 23329}, {20397, 31099}, {21841, 22660}, {21969, 51394}, {22112, 54006}, {22467, 64051}, {23292, 34351}, {23325, 44288}, {25738, 61139}, {26913, 46450}, {31830, 63734}, {31860, 64097}, {32284, 34787}, {32333, 58557}, {32358, 61751}, {32392, 40285}, {34148, 44879}, {34513, 39561}, {34798, 44271}, {34826, 63672}, {35243, 37475}, {35259, 58891}, {37122, 52104}, {37347, 61644}, {37444, 43817}, {37458, 41588}, {37484, 43652}, {37644, 61713}, {37936, 61752}, {37947, 45956}, {37984, 63721}, {38435, 61134}, {39806, 39854}, {39825, 39835}, {43574, 62187}, {43613, 50689}, {44213, 61619}, {44883, 58494}, {45170, 64023}, {47066, 48365}, {47068, 48366}, {47316, 61606}, {47486, 56292}, {51425, 62978}, {52842, 61701}, {52987, 54042}, {54992, 58764}, {58439, 61747}, {64035, 64066}
X(64095) = midpoint of X(i) and X(j) for these {i,j}: {3, 33586}, {25, 37489}, {10605, 18534}, {18917, 31383}, {37458, 41588}
X(64095) = reflection of X(i) in X(j) for these {i,j}: {394, 43586}, {9306, 12106}, {46261, 25}
X(64095) = X(i)-isoconjugate-of-X(j) for these {i, j}: {91, 3431}, {1820, 43530}, {20571, 58941}
X(64095) = X(i)-Dao conjugate of X(j) for these {i, j}: {577, 56266}, {4550, 68}, {34116, 3431}
X(64095) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58785, 381}
X(64095) = pole of line {567, 1181} with respect to the Jerabek hyperbola
X(64095) = pole of line {68, 631} with respect to the Stammler hyperbola
X(64095) = pole of line {20563, 44149} with respect to the Wallace hyperbola
X(64095) = intersection, other than A, B, C, of circumconics {{A, B, C, X(24), X(381)}}, {{A, B, C, X(52), X(5158)}}, {{A, B, C, X(317), X(1531)}}, {{A, B, C, X(571), X(3581)}}, {{A, B, C, X(1147), X(43689)}}, {{A, B, C, X(1993), X(5961)}}, {{A, B, C, X(18475), X(60256)}}, {{A, B, C, X(34417), X(44077)}}, {{A, B, C, X(52000), X(63184)}}, {{A, B, C, X(52432), X(58785)}}
X(64095) = barycentric product X(i)*X(j) for these (i, j): {24, 37638}, {317, 5158}, {1748, 18477}, {1993, 381}, {4993, 52}, {11547, 63425}, {18883, 3581}, {34417, 7763}, {44135, 571}, {46808, 51393}, {52032, 58785}
X(64095) = barycentric quotient X(i)/X(j) for these (i, j): {24, 43530}, {381, 5392}, {571, 3431}, {1147, 56266}, {1993, 57822}, {3581, 37802}, {4993, 34385}, {5158, 68}, {8745, 16263}, {34416, 60501}, {34417, 2165}, {37638, 20563}, {44135, 57904}, {51393, 46809}, {52436, 58941}, {61208, 58994}, {63425, 52350}
X(64095) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 14070, 18475}, {24, 1993, 51393}, {24, 52000, 44077}, {25, 13754, 46261}, {25, 37489, 13754}, {26, 389, 64049}, {52, 51393, 1993}, {68, 7487, 45286}, {143, 1658, 578}, {186, 3060, 13352}, {376, 15053, 37470}, {381, 3581, 63425}, {567, 13321, 15004}, {568, 2070, 184}, {1154, 12106, 9306}, {1192, 12085, 43604}, {1495, 14831, 18445}, {1993, 51393, 1147}, {1994, 37940, 11464}, {2937, 37481, 10984}, {3515, 36747, 12038}, {3518, 5889, 10539}, {3575, 41587, 9927}, {3580, 7576, 18474}, {3581, 34417, 4550}, {5889, 10539, 15083}, {5946, 7502, 182}, {6102, 37440, 6759}, {7387, 9786, 40647}, {7512, 15043, 13336}, {7517, 37490, 185}, {7525, 12006, 37515}, {7545, 32608, 18435}, {9833, 18951, 10116}, {10263, 37814, 13346}, {10282, 16625, 12161}, {10298, 11002, 15033}, {10298, 15033, 39242}, {10605, 18534, 14915}, {11430, 21849, 39522}, {12083, 64100, 8717}, {12107, 16881, 32046}, {15032, 37939, 26881}, {15053, 15107, 376}, {18324, 39522, 11430}, {18378, 34783, 26883}, {18388, 32223, 10201}, {18445, 51519, 1495}, {18912, 31304, 11750}, {34417, 63425, 381}, {37458, 41588, 44665}, {37484, 43809, 43652}, {44288, 63839, 23325}
X(64096) lies on these lines: {2, 10564}, {3, 16657}, {4, 110}, {5, 37497}, {6, 30}, {20, 3567}, {64, 13292}, {68, 1593}, {69, 4550}, {74, 37644}, {141, 9818}, {143, 34350}, {146, 11004}, {155, 13488}, {184, 1533}, {193, 13754}, {235, 64181}, {323, 37077}, {376, 15053}, {378, 3580}, {381, 11064}, {382, 19347}, {511, 4549}, {524, 56966}, {541, 1992}, {542, 45019}, {550, 37475}, {568, 974}, {569, 37201}, {576, 2777}, {1352, 31861}, {1498, 43595}, {1511, 44275}, {1514, 3830}, {1595, 12293}, {1596, 47391}, {1597, 18440}, {1885, 36747}, {1902, 9933}, {1993, 12364}, {2433, 46984}, {2696, 6792}, {2931, 44274}, {2935, 10264}, {3060, 35481}, {3087, 18850}, {3088, 9927}, {3089, 12038}, {3146, 11423}, {3357, 18951}, {3426, 39899}, {3516, 41587}, {3543, 63082}, {3564, 11472}, {3627, 9833}, {5093, 64094}, {5422, 44458}, {5663, 63722}, {5878, 12161}, {5892, 61113}, {6102, 7729}, {6146, 47527}, {6622, 43839}, {6699, 37643}, {6776, 14915}, {6800, 62344}, {7464, 18911}, {7493, 39242}, {7529, 63631}, {7689, 64048}, {7703, 50435}, {7706, 14853}, {7731, 64102}, {8717, 25406}, {9936, 12162}, {10113, 15131}, {10116, 12324}, {11403, 12134}, {11438, 37853}, {11442, 13596}, {11473, 19062}, {11474, 19061}, {11744, 55980}, {12028, 56403}, {12084, 39571}, {12085, 12241}, {12086, 18912}, {12121, 41670}, {12163, 13142}, {12254, 62028}, {12359, 55571}, {12370, 14216}, {12900, 62708}, {13403, 14790}, {14561, 50008}, {15033, 44440}, {15311, 32455}, {16063, 43576}, {16163, 34417}, {18281, 20304}, {18390, 44441}, {18400, 48884}, {18420, 19130}, {18451, 62962}, {18531, 51360}, {18533, 44084}, {18909, 58806}, {19121, 35513}, {19456, 38790}, {31723, 58789}, {31725, 37472}, {32110, 35485}, {32620, 48876}, {33533, 54173}, {33586, 44249}, {33703, 43818}, {33878, 35254}, {34664, 37483}, {35484, 61700}, {36989, 48901}, {37511, 64023}, {37638, 44218}, {37827, 44882}, {38794, 59495}, {40890, 47740}, {44158, 55575}, {44239, 44935}, {44276, 51548}, {44285, 47582}, {46030, 59543}, {51425, 62966}, {58871, 63081}
X(64096) = midpoint of X(i) and X(j) for these {i,j}: {3426, 39899}
X(64096) = reflection of X(i) in X(j) for these {i,j}: {69, 4550}, {1352, 31861}, {4549, 49669}, {4846, 6}, {31670, 64099}, {33878, 35254}, {35237, 48906}, {40909, 21850}
X(64096) = perspector of circumconic {{A, B, C, X(687), X(1302)}}
X(64096) = pole of line {13754, 15066} with respect to the Stammler hyperbola
X(64096) = pole of line {32833, 62338} with respect to the Wallace hyperbola
X(64096) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1300), X(34288)}}, {{A, B, C, X(2986), X(4846)}}
X(64096) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 30, 4846}, {6, 54131, 47571}, {30, 21850, 40909}, {30, 48906, 35237}, {30, 64099, 31670}, {113, 13352, 37645}, {113, 37645, 5654}, {376, 63084, 37470}, {511, 49669, 4549}, {10653, 10654, 34288}, {10733, 15472, 113}, {13352, 44080, 5504}, {40909, 44413, 21850}
X(64097) lies on these lines: {3, 74}, {4, 45383}, {5, 37643}, {6, 4550}, {20, 31831}, {22, 12112}, {24, 15052}, {25, 3581}, {30, 69}, {64, 1216}, {113, 37638}, {140, 18931}, {141, 4846}, {155, 11430}, {159, 3098}, {182, 32620}, {185, 7393}, {323, 378}, {343, 1514}, {376, 46818}, {381, 3580}, {394, 10564}, {511, 11472}, {524, 56966}, {541, 599}, {550, 13093}, {1154, 1597}, {1181, 37513}, {1350, 12367}, {1351, 31861}, {1495, 14070}, {1503, 4549}, {1593, 18436}, {1598, 45959}, {1657, 16659}, {1993, 13482}, {2070, 40914}, {2777, 34507}, {2781, 44754}, {2782, 48991}, {2854, 34802}, {2888, 35490}, {2931, 40291}, {3167, 18570}, {3410, 35480}, {3515, 63392}, {3531, 55978}, {3534, 50434}, {3564, 49669}, {3631, 15311}, {3818, 40909}, {3851, 34826}, {5020, 15060}, {5024, 35934}, {5050, 49671}, {5462, 33537}, {5562, 12085}, {5656, 16618}, {5888, 20791}, {5891, 10605}, {5892, 59777}, {5907, 6642}, {6102, 11479}, {6243, 11403}, {6699, 59767}, {6985, 48917}, {7387, 12162}, {7395, 34783}, {7502, 32063}, {7503, 15032}, {7509, 64025}, {7514, 12017}, {7516, 45957}, {7526, 12164}, {7527, 11004}, {7529, 15058}, {7687, 14852}, {7689, 17814}, {7706, 10516}, {7712, 41450}, {8717, 31884}, {8780, 18324}, {9730, 63128}, {9973, 55582}, {10170, 37475}, {10606, 58871}, {10628, 44493}, {10752, 41614}, {10938, 19459}, {11381, 37486}, {11410, 22115}, {11412, 47527}, {11414, 18439}, {11425, 15083}, {11426, 63682}, {11455, 44454}, {11539, 61774}, {11820, 33532}, {12084, 31834}, {12429, 52070}, {13382, 15805}, {14269, 18551}, {14643, 52292}, {14805, 18445}, {15030, 34417}, {15056, 43584}, {15063, 61644}, {15069, 17702}, {15105, 42021}, {15107, 15305}, {15435, 18358}, {15687, 58764}, {15750, 18350}, {16194, 33586}, {16266, 55571}, {16534, 61680}, {17928, 54434}, {18532, 37954}, {18537, 63081}, {18859, 52055}, {18917, 34664}, {19140, 19153}, {20126, 32216}, {21312, 23039}, {21970, 44275}, {22241, 35002}, {26206, 55705}, {31860, 64095}, {32110, 35259}, {34514, 34725}, {35254, 46264}, {35265, 41398}, {35450, 62217}, {36747, 45187}, {36990, 54147}, {37077, 37779}, {37198, 64030}, {37493, 63664}, {37506, 44109}, {37517, 44413}, {37645, 44218}, {39522, 40318}, {39874, 46442}, {40916, 61136}, {41424, 46261}, {41464, 55604}, {41735, 48876}, {50008, 64094}, {54202, 62023}
X(64097) = midpoint of X(i) and X(j) for these {i,j}: {3426, 33878}
X(64097) = reflection of X(i) in X(j) for these {i,j}: {3, 64105}, {6, 4550}, {1351, 31861}, {4846, 141}, {11820, 33532}, {35237, 3098}, {40909, 3818}, {44456, 64099}, {46264, 35254}, {64094, 50008}, {64098, 33533}
X(64097) = inverse of X(26864) in Stammler hyperbola
X(64097) = perspector of circumconic {{A, B, C, X(44769), X(53958)}}
X(64097) = pole of line {21663, 35243} with respect to the Jerabek hyperbola
X(64097) = pole of line {15760, 52703} with respect to the Kiepert hyperbola
X(64097) = pole of line {1636, 8675} with respect to the MacBeath circumconic
X(64097) = pole of line {30, 26864} with respect to the Stammler hyperbola
X(64097) = pole of line {376, 3260} with respect to the Wallace hyperbola
X(64097) = intersection, other than A, B, C, of circumconics {{A, B, C, X(30), X(26864)}}, {{A, B, C, X(74), X(36889)}}, {{A, B, C, X(3426), X(40352)}}, {{A, B, C, X(14919), X(34801)}}
X(64097) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 399, 26864}, {6, 4550, 9818}, {74, 11459, 15066}, {74, 12825, 399}, {74, 399, 12412}, {1154, 64099, 44456}, {1597, 44456, 64099}, {3098, 35237, 35243}, {3098, 6000, 35237}, {3426, 33878, 30}, {4550, 13754, 6}, {5663, 33533, 64098}, {5907, 12163, 6642}, {7689, 43586, 37487}, {11820, 55610, 33532}, {17814, 37487, 43586}, {18451, 63425, 14070}, {33533, 64098, 3}, {41450, 44837, 7712}, {64098, 64105, 33533}
X(64098) lies on these lines: {2, 12112}, {3, 74}, {4, 15018}, {5, 54012}, {6, 30}, {20, 11004}, {22, 3581}, {23, 61136}, {26, 11438}, {54, 52093}, {66, 18358}, {140, 1498}, {143, 39568}, {155, 548}, {182, 14915}, {184, 10564}, {185, 37478}, {186, 7712}, {195, 62131}, {206, 4550}, {323, 376}, {378, 14805}, {381, 51548}, {382, 13470}, {394, 8703}, {511, 8547}, {541, 19140}, {546, 37514}, {547, 59777}, {549, 18451}, {550, 1181}, {568, 12082}, {578, 14641}, {631, 15052}, {1154, 19459}, {1176, 3426}, {1192, 12107}, {1199, 5059}, {1495, 6644}, {1503, 50008}, {1597, 19118}, {1598, 12006}, {1657, 7592}, {1658, 37487}, {1853, 46029}, {1993, 3534}, {1994, 11001}, {1995, 40280}, {2071, 3431}, {2696, 32730}, {2697, 32732}, {2777, 25556}, {3060, 44457}, {3098, 13754}, {3146, 36753}, {3516, 10610}, {3523, 54434}, {3528, 43605}, {3529, 36749}, {3530, 17814}, {3543, 63040}, {3546, 61608}, {3587, 62246}, {3627, 36752}, {3796, 18570}, {3830, 5422}, {3843, 52100}, {3845, 10601}, {3850, 15805}, {5050, 11820}, {5055, 7703}, {5066, 17825}, {5085, 11472}, {5198, 15026}, {5453, 19765}, {5585, 45769}, {5621, 44754}, {5878, 52073}, {5889, 43596}, {5890, 12083}, {5946, 18534}, {6101, 37198}, {6102, 11414}, {6243, 33524}, {6696, 40285}, {6759, 31978}, {6776, 41617}, {6823, 32140}, {7387, 13630}, {7393, 12315}, {7464, 11003}, {7484, 15060}, {7485, 18435}, {7502, 10605}, {7503, 64030}, {7506, 43584}, {7509, 18439}, {7516, 12162}, {7517, 8718}, {7525, 12163}, {7526, 10575}, {7530, 9730}, {7706, 29012}, {7708, 57634}, {8548, 9976}, {9729, 13861}, {9777, 44454}, {9786, 17714}, {9919, 11561}, {10201, 47296}, {10264, 37638}, {10272, 59767}, {10282, 46372}, {10323, 34783}, {10540, 41450}, {10545, 15045}, {10546, 14157}, {10627, 12164}, {10821, 50009}, {10982, 62036}, {11002, 37946}, {11381, 13336}, {11422, 43576}, {11430, 12084}, {11479, 32137}, {11799, 18911}, {12085, 32046}, {12088, 37490}, {12100, 17811}, {12103, 37498}, {12106, 37475}, {12121, 52124}, {12220, 13391}, {12244, 51882}, {12279, 61134}, {12364, 34966}, {12370, 37201}, {12429, 45732}, {12900, 15113}, {13154, 13347}, {13321, 37949}, {13348, 15083}, {13352, 44109}, {13353, 35502}, {13363, 62209}, {13364, 18535}, {13394, 18580}, {14627, 49137}, {15024, 63665}, {15038, 15684}, {15047, 62008}, {15053, 51519}, {15087, 15681}, {15462, 45019}, {15640, 63076}, {15682, 34545}, {15688, 50461}, {15689, 52099}, {15690, 37672}, {15704, 36747}, {15760, 61702}, {16003, 61644}, {16194, 43650}, {16619, 61506}, {16836, 46261}, {16936, 62123}, {17800, 43845}, {17821, 43615}, {18388, 31181}, {18475, 58871}, {18494, 61299}, {18531, 58885}, {18909, 63734}, {18951, 52404}, {19127, 19138}, {19139, 44882}, {19142, 19154}, {19150, 48898}, {19710, 63094}, {20126, 32227}, {20481, 40248}, {25406, 49669}, {26958, 44278}, {31152, 51391}, {32110, 35268}, {32344, 63420}, {32366, 37517}, {32423, 64080}, {32620, 53094}, {34128, 52292}, {37471, 63664}, {37489, 45956}, {37648, 44275}, {37925, 48912}, {38794, 49672}, {41463, 63720}, {43602, 64050}, {44441, 61619}, {44480, 64196}, {44750, 45016}, {44829, 52843}, {48892, 64195}, {49673, 64024}, {50693, 56292}, {54042, 58891}, {54044, 62217}, {62160, 62990}, {63663, 63727}
X(64098) = midpoint of X(i) and X(j) for these {i,j}: {6, 35237}, {4846, 46264}, {40909, 48905}
X(64098) = reflection of X(i) in X(j) for these {i,j}: {4550, 5092}, {11472, 49671}, {31861, 182}, {33532, 8717}, {64097, 33533}, {64099, 6}, {64105, 3}
X(64098) = inverse of X(15066) in Stammler hyperbola
X(64098) = perspector of circumconic {{A, B, C, X(1302), X(44769)}}
X(64098) = pole of line {7624, 8675} with respect to the 1st Brocard circle
X(64098) = pole of line {526, 42660} with respect to the circumcircle
X(64098) = pole of line {523, 47465} with respect to the cosine circle
X(64098) = pole of line {7514, 21663} with respect to the Jerabek hyperbola
X(64098) = pole of line {1636, 9007} with respect to the MacBeath circumconic
X(64098) = pole of line {30, 15066} with respect to the Stammler hyperbola
X(64098) = pole of line {8552, 9209} with respect to the Steiner inellipse
X(64098) = pole of line {3260, 32833} with respect to the Wallace hyperbola
X(64098) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {6, 14685, 15919}
X(64098) = intersection, other than A, B, C, of circumconics {{A, B, C, X(30), X(15066)}}, {{A, B, C, X(74), X(34288)}}, {{A, B, C, X(841), X(47322)}}, {{A, B, C, X(3426), X(46147)}}, {{A, B, C, X(4846), X(14919)}}, {{A, B, C, X(35910), X(56925)}}
X(64098) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11456, 15068}, {3, 12174, 5876}, {3, 26864, 1511}, {3, 399, 15066}, {3, 5663, 64105}, {3, 64097, 33533}, {6, 30, 64099}, {6, 64099, 39522}, {182, 14915, 31861}, {511, 8717, 33532}, {1495, 64100, 37470}, {1511, 61752, 26864}, {3426, 12017, 9818}, {4550, 5092, 7514}, {5085, 11472, 49671}, {5092, 6000, 4550}, {5663, 33533, 64097}, {7393, 12315, 45959}, {8718, 10574, 7517}, {10264, 44262, 37638}, {10575, 10984, 7526}, {11456, 15066, 399}, {11456, 15068, 32139}, {12041, 34513, 3}, {15072, 15080, 74}, {15805, 15811, 3850}, {40909, 48905, 30}, {46850, 64049, 12084}
X(64099) lies on these lines: {3, 5640}, {4, 323}, {5, 37483}, {6, 30}, {20, 63040}, {22, 14805}, {23, 3431}, {25, 1511}, {26, 11430}, {51, 37470}, {74, 3060}, {140, 59777}, {143, 12085}, {155, 3853}, {182, 33532}, {186, 48912}, {195, 62023}, {265, 31133}, {376, 15018}, {378, 3581}, {381, 15066}, {382, 11456}, {394, 3845}, {399, 1539}, {511, 4550}, {541, 9976}, {546, 37498}, {549, 63128}, {550, 10982}, {567, 12082}, {575, 8717}, {576, 14915}, {611, 1480}, {613, 6580}, {895, 1351}, {1154, 1597}, {1181, 62036}, {1199, 49135}, {1350, 49671}, {1495, 7530}, {1498, 62026}, {1514, 44276}, {1593, 10263}, {1657, 15037}, {1885, 31815}, {1994, 15682}, {1995, 37477}, {3088, 63734}, {3098, 7514}, {3146, 15032}, {3527, 12006}, {3529, 36753}, {3531, 5020}, {3534, 5422}, {3543, 11004}, {3567, 43603}, {3627, 32139}, {3832, 54434}, {3861, 17814}, {5012, 44457}, {5066, 17811}, {5073, 7592}, {5076, 11441}, {5198, 61753}, {5446, 11438}, {5480, 50008}, {5876, 11403}, {5888, 54041}, {5946, 21312}, {6000, 55716}, {6102, 47527}, {6243, 35502}, {6644, 10564}, {6800, 37924}, {6985, 51340}, {7393, 63414}, {7464, 11002}, {7517, 11464}, {7526, 37478}, {7527, 37494}, {7712, 37925}, {7728, 52124}, {8703, 10601}, {9301, 32444}, {9714, 43394}, {9818, 13391}, {9977, 44493}, {10113, 15106}, {10546, 43574}, {10594, 37495}, {10627, 11479}, {11001, 34545}, {11003, 37946}, {11064, 44275}, {11250, 37487}, {11255, 22830}, {11264, 34780}, {11402, 44454}, {11424, 37513}, {11425, 17714}, {11472, 11477}, {11482, 11820}, {12017, 35243}, {12083, 15033}, {12086, 37490}, {12100, 17825}, {12101, 37672}, {12103, 37514}, {12106, 31860}, {12163, 14449}, {12164, 32137}, {12279, 43596}, {12383, 62963}, {12897, 52843}, {13142, 32140}, {13154, 13348}, {13321, 35452}, {13346, 13861}, {13353, 33524}, {13364, 62209}, {13482, 26881}, {13491, 37493}, {13596, 15110}, {13754, 37517}, {14070, 58764}, {14627, 49136}, {14791, 16657}, {14855, 15004}, {15035, 41448}, {15038, 15681}, {15047, 62121}, {15081, 31074}, {15087, 15684}, {15122, 61506}, {15640, 62990}, {15687, 18451}, {15690, 46945}, {15704, 36752}, {15760, 44935}, {15800, 35490}, {15805, 33923}, {15811, 62013}, {16261, 23061}, {16419, 54044}, {16982, 32138}, {17702, 19139}, {18281, 47296}, {18390, 31181}, {18534, 26864}, {18540, 62246}, {18570, 33586}, {18571, 41447}, {18580, 32269}, {18911, 62332}, {19121, 55705}, {22233, 43600}, {25338, 61680}, {26958, 40685}, {32046, 39568}, {32368, 64031}, {32423, 36990}, {32620, 53097}, {33699, 63094}, {37406, 49743}, {37484, 63664}, {37486, 63682}, {37638, 44287}, {37643, 44441}, {37645, 46817}, {38335, 50461}, {41424, 47391}, {41465, 49669}, {41614, 56966}, {41617, 54132}, {43605, 62021}, {43845, 49134}, {44107, 64100}, {44218, 47582}, {47092, 61657}, {48895, 64195}, {50688, 56292}, {52099, 62137}, {62160, 63076}, {62967, 64183}, {63673, 63727}
X(64099) = midpoint of X(i) and X(j) for these {i,j}: {11472, 11477}, {31670, 64096}, {44456, 64097}, {49669, 51212}
X(64099) = reflection of X(i) in X(j) for these {i,j}: {1350, 49671}, {8717, 575}, {33532, 182}, {33878, 33533}, {39522, 44413}, {50008, 5480}, {64098, 6}, {64105, 31861}
X(64099) = pole of line {523, 14398} with respect to the cosine circle
X(64099) = pole of line {549, 15066} with respect to the Stammler hyperbola
X(64099) = pole of line {32833, 44148} with respect to the Wallace hyperbola
X(64099) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11472, 11477, 14687}
X(64099) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4846), X(55982)}}, {{A, B, C, X(14483), X(34288)}}
X(64099) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 30, 64098}, {30, 44413, 39522}, {511, 31861, 64105}, {1597, 44456, 64097}, {3543, 11004, 12112}, {3627, 36747, 32139}, {5640, 43576, 3}, {9818, 33878, 33533}, {11004, 12112, 18445}, {13391, 33533, 33878}, {31670, 64096, 30}, {39522, 64098, 6}
X(64100) lies on these lines: {2, 5656}, {3, 49}, {4, 5943}, {5, 10575}, {6, 21312}, {20, 389}, {22, 11438}, {23, 15053}, {25, 37475}, {30, 51}, {39, 47620}, {52, 550}, {64, 7395}, {69, 3537}, {74, 827}, {110, 17855}, {125, 15760}, {140, 12162}, {141, 15151}, {143, 15704}, {154, 7729}, {182, 378}, {187, 52438}, {216, 3269}, {217, 22401}, {265, 13623}, {287, 35928}, {373, 381}, {376, 511}, {382, 5462}, {517, 37428}, {541, 61679}, {542, 61667}, {546, 27355}, {548, 6102}, {549, 5642}, {567, 18859}, {568, 3534}, {569, 12084}, {575, 7464}, {578, 11413}, {631, 5907}, {632, 45959}, {858, 18388}, {916, 64107}, {970, 3651}, {974, 6467}, {1060, 3270}, {1062, 1425}, {1105, 56298}, {1154, 8703}, {1192, 9715}, {1350, 32621}, {1368, 1568}, {1495, 6644}, {1498, 31978}, {1503, 29959}, {1514, 44920}, {1531, 4846}, {1533, 1596}, {1593, 37514}, {1597, 10601}, {1656, 64030}, {1657, 5446}, {1843, 18533}, {1885, 64038}, {1986, 37853}, {1993, 37480}, {2071, 5012}, {2393, 43273}, {2549, 50387}, {2772, 10176}, {2777, 12824}, {2781, 15303}, {2807, 3576}, {2935, 41593}, {2979, 10304}, {3066, 11820}, {3090, 10219}, {3091, 11695}, {3146, 10110}, {3357, 7503}, {3426, 63128}, {3516, 37476}, {3518, 8718}, {3520, 61134}, {3521, 14861}, {3522, 5889}, {3523, 11793}, {3524, 3819}, {3525, 15058}, {3526, 18439}, {3528, 11412}, {3529, 3567}, {3530, 5876}, {3543, 5640}, {3545, 6688}, {3547, 26937}, {3574, 23335}, {3587, 26893}, {3611, 15941}, {3627, 12006}, {3832, 15028}, {3839, 11451}, {3845, 13363}, {3849, 31743}, {3851, 46849}, {3853, 15026}, {3854, 40284}, {3855, 11465}, {3858, 32205}, {4303, 40944}, {5050, 54992}, {5054, 10170}, {5056, 11439}, {5071, 16261}, {5072, 46852}, {5076, 44863}, {5085, 10606}, {5097, 43576}, {5157, 44883}, {5158, 51990}, {5254, 15575}, {5448, 37452}, {5651, 18451}, {5691, 58487}, {5752, 37426}, {5878, 6816}, {5894, 41589}, {5944, 43615}, {5972, 17854}, {6001, 41581}, {6030, 7488}, {6101, 33923}, {6146, 31829}, {6225, 6804}, {6240, 44829}, {6243, 15696}, {6247, 7399}, {6293, 8567}, {6642, 26883}, {6699, 21650}, {6723, 12292}, {6759, 17928}, {6776, 8681}, {6800, 11202}, {6803, 12324}, {6815, 14216}, {6876, 15489}, {6899, 10441}, {6903, 15488}, {6907, 34462}, {7171, 26892}, {7400, 18913}, {7430, 48886}, {7494, 18931}, {7495, 20417}, {7496, 15054}, {7502, 32110}, {7509, 13347}, {7526, 13336}, {7527, 13445}, {7530, 44106}, {7576, 29012}, {7592, 13346}, {7706, 31723}, {7998, 15692}, {7999, 10299}, {8541, 54183}, {8679, 63432}, {8717, 12083}, {9019, 19161}, {9306, 11456}, {9781, 33703}, {9786, 11414}, {9818, 43650}, {9825, 16655}, {9826, 13202}, {9969, 48905}, {10095, 62036}, {10192, 40928}, {10201, 61691}, {10226, 10610}, {10263, 12103}, {10282, 22467}, {10295, 11649}, {10298, 15080}, {10303, 15056}, {10323, 46730}, {10540, 43586}, {10564, 44109}, {10620, 54006}, {10627, 46853}, {10628, 15055}, {10721, 41671}, {10722, 58503}, {10723, 58502}, {10724, 58508}, {10725, 58507}, {10726, 58513}, {10727, 58505}, {10728, 58504}, {10732, 58506}, {10733, 58498}, {10938, 37638}, {10990, 25711}, {10996, 18909}, {11001, 21849}, {11002, 15683}, {11017, 61900}, {11188, 64014}, {11328, 44437}, {11402, 37497}, {11424, 12085}, {11433, 35513}, {11440, 37126}, {11444, 15717}, {11464, 61128}, {11468, 43896}, {11470, 44503}, {11472, 22112}, {11550, 18420}, {11557, 20127}, {11561, 14677}, {11562, 12041}, {11585, 43831}, {11591, 15712}, {11592, 61789}, {11806, 12121}, {12002, 49139}, {12022, 44458}, {12045, 61895}, {12086, 13434}, {12087, 43603}, {12100, 15067}, {12107, 63729}, {12118, 21651}, {12174, 17814}, {12203, 35474}, {12220, 21851}, {12239, 42259}, {12240, 42258}, {12317, 43150}, {12512, 31732}, {12825, 48378}, {13160, 20299}, {13335, 52279}, {13340, 15688}, {13352, 13366}, {13364, 15687}, {13369, 23154}, {13403, 52071}, {13417, 14708}, {13595, 43584}, {14070, 35268}, {14093, 54048}, {14118, 41725}, {14128, 14869}, {14130, 37471}, {14133, 35476}, {14449, 62123}, {14805, 58871}, {14810, 44832}, {14865, 43651}, {14872, 58690}, {14880, 63556}, {14891, 44324}, {14913, 39874}, {15003, 62026}, {15004, 44413}, {15032, 34986}, {15037, 35452}, {15038, 35001}, {15063, 30739}, {15082, 15702}, {15087, 37477}, {15122, 61619}, {15311, 34664}, {15606, 21734}, {15682, 58470}, {15694, 62184}, {15708, 44299}, {15721, 33879}, {15738, 38729}, {15761, 43817}, {15801, 43612}, {16072, 45979}, {16252, 36982}, {16625, 17538}, {16881, 62144}, {16980, 18481}, {16981, 62129}, {17713, 64180}, {17821, 22967}, {17834, 37198}, {18114, 46585}, {18128, 44076}, {18369, 52100}, {18383, 34007}, {18390, 18911}, {18400, 38323}, {18474, 50008}, {18534, 34417}, {18536, 64094}, {18537, 54012}, {18563, 43577}, {18570, 37513}, {18874, 61988}, {19129, 19457}, {19708, 54041}, {21163, 47426}, {22109, 45170}, {22278, 34746}, {22350, 39796}, {23292, 47090}, {25555, 35484}, {26206, 34779}, {31670, 41256}, {31804, 63631}, {31833, 61139}, {31834, 61792}, {32063, 35259}, {32142, 44682}, {32171, 43898}, {32184, 41362}, {32237, 47485}, {32352, 44242}, {32423, 45730}, {33843, 59208}, {33884, 62063}, {34002, 44158}, {34128, 34330}, {34148, 64026}, {34200, 54042}, {34224, 43904}, {34545, 37944}, {34565, 39522}, {34624, 61727}, {35243, 37489}, {35283, 44838}, {35480, 58480}, {35481, 52000}, {35485, 44479}, {35497, 51033}, {36978, 42088}, {36980, 42087}, {37118, 58447}, {37182, 40254}, {37196, 47328}, {37201, 39571}, {37484, 62100}, {37495, 43845}, {38321, 44407}, {38322, 61299}, {38738, 39817}, {38749, 39846}, {40247, 61820}, {41257, 48901}, {41463, 52987}, {41543, 56885}, {41715, 54050}, {41869, 58469}, {43602, 56292}, {43846, 43866}, {44084, 44438}, {44107, 64099}, {44110, 51393}, {44249, 54384}, {44441, 61743}, {44831, 48898}, {44871, 61991}, {44935, 61657}, {44983, 58509}, {44984, 58510}, {44985, 58511}, {44986, 58512}, {44987, 58514}, {44988, 58515}, {45759, 54044}, {45958, 55856}, {45968, 54040}, {46945, 55582}, {47353, 61676}, {47549, 50649}, {48897, 50594}, {48904, 58549}, {48910, 58471}, {50693, 64050}, {52003, 63441}, {52661, 59529}, {52687, 59710}, {53093, 58762}, {54047, 62073}, {58492, 64037}, {58531, 62034}, {58533, 62164}, {62104, 63414}, {62120, 62187}
X(64100) = midpoint of X(i) and X(j) for these {i,j}: {2, 15072}, {20, 3060}, {154, 7729}, {185, 3917}, {376, 5890}, {568, 3534}, {5642, 17853}, {5889, 62188}, {5943, 46850}, {8703, 45956}, {9730, 14855}, {10192, 40928}, {10575, 16194}, {11188, 64014}, {12022, 44458}, {13491, 15060}, {14831, 36987}, {34624, 61727}, {41715, 54050}, {45968, 54040}
X(64100) = reflection of X(i) in X(j) for these {i,j}: {2, 16836}, {4, 5943}, {51, 9730}, {373, 40280}, {381, 5892}, {3060, 389}, {3845, 13363}, {3917, 3}, {5562, 3917}, {5891, 549}, {5943, 9729}, {7998, 55166}, {11381, 16194}, {11455, 46847}, {11459, 3819}, {12162, 15060}, {14831, 5890}, {15030, 2}, {15060, 140}, {15067, 12100}, {15687, 13364}, {16194, 5}, {16261, 63632}, {16657, 45298}, {18435, 10170}, {21969, 568}, {32062, 381}, {34746, 22278}, {36987, 376}, {40673, 11179}, {44324, 14891}, {44870, 10219}, {45186, 3060}, {46847, 6688}, {47353, 61676}, {54042, 34200}, {62188, 15644}
X(64100) = complement of X(15305)
X(64100) = X(i)-Dao conjugate of X(j) for these {i, j}: {1596, 36876}, {37648, 44134}
X(64100) = pole of line {8675, 10516} with respect to the orthocentroidal circle
X(64100) = pole of line {3, 4549} with respect to the Jerabek hyperbola
X(64100) = pole of line {4, 5651} with respect to the Stammler hyperbola
X(64100) = pole of line {44560, 52584} with respect to the Steiner inellipse
X(64100) = pole of line {264, 1597} with respect to the Wallace hyperbola
X(64100) = pole of line {850, 53369} with respect to the dual conic of polar circle
X(64100) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {2, 15072, 61734}
X(64100) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(43652)}}, {{A, B, C, X(74), X(3917)}}, {{A, B, C, X(394), X(37648)}}, {{A, B, C, X(1092), X(15740)}}, {{A, B, C, X(1176), X(1533)}}, {{A, B, C, X(4846), X(51990)}}, {{A, B, C, X(5447), X(43689)}}, {{A, B, C, X(13623), X(22115)}}, {{A, B, C, X(15030), X(54988)}}
X(64100) = barycentric product X(i)*X(j) for these (i, j): {3, 37648}, {1596, 394}, {14919, 1533}
X(64100) = barycentric quotient X(i)/X(j) for these (i, j): {1533, 46106}, {1596, 2052}, {37648, 264}
X(64100) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15072, 6000}, {2, 20791, 16836}, {3, 10605, 63425}, {3, 1181, 1092}, {3, 13754, 3917}, {3, 155, 43652}, {3, 184, 51394}, {3, 18436, 5447}, {3, 19347, 35602}, {3, 34783, 1216}, {3, 40647, 185}, {3, 43807, 63392}, {3, 64049, 13367}, {4, 15045, 5943}, {5, 10575, 11381}, {20, 389, 45186}, {30, 45298, 16657}, {30, 9730, 51}, {51, 9730, 16226}, {140, 13491, 12162}, {185, 3917, 13754}, {185, 45187, 34783}, {373, 32062, 381}, {376, 511, 36987}, {376, 61136, 5890}, {381, 14915, 32062}, {511, 11179, 40673}, {511, 5890, 14831}, {549, 5663, 5891}, {550, 13630, 52}, {631, 6241, 5907}, {974, 16163, 21649}, {1092, 1181, 43844}, {1216, 34783, 45187}, {1216, 45187, 5562}, {1657, 37481, 5446}, {2071, 5012, 11430}, {3090, 12290, 44870}, {3091, 12279, 13474}, {3146, 15043, 10110}, {3357, 37515, 7503}, {3522, 5889, 15644}, {3523, 12111, 11793}, {3528, 11412, 13348}, {3529, 3567, 13598}, {3545, 11455, 46847}, {3845, 13363, 14845}, {5054, 18435, 10170}, {5085, 10606, 54994}, {5462, 14641, 382}, {5642, 17853, 5663}, {5907, 17704, 631}, {5943, 9729, 15045}, {6102, 10625, 14531}, {6688, 46847, 3545}, {6800, 15078, 11202}, {8717, 64095, 12083}, {8718, 43597, 3518}, {9729, 46850, 4}, {9730, 14855, 30}, {10627, 55286, 46853}, {11695, 13474, 3091}, {12085, 36752, 11424}, {12162, 13491, 64029}, {13382, 15644, 5889}, {13598, 15012, 3567}, {14708, 16111, 13417}, {14831, 36987, 511}, {14915, 40280, 373}, {15032, 43574, 34986}, {15043, 52093, 3146}, {15072, 16836, 15030}, {15072, 20791, 2}, {15712, 45957, 11591}, {15717, 64025, 11444}, {18911, 44440, 18390}, {21663, 22352, 3}, {22467, 52525, 10282}, {37470, 64098, 1495}, {37511, 48906, 6467}, {51393, 61752, 44110}
X(64101) lies on these lines: {2, 74}, {3, 1539}, {4, 5972}, {5, 49}, {8, 11723}, {10, 7978}, {20, 15036}, {30, 15051}, {114, 22265}, {125, 3090}, {140, 7728}, {141, 10752}, {147, 33511}, {148, 33512}, {182, 41737}, {185, 43866}, {186, 1531}, {373, 58498}, {376, 13202}, {381, 1511}, {399, 5055}, {403, 11064}, {477, 36169}, {485, 19110}, {486, 19111}, {542, 3618}, {546, 12121}, {547, 5655}, {549, 20127}, {551, 50877}, {569, 3047}, {590, 19060}, {597, 64103}, {615, 19059}, {631, 2777}, {632, 15021}, {690, 64089}, {895, 14561}, {974, 15045}, {1112, 11412}, {1125, 12368}, {1209, 43580}, {1352, 32234}, {1568, 32223}, {1587, 13990}, {1588, 8998}, {1651, 38246}, {1656, 5663}, {1986, 11459}, {1995, 2931}, {2072, 14157}, {2771, 5439}, {2772, 31273}, {2778, 25917}, {2779, 31262}, {2781, 3763}, {2914, 34155}, {2948, 7988}, {3035, 10767}, {3043, 9306}, {3060, 58516}, {3091, 15034}, {3146, 38726}, {3448, 5056}, {3470, 39170}, {3518, 22109}, {3523, 16111}, {3524, 37853}, {3525, 12244}, {3526, 12041}, {3528, 48375}, {3530, 38788}, {3533, 10990}, {3545, 5642}, {3564, 47461}, {3581, 44282}, {3589, 5622}, {3614, 12903}, {3624, 11709}, {3627, 38723}, {3628, 15054}, {3742, 58680}, {3818, 7577}, {3819, 58536}, {3828, 50878}, {3832, 12295}, {3843, 15040}, {3850, 34153}, {3851, 10113}, {3858, 22251}, {3917, 11807}, {4193, 38555}, {4413, 12327}, {5020, 12168}, {5054, 38790}, {5066, 13392}, {5067, 6723}, {5068, 30714}, {5070, 10620}, {5072, 12902}, {5079, 5609}, {5094, 12133}, {5133, 23306}, {5159, 32111}, {5181, 14853}, {5219, 59818}, {5422, 19456}, {5432, 12374}, {5433, 12373}, {5465, 23234}, {5504, 15033}, {5562, 41671}, {5587, 11720}, {5627, 14611}, {5640, 12236}, {5654, 37644}, {5656, 15113}, {5886, 7984}, {5889, 16222}, {5890, 9826}, {5891, 11557}, {5892, 54037}, {5907, 7722}, {5943, 21649}, {6143, 43613}, {6353, 15473}, {6564, 10820}, {6565, 10819}, {6593, 10516}, {6698, 51941}, {6997, 12319}, {7173, 12904}, {7484, 9919}, {7486, 16003}, {7509, 10117}, {7527, 12901}, {7569, 15102}, {7603, 14901}, {7723, 15056}, {7731, 12358}, {7741, 10088}, {7808, 12192}, {7844, 15920}, {7866, 38641}, {7887, 38520}, {7914, 9984}, {7951, 10091}, {7999, 63657}, {8252, 49217}, {8253, 49216}, {8674, 64008}, {8718, 11585}, {8994, 32785}, {9143, 61924}, {9820, 63710}, {9934, 32743}, {9955, 12778}, {9970, 24206}, {10171, 13605}, {10175, 13211}, {10255, 27866}, {10257, 50434}, {10590, 46683}, {10591, 46687}, {10601, 17838}, {10657, 42914}, {10658, 42915}, {10745, 44891}, {10778, 23513}, {10817, 35255}, {10818, 35256}, {11005, 36519}, {11178, 25556}, {11439, 31283}, {11440, 60780}, {11441, 11704}, {11455, 30744}, {11464, 20771}, {11561, 15060}, {11579, 38317}, {11693, 61954}, {11694, 38071}, {11793, 13417}, {11799, 43576}, {12068, 38700}, {12111, 14708}, {12261, 61268}, {12281, 25711}, {12284, 15024}, {12290, 44573}, {12292, 52296}, {12302, 63664}, {12308, 20379}, {12369, 15184}, {12372, 24953}, {12381, 26364}, {12382, 26363}, {12812, 15027}, {12827, 18932}, {12893, 44802}, {12898, 18357}, {13198, 43651}, {13289, 35921}, {13969, 32786}, {14128, 38898}, {14156, 52403}, {14457, 43841}, {14639, 53735}, {14683, 15022}, {14695, 14932}, {14789, 43578}, {14872, 58601}, {14912, 32300}, {14915, 30745}, {14989, 47084}, {15023, 15704}, {15032, 43836}, {15039, 61935}, {15041, 46219}, {15042, 15681}, {15107, 51391}, {15463, 16868}, {15699, 20126}, {16072, 20772}, {16239, 61598}, {16252, 63716}, {17847, 63695}, {18279, 51835}, {18332, 61575}, {18538, 19052}, {18583, 63700}, {18762, 19051}, {18917, 26917}, {19122, 39899}, {19506, 64063}, {20396, 61911}, {20397, 46936}, {20417, 61886}, {20957, 60603}, {21315, 33505}, {21451, 38848}, {21650, 54000}, {22115, 46031}, {22750, 45177}, {23323, 59648}, {24981, 61921}, {25321, 32275}, {25564, 61128}, {25739, 46818}, {28408, 31670}, {30771, 46431}, {31180, 48905}, {31267, 36201}, {31282, 64024}, {31378, 57471}, {31379, 36172}, {31945, 34150}, {32274, 52697}, {32607, 35500}, {33851, 53023}, {35487, 59659}, {36184, 60605}, {36208, 37835}, {36209, 37832}, {37071, 38650}, {37477, 44961}, {37779, 63735}, {37942, 47582}, {38581, 45694}, {38633, 61855}, {38638, 61970}, {38729, 60781}, {40410, 43767}, {40948, 57526}, {41462, 44262}, {41673, 64051}, {42262, 49268}, {42265, 49269}, {42274, 49223}, {42277, 49222}, {43572, 50435}, {43597, 43831}, {43599, 43604}, {43602, 43817}, {43837, 64026}, {43966, 57316}, {44214, 58885}, {45311, 61899}, {46451, 51392}, {47571, 62382}, {48895, 52294}, {49673, 52525}, {50726, 52820}, {51033, 58435}, {51522, 55857}, {53743, 59391}, {55856, 61548}, {56567, 61912}, {58654, 61686}, {59495, 62974}, {61936, 64183}, {63344, 63348}
X(64101) = midpoint of X(i) and X(j) for these {i,j}: {3843, 15040}, {3858, 22251}, {15081, 20125}
X(64101) = reflection of X(i) in X(j) for these {i,j}: {15021, 38728}, {15051, 38794}, {15059, 1656}, {38728, 632}
X(64101) = pole of line {9003, 24981} with respect to the orthoptic circle of the Steiner Inellipse
X(64101) = pole of line {974, 1154} with respect to the Stammler hyperbola
X(64101) = pole of line {24978, 46229} with respect to the Steiner inellipse
X(64101) = pole of line {1273, 10257} with respect to the Wallace hyperbola
X(64101) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1141), X(57747)}}, {{A, B, C, X(3260), X(6699)}}
X(64101) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 146, 6699}, {3, 15046, 61574}, {4, 5972, 15035}, {5, 10272, 265}, {5, 110, 14644}, {20, 38793, 15036}, {30, 38794, 15051}, {74, 113, 10706}, {113, 12900, 2}, {113, 6699, 146}, {125, 6053, 12317}, {140, 7728, 15055}, {146, 6699, 74}, {265, 10272, 110}, {265, 14643, 10272}, {381, 1511, 10733}, {399, 20304, 9140}, {399, 5055, 20304}, {3448, 5056, 23515}, {3525, 12244, 38727}, {3526, 38789, 12041}, {3545, 12383, 7687}, {3589, 14982, 5622}, {3851, 32609, 10113}, {5071, 20125, 15081}, {5079, 38724, 15088}, {5640, 12273, 12236}, {5907, 16223, 7722}, {5972, 36518, 4}, {6053, 12317, 14094}, {6723, 38792, 15063}, {9826, 12825, 5890}, {10620, 34128, 15057}, {11561, 15060, 22584}, {12068, 46045, 38700}, {12358, 12824, 7731}, {13202, 48378, 376}, {15046, 61574, 15029}, {15081, 20125, 542}, {15088, 38724, 15025}, {16534, 23515, 3448}, {32743, 61747, 9934}, {38727, 38791, 12244}, {38793, 46686, 20}
X(64102) lies on these lines: {2, 74}, {3, 13392}, {4, 10264}, {8, 9904}, {20, 5663}, {23, 9919}, {30, 12317}, {64, 13203}, {110, 3522}, {125, 3832}, {185, 43838}, {193, 2781}, {265, 3543}, {323, 17838}, {376, 399}, {390, 3028}, {542, 15683}, {550, 12308}, {631, 15041}, {690, 5984}, {962, 33535}, {1147, 43391}, {1204, 21451}, {1511, 10304}, {1539, 3839}, {1587, 35826}, {1588, 35827}, {1656, 61598}, {1885, 18947}, {2071, 12412}, {2771, 6361}, {2772, 20096}, {2775, 20097}, {2776, 20098}, {2777, 3146}, {2778, 64047}, {2779, 20066}, {2780, 20099}, {2854, 61044}, {2931, 37913}, {2935, 37645}, {2948, 9778}, {3024, 3600}, {3043, 35485}, {3090, 38789}, {3091, 7728}, {3184, 14919}, {3426, 62963}, {3486, 11670}, {3523, 12041}, {3524, 10272}, {3528, 32609}, {3529, 32423}, {3530, 38633}, {3552, 38653}, {3580, 15311}, {3617, 12368}, {3618, 5621}, {3620, 14982}, {3622, 11709}, {3623, 7978}, {3854, 46686}, {4293, 7727}, {4294, 19470}, {5056, 15061}, {5059, 17702}, {5068, 20417}, {5071, 40685}, {5094, 41428}, {5169, 64094}, {5189, 12319}, {5261, 12373}, {5274, 12374}, {5609, 38788}, {5622, 63123}, {5640, 58536}, {5642, 15705}, {5655, 15692}, {5656, 13289}, {5894, 17847}, {5921, 32247}, {5925, 34799}, {5972, 15021}, {6000, 15100}, {6053, 15051}, {6225, 10117}, {6636, 12168}, {6776, 41731}, {6904, 52820}, {6995, 12133}, {7391, 36853}, {7408, 15473}, {7486, 61574}, {7487, 12292}, {7519, 46431}, {7533, 11472}, {7585, 49216}, {7586, 49217}, {7687, 61985}, {7731, 64096}, {8674, 64009}, {9140, 13202}, {9143, 16163}, {9541, 12375}, {9812, 13605}, {9976, 54132}, {10081, 14986}, {10113, 38626}, {10303, 14643}, {10528, 49152}, {10529, 49151}, {10565, 32227}, {10575, 15102}, {10605, 18933}, {10628, 20427}, {10721, 16003}, {10752, 51170}, {11002, 11807}, {11004, 19456}, {11457, 59493}, {11561, 61136}, {11694, 15042}, {12087, 12310}, {12270, 46264}, {12273, 62188}, {12295, 50690}, {12358, 54037}, {12824, 15151}, {12902, 33703}, {13171, 14118}, {13293, 35494}, {13393, 62023}, {13445, 51360}, {14094, 16111}, {14508, 14731}, {14644, 50689}, {14853, 32305}, {14912, 48679}, {14915, 20063}, {15022, 15059}, {15034, 62078}, {15035, 21734}, {15036, 62060}, {15039, 62084}, {15040, 21735}, {15046, 61886}, {15055, 15063}, {15057, 36518}, {15101, 18439}, {15108, 44458}, {15680, 38497}, {15697, 64182}, {16010, 51212}, {16534, 61791}, {17538, 34153}, {19059, 63016}, {19060, 63015}, {19457, 63036}, {20079, 36201}, {20379, 61982}, {21454, 59818}, {21649, 62187}, {24981, 62125}, {25328, 51538}, {25330, 51163}, {25336, 64196}, {25406, 51941}, {29181, 32255}, {30714, 62124}, {31074, 35450}, {32111, 37760}, {32138, 58805}, {32254, 48874}, {32965, 38641}, {33260, 38520}, {34128, 46936}, {34584, 49135}, {34796, 40909}, {38632, 58195}, {38638, 46853}, {38723, 62110}, {38726, 62102}, {38727, 61834}, {38728, 55864}, {38793, 61804}, {41819, 63348}, {43511, 49269}, {43512, 49268}, {43806, 43816}, {44287, 52055}, {44450, 51391}, {45311, 61930}, {46451, 51548}, {49313, 62987}, {49314, 62986}, {56567, 62081}, {58680, 63961}
X(64102) = midpoint of X(i) and X(j) for these {i,j}: {49044, 49045}
X(64102) = reflection of X(i) in X(j) for these {i,j}: {4, 10620}, {8, 9904}, {20, 12244}, {110, 10990}, {146, 74}, {323, 50434}, {399, 14677}, {962, 33535}, {3146, 3448}, {3448, 15054}, {5921, 32247}, {6225, 10117}, {7728, 51522}, {10113, 38626}, {10721, 16003}, {12308, 550}, {12383, 20127}, {13203, 64}, {14094, 16111}, {14683, 20}, {14731, 14508}, {15102, 10575}, {17847, 5894}, {18439, 15101}, {25336, 64196}, {32254, 48874}, {33703, 12902}, {38790, 10264}, {51212, 16010}, {64183, 12317}
X(64102) = anticomplement of X(146)
X(64102) = X(i)-Dao conjugate of X(j) for these {i, j}: {146, 146}
X(64102) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57766, 2}
X(64102) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34178, 8}, {57766, 6327}
X(64102) = pole of line {6723, 9003} with respect to the orthoptic circle of the Steiner Inellipse
X(64102) = pole of line {10540, 10564} with respect to the Stammler hyperbola
X(64102) = pole of line {8552, 14566} with respect to the Steiner circumellipse
X(64102) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 5663, 14683}, {30, 12317, 64183}, {74, 10706, 6699}, {74, 146, 2}, {74, 541, 146}, {399, 14677, 376}, {1539, 15081, 3839}, {1539, 20126, 15081}, {2777, 3448, 3146}, {5663, 20127, 12383}, {10264, 38790, 4}, {10620, 38790, 10264}, {12244, 12383, 20127}, {12383, 20127, 20}, {38789, 61548, 3090}, {49044, 49045, 2781}
X(64103) lies on these lines: {6, 13}, {67, 3564}, {69, 59495}, {74, 524}, {110, 8550}, {125, 6090}, {141, 5622}, {146, 1992}, {182, 38794}, {184, 32227}, {193, 2781}, {511, 20127}, {541, 15534}, {575, 14643}, {576, 7728}, {597, 64101}, {599, 6699}, {690, 64091}, {895, 1503}, {974, 2854}, {1350, 37853}, {1351, 38790}, {1352, 20304}, {1353, 9970}, {1511, 5648}, {1539, 20423}, {2393, 21649}, {2777, 11477}, {2935, 16010}, {3047, 64061}, {3448, 9716}, {3629, 10752}, {4663, 12368}, {5085, 5181}, {5093, 32271}, {5095, 12165}, {5480, 41737}, {5621, 12901}, {5663, 63722}, {5921, 25320}, {5965, 32305}, {5972, 53093}, {6593, 14912}, {8540, 12374}, {8548, 63710}, {8549, 63716}, {8584, 10706}, {9140, 11064}, {9143, 63084}, {9730, 23236}, {9971, 12236}, {9972, 32423}, {10250, 32743}, {10272, 50979}, {10516, 15118}, {10541, 38793}, {10564, 20126}, {11180, 15081}, {11482, 38789}, {11898, 49116}, {12007, 52699}, {12168, 32621}, {12284, 15073}, {12317, 50974}, {12364, 51391}, {12373, 19369}, {12900, 47352}, {13202, 54131}, {13289, 41583}, {13392, 15462}, {14094, 16657}, {14683, 41670}, {14984, 46264}, {15051, 51737}, {15061, 34507}, {15472, 32234}, {16003, 37497}, {16111, 53097}, {16163, 43273}, {17702, 64080}, {18932, 63129}, {19459, 32114}, {24981, 30734}, {25406, 33851}, {29959, 58498}, {30714, 37475}, {32110, 47276}, {32111, 47549}, {34777, 36201}, {37470, 64182}, {38728, 40107}, {38788, 52987}, {38791, 53858}
X(64103) = midpoint of X(i) and X(j) for these {i,j}: {12284, 15073}
X(64103) = reflection of X(i) in X(j) for these {i,j}: {67, 11579}, {110, 8550}, {265, 9976}, {5648, 11179}, {5921, 32274}, {7728, 576}, {9970, 1353}, {10706, 8584}, {10752, 3629}, {11898, 49116}, {12368, 4663}, {14094, 25329}, {14982, 6}, {15069, 125}, {32111, 47549}, {32233, 6776}, {41737, 5480}, {47276, 32110}, {51941, 5095}, {53097, 16111}, {63700, 182}, {63710, 8548}, {63716, 8549}, {64104, 63722}
X(64103) = pole of line {323, 12824} with respect to the Stammler hyperbola
X(64103) = intersection, other than A, B, C, of circumconics {{A, B, C, X(67), X(56403)}}, {{A, B, C, X(2696), X(41392)}}, {{A, B, C, X(11744), X(56395)}}, {{A, B, C, X(14559), X(48373)}}
X(64103) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 542, 14982}, {542, 9976, 265}, {2854, 6776, 32233}, {3564, 11579, 67}, {5663, 63722, 64104}, {5921, 25320, 32274}
X(64104) lies on circumconic {{A, B, C, X(2770), X(8791)}} and on these lines: {6, 67}, {69, 6593}, {74, 8550}, {110, 524}, {113, 15069}, {141, 32244}, {159, 32240}, {182, 38728}, {193, 2854}, {265, 576}, {511, 11562}, {518, 32298}, {542, 1351}, {575, 15061}, {597, 13169}, {599, 5972}, {690, 64092}, {868, 60739}, {895, 3629}, {1112, 9971}, {1177, 13622}, {1205, 32366}, {1350, 38726}, {1352, 61574}, {1353, 11579}, {1495, 47276}, {1503, 10721}, {1986, 37473}, {1992, 3448}, {2393, 13417}, {2777, 64080}, {2781, 6776}, {2892, 18919}, {2930, 6144}, {3043, 64061}, {3564, 9970}, {3580, 47549}, {3618, 6698}, {3763, 32257}, {3815, 9769}, {3818, 32272}, {4563, 36883}, {4663, 13211}, {5039, 32242}, {5050, 49116}, {5093, 32306}, {5181, 40341}, {5477, 59793}, {5480, 43580}, {5505, 22336}, {5621, 13293}, {5622, 12007}, {5642, 15533}, {5663, 63722}, {5847, 32278}, {5965, 19140}, {5987, 7837}, {6699, 53093}, {6723, 47352}, {7731, 15073}, {8262, 52238}, {8537, 44795}, {8540, 12904}, {8584, 9140}, {8787, 11006}, {9027, 61679}, {9143, 63064}, {9969, 32260}, {9974, 49222}, {9975, 49223}, {10113, 20423}, {10516, 32275}, {10541, 38727}, {10628, 50649}, {11004, 52191}, {11008, 40342}, {11179, 12041}, {11477, 17702}, {11482, 38724}, {11744, 12165}, {11746, 61665}, {11898, 45016}, {12167, 32239}, {12596, 15133}, {12903, 19369}, {13171, 32621}, {13248, 47277}, {13654, 32787}, {13774, 32788}, {14561, 15088}, {14643, 25556}, {14850, 32135}, {14853, 32274}, {14912, 32247}, {14984, 38898}, {15027, 22330}, {15036, 54169}, {15357, 41672}, {15462, 34477}, {15471, 47455}, {15520, 20301}, {15647, 41719}, {16111, 43273}, {16163, 53097}, {16475, 32238}, {18440, 32271}, {18457, 19398}, {18459, 19399}, {18947, 41618}, {19051, 44501}, {19052, 44502}, {19459, 32262}, {22251, 50978}, {24206, 34155}, {24981, 37750}, {25320, 51170}, {25328, 32455}, {29959, 41671}, {32227, 41586}, {32248, 64023}, {32255, 62996}, {32273, 55716}, {32289, 39897}, {32290, 39873}, {32300, 47355}, {32309, 45729}, {32310, 45728}, {32423, 64067}, {33851, 63428}, {34774, 38885}, {36253, 53858}, {37779, 57271}, {38723, 52987}, {38794, 40107}, {38851, 46444}, {39899, 48679}, {41617, 51882}, {41670, 54013}, {43391, 43812}, {44102, 47453}, {45311, 51185}, {46686, 47353}, {47284, 51431}, {47296, 47458}, {47457, 62376}, {50979, 61548}, {59399, 61543}, {63379, 63385}
X(64104) = midpoint of X(i) and X(j) for these {i,j}: {6, 16176}, {193, 11061}, {2930, 6144}, {7731, 15073}, {9143, 63064}, {10752, 32234}, {32248, 64023}, {39899, 48679}
X(64104) = reflection of X(i) in X(j) for these {i,j}: {6, 5095}, {67, 6}, {69, 6593}, {74, 8550}, {110, 25329}, {141, 41595}, {265, 576}, {599, 15303}, {895, 3629}, {1205, 32366}, {2930, 56565}, {3580, 47549}, {5648, 34319}, {9140, 8584}, {9973, 40949}, {11006, 8787}, {11579, 1353}, {11744, 64031}, {13169, 597}, {13211, 4663}, {14982, 9970}, {15069, 113}, {15133, 12596}, {15357, 41672}, {15533, 5642}, {18440, 32271}, {25328, 32455}, {32244, 141}, {32260, 9969}, {32272, 3818}, {32273, 55716}, {34319, 41720}, {34507, 25556}, {37473, 1986}, {38851, 46444}, {38885, 34774}, {40341, 5181}, {41721, 32217}, {47276, 1495}, {47284, 51431}, {53097, 16163}, {59793, 5477}, {63129, 41618}, {63428, 33851}, {63700, 19140}, {63716, 13248}, {64103, 63722}
X(64104) = pole of line {39477, 42659} with respect to the circumcircle
X(64104) = pole of line {1637, 18424} with respect to the orthocentroidal circle
X(64104) = pole of line {2393, 47450} with respect to the Jerabek hyperbola
X(64104) = pole of line {690, 41672} with respect to the Orthic inconic
X(64104) = pole of line {2854, 22151} with respect to the Stammler hyperbola
X(64104) = pole of line {30745, 37804} with respect to the Wallace hyperbola
X(64104) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {10752, 10753, 32234}
X(64104) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {67, 19379, 15131}, {69, 25321, 6593}, {110, 25329, 34319}, {110, 41720, 25329}, {141, 41595, 52699}, {193, 11061, 2854}, {524, 25329, 110}, {524, 32217, 41721}, {524, 34319, 5648}, {2854, 40949, 9973}, {2930, 25331, 56565}, {3564, 9970, 14982}, {5663, 63722, 64103}, {5965, 19140, 63700}, {6144, 25331, 2930}, {25556, 34507, 14643}, {32244, 52699, 141}, {32252, 32280, 67}, {40341, 52697, 5181}
X(64105) lies on these lines: {3, 74}, {4, 37494}, {5, 3066}, {6, 32599}, {22, 18435}, {25, 15060}, {26, 5907}, {30, 599}, {64, 548}, {68, 52073}, {69, 49669}, {113, 61644}, {140, 5646}, {141, 50008}, {143, 11479}, {155, 31834}, {182, 7514}, {183, 61188}, {185, 7516}, {186, 41398}, {378, 23039}, {381, 15360}, {382, 41171}, {394, 18570}, {511, 4550}, {541, 50977}, {542, 8547}, {546, 17834}, {549, 10605}, {567, 7503}, {569, 45187}, {1154, 1351}, {1216, 12084}, {1498, 7525}, {1503, 35254}, {1593, 6101}, {1597, 6403}, {1598, 45958}, {1658, 17814}, {1995, 3581}, {2421, 30541}, {2777, 40107}, {2979, 43576}, {3090, 37490}, {3098, 14915}, {3292, 39242}, {3357, 5447}, {3426, 55610}, {3516, 64180}, {3564, 5486}, {3627, 37486}, {3628, 9786}, {3843, 12307}, {3845, 33586}, {3850, 33537}, {5055, 7699}, {5066, 17810}, {5094, 51391}, {5544, 13363}, {5562, 7526}, {5650, 37470}, {5651, 5891}, {5655, 47596}, {6000, 8717}, {6102, 7395}, {6243, 63664}, {6642, 14128}, {7387, 45959}, {7393, 13630}, {7403, 31815}, {7464, 33884}, {7492, 12112}, {7493, 46817}, {7496, 61136}, {7502, 18451}, {7506, 15056}, {7509, 13339}, {7517, 7691}, {7530, 15030}, {7556, 15052}, {7566, 15800}, {7574, 61700}, {7575, 35259}, {7592, 34864}, {7689, 11793}, {7706, 24206}, {7730, 54202}, {8548, 12596}, {9306, 18324}, {9729, 13154}, {9730, 22112}, {10170, 11438}, {10201, 44201}, {10272, 17835}, {10323, 18439}, {10516, 40909}, {10540, 44837}, {10606, 44324}, {10627, 12085}, {10628, 34117}, {11003, 18445}, {11064, 18580}, {11188, 33878}, {11455, 44457}, {11674, 32444}, {11801, 14852}, {11820, 35243}, {11935, 50461}, {12083, 15305}, {12105, 41424}, {12164, 32046}, {12362, 32140}, {13445, 54041}, {13596, 62188}, {13861, 46730}, {14644, 38397}, {14805, 63720}, {15069, 32423}, {15107, 16261}, {15361, 47597}, {15689, 33544}, {16072, 63839}, {17702, 34507}, {17928, 63392}, {18350, 38444}, {18420, 40330}, {18531, 61702}, {21312, 54042}, {25561, 51993}, {26958, 50140}, {31884, 35237}, {32137, 39568}, {32269, 44275}, {33534, 55614}, {33539, 62008}, {33540, 48154}, {33541, 62131}, {33542, 62142}, {33543, 61150}, {34477, 59543}, {34778, 61683}, {35450, 54044}, {35452, 54047}, {35500, 36749}, {35502, 37484}, {36747, 63682}, {38728, 49672}, {40280, 40916}, {41714, 55587}, {41721, 56966}, {43613, 64050}, {43807, 61811}, {44413, 55722}, {45088, 64066}, {51797, 56568}, {54994, 58891}
X(64105) = midpoint of X(i) and X(j) for these {i,j}: {3, 64097}, {69, 49669}, {1350, 11472}, {1352, 4549}
X(64105) = reflection of X(i) in X(j) for these {i,j}: {3, 33533}, {6, 49671}, {7706, 24206}, {8717, 14810}, {31861, 4550}, {33532, 3098}, {39522, 9818}, {50008, 141}, {51993, 25561}, {64098, 3}, {64099, 31861}
X(64105) = inverse of X(6800) in Stammler hyperbola
X(64105) = pole of line {39520, 55219} with respect to the cosine circle
X(64105) = pole of line {30, 6800} with respect to the Stammler hyperbola
X(64105) = pole of line {3260, 14907} with respect to the Wallace hyperbola
X(64105) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {69, 36163, 49669}, {1350, 11472, 14687}
X(64105) = intersection, other than A, B, C, of circumconics {{A, B, C, X(30), X(6800)}}, {{A, B, C, X(14906), X(40352)}}
X(64105) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11459, 15068}, {3, 26864, 34513}, {3, 399, 6800}, {3, 5663, 64098}, {3, 5876, 32139}, {3, 6090, 1511}, {3, 64097, 5663}, {6, 32620, 49671}, {110, 12281, 12308}, {511, 31861, 64099}, {511, 4550, 31861}, {1154, 9818, 39522}, {1350, 11472, 30}, {1352, 54173, 32113}, {3098, 14915, 33532}, {5562, 7526, 16266}, {5609, 34513, 26864}, {5651, 63425, 32110}, {5891, 32110, 5651}, {6000, 14810, 8717}, {7691, 15058, 7517}, {11820, 55629, 35243}, {15030, 37478, 7530}, {32138, 32142, 3}, {33543, 61150, 62123}
X(64106) lies on these lines: {1, 3}, {7, 3877}, {11, 7682}, {12, 3452}, {31, 1455}, {34, 1191}, {72, 10106}, {108, 1905}, {208, 1829}, {210, 3421}, {221, 4320}, {226, 392}, {227, 1193}, {278, 957}, {329, 388}, {347, 24471}, {515, 1864}, {518, 3476}, {519, 41539}, {527, 5434}, {758, 4315}, {944, 44547}, {946, 57285}, {956, 1708}, {961, 40399}, {995, 1465}, {1046, 9363}, {1071, 4311}, {1108, 1400}, {1122, 1358}, {1201, 1254}, {1317, 15185}, {1320, 60948}, {1359, 2823}, {1360, 47006}, {1386, 54292}, {1393, 52541}, {1407, 54400}, {1408, 62843}, {1418, 53530}, {1427, 1457}, {1445, 3872}, {1448, 34040}, {1450, 3752}, {1453, 34039}, {1469, 34371}, {1471, 49487}, {1478, 37822}, {1788, 5836}, {1858, 12680}, {1887, 54200}, {2094, 44663}, {2096, 4293}, {2097, 3827}, {2256, 2285}, {2300, 8898}, {2650, 4322}, {2802, 41556}, {2982, 57664}, {3086, 7686}, {3241, 7672}, {3244, 12432}, {3319, 47007}, {3485, 58679}, {3555, 15556}, {3598, 23839}, {3600, 3869}, {3671, 3884}, {3698, 19843}, {3753, 3911}, {3812, 7288}, {3820, 61686}, {3868, 4308}, {3878, 4298}, {3880, 36845}, {3889, 6049}, {3893, 41687}, {3962, 9850}, {3983, 58650}, {4005, 9954}, {4292, 12672}, {4295, 45776}, {4296, 62804}, {4297, 12711}, {4301, 17622}, {4305, 12710}, {4318, 62848}, {4847, 40663}, {4848, 10914}, {5044, 9578}, {5083, 24473}, {5433, 6692}, {5603, 54366}, {5666, 52181}, {5691, 64131}, {5727, 64157}, {5728, 43175}, {5731, 10391}, {5777, 9613}, {5806, 50443}, {5887, 18990}, {5918, 15326}, {5930, 14557}, {6284, 9848}, {6604, 18156}, {6737, 10944}, {7175, 36942}, {7354, 12688}, {8101, 10506}, {9370, 54386}, {9579, 9856}, {9655, 31937}, {10176, 51782}, {10396, 12650}, {10591, 16616}, {10693, 46683}, {10866, 12701}, {11237, 31142}, {11374, 31838}, {12648, 51378}, {12758, 24465}, {12832, 17636}, {14100, 43161}, {14872, 45287}, {15239, 63992}, {15325, 61535}, {15558, 38055}, {15844, 24987}, {16466, 21147}, {16483, 34036}, {17638, 31391}, {18391, 61660}, {21578, 63432}, {23840, 43065}, {30294, 50865}, {30384, 64127}, {31397, 39779}, {32049, 46677}, {34046, 54421}, {34434, 42549}, {34790, 37709}, {36973, 60909}, {37740, 61663}, {39542, 64115}, {39783, 41537}, {41572, 64139}, {41576, 44669}, {54135, 60910}, {64021, 64132}
X(64106) = midpoint of X(i) and X(j) for these {i,j}: {3869, 9965}
X(64106) = reflection of X(i) in X(j) for these {i,j}: {65, 57}, {329, 960}, {5727, 64157}, {17625, 4315}, {63995, 4293}
X(64106) = pole of line {1, 3427} with respect to the Feuerbach hyperbola
X(64106) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(31397)}}, {{A, B, C, X(3), X(957)}}, {{A, B, C, X(4), X(22770)}}, {{A, B, C, X(19), X(30503)}}, {{A, B, C, X(28), X(9940)}}, {{A, B, C, X(34), X(3333)}}, {{A, B, C, X(40), X(34434)}}, {{A, B, C, X(105), X(17603)}}, {{A, B, C, X(354), X(1411)}}, {{A, B, C, X(517), X(14493)}}, {{A, B, C, X(942), X(57664)}}, {{A, B, C, X(961), X(37566)}}, {{A, B, C, X(994), X(2093)}}, {{A, B, C, X(999), X(39779)}}, {{A, B, C, X(1243), X(2095)}}, {{A, B, C, X(1320), X(17642)}}, {{A, B, C, X(3427), X(3428)}}, {{A, B, C, X(3666), X(26591)}}, {{A, B, C, X(10428), X(22765)}}, {{A, B, C, X(10966), X(57666)}}, {{A, B, C, X(11529), X(13476)}}, {{A, B, C, X(20615), X(26437)}}, {{A, B, C, X(37558), X(52384)}}
X(64106) = barycentric product X(i)*X(j) for these (i, j): {278, 64107}, {26591, 56}, {31397, 57}
X(64106) = barycentric quotient X(i)/X(j) for these (i, j): {26591, 3596}, {31397, 312}, {39779, 28808}, {64107, 345}
X(64106) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1617, 1319}, {57, 517, 65}, {65, 1319, 354}, {65, 5919, 2099}, {758, 4315, 17625}, {3878, 4298, 12709}, {4292, 12672, 17634}, {4293, 6001, 63995}, {5434, 64041, 8581}, {7354, 64042, 12688}, {8581, 31165, 64041}, {39779, 64107, 31397}
X(64107) lies on these lines: {1, 5920}, {2, 392}, {3, 63}, {4, 5044}, {5, 37585}, {8, 6865}, {9, 1012}, {10, 6831}, {20, 3876}, {21, 44861}, {29, 1872}, {30, 5927}, {35, 12711}, {36, 17625}, {37, 63982}, {40, 936}, {46, 12709}, {65, 5432}, {71, 34591}, {80, 58666}, {104, 60970}, {140, 5439}, {144, 2096}, {165, 5692}, {191, 17649}, {201, 17102}, {210, 515}, {212, 46974}, {307, 1565}, {329, 6916}, {354, 5298}, {355, 3697}, {376, 971}, {377, 5812}, {386, 37528}, {404, 37623}, {405, 37531}, {411, 3579}, {443, 5758}, {474, 5709}, {516, 10176}, {518, 3576}, {549, 10202}, {550, 31835}, {580, 37539}, {602, 5266}, {631, 942}, {758, 10164}, {908, 6907}, {916, 64100}, {938, 9957}, {944, 20007}, {946, 3925}, {956, 17658}, {958, 63391}, {962, 6864}, {965, 1766}, {975, 5706}, {993, 50371}, {997, 3428}, {999, 1445}, {1001, 37569}, {1006, 5728}, {1038, 7078}, {1155, 64041}, {1210, 3057}, {1214, 22350}, {1385, 3555}, {1387, 61016}, {1420, 17624}, {1482, 31838}, {1490, 37426}, {1512, 3820}, {1532, 3452}, {1593, 41609}, {1698, 7686}, {1807, 47487}, {1858, 5217}, {1864, 4304}, {1871, 7513}, {1898, 15338}, {2077, 4640}, {2095, 3306}, {2287, 4221}, {2551, 58649}, {2646, 41538}, {2771, 15055}, {2800, 6174}, {2801, 4134}, {2949, 37583}, {3090, 5806}, {3219, 6909}, {3305, 6913}, {3359, 41389}, {3419, 6827}, {3421, 51380}, {3487, 37407}, {3488, 64157}, {3522, 12528}, {3523, 3868}, {3524, 11227}, {3528, 31805}, {3530, 24475}, {3587, 5720}, {3601, 44547}, {3624, 13374}, {3678, 4297}, {3681, 5731}, {3740, 5587}, {3786, 7415}, {3812, 31423}, {3832, 31822}, {3869, 6988}, {3872, 51378}, {3873, 54445}, {3878, 6700}, {3880, 63143}, {3884, 9843}, {3890, 13600}, {3921, 5790}, {3928, 21164}, {3929, 52027}, {3956, 38155}, {3962, 5884}, {4004, 64044}, {4005, 12680}, {4018, 34339}, {4294, 64131}, {4420, 64116}, {4533, 18481}, {4641, 37469}, {4662, 5881}, {4679, 26333}, {5218, 50195}, {5220, 63991}, {5223, 63430}, {5250, 10306}, {5251, 5538}, {5265, 58576}, {5273, 6935}, {5293, 37570}, {5316, 7682}, {5328, 6969}, {5433, 64046}, {5584, 6261}, {5658, 37427}, {5690, 6734}, {5691, 58631}, {5693, 9943}, {5694, 31663}, {5697, 17622}, {5705, 5836}, {5722, 6947}, {5759, 50701}, {5761, 6989}, {5763, 8728}, {5771, 59491}, {5780, 37411}, {5784, 63438}, {5787, 6899}, {5791, 6833}, {5804, 17559}, {5805, 6854}, {5883, 58441}, {5903, 9588}, {5904, 7987}, {5918, 63276}, {5919, 28234}, {6051, 37529}, {6211, 63423}, {6326, 7688}, {6361, 9856}, {6769, 31435}, {6828, 9956}, {6835, 12699}, {6850, 58798}, {6855, 9780}, {6870, 61261}, {6876, 40262}, {6883, 37533}, {6889, 11374}, {6894, 22793}, {6895, 18480}, {6897, 57282}, {6906, 26878}, {6911, 37584}, {6912, 27065}, {6918, 12702}, {6925, 31018}, {6927, 31798}, {6932, 27131}, {6936, 9844}, {6940, 37582}, {6955, 60946}, {6966, 55868}, {6987, 64171}, {6991, 9955}, {7288, 50196}, {7330, 37022}, {7982, 58679}, {7989, 16616}, {7991, 45776}, {8100, 8127}, {8128, 12491}, {8583, 50203}, {8726, 11523}, {9021, 21167}, {9568, 57719}, {9864, 58662}, {9945, 12691}, {10039, 15844}, {10175, 44847}, {10179, 16200}, {10270, 54290}, {10304, 11220}, {10310, 12514}, {10391, 18397}, {10519, 34381}, {10531, 50399}, {10902, 56176}, {10953, 54304}, {10984, 42463}, {11012, 59691}, {11248, 11344}, {11249, 17614}, {11495, 50528}, {11500, 59340}, {11827, 17647}, {12114, 41229}, {12368, 58671}, {12512, 31803}, {12526, 37560}, {12616, 21677}, {12664, 40661}, {12665, 38759}, {12688, 20117}, {12704, 25524}, {12751, 58663}, {12784, 58673}, {13145, 31447}, {13178, 58661}, {13211, 58654}, {13329, 30115}, {13348, 29958}, {14740, 64191}, {15064, 28164}, {15071, 16192}, {15185, 52769}, {15325, 17626}, {15726, 61705}, {15852, 37732}, {15908, 21616}, {16139, 35979}, {16371, 17612}, {16410, 19861}, {16418, 59381}, {16465, 37106}, {17529, 55108}, {17603, 18389}, {17613, 35238}, {17642, 44675}, {17654, 64139}, {17661, 38761}, {18236, 62357}, {18254, 24466}, {18412, 53054}, {18641, 22076}, {19262, 27396}, {20013, 37727}, {20846, 26285}, {21617, 39542}, {21629, 38386}, {21871, 40942}, {21872, 46830}, {22753, 41338}, {22937, 26086}, {24914, 64043}, {26286, 37301}, {27385, 37562}, {28381, 48882}, {28466, 33595}, {30267, 54150}, {31162, 38150}, {31397, 39779}, {31775, 64002}, {31787, 64021}, {31789, 57287}, {31836, 34783}, {31937, 50695}, {34862, 37403}, {35239, 45770}, {36029, 59681}, {37180, 51490}, {37229, 59318}, {37281, 64003}, {37374, 51755}, {37462, 55109}, {37468, 57284}, {37526, 54422}, {37568, 64042}, {37600, 54192}, {37613, 58378}, {37837, 59320}, {38113, 50202}, {38127, 61032}, {38140, 52269}, {39885, 58653}, {40659, 43161}, {41012, 50206}, {41228, 51489}, {43652, 47371}, {45186, 58497}, {50896, 58665}, {50899, 58670}, {50903, 58664}, {54145, 58449}, {54433, 55112}, {54447, 58451}, {58648, 64111}, {58688, 59388}, {58808, 64197}, {59387, 63961}, {63266, 64074}
X(64107) = midpoint of X(i) and X(j) for these {i,j}: {1, 15104}, {72, 10167}, {165, 5692}, {3681, 5731}, {3877, 59417}, {10157, 31793}
X(64107) = reflection of X(i) in X(j) for these {i,j}: {4, 10157}, {354, 10165}, {942, 10156}, {1071, 10167}, {3753, 26446}, {5587, 3740}, {5883, 58441}, {10157, 5044}, {10167, 3}, {10202, 549}, {11227, 33575}, {15104, 63976}, {16200, 10179}, {18908, 210}, {24473, 10202}, {38155, 3956}
X(64107) = pole of line {3303, 37740} with respect to the Feuerbach hyperbola
X(64107) = pole of line {1071, 22076} with respect to the Jerabek hyperbola
X(64107) = pole of line {28, 9940} with respect to the Stammler hyperbola
X(64107) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(957)}}, {{A, B, C, X(63), X(30500)}}, {{A, B, C, X(72), X(44861)}}, {{A, B, C, X(78), X(7160)}}, {{A, B, C, X(104), X(10167)}}, {{A, B, C, X(1071), X(1791)}}, {{A, B, C, X(3998), X(26591)}}
X(64107) = barycentric product X(i)*X(j) for these (i, j): {345, 64106}, {26591, 3}, {30680, 39779}, {31397, 63}
X(64107) = barycentric quotient X(i)/X(j) for these (i, j): {26591, 264}, {31397, 92}, {64106, 278}
X(64107) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 26921, 3916}, {3, 31837, 72}, {3, 3927, 63399}, {3, 3940, 18446}, {3, 72, 1071}, {3, 78, 33597}, {3, 912, 10167}, {9, 6282, 1012}, {20, 3876, 5777}, {40, 936, 3149}, {40, 960, 12672}, {72, 10167, 912}, {140, 24474, 5439}, {165, 5692, 6001}, {191, 59326, 64118}, {201, 22072, 17102}, {210, 515, 18908}, {517, 26446, 3753}, {550, 31835, 40263}, {960, 58637, 40}, {1490, 37551, 37426}, {3523, 3868, 9940}, {3587, 5720, 7580}, {3678, 4297, 14872}, {3877, 59417, 517}, {4005, 12680, 63967}, {5044, 31793, 4}, {5693, 35242, 9943}, {5904, 7987, 12675}, {6684, 31806, 65}, {6925, 31018, 37822}, {6986, 34772, 1385}, {7957, 25917, 946}, {11227, 33575, 3524}, {18397, 30282, 10391}, {20007, 37423, 944}, {20117, 31730, 12688}, {21677, 50031, 12616}, {24929, 31658, 1006}, {31397, 64106, 39779}, {31423, 37625, 3812}, {54051, 59418, 376}, {57284, 64004, 37468}, {64139, 64193, 17654}
X(64108) lies on these lines: {1, 15717}, {2, 165}, {3, 8}, {4, 11231}, {5, 10248}, {7, 1155}, {9, 56263}, {10, 3522}, {11, 30312}, {20, 5587}, {21, 26062}, {30, 61260}, {35, 938}, {40, 3306}, {46, 5703}, {55, 5435}, {57, 5281}, {63, 64083}, {140, 6361}, {144, 6745}, {145, 7987}, {189, 39558}, {210, 10178}, {226, 63207}, {329, 21168}, {355, 3528}, {376, 26446}, {381, 28182}, {382, 61262}, {390, 3911}, {392, 33575}, {404, 5584}, {497, 61649}, {515, 10304}, {517, 3524}, {519, 15705}, {548, 38138}, {549, 5603}, {550, 5818}, {551, 61806}, {631, 962}, {632, 48661}, {658, 3160}, {750, 5308}, {899, 1742}, {908, 62710}, {927, 43080}, {946, 10303}, {971, 63961}, {990, 5297}, {991, 3240}, {1000, 5126}, {1006, 35238}, {1054, 16020}, {1056, 5122}, {1125, 20070}, {1158, 54228}, {1253, 9364}, {1293, 9095}, {1376, 5273}, {1385, 10299}, {1482, 15712}, {1483, 61790}, {1621, 6244}, {1697, 5265}, {1698, 3146}, {1709, 27065}, {1768, 60912}, {1770, 5556}, {1776, 60954}, {1788, 4313}, {2077, 37106}, {2094, 21151}, {2320, 50371}, {2476, 50031}, {2807, 7998}, {3035, 5328}, {3085, 58887}, {3086, 59316}, {3091, 10172}, {3161, 5205}, {3218, 63168}, {3219, 64129}, {3241, 3576}, {3305, 10860}, {3338, 5558}, {3416, 59581}, {3474, 5226}, {3475, 4995}, {3485, 52793}, {3486, 63756}, {3525, 12699}, {3526, 61269}, {3529, 9956}, {3530, 5734}, {3533, 9955}, {3534, 38042}, {3543, 10175}, {3545, 28146}, {3599, 17093}, {3617, 4297}, {3622, 7991}, {3623, 30389}, {3624, 5493}, {3625, 58217}, {3634, 3832}, {3654, 7967}, {3655, 15715}, {3656, 15719}, {3667, 6544}, {3679, 62063}, {3681, 10167}, {3697, 31805}, {3740, 5918}, {3757, 10856}, {3826, 10883}, {3828, 15683}, {3830, 50813}, {3839, 28150}, {3844, 14927}, {3868, 58637}, {3869, 31787}, {3870, 10857}, {3871, 8273}, {3873, 11227}, {3876, 9943}, {3890, 31798}, {3916, 5815}, {3928, 59584}, {4031, 30340}, {4188, 59320}, {4189, 59326}, {4229, 5235}, {4294, 5704}, {4295, 37572}, {4301, 46934}, {4302, 37718}, {4305, 59325}, {4308, 5204}, {4323, 37567}, {4344, 17726}, {4413, 11495}, {4420, 10884}, {4421, 24477}, {4430, 15104}, {4511, 30503}, {4640, 18228}, {4652, 7080}, {4666, 7994}, {4669, 62054}, {4745, 62072}, {4816, 58215}, {5010, 17010}, {5044, 9961}, {5047, 64074}, {5054, 28174}, {5055, 28178}, {5056, 41869}, {5059, 19925}, {5067, 22793}, {5068, 51118}, {5070, 61267}, {5080, 6916}, {5088, 52715}, {5131, 10056}, {5180, 6954}, {5212, 62985}, {5220, 13243}, {5222, 11200}, {5249, 38123}, {5260, 37022}, {5274, 31231}, {5278, 37078}, {5286, 31422}, {5304, 9574}, {5537, 52769}, {5552, 10270}, {5554, 17548}, {5660, 9809}, {5686, 46917}, {5691, 46933}, {5697, 18240}, {5745, 38200}, {5748, 44447}, {5749, 37499}, {5766, 54366}, {5790, 8703}, {5817, 7580}, {5844, 17504}, {5846, 55673}, {5851, 6172}, {5852, 25568}, {5881, 58188}, {5882, 20053}, {5901, 61811}, {5984, 51578}, {6049, 37605}, {6223, 64118}, {6409, 19065}, {6410, 19066}, {6764, 8715}, {6796, 9799}, {6857, 11024}, {6865, 52367}, {6908, 27529}, {6937, 38109}, {6940, 35239}, {6963, 23513}, {6986, 10310}, {6988, 11415}, {7074, 17074}, {7229, 29828}, {7288, 9785}, {7292, 61086}, {7320, 20323}, {7486, 18483}, {7492, 9590}, {7586, 9616}, {7671, 61660}, {7672, 17603}, {7676, 62775}, {7705, 50244}, {7718, 15750}, {7735, 31443}, {7982, 61798}, {7989, 17578}, {8055, 26265}, {8148, 61280}, {8185, 16661}, {8227, 55864}, {8582, 11106}, {9342, 19541}, {9352, 9776}, {9582, 13975}, {9589, 19862}, {9782, 55109}, {9800, 12511}, {9801, 24309}, {9960, 58660}, {10222, 61795}, {10246, 12100}, {10247, 15700}, {10268, 10527}, {10385, 17728}, {10431, 26040}, {10434, 10453}, {10449, 61124}, {10528, 16209}, {10529, 16208}, {11019, 31508}, {11037, 37582}, {11041, 37606}, {11230, 15702}, {11239, 21164}, {11362, 20050}, {11539, 28216}, {11680, 37364}, {11681, 37424}, {12245, 13624}, {12518, 58708}, {12527, 27525}, {12571, 19872}, {12577, 53057}, {12630, 51463}, {12701, 63213}, {13329, 17126}, {13405, 21454}, {13883, 43511}, {13911, 42637}, {13936, 43512}, {13973, 42638}, {14647, 54051}, {14664, 17777}, {14869, 18493}, {14891, 34718}, {14986, 61763}, {15022, 51073}, {15305, 52796}, {15338, 54361}, {15599, 27013}, {15682, 38140}, {15688, 28186}, {15689, 28190}, {15690, 50826}, {15693, 38028}, {15694, 38034}, {15696, 18357}, {15697, 50796}, {15706, 58230}, {15708, 28194}, {15709, 28198}, {15710, 28204}, {15714, 59400}, {15716, 50824}, {15720, 22791}, {15721, 31162}, {15726, 61023}, {15759, 50798}, {15931, 36845}, {15933, 59337}, {16173, 30305}, {16200, 50828}, {17051, 61159}, {17484, 60896}, {17531, 64077}, {17538, 18480}, {17558, 63141}, {17566, 26129}, {17576, 24982}, {17601, 64168}, {17613, 31658}, {17784, 59491}, {17800, 61259}, {18231, 57284}, {18250, 51576}, {18481, 21735}, {18492, 49135}, {18525, 33923}, {18788, 26626}, {19649, 26241}, {19708, 50821}, {19860, 38399}, {19875, 28164}, {19876, 34638}, {19883, 61830}, {20368, 59297}, {21629, 60423}, {22467, 37557}, {24987, 37267}, {24988, 36652}, {25055, 28228}, {26038, 37400}, {26112, 27002}, {26245, 62300}, {27003, 41338}, {27383, 37560}, {28158, 50687}, {28168, 62130}, {28202, 61899}, {28208, 62086}, {28224, 38066}, {28232, 38021}, {28236, 62056}, {28472, 42049}, {28537, 52620}, {28877, 33156}, {30116, 62320}, {30295, 60995}, {30315, 50690}, {31019, 64113}, {31145, 61778}, {31424, 59675}, {31427, 61322}, {31452, 37524}, {31752, 64025}, {31852, 63851}, {31884, 59406}, {32917, 37416}, {32931, 59620}, {33108, 37374}, {33697, 62147}, {33703, 61261}, {34122, 57006}, {34200, 34627}, {34595, 61848}, {34628, 38155}, {34648, 62129}, {34744, 56177}, {35595, 54370}, {35986, 36991}, {37163, 38134}, {37583, 41824}, {37624, 61794}, {37705, 58190}, {37714, 62102}, {37789, 54408}, {38076, 62032}, {38081, 41982}, {38083, 62017}, {38116, 55649}, {38127, 50811}, {38454, 59374}, {38759, 64141}, {38941, 56543}, {39570, 59779}, {40127, 41423}, {40256, 54199}, {40273, 46219}, {40333, 63413}, {41106, 50873}, {41348, 64160}, {42316, 51406}, {43182, 61006}, {44682, 61283}, {46853, 61251}, {46904, 54474}, {46930, 50689}, {48919, 50420}, {49524, 55651}, {50696, 59389}, {50799, 62049}, {50800, 62154}, {50803, 62018}, {50806, 61851}, {50807, 61904}, {50809, 51709}, {50812, 62160}, {50814, 51105}, {50815, 51066}, {50818, 61777}, {50819, 62073}, {50823, 61779}, {50862, 62145}, {50867, 62165}, {50872, 61805}, {51067, 51080}, {51086, 51110}, {51088, 61838}, {51192, 53094}, {51622, 51630}, {51700, 61802}, {51705, 61781}, {54052, 64148}, {54290, 59587}, {55863, 61272}, {56507, 59298}, {58487, 64050}, {61122, 63985}, {61247, 62066}, {61258, 62117}, {61293, 61785}, {61510, 62069}
X(64108) = midpoint of X(i) and X(j) for these {i,j}: {40, 61275}, {9778, 9779}, {54448, 62120}
X(64108) = reflection of X(i) in X(j) for these {i,j}: {4, 61263}, {3839, 54447}, {9779, 2}, {9812, 9779}, {38314, 54445}, {54445, 3524}, {54447, 38068}, {54448, 19875}, {61254, 10}, {61263, 11231}, {61270, 140}, {61275, 10165}
X(64108) = anticomplement of X(7988)
X(64108) = perspector of circumconic {{A, B, C, X(13136), X(32040)}}
X(64108) = X(i)-Dao conjugate of X(j) for these {i, j}: {7988, 7988}
X(64108) = pole of line {514, 48163} with respect to the orthoptic circle of the Steiner Inellipse
X(64108) = pole of line {28151, 39534} with respect to the polar circle
X(64108) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(9779), X(18025)}}, {{A, B, C, X(34234), X(55937)}}, {{A, B, C, X(38955), X(54668)}}
X(64108) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 165, 9778}, {2, 35258, 52653}, {2, 516, 9779}, {2, 9778, 9812}, {3, 5657, 5731}, {3, 61524, 944}, {10, 16192, 3522}, {20, 6684, 9780}, {40, 3523, 3616}, {55, 5435, 10580}, {57, 5281, 10578}, {100, 5744, 8}, {145, 61791, 7987}, {165, 10164, 2}, {165, 1699, 50808}, {165, 21153, 35258}, {210, 10178, 11220}, {376, 26446, 59387}, {517, 3524, 54445}, {517, 54445, 38314}, {631, 3579, 962}, {631, 962, 5550}, {944, 5657, 59503}, {1125, 63469, 20070}, {1155, 5218, 7}, {1698, 12512, 3146}, {1788, 5217, 4313}, {3474, 5432, 5226}, {3576, 59417, 3241}, {3617, 21734, 4297}, {3634, 64005, 3832}, {3654, 17502, 7967}, {3817, 10164, 50829}, {3911, 35445, 390}, {3916, 59591, 5815}, {4413, 11495, 36002}, {4421, 24477, 64146}, {5059, 46932, 19925}, {5273, 7411, 10430}, {5432, 63212, 3474}, {5537, 52769, 61155}, {6684, 35242, 20}, {7288, 37568, 9785}, {7967, 15698, 17502}, {7987, 43174, 145}, {9778, 9779, 516}, {10164, 50808, 58441}, {11231, 28154, 61263}, {12245, 61138, 13624}, {12571, 19872, 61914}, {13405, 53056, 21454}, {15692, 59417, 3576}, {17578, 46931, 7989}, {19875, 28164, 54448}, {19876, 34638, 61985}, {20070, 61820, 1125}, {28150, 38068, 54447}, {28150, 54447, 3839}, {28154, 61263, 4}, {30332, 31188, 11}, {31018, 63971, 9809}, {31423, 31730, 3091}, {31425, 35242, 6684}, {34474, 38693, 17100}, {35986, 61156, 44425}, {46933, 50693, 5691}, {50808, 58441, 1699}, {50809, 61822, 51709}, {54448, 62120, 28164}, {59503, 61524, 5657}, {62710, 63975, 908}
X(64109) lies on circumconic {{A, B, C, X(42285), X(51564)}} and on these lines: {1, 5791}, {2, 1000}, {5, 58679}, {8, 16842}, {10, 10179}, {11, 17057}, {30, 60964}, {37, 50027}, {55, 9945}, {142, 517}, {144, 1056}, {145, 31259}, {355, 7966}, {392, 495}, {442, 3890}, {496, 24987}, {514, 4364}, {515, 60901}, {518, 63643}, {519, 6666}, {551, 14563}, {632, 1125}, {952, 1001}, {996, 4422}, {999, 5744}, {1086, 17461}, {1159, 38053}, {1385, 6705}, {1483, 58415}, {1484, 3816}, {1621, 6224}, {1698, 11524}, {2320, 50843}, {2800, 31657}, {2802, 3826}, {2886, 3898}, {3057, 8728}, {3295, 19520}, {3419, 15170}, {3476, 16418}, {3577, 5886}, {3616, 11041}, {3624, 8275}, {3626, 14150}, {3634, 64205}, {3654, 5437}, {3656, 25525}, {3740, 49626}, {3820, 5316}, {3822, 38034}, {3824, 4301}, {3841, 13463}, {3877, 31019}, {3878, 6147}, {3884, 5499}, {4423, 12647}, {4752, 17369}, {4867, 37703}, {4900, 13602}, {5045, 5837}, {5218, 35272}, {5248, 31649}, {5250, 18990}, {5259, 10944}, {5284, 12531}, {5289, 5719}, {5432, 12740}, {5434, 16140}, {5436, 37727}, {5730, 10587}, {5745, 51788}, {5790, 26105}, {5794, 15172}, {5844, 54318}, {5880, 28212}, {5901, 10198}, {6690, 6713}, {6692, 50821}, {8148, 28629}, {8256, 19862}, {8583, 47742}, {9708, 18230}, {9780, 32634}, {9957, 31419}, {10039, 17527}, {10246, 64147}, {10386, 17647}, {10592, 41012}, {10609, 61155}, {10914, 24564}, {11682, 16137}, {14077, 40551}, {14923, 17529}, {16236, 25055}, {17248, 41779}, {17528, 30305}, {17563, 37568}, {18253, 62825}, {24297, 31272}, {24473, 58813}, {24864, 45213}, {25524, 61524}, {26446, 31190}, {27383, 31480}, {31794, 51723}, {32198, 58453}, {33812, 50824}, {37424, 45776}, {38025, 38211}, {45287, 50241}, {51103, 54288}, {51709, 58463}
X(64109) = midpoint of X(i) and X(j) for these {i,j}: {355, 7966}, {1000, 40587}, {36867, 36922}
X(64109) = reflection of X(i) in X(j) for these {i,j}: {15935, 42819}
X(64109) = complement of X(40587)
X(64109) = X(i)-Ceva conjugate of X(j) for these {i, j}: {52925, 900}
X(64109) = X(i)-complementary conjugate of X(j) for these {i, j}: {1000, 21251}, {2163, 40587}, {34446, 16590}
X(64109) = pole of line {62620, 63217} with respect to the Steiner inellipse
X(64109) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 36922, 36867}, {2, 1000, 40587}, {519, 42819, 15935}, {3884, 25466, 22791}, {5316, 51362, 3820}, {5730, 10587, 63282}
X(64110) lies on these lines: {1, 4}, {2, 5775}, {3, 3671}, {5, 6738}, {7, 3576}, {8, 31266}, {10, 3940}, {11, 4870}, {12, 64163}, {36, 553}, {40, 5281}, {55, 28194}, {57, 10165}, {63, 3333}, {65, 5432}, {72, 24066}, {102, 58993}, {104, 60961}, {140, 31794}, {142, 997}, {214, 60980}, {354, 15950}, {355, 3947}, {376, 4312}, {390, 31162}, {442, 6737}, {495, 519}, {496, 6744}, {498, 4848}, {516, 8255}, {517, 5719}, {527, 551}, {535, 25405}, {631, 3339}, {758, 942}, {912, 5045}, {936, 28629}, {938, 8227}, {943, 59320}, {952, 51782}, {954, 3428}, {962, 16134}, {995, 26728}, {1000, 11224}, {1006, 52819}, {1060, 18589}, {1100, 40963}, {1159, 26446}, {1210, 11375}, {1385, 4298}, {1386, 9028}, {1387, 2801}, {1537, 63258}, {1565, 2792}, {1621, 51423}, {1737, 5425}, {1770, 37571}, {1836, 4304}, {1858, 10122}, {2093, 5218}, {2099, 17718}, {2140, 52542}, {2294, 34591}, {2476, 41575}, {2646, 3649}, {2800, 50195}, {3074, 55101}, {3085, 3340}, {3086, 11518}, {3243, 34625}, {3244, 64205}, {3295, 4301}, {3361, 21165}, {3452, 54318}, {3474, 30282}, {3524, 53056}, {3577, 64148}, {3601, 4295}, {3622, 5905}, {3634, 54288}, {3636, 12577}, {3656, 4342}, {3679, 8164}, {3686, 54335}, {3743, 37565}, {3753, 6745}, {3754, 59719}, {3812, 6700}, {3817, 5722}, {3838, 44669}, {3868, 24541}, {3902, 50744}, {3911, 5902}, {3945, 41010}, {3946, 17761}, {3962, 24953}, {3982, 37525}, {4018, 7483}, {4054, 49492}, {4293, 4654}, {4297, 57282}, {4305, 9579}, {4311, 10404}, {4313, 41869}, {4314, 12699}, {4315, 10246}, {4323, 7982}, {4353, 29069}, {4355, 30389}, {4511, 5249}, {4653, 5327}, {4667, 24316}, {4757, 58404}, {4758, 25363}, {4867, 26725}, {4881, 26842}, {4995, 5183}, {5126, 43180}, {5219, 10175}, {5226, 5587}, {5261, 5881}, {5274, 15933}, {5550, 55867}, {5556, 49135}, {5657, 18421}, {5665, 6908}, {5693, 62864}, {5704, 18221}, {5726, 59388}, {5727, 10590}, {5795, 21077}, {5836, 59722}, {5837, 10198}, {5841, 15178}, {5880, 56177}, {5883, 6692}, {5884, 6705}, {5886, 11019}, {5903, 63259}, {5919, 37703}, {6001, 11018}, {6051, 25080}, {6282, 12560}, {6326, 21617}, {6666, 10176}, {6690, 44663}, {6734, 34195}, {6743, 31419}, {6766, 7160}, {6847, 9948}, {6857, 12526}, {7373, 22758}, {7675, 50528}, {8068, 41558}, {8275, 34631}, {8543, 62873}, {8545, 11038}, {8680, 15569}, {8728, 12447}, {9578, 47745}, {9623, 25568}, {9624, 14986}, {9654, 37739}, {9708, 21060}, {9843, 25681}, {9856, 12710}, {9955, 12433}, {9957, 63282}, {10039, 37731}, {10056, 25415}, {10107, 64123}, {10164, 36279}, {10283, 51788}, {10389, 30305}, {10394, 61705}, {10527, 11520}, {10529, 62861}, {10578, 31393}, {10580, 37704}, {10588, 31399}, {10591, 37723}, {10624, 37080}, {10895, 37724}, {10902, 57283}, {10916, 62860}, {10980, 25055}, {11011, 15888}, {11235, 51071}, {11237, 37740}, {11240, 62815}, {11246, 37600}, {11263, 17647}, {11373, 21625}, {11415, 62829}, {11496, 18237}, {11523, 19843}, {11608, 38220}, {11729, 18240}, {12005, 16193}, {12245, 51784}, {12263, 46180}, {12268, 31570}, {12269, 31569}, {12432, 31837}, {12436, 59691}, {12559, 24391}, {12575, 22791}, {12609, 22836}, {12625, 31418}, {12735, 50892}, {13462, 59372}, {13624, 24470}, {14794, 63288}, {15170, 43179}, {15252, 44916}, {15368, 49744}, {15844, 63963}, {15935, 18527}, {17084, 53597}, {18454, 21623}, {18456, 21624}, {19860, 21075}, {19925, 37730}, {20117, 44547}, {21454, 54445}, {21616, 30143}, {22465, 24424}, {24231, 37617}, {24331, 25353}, {24389, 42871}, {24987, 62830}, {25639, 31936}, {26015, 63159}, {28172, 61716}, {28212, 51787}, {28232, 59337}, {28236, 37728}, {29639, 49454}, {30115, 64174}, {30144, 51706}, {30284, 41857}, {30350, 61274}, {30424, 37606}, {30478, 54422}, {31164, 38314}, {31434, 38127}, {31795, 40273}, {33110, 34772}, {33815, 58405}, {34790, 58699}, {35272, 38054}, {35670, 35886}, {37605, 52783}, {37836, 42443}, {37837, 64001}, {38316, 61011}, {40256, 59335}, {40663, 61648}, {40998, 51409}, {41863, 64081}, {42289, 63982}, {43174, 50193}, {43177, 63991}, {44858, 50898}, {45770, 55108}, {46934, 55868}, {50742, 63975}, {50757, 60116}, {50908, 53055}, {51105, 53058}, {52769, 60945}, {54286, 59584}, {54424, 59644}, {54430, 59317}, {58576, 58578}, {60885, 60972}, {60937, 63430}, {63137, 63168}, {64017, 64166}
X(64110) = midpoint of X(i) and X(j) for these {i,j}: {1, 226}, {10, 62822}, {495, 50194}, {1836, 4304}, {2099, 31397}, {18389, 64041}, {24929, 39542}
X(64110) = reflection of X(i) in X(j) for these {i,j}: {10, 58463}, {942, 58626}, {5745, 1125}, {13405, 5719}, {34790, 58699}, {54288, 3634}, {62852, 5045}
X(64110) = X(i)-complementary conjugate of X(j) for these {i, j}: {3577, 3454}, {50442, 21245}, {55938, 141}
X(64110) = pole of line {522, 4707} with respect to the incircle
X(64110) = pole of line {65, 4304} with respect to the Feuerbach hyperbola
X(64110) = pole of line {4560, 14837} with respect to the Steiner inellipse
X(64110) = pole of line {57, 2245} with respect to the dual conic of Yff parabola
X(64110) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(55091)}}, {{A, B, C, X(102), X(14547)}}, {{A, B, C, X(278), X(55090)}}, {{A, B, C, X(515), X(60041)}}, {{A, B, C, X(3486), X(54972)}}, {{A, B, C, X(5745), X(39768)}}, {{A, B, C, X(23987), X(58993)}}
X(64110) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10106, 13607}, {1, 11522, 1058}, {1, 12047, 950}, {1, 12053, 40270}, {1, 13407, 10106}, {1, 1699, 3488}, {1, 226, 515}, {1, 3485, 946}, {1, 3487, 21620}, {1, 388, 5882}, {1, 5290, 944}, {1, 9612, 3486}, {36, 11551, 553}, {65, 13411, 6684}, {354, 15950, 44675}, {354, 64041, 18389}, {495, 50194, 519}, {517, 5719, 13405}, {551, 5542, 999}, {758, 1125, 5745}, {912, 5045, 62852}, {942, 16137, 12563}, {942, 37737, 1125}, {950, 12047, 18483}, {1125, 12563, 942}, {1125, 18249, 6675}, {1385, 6147, 4298}, {1836, 4304, 28150}, {2099, 17718, 31397}, {2099, 31397, 28234}, {2646, 3649, 4292}, {3486, 9612, 31673}, {3601, 4295, 31730}, {3616, 11036, 3333}, {3622, 11037, 61762}, {3636, 12577, 24928}, {3754, 59719, 63990}, {4293, 13384, 51705}, {4312, 53054, 376}, {4654, 13384, 4293}, {5219, 18391, 10175}, {5425, 37701, 1737}, {5727, 10590, 50796}, {5886, 15934, 11019}, {10404, 34471, 4311}, {12559, 26363, 24391}, {12563, 37737, 64124}, {12609, 22836, 57284}, {12635, 28628, 10}, {24929, 39542, 516}, {41870, 61762, 11037}
X(64111) lies on these lines: {1, 6865}, {2, 3428}, {3, 388}, {4, 9}, {5, 19855}, {8, 3427}, {12, 5584}, {20, 100}, {30, 6244}, {35, 59345}, {46, 10629}, {55, 6987}, {56, 6926}, {63, 14647}, {65, 5758}, {80, 55964}, {84, 12527}, {104, 34610}, {165, 1478}, {197, 36029}, {200, 515}, {226, 30503}, {329, 6001}, {347, 56874}, {355, 6851}, {376, 535}, {382, 31777}, {404, 64079}, {411, 5552}, {443, 6684}, {452, 11496}, {496, 8158}, {497, 517}, {498, 6988}, {518, 5768}, {529, 63991}, {631, 10198}, {908, 64150}, {938, 7672}, {944, 3811}, {946, 5084}, {950, 6769}, {956, 37374}, {958, 6847}, {962, 2478}, {993, 6935}, {999, 37364}, {1056, 3576}, {1058, 4342}, {1064, 63089}, {1072, 4000}, {1103, 5930}, {1329, 6848}, {1376, 50701}, {1479, 7991}, {1490, 21075}, {1621, 6992}, {1698, 6864}, {1699, 6939}, {1737, 41338}, {1788, 5709}, {1837, 7957}, {2096, 64129}, {2723, 2742}, {2802, 6903}, {2886, 6844}, {2975, 6890}, {3086, 6922}, {3091, 15908}, {3146, 11826}, {3176, 61178}, {3359, 3474}, {3434, 6840}, {3452, 63992}, {3475, 18443}, {3476, 37611}, {3486, 37531}, {3488, 37569}, {3522, 20060}, {3524, 10197}, {3579, 5229}, {3583, 63468}, {3585, 63469}, {3586, 7994}, {3617, 6895}, {3651, 10786}, {3654, 37820}, {3814, 6969}, {3820, 19541}, {3925, 6843}, {3927, 33899}, {4222, 9911}, {4292, 37560}, {4294, 10306}, {4295, 5812}, {4297, 59722}, {4298, 37526}, {4299, 59326}, {4302, 5537}, {4321, 8726}, {4329, 57810}, {5046, 20070}, {5080, 6925}, {5082, 11362}, {5177, 10894}, {5217, 18962}, {5225, 6928}, {5260, 6837}, {5261, 37108}, {5270, 16192}, {5285, 37028}, {5603, 6947}, {5658, 50528}, {5731, 50371}, {5762, 36279}, {5787, 34790}, {5794, 58637}, {5811, 12688}, {5815, 9799}, {5841, 6948}, {5842, 17784}, {5881, 6743}, {5883, 60895}, {5918, 12678}, {6245, 57279}, {6247, 63435}, {6256, 31730}, {6260, 12565}, {6600, 34619}, {6705, 62824}, {6713, 6891}, {6745, 52026}, {6796, 59591}, {6825, 10588}, {6826, 26040}, {6831, 19843}, {6833, 30478}, {6834, 64008}, {6835, 9780}, {6838, 11681}, {6849, 9956}, {6855, 19854}, {6868, 11248}, {6869, 11499}, {6882, 10589}, {6893, 12699}, {6894, 46933}, {6902, 10531}, {6905, 59572}, {6907, 10590}, {6917, 61524}, {6919, 7681}, {6927, 26364}, {6929, 28174}, {6937, 10599}, {6943, 10527}, {6956, 26363}, {6957, 9812}, {6961, 26286}, {6962, 27529}, {7070, 51375}, {7074, 51421}, {7412, 8193}, {7491, 35448}, {7580, 17757}, {7688, 8164}, {7952, 54295}, {8227, 17559}, {8270, 34231}, {8273, 15888}, {8727, 9708}, {9441, 37716}, {9578, 37551}, {9654, 37424}, {9709, 20420}, {10039, 59340}, {10056, 15931}, {10321, 59317}, {10365, 52097}, {10385, 10679}, {10431, 59387}, {10522, 56288}, {10595, 11014}, {10953, 37567}, {11114, 30513}, {11236, 11495}, {11929, 37401}, {12432, 37625}, {12520, 21077}, {15177, 37441}, {17582, 31423}, {17857, 64144}, {18242, 37421}, {18446, 25568}, {18481, 64116}, {18516, 28146}, {18908, 40659}, {20368, 26929}, {22350, 56821}, {22793, 31797}, {23512, 23600}, {24987, 49183}, {25440, 64075}, {25466, 37407}, {26285, 35250}, {26333, 28194}, {26935, 37384}, {26942, 63436}, {27383, 37837}, {28466, 61533}, {31141, 34618}, {31787, 57282}, {34607, 37000}, {34612, 36999}, {34620, 38759}, {34630, 52836}, {35513, 36984}, {36986, 52398}, {37002, 37403}, {37022, 64120}, {37822, 64130}, {54051, 64083}, {54133, 60975}, {57288, 64074}, {58648, 64107}, {58798, 63962}, {60086, 60158}, {63980, 64081}, {63985, 64002}
X(64111) = midpoint of X(i) and X(j) for these {i,j}: {3586, 7994}
X(64111) = reflection of X(i) in X(j) for these {i,j}: {497, 6827}, {999, 37364}, {2096, 64129}, {3474, 3359}, {3476, 37611}, {4293, 3}, {6948, 35238}, {7982, 4342}, {19541, 3820}, {50701, 1376}, {63992, 3452}, {64130, 37822}
X(64111) = anticomplement of X(22753)
X(64111) = X(i)-Dao conjugate of X(j) for these {i, j}: {22753, 22753}
X(64111) = pole of line {1864, 5252} with respect to the Feuerbach hyperbola
X(64111) = pole of line {101, 2406} with respect to the Yff parabola
X(64111) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(19), X(1295)}}, {{A, B, C, X(281), X(1065)}}, {{A, B, C, X(3345), X(7713)}}, {{A, B, C, X(46878), X(60158)}}
X(64111) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 38149, 18406}, {4, 5657, 2550}, {12, 5584, 6908}, {20, 3436, 12667}, {20, 7080, 11500}, {56, 50031, 6926}, {165, 1478, 6916}, {498, 59320, 6988}, {517, 6827, 497}, {1329, 64077, 6848}, {3579, 10526, 6850}, {5080, 9778, 6925}, {5603, 6947, 26105}, {5657, 5759, 40}, {5657, 6361, 48363}, {5812, 31788, 4295}, {5815, 9799, 14872}, {6684, 26332, 443}, {6826, 26446, 26040}, {6840, 59417, 3434}, {6850, 10526, 5229}, {6891, 11249, 7288}, {6903, 12245, 12116}, {6922, 22770, 3086}, {7580, 17757, 64148}, {10310, 11827, 20}, {63985, 64002, 64190}
X(64112) lies on these lines: {1, 88}, {2, 165}, {3, 38399}, {4, 10270}, {7, 6745}, {8, 3361}, {9, 1155}, {10, 4293}, {11, 31190}, {20, 8582}, {21, 16192}, {31, 23511}, {35, 37282}, {36, 9623}, {40, 392}, {43, 62812}, {46, 936}, {55, 5437}, {56, 1706}, {57, 200}, {63, 5785}, {65, 5438}, {78, 3339}, {142, 5218}, {171, 2999}, {193, 5212}, {210, 3928}, {226, 59572}, {238, 54390}, {269, 9364}, {329, 20103}, {354, 3158}, {355, 13226}, {377, 1698}, {388, 63990}, {405, 35242}, {442, 16113}, {443, 6684}, {452, 12512}, {480, 60955}, {497, 6692}, {513, 2441}, {515, 21164}, {517, 16417}, {519, 64151}, {535, 5131}, {553, 25568}, {612, 46901}, {614, 8056}, {631, 10268}, {658, 9312}, {896, 3973}, {899, 1743}, {902, 60846}, {908, 4312}, {946, 17567}, {960, 5128}, {968, 17124}, {997, 2093}, {999, 63137}, {1001, 35445}, {1004, 5732}, {1103, 3075}, {1125, 30305}, {1201, 45047}, {1329, 9579}, {1385, 17573}, {1420, 5836}, {1490, 59333}, {1512, 6955}, {1621, 31508}, {1697, 10179}, {1707, 2239}, {1709, 61740}, {1722, 37091}, {1730, 11358}, {1750, 35990}, {1768, 64197}, {1788, 57284}, {1836, 30827}, {2077, 37249}, {2094, 5850}, {2136, 3304}, {2270, 2297}, {2475, 7989}, {2478, 64005}, {2550, 3911}, {2771, 5720}, {2829, 5587}, {2886, 31231}, {2951, 36002}, {3011, 4859}, {3035, 5219}, {3052, 16602}, {3062, 61012}, {3085, 12436}, {3149, 12565}, {3174, 60985}, {3218, 5223}, {3219, 30393}, {3243, 3689}, {3246, 39963}, {3305, 9342}, {3333, 5687}, {3336, 54422}, {3338, 6765}, {3340, 59691}, {3359, 6911}, {3452, 3474}, {3475, 59584}, {3487, 59587}, {3501, 4936}, {3523, 11024}, {3550, 5272}, {3576, 3753}, {3577, 50371}, {3579, 16408}, {3600, 6736}, {3601, 3812}, {3616, 4342}, {3617, 53057}, {3624, 6921}, {3634, 5177}, {3646, 16862}, {3671, 27383}, {3679, 64153}, {3680, 20323}, {3683, 51780}, {3698, 5204}, {3729, 5205}, {3731, 4414}, {3740, 3929}, {3742, 4421}, {3744, 5573}, {3749, 17063}, {3751, 56009}, {3752, 5269}, {3816, 9580}, {3826, 37363}, {3848, 4428}, {3870, 10980}, {3872, 13462}, {3873, 64135}, {3877, 36006}, {3880, 40726}, {3922, 34471}, {3957, 30350}, {3961, 18193}, {4061, 37655}, {4187, 41869}, {4188, 7987}, {4190, 5691}, {4191, 10434}, {4294, 9843}, {4295, 6700}, {4297, 37267}, {4298, 7080}, {4326, 10177}, {4402, 50754}, {4418, 26265}, {4423, 63211}, {4511, 18421}, {4640, 7308}, {4652, 5234}, {4847, 5435}, {4869, 50753}, {4881, 30392}, {4882, 62874}, {4902, 32856}, {4915, 54391}, {4917, 62854}, {5010, 37300}, {5044, 54290}, {5082, 64124}, {5084, 31730}, {5122, 9708}, {5126, 40587}, {5217, 5436}, {5221, 11523}, {5250, 17531}, {5255, 11512}, {5268, 17596}, {5275, 9574}, {5277, 9593}, {5283, 31421}, {5290, 5552}, {5316, 5698}, {5330, 58245}, {5338, 57534}, {5432, 25525}, {5440, 11529}, {5534, 37612}, {5537, 43166}, {5542, 63168}, {5563, 12629}, {5708, 41863}, {5745, 26040}, {5790, 19706}, {5819, 8568}, {5853, 31146}, {5856, 6173}, {5881, 17583}, {5886, 17564}, {6175, 19876}, {6205, 54330}, {6244, 16411}, {6690, 41867}, {6691, 50443}, {6762, 32636}, {6796, 8726}, {6872, 25011}, {6905, 30503}, {6915, 63985}, {6918, 12705}, {6919, 51118}, {6933, 19872}, {7171, 18491}, {7174, 17595}, {7290, 16610}, {7292, 16487}, {7982, 17614}, {7991, 17572}, {8167, 63214}, {8227, 13747}, {8256, 37709}, {8257, 60782}, {8581, 51380}, {8727, 25973}, {9337, 17715}, {9350, 62820}, {9441, 16412}, {9458, 53337}, {9578, 37828}, {9588, 24987}, {9589, 41012}, {9612, 26364}, {9614, 10200}, {9616, 31473}, {9709, 37582}, {9776, 13405}, {9814, 60935}, {9819, 63136}, {9957, 63138}, {9965, 21060}, {10241, 10860}, {10310, 12651}, {10382, 11502}, {10856, 37261}, {10857, 35977}, {10914, 61762}, {11019, 17784}, {11108, 31663}, {11231, 17528}, {11246, 28609}, {11329, 35291}, {11372, 17613}, {11499, 37534}, {11500, 37526}, {11518, 56176}, {11680, 31224}, {12560, 37541}, {12650, 37561}, {12699, 25522}, {13587, 58221}, {13588, 17194}, {14022, 52835}, {14439, 40131}, {15254, 61158}, {15599, 25955}, {15733, 61660}, {15829, 37567}, {15931, 37309}, {16059, 37619}, {16208, 24541}, {16451, 61124}, {16469, 17126}, {16485, 37589}, {16496, 18201}, {16589, 31422}, {16832, 32917}, {17022, 17122}, {17151, 17763}, {17529, 31425}, {17532, 54447}, {17566, 34595}, {17577, 61264}, {17619, 18492}, {17642, 58623}, {17721, 43055}, {17728, 24392}, {17768, 31142}, {18229, 32918}, {19329, 61221}, {19877, 37161}, {19925, 37435}, {20196, 24703}, {20292, 30852}, {21454, 64083}, {21620, 59591}, {21625, 56936}, {24174, 37552}, {24280, 62297}, {24309, 33849}, {25005, 37714}, {25557, 35023}, {25590, 29828}, {26229, 53381}, {28043, 51302}, {28522, 29649}, {30282, 54318}, {30567, 32932}, {31018, 60905}, {31140, 61649}, {31673, 57000}, {32845, 55998}, {32916, 37092}, {33144, 59593}, {33153, 63584}, {34123, 61275}, {34247, 62739}, {34607, 64162}, {34790, 37545}, {35238, 50204}, {35595, 36835}, {35613, 63131}, {35994, 55478}, {36277, 37680}, {36603, 42040}, {37248, 59326}, {37278, 39585}, {37524, 41229}, {37553, 37674}, {37684, 49495}, {37764, 48627}, {38057, 46916}, {38460, 53058}, {42819, 61153}, {43151, 60959}, {43182, 61009}, {43290, 49499}, {46684, 54370}, {47742, 57282}, {48696, 51816}, {49446, 62300}, {50240, 61261}, {50843, 61285}, {51066, 51113}, {51415, 64016}, {59415, 61254}, {60982, 61035}
X(64112) = midpoint of X(i) and X(j) for these {i,j}: {57, 46917}
X(64112) = reflection of X(i) in X(j) for these {i,j}: {200, 46917}, {46917, 1376}
X(64112) = perspector of circumconic {{A, B, C, X(3257), X(32040)}}
X(64112) = pole of line {2827, 54261} with respect to the incircle
X(64112) = pole of line {3243, 5048} with respect to the Feuerbach hyperbola
X(64112) = pole of line {52680, 58221} with respect to the Stammler hyperbola
X(64112) = pole of line {908, 5222} with respect to the dual conic of Yff parabola
X(64112) = intersection, other than A, B, C, of circumconics {{A, B, C, X(88), X(4454)}}, {{A, B, C, X(100), X(55993)}}, {{A, B, C, X(106), X(52013)}}, {{A, B, C, X(294), X(46917)}}, {{A, B, C, X(513), X(62695)}}, {{A, B, C, X(1320), X(39959)}}, {{A, B, C, X(4674), X(54668)}}, {{A, B, C, X(5223), X(50836)}}
X(64112) = barycentric product X(i)*X(j) for these (i, j): {1, 4454}
X(64112) = barycentric quotient X(i)/X(j) for these (i, j): {4454, 75}
X(64112) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1054, 62695}, {2, 165, 4512}, {2, 9778, 40998}, {10, 15803, 62824}, {40, 474, 8583}, {46, 936, 12526}, {55, 5437, 10582}, {57, 200, 62823}, {57, 46917, 518}, {63, 9352, 53056}, {100, 3306, 1}, {171, 2999, 62842}, {497, 6692, 31249}, {518, 1376, 46917}, {518, 46917, 200}, {1054, 9324, 58863}, {1155, 4413, 9}, {3035, 5880, 5219}, {3149, 37560, 12565}, {3359, 6911, 63992}, {3550, 5272, 62875}, {3579, 16408, 31435}, {3689, 4860, 3243}, {3742, 4421, 10389}, {3753, 16371, 3576}, {3870, 27003, 10980}, {4188, 19860, 7987}, {4190, 24982, 5691}, {4652, 9780, 5234}, {5268, 17596, 62818}, {6904, 26062, 10}, {7308, 63207, 4640}, {8580, 53056, 63}, {16610, 37540, 7290}, {17122, 17594, 17022}, {17619, 50239, 18492}, {17784, 62773, 11019}, {62837, 63142, 11519}
X(64113) lies on circumconic {{A, B, C, X(5553), X(14377)}} and on these lines: {1, 30379}, {2, 1709}, {3, 142}, {4, 43178}, {5, 15726}, {7, 46}, {9, 2252}, {10, 1071}, {35, 63254}, {40, 6173}, {65, 5542}, {72, 61035}, {140, 12608}, {165, 5249}, {226, 1155}, {377, 5691}, {390, 3612}, {442, 38204}, {443, 12520}, {498, 8545}, {517, 25557}, {518, 5690}, {527, 6684}, {528, 1385}, {549, 28534}, {551, 50371}, {631, 5698}, {908, 60905}, {942, 8255}, {944, 2550}, {954, 11509}, {962, 59374}, {971, 3826}, {991, 1738}, {1158, 6989}, {1445, 17700}, {1454, 52819}, {1478, 8544}, {1482, 38065}, {1698, 64197}, {1737, 10394}, {1742, 53599}, {1768, 54357}, {1770, 6986}, {1890, 37117}, {2646, 30331}, {2886, 11227}, {2951, 6836}, {3057, 38055}, {3254, 34486}, {3336, 60932}, {3452, 58441}, {3523, 12047}, {3576, 6955}, {3579, 38454}, {3584, 60952}, {3624, 6966}, {3634, 6260}, {3652, 58449}, {3671, 54205}, {3754, 54178}, {3812, 37424}, {3816, 10156}, {3817, 7965}, {3833, 7682}, {3836, 12618}, {3838, 37364}, {3841, 6245}, {3848, 7956}, {3874, 41570}, {3925, 10167}, {4190, 43161}, {4295, 30275}, {4297, 6253}, {4312, 21153}, {5119, 60926}, {5218, 64115}, {5220, 26446}, {5231, 11407}, {5316, 21635}, {5436, 64076}, {5445, 41700}, {5696, 6734}, {5729, 24914}, {5759, 60991}, {5794, 43176}, {5843, 15481}, {5851, 11231}, {5853, 13607}, {5918, 8226}, {6147, 58637}, {6666, 60911}, {6675, 64128}, {6712, 49631}, {6825, 8257}, {6831, 63973}, {6833, 11372}, {6854, 50528}, {6862, 58433}, {6863, 15297}, {6890, 38037}, {6908, 60987}, {6910, 16209}, {6916, 54318}, {6940, 64154}, {6984, 59389}, {7483, 38059}, {8227, 38093}, {8727, 10178}, {8728, 9943}, {9612, 30353}, {9746, 51400}, {9778, 27186}, {9809, 35595}, {9842, 50740}, {9940, 10916}, {10177, 15908}, {10198, 37560}, {10269, 42842}, {10572, 37163}, {10595, 35514}, {10860, 41867}, {11019, 17603}, {11531, 38024}, {12005, 61030}, {12053, 37600}, {12245, 51099}, {12514, 37407}, {12573, 59317}, {12645, 38121}, {12647, 30318}, {12679, 16842}, {12688, 17529}, {12704, 54158}, {13257, 61686}, {13329, 50307}, {13405, 37541}, {13750, 30329}, {14110, 38054}, {15064, 41561}, {15299, 60925}, {15570, 61597}, {15931, 36003}, {16112, 38108}, {16203, 42886}, {17167, 35997}, {17528, 19925}, {17768, 22937}, {18450, 45287}, {18482, 38172}, {19862, 63266}, {20070, 59340}, {20330, 38111}, {21075, 44785}, {21620, 36279}, {22768, 42884}, {25466, 31787}, {25993, 39531}, {26363, 37526}, {27385, 60885}, {27529, 60935}, {30332, 30384}, {30340, 59417}, {31019, 64108}, {31419, 58567}, {31777, 51715}, {33149, 54474}, {36866, 38130}, {36976, 59316}, {36996, 38057}, {37356, 42356}, {37428, 38094}, {37462, 63988}, {37606, 63993}, {37612, 54203}, {38030, 42871}, {41012, 50836}, {41555, 49627}, {41861, 63265}, {42819, 51700}, {48888, 59688}, {51102, 61296}, {55104, 61011}, {59318, 60980}, {59637, 62673}
X(64113) = midpoint of X(i) and X(j) for these {i,j}: {3, 5880}, {4, 43178}, {9, 60896}, {10, 43177}, {40, 60895}, {5805, 11495}, {6916, 54318}, {19925, 43181}, {43174, 43180}, {43182, 63970}, {54370, 63971}
X(64113) = reflection of X(i) in X(j) for these {i,j}: {15254, 140}, {42356, 61595}, {60911, 6666}, {60912, 6684}
X(64113) = complement of X(54370)
X(64113) = pole of line {3887, 48012} with respect to the excircles-radical circle
X(64113) = pole of line {21185, 47887} with respect to the incircle
X(64113) = pole of line {3935, 44435} with respect to the orthoptic circle of the Steiner Inellipse
X(64113) = pole of line {6, 7190} with respect to the dual conic of Yff parabola
X(64113) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63971, 54370}, {3, 5880, 516}, {10, 43177, 2801}, {40, 6173, 60895}, {142, 5880, 12609}, {527, 6684, 60912}, {3836, 59620, 12618}, {8728, 9943, 12617}, {10394, 30312, 1737}, {21620, 61022, 43180}, {31590, 31591, 5074}, {33428, 33429, 34847}, {37438, 40296, 12616}, {38204, 43182, 63970}, {60925, 61019, 15299}
X(64114) lies on these lines: {1, 10303}, {2, 7}, {3, 5704}, {4, 5122}, {8, 1319}, {10, 4308}, {11, 9778}, {36, 59387}, {56, 9780}, {65, 3848}, {77, 23511}, {140, 5703}, {145, 59584}, {165, 5274}, {190, 6557}, {222, 37680}, {241, 16602}, {278, 39962}, {279, 31183}, {348, 31189}, {388, 19877}, {390, 10164}, {479, 37757}, {484, 499}, {497, 61649}, {498, 11037}, {547, 18541}, {549, 3488}, {631, 938}, {632, 5708}, {651, 37679}, {653, 17917}, {658, 31192}, {673, 38254}, {748, 9364}, {942, 3525}, {944, 11545}, {950, 15717}, {997, 5775}, {1000, 50821}, {1056, 11231}, {1058, 51787}, {1125, 4323}, {1155, 9812}, {1210, 3523}, {1376, 7677}, {1387, 50810}, {1388, 20050}, {1420, 3617}, {1429, 29579}, {1442, 2999}, {1443, 54390}, {1458, 16569}, {1465, 18624}, {1466, 5047}, {1471, 17122}, {1479, 5442}, {1532, 54052}, {1538, 14646}, {1698, 3600}, {1737, 5731}, {1788, 2099}, {1876, 38282}, {1892, 52299}, {1997, 3161}, {2003, 14997}, {2886, 30312}, {3008, 3160}, {3035, 14151}, {3085, 51816}, {3086, 5119}, {3090, 37582}, {3091, 15803}, {3146, 51792}, {3158, 12630}, {3212, 31225}, {3241, 40663}, {3339, 19862}, {3340, 46934}, {3361, 3634}, {3474, 9779}, {3476, 5298}, {3487, 3526}, {3522, 9581}, {3524, 5722}, {3533, 11374}, {3579, 47743}, {3582, 30305}, {3586, 10304}, {3587, 6926}, {3601, 61820}, {3621, 63208}, {3622, 4848}, {3628, 5714}, {3660, 3681}, {3669, 63246}, {3671, 34595}, {3742, 7672}, {3748, 5218}, {3772, 31201}, {3816, 52653}, {3817, 53056}, {3832, 51790}, {3876, 37566}, {3947, 19872}, {4021, 31326}, {4188, 5175}, {4292, 5056}, {4304, 15692}, {4307, 49631}, {4312, 10171}, {4315, 19875}, {4318, 5272}, {4322, 6048}, {4344, 24239}, {4345, 44675}, {4383, 17074}, {4552, 17490}, {4652, 6919}, {4661, 5083}, {4855, 12536}, {4860, 5326}, {4887, 33795}, {5054, 15933}, {5067, 57282}, {5068, 9579}, {5070, 24470}, {5123, 34610}, {5126, 59388}, {5204, 7319}, {5221, 7294}, {5222, 24581}, {5228, 37682}, {5281, 8236}, {5284, 37541}, {5290, 51073}, {5393, 17805}, {5405, 17802}, {5432, 10578}, {5493, 50444}, {5543, 29571}, {5657, 15325}, {5658, 5825}, {5686, 20103}, {5692, 18419}, {5705, 17580}, {5719, 15694}, {5728, 10156}, {5758, 6958}, {5768, 6880}, {5804, 6977}, {5811, 6959}, {5815, 26364}, {5927, 11575}, {5936, 18229}, {6147, 46219}, {6223, 6834}, {6244, 53055}, {6610, 37650}, {6667, 63975}, {6684, 14986}, {6700, 54398}, {6762, 27525}, {6764, 59591}, {6767, 61614}, {6891, 37584}, {6927, 9799}, {6954, 13151}, {7176, 16832}, {7269, 17022}, {7292, 8270}, {7486, 9612}, {7991, 18220}, {8051, 31227}, {8055, 37758}, {8056, 36640}, {8165, 62824}, {8167, 8543}, {8581, 58451}, {8583, 18231}, {8972, 51842}, {9316, 17123}, {9578, 46932}, {9843, 17558}, {10106, 46933}, {10178, 17604}, {10394, 11227}, {10527, 26062}, {10529, 12541}, {10571, 27625}, {10588, 32636}, {10591, 58887}, {11020, 61660}, {11024, 26363}, {11036, 61856}, {11041, 38028}, {11518, 61848}, {11530, 61630}, {11812, 15935}, {12433, 15720}, {12690, 19705}, {13405, 30350}, {13411, 55864}, {13941, 51841}, {14189, 36620}, {14256, 31185}, {14829, 32099}, {14996, 52423}, {15104, 18240}, {16408, 57283}, {16577, 26742}, {16610, 17080}, {17020, 45126}, {17081, 31994}, {17091, 43063}, {17092, 31197}, {17093, 31203}, {17277, 40420}, {17566, 27383}, {17572, 37583}, {17625, 63961}, {18391, 37525}, {18623, 43043}, {18625, 31204}, {18633, 31215}, {19843, 58405}, {20057, 41687}, {20070, 50443}, {20182, 37634}, {21578, 50864}, {22464, 24175}, {24471, 63119}, {24599, 25718}, {25255, 53042}, {25502, 42289}, {25568, 62710}, {25934, 62243}, {26007, 31527}, {26015, 64146}, {26129, 56288}, {26446, 51788}, {27818, 36621}, {28346, 51766}, {29627, 32003}, {29628, 43054}, {30318, 62218}, {30331, 50829}, {30384, 34632}, {30608, 63164}, {31187, 37800}, {31232, 31598}, {31272, 44447}, {31273, 34929}, {31423, 64124}, {31721, 50114}, {32079, 58904}, {32087, 55095}, {34048, 37687}, {36638, 45202}, {37364, 59418}, {37520, 41825}, {37578, 60782}, {37633, 52424}, {37681, 45204}, {37723, 61816}, {37771, 43055}, {41539, 64149}, {41802, 41803}, {41806, 41808}, {43037, 59601}, {45675, 53544}, {46931, 51789}, {47761, 57167}, {51302, 62788}, {51578, 51795}, {51781, 63990}, {56331, 60733}, {61686, 63994}, {62208, 62695}, {63261, 63263}
X(64114) = isotomic conjugate of X(38255)
X(64114) = complement of X(46873)
X(64114) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 38255}, {41, 36606}, {55, 36603}, {650, 8699}, {1253, 36621}, {2175, 40026}, {3063, 58131}
X(64114) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 38255}, {145, 3161}, {223, 36603}, {3160, 36606}, {10001, 58131}, {17113, 36621}, {40593, 40026}
X(64114) = X(i)-Ceva conjugate of X(j) for these {i, j}: {27818, 7}
X(64114) = X(i)-cross conjugate of X(j) for these {i, j}: {3973, 3621}
X(64114) = pole of line {100, 13252} with respect to the Yff parabola
X(64114) = pole of line {333, 5328} with respect to the Wallace hyperbola
X(64114) = pole of line {1, 5056} with respect to the dual conic of Yff parabola
X(64114) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3621)}}, {{A, B, C, X(8), X(30827)}}, {{A, B, C, X(9), X(3973)}}, {{A, B, C, X(57), X(63163)}}, {{A, B, C, X(63), X(39962)}}, {{A, B, C, X(75), X(45789)}}, {{A, B, C, X(144), X(42318)}}, {{A, B, C, X(189), X(30852)}}, {{A, B, C, X(333), X(5328)}}, {{A, B, C, X(527), X(4962)}}, {{A, B, C, X(672), X(2516)}}, {{A, B, C, X(673), X(20059)}}, {{A, B, C, X(1255), X(3306)}}, {{A, B, C, X(1400), X(38296)}}, {{A, B, C, X(3452), X(56201)}}, {{A, B, C, X(3911), X(8051)}}, {{A, B, C, X(3928), X(8056)}}, {{A, B, C, X(3929), X(39963)}}, {{A, B, C, X(3982), X(60085)}}, {{A, B, C, X(4072), X(5257)}}, {{A, B, C, X(4373), X(33800)}}, {{A, B, C, X(4998), X(16078)}}, {{A, B, C, X(5219), X(63164)}}, {{A, B, C, X(5226), X(40420)}}, {{A, B, C, X(5435), X(36621)}}, {{A, B, C, X(5748), X(34234)}}, {{A, B, C, X(6692), X(7320)}}, {{A, B, C, X(9436), X(38254)}}, {{A, B, C, X(18228), X(30608)}}, {{A, B, C, X(25417), X(27003)}}, {{A, B, C, X(36620), X(51351)}}, {{A, B, C, X(56054), X(58463)}}
X(64114) = barycentric product X(i)*X(j) for these (i, j): {1434, 4072}, {2516, 4554}, {3621, 7}, {3973, 85}, {4572, 58154}, {4573, 59589}, {4962, 664}, {20942, 57}, {21000, 6063}, {22147, 331}, {38296, 76}, {63208, 75}
X(64114) = barycentric quotient X(i)/X(j) for these (i, j): {2, 38255}, {7, 36606}, {57, 36603}, {85, 40026}, {109, 8699}, {279, 36621}, {664, 58131}, {2516, 650}, {3621, 8}, {3973, 9}, {4072, 2321}, {4962, 522}, {20942, 312}, {21000, 55}, {22147, 219}, {38296, 6}, {58154, 663}, {59589, 3700}, {63208, 1}
X(64114) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21454, 5219}, {2, 3218, 5748}, {2, 3911, 5435}, {2, 5435, 7}, {2, 57, 5226}, {2, 5744, 18228}, {2, 5745, 18230}, {2, 63, 5328}, {10, 5265, 4308}, {57, 3982, 21454}, {57, 5219, 3982}, {165, 5274, 30332}, {1155, 10589, 9812}, {1210, 3523, 4313}, {1788, 5433, 3616}, {3361, 3634, 5261}, {3526, 34753, 3487}, {3628, 37545, 5714}, {5218, 17728, 10580}, {5226, 5435, 57}, {5281, 11019, 8236}, {7288, 24914, 8}, {31187, 43056, 37800}
X(64115) lies on these lines: {1, 6850}, {2, 7}, {4, 34489}, {5, 37566}, {11, 971}, {12, 3824}, {30, 1319}, {34, 24159}, {56, 3560}, {65, 495}, {73, 23537}, {85, 20920}, {104, 1519}, {109, 3011}, {119, 912}, {222, 3772}, {223, 23681}, {225, 4306}, {278, 4341}, {354, 64127}, {388, 12609}, {499, 7330}, {514, 3064}, {516, 2078}, {518, 51416}, {614, 34029}, {651, 33129}, {675, 32689}, {902, 60718}, {914, 48380}, {920, 10052}, {942, 6842}, {946, 1420}, {950, 18444}, {1086, 1465}, {1155, 5762}, {1210, 6941}, {1214, 3782}, {1412, 17167}, {1441, 20887}, {1442, 33155}, {1443, 37798}, {1444, 17182}, {1456, 15253}, {1458, 3120}, {1466, 11374}, {1467, 6893}, {1471, 24725}, {1479, 41854}, {1512, 12736}, {1617, 1836}, {1738, 4551}, {1758, 32857}, {1770, 7702}, {1788, 21077}, {1877, 30117}, {2003, 40940}, {2006, 34050}, {2635, 53599}, {2886, 17625}, {3057, 37424}, {3086, 12608}, {3256, 13405}, {3340, 21620}, {3485, 51706}, {3487, 6897}, {3811, 41540}, {3838, 63994}, {3912, 38468}, {3927, 24914}, {4000, 56418}, {4292, 6906}, {4298, 11263}, {4304, 37430}, {4318, 33148}, {4861, 10106}, {5045, 49107}, {5057, 7677}, {5083, 26015}, {5126, 38032}, {5137, 36059}, {5218, 64113}, {5252, 17528}, {5433, 31445}, {5443, 13370}, {5714, 6898}, {5727, 64147}, {5731, 12053}, {5768, 6260}, {5770, 6981}, {5805, 64152}, {5832, 37240}, {5843, 61649}, {5853, 37736}, {6180, 37695}, {6357, 6610}, {6831, 64132}, {6848, 11023}, {6868, 37618}, {6917, 45287}, {6940, 13411}, {6961, 15803}, {7011, 18588}, {7125, 18651}, {7175, 34830}, {7269, 37635}, {7284, 23708}, {7288, 21616}, {7741, 61740}, {7743, 51774}, {8270, 33144}, {8727, 63995}, {9316, 33127}, {9364, 17719}, {9580, 43161}, {10320, 45639}, {10321, 59333}, {10395, 12528}, {10400, 16580}, {10404, 22759}, {10571, 23536}, {10572, 18961}, {11376, 41426}, {11509, 63259}, {12709, 25466}, {13161, 37558}, {13462, 18393}, {13601, 15888}, {15528, 34293}, {15845, 17626}, {15908, 50196}, {16610, 52659}, {17074, 33133}, {17080, 33146}, {17603, 31657}, {17718, 37541}, {17862, 45206}, {17923, 37136}, {18467, 63987}, {18541, 28444}, {18593, 22464}, {19785, 45126}, {24789, 34048}, {24929, 28458}, {25558, 41556}, {26011, 26932}, {30284, 64162}, {30305, 37427}, {30312, 63961}, {31776, 33592}, {33136, 53531}, {34371, 51410}, {34529, 38459}, {34855, 57442}, {37163, 63274}, {39542, 64106}, {40663, 51362}, {41011, 55086}, {44425, 64155}, {50443, 63989}, {52212, 53546}, {52456, 61231}, {54408, 60924}
X(64115) = midpoint of X(i) and X(j) for these {i,j}: {37136, 56869}
X(64115) = trilinear pole of line {12832, 55126}
X(64115) = perspector of circumconic {{A, B, C, X(273), X(664)}}
X(64115) = center of circumconic {{A, B, C, X(37136), X(56869)}}
X(64115) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 45393}, {8, 32655}, {9, 36052}, {55, 2990}, {78, 913}, {100, 61214}, {212, 37203}, {219, 915}, {220, 63190}, {521, 32698}, {652, 36106}, {3657, 5546}, {39173, 52663}, {46133, 52425}
X(64115) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 45393}, {119, 9}, {223, 2990}, {478, 36052}, {8054, 61214}, {8609, 6735}, {39002, 652}, {40837, 37203}, {42769, 2170}, {56761, 61238}, {62602, 46133}
X(64115) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7, 11570}, {17923, 34050}, {37136, 514}
X(64115) = X(i)-complementary conjugate of X(j) for these {i, j}: {46435, 141}
X(64115) = X(i)-cross conjugate of X(j) for these {i, j}: {8609, 1737}
X(64115) = pole of line {3668, 3676} with respect to the incircle
X(64115) = pole of line {9, 3064} with respect to the polar circle
X(64115) = pole of line {11570, 14100} with respect to the Feuerbach hyperbola
X(64115) = pole of line {522, 12649} with respect to the Steiner circumellipse
X(64115) = pole of line {522, 1210} with respect to the Steiner inellipse
X(64115) = pole of line {3719, 6332} with respect to the dual conic of polar circle
X(64115) = pole of line {1, 104} with respect to the dual conic of Yff parabola
X(64115) = pole of line {8611, 21044} with respect to the dual conic of Wallace hyperbola
X(64115) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1737)}}, {{A, B, C, X(9), X(3064)}}, {{A, B, C, X(57), X(18838)}}, {{A, B, C, X(63), X(514)}}, {{A, B, C, X(104), X(12665)}}, {{A, B, C, X(119), X(908)}}, {{A, B, C, X(278), X(5905)}}, {{A, B, C, X(307), X(4077)}}, {{A, B, C, X(329), X(59935)}}, {{A, B, C, X(527), X(12831)}}, {{A, B, C, X(579), X(57173)}}, {{A, B, C, X(675), X(33864)}}, {{A, B, C, X(1025), X(5236)}}, {{A, B, C, X(1400), X(55208)}}, {{A, B, C, X(1708), X(4564)}}, {{A, B, C, X(2051), X(30852)}}, {{A, B, C, X(3218), X(11570)}}, {{A, B, C, X(3306), X(17758)}}, {{A, B, C, X(3911), X(12832)}}, {{A, B, C, X(5249), X(23595)}}, {{A, B, C, X(5744), X(14266)}}, {{A, B, C, X(7130), X(56549)}}, {{A, B, C, X(8257), X(27475)}}, {{A, B, C, X(26743), X(54357)}}, {{A, B, C, X(37131), X(60974)}}, {{A, B, C, X(38461), X(56543)}}, {{A, B, C, X(40152), X(51649)}}, {{A, B, C, X(53337), X(56881)}}, {{A, B, C, X(55871), X(56231)}}
X(64115) = barycentric product X(i)*X(j) for these (i, j): {85, 8609}, {264, 51649}, {273, 912}, {278, 914}, {1737, 7}, {2252, 331}, {3658, 4077}, {3676, 56881}, {11570, 18815}, {12831, 62723}, {12832, 903}, {14266, 22464}, {18838, 75}, {24002, 61239}, {46107, 56410}, {48380, 57}, {52456, 9436}, {55126, 664}, {61231, 693}
X(64115) = barycentric quotient X(i)/X(j) for these (i, j): {1, 45393}, {34, 915}, {56, 36052}, {57, 2990}, {108, 36106}, {109, 6099}, {119, 6735}, {269, 63190}, {273, 46133}, {278, 37203}, {604, 32655}, {608, 913}, {649, 61214}, {912, 78}, {914, 345}, {1457, 39173}, {1737, 8}, {2252, 219}, {3658, 643}, {4017, 3657}, {8609, 9}, {11570, 4511}, {12831, 6745}, {12832, 519}, {14266, 51565}, {18838, 1}, {32674, 32698}, {41552, 10916}, {48380, 312}, {51649, 3}, {51824, 2342}, {52456, 14942}, {53314, 61043}, {55126, 522}, {56410, 1331}, {56881, 3699}, {61231, 100}, {61239, 644}
X(64115) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {142, 226, 5219}, {226, 3911, 908}, {7702, 37579, 1770}, {21578, 33593, 30384}
X(64116) lies on these lines: {1, 6918}, {3, 200}, {4, 63168}, {5, 13405}, {8, 6988}, {10, 140}, {21, 18908}, {35, 5531}, {40, 3689}, {55, 1898}, {72, 11491}, {78, 31786}, {100, 1071}, {153, 11015}, {210, 10902}, {228, 15623}, {355, 3085}, {392, 64173}, {411, 3935}, {480, 51489}, {515, 12607}, {516, 18243}, {517, 3811}, {518, 6796}, {519, 37837}, {528, 12608}, {580, 4849}, {912, 3579}, {942, 11499}, {944, 5440}, {971, 6600}, {1006, 3697}, {1158, 4421}, {1319, 61296}, {1376, 9940}, {1483, 6738}, {1490, 3158}, {1872, 56316}, {2077, 12680}, {2095, 41863}, {2646, 5881}, {2801, 64118}, {3057, 6326}, {3149, 3870}, {3174, 64156}, {3189, 64148}, {3295, 5720}, {3419, 10786}, {3517, 7719}, {3555, 6905}, {3560, 9947}, {3625, 51717}, {3694, 64121}, {3744, 37732}, {3748, 8227}, {3871, 12672}, {3880, 40257}, {3893, 11014}, {3957, 6915}, {4018, 48363}, {4294, 37822}, {4420, 64107}, {4533, 26878}, {4640, 63967}, {4847, 52265}, {4857, 5660}, {5044, 10267}, {5045, 6911}, {5248, 58631}, {5266, 37699}, {5587, 37080}, {5687, 18446}, {5690, 6743}, {5693, 37568}, {5731, 56879}, {5768, 59591}, {5780, 31435}, {5790, 24299}, {5806, 18491}, {5812, 25568}, {5815, 59345}, {5840, 22792}, {5842, 21077}, {5887, 12738}, {6001, 8715}, {6244, 41854}, {6245, 59584}, {6260, 64117}, {6745, 6922}, {6765, 22770}, {6769, 37411}, {6864, 10578}, {6865, 64083}, {6907, 63146}, {6927, 36845}, {6929, 31795}, {6970, 18391}, {7680, 10942}, {7686, 10222}, {7958, 63287}, {7967, 17614}, {8726, 46917}, {9709, 18443}, {9856, 10679}, {9955, 37713}, {9956, 10198}, {9957, 45770}, {10157, 63271}, {10175, 51715}, {10246, 16863}, {10572, 37725}, {10884, 64135}, {10914, 21740}, {10943, 11230}, {11249, 40262}, {11501, 50195}, {11502, 50196}, {11508, 64131}, {11517, 51380}, {11849, 40263}, {12053, 41553}, {12331, 37562}, {12432, 24475}, {12616, 64123}, {12675, 25440}, {12704, 41711}, {12751, 41541}, {13528, 15071}, {13600, 63986}, {15178, 54318}, {17502, 32153}, {17606, 49176}, {18481, 64111}, {18518, 37533}, {18524, 24474}, {18525, 33596}, {19904, 20760}, {20323, 61291}, {21075, 31789}, {21620, 37281}, {24467, 31663}, {25081, 58382}, {25439, 45776}, {25917, 34486}, {26285, 34862}, {28204, 45701}, {29670, 36477}, {31445, 32613}, {31658, 40659}, {31805, 35238}, {31821, 51787}, {33595, 34627}, {34607, 63962}, {35016, 38155}, {37000, 58798}, {37571, 37712}, {37582, 41539}, {37594, 37698}, {37733, 50194}, {55108, 63282}, {56762, 64198}, {59326, 63432}, {59329, 63995}, {59719, 63980}
X(64116) = midpoint of X(i) and X(j) for these {i,j}: {3, 5534}, {1490, 10306}, {3174, 64156}, {3811, 11500}, {3913, 6261}, {6260, 64117}, {6765, 22770}, {6769, 37411}
X(64116) = reflection of X(i) in X(j) for these {i,j}: {3579, 32141}, {11249, 40262}, {12616, 64123}, {18480, 10942}, {24467, 31663}, {34862, 26285}, {37623, 6796}, {63980, 59719}
X(64116) = pole of line {1728, 7982} with respect to the Feuerbach hyperbola
X(64116) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 200, 58643}, {35, 5531, 14872}, {55, 17857, 5777}, {518, 6796, 37623}, {912, 32141, 3579}, {1490, 3158, 10306}, {3811, 11500, 517}, {5687, 18446, 31788}, {5882, 59691, 1385}, {6765, 52026, 22770}
X(64117) lies on circumconic {{A, B, C, X(39697), X(56146)}} and on these lines: {1, 6904}, {2, 51724}, {3, 5853}, {4, 3158}, {5, 59584}, {8, 3977}, {10, 55}, {11, 59587}, {19, 3950}, {20, 6765}, {35, 4847}, {40, 376}, {65, 1317}, {78, 10624}, {100, 1210}, {140, 24386}, {145, 2093}, {149, 27385}, {200, 4294}, {210, 63273}, {380, 17355}, {386, 63969}, {390, 936}, {443, 10389}, {474, 64162}, {497, 6700}, {515, 3913}, {516, 1490}, {517, 9942}, {518, 31730}, {527, 34707}, {528, 946}, {551, 17614}, {631, 24392}, {678, 21935}, {758, 5493}, {910, 21096}, {952, 12640}, {975, 63977}, {997, 12575}, {1058, 1125}, {1066, 35338}, {1376, 9843}, {1385, 21627}, {1479, 6745}, {1706, 3488}, {1855, 21090}, {2264, 59579}, {2478, 64135}, {2900, 37000}, {2901, 3198}, {3059, 3678}, {3073, 3939}, {3295, 57284}, {3434, 13411}, {3452, 15171}, {3474, 41863}, {3486, 63137}, {3522, 6764}, {3576, 64068}, {3579, 24391}, {3586, 7080}, {3601, 5082}, {3625, 37568}, {3633, 21578}, {3635, 11529}, {3636, 28629}, {3646, 47357}, {3680, 7967}, {3689, 6284}, {3722, 23536}, {3755, 5266}, {3779, 50590}, {3813, 10165}, {3817, 6896}, {3820, 31795}, {3868, 63145}, {3870, 4292}, {3871, 31397}, {3874, 64132}, {3880, 5882}, {3925, 19862}, {3935, 20066}, {4101, 4450}, {4301, 22836}, {4302, 12527}, {4305, 4853}, {4309, 40998}, {4313, 9623}, {4342, 30144}, {4349, 59301}, {4356, 30142}, {4421, 6684}, {4432, 59685}, {4669, 17525}, {4855, 44675}, {4863, 5217}, {5044, 10386}, {5049, 17563}, {5084, 41864}, {5119, 6737}, {5175, 31434}, {5267, 37601}, {5281, 5705}, {5415, 49548}, {5416, 49547}, {5440, 12053}, {5528, 30424}, {5584, 8666}, {5657, 12625}, {5691, 34619}, {5722, 63990}, {5731, 12629}, {5732, 7674}, {6245, 11248}, {6253, 21077}, {6260, 64116}, {6361, 11523}, {6600, 11496}, {6675, 61031}, {6736, 10572}, {6738, 54286}, {6743, 12514}, {7682, 11499}, {7987, 34625}, {8236, 17580}, {8728, 63271}, {9581, 59591}, {9612, 63168}, {9614, 27383}, {9778, 54422}, {9858, 9957}, {9945, 24928}, {10107, 14563}, {10164, 10902}, {10175, 64123}, {10246, 64205}, {10268, 43174}, {10385, 31435}, {10912, 13607}, {10915, 12751}, {11019, 25440}, {11260, 51705}, {11362, 44669}, {11406, 49542}, {11500, 52804}, {11849, 51755}, {12513, 22777}, {12536, 59417}, {12607, 31673}, {12616, 13205}, {12635, 28194}, {13464, 56177}, {15733, 54175}, {15803, 36845}, {16842, 46916}, {16845, 38200}, {17558, 59413}, {17647, 25439}, {17715, 24178}, {17857, 59687}, {18527, 47742}, {19133, 59408}, {19925, 45701}, {20095, 34772}, {20323, 34699}, {21616, 51783}, {24393, 31445}, {24477, 35242}, {24850, 49529}, {25524, 40270}, {25568, 41869}, {26066, 61153}, {28236, 49169}, {30282, 64081}, {31728, 34372}, {32157, 38127}, {33597, 34709}, {34611, 41012}, {36977, 51786}, {37462, 62856}, {37579, 49627}, {37700, 54198}, {41575, 63136}, {43166, 50700}, {49732, 51715}, {49772, 54354}, {50739, 51102}, {52541, 53534}, {59388, 64204}, {59678, 59728}, {59691, 63993}, {62836, 63130}
X(64117) = midpoint of X(i) and X(j) for these {i,j}: {20, 6765}, {40, 3189}, {145, 64202}, {944, 2136}, {2900, 37000}, {5732, 7674}, {6361, 11523}, {12629, 12632}
X(64117) = reflection of X(i) in X(j) for these {i,j}: {4, 59722}, {10, 8715}, {946, 56176}, {4301, 22836}, {6245, 11248}, {6260, 64116}, {10912, 13607}, {21627, 1385}, {24391, 3579}, {31673, 12607}, {49168, 43174}, {51118, 21077}, {54198, 37700}, {62858, 12512}, {63970, 6600}
X(64117) = pole of line {329, 24789} with respect to the dual conic of Yff parabola
X(64117) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {20, 6765, 6790}
X(64117) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 3158, 59722}, {20, 64146, 6765}, {40, 3189, 519}, {55, 63146, 10}, {78, 20075, 10624}, {100, 1210, 59675}, {200, 4294, 12572}, {519, 12512, 62858}, {528, 56176, 946}, {1058, 5438, 1125}, {1376, 63999, 9843}, {2136, 34701, 944}, {3174, 6769, 3811}, {3189, 34607, 40}, {3689, 6284, 21075}, {3871, 57287, 31397}, {3935, 20066, 64002}, {5731, 12632, 12629}, {10572, 48696, 6736}, {41864, 46917, 5084}
X(64118) lies on circumconic {{A, B, C, X(39167), X(55918)}} and on these lines: {2, 64119}, {3, 960}, {4, 1155}, {5, 58405}, {8, 13528}, {9, 10270}, {10, 2829}, {20, 5086}, {21, 54442}, {30, 12616}, {35, 1071}, {36, 12672}, {40, 956}, {46, 1012}, {55, 12675}, {56, 45776}, {57, 11496}, {63, 10310}, {65, 6906}, {72, 2077}, {84, 165}, {100, 14872}, {104, 3057}, {109, 17102}, {140, 12608}, {191, 17649}, {210, 56941}, {255, 9371}, {354, 26877}, {392, 2950}, {405, 59333}, {499, 22835}, {515, 550}, {516, 6705}, {517, 5450}, {518, 11248}, {601, 3666}, {631, 3683}, {912, 26285}, {944, 37568}, {946, 15325}, {958, 3359}, {971, 6796}, {993, 31788}, {1001, 37534}, {1214, 40658}, {1376, 7330}, {1385, 2800}, {1465, 1777}, {1490, 35242}, {1512, 64000}, {1519, 5433}, {1699, 37524}, {1707, 36745}, {1709, 3149}, {1727, 59327}, {1770, 6831}, {1836, 6833}, {1837, 6938}, {2096, 3085}, {2646, 6950}, {2771, 26086}, {2801, 64116}, {3073, 3752}, {3091, 9352}, {3219, 18239}, {3358, 11495}, {3428, 4652}, {3474, 6847}, {3523, 62838}, {3560, 3812}, {3576, 19535}, {3647, 6260}, {3651, 5918}, {3652, 64188}, {3742, 37612}, {3820, 6684}, {3838, 6862}, {3869, 50371}, {3876, 12666}, {3911, 7681}, {3928, 6769}, {3931, 37469}, {4292, 7680}, {4295, 6935}, {4297, 15862}, {4301, 4973}, {4414, 37528}, {4421, 5534}, {4512, 37526}, {4679, 6967}, {4857, 11219}, {4861, 64189}, {5010, 15071}, {5057, 6972}, {5087, 6958}, {5122, 9856}, {5123, 37821}, {5204, 63986}, {5217, 18446}, {5248, 9940}, {5252, 37002}, {5302, 6256}, {5440, 5693}, {5445, 41698}, {5499, 11231}, {5537, 6763}, {5584, 21165}, {5587, 50239}, {5603, 32636}, {5657, 37829}, {5691, 37572}, {5698, 6926}, {5709, 64074}, {5777, 18232}, {5794, 6948}, {5811, 59572}, {5836, 22758}, {5842, 6245}, {5880, 6824}, {5884, 24929}, {5927, 7701}, {6223, 64108}, {6282, 54290}, {6734, 11826}, {6834, 12679}, {6850, 26066}, {6888, 20292}, {6890, 44447}, {6891, 24703}, {6892, 28628}, {6905, 12688}, {6909, 14110}, {6914, 34339}, {6916, 15823}, {6918, 54370}, {6924, 31937}, {6927, 64130}, {6940, 25917}, {6952, 17605}, {6961, 25681}, {6966, 11415}, {6977, 11375}, {6985, 15726}, {6988, 63971}, {7289, 39877}, {7411, 12671}, {7971, 7987}, {7992, 16192}, {8762, 47372}, {9579, 10894}, {9616, 19067}, {9803, 11015}, {9841, 10268}, {9960, 37105}, {10058, 64045}, {10085, 59316}, {10165, 54198}, {10167, 10902}, {10179, 16203}, {10202, 51715}, {10222, 52074}, {10225, 18480}, {10267, 58567}, {10269, 58679}, {10306, 62858}, {10309, 18228}, {10391, 11507}, {10531, 17728}, {10679, 34791}, {10785, 12701}, {10786, 12678}, {11491, 12680}, {11509, 44547}, {12053, 20418}, {12246, 64148}, {12513, 49163}, {12515, 37562}, {12547, 61124}, {12617, 37281}, {12667, 54052}, {12686, 16209}, {12687, 16208}, {12700, 45700}, {12705, 15803}, {12761, 17619}, {12767, 37616}, {13226, 15171}, {13369, 32613}, {13373, 42819}, {13600, 62825}, {13624, 40257}, {15644, 22276}, {15837, 36996}, {15908, 59491}, {16116, 45065}, {16118, 52850}, {16197, 59701}, {17594, 36746}, {17614, 59332}, {17638, 18861}, {18243, 31658}, {18482, 33335}, {18515, 25413}, {19919, 22937}, {21154, 52116}, {21164, 31435}, {21669, 41542}, {21740, 37600}, {22769, 26928}, {22793, 41347}, {24466, 57287}, {26202, 38140}, {26364, 37822}, {26921, 35238}, {28202, 40265}, {31424, 37560}, {31786, 63983}, {33810, 37558}, {36866, 40263}, {37541, 62810}, {37579, 64132}, {37622, 58609}, {38901, 51379}, {41539, 54432}, {48363, 63206}, {51889, 55315}, {54199, 54445}, {59417, 62827}, {59458, 59647}, {61763, 63430}
X(64118) = midpoint of X(i) and X(j) for these {i,j}: {3, 1158}, {40, 12114}, {84, 11500}, {550, 33899}, {1768, 12332}, {2950, 22775}, {3358, 11495}, {3579, 34862}, {5450, 40256}, {5709, 64074}, {6245, 31730}, {7289, 39877}, {10306, 62858}, {11248, 24467}, {12513, 49163}, {12515, 48695}, {18238, 63976}, {49171, 56889}, {64119, 64190}
X(64118) = reflection of X(i) in X(j) for these {i,j}: {6796, 31663}, {11260, 32153}, {12608, 140}, {18242, 6684}, {22792, 63964}, {22793, 63963}, {32159, 58630}, {37837, 3}, {40257, 13624}, {56176, 26285}, {63980, 6705}
X(64118) = complement of X(64119)
X(64118) = pole of line {1388, 21740} with respect to the Feuerbach hyperbola
X(64118) = pole of line {16049, 50371} with respect to the Stammler hyperbola
X(64118) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 1158, 53752}, {104, 2745, 53748}, {109, 2765, 53742}, {124, 1364, 52114}
X(64118) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64190, 64119}, {3, 1158, 6001}, {3, 5887, 59691}, {3, 6001, 37837}, {35, 1768, 1071}, {40, 52027, 12114}, {46, 1012, 7686}, {55, 63399, 12675}, {57, 11496, 13374}, {63, 10310, 63976}, {84, 165, 11500}, {191, 59326, 64107}, {516, 6705, 63980}, {517, 32153, 11260}, {631, 14646, 63962}, {971, 31663, 6796}, {971, 58630, 32159}, {1376, 7330, 58631}, {1709, 58887, 3149}, {3579, 34862, 515}, {3916, 17613, 40}, {4640, 64128, 3}, {4652, 63985, 3428}, {5010, 15071, 33597}, {5450, 40256, 517}, {6245, 31730, 5842}, {6909, 56288, 14110}, {7992, 16192, 52026}, {11231, 22792, 63964}, {11248, 24467, 518}, {12680, 63211, 11491}, {12705, 15803, 22753}, {18232, 25440, 62357}, {26921, 35238, 58637}, {54432, 59329, 41539}
X(64119) lies on these lines: {1, 1537}, {2, 64118}, {3, 12608}, {4, 65}, {5, 1158}, {7, 10309}, {10, 37822}, {11, 7702}, {20, 5057}, {30, 6261}, {40, 17757}, {46, 1532}, {56, 1519}, {57, 7681}, {63, 15908}, {78, 11826}, {79, 84}, {104, 11376}, {119, 37828}, {153, 14923}, {165, 63966}, {185, 38389}, {208, 25640}, {221, 1785}, {226, 11496}, {278, 40658}, {281, 54009}, {318, 33650}, {329, 63976}, {354, 10531}, {355, 2800}, {381, 12616}, {382, 515}, {388, 45776}, {411, 45392}, {497, 12675}, {516, 5812}, {517, 6256}, {519, 12700}, {528, 5534}, {546, 33899}, {601, 17720}, {603, 35015}, {631, 4679}, {908, 10310}, {912, 10525}, {942, 26333}, {944, 5048}, {946, 999}, {960, 6850}, {962, 3885}, {971, 16127}, {997, 31775}, {1012, 12047}, {1064, 50065}, {1068, 1456}, {1070, 6180}, {1071, 1479}, {1155, 6834}, {1210, 10893}, {1319, 37002}, {1329, 3359}, {1478, 10043}, {1490, 5842}, {1498, 1838}, {1503, 46467}, {1512, 37567}, {1538, 37582}, {1709, 6831}, {1768, 7741}, {1770, 3149}, {1839, 5776}, {1853, 39574}, {1854, 56814}, {1872, 3827}, {2096, 3086}, {2099, 37001}, {2550, 5811}, {2646, 6938}, {2886, 7330}, {2956, 31516}, {3057, 12115}, {3072, 64016}, {3073, 3772}, {3090, 14646}, {3091, 14647}, {3358, 42356}, {3417, 14127}, {3419, 5693}, {3427, 5556}, {3428, 64002}, {3434, 14872}, {3474, 6848}, {3527, 15320}, {3560, 28628}, {3576, 49178}, {3583, 15071}, {3656, 34698}, {3683, 6889}, {3812, 6893}, {3816, 37534}, {3817, 6705}, {3838, 6824}, {3841, 60911}, {3868, 12666}, {3869, 37437}, {4187, 59333}, {4292, 22753}, {4302, 33597}, {4640, 6825}, {4855, 24466}, {5087, 6891}, {5225, 5768}, {5252, 25414}, {5450, 5886}, {5552, 13528}, {5587, 54156}, {5603, 10404}, {5691, 7971}, {5698, 6908}, {5706, 41011}, {5708, 5805}, {5709, 17768}, {5715, 11372}, {5722, 5884}, {5731, 50244}, {5787, 16159}, {5794, 5887}, {5832, 31418}, {5840, 37700}, {5903, 41698}, {5905, 18239}, {5918, 6899}, {5919, 10805}, {6223, 9812}, {6247, 39585}, {6284, 18446}, {6361, 64148}, {6684, 51090}, {6769, 28609}, {6796, 35000}, {6827, 9943}, {6833, 17605}, {6838, 44447}, {6840, 9961}, {6842, 26066}, {6851, 9942}, {6865, 63971}, {6888, 10129}, {6897, 25917}, {6906, 11375}, {6907, 12514}, {6913, 12609}, {6917, 31937}, {6922, 64129}, {6925, 11415}, {6929, 34339}, {6932, 56288}, {6940, 24954}, {6941, 24914}, {6948, 59691}, {6968, 17606}, {6979, 9352}, {6985, 40245}, {6989, 15254}, {7082, 63437}, {7354, 63986}, {7680, 9612}, {7956, 24470}, {7987, 59347}, {8148, 52683}, {8227, 41865}, {8256, 38757}, {9579, 63992}, {9614, 63430}, {9809, 12528}, {9856, 26332}, {9940, 60896}, {9955, 34862}, {9960, 37433}, {10157, 58660}, {10165, 17571}, {10248, 54228}, {10270, 30827}, {10307, 43733}, {10400, 41010}, {10429, 38306}, {10431, 12671}, {10593, 13226}, {10596, 17609}, {10698, 37738}, {10728, 37740}, {10786, 37568}, {10950, 52836}, {11813, 63983}, {11827, 64150}, {12001, 48664}, {12116, 12680}, {12330, 19541}, {12332, 21635}, {12520, 31789}, {12607, 49163}, {12611, 32612}, {12650, 31162}, {12677, 31673}, {13253, 37707}, {13257, 17857}, {14216, 39529}, {14217, 25416}, {14450, 54145}, {16005, 43732}, {16116, 17637}, {17102, 34029}, {17728, 26877}, {18407, 31828}, {18481, 40257}, {18961, 64042}, {20418, 50443}, {21164, 25522}, {24210, 36746}, {26285, 37713}, {26446, 40256}, {34231, 54010}, {34719, 50865}, {34772, 48697}, {35635, 48899}, {36846, 40290}, {37406, 59318}, {37468, 63988}, {37562, 37821}, {37725, 63130}, {37820, 40263}, {38121, 51572}, {38454, 52684}, {44455, 48661}, {45637, 58576}, {51409, 63391}, {52026, 64005}, {54175, 60905}, {54199, 59387}, {62810, 64127}, {63324, 63450}
X(64119) = midpoint of X(i) and X(j) for these {i,j}: {4, 63962}, {962, 12667}, {1482, 40267}, {1490, 41869}, {3868, 12666}, {5691, 7971}, {6259, 12699}, {8148, 52683}, {16127, 48482}, {34789, 46435}, {51118, 54227}
X(64119) = reflection of X(i) in X(j) for these {i,j}: {3, 12608}, {20, 37837}, {40, 18242}, {84, 63980}, {1158, 5}, {1490, 18243}, {3358, 42356}, {6245, 18483}, {6256, 22792}, {10306, 21077}, {11500, 6260}, {12114, 946}, {12332, 21635}, {18238, 13374}, {18481, 40257}, {33899, 546}, {34862, 9955}, {40256, 63964}, {48482, 22793}, {48695, 12611}, {49163, 12607}, {59318, 37406}, {64190, 64118}
X(64119) = inverse of X(7702) in Feuerbach hyperbola
X(64119) = complement of X(64190)
X(64119) = anticomplement of X(64118)
X(64119) = X(i)-Dao conjugate of X(j) for these {i, j}: {64118, 64118}
X(64119) = pole of line {3738, 6246} with respect to the Fuhrmann circle
X(64119) = pole of line {2804, 6129} with respect to the incircle
X(64119) = pole of line {4, 5553} with respect to the Feuerbach hyperbola
X(64119) = pole of line {2804, 21189} with respect to the Suppa-Cucoanes circle
X(64119) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11, 3318, 5514}
X(64119) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(79), X(47372)}}, {{A, B, C, X(158), X(46435)}}, {{A, B, C, X(1118), X(60843)}}, {{A, B, C, X(1857), X(10309)}}
X(64119) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64190, 64118}, {4, 4295, 7686}, {4, 63962, 6001}, {4, 64021, 1837}, {84, 1699, 63980}, {516, 21077, 10306}, {516, 6260, 11500}, {517, 22792, 6256}, {971, 22793, 48482}, {1479, 10052, 5570}, {1482, 40267, 515}, {1490, 41869, 5842}, {1836, 12679, 4}, {2550, 5811, 58631}, {4292, 63989, 22753}, {5087, 64128, 6891}, {5842, 18243, 1490}, {5887, 6923, 5794}, {6925, 11415, 14110}, {9612, 12705, 7680}, {9809, 52367, 12528}, {10742, 25413, 355}, {12678, 12701, 944}, {16127, 48482, 971}, {34789, 46435, 2829}
X(64120) lies on these lines: {1, 10309}, {2, 5450}, {3, 1603}, {4, 11}, {5, 40267}, {8, 20}, {10, 10270}, {12, 6935}, {30, 22770}, {36, 6848}, {65, 2096}, {90, 3427}, {119, 6961}, {144, 31806}, {145, 2800}, {153, 5552}, {329, 63391}, {355, 6948}, {376, 11500}, {388, 1012}, {390, 5882}, {452, 3576}, {497, 18237}, {499, 41698}, {516, 12650}, {517, 17648}, {519, 54156}, {529, 8668}, {631, 18242}, {944, 3057}, {946, 3600}, {950, 63430}, {958, 6916}, {960, 18239}, {962, 20076}, {971, 5698}, {993, 6908}, {997, 1490}, {1056, 11496}, {1071, 3486}, {1155, 6934}, {1319, 12679}, {1376, 40290}, {1385, 6259}, {1420, 63989}, {1436, 55116}, {1455, 7952}, {1478, 6847}, {1532, 7288}, {1699, 4317}, {1709, 10043}, {1737, 4299}, {1768, 10573}, {1854, 51422}, {2077, 7080}, {2217, 37414}, {2550, 31775}, {2646, 12678}, {2950, 49169}, {2975, 6925}, {3085, 6906}, {3146, 10529}, {3241, 54199}, {3333, 15239}, {3338, 5804}, {3361, 7682}, {3421, 10310}, {3435, 7412}, {3436, 6909}, {3476, 12672}, {3488, 12675}, {3522, 6796}, {3529, 5842}, {3585, 6844}, {3616, 12608}, {3832, 63963}, {3876, 32159}, {4188, 64188}, {4190, 12616}, {4302, 7992}, {4305, 18446}, {4311, 63992}, {4679, 5658}, {5080, 6890}, {5082, 11826}, {5129, 10165}, {5204, 6927}, {5229, 6831}, {5251, 37407}, {5253, 6957}, {5303, 6962}, {5433, 6969}, {5587, 6705}, {5603, 10404}, {5657, 37829}, {5690, 52683}, {5704, 31673}, {5731, 6223}, {5768, 10051}, {5770, 5787}, {5795, 37560}, {5805, 31776}, {5818, 6955}, {5841, 6851}, {5854, 52116}, {5886, 22792}, {6282, 12527}, {6713, 6981}, {6826, 18761}, {6833, 10590}, {6850, 19843}, {6863, 18515}, {6865, 57288}, {6885, 18480}, {6891, 37821}, {6893, 10269}, {6897, 19855}, {6907, 30478}, {6921, 38693}, {6923, 26321}, {6926, 63983}, {6939, 25524}, {6944, 18516}, {6950, 10786}, {6956, 10895}, {6958, 10742}, {6959, 33898}, {6966, 11681}, {6971, 38756}, {6973, 26492}, {7967, 10543}, {8581, 45776}, {8582, 21164}, {8727, 9655}, {9798, 37404}, {9910, 28029}, {9942, 63432}, {9965, 37625}, {10106, 12705}, {10175, 17580}, {10246, 48664}, {10307, 60919}, {10465, 35635}, {10527, 37437}, {10532, 21669}, {10902, 17576}, {10916, 28164}, {10935, 12686}, {10936, 12687}, {11001, 34630}, {11012, 37421}, {11240, 48694}, {11248, 34619}, {11499, 38761}, {11715, 46435}, {12116, 40272}, {12119, 12665}, {12245, 14646}, {12664, 45120}, {12677, 33597}, {12758, 64145}, {13199, 13996}, {14986, 26333}, {15171, 30283}, {16127, 40257}, {17613, 64087}, {18340, 34030}, {18391, 63399}, {18525, 33899}, {18908, 58660}, {20007, 63967}, {20013, 54193}, {21454, 31870}, {21578, 63988}, {22654, 37305}, {26332, 37434}, {28204, 34711}, {30147, 60896}, {30384, 52860}, {33811, 44075}, {34286, 37395}, {37022, 64111}, {37234, 38037}, {37423, 52026}, {37427, 59320}, {37725, 59591}, {38031, 50243}, {40260, 46932}, {41010, 55119}, {44696, 47372}, {45634, 49170}, {45635, 49171}, {45770, 48697}, {56821, 64057}, {56936, 61296}, {63986, 64130}
X(64120) = midpoint of X(i) and X(j) for these {i,j}: {944, 12246}
X(64120) = reflection of X(i) in X(j) for these {i,j}: {4, 12114}, {8, 1158}, {65, 18238}, {153, 48695}, {355, 34862}, {1490, 4297}, {3146, 48482}, {5691, 6245}, {6223, 6261}, {6256, 5450}, {6259, 1385}, {7971, 5882}, {12666, 5887}, {12667, 3}, {16127, 40257}, {18239, 960}, {18525, 33899}, {33898, 38602}, {40267, 5}, {46435, 11715}, {52683, 5690}, {63962, 1}
X(64120) = inverse of X(3086) in Feuerbach hyperbola
X(64120) = anticomplement of X(6256)
X(64120) = X(i)-Dao conjugate of X(j) for these {i, j}: {6256, 6256}
X(64120) = pole of line {42337, 53304} with respect to the circumcircle
X(64120) = pole of line {8058, 53522} with respect to the incircle
X(64120) = pole of line {2804, 54239} with respect to the polar circle
X(64120) = pole of line {3086, 6001} with respect to the Feuerbach hyperbola
X(64120) = pole of line {23681, 34050} with respect to the dual conic of Yff parabola
X(64120) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(104), X(271)}}, {{A, B, C, X(280), X(10309)}}
X(64120) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12667, 64148}, {4, 104, 3086}, {4, 10785, 10591}, {4, 12248, 37002}, {4, 37002, 4293}, {4, 47743, 10893}, {8, 54052, 1158}, {84, 1158, 56941}, {104, 47744, 20418}, {355, 34862, 14647}, {515, 1158, 8}, {944, 12246, 6001}, {944, 6938, 4294}, {971, 5887, 12666}, {1071, 3486, 64147}, {3146, 20067, 64079}, {4299, 5691, 50701}, {5450, 6256, 2}, {5731, 6223, 6261}, {6713, 45631, 6981}, {6868, 18481, 43161}, {6906, 12115, 3085}, {10085, 10572, 5768}, {10893, 20418, 47743}, {10896, 52836, 4}, {12114, 56889, 56}, {12114, 59366, 104}, {18516, 32612, 6944}, {57288, 63991, 6865}
X(64121) lies on these lines: {2, 64122}, {3, 9}, {4, 5749}, {5, 5750}, {6, 517}, {7, 7397}, {10, 29207}, {19, 31788}, {30, 10445}, {37, 572}, {40, 1743}, {44, 573}, {45, 13624}, {57, 19517}, {63, 16435}, {71, 2265}, {72, 37399}, {140, 5257}, {142, 19512}, {165, 2348}, {169, 31787}, {218, 31793}, {219, 2261}, {266, 59470}, {284, 15952}, {346, 944}, {355, 2345}, {374, 16547}, {380, 10306}, {391, 5657}, {478, 37613}, {515, 17355}, {516, 4085}, {518, 63968}, {579, 19543}, {604, 24928}, {631, 5296}, {672, 4192}, {894, 6996}, {942, 2285}, {952, 2321}, {960, 24265}, {966, 26446}, {990, 5085}, {1030, 26086}, {1071, 5279}, {1100, 10222}, {1108, 5053}, {1172, 1872}, {1213, 11231}, {1375, 25019}, {1377, 6212}, {1378, 6213}, {1400, 19513}, {1404, 17452}, {1428, 12721}, {1449, 1482}, {1503, 12618}, {1723, 3428}, {1746, 31993}, {1764, 4641}, {1824, 26890}, {1864, 5285}, {2082, 31798}, {2098, 38296}, {2171, 50194}, {2178, 32612}, {2257, 22770}, {2262, 16548}, {2267, 40937}, {2268, 24929}, {2270, 3359}, {2287, 4221}, {2297, 63992}, {2317, 21801}, {2323, 21871}, {2324, 20818}, {2325, 34773}, {2330, 12723}, {2944, 5247}, {3101, 14557}, {3161, 5731}, {3207, 34524}, {3247, 10246}, {3576, 3731}, {3589, 12610}, {3654, 37654}, {3666, 21375}, {3683, 10434}, {3686, 5690}, {3694, 64116}, {3707, 61524}, {3713, 34790}, {3758, 10446}, {3929, 10856}, {3950, 5882}, {3986, 10165}, {4007, 12645}, {4034, 59503}, {4058, 47745}, {4220, 5927}, {4254, 11248}, {4268, 8609}, {4287, 26287}, {4297, 30618}, {4519, 13244}, {4640, 9564}, {4663, 29311}, {4670, 24220}, {4856, 28234}, {4873, 18526}, {4898, 61291}, {5091, 17635}, {5120, 8557}, {5294, 19542}, {5341, 13145}, {5356, 5885}, {5746, 5812}, {5788, 39564}, {5790, 59772}, {5805, 36670}, {5816, 9956}, {5817, 7390}, {5838, 35514}, {5886, 63055}, {5909, 8251}, {5928, 56366}, {6259, 50425}, {6361, 61330}, {6554, 59578}, {6684, 63978}, {6796, 59689}, {6865, 27382}, {6922, 40942}, {6926, 27508}, {7085, 64171}, {7377, 17368}, {7485, 17616}, {7957, 17745}, {7982, 16667}, {8804, 31789}, {9940, 54405}, {9957, 54359}, {10157, 19544}, {10164, 59624}, {10167, 19649}, {10319, 34048}, {10443, 31730}, {10444, 50127}, {10855, 16419}, {10884, 56536}, {11227, 16434}, {11230, 17398}, {11278, 16666}, {11349, 61012}, {12034, 15492}, {12329, 15733}, {12572, 40660}, {12680, 17744}, {12702, 16670}, {13006, 40590}, {13323, 37594}, {13329, 30271}, {13478, 44417}, {13732, 16601}, {14100, 40910}, {15178, 16777}, {15726, 24309}, {16554, 52405}, {16566, 43216}, {16677, 31662}, {16814, 17502}, {16884, 33179}, {16885, 31663}, {17281, 28204}, {17314, 37727}, {17330, 50821}, {17350, 37416}, {17351, 29069}, {17369, 18480}, {17754, 19540}, {18481, 54389}, {18482, 36654}, {18589, 36949}, {18594, 37560}, {19645, 26223}, {20262, 59671}, {21061, 37620}, {21062, 23292}, {21370, 55406}, {21495, 26699}, {21796, 62371}, {23512, 27064}, {23617, 33950}, {24328, 60973}, {24604, 61009}, {24611, 51413}, {25078, 37837}, {26039, 61261}, {26285, 36744}, {26286, 36743}, {26685, 36698}, {26938, 58643}, {27396, 33597}, {28739, 41004}, {30456, 41340}, {31781, 54421}, {32431, 38140}, {32613, 54285}, {34543, 62370}, {37062, 55104}, {37364, 40869}, {37581, 64157}, {37597, 56547}, {39048, 43182}, {40968, 43065}, {41006, 59588}, {44424, 49127}, {50123, 51087}, {50810, 63086}, {52015, 58608}, {54008, 54283}, {59417, 62985}
X(64121) = midpoint of X(i) and X(j) for these {i,j}: {6, 1766}
X(64121) = reflection of X(i) in X(j) for these {i,j}: {12610, 3589}
X(64121) = complement of X(64122)
X(64121) = perspector of circumconic {{A, B, C, X(9058), X(13138)}}
X(64121) = pole of line {3910, 50453} with respect to the excircles-radical circle
X(64121) = pole of line {5269, 30223} with respect to the Feuerbach hyperbola
X(64121) = pole of line {26470, 30444} with respect to the Kiepert hyperbola
X(64121) = pole of line {1817, 26637} with respect to the Stammler hyperbola
X(64121) = pole of line {40134, 57055} with respect to the Steiner inellipse
X(64121) = intersection, other than A, B, C, of circumconics {{A, B, C, X(40), X(5438)}}, {{A, B, C, X(84), X(998)}}
X(64121) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 9, 64125}, {6, 1766, 517}, {9, 2182, 59681}, {9, 5776, 5777}, {9, 5783, 5044}, {37, 572, 1385}, {894, 6996, 64126}, {5816, 17303, 9956}, {32555, 32556, 5438}
X(64122) lies on these lines: {1, 10401}, {2, 64121}, {3, 4357}, {4, 7}, {5, 10436}, {6, 12610}, {19, 26932}, {30, 10444}, {40, 17272}, {57, 5928}, {63, 5755}, {69, 517}, {75, 355}, {77, 41007}, {79, 10435}, {84, 15314}, {86, 5886}, {141, 1766}, {150, 39126}, {222, 1848}, {226, 2050}, {269, 1565}, {286, 57816}, {307, 3149}, {320, 10446}, {326, 45770}, {381, 50116}, {515, 3663}, {516, 1350}, {527, 10445}, {572, 4657}, {573, 4643}, {604, 20270}, {857, 26651}, {894, 7377}, {944, 3672}, {946, 3664}, {952, 3875}, {962, 21296}, {990, 1503}, {1012, 18650}, {1122, 12688}, {1266, 18525}, {1370, 17616}, {1385, 17321}, {1407, 21621}, {1444, 26286}, {1482, 3879}, {1699, 4888}, {1746, 24789}, {1829, 8048}, {1836, 10473}, {2182, 42857}, {2995, 34387}, {3146, 45789}, {3654, 17271}, {3655, 17320}, {3656, 17378}, {3662, 6996}, {3665, 63988}, {3667, 21202}, {3739, 5816}, {3772, 13478}, {3927, 39591}, {3945, 5603}, {4021, 5882}, {4056, 12679}, {4329, 12672}, {4360, 37727}, {4389, 18481}, {4654, 10888}, {4675, 24220}, {4858, 54008}, {4862, 5691}, {4887, 31673}, {4896, 18483}, {4967, 5790}, {5224, 26446}, {5232, 5657}, {5587, 25590}, {5690, 17270}, {5732, 49131}, {5749, 7402}, {5784, 50861}, {5786, 23537}, {5881, 17151}, {5903, 58800}, {5933, 50193}, {6001, 24471}, {6173, 36728}, {6245, 24213}, {6261, 41003}, {6265, 44179}, {6646, 6999}, {7198, 10085}, {7272, 12678}, {7384, 26806}, {7487, 19904}, {7595, 17610}, {8727, 40719}, {8804, 61002}, {9436, 19541}, {9535, 33066}, {9856, 17170}, {9948, 10521}, {10167, 26118}, {10367, 23661}, {10441, 10452}, {10442, 41869}, {10454, 50065}, {10468, 37620}, {10516, 12618}, {10884, 13442}, {10889, 15171}, {11220, 37456}, {11230, 63014}, {11677, 17668}, {12245, 32099}, {12586, 44670}, {12588, 12721}, {12589, 12723}, {15726, 58581}, {16412, 25023}, {16435, 54311}, {17160, 61244}, {17184, 19645}, {17236, 37416}, {17253, 37499}, {17257, 36698}, {17276, 29069}, {17282, 19512}, {17308, 59680}, {17393, 61287}, {17394, 61276}, {17578, 33800}, {17625, 36844}, {17811, 21062}, {18480, 42697}, {18655, 37468}, {20245, 51558}, {20246, 38955}, {20895, 21286}, {21244, 24334}, {21246, 24702}, {21375, 32777}, {21554, 38122}, {22753, 53596}, {23512, 27184}, {24179, 63980}, {24251, 26066}, {24265, 25681}, {24474, 54344}, {24728, 28845}, {25019, 37272}, {27509, 59681}, {28204, 50101}, {29010, 49518}, {29057, 33869}, {29369, 36685}, {31995, 59387}, {32087, 59388}, {35635, 63997}, {37774, 59578}, {39579, 41344}, {41847, 61268}, {43172, 51118}, {50099, 50798}, {51709, 63110}, {62789, 63989}
X(64122) = reflection of X(i) in X(j) for these {i,j}: {6, 12610}, {1766, 141}
X(64122) = anticomplement of X(64121)
X(64122) = X(i)-Dao conjugate of X(j) for these {i, j}: {64121, 64121}
X(64122) = pole of line {3910, 4063} with respect to the Conway circle
X(64122) = pole of line {905, 3910} with respect to the incircle
X(64122) = pole of line {1836, 7595} with respect to the Feuerbach hyperbola
X(64122) = pole of line {1792, 4221} with respect to the Wallace hyperbola
X(64122) = pole of line {1734, 3910} with respect to the Suppa-Cucoanes circle
X(64122) = pole of line {2217, 2385} with respect to the dual conic of Yff parabola
X(64122) = intersection, other than A, B, C, of circumconics {{A, B, C, X(342), X(15314)}}, {{A, B, C, X(1439), X(57816)}}, {{A, B, C, X(7282), X(10435)}}
X(64122) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 7, 64126}, {17257, 36698, 64125}, {20895, 21286, 64087}
X(64123) lies on these lines: {1, 1145}, {2, 3303}, {3, 529}, {4, 4421}, {5, 528}, {8, 4999}, {10, 6675}, {11, 3871}, {12, 100}, {20, 11236}, {21, 4995}, {35, 17757}, {55, 1329}, {56, 10528}, {119, 11849}, {140, 519}, {145, 5433}, {149, 7173}, {200, 26066}, {210, 17637}, {230, 20691}, {388, 37267}, {404, 6174}, {405, 9711}, {442, 3584}, {443, 1376}, {451, 56183}, {474, 10056}, {495, 17563}, {496, 6667}, {497, 3847}, {498, 2886}, {513, 53002}, {517, 32157}, {518, 5771}, {522, 4075}, {535, 548}, {549, 8666}, {551, 12640}, {594, 46823}, {631, 12513}, {758, 11277}, {908, 37568}, {950, 5123}, {952, 26287}, {958, 5218}, {960, 6745}, {1001, 8668}, {1125, 3880}, {1158, 5851}, {1259, 15843}, {1385, 10915}, {1388, 12648}, {1478, 56998}, {1483, 6713}, {1656, 3829}, {1697, 25681}, {1698, 3158}, {1706, 28628}, {1788, 63168}, {1834, 60714}, {2136, 3624}, {2334, 63078}, {2476, 34612}, {2550, 59476}, {2551, 5281}, {2646, 6735}, {2802, 5901}, {2829, 10942}, {2975, 52793}, {3036, 10950}, {3039, 25082}, {3057, 27385}, {3058, 4193}, {3090, 11235}, {3091, 34607}, {3146, 34626}, {3169, 17398}, {3189, 9780}, {3214, 35466}, {3241, 17566}, {3244, 15325}, {3295, 3816}, {3304, 6921}, {3436, 5217}, {3475, 26062}, {3523, 11194}, {3525, 34625}, {3526, 45700}, {3528, 34620}, {3529, 34739}, {3576, 32049}, {3579, 17768}, {3612, 64087}, {3614, 6154}, {3616, 10912}, {3617, 24953}, {3626, 58404}, {3628, 24387}, {3634, 5853}, {3635, 6681}, {3678, 58640}, {3679, 7483}, {3680, 25055}, {3689, 6734}, {3698, 52638}, {3699, 56313}, {3701, 3712}, {3704, 7081}, {3746, 4187}, {3753, 11281}, {3754, 5719}, {3811, 26446}, {3812, 13405}, {3814, 15171}, {3820, 5248}, {3825, 15172}, {3826, 6600}, {3828, 50205}, {3832, 34706}, {3843, 34707}, {3870, 24914}, {3881, 34753}, {3895, 11376}, {3910, 59515}, {3911, 34791}, {3915, 37663}, {3919, 16137}, {3925, 31254}, {3956, 58449}, {3983, 54357}, {4188, 5434}, {4189, 34606}, {4190, 11237}, {4294, 61153}, {4309, 17556}, {4317, 19537}, {4330, 31160}, {4420, 21677}, {4428, 5084}, {4640, 21075}, {4662, 5745}, {4855, 5252}, {4857, 17533}, {5045, 58405}, {5046, 63273}, {5047, 50038}, {5080, 15338}, {5087, 10624}, {5141, 49719}, {5154, 34611}, {5187, 9670}, {5253, 22560}, {5255, 37662}, {5258, 37298}, {5260, 15676}, {5289, 27383}, {5298, 62837}, {5438, 51784}, {5440, 10039}, {5443, 5541}, {5657, 12635}, {5690, 5855}, {5734, 34711}, {5794, 31434}, {5836, 13411}, {5842, 32141}, {5844, 26087}, {5846, 17748}, {5880, 41865}, {5882, 32537}, {5883, 63282}, {5884, 64193}, {5886, 13463}, {6265, 32198}, {6284, 11681}, {6583, 61530}, {6700, 58679}, {6765, 31423}, {6767, 10200}, {6845, 34746}, {6851, 11500}, {6872, 31141}, {6903, 11491}, {6906, 37725}, {6919, 10385}, {6931, 11238}, {6933, 31140}, {6945, 34709}, {6952, 38665}, {6959, 37622}, {7680, 11499}, {7681, 10679}, {7751, 17224}, {7789, 25102}, {7991, 34647}, {8069, 15867}, {8162, 10586}, {8168, 64081}, {8582, 51715}, {8728, 10197}, {9352, 52783}, {9588, 11523}, {9624, 34640}, {9656, 31295}, {9785, 62710}, {9797, 31188}, {9843, 42819}, {9956, 61533}, {10107, 64110}, {10165, 11260}, {10175, 64117}, {10246, 49169}, {10284, 11729}, {10306, 42843}, {10310, 10786}, {10588, 17784}, {10589, 56936}, {10609, 37710}, {10896, 20075}, {10916, 11231}, {10955, 55016}, {11010, 51409}, {11011, 51433}, {11108, 52804}, {11112, 37719}, {11230, 49600}, {11248, 18242}, {11362, 52265}, {11374, 54286}, {11375, 63130}, {11501, 15844}, {11507, 15813}, {11680, 52795}, {12331, 26470}, {12616, 64116}, {12625, 19875}, {12642, 56778}, {12701, 30852}, {12953, 61154}, {13271, 64008}, {13607, 33956}, {13731, 15621}, {14923, 15950}, {15326, 20060}, {15625, 37331}, {15717, 34610}, {15845, 26358}, {15932, 41548}, {16408, 31480}, {16610, 28027}, {17043, 59711}, {17044, 59516}, {17144, 37688}, {17549, 56880}, {17603, 46677}, {17663, 20612}, {17724, 24443}, {19335, 55362}, {19589, 29633}, {19862, 21627}, {19877, 64146}, {20418, 37727}, {21620, 59675}, {22837, 32426}, {24386, 51073}, {24390, 48696}, {24703, 61763}, {24928, 49626}, {24982, 37080}, {25438, 38752}, {25524, 59572}, {26007, 28742}, {26629, 26752}, {27526, 30847}, {28609, 63469}, {29958, 61166}, {30827, 53053}, {31157, 37291}, {31397, 59587}, {31410, 57000}, {31466, 31501}, {32213, 32612}, {33179, 61534}, {33771, 37715}, {34122, 37702}, {34372, 58487}, {34605, 37307}, {34701, 37714}, {34772, 40663}, {36926, 52352}, {37162, 44847}, {37339, 48801}, {37535, 38760}, {37646, 50581}, {37720, 45310}, {38058, 47033}, {38930, 60711}, {43174, 44663}, {45976, 48713}, {56311, 59592}, {58609, 64124}, {58798, 59316}, {59671, 59733}, {61292, 61566}, {61510, 61520}, {61521, 61597}, {63211, 64002}, {64074, 64148}
X(64123) = midpoint of X(i) and X(j) for these {i,j}: {3, 12607}, {5, 8715}, {10, 56176}, {1385, 10915}, {3579, 21077}, {3813, 3913}, {3826, 6600}, {5690, 22836}, {5882, 32537}, {6265, 32198}, {6684, 59722}, {10942, 26285}, {11248, 18242}, {12616, 64116}, {12640, 33895}
X(64123) = reflection of X(i) in X(j) for these {i,j}: {24387, 3628}
X(64123) = complement of X(3813)
X(64123) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11, 5511, 61079}
X(64123) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3035, 6691}, {2, 3913, 3813}, {3, 12607, 529}, {3, 45701, 12607}, {5, 8715, 528}, {8, 5432, 4999}, {10, 56176, 44669}, {10, 59584, 56176}, {35, 17757, 57288}, {55, 5552, 1329}, {498, 2886, 6668}, {498, 5687, 2886}, {551, 12640, 33895}, {631, 34619, 12513}, {1376, 3085, 25466}, {1385, 10915, 38455}, {3085, 59591, 1376}, {3295, 26364, 3816}, {3579, 21077, 17768}, {3614, 6154, 52367}, {3746, 4187, 49736}, {3753, 63259, 11281}, {3871, 27529, 11}, {4995, 21031, 21}, {5218, 7080, 958}, {5281, 27525, 2551}, {5690, 22836, 5855}, {6174, 15888, 404}, {6684, 59722, 518}, {6921, 11239, 3304}, {9624, 64202, 34640}, {9709, 10198, 3826}, {10942, 26285, 2829}, {13405, 63990, 3812}, {31397, 59587, 59691}
X(64124) lies on these lines: {1, 631}, {2, 3333}, {3, 4314}, {4, 3361}, {5, 4298}, {7, 8227}, {8, 61762}, {10, 999}, {11, 1354}, {12, 10172}, {31, 28018}, {35, 64162}, {36, 950}, {40, 5435}, {46, 10072}, {55, 40270}, {56, 515}, {57, 946}, {65, 13464}, {104, 13370}, {140, 5045}, {142, 26363}, {165, 1058}, {200, 17567}, {226, 499}, {227, 43068}, {329, 25522}, {354, 5433}, {355, 4315}, {388, 10175}, {390, 35242}, {404, 26015}, {443, 5231}, {474, 4847}, {495, 3634}, {496, 516}, {497, 15803}, {498, 51816}, {517, 34753}, {518, 6691}, {519, 8256}, {527, 10199}, {537, 59731}, {546, 31776}, {548, 31795}, {550, 18527}, {553, 1776}, {758, 942}, {861, 40956}, {912, 58573}, {936, 24477}, {938, 3576}, {944, 13462}, {956, 8582}, {958, 9843}, {962, 37704}, {982, 34937}, {997, 24391}, {1056, 1698}, {1066, 3216}, {1104, 3756}, {1155, 10624}, {1159, 61276}, {1208, 33811}, {1319, 13607}, {1375, 40940}, {1385, 6738}, {1387, 50193}, {1420, 5882}, {1445, 12704}, {1447, 53597}, {1458, 37732}, {1467, 6261}, {1470, 37287}, {1471, 37530}, {1478, 6896}, {1479, 4333}, {1519, 26877}, {1565, 10521}, {1617, 6796}, {1647, 37009}, {1656, 3947}, {1699, 47743}, {1706, 34625}, {1737, 5563}, {1770, 37720}, {1887, 23711}, {2257, 59644}, {2260, 40942}, {2646, 5298}, {2886, 12436}, {3035, 34791}, {3075, 55086}, {3085, 31231}, {3090, 5290}, {3218, 31888}, {3244, 56177}, {3295, 10164}, {3296, 34595}, {3297, 13912}, {3298, 13975}, {3304, 24914}, {3306, 10527}, {3336, 30384}, {3339, 5603}, {3452, 10200}, {3474, 9614}, {3476, 47745}, {3486, 51705}, {3487, 3624}, {3488, 7987}, {3523, 10580}, {3555, 6745}, {3579, 12575}, {3600, 5587}, {3616, 11529}, {3632, 53058}, {3636, 50194}, {3646, 5273}, {3660, 12005}, {3671, 5708}, {3698, 39779}, {3701, 62621}, {3743, 53042}, {3748, 52793}, {3772, 24171}, {3816, 12572}, {3817, 57282}, {3870, 6921}, {3873, 27385}, {3881, 6681}, {3889, 17566}, {3913, 59675}, {3916, 40998}, {3946, 37565}, {4031, 23708}, {4187, 12527}, {4253, 40869}, {4293, 9581}, {4297, 5722}, {4299, 28172}, {4301, 11373}, {4304, 5204}, {4305, 37723}, {4308, 5881}, {4312, 50444}, {4317, 10826}, {4323, 61275}, {4342, 12702}, {4355, 5714}, {4666, 6910}, {4860, 11375}, {5044, 58577}, {5049, 58441}, {5082, 64112}, {5084, 31249}, {5121, 5247}, {5122, 12512}, {5126, 37730}, {5128, 30305}, {5220, 5542}, {5221, 11376}, {5234, 17559}, {5236, 7537}, {5250, 10586}, {5253, 6734}, {5261, 54447}, {5267, 37292}, {5274, 41869}, {5294, 26094}, {5316, 41229}, {5432, 17609}, {5434, 17606}, {5437, 19843}, {5443, 11551}, {5445, 37602}, {5450, 57278}, {5534, 6970}, {5550, 11036}, {5552, 31224}, {5558, 61856}, {5570, 15556}, {5690, 51788}, {5717, 6998}, {5719, 50192}, {5744, 31435}, {5777, 63994}, {5794, 40726}, {5795, 8666}, {5853, 25440}, {5884, 37566}, {5901, 31794}, {5902, 64160}, {6049, 61291}, {6147, 11230}, {6245, 18237}, {6260, 10396}, {6361, 51785}, {6712, 14760}, {6713, 12432}, {6735, 62837}, {6737, 17614}, {6744, 24929}, {6762, 31190}, {6765, 59572}, {6848, 63430}, {6857, 10582}, {6964, 7091}, {7294, 61648}, {7373, 26446}, {7677, 10902}, {7682, 12114}, {7686, 20418}, {7956, 34862}, {8074, 40133}, {8166, 12246}, {8555, 29821}, {8568, 17742}, {8732, 37526}, {9578, 31399}, {9579, 10591}, {9612, 10589}, {9613, 50796}, {9669, 51118}, {9844, 63432}, {9850, 18908}, {9856, 13226}, {9948, 63992}, {9955, 24470}, {9956, 51782}, {9957, 43174}, {9965, 26129}, {10021, 58586}, {10090, 12750}, {10156, 16201}, {10198, 51723}, {10265, 48694}, {10303, 10578}, {10310, 42884}, {10573, 63987}, {10593, 12571}, {10595, 18421}, {10916, 57284}, {11038, 61016}, {11227, 12710}, {11240, 63130}, {11263, 60980}, {11512, 33137}, {12433, 13624}, {12608, 62810}, {12649, 35262}, {12667, 33994}, {12675, 64157}, {12699, 37545}, {12701, 28232}, {12908, 58440}, {12915, 63976}, {13373, 62852}, {13374, 37544}, {13600, 64193}, {13883, 35769}, {13936, 35768}, {15172, 31663}, {15299, 60992}, {15841, 38059}, {16174, 24465}, {16485, 28080}, {16572, 40127}, {16869, 62811}, {17051, 51715}, {17353, 25492}, {17527, 18250}, {17531, 25006}, {17605, 52783}, {17625, 63967}, {18398, 63274}, {18990, 19925}, {20103, 34790}, {20323, 40663}, {21151, 30330}, {21578, 37702}, {21627, 54286}, {23536, 29662}, {23537, 51751}, {24178, 33140}, {24982, 54391}, {26062, 63137}, {26105, 31424}, {27383, 41863}, {28027, 46190}, {28096, 54310}, {29817, 37291}, {30340, 61015}, {31423, 64114}, {31479, 51073}, {31792, 61524}, {33593, 41551}, {34120, 62388}, {34198, 34502}, {35620, 43223}, {36489, 37608}, {37534, 62839}, {37561, 62873}, {37587, 45287}, {37589, 51615}, {37592, 39595}, {37646, 52541}, {38036, 60939}, {38037, 60955}, {38130, 62775}, {38859, 51364}, {39605, 61018}, {43151, 63972}, {43179, 63271}, {50190, 63259}, {50191, 63282}, {51706, 58463}, {51775, 52542}, {53057, 64005}, {54302, 61002}, {54370, 61022}, {58570, 61521}, {58587, 61566}, {58609, 64123}, {60924, 61014}, {62773, 64081}, {63980, 64001}, {64131, 64132}
X(64124) = midpoint of X(i) and X(j) for these {i,j}: {1, 4848}, {10, 62825}, {46, 12053}, {56, 1210}, {496, 37582}, {1837, 4311}, {10573, 63987}, {15299, 60992}, {21075, 62874}, {25440, 49627}, {60924, 61014}, {63399, 63989}, {64131, 64132}
X(64124) = reflection of X(i) in X(j) for these {i,j}: {6700, 6691}, {63990, 58405}
X(64124) = complement of X(21075)
X(64124) = X(i)-complementary conjugate of X(j) for these {i, j}: {58, 6260}, {84, 3454}, {189, 21245}, {285, 1329}, {1014, 20307}, {1333, 223}, {1408, 7952}, {1412, 20206}, {1413, 442}, {1422, 17052}, {1433, 21530}, {1436, 1211}, {2193, 55113}, {2194, 38015}, {2203, 46836}, {2206, 40943}, {2208, 1213}, {3733, 7358}, {3737, 46663}, {4565, 20314}, {6612, 18635}, {7118, 38930}, {7151, 50036}, {7254, 53833}, {13138, 31946}, {32652, 661}, {36049, 4129}, {52384, 34829}, {55117, 18642}, {55211, 21262}
X(64124) = pole of line {6006, 7661} with respect to the incircle
X(64124) = pole of line {5882, 5919} with respect to the Feuerbach hyperbola
X(64124) = pole of line {223, 5219} with respect to the dual conic of Yff parabola
X(64124) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1000), X(55091)}}, {{A, B, C, X(11362), X(40446)}}
X(64124) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1788, 11362}, {1, 3911, 6684}, {1, 4848, 28234}, {1, 7288, 10165}, {2, 3333, 21620}, {2, 62874, 21075}, {3, 11019, 63999}, {11, 32636, 4292}, {11, 4292, 18483}, {40, 14986, 63993}, {46, 12053, 28194}, {56, 17728, 1210}, {56, 1837, 4311}, {57, 50443, 4295}, {65, 44675, 13464}, {140, 5045, 13405}, {354, 5433, 13411}, {404, 26015, 63146}, {496, 37582, 516}, {497, 15803, 31730}, {499, 3338, 226}, {518, 6691, 6700}, {519, 58405, 63990}, {942, 3742, 58566}, {942, 37737, 12563}, {1125, 12563, 37737}, {1210, 4311, 1837}, {1737, 5563, 10106}, {1837, 4311, 515}, {3035, 34791, 59722}, {3086, 4295, 50443}, {3304, 24914, 31397}, {3337, 12047, 553}, {3337, 3582, 12047}, {3555, 13747, 6745}, {3600, 5704, 5587}, {3624, 10980, 3487}, {3634, 12577, 495}, {3742, 4999, 1125}, {3881, 6681, 59719}, {4293, 9581, 31673}, {4295, 50443, 946}, {4355, 7988, 5714}, {5122, 15171, 12512}, {5435, 14986, 40}, {5542, 19862, 11374}, {5708, 5886, 3671}, {9613, 54361, 50796}, {10164, 21625, 3295}, {10396, 54366, 6260}, {11373, 36279, 4301}, {12563, 37737, 64110}, {24239, 37607, 5717}, {27383, 64151, 41863}, {31249, 62824, 5084}, {34790, 52264, 20103}, {51785, 53056, 6361}
X(64125) lies on these lines: {2, 64126}, {3, 9}, {4, 5296}, {5, 5257}, {6, 1385}, {37, 517}, {40, 3731}, {44, 572}, {45, 1766}, {71, 31788}, {72, 61109}, {140, 5750}, {165, 64134}, {210, 10434}, {228, 64171}, {346, 5657}, {355, 966}, {391, 944}, {392, 19256}, {515, 63978}, {516, 3842}, {549, 50115}, {579, 9940}, {604, 5126}, {631, 5749}, {672, 11227}, {942, 1400}, {946, 3986}, {952, 3686}, {1030, 33862}, {1100, 15178}, {1108, 4266}, {1213, 9956}, {1334, 31798}, {1423, 37597}, {1449, 10246}, {1482, 3247}, {1696, 3428}, {1743, 3576}, {1764, 44307}, {2171, 50193}, {2178, 26286}, {2183, 31786}, {2245, 34339}, {2264, 10902}, {2265, 22054}, {2269, 9957}, {2285, 37582}, {2287, 33597}, {2321, 5690}, {2322, 45766}, {2325, 29327}, {2345, 26446}, {2347, 43065}, {2348, 15931}, {3161, 46937}, {3185, 58648}, {3294, 9856}, {3305, 16435}, {3509, 19516}, {3655, 37654}, {3666, 21363}, {3683, 20989}, {3693, 37619}, {3694, 58643}, {3707, 34773}, {3723, 33179}, {3730, 31787}, {3739, 29069}, {3931, 9548}, {3950, 11362}, {3965, 21061}, {3973, 7987}, {4007, 59503}, {4034, 12645}, {4058, 38127}, {4192, 10157}, {4205, 39591}, {4210, 17616}, {4245, 37620}, {4254, 8557}, {4268, 18857}, {4270, 37698}, {4271, 8609}, {4364, 12610}, {4557, 40659}, {4687, 10446}, {4698, 24220}, {4856, 13607}, {4877, 15952}, {4969, 32900}, {5036, 21853}, {5120, 10269}, {5124, 23961}, {5356, 41347}, {5759, 7390}, {5816, 18480}, {5836, 59727}, {5839, 37727}, {5927, 37400}, {6051, 31779}, {6666, 19512}, {6684, 17355}, {6907, 8804}, {6908, 27508}, {6988, 27382}, {6996, 17260}, {7308, 10856}, {7377, 17248}, {7397, 18230}, {7686, 25081}, {7982, 16673}, {8074, 59588}, {8245, 9441}, {8273, 61037}, {9840, 16601}, {10156, 17754}, {10222, 16777}, {10786, 27522}, {10855, 16059}, {10882, 25917}, {11231, 17303}, {11278, 16672}, {11349, 60969}, {11575, 56546}, {12555, 25430}, {12702, 16676}, {14557, 62857}, {14636, 21033}, {15254, 63968}, {15489, 25092}, {15569, 29311}, {15586, 16814}, {15624, 15733}, {15726, 41430}, {15837, 40910}, {16590, 28208}, {16671, 31662}, {16885, 17502}, {17257, 36698}, {17281, 50821}, {17330, 28204}, {18482, 36526}, {18591, 23980}, {19262, 27396}, {19514, 25068}, {19544, 40131}, {19547, 37623}, {21074, 51362}, {21511, 26699}, {21871, 37562}, {22027, 59658}, {24328, 60974}, {24471, 25065}, {25019, 30810}, {26285, 54285}, {28244, 34460}, {30618, 59682}, {31781, 59305}, {31837, 48930}, {31993, 54035}, {32612, 36743}, {32613, 36744}, {34524, 42316}, {35652, 62189}, {36670, 38108}, {37320, 55104}, {38869, 41391}, {40942, 52265}, {43174, 59585}, {59387, 62608}, {59733, 63976}
X(64125) = midpoint of X(i) and X(j) for these {i,j}: {37, 573}
X(64125) = reflection of X(i) in X(j) for these {i,j}: {24220, 4698}
X(64125) = complement of X(64126)
X(64125) = pole of line {4791, 14838} with respect to the Spieker circle
X(64125) = pole of line {30223, 37553} with respect to the Feuerbach hyperbola
X(64125) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(994)}}, {{A, B, C, X(1436), X(46018)}}
X(64125) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 9, 64121}, {9, 198, 59681}, {37, 573, 517}, {45, 37499, 1766}, {198, 54322, 15817}, {1766, 37499, 3579}, {3965, 21061, 34790}, {3986, 10443, 946}, {5257, 10445, 5}, {6684, 17355, 59680}, {7308, 10856, 19517}, {17257, 36698, 64122}, {44424, 59207, 10157}
X(64126) lies on these lines: {1, 10435}, {2, 64125}, {3, 10436}, {4, 7}, {5, 4357}, {8, 31781}, {10, 43172}, {30, 50116}, {37, 24220}, {40, 10442}, {57, 2050}, {65, 45189}, {69, 355}, {72, 20245}, {75, 517}, {86, 1385}, {104, 1014}, {142, 10445}, {222, 5307}, {226, 51414}, {286, 6528}, {307, 6831}, {314, 35631}, {320, 18480}, {379, 26651}, {381, 17274}, {392, 17183}, {511, 21443}, {515, 3664}, {516, 24325}, {527, 36728}, {572, 4670}, {573, 3739}, {894, 6996}, {912, 54344}, {944, 3945}, {946, 3663}, {952, 3879}, {962, 31995}, {982, 1699}, {1012, 18655}, {1086, 12610}, {1108, 17197}, {1111, 1122}, {1266, 22791}, {1350, 43169}, {1400, 53526}, {1418, 24237}, {1478, 10401}, {1482, 3875}, {1565, 3668}, {1721, 48944}, {1746, 4641}, {1764, 31993}, {1766, 4363}, {1826, 26932}, {1836, 7595}, {1867, 2995}, {1882, 30493}, {1944, 59681}, {2051, 3752}, {2262, 4858}, {3295, 10889}, {3655, 63110}, {3656, 50101}, {3662, 7377}, {3666, 10478}, {3667, 23810}, {3672, 5603}, {3696, 29311}, {3706, 10439}, {3753, 24993}, {3812, 50037}, {3817, 6682}, {3832, 45789}, {4021, 13464}, {4059, 4888}, {4301, 53594}, {4328, 63992}, {4360, 10222}, {4389, 9955}, {4459, 12723}, {4643, 5816}, {4887, 18483}, {4896, 31673}, {4909, 13607}, {4955, 15071}, {4967, 5690}, {5155, 8048}, {5224, 9956}, {5232, 5818}, {5249, 19542}, {5295, 10441}, {5439, 51558}, {5480, 53599}, {5587, 17272}, {5736, 33597}, {5749, 7397}, {5755, 28287}, {5778, 23151}, {5790, 17270}, {5799, 23537}, {5817, 36694}, {5832, 50861}, {5886, 17321}, {5887, 17139}, {5927, 20347}, {6173, 36731}, {6354, 21621}, {6646, 7384}, {6821, 10855}, {6999, 26806}, {7190, 63986}, {7321, 22793}, {7682, 24213}, {7686, 17861}, {7982, 17151}, {8233, 30380}, {8727, 9436}, {8728, 39591}, {9535, 19804}, {9856, 17753}, {10157, 30946}, {10455, 19259}, {10456, 10476}, {10573, 58800}, {10914, 20895}, {11230, 17322}, {11231, 28653}, {11278, 17160}, {12245, 32087}, {12545, 49598}, {12672, 17220}, {12699, 42697}, {13442, 64003}, {13624, 41847}, {14110, 18698}, {15178, 17394}, {15488, 20888}, {15726, 58583}, {15971, 20880}, {16465, 20242}, {17257, 36662}, {17273, 38140}, {17320, 51709}, {17345, 32431}, {17353, 19512}, {17378, 28204}, {17393, 33179}, {17614, 24540}, {17619, 24986}, {17885, 43037}, {18443, 56959}, {18650, 37468}, {19541, 40719}, {19925, 53598}, {20236, 43216}, {20258, 25066}, {20430, 49518}, {20907, 32475}, {21233, 24705}, {21246, 24336}, {21296, 59387}, {21554, 31658}, {22464, 41007}, {22753, 24179}, {23661, 43213}, {24474, 46704}, {24728, 48900}, {24774, 28351}, {25083, 30035}, {27633, 34460}, {28208, 39704}, {29010, 48934}, {29207, 50307}, {29347, 49462}, {30097, 37597}, {30949, 44424}, {32025, 38176}, {32099, 59388}, {33800, 50689}, {39550, 58787}, {39553, 50314}, {41010, 62780}, {44179, 46920}, {44307, 54035}, {45770, 55391}, {53596, 63980}, {54404, 59318}, {60895, 64085}
X(64126) = midpoint of X(i) and X(j) for these {i,j}: {75, 10446}
X(64126) = reflection of X(i) in X(j) for these {i,j}: {37, 24220}, {573, 3739}
X(64126) = anticomplement of X(64125)
X(64126) = X(i)-Dao conjugate of X(j) for these {i, j}: {64125, 64125}
X(64126) = pole of line {23880, 48320} with respect to the Conway circle
X(64126) = pole of line {905, 1577} with respect to the incircle
X(64126) = pole of line {1836, 10473} with respect to the Feuerbach hyperbola
X(64126) = pole of line {1734, 23880} with respect to the Suppa-Cucoanes circle
X(64126) = pole of line {3668, 3827} with respect to the dual conic of Yff parabola
X(64126) = intersection, other than A, B, C, of circumconics {{A, B, C, X(273), X(10435)}}, {{A, B, C, X(1439), X(18816)}}
X(64126) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 7, 64122}, {7, 21279, 41004}, {7, 44735, 942}, {57, 10888, 2050}, {75, 10446, 517}, {894, 6996, 64121}, {10436, 10444, 3}, {10442, 25590, 40}, {17183, 24547, 392}
X(64127) lies on these lines: {1, 6907}, {2, 8543}, {4, 18237}, {5, 65}, {6, 34029}, {7, 11680}, {10, 13601}, {11, 57}, {12, 3340}, {30, 56}, {43, 52659}, {46, 6922}, {109, 37646}, {124, 13567}, {140, 11509}, {196, 37372}, {221, 5292}, {222, 11269}, {226, 518}, {354, 64115}, {388, 17532}, {442, 3485}, {495, 2099}, {497, 1617}, {499, 1466}, {553, 3829}, {613, 26098}, {651, 33142}, {908, 18236}, {959, 3142}, {999, 6923}, {1012, 3086}, {1118, 15763}, {1155, 37364}, {1159, 6980}, {1210, 6001}, {1214, 24210}, {1329, 4848}, {1368, 18588}, {1420, 37722}, {1454, 37356}, {1457, 64172}, {1465, 3914}, {1467, 50528}, {1470, 6914}, {1532, 18391}, {1538, 64157}, {1595, 1887}, {1596, 1875}, {1621, 37797}, {1708, 14022}, {1758, 33095}, {1788, 4187}, {1834, 10571}, {1837, 63988}, {2078, 3058}, {2646, 37424}, {3256, 5432}, {3339, 7741}, {3361, 37720}, {3474, 37374}, {3585, 34697}, {3649, 26481}, {3660, 10391}, {3671, 15844}, {3772, 15253}, {3813, 10106}, {3816, 3911}, {3820, 5692}, {3925, 5219}, {4292, 63980}, {4295, 6831}, {4298, 24387}, {4318, 33133}, {4915, 9578}, {5057, 37358}, {5128, 50031}, {5221, 10593}, {5226, 33108}, {5230, 34040}, {5259, 5433}, {5274, 10431}, {5305, 56913}, {5434, 31159}, {5435, 44447}, {5533, 37587}, {5563, 10948}, {5729, 8226}, {5843, 61716}, {5903, 10523}, {6051, 54346}, {6067, 60937}, {6284, 37583}, {6354, 62221}, {6604, 32816}, {6734, 12709}, {6882, 36279}, {6925, 14986}, {7288, 16370}, {7354, 26475}, {7672, 31053}, {7677, 35989}, {7678, 60939}, {7702, 24470}, {7951, 18421}, {8270, 17720}, {8728, 11375}, {9316, 29662}, {9955, 37544}, {10177, 30379}, {10306, 10321}, {10404, 10957}, {10473, 15986}, {10589, 38037}, {10629, 22770}, {10943, 18961}, {10947, 33925}, {10953, 31799}, {11235, 42886}, {11507, 52265}, {11510, 15172}, {12608, 44547}, {12699, 37550}, {14257, 37368}, {15048, 43039}, {15171, 37579}, {15518, 41338}, {15726, 60992}, {15804, 26105}, {15950, 26725}, {17064, 37695}, {17080, 33134}, {17527, 24914}, {17625, 26015}, {18242, 64163}, {18243, 41562}, {21616, 50206}, {21617, 61028}, {22766, 31775}, {23304, 53566}, {24806, 37715}, {25466, 64160}, {25568, 51416}, {25760, 26942}, {25973, 30827}, {26013, 41883}, {26333, 57278}, {26470, 57282}, {26482, 41696}, {28628, 47510}, {28997, 33114}, {30311, 60975}, {30384, 64106}, {31789, 59317}, {33105, 42289}, {33137, 34048}, {37321, 60681}, {37406, 37730}, {37438, 37737}, {37591, 63997}, {37738, 41709}, {38357, 62811}, {41871, 63994}, {42356, 52819}, {52367, 57283}, {62810, 64119}
X(64127) = pole of line {971, 10572} with respect to the Feuerbach hyperbola
X(64127) = pole of line {37597, 43035} with respect to the dual conic of Yff parabola
X(64127) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 1836, 8727}, {497, 54366, 1617}, {1210, 63989, 64131}, {3671, 25639, 15844}, {3772, 34036, 15253}, {9316, 29662, 43043}, {18961, 26437, 18990}
X(64128) lies on these lines: {1, 17613}, {2, 12679}, {3, 960}, {10, 34862}, {20, 1155}, {30, 61530}, {35, 10167}, {40, 3880}, {46, 37022}, {55, 58567}, {56, 63985}, {57, 12651}, {63, 58637}, {65, 6909}, {72, 1768}, {84, 1376}, {100, 12680}, {104, 11260}, {165, 3916}, {404, 12688}, {411, 1776}, {474, 1709}, {496, 516}, {515, 8256}, {517, 62825}, {518, 10310}, {548, 952}, {601, 1386}, {603, 9371}, {631, 15254}, {944, 13528}, {958, 37560}, {962, 32636}, {971, 25440}, {993, 31787}, {1001, 37526}, {1012, 3812}, {1071, 2077}, {1385, 3898}, {1728, 7580}, {1770, 37374}, {1836, 6890}, {2551, 54052}, {2886, 6705}, {3035, 6260}, {3146, 9352}, {3149, 15297}, {3218, 7957}, {3358, 15587}, {3359, 5836}, {3523, 3683}, {3555, 5537}, {3647, 31658}, {3740, 7330}, {3742, 11496}, {3814, 22792}, {3838, 6833}, {3893, 38669}, {3913, 63430}, {4018, 5538}, {4188, 9961}, {4324, 10073}, {4420, 13243}, {4652, 5584}, {4973, 5493}, {5087, 6891}, {5123, 6256}, {5193, 17622}, {5204, 64150}, {5217, 10884}, {5220, 5732}, {5248, 11227}, {5289, 54156}, {5302, 6684}, {5438, 7992}, {5440, 15071}, {5450, 31788}, {5552, 12678}, {5660, 41690}, {5691, 56998}, {5722, 64076}, {5731, 37568}, {5794, 14647}, {5880, 6847}, {6223, 59572}, {6244, 62858}, {6259, 26364}, {6675, 64113}, {6691, 63989}, {6914, 40296}, {6916, 26066}, {6925, 24914}, {6926, 24703}, {6935, 28628}, {6966, 11375}, {6972, 17605}, {7171, 11500}, {8069, 64132}, {8227, 63266}, {8273, 35258}, {8666, 31798}, {9940, 51715}, {10164, 31445}, {10268, 12687}, {10269, 45776}, {10306, 34791}, {10391, 11509}, {10860, 15803}, {10916, 13226}, {11248, 12675}, {11277, 22936}, {11374, 60896}, {11491, 63432}, {12515, 48694}, {12616, 31775}, {12667, 37828}, {12672, 37561}, {12704, 42886}, {12705, 21164}, {12740, 37605}, {12775, 58591}, {13348, 22276}, {13369, 26285}, {13374, 37612}, {14110, 37403}, {15717, 62838}, {15823, 37108}, {15852, 17596}, {16141, 61653}, {16196, 40560}, {16371, 63988}, {16408, 54370}, {17502, 51717}, {17556, 52860}, {17567, 64130}, {17594, 37501}, {17606, 37437}, {17619, 41698}, {17647, 33899}, {18239, 56941}, {19862, 38123}, {19925, 50240}, {20586, 64189}, {22835, 26492}, {24025, 64055}, {24467, 35238}, {24982, 64000}, {25681, 63962}, {26927, 37577}, {31663, 31805}, {31730, 37623}, {31786, 40256}, {33557, 41542}, {37524, 64005}, {37572, 37711}, {41561, 59587}, {44663, 63391}, {50031, 64002}, {50371, 64021}, {57278, 59336}
X(64128) = midpoint of X(i) and X(j) for these {i,j}: {20, 1837}, {46, 37022}, {56, 63985}, {1768, 2932}, {5687, 10085}, {10310, 63399}, {20586, 64189}
X(64128) = reflection of X(i) in X(j) for these {i,j}: {59691, 3}, {63989, 6691}
X(64128) = complement of X(12679)
X(64128) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1158, 960}, {3, 6001, 59691}, {3, 64118, 4640}, {3, 64129, 9943}, {84, 10270, 1376}, {165, 10085, 5687}, {1012, 59333, 3812}, {1071, 2077, 56176}, {1709, 16209, 474}, {1768, 59326, 72}, {3359, 12114, 5836}, {4297, 46684, 3579}, {10860, 15803, 64077}, {11496, 37534, 3742}, {12705, 21164, 25524}, {24467, 35238, 63976}
X(64129) lies on these lines: {1, 1106}, {2, 1709}, {3, 960}, {4, 59333}, {8, 10085}, {9, 2272}, {10, 84}, {20, 46}, {35, 10884}, {36, 64150}, {40, 376}, {55, 10167}, {57, 497}, {63, 100}, {65, 37022}, {78, 15071}, {90, 6838}, {109, 1040}, {169, 43163}, {171, 990}, {191, 16192}, {214, 2950}, {222, 9371}, {223, 24025}, {226, 60896}, {355, 28458}, {404, 9961}, {411, 920}, {443, 12617}, {474, 12688}, {515, 3359}, {517, 63991}, {518, 6244}, {550, 59318}, {553, 60895}, {603, 54295}, {649, 15487}, {758, 6282}, {912, 35238}, {936, 7992}, {942, 64074}, {946, 37534}, {950, 64076}, {952, 63132}, {958, 31787}, {962, 3338}, {971, 1376}, {982, 61086}, {991, 17594}, {993, 30503}, {1001, 11227}, {1012, 54318}, {1026, 38502}, {1071, 3811}, {1125, 6935}, {1155, 1708}, {1210, 59336}, {1214, 2192}, {1329, 6259}, {1377, 49234}, {1378, 49235}, {1385, 4428}, {1445, 2951}, {1466, 12711}, {1490, 10270}, {1699, 3306}, {1706, 10864}, {1707, 13329}, {1728, 37421}, {1737, 6925}, {1742, 17596}, {1750, 35990}, {1754, 30265}, {1764, 39594}, {1766, 3509}, {1770, 6836}, {1779, 37419}, {1836, 37374}, {2057, 12059}, {2077, 18446}, {2082, 9315}, {2096, 64111}, {2285, 43173}, {2551, 12246}, {2720, 2739}, {2800, 37611}, {2807, 3784}, {2884, 40537}, {3218, 9778}, {3219, 64108}, {3295, 58567}, {3333, 4301}, {3336, 64005}, {3337, 9589}, {3339, 62836}, {3358, 5745}, {3522, 56288}, {3560, 40296}, {3576, 6950}, {3577, 3919}, {3579, 24467}, {3651, 63437}, {3740, 5779}, {3817, 5437}, {3870, 5537}, {3874, 6769}, {3878, 54156}, {3880, 30283}, {3885, 7991}, {3899, 12767}, {3911, 30223}, {3916, 5584}, {3927, 58637}, {3929, 43181}, {3931, 37501}, {4187, 12679}, {4292, 10629}, {4413, 5927}, {4414, 63395}, {4512, 10857}, {4650, 9441}, {4652, 59320}, {4845, 56380}, {5046, 52860}, {5119, 5731}, {5220, 58696}, {5248, 8726}, {5250, 7987}, {5272, 64013}, {5274, 37789}, {5281, 15298}, {5325, 6684}, {5435, 15299}, {5536, 31146}, {5587, 6951}, {5687, 12680}, {5691, 17579}, {5698, 14646}, {5709, 31730}, {5744, 42012}, {5794, 33899}, {5880, 8727}, {5882, 49163}, {5884, 12559}, {6175, 7989}, {6260, 26364}, {6361, 10806}, {6690, 60964}, {6700, 54227}, {6705, 26363}, {6745, 41561}, {6763, 63469}, {6796, 41854}, {6847, 12609}, {6848, 58405}, {6850, 12616}, {6865, 64190}, {6890, 12047}, {6891, 12608}, {6905, 50528}, {6922, 64119}, {6926, 21616}, {6972, 37692}, {7004, 8270}, {7291, 28124}, {7308, 58441}, {7688, 21165}, {7701, 31423}, {7967, 12703}, {7971, 30144}, {7994, 62823}, {7995, 8583}, {8167, 10156}, {8193, 26927}, {8257, 15726}, {8580, 15064}, {8730, 11495}, {9352, 36002}, {9355, 16569}, {9709, 12684}, {9746, 56518}, {9809, 27131}, {9812, 27003}, {9856, 25524}, {9940, 11496}, {9948, 57284}, {10157, 16112}, {10175, 18540}, {10200, 63989}, {10306, 12675}, {10391, 37541}, {10393, 11509}, {10446, 60717}, {10582, 11407}, {10826, 37437}, {10980, 43166}, {11015, 63141}, {11248, 13369}, {11522, 35010}, {11531, 62832}, {12114, 31788}, {12115, 45633}, {12436, 21628}, {12513, 31798}, {12515, 38759}, {12560, 58626}, {12565, 15803}, {12652, 18193}, {12678, 17757}, {12699, 37612}, {13257, 41706}, {13388, 61094}, {13389, 61095}, {13405, 43177}, {13528, 63432}, {15621, 53296}, {15931, 35258}, {17122, 64134}, {18444, 59337}, {21164, 63992}, {21635, 30827}, {24477, 35514}, {24703, 37364}, {25568, 36996}, {26066, 37424}, {26921, 31663}, {28164, 58808}, {28236, 63137}, {29068, 53898}, {29844, 61087}, {31419, 61556}, {32916, 59620}, {34628, 36005}, {35242, 55104}, {35986, 55873}, {37403, 63391}, {37550, 64075}, {37551, 54290}, {37561, 63986}, {37582, 64077}, {39635, 53892}, {43174, 57279}, {47848, 59645}, {48697, 52026}, {49500, 62320}, {50031, 58798}, {51786, 61294}, {55870, 62838}, {56941, 64148}, {58678, 61005}, {59458, 59606}, {59624, 59677}, {59646, 60784}, {59665, 59674}, {60786, 62811}, {60938, 63974}
X(64129) = midpoint of X(i) and X(j) for these {i,j}: {20, 18391}, {40, 63430}, {57, 10860}, {200, 30304}, {2096, 64111}, {3359, 7171}, {7994, 62823}
X(64129) = reflection of X(i) in X(j) for these {i,j}: {997, 3}, {24703, 37364}, {54286, 3359}, {59687, 20103}
X(64129) = complement of X(64130)
X(64129) = X(i)-Dao conjugate of X(j) for these {i, j}: {6180, 9312}
X(64129) = pole of line {3667, 53395} with respect to the Bevan circle
X(64129) = pole of line {521, 53278} with respect to the circumcircle
X(64129) = pole of line {6735, 59969} with respect to the orthoptic circle of the Steiner Inellipse
X(64129) = pole of line {8581, 20323} with respect to the Feuerbach hyperbola
X(64129) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {20, 6790, 18391}
X(64129) = intersection, other than A, B, C, of circumconics {{A, B, C, X(103), X(3435)}}, {{A, B, C, X(7045), X(20588)}}, {{A, B, C, X(10307), X(36101)}}, {{A, B, C, X(44040), X(63985)}}
X(64129) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1709, 54370}, {3, 1158, 12514}, {3, 6001, 997}, {3, 9943, 12520}, {40, 63399, 62858}, {40, 63430, 519}, {40, 9841, 4297}, {40, 9845, 2136}, {57, 10860, 516}, {63, 100, 20588}, {165, 1768, 63}, {165, 30304, 200}, {200, 30304, 2801}, {404, 9961, 63988}, {515, 3359, 54286}, {936, 7992, 31803}, {1155, 5918, 7580}, {1490, 10270, 25440}, {3218, 9778, 41338}, {3359, 7171, 515}, {3522, 56288, 59340}, {4512, 10857, 52769}, {4640, 10178, 3}, {5437, 11372, 3817}, {5884, 37531, 12559}, {5918, 7580, 43178}, {6361, 26877, 12704}, {6916, 14647, 10}, {8580, 64197, 15064}, {10164, 59687, 20103}, {12705, 37526, 1125}, {16209, 63988, 404}, {37403, 64021, 63391}, {58441, 60911, 7308}
X(64130) lies on these lines: {1, 6223}, {2, 1709}, {4, 65}, {7, 1699}, {8, 12059}, {10, 7995}, {20, 997}, {36, 54052}, {40, 5811}, {55, 5658}, {56, 12246}, {79, 10429}, {84, 3086}, {144, 41338}, {149, 152}, {165, 18228}, {189, 24026}, {200, 329}, {210, 35514}, {226, 11372}, {278, 2192}, {281, 20307}, {354, 36996}, {388, 6259}, {452, 12520}, {496, 12684}, {497, 971}, {515, 7962}, {519, 962}, {938, 15071}, {944, 3058}, {946, 4654}, {1056, 12678}, {1058, 12680}, {1155, 14646}, {1158, 6848}, {1210, 7992}, {1456, 63965}, {1479, 9799}, {1490, 4294}, {1532, 14647}, {1538, 10589}, {1768, 5435}, {1770, 50700}, {1851, 38389}, {2096, 22753}, {2400, 20295}, {2478, 9961}, {2550, 5927}, {2886, 16112}, {2999, 53087}, {3085, 6260}, {3146, 11415}, {3149, 64190}, {3332, 41011}, {3427, 46435}, {3452, 10860}, {3474, 19541}, {3715, 5657}, {3817, 9776}, {3925, 5817}, {3982, 38036}, {4293, 63992}, {4302, 54051}, {4305, 6261}, {4423, 21151}, {4679, 5918}, {4847, 64197}, {5057, 10431}, {5084, 9943}, {5154, 10940}, {5177, 12617}, {5180, 52851}, {5225, 5787}, {5226, 60925}, {5229, 22792}, {5249, 38037}, {5437, 10863}, {5531, 64146}, {5536, 28610}, {5537, 64083}, {5553, 10308}, {5698, 7580}, {5732, 40998}, {5748, 21635}, {5758, 41869}, {5768, 26333}, {5804, 5884}, {5813, 28124}, {5815, 7991}, {5903, 54199}, {6245, 10591}, {6284, 64144}, {6847, 12608}, {6850, 31937}, {6927, 64118}, {6964, 59333}, {6987, 50528}, {7288, 34862}, {7952, 15811}, {7964, 21168}, {7965, 61716}, {7987, 50742}, {7989, 11024}, {8166, 17728}, {8226, 60987}, {9355, 33137}, {9581, 9948}, {9612, 21628}, {9778, 31018}, {9949, 19925}, {10085, 14986}, {10157, 26040}, {10167, 26105}, {10241, 64157}, {10248, 14450}, {10446, 39594}, {10525, 31828}, {10582, 43177}, {10624, 63981}, {10857, 43182}, {10864, 12053}, {11037, 11522}, {11051, 13609}, {11381, 52082}, {11496, 18243}, {12047, 37434}, {12247, 33519}, {12514, 37421}, {12565, 12572}, {12667, 12672}, {13257, 25568}, {15726, 24703}, {15733, 61010}, {15931, 52653}, {17484, 20015}, {17567, 64128}, {17613, 59572}, {17650, 31788}, {18990, 48664}, {26098, 64134}, {27521, 28966}, {30223, 54366}, {31146, 60895}, {33899, 54361}, {36002, 44447}, {37822, 64111}, {38385, 40218}, {41012, 63984}, {41325, 44424}, {41698, 59387}, {41853, 59418}, {59412, 61740}, {63986, 64120}
X(64130) = reflection of X(i) in X(j) for these {i,j}: {20, 997}, {200, 59687}, {2096, 22753}, {3474, 19541}, {4293, 63992}, {5768, 26333}, {7994, 21060}, {10860, 3452}, {18391, 4}, {30304, 11019}, {63430, 946}, {64111, 37822}, {64157, 10241}
X(64130) = anticomplement of X(64129)
X(64130) = pole of line {6129, 7658} with respect to the incircle
X(64130) = pole of line {4, 10307} with respect to the Feuerbach hyperbola
X(64130) = pole of line {279, 1422} with respect to the dual conic of Yff parabola
X(64130) = intersection, other than A, B, C, of circumconics {{A, B, C, X(158), X(36620)}}, {{A, B, C, X(1857), X(3062)}}, {{A, B, C, X(10309), X(47372)}}
X(64130) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 6001, 18391}, {4, 63962, 4295}, {84, 63989, 3086}, {354, 41706, 36996}, {516, 21060, 7994}, {516, 59687, 200}, {938, 54228, 15071}, {1699, 30304, 11019}, {3817, 60896, 9776}, {6259, 9856, 388}, {9809, 9812, 5905}, {12679, 12688, 4}
X(64131) lies on circumconic {{A, B, C, X(9375), X(34048)}} and on these lines: {1, 1864}, {2, 12529}, {3, 30223}, {4, 3427}, {5, 50195}, {11, 113}, {12, 10157}, {33, 16466}, {36, 16143}, {55, 5044}, {56, 971}, {57, 7992}, {65, 1699}, {72, 497}, {78, 15733}, {90, 8071}, {145, 17615}, {210, 1697}, {354, 50443}, {388, 5927}, {390, 3876}, {392, 3486}, {496, 912}, {499, 9940}, {517, 1479}, {518, 10392}, {595, 51361}, {774, 1465}, {920, 37623}, {938, 12709}, {946, 5173}, {950, 960}, {962, 41539}, {999, 40263}, {1001, 10393}, {1071, 3086}, {1104, 45272}, {1125, 10391}, {1193, 2310}, {1210, 6001}, {1385, 22760}, {1420, 12680}, {1466, 1709}, {1470, 34862}, {1490, 1617}, {1682, 11997}, {1708, 64077}, {1728, 3428}, {1737, 15908}, {1776, 3916}, {1836, 37544}, {1857, 1871}, {1903, 2257}, {2057, 52804}, {2136, 46677}, {2646, 5259}, {2886, 10395}, {3057, 3632}, {3059, 10384}, {3073, 46974}, {3216, 9371}, {3333, 61705}, {3339, 17634}, {3340, 61718}, {3361, 63995}, {3485, 5728}, {3579, 11502}, {3586, 14110}, {3601, 5696}, {3616, 10177}, {3624, 17603}, {3646, 10383}, {3678, 12575}, {3681, 9785}, {3753, 31418}, {3868, 5274}, {3889, 18220}, {3911, 9943}, {3913, 51380}, {3927, 54408}, {4294, 64107}, {4298, 31871}, {4314, 10176}, {4383, 54295}, {5045, 11376}, {5048, 41696}, {5119, 58643}, {5172, 40262}, {5204, 31805}, {5250, 58648}, {5252, 9947}, {5253, 17616}, {5265, 11220}, {5433, 11227}, {5435, 9961}, {5439, 10589}, {5570, 37720}, {5572, 63274}, {5687, 58649}, {5691, 64106}, {5694, 18527}, {5711, 9817}, {5722, 5887}, {5784, 8583}, {5882, 32159}, {5886, 16193}, {5904, 17642}, {5919, 17632}, {6051, 14547}, {6261, 57278}, {6282, 10092}, {6284, 31793}, {6904, 17668}, {6918, 59335}, {7008, 57276}, {7080, 18236}, {7082, 26357}, {7288, 10167}, {7741, 13750}, {7743, 26475}, {7957, 9580}, {7962, 9954}, {8581, 30330}, {8715, 62357}, {9119, 40963}, {9614, 18397}, {9668, 37585}, {9669, 24474}, {9956, 10958}, {9957, 10950}, {10072, 58576}, {10382, 31435}, {10396, 12664}, {10572, 31786}, {10598, 64021}, {10624, 63976}, {10629, 37822}, {10785, 58588}, {10916, 15845}, {10980, 30290}, {11018, 11375}, {11019, 31803}, {11238, 64046}, {11379, 18421}, {11508, 64116}, {11522, 18412}, {11531, 30294}, {12528, 14986}, {12589, 34381}, {12617, 15844}, {12672, 13601}, {12675, 41562}, {12705, 37541}, {12706, 62775}, {12710, 13411}, {12915, 37722}, {13369, 15325}, {13374, 18389}, {14054, 51409}, {15071, 37566}, {15171, 31837}, {15172, 31835}, {15254, 54430}, {16201, 17718}, {16469, 58906}, {17609, 41861}, {17637, 26725}, {17658, 64068}, {18239, 41426}, {18398, 50444}, {18732, 56884}, {18961, 22792}, {19541, 37550}, {20117, 63999}, {20789, 37738}, {22753, 62810}, {23537, 38357}, {24430, 37592}, {24914, 31787}, {24929, 62333}, {26476, 34339}, {31397, 58631}, {31658, 37601}, {31792, 37740}, {31798, 40663}, {31821, 64041}, {33575, 63756}, {37080, 63972}, {37462, 60925}, {37567, 61653}, {37594, 61398}, {37711, 54134}, {45776, 64163}, {51413, 52359}, {51489, 59320}, {63967, 63993}, {64124, 64132}
X(64131) = midpoint of X(i) and X(j) for these {i,j}: {56, 1898}, {1837, 64042}, {12701, 41538}
X(64131) = reflection of X(i) in X(j) for these {i,j}: {5687, 58649}, {37738, 20789}, {50196, 496}, {64132, 64124}
X(64131) = pole of line {53527, 59972} with respect to the incircle
X(64131) = pole of line {30, 40} with respect to the Feuerbach hyperbola
X(64131) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 1858, 942}, {56, 1898, 971}, {65, 10896, 5806}, {65, 17604, 9581}, {210, 9848, 1697}, {392, 9844, 3486}, {496, 912, 50196}, {946, 44547, 5173}, {1071, 3086, 3660}, {1210, 63989, 64127}, {5904, 51785, 17642}, {7082, 26357, 31445}, {9856, 64157, 65}, {12528, 14986, 17625}, {12672, 18391, 13601}, {12701, 41538, 517}, {14100, 25917, 3601}, {15299, 63988, 56}, {17634, 61660, 3339}, {18220, 40269, 3889}, {41562, 44675, 12675}
X(64132) lies on these lines: {1, 1407}, {4, 10305}, {7, 6836}, {30, 553}, {35, 10178}, {36, 191}, {40, 17625}, {46, 518}, {56, 6001}, {57, 1071}, {63, 37282}, {65, 944}, {72, 3928}, {79, 3255}, {84, 1467}, {142, 50206}, {226, 6922}, {241, 44706}, {354, 1058}, {376, 3057}, {495, 40296}, {496, 58573}, {516, 50196}, {517, 4311}, {774, 61376}, {912, 6924}, {936, 17612}, {938, 11220}, {946, 3660}, {971, 1210}, {982, 1044}, {990, 41344}, {1012, 34489}, {1066, 9371}, {1076, 3782}, {1086, 1838}, {1122, 15498}, {1155, 63976}, {1158, 1617}, {1319, 6906}, {1376, 59336}, {1408, 4227}, {1420, 12672}, {1466, 18446}, {1470, 37837}, {1473, 40660}, {1478, 3812}, {1479, 15726}, {1745, 3752}, {1770, 5570}, {1788, 14872}, {1829, 3937}, {1836, 10531}, {1858, 32636}, {1898, 17728}, {2093, 2136}, {2094, 3868}, {2771, 41547}, {2956, 7290}, {3085, 8581}, {3086, 12688}, {3218, 35979}, {3333, 12711}, {3361, 15071}, {3468, 6610}, {3486, 63432}, {3487, 17603}, {3576, 12709}, {3624, 30290}, {3666, 4303}, {3671, 16193}, {3742, 12047}, {3753, 9613}, {3848, 37692}, {3873, 56936}, {3874, 64117}, {3911, 5777}, {4188, 51379}, {4294, 5918}, {4298, 50195}, {4299, 64045}, {4304, 31805}, {4306, 17102}, {4312, 5572}, {4325, 53615}, {4640, 7742}, {5044, 11575}, {5122, 31837}, {5173, 12005}, {5204, 21165}, {5252, 6897}, {5435, 12528}, {5439, 6173}, {5603, 17634}, {5728, 60955}, {5768, 12671}, {5836, 11112}, {5882, 13601}, {5885, 31776}, {5903, 24473}, {5904, 53056}, {6361, 17642}, {6734, 17616}, {6763, 59323}, {6831, 64115}, {6848, 18239}, {6875, 37605}, {6915, 37789}, {6928, 10202}, {6991, 60988}, {7354, 7686}, {7962, 17624}, {8069, 64128}, {9614, 17626}, {9856, 44675}, {9961, 14986}, {10106, 31788}, {10179, 21842}, {10396, 30304}, {10609, 11570}, {10624, 12915}, {10827, 44217}, {11227, 13411}, {12053, 58576}, {12059, 58649}, {12136, 51359}, {12262, 26927}, {12664, 54366}, {12680, 17632}, {12943, 16616}, {13373, 39542}, {14058, 26011}, {15325, 31937}, {15326, 64043}, {15528, 24465}, {16370, 37618}, {17646, 45700}, {17649, 63992}, {17660, 38665}, {18191, 31900}, {18389, 37544}, {18990, 34339}, {21454, 50695}, {22053, 37528}, {24914, 58631}, {25415, 58609}, {26201, 31794}, {26866, 64040}, {26910, 64039}, {26914, 41722}, {28381, 61412}, {30493, 46017}, {31391, 59386}, {31397, 31787}, {34880, 52270}, {37579, 64118}, {40293, 59691}, {41562, 64157}, {50193, 61292}, {51380, 59675}, {51489, 60961}, {58637, 58887}, {64021, 64106}, {64124, 64131}
X(64132) = midpoint of X(i) and X(j) for these {i,j}: {1071, 3149}, {4299, 64045}
X(64132) = reflection of X(i) in X(j) for these {i,j}: {496, 58573}, {6922, 9940}, {12053, 58576}, {12059, 58649}, {45120, 37282}, {64131, 64124}
X(64132) = pole of line {3737, 7254} with respect to the incircle
X(64132) = pole of line {3304, 3649} with respect to the Feuerbach hyperbola
X(64132) = pole of line {47921, 50346} with respect to the Suppa-Cucoanes circle
X(64132) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 1071, 44547}, {84, 1467, 57278}, {942, 13369, 10391}, {7354, 18838, 7686}, {9943, 63994, 1}, {37566, 63995, 4}
X(64133) lies on these lines: {1, 76}, {2, 668}, {6, 40859}, {8, 274}, {10, 24524}, {12, 7752}, {32, 6645}, {33, 58782}, {35, 7782}, {36, 7771}, {37, 34283}, {39, 330}, {55, 99}, {56, 1078}, {69, 1056}, {75, 519}, {83, 16502}, {85, 10106}, {86, 996}, {142, 49774}, {145, 17143}, {148, 9664}, {172, 6179}, {183, 999}, {192, 538}, {194, 1500}, {264, 1870}, {304, 33941}, {305, 3920}, {310, 17018}, {312, 29574}, {313, 17394}, {315, 388}, {316, 1478}, {321, 17389}, {325, 495}, {334, 29659}, {335, 3735}, {346, 48869}, {384, 2241}, {385, 2242}, {386, 34063}, {390, 32815}, {496, 59635}, {497, 11185}, {498, 7769}, {513, 56129}, {514, 36494}, {551, 6381}, {612, 57518}, {664, 6063}, {693, 14421}, {811, 7017}, {873, 7257}, {874, 4363}, {894, 10027}, {940, 41232}, {956, 16992}, {995, 37678}, {1007, 8164}, {1060, 62698}, {1107, 24656}, {1125, 6376}, {1215, 27808}, {1221, 21746}, {1269, 17393}, {1438, 36548}, {1509, 5711}, {1574, 27318}, {1698, 25280}, {1914, 3972}, {1930, 7278}, {1965, 29651}, {1975, 3295}, {2176, 17499}, {2275, 7786}, {2276, 7757}, {2388, 25295}, {3085, 7763}, {3086, 32832}, {3096, 26561}, {3212, 50626}, {3230, 24514}, {3241, 4441}, {3244, 17144}, {3263, 50286}, {3264, 41847}, {3600, 3785}, {3616, 18140}, {3622, 18135}, {3632, 32092}, {3633, 32104}, {3636, 20943}, {3672, 48838}, {3679, 52716}, {3734, 4366}, {3758, 3997}, {3765, 16826}, {3770, 16777}, {3809, 46897}, {3907, 52619}, {3934, 31999}, {3948, 29570}, {3963, 17379}, {3975, 16831}, {4293, 14907}, {4359, 29617}, {4385, 18156}, {4393, 20913}, {4406, 4844}, {4413, 56801}, {4479, 51071}, {4505, 17369}, {4506, 4670}, {4555, 34230}, {4561, 41276}, {4666, 18153}, {4692, 14210}, {4696, 33932}, {4710, 43997}, {4737, 30758}, {4890, 21299}, {4968, 33935}, {5152, 10053}, {5194, 39266}, {5204, 43459}, {5209, 51356}, {5261, 32816}, {5264, 17103}, {5270, 7860}, {5280, 7894}, {5283, 21226}, {5291, 16998}, {5297, 11059}, {5299, 7878}, {5311, 51857}, {5434, 7811}, {5712, 30710}, {5750, 17786}, {6198, 54412}, {6382, 18059}, {6384, 6685}, {6655, 9651}, {7049, 59528}, {7191, 40022}, {7200, 24326}, {7208, 43262}, {7354, 7802}, {7750, 18990}, {7760, 54416}, {7770, 16781}, {7773, 9654}, {7774, 31409}, {7777, 31476}, {7783, 31451}, {7785, 9650}, {7790, 26590}, {7796, 15888}, {7799, 10056}, {7809, 11237}, {7814, 37719}, {7835, 26629}, {7847, 9597}, {7857, 26686}, {7858, 9596}, {7930, 30104}, {7942, 30103}, {8024, 29815}, {9331, 11055}, {9466, 30998}, {9665, 16044}, {9780, 25278}, {10009, 24325}, {10459, 30092}, {10589, 53127}, {10896, 15031}, {11132, 22929}, {11133, 22884}, {12577, 16284}, {14615, 55392}, {14839, 24282}, {14986, 32828}, {15171, 32819}, {15325, 37688}, {16085, 16394}, {16549, 29699}, {16552, 29383}, {16589, 41838}, {16604, 25102}, {16748, 20011}, {16784, 60855}, {16788, 18047}, {16971, 17027}, {17023, 20917}, {17024, 39998}, {17030, 17448}, {17033, 20963}, {17045, 18144}, {17140, 21272}, {17149, 43223}, {17165, 53332}, {17234, 30109}, {17280, 48864}, {17302, 48840}, {17321, 44139}, {17350, 52963}, {17351, 52964}, {17358, 48860}, {17380, 18143}, {17381, 18040}, {17383, 48844}, {17391, 20891}, {17397, 52043}, {17398, 30473}, {17750, 17752}, {17762, 49564}, {18064, 19684}, {18145, 38314}, {18147, 48855}, {18152, 29814}, {18447, 41009}, {18827, 24464}, {19804, 50095}, {19807, 42028}, {19810, 62808}, {20017, 30599}, {20055, 60736}, {20925, 62697}, {20955, 33945}, {21219, 27269}, {21223, 21838}, {21232, 24631}, {24254, 31317}, {24331, 39044}, {24512, 30114}, {25286, 26037}, {25296, 46933}, {25298, 29576}, {25528, 59562}, {26035, 26759}, {26100, 26807}, {26234, 30806}, {26959, 63493}, {27846, 31005}, {28809, 29624}, {29605, 60730}, {29612, 59212}, {29634, 51861}, {29822, 30964}, {30022, 59305}, {30179, 34542}, {31416, 33028}, {31456, 33047}, {31477, 31859}, {31488, 33045}, {31490, 33036}, {31625, 55919}, {32005, 32450}, {32025, 48852}, {32937, 33948}, {33296, 52572}, {33682, 52138}, {33937, 33943}, {33938, 33942}, {34020, 59297}, {35102, 49516}, {35957, 35961}, {36871, 41142}, {37670, 54391}, {40790, 41259}, {41849, 56250}, {44140, 48858}, {46180, 49528}, {49470, 60719}, {49481, 49777}, {49753, 51058}, {51314, 55245}, {55470, 59335}, {61413, 62705}
X(64133) = isotomic conjugate of X(4492)
X(64133) = anticomplement of X(1573)
X(64133) = trilinear pole of line {4406, 47762}
X(64133) = perspector of circumconic {{A, B, C, X(889), X(37133)}}
X(64133) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 4492}, {32, 57725}, {560, 30635}, {1501, 57920}, {4775, 8695}
X(64133) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4492}, {1573, 1573}, {6374, 30635}, {6376, 57725}, {17237, 46901}, {25760, 3764}
X(64133) = X(i)-cross conjugate of X(j) for these {i, j}: {46897, 3758}
X(64133) = pole of line {891, 47780} with respect to the Steiner circumellipse
X(64133) = pole of line {891, 47779} with respect to the Steiner inellipse
X(64133) = pole of line {995, 1001} with respect to the Wallace hyperbola
X(64133) = pole of line {4389, 4871} with respect to the dual conic of Yff parabola
X(64133) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(609)}}, {{A, B, C, X(2), X(47762)}}, {{A, B, C, X(32), X(4161)}}, {{A, B, C, X(257), X(3760)}}, {{A, B, C, X(335), X(3761)}}, {{A, B, C, X(513), X(16975)}}, {{A, B, C, X(519), X(4844)}}, {{A, B, C, X(668), X(56129)}}, {{A, B, C, X(870), X(3227)}}, {{A, B, C, X(996), X(1002)}}, {{A, B, C, X(1015), X(55919)}}, {{A, B, C, X(1573), X(4492)}}, {{A, B, C, X(1911), X(4116)}}, {{A, B, C, X(2230), X(52205)}}, {{A, B, C, X(3679), X(50086)}}, {{A, B, C, X(4406), X(53219)}}, {{A, B, C, X(18359), X(33936)}}, {{A, B, C, X(18836), X(40365)}}, {{A, B, C, X(20569), X(31002)}}, {{A, B, C, X(58027), X(59255)}}
X(64133) = barycentric product X(i)*X(j) for these (i, j): {190, 4406}, {274, 46897}, {310, 3997}, {350, 43262}, {561, 609}, {3227, 62627}, {3758, 75}, {4554, 47729}, {4761, 799}, {7035, 7208}, {17126, 76}, {47762, 668}, {52379, 7276}
X(64133) = barycentric quotient X(i)/X(j) for these (i, j): {2, 4492}, {75, 57725}, {76, 30635}, {561, 57920}, {609, 31}, {3758, 1}, {3809, 2276}, {3997, 42}, {4406, 514}, {4604, 8695}, {4761, 661}, {4844, 4893}, {7208, 244}, {7276, 2171}, {17126, 6}, {43262, 291}, {46897, 37}, {47729, 650}, {47762, 513}, {62627, 536}
X(64133) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1909, 76}, {1, 3510, 4116}, {1, 3761, 350}, {2, 9263, 16975}, {75, 3879, 34282}, {75, 49779, 33936}, {85, 39731, 33940}, {145, 34284, 17143}, {350, 1909, 3761}, {384, 2241, 53680}, {551, 6381, 30963}, {1107, 24656, 27255}, {1909, 25303, 1}, {2275, 27020, 7786}, {3679, 52716, 60706}, {3765, 16826, 30830}, {4692, 14210, 33931}, {6381, 30963, 18146}, {16604, 25102, 27091}, {18059, 32771, 6382}, {24524, 31997, 10}, {26234, 30806, 33934}, {33938, 41875, 33942}
X(64134) lies on circumconic {{A, B, C, X(3062), X(41796)}} and on these lines: {1, 971}, {2, 10868}, {3, 8245}, {4, 240}, {6, 9355}, {7, 2310}, {9, 1721}, {10, 9950}, {37, 1742}, {38, 9812}, {40, 7996}, {43, 5927}, {45, 11495}, {65, 41680}, {75, 45305}, {84, 37607}, {165, 64125}, {170, 16601}, {171, 1709}, {192, 28850}, {238, 990}, {241, 31391}, {244, 9779}, {355, 29327}, {382, 5492}, {386, 31871}, {513, 18161}, {516, 984}, {517, 49448}, {651, 4336}, {740, 48878}, {756, 9778}, {846, 7580}, {894, 48900}, {900, 27471}, {946, 3976}, {982, 1699}, {1086, 42356}, {1253, 29007}, {1376, 34524}, {1423, 12723}, {1490, 37573}, {1736, 4312}, {1738, 63970}, {1750, 17594}, {1754, 7262}, {1756, 33536}, {1757, 5779}, {1758, 64152}, {1765, 53402}, {1836, 24430}, {1854, 2647}, {2170, 9309}, {2292, 3146}, {2340, 25722}, {2783, 48938}, {2801, 49490}, {2808, 7201}, {2826, 24098}, {2938, 24450}, {2951, 3731}, {2957, 38530}, {3061, 24274}, {3091, 7613}, {3120, 10883}, {3332, 24695}, {3474, 7069}, {3551, 18208}, {3663, 63973}, {3667, 21191}, {3673, 34848}, {3720, 11220}, {3729, 4073}, {3751, 64197}, {3782, 7965}, {3817, 17063}, {3821, 36652}, {3832, 24443}, {3912, 59688}, {3923, 13727}, {3944, 8727}, {4014, 41777}, {4319, 8545}, {4357, 21629}, {4414, 36002}, {4416, 28849}, {4488, 4712}, {4695, 54448}, {4890, 14520}, {4902, 24802}, {5121, 10863}, {5228, 60910}, {5255, 12705}, {5268, 10860}, {5293, 64074}, {5400, 61740}, {5691, 37598}, {5693, 52524}, {5713, 16127}, {5805, 32857}, {5851, 17365}, {5918, 44307}, {6172, 21039}, {6837, 24161}, {6996, 24728}, {7126, 30301}, {7174, 12652}, {7271, 9814}, {7274, 30330}, {7377, 41886}, {7611, 48929}, {7701, 37530}, {7982, 55724}, {8226, 17889}, {9364, 9817}, {9801, 17257}, {9809, 24725}, {9944, 27626}, {9947, 59294}, {9961, 59305}, {9962, 28287}, {10157, 16569}, {10167, 26102}, {10394, 42289}, {11203, 37400}, {11227, 25502}, {11358, 17628}, {11531, 62179}, {12571, 24046}, {12618, 32784}, {12699, 29369}, {13161, 21628}, {13329, 60911}, {15310, 20430}, {15837, 51300}, {16496, 43166}, {17122, 64129}, {17333, 28854}, {17334, 38454}, {17363, 28870}, {17596, 19541}, {17601, 44425}, {17613, 56010}, {17635, 37555}, {17747, 24449}, {17861, 23821}, {18216, 60953}, {18360, 63676}, {19551, 30300}, {19925, 24440}, {24010, 63165}, {24280, 44694}, {24372, 32431}, {24708, 40937}, {25072, 43151}, {25375, 25521}, {26098, 64130}, {28043, 60966}, {29016, 49452}, {29301, 48902}, {29349, 31395}, {29571, 43182}, {30854, 59621}, {33149, 53599}, {34852, 59573}, {34862, 37608}, {36991, 64168}, {37365, 45782}, {37529, 40263}, {37617, 63992}, {39126, 63597}, {53524, 61716}, {57022, 60933}, {59387, 64176}, {61705, 63982}
X(64134) = reflection of X(i) in X(j) for these {i,j}: {75, 45305}, {1742, 37}
X(64134) = anticomplement of X(59620)
X(64134) = X(i)-Dao conjugate of X(j) for these {i, j}: {41796, 3177}, {59620, 59620}
X(64134) = pole of line {3900, 4885} with respect to the incircle
X(64134) = pole of line {1577, 3900} with respect to the Suppa-Cucoanes circle
X(64134) = pole of line {9311, 41777} with respect to the dual conic of Yff parabola
X(64134) = barycentric product X(i)*X(j) for these (i, j): {41796, 7}
X(64134) = barycentric quotient X(i)/X(j) for these (i, j): {41796, 8}
X(64134) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 16112, 9355}, {9, 1721, 9441}, {37, 15726, 1742}, {4319, 8545, 9440}, {4907, 60937, 1}
X(64135) lies on these lines: {1, 3833}, {2, 3158}, {3, 63135}, {8, 3523}, {10, 31452}, {40, 3984}, {42, 62808}, {43, 56510}, {55, 3305}, {57, 3935}, {63, 100}, {72, 43719}, {78, 517}, {145, 5438}, {149, 30827}, {210, 4421}, {312, 43290}, {329, 63145}, {345, 49991}, {354, 1376}, {377, 59722}, {404, 6765}, {474, 5049}, {480, 15726}, {519, 35262}, {612, 17592}, {614, 56009}, {678, 748}, {899, 3749}, {908, 9812}, {936, 3871}, {956, 17502}, {997, 3895}, {1051, 42043}, {1054, 62850}, {1259, 18908}, {1260, 5927}, {1319, 8168}, {1420, 3621}, {1445, 61030}, {1621, 8580}, {1698, 5178}, {1699, 49719}, {1706, 34772}, {1707, 21805}, {1898, 58657}, {2078, 62776}, {2177, 5268}, {2321, 26258}, {2325, 53673}, {2478, 64117}, {2550, 31266}, {2975, 4882}, {3030, 63513}, {3035, 4863}, {3174, 7671}, {3189, 24982}, {3214, 37552}, {3219, 35445}, {3240, 5269}, {3243, 27003}, {3256, 8545}, {3293, 62809}, {3315, 8056}, {3419, 38042}, {3434, 3817}, {3436, 28164}, {3452, 20075}, {3550, 5524}, {3579, 3951}, {3601, 3617}, {3612, 3626}, {3625, 37618}, {3678, 59316}, {3683, 61153}, {3692, 54316}, {3699, 56082}, {3711, 4640}, {3715, 61154}, {3722, 5272}, {3811, 5902}, {3848, 4413}, {3869, 63468}, {3872, 5440}, {3873, 64112}, {3875, 26229}, {3876, 61763}, {3913, 5919}, {3921, 16418}, {3928, 4661}, {3957, 5437}, {3961, 17591}, {3989, 17594}, {4126, 59536}, {4188, 6762}, {4297, 56879}, {4428, 61686}, {4429, 56522}, {4434, 17156}, {4511, 16200}, {4512, 63961}, {4650, 9337}, {4652, 34790}, {4662, 5217}, {4677, 10031}, {4847, 58441}, {4848, 20013}, {4849, 37540}, {4853, 30392}, {4881, 31145}, {4901, 33168}, {5082, 27385}, {5131, 62858}, {5175, 27525}, {5218, 25006}, {5219, 33110}, {5220, 63211}, {5249, 63168}, {5250, 8715}, {5281, 54357}, {5297, 37553}, {5330, 64202}, {5426, 51066}, {5432, 61032}, {5435, 20015}, {5436, 46933}, {5552, 6886}, {5554, 12437}, {5574, 41798}, {5828, 7080}, {6154, 24703}, {6326, 63132}, {6600, 61028}, {6602, 41795}, {6734, 59591}, {6735, 6935}, {6736, 28236}, {7081, 63131}, {7308, 61155}, {7994, 36002}, {9004, 56179}, {9342, 10582}, {9352, 62236}, {9580, 20095}, {9709, 54392}, {9778, 17781}, {9782, 41870}, {10164, 64153}, {10247, 10914}, {10310, 63984}, {10527, 59587}, {10528, 57284}, {10884, 64116}, {11224, 14923}, {11269, 59593}, {11415, 28232}, {11500, 63141}, {11681, 12558}, {11684, 63469}, {12329, 63180}, {12527, 59420}, {12541, 24558}, {12625, 25005}, {12649, 63990}, {13384, 51781}, {13405, 61029}, {16192, 62827}, {16670, 30652}, {16842, 63271}, {17127, 54309}, {17718, 49732}, {17780, 32929}, {17783, 21949}, {17857, 63985}, {18141, 50744}, {19860, 56176}, {20050, 61762}, {20052, 45036}, {21060, 44447}, {21075, 28150}, {23511, 62806}, {23705, 45829}, {24393, 55868}, {25440, 62874}, {25568, 31164}, {26015, 31224}, {27065, 61157}, {28043, 54474}, {28178, 58798}, {28224, 64087}, {29822, 41930}, {31508, 62838}, {31855, 37817}, {32141, 55104}, {35989, 60949}, {36278, 46973}, {36846, 59691}, {37162, 41864}, {37611, 38665}, {37680, 62875}, {37687, 60846}, {41711, 61152}, {49492, 51284}, {52026, 59417}, {53056, 62235}, {55478, 56316}, {56010, 62819}, {56178, 64082}, {56309, 61192}, {57106, 58835}, {58688, 64171}, {63090, 63969}
X(64135) = intersection, other than A, B, C, of circumconics {{A, B, C, X(103), X(945)}}, {{A, B, C, X(36101), X(39962)}}, {{A, B, C, X(56088), X(56091)}}
X(64135) = barycentric product X(i)*X(j) for these (i, j): {1332, 39532}
X(64135) = barycentric quotient X(i)/X(j) for these (i, j): {39532, 17924}
X(64135) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 4420, 3984}, {78, 5687, 63130}, {78, 63130, 11682}, {100, 200, 63}, {100, 3681, 165}, {165, 200, 3681}, {210, 4421, 35258}, {404, 6765, 62832}, {997, 48696, 3895}, {1376, 3689, 3870}, {1376, 3870, 3306}, {3158, 46917, 2}, {3306, 3870, 62815}, {3434, 6745, 30852}, {3722, 9350, 5272}, {3957, 61156, 5437}, {5218, 25006, 55867}, {9352, 62236, 62823}, {17784, 64083, 908}, {20095, 27131, 9580}, {26015, 59572, 31224}, {35445, 62218, 3219}
X(64136) lies on these lines: {1, 34474}, {2, 64138}, {3, 1320}, {4, 1145}, {5, 64141}, {8, 5840}, {10, 14217}, {11, 5657}, {20, 952}, {30, 50907}, {40, 104}, {80, 11362}, {100, 517}, {119, 962}, {149, 6827}, {153, 20070}, {165, 11715}, {214, 7982}, {355, 10724}, {376, 64191}, {484, 10074}, {515, 64056}, {516, 10728}, {519, 12119}, {528, 5759}, {631, 1387}, {944, 5854}, {946, 64008}, {1000, 6955}, {1006, 5119}, {1056, 24465}, {1155, 20586}, {1317, 37567}, {1482, 4188}, {1490, 2800}, {1537, 5763}, {1697, 12736}, {1698, 16174}, {1768, 63468}, {1770, 12749}, {2093, 5083}, {2095, 34631}, {2829, 6361}, {2932, 22770}, {3035, 5603}, {3057, 6940}, {3090, 38038}, {3245, 7972}, {3339, 46681}, {3428, 13205}, {3523, 38032}, {3526, 38044}, {3576, 64137}, {3579, 12737}, {3616, 38760}, {3654, 10707}, {3655, 50894}, {3679, 6246}, {3871, 25413}, {3957, 10273}, {4295, 10956}, {4996, 11248}, {5046, 5690}, {5253, 10284}, {5697, 10090}, {5709, 12776}, {5720, 63130}, {5779, 59388}, {5790, 22938}, {5836, 6920}, {5856, 35514}, {5882, 26726}, {5901, 38762}, {5903, 10087}, {6174, 64192}, {6224, 10993}, {6594, 43166}, {6684, 16173}, {6797, 31658}, {6906, 14923}, {6909, 35460}, {6919, 34122}, {6926, 64193}, {6946, 54286}, {6970, 11729}, {6979, 22791}, {6985, 12331}, {7491, 19914}, {7967, 25416}, {7970, 53729}, {7978, 53743}, {7983, 53720}, {7984, 53711}, {8148, 19907}, {9588, 38133}, {9624, 58453}, {9778, 38761}, {9780, 23513}, {9802, 37726}, {10031, 36004}, {10058, 11010}, {10246, 61157}, {10310, 18861}, {10595, 34123}, {10679, 37300}, {10695, 53741}, {10696, 53742}, {10697, 53739}, {10700, 41343}, {10703, 53740}, {10711, 28194}, {10742, 28174}, {11249, 17100}, {11491, 25438}, {11531, 15015}, {11698, 28212}, {11822, 13230}, {11823, 13228}, {12246, 52116}, {12703, 64154}, {12735, 36279}, {12743, 41687}, {12747, 34718}, {12758, 60782}, {12775, 39776}, {13099, 53745}, {13272, 32198}, {13274, 40663}, {13278, 18444}, {13464, 64012}, {14193, 38576}, {14740, 63137}, {15035, 31523}, {15702, 38026}, {15803, 41554}, {15863, 63143}, {16139, 33856}, {17638, 63976}, {17652, 31786}, {17654, 31798}, {18240, 31393}, {19081, 49227}, {19082, 49226}, {19112, 35775}, {19113, 35774}, {19877, 38319}, {21630, 43174}, {21635, 28228}, {22799, 48661}, {23340, 45977}, {24297, 41166}, {24475, 64199}, {26446, 31272}, {31162, 50841}, {31423, 32557}, {31730, 64145}, {34627, 50842}, {34711, 37430}, {35976, 64044}, {38513, 53790}, {38705, 52478}, {39898, 51007}, {48667, 51525}, {48668, 61246}, {48680, 59503}, {50821, 59377}, {50910, 64011}, {57298, 61524}, {59387, 64186}, {63138, 63986}, {63399, 64202}
X(64136) = midpoint of X(i) and X(j) for these {i,j}: {153, 20070}, {5541, 7991}, {12245, 13199}
X(64136) = reflection of X(i) in X(j) for these {i,j}: {4, 1145}, {80, 11362}, {104, 40}, {944, 24466}, {962, 119}, {1320, 3}, {1482, 33814}, {6224, 10993}, {6264, 46684}, {6905, 63136}, {6909, 35460}, {7970, 53729}, {7978, 53743}, {7982, 214}, {7983, 53720}, {7984, 53711}, {8148, 19907}, {9802, 37726}, {10695, 53741}, {10696, 53742}, {10697, 53739}, {10698, 100}, {10703, 53740}, {10707, 3654}, {10724, 355}, {10728, 12751}, {10738, 5690}, {11531, 25485}, {12246, 52116}, {12653, 11715}, {12737, 3579}, {13099, 53745}, {13272, 32198}, {14217, 10}, {17638, 63976}, {17652, 31786}, {17654, 31798}, {21630, 43174}, {26726, 5882}, {31162, 50841}, {34627, 50842}, {34631, 50843}, {38665, 5541}, {38669, 12515}, {39898, 51007}, {43166, 6594}, {48661, 22799}, {48667, 51525}, {50890, 34718}, {50894, 3655}, {50910, 64011}, {60782, 63132}, {64145, 31730}, {64189, 12702}
X(64136) = anticomplement of X(64138)
X(64136) = X(i)-Dao conjugate of X(j) for these {i, j}: {64138, 64138}
X(64136) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 14217, 59391}, {40, 2802, 104}, {40, 6264, 46684}, {100, 517, 10698}, {165, 12653, 11715}, {516, 12751, 10728}, {517, 63136, 6905}, {952, 12702, 64189}, {2800, 5541, 38665}, {2802, 46684, 6264}, {3579, 12737, 38693}, {5541, 7991, 2800}, {5657, 30305, 6963}, {5690, 10738, 59415}, {5854, 24466, 944}, {10310, 22560, 18861}, {11531, 15015, 25485}, {12245, 13199, 952}, {39776, 49163, 12775}
X(64137) lies on these lines: {1, 88}, {2, 64056}, {8, 6702}, {10, 1387}, {11, 519}, {65, 15999}, {80, 145}, {104, 7982}, {119, 13464}, {149, 1478}, {153, 5734}, {355, 16174}, {515, 64138}, {516, 64191}, {517, 4973}, {528, 5542}, {546, 946}, {551, 3035}, {758, 2611}, {891, 41191}, {900, 48296}, {944, 14217}, {956, 2098}, {962, 64145}, {993, 7962}, {997, 11525}, {999, 13205}, {1001, 3898}, {1023, 2170}, {1125, 1145}, {1317, 1365}, {1482, 2800}, {1768, 11224}, {2099, 3892}, {2550, 38207}, {2771, 34791}, {2801, 3243}, {2829, 4301}, {2932, 3304}, {2975, 63281}, {3036, 3625}, {3057, 30538}, {3254, 14497}, {3295, 22560}, {3555, 17638}, {3576, 64136}, {3616, 58453}, {3617, 32558}, {3622, 64012}, {3623, 6224}, {3624, 64141}, {3626, 33709}, {3632, 59415}, {3633, 12531}, {3636, 13996}, {3656, 10742}, {3678, 5330}, {3679, 31272}, {3680, 45391}, {3738, 24457}, {3746, 4996}, {3756, 14028}, {3828, 38026}, {3872, 10176}, {3873, 11571}, {3880, 6797}, {3881, 11009}, {3884, 4861}, {3887, 14421}, {3919, 51788}, {4084, 11278}, {4315, 24465}, {4511, 41702}, {4649, 62481}, {4669, 45310}, {4677, 59377}, {4745, 59376}, {4752, 4919}, {4757, 11280}, {4939, 51975}, {5049, 58591}, {5223, 53055}, {5289, 46694}, {5493, 38759}, {5563, 17100}, {5603, 12751}, {5690, 38133}, {5836, 58587}, {5840, 5882}, {5844, 12619}, {5848, 49684}, {5856, 30331}, {5881, 59391}, {5886, 64140}, {6154, 44840}, {6174, 51103}, {6265, 10247}, {6594, 42819}, {6681, 51433}, {6684, 38032}, {6713, 11362}, {6734, 15862}, {7743, 33956}, {7967, 12119}, {7991, 38693}, {7993, 11379}, {7995, 12559}, {8068, 24387}, {8148, 12515}, {8666, 10058}, {8988, 49232}, {9024, 49465}, {9623, 36835}, {9624, 64008}, {9802, 20057}, {9897, 10707}, {9951, 62860}, {9956, 38044}, {9957, 35016}, {10074, 25415}, {10246, 61153}, {10265, 49627}, {10609, 33812}, {10728, 31162}, {10738, 37727}, {10755, 16496}, {10912, 30144}, {10956, 64160}, {11256, 12635}, {11366, 13230}, {11367, 13228}, {11369, 12550}, {11531, 64189}, {11729, 49626}, {11731, 25377}, {11813, 38455}, {12260, 30143}, {12560, 14151}, {12630, 45043}, {12641, 26364}, {12690, 62617}, {12729, 16211}, {12740, 22836}, {12743, 37734}, {13143, 64199}, {13243, 16191}, {13271, 34640}, {13272, 37739}, {13273, 37738}, {13274, 37740}, {13976, 49233}, {14988, 23960}, {15178, 33814}, {16137, 51569}, {17609, 58625}, {17636, 33176}, {17719, 24864}, {18802, 58405}, {19907, 33179}, {19925, 38038}, {20049, 50893}, {20095, 64011}, {21154, 43174}, {22938, 28204}, {24390, 63270}, {24393, 38216}, {25681, 47746}, {25697, 49467}, {25917, 58698}, {26139, 50915}, {28194, 38761}, {31397, 38062}, {31399, 38319}, {31788, 58595}, {34747, 50890}, {36846, 47320}, {37524, 56036}, {37525, 61157}, {38021, 50907}, {38182, 61510}, {38197, 49524}, {38752, 61276}, {40587, 61158}, {46685, 62826}, {47115, 53742}, {50846, 50892}, {51529, 58240}, {51709, 61580}, {53530, 61225}, {61278, 61562}
X(64137) = midpoint of X(i) and X(j) for these {i,j}: {1, 1320}, {8, 26726}, {11, 25416}, {65, 17652}, {80, 145}, {100, 12653}, {104, 7982}, {149, 7972}, {944, 14217}, {962, 64145}, {1482, 12737}, {3241, 50891}, {3244, 21630}, {3555, 17638}, {3633, 12531}, {3679, 50894}, {4511, 41702}, {6264, 10698}, {8148, 12515}, {10707, 51093}, {10738, 37727}, {10755, 16496}, {11256, 12635}, {11531, 64189}, {12690, 62617}, {13143, 64199}, {13253, 38669}, {20049, 50893}, {34747, 50890}, {38460, 63210}
X(64137) = reflection of X(i) in X(j) for these {i,j}: {8, 6702}, {10, 1387}, {119, 13464}, {214, 1}, {355, 16174}, {1145, 1125}, {1317, 3635}, {3625, 3036}, {3626, 33709}, {3878, 15558}, {4669, 45310}, {5493, 38759}, {5836, 58587}, {6174, 51103}, {6594, 42819}, {6797, 58611}, {10609, 33812}, {11274, 51071}, {11362, 6713}, {11570, 3881}, {15863, 11}, {18802, 58405}, {19907, 33179}, {21635, 64192}, {25485, 10222}, {31788, 58595}, {33337, 12735}, {33814, 15178}, {38213, 16173}, {39776, 3754}, {46684, 11715}, {50841, 551}, {50842, 3828}, {51433, 6681}, {51569, 16137}, {53742, 47115}, {61562, 61278}, {64139, 3884}
X(64137) = inverse of X(5048) in Feuerbach hyperbola
X(64137) = complement of X(64056)
X(64137) = pole of line {2827, 12758} with respect to the incircle
X(64137) = pole of line {2802, 5048} with respect to the Feuerbach hyperbola
X(64137) = pole of line {908, 43055} with respect to the dual conic of Yff parabola
X(64137) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 1320, 10703}, {11, 1357, 3937}, {80, 145, 38950}, {100, 12653, 58124}, {6264, 10696, 10698}, {7984, 13869, 31523}
X(64137) = intersection, other than A, B, C, of circumconics {{A, B, C, X(106), X(24302)}}, {{A, B, C, X(1392), X(62703)}}, {{A, B, C, X(11717), X(46972)}}
X(64137) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12653, 100}, {1, 1320, 2802}, {1, 244, 11717}, {1, 2802, 214}, {8, 16173, 6702}, {8, 6702, 38213}, {10, 1387, 32557}, {11, 25416, 519}, {11, 519, 15863}, {100, 1320, 12653}, {149, 3241, 7972}, {355, 16174, 38161}, {517, 11715, 46684}, {528, 12735, 33337}, {952, 10222, 25485}, {952, 64192, 21635}, {1387, 5854, 10}, {1482, 12737, 2800}, {2098, 22837, 3878}, {2099, 20586, 5083}, {2802, 3754, 39776}, {3244, 21630, 952}, {3625, 59419, 3036}, {3626, 33709, 34122}, {3880, 58611, 6797}, {6264, 10698, 2801}, {6264, 16200, 10698}, {7972, 50891, 149}, {10090, 13278, 8715}, {11280, 62837, 4757}, {12735, 33337, 11274}, {16173, 26726, 8}, {33337, 51071, 12735}, {38026, 50842, 3828}, {38460, 63210, 758}
X(64138) lies on these lines: {1, 5840}, {2, 64136}, {3, 1387}, {4, 145}, {5, 1145}, {8, 11928}, {10, 16174}, {11, 517}, {12, 10284}, {30, 64191}, {40, 5442}, {55, 38033}, {80, 7982}, {100, 5603}, {104, 962}, {119, 946}, {140, 38044}, {182, 38050}, {214, 10993}, {355, 5854}, {381, 64140}, {390, 6948}, {404, 5901}, {496, 25413}, {515, 64137}, {516, 11715}, {519, 6246}, {528, 3656}, {549, 38026}, {944, 10724}, {999, 24465}, {1000, 6982}, {1125, 38760}, {1317, 10222}, {1385, 24466}, {1476, 24470}, {1484, 37356}, {1698, 38319}, {1699, 12653}, {1836, 20586}, {2095, 13226}, {2098, 10525}, {2099, 13274}, {2102, 10782}, {2103, 10781}, {2800, 4084}, {2829, 12676}, {3035, 5886}, {3057, 6842}, {3090, 64141}, {3254, 43166}, {3476, 10247}, {3485, 12000}, {3579, 21154}, {3616, 34474}, {3649, 33179}, {3654, 45310}, {3671, 46681}, {3839, 50907}, {3885, 10942}, {3890, 37438}, {3895, 37713}, {4190, 10595}, {4193, 5690}, {4292, 41554}, {4295, 12001}, {4861, 37290}, {5048, 18976}, {5176, 5844}, {5187, 12245}, {5298, 10225}, {5531, 50908}, {5533, 5903}, {5541, 11522}, {5587, 64056}, {5657, 31272}, {5697, 8068}, {5734, 6224}, {5759, 53055}, {5761, 9802}, {5790, 6973}, {5881, 26726}, {5887, 49600}, {6154, 22935}, {6174, 51709}, {6264, 31162}, {6361, 38693}, {6667, 26446}, {6684, 32557}, {6702, 11362}, {6841, 45776}, {6885, 9945}, {6890, 64189}, {6891, 12702}, {6909, 22765}, {6915, 12732}, {6944, 18493}, {6945, 38034}, {6961, 18220}, {6981, 63133}, {7491, 12701}, {7970, 10769}, {7972, 12831}, {7978, 10778}, {7983, 10768}, {7984, 10767}, {8148, 12019}, {8196, 13230}, {8203, 13228}, {8227, 58421}, {9624, 64012}, {9785, 16202}, {9812, 10728}, {9897, 11224}, {9943, 58595}, {9955, 13996}, {10035, 37425}, {10057, 30323}, {10058, 11249}, {10073, 25415}, {10087, 11501}, {10090, 11248}, {10202, 18240}, {10273, 11019}, {10427, 20330}, {10526, 12764}, {10543, 33281}, {10609, 19907}, {10695, 10772}, {10696, 10777}, {10697, 10770}, {10703, 10771}, {10707, 12247}, {10755, 39898}, {10780, 13099}, {10912, 37821}, {10914, 55016}, {10956, 12047}, {11011, 12743}, {11012, 63281}, {11230, 31235}, {11278, 62616}, {11280, 53616}, {11496, 22560}, {11499, 25438}, {11531, 37718}, {11723, 53743}, {11724, 53729}, {11725, 53720}, {11726, 53741}, {11727, 53742}, {11728, 53739}, {11734, 53740}, {11735, 53711}, {12053, 12736}, {12515, 20418}, {12575, 24299}, {12611, 13600}, {12650, 46435}, {12665, 31937}, {12684, 34256}, {12738, 12858}, {12773, 60922}, {12775, 13279}, {12776, 55109}, {13205, 22753}, {13253, 49176}, {13271, 37820}, {13913, 49226}, {13977, 49227}, {14690, 29008}, {15863, 28234}, {15908, 63270}, {16125, 25485}, {17567, 38762}, {17579, 50843}, {17702, 31523}, {18357, 38141}, {18480, 59390}, {22793, 52836}, {24833, 38576}, {25557, 61279}, {28194, 46684}, {28212, 61566}, {31658, 38060}, {31659, 37563}, {31788, 58587}, {31835, 64200}, {32214, 64021}, {33593, 37401}, {33668, 61281}, {33709, 38133}, {34126, 61524}, {34627, 50894}, {34631, 50890}, {34862, 52116}, {35004, 37722}, {37375, 61553}, {37611, 64155}, {38028, 61155}, {38077, 50842}, {38753, 48661}, {41869, 64145}, {44455, 60782}, {46685, 51423}, {49163, 55297}, {50810, 59377}, {50821, 59376}, {53800, 56761}
X(64138) = midpoint of X(i) and X(j) for these {i,j}: {1, 14217}, {4, 1320}, {80, 7982}, {104, 962}, {149, 10698}, {944, 10724}, {1482, 10738}, {2102, 10782}, {2103, 10781}, {3254, 43166}, {4301, 21630}, {5881, 26726}, {6264, 34789}, {7970, 10769}, {7978, 10778}, {7983, 10768}, {7984, 10767}, {8148, 19914}, {9802, 38665}, {10695, 10772}, {10696, 10777}, {10697, 10770}, {10703, 10771}, {10755, 39898}, {10780, 13099}, {12650, 46435}, {12653, 12751}, {12699, 12737}, {13253, 49176}, {31162, 50891}, {34627, 50894}, {34631, 50890}, {38753, 48661}, {41869, 64145}
X(64138) = reflection of X(i) in X(j) for these {i,j}: {3, 1387}, {10, 16174}, {40, 6713}, {100, 11729}, {119, 946}, {214, 13464}, {1145, 5}, {1317, 10222}, {1537, 22791}, {3654, 45310}, {5690, 60759}, {6154, 22935}, {6174, 51709}, {6265, 64192}, {6882, 30384}, {9943, 58595}, {10427, 20330}, {10609, 19907}, {10993, 214}, {11362, 6702}, {12515, 20418}, {12665, 31937}, {12702, 64193}, {12732, 51525}, {14690, 29008}, {19914, 12019}, {22799, 40273}, {24466, 1385}, {31788, 58587}, {33814, 5901}, {37401, 33593}, {37425, 10035}, {37562, 12736}, {37725, 12611}, {37726, 21630}, {38761, 11715}, {43174, 33709}, {52116, 34862}, {52836, 22793}, {53711, 11735}, {53720, 11725}, {53729, 11724}, {53739, 11728}, {53740, 11734}, {53741, 11726}, {53742, 11727}, {53743, 11723}
X(64138) = complement of X(64136)
X(64138) = pole of line {24457, 55126} with respect to the incircle
X(64138) = pole of line {952, 5570} with respect to the Feuerbach hyperbola
X(64138) = pole of line {23838, 55126} with respect to the Suppa-Cucoanes circle
X(64138) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 14217, 5840}, {10, 16174, 23513}, {40, 16173, 6713}, {100, 5603, 11729}, {516, 11715, 38761}, {517, 30384, 6882}, {528, 64192, 6265}, {946, 2802, 119}, {952, 22791, 1537}, {952, 40273, 22799}, {1145, 38038, 5}, {1482, 10738, 952}, {1699, 12653, 12751}, {2800, 21630, 37726}, {3656, 6265, 64192}, {4301, 21630, 2800}, {5533, 5903, 12832}, {5690, 60759, 34122}, {5901, 33814, 34123}, {6264, 31162, 34789}, {6702, 11362, 38128}, {8148, 51517, 19914}, {12699, 12737, 2829}, {12702, 57298, 64193}
X(64139) lies on the Yff contact circle and on these lines: {1, 1331}, {2, 12736}, {8, 80}, {9, 644}, {10, 8068}, {11, 960}, {21, 6596}, {36, 214}, {40, 78}, {63, 104}, {65, 3035}, {72, 952}, {119, 517}, {144, 2801}, {145, 18397}, {153, 329}, {190, 51565}, {200, 3899}, {210, 3036}, {392, 1387}, {515, 12665}, {518, 1317}, {528, 3059}, {643, 1793}, {942, 34123}, {956, 12737}, {997, 10090}, {1259, 5730}, {1260, 48667}, {1420, 3868}, {1445, 64154}, {1697, 13278}, {1768, 12526}, {2057, 7991}, {2099, 42843}, {2320, 56117}, {2771, 3650}, {2804, 53549}, {2829, 14110}, {2932, 12515}, {2950, 6282}, {2975, 11715}, {3032, 3687}, {3057, 5854}, {3241, 18412}, {3419, 10738}, {3434, 14217}, {3436, 12751}, {3555, 12735}, {3576, 15528}, {3588, 21078}, {3616, 18240}, {3681, 12531}, {3738, 3904}, {3754, 27529}, {3811, 10087}, {3812, 31235}, {3827, 51007}, {3873, 46681}, {3876, 46694}, {3884, 4861}, {3885, 5727}, {3916, 38602}, {3927, 12773}, {3939, 10703}, {3940, 12331}, {3951, 38669}, {3962, 17660}, {3984, 38665}, {4015, 38213}, {4067, 33337}, {4652, 38693}, {4847, 21630}, {4853, 12653}, {4855, 34474}, {5044, 6797}, {5086, 6246}, {5119, 25438}, {5219, 64141}, {5223, 7993}, {5289, 12740}, {5440, 14988}, {5533, 10916}, {5552, 5903}, {5587, 14923}, {5660, 7080}, {5693, 12119}, {5720, 63130}, {5790, 58674}, {5794, 13273}, {5836, 58663}, {5840, 5887}, {5883, 58453}, {5884, 59332}, {5902, 64012}, {5904, 7972}, {6001, 24466}, {6174, 44663}, {6264, 11920}, {6667, 25917}, {6702, 10176}, {6713, 59491}, {6737, 31938}, {6925, 46435}, {9957, 25416}, {9963, 41228}, {10031, 34716}, {10057, 10522}, {10058, 12514}, {10073, 49168}, {10074, 62858}, {10527, 16173}, {10698, 11682}, {10742, 58798}, {10914, 61510}, {11415, 34789}, {11523, 37736}, {11571, 15015}, {11679, 35636}, {11680, 16174}, {11729, 24474}, {12513, 20586}, {12635, 12739}, {12641, 30513}, {12690, 64171}, {12701, 13271}, {12709, 24465}, {12730, 34784}, {12743, 44669}, {12746, 44694}, {12764, 24703}, {12775, 37531}, {13279, 15829}, {15175, 56105}, {15556, 62830}, {16585, 63346}, {16586, 34586}, {17100, 46684}, {17652, 17658}, {17654, 64107}, {17880, 53332}, {18467, 37313}, {20007, 20095}, {20612, 22836}, {21616, 39692}, {24028, 61482}, {25413, 37713}, {25440, 59330}, {25485, 62826}, {25522, 31272}, {27383, 64047}, {30196, 61185}, {30852, 64008}, {31786, 64191}, {31838, 38032}, {31937, 64186}, {34339, 38760}, {34591, 61233}, {38099, 58629}, {38128, 58630}, {38156, 58631}, {38177, 58632}, {38192, 58633}, {38202, 58634}, {38211, 58635}, {38215, 58636}, {38752, 64044}, {38901, 40256}, {41554, 54391}, {41572, 64106}, {44425, 63136}, {45288, 59691}, {48695, 63391}, {60936, 64041}, {61033, 63159}, {64087, 64140}
X(64139) = midpoint of X(i) and X(j) for these {i,j}: {100, 3869}, {3962, 17660}, {4067, 33337}, {5693, 12119}, {5697, 64056}, {5904, 7972}, {6224, 12532}, {12730, 34784}
X(64139) = reflection of X(i) in X(j) for these {i,j}: {8, 14740}, {11, 960}, {65, 3035}, {80, 18254}, {908, 41389}, {1320, 15558}, {3555, 12735}, {3868, 5083}, {5836, 58663}, {6246, 20117}, {6735, 51379}, {6797, 5044}, {9802, 9951}, {11570, 214}, {12758, 3878}, {15863, 3678}, {17636, 3036}, {17654, 64193}, {24474, 11729}, {25416, 9957}, {39776, 1145}, {46685, 72}, {64137, 3884}, {64186, 31937}, {64191, 31786}
X(64139) = anticomplement of X(12736)
X(64139) = perspector of circumconic {{A, B, C, X(2397), X(4585)}}
X(64139) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 40437}, {104, 1411}, {649, 53811}, {655, 2423}, {909, 2006}, {2161, 34051}, {2401, 32675}, {10428, 14584}, {15635, 52377}, {18815, 34858}, {32669, 60074}, {41933, 52212}
X(64139) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 40437}, {44, 40218}, {908, 7}, {1145, 80}, {1737, 14266}, {2245, 57}, {5375, 53811}, {10015, 1111}, {12736, 12736}, {13999, 43933}, {16586, 18815}, {23980, 2006}, {35128, 2401}, {35204, 104}, {40584, 34051}, {40613, 1411}, {42761, 4077}, {45247, 1168}, {46974, 56638}, {55153, 60074}, {57434, 43728}
X(64139) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8, 6735}, {40436, 22350}
X(64139) = pole of line {3036, 3689} with respect to the Feuerbach hyperbola
X(64139) = pole of line {759, 2720} with respect to the Stammler hyperbola
X(64139) = pole of line {2397, 24029} with respect to the Yff parabola
X(64139) = pole of line {14616, 54953} with respect to the Wallace hyperbola
X(64139) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {100, 3869, 34151}
X(64139) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(119)}}, {{A, B, C, X(8), X(4996)}}, {{A, B, C, X(9), X(214)}}, {{A, B, C, X(21), X(39778)}}, {{A, B, C, X(36), X(80)}}, {{A, B, C, X(104), X(1512)}}, {{A, B, C, X(758), X(2804)}}, {{A, B, C, X(908), X(1320)}}, {{A, B, C, X(1089), X(4736)}}, {{A, B, C, X(1519), X(1870)}}, {{A, B, C, X(1532), X(17515)}}, {{A, B, C, X(1537), X(3577)}}, {{A, B, C, X(2170), X(3259)}}, {{A, B, C, X(2323), X(12641)}}, {{A, B, C, X(2677), X(38982)}}, {{A, B, C, X(2800), X(7012)}}, {{A, B, C, X(3262), X(56105)}}, {{A, B, C, X(3724), X(34857)}}, {{A, B, C, X(4511), X(6735)}}, {{A, B, C, X(4867), X(51362)}}, {{A, B, C, X(4881), X(51433)}}, {{A, B, C, X(4973), X(51409)}}, {{A, B, C, X(6073), X(24028)}}, {{A, B, C, X(11604), X(17139)}}, {{A, B, C, X(14260), X(15906)}}, {{A, B, C, X(15175), X(56416)}}, {{A, B, C, X(18254), X(34544)}}, {{A, B, C, X(24026), X(57434)}}, {{A, B, C, X(27950), X(51381)}}, {{A, B, C, X(30513), X(39776)}}, {{A, B, C, X(46398), X(57435)}}, {{A, B, C, X(51380), X(58328)}}, {{A, B, C, X(51390), X(53045)}}, {{A, B, C, X(53046), X(61672)}}, {{A, B, C, X(55016), X(56101)}}
X(64139) = barycentric product X(i)*X(j) for these (i, j): {100, 53045}, {312, 34586}, {1332, 53047}, {1845, 345}, {2323, 3262}, {2397, 3738}, {2804, 4585}, {3218, 6735}, {4511, 908}, {4564, 57434}, {16586, 8}, {17078, 51380}, {17515, 51367}, {17923, 51379}, {26611, 56757}, {32851, 517}, {42768, 645}, {46398, 765}, {53046, 668}, {53562, 55258}
X(64139) = barycentric quotient X(i)/X(j) for these (i, j): {9, 40437}, {36, 34051}, {100, 53811}, {214, 40218}, {517, 2006}, {908, 18815}, {1145, 14628}, {1845, 278}, {1983, 2720}, {2183, 1411}, {2323, 104}, {2361, 909}, {2397, 35174}, {2427, 2222}, {2804, 60074}, {3738, 2401}, {4511, 34234}, {4585, 54953}, {5081, 16082}, {6735, 18359}, {8648, 2423}, {16586, 7}, {17757, 60091}, {21801, 52383}, {24028, 52212}, {32851, 18816}, {34586, 57}, {38353, 7004}, {42768, 7178}, {46398, 1111}, {51379, 52351}, {51380, 36910}, {52426, 34858}, {53045, 693}, {53046, 513}, {53047, 17924}, {53285, 61238}, {53562, 55259}, {56416, 34535}, {56757, 59196}, {57434, 4858}, {58328, 52663}
X(64139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 6326, 64188}, {72, 952, 46685}, {80, 5692, 18254}, {100, 3869, 2800}, {210, 17636, 3036}, {214, 758, 11570}, {517, 1145, 39776}, {517, 41389, 908}, {908, 51433, 1512}, {960, 64043, 41012}, {1145, 55016, 6735}, {1320, 3877, 15558}, {2802, 14740, 8}, {2802, 18254, 80}, {2802, 3678, 15863}, {2802, 3878, 12758}, {2802, 9951, 9802}, {3876, 59415, 46694}, {4511, 4996, 214}, {4867, 58328, 4511}, {5044, 6797, 34122}, {5289, 22560, 12740}, {5697, 64056, 2802}, {6224, 12532, 2801}, {17100, 56288, 46684}, {17654, 64107, 64193}
X(64140) lies on these lines: {1, 38752}, {3, 8}, {5, 1320}, {10, 12737}, {11, 5790}, {30, 50907}, {40, 38753}, {65, 12749}, {80, 3057}, {119, 1482}, {140, 64141}, {145, 6959}, {149, 6929}, {153, 12245}, {214, 37727}, {355, 2802}, {381, 64138}, {515, 35460}, {517, 10742}, {519, 6265}, {528, 5779}, {962, 22799}, {1317, 10573}, {1319, 7972}, {1385, 37829}, {1387, 1656}, {1483, 13747}, {1484, 4187}, {1532, 5844}, {1537, 8148}, {1737, 20586}, {1768, 63143}, {2098, 39692}, {2800, 6259}, {2829, 12702}, {3035, 10246}, {3036, 9711}, {3090, 38044}, {3526, 38032}, {3579, 38754}, {3621, 6834}, {3625, 12738}, {3626, 10265}, {3632, 6326}, {3652, 47745}, {3654, 46684}, {3655, 50841}, {3679, 6264}, {3851, 38038}, {4668, 7993}, {4677, 5531}, {4678, 6967}, {5119, 9897}, {5260, 34352}, {5541, 5881}, {5554, 34123}, {5587, 12653}, {5603, 61580}, {5697, 12764}, {5818, 60759}, {5840, 13996}, {5886, 64137}, {5901, 64008}, {5903, 12763}, {6838, 20052}, {6938, 20095}, {7982, 12611}, {8200, 13230}, {8207, 13228}, {8256, 37535}, {9780, 34126}, {9956, 16173}, {10057, 17636}, {10074, 40663}, {10087, 10950}, {10090, 10944}, {10176, 15863}, {10222, 26726}, {10247, 11729}, {10707, 61553}, {10728, 28174}, {10916, 11256}, {11113, 50890}, {11248, 54134}, {11249, 36972}, {11362, 12515}, {11499, 22560}, {11570, 41687}, {11715, 26446}, {11849, 25438}, {12119, 13528}, {12248, 59417}, {12641, 23340}, {12665, 40266}, {12735, 18391}, {12743, 37711}, {12832, 41426}, {12898, 53743}, {13205, 22758}, {13243, 37429}, {13273, 37710}, {14077, 42547}, {14217, 18480}, {14643, 31523}, {15015, 61296}, {15017, 16200}, {15178, 64012}, {15703, 38026}, {16174, 61261}, {17660, 36920}, {18357, 59391}, {18857, 64011}, {18976, 37708}, {20418, 38128}, {21635, 28234}, {22765, 38455}, {22938, 59387}, {25413, 39776}, {26363, 38135}, {31272, 38042}, {31399, 33709}, {32049, 41688}, {32537, 37230}, {34689, 34718}, {34748, 50843}, {34880, 37707}, {35000, 48695}, {35842, 35883}, {35843, 35882}, {37621, 51506}, {37725, 48667}, {38112, 61566}, {38161, 61258}, {45776, 58687}, {48661, 52836}, {52478, 57313}, {53055, 61511}, {64087, 64139}
X(64140) = midpoint of X(i) and X(j) for these {i,j}: {153, 12245}, {3632, 6326}, {5541, 5881}, {12331, 12645}, {12531, 38665}, {12751, 64056}
X(64140) = reflection of X(i) in X(j) for these {i,j}: {3, 1145}, {104, 5690}, {145, 19907}, {944, 33814}, {962, 22799}, {1320, 5}, {1482, 119}, {1483, 61562}, {1484, 61510}, {3655, 50841}, {6224, 51525}, {6264, 12619}, {7972, 22935}, {7982, 12611}, {8148, 1537}, {10265, 3626}, {10698, 11698}, {10738, 355}, {10742, 12751}, {11256, 10916}, {12515, 11362}, {12737, 10}, {12898, 53743}, {14217, 18480}, {19914, 8}, {25413, 39776}, {25416, 11729}, {26726, 10222}, {34718, 50842}, {34748, 50843}, {37726, 3036}, {37727, 214}, {38753, 40}, {40266, 12665}, {45776, 58687}, {48661, 52836}, {48667, 37725}, {62354, 15863}, {64145, 3579}
X(64140) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {12751, 50914, 64056}
X(64140) = intersection, other than A, B, C, of circumconics {{A, B, C, X(104), X(17101)}}, {{A, B, C, X(517), X(17100)}}, {{A, B, C, X(1809), X(34901)}}, {{A, B, C, X(5559), X(56757)}}, {{A, B, C, X(36944), X(38544)}}
X(64140) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 952, 19914}, {10, 12737, 57298}, {119, 5854, 1482}, {355, 2802, 10738}, {517, 12751, 10742}, {952, 1145, 3}, {952, 33814, 944}, {952, 51525, 6224}, {952, 5690, 104}, {1484, 61510, 59415}, {3579, 64145, 38754}, {3679, 6264, 12619}, {5844, 11698, 10698}, {8148, 38755, 1537}, {11729, 25416, 10247}, {12331, 12645, 952}, {12751, 64056, 517}
X(64141) lies on these lines: {1, 58453}, {2, 1000}, {5, 64136}, {7, 55016}, {8, 1317}, {10, 21}, {11, 9710}, {65, 58663}, {88, 24222}, {104, 26446}, {119, 5657}, {140, 64140}, {145, 34123}, {149, 5084}, {153, 6916}, {190, 19636}, {210, 12532}, {214, 3679}, {319, 55094}, {355, 34474}, {404, 5252}, {517, 64008}, {519, 64012}, {528, 18230}, {549, 50907}, {551, 26726}, {631, 952}, {644, 21013}, {944, 38760}, {958, 17100}, {1125, 64056}, {1156, 38057}, {1210, 64199}, {1376, 4996}, {1537, 6969}, {1621, 25438}, {1698, 2802}, {1788, 10956}, {2771, 3697}, {2800, 3876}, {2932, 9708}, {3036, 6174}, {3090, 64138}, {3218, 51362}, {3219, 10711}, {3523, 64191}, {3525, 38032}, {3579, 10728}, {3616, 5854}, {3621, 12735}, {3622, 25416}, {3624, 64137}, {3626, 7972}, {3634, 16173}, {3654, 12611}, {3678, 11571}, {3681, 11570}, {3698, 31254}, {3740, 17638}, {3826, 63270}, {3828, 21630}, {3868, 14740}, {3871, 5722}, {3877, 39776}, {3885, 37704}, {3911, 5193}, {3921, 58659}, {3956, 47320}, {4002, 6797}, {4193, 30305}, {4413, 22560}, {4420, 12739}, {4511, 36920}, {4662, 17660}, {4669, 33812}, {4745, 64011}, {4861, 37829}, {5056, 38038}, {5070, 38044}, {5123, 37375}, {5176, 13587}, {5178, 10073}, {5219, 64139}, {5261, 24465}, {5330, 26364}, {5445, 10074}, {5541, 6702}, {5552, 62830}, {5587, 10724}, {5603, 58421}, {5686, 10427}, {5690, 6949}, {5692, 58698}, {5790, 6950}, {5818, 5840}, {5836, 7504}, {5856, 40333}, {6068, 59412}, {6175, 16140}, {6264, 38133}, {6594, 20119}, {6666, 53055}, {6667, 13996}, {6684, 12751}, {6883, 12331}, {6930, 13199}, {6931, 63133}, {6965, 10738}, {7705, 63130}, {8068, 33108}, {8256, 15950}, {9588, 46684}, {9778, 52836}, {9897, 38213}, {9945, 20085}, {9956, 59391}, {10039, 17531}, {10087, 18395}, {10164, 64145}, {10175, 14217}, {10265, 25006}, {10742, 61524}, {10755, 38047}, {11231, 12737}, {11698, 16006}, {11715, 31423}, {11729, 12245}, {12019, 20095}, {12247, 38128}, {12619, 38665}, {12653, 32557}, {12702, 61580}, {12730, 64154}, {12736, 31434}, {12747, 38177}, {12755, 40659}, {12763, 56880}, {12832, 14151}, {13243, 37725}, {13271, 32157}, {13278, 24982}, {13279, 24987}, {13911, 19112}, {13922, 19065}, {13973, 19113}, {13991, 19066}, {14193, 21290}, {14923, 23708}, {15015, 15863}, {15678, 63211}, {16174, 54447}, {17484, 17757}, {17577, 54286}, {17661, 31787}, {17725, 54315}, {18240, 51784}, {18254, 63961}, {19907, 59503}, {19914, 38112}, {21041, 36237}, {21042, 31143}, {24466, 59387}, {25055, 50894}, {25485, 63143}, {30855, 34587}, {31231, 41554}, {33709, 50891}, {34789, 43174}, {37797, 40663}, {38050, 63119}, {38066, 48667}, {38087, 51158}, {38098, 50844}, {38314, 50842}, {38759, 64108}, {45701, 63159}, {51007, 59406}
X(64141) = reflection of X(i) in X(j) for these {i,j}: {3616, 31235}, {31272, 1698}
X(64141) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1000), X(56950)}}, {{A, B, C, X(6740), X(36596)}}
X(64141) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1145, 1320}, {10, 100, 59415}, {80, 100, 9963}, {100, 5260, 10058}, {119, 5657, 64189}, {149, 46933, 34122}, {214, 12531, 10031}, {214, 3679, 12531}, {1698, 2802, 31272}, {3036, 6174, 6224}, {3036, 6224, 50890}, {5123, 63136, 37375}, {5541, 19875, 6702}, {5690, 38752, 10698}, {5854, 31235, 3616}, {6224, 53620, 3036}, {6594, 38200, 20119}, {6684, 12751, 38693}, {6702, 50841, 5541}, {9963, 59415, 80}, {19875, 50841, 10707}, {38112, 61562, 19914}
X(64142) lies on these lines: {1, 15717}, {2, 7}, {3, 15935}, {4, 13226}, {8, 3361}, {12, 46931}, {20, 5722}, {43, 61376}, {46, 14986}, {56, 100}, {65, 3622}, {77, 17012}, {80, 4293}, {81, 44794}, {85, 24589}, {88, 279}, {109, 9095}, {165, 10580}, {196, 56297}, {223, 17020}, {241, 4850}, {278, 26745}, {319, 37655}, {354, 5281}, {388, 46933}, {390, 1155}, {404, 20007}, {474, 54398}, {499, 11552}, {631, 5708}, {651, 14997}, {673, 56274}, {750, 39587}, {899, 4334}, {927, 2384}, {938, 3522}, {942, 3523}, {950, 50693}, {962, 37704}, {999, 1000}, {1014, 16704}, {1150, 7268}, {1210, 3146}, {1323, 5222}, {1371, 5393}, {1372, 5405}, {1387, 6966}, {1407, 32911}, {1418, 16610}, {1420, 3623}, {1427, 39975}, {1429, 29585}, {1434, 5235}, {1442, 17013}, {1443, 56418}, {1458, 3240}, {1465, 17092}, {1466, 4189}, {1467, 34772}, {1471, 9364}, {1659, 17804}, {1737, 54448}, {1788, 3600}, {1876, 4232}, {1892, 52284}, {2078, 61157}, {2263, 7292}, {2646, 18221}, {3008, 21314}, {3085, 3337}, {3086, 3336}, {3090, 24470}, {3210, 32105}, {3212, 35312}, {3241, 13462}, {3321, 26007}, {3339, 3616}, {3474, 5274}, {3475, 52638}, {3476, 31145}, {3487, 10303}, {3488, 5122}, {3524, 15934}, {3525, 6147}, {3528, 12433}, {3545, 18541}, {3576, 14563}, {3586, 15683}, {3601, 61791}, {3621, 4308}, {3634, 4355}, {3660, 7672}, {3671, 5550}, {3672, 17595}, {3681, 63994}, {3711, 50835}, {3752, 37666}, {3832, 4292}, {3873, 51378}, {3916, 5129}, {3945, 37520}, {4000, 37798}, {4032, 4772}, {4294, 37524}, {4295, 23708}, {4297, 53057}, {4298, 5726}, {4307, 17722}, {4310, 17725}, {4312, 9779}, {4313, 21734}, {4327, 5297}, {4346, 17720}, {4358, 39126}, {4373, 37759}, {4384, 52715}, {4413, 5686}, {4430, 41539}, {4452, 62300}, {4454, 28808}, {4488, 62297}, {4652, 11106}, {4661, 17625}, {4678, 10106}, {4860, 5218}, {4869, 32851}, {5056, 57282}, {5126, 11041}, {5128, 9785}, {5131, 54342}, {5154, 57285}, {5221, 7288}, {5228, 29624}, {5231, 59412}, {5233, 64015}, {5261, 24914}, {5290, 19877}, {5439, 17558}, {5556, 12571}, {5703, 61820}, {5714, 7486}, {5728, 11575}, {5729, 13243}, {5903, 18240}, {6180, 37680}, {6604, 51583}, {6684, 11037}, {6734, 56999}, {6744, 16192}, {6848, 26877}, {6908, 37612}, {6926, 37532}, {6939, 61535}, {6964, 24467}, {7091, 63135}, {7175, 63050}, {7176, 16816}, {7190, 17021}, {7191, 60786}, {7195, 63591}, {7271, 54390}, {7277, 63089}, {7613, 33140}, {7677, 37541}, {7682, 54052}, {7956, 14646}, {7988, 30424}, {8046, 40218}, {8236, 35445}, {8270, 17024}, {8581, 63961}, {9316, 17127}, {9352, 17784}, {9533, 17093}, {9579, 50689}, {9581, 17578}, {9588, 12577}, {9612, 15022}, {9778, 11019}, {9802, 11240}, {10004, 37757}, {10164, 10578}, {10385, 63212}, {10394, 61660}, {10404, 46930}, {10405, 34234}, {10527, 15932}, {10529, 37550}, {10588, 52783}, {10589, 11246}, {11020, 11227}, {11220, 64157}, {11374, 55864}, {11518, 61804}, {11529, 54445}, {12649, 37267}, {12730, 41556}, {12832, 20085}, {13390, 17801}, {13411, 61834}, {14829, 42696}, {15511, 55937}, {15680, 41547}, {15692, 24929}, {15705, 15933}, {17051, 47357}, {17074, 37685}, {17079, 63233}, {17366, 37642}, {17572, 57283}, {17612, 41228}, {17718, 30340}, {17740, 24593}, {18391, 21578}, {18421, 38314}, {18593, 26742}, {20014, 63987}, {20043, 37639}, {20054, 41687}, {20121, 31183}, {21625, 63469}, {24471, 51171}, {24558, 64047}, {24599, 24620}, {25934, 62799}, {25939, 45227}, {26062, 62874}, {26723, 62781}, {26866, 33849}, {27191, 31232}, {27797, 60085}, {29627, 59779}, {30652, 55086}, {30711, 63164}, {30829, 62706}, {31721, 59215}, {31888, 41697}, {33129, 62783}, {33150, 57477}, {34048, 63096}, {34632, 63993}, {37108, 37534}, {37139, 37222}, {37307, 37583}, {37423, 37623}, {37646, 62208}, {37723, 62102}, {38399, 54392}, {40420, 56086}, {41712, 62235}, {42290, 43063}, {43052, 52620}, {43055, 63126}, {43056, 63008}, {45204, 62820}, {46017, 63030}, {50810, 51788}, {51301, 54310}, {51415, 54281}, {51790, 61992}, {51792, 62005}, {51841, 63016}, {51842, 63015}, {52423, 63095}, {55437, 63068}, {56075, 62621}, {58800, 63057}, {62787, 62795}, {62823, 64083}, {63003, 63152}, {63207, 64162}
X(64142) = isotomic conjugate of X(56075)
X(64142) = anticomplement of X(5328)
X(64142) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 4900}, {9, 41436}, {31, 56075}, {41, 36588}, {55, 39963}, {284, 56159}, {650, 6014}, {2175, 40029}, {3063, 53659}
X(64142) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 56075}, {9, 4900}, {223, 39963}, {478, 41436}, {3160, 36588}, {3679, 4873}, {5328, 5328}, {10001, 53659}, {40590, 56159}, {40593, 40029}, {52593, 11}, {52659, 36915}
X(64142) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {55993, 3436}
X(64142) = X(i)-cross conjugate of X(j) for these {i, j}: {16236, 7}, {16670, 3241}
X(64142) = pole of line {17136, 23831} with respect to the Kiepert parabola
X(64142) = pole of line {522, 30725} with respect to the Steiner circumellipse
X(64142) = pole of line {333, 56075} with respect to the Wallace hyperbola
X(64142) = pole of line {3669, 4453} with respect to the dual conic of Spieker circle
X(64142) = pole of line {1, 3832} with respect to the dual conic of Yff parabola
X(64142) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1120)}}, {{A, B, C, X(9), X(88)}}, {{A, B, C, X(27), X(28610)}}, {{A, B, C, X(57), X(8686)}}, {{A, B, C, X(63), X(1811)}}, {{A, B, C, X(80), X(31142)}}, {{A, B, C, X(81), X(5437)}}, {{A, B, C, X(89), X(3306)}}, {{A, B, C, X(92), X(46873)}}, {{A, B, C, X(144), X(34234)}}, {{A, B, C, X(226), X(44794)}}, {{A, B, C, X(278), X(31231)}}, {{A, B, C, X(279), X(3911)}}, {{A, B, C, X(527), X(6006)}}, {{A, B, C, X(672), X(2384)}}, {{A, B, C, X(673), X(6172)}}, {{A, B, C, X(908), X(8046)}}, {{A, B, C, X(1000), X(5316)}}, {{A, B, C, X(3218), X(55921)}}, {{A, B, C, X(3452), X(56086)}}, {{A, B, C, X(3929), X(36603)}}, {{A, B, C, X(3982), X(60076)}}, {{A, B, C, X(4029), X(5257)}}, {{A, B, C, X(4031), X(60085)}}, {{A, B, C, X(4373), X(17274)}}, {{A, B, C, X(4671), X(36593)}}, {{A, B, C, X(5219), X(16236)}}, {{A, B, C, X(5226), X(8051)}}, {{A, B, C, X(5235), X(36911)}}, {{A, B, C, X(5328), X(56075)}}, {{A, B, C, X(7308), X(8056)}}, {{A, B, C, X(8545), X(43760)}}, {{A, B, C, X(9436), X(56274)}}, {{A, B, C, X(14621), X(35578)}}, {{A, B, C, X(18228), X(30711)}}, {{A, B, C, X(21446), X(60953)}}, {{A, B, C, X(21454), X(40420)}}, {{A, B, C, X(21870), X(59207)}}, {{A, B, C, X(24029), X(61240)}}, {{A, B, C, X(24624), X(60942)}}, {{A, B, C, X(26580), X(27797)}}, {{A, B, C, X(27475), X(59374)}}, {{A, B, C, X(27776), X(30590)}}, {{A, B, C, X(30712), X(50116)}}, {{A, B, C, X(36100), X(60966)}}, {{A, B, C, X(36101), X(36973)}}, {{A, B, C, X(37131), X(56551)}}, {{A, B, C, X(39962), X(51780)}}, {{A, B, C, X(40869), X(63851)}}, {{A, B, C, X(42290), X(52896)}}, {{A, B, C, X(42318), X(61023)}}, {{A, B, C, X(57663), X(59173)}}, {{A, B, C, X(60169), X(60980)}}
X(64142) = barycentric product X(i)*X(j) for these (i, j): {279, 62706}, {1434, 4029}, {3241, 7}, {4572, 8656}, {6006, 664}, {13462, 75}, {16236, 39704}, {16670, 85}, {21870, 57785}, {23073, 331}, {30829, 57}
X(64142) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4900}, {2, 56075}, {7, 36588}, {56, 41436}, {57, 39963}, {65, 56159}, {85, 40029}, {109, 6014}, {664, 53659}, {1317, 36924}, {3241, 8}, {3911, 36915}, {4029, 2321}, {4982, 3686}, {6006, 522}, {8656, 663}, {13462, 1}, {16236, 3679}, {16670, 9}, {21870, 210}, {23073, 219}, {30829, 312}, {36911, 4873}, {52593, 4944}, {62706, 346}
X(64142) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20059, 908}, {2, 23958, 9965}, {2, 3218, 144}, {2, 57, 21454}, {7, 5435, 3911}, {46, 14986, 20070}, {57, 1445, 3218}, {57, 5219, 4031}, {65, 5265, 3622}, {100, 64151, 145}, {631, 5708, 11036}, {908, 2094, 20059}, {938, 15803, 3522}, {1471, 9364, 17126}, {1788, 32636, 3600}, {1788, 3600, 3617}, {3306, 5744, 2}, {3488, 5122, 10304}, {3911, 4031, 5219}, {3928, 6692, 18228}, {4031, 5219, 7}, {4292, 5704, 3832}, {4860, 5218, 11038}, {10164, 10980, 10578}, {11019, 53056, 9778}, {17074, 52424, 37685}, {34753, 37545, 4}
X(64143) lies on these lines: {2, 7}, {8, 1836}, {20, 41561}, {30, 5758}, {37, 41825}, {55, 63975}, {65, 18247}, {69, 42034}, {145, 9580}, {210, 59412}, {223, 36640}, {312, 21296}, {320, 20942}, {321, 32099}, {345, 4488}, {376, 33597}, {381, 5811}, {388, 31165}, {516, 64146}, {518, 9812}, {519, 962}, {524, 42047}, {528, 9809}, {529, 2098}, {545, 42049}, {551, 11037}, {651, 18624}, {758, 59387}, {938, 24473}, {944, 4930}, {1211, 7229}, {1699, 5850}, {1743, 62208}, {1864, 3868}, {2999, 4346}, {3083, 31601}, {3084, 31602}, {3091, 30326}, {3146, 11523}, {3161, 18134}, {3175, 36854}, {3339, 8165}, {3474, 64083}, {3475, 52653}, {3487, 16418}, {3616, 11194}, {3679, 4295}, {3681, 59413}, {3687, 4454}, {3715, 9780}, {3782, 5222}, {3811, 41860}, {3829, 5852}, {3832, 24391}, {3839, 55109}, {3870, 30332}, {3897, 20323}, {3927, 5714}, {3945, 4656}, {3947, 18231}, {3951, 5177}, {3984, 37435}, {4052, 10446}, {4054, 14552}, {4102, 55948}, {4312, 21060}, {4313, 64002}, {4344, 41011}, {4345, 51423}, {4402, 63037}, {4415, 4644}, {4421, 9778}, {4428, 5698}, {4552, 18663}, {4645, 5423}, {4703, 39581}, {4869, 30568}, {4887, 23511}, {4902, 24175}, {4980, 5739}, {5057, 36845}, {5059, 12437}, {5128, 27525}, {5175, 62969}, {5221, 44847}, {5261, 12526}, {5274, 62823}, {5658, 5762}, {5703, 16370}, {5704, 17533}, {5735, 59687}, {5743, 7222}, {5761, 28444}, {5763, 12246}, {5764, 16403}, {5775, 10590}, {5812, 9799}, {5880, 58629}, {5927, 59385}, {6049, 20076}, {6147, 16857}, {6175, 11236}, {6361, 41543}, {6764, 12699}, {8055, 18141}, {8580, 30424}, {9579, 20007}, {9589, 12632}, {9612, 54398}, {9797, 12701}, {10157, 59386}, {10327, 17491}, {10580, 24703}, {10582, 30340}, {11024, 19875}, {11036, 12572}, {11038, 40998}, {11106, 63274}, {11113, 15933}, {11552, 51066}, {11678, 41539}, {11679, 64015}, {12625, 17578}, {13405, 60905}, {13587, 27383}, {14555, 31995}, {15683, 34701}, {16020, 33103}, {16833, 17753}, {17139, 41629}, {17170, 29573}, {17183, 42028}, {17276, 63089}, {17294, 33867}, {19346, 21319}, {19877, 28646}, {23681, 37681}, {24248, 42043}, {24695, 33101}, {24725, 42039}, {25055, 34646}, {25930, 62788}, {26105, 58560}, {27398, 58786}, {28194, 63962}, {28534, 34607}, {30305, 51093}, {30807, 32003}, {30854, 32098}, {31146, 60926}, {31888, 41550}, {32857, 36634}, {32859, 34255}, {33099, 42042}, {34048, 62799}, {34611, 50839}, {34619, 34632}, {36850, 41830}, {37631, 42050}, {37656, 41915}, {39595, 39980}, {39948, 62997}, {41792, 50079}, {41823, 62229}, {44447, 63168}, {45116, 51067}, {49736, 51099}, {50802, 60895}, {50808, 63971}, {52374, 56355}, {54113, 56927}, {62798, 63094}
X(64143) = reflection of X(i) in X(j) for these {i,j}: {944, 4930}, {9778, 25568}, {15683, 34701}, {34610, 34647}, {34632, 34619}, {34744, 11236}
X(64143) = anticomplement of X(3928)
X(64143) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 7285}
X(64143) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 7285}, {3928, 3928}
X(64143) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {7319, 69}, {41441, 8}
X(64143) = pole of line {3812, 14100} with respect to the Feuerbach hyperbola
X(64143) = pole of line {522, 21052} with respect to the Steiner circumellipse
X(64143) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(27525)}}, {{A, B, C, X(8), X(3929)}}, {{A, B, C, X(57), X(5128)}}, {{A, B, C, X(553), X(55948)}}, {{A, B, C, X(1121), X(28610)}}, {{A, B, C, X(2094), X(56947)}}, {{A, B, C, X(3219), X(56355)}}, {{A, B, C, X(4102), X(6172)}}, {{A, B, C, X(5435), X(60167)}}, {{A, B, C, X(18228), X(34401)}}, {{A, B, C, X(31231), X(55962)}}, {{A, B, C, X(52819), X(54928)}}
X(64143) = barycentric product X(i)*X(j) for these (i, j): {5128, 75}, {27525, 7}
X(64143) = barycentric quotient X(i)/X(j) for these (i, j): {1, 7285}, {5128, 1}, {27525, 8}
X(64143) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 144, 3929}, {2, 17781, 6172}, {7, 329, 18228}, {144, 226, 5273}, {226, 3929, 2}, {329, 5905, 7}, {908, 9965, 5435}, {5905, 17484, 329}, {11236, 34744, 53620}, {17768, 25568, 9778}, {34610, 34647, 38314}
X(64144) lies on these lines: {1, 4}, {2, 5787}, {3, 5273}, {7, 20420}, {8, 7580}, {9, 4297}, {12, 33993}, {20, 72}, {30, 5758}, {40, 6743}, {84, 376}, {145, 50696}, {165, 9948}, {220, 5776}, {279, 41004}, {355, 6908}, {390, 9856}, {405, 5731}, {442, 59387}, {443, 10884}, {452, 5927}, {516, 3189}, {517, 12632}, {519, 6766}, {550, 12684}, {631, 6245}, {912, 6869}, {938, 19541}, {942, 50700}, {943, 1012}, {952, 6764}, {954, 4313}, {958, 45039}, {960, 43161}, {1006, 8273}, {1071, 37544}, {1260, 10430}, {1385, 6846}, {1708, 10085}, {1728, 21578}, {1788, 44425}, {1837, 54366}, {2096, 6934}, {2550, 12520}, {2801, 64075}, {3146, 6259}, {3149, 5768}, {3160, 6356}, {3419, 37421}, {3474, 15071}, {3522, 34862}, {3523, 40262}, {3524, 6705}, {3528, 52027}, {3543, 22792}, {3545, 63966}, {3576, 16845}, {3600, 5728}, {3616, 8226}, {3651, 5584}, {3868, 50695}, {3962, 6001}, {4190, 11220}, {4292, 36996}, {4293, 12680}, {4294, 12688}, {4295, 6253}, {4299, 18397}, {4301, 52835}, {4308, 5809}, {4311, 10396}, {4314, 11372}, {4315, 9845}, {4317, 10399}, {5044, 37423}, {5082, 64150}, {5129, 10157}, {5175, 52683}, {5222, 19542}, {5436, 63970}, {5450, 35202}, {5554, 35990}, {5698, 31803}, {5703, 8727}, {5720, 6865}, {5732, 57284}, {5777, 6987}, {5802, 40133}, {5805, 11036}, {5811, 31789}, {5812, 28160}, {5815, 31799}, {5818, 6889}, {5842, 63962}, {5905, 59355}, {5920, 12249}, {6224, 13257}, {6284, 64130}, {6796, 14647}, {6829, 18242}, {6832, 37837}, {6835, 18444}, {6843, 18480}, {6847, 33597}, {6849, 37615}, {6851, 37700}, {6864, 18443}, {6868, 40263}, {6885, 13369}, {6887, 13151}, {6904, 10167}, {6907, 18525}, {6909, 11517}, {6913, 34773}, {6916, 41854}, {6938, 18239}, {6955, 18238}, {6988, 51755}, {6990, 7958}, {7288, 10395}, {7330, 59345}, {7686, 64147}, {7992, 14646}, {8726, 17582}, {8987, 43509}, {9541, 49234}, {9579, 41561}, {9778, 11684}, {9851, 10398}, {9910, 12082}, {10381, 54181}, {10431, 34772}, {10465, 10477}, {10950, 64152}, {11111, 52684}, {11201, 28901}, {11227, 17580}, {12247, 54441}, {12248, 12691}, {12565, 35514}, {12625, 28236}, {12635, 61010}, {12649, 36002}, {12664, 45120}, {12779, 41339}, {13442, 48923}, {13974, 43510}, {14054, 64079}, {15998, 56273}, {17532, 50864}, {17554, 38108}, {17857, 64111}, {19925, 25525}, {21168, 52665}, {24929, 37434}, {27383, 37374}, {28174, 54199}, {35844, 42260}, {35845, 42261}, {37441, 57281}, {38037, 51715}, {41869, 54227}, {44696, 56299}, {51773, 57278}, {58834, 64005}, {63297, 63445}
X(64144) = reflection of X(i) in X(j) for these {i,j}: {4, 1490}, {3146, 6259}, {6764, 8158}, {6851, 37700}, {7992, 31730}, {9799, 3}, {10864, 4297}, {12246, 20}, {12684, 550}, {41869, 54227}
X(64144) = anticomplement of X(5787)
X(64144) = X(i)-Dao conjugate of X(j) for these {i, j}: {5787, 5787}
X(64144) = pole of line {522, 59992} with respect to the polar circle
X(64144) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1838), X(10429)}}, {{A, B, C, X(7580), X(31793)}}
X(64144) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1490, 5658}, {4, 18446, 3487}, {4, 944, 3488}, {20, 20007, 31793}, {20, 72, 5759}, {20, 971, 12246}, {226, 5691, 4}, {443, 10884, 21151}, {550, 12684, 54052}, {5777, 18481, 6987}, {7992, 31730, 14646}, {9799, 54051, 3}, {12565, 63146, 35514}
X(64145) lies on circumconic {{A, B, C, X(40437), X(46435)}} and on these lines: {1, 1537}, {3, 12751}, {4, 11715}, {8, 46684}, {10, 38693}, {11, 1420}, {20, 2802}, {30, 12737}, {35, 12749}, {36, 80}, {40, 550}, {100, 4297}, {103, 43353}, {119, 3576}, {144, 2801}, {153, 214}, {165, 1145}, {355, 38177}, {497, 41554}, {516, 1320}, {517, 26726}, {519, 64189}, {528, 2951}, {529, 5538}, {944, 2800}, {946, 10728}, {960, 17661}, {962, 64137}, {971, 17638}, {1012, 63281}, {1071, 11571}, {1158, 37707}, {1317, 7962}, {1319, 1538}, {1385, 10742}, {1387, 1699}, {1388, 40267}, {1484, 28186}, {1698, 21154}, {2646, 12763}, {2771, 12680}, {2932, 63991}, {2950, 5119}, {3035, 7987}, {3036, 37712}, {3091, 32557}, {3476, 15558}, {3486, 5083}, {3488, 46681}, {3579, 38754}, {3583, 12761}, {3600, 18240}, {3601, 10956}, {3655, 12678}, {3679, 64193}, {3746, 12775}, {3832, 32558}, {4293, 12736}, {4316, 17654}, {5204, 52683}, {5434, 20330}, {5441, 5882}, {5450, 37710}, {5531, 10609}, {5537, 25438}, {5587, 6713}, {5692, 12665}, {5727, 12832}, {5818, 38133}, {5840, 6264}, {5854, 7991}, {5886, 22799}, {5902, 15528}, {5903, 37002}, {6256, 21842}, {6265, 34773}, {6284, 20586}, {6326, 28459}, {6667, 7989}, {6702, 59387}, {6796, 18861}, {7580, 22560}, {7967, 25485}, {8227, 38032}, {8727, 63270}, {9615, 13922}, {9864, 53733}, {9897, 58887}, {9952, 63207}, {10057, 12114}, {10058, 45287}, {10073, 22775}, {10074, 10572}, {10164, 64141}, {10165, 64008}, {10246, 12611}, {10304, 50841}, {10465, 38484}, {10711, 51705}, {10724, 21630}, {10738, 28160}, {10759, 39870}, {11224, 60933}, {11249, 12773}, {11260, 13271}, {11531, 25416}, {11570, 64147}, {12115, 37525}, {12138, 54397}, {12247, 37572}, {12331, 35238}, {12368, 53753}, {12531, 28236}, {12619, 18525}, {12641, 38455}, {12653, 64005}, {12743, 30283}, {12750, 48694}, {12757, 15096}, {12758, 64120}, {12762, 33597}, {12767, 30304}, {12784, 53755}, {13178, 53722}, {13205, 37022}, {13211, 53715}, {13226, 62616}, {13532, 36944}, {13624, 38752}, {13729, 51714}, {15015, 37725}, {15017, 25522}, {15931, 51506}, {17100, 63983}, {17502, 38762}, {17660, 64043}, {18480, 57298}, {18492, 23513}, {18519, 60743}, {18908, 58666}, {18976, 37579}, {19077, 48701}, {19078, 48700}, {19914, 28204}, {19925, 31272}, {20418, 37718}, {21635, 41012}, {30308, 38026}, {30384, 52851}, {31673, 59391}, {31730, 64136}, {33557, 38669}, {33812, 41561}, {33858, 47034}, {34122, 37714}, {34126, 61261}, {34648, 59377}, {34690, 37569}, {36977, 64076}, {37618, 39692}, {37706, 59330}, {37708, 52027}, {38084, 50799}, {41869, 64138}, {50896, 53750}, {50899, 53752}, {50903, 53746}, {51529, 62354}, {51897, 57002}, {53055, 63973}, {54445, 58453}
X(64145) = midpoint of X(i) and X(j) for these {i,j}: {944, 12248}, {6224, 64009}, {12653, 64005}
X(64145) = reflection of X(i) in X(j) for these {i,j}: {1, 64191}, {4, 11715}, {8, 46684}, {40, 38761}, {80, 104}, {100, 4297}, {153, 214}, {355, 38602}, {962, 64137}, {1145, 38759}, {5531, 10609}, {5541, 24466}, {5660, 5731}, {5691, 11}, {6265, 34773}, {7972, 944}, {9864, 53733}, {10698, 5882}, {10711, 51705}, {10724, 21630}, {10728, 946}, {10742, 1385}, {10759, 39870}, {11531, 25416}, {11571, 1071}, {12119, 18481}, {12368, 53753}, {12751, 3}, {12784, 53755}, {13178, 53722}, {13211, 53715}, {13253, 1317}, {13271, 11260}, {13532, 53748}, {14217, 12737}, {15096, 12757}, {16128, 19907}, {17661, 960}, {18525, 12619}, {34789, 1}, {38756, 12611}, {41698, 1319}, {41869, 64138}, {44425, 21578}, {47034, 33858}, {49176, 12773}, {50896, 53750}, {50899, 53752}, {50903, 53746}, {50908, 3655}, {51897, 57002}, {52836, 1387}, {52851, 30384}, {62354, 51529}, {62616, 13226}, {64011, 50811}, {64056, 40}, {64136, 31730}, {64140, 3579}
X(64145) = pole of line {11219, 17638} with respect to the Feuerbach hyperbola
X(64145) = pole of line {2804, 25416} with respect to the Suppa-Cucoanes circle
X(64145) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {6224, 20098, 64009}
X(64145) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2829, 34789}, {4, 11715, 16173}, {30, 12737, 14217}, {40, 952, 64056}, {80, 104, 11219}, {104, 515, 80}, {104, 64188, 36}, {119, 3576, 64012}, {153, 214, 5660}, {153, 5731, 214}, {515, 21578, 44425}, {944, 12248, 2800}, {944, 2800, 7972}, {952, 18481, 12119}, {952, 24466, 5541}, {952, 38761, 40}, {1145, 38759, 165}, {1387, 52836, 1699}, {2829, 64191, 1}, {3655, 16128, 19907}, {6224, 64009, 2801}, {10246, 38756, 12611}, {12737, 14217, 50891}, {12764, 33898, 41698}, {15017, 30389, 34123}, {16128, 19907, 50908}, {21630, 28164, 10724}, {34123, 38757, 15017}, {38754, 64140, 3579}
X(64146) lies on these lines: {1, 11024}, {2, 3158}, {3, 6764}, {7, 3174}, {8, 21}, {10, 17554}, {20, 6765}, {42, 4344}, {56, 9797}, {57, 145}, {63, 20015}, {78, 9785}, {100, 1617}, {149, 5748}, {165, 519}, {200, 390}, {210, 10385}, {329, 2900}, {354, 3241}, {479, 664}, {497, 3689}, {516, 64143}, {517, 54051}, {518, 5918}, {521, 30613}, {528, 9812}, {672, 3169}, {758, 34632}, {910, 17314}, {938, 5687}, {944, 6244}, {962, 3811}, {1002, 35104}, {1155, 20050}, {1190, 4513}, {1202, 3501}, {1260, 5809}, {1376, 10580}, {1621, 6600}, {1697, 20007}, {1997, 43290}, {2078, 12649}, {2094, 4430}, {2280, 5749}, {2348, 3161}, {2550, 10578}, {3091, 59722}, {3160, 8270}, {3208, 8012}, {3210, 53552}, {3243, 21454}, {3244, 10980}, {3256, 12648}, {3434, 5226}, {3474, 6154}, {3475, 34612}, {3522, 6762}, {3598, 3875}, {3599, 25718}, {3616, 3748}, {3617, 12625}, {3621, 12640}, {3622, 21627}, {3623, 3680}, {3632, 4305}, {3633, 53056}, {3681, 6172}, {3684, 6602}, {3685, 5423}, {3693, 5838}, {3740, 47357}, {3744, 5222}, {3753, 15933}, {3813, 5550}, {3872, 10383}, {3885, 17642}, {3886, 7172}, {3896, 4460}, {3939, 17127}, {3957, 9776}, {3961, 64168}, {4097, 4651}, {4105, 20537}, {4294, 5815}, {4314, 4882}, {4323, 34772}, {4339, 10460}, {4345, 4511}, {4421, 24477}, {4428, 38057}, {4512, 5686}, {4685, 52155}, {4779, 6555}, {4847, 5281}, {4848, 20008}, {4863, 5218}, {4917, 57287}, {4924, 62820}, {4939, 46938}, {5082, 5703}, {5173, 14923}, {5175, 10528}, {5274, 6745}, {5325, 59414}, {5531, 64130}, {5534, 6223}, {5704, 59591}, {5734, 22836}, {5766, 64171}, {5839, 42316}, {5854, 10031}, {5855, 34711}, {5856, 60971}, {5905, 20095}, {6049, 36846}, {6601, 56028}, {6743, 53053}, {7965, 12607}, {7967, 11227}, {8580, 30331}, {8715, 15931}, {8730, 35977}, {9053, 42049}, {9581, 27525}, {9799, 10306}, {9803, 25438}, {9965, 63145}, {10005, 56078}, {10394, 17658}, {10589, 62710}, {10857, 12629}, {10912, 20057}, {10914, 11018}, {11523, 20070}, {16020, 17715}, {16845, 63271}, {17018, 54308}, {17316, 19589}, {17576, 63135}, {17592, 48856}, {18391, 48696}, {19877, 64123}, {20036, 28272}, {20054, 63214}, {24388, 29679}, {24394, 27804}, {26015, 64114}, {26062, 33925}, {27818, 40154}, {28451, 59503}, {30628, 41539}, {32087, 63131}, {32099, 63134}, {34619, 59387}, {34625, 54445}, {34639, 63468}, {36802, 52210}, {37553, 39587}, {37655, 49451}, {37681, 62875}, {38053, 49732}, {38092, 61029}, {38314, 56177}, {39350, 41837}, {41575, 63133}, {44447, 60957}, {47375, 61023}, {47387, 60995}, {51615, 63621}, {54398, 61763}, {55868, 61157}, {58615, 61287}, {59374, 63261}, {63132, 64147}
X(64146) = reflection of X(i) in X(j) for these {i,j}: {2, 3158}, {9778, 34607}, {9812, 25568}, {24392, 59584}, {24477, 4421}, {28610, 9778}, {59387, 34619}, {63468, 34639}
X(64146) = anticomplement of X(24392)
X(64146) = X(i)-Dao conjugate of X(j) for these {i, j}: {4515, 2321}, {24392, 24392}, {53665, 24797}
X(64146) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1434, 9}, {17158, 37681}
X(64146) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56081, 21286}, {56314, 3436}
X(64146) = pole of line {960, 4345} with respect to the Feuerbach hyperbola
X(64146) = pole of line {30719, 31605} with respect to the Steiner circumellipse
X(64146) = pole of line {27834, 37206} with respect to the Yff parabola
X(64146) = pole of line {18228, 31183} with respect to the dual conic of Yff parabola
X(64146) = centroid of X(8)-crosspedal-of-X(145)
X(64146) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(2137)}}, {{A, B, C, X(333), X(8051)}}, {{A, B, C, X(345), X(22040)}}, {{A, B, C, X(479), X(4076)}}, {{A, B, C, X(1002), X(3913)}}, {{A, B, C, X(1043), X(6553)}}, {{A, B, C, X(3161), X(40154)}}, {{A, B, C, X(8668), X(28471)}}, {{A, B, C, X(42470), X(56182)}}, {{A, B, C, X(44301), X(52352)}}
X(64146) = barycentric product X(i)*X(j) for these (i, j): {1, 56085}, {21, 22040}, {312, 62875}, {17158, 9}, {18153, 55}, {23819, 644}, {37681, 8}
X(64146) = barycentric quotient X(i)/X(j) for these (i, j): {17158, 85}, {18153, 6063}, {22040, 1441}, {23819, 24002}, {37681, 7}, {56085, 75}, {62875, 57}
X(64146) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12632, 12541}, {8, 3189, 12536}, {8, 55, 5273}, {78, 56936, 9785}, {100, 36845, 5435}, {145, 37267, 62832}, {200, 390, 18228}, {210, 10385, 52653}, {329, 20075, 30332}, {497, 3689, 64083}, {497, 64083, 5328}, {518, 34607, 9778}, {518, 9778, 28610}, {528, 25568, 9812}, {2136, 12437, 145}, {3158, 24392, 59584}, {3174, 7674, 7}, {3189, 3913, 8}, {3434, 63168, 5226}, {3475, 34612, 59412}, {3748, 26040, 3616}, {3935, 20075, 329}, {4421, 24477, 64108}, {4779, 6555, 30568}, {5435, 12630, 36845}, {5601, 5602, 3913}, {5853, 59584, 24392}, {6154, 41711, 3474}, {6765, 64117, 20}, {24392, 59584, 2}
X(64147) lies on these lines: {984, 3729}, {3864, 9902}, {3869, 52029}, {7146, 9312}, {26643, 40773}
X(64147) = isotomic conjugate of X(49496)
X(64147) = trilinear pole of line {1491, 4885}
X(64147) = Kimberling-Pavlov X(2)-conjugate of X(1) and X(4)
X(64147) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(76)}}, {{A, B, C, X(4), X(274)}}, {{A, B, C, X(19), X(6385)}}, {{A, B, C, X(83), X(56051)}}, {{A, B, C, X(105), X(40030)}}, {{A, B, C, X(239), X(35158)}}, {{A, B, C, X(330), X(2481)}}, {{A, B, C, X(671), X(36871)}}, {{A, B, C, X(894), X(10435)}}, {{A, B, C, X(981), X(56066)}}, {{A, B, C, X(3062), X(27447)}}, {{A, B, C, X(3226), X(42359)}}, {{A, B, C, X(3227), X(5485)}}, {{A, B, C, X(3869), X(18206)}}, {{A, B, C, X(4384), X(60149)}}, {{A, B, C, X(5395), X(39736)}}, {{A, B, C, X(6383), X(8769)}}, {{A, B, C, X(9311), X(18827)}}, {{A, B, C, X(18785), X(60244)}}, {{A, B, C, X(18840), X(32009)}}, {{A, B, C, X(27424), X(33676)}}, {{A, B, C, X(34860), X(35167)}}, {{A, B, C, X(35172), X(43676)}}, {{A, B, C, X(38247), X(43681)}}, {{A, B, C, X(38259), X(39740)}}, {{A, B, C, X(39738), X(60285)}}, {{A, B, C, X(39954), X(40017)}}, {{A, B, C, X(40014), X(52209)}}, {{A, B, C, X(46274), X(53222)}}
X(64148) lies on these lines: {1, 5804}, {2, 515}, {3, 1603}, {4, 12}, {5, 26105}, {8, 6261}, {10, 1490}, {11, 6969}, {20, 2077}, {40, 329}, {56, 6927}, {84, 5273}, {100, 6925}, {104, 6880}, {119, 6827}, {145, 40257}, {153, 4996}, {165, 37427}, {197, 37305}, {198, 5514}, {210, 5657}, {223, 51375}, {227, 7952}, {355, 6825}, {376, 2829}, {381, 38037}, {387, 37699}, {388, 3149}, {390, 26333}, {393, 21854}, {411, 3436}, {452, 10902}, {480, 35514}, {495, 19541}, {497, 1532}, {498, 5691}, {516, 45701}, {517, 25568}, {550, 40267}, {631, 12114}, {944, 1319}, {946, 5226}, {952, 34625}, {958, 6988}, {962, 10528}, {971, 14647}, {1001, 6939}, {1012, 5218}, {1056, 22753}, {1058, 7681}, {1071, 1788}, {1125, 6964}, {1155, 2096}, {1158, 3219}, {1329, 6865}, {1376, 6916}, {1385, 6944}, {1440, 5923}, {1470, 4293}, {1478, 44425}, {1512, 18391}, {1519, 30305}, {1528, 40971}, {1621, 6957}, {1697, 63989}, {1698, 6245}, {1699, 10056}, {1737, 5768}, {1745, 51660}, {1750, 31434}, {1770, 15867}, {1857, 45766}, {2267, 26063}, {2478, 54348}, {2550, 6907}, {2800, 59417}, {2975, 6962}, {3035, 63991}, {3090, 63980}, {3091, 34486}, {3189, 64116}, {3359, 52684}, {3421, 3428}, {3434, 6932}, {3486, 33597}, {3487, 7686}, {3523, 5450}, {3577, 64110}, {3579, 6259}, {3616, 6953}, {3822, 6843}, {3911, 63430}, {3947, 5715}, {4194, 39574}, {4297, 6926}, {4302, 41698}, {4870, 5603}, {5056, 63963}, {5082, 15908}, {5084, 25893}, {5217, 64000}, {5229, 37468}, {5230, 40958}, {5261, 26332}, {5290, 64001}, {5432, 6935}, {5535, 9965}, {5584, 21031}, {5698, 37822}, {5758, 21077}, {5780, 45085}, {5787, 6989}, {5791, 9947}, {5811, 12514}, {5818, 6889}, {5881, 64081}, {5882, 6049}, {6282, 6745}, {6361, 64119}, {6705, 10864}, {6735, 64150}, {6767, 7956}, {6769, 59722}, {6824, 18480}, {6826, 18491}, {6828, 10585}, {6831, 10588}, {6833, 37600}, {6836, 11681}, {6842, 18518}, {6844, 7951}, {6846, 10198}, {6850, 11499}, {6862, 38114}, {6863, 18525}, {6864, 25466}, {6867, 18517}, {6868, 37821}, {6869, 10526}, {6887, 61261}, {6890, 27529}, {6891, 18481}, {6892, 18761}, {6893, 10267}, {6923, 18524}, {6930, 18516}, {6941, 10591}, {6942, 37002}, {6949, 10785}, {6954, 22758}, {6959, 34773}, {6960, 10527}, {6970, 10269}, {6982, 37820}, {6985, 10942}, {7491, 18542}, {7501, 20989}, {7580, 17757}, {7966, 63993}, {7971, 11362}, {7991, 54198}, {7992, 9588}, {8165, 37423}, {8582, 8726}, {8727, 31479}, {9654, 20420}, {9709, 37424}, {9780, 9799}, {9942, 14872}, {9943, 18239}, {10039, 63988}, {10164, 52027}, {10265, 61019}, {10268, 12572}, {10270, 59675}, {10310, 59591}, {10321, 10572}, {10531, 64173}, {10884, 24982}, {11036, 31870}, {11372, 60995}, {12246, 64118}, {12528, 32159}, {12607, 64077}, {12664, 58631}, {12671, 26066}, {12679, 37568}, {12680, 24914}, {12683, 56313}, {12686, 60935}, {12761, 13199}, {13912, 19068}, {13975, 19067}, {14646, 63276}, {15177, 35988}, {15325, 30283}, {15338, 37001}, {16127, 40256}, {17576, 59331}, {17649, 31787}, {18528, 51755}, {18529, 63970}, {19854, 37714}, {20060, 64079}, {21155, 34697}, {23600, 53815}, {26062, 59333}, {27383, 63391}, {27525, 31730}, {28236, 45700}, {30478, 52265}, {30513, 37300}, {31397, 63992}, {31673, 37434}, {31803, 58636}, {33814, 33898}, {34231, 51361}, {36996, 41712}, {37560, 63990}, {37569, 63168}, {38149, 50741}, {41538, 64021}, {41570, 54159}, {43174, 54156}, {54052, 64108}, {54398, 63967}, {56941, 64129}, {57288, 59345}, {59388, 61032}, {64074, 64123}
X(64148) = midpoint of X(i) and X(j) for these {i,j}: {5657, 5658}, {54051, 59387}
X(64148) = reflection of X(i) in X(j) for these {i,j}: {14647, 26446}, {52027, 10164}
X(64148) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1413, 56101}
X(64148) = X(i)-Dao conjugate of X(j) for these {i, j}: {281, 55963}, {38957, 61040}
X(64148) = pole of line {11041, 44547} with respect to the Feuerbach hyperbola
X(64148) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(329), X(40573)}}, {{A, B, C, X(943), X(7952)}}, {{A, B, C, X(1512), X(55116)}}, {{A, B, C, X(7080), X(18391)}}
X(64148) = barycentric product X(i)*X(j) for these (i, j): {322, 8557}, {6350, 7952}, {18391, 329}, {54366, 7080}, {57810, 62691}
X(64148) = barycentric quotient X(i)/X(j) for these (i, j): {2324, 56101}, {7952, 55963}, {8557, 84}, {18391, 189}, {18446, 41081}, {19350, 1433}, {54366, 1440}, {62691, 285}
X(64148) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12667, 64120}, {4, 10786, 3085}, {4, 11491, 4294}, {4, 8164, 7680}, {40, 6260, 63962}, {498, 5691, 6847}, {944, 6834, 3086}, {971, 26446, 14647}, {1155, 12678, 2096}, {1478, 44425, 50701}, {1512, 18446, 18391}, {1698, 63981, 6245}, {3579, 6259, 64190}, {4297, 26364, 6926}, {5261, 50700, 26332}, {5657, 5658, 6001}, {5818, 6889, 19855}, {6256, 6796, 20}, {6905, 12115, 4293}, {7080, 37421, 40}, {7580, 17757, 64111}, {9780, 9799, 12616}, {10198, 19925, 6846}, {10864, 31423, 6705}, {11500, 18242, 4}, {18391, 18446, 64147}, {18480, 26487, 6824}, {18516, 32613, 6930}, {18761, 31659, 6892}, {43174, 54227, 54156}, {48482, 63964, 3091}, {54051, 59387, 515}
X(64149) lies on these lines: {1, 88}, {2, 210}, {3, 58561}, {4, 13373}, {5, 58605}, {6, 7292}, {7, 3660}, {8, 4002}, {9, 58607}, {10, 3889}, {11, 10129}, {20, 13374}, {21, 3338}, {31, 29820}, {37, 3999}, {38, 22220}, {42, 17063}, {43, 62867}, {51, 23155}, {55, 9352}, {56, 20846}, {57, 1621}, {63, 5284}, {65, 3622}, {69, 58562}, {72, 5550}, {75, 29824}, {80, 58625}, {81, 614}, {85, 35312}, {89, 3246}, {104, 58604}, {142, 11025}, {144, 58563}, {145, 3812}, {146, 58582}, {147, 58589}, {148, 58590}, {149, 5880}, {150, 58592}, {151, 58593}, {152, 58594}, {153, 58595}, {165, 62856}, {171, 62806}, {190, 24359}, {192, 58583}, {193, 58581}, {194, 58584}, {200, 9342}, {238, 62795}, {312, 17140}, {329, 58577}, {373, 2810}, {390, 17603}, {392, 942}, {405, 62827}, {443, 5178}, {495, 34122}, {497, 20292}, {513, 6548}, {517, 3524}, {537, 64178}, {551, 3877}, {612, 62814}, {658, 55082}, {674, 7998}, {748, 32913}, {756, 25502}, {758, 15671}, {896, 15485}, {899, 49490}, {908, 5542}, {936, 62861}, {938, 5086}, {940, 7191}, {946, 9961}, {960, 46934}, {962, 9940}, {968, 18193}, {971, 9779}, {982, 3720}, {984, 17449}, {997, 63159}, {1001, 3218}, {1056, 5176}, {1086, 33134}, {1100, 17025}, {1122, 30712}, {1125, 3868}, {1150, 16823}, {1155, 42819}, {1215, 30957}, {1278, 58620}, {1279, 17126}, {1376, 3957}, {1385, 6876}, {1386, 14996}, {1420, 51683}, {1647, 17717}, {1698, 3881}, {1699, 11220}, {1757, 17125}, {1788, 10587}, {1836, 26842}, {1962, 17591}, {1995, 22769}, {2094, 52653}, {2320, 5126}, {2346, 60985}, {2475, 58568}, {2476, 51706}, {2650, 21214}, {2771, 5886}, {2800, 61275}, {2801, 7988}, {2805, 17301}, {2836, 38023}, {2886, 27186}, {2975, 3333}, {2979, 58574}, {3006, 17234}, {3035, 37703}, {3086, 62864}, {3091, 12675}, {3120, 24217}, {3121, 63493}, {3146, 58567}, {3219, 4423}, {3240, 16610}, {3241, 3753}, {3242, 5297}, {3243, 62236}, {3290, 63066}, {3296, 5084}, {3305, 62823}, {3337, 5248}, {3361, 5303}, {3434, 9776}, {3436, 11037}, {3448, 58601}, {3485, 10586}, {3533, 58630}, {3543, 63432}, {3555, 9780}, {3617, 34791}, {3621, 3698}, {3623, 5836}, {3624, 3874}, {3633, 3918}, {3636, 5903}, {3646, 3951}, {3648, 58586}, {3664, 50003}, {3666, 29814}, {3670, 62831}, {3673, 16727}, {3677, 5287}, {3678, 34595}, {3679, 3833}, {3689, 15570}, {3705, 18139}, {3711, 61158}, {3736, 16753}, {3745, 4906}, {3751, 37680}, {3752, 4883}, {3756, 5718}, {3758, 16482}, {3794, 42025}, {3811, 17531}, {3816, 31053}, {3817, 61740}, {3820, 58813}, {3826, 51463}, {3827, 35260}, {3832, 12680}, {3834, 25959}, {3836, 33120}, {3840, 32771}, {3846, 33069}, {3870, 5437}, {3879, 49987}, {3894, 10176}, {3896, 17490}, {3897, 5563}, {3898, 51105}, {3899, 51110}, {3909, 17723}, {3911, 7672}, {3912, 24629}, {3919, 51103}, {3920, 17597}, {3935, 4413}, {3938, 17122}, {3952, 17146}, {3956, 19876}, {3961, 17124}, {3966, 32863}, {3967, 46938}, {3968, 4677}, {3976, 59305}, {3980, 32943}, {3983, 46931}, {3994, 49532}, {4003, 15569}, {4004, 31792}, {4011, 32940}, {4015, 19872}, {4038, 17017}, {4083, 14474}, {4131, 17427}, {4188, 37080}, {4189, 32636}, {4193, 13407}, {4197, 10916}, {4358, 24349}, {4359, 10453}, {4414, 16484}, {4420, 16408}, {4429, 29835}, {4438, 29851}, {4440, 58618}, {4442, 4890}, {4511, 15934}, {4640, 23958}, {4645, 58627}, {4648, 25279}, {4662, 46932}, {4663, 14997}, {4671, 49483}, {4675, 17721}, {4679, 17484}, {4682, 29815}, {4687, 13476}, {4694, 30116}, {4706, 49475}, {4712, 56510}, {4751, 58379}, {4795, 24482}, {4847, 38204}, {4851, 32842}, {4853, 30343}, {4861, 7373}, {4871, 32931}, {4881, 40726}, {4891, 42051}, {4966, 33077}, {4972, 29843}, {5046, 10404}, {5047, 62858}, {5056, 14872}, {5080, 58570}, {5082, 16216}, {5083, 5219}, {5121, 37651}, {5173, 5435}, {5208, 5333}, {5211, 17300}, {5218, 18839}, {5220, 35595}, {5226, 10584}, {5231, 20116}, {5249, 10861}, {5250, 38399}, {5256, 5573}, {5260, 62874}, {5263, 26627}, {5268, 62850}, {5272, 32911}, {5274, 10391}, {5281, 17642}, {5302, 17570}, {5311, 17598}, {5536, 52769}, {5558, 56879}, {5572, 25722}, {5603, 10202}, {5640, 8679}, {5650, 9052}, {5651, 43149}, {5697, 33815}, {5703, 50196}, {5704, 10585}, {5708, 56288}, {5734, 31788}, {5748, 10569}, {5884, 9624}, {5885, 61276}, {5888, 41454}, {5901, 13226}, {5904, 19862}, {5905, 26105}, {6173, 7671}, {6193, 58580}, {6223, 58588}, {6224, 58587}, {6225, 58579}, {6542, 58628}, {6679, 29853}, {6688, 61640}, {6703, 29648}, {6744, 57287}, {6767, 63136}, {6986, 12704}, {7226, 21342}, {7486, 58631}, {7673, 35445}, {7705, 37719}, {7951, 59419}, {7957, 15717}, {8025, 18165}, {8083, 8125}, {8126, 11033}, {8167, 27065}, {8227, 12005}, {8583, 11520}, {9004, 59373}, {9024, 17392}, {9037, 11002}, {9047, 33884}, {9049, 33879}, {9318, 37143}, {9330, 49515}, {9778, 11227}, {9807, 58614}, {9812, 10167}, {9960, 63980}, {10199, 37701}, {10283, 38032}, {10303, 63976}, {10458, 18601}, {10529, 28629}, {10578, 12915}, {10595, 34339}, {10609, 15935}, {10883, 12669}, {10914, 20057}, {11021, 35614}, {11246, 49736}, {11263, 37720}, {11269, 33129}, {11375, 13751}, {11407, 43166}, {11412, 58575}, {11415, 58573}, {11465, 58647}, {11518, 19861}, {11529, 62826}, {11681, 21620}, {11684, 31435}, {11691, 58616}, {12111, 58617}, {12329, 40916}, {12529, 12564}, {12530, 17304}, {12531, 46681}, {12586, 18911}, {12649, 58585}, {13219, 58603}, {13243, 54370}, {13464, 15016}, {13587, 59337}, {13747, 63282}, {14360, 58602}, {14439, 17754}, {14450, 58619}, {14475, 37998}, {14828, 26229}, {15066, 45728}, {15104, 58441}, {15185, 60996}, {15726, 59375}, {15733, 59374}, {15888, 25005}, {16020, 24597}, {16706, 29829}, {16825, 32919}, {16831, 62872}, {16856, 51572}, {16973, 37675}, {17016, 17054}, {17019, 17599}, {17022, 62833}, {17049, 17391}, {17056, 29680}, {17074, 34036}, {17092, 55340}, {17117, 38473}, {17123, 32912}, {17135, 19804}, {17145, 49450}, {17154, 31035}, {17155, 28516}, {17164, 58393}, {17165, 18743}, {17232, 48647}, {17241, 22279}, {17278, 33139}, {17279, 33170}, {17387, 62667}, {17394, 50362}, {17451, 63500}, {17469, 37604}, {17483, 24703}, {17495, 49470}, {17536, 41229}, {17566, 63259}, {17572, 56176}, {17596, 62849}, {17716, 29818}, {17720, 33148}, {18141, 33078}, {18191, 26860}, {18260, 63962}, {18444, 22753}, {18450, 64152}, {19860, 62837}, {19877, 34790}, {20059, 58608}, {20080, 58621}, {20081, 58622}, {20094, 58610}, {20095, 58611}, {20096, 58612}, {20195, 34784}, {20330, 37374}, {20344, 58596}, {20358, 29570}, {20683, 29581}, {20718, 27811}, {21290, 58597}, {21346, 24554}, {21454, 44447}, {21805, 49498}, {21808, 26690}, {22112, 43146}, {22294, 29822}, {24003, 49491}, {24165, 28522}, {24210, 33146}, {24216, 29639}, {24231, 33151}, {24325, 30942}, {24331, 32917}, {24391, 24564}, {24512, 26242}, {24635, 59217}, {24789, 33142}, {24929, 35271}, {24987, 51723}, {25082, 35341}, {25295, 30090}, {25413, 61278}, {25522, 41870}, {25524, 34772}, {25760, 49676}, {25815, 25817}, {25957, 29655}, {25960, 33064}, {25961, 29673}, {26103, 32937}, {26127, 58798}, {26128, 29845}, {26234, 30962}, {26724, 33137}, {26805, 63587}, {27147, 52020}, {27812, 44671}, {28011, 62804}, {28082, 37607}, {28395, 63520}, {28465, 38028}, {28611, 50625}, {28620, 35637}, {29578, 56542}, {29635, 33123}, {29642, 33119}, {29649, 32923}, {29651, 32918}, {29662, 33130}, {29665, 37634}, {29668, 32772}, {29677, 32780}, {29681, 37646}, {29685, 33174}, {29687, 33169}, {29821, 62821}, {29830, 32851}, {29837, 32774}, {29844, 33072}, {29848, 58443}, {30148, 37559}, {30274, 44675}, {30331, 63145}, {30565, 30704}, {30852, 31249}, {30967, 31317}, {30970, 40328}, {31146, 38052}, {31164, 59372}, {31179, 50533}, {31266, 62852}, {31526, 59181}, {32860, 42057}, {32925, 42055}, {33071, 63056}, {33131, 40688}, {33650, 58600}, {34186, 58598}, {34188, 58599}, {34381, 64177}, {34611, 64162}, {35004, 61277}, {36277, 60846}, {36845, 58623}, {37541, 37789}, {37624, 61541}, {37677, 63522}, {38026, 61273}, {38093, 61030}, {38205, 41556}, {38869, 47299}, {40401, 46972}, {41539, 64114}, {41611, 62973}, {41847, 57024}, {49459, 50001}, {49529, 60423}, {49688, 60459}, {51380, 62710}, {51700, 64044}, {51816, 54318}, {52254, 61013}, {52255, 60991}, {52367, 58569}, {53381, 62697}, {55857, 58632}, {58613, 64009}, {58633, 63120}, {58637, 61820}, {58675, 61876}, {58679, 64047}
X(64149) = midpoint of X(i) and X(j) for these {i,j}: {3873, 63961}
X(64149) = reflection of X(i) in X(j) for these {i,j}: {3681, 63961}, {61740, 3817}, {62835, 38314}, {63961, 2}
X(64149) = anticomplement of X(61686)
X(64149) = perspector of circumconic {{A, B, C, X(3257), X(32041)}}
X(64149) = X(i)-Dao conjugate of X(j) for these {i, j}: {4403, 4411}, {61686, 61686}
X(64149) = pole of line {2827, 42322} with respect to the incircle
X(64149) = pole of line {390, 5048} with respect to the Feuerbach hyperbola
X(64149) = pole of line {3751, 33538} with respect to the Stammler hyperbola
X(64149) = pole of line {4762, 21222} with respect to the Steiner circumellipse
X(64149) = pole of line {3960, 4762} with respect to the Steiner inellipse
X(64149) = pole of line {26227, 30758} with respect to the Wallace hyperbola
X(64149) = pole of line {908, 24635} with respect to the dual conic of Yff parabola
X(64149) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(52620)}}, {{A, B, C, X(88), X(27475)}}, {{A, B, C, X(100), X(39704)}}, {{A, B, C, X(106), X(1002)}}, {{A, B, C, X(513), X(2177)}}, {{A, B, C, X(1320), X(60668)}}, {{A, B, C, X(3681), X(57785)}}, {{A, B, C, X(3722), X(40401)}}, {{A, B, C, X(3873), X(32021)}}, {{A, B, C, X(4674), X(39954)}}, {{A, B, C, X(4792), X(6548)}}, {{A, B, C, X(4850), X(46972)}}, {{A, B, C, X(8715), X(43972)}}, {{A, B, C, X(9348), X(21806)}}, {{A, B, C, X(25439), X(60078)}}, {{A, B, C, X(34919), X(59269)}}
X(64149) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1054, 2177}, {1, 244, 4850}, {1, 3306, 100}, {1, 3754, 3885}, {1, 37633, 9347}, {1, 56010, 3722}, {2, 354, 3873}, {2, 3873, 3681}, {2, 4430, 210}, {2, 4661, 3740}, {2, 518, 63961}, {2, 64151, 64153}, {8, 5045, 62854}, {10, 50190, 3889}, {11, 25557, 31019}, {11, 31019, 10129}, {37, 3999, 4392}, {55, 27003, 9352}, {55, 29817, 62862}, {63, 10582, 5284}, {65, 3622, 3890}, {142, 11025, 30628}, {142, 26015, 33108}, {200, 30350, 62815}, {210, 3848, 2}, {244, 17450, 1}, {354, 3848, 4430}, {517, 38314, 62835}, {940, 7191, 62807}, {942, 3616, 3869}, {982, 3720, 28606}, {984, 17449, 62868}, {1001, 4860, 3218}, {1125, 18398, 3868}, {1155, 42819, 61155}, {1279, 37520, 17126}, {1962, 42040, 17591}, {3361, 62829, 5303}, {3624, 3874, 3876}, {3666, 29814, 62840}, {3742, 58560, 354}, {3745, 4906, 17024}, {3752, 4883, 17018}, {3753, 5049, 3241}, {3812, 17609, 145}, {3870, 44841, 62863}, {3873, 63961, 518}, {3952, 17146, 49499}, {4038, 17017, 62801}, {4666, 35258, 38316}, {4675, 17721, 33112}, {4871, 49479, 32931}, {5045, 5439, 8}, {5211, 17300, 33070}, {5249, 11019, 11680}, {5272, 62819, 32911}, {5437, 44841, 3870}, {8227, 12005, 12528}, {9335, 17018, 3752}, {9776, 10580, 3434}, {11018, 17626, 10580}, {11518, 19861, 34195}, {16484, 18201, 4414}, {16610, 49478, 3240}, {17051, 25557, 11}, {17124, 62869, 3961}, {17125, 54352, 1757}, {17154, 31035, 49447}, {17449, 30950, 984}, {17597, 37674, 3920}, {21342, 44307, 7226}, {24165, 32915, 50106}, {25502, 62865, 756}, {28082, 37607, 62802}, {35258, 38316, 1621}, {38054, 41861, 10861}, {49498, 62711, 21805}, {51816, 54318, 54391}
X(64150) lies on these lines: {1, 7}, {2, 30503}, {3, 392}, {4, 19860}, {8, 1490}, {10, 6838}, {19, 37258}, {21, 12705}, {30, 61146}, {33, 24806}, {36, 64129}, {40, 78}, {56, 9943}, {63, 3428}, {64, 19611}, {65, 64077}, {72, 64156}, {84, 2975}, {104, 7171}, {165, 997}, {185, 23526}, {200, 59417}, {207, 1895}, {224, 11682}, {376, 37611}, {404, 37560}, {405, 9856}, {412, 57276}, {474, 31787}, {515, 3434}, {517, 3870}, {529, 12678}, {550, 19907}, {573, 54330}, {758, 41338}, {908, 64111}, {936, 59675}, {944, 36846}, {946, 6836}, {956, 971}, {958, 12688}, {960, 5584}, {993, 1709}, {999, 10167}, {1040, 1457}, {1064, 5256}, {1071, 22770}, {1125, 6890}, {1158, 4652}, {1319, 5918}, {1385, 37022}, {1420, 9841}, {1467, 14986}, {1519, 6827}, {1537, 37428}, {1538, 17556}, {1616, 16936}, {1621, 3576}, {1698, 6960}, {1699, 6840}, {1750, 9623}, {1766, 57015}, {1936, 54400}, {2478, 63989}, {2646, 64074}, {2739, 14733}, {2950, 4996}, {3149, 31788}, {3304, 58567}, {3306, 22753}, {3340, 10393}, {3359, 6905}, {3421, 5658}, {3436, 6260}, {3523, 8583}, {3555, 8158}, {3579, 45770}, {3612, 51717}, {3616, 8726}, {3624, 6972}, {3753, 19541}, {3811, 7991}, {3877, 7411}, {3878, 12511}, {3951, 5693}, {3984, 63976}, {4188, 10270}, {4229, 18465}, {4511, 6282}, {4512, 37106}, {4666, 5603}, {4853, 63981}, {4855, 10310}, {4861, 12650}, {5082, 64144}, {5178, 5881}, {5204, 64128}, {5251, 54370}, {5253, 37526}, {5287, 23512}, {5289, 11495}, {5440, 6244}, {5493, 22836}, {5534, 12245}, {5587, 6932}, {5657, 5720}, {5687, 31798}, {5691, 37437}, {5709, 64021}, {5730, 31793}, {5768, 26015}, {5787, 24390}, {5840, 12700}, {5884, 12704}, {5886, 37374}, {5887, 35239}, {5927, 9708}, {6245, 10527}, {6361, 21740}, {6684, 6962}, {6735, 64148}, {6766, 41863}, {6769, 20070}, {6837, 21628}, {6847, 24541}, {6848, 24982}, {6865, 41012}, {6908, 24987}, {6912, 11372}, {6943, 8227}, {6953, 8582}, {6964, 25011}, {6966, 10165}, {6985, 37562}, {6986, 31435}, {6992, 40998}, {7680, 31266}, {7957, 12635}, {7964, 31165}, {7966, 7982}, {7992, 62824}, {7993, 16143}, {7994, 34632}, {7995, 31424}, {8270, 45272}, {8273, 58679}, {8666, 10085}, {9799, 64081}, {9800, 37434}, {9960, 12529}, {10058, 37618}, {10306, 33597}, {10461, 12548}, {10571, 54295}, {10680, 13369}, {10857, 54445}, {11220, 54391}, {11249, 63399}, {11362, 17857}, {11415, 54198}, {11491, 49163}, {11496, 62829}, {11500, 63130}, {11681, 63966}, {11827, 64119}, {12053, 34489}, {12114, 63984}, {12120, 54228}, {12512, 30144}, {12513, 12680}, {12514, 59320}, {12527, 54227}, {12528, 57279}, {12617, 19854}, {12675, 62832}, {12679, 57288}, {12702, 37700}, {12711, 62836}, {12740, 38759}, {12775, 37403}, {13734, 31394}, {14647, 59491}, {14872, 63135}, {14988, 37584}, {15071, 62858}, {15829, 37551}, {15852, 37614}, {16821, 48878}, {17784, 54051}, {18528, 59388}, {18529, 54448}, {21147, 61227}, {22791, 37615}, {24564, 37407}, {24928, 31805}, {25681, 50031}, {25930, 36698}, {26921, 40266}, {28164, 41860}, {28174, 37533}, {28194, 37569}, {28291, 43363}, {30147, 51118}, {31730, 40257}, {31786, 37426}, {31799, 58798}, {31803, 41229}, {34526, 41325}, {34611, 50811}, {34618, 34647}, {35445, 59421}, {37305, 55472}, {37380, 55478}, {37419, 64082}, {37422, 54356}, {38693, 41166}, {44425, 54286}, {44447, 63438}, {48697, 51433}, {51361, 60689}, {51616, 57477}, {54156, 56288}, {61148, 62155}, {63962, 64002}
X(64150) = reflection of X(i) in X(j) for these {i,j}: {63, 3428}, {1709, 993}, {3870, 18446}, {4302, 4297}, {44447, 63438}
X(64150) = pole of line {9001, 44408} with respect to the circumcircle
X(64150) = pole of line {44432, 46399} with respect to the orthoptic circle of the Steiner Inellipse
X(64150) = pole of line {2328, 4221} with respect to the Stammler hyperbola
X(64150) = pole of line {3732, 24029} with respect to the Yff parabola
X(64150) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(64), X(4320)}}, {{A, B, C, X(102), X(269)}}, {{A, B, C, X(279), X(36100)}}, {{A, B, C, X(1323), X(2739)}}, {{A, B, C, X(5731), X(56098)}}
X(64150) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1044, 4320}, {1, 12520, 10884}, {1, 12565, 20}, {1, 5732, 5731}, {3, 12672, 5250}, {3, 63986, 19861}, {40, 52026, 100}, {40, 6261, 78}, {40, 7971, 3869}, {516, 4297, 4302}, {517, 18446, 3870}, {962, 5731, 390}, {1071, 22770, 62874}, {1319, 5918, 63991}, {1750, 9623, 59387}, {2975, 9961, 84}, {3428, 6001, 63}, {3576, 10860, 6909}, {3878, 12511, 59340}, {4511, 9778, 6282}, {5603, 18443, 4666}, {5887, 35239, 55104}, {6361, 21740, 37531}, {10310, 37837, 4855}, {11220, 54391, 63430}, {11682, 63141, 14110}, {20070, 34772, 6769}, {30503, 63992, 2}, {31730, 40257, 63391}
X(64151) lies on these lines: {1, 5744}, {2, 210}, {7, 24389}, {8, 3306}, {20, 12704}, {46, 56936}, {56, 100}, {57, 5853}, {63, 10580}, {69, 26240}, {144, 62235}, {193, 5211}, {200, 62773}, {279, 20247}, {329, 5850}, {346, 2260}, {387, 3953}, {390, 3218}, {391, 54385}, {442, 3296}, {452, 62858}, {497, 9965}, {516, 2094}, {519, 64112}, {553, 24392}, {658, 6604}, {938, 62874}, {942, 64081}, {1219, 17751}, {1376, 20015}, {1482, 13226}, {1732, 62706}, {1788, 34791}, {2191, 7292}, {2550, 4860}, {2646, 3623}, {2800, 11240}, {3006, 4869}, {3085, 3881}, {3086, 3874}, {3189, 32636}, {3241, 3576}, {3243, 3911}, {3315, 24597}, {3338, 6904}, {3434, 21454}, {3555, 7080}, {3600, 12649}, {3616, 11520}, {3622, 5289}, {3660, 8732}, {3672, 4392}, {3751, 24216}, {3756, 63126}, {3868, 14986}, {3870, 5435}, {3889, 16193}, {3894, 10072}, {3928, 64162}, {3957, 5281}, {3999, 4000}, {4253, 35341}, {4295, 49627}, {4298, 5175}, {4308, 41575}, {4310, 11269}, {4346, 33134}, {4373, 4442}, {4402, 50758}, {4427, 4779}, {4644, 17721}, {4654, 24386}, {4666, 5273}, {4847, 9776}, {5057, 20059}, {5082, 5708}, {5083, 54366}, {5126, 36867}, {5177, 10916}, {5178, 56999}, {5218, 42871}, {5220, 17051}, {5221, 64068}, {5231, 5542}, {5247, 28080}, {5253, 20007}, {5265, 34772}, {5274, 5905}, {5437, 46916}, {5536, 43161}, {5603, 24473}, {5703, 62861}, {5745, 44841}, {5791, 50191}, {5851, 10707}, {5856, 12848}, {5902, 34625}, {5919, 34744}, {6067, 33108}, {6734, 11037}, {6744, 62824}, {6765, 26062}, {6887, 58561}, {7191, 37666}, {7613, 33136}, {7674, 60948}, {8166, 13257}, {8236, 35258}, {9779, 31164}, {9797, 63130}, {10527, 11036}, {10569, 64171}, {10578, 59491}, {10582, 38059}, {10584, 46873}, {10587, 18231}, {11106, 62827}, {12526, 21625}, {12635, 24558}, {12675, 37421}, {13373, 37407}, {17162, 24435}, {17375, 60446}, {17597, 37642}, {17726, 63054}, {18398, 19843}, {19855, 58565}, {19993, 37538}, {20075, 23958}, {20214, 24703}, {21060, 31249}, {22769, 35988}, {24953, 46934}, {26241, 37683}, {27334, 35892}, {27383, 41863}, {27549, 30947}, {28016, 54386}, {28512, 29844}, {28808, 49499}, {29616, 33089}, {29817, 55868}, {29840, 63057}, {30275, 41555}, {30340, 31019}, {33070, 62999}, {33142, 62208}, {34753, 59591}, {34879, 61157}, {37633, 39587}, {40127, 51194}, {40270, 54290}, {41711, 59572}, {62814, 63078}, {62819, 63007}, {64046, 64047}
X(64151) = pole of line {390, 62835} with respect to the Feuerbach hyperbola
X(64151) = pole of line {4762, 30181} with respect to the Steiner circumellipse
X(64151) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1002), X(8686)}}, {{A, B, C, X(1120), X(60668)}}
X(64151) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 36845, 17784}, {145, 64142, 100}, {3189, 32636, 37267}, {3243, 3911, 63168}, {3756, 64070, 63126}, {4847, 10980, 9776}, {4860, 51463, 2550}, {5437, 59414, 46916}, {11019, 62823, 329}, {11269, 17449, 4310}, {17728, 25568, 2}, {37684, 58371, 145}, {59491, 62815, 10578}
X(64152) lies on circumconic {{A, B, C, X(36123), X(56144)}} and on these lines: {1, 37411}, {3, 5219}, {4, 11}, {6, 2635}, {7, 36002}, {9, 1155}, {12, 5584}, {33, 1427}, {36, 6913}, {40, 17634}, {46, 5777}, {55, 226}, {57, 971}, {65, 1490}, {72, 3711}, {79, 11507}, {198, 851}, {218, 45885}, {225, 1035}, {241, 9817}, {243, 342}, {329, 1376}, {354, 4321}, {388, 37421}, {404, 5328}, {405, 5204}, {442, 10895}, {452, 25524}, {474, 5316}, {480, 61010}, {497, 50696}, {513, 61238}, {535, 17532}, {750, 3000}, {908, 1004}, {950, 3304}, {958, 5177}, {990, 1465}, {999, 3586}, {1001, 1005}, {1012, 17010}, {1254, 1854}, {1260, 28609}, {1402, 10888}, {1454, 12664}, {1466, 3149}, {1478, 3428}, {1482, 37736}, {1617, 1699}, {1696, 8804}, {1708, 5927}, {1721, 9371}, {1728, 37582}, {1745, 5706}, {1754, 34048}, {1758, 64134}, {1770, 5812}, {1776, 16112}, {1781, 15831}, {1837, 63998}, {1857, 40837}, {1936, 6180}, {2099, 18446}, {2263, 51361}, {2771, 18397}, {2802, 41701}, {2900, 41711}, {3011, 21002}, {3146, 57283}, {3303, 3487}, {3306, 8544}, {3452, 37270}, {3543, 62873}, {3585, 59317}, {3651, 5217}, {3668, 16870}, {3772, 37385}, {3911, 63970}, {3947, 12511}, {4295, 11500}, {4299, 31789}, {4312, 37541}, {4331, 38357}, {4342, 63274}, {4423, 13615}, {4860, 5728}, {5128, 9709}, {5175, 12513}, {5218, 8232}, {5221, 44547}, {5226, 7411}, {5348, 34032}, {5433, 6846}, {5436, 37605}, {5531, 5903}, {5658, 11246}, {5703, 33557}, {5708, 10399}, {5715, 37579}, {5732, 17603}, {5748, 35977}, {5758, 11501}, {5805, 64115}, {5806, 34489}, {5851, 12848}, {5856, 12831}, {6838, 15844}, {6911, 37822}, {6918, 15803}, {6937, 9656}, {6985, 57282}, {6987, 15326}, {7308, 37271}, {7367, 13609}, {7677, 9779}, {7989, 59323}, {8158, 37709}, {8273, 11375}, {8581, 54408}, {9613, 22770}, {9654, 35239}, {9655, 11249}, {9657, 10966}, {10123, 11517}, {10396, 32636}, {10483, 22766}, {10883, 37797}, {10950, 64144}, {11269, 51424}, {11376, 51773}, {12688, 37550}, {13411, 37426}, {15239, 63992}, {15447, 15972}, {16118, 59334}, {16411, 20196}, {18450, 64149}, {18518, 50193}, {18541, 62359}, {20835, 31266}, {21677, 45039}, {22053, 37674}, {24320, 47522}, {24928, 31822}, {30295, 60995}, {30326, 53056}, {30852, 37309}, {33925, 52835}, {36482, 37581}, {37229, 64002}, {37377, 42379}, {37530, 64057}, {37537, 37694}, {50195, 50528}, {54430, 63756}, {59389, 61649}
X(64152) = pole of line {47123, 53522} with respect to the incircle
X(64152) = pole of line {5728, 6001} with respect to the Feuerbach hyperbola
X(64152) = pole of line {5228, 34050} with respect to the dual conic of Yff parabola
X(64152) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 54366, 11}, {9, 37240, 4413}, {57, 1750, 1864}, {108, 46009, 56}, {226, 7580, 55}, {329, 35990, 1376}, {3149, 4292, 1466}, {4312, 44425, 37541}, {13615, 25525, 4423}
X(64153) lies on these lines: {1, 24597}, {2, 210}, {3, 8}, {6, 17726}, {7, 15346}, {9, 26015}, {10, 3306}, {11, 5220}, {20, 5178}, {38, 19785}, {44, 17721}, {55, 55868}, {57, 25006}, {63, 516}, {69, 3006}, {72, 5886}, {78, 10165}, {144, 5057}, {145, 37080}, {149, 5698}, {193, 33070}, {200, 59491}, {329, 5817}, {333, 4228}, {344, 29824}, {345, 17135}, {348, 35312}, {355, 64079}, {377, 62858}, {390, 62838}, {392, 11240}, {495, 9780}, {497, 3219}, {499, 3678}, {517, 61662}, {519, 59337}, {553, 61031}, {583, 2345}, {584, 5839}, {611, 32911}, {612, 63078}, {631, 4420}, {658, 33298}, {908, 5223}, {938, 5260}, {946, 3951}, {954, 5284}, {958, 12649}, {960, 10529}, {962, 11684}, {984, 11269}, {1001, 51463}, {1104, 36579}, {1125, 3984}, {1260, 38031}, {1386, 63067}, {1482, 16617}, {1621, 5273}, {1699, 17781}, {1757, 29676}, {1788, 3600}, {1836, 20078}, {2094, 59412}, {2478, 10916}, {2550, 3218}, {2646, 20013}, {2886, 5852}, {3011, 16496}, {3035, 3711}, {3086, 3876}, {3189, 4189}, {3241, 15670}, {3242, 26228}, {3303, 18253}, {3305, 11019}, {3315, 16020}, {3416, 31091}, {3419, 28160}, {3421, 6854}, {3436, 5587}, {3452, 10584}, {3474, 33110}, {3555, 5791}, {3564, 3578}, {3620, 48647}, {3621, 37740}, {3626, 4311}, {3640, 55877}, {3641, 55876}, {3647, 4309}, {3650, 48661}, {3660, 40659}, {3677, 26723}, {3679, 64112}, {3690, 35645}, {3705, 5739}, {3712, 49460}, {3715, 3816}, {3741, 33163}, {3751, 29639}, {3769, 20020}, {3811, 6910}, {3826, 4860}, {3868, 19843}, {3869, 6837}, {3870, 5745}, {3872, 6974}, {3874, 19854}, {3875, 50758}, {3877, 34625}, {3886, 3977}, {3911, 24393}, {3920, 37642}, {3927, 11415}, {3929, 24392}, {3935, 5218}, {3936, 30741}, {3952, 28808}, {3999, 17278}, {4000, 4392}, {4005, 25681}, {4126, 53673}, {4307, 62795}, {4310, 33129}, {4339, 16948}, {4358, 27549}, {4383, 12594}, {4419, 33134}, {4423, 42885}, {4427, 21283}, {4438, 33171}, {4511, 6878}, {4640, 4863}, {4644, 33112}, {4652, 63146}, {4662, 24914}, {4663, 17723}, {4679, 15481}, {4855, 6743}, {4865, 28498}, {4884, 28472}, {4915, 51433}, {5014, 63140}, {5015, 54429}, {5082, 56288}, {5086, 50695}, {5211, 17349}, {5221, 9710}, {5227, 61668}, {5235, 39581}, {5249, 5785}, {5258, 49168}, {5281, 20015}, {5288, 36977}, {5325, 64162}, {5328, 31272}, {5361, 33090}, {5372, 33091}, {5550, 5719}, {5552, 11231}, {5557, 41862}, {5660, 46685}, {5692, 16173}, {5705, 10585}, {5712, 29664}, {5718, 64070}, {5730, 10283}, {5762, 9812}, {5794, 20076}, {5815, 11681}, {5818, 56880}, {5832, 9965}, {5837, 36846}, {5848, 17346}, {5850, 31164}, {5851, 42014}, {5853, 35258}, {5856, 6172}, {5857, 28610}, {5904, 26363}, {6601, 55960}, {6690, 41711}, {6762, 24987}, {6765, 38399}, {6838, 14872}, {6886, 13374}, {6890, 63976}, {6933, 21077}, {6953, 58631}, {6962, 17857}, {6967, 58630}, {7226, 33142}, {7292, 37650}, {7465, 22769}, {7957, 14923}, {7964, 17784}, {8229, 39898}, {9342, 62773}, {9347, 39587}, {9778, 49719}, {10057, 38213}, {10072, 10176}, {10164, 64135}, {10172, 21075}, {10327, 14829}, {10453, 17776}, {10528, 26066}, {10586, 25917}, {10587, 34791}, {10589, 27131}, {10679, 61539}, {10785, 31837}, {11200, 24635}, {11246, 61032}, {11523, 24541}, {11679, 63147}, {12116, 26921}, {12329, 37449}, {12513, 21677}, {12588, 37653}, {12647, 54288}, {12675, 37112}, {12702, 64200}, {13243, 63971}, {13405, 55867}, {14268, 37206}, {14552, 33075}, {14555, 26265}, {14647, 59417}, {15296, 26105}, {16439, 32862}, {16552, 35341}, {16704, 29832}, {17134, 42696}, {17145, 29830}, {17155, 19819}, {17163, 53043}, {17242, 38473}, {17321, 29829}, {17343, 24752}, {17558, 62870}, {17575, 51572}, {17717, 49712}, {17719, 49503}, {17720, 49515}, {17724, 31187}, {17768, 31140}, {17772, 32853}, {17860, 20879}, {19822, 31330}, {19860, 24391}, {20050, 37728}, {20103, 31224}, {20693, 31497}, {21060, 30852}, {21242, 32935}, {21342, 24789}, {24239, 63090}, {24248, 33136}, {24389, 60949}, {24552, 26065}, {24695, 33104}, {24892, 33144}, {26034, 29673}, {26040, 27003}, {26098, 29690}, {26258, 37658}, {29010, 50043}, {29640, 49498}, {29680, 63089}, {29828, 49529}, {29840, 37652}, {29857, 49511}, {30393, 31249}, {30478, 34772}, {30608, 49714}, {31136, 33161}, {31157, 56177}, {31231, 62218}, {31302, 37759}, {32087, 50144}, {32851, 49450}, {32917, 36479}, {33071, 63009}, {33078, 37655}, {33120, 50295}, {33138, 62865}, {33140, 49448}, {33156, 50316}, {35263, 56523}, {36277, 63969}, {36922, 61285}, {37032, 56945}, {37660, 49524}, {37666, 62807}, {38176, 64087}, {40940, 62833}, {41573, 60958}, {43174, 63142}, {46904, 50282}, {46917, 59414}, {47824, 52620}, {49451, 59779}, {49455, 50755}, {49467, 59769}, {49505, 50752}, {52255, 61010}, {52806, 55398}, {52809, 55397}, {53014, 62799}, {53337, 54280}, {57287, 62824}, {60446, 62989}, {60731, 63003}, {61414, 62482}, {62236, 63168}, {62796, 64168}
X(64153) = reflection of X(i) in X(j) for these {i,j}: {5905, 61716}, {10057, 38213}, {61716, 2886}
X(64153) = anticomplement of X(17718)
X(64153) = perspector of circumconic {{A, B, C, X(13136), X(32041)}}
X(64153) = X(i)-Dao conjugate of X(j) for these {i, j}: {17718, 17718}
X(64153) = pole of line {3309, 48182} with respect to the orthoptic circle of the Steiner Inellipse
X(64153) = pole of line {859, 22769} with respect to the Stammler hyperbola
X(64153) = pole of line {3904, 4762} with respect to the Steiner circumellipse
X(64153) = pole of line {51357, 62669} with respect to the Yff parabola
X(64153) = pole of line {7474, 17139} with respect to the Wallace hyperbola
X(64153) = centroid of X(9)-crosspedal-of-X(63)
X(64153) = intersection, other than A, B, C, of circumconics {{A, B, C, X(104), X(1002)}}, {{A, B, C, X(27475), X(34234)}}, {{A, B, C, X(51565), X(60668)}}
X(64153) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4430, 3475}, {2, 4661, 25568}, {2, 5686, 63961}, {2, 64151, 64149}, {8, 5744, 100}, {10, 3338, 37462}, {10, 63135, 56879}, {11, 5220, 31018}, {38, 33137, 19785}, {63, 3434, 44447}, {63, 4847, 3434}, {2886, 5852, 61716}, {3242, 35466, 26228}, {3751, 29639, 63008}, {3927, 24390, 11415}, {4392, 33139, 4000}, {4640, 4863, 20075}, {5178, 62827, 20}, {5223, 5231, 908}, {5273, 36845, 1621}, {5852, 61716, 5905}, {6734, 57279, 3436}, {10916, 41229, 2478}, {16704, 29832, 51192}, {29690, 32912, 26098}, {33108, 62235, 7}, {33114, 46909, 2}, {33129, 62868, 4310}, {33136, 36263, 24248}, {54398, 64081, 3869}
X(64154) lies on these lines: {1, 3939}, {2, 11}, {3, 1633}, {7, 1470}, {8, 42842}, {9, 48}, {10, 34486}, {21, 662}, {36, 527}, {56, 6068}, {59, 518}, {80, 6666}, {119, 6827}, {142, 10090}, {144, 25558}, {145, 42886}, {153, 6992}, {200, 41553}, {210, 41701}, {238, 1818}, {294, 5701}, {329, 12831}, {404, 5880}, {405, 4305}, {411, 25681}, {480, 1317}, {499, 10093}, {516, 1519}, {758, 60989}, {900, 53287}, {943, 1125}, {952, 6883}, {954, 5856}, {956, 50843}, {958, 38669}, {960, 6986}, {971, 48697}, {999, 51099}, {1005, 4679}, {1145, 6600}, {1259, 7288}, {1260, 24477}, {1320, 2346}, {1387, 50204}, {1445, 64139}, {1458, 23693}, {1610, 13732}, {1617, 25568}, {1708, 5083}, {1737, 5853}, {1768, 10857}, {1769, 14414}, {1836, 35977}, {1890, 4231}, {2078, 6745}, {2361, 63068}, {2551, 37725}, {2800, 21153}, {2802, 31393}, {2829, 6987}, {2834, 51419}, {2975, 5220}, {3059, 41541}, {3086, 11517}, {3185, 19649}, {3243, 45391}, {3303, 13996}, {3428, 25606}, {3452, 5660}, {3474, 37309}, {3485, 37282}, {3486, 25875}, {3616, 13279}, {3646, 5248}, {3651, 21616}, {3685, 37788}, {3742, 62800}, {3746, 63990}, {3871, 37828}, {3911, 58328}, {4432, 24410}, {4512, 41166}, {4557, 53302}, {4881, 18450}, {4915, 51767}, {5010, 50836}, {5044, 12738}, {5047, 5794}, {5057, 36003}, {5087, 36002}, {5172, 61035}, {5223, 10074}, {5251, 60986}, {5253, 25557}, {5259, 57284}, {5440, 15733}, {5450, 64197}, {5531, 30393}, {5572, 45395}, {5732, 48695}, {5745, 11219}, {5766, 26357}, {5779, 18515}, {5840, 6826}, {5851, 37106}, {6224, 18230}, {6265, 31658}, {6700, 10902}, {6829, 59391}, {6830, 64008}, {6839, 10724}, {6854, 13199}, {6858, 23513}, {6859, 58421}, {6879, 38149}, {6880, 35514}, {6881, 10738}, {6882, 18524}, {6906, 54370}, {6909, 15726}, {6911, 33814}, {6913, 38159}, {6920, 17647}, {6924, 52682}, {6940, 64113}, {6946, 7704}, {6954, 38760}, {6963, 11491}, {6970, 11248}, {6978, 11499}, {7080, 11510}, {7280, 60905}, {7411, 24703}, {7688, 50908}, {7972, 24393}, {8236, 13278}, {8545, 35262}, {8583, 54430}, {8932, 22390}, {9024, 38048}, {9709, 51525}, {10058, 15015}, {10177, 24929}, {10269, 60940}, {10394, 15297}, {10742, 28459}, {10965, 63133}, {10966, 24558}, {11019, 59614}, {11038, 42885}, {11108, 12019}, {11500, 20400}, {11507, 17567}, {11508, 59591}, {11570, 60974}, {12047, 58461}, {12119, 63970}, {12532, 61024}, {12703, 64136}, {12730, 64141}, {12740, 15837}, {12751, 43175}, {12755, 39778}, {12776, 30144}, {12832, 62775}, {13243, 62777}, {13272, 25466}, {13587, 28534}, {14740, 37736}, {15325, 41555}, {15804, 24465}, {16370, 51636}, {16410, 28629}, {16857, 38102}, {17100, 52653}, {17566, 30312}, {17579, 30311}, {17605, 35990}, {17768, 27086}, {18461, 60419}, {18861, 21151}, {19843, 37726}, {20195, 58453}, {20418, 30478}, {21161, 51090}, {21362, 53298}, {24434, 33761}, {24466, 50701}, {25438, 30331}, {25439, 50841}, {26129, 30332}, {26481, 27529}, {27383, 37579}, {28466, 38602}, {28922, 36741}, {28930, 32932}, {30284, 61012}, {30556, 60886}, {33925, 63168}, {34789, 41853}, {34919, 55966}, {35338, 64013}, {35892, 45394}, {37403, 43178}, {37561, 43177}, {37621, 47742}, {38093, 38207}, {40269, 61026}, {45036, 63983}, {47387, 57278}, {53741, 58037}, {54445, 60997}, {55871, 62815}, {56177, 62873}
X(64154) = midpoint of X(i) and X(j) for these {i,j}: {36, 60885}, {4511, 37787}, {4915, 51767}, {18450, 60935}
X(64154) = reflection of X(i) in X(j) for these {i,j}: {38053, 34123}, {41555, 15325}, {64155, 142}
X(64154) = complement of X(45043)
X(64154) = perspector of circumconic {{A, B, C, X(666), X(31615)}}
X(64154) = pole of line {659, 6366} with respect to the circumcircle
X(64154) = pole of line {518, 1776} with respect to the Feuerbach hyperbola
X(64154) = pole of line {1155, 3286} with respect to the Stammler hyperbola
X(64154) = pole of line {918, 43991} with respect to the Steiner circumellipse
X(64154) = pole of line {918, 43050} with respect to the Steiner inellipse
X(64154) = pole of line {53337, 61239} with respect to the Yff parabola
X(64154) = pole of line {1252, 2284} with respect to the Hutson-Moses hyperbola
X(64154) = pole of line {30806, 30941} with respect to the Wallace hyperbola
X(64154) = pole of line {2323, 3008} with respect to the dual conic of Yff parabola
X(64154) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {100, 934, 53055}, {4915, 51767, 51811}
X(64154) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(56850)}}, {{A, B, C, X(2), X(36819)}}, {{A, B, C, X(7), X(52456)}}, {{A, B, C, X(11), X(518)}}, {{A, B, C, X(59), X(105)}}, {{A, B, C, X(104), X(673)}}, {{A, B, C, X(765), X(14942)}}, {{A, B, C, X(1156), X(13576)}}, {{A, B, C, X(2550), X(14947)}}, {{A, B, C, X(4998), X(60782)}}, {{A, B, C, X(6065), X(28071)}}, {{A, B, C, X(6174), X(43946)}}, {{A, B, C, X(34068), X(56853)}}, {{A, B, C, X(34591), X(51379)}}
X(64154) = barycentric product X(i)*X(j) for these (i, j): {100, 62306}
X(64154) = barycentric quotient X(i)/X(j) for these (i, j): {62306, 693}
X(64154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15507, 1633}, {36, 60885, 527}, {55, 25893, 26105}, {55, 6174, 100}, {100, 5284, 10707}, {214, 51506, 104}, {404, 8543, 5880}, {954, 37249, 60987}, {4511, 37787, 518}, {4679, 34879, 1005}, {4881, 60935, 18450}, {5856, 34123, 38053}, {15254, 59691, 5784}, {24036, 28345, 9}, {24646, 24647, 2550}, {35204, 64012, 10090}, {39778, 60970, 12755}
X(64155) lies on these lines: {1, 528}, {2, 38207}, {7, 80}, {9, 6506}, {11, 57}, {35, 63254}, {36, 516}, {46, 5735}, {56, 52682}, {79, 1156}, {100, 5249}, {104, 15909}, {119, 60937}, {142, 10090}, {144, 6702}, {149, 10580}, {214, 62778}, {226, 5660}, {390, 37525}, {481, 60886}, {484, 38454}, {498, 6594}, {499, 5698}, {515, 60993}, {518, 10057}, {527, 1737}, {942, 38543}, {952, 11529}, {971, 13273}, {1001, 14793}, {1387, 3576}, {1462, 50307}, {1479, 11023}, {1698, 6068}, {1736, 32857}, {1749, 14527}, {1781, 5829}, {1838, 32714}, {2095, 54133}, {2550, 12647}, {2792, 24618}, {2800, 59386}, {2802, 59412}, {3035, 25525}, {3062, 46435}, {3086, 45035}, {3256, 11218}, {3333, 37726}, {3338, 10042}, {3361, 20418}, {3474, 41166}, {3475, 41553}, {3582, 28534}, {3583, 15726}, {3675, 24836}, {3679, 38202}, {3812, 13272}, {3814, 60935}, {4298, 38669}, {4654, 12831}, {4679, 59376}, {5057, 59377}, {5220, 18395}, {5223, 38211}, {5290, 37725}, {5425, 5542}, {5443, 8543}, {5445, 30312}, {5535, 5762}, {5541, 10059}, {5570, 15733}, {5586, 12019}, {5692, 52457}, {5697, 60926}, {5708, 45630}, {5728, 10073}, {5784, 47033}, {5832, 5856}, {5840, 18443}, {5850, 59415}, {5851, 9814}, {5853, 41702}, {5886, 38173}, {5903, 10043}, {6147, 12738}, {6172, 38216}, {6246, 36996}, {6265, 61509}, {6797, 8581}, {6835, 30290}, {7676, 14799}, {7702, 9581}, {7741, 54370}, {7951, 8545}, {8544, 10483}, {10031, 51098}, {10044, 12750}, {10074, 12573}, {10202, 10738}, {10265, 52819}, {10394, 37702}, {10404, 62616}, {10572, 43177}, {10590, 60998}, {10707, 11019}, {10724, 43182}, {10773, 11028}, {10826, 64197}, {10980, 41556}, {11045, 50190}, {11495, 63281}, {12119, 31657}, {12609, 48713}, {12619, 41712}, {12740, 20330}, {12764, 18482}, {13271, 58611}, {13274, 63972}, {15251, 53529}, {15254, 16153}, {15558, 35514}, {16155, 59319}, {16159, 34753}, {16475, 38188}, {17059, 24410}, {17606, 64198}, {18397, 61011}, {18450, 36975}, {18483, 47744}, {19077, 60913}, {19078, 60914}, {21168, 38133}, {21620, 38665}, {24644, 38038}, {24703, 45310}, {25055, 38095}, {25558, 61020}, {26726, 64203}, {26842, 62852}, {30274, 41861}, {30318, 37707}, {31231, 38131}, {31272, 51090}, {31397, 51100}, {32557, 52653}, {34474, 38123}, {36279, 36971}, {37582, 49177}, {37606, 38065}, {37611, 64138}, {37701, 38209}, {37826, 61007}, {38060, 50836}, {38150, 39692}, {38172, 38752}, {38182, 51516}, {39542, 50908}, {41694, 63970}, {43180, 64163}, {44425, 64115}, {52769, 60988}, {59323, 64003}, {60718, 64013}, {60919, 63270}
X(64155) = midpoint of X(i) and X(j) for these {i,j}: {7, 45043}, {4312, 51768}, {14151, 20119}
X(64155) = reflection of X(i) in X(j) for these {i,j}: {1, 38055}, {2, 38207}, {36, 30379}, {80, 45043}, {1699, 38152}, {3576, 38124}, {3679, 38202}, {5223, 38211}, {5886, 38173}, {6172, 38216}, {7972, 14151}, {14151, 5542}, {15228, 30295}, {16475, 38188}, {21168, 38133}, {24644, 38038}, {25055, 38095}, {34474, 38123}, {36975, 18450}, {37701, 38209}, {38752, 38172}, {41700, 1737}, {50836, 38060}, {51516, 38182}, {51768, 11}, {52653, 32557}, {60935, 3814}, {64154, 142}
X(64155) = inverse of X(34789) in Feuerbach hyperbola
X(64155) = pole of line {676, 2826} with respect to the incircle
X(64155) = pole of line {971, 13274} with respect to the Feuerbach hyperbola
X(64155) = pole of line {36038, 48571} with respect to the Steiner circumellipse
X(64155) = pole of line {2254, 2826} with respect to the Suppa-Cucoanes circle
X(64155) = pole of line {527, 651} with respect to the dual conic of Yff parabola
X(64155) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11, 1358, 55370}
X(64155) = intersection, other than A, B, C, of circumconics {{A, B, C, X(36), X(59813)}}, {{A, B, C, X(79), X(38543)}}, {{A, B, C, X(80), X(42064)}}, {{A, B, C, X(3254), X(18815)}}
X(64155) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 45043, 2801}, {11, 24465, 1768}, {11, 57, 11219}, {226, 60782, 5660}, {516, 30295, 15228}, {516, 30379, 36}, {527, 1737, 41700}, {528, 38055, 1}, {2801, 45043, 80}, {5542, 20119, 7972}, {30312, 60912, 5445}, {39144, 39145, 34789}
X(64156) lies on these lines: {3, 9}, {4, 390}, {7, 3149}, {35, 3062}, {40, 480}, {55, 1750}, {56, 10398}, {72, 64150}, {100, 329}, {104, 5825}, {142, 6918}, {144, 411}, {223, 38288}, {226, 5805}, {404, 61009}, {405, 5731}, {474, 21151}, {515, 1001}, {516, 5812}, {517, 47387}, {518, 6261}, {944, 5809}, {999, 5728}, {1012, 36991}, {1071, 1445}, {1259, 60966}, {1617, 1864}, {1728, 12680}, {2183, 63434}, {2371, 28291}, {2550, 6907}, {2801, 22775}, {2947, 34048}, {2951, 10310}, {3059, 17857}, {3174, 64116}, {3243, 54159}, {3428, 5223}, {3487, 20330}, {3560, 60901}, {3651, 21168}, {3746, 24644}, {4304, 31672}, {4312, 37541}, {5177, 38149}, {5220, 18237}, {5542, 22753}, {5687, 35514}, {5715, 18482}, {5729, 18450}, {5762, 6985}, {5766, 11491}, {5787, 11108}, {5843, 60950}, {5851, 64188}, {5927, 13615}, {6223, 37426}, {6245, 6666}, {6256, 42843}, {6259, 64004}, {6767, 7966}, {6796, 11495}, {6831, 60943}, {6883, 61511}, {6905, 12848}, {6908, 9709}, {6911, 31657}, {6915, 62778}, {6927, 8732}, {7070, 54414}, {7675, 33597}, {8158, 11523}, {8273, 10864}, {9799, 18230}, {9845, 51773}, {9942, 60974}, {9948, 38130}, {9960, 61024}, {10382, 63972}, {10392, 30283}, {10394, 37302}, {10445, 37502}, {10679, 52835}, {10884, 16410}, {11220, 37309}, {11227, 16411}, {11344, 60969}, {11496, 63973}, {11509, 31391}, {12114, 52769}, {12528, 60970}, {12608, 42885}, {12650, 38316}, {12667, 31789}, {12669, 37787}, {12688, 15837}, {15298, 63988}, {15804, 63995}, {15931, 30326}, {16202, 59389}, {16408, 38122}, {16417, 60972}, {16853, 38318}, {18397, 41712}, {20846, 61025}, {25440, 43182}, {25525, 61595}, {26357, 60909}, {31822, 37622}, {34032, 61227}, {35262, 37244}, {37251, 59380}, {37282, 61012}, {37301, 61026}, {37579, 60910}, {37623, 60990}, {38107, 60991}, {38150, 63966}, {40257, 42871}, {42356, 48482}, {51090, 59687}, {54203, 64171}, {55432, 63395}, {60922, 61011}
X(64156) = midpoint of X(i) and X(j) for these {i,j}: {9, 1490}, {12667, 43161}
X(64156) = reflection of X(i) in X(j) for these {i,j}: {3174, 64116}, {3358, 31658}, {6245, 6666}, {10306, 6600}, {11495, 6796}, {12114, 52769}, {42871, 40257}, {48482, 42356}, {60990, 37623}
X(64156) = pole of line {6362, 59935} with respect to the polar circle
X(64156) = pole of line {10398, 30223} with respect to the Feuerbach hyperbola
X(64156) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(268), X(2346)}}, {{A, B, C, X(329), X(971)}}, {{A, B, C, X(972), X(1436)}}, {{A, B, C, X(7367), X(44861)}}, {{A, B, C, X(52389), X(60229)}}
X(64156) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 1490, 971}, {9, 5732, 51489}, {516, 6600, 10306}, {971, 31658, 3358}, {1001, 63970, 6913}, {1260, 7580, 6244}, {6260, 11500, 37411}
X(64157) lies on these lines: {1, 210}, {2, 955}, {3, 10382}, {4, 10429}, {5, 226}, {6, 20310}, {7, 5927}, {9, 46675}, {11, 5173}, {20, 9844}, {33, 52424}, {55, 15299}, {57, 971}, {63, 5729}, {65, 1699}, {72, 938}, {145, 20789}, {165, 14100}, {200, 58650}, {218, 28070}, {273, 56299}, {354, 5219}, {388, 9947}, {389, 5908}, {474, 9858}, {497, 517}, {499, 16193}, {518, 3452}, {950, 31793}, {954, 3305}, {960, 6738}, {999, 5720}, {1001, 58648}, {1056, 18908}, {1071, 5658}, {1125, 58699}, {1155, 41853}, {1202, 3119}, {1212, 8958}, {1260, 1998}, {1376, 8257}, {1400, 44424}, {1445, 7580}, {1466, 34862}, {1538, 64127}, {1708, 51489}, {1709, 60910}, {1728, 31445}, {1736, 3666}, {1737, 3925}, {1743, 22117}, {1788, 12711}, {1836, 18482}, {1871, 3176}, {1876, 37372}, {1898, 5221}, {2000, 10601}, {2257, 38288}, {2801, 63994}, {3057, 15104}, {3059, 8580}, {3085, 16201}, {3086, 3475}, {3295, 58643}, {3304, 12128}, {3333, 14872}, {3339, 12688}, {3361, 12680}, {3488, 64107}, {3555, 14986}, {3634, 12564}, {3660, 17728}, {3678, 6744}, {3681, 10580}, {3715, 15298}, {3740, 5572}, {3742, 58463}, {3752, 62811}, {3811, 58649}, {3812, 18251}, {3817, 30329}, {3868, 6919}, {3870, 42884}, {3873, 5748}, {3911, 10391}, {3983, 51784}, {4187, 14054}, {4314, 58637}, {4640, 60994}, {4848, 31798}, {4863, 10573}, {5020, 59681}, {5049, 5719}, {5218, 15008}, {5222, 63965}, {5274, 7672}, {5281, 7671}, {5435, 10167}, {5437, 5784}, {5439, 5704}, {5440, 62873}, {5480, 21621}, {5542, 15064}, {5703, 12537}, {5708, 40263}, {5727, 64106}, {5732, 33995}, {5761, 11373}, {5763, 12053}, {5780, 7373}, {5804, 12672}, {5844, 9957}, {5918, 53056}, {5943, 29957}, {6001, 7682}, {6354, 53599}, {6684, 12710}, {6825, 9940}, {6849, 57282}, {6866, 31794}, {6883, 24929}, {6985, 37582}, {7675, 62776}, {7991, 9848}, {7994, 10384}, {8581, 10980}, {9817, 37543}, {10156, 17603}, {10171, 58626}, {10241, 64130}, {10389, 58688}, {10399, 41867}, {10578, 63961}, {10866, 11531}, {11220, 64142}, {11496, 58660}, {12005, 32159}, {12675, 64124}, {12709, 31821}, {13369, 34753}, {13411, 50205}, {13601, 64042}, {15185, 18236}, {15252, 40940}, {15254, 58651}, {15803, 31805}, {17441, 51413}, {17612, 62773}, {17616, 27003}, {17625, 58577}, {17658, 36845}, {17706, 20117}, {17718, 38318}, {17810, 21370}, {18240, 45310}, {18397, 31142}, {18838, 61722}, {21620, 58631}, {24928, 37700}, {27065, 62800}, {30223, 37541}, {30282, 33575}, {30326, 60937}, {30628, 64083}, {30946, 44735}, {31786, 37730}, {33994, 40269}, {37581, 64121}, {37583, 40262}, {39779, 59388}, {40962, 63511}, {40963, 58472}, {41338, 41712}, {41561, 60992}, {41562, 64132}, {41861, 61686}, {46974, 64166}, {50192, 56762}, {51361, 55086}, {54462, 58897}, {63976, 63999}
X(64157) = midpoint of X(i) and X(j) for these {i,j}: {57, 1864}, {497, 41539}, {5727, 64106}, {17658, 36845}, {61660, 61718}
X(64157) = reflection of X(i) in X(j) for these {i,j}: {200, 58650}, {3940, 5044}, {12915, 11019}, {17625, 58577}, {21060, 18227}, {64130, 10241}
X(64157) = perspector of circumconic {{A, B, C, X(4606), X(46964)}}
X(64157) = X(i)-complementary conjugate of X(j) for these {i, j}: {25, 52818}, {1170, 18589}, {1435, 45226}, {1803, 6389}, {2346, 34823}, {10482, 42018}, {10509, 18639}, {21453, 1368}, {53243, 20315}, {58322, 123}, {61373, 34822}
X(64157) = pole of line {1697, 5252} with respect to the Feuerbach hyperbola
X(64157) = pole of line {17924, 47965} with respect to the Steiner inellipse
X(64157) = pole of line {650, 663} with respect to the dual conic of DeLongchamps circle
X(64157) = intersection, other than A, B, C, of circumconics {{A, B, C, X(955), X(2334)}}, {{A, B, C, X(4866), X(57719)}}
X(64157) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5728, 11018}, {11, 61663, 5173}, {57, 1864, 971}, {57, 61718, 1864}, {65, 17604, 1699}, {65, 64131, 9856}, {65, 9581, 5806}, {210, 7308, 5044}, {497, 41539, 517}, {518, 11019, 12915}, {518, 18227, 21060}, {942, 10157, 226}, {1210, 44547, 942}, {1788, 12711, 31787}, {1864, 61660, 57}, {3555, 14986, 16215}, {3740, 5572, 13405}, {3911, 10391, 11227}, {5435, 10167, 11575}, {5435, 10394, 10167}, {5437, 5784, 10855}, {5704, 62864, 5439}, {12433, 31837, 9957}, {15185, 18236, 25568}
X(64158) lies on these lines: {1, 30}, {2, 49734}, {3, 37634}, {4, 5718}, {6, 6872}, {8, 4918}, {10, 3712}, {11, 15973}, {12, 37573}, {20, 940}, {21, 1834}, {35, 37715}, {37, 57287}, {42, 57288}, {46, 48915}, {55, 9840}, {56, 15447}, {58, 57002}, {81, 15680}, {141, 17676}, {145, 524}, {171, 15338}, {230, 23903}, {306, 50050}, {386, 11113}, {387, 11111}, {390, 28369}, {405, 48837}, {442, 4653}, {452, 4383}, {497, 15971}, {511, 3057}, {515, 37548}, {528, 10459}, {538, 49466}, {540, 3244}, {543, 50235}, {546, 37693}, {550, 37522}, {613, 48922}, {758, 63415}, {846, 21677}, {855, 4267}, {938, 17595}, {950, 3666}, {968, 5794}, {980, 49131}, {1043, 1211}, {1125, 50169}, {1155, 48919}, {1201, 49736}, {1319, 48893}, {1479, 46704}, {1503, 1854}, {1616, 28368}, {1697, 48883}, {1714, 16418}, {1724, 48847}, {1764, 31782}, {1837, 17594}, {2098, 48909}, {2177, 12607}, {2292, 44669}, {2303, 31293}, {2475, 17056}, {2478, 4255}, {2646, 24210}, {2650, 17768}, {2886, 10448}, {3017, 17525}, {3120, 11281}, {3146, 5712}, {3152, 18635}, {3419, 62871}, {3476, 48923}, {3488, 37549}, {3529, 4340}, {3560, 5721}, {3564, 37740}, {3578, 3621}, {3589, 11319}, {3601, 17720}, {3616, 50171}, {3617, 49730}, {3622, 50172}, {3623, 42045}, {3626, 49729}, {3632, 49718}, {3636, 50226}, {3670, 12433}, {3743, 63360}, {3744, 4314}, {3750, 15888}, {3772, 62829}, {3912, 50167}, {3931, 5724}, {3945, 5059}, {3999, 6744}, {4026, 54331}, {4187, 4256}, {4189, 37646}, {4190, 37674}, {4265, 35998}, {4294, 5710}, {4298, 4883}, {4302, 5711}, {4304, 37539}, {4313, 48890}, {4324, 37559}, {4346, 15936}, {4415, 34772}, {4424, 37730}, {4513, 15984}, {4648, 37435}, {4656, 12437}, {4720, 26064}, {4884, 36500}, {4933, 21712}, {4995, 50421}, {5046, 37662}, {5119, 48882}, {5132, 13724}, {5217, 14636}, {5218, 50420}, {5248, 64172}, {5252, 48937}, {5255, 63273}, {5292, 16370}, {5347, 37399}, {5396, 37290}, {5432, 37574}, {5436, 24789}, {5691, 37553}, {5706, 6868}, {5716, 20182}, {5835, 32929}, {6003, 14284}, {6051, 17647}, {6097, 14793}, {6175, 24936}, {6658, 20132}, {6675, 24902}, {6690, 21935}, {6703, 11115}, {6707, 17589}, {6936, 36745}, {6938, 36746}, {6987, 37537}, {8359, 29438}, {8572, 10586}, {9534, 48814}, {9612, 17775}, {10039, 48887}, {10106, 63977}, {10385, 50422}, {10386, 37610}, {10449, 37038}, {10589, 50417}, {10950, 24430}, {11010, 48924}, {11112, 48841}, {11114, 19767}, {11238, 50415}, {11346, 48845}, {11520, 17276}, {11827, 37529}, {11997, 41600}, {12575, 50627}, {12625, 62818}, {12953, 26098}, {13161, 17724}, {13411, 37691}, {13728, 48863}, {13736, 19732}, {13743, 63318}, {14450, 63333}, {15048, 16783}, {15326, 37607}, {15670, 24880}, {15672, 24898}, {15676, 31204}, {15677, 16948}, {16052, 25645}, {16617, 45926}, {16859, 17337}, {17023, 50168}, {17164, 28530}, {17246, 63394}, {17261, 44728}, {17316, 50166}, {17576, 37642}, {17579, 48846}, {17588, 62689}, {17677, 25650}, {17751, 44419}, {17757, 33771}, {18165, 58889}, {19312, 23947}, {19684, 50322}, {19701, 50408}, {19722, 19783}, {19758, 36474}, {19766, 48817}, {20014, 50277}, {20050, 50215}, {20057, 50234}, {20834, 40980}, {21031, 60714}, {23536, 51715}, {23675, 42819}, {24512, 63548}, {24928, 48926}, {25988, 36797}, {26626, 50170}, {30305, 48941}, {30384, 48931}, {31156, 48842}, {31789, 63982}, {31792, 49557}, {31880, 33961}, {32479, 50262}, {32819, 37632}, {33100, 34195}, {34231, 46468}, {34606, 50581}, {34612, 59311}, {35016, 36250}, {35203, 37568}, {36479, 50156}, {37162, 51415}, {37256, 37633}, {37298, 45939}, {37617, 37722}, {38357, 45230}, {38814, 52360}, {40688, 54392}, {41002, 59303}, {43531, 50391}, {44307, 57284}, {46467, 56814}, {48859, 50321}, {49762, 50220}, {49770, 50270}, {50038, 56009}, {50260, 52229}, {50745, 63271}, {57285, 60682}, {62804, 63359}, {63354, 63376}
X(64158) = reflection of X(i) in X(j) for these {i,j}: {8, 49728}, {3632, 49718}, {37631, 49739}, {49557, 31792}, {49724, 49735}, {49745, 1}, {63360, 3743}
X(64158) = anticomplement of X(49734)
X(64158) = X(i)-Dao conjugate of X(j) for these {i, j}: {49734, 49734}
X(64158) = pole of line {523, 4833} with respect to the incircle
X(64158) = pole of line {942, 24239} with respect to the Feuerbach hyperbola
X(64158) = pole of line {391, 6871} with respect to the Kiepert hyperbola
X(64158) = pole of line {523, 48337} with respect to the Suppa-Cucoanes circle
X(64158) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6740), X(49745)}}, {{A, B, C, X(50811), X(54613)}}
X(64158) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 24851, 3649}, {1, 30, 49745}, {1, 49745, 37631}, {1, 50065, 3782}, {1, 6284, 63979}, {4, 19765, 5718}, {8, 49728, 49724}, {8, 49735, 49728}, {21, 1834, 35466}, {56, 37425, 15447}, {81, 15680, 64159}, {1043, 26117, 1211}, {2478, 4255, 37663}, {3486, 64168, 37614}, {3632, 49723, 49718}, {3931, 10572, 5724}, {4854, 10543, 1}, {13161, 37080, 17724}, {48847, 50241, 1724}, {57002, 64167, 58}
X(64159) lies on these lines: {1, 3255}, {3, 37662}, {4, 4252}, {5, 4257}, {6, 20}, {10, 59574}, {21, 17056}, {30, 58}, {31, 7354}, {32, 49131}, {42, 15338}, {44, 57284}, {56, 855}, {81, 15680}, {141, 4195}, {171, 57288}, {172, 17747}, {191, 63360}, {230, 7379}, {325, 59538}, {333, 49734}, {376, 4255}, {382, 5292}, {386, 550}, {387, 3529}, {388, 3052}, {404, 51415}, {405, 17245}, {442, 24902}, {443, 17337}, {452, 37674}, {524, 1043}, {529, 5255}, {540, 41014}, {546, 45939}, {548, 4256}, {580, 31775}, {582, 28458}, {594, 50054}, {595, 18990}, {601, 11827}, {896, 21677}, {902, 15888}, {940, 6872}, {961, 1633}, {1010, 1213}, {1012, 54431}, {1030, 37402}, {1046, 44669}, {1064, 30264}, {1086, 1104}, {1150, 50322}, {1191, 4293}, {1193, 15326}, {1203, 4316}, {1211, 11115}, {1220, 44419}, {1279, 4298}, {1329, 37603}, {1330, 4234}, {1333, 1901}, {1399, 51421}, {1430, 1852}, {1453, 17366}, {1468, 6284}, {1616, 3600}, {1657, 48837}, {1707, 5794}, {1714, 50239}, {1724, 11112}, {1990, 44698}, {2163, 37720}, {2238, 56984}, {2245, 48883}, {2475, 16948}, {2646, 41011}, {2650, 10543}, {2829, 3072}, {2975, 63979}, {3053, 36706}, {3146, 37642}, {3178, 59592}, {3189, 64070}, {3242, 4339}, {3286, 9840}, {3436, 37540}, {3522, 63089}, {3534, 48870}, {3550, 12607}, {3589, 4201}, {3629, 20018}, {3704, 24850}, {3756, 32636}, {3763, 56986}, {3772, 9579}, {3782, 62802}, {3816, 37608}, {3915, 5434}, {3924, 11246}, {3936, 17539}, {3943, 7283}, {4188, 37663}, {4189, 5718}, {4190, 4383}, {4221, 54371}, {4225, 15447}, {4229, 18755}, {4253, 18907}, {4265, 37399}, {4267, 37425}, {4278, 48930}, {4299, 16466}, {4304, 7277}, {4313, 4644}, {4314, 49478}, {4315, 45219}, {4317, 16483}, {4325, 5315}, {4330, 16474}, {4340, 11111}, {4415, 37539}, {4427, 4918}, {4641, 57287}, {4646, 31730}, {4648, 11106}, {4653, 49743}, {4675, 5436}, {4957, 56875}, {5021, 7737}, {5046, 37634}, {5059, 37666}, {5096, 37328}, {5129, 37682}, {5177, 31187}, {5224, 51674}, {5230, 12943}, {5241, 19284}, {5277, 38930}, {5303, 33107}, {5323, 28029}, {5347, 35998}, {5429, 24851}, {5706, 6938}, {5712, 17576}, {5724, 56288}, {5737, 50408}, {5793, 63140}, {6693, 16052}, {6703, 26117}, {6748, 7513}, {6781, 20970}, {6868, 36746}, {6904, 37679}, {6948, 36745}, {6987, 37501}, {7263, 19851}, {7270, 44416}, {7745, 13727}, {9711, 56010}, {10026, 11104}, {10479, 50391}, {10483, 64172}, {10544, 20718}, {11001, 48842}, {11036, 62223}, {11113, 37522}, {11269, 12953}, {11281, 33097}, {12625, 62820}, {12635, 24695}, {13408, 13743}, {13725, 17398}, {13736, 15668}, {13745, 25526}, {15676, 63344}, {15677, 37631}, {15678, 49739}, {15681, 48857}, {15704, 48847}, {15852, 63438}, {15955, 28174}, {16696, 50622}, {17034, 19687}, {17234, 56989}, {17262, 20009}, {17313, 51606}, {17330, 51668}, {17340, 54433}, {17525, 49744}, {17563, 17749}, {17698, 48835}, {17778, 52352}, {18191, 58889}, {18541, 24159}, {19262, 19759}, {19312, 59625}, {19710, 48861}, {20067, 62804}, {20076, 37542}, {20131, 33059}, {20135, 33040}, {20154, 33058}, {20156, 33039}, {21024, 50164}, {21077, 37589}, {21358, 51675}, {21871, 35669}, {23537, 64166}, {24470, 30117}, {24565, 26958}, {24597, 31295}, {24632, 50168}, {25466, 54354}, {26051, 62689}, {26064, 51669}, {28082, 52783}, {28453, 63323}, {31789, 37469}, {31880, 63332}, {32911, 37256}, {33100, 63280}, {34620, 50303}, {34791, 53534}, {35016, 63366}, {37267, 63126}, {37298, 37693}, {37307, 37651}, {37331, 54300}, {37614, 44447}, {37650, 56999}, {37722, 54310}, {37817, 57282}, {44238, 48897}, {48866, 56734}, {48881, 50591}, {48892, 50595}, {48906, 50600}, {48939, 53425}, {50061, 54429}, {50065, 62809}, {50738, 63054}, {62843, 63386}, {63292, 63997}
X(64159) = midpoint of X(i) and X(j) for these {i,j}: {1043, 20077}
X(64159) = reflection of X(i) in X(j) for these {i,j}: {1834, 58}, {3704, 24850}, {63997, 63292}
X(64159) = pole of line {3091, 32431} with respect to the Kiepert hyperbola
X(64159) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 4252, 37646}, {21, 49745, 17056}, {30, 58, 1834}, {58, 1834, 61661}, {81, 15680, 64158}, {1010, 49728, 1213}, {1043, 20077, 524}, {2475, 16948, 35466}, {37539, 64002, 4415}
X(64160) lies on these lines: {1, 4}, {2, 3340}, {5, 50194}, {7, 1420}, {8, 5219}, {10, 2099}, {11, 6738}, {12, 519}, {20, 13384}, {21, 41551}, {35, 28194}, {46, 10165}, {55, 4301}, {56, 551}, {57, 3616}, {65, 392}, {79, 21578}, {109, 37607}, {140, 50193}, {142, 19861}, {145, 5226}, {181, 28389}, {238, 55101}, {354, 12563}, {377, 56387}, {381, 37739}, {404, 3256}, {495, 10222}, {496, 15844}, {498, 11362}, {516, 2646}, {517, 13411}, {527, 2975}, {595, 54339}, {631, 2093}, {908, 5795}, {936, 46916}, {938, 50443}, {940, 34040}, {942, 5901}, {945, 54972}, {958, 34647}, {960, 5173}, {962, 3601}, {993, 26437}, {999, 61276}, {1001, 52819}, {1012, 54198}, {1191, 37543}, {1201, 30097}, {1210, 5886}, {1279, 41003}, {1284, 10475}, {1319, 3636}, {1323, 4059}, {1385, 4292}, {1387, 2771}, {1388, 4315}, {1389, 1512}, {1393, 4424}, {1421, 5262}, {1465, 37548}, {1476, 3255}, {1482, 11374}, {1621, 37583}, {1697, 5703}, {1706, 27383}, {1708, 31435}, {1737, 5443}, {1770, 37525}, {1788, 3624}, {1836, 4297}, {1837, 3817}, {1858, 62852}, {2078, 57283}, {2098, 17718}, {2136, 63168}, {2171, 5750}, {2325, 25253}, {2362, 13971}, {2800, 13750}, {2886, 6737}, {3035, 10107}, {3057, 13405}, {3085, 7982}, {3086, 9624}, {3090, 11041}, {3091, 5727}, {3241, 5261}, {3243, 8232}, {3244, 3947}, {3295, 3656}, {3303, 4342}, {3304, 5542}, {3333, 61275}, {3339, 7288}, {3361, 4031}, {3428, 54430}, {3434, 12437}, {3452, 19860}, {3474, 7987}, {3523, 5128}, {3576, 4295}, {3577, 6848}, {3584, 11280}, {3600, 4654}, {3612, 31730}, {3633, 5726}, {3634, 40663}, {3635, 10944}, {3655, 9655}, {3664, 41007}, {3665, 58816}, {3674, 55082}, {3676, 44315}, {3679, 10588}, {3698, 20103}, {3702, 6358}, {3720, 37558}, {3741, 10474}, {3753, 6700}, {3812, 13601}, {3854, 7319}, {3869, 5745}, {3870, 21627}, {3874, 64041}, {3897, 64002}, {3919, 58405}, {3925, 12447}, {3984, 11526}, {4004, 13747}, {4032, 15569}, {4114, 13462}, {4294, 31162}, {4299, 51705}, {4304, 12699}, {4305, 41869}, {4311, 10246}, {4312, 30389}, {4313, 9580}, {4314, 12701}, {4355, 51105}, {4511, 57284}, {4666, 34489}, {4847, 12635}, {4853, 25568}, {4930, 31493}, {4955, 7181}, {4999, 44663}, {5048, 15888}, {5057, 51683}, {5126, 24470}, {5183, 52793}, {5217, 5493}, {5218, 7991}, {5221, 15808}, {5274, 37723}, {5289, 28628}, {5298, 51108}, {5323, 28619}, {5425, 17706}, {5432, 43174}, {5434, 51103}, {5435, 46934}, {5550, 31231}, {5554, 30852}, {5558, 7285}, {5563, 11551}, {5665, 54366}, {5697, 63259}, {5698, 61021}, {5719, 9957}, {5722, 18493}, {5731, 9579}, {5734, 7962}, {5797, 37693}, {5836, 6745}, {5853, 21617}, {5881, 10590}, {5887, 18389}, {5902, 64124}, {5903, 6684}, {6001, 16193}, {6051, 16577}, {6147, 10283}, {6361, 30282}, {6666, 7672}, {6705, 30274}, {6734, 62830}, {6744, 37722}, {6847, 7971}, {6863, 15865}, {6935, 54156}, {6940, 59329}, {7176, 25723}, {7280, 50828}, {7373, 26321}, {7677, 60945}, {7743, 12433}, {7988, 54361}, {8227, 18391}, {8545, 62832}, {8582, 25681}, {8583, 28629}, {8666, 18967}, {8983, 16232}, {9436, 17084}, {9589, 53054}, {9654, 37727}, {9776, 24558}, {9785, 10389}, {9856, 10391}, {9955, 37730}, {10039, 11009}, {10056, 30323}, {10164, 37567}, {10167, 17634}, {10171, 17606}, {10172, 18395}, {10175, 10573}, {10176, 41538}, {10386, 10624}, {10392, 38037}, {10527, 24391}, {10528, 12640}, {10529, 11520}, {10578, 37556}, {10580, 18220}, {10591, 38021}, {10827, 47745}, {10895, 37740}, {10896, 37724}, {10914, 59722}, {10916, 62822}, {10950, 17605}, {10954, 63964}, {10956, 64137}, {11019, 11376}, {11028, 11728}, {11036, 62836}, {11038, 34497}, {11224, 51784}, {11237, 37738}, {11240, 62861}, {11246, 37605}, {11281, 58679}, {11373, 15934}, {11501, 25439}, {11518, 14986}, {11523, 64081}, {11544, 31776}, {11680, 41575}, {11724, 24472}, {11725, 59815}, {11726, 59813}, {11727, 12016}, {11729, 12736}, {11734, 59816}, {11735, 59817}, {12245, 31434}, {12436, 17614}, {12512, 37600}, {12526, 30478}, {12559, 45700}, {12560, 38053}, {12572, 51409}, {12573, 16888}, {12575, 37080}, {12577, 20323}, {12588, 49684}, {12609, 30144}, {12649, 24386}, {12739, 21630}, {12832, 32557}, {13273, 33337}, {13902, 51841}, {13959, 51842}, {13975, 38235}, {14563, 23708}, {15174, 31795}, {15178, 18990}, {15325, 31794}, {15368, 49745}, {15558, 64192}, {15717, 63207}, {16609, 19868}, {16818, 28777}, {16865, 41572}, {17097, 24987}, {17397, 62774}, {17451, 40869}, {17609, 17625}, {17700, 40256}, {18249, 24953}, {18480, 37728}, {18838, 58565}, {18976, 33812}, {19862, 24914}, {20070, 35445}, {20076, 31164}, {20118, 33709}, {20616, 25092}, {21616, 30147}, {21746, 63603}, {22759, 62825}, {22836, 63146}, {24387, 26481}, {25405, 61278}, {25466, 64127}, {25524, 37541}, {25557, 60993}, {25917, 41539}, {26015, 34195}, {26127, 41012}, {26364, 44848}, {27385, 63990}, {28228, 37568}, {28236, 37734}, {28385, 62739}, {30312, 60999}, {30318, 61027}, {31391, 43176}, {31410, 61288}, {31792, 63282}, {31937, 41562}, {32086, 47444}, {34625, 41863}, {37228, 61002}, {37236, 51687}, {37267, 45036}, {37582, 38028}, {37711, 50796}, {37731, 63210}, {38059, 41712}, {40719, 52563}, {41348, 64108}, {43040, 49768}, {44307, 45890}, {45776, 50195}, {49627, 62860}, {50398, 60947}, {50603, 50626}, {50808, 63756}, {54286, 59587}, {59491, 64047}, {59584, 63130}
X(64160) = midpoint of X(i) and X(j) for these {i,j}: {1, 12047}, {12, 11011}, {6734, 62830}, {10039, 11009}
X(64160) = reflection of X(i) in X(j) for these {i,j}: {13411, 37737}, {13750, 58566}
X(64160) = inverse of X(38945) in the incircle
X(64160) = perspector of circumconic {{A, B, C, X(653), X(46480)}}
X(64160) = X(i)-Dao conjugate of X(j) for these {i, j}: {63978, 5745}
X(64160) = pole of line {522, 17950} with respect to the incircle
X(64160) = pole of line {65, 4297} with respect to the Feuerbach hyperbola
X(64160) = pole of line {14837, 48321} with respect to the Steiner inellipse
X(64160) = pole of line {332, 4923} with respect to the Wallace hyperbola
X(64160) = pole of line {57, 4888} with respect to the dual conic of Yff parabola
X(64160) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(17588)}}, {{A, B, C, X(225), X(35576)}}, {{A, B, C, X(581), X(945)}}, {{A, B, C, X(944), X(54972)}}, {{A, B, C, X(1065), X(5882)}}, {{A, B, C, X(10106), X(60041)}}
X(64160) = barycentric product X(i)*X(j) for these (i, j): {7, 63978}, {17588, 226}
X(64160) = barycentric quotient X(i)/X(j) for these (i, j): {17588, 333}, {63978, 8}
X(64160) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11522, 497}, {1, 12047, 515}, {1, 1478, 5882}, {1, 1699, 3486}, {1, 18393, 10572}, {1, 226, 10106}, {1, 3485, 226}, {1, 5290, 3476}, {1, 5603, 12053}, {1, 946, 950}, {1, 9612, 944}, {1, 9613, 7967}, {1, 9614, 3488}, {2, 11682, 5837}, {2, 3340, 4848}, {2, 4323, 3340}, {5, 50194, 64163}, {7, 3622, 1420}, {12, 11011, 519}, {56, 3671, 553}, {65, 1125, 3911}, {65, 15950, 1125}, {79, 24926, 21578}, {145, 5226, 9578}, {498, 25415, 11362}, {517, 37737, 13411}, {551, 3671, 56}, {942, 5901, 44675}, {960, 5173, 15556}, {1319, 3649, 4298}, {1385, 39542, 4292}, {1387, 16137, 5045}, {1388, 10404, 4315}, {1482, 11374, 31397}, {1836, 34471, 4297}, {2099, 11375, 10}, {2800, 58566, 13750}, {3241, 5261, 37709}, {3244, 3947, 5252}, {3339, 25055, 7288}, {3487, 10595, 1}, {3600, 38314, 63208}, {3624, 18421, 1788}, {3636, 4298, 1319}, {3649, 4298, 3982}, {3869, 24541, 5745}, {4654, 63208, 3600}, {4870, 11011, 12}, {5714, 7967, 9613}, {6147, 10283, 24928}, {10039, 11009, 28234}, {10246, 57282, 4311}, {10572, 18393, 18483}, {10950, 17605, 19925}, {11009, 37701, 10039}, {11526, 60943, 24393}, {12560, 38053, 60992}, {20616, 43039, 25092}, {22791, 24929, 10624}, {24470, 51700, 5126}, {24953, 31165, 18249}, {37722, 44840, 6744}
X(64161) lies on circumconic {{A, B, C, X(27483), X(39706)}} and on these lines: {1, 17495}, {2, 740}, {6, 4427}, {8, 4868}, {31, 45222}, {38, 20011}, {42, 726}, {43, 3995}, {55, 17150}, {75, 29822}, {100, 4360}, {145, 986}, {192, 872}, {244, 49471}, {321, 28484}, {386, 25253}, {404, 41813}, {514, 38349}, {519, 46901}, {536, 46897}, {750, 50281}, {846, 19742}, {896, 49489}, {899, 3993}, {902, 49477}, {984, 19998}, {1150, 17162}, {2177, 20045}, {2321, 26251}, {2796, 61707}, {2802, 3241}, {2901, 26030}, {3006, 3755}, {3187, 17594}, {3210, 17018}, {3216, 4065}, {3244, 17449}, {3616, 6533}, {3666, 3896}, {3685, 17012}, {3722, 49472}, {3750, 32924}, {3759, 62838}, {3821, 4062}, {3875, 26227}, {3946, 26230}, {3980, 8025}, {3989, 4685}, {4000, 29830}, {4003, 49475}, {4028, 17184}, {4085, 31079}, {4353, 50744}, {4358, 49462}, {4359, 37593}, {4365, 6685}, {4393, 4781}, {4414, 16704}, {4418, 19717}, {4442, 5718}, {4649, 32845}, {4651, 28606}, {4655, 63071}, {4664, 62296}, {4689, 4852}, {4693, 32944}, {4704, 9330}, {4706, 15569}, {4709, 30970}, {4716, 32917}, {4743, 33136}, {4780, 29639}, {4850, 29824}, {4854, 5741}, {4937, 51059}, {4946, 49520}, {4991, 21747}, {5108, 62644}, {5256, 32929}, {5297, 17319}, {5312, 56318}, {6155, 26035}, {6542, 33086}, {6758, 25241}, {7226, 20012}, {8620, 20691}, {9347, 17393}, {9791, 37656}, {11246, 42045}, {14459, 33082}, {16062, 27558}, {16347, 27368}, {16834, 35258}, {17011, 32932}, {17146, 49478}, {17154, 49490}, {17155, 42042}, {17164, 19767}, {17243, 24988}, {17301, 33122}, {17302, 33175}, {17318, 17780}, {17366, 24542}, {17490, 29814}, {17491, 24248}, {17593, 32919}, {17596, 37639}, {17600, 32945}, {17718, 50102}, {17740, 29829}, {17778, 33102}, {17861, 63168}, {18133, 61174}, {19740, 24342}, {19804, 62840}, {20017, 26034}, {20040, 37598}, {20290, 32950}, {21282, 33070}, {21805, 49456}, {21806, 24325}, {21870, 49523}, {24725, 44006}, {25568, 50071}, {26115, 64184}, {26250, 32928}, {28516, 31161}, {28526, 61652}, {28599, 33088}, {28605, 59297}, {28611, 58380}, {29584, 31348}, {29823, 32941}, {29839, 33150}, {30564, 50018}, {30665, 47776}, {30818, 49461}, {30942, 49469}, {30964, 53363}, {31025, 49474}, {31037, 32776}, {31179, 53372}, {32925, 42043}, {32931, 49452}, {32934, 61358}, {33100, 62998}, {33112, 62392}, {33161, 50287}, {33296, 56431}, {35263, 50114}, {36263, 49497}, {38047, 50105}, {48630, 52786}, {49510, 49983}, {49987, 63977}, {50101, 53381}, {56520, 59547}
X(64161) = midpoint of X(i) and X(j) for these {i,j}: {3896, 46909}
X(64161) = reflection of X(i) in X(j) for these {i,j}: {2, 46904}, {17135, 46909}, {46909, 3666}
X(64161) = pole of line {3768, 28840} with respect to the Steiner circumellipse
X(64161) = pole of line {24603, 26580} with respect to the dual conic of Yff parabola
X(64161) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42, 17147, 17165}, {42, 4970, 17147}, {145, 4392, 17145}, {192, 3240, 3952}, {899, 3993, 31035}, {1150, 49486, 17162}, {2177, 32921, 20045}, {3210, 17018, 17140}, {3666, 28581, 46909}, {3821, 4062, 31017}, {3896, 46909, 28581}, {4085, 32848, 31079}, {4414, 49488, 16704}, {4706, 15569, 24589}, {17592, 32860, 2}, {24248, 31034, 17491}, {32931, 49452, 62227}
X(64162) lies on these lines: {1, 4}, {2, 3158}, {7, 9580}, {8, 7308}, {9, 36845}, {10, 3303}, {11, 3748}, {20, 41864}, {30, 5049}, {35, 64124}, {38, 49989}, {55, 3911}, {56, 4314}, {57, 390}, {65, 6744}, {79, 36946}, {100, 6692}, {140, 63271}, {142, 3434}, {145, 3984}, {149, 5249}, {165, 10385}, {200, 5316}, {210, 392}, {312, 49466}, {329, 3243}, {354, 516}, {377, 51723}, {405, 51724}, {452, 6762}, {474, 64117}, {495, 18527}, {496, 11230}, {514, 11193}, {517, 15170}, {518, 40998}, {527, 3873}, {528, 3742}, {551, 31140}, {614, 3755}, {908, 3957}, {938, 1697}, {940, 63969}, {942, 10624}, {952, 10157}, {962, 11518}, {999, 4304}, {1001, 1260}, {1100, 17747}, {1125, 3925}, {1210, 3295}, {1279, 40940}, {1420, 4313}, {1621, 5745}, {1706, 56936}, {1738, 29820}, {1770, 50190}, {1788, 53053}, {1836, 3982}, {1837, 38155}, {1914, 61688}, {2099, 4342}, {2280, 40869}, {2325, 63147}, {2346, 5284}, {2550, 10582}, {2809, 41581}, {2886, 42819}, {2887, 49768}, {3057, 6738}, {3085, 54447}, {3189, 8583}, {3241, 31142}, {3242, 4656}, {3244, 4679}, {3304, 4297}, {3305, 24393}, {3306, 20075}, {3333, 4294}, {3338, 4309}, {3340, 9785}, {3452, 3870}, {3474, 4031}, {3555, 12572}, {3584, 10172}, {3599, 32079}, {3601, 14986}, {3616, 37436}, {3621, 7320}, {3622, 57287}, {3626, 45081}, {3632, 30393}, {3636, 17647}, {3663, 17597}, {3664, 4883}, {3666, 63977}, {3671, 12701}, {3677, 64168}, {3681, 61718}, {3683, 51463}, {3685, 36483}, {3686, 17135}, {3689, 20103}, {3720, 13576}, {3744, 39595}, {3746, 6684}, {3750, 24239}, {3813, 51715}, {3816, 6745}, {3817, 11238}, {3848, 49732}, {3871, 63990}, {3879, 30946}, {3883, 10453}, {3889, 64002}, {3890, 41575}, {3896, 49987}, {3912, 4514}, {3913, 8582}, {3928, 64151}, {3929, 52653}, {3946, 7191}, {3947, 10896}, {4011, 49529}, {4021, 29215}, {4061, 49460}, {4082, 49688}, {4104, 49458}, {4114, 4312}, {4187, 59722}, {4292, 5045}, {4298, 6284}, {4302, 51816}, {4305, 61762}, {4311, 7373}, {4326, 60992}, {4343, 30097}, {4353, 4854}, {4356, 17599}, {4388, 4684}, {4415, 4864}, {4430, 17781}, {4432, 59664}, {4512, 24477}, {4654, 9812}, {4689, 51615}, {4703, 49505}, {4731, 34720}, {4855, 10586}, {4891, 5846}, {4995, 58441}, {5057, 62863}, {5083, 10391}, {5084, 6765}, {5121, 60714}, {5129, 6764}, {5173, 5572}, {5178, 24564}, {5219, 5274}, {5221, 5493}, {5248, 49627}, {5250, 24391}, {5252, 8162}, {5281, 31231}, {5294, 29835}, {5325, 64153}, {5434, 28164}, {5435, 35445}, {5436, 64081}, {5437, 17784}, {5554, 12640}, {5563, 41853}, {5687, 9843}, {5698, 62823}, {5703, 50443}, {5719, 7743}, {5722, 5790}, {5727, 51779}, {5728, 17642}, {5741, 50744}, {5743, 49467}, {5750, 24552}, {5837, 12649}, {5844, 9957}, {5847, 42057}, {5902, 28194}, {5903, 17706}, {5905, 62815}, {6600, 25893}, {6737, 58679}, {6743, 25917}, {6872, 62832}, {7354, 12577}, {7580, 43175}, {9053, 35652}, {9371, 26740}, {9578, 54448}, {9579, 11037}, {9670, 10404}, {9848, 12709}, {9955, 63282}, {10056, 10175}, {10072, 10165}, {10122, 41551}, {10177, 60972}, {10179, 44669}, {10200, 59587}, {10386, 37582}, {10529, 62829}, {10543, 20323}, {10569, 63995}, {10857, 35514}, {10950, 17604}, {11025, 60945}, {11415, 62861}, {11529, 30305}, {11680, 58463}, {12437, 19861}, {12512, 32636}, {12527, 34791}, {12710, 50196}, {13388, 31568}, {13389, 31567}, {14100, 17625}, {14555, 49451}, {14563, 25415}, {15104, 28234}, {15174, 15178}, {15185, 61003}, {15558, 41558}, {15888, 19925}, {15935, 50194}, {16465, 61002}, {17059, 25970}, {17067, 33131}, {17123, 49772}, {17155, 28557}, {17319, 56555}, {17596, 24216}, {17603, 17626}, {17605, 37703}, {17715, 24217}, {17764, 42053}, {18391, 31393}, {18839, 62852}, {18990, 28168}, {19860, 21627}, {20015, 62218}, {20196, 64083}, {20292, 60980}, {20358, 28858}, {21454, 30332}, {21578, 37602}, {21617, 63261}, {21856, 23653}, {24165, 28580}, {24231, 33095}, {24389, 47387}, {24470, 50191}, {24541, 62870}, {24703, 42871}, {24929, 38028}, {25430, 39587}, {25439, 44848}, {27003, 63145}, {28070, 41006}, {28526, 42055}, {29639, 62849}, {29652, 50290}, {29655, 59692}, {29814, 30949}, {29824, 63134}, {30143, 49600}, {30284, 64115}, {30330, 61014}, {30827, 63168}, {30947, 63139}, {31249, 59572}, {31770, 58616}, {31792, 37730}, {32861, 49763}, {32926, 49771}, {33595, 34123}, {34607, 64112}, {34611, 64149}, {36479, 53663}, {37587, 54342}, {37617, 53618}, {37642, 62875}, {37720, 63259}, {37721, 47745}, {41011, 62867}, {41166, 41556}, {41839, 49527}, {50294, 62845}, {50843, 50892}, {50865, 59372}, {51423, 63159}, {51784, 54361}, {53055, 62800}, {54408, 62839}, {57288, 58609}, {59491, 61155}, {62240, 64016}, {63207, 64142}
X(64162) = midpoint of X(i) and X(j) for these {i,j}: {354, 3058}, {4430, 17781}
X(64162) = reflection of X(i) in X(j) for these {i,j}: {553, 354}, {40998, 49736}, {49732, 3848}, {60972, 10177}
X(64162) = pole of line {522, 3935} with respect to the incircle
X(64162) = pole of line {65, 5542} with respect to the Feuerbach hyperbola
X(64162) = pole of line {57, 24796} with respect to the dual conic of Yff parabola
X(64162) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(56088)}}, {{A, B, C, X(33), X(10390)}}, {{A, B, C, X(34), X(60666)}}, {{A, B, C, X(278), X(42318)}}, {{A, B, C, X(1067), X(21620)}}
X(64162) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1058, 12053}, {1, 1479, 21620}, {1, 1699, 3475}, {1, 3586, 1056}, {1, 4857, 13407}, {1, 497, 226}, {1, 950, 10106}, {1, 9614, 3487}, {2, 64146, 46917}, {2, 8236, 10389}, {11, 3748, 13405}, {11, 61648, 10171}, {55, 17728, 10164}, {149, 29817, 5249}, {200, 26105, 5316}, {354, 3058, 516}, {354, 516, 553}, {390, 10580, 57}, {497, 3475, 1699}, {518, 49736, 40998}, {938, 1697, 4848}, {1621, 26015, 5745}, {1836, 5542, 3982}, {3244, 21060, 41711}, {3338, 4309, 31730}, {3434, 4666, 142}, {3474, 10980, 4031}, {3748, 61648, 63287}, {4314, 21625, 56}, {4423, 4863, 10}, {4512, 31146, 24477}, {4857, 13407, 18483}, {4883, 63979, 3664}, {5045, 15171, 4292}, {5274, 10578, 5219}, {5284, 25006, 6666}, {5542, 51783, 1836}, {5722, 6767, 31397}, {6284, 17609, 4298}, {6744, 12575, 65}, {6767, 18530, 5722}, {9580, 44841, 7}, {9670, 10404, 51118}, {9812, 11038, 4654}, {9957, 12433, 64163}, {10164, 11019, 17728}, {10164, 17728, 3911}, {10171, 13405, 61648}, {10391, 12915, 5083}, {10596, 18446, 946}, {11019, 30331, 55}, {11238, 17718, 3817}, {12915, 63972, 10391}, {13405, 43179, 3748}, {24392, 38316, 2}, {24477, 47357, 4512}, {32636, 63273, 12512}, {37080, 37722, 1125}
X(64163) lies on these lines: {1, 2}, {3, 4848}, {4, 3340}, {5, 50194}, {7, 9613}, {11, 11011}, {12, 64110}, {20, 2093}, {30, 41551}, {35, 17010}, {40, 3486}, {41, 8074}, {46, 4297}, {55, 11362}, {56, 5882}, {57, 944}, {65, 515}, {72, 5795}, {79, 37006}, {80, 7548}, {91, 53114}, {92, 56814}, {150, 3674}, {165, 4305}, {214, 58405}, {218, 41006}, {226, 355}, {322, 3879}, {354, 10944}, {376, 5128}, {388, 5881}, {389, 517}, {390, 10398}, {405, 5837}, {484, 12512}, {495, 63274}, {496, 10222}, {497, 7982}, {516, 5903}, {518, 14454}, {527, 4018}, {535, 4757}, {553, 18990}, {581, 24806}, {611, 49529}, {613, 49684}, {631, 13384}, {664, 53597}, {758, 12527}, {908, 62830}, {912, 41569}, {942, 952}, {946, 1837}, {954, 24393}, {956, 24391}, {960, 5855}, {962, 3586}, {993, 11507}, {999, 11499}, {1000, 7160}, {1056, 11518}, {1058, 7962}, {1109, 2650}, {1111, 58816}, {1126, 36123}, {1159, 18525}, {1317, 20323}, {1319, 13607}, {1385, 3911}, {1387, 33179}, {1388, 17728}, {1420, 7967}, {1433, 10570}, {1441, 3664}, {1445, 43175}, {1449, 54283}, {1457, 37732}, {1468, 1771}, {1478, 3671}, {1479, 4301}, {1482, 5722}, {1483, 24928}, {1497, 37610}, {1512, 21740}, {1697, 3488}, {1728, 5250}, {1735, 4642}, {1736, 63977}, {1770, 28164}, {1785, 5174}, {1788, 3576}, {1834, 8286}, {1836, 31673}, {1858, 2800}, {1864, 12672}, {1905, 49542}, {1953, 40963}, {2078, 64173}, {2098, 63993}, {2346, 5559}, {2478, 11682}, {2646, 6684}, {2784, 18413}, {2802, 37999}, {3057, 28234}, {3072, 55101}, {3091, 4323}, {3189, 63137}, {3245, 5441}, {3256, 6906}, {3295, 54430}, {3304, 37738}, {3333, 3476}, {3336, 21578}, {3338, 4315}, {3339, 4293}, {3421, 11523}, {3452, 5730}, {3485, 5587}, {3487, 9578}, {3528, 63207}, {3553, 20262}, {3601, 5657}, {3612, 10164}, {3614, 4870}, {3649, 12831}, {3656, 9669}, {3663, 56927}, {3692, 3950}, {3748, 45081}, {3753, 57284}, {3754, 13750}, {3812, 16193}, {3817, 10826}, {3822, 10954}, {3839, 7319}, {3869, 12572}, {3871, 51433}, {3874, 64045}, {3878, 40998}, {3881, 5570}, {3897, 59491}, {3901, 5850}, {3946, 63844}, {3947, 10827}, {3962, 34606}, {4004, 11112}, {4067, 41686}, {4294, 7991}, {4295, 5691}, {4298, 5902}, {4302, 5493}, {4313, 59417}, {4314, 5119}, {4342, 30323}, {4424, 44706}, {4513, 21096}, {4646, 17102}, {4654, 34627}, {4656, 26872}, {4855, 59675}, {4857, 11280}, {4904, 52542}, {5046, 51423}, {5048, 37722}, {5082, 12625}, {5084, 15829}, {5126, 34753}, {5173, 7686}, {5176, 34195}, {5183, 15338}, {5204, 51705}, {5219, 5818}, {5225, 31162}, {5251, 18249}, {5252, 14563}, {5270, 9897}, {5274, 5734}, {5290, 37712}, {5425, 12563}, {5440, 63990}, {5443, 10171}, {5445, 58441}, {5450, 11509}, {5542, 30318}, {5603, 9581}, {5687, 12437}, {5690, 24929}, {5692, 18250}, {5697, 12575}, {5708, 18526}, {5717, 5724}, {5719, 61510}, {5728, 5853}, {5731, 15803}, {5768, 12650}, {5790, 11374}, {5809, 43166}, {5836, 8261}, {5844, 9957}, {5919, 40270}, {5920, 13867}, {5933, 10444}, {6001, 13601}, {6147, 37705}, {6198, 51359}, {6284, 28194}, {6603, 21049}, {6692, 17614}, {6740, 46441}, {6909, 59329}, {7190, 24213}, {7674, 30330}, {7682, 63986}, {8069, 8715}, {8071, 8666}, {8227, 54361}, {8232, 38154}, {8256, 56176}, {8275, 30337}, {9588, 53054}, {9612, 59387}, {9624, 10589}, {9955, 12019}, {9956, 11545}, {10073, 21630}, {10090, 33337}, {10165, 24914}, {10175, 11375}, {10247, 11373}, {10391, 31788}, {10399, 14923}, {10543, 37568}, {10569, 17644}, {10571, 37699}, {10590, 37714}, {10591, 11522}, {10593, 51709}, {10595, 50443}, {10629, 12559}, {10698, 47744}, {10895, 50796}, {11009, 30384}, {11015, 63145}, {11023, 11037}, {11031, 63134}, {11224, 51785}, {11278, 18527}, {11376, 61717}, {11491, 37583}, {11502, 26437}, {11508, 25439}, {11517, 12640}, {11531, 16236}, {11715, 12832}, {12005, 18838}, {12114, 37541}, {12436, 30274}, {12571, 18393}, {12573, 30329}, {12577, 18398}, {12579, 30358}, {12580, 18399}, {12581, 18409}, {12582, 18408}, {12635, 21075}, {12645, 15934}, {12667, 41561}, {12688, 17632}, {12709, 14872}, {13375, 24225}, {14110, 41539}, {14584, 59283}, {15178, 15325}, {15299, 30331}, {15888, 44840}, {15950, 17606}, {18242, 64127}, {18480, 39542}, {18481, 36279}, {20789, 58645}, {21077, 62822}, {21933, 40942}, {22766, 25440}, {22767, 62825}, {23129, 64069}, {24470, 28224}, {25405, 61286}, {26393, 49555}, {26417, 49556}, {26475, 63963}, {28451, 34718}, {31410, 61252}, {31730, 37567}, {31792, 58630}, {33956, 58609}, {34231, 54396}, {34434, 58493}, {34607, 63138}, {34744, 54290}, {34773, 37582}, {34790, 40661}, {34791, 38455}, {34851, 46974}, {36920, 37080}, {36977, 62832}, {37828, 56177}, {38074, 43734}, {38134, 61649}, {39574, 60681}, {40950, 56285}, {41012, 62826}, {43180, 64155}, {44663, 57288}, {44848, 47742}, {45776, 64131}, {52682, 61021}, {53058, 61289}, {53615, 62859}, {54286, 59335}, {54432, 56288}, {56311, 59576}, {56936, 64202}, {56943, 62812}, {57287, 62864}, {61291, 61762}, {62836, 63130}, {63360, 64174}, {63967, 64041}, {64002, 64047}
X(64163) = midpoint of X(i) and X(j) for these {i,j}: {65, 10950}, {5903, 10572}, {37706, 45287}, {64002, 64047}
X(64163) = reflection of X(i) in X(j) for these {i,j}: {1, 6738}, {72, 5795}, {950, 37730}, {3057, 63999}, {3869, 12572}, {4292, 65}, {5697, 12575}, {6737, 10}, {9957, 12433}, {10106, 942}, {10624, 950}, {12573, 30329}, {17647, 3754}, {18990, 31794}, {34434, 58493}, {45287, 4298}, {63146, 5836}
X(64163) = inverse of X(47622) in incircle
X(64163) = inverse of X(63257) in Feuerbach hyperbola
X(64163) = X(i)-complementary conjugate of X(j) for these {i, j}: {1389, 1329}
X(64163) = pole of line {1459, 3667} with respect to the incircle
X(64163) = pole of line {12, 946} with respect to the Feuerbach hyperbola
X(64163) = pole of line {514, 28834} with respect to the Steiner inellipse
X(64163) = pole of line {663, 3667} with respect to the Suppa-Cucoanes circle
X(64163) = pole of line {3239, 36054} with respect to the dual conic of DeLongchamps circle
X(64163) = intersection, other than A, B, C, of circumconics {{A, B, C, X(78), X(3577)}}, {{A, B, C, X(80), X(6737)}}, {{A, B, C, X(91), X(3679)}}, {{A, B, C, X(996), X(3085)}}, {{A, B, C, X(1125), X(36123)}}, {{A, B, C, X(1126), X(22350)}}, {{A, B, C, X(1220), X(13411)}}, {{A, B, C, X(1222), X(31397)}}, {{A, B, C, X(2346), X(4861)}}, {{A, B, C, X(3872), X(7160)}}, {{A, B, C, X(4511), X(17097)}}, {{A, B, C, X(4847), X(5559)}}, {{A, B, C, X(5705), X(31359)}}, {{A, B, C, X(7080), X(10570)}}, {{A, B, C, X(26363), X(42285)}}, {{A, B, C, X(27383), X(54972)}}
X(64163) = barycentric product X(i)*X(j) for these (i, j): {33597, 92}
X(64163) = barycentric quotient X(i)/X(j) for these (i, j): {33597, 63}
X(64163) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1737, 1125}, {1, 3679, 3085}, {1, 499, 551}, {4, 11041, 3340}, {5, 50194, 64160}, {8, 145, 6765}, {10, 519, 6737}, {11, 11011, 13464}, {55, 41687, 11362}, {56, 37740, 5882}, {57, 944, 4311}, {65, 10950, 515}, {65, 515, 4292}, {78, 5554, 10}, {80, 12047, 19925}, {145, 5554, 78}, {145, 938, 1}, {517, 37730, 950}, {517, 950, 10624}, {942, 6797, 61541}, {942, 952, 10106}, {950, 15556, 64004}, {999, 37727, 63987}, {1159, 18525, 57282}, {1479, 25415, 4301}, {1837, 2099, 946}, {2646, 40663, 6684}, {3057, 41538, 31806}, {3333, 61296, 3476}, {3340, 5727, 4}, {3487, 59388, 9578}, {3488, 12245, 1697}, {3754, 62852, 13750}, {3947, 38155, 10827}, {4298, 28236, 45287}, {5425, 13407, 12563}, {5691, 18421, 4295}, {5836, 44669, 63146}, {5844, 12433, 9957}, {5881, 11529, 388}, {5902, 45287, 4298}, {5903, 10572, 516}, {7962, 37723, 1058}, {9957, 12433, 64162}, {11009, 37702, 30384}, {11518, 37709, 1056}, {12563, 51782, 13407}, {13407, 37710, 51782}, {13607, 64124, 1319}, {14563, 47745, 21620}, {18990, 31794, 553}, {21620, 47745, 5252}, {25415, 37721, 1479}, {28204, 31794, 18990}, {28234, 63999, 3057}, {37706, 45287, 28236}, {37724, 41687, 55}
X(64164) lies on these lines: {1, 5180}, {2, 17770}, {7, 17017}, {10, 20290}, {31, 29689}, {38, 17365}, {42, 50307}, {58, 26725}, {63, 29682}, {79, 4658}, {81, 3120}, {86, 4683}, {191, 27577}, {226, 29683}, {320, 32772}, {321, 49995}, {354, 513}, {514, 62663}, {524, 21020}, {527, 3989}, {614, 4888}, {740, 42045}, {748, 4675}, {758, 49744}, {846, 37635}, {894, 15523}, {896, 17056}, {940, 24725}, {942, 20961}, {1046, 21674}, {1100, 33145}, {1330, 27714}, {1647, 33107}, {1707, 29661}, {1836, 62821}, {1961, 17484}, {1962, 17768}, {1999, 48642}, {2292, 49743}, {2308, 5249}, {2392, 3060}, {2650, 44669}, {2795, 50181}, {2796, 27804}, {2895, 8013}, {3218, 29688}, {3578, 27798}, {3622, 12579}, {3649, 51654}, {3662, 29684}, {3664, 3720}, {3681, 50301}, {3745, 32856}, {3758, 25957}, {3772, 62846}, {3821, 19717}, {3877, 48825}, {3879, 4365}, {3914, 4667}, {3923, 63056}, {3925, 4722}, {3936, 4697}, {3938, 4307}, {3944, 14996}, {3980, 31034}, {4001, 30970}, {4024, 52208}, {4038, 5057}, {4046, 4938}, {4062, 4418}, {4138, 29863}, {4349, 29816}, {4363, 32852}, {4414, 5712}, {4416, 59306}, {4425, 8025}, {4610, 40164}, {4644, 32912}, {4649, 20292}, {4654, 33143}, {4655, 19684}, {4672, 18139}, {4795, 31134}, {4831, 62689}, {4854, 63401}, {4980, 17772}, {4981, 17771}, {5311, 5905}, {5333, 8040}, {5492, 63374}, {5542, 29818}, {5692, 48868}, {5852, 42039}, {5880, 61358}, {6147, 62847}, {6327, 29685}, {6535, 32846}, {6690, 9340}, {7321, 32924}, {8682, 50258}, {9345, 24703}, {9347, 33101}, {10180, 28558}, {11246, 46904}, {11263, 17173}, {13486, 14844}, {16468, 27186}, {16477, 26724}, {17011, 32857}, {17019, 33099}, {17120, 29850}, {17155, 50128}, {17163, 50256}, {17184, 33682}, {17187, 53541}, {17298, 29677}, {17300, 32930}, {17350, 29854}, {17364, 31330}, {17378, 32915}, {17379, 32776}, {17599, 62223}, {17726, 42038}, {17889, 37685}, {18165, 53542}, {20064, 29651}, {21027, 32864}, {21085, 63071}, {21141, 23763}, {24231, 29819}, {24392, 33104}, {24892, 62812}, {25385, 37639}, {26223, 29687}, {26842, 29821}, {27812, 50277}, {29639, 62240}, {29675, 30652}, {29686, 33069}, {29690, 32913}, {31019, 62841}, {31037, 59628}, {31053, 37604}, {32780, 48650}, {32859, 50302}, {32919, 62230}, {32940, 33073}, {33096, 37633}, {33103, 62807}, {33111, 62795}, {33154, 62801}, {38456, 50234}, {41814, 42437}, {49564, 64071}, {53388, 59584}, {62849, 64016}, {62867, 63979}
X(64164) = midpoint of X(i) and X(j) for these {i,j}: {17163, 50256}
X(64164) = reflection of X(i) in X(j) for these {i,j}: {2, 23812}, {1962, 37631}, {3578, 27798}
X(64164) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2248, 41821}, {13610, 2891}
X(64164) = pole of line {21192, 31010} with respect to the Steiner circumellipse
X(64164) = pole of line {8013, 32101} with respect to the Wallace hyperbola
X(64164) = pole of line {17169, 17190} with respect to the dual conic of Yff parabola
X(64164) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4024), X(14844)}}, {{A, B, C, X(6628), X(43972)}}, {{A, B, C, X(13486), X(52208)}}
X(64164) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {86, 4683, 6536}, {1046, 26131, 21674}, {2895, 24342, 8013}, {3664, 41011, 3720}, {3925, 7277, 4722}, {4418, 17778, 4062}, {5333, 24697, 8040}, {8025, 17491, 4425}, {17768, 37631, 1962}, {17770, 23812, 2}, {33100, 41819, 1}
X(64165) lies on these lines: {1, 6}, {8, 17378}, {10, 17313}, {42, 17595}, {55, 62795}, {75, 49680}, {81, 41711}, {88, 1002}, {89, 100}, {145, 5695}, {190, 3241}, {239, 51055}, {320, 48829}, {519, 4363}, {524, 36479}, {528, 4644}, {537, 17318}, {599, 29659}, {651, 2099}, {678, 37540}, {894, 49460}, {999, 4557}, {1086, 50282}, {1155, 59234}, {1159, 2809}, {1376, 37520}, {1443, 7672}, {1456, 11526}, {2242, 52965}, {2334, 3868}, {3052, 3979}, {3244, 32935}, {3306, 21870}, {3617, 17300}, {3621, 20090}, {3634, 17265}, {3679, 17374}, {3681, 17021}, {3711, 37633}, {3715, 29814}, {3717, 29601}, {3729, 49475}, {3736, 18198}, {3742, 54390}, {3755, 4887}, {3758, 48805}, {3789, 30950}, {3873, 17012}, {3879, 49688}, {3912, 47359}, {3932, 29583}, {3939, 56177}, {3940, 62844}, {4085, 7232}, {4361, 49479}, {4364, 48830}, {4383, 62867}, {4393, 24841}, {4407, 48822}, {4413, 54309}, {4423, 62866}, {4428, 4641}, {4430, 17013}, {4472, 48802}, {4657, 49505}, {4675, 49772}, {4684, 29596}, {4690, 48851}, {4693, 49721}, {4702, 50127}, {4753, 24331}, {4851, 49529}, {4883, 8167}, {4896, 5880}, {4924, 64174}, {4942, 32915}, {4954, 24344}, {4966, 29579}, {5222, 51099}, {5228, 53531}, {5542, 17067}, {5550, 17352}, {5708, 50587}, {5852, 64168}, {9053, 50284}, {9330, 40434}, {9347, 14969}, {9780, 17234}, {11269, 37691}, {12702, 29311}, {14077, 53535}, {14190, 60698}, {14996, 62236}, {15668, 49457}, {16694, 37507}, {16826, 50075}, {16831, 51034}, {16832, 51061}, {17018, 62796}, {17023, 47358}, {17051, 63126}, {17118, 49459}, {17119, 31178}, {17160, 24349}, {17262, 49471}, {17269, 49764}, {17281, 49763}, {17290, 50287}, {17293, 50315}, {17311, 33165}, {17319, 49501}, {17369, 50316}, {17461, 41434}, {17597, 61358}, {17601, 32913}, {17721, 61652}, {19654, 52981}, {20072, 49746}, {21358, 36478}, {23344, 37606}, {23345, 29350}, {23511, 58560}, {24342, 49689}, {24594, 62296}, {24597, 37703}, {24715, 62223}, {26626, 50999}, {28600, 62711}, {29598, 51003}, {29624, 50835}, {29660, 47352}, {32846, 59407}, {32921, 49535}, {33076, 40341}, {36534, 46922}, {40587, 53114}, {41847, 49450}, {46934, 63051}, {47356, 49771}, {49453, 49499}, {49483, 49495}, {49488, 49491}, {49714, 50286}, {49740, 54280}, {50017, 50131}, {50023, 50283}, {50303, 53534}, {50310, 62231}, {50311, 61344}, {51463, 63008}, {62230, 63139}, {62863, 63074}
X(64165) = X(i)-isoconjugate-of-X(j) for these {i, j}: {514, 28911}
X(64165) = pole of line {17494, 47767} with respect to the Steiner circumellipse
X(64165) = pole of line {100, 28911} with respect to the Hutson-Moses hyperbola
X(64165) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(39428)}}, {{A, B, C, X(37), X(56151)}}, {{A, B, C, X(44), X(1002)}}, {{A, B, C, X(45), X(55935)}}, {{A, B, C, X(88), X(1001)}}, {{A, B, C, X(89), X(3246)}}, {{A, B, C, X(518), X(28910)}}, {{A, B, C, X(1023), X(37138)}}, {{A, B, C, X(1390), X(16672)}}, {{A, B, C, X(16676), X(39959)}}, {{A, B, C, X(34893), X(36404)}}
X(64165) = barycentric product X(i)*X(j) for these (i, j): {100, 28910}
X(64165) = barycentric quotient X(i)/X(j) for these (i, j): {692, 28911}, {28910, 693}
X(64165) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3751, 44}, {1, 44, 1001}, {17601, 32913, 54281}, {49764, 50313, 17269}
X(64166) lies on these lines: {1, 3683}, {3, 1453}, {6, 24929}, {10, 50059}, {21, 17011}, {30, 40940}, {31, 517}, {43, 37589}, {44, 30115}, {56, 56848}, {58, 942}, {72, 62802}, {204, 7497}, {238, 5429}, {239, 4234}, {376, 5222}, {392, 17127}, {405, 5287}, {500, 1193}, {518, 49480}, {519, 44416}, {527, 39544}, {536, 49683}, {540, 1125}, {551, 3246}, {580, 31793}, {593, 51420}, {595, 9957}, {601, 31787}, {759, 58970}, {859, 40956}, {902, 51787}, {956, 62834}, {960, 63292}, {964, 39564}, {993, 1386}, {995, 5126}, {999, 7290}, {1064, 20978}, {1100, 4653}, {1191, 3157}, {1203, 2646}, {1279, 5049}, {1319, 2003}, {1325, 33774}, {1385, 16466}, {1419, 13462}, {1451, 37544}, {1455, 55086}, {1468, 5045}, {1724, 5044}, {1743, 3940}, {1829, 14015}, {1999, 13735}, {2257, 38292}, {3073, 9856}, {3419, 24597}, {3488, 37666}, {3576, 16469}, {3579, 54418}, {3616, 32859}, {3666, 52680}, {3745, 5251}, {3748, 16474}, {3752, 4257}, {3753, 17126}, {3824, 49745}, {3838, 50757}, {3877, 30653}, {3914, 28146}, {3915, 31792}, {3916, 5262}, {3924, 31794}, {3931, 54354}, {3961, 5247}, {4195, 5295}, {4245, 37609}, {4252, 37582}, {4304, 48847}, {4384, 19276}, {4665, 50053}, {4708, 49729}, {4719, 5267}, {5230, 18480}, {5256, 16370}, {5269, 9708}, {5271, 16394}, {5302, 30142}, {5313, 37600}, {5396, 40958}, {5440, 32911}, {5482, 34281}, {5716, 5791}, {5717, 6675}, {5722, 37642}, {5806, 37530}, {5814, 37176}, {6679, 38456}, {6767, 62875}, {9955, 13408}, {11018, 54321}, {11108, 37554}, {11112, 26723}, {11227, 37469}, {11269, 18527}, {11354, 11679}, {11357, 16831}, {13151, 51340}, {13587, 17020}, {15934, 16485}, {16417, 23511}, {16478, 37592}, {16483, 51788}, {16498, 62865}, {16572, 43136}, {16832, 19332}, {16857, 17022}, {16858, 17019}, {16861, 17021}, {17012, 17549}, {17014, 50742}, {17365, 26728}, {17564, 45204}, {18541, 23681}, {20083, 50050}, {21764, 43065}, {23168, 28383}, {23536, 31776}, {23537, 64159}, {24299, 36750}, {24473, 62795}, {28082, 50192}, {28154, 33128}, {28160, 61647}, {28202, 33094}, {28466, 54369}, {29571, 50202}, {29603, 50410}, {29816, 62847}, {29821, 37599}, {29833, 49735}, {29841, 48814}, {33596, 37509}, {34255, 51673}, {37732, 40262}, {42819, 62844}, {44417, 48866}, {44663, 49682}, {46974, 64157}, {47040, 50124}, {50759, 63979}, {64017, 64110}
X(64166) = midpoint of X(i) and X(j) for these {i,j}: {1, 4641}
X(64166) = pole of line {1710, 3601} with respect to the Feuerbach hyperbola
X(64166) = pole of line {18465, 34772} with respect to the Stammler hyperbola
X(64166) = barycentric product X(i)*X(j) for these (i, j): {64167, 81}
X(64166) = barycentric quotient X(i)/X(j) for these (i, j): {64167, 321}
X(64166) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58, 1104, 942}, {405, 62809, 37594}, {3752, 4257, 5122}, {16485, 62812, 15934}
X(64167) lies on these lines: {1, 442}, {2, 4720}, {3, 63078}, {4, 41083}, {5, 19767}, {6, 11113}, {8, 4205}, {10, 4046}, {12, 59301}, {29, 56301}, {30, 81}, {42, 12081}, {58, 57002}, {69, 50056}, {72, 4656}, {79, 63310}, {80, 11069}, {86, 50169}, {145, 5051}, {333, 13745}, {381, 63008}, {386, 4187}, {387, 405}, {407, 1068}, {429, 6198}, {440, 3488}, {495, 3136}, {496, 3142}, {517, 40952}, {519, 1211}, {529, 16474}, {551, 21242}, {758, 4854}, {851, 999}, {857, 17014}, {860, 63965}, {938, 18641}, {940, 11112}, {942, 58889}, {952, 17015}, {956, 4199}, {1046, 3650}, {1100, 12690}, {1145, 2092}, {1213, 3247}, {1329, 5312}, {1449, 1901}, {1483, 30449}, {1532, 5396}, {1837, 51557}, {2238, 50282}, {2245, 5119}, {2475, 41819}, {2650, 63997}, {3017, 4653}, {3057, 10974}, {3058, 62828}, {3178, 58399}, {3216, 17575}, {3240, 3820}, {3241, 3936}, {3244, 3454}, {3295, 37225}, {3543, 62997}, {3555, 10381}, {3649, 36250}, {3663, 24473}, {3743, 21677}, {3753, 3755}, {3816, 5313}, {3868, 50067}, {3946, 4904}, {3948, 4737}, {4065, 4918}, {4204, 9708}, {4255, 13747}, {4256, 37634}, {4340, 50239}, {4383, 48857}, {4393, 26601}, {4487, 62588}, {4648, 44217}, {4649, 53501}, {4658, 49745}, {4692, 53478}, {4780, 50083}, {4868, 16577}, {5256, 5722}, {5262, 12433}, {5292, 7483}, {5315, 49736}, {5331, 37357}, {5434, 62844}, {5439, 24175}, {5440, 39595}, {5453, 37401}, {5707, 37468}, {5712, 17532}, {5718, 17530}, {5719, 33133}, {5721, 8226}, {5739, 54367}, {5799, 10454}, {5902, 11809}, {6155, 21965}, {6175, 37635}, {6284, 62805}, {6675, 24883}, {6925, 62183}, {8025, 50171}, {8614, 63309}, {9844, 58890}, {9957, 22076}, {10149, 30447}, {10449, 13728}, {10459, 64200}, {10543, 63292}, {10950, 30446}, {11111, 37666}, {11114, 37685}, {11355, 15048}, {11361, 20145}, {14020, 19742}, {14986, 37154}, {14996, 17579}, {15170, 62848}, {15171, 57280}, {15172, 62804}, {15934, 19785}, {16086, 34064}, {16137, 63333}, {16370, 37642}, {16394, 63013}, {16418, 24597}, {16589, 49772}, {16704, 49735}, {17276, 50066}, {17300, 17678}, {17372, 50051}, {17381, 50323}, {17525, 52680}, {17533, 37662}, {17537, 19743}, {17542, 37650}, {17556, 63089}, {17677, 17778}, {18134, 48858}, {19684, 37150}, {19732, 51679}, {20018, 52258}, {21024, 29659}, {21031, 50587}, {23905, 50016}, {24210, 51409}, {25526, 49734}, {26064, 49718}, {26117, 49716}, {26728, 50103}, {26860, 50172}, {27081, 31145}, {29829, 49492}, {31156, 63067}, {31782, 37399}, {31938, 63396}, {32782, 50058}, {32847, 53423}, {33134, 39542}, {33155, 39544}, {33172, 48815}, {36195, 54315}, {36750, 37290}, {37038, 37683}, {37230, 63296}, {37298, 37646}, {37374, 63982}, {37447, 48903}, {37594, 57287}, {37652, 48814}, {37655, 51665}, {37674, 48842}, {37716, 42042}, {37722, 50604}, {40721, 47286}, {41015, 53387}, {44094, 56960}, {44150, 62697}, {47032, 63338}, {48813, 63057}, {48819, 62850}, {48861, 63074}, {48863, 51672}, {49459, 56953}, {49490, 53476}, {49728, 64072}, {49744, 63401}, {50749, 63287}
X(64167) = reflection of X(i) in X(j) for these {i,j}: {4046, 10}
X(64167) = complement of X(4720)
X(64167) = X(i)-complementary conjugate of X(j) for these {i, j}: {65, 21251}, {89, 21246}, {1042, 17057}, {1402, 16590}, {2163, 960}, {4017, 15614}, {28607, 5745}, {28658, 3452}, {30588, 21244}, {51641, 61073}, {53114, 1329}, {55246, 124}
X(64167) = pole of line {9, 484} with respect to the Kiepert hyperbola
X(64167) = pole of line {7178, 50449} with respect to the Steiner inellipse
X(64167) = pole of line {5745, 7359} with respect to the dual conic of Yff parabola
X(64167) = intersection, other than A, B, C, of circumconics {{A, B, C, X(37887), X(60243)}}, {{A, B, C, X(41501), X(54786)}}
X(64167) = barycentric product X(i)*X(j) for these (i, j): {321, 64166}
X(64167) = barycentric quotient X(i)/X(j) for these (i, j): {64166, 81}
X(64167) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1834, 442}, {940, 48837, 11112}, {3017, 4653, 35466}, {3017, 49739, 15670}, {33155, 63159, 39544}, {35466, 49739, 4653}, {36250, 63354, 3649}, {48903, 63318, 37447}
X(64168) lies on these lines: {1, 7}, {2, 968}, {4, 941}, {6, 5698}, {8, 192}, {9, 3755}, {10, 346}, {11, 56755}, {37, 2550}, {38, 36845}, {40, 1400}, {42, 329}, {43, 18228}, {45, 38057}, {55, 1284}, {65, 11997}, {69, 24723}, {75, 39581}, {81, 44447}, {142, 7613}, {144, 3751}, {145, 5847}, {165, 39595}, {171, 9778}, {190, 59406}, {200, 4656}, {226, 37553}, {238, 5222}, {344, 4429}, {345, 32773}, {377, 62831}, {387, 1723}, {388, 37548}, {391, 4780}, {443, 6051}, {452, 54418}, {497, 3666}, {517, 7961}, {518, 4419}, {528, 48856}, {536, 48849}, {581, 52024}, {612, 17784}, {726, 36479}, {752, 3241}, {774, 938}, {846, 5273}, {894, 24280}, {940, 3474}, {944, 29207}, {950, 4907}, {954, 28071}, {958, 45705}, {966, 3696}, {982, 10580}, {988, 14986}, {1001, 4000}, {1058, 37592}, {1086, 38053}, {1100, 64016}, {1125, 4779}, {1159, 28905}, {1193, 41828}, {1253, 5766}, {1279, 17301}, {1402, 37400}, {1423, 1697}, {1463, 5919}, {1469, 3057}, {1486, 41230}, {1503, 1854}, {1621, 19785}, {1633, 36740}, {1698, 25072}, {1707, 37666}, {1711, 62777}, {1722, 5129}, {1736, 4424}, {1743, 51090}, {1757, 6172}, {1836, 5712}, {1962, 33094}, {1999, 63140}, {2177, 63168}, {2269, 6210}, {2285, 12717}, {2310, 5809}, {2345, 4026}, {2551, 4646}, {2796, 35578}, {2899, 59299}, {2999, 40998}, {3027, 19637}, {3058, 17599}, {3086, 17077}, {3091, 5530}, {3161, 4085}, {3175, 3974}, {3194, 21148}, {3240, 31018}, {3242, 17246}, {3247, 64174}, {3295, 28015}, {3416, 17314}, {3421, 64175}, {3434, 28606}, {3475, 3782}, {3485, 19765}, {3487, 48944}, {3551, 7320}, {3586, 52856}, {3616, 16484}, {3617, 3790}, {3618, 4676}, {3622, 26806}, {3673, 60720}, {3677, 64162}, {3679, 50100}, {3720, 9776}, {3736, 17183}, {3744, 10385}, {3750, 10578}, {3752, 26105}, {3757, 30699}, {3823, 41313}, {3836, 29627}, {3869, 54383}, {3875, 3883}, {3886, 4357}, {3891, 50071}, {3896, 5739}, {3920, 20075}, {3923, 5749}, {3932, 48829}, {3944, 5226}, {3946, 7290}, {3961, 64146}, {3971, 5423}, {3993, 4660}, {3995, 10327}, {4008, 17863}, {4078, 39570}, {4183, 17903}, {4360, 51192}, {4363, 28530}, {4366, 26626}, {4402, 16825}, {4414, 5744}, {4415, 25568}, {4416, 49495}, {4427, 29829}, {4428, 17061}, {4454, 28526}, {4488, 32935}, {4512, 40940}, {4640, 37642}, {4643, 28581}, {4644, 17768}, {4645, 17316}, {4648, 5880}, {4649, 24695}, {4653, 62389}, {4655, 21296}, {4657, 49484}, {4659, 28557}, {4664, 32850}, {4679, 63126}, {4684, 17274}, {4689, 5218}, {4693, 29611}, {4716, 50296}, {4732, 62608}, {4847, 62818}, {4899, 50090}, {4972, 17776}, {5057, 63008}, {5250, 28287}, {5263, 17321}, {5274, 24239}, {5281, 9746}, {5308, 20533}, {5435, 17596}, {5550, 17383}, {5554, 25245}, {5657, 37715}, {5686, 49772}, {5703, 37573}, {5711, 6361}, {5716, 6284}, {5717, 41869}, {5758, 37529}, {5772, 29659}, {5811, 37699}, {5815, 50581}, {5839, 49486}, {5846, 17318}, {5852, 64165}, {5853, 7174}, {5905, 17018}, {6007, 35628}, {6244, 56218}, {6327, 27804}, {6650, 29570}, {6767, 28915}, {6872, 17016}, {7071, 7952}, {7080, 27282}, {8055, 59511}, {8143, 18517}, {8543, 37800}, {9441, 59418}, {9779, 17717}, {9780, 17280}, {9812, 17592}, {9965, 62819}, {10030, 62697}, {10186, 37617}, {10198, 36250}, {10480, 39780}, {10572, 15430}, {10582, 24177}, {11415, 19767}, {11529, 28881}, {11533, 12536}, {12053, 30097}, {12541, 59310}, {13097, 20760}, {13161, 26125}, {13576, 60108}, {13736, 16824}, {14267, 56854}, {14450, 17481}, {14523, 63972}, {14552, 17156}, {14956, 25060}, {15254, 37650}, {15507, 37502}, {15933, 28854}, {16469, 50114}, {16475, 17014}, {16667, 64017}, {16676, 38200}, {17258, 49450}, {17261, 27549}, {17262, 49524}, {17275, 49468}, {17276, 49478}, {17299, 49461}, {17319, 50289}, {17334, 64070}, {17358, 19877}, {17395, 38315}, {17593, 24217}, {17601, 64108}, {17772, 20050}, {17869, 26165}, {17950, 28849}, {18141, 33068}, {19822, 64010}, {19823, 26230}, {19843, 62871}, {19855, 54287}, {20057, 28494}, {20073, 62222}, {20101, 58820}, {20182, 63979}, {20292, 62840}, {20539, 41269}, {21806, 24725}, {23793, 26824}, {23903, 53424}, {24325, 31995}, {24597, 62838}, {24703, 63089}, {24929, 60751}, {25421, 59311}, {26034, 32915}, {26040, 44307}, {26132, 29839}, {26228, 33155}, {27286, 27517}, {28081, 34937}, {28534, 63054}, {28610, 32913}, {29327, 36474}, {29571, 38052}, {29573, 49630}, {29814, 33102}, {29965, 41012}, {31183, 38059}, {31189, 31289}, {31393, 52896}, {31730, 37554}, {32087, 49474}, {32099, 33082}, {32776, 33171}, {32922, 49746}, {32936, 33163}, {32947, 33088}, {33097, 41825}, {33099, 42042}, {33142, 55868}, {33145, 62849}, {34379, 64015}, {36706, 44735}, {36746, 64190}, {36991, 64134}, {37574, 48932}, {37608, 48925}, {37655, 39594}, {38037, 53599}, {38047, 54389}, {38314, 50293}, {40718, 59297}, {41011, 63007}, {49446, 49466}, {49523, 49688}, {49747, 51099}, {50044, 59760}, {50079, 51054}, {50122, 51665}, {50312, 53620}, {53020, 62183}, {56809, 60785}, {59408, 61330}, {60714, 64083}, {62796, 64153}
X(64168) = reflection of X(i) in X(j) for these {i,j}: {1, 4356}, {8, 50295}, {4307, 1}, {35578, 48830}, {50284, 50281}, {50314, 50290}
X(64168) = anticomplement of X(50314)
X(64168) = perspector of circumconic {{A, B, C, X(658), X(27805)}}
X(64168) = X(i)-Dao conjugate of X(j) for these {i, j}: {50314, 50314}
X(64168) = pole of line {514, 50508} with respect to the incircle
X(64168) = pole of line {4367, 26275} with respect to the mixtilinear incircles radical circle
X(64168) = pole of line {905, 44432} with respect to the orthoptic circle of the Steiner Inellipse
X(64168) = pole of line {23880, 54229} with respect to the polar circle
X(64168) = pole of line {354, 1469} with respect to the Feuerbach hyperbola
X(64168) = pole of line {14543, 21295} with respect to the Kiepert parabola
X(64168) = pole of line {661, 4025} with respect to the Steiner circumellipse
X(64168) = pole of line {7658, 25666} with respect to the Steiner inellipse
X(64168) = pole of line {3732, 53332} with respect to the Yff parabola
X(64168) = pole of line {1043, 17103} with respect to the Wallace hyperbola
X(64168) = pole of line {514, 4170} with respect to the Suppa-Cucoanes circle
X(64168) = pole of line {4529, 47130} with respect to the dual conic of incircle
X(64168) = pole of line {7, 391} with respect to the dual conic of Yff parabola
X(64168) = pole of line {52335, 53559} with respect to the dual conic of Wallace hyperbola
X(64168) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(4451)}}, {{A, B, C, X(8), X(7176)}}, {{A, B, C, X(77), X(941)}}, {{A, B, C, X(256), X(269)}}, {{A, B, C, X(257), X(279)}}, {{A, B, C, X(346), X(3945)}}, {{A, B, C, X(3551), X(7271)}}, {{A, B, C, X(3664), X(56144)}}, {{A, B, C, X(4073), X(7184)}}, {{A, B, C, X(4307), X(14942)}}, {{A, B, C, X(4321), X(43751)}}, {{A, B, C, X(7675), X(28071)}}, {{A, B, C, X(56382), X(60321)}}
X(64168) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1770, 4340}, {1, 3663, 4310}, {1, 4294, 4339}, {1, 4312, 3664}, {1, 4862, 5542}, {1, 516, 4307}, {8, 9791, 17257}, {175, 176, 7176}, {390, 3672, 1}, {740, 50295, 8}, {752, 50281, 50284}, {846, 33137, 5273}, {1836, 37593, 5712}, {2796, 48830, 35578}, {3416, 49462, 17314}, {3750, 33144, 10578}, {4026, 5695, 2345}, {5222, 52653, 238}, {5880, 15569, 4648}, {17018, 33100, 5905}, {17592, 33095, 26098}, {17594, 24210, 2}, {26098, 33095, 9812}, {28580, 50290, 50314}, {33155, 61155, 26228}, {37548, 50065, 388}, {37614, 64158, 3486}, {50281, 50284, 3241}
X(64169) lies on these lines: {1, 5132}, {3, 4497}, {6, 31}, {9, 22271}, {10, 1001}, {35, 3286}, {37, 4068}, {43, 16690}, {81, 40433}, {82, 39971}, {86, 100}, {171, 18166}, {226, 15320}, {228, 37593}, {238, 3293}, {239, 16684}, {284, 692}, {497, 44411}, {584, 2175}, {594, 4433}, {673, 2346}, {869, 16685}, {872, 3747}, {894, 4436}, {941, 23381}, {956, 49680}, {958, 59302}, {993, 49497}, {1018, 21865}, {1030, 17798}, {1100, 2223}, {1260, 4061}, {1334, 4878}, {1376, 15668}, {1439, 53321}, {1442, 2283}, {1449, 3941}, {1486, 4254}, {1500, 41333}, {1621, 3996}, {1626, 54312}, {1631, 36744}, {1634, 38814}, {1697, 22299}, {1826, 7071}, {1911, 40519}, {2082, 22297}, {2174, 35327}, {2183, 4343}, {2200, 4258}, {2245, 52020}, {2270, 3185}, {2667, 20964}, {3256, 7175}, {3285, 7122}, {3294, 40607}, {3303, 59305}, {3589, 8299}, {3663, 24405}, {3666, 18183}, {3693, 58633}, {3724, 21806}, {3736, 33771}, {3745, 54327}, {3750, 45223}, {3757, 20174}, {3759, 23407}, {3870, 22275}, {3871, 5263}, {3931, 52359}, {3939, 55100}, {4263, 4749}, {4267, 37573}, {4271, 21746}, {4361, 22316}, {4366, 18082}, {4423, 59306}, {4428, 4685}, {4447, 17390}, {4667, 41430}, {4689, 23845}, {4705, 58336}, {4854, 21319}, {4946, 61159}, {5276, 20875}, {5312, 16287}, {5313, 22083}, {7083, 23855}, {7234, 53535}, {7289, 17594}, {8300, 56131}, {8641, 57232}, {8715, 50302}, {9669, 39583}, {10013, 34445}, {10389, 22278}, {11248, 37474}, {13405, 34830}, {13476, 20367}, {15485, 31855}, {15571, 49471}, {15622, 63434}, {16484, 19265}, {16503, 22279}, {16666, 16694}, {16667, 16688}, {16678, 17018}, {16687, 17011}, {16777, 34247}, {16792, 61172}, {16884, 21010}, {17246, 21320}, {17261, 23343}, {17262, 21080}, {17318, 64170}, {17332, 45705}, {17349, 19998}, {17463, 25065}, {18755, 21788}, {19763, 23383}, {19765, 23361}, {20162, 41233}, {20713, 22021}, {20878, 41328}, {20963, 23370}, {21061, 44671}, {21796, 39688}, {21801, 42446}, {21840, 58384}, {21858, 40732}, {22298, 54359}, {22313, 63522}, {22328, 41239}, {23398, 60724}, {23846, 37548}, {23851, 40728}, {23854, 23868}, {23865, 50487}, {24394, 59727}, {27164, 56181}, {29437, 29824}, {37510, 37621}, {37575, 49478}, {37677, 61157}, {37679, 59309}, {40954, 51377}, {42819, 53307}, {49462, 60723}, {49486, 54410}, {52024, 55323}, {52897, 60714}
X(64169) = isogonal conjugate of X(39734)
X(64169) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 39734}, {2, 39950}, {6, 40004}, {58, 40216}, {81, 17758}, {86, 13476}, {274, 2350}, {513, 53649}, {693, 43076}, {1014, 55076}, {1019, 54118}, {1414, 60478}
X(64169) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 39734}, {9, 40004}, {10, 40216}, {1500, 321}, {3720, 20888}, {3925, 20880}, {17761, 693}, {32664, 39950}, {39026, 53649}, {40586, 17758}, {40600, 13476}, {40608, 60478}
X(64169) = X(i)-Ceva conjugate of X(j) for these {i, j}: {81, 213}, {100, 4040}, {1621, 3294}, {2346, 37}, {40433, 6}, {40435, 220}
X(64169) = pole of line {649, 2664} with respect to the circumcircle
X(64169) = pole of line {86, 5284} with respect to the Stammler hyperbola
X(64169) = pole of line {4468, 6586} with respect to the Steiner inellipse
X(64169) = pole of line {310, 29824} with respect to the Wallace hyperbola
X(64169) = pole of line {2140, 17278} with respect to the dual conic of Yff parabola
X(64169) = pole of line {21207, 62429} with respect to the dual conic of Wallace hyperbola
X(64169) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(8053)}}, {{A, B, C, X(6), X(3294)}}, {{A, B, C, X(10), X(22277)}}, {{A, B, C, X(31), X(1621)}}, {{A, B, C, X(37), X(672)}}, {{A, B, C, X(42), X(4651)}}, {{A, B, C, X(55), X(3996)}}, {{A, B, C, X(71), X(20616)}}, {{A, B, C, X(86), X(4040)}}, {{A, B, C, X(210), X(14547)}}, {{A, B, C, X(226), X(40606)}}, {{A, B, C, X(256), X(20954)}}, {{A, B, C, X(523), X(21804)}}, {{A, B, C, X(674), X(4151)}}, {{A, B, C, X(1011), X(14004)}}, {{A, B, C, X(1334), X(2293)}}, {{A, B, C, X(1500), X(21035)}}, {{A, B, C, X(1914), X(21007)}}, {{A, B, C, X(2276), X(4043)}}, {{A, B, C, X(2486), X(4516)}}, {{A, B, C, X(3286), X(4068)}}, {{A, B, C, X(4557), X(54325)}}, {{A, B, C, X(10013), X(20992)}}, {{A, B, C, X(18152), X(39967)}}, {{A, B, C, X(22301), X(43073)}}, {{A, B, C, X(24388), X(40599)}}, {{A, B, C, X(36635), X(55919)}}, {{A, B, C, X(39734), X(40586)}}
X(64169) = barycentric product X(i)*X(j) for these (i, j): {1, 3294}, {10, 4251}, {31, 4043}, {101, 4151}, {1018, 4040}, {1252, 2486}, {1334, 55082}, {1400, 3996}, {1621, 37}, {2205, 40088}, {2321, 55086}, {4069, 58324}, {4651, 6}, {14004, 71}, {17143, 213}, {17277, 42}, {17494, 4557}, {18098, 56537}, {18152, 1918}, {20616, 21}, {21007, 3952}, {21727, 662}, {38859, 4515}, {40094, 41333}, {40433, 62646}, {40521, 57148}, {40607, 81}, {43915, 6605}, {55340, 56255}, {58361, 692}
X(64169) = barycentric quotient X(i)/X(j) for these (i, j): {1, 40004}, {6, 39734}, {31, 39950}, {37, 40216}, {42, 17758}, {101, 53649}, {213, 13476}, {1334, 55076}, {1621, 274}, {1918, 2350}, {2486, 23989}, {3294, 75}, {3709, 60478}, {3996, 28660}, {4040, 7199}, {4043, 561}, {4151, 3261}, {4251, 86}, {4557, 54118}, {4651, 76}, {14004, 44129}, {17143, 6385}, {17277, 310}, {17494, 52619}, {20616, 1441}, {21007, 7192}, {21727, 1577}, {22160, 15419}, {32739, 43076}, {38346, 17205}, {38365, 17197}, {40607, 321}, {43915, 59181}, {55086, 1434}, {55340, 16708}, {56537, 16703}, {58361, 40495}, {62646, 20888}
X(64169) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 15624, 20990}, {1, 5132, 20470}, {6, 55, 8053}, {35, 4649, 3286}, {37, 21889, 21804}, {42, 1918, 6}, {42, 2269, 22301}, {42, 55, 52139}, {42, 71, 22277}, {1100, 2223, 16679}, {3295, 37502, 1001}, {4068, 4557, 37}, {36744, 37580, 1631}
X(64170) lies on these lines: {1, 6}, {2, 20487}, {3, 726}, {7, 4447}, {8, 1284}, {35, 49445}, {36, 49532}, {43, 28358}, {55, 192}, {56, 24349}, {63, 20359}, {69, 21320}, {75, 183}, {86, 24672}, {100, 1278}, {105, 38869}, {190, 7155}, {198, 8301}, {344, 24477}, {346, 8299}, {354, 25099}, {519, 31394}, {536, 4421}, {537, 11194}, {572, 22779}, {573, 14839}, {664, 34057}, {740, 3913}, {742, 24328}, {758, 31395}, {894, 21010}, {983, 1580}, {993, 49520}, {999, 49479}, {1011, 32925}, {1265, 28265}, {1423, 17792}, {1486, 20475}, {1621, 4704}, {1818, 54338}, {2223, 3729}, {2241, 20688}, {2319, 20674}, {2330, 52134}, {2975, 31302}, {2998, 56853}, {3009, 28365}, {3271, 29497}, {3295, 3993}, {3329, 4423}, {3434, 21927}, {3507, 41886}, {3644, 61153}, {3739, 15271}, {3740, 25887}, {3811, 46475}, {3840, 4438}, {3891, 56185}, {3923, 37590}, {3938, 22167}, {3941, 17351}, {3971, 16058}, {4026, 12607}, {4068, 58400}, {4078, 24391}, {4097, 17133}, {4191, 17155}, {4360, 41527}, {4361, 4557}, {4362, 20760}, {4363, 20990}, {4387, 22016}, {4413, 4699}, {4428, 4664}, {4517, 28287}, {4657, 6685}, {4687, 8167}, {4688, 8556}, {4751, 61158}, {5132, 49453}, {5201, 20840}, {5205, 30090}, {5284, 62994}, {5687, 49474}, {6179, 11490}, {6180, 41350}, {7232, 24405}, {7751, 12338}, {7754, 32453}, {8053, 17262}, {8168, 49459}, {8177, 9055}, {8616, 34252}, {8715, 28522}, {10267, 51046}, {10310, 63427}, {11495, 24728}, {11496, 20430}, {11500, 29010}, {13587, 51056}, {16059, 24165}, {16367, 27481}, {16370, 51035}, {16373, 64178}, {16412, 27478}, {16417, 51060}, {16418, 50777}, {16678, 17157}, {17132, 41430}, {17259, 24742}, {17261, 23407}, {17277, 24753}, {17318, 64169}, {17319, 52136}, {17321, 25568}, {17349, 52923}, {17350, 36635}, {17597, 21330}, {18201, 39742}, {19308, 27494}, {20358, 21371}, {20718, 31785}, {20872, 23843}, {20876, 23853}, {21080, 52139}, {21319, 33088}, {22220, 28082}, {24325, 25524}, {24357, 29670}, {24655, 30097}, {24826, 27472}, {25440, 50117}, {26245, 28353}, {27697, 32771}, {28351, 56714}, {29054, 64077}, {30273, 39646}, {30948, 44304}, {31178, 40726}, {32921, 37502}, {32935, 37507}, {33147, 50199}, {37575, 49446}, {37580, 49528}, {41276, 64007}, {49535, 62825}
X(64170) = X(i)-Dao conjugate of X(j) for these {i, j}: {20284, 33890}
X(64170) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2053, 1376}
X(64170) = pole of line {667, 17072} with respect to the circumcircle
X(64170) = pole of line {3903, 4436} with respect to the Kiepert parabola
X(64170) = pole of line {81, 63527} with respect to the Stammler hyperbola
X(64170) = pole of line {3287, 17494} with respect to the Steiner circumellipse
X(64170) = pole of line {274, 3794} with respect to the Wallace hyperbola
X(64170) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(56358)}}, {{A, B, C, X(9), X(7033)}}, {{A, B, C, X(75), X(3061)}}, {{A, B, C, X(220), X(56180)}}, {{A, B, C, X(518), X(2998)}}, {{A, B, C, X(1107), X(41527)}}, {{A, B, C, X(20359), X(24752)}}
X(64170) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1403, 7081, 1376}
X(64171) lies on these lines: {1, 37224}, {2, 955}, {4, 8}, {9, 55}, {10, 13567}, {21, 12867}, {25, 59681}, {33, 219}, {37, 3190}, {40, 12664}, {57, 5784}, {63, 971}, {65, 18251}, {69, 21609}, {78, 405}, {100, 51489}, {144, 50696}, {165, 5696}, {169, 17810}, {212, 56178}, {218, 28043}, {226, 518}, {228, 64125}, {333, 7360}, {354, 5231}, {375, 58490}, {377, 37544}, {388, 45039}, {392, 3488}, {394, 2000}, {404, 9858}, {440, 2968}, {442, 942}, {452, 3876}, {461, 27382}, {519, 59638}, {528, 14740}, {573, 3198}, {674, 9969}, {756, 2340}, {908, 8226}, {912, 6907}, {936, 10396}, {950, 960}, {954, 3870}, {956, 18446}, {958, 10393}, {990, 55405}, {997, 25893}, {1005, 3219}, {1006, 5440}, {1071, 6908}, {1145, 12691}, {1259, 31445}, {1329, 10395}, {1350, 21370}, {1376, 1708}, {1445, 37270}, {1490, 3428}, {1621, 63972}, {1698, 10399}, {1728, 8069}, {1731, 40970}, {1736, 25091}, {1737, 25973}, {1750, 5223}, {1858, 21677}, {1861, 26942}, {1887, 7066}, {2099, 4853}, {2182, 5285}, {2287, 2326}, {2318, 7069}, {2321, 41509}, {2323, 56317}, {2550, 41539}, {2893, 4872}, {3056, 40962}, {3057, 12625}, {3195, 22131}, {3218, 17616}, {3306, 10855}, {3452, 14022}, {3474, 17668}, {3475, 15185}, {3487, 3555}, {3522, 9859}, {3586, 5692}, {3611, 31788}, {3651, 3916}, {3678, 6743}, {3679, 18397}, {3686, 9119}, {3696, 17860}, {3697, 7080}, {3706, 24026}, {3729, 12689}, {3740, 6690}, {3812, 61029}, {3868, 5177}, {3872, 50194}, {3878, 51783}, {3925, 61663}, {3927, 37411}, {3928, 63995}, {3940, 6913}, {4046, 4081}, {4061, 8804}, {4082, 51972}, {4199, 44694}, {4312, 41866}, {4413, 61653}, {4511, 5284}, {4531, 23638}, {4640, 58651}, {4652, 31805}, {4662, 6736}, {4882, 5119}, {4915, 25415}, {5045, 10527}, {5220, 20588}, {5273, 10394}, {5435, 17612}, {5436, 25917}, {5437, 61660}, {5562, 5908}, {5687, 55104}, {5729, 58650}, {5744, 10167}, {5745, 10391}, {5759, 17784}, {5766, 64146}, {5779, 56545}, {5809, 18228}, {5836, 15556}, {5842, 63146}, {5904, 9612}, {5928, 50861}, {6067, 60991}, {6068, 33519}, {6260, 32159}, {6598, 44782}, {6889, 9940}, {6987, 64107}, {7085, 64121}, {7308, 61718}, {7411, 60970}, {7522, 10477}, {7680, 21075}, {7957, 36999}, {8232, 34784}, {8255, 58634}, {8270, 34032}, {8580, 10398}, {8581, 62823}, {9534, 52346}, {9778, 25722}, {10310, 58660}, {10392, 18227}, {10529, 16215}, {10530, 16218}, {10538, 30266}, {10569, 64151}, {10578, 30628}, {10861, 21454}, {10916, 50196}, {11035, 62832}, {11113, 51379}, {11227, 59491}, {11517, 32613}, {11997, 40966}, {12128, 62837}, {12526, 12688}, {12527, 63998}, {12528, 37421}, {12680, 62824}, {12690, 64139}, {12915, 26015}, {13257, 46685}, {13405, 58699}, {13754, 49718}, {14547, 40937}, {15064, 21060}, {15569, 63393}, {15587, 52819}, {16053, 27399}, {16193, 26363}, {16845, 27383}, {17355, 58697}, {17532, 31164}, {17625, 24477}, {17642, 24392}, {17728, 58623}, {17768, 41871}, {18255, 56936}, {18607, 61220}, {18750, 48878}, {20344, 22321}, {22027, 29016}, {24473, 50741}, {24644, 30326}, {25006, 51416}, {25939, 62811}, {26040, 60987}, {26052, 41004}, {26892, 61662}, {28125, 61358}, {28609, 31140}, {29331, 59520}, {31053, 52255}, {31789, 31837}, {31793, 57287}, {34791, 63274}, {38454, 61003}, {40292, 41229}, {40958, 43065}, {41015, 60586}, {41538, 64086}, {41559, 63437}, {47373, 58633}, {54203, 64156}, {54289, 64055}, {54430, 56176}, {55016, 58659}, {58632, 61533}, {58636, 59722}, {58688, 64135}, {60969, 62800}, {60978, 61035}, {63961, 64083}
X(64171) = midpoint of X(i) and X(j) for these {i,j}: {72, 3419}, {1824, 26893}, {3059, 42014}, {3428, 14872}, {7957, 36999}, {37584, 40263}
X(64171) = reflection of X(i) in X(j) for these {i,j}: {55, 58648}, {4640, 58651}, {5173, 2886}, {7680, 58631}, {8069, 58649}, {8255, 58634}, {10391, 5745}, {13405, 58699}, {16465, 11018}, {24929, 5044}, {32613, 58630}, {47373, 58633}, {50195, 10}, {61533, 58632}
X(64171) = complement of X(16465)
X(64171) = anticomplement of X(11018)
X(64171) = perspector of circumconic {{A, B, C, X(644), X(6335)}}
X(64171) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 60041}, {57, 2982}, {58, 52560}, {65, 63193}, {222, 40573}, {269, 943}, {279, 2259}, {513, 36048}, {514, 32651}, {1042, 40412}, {1106, 40422}, {1119, 1794}, {1175, 3668}, {1407, 40435}, {1412, 60188}, {1459, 58993}, {1461, 56320}, {3676, 15439}, {7099, 40447}, {40395, 52373}, {40570, 56382}, {43924, 54952}
X(64171) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 60041}, {10, 52560}, {442, 7}, {942, 1439}, {5452, 2982}, {6552, 40422}, {6600, 943}, {7358, 63245}, {11018, 11018}, {15607, 513}, {16585, 1088}, {18591, 279}, {24771, 40435}, {35508, 56320}, {38966, 14775}, {39026, 36048}, {40599, 60188}, {40602, 63193}, {40937, 1446}
X(64171) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3952, 3239}, {6734, 40937}, {36797, 57055}
X(64171) = pole of line {4394, 48383} with respect to the circumcircle
X(64171) = pole of line {513, 14775} with respect to the polar circle
X(64171) = pole of line {9, 1837} with respect to the Feuerbach hyperbola
X(64171) = pole of line {1014, 1175} with respect to the Stammler hyperbola
X(64171) = pole of line {4552, 35341} with respect to the Yff parabola
X(64171) = pole of line {1444, 40412} with respect to the Wallace hyperbola
X(64171) = pole of line {4131, 63245} with respect to the dual conic of polar circle
X(64171) = pole of line {24177, 24181} with respect to the dual conic of Yff parabola
X(64171) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(5758)}}, {{A, B, C, X(4), X(55)}}, {{A, B, C, X(8), X(1260)}}, {{A, B, C, X(9), X(92)}}, {{A, B, C, X(200), X(318)}}, {{A, B, C, X(210), X(442)}}, {{A, B, C, X(219), X(26872)}}, {{A, B, C, X(220), X(14054)}}, {{A, B, C, X(321), X(2287)}}, {{A, B, C, X(329), X(55111)}}, {{A, B, C, X(380), X(46884)}}, {{A, B, C, X(480), X(7046)}}, {{A, B, C, X(517), X(23207)}}, {{A, B, C, X(962), X(4303)}}, {{A, B, C, X(1824), X(40952)}}, {{A, B, C, X(1828), X(40956)}}, {{A, B, C, X(1829), X(20967)}}, {{A, B, C, X(1838), X(10382)}}, {{A, B, C, X(1841), X(2161)}}, {{A, B, C, X(1851), X(7083)}}, {{A, B, C, X(1902), X(61427)}}, {{A, B, C, X(1903), X(2294)}}, {{A, B, C, X(2328), X(5174)}}, {{A, B, C, X(3683), X(42064)}}, {{A, B, C, X(3689), X(38462)}}, {{A, B, C, X(3693), X(46108)}}, {{A, B, C, X(3715), X(3824)}}, {{A, B, C, X(3900), X(56877)}}, {{A, B, C, X(4254), X(46882)}}, {{A, B, C, X(4512), X(5342)}}, {{A, B, C, X(5081), X(58328)}}, {{A, B, C, X(6600), X(59269)}}, {{A, B, C, X(7008), X(45926)}}, {{A, B, C, X(13386), X(60848)}}, {{A, B, C, X(13387), X(60847)}}, {{A, B, C, X(14557), X(14597)}}, {{A, B, C, X(18607), X(30807)}}, {{A, B, C, X(28071), X(40659)}}, {{A, B, C, X(39791), X(43213)}}, {{A, B, C, X(52345), X(56839)}}
X(64171) = barycentric product X(i)*X(j) for these (i, j): {37, 51978}, {200, 5249}, {321, 8021}, {333, 40967}, {346, 942}, {522, 61233}, {1043, 2294}, {1098, 21675}, {1265, 1841}, {1792, 1865}, {1838, 3692}, {1859, 345}, {2260, 341}, {2287, 442}, {2321, 54356}, {2322, 56839}, {3239, 61220}, {3701, 46882}, {3710, 46884}, {4303, 7101}, {4397, 61197}, {6734, 9}, {14547, 312}, {15416, 53323}, {18607, 7046}, {23207, 7017}, {23752, 7259}, {31938, 7110}, {33525, 668}, {36421, 59163}, {40937, 8}, {40956, 59761}, {50354, 6558}, {55010, 56182}, {57055, 61180}, {61161, 7253}, {62779, 728}
X(64171) = barycentric quotient X(i)/X(j) for these (i, j): {9, 60041}, {33, 40573}, {37, 52560}, {55, 2982}, {101, 36048}, {200, 40435}, {210, 60188}, {220, 943}, {284, 63193}, {346, 40422}, {442, 1446}, {644, 54952}, {692, 32651}, {942, 279}, {1253, 2259}, {1783, 58993}, {1802, 1794}, {1838, 1847}, {1841, 1119}, {1859, 278}, {2260, 269}, {2287, 40412}, {2294, 3668}, {3900, 56320}, {4183, 40395}, {4303, 7177}, {5249, 1088}, {6734, 85}, {7046, 40447}, {8021, 81}, {14547, 57}, {14597, 7053}, {18591, 1439}, {18607, 7056}, {23207, 222}, {31938, 17095}, {33525, 513}, {40937, 7}, {40952, 1427}, {40956, 1407}, {40967, 226}, {40978, 1042}, {41393, 20618}, {46882, 1014}, {50354, 58817}, {51978, 274}, {53323, 32714}, {54356, 1434}, {56839, 56382}, {57055, 63245}, {61161, 4566}, {61169, 1020}, {61180, 13149}, {61197, 934}, {61220, 658}, {61233, 664}, {61236, 36118}, {62779, 23062}
X(64171) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 16465, 11018}, {8, 318, 5295}, {8, 3681, 17658}, {9, 10382, 13615}, {9, 200, 1260}, {55, 210, 58648}, {55, 42014, 42012}, {72, 5927, 329}, {200, 210, 51380}, {210, 1864, 9}, {210, 3059, 200}, {210, 3711, 58696}, {210, 3715, 58635}, {329, 3681, 72}, {329, 5175, 9812}, {442, 14054, 942}, {518, 2886, 5173}, {936, 10396, 37244}, {950, 40661, 960}, {1824, 26893, 517}, {3059, 42014, 15733}, {3678, 12572, 45120}, {3681, 17615, 9954}, {9954, 34790, 3681}, {14547, 40967, 40937}, {15733, 58648, 55}
X(64172) lies on circumconic {{A, B, C, X(37887), X(60084)}} and on these lines: {1, 442}, {2, 37715}, {3, 5230}, {4, 3195}, {5, 1193}, {6, 1478}, {8, 3891}, {10, 3666}, {11, 995}, {12, 386}, {30, 31}, {36, 37646}, {41, 5305}, {42, 495}, {43, 17757}, {55, 48837}, {56, 5292}, {57, 51421}, {58, 7354}, {65, 23537}, {72, 13161}, {80, 17366}, {149, 62848}, {171, 11112}, {204, 15942}, {213, 5254}, {218, 5286}, {238, 11113}, {355, 54418}, {377, 5711}, {387, 388}, {392, 24210}, {404, 54355}, {496, 1201}, {497, 16483}, {498, 4255}, {515, 5721}, {517, 1072}, {519, 2887}, {524, 4805}, {528, 37610}, {580, 11827}, {595, 6284}, {601, 31775}, {602, 31789}, {607, 41361}, {614, 5722}, {672, 15048}, {758, 3782}, {899, 3820}, {942, 23536}, {952, 30448}, {956, 33137}, {958, 1714}, {978, 4187}, {993, 35466}, {997, 17720}, {999, 11269}, {1064, 6907}, {1074, 50195}, {1086, 5902}, {1104, 10572}, {1145, 41886}, {1191, 1479}, {1203, 3585}, {1329, 3216}, {1448, 34041}, {1453, 5691}, {1457, 64127}, {1460, 37241}, {1466, 34030}, {1468, 18990}, {1470, 43043}, {1724, 57288}, {1737, 3752}, {1738, 3753}, {2251, 5306}, {2292, 50067}, {2475, 57280}, {2650, 6147}, {2975, 24883}, {2999, 5587}, {3011, 24929}, {3017, 5434}, {3052, 4302}, {3058, 40091}, {3072, 37468}, {3120, 39542}, {3293, 12607}, {3436, 55399}, {3583, 5315}, {3586, 7290}, {3617, 41821}, {3679, 7174}, {3704, 64184}, {3736, 47515}, {3755, 31397}, {3791, 38456}, {3814, 37663}, {3816, 49997}, {3822, 5718}, {3826, 56191}, {3869, 63997}, {3877, 33134}, {3878, 36250}, {3915, 15171}, {3924, 37730}, {3925, 30116}, {3931, 24987}, {3932, 30903}, {3933, 24995}, {3944, 51409}, {3987, 8256}, {4000, 4904}, {4202, 17751}, {4205, 31339}, {4245, 27628}, {4252, 4299}, {4256, 5432}, {4257, 15326}, {4293, 37642}, {4300, 37424}, {4361, 51571}, {4388, 17677}, {4415, 5692}, {4511, 33133}, {4642, 5690}, {4645, 17678}, {4646, 10039}, {4647, 5835}, {4680, 5846}, {4692, 49524}, {4720, 33175}, {4766, 33184}, {5021, 9597}, {5045, 23675}, {5080, 32911}, {5086, 5262}, {5222, 7377}, {5248, 64158}, {5256, 5725}, {5266, 57287}, {5312, 37719}, {5313, 7951}, {5398, 5841}, {5433, 45939}, {5439, 24178}, {5706, 26332}, {5719, 33127}, {5774, 11359}, {5793, 19784}, {5883, 40688}, {6175, 33112}, {6656, 17033}, {6675, 10448}, {6734, 37592}, {6737, 34937}, {6739, 16613}, {7078, 10629}, {7680, 63982}, {8360, 30816}, {8728, 59305}, {9598, 14974}, {10056, 48842}, {10198, 19765}, {10459, 31419}, {10483, 64159}, {10523, 54427}, {10526, 36754}, {10571, 57285}, {10590, 63089}, {10609, 29658}, {10944, 15955}, {11114, 17127}, {11237, 48857}, {11529, 23681}, {12433, 28082}, {12514, 50065}, {15325, 29662}, {16052, 25760}, {16086, 32926}, {16287, 28265}, {16600, 40997}, {17017, 50325}, {17034, 26561}, {17126, 17579}, {17527, 27627}, {17530, 17717}, {17532, 26098}, {17577, 33107}, {17602, 30115}, {17647, 37539}, {17670, 41240}, {17698, 54331}, {17747, 54981}, {17768, 49500}, {18242, 37732}, {18393, 62221}, {18481, 63318}, {18907, 21764}, {18961, 64020}, {18970, 56295}, {19241, 28250}, {20255, 24366}, {21258, 24790}, {23850, 40980}, {24231, 24473}, {24514, 47286}, {24789, 54318}, {24880, 24953}, {25639, 50604}, {26582, 30114}, {26590, 40859}, {26728, 44840}, {28160, 61647}, {28174, 33094}, {28257, 51559}, {29821, 37717}, {32772, 37150}, {32781, 48815}, {33122, 49687}, {33132, 60353}, {33140, 37617}, {33142, 54391}, {33143, 39544}, {33148, 63159}, {33150, 54315}, {37096, 41233}, {37529, 63257}, {37549, 49168}, {37599, 59491}, {38455, 49494}, {38945, 55086}, {48813, 63140}, {48819, 62833}, {49745, 62805}, {50056, 50295}, {50169, 50302}, {52367, 62804}, {54354, 57002}, {54366, 56821}, {54386, 58798}, {54421, 57282}, {59310, 64200}, {59582, 59685}, {62828, 63979}, {62860, 63415}
X(64172) = midpoint of X(i) and X(j) for these {i,j}: {8, 3891}
X(64172) = reflection of X(i) in X(j) for these {i,j}: {1, 17061}, {3703, 10}, {49454, 39544}
X(64172) = complement of X(49492)
X(64172) = X(i)-complementary conjugate of X(j) for these {i, j}: {994, 1329}, {46018, 3452}, {60071, 21244}
X(64172) = pole of line {50621, 64043} with respect to the Feuerbach hyperbola
X(64172) = pole of line {7178, 14349} with respect to the Steiner inellipse
X(64172) = pole of line {5745, 22001} with respect to the dual conic of Yff parabola
X(64172) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5794, 63360}, {495, 48847, 42}, {1193, 21935, 5}, {3755, 31397, 64175}, {5313, 7951, 37662}, {5774, 11359, 26034}, {17061, 44669, 1}, {33143, 49454, 39544}
X(64173) lies on circumconic {{A, B, C, X(5844), X(10914)}} and on these lines: {1, 1389}, {2, 10806}, {3, 145}, {4, 390}, {8, 1006}, {10, 34486}, {20, 10679}, {21, 952}, {30, 13100}, {35, 104}, {36, 13607}, {40, 3243}, {55, 944}, {56, 11041}, {57, 8000}, {100, 1385}, {140, 12331}, {149, 6842}, {153, 37290}, {355, 1621}, {376, 10306}, {388, 37000}, {392, 64116}, {404, 10246}, {405, 59388}, {411, 1482}, {484, 12005}, {496, 6949}, {497, 6941}, {515, 3746}, {516, 49178}, {517, 3651}, {519, 10902}, {581, 37610}, {602, 50581}, {631, 5687}, {942, 48363}, {943, 31397}, {946, 11218}, {947, 35057}, {956, 6875}, {962, 37622}, {993, 15862}, {999, 6942}, {1001, 5818}, {1056, 6934}, {1058, 6834}, {1064, 37588}, {1317, 37564}, {1512, 63999}, {1519, 12575}, {1532, 15172}, {1697, 7971}, {2078, 64163}, {2136, 3576}, {2800, 37563}, {2829, 63273}, {2975, 32613}, {3057, 10698}, {3058, 18242}, {3085, 6830}, {3091, 18518}, {3149, 6767}, {3241, 11249}, {3244, 11012}, {3256, 4311}, {3303, 5603}, {3421, 6936}, {3434, 6937}, {3476, 11507}, {3486, 11508}, {3522, 35448}, {3525, 9709}, {3528, 6244}, {3560, 61155}, {3579, 26877}, {3584, 63963}, {3601, 7966}, {3616, 6946}, {3617, 6883}, {3621, 37106}, {3622, 6911}, {3623, 10680}, {3655, 26285}, {3748, 7686}, {3825, 64008}, {3873, 59318}, {3877, 37700}, {3881, 5535}, {3884, 6326}, {3885, 61146}, {3889, 37532}, {3890, 45770}, {3913, 5657}, {3915, 37699}, {3920, 4231}, {3935, 31837}, {3957, 24474}, {4188, 16203}, {4220, 20045}, {4294, 12115}, {4304, 12775}, {4309, 6256}, {4428, 34627}, {4857, 59391}, {4881, 24927}, {5046, 10942}, {5047, 5790}, {5082, 6889}, {5119, 64021}, {5172, 37734}, {5204, 39777}, {5218, 10785}, {5248, 5881}, {5250, 5534}, {5251, 47745}, {5253, 15178}, {5281, 6977}, {5284, 9956}, {5303, 32900}, {5396, 62804}, {5531, 20117}, {5552, 6963}, {5584, 50810}, {5659, 6684}, {5690, 6986}, {5731, 11248}, {5804, 8236}, {5842, 15888}, {5884, 11010}, {5901, 6915}, {5919, 37837}, {6003, 14812}, {6264, 51111}, {6361, 38454}, {6583, 62863}, {6605, 48263}, {6762, 21165}, {6765, 55104}, {6826, 10587}, {6827, 10528}, {6833, 12333}, {6848, 10596}, {6850, 20075}, {6853, 24390}, {6876, 22770}, {6880, 14986}, {6888, 61533}, {6897, 17784}, {6902, 17757}, {6908, 56936}, {6909, 11849}, {6912, 18525}, {6914, 18526}, {6924, 37624}, {6947, 7080}, {6952, 63263}, {6954, 10529}, {6967, 59591}, {6970, 10586}, {6985, 12000}, {7411, 12702}, {7421, 15626}, {7489, 37705}, {7491, 20060}, {7504, 59382}, {7508, 61295}, {7992, 53053}, {8158, 34631}, {8666, 59331}, {8728, 38170}, {9957, 33597}, {10056, 48482}, {10057, 10572}, {10074, 14792}, {10093, 12647}, {10283, 37251}, {10385, 12667}, {10525, 34611}, {10531, 64148}, {10532, 63256}, {10597, 50701}, {10884, 49163}, {10965, 30305}, {11362, 15931}, {11510, 18391}, {11524, 30389}, {11680, 26487}, {11715, 37616}, {12249, 63258}, {12515, 26201}, {12520, 12703}, {12675, 37568}, {13143, 37518}, {13199, 31775}, {13278, 18444}, {13407, 16153}, {13464, 44425}, {13528, 58567}, {13587, 37535}, {13743, 28224}, {14497, 56030}, {14988, 35989}, {16117, 28212}, {16370, 50818}, {16615, 56035}, {16858, 50798}, {17531, 38028}, {17536, 38042}, {17549, 32153}, {17577, 34745}, {18443, 63130}, {19544, 26245}, {19649, 29832}, {20070, 44455}, {20095, 37163}, {20418, 52793}, {22765, 61286}, {22791, 36002}, {25438, 34474}, {25440, 45036}, {25542, 31399}, {26086, 38693}, {26286, 59421}, {26878, 34790}, {28174, 33557}, {28204, 28461}, {28234, 59320}, {28466, 31145}, {31393, 63986}, {31659, 37726}, {32905, 48694}, {33110, 37438}, {34339, 63136}, {34353, 35979}, {34617, 64075}, {37468, 62800}, {37556, 52026}, {37601, 64147}, {37698, 57280}, {37718, 40260}, {37719, 59392}, {37732, 40091}, {37733, 62826}, {37739, 62873}, {38513, 55287}, {45976, 51700}, {50194, 57283}, {51705, 59326}, {61288, 62825}, {61597, 62318}, {61763, 63399}, {63159, 64044}
X(64173) = reflection of X(i) in X(j) for these {i,j}: {4, 63257}, {21, 37621}, {1389, 1}, {5603, 63287}, {10532, 63256}
X(64173) = pole of line {6905, 28217} with respect to the circumcircle
X(64173) = pole of line {11011, 61663} with respect to the Feuerbach hyperbola
X(64173) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11491, 6905}, {1, 6905, 45977}, {3, 1483, 54391}, {8, 10267, 1006}, {35, 5882, 104}, {55, 944, 6906}, {100, 1385, 6940}, {355, 1621, 6920}, {497, 10786, 6941}, {3057, 21740, 10698}, {3085, 12116, 6830}, {3149, 6767, 10595}, {3303, 11500, 5603}, {3616, 11499, 6946}, {4857, 63964, 59391}, {5731, 11248, 37403}, {5901, 18524, 6915}, {7491, 32213, 20060}, {10246, 32141, 404}, {11849, 34773, 6909}, {26286, 61287, 62837}, {32613, 37727, 2975}, {59421, 62837, 26286}
X(64174) lies on these lines: {1, 142}, {2, 3883}, {4, 53009}, {6, 10}, {7, 7174}, {8, 3879}, {9, 4307}, {12, 1456}, {37, 516}, {38, 553}, {40, 3332}, {44, 64017}, {45, 51090}, {55, 11347}, {65, 3688}, {75, 49476}, {81, 25006}, {86, 32850}, {141, 19868}, {145, 17117}, {149, 17021}, {171, 5745}, {192, 28557}, {200, 5712}, {226, 612}, {238, 6666}, {241, 12573}, {269, 388}, {329, 7322}, {341, 34283}, {355, 62183}, {390, 5308}, {405, 21002}, {495, 25365}, {497, 17022}, {515, 991}, {518, 3664}, {519, 3696}, {527, 984}, {528, 15569}, {551, 48829}, {750, 1471}, {752, 3842}, {756, 41011}, {894, 3717}, {899, 46916}, {908, 5297}, {940, 4847}, {942, 9052}, {946, 975}, {950, 2293}, {976, 63274}, {1001, 21514}, {1086, 4353}, {1125, 1279}, {1386, 3008}, {1418, 4298}, {1419, 9578}, {1449, 38200}, {1453, 19855}, {1458, 10106}, {1698, 16469}, {1706, 3169}, {1707, 5325}, {1743, 38057}, {1836, 4656}, {1961, 20539}, {2321, 50314}, {2325, 3923}, {2886, 4682}, {2999, 26040}, {3072, 6684}, {3242, 4675}, {3244, 49486}, {3247, 64168}, {3434, 5287}, {3452, 5268}, {3474, 62818}, {3589, 3823}, {3616, 17282}, {3617, 17363}, {3624, 16487}, {3626, 4733}, {3634, 17337}, {3663, 5880}, {3672, 59412}, {3677, 9776}, {3679, 63054}, {3687, 33073}, {3720, 13576}, {3731, 5698}, {3739, 5846}, {3745, 3925}, {3751, 4667}, {3773, 49766}, {3812, 17049}, {3844, 29604}, {3886, 17316}, {3912, 5263}, {3914, 5311}, {3920, 5249}, {3932, 17355}, {3935, 37635}, {3950, 5695}, {3993, 28580}, {4001, 4981}, {4085, 50293}, {4097, 5687}, {4104, 32946}, {4297, 50677}, {4300, 63998}, {4304, 47042}, {4310, 6173}, {4312, 4419}, {4315, 42314}, {4318, 21617}, {4327, 60992}, {4339, 5436}, {4340, 57279}, {4356, 16777}, {4357, 4645}, {4384, 51192}, {4413, 17723}, {4429, 17023}, {4644, 5223}, {4646, 20227}, {4649, 49772}, {4660, 50290}, {4670, 49524}, {4676, 25101}, {4681, 28530}, {4684, 17300}, {4698, 28566}, {4702, 29606}, {4712, 50261}, {4726, 28472}, {4732, 17772}, {4747, 10005}, {4758, 29659}, {4780, 50281}, {4924, 64165}, {4982, 49489}, {5121, 17722}, {5222, 40333}, {5257, 16970}, {5264, 21059}, {5275, 40869}, {5530, 63990}, {5604, 31569}, {5605, 31570}, {5710, 25878}, {5718, 6745}, {5733, 11362}, {5749, 39570}, {5795, 20258}, {5800, 21620}, {5836, 35104}, {5850, 17365}, {6051, 10624}, {6610, 51782}, {6692, 17122}, {7123, 62901}, {7179, 41354}, {7228, 28582}, {7263, 49463}, {8286, 13405}, {8580, 63089}, {8581, 62789}, {9049, 13476}, {9347, 33108}, {9580, 25430}, {9780, 37681}, {10039, 63319}, {10327, 53663}, {11019, 37674}, {12436, 37592}, {12527, 49745}, {12609, 30142}, {15251, 61595}, {15254, 25072}, {15287, 25524}, {15601, 18230}, {16020, 20195}, {16610, 17726}, {16688, 52241}, {16825, 49684}, {16884, 38201}, {16975, 61326}, {17019, 33110}, {17051, 51615}, {17126, 54357}, {17132, 49523}, {17133, 49474}, {17243, 49484}, {17276, 30424}, {17278, 38204}, {17301, 51100}, {17319, 62392}, {17332, 28570}, {17369, 49756}, {17378, 49450}, {17388, 49468}, {17390, 28581}, {17450, 49989}, {17599, 24177}, {17784, 37553}, {19808, 39597}, {19843, 37554}, {20103, 37662}, {20716, 59517}, {20964, 28375}, {21026, 30768}, {21027, 50756}, {21674, 61399}, {21805, 61652}, {24199, 32922}, {24231, 60980}, {24295, 49769}, {24342, 32847}, {24349, 49527}, {24563, 24982}, {24564, 62804}, {24589, 49987}, {24693, 32921}, {24695, 60942}, {24789, 61029}, {24987, 37659}, {25496, 62673}, {25557, 49465}, {26015, 37633}, {26051, 41261}, {26627, 29832}, {26723, 62807}, {26724, 62855}, {27186, 29815}, {27549, 50127}, {28301, 49445}, {28337, 51036}, {28346, 52969}, {28526, 49456}, {28858, 52964}, {29574, 49470}, {29600, 48805}, {29653, 59692}, {29657, 56010}, {29664, 59491}, {30115, 64110}, {30145, 51706}, {30172, 39559}, {30621, 51617}, {31025, 50000}, {31178, 49534}, {31302, 50128}, {31397, 44356}, {31419, 37594}, {31730, 62871}, {32944, 60423}, {33082, 36531}, {33111, 58463}, {33137, 61031}, {34379, 49457}, {34612, 37593}, {34790, 49743}, {34824, 51147}, {35658, 37434}, {36124, 38825}, {36480, 49511}, {37675, 60360}, {40328, 49506}, {40998, 44307}, {41141, 48810}, {41312, 49630}, {42697, 49446}, {43179, 53534}, {44858, 50896}, {46897, 49991}, {48809, 50781}, {48854, 50092}, {49453, 53594}, {49461, 50113}, {49473, 49768}, {49479, 49531}, {49525, 49727}, {49719, 62840}, {50303, 60986}, {63360, 64163}
X(64174) = midpoint of X(i) and X(j) for these {i,j}: {8, 3879}, {65, 3688}, {75, 49476}, {984, 50307}, {3883, 50289}, {17365, 49515}, {17388, 49468}, {24325, 50288}, {24349, 49527}, {29574, 49720}, {50116, 50286}, {50291, 50301}
X(64174) = reflection of X(i) in X(j) for these {i,j}: {3686, 10}, {17049, 3812}, {63977, 15569}
X(64174) = complement of X(3883)
X(64174) = perspector of circumconic {{A, B, C, X(835), X(37206)}}
X(64174) = X(i)-complementary conjugate of X(j) for these {i, j}: {1390, 1329}, {59120, 20317}
X(64174) = pole of line {4205, 18250} with respect to the Kiepert hyperbola
X(64174) = pole of line {47659, 47676} with respect to the Steiner circumellipse
X(64174) = pole of line {3676, 4379} with respect to the Steiner inellipse
X(64174) = pole of line {9, 3589} with respect to the dual conic of Yff parabola
X(64174) = intersection, other than A, B, C, of circumconics {{A, B, C, X(277), X(39716)}}, {{A, B, C, X(1818), X(38825)}}, {{A, B, C, X(2191), X(2214)}}, {{A, B, C, X(3946), X(36124)}}, {{A, B, C, X(6601), X(60152)}}
X(64174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1738, 3946}, {1, 2550, 3755}, {1, 38052, 4000}, {2, 4344, 7290}, {2, 50289, 3883}, {7, 39587, 7174}, {10, 4349, 6}, {10, 50302, 5750}, {10, 5847, 3686}, {528, 15569, 63977}, {750, 29639, 3911}, {984, 50301, 50307}, {1279, 17245, 1125}, {1386, 3008, 4989}, {1386, 3826, 3008}, {1698, 16469, 37650}, {1961, 33109, 24210}, {2886, 4682, 39595}, {3242, 4675, 5542}, {3745, 3925, 40940}, {4344, 7290, 50294}, {4645, 16830, 4357}, {4667, 24393, 3751}, {12609, 30142, 34937}, {17365, 49515, 5850}, {24325, 50288, 519}, {24349, 50286, 49527}, {29571, 63969, 1001}, {39586, 50295, 5257}, {40328, 49506, 50305}, {49527, 50116, 24349}, {50288, 50299, 24325}, {50291, 50301, 527}, {50291, 50307, 984}
X(64175) lies on these lines: {1, 474}, {2, 3902}, {6, 5119}, {8, 3896}, {10, 3706}, {37, 3679}, {40, 36746}, {42, 517}, {43, 392}, {55, 37817}, {58, 37568}, {65, 4306}, {72, 37598}, {73, 13601}, {75, 50083}, {81, 63136}, {100, 17015}, {145, 37339}, {192, 4737}, {227, 3340}, {244, 5049}, {312, 50122}, {386, 3057}, {484, 16474}, {495, 3914}, {518, 4424}, {519, 3666}, {536, 4692}, {551, 16610}, {614, 6767}, {756, 49984}, {902, 51787}, {910, 16785}, {940, 54286}, {942, 4642}, {956, 17594}, {960, 3293}, {968, 9708}, {986, 3555}, {993, 4689}, {995, 5919}, {1100, 5541}, {1104, 3746}, {1107, 50016}, {1145, 2092}, {1193, 9957}, {1201, 31792}, {1203, 37563}, {1319, 4256}, {1386, 37610}, {1427, 18421}, {1453, 53053}, {1455, 3256}, {1465, 2099}, {1468, 3579}, {1500, 16601}, {1697, 7074}, {1698, 21896}, {1834, 10039}, {2177, 24929}, {2276, 43065}, {2292, 34790}, {2334, 37567}, {2646, 15955}, {2650, 50193}, {2999, 16483}, {3214, 5044}, {3216, 58679}, {3240, 3877}, {3241, 4850}, {3247, 51781}, {3290, 50291}, {3295, 54418}, {3421, 64168}, {3434, 5725}, {3617, 62831}, {3626, 3743}, {3670, 34791}, {3689, 30115}, {3697, 59294}, {3720, 4695}, {3739, 4714}, {3740, 31855}, {3744, 25439}, {3748, 30117}, {3750, 60353}, {3755, 31397}, {3772, 10056}, {3811, 37614}, {3871, 5266}, {3878, 50587}, {3892, 3999}, {3895, 5256}, {3946, 21232}, {3953, 58609}, {3957, 54315}, {3971, 59586}, {3992, 35652}, {3995, 4723}, {4252, 59316}, {4257, 63211}, {4263, 11113}, {4270, 21871}, {4300, 31798}, {4663, 49500}, {4681, 4738}, {4696, 64071}, {4698, 19870}, {4711, 62325}, {4720, 25060}, {4849, 5692}, {4875, 25092}, {4883, 5883}, {4891, 49999}, {5045, 24443}, {5122, 54310}, {5252, 48837}, {5312, 5697}, {5530, 24390}, {5711, 62808}, {5774, 17156}, {5902, 49478}, {6690, 50759}, {6735, 37715}, {7991, 15852}, {8715, 37539}, {9623, 37553}, {10179, 49997}, {10391, 45269}, {11231, 29662}, {11239, 19785}, {11269, 26446}, {11362, 37528}, {12672, 37699}, {12702, 54421}, {13528, 37469}, {14923, 19767}, {15569, 56191}, {15888, 23537}, {16469, 53052}, {16602, 25055}, {16605, 25086}, {17012, 62848}, {17061, 50745}, {17461, 21870}, {17609, 24046}, {17720, 45701}, {17757, 24210}, {18677, 38462}, {20691, 29659}, {20925, 50101}, {24028, 50195}, {24473, 49490}, {25099, 50620}, {26728, 37703}, {28174, 41011}, {28212, 61652}, {30116, 37593}, {30305, 63089}, {30384, 37662}, {30411, 61072}, {32777, 48831}, {32945, 60684}, {35460, 51340}, {36279, 62819}, {37520, 62844}, {37562, 37698}, {37599, 54391}, {37728, 60415}, {37732, 45776}, {39523, 61356}, {40937, 56926}, {41261, 41813}, {45126, 60689}, {60751, 63168}, {63146, 63360}
X(64175) = midpoint of X(i) and X(j) for these {i,j}: {8, 3896}
X(64175) = reflection of X(i) in X(j) for these {i,j}: {3666, 4868}, {3706, 10}
X(64175) = complement of X(3902)
X(64175) = X(i)-complementary conjugate of X(j) for these {i, j}: {28210, 59971}, {40434, 21244}, {41434, 1329}
X(64175) = pole of line {2098, 31514} with respect to the Feuerbach hyperbola
X(64175) = pole of line {3669, 47777} with respect to the Steiner inellipse
X(64175) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3742), X(36125)}}, {{A, B, C, X(25524), X(57705)}}
X(64175) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1739, 3742}, {1, 24440, 5439}, {1, 3987, 3812}, {1, 60714, 5440}, {1, 64176, 3753}, {10, 37548, 6051}, {519, 4868, 3666}, {1500, 41015, 16601}, {2999, 31393, 16483}, {3755, 31397, 64172}, {3871, 17016, 5266}, {51787, 64166, 902}
X(64176) lies on these lines: {1, 474}, {2, 4695}, {6, 21888}, {8, 38}, {10, 312}, {31, 63136}, {36, 49494}, {39, 4051}, {40, 1707}, {43, 517}, {55, 60353}, {65, 50581}, {72, 59294}, {100, 49487}, {145, 3976}, {171, 54286}, {238, 5119}, {244, 3241}, {291, 50282}, {392, 16569}, {484, 4650}, {495, 17889}, {519, 982}, {536, 984}, {614, 3895}, {668, 49518}, {726, 4737}, {750, 17015}, {756, 53620}, {846, 9708}, {899, 3877}, {956, 17596}, {960, 6048}, {978, 3057}, {988, 4853}, {993, 17601}, {995, 2802}, {997, 56009}, {999, 1054}, {1046, 37567}, {1145, 41886}, {1193, 14923}, {1201, 3885}, {1266, 20925}, {1453, 63138}, {1478, 24715}, {1697, 1722}, {1724, 11010}, {1725, 10573}, {1736, 30286}, {1737, 33141}, {1738, 31397}, {1743, 63468}, {1834, 8256}, {2093, 3751}, {2170, 17756}, {2276, 21332}, {2292, 3617}, {3085, 24161}, {3125, 51058}, {3208, 16583}, {3214, 3869}, {3216, 5697}, {3242, 8168}, {3244, 24046}, {3245, 49500}, {3293, 5903}, {3421, 24248}, {3434, 37717}, {3436, 24851}, {3452, 38471}, {3501, 41015}, {3632, 3670}, {3633, 3953}, {3663, 63151}, {3681, 49984}, {3684, 9620}, {3698, 37548}, {3735, 52959}, {3744, 16498}, {3750, 54318}, {3831, 4673}, {3871, 3924}, {3872, 37617}, {3874, 50575}, {3884, 17749}, {3890, 27627}, {3902, 30942}, {3914, 6735}, {3931, 59311}, {3935, 49454}, {3938, 54315}, {3940, 5524}, {3944, 17757}, {3959, 20691}, {3979, 15934}, {4000, 21232}, {4002, 6051}, {4342, 45204}, {4392, 31145}, {4398, 18159}, {4457, 48850}, {4641, 5183}, {4674, 5902}, {4692, 49493}, {4694, 51093}, {4711, 49515}, {4723, 32925}, {4731, 44307}, {4738, 49517}, {4742, 30957}, {4849, 44663}, {4868, 17592}, {5080, 33094}, {5121, 63993}, {5255, 16478}, {5272, 31393}, {5289, 5529}, {5293, 37614}, {5295, 59313}, {5429, 37540}, {5541, 37610}, {5657, 33137}, {5692, 22325}, {5724, 34612}, {5725, 33109}, {5727, 45269}, {5919, 16610}, {6736, 13161}, {6767, 29820}, {7174, 51781}, {7275, 62541}, {7757, 35957}, {7991, 54386}, {9352, 54310}, {9623, 17594}, {9819, 23511}, {9957, 21214}, {10056, 33130}, {10176, 17461}, {10179, 16602}, {10915, 23537}, {12782, 46180}, {15955, 25440}, {16284, 24214}, {16821, 32916}, {17064, 31434}, {17158, 24172}, {17715, 25439}, {17719, 45701}, {18183, 49690}, {18391, 24028}, {18419, 53531}, {19860, 37573}, {21870, 53115}, {22316, 49459}, {24168, 51071}, {24464, 50016}, {24473, 49498}, {25073, 27304}, {25079, 26029}, {26446, 33140}, {27002, 38475}, {28850, 52517}, {29659, 35101}, {30147, 33771}, {31433, 60711}, {32107, 41775}, {32780, 48831}, {32913, 36279}, {33144, 34619}, {36574, 64068}, {37562, 37699}, {37568, 54354}, {37591, 41687}, {37592, 59310}, {42039, 51072}, {42041, 51068}, {49503, 62325}, {53052, 60846}, {59305, 62840}, {59387, 64134}
X(64176) = midpoint of X(i) and X(j) for these {i,j}: {8, 3210}
X(64176) = reflection of X(i) in X(j) for these {i,j}: {1, 3752}, {312, 10}
X(64176) = X(i)-complementary conjugate of X(j) for these {i, j}: {56150, 1329}
X(64176) = pole of line {38406, 56953} with respect to the Kiepert hyperbola
X(64176) = pole of line {47759, 48131} with respect to the Steiner circumellipse
X(64176) = pole of line {3669, 47760} with respect to the Steiner inellipse
X(64176) = pole of line {4106, 30198} with respect to the Suppa-Cucoanes circle
X(64176) = pole of line {3452, 19804} with respect to the dual conic of Yff parabola
X(64176) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3445), X(4492)}}, {{A, B, C, X(8056), X(34258)}}, {{A, B, C, X(17063), X(36125)}}
X(64176) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1739, 17063}, {1, 24440, 24174}, {1, 3987, 24440}, {8, 4642, 986}, {960, 21896, 6048}, {3679, 4424, 984}, {3752, 3880, 1}, {3914, 6735, 37716}, {4868, 30116, 17592}, {5255, 54418, 16478}, {17063, 24440, 1739}, {54418, 63130, 5255}
X(64177) lies on these lines: {2, 3167}, {3, 40911}, {4, 110}, {6, 40132}, {20, 26864}, {25, 63092}, {30, 64059}, {49, 6643}, {54, 6804}, {68, 5067}, {69, 3292}, {125, 62708}, {154, 29181}, {155, 631}, {156, 34938}, {184, 7386}, {193, 468}, {323, 7493}, {373, 8681}, {376, 6800}, {394, 7494}, {443, 41608}, {450, 1249}, {511, 35260}, {524, 61680}, {525, 9168}, {539, 61899}, {542, 30775}, {852, 20794}, {858, 39874}, {912, 17561}, {925, 56633}, {1007, 47200}, {1092, 10996}, {1285, 32661}, {1351, 4232}, {1353, 63081}, {1370, 9544}, {1495, 51212}, {1614, 52398}, {1885, 32605}, {1992, 5642}, {1993, 6353}, {1994, 34966}, {1995, 63082}, {3060, 62979}, {3090, 6193}, {3147, 56292}, {3316, 49224}, {3317, 49225}, {3523, 12164}, {3524, 7998}, {3525, 11411}, {3528, 12038}, {3529, 22660}, {3533, 12359}, {3538, 64049}, {3544, 9927}, {3545, 44665}, {3580, 52290}, {3618, 5651}, {3796, 33750}, {4563, 6337}, {5012, 41619}, {5020, 59399}, {5032, 47597}, {5056, 12429}, {5071, 63649}, {5093, 44212}, {5094, 5921}, {5159, 39899}, {5422, 52077}, {5449, 60781}, {5462, 12271}, {5640, 34382}, {5656, 37497}, {5967, 17932}, {5972, 37643}, {6240, 25712}, {6391, 63123}, {6515, 38282}, {6677, 63031}, {6776, 11064}, {6816, 9545}, {6857, 26637}, {6995, 8780}, {7392, 9306}, {7401, 61753}, {7486, 61544}, {7503, 38396}, {7582, 8909}, {7605, 63036}, {7689, 41462}, {7714, 35264}, {7763, 57216}, {8057, 14401}, {8548, 15018}, {8550, 59767}, {8889, 61700}, {9155, 32985}, {9463, 61199}, {9703, 18531}, {9707, 59346}, {9716, 37644}, {9777, 14914}, {9925, 16042}, {9928, 10595}, {9936, 43839}, {10192, 37672}, {10299, 12163}, {10516, 14826}, {10554, 58046}, {11002, 14984}, {11003, 41615}, {11008, 41586}, {11180, 45303}, {11206, 29012}, {11284, 19588}, {11422, 63084}, {11433, 34986}, {11442, 52299}, {11451, 61666}, {11477, 15448}, {12293, 61964}, {12310, 14002}, {13303, 45325}, {13366, 18928}, {13416, 34783}, {13567, 59551}, {13568, 45248}, {13857, 64014}, {13881, 15504}, {14039, 46900}, {14853, 35259}, {14927, 51360}, {15024, 21651}, {15061, 18917}, {15082, 38064}, {15083, 61814}, {15139, 36851}, {17040, 63069}, {17809, 53415}, {17810, 59699}, {18420, 40111}, {18440, 52284}, {18909, 43844}, {18931, 38727}, {18935, 28708}, {19119, 28419}, {19597, 37338}, {21850, 52301}, {21970, 64067}, {31099, 46818}, {32001, 41203}, {32225, 63064}, {32235, 32255}, {34381, 64149}, {34511, 35282}, {35266, 54132}, {35513, 43574}, {36181, 47148}, {37897, 44456}, {37904, 51028}, {41588, 62973}, {43653, 64064}, {43841, 64035}, {44109, 54012}, {44210, 62174}, {51170, 63612}, {54376, 64025}, {58434, 64060}
X(64177) = inverse of X(1992) in Thomson-Gibert-Moses hyperbola
X(64177) = perspector of circumconic {{A, B, C, X(687), X(20187)}}
X(64177) = X(i)-Ceva conjugate of X(j) for these {i, j}: {11169, 3}
X(64177) = pole of line {16051, 37637} with respect to the Kiepert hyperbola
X(64177) = pole of line {9191, 30512} with respect to the Kiepert parabola
X(64177) = pole of line {352, 1499} with respect to the MacBeath circumconic
X(64177) = pole of line {47236, 50644} with respect to the Orthic inconic
X(64177) = pole of line {1351, 1597} with respect to the Stammler hyperbola
X(64177) = pole of line {8598, 44427} with respect to the Steiner circumellipse
X(64177) = pole of line {1007, 5094} with respect to the Wallace hyperbola
X(64177) = pole of line {1499, 54259} with respect to the dual conic of DeLongchamps circle
X(64177) = pole of line {3906, 45688} with respect to the dual conic of polar circle
X(64177) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1300), X(7612)}}, {{A, B, C, X(2986), X(56267)}}, {{A, B, C, X(44080), X(47390)}}
X(64177) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3167, 63174}, {110, 34148, 44080}, {110, 37645, 4}, {184, 37669, 7386}, {323, 7493, 63428}, {394, 13394, 10519}, {631, 15066, 44833}, {3167, 59553, 2}, {6776, 11064, 16051}, {9306, 11427, 7392}, {10519, 13394, 7494}, {11411, 64181, 3525}, {14389, 54013, 3090}, {34986, 59543, 11433}, {41597, 64181, 11411}
X(64178) lies on these lines: {1, 3952}, {2, 726}, {9, 17763}, {10, 4671}, {37, 4009}, {38, 18743}, {42, 27538}, {43, 3995}, {45, 32917}, {75, 3994}, {190, 750}, {192, 899}, {210, 28581}, {226, 29854}, {244, 30829}, {312, 756}, {321, 26037}, {329, 32949}, {344, 29632}, {373, 14839}, {522, 6544}, {536, 61686}, {537, 64149}, {551, 59718}, {596, 34595}, {612, 30568}, {714, 51488}, {740, 42056}, {748, 32926}, {896, 17336}, {908, 4078}, {940, 32938}, {984, 4358}, {1001, 32927}, {1089, 31339}, {1376, 32936}, {1698, 3159}, {1961, 26223}, {1978, 6376}, {2177, 3699}, {2292, 46937}, {3011, 25101}, {3175, 3740}, {3219, 29649}, {3240, 3993}, {3305, 32914}, {3452, 29849}, {3501, 61163}, {3624, 24068}, {3663, 60423}, {3666, 59506}, {3681, 4096}, {3703, 25960}, {3715, 32864}, {3717, 33120}, {3720, 32937}, {3731, 29828}, {3782, 25961}, {3807, 4664}, {3836, 33151}, {3840, 7226}, {3846, 32862}, {3873, 42054}, {3876, 63800}, {3891, 17123}, {3912, 33065}, {3920, 4011}, {3923, 5297}, {3931, 59582}, {3932, 25760}, {3943, 4023}, {3967, 32771}, {3999, 49513}, {4052, 61029}, {4062, 17242}, {4090, 17018}, {4103, 9331}, {4135, 28605}, {4362, 27065}, {4365, 59296}, {4383, 32928}, {4387, 32945}, {4392, 4871}, {4413, 17262}, {4414, 5205}, {4415, 25957}, {4416, 49990}, {4418, 5268}, {4422, 17602}, {4423, 32923}, {4425, 29679}, {4427, 56010}, {4434, 62838}, {4439, 33089}, {4656, 32776}, {4660, 60459}, {4661, 42057}, {4672, 9347}, {4679, 32844}, {4687, 17157}, {4703, 33078}, {4704, 59565}, {4706, 4718}, {4756, 32935}, {4759, 30653}, {4850, 24003}, {4918, 9711}, {4938, 17386}, {5220, 32919}, {5233, 32848}, {5284, 32920}, {5294, 29847}, {5311, 27064}, {5741, 33092}, {5743, 6057}, {6048, 64071}, {6541, 33077}, {6745, 59585}, {7292, 49455}, {8026, 40087}, {8580, 59638}, {8669, 16865}, {8720, 17572}, {9458, 42720}, {10179, 50078}, {10327, 32947}, {10459, 19582}, {11269, 27549}, {14459, 17314}, {14997, 49477}, {15485, 20045}, {16373, 64170}, {16569, 17147}, {16610, 49523}, {16825, 35595}, {16831, 31063}, {17122, 32933}, {17124, 32939}, {17125, 32922}, {17140, 25502}, {17165, 26102}, {17234, 32856}, {17264, 33156}, {17279, 32775}, {17349, 50756}, {17353, 29636}, {17363, 49995}, {17397, 59735}, {17449, 30947}, {17450, 49499}, {17495, 49445}, {17717, 30566}, {17718, 41313}, {17720, 33115}, {17721, 24709}, {17725, 24542}, {17776, 29846}, {17777, 33104}, {18139, 33101}, {18140, 36863}, {18228, 33088}, {19765, 59598}, {19872, 24176}, {19875, 27812}, {19998, 49469}, {20942, 42041}, {21020, 42034}, {21080, 27268}, {21093, 31019}, {21805, 49470}, {24067, 59772}, {24080, 31996}, {24210, 33117}, {24349, 30950}, {24589, 49493}, {24703, 33072}, {24988, 33149}, {25055, 59717}, {25253, 59311}, {25959, 49769}, {26580, 29674}, {26688, 29821}, {26792, 32946}, {27131, 29671}, {27184, 29687}, {27804, 42043}, {28557, 46916}, {28606, 59511}, {29574, 61652}, {29635, 33166}, {29639, 62297}, {29642, 33153}, {29653, 31053}, {29824, 49448}, {29845, 33163}, {29851, 33144}, {30578, 33112}, {31018, 32843}, {31197, 49522}, {32129, 36847}, {32916, 33761}, {32921, 37680}, {32924, 37679}, {32940, 37674}, {33125, 62673}, {34064, 61358}, {36479, 53661}, {37548, 59577}, {37553, 59599}, {37593, 59596}, {37598, 52353}, {41242, 50302}, {42051, 58451}, {49474, 62227}
X(64178) = reflection of X(i) in X(j) for these {i,j}: {63961, 42056}
X(64178) = pole of line {4785, 21385} with respect to the Steiner circumellipse
X(64178) = pole of line {3807, 24004} with respect to the Yff parabola
X(64178) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(17155), X(55997)}}, {{A, B, C, X(27494), X(39698)}}, {{A, B, C, X(52654), X(56162)}}
X(64178) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 32925, 17155}, {2, 3971, 32925}, {37, 4009, 32931}, {210, 35652, 32915}, {312, 756, 31330}, {612, 30568, 32930}, {740, 42056, 63961}, {908, 4078, 29643}, {984, 4358, 30942}, {3952, 31035, 1}, {3967, 44307, 32771}, {3971, 59517, 2}, {4671, 9330, 10}, {4756, 37633, 32935}, {4871, 49520, 4392}, {5205, 17261, 4414}, {5268, 56082, 4418}, {7226, 46938, 3840}, {24003, 49456, 4850}, {27538, 41839, 42}, {30829, 49447, 244}, {49445, 62711, 17495}
X(64179) lies on circumconic {{A, B, C, X(3521), X(32085)}} and on these lines: {2, 3357}, {3, 1568}, {4, 83}, {5, 10575}, {20, 6030}, {30, 3574}, {113, 140}, {125, 10024}, {184, 12118}, {185, 12359}, {265, 18128}, {381, 15805}, {382, 3796}, {403, 9729}, {541, 45619}, {548, 51392}, {550, 13394}, {567, 12897}, {569, 61744}, {578, 44440}, {631, 43599}, {632, 44755}, {1092, 15438}, {1105, 3462}, {1181, 12429}, {1204, 3549}, {1209, 5663}, {1495, 31833}, {1498, 47353}, {1519, 6831}, {1531, 12362}, {1594, 46850}, {1656, 11472}, {2777, 14118}, {2883, 7399}, {2916, 11414}, {3090, 15740}, {3520, 58447}, {3530, 44796}, {3543, 54036}, {3547, 63425}, {3580, 13382}, {3690, 31837}, {3850, 51548}, {3851, 5544}, {3917, 22660}, {5012, 13403}, {5133, 13474}, {5462, 11799}, {5489, 6368}, {5562, 6823}, {5576, 14915}, {5642, 61608}, {5654, 43652}, {5890, 15103}, {5893, 34664}, {5895, 54994}, {5907, 15063}, {6000, 13160}, {6102, 41586}, {6241, 21243}, {6689, 14130}, {6800, 34785}, {6815, 44679}, {7395, 9914}, {7400, 11821}, {7403, 32062}, {7503, 22802}, {7509, 32600}, {7517, 7706}, {7542, 21663}, {7550, 38791}, {7574, 17712}, {7728, 34864}, {9019, 12233}, {9730, 15761}, {10095, 43893}, {10110, 47096}, {10112, 15032}, {10151, 64038}, {10254, 45622}, {10282, 38323}, {10539, 50008}, {10619, 15089}, {10982, 14848}, {11430, 52071}, {11559, 14861}, {11560, 14708}, {11563, 12006}, {11745, 47093}, {11750, 44263}, {12038, 64064}, {12085, 61743}, {12103, 53779}, {12162, 34115}, {12163, 61644}, {12605, 22352}, {13202, 37513}, {13339, 46686}, {13353, 31726}, {13367, 16163}, {13371, 14855}, {13399, 13491}, {13406, 43817}, {13434, 52403}, {13488, 37649}, {13630, 61750}, {14788, 32111}, {15037, 58807}, {15043, 15086}, {15045, 44958}, {15058, 24206}, {15072, 20299}, {15321, 15811}, {15720, 21968}, {15800, 47748}, {15807, 44267}, {16003, 34826}, {16836, 32743}, {16868, 43846}, {17928, 61747}, {18364, 20127}, {18400, 34007}, {18420, 26883}, {18555, 34564}, {20191, 44753}, {21451, 43584}, {21659, 64049}, {22467, 64063}, {26917, 61136}, {31074, 52093}, {31371, 56069}, {31829, 51394}, {32068, 43600}, {32340, 44407}, {33923, 51391}, {34152, 58407}, {34350, 39242}, {34545, 40240}, {37197, 37514}, {37472, 61659}, {37476, 44438}, {37648, 44960}, {37943, 43597}, {38793, 58435}, {41464, 52404}, {43392, 53781}, {43595, 44109}, {43601, 44673}, {43845, 58806}, {46849, 50137}, {46852, 50135}
X(64179) = midpoint of X(i) and X(j) for these {i,j}: {3, 3521}, {4, 8718}, {3543, 54036}, {15800, 47748}, {18488, 44866}, {34007, 52525}, {34563, 35240}, {43585, 64180}
X(64179) = reflection of X(i) in X(j) for these {i,j}: {11560, 14708}, {14130, 6689}, {18488, 5}, {34563, 3521}, {35240, 3}, {64180, 140}
X(64179) = inverse of X(40647) in Jerabek hyperbola
X(64179) = complement of X(15062)
X(64179) = pole of line {826, 1092} with respect to the 1st Brocard circle
X(64179) = pole of line {12605, 40647} with respect to the Jerabek hyperbola
X(64179) = pole of line {3520, 3917} with respect to the Stammler hyperbola
X(64179) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 43831, 1568}, {4, 8718, 29012}, {2883, 7399, 15030}, {3549, 4846, 1204}, {5012, 50009, 13403}, {13630, 61750, 63735}, {14788, 32111, 44870}, {34007, 52525, 18400}
X(64180) lies on these lines: {2, 3521}, {3, 6030}, {4, 18442}, {5, 20191}, {6, 6102}, {30, 1209}, {35, 34586}, {74, 34864}, {110, 11559}, {113, 140}, {141, 550}, {143, 7527}, {185, 63729}, {186, 45958}, {206, 3357}, {378, 6101}, {389, 46084}, {399, 51033}, {546, 44106}, {548, 16655}, {549, 2883}, {632, 43604}, {960, 31663}, {1147, 5876}, {1154, 14130}, {1176, 43719}, {1204, 49671}, {1493, 13754}, {1498, 34513}, {1510, 14809}, {1511, 5907}, {1539, 10024}, {1656, 11454}, {1658, 44082}, {2070, 43613}, {2071, 32142}, {2916, 55654}, {3516, 64105}, {3520, 11591}, {3526, 11468}, {3530, 44866}, {3580, 15807}, {3627, 16254}, {3628, 21663}, {3850, 32110}, {4550, 37814}, {5237, 34328}, {5238, 34327}, {5447, 37950}, {5449, 43865}, {5609, 13367}, {5663, 10610}, {5891, 10226}, {5944, 12162}, {5946, 7689}, {6000, 32391}, {6152, 13391}, {6368, 57128}, {6593, 20190}, {6644, 33537}, {6759, 34472}, {7488, 32137}, {7503, 32138}, {7516, 10606}, {7568, 15311}, {7575, 44870}, {7998, 15086}, {8542, 9019}, {8567, 32620}, {9306, 33556}, {9704, 12111}, {9818, 15026}, {9909, 56069}, {10113, 34826}, {10170, 11598}, {10193, 32415}, {10212, 38793}, {10263, 63425}, {10620, 61134}, {10627, 45973}, {10984, 13491}, {11017, 44802}, {11188, 12085}, {11250, 15067}, {11413, 33533}, {11440, 13630}, {11444, 15103}, {11672, 37512}, {11793, 22966}, {12006, 35500}, {12084, 54042}, {12086, 63414}, {12107, 16194}, {12167, 55571}, {12316, 13482}, {13382, 55709}, {13561, 52069}, {13565, 34007}, {14805, 64025}, {14869, 44755}, {15030, 15331}, {15116, 20582}, {15246, 55286}, {15688, 54036}, {15748, 17814}, {16656, 47342}, {17713, 64100}, {18435, 32171}, {22333, 47391}, {23039, 35475}, {26206, 55697}, {30522, 34005}, {33539, 37922}, {33542, 35452}, {34577, 51403}, {35473, 43846}, {35478, 37477}, {35498, 40930}, {37936, 46849}, {37955, 43614}, {41464, 55632}, {41614, 45034}, {43611, 46865}, {45248, 61753}, {45956, 55706}
X(64180) = midpoint of X(i) and X(j) for these {i,j}: {3, 15062}, {4, 18442}, {110, 11559}, {3520, 44753}, {8718, 33541}, {16835, 52100}, {18488, 35240}
X(64180) = reflection of X(i) in X(j) for these {i,j}: {185, 63729}, {10610, 14118}, {34007, 13565}, {43585, 64179}, {46027, 546}, {53779, 46027}, {64179, 140}
X(64180) = inverse of X(57713) in Stammler hyperbola
X(64180) = complement of X(3521)
X(64180) = center of circumconic {{A, B, C, X(110), X(11559)}}
X(64180) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 10024}, {2190, 12006}, {3520, 10}
X(64180) = pole of line {550, 3521} with respect to the Stammler hyperbola
X(64180) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {110, 11559, 16166}
X(64180) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(46027)}}, {{A, B, C, X(546), X(3520)}}, {{A, B, C, X(550), X(6030)}}
X(64180) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 33541, 8718}, {3, 52100, 6030}, {5663, 14118, 10610}, {5876, 18570, 43394}, {6030, 15062, 16835}, {6030, 16835, 52100}, {7527, 63392, 143}, {7689, 63682, 5946}, {8718, 15062, 33541}, {18488, 35240, 30}, {34826, 52070, 10113}
X(64181) lies on these lines: {2, 54}, {3, 4549}, {4, 11449}, {5, 11425}, {6, 16238}, {10, 9933}, {20, 5448}, {30, 17821}, {49, 1899}, {52, 3147}, {110, 37119}, {140, 155}, {146, 35494}, {154, 23335}, {156, 14216}, {184, 3548}, {235, 64096}, {373, 58496}, {394, 7542}, {468, 36747}, {511, 31267}, {549, 12163}, {550, 41427}, {567, 63701}, {578, 5504}, {590, 19062}, {615, 8909}, {631, 10574}, {632, 3564}, {858, 9707}, {912, 25917}, {1069, 5432}, {1092, 3549}, {1125, 9928}, {1181, 10257}, {1216, 37669}, {1352, 61753}, {1593, 51425}, {1656, 44665}, {1853, 32144}, {1993, 10018}, {1995, 32048}, {2072, 19467}, {2548, 32661}, {2931, 9815}, {3088, 46261}, {3090, 9927}, {3091, 15034}, {3157, 5433}, {3167, 3526}, {3523, 7689}, {3525, 11411}, {3533, 63174}, {3541, 10539}, {3542, 13352}, {3546, 14156}, {3547, 44516}, {3567, 45780}, {3618, 34382}, {3624, 12259}, {3628, 14852}, {3917, 47525}, {4413, 12328}, {5054, 12164}, {5070, 12429}, {5094, 12134}, {5159, 31804}, {5418, 10666}, {5420, 10665}, {5446, 6353}, {5447, 7494}, {5462, 11427}, {5642, 15115}, {5651, 14786}, {5876, 18580}, {5878, 11250}, {5944, 14791}, {6143, 11442}, {6623, 12897}, {6639, 22115}, {6642, 23292}, {6643, 18475}, {6699, 18913}, {6759, 44441}, {7387, 10192}, {7391, 26882}, {7393, 53415}, {7401, 43586}, {7403, 35259}, {7405, 23307}, {7484, 9908}, {7493, 10625}, {7505, 34148}, {7506, 59648}, {7509, 19908}, {7525, 46114}, {7528, 61743}, {7568, 19139}, {7575, 31815}, {7592, 61655}, {7808, 12193}, {7914, 9923}, {8252, 49225}, {8253, 49224}, {8912, 18510}, {9544, 11457}, {9703, 25738}, {9705, 23294}, {9706, 26913}, {9818, 59659}, {9833, 13371}, {9937, 37649}, {9967, 28708}, {10020, 16266}, {10116, 23291}, {10182, 46730}, {10201, 58435}, {10272, 12302}, {10282, 14790}, {10303, 15083}, {10564, 37201}, {10601, 15316}, {10661, 42089}, {10662, 42092}, {10984, 64064}, {11202, 32364}, {11441, 37118}, {11464, 37444}, {11469, 16534}, {11585, 19357}, {12084, 61608}, {12085, 16252}, {12161, 44452}, {12235, 63085}, {12383, 33547}, {12418, 15184}, {12421, 45298}, {12423, 24953}, {12430, 26364}, {12431, 26363}, {12901, 35475}, {13292, 26958}, {13346, 64063}, {13353, 54012}, {13367, 18531}, {13383, 37498}, {13392, 50138}, {13909, 32785}, {13970, 32786}, {14516, 52296}, {14643, 63685}, {14984, 15026}, {15024, 63036}, {15559, 35264}, {15760, 35602}, {15805, 19458}, {17814, 52262}, {17834, 34351}, {18356, 34331}, {18445, 26937}, {18569, 32171}, {18917, 43844}, {18925, 62708}, {18951, 34986}, {19131, 28419}, {20302, 37347}, {21841, 44413}, {23128, 31401}, {23306, 32609}, {23336, 32139}, {26492, 47371}, {30744, 34224}, {31670, 37440}, {31802, 37935}, {32140, 61736}, {32539, 43808}, {32767, 61751}, {34007, 38942}, {34938, 35260}, {36749, 61506}, {36752, 61690}, {36753, 58726}, {37453, 41587}, {37471, 41615}, {37472, 54148}, {37476, 59767}, {37481, 38794}, {37484, 63683}, {37490, 44214}, {37672, 64066}, {38282, 64048}, {39522, 44232}, {42021, 43653}, {43595, 44911}, {43843, 61199}, {44469, 61683}, {44802, 59771}, {45184, 61863}, {48876, 63702}, {51732, 63612}, {52016, 58445}, {52104, 55864}, {54217, 58465}, {55856, 61544}, {62376, 63722}, {63344, 63353}
X(64181) = pole of line {15905, 53414} with respect to the Kiepert hyperbola
X(64181) = pole of line {52, 378} with respect to the Stammler hyperbola
X(64181) = pole of line {39113, 44134} with respect to the Wallace hyperbola
X(64181) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(96), X(4846)}}, {{A, B, C, X(317), X(5449)}}
X(64181) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1147, 68}, {2, 6193, 5449}, {2, 9545, 18912}, {3, 9820, 5654}, {5, 47391, 12118}, {49, 6640, 1899}, {68, 1147, 63649}, {140, 59553, 155}, {156, 18281, 14216}, {549, 61607, 12163}, {615, 8909, 19061}, {1147, 43839, 2}, {1147, 5449, 6193}, {3147, 37645, 52}, {3167, 12359, 9936}, {3167, 3526, 12359}, {3525, 64177, 11411}, {5054, 12164, 44158}, {11411, 64177, 41597}, {14156, 64049, 3546}, {37498, 61680, 13383}
X(64182) lies on these lines: {2, 265}, {3, 67}, {5, 11694}, {20, 5609}, {30, 110}, {49, 38323}, {74, 8703}, {113, 3830}, {125, 5054}, {140, 15020}, {146, 11001}, {186, 15361}, {376, 5663}, {381, 5642}, {382, 15039}, {394, 399}, {428, 15472}, {468, 15362}, {511, 34319}, {519, 12778}, {524, 3581}, {539, 12893}, {543, 18332}, {547, 14644}, {548, 15054}, {549, 9140}, {550, 14094}, {567, 597}, {568, 1992}, {671, 51478}, {690, 53275}, {895, 50979}, {1351, 15303}, {1385, 50921}, {1483, 50923}, {1539, 15682}, {1657, 15063}, {1989, 32761}, {2771, 28460}, {2777, 15681}, {2781, 13340}, {2854, 11179}, {2948, 50811}, {3043, 18559}, {3058, 10091}, {3448, 3524}, {3519, 15331}, {3522, 51522}, {3523, 20379}, {3525, 20396}, {3526, 36253}, {3545, 10113}, {3564, 47333}, {3580, 18579}, {3582, 12904}, {3584, 12903}, {3656, 11720}, {3839, 61574}, {3845, 10272}, {3851, 38795}, {3858, 15029}, {5055, 5972}, {5064, 12140}, {5066, 13392}, {5073, 38791}, {5095, 50962}, {5434, 10088}, {5465, 6321}, {5504, 11597}, {5622, 13339}, {5690, 50920}, {5987, 60654}, {6053, 15685}, {6055, 14849}, {6243, 25711}, {6288, 12038}, {6593, 20423}, {6684, 50919}, {6699, 15693}, {6723, 61864}, {7540, 37495}, {7552, 32171}, {7574, 13857}, {7575, 15360}, {7576, 15463}, {7687, 19709}, {7706, 11935}, {7722, 35489}, {7768, 45993}, {7865, 12501}, {7984, 50824}, {9033, 20128}, {9126, 36255}, {9759, 56370}, {10264, 12100}, {10295, 63720}, {10304, 12041}, {10546, 39487}, {10564, 11645}, {10620, 15688}, {10657, 36968}, {10658, 36967}, {10748, 63767}, {10819, 19052}, {10820, 19051}, {10990, 15696}, {11006, 33813}, {11061, 50967}, {11064, 58789}, {11178, 39242}, {11237, 18968}, {11238, 12896}, {11430, 25561}, {11464, 44262}, {11539, 15059}, {11557, 21969}, {11579, 37283}, {11632, 53725}, {11699, 28198}, {11799, 35266}, {11801, 15699}, {12117, 15342}, {12244, 62120}, {12261, 25055}, {12295, 14269}, {12308, 15689}, {12317, 19708}, {12355, 16278}, {12368, 28208}, {12407, 19875}, {12828, 55572}, {12889, 34612}, {12890, 34606}, {12900, 61920}, {12905, 45701}, {12906, 45700}, {13169, 48876}, {13202, 62040}, {13211, 50821}, {13393, 61790}, {13605, 50828}, {13846, 49222}, {13847, 49223}, {14093, 15041}, {14559, 52056}, {14677, 15690}, {14892, 22250}, {14980, 43969}, {15021, 33923}, {15023, 61792}, {15025, 55856}, {15036, 17504}, {15042, 15716}, {15055, 34200}, {15057, 15712}, {15088, 61899}, {15131, 18400}, {15454, 58733}, {15683, 34584}, {15684, 38789}, {15694, 38638}, {15695, 37853}, {15697, 64102}, {15700, 38727}, {15701, 48378}, {15702, 34128}, {15703, 23515}, {15713, 40685}, {15718, 48375}, {15720, 20397}, {16176, 50973}, {16270, 18925}, {17538, 38632}, {18331, 52695}, {18564, 54073}, {18571, 41724}, {19059, 52048}, {19060, 52047}, {19140, 19924}, {22467, 25714}, {25328, 50983}, {25566, 48901}, {25712, 37484}, {32114, 39899}, {32234, 37934}, {32244, 50978}, {32271, 51024}, {32438, 54973}, {33851, 54173}, {33878, 56565}, {34148, 38322}, {34331, 58922}, {36208, 41100}, {36209, 41101}, {36966, 43597}, {37470, 64103}, {37483, 56568}, {37958, 41586}, {38335, 46686}, {38626, 62092}, {38729, 61811}, {38738, 56566}, {38792, 61996}, {40115, 53499}, {41512, 51345}, {41595, 51132}, {43573, 43809}, {43836, 45970}, {44214, 44569}, {44282, 50435}, {46817, 62380}, {46818, 54995}, {49216, 53130}, {49217, 53131}, {51224, 57268}, {52697, 54131}, {63343, 63352}, {63684, 64051}
X(64182) = midpoint of X(i) and X(j) for these {i,j}: {2, 12383}, {146, 11001}, {376, 9143}, {399, 3534}, {2930, 43273}, {2948, 50811}, {5648, 32233}, {5655, 12121}, {11061, 50967}, {12117, 15342}, {15685, 38790}, {16176, 50973}, {20126, 23236}, {38738, 56566}, {46818, 54995}
X(64182) = reflection of X(i) in X(j) for these {i,j}: {2, 1511}, {5, 11694}, {67, 50977}, {74, 8703}, {265, 2}, {381, 5642}, {895, 50979}, {1351, 15303}, {3534, 16163}, {3580, 18579}, {3581, 44265}, {3656, 11720}, {3830, 113}, {3845, 10272}, {5055, 11693}, {5066, 13392}, {5648, 12584}, {5655, 110}, {6321, 5465}, {7574, 13857}, {7728, 5655}, {7984, 50824}, {8724, 53735}, {9140, 549}, {10264, 12100}, {10733, 3845}, {11006, 33813}, {11579, 51737}, {11632, 53725}, {11799, 35266}, {12355, 16278}, {13169, 48876}, {13211, 50821}, {13605, 50828}, {14643, 32609}, {14677, 15690}, {15061, 15035}, {15360, 7575}, {15682, 1539}, {20126, 3}, {20127, 3534}, {20423, 6593}, {21969, 11557}, {25328, 50983}, {32244, 50978}, {32272, 50955}, {36255, 9126}, {38724, 38793}, {38788, 38723}, {44555, 15361}, {48901, 25566}, {50435, 44282}, {50878, 11699}, {50919, 6684}, {50920, 5690}, {50921, 1385}, {50923, 1483}, {50955, 5181}, {50962, 5095}, {51024, 32271}, {51132, 41595}, {54173, 33851}, {62040, 13202}, {63700, 5648}
X(64182) = perspector of circumconic {{A, B, C, X(17708), X(30528)}}
X(64182) = pole of line {690, 46616} with respect to the circumcircle
X(64182) = pole of line {43291, 61656} with respect to the Kiepert hyperbola
X(64182) = pole of line {5467, 7471} with respect to the Kiepert parabola
X(64182) = pole of line {23, 3581} with respect to the Stammler hyperbola
X(64182) = pole of line {14417, 45681} with respect to the Steiner inellipse
X(64182) = pole of line {316, 35520} with respect to the Wallace hyperbola
X(64182) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {2, 11006, 12383}, {146, 11001, 36172}, {399, 3534, 13188}, {476, 14480, 53872}, {15300, 38738, 56566}, {20126, 23236, 52056}
X(64182) = intersection, other than A, B, C, of circumconics {{A, B, C, X(67), X(477)}}, {{A, B, C, X(2697), X(20126)}}, {{A, B, C, X(3431), X(34210)}}, {{A, B, C, X(39985), X(61116)}}
X(64182) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 30714, 23236}, {3, 542, 20126}, {30, 110, 5655}, {110, 12121, 7728}, {110, 34153, 12121}, {186, 44555, 15361}, {265, 1511, 38794}, {376, 9143, 5663}, {381, 32609, 5642}, {382, 15039, 16534}, {399, 16163, 20127}, {399, 3534, 541}, {524, 44265, 3581}, {541, 16163, 3534}, {542, 12584, 5648}, {542, 50955, 32272}, {542, 50977, 67}, {542, 5181, 50955}, {542, 53735, 8724}, {549, 32423, 9140}, {1511, 12383, 265}, {5642, 17702, 381}, {5655, 12121, 30}, {5663, 38723, 38788}, {9140, 15035, 549}, {11699, 28198, 50878}, {12584, 32233, 63700}, {15035, 32423, 15061}, {15694, 38724, 45311}, {17702, 32609, 14643}, {20126, 23236, 542}, {24981, 38726, 10620}, {38638, 38724, 38793}, {38793, 45311, 15694}
X(64183) lies on circumconic {{A, B, C, X(68), X(3471)}} and on these lines: {2, 265}, {4, 195}, {6, 40640}, {8, 12407}, {20, 68}, {23, 12412}, {30, 12317}, {52, 15102}, {67, 62174}, {110, 578}, {113, 3839}, {125, 3523}, {146, 148}, {147, 48982}, {323, 3153}, {376, 10264}, {381, 20125}, {390, 12896}, {511, 15100}, {541, 15640}, {631, 34153}, {632, 38638}, {1478, 6126}, {1479, 7343}, {1495, 46451}, {1503, 17812}, {1514, 17838}, {1539, 50687}, {1587, 35834}, {1588, 35835}, {2771, 20084}, {2777, 49135}, {2781, 20079}, {2854, 5921}, {2888, 21659}, {2931, 10298}, {2935, 32064}, {2948, 59387}, {3088, 44795}, {3090, 11801}, {3146, 5663}, {3410, 4550}, {3522, 12121}, {3524, 15042}, {3525, 15040}, {3528, 61548}, {3529, 10620}, {3544, 15039}, {3545, 10272}, {3564, 10296}, {3575, 18947}, {3581, 30522}, {3600, 18968}, {3617, 12778}, {3622, 12261}, {3623, 12898}, {3627, 12308}, {3832, 10113}, {3854, 61574}, {5055, 13392}, {5056, 12900}, {5059, 12244}, {5068, 14643}, {5070, 22251}, {5076, 61598}, {5261, 10088}, {5274, 10091}, {5334, 36209}, {5335, 36208}, {5504, 43949}, {5505, 53021}, {5609, 50689}, {5642, 61924}, {5655, 61985}, {5731, 13605}, {5972, 7486}, {5984, 57611}, {6053, 61989}, {6288, 43818}, {6699, 15692}, {6723, 15020}, {6776, 9976}, {6995, 12140}, {7378, 15472}, {7488, 12310}, {7527, 12168}, {7585, 49222}, {7586, 49223}, {7728, 17578}, {7731, 62187}, {8972, 10819}, {8994, 9542}, {9140, 10304}, {9919, 37945}, {9927, 11464}, {10116, 43596}, {10303, 15035}, {10421, 62606}, {10528, 49160}, {10529, 49159}, {10546, 18390}, {10564, 25739}, {10657, 42134}, {10658, 42133}, {10706, 62007}, {10721, 50691}, {10820, 13941}, {11001, 14677}, {11002, 11557}, {11430, 58922}, {11438, 12278}, {11456, 12293}, {11694, 61899}, {12022, 15018}, {12041, 50693}, {12112, 52403}, {12133, 54037}, {12219, 14984}, {12270, 21649}, {12273, 21650}, {12284, 64025}, {12295, 14094}, {12375, 23249}, {12376, 23259}, {12584, 40330}, {12901, 35493}, {12904, 14986}, {13172, 15545}, {13203, 64037}, {13211, 59417}, {13393, 62131}, {14516, 15052}, {14853, 25556}, {14901, 43448}, {14927, 16010}, {15027, 61820}, {15032, 34007}, {15034, 23515}, {15036, 20397}, {15037, 43838}, {15041, 17538}, {15046, 61945}, {15054, 49140}, {15055, 62097}, {15057, 58188}, {15059, 55864}, {15061, 15717}, {15066, 18396}, {15101, 37484}, {15106, 37444}, {15107, 18400}, {15682, 38790}, {15683, 20127}, {15697, 37853}, {15721, 48378}, {15816, 62213}, {17701, 38942}, {17847, 41362}, {18331, 20094}, {18420, 63040}, {18440, 37077}, {19051, 63016}, {19052, 63015}, {20126, 62120}, {20379, 21734}, {20396, 61842}, {20417, 62110}, {24981, 61982}, {25320, 32233}, {25328, 25406}, {25330, 44882}, {25335, 29181}, {32247, 61044}, {32254, 39884}, {32306, 63428}, {34128, 61834}, {34584, 50692}, {35826, 43408}, {35827, 43407}, {37477, 60455}, {37496, 46450}, {37638, 50007}, {38448, 61544}, {38633, 44245}, {38726, 62067}, {38727, 61788}, {38728, 61791}, {38788, 62124}, {38793, 61856}, {39874, 44440}, {41465, 45794}, {41819, 63352}, {42522, 46688}, {42523, 46689}, {43584, 43816}, {44456, 52842}, {45311, 61844}, {49319, 62987}, {49320, 62986}, {51522, 62152}, {51538, 51941}, {56567, 61994}, {61936, 64101}, {62967, 64099}
X(64183) = midpoint of X(i) and X(j) for these {i,j}: {49050, 49051}
X(64183) = reflection of X(i) in X(j) for these {i,j}: {4, 12902}, {8, 12407}, {20, 3448}, {146, 10733}, {3529, 10620}, {5059, 12244}, {12270, 21649}, {12273, 21650}, {12308, 3627}, {12383, 265}, {13172, 15545}, {13203, 64037}, {14094, 12295}, {14683, 4}, {14927, 16010}, {15102, 52}, {17847, 41362}, {20094, 18331}, {23236, 10113}, {32254, 39884}, {37484, 15101}, {61044, 32247}, {63428, 32306}, {64025, 12284}, {64102, 12317}
X(64183) = anticomplement of X(12383)
X(64183) = X(i)-Dao conjugate of X(j) for these {i, j}: {12383, 12383}
X(64183) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {35372, 8}
X(64183) = pole of line {16163, 55121} with respect to the DeLongchamps circle
X(64183) = pole of line {3153, 61656} with respect to the Kiepert hyperbola
X(64183) = pole of line {3581, 37922} with respect to the Stammler hyperbola
X(64183) = pole of line {1637, 6334} with respect to the Steiner circumellipse
X(64183) = pole of line {52149, 59634} with respect to the Wallace hyperbola
X(64183) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 32423, 14683}, {30, 12317, 64102}, {110, 15044, 36518}, {146, 10733, 3543}, {265, 1511, 15081}, {265, 64182, 20304}, {542, 10733, 146}, {1511, 15081, 2}, {3448, 17702, 20}, {11801, 32609, 3090}, {12293, 34799, 50009}, {12383, 15081, 1511}, {12902, 32423, 4}, {34153, 38724, 631}, {49050, 49051, 542}
X(64184) lies on these lines: {1, 75}, {2, 2901}, {6, 50044}, {8, 4424}, {10, 4970}, {20, 29016}, {35, 4362}, {36, 17733}, {43, 1089}, {58, 3187}, {63, 64072}, {72, 536}, {78, 20237}, {79, 32946}, {145, 4340}, {191, 32934}, {192, 9534}, {239, 1724}, {306, 23537}, {312, 3216}, {321, 386}, {341, 31855}, {345, 1714}, {405, 4361}, {443, 17314}, {519, 3868}, {551, 25056}, {594, 13728}, {595, 32929}, {596, 3873}, {726, 5904}, {942, 42051}, {960, 28484}, {970, 54035}, {984, 22316}, {993, 27368}, {995, 3702}, {1008, 33941}, {1125, 32915}, {1193, 4365}, {1203, 3923}, {1211, 50067}, {1215, 5312}, {1278, 20018}, {1698, 63800}, {1770, 5847}, {1999, 37522}, {2049, 20182}, {3100, 56146}, {3159, 3876}, {3175, 5044}, {3190, 23661}, {3191, 40564}, {3210, 3670}, {3293, 4385}, {3338, 39594}, {3454, 33077}, {3555, 28581}, {3666, 5295}, {3678, 32925}, {3681, 24068}, {3682, 20320}, {3704, 64172}, {3706, 37592}, {3743, 31339}, {3772, 25645}, {3780, 50156}, {3782, 41014}, {3791, 24850}, {3841, 29643}, {3874, 17155}, {3896, 4968}, {3902, 50637}, {3953, 10453}, {3969, 4202}, {3980, 37559}, {3992, 6048}, {3993, 27785}, {4028, 13407}, {4065, 62831}, {4066, 32931}, {4075, 63961}, {4259, 9022}, {4299, 39765}, {4358, 17749}, {4384, 54287}, {4399, 49728}, {4418, 62805}, {4692, 50581}, {4714, 59311}, {4716, 5247}, {4717, 50604}, {4742, 56804}, {4850, 50605}, {4852, 50054}, {4894, 32866}, {4967, 19857}, {4971, 11112}, {4975, 21214}, {5132, 56538}, {5248, 32914}, {5259, 16825}, {5262, 48863}, {5264, 32932}, {5271, 62871}, {5292, 17740}, {5692, 28522}, {5695, 16466}, {5814, 50065}, {5836, 50083}, {5844, 31774}, {6051, 49462}, {6533, 26102}, {6734, 25094}, {6763, 32853}, {7951, 17748}, {9555, 21333}, {10448, 54335}, {10483, 38456}, {11104, 56138}, {13725, 42696}, {13745, 50098}, {14005, 62851}, {16394, 50120}, {16458, 16777}, {16817, 17117}, {16834, 50049}, {17011, 43531}, {17045, 56985}, {17133, 57284}, {17156, 62858}, {17161, 29066}, {17233, 33833}, {17243, 17529}, {17281, 21802}, {17362, 49716}, {17380, 37036}, {17495, 24046}, {17763, 25440}, {18398, 24165}, {19270, 55095}, {19767, 28605}, {19789, 24159}, {19835, 54426}, {19846, 33132}, {19858, 21020}, {19871, 50096}, {20016, 20077}, {20017, 39700}, {20083, 32779}, {20222, 52365}, {20336, 37819}, {21070, 26242}, {21831, 55180}, {22021, 37093}, {24174, 49999}, {24851, 32861}, {24880, 33113}, {24883, 33168}, {25639, 29849}, {25760, 36250}, {26115, 64161}, {26227, 33771}, {27798, 39708}, {28612, 59305}, {28850, 64005}, {29617, 49723}, {29653, 41859}, {30142, 32928}, {30145, 32945}, {30148, 32943}, {30171, 32855}, {30172, 32848}, {31327, 50086}, {32771, 59301}, {32842, 52367}, {32939, 56018}, {33080, 41822}, {33932, 37042}, {34064, 56766}, {37038, 50088}, {39584, 51816}, {41229, 62817}, {42057, 50190}, {48842, 50041}, {48847, 50042}, {48857, 50043}, {48870, 50045}, {49500, 63996}, {49683, 62802}, {50112, 51672}, {50113, 51671}, {50122, 58679}, {50306, 64002}, {57280, 64010}
X(64184) = reflection of X(i) in X(j) for these {i,j}: {984, 22316}, {2901, 64185}, {5904, 59302}
X(64184) = anticomplement of X(2901)
X(64184) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {15376, 8}, {39700, 21287}
X(64184) = pole of line {6002, 48281} with respect to the Conway circle
X(64184) = pole of line {7192, 14349} with respect to the Steiner circumellipse
X(64184) = pole of line {4369, 48054} with respect to the Steiner inellipse
X(64184) = pole of line {6002, 43924} with respect to the Suppa-Cucoanes circle
X(64184) = pole of line {4357, 33146} with respect to the dual conic of Yff parabola
X(64184) = intersection, other than A, B, C, of circumconics {{A, B, C, X(86), X(15315)}}, {{A, B, C, X(2296), X(28619)}}, {{A, B, C, X(4647), X(56138)}}
X(64184) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10436, 28619}, {1, 49474, 4647}, {239, 7283, 1724}, {726, 59302, 5904}, {1010, 4360, 1}, {2901, 64185, 2}, {3210, 10449, 3670}, {3666, 5295, 10479}, {3876, 42044, 3159}, {24165, 35633, 18398}
X(64185) lies on these lines: {1, 3896}, {2, 2901}, {3, 4361}, {8, 3670}, {10, 3666}, {35, 32914}, {36, 27368}, {58, 239}, {72, 42051}, {75, 386}, {79, 32843}, {191, 32845}, {210, 24068}, {312, 17749}, {321, 3216}, {518, 596}, {519, 942}, {524, 24470}, {536, 3159}, {540, 4292}, {594, 56734}, {595, 32932}, {726, 3678}, {740, 1125}, {758, 59303}, {899, 1089}, {936, 17151}, {970, 29069}, {975, 3875}, {978, 20891}, {1040, 56146}, {1043, 30117}, {1086, 41014}, {1193, 4647}, {1203, 4418}, {1575, 52535}, {1714, 17740}, {1739, 17751}, {1962, 25512}, {2321, 40941}, {3057, 50083}, {3187, 37522}, {3210, 9534}, {3214, 4692}, {3218, 64072}, {3290, 21070}, {3293, 4968}, {3337, 32919}, {3338, 17156}, {3454, 3687}, {3624, 32915}, {3634, 63800}, {3696, 37592}, {3701, 59669}, {3702, 49997}, {3720, 6533}, {3736, 20174}, {3740, 4075}, {3742, 6532}, {3743, 4970}, {3752, 5295}, {3757, 33771}, {3822, 17748}, {3841, 29671}, {3846, 36250}, {3874, 24165}, {3876, 50106}, {3920, 43993}, {3953, 17135}, {3969, 17674}, {3976, 49459}, {3980, 62805}, {3993, 27784}, {4028, 51706}, {4065, 6051}, {4066, 59511}, {4255, 17119}, {4256, 17117}, {4340, 20043}, {4360, 56766}, {4362, 25440}, {4365, 27627}, {4383, 50044}, {4384, 62871}, {4653, 16817}, {4696, 31855}, {4709, 50608}, {4714, 10459}, {4716, 37607}, {4818, 19992}, {4850, 10479}, {4852, 37594}, {4974, 24850}, {4975, 28352}, {5045, 28581}, {5248, 16825}, {5256, 43531}, {5312, 32771}, {5743, 50067}, {5814, 48835}, {5904, 17155}, {5956, 57039}, {6007, 58469}, {6147, 7263}, {6693, 40940}, {6763, 32864}, {9895, 49558}, {10449, 17490}, {10916, 34822}, {12512, 28850}, {15489, 29010}, {16458, 20182}, {16777, 56767}, {16833, 31424}, {17011, 25526}, {17293, 56736}, {17314, 17582}, {17348, 31445}, {17366, 17698}, {19786, 24931}, {19863, 21020}, {20108, 44417}, {20367, 62858}, {20911, 62755}, {21196, 29066}, {21240, 49560}, {22316, 24325}, {24880, 32851}, {25079, 49992}, {25645, 33129}, {26060, 33093}, {27474, 30110}, {28611, 59305}, {29643, 41859}, {30142, 32921}, {30148, 32941}, {30172, 32855}, {33085, 41822}, {34790, 59717}, {35633, 58565}, {37539, 49683}, {37732, 59637}, {40959, 63146}, {42696, 56737}, {47040, 62829}, {48836, 50050}, {48866, 50054}, {49468, 52541}, {49479, 50590}, {49609, 54288}, {50088, 54345}
X(64185) = midpoint of X(i) and X(j) for these {i,j}: {2901, 64184}, {3874, 59302}, {22316, 24325}
X(64185) = reflection of X(i) in X(j) for these {i,j}: {942, 24176}, {3159, 5044}, {35633, 58565}, {63800, 3634}
X(64185) = complement of X(2901)
X(64185) = X(i)-complementary conjugate of X(j) for these {i, j}: {1333, 62564}, {15376, 10}, {29014, 4129}, {39700, 21245}
X(64185) = pole of line {7192, 14349} with respect to the Steiner inellipse
X(64185) = pole of line {1213, 4054} with respect to the dual conic of Yff parabola
X(64185) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64184, 2901}, {8, 17495, 3670}, {519, 24176, 942}, {536, 5044, 3159}, {899, 1089, 59666}, {3687, 23537, 3454}, {3752, 5295, 50605}, {3976, 49459, 50625}, {10449, 17490, 24046}, {24165, 59302, 3874}
X(64186) lies on these lines: {3, 3847}, {4, 100}, {5, 24466}, {11, 30}, {20, 6713}, {40, 38128}, {80, 36599}, {104, 3146}, {140, 38141}, {149, 3543}, {153, 17578}, {182, 38147}, {214, 18483}, {376, 31272}, {381, 3035}, {382, 2829}, {515, 64137}, {516, 6246}, {517, 38389}, {528, 3830}, {546, 33814}, {548, 34126}, {549, 38077}, {550, 21154}, {631, 38319}, {952, 3627}, {956, 10525}, {1001, 6923}, {1145, 18480}, {1317, 22791}, {1385, 38038}, {1387, 9614}, {1484, 62036}, {1537, 22793}, {1597, 13222}, {1657, 38759}, {1699, 11729}, {1728, 5128}, {1770, 12832}, {2771, 12690}, {2783, 39838}, {2787, 39809}, {2800, 51118}, {2802, 31673}, {2828, 38956}, {3036, 12702}, {3045, 14157}, {3091, 34474}, {3529, 38693}, {3534, 45310}, {3579, 34122}, {3585, 10956}, {3656, 12735}, {3818, 51007}, {3829, 18515}, {3832, 64008}, {3843, 38752}, {3845, 6174}, {3851, 38762}, {3853, 22799}, {3861, 61562}, {4297, 16174}, {4413, 6929}, {4996, 21669}, {5073, 20418}, {5076, 12331}, {5251, 37290}, {5533, 10483}, {5690, 38156}, {5722, 24465}, {5732, 38124}, {5848, 31670}, {5851, 31671}, {5854, 18525}, {5856, 31672}, {6068, 60901}, {6154, 11698}, {6265, 63992}, {6361, 59415}, {6564, 13922}, {6565, 13991}, {6684, 38161}, {6702, 31730}, {6882, 24042}, {6985, 10058}, {7687, 53711}, {7972, 31162}, {8068, 37406}, {8674, 12295}, {8703, 59376}, {9730, 58475}, {9812, 10698}, {9897, 50865}, {9955, 34123}, {10427, 18482}, {10609, 12611}, {10707, 12248}, {10711, 20095}, {10721, 10778}, {10722, 10769}, {10723, 10768}, {10725, 10772}, {10726, 10777}, {10727, 10770}, {10732, 10771}, {10733, 10767}, {10736, 10782}, {10737, 10781}, {10759, 51538}, {10773, 44983}, {10774, 44984}, {10775, 44985}, {10776, 44986}, {10779, 44987}, {10780, 44988}, {11001, 59377}, {11510, 12953}, {11715, 28164}, {12102, 51525}, {12512, 38133}, {12619, 28146}, {12650, 12737}, {12943, 13274}, {13271, 34706}, {13913, 42258}, {13977, 42259}, {14269, 35023}, {15863, 28194}, {17556, 35249}, {17800, 38754}, {18254, 37585}, {18514, 37356}, {18518, 25438}, {18534, 54065}, {19112, 23259}, {19113, 23249}, {19907, 40273}, {19914, 48661}, {20400, 61984}, {21850, 51198}, {25416, 28204}, {28150, 46684}, {28160, 64191}, {28178, 61553}, {31512, 44979}, {31657, 38152}, {31658, 38159}, {31659, 38163}, {31663, 38182}, {31937, 64139}, {33899, 52116}, {34200, 38084}, {37234, 51506}, {37468, 51636}, {37736, 51790}, {38119, 44882}, {38131, 63413}, {38636, 61968}, {38665, 50688}, {38669, 62028}, {38755, 62008}, {38756, 62023}, {38758, 61990}, {41686, 62616}, {42271, 48700}, {42272, 48701}, {42283, 48715}, {42284, 48714}, {46686, 53743}, {46850, 58508}, {50240, 61268}, {50690, 64009}, {51529, 61601}, {52835, 54159}, {55297, 64076}, {59387, 64136}
X(64186) = midpoint of X(i) and X(j) for these {i,j}: {4, 10724}, {80, 41869}, {104, 3146}, {149, 10728}, {382, 10738}, {1484, 62036}, {5073, 38753}, {5691, 14217}, {10707, 15682}, {10721, 10778}, {10722, 10769}, {10723, 10768}, {10725, 10772}, {10726, 10777}, {10727, 10770}, {10732, 10771}, {10733, 10767}, {10736, 10782}, {10737, 10781}, {10742, 48680}, {10773, 44983}, {10774, 44984}, {10775, 44985}, {10776, 44986}, {10779, 44987}, {10780, 44988}, {19914, 48661}, {31512, 44979}, {61601, 62034}
X(64186) = reflection of X(i) in X(j) for these {i,j}: {11, 22938}, {20, 6713}, {119, 4}, {214, 18483}, {550, 60759}, {1145, 18480}, {1317, 22791}, {1537, 22793}, {1657, 38759}, {3534, 45310}, {4297, 16174}, {6068, 60901}, {6154, 11698}, {6174, 3845}, {6882, 24042}, {10427, 18482}, {10609, 12611}, {10993, 119}, {12119, 11729}, {12331, 38757}, {12515, 12019}, {12702, 3036}, {18481, 1387}, {19907, 40273}, {22799, 3853}, {24466, 5}, {31730, 6702}, {33814, 546}, {37585, 18254}, {37725, 22799}, {37726, 10738}, {38753, 20418}, {38760, 59390}, {38761, 11}, {46850, 58508}, {51007, 3818}, {51198, 21850}, {51529, 61601}, {52116, 33899}, {52836, 3627}, {53711, 7687}, {53743, 46686}, {61562, 3861}, {64139, 31937}
X(64186) = pole of line {10728, 55126} with respect to the polar circle
X(64186) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 10724, 10731}, {104, 3146, 46618}, {149, 10728, 10776}
X(64186) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 10724, 5840}, {4, 5840, 119}, {11, 30, 38761}, {30, 22938, 11}, {119, 5840, 10993}, {149, 3543, 10728}, {382, 10738, 2829}, {550, 60759, 21154}, {952, 3627, 52836}, {1657, 57298, 38759}, {1699, 12119, 11729}, {2829, 10738, 37726}, {3091, 34474, 58421}, {3830, 48680, 10742}, {5073, 51517, 38753}, {5691, 14217, 952}, {10742, 48680, 528}, {24466, 59390, 5}, {38753, 51517, 20418}
X(64187) lies on these lines: {2, 18504}, {3, 61606}, {4, 64}, {5, 40920}, {20, 110}, {24, 46373}, {30, 6193}, {54, 43695}, {66, 57715}, {68, 541}, {74, 58378}, {154, 17538}, {376, 2883}, {378, 9914}, {382, 12324}, {389, 30443}, {546, 35450}, {548, 35260}, {631, 5894}, {1204, 6623}, {1498, 3529}, {1503, 6144}, {1514, 6622}, {1657, 11206}, {1658, 9919}, {1941, 18850}, {3090, 5893}, {3091, 3357}, {3146, 5889}, {3184, 31377}, {3426, 38442}, {3523, 61749}, {3524, 64024}, {3525, 8567}, {3527, 13488}, {3528, 16252}, {3541, 7699}, {3543, 14216}, {3545, 6696}, {3548, 7728}, {3567, 31978}, {3627, 13093}, {3839, 20299}, {3843, 61540}, {3854, 32767}, {3855, 40686}, {4293, 12950}, {4294, 12940}, {5059, 9833}, {5067, 23328}, {5068, 23329}, {5225, 10076}, {5229, 10060}, {5890, 22967}, {6241, 18945}, {6293, 7722}, {6361, 12779}, {6403, 12290}, {6776, 18560}, {7486, 25563}, {7505, 11270}, {7731, 22535}, {9899, 31673}, {10117, 21844}, {10151, 34469}, {10152, 59424}, {10182, 61788}, {10192, 21735}, {10193, 61856}, {10282, 50693}, {10303, 11204}, {10575, 41715}, {10721, 11457}, {11001, 34782}, {11202, 62097}, {11381, 11387}, {11412, 36982}, {11431, 16657}, {11541, 58795}, {11738, 38447}, {12086, 32321}, {12103, 14530}, {12289, 32234}, {12964, 43408}, {12970, 43407}, {13203, 18404}, {13754, 36983}, {14853, 43599}, {14862, 62110}, {15139, 35471}, {15318, 16251}, {15319, 31361}, {15682, 64037}, {15683, 34785}, {15692, 64063}, {15704, 32063}, {15717, 61747}, {15740, 34664}, {15751, 36518}, {16835, 38443}, {17578, 18381}, {17845, 49138}, {18383, 50687}, {18400, 49135}, {18405, 62021}, {18533, 22750}, {18909, 44438}, {18931, 37197}, {19087, 23273}, {19088, 23267}, {19467, 49670}, {20725, 45771}, {22615, 35865}, {22644, 35864}, {23061, 49140}, {23249, 49250}, {23259, 49251}, {23325, 61982}, {23332, 61964}, {32125, 44958}, {32337, 32340}, {32605, 51394}, {32903, 62129}, {34622, 61607}, {34778, 40330}, {34780, 62036}, {34786, 50691}, {34787, 41735}, {35481, 59279}, {35488, 63726}, {37643, 44226}, {37669, 63441}, {41362, 62028}, {44544, 64030}, {44762, 50709}, {46372, 56292}, {50414, 62125}, {54039, 64050}, {58434, 61807}, {61138, 61680}, {61735, 61945}
X(64187) = midpoint of X(i) and X(j) for these {i,j}: {3146, 54211}
X(64187) = reflection of X(i) in X(j) for these {i,j}: {4, 5895}, {20, 5878}, {64, 51491}, {3529, 1498}, {5059, 9833}, {5925, 2883}, {6225, 48672}, {6361, 12779}, {9899, 31673}, {11412, 36982}, {12244, 11744}, {12250, 4}, {12324, 382}, {13093, 3627}, {13203, 38790}, {20427, 22802}, {30443, 389}, {34780, 62036}, {34781, 6225}, {35512, 64094}, {49138, 17845}, {64030, 44544}, {64034, 3146}
X(64187) = anticomplement of X(20427)
X(64187) = pole of line {6623, 11381} with respect to the Jerabek hyperbola
X(64187) = pole of line {6000, 35602} with respect to the Stammler hyperbola
X(64187) = pole of line {41077, 52585} with respect to the Steiner circumellipse
X(64187) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(51385)}}, {{A, B, C, X(54), X(39268)}}, {{A, B, C, X(1294), X(6526)}}, {{A, B, C, X(10152), X(12250)}}, {{A, B, C, X(33893), X(41425)}}, {{A, B, C, X(38442), X(58758)}}
X(64187) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 15311, 12250}, {4, 3183, 51385}, {4, 32601, 10605}, {4, 36965, 41425}, {4, 40664, 6526}, {20, 5878, 5656}, {30, 48672, 6225}, {30, 6225, 34781}, {64, 5895, 51491}, {2777, 5878, 20}, {2883, 5925, 376}, {3146, 54211, 6000}, {3146, 6000, 64034}, {5893, 10606, 3090}, {5895, 15311, 4}, {15311, 51491, 64}
X(64188) lies on circumconic {{A, B, C, X(34256), X(36100)}} and on these lines: {3, 119}, {4, 8068}, {9, 34256}, {11, 3149}, {20, 17100}, {21, 63964}, {30, 12761}, {35, 12608}, {36, 80}, {40, 78}, {55, 1537}, {56, 64191}, {57, 15528}, {63, 12665}, {84, 35976}, {153, 4996}, {165, 2950}, {214, 37611}, {404, 5450}, {474, 21154}, {517, 25438}, {908, 2077}, {944, 10074}, {952, 11249}, {1006, 64008}, {1012, 52836}, {1145, 3428}, {1158, 5720}, {1376, 64193}, {1387, 22753}, {1420, 11715}, {1490, 1768}, {1519, 32760}, {1532, 5172}, {1699, 63281}, {1793, 3658}, {1795, 61231}, {1809, 13532}, {2801, 60974}, {2932, 7580}, {3295, 64192}, {3651, 5660}, {3652, 64118}, {3916, 17661}, {4188, 64120}, {4491, 44805}, {5251, 6940}, {5260, 40260}, {5533, 12116}, {5692, 40256}, {5697, 10087}, {5840, 6985}, {5842, 10738}, {5851, 64156}, {5854, 22770}, {6001, 6100}, {6264, 13279}, {6265, 37837}, {6667, 6918}, {6713, 6911}, {6834, 36152}, {6883, 58421}, {6906, 7951}, {6914, 22799}, {6915, 18406}, {6924, 12114}, {6942, 12248}, {7962, 25485}, {7972, 12776}, {7982, 13278}, {8069, 26333}, {9803, 54051}, {9942, 12738}, {10175, 17009}, {10267, 11729}, {10724, 36002}, {10902, 41012}, {10956, 26357}, {11012, 12751}, {11495, 12332}, {11499, 59366}, {11502, 12832}, {11570, 18446}, {11698, 12762}, {11700, 15737}, {12115, 14793}, {12611, 32613}, {12616, 35979}, {12739, 33597}, {12758, 63986}, {12763, 37564}, {13205, 64077}, {13273, 37468}, {13528, 41389}, {13743, 38109}, {15501, 34913}, {15931, 64012}, {16049, 45396}, {16174, 53055}, {16371, 34697}, {17857, 46685}, {18524, 19914}, {21155, 37286}, {21669, 52850}, {22792, 26086}, {22935, 40262}, {26285, 37713}, {31870, 57283}, {37251, 57298}, {37305, 54090}, {38606, 40535}, {38665, 64056}, {40255, 49169}, {52769, 58453}, {53752, 60018}, {58698, 60912}, {59330, 64021}, {59331, 63966}
X(64188) = midpoint of X(i) and X(j) for these {i,j}: {1490, 1768}, {11500, 22775}, {12248, 12667}, {13205, 64077}, {33898, 38753}
X(64188) = reflection of X(i) in X(j) for these {i,j}: {100, 6796}, {1158, 46684}, {6265, 37837}, {10698, 40257}, {10742, 18242}, {12114, 38602}, {12332, 33814}, {12762, 11698}, {17661, 32159}, {22935, 40262}, {34789, 12608}, {48482, 11}, {48694, 22775}, {48695, 3}
X(64188) = inverse of X(49207) in circumcircle
X(64188) = X(i)-vertex conjugate of X(j) for these {i, j}: {2804, 49207}
X(64188) = pole of line {2804, 25438} with respect to the circumcircle
X(64188) = pole of line {24029, 46605} with respect to the Yff parabola
X(64188) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 119, 51506}, {3, 2829, 48695}, {35, 34789, 12775}, {36, 44425, 1512}, {36, 64145, 104}, {40, 6326, 64139}, {104, 60782, 10265}, {104, 6905, 10090}, {952, 22775, 48694}, {2800, 6796, 100}, {2829, 18242, 10742}, {2932, 7580, 24466}, {6942, 12248, 18861}, {10698, 11491, 10087}, {11500, 22775, 952}, {33898, 38753, 2829}
X(64189) lies on these lines: {1, 38693}, {2, 1537}, {3, 5330}, {4, 59415}, {8, 2829}, {10, 34789}, {11, 962}, {20, 952}, {21, 12775}, {30, 19914}, {40, 78}, {46, 12758}, {57, 15558}, {63, 2950}, {80, 516}, {88, 32486}, {104, 517}, {119, 5657}, {144, 153}, {145, 64191}, {149, 6836}, {165, 214}, {329, 55016}, {355, 10728}, {376, 10031}, {484, 10090}, {497, 12832}, {515, 12531}, {519, 64145}, {528, 9803}, {631, 11729}, {651, 24028}, {758, 25438}, {944, 38761}, {946, 31272}, {1155, 12740}, {1158, 14923}, {1295, 35011}, {1317, 5731}, {1387, 6966}, {1445, 2093}, {1482, 38602}, {1484, 28212}, {1697, 5083}, {1699, 6702}, {1706, 46694}, {1768, 2802}, {1770, 10057}, {2077, 62826}, {2096, 12648}, {2771, 15054}, {2801, 2951}, {2818, 38512}, {2821, 13266}, {2827, 21385}, {2932, 6244}, {2975, 40256}, {3036, 16112}, {3091, 34122}, {3339, 18240}, {3359, 3877}, {3428, 4996}, {3523, 34123}, {3576, 25485}, {3579, 6265}, {3587, 9946}, {3616, 21154}, {3654, 10711}, {3655, 50910}, {3681, 12665}, {3699, 30196}, {3753, 61012}, {3868, 13278}, {3871, 64021}, {3873, 12703}, {3885, 63399}, {3890, 59333}, {4193, 32554}, {4297, 7972}, {4301, 16173}, {4511, 13528}, {4674, 64013}, {4861, 64118}, {4880, 26726}, {5080, 12761}, {5119, 7676}, {5183, 17638}, {5221, 5734}, {5303, 11014}, {5531, 12565}, {5603, 6713}, {5690, 10742}, {5691, 15863}, {5697, 10074}, {5709, 13279}, {5790, 22799}, {5818, 38128}, {5840, 6361}, {5855, 54193}, {5903, 10058}, {5927, 58659}, {6001, 12532}, {6224, 9778}, {6246, 41869}, {6735, 46435}, {6840, 10738}, {6890, 64138}, {6906, 25413}, {6915, 12672}, {6923, 59416}, {6960, 38752}, {6972, 22791}, {6986, 31788}, {7012, 36121}, {7580, 12331}, {7962, 41554}, {7970, 53733}, {7978, 53753}, {7982, 11715}, {7983, 53722}, {7984, 53715}, {8227, 38133}, {9588, 15017}, {9589, 37718}, {9809, 37725}, {9897, 64005}, {9943, 17660}, {9952, 12690}, {10087, 11010}, {10164, 64012}, {10265, 10707}, {10304, 50843}, {10306, 64047}, {10310, 17100}, {10595, 38032}, {10679, 63159}, {10695, 53750}, {10696, 53752}, {10697, 53746}, {10703, 23703}, {10884, 37736}, {11219, 21630}, {11248, 62830}, {11249, 18861}, {11362, 11684}, {11522, 32557}, {11531, 64137}, {11822, 12463}, {11823, 12462}, {12119, 31730}, {12512, 33337}, {12526, 14740}, {12528, 46685}, {12533, 63141}, {12611, 26446}, {12619, 12699}, {12701, 20118}, {12730, 43161}, {12739, 37568}, {12764, 40663}, {12773, 37022}, {13099, 53755}, {13257, 37421}, {14988, 35460}, {15015, 63469}, {15055, 31525}, {16174, 31162}, {17549, 61146}, {17566, 55297}, {17661, 34790}, {17768, 32198}, {18254, 54286}, {18493, 34126}, {19081, 35775}, {19082, 35774}, {19112, 49227}, {19113, 49226}, {20586, 64128}, {21635, 43174}, {22938, 48661}, {23340, 26877}, {23832, 53292}, {25722, 63137}, {28234, 62235}, {30308, 38104}, {31254, 33594}, {31393, 46681}, {31397, 60936}, {33814, 48667}, {34718, 50907}, {34773, 38754}, {35000, 38722}, {36002, 48363}, {37714, 38213}, {38084, 50806}, {38756, 59503}, {48668, 61249}, {50808, 64011}, {53409, 60990}
X(64189) = midpoint of X(i) and X(j) for these {i,j}: {149, 20070}, {1768, 7991}, {5541, 12767}, {6361, 12247}, {9897, 64005}, {12245, 12248}
X(64189) = reflection of X(i) in X(j) for these {i,j}: {1, 46684}, {100, 40}, {104, 12515}, {145, 64191}, {153, 1145}, {944, 38761}, {962, 11}, {1317, 38759}, {1320, 104}, {1482, 38602}, {1537, 64193}, {4511, 13528}, {5691, 15863}, {6224, 24466}, {6265, 3579}, {7970, 53733}, {7972, 4297}, {7978, 53753}, {7982, 11715}, {7983, 53722}, {7984, 53715}, {9809, 37725}, {9963, 13199}, {10031, 376}, {10695, 53750}, {10696, 53752}, {10697, 53746}, {10698, 3}, {10703, 53748}, {10711, 3654}, {10724, 80}, {10728, 355}, {10742, 5690}, {11531, 64137}, {12119, 31730}, {12528, 46685}, {12690, 9952}, {12699, 12619}, {12730, 43161}, {12751, 11362}, {13099, 53755}, {13253, 214}, {14217, 10265}, {17660, 9943}, {17661, 34790}, {20586, 64128}, {21635, 43174}, {33337, 12512}, {34789, 10}, {36002, 48363}, {38669, 1768}, {41869, 6246}, {48661, 22938}, {48667, 33814}, {48695, 40256}, {50907, 34718}, {50910, 3655}, {52836, 3036}, {62826, 2077}, {64011, 50808}, {64136, 12702}
X(64189) = anticomplement of X(1537)
X(64189) = pole of line {2401, 56234} with respect to the Steiner circumellipse
X(64189) = intersection, other than A, B, C, of circumconics {{A, B, C, X(102), X(10428)}}, {{A, B, C, X(1145), X(17613)}}, {{A, B, C, X(1295), X(52478)}}
X(64189) = barycentric product X(i)*X(j) for these (i, j): {38886, 75}
X(64189) = barycentric quotient X(i)/X(j) for these (i, j): {38886, 1}
X(64189) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 46684, 38693}, {40, 2800, 100}, {80, 516, 10724}, {104, 517, 1320}, {119, 5657, 64141}, {153, 59417, 1145}, {165, 13253, 214}, {517, 12515, 104}, {952, 12702, 64136}, {952, 13199, 9963}, {1317, 38759, 5731}, {1768, 2802, 38669}, {1768, 7991, 2802}, {3036, 52836, 59387}, {5541, 12767, 2801}, {6224, 9778, 24466}, {10265, 14217, 10707}, {10265, 28194, 14217}, {10310, 22775, 17100}, {11010, 11571, 10087}, {12245, 12248, 952}, {12611, 26446, 64008}, {12619, 12699, 59391}, {12767, 63468, 5541}, {21154, 64192, 3616}, {54156, 63130, 12528}
X(64190) lies on circumconic {{A, B, C, X(2123), X(7040)}} and on these lines: {1, 2096}, {2, 64118}, {3, 1633}, {4, 46}, {7, 11496}, {8, 2829}, {20, 3869}, {30, 34744}, {40, 2123}, {63, 49171}, {72, 12666}, {78, 48697}, {84, 516}, {109, 7952}, {144, 18239}, {165, 5924}, {191, 2950}, {278, 1777}, {329, 10309}, {347, 40658}, {376, 6261}, {382, 33899}, {390, 12675}, {497, 63399}, {499, 11665}, {515, 3529}, {517, 17648}, {527, 6769}, {631, 12608}, {758, 64076}, {912, 3189}, {944, 2800}, {946, 3361}, {962, 12114}, {1012, 4295}, {1071, 4294}, {1155, 6848}, {1376, 5811}, {1479, 1768}, {1490, 2951}, {1519, 7288}, {1699, 6705}, {1721, 57276}, {1836, 6847}, {2550, 7330}, {2551, 3359}, {2956, 5930}, {3073, 4000}, {3149, 64130}, {3427, 9800}, {3452, 10270}, {3476, 37002}, {3485, 6906}, {3486, 6938}, {3487, 60923}, {3488, 5884}, {3522, 37837}, {3556, 37404}, {3560, 28629}, {3576, 54198}, {3579, 6259}, {3600, 45776}, {3648, 6223}, {3683, 37407}, {3868, 64078}, {3927, 31777}, {4292, 12705}, {4293, 12672}, {4297, 7971}, {4640, 6908}, {4644, 37529}, {5057, 6890}, {5084, 59333}, {5221, 5804}, {5248, 60896}, {5330, 5731}, {5435, 7681}, {5450, 5563}, {5534, 34607}, {5536, 40265}, {5553, 12775}, {5658, 6796}, {5690, 40267}, {5694, 35249}, {5696, 63967}, {5704, 10893}, {5744, 15908}, {5758, 17768}, {5768, 6284}, {5770, 10525}, {5777, 17668}, {5787, 28146}, {5842, 9799}, {5880, 6846}, {5887, 6948}, {5918, 9942}, {5927, 58660}, {6245, 41869}, {6837, 20292}, {6864, 54370}, {6865, 64129}, {6885, 31937}, {6909, 11415}, {6916, 12514}, {6925, 56288}, {6926, 24703}, {6927, 58887}, {6930, 34339}, {6935, 12047}, {6950, 14803}, {6953, 9352}, {6987, 9943}, {7080, 13528}, {7580, 12330}, {7956, 37545}, {8726, 45084}, {9121, 53087}, {9669, 13226}, {9809, 12332}, {9812, 63980}, {9948, 28150}, {9965, 18238}, {10164, 63966}, {10531, 26877}, {10571, 33810}, {10595, 11551}, {10624, 63430}, {10860, 64004}, {11023, 24465}, {11248, 25568}, {11372, 64001}, {12512, 52026}, {12515, 37821}, {12520, 59345}, {12565, 63438}, {12572, 15239}, {12650, 28194}, {12664, 15726}, {12676, 17613}, {12678, 37568}, {12688, 50701}, {12699, 34862}, {12700, 34625}, {13374, 21454}, {14872, 17784}, {15803, 63989}, {17574, 54445}, {18237, 37022}, {22792, 26446}, {24467, 24477}, {26105, 37534}, {26364, 46435}, {36746, 64168}, {37001, 40663}, {37112, 62838}, {37526, 40998}, {37567, 64000}, {49170, 63984}, {51090, 61122}, {54051, 54228}, {63985, 64002}
X(64190) = midpoint of X(i) and X(j) for these {i,j}: {6361, 12246}, {7992, 64005}
X(64190) = reflection of X(i) in X(j) for these {i,j}: {4, 1158}, {382, 33899}, {962, 12114}, {1490, 31730}, {5758, 64074}, {6223, 11500}, {6256, 40256}, {6259, 3579}, {7971, 4297}, {9809, 12332}, {10309, 56889}, {12666, 72}, {12667, 40}, {12699, 34862}, {14647, 14646}, {16127, 6796}, {18239, 63976}, {40267, 5690}, {41869, 6245}, {46435, 46684}, {54227, 12512}, {63962, 3}, {64119, 64118}
X(64190) = anticomplement of X(64119)
X(64190) = X(i)-Dao conjugate of X(j) for these {i, j}: {64119, 64119}
X(64190) = pole of line {7649, 53532} with respect to the Suppa-Cucoanes circle
X(64190) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1158, 14647}, {4, 14646, 1158}, {962, 54052, 12114}, {1155, 12679, 6848}, {1709, 1770, 4}, {3579, 6259, 64148}, {4302, 15071, 944}, {6223, 9778, 11500}, {6256, 40256, 5657}, {6361, 12246, 515}, {6796, 16127, 5658}, {12512, 54227, 52026}, {17768, 64074, 5758}, {24703, 64128, 6926}, {63985, 64002, 64111}
X(64191) lies on these lines: {1, 1537}, {3, 8}, {4, 1387}, {5, 38032}, {10, 21154}, {11, 515}, {20, 1320}, {30, 64138}, {40, 5854}, {55, 45635}, {56, 64188}, {65, 15528}, {80, 20418}, {119, 1385}, {145, 64189}, {149, 6925}, {153, 2478}, {165, 64056}, {214, 6700}, {355, 6713}, {376, 64136}, {381, 38026}, {390, 6938}, {392, 17661}, {516, 64137}, {517, 3937}, {519, 13528}, {528, 5732}, {546, 38044}, {855, 13265}, {946, 52836}, {950, 41554}, {960, 12665}, {1012, 3476}, {1071, 1317}, {1158, 37738}, {1388, 6256}, {1389, 24470}, {1478, 38039}, {1479, 12761}, {1482, 37002}, {1483, 64021}, {1484, 37406}, {1512, 5126}, {1519, 25405}, {1697, 2950}, {1768, 5119}, {1862, 37391}, {2077, 38455}, {2096, 3241}, {2646, 10956}, {2771, 24981}, {2777, 31523}, {2801, 33337}, {2802, 4297}, {3035, 3576}, {3036, 5881}, {3149, 41426}, {3295, 10935}, {3523, 64141}, {3524, 50907}, {3612, 12749}, {3655, 6265}, {3756, 41343}, {3895, 12515}, {4186, 12138}, {4293, 24465}, {4311, 12736}, {4315, 18240}, {4861, 31775}, {5450, 10944}, {5480, 38050}, {5531, 64011}, {5587, 6667}, {5603, 10728}, {5691, 16173}, {5697, 54176}, {5805, 38055}, {5840, 12700}, {5842, 36975}, {5844, 35460}, {5856, 43161}, {5884, 37734}, {5901, 22799}, {6001, 12758}, {6174, 51705}, {6261, 12740}, {6282, 34716}, {6702, 38156}, {6831, 45287}, {6834, 12019}, {6872, 64009}, {6921, 59415}, {6929, 10246}, {6955, 40587}, {6959, 10785}, {6962, 20085}, {7294, 40260}, {7686, 58595}, {7991, 26726}, {8068, 63980}, {8104, 9837}, {8256, 59332}, {9845, 59347}, {9897, 11219}, {10031, 13243}, {10035, 46704}, {10043, 10058}, {10051, 10074}, {10087, 12332}, {10090, 11500}, {10106, 63257}, {10165, 31235}, {10265, 37605}, {10306, 13278}, {10310, 25438}, {10543, 13607}, {10738, 12116}, {10786, 38752}, {10936, 12776}, {10950, 12832}, {10966, 45634}, {10993, 12732}, {11570, 12675}, {11826, 22837}, {12611, 15178}, {12619, 18857}, {12650, 34489}, {12672, 15558}, {12680, 17638}, {12690, 37726}, {12702, 38754}, {12763, 34471}, {13205, 63991}, {13273, 48482}, {13624, 38760}, {13867, 46681}, {13913, 49601}, {13977, 49602}, {14740, 64107}, {14872, 18254}, {15017, 30392}, {15863, 28236}, {16116, 61281}, {16174, 31673}, {17009, 21677}, {17757, 32554}, {18242, 21842}, {18357, 34126}, {18480, 23513}, {18908, 46694}, {19907, 21740}, {19925, 32557}, {20400, 30389}, {22938, 28186}, {28160, 64186}, {28224, 61566}, {31272, 59387}, {31786, 64139}, {31788, 39776}, {33709, 38161}, {34628, 50891}, {34632, 50894}, {34648, 38077}, {36991, 53055}, {37136, 56690}, {37568, 62617}, {37624, 38756}, {37720, 56036}, {37829, 47745}, {38028, 61580}, {38060, 63970}, {38177, 61249}, {38319, 61261}, {39870, 51198}, {40257, 41543}, {46685, 51379}, {50796, 59376}, {50864, 59377}
X(64191) = midpoint of X(i) and X(j) for these {i,j}: {1, 64145}, {20, 1320}, {104, 944}, {145, 64189}, {1482, 38753}, {1768, 7972}, {6224, 38669}, {6264, 12119}, {7991, 26726}, {10698, 12248}, {12515, 37727}, {12680, 17638}, {12737, 18481}, {18526, 19914}, {34628, 50891}, {34632, 50894}
X(64191) = reflection of X(i) in X(j) for these {i,j}: {4, 1387}, {8, 64193}, {11, 11715}, {40, 38759}, {65, 15528}, {80, 20418}, {119, 1385}, {355, 6713}, {1145, 3}, {1317, 5882}, {1512, 5126}, {1519, 25405}, {1532, 1319}, {1537, 1}, {5881, 3036}, {6174, 51705}, {7686, 58595}, {10698, 12735}, {10742, 11729}, {11570, 12675}, {12247, 13226}, {12611, 15178}, {12665, 960}, {12672, 15558}, {12690, 37726}, {12732, 10993}, {12751, 3035}, {13257, 6265}, {14872, 18254}, {21677, 17009}, {22799, 5901}, {24466, 4297}, {25485, 13607}, {31673, 16174}, {34789, 64192}, {37725, 214}, {38665, 9945}, {39776, 31788}, {46704, 10035}, {50843, 3655}, {51198, 39870}, {52836, 946}, {62616, 10265}, {64139, 31786}
X(64191) = inverse of X(44675) in Feuerbach hyperbola
X(64191) = pole of line {2804, 25416} with respect to the incircle
X(64191) = pole of line {2800, 18838} with respect to the Feuerbach hyperbola
X(64191) = pole of line {2804, 26726} with respect to the Suppa-Cucoanes circle
X(64191) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 61481, 64145}, {11, 3318, 58893}, {1768, 7972, 56423}
X(64191) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1145), X(2734)}}, {{A, B, C, X(10305), X(36944)}}, {{A, B, C, X(46435), X(51565)}}
X(64191) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2829, 1537}, {1, 34789, 64192}, {1, 64145, 2829}, {3, 952, 1145}, {4, 1387, 38038}, {8, 38693, 64193}, {104, 11491, 18861}, {104, 12247, 13226}, {104, 944, 952}, {119, 1385, 34123}, {515, 1319, 1532}, {952, 13226, 12247}, {952, 64193, 8}, {952, 9945, 38665}, {2800, 5882, 1317}, {2802, 4297, 24466}, {2829, 64192, 34789}, {3576, 12751, 3035}, {5854, 38759, 40}, {6264, 12119, 528}, {6264, 50811, 12119}, {7967, 10698, 12735}, {7967, 12248, 10698}, {10246, 10742, 11729}, {11491, 18861, 33814}, {12737, 18481, 5840}, {13257, 50843, 6265}, {16174, 31673, 59390}
X(64192) lies on these lines: {1, 1537}, {4, 1317}, {5, 3036}, {11, 2099}, {40, 34123}, {56, 11047}, {80, 11522}, {100, 22753}, {104, 3296}, {119, 1482}, {145, 10893}, {214, 4301}, {388, 12761}, {515, 12735}, {517, 3035}, {519, 22835}, {528, 3656}, {546, 946}, {551, 46684}, {942, 1387}, {944, 52836}, {962, 24466}, {999, 45637}, {1012, 10074}, {1125, 64193}, {1145, 7982}, {1320, 5734}, {1385, 38759}, {1466, 12332}, {1483, 22799}, {1519, 5048}, {1532, 63210}, {1656, 38128}, {1699, 7972}, {1768, 11034}, {2098, 10956}, {2802, 7686}, {2950, 3333}, {3091, 12531}, {3149, 10087}, {3295, 64188}, {3545, 50910}, {3555, 12665}, {3577, 5660}, {3616, 21154}, {3622, 38693}, {3816, 32554}, {3817, 15863}, {3878, 5771}, {5045, 15528}, {5071, 38099}, {5083, 6001}, {5330, 15908}, {5531, 50891}, {5533, 6831}, {5542, 11715}, {5552, 18802}, {5657, 31235}, {5690, 58421}, {5715, 12690}, {5720, 34640}, {5840, 19907}, {5844, 61580}, {5851, 12773}, {5882, 22792}, {5883, 5901}, {5886, 6667}, {6174, 64136}, {6256, 54176}, {6264, 13257}, {6326, 12658}, {6691, 25413}, {7956, 11698}, {7967, 10728}, {7991, 64012}, {8068, 63257}, {8148, 38752}, {8227, 34122}, {9945, 64001}, {10051, 15845}, {10058, 11045}, {10246, 38761}, {10247, 10742}, {10283, 38602}, {10427, 43166}, {10531, 12764}, {10532, 13273}, {10609, 14217}, {10738, 26332}, {10894, 59391}, {11009, 39692}, {11048, 12776}, {11224, 15017}, {11278, 38758}, {11376, 12832}, {11570, 12672}, {12019, 16174}, {12119, 31162}, {12245, 64008}, {12515, 37612}, {12560, 38055}, {12619, 45310}, {12675, 46681}, {12702, 38760}, {12730, 59385}, {12736, 13374}, {12739, 63986}, {12751, 16200}, {12831, 20586}, {13253, 16173}, {13463, 45770}, {13756, 46044}, {14151, 36991}, {15558, 64160}, {16189, 26726}, {18493, 19914}, {18861, 45977}, {20119, 38152}, {22770, 51506}, {24042, 28224}, {26087, 37290}, {28234, 51362}, {33594, 44669}, {34339, 58604}, {34627, 50846}, {34631, 50842}, {37624, 38753}, {37726, 48667}, {37736, 63992}, {38077, 50890}, {38319, 61272}, {39898, 51198}, {43174, 58453}, {45636, 48694}, {56890, 59816}, {59390, 62617}
X(64192) = midpoint of X(i) and X(j) for these {i,j}: {1, 1537}, {4, 1317}, {11, 10698}, {119, 1482}, {214, 4301}, {944, 52836}, {946, 25485}, {962, 24466}, {1145, 7982}, {1320, 37725}, {1483, 22799}, {1519, 5048}, {1532, 63210}, {3555, 12665}, {6264, 13257}, {6265, 64138}, {10222, 12611}, {10427, 43166}, {10609, 14217}, {11570, 12672}, {12751, 25416}, {13756, 46044}, {19907, 22791}, {21635, 64137}, {31162, 50843}, {34627, 50846}, {34631, 50842}, {34789, 64191}, {37726, 48667}, {39898, 51198}
X(64192) = reflection of X(i) in X(j) for these {i,j}: {1145, 20400}, {1387, 13464}, {3035, 11729}, {3036, 5}, {5690, 58421}, {6713, 5901}, {12019, 16174}, {12675, 46681}, {12736, 13374}, {15528, 5045}, {20418, 1387}, {34339, 58604}, {38757, 12611}, {38759, 1385}, {43174, 58453}, {45310, 51709}, {64193, 1125}
X(64192) = pole of line {2804, 64056} with respect to the incircle
X(64192) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 1317, 1359}, {11, 3318, 10698}
X(64192) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1537, 2829}, {1, 34789, 64191}, {80, 11522, 38038}, {119, 1482, 5854}, {517, 11729, 3035}, {952, 12611, 38757}, {1387, 2800, 20418}, {1537, 64191, 34789}, {2800, 13464, 1387}, {3091, 12531, 38156}, {3616, 64189, 21154}, {3656, 6265, 64138}, {6264, 50908, 13257}, {6265, 64138, 528}, {10222, 12611, 952}, {12515, 61276, 38032}, {12751, 16200, 25416}, {18493, 19914, 23513}, {19907, 22791, 5840}
X(64193) lies on these lines: {1, 21154}, {2, 1537}, {3, 8}, {4, 34122}, {5, 32554}, {9, 119}, {10, 2829}, {11, 40}, {20, 59415}, {30, 1512}, {46, 24465}, {55, 12832}, {63, 55016}, {80, 165}, {140, 392}, {149, 6865}, {153, 6916}, {210, 12665}, {214, 10164}, {355, 38128}, {405, 12775}, {484, 8068}, {515, 3036}, {516, 6702}, {517, 1387}, {518, 15528}, {528, 10265}, {549, 19907}, {631, 10698}, {653, 21664}, {912, 51380}, {946, 6667}, {958, 48695}, {960, 2800}, {962, 31272}, {971, 58659}, {1000, 5281}, {1071, 46685}, {1108, 50650}, {1125, 64192}, {1158, 37828}, {1317, 3576}, {1320, 59417}, {1329, 40256}, {1376, 64188}, {1385, 12735}, {1482, 6961}, {1484, 37364}, {1656, 11024}, {1698, 34789}, {1737, 13528}, {1768, 9588}, {1772, 15253}, {1788, 10306}, {1862, 7412}, {2077, 40663}, {2095, 8732}, {2771, 20417}, {2801, 40659}, {2802, 20418}, {3428, 10090}, {3524, 50843}, {3579, 5840}, {3654, 12737}, {3656, 38069}, {3679, 64145}, {3697, 17661}, {3872, 18802}, {4297, 15863}, {4301, 32557}, {5083, 9940}, {5128, 5812}, {5316, 11231}, {5445, 15908}, {5450, 8256}, {5493, 59419}, {5533, 11010}, {5535, 63270}, {5537, 63281}, {5541, 11219}, {5587, 52836}, {5603, 61535}, {5660, 12767}, {5691, 38156}, {5708, 12872}, {5762, 60363}, {5777, 46694}, {5790, 6948}, {5818, 10728}, {5841, 10225}, {5851, 15481}, {5854, 11260}, {5855, 54192}, {5882, 32157}, {5884, 64123}, {5885, 63282}, {5886, 31190}, {5887, 47742}, {5901, 25413}, {6001, 18254}, {6154, 10268}, {6174, 6326}, {6246, 31730}, {6264, 13996}, {6265, 38760}, {6361, 59391}, {6797, 31793}, {6825, 38752}, {6827, 10738}, {6842, 61580}, {6850, 10742}, {6882, 28174}, {6891, 12702}, {6908, 13257}, {6918, 26062}, {6923, 22799}, {6926, 64136}, {6928, 22938}, {6951, 38058}, {6954, 38762}, {6958, 22791}, {6971, 40273}, {6978, 8166}, {6982, 40333}, {6987, 12690}, {7080, 10305}, {7491, 61553}, {7972, 7987}, {7991, 16173}, {8164, 60934}, {8726, 37736}, {9616, 19077}, {9709, 45039}, {9778, 10724}, {9897, 16192}, {9943, 32159}, {9955, 38319}, {9956, 44848}, {10031, 15692}, {10057, 58887}, {10058, 10310}, {10073, 59316}, {10165, 25485}, {10270, 12751}, {10304, 50890}, {10523, 59330}, {10679, 42884}, {10944, 59332}, {10956, 59333}, {10993, 62354}, {11248, 57278}, {11499, 33899}, {11698, 37424}, {11826, 18395}, {11827, 37572}, {11849, 12433}, {12119, 35242}, {12138, 37305}, {12245, 25416}, {12332, 51506}, {12699, 23513}, {12703, 17728}, {12743, 63211}, {12749, 16209}, {12750, 16208}, {12758, 55301}, {13145, 31659}, {13243, 37108}, {13253, 64012}, {13600, 64124}, {13913, 35774}, {13977, 35775}, {14647, 38211}, {14740, 58643}, {14988, 41389}, {16174, 28194}, {17009, 44669}, {17652, 61566}, {17654, 64107}, {18232, 18242}, {18253, 38757}, {18259, 19919}, {18525, 38754}, {20095, 37423}, {20118, 37568}, {20119, 59418}, {20400, 21635}, {22793, 38182}, {22935, 31447}, {24028, 43043}, {24954, 31235}, {26285, 37730}, {28228, 33709}, {31162, 59376}, {31525, 38727}, {32486, 43055}, {34196, 34311}, {34632, 59377}, {35004, 37737}, {36279, 54366}, {37256, 38215}, {37374, 48363}, {37718, 63469}, {38060, 43166}, {38077, 50865}, {38112, 61539}, {38152, 63974}, {38161, 51118}, {38216, 63973}, {39776, 59491}, {41869, 59390}, {45122, 52830}, {45776, 58405}, {47032, 61622}, {53055, 62775}, {55305, 59320}, {58441, 58453}
X(64193) = midpoint of X(i) and X(j) for these {i,j}: {8, 64191}, {10, 46684}, {11, 40}, {80, 24466}, {104, 1145}, {119, 12515}, {355, 38761}, {1071, 46685}, {1512, 17613}, {1537, 64189}, {1737, 13528}, {1768, 37725}, {2077, 40663}, {3036, 38759}, {3579, 12619}, {4297, 15863}, {5690, 38602}, {6154, 49176}, {6246, 31730}, {6264, 13996}, {6797, 31793}, {9945, 9952}, {10609, 12247}, {10993, 62354}, {11362, 11715}, {12119, 62616}, {12245, 25416}, {12690, 13199}, {12702, 64138}, {17654, 64139}, {37374, 48363}, {46435, 52116}
X(64193) = reflection of X(i) in X(j) for these {i,j}: {946, 6667}, {1387, 6713}, {3035, 6684}, {5083, 9940}, {5777, 46694}, {9945, 33814}, {11729, 140}, {12019, 12619}, {12611, 58421}, {12735, 1385}, {14740, 58643}, {18254, 58666}, {21635, 20400}, {64192, 1125}
X(64193) = complement of X(1537)
X(64193) = pole of line {1387, 2804} with respect to the Spieker circle
X(64193) = pole of line {1317, 12665} with respect to the Feuerbach hyperbola
X(64193) = pole of line {2401, 56234} with respect to the Steiner inellipse
X(64193) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11, 40, 14115}, {1768, 37725, 56423}
X(64193) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(38243)}}, {{A, B, C, X(10305), X(52178)}}, {{A, B, C, X(34234), X(46435)}}
X(64193) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64189, 1537}, {8, 38693, 64191}, {10, 46684, 2829}, {80, 165, 24466}, {104, 1145, 952}, {104, 5657, 1145}, {517, 6713, 1387}, {631, 10698, 34123}, {946, 38133, 6667}, {952, 33814, 9945}, {956, 5657, 5690}, {962, 31272, 38038}, {1512, 17613, 30}, {2800, 6684, 3035}, {3036, 38759, 515}, {3359, 26446, 6907}, {3579, 12619, 5840}, {5771, 61524, 5657}, {5840, 12619, 12019}, {6001, 58666, 18254}, {6684, 31788, 52265}, {11231, 12611, 58421}, {11362, 11715, 5854}, {12247, 34474, 10609}, {12515, 26446, 119}, {12515, 37822, 52116}, {12702, 57298, 64138}, {33814, 38602, 38722}, {37562, 55297, 11729}, {38128, 38761, 355}
X(64194) lies on these lines: {1, 27378}, {2, 92}, {3, 23661}, {4, 52366}, {5, 56875}, {8, 3427}, {9, 26591}, {10, 1076}, {20, 318}, {30, 38462}, {40, 23528}, {46, 17869}, {57, 17862}, {63, 321}, {69, 189}, {75, 5744}, {78, 52345}, {85, 50442}, {100, 2723}, {144, 4671}, {158, 27379}, {165, 17860}, {201, 34831}, {225, 24984}, {226, 18726}, {241, 26011}, {242, 33849}, {306, 57837}, {345, 20928}, {348, 21588}, {394, 28950}, {484, 23580}, {514, 661}, {516, 24026}, {517, 38955}, {535, 15065}, {655, 3218}, {860, 60427}, {894, 26587}, {927, 36796}, {971, 61185}, {1038, 24537}, {1060, 5136}, {1089, 12527}, {1096, 27403}, {1146, 26005}, {1229, 45738}, {1231, 20926}, {1295, 1309}, {1817, 31623}, {1829, 51558}, {1895, 27402}, {1896, 13614}, {1897, 3100}, {1944, 63068}, {1999, 62798}, {2094, 39126}, {2968, 37374}, {2975, 4968}, {3091, 5342}, {3101, 23512}, {3187, 55399}, {3262, 20920}, {3306, 20905}, {3436, 3701}, {3666, 18662}, {3702, 3869}, {3911, 4858}, {3952, 17615}, {4224, 7009}, {4296, 11109}, {4329, 32000}, {4359, 14213}, {4554, 7112}, {4723, 5176}, {4742, 62826}, {4980, 20879}, {5057, 33650}, {5081, 6840}, {5090, 36496}, {5174, 6895}, {5287, 5736}, {5435, 54284}, {5745, 6358}, {5748, 18743}, {5812, 5906}, {5905, 26871}, {5942, 31018}, {6357, 36949}, {6757, 58404}, {6851, 56876}, {6882, 34332}, {6996, 46108}, {7046, 52365}, {7102, 26118}, {7718, 28104}, {7952, 27505}, {8747, 27405}, {8758, 26095}, {14058, 42456}, {14212, 30834}, {14829, 54107}, {15252, 33305}, {15803, 20320}, {15988, 27064}, {16414, 59642}, {17102, 20222}, {17350, 26612}, {17484, 37781}, {17720, 53510}, {17740, 20895}, {18151, 37758}, {18607, 52358}, {19785, 55905}, {19799, 61414}, {20887, 51583}, {20927, 28808}, {20940, 40704}, {20999, 39572}, {21318, 37354}, {22129, 28968}, {23689, 29658}, {23690, 33140}, {23978, 46109}, {24627, 26538}, {24983, 46878}, {25001, 54357}, {26163, 27059}, {26223, 55400}, {27411, 64082}, {28765, 33157}, {28956, 37788}, {30007, 30029}, {30034, 30076}, {30699, 55907}, {32774, 55900}, {34822, 53008}, {34851, 56285}, {35516, 51414}, {36100, 36795}, {37365, 59520}, {39351, 63002}, {42709, 56883}, {46421, 60853}, {46422, 60854}, {46873, 46938}, {50102, 55906}, {51368, 59205}, {53816, 57810}, {56082, 56545}
X(64194) = isogonal conjugate of X(32677)
X(64194) = isotomic conjugate of X(36100)
X(64194) = anticomplement of X(1465)
X(64194) = trilinear pole of line {14304, 24034}
X(64194) = perspector of circumconic {{A, B, C, X(75), X(18026)}}
X(64194) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 32677}, {6, 102}, {19, 36055}, {31, 36100}, {32, 34393}, {48, 36121}, {56, 15629}, {109, 2432}, {110, 55255}, {184, 52780}, {251, 46359}, {521, 32667}, {522, 32643}, {650, 36040}, {652, 36067}, {2161, 58741}, {2342, 60000}, {6589, 35183}, {8607, 15379}, {8999, 32683}, {15633, 23979}, {32656, 60584}, {32660, 53152}, {32675, 61042}
X(64194) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 15629}, {2, 36100}, {3, 32677}, {6, 36055}, {9, 102}, {11, 2432}, {244, 55255}, {515, 2182}, {1249, 36121}, {1465, 1465}, {6376, 34393}, {8607, 1735}, {10017, 650}, {23986, 1}, {34050, 43058}, {35128, 61042}, {36944, 52663}, {40584, 58741}, {40585, 46359}, {40624, 2399}, {46974, 2323}, {51221, 19}, {57291, 46391}, {62605, 52780}
X(64194) = X(i)-Ceva conjugate of X(j) for these {i, j}: {75, 24034}, {36795, 2}
X(64194) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 36918}, {9, 153}, {104, 7}, {909, 145}, {1309, 46400}, {1795, 347}, {1809, 4329}, {2250, 2475}, {2342, 2}, {2423, 58371}, {2720, 4025}, {10428, 1266}, {13136, 21302}, {15501, 5932}, {18816, 21285}, {32641, 522}, {34051, 36845}, {34234, 3434}, {34858, 3210}, {36037, 693}, {36110, 17896}, {36123, 56927}, {36795, 6327}, {37136, 3900}, {38955, 2893}, {41933, 38460}, {43728, 150}, {51565, 69}, {52663, 8}, {54953, 46402}, {61238, 149}
X(64194) = X(i)-cross conjugate of X(j) for these {i, j}: {24034, 75}
X(64194) = pole of line {693, 10444} with respect to the Conway circle
X(64194) = pole of line {347, 693} with respect to the DeLongchamps circle
X(64194) = pole of line {19, 650} with respect to the polar circle
X(64194) = pole of line {693, 1441} with respect to the MacBeath inconic
X(64194) = pole of line {163, 2193} with respect to the Stammler hyperbola
X(64194) = pole of line {8, 521} with respect to the Steiner circumellipse
X(64194) = pole of line {10, 521} with respect to the Steiner inellipse
X(64194) = pole of line {522, 4551} with respect to the Yff parabola
X(64194) = pole of line {662, 1812} with respect to the Wallace hyperbola
X(64194) = pole of line {2, 2417} with respect to the dual conic of Adams circle
X(64194) = pole of line {321, 15416} with respect to the dual conic of circumcircle
X(64194) = pole of line {2, 2417} with respect to the dual conic of Conway circle
X(64194) = pole of line {2, 2417} with respect to the dual conic of incircle
X(64194) = pole of line {63, 57184} with respect to the dual conic of polar circle
X(64194) = pole of line {651, 4391} with respect to the dual conic of Feuerbach hyperbola
X(64194) = pole of line {244, 1210} with respect to the dual conic of Yff parabola
X(64194) = pole of line {661, 53560} with respect to the dual conic of Wallace hyperbola
X(64194) = pole of line {2, 2417} with respect to the dual conic of Suppa-Cucoanes circle
X(64194) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6332)}}, {{A, B, C, X(63), X(17080)}}, {{A, B, C, X(69), X(347)}}, {{A, B, C, X(92), X(4391)}}, {{A, B, C, X(189), X(278)}}, {{A, B, C, X(273), X(309)}}, {{A, B, C, X(281), X(3239)}}, {{A, B, C, X(655), X(908)}}, {{A, B, C, X(661), X(1880)}}, {{A, B, C, X(857), X(7452)}}, {{A, B, C, X(1214), X(24018)}}, {{A, B, C, X(1295), X(1465)}}, {{A, B, C, X(1309), X(2405)}}, {{A, B, C, X(1441), X(14208)}}, {{A, B, C, X(1577), X(40149)}}, {{A, B, C, X(2006), X(32706)}}, {{A, B, C, X(2861), X(8048)}}, {{A, B, C, X(3762), X(26736)}}, {{A, B, C, X(3904), X(17923)}}, {{A, B, C, X(3948), X(55254)}}, {{A, B, C, X(4358), X(42718)}}, {{A, B, C, X(4728), X(53522)}}, {{A, B, C, X(4791), X(59283)}}, {{A, B, C, X(5089), X(51361)}}, {{A, B, C, X(6087), X(34371)}}, {{A, B, C, X(6590), X(8755)}}, {{A, B, C, X(14304), X(37805)}}, {{A, B, C, X(14349), X(53082)}}, {{A, B, C, X(29069), X(55128)}}, {{A, B, C, X(34255), X(51375)}}, {{A, B, C, X(36795), X(59205)}}, {{A, B, C, X(37695), X(56261)}}, {{A, B, C, X(37800), X(55963)}}, {{A, B, C, X(40188), X(48335)}}, {{A, B, C, X(42549), X(48334)}}, {{A, B, C, X(48131), X(51414)}}, {{A, B, C, X(48398), X(61411)}}, {{A, B, C, X(50457), X(51421)}}, {{A, B, C, X(52412), X(57066)}}
X(64194) = barycentric product X(i)*X(j) for these (i, j): {1, 35516}, {264, 46974}, {304, 8755}, {309, 51375}, {312, 34050}, {314, 51421}, {320, 59283}, {515, 75}, {1455, 3596}, {2182, 76}, {2406, 4391}, {3262, 56638}, {11700, 20566}, {14208, 7452}, {14304, 664}, {18026, 39471}, {23987, 35518}, {24034, 34393}, {24035, 6332}, {30710, 51414}, {30806, 63857}, {31623, 51368}, {36100, 59205}, {42718, 514}, {46391, 46404}, {51361, 6063}, {51424, 57815}, {53522, 668}, {55254, 661}
X(64194) = barycentric quotient X(i)/X(j) for these (i, j): {1, 102}, {2, 36100}, {3, 36055}, {4, 36121}, {6, 32677}, {9, 15629}, {36, 58741}, {38, 46359}, {75, 34393}, {92, 52780}, {108, 36067}, {109, 36040}, {117, 1735}, {515, 1}, {650, 2432}, {661, 55255}, {1359, 1455}, {1415, 32643}, {1455, 56}, {1465, 60000}, {1735, 54242}, {2182, 6}, {2406, 651}, {2425, 1415}, {3738, 61042}, {4391, 2399}, {6001, 56634}, {6087, 6129}, {7452, 162}, {8755, 19}, {9056, 36088}, {10017, 35014}, {11700, 36}, {13138, 6081}, {14304, 522}, {17924, 60584}, {23986, 2182}, {23987, 108}, {24026, 15633}, {24034, 515}, {24035, 653}, {26704, 36108}, {26715, 36135}, {32674, 32667}, {34050, 57}, {35516, 75}, {36050, 35183}, {38554, 46974}, {39471, 521}, {42718, 190}, {42755, 1769}, {44426, 53152}, {46391, 652}, {46974, 3}, {51361, 55}, {51368, 1214}, {51375, 40}, {51408, 1155}, {51414, 3666}, {51421, 65}, {51422, 1319}, {51424, 354}, {53522, 513}, {55128, 21189}, {55254, 799}, {56638, 104}, {57291, 53557}, {57446, 53525}, {59283, 80}, {63857, 1156}
X(64194) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37798, 17923}, {2, 6360, 17080}, {3, 41013, 23661}, {92, 6350, 1441}, {225, 34823, 24984}, {312, 18750, 329}, {908, 14206, 30807}, {908, 914, 3936}, {1038, 54396, 24537}, {3218, 18359, 48380}, {4358, 30807, 908}, {14058, 42456, 44706}, {14213, 59491, 4359}, {18743, 20921, 5748}, {18743, 20930, 30828}, {20222, 27506, 17102}, {20920, 32851, 3262}
X(64195) lies on these lines: {2, 6}, {26, 206}, {50, 9723}, {68, 20300}, {76, 53485}, {110, 20987}, {125, 30803}, {155, 1503}, {157, 50645}, {159, 3167}, {182, 1216}, {184, 3313}, {195, 5050}, {287, 20564}, {297, 8746}, {338, 56017}, {542, 31181}, {571, 36212}, {575, 13154}, {576, 19137}, {651, 18626}, {732, 23128}, {1092, 19161}, {1176, 2979}, {1181, 44882}, {1236, 7754}, {1350, 7512}, {1351, 7506}, {1352, 5576}, {1576, 23163}, {1609, 34990}, {1843, 3292}, {2393, 34966}, {2781, 5504}, {2854, 13248}, {2892, 17847}, {2904, 19128}, {2911, 20808}, {2916, 6800}, {2965, 52275}, {3001, 40947}, {3098, 18475}, {3157, 9021}, {3431, 55646}, {3448, 31114}, {3518, 11477}, {3564, 13371}, {3818, 15068}, {3917, 5157}, {5017, 46288}, {5020, 58532}, {5026, 39839}, {5085, 7592}, {5169, 46448}, {5480, 7528}, {5505, 38263}, {5621, 12219}, {5965, 8548}, {6090, 16776}, {6391, 11216}, {6593, 19118}, {6642, 32191}, {6689, 19150}, {6776, 18948}, {7540, 31670}, {7568, 44480}, {7758, 14376}, {7760, 53490}, {7780, 58454}, {8265, 43183}, {8547, 17710}, {8705, 9924}, {9022, 22130}, {9027, 39125}, {9053, 64069}, {9306, 9969}, {9605, 23133}, {9973, 63183}, {10020, 34380}, {11441, 36990}, {11456, 48905}, {11511, 32366}, {11574, 34986}, {12007, 44503}, {12017, 15087}, {12163, 15578}, {12164, 63420}, {12167, 51994}, {12319, 34775}, {12383, 48910}, {13346, 34146}, {13367, 54374}, {13490, 21850}, {13754, 44883}, {14561, 36749}, {14615, 19221}, {14927, 43605}, {15069, 39588}, {15135, 38396}, {15321, 31133}, {15581, 41597}, {15583, 52077}, {16473, 38047}, {17834, 23041}, {18382, 44665}, {18440, 50461}, {18445, 46264}, {19121, 23061}, {19125, 19127}, {19130, 39522}, {19149, 29181}, {19153, 37491}, {20423, 43726}, {20771, 44456}, {20819, 34396}, {21852, 43586}, {21969, 44091}, {24206, 53999}, {29012, 32139}, {32001, 52418}, {34148, 41716}, {34778, 37497}, {35228, 47391}, {36851, 63174}, {37452, 63722}, {37483, 48881}, {37488, 64061}, {37813, 61629}, {38435, 53097}, {44668, 44752}, {45286, 48901}, {48892, 64098}, {48895, 64099}, {51739, 58891}, {52124, 58770}, {58437, 59553}, {58450, 61646}
X(64195) = midpoint of X(i) and X(j) for these {i,j}: {12164, 63420}, {16266, 19139}, {19149, 37498}, {19588, 34777}
X(64195) = reflection of X(i) in X(j) for these {i,j}: {68, 20300}, {12163, 15578}, {15577, 1147}, {34117, 19139}, {37488, 64061}
X(64195) = inverse of X(62376) in MacBeath circumconic
X(64195) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 18124}, {661, 1286}
X(64195) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 18124}, {10316, 22}, {36830, 1286}
X(64195) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18018, 3}
X(64195) = pole of line {5157, 6467} with respect to the Jerabek hyperbola
X(64195) = pole of line {2, 44527} with respect to the Kiepert hyperbola
X(64195) = pole of line {99, 1286} with respect to the Kiepert parabola
X(64195) = pole of line {525, 23285} with respect to the MacBeath circumconic
X(64195) = pole of line {6, 5133} with respect to the Stammler hyperbola
X(64195) = pole of line {523, 37978} with respect to the Steiner circumellipse
X(64195) = pole of line {525, 23285} with respect to the dual conic of nine-point circle
X(64195) = pole of line {525, 55228} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(64195) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1485)}}, {{A, B, C, X(69), X(59169)}}, {{A, B, C, X(76), X(59778)}}, {{A, B, C, X(141), X(56004)}}, {{A, B, C, X(249), X(62376)}}, {{A, B, C, X(325), X(20564)}}, {{A, B, C, X(343), X(6664)}}, {{A, B, C, X(2987), X(45794)}}, {{A, B, C, X(3431), X(3619)}}, {{A, B, C, X(3580), X(34207)}}, {{A, B, C, X(5504), X(28419)}}, {{A, B, C, X(5505), X(20080)}}, {{A, B, C, X(14376), X(28408)}}, {{A, B, C, X(37636), X(40802)}}, {{A, B, C, X(37644), X(43726)}}, {{A, B, C, X(37649), X(56347)}}, {{A, B, C, X(42295), X(46288)}}
X(64195) = barycentric product X(i)*X(j) for these (i, j): {21213, 69}
X(64195) = barycentric quotient X(i)/X(j) for these (i, j): {3, 18124}, {110, 1286}, {21213, 4}
X(64195) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 394, 141}, {110, 64023, 20987}, {511, 1147, 15577}, {511, 19139, 34117}, {576, 19137, 58471}, {1994, 3618, 6}, {11574, 34986, 64028}, {16266, 19139, 511}, {17710, 19459, 8547}, {19125, 37485, 19127}, {19149, 37498, 29181}, {19588, 34777, 2854}
X(64196) lies on these lines: {2, 55684}, {3, 66}, {4, 597}, {5, 10168}, {6, 3146}, {20, 524}, {23, 13567}, {30, 576}, {67, 15021}, {69, 43691}, {140, 47354}, {154, 16051}, {182, 546}, {184, 46517}, {185, 9019}, {193, 48872}, {343, 7492}, {376, 15069}, {382, 11179}, {511, 13491}, {516, 4852}, {542, 550}, {548, 34507}, {549, 18553}, {575, 3627}, {599, 3522}, {631, 47353}, {632, 5092}, {895, 52071}, {1204, 47558}, {1350, 3630}, {1351, 49137}, {1353, 29317}, {1368, 59699}, {1513, 55177}, {1656, 50957}, {1657, 50962}, {1992, 5059}, {2393, 22967}, {2777, 25329}, {2781, 10575}, {2883, 6593}, {2930, 63631}, {3090, 5085}, {3091, 3589}, {3313, 45187}, {3416, 63469}, {3424, 15271}, {3523, 20582}, {3525, 10516}, {3528, 11180}, {3529, 3629}, {3530, 11178}, {3534, 55595}, {3543, 63124}, {3564, 12103}, {3618, 50689}, {3619, 55673}, {3620, 55651}, {3628, 3818}, {3631, 5921}, {3763, 61820}, {3832, 47352}, {3845, 25555}, {3851, 38064}, {3853, 5476}, {3854, 63109}, {3857, 38110}, {3933, 14928}, {4663, 28164}, {5026, 38745}, {5032, 50692}, {5038, 53418}, {5050, 5076}, {5056, 51025}, {5068, 50960}, {5072, 12017}, {5073, 20423}, {5093, 43621}, {5159, 10192}, {5182, 33229}, {5207, 59552}, {5254, 53499}, {5305, 20194}, {5306, 40236}, {5486, 34622}, {5493, 28538}, {5596, 58795}, {5621, 7488}, {5622, 8718}, {5846, 7991}, {5882, 50998}, {5893, 19153}, {5895, 41719}, {5965, 48874}, {6144, 61044}, {6146, 12082}, {6329, 50688}, {6698, 32250}, {7390, 49731}, {7530, 15873}, {7550, 16659}, {7555, 12359}, {7710, 44377}, {7982, 51147}, {8538, 41729}, {8542, 31829}, {8703, 40107}, {8705, 15072}, {9306, 10300}, {9589, 47356}, {9729, 16776}, {9730, 63688}, {9830, 10991}, {9968, 11511}, {9969, 15012}, {9970, 18563}, {9971, 10574}, {9974, 42276}, {9975, 42275}, {10297, 64061}, {10299, 50984}, {10303, 34573}, {10304, 50991}, {10510, 12225}, {10519, 55641}, {11001, 63115}, {11206, 53415}, {11284, 31383}, {11381, 63723}, {11482, 12007}, {11522, 51006}, {11541, 14912}, {11550, 37454}, {11585, 38795}, {11898, 55602}, {12022, 37946}, {12088, 22533}, {12102, 18583}, {12108, 17508}, {12111, 54334}, {12241, 37827}, {12362, 44762}, {12811, 38317}, {13468, 37182}, {13910, 53513}, {13972, 53516}, {14002, 37648}, {14094, 32233}, {14561, 55701}, {14810, 62091}, {14848, 62023}, {14853, 62028}, {14869, 24206}, {14915, 44479}, {14982, 15034}, {15019, 34603}, {15020, 41737}, {15022, 47355}, {15080, 45303}, {15152, 16072}, {15331, 61543}, {15533, 62120}, {15534, 15683}, {15692, 51143}, {15696, 54173}, {15705, 51186}, {15717, 21358}, {16003, 44261}, {16010, 34224}, {17574, 63470}, {17578, 59373}, {17704, 61676}, {17710, 34146}, {17809, 44442}, {19127, 41362}, {19130, 55704}, {19596, 22467}, {19924, 62155}, {20062, 61658}, {20080, 55591}, {20300, 63674}, {20397, 32274}, {20583, 49135}, {21356, 21734}, {21659, 53777}, {21735, 50958}, {21850, 22330}, {22234, 48901}, {23046, 46267}, {23061, 52397}, {23292, 31099}, {25336, 64102}, {25561, 55856}, {25565, 50987}, {28662, 38801}, {30734, 54012}, {32154, 61139}, {32184, 61664}, {32218, 37957}, {32455, 49140}, {32599, 44076}, {33532, 44665}, {33703, 54131}, {33749, 62041}, {33750, 61807}, {33751, 43150}, {33878, 62134}, {33923, 50977}, {34117, 51491}, {34380, 48880}, {34624, 54996}, {35237, 44492}, {36775, 41020}, {38079, 51129}, {38136, 50664}, {38757, 51157}, {39560, 63534}, {39899, 48873}, {40330, 55676}, {40341, 62125}, {41149, 62160}, {41152, 62094}, {41153, 62007}, {41989, 55693}, {42117, 44511}, {42118, 44512}, {42144, 44497}, {42145, 44498}, {42225, 44501}, {42226, 44502}, {42785, 55707}, {42786, 55685}, {43174, 50949}, {43632, 51203}, {43633, 51200}, {44480, 64098}, {46936, 51127}, {47336, 51733}, {47341, 61752}, {48876, 48892}, {48885, 55597}, {48896, 55721}, {49138, 54132}, {49681, 58245}, {50687, 51185}, {50690, 51130}, {50691, 51026}, {50954, 61794}, {50955, 51134}, {50956, 61919}, {50967, 62127}, {50972, 51027}, {50974, 62147}, {50976, 62096}, {50979, 62036}, {50982, 62107}, {50990, 62095}, {50992, 62129}, {50993, 62063}, {50994, 62081}, {51131, 51216}, {51132, 62159}, {51139, 61834}, {51140, 62156}, {51144, 64197}, {51176, 62171}, {51187, 62145}, {51188, 62132}, {51189, 62099}, {51739, 64049}, {51756, 63667}, {53015, 58446}, {53091, 62024}, {55600, 58196}, {55644, 62087}, {55646, 62084}, {55649, 61545}, {55671, 61795}, {55672, 61801}, {55674, 61808}, {55675, 61810}, {55678, 61831}, {55682, 61850}, {55692, 61923}, {55697, 61955}, {55705, 61991}, {58445, 61900}, {59343, 64060}, {59767, 64059}, {62048, 63022}, {62133, 63428}, {62148, 63064}, {62168, 63125}
X(64196) = midpoint of X(i) and X(j) for these {i,j}: {6, 14927}, {20, 64080}, {193, 48872}, {1350, 39874}, {1657, 63722}, {3529, 11477}, {6144, 61044}, {6776, 48905}, {15534, 15683}, {25336, 64102}, {39899, 48873}, {62155, 64067}
X(64196) = reflection of X(i) in X(j) for these {i,j}: {141, 44882}, {597, 43273}, {599, 50971}, {3543, 63124}, {3627, 575}, {3629, 6776}, {3630, 1350}, {5480, 48906}, {5921, 3631}, {11160, 50970}, {11381, 63723}, {20582, 51135}, {22165, 376}, {31670, 12007}, {32250, 6698}, {34507, 548}, {36990, 3589}, {39884, 5092}, {43150, 33751}, {44882, 46264}, {48874, 48891}, {48876, 48892}, {48881, 48898}, {48884, 18583}, {51022, 597}, {51023, 20582}, {51024, 20583}, {51163, 6}, {51166, 1992}, {51212, 32455}, {51491, 34117}, {52987, 12103}
X(64196) = pole of line {3906, 23301} with respect to the Steiner circle
X(64196) = pole of line {3767, 3832} with respect to the Kiepert hyperbola
X(64196) = pole of line {22, 55614} with respect to the Stammler hyperbola
X(64196) = pole of line {315, 5059} with respect to the Wallace hyperbola
X(64196) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {6, 2452, 14927}
X(64196) = intersection, other than A, B, C, of circumconics {{A, B, C, X(66), X(52443)}}, {{A, B, C, X(2353), X(43691)}}, {{A, B, C, X(14376), X(18842)}}
X(64196) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 64014, 64080}, {20, 64080, 524}, {69, 50693, 55614}, {548, 34507, 54169}, {575, 29012, 3627}, {1352, 21167, 141}, {1503, 46264, 44882}, {3091, 25406, 10541}, {3529, 11477, 29181}, {3529, 6776, 11477}, {3564, 12103, 52987}, {3627, 48906, 575}, {3818, 55687, 3628}, {5965, 48891, 48874}, {6776, 29181, 3629}, {10519, 62092, 55641}, {10541, 36990, 3091}, {11477, 48905, 3529}, {11482, 49136, 31670}, {11898, 62119, 55602}, {12103, 52987, 48881}, {24206, 55679, 14869}, {25406, 36990, 3589}, {29012, 48906, 5480}, {33751, 55650, 62079}, {38072, 51138, 597}, {39899, 62143, 55580}, {48876, 62104, 55631}, {48892, 55631, 62104}, {48898, 52987, 12103}, {55580, 62143, 48873}, {55614, 59411, 50693}, {55701, 61984, 14561}, {62155, 64067, 19924}
X(64197) lies on these lines: {1, 651}, {2, 11407}, {3, 9}, {4, 527}, {5, 6173}, {7, 1210}, {8, 144}, {10, 6223}, {20, 6172}, {40, 4662}, {46, 30353}, {57, 5729}, {63, 1750}, {72, 36973}, {78, 60935}, {90, 56262}, {142, 3090}, {165, 3219}, {169, 38668}, {191, 2938}, {200, 1709}, {210, 10860}, {223, 24430}, {269, 1736}, {355, 54156}, {381, 60963}, {443, 60972}, {515, 5698}, {518, 5693}, {528, 5881}, {546, 5805}, {576, 51194}, {631, 60986}, {632, 38122}, {912, 18540}, {938, 60998}, {942, 60953}, {960, 10864}, {990, 1743}, {991, 3731}, {1445, 6915}, {1656, 38093}, {1698, 64113}, {1699, 5905}, {1706, 9947}, {1721, 1757}, {1768, 64112}, {2093, 59387}, {2475, 37714}, {2550, 6256}, {2551, 9948}, {3241, 18452}, {3243, 10222}, {3247, 62183}, {3303, 14100}, {3304, 8581}, {3305, 10857}, {3306, 13243}, {3339, 9814}, {3523, 61023}, {3525, 6666}, {3529, 5759}, {3530, 38067}, {3544, 60980}, {3576, 15254}, {3585, 4312}, {3586, 60946}, {3627, 5762}, {3628, 20195}, {3646, 58567}, {3679, 6925}, {3681, 7994}, {3715, 5918}, {3746, 4326}, {3751, 64134}, {3817, 10980}, {3832, 60984}, {3839, 60971}, {3855, 38073}, {3876, 63984}, {3925, 41706}, {3928, 19541}, {3929, 7580}, {3973, 13329}, {3984, 41228}, {4292, 12848}, {4304, 5766}, {4321, 5563}, {4654, 8226}, {4847, 64130}, {4857, 36599}, {4862, 53599}, {4866, 43174}, {5047, 12669}, {5056, 59374}, {5067, 60999}, {5068, 59375}, {5070, 38065}, {5072, 38107}, {5076, 31671}, {5079, 59380}, {5219, 13257}, {5234, 12520}, {5290, 12617}, {5400, 62695}, {5437, 10157}, {5450, 64154}, {5493, 50834}, {5528, 51525}, {5542, 14986}, {5587, 5851}, {5658, 5745}, {5705, 6260}, {5715, 61011}, {5728, 11518}, {5809, 60934}, {5811, 6245}, {5825, 8732}, {5850, 63973}, {5882, 47357}, {5887, 12650}, {5904, 12651}, {6001, 9623}, {6244, 62218}, {6762, 9856}, {6765, 12705}, {6769, 63967}, {6835, 60932}, {6837, 61027}, {6839, 60951}, {6860, 21617}, {6872, 50836}, {6908, 31446}, {6920, 60964}, {6926, 54178}, {6946, 8257}, {6957, 60952}, {6982, 51755}, {6999, 60927}, {7082, 41341}, {7282, 39531}, {7308, 10167}, {7675, 29007}, {7681, 41555}, {7701, 17857}, {7988, 21635}, {7989, 7997}, {8227, 25557}, {8544, 15803}, {8580, 15064}, {8583, 10085}, {8727, 28609}, {9579, 61007}, {9614, 60926}, {9799, 12572}, {9812, 20214}, {9819, 28236}, {9842, 61022}, {9845, 58679}, {9851, 11106}, {10164, 30393}, {10171, 24645}, {10177, 12675}, {10303, 18230}, {10392, 60961}, {10427, 20400}, {10431, 17781}, {10442, 35615}, {10826, 64155}, {10861, 17531}, {10883, 31164}, {10884, 60981}, {10940, 24982}, {11227, 51780}, {11240, 11522}, {11495, 15481}, {11524, 58245}, {12103, 61596}, {12108, 38113}, {12246, 57284}, {12514, 63981}, {12560, 18412}, {12565, 41229}, {12618, 17272}, {12652, 49448}, {12680, 31435}, {12688, 42014}, {12767, 61254}, {12811, 38139}, {12812, 38171}, {13226, 31190}, {13411, 60995}, {13464, 51099}, {13727, 50127}, {15012, 58534}, {15022, 62778}, {15178, 38316}, {15704, 64065}, {15829, 31821}, {16189, 24644}, {16239, 38082}, {16814, 50677}, {16865, 19861}, {17274, 36652}, {17538, 21168}, {17572, 61012}, {17613, 46917}, {17768, 41705}, {18229, 59637}, {18446, 61004}, {18480, 52682}, {18482, 60922}, {19647, 56509}, {19843, 54227}, {20059, 50689}, {20190, 38117}, {20420, 34742}, {21669, 60973}, {24393, 35514}, {24467, 60989}, {25590, 48888}, {29016, 55998}, {30223, 33925}, {30282, 60944}, {30557, 60903}, {31142, 37374}, {31391, 41712}, {31828, 54203}, {31871, 62858}, {34507, 51152}, {36279, 55922}, {36660, 50116}, {36682, 50092}, {36706, 50093}, {37161, 51100}, {37436, 60959}, {37560, 58631}, {38036, 42356}, {38055, 50443}, {38059, 43176}, {38111, 61900}, {38137, 41991}, {38145, 51150}, {38318, 55857}, {38454, 41869}, {41857, 59372}, {43161, 51090}, {43175, 52653}, {43879, 60920}, {43880, 60921}, {46936, 60996}, {50688, 60957}, {50693, 59418}, {50995, 53097}, {50997, 64080}, {51144, 64196}, {51514, 61968}, {53513, 60913}, {53516, 60914}, {54179, 54205}, {57282, 60982}, {58035, 59216}, {58433, 60781}, {58808, 64107}, {59386, 60962}, {60983, 62097}, {61001, 61870}, {61705, 63992}, {62824, 63988}
X(64197) = midpoint of X(i) and X(j) for these {i,j}: {144, 36991}, {3062, 5223}, {5691, 60905}, {5779, 60884}, {10394, 12528}, {52835, 60977}
X(64197) = reflection of X(i) in X(j) for these {i,j}: {1, 54370}, {3, 64198}, {7, 63970}, {9, 5779}, {40, 5220}, {1490, 52684}, {5732, 9}, {5735, 4}, {5759, 60942}, {5784, 5777}, {5805, 60901}, {11372, 16112}, {11495, 15481}, {18446, 61004}, {30424, 19925}, {35514, 24393}, {36996, 142}, {43161, 51090}, {43166, 11372}, {43178, 60912}, {52682, 18480}, {52835, 31672}, {54159, 54135}, {54179, 54205}, {60922, 18482}, {60933, 5805}, {60963, 381}, {63413, 61000}, {63971, 10}
X(64197) = anticomplement of X(43177)
X(64197) = perspector of circumconic {{A, B, C, X(13138), X(37139)}}
X(64197) = X(i)-Dao conjugate of X(j) for these {i, j}: {43177, 43177}
X(64197) = pole of line {28292, 59935} with respect to the polar circle
X(64197) = pole of line {1155, 10860} with respect to the Feuerbach hyperbola
X(64197) = pole of line {1817, 62756} with respect to the Stammler hyperbola
X(64197) = pole of line {664, 61237} with respect to the Yff parabola
X(64197) = pole of line {3887, 21188} with respect to the Suppa-Cucoanes circle
X(64197) = pole of line {347, 30379} with respect to the dual conic of Yff parabola
X(64197) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(56763)}}, {{A, B, C, X(84), X(10405)}}, {{A, B, C, X(165), X(60905)}}, {{A, B, C, X(268), X(60047)}}, {{A, B, C, X(282), X(1156)}}, {{A, B, C, X(1436), X(3062)}}, {{A, B, C, X(1903), X(62764)}}, {{A, B, C, X(4845), X(7367)}}
X(64197) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5779, 64198}, {3, 64198, 9}, {4, 527, 5735}, {7, 63970, 38150}, {9, 5732, 21153}, {84, 5777, 936}, {84, 5784, 5732}, {144, 36991, 516}, {144, 64002, 60905}, {518, 11372, 43166}, {518, 16112, 11372}, {527, 54135, 54159}, {971, 5777, 5784}, {971, 64198, 3}, {1490, 7330, 31424}, {2801, 54370, 1}, {3062, 52665, 5223}, {3146, 3951, 7991}, {3305, 11220, 10857}, {3339, 9814, 30424}, {5044, 12684, 9841}, {5220, 15726, 40}, {5223, 60905, 12526}, {5762, 31672, 52835}, {5779, 40263, 52684}, {5779, 60884, 971}, {5805, 5843, 60933}, {5805, 60901, 59389}, {5817, 36996, 142}, {5843, 60901, 5805}, {6223, 60997, 63971}, {7330, 40263, 1490}, {8544, 37787, 15803}, {10394, 12528, 2801}, {12705, 14872, 6765}, {30304, 30326, 2}, {31657, 38108, 20195}, {43178, 60912, 165}, {52835, 60977, 5762}, {61000, 63413, 21168}
X(64198) lies on these lines: {3, 9}, {4, 6172}, {5, 527}, {7, 3090}, {10, 22792}, {63, 10157}, {65, 41700}, {72, 6912}, {140, 43177}, {142, 3628}, {144, 3091}, {210, 5537}, {355, 5698}, {381, 5735}, {392, 38669}, {516, 3627}, {517, 5220}, {518, 576}, {528, 37290}, {546, 5762}, {631, 61023}, {632, 6666}, {912, 61004}, {942, 5729}, {958, 31821}, {990, 16885}, {991, 16814}, {1001, 15178}, {1071, 60981}, {1156, 18908}, {1212, 38666}, {1385, 2801}, {1656, 6173}, {1709, 3715}, {1768, 61686}, {2550, 37821}, {3057, 51768}, {3062, 63469}, {3146, 5759}, {3219, 5927}, {3303, 15298}, {3304, 15299}, {3305, 11227}, {3523, 38067}, {3525, 18230}, {3529, 21168}, {3544, 59386}, {3579, 15726}, {3652, 58658}, {3731, 62183}, {3746, 14100}, {3824, 60987}, {3826, 38179}, {3851, 38075}, {3857, 38139}, {3927, 5806}, {3929, 19541}, {3951, 60966}, {4301, 50834}, {4312, 10895}, {4640, 15064}, {5047, 60969}, {5055, 60963}, {5056, 60984}, {5067, 59374}, {5068, 38073}, {5070, 38093}, {5071, 60971}, {5072, 38150}, {5076, 52835}, {5079, 38107}, {5122, 8544}, {5183, 51790}, {5223, 7982}, {5302, 31803}, {5316, 13226}, {5325, 59687}, {5563, 8581}, {5587, 52682}, {5708, 60953}, {5714, 60975}, {5728, 6920}, {5791, 5811}, {5837, 51090}, {5850, 20330}, {5851, 11231}, {5880, 9956}, {5881, 50836}, {5882, 50243}, {6244, 58688}, {6829, 60951}, {6832, 61027}, {6915, 60970}, {6946, 37582}, {6978, 52457}, {6982, 37822}, {6984, 41563}, {7082, 33925}, {7308, 10156}, {7377, 60927}, {7486, 59375}, {7743, 60926}, {7991, 11372}, {8167, 58615}, {8226, 17781}, {8257, 24467}, {8543, 50194}, {8668, 15733}, {8728, 60972}, {9612, 61007}, {9856, 41229}, {9947, 12514}, {9954, 42012}, {9955, 60895}, {10167, 27065}, {10175, 30424}, {10303, 21151}, {10394, 24929}, {10398, 11518}, {10427, 38763}, {10541, 38117}, {10861, 17572}, {11230, 25557}, {11374, 60995}, {11477, 50995}, {11482, 51194}, {12103, 63413}, {12618, 17332}, {12812, 60962}, {12848, 57282}, {13243, 35595}, {13257, 54357}, {13329, 15492}, {14869, 38113}, {14872, 34486}, {15022, 20059}, {15069, 50997}, {15587, 18232}, {16625, 58534}, {16865, 61025}, {17333, 36652}, {17334, 53599}, {17336, 48878}, {17351, 48888}, {17531, 61012}, {17538, 59418}, {17606, 64155}, {17613, 63961}, {17668, 36866}, {18250, 33899}, {18542, 38121}, {19546, 56509}, {20195, 55857}, {22793, 38454}, {24644, 58245}, {25405, 30318}, {26446, 63971}, {30332, 59388}, {30389, 38031}, {31391, 41694}, {31399, 51100}, {31663, 43178}, {31666, 52769}, {31671, 59389}, {34753, 61022}, {34790, 42014}, {35514, 38126}, {37436, 61009}, {37560, 51572}, {37622, 49184}, {37727, 47357}, {38052, 41705}, {38065, 46219}, {38080, 61907}, {38082, 55856}, {38111, 55861}, {38130, 43182}, {38149, 63975}, {38171, 60980}, {43879, 60913}, {43880, 60914}, {46936, 62778}, {49515, 64013}, {51099, 61276}, {51514, 61923}, {55862, 61001}, {56762, 64116}, {59385, 61964}, {60781, 60996}, {61020, 61903}
X(64198) = midpoint of X(i) and X(j) for these {i,j}: {3, 64197}, {9, 5779}, {144, 5805}, {355, 5698}, {5220, 54370}, {5732, 60884}, {5759, 31672}, {37822, 60940}, {38031, 52665}, {52682, 60905}, {60901, 64065}, {60922, 60977}, {60942, 63970}
X(64198) = reflection of X(i) in X(j) for these {i,j}: {7, 61595}, {142, 61511}, {1385, 15254}, {3579, 60912}, {5880, 9956}, {18482, 63970}, {31657, 6666}, {31658, 9}, {43177, 140}, {43178, 31663}, {60895, 9955}, {60942, 61596}, {60962, 61509}, {64065, 61000}
X(64198) = pole of line {30223, 35445} with respect to the Feuerbach hyperbola
X(64198) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5779, 64197}, {3, 64197, 971}, {7, 38108, 61595}, {9, 5732, 59381}, {9, 64197, 3}, {9, 971, 31658}, {142, 61511, 38318}, {144, 5817, 5805}, {516, 61000, 64065}, {2801, 15254, 1385}, {3929, 30326, 19541}, {5044, 7330, 34862}, {5220, 54370, 517}, {5587, 60905, 52682}, {5729, 8545, 942}, {5762, 61596, 60942}, {5762, 63970, 18482}, {5779, 51516, 9}, {5779, 59381, 60884}, {5843, 61511, 142}, {15298, 60910, 63972}, {15726, 60912, 3579}, {18230, 36996, 38122}, {36991, 60983, 21168}, {38150, 60977, 60922}, {43177, 60986, 140}, {59381, 60884, 5732}, {60901, 64065, 516}, {60942, 63970, 5762}
X(64199) lies on these lines: {1, 3833}, {2, 31480}, {3, 145}, {8, 344}, {10, 17546}, {21, 519}, {35, 32633}, {55, 17574}, {56, 39777}, {65, 14151}, {100, 3244}, {149, 546}, {224, 13375}, {377, 12632}, {404, 3241}, {405, 31145}, {517, 33557}, {523, 64071}, {952, 21669}, {956, 20014}, {958, 20053}, {962, 18243}, {1000, 20013}, {1210, 64141}, {1317, 1476}, {1320, 1389}, {1376, 20057}, {1621, 3632}, {1697, 3951}, {1995, 20020}, {2136, 11518}, {2476, 11239}, {2550, 63256}, {2802, 34195}, {2975, 3633}, {3058, 56880}, {3090, 10528}, {3091, 63257}, {3146, 40267}, {3295, 3621}, {3315, 3987}, {3525, 10529}, {3529, 20075}, {3555, 26201}, {3616, 63287}, {3617, 6767}, {3622, 16862}, {3623, 5687}, {3625, 5260}, {3626, 5284}, {3627, 20060}, {3635, 5253}, {3636, 9342}, {3679, 17536}, {3680, 56030}, {3754, 62863}, {3811, 5330}, {3813, 7504}, {3868, 3895}, {3870, 3885}, {3876, 31393}, {3877, 3984}, {3878, 62236}, {3881, 5541}, {3889, 63130}, {3897, 12629}, {3935, 9957}, {3957, 10914}, {3979, 63333}, {4189, 20049}, {4193, 34619}, {4393, 21540}, {4420, 5919}, {4430, 12702}, {4669, 17547}, {4677, 16861}, {4701, 5259}, {4898, 38869}, {5086, 49626}, {5270, 15679}, {5550, 8162}, {6175, 15888}, {6542, 21516}, {6909, 37727}, {6912, 12648}, {6940, 61286}, {6946, 52074}, {6985, 34631}, {7301, 49534}, {7677, 41687}, {8168, 9780}, {8666, 34747}, {8702, 57093}, {8715, 13587}, {9708, 17544}, {9963, 45287}, {10527, 63263}, {10915, 59415}, {11010, 62235}, {11240, 17566}, {11349, 17389}, {11520, 64202}, {11530, 54392}, {11684, 37563}, {12000, 59388}, {12103, 20067}, {12331, 45977}, {12513, 17549}, {12521, 63137}, {12524, 44669}, {12607, 34699}, {12732, 24470}, {12737, 35597}, {13143, 64137}, {13144, 15015}, {13278, 38669}, {15170, 37162}, {15178, 38460}, {15678, 63273}, {15704, 20066}, {16371, 51092}, {16373, 20012}, {16477, 37588}, {16855, 46933}, {17014, 21519}, {17314, 37503}, {17388, 54409}, {17534, 53620}, {17535, 38314}, {17538, 20076}, {18990, 20095}, {19292, 20037}, {19316, 39587}, {19526, 20054}, {19993, 40916}, {20070, 36996}, {20084, 28216}, {21496, 29616}, {24475, 64136}, {25416, 51525}, {28174, 63285}, {32537, 50890}, {32911, 50575}, {33176, 60782}, {34486, 41575}, {34749, 36005}, {34791, 63136}, {35000, 61292}, {36006, 51071}, {37411, 50872}, {44685, 50194}, {48713, 50894}, {50581, 62848}, {51573, 56115}, {54286, 62854}, {62874, 63469}
X(64199) = reflection of X(i) in X(j) for these {i,j}: {8, 45081}, {3632, 15862}, {11684, 37563}, {13143, 64137}, {14923, 13375}, {56091, 64201}, {64201, 1}
X(64199) = anticomplement of X(64200)
X(64199) = X(i)-Dao conjugate of X(j) for these {i, j}: {64200, 64200}
X(64199) = pole of line {13587, 28217} with respect to the circumcircle
X(64199) = pole of line {7321, 17169} with respect to the Wallace hyperbola
X(64199) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(5559), X(56135)}}, {{A, B, C, X(32008), X(39962)}}, {{A, B, C, X(56091), X(56118)}}
X(64199) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 3303, 5047}, {145, 3871, 54391}, {3241, 3913, 404}, {3870, 3885, 62830}, {8715, 51093, 62837}, {8715, 62837, 13587}, {10222, 38665, 6915}, {11239, 64068, 2476}, {12331, 61597, 45977}
X(64200) lies on these lines: {1, 3826}, {2, 31480}, {5, 8}, {10, 3893}, {11, 3626}, {12, 3625}, {20, 956}, {55, 31458}, {56, 17583}, {72, 4301}, {78, 61276}, {100, 3530}, {145, 4197}, {200, 9624}, {210, 49600}, {224, 3872}, {381, 56879}, {382, 3434}, {388, 31420}, {392, 21627}, {405, 47357}, {442, 519}, {443, 38092}, {474, 34625}, {495, 3621}, {496, 1000}, {498, 8168}, {517, 22798}, {523, 764}, {528, 4330}, {546, 56880}, {548, 2975}, {550, 49719}, {631, 5687}, {858, 33090}, {952, 5178}, {958, 4309}, {960, 38211}, {962, 5779}, {1124, 31486}, {1125, 34501}, {1145, 6734}, {1329, 4668}, {1484, 32634}, {1490, 3419}, {1500, 31491}, {1697, 31446}, {1907, 56876}, {2136, 31436}, {2276, 31469}, {2346, 15998}, {2476, 31145}, {2550, 56997}, {2802, 21677}, {2886, 3632}, {2894, 59356}, {3057, 10395}, {3241, 8728}, {3244, 3925}, {3295, 31494}, {3421, 3832}, {3436, 3843}, {3526, 10527}, {3528, 17784}, {3555, 5784}, {3633, 25466}, {3648, 28216}, {3650, 28174}, {3656, 3984}, {3679, 3680}, {3681, 22791}, {3695, 3902}, {3697, 12053}, {3698, 49627}, {3746, 15670}, {3754, 51463}, {3814, 4746}, {3820, 4678}, {3853, 52367}, {3861, 5080}, {3895, 5791}, {3913, 7483}, {3935, 37737}, {4002, 11019}, {4015, 21630}, {4293, 57001}, {4317, 11112}, {4325, 5288}, {4420, 5901}, {4511, 61278}, {4662, 30384}, {4669, 17533}, {4677, 12607}, {4701, 25639}, {4745, 50038}, {4816, 7951}, {4847, 10914}, {4861, 61286}, {4863, 37724}, {4882, 11218}, {4915, 37714}, {4999, 48696}, {5047, 15170}, {5067, 7080}, {5070, 5552}, {5086, 61249}, {5176, 61255}, {5260, 15172}, {5267, 6154}, {5303, 58190}, {5563, 49732}, {5659, 9588}, {5692, 13463}, {5718, 50575}, {5836, 13375}, {6736, 31399}, {6845, 12245}, {6857, 12632}, {6990, 34631}, {7765, 21956}, {7982, 8226}, {8582, 45115}, {8666, 34612}, {8715, 34720}, {9589, 38454}, {9607, 16975}, {9623, 37723}, {9656, 31140}, {9670, 11113}, {9698, 52959}, {9709, 10529}, {9780, 45116}, {9957, 25006}, {10385, 19526}, {10459, 64167}, {10528, 31493}, {10609, 63146}, {10915, 38058}, {10942, 51515}, {10943, 59503}, {10957, 36920}, {11240, 16408}, {11684, 28212}, {12620, 63993}, {12623, 44669}, {12649, 40587}, {12699, 63135}, {12702, 64153}, {12732, 37568}, {13143, 64056}, {13144, 37718}, {13747, 45700}, {15559, 56877}, {15908, 47745}, {17525, 63273}, {17532, 31410}, {17619, 24386}, {18253, 37563}, {18990, 33110}, {19535, 34607}, {20050, 33108}, {20691, 31462}, {21927, 49510}, {24953, 25439}, {25278, 64093}, {26446, 63142}, {27529, 48154}, {31447, 59491}, {31478, 37661}, {31835, 64138}, {33895, 50208}, {34605, 50240}, {34610, 56998}, {34611, 50241}, {34718, 37356}, {34790, 51409}, {37406, 50798}, {38054, 63258}, {38455, 47033}, {38665, 52265}, {55864, 59591}, {59310, 64172}, {63143, 63980}
X(64200) = midpoint of X(i) and X(j) for these {i,j}: {8, 64201}, {5559, 11524}, {13143, 64056}
X(64200) = reflection of X(i) in X(j) for these {i,j}: {13375, 5836}, {15862, 3626}, {37563, 18253}, {45081, 10}, {57002, 5258}
X(64200) = complement of X(64199)
X(64200) = pole of line {17533, 28217} with respect to the nine-point circle
X(64200) = pole of line {28217, 37374} with respect to the Steiner circle
X(64200) = pole of line {16814, 46196} with respect to the Kiepert hyperbola
X(64200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 9710, 17529}, {8, 24390, 17757}, {8, 64201, 5844}, {10, 37722, 17575}, {528, 5258, 57002}, {958, 4309, 57003}, {3679, 11524, 5559}, {3679, 37720, 9711}, {3679, 3813, 4187}, {3813, 9711, 37720}, {4669, 24387, 21031}, {21031, 24387, 17533}, {45081, 61032, 10}
X(64201) lies on these lines: {1, 3833}, {2, 10912}, {5, 8}, {10, 1320}, {21, 2802}, {40, 2975}, {72, 26200}, {78, 11525}, {100, 1385}, {145, 2550}, {404, 22837}, {517, 3652}, {518, 63275}, {519, 5178}, {523, 1222}, {758, 12786}, {944, 28458}, {952, 47032}, {1125, 41702}, {1145, 34126}, {1621, 3885}, {2098, 3617}, {2099, 3621}, {2136, 63260}, {2346, 3680}, {2475, 38455}, {2476, 49169}, {3057, 5260}, {3241, 11024}, {3244, 32924}, {3336, 54391}, {3338, 13375}, {3340, 60953}, {3434, 12667}, {3616, 40587}, {3622, 63287}, {3625, 11009}, {3626, 63210}, {3632, 10129}, {3633, 63159}, {3648, 28212}, {3679, 5330}, {3681, 7982}, {3869, 4853}, {3871, 37571}, {3873, 12629}, {3876, 30323}, {3880, 37080}, {3884, 5506}, {3890, 9623}, {3893, 34772}, {3898, 17536}, {3935, 11011}, {3984, 11224}, {4420, 10222}, {4511, 33179}, {4547, 56115}, {4678, 5289}, {4701, 4867}, {4900, 56030}, {4915, 11682}, {4999, 13996}, {5046, 13463}, {5080, 40273}, {5082, 6951}, {5086, 12531}, {5176, 19925}, {5220, 63209}, {5253, 5836}, {5284, 9957}, {5303, 31663}, {5541, 51111}, {5659, 51433}, {5687, 37624}, {5853, 63265}, {5854, 63270}, {5903, 62235}, {6736, 11218}, {6920, 10284}, {6972, 64081}, {7173, 33559}, {7987, 63130}, {7991, 62827}, {9802, 15171}, {10707, 49600}, {10861, 11519}, {10944, 33110}, {12127, 62815}, {12541, 50839}, {12635, 31145}, {12640, 24541}, {13995, 44669}, {15888, 32426}, {17619, 59377}, {20054, 41711}, {22560, 37293}, {22791, 56880}, {24387, 59415}, {24928, 44685}, {24982, 64205}, {28174, 63280}, {28629, 63256}, {32157, 37291}, {32633, 63211}, {36006, 51714}, {37562, 38669}, {43177, 57287}, {49494, 57280}, {50637, 54315}, {50894, 63254}, {62870, 63255}
X(64201) = midpoint of X(i) and X(j) for these {i,j}: {1, 11524}, {12653, 13144}, {56091, 64199}
X(64201) = reflection of X(i) in X(j) for these {i,j}: {8, 64200}, {5559, 10}, {56091, 11524}, {64199, 1}
X(64201) = anticomplement of X(45081)
X(64201) = X(i)-Dao conjugate of X(j) for these {i, j}: {45081, 45081}
X(64201) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1385), X(5844)}}, {{A, B, C, X(1389), X(28219)}}, {{A, B, C, X(5559), X(56323)}}, {{A, B, C, X(13143), X(56135)}}
X(64201) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3632, 62830, 62236}, {3872, 14923, 2975}, {4853, 11531, 63135}, {4861, 10914, 100}, {5836, 38460, 5253}, {5844, 64200, 8}, {11531, 63135, 3869}
X(64202) lies on these lines: {1, 88}, {3, 3680}, {4, 12640}, {5, 64204}, {8, 3586}, {10, 5274}, {20, 519}, {35, 64203}, {40, 3880}, {56, 63138}, {145, 2093}, {200, 5697}, {405, 1697}, {517, 1490}, {518, 55582}, {528, 5881}, {550, 34716}, {631, 64205}, {936, 3057}, {952, 52116}, {958, 11525}, {1000, 57284}, {1125, 30337}, {1145, 9581}, {1210, 63133}, {1420, 19537}, {1482, 3158}, {1698, 10584}, {1699, 10915}, {1706, 9957}, {1837, 13996}, {2478, 3679}, {3149, 3913}, {3174, 37625}, {3189, 28234}, {3241, 37267}, {3243, 50193}, {3244, 3339}, {3303, 16410}, {3576, 10912}, {3625, 5223}, {3632, 12526}, {3633, 36977}, {3635, 10980}, {3746, 37248}, {3753, 37556}, {3811, 11531}, {3868, 51786}, {3872, 4189}, {3877, 63142}, {3878, 4882}, {3884, 8580}, {3893, 57279}, {3922, 8162}, {3951, 31145}, {4002, 16856}, {4004, 44841}, {4084, 8544}, {4301, 34619}, {4421, 33895}, {4512, 37563}, {4669, 4866}, {4677, 11114}, {4853, 5119}, {4861, 30282}, {4915, 12514}, {4917, 62830}, {4936, 5540}, {5044, 51781}, {5177, 31397}, {5187, 6735}, {5248, 53052}, {5290, 49626}, {5330, 64135}, {5436, 40587}, {5437, 31792}, {5439, 51779}, {5657, 21627}, {5687, 7962}, {5690, 24392}, {5691, 49169}, {5759, 5853}, {5836, 31393}, {5840, 12641}, {5854, 12119}, {5882, 34607}, {6154, 37738}, {6736, 30305}, {6762, 7171}, {6865, 11362}, {6933, 31434}, {6953, 11522}, {7320, 17580}, {7963, 47622}, {7966, 31788}, {7987, 22837}, {7992, 28236}, {7997, 37712}, {8227, 13463}, {8666, 63469}, {8668, 11012}, {9580, 64087}, {9588, 45700}, {9613, 12648}, {9624, 34640}, {10106, 57000}, {10595, 59584}, {10866, 58649}, {10993, 34701}, {11010, 62824}, {11108, 11530}, {11224, 22836}, {11238, 37829}, {11260, 35242}, {11519, 62858}, {11520, 64199}, {12120, 31798}, {12448, 58637}, {12541, 59417}, {12607, 31162}, {12625, 31789}, {12650, 49163}, {13528, 15347}, {13729, 37714}, {15803, 36846}, {16113, 44669}, {16200, 56176}, {16486, 56174}, {17151, 21271}, {17648, 37560}, {19875, 24387}, {21153, 42842}, {21630, 50444}, {22560, 59332}, {24391, 50810}, {25405, 45036}, {30323, 48696}, {30350, 33815}, {30568, 56799}, {31423, 32157}, {31775, 34709}, {32049, 41869}, {34625, 43174}, {34719, 37721}, {34773, 47746}, {36002, 58245}, {37307, 38460}, {37618, 41702}, {37704, 37828}, {37711, 64056}, {45047, 54319}, {45763, 52181}, {53056, 62825}, {56936, 64163}, {63399, 64136}
X(64202) = reflection of X(i) in X(j) for these {i,j}: {4, 12640}, {145, 64117}, {3680, 3}, {5691, 49169}, {6762, 12702}, {6765, 2136}, {7982, 3913}, {11519, 62858}, {11531, 3811}, {12448, 58637}, {12629, 40}, {12650, 49163}, {12653, 25438}, {41869, 32049}, {47746, 34773}, {54422, 7991}, {64068, 11362}
X(64202) = pole of line {30198, 53392} with respect to the Bevan circle
X(64202) = pole of line {5048, 12629} with respect to the Feuerbach hyperbola
X(64202) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(106), X(38271)}}, {{A, B, C, X(1320), X(36624)}}
X(64202) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 3880, 12629}, {517, 2136, 6765}, {519, 7991, 54422}, {1320, 4855, 1}, {1697, 10914, 9623}, {2802, 25438, 12653}, {3057, 63137, 936}, {4853, 5119, 31424}, {11519, 63468, 62858}, {34640, 64123, 9624}, {34711, 64068, 11362}, {36846, 63136, 15803}
X(64203) lies on these lines: {1, 474}, {8, 5187}, {9, 13143}, {10, 10584}, {11, 3679}, {35, 64202}, {40, 32153}, {46, 14923}, {145, 10044}, {200, 63210}, {355, 546}, {498, 12640}, {499, 64205}, {517, 1709}, {519, 1478}, {952, 12678}, {993, 2802}, {997, 1320}, {1482, 3893}, {1621, 3885}, {1698, 11373}, {3057, 9708}, {3243, 34747}, {3244, 11045}, {3338, 36846}, {3340, 3633}, {3359, 6264}, {3419, 5854}, {3576, 5541}, {3577, 4867}, {3612, 4861}, {3625, 11682}, {3655, 6154}, {3689, 10247}, {3895, 59337}, {3984, 4701}, {4312, 34690}, {4316, 34716}, {4423, 9957}, {4668, 15829}, {4677, 11235}, {4853, 5697}, {4915, 5692}, {5010, 13205}, {5251, 9819}, {5288, 7991}, {5691, 12700}, {5727, 10947}, {5790, 44784}, {5853, 60923}, {5881, 10525}, {5903, 10042}, {5904, 11531}, {5919, 40587}, {6735, 23708}, {6765, 11009}, {7280, 63138}, {7993, 17654}, {8068, 12641}, {8148, 31937}, {9589, 64000}, {9897, 13271}, {10045, 11519}, {10522, 37711}, {10573, 21627}, {10785, 11362}, {10827, 49169}, {10829, 37546}, {10893, 37714}, {10915, 37692}, {10949, 41687}, {11260, 58887}, {11280, 11523}, {11529, 34612}, {11544, 16126}, {12245, 12616}, {12448, 44547}, {12546, 22787}, {12559, 20050}, {13463, 64087}, {13996, 26446}, {16152, 44669}, {16496, 36814}, {17098, 56091}, {17613, 63468}, {17622, 30393}, {17625, 18421}, {17757, 34640}, {18223, 63146}, {18480, 36972}, {18516, 31162}, {18961, 37709}, {22837, 37618}, {24392, 41684}, {26726, 64155}, {30144, 63142}, {35249, 50811}, {38460, 54286}, {41709, 64068}, {45700, 51433}
X(64203) = reflection of X(i) in X(j) for these {i,j}: {3632, 4863}, {5119, 3872}, {37708, 3434}
X(64203) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3445), X(56152)}}, {{A, B, C, X(8056), X(13143)}}
X(64203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 49600, 10826}, {519, 3434, 37708}, {2802, 3872, 5119}, {3679, 12653, 7962}, {4853, 5697, 41229}, {4863, 5844, 3632}, {7962, 11525, 3679}, {10912, 10914, 1}, {10944, 47746, 3633}, {22837, 63130, 37618}
X(64204) lies on these lines: {1, 1145}, {2, 3680}, {3, 34716}, {5, 64202}, {8, 3158}, {9, 6736}, {10, 1058}, {40, 10915}, {100, 37709}, {145, 59584}, {165, 32049}, {226, 63133}, {405, 3679}, {443, 1706}, {517, 63966}, {519, 631}, {528, 37714}, {529, 63469}, {646, 44720}, {1000, 6700}, {1329, 9819}, {1420, 12648}, {1478, 63138}, {1697, 2478}, {1698, 3880}, {1837, 47375}, {2475, 3882}, {2802, 8227}, {2900, 4882}, {3057, 30827}, {3169, 59772}, {3174, 21677}, {3189, 3626}, {3208, 23058}, {3243, 4848}, {3303, 37829}, {3333, 49626}, {3340, 10528}, {3576, 49169}, {3617, 5853}, {3632, 37525}, {3633, 56177}, {3654, 54422}, {3698, 20195}, {3811, 63143}, {3816, 30337}, {3829, 30315}, {3871, 5727}, {3885, 50443}, {3890, 20196}, {3893, 5231}, {3895, 9581}, {3919, 41870}, {3928, 43174}, {3929, 56879}, {4097, 59307}, {4301, 34711}, {4421, 32537}, {4595, 31638}, {4668, 44669}, {4669, 50739}, {4677, 37298}, {4915, 26066}, {5123, 51785}, {5219, 14923}, {5251, 8668}, {5531, 32198}, {5541, 10827}, {5552, 7962}, {5554, 10389}, {5657, 6762}, {5690, 6765}, {5795, 11106}, {5836, 25525}, {5837, 62218}, {5881, 6906}, {6173, 15888}, {6675, 9623}, {6834, 7982}, {6908, 11362}, {7080, 15829}, {7987, 38455}, {7988, 13463}, {7991, 12607}, {8583, 45081}, {9579, 63136}, {9588, 12513}, {9589, 11236}, {9613, 56998}, {9780, 21627}, {10039, 63137}, {10106, 37267}, {10179, 17648}, {10914, 31434}, {11239, 11518}, {11375, 13996}, {11525, 26363}, {12245, 59722}, {12247, 61296}, {12448, 58451}, {12541, 24386}, {12629, 26446}, {12649, 61016}, {16200, 59719}, {18634, 59711}, {20076, 63207}, {20420, 34687}, {24299, 59503}, {24982, 37556}, {24987, 38200}, {25055, 33895}, {31231, 36846}, {34471, 44784}, {34647, 58245}, {36972, 37600}, {37567, 60933}, {37711, 46816}, {38028, 47746}, {38763, 61276}, {42020, 56078}, {45036, 63987}, {49600, 54447}, {57002, 61763}, {59216, 63620}, {59388, 64117}
X(64204) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 37828, 31190}, {2, 12640, 3680}, {10, 2136, 24392}, {3679, 31436, 405}, {3679, 3913, 12625}, {5836, 51784, 25525}, {5881, 8715, 34701}, {7991, 12607, 28609}, {10528, 51433, 3340}, {11362, 34619, 11523}, {12541, 46933, 24386}, {32049, 32157, 165}
X(64205) lies on circumconic {{A, B, C, X(277), X(38255)}} and on these lines: {1, 142}, {2, 3680}, {5, 519}, {8, 18220}, {10, 10912}, {145, 5226}, {226, 36846}, {499, 64203}, {515, 10525}, {516, 11260}, {517, 6705}, {518, 31821}, {521, 23808}, {527, 4301}, {551, 3913}, {553, 62837}, {631, 64202}, {950, 4861}, {958, 4342}, {1000, 5705}, {1125, 3880}, {1320, 6734}, {1387, 6700}, {1420, 37267}, {1482, 51755}, {2098, 4847}, {2136, 3616}, {2170, 52528}, {2475, 10106}, {2478, 3872}, {2802, 6684}, {3008, 45219}, {3057, 5745}, {3146, 34716}, {3158, 3622}, {3243, 4323}, {3244, 64110}, {3434, 63987}, {3445, 24175}, {3452, 4853}, {3626, 5854}, {3634, 64109}, {3635, 6701}, {3636, 56176}, {3742, 12448}, {3817, 32049}, {3884, 58415}, {3893, 6745}, {3900, 19947}, {3911, 14923}, {4051, 40869}, {4311, 56998}, {4345, 15829}, {4696, 4939}, {4848, 10529}, {5048, 6737}, {5258, 50891}, {5267, 22560}, {5493, 11194}, {5603, 12629}, {5734, 11523}, {5790, 47746}, {5836, 6692}, {5837, 7962}, {5882, 6850}, {5901, 59722}, {6553, 15590}, {6666, 58679}, {6675, 9957}, {6736, 11376}, {6762, 60965}, {6765, 10595}, {6766, 60974}, {6847, 7982}, {6891, 11362}, {8666, 28194}, {8732, 61630}, {8834, 10005}, {9588, 34711}, {9589, 34610}, {9623, 17559}, {9624, 34619}, {9785, 11106}, {9819, 30478}, {9843, 40587}, {10039, 41702}, {10171, 32426}, {10175, 49169}, {10246, 64117}, {10624, 57002}, {10914, 13747}, {10916, 28234}, {11035, 12446}, {11256, 21635}, {11519, 25568}, {11531, 24477}, {12436, 51788}, {12577, 60980}, {12632, 38314}, {12635, 24389}, {12641, 31272}, {13272, 21630}, {13384, 56936}, {17460, 28027}, {17528, 51071}, {17563, 24928}, {17784, 63208}, {19925, 38455}, {21949, 37743}, {24558, 46917}, {24982, 64201}, {28352, 61222}, {28661, 59599}, {30147, 40270}, {30389, 34607}, {31231, 63133}, {32157, 58441}, {34744, 58245}, {34937, 50637}
X(64205) = midpoint of X(i) and X(j) for these {i,j}: {1, 21627}, {10, 10912}, {3680, 12640}, {3813, 33895}, {4301, 12513}, {7982, 24391}, {11256, 21635}, {11260, 13463}, {12437, 64068}, {22837, 49600}
X(64205) = reflection of X(i) in X(j) for these {i,j}: {56176, 3636}, {59722, 5901}
X(64205) = complement of X(12640)
X(64205) = X(i)-complementary conjugate of X(j) for these {i, j}: {1476, 2885}, {59095, 20317}
X(64205) = pole of line {3676, 27830} with respect to the Steiner inellipse
X(64205) = pole of line {9, 63621} with respect to the dual conic of Yff parabola
X(64205) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 21627, 5853}, {1, 64068, 12437}, {2, 3680, 12640}, {8, 18220, 30827}, {2136, 3616, 59584}, {3622, 12541, 3158}, {3813, 33895, 519}, {3872, 12053, 5795}, {4301, 12513, 527}, {7962, 64081, 5837}, {7982, 34625, 24391}, {10914, 44675, 63990}, {11260, 13463, 516}, {12437, 21627, 64068}, {12513, 34640, 4301}, {22837, 49600, 515}
Let (I) be the incircle of a triangle ABC. Let ωa be the circle tangent to (I) and passing through B and C. Define ωb and ωc cyclically. Let Ab, Ac be the second intersections of ωa and AC and AB, respectively, and define Bc, Ba and Ca, Cb cyclically. Let A'=BcBa∩CaCb, and define B', C' cyclically. Finally, let A* be the second intersection of ωb and ωc, and define B* and C* cyclically. Then: 1) A'B'C' and the intouch triangle are perspective (at X(64206)) and, 2) A'B'C' and A*B*C* are perspective (homothetic center X(64207)). (Keita Miyamoto, June 26, 2024 - Centers found by César Lozada).
X(64206) lies on the cubic K1089 and these lines: {6, 41}, {7, 15320}, {37, 1362}, {77, 674}, {222, 1486}, {226, 58571}, {241, 22277}, {354, 1827}, {946, 971}, {1037, 47373}, {1418, 52020}, {2807, 11700}, {3668, 5173}, {5083, 16888}, {6610, 21746}, {10481, 43915}, {14548, 21279}, {17625, 41003}, {21239, 44411}, {22300, 37544}, {22440, 41339}, {35312, 63227}, {55102, 60932}, {55340, 63203}
X(64206) = reflection of X(1827) in X(40646)
X(64206) = X(35338)-beth conjugate of-X(142)
X(64206) = X(i)-Ceva conjugate of-X(j) for these (i, j): (7, 1418), (56005, 20229)
X(64206) = X(i)-Dao conjugate of-X(j) for these (i, j): (116, 62725), (354, 8)
X(64206) = X(i)-isoconjugate of-X(j) for these {i, j}: {6605, 14377}, {43190, 62747}
X(64206) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (3681, 63239), (3730, 56118), (6586, 62725), (15624, 6605), (35312, 31624), (40606, 8), (61376, 14377)
X(64206) = pole of the line {46110, 62725} with respect to the polar circle
X(64206) = pole of the line {1418, 24220} with respect to the circumhyperbola dual of Yff parabola
X(64206) = pole of the line {1418, 11246} with respect to the Feuerbach circumhyperbola
X(64206) = barycentric product X(i)*X(j) for these {i,j}: {7, 40606}, {1418, 3681}, {1475, 33298}, {1734, 63203}, {3730, 10481}, {4184, 52023}, {6586, 35312}, {15624, 59181}, {17233, 61376}
X(64206) = trilinear product X(i)*X(j) for these {i,j}: {57, 40606}, {1418, 3730}, {3681, 61376}, {6586, 63203}, {10481, 15624}
X(64206) = trilinear quotient X(i)/X(j) for these (i,j): (1418, 14377), (1734, 62725), (3681, 56118), (3730, 6605), (6586, 62747), (15624, 10482), (17233, 63239), (33298, 57815), (40606, 9), (53237, 57497), (63203, 43190)
X(64206) = (X(354), X(1827))-harmonic conjugate of X(40646)
X(64207) lies on these lines: {1, 3}, {479, 1119}, {1439, 3598}, {5745, 58623}, {8581, 41867}, {8732, 34784}, {10391, 60992}, {17612, 59413}, {58564, 60945}
X(64207) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (57, 34489, 55), (1467, 37566, 942)
Let (Ia) be the A-excircle of a triangle ABC. Let ωa be the circle tangent to (Ia) and passing through B and C. Define ωb and ωc cyclically. Let Ab, Ac be the second intersections of ωa and AC and AB, respectively, and define Bc, Ba and Ca, Cb cyclically. Let A'=BcBa∩CaCb, and define B', C' cyclically. Finally, let A* be the second intersection of ωb and ωc, and define B* and C* cyclically. Then: 1) A'B'C' and the extouch triangle are perspective (at X(22276)) and, 2) A'B'C' and A*B*C* are perspective (homothetic center X(64208)). (Keita Miyamoto, June 26, 2024 - Centers found by César Lozada).
X(64208) lies on these lines: {1, 21867}, {37, 56}, {518, 1125}, {614, 49478}, {960, 28639}, {975, 12329}, {984, 51816}, {3742, 29642}, {5173, 22276}, {5287, 40635}, {6051, 8053}, {12721, 16672}, {15569, 24929}, {20718, 37544}, {28627, 54344}
X(64209) lies on the cirumconic {A,B,C,X(1),X(6)}, the cubic K678, and these lines: {1, 1123}, {6, 7133}, {19, 5412}, {33, 42}, {34, 61392}, {56, 2362}, {58, 606}, {86, 3084}, {106, 6135}, {158, 55404}, {190, 8393}, {269, 13437}, {386, 55498}, {1124, 37885}, {1126, 18992}, {1609, 44590}, {1659, 4000}, {1887, 16232}, {2334, 7968}, {3068, 8941}, {3299, 52186}, {3301, 57709}, {3445, 44635}, {4644, 52814}, {13387, 56328}, {13435, 56427}, {14571, 42013}, {17365, 58839}, {19004, 56343}, {30354, 60887}, {41515, 52033}, {54396, 55454}
X(64209) = isogonal conjugate of X(3083)
X(64209) = polar conjugate of X(46744)
X(64209) = polar conjugate of the isotomic conjugate of X(6213)
X(64209) = X(i)-Ceva conjugate of X(j) for these (i,j): {1123, 13456}, {13437, 13438}
X(64209) = X(60850)-cross conjugate of X(19)
X(64209) = X(i)-isoconjugate of X(j) for these (i,j): {1, 3083}, {2, 1124}, {3, 13386}, {6, 1267}, {7, 60848}, {9, 52419}, {19, 55388}, {48, 46744}, {55, 13453}, {56, 13425}, {63, 6212}, {69, 34125}, {75, 605}, {100, 6364}, {394, 1336}, {898, 14440}, {1252, 22107}, {1259, 13459}, {1335, 13424}, {1804, 13426}, {3297, 38488}, {3299, 39312}, {3719, 13460}, {4131, 6136}, {6502, 56385}, {7183, 13427}, {10252, 15890}, {13389, 30556}, {31547, 46376}, {38003, 56354}, {40650, 42019}, {55442, 63689}
X(64209) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 13425}, {3, 3083}, {6, 55388}, {9, 1267}, {206, 605}, {223, 13453}, {478, 52419}, {661, 22107}, {1249, 46744}, {3162, 6212}, {8054, 6364}, {32664, 1124}, {36103, 13386}, {49171, 40650}
X(64209) = cevapoint of X(i) and X(j) for these (i,j): {1, 8941}, {6, 44590}
X(64209) = crosspoint of X(i) and X(j) for these (i,j): {6, 37882}, {1123, 13437}
X(64209) = crosssum of X(i) and X(j) for these (i,j): {1, 38004}, {2, 37881}, {1124, 60848}
X(64209) = crossdifference of every pair of points on line {4091, 6364}
X(64209) = barycentric product X(i)*X(j) for these {i,j}: {1, 1123}, {4, 6213}, {7, 13456}, {8, 13438}, {9, 13437}, {19, 13387}, {25, 46745}, {57, 13454}, {92, 34121}, {158, 1335}, {393, 3084}, {514, 6135}, {606, 2052}, {1096, 5391}, {1659, 7133}, {1857, 52420}, {2362, 7090}, {6524, 55387}, {30557, 61392}, {60850, 60854}
X(64209) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1267}, {3, 55388}, {4, 46744}, {6, 3083}, {9, 13425}, {19, 13386}, {25, 6212}, {31, 1124}, {32, 605}, {41, 60848}, {56, 52419}, {57, 13453}, {244, 22107}, {606, 394}, {649, 6364}, {1096, 1336}, {1123, 75}, {1335, 326}, {1973, 34125}, {3084, 3926}, {3554, 40650}, {3768, 14440}, {6059, 13427}, {6135, 190}, {6213, 69}, {6365, 30805}, {7133, 56385}, {7337, 13460}, {13387, 304}, {13437, 85}, {13438, 7}, {13454, 312}, {13456, 8}, {34121, 63}, {46378, 31547}, {46745, 305}, {52420, 7055}, {55387, 4176}, {60847, 3719}, {60850, 13389}, {60851, 30556}, {61386, 10252}
X(64209) = {X(37885),X(42019)}-harmonic conjugate of X(1124)
X(64210) lies on the cirumconic {A,B,C,X(1),X(6)}, the cubic K678, and these lines: {1, 1336}, {6, 9043}, {19, 5413}, {33, 42}, {34, 61393}, {56, 7968}, {58, 605}, {86, 3083}, {106, 6136}, {158, 55403}, {190, 8394}, {269, 13459}, {386, 55497}, {1126, 18991}, {1335, 42019}, {1609, 44591}, {1887, 2362}, {2334, 7969}, {3069, 8945}, {3299, 57709}, {3301, 52186}, {3445, 44636}, {4000, 13390}, {4644, 52812}, {7133, 14571}, {13386, 56328}, {13424, 56384}, {17365, 58837}, {19003, 56343}, {41516, 52033}, {54396, 55425}
X(64210) = isogonal conjugate of X(3084)
X(64210) = polar conjugate of X(46745)
X(64210) = polar conjugate of the isotomic conjugate of X(6212)
X(64210) = X(i)-Ceva conjugate of X(j) for these (i,j): {1336, 13427}, {13459, 13460}
X(64210) = X(60849)-cross conjugate of X(19)
X(64210) = X(i)-isoconjugate of X(j) for these (i,j): {1, 3084}, {2, 1335}, {3, 13387}, {6, 5391}, {7, 60847}, {9, 52420}, {19, 55387}, {48, 46745}, {55, 13436}, {56, 13458}, {63, 6213}, {69, 34121}, {75, 606}, {100, 6365}, {394, 1123}, {898, 14445}, {1124, 13435}, {1252, 22106}, {1259, 13437}, {1804, 13454}, {2067, 56386}, {3719, 13438}, {4131, 6135}, {7183, 13456}, {10253, 15889}, {13388, 30557}, {31548, 46377}
X(64210) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 13458}, {3, 3084}, {6, 55387}, {9, 5391}, {206, 606}, {223, 13436}, {478, 52420}, {661, 22106}, {1249, 46745}, {3162, 6213}, {8054, 6365}, {32664, 1335}, {36103, 13387}
X(64210) = cevapoint of X(i) and X(j) for these (i,j): {1, 8945}, {6, 44591}
X(64210) = crosspoint of X(1336) and X(13459)
X(64210) = crosssum of X(1335) and X(60847)
X(64210) = crossdifference of every pair of points on line {4091, 6365}
X(64210) = barycentric product X(i)*X(j) for these {i,j}: {1, 1336}, {4, 6212}, {7, 13427}, {8, 13460}, {9, 13459}, {19, 13386}, {25, 46744}, {57, 13426}, {92, 34125}, {158, 1124}, {393, 3083}, {514, 6136}, {605, 2052}, {1096, 1267}, {1857, 52419}, {6524, 55388}, {13390, 42013}, {14121, 16232}, {30556, 61393}, {60849, 60853}
X(64210) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 5391}, {3, 55387}, {4, 46745}, {6, 3084}, {9, 13458}, {19, 13387}, {25, 6213}, {31, 1335}, {32, 606}, {41, 60847}, {56, 52420}, {57, 13436}, {244, 22106}, {605, 394}, {649, 6365}, {1096, 1123}, {1124, 326}, {1336, 75}, {1973, 34121}, {3083, 3926}, {3768, 14445}, {6059, 13456}, {6136, 190}, {6212, 69}, {6364, 30805}, {7337, 13438}, {13386, 304}, {13426, 312}, {13427, 8}, {13459, 85}, {13460, 7}, {34125, 63}, {42013, 56386}, {46379, 31548}, {46744, 305}, {52419, 7055}, {55388, 4176}, {60848, 3719}, {60849, 13388}, {60852, 30557}, {61387, 10253}
X(64211) lies on the cubics K366 and K973, and these lines: {2, 92}, {4, 3753}, {8, 1034}, {9, 40444}, {10, 158}, {19, 24511}, {27, 55478}, {29, 19860}, {40, 47372}, {63, 653}, {72, 1148}, {75, 7017}, {107, 56375}, {196, 329}, {200, 1897}, {242, 62972}, {243, 1376}, {297, 25977}, {312, 6335}, {321, 459}, {322, 2331}, {469, 30687}, {648, 56440}, {860, 25003}, {958, 1940}, {1118, 2551}, {1784, 3679}, {1826, 30686}, {1838, 8582}, {1847, 26563}, {1857, 2550}, {3673, 17862}, {3681, 61180}, {3698, 42385}, {3916, 8762}, {4385, 60516}, {5081, 11433}, {5125, 24982}, {5174, 5554}, {5342, 11109}, {6336, 52140}, {6820, 7282}, {7020, 23528}, {7080, 7952}, {7182, 46404}, {7719, 26003}, {8056, 16082}, {8270, 36127}, {13149, 31627}, {13567, 21933}, {14571, 25091}, {15621, 53317}, {16080, 43683}, {17784, 44695}, {17861, 24177}, {18692, 20239}, {18928, 55393}, {20307, 38357}, {20905, 62349}, {24703, 52167}, {24993, 62970}, {26062, 37417}, {26942, 62605}, {28654, 59206}, {30758, 40703}, {33673, 41081}, {40701, 40702}, {56296, 56300}, {57531, 61012}
X(64211) = isotomic conjugate of X(41081)
X(64211) = polar conjugate of X(84)
X(64211) = isotomic conjugate of the isogonal conjugate of X(2331)
X(64211) = isotomic conjugate of the polar conjugate of X(47372)
X(64211) = polar conjugate of the isotomic conjugate of X(322)
X(64211) = polar conjugate of the isogonal conjugate of X(40)
X(64211) = X(i)-Ceva conjugate of X(j) for these (i,j): {75, 318}, {7017, 92}, {24032, 1897}, {40701, 342}
X(64211) = X(i)-cross conjugate of X(j) for these (i,j): {40, 322}, {196, 92}, {2331, 47372}, {7952, 342}, {20321, 75}, {53009, 7952}, {57049, 1897}
X(64211) = X(i)-isoconjugate of X(j) for these (i,j): {3, 1436}, {6, 1433}, {31, 41081}, {41, 56972}, {48, 84}, {55, 55117}, {56, 268}, {57, 2188}, {58, 41087}, {63, 2208}, {77, 7118}, {184, 189}, {212, 1422}, {219, 1413}, {222, 2192}, {255, 7129}, {271, 604}, {280, 52411}, {282, 603}, {285, 1409}, {309, 9247}, {394, 7151}, {577, 40836}, {610, 60799}, {652, 8059}, {849, 53010}, {905, 32652}, {1260, 6612}, {1333, 52389}, {1397, 44189}, {1415, 61040}, {1437, 1903}, {1440, 52425}, {1459, 36049}, {1790, 2357}, {1804, 7154}, {1946, 37141}, {2175, 34400}, {2193, 52384}, {2194, 52037}, {2206, 56944}, {4575, 55242}, {6056, 55110}, {7003, 7335}, {7008, 7125}, {7053, 7367}, {7152, 46881}, {8886, 28783}, {13138, 22383}, {14575, 44190}, {14642, 41084}, {15905, 60803}, {23224, 40117}, {32659, 56939}
X(64211) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 268}, {2, 41081}, {9, 1433}, {10, 41087}, {37, 52389}, {40, 22124}, {57, 222}, {136, 55242}, {223, 55117}, {281, 1}, {946, 22063}, {1108, 1071}, {1146, 61040}, {1214, 52037}, {1249, 84}, {3160, 56972}, {3161, 271}, {3162, 2208}, {4075, 53010}, {5452, 2188}, {5514, 1459}, {6129, 34591}, {6523, 7129}, {7952, 282}, {14092, 60799}, {16596, 905}, {17898, 40616}, {23050, 7367}, {36103, 1436}, {39053, 37141}, {39060, 53642}, {40593, 34400}, {40603, 56944}, {40837, 1422}, {47345, 52384}, {55044, 652}, {55063, 57241}, {57055, 24031}, {61075, 521}, {62576, 309}, {62585, 44189}, {62602, 1440}, {62605, 189}
X(64211) = cevapoint of X(i) and X(j) for these (i,j): {40, 2331}, {281, 3176}, {7952, 55116}
X(64211) = crosspoint of X(75) and X(40702)
X(64211) = crosssum of X(i) and X(j) for these (i,j): {3, 23168}, {31, 7118}
X(64211) = trilinear pole of line {1528, 8058}
X(64211) = barycentric product X(i)*X(j) for these {i,j}: {4, 322}, {8, 342}, {9, 40701}, {29, 57810}, {40, 264}, {69, 47372}, {75, 7952}, {76, 2331}, {85, 55116}, {92, 329}, {190, 59935}, {196, 312}, {198, 1969}, {208, 3596}, {223, 7017}, {227, 44130}, {273, 7080}, {274, 53009}, {281, 40702}, {286, 21075}, {313, 3194}, {318, 347}, {321, 41083}, {331, 2324}, {561, 3195}, {668, 54239}, {1897, 17896}, {2187, 18022}, {2501, 55241}, {3176, 47634}, {3209, 28659}, {6063, 40971}, {6331, 55212}, {6335, 14837}, {7020, 55015}, {7035, 38362}, {7074, 57787}, {7078, 57806}, {7101, 14256}, {7358, 24032}, {8058, 18026}, {8822, 41013}, {13149, 57049}, {14298, 46404}, {21871, 44129}, {27398, 40149}, {52938, 57101}, {54240, 57245}
X(64211) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1433}, {2, 41081}, {4, 84}, {7, 56972}, {8, 271}, {9, 268}, {10, 52389}, {19, 1436}, {25, 2208}, {29, 285}, {33, 2192}, {34, 1413}, {37, 41087}, {40, 3}, {55, 2188}, {57, 55117}, {64, 60799}, {85, 34400}, {92, 189}, {108, 8059}, {158, 40836}, {196, 57}, {198, 48}, {208, 56}, {221, 603}, {223, 222}, {225, 52384}, {226, 52037}, {227, 73}, {264, 309}, {273, 1440}, {278, 1422}, {281, 282}, {312, 44189}, {318, 280}, {321, 56944}, {322, 69}, {329, 63}, {342, 7}, {347, 77}, {393, 7129}, {522, 61040}, {594, 53010}, {607, 7118}, {653, 37141}, {1096, 7151}, {1103, 7078}, {1435, 6612}, {1490, 46881}, {1528, 6001}, {1712, 8886}, {1783, 36049}, {1817, 1790}, {1824, 2357}, {1826, 1903}, {1857, 7008}, {1895, 41084}, {1897, 13138}, {1969, 44190}, {2187, 184}, {2199, 52411}, {2324, 219}, {2331, 6}, {2360, 1437}, {2501, 55242}, {3176, 3341}, {3194, 58}, {3195, 31}, {3209, 604}, {3318, 53557}, {3596, 57783}, {5514, 34591}, {6129, 1459}, {6260, 1071}, {6331, 55211}, {6335, 44327}, {6611, 7099}, {7011, 7125}, {7013, 1804}, {7017, 34404}, {7020, 46355}, {7074, 212}, {7078, 255}, {7079, 7367}, {7080, 78}, {7114, 7335}, {7358, 24031}, {7368, 1802}, {7952, 1}, {8058, 521}, {8750, 32652}, {8802, 28784}, {8822, 1444}, {8894, 47851}, {10397, 36054}, {14256, 7177}, {14298, 652}, {14837, 905}, {15501, 1795}, {17896, 4025}, {18026, 53642}, {21075, 72}, {21871, 71}, {25022, 24560}, {27398, 1812}, {37410, 3576}, {37421, 10884}, {38357, 7004}, {38362, 244}, {38462, 56939}, {40149, 8808}, {40212, 7011}, {40701, 85}, {40702, 348}, {40836, 1256}, {40943, 22063}, {40971, 55}, {41013, 39130}, {41083, 81}, {41088, 19614}, {44130, 57795}, {47372, 4}, {47432, 2638}, {51375, 46974}, {52097, 63397}, {53008, 53013}, {53009, 37}, {53011, 41086}, {53557, 1364}, {54239, 513}, {55015, 7013}, {55111, 2289}, {55112, 3719}, {55116, 9}, {55212, 647}, {55241, 4563}, {57049, 57055}, {57101, 57241}, {57118, 36059}, {57810, 307}, {59935, 514}, {60431, 56763}, {61178, 61229}, {63383, 55979}
X(64211) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 158, 318}, {196, 55116, 329}, {281, 40149, 92}
X(64212) lies on the cubic K478 and these lines: {3, 67}, {6, 14908}, {25, 1560}, {110, 6091}, {154, 5191}, {186, 13200}, {187, 18374}, {378, 9756}, {574, 34106}, {671, 33900}, {1576, 3053}, {2493, 8753}, {5013, 20975}, {5023, 20993}, {5461, 34010}, {6636, 34883}, {8573, 35133}, {9125, 42659}, {9127, 35266}, {9142, 53095}, {9145, 47412}, {9409, 57261}, {32113, 61443}, {37457, 56308}, {38463, 58309}, {41336, 44102}, {44533, 56957}, {47113, 51393}, {52144, 52169}, {52166, 53265}
X(64212) = X(468)-Ceva conjugate of X(6)
X(64212) = X(895)-Dao conjugate of X(30786)
X(64212) = crosssum of X(525) and X(5099)
X(64212) = crossdifference of every pair of points on line {2492, 6719}
X(64212) = barycentric product X(10424)*X(14961)
X(64212) = {X(14908),X(47426)}-harmonic conjugate of X(6)
X(64213) lies on the cubics K478 and X(535), and these lines: {2, 8792}, {6, 67}, {19, 47232}, {24, 41394}, {25, 111}, {115, 1184}, {187, 8428}, {232, 52166}, {352, 41363}, {399, 54380}, {427, 5354}, {468, 8744}, {648, 34336}, {858, 22121}, {1194, 34866}, {1609, 2493}, {1611, 10418}, {1995, 36415}, {2030, 34397}, {2207, 62981}, {2492, 42665}, {2502, 61206}, {2965, 10985}, {3162, 37453}, {3172, 21448}, {3291, 38463}, {5359, 62980}, {8585, 52905}, {8743, 20481}, {11284, 52951}, {30739, 59657}, {31128, 41676}, {36828, 45016}, {37981, 43291}, {45141, 47228}, {46276, 61207}, {47097, 52058}, {47230, 57262}
X(64213) = polar conjugate of the isotomic conjugate of X(2930)
X(64213) = X(i)-Ceva conjugate of X(j) for these (i,j): {468, 25}, {8744, 6}
X(64213) = X(i)-isoconjugate of X(j) for these (i,j): {63, 13574}, {304, 22259}
X(64213) = X(i)-Dao conjugate of X(j) for these (i,j): {111, 30786}, {3162, 13574}
X(64213) = crosssum of X(i) and X(j) for these (i,j): {6, 32262}, {520, 55048}, {525, 62594}
X(64213) = crossdifference of every pair of points on line {9517, 14417}
X(64213) = barycentric product X(i)*X(j) for these {i,j}: {4, 2930}, {19, 16563}, {25, 14360}, {112, 18310}, {468, 15899}, {5095, 61499}, {8753, 62664}
X(64213) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 13574}, {1974, 22259}, {2930, 69}, {14360, 305}, {15899, 30786}, {16563, 304}, {18310, 3267}, {44102, 41498}
X(64213) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {112, 44467, 25}, {1560, 6103, 8791}, {1560, 8791, 5094}, {8744, 11580, 468}
X(64214) lies on the Feuerbach circumhyperbola of the tangential triangle, the cubic K478, and these lines: {2, 23296}, {3, 895}, {6, 5181}, {68, 32306}, {110, 19118}, {155, 5095}, {159, 1177}, {193, 19504}, {195, 1992}, {394, 34470}, {399, 3564}, {468, 37784}, {511, 2935}, {524, 15141}, {542, 1498}, {1205, 7689}, {2393, 37928}, {2781, 46373}, {2917, 44470}, {2930, 8681}, {2931, 32127}, {2948, 34381}, {3167, 6593}, {5050, 5504}, {7493, 52124}, {8541, 45034}, {8542, 58495}, {8549, 34622}, {8780, 63181}, {9909, 38885}, {9925, 15039}, {9970, 12164}, {9976, 46945}, {11579, 15151}, {12038, 40673}, {13754, 48679}, {15106, 32244}, {15128, 30771}, {15462, 45045}, {17702, 35237}, {18440, 32239}, {19138, 32609}, {20772, 21313}, {32241, 53021}, {32245, 41612}, {32255, 52100}, {38851, 63180}, {52016, 52697}
X(64214) = midpoint of X(6391) and X(12310)
X(64214) = reflection of X(i) in X(j) for these {i,j}: {12164, 9970}, {18440, 63710}, {19588, 110}, {32306, 68}, {41615, 53777}
X(64214) = anticomplement of X(23296)
X(64214) = tangential-isogonal conjugate of X(37928)
X(64214) = X(i)-Ceva conjugate of X(j) for these (i,j): {468, 3}, {37784, 6}
X(64214) = crosssum of X(523) and X(48317)
X(64214) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {895, 32251, 39562}, {895, 41614, 32251}
X(64215) lies on the cubic K1021 and these lines: {1, 20595}, {6, 2248}, {31, 48}, {32, 17104}, {37, 2185}, {39, 501}, {58, 21008}, {60, 172}, {86, 25345}, {101, 5006}, {110, 1914}, {163, 2251}, {187, 5127}, {213, 849}, {593, 60697}, {662, 1575}, {798, 33882}, {1101, 19622}, {1326, 17735}, {1408, 41526}, {1500, 15792}, {1790, 62692}, {1922, 56388}, {2109, 5009}, {2210, 18268}, {2220, 3051}, {2242, 9275}, {2276, 40214}, {2277, 61409}, {6043, 21904}, {9456, 36142}, {16568, 62801}
X(64215) = X(64215) = isogonal conjugate of the isotomic conjugate of X(1931)
X(64215) = X(i)-Ceva conjugate of X(j) for these (i,j): {2210, 56388}, {18268, 1333}
X(64215) = X(18266)-cross conjugate of X(1326)
X(64215) = X(i)-isoconjugate of X(j) for these (i,j): {2, 11599}, {4, 57848}, {10, 6650}, {37, 18032}, {75, 9278}, {76, 2054}, {86, 6543}, {190, 18014}, {264, 57681}, {306, 17982}, {313, 17962}, {321, 1929}, {523, 35148}, {740, 63896}, {850, 2702}, {1230, 53688}, {1577, 37135}, {1978, 18001}, {3948, 9505}, {4024, 17930}, {9506, 35544}, {17940, 52623}, {20536, 30586}, {39921, 63885}, {40725, 43534}
X(64215) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 9278}, {1326, 20648}, {20546, 20634}, {32664, 11599}, {35080, 20948}, {36033, 57848}, {39041, 313}, {39042, 76}, {40589, 18032}, {40600, 6543}, {41841, 27801}, {55053, 18014}
X(64215) = crosssum of X(i) and X(j) for these (i,j): {1, 20607}, {2, 20349}
X(64215) = crossdifference of every pair of points on line {1577, 4647}
X(64215) = barycentric product X(i)*X(j) for these {i,j}: {1, 1326}, {6, 1931}, {28, 17976}, {31, 17731}, {32, 52137}, {48, 423}, {58, 1757}, {81, 17735}, {86, 18266}, {110, 9508}, {163, 2786}, {513, 17943}, {593, 20693}, {662, 5029}, {667, 17934}, {741, 8298}, {757, 58287}, {849, 6541}, {1333, 6542}, {1437, 17927}, {2206, 20947}, {5009, 40794}, {6651, 18268}, {9456, 31059}, {17990, 52935}
X(64215) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 11599}, {32, 9278}, {48, 57848}, {58, 18032}, {163, 35148}, {213, 6543}, {423, 1969}, {560, 2054}, {667, 18014}, {1326, 75}, {1333, 6650}, {1576, 37135}, {1757, 313}, {1931, 76}, {1980, 18001}, {2203, 17982}, {2206, 1929}, {2786, 20948}, {5029, 1577}, {6542, 27801}, {8298, 35544}, {9247, 57681}, {9508, 850}, {17731, 561}, {17735, 321}, {17934, 6386}, {17943, 668}, {17976, 20336}, {17990, 4036}, {18266, 10}, {18268, 63896}, {20693, 28654}, {52137, 1502}, {58287, 1089}
X(64215) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 20607, 20595}, {6, 20472, 20461}
X(64216) lies on the cubic K1021 and these lines: {1, 20589}, {6, 692}, {31, 9447}, {41, 42079}, {55, 7123}, {81, 105}, {182, 29349}, {184, 57656}, {294, 2264}, {518, 2991}, {560, 604}, {608, 1974}, {666, 18825}, {673, 1492}, {685, 54235}, {739, 919}, {884, 2423}, {1083, 4437}, {1177, 10099}, {1190, 7050}, {1333, 1576}, {1357, 1397}, {1415, 61055}, {1428, 1456}, {1691, 51333}, {1911, 2210}, {1976, 55261}, {2162, 20986}, {2203, 61206}, {2214, 16972}, {2221, 36057}, {2330, 14100}, {2481, 4577}, {3056, 56003}, {3573, 32029}, {3683, 40406}, {5317, 8751}, {5377, 5381}, {6654, 55940}, {8659, 43929}, {9061, 15636}, {9455, 32724}, {9456, 32666}, {13576, 51743}, {14776, 51726}, {14942, 56046}, {17938, 56388}, {19136, 51987}, {20332, 36086}, {32734, 41604}, {36404, 40401}, {36614, 59232}, {36942, 37492}, {40400, 52927}, {53971, 59049}
X(64216) = midpoint of X(6) and X(16686)
X(64216) = isogonal conjugate of X(3263)
X(64216) = isogonal conjugate of the anticomplement of X(3290)
X(64216) = isogonal conjugate of the isotomic conjugate of X(105)
X(64216) = isogonal conjugate of the polar conjugate of X(8751)
X(64216) = polar conjugate of the isotomic conjugate of X(32658)
X(64216) = X(i)-Ceva conjugate of X(j) for these (i,j): {105, 32658}, {5377, 919}, {15382, 6}, {32735, 43929}, {35185, 2440}, {41934, 32}
X(64216) = X(i)-cross conjugate of X(j) for these (i,j): {32, 41934}, {1922, 34077}, {9455, 32}, {14599, 1333}
X(64216) = X(i)-isoconjugate of X(j) for these (i,j): {1, 3263}, {2, 3912}, {7, 3717}, {8, 9436}, {9, 40704}, {10, 30941}, {37, 18157}, {63, 46108}, {69, 1861}, {75, 518}, {76, 672}, {85, 3693}, {86, 3932}, {92, 25083}, {99, 4088}, {190, 918}, {239, 40217}, {241, 312}, {264, 1818}, {274, 3930}, {304, 5089}, {305, 2356}, {306, 15149}, {310, 20683}, {313, 3286}, {321, 18206}, {334, 8299}, {335, 17755}, {341, 34855}, {345, 5236}, {346, 62786}, {350, 22116}, {514, 42720}, {522, 883}, {561, 2223}, {646, 53544}, {661, 55260}, {664, 50333}, {665, 1978}, {666, 53583}, {668, 2254}, {673, 4437}, {693, 1026}, {765, 62429}, {799, 24290}, {850, 54353}, {908, 56753}, {926, 4572}, {1001, 63231}, {1025, 4391}, {1268, 4966}, {1458, 3596}, {1502, 9454}, {1876, 3718}, {1921, 3252}, {1928, 9455}, {1969, 20752}, {2283, 35519}, {2284, 3261}, {2340, 6063}, {2414, 4468}, {2481, 4712}, {2991, 20431}, {3126, 51560}, {3161, 10029}, {3262, 36819}, {3264, 34230}, {3675, 7035}, {3699, 43042}, {3952, 23829}, {4238, 14208}, {4373, 4899}, {4X(64216) = 384, 62622}, {4397, 41353}, {4447, 7018}, {4518, 39775}, {4562, 62552}, {4684, 5936}, {4925, 53647}, {5383, 23773}, {6184, 18031}, {6385, 39258}, {7257, 53551}, {9311, 40883}, {9502, 57996}, {14439, 20568}, {16284, 56718}, {16593, 36807}, {17789, 40781}, {18025, 50441}, {18891, 40730}, {20336, 54407}, {20504, 35574}, {21959, 56053}, {27919, 40098}, {28659, 52635}, {30701, 51400}, {31637, 34337}, {32008, 51384}, {32023, 56714}, {34234, 51390}, {35160, 40609}, {36086, 62430}, {40495, 54325}, {40869, 56668}, {42722, 52228}, {46406, 52614}, {50357, 53658}, {53553, 56241}, {54440, 63223}
X(64216) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 3263}, {206, 518}, {478, 40704}, {513, 62429}, {798, 23773}, {1438, 20642}, {3162, 46108}, {20540, 20628}, {22391, 25083}, {32664, 3912}, {33675, 1502}, {36830, 55260}, {38986, 4088}, {38989, 62430}, {38996, 24290}, {39025, 50333}, {40368, 2223}, {40369, 9455}, {40589, 18157}, {40600, 3932}, {55053, 918}, {62554, 76}, {62599, 561}
X(64216) = cevapoint of X(i) and X(j) for these (i,j): {31, 2210}, {32, 9455}
X(64216) = crosspoint of X(i) and X(j) for these (i,j): {6, 34183}, {105, 8751}, {919, 5377}, {1416, 1438}
X(64216) = crosssum of X(i) and X(j) for these (i,j): {1, 20601}, {2, 20344}, {518, 25083}, {918, 3675}, {3717, 3912}, {4437, 23102}
X(64216) = trilinear pole of line {32, 667}
X(64216) = crossdifference of every pair of points on line {918, 4437}
X(64216) = X(1083)-line conjugate of X(4437)
X(64216) = barycentric product X(i)*X(j) for these {i,j}: {1, 1438}, {3, 8751}, {4, 32658}, {6, 105}, {9, 1416}, {19, 36057}, {25, 1814}, {31, 673}, {32, 2481}, {41, 56783}, {48, 36124}, {55, 1462}, {56, 294}, {57, 2195}, {58, 18785}, {81, 56853}, {100, 43929}, {101, 1027}, {104, 51987}, {109, 1024}, {110, 55261}, {112, 10099}, {184, 54235}, {238, 51866}, {251, 46149}, {513, 919}, {514, 32666}, {518, 41934}, {560, 18031}, {604, 14942}, {649, 36086}, {650, 32735}, {651, 884}, {663, 36146}, {666, 667}, {672, 51838}, {692, 62635}, {739, 52902}, {840, 51922}, {885, 1415}, {909, 54364}, {911, 56639}, {927, 3063}, {1015, 5377}, {1106, 6559}, {1252, 43921}, {1292, 2440}, {1333, 13576}, {1397, 36796}, {1407, 28071}, {1492, 29956}, {1643, 59021}, {1911, 6654}, {1914, 52030}, {1919, 51560}, {1973, 31637}, {1980, 36803}, {2175, 34018}, {2210, 52209}, {2223, 6185}, {3290, 15382}, {3309, 32644}, {3669, 52927}, {4724, 36138}, {4762, 32724}, {5091, 59049}, {6169, 9316}, {8659, 39272}, {8852, 40754}, {9310, 51845}, {9455, 57537}, {18108, 46163}, {23696, 32674}, {26703, 51961}, {32655, 52456}, {34183, 62554}, {36802, 57181}, {40746, 52029}, {51333, 56856}, {52635, 62715}
X(64216) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 3263}, {25, 46108}, {31, 3912}, {32, 518}, {41, 3717}, {56, 40704}, {58, 18157}, {105, 76}, {110, 55260}, {184, 25083}, {213, 3932}, {294, 3596}, {560, 672}, {604, 9436}, {665, 62430}, {666, 6386}, {667, 918}, {669, 24290}, {673, 561}, {692, 42720}, {798, 4088}, {884, 4391}, {919, 668}, {1015, 62429}, {1024, 35519}, {1027, 3261}, {1106, 62786}, {1333, 30941}, {1395, 5236}, {1397, 241}, {1415, 883}, {1416, 85}, {1438, 75}, {1462, 6063}, {1501, 2223}, {1814, 305}, {1911, 40217}, {1917, 9454}, {1918, 3930}, {1919, 2254}, {1922, 22116}, {1973, 1861}, {1974, 5089}, {1977, 3675}, {1980, 665}, {2175, 3693}, {2195, 312}, {2203, 15149}, {2205, 20683}, {2206, 18206}, {2210, 17755}, {2223, 4437}, {2279, 63231}, {2481, 1502}, {3063, 50333}, {5377, 31625}, {6654, 18891}, {8751, 264}, {9233, 9455}, {9247, 1818}, {9447, 2340}, {9454, 4712}, {9455, 6184}, {9459, 14439}, {10099, 3267}, {13576, 27801}, {14575, 20752}, {14598, 3252}, {14599, 8299}, {14942, 28659}, {16945, 10029}, {18031, 1928}, {18785, 313}, {18897, 40730}, {28071, 59761}, {29956, 62415}, {31637, 40364}, {32644, 54987}, {32658, 69}, {32666, 190}, {32724, 32041}, {32735, 4554}, {32739, 1026}, {34018, 41283}, {34858, 56753}, {36057, 304}, {36086, 1978}, {36124, 1969}, {36146, 4572}, {36796, 40363}, {38986, 23773}, {39686, 23102}, {41280, 52635}, {41934, 2481}, {43921, 23989}, {43929, 693}, {46149, 8024}, {51838, 18031}, {51866, 334}, {51987, 3262}, {52030, 18895}, {52209, 44172}, {52410, 34855}, {52902, 35543}, {52927, 646}, {54235, 18022}, {55261, 850}, {56783, 20567}, {56853, 321}, {57129, 23829}, {57181, 43042}, {61206, 4238}, {62635, 40495}
X(64216) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 20601, 20589}, {6, 20468, 20455}, {105, 1814, 46149}, {1438, 2195, 56853}
X(64217) lies on the X-parabola of ABC (see X(12065)), the cubic K241, and these lines: {523, 620}, {2501, 14052}, {4024, 21047}, {5466, 45291}, {8029, 62672}, {9178, 62645}, {14588, 42345}, {58784, 62629}
X(64217) = X(i)-cross conjugate of X(j) for these (i,j): {524, 523}, {45212, 57539}
X(64217) = X(i)-isoconjugate of X(j) for these (i,j): {163, 45291}, {896, 33803}, {922, 33799}, {14567, 33809}, {23889, 39024}
X(64217) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 45291}, {15899, 33803}, {39061, 33799}
X(64217) = cevapoint of X(i) and X(j) for these (i,j): {524, 36953}, {690, 8029}, {1648, 42553}
X(64217) = trilinear pole of line {115, 11123}
X(64217) = barycentric product X(i)*X(j) for these {i,j}: {671, 36955}, {5466, 36953}, {14052, 14977}
X(64217) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 33803}, {523, 45291}, {671, 33799}, {5466, 14061}, {9178, 39024}, {10097, 14060}, {14052, 4235}, {36953, 5468}, {36955, 524}, {46277, 33809}
X(64218) lies on the cubics K531 and K7664 and these lines: {6, 10558}, {67, 524}, {111, 18374}, {141, 8869}, {187, 2393}, {249, 2854}, {598, 14246}, {691, 9019}, {843, 39413}, {3124, 32741}, {6593, 15398}, {8262, 10416}, {8541, 51428}, {8542, 14357}, {8753, 60428}, {8859, 10511}, {8877, 40057}, {9971, 52142}, {10422, 32246}, {14580, 32740}, {14608, 36820}, {19127, 57481}, {19596, 32729}, {21639, 57467}, {22151, 46783}, {22258, 32251}, {22259, 41936}, {22826, 22827}, {38294, 46105}, {41511, 53929}
X(64218) = isogonal conjugate of X(7664)
X(64218) = isogonal conjugate of the complement of X(31125)
X(64218) = isogonal conjugate of the isotomic conjugate of X(10415)
X(64218) = X(i)-cross conjugate of X(j) for these (i,j): {32, 111}, {3005, 691}, {20975, 9178}, {51962, 32740}, {59175, 3455}
X(64218) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7664}, {23, 14210}, {75, 6593}, {187, 20944}, {316, 896}, {524, 16568}, {662, 18311}, {897, 62661}, {922, 40074}, {2492, 24039}, {2642, 55226}, {5099, 24041}, {9979, 23889}, {14246, 24038}, {16702, 21094}, {18715, 52898}, {42081, 52551}, {46254, 47415}
X(64218) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 7664}, {206, 6593}, {1084, 18311}, {3005, 5099}, {6593, 62661}, {15477, 23}, {15899, 316}, {15900, 3266}, {39061, 40074}
X(64218) = cevapoint of X(i) and X(j) for these (i,j): {6, 46154}, {895, 8869}, {3455, 59175}
X(64218) = crosspoint of X(10422) and X(10630)
X(64218) = crosssum of X(i) and X(j) for these (i,j): {2482, 5181}, {5099, 18311}, {6390, 62664}
X(64218) = trilinear pole of line {351, 3455}
X(64218) = crossdifference of every pair of points on line {18311, 62661}
X(64218) = barycentric product X(i)*X(j) for these {i,j}: {6, 10415}, {67, 111}, {671, 3455}, {690, 39413}, {895, 8791}, {897, 2157}, {935, 10097}, {8753, 34897}, {9076, 46154}, {9139, 60496}, {9178, 17708}, {10511, 42007}, {10630, 14357}, {14908, 46105}, {18019, 32740}, {22258, 61494}, {23288, 58953}, {57539, 59175}
X(64218) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 7664}, {32, 6593}, {67, 3266}, {111, 316}, {187, 62661}, {512, 18311}, {671, 40074}, {691, 55226}, {895, 37804}, {897, 20944}, {923, 16568}, {2157, 14210}, {3124, 5099}, {3455, 524}, {6041, 32313}, {7316, 17088}, {8753, 37765}, {8791, 44146}, {9178, 9979}, {10415, 76}, {10630, 52551}, {14357, 36792}, {14908, 22151}, {19626, 18374}, {20975, 62594}, {32729, 52630}, {32740, 23}, {39413, 892}, {41272, 9019}, {41936, 14246}, {59175, 2482}
X(64218) = {X(895),X(15899)}-harmonic conjugate of X(10510)
X(64219) lies on the cubic K737 and these lines: {2, 11282}, {3, 51}, {4, 95}, {20, 8796}, {30, 60007}, {97, 6759}, {184, 19210}, {217, 577}, {376, 1105}, {418, 1092}, {511, 56337}, {578, 26874}, {1294, 3522}, {3785, 6394}, {3964, 5562}, {10110, 37068}, {10323, 56307}, {11414, 34818}, {12362, 44156}, {13346, 26876}, {16391, 61363}, {18564, 31392}, {23217, 43652}, {26865, 37498}, {26907, 36747}, {27372, 63433}, {28783, 41376}, {34786, 52681}, {35268, 37081}
X(64219) = isogonal conjugate of the polar conjugate of X(63154)
X(64219) = X(61394)-cross conjugate of X(577)
X(64219) = X(i)-isoconjugate of X(j) for these (i,j): {75, 61348}, {92, 3087}, {158, 631}, {823, 47122}, {1096, 44149}, {6521, 36748}, {6755, 40440}, {11402, 57806}
X(64219) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 61348}, {1147, 631}, {6503, 44149}, {22391, 3087}
X(64219) = cevapoint of X(i) and X(j) for these (i,j): {577, 26880}, {578, 6759}
X(64219) = crosssum of X(i) and X(j) for these (i,j): {3087, 61348}, {37192, 43981}
X(64219) = trilinear pole of line {32320, 42293}
X(64219) = barycentric product X(i)*X(j) for these {i,j}: {3, 63154}, {97, 63176}, {255, 56033}, {394, 3527}, {577, 8797}, {1092, 8796}, {3964, 34818}, {52613, 58950}
X(64219) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 61348}, {184, 3087}, {217, 6755}, {394, 44149}, {577, 631}, {3527, 2052}, {8797, 18027}, {14585, 11402}, {23606, 36748}, {34818, 1093}, {39201, 47122}, {56033, 57806}, {58950, 15352}, {63154, 264}, {63176, 324}
X(64219) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3527, 63154}, {3527, 63154, 63176}
X(64220) lies on the cubics K229 and K978 and these lines: {6, 351}, {187, 54274}, {249, 5467}, {512, 21906}, {524, 1649}, {598, 804}, {9170, 23342}, {9178, 10630}, {14608, 51226}, {17994, 17999}, {18823, 35146}, {18872, 62412}, {23348, 53690}
X(64220) = isogonal conjugate of X(34760)
X(64220) = isogonal conjugate of the anticomplement of X(41176)
X(64220) = isogonal conjugate of the isotomic conjugate of X(34763)
X(64220) = X(53690)-Ceva conjugate of X(843)
X(64220) = X(i)-isoconjugate of X(j) for these (i,j): {1, 34760}, {75, 23348}, {99, 17955}, {543, 36085}, {662, 17948}, {799, 17964}, {897, 9182}, {9181, 46277}, {17993, 24037}, {18007, 24041}, {36142, 45809}
X(64220) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 34760}, {206, 23348}, {512, 17993}, {1084, 17948}, {3005, 18007}, {6593, 9182}, {21905, 8371}, {23992, 45809}, {38986, 17955}, {38988, 543}, {38996, 17964}
X(64220) = crosspoint of X(843) and X(53690)
X(64220) = crosssum of X(i) and X(j) for these (i,j): {2, 45294}, {543, 33921}, {1641, 8371}, {17948, 18007}
X(64220) = trilinear pole of line {351, 59801}
X(64220) = crossdifference of every pair of points on line {543, 9182}
X(64220) = barycentric product X(i)*X(j) for these {i,j}: {6, 34763}, {187, 9180}, {351, 18823}, {512, 51226}, {523, 48450}, {690, 843}, {9170, 21906}, {23992, 53690}
X(64220) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 34760}, {32, 23348}, {187, 9182}, {351, 543}, {512, 17948}, {669, 17964}, {690, 45809}, {798, 17955}, {843, 892}, {1084, 17993}, {3124, 18007}, {9180, 18023}, {14567, 9181}, {18823, 53080}, {21906, 8371}, {34763, 76}, {48450, 99}, {51226, 670}, {53690, 57552}, {54274, 1641}, {59801, 33921}
X(64221) lies on the cubics K147, K192, and K1072, and these lines: {30, 50}, {94, 36188}, {110, 476}, {250, 23290}, {1316, 43084}, {2410, 4226}, {3564, 34209}, {5467, 39295}, {5877, 39170}, {14995, 54554}, {18883, 47348}, {36192, 57482}, {38896, 41205}, {39290, 51262}, {43090, 45921}, {51263, 54959}, {56397, 62490}
X(64221) = midpoint of X(476) and X(60053)
X(64221) = trilinear pole of line {32761, 56396}
X(64221) = crossdifference of every pair of points on line {2088, 60342}
X(64221) = barycentric product X(i)*X(j) for these {i,j}: {99, 56396}, {476, 40879}, {32761, 35139}, {39295, 62489}
X(64221) = barycentric quotient X(i)/X(j) for these {i,j}: {32761, 526}, {39295, 53192}, {40879, 3268}, {56396, 523}, {62489, 62551}
X(64221) = {X(5467),X(56398)}-harmonic conjugate of X(39295)
X(64222) lies on the cubic K986 and these lines: {75, 3123}, {76, 335}, {244, 310}, {312, 561}, {350, 1926}, {756, 40087}, {1089, 18833}, {1111, 4602}, {1921, 3797}, {1928, 3760}, {3673, 18837}, {6385, 18032}, {10009, 31323}, {17738, 37133}, {17755, 27853}, {18037, 63878}, {20448, 20651}
X(64222) = isogonal conjugate of X(18267)
X(64222) = isotomic conjugate of the isogonal conjugate of X(39044)
X(64222) = X(i)-Ceva conjugate of X(j) for these (i,j): {76, 1926}, {18833, 35544}
X(64222) = X(i)-isoconjugate of X(j) for these (i,j): {1, 18267}, {6, 51856}, {32, 52205}, {291, 14598}, {292, 1922}, {334, 18893}, {335, 18897}, {560, 30663}, {875, 34067}, {1501, 40098}, {1927, 18787}, {7104, 30657}, {8789, 30669}, {61364, 62714}
X(64222) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 18267}, {9, 51856}, {740, 872}, {812, 3248}, {1966, 6}, {3912, 40730}, {3948, 40155}, {6374, 30663}, {6376, 52205}, {6651, 1911}, {18277, 291}, {19557, 1922}, {35119, 875}, {39028, 292}, {39029, 14598}, {39030, 30669}, {39786, 798}, {62610, 18787}
X(64222) = barycentric product X(i)*X(j) for these {i,j}: {75, 56660}, {76, 39044}, {238, 44169}, {239, 18891}, {350, 1921}, {561, 4366}, {1502, 8300}, {1914, 44171}, {1926, 17493}, {1928, 51328}, {1978, 27855}, {3766, 27853}, {3975, 18033}, {4087, 10030}, {4368, 6385}, {4375, 6386}, {6652, 44172}, {14603, 18786}, {18901, 61385}, {30940, 35544}, {35068, 57992}
X(64222) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 51856}, {6, 18267}, {75, 52205}, {76, 30663}, {238, 1922}, {239, 1911}, {350, 292}, {561, 40098}, {812, 875}, {874, 813}, {1909, 30657}, {1914, 14598}, {1921, 291}, {1926, 30669}, {2210, 18897}, {3570, 34067}, {3684, 18265}, {3685, 51858}, {3766, 3572}, {3802, 40728}, {3975, 7077}, {3978, 18787}, {4087, 4876}, {4094, 7109}, {4366, 31}, {4368, 213}, {4375, 667}, {6652, 2210}, {8300, 32}, {14599, 18893}, {17493, 1967}, {17755, 40730}, {18035, 40794}, {18786, 9468}, {18891, 335}, {27853, 660}, {27855, 649}, {27919, 2223}, {27926, 18266}, {30940, 741}, {33295, 18268}, {35068, 872}, {35119, 3248}, {39044, 6}, {40767, 18263}, {44169, 334}, {44171, 18895}, {51328, 560}, {52379, 62714}, {53681, 7122}, {56660, 1}, {57992, 57554}, {61385, 8789}, {62553, 40155}
v{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {350, 19581, 20356}, {350, 44169, 1926}
X(64223) lies on the cubic K986 and these lines: {8, 76}, {10, 4986}, {69, 2876}, {75, 141}, {150, 10449}, {239, 350}, {305, 10453}, {313, 22271}, {314, 7261}, {319, 42554}, {320, 36792}, {321, 20630}, {511, 20561}, {799, 19642}, {883, 53548}, {1111, 4647}, {1227, 62430}, {1500, 28598}, {1926, 4087}, {1930, 49560}, {1978, 21404}, {2254, 23829}, {3123, 3728}, {3263, 3912}, {3266, 29824}, {3766, 4010}, {3925, 18052}, {4479, 29617}, {4499, 36216}, {4554, 52160}, {4651, 39998}, {4710, 21443}, {4738, 6381}, {4847, 51861}, {4966, 18157}, {5222, 30830}, {6184, 42720}, {6376, 40609}, {8024, 17135}, {11059, 30947}, {14210, 49764}, {16589, 26965}, {17033, 29983}, {17230, 31130}, {17244, 30758}, {17292, 60706}, {17367, 30963}, {17752, 30045}, {18032, 60678}, {18067, 32865}, {20333, 27918}, {20549, 20861}, {21415, 33081}, {21416, 33064}, {23989, 53363}, {25125, 57033}, {27844, 27853}, {28616, 41828}, {29611, 30866}, {29615, 43270}, {29674, 33937}, {31625, 53219}, {33141, 59510}, {36791, 41314}, {40022, 59296}, {40619, 61174}, {42721, 51583}, {44312, 61165}
X(64223) = reflection of X(20861) in X(20549)
X(64223) = isotomic conjugate of X(52030)
X(64223) = isotomic conjugate of the isogonal conjugate of X(8299)
X(64223) = X(i)-Ceva conjugate of X(j) for these (i,j): {75, 3263}, {76, 3948}, {668, 3766}, {31625, 42720}, {56241, 50333}, {56660, 62553}
X(64223) = X(38989)-cross conjugate of X(62552)
X(64223) = X(i)-isoconjugate of X(j) for these (i,j): {6, 51866}, {31, 52030}, {32, 52209}, {105, 1911}, {292, 1438}, {673, 1922}, {741, 56853}, {813, 43929}, {875, 36086}, {876, 32666}, {919, 3572}, {1027, 34067}, {1397, 33676}, {1416, 7077}, {1462, 51858}, {2196, 8751}, {2481, 14598}, {3252, 41934}, {6654, 51856}, {18031, 18897}, {18265, 56783}, {18268, 18785}, {40730, 51838}
X(64223) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 52030}, {9, 51866}, {518, 40730}, {665, 1015}, {1966, 6654}, {2238, 6}, {3716, 3271}, {3912, 1}, {6184, 292}, {6376, 52209}, {6651, 105}, {8299, 56853}, {17755, 291}, {18277, 2481}, {19557, 1438}, {27918, 513}, {35068, 18785}, {35094, 876}, {35119, 1027}, {38980, 3572}, {38989, 875}, {39028, 673}, {39046, 1911}, {40609, 7077}, {40623, 43929}, {52656, 52205}, {62552, 43921}, {62553, 13576}, {62585, 33676}, {62587, 335}
X(64223) = cevapoint of X(38989) and X(62552)
X(64223) = crosspoint of X(75) and X(350)
X(64223) = crosssum of X(31) and X(1911)
X(64223) = crossdifference of every pair of points on line {875, 1922}
X(64223) = barycentric product X(i)*X(j) for these {i,j}: {75, 17755}, {76, 8299}, {239, 3263}, {241, 4087}, {312, 39775}, {334, 27919}, {350, 3912}, {518, 1921}, {668, 62552}, {672, 18891}, {740, 18157}, {874, 918}, {1969, 20778}, {2223, 44169}, {2254, 27853}, {3596, 34253}, {3685, 40704}, {3693, 18033}, {3717, 10030}, {3766, 42720}, {3932, 30940}, {3948, 30941}, {3975, 9436}, {4010, 55260}, {9454, 44171}, {18206, 35544}, {22116, 56660}, {25083, 40717}, {28659, 51329}, {31625, 38989}, {39044, 40217}
X(64223) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 51866}, {2, 52030}, {75, 52209}, {238, 1438}, {239, 105}, {242, 8751}, {312, 33676}, {350, 673}, {518, 292}, {659, 43929}, {665, 875}, {672, 1911}, {740, 18785}, {812, 1027}, {874, 666}, {918, 876}, {1026, 813}, {1281, 40754}, {1429, 1416}, {1447, 1462}, {1818, 2196}, {1921, 2481}, {2223, 1922}, {2238, 56853}, {2254, 3572}, {2284, 34067}, {2340, 51858}, {3263, 335}, {3286, 18268}, {3570, 36086}, {3573, 919}, {3684, 2195}, {3685, 294}, {3693, 7077}, {3716, 1024}, {3717, 4876}, {3766, 62635}, {3797, 52029}, {3912, 291}, {3948, 13576}, {3975, 14942}, {4010, 55261}, {4087, 36796}, {4435, 884}, {4437, 22116}, {4465, 52902}, {4712, 3252}, {6184, 40730}, {6654, 51838}, {7193, 32658}, {8299, 6}, {9454, 14598}, {9455, 18897}, {10030, 56783}, {15507, 51987}, {17755, 1}, {18033, 34018}, {18037, 40724}, {18157, 18827}, {18206, 741}, {18891, 18031}, {20769, 36057}, {20778, 48}, {22116, 52205}, {24459, 10099}, {25083, 295}, {27853, 51560}, {27918, 43921}, {27919, 238}, {30665, 29956}, {30941, 37128}, {33701, 2111}, {34253, 56}, {38989, 1015}, {39044, 6654}, {39775, 57}, {39916, 56856}, {40217, 30663}, {40704, 7233}, {40717, 54235}, {40730, 51856}, {40781, 30648}, {42720, 660}, {51329, 604}, {51381, 54364}, {55260, 4589}, {62552, 513}
X(64223) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 17794, 52029}, {75, 52151, 334}, {668, 2481, 20345}, {4441, 20345, 2481}
X(64224) lies on the cubic K986 and these lines: {69, 8044}, {75, 23928}, {76, 6625}, {86, 310}, {141, 18152}, {257, 1921}, {274, 17302}, {313, 670}, {314, 7261}, {1654, 51857}, {1963, 8033}, {3948, 34021}, {4043, 55239}, {4610, 40589}, {6385, 18032}, {7199, 54256}, {17787, 36860}, {38814, 40722}, {49676, 57992}, {52619, 52629}
on K986
X(64224) = isotomic conjugate of the isogonal conjugate of X(6626)
X(64224) = X(76)-Ceva conjugate of X(310)
X(64224) = X(i)-isoconjugate of X(j) for these (i,j): {32, 52208}, {42, 18757}, {213, 2248}, {560, 63885}, {1918, 13610}, {1973, 15377}, {2205, 6625}, {50487, 53628}
X(64224) = X(i)-Dao conjugate of X(j) for these (i,j): {86, 6}, {6337, 15377}, {6374, 63885}, {6376, 52208}, {6626, 2248}, {6627, 512}, {34021, 13610}, {40592, 18757}
X(64224) = cevapoint of X(17762) and X(51857)
X(64224) = crosspoint of X(76) and X(51857)
X(64224) = barycentric product X(i)*X(j) for these {i,j}: {76, 6626}, {86, 51857}, {274, 17762}, {305, 2905}, {310, 1654}, {561, 38814}, {670, 21196}, {799, 50451}, {846, 6385}, {873, 27569}, {1921, 52207}, {3261, 57060}, {17084, 28660}, {18021, 27691}, {18891, 45783}, {21879, 57992}, {44169, 51867}
X(64224) = barycentric quotient X(i)/X(j) for these {i,j}: {69, 15377}, {75, 52208}, {76, 63885}, {81, 18757}, {86, 2248}, {274, 13610}, {310, 6625}, {846, 213}, {1654, 42}, {2905, 25}, {4213, 2333}, {4610, 53628}, {6385, 51865}, {6626, 6}, {17084, 1400}, {17762, 37}, {18755, 1918}, {21085, 1500}, {21196, 512}, {21879, 872}, {22139, 2200}, {27569, 756}, {27691, 181}, {27954, 20964}, {38814, 31}, {39921, 2054}, {45783, 1911}, {50451, 661}, {51857, 10}, {51867, 1922}, {52207, 292}, {52612, 53655}, {57060, 101}, {63627, 40729}
X(64225) lies on the cubic K986 and these lines: {76, 330}, {312, 335}, {350, 39914}, {726, 20366}, {812, 14296}, {1921, 1926}, {4440, 18830}, {12263, 23493}, {17793, 56663}, {20913, 52655}, {20936, 33890}, {20943, 27424}, {29960, 30026}, {45782, 49493}, {59802, 62234}
X(64225) = X(56663)-Ceva conjugate of X(62553)
X(64225) = X(i)-isoconjugate of X(j) for these (i,j): {32, 33680}, {727, 51973}, {1911, 62421}, {2176, 63881}, {14598, 40844}, {34077, 41531}
X(64225) = X(i)-Dao conjugate of X(j) for these (i,j): {1575, 43}, {3837, 6377}, {3948, 192}, {6376, 33680}, {6651, 62421}, {17793, 51973}, {18277, 40844}, {20532, 41531}, {27846, 20979}
X(64225) = barycentric product X(i)*X(j) for these {i,j}: {75, 56663}, {330, 62553}, {1921, 40881}, {6383, 17475}, {6384, 17793}, {34252, 35538}, {39914, 52043}, {44169, 51864}
X(64225) = barycentric quotient X(i)/X(j) for these {i,j}: {75, 33680}, {87, 63881}, {239, 62421}, {726, 41531}, {1575, 51973}, {1921, 40844}, {8850, 1403}, {17475, 2176}, {17793, 43}, {20663, 2209}, {34252, 727}, {39914, 20332}, {40881, 292}, {51321, 34077}, {51864, 1922}, {52043, 40848}, {56663, 1}, {62553, 192}, {62558, 20979}
X(64226) lies on the cubic K986 and these lines: {75, 3123}, {76, 330}, {192, 23643}, {257, 18035}, {310, 55947}, {350, 3226}, {1978, 20532}, {2998, 27809}, {6376, 21337}, {7233, 18033}, {18037, 36799}, {20971, 33296}, {52136, 62421}
X(64226) = X(57535)-Ceva conjugate of X(40087)
X(64226) = X(i)-isoconjugate of X(j) for these (i,j): {6, 51864}, {32, 40881}, {2162, 21760}, {3009, 7121}, {14598, 56663}
X(64226) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 51864}, {75, 1575}, {6376, 40881}, {6377, 6373}, {18277, 56663}, {33678, 2162}, {40598, 3009}
X(64226) = cevapoint of X(726) and X(59518)
X(64226) = crosspoint of X(32020) and X(40844)
X(64226) = crosssum of X(21760) and X(51864)
X(64226) = trilinear pole of line {3835, 6382}
X(64226) = barycentric product X(i)*X(j) for these {i,j}: {75, 40844}, {561, 62421}, {727, 40367}, {1921, 33680}, {3226, 6382}, {3835, 54985}, {6376, 32020}
X(64226) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 51864}, {43, 21760}, {75, 40881}, {192, 3009}, {1921, 56663}, {3226, 2162}, {3253, 51321}, {3835, 6373}, {3971, 21830}, {6376, 1575}, {6382, 726}, {8709, 34071}, {8851, 57264}, {18793, 21759}, {20332, 7121}, {21138, 52633}, {22370, 20777}, {27809, 23493}, {30545, 1463}, {31008, 18792}, {32020, 87}, {33680, 292}, {36799, 2053}, {40367, 35538}, {40844, 1}, {40848, 40155}, {54985, 4598}, {62421, 31}
X(64227) lies on the cubic K976 and these lines: {3, 525}, {5, 217}, {54, 276}, {98, 185}, {184, 14265}, {287, 575}, {401, 32545}, {631, 36893}, {1614, 52491}, {6146, 51441}, {6759, 52641}, {14585, 48452}, {18925, 36874}, {19357, 36822}, {19467, 56688}, {21659, 34175}, {44088, 60594}, {58728, 60700}
X(64227) = X(290)-Ceva conjugate of X(401)
X(64227) = X(32428)-cross conjugate of X(53174)
X(64227) = X(i)-isoconjugate of X(j) for these (i,j): {240, 1298}, {1956, 19189}, {2190, 40804}, {40440, 57500}
X(64227) = X(i)-Dao conjugate of X(j) for these (i,j): {5, 40804}, {14382, 276}, {39045, 19189}, {39085, 1298}, {52128, 511}
X(64227) = barycentric product X(i)*X(j) for these {i,j}: {287, 32428}, {336, 2313}, {343, 32545}, {401, 53174}, {61196, 62523}
X(64227) = barycentric quotient X(i)/X(j) for these {i,j}: {216, 40804}, {217, 57500}, {248, 1298}, {685, 41210}, {1971, 19189}, {2313, 240}, {2966, 41208}, {32428, 297}, {32545, 275}, {53174, 1972}
X(64228) lies on the cubic K976 and these lines: {3, 6368}, {5, 49}, {95, 46751}, {276, 46138}, {933, 7728}, {1568, 51254}, {1970, 1989}, {2420, 52945}, {4240, 14254}, {5944, 38896}, {7691, 43965}, {8884, 58733}, {10282, 58704}, {10610, 58926}, {12121, 15958}, {14980, 46966}, {15469, 52010}, {18400, 58746}, {18475, 58729}, {39170, 44516}, {41334, 50433}, {46064, 58789}
on K976
X(64228) = X(46138)-Ceva conjugate of X(43768)
X(64228) = X(30)-cross conjugate of X(265)
X(64228) = X(i)-isoconjugate of X(j) for these (i,j): {74, 51801}, {1154, 36119}, {1953, 57487}, {2159, 14918}, {2290, 16080}, {2349, 11062}, {36131, 41078}, {61354, 62273}
X(64228) = X(i)-Dao conjugate of X(j) for these (i,j): {1511, 1154}, {3163, 14918}, {39008, 41078}, {39170, 5}, {62569, 1273}
X(64228) = trilinear pole of line {3284, 14391}
X(64228) = crossdifference of every pair of points on line {2081, 11062}
X(64228) = barycentric product X(i)*X(j) for these {i,j}: {54, 57482}, {95, 56399}, {97, 14254}, {265, 43768}, {275, 51254}, {933, 18557}, {1141, 11064}, {3260, 11077}, {3284, 46138}, {14583, 34386}, {18558, 18831}, {41392, 62428}, {43752, 50433}, {46106, 50463}
X(64228) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 14918}, {54, 57487}, {265, 62722}, {1141, 16080}, {1495, 11062}, {2173, 51801}, {3284, 1154}, {9033, 41078}, {9409, 2081}, {11064, 1273}, {11077, 74}, {14254, 324}, {14391, 55132}, {14533, 14385}, {14583, 53}, {18558, 6368}, {32662, 36831}, {36298, 6117}, {36299, 6116}, {41392, 35360}, {43768, 340}, {50433, 44715}, {50463, 14919}, {51254, 343}, {56399, 5}, {57482, 311}, {62270, 61354}
X(64228) = {X(1141),X(50463)}-harmonic conjugate of X(265)
X(6422) lies on the cubic K631 and these lines: {1, 16213}, {6, 57}, {7, 1659}, {77, 2066}, {176, 20070}, {241, 6204}, {279, 16232}, {348, 13453}, {481, 946}, {738, 18992}, {948, 30276}, {1014, 61400}, {1323, 35775}, {1440, 13390}, {2067, 4350}, {4292, 31529}, {6180, 6203}, {6502, 7177}, {7053, 34125}, {10481, 31541}, {35774, 59813}, {42013, 43736}, {44624, 51364}, {60849, 63150}, {60852, 63178}
X(64229) = isotomic conjugate of the polar conjugate of X(61400)
X(64229) = X(6502)-cross conjugate of X(13389)
X(64229) = X(i)-isoconjugate of X(j) for these (i,j): {8, 60851}, {9, 7133}, {33, 30557}, {41, 60854}, {55, 7090}, {200, 2362}, {220, 1659}, {281, 5414}, {318, 53066}, {346, 60850}, {607, 56386}, {728, 61401}, {1260, 61392}, {1805, 53008}, {2066, 13454}, {2067, 7046}, {3239, 54018}, {3939, 58840}, {7079, 13388}, {7101, 53063}, {13456, 30556}, {34911, 46378}
X(64229) = X(i)-Dao conjugate of X(j) for these (i,j): {223, 7090}, {478, 7133}, {3160, 60854}, {6609, 2362}, {13388, 8}, {40617, 58840}
X(64229) = barycentric product X(i)*X(j) for these {i,j}: {7, 13389}, {69, 61400}, {77, 13390}, {85, 6502}, {269, 56385}, {279, 30556}, {348, 16232}, {934, 54019}, {1088, 2066}, {1267, 61401}, {1446, 1806}, {1659, 52419}, {2362, 13453}, {6063, 53064}, {7053, 60853}, {7056, 42013}, {7177, 14121}, {7182, 60849}, {7183, 61393}, {53065, 57792}
X(64229) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 60854}, {56, 7133}, {57, 7090}, {77, 56386}, {222, 30557}, {269, 1659}, {603, 5414}, {604, 60851}, {1106, 60850}, {1407, 2362}, {1435, 61392}, {1806, 2287}, {2066, 200}, {2362, 13454}, {3669, 58840}, {6502, 9}, {7023, 61401}, {7053, 13388}, {7099, 2067}, {13389, 8}, {13390, 318}, {14121, 7101}, {16232, 281}, {30556, 346}, {42013, 7046}, {46376, 34911}, {52411, 53066}, {52419, 56385}, {53064, 55}, {53065, 220}, {54016, 56183}, {54019, 4397}, {56385, 341}, {60849, 33}, {60850, 13456}, {60852, 7079}, {61400, 4}, {61401, 1123}
X(64229) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 1419, 51842}, {77, 52419, 13389}
X(64230) lies on the cubic K631 and these lines: {1, 16214}, {6, 57}, {7, 13389}, {77, 5414}, {175, 20070}, {241, 6203}, {279, 2362}, {348, 13436}, {482, 946}, {738, 18991}, {948, 30277}, {1014, 61401}, {1071, 60903}, {1323, 35774}, {1440, 1659}, {2067, 7177}, {4292, 31528}, {4350, 6502}, {5572, 60878}, {6180, 6204}, {7053, 34121}, {7133, 43736}, {10481, 31540}, {35775, 59813}, {44623, 51364}, {60850, 63150}, {60851, 63178}
X(64230) = isotomic conjugate of the polar conjugate of X(61401)
X(64230) = X(2067)-cross conjugate of X(13388)
X(64230) = X(i)-isoconjugate of X(j) for these (i,j): {8, 60852}, {9, 42013}, {33, 30556}, {41, 60853}, {55, 14121}, {200, 16232}, {220, 13390}, {281, 2066}, {318, 53065}, {346, 60849}, {607, 56385}, {728, 61400}, {1260, 61393}, {1806, 53008}, {3239, 54016}, {3939, 58838}, {5414, 13426}, {6502, 7046}, {7079, 13389}, {7101, 53064}, {13427, 30557}, {34912, 46379}
X(64230) = X(i)-Dao conjugate of X(j) for these (i,j): {223, 14121}, {478, 42013}, {3160, 60853}, {6609, 16232}, {13389, 8}, {40617, 58838}
X(64230) = barycentric product X(i)*X(j) for these {i,j}: {7, 13388}, {69, 61401}, {77, 1659}, {85, 2067}, {269, 56386}, {279, 30557}, {348, 2362}, {934, 54017}, {1088, 5414}, {1446, 1805}, {5391, 61400}, {6063, 53063}, {7053, 60854}, {7056, 7133}, {7090, 7177}, {7182, 60850}, {7183, 61392}, {13390, 52420}, {13436, 16232}, {53066, 57792}
X(64230) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 60853}, {56, 42013}, {57, 14121}, {77, 56385}, {222, 30556}, {269, 13390}, {603, 2066}, {604, 60852}, {1106, 60849}, {1407, 16232}, {1435, 61393}, {1659, 318}, {1805, 2287}, {2067, 9}, {2362, 281}, {3669, 58838}, {5414, 200}, {7023, 61400}, {7053, 13389}, {7090, 7101}, {7099, 6502}, {7133, 7046}, {13388, 8}, {16232, 13426}, {30557, 346}, {46377, 34912}, {52411, 53065}, {52420, 56386}, {53063, 55}, {53066, 220}, {54017, 4397}, {54018, 56183}, {56386, 341}, {60849, 13427}, {60850, 33}, {60851, 7079}, {61400, 1336}, {61401, 4}
X(64230) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 1419, 51841}, {77, 52420, 13388}
X(64231) lies on the cubics K744 and K1077 and these lines: {1, 56706}, {8, 7261}, {10, 33676}, {76, 3496}, {330, 348}, {1655, 40781}, {1909, 52085}, {4560, 16705}, {9239, 19581}, {17760, 24479}, {27855, 42455}
X(64231) = X(i)-Ceva conjugate of X(j) for these (i,j): {18036, 350}, {63875, 40846}
X(64231) = X(4366)-cross conjugate of X(350)
0
X(64231) = X(i)-isoconjugate of X(j) for these (i,j): {32, 52085}, {291, 19554}, {292, 17798}, {335, 18262}, {560, 51859}, {1281, 51856}, {1911, 3509}, {1922, 4645}, {5018, 51858}, {14598, 17789}, {18037, 18267}, {18038, 30663}, {18268, 20715}, {18787, 41882}, {19561, 52205}, {40730, 40754}
X(64231) = X(i)-Dao conjugate of X(j) for these (i,j): {1966, 1281}, {6374, 51859}, {6376, 52085}, {96651, 3509}, {7261, 8933}, {18277, 17789}, {19557, 17798}, {35068, 20715}, {39028, 4645}, {39029, 19554}, {62553, 4071}
X(64231) = cevapoint of X(3512) and X(56706)
X(64231) = barycentric product X(i)*X(j) for these {i,j}: {238, 18036}, {239, 40845}, {350, 7261}, {1921, 3512}, {3766, 51614}, {4366, 63895}, {7281, 18033}, {8852, 18891}, {17493, 40846}, {24479, 56660}, {39044, 63875}
X(64231) = barycentric quotient X(i)/X(j) for these {i,j}: {75, 52085}, {76, 51859}, {238, 17798}, {239, 3509}, {350, 4645}, {740, 20715}, {1447, 5018}, {1914, 19554}, {1921, 17789}, {2210, 18262}, {3512, 292}, {3766, 4458}, {3948, 4071}, {4366, 19557}, {6654, 40754}, {7061, 18787}, {7261, 291}, {7281, 7077}, {8300, 19561}, {8852, 1911}, {17493, 40873}, {18036, 334}, {18786, 41532}, {20769, 20741}, {24479, 52205}, {39044, 1281}, {40781, 3252}, {40845, 335}, {40846, 30669}, {51328, 18038}, {51614, 660}, {56660, 18037}, {56697, 40791}, {56706, 9470}, {63875, 30663}, {63895, 40098}
X(64231) = {X(3512),X(18036)}-harmonic conjugate of X(40846)
X(64232) lies on the cubic K744 and these lines: {1, 7168}, {8, 3978}, {10, 1920}, {76, 257}, {274, 330}, {1909, 18275}, {1921, 30038}, {3727, 44169}, {6374, 59509}, {6376, 18277}, {6386, 59515}, {6645, 37133}, {18059, 27880}, {18760, 52085}, {19573, 64133}
X(64232) = isotomic conjugate of the isogonal conjugate of X(30661)
X(64232) = X(1909)-Ceva conjugate of X(76)
X(64232) = X(i)-isoconjugate of X(j) for these (i,j): {32, 52176}, {7104, 63888}, {16360, 51856}
X(64232) = X(i)-Dao conjugate of X(j) for these (i,j): {75, 40795}, {1966, 16360}, {6376, 52176}, {7018, 256}
X(64232) = barycentric product X(i)*X(j) for these {i,j}: {76, 30661}, {561, 18754}, {1920, 39917}, {6382, 40741}, {16362, 18891}
X(64232) = barycentric quotient X(i)/X(j) for these {i,j}: {75, 52176}, {1909, 63888}, {6376, 40795}, {16362, 1911}, {18754, 31}, {30661, 6}, {39044, 16360}, {39917, 893}, {40741, 2162}, {40768, 7121}
v{X(257),X(1926)}-harmonic conjugate of X(76)
X(64233) lies on the cubic K744 and these lines: {1, 18795}, {8, 291}, {10, 30663}, {39, 62557}, {76, 335}, {172, 37207}, {194, 40155}, {257, 52085}, {334, 20255}, {1500, 35956}, {1655, 40796}, {1909, 52205}, {1911, 7346}, {4444, 48131}, {4562, 20691}, {6376, 52656}, {7187, 40098}, {17739, 18787}, {17762, 18298}, {19567, 51868}, {22116, 25918}, {26752, 36906}
X(64233) = X(i)-Ceva conjugate of X(j) for these (i,j): {1909, 52085}, {52205, 335}
X(64233) = X(i)-cross conjugate of X(j) for these (i,j): {18275, 335}, {19581, 40849}
X(64233) = X(i)-isoconjugate of X(j) for these (i,j): {238, 51919}, {1914, 7168}, {8300, 63893}, {24576, 51328}, {39933, 61385}
X(64233) = X(i)-Dao conjugate of X(j) for these (i,j): {1921, 56660}, {9470, 51919}, {22116, 40782}, {36906, 7168}
X(64233) = barycentric product X(i)*X(j) for these {i,j}: {1, 51868}, {291, 19567}, {292, 18275}, {334, 3510}, {335, 19565}, {8875, 51859}, {18277, 52205}, {18278, 18895}, {19579, 40098}, {19581, 30663}, {30669, 40849}
X(64233) = barycentric quotient X(i)/X(j) for these {i,j}: {291, 7168}, {292, 51919}, {3510, 238}, {18274, 51328}, {18275, 1921}, {18277, 56660}, {18278, 1914}, {18787, 51920}, {19565, 239}, {19567, 350}, {19579, 4366}, {19580, 8300}, {19581, 39044}, {23186, 7193}, {30663, 24576}, {30669, 39933}, {40849, 17493}, {51868, 75}, {52205, 63893}, {52656, 40782}, {56695, 40798}, {57265, 61385}
X(64234) lies on the cubic K299 and these lines: {1, 88}, {10, 190}, {40, 9519}, {44, 5011}, {58, 3987}, {101, 21888}, {121, 9780}, {484, 896}, {517, 38671}, {519, 18201}, {528, 6788}, {595, 24440}, {758, 5524}, {759, 1293}, {846, 3968}, {899, 3245}, {1125, 50915}, {1126, 7312}, {1357, 5221}, {1482, 51531}, {1739, 7292}, {2097, 2810}, {2254, 2832}, {2836, 34893}, {2840, 5128}, {2841, 3030}, {2842, 3214}, {3227, 49488}, {3339, 51765}, {3617, 21290}, {3621, 20098}, {3626, 50914}, {3634, 11814}, {3679, 36263}, {3753, 4653}, {3899, 9350}, {3919, 60714}, {4413, 17461}, {4424, 5297}, {4646, 4658}, {4663, 10761}, {4880, 49984}, {5204, 34139}, {5225, 12534}, {5400, 64189}, {5550, 6715}, {5708, 52827}, {5836, 37599}, {6163, 17960}, {8148, 38576}, {9352, 49494}, {9432, 55926}, {10730, 31673}, {10744, 18357}, {10774, 12019}, {11731, 46934}, {12702, 17749}, {13329, 48363}, {13624, 38695}, {13996, 24864}, {14026, 38938}, {14664, 35242}, {16611, 41322}, {17070, 17734}, {17160, 57029}, {21222, 53356}, {21944, 56952}, {21949, 50821}, {24880, 61524}, {28212, 51415}, {30384, 60414}, {31514, 46901}, {32486, 64136}, {38945, 40663}, {57300, 61272}, {62235, 62325}
X(64234) = reflection of X(i) in X(j) for these {i,j}: {106, 1054}, {1482, 51531}, {10700, 106}, {13541, 11717}, {17777, 121}, {38685, 40}
X(64234) = reflection of X(45763) in the anti-Orthic axis
X(64234) = {X(1739),X(63136)}-harmonic conjugate of X(40091)
X(64235) lies on the cubic K534 and these lines: {6, 8788}, {32, 1992}, {69, 125}, {99, 5095}, {193, 4576}, {524, 62310}, {690, 11061}, {2407, 46236}, {2930, 10553}, {3618, 6388}, {3785, 20975}, {3933, 22143}, {6340, 50992}, {6393, 47277}, {7752, 8541}, {9035, 25332}, {10330, 25321}, {10765, 11008}, {19583, 63064}, {32114, 57216}, {39099, 47526}
X(64235) = reflection of X(69) in X(4563)
X(64235) = isotomic conjugate of the polar conjugate of X(7665)
X(64235) = X(i)-Ceva conjugate of X(j) for these (i,j): {524, 69}, {62310, 6337}
X(64235) = X(i)-isoconjugate of X(j) for these (i,j): {923, 63900}, {15390, 36128}
X(64235) = X(i)-Dao conjugate of X(j) for these (i,j): {2482, 63900}, {30786, 671}
X(64235) = barycentric product X(i)*X(j) for these {i,j}: {69, 7665}, {524, 62607}
X(64235) = barycentric quotient X(i)/X(j) for these {i,j}: {524, 63900}, {3292, 15390}, {7665, 4}, {62607, 671}
X(64236) lies on the cubic K744 and these lines: {1, 40725}, {8, 6650}, {10, 40098}, {58, 17930}, {76, 4485}, {330, 1929}, {514, 1125}, {596, 9278}, {1655, 40793}, {1909, 9505}, {19929, 19936}, {21140, 62636}, {35148, 35172}
X(64236) = X(9505)-Ceva conjugate of X(11599)
X(64236) = X(17793)-cross conjugate of X(726)
X(64236) = X(i)-isoconjugate of X(j) for these (i,j): {727, 1757}, {1326, 18793}, {3226, 18266}, {6542, 34077}, {8298, 63881}, {17735, 20332}
X(64236) = X(i)-Dao conjugate of X(j) for these (i,j): {726, 59724}, {1575, 6651}, {17793, 1757}, {20532, 6542}, {22116, 40794}, {27846, 38348}
X(64236) = crosspoint of X(18032) and X(63896)
X(64236) = barycentric product X(i)*X(j) for these {i,j}: {726, 6650}, {1575, 18032}, {1929, 52043}, {3837, 35148}, {9505, 62553}, {11599, 62636}, {17793, 63896}, {17930, 21053}, {17962, 35538}, {20908, 37135}
X(64236) = barycentric quotient X(i)/X(j) for these {i,j}: {726, 6542}, {1575, 1757}, {1929, 20332}, {3009, 17735}, {3837, 2786}, {6373, 5029}, {6650, 3226}, {9278, 18793}, {9506, 63881}, {11599, 27809}, {17475, 8298}, {17793, 6651}, {17962, 727}, {18032, 32020}, {18792, 1931}, {20532, 59724}, {20785, 17976}, {21053, 18004}, {21760, 18266}, {21830, 58287}, {35148, 8709}, {40725, 3253}, {52043, 20947}, {52656, 40794}, {62558, 38348}, {62636, 17731}
X(64237) lies on the circumconic {{A,B,C,X(1),X(2)}}, the cubic K324, and these lines: {1, 659}, {2, 812}, {81, 50456}, {88, 649}, {100, 38349}, {101, 5376}, {105, 2382}, {190, 4375}, {244, 43928}, {291, 513}, {330, 21222}, {514, 3227}, {900, 35030}, {1015, 1022}, {1280, 48572}, {2832, 54977}, {3768, 36275}, {4724, 55935}, {4893, 56170}, {9263, 63246}, {17494, 39698}, {36805, 48008}, {48244, 52654}
X(64237) = midpoint of X(9263) and X(63246)
X(64237) = reflection of X(1022) in X(1015)
X(64237) = antitomic image of X(1022)
X(64237) = X(52745)-cross conjugate of X(513)
X(64237) = X(i)-isoconjugate of X(j) for these (i,j): {6, 56811}, {44, 59486}, {100, 20331}, {101, 537}, {765, 52745}, {813, 52908}, {1252, 36848}, {23344, 46795}
X(64237) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 56811}, {513, 52745}, {661, 36848}, {1015, 537}, {8054, 20331}, {40595, 59486}, {40623, 52908}
X(64237) = cevapoint of X(513) and X(52745)
X(64237) = crosssum of X(20331) and X(52745)
X(64237) = trilinear pole of line {513, 16507}
X(64237) = barycentric product X(i)*X(j) for these {i,j}: {291, 47070}, {335, 52226}, {513, 18822}, {693, 2382}, {903, 59487}, {1022, 46797}, {3227, 46782}, {51923, 62619}
X(64237) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 56811}, {106, 59486}, {244, 36848}, {513, 537}, {649, 20331}, {659, 52908}, {1015, 52745}, {1022, 46795}, {2382, 100}, {3227, 46780}, {18822, 668}, {21123, 52960}, {42753, 42765}, {43928, 52768}, {46782, 536}, {46797, 24004}, {47070, 350}, {51923, 23891}, {52226, 239}, {52745, 35123}, {59487, 519}
X(64237) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21385, 52226, 51923}, {47070, 47776, 46797}
X(64238) lies on the cubic K744 and these lines: {1, 33674}, {8, 76}, {213, 666}, {274, 52085}, {1107, 46798}, {1909, 52209}, {3061, 36796}, {6376, 56697}, {7176, 34085}, {17739, 18298}, {17760, 30633}, {32009, 62635}, {36803, 59504}, {40874, 56856}
X(64238) = isotomic conjugate of the isogonal conjugate of X(56856)
X(64238) = X(52209)-Ceva conjugate of X(2481)
X(64238) = X(39916)-cross conjugate of X(40874)
X(64238) = X(i)-isoconjugate of X(j) for these (i,j): {672, 51333}, {2107, 3286}, {2223, 2665}, {9454, 39925}, {40730, 40769}
X(64238) = X(i)-Dao conjugate of X(j) for these (i,j): {350, 17755}, {673, 8934}, {33675, 39925}, {39056, 672}, {39057, 18206}, {62554, 51333}, {62599, 2665}
X(64238) = cevapoint of X(39028) and X(52049)
X(64238) = barycentric product X(i)*X(j) for these {i,j}: {76, 56856}, {673, 52049}, {2481, 17759}, {2664, 18031}, {13576, 40874}, {18785, 41535}, {39028, 52209}
X(64238) = barycentric quotient X(i)/X(j) for these {i,j}: {105, 51333}, {666, 53624}, {673, 2665}, {2106, 3286}, {2481, 39925}, {2664, 672}, {2669, 18206}, {6654, 40769}, {13576, 54980}, {17759, 518}, {18785, 2107}, {20796, 20752}, {21788, 2223}, {21897, 20683}, {36803, 53216}, {39028, 17755}, {39916, 8299}, {40796, 3252}, {40874, 30941}, {41535, 18157}, {52030, 63874}, {52049, 3912}, {52209, 63892}, {56697, 40798}, {56856, 6}, {58367, 3932}, {62599, 8934}
X(64238) = {X(18031),X(52029)}-harmonic conjugate of X(2481)
X(64239) lies on the cubic K744 and these lines: {1, 1655}, {10, 30663}, {514, 20888}, {1909, 52209}, {2725, 53624}, {3503, 36215}, {6376, 27475}, {9499, 17739}, {12194, 40769}, {17755, 40788}, {17758, 43685}, {18206, 27919}, {24579, 39273}, {35167, 53216}, {39957, 54980}
X(64239) = X(i)-isoconjugate of X(j) for these (i,j): {6, 56856}, {105, 21788}, {1438, 2664}, {2106, 56853}, {8751, 20796}, {13576, 56388}, {18785, 56837}, {51331, 52030}
X(64239) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 56856}, {3912, 39916}, {6184, 2664}, {17755, 17759}, {27918, 27854}, {39046, 21788}, {52656, 40796}, {62587, 52049}
X(64239) = crosssum of X(21788) and X(51331)
X(64239) = barycentric product X(i)*X(j) for these {i,j}: {2254, 53216}, {2665, 3263}, {3912, 39925}, {18157, 54980}, {18206, 43685}
X(64239) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 56856}, {518, 2664}, {672, 21788}, {1818, 20796}, {2107, 56853}, {2665, 105}, {3263, 52049}, {3286, 56837}, {3912, 17759}, {3930, 21897}, {17755, 39916}, {18157, 40874}, {18206, 2106}, {22116, 40796}, {30941, 2669}, {39925, 673}, {40798, 56854}, {51333, 1438}, {53216, 51560}, {53624, 36086}, {54407, 15148}, {54980, 18785}, {62552, 27854}, {63874, 51866}, {63892, 52030}
X(64240) lies on the cubic K631 and these lines: {7, 1486}, {77, 3870}, {279, 41788}, {344, 348}, {651, 30705}, {1014, 4233}, {1445, 4253}, {1565, 7071}, {2175, 3323}, {2346, 54236}, {2402, 4000}, {9061, 40615}, {10029, 17353}, {17092, 17093}, {37800, 57792}
X(64240) = isogonal conjugate of X(5452)
X(64240) = isogonal conjugate of the anticomplement of X(18214)
X(64240) = isogonal conjugate of the complement of X(13577)
X(64240) = isotomic conjugate of the anticomplement of X(20269)
X(64240) = X(i)-cross conjugate of X(j) for these (i,j): {6, 7}, {650, 26706}, {665, 35185}, {5089, 43736}, {20269, 2}, {44178, 13577}, {47431, 34855}, {61663, 42311}
X(64240) = X(i)-isoconjugate of X(j) for these (i,j): {1, 5452}, {9, 1486}, {33, 22131}, {41, 3434}, {55, 169}, {101, 11934}, {200, 56913}, {212, 17905}, {220, 34036}, {284, 21867}, {650, 57250}, {657, 40576}, {1253, 37800}, {1334, 4228}, {2175, 20927}, {2194, 21073}, {2212, 28420}
X(64240) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 5452}, {223, 169}, {478, 1486}, {1015, 11934}, {1214, 21073}, {3160, 3434}, {3676, 5511}, {6609, 56913}, {17113, 37800}, {40590, 21867}, {40593, 20927}, {40615, 21185}, {40837, 17905}
X(64240) = cevapoint of X(i) and X(j) for these (i,j): {3, 34960}, {6, 3433}, {650, 1565}, {665, 3323}, {3669, 40615}, {40141, 54236}
X(64240) = trilinear pole of line {3309, 4897}
X(64240) = barycentric product X(i)*X(j) for these {i,j}: {7, 13577}, {57, 57773}, {85, 44178}, {664, 26721}, {3433, 6063}, {7131, 41788}, {40141, 57792}
X(64240) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 5452}, {7, 3434}, {56, 1486}, {57, 169}, {65, 21867}, {85, 20927}, {109, 57250}, {222, 22131}, {226, 21073}, {269, 34036}, {278, 17905}, {279, 37800}, {348, 28420}, {513, 11934}, {934, 40576}, {1014, 4228}, {1407, 56913}, {3433, 55}, {3676, 21185}, {13577, 8}, {15728, 61491}, {24002, 26546}, {24471, 41581}, {26706, 56183}, {26721, 522}, {27818, 27826}, {35185, 52927}, {40141, 220}, {40154, 14268}, {40615, 5511}, {43042, 55133}, {44178, 9}, {54236, 6600}, {57773, 312}
X(64241) lies on the cubic K299 and these lines: {100, 2742}, {513, 644}, {518, 1156}, {666, 671}, {840, 898}, {899, 5526}, {900, 60488}, {901, 1026}, {956, 14661}, {1001, 47007}, {1023, 1308}, {1025, 14733}, {2254, 5548}, {2691, 6099}, {3241, 60698}, {14513, 54440}
X(64241) = reflection of X(840) in X(1083)
X(64242) lies on the cubic K1059 and these lines: {1, 40154}, {7, 3174}, {57, 218}, {63, 43760}, {142, 60832}, {165, 15728}, {200, 40615}, {223, 1462}, {269, 1617}, {479, 4350}, {2999, 42315}, {5173, 63459}, {5236, 55110}, {5273, 8051}, {6602, 53538}, {8817, 63897}, {10389, 19604}, {29627, 63164}, {37611, 59490}
X(64242) = isogonal conjugate of X(3174)
X(64242) = isogonal conjugate of the anticomplement of X(24389)
X(64242) = X(i)-cross conjugate of X(j) for these (i,j): {55, 57}, {2191, 1}
X(64242) = X(i)-isoconjugate of X(j) for these (i,j): {1, 3174}, {6, 56937}, {8, 21002}, {9, 16572}, {41, 20946}, {55, 36845}, {57, 24771}, {220, 8732}, {281, 22153}, {284, 21096}, {651, 59979}, {10482, 41573}
X(64242) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 3174}, {9, 56937}, {223, 36845}, {478, 16572}, {3160, 20946}, {5452, 24771}, {38991, 59979}, {40590, 21096}
X(64242) = cevapoint of X(663) and X(53538)
X(64242) = barycentric product X(i)*X(j) for these {i,j}: {57, 42361}, {279, 42470}, {2191, 63897}, {3669, 53653}, {4350, 60832}, {24002, 53888}
X(64242) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 56937}, {6, 3174}, {7, 20946}, {55, 24771}, {56, 16572}, {57, 36845}, {65, 21096}, {269, 8732}, {603, 22153}, {604, 21002}, {663, 59979}, {1418, 41573}, {42361, 312}, {42470, 346}, {53653, 646}, {53888, 644}
X(64243) lies on the cubic K765 and these lines: {2, 1350}, {3, 9740}, {20, 55164}, {99, 10304}, {376, 3424}, {385, 15705}, {549, 51588}, {551, 9746}, {3524, 5024}, {3543, 31168}, {5485, 55167}, {6054, 10519}, {6194, 7757}, {7875, 61830}, {8974, 38425}, {9748, 15702}, {9755, 15715}, {11180, 55177}, {13950, 38426}, {15717, 63065}, {16986, 50687}, {16988, 61930}, {16989, 61812}, {16990, 62120}, {31884, 42850}, {37455, 54174}, {37665, 44839}, {37668, 60654}, {50977, 60658}, {50983, 63005}
X(64243) = midpoint of X(i) and X(j) for these {i,j}: {2, 46944}, {376, 60143}, {44839, 50967}
X(64243) = reflection of X(i) in X(j) for these {i,j}: {14484, 2}, {51588, 549}
on K765
X(64243) = Thomson-isogonal conjugate of X(5024)
X(64244) lies on the cubic K077 and these lines: {1, 87}, {3, 8616}, {43, 5255}, {519, 979}, {595, 978}, {962, 56805}, {1050, 5438}, {1191, 1740}, {3915, 4203}, {4673, 18194}, {6762, 9359}, {7220, 50621}, {7240, 11037}, {12565, 56630}, {13740, 59311}, {15654, 54354}, {16483, 36646}, {20036, 27663}, {39748, 51093}, {39949, 51105}, {47623, 63986}, {50581, 62828}
X(64244) = reflection of X(39969) in X(979)
X(64245) lies on the cubic K390 and these lines: {6, 470}, {15, 184}, {17, 125}, {577, 44718}, {3269, 11130}, {7836, 14972}, {10662, 50466}, {11131, 14585}, {14533, 19295}, {18877, 19294}, {36209, 46059}, {40710, 50433}
on K390
X(64245) = isotomic conjugate of the polar conjugate of X(3439)
X(64245) = isogonal conjugate of the polar conjugate of X(2993)
X(64245) = X(2993)-Ceva conjugate of X(3439)
X(64245) = X(i)-cross conjugate of X(j) for these (i,j): {46113, 3}, {51243, 2993}
X(64245) = X(i)-isoconjugate of X(j) for these (i,j): {19, 622}, {92, 3130}, {2153, 11094}
X(64245) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 622}, {22391, 3130}, {40580, 11094}
X(64245) = cevapoint of X(i) and X(j) for these (i,j): {6, 10676}, {3269, 60009}
X(64245) = trilinear pole of line {39201, 60010}
X(64245) = barycentric product X(i)*X(j) for these {i,j}: {3, 2993}, {69, 3439}, {95, 51243}, {14373, 52437}, {40157, 40710}
X(64245) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 622}, {15, 11094}, {184, 3130}, {2993, 264}, {3439, 4}, {14373, 6344}, {22115, 14369}, {36297, 51277}, {40157, 471}, {46113, 40581}, {51243, 5}
X(64246) lies on the cubic K390 and these lines: {6, 471}, {16, 184}, {18, 125}, {577, 44719}, {3269, 11131}, {7836, 14972}, {10661, 50465}, {11130, 14585}, {14533, 19294}, {18877, 19295}, {36208, 46058}, {40709, 50433}
on K390
X(64246) = isotomic conjugate of the polar conjugate of X(3438)
X(64246) = isogonal conjugate of the polar conjugate of X(2992)
X(64246) = X(2992)-Ceva conjugate of X(3438)
X(64246) = X(i)-cross conjugate of X(j) for these (i,j): {46112, 3}, {51242, 2992}
X(64246) = X(i)-isoconjugate of X(j) for these (i,j): {19, 621}, {92, 3129}, {2154, 11093}
X(64246) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 621}, {22391, 3129}, {40581, 11093}
X(64246) = cevapoint of X(i) and X(j) for these (i,j): {6, 10675}, {3269, 60010}
X(64246) = trilinear pole of line {39201, 60009}
X(64246) = barycentric product X(i)*X(j) for these {i,j}: {3, 2992}, {69, 3438}, {95, 51242}, {14372, 52437}, {40156, 40709}
X(64246) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 621}, {16, 11093}, {184, 3129}, {2992, 264}, {3438, 4}, {14372, 6344}, {22115, 14368}, {36296, 51270}, {40156, 470}, {46112, 40580}, {51242, 5}
X(64247) lies on the cubic K100 and these lines: {1, 14261}, {3, 17749}, {4, 16528}, {40, 376}, {56, 33551}, {386, 48921}, {573, 3522}, {1285, 4253}, {1293, 3913}, {1385, 56804}, {1482, 10700}, {1742, 7963}, {1764, 50693}, {2137, 17107}, {3158, 47302}, {3336, 34196}, {3667, 19582}, {4257, 6011}, {6048, 16192}, {10304, 48883}, {10476, 59420}, {15688, 48882}, {15689, 48915}, {21363, 21734}, {24466, 44075}, {28352, 45829}, {46362, 56799}, {48924, 62098}, {63442, 63983}
X(64247) = reflection of X(i) in X(j) for these {i,j}: {14261, 1}, {17749, 3}
X(64247) = X(52352)-Ceva conjugate of X(1)
X(64248) lies on the cubic K1025 and these lines: {1, 1326}, {9, 6626}, {1019, 2786}, {1282, 8935}, {1756, 25354}, {1757, 45783}, {1929, 18786}, {3509, 52207}, {3512, 18206}, {10583, 63053}, {17738, 52137}, {18189, 54308}, {18789, 43747}
X(64248) = X(i)-Ceva conjugate of X(j) for these (i,j): {3509, 18206}, {52207, 1}
X(64248) = barycentric product X(8846)*X(18827)
X(64248) = barycentric quotient X(8846)/X(740)
X(64249) lies on the cubic K077 and these lines: {1, 14261}, {3, 8616}, {20, 519}, {40, 48936}, {57, 33551}, {165, 17749}, {573, 3973}, {1695, 9778}, {7982, 13541}, {11512, 46946}, {11518, 63580}, {26102, 53002}, {30389, 56804}, {44039, 64005}
X(64249) = reflection of X(21214) in X(47639)
X(64249) = excentral-isogonal conjugate of X(62858)
X(64249) = X(3913)-Ceva conjugate of X(1)
X(64250) lies on the cubic K390 and these lines: {6, 471}, {15, 186}, {16, 11587}, {216, 11145}, {323, 340}, {621, 11093}, {2914, 6116}, {2981, 8882}, {3171, 8740}, {5353, 35201}, {5357, 51801}, {6110, 36209}, {6151, 8749}, {11062, 19295}, {19294, 39176}
X(64250) = polar conjugate of the isotomic conjugate of X(14368)
X(64250) = X(471)-Ceva conjugate of X(186)
X(64250) = X(63)-isoconjugate of X(14372)
X(64250) = X(i)-Dao conjugate of X(j) for these (i,j): {15, 40710}, {3162, 14372}, {46666, 14582}
X(64250) = crosspoint of X(471) and X(11093)
X(64250) = barycentric product X(i)*X(j) for these {i,j}: {4, 14368}, {15, 11093}, {186, 621}, {340, 3129}, {471, 40580}
X(64250) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 14372}, {186, 2992}, {621, 328}, {3129, 265}, {11093, 300}, {14368, 69}, {34397, 3438}, {40580, 40710}
X(64251) lies on the cubic K390 and these lines: {6, 470}, {15, 11587}, {16, 186}, {216, 11146}, {323, 340}, {622, 11094}, {2914, 6117}, {2981, 8749}, {3170, 8739}, {5353, 51801}, {5357, 35201}, {6111, 36208}, {6151, 8882}, {11062, 19294}, {19295, 39176}
X(64251) = polar conjugate of the isotomic conjugate of X(14369)
X(64251) = X(470)-Ceva conjugate of X(186)
X(64251) = X(63)-isoconjugate of X(14373)
X(64251) = X(i)-Dao conjugate of X(j) for these (i,j): {16, 40709}, {3162, 14373}, {46667, 14582}
X(64251) = crosspoint of X(470) and X(11094)
X(64251) = barycentric product X(i)*X(j) for these {i,j}: {4, 14369}, {16, 11094}, {186, 622}, {340, 3130}, {470, 40581}
X(64251) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 14373}, {186, 2993}, {622, 328}, {3130, 265}, {11094, 301}, {14369, 69}, {34397, 3439}, {40581, 40709}
X(64252) lies on the cubic K917 and these lines: {2, 3470}, {4, 523}, {20, 52130}, {74, 3522}, {140, 9717}, {631, 40630}, {1656, 12079}, {3091, 5627}, {3523, 14385}, {3541, 57487}, {3546, 14919}, {5056, 39239}, {7592, 63856}, {8749, 56865}, {14989, 50691}, {16080, 60159}, {17578, 57471}, {18916, 57488}, {19467, 34329}, {32820, 36890}, {43681, 60119}
X(64252) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14264, 36875, 56686}, {14264, 56686, 52488}
X(64253) lies on the cubic K390 and these lines: {6, 3170}, {13, 533}, {15, 3438}, {16, 14368}, {2379, 33958}, {3171, 8740}, {3441, 5669}, {6106, 22850}, {8604, 19294}, {10677, 34321}, {11081, 19295}, {16460, 36209}, {44719, 53032}
X(64253) = X(323)-cross conjugate of X(16)
X(64253) = X(i)-isoconjugate of X(j) for these (i,j): {2154, 3180}, {2166, 3170}
X(64253) = X(i)-Dao conjugate of X(j) for these (i,j): {11597, 3170}, {40581, 3180}, {40604, 30471}
X(64253) = barycentric product X(i)*X(j) for these {i,j}: {16, 11121}, {323, 53029}, {11078, 53031}, {23871, 36515}
X(64253) = barycentric quotient X(i)/X(j) for these {i,j}: {16, 3180}, {50, 3170}, {323, 30471}, {11121, 301}, {34395, 19780}, {36515, 23896}, {53029, 94}, {53031, 11092}
X(64254) lies on the cubic K390 and these lines: {6, 3171}, {14, 532}, {15, 14369}, {16, 3439}, {2378, 33957}, {3170, 8739}, {3440, 5668}, {6107, 22894}, {8603, 19295}, {10678, 34322}, {11080, 41889}, {11086, 19294}, {16459, 36208}, {44718, 53031}
X(64254) = X(323)-cross conjugate of X(15)
X(64254) = X(i)-isoconjugate of X(j) for these (i,j): {2153, 3181}, {2166, 3171}
X(64254) = X(i)-Dao conjugate of X(j) for these (i,j): {11597, 3171}, {40580, 3181}, {40604, 30472}
X(64254) = barycentric product X(i)*X(j) for these {i,j}: {15, 11122}, {323, 53030}, {11092, 53032}, {23870, 36514}
X(64254) = barycentric quotient X(i)/X(j) for these {i,j}: {15, 3181}, {50, 3171}, {323, 30472}, {11122, 300}, {34394, 19781}, {36514, 23895}, {53030, 94}, {53032, 11078}
X(64255) lies on the cubic K465 and these lines: {3, 8157}, {4, 195}, {5, 33565}, {49, 43581}, {54, 5663}, {74, 10610}, {110, 1154}, {113, 6288}, {125, 15037}, {140, 40640}, {146, 12254}, {155, 5898}, {265, 3574}, {539, 5655}, {542, 19150}, {1157, 24772}, {1209, 14643}, {1351, 56568}, {1352, 10254}, {1493, 14094}, {1511, 7691}, {1658, 12307}, {2888, 13406}, {2937, 7731}, {3024, 10066}, {3028, 10082}, {3043, 47360}, {3448, 11804}, {3519, 16534}, {5012, 15101}, {5609, 14668}, {5878, 18562}, {5899, 13417}, {5965, 19140}, {6242, 63684}, {6639, 11487}, {6689, 15061}, {7545, 7730}, {7687, 12234}, {7722, 37970}, {7727, 47378}, {7728, 18400}, {8254, 10264}, {9704, 12412}, {9970, 44668}, {9972, 63694}, {9977, 25556}, {10088, 13079}, {10091, 18984}, {10115, 21649}, {10203, 11591}, {10228, 43598}, {10272, 21230}, {10298, 15040}, {10620, 11003}, {10657, 10678}, {10658, 10677}, {11472, 12308}, {11557, 13621}, {11561, 43809}, {11563, 46440}, {11801, 15038}, {11802, 16223}, {12121, 15091}, {12227, 12242}, {12300, 15463}, {12325, 20125}, {12375, 12971}, {12376, 12965}, {12893, 45025}, {13392, 54201}, {13565, 64101}, {14049, 15063}, {15100, 32046}, {15647, 22815}, {15800, 17702}, {18912, 32341}, {19506, 32349}, {21308, 41671}, {22051, 33332}, {22955, 25711}, {25714, 37440}, {27552, 43816}, {27866, 54006}, {32339, 45735}, {32348, 38794}, {35197, 62316}, {35707, 48679}, {36966, 43605}, {51933, 54202}, {54157, 56292}, {63064, 63703}
X(64255) = midpoint of X(i) and X(j) for these {i,j}: {110, 43580}, {146, 12254}, {195, 399}, {5898, 12316}, {7731, 32338}, {14049, 15063}
X(64255) = reflection of X(i) in X(j) for these {i,j}: {3, 11597}, {4, 11805}, {54, 11702}, {74, 10610}, {195, 2914}, {265, 3574}, {3448, 11804}, {6288, 113}, {7691, 1511}, {9977, 25556}, {10264, 8254}, {11559, 14130}, {15089, 32226}, {15137, 15091}, {21230, 10272}, {21649, 10115}, {32352, 11557}, {33565, 5}, {36853, 20424}, {37496, 15137}, {43704, 195}, {54201, 13392}
X(64255) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 38898, 2070}, {399, 2914, 43704}, {399, 19504, 12902}, {3448, 61715, 11804}, {11561, 58881, 43809}, {15089, 32226, 55039}, {22815, 32379, 44515}
X(64256) lies on the cubics K039 and K465 and these lines: {3, 8157}, {5, 18402}, {186, 18401}, {264, 13219}, {381, 10214}, {933, 14118}, {1154, 34900}, {3153, 61441}, {6662, 45971}, {10296, 44977}, {12111, 13506}, {13754, 50463}, {14980, 18403}, {15478, 61471}, {21650, 43083}, {32352, 35442}, {40079, 61445}
X(64256) = midpoint of X(12111) and X(13506)
X(64256) = isogonal conjugate of X(61440)
X(64256) = antigonal image of X(6798)
X(64256) = X(i)-isoconjugate of X(j) for these (i,j): {1, 61440}, {2190, 3153}, {40440, 56924}
X(64256) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 61440}, {5, 3153}
X(64256) = barycentric product X(53962)*X(60597)
X(64256) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 61440}, {216, 3153}, {217, 56924}, {53962, 16813}
X(64257) lies on the cubic K465 and these lines: {4, 7730}, {5, 18402}, {24, 8157}, {186, 933}, {1154, 44057}, {5889, 6801}, {5890, 13506}, {10018, 11701}, {11561, 52057}, {13310, 30258}, {14118, 18401}, {15331, 38616}, {38585, 45735}, {52169, 54067}
X(64257) = reflection of X(4) in X(10214)
X(64258) lies on the X-parabola of ABC (see X(12065)), the cubic K239, and these lines: {2, 62655}, {6, 9214}, {30, 17964}, {111, 230}, {115, 523}, {141, 52756}, {148, 9182}, {316, 524}, {325, 31125}, {338, 850}, {395, 52749}, {396, 52748}, {543, 40553}, {597, 60867}, {685, 1990}, {868, 23288}, {895, 44768}, {897, 60055}, {1213, 52747}, {1503, 48983}, {1648, 5466}, {2395, 9178}, {2501, 6791}, {2502, 58856}, {2549, 45143}, {2872, 15630}, {3018, 48721}, {3124, 8599}, {3589, 52551}, {3815, 5968}, {3943, 6543}, {4024, 21043}, {5254, 14263}, {5306, 51926}, {5461, 40486}, {5523, 52490}, {5913, 46783}, {6071, 9009}, {7745, 14246}, {8030, 54607}, {8753, 60428}, {9012, 44011}, {9164, 15300}, {10097, 15328}, {10415, 47245}, {10418, 46980}, {10556, 20998}, {10561, 34294}, {11053, 34760}, {14588, 20094}, {14609, 15048}, {14977, 62551}, {14995, 35606}, {15993, 46154}, {16278, 57429}, {17056, 52764}, {18023, 18896}, {20578, 30452}, {20579, 30453}, {22110, 42008}, {23292, 52767}, {23302, 52750}, {23303, 52751}, {24855, 52232}, {24975, 50941}, {30508, 39022}, {30509, 39023}, {30786, 44377}, {36877, 43448}, {39356, 41135}, {40350, 47238}, {40429, 40511}, {40879, 44526}, {41176, 62662}, {41936, 47242}, {44396, 46799}, {44401, 52141}, {44518, 59423}, {44677, 50711}, {52483, 53418}, {52760, 53414}, {60042, 62626}
X(64258) = midpoint of X(i) and X(j) for these {i,j}: {148, 9182}, {671, 17948}, {61472, 61474}
X(64258) = reflection of X(i) in X(j) for these {i,j}: {15300, 9164}, {31644, 61339}, {44398, 115}, {45212, 57515}
X(64258) = polar conjugate of the isotomic conjugate of X(51258)
X(64258) = X(i)-Ceva conjugate of X(j) for these (i,j): {671, 5466}, {17983, 9178}, {57539, 523}, {57552, 10278}
X(64258) = X(i)-cross conjugate of X(j) for these (i,j): {1648, 115}, {33919, 523}, {42344, 8029}, {58908, 10415}
X(64258) = X(i)-isoconjugate of X(j) for these (i,j): {110, 23889}, {163, 5468}, {187, 24041}, {249, 896}, {524, 1101}, {662, 5467}, {922, 4590}, {1576, 24039}, {2642, 59152}, {3266, 23995}, {4235, 4575}, {4570, 16702}, {4592, 61207}, {14210, 23357}, {14567, 24037}, {23200, 46254}, {44102, 62719}
X(64258) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 5468}, {136, 4235}, {244, 23889}, {512, 14567}, {523, 524}, {620, 62658}, {647, 6390}, {690, 8030}, {1084, 5467}, {1649, 2482}, {2492, 62661}, {3005, 187}, {4858, 24039}, {4988, 6629}, {5139, 61207}, {15477, 23357}, {15899, 249}, {17436, 39785}, {18314, 3266}, {21905, 39689}, {39061, 4590}, {50330, 16702}, {55267, 50567}, {62568, 27088}, {62577, 36792}, {62607, 47389}
X(64258) = cevapoint of X(i) and X(j) for these (i,j): {115, 1648}, {690, 11123}, {8029, 42344}, {33919, 61339}
X(64258) = crosspoint of X(671) and X(5466)
X(64258) = crosssum of X(187) and X(5467)
X(64258) = trilinear pole of line {115, 8029}
X(64258) = crossdifference of every pair of points on line {5467, 44814}
X(64258) = barycentric product X(i)*X(j) for these {i,j}: {4, 51258}, {67, 10555}, {111, 338}, {115, 671}, {125, 17983}, {339, 8753}, {512, 52632}, {523, 5466}, {691, 23105}, {850, 9178}, {868, 9154}, {892, 8029}, {895, 2970}, {897, 1109}, {923, 23994}, {1577, 23894}, {1648, 57539}, {2395, 62629}, {2501, 14977}, {2643, 46277}, {3124, 18023}, {4024, 62626}, {8288, 18818}, {8430, 43665}, {8599, 23288}, {8754, 30786}, {9139, 58261}, {9180, 18007}, {9213, 10412}, {9214, 12079}, {10097, 14618}, {10630, 52628}, {14728, 42553}, {15359, 39450}, {20902, 36128}, {20975, 46111}, {22260, 53080}, {23962, 32740}, {30465, 36307}, {30468, 36310}, {31125, 34294}, {42344, 57552}, {52940, 61339}
X(64258) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 249}, {115, 524}, {125, 6390}, {338, 3266}, {512, 5467}, {523, 5468}, {661, 23889}, {671, 4590}, {691, 59152}, {868, 50567}, {892, 31614}, {897, 24041}, {923, 1101}, {1084, 14567}, {1109, 14210}, {1365, 7181}, {1577, 24039}, {1648, 2482}, {2489, 61207}, {2501, 4235}, {2643, 896}, {2970, 44146}, {2971, 44102}, {3120, 6629}, {3124, 187}, {3125, 16702}, {4036, 42721}, {4092, 3712}, {5099, 62661}, {5466, 99}, {6388, 32459}, {6791, 27088}, {8029, 690}, {8288, 39785}, {8430, 2421}, {8753, 250}, {8754, 468}, {9154, 57991}, {9178, 110}, {9213, 10411}, {10097, 4558}, {10555, 316}, {10561, 52630}, {12079, 36890}, {14443, 33915}, {14908, 47390}, {14977, 4563}, {15475, 14559}, {16732, 16741}, {17983, 18020}, {17993, 9181}, {18007, 9182}, {18023, 34537}, {19626, 23963}, {20975, 3292}, {21043, 4062}, {21131, 4750}, {21833, 21839}, {21906, 39689}, {22260, 351}, {23105, 35522}, {23288, 9146}, {23894, 662}, {23991, 62658}, {23992, 8030}, {30452, 52039}, {30453, 52040}, {30786, 47389}, {31644, 45291}, {32740, 23357}, {33919, 1649}, {34294, 52898}, {34574, 45773}, {39691, 7813}, {41221, 41586}, {42344, 23992}, {42553, 33906}, {44114, 9155}, {46277, 24037}, {51258, 69}, {51428, 45662}, {51441, 5967}, {52628, 36792}, {52632, 670}, {57539, 52940}, {57552, 42370}, {61339, 1648}, {62626, 4610}, {62629, 2396}
X(64258) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {111, 16092, 230}, {671, 10630, 34169}, {671, 34169, 53419}, {671, 57539, 17948}, {9214, 52450, 6}, {14263, 59422, 5254}, {31644, 44398, 115}, {36307, 36310, 16092}, {52551, 60863, 52758}, {52758, 60863, 3589}, {60867, 63853, 597}
See Antreas Hatzipolakis and Peter Moses, euclid 6287.
X(64259) lies on these lines: {4, 54}, {6368, 39201}
X(64260) lies on these lines: {1, 3683}, {9, 3988}, {10, 3158}, {11, 3601}, {20, 946}, {40, 4004}, {145, 36922}, {405, 4533}, {551, 43733}, {942, 51576}, {1001, 5785}, {1125, 45036}, {1385, 11372}, {1420, 3649}, {1621, 7982}, {3295, 11525}, {3333, 51715}, {3612, 45035}, {3632, 10389}, {3636, 5542}, {3646, 24929}, {3711, 37080}, {3878, 64263}, {3922, 61763}, {4018, 4512}, {4757, 5248}, {5223, 16866}, {5259, 64342}, {5438, 19878}, {6284, 25055}, {6744, 50739}, {8226, 18242}, {9352, 35242}, {10179, 17624}, {10912, 31393}, {10980, 17571}, {11108, 36835}, {11379, 30389}, {12688, 30392}, {13384, 62333}, {14100, 51577}, {15079, 59337}, {16860, 30393}, {16865, 41863}, {19526, 62823}, {20057, 62856}, {22791, 63974}, {30223, 30538}, {31435, 64369}, {37704, 51724}, {38036, 59345}, {51506, 64137}, {57279, 62870}, {58560, 63754}, {64147, 64324}
X(64260) = inverse of X(3601) in Feuerbach hyperbola
X(64261) lies on these lines: {1, 4}, {3, 5705}, {5, 5436}, {8, 64004}, {9, 355}, {10, 6987}, {20, 4652}, {30, 84}, {40, 1726}, {57, 37468}, {65, 36999}, {72, 5881}, {78, 6840}, {80, 1728}, {149, 64267}, {165, 12616}, {376, 6705}, {377, 8726}, {381, 24299}, {382, 971}, {405, 5587}, {442, 3576}, {452, 24987}, {484, 63437}, {516, 49168}, {517, 5924}, {519, 5758}, {936, 6827}, {938, 64001}, {942, 12671}, {943, 51784}, {952, 5812}, {962, 41575}, {1006, 1698}, {1071, 9579}, {1125, 6843}, {1158, 64005}, {1210, 50701}, {1385, 25525}, {1449, 5798}, {1453, 5721}, {1512, 10395}, {1621, 64272}, {1656, 40262}, {1657, 34862}, {1753, 50530}, {1768, 4333}, {1836, 52837}, {1837, 6253}, {1998, 10431}, {2323, 5776}, {2475, 10884}, {2800, 9589}, {2829, 10864}, {2893, 10444}, {2900, 37531}, {2950, 5840}, {3072, 56959}, {3091, 54051}, {3146, 9799}, {3149, 9581}, {3244, 16204}, {3347, 48358}, {3543, 6223}, {3577, 37730}, {3601, 6831}, {3624, 6829}, {3627, 6259}, {3651, 5450}, {3671, 64147}, {3679, 55104}, {3830, 22792}, {4018, 5895}, {4190, 21164}, {4292, 5768}, {4297, 6908}, {4304, 6847}, {4311, 54366}, {4312, 5884}, {4355, 12005}, {4855, 6943}, {4930, 28204}, {5059, 54052}, {5073, 12684}, {5177, 5731}, {5219, 33597}, {5231, 7580}, {5437, 37281}, {5438, 6922}, {5534, 10526}, {5665, 57282}, {5720, 6928}, {5722, 20420}, {5727, 44547}, {5728, 7686}, {5732, 6850}, {5745, 59345}, {5759, 11362}, {5777, 18525}, {5802, 10445}, {5805, 12433}, {6282, 6836}, {6284, 12705}, {6560, 19067}, {6561, 19068}, {6828, 62829}, {6832, 7989}, {6833, 30282}, {6839, 54392}, {6844, 13411}, {6846, 10198}, {6865, 57284}, {6868, 31424}, {6877, 34595}, {6889, 7987}, {6897, 10857}, {6907, 18481}, {6913, 10267}, {6917, 18443}, {6920, 64269}, {6923, 41854}, {6934, 15803}, {6936, 16208}, {6984, 30389}, {6990, 63964}, {7330, 7491}, {7354, 63430}, {7548, 31266}, {7682, 50700}, {7971, 12699}, {8226, 18242}, {8227, 37837}, {8987, 9541}, {9580, 12672}, {9668, 9856}, {9812, 54198}, {9841, 31775}, {9848, 64332}, {9897, 12691}, {9942, 37723}, {9948, 28150}, {9960, 39772}, {10085, 10483}, {10167, 50239}, {10175, 16845}, {10389, 63257}, {10399, 37721}, {10477, 39885}, {10527, 37421}, {10826, 36152}, {10860, 11826}, {10916, 28164}, {10943, 28186}, {11112, 37526}, {11249, 28160}, {11491, 31434}, {11827, 57279}, {12136, 44438}, {12246, 33703}, {12565, 64320}, {12575, 64322}, {12677, 41863}, {12680, 12943}, {12687, 15239}, {12688, 12953}, {14110, 64171}, {14647, 31730}, {15704, 61556}, {15726, 17649}, {16202, 59389}, {16206, 61294}, {17532, 50811}, {18397, 37711}, {18406, 64328}, {18499, 37562}, {18528, 37821}, {18540, 37290}, {18908, 45120}, {21370, 36986}, {22770, 24392}, {22791, 64263}, {26015, 50696}, {26437, 64152}, {26475, 57285}, {31794, 52682}, {31822, 33697}, {33576, 64330}, {36991, 60934}, {37000, 61763}, {37001, 64046}, {37230, 37615}, {37428, 37551}, {37718, 64188}, {38122, 50238}, {38150, 44229}, {41004, 62780}, {42263, 49234}, {42264, 49235}, {43740, 56273}, {45632, 54154}, {46435, 64186}, {47033, 59340}, {49177, 64119}, {50741, 51705}, {51118, 63962}, {52367, 64150}, {54408, 64000}, {58588, 63432}, {61146, 64281}, {63146, 64111}, {63974, 64295}
X(64261) = midpoint of X(i) and X(j) for these {i,j}: {3146, 9799}, {5073, 12684}, {12246, 33703}
X(64261) = reflection of X(i) in X(j) for these {i,j}: {20, 6245}, {84, 5787}, {1490, 4}, {1657, 34862}, {5534, 10526}, {6259, 3627}, {7971, 12699}, {11523, 5812}, {12667, 31673}, {12671, 942}, {15704, 61556}, {40267, 33697}, {46435, 64186}, {63962, 51118}, {64005, 1158}, {64075, 10916}, {64190, 9948}, {64267, 149}, {64276, 64265}, {64298, 64272}
X(64261) = pole of line {65, 5715} with respect to the Feuerbach hyperbola
X(64261) = intersection, other than A, B, C, of circumconics {{A, B, C, X(29), X(5715)}}, {{A, B, C, X(278), X(64265)}}, {{A, B, C, X(6598), X(7952)}}
X(64261) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4, 5715}, {4, 18446, 9612}, {4, 3488, 946}, {4, 515, 1490}, {4, 944, 226}, {20, 6245, 52027}, {30, 5787, 84}, {515, 31673, 12667}, {3146, 12649, 64003}, {3586, 5691, 4}, {6836, 57287, 6282}, {9948, 28150, 64190}, {10864, 12704, 49170}, {10916, 28164, 64075}
X(64262) lies on these lines: {1, 527}, {7, 24389}, {9, 17718}, {10, 60987}, {57, 10427}, {65, 12625}, {145, 60975}, {516, 64147}, {518, 36922}, {1071, 5735}, {1156, 31164}, {1317, 3243}, {1537, 5851}, {1699, 64264}, {1836, 3254}, {1998, 60932}, {2078, 61007}, {3174, 52819}, {3333, 25557}, {3632, 13375}, {3649, 60953}, {3870, 60951}, {3951, 60997}, {4312, 11570}, {4860, 5231}, {5853, 16236}, {6006, 38371}, {7672, 39776}, {7982, 38454}, {9814, 10052}, {12848, 41570}, {14100, 18839}, {16006, 49177}, {22791, 64277}, {31053, 63254}, {39771, 47123}, {42871, 61285}, {43180, 45700}, {60895, 63962}, {63974, 64295}
X(64262) = reflection of X(i) in X(j) for these {i,j}: {63264, 34917}
X(64262) = X(i)-Dao conjugate of X(j) for these {i, j}: {5231, 8}
X(64262) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7, 6173}
X(64262) = pole of line {6173, 17603} with respect to the Feuerbach hyperbola
X(64262) = pole of line {27486, 30181} with respect to the Steiner circumellipse
X(64262) = pole of line {28292, 43050} with respect to the Suppa-Cucoanes circle
X(64262) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(15346)}}, {{A, B, C, X(5231), X(34919)}}, {{A, B, C, X(6173), X(12848)}}, {{A, B, C, X(42014), X(47375)}}
X(64262) = barycentric product X(i)*X(j) for these (i, j): {6173, 63168}, {12848, 5231}
X(64262) = barycentric quotient X(i)/X(j) for these (i, j): {12848, 63166}, {63168, 55954}
X(64262) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4860, 44785, 6173}
X(64263) lies on circumconic {{A, B, C, X(39980), X(56030)}} and on these lines: {1, 3052}, {9, 56030}, {10, 11041}, {65, 45036}, {100, 3340}, {145, 226}, {390, 20057}, {944, 3635}, {1482, 7966}, {2099, 2136}, {2886, 3632}, {3241, 5556}, {3243, 11011}, {3576, 4757}, {3616, 5837}, {3878, 64260}, {3889, 15558}, {4004, 5438}, {4423, 15829}, {5441, 64289}, {5730, 51780}, {6762, 62822}, {7971, 10222}, {7972, 9613}, {7982, 64173}, {7990, 16189}, {8000, 11523}, {10389, 63260}, {10698, 12705}, {18492, 21635}, {22791, 64261}, {31794, 51577}, {63974, 64295}, {64147, 64324}
X(64264) lies on these lines: {1, 651}, {3, 5696}, {9, 5531}, {11, 30330}, {80, 10398}, {149, 63974}, {150, 56933}, {165, 5528}, {214, 5785}, {516, 9803}, {518, 7993}, {528, 7991}, {952, 5223}, {1484, 38036}, {1699, 64262}, {1709, 36868}, {1768, 2951}, {2771, 11372}, {3062, 3254}, {4882, 38665}, {5536, 15726}, {5537, 15733}, {5735, 37433}, {5787, 7992}, {7982, 64288}, {8226, 34917}, {9809, 63973}, {10045, 64155}, {10085, 16143}, {10265, 38052}, {10268, 51525}, {10384, 17638}, {10427, 11219}, {10573, 12848}, {12560, 12755}, {14100, 64372}, {14872, 34486}, {15096, 41861}, {17660, 60937}, {21635, 61013}, {33593, 59372}, {33925, 60910}, {64147, 64324}
X(64264) = reflection of X(i) in X(j) for these {i,j}: {2951, 1768}, {5531, 9}, {9809, 63973}, {63974, 149}, {64295, 149}
X(64265) lies on the Feuerbach hyperbola and on these lines: {1, 6831}, {2, 64286}, {4, 64272}, {5, 64285}, {7, 5884}, {8, 6840}, {9, 355}, {10, 64280}, {21, 515}, {30, 6597}, {79, 6001}, {81, 64296}, {84, 7354}, {90, 5691}, {104, 4311}, {225, 36121}, {314, 35516}, {381, 64271}, {517, 6598}, {943, 31397}, {944, 56027}, {946, 17097}, {952, 6596}, {971, 3255}, {1000, 12116}, {1156, 31673}, {1172, 8755}, {1320, 41575}, {1389, 64163}, {1699, 17098}, {1837, 3577}, {2320, 6888}, {2771, 6599}, {2800, 11604}, {2829, 3065}, {2949, 31799}, {3254, 24474}, {3296, 10532}, {3680, 5763}, {4295, 38306}, {5303, 6705}, {5556, 63962}, {5561, 64119}, {5665, 5715}, {5787, 34773}, {5794, 10268}, {5842, 15910}, {5881, 56101}, {6003, 43728}, {6261, 31266}, {6601, 49168}, {6765, 56278}, {7091, 12687}, {7160, 45081}, {7284, 49170}, {7686, 15909}, {10597, 18490}, {11012, 12616}, {12114, 15446}, {12247, 24298}, {12667, 34919}, {12688, 13273}, {12750, 24302}, {12751, 45393}, {13408, 63335}, {13464, 56030}, {14647, 64075}, {15175, 37710}, {18483, 55924}, {19860, 64274}, {35057, 43737}, {35097, 50899}, {37625, 43740}, {37714, 64319}, {40396, 40950}, {63974, 64295}, {64147, 64324}
X(64265) = midpoint of X(i) and X(j) for these {i,j}: {64261, 64276}
X(64265) = reflection of X(i) in X(j) for these {i,j}: {1, 64266}, {4, 64272}, {6261, 64273}, {64268, 12616}, {64276, 64275}, {64279, 64274}, {64280, 10}, {64283, 64293}, {64285, 5}, {64287, 1}
X(64265) = isogonal conjugate of X(11012)
X(64265) = anticomplement of X(64286)
X(64265) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 11012}, {1167, 40249}
X(64265) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 79}
X(64265) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 11012}, {6260, 40249}, {64286, 64286}
X(64265) = pole of line {3577, 6362} with respect to the Fuhrmann circle
X(64265) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(994)}}, {{A, B, C, X(10), X(1065)}}, {{A, B, C, X(19), X(56148)}}, {{A, B, C, X(27), X(31789)}}, {{A, B, C, X(28), X(6840)}}, {{A, B, C, X(29), X(6831)}}, {{A, B, C, X(33), X(26332)}}, {{A, B, C, X(34), X(48482)}}, {{A, B, C, X(40), X(37550)}}, {{A, B, C, X(64), X(34441)}}, {{A, B, C, X(65), X(947)}}, {{A, B, C, X(74), X(20419)}}, {{A, B, C, X(92), X(355)}}, {{A, B, C, X(102), X(31806)}}, {{A, B, C, X(158), X(10570)}}, {{A, B, C, X(225), X(515)}}, {{A, B, C, X(516), X(28473)}}, {{A, B, C, X(517), X(5174)}}, {{A, B, C, X(519), X(41575)}}, {{A, B, C, X(758), X(30200)}}, {{A, B, C, X(946), X(40950)}}, {{A, B, C, X(957), X(44759)}}, {{A, B, C, X(996), X(57724)}}, {{A, B, C, X(998), X(55105)}}, {{A, B, C, X(1068), X(5691)}}, {{A, B, C, X(1072), X(49542)}}, {{A, B, C, X(1121), X(54882)}}, {{A, B, C, X(1126), X(1243)}}, {{A, B, C, X(1220), X(15844)}}, {{A, B, C, X(1224), X(60112)}}, {{A, B, C, X(1441), X(56133)}}, {{A, B, C, X(2051), X(40435)}}, {{A, B, C, X(2078), X(24474)}}, {{A, B, C, X(2342), X(5884)}}, {{A, B, C, X(2716), X(63750)}}, {{A, B, C, X(2730), X(35174)}}, {{A, B, C, X(2788), X(28850)}}, {{A, B, C, X(2800), X(8674)}}, {{A, B, C, X(2990), X(55027)}}, {{A, B, C, X(3424), X(9103)}}, {{A, B, C, X(3426), X(41487)}}, {{A, B, C, X(3667), X(5844)}}, {{A, B, C, X(3679), X(54758)}}, {{A, B, C, X(3870), X(49168)}}, {{A, B, C, X(4311), X(22464)}}, {{A, B, C, X(5903), X(36152)}}, {{A, B, C, X(6001), X(35057)}}, {{A, B, C, X(6734), X(31397)}}, {{A, B, C, X(6765), X(12649)}}, {{A, B, C, X(14584), X(49176)}}, {{A, B, C, X(18815), X(56143)}}, {{A, B, C, X(20615), X(28233)}}, {{A, B, C, X(23710), X(31673)}}, {{A, B, C, X(28292), X(38454)}}, {{A, B, C, X(29057), X(29298)}}, {{A, B, C, X(30199), X(61030)}}, {{A, B, C, X(31359), X(54972)}}, {{A, B, C, X(34892), X(54691)}}, {{A, B, C, X(34914), X(54630)}}, {{A, B, C, X(37579), X(37625)}}, {{A, B, C, X(37710), X(56419)}}, {{A, B, C, X(38008), X(42464)}}, {{A, B, C, X(40442), X(43724)}}, {{A, B, C, X(41434), X(44835)}}, {{A, B, C, X(41506), X(60634)}}, {{A, B, C, X(47033), X(51760)}}, {{A, B, C, X(54933), X(56132)}}, {{A, B, C, X(57723), X(60079)}}
X(64265) = barycentric quotient X(i)/X(j) for these (i, j): {6, 11012}, {1108, 40249}
X(64265) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64291, 64292, 1}
X(64266) lies on these lines: {1, 6831}, {2, 64280}, {4, 37579}, {5, 1001}, {10, 6882}, {11, 7686}, {442, 5842}, {515, 6841}, {523, 53047}, {946, 64284}, {1125, 64286}, {1389, 18391}, {1532, 14798}, {2829, 37447}, {3011, 37362}, {3085, 6830}, {3646, 4187}, {3649, 6001}, {4973, 6705}, {5542, 6245}, {5587, 37359}, {5705, 49183}, {5709, 38454}, {5715, 11372}, {5844, 10912}, {5886, 64285}, {6260, 12558}, {6734, 63976}, {6796, 6881}, {6828, 64298}, {6833, 26357}, {6845, 10532}, {6922, 26363}, {6943, 10527}, {6963, 19855}, {6971, 18544}, {6990, 64148}, {7510, 23843}, {7741, 59342}, {8226, 18242}, {8227, 64328}, {8727, 12114}, {9955, 64271}, {10265, 12432}, {10785, 26437}, {10883, 12667}, {10957, 45081}, {11012, 37374}, {11249, 37356}, {11525, 64200}, {12616, 24474}, {14647, 55109}, {15932, 64155}, {18238, 63254}, {36152, 37468}, {37726, 64137}, {54318, 64279}, {63292, 64296}, {63974, 64295}, {64003, 64118}, {64147, 64324}
X(64266) = midpoint of X(i) and X(j) for these {i,j}: {1, 64265}, {48482, 64269}, {64281, 64291}
X(64266) = reflection of X(i) in X(j) for these {i,j}: {64271, 9955}, {64274, 63963}, {64286, 1125}
X(64266) = complement of X(64280)
X(64266) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6830, 12116, 26481}, {10198, 48482, 11500}
X(64267) lies on these lines: {1, 104}, {9, 48667}, {40, 2932}, {57, 17654}, {80, 63992}, {84, 12773}, {119, 9623}, {149, 64261}, {153, 3872}, {200, 1145}, {214, 30503}, {515, 7993}, {952, 1490}, {956, 5693}, {1320, 56273}, {1512, 41684}, {2771, 7971}, {2829, 6264}, {3576, 12332}, {3632, 5531}, {4853, 12751}, {4861, 9809}, {5541, 64188}, {5657, 40257}, {5720, 19914}, {6224, 64150}, {6265, 38760}, {6282, 64189}, {6765, 12641}, {7982, 17652}, {9803, 26015}, {9897, 63988}, {11698, 63966}, {12119, 12565}, {12247, 63986}, {12331, 52026}, {12515, 37611}, {12520, 33337}, {12672, 64372}, {12737, 43166}, {17638, 30223}, {18443, 19907}, {19067, 35857}, {19068, 35856}, {22791, 64281}, {22837, 63962}, {38460, 64009}, {46685, 63135}, {51636, 63391}, {54154, 64278}, {63974, 64295}, {64147, 64324}
X(64267) = reflection of X(i) in X(j) for these {i,j}: {40, 22775}, {84, 12773}, {1768, 48694}, {2950, 104}, {5531, 6261}, {5541, 64188}, {9809, 54198}, {12650, 6264}, {54156, 1768}, {64261, 149}
X(64267) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {104, 10698, 15558}, {104, 2800, 2950}, {104, 2950, 52027}, {1768, 2800, 54156}, {2800, 48694, 1768}, {2829, 6264, 12650}
X(64268) lies on these lines: {1, 3215}, {2, 64273}, {3, 64269}, {4, 64274}, {9, 1630}, {10, 64188}, {21, 2800}, {30, 12519}, {35, 104}, {36, 64291}, {40, 2975}, {55, 64283}, {56, 63257}, {57, 64284}, {100, 64270}, {140, 22775}, {165, 64276}, {515, 3651}, {550, 11495}, {692, 1385}, {958, 6256}, {993, 1158}, {1006, 40257}, {1376, 64294}, {1389, 5903}, {2829, 47032}, {3295, 64282}, {3428, 24390}, {3476, 59334}, {3652, 6001}, {5251, 12608}, {5260, 63964}, {5445, 6905}, {5563, 11218}, {5844, 11248}, {5887, 51506}, {6796, 64298}, {8666, 37531}, {10902, 64287}, {11012, 12616}, {11249, 37356}, {11500, 61510}, {12119, 57287}, {12515, 37562}, {13464, 52819}, {15228, 59322}, {18861, 64290}, {22770, 38454}, {26332, 59317}, {33596, 34791}, {34352, 38602}, {40255, 45700}, {63974, 64295}, {64119, 64271}, {64147, 64324}
X(64268) = midpoint of X(i) and X(j) for these {i,j}: {40, 64281}, {1158, 64279}, {64276, 64288}
X(64268) = reflection of X(i) in X(j) for these {i,j}: {4, 64274}, {6261, 64286}, {64119, 64271}, {64265, 12616}, {64269, 3}, {64298, 6796}
X(64268) = anticomplement of X(64273)
X(64268) = X(i)-Dao conjugate of X(j) for these {i, j}: {64273, 64273}
X(64268) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {165, 64288, 64276}
X(64269) lies on these lines: {1, 1389}, {2, 64274}, {3, 64268}, {4, 64273}, {5, 1001}, {21, 515}, {30, 12524}, {35, 64291}, {40, 224}, {55, 26332}, {56, 64283}, {80, 10395}, {100, 11012}, {411, 40257}, {548, 12332}, {944, 36152}, {958, 64294}, {999, 64282}, {1158, 5732}, {1490, 16208}, {1610, 37812}, {1621, 7548}, {2800, 3651}, {2975, 64270}, {3072, 3736}, {3149, 15950}, {3576, 64281}, {3579, 53291}, {3746, 11218}, {3871, 37625}, {3878, 6261}, {3913, 5844}, {4297, 48695}, {4324, 12775}, {5046, 64148}, {5248, 64272}, {5443, 44425}, {5709, 8715}, {5842, 37230}, {5882, 37583}, {6256, 7491}, {6265, 37837}, {6915, 34486}, {6920, 64261}, {6949, 10589}, {7411, 40256}, {7508, 12114}, {7987, 64288}, {9964, 56288}, {10306, 38454}, {10950, 37579}, {11219, 34890}, {11248, 64075}, {11499, 26363}, {11510, 26475}, {12005, 15932}, {12329, 49164}, {12616, 15931}, {12687, 35242}, {16202, 37251}, {18389, 37550}, {18524, 26470}, {26357, 45081}, {37000, 63262}, {63974, 64295}, {64147, 64324}
X(64269) = midpoint of X(i) and X(j) for these {i,j}: {1, 64276}, {64173, 64280}
X(64269) = reflection of X(i) in X(j) for these {i,j}: {4, 64273}, {48482, 64266}, {64268, 3}, {64279, 64286}, {64280, 6796}, {64285, 37837}
X(64269) = anticomplement of X(64274)
X(64269) = X(i)-Dao conjugate of X(j) for these {i, j}: {64274, 64274}
X(64269) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6905, 64173, 1389}, {10267, 11500, 48482}
X(64270) lies on these lines: {2, 64283}, {4, 3621}, {8, 411}, {21, 952}, {30, 12535}, {63, 64276}, {78, 64281}, {100, 64268}, {145, 6828}, {200, 64288}, {355, 1389}, {515, 11684}, {517, 52841}, {519, 52269}, {944, 55868}, {1156, 5559}, {1483, 6852}, {2476, 10942}, {2975, 64269}, {3244, 11218}, {3486, 45081}, {3616, 64282}, {3623, 6855}, {3626, 5659}, {3632, 34784}, {3869, 5881}, {3873, 64284}, {4678, 6988}, {5086, 12531}, {5693, 40264}, {6326, 40260}, {6734, 64287}, {6853, 61510}, {6870, 20014}, {6873, 10247}, {6875, 18526}, {6876, 59503}, {6909, 33899}, {6912, 12648}, {6932, 64200}, {6985, 51515}, {7491, 61245}, {10039, 63263}, {10592, 43734}, {11415, 54134}, {11680, 64273}, {11681, 64274}, {11682, 64272}, {12245, 59355}, {12514, 15862}, {12532, 14872}, {12738, 21740}, {13375, 37708}, {17577, 50798}, {17857, 64279}, {20052, 50695}, {20117, 64278}, {21617, 64163}, {37700, 59416}, {37709, 62864}, {57287, 64189}, {59356, 64044}, {64147, 64324}
X(64270) = reflection of X(i) in X(j) for these {i,j}: {145, 63257}, {944, 64275}, {1389, 355}, {64283, 64294}
X(64270) = anticomplement of X(64283)
X(64270) = X(i)-Dao conjugate of X(j) for these {i, j}: {64283, 64283}
X(64270) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {355, 62830, 7548}, {64283, 64294, 2}
X(64271) lies on these lines: {4, 64285}, {30, 12639}, {381, 64265}, {515, 33592}, {546, 64272}, {946, 5719}, {1519, 63257}, {2829, 49107}, {6001, 22798}, {7681, 64284}, {9955, 64266}, {10284, 18242}, {10895, 64291}, {10896, 64292}, {12608, 18480}, {12609, 34862}, {12611, 64273}, {12699, 64280}, {18525, 64287}, {31871, 60901}, {63317, 64296}, {63966, 64276}, {63974, 64295}, {64119, 64268}, {64147, 64324}
X(64271) = midpoint of X(i) and X(j) for these {i,j}: {4, 64285}, {12699, 64280}, {18525, 64287}, {64119, 64268}
X(64271) = reflection of X(i) in X(j) for these {i,j}: {64266, 9955}, {64272, 546}
X(64272) lies on these lines: {4, 64265}, {5, 64286}, {355, 3878}, {381, 64285}, {515, 6841}, {546, 64271}, {946, 37730}, {950, 63257}, {1389, 5727}, {1478, 64292}, {1479, 64291}, {1621, 64261}, {3884, 48482}, {5248, 64269}, {5250, 64276}, {5587, 64280}, {5603, 64287}, {5804, 37702}, {5805, 30329}, {5837, 64294}, {5901, 64293}, {6001, 16125}, {7704, 63986}, {9578, 64173}, {11682, 64270}, {18480, 63970}, {18493, 40257}, {25639, 64274}, {26332, 45636}, {51717, 63963}, {63318, 64296}, {63974, 64295}, {64147, 64324}, {64160, 64283}
X(64272) = midpoint of X(i) and X(j) for these {i,j}: {4, 64265}, {64261, 64298}
X(64272) = reflection of X(i) in X(j) for these {i,j}: {64271, 546}, {64286, 5}
X(64273) lies on these lines: {2, 64268}, {4, 64269}, {5, 30147}, {11, 64283}, {12, 946}, {30, 12615}, {119, 15863}, {142, 12616}, {226, 64284}, {442, 2800}, {496, 64282}, {515, 6841}, {546, 18242}, {950, 6246}, {1389, 6941}, {1479, 64173}, {1699, 64276}, {2829, 31649}, {2886, 64294}, {3822, 12608}, {3878, 6842}, {5248, 37290}, {5450, 25466}, {5844, 12607}, {6001, 49107}, {6256, 6912}, {6261, 31266}, {6796, 7680}, {6828, 51683}, {6882, 51717}, {7951, 63986}, {7988, 64288}, {8227, 64281}, {9956, 21252}, {11218, 37719}, {11680, 64270}, {12611, 64271}, {17757, 40260}, {18446, 64292}, {37438, 40256}, {48482, 64298}, {51700, 63980}, {63974, 64295}, {64147, 64324}
X(64273) = midpoint of X(i) and X(j) for these {i,j}: {4, 64269}, {6261, 64265}, {48482, 64298}, {64279, 64291}
X(64273) = reflection of X(i) in X(j) for these {i,j}: {64274, 5}
X(64273) = complement of X(64268)
X(64274) lies on these lines: {2, 64269}, {4, 64268}, {5, 30147}, {10, 6882}, {11, 11011}, {12, 64283}, {30, 12623}, {140, 3826}, {214, 58461}, {442, 515}, {495, 64282}, {498, 64173}, {946, 10395}, {1006, 19854}, {1210, 64284}, {1329, 64294}, {1389, 6830}, {1698, 64276}, {2800, 6841}, {2886, 31789}, {3754, 12616}, {3813, 5844}, {5289, 6971}, {5428, 5842}, {5587, 64281}, {5659, 55104}, {6001, 22798}, {6831, 40663}, {7741, 64291}, {7989, 64288}, {8727, 40256}, {10943, 22836}, {10957, 13411}, {11218, 37720}, {11681, 64270}, {12047, 12691}, {12608, 63970}, {17662, 45081}, {19860, 64265}, {24390, 31806}, {25639, 64272}, {63974, 64295}, {64147, 64324}
X(64274) = midpoint of X(i) and X(j) for these {i,j}: {4, 64268}, {48482, 64280}, {64265, 64279}
X(64274) = reflection of X(i) in X(j) for these {i,j}: {64266, 63963}, {64273, 5}
X(64274) = complement of X(64269)
X(64275) lies on these lines: {1, 140}, {2, 1389}, {3, 64268}, {5, 17057}, {8, 1006}, {9, 355}, {10, 6882}, {12, 34353}, {30, 13089}, {40, 64291}, {100, 64290}, {119, 960}, {142, 3754}, {214, 6684}, {404, 5657}, {442, 517}, {515, 3647}, {519, 24299}, {758, 12639}, {944, 55868}, {952, 5258}, {997, 64279}, {1145, 6734}, {1385, 59491}, {1482, 10198}, {1737, 31838}, {2092, 8609}, {2323, 59680}, {2800, 37401}, {3035, 55296}, {3126, 28473}, {3617, 12116}, {3626, 6594}, {3654, 5709}, {3679, 64292}, {3878, 6842}, {4297, 51570}, {4511, 31659}, {5176, 26878}, {5252, 26921}, {5289, 6863}, {5692, 10942}, {5705, 11530}, {5730, 26487}, {5771, 37583}, {5790, 48482}, {5818, 45630}, {5837, 5887}, {5881, 16208}, {5882, 54288}, {5903, 37438}, {5904, 32213}, {6265, 52265}, {6600, 16202}, {6700, 38763}, {6735, 58630}, {6853, 62826}, {6883, 10573}, {6986, 12247}, {7483, 46920}, {7508, 15446}, {7982, 11218}, {8256, 26363}, {8702, 57095}, {10039, 13375}, {10246, 64282}, {10268, 18481}, {10427, 31788}, {10527, 64201}, {10532, 59417}, {10609, 33862}, {10680, 22754}, {10916, 12640}, {10943, 38112}, {10944, 36152}, {10993, 37568}, {11012, 61524}, {11231, 24541}, {11499, 64280}, {12647, 37579}, {12649, 64199}, {12702, 15346}, {12757, 13369}, {14794, 33814}, {15347, 38066}, {15556, 31397}, {16206, 61275}, {18395, 26475}, {18518, 64335}, {23513, 41012}, {25466, 64044}, {26287, 37298}, {26358, 63262}, {28212, 49177}, {28458, 40256}, {30379, 31794}, {31835, 37725}, {32198, 48713}, {37562, 41540}, {37611, 64281}, {37621, 44669}, {37625, 41862}, {38116, 45728}, {38121, 60895}, {45036, 64287}, {45770, 64285}, {50810, 55109}, {51463, 61286}, {61276, 64109}, {63974, 64295}, {64144, 64298}, {64147, 64324}
X(64275) = midpoint of X(i) and X(j) for these {i,j}: {8, 64173}, {40, 64291}, {100, 64290}, {944, 64270}, {5690, 34352}, {64265, 64276}
X(64275) = reflection of X(i) in X(j) for these {i,j}: {355, 64294}, {24474, 64284}, {45081, 34352}, {61032, 38112}, {64283, 1385}
X(64275) = complement of X(1389)
X(64275) = center of circumconic {{A, B, C, X(100), X(64290)}}
X(64275) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 9956}, {56, 64163}, {58, 37737}, {106, 11545}, {1385, 10}, {2317, 2}, {56814, 5}, {59491, 141}
X(64275) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(13375)}}, {{A, B, C, X(5559), X(10039)}}, {{A, B, C, X(59491), X(64265)}}
X(64275) = barycentric product X(i)*X(j) for these (i, j): {10039, 59491}
X(64275) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {140, 5690, 40663}, {5444, 31423, 140}, {5690, 34352, 5844}, {5844, 34352, 45081}, {16202, 59503, 49168}
X(64276) lies on these lines: {1, 1389}, {3, 64281}, {8, 2949}, {9, 355}, {20, 2950}, {30, 12660}, {40, 49170}, {57, 64283}, {63, 64270}, {165, 64268}, {191, 515}, {952, 54302}, {993, 10268}, {1158, 16558}, {1490, 3869}, {1697, 5715}, {1698, 64274}, {1699, 64273}, {2136, 5709}, {2800, 13146}, {2951, 54156}, {3333, 64282}, {3646, 4187}, {5119, 64291}, {5250, 64272}, {5506, 5818}, {5528, 12702}, {5541, 12245}, {5730, 6326}, {5882, 15932}, {6001, 63267}, {7991, 56583}, {10902, 37308}, {10914, 11012}, {12658, 64199}, {13144, 48694}, {37550, 37740}, {52026, 64285}, {59342, 64292}, {63966, 64271}, {63974, 64295}, {64147, 64324}
X(64276) = reflection of X(i) in X(j) for these {i,j}: {1, 64269}, {1389, 64286}, {1490, 64298}, {64261, 64265}, {64265, 64275}, {64279, 6796}, {64281, 3}, {64288, 64268}
X(64276) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {165, 64288, 64268}
X(64277) lies on these lines: {1, 84}, {9, 1630}, {40, 6737}, {515, 6762}, {942, 64320}, {956, 56273}, {971, 22770}, {1158, 9841}, {1385, 3358}, {1490, 3428}, {3333, 6245}, {3427, 7091}, {3632, 41338}, {4847, 12667}, {4882, 11500}, {5437, 12616}, {5691, 15239}, {6223, 64081}, {6260, 19843}, {7171, 31786}, {9799, 62874}, {9942, 30503}, {9960, 12529}, {10309, 34625}, {10396, 12664}, {10860, 14110}, {10864, 41869}, {11372, 54198}, {12330, 52027}, {12565, 12671}, {12666, 64369}, {14647, 37526}, {19854, 63966}, {22791, 64262}, {33899, 37534}, {37837, 61122}, {52026, 59320}, {56889, 63981}, {58808, 64190}, {63974, 64295}, {64118, 64312}, {64147, 64324}
X(64277) = reflection of X(i) in X(j) for these {i,j}: {84, 49170}, {1490, 18237}, {63981, 56889}
X(64277) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {84, 12687, 63430}, {84, 7971, 12705}, {6001, 49170, 84}
X(64278) lies on circumconic {{A, B, C, X(2006), X(64290)}} and on these lines: {1, 5}, {8, 64369}, {9, 64290}, {30, 12767}, {40, 12247}, {100, 59331}, {104, 50811}, {149, 7982}, {153, 3577}, {515, 3218}, {912, 37006}, {1512, 28236}, {1698, 22935}, {1699, 48667}, {1768, 38753}, {2771, 5691}, {2800, 10724}, {2801, 41577}, {2802, 12625}, {3576, 6224}, {3586, 17638}, {3656, 61601}, {3679, 12331}, {3681, 12531}, {3811, 6596}, {5251, 37621}, {5541, 19914}, {5692, 12645}, {6713, 64011}, {9579, 11571}, {9589, 48680}, {9613, 17660}, {9625, 9912}, {9802, 28234}, {9809, 31673}, {9952, 24466}, {10222, 52850}, {10246, 17057}, {10572, 64372}, {10707, 25485}, {10738, 13253}, {11362, 20095}, {11499, 14804}, {11522, 51517}, {11529, 41558}, {12119, 38759}, {12619, 15015}, {12653, 41709}, {12690, 14217}, {12736, 12757}, {12773, 26286}, {15096, 18525}, {15863, 38665}, {16200, 21630}, {16858, 50890}, {18492, 21635}, {19875, 61562}, {20117, 64270}, {22765, 28204}, {30389, 61566}, {31425, 34474}, {31434, 41541}, {31447, 38636}, {34627, 38073}, {34717, 42843}, {38021, 50889}, {38669, 64188}, {43161, 60994}, {44254, 61510}, {54154, 64267}, {63974, 64295}, {64147, 64324}
X(64278) = midpoint of X(i) and X(j) for these {i,j}: {9803, 20085}
X(64278) = reflection of X(i) in X(j) for these {i,j}: {40, 12247}, {5531, 355}, {5541, 19914}, {5691, 12747}, {5881, 9897}, {6224, 10265}, {6326, 80}, {7972, 37726}, {7982, 149}, {9589, 48680}, {9809, 31673}, {12757, 12736}, {13253, 10738}, {14217, 12690}, {20095, 11362}, {24466, 9952}, {38665, 15863}
X(64278) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {80, 7972, 8068}, {80, 952, 6326}, {355, 952, 5531}, {952, 37726, 7972}, {952, 9897, 5881}, {2771, 12747, 5691}, {5541, 19914, 63143}, {5727, 5881, 5587}, {6224, 10265, 3576}, {6265, 37718, 8227}, {9803, 20085, 515}, {10738, 13253, 31162}, {12619, 15015, 31423}
X(64279) lies on these lines: {1, 1389}, {8, 6326}, {40, 45392}, {191, 2800}, {355, 2886}, {515, 2475}, {993, 1158}, {997, 64275}, {1490, 64288}, {2771, 12745}, {3576, 37293}, {3811, 5844}, {3872, 64287}, {5080, 12608}, {5220, 5694}, {5697, 10093}, {5731, 10940}, {5880, 31657}, {6001, 48668}, {6924, 34353}, {6949, 64290}, {7951, 63986}, {10094, 21842}, {11375, 63257}, {11524, 38665}, {17857, 64270}, {18446, 37706}, {18524, 37837}, {19860, 64265}, {30147, 48482}, {33281, 40262}, {37740, 64283}, {40249, 48694}, {51717, 64188}, {54176, 64282}, {54318, 64266}, {63974, 64295}, {64147, 64324}
X(64279) = midpoint of X(i) and X(j) for these {i,j}: {1389, 64280}, {1490, 64288}
X(64279) = reflection of X(i) in X(j) for these {i,j}: {1158, 64268}, {6261, 64285}, {64265, 64274}, {64269, 64286}, {64276, 6796}, {64291, 64273}
X(64280) lies on these lines: {1, 1389}, {2, 64266}, {3, 1602}, {4, 40292}, {8, 411}, {10, 64265}, {21, 5842}, {84, 12511}, {100, 14110}, {404, 11024}, {515, 3651}, {517, 64285}, {519, 64287}, {943, 946}, {944, 59317}, {1006, 19854}, {1490, 5223}, {1737, 64292}, {2346, 5703}, {2829, 33557}, {3085, 3149}, {3811, 52026}, {4294, 37302}, {4847, 11012}, {5173, 33597}, {5536, 40249}, {5584, 14647}, {5587, 64272}, {5731, 35976}, {5758, 38454}, {5844, 22770}, {6001, 11684}, {6245, 7688}, {6261, 41338}, {6847, 37601}, {6927, 10321}, {6940, 15931}, {6942, 7742}, {6985, 10942}, {6986, 63980}, {7411, 12114}, {7580, 12667}, {7680, 63263}, {10039, 44425}, {10592, 19541}, {11218, 63259}, {11496, 30332}, {11499, 64275}, {11501, 45081}, {11525, 64316}, {12666, 50528}, {12675, 18450}, {12699, 64271}, {12777, 64200}, {18242, 36002}, {26357, 50701}, {30384, 63262}, {34772, 37837}, {37000, 52270}, {38665, 64056}, {63319, 64296}, {63974, 64295}, {64147, 64324}, {64199, 64312}
X(64280) = reflection of X(i) in X(j) for these {i,j}: {1, 64286}, {1389, 64279}, {12699, 64271}, {48482, 64274}, {64173, 64269}, {64265, 10}, {64269, 6796}, {64298, 11500}
X(64280) = anticomplement of X(64266)
X(64280) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1389, 11491, 64173}, {11500, 59366, 54051}
X(64281) lies on these lines: {1, 6831}, {3, 64276}, {30, 12845}, {40, 2975}, {78, 64270}, {84, 1389}, {145, 6264}, {515, 2475}, {517, 54302}, {936, 64294}, {1768, 5903}, {1836, 12676}, {2829, 16118}, {3333, 64284}, {3576, 64269}, {3601, 7966}, {5537, 11524}, {5587, 64274}, {5732, 5832}, {5844, 12629}, {5882, 30284}, {6261, 7548}, {6326, 11681}, {7704, 63986}, {7962, 11920}, {7971, 10394}, {7982, 45632}, {8227, 64273}, {10042, 63430}, {10050, 12705}, {11014, 48482}, {11529, 12687}, {12664, 50194}, {13375, 59335}, {19860, 52026}, {20612, 38669}, {22791, 64267}, {37611, 64275}, {59331, 64359}, {61146, 64261}, {63974, 64295}, {64147, 64324}
X(64281) = midpoint of X(i) and X(j) for these {i,j}: {1, 64288}
X(64281) = reflection of X(i) in X(j) for these {i,j}: {40, 64268}, {1490, 64285}, {63257, 64293}, {64276, 3}, {64287, 64283}, {64291, 64266}, {64298, 64286}
X(64281) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64286, 64298, 52026}
X(64282) lies on these lines: {1, 6831}, {30, 12909}, {56, 11041}, {495, 64274}, {496, 64273}, {515, 15911}, {942, 13607}, {952, 11281}, {999, 64269}, {1125, 64294}, {1385, 3244}, {1389, 3296}, {1482, 38454}, {1483, 31419}, {2099, 11048}, {2800, 15174}, {3295, 64268}, {3333, 64276}, {3616, 64270}, {3633, 5659}, {4999, 15178}, {5045, 64284}, {5542, 5882}, {5855, 24299}, {7686, 58626}, {9952, 12735}, {10246, 64275}, {18242, 37724}, {22753, 64298}, {25466, 37727}, {26286, 50824}, {28224, 33592}, {34471, 45081}, {36996, 64120}, {37615, 38122}, {37730, 63964}, {37837, 64297}, {38306, 56030}, {45776, 63972}, {46920, 61283}, {54176, 64279}, {61288, 64200}, {63974, 64295}, {63999, 64192}, {64147, 64324}
X(64282) = midpoint of X(i) and X(j) for these {i,j}: {1, 64283}
X(64282) = reflection of X(i) in X(j) for these {i,j}: {64284, 5045}, {64294, 1125}
X(64283) lies on circumconic {{A, B, C, X(33597), X(56030)}} and on these lines: {1, 6831}, {2, 64270}, {3, 145}, {4, 56030}, {7, 944}, {11, 64273}, {12, 64274}, {30, 12913}, {46, 7966}, {55, 64268}, {56, 64269}, {57, 64276}, {65, 4311}, {224, 3872}, {354, 64284}, {355, 31266}, {442, 952}, {515, 3649}, {517, 39772}, {519, 39783}, {946, 39782}, {950, 1537}, {1155, 39777}, {1159, 6934}, {1317, 2646}, {1385, 59491}, {1482, 10941}, {1532, 21740}, {2099, 45638}, {2800, 10543}, {3057, 41537}, {3149, 64298}, {3174, 12629}, {3241, 37428}, {3244, 14110}, {3270, 9957}, {3486, 63962}, {3612, 5559}, {3623, 6836}, {3632, 5659}, {3655, 59318}, {3957, 37374}, {4084, 30264}, {4297, 4757}, {5794, 61296}, {5855, 10902}, {5881, 28628}, {6261, 37724}, {6862, 10587}, {6917, 10805}, {7483, 10246}, {7982, 38454}, {9803, 51683}, {10247, 10806}, {10427, 17647}, {10595, 15935}, {10609, 32900}, {10698, 15172}, {10940, 11112}, {11570, 12675}, {11827, 62822}, {12616, 32905}, {12672, 14100}, {13375, 13750}, {14988, 57002}, {17528, 50818}, {17757, 37733}, {18446, 37739}, {20418, 24926}, {24927, 50843}, {28224, 37230}, {31789, 62830}, {33281, 37726}, {33597, 64163}, {34352, 37298}, {34773, 64044}, {35010, 64011}, {37356, 61283}, {37438, 61295}, {37740, 64279}, {39779, 63987}, {44222, 61293}, {51093, 59340}, {61288, 63391}, {63974, 64295}, {64147, 64324}, {64160, 64272}
X(64283) = midpoint of X(i) and X(j) for these {i,j}: {944, 1389}, {64281, 64287}
X(64283) = reflection of X(i) in X(j) for these {i,j}: {1, 64282}, {63257, 1}, {64265, 64293}, {64270, 64294}, {64275, 1385}
X(64283) = complement of X(64270)
X(64283) = anticomplement of X(64294)
X(64283) = X(i)-Dao conjugate of X(j) for these {i, j}: {64163, 8}, {64286, 1389}, {64294, 64294}
X(64283) = pole of line {13464, 64284} with respect to the Feuerbach hyperbola
X(64283) = barycentric product X(i)*X(j) for these (i, j): {59491, 64163}
X(64283) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64270, 64294}, {21740, 37730, 1532}, {64286, 64297, 33597}
X(64284) lies on these lines: {1, 1389}, {4, 18224}, {7, 5884}, {30, 12917}, {57, 64268}, {65, 41552}, {142, 3754}, {226, 64273}, {354, 64283}, {515, 10122}, {517, 11281}, {518, 64294}, {938, 18226}, {946, 64266}, {1210, 64274}, {1387, 13374}, {2800, 33593}, {3333, 64281}, {3873, 64270}, {4298, 15528}, {5045, 64282}, {5572, 7686}, {5761, 10198}, {5804, 48482}, {5836, 5844}, {5883, 11249}, {5902, 10532}, {5903, 11218}, {6001, 11544}, {6003, 13408}, {7681, 64271}, {10980, 64288}, {11012, 27003}, {15016, 64079}, {18221, 64287}, {20117, 31053}, {22753, 64285}, {31788, 38454}, {37625, 59417}, {45081, 64046}, {49168, 61030}, {63974, 64295}, {64147, 64324}
X(64284) = midpoint of X(i) and X(j) for these {i,j}: {65, 63257}, {1389, 13375}, {24474, 64275}
X(64284) = reflection of X(i) in X(j) for these {i,j}: {64282, 5045}
X(64284) = pole of line {11011, 64283} with respect to the Feuerbach hyperbola
X(64285) lies on these lines: {1, 5805}, {3, 64286}, {4, 64271}, {5, 64265}, {11, 64292}, {12, 64291}, {355, 2886}, {381, 64272}, {515, 11263}, {517, 64280}, {952, 6598}, {958, 5779}, {971, 17653}, {1389, 17097}, {1482, 11500}, {2800, 16139}, {3625, 12738}, {3652, 6001}, {4511, 40262}, {4915, 17857}, {5659, 21677}, {5720, 64294}, {5844, 6765}, {5886, 64266}, {6260, 10742}, {6265, 37837}, {7971, 26921}, {8158, 12635}, {9957, 33597}, {10950, 64127}, {11374, 63257}, {18446, 37739}, {18481, 41688}, {18518, 64318}, {22753, 64284}, {22765, 40249}, {24953, 33899}, {35250, 63962}, {37615, 64293}, {45770, 64275}, {52026, 64276}, {63323, 64296}, {63974, 64295}, {64147, 64324}
X(64285) = midpoint of X(i) and X(j) for these {i,j}: {1389, 64298}, {1490, 64281}, {6261, 64279}
X(64285) = reflection of X(i) in X(j) for these {i,j}: {3, 64286}, {4, 64271}, {64265, 5}, {64269, 37837}
X(64286) lies on these lines: {1, 1389}, {2, 64265}, {3, 64285}, {5, 64272}, {8, 64287}, {9, 1630}, {10, 37837}, {30, 12639}, {142, 1385}, {214, 31786}, {442, 515}, {498, 64291}, {499, 64292}, {997, 49183}, {1125, 64266}, {1145, 6737}, {1158, 51576}, {2092, 8607}, {2800, 35204}, {2829, 51569}, {3035, 55305}, {3428, 5730}, {3647, 6001}, {4297, 41540}, {5780, 51572}, {5818, 6853}, {5842, 35016}, {5844, 12640}, {5884, 59317}, {6260, 57288}, {6594, 31837}, {6600, 22770}, {6901, 41862}, {11012, 40249}, {11499, 40587}, {11500, 30147}, {12114, 15346}, {12520, 49171}, {13411, 63257}, {14110, 54192}, {15348, 61030}, {15556, 21740}, {15909, 56027}, {17056, 64296}, {19524, 52148}, {19860, 52026}, {33597, 64163}, {51409, 64004}, {51570, 64118}, {54430, 63986}, {59691, 64315}, {63974, 64295}, {64147, 64324}
X(64286) = midpoint of X(i) and X(j) for these {i,j}: {1, 64280}, {3, 64285}, {8, 64287}, {1389, 64276}, {6261, 64268}, {64269, 64279}, {64281, 64298}
X(64286) = reflection of X(i) in X(j) for these {i,j}: {64266, 1125}, {64272, 5}
X(64286) = complement of X(64265)
X(64286) = X(i)-complementary conjugate of X(j) for these {i, j}: {11012, 10}
X(64286) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {33597, 64283, 64297}, {52026, 64281, 64298}
X(64287) lies on these lines: {1, 6831}, {8, 64286}, {100, 11012}, {145, 37625}, {515, 34195}, {519, 64280}, {952, 6598}, {2136, 5709}, {3243, 5735}, {3872, 64279}, {3957, 32905}, {5441, 6001}, {5603, 64272}, {5705, 64294}, {5715, 37739}, {5734, 48482}, {6261, 54154}, {6284, 7971}, {6734, 64270}, {7966, 12687}, {10902, 64268}, {11680, 40257}, {13607, 63260}, {18221, 64284}, {18525, 64271}, {22791, 64261}, {37291, 54445}, {41575, 64298}, {45036, 64275}, {63333, 64296}, {63974, 64295}, {64147, 64324}
X(64287) = reflection of X(i) in X(j) for these {i,j}: {8, 64286}, {18525, 64271}, {64265, 1}, {64281, 64283}
X(64288) lies on these lines: {1, 6831}, {30, 13101}, {84, 12767}, {165, 64268}, {200, 64270}, {515, 16143}, {1158, 6763}, {1389, 3062}, {1490, 64279}, {2951, 11826}, {3633, 7993}, {5844, 6769}, {7982, 64264}, {7987, 64269}, {7988, 64273}, {7989, 64274}, {7990, 64173}, {8580, 64294}, {9623, 64298}, {9851, 10970}, {10980, 64284}, {11009, 12664}, {11010, 12114}, {11224, 45648}, {61763, 64320}, {63974, 64295}, {63984, 64201}, {64147, 64324}
X(64288) = reflection of X(i) in X(j) for these {i,j}: {1, 64281}, {1490, 64279}, {64276, 64268}
X(64289) lies on these lines: {1, 5180}, {9, 46}, {10, 31888}, {21, 25055}, {30, 7982}, {63, 13089}, {224, 34600}, {758, 3632}, {1420, 3649}, {1699, 7701}, {1768, 37356}, {1836, 6763}, {2475, 3679}, {2771, 5691}, {3336, 4193}, {3337, 5057}, {3339, 41551}, {3576, 33668}, {3624, 3648}, {3652, 46028}, {3746, 28534}, {3811, 13146}, {3894, 41869}, {3901, 12625}, {4654, 37292}, {5141, 61703}, {5219, 45065}, {5231, 52126}, {5441, 64263}, {5499, 9588}, {5557, 49736}, {5587, 13465}, {5735, 37433}, {6675, 63278}, {6841, 41691}, {8227, 22936}, {9579, 36922}, {9624, 28453}, {10032, 31254}, {10389, 13995}, {11246, 17527}, {11522, 13743}, {11544, 26725}, {11552, 64002}, {11604, 18514}, {12519, 14799}, {15677, 51105}, {16116, 16143}, {17365, 63376}, {17718, 63290}, {19872, 58449}, {25415, 33961}, {28558, 64072}, {35016, 63280}, {35989, 63288}, {41550, 59316}, {45632, 49177}, {49163, 49178}, {52860, 54145}, {54447, 61622}, {63974, 64295}, {64147, 64324}
X(64289) = midpoint of X(i) and X(j) for these {i,j}: {14450, 20084}
X(64289) = reflection of X(i) in X(j) for these {i,j}: {1, 14450}, {191, 79}, {3648, 11263}, {7701, 16159}, {12845, 49193}, {16143, 16116}, {31888, 10}, {41691, 6841}, {63280, 35016}, {64005, 16143}
X(64289) = pole of line {1019, 5957} with respect to the Bevan circle
X(64289) = pole of line {3946, 26842} with respect to the dual conic of Yff parabola
X(64289) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7110), X(10266)}}, {{A, B, C, X(8818), X(43732)}}
X(64289) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {79, 17768, 191}, {7701, 16159, 1699}, {10266, 14450, 17483}, {33100, 63366, 1}
X(64290) lies on the Feuerbach hyperbola and on these lines: {1, 6952}, {4, 17638}, {7, 17654}, {8, 6902}, {9, 64278}, {11, 1389}, {21, 952}, {30, 6595}, {65, 61105}, {79, 2800}, {84, 12248}, {100, 64275}, {104, 5172}, {515, 3065}, {517, 11604}, {519, 6596}, {523, 46041}, {758, 6599}, {943, 45081}, {944, 14795}, {1320, 1484}, {1537, 55924}, {2320, 7967}, {2475, 34353}, {2771, 10266}, {2801, 3255}, {2802, 6598}, {2829, 10308}, {3467, 9897}, {6224, 32613}, {6246, 17501}, {6597, 23016}, {6949, 64279}, {8674, 43728}, {8702, 14224}, {10057, 13375}, {10573, 21398}, {10698, 17097}, {11218, 25485}, {11219, 56036}, {12245, 43740}, {12531, 45393}, {12647, 15175}, {12736, 34485}, {12737, 56105}, {12764, 23959}, {13143, 41684}, {14497, 18391}, {15862, 49176}, {15863, 34918}, {16615, 59391}, {17636, 24298}, {18861, 64268}, {20418, 37518}, {30513, 59388}, {32635, 64140}, {55929, 64145}, {63335, 63365}, {63974, 64295}, {64147, 64324}
X(64290) = reflection of X(i) in X(j) for these {i,j}: {100, 64275}, {1389, 11}, {10698, 63257}
X(64290) = isogonal conjugate of X(22765)
X(64290) = X(i)-vertex conjugate of X(j) for these {i, j}: {4, 34442}
X(64290) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(28), X(6902)}}, {{A, B, C, X(29), X(6952)}}, {{A, B, C, X(54), X(34434)}}, {{A, B, C, X(65), X(37621)}}, {{A, B, C, X(74), X(517)}}, {{A, B, C, X(513), X(28219)}}, {{A, B, C, X(519), X(41558)}}, {{A, B, C, X(523), X(952)}}, {{A, B, C, X(528), X(28473)}}, {{A, B, C, X(900), X(5844)}}, {{A, B, C, X(959), X(13472)}}, {{A, B, C, X(996), X(60112)}}, {{A, B, C, X(1016), X(54739)}}, {{A, B, C, X(1173), X(46187)}}, {{A, B, C, X(1220), X(60173)}}, {{A, B, C, X(1411), X(62354)}}, {{A, B, C, X(2161), X(14987)}}, {{A, B, C, X(2771), X(8702)}}, {{A, B, C, X(2783), X(29298)}}, {{A, B, C, X(2800), X(35057)}}, {{A, B, C, X(2802), X(6003)}}, {{A, B, C, X(2829), X(56092)}}, {{A, B, C, X(2994), X(43757)}}, {{A, B, C, X(3431), X(41446)}}, {{A, B, C, X(3459), X(55036)}}, {{A, B, C, X(5397), X(42285)}}, {{A, B, C, X(5697), X(14804)}}, {{A, B, C, X(5903), X(14795)}}, {{A, B, C, X(6882), X(37168)}}, {{A, B, C, X(7612), X(9093)}}, {{A, B, C, X(9803), X(36921)}}, {{A, B, C, X(10265), X(40437)}}, {{A, B, C, X(12245), X(56876)}}, {{A, B, C, X(12247), X(51565)}}, {{A, B, C, X(12531), X(14266)}}, {{A, B, C, X(13576), X(53873)}}, {{A, B, C, X(15337), X(43078)}}, {{A, B, C, X(15381), X(38882)}}, {{A, B, C, X(19914), X(36944)}}, {{A, B, C, X(26707), X(47645)}}, {{A, B, C, X(46872), X(60158)}}, {{A, B, C, X(60157), X(63169)}}
X(64291) lies on these lines: {1, 6831}, {4, 5559}, {5, 11014}, {8, 6894}, {10, 5659}, {12, 64285}, {30, 34352}, {35, 64269}, {36, 64268}, {40, 64275}, {65, 64155}, {79, 2800}, {80, 946}, {153, 31871}, {355, 546}, {388, 15071}, {498, 64286}, {515, 3746}, {517, 37230}, {519, 52269}, {952, 16160}, {962, 15862}, {1478, 13375}, {1479, 64272}, {1482, 45630}, {1697, 5252}, {1709, 9613}, {1768, 18990}, {1837, 11522}, {2006, 33177}, {3419, 11531}, {3583, 45776}, {3584, 37837}, {3585, 10057}, {3586, 10059}, {3679, 64294}, {3881, 9803}, {3884, 6840}, {3899, 5812}, {4301, 5086}, {4317, 14647}, {4325, 64118}, {4915, 37714}, {5119, 64276}, {5176, 19925}, {5270, 6001}, {5288, 51755}, {5434, 33899}, {5537, 17647}, {5563, 11219}, {5587, 52050}, {5603, 37702}, {5690, 24468}, {5715, 25415}, {5787, 63287}, {5794, 7991}, {5805, 41687}, {5842, 37563}, {5855, 6598}, {5902, 10532}, {5903, 26332}, {6003, 15971}, {6261, 37719}, {6830, 37735}, {6833, 21842}, {6888, 51111}, {6906, 14795}, {7686, 41684}, {7741, 64274}, {7951, 63986}, {8727, 10944}, {9578, 63988}, {9856, 41698}, {10039, 44425}, {10058, 45287}, {10222, 49176}, {10265, 45977}, {10597, 50190}, {10738, 12751}, {10827, 63992}, {10894, 18393}, {10895, 64271}, {11010, 37468}, {11045, 30274}, {12247, 31870}, {12541, 59387}, {12625, 32049}, {13865, 61253}, {15064, 56880}, {15888, 33857}, {16173, 63963}, {17699, 49170}, {18395, 22753}, {18406, 64056}, {18525, 37622}, {20060, 31803}, {21740, 37731}, {24987, 35979}, {31397, 64298}, {37701, 40257}, {53616, 64192}, {63339, 64296}, {63974, 64295}, {64147, 64324}
X(64291) = reflection of X(i) in X(j) for these {i,j}: {1, 63257}, {40, 64275}, {1389, 946}, {59320, 24987}, {64279, 64273}, {64281, 64266}
X(64291) = pole of line {5691, 28217} with respect to the Fuhrmann circle
X(64291) = pole of line {64157, 64292} with respect to the Feuerbach hyperbola
X(64291) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 63257, 11218}, {1, 64265, 64292}, {355, 22791, 54154}, {3585, 12672, 34789}, {5563, 12616, 11219}
X(64292) lies on these lines: {1, 6831}, {4, 18224}, {11, 64285}, {80, 10395}, {499, 64286}, {528, 6598}, {971, 17637}, {1478, 64272}, {1737, 64280}, {1837, 15299}, {2800, 16155}, {3419, 16208}, {3679, 64275}, {3893, 19914}, {5434, 5787}, {5659, 6734}, {5768, 11046}, {5790, 10267}, {6001, 16153}, {10039, 64173}, {10052, 15071}, {10573, 12116}, {10896, 64271}, {10902, 47033}, {11012, 11219}, {15104, 49168}, {18446, 64273}, {24299, 28204}, {37702, 48482}, {59342, 64276}, {63340, 64296}, {63974, 64295}, {64147, 64324}
X(64292) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 64265, 64291}
X(64293) lies on these lines: {1, 6831}, {7, 12114}, {56, 11023}, {142, 1385}, {404, 11024}, {515, 11281}, {1389, 10785}, {2829, 33593}, {3427, 56030}, {3616, 64298}, {4999, 5836}, {5572, 13464}, {5901, 64272}, {6001, 10122}, {6261, 42356}, {6839, 51683}, {6972, 64081}, {12736, 20418}, {14110, 59491}, {15528, 58588}, {18242, 31266}, {22770, 38454}, {37615, 64285}, {63974, 64295}, {64147, 64324}
X(64293) = midpoint of X(i) and X(j) for these {i,j}: {63257, 64281}, {64265, 64283}
X(64294) lies on these lines: {2, 64270}, {3, 18231}, {5, 8}, {9, 355}, {10, 37837}, {30, 18259}, {405, 59388}, {515, 18253}, {517, 15911}, {518, 64284}, {936, 64281}, {952, 6675}, {958, 64269}, {960, 58636}, {1125, 64282}, {1158, 5794}, {1329, 64274}, {1376, 64268}, {1385, 64297}, {1837, 31393}, {2346, 43734}, {2886, 64273}, {3036, 38758}, {3149, 3617}, {3577, 61261}, {3626, 7686}, {3632, 11218}, {3679, 64291}, {4678, 6835}, {5428, 28224}, {5559, 10826}, {5690, 20420}, {5705, 64287}, {5720, 64285}, {5837, 64272}, {5901, 41575}, {6861, 12645}, {6907, 45039}, {8580, 64288}, {9623, 45770}, {9956, 11545}, {10395, 31397}, {11362, 38454}, {12019, 15558}, {15587, 31788}, {15862, 21616}, {18254, 58631}, {19860, 38042}, {37724, 63287}, {38149, 44229}, {57284, 64193}, {63974, 64295}, {64147, 64324}, {64318, 64335}
X(64294) = midpoint of X(i) and X(j) for these {i,j}: {8, 63257}, {355, 64275}, {64270, 64283}
X(64294) = reflection of X(i) in X(j) for these {i,j}: {64282, 1125}
X(64294) = complement of X(64283)
X(64294) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64270, 64283}, {8, 63257, 5844}, {5730, 5818, 5}, {5780, 5790, 5818}
X(64295) lies on these lines: {35, 595}, {44, 3219}, {83, 17495}, {1404, 2003}, {2985, 45222}, {3285, 40153}, {14829, 29833}, {16704, 16705}, {17366, 24624}, {32779, 62620}, {40215, 60809}
X(64295) = trilinear pole of line {1960, 2605}
X(64295) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 17369}, {6, 4692}, {9, 5434}
X(64295) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 17369}, {9, 4692}, {478, 5434}
X(64295) = X(i)-cross conjugate of X(j) for these {i, j}: {5109, 1}
X(64295) = X(i)-cross conjugate of X(j) for these {i, j}: {5109, 1}
X(64295) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5315)}}, {{A, B, C, X(2), X(56)}}, {{A, B, C, X(6), X(44)}}, {{A, B, C, X(27), X(14829)}}, {{A, B, C, X(31), X(3108)}}, {{A, B, C, X(35), X(57)}}, {{A, B, C, X(55), X(39955)}}, {{A, B, C, X(58), X(88)}}, {{A, B, C, X(81), X(83)}}, {{A, B, C, X(106), X(40434)}}, {{A, B, C, X(111), X(40746)}}, {{A, B, C, X(222), X(30680)}}, {{A, B, C, X(251), X(893)}}, {{A, B, C, X(264), X(45746)}}, {{A, B, C, X(292), X(39389)}}, {{A, B, C, X(386), X(29833)}}, {{A, B, C, X(513), X(60258)}}, {{A, B, C, X(603), X(14919)}}, {{A, B, C, X(967), X(26745)}}, {{A, B, C, X(1014), X(57881)}}, {{A, B, C, X(1029), X(46331)}}, {{A, B, C, X(1219), X(16466)}}, {{A, B, C, X(1245), X(39724)}}, {{A, B, C, X(1255), X(1412)}}, {{A, B, C, X(1407), X(25417)}}, {{A, B, C, X(1432), X(18359)}}, {{A, B, C, X(1797), X(57658)}}, {{A, B, C, X(2163), X(39963)}}, {{A, B, C, X(2999), X(56354)}}, {{A, B, C, X(3112), X(7303)}}, {{A, B, C, X(3218), X(3449)}}, {{A, B, C, X(3478), X(56075)}}, {{A, B, C, X(3752), X(33168)}}, {{A, B, C, X(4850), X(32779)}}, {{A, B, C, X(5109), X(17369)}}, {{A, B, C, X(5256), X(17016)}}, {{A, B, C, X(5337), X(62739)}}, {{A, B, C, X(7304), X(38830)}}, {{A, B, C, X(7316), X(14621)}}, {{A, B, C, X(8700), X(60665)}}, {{A, B, C, X(10623), X(42467)}}, {{A, B, C, X(17191), X(40215)}}, {{A, B, C, X(17495), X(61406)}}, {{A, B, C, X(17946), X(60097)}}, {{A, B, C, X(17961), X(45785)}}, {{A, B, C, X(20332), X(55942)}}, {{A, B, C, X(21739), X(57666)}}, {{A, B, C, X(24471), X(52442)}}, {{A, B, C, X(28513), X(39962)}}, {{A, B, C, X(30651), X(39951)}}, {{A, B, C, X(34434), X(59265)}}, {{A, B, C, X(37128), X(39706)}}, {{A, B, C, X(39747), X(57749)}}, {{A, B, C, X(39961), X(57656)}}, {{A, B, C, X(41436), X(56039)}}, {{A, B, C, X(53083), X(57721)}}, {{A, B, C, X(60191), X(63750)}}
X(64296) lies on these lines: {1, 4}, {81, 64265}, {6001, 63366}, {10265, 55101}, {17056, 64286}, {63257, 63446}, {63292, 64266}, {63317, 64271}, {63318, 64272}, {63319, 64280}, {63323, 64285}, {63333, 64287}, {63339, 64291}, {63340, 64292}, {63974, 64295}, {64147, 64324}
X(64297) lies on these lines: {1, 64298}, {8, 5659}, {515, 10543}, {516, 41571}, {944, 56027}, {971, 41546}, {1385, 64294}, {1697, 7971}, {2346, 3062}, {3870, 41338}, {5531, 58699}, {6003, 42758}, {10578, 11218}, {11531, 62822}, {15931, 60970}, {18389, 37550}, {33597, 64163}, {37525, 64321}, {37837, 64282}, {38454, 41570}, {41575, 51717}, {44425, 58626}, {47387, 61030}, {63974, 64295}, {64147, 64324}
X(64297) = midpoint of X(i) and X(j) for these {i,j}: {18446, 64173}
X(64297) = X(i)-Dao conjugate of X(j) for these {i, j}: {64286, 15909}
X(64297) = barycentric product X(i)*X(j) for these (i, j): {60970, 64163}
X(64297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {33597, 64283, 64286}
X(64298) lies on these lines: {1, 64297}, {3, 18231}, {4, 390}, {8, 411}, {20, 12330}, {21, 515}, {40, 9960}, {56, 64321}, {78, 64316}, {1389, 17097}, {1490, 3869}, {1621, 64261}, {2476, 64148}, {3149, 64283}, {3577, 56030}, {3616, 64293}, {3870, 3885}, {3871, 59355}, {3913, 38454}, {5842, 52841}, {5844, 6985}, {6001, 33557}, {6223, 63975}, {6796, 64268}, {6825, 18518}, {6828, 64266}, {6866, 16202}, {6909, 45392}, {6915, 37837}, {7098, 12680}, {7548, 18242}, {9623, 64288}, {9819, 63988}, {12514, 63981}, {12671, 56288}, {19860, 52026}, {22753, 64282}, {26332, 62800}, {31397, 64291}, {41575, 64287}, {44425, 64163}, {48482, 64273}, {63974, 64295}, {64144, 64275}, {64147, 64324}, {64201, 64319}
X(64298) = midpoint of X(i) and X(j) for these {i,j}: {1490, 64276}
X(64298) = reflection of X(i) in X(j) for these {i,j}: {1389, 64285}, {48482, 64273}, {64261, 64272}, {64268, 6796}, {64280, 11500}, {64281, 64286}
X(64298) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {52026, 64281, 64286}, {63257, 64173, 2346}
X(64299) lies on circumconic {{A, B, C, X(41895), X(55937)}} and on these lines: {1, 24692}, {2, 165}, {8, 17132}, {10, 41895}, {40, 17677}, {148, 1654}, {517, 60929}, {519, 11160}, {524, 49495}, {528, 17274}, {536, 50783}, {551, 17304}, {597, 64016}, {599, 3886}, {726, 4677}, {740, 50950}, {752, 16834}, {1992, 3755}, {2177, 31177}, {2550, 50093}, {3241, 3663}, {3416, 50089}, {3751, 28558}, {3821, 25055}, {3875, 28538}, {3877, 9519}, {3923, 19875}, {4201, 9589}, {4312, 50128}, {4346, 49771}, {4384, 24715}, {4450, 50102}, {4645, 29573}, {4655, 49451}, {4669, 28526}, {4933, 31134}, {5250, 17679}, {5853, 50999}, {5880, 49740}, {6173, 49746}, {9041, 17276}, {9580, 33068}, {10444, 17579}, {11159, 28897}, {11354, 28202}, {11359, 28198}, {11679, 33094}, {13587, 63968}, {15533, 28581}, {15534, 28570}, {16475, 28494}, {16831, 50299}, {17294, 28580}, {17351, 38087}, {17549, 24309}, {17601, 27759}, {17738, 50126}, {17766, 51093}, {17768, 47359}, {17770, 50952}, {18252, 31165}, {19860, 50165}, {21358, 49484}, {21937, 48900}, {24280, 50118}, {24710, 54309}, {24723, 49720}, {24728, 34628}, {24807, 28877}, {26227, 53372}, {28194, 48813}, {28503, 50789}, {28530, 50949}, {28534, 48829}, {28546, 50953}, {28550, 51066}, {28566, 51000}, {29574, 64168}, {29597, 50301}, {29617, 62392}, {30567, 33095}, {30568, 32948}, {31143, 63131}, {32850, 49748}, {33869, 50310}, {34747, 49455}, {35227, 48629}, {35955, 64301}, {38314, 63969}, {48830, 50307}, {48849, 50119}, {49543, 51001}, {49741, 50130}, {49747, 50790}, {50075, 51102}, {50081, 50785}, {50087, 50782}, {50091, 50303}, {50109, 51192}, {50316, 50787}, {50533, 62695}, {51055, 60963}, {51678, 64005}, {63127, 64017}, {63974, 64295}, {64147, 64324}
X(64299) = reflection of X(i) in X(j) for these {i,j}: {2, 49630}, {1992, 3755}, {3241, 3663}, {3679, 4660}, {3729, 3679}, {3886, 599}, {16834, 50080}, {24280, 50118}, {31165, 18252}, {34628, 24728}, {34747, 49455}, {50089, 3416}, {50127, 48829}, {50130, 49741}, {50303, 50091}, {51001, 49543}, {51192, 50109}, {64016, 597}
X(64299) = pole of line {28565, 54261} with respect to the incircle
X(64299) = pole of line {4120, 47757} with respect to the Steiner circumellipse
X(64299) = pole of line {5222, 50128} with respect to the dual conic of Yff parabola
X(64299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 49630, 2}, {752, 50080, 16834}, {2796, 3679, 3729}, {2796, 4660, 3679}, {24280, 53620, 50118}, {28534, 48829, 50127}
X(64300) lies on circumconic {{A, B, C, X(27475), X(63689)}} and on these lines: {1, 7585}, {2, 210}, {8, 176}, {10, 30341}, {145, 45714}, {519, 52809}, {1267, 49450}, {1386, 63015}, {1991, 9053}, {3068, 3242}, {3069, 64070}, {3100, 46421}, {3241, 13639}, {3616, 3640}, {3621, 45720}, {3622, 45713}, {3623, 45719}, {3751, 7586}, {4663, 63016}, {5223, 30412}, {5391, 49499}, {5591, 49524}, {5604, 8975}, {5605, 19066}, {5846, 5861}, {6351, 49515}, {6352, 49478}, {7374, 39898}, {7968, 61323}, {8972, 16496}, {16475, 63059}, {19054, 38315}, {24349, 32794}, {30333, 31547}, {36553, 49706}, {49465, 63023}, {63974, 64295}, {64147, 64324}
X(64301) lies on these lines: {1, 1434}, {2, 64303}, {3, 9305}, {4, 64302}, {20, 44431}, {40, 7709}, {56, 64306}, {99, 3886}, {165, 16833}, {376, 516}, {515, 48802}, {519, 9741}, {726, 32474}, {993, 4221}, {1125, 54668}, {1285, 64017}, {1499, 30580}, {1742, 22676}, {2784, 50811}, {2938, 3875}, {3522, 64308}, {3524, 49631}, {3534, 28897}, {3941, 11495}, {4297, 15428}, {4512, 35935}, {5250, 35915}, {5263, 40840}, {5731, 28849}, {7415, 50302}, {7987, 48900}, {8703, 28915}, {8716, 28581}, {8719, 37620}, {9778, 11200}, {12512, 35658}, {13624, 48944}, {28160, 53018}, {28881, 51705}, {31859, 49495}, {35955, 64299}, {39586, 49130}, {63402, 64084}, {63974, 64295}, {64147, 64324}
X(64301) = midpoint of X(i) and X(j) for these {i,j}: {1, 64304}, {20, 44431}, {9778, 11200}
X(64301) = reflection of X(i) in X(j) for these {i,j}: {4, 64302}, {9746, 3}, {54668, 1125}
X(64301) = inverse of X(3886) in Wallace hyperbola
X(64301) = anticomplement of X(64303)
X(64301) = X(i)-Dao conjugate of X(j) for these {i, j}: {64303, 64303}
X(64301) = pole of line {693, 24622} with respect to the orthoptic circle of the Steiner Inellipse
X(64302) lies on these lines: {1, 9742}, {2, 165}, {4, 64301}, {5, 64303}, {10, 262}, {11, 64306}, {226, 64307}, {511, 50158}, {517, 48853}, {519, 9770}, {547, 28915}, {549, 28897}, {551, 2784}, {726, 9764}, {740, 24386}, {946, 39580}, {1007, 3886}, {1125, 7710}, {1447, 30424}, {1513, 25354}, {2796, 9877}, {3424, 56226}, {3634, 35663}, {3663, 5988}, {3667, 25381}, {3755, 3815}, {3816, 50290}, {3821, 9743}, {3923, 40926}, {4297, 7379}, {4356, 24239}, {5542, 7179}, {5587, 10186}, {5731, 53018}, {5886, 28849}, {6998, 48925}, {7407, 19925}, {7410, 41869}, {7735, 64017}, {8227, 64305}, {9748, 63978}, {9751, 19862}, {9755, 33682}, {9756, 50302}, {9765, 17766}, {9774, 19883}, {10165, 28845}, {10175, 28850}, {13468, 28570}, {13634, 59420}, {22664, 49482}, {28236, 48854}, {28901, 38028}, {28913, 61270}, {30827, 50295}, {37637, 64016}, {38155, 50291}, {40131, 60911}, {44377, 49484}, {48944, 61268}, {49495, 62988}, {63974, 64295}, {64147, 64324}
X(64302) = midpoint of X(i) and X(j) for these {i,j}: {4, 64301}, {5587, 10186}, {5731, 53018}, {9746, 44431}
X(64302) = reflection of X(i) in X(j) for these {i,j}: {49631, 2}, {64303, 5}
X(64302) = complement of X(9746)
X(64302) = pole of line {4785, 4913} with respect to the excircles-radical circle
X(64302) = pole of line {239, 514} with respect to the orthoptic circle of the Steiner Inellipse
X(64302) = pole of line {5222, 7735} with respect to the dual conic of Yff parabola
X(64302) = intersection, other than A, B, C, of circumconics {{A, B, C, X(262), X(55937)}}, {{A, B, C, X(18025), X(49631)}}
X(64302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 44431, 9746}, {2, 516, 49631}, {7380, 39605, 10}, {7407, 39586, 19925}, {9746, 44431, 516}
X(64303) lies on these lines: {2, 64301}, {4, 9746}, {5, 64302}, {10, 17747}, {12, 64306}, {30, 49631}, {115, 3755}, {381, 516}, {515, 48822}, {519, 40727}, {946, 7697}, {1210, 64307}, {1698, 64304}, {2784, 11632}, {3091, 44431}, {3817, 28850}, {3822, 30444}, {3832, 64308}, {3845, 28897}, {4078, 21090}, {4429, 40840}, {5066, 28915}, {5587, 28849}, {6684, 36675}, {7988, 10186}, {10164, 36728}, {12571, 35664}, {15484, 64017}, {19925, 48900}, {22682, 45305}, {28845, 36722}, {28854, 38076}, {28870, 38155}, {28913, 61260}, {31673, 48932}, {36677, 39605}, {36687, 44430}, {37350, 49630}, {48944, 61261}, {53014, 54448}, {59261, 60634}, {63974, 64295}, {64147, 64324}
X(64303) = midpoint of X(i) and X(j) for these {i,j}: {4, 9746}, {10, 54668}
X(64303) = reflection of X(i) in X(j) for these {i,j}: {64302, 5}
X(64303) = inverse of X(3755) in Kiepert hyperbola
X(64303) = complement of X(64301)
X(64303) = pole of line {6590, 11068} with respect to the orthoptic circle of the Steiner Inellipse
X(64303) = pole of line {30792, 61673} with respect to the dual conic of Wallace hyperbola
X(64304) lies on the Wallace hyperbola and on these lines: {1, 1434}, {2, 165}, {3, 64305}, {20, 61151}, {40, 16552}, {57, 64306}, {63, 2941}, {194, 7991}, {376, 28881}, {519, 11148}, {1499, 62634}, {1621, 41930}, {1698, 64303}, {1764, 10860}, {2784, 8591}, {2938, 25590}, {2951, 58035}, {4061, 17784}, {4356, 21454}, {5493, 8915}, {7987, 48925}, {10167, 10439}, {10434, 37078}, {11200, 28228}, {12565, 52676}, {16192, 48900}, {17147, 62823}, {20368, 46946}, {28850, 63468}, {35242, 48944}, {40840, 50314}, {63974, 64295}, {64147, 64324}
X(64304) = reflection of X(i) in X(j) for these {i,j}: {1, 64301}, {64305, 3}
X(64304) = anticomplement of X(54668)
X(64304) = X(i)-Dao conjugate of X(j) for these {i, j}: {42290, 62784}, {54668, 54668}
X(64304) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3886, 1}
X(64304) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {5223, 1330}, {29616, 21287}, {42316, 2895}, {59215, 2893}
X(64304) = pole of line {28840, 48037} with respect to the Conway circle
X(64304) = pole of line {28840, 54261} with respect to the incircle
X(64304) = pole of line {514, 30765} with respect to the orthoptic circle of the Steiner Inellipse
X(64304) = pole of line {3886, 64304} with respect to the Wallace hyperbola
X(64305) lies on these lines: {1, 4059}, {2, 28881}, {3, 64304}, {4, 1886}, {40, 6998}, {376, 516}, {515, 53014}, {885, 3577}, {946, 16020}, {962, 64308}, {1565, 4312}, {1699, 33132}, {2784, 12243}, {2795, 51121}, {3333, 64307}, {3424, 60634}, {3656, 28915}, {4295, 41403}, {4301, 35667}, {4307, 63993}, {5480, 38386}, {5587, 28849}, {5805, 52826}, {7290, 17761}, {7982, 12251}, {7988, 28913}, {8227, 64302}, {11372, 58036}, {14651, 54657}, {16200, 28850}, {19288, 31435}, {26446, 28905}, {28854, 38021}, {28858, 54447}, {28877, 53018}, {28897, 50865}, {35242, 48932}, {50898, 60963}, {54933, 56144}, {63974, 64295}, {63982, 63992}, {64110, 64168}, {64147, 64324}
X(64305) = midpoint of X(i) and X(j) for these {i,j}: {962, 64308}
X(64305) = reflection of X(i) in X(j) for these {i,j}: {4, 54668}, {40, 9746}, {9746, 48900}, {44431, 946}, {64304, 3}
X(64305) = pole of line {661, 3676} with respect to the orthoptic circle of the Steiner Inellipse
X(64306) lies on these lines: {1, 4059}, {11, 64302}, {12, 64303}, {37, 13576}, {55, 9746}, {56, 64301}, {57, 64304}, {210, 740}, {226, 4356}, {354, 516}, {390, 3598}, {497, 3666}, {1699, 17592}, {3021, 30331}, {3475, 50068}, {3696, 59207}, {3925, 50290}, {3930, 49462}, {3931, 20616}, {4037, 49468}, {4307, 4883}, {4387, 7308}, {4423, 50314}, {4863, 50295}, {4995, 49631}, {5919, 28850}, {12575, 35671}, {15170, 28915}, {15569, 30949}, {30946, 49470}, {37080, 48900}, {41539, 56326}, {63974, 64295}, {64147, 64324}
X(64306) = X(i)-isoconjugate-of-X(j) for these {i, j}: {39959, 51443}
X(64306) = pole of line {4702, 4724} with respect to the incircle
X(64306) = pole of line {1469, 5542} with respect to the Feuerbach hyperbola
X(64306) = pole of line {4693, 4762} with respect to the Suppa-Cucoanes circle
X(64306) = intersection, other than A, B, C, of circumconics {{A, B, C, X(390), X(42289)}}, {{A, B, C, X(3424), X(37658)}}, {{A, B, C, X(3598), X(59207)}}, {{A, B, C, X(3696), X(3755)}}, {{A, B, C, X(28809), X(43951)}}
X(64306) = barycentric product X(i)*X(j) for these (i, j): {3696, 5222}, {3755, 4384}, {4044, 7290}, {30854, 42289}, {59207, 62697}
X(64306) = barycentric quotient X(i)/X(j) for these (i, j): {3696, 39749}, {3755, 27475}, {7290, 42302}, {42289, 21446}, {59207, 39959}
X(64307) lies on these lines: {1, 1434}, {7, 43751}, {57, 9746}, {63, 4697}, {226, 64302}, {354, 516}, {740, 3873}, {982, 4307}, {1210, 64303}, {1621, 40592}, {2784, 5434}, {3333, 64305}, {3338, 48900}, {3666, 4349}, {4312, 62697}, {4356, 4883}, {4512, 10180}, {4645, 24631}, {4974, 24596}, {5018, 33765}, {5902, 28850}, {9776, 50295}, {9778, 17592}, {11019, 54668}, {17784, 50284}, {24628, 52133}, {27475, 52155}, {32636, 48932}, {37080, 48925}, {49563, 50307}, {50281, 62815}, {50314, 62823}, {63974, 64295}, {64147, 64324}
X(64307) = pole of line {4724, 4817} with respect to the incircle
X(64308) lies on these lines: {2, 165}, {10, 60327}, {20, 20880}, {40, 39570}, {105, 11495}, {144, 4073}, {145, 33890}, {321, 3198}, {376, 28915}, {390, 3598}, {962, 64305}, {982, 4307}, {1447, 30332}, {1503, 3578}, {2292, 20070}, {2784, 31145}, {3522, 64301}, {3543, 28897}, {3617, 17741}, {3667, 53583}, {3749, 64168}, {3755, 63005}, {3832, 64303}, {4297, 39567}, {4373, 24728}, {5749, 43951}, {6361, 7390}, {7710, 51583}, {11200, 28885}, {12512, 16020}, {18788, 29621}, {20097, 43161}, {20344, 35514}, {21129, 28296}, {28158, 48851}, {28164, 48849}, {28228, 48856}, {28292, 53045}, {28866, 54448}, {28881, 34632}, {37665, 64016}, {39581, 64005}, {46934, 48932}, {56776, 64077}, {56777, 64074}, {63974, 64295}, {64147, 64324}
X(64308) = reflection of X(i) in X(j) for these {i,j}: {962, 64305}, {44431, 9746}
X(64308) = anticomplement of X(44431)
X(64308) = X(i)-Dao conjugate of X(j) for these {i, j}: {7290, 1}, {44431, 44431}
X(64308) = X(i)-Ceva conjugate of X(j) for these {i, j}: {75, 5222}
X(64308) = pole of line {514, 4521} with respect to the orthoptic circle of the Steiner Inellipse
X(64308) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3424), X(3598)}}, {{A, B, C, X(5222), X(43951)}}, {{A, B, C, X(55937), X(60327)}}
X(64308) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 9746, 44431}, {9746, 44431, 2}
X(64309) lies on these lines: {1, 371}, {3, 51955}, {8, 31562}, {9, 374}, {10, 36690}, {40, 30556}, {102, 6136}, {175, 31540}, {221, 1124}, {515, 64336}, {934, 52419}, {946, 14121}, {962, 31561}, {1699, 44038}, {1743, 35774}, {1766, 31438}, {2093, 6203}, {3428, 60848}, {4252, 7968}, {4301, 31594}, {6213, 7991}, {7090, 11362}, {7955, 34494}, {7982, 30557}, {8957, 12053}, {12702, 51957}, {16469, 45500}, {28234, 64314}, {30324, 31397}, {30412, 59417}, {31547, 31552}, {63974, 64295}, {64147, 64324}
X(64309) = intersection, other than A, B, C, of circumconics {{A, B, C, X(102), X(2067)}}, {{A, B, C, X(3577), X(16232)}}, {{A, B, C, X(14121), X(32556)}}, {{A, B, C, X(48308), X(60849)}}
X(64309) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 6212, 32556}, {40, 30556, 32555}
X(64310) lies on these lines: {3, 5837}, {57, 64147}, {142, 515}, {519, 8730}, {942, 4315}, {944, 1467}, {1319, 64327}, {1490, 5084}, {1656, 5787}, {2095, 36867}, {2800, 63413}, {3244, 12439}, {3306, 54051}, {3427, 3576}, {3577, 50701}, {3601, 64322}, {3911, 5768}, {4297, 9942}, {5709, 12437}, {5732, 56273}, {5744, 64313}, {5745, 64335}, {6245, 6675}, {6260, 6928}, {6796, 24391}, {6987, 61002}, {7966, 63987}, {8726, 64320}, {8732, 64321}, {11018, 64325}, {12444, 12608}, {17603, 64332}, {17612, 64331}, {18481, 64326}, {37230, 55108}, {63974, 64295}
X(64310) = midpoint of X(i) and X(j) for these {i,j}: {944, 64319}, {18481, 64326}, {64147, 64316}, {64316, 64324}
X(64310) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {64147, 64316, 64324}
X(64311) lies on these lines: {3, 5837}, {9, 3197}, {10, 56889}, {40, 956}, {55, 104}, {56, 64322}, {57, 64325}, {65, 11496}, {84, 64319}, {100, 64313}, {165, 64316}, {405, 54156}, {515, 11495}, {516, 64333}, {517, 60974}, {958, 1158}, {1001, 2800}, {1012, 2093}, {1155, 64332}, {1376, 64188}, {1490, 3697}, {2077, 36922}, {2550, 2829}, {3295, 64323}, {3427, 3428}, {3651, 5584}, {3652, 64326}, {3911, 22753}, {5047, 54199}, {5450, 10306}, {5771, 33899}, {5842, 35514}, {6261, 58660}, {6684, 18237}, {6705, 22770}, {6906, 11041}, {7676, 64321}, {7680, 54366}, {7966, 61763}, {10269, 64109}, {10679, 36867}, {11108, 54198}, {11529, 42884}, {12515, 22758}, {12616, 64077}, {17649, 41229}, {17784, 24466}, {18238, 57279}, {22775, 52148}, {40256, 64074}, {63974, 64295}
X(64311) = midpoint of X(i) and X(j) for these {i,j}: {40, 64320}, {84, 64319}
X(64311) = reflection of X(i) in X(j) for these {i,j}: {64312, 3}
X(64311) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {956, 52027, 12114}
X(64312) lies on these lines: {1, 227}, {3, 5837}, {11, 6969}, {21, 3427}, {55, 64322}, {56, 64147}, {100, 3428}, {224, 11682}, {390, 5842}, {392, 1490}, {515, 1001}, {944, 57278}, {958, 64335}, {999, 64323}, {1000, 11491}, {1125, 64333}, {1385, 64334}, {2646, 64332}, {2800, 11495}, {2829, 43161}, {2975, 64313}, {3091, 18242}, {3576, 38399}, {3616, 64293}, {3913, 6796}, {4304, 11496}, {5250, 12671}, {5289, 6261}, {5450, 63754}, {5732, 6001}, {5805, 6767}, {6265, 64326}, {6855, 63980}, {6905, 11041}, {7677, 64321}, {7971, 37426}, {10267, 64109}, {10680, 36867}, {11012, 36922}, {11499, 40587}, {11510, 64327}, {17614, 64331}, {18446, 64106}, {40257, 64077}, {48695, 63991}, {59320, 63752}, {63974, 64295}, {64118, 64277}, {64199, 64280}
X(64312) = midpoint of X(i) and X(j) for these {i,j}: {1, 64316}, {944, 64317}, {7966, 64319}
X(64312) = reflection of X(i) in X(j) for these {i,j}: {64311, 3}, {64318, 64328}, {64328, 37837}, {64333, 1125}, {64334, 1385}
X(64312) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7966, 52026, 64319}
X(64313) lies on these lines: {2, 6326}, {8, 1490}, {9, 64321}, {20, 11684}, {78, 64320}, {100, 64311}, {144, 515}, {145, 64322}, {153, 3434}, {355, 5714}, {390, 952}, {517, 34784}, {518, 64332}, {519, 43166}, {908, 64333}, {944, 31445}, {946, 20008}, {962, 3621}, {1159, 38149}, {2975, 64312}, {3091, 34195}, {3146, 5693}, {3427, 56101}, {3577, 59387}, {3616, 64323}, {3617, 17857}, {3869, 14872}, {3873, 64325}, {4511, 64334}, {5059, 12535}, {5250, 7966}, {5587, 14563}, {5603, 36867}, {5731, 64315}, {5744, 64310}, {5775, 52026}, {5884, 56999}, {6001, 25722}, {6737, 9799}, {6864, 18221}, {7967, 64109}, {7971, 11525}, {8275, 10624}, {9859, 17649}, {12536, 12705}, {12665, 20085}, {16112, 44669}, {16236, 37712}, {17615, 64331}, {17620, 39779}, {17784, 64189}, {18231, 33597}, {28172, 41705}, {33108, 37725}, {40587, 59388}, {63974, 64295}
X(64313) = reflection of X(i) in X(j) for these {i,j}: {145, 64322}, {11041, 355}, {11525, 47745}, {64147, 64335}, {64321, 9}, {64324, 64335}
X(64313) = anticomplement of X(64147)
X(64313) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64147, 64335, 2}
X(64314) lies on these lines: {1, 1123}, {8, 14121}, {9, 519}, {10, 3316}, {145, 30556}, {517, 64336}, {944, 6213}, {956, 60847}, {2099, 30324}, {2551, 49592}, {3241, 30412}, {3244, 31595}, {3476, 6203}, {3625, 31594}, {3880, 13360}, {4297, 51957}, {5233, 56385}, {5252, 30325}, {5414, 51565}, {5881, 31561}, {5882, 32555}, {6212, 12245}, {7586, 18234}, {7982, 31562}, {8957, 10573}, {11362, 32556}, {13387, 13390}, {13388, 46422}, {13461, 32851}, {17805, 31535}, {28234, 64309}, {30478, 49625}, {34790, 34910}, {44038, 59388}, {63974, 64295}, {64147, 64324}
X(64314) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1000), X(1123)}}, {{A, B, C, X(7090), X(51565)}}, {{A, B, C, X(7967), X(13390)}}, {{A, B, C, X(42013), X(64209)}}
X(64314) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 30557, 14121}
X(64315) lies on these lines: {1, 631}, {2, 3577}, {3, 5837}, {8, 7966}, {9, 515}, {10, 6922}, {40, 6904}, {100, 64330}, {104, 15931}, {119, 3452}, {142, 517}, {214, 10164}, {355, 51572}, {392, 442}, {516, 15346}, {519, 6600}, {936, 64319}, {952, 6594}, {956, 5882}, {960, 6260}, {997, 64328}, {1056, 52819}, {1108, 2092}, {1145, 4847}, {1159, 38122}, {1385, 5771}, {1484, 24386}, {1512, 5316}, {2256, 34261}, {2800, 10427}, {2829, 51090}, {3035, 55300}, {3126, 28292}, {3219, 64009}, {3306, 59417}, {3340, 37407}, {3428, 16371}, {3576, 5744}, {3647, 4297}, {3878, 41540}, {4640, 38759}, {5250, 64078}, {5325, 22758}, {5690, 12640}, {5731, 64313}, {5745, 37611}, {5836, 12864}, {5853, 15348}, {6001, 43182}, {6261, 56273}, {6700, 64318}, {6705, 64320}, {6713, 50821}, {6889, 64160}, {6908, 15829}, {6916, 61002}, {6934, 31730}, {7971, 37108}, {8732, 11529}, {9948, 51576}, {10106, 55104}, {10246, 36867}, {10267, 12437}, {11500, 12447}, {11525, 64081}, {11530, 19843}, {11682, 37112}, {12114, 18249}, {12514, 49171}, {12616, 64331}, {12639, 33668}, {12736, 17642}, {19854, 44848}, {21620, 31806}, {22754, 22770}, {24474, 51723}, {26446, 40587}, {28194, 35514}, {31397, 39779}, {31837, 32213}, {36845, 63143}, {37424, 54198}, {38056, 38123}, {54366, 64110}, {59691, 64286}
X(64315) = midpoint of X(i) and X(j) for these {i,j}: {8, 7966}, {40, 64322}, {100, 64330}, {3427, 64316}, {36922, 64147}, {36922, 64324}
X(64315) = reflection of X(i) in X(j) for these {i,j}: {64320, 6705}, {64323, 1385}
X(64315) = complement of X(3577)
X(64315) = center of circumconic {{A, B, C, X(100), X(64330)}}
X(64315) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 10175}, {6, 5219}, {56, 18391}, {58, 64110}, {2163, 14563}, {3576, 10}, {5744, 141}, {34231, 5}, {36922, 21251}
X(64315) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {36922, 64147, 64324}
X(64315) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(39779)}}, {{A, B, C, X(1000), X(31397)}}, {{A, B, C, X(3427), X(5744)}}
X(64315) = barycentric product X(i)*X(j) for these (i, j): {26591, 3576}, {31397, 5744}
X(64315) = barycentric quotient X(i)/X(j) for these (i, j): {31397, 50442}
X(64315) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1000, 3911, 14563}, {1512, 5316, 10175}, {3427, 64316, 515}
X(64316) lies on these lines: {1, 227}, {2, 64333}, {3, 64320}, {9, 515}, {40, 6737}, {55, 64332}, {57, 64147}, {63, 64313}, {78, 64298}, {84, 191}, {165, 64311}, {517, 3174}, {1376, 64331}, {1445, 64321}, {1490, 14110}, {1697, 64322}, {1706, 6796}, {2136, 28234}, {2800, 5528}, {2949, 57279}, {2950, 10860}, {2951, 6001}, {3333, 64323}, {3428, 63137}, {3576, 64334}, {3646, 5084}, {4302, 12705}, {4867, 15239}, {5219, 64148}, {5541, 41338}, {5692, 63981}, {5720, 31786}, {7580, 56273}, {7971, 56583}, {11525, 64280}, {12526, 12671}, {12650, 37244}, {18481, 55305}, {21578, 63430}, {28160, 52684}, {31435, 64261}, {47848, 60018}, {63264, 64109}, {63974, 64295}
X(64316) = reflection of X(i) in X(j) for these {i,j}: {1, 64312}, {3427, 64315}, {3577, 64328}, {64147, 64310}, {64319, 11500}, {64320, 3}, {64324, 64310}
X(64316) = anticomplement of X(64333)
X(64316) = X(i)-Dao conjugate of X(j) for these {i, j}: {64333, 64333}
X(64316) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54051, 1490}
X(64316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {515, 64315, 3427}, {3577, 52026, 64328}
X(64317) lies on these lines: {2, 64334}, {4, 1000}, {8, 1490}, {9, 515}, {10, 64320}, {72, 12667}, {104, 37578}, {153, 329}, {226, 3577}, {355, 45039}, {517, 61010}, {610, 38923}, {938, 64323}, {944, 57278}, {950, 7966}, {952, 64156}, {1056, 64325}, {1145, 7580}, {1512, 18391}, {1750, 12647}, {2829, 5759}, {2950, 9778}, {3059, 6001}, {3487, 18242}, {3522, 9799}, {3650, 64190}, {3651, 5584}, {3911, 5768}, {5587, 64333}, {5731, 37313}, {5744, 54051}, {5758, 6256}, {5804, 63274}, {6223, 31938}, {6260, 11523}, {6907, 40587}, {6913, 64109}, {11041, 64318}, {12666, 41559}, {31789, 52683}, {51380, 64111}, {55104, 64120}, {63974, 64295}
X(64317) = reflection of X(i) in X(j) for these {i,j}: {944, 64312}, {3427, 64335}, {11041, 64318}, {64147, 64328}, {64320, 10}, {64324, 64328}
X(64317) = anticomplement of X(64334)
X(64317) = X(i)-Dao conjugate of X(j) for these {i, j}: {54366, 7}, {64328, 56273}, {64334, 64334}
X(64317) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8, 18391}
X(64317) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1000), X(18446)}}, {{A, B, C, X(3427), X(54366)}}, {{A, B, C, X(6282), X(56273)}}
X(64317) = barycentric quotient X(i)/X(j) for these (i, j): {8557, 56273}
X(64317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {515, 64335, 3427}, {1512, 18446, 54366}, {64147, 64148, 64328}
X(64318) lies on these lines: {1, 227}, {8, 6932}, {355, 6260}, {515, 5880}, {944, 11023}, {958, 1158}, {1000, 10786}, {2099, 64148}, {2475, 12667}, {2800, 5220}, {2829, 63971}, {6001, 9623}, {6700, 64315}, {7971, 18908}, {9940, 64334}, {10310, 45392}, {10864, 18238}, {10894, 63989}, {10912, 40257}, {10950, 64147}, {11041, 64317}, {11236, 12608}, {11525, 17857}, {12114, 19860}, {12635, 28234}, {18518, 64285}, {26487, 64109}, {34606, 63962}, {37739, 64323}, {63974, 64295}, {64294, 64335}
X(64318) = midpoint of X(i) and X(j) for these {i,j}: {3577, 64319}, {11041, 64317}, {40587, 64326}
X(64318) = reflection of X(i) in X(j) for these {i,j}: {64312, 64328}
X(64319) lies on these lines: {1, 227}, {8, 1490}, {10, 3427}, {40, 12330}, {84, 64311}, {100, 6282}, {515, 2550}, {517, 47387}, {936, 64315}, {944, 1467}, {1000, 63986}, {1837, 64327}, {2802, 42470}, {2829, 2951}, {3872, 54051}, {4853, 12777}, {5223, 6001}, {5531, 64056}, {5726, 18242}, {5731, 6904}, {6261, 6765}, {6762, 9942}, {7160, 45776}, {9708, 51489}, {9960, 63135}, {11041, 18446}, {11684, 54156}, {12565, 12667}, {12751, 50528}, {16143, 37712}, {17857, 36922}, {18450, 64321}, {31397, 63992}, {37714, 64265}, {43175, 54318}, {63257, 63966}, {63974, 64295}, {64147, 64163}, {64201, 64298}
X(64319) = reflection of X(i) in X(j) for these {i,j}: {1, 64328}, {84, 64311}, {944, 64310}, {3427, 10}, {3577, 64318}, {7966, 64312}, {12650, 64334}, {64316, 11500}
X(64319) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7966, 52026, 64312}
X(64320) lies on these lines: {1, 3427}, {3, 64316}, {4, 207}, {10, 64317}, {11, 63992}, {40, 956}, {55, 7966}, {56, 64332}, {65, 84}, {78, 64313}, {442, 1490}, {515, 2550}, {517, 3358}, {936, 12616}, {942, 64277}, {952, 3174}, {971, 64326}, {1158, 54302}, {1709, 10050}, {1768, 2093}, {1998, 9803}, {2800, 43166}, {2817, 18725}, {2829, 30353}, {3333, 64325}, {3576, 38399}, {4413, 52026}, {5450, 10268}, {5728, 6001}, {6260, 28629}, {6261, 6855}, {6264, 25416}, {6282, 14647}, {6705, 64315}, {6769, 12629}, {7171, 31788}, {7675, 64321}, {7957, 12842}, {8164, 18446}, {8726, 64310}, {9121, 37558}, {9799, 19860}, {9948, 14563}, {10042, 10085}, {10864, 18238}, {11471, 38870}, {11920, 64043}, {12565, 64261}, {12651, 37625}, {33899, 37531}, {36922, 63391}, {37704, 63980}, {50195, 63430}, {54318, 63970}, {61763, 64288}, {63974, 64295}
X(64320) = midpoint of X(i) and X(j) for these {i,j}: {84, 3577}, {9948, 14563}
X(64320) = reflection of X(i) in X(j) for these {i,j}: {1, 64334}, {4, 64333}, {40, 64311}, {1490, 64328}, {3427, 6245}, {64315, 6705}, {64316, 3}, {64317, 10}, {64335, 12616}
X(64320) = inverse of X(63992) in Feuerbach hyperbola
X(64320) = pole of line {15239, 63992} with respect to the Feuerbach hyperbola
X(64321) lies on these lines: {3, 8}, {7, 515}, {9, 64313}, {20, 41575}, {40, 12536}, {56, 64298}, {517, 30628}, {519, 7674}, {938, 22753}, {1445, 64316}, {2346, 3427}, {2800, 30332}, {3218, 63430}, {3339, 4293}, {3486, 9799}, {3616, 6855}, {4208, 18444}, {4302, 12767}, {4323, 48482}, {4345, 25485}, {5174, 18283}, {5328, 6326}, {5572, 64332}, {5603, 15935}, {5704, 37837}, {5722, 8166}, {5727, 54366}, {5734, 12116}, {5882, 64340}, {6223, 10572}, {6261, 18467}, {6284, 54199}, {6737, 37423}, {6738, 50700}, {6843, 18446}, {6866, 21740}, {7675, 64320}, {7676, 64311}, {7677, 64312}, {7967, 10578}, {8236, 64322}, {8732, 64310}, {9623, 28236}, {9780, 33597}, {10265, 31188}, {11025, 64325}, {11038, 64323}, {11495, 44669}, {12115, 50864}, {12630, 28234}, {12730, 36976}, {13253, 30305}, {16133, 36991}, {17097, 38306}, {17620, 64331}, {18221, 64001}, {18230, 64335}, {18391, 44425}, {18450, 64319}, {21578, 53056}, {21617, 64333}, {28160, 36996}, {30284, 64334}, {31397, 53054}, {34632, 37000}, {37525, 64297}, {37706, 59323}, {37730, 64144}, {37797, 64148}, {38307, 48697}, {63974, 64295}
X(64321) = reflection of X(i) in X(j) for these {i,j}: {7, 64147}, {64313, 9}, {64332, 5572}
X(64321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {515, 64147, 7}, {944, 5768, 5731}, {5731, 5775, 3}, {5731, 9803, 5744}
X(64322) lies on these lines: {1, 3427}, {3, 64109}, {4, 1000}, {5, 40587}, {7, 2800}, {8, 908}, {10, 6964}, {11, 2099}, {40, 6904}, {55, 64312}, {56, 64311}, {65, 11023}, {104, 33925}, {145, 64313}, {149, 6246}, {355, 13600}, {381, 64138}, {388, 12672}, {390, 515}, {392, 64111}, {495, 64326}, {517, 2550}, {519, 63970}, {938, 13464}, {944, 3303}, {952, 60901}, {962, 2475}, {999, 13226}, {1012, 3476}, {1056, 6001}, {1058, 13867}, {1158, 3600}, {1159, 20330}, {1319, 6935}, {1320, 10883}, {1478, 12758}, {1479, 64272}, {1482, 6841}, {1519, 10590}, {1697, 64316}, {1699, 8275}, {1953, 53994}, {2095, 34744}, {2096, 5434}, {3085, 63986}, {3241, 6264}, {3485, 63257}, {3545, 22835}, {3601, 64310}, {3616, 6972}, {3632, 12599}, {3679, 7682}, {3748, 7967}, {3878, 5758}, {3890, 6836}, {4295, 7702}, {4298, 54156}, {4301, 5715}, {4308, 5450}, {4315, 52027}, {4413, 5657}, {4861, 6837}, {4863, 59388}, {4900, 37714}, {5119, 50701}, {5154, 5554}, {5176, 6957}, {5261, 10935}, {5290, 54198}, {5703, 40257}, {5720, 34619}, {5731, 34486}, {5734, 12649}, {5771, 22770}, {5787, 31792}, {5790, 7956}, {5804, 10573}, {5815, 20117}, {5818, 7681}, {5836, 6864}, {5854, 42356}, {5882, 9799}, {5884, 11037}, {5886, 6978}, {5920, 12858}, {6326, 63168}, {6705, 61762}, {6766, 11362}, {6835, 14923}, {6844, 10051}, {6848, 10039}, {6865, 58679}, {6896, 7686}, {6906, 11510}, {6956, 11376}, {7320, 64329}, {7373, 33899}, {7971, 21620}, {7991, 64001}, {8236, 64321}, {9578, 63989}, {9708, 61511}, {9785, 48482}, {9803, 25485}, {9850, 18238}, {9856, 12667}, {10043, 12047}, {10106, 12705}, {10222, 36867}, {10284, 18517}, {10309, 30290}, {10430, 50811}, {10525, 26200}, {10597, 64021}, {11046, 11570}, {12053, 64333}, {12115, 64130}, {12575, 64261}, {12616, 14986}, {12650, 21628}, {12703, 17784}, {13227, 61705}, {13253, 33593}, {16200, 36845}, {17622, 64331}, {17624, 58588}, {18990, 64190}, {19925, 49169}, {24297, 59391}, {28212, 52682}, {28292, 44431}, {31397, 63992}, {34625, 51755}, {34627, 34699}, {38073, 38202}, {41824, 64124}, {45085, 58643}, {63974, 64295}
X(64322) = midpoint of X(i) and X(j) for these {i,j}: {4, 1000}, {145, 64313}, {3057, 64332}, {7982, 36922}, {12672, 39779}
X(64322) = reflection of X(i) in X(j) for these {i,j}: {3, 64109}, {8, 64335}, {40, 64315}, {65, 64325}, {1159, 20330}, {3577, 946}, {14563, 13464}, {36867, 10222}, {40587, 5}, {64147, 1}, {64324, 1}
X(64322) = inverse of X(18391) in Feuerbach hyperbola
X(64322) = pole of line {18391, 61660} with respect to the Feuerbach hyperbola
X(64322) = pole of line {43068, 54366} with respect to the dual conic of Yff parabola
X(64322) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {355, 13600, 64068}, {388, 12672, 63962}, {946, 28234, 3577}, {7982, 36922, 28234}, {10106, 12705, 64120}, {10573, 11522, 5804}, {28234, 64335, 8}, {31397, 63992, 64148}
X(64323) lies on these lines: {1, 3427}, {3, 3244}, {10, 37615}, {57, 7966}, {142, 952}, {145, 8726}, {443, 61296}, {515, 5542}, {517, 43175}, {519, 18443}, {551, 6265}, {938, 64317}, {942, 4315}, {944, 3296}, {946, 16137}, {971, 15935}, {999, 64312}, {1000, 3601}, {1125, 64335}, {1159, 60945}, {1210, 6949}, {1317, 17603}, {1385, 5771}, {1483, 9940}, {2095, 3655}, {2800, 30331}, {3241, 6282}, {3295, 64311}, {3333, 64316}, {3358, 43179}, {3488, 36996}, {3616, 64313}, {3626, 6989}, {3632, 37407}, {3636, 6824}, {4292, 11048}, {4297, 12005}, {4298, 45636}, {4314, 5884}, {4900, 61289}, {5045, 64325}, {5083, 64191}, {5745, 10246}, {5787, 13464}, {5887, 51724}, {6001, 63972}, {6260, 12433}, {6261, 6744}, {6738, 64328}, {6826, 28236}, {6861, 15808}, {6881, 38155}, {7682, 18446}, {8275, 30282}, {8728, 47745}, {9843, 37700}, {10164, 13151}, {10202, 33337}, {10857, 51093}, {11034, 50701}, {11036, 64261}, {11038, 64321}, {11500, 17706}, {11520, 64004}, {11525, 61291}, {11529, 12573}, {11715, 12735}, {12247, 31397}, {12563, 48482}, {12853, 37544}, {12909, 16159}, {15178, 64109}, {15803, 16236}, {15933, 36991}, {17609, 64332}, {17624, 64331}, {21620, 64333}, {21625, 40257}, {24473, 63438}, {28172, 31671}, {28452, 51082}, {34339, 64117}, {34489, 64163}, {37526, 61288}, {37533, 51071}, {37566, 37734}, {37727, 40587}, {37739, 64318}, {39779, 63987}, {41867, 59388}, {54198, 63999}, {63974, 64295}, {63993, 64192}
X(64323) = midpoint of X(i) and X(j) for these {i,j}: {1, 64147}, {1, 64324}, {3, 36867}, {944, 3577}, {5882, 14563}, {7966, 11041}, {37727, 40587}
X(64323) = reflection of X(i) in X(j) for these {i,j}: {6245, 64334}, {64109, 15178}, {64315, 1385}, {64325, 5045}, {64335, 1125}
X(64323) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 64147, 64324}
X(64323) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 36867, 28234}, {944, 11518, 64001}, {1483, 9940, 12437}, {7967, 11041, 7966}
X(64324) lies on these lines: {1, 3427}, {2, 6326}, {3, 39783}, {4, 3649}, {7, 515}, {8, 224}, {20, 5884}, {40, 145}, {55, 104}, {56, 64312}, {57, 64310}, {65, 944}, {354, 64325}, {355, 3824}, {390, 2800}, {452, 5693}, {497, 1537}, {516, 64262}, {517, 15185}, {519, 3174}, {631, 21677}, {758, 6987}, {938, 6261}, {950, 63962}, {952, 2550}, {962, 10941}, {1056, 63258}, {1071, 3486}, {1158, 4313}, {1385, 5770}, {1483, 10306}, {1490, 6738}, {1512, 18391}, {1538, 5722}, {1788, 33597}, {2093, 16236}, {2094, 50811}, {2099, 64327}, {2320, 11715}, {2771, 6930}, {2829, 36996}, {3086, 21740}, {3146, 12913}, {3189, 31788}, {3241, 37569}, {3244, 6769}, {3476, 39779}, {3488, 6001}, {3576, 5744}, {3600, 12005}, {3655, 34744}, {3671, 64261}, {3689, 5657}, {3925, 59388}, {4294, 41537}, {4295, 45638}, {4305, 63399}, {4314, 54156}, {4900, 61294}, {5129, 20117}, {5274, 16174}, {5584, 12245}, {5603, 39782}, {5691, 11551}, {5703, 12616}, {5715, 12563}, {5727, 64115}, {5758, 12559}, {5775, 6684}, {5804, 63988}, {5885, 6885}, {5902, 50701}, {6224, 15528}, {6253, 34502}, {6737, 8726}, {6825, 33858}, {6836, 34195}, {6846, 30143}, {6855, 11281}, {6865, 12635}, {6891, 37733}, {6904, 15016}, {6905, 64341}, {6908, 49168}, {6916, 44669}, {6926, 22836}, {6938, 33667}, {6969, 61717}, {6982, 62354}, {7686, 64144}, {7688, 59417}, {7964, 50810}, {7971, 63999}, {7994, 51093}, {8275, 61763}, {10044, 45287}, {10052, 10572}, {10246, 64109}, {10382, 56273}, {10884, 41575}, {10902, 45392}, {10950, 64318}, {11036, 26332}, {11525, 61296}, {11570, 64145}, {12247, 41701}, {12437, 37560}, {12667, 37730}, {12680, 37724}, {12767, 54342}, {13226, 37606}, {14647, 24929}, {14986, 18467}, {15934, 20330}, {16132, 37421}, {17625, 64331}, {18221, 31870}, {20015, 63143}, {30283, 37728}, {31019, 59387}, {31806, 37423}, {34612, 50818}, {34618, 34631}, {34625, 61146}, {37080, 39781}, {37537, 63415}, {37567, 39777}, {37601, 64173}, {37723, 63989}, {63132, 64146}, {63974, 64295}, {64163, 64319}
X(64324) = midpoint of X(i) and X(j) for these {i,j}: {7, 64321}, {944, 11041}, {11525, 61296}
X(64324) = reflection of X(i) in X(j) for these {i,j}: {1, 64323}, {3427, 64334}, {3577, 14563}, {7966, 5882}, {12667, 64326}, {36922, 64315}, {64313, 64335}, {64316, 64310}, {64317, 64328}, {64322, 1}, {64330, 11715}, {64332, 64325}
X(64324) = complement of X(64313)
X(64324) = anticomplement of X(64335)
X(64324) = X(i)-Dao conjugate of X(j) for these {i, j}: {18391, 8}, {64147, 64313}, {64328, 3577}, {64335, 64335}
X(64324) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7, 54366}, {64147, 64147}
X(64324) = X(i)-cross conjugate of X(j) for these {i, j}: {64147, 64147}
X(64324) = pole of line {5603, 54366} with respect to the Feuerbach hyperbola
X(64324) = pole of line {54366, 62780} with respect to the dual conic of Yff parabola
X(64324) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1000), X(1512)}}, {{A, B, C, X(3427), X(18391)}}, {{A, B, C, X(5744), X(54366)}}, {{A, B, C, X(18446), X(34231)}}
X(64324) = barycentric product X(i)*X(j) for these (i, j): {2, 64147}, {18391, 5744}, {34231, 6350}
X(64324) = barycentric quotient X(i)/X(j) for these (i, j): {8557, 3577}, {18391, 50442}, {34231, 55963}, {64147, 2}
X(64324) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64313, 64335}, {7, 64321, 515}, {354, 64332, 64325}, {515, 14563, 3577}, {1071, 3486, 64120}, {3576, 36922, 64315}, {5882, 28234, 7966}, {18221, 50700, 31870}, {18391, 18446, 64148}
X(64325) lies on these lines: {1, 227}, {7, 3427}, {57, 64311}, {65, 11023}, {142, 517}, {354, 64147}, {515, 5572}, {518, 64335}, {999, 64334}, {1000, 17642}, {1056, 64317}, {1320, 45395}, {1537, 33593}, {2829, 12573}, {3306, 3428}, {3333, 64320}, {3812, 22770}, {3873, 64313}, {3890, 14110}, {4298, 18238}, {4355, 17649}, {5045, 64323}, {5173, 12736}, {5603, 54366}, {5836, 28234}, {6738, 18241}, {9856, 11544}, {10122, 12675}, {10179, 11281}, {10532, 44547}, {11018, 64310}, {11019, 64333}, {11024, 37462}, {11025, 64321}, {12114, 18219}, {12677, 26332}, {15528, 63994}, {17626, 64331}, {63974, 64295}
X(64325) = midpoint of X(i) and X(j) for these {i,j}: {65, 64322}, {3577, 39779}, {64147, 64332}, {64324, 64332}
X(64325) = reflection of X(i) in X(j) for these {i,j}: {64323, 5045}
X(64325) = pole of line {2099, 64147} with respect to the Feuerbach hyperbola
X(64325) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {64147, 64324, 64332}
X(64326) lies on these lines: {3, 64328}, {5, 3427}, {355, 6260}, {495, 64322}, {515, 5542}, {517, 47387}, {952, 6601}, {971, 64320}, {1479, 64327}, {1482, 6261}, {1490, 3577}, {3421, 13257}, {3652, 64311}, {3940, 64148}, {5658, 11041}, {5779, 6001}, {5787, 64333}, {5795, 54227}, {6256, 37230}, {6265, 64312}, {7971, 34790}, {9942, 64334}, {12667, 37730}, {18242, 64335}, {18481, 64310}, {31799, 63962}, {39779, 63986}, {40267, 41688}, {63974, 64295}, {63988, 64332}
X(64326) = midpoint of X(i) and X(j) for these {i,j}: {1490, 3577}, {12667, 64147}, {12667, 64324}
X(64326) = reflection of X(i) in X(j) for these {i,j}: {3, 64328}, {3427, 5}, {5787, 64333}, {18481, 64310}, {40587, 64318}, {64335, 18242}
X(64326) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {12667, 64147, 64324}
X(64327) lies on these lines: {11, 64328}, {55, 3427}, {515, 14100}, {944, 3303}, {952, 5223}, {1319, 64310}, {1479, 64326}, {1837, 64319}, {2099, 64147}, {5768, 51463}, {6001, 60919}, {6067, 30503}, {7966, 10944}, {7982, 36867}, {10950, 44547}, {11510, 64312}, {18446, 37703}, {34486, 64109}, {63974, 64295}
X(64327) = reflection of X(i) in X(j) for these {i,j}: {10944, 7966}
X(64327) = pole of line {7680, 64325} with respect to the Feuerbach hyperbola
X(64328) lies on these lines: {1, 227}, {2, 3427}, {3, 64326}, {9, 3197}, {10, 5720}, {11, 64327}, {40, 11517}, {84, 5251}, {100, 56101}, {142, 515}, {165, 12332}, {200, 1145}, {214, 37611}, {442, 1490}, {517, 6600}, {518, 15348}, {908, 64111}, {958, 9942}, {960, 49183}, {971, 15346}, {997, 64315}, {1158, 3647}, {1385, 22754}, {1467, 12675}, {1482, 12631}, {1512, 18391}, {1841, 34261}, {2092, 3553}, {2800, 6594}, {2829, 5732}, {3035, 55302}, {3085, 63986}, {3126, 30199}, {3576, 52148}, {3811, 12640}, {4326, 5842}, {5219, 7680}, {5258, 12687}, {5260, 9960}, {5534, 49168}, {5660, 52050}, {5692, 7971}, {5727, 34489}, {6184, 34526}, {6256, 41540}, {6260, 12520}, {6738, 64323}, {6796, 37531}, {7951, 63966}, {7992, 13089}, {8227, 64266}, {8726, 12114}, {9943, 49171}, {10884, 12667}, {11014, 11525}, {11041, 21740}, {12330, 31787}, {12565, 64119}, {14647, 54357}, {15347, 64116}, {18406, 64261}, {28473, 57095}, {37302, 59335}, {40249, 62858}, {40587, 61146}, {41862, 63981}, {45770, 64275}, {51506, 64129}, {51576, 64118}, {57276, 59305}, {63974, 64295}
X(64328) = midpoint of X(i) and X(j) for these {i,j}: {1, 64319}, {3, 64326}, {1490, 64320}, {3577, 64316}, {64147, 64317}, {64312, 64318}, {64317, 64324}
X(64328) = reflection of X(i) in X(j) for these {i,j}: {64312, 37837}
X(64328) = complement of X(3427)
X(64328) = center of circumconic {{A, B, C, X(100), X(36127)}}
X(64328) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 8557}
X(64328) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 7680}, {31, 8557}, {3428, 10}, {34042, 142}
X(64328) = pole of line {7680, 8557} with respect to the Kiepert hyperbola
X(64328) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {64147, 64317, 64324}
X(64328) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3427), X(8557)}}, {{A, B, C, X(3577), X(18391)}}, {{A, B, C, X(54366), X(56273)}}
X(64328) = barycentric quotient X(i)/X(j) for these (i, j): {8557, 3427}
X(64328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {958, 9942, 49170}, {3577, 52026, 64316}, {64147, 64148, 64317}
X(64329) lies on the Feuerbach hyperbola and on these lines: {1, 6357}, {4, 61718}, {8, 14206}, {9, 30}, {20, 56203}, {21, 18653}, {80, 41539}, {84, 16141}, {515, 2346}, {758, 6601}, {943, 4304}, {971, 34917}, {1012, 15175}, {1071, 5557}, {1172, 52954}, {1320, 51077}, {2771, 3254}, {3296, 10122}, {3467, 37468}, {3887, 14224}, {4292, 10308}, {4866, 47033}, {5252, 7160}, {5556, 16125}, {5558, 9799}, {5665, 5722}, {5691, 7162}, {6001, 15909}, {6597, 16138}, {7320, 64322}, {7688, 54357}, {8809, 62781}, {9963, 56121}, {10390, 20330}, {10431, 64335}, {14563, 17097}, {16116, 43733}, {16118, 36599}, {16236, 56152}, {22798, 35239}, {28234, 56091}, {31673, 32635}, {37434, 64344}, {38306, 64130}, {41691, 64003}, {42317, 45929}, {42325, 43728}, {42470, 44669}, {43740, 49177}, {44256, 63267}, {63974, 64295}, {64147, 64324}, {64330, 64332}
X(64329) = isogonal conjugate of X(7688)
X(64329) = trilinear pole of line {650, 11125}
X(64329) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 15909}
X(64329) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(10), X(24564)}}, {{A, B, C, X(20), X(31902)}}, {{A, B, C, X(27), X(30)}}, {{A, B, C, X(28), X(37433)}}, {{A, B, C, X(29), X(37447)}}, {{A, B, C, X(57), X(3587)}}, {{A, B, C, X(63), X(4846)}}, {{A, B, C, X(75), X(54516)}}, {{A, B, C, X(86), X(54526)}}, {{A, B, C, X(103), X(1243)}}, {{A, B, C, X(272), X(54533)}}, {{A, B, C, X(335), X(54692)}}, {{A, B, C, X(515), X(6362)}}, {{A, B, C, X(517), X(42325)}}, {{A, B, C, X(673), X(54882)}}, {{A, B, C, X(758), X(3309)}}, {{A, B, C, X(994), X(3423)}}, {{A, B, C, X(996), X(54687)}}, {{A, B, C, X(1065), X(43672)}}, {{A, B, C, X(1224), X(57720)}}, {{A, B, C, X(1268), X(57719)}}, {{A, B, C, X(1847), X(31672)}}, {{A, B, C, X(2051), X(56228)}}, {{A, B, C, X(2771), X(3887)}}, {{A, B, C, X(3649), X(41506)}}, {{A, B, C, X(3679), X(54789)}}, {{A, B, C, X(5936), X(54787)}}, {{A, B, C, X(13476), X(28193)}}, {{A, B, C, X(14621), X(54729)}}, {{A, B, C, X(15474), X(60167)}}, {{A, B, C, X(16251), X(41514)}}, {{A, B, C, X(17768), X(28292)}}, {{A, B, C, X(18850), X(55963)}}, {{A, B, C, X(28217), X(28234)}}, {{A, B, C, X(28626), X(54790)}}, {{A, B, C, X(30598), X(54972)}}, {{A, B, C, X(42285), X(54517)}}, {{A, B, C, X(54754), X(57725)}}, {{A, B, C, X(57661), X(60155)}}
X(64330) lies on the Feuerbach hyperbola and on these lines: {1, 11219}, {7, 2800}, {8, 49176}, {9, 952}, {11, 3577}, {21, 5882}, {65, 34485}, {79, 12672}, {100, 64315}, {104, 2078}, {514, 46041}, {515, 1156}, {517, 3254}, {519, 34894}, {944, 55918}, {946, 55924}, {1000, 12247}, {1210, 1389}, {1320, 10265}, {1392, 6972}, {1476, 48694}, {1768, 7284}, {2320, 11715}, {2771, 3255}, {2801, 34919}, {2802, 6601}, {2826, 23838}, {2829, 3062}, {3065, 64145}, {3680, 6922}, {3887, 43728}, {4900, 64056}, {5551, 10597}, {5556, 26332}, {5559, 12750}, {5561, 34789}, {5691, 55934}, {5854, 42470}, {6264, 36922}, {6265, 64109}, {6596, 12737}, {7162, 51767}, {7317, 10806}, {7319, 48482}, {7972, 15175}, {10532, 43733}, {11041, 14497}, {11522, 17098}, {11604, 14217}, {12116, 43734}, {12619, 40587}, {12629, 56278}, {12641, 19914}, {12751, 30513}, {12776, 15179}, {13464, 17097}, {14496, 59391}, {17638, 46435}, {23710, 36121}, {33576, 64261}, {43174, 48713}, {49168, 56089}, {55931, 62616}, {63974, 64295}, {64329, 64332}
X(64330) = midpoint of X(i) and X(j) for these {i,j}: {1000, 12247}, {6264, 36922}
X(64330) = reflection of X(i) in X(j) for these {i,j}: {100, 64315}, {3577, 11}, {6265, 64109}, {12751, 64335}, {40587, 12619}, {64147, 11715}, {64324, 11715}
X(64330) = X(i)-vertex conjugate of X(j) for these {i, j}: {34442, 46435}
X(64330) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(41487)}}, {{A, B, C, X(65), X(34486)}}, {{A, B, C, X(98), X(36935)}}, {{A, B, C, X(103), X(517)}}, {{A, B, C, X(105), X(47645)}}, {{A, B, C, X(225), X(5882)}}, {{A, B, C, X(513), X(28233)}}, {{A, B, C, X(514), X(952)}}, {{A, B, C, X(515), X(6366)}}, {{A, B, C, X(519), X(2826)}}, {{A, B, C, X(528), X(28292)}}, {{A, B, C, X(900), X(28234)}}, {{A, B, C, X(947), X(34434)}}, {{A, B, C, X(1065), X(42285)}}, {{A, B, C, X(1222), X(57719)}}, {{A, B, C, X(1243), X(41434)}}, {{A, B, C, X(1411), X(49176)}}, {{A, B, C, X(2161), X(2716)}}, {{A, B, C, X(2342), X(2800)}}, {{A, B, C, X(2801), X(14077)}}, {{A, B, C, X(2802), X(3309)}}, {{A, B, C, X(3632), X(11240)}}, {{A, B, C, X(4248), X(6922)}}, {{A, B, C, X(7972), X(56419)}}, {{A, B, C, X(9093), X(43537)}}, {{A, B, C, X(11219), X(40437)}}, {{A, B, C, X(11510), X(37625)}}, {{A, B, C, X(12531), X(52178)}}, {{A, B, C, X(12629), X(12649)}}, {{A, B, C, X(13464), X(40950)}}, {{A, B, C, X(13478), X(55956)}}, {{A, B, C, X(14528), X(34442)}}, {{A, B, C, X(14536), X(43655)}}, {{A, B, C, X(20418), X(36123)}}, {{A, B, C, X(24857), X(54679)}}, {{A, B, C, X(24858), X(54528)}}, {{A, B, C, X(28535), X(41446)}}, {{A, B, C, X(29374), X(53907)}}, {{A, B, C, X(34892), X(54739)}}, {{A, B, C, X(36846), X(49168)}}, {{A, B, C, X(38669), X(38955)}}, {{A, B, C, X(43908), X(57396)}}, {{A, B, C, X(53180), X(53774)}}, {{A, B, C, X(56145), X(57724)}}
X(64331) lies on these lines: {11, 64332}, {40, 956}, {355, 45039}, {515, 17668}, {517, 60950}, {950, 12664}, {1000, 3427}, {1376, 64316}, {2800, 36868}, {3577, 15239}, {11041, 12246}, {12616, 64315}, {17612, 64310}, {17614, 64312}, {17615, 64313}, {17620, 64321}, {17622, 64322}, {17624, 64323}, {17625, 64147}, {17626, 64325}, {17634, 64000}, {17648, 28234}, {18236, 64335}, {39779, 64334}, {63974, 64295}
X(64331) = reflection of X(i) in X(j) for these {i,j}: {39779, 64334}, {64332, 64333}
X(64332) lies on these lines: {4, 1000}, {11, 64331}, {55, 64316}, {56, 64320}, {65, 64001}, {210, 64335}, {354, 64147}, {515, 14100}, {517, 3059}, {518, 64313}, {1155, 64311}, {1319, 64334}, {2099, 3577}, {2646, 64312}, {3149, 3698}, {3303, 7966}, {3427, 64106}, {3893, 28234}, {3900, 42755}, {5572, 64321}, {5836, 50700}, {6001, 31391}, {7686, 11041}, {8727, 64109}, {9848, 64261}, {10866, 48482}, {11510, 37252}, {12672, 44782}, {12680, 17637}, {12688, 12943}, {17603, 64310}, {17609, 64323}, {17638, 52836}, {18222, 31393}, {19541, 40587}, {56273, 64152}, {63988, 64326}, {64329, 64330}
X(64332) = reflection of X(i) in X(j) for these {i,j}: {3057, 64322}, {11041, 7686}, {64147, 64325}, {64321, 5572}, {64324, 64325}, {64331, 64333}
X(64332) = inverse of X(64333) in Feuerbach hyperbola
X(64332) = pole of line {3427, 3577} with respect to the Feuerbach hyperbola
X(64332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64147, 64325, 354}
X(64333) lies on these lines: {2, 64316}, {4, 207}, {10, 6922}, {11, 64331}, {142, 515}, {226, 64147}, {516, 64311}, {517, 24389}, {908, 64313}, {946, 5722}, {1125, 64312}, {3085, 7966}, {3427, 3577}, {3452, 64335}, {5587, 64317}, {5787, 64326}, {6001, 30329}, {6245, 7686}, {6260, 11263}, {7680, 63993}, {10165, 11500}, {11019, 64325}, {12053, 64322}, {21617, 64321}, {21620, 64323}, {21627, 28234}, {21631, 63976}, {63974, 64295}
X(64333) = midpoint of X(i) and X(j) for these {i,j}: {4, 64320}, {3427, 3577}, {5787, 64326}, {64331, 64332}
X(64333) = inverse of X(64332) in Feuerbach hyperbola
X(64333) = complement of X(64316)
X(64334) lies on these lines: {1, 3427}, {2, 64317}, {3, 5836}, {4, 34489}, {7, 56273}, {57, 104}, {78, 6972}, {84, 10122}, {142, 515}, {514, 37628}, {517, 60974}, {912, 60973}, {942, 12114}, {997, 51755}, {999, 64325}, {1000, 6935}, {1158, 24474}, {1319, 64332}, {1385, 64312}, {1387, 8727}, {1467, 4293}, {1490, 3091}, {1699, 33593}, {1709, 11570}, {1870, 34492}, {2475, 10884}, {2800, 3358}, {2829, 5805}, {3218, 52027}, {3576, 64316}, {3601, 7966}, {3671, 45654}, {3811, 12616}, {3870, 9803}, {3872, 5744}, {4511, 64313}, {5219, 6830}, {5450, 5709}, {5572, 6001}, {5720, 6978}, {5731, 6904}, {5745, 37611}, {5770, 6705}, {5787, 5886}, {5806, 56889}, {5882, 12855}, {6256, 55108}, {6896, 64144}, {6913, 60964}, {6946, 52026}, {7682, 54366}, {9940, 64318}, {9942, 64326}, {11544, 64119}, {11551, 18224}, {12005, 49170}, {12520, 48482}, {12737, 36867}, {13374, 18237}, {14647, 37569}, {18223, 64120}, {21578, 50701}, {22758, 55869}, {30284, 64321}, {30503, 43161}, {39779, 64331}, {54135, 60363}, {63974, 64295}
X(64334) = midpoint of X(i) and X(j) for these {i,j}: {1, 64320}, {3427, 64147}, {3427, 64324}, {6245, 64323}, {12650, 64319}, {39779, 64331},
X(64334) = reflection of X(i) in X(j) for these {i,j}: {64312, 1385}
X(64334) = complement of X(64317)
X(64334) = pole of line {8557, 54366} with respect to the dual conic of Yff parabola
X(64334) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3427, 64147, 64324}
X(64334) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5787, 37615, 6261}
X(64335) lies on circumconic {{A, B, C, X(3427), X(50442)}} and on these lines: {1, 6832}, {2, 6326}, {3, 18253}, {4, 5692}, {5, 12635}, {8, 908}, {9, 515}, {10, 5720}, {20, 7701}, {30, 16112}, {40, 50695}, {72, 26332}, {80, 497}, {119, 2886}, {145, 24148}, {191, 6934}, {210, 64332}, {355, 960}, {377, 5693}, {388, 18397}, {443, 5884}, {498, 45230}, {514, 24316}, {517, 18482}, {518, 64325}, {519, 24389}, {758, 6826}, {936, 12616}, {944, 5251}, {952, 1001}, {958, 64312}, {962, 18406}, {997, 51755}, {1056, 18412}, {1125, 64323}, {1158, 57284}, {1329, 5780}, {1376, 64188}, {1512, 3679}, {1537, 31140}, {1656, 11281}, {1768, 6955}, {2550, 2800}, {2771, 60896}, {2829, 5779}, {3090, 15079}, {3149, 21677}, {3419, 26333}, {3434, 14217}, {3452, 64333}, {3485, 5818}, {3576, 54357}, {3940, 7680}, {4867, 5603}, {5219, 10175}, {5252, 18908}, {5657, 44425}, {5660, 12247}, {5690, 18491}, {5694, 6917}, {5727, 37556}, {5745, 64310}, {5768, 10165}, {5777, 5794}, {5791, 37837}, {5817, 60885}, {5881, 7966}, {5886, 36867}, {5902, 6854}, {5904, 10532}, {6001, 15587}, {6245, 12447}, {6260, 45039}, {6684, 18231}, {6824, 22836}, {6827, 10176}, {6835, 37625}, {6849, 16134}, {6850, 16127}, {6861, 37733}, {6864, 31870}, {6865, 45085}, {6877, 26725}, {6887, 30143}, {6897, 15071}, {6898, 37702}, {6913, 42843}, {6923, 16128}, {6925, 61705}, {6930, 60911}, {6935, 54192}, {6950, 35204}, {6957, 54154}, {6982, 21635}, {6991, 34195}, {7330, 17647}, {8227, 12649}, {8275, 9614}, {9534, 49652}, {9709, 18237}, {9956, 28628}, {10051, 37718}, {10198, 37700}, {10431, 64329}, {10526, 31835}, {11529, 21617}, {12115, 12691}, {12559, 55108}, {12617, 37531}, {12751, 30513}, {15016, 37462}, {15064, 18254}, {15175, 46816}, {16132, 37112}, {16236, 41684}, {17857, 24987}, {18230, 64321}, {18236, 64331}, {18242, 64326}, {18518, 64275}, {19843, 40257}, {19854, 21740}, {20418, 35272}, {22758, 51506}, {26363, 45770}, {26921, 64075}, {28160, 64198}, {28172, 36991}, {31018, 59387}, {31142, 50796}, {31160, 38074}, {31821, 64119}, {37727, 51715}, {49736, 50798}, {63974, 64295}, {64294, 64318}
X(64335) = midpoint of X(i) and X(j) for these {i,j}: {8, 64322}, {3427, 64317}, {3577, 36922}, {5881, 7966}, {12751, 64330}, {64147, 64313}, {64313, 64324}
X(64335) = reflection of X(i) in X(j) for these {i,j}: {6930, 60911}, {64320, 12616}, {64323, 1125}, {64326, 18242}
X(64335) = complement of X(64147)
X(64335) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {64147, 64313, 64324}
X(64335) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {355, 960, 48482}, {3427, 64317, 515}, {3577, 36922, 28234}, {5587, 36922, 3577}, {5777, 5794, 6256}, {6850, 31803, 16127}
X(64336) lies on cubic K202 and on these lines: {1, 6459}, {2, 45704}, {4, 9}, {6, 52805}, {7, 13389}, {20, 30556}, {37, 52808}, {55, 30324}, {144, 13386}, {390, 16232}, {497, 6204}, {515, 64309}, {517, 64314}, {527, 5860}, {528, 49338}, {946, 32556}, {962, 30557}, {971, 34910}, {1100, 52809}, {1124, 64057}, {1336, 4312}, {1479, 8957}, {1659, 2066}, {1836, 30325}, {2951, 38004}, {3062, 13426}, {3474, 6203}, {5393, 9616}, {5853, 12627}, {7580, 60848}, {9778, 30412}, {9812, 30413}, {11495, 34125}, {13359, 15726}, {13459, 52819}, {14100, 58896}, {16777, 52806}, {17768, 49339}, {30355, 64210}, {31432, 31533}, {31730, 32555}, {43178, 55497}, {51364, 52419}, {63974, 64295}, {64147, 64324}
X(64336) = isogonal conjugate of X(46377)
X(64336) = anticomplement of X(45704)
X(64336) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46377}, {2067, 15892}, {13388, 30335}, {40700, 53063}
X(64336) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46377}, {7090, 13387}, {45704, 45704}
X(64336) = X(i)-Ceva conjugate of X(j) for these {i, j}: {13386, 14121}
X(64336) = pole of line {1864, 30325} with respect to the Feuerbach hyperbola
X(64336) = pole of line {1790, 46377} with respect to the Stammler hyperbola
X(64336) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(176)}}, {{A, B, C, X(9), X(13389)}}, {{A, B, C, X(19), X(61400)}}, {{A, B, C, X(189), X(9778)}}, {{A, B, C, X(281), X(13390)}}, {{A, B, C, X(3062), X(6213)}}, {{A, B, C, X(7079), X(42013)}}
X(64336) = barycentric product X(i)*X(j) for these (i, j): {1336, 31548}, {13390, 30412}, {14121, 176}, {46379, 75}, {51842, 60853}
X(64336) = barycentric quotient X(i)/X(j) for these (i, j): {6, 46377}, {14121, 40700}, {30412, 56386}, {31548, 5391}, {42013, 15892}, {46379, 1}, {51842, 13388}, {60852, 30335}
X(64336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 6212, 14121}, {40, 31562, 7090}, {5493, 31595, 51957}
X(64337) lies on these lines: {1, 6924}, {10, 41541}, {12, 6841}, {35, 11571}, {55, 21740}, {56, 3889}, {73, 43924}, {90, 37700}, {214, 10914}, {952, 30538}, {1317, 1385}, {1319, 3244}, {1388, 3913}, {2646, 5882}, {3057, 25485}, {3085, 56027}, {3358, 3601}, {4857, 11375}, {4870, 34649}, {5172, 7098}, {5252, 37571}, {5427, 41538}, {5432, 24299}, {5433, 5440}, {5434, 33595}, {5703, 64086}, {5719, 61552}, {6284, 12608}, {7354, 33596}, {11015, 13273}, {11510, 56177}, {11570, 26086}, {12053, 15950}, {12743, 63964}, {13755, 56884}, {14563, 20323}, {32760, 37733}, {33598, 49600}, {37525, 37738}, {37605, 54192}, {37616, 37736}, {39781, 41554}, {40663, 41575}, {41537, 64107}, {41553, 51111}, {62616, 64116}, {63974, 64295}, {64147, 64324}
X(64337) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {35, 12739, 45288}
X(64338) lies on these lines: {3, 10122}, {9, 1998}, {11, 954}, {55, 1708}, {100, 60987}, {226, 5805}, {405, 21677}, {950, 11496}, {1001, 1260}, {1005, 60950}, {1071, 10393}, {1709, 10382}, {2949, 10399}, {3295, 54430}, {3488, 12247}, {3651, 45084}, {5083, 22775}, {5722, 10395}, {6913, 62354}, {7580, 11246}, {11495, 37541}, {11507, 63437}, {11517, 37080}, {14022, 42843}, {16293, 40661}, {22753, 63274}, {26921, 44547}, {33925, 64351}, {33993, 60782}, {47387, 61028}, {63974, 64295}, {64147, 64324}
X(64338) = inverse of X(954) in Feuerbach hyperbola
X(64339) lies on these lines: {1, 3}, {4, 63676}, {11, 13160}, {12, 1594}, {30, 9628}, {33, 4348}, {34, 7507}, {37, 52413}, {50, 31880}, {73, 6145}, {197, 11396}, {201, 2361}, {388, 37444}, {442, 45946}, {495, 13371}, {500, 17702}, {516, 38336}, {518, 52362}, {566, 63493}, {601, 18477}, {611, 44469}, {612, 5094}, {613, 44480}, {858, 3920}, {912, 8614}, {976, 20277}, {1056, 47528}, {1068, 64086}, {1399, 44706}, {1478, 18569}, {1479, 37729}, {1717, 28146}, {1718, 9956}, {1829, 20989}, {1836, 4347}, {1935, 24431}, {2293, 22954}, {2594, 8555}, {3056, 37473}, {3058, 38323}, {3085, 37119}, {3086, 7558}, {3091, 63669}, {3100, 15338}, {3585, 31724}, {3715, 54305}, {4294, 35471}, {4296, 7354}, {4302, 8144}, {4351, 18990}, {4354, 44242}, {5252, 59285}, {5270, 7574}, {5310, 21284}, {6020, 53772}, {6198, 6240}, {6872, 9639}, {7191, 7495}, {7568, 15325}, {9673, 11399}, {10056, 18281}, {10088, 15132}, {10149, 10295}, {10896, 37696}, {10950, 54292}, {10953, 34231}, {11363, 20988}, {12184, 39844}, {12373, 19505}, {12588, 34118}, {12903, 15133}, {12943, 64053}, {13182, 39815}, {13407, 63326}, {16063, 29815}, {17718, 30142}, {18580, 31452}, {18984, 41590}, {20833, 51692}, {32330, 32378}, {37697, 54401}, {40635, 40985}, {41335, 62211}, {63974, 64295}, {64147, 64324}
X(64339) = pole of line {21, 9630} with respect to the Stammler hyperbola
X(64339) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6145)}}, {{A, B, C, X(21), X(9630)}}, {{A, B, C, X(943), X(18455)}}, {{A, B, C, X(1036), X(9672)}}, {{A, B, C, X(1037), X(9659)}}, {{A, B, C, X(2346), X(9627)}}
X(64339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1060, 56}, {6198, 6284, 9629}
X(64340) lies on these lines: {1, 31188}, {2, 12630}, {7, 35445}, {8, 31205}, {11, 7679}, {55, 16133}, {100, 59374}, {354, 5218}, {390, 1699}, {495, 4313}, {3035, 38314}, {3475, 63212}, {3616, 31233}, {3622, 12640}, {4345, 5703}, {4460, 26245}, {4661, 5273}, {5281, 5542}, {5550, 34501}, {5558, 52793}, {5882, 64321}, {5905, 12850}, {6172, 41570}, {6767, 38022}, {7674, 60996}, {8162, 61158}, {9897, 10056}, {10177, 18230}, {10580, 63263}, {11034, 11038}, {11041, 34718}, {12247, 12735}, {17718, 30332}, {20119, 33993}, {28169, 31992}, {33108, 64146}, {35023, 38053}, {35258, 60976}, {37703, 64108}, {37787, 64346}, {42819, 62710}, {58451, 64083}, {63974, 64295}, {64147, 64324}
X(64340) = inverse of X(8236) in Feuerbach hyperbola
X(64340) = anticomplement of X(64371)
X(64340) = X(i)-Dao conjugate of X(j) for these {i, j}: {64371, 64371}
X(64341) lies on these lines: {1, 26742}, {2, 42843}, {3, 5427}, {6, 650}, {7, 12831}, {11, 37541}, {55, 3911}, {56, 5882}, {57, 11502}, {63, 61653}, {65, 22753}, {100, 33925}, {104, 1470}, {140, 64342}, {142, 480}, {354, 1376}, {474, 5883}, {519, 52148}, {999, 1317}, {1001, 61649}, {1012, 10265}, {1155, 1445}, {1210, 11509}, {1406, 37732}, {1466, 1837}, {1768, 61718}, {1788, 26357}, {2099, 12736}, {2346, 5218}, {3058, 6244}, {3149, 5221}, {3174, 60985}, {3244, 3304}, {3295, 15720}, {3303, 10165}, {3333, 11501}, {3336, 6985}, {3338, 11499}, {3649, 6918}, {3913, 20323}, {4000, 45946}, {4317, 18518}, {4848, 10966}, {4860, 5083}, {5348, 52424}, {5435, 37578}, {5563, 61291}, {5902, 6326}, {6174, 6600}, {6180, 45885}, {6181, 43046}, {6713, 10072}, {6738, 22768}, {6883, 15175}, {6905, 64147}, {7071, 23711}, {7742, 34753}, {7972, 15180}, {8069, 33814}, {9709, 15888}, {10246, 64351}, {10306, 37722}, {10950, 30283}, {11038, 61156}, {11246, 19541}, {11500, 32636}, {11510, 64124}, {11517, 58405}, {14986, 26358}, {17366, 51408}, {17572, 18221}, {21635, 61716}, {25524, 56387}, {25954, 59405}, {26866, 53279}, {31190, 58328}, {33519, 60884}, {37723, 59326}, {37730, 40293}, {37734, 41426}, {52819, 64152}, {55870, 58651}, {63974, 64295}
X(64342) lies on these lines: {1, 6883}, {3, 3649}, {10, 3303}, {11, 498}, {21, 42843}, {37, 7124}, {55, 946}, {56, 954}, {78, 1001}, {140, 64341}, {354, 55104}, {405, 10176}, {497, 6991}, {943, 26357}, {958, 3984}, {1125, 11517}, {1260, 24953}, {1898, 7675}, {2346, 43745}, {2646, 12114}, {3058, 7958}, {3085, 6830}, {3485, 37601}, {3487, 37578}, {3560, 6326}, {3601, 11372}, {3616, 13279}, {3646, 10389}, {3746, 8227}, {3748, 12260}, {4654, 35202}, {4870, 64077}, {4995, 10306}, {5047, 45085}, {5217, 12511}, {5259, 64260}, {5506, 61718}, {5552, 26105}, {5687, 31245}, {5703, 37579}, {5719, 7742}, {5919, 10912}, {6737, 37724}, {6767, 10573}, {6913, 10543}, {6949, 10596}, {6985, 37701}, {7288, 62800}, {7992, 10383}, {8273, 10404}, {8544, 37600}, {10056, 16202}, {10267, 63259}, {10679, 31452}, {11281, 37282}, {11500, 61648}, {11510, 13405}, {11525, 37556}, {11553, 37537}, {11715, 12739}, {12267, 16370}, {13384, 22759}, {19854, 37722}, {21319, 22654}, {24457, 48297}, {24929, 62333}, {25542, 37723}, {30147, 64137}, {37228, 56177}, {37426, 61716}, {37541, 52793}, {37737, 40292}, {42885, 62874}, {63974, 64295}, {64147, 64324}
X(64342) = midpoint of X(i) and X(j) for these {i,j}: {1, 7162}
X(64342) = inverse of X(3295) in Feuerbach hyperbola
X(64342) = pole of line {3295, 26921} with respect to the Feuerbach hyperbola
X(64342) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {52769, 63274, 56}
X(64343) lies on these lines: {1, 61156}, {2, 3689}, {7, 41553}, {8, 5424}, {9, 3935}, {55, 4661}, {89, 678}, {100, 4860}, {145, 1385}, {149, 5660}, {165, 3218}, {192, 4777}, {200, 35595}, {214, 3241}, {518, 61157}, {519, 2320}, {1100, 17756}, {1320, 6911}, {1621, 3711}, {2646, 20014}, {3158, 3306}, {3240, 3722}, {3621, 18231}, {3623, 56176}, {3651, 3871}, {3749, 63074}, {3895, 7982}, {3897, 20054}, {3911, 64353}, {4361, 4954}, {4393, 31020}, {4421, 23958}, {4660, 30991}, {4678, 37080}, {4867, 25439}, {5218, 64351}, {5541, 39778}, {5658, 20075}, {5659, 36845}, {6846, 10528}, {7674, 62778}, {9803, 12648}, {10385, 26792}, {16669, 30653}, {16777, 37675}, {16858, 56115}, {17242, 62668}, {17483, 34607}, {20053, 37571}, {20085, 34627}, {24344, 49479}, {24929, 31145}, {25417, 42042}, {25959, 50748}, {28465, 50823}, {29817, 64135}, {33110, 64146}, {34791, 37307}, {37651, 53534}, {51570, 51817}, {56028, 58433}, {60962, 63145}, {61153, 62235}, {63974, 64295}, {64147, 64324}
X(64343) = reflection of X(i) in X(j) for these {i,j}: {64361, 52638}
X(64343) = anticomplement of X(64361)
X(64343) = X(i)-Dao conjugate of X(j) for these {i, j}: {64361, 64361}
X(64343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {52638, 64361, 2}
X(64344) lies on the Feuerbach hyperbola and on these lines: {1, 37106}, {2, 6598}, {4, 4313}, {7, 2646}, {8, 33116}, {9, 3984}, {20, 79}, {21, 12635}, {35, 15173}, {55, 17097}, {80, 3085}, {377, 11604}, {390, 15909}, {405, 12867}, {943, 62873}, {1012, 10308}, {1058, 24298}, {1172, 13739}, {1319, 5558}, {1320, 3303}, {1385, 3296}, {1389, 3295}, {1392, 5919}, {1420, 10390}, {1442, 8809}, {1476, 34471}, {2099, 56030}, {2320, 3868}, {2335, 62802}, {3062, 7675}, {3254, 3622}, {3255, 17576}, {3488, 6861}, {3601, 5665}, {3616, 43740}, {3680, 10389}, {3748, 7320}, {3811, 4866}, {4292, 43732}, {4304, 5561}, {4323, 51512}, {5424, 10122}, {5557, 11036}, {5560, 19925}, {5694, 55918}, {5732, 31507}, {5758, 24299}, {6601, 8236}, {7091, 13384}, {7284, 18444}, {9957, 14497}, {10039, 43731}, {10246, 15179}, {10528, 34918}, {10543, 10883}, {11491, 16615}, {15180, 24926}, {15910, 22836}, {17098, 59337}, {17544, 61718}, {17558, 35016}, {18490, 24928}, {30389, 45834}, {31660, 37300}, {34917, 60975}, {37434, 64329}, {40430, 56948}, {56027, 62864}, {56203, 61722}, {57287, 58463}, {63974, 64295}, {64147, 64324}
X(64344) = trilinear pole of line {650, 6003}
X(64344) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 25525}
X(64344) = X(i)-vertex conjugate of X(j) for these {i, j}: {56, 5558}
X(64344) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 25525}
X(64344) = X(i)-cross conjugate of X(j) for these {i, j}: {11020, 7}
X(64344) = pole of line {11020, 64344} with respect to the Feuerbach hyperbola
X(64344) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(2), X(13739)}}, {{A, B, C, X(3), X(24929)}}, {{A, B, C, X(20), X(1442)}}, {{A, B, C, X(27), X(16865)}}, {{A, B, C, X(29), X(37106)}}, {{A, B, C, X(35), X(11270)}}, {{A, B, C, X(37), X(12635)}}, {{A, B, C, X(55), X(2646)}}, {{A, B, C, X(56), X(3477)}}, {{A, B, C, X(59), X(939)}}, {{A, B, C, X(63), X(1255)}}, {{A, B, C, X(77), X(1792)}}, {{A, B, C, X(78), X(5703)}}, {{A, B, C, X(272), X(5331)}}, {{A, B, C, X(280), X(56104)}}, {{A, B, C, X(573), X(55100)}}, {{A, B, C, X(759), X(51223)}}, {{A, B, C, X(945), X(41432)}}, {{A, B, C, X(951), X(37741)}}, {{A, B, C, X(959), X(2218)}}, {{A, B, C, X(963), X(41431)}}, {{A, B, C, X(1002), X(2217)}}, {{A, B, C, X(1043), X(60041)}}, {{A, B, C, X(1170), X(42318)}}, {{A, B, C, X(1222), X(56314)}}, {{A, B, C, X(1257), X(5936)}}, {{A, B, C, X(1259), X(33597)}}, {{A, B, C, X(1319), X(3303)}}, {{A, B, C, X(1385), X(3295)}}, {{A, B, C, X(1388), X(5919)}}, {{A, B, C, X(1411), X(37724)}}, {{A, B, C, X(1420), X(10389)}}, {{A, B, C, X(1697), X(13384)}}, {{A, B, C, X(1807), X(11374)}}, {{A, B, C, X(2167), X(41514)}}, {{A, B, C, X(2334), X(18772)}}, {{A, B, C, X(3006), X(36565)}}, {{A, B, C, X(3057), X(34471)}}, {{A, B, C, X(3085), X(4511)}}, {{A, B, C, X(3160), X(7675)}}, {{A, B, C, X(3304), X(3748)}}, {{A, B, C, X(3423), X(3445)}}, {{A, B, C, X(3449), X(34430)}}, {{A, B, C, X(3612), X(59337)}}, {{A, B, C, X(3616), X(3811)}}, {{A, B, C, X(3622), X(3935)}}, {{A, B, C, X(3746), X(37525)}}, {{A, B, C, X(3868), X(4653)}}, {{A, B, C, X(4350), X(8236)}}, {{A, B, C, X(4567), X(58012)}}, {{A, B, C, X(5208), X(10448)}}, {{A, B, C, X(6740), X(54972)}}, {{A, B, C, X(6767), X(24928)}}, {{A, B, C, X(6884), X(17515)}}, {{A, B, C, X(7269), X(11036)}}, {{A, B, C, X(8544), X(31721)}}, {{A, B, C, X(9957), X(10246)}}, {{A, B, C, X(18359), X(27789)}}, {{A, B, C, X(19765), X(37539)}}, {{A, B, C, X(25252), X(25255)}}, {{A, B, C, X(27475), X(55986)}}, {{A, B, C, X(27818), X(39273)}}, {{A, B, C, X(36626), X(60158)}}, {{A, B, C, X(41013), X(56221)}}, {{A, B, C, X(44178), X(56054)}}, {{A, B, C, X(54051), X(57643)}}, {{A, B, C, X(54357), X(60247)}}, {{A, B, C, X(55965), X(57826)}}, {{A, B, C, X(55991), X(60077)}}, {{A, B, C, X(56098), X(56331)}}, {{A, B, C, X(60666), X(61373)}}, {{A, B, C, X(60975), X(60981)}}
X(64344) = barycentric quotient X(i)/X(j) for these (i, j): {1, 25525}
X(64345) lies on circumconic {{A, B, C, X(17758), X(38543)}} and on these lines: {1, 48501}, {3, 79}, {5, 14526}, {12, 5884}, {55, 11218}, {65, 495}, {100, 5880}, {142, 44785}, {226, 1155}, {354, 2886}, {442, 5883}, {550, 12047}, {946, 2646}, {1156, 61008}, {1454, 31423}, {1768, 5219}, {1836, 7411}, {3244, 12609}, {3475, 33110}, {3485, 37163}, {3649, 31806}, {4500, 17758}, {4870, 28458}, {6839, 33857}, {6881, 61722}, {6884, 16141}, {6906, 11375}, {7489, 16152}, {7701, 16767}, {7702, 11374}, {8255, 63254}, {8727, 17603}, {9956, 13750}, {11112, 11263}, {13996, 15888}, {15079, 61718}, {15346, 34917}, {17451, 38543}, {17528, 47033}, {17728, 27186}, {18393, 37606}, {20323, 51706}, {21617, 31391}, {33592, 37571}, {44782, 47516}, {63974, 64295}, {64147, 64324}
X(64346) lies on these lines: {1, 58643}, {9, 63168}, {10, 37556}, {11, 31393}, {40, 3649}, {55, 1750}, {57, 3475}, {200, 1001}, {518, 38399}, {946, 1697}, {1768, 15298}, {3303, 3646}, {3333, 37703}, {3601, 12114}, {3711, 37080}, {3811, 35016}, {5316, 7080}, {5531, 46816}, {5919, 11525}, {6600, 46917}, {7160, 13411}, {7966, 31397}, {7988, 45035}, {10179, 10912}, {11379, 53053}, {11495, 30353}, {11518, 63976}, {11715, 13384}, {18391, 51779}, {31435, 59722}, {31452, 37560}, {33993, 48363}, {33995, 44675}, {35258, 60965}, {37787, 64340}, {40659, 61718}, {41539, 44841}, {51780, 64162}, {52638, 54408}, {54318, 64137}, {61763, 64152}, {63974, 64295}, {64147, 64324}
X(64346) = inverse of X(31393) in Feuerbach hyperbola
X(64346) = pole of line {10398, 31393} with respect to the Feuerbach hyperbola
X(64347) lies on these lines: {1, 4}, {3, 77}, {9, 18675}, {40, 37755}, {46, 18593}, {48, 1449}, {56, 37310}, {57, 7114}, {63, 3157}, {65, 46009}, {72, 64082}, {78, 1060}, {84, 1419}, {221, 43058}, {222, 1181}, {228, 20764}, {241, 36745}, {255, 21165}, {347, 5758}, {386, 51775}, {389, 45963}, {495, 10367}, {500, 7675}, {517, 37413}, {651, 7330}, {936, 53996}, {942, 5256}, {943, 8809}, {975, 20281}, {982, 45984}, {999, 13737}, {1012, 64055}, {1038, 10360}, {1040, 4303}, {1062, 10884}, {1103, 5657}, {1125, 20262}, {1148, 2331}, {1158, 34043}, {1210, 56418}, {1214, 7078}, {1385, 5909}, {1394, 6906}, {1422, 6935}, {1427, 5706}, {1442, 5703}, {1445, 36754}, {1448, 63982}, {1452, 56842}, {1456, 11496}, {1465, 41344}, {1697, 53557}, {1708, 54301}, {1763, 2360}, {2003, 62810}, {2200, 51210}, {2263, 7138}, {2286, 37592}, {2323, 62858}, {2646, 15498}, {2658, 54418}, {3085, 10365}, {3100, 41854}, {3182, 3601}, {3295, 10373}, {3358, 34028}, {3562, 5709}, {3612, 11700}, {3646, 34591}, {3651, 7070}, {3811, 63802}, {3870, 5399}, {3916, 23072}, {4292, 56848}, {4296, 37531}, {4347, 37569}, {4652, 52407}, {4989, 22063}, {5044, 25930}, {5287, 11374}, {5719, 58799}, {5902, 54360}, {6147, 7190}, {6508, 31435}, {6675, 59613}, {6833, 34050}, {6846, 54425}, {6847, 18623}, {7412, 55311}, {7532, 37697}, {8164, 8282}, {8758, 64020}, {8766, 37554}, {8808, 13411}, {9576, 16143}, {10366, 17718}, {10374, 37080}, {10379, 37324}, {10786, 51375}, {11022, 17609}, {11036, 17011}, {11529, 18673}, {14110, 15832}, {14377, 45128}, {15881, 33597}, {17074, 37534}, {17421, 19861}, {18210, 64040}, {18447, 37700}, {19349, 63437}, {20211, 37054}, {20280, 30115}, {20581, 63962}, {23070, 24467}, {23071, 26921}, {24025, 59333}, {24929, 37046}, {26892, 34956}, {28011, 62266}, {32047, 37533}, {33587, 61762}, {34032, 52384}, {36742, 62836}, {37800, 55108}, {39791, 40944}, {45929, 46835}, {58617, 64206}, {59215, 61122}, {63974, 64295}, {64147, 64324}
X(64347) = X(i)-Dao conjugate of X(j) for these {i, j}: {12514, 406}, {52118, 522}
X(64347) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57832, 63}
X(64347) = pole of line {65, 11022} with respect to the Feuerbach hyperbola
X(64347) = pole of line {283, 2000} with respect to the Stammler hyperbola
X(64347) = pole of line {4397, 4467} with respect to the dual conic of polar circle
X(64347) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1804)}}, {{A, B, C, X(3), X(33)}}, {{A, B, C, X(4), X(77)}}, {{A, B, C, X(34), X(7053)}}, {{A, B, C, X(78), X(6198)}}, {{A, B, C, X(225), X(1439)}}, {{A, B, C, X(278), X(6349)}}, {{A, B, C, X(943), X(44695)}}, {{A, B, C, X(1410), X(57652)}}, {{A, B, C, X(1785), X(62402)}}, {{A, B, C, X(1838), X(8809)}}, {{A, B, C, X(7013), X(7952)}}, {{A, B, C, X(14547), X(19614)}}, {{A, B, C, X(45126), X(56216)}}
X(64347) = barycentric product X(i)*X(j) for these (i, j): {1, 6349}, {4295, 63}
X(64347) = barycentric quotient X(i)/X(j) for these (i, j): {4295, 92}, {6349, 75}
X(64347) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1079, 1478}, {1, 1490, 6198}, {1, 1745, 33}, {1, 223, 4}, {1, 3468, 34}, {1, 73, 18446}, {73, 20277, 1}, {222, 17102, 63399}, {255, 54320, 21165}, {1214, 7078, 55104}, {3562, 17080, 5709}
X(64348) lies on these lines: {1, 3}, {33, 64158}, {34, 5718}, {37, 37228}, {69, 34772}, {78, 1211}, {442, 975}, {612, 5794}, {997, 13728}, {1837, 37360}, {2303, 16049}, {3486, 26118}, {3672, 4190}, {3772, 47516}, {3811, 10371}, {4296, 5712}, {4657, 19861}, {5262, 6910}, {5530, 57277}, {5716, 6836}, {5928, 10393}, {8895, 52362}, {11112, 50068}, {12610, 64160}, {17016, 37642}, {17647, 30142}, {26066, 35466}, {26215, 64415}, {37224, 44307}, {37428, 50070}, {37468, 50065}, {37715, 54401}, {54417, 64040}, {63974, 64295}, {64147, 64324}
X(64348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1038, 940}
X(64349) lies on these lines: {1, 3}, {5, 54401}, {6, 41538}, {8, 54292}, {9, 7299}, {10, 57277}, {11, 7399}, {12, 34}, {21, 28709}, {31, 201}, {33, 3575}, {37, 608}, {38, 603}, {47, 26921}, {63, 1399}, {66, 73}, {72, 64020}, {77, 3665}, {78, 3416}, {90, 35194}, {172, 571}, {197, 1829}, {210, 54305}, {221, 64041}, {225, 64086}, {226, 4347}, {227, 11501}, {348, 1442}, {388, 1370}, {495, 23335}, {497, 6815}, {498, 37697}, {500, 44665}, {518, 54289}, {570, 2275}, {601, 44706}, {614, 5433}, {750, 1393}, {774, 52428}, {943, 1063}, {975, 11375}, {984, 1935}, {1394, 7174}, {1411, 19860}, {1421, 3624}, {1428, 5157}, {1448, 10404}, {1451, 62847}, {1455, 22759}, {1469, 3313}, {1478, 14790}, {1479, 18420}, {1486, 11363}, {1788, 5262}, {1791, 3869}, {1870, 3085}, {1950, 7251}, {2003, 5904}, {2263, 3649}, {2330, 19365}, {2361, 55104}, {2594, 3811}, {2999, 31230}, {3011, 54346}, {3028, 54376}, {3056, 19161}, {3073, 7082}, {3083, 56504}, {3084, 56506}, {3086, 7383}, {3242, 34046}, {3485, 4318}, {3585, 31723}, {3600, 29815}, {3614, 63669}, {3688, 7066}, {3782, 7702}, {3870, 52362}, {3961, 36493}, {4185, 40635}, {4294, 6198}, {4302, 64054}, {4319, 63273}, {4320, 5434}, {4327, 52783}, {4330, 9644}, {4332, 5311}, {5160, 47340}, {5248, 16577}, {5252, 6357}, {5256, 43053}, {5261, 31099}, {5265, 17024}, {5268, 19372}, {5293, 37694}, {5297, 10588}, {5310, 21213}, {5336, 56325}, {5576, 7951}, {6253, 57276}, {7098, 17126}, {7179, 7210}, {7190, 7198}, {7191, 7288}, {7286, 46517}, {7330, 24431}, {7713, 20989}, {7741, 37347}, {8728, 15253}, {8900, 10944}, {9673, 54428}, {9817, 10896}, {10055, 19471}, {10056, 44441}, {10106, 30145}, {10149, 37931}, {10571, 30115}, {10830, 22479}, {10833, 11399}, {10953, 56814}, {11237, 34609}, {11396, 52359}, {12701, 61086}, {12953, 18494}, {13161, 18961}, {13740, 14594}, {15171, 31833}, {15338, 44239}, {15556, 62805}, {15852, 51361}, {17602, 57285}, {20986, 64040}, {24609, 28713}, {26060, 37771}, {26926, 39897}, {31397, 59285}, {40663, 54418}, {43039, 54317}, {43054, 59301}, {43214, 54394}, {44547, 61398}, {45288, 54400}, {52347, 55392}, {52440, 62833}, {54304, 64172}, {56384, 56497}, {56427, 56498}, {61397, 63976}, {63974, 64295}, {64147, 64324}
X(64349) = pole of line {1, 45015} with respect to the Feuerbach hyperbola
X(64349) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(66)}}, {{A, B, C, X(3), X(4280)}}, {{A, B, C, X(9), X(33178)}}, {{A, B, C, X(37), X(41340)}}, {{A, B, C, X(57), X(56366)}}, {{A, B, C, X(942), X(1063)}}, {{A, B, C, X(943), X(1062)}}, {{A, B, C, X(947), X(15177)}}, {{A, B, C, X(1036), X(10832)}}, {{A, B, C, X(1037), X(10831)}}, {{A, B, C, X(1060), X(1791)}}, {{A, B, C, X(1155), X(46380)}}, {{A, B, C, X(2218), X(40959)}}, {{A, B, C, X(3666), X(55936)}}, {{A, B, C, X(5903), X(56136)}}, {{A, B, C, X(10319), X(52351)}}
X(64349) = barycentric product X(i)*X(j) for these (i, j): {1, 56366}, {1441, 4280}, {11392, 63}, {46380, 664}
X(64349) = barycentric quotient X(i)/X(j) for these (i, j): {4280, 21}, {11392, 92}, {46380, 522}, {56366, 75}
X(64349) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1038, 56}, {1, 35, 1062}, {34, 612, 12}, {612, 4348, 34}, {975, 34036, 11375}, {3811, 45126, 2594}, {3920, 4296, 388}, {4347, 30142, 226}
X(64350) lies on these lines: {1, 3525}, {4, 5726}, {8, 6675}, {10, 38316}, {12, 13865}, {40, 30424}, {55, 21669}, {226, 31436}, {388, 59316}, {495, 6361}, {498, 16173}, {631, 61762}, {942, 5657}, {944, 3601}, {950, 38074}, {1000, 13411}, {1056, 15803}, {1058, 31434}, {1145, 3616}, {1317, 12247}, {1387, 7320}, {1697, 8164}, {1788, 50190}, {3057, 3085}, {3090, 31393}, {3146, 51787}, {3295, 5818}, {3476, 31452}, {3486, 9897}, {3487, 5903}, {3488, 10039}, {3529, 51782}, {3545, 12575}, {3634, 51781}, {3654, 11036}, {3876, 10528}, {3895, 6856}, {4313, 34627}, {4315, 10299}, {4662, 34619}, {5067, 63993}, {5071, 51785}, {5119, 5714}, {5129, 51362}, {5218, 37618}, {5550, 64201}, {5556, 28216}, {5586, 21620}, {5690, 10578}, {5703, 31480}, {6736, 16845}, {6767, 9780}, {9785, 31479}, {9957, 18220}, {10303, 51788}, {10385, 10827}, {11037, 61524}, {11530, 19862}, {12245, 13405}, {12433, 53620}, {12541, 31493}, {13462, 61814}, {17538, 31508}, {18483, 53052}, {19875, 40270}, {21201, 23757}, {30478, 49626}, {31795, 54448}, {37556, 47743}, {37571, 41553}, {37704, 61886}, {50444, 61899}, {51783, 61964}, {58463, 64202}, {63974, 64295}, {64147, 64324}
X(64350) = reflection of X(i) in X(j) for these {i,j}: {64370, 10}
X(64351) lies on these lines: {11, 42819}, {55, 3218}, {214, 3753}, {226, 3058}, {1317, 24929}, {1319, 14563}, {1709, 10389}, {2293, 53535}, {2646, 3244}, {3295, 45288}, {3654, 37525}, {3689, 4847}, {3744, 63332}, {3746, 24475}, {3913, 4861}, {4995, 51463}, {5218, 64343}, {5424, 7972}, {5882, 37080}, {5919, 25485}, {10246, 64341}, {10385, 17483}, {10395, 10950}, {10543, 45287}, {11238, 62862}, {15950, 34746}, {16484, 52371}, {16777, 62372}, {17660, 41166}, {21677, 37734}, {25094, 49465}, {33925, 64338}, {37571, 61287}, {41341, 60948}, {41553, 52638}, {60919, 60962}, {63974, 64295}, {64147, 64324}
X(64351) = inverse of X(42819) in Feuerbach hyperbola
X(64351) = pole of line {3898, 30329} with respect to the Feuerbach hyperbola
X(64352) lies on these lines: {1, 1512}, {9, 26015}, {55, 3911}, {226, 1538}, {392, 10916}, {496, 10395}, {497, 1709}, {956, 49627}, {1000, 1737}, {1145, 5919}, {1210, 5690}, {1385, 15174}, {1387, 11230}, {1388, 21625}, {1484, 51755}, {1698, 12654}, {3035, 42819}, {3058, 17613}, {3475, 8166}, {3660, 5572}, {3663, 3676}, {3679, 46947}, {3740, 3816}, {5218, 33994}, {8071, 41565}, {8582, 10179}, {9001, 17115}, {9843, 44848}, {10265, 15558}, {10389, 31190}, {10580, 30284}, {12053, 45776}, {13226, 41166}, {14100, 41556}, {15170, 64193}, {15935, 25405}, {17721, 62372}, {24388, 59998}, {60961, 63973}, {63974, 64295}, {64147, 64324}
X(64352) = midpoint of X(i) and X(j) for these {i,j}: {1, 10051}
X(64352) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3816, 51380, 5316}, {12915, 15845, 226}
X(64353) lies on these lines: {2, 41553}, {55, 14151}, {57, 3957}, {390, 34789}, {497, 3748}, {1317, 2320}, {1319, 3241}, {1388, 64199}, {1621, 60944}, {2099, 18467}, {3158, 38460}, {3689, 31188}, {3870, 37787}, {3911, 64343}, {5083, 61157}, {5119, 18444}, {5281, 37525}, {5768, 6935}, {6049, 41824}, {7675, 30304}, {8545, 10389}, {12730, 31140}, {21617, 56028}, {30275, 63261}, {31526, 57090}, {36845, 64114}, {37736, 61155}, {60954, 62236}, {63974, 64295}, {64147, 64324}
X(64354) lies on these lines: {1, 442}, {81, 5597}, {5453, 48460}, {13408, 48454}, {18496, 63296}, {26290, 63291}, {26296, 63310}, {26302, 63311}, {26310, 63315}, {26319, 63316}, {26326, 63318}, {26334, 63321}, {26344, 63322}, {26351, 63332}, {26365, 63292}, {26371, 63293}, {26379, 63294}, {26380, 63295}, {26381, 63297}, {26383, 63320}, {26384, 63298}, {26385, 63299}, {26386, 63323}, {26387, 63327}, {26388, 63326}, {26389, 63325}, {26390, 63324}, {26393, 63304}, {26394, 37635}, {26395, 63333}, {26396, 63305}, {26397, 63306}, {26398, 63307}, {26399, 63308}, {26400, 63309}, {26401, 63342}, {26402, 63341}, {37631, 45696}, {44582, 63328}, {44583, 63329}, {45345, 63300}, {45348, 63301}, {45349, 63302}, {45352, 63303}, {45354, 63313}, {45355, 63317}, {45357, 63330}, {45360, 63331}, {45365, 63336}, {45366, 63337}, {45369, 63338}, {45371, 63339}, {45373, 63340}, {45711, 63354}, {45724, 63359}, {48456, 63355}, {48458, 63364}, {48462, 63345}, {48464, 63346}, {48470, 63347}, {48472, 63348}, {48474, 63349}, {48478, 63350}, {48480, 63351}, {48483, 63352}, {48485, 63353}, {48487, 63356}, {48489, 63357}, {48491, 63358}, {48495, 63361}, {48497, 63362}, {48499, 63363}, {48501, 63365}, {48503, 63366}, {48505, 63367}, {48507, 63368}, {48509, 63369}, {48511, 63370}, {48513, 63371}, {48515, 63372}, {48517, 63373}, {48519, 63374}, {48521, 63375}, {48523, 63376}, {48525, 63377}, {48527, 63378}, {48529, 63379}, {60880, 63381}, {63974, 64295}, {64147, 64324}
X(64354) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 63393, 64355}
X(64355) lies on these lines: {1, 442}, {81, 5598}, {5453, 48461}, {13408, 48455}, {18498, 63296}, {26291, 63291}, {26297, 63310}, {26303, 63311}, {26311, 63315}, {26320, 63316}, {26327, 63318}, {26335, 63321}, {26345, 63322}, {26352, 63332}, {26366, 63292}, {26372, 63293}, {26403, 63294}, {26404, 63295}, {26405, 63297}, {26407, 63320}, {26408, 63298}, {26409, 63299}, {26410, 63323}, {26411, 63327}, {26412, 63326}, {26413, 63325}, {26414, 63324}, {26417, 63304}, {26418, 37635}, {26419, 63333}, {26420, 63305}, {26421, 63306}, {26422, 63307}, {26423, 63308}, {26424, 63309}, {26425, 63342}, {26426, 63341}, {37631, 45697}, {44584, 63328}, {44585, 63329}, {45346, 63301}, {45347, 63300}, {45350, 63303}, {45351, 63302}, {45353, 63312}, {45356, 63317}, {45358, 63331}, {45359, 63330}, {45367, 63337}, {45368, 63336}, {45370, 63338}, {45372, 63339}, {45374, 63340}, {45712, 63354}, {45725, 63359}, {48457, 63355}, {48459, 63364}, {48463, 63345}, {48465, 63346}, {48471, 63347}, {48473, 63348}, {48475, 63349}, {48479, 63350}, {48481, 63351}, {48484, 63352}, {48486, 63353}, {48488, 63356}, {48490, 63357}, {48492, 63358}, {48496, 63361}, {48498, 63362}, {48500, 63363}, {48502, 63365}, {48504, 63366}, {48506, 63367}, {48508, 63368}, {48510, 63369}, {48512, 63370}, {48514, 63371}, {48516, 63372}, {48518, 63373}, {48520, 63374}, {48522, 63375}, {48524, 63376}, {48526, 63377}, {48528, 63378}, {48530, 63379}, {60881, 63381}, {63974, 64295}, {64147, 64324}
X(64355) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 63393, 64354}
X(64356) lies on these lines: {1, 21}, {9, 63298}, {37, 63329}, {176, 18625}, {323, 56384}, {482, 55010}, {1100, 63328}, {1449, 63299}, {5393, 35466}, {5405, 17056}, {6357, 31538}, {7969, 61661}, {13389, 18593}, {31583, 32419}, {34494, 47057}, {63974, 64295}, {64147, 64324}
X(64357) lies on these lines: {1, 21}, {9, 63299}, {37, 63328}, {175, 18625}, {323, 56427}, {481, 55010}, {1100, 63329}, {1449, 63298}, {5393, 17056}, {5405, 35466}, {6357, 31539}, {7968, 61661}, {13388, 18593}, {31582, 32421}, {34495, 47057}, {63974, 64295}, {64147, 64324}
X(64358) lies on these lines: {1, 10308}, {2, 13369}, {3, 3219}, {4, 7}, {5, 27186}, {11, 18243}, {20, 912}, {30, 3868}, {40, 2801}, {57, 41562}, {63, 3651}, {72, 376}, {75, 48877}, {78, 7171}, {84, 943}, {90, 104}, {165, 63967}, {222, 6198}, {226, 6845}, {329, 6899}, {355, 6951}, {382, 24475}, {411, 13243}, {443, 17616}, {500, 28606}, {515, 1770}, {517, 3529}, {518, 6361}, {553, 10399}, {603, 3465}, {631, 5777}, {651, 1062}, {916, 11412}, {944, 3057}, {946, 50190}, {956, 12529}, {960, 63432}, {993, 16132}, {1006, 7330}, {1012, 12684}, {1056, 12711}, {1058, 17625}, {1125, 61705}, {1158, 11491}, {1479, 16127}, {1490, 1708}, {1519, 54227}, {1614, 47371}, {1699, 12005}, {1745, 7004}, {1768, 6796}, {1776, 7742}, {1836, 16116}, {1858, 4293}, {1864, 64132}, {1870, 64057}, {1898, 3086}, {2096, 6934}, {2771, 3648}, {2772, 23156}, {2808, 5562}, {3090, 5927}, {3091, 10202}, {3100, 3157}, {3146, 24474}, {3149, 26877}, {3218, 6985}, {3487, 10391}, {3522, 31837}, {3524, 5044}, {3525, 11227}, {3528, 31805}, {3545, 5439}, {3560, 18444}, {3562, 64054}, {3576, 31803}, {3579, 3681}, {3583, 41690}, {3587, 3951}, {3616, 31937}, {3652, 62838}, {3655, 3890}, {3656, 62854}, {3660, 47743}, {3678, 35242}, {3698, 38074}, {3873, 12699}, {3874, 41869}, {3877, 34773}, {3878, 50811}, {3881, 31162}, {3885, 18526}, {3889, 22791}, {3897, 12919}, {3916, 6876}, {3918, 61256}, {3927, 37426}, {3935, 35448}, {3982, 18398}, {4297, 5693}, {4303, 24430}, {4305, 64041}, {4420, 35238}, {4654, 10122}, {4662, 5657}, {5067, 10157}, {5083, 9614}, {5225, 5570}, {5229, 13750}, {5248, 7701}, {5249, 6990}, {5450, 37616}, {5492, 62831}, {5534, 63985}, {5603, 12675}, {5658, 6834}, {5691, 5884}, {5720, 6940}, {5731, 5887}, {5732, 55104}, {5758, 10430}, {5770, 6838}, {5791, 58658}, {5811, 6947}, {5836, 34627}, {5883, 18492}, {5886, 26201}, {5902, 31673}, {5904, 31730}, {5905, 6851}, {5918, 63976}, {6000, 23154}, {6147, 11020}, {6197, 63434}, {6245, 6830}, {6260, 6941}, {6326, 63983}, {6763, 16143}, {6833, 12664}, {6841, 31019}, {6848, 41560}, {6895, 37826}, {6896, 9776}, {6902, 37822}, {6903, 58798}, {6909, 37700}, {6912, 37615}, {6915, 37612}, {6920, 18443}, {6922, 13257}, {6927, 11575}, {6937, 51755}, {6946, 37534}, {6950, 33597}, {6972, 37713}, {7411, 26921}, {7491, 9964}, {7967, 12672}, {7971, 10698}, {7986, 17016}, {7987, 20117}, {7992, 53053}, {8143, 62840}, {8144, 23070}, {8227, 31871}, {8581, 12710}, {8726, 64197}, {8728, 10861}, {9021, 48905}, {9579, 18389}, {9638, 36059}, {9780, 40296}, {9856, 10595}, {9859, 37429}, {9955, 64149}, {9965, 14054}, {10156, 61867}, {10404, 17637}, {10531, 64130}, {10728, 11570}, {10786, 14647}, {10806, 54228}, {11108, 60884}, {11459, 11573}, {11523, 58808}, {12082, 37547}, {12114, 21740}, {12116, 18839}, {12532, 38761}, {12665, 34474}, {12691, 52026}, {12701, 17660}, {12775, 49171}, {13151, 16865}, {13624, 56203}, {13754, 20243}, {14923, 28204}, {15016, 19925}, {15045, 58497}, {15064, 31423}, {15528, 59391}, {15682, 24473}, {16138, 62870}, {17074, 37696}, {17483, 37433}, {17538, 31793}, {17613, 64116}, {17615, 59591}, {17857, 64129}, {18517, 20292}, {18525, 50239}, {18540, 54392}, {18623, 38295}, {18908, 31787}, {19904, 37441}, {21161, 31424}, {21312, 42461}, {23361, 53252}, {24468, 63267}, {25413, 28224}, {26040, 45084}, {26200, 61284}, {26871, 56876}, {28164, 37625}, {28186, 64044}, {28461, 62829}, {29958, 64100}, {30290, 64110}, {31053, 37356}, {31418, 41871}, {31788, 59388}, {31822, 62021}, {33557, 37584}, {33575, 61787}, {33815, 34648}, {34339, 59387}, {34381, 39874}, {36002, 37532}, {37000, 64190}, {37427, 54398}, {37430, 57287}, {37460, 41609}, {37531, 63984}, {41465, 64039}, {41706, 64119}, {42463, 43574}, {43177, 60978}, {44547, 63995}, {45977, 63992}, {46475, 63158}, {50528, 62858}, {50558, 62801}, {56762, 63961}, {58630, 64108}, {60961, 63999}, {61762, 63430}, {62871, 63291}, {63974, 64295}, {64147, 64324}
X(64358) = reflection of X(i) in X(j) for these {i,j}: {4, 1071}, {382, 24475}, {944, 12680}, {3146, 24474}, {3869, 18481}, {3885, 18526}, {5691, 5884}, {5693, 4297}, {5904, 31730}, {10728, 11570}, {12528, 3}, {12532, 38761}, {12664, 18238}, {12666, 6261}, {12688, 12675}, {14872, 9943}, {15682, 24473}, {18239, 9942}, {31828, 26201}, {40263, 13369}, {40266, 34773}, {41869, 3874}, {64021, 15071}, {64144, 12671}
X(64358) = anticomplement of X(40263)
X(64358) = X(i)-Dao conjugate of X(j) for these {i, j}: {40263, 40263}
X(64358) = pole of line {905, 35057} with respect to the incircle
X(64358) = pole of line {1836, 3086} with respect to the Feuerbach hyperbola
X(64358) = pole of line {37584, 52012} with respect to the Stammler hyperbola
X(64358) = pole of line {17896, 25593} with respect to the Steiner circumellipse
X(64358) = pole of line {1459, 1734} with respect to the Suppa-Cucoanes circle
X(64358) = intersection, other than A, B, C, of circumconics {{A, B, C, X(273), X(10308)}}, {{A, B, C, X(342), X(943)}}, {{A, B, C, X(942), X(2188)}}
X(64358) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63, 41854, 3651}, {78, 7171, 37403}, {84, 18446, 6906}, {411, 13243, 24467}, {515, 15071, 64021}, {944, 12246, 6938}, {1490, 30304, 63399}, {1490, 63399, 6905}, {2096, 64144, 6934}, {2771, 18481, 3869}, {5768, 6223, 4}, {5927, 9940, 3090}, {6001, 12680, 944}, {6261, 10085, 104}, {9942, 18239, 5658}, {9943, 14872, 5657}, {9960, 12669, 1071}, {11220, 12528, 3}, {12675, 12688, 5603}, {26201, 31828, 5886}, {31805, 64107, 3528}, {33597, 34862, 6950}
X(64359) lies on these lines: {2, 15931}, {3, 3897}, {7, 2078}, {21, 18481}, {35, 145}, {36, 2320}, {55, 3218}, {100, 34879}, {104, 3655}, {535, 15175}, {993, 6224}, {1001, 10129}, {1617, 29817}, {1621, 1836}, {1768, 35258}, {3869, 16761}, {3872, 4996}, {3877, 37286}, {3935, 6600}, {4188, 11024}, {4189, 5450}, {4293, 10587}, {4679, 63917}, {4881, 52148}, {5217, 8668}, {5248, 10483}, {5250, 16132}, {5267, 45392}, {5744, 64146}, {6636, 10434}, {6796, 37291}, {6986, 25005}, {7987, 37293}, {8053, 16874}, {10267, 18444}, {10404, 63269}, {11113, 22799}, {11220, 20835}, {13589, 31394}, {16112, 60969}, {20045, 25241}, {20060, 54430}, {20846, 59366}, {27003, 37578}, {31660, 62858}, {35202, 37307}, {36867, 54391}, {38460, 40292}, {41341, 64149}, {51111, 64362}, {59331, 64281}, {63974, 64295}, {64147, 64324}
X(64359) = X(i)-vertex conjugate of X(j) for these {i, j}: {3218, 50359}
X(64359) = pole of line {3218, 50359} with respect to the circumcircle
X(64360) lies on circumconic {{A, B, C, X(10308), X(55105)}} and on these lines: {1, 10308}, {33, 64057}, {34, 222}, {56, 6610}, {58, 56848}, {65, 62207}, {73, 991}, {77, 1935}, {84, 20277}, {109, 59316}, {208, 7335}, {221, 3057}, {223, 580}, {225, 18623}, {269, 1451}, {651, 1038}, {1406, 54418}, {1413, 17603}, {1448, 2003}, {1455, 34471}, {1456, 17609}, {1457, 61762}, {1465, 37545}, {3157, 37483}, {3468, 63399}, {4320, 64020}, {4662, 9370}, {5903, 21147}, {6357, 57282}, {8614, 54421}, {10394, 34028}, {10404, 62845}, {10571, 37618}, {12514, 61225}, {17074, 19372}, {23070, 64053}, {23154, 32065}, {26892, 39791}, {31792, 34040}, {31938, 54289}, {34033, 53053}, {34036, 50190}, {36986, 47371}, {47057, 62871}, {63974, 64295}, {64147, 64324}
X(64360) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {222, 64055, 34}, {1394, 1419, 73}, {21147, 34043, 54400}
X(64361) lies on circumconic {{A, B, C, X(6548), X(14497)}} and on these lines: {1, 31254}, {2, 3689}, {8, 3090}, {9, 10707}, {11, 63961}, {63, 10032}, {75, 693}, {100, 5231}, {142, 11025}, {144, 5057}, {149, 62838}, {442, 62854}, {518, 10129}, {519, 17057}, {908, 3681}, {1000, 53620}, {1145, 1484}, {1320, 3679}, {1621, 24392}, {2886, 3873}, {2975, 33557}, {3006, 17233}, {3120, 62868}, {3218, 31140}, {3219, 11235}, {3419, 3655}, {3434, 5744}, {3626, 7705}, {3813, 3890}, {3816, 61032}, {3829, 27131}, {3838, 4430}, {3869, 6841}, {3872, 6326}, {3876, 24387}, {3877, 21630}, {3925, 17051}, {3957, 31245}, {4080, 49501}, {4197, 49627}, {4384, 30857}, {4431, 33089}, {4661, 17605}, {4662, 5154}, {4678, 17606}, {4691, 15079}, {4850, 29676}, {4861, 58744}, {4956, 17262}, {5086, 6838}, {5176, 38074}, {5178, 6989}, {5219, 62236}, {5316, 24386}, {5745, 34611}, {6067, 25722}, {6601, 18230}, {6734, 6943}, {6764, 10585}, {7704, 31835}, {9347, 11269}, {9352, 33110}, {9780, 14150}, {11238, 27065}, {12625, 51683}, {12730, 51102}, {17064, 62814}, {17236, 46909}, {17241, 29824}, {17246, 33134}, {17721, 33139}, {20292, 24477}, {21026, 31137}, {21242, 33120}, {21283, 32851}, {24892, 62806}, {25525, 62863}, {26738, 49490}, {27757, 49460}, {28606, 29690}, {29664, 62840}, {33104, 62795}, {33111, 62866}, {33142, 62807}, {36922, 62826}, {37651, 49772}, {41556, 60988}, {49719, 59491}, {52367, 62827}, {60933, 62235}, {60964, 64375}, {61156, 61649}, {62835, 64109}, {63974, 64295}, {64147, 64324}
X(64361) = reflection of X(i) in X(j) for these {i,j}: {64343, 52638}
X(64361) = complement of X(64343)
X(64361) = anticomplement of X(52638)
X(64361) = X(i)-Dao conjugate of X(j) for these {i, j}: {52638, 52638}
X(64361) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64343, 52638}, {2886, 51463, 31019}, {4847, 11680, 3681}, {26015, 33108, 64149}, {29676, 33136, 4850}, {29690, 33141, 28606}, {31019, 51463, 3873}
X(64362) lies on these lines: {1, 27086}, {3, 4861}, {8, 6796}, {21, 5832}, {35, 2320}, {36, 145}, {40, 4996}, {56, 3889}, {100, 26286}, {165, 34758}, {404, 17662}, {517, 45392}, {993, 15680}, {1476, 13587}, {2975, 3419}, {3241, 37583}, {3428, 56288}, {3522, 43161}, {3616, 5766}, {3869, 48667}, {3885, 5172}, {3890, 37308}, {4057, 23361}, {4420, 35252}, {4511, 11249}, {5541, 7280}, {6224, 8666}, {6261, 12532}, {6987, 10527}, {10966, 37300}, {14804, 25439}, {16143, 62824}, {22754, 37282}, {22767, 37301}, {32612, 64173}, {36152, 38460}, {36867, 62837}, {37293, 54286}, {40255, 52270}, {51111, 64359}, {63974, 64295}, {64147, 64324}
X(64363) lies on these lines: {36, 4421}, {55, 6173}, {57, 3957}, {993, 21161}, {1376, 15931}, {1621, 9580}, {3158, 60989}, {3576, 54286}, {10914, 63752}, {11034, 61153}, {30827, 64154}, {35271, 37525}, {37578, 52804}, {58328, 60977}, {63974, 64295}, {64147, 64324}
X(64364) lies on these lines: {35, 3633}, {40, 5267}, {56, 60982}, {104, 59331}, {993, 3651}, {3243, 3601}, {3340, 4189}, {3576, 63437}, {3652, 31424}, {11495, 37022}, {12767, 51576}, {15829, 37106}, {63974, 64295}, {64147, 64324}
X(64365) lies on these lines: {1, 21}, {2, 10408}, {8, 1764}, {12, 29472}, {56, 16574}, {72, 37620}, {78, 10882}, {405, 35620}, {908, 19863}, {956, 10441}, {958, 10473}, {960, 10475}, {1215, 15825}, {3436, 10479}, {3649, 29382}, {3741, 12527}, {3872, 12435}, {3895, 12546}, {4385, 6996}, {4388, 48883}, {4652, 10434}, {4847, 12545}, {4861, 11521}, {8583, 21371}, {10404, 29788}, {10446, 64081}, {10455, 20245}, {10478, 10527}, {10480, 12513}, {11021, 54392}, {12053, 24705}, {12544, 42012}, {12547, 64150}, {16828, 30007}, {17733, 24068}, {21061, 56318}, {23361, 46877}, {24390, 48899}, {63974, 64295}, {64147, 64324}
X(64365) = anticomplement of X(10408)
X(64365) = X(i)-Dao conjugate of X(j) for these {i, j}: {10408, 10408}
X(64365) = pole of line {3882, 21859} with respect to the Yff parabola
X(64365) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2975, 35614, 1}, {10476, 57279, 11679}
X(64366) lies on these lines: {1, 63382}, {7, 35258}, {55, 3243}, {165, 2550}, {1155, 38399}, {1836, 4512}, {3035, 21153}, {3174, 35445}, {3633, 61763}, {4297, 10268}, {4640, 5732}, {5794, 18253}, {30503, 46684}, {63974, 64295}, {64147, 64324}
X(64367) lies on these lines: {1, 35979}, {8, 5187}, {149, 41709}, {517, 63437}, {1001, 3057}, {1482, 3870}, {3340, 60982}, {3680, 27826}, {3692, 17444}, {5506, 9623}, {6765, 12653}, {7354, 11520}, {7962, 24987}, {7982, 41575}, {10941, 25415}, {12559, 14450}, {12773, 62874}, {63974, 64295}, {64147, 64324}
X(64368) lies on these lines: {100, 21153}, {142, 5231}, {200, 1001}, {329, 1699}, {497, 24393}, {956, 1490}, {1482, 4853}, {2886, 4654}, {3243, 64171}, {3358, 10860}, {4882, 5506}, {4915, 12653}, {5082, 11362}, {5785, 26015}, {6734, 10941}, {6745, 36835}, {9614, 31018}, {12526, 12699}, {14450, 54422}, {15733, 38399}, {31435, 51572}, {63974, 64295}, {64147, 64324}, {64153, 64197}
X(64369) lies on these lines: {1, 15910}, {3, 5696}, {8, 64278}, {9, 943}, {40, 1726}, {57, 26481}, {63, 2894}, {90, 3929}, {191, 6284}, {224, 3576}, {946, 60979}, {956, 5693}, {1697, 3632}, {1728, 21031}, {1836, 6763}, {1858, 5258}, {2886, 54302}, {2975, 16132}, {3333, 25557}, {3646, 15299}, {3683, 3746}, {3869, 3872}, {3962, 11009}, {5250, 36922}, {5288, 64041}, {5535, 6734}, {5692, 62333}, {5709, 18407}, {5762, 7330}, {5775, 40256}, {6597, 24298}, {6743, 26878}, {6762, 62822}, {10902, 64171}, {11012, 12671}, {12514, 12625}, {12666, 64277}, {14100, 31445}, {15901, 50205}, {24390, 49177}, {31419, 60883}, {31435, 64260}, {31730, 60970}, {41852, 60966}, {41870, 60964}, {50528, 62824}, {60933, 62858}, {62777, 63999}, {64147, 64324}
X(64369) = reflection of X(i) in X(j) for these {i,j}: {40, 2949}
X(64369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2949, 5842, 40}
X(64370) lies on these lines: {8, 5056}, {10, 38316}, {11, 4668}, {40, 5775}, {3419, 62824}, {3617, 3646}, {3626, 3680}, {3632, 17057}, {3679, 3893}, {3869, 31162}, {3872, 58744}, {3884, 24392}, {4677, 11375}, {4847, 5881}, {4853, 6326}, {4866, 12019}, {5587, 5806}, {6734, 31423}, {6736, 21631}, {6737, 61275}, {6743, 54447}, {10914, 63143}, {24390, 36922}, {24473, 41865}, {28161, 44314}, {41869, 63277}, {61291, 64081}, {63974, 64295}, {64147, 64324}
X(64370) = reflection of X(i) in X(j) for these {i,j}: {64350, 10}
X(64371) lies on these lines: {2, 12630}, {9, 9779}, {10, 61275}, {1698, 10179}, {2550, 10164}, {2886, 50865}, {3035, 38200}, {3059, 5231}, {3740, 30827}, {3828, 11525}, {3873, 25525}, {4007, 30741}, {5528, 38399}, {6265, 9623}, {6667, 19875}, {7320, 46932}, {9780, 64205}, {14475, 28169}, {36835, 45310}, {63974, 64295}, {64147, 64324}
X(64371) = complement of X(64340)
X(64372) lies on these lines: {1, 399}, {9, 100}, {11, 57}, {35, 1898}, {40, 80}, {46, 12764}, {55, 5531}, {63, 149}, {65, 12767}, {84, 104}, {109, 2310}, {153, 9578}, {165, 7082}, {191, 6284}, {200, 13205}, {214, 31435}, {226, 9809}, {484, 28146}, {516, 1776}, {528, 3929}, {920, 41869}, {936, 2932}, {950, 9803}, {952, 1697}, {971, 2078}, {1158, 9581}, {1317, 37556}, {1320, 6762}, {1376, 58683}, {1421, 7004}, {1479, 5770}, {1484, 9614}, {1706, 59415}, {1708, 45043}, {1717, 2964}, {1727, 3583}, {1728, 5128}, {1864, 3256}, {2006, 38357}, {2093, 6797}, {2136, 12531}, {2800, 3340}, {2801, 10389}, {2802, 57279}, {2958, 5532}, {3035, 7308}, {3057, 7993}, {3073, 33178}, {3219, 20095}, {3254, 60990}, {3333, 16173}, {3336, 10896}, {3359, 12619}, {3577, 48360}, {3586, 62354}, {3601, 6326}, {3612, 45764}, {3646, 64012}, {3652, 15171}, {3811, 47320}, {3928, 10707}, {4551, 9355}, {4654, 62839}, {4939, 34234}, {5083, 11020}, {5119, 9897}, {5218, 60911}, {5219, 21635}, {5227, 9024}, {5250, 6224}, {5285, 13222}, {5290, 63270}, {5437, 31272}, {5438, 17100}, {5506, 52793}, {5541, 41229}, {5709, 10738}, {5727, 12247}, {5825, 9778}, {5851, 60937}, {6264, 7962}, {6265, 13384}, {6597, 15680}, {6713, 37526}, {6763, 12701}, {7098, 51118}, {7171, 38602}, {7284, 55929}, {7972, 31393}, {7991, 17636}, {7992, 34489}, {8068, 59335}, {8069, 61705}, {8545, 63261}, {9612, 16128}, {9841, 38693}, {10085, 12740}, {10106, 64009}, {10396, 12736}, {10572, 64278}, {10582, 58591}, {10742, 18540}, {10768, 24469}, {10777, 53404}, {10860, 46684}, {10864, 64145}, {11010, 59503}, {11518, 11570}, {11523, 12532}, {11529, 11571}, {11698, 31434}, {11715, 63430}, {12331, 61763}, {12629, 17652}, {12672, 64267}, {12688, 37583}, {12691, 12775}, {12699, 54432}, {12735, 51779}, {13199, 55104}, {13273, 37550}, {13274, 54408}, {14100, 64264}, {15071, 62333}, {15297, 64112}, {15298, 41701}, {15558, 38669}, {15863, 63137}, {16138, 18990}, {16370, 33598}, {17654, 54156}, {17661, 64197}, {19914, 49163}, {20418, 49171}, {21630, 62858}, {22560, 62824}, {22775, 63992}, {22935, 30282}, {24466, 37551}, {31231, 64129}, {34474, 61122}, {36278, 61223}, {37532, 51517}, {37534, 57298}, {37541, 60910}, {37584, 48680}, {38761, 58808}, {39692, 59333}, {39778, 62829}, {41546, 62800}, {41689, 59337}, {44547, 63266}, {46685, 56545}, {50443, 63399}, {63974, 64295}, {64147, 64324}
X(64372) = pole of line {53300, 55126} with respect to the Bevan circle
X(64372) = pole of line {676, 8674} with respect to the incircle
X(64372) = pole of line {36, 971} with respect to the Feuerbach hyperbola
X(64372) = pole of line {8674, 10015} with respect to the Suppa-Cucoanes circle
X(64372) = intersection, other than A, B, C, of circumconics {{A, B, C, X(104), X(48357)}}, {{A, B, C, X(3065), X(41798)}}
X(64372) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 1768, 57}, {1727, 3583, 5535}, {1768, 51768, 11}, {7004, 64013, 1421}, {13243, 53055, 5083}, {37541, 60910, 61718}
X(64373) lies on these lines: {1, 52269}, {2, 36976}, {8, 5087}, {11, 7672}, {92, 44426}, {226, 7671}, {390, 33993}, {497, 3748}, {908, 7678}, {1156, 31164}, {1621, 9580}, {1699, 53055}, {2346, 5219}, {2886, 3877}, {3452, 11680}, {3577, 16174}, {3817, 4342}, {3838, 47357}, {3870, 10707}, {5274, 5603}, {7673, 33108}, {7956, 38038}, {8727, 38055}, {10865, 42356}, {11522, 17097}, {12528, 41685}, {20015, 46873}, {24392, 62826}, {45035, 64163}, {63974, 64295}, {64147, 64324}
X(64373) = inverse of X(7672) in Feuerbach hyperbola
X(64374) lies on these lines: {1, 21}, {144, 16572}, {219, 4350}, {220, 1445}, {279, 60990}, {329, 15662}, {1212, 7190}, {5228, 15853}, {5543, 61024}, {10025, 27304}, {20111, 55337}, {25930, 55466}, {38459, 60974}, {63974, 64295}, {64147, 64324}
X(64375) lies on these lines: {3, 3895}, {9, 26015}, {63, 3058}, {145, 3338}, {354, 1376}, {1260, 4666}, {1317, 51786}, {1320, 37569}, {1445, 41556}, {1998, 5531}, {2320, 38460}, {2900, 3873}, {3218, 9778}, {3555, 18518}, {3875, 4025}, {7674, 60948}, {10051, 12649}, {10707, 60973}, {12704, 36977}, {15185, 60938}, {15680, 62858}, {18481, 62874}, {32636, 63130}, {41860, 62823}, {60964, 64361}, {63974, 64295}, {64147, 64324}
X(64376) lies on circumconic {{A, B, C, X(3345), X(3577)}} and on these lines: {2, 64400}, {3, 81}, {4, 5235}, {5, 64425}, {8, 7415}, {20, 333}, {21, 40}, {30, 64402}, {35, 64420}, {36, 64421}, {55, 64382}, {56, 64414}, {58, 165}, {86, 3523}, {182, 64381}, {283, 1817}, {285, 1816}, {371, 64386}, {372, 64385}, {376, 4921}, {382, 64399}, {411, 573}, {474, 24557}, {515, 64401}, {517, 64415}, {601, 39673}, {631, 5333}, {946, 17557}, {962, 11110}, {1014, 15803}, {1043, 59417}, {1151, 64410}, {1152, 64411}, {1155, 5323}, {1350, 37105}, {1593, 64378}, {1657, 64383}, {1764, 6986}, {2077, 64394}, {2303, 37499}, {2941, 3647}, {3098, 64398}, {3193, 11012}, {3428, 4225}, {3522, 16704}, {3524, 42025}, {3576, 64377}, {3579, 4221}, {3651, 48882}, {3916, 7291}, {4184, 10310}, {4188, 21766}, {4220, 35203}, {4267, 5584}, {4276, 59320}, {4278, 59326}, {4281, 4300}, {4297, 64072}, {4653, 7991}, {4658, 7987}, {4720, 11362}, {5273, 54294}, {5324, 7964}, {5731, 56018}, {5759, 25516}, {6200, 64412}, {6244, 17524}, {6282, 54356}, {6284, 64409}, {6396, 64413}, {6684, 14005}, {6876, 37783}, {6904, 26638}, {6915, 21363}, {7354, 64408}, {7957, 18165}, {8025, 15717}, {8273, 18185}, {9540, 64417}, {9778, 37422}, {10164, 25526}, {10303, 25507}, {10304, 41629}, {10461, 56182}, {11248, 64422}, {11249, 64423}, {11414, 64395}, {11822, 64396}, {11823, 64397}, {11824, 64403}, {11825, 64404}, {11826, 64406}, {11827, 64407}, {12305, 64387}, {12306, 64388}, {13935, 64418}, {14008, 15908}, {14110, 41723}, {15692, 42028}, {16451, 63068}, {17551, 31423}, {17553, 28194}, {17588, 20070}, {18163, 37551}, {18180, 31793}, {19543, 37680}, {21669, 48915}, {25060, 37528}, {26290, 64379}, {26291, 64380}, {26294, 64391}, {26295, 64392}, {26860, 61791}, {26935, 27652}, {31445, 56204}, {33557, 48883}, {36745, 61409}, {37264, 37659}, {37418, 56840}, {45498, 64389}, {45499, 64390}, {46877, 64150}, {52680, 63469}, {63974, 64295}, {64147, 64324}
X(64376) = reflection of X(i) in X(j) for these {i,j}: {63291, 3}
X(64376) = pole of line {405, 1490} with respect to the Stammler hyperbola
X(64376) = pole of line {33672, 44140} with respect to the Wallace hyperbola
X(64376) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 48924, 63400}, {3, 64419, 64393}, {58, 165, 37402}, {64393, 64419, 81}
X(64377) lies on these lines: {1, 21}, {2, 41014}, {3, 14996}, {6, 5047}, {8, 86}, {10, 5333}, {27, 11036}, {28, 11396}, {29, 10405}, {30, 63297}, {56, 18185}, {60, 44840}, {65, 1014}, {72, 17019}, {100, 37559}, {145, 1010}, {193, 37314}, {274, 33770}, {284, 11518}, {314, 4968}, {333, 3616}, {354, 18178}, {377, 3945}, {386, 17531}, {387, 4197}, {404, 940}, {405, 37685}, {411, 5707}, {442, 37635}, {445, 56301}, {452, 56020}, {453, 13750}, {496, 14008}, {500, 33557}, {515, 64400}, {517, 37402}, {519, 25526}, {524, 26064}, {551, 4921}, {581, 36002}, {582, 6986}, {759, 28166}, {859, 7373}, {942, 1817}, {961, 10474}, {964, 17379}, {978, 9345}, {999, 4225}, {1043, 3241}, {1058, 14956}, {1100, 2303}, {1125, 5235}, {1126, 56191}, {1193, 4038}, {1201, 4281}, {1203, 5284}, {1319, 64382}, {1330, 42045}, {1386, 41610}, {1408, 11011}, {1412, 3340}, {1434, 3160}, {1449, 2287}, {1459, 57093}, {1482, 4221}, {1697, 18164}, {1698, 28620}, {1724, 16861}, {1778, 16777}, {1790, 11529}, {1816, 41344}, {1834, 6175}, {1870, 54340}, {1963, 35991}, {2099, 5323}, {2363, 31503}, {2475, 41819}, {2476, 5712}, {2478, 63007}, {2646, 64414}, {2895, 4205}, {2906, 30733}, {3017, 63343}, {3146, 62183}, {3247, 3951}, {3285, 16884}, {3286, 3303}, {3295, 4184}, {3304, 4267}, {3445, 5331}, {3559, 63965}, {3576, 64376}, {3617, 14007}, {3621, 17589}, {3622, 11110}, {3623, 11115}, {3624, 64425}, {3634, 28618}, {3649, 18625}, {3651, 5453}, {3672, 58786}, {3710, 29574}, {3736, 64199}, {3745, 56182}, {3746, 4278}, {3811, 9347}, {3871, 5711}, {3876, 5287}, {3895, 17207}, {4083, 57058}, {4193, 63008}, {4202, 17300}, {4203, 19714}, {4220, 48909}, {4228, 17024}, {4229, 20070}, {4252, 17574}, {4276, 5563}, {4340, 17579}, {4383, 17534}, {4393, 26643}, {4420, 4682}, {4646, 16700}, {4649, 27644}, {4667, 64002}, {4697, 58399}, {4854, 14450}, {5044, 17021}, {5045, 18180}, {5051, 17778}, {5247, 55103}, {5361, 16343}, {5372, 19273}, {5396, 6915}, {5439, 17012}, {5603, 64384}, {5687, 35983}, {5706, 7411}, {5710, 18166}, {5718, 7504}, {5751, 12111}, {5886, 64405}, {5902, 37294}, {6147, 31902}, {6186, 51624}, {6505, 14868}, {6744, 17188}, {6767, 17524}, {6905, 45931}, {6912, 11441}, {6920, 36750}, {7968, 64410}, {7969, 64411}, {8543, 64020}, {8951, 17022}, {9780, 25507}, {9955, 64399}, {10246, 64419}, {10247, 15952}, {10449, 19684}, {10618, 22937}, {10974, 61728}, {11108, 63074}, {11114, 63054}, {11363, 64378}, {11364, 64381}, {11365, 64395}, {11366, 64396}, {11367, 64397}, {11368, 64398}, {11370, 64403}, {11371, 64404}, {11373, 64406}, {11374, 64407}, {11375, 64408}, {11376, 64409}, {11381, 14520}, {11553, 16133}, {11831, 64402}, {12112, 21669}, {13408, 52841}, {13587, 37522}, {13728, 32863}, {13740, 19717}, {13869, 57589}, {13883, 64417}, {13936, 64418}, {14016, 38295}, {14020, 63052}, {14815, 63519}, {14997, 16842}, {15671, 61661}, {15678, 49739}, {15679, 49744}, {16048, 63004}, {16050, 29585}, {16053, 29624}, {16054, 17014}, {16062, 63056}, {16137, 37369}, {16139, 32167}, {16342, 37683}, {16454, 20018}, {16466, 29814}, {16696, 37548}, {16845, 63067}, {16853, 63096}, {16859, 63095}, {16865, 63039}, {16916, 20145}, {17016, 17518}, {17056, 24883}, {17097, 54292}, {17164, 41813}, {17167, 21620}, {17175, 49495}, {17483, 50067}, {17514, 49718}, {17535, 37674}, {17536, 32911}, {17546, 37680}, {17549, 19765}, {17553, 38314}, {17609, 18165}, {17637, 44913}, {17686, 20132}, {17697, 37677}, {18465, 34772}, {18493, 64383}, {18991, 64385}, {18992, 64386}, {19270, 37639}, {19280, 19740}, {19742, 37035}, {19743, 56983}, {19783, 63057}, {19859, 41930}, {19874, 25508}, {20077, 49735}, {20086, 49716}, {20090, 26117}, {20970, 37675}, {21161, 63307}, {23059, 54417}, {23544, 25429}, {24474, 37418}, {24851, 64164}, {24880, 63344}, {24936, 35466}, {25055, 64424}, {25060, 37592}, {25441, 30831}, {26365, 64379}, {26366, 64380}, {26369, 64391}, {26370, 64392}, {27804, 63996}, {30143, 37783}, {30966, 32004}, {31034, 52258}, {31660, 63304}, {32772, 35633}, {33100, 63285}, {33296, 51356}, {33953, 49476}, {34064, 56318}, {35762, 64412}, {35763, 64413}, {35981, 60691}, {35997, 36279}, {37224, 63088}, {37230, 63374}, {37296, 61155}, {37492, 63183}, {37538, 59354}, {37593, 56288}, {39948, 63157}, {45398, 64387}, {45399, 64388}, {45500, 64389}, {45501, 64390}, {47033, 63370}, {47115, 51966}, {48282, 57189}, {48283, 57246}, {49745, 63401}, {52269, 63318}, {54358, 56000}, {56023, 64071}, {56936, 56984}, {63974, 64295}, {64147, 64324}
X(64377) = reflection of X(i) in X(j) for these {i,j}: {37402, 64393}
X(64377) = perspector of circumconic {{A, B, C, X(662), X(4633)}}
X(64377) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60243}, {37, 39948}, {42, 28626}, {512, 58135}, {523, 28148}, {1400, 30711}
X(64377) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60243}, {3624, 42031}, {39054, 58135}, {40582, 30711}, {40589, 39948}, {40592, 28626}
X(64377) = X(i)-Ceva conjugate of X(j) for these {i, j}: {63157, 21}
X(64377) = X(i)-cross conjugate of X(j) for these {i, j}: {3247, 25507}
X(64377) = pole of line {24006, 55285} with respect to the polar circle
X(64377) = pole of line {4197, 5949} with respect to the Kiepert hyperbola
X(64377) = pole of line {100, 43356} with respect to the Kiepert parabola
X(64377) = pole of line {23090, 57093} with respect to the MacBeath circumconic
X(64377) = pole of line {1, 3683} with respect to the Stammler hyperbola
X(64377) = pole of line {4560, 57112} with respect to the Steiner circumellipse
X(64377) = pole of line {101, 43356} with respect to the Hutson-Moses hyperbola
X(64377) = pole of line {75, 3616} with respect to the Wallace hyperbola
X(64377) = pole of line {5249, 58786} with respect to the dual conic of Yff parabola
X(64377) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3247)}}, {{A, B, C, X(7), X(31424)}}, {{A, B, C, X(8), X(4512)}}, {{A, B, C, X(10), X(58380)}}, {{A, B, C, X(21), X(40438)}}, {{A, B, C, X(28), X(4658)}}, {{A, B, C, X(31), X(2334)}}, {{A, B, C, X(58), X(56048)}}, {{A, B, C, X(63), X(3951)}}, {{A, B, C, X(65), X(1962)}}, {{A, B, C, X(81), X(25507)}}, {{A, B, C, X(105), X(62821)}}, {{A, B, C, X(283), X(57685)}}, {{A, B, C, X(758), X(3947)}}, {{A, B, C, X(896), X(48026)}}, {{A, B, C, X(993), X(1476)}}, {{A, B, C, X(1320), X(5250)}}, {{A, B, C, X(1442), X(3647)}}, {{A, B, C, X(1468), X(3445)}}, {{A, B, C, X(2292), X(31503)}}, {{A, B, C, X(2298), X(54354)}}, {{A, B, C, X(2346), X(5248)}}, {{A, B, C, X(2363), X(64415)}}, {{A, B, C, X(3743), X(53114)}}, {{A, B, C, X(3747), X(50509)}}, {{A, B, C, X(3869), X(56030)}}, {{A, B, C, X(5331), X(16948)}}, {{A, B, C, X(12514), X(17097)}}, {{A, B, C, X(28606), X(42029)}}, {{A, B, C, X(39948), X(62812)}}
X(64377) = barycentric product X(i)*X(j) for these (i, j): {1, 25507}, {27, 3951}, {81, 9780}, {333, 3339}, {2185, 3947}, {3247, 86}, {28147, 662}, {42029, 58}, {48026, 99}, {50509, 799}
X(64377) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60243}, {21, 30711}, {58, 39948}, {81, 28626}, {163, 28148}, {662, 58135}, {3247, 10}, {3339, 226}, {3947, 6358}, {3951, 306}, {9780, 321}, {25507, 75}, {28147, 1577}, {42029, 313}, {48026, 523}, {50509, 661}
X(64377) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1046, 1962}, {1, 191, 58380}, {1, 4658, 81}, {1, 81, 21}, {2, 56018, 64401}, {8, 86, 14005}, {10, 28619, 5333}, {10, 5333, 17551}, {81, 3193, 46441}, {145, 8025, 1010}, {333, 3616, 17557}, {517, 64393, 37402}, {940, 19767, 404}, {1125, 64072, 5235}, {1834, 37631, 26131}, {2475, 41819, 49743}, {3241, 42028, 51669}, {3622, 16704, 11110}, {5453, 45923, 3651}, {5711, 17018, 3871}, {17056, 24883, 31254}, {37559, 59301, 100}, {38314, 41629, 17553}, {49743, 64167, 2475}
X(64378) lies on these lines: {4, 333}, {19, 1707}, {21, 1829}, {24, 64393}, {25, 81}, {27, 1851}, {28, 34}, {33, 64414}, {86, 6353}, {162, 4206}, {171, 2333}, {235, 64400}, {242, 44734}, {256, 1172}, {427, 5235}, {428, 4921}, {429, 26064}, {444, 27644}, {468, 5333}, {511, 1812}, {573, 4219}, {1593, 64376}, {1598, 64419}, {1824, 3219}, {1828, 54340}, {1843, 41610}, {2212, 38832}, {2303, 44103}, {2355, 14014}, {3060, 7466}, {3193, 26377}, {3559, 52082}, {3736, 40976}, {4183, 17185}, {4184, 11383}, {4213, 30966}, {4225, 22479}, {4232, 8025}, {5064, 64424}, {5090, 64401}, {5094, 64425}, {5146, 31902}, {5331, 34260}, {5410, 64386}, {5411, 64385}, {5412, 64410}, {5413, 64411}, {6995, 16704}, {7009, 56014}, {7487, 64384}, {7714, 41629}, {7718, 56018}, {11363, 64377}, {11380, 64381}, {11384, 64396}, {11385, 64397}, {11386, 64398}, {11388, 64403}, {11389, 64404}, {11390, 64406}, {11391, 64407}, {11392, 64408}, {11393, 64409}, {11396, 64415}, {11398, 64420}, {11399, 64421}, {11400, 64422}, {11401, 64423}, {11832, 64402}, {13884, 64417}, {13937, 64418}, {18494, 64383}, {25507, 38282}, {26371, 64379}, {26372, 64380}, {26375, 64391}, {26376, 64392}, {26378, 64394}, {26637, 35973}, {35764, 64412}, {35765, 64413}, {42025, 62978}, {42028, 62979}, {44086, 61409}, {45400, 64387}, {45401, 64388}, {45502, 64389}, {45503, 64390}, {49542, 64072}, {63974, 64295}, {64147, 64324}
X(64378) = X(i)-isoconjugate-of-X(j) for these {i, j}: {71, 56044}, {73, 56205}
X(64378) = pole of line {4086, 48047} with respect to the polar circle
X(64378) = intersection, other than A, B, C, of circumconics {{A, B, C, X(57), X(256)}}, {{A, B, C, X(603), X(7116)}}, {{A, B, C, X(4104), X(35650)}}, {{A, B, C, X(5323), X(5331)}}, {{A, B, C, X(48136), X(51654)}}
X(64378) = barycentric product X(i)*X(j) for these (i, j): {17257, 28}, {17594, 27}, {48136, 648}
X(64378) = barycentric quotient X(i)/X(j) for these (i, j): {28, 56044}, {1172, 56205}, {4104, 52369}, {17257, 20336}, {17594, 306}, {48136, 525}
X(64378) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58, 7713, 28}
X(64379) lies on these lines: {1, 64380}, {21, 45711}, {58, 26296}, {81, 5597}, {333, 26394}, {3193, 26399}, {4184, 26393}, {4225, 26319}, {4921, 45696}, {5235, 26359}, {18496, 64383}, {26290, 64376}, {26302, 64395}, {26310, 64398}, {26326, 64400}, {26334, 64403}, {26344, 64404}, {26351, 64414}, {26365, 64377}, {26371, 64378}, {26379, 64381}, {26380, 64382}, {26381, 64384}, {26382, 64401}, {26383, 64402}, {26384, 64385}, {26385, 64386}, {26386, 64405}, {26387, 64409}, {26388, 64408}, {26389, 64407}, {26390, 64406}, {26395, 64415}, {26396, 64391}, {26397, 64392}, {26398, 64393}, {26400, 64394}, {26401, 64423}, {26402, 64422}, {41610, 45724}, {44582, 64410}, {44583, 64411}, {45345, 64387}, {45348, 64388}, {45349, 64389}, {45352, 64390}, {45354, 64397}, {45355, 64399}, {45357, 64412}, {45360, 64413}, {45365, 64417}, {45366, 64418}, {45369, 64419}, {45371, 64420}, {45373, 64421}, {48511, 64072}, {63974, 64295}, {64147, 64324}
X(64380) lies on these lines: {1, 64379}, {21, 45712}, {58, 26297}, {81, 5598}, {333, 26418}, {3193, 26423}, {4184, 26417}, {4225, 26320}, {4921, 45697}, {5235, 26360}, {18498, 64383}, {26291, 64376}, {26303, 64395}, {26311, 64398}, {26327, 64400}, {26335, 64403}, {26345, 64404}, {26352, 64414}, {26366, 64377}, {26372, 64378}, {26403, 64381}, {26404, 64382}, {26405, 64384}, {26406, 64401}, {26407, 64402}, {26408, 64385}, {26409, 64386}, {26410, 64405}, {26411, 64409}, {26412, 64408}, {26413, 64407}, {26414, 64406}, {26419, 64415}, {26420, 64391}, {26421, 64392}, {26422, 64393}, {26424, 64394}, {26425, 64423}, {26426, 64422}, {41610, 45725}, {44584, 64410}, {44585, 64411}, {45346, 64388}, {45347, 64387}, {45350, 64390}, {45351, 64389}, {45353, 64396}, {45356, 64399}, {45358, 64413}, {45359, 64412}, {45367, 64418}, {45368, 64417}, {45370, 64419}, {45372, 64420}, {45374, 64421}, {48512, 64072}, {63974, 64295}, {64147, 64324}
X(64381) lies on these lines: {21, 12194}, {32, 81}, {58, 10789}, {83, 5235}, {86, 7793}, {98, 64400}, {182, 64376}, {333, 7787}, {1078, 5333}, {2080, 64393}, {3193, 26431}, {3216, 4279}, {4184, 11490}, {4225, 22520}, {4921, 12150}, {7808, 64425}, {10788, 64384}, {10790, 64395}, {10791, 64401}, {10792, 64403}, {10793, 64404}, {10794, 64406}, {10795, 64407}, {10796, 64405}, {10797, 64408}, {10798, 64409}, {10799, 64414}, {10800, 64415}, {10801, 64420}, {10802, 64421}, {10803, 64422}, {10804, 64423}, {11364, 64377}, {11380, 64378}, {11837, 64396}, {11838, 64397}, {11839, 64402}, {11842, 64419}, {12212, 41610}, {12835, 64382}, {13885, 64417}, {13938, 64418}, {18501, 64383}, {18502, 64399}, {18993, 64385}, {18994, 64386}, {26379, 64379}, {26403, 64380}, {26429, 64391}, {26430, 64392}, {26432, 64394}, {35766, 64412}, {35767, 64413}, {44586, 64410}, {44587, 64411}, {45402, 64387}, {45403, 64388}, {45504, 64389}, {45505, 64390}, {49545, 64072}, {63974, 64295}, {64147, 64324}
X(64382) lies on these lines: {1, 58392}, {3, 64420}, {4, 64409}, {6, 27621}, {11, 64400}, {12, 5235}, {21, 65}, {27, 1118}, {28, 34}, {36, 64393}, {46, 4221}, {55, 64376}, {56, 81}, {60, 757}, {73, 4281}, {86, 7288}, {201, 35623}, {333, 388}, {404, 4259}, {859, 62843}, {940, 61109}, {999, 64419}, {1010, 1788}, {1155, 37402}, {1319, 64377}, {1399, 39673}, {1400, 2303}, {1405, 37694}, {1412, 3361}, {1420, 4658}, {1434, 7195}, {1454, 16049}, {1466, 3286}, {1468, 1610}, {1469, 41610}, {1470, 64394}, {1478, 64405}, {1708, 47512}, {1778, 2285}, {1780, 17560}, {1792, 5208}, {1812, 37442}, {1817, 54417}, {1875, 54340}, {1940, 44734}, {2067, 64410}, {2099, 64415}, {3193, 26437}, {3339, 52680}, {3340, 4653}, {3474, 37422}, {3476, 56018}, {3485, 11110}, {3486, 7415}, {3585, 64399}, {3600, 16704}, {3911, 25526}, {4184, 11509}, {4228, 56840}, {4276, 37583}, {4288, 54320}, {4293, 64384}, {4720, 41687}, {4921, 5434}, {5221, 11101}, {5252, 64401}, {5253, 26637}, {5265, 8025}, {5298, 42025}, {5333, 5433}, {6502, 64411}, {7342, 30581}, {7412, 37530}, {9655, 64383}, {10106, 64072}, {11237, 64424}, {11337, 36740}, {11375, 17557}, {12835, 64381}, {14005, 24914}, {14016, 14257}, {15556, 35637}, {15952, 36279}, {17524, 37541}, {18178, 64106}, {18954, 64395}, {18955, 64396}, {18956, 64397}, {18957, 64398}, {18958, 64402}, {18959, 64403}, {18960, 64404}, {18961, 64406}, {18962, 64407}, {18965, 64417}, {18966, 64418}, {18967, 64423}, {18995, 64385}, {18996, 64386}, {19366, 27653}, {22097, 37607}, {26380, 64379}, {26404, 64380}, {26435, 64391}, {26436, 64392}, {35768, 64412}, {35769, 64413}, {37357, 64127}, {37384, 37642}, {40571, 57283}, {45404, 64387}, {45405, 64388}, {45506, 64389}, {45507, 64390}, {51966, 59816}, {63974, 64295}, {64147, 64324}
X(64382) = X(i)-isoconjugate-of-X(j) for these {i, j}: {210, 969}, {967, 2321}, {1334, 58012}
X(64382) = X(i)-Dao conjugate of X(j) for these {i, j}: {38960, 4086}
X(64382) = pole of line {78, 210} with respect to the Stammler hyperbola
X(64382) = pole of line {3701, 3718} with respect to the Wallace hyperbola
X(64382) = intersection, other than A, B, C, of circumconics {{A, B, C, X(28), X(757)}}, {{A, B, C, X(34), X(959)}}, {{A, B, C, X(57), X(54320)}}, {{A, B, C, X(58), X(4288)}}, {{A, B, C, X(60), X(2299)}}, {{A, B, C, X(966), X(7713)}}, {{A, B, C, X(968), X(5338)}}, {{A, B, C, X(1395), X(1408)}}, {{A, B, C, X(1396), X(63194)}}, {{A, B, C, X(1443), X(1835)}}, {{A, B, C, X(5323), X(63193)}}
X(64382) = barycentric product X(i)*X(j) for these (i, j): {27, 54320}, {273, 4288}, {1014, 966}, {1414, 45745}, {1434, 968}, {2271, 57785}, {3485, 81}, {4565, 7650}, {4573, 48099}, {11110, 57}
X(64382) = barycentric quotient X(i)/X(j) for these (i, j): {966, 3701}, {968, 2321}, {1014, 58012}, {1408, 967}, {1412, 969}, {1434, 58013}, {2271, 210}, {3485, 321}, {4288, 78}, {11110, 312}, {45745, 4086}, {48099, 3700}, {54320, 306}
X(64382) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 58, 5323}, {333, 388, 64408}, {999, 64419, 64421}, {1408, 32636, 1014}
X(64383) lies on these lines: {3, 5235}, {4, 5769}, {5, 86}, {21, 18525}, {30, 333}, {58, 18480}, {81, 381}, {355, 15952}, {547, 25507}, {859, 18519}, {999, 64409}, {1010, 18357}, {1043, 37705}, {1408, 10826}, {1656, 64393}, {1657, 64376}, {3091, 26860}, {3193, 18544}, {3286, 18491}, {3295, 64408}, {3534, 64424}, {3545, 8025}, {3830, 4921}, {3843, 64400}, {3845, 41629}, {4184, 18524}, {4221, 5790}, {4225, 26321}, {4267, 18761}, {4653, 28204}, {4658, 9955}, {4720, 50798}, {5054, 64425}, {5055, 5333}, {5066, 42028}, {5690, 37422}, {6740, 37227}, {7415, 28186}, {9654, 64420}, {9655, 64382}, {9668, 64414}, {9669, 64421}, {11110, 34773}, {12699, 64072}, {12702, 64401}, {13665, 64410}, {13785, 64411}, {17194, 18528}, {17524, 18518}, {17556, 26637}, {18163, 18540}, {18178, 31937}, {18180, 40263}, {18440, 41610}, {18493, 64377}, {18494, 64378}, {18496, 64379}, {18498, 64380}, {18501, 64381}, {18503, 64398}, {18508, 64402}, {18510, 64385}, {18512, 64386}, {18526, 64415}, {18539, 64391}, {18542, 64394}, {18543, 64423}, {18545, 64422}, {18653, 52012}, {19543, 37660}, {19709, 42025}, {22791, 56018}, {23251, 64412}, {23261, 64413}, {25526, 61261}, {26336, 64403}, {26346, 64404}, {26438, 64392}, {28619, 61268}, {33295, 36729}, {40266, 41723}, {45375, 64387}, {45376, 64388}, {45377, 64389}, {45378, 64390}, {45379, 64396}, {45380, 64397}, {45384, 64417}, {45385, 64418}, {63974, 64295}, {64147, 64324}
X(64383) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {81, 64399, 381}
X(64384) lies on these lines: {1, 58383}, {2, 64393}, {3, 333}, {4, 81}, {5, 86}, {8, 4221}, {20, 5767}, {21, 944}, {24, 64395}, {27, 1071}, {28, 5768}, {29, 1437}, {30, 41629}, {40, 64072}, {58, 515}, {84, 18163}, {104, 4225}, {110, 17584}, {119, 14011}, {284, 6245}, {355, 1010}, {376, 4921}, {381, 42028}, {388, 64420}, {405, 26638}, {497, 64421}, {500, 7413}, {517, 37422}, {581, 13478}, {631, 5235}, {946, 4658}, {952, 1043}, {1210, 1412}, {1385, 11110}, {1408, 1837}, {1434, 5708}, {1444, 5770}, {1587, 64410}, {1588, 64411}, {1656, 25507}, {1812, 6827}, {1858, 62342}, {1943, 41340}, {2287, 6865}, {2478, 26637}, {3073, 38832}, {3085, 64408}, {3086, 64409}, {3090, 5333}, {3091, 8025}, {3193, 12116}, {3286, 11500}, {3524, 64424}, {3525, 64425}, {3545, 42025}, {3559, 45766}, {3579, 4229}, {3651, 48923}, {3736, 37699}, {3832, 26860}, {4184, 11491}, {4187, 24556}, {4220, 48877}, {4234, 28204}, {4248, 51420}, {4267, 12114}, {4276, 5450}, {4278, 6796}, {4281, 15486}, {4293, 64382}, {4294, 64414}, {4653, 5882}, {5323, 18391}, {5327, 48482}, {5587, 25526}, {5603, 64377}, {5657, 37402}, {5693, 18417}, {5709, 18206}, {5752, 23512}, {5769, 29767}, {5786, 36746}, {5788, 27164}, {5811, 17183}, {5812, 56020}, {5818, 14005}, {6001, 18178}, {6260, 17197}, {6560, 64412}, {6561, 64413}, {6776, 6851}, {6836, 40571}, {6882, 31631}, {6891, 14868}, {6903, 37783}, {6908, 16713}, {6922, 27398}, {6996, 37536}, {6998, 48887}, {7330, 17185}, {7379, 9958}, {7415, 18481}, {7474, 39572}, {7487, 64378}, {7581, 64386}, {7582, 64385}, {7967, 64415}, {8227, 28619}, {8982, 64392}, {9862, 64398}, {9940, 16054}, {9956, 14007}, {10269, 37442}, {10449, 56960}, {10783, 64403}, {10784, 64404}, {10785, 64406}, {10786, 64407}, {10788, 64381}, {10805, 64422}, {10806, 64423}, {11064, 25647}, {11248, 56181}, {11496, 18185}, {11499, 13588}, {11843, 64396}, {11844, 64397}, {11845, 64402}, {12115, 64394}, {12616, 54323}, {12675, 18165}, {12680, 18191}, {13886, 64417}, {13939, 64418}, {14009, 26470}, {14829, 19543}, {17559, 24557}, {17731, 32515}, {18283, 52891}, {18446, 25516}, {18465, 45770}, {18526, 52352}, {19648, 29766}, {19839, 21277}, {26381, 64379}, {26405, 64380}, {26441, 64391}, {26921, 30273}, {30941, 36670}, {32613, 37296}, {33295, 36674}, {34627, 51669}, {36675, 51356}, {37088, 37482}, {37354, 54349}, {37527, 48937}, {37611, 46877}, {41723, 64021}, {41810, 48917}, {45406, 64387}, {45407, 64388}, {45510, 64389}, {45511, 64390}, {46704, 51340}, {48924, 63402}, {51558, 61409}, {58389, 59624}, {63974, 64295}, {64147, 64324}
X(64384) = midpoint of X(i) and X(j) for these {i,j}: {37422, 56018}
X(64384) = reflection of X(i) in X(j) for these {i,j}: {4, 63318}, {1043, 15952}
X(64384) = pole of line {11249, 13738} with respect to the Stammler hyperbola
X(64384) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37402, 64401, 5657}, {37422, 56018, 517}, {64393, 64405, 2}
X(64385) lies on these lines: {2, 6}, {21, 18992}, {58, 19003}, {372, 64376}, {605, 39673}, {1014, 51841}, {1587, 64400}, {1702, 37402}, {3193, 26458}, {3299, 64420}, {3301, 64421}, {3311, 64393}, {4184, 18999}, {4225, 19013}, {4658, 19004}, {5411, 64378}, {6418, 64419}, {6420, 64413}, {7582, 64384}, {7584, 64405}, {7968, 64415}, {13785, 64399}, {13883, 14005}, {13888, 28620}, {13893, 17551}, {13936, 64401}, {13971, 17557}, {18510, 64383}, {18991, 64377}, {18993, 64381}, {18995, 64382}, {19005, 64395}, {19007, 64396}, {19009, 64397}, {19011, 64398}, {19017, 64402}, {19023, 64406}, {19025, 64407}, {19027, 64408}, {19029, 64409}, {19037, 64414}, {19047, 64422}, {19049, 64423}, {25526, 49548}, {26384, 64379}, {26408, 64380}, {26459, 64394}, {35770, 64412}, {45512, 64389}, {45514, 64390}, {49547, 64072}, {63974, 64295}, {64147, 64324}
X(64385) = pole of line {6, 55441} with respect to the Stammler hyperbola
X(64386) lies on these lines: {2, 6}, {21, 18991}, {58, 19004}, {371, 64376}, {606, 39673}, {1014, 51842}, {1588, 64400}, {1703, 37402}, {3193, 26464}, {3299, 64421}, {3301, 64420}, {3312, 64393}, {4184, 19000}, {4225, 19014}, {4658, 19003}, {5410, 64378}, {6417, 64419}, {6419, 64412}, {7581, 64384}, {7583, 64405}, {7969, 64415}, {8983, 17557}, {13665, 64399}, {13883, 64401}, {13936, 14005}, {13942, 28620}, {13947, 17551}, {18512, 64383}, {18992, 64377}, {18994, 64381}, {18996, 64382}, {19006, 64395}, {19008, 64396}, {19010, 64397}, {19012, 64398}, {19018, 64402}, {19024, 64406}, {19026, 64407}, {19028, 64408}, {19030, 64409}, {19038, 64414}, {19048, 64422}, {19050, 64423}, {25526, 49547}, {26385, 64379}, {26409, 64380}, {26465, 64394}, {35771, 64413}, {45513, 64390}, {45515, 64389}, {49548, 64072}, {63974, 64295}, {64147, 64324}
X(64386) = pole of line {6, 55442} with respect to the Stammler hyperbola
X(64387) lies on these lines: {2, 6}, {3, 64389}, {21, 45713}, {58, 45426}, {3102, 64413}, {3193, 45422}, {4184, 45416}, {4225, 45436}, {6289, 64405}, {12305, 64376}, {43119, 64393}, {45345, 64379}, {45347, 64380}, {45375, 64383}, {45398, 64377}, {45400, 64378}, {45402, 64381}, {45404, 64382}, {45406, 64384}, {45411, 64390}, {45424, 64394}, {45428, 64395}, {45430, 64396}, {45432, 64397}, {45434, 64398}, {45438, 64399}, {45440, 64400}, {45444, 64401}, {45446, 64402}, {45454, 64406}, {45456, 64407}, {45458, 64408}, {45460, 64409}, {45462, 64412}, {45470, 64414}, {45476, 64415}, {45488, 64419}, {45490, 64420}, {45492, 64421}, {45494, 64422}, {45496, 64423}, {49347, 64072}, {63974, 64295}, {64147, 64324}
X(64388) lies on these lines: {2, 6}, {3, 64390}, {21, 45714}, {58, 45427}, {3103, 64412}, {3193, 45423}, {4184, 45417}, {4225, 45437}, {6290, 64405}, {12306, 64376}, {43118, 64393}, {45346, 64380}, {45348, 64379}, {45376, 64383}, {45399, 64377}, {45401, 64378}, {45403, 64381}, {45405, 64382}, {45407, 64384}, {45410, 64389}, {45425, 64394}, {45429, 64395}, {45431, 64396}, {45433, 64397}, {45435, 64398}, {45439, 64399}, {45441, 64400}, {45445, 64401}, {45447, 64402}, {45455, 64406}, {45457, 64407}, {45459, 64408}, {45461, 64409}, {45463, 64413}, {45471, 64414}, {45477, 64415}, {45489, 64419}, {45491, 64420}, {45493, 64421}, {45495, 64422}, {45497, 64423}, {49348, 64072}, {63974, 64295}, {64147, 64324}
X(64389) lies on these lines: {3, 64387}, {21, 45715}, {39, 64411}, {58, 45530}, {81, 372}, {182, 41610}, {333, 45508}, {641, 5235}, {3193, 45526}, {4184, 45520}, {4225, 45540}, {4921, 41490}, {5062, 64410}, {45349, 64379}, {45351, 64380}, {45377, 64383}, {45410, 64388}, {45498, 64376}, {45500, 64377}, {45502, 64378}, {45504, 64381}, {45506, 64382}, {45510, 64384}, {45512, 64385}, {45515, 64386}, {45522, 64391}, {45525, 64392}, {45528, 64394}, {45532, 64395}, {45534, 64396}, {45536, 64397}, {45538, 64398}, {45542, 64399}, {45544, 64400}, {45546, 64401}, {45548, 64402}, {45550, 64403}, {45553, 64404}, {45554, 64405}, {45556, 64406}, {45558, 64407}, {45560, 64408}, {45562, 64409}, {45565, 64413}, {45570, 64414}, {45572, 64415}, {45574, 64417}, {45577, 64418}, {45578, 64419}, {45580, 64420}, {45582, 64421}, {45584, 64422}, {45586, 64423}, {48764, 64072}, {63974, 64295}, {64147, 64324}
X(64389) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {41610, 64393, 64390}
X(64390) lies on these lines: {3, 64388}, {21, 45716}, {39, 64410}, {58, 45531}, {81, 371}, {182, 41610}, {333, 45509}, {642, 5235}, {3193, 45527}, {4184, 45521}, {4225, 45541}, {4921, 41491}, {5058, 64411}, {45350, 64380}, {45352, 64379}, {45378, 64383}, {45411, 64387}, {45499, 64376}, {45501, 64377}, {45503, 64378}, {45505, 64381}, {45507, 64382}, {45511, 64384}, {45513, 64386}, {45514, 64385}, {45523, 64392}, {45524, 64391}, {45529, 64394}, {45533, 64395}, {45535, 64396}, {45537, 64397}, {45539, 64398}, {45543, 64399}, {45545, 64400}, {45547, 64401}, {45549, 64402}, {45551, 64404}, {45552, 64403}, {45555, 64405}, {45557, 64406}, {45559, 64407}, {45561, 64408}, {45563, 64409}, {45564, 64412}, {45571, 64414}, {45573, 64415}, {45575, 64418}, {45576, 64417}, {45579, 64419}, {45581, 64420}, {45583, 64421}, {45585, 64422}, {45587, 64423}, {48765, 64072}, {63974, 64295}, {64147, 64324}
X(64390) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {41610, 64393, 64389}
X(64391) lies on these lines: {2, 6}, {21, 45719}, {58, 26300}, {3193, 26517}, {4184, 26512}, {4225, 26324}, {18539, 64383}, {26294, 64376}, {26306, 64395}, {26314, 64398}, {26330, 64400}, {26355, 64414}, {26369, 64377}, {26375, 64378}, {26396, 64379}, {26420, 64380}, {26429, 64381}, {26435, 64382}, {26441, 64384}, {26444, 64401}, {26449, 64402}, {26468, 64405}, {26473, 64409}, {26479, 64408}, {26485, 64407}, {26490, 64406}, {26514, 64415}, {26516, 64393}, {26518, 64394}, {26519, 64423}, {26520, 64422}, {45522, 64389}, {45524, 64390}, {49012, 64396}, {49014, 64397}, {49016, 64399}, {49018, 64412}, {49028, 64419}, {49030, 64420}, {49032, 64421}, {49078, 64072}, {63974, 64295}, {64147, 64324}
X(64392) lies on these lines: {2, 6}, {21, 45720}, {58, 26301}, {3193, 26522}, {4184, 26513}, {4225, 26325}, {8982, 64384}, {26295, 64376}, {26307, 64395}, {26315, 64398}, {26331, 64400}, {26356, 64414}, {26370, 64377}, {26376, 64378}, {26397, 64379}, {26421, 64380}, {26430, 64381}, {26436, 64382}, {26438, 64383}, {26445, 64401}, {26450, 64402}, {26469, 64405}, {26474, 64409}, {26480, 64408}, {26486, 64407}, {26491, 64406}, {26515, 64415}, {26521, 64393}, {26523, 64394}, {26524, 64423}, {26525, 64422}, {45523, 64390}, {45525, 64389}, {49013, 64396}, {49015, 64397}, {49017, 64399}, {49019, 64413}, {49029, 64419}, {49031, 64420}, {49033, 64421}, {49079, 64072}, {63974, 64295}, {64147, 64324}
X(64393) lies on circumconic {{A, B, C, X(104), X(51223)}} and on these lines: {1, 1412}, {2, 64384}, {3, 81}, {4, 86}, {5, 5333}, {20, 8025}, {21, 104}, {24, 64378}, {28, 1790}, {30, 42025}, {35, 64414}, {36, 64382}, {40, 4658}, {55, 64421}, {56, 64420}, {58, 602}, {60, 13151}, {140, 5235}, {182, 41610}, {191, 58392}, {284, 8726}, {333, 631}, {355, 14005}, {371, 64411}, {372, 64410}, {376, 42028}, {394, 13726}, {498, 64408}, {499, 64409}, {500, 4220}, {501, 5358}, {515, 25526}, {517, 37402}, {549, 4921}, {572, 2303}, {601, 38832}, {741, 1292}, {942, 1014}, {943, 3955}, {944, 1010}, {946, 28619}, {991, 52564}, {1006, 1092}, {1043, 7967}, {1396, 4303}, {1408, 2646}, {1442, 41340}, {1656, 64383}, {1817, 9940}, {1871, 14014}, {2080, 64381}, {2185, 4227}, {2360, 17194}, {3090, 25507}, {3193, 4184}, {3194, 44709}, {3286, 62843}, {3311, 64385}, {3312, 64386}, {3522, 26860}, {3523, 16704}, {3524, 41629}, {3526, 64425}, {3580, 24907}, {3651, 37527}, {3653, 17553}, {3655, 51669}, {4225, 10269}, {4229, 6361}, {4276, 37561}, {4278, 10902}, {4697, 58389}, {4720, 37727}, {5054, 64424}, {5084, 24556}, {5450, 12547}, {5603, 37422}, {5657, 56018}, {5706, 18166}, {5707, 37400}, {5767, 16738}, {5818, 14007}, {5884, 18417}, {6176, 6920}, {6200, 64413}, {6396, 64412}, {6642, 64395}, {6684, 64072}, {6857, 26638}, {6947, 31631}, {6986, 34148}, {6998, 48877}, {7125, 37523}, {7583, 64417}, {7584, 64418}, {8227, 28620}, {9956, 17551}, {10246, 15952}, {10310, 18185}, {10470, 37469}, {11064, 24933}, {11108, 24557}, {11491, 13588}, {11499, 35983}, {12005, 35637}, {13731, 27644}, {15852, 16726}, {16202, 64423}, {16203, 64422}, {16287, 63068}, {16290, 37659}, {16696, 37528}, {16713, 37407}, {17167, 31902}, {17185, 63399}, {18163, 37526}, {18206, 55104}, {18446, 47512}, {18653, 31901}, {19262, 36746}, {19543, 37633}, {21669, 48894}, {26316, 64398}, {26341, 64403}, {26348, 64404}, {26398, 64379}, {26422, 64380}, {26446, 64401}, {26451, 64402}, {26487, 64407}, {26492, 64406}, {26516, 64391}, {26521, 64392}, {26818, 37108}, {30389, 52680}, {30944, 54349}, {33557, 48926}, {34339, 41723}, {36742, 61109}, {37320, 62183}, {37399, 50317}, {38856, 60703}, {43118, 64388}, {43119, 64387}, {46475, 63158}, {48930, 51340}, {63974, 64295}, {64147, 64324}
X(64393) = midpoint of X(i) and X(j) for these {i,j}: {3, 63338}, {37402, 64377}
X(64393) = pole of line {405, 517} with respect to the Stammler hyperbola
X(64393) = pole of line {3262, 5761} with respect to the Wallace hyperbola
X(64393) = barycentric product X(i)*X(j) for these (i, j): {2185, 54346}
X(64393) = barycentric quotient X(i)/X(j) for these (i, j): {54346, 6358}
X(64393) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64384, 64405}, {3, 48909, 63400}, {3, 64419, 64376}, {81, 64376, 64419}, {1790, 54356, 28}, {2360, 17194, 17560}, {10246, 15952, 64415}, {37402, 64377, 517}, {37527, 48893, 3651}, {64389, 64390, 41610}
X(64394) lies on these lines: {1, 21}, {2, 36742}, {5, 64406}, {6, 6910}, {28, 10202}, {34, 17074}, {60, 5324}, {86, 7318}, {110, 17560}, {119, 64405}, {285, 3615}, {323, 15674}, {333, 5552}, {377, 5721}, {404, 581}, {442, 51340}, {452, 14996}, {453, 54323}, {500, 35979}, {631, 5422}, {859, 16203}, {940, 2478}, {991, 35976}, {1010, 5554}, {1125, 22128}, {1181, 6974}, {1325, 15016}, {1408, 18165}, {1437, 4228}, {1470, 64382}, {1816, 54411}, {1817, 37534}, {1993, 6857}, {2077, 64376}, {2287, 3707}, {2475, 63318}, {2979, 7523}, {3286, 11509}, {3359, 37402}, {3616, 64020}, {4184, 11248}, {4193, 37633}, {4221, 37562}, {4225, 10269}, {4267, 22768}, {4276, 14803}, {4278, 59327}, {4921, 45701}, {5047, 63068}, {5235, 26364}, {5323, 18838}, {5333, 10200}, {5453, 37308}, {5707, 6872}, {6735, 64401}, {6892, 7592}, {6921, 10601}, {6931, 37674}, {6962, 10982}, {6966, 37514}, {6977, 36752}, {7465, 37482}, {7483, 36750}, {8025, 10586}, {8614, 11281}, {10527, 61398}, {10528, 16704}, {10531, 14956}, {10679, 17524}, {10915, 64072}, {10942, 47515}, {11110, 26637}, {11113, 45931}, {11220, 57276}, {11239, 41629}, {12115, 64384}, {12608, 17167}, {12648, 56018}, {13323, 37231}, {13411, 54444}, {14005, 24982}, {15066, 16845}, {15670, 22136}, {15988, 56778}, {16049, 18180}, {17379, 26091}, {17811, 31259}, {18191, 54417}, {18542, 64383}, {19047, 64411}, {19048, 64410}, {19717, 27506}, {26309, 64395}, {26318, 64398}, {26333, 64400}, {26343, 64403}, {26350, 64404}, {26358, 64414}, {26378, 64378}, {26400, 64379}, {26424, 64380}, {26432, 64381}, {26453, 64402}, {26459, 64385}, {26465, 64386}, {26476, 64409}, {26482, 64408}, {26518, 64391}, {26523, 64392}, {26625, 37314}, {27086, 63291}, {34545, 37291}, {37229, 62183}, {37286, 63307}, {37298, 37509}, {41610, 45729}, {44734, 56047}, {45424, 64387}, {45425, 64388}, {45528, 64389}, {45529, 64390}, {45627, 64396}, {45628, 64397}, {45631, 64399}, {45642, 64412}, {45643, 64413}, {45652, 64417}, {45653, 64418}, {45923, 57002}, {48909, 52273}, {63974, 64295}, {64147, 64324}
X(64394) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 56231}, {65, 7162}
X(64394) = X(i)-Dao conjugate of X(j) for these {i, j}: {40589, 56231}, {40602, 7162}
X(64394) = pole of line {5949, 6933} with respect to the Kiepert hyperbola
X(64394) = pole of line {100, 43351} with respect to the Kiepert parabola
X(64394) = pole of line {1, 6883} with respect to the Stammler hyperbola
X(64394) = pole of line {101, 43351} with respect to the Hutson-Moses hyperbola
X(64394) = pole of line {75, 5552} with respect to the Wallace hyperbola
X(64394) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3338)}}, {{A, B, C, X(31), X(61398)}}, {{A, B, C, X(60), X(1780)}}, {{A, B, C, X(86), X(3193)}}, {{A, B, C, X(191), X(3255)}}, {{A, B, C, X(285), X(35193)}}, {{A, B, C, X(758), X(12609)}}, {{A, B, C, X(896), X(13401)}}, {{A, B, C, X(1320), X(3890)}}, {{A, B, C, X(4512), X(42012)}}, {{A, B, C, X(5248), X(45393)}}, {{A, B, C, X(5250), X(30513)}}
X(64394) = barycentric product X(i)*X(j) for these (i, j): {274, 61398}, {333, 3338}, {1434, 42012}, {10527, 81}, {12609, 2185}, {13401, 99}, {17412, 4625}, {32561, 57785}
X(64394) = barycentric quotient X(i)/X(j) for these (i, j): {58, 56231}, {284, 7162}, {3338, 226}, {10527, 321}, {12609, 6358}, {13401, 523}, {17412, 4041}, {32561, 210}, {42012, 2321}, {61398, 37}
X(64394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 81, 3193}, {283, 17194, 21}
X(64395) lies on these lines: {3, 5235}, {21, 9798}, {22, 333}, {23, 16704}, {24, 64384}, {25, 81}, {58, 8185}, {86, 1995}, {100, 16876}, {159, 41610}, {197, 4184}, {859, 20999}, {1460, 39673}, {1598, 64400}, {3193, 26308}, {3286, 20989}, {3556, 41723}, {4225, 22654}, {4921, 9909}, {5020, 5333}, {5594, 64404}, {5595, 64403}, {6642, 64393}, {7484, 64425}, {7517, 64419}, {8025, 13595}, {8190, 64396}, {8191, 64397}, {8192, 64415}, {8193, 64401}, {9818, 64399}, {10037, 64420}, {10046, 64421}, {10790, 64381}, {10828, 64398}, {10829, 64406}, {10830, 64407}, {10831, 64408}, {10832, 64409}, {10833, 64414}, {10834, 64422}, {10835, 64423}, {11365, 64377}, {11414, 64376}, {11853, 64402}, {13889, 64417}, {13943, 64418}, {14002, 26860}, {16713, 35988}, {18185, 20988}, {18954, 64382}, {19005, 64385}, {19006, 64386}, {23381, 62838}, {26302, 64379}, {26303, 64380}, {26306, 64391}, {26307, 64392}, {26309, 64394}, {35776, 64412}, {35777, 64413}, {44598, 64410}, {44599, 64411}, {45428, 64387}, {45429, 64388}, {45532, 64389}, {45533, 64390}, {49553, 64072}, {54356, 57281}, {63974, 64295}, {64147, 64324}
X(64395) = pole of line {5848, 37058} with respect to the Stammler hyperbola
X(64396) lies on these lines: {8, 21}, {58, 8186}, {81, 5597}, {3193, 45625}, {4184, 11492}, {4225, 11493}, {4653, 8187}, {4921, 11207}, {5235, 5599}, {5598, 64415}, {8190, 64395}, {8196, 64400}, {8198, 64403}, {8199, 64404}, {8200, 64405}, {11366, 64377}, {11384, 64378}, {11822, 64376}, {11837, 64381}, {11843, 64384}, {11861, 64398}, {11863, 64402}, {11865, 64406}, {11867, 64407}, {11869, 64408}, {11871, 64409}, {11873, 64414}, {11875, 64419}, {11877, 64420}, {11879, 64421}, {11881, 64422}, {11883, 64423}, {12452, 41610}, {13890, 64417}, {13944, 64418}, {18495, 64399}, {18955, 64382}, {19007, 64385}, {19008, 64386}, {35778, 64412}, {35781, 64413}, {44600, 64410}, {44601, 64411}, {45353, 64380}, {45379, 64383}, {45430, 64387}, {45431, 64388}, {45534, 64389}, {45535, 64390}, {45627, 64394}, {49012, 64391}, {49013, 64392}, {49555, 64072}, {63974, 64295}, {64147, 64324}
X(64396) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 55, 64397}
X(64397) lies on these lines: {8, 21}, {58, 8187}, {81, 5598}, {3193, 45626}, {4184, 11493}, {4225, 11492}, {4653, 8186}, {4921, 11208}, {5235, 5600}, {5597, 64415}, {8191, 64395}, {8203, 64400}, {8205, 64403}, {8206, 64404}, {8207, 64405}, {11367, 64377}, {11385, 64378}, {11823, 64376}, {11838, 64381}, {11844, 64384}, {11862, 64398}, {11864, 64402}, {11866, 64406}, {11868, 64407}, {11870, 64408}, {11872, 64409}, {11874, 64414}, {11876, 64419}, {11878, 64420}, {11880, 64421}, {11882, 64422}, {11884, 64423}, {12453, 41610}, {13891, 64417}, {13945, 64418}, {18497, 64399}, {18956, 64382}, {19009, 64385}, {19010, 64386}, {35779, 64413}, {35780, 64412}, {44602, 64410}, {44603, 64411}, {45354, 64379}, {45380, 64383}, {45432, 64387}, {45433, 64388}, {45536, 64389}, {45537, 64390}, {45628, 64394}, {49014, 64391}, {49015, 64392}, {49556, 64072}, {63974, 64295}, {64147, 64324}
X(64397) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 55, 64396}
X(64398) lies on these lines: {21, 9941}, {32, 81}, {58, 3099}, {86, 10583}, {333, 2896}, {3094, 41610}, {3096, 5235}, {3098, 64376}, {3193, 26317}, {4184, 11494}, {4225, 22744}, {4921, 7811}, {5333, 7846}, {7865, 64424}, {7914, 64425}, {9301, 64419}, {9857, 64401}, {9862, 64384}, {9993, 64400}, {9994, 64403}, {9995, 64404}, {9996, 64405}, {9997, 64415}, {10038, 64420}, {10047, 64421}, {10828, 64395}, {10871, 64406}, {10872, 64407}, {10873, 64408}, {10874, 64409}, {10877, 64414}, {10878, 64422}, {10879, 64423}, {11368, 64377}, {11386, 64378}, {11861, 64396}, {11862, 64397}, {11885, 64402}, {13892, 64417}, {13946, 64418}, {18500, 64399}, {18503, 64383}, {18957, 64382}, {19011, 64385}, {19012, 64386}, {26310, 64379}, {26311, 64380}, {26314, 64391}, {26315, 64392}, {26316, 64393}, {26318, 64394}, {35782, 64412}, {35783, 64413}, {44604, 64410}, {44605, 64411}, {45434, 64387}, {45435, 64388}, {45538, 64389}, {45539, 64390}, {49561, 64072}, {63974, 64295}, {64147, 64324}
X(64399) lies on these lines: {3, 64425}, {4, 333}, {5, 5333}, {21, 18480}, {30, 5235}, {58, 18492}, {81, 381}, {86, 3545}, {355, 4720}, {382, 64376}, {546, 64400}, {1478, 64409}, {1479, 64408}, {2303, 32431}, {3091, 8025}, {3193, 45630}, {3583, 64414}, {3585, 64382}, {3818, 41610}, {3830, 64424}, {3839, 16704}, {3843, 64419}, {3845, 4921}, {4184, 18491}, {4221, 5587}, {4225, 18761}, {5066, 42025}, {5071, 25507}, {5323, 10826}, {5818, 37422}, {6564, 64410}, {6565, 64411}, {9818, 64395}, {9955, 64377}, {9956, 37402}, {9958, 37433}, {10895, 64420}, {10896, 64421}, {12699, 64401}, {13665, 64386}, {13785, 64385}, {14005, 61261}, {17194, 18529}, {17557, 18481}, {18483, 64072}, {18495, 64396}, {18497, 64397}, {18500, 64398}, {18502, 64381}, {18507, 64402}, {18509, 64403}, {18511, 64404}, {18516, 64406}, {18517, 64407}, {18525, 64415}, {18538, 64417}, {18542, 64422}, {18544, 64423}, {18762, 64418}, {26637, 37375}, {26860, 61954}, {31937, 41723}, {35786, 64412}, {35787, 64413}, {40571, 50435}, {41099, 41629}, {41106, 42028}, {45355, 64379}, {45356, 64380}, {45438, 64387}, {45439, 64388}, {45542, 64389}, {45543, 64390}, {45631, 64394}, {49016, 64391}, {49017, 64392}, {63974, 64295}, {64147, 64324}
X(64400) lies on these lines: {2, 64376}, {3, 5333}, {4, 81}, {5, 5235}, {11, 64382}, {12, 64414}, {20, 86}, {21, 946}, {28, 5805}, {30, 42025}, {40, 14005}, {58, 1699}, {98, 64381}, {229, 4227}, {235, 64378}, {283, 5715}, {333, 3091}, {371, 64417}, {372, 64418}, {381, 4921}, {411, 10478}, {443, 24557}, {515, 64377}, {516, 25526}, {546, 64399}, {962, 1010}, {1014, 4292}, {1412, 9579}, {1437, 31902}, {1478, 64421}, {1479, 64420}, {1587, 64385}, {1588, 64386}, {1598, 64395}, {1812, 5799}, {1817, 64001}, {1836, 5323}, {2051, 6915}, {2287, 6835}, {2475, 26637}, {3070, 64411}, {3071, 64410}, {3073, 39673}, {3090, 64425}, {3146, 8025}, {3193, 26332}, {3523, 25507}, {3543, 42028}, {3545, 64424}, {3616, 7415}, {3651, 48931}, {3832, 16704}, {3839, 41629}, {3843, 64383}, {4184, 11496}, {4220, 48899}, {4221, 12699}, {4225, 22753}, {4229, 17201}, {4297, 28619}, {4653, 11522}, {4658, 5691}, {4720, 7982}, {5177, 26638}, {5480, 41610}, {5587, 64401}, {5603, 64415}, {5706, 61409}, {5806, 18180}, {6201, 64404}, {6202, 64403}, {6564, 64413}, {6565, 64412}, {6684, 17551}, {6894, 40571}, {6904, 24556}, {6986, 24220}, {7681, 14008}, {7683, 52269}, {7686, 41723}, {7956, 37357}, {7987, 28620}, {8196, 64396}, {8203, 64397}, {8227, 17557}, {9812, 37422}, {9993, 64398}, {10310, 35983}, {10531, 64422}, {10532, 64423}, {10893, 64406}, {10894, 64407}, {10895, 64408}, {10896, 64409}, {11897, 64402}, {17139, 55109}, {17553, 38021}, {17578, 26860}, {17589, 20070}, {19925, 64072}, {24949, 47296}, {26326, 64379}, {26327, 64380}, {26330, 64391}, {26331, 64392}, {26333, 64394}, {27643, 36745}, {30966, 36693}, {31162, 51669}, {31901, 51420}, {37093, 37659}, {37399, 48902}, {37537, 52897}, {37783, 44229}, {45440, 64387}, {45441, 64388}, {45544, 64389}, {45545, 64390}, {56018, 59387}, {63974, 64295}, {64147, 64324}
X(64400) = midpoint of X(i) and X(j) for these {i,j}: {4, 63297}
X(64400) = reflection of X(i) in X(j) for these {i,j}: {37402, 25526}
X(64400) = pole of line {10902, 37057} with respect to the Stammler hyperbola
X(64400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 64419, 64405}, {516, 25526, 37402}
X(64401) lies on these lines: {1, 5235}, {2, 41014}, {3, 5361}, {5, 37656}, {8, 21}, {10, 81}, {27, 54398}, {29, 30711}, {58, 3679}, {65, 64408}, {69, 4197}, {72, 41723}, {75, 58786}, {86, 9780}, {145, 11110}, {191, 64010}, {200, 54356}, {210, 18178}, {274, 30806}, {284, 4034}, {314, 3701}, {319, 57808}, {377, 14552}, {391, 2478}, {404, 1150}, {442, 2895}, {474, 5372}, {515, 64376}, {517, 64405}, {519, 17553}, {524, 26131}, {594, 1778}, {914, 14868}, {956, 4225}, {964, 37652}, {1010, 3617}, {1014, 1788}, {1046, 21020}, {1125, 64425}, {1211, 24883}, {1325, 47321}, {1330, 3578}, {1434, 31994}, {1444, 37294}, {1654, 5051}, {1698, 4658}, {1714, 32782}, {1737, 64421}, {1834, 26064}, {1837, 64414}, {2049, 37685}, {2287, 2323}, {2303, 17275}, {2475, 49716}, {2476, 5739}, {2651, 5016}, {2901, 33761}, {2975, 39578}, {3057, 64409}, {3214, 3736}, {3219, 5295}, {3416, 41610}, {3454, 31143}, {3559, 7046}, {3621, 17588}, {3626, 16948}, {3632, 4653}, {3634, 28619}, {3678, 18417}, {3696, 56288}, {3868, 5271}, {3872, 46877}, {3876, 11679}, {3927, 28605}, {3932, 63158}, {3936, 25446}, {4007, 4877}, {4015, 51285}, {4023, 27529}, {4066, 4756}, {4184, 5687}, {4193, 14555}, {4202, 37653}, {4221, 5690}, {4228, 33090}, {4273, 50082}, {4276, 5258}, {4281, 10459}, {4400, 4690}, {4647, 11684}, {4651, 13588}, {4668, 52680}, {4678, 11115}, {4869, 50393}, {4882, 17194}, {5047, 5278}, {5082, 14956}, {5090, 64378}, {5125, 56014}, {5177, 56020}, {5192, 17349}, {5247, 59307}, {5252, 64382}, {5264, 39673}, {5323, 40663}, {5587, 64400}, {5657, 37402}, {5688, 64404}, {5689, 64403}, {5737, 19767}, {5741, 7504}, {5790, 64419}, {5791, 33077}, {5814, 40571}, {6735, 64394}, {7080, 16713}, {8025, 14007}, {8193, 64395}, {8582, 24557}, {8728, 32863}, {8822, 32087}, {9656, 21291}, {9709, 35983}, {9857, 64398}, {10039, 64420}, {10381, 61699}, {10458, 50581}, {10461, 63135}, {10479, 32911}, {10791, 64381}, {10914, 64406}, {10915, 64422}, {10916, 64423}, {11900, 64402}, {12699, 64399}, {12702, 64383}, {13740, 19742}, {13883, 64386}, {13893, 64417}, {13911, 64410}, {13936, 64385}, {13947, 64418}, {13973, 64411}, {14008, 24390}, {14829, 17531}, {14996, 16458}, {15679, 50215}, {15952, 59503}, {16053, 29616}, {16342, 20018}, {16454, 37683}, {16738, 59299}, {17156, 62831}, {17162, 41813}, {17163, 63996}, {17167, 21075}, {17277, 17536}, {17346, 17577}, {17549, 48850}, {17579, 54429}, {18169, 59294}, {18180, 34790}, {18249, 56204}, {19280, 19717}, {19859, 62808}, {19875, 42025}, {19877, 25507}, {20077, 50171}, {20086, 49743}, {20293, 57093}, {20653, 42334}, {24632, 50095}, {24880, 30831}, {24936, 62689}, {25005, 26637}, {25441, 31247}, {25645, 31204}, {26115, 27164}, {26382, 64379}, {26406, 64380}, {26444, 64391}, {26445, 64392}, {26446, 64393}, {28618, 51073}, {31330, 57280}, {31339, 32853}, {32917, 59302}, {33075, 62843}, {33557, 48877}, {34195, 54335}, {35788, 64412}, {35789, 64413}, {36568, 50308}, {37037, 63067}, {37422, 59417}, {37442, 54391}, {37462, 37655}, {37522, 48852}, {37639, 56766}, {37680, 50605}, {41629, 53620}, {43533, 54760}, {45444, 64387}, {45445, 64388}, {45546, 64389}, {45547, 64390}, {48935, 52841}, {52258, 63100}, {55095, 56318}, {62796, 64184}, {63974, 64295}, {64147, 64324}
X(64401) = reflection of X(i) in X(j) for these {i,j}: {17553, 64424}, {63319, 10}
X(64401) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 56221}, {57, 28625}, {65, 56343}, {226, 34819}, {604, 60203}, {1042, 56203}, {1400, 25417}, {1402, 30598}, {1880, 56070}, {4017, 8652}, {4559, 48074}, {7180, 37211}, {32042, 51641}
X(64401) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 56221}, {1698, 3671}, {3161, 60203}, {5452, 28625}, {34961, 8652}, {40582, 25417}, {40602, 56343}, {40605, 30598}, {51572, 65}, {53167, 7178}, {55067, 48074}, {62648, 226}
X(64401) = X(i)-cross conjugate of X(j) for these {i, j}: {3715, 4877}, {4877, 5333}
X(64401) = pole of line {960, 4720} with respect to the Feuerbach hyperbola
X(64401) = pole of line {56, 1203} with respect to the Stammler hyperbola
X(64401) = pole of line {7, 5550} with respect to the Wallace hyperbola
X(64401) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(1224)}}, {{A, B, C, X(21), X(4658)}}, {{A, B, C, X(55), X(3715)}}, {{A, B, C, X(333), X(3615)}}, {{A, B, C, X(345), X(28605)}}, {{A, B, C, X(958), X(1320)}}, {{A, B, C, X(1259), X(3927)}}, {{A, B, C, X(2323), X(4880)}}, {{A, B, C, X(3686), X(52344)}}, {{A, B, C, X(3701), X(4046)}}, {{A, B, C, X(3712), X(4820)}}, {{A, B, C, X(3871), X(56115)}}, {{A, B, C, X(4042), X(52133)}}, {{A, B, C, X(4654), X(5273)}}, {{A, B, C, X(4802), X(44669)}}, {{A, B, C, X(12867), X(31660)}}, {{A, B, C, X(42030), X(43260)}}
X(64401) = barycentric product X(i)*X(j) for these (i, j): {21, 28605}, {274, 3715}, {284, 30596}, {312, 4658}, {1043, 4654}, {1698, 333}, {2185, 4066}, {3699, 4960}, {4007, 86}, {4560, 4756}, {4631, 48005}, {4802, 645}, {4813, 7257}, {4820, 99}, {4823, 643}, {4834, 62534}, {4840, 646}, {4877, 75}, {5333, 8}, {16777, 314}, {28660, 61358}, {30589, 4720}, {31623, 3927}, {31902, 345}, {36800, 4716}
X(64401) = barycentric quotient X(i)/X(j) for these (i, j): {8, 60203}, {9, 56221}, {21, 25417}, {55, 28625}, {283, 56070}, {284, 56343}, {333, 30598}, {643, 37211}, {645, 32042}, {1043, 42030}, {1698, 226}, {2194, 34819}, {2287, 56203}, {3715, 37}, {3737, 48074}, {3824, 55010}, {3927, 1214}, {4007, 10}, {4066, 6358}, {4654, 3668}, {4658, 57}, {4716, 16609}, {4720, 30590}, {4727, 40663}, {4756, 4552}, {4802, 7178}, {4810, 7212}, {4813, 4017}, {4820, 523}, {4823, 4077}, {4834, 7180}, {4840, 3669}, {4877, 1}, {4880, 18593}, {4898, 4848}, {4958, 30572}, {4960, 3676}, {5221, 1427}, {5333, 7}, {5546, 8652}, {16777, 65}, {28605, 1441}, {30596, 349}, {31902, 278}, {36074, 53321}, {48005, 57185}, {61358, 1400}, {62648, 3671}
X(64401) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5235, 17557}, {2, 56018, 64377}, {8, 21, 4720}, {8, 333, 21}, {10, 64072, 81}, {10, 81, 14005}, {86, 9780, 17551}, {519, 64424, 17553}, {1150, 9534, 404}, {1698, 4658, 5333}, {1834, 49724, 26064}, {3617, 16704, 1010}, {3679, 4921, 51669}, {3701, 60731, 32635}, {3936, 25446, 31254}, {5278, 10449, 5047}, {5657, 64384, 37402}, {8025, 46933, 14007}
X(64402) lies on these lines: {21, 12438}, {30, 64376}, {58, 11852}, {81, 402}, {333, 4240}, {1650, 5235}, {1651, 4921}, {3193, 26452}, {4184, 11848}, {4225, 22755}, {5333, 15183}, {11831, 64377}, {11832, 64378}, {11839, 64381}, {11845, 64384}, {11853, 64395}, {11863, 64396}, {11864, 64397}, {11885, 64398}, {11897, 64400}, {11900, 64401}, {11901, 64403}, {11902, 64404}, {11903, 64406}, {11904, 64407}, {11905, 64408}, {11906, 64409}, {11909, 64414}, {11910, 64415}, {11911, 64419}, {11912, 64420}, {11913, 64421}, {11914, 64422}, {11915, 64423}, {12583, 41610}, {13894, 64417}, {13948, 64418}, {15184, 64425}, {16212, 56018}, {18507, 64399}, {18508, 64383}, {18958, 64382}, {19017, 64385}, {19018, 64386}, {26383, 64379}, {26407, 64380}, {26449, 64391}, {26450, 64392}, {26451, 64393}, {26453, 64394}, {35790, 64412}, {35791, 64413}, {44610, 64410}, {44611, 64411}, {45446, 64387}, {45447, 64388}, {45548, 64389}, {45549, 64390}, {49585, 64072}, {63974, 64295}, {64147, 64324}
X(64402) = reflection of X(i) in X(j) for these {i,j}: {63320, 402}
X(64403) lies on these lines: {2, 6}, {21, 3641}, {58, 5589}, {3193, 26342}, {4184, 11497}, {4225, 22756}, {5595, 64395}, {5605, 64415}, {5689, 64401}, {6202, 64400}, {6215, 64405}, {8198, 64396}, {8205, 64397}, {9994, 64398}, {10040, 64420}, {10048, 64421}, {10783, 64384}, {10792, 64381}, {10919, 64406}, {10921, 64407}, {10923, 64408}, {10925, 64409}, {10927, 64414}, {10929, 64422}, {10931, 64423}, {11370, 64377}, {11388, 64378}, {11824, 64376}, {11901, 64402}, {11916, 64419}, {18509, 64399}, {18959, 64382}, {26334, 64379}, {26335, 64380}, {26336, 64383}, {26341, 64393}, {26343, 64394}, {35792, 64412}, {35795, 64413}, {45550, 64389}, {45552, 64390}, {49586, 64072}, {63974, 64295}, {64147, 64324}
X(64404) lies on these lines: {2, 6}, {21, 3640}, {58, 5588}, {3193, 26349}, {4184, 11498}, {4225, 22757}, {5594, 64395}, {5604, 64415}, {5688, 64401}, {6201, 64400}, {6214, 64405}, {8199, 64396}, {8206, 64397}, {9995, 64398}, {10041, 64420}, {10049, 64421}, {10784, 64384}, {10793, 64381}, {10920, 64406}, {10922, 64407}, {10924, 64408}, {10926, 64409}, {10928, 64414}, {10930, 64422}, {10932, 64423}, {11371, 64377}, {11389, 64378}, {11825, 64376}, {11902, 64402}, {11917, 64419}, {18511, 64399}, {18960, 64382}, {26344, 64379}, {26345, 64380}, {26346, 64383}, {26348, 64393}, {26350, 64394}, {35793, 64413}, {35794, 64412}, {45551, 64390}, {45553, 64389}, {49587, 64072}, {63974, 64295}, {64147, 64324}
X(64405) lies on these lines: {1, 64408}, {2, 64384}, {3, 5235}, {4, 333}, {5, 81}, {10, 4221}, {11, 64421}, {12, 64420}, {21, 355}, {28, 51755}, {30, 64376}, {58, 5587}, {86, 3090}, {104, 37442}, {119, 64394}, {140, 64425}, {381, 4921}, {485, 64410}, {486, 64411}, {517, 64401}, {944, 11110}, {946, 64072}, {952, 64415}, {1010, 5818}, {1043, 59388}, {1352, 6990}, {1385, 17557}, {1408, 17606}, {1478, 64382}, {1479, 64414}, {1656, 5333}, {1737, 5323}, {1746, 37431}, {1812, 6830}, {2287, 6831}, {2303, 5816}, {3091, 16704}, {3193, 14008}, {3545, 41629}, {3651, 48937}, {4184, 11499}, {4193, 26637}, {4220, 48887}, {4225, 22758}, {4234, 38074}, {4653, 5881}, {4658, 8227}, {5055, 42025}, {5056, 8025}, {5067, 25507}, {5071, 42028}, {5084, 26638}, {5603, 56018}, {5657, 37422}, {5720, 54356}, {5777, 18180}, {5778, 56000}, {5786, 19262}, {5789, 52012}, {5790, 15952}, {5791, 37418}, {5810, 6828}, {5886, 64377}, {5887, 41723}, {6214, 64404}, {6215, 64403}, {6289, 64387}, {6290, 64388}, {6564, 64412}, {6565, 64413}, {6848, 16713}, {6873, 56439}, {6879, 31631}, {6952, 14868}, {6956, 27398}, {7330, 31902}, {7413, 48877}, {7583, 64386}, {7584, 64385}, {8200, 64396}, {8207, 64397}, {8976, 64417}, {9956, 14005}, {9958, 37456}, {9996, 64398}, {10175, 25526}, {10458, 37699}, {10796, 64381}, {10942, 64422}, {10943, 64423}, {13951, 64418}, {14872, 18165}, {15022, 26860}, {16948, 18357}, {17527, 24557}, {17553, 28204}, {18417, 20117}, {24883, 30444}, {26386, 64379}, {26410, 64380}, {26446, 37402}, {26468, 64391}, {26469, 64392}, {33295, 36651}, {35637, 63967}, {37714, 52680}, {45554, 64389}, {45555, 64390}, {63974, 64295}, {64147, 64324}
X(64405) = reflection of X(i) in X(j) for these {i,j}: {63323, 5}
X(64405) = pole of line {26286, 37058} with respect to the Stammler hyperbola
X(64405) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64384, 64393}, {381, 64419, 64400}, {4921, 64400, 64419}, {64408, 64409, 1}
X(64406) lies on these lines: {2, 37474}, {5, 64394}, {11, 81}, {12, 64422}, {21, 355}, {58, 10826}, {86, 10584}, {333, 3434}, {859, 18519}, {1376, 4184}, {1746, 37449}, {3193, 10943}, {4225, 12114}, {4653, 37708}, {4921, 11235}, {5324, 24624}, {5788, 6872}, {10523, 64420}, {10785, 64384}, {10794, 64381}, {10829, 64395}, {10871, 64398}, {10883, 11442}, {10893, 64400}, {10914, 64401}, {10919, 64403}, {10920, 64404}, {10944, 64408}, {10947, 64414}, {10948, 64421}, {10949, 64423}, {11373, 64377}, {11390, 64378}, {11826, 64376}, {11865, 64396}, {11866, 64397}, {11903, 64402}, {11928, 64419}, {12586, 41610}, {12616, 16049}, {12672, 41723}, {13478, 35996}, {13895, 64417}, {13952, 64418}, {14005, 17619}, {17557, 17614}, {18180, 31937}, {18516, 64399}, {18961, 64382}, {19023, 64385}, {19024, 64386}, {22139, 46521}, {26390, 64379}, {26414, 64380}, {26490, 64391}, {26491, 64392}, {26492, 64393}, {26637, 37373}, {34612, 64424}, {35796, 64412}, {35797, 64413}, {35979, 48937}, {44618, 64410}, {44619, 64411}, {45454, 64387}, {45455, 64388}, {45556, 64389}, {45557, 64390}, {49600, 64072}, {63974, 64295}, {64147, 64324}
X(64406) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 64405, 64407}
X(64407) lies on these lines: {2, 5788}, {5, 3193}, {10, 16049}, {11, 64423}, {12, 81}, {21, 355}, {58, 10827}, {68, 6829}, {72, 41723}, {86, 10585}, {283, 5587}, {333, 3436}, {958, 4225}, {1437, 9956}, {1698, 1790}, {1792, 5086}, {1812, 11681}, {1817, 5791}, {1867, 3219}, {2476, 5810}, {4184, 11500}, {4653, 37711}, {4921, 11236}, {5130, 54340}, {5260, 15232}, {5790, 37227}, {5818, 11103}, {6684, 35997}, {7989, 62756}, {10523, 64421}, {10786, 64384}, {10795, 64381}, {10830, 64395}, {10872, 64398}, {10894, 64400}, {10921, 64403}, {10922, 64404}, {10942, 47515}, {10950, 64409}, {10953, 64414}, {10954, 64420}, {10955, 64422}, {11374, 64377}, {11391, 64378}, {11827, 64376}, {11867, 64396}, {11868, 64397}, {11904, 64402}, {11929, 64419}, {12587, 41610}, {13896, 64417}, {13953, 64418}, {14011, 26637}, {14868, 27529}, {17167, 21077}, {17518, 25005}, {17524, 18518}, {17857, 54356}, {18517, 64399}, {18962, 64382}, {19025, 64385}, {19026, 64386}, {21677, 37369}, {24953, 64425}, {26389, 64379}, {26413, 64380}, {26485, 64391}, {26486, 64392}, {26487, 64393}, {26921, 31902}, {27174, 39566}, {34606, 64424}, {35798, 64412}, {35799, 64413}, {35989, 48937}, {37277, 51755}, {44620, 64410}, {44621, 64411}, {45456, 64387}, {45457, 64388}, {45558, 64389}, {45559, 64390}, {63974, 64295}, {64147, 64324}
X(64407) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 64405, 64406}
X(64408) lies on these lines: {1, 64405}, {4, 64414}, {5, 64421}, {10, 5323}, {12, 81}, {21, 5252}, {56, 5235}, {58, 9578}, {65, 64401}, {86, 10588}, {226, 64072}, {333, 388}, {495, 64420}, {498, 64393}, {1014, 24914}, {1319, 17557}, {1408, 14005}, {1412, 1698}, {1479, 64399}, {2287, 15844}, {2476, 5820}, {2551, 26638}, {3085, 64384}, {3193, 26481}, {3295, 64383}, {3476, 11110}, {3485, 56018}, {3736, 56198}, {4184, 11501}, {4221, 10039}, {4225, 22759}, {4653, 37709}, {4658, 5219}, {4921, 11237}, {5261, 16704}, {5433, 64425}, {5434, 64424}, {5712, 5788}, {7354, 64376}, {9654, 64419}, {10797, 64381}, {10831, 64395}, {10873, 64398}, {10895, 64400}, {10923, 64403}, {10924, 64404}, {10944, 64406}, {10956, 64422}, {10957, 14008}, {11375, 64377}, {11392, 64378}, {11681, 26637}, {11869, 64396}, {11870, 64397}, {11905, 64402}, {12588, 41610}, {13897, 64417}, {13954, 64418}, {19027, 64385}, {19028, 64386}, {26388, 64379}, {26412, 64380}, {26479, 64391}, {26480, 64392}, {26482, 64394}, {31472, 64410}, {35800, 64412}, {35801, 64413}, {41723, 64041}, {44622, 64411}, {45458, 64387}, {45459, 64388}, {45560, 64389}, {45561, 64390}, {63974, 64295}, {64147, 64324}
X(64408) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {333, 388, 64382}
X(64409) lies on these lines: {1, 64405}, {4, 64382}, {5, 64420}, {11, 81}, {21, 1837}, {27, 1857}, {55, 5235}, {58, 9581}, {86, 10589}, {333, 497}, {496, 64421}, {499, 64393}, {999, 64383}, {1010, 54361}, {1014, 17728}, {1210, 5323}, {1396, 37372}, {1478, 64399}, {1737, 4221}, {1788, 37422}, {1812, 37373}, {1864, 18165}, {2074, 5358}, {2646, 17557}, {2654, 4281}, {3057, 64401}, {3058, 64424}, {3086, 64384}, {3193, 26475}, {3486, 11110}, {4183, 5324}, {4184, 11502}, {4207, 37642}, {4225, 22760}, {4228, 24624}, {4653, 5727}, {4658, 50443}, {4921, 11238}, {5274, 16704}, {5348, 39673}, {5432, 64425}, {6284, 64376}, {7069, 35623}, {7424, 16948}, {9669, 64419}, {10395, 47512}, {10798, 64381}, {10832, 64395}, {10874, 64398}, {10896, 64400}, {10925, 64403}, {10926, 64404}, {10950, 64407}, {10958, 64422}, {10959, 64423}, {11376, 64377}, {11393, 64378}, {11871, 64396}, {11872, 64397}, {11906, 64402}, {12053, 64072}, {12589, 41610}, {13588, 60782}, {13898, 64417}, {13955, 64418}, {14005, 17606}, {17604, 18191}, {18180, 64131}, {19029, 64385}, {19030, 64386}, {24914, 37402}, {26105, 26638}, {26387, 64379}, {26411, 64380}, {26473, 64391}, {26474, 64392}, {26476, 64394}, {27762, 42025}, {35802, 64412}, {35803, 64413}, {37357, 62843}, {41723, 64042}, {44623, 64410}, {44624, 64411}, {45460, 64387}, {45461, 64388}, {45562, 64389}, {45563, 64390}, {63974, 64295}, {64147, 64324}
X(64409) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 64405, 64408}, {333, 497, 64414}
X(64410) lies on these lines: {2, 6}, {21, 7969}, {39, 64390}, {58, 606}, {371, 64412}, {372, 64393}, {485, 64405}, {605, 38832}, {1010, 19065}, {1124, 64421}, {1151, 64376}, {1335, 64420}, {1412, 51842}, {1587, 64384}, {2066, 64414}, {2067, 64382}, {2362, 5323}, {3071, 64400}, {3193, 19050}, {3286, 19000}, {3311, 64419}, {4184, 44590}, {4221, 35774}, {4225, 44606}, {4267, 19014}, {4658, 18992}, {5062, 64389}, {5412, 64378}, {6419, 64413}, {6564, 64399}, {7968, 64377}, {11110, 13902}, {13665, 64383}, {13883, 64072}, {13911, 64401}, {13936, 25526}, {13971, 28619}, {13973, 14005}, {18185, 18999}, {19048, 64394}, {19066, 56018}, {31472, 64408}, {37402, 49227}, {44582, 64379}, {44584, 64380}, {44586, 64381}, {44598, 64395}, {44600, 64396}, {44602, 64397}, {44604, 64398}, {44610, 64402}, {44618, 64406}, {44620, 64407}, {44623, 64409}, {44635, 64415}, {44643, 64422}, {44645, 64423}, {63974, 64295}, {64147, 64324}
X(64410) = pole of line {6, 3083} with respect to the Stammler hyperbola
X(64410) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(64209)}}, {{A, B, C, X(69), X(6213)}}, {{A, B, C, X(394), X(606)}}, {{A, B, C, X(7347), X(14555)}}
X(64410) = barycentric product X(i)*X(j) for these (i, j): {6351, 81}
X(64410) = barycentric quotient X(i)/X(j) for these (i, j): {6351, 321}
X(64411) lies on these lines: {2, 6}, {21, 7968}, {39, 64389}, {58, 605}, {371, 64393}, {372, 64413}, {486, 64405}, {606, 38832}, {1010, 19066}, {1124, 64420}, {1152, 64376}, {1172, 7595}, {1335, 64421}, {1412, 51841}, {1588, 64384}, {3070, 64400}, {3193, 19049}, {3286, 18999}, {3312, 64419}, {4184, 44591}, {4221, 35775}, {4225, 44607}, {4267, 19013}, {4658, 18991}, {5058, 64390}, {5323, 16232}, {5413, 64378}, {5414, 64414}, {6420, 64412}, {6502, 64382}, {6565, 64399}, {7969, 64377}, {8983, 28619}, {11110, 13959}, {13785, 64383}, {13883, 25526}, {13911, 14005}, {13936, 64072}, {13973, 64401}, {18185, 19000}, {19047, 64394}, {19065, 56018}, {37402, 49226}, {44583, 64379}, {44585, 64380}, {44587, 64381}, {44599, 64395}, {44601, 64396}, {44603, 64397}, {44605, 64398}, {44611, 64402}, {44619, 64406}, {44621, 64407}, {44622, 64408}, {44624, 64409}, {44636, 64415}, {44644, 64422}, {44646, 64423}, {63974, 64295}, {64147, 64324}
X(64411) = pole of line {6, 3084} with respect to the Stammler hyperbola
X(64411) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(64210)}}, {{A, B, C, X(69), X(6212)}}, {{A, B, C, X(394), X(605)}}, {{A, B, C, X(7348), X(14555)}}
X(64411) = barycentric product X(i)*X(j) for these (i, j): {6352, 81}
X(64411) = barycentric quotient X(i)/X(j) for these (i, j): {6352, 321}
X(64412) lies on these lines: {6, 19543}, {21, 35641}, {58, 35774}, {81, 372}, {86, 5420}, {333, 485}, {371, 64410}, {1587, 16704}, {3103, 64388}, {3193, 45640}, {4184, 35772}, {4221, 35611}, {4225, 35784}, {4921, 35822}, {5235, 10576}, {6200, 64376}, {6396, 64393}, {6419, 64386}, {6420, 64411}, {6560, 64384}, {6564, 64405}, {6565, 64400}, {8025, 13935}, {23251, 64383}, {35762, 64377}, {35764, 64378}, {35766, 64381}, {35768, 64382}, {35769, 64421}, {35770, 64385}, {35776, 64395}, {35778, 64396}, {35780, 64397}, {35782, 64398}, {35786, 64399}, {35788, 64401}, {35790, 64402}, {35792, 64403}, {35794, 64404}, {35796, 64406}, {35798, 64407}, {35800, 64408}, {35802, 64409}, {35808, 64414}, {35809, 64420}, {35810, 64415}, {35812, 64417}, {35814, 64418}, {35816, 64422}, {35818, 64423}, {35840, 41610}, {45357, 64379}, {45359, 64380}, {45462, 64387}, {45564, 64390}, {45642, 64394}, {49018, 64391}, {49601, 64072}, {63974, 64295}, {64147, 64324}
X(64413) lies on these lines: {6, 19543}, {21, 35642}, {58, 35775}, {81, 371}, {86, 5418}, {333, 486}, {372, 64411}, {1588, 16704}, {3102, 64387}, {3193, 45641}, {4184, 35773}, {4221, 35610}, {4225, 35785}, {4921, 35823}, {5235, 10577}, {6200, 64393}, {6396, 64376}, {6419, 64410}, {6420, 64385}, {6561, 64384}, {6564, 64400}, {6565, 64405}, {8025, 9540}, {23261, 64383}, {35763, 64377}, {35765, 64378}, {35767, 64381}, {35768, 64421}, {35769, 64382}, {35771, 64386}, {35777, 64395}, {35779, 64397}, {35781, 64396}, {35783, 64398}, {35787, 64399}, {35789, 64401}, {35791, 64402}, {35793, 64404}, {35795, 64403}, {35797, 64406}, {35799, 64407}, {35801, 64408}, {35803, 64409}, {35808, 64420}, {35809, 64414}, {35811, 64415}, {35813, 64418}, {35815, 64417}, {35817, 64422}, {35819, 64423}, {35841, 41610}, {45358, 64380}, {45360, 64379}, {45463, 64388}, {45565, 64389}, {45643, 64394}, {49019, 64392}, {49602, 64072}, {63974, 64295}, {64147, 64324}
X(64413) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 64419, 64412}
X(64414) lies on these lines: {1, 58392}, {3, 64421}, {4, 64408}, {11, 5235}, {12, 64400}, {21, 643}, {33, 64378}, {35, 64393}, {40, 5323}, {55, 81}, {56, 64376}, {58, 1697}, {86, 5218}, {100, 26637}, {165, 1412}, {212, 38832}, {243, 56014}, {284, 62756}, {333, 497}, {390, 16704}, {896, 42446}, {950, 64072}, {1005, 37516}, {1014, 1155}, {1253, 62740}, {1408, 37402}, {1479, 64405}, {1776, 11997}, {1778, 54359}, {1812, 56181}, {1837, 64401}, {1936, 2269}, {2066, 64410}, {2098, 64415}, {2328, 5324}, {2550, 26638}, {2646, 64377}, {2651, 3056}, {3058, 4921}, {3193, 26357}, {3295, 64419}, {3476, 7415}, {3486, 56018}, {3583, 64399}, {3601, 4658}, {4221, 5119}, {4225, 10966}, {4271, 33849}, {4294, 64384}, {4413, 24557}, {4414, 18161}, {4653, 7962}, {4995, 42025}, {5132, 63068}, {5281, 8025}, {5333, 5432}, {5414, 64411}, {7074, 40153}, {9371, 16696}, {9668, 64383}, {9819, 52680}, {10385, 41629}, {10388, 17194}, {10799, 64381}, {10833, 64395}, {10877, 64398}, {10927, 64403}, {10928, 64404}, {10947, 64406}, {10953, 64407}, {10965, 64422}, {11238, 64424}, {11376, 17557}, {11873, 64396}, {11874, 64397}, {11909, 64402}, {13901, 64417}, {13958, 64418}, {14935, 40403}, {17642, 18165}, {19037, 64385}, {19038, 64386}, {24556, 59572}, {26351, 64379}, {26352, 64380}, {26355, 64391}, {26356, 64392}, {26358, 64394}, {35808, 64412}, {35809, 64413}, {40467, 57093}, {41723, 64043}, {45470, 64387}, {45471, 64388}, {45570, 64389}, {45571, 64390}, {61397, 61409}, {63974, 64295}, {64147, 64324}
X(64414) = pole of line {4511, 15569} with respect to the Feuerbach hyperbola
X(64414) = pole of line {1001, 1319} with respect to the Stammler hyperbola
X(64414) = intersection, other than A, B, C, of circumconics {{A, B, C, X(294), X(17126)}}, {{A, B, C, X(1002), X(1320)}}
X(64414) = barycentric product X(i)*X(j) for these (i, j): {21, 4419}, {47757, 643}, {48332, 645}
X(64414) = barycentric quotient X(i)/X(j) for these (i, j): {4419, 1441}, {47757, 4077}, {48332, 7178}
X(64414) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {333, 497, 64409}, {1408, 37568, 37402}, {2328, 18163, 5324}, {3295, 64419, 64420}
X(64415) lies on these lines: {1, 21}, {2, 1043}, {3, 37633}, {6, 16865}, {8, 5235}, {10, 4720}, {12, 14008}, {23, 54371}, {27, 4313}, {28, 1255}, {29, 5703}, {30, 26131}, {33, 54340}, {37, 2287}, {42, 5260}, {55, 4225}, {56, 4184}, {72, 33761}, {86, 3445}, {88, 5439}, {100, 37442}, {104, 59012}, {105, 43359}, {110, 54417}, {145, 333}, {229, 2646}, {284, 3247}, {314, 24547}, {386, 5047}, {388, 14956}, {405, 19767}, {442, 24936}, {452, 63008}, {495, 37357}, {496, 47515}, {500, 21669}, {517, 64376}, {519, 17553}, {551, 25526}, {581, 6912}, {582, 1006}, {663, 57189}, {741, 58117}, {750, 37574}, {759, 8652}, {859, 3295}, {940, 4189}, {952, 64405}, {958, 2334}, {962, 7415}, {988, 64149}, {999, 17524}, {1001, 27644}, {1010, 3616}, {1014, 1420}, {1100, 1778}, {1104, 17011}, {1125, 14005}, {1150, 56769}, {1172, 13739}, {1191, 61409}, {1193, 5284}, {1201, 3736}, {1220, 29822}, {1279, 63158}, {1319, 5323}, {1325, 37571}, {1330, 49735}, {1333, 3723}, {1385, 4221}, {1412, 63208}, {1449, 4877}, {1616, 40153}, {1724, 16858}, {1790, 13384}, {1792, 25060}, {1817, 3601}, {1963, 37032}, {2098, 64414}, {2099, 64382}, {2177, 59311}, {2217, 39737}, {2256, 56000}, {2298, 40452}, {2303, 3285}, {2360, 40214}, {2475, 17056}, {2654, 27653}, {2895, 49728}, {3017, 15671}, {3057, 18165}, {3194, 11107}, {3216, 17536}, {3241, 4921}, {3242, 41610}, {3244, 64072}, {3286, 3304}, {3303, 4267}, {3305, 8951}, {3315, 37592}, {3487, 33151}, {3488, 25516}, {3559, 34231}, {3576, 37402}, {3623, 16704}, {3624, 17551}, {3636, 28619}, {3649, 33100}, {3651, 48903}, {3663, 26729}, {3664, 58786}, {3720, 5253}, {3731, 3984}, {3746, 4276}, {3748, 5324}, {3750, 10459}, {3870, 46877}, {3871, 30116}, {3876, 54287}, {3896, 16824}, {3920, 4228}, {3924, 17592}, {3936, 26117}, {3945, 8822}, {4021, 17189}, {4188, 37674}, {4190, 4648}, {4195, 19684}, {4197, 48837}, {4201, 18139}, {4205, 31247}, {4220, 48894}, {4234, 38314}, {4252, 14996}, {4256, 17531}, {4257, 17574}, {4278, 5563}, {4383, 16859}, {4511, 6051}, {4683, 12579}, {4719, 7292}, {4850, 54392}, {4854, 11281}, {4855, 17022}, {5046, 5718}, {5051, 25650}, {5084, 37651}, {5129, 63090}, {5222, 16053}, {5251, 59301}, {5256, 5436}, {5262, 47512}, {5276, 17522}, {5278, 20018}, {5283, 63087}, {5297, 56176}, {5303, 37607}, {5308, 16054}, {5358, 30145}, {5396, 6920}, {5428, 45923}, {5440, 17581}, {5453, 13743}, {5550, 14007}, {5597, 64397}, {5598, 64396}, {5603, 64400}, {5604, 64404}, {5605, 64403}, {5706, 37106}, {5707, 6875}, {5710, 61155}, {5711, 37303}, {5712, 6872}, {5721, 6884}, {5731, 37422}, {5736, 7538}, {5739, 13736}, {5919, 18178}, {6284, 33112}, {6675, 24883}, {6690, 54355}, {6740, 56417}, {6906, 50317}, {6986, 63982}, {7508, 45931}, {7967, 64384}, {7968, 64385}, {7969, 64386}, {8025, 17539}, {8143, 33858}, {8167, 27625}, {8192, 64395}, {8543, 10571}, {9345, 37608}, {9347, 37552}, {9612, 26738}, {9957, 18180}, {9997, 64398}, {10246, 15952}, {10247, 64419}, {10449, 16342}, {10543, 37369}, {10800, 64381}, {10944, 64406}, {10950, 64407}, {11106, 63007}, {11108, 37687}, {11396, 64378}, {11441, 36746}, {11681, 37373}, {11910, 64402}, {12053, 17167}, {12549, 63968}, {13725, 32782}, {13745, 26064}, {13902, 64417}, {13959, 64418}, {14829, 16347}, {14953, 29624}, {14997, 17544}, {15672, 61661}, {15674, 35466}, {15677, 37631}, {15678, 49744}, {15680, 37635}, {15808, 28618}, {16046, 29580}, {16050, 26626}, {16749, 62697}, {16754, 58329}, {16826, 26643}, {16919, 20131}, {17016, 37593}, {17019, 27174}, {17021, 54387}, {17234, 56782}, {17319, 56019}, {17392, 37299}, {17526, 19766}, {17534, 17749}, {17549, 37522}, {17558, 24597}, {17570, 37679}, {17577, 48841}, {17589, 25507}, {17676, 18134}, {17692, 20132}, {18163, 37556}, {18525, 64399}, {18526, 64383}, {18755, 19318}, {19245, 19763}, {19312, 26243}, {19860, 25059}, {19861, 24554}, {20077, 42045}, {21935, 29640}, {21997, 29569}, {22464, 64160}, {22836, 27785}, {24553, 24565}, {24556, 24558}, {24632, 29574}, {24953, 33142}, {25524, 35983}, {25906, 50622}, {26215, 64348}, {26395, 64379}, {26419, 64380}, {26514, 64391}, {26515, 64392}, {26690, 62707}, {26725, 36250}, {27714, 33160}, {28443, 63307}, {28453, 63338}, {28628, 33134}, {30143, 54315}, {31019, 50065}, {31649, 51340}, {33557, 52524}, {33771, 56191}, {34028, 41402}, {35810, 64412}, {35811, 64413}, {35981, 57283}, {35997, 37600}, {36011, 54313}, {36565, 40980}, {36740, 63183}, {36742, 56292}, {37162, 37662}, {37228, 37659}, {37291, 37634}, {37375, 37693}, {37433, 63386}, {37538, 59359}, {37614, 56946}, {37650, 50398}, {38316, 54308}, {39766, 41813}, {43223, 54331}, {44635, 64410}, {44636, 64411}, {45476, 64387}, {45477, 64388}, {45572, 64389}, {45573, 64390}, {45924, 52841}, {46897, 56311}, {48307, 57246}, {48930, 63400}, {49598, 64010}, {49743, 57002}, {50677, 50693}, {53707, 59135}, {62692, 63493}, {63974, 64295}, {64147, 64324}
X(64415) = reflection of X(i) in X(j) for these {i,j}: {64424, 17553}
X(64415) = isogonal conjugate of X(31503)
X(64415) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 31503}, {6, 56226}, {37, 39980}, {42, 30712}, {512, 58132}, {523, 28162}, {1400, 56201}
X(64415) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 31503}, {9, 56226}, {11530, 10}, {39054, 58132}, {40582, 56201}, {40589, 39980}, {40592, 30712}, {62221, 4815}
X(64415) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56048, 81}
X(64415) = pole of line {3733, 57189} with respect to the circumcircle
X(64415) = pole of line {24006, 30591} with respect to the polar circle
X(64415) = pole of line {81, 2646} with respect to the Feuerbach hyperbola
X(64415) = pole of line {966, 5949} with respect to the Kiepert hyperbola
X(64415) = pole of line {100, 645} with respect to the Kiepert parabola
X(64415) = pole of line {1, 3052} with respect to the Stammler hyperbola
X(64415) = pole of line {4560, 4897} with respect to the Steiner circumellipse
X(64415) = pole of line {2487, 14838} with respect to the Steiner inellipse
X(64415) = pole of line {101, 643} with respect to the Hutson-Moses hyperbola
X(64415) = pole of line {75, 145} with respect to the Wallace hyperbola
X(64415) = pole of line {5235, 5249} with respect to the dual conic of Yff parabola
X(64415) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3340)}}, {{A, B, C, X(2), X(62812)}}, {{A, B, C, X(31), X(3445)}}, {{A, B, C, X(37), X(2650)}}, {{A, B, C, X(63), X(1255)}}, {{A, B, C, X(79), X(5426)}}, {{A, B, C, X(81), X(40430)}}, {{A, B, C, X(86), X(16948)}}, {{A, B, C, X(104), X(5248)}}, {{A, B, C, X(105), X(62841)}}, {{A, B, C, X(191), X(5424)}}, {{A, B, C, X(758), X(28161)}}, {{A, B, C, X(759), X(4658)}}, {{A, B, C, X(943), X(993)}}, {{A, B, C, X(1320), X(3897)}}, {{A, B, C, X(1390), X(32913)}}, {{A, B, C, X(1420), X(3622)}}, {{A, B, C, X(1468), X(2334)}}, {{A, B, C, X(1476), X(1621)}}, {{A, B, C, X(1824), X(1962)}}, {{A, B, C, X(2217), X(62821)}}, {{A, B, C, X(2298), X(10448)}}, {{A, B, C, X(2320), X(5250)}}, {{A, B, C, X(2346), X(2975)}}, {{A, B, C, X(3573), X(58117)}}, {{A, B, C, X(3647), X(6198)}}, {{A, B, C, X(3743), X(4058)}}, {{A, B, C, X(3747), X(48338)}}, {{A, B, C, X(3869), X(39737)}}, {{A, B, C, X(3884), X(37518)}}, {{A, B, C, X(4512), X(62218)}}, {{A, B, C, X(12514), X(56027)}}, {{A, B, C, X(18206), X(56066)}}, {{A, B, C, X(28606), X(42034)}}, {{A, B, C, X(40434), X(40436)}}, {{A, B, C, X(43359), X(54353)}}
X(64415) = barycentric product X(i)*X(j) for these (i, j): {21, 5226}, {27, 3984}, {333, 3340}, {1434, 62218}, {2287, 62783}, {3617, 81}, {3731, 86}, {4058, 757}, {4567, 62221}, {10563, 41629}, {28161, 662}, {42034, 58}, {48338, 799}, {56048, 62608}
X(64415) = barycentric quotient X(i)/X(j) for these (i, j): {1, 56226}, {6, 31503}, {21, 56201}, {58, 39980}, {81, 30712}, {163, 28162}, {662, 58132}, {3340, 226}, {3617, 321}, {3731, 10}, {3984, 306}, {4058, 1089}, {5226, 1441}, {10563, 4052}, {14350, 4404}, {28161, 1577}, {42034, 313}, {48338, 661}, {62218, 2321}, {62221, 16732}, {62783, 1446}
X(64415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10448, 2975}, {1, 21, 81}, {1, 2292, 34195}, {1, 4653, 21}, {1, 5248, 57280}, {1, 52680, 4658}, {1, 846, 2650}, {1, 968, 3869}, {8, 11110, 5235}, {10, 17557, 64425}, {21, 81, 16948}, {86, 52352, 11115}, {386, 5047, 37680}, {405, 19767, 32911}, {442, 24936, 63344}, {519, 17553, 64424}, {846, 2650, 11684}, {1010, 3616, 5333}, {3057, 18165, 41723}, {3622, 11115, 86}, {4234, 38314, 42025}, {4720, 17557, 10}, {5051, 25650, 30831}, {6675, 64167, 24883}, {10246, 15952, 64393}, {13745, 41014, 26064}, {15680, 37635, 49745}, {17056, 64158, 2475}, {17589, 46934, 25507}, {26064, 41014, 31143}, {35016, 58380, 1}, {37573, 59305, 100}
X(64416) lies on circumconic {{A, B, C, X(3737), X(50346)}} and on these lines: {1, 54399}, {11, 3737}, {21, 53388}, {58, 21669}, {81, 16133}, {284, 37675}, {333, 61223}, {846, 18163}, {1021, 38347}, {2611, 48293}, {3120, 17197}, {3125, 55067}, {3736, 7413}, {3746, 4267}, {4516, 18191}, {4551, 24624}, {17194, 56317}, {19642, 35338}, {26856, 34589}, {37019, 53389}, {46816, 52680}, {63974, 64295}, {64147, 64324}
X(64416) = inverse of X(3737) in Feuerbach hyperbola
X(64416) = perspector of circumconic {{A, B, C, X(57093), X(57189)}}
X(64416) = X(i)-Dao conjugate of X(j) for these {i, j}: {4560, 75}
X(64416) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1, 3737}, {62670, 1019}
X(64416) = pole of line {20653, 42708} with respect to the dual conic of Wallace hyperbola
X(64416) = barycentric product X(i)*X(j) for these (i, j): {1, 40625}, {21, 24224}, {514, 57093}, {522, 57189}, {4560, 50346}, {17197, 5260}, {18191, 55095}, {57248, 650}
X(64416) = barycentric quotient X(i)/X(j) for these (i, j): {18191, 55090}, {24224, 1441}, {40625, 75}, {50346, 4552}, {57093, 190}, {57189, 664}, {57248, 4554}, {58302, 21859}
X(64417) lies on these lines: {2, 6}, {21, 8983}, {58, 13888}, {371, 64400}, {3193, 45650}, {4184, 13887}, {4225, 22763}, {7583, 64393}, {8976, 64405}, {9540, 64376}, {13883, 64377}, {13884, 64378}, {13885, 64381}, {13886, 64384}, {13889, 64395}, {13890, 64396}, {13891, 64397}, {13892, 64398}, {13893, 64401}, {13894, 64402}, {13895, 64406}, {13896, 64407}, {13897, 64408}, {13898, 64409}, {13901, 64414}, {13902, 64415}, {13903, 64419}, {13904, 64420}, {13905, 64421}, {13906, 64422}, {13907, 64423}, {13936, 17551}, {14005, 18991}, {18538, 64399}, {18965, 64382}, {19000, 35983}, {19003, 28620}, {28619, 49548}, {35812, 64412}, {35815, 64413}, {45365, 64379}, {45368, 64380}, {45384, 64383}, {45574, 64389}, {45576, 64390}, {45652, 64394}, {49618, 64072}, {63974, 64295}, {64147, 64324}
X(64418) lies on these lines: {2, 6}, {21, 13971}, {58, 13942}, {372, 64400}, {3193, 45651}, {4184, 13940}, {4225, 22764}, {7584, 64393}, {13883, 17551}, {13935, 64376}, {13936, 64377}, {13937, 64378}, {13938, 64381}, {13939, 64384}, {13943, 64395}, {13944, 64396}, {13945, 64397}, {13946, 64398}, {13947, 64401}, {13948, 64402}, {13951, 64405}, {13952, 64406}, {13953, 64407}, {13954, 64408}, {13955, 64409}, {13958, 64414}, {13959, 64415}, {13961, 64419}, {13962, 64420}, {13963, 64421}, {13964, 64422}, {13965, 64423}, {14005, 18992}, {18762, 64399}, {18966, 64382}, {18999, 35983}, {19004, 28620}, {28619, 49547}, {35813, 64413}, {35814, 64412}, {45366, 64379}, {45367, 64380}, {45385, 64383}, {45575, 64390}, {45577, 64389}, {45653, 64394}, {49619, 64072}, {63974, 64295}, {64147, 64324}
X(64419) lies on circumconic {{A, B, C, X(14497), X(51223)}} and on these lines: {1, 58382}, {3, 81}, {4, 5769}, {5, 333}, {6, 19543}, {21, 1482}, {28, 2095}, {30, 41629}, {46, 1408}, {58, 517}, {86, 140}, {283, 18180}, {284, 37623}, {355, 64072}, {381, 4921}, {394, 16415}, {474, 26637}, {500, 46623}, {549, 42028}, {580, 37536}, {582, 37521}, {602, 62740}, {631, 8025}, {632, 25507}, {859, 3193}, {952, 56018}, {999, 64382}, {1010, 5690}, {1014, 37545}, {1043, 5844}, {1330, 30449}, {1351, 6985}, {1385, 4658}, {1396, 23072}, {1412, 37582}, {1437, 37532}, {1598, 64378}, {1656, 5235}, {1754, 37482}, {1780, 18191}, {1812, 6911}, {1944, 59642}, {2194, 12704}, {2287, 6918}, {2303, 19547}, {2651, 22791}, {2906, 7436}, {3149, 12160}, {3286, 11248}, {3295, 64414}, {3311, 64410}, {3312, 64411}, {3523, 26860}, {3526, 5333}, {3559, 21664}, {3580, 25646}, {3651, 48907}, {3843, 64399}, {4184, 11849}, {4192, 36750}, {4220, 48928}, {4221, 12702}, {4225, 22765}, {4227, 11396}, {4267, 11249}, {4276, 26286}, {4278, 26285}, {4653, 10222}, {5054, 42025}, {5055, 64424}, {5070, 64425}, {5323, 36279}, {5398, 10441}, {5482, 13329}, {5709, 18163}, {5752, 37530}, {5754, 6905}, {5790, 64401}, {5901, 11110}, {6147, 22161}, {6417, 64386}, {6418, 64385}, {6675, 22139}, {6824, 16713}, {6924, 9567}, {6926, 26818}, {7413, 48933}, {7415, 34773}, {7517, 64395}, {7982, 52680}, {8148, 16948}, {8728, 26638}, {9301, 64398}, {9654, 64408}, {9669, 64409}, {9840, 45923}, {10246, 64377}, {10247, 64415}, {10267, 18185}, {10595, 17588}, {10679, 17524}, {11115, 12245}, {11842, 64381}, {11875, 64396}, {11876, 64397}, {11911, 64402}, {11916, 64403}, {11917, 64404}, {11928, 64406}, {11929, 64407}, {12000, 64422}, {12001, 64423}, {13731, 45931}, {13903, 64417}, {13961, 64418}, {16117, 48921}, {16414, 63068}, {16863, 24557}, {17185, 26921}, {18164, 37534}, {18169, 37529}, {18206, 24467}, {19513, 37509}, {19549, 27644}, {19550, 36754}, {22136, 28258}, {22458, 62798}, {22770, 62843}, {24556, 52264}, {25526, 26446}, {28174, 37422}, {30444, 49716}, {31837, 56770}, {32141, 56181}, {33814, 37288}, {34718, 51669}, {35631, 38832}, {37227, 41723}, {37251, 37783}, {37425, 51340}, {37527, 48882}, {37533, 54356}, {37625, 40980}, {45369, 64379}, {45370, 64380}, {45488, 64387}, {45489, 64388}, {45578, 64389}, {45579, 64390}, {49028, 64391}, {49029, 64392}, {54417, 59318}, {58383, 59624}, {63974, 64295}, {64147, 64324}
X(64419) = reflection of X(i) in X(j) for these {i,j}: {3, 63307}, {1330, 30449}, {15952, 58}
X(64419) = pole of line {405, 3897} with respect to the Stammler hyperbola
X(64419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58, 517, 15952}, {81, 64376, 64393}, {283, 18180, 36011}, {4921, 64400, 64405}, {64376, 64393, 3}, {64382, 64421, 999}, {64400, 64405, 381}, {64412, 64413, 6}, {64414, 64420, 3295}
X(64420) lies on these lines: {1, 21}, {3, 64382}, {4, 940}, {5, 64409}, {6, 6857}, {12, 64405}, {28, 1905}, {35, 64376}, {46, 37402}, {56, 64393}, {57, 37418}, {60, 4228}, {65, 4221}, {86, 3086}, {90, 56048}, {158, 44734}, {222, 3485}, {284, 2270}, {285, 17188}, {333, 3085}, {354, 1408}, {388, 64384}, {411, 991}, {495, 64408}, {498, 5235}, {499, 5333}, {611, 41610}, {942, 5323}, {1010, 18391}, {1014, 3338}, {1124, 64411}, {1210, 25526}, {1335, 64410}, {1412, 3333}, {1437, 16193}, {1448, 17074}, {1479, 64400}, {1737, 14005}, {1812, 11110}, {1817, 54323}, {2193, 17102}, {2194, 17560}, {2287, 13411}, {2303, 25516}, {2476, 37633}, {3075, 35981}, {3295, 64414}, {3299, 64385}, {3301, 64386}, {3486, 5711}, {3584, 64424}, {3616, 26637}, {3624, 24557}, {3664, 12047}, {3931, 7098}, {3945, 6837}, {4184, 11507}, {4225, 22766}, {4259, 7523}, {4281, 22350}, {4295, 37422}, {4303, 37607}, {4305, 7415}, {4921, 10056}, {5324, 11018}, {5327, 18166}, {5358, 9275}, {5703, 40571}, {5706, 59345}, {5707, 6868}, {5712, 6824}, {5718, 6852}, {6841, 49743}, {6853, 37634}, {6856, 37674}, {6872, 14996}, {6875, 19765}, {6985, 48927}, {7491, 45931}, {7952, 14016}, {8025, 14986}, {9654, 64383}, {10037, 64395}, {10038, 64398}, {10039, 64401}, {10040, 64403}, {10041, 64404}, {10072, 42025}, {10393, 37554}, {10523, 64406}, {10572, 37559}, {10801, 64381}, {10895, 64399}, {10954, 64407}, {11111, 48846}, {11398, 64378}, {11877, 64396}, {11878, 64397}, {11912, 64402}, {13323, 35612}, {13404, 39949}, {13750, 16049}, {13904, 64417}, {13962, 64418}, {14017, 36740}, {14868, 37442}, {15988, 25650}, {16471, 17558}, {17577, 48868}, {18180, 50195}, {19714, 30943}, {24624, 56417}, {28619, 44675}, {31397, 64072}, {35808, 64413}, {35809, 64412}, {37261, 50597}, {44547, 47512}, {45371, 64379}, {45372, 64380}, {45490, 64387}, {45491, 64388}, {45580, 64389}, {45581, 64390}, {46883, 54340}, {49030, 64391}, {49031, 64392}, {49744, 52269}, {63974, 64295}, {64147, 64324}
X(64420) = pole of line {6003, 21192} with respect to the incircle
X(64420) = pole of line {2646, 4221} with respect to the Feuerbach hyperbola
X(64420) = pole of line {5949, 6856} with respect to the Kiepert hyperbola
X(64420) = pole of line {1, 55399} with respect to the Stammler hyperbola
X(64420) = pole of line {75, 3085} with respect to the Wallace hyperbola
X(64420) = pole of line {1014, 5249} with respect to the dual conic of Yff parabola
X(64420) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(19843)}}, {{A, B, C, X(4), X(5250)}}, {{A, B, C, X(63), X(60076)}}, {{A, B, C, X(90), X(4512)}}, {{A, B, C, X(595), X(13404)}}, {{A, B, C, X(3193), X(56048)}}, {{A, B, C, X(3877), X(17097)}}, {{A, B, C, X(5330), X(56030)}}
X(64420) = barycentric product X(i)*X(j) for these (i, j): {19843, 81}
X(64420) = barycentric quotient X(i)/X(j) for these (i, j): {19843, 321}
X(64420) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {940, 36746, 4340}, {3295, 64419, 64414}, {18165, 54417, 28}
X(64421) lies on these lines: {1, 21}, {3, 64414}, {5, 64408}, {6, 5084}, {8, 26637}, {11, 64405}, {28, 18178}, {36, 64376}, {40, 1412}, {46, 1014}, {55, 64393}, {86, 3085}, {158, 56014}, {284, 8602}, {333, 3086}, {386, 63068}, {387, 394}, {496, 64409}, {497, 64384}, {498, 5333}, {499, 5235}, {517, 5323}, {613, 41610}, {631, 940}, {938, 40571}, {999, 64382}, {1000, 5710}, {1124, 64410}, {1210, 2287}, {1335, 64411}, {1408, 3057}, {1437, 15524}, {1478, 64400}, {1698, 24557}, {1714, 37659}, {1737, 64401}, {1792, 18465}, {1812, 18391}, {2303, 41344}, {2360, 18163}, {3194, 34546}, {3299, 64386}, {3301, 64385}, {3582, 64424}, {3945, 37112}, {4184, 11508}, {4222, 37516}, {4225, 22767}, {4340, 5706}, {4854, 8614}, {4921, 10072}, {5119, 37402}, {5142, 5820}, {5324, 12915}, {5707, 5712}, {5716, 60691}, {5718, 6949}, {5733, 6932}, {6357, 63997}, {6930, 36742}, {6950, 19765}, {6965, 56292}, {7162, 56048}, {7952, 53020}, {9669, 64383}, {10039, 14005}, {10046, 64395}, {10047, 64398}, {10048, 64403}, {10049, 64404}, {10056, 42025}, {10523, 64407}, {10802, 64381}, {10896, 64399}, {10948, 64406}, {11023, 16054}, {11399, 64378}, {11879, 64396}, {11880, 64397}, {11913, 64402}, {13411, 28619}, {13905, 64417}, {13963, 64418}, {14868, 56181}, {14986, 16704}, {15501, 54417}, {16471, 37666}, {17560, 18191}, {17566, 37633}, {18180, 50196}, {19843, 26638}, {23070, 50067}, {25446, 25897}, {25526, 31397}, {30305, 37422}, {33849, 50594}, {35768, 64413}, {35769, 64412}, {37401, 45923}, {37431, 44085}, {39595, 54301}, {40153, 64069}, {41723, 64045}, {45373, 64379}, {45374, 64380}, {45492, 64387}, {45493, 64388}, {45582, 64389}, {45583, 64390}, {49032, 64391}, {49033, 64392}, {49745, 63297}, {50633, 59353}, {56293, 62691}, {63974, 64295}, {64147, 64324}
X(64421) = pole of line {443, 5949} with respect to the Kiepert hyperbola
X(64421) = pole of line {1, 55400} with respect to the Stammler hyperbola
X(64421) = pole of line {75, 3086} with respect to the Wallace hyperbola
X(64421) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(8602)}}, {{A, B, C, X(31), X(42019)}}, {{A, B, C, X(63), X(34546)}}, {{A, B, C, X(81), X(24556)}}, {{A, B, C, X(1000), X(5250)}}, {{A, B, C, X(4512), X(7162)}}
X(64421) = barycentric product X(i)*X(j) for these (i, j): {1, 24556}, {33969, 4573}
X(64421) = barycentric quotient X(i)/X(j) for these (i, j): {24556, 75}, {33969, 3700}
X(64421) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {999, 64419, 64382}, {1408, 3057, 4221}
X(64422) lies on these lines: {1, 21}, {4, 37633}, {12, 64406}, {60, 17560}, {86, 10586}, {333, 10528}, {940, 6872}, {1812, 17588}, {4184, 11509}, {4221, 34339}, {4225, 22768}, {4228, 54417}, {4921, 11239}, {5235, 5552}, {5554, 51978}, {6837, 36746}, {6841, 26131}, {6857, 32911}, {6871, 37674}, {10531, 64400}, {10803, 64381}, {10805, 64384}, {10834, 64395}, {10878, 64398}, {10915, 64401}, {10929, 64403}, {10930, 64404}, {10942, 64405}, {10955, 64407}, {10956, 64408}, {10958, 64409}, {10965, 64414}, {11248, 64376}, {11400, 64378}, {11881, 64396}, {11882, 64397}, {11914, 64402}, {12000, 64419}, {12594, 41610}, {13906, 64417}, {13964, 64418}, {16049, 18165}, {16203, 64393}, {16617, 51340}, {18542, 64399}, {18545, 64383}, {19047, 64385}, {19048, 64386}, {26364, 64425}, {26402, 64379}, {26426, 64380}, {26520, 64391}, {26525, 64392}, {35816, 64412}, {35817, 64413}, {37402, 59333}, {37418, 37534}, {37501, 50695}, {44643, 64410}, {44644, 64411}, {45494, 64387}, {45495, 64388}, {45584, 64389}, {45585, 64390}, {45701, 64424}, {49626, 64072}, {63974, 64295}, {64147, 64324}
X(64422) = pole of line {75, 10528} with respect to the Wallace hyperbola
X(64422) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(63), X(60169)}}, {{A, B, C, X(3890), X(17097)}}
X(64423) lies on these lines: {1, 21}, {11, 64407}, {86, 10587}, {145, 1812}, {155, 6930}, {229, 64043}, {333, 10529}, {631, 5707}, {1043, 26637}, {1068, 33151}, {1069, 3488}, {1437, 9957}, {1697, 1790}, {2287, 5839}, {2990, 63157}, {3057, 16049}, {3871, 14868}, {4184, 11510}, {4225, 10966}, {4228, 18178}, {4921, 11240}, {5084, 32911}, {5235, 10527}, {5292, 37680}, {5706, 37112}, {5713, 6932}, {5919, 54417}, {10528, 31631}, {10532, 64400}, {10804, 64381}, {10806, 64384}, {10835, 64395}, {10879, 64398}, {10916, 64401}, {10931, 64403}, {10932, 64404}, {10943, 64405}, {10949, 64406}, {10957, 14008}, {10959, 64409}, {11249, 64376}, {11401, 64378}, {11883, 64396}, {11884, 64397}, {11915, 64402}, {12001, 64419}, {12595, 41610}, {13907, 64417}, {13965, 64418}, {14923, 17518}, {16202, 64393}, {18543, 64383}, {18544, 64399}, {18967, 64382}, {19049, 64385}, {19050, 64386}, {22136, 64167}, {24557, 24987}, {26131, 37401}, {26363, 64425}, {26401, 64379}, {26425, 64380}, {26519, 64391}, {26524, 64392}, {35818, 64412}, {35819, 64413}, {35997, 37568}, {41723, 64046}, {44645, 64410}, {44646, 64411}, {45496, 64387}, {45497, 64388}, {45586, 64389}, {45587, 64390}, {45700, 64424}, {49627, 64072}, {63974, 64295}, {64147, 64324}
X(64423) = pole of line {75, 10529} with respect to the Wallace hyperbola
X(64423) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1000), X(12514)}}, {{A, B, C, X(2990), X(62812)}}
X(64423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3193, 81}
X(64424) lies on these lines: {2, 6}, {10, 16948}, {21, 3679}, {30, 64376}, {58, 19875}, {519, 17553}, {551, 17557}, {1817, 25057}, {3058, 64409}, {3175, 33761}, {3241, 11110}, {3524, 64384}, {3534, 64383}, {3545, 64400}, {3582, 64421}, {3584, 64420}, {3794, 63961}, {3828, 14005}, {3830, 64399}, {4197, 48834}, {4221, 50821}, {4234, 53620}, {4606, 5325}, {4653, 4677}, {4668, 17782}, {4669, 4720}, {4678, 52352}, {4685, 32917}, {5054, 64393}, {5055, 64419}, {5064, 64378}, {5271, 50106}, {5434, 64408}, {6175, 49723}, {7415, 50864}, {7865, 64398}, {10458, 42043}, {11237, 64382}, {11238, 64414}, {15952, 38066}, {16052, 26064}, {16833, 40773}, {16865, 48862}, {17549, 48852}, {17551, 19876}, {17577, 48839}, {17588, 31145}, {18169, 36634}, {24936, 49718}, {25055, 64377}, {29582, 33297}, {30564, 32939}, {31165, 41723}, {34606, 64407}, {34612, 64406}, {35623, 42041}, {37870, 56037}, {38314, 56018}, {41310, 63158}, {41821, 59583}, {45313, 57112}, {45700, 64423}, {45701, 64422}, {50428, 54429}, {51066, 52680}, {56519, 62586}, {59624, 64010}, {63974, 64295}, {64147, 64324}
X(64424) = midpoint of X(i) and X(j) for these {i,j}: {17553, 64401}
X(64424) = reflection of X(i) in X(j) for these {i,j}: {64415, 17553}
X(64424) = trilinear pole of line {28205, 58159}
X(64424) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 28206}
X(64424) = pole of line {99, 28206} with respect to the Kiepert parabola
X(64424) = pole of line {2, 15492} with respect to the Wallace hyperbola
X(64424) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4668)}}, {{A, B, C, X(6), X(17782)}}, {{A, B, C, X(391), X(36910)}}, {{A, B, C, X(524), X(28205)}}, {{A, B, C, X(940), X(56037)}}, {{A, B, C, X(1751), X(19738)}}, {{A, B, C, X(3231), X(58159)}}, {{A, B, C, X(3936), X(60267)}}, {{A, B, C, X(4383), X(39962)}}, {{A, B, C, X(4585), X(4606)}}, {{A, B, C, X(4921), X(60235)}}, {{A, B, C, X(24624), X(42028)}}, {{A, B, C, X(31205), X(56947)}}, {{A, B, C, X(37639), X(55953)}}, {{A, B, C, X(37674), X(40434)}}
X(64424) = barycentric product X(i)*X(j) for these (i, j): {4668, 86}, {17782, 310}, {28205, 99}, {58159, 670}
X(64424) = barycentric quotient X(i)/X(j) for these (i, j): {110, 28206}, {4668, 10}, {17782, 42}, {28205, 523}, {58159, 512}
X(64424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 333, 4921}, {2, 4921, 81}, {519, 17553, 64415}, {4921, 5235, 2}, {17553, 64401, 519}
X(64425) lies on these lines: {2, 6}, {3, 64399}, {5, 64376}, {10, 4720}, {21, 1698}, {58, 17124}, {100, 59306}, {140, 64405}, {229, 17581}, {274, 39962}, {750, 39673}, {1010, 19877}, {1014, 31231}, {1043, 46933}, {1125, 64401}, {1621, 59312}, {3090, 64400}, {3525, 64384}, {3526, 64393}, {3624, 64377}, {3634, 14005}, {3828, 17553}, {3925, 14008}, {4184, 4413}, {4221, 11231}, {4653, 19875}, {4658, 34595}, {4803, 51066}, {5054, 64383}, {5070, 64419}, {5094, 64378}, {5208, 63961}, {5257, 33133}, {5260, 37442}, {5271, 62851}, {5273, 7359}, {5284, 30970}, {5316, 17167}, {5432, 64409}, {5433, 64408}, {5550, 56018}, {5745, 7110}, {6557, 27825}, {7484, 64395}, {7808, 64381}, {7914, 64398}, {8040, 33135}, {9342, 13588}, {9534, 19334}, {9780, 11110}, {10458, 16569}, {11115, 46931}, {14956, 26040}, {15184, 64402}, {16054, 62400}, {16457, 19767}, {16700, 31197}, {16832, 40773}, {17125, 38832}, {17151, 25081}, {17197, 31271}, {17357, 63158}, {17514, 24883}, {17588, 46932}, {17589, 46930}, {18165, 61686}, {18229, 25058}, {19827, 37095}, {19858, 62804}, {19859, 62802}, {19862, 64072}, {19876, 52680}, {19878, 28619}, {24624, 60243}, {24953, 64407}, {24988, 33730}, {25060, 44307}, {25526, 51073}, {25917, 41723}, {26363, 64423}, {26364, 64422}, {27003, 31238}, {27798, 64010}, {28653, 56520}, {29576, 33113}, {29581, 33297}, {31286, 57112}, {31423, 37402}, {31993, 33761}, {33108, 37373}, {37870, 40434}, {47794, 57189}, {51505, 54357}, {53039, 59624}, {60203, 60235}, {63974, 64295}, {64147, 64324}
X(64425) = trilinear pole of line {28165, 58165}
X(64425) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 28166}
X(64425) = X(i)-Dao conjugate of X(j) for these {i, j}: {16675, 4002}, {36830, 28166}
X(64425) = pole of line {99, 28166} with respect to the Kiepert parabola
X(64425) = pole of line {6, 7280} with respect to the Stammler hyperbola
X(64425) = pole of line {2, 16669} with respect to the Wallace hyperbola
X(64425) = pole of line {1125, 17551} with respect to the dual conic of Yff parabola
X(64425) = pole of line {4024, 57066} with respect to the dual conic of Suppa-Cucoanes circle
X(64425) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5560)}}, {{A, B, C, X(6), X(16675)}}, {{A, B, C, X(88), X(37685)}}, {{A, B, C, X(391), X(7110)}}, {{A, B, C, X(524), X(28165)}}, {{A, B, C, X(940), X(40434)}}, {{A, B, C, X(1255), X(14996)}}, {{A, B, C, X(3231), X(58165)}}, {{A, B, C, X(3936), X(60243)}}, {{A, B, C, X(5333), X(60235)}}, {{A, B, C, X(17056), X(60203)}}, {{A, B, C, X(17346), X(56062)}}, {{A, B, C, X(24624), X(25507)}}, {{A, B, C, X(26860), X(37870)}}, {{A, B, C, X(37639), X(56058)}}, {{A, B, C, X(42028), X(52393)}}, {{A, B, C, X(56204), X(56440)}}
X(64425) = barycentric product X(i)*X(j) for these (i, j): {16675, 274}, {28165, 99}, {58165, 670}
X(64425) = barycentric quotient X(i)/X(j) for these (i, j): {110, 28166}, {16675, 37}, {28165, 523}, {58165, 512}
X(64425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 333, 5333}, {2, 5235, 81}, {10, 17557, 64415}, {5235, 5333, 333}
Contributed by Clark Kimberling and Peter Moses, July 3, 2024
Suppose that P = p(a,b,c) : p(b,c,a) : p(c,a,b) and U = u(a,b,c) : u(b,c,a) : u(c,a,b) are triangle centers, where p(a,b,c) and u(a,b,c) are polynomials in standard form (i.e., p(a,b,c) and p(b,c,a) are relatively prime, and the coefficient of the highest power of a is positive, or if p(a,b,c) is invariant of a then the coefficient of highest power of b is positive.)
Define the composite P-of-U to be the triangle center given by
P-of-U = p(u(a,b,c), u(b,c,a), u(c,a,b)) : p(u(b,c,a), u(c,a,b), u(a,b,c)) : p(u(c,a,b), u(a,b,c), u(b,c,a)).
For example, X(3)-of-X(3) = X(1147) = a^4(a^2 - b^2 - c^2)(a^4 + b^4 + c^4 - 2 a^2 b^2 - 2 a^2 c^2) : :
Suppose next that the Euler line is represented as a linear combination of X(3) and X(4) as follows:
V(r,s) = a^2 (a^2 - b^2 - c^2)*r + (b^2 - c^2 - a^2)(c^2 - a^2 - b^2)*s : : ,
where r and s are not both 0. Let P = X(10) = b + c : c + a : a + b.
Then "X(10)-of-Euler-line" is the line given by
X(10)-of-V(r,s), which as the linear combination
(a^2 (b^2 + c^2) + (b^2 - c^2)^2)*r - 2 a^2(a^2 - b^2 - c^2)*s : :
is essentially X(5)*r + X(3)*s, the Euler line.
Reversing the order of the composition gives "the Euler line of X(10)", consisting of points
W(r,s) = (b + c)^2 (a^2 - b c + a b + a c)*r + 2(b^2 - c a + b c + b a)(c^2 - a b + c a + c b)*s : :,
which is essentially X(4075)*r + X(596)*s.
The appearance of (r,s,k) in the following list means that r and s are not both 0 and W(r,s) = X(k):
(r,0,4075), (0,s,596), (r,r,6532), (r,-r,6534), (2r,r,2), (2r,-r,24068), and in general, we have the combo
W(r,s) = 3*r*X(2) + (3*s - r)*X(596). The list continues:
(-4,1,46426), (-10,3,46427), (-3,1, 46428), (-2,3,46429), (1,2,46430), (2,3,46431), (4,3,46432), (3,2,46433), (3,1,46434), (10,3,46435), (-1,1,46436), (-1,3,46437).
A selection of points of the form X(i)-of-X(i) appear next:
X(1)-of-X(1) = X(1)
X(2)-of-X(2) = X(2)
X(3)-of-X(3) = X(1147)
X(4)-of-X(4) = X(3346)
X(5)-of-X(5) = X(64452)
X(6)-of-X(6) = X(32)
X(7)-of-X(7) = X(10405)
X(8)-of-X(8) = X(145)
X(9)-of-X(9) = X(1)
X(10)-of-X(10) = X(1125)
X(11)-of-X(11) = X(3126)
X(39)-of-X(39) = X(64453)
X(42)-of-X(42) = X(64454)
X(63)-of-X(63) = X(64455)
X(72)-of-X(72) = X(64456)
X(81)-of-X(81) = X(64457)
X(85)-of-X(85) = X(64458)
X(88)-of-X(88) = X(64459)
X(99)-of-X(99) = X(64460)
X(526)-of-X(526) = X64461)
X(527)-of-X(527) = X64462)
X(545)-of-X(545) = X(64463)
--------------------------------------------------------
The appearance of (i,j,k) in the following list means that X(i)-of-X(j) = X(k):
(3,3,1147), (3,4,6523), (3,5,6663), (3,6,206), (3,7,17113), (3,8,6552), (3,9,6600), (3,10,4075), (3,11,64440), (4,1,4), (4,2,2), (4,3,68), (4,4,3346), (4,5,6662), (4,6,66), (4,7,42483), (4,8,6553), (4,9,6601), (4,10,596), (4,11,43974), (5,1,5), (5,2,2), (5,3,5449), (5,4,59361), (5,5,64452), (5,6,6697), (5,7,64441), (5,8,64442, (5,9,64443), (5,10,6532), (5,11,64445), (6,1,6), (6,2,2), (6,3,577), (6,4,393), (6,5,36412), (6,6,32), (6,7,279), (6,8,346), (6,9,220), (6,10,594), (7,1,7), (7,2,2), (7,3,69), (7,4,253), (7,5,264), (7,6,4), (7,7,10405), (7,8,4373), (7,9,8), (7,10,75), (7,11,693), (8,1,8), (8,2,2), (8,3,4), (8,4,20), (8,5,3), (8,6,69), (8,7,144), (8,8,145), (8,9,7), (8,10,1), (8,11,100), (9,1,9), (9,2,2), (9,3,6), (9,4,1249), (9,5,216), (9,6,3), (9,7,3160), (9,8,3161), (9,9,1), (9,10,37), (9,11,650), (10,1,10), (10,2,2), (10,3,5), (10,4,3), (10,5,140), (10,6,141), (10,7,9), (10,8,1), (10,9,142), (10,10,1125), (10,11,3035), (11,1,11), (11,3,125), (11,4,122), (11,5,2972), (11,6,125), (11,7,13609), (11,8,3756), (11,9,11), (11,10,244), (11,11,3126), (15,3,64464), (16,3,64465), (17,3,64466), (18,3,64467)
X(64426) lies on these lines: {2, 596}, {10, 4980}, {72, 519}, {537, 13476}, {551, 3971}, {726, 3828}, {1089, 42039}, {1125, 3967}, {3679, 17163}, {3956, 28516}, {4125, 20891}, {4360, 6540}, {4692, 42285}, {17155, 19876}, {18146, 21208}, {21080, 50777}, {24067, 50113}, {58629, 64185}
X(64426) = midpoint of X(i) and X(j) for these {i,j}: {2, 24068}, {21080, 50777}
X(64426) = reflection of X(i) in X(j) for these {i,j}: {2, 4075}, {596, 2}, {64185, 58629}
X(64426) = {X(4075),X(24068)}-harmonic conjugate of X(596)
X(64427) lies on these lines: {2, 596}, {8, 4365}, {145, 3159}, {726, 4772}, {1089, 7226}, {1698, 59718}, {2901, 4661}, {3214, 49445}, {3616, 3971}, {3622, 59717}, {3697, 50106}, {3701, 49447}, {3871, 17262}, {3885, 50078}, {3889, 35652}, {3953, 46938}, {3983, 28555}, {4193, 4884}, {4361, 32635}, {4756, 16466}, {4903, 26094}, {5550, 64178}, {14997, 43993}, {17155, 19877}, {19767, 32937}, {21080, 26115}, {24176, 46931}, {24443, 49517}, {25248, 29510}, {27385, 59732}, {34790, 42044}
X(64428) lies on these lines: {2, 596}, {519, 4536}, {726, 4739}, {3159, 3244}, {3632, 32925}, {3636, 59717}, {3971, 15808}, {4540, 28554}, {24176, 59718}
X(64428) = midpoint of X(4075) and X(24068)
X(64428) = reflection of X(6532) in X(4075)
X(64429) lies on these lines: {1, 87}, {2, 596}, {6, 43993}, {8, 20068}, {10, 7226}, {35, 32920}, {38, 10479}, {58, 3891}, {69, 33868}, {72, 28582}, {79, 4865}, {312, 3953}, {341, 1739}, {386, 17165}, {442, 4884}, {518, 64184}, {519, 1770}, {522, 12534}, {536, 3555}, {537, 5904}, {595, 32933}, {714, 4647}, {982, 1089}, {986, 4692}, {995, 56318}, {1125, 32925}, {1203, 32935}, {1698, 24165}, {1724, 32922}, {2275, 22036}, {2901, 3873}, {3159, 3616}, {3175, 5045}, {3210, 3293}, {3216, 32937}, {3242, 50044}, {3337, 29649}, {3454, 33089}, {3624, 3971}, {3670, 4385}, {3681, 64185}, {3701, 24046}, {3746, 32934}, {3881, 32915}, {3889, 42044}, {3952, 17749}, {3987, 4737}, {3992, 24174}, {4066, 30942}, {4082, 24171}, {4125, 24167}, {4362, 6763}, {4365, 50625}, {4392, 50605}, {4418, 30145}, {4434, 37524}, {4694, 34860}, {4857, 29844}, {4894, 24851}, {5010, 8720}, {5069, 40085}, {5248, 32923}, {5264, 32939}, {5274, 44040}, {6051, 49523}, {7080, 44311}, {7280, 8669}, {8715, 32845}, {9534, 31302}, {9780, 24176}, {10449, 36862}, {10624, 17132}, {16602, 59582}, {16828, 21080}, {17756, 21067}, {18135, 24166}, {18393, 49613}, {18398, 42055}, {19846, 33147}, {19862, 64178}, {19871, 51060}, {20077, 20087}, {20083, 33170}, {23537, 63147}, {25440, 32927}, {25645, 33144}, {27091, 31348}, {27481, 31996}, {27785, 49456}, {28542, 34719}, {28555, 34791}, {30148, 32930}, {32026, 36494}, {32092, 49521}, {32926, 37522}, {32940, 62805}, {33120, 36250}, {34595, 59517}, {34790, 42051}, {37610, 63996}, {41011, 50589}, {42471, 62227}, {50122, 58609}, {51073, 59718}, {56800, 62636}, {59730, 63259}
X(64429) = reflection of X(i) in X(j) for these {i,j}: {24068, 596}, {49445, 42027}
X(64429) = anticomplement of X(24068)
X(64429) = anticomplement of the isotomic conjugate of X(39693)
X(64429) = X(39693)-anticomplementary conjugate of X(6327)
X(64429) = X(39693)-Ceva conjugate of X(2)
X(64429) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {596, 24068, 2}, {42055, 63800, 18398}
X(64430) lies on these lines: {2, 596}, {10, 42038}, {519, 942}, {537, 40607}, {551, 1962}, {594, 35076}, {726, 4755}, {3159, 19883}, {3828, 59717}, {4013, 44847}, {4151, 45657}, {4714, 39697}, {6533, 42039}, {7263, 58898}
X(64430) = midpoint of X(2) and X(596)
X(64430) = reflection of X(i) in X(j) for these {i,j}: {2, 6532}, {4075, 2}
X(64430) = {X(596),X(6532)}-harmonic conjugate of X(4075)
X(64431) lies on these lines: {1, 17495}, {2, 596}, {10, 982}, {38, 6533}, {244, 50605}, {274, 24166}, {354, 64185}, {496, 7263}, {519, 3889}, {540, 52783}, {726, 4687}, {1125, 24165}, {1698, 59717}, {2901, 3742}, {3159, 3624}, {3210, 4065}, {3216, 17140}, {3337, 32914}, {3678, 42055}, {3874, 42053}, {3953, 4359}, {3971, 19878}, {3976, 28612}, {3980, 30148}, {4066, 4871}, {4385, 49993}, {4568, 27318}, {10527, 44311}, {10589, 44040}, {16602, 59666}, {16825, 18206}, {17205, 33945}, {17749, 24349}, {20108, 32771}, {21208, 34284}, {25512, 46901}, {28581, 50191}, {31025, 42471}, {31348, 31996}, {31997, 57029}, {32860, 50190}, {32925, 34595}, {37607, 49683}, {37633, 43993}, {64149, 64184}
X(64431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 596, 24068}, {596, 6532, 2}, {3624, 17155, 3159}
X(64432) lies on these lines: {2, 596}, {10, 4487}, {519, 4002}, {1125, 3752}, {3159, 19878}, {3848, 64185}, {4850, 58387}, {19862, 24176}, {24443, 42285}, {51073, 59717}
X(64432) = {X(2),X(6532)}-harmonic conjugate of X(596)
X(64433) lies on these lines: {2, 596}, {10, 46190}, {519, 45777}, {1125, 4868}, {3752, 58387}, {19878, 24176}, {24174, 42285}, {30957, 39708}, {31253, 59717}
X(64433) = {X(2),X(6532)}-harmonic conjugate of X(4075)
X(64434) lies on these lines: {2, 596}, {10, 3902}, {519, 4540}, {1125, 17724}, {3159, 51073}, {3634, 17070}, {19878, 59717}, {24176, 31253}, {44307, 58387}
X(64434) = midpoint of X(4075) and X(6532)
X(64434) = complement of X(6532)
X(64434) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4075, 6532}, {31253, 59517, 24176}
X(64435) lies on these lines: {2, 596}, {10, 4673}, {2901, 58451}, {3971, 31253}, {19872, 24176}, {34595, 59717}, {42056, 58565}, {51073, 59517}
X(64435) = {X(19872),X(64178)}-harmonic conjugate of X(24176)
X(64436) lies on these lines: {2, 596}, {10, 3702}, {519, 3697}, {726, 31238}, {1125, 59511}, {2901, 61686}, {3159, 3634}, {3874, 42056}, {3971, 24176}, {4013, 25466}, {4065, 31035}, {4096, 58565}, {5432, 44040}, {6051, 59669}, {19862, 31264}, {19872, 32925}, {20108, 24003}, {25248, 29406}, {26364, 59638}, {44307, 59666}, {58451, 64185}
X(64436) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4075, 596}, {2, 24068, 6532}, {3634, 59517, 3159}, {3971, 51073, 24176}, {4075, 6532, 24068}, {6532, 24068, 596}
X(64437) lies on these lines: {1, 56150}, {2, 596}, {726, 19872}, {1698, 30863}, {3159, 19877}, {3634, 64178}, {4096, 18398}, {4434, 41872}, {5904, 42056}, {9330, 50605}, {17155, 31253}, {32925, 51073}, {59669, 62831}, {61686, 64184}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6320.
X(64438) lies on these lines: {1, 1088}, {4, 390}, {8, 6605}, {10, 10482}, {20, 61373}, {55, 17682}, {145, 62728}, {341, 3886}, {497, 17671}, {516, 10509}, {938, 1170}, {942, 52507}, {950, 1174}, {1067, 47487}, {1697, 56255}, {3673, 4319}, {4294, 40443}, {9440, 34848}, {17681, 28071}
X(64438) = cevapoint of X(497) and X(4319)
X(64438) = crosspoint of X(21453) and X(56118)
X(64438) = crosssum of X(2293) and X(61376)
X(64438) = X(i)-Dao conjugate of-X(j) for these (i, j): (1040, 15185), (4000, 4847), (6554, 10481), (14936, 21127), (15487, 1418), (59619, 20880)
X(64438) = X(i)-isoconjugate of-X(j) for these {i, j}: {354, 1037}, {1041, 22053}, {1418, 7123}, {1475, 7131}, {2293, 56359}, {2488, 8269}, {7084, 10481}, {8012, 63178}, {20229, 30705}, {56179, 61376}
X(64438) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (497, 142), (614, 1418), (1170, 56359), (1174, 1037), (1633, 63203), (1863, 1855), (2082, 354), (2346, 7131), (3673, 59181), (3732, 35312), (3914, 52023), (4000, 10481), (4012, 51972), (4319, 1212), (5324, 18164), (6554, 4847), (6605, 56179), (7083, 1475), (7124, 22053), (10482, 7123), (16502, 61376), (17115, 21127), (21453, 30705), (28070, 3059), (30706, 2293), (32008, 8817), (40965, 21808), (56118, 30701), (59141, 7084), (61373, 63178), (62725, 48070), (63239, 57925)
X(64438) = barycentric product of X(i) and X(j) for these {i, j}: {497, 32008}, {614, 63239}, {2082, 57815}, {3673, 6605}, {3732, 62725}
X(64438) = barycentric quotient of X(i) and X(j) for these (i, j): (497, 142), (614, 1418), (1170, 56359), (1174, 1037), (1633, 63203)
X(64438) = trilinear product of X(i) and X(j) for these {i, j}: {497, 2346}, {614, 56118}, {1170, 6554}, {1633, 62725}, {1863, 40443}
X(64438) = trilinear quotient of X(i) and X(j) for these (i, j): (497, 354), (614, 61376), (1040, 22053), (1863, 1827), (2082, 1475)
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6332.
X(64439) lies on these lines: {51, 684}, {52, 41079}, {389, 2797}, {511, 6130}, {520, 16230}, {526, 11800}, {1112, 9033}, {2799, 39806}, {3060, 53345}, {5446, 9517}, {5462, 8552}, {7387, 58316}, {9409, 45186}, {15644, 44818}, {31953, 39817}, {35360, 58071}, {45319, 58470}, {47214, 58481}
Regarding the names of X(64440)-X(64445) and X(64452)-X(64467), see the preamble just before X(64426).
X(64440) lies on these lines: {2, 43974}, {11, 15914}, {100, 885}, {244, 21132}, {513, 24465}, {514, 18240}, {522, 46694}, {523, 58388}, {676, 15253}, {2804, 3716}, {2826, 13226}, {2968, 42455}, {3119, 42462}, {4885, 6667}, {5840, 11247}, {21201, 24025}
X(64440) = midpoint of X(11) and X(15914)
X(64440) = complement of X(43974)
X(64440) = complement of the isogonal conjugate of X(1618)
X(64440) = complement of the isotomic conjugate of X(54110)
X(64440) = X(i)-complementary conjugate of X(j) for these (i,j): {1618, 10}, {24203, 21252}, {32666, 2284}, {54110, 2887}
X(64440) = crosspoint of X(2) and X(54110)
X(64440) = barycentric product X(i)*X(j) for these {i,j}: {17924, 34949}, {24203, 42462}
X(64440) = barycentric quotient X(34949)/X(1332)
X(64440) = {X(11),X(42454)}-harmonic conjugate of X(15914)
X(64441) lies on these lines: {2, 17113}, {7, 13609}, {9, 2272}, {4000, 35508}, {5514, 42356}, {6554, 17279}, {6666, 56857}, {15837, 28123}, {15913, 18230}, {17112, 58635}, {19605, 63973}
X(64441) = midpoint of X(17113) and X(42483)
X(64441) = complement of X(17113)
X(64441) = X(i)-complementary conjugate of X(j) for these (i,j): {1253, 17113}, {2125, 2886}, {8917, 21258}, {63904, 17046}
X(64441) = {X(2),X(42483)}-harmonic conjugate of X(17113)
X(644) lies on these lines: {1, 6692}, {2, 6552}, {4, 26719}, {8, 1120}, {56, 28016}, {106, 944}, {279, 57033}, {344, 26111}, {388, 28018}, {513, 56155}, {614, 40132}, {1015, 6554}, {1125, 7174}, {1149, 1788}, {1279, 5265}, {1319, 28080}, {1616, 5435}, {1647, 54361}, {1997, 17480}, {2136, 56798}, {2191, 30478}, {2345, 16604}, {3333, 4644}, {3475, 46190}, {3476, 28074}, {3486, 32577}, {3616, 6703}, {3622, 58414}, {3680, 60374}, {4000, 14986}, {4313, 8572}, {4339, 40726}, {4962, 21172}, {5657, 56804}, {5853, 45047}, {6714, 16020}, {6738, 15839}, {7288, 28011}, {7963, 12437}, {8056, 21627}, {8688, 44669}, {10589, 23675}, {11512, 53618}, {12245, 54319}, {12625, 51615}, {17213, 24797}, {17321, 41879}, {21214, 24477}, {24171, 37704}, {24216, 56630}, {24391, 46943}, {27195, 30701}, {37542, 62773}, {38053, 63520}, {41436, 45081}, {41850, 46934}, {44722, 58371}, {62832, 63126}
X(64442) = midpoint of X(6552) and X(6553)
X(64442) = complement of X(6552)
X(64442) = X(i)-complementary conjugate of X(j) for these (i,j): {604, 24151}, {1106, 6552}, {2137, 1329}, {8051, 21244}
X(64442) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6553, 6552}, {3445, 3756, 8}, {11512, 53618, 64068}, {14986, 52541, 4000}
X(64443) lies on these lines: {2, 2346}, {5, 518}, {7, 11680}, {9, 11}, {12, 3243}, {141, 17059}, {142, 2886}, {144, 7678}, {145, 7679}, {149, 7676}, {226, 41573}, {354, 60991}, {390, 6910}, {442, 38053}, {474, 2550}, {495, 42871}, {496, 1001}, {516, 6705}, {521, 40551}, {522, 7263}, {527, 3829}, {528, 549}, {997, 1387}, {1125, 3813}, {1329, 24393}, {1699, 60990}, {1836, 60968}, {2000, 15253}, {2476, 11038}, {3174, 3925}, {3189, 17529}, {3434, 37309}, {3452, 58635}, {3739, 24388}, {3816, 6666}, {3820, 3956}, {3838, 58563}, {3873, 61013}, {3880, 64109}, {3928, 7965}, {3939, 17337}, {4187, 38057}, {4193, 5686}, {4321, 57285}, {4847, 40659}, {5220, 10593}, {5223, 7741}, {5542, 25639}, {5732, 15908}, {5805, 5857}, {5832, 15299}, {6701, 20116}, {6744, 25466}, {7677, 35979}, {7681, 63970}, {7958, 11523}, {8226, 24477}, {8580, 42470}, {8583, 38200}, {8727, 60974}, {9710, 10179}, {10283, 22836}, {10427, 25722}, {10527, 11344}, {10943, 42842}, {11235, 11495}, {11269, 54358}, {12329, 19512}, {12447, 64205}, {15185, 21617}, {15254, 58415}, {15935, 44669}, {16160, 17768}, {17530, 51099}, {17668, 30379}, {17728, 60985}, {20059, 30311}, {21031, 59414}, {22312, 44411}, {22753, 45700}, {23305, 53564}, {24179, 47595}, {24181, 60375}, {24703, 61005}, {26019, 27484}, {26040, 52804}, {30628, 41548}, {31245, 47387}, {31272, 34894}, {33108, 60996}, {37358, 61024}, {37722, 38316}, {38097, 44847}, {38454, 60994}, {49168, 64294}, {52254, 64153}, {52255, 64151}, {56284, 60489}, {58608, 63643}, {58626, 61033}
X(64443) = midpoint of X(i) and X(j) for these {i,j}: {142, 24389}, {3813, 3826}, {6600, 6601}
X(64443) = complement of X(6600)
X(64443) = complement of the isogonal conjugate of X(40154)
X(64443) = X(i)-complementary conjugate of X(j) for these (i,j): {269, 6600}, {277, 3452}, {1292, 4521}, {2191, 9}, {3669, 40615}, {3676, 5511}, {17107, 2}, {37206, 20317}, {40154, 10}, {54987, 59971}, {57656, 1212}, {57791, 21244}
X(64443) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6601, 6600}, {9, 3254, 60919}, {11, 6067, 9}, {142, 11019, 58564}, {142, 24386, 24389}, {20195, 24392, 3174}, {21617, 26015, 15185}, {25722, 60988, 10427}, {30628, 61008, 41548}
X(64444) lies on these lines: {2, 43974}, {11, 3126}, {2804, 25380}, {15914, 31235}, {53573, 55126}
X(64445) lies on these lines: {2, 31611}, {11, 650}, {44, 17747}, {115, 661}, {116, 59522}, {149, 1252}, {294, 5375}, {497, 14827}, {528, 14589}, {607, 9665}, {649, 6075}, {666, 17036}, {693, 35094}, {1015, 6591}, {1086, 3676}, {1090, 52316}, {1146, 3239}, {1262, 34529}, {2161, 61066}, {2310, 6608}, {2520, 3271}, {2611, 55280}, {2886, 5701}, {3120, 35505}, {3700, 51442}, {3911, 9356}, {4516, 42771}, {4976, 51402}, {5532, 52334}, {6547, 24198}, {7336, 52338}, {10947, 16283}, {11238, 30706}, {13401, 14115}, {14300, 33646}, {17435, 35015}, {21044, 35506}, {23653, 64127}, {45320, 62683}, {51407, 62297}, {53529, 59798}
X(64445) = complement of X(54110)
X(64445) = complement of the isotomic conjugate of X(43974)
X(64445) = X(i)-complementary conjugate of X(j) for these (i,j): {43947, 17072}, {43974, 2887}
X(64445) = X(i)-Ceva conjugate of X(j) for these (i,j): {1086, 21132}, {1090, 5532}, {1146, 42462}, {2170, 55195}, {23978, 42455}, {26856, 56283}, {31611, 11}, {34529, 513}, {57536, 885}
X(64445) = X(i)-isoconjugate of X(j) for these (i,j): {59, 4564}, {100, 4619}, {109, 31615}, {644, 59151}, {765, 1262}, {934, 59149}, {1016, 24027}, {1025, 59101}, {1110, 1275}, {1252, 7045}, {1461, 57731}, {2149, 4998}, {7012, 44717}, {7035, 23979}
X(64445) = X(i)-Dao conjugate of X(j) for these (i,j): {11, 31615}, {513, 1262}, {514, 1275}, {522, 1016}, {650, 4998}, {661, 7045}, {2968, 6632}, {4885, 61415}, {6615, 4564}, {8054, 4619}, {14714, 59149}, {17115, 1252}, {35508, 57731}, {35509, 883}, {40625, 55194}, {52305, 35094}, {52873, 62721}
X(64445) = crosspoint of X(i) and X(j) for these (i,j): {2, 43974}, {11, 40166}, {885, 57536}, {1086, 21132}, {1146, 42462}, {2969, 6545}, {23978, 42455}, {24026, 40213}, {26856, 56283}
X(64445) = crosssum of X(i) and X(j) for these (i,j): {6, 1618}, {219, 39189}, {1262, 4619}, {2283, 35505}
X(64445) = crossdifference of every pair of points on line {2283, 4619}
X(64445) = barycentric product X(i)*X(j) for these {i,j}: {1, 1090}, {7, 5532}, {8, 7336}, {11, 11}, {115, 26856}, {244, 24026}, {513, 42455}, {514, 42462}, {522, 21132}, {523, 56283}, {650, 40166}, {657, 23100}, {661, 40213}, {764, 4397}, {885, 52305}, {1015, 23978}, {1086, 1146}, {1111, 2310}, {1358, 4081}, {1565, 42069}, {2170, 4858}, {2401, 52316}, {2968, 2969}, {2973, 3270}, {3239, 6545}, {3271, 34387}, {3676, 23615}, {3937, 21666}, {4530, 60578}, {4560, 55195}, {6362, 56284}, {8735, 26932}, {14936, 23989}, {16727, 36197}, {17197, 21044}, {17205, 52335}, {21143, 52622}, {23104, 43924}, {31611, 46101}, {34529, 34530}, {35509, 57536}, {42454, 60478}, {46384, 60074}, {52303, 57645}, {52304, 62715}, {52334, 60479}, {52338, 60480}, {52946, 60491}
X(64445) = barycentric quotient X(i)/X(j) for these {i,j}: {11, 4998}, {244, 7045}, {649, 4619}, {650, 31615}, {657, 59149}, {764, 934}, {884, 59101}, {1015, 1262}, {1086, 1275}, {1090, 75}, {1146, 1016}, {1357, 7339}, {1358, 59457}, {1977, 23979}, {2170, 4564}, {2310, 765}, {2969, 55346}, {3022, 6065}, {3239, 6632}, {3248, 24027}, {3271, 59}, {3900, 57731}, {4081, 4076}, {4397, 57950}, {4560, 55194}, {4953, 44724}, {5532, 8}, {6545, 658}, {7117, 44717}, {7336, 7}, {8034, 53321}, {8042, 4637}, {8735, 46102}, {14936, 1252}, {17197, 4620}, {21131, 4605}, {21132, 664}, {21143, 1461}, {23100, 46406}, {23615, 3699}, {23978, 31625}, {24026, 7035}, {24188, 62789}, {26856, 4590}, {31611, 31619}, {35509, 35094}, {40166, 4554}, {40213, 799}, {42069, 15742}, {42455, 668}, {42462, 190}, {43924, 59151}, {46384, 4585}, {52303, 4996}, {52305, 883}, {52315, 55016}, {52316, 2397}, {52333, 6068}, {52336, 14027}, {52337, 1317}, {52338, 62669}, {52946, 62721}, {55195, 4552}, {56283, 99}, {56284, 6606}, {61050, 6066}, {63462, 4559}
X(64445) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 650, 46101}, {46101, 52946, 650}
The following conjectures are due to Keita Miyamoto, July 02, 2024:
In a triangle ABC with circumcircle ω, denote:Then:
Results:
Similar points can be found by using mixtilinear incircles instead of mixtilinear excircles and inner-Apollonius circles instead of outer Apollonius circles. With this new construction:
X(64446) lies on the apollonian circle of mixtilinear excircles and these lines: {9, 644}, {56, 101}, {672, 32625}, {2246, 5128}, {2291, 6244}, {2348, 5011}, {3022, 58368}, {4534, 4752}, {5540, 7991}, {8158, 35599}, {8165, 26074}, {11224, 52184}
X(64446) = cross-difference of every pair of points on the line X(53523)X(53528)
X(64446) = touchpoint of outer apollonian circle of mixtilinear excircles and line {22108, 64446}
X(64447) lies on these lines: {3, 9}
X(64448) lies on these lines: {5572, 16112}
X(64449) lies on these lines: {1, 84}, {3, 595}, {4, 5710}, {6, 517}, {20, 62804}, {31, 3428}, {40, 2999}, {55, 1064}, {56, 601}, {58, 22770}, {165, 5315}, {171, 22753}, {380, 22124}, {386, 10306}, {392, 17811}, {394, 3877}, {500, 16202}, {515, 63969}, {516, 62828}, {578, 55287}, {581, 3295}, {602, 5584}, {912, 3242}, {940, 5603}, {944, 37542}, {946, 2050}, {952, 12594}, {956, 55406}, {958, 3073}, {962, 5706}, {988, 64118}, {991, 40091}, {999, 1407}, {1056, 6180}, {1057, 52830}, {1072, 1836}, {1158, 37592}, {1181, 37614}, {1193, 10310}, {1203, 7991}, {1279, 18443}, {1351, 45955}, {1385, 1616}, {1399, 10966}, {1406, 3304}, {1457, 34042}, {1464, 33925}, {1482, 36742}, {1519, 17720}, {1697, 7078}, {2003, 7962}, {2093, 52424}, {2099, 61398}, {2390, 22769}, {2594, 26358}, {2808, 6767}, {2818, 36740}, {3057, 64020}, {3072, 64077}, {3149, 5264}, {3157, 9957}, {3194, 56887}, {3297, 8978}, {3359, 3752}, {3434, 5721}, {3445, 16203}, {3562, 9785}, {3576, 16483}, {3744, 18446}, {3753, 17825}, {3872, 55400}, {3880, 45729}, {3913, 37699}, {3915, 4300}, {4221, 40153}, {4252, 11249}, {4255, 11248}, {4301, 62805}, {4383, 5657}, {4646, 49163}, {5050, 53790}, {5119, 7074}, {5230, 15908}, {5250, 16368}, {5255, 11500}, {5266, 6261}, {5269, 63992}, {5313, 5537}, {5396, 10679}, {5687, 37732}, {5707, 22791}, {5731, 62848}, {5886, 37674}, {6361, 37537}, {6684, 45204}, {6905, 37540}, {6913, 30116}, {7290, 30503}, {7680, 26098}, {8148, 36750}, {8192, 42448}, {8572, 32612}, {9623, 55432}, {9856, 15811}, {10106, 64057}, {10246, 16486}, {10247, 51340}, {10532, 49745}, {11224, 16474}, {11230, 37682}, {11522, 37559}, {12053, 41344}, {12595, 14988}, {12702, 36754}, {12703, 64175}, {13161, 64119}, {16489, 30392}, {17054, 34339}, {18391, 60689}, {18444, 62806}, {21000, 32613}, {22129, 54391}, {24806, 57278}, {25413, 36752}, {26333, 37715}, {26446, 37679}, {28194, 50114}, {30145, 31803}, {31397, 34048}, {31785, 37415}, {32911, 59417}, {34036, 50195}, {34937, 54198}, {37474, 55004}, {37514, 37562}, {37534, 52541}, {37539, 63986}, {37549, 64021}, {37552, 37837}, {37622, 37698}, {41455, 55676}, {43166, 54358}, {44663, 45728}, {54386, 63976}, {62834, 64150}, {64042, 64349}
X(64449) = cross-difference of every pair of points on the line X(9001)X(14298)
X(64449) = perspector of the circumconic through X(9058) and X(37141)
X(64449) = pole of the line {6371, 23224} with respect to the circumcircle
X(64449) = pole of the line {56, 7395} with respect to the Feuerbach circumhyperbola
X(64449) = pole of the line {9051, 40137} with respect to the MacBeath circumconic
X(64449) = pole of the line {11115, 26637} with respect to the Stammler hyperbola
X(64449) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (40, 16466, 36745), (962, 57280, 5706), (1616, 37501, 1385), (3057, 64020, 64069), (30116, 64013, 6913)
X(64450) lies on these lines: {2999, 11505}
X(64451) lies on these lines: {518, 7962}
Regarding the names of X(64452)-X(64467), see the preamble just before X(64426).
X(64452) lies on these lines: {2, 6662}, {5, 2972}, {30, 5447}, {140, 12012}, {632, 15912}, {11017, 53803}, {11539, 41481}, {16239, 58454}, {33539, 36162}, {42453, 55859}, {42466, 63175}, {55862, 59531}
X(64452) = midpoint of X(6662) and X(6663)
X(64452) = complement of X(6663)
X(64452) = {X(2),X(6662)}-harmonic conjugate of X(6663)
X(64453) lies on these lines: {2, 31622}, {39, 55050}, {574, 57503}, {1506, 35971}, {3229, 6292}, {3934, 9496}, {6683, 30736}, {52042, 59994}
X(64453) = complement of the isotomic conjugate of X(59994)
X(64453) = X(i)-complementary conjugate of X(j) for these (i,j): {1917, 7829}, {1923, 3934}, {2531, 21253}, {3051, 21238}, {8041, 21235}, {41331, 1215}, {59994, 2887}
X(64453) = crosspoint of X(2) and X(59994)
X(64454) lies on these lines: {1, 2}, {872, 6378}, {1918, 62420}, {1964, 22199}, {2667, 22184}, {21700, 21838}, {21820, 62550}, {23610, 53581}
X(64454) = isogonal conjugate of X(59148)
X(64454) = isogonal conjugate of the isotomic conjugate of X(21700)
X(64454) = X(i)-Ceva conjugate of X(j) for these (i,j): {42, 21838}, {4557, 53581}
X(64454) = X(i)-isoconjugate of X(j) for these (i,j): {1, 59148}, {274, 40409}, {873, 40418}, {1221, 1509}, {57399, 57992}, {57949, 60230}
X(64454) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 59148}, {3122, 52619}, {3741, 310}, {51575, 57992}
X(64454) = crosspoint of X(42) and X(7109)
X(64454) = crossdifference of every pair of points on line {649, 16737}
X(64454) = barycentric product X(i)*X(j) for these {i,j}: {6, 21700}, {31, 22206}, {32, 21713}, {42, 21838}, {213, 3728}, {669, 61165}, {756, 1197}, {872, 1107}, {1334, 39780}, {1500, 2309}, {1826, 23212}, {1918, 21024}, {3741, 7109}, {3971, 45217}, {4079, 53268}, {4557, 40627}, {6378, 45216}, {20691, 45209}, {27880, 40729}, {50487, 61234}, {53338, 53581}
X(64454) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 59148}, {872, 1221}, {1107, 57992}, {1197, 873}, {1918, 40409}, {3728, 6385}, {7109, 40418}, {21700, 76}, {21713, 1502}, {21838, 310}, {22206, 561}, {23212, 17206}, {40627, 52619}, {53268, 52612}, {61165, 4609}
X(64455) lies on the Kiepert circumhyperbola of the anticomplementary triangle and these lines: {1, 91}, {2, 914}, {19, 63808}, {20, 224}, {48, 63}, {92, 31631}, {487, 13386}, {488, 13387}, {662, 1748}, {811, 6521}, {1096, 2617}, {1707, 4575}, {1708, 1813}, {1764, 24611}, {1800, 12514}, {1848, 37181}, {1944, 46717}, {1958, 45224}, {1959, 18596}, {2128, 17442}, {3869, 14868}, {18597, 18713}, {21378, 51304}, {52676, 56875}
X(64455) = anticomplement of X(60249)
X(64455) = anticomplement of the isotomic conjugate of X(31631)
X(64455) = isotomic conjugate of the polar conjugate of X(920)
X(64455) = isogonal conjugate of the polar conjugate of X(33808)
X(64455) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {46, 2893}, {112, 44426}, {284, 11415}, {1333, 10529}, {1800, 4329}, {2150, 62858}, {2178, 2475}, {2194, 20078}, {2299, 2994}, {3157, 2897}, {3193, 69}, {3559, 21270}, {5552, 21287}, {31631, 6327}, {46389, 3448}, {59973, 13219}, {61397, 2895}
X(64455) = X(i)-Ceva conjugate of X(j) for these (i,j): {92, 63}, {31631, 2}, {33808, 920}, {44179, 1}
X(64455) = X(i)-isoconjugate of X(j) for these (i,j): {2, 39109}, {4, 60775}, {6, 254}, {19, 921}, {25, 6504}, {32, 46746}, {54, 41536}, {69, 60779}, {96, 47732}, {393, 15316}, {571, 52582}, {924, 39416}, {1609, 57697}, {1973, 57998}, {1993, 59189}, {2165, 34756}, {2501, 13398}, {6753, 63958}, {8745, 32132}, {8800, 8882}, {14593, 57484}, {14910, 16172}, {39114, 41271}, {40388, 59497}
X(64455) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 921}, {9, 254}, {394, 63}, {2165, 91}, {6337, 57998}, {6376, 46746}, {6505, 6504}, {32664, 39109}, {36033, 60775}
X(64455) = crosspoint of X(811) and X(62719)
X(64455) = barycentric product X(i)*X(j) for these {i,j}: {1, 40697}, {3, 33808}, {63, 6515}, {69, 920}, {75, 155}, {91, 59155}, {92, 6503}, {304, 1609}, {326, 3542}, {454, 57998}, {8883, 18695}, {34853, 44179}, {41587, 62277}
X(64455) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 254}, {3, 921}, {31, 39109}, {47, 34756}, {48, 60775}, {63, 6504}, {69, 57998}, {75, 46746}, {91, 52582}, {155, 1}, {255, 15316}, {454, 920}, {920, 4}, {921, 57697}, {1609, 19}, {1725, 16172}, {1953, 41536}, {1973, 60779}, {2180, 47732}, {3542, 158}, {4575, 13398}, {6503, 63}, {6515, 92}, {8883, 2190}, {15478, 36053}, {33808, 264}, {34853, 91}, {36145, 39416}, {39116, 57716}, {40697, 75}, {44706, 8800}, {51425, 1784}, {57998, 57868}, {58888, 3064}, {59155, 44179}, {63801, 40678}, {63808, 39114}
X(64455) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6505, 6513, 2}, {6507, 6508, 63}
X(64456) lies on these lines: {1, 15656}, {65, 23604}, {72, 18591}, {500, 912}, {1838, 45038}, {1841, 14054}, {2252, 18673}, {4303, 18607}
X(64456) = X(3868)-Ceva conjugate of X(942)
X(64456) = barycentric product X(942)*X(56728)
X(64456) = barycentric quotient X(i)/X(j) for these {i,j}: {1612, 40395}, {56728, 40422}
X(64457) lies on the circumconic {{A,B,C,X(1),X(2)} and these lines: {1, 849}, {2, 261}, {57, 757}, {60, 959}, {81, 18202}, {88, 30581}, {105, 58982}, {274, 763}, {279, 552}, {961, 1325}, {1220, 1224}, {1255, 2298}, {1333, 37870}, {1412, 1432}, {1798, 51223}, {4581, 60043}, {5839, 7058}, {7132, 7305}, {15420, 60044}, {17946, 40153}, {19623, 30710}, {34914, 42028}
X(64457) = isogonal conjugate of X(21810)
X(64457) = X(i)-cross conjugate of X(j) for these (i,j): {81, 14534}, {3733, 52935}, {5262, 86}, {57058, 662}, {57246, 1414}
X(64457) = X(i)-isoconjugate of X(j) for these (i,j): {1, 21810}, {6, 20653}, {9, 52567}, {10, 2092}, {12, 2269}, {37, 2292}, {42, 1211}, {56, 61377}, {65, 21033}, {71, 429}, {181, 3687}, {190, 42661}, {213, 18697}, {226, 40966}, {306, 44092}, {312, 59174}, {321, 3725}, {523, 61168}, {594, 1193}, {661, 61172}, {756, 3666}, {762, 54308}, {872, 20911}, {960, 2171}, {1018, 50330}, {1089, 2300}, {1228, 1918}, {1254, 3965}, {1334, 41003}, {1400, 3704}, {1500, 4357}, {1826, 22076}, {1829, 3949}, {1848, 3690}, {2197, 46878}, {2298, 6042}, {2354, 3695}, {3674, 7064}, {3882, 4705}, {3971, 45218}, {4024, 53280}, {4064, 61205}, {4079, 53332}, {4103, 6371}, {4557, 21124}, {6057, 61412}, {6358, 20967}, {6535, 40153}, {7140, 22097}, {17420, 21859}, {20691, 45197}, {21035, 27067}, {21078, 42550}, {22074, 56285}, {26942, 40976}, {40521, 48131}, {51870, 52087}, {55232, 61226}, {56914, 59305}, {57185, 61223}
X(64457) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 61377}, {3, 21810}, {9, 20653}, {478, 52567}, {6626, 18697}, {34021, 1228}, {36830, 61172}, {40582, 3704}, {40589, 2292}, {40592, 1211}, {40602, 21033}, {52087, 6042}, {55053, 42661}
X(64457) = cevapoint of X(i) and X(j) for these (i,j): {60, 1333}, {81, 593}, {1169, 2363}
X(64457) = barycentric product X(i)*X(j) for these {i,j}: {28, 57853}, {56, 52550}, {60, 31643}, {81, 14534}, {86, 2363}, {261, 961}, {274, 1169}, {286, 1798}, {593, 30710}, {693, 58982}, {757, 1220}, {763, 14624}, {849, 1240}, {1333, 40827}, {1414, 57161}, {1509, 2298}, {4581, 52935}, {4610, 62749}
X(64457) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 20653}, {6, 21810}, {9, 61377}, {21, 3704}, {28, 429}, {56, 52567}, {58, 2292}, {60, 960}, {81, 1211}, {86, 18697}, {110, 61172}, {163, 61168}, {270, 46878}, {274, 1228}, {284, 21033}, {593, 3666}, {667, 42661}, {757, 4357}, {763, 16705}, {849, 1193}, {961, 12}, {1014, 41003}, {1019, 21124}, {1169, 37}, {1193, 6042}, {1220, 1089}, {1333, 2092}, {1397, 59174}, {1434, 45196}, {1437, 22076}, {1509, 20911}, {1791, 3695}, {1798, 72}, {2150, 2269}, {2185, 3687}, {2194, 40966}, {2203, 44092}, {2206, 3725}, {2298, 594}, {2359, 3949}, {2363, 10}, {3733, 50330}, {4556, 3882}, {4581, 4036}, {4636, 61223}, {6628, 16739}, {7054, 3965}, {7303, 59191}, {7341, 24471}, {8687, 21859}, {14534, 321}, {16948, 4918}, {30710, 28654}, {31643, 34388}, {32736, 40521}, {36147, 4103}, {40453, 51870}, {40827, 27801}, {52376, 27067}, {52550, 3596}, {52935, 53332}, {57161, 4086}, {57853, 20336}, {58982, 100}, {59159, 21803}, {62749, 4024}
X(64458) lies on these lines: {9, 3177}, {85, 52064}, {142, 63905}, {220, 1376}, {480, 4513}, {728, 28058}, {1223, 60811}, {2125, 5437}, {2338, 17754}, {2371, 53632}, {4147, 23058}, {6376, 6559}, {7367, 41239}, {14943, 63601}, {41796, 63603}
X(64458) = isogonal conjugate of X(34497)
X(64458) = isotomic conjugate of X(40593)
X(64458) = isotomic conjugate of the complement of X(56265)
X(64458) = X(2)-cross conjugate of X(9)
X(64458) = X(i)-isoconjugate of X(j) for these (i,j): {1, 34497}, {6, 31526}, {7, 20995}, {31, 40593}, {56, 3177}, {57, 1742}, {109, 21195}, {278, 20793}, {604, 20935}, {1014, 21856}, {1412, 21084}, {1458, 51846}, {10481, 38835}
X(64458) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 3177}, {2, 40593}, {3, 34497}, {9, 31526}, {11, 21195}, {3161, 20935}, {5452, 1742}, {40599, 21084}
X(64458) = cevapoint of X(i) and X(j) for these (i,j): {1, 41680}, {2, 56265}, {3900, 52064}
X(64458) = trilinear pole of line {4105, 54266}
X(64458) = barycentric product X(i)*X(j) for these {i,j}: {9, 56265}, {200, 43750}, {480, 60811}, {4163, 53632}
X(64458) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 31526}, {2, 40593}, {6, 34497}, {8, 20935}, {9, 3177}, {41, 20995}, {55, 1742}, {210, 21084}, {212, 20793}, {294, 51846}, {650, 21195}, {1334, 21856}, {43750, 1088}, {53632, 4626}, {56265, 85}, {59141, 38835}, {60811, 57880}
X(64459) lies on the circumconic {{A,B,C,X(1),X(2)} and these lines: {1, 3257}, {2, 4555}, {44, 5376}, {81, 4622}, {88, 2087}, {89, 2384}, {274, 4634}, {291, 4792}, {679, 1022}, {1002, 61422}, {1320, 55935}, {24841, 24858}
X(64459) = X(i)-cross conjugate of X(j) for these (i,j): {14421, 4618}, {51908, 88}
X(64459) = X(i)-isoconjugate of X(j) for these (i,j): {6, 1644}, {101, 33920}, {519, 8649}, {545, 902}, {678, 51908}, {1023, 14421}, {1960, 6633}, {4604, 14410}, {14475, 23344}
X(64459) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 1644}, {1015, 33920}, {40594, 545}
X(64459) = cevapoint of X(i) and X(j) for these (i,j): {88, 51908}, {2087, 14421}
X(64459) = trilinear pole of line {88, 513}
X(64459) = barycentric product X(i)*X(j) for these {i,j}: {88, 35168}, {2384, 20568}, {3257, 62623}, {4618, 34764}, {51908, 57567}
X(64459) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1644}, {88, 545}, {513, 33920}, {1022, 14475}, {2226, 51908}, {2384, 44}, {3257, 6633}, {4618, 34762}, {4775, 14410}, {9456, 8649}, {23345, 14421}, {35168, 4358}, {51908, 35121}, {52225, 6544}, {56049, 43038}, {62623, 3762}
X(64460) lies on the Steiner circumellipse and these lines: {99, 11123}, {249, 35146}, {543, 31632}, {648, 55270}, {671, 1641}, {691, 18829}, {886, 32729}, {892, 42370}, {2482, 4590}, {3228, 19626}, {4577, 53735}, {5466, 14728}, {5641, 47389}, {31998, 52883}, {35136, 52035}, {35138, 59152}, {35139, 53080}
X(64460) = isotomic conjugate of X(33919)
X(64460) = isotomic conjugate of the isogonal conjugate of X(45773)
X(64460) = X(42370)-Ceva conjugate of X(52940)
X(64460) = X(i)-cross conjugate of X(j) for these (i,j): {99, 57552}, {892, 52940}, {5468, 4590}, {33919, 2}, {52940, 42370}, {53367, 18020}, {53379, 39292}, {55226, 34537}, {61190, 892}
X(64460) = X(i)-isoconjugate of X(j) for these (i,j): {31, 33919}, {110, 45775}, {163, 42344}, {351, 2643}, {661, 21906}, {798, 1648}, {896, 22260}, {922, 8029}, {923, 14443}, {1924, 52628}, {2642, 3124}, {4117, 35522}, {14210, 23099}, {23894, 59801}
X(64460) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 33919}, {115, 42344}, {244, 45775}, {524, 46049}, {2482, 14443}, {9428, 52628}, {15477, 23099}, {15899, 22260}, {31998, 1648}, {35087, 14423}, {36830, 21906}, {39061, 8029}, {62613, 2682}
X(64460) = cevapoint of X(i) and X(j) for these (i,j): {2, 33919}, {523, 11053}, {524, 10190}, {620, 690}, {892, 52940}, {4590, 5468}
X(64460) = trilinear pole of line {2, 4590}
X(64460) = barycentric product X(i)*X(j) for these {i,j}: {76, 45773}, {99, 52940}, {249, 53080}, {523, 42370}, {671, 31614}, {691, 34537}, {892, 4590}, {5468, 57552}, {18023, 59152}, {24037, 36085}, {30786, 55270}, {32729, 44168}
X(64460) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 33919}, {99, 1648}, {110, 21906}, {111, 22260}, {249, 351}, {523, 42344}, {524, 14443}, {543, 14423}, {661, 45775}, {670, 52628}, {671, 8029}, {691, 3124}, {892, 115}, {2396, 51429}, {2407, 2682}, {2482, 46049}, {4590, 690}, {5380, 21833}, {5466, 61339}, {5467, 59801}, {5468, 23992}, {18020, 14273}, {18023, 23105}, {19626, 23610}, {24041, 2642}, {31614, 524}, {32729, 1084}, {32740, 23099}, {34537, 35522}, {34539, 9178}, {36085, 2643}, {41294, 33918}, {42370, 99}, {45773, 6}, {47389, 14417}, {47443, 44102}, {50941, 51428}, {52940, 523}, {53080, 338}, {55226, 5099}, {55270, 468}, {57552, 5466}, {57991, 52038}, {59152, 187}, {59762, 2970}, {61190, 23991}
X(64461) lies on these lines: {30, 511}, {2088, 16186}, {3581, 14270}, {5118, 52603}, {32110, 39477}, {35139, 35316}, {37477, 44826}, {37496, 53247}
X(64461) = crossdifference of every pair of points on line {6, 476}
X(64462) lies on these lines: {2, 664}, {8, 42050}, {10, 59609}, {11, 60692}, {30, 511}, {551, 62674}, {1212, 25719}, {1275, 57563}, {1317, 9318}, {1565, 10708}, {1952, 55956}, {3036, 24318}, {3241, 14942}, {3679, 50441}, {3870, 42064}, {4370, 40865}, {4437, 30225}, {4530, 26007}, {4534, 9317}, {4904, 34578}, {4945, 31048}, {4957, 17392}, {6554, 25718}, {8301, 11194}, {9312, 21258}, {10710, 18328}, {16833, 45749}, {17264, 40872}, {17294, 51390}, {17389, 20173}, {24712, 62616}, {25716, 46835}, {25726, 37774}, {31145, 52164}, {31169, 55954}, {38941, 61673}, {39542, 60083}, {41006, 58458}, {43066, 48381}, {47037, 47043}
X(64462) = isotomic conjugate of X(53212)
X(64462) = trilinear pole of line {14476, 14477}
X(64462) = crossdifference of every pair of points on line {6, 6139}
X(64462) = barycentric product X(4437)*X(43570)
X(64462) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 664, 35110}, {2, 1121, 1146}, {2, 35110, 17044}, {2, 39351, 1121}, {2, 39357, 664}, {664, 1121, 2}, {664, 1146, 17044}, {664, 39351, 1146}, {1121, 39357, 35110}, {1146, 17044, 40483}, {1146, 35110, 2}, {39351, 39357, 2}
X(64463) lies on these lines: {2, 4555}, {30, 511}, {1016, 62413}, {3241, 24407}, {4370, 6633}, {6547, 9460}, {6549, 36525}, {6630, 54974}, {6631, 41138}, {17310, 30566}, {24441, 24864}, {36522, 53582}, {41140, 43055}, {49751, 50112}, {57564, 57567}
X(64463) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4555, 35121}, {2, 35168, 35092}, {2, 39349, 35168}, {4555, 35168, 2}, {4555, 39349, 35092}, {35092, 35121, 2}
X(64464) lies on these lines: {2, 51268}, {3, 10662}, {15, 1511}, {62, 1493}, {539, 52204}, {577, 1147}, {621, 52605}, {1154, 3165}, {3200, 11136}, {5334, 11556}, {9703, 46113}, {10217, 38414}, {10633, 11127}, {10635, 44719}, {10661, 50465}, {11486, 16022}, {15091, 18470}, {17714, 41089}, {22115, 46112}, {36296, 43704}, {42121, 54297}, {50469, 52349}
X(64464) = isotomic conjugate of the polar conjugate of X(11136)
X(64464) = isogonal conjugate of the polar conjugate of X(11127)
X(64464) = X(11127)-Ceva conjugate of X(11136)
X(64464) = X(i)-isoconjugate of X(j) for these (i,j): {92, 11082}, {158, 52204}, {11083, 63764}
X(64464) = X(i)-Dao conjugate of X(j) for these (i,j): {1147, 52204}, {11131, 264}, {22391, 11082}, {63834, 11126}
X(64464) = crosspoint of X(38414) and X(47390)
X(64464) = crossdifference of every pair of points on line {23283, 23290}
X(64464) = barycentric product X(i)*X(j) for these {i,j}: {3, 11127}, {15, 52349}, {62, 44718}, {63, 35198}, {69, 11136}, {184, 11133}, {303, 46112}, {323, 50469}, {394, 10633}, {3200, 40709}, {6105, 44719}, {8603, 44180}, {8836, 22115}, {10677, 52348}, {11088, 52437}, {11145, 50466}, {46113, 52221}, {52606, 60010}
X(64464) = barycentric quotient X(i)/X(j) for these {i,j}: {49, 8838}, {184, 11082}, {577, 52204}, {3200, 470}, {8603, 93}, {8836, 18817}, {10633, 2052}, {11088, 6344}, {11127, 264}, {11133, 18022}, {11136, 4}, {34394, 8742}, {35198, 92}, {44718, 34390}, {46112, 18}, {46113, 11601}, {50469, 94}, {52349, 300}, {63837, 11126}
X(64465) lies on these lines: {2, 51275}, {3, 10661}, {16, 1511}, {61, 1493}, {539, 52203}, {577, 1147}, {622, 52606}, {1154, 3166}, {3201, 11135}, {5335, 11555}, {9703, 46112}, {10218, 38413}, {10632, 11126}, {10634, 44718}, {10662, 50466}, {11485, 16021}, {15091, 18468}, {17714, 41090}, {22115, 46113}, {36297, 43704}, {42124, 54298}, {50468, 52348}
X(64465) = isotomic conjugate of the polar conjugate of X(11135)
X(64465) = isogonal conjugate of the polar conjugate of X(11126)
X(64465) = X(11126)-Ceva conjugate of X(11135)
X(64465) = X(i)-isoconjugate of X(j) for these (i,j): {92, 11087}, {158, 52203}, {11088, 63764}
X(64465) = X(i)-Dao conjugate of X(j) for these (i,j): {1147, 52203}, {11130, 264}, {22391, 11087}, {63834, 11127}
X(64465) = crosspoint of X(38413) and X(47390)
X(64465) = crossdifference of every pair of points on line {23284, 23290}
X(64465) = barycentric product X(i)*X(j) for these {i,j}: {3, 11126}, {16, 52348}, {61, 44719}, {63, 35199}, {69, 11135}, {184, 11132}, {302, 46113}, {323, 50468}, {394, 10632}, {3201, 40710}, {6104, 44718}, {8604, 44180}, {8838, 22115}, {10678, 52349}, {11083, 52437}, {11146, 50465}, {46112, 52220}, {52605, 60009}
X(64465) = barycentric quotient X(i)/X(j) for these {i,j}: {49, 8836}, {184, 11087}, {577, 52203}, {3201, 471}, {8604, 93}, {8838, 18817}, {10632, 2052}, {11083, 6344}, {11126, 264}, {11132, 18022}, {11135, 4}, {34395, 8741}, {35199, 92}, {44719, 34389}, {46112, 11600}, {46113, 17}, {50468, 94}, {52348, 301}, {63837, 11127}
X(64466) lies on these lines: {3, 44714}, {5, 16}, {324, 471}, {343, 44719}, {1147, 52204}, {3166, 10125}, {5449, 52203}, {44713, 50465}
X(64466) = trilinear pole of line {6368, 60009}
X(64467) lies on these lines: {3, 44713}, {5, 15}, {324, 470}, {343, 44718}, {1147, 52203}, {3165, 10125}, {5449, 52204}, {44714, 50466}
X(64467) = trilinear pole of line {6368, 60010}
X(64468) lies on these lines: {3, 56514}, {4, 14}, {6, 24}, {13, 16868}, {15, 21844}, {16, 3520}, {17, 14940}, {18, 7577}, {32, 23717}, {61, 186}, {378, 22238}, {395, 1594}, {396, 10018}, {397, 403}, {398, 6240}, {470, 11126}, {933, 39406}, {1593, 11486}, {1595, 42634}, {1598, 11409}, {1614, 11244}, {1885, 42924}, {2937, 11268}, {3147, 37640}, {3200, 59279}, {3411, 52295}, {3518, 8740}, {3542, 42998}, {5237, 35473}, {5238, 17506}, {5339, 35480}, {5340, 35488}, {6198, 7127}, {7487, 63080}, {7505, 40693}, {7507, 42989}, {7547, 42153}, {7576, 43229}, {7722, 36209}, {8737, 8929}, {8839, 46113}, {10019, 43416}, {10295, 42147}, {10635, 37126}, {10642, 34484}, {10646, 23040}, {10654, 35471}, {10661, 11453}, {11243, 26882}, {11466, 30403}, {11475, 34755}, {11485, 15750}, {11543, 23047}, {12173, 42975}, {13619, 42157}, {16268, 62982}, {16645, 52296}, {16773, 37118}, {16964, 34797}, {18533, 42999}, {18560, 42148}, {21648, 64026}, {22236, 32534}, {35472, 36836}, {35477, 36843}, {35481, 42151}, {35487, 42166}, {35489, 41101}, {35490, 42155}, {35491, 42943}, {35503, 42150}, {37119, 42149}, {37453, 42988}, {37777, 54363}, {37931, 42925}, {37943, 61719}, {42165, 57584}, {42990, 44958}, {43632, 56369}, {44102, 44512}
X(64468) = isogonal conjugate oof X(64466)
X(64468) = crossdifference of every pair of points on line {6368, 60009}
X(64468) = barycentric quotient X(3205)/X(52348)
X(64468) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 62, 56515}, {6, 10633, 10632}, {62, 8739, 4}, {10880, 10881, 10633}
X(64469) lies on these lines: {3, 56515}, {4, 13}, {6, 24}, {14, 16868}, {15, 3520}, {16, 21844}, {17, 7577}, {18, 14940}, {32, 23716}, {62, 186}, {378, 22236}, {395, 10018}, {396, 1594}, {397, 6240}, {398, 403}, {471, 11127}, {933, 39407}, {1593, 11485}, {1595, 42633}, {1598, 11408}, {1614, 11243}, {1870, 2307}, {1885, 42925}, {2937, 11267}, {3147, 37641}, {3201, 59279}, {3412, 52295}, {3518, 8739}, {3542, 42999}, {5237, 17506}, {5238, 35473}, {5339, 35488}, {5340, 35480}, {7487, 63079}, {7505, 40694}, {7507, 42988}, {7547, 42156}, {7576, 43228}, {7722, 36208}, {8738, 8930}, {8837, 46112}, {10019, 43417}, {10295, 42148}, {10634, 37126}, {10641, 34484}, {10645, 23040}, {10653, 35471}, {10662, 11452}, {11244, 26882}, {11467, 30402}, {11476, 34754}, {11486, 15750}, {11542, 23047}, {12173, 42974}, {13619, 42158}, {16267, 62982}, {16644, 52296}, {16772, 37118}, {16965, 34797}, {18533, 42998}, {18559, 61719}, {18560, 42147}, {21647, 64026}, {22238, 32534}, {35472, 36843}, {35477, 36836}, {35481, 42150}, {35487, 42163}, {35489, 41100}, {35490, 42154}, {35491, 42942}, {35503, 42151}, {37119, 42152}, {37453, 42989}, {37777, 54362}, {37931, 42924}, {42164, 57584}, {42991, 44958}, {43633, 56369}, {44102, 44511}
X(64469) = isogonal conjugate oof X(64467)
X(64469) = crossdifference of every pair of points on line {6368, 60010}
X(64469) = barycentric quotient X(3206)/X(52349)
X(64469) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 61, 56514}, {6, 10632, 10633}, {61, 8740, 4}, {10880, 10881, 10632}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6368.
X(64470) lies on these lines: {5, 25043}, {570, 15345}
See Antreas Hatzipolakis and Peter Moses, euclid 6378.
X(64471) lies on these lines: {2, 3}, {53, 43291}, {54, 40114}, {113, 11566}, {125, 16654}, {155, 63702}, {230, 33842}, {232, 63633}, {389, 63714}, {397, 63681}, {398, 63680}, {1495, 16657}, {1629, 51385}, {1843, 46817}, {1974, 61752}, {1990, 3199}, {2393, 10110}, {2790, 11623}, {3426, 18931}, {3527, 10602}, {3564, 46261}, {5095, 5609}, {5446, 14984}, {5480, 61610}, {5654, 7716}, {5882, 51695}, {5946, 44079}, {6152, 10294}, {6390, 58782}, {6749, 33871}, {6759, 8550}, {7583, 35765}, {7584, 35764}, {7713, 22791}, {7718, 37705}, {8263, 17814}, {10539, 13142}, {10546, 54040}, {10985, 60428}, {11245, 14157}, {11398, 15172}, {11430, 15448}, {11433, 32063}, {11459, 47582}, {11576, 22051}, {11743, 12242}, {11745, 61749}, {11793, 63723}, {11801, 46682}, {11803, 63693}, {12294, 15067}, {13382, 41589}, {13392, 15472}, {13451, 47328}, {13464, 44662}, {13474, 20417}, {13570, 58447}, {13598, 59659}, {14852, 39884}, {14862, 58483}, {15030, 32269}, {15032, 61657}, {15048, 59229}, {15068, 34380}, {15118, 15465}, {15251, 23711}, {16318, 33885}, {16656, 20299}, {18357, 49542}, {18388, 61612}, {18451, 41588}, {18914, 26883}, {18990, 54428}, {19347, 54149}, {20772, 30714}, {23292, 61606}, {32223, 46847}, {32234, 32358}, {36201, 63695}, {37480, 61507}, {39571, 64080}, {40240, 50414}, {43574, 44935}, {44106, 51403}, {44158, 46849}, {44413, 59553}, {59649, 63634}, {63477, 63739}, {63683, 63686}, {63685, 63721}, {63690, 63726}
X(64471) = midpoint of X(i) and X(j) for these {i,j}: {4, 37458}, {5, 7530}, {25, 1596}, {1368, 18534}, {18451, 41588}, {54149, 54218}
X(64471) = reflection of X(i) in X(j) for these {i,j}: {6677, 44233}, {44920, 46030}
X(64471) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 37897, 33591}, {4, 25, 37458}, {4, 235, 37984}, {4, 3517, 550}, {4, 3518, 10295}, {4, 3542, 5094}, {4, 4232, 3}, {4, 5094, 1595}, {4, 10295, 1885}, {4, 10301, 6756}, {4, 10594, 10301}, {4, 21841, 140}, {4, 35486, 1593}, {4, 37984, 546}, {4, 44959, 10019}, {4, 44960, 3850}, {4, 47486, 35491}, {4, 52290, 3088}, {5, 16618, 140}, {5, 16619, 16618}, {24, 1906, 13488}, {24, 13488, 548}, {25, 1598, 7530}, {25, 62966, 18533}, {140, 16618, 16197}, {140, 25338, 13383}, {235, 6756, 546}, {235, 10301, 4}, {235, 10594, 6756}, {378, 37935, 12100}, {378, 62978, 37935}, {381, 37971, 6676}, {403, 52294, 428}, {427, 37942, 547}, {427, 62961, 37942}, {546, 13383, 63679}, {546, 25338, 140}, {1593, 62981, 35486}, {1595, 3542, 3628}, {1596, 37458, 4}, {1597, 6353, 549}, {1598, 3089, 5}, {3518, 44803, 1885}, {3542, 5198, 1595}, {3575, 44226, 3853}, {5000, 5001, 43957}, {5094, 5198, 4}, {6623, 7714, 18494}, {6623, 18494, 3845}, {6644, 7530, 7387}, {6756, 37984, 4}, {7530, 44233, 16197}, {7530, 44275, 5}, {10096, 14893, 44236}, {10295, 44803, 4}, {15030, 32269, 44683}, {15122, 16238, 140}, {16252, 63737, 63699}, {34621, 40132, 3}, {37458, 44274, 37934}, {42807, 42808, 11479}, {63665, 63667, 546}, {63688, 63737, 10110}
See Antreas Hatzipolakis and Peter Moses, euclid 6381.
X(64472) lies on these lines: {2, 3}, {397, 11268}, {398, 11267}, {511, 61608}, {539, 50414}, {1154, 16252}, {1614, 32358}, {3471, 16104}, {3519, 10540}, {3589, 18874}, {5446, 12242}, {5449, 14864}, {5562, 46817}, {5663, 41674}, {5882, 51696}, {6101, 51425}, {6102, 32269}, {6759, 61612}, {8550, 19154}, {9820, 13391}, {10272, 41673}, {10610, 16657}, {10619, 12370}, {10627, 59659}, {11803, 14449}, {12359, 44762}, {13431, 43844}, {13598, 44516}, {13754, 14862}, {14641, 44673}, {15105, 32138}, {15647, 32423}, {16655, 34826}, {17710, 18583}, {20773, 30714}, {26881, 44076}, {32111, 63392}, {32223, 40647}, {32237, 45286}, {32379, 50708}, {34117, 34380}, {34507, 64052}, {41587, 43588}, {44201, 45959}, {58439, 61749}, {61685, 64066}
X(64472) = midpoint of X(i) and X(j) for these {i,j}: {5, 17714}, {26, 15761}, {6759, 63734}, {7387, 13371}
X(64472) = reflection of X(i) in X(j) for these {i,j}: {140, 18282}, {10020, 13383}, {15331, 44277}, {23336, 10020}
X(64472) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 62961, 5}, {5, 428, 546}, {5, 34002, 140}, {5, 37947, 7553}, {23, 10024, 11819}, {26, 7517, 17714}, {140, 13383, 18282}, {140, 18282, 10020}, {140, 25337, 34002}, {140, 25338, 21841}, {140, 64471, 3850}, {235, 7502, 52073}, {468, 550, 140}, {548, 10096, 16238}, {1657, 10018, 15122}, {1658, 17714, 22}, {3627, 7542, 44236}, {3853, 34577, 52262}, {7387, 10201, 13371}, {7488, 11799, 52070}, {7488, 52070, 548}, {7517, 10024, 428}, {7542, 47093, 3627}, {7555, 44235, 12362}, {7556, 47336, 12103}, {10018, 15122, 140}, {10024, 11819, 546}, {10619, 18555, 12370}, {11563, 12605, 546}, {12103, 44234, 16196}, {13160, 18378, 13490}, {15760, 37440, 31830}, {16197, 44233, 3628}, {16618, 21841, 140}, {17714, 44278, 5}, {31723, 63657, 5}, {37936, 61750, 3575}, {41587, 61752, 43588}, {59351, 62961, 3}
See Antreas Hatzipolakis and Peter Moses, euclid 6381.
X(64473) lies on these lines: {2, 3}, {355, 5270}, {388, 37705}, {496, 64086}, {518, 34507}, {1056, 61295}, {1074, 8144}, {1125, 18407}, {1478, 5221}, {1479, 61272}, {1714, 63307}, {3336, 5587}, {3583, 61268}, {3585, 24914}, {3812, 13369}, {4857, 5886}, {5131, 7989}, {5289, 22791}, {5302, 9956}, {5535, 41229}, {5690, 26332}, {5692, 16159}, {5706, 15068}, {5790, 56880}, {5844, 10532}, {5882, 51706}, {5891, 58889}, {5901, 37820}, {7171, 18492}, {8148, 33110}, {8550, 51738}, {9654, 11698}, {9782, 59387}, {9955, 59691}, {10170, 15488}, {10176, 16125}, {10441, 15067}, {10525, 38034}, {10526, 38042}, {10597, 61597}, {11545, 18962}, {12116, 51700}, {13273, 61580}, {18397, 57282}, {18406, 18481}, {18493, 52367}, {18517, 34773}, {19767, 63323}, {20292, 40266}, {22836, 33592}, {23039, 41723}, {25524, 45630}, {25555, 51743}, {31835, 37826}, {34862, 38140}, {37522, 45926}, {37821, 61259}, {38028, 48482}, {38149, 61251}, {48835, 48887}, {56879, 61510}, {61552, 61716}
X(64473) = midpoint of X(i) and X(j) for these {i,j}: {355, 10404}, {377, 44229}, {381, 50397}, {37234, 50239}
X(64473) = reflection of X(i) in X(j) for these {i,j}: {5302, 9956}, {44222, 50238}
X(64473) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 381, 6845}, {4, 37163, 1657}, {5, 550, 16617}, {5, 37281, 6924}, {377, 2475, 50397}, {550, 16617, 6914}, {2475, 6900, 381}, {6826, 6917, 5}, {6829, 6845, 4193}, {6835, 6923, 546}, {6839, 6901, 3}, {6843, 6862, 5}, {6843, 6885, 6862}, {6854, 6928, 3628}, {6861, 6934, 7508}, {6864, 6929, 5}, {6867, 6959, 5}, {6894, 6951, 382}, {6934, 6993, 6861}, {6946, 7548, 6971}, {6985, 17528, 5499}, {6990, 17579, 13743}, {8703, 44258, 6851}, {14784, 14785, 16865}, {42807, 42808, 6831}
See Antreas Hatzipolakis and Peter Moses, euclid 6381.
X(64474) lies on these lines: {2, 3}, {32, 6749}, {33, 15325}, {39, 1990}, {53, 574}, {125, 16657}, {141, 37480}, {185, 61540}, {187, 6748}, {230, 33843}, {264, 6390}, {340, 7767}, {389, 2781}, {393, 5024}, {511, 44683}, {523, 52600}, {575, 15471}, {578, 6247}, {1112, 61548}, {1204, 45089}, {1352, 37497}, {1353, 18917}, {1384, 3087}, {1495, 16654}, {1503, 11430}, {1785, 37599}, {1829, 61524}, {1862, 61566}, {1876, 5719}, {1902, 5901}, {2207, 31406}, {3092, 13966}, {3093, 8981}, {3098, 3867}, {3357, 12233}, {3426, 5656}, {3564, 13352}, {3567, 43607}, {3574, 10990}, {3589, 16836}, {3793, 27377}, {3926, 52710}, {3933, 44134}, {5007, 39176}, {5090, 34773}, {5095, 16003}, {5185, 61565}, {5186, 61560}, {5305, 6103}, {5412, 35255}, {5413, 35256}, {5446, 44158}, {5480, 11438}, {5486, 8549}, {5654, 11472}, {5663, 15120}, {5882, 51707}, {5893, 15125}, {5972, 46847}, {6000, 23292}, {6152, 54201}, {6225, 43841}, {6403, 13340}, {6689, 14641}, {6746, 14449}, {7583, 11474}, {7584, 11473}, {7687, 15113}, {7735, 39662}, {8548, 36747}, {8739, 42913}, {8740, 42912}, {9019, 15644}, {9300, 14581}, {9605, 40138}, {9729, 25555}, {9730, 12294}, {9820, 15115}, {10110, 25563}, {10182, 15448}, {10264, 15472}, {10272, 12133}, {10282, 16621}, {10294, 22948}, {10564, 18358}, {10982, 26937}, {11064, 15030}, {11245, 15033}, {11386, 42787}, {11425, 14216}, {11426, 18909}, {11432, 18913}, {11456, 61690}, {11464, 16658}, {11475, 11543}, {11476, 11542}, {12131, 61561}, {12134, 18488}, {12138, 61562}, {12143, 32516}, {12145, 61573}, {12162, 61607}, {12163, 31802}, {12241, 20299}, {12242, 31978}, {12300, 22051}, {12324, 19347}, {12359, 13142}, {12897, 15123}, {13339, 19128}, {13346, 34507}, {13348, 51994}, {13363, 44084}, {13366, 13399}, {13367, 16655}, {13391, 47328}, {13393, 32165}, {13403, 15126}, {13431, 16622}, {13464, 51718}, {13474, 16252}, {13561, 55295}, {13567, 23329}, {13568, 64027}, {13624, 49542}, {14357, 41522}, {14389, 15072}, {14561, 37475}, {14830, 20774}, {14852, 64096}, {14853, 18931}, {15116, 32274}, {15117, 22833}, {15121, 23294}, {15129, 36253}, {15311, 18388}, {16194, 51425}, {16235, 47206}, {16318, 63633}, {18390, 23332}, {18451, 59553}, {18553, 64035}, {18925, 34780}, {19127, 37515}, {21309, 40065}, {21850, 37489}, {23296, 63700}, {27371, 63548}, {30435, 62213}, {32062, 61606}, {32137, 61608}, {32140, 43595}, {32234, 37472}, {32247, 32251}, {32447, 59661}, {34380, 39588}, {35370, 63688}, {36412, 40349}, {36990, 61610}, {37477, 39871}, {37483, 48876}, {37487, 53023}, {37506, 48906}, {37589, 56814}, {37649, 64100}, {37688, 58782}, {39571, 40686}, {41585, 50977}, {41588, 44413}, {41602, 63422}, {43839, 46849}, {44870, 59659}, {46878, 47742}, {52102, 64026}, {52848, 61626}, {54050, 64094}, {54944, 60138}
X(64474) = midpoint of X(i) and X(j) for these {i,j}: {378, 427}, {7391, 44239}, {31133, 44285}, {31723, 44249}, {41602, 63422}
X(64474) = reflection of X(i) in X(j) for these {i,j}: {6676, 52262}, {7555, 3530}, {16618, 140}, {52262, 44236}
X(64474) = polar conjugate of X(54926)
X(64474) = X(48)-isoconjugate of X(54926)
X(64474) = X(1249)-Dao conjugate of X(54926)
X(64474) = barycentric quotient X(4)/X(54926)
X(64474) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1596, 37942}, {2, 1597, 1596}, {3, 4, 37458}, {3, 1595, 6756}, {3, 3088, 1595}, {3, 7403, 9825}, {3, 37458, 37934}, {4, 5, 37984}, {4, 24, 10301}, {4, 140, 21841}, {4, 468, 64471}, {4, 631, 4232}, {4, 1656, 44960}, {4, 3515, 7715}, {4, 3516, 550}, {4, 3520, 10295}, {4, 3523, 3517}, {4, 3541, 5094}, {4, 4232, 1598}, {4, 5094, 5}, {4, 10295, 3575}, {4, 35478, 35491}, {4, 35483, 20}, {4, 35485, 37196}, {4, 35486, 25}, {4, 37118, 468}, {4, 37458, 6756}, {4, 37984, 44226}, {4, 49670, 382}, {4, 52290, 3089}, {5, 550, 50008}, {5, 1593, 13488}, {5, 12084, 31829}, {5, 13488, 44226}, {5, 15122, 140}, {5, 18281, 5159}, {25, 549, 37935}, {140, 3853, 25338}, {140, 15122, 16196}, {140, 16197, 7495}, {140, 16618, 6676}, {140, 25338, 10020}, {140, 64471, 468}, {235, 37119, 3628}, {376, 7378, 18494}, {381, 10257, 6677}, {403, 13596, 62962}, {403, 62958, 547}, {427, 44218, 44274}, {468, 37118, 140}, {468, 64471, 21841}, {546, 23336, 16238}, {548, 16198, 3575}, {550, 12084, 47337}, {550, 50008, 31829}, {578, 6247, 18914}, {631, 12082, 44210}, {858, 7527, 34664}, {1593, 3541, 5}, {1593, 5094, 4}, {1594, 1885, 546}, {1594, 14865, 1885}, {1595, 37458, 4}, {1907, 10301, 4}, {3516, 37196, 35485}, {3516, 62977, 37196}, {3520, 3575, 548}, {3520, 15559, 3575}, {3524, 6995, 55572}, {3575, 15559, 16198}, {3845, 44452, 44233}, {3861, 5498, 44232}, {5054, 18535, 6353}, {5064, 11410, 18533}, {5480, 23328, 11438}, {6623, 52299, 5055}, {6756, 37934, 37458}, {7499, 47091, 376}, {7526, 23335, 12362}, {7530, 18580, 34351}, {7530, 34351, 37897}, {7556, 34613, 37899}, {7576, 35473, 37931}, {7577, 10151, 5066}, {7715, 15712, 3515}, {9818, 44441, 1368}, {10295, 15559, 4}, {11250, 31833, 44247}, {11410, 18533, 8703}, {11425, 14216, 31804}, {12084, 50008, 550}, {12362, 47315, 14791}, {13488, 37984, 4}, {14782, 14783, 40132}, {14791, 23335, 47315}, {14813, 14814, 6823}, {14865, 35482, 1594}, {15118, 20417, 16270}, {15765, 18585, 44212}, {16618, 52262, 140}, {18281, 31861, 5}, {18560, 23047, 3853}, {18560, 52295, 23047}, {31829, 47337, 550}, {35473, 37931, 34200}, {35484, 37118, 4}, {35485, 37196, 550}, {35490, 63662, 12102}, {35502, 37119, 235}, {37196, 62977, 4}, {37931, 52285, 7576}, {42789, 42790, 7550}, {42807, 42808, 6642}, {44804, 44911, 46030}, {46030, 61736, 44911}, {62958, 62962, 403}
See Antreas Hatzipolakis and Peter Moses, euclid 6381.
X(64475) lies on these lines: {2, 3}, {119, 5270}, {355, 61534}, {496, 11501}, {952, 20323}, {2802, 11729}, {3035, 9955}, {3476, 37705}, {3847, 18407}, {4420, 5844}, {5432, 61268}, {5433, 61261}, {5557, 5660}, {5843, 60948}, {5882, 51714}, {5887, 61530}, {5901, 5919}, {6691, 18480}, {6692, 13369}, {6713, 19925}, {8227, 61533}, {10170, 34466}, {10200, 18491}, {10584, 18544}, {10680, 56879}, {10916, 38455}, {11230, 14150}, {11522, 12703}, {15325, 17606}, {22791, 25681}, {24474, 61551}, {24475, 61535}, {25917, 61524}, {30384, 61272}, {31937, 58405}, {38752, 63257}, {51709, 64123}, {61013, 61509}, {61259, 61521}, {61562, 64138}
X(64475) = midpoint of X(4187) and X(37251)
X(64475) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 140, 16617}, {5, 6924, 37290}, {3560, 6964, 5}, {6911, 6944, 5}, {6918, 6959, 5}, {6946, 6979, 6842}, {6964, 6970, 3560}, {42807, 42808, 1012}
See Antreas Hatzipolakis and Peter Moses, euclid 6381.
X(64476) lies on these lines: {2, 3}, {9, 22791}, {226, 61272}, {329, 18493}, {355, 10389}, {518, 13464}, {946, 5302}, {950, 18357}, {1385, 63970}, {1490, 38028}, {1728, 39542}, {1864, 37737}, {3488, 37705}, {3586, 61261}, {3968, 43174}, {5049, 5777}, {5436, 34773}, {5771, 5806}, {5812, 38034}, {5817, 10283}, {5882, 51715}, {6147, 10396}, {6260, 11230}, {6684, 31822}, {7373, 8232}, {8227, 10404}, {8550, 51743}, {9612, 15325}, {9624, 30326}, {9955, 12572}, {10399, 16137}, {11522, 41229}, {18446, 51700}, {20418, 21635}, {22770, 38037}, {28212, 55104}, {31837, 61511}, {37531, 38108}, {38043, 64156}, {40273, 64004}, {56880, 63257}, {61259, 61533}
X(64476) = midpoint of X(i) and X(j) for these {i,j}: {946, 5302}, {8728, 37234}, {44229, 50241}
X(64476) = reflection of X(44222) in X(50394)
X(64476) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 3560, 37281}, {5, 16617, 140}, {381, 16866, 6869}, {6832, 6907, 3628}, {6846, 6913, 5}, {6920, 8226, 31789}, {8226, 31789, 546}, {14784, 14785, 37436}, {16845, 37411, 549}, {42807, 42808, 19541}
See Antreas Hatzipolakis and Peter Moses, euclid 6381.
X(64477) lies on these lines: {2, 3}, {40, 37713}, {119, 59320}, {516, 31659}, {1319, 12433}, {2800, 31837}, {3035, 31663}, {3057, 5719}, {3428, 10942}, {3576, 61534}, {3579, 12608}, {4857, 14798}, {4999, 28160}, {5086, 28224}, {5119, 11374}, {5219, 59316}, {5690, 6261}, {5722, 37618}, {5844, 21740}, {5882, 49627}, {5887, 61524}, {6684, 31937}, {6690, 22793}, {6691, 17502}, {10572, 15325}, {11231, 12617}, {11729, 31786}, {12047, 28174}, {12115, 35252}, {12514, 47742}, {12699, 61533}, {22770, 32213}, {26446, 63988}, {26487, 64077}, {28150, 58404}, {28178, 61520}, {32760, 63273}, {34466, 40647}, {34753, 61660}, {38113, 54370}, {40263, 61539}, {61551, 64107}
X(64477) = midpoint of X(411) and X(6842)
X(64477) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 381, 6936}, {3, 6838, 37406}, {3, 37406, 37290}, {3, 37429, 548}, {4, 140, 16617}, {3560, 6988, 549}, {3651, 6960, 6882}, {6825, 6985, 5}, {6841, 6853, 3628}, {6848, 6883, 5}, {6853, 36002, 6841}, {6856, 6985, 44286}, {6863, 7580, 37356}, {6876, 6932, 7491}, {6876, 7491, 548}, {6908, 6911, 44222}, {14813, 14814, 37356}, {42807, 42808, 405}
See Antreas Hatzipolakis and Ivan Pavlov, euclid 6386.
X(64478) lies on these lines: { }
X(64478) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(1293)}}, {{A, B, C, X(7), X(2827)}}, {{A, B, C, X(106), X(3531)}}, {{A, B, C, X(14484), X(53933)}}, {{A, B, C, X(52518), X(61424)}}
See Antreas Hatzipolakis and Ivan Pavlov, euclid 6386.
X(64479) lies on these lines: {99, 11332}, {543, 38947}, {1316, 3734}, {2782, 48947}, {23342, 44155}, {47285, 62489}
X(64479) = trilinear pole of line {3231, 47229}
X(64479) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5108)}}, {{A, B, C, X(4), X(1316)}}, {{A, B, C, X(6), X(99)}}, {{A, B, C, X(25), X(56957)}}, {{A, B, C, X(30), X(14052)}}, {{A, B, C, X(66), X(54925)}}, {{A, B, C, X(98), X(1344)}}, {{A, B, C, X(115), X(264)}}, {{A, B, C, X(148), X(1031)}}, {{A, B, C, X(262), X(690)}}, {{A, B, C, X(378), X(56962)}}, {{A, B, C, X(427), X(40856)}}, {{A, B, C, X(468), X(57594)}}, {{A, B, C, X(512), X(53704)}}, {{A, B, C, X(538), X(34537)}}, {{A, B, C, X(543), X(598)}}, {{A, B, C, X(669), X(11332)}}, {{A, B, C, X(671), X(3114)}}, {{A, B, C, X(843), X(46302)}}, {{A, B, C, X(1003), X(10754)}}, {{A, B, C, X(1593), X(56961)}}, {{A, B, C, X(1597), X(44889)}}, {{A, B, C, X(1916), X(45096)}}, {{A, B, C, X(1975), X(60501)}}, {{A, B, C, X(2418), X(5967)}}, {{A, B, C, X(2549), X(54124)}}, {{A, B, C, X(2787), X(2795)}}, {{A, B, C, X(2794), X(2797)}}, {{A, B, C, X(2799), X(60266)}}, {{A, B, C, X(3407), X(57552)}}, {{A, B, C, X(3613), X(9293)}}, {{A, B, C, X(3972), X(5969)}}, {{A, B, C, X(4185), X(56958)}}, {{A, B, C, X(5026), X(7757)}}, {{A, B, C, X(5094), X(56967)}}, {{A, B, C, X(5182), X(31859)}}, {{A, B, C, X(5186), X(9307)}}, {{A, B, C, X(9180), X(18575)}}, {{A, B, C, X(10484), X(57561)}}, {{A, B, C, X(10630), X(53919)}}, {{A, B, C, X(13481), X(42345)}}, {{A, B, C, X(32815), X(47735)}}, {{A, B, C, X(35906), X(47285)}}, {{A, B, C, X(36897), X(53221)}}, {{A, B, C, X(40513), X(60178)}}, {{A, B, C, X(43664), X(52239)}}, {{A, B, C, X(46648), X(54713)}}, {{A, B, C, X(48452), X(53196)}}, {{A, B, C, X(53603), X(62672)}}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6388.
X(64480) lies on these lines: {2, 3), {542, 44123}, {1989, 8106}, {8115, 45016}, {13415, 18374}, {15360, 24650}, {32225, 44125}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6388.
X(64481) lies on these lines: {2, 3}, {542, 44124}, {1989, 8105}, {8116, 45016}, {13414, 18374}, {15360, 24651}, {32225, 44126}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6388.
X(64482) lies on these lines: {2, 3}, {2028, 31862}, {3413, 6321}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6388.
X(64483) lies on these lines: {2, 3}, {2029, 31863}, {3414, 6321}
See Antreas Hatzipolakis and Peter Moses, euclid 6416.
X(64484) lies on these lines: {2, 3}, {99, 44435}, {110, 2692}, {476, 1293}, {523, 4427}, {691, 9059}, {1290, 34594}, {1291, 26713}, {4570, 15343}, {9088, 53895}, {10420, 32704}
X(64484) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7475, 7477, 36167}, {7477, 50403, 7479}
See Antreas Hatzipolakis and Peter Moses, euclid 6416.
X(64485) lies on these lines: {2, 3}, {107, 53960}, {110, 1291}, {476, 930}, {523, 50947}, {691, 58975}, {925, 39198}, {933, 10420}, {1304, 20185}, {1624, 60605}, {1634, 14480}, {9060, 53884}, {13398, 53962}, {16166, 33639}, {20626, 53953}, {25150, 38896}, {53695, 53945}
X(64485) = X(656)-isoconjugate of X(53930)
X(64485) = X(i)-Dao conjugate of X(j) for these (i,j): {40596, 53930}, {45180, 523}
X(64485) = crossdifference of every pair of points on line {647, 10413}
X(64485) = barycentric product X(99)*X(47226)
X(64485) = barycentric quotient X(i)/X(j) for these {i,j}: {112, 53930}, {47226, 523}
X(64485) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7468, 40049, 7471}, {7471, 40049, 15329}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6418.
X(64486) lies on these lines: {2, 12307}, {5, 49}, {30, 6689}, {140, 3574}, {195, 3090}, {539, 10109}, {546, 10610}, {547, 1209}, {549, 15800}, {632, 7691}, {973, 58531}, {1154, 3628}, {1216, 44056}, {1493, 12812}, {1656, 11803}, {2888, 5055}, {3519, 61907}, {3545, 48675}, {3850, 18400}, {3851, 12254}, {5066, 22804}, {5079, 55039}, {6759, 32351}, {7173, 47378}, {7486, 12325}, {9827, 58465}, {9905, 61268}, {10066, 10593}, {10082, 10592}, {10115, 11591}, {10289, 10615}, {10619, 61940}, {10628, 12006}, {11271, 61911}, {11424, 46029}, {11576, 37942}, {11702, 23515}, {11802, 13363}, {11805, 61548}, {11808, 12010}, {12046, 12900}, {12060, 32744}, {12242, 13565}, {12266, 18357}, {12300, 62958}, {12363, 63667}, {12965, 42583}, {12971, 42582}, {13163, 44516}, {13365, 15350}, {13376, 18874}, {13595, 44515}, {14071, 23516}, {14449, 41590}, {14845, 44325}, {15026, 32352}, {15061, 43899}, {15801, 21357}, {15957, 61594}, {16239, 32348}, {18538, 49257}, {18762, 49256}, {20193, 58805}, {20376, 64027}, {31834, 37454}, {32401, 51491}, {34599, 58432}, {44904, 61659}, {48154, 54201}, {54157, 55856}, {54202, 55857}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6418.
X(64487) lies on these lines: {5, 14}, {511, 6673}, {629, 61538}, {1656, 44776}, {20252, 22832}, {23514, 25608}, {31705, 39590}, {49106, 51753}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6418.
X(64488) lies on these lines: {5, 13}, {511, 6674}, {630, 61537}, {1656, 44777}, {20253, 22831}, {23514, 25609}, {31706, 39590}, {49105, 51754}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6429.
X(64489) lies on these lines: {2, 3937}, {5, 44313}, {11, 29349}, {100, 61674}, {140, 46174}, {182, 36059}, {405, 36058}, {496, 53002}, {511, 3911}, {513, 6667}, {517, 18240}, {1086, 52827}, {1125, 2841}, {1155, 29309}, {1357,17719}, {1387, 53790}, {2808, 13226}, {2810, 3035}, {2818, 6713}, {2842, 58453}, {2850, 6723}, {3784, 31231}, {3819,59491}, {5265, 31785}, {5435, 37521}, {5439, 15906}, {5482, 12109}, {6085, 53580}, {6688, 6692}, {6705, 44870}, {7413, 40420}, {9957, 59812}, {11028, 11227}, {12433, 14131}, {13747, 29958}, {14115, 22102}, {15082, 54357}, {15325, 35059}, {15488, 15803}, {15507, 53389}, {15635, 55317}, {17566, 23154}, {18191, 43055}, {21154, 31849}, {23841, 58405}, {24465, 53792}, {25524, 53294}, {26892, 31224}, {28239, 53393}, {31272, 38389}, {37365, 40687}, {37646, 40649}, {38390, 45310}, {38604, 60687}, {58447, 58460}, {58535, 64124}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6429.
X(64490) lies on these lines: {99, 6784}, {115, 3111}, {140, 46172}, {182, 32661}, {230, 35060}, {368, 369}, {512, 6722}, {620, 34383}, {2387, 58448}, {2871, 58503}, {2882, 3589}, {4173, 7907}, {5254, 58211}, {6723, 9517}, {7807, 63556}, {7857, 40951}, {9292, 32969}, {9429, 40478}, {11285, 17970}, {14113, 22103}, {14984, 48378}, {15630, 55312}, {31850, 38737}, {32970, 63555}, {33233, 63554}, {37514, 52170}, {38739, 41330}, {39469, 44818}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6435.
X(64491) lies on these lines: {3, 9544}, {5, 11935}, {24, 2914}, {49, 182}, {54, 1656}, {64, 399}, {110, 382}, {155, 12893}, {156, 3534}, {184, 15720}, {381, 1147}, {567, 61911}, {569, 61887}, {578, 61937}, {1092, 8717}, {1385, 3683}, {1614, 62100}, {1657, 5895}, {2070, 8907}, {2937, 15577}, {3043, 37197}, {3167, 9932}, {3200, 42988}, {3201, 42989}, {3527, 18369}, {5012, 61850}, {5054, 9704}, {5055, 9545}, {5072, 43614}, {5076, 10539}, {5079, 9306}, {5093, 7506}, {6090, 40913}, {9586, 18493}, {9705, 61811}, {9706, 61878}, {9716, 16881}, {10282, 54048}, {10540, 49136}, {10984, 15706}, {11003, 55863}, {11477, 12584}, {11898, 64061}, {12111, 35496}, {12164, 37955}, {12307, 17821}, {12315, 18859}, {13346, 62040}, {13352, 61990}, {13353, 61875}, {13432, 52417}, {14093, 52525}, {14157, 49133}, {15040, 45248}, {18445, 22962}, {20125, 44271}, {32046, 55858}, {34148, 61984}, {34783, 43898}, {35495, 64027}, {37453, 59279}, {37471, 61847}, {37477, 62170}, {37495, 62016}, {43574, 49137}, {43598, 61946}, {43651, 61883}, {43652, 62073}, {44470, 51175} ,{45831, 50461}, {60462, 64033}, {61134, 61826}, {61752, 62085}, {61799, 64049}
X(64491) = reflection of X(11999) in X(3)
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6444.
X(64492) lies on these lines: {2, 3}, {10217, 54556}, {13202, 46833}, {13598, 33957}, {16657, 61537}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6344.
X(64493) lies on these lines: {2, 3}, {10218, 54557}, {13202, 46834}, {13598, 33958}, {16657, 61538}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6444.
X(64494) lies on these lines: {3, 1369}, {5, 8793}, {114, 140}, {14880, 50136}, {15321, 40441}
See Antreas Hatzipolakis and Ivan Pavlov, euclid 6455.
X(64495) lies on these lines: {2, 54636}, {4, 69}, {95, 1975}, {183, 16276}, {305, 7539}, {1238, 7752}, {3589, 40814}, {3763, 41760}, {7499, 37688}, {7782, 18354}, {8024, 63098}, {8797, 32818}, {9723, 52712}, {15466, 37638}, {16197, 41009}, {18022, 62275}, {20563, 63173}, {30737, 59343}, {31995, 34388}, {32087, 34387}, {32807, 34392}, {32832, 40697}, {32834, 40680}, {39998, 62698}, {40032, 57897}, {45198, 64093}, {51128, 53474}, {51171, 51481}, {52347, 59635}, {52581, 57909}
X(64495) = isotomic conjugate of X(43908)
X(64495) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 43908}, {560, 36948}, {9247, 60161}
X(64495) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43908}, {3090, 17809}, {6374, 36948}, {11427, 19357}, {62576, 60161}
X(64495) = pole of line {3, 13366} with respect to the Wallace hyperbola
X(64495) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3090)}}, {{A, B, C, X(95), X(32001)}}, {{A, B, C, X(264), X(54636)}}, {{A, B, C, X(305), X(1232)}}, {{A, B, C, X(317), X(63173)}}, {{A, B, C, X(511), X(36751)}}, {{A, B, C, X(1843), X(9777)}}, {{A, B, C, X(14615), X(57909)}}, {{A, B, C, X(18022), X(44149)}}, {{A, B, C, X(32000), X(57897)}}, {{A, B, C, X(54412), X(55553)}}, {{A, B, C, X(57907), X(58782)}}
X(64495) = barycentric product X(i)*X(j) for these (i, j): {1502, 9777}, {3090, 76}, {18022, 36751}
X(64495) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43908}, {76, 36948}, {264, 60161}, {3090, 6}, {9777, 32}, {36751, 184}
X(64495) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 11185, 32002}, {76, 14615, 1232}, {76, 264, 44149}, {264, 44149, 44133}, {311, 1232, 44135}, {1232, 44135, 14615}, {14615, 44135, 264}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6457.
X(64496) lies on this line: {107,14480}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6461.
X(64497) lies on these lines: {74, 323}, {526, 5961}, {924, 13289}, {5663, 13496}, {13557, 22584}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6461.
X(64498) lies on these lines: {3, 74}, {5, 20771}, {24, 12236}, {26, 5504}, {30, 15647}, {49,1986}, {54,16222}, {113,13367}, {125,44452}, {154, 12302}, {184, 14708}, {186, 3047}, {265, 7505}, {403, 10113}, {542, 34477}, {550, 59495}, {578, 58516}, {974, 37814}, {1147, 13289}, {1495, 12295}, {1539, 18560}, {2777, 12038}, {2931, 17821}, {3515, 19456}, {5654, 11744}, {5972, 18475}, {6644, 13198}, {6723, 43586}, {6759, 12901}, {7502, 41673}, {7722, 9544}, {7728, 35481}, {9826, 32046}, {9934, 12084}, {10020, 32391}, {10117, 47391}, {10201, 63710}, {10226, 11598}, {10272, 52073}, {10282, 15761}, {10539, 32607}, {10540, 12292}, {10610, 58435}, {10733, 26882},{11202, 12893}, {11430, 46686}, {11746, 12106}, {12017, 49125}, {12121, 44440}, {12228, 19357}, {12419, 15061}, {12596, 34787}, {13358, 37917}, {13561, 34128}, {14984, 15577}, {15059, 61702}, {15089, 45237}, {16003, 17701}, {16111, 51394}, {16165, 34153}, {18281, 63716}, {18400, 33547}, {19138, 23041}, {19155, 44439}, {19479, 34785}, {20772, 61574}, {23306, 34782}, {32743, 43839}, {37472, 63738}, {41674, 44213}, {45735, 46430}
The circle, denoted here by O*, is named after Miłosz Płatek, who constructed it as follows. Let Oa be the larger of two circles through X(8) tangent to lines AB and AC, and define Ob and Oc cyclically. Then O* is the circle tangent to Oa, Ob, Oc. The radius of O* is 4r^3/(|r2-|X(1)X(8)|2|), where r = radius of the incircle. (Miłosz Płatek, June 14, 2024, see here).
The radius of O* is 4*r^3 / (4*r (r - 4*R) + s^2). Let A' = Oa∩O*, and define B' and C' cyclically. Then A'B'C' is perspective to ABC, and the perspector is X(15519). For a GeoGebra figure, see X(64449). (Peter Moses, July 21, 2024)
X(64499) lies on these lines: {1, 2}, {2136, 6555}, {2137, 6762}, {3161, 3913}, {3699, 12541}, {3880, 8834}, {5853, 6552}, {6553, 45047}, {6556, 12625}, {6557, 64068}, {8055, 12632}, {12536, 42020}, {24150, 62985}, {25567, 64442}, {38255, 50444}, {44720, 64146}, {48921, 49718}
X(64499) = reflection of X(6553) in X(45047)
X(64499) = incircle-of-anticomplementary-triangle-inverse of X(60374)
X(64499) = X(8051)-Ceva conjugate of X(3161)
X(64499) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8, 15519, 1), (3699, 12541, 28661)
See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64500) lies on these lines: {2, 38692}, {3, 118}, {4, 103}, {5, 6712}, {11, 53750}, {20, 101}, {30, 511}, {40, 50903}, {104, 10772}, {113, 53751}, {114, 53732}, {119, 53741}, {125, 53714}, {140, 58420}, {150, 3146}, {376, 10710}, {381, 57297}, {382, 10739}, {546, 61565}, {548, 61563}, {550, 35024}, {944, 10697}, {946, 11714}, {950, 59813}, {962, 10695}, {1282, 64005}, {1362, 6284}, {1385, 11728}, {1530, 5074}, {1536, 17729}, {1541, 51775}, {1565, 31851}, {1614, 58057}, {1657, 33520}, {1770, 18413}, {1885, 5185}, {3022, 7354}, {3046, 34148}, {3091, 31273}, {3529, 38666}, {3543, 10708}, {3627, 51528}, {4292, 11028}, {4297, 11712}, {4298, 14760}, {5059, 20096}, {5462, 58521}, {5691, 39156}, {6776, 10758}, {9729, 58505}, {10110, 58507}, {10724, 10770}, {10756, 51212}, {12512, 28346}, {13374, 58594}, {14512, 44975}, {15704, 51526}, {16111, 53712}, {16163, 53747}, {17747, 51633}, {20420, 52825}, {24466, 53739}, {28345, 63413}, {37437, 38558}, {38630, 58203}, {38738, 53730}, {38749, 53721}, {38761, 53746}, {50808, 50902}, {50810, 50904}, {50811, 50905}, {50862, 50895}, {50864, 50897}, {50865, 50898}, {58567, 58592}, {58631, 58665}, {58637, 58664}, {59783, 63406}, {61602, 62026}
X(64500) = Thomson isogonal conjugate of X(35184)
X(64590) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 118, 6710}, {3, 10741, 118}, {3, 38764, 38772}, {3, 38765, 38773}, {3, 38767, 38764}, {3, 38768, 10741}, {3, 38769, 20401}, {3, 38773, 38771}, {4, 103, 116}, {4, 26705, 20622}, {4, 63418, 103}, {5, 6712, 58418}, {5, 38601, 6712}, {20, 101, 63403}, {20, 152, 101}, {103, 10727, 4}, {103, 63418, 33521}, {116, 33521, 103}, {118, 6710, 20401}, {118, 10741, 38769}, {118, 38764, 38770}, {118, 38765, 38771}, {118, 38772, 38764}, {118, 38773, 3}, {140, 61579, 58420}, {150, 3146, 10725}, {382, 38574, 10739}, {546, 61565, 61577}, {548, 61604, 61563}, {946, 11714, 11726}, {5691, 39156, 50896}, {6710, 38769, 118}, {6710, 38770, 38764}, {6710, 38771, 3}, {9729, 58542, 58505}, {10110, 58507, 58519}, {10725, 38668, 150}, {10727, 63418, 116}, {10741, 38764, 38767}, {10741, 38765, 3}, {10741, 38766, 38764}, {10741, 38771, 20401}, {10741, 38773, 6710}, {38764, 38765, 38766}, {38764, 38766, 3}, {38764, 38767, 118}, {38764, 38770, 20401}, {38764, 38772, 6710}, {38765, 38768, 118}, {38766, 38767, 38772}, {38767, 38772, 38770}, {38768, 38773, 38769}, {38769, 38771, 6710}, {38774, 38775, 6710}, {58637, 58686, 58664}
See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64501) lies on these lines: {2, 38697}, {3, 124}, {4, 109}, {5, 6718}, {10, 14690}, {11, 53752}, {20, 102}, {30, 511}, {40, 13532}, {104, 10777}, {113, 53758}, {114, 53734}, {115, 53724}, {119, 53742}, {125, 53717}, {140, 58426}, {151, 3146}, {376, 10716}, {381, 57303}, {382, 10740}, {546, 61571}, {548, 61564}, {550, 38600}, {944, 10703}, {946, 11700}, {950, 12016}, {962, 10696}, {1158, 56424}, {1361, 7354}, {1364, 6284}, {1385, 11734}, {1479, 1795}, {1614, 58051}, {1657, 38573}, {1770, 1845}, {3040, 57288}, {3529, 38667}, {3543, 10709}, {3627, 51534}, {4292, 59816}, {4297, 11713}, {5462, 58526}, {5512, 53759}, {5691, 50899}, {6261, 61228}, {6776, 10764}, {7421, 39992}, {9729, 58506}, {10110, 58513}, {10483, 52129}, {10724, 10771}, {10757, 51212}, {12005, 34956}, {12114, 54081}, {13374, 58600}, {13464, 47115}, {15704, 51527}, {16111, 53713}, {16163, 53749}, {16174, 29008}, {20420, 52830}, {24466, 53740}, {31866, 38357}, {34148, 58060}, {34242, 64021}, {37437, 38559}, {38738, 53731}, {38761, 53748}, {42464, 63130}, {44927, 55315}, {50811, 50918}, {50864, 50900}, {50865, 50901}, {58567, 58593}, {58631, 58670}, {61603, 62026}
X(64501) = Thomson isogonal conjugate of X(35187)
X(64501) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 124, 6711}, {3, 10747, 124}, {3, 38776, 38784}, {3, 38777, 38785}, {3, 38779, 38776}, {3, 38780, 10747}, {3, 38785, 38783}, {4, 109, 117}, {4, 32706, 20620}, {5, 6718, 58419}, {5, 38607, 6718}, {20, 102, 63404}, {20, 33650, 102}, {109, 10732, 4}, {124, 10747, 38781}, {124, 38776, 38782}, {124, 38777, 38783}, {124, 38784, 38776}, {124, 38785, 3}, {140, 61585, 58426}, {151, 3146, 10726}, {382, 38579, 10740}, {546, 61571, 61578}, {946, 11700, 11727}, {6711, 38781, 124}, {6711, 38782, 38776}, {6711, 38783, 3}, {10110, 58513, 58520}, {10726, 38674, 151}, {10747, 38776, 38779}, {10747, 38777, 3}, {10747, 38778, 38776}, {10747, 38785, 6711}, {38357, 38554, 31866}, {38776, 38777, 38778}, {38776, 38778, 3}, {38776, 38779, 124}, {38776, 38784, 6711}, {38777, 38780, 124}, {38778, 38779, 38784}, {38779, 38784, 38782}, {38780, 38785, 38781}, {38781, 38783, 6711}, {38786, 38787, 6711}
See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64502) lies on these lines: {2, 38690}, {3, 116}, {4, 101}, {5, 6710}, {11, 53746}, {20, 103}, {30, 511}, {40, 50896}, {104, 10770}, {113, 53747}, {114, 53730}, {115, 53721}, {119, 53739}, {125, 53712}, {140, 58418}, {152, 3146}, {376, 10708}, {381, 38764}, {382, 10741}, {546, 20401}, {548, 61565}, {550, 38601}, {631, 31273}, {944, 10695}, {946, 11712}, {950, 11028}, {962, 10697}, {1146, 31852}, {1282, 5691}, {1362, 7354}, {1385, 11726}, {1478, 56144}, {1530, 6603}, {1536, 51633}, {1614, 3046}, {1656, 38774}, {1657, 33521}, {3022, 6284}, {3041, 57288}, {3091, 38775}, {3332, 44858}, {3529, 38668}, {3534, 38766}, {3543, 10710}, {3575, 5185}, {3627, 38769}, {3732, 18328}, {3830, 38767}, {3845, 38770}, {4292, 59813}, {4297, 11714}, {4872, 47621}, {5073, 38768}, {5462, 58519}, {5510, 59783}, {5870, 34112}, {6776, 10756}, {7430, 39993}, {9729, 58507}, {9812, 15735}, {10110, 58505}, {10454, 38479}, {10572, 18413}, {10724, 10772}, {10758, 51212}, {13374, 58592}, {14760, 63999}, {15704, 51528}, {16111, 53714}, {16163, 53751}, {19925, 28346}, {20420, 52823}, {24466, 53741}, {24929, 34929}, {28345, 63970}, {34148, 58057}, {37437, 38560}, {38630, 62034}, {38738, 53732}, {38761, 53750}, {39156, 64005}, {44975, 60065}, {50808, 50895}, {50810, 50897}, {50811, 50898}, {50862, 50902}, {50864, 50904}, {50865, 50905}, {58567, 58594}, {58631, 58664}, {58637, 58665}, {61604, 62026}
X(64502) = Thomson isogonal conjugate of X(35182)
X(64502) = barycentric quotient X(6444)/X(19181)
X(64502) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 38690, 38772}, {3, 116, 6712}, {3, 10739, 116}, {4, 101, 118}, {4, 917, 5190}, {4, 63416, 101}, {5, 6710, 58420}, {5, 38599, 6710}, {20, 103, 38773}, {20, 150, 103}, {101, 10725, 4}, {101, 63416, 33520}, {116, 63403, 3}, {118, 33520, 101}, {140, 61577, 58418}, {152, 3146, 10727}, {152, 20096, 38666}, {382, 38572, 10741}, {546, 61563, 61579}, {548, 61602, 61565}, {550, 38601, 38771}, {946, 11712, 11728}, {1282, 5691, 50903}, {1657, 38574, 38765}, {3146, 20096, 152}, {3627, 51526, 38769}, {9729, 58540, 58507}, {10110, 58505, 58521}, {10725, 63416, 118}, {10727, 38666, 152}, {10739, 63403, 6712}, {20401, 35024, 61563}, {38574, 38765, 33521}, {58567, 58612, 58594}, {58637, 58684, 58665}, {61563, 61579, 20401}
See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64503) lies on these lines: {2, 38712}, {3, 5511}, {4, 120}, {5, 38619}, {20, 105}, {30, 511}, {169, 3039}, {376, 38694}, {381, 57327}, {382, 10743}, {546, 61581}, {548, 61567}, {550, 38603}, {946, 11730}, {962, 10699}, {1083, 38386}, {1358, 6284}, {1614, 58055}, {1657, 38575}, {3021, 7354}, {3146, 10729}, {3529, 38670}, {3543, 10712}, {4292, 59814}, {4297, 11716}, {5059, 20097}, {5540, 64005}, {5691, 50911}, {9729, 58509}, {10724, 10773}, {10760, 51212}, {11113, 34124}, {15704, 51530}, {16163, 53756}, {24466, 46409}, {33970, 38759}, {34148, 58053}, {37000, 61491}, {37437, 38561}, {48454, 48541}, {48455, 48542}, {50864, 50912}, {50865, 50913}, {58567, 58596}
X(64503) = barycentric quotient X(29349)/X(47305)
X(64503) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5511, 6714}, {3, 15521, 5511}, {4, 1292, 120}, {4, 15344, 53990}, {20, 105, 63405}, {20, 34547, 105}, {382, 38589, 10743}, {1292, 44983, 4}, {3146, 20344, 10729}, {10729, 38684, 20344}
See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64504) lies on these lines: {2, 38713}, {3, 5510}, {4, 121}, {5, 38620}, {20, 106}, {30, 511}, {376, 38695}, {381, 57328}, {382, 10744}, {546, 61582}, {548, 61568}, {550, 38604}, {946, 11731}, {962, 10700}, {1054, 64005}, {1357, 6284}, {1614, 58054}, {1657, 38576}, {3146, 10730}, {3529, 38671}, {3543, 10713}, {4292, 59812}, {4297, 11717}, {4311, 63774}, {5059, 20098}, {5691, 50914}, {6018, 7354}, {6789, 38384}, {9589, 13541}, {9729, 58510}, {10110, 58523}, {10724, 10774}, {10761, 51212}, {11814, 51118}, {14664, 31730}, {15704, 51531}, {34139, 64077}, {34148, 58052}, {37437, 38562}, {50865, 50915}, {58567, 58597}, {58637, 58667}, {59783, 63403}
X(64504) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5510, 6715}, {3, 15522, 5510}, {4, 1293, 121}, {20, 106, 63406}, {20, 34548, 106}, {382, 38590, 10744}, {1293, 44984, 4}, {3146, 21290, 10730}, {10730, 38685, 21290}
See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64505) lies on these lines: {2, 38714}, {3, 133}, {4, 122}, {5, 34842}, {20, 107}, {24, 5879}, {30, 511}, {125, 36162}, {140, 58431}, {376, 23239}, {381, 36520}, {382, 10745}, {546, 61583}, {548, 61569}, {550, 38605}, {946, 11732}, {962, 10701}, {1515, 34147}, {1559, 12096}, {1614, 58067}, {1657, 23240}, {3146, 3346}, {3183, 3529}, {3324, 6284}, {3543, 10714}, {3627, 20329}, {4292, 59824}, {4297, 11718}, {5462, 58530}, {5691, 50916}, {6529, 39020}, {7158, 7354}, {7387, 14703}, {9729, 58511}, {10110, 58524}, {10724, 10775}, {10762, 51212}, {11001, 42452}, {11251, 47087}, {11589, 51385}, {13155, 34782}, {14673, 39568}, {15704, 51532}, {16111, 53716}, {16163, 53757}, {23241, 36965}, {24930, 37853}, {33897, 42465}, {34109, 51358}, {34148, 58048}, {37437, 38563}, {38749, 53723}, {46472, 47204}, {58567, 58598}, {58637, 58668}
X(64505) = Thomson isogonal conjugate of X(46968)
X(64505) = barycentric quotient X(i)/X(j) for these {i,j}: {14338, 16676}, {23184, 55296}
X(64505) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 133, 6716}, {3, 22337, 133}, {4, 1294, 122}, {4, 1301, 50937}, {4, 44985, 38956}, {5, 34842, 58424}, {5, 38621, 34842}, {20, 107, 3184}, {20, 34549, 107}, {122, 38956, 4}, {133, 63411, 3}, {140, 61592, 58431}, {381, 57329, 36520}, {382, 38591, 10745}, {1294, 44985, 4}, {1657, 38577, 23240}, {3146, 34186, 10152}, {10152, 38686, 34186}, {22337, 63411, 6716}, {23240, 38577, 52057}
See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64506) lies on these lines: {2, 38715}, {3, 6717}, {4, 123}, {5, 38622}, {20, 108}, {30, 511}, {376, 38696}, {381, 57330}, {382, 10746}, {546, 61584}, {548, 61570}, {550, 38606}, {946, 11733}, {962, 10702}, {1359, 6284}, {1614, 58063}, {1657, 38578}, {3146, 10731}, {3318, 7354}, {3529, 38673}, {3543, 10715}, {4292, 59820}, {4297, 11719}, {5691, 50917}, {7387, 54064}, {9729, 58512}, {10110, 58525}, {10724, 10776}, {10763, 51212}, {15704, 51533}, {34148, 58050}, {37437, 38564}, {38759, 56890}, {49207, 64076}, {52112, 64000}, {58567, 58599}, {58637, 58669}
X(64506) = X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 25640, 6717}, {3, 33566, 25640}, {4, 1295, 123}, {4, 40097, 53991}, {20, 108, 63407}, {20, 34550, 108}, {382, 38592, 10746}, {1295, 44986, 4}, {3146, 34188, 10731}, {10731, 38687, 34188}
See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64507) lies on these lines: {2, 38691}, {3, 117}, {4, 102}, {5, 6711}, {11, 53748}, {20, 109}, {30, 511}, {40, 50899}, {104, 10771}, {113, 53749}, {114, 53731}, {119, 53740}, {125, 53713}, {140, 58419}, {376, 10709}, {381, 38776}, {382, 10747}, {546, 61564}, {548, 61571}, {550, 38607}, {944, 10696}, {946, 11713}, {950, 59816}, {962, 10703}, {1361, 6284}, {1364, 7354}, {1385, 11727}, {1542, 50366}, {1614, 58060}, {1656, 38786}, {1657, 38579}, {1795, 4299}, {1845, 10572}, {3042, 57288}, {3091, 38787}, {3146, 10732}, {3486, 52167}, {3529, 38674}, {3534, 38778}, {3543, 10716}, {3627, 38781}, {3830, 38779}, {3845, 38782}, {4292, 12016}, {4297, 11700}, {5073, 38780}, {5462, 58520}, {5691, 13532}, {6776, 10757}, {9729, 58513}, {10110, 58506}, {10724, 10777}, {10764, 51212}, {13374, 58593}, {14690, 31730}, {15704, 51534}, {16111, 53717}, {16163, 53758}, {20420, 52824}, {21147, 61227}, {21664, 31866}, {24466, 53742}, {34148, 58051}, {37420, 38945}, {37437, 38565}, {38738, 53734}, {38749, 53724}, {38761, 53752}, {44927, 55318}, {50810, 50900}, {50811, 50901}, {50865, 50918}, {51421, 54083}, {53759, 63408}, {54081, 64077}, {56148, 63986}, {58567, 58600}, {58637, 58670}
X(64507) = Thomson isogonal conjugate of X(35183)
X(64507) = barycentric product X(6640)*X(37678)
X(64507) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 38691, 38784}, {3, 117, 6718}, {3, 10740, 117}, {4, 102, 124}, {4, 26704, 51221}, {4, 63417, 102}, {5, 6711, 58426}, {5, 38600, 6711}, {20, 109, 38785}, {20, 151, 109}, {102, 10726, 4}, {117, 63404, 3}, {140, 61578, 58419}, {382, 38573, 10747}, {546, 61564, 61585}, {548, 61603, 61571}, {550, 38607, 38783}, {946, 11713, 11734}, {1657, 38579, 38777}, {3146, 33650, 10732}, {3627, 51527, 38781}, {9729, 58541, 58513}, {10110, 58506, 58526}, {10726, 63417, 124}, {10732, 38667, 33650}, {10740, 63404, 6718}, {58637, 58685, 58670}
See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64508) lies on these lines: {2, 38716}, {3, 5512}, {4, 126}, {5, 38623}, {20, 111}, {30, 511}, {99, 57614}, {265, 35447}, {376, 9172}, {381, 57331}, {382, 10748}, {485, 11835}, {486, 11836}, {546, 40340}, {548, 61572}, {550, 14650}, {620, 57594}, {962, 10704}, {1614, 58059}, {1657, 11258}, {3048, 34148}, {3146, 10734}, {3325, 6284}, {3529, 14654}, {3534, 52698}, {3543, 10717}, {4292, 59819}, {4297, 11721}, {5059, 20099}, {5108, 14856}, {5461, 57620}, {5477, 58768}, {5480, 14688}, {5691, 50924}, {6019, 7354}, {6722, 57610}, {7387, 14657}, {9129, 16163}, {9729, 58514}, {10110, 58527}, {10418, 57599}, {10724, 10779}, {10765, 51212}, {14666, 15681}, {14689, 50381}, {14866, 44574}, {15704, 51535}, {16111, 53718}, {22247, 57619}, {24466, 53744}, {25406, 36696}, {28662, 44882}, {36883, 36990}, {38738, 53736}, {38749, 53726}, {38761, 53754}, {38785, 53759}, {43618, 45012}, {47325, 62288}, {49669, 52036}, {50864, 50925}, {50865, 50926}, {58567, 58602}, {58637, 58672}, {63386, 63454}
X(64508) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5512, 6719}, {3, 22338, 5512}, {3, 38796, 38804}, {3, 38797, 38805}, {3, 38799, 38796}, {3, 38800, 22338}, {3, 38805, 38803}, {4, 1296, 126}, {4, 2374, 53992}, {5, 38623, 40556}, {5, 40556, 58427}, {20, 111, 63408}, {382, 38593, 10748}, {1296, 44987, 4}, {3146, 14360, 10734}, {3543, 37749, 10717}, {5512, 22338, 38801}, {5512, 38796, 38802}, {5512, 38797, 38803}, {5512, 38804, 38796}, {5512, 38805, 3}, {6719, 38801, 5512}, {6719, 38802, 38796}, {6719, 38803, 3}, {10734, 38688, 14360}, {22338, 38796, 38799}, {22338, 38797, 3}, {22338, 38798, 38796}, {22338, 38805, 6719}, {36990, 37751, 36883}, {38796, 38797, 38798}, {38796, 38798, 3}, {38796, 38799, 5512}, {38796, 38804, 6719}, {38797, 38800, 5512}, {38798, 38799, 38804}, {38799, 38804, 38802}, {38800, 38805, 38801}, {38801, 38803, 6719}, {38806, 38807, 6719}See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64509) lies on these lines: {2, 38717}, {3, 132}, {4, 127}, {5, 19160}, {20, 112}, {22, 14983}, {26, 34217}, {30, 511}, {40, 12784}, {55, 12945}, {56, 12955}, {140, 58430}, {376, 38699}, {381, 57332}, {382, 10749}, {485, 13918}, {486, 13985}, {546, 61586}, {548, 61573}, {550, 38608}, {944, 13099}, {946, 12265}, {962, 10705}, {1151, 13923}, {1152, 13992}, {1478, 13116}, {1479, 13117}, {1529, 54075}, {1587, 19094}, {1588, 19093}, {1614, 58064}, {1657, 13310}, {1885, 13166}, {3070, 49218}, {3071, 49219}, {3146, 10735}, {3320, 6284}, {3529, 13200}, {3543, 10718}, {3575, 12145}, {3627, 19163}, {4292, 59821}, {4297, 11722}, {4299, 13312}, {4302, 13311}, {5073, 48681}, {5462, 58529}, {5480, 44885}, {5691, 12408}, {5870, 12806}, {5871, 12805}, {6020, 7354}, {6256, 49154}, {6459, 19115}, {6460, 19114}, {6529, 14944}, {7387, 19165}, {9157, 34608}, {9729, 58515}, {9730, 16224}, {9834, 12478}, {9835, 12479}, {9838, 12996}, {9839, 12997}, {9873, 12503}, {10110, 58528}, {10724, 10780}, {10766, 51212}, {11500, 12340}, {11605, 52842}, {11641, 39568}, {12110, 12207}, {12113, 12796}, {12114, 12925}, {12115, 13118}, {12116, 13119}, {12203, 13195}, {12225, 53772}, {12943, 13296}, {12953, 13297}, {13206, 64074}, {13221, 64005}, {13313, 64078}, {13314, 64079}, {13408, 63349}, {13526, 15048}, {13748, 49315}, {13749, 49316}, {15689, 38639}, {15704, 51536}, {16111, 53719}, {16163, 53760}, {16225, 64100}, {18533, 18876}, {19162, 64077}, {19164, 31305}, {20410, 52069}, {24270, 63431}, {24466, 53745}, {28343, 44882}, {34148, 58049}, {35820, 35828}, {35821, 35829}, {35880, 42266}, {35881, 42267}, {37437, 38567}, {37921, 51389}, {38738, 53737}, {38749, 53727}, {38761, 53755}, {38971, 46620}, {42258, 49270}, {42259, 49271}, {42426, 46631}, {44438, 46186}, {44704, 52950}, {48454, 48474}, {48455, 48475}, {48466, 48732}, {48467, 48733}, {48468, 49386}, {48469, 49385}, {48476, 49046}, {48477, 49047}, {48482, 49153}, {49205, 64075}, {49206, 64076}, {50381, 63408}, {58567, 58603}, {58637, 58673}
X(64509) = Thomson isogonal conjugate of X(46967)See Antreas Hatzipolakis and Peter Moses, euclid 6462.
X(64510) lies on these lines: {2, 38701}, {3, 16177}, {4, 477}, {5, 31379}, {20, 476}, {30, 511}, {74, 6070}, {110, 1553}, {113, 14934}, {125, 34150}, {133, 31510}, {146, 14480}, {186, 34170}, {376, 38700}, {381, 57306}, {382, 20957}, {403, 46424}, {546, 63715}, {550, 18319}, {950, 59823}, {1495, 47347}, {1514, 47148}, {1657, 38580}, {2072, 12096}, {3146, 14731}, {3154, 7687}, {3357, 53785}, {3448, 14508}, {3529, 38677}, {3543, 34312}, {4292, 59825}, {5627, 60740}, {5972, 36169}, {6284, 33964}, {6760, 18403}, {6761, 13619}, {7354, 33965}, {7422, 47220}, {7471, 16163}, {7740, 11251}, {9179, 63408}, {10110, 12052}, {10113, 16340}, {10295, 47204}, {10733, 17511}, {11589, 44246}, {11749, 62036}, {12041, 34209}, {12068, 48378}, {12079, 20417}, {12121, 36193}, {12295, 36184}, {13202, 46045}, {13383, 63708}, {13403, 36179}, {13997, 18381}, {14611, 15063}, {14643, 31378}, {14644, 57471}, {14993, 38788}, {16111, 46632}, {16978, 45186}, {18323, 34147}, {18376, 18870}, {18508, 53319}, {20304, 21316}, {21315, 34128}, {38738, 53738}, {38749, 53728}, {47222, 52546}, {47324, 62288}, {51939, 56369}, {53716, 57424}
X(64510) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 25641, 22104}, {4, 477, 3258}, {4, 1304, 18809}, {5, 38610, 31379}, {5, 38625, 40557}, {20, 34193, 476}, {110, 36172, 1553}, {113, 14934, 55308}, {125, 36164, 55319}, {382, 38581, 20957}, {477, 14989, 4}, {550, 18319, 38609}, {1304, 44992, 4}, {3146, 14731, 44967}, {10295, 47323, 47327}, {16340, 21269, 10113}, {34150, 36164, 125}, {36169, 47084, 5972}, {38678, 44967, 14731}See Antreas Hatzipolakis and Peter Moses, euclid 6464.
X(64511) lies on the nine-point circle and these lines: {2, 23700}, {4, 10425}, {5, 36472}, {114, 3566}, {115, 1570}, {136, 13449}, {511, 5139}, {512, 31842}, {1352, 48317}, {1656, 57372}, {2679, 31848}, {3258, 36163}, {5099, 48876}, {22401, 38974}, {25641, 55131}, {38970, 54393}
X(64511) = midpoint of X(4) and X(10425)See Antreas Hatzipolakis and Peter Moses, euclid 6464.
X(64512) lies on the nine-point circle and these lines: {1, 10017}, {2, 2745}, {4, 2720}, {5, 63757}, {11, 1519}, {115, 3330}, {119, 521}, {122, 856}, {123, 517}, {513, 25640}, {1877, 20620}, {2829, 28347}, {3259, 7681}, {3814, 46663}, {5514, 62326}, {5520, 7686}, {7680, 46415}, {15612, 26333}, {20619, 59976}, {25641, 55146}
X(64512) = midpoint of X(4) and X(2720)See Antreas Hatzipolakis and Peter Moses, euclid 6464.
X(64513) lies on the nine-point circle and these lines: {2, 43078}, {4, 6099}, {5, 15608}, {11, 912}, {115, 45886}, {119, 15313}, {355, 53985}, {513, 42423}, {517, 5521}, {1062, 10017}, {3259, 31847}, {5520, 31837}, {5777, 53988}, {5887, 13999}, {25641, 55147}
X(64513) = midpoint of X(4) and X(6099)See Antreas Hatzipolakis, Francisco Javier García Capitán and Peter Moses, euclid 6476.
X(64514) lies on this line: {2, 3}
See Antreas Hatzipolakis, Francisco Javier García Capitán and Peter Moses, euclid 6476.
X(64515) lies on this line: {2, 3}
See Antreas Hatzipolakis and Ivan Pavlov, euclid 6481.
X(64516) lies on these lines: {95, 5649}, {97, 30528}, {249, 14570}, {250, 476}, {523, 14587}, {648, 20577}, {687, 40427}, {691, 1141}, {925, 46966}, {1157, 14859}, {1972, 50433}, {2407, 2413}, {2966, 11077}, {14590, 14592}, {16813, 23582}, {18831, 54959}, {18883, 57758}, {23286, 64221}, {32680, 62735}, {34487, 62727}, {37779, 43768}, {46155, 57742}, {57474, 57482}, {57486, 57489}, {62746, 63202}
X(64516) = isogonal conjugate of X(2081)
X(64516) = isotomic conjugate of X(41078)
X(64516) = trilinear pole of line {5, 49}
X(64516) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2081}, {5, 2624}, {31, 41078}, {50, 2618}, {51, 32679}, {523, 2290}, {526, 1953}, {647, 51801}, {654, 2599}, {656, 11062}, {661, 1154}, {798, 1273}, {810, 14918}, {2088, 2617}, {2148, 55132}, {2179, 3268}, {2181, 8552}, {2594, 2600}, {6149, 12077}, {6369, 21741}, {14213, 14270}, {15451, 52414}, {21828, 35194}, {41218, 63202}, {44427, 62266}, {44706, 47230}
X(64516) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 41078}, {3, 2081}, {216, 55132}, {14993, 12077}, {15295, 55219}, {31998, 1273}, {36830, 1154}, {39052, 51801}, {39062, 14918}, {39170, 14391}, {40596, 11062}, {62603, 3268}
X(64516) = X(i)-cross conjugate of X(j) for these {i, j}: {50, 14587}, {94, 39295}, {648, 39290}, {655, 32680}, {24978, 2}
X(64516) = pole of line {2081, 47423} with respect to the Stammler hyperbola
X(64516) = pole of line {43083, 43965} with respect to the Steiner circumellipse
X(64516) = pole of line {2081, 41078} with respect to the Wallace hyperbola
X(64516) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(63202)}}, {{A, B, C, X(94), X(648)}}, {{A, B, C, X(249), X(250)}}, {{A, B, C, X(476), X(39290)}}, {{A, B, C, X(933), X(16813)}}, {{A, B, C, X(1291), X(14590)}}, {{A, B, C, X(2407), X(37779)}}, {{A, B, C, X(2421), X(44376)}}, {{A, B, C, X(4558), X(46963)}}, {{A, B, C, X(15412), X(39182)}}, {{A, B, C, X(16039), X(38342)}}, {{A, B, C, X(18316), X(30247)}}, {{A, B, C, X(24624), X(34357)}}, {{A, B, C, X(24978), X(41078)}}, {{A, B, C, X(53199), X(54554)}}
X(64516) = barycentric product X(i)*X(j) for these (i, j): {110, 46138}, {275, 60053}, {276, 32662}, {311, 46966}, {328, 933}, {476, 95}, {1141, 99}, {2167, 32680}, {4993, 54959}, {10411, 14859}, {11060, 55218}, {11077, 6331}, {14560, 34384}, {14586, 20573}, {15412, 39295}, {15958, 18817}, {16077, 64228}, {18315, 94}, {18831, 265}, {23895, 51268}, {23896, 51275}, {32678, 62276}, {35139, 54}, {36061, 40440}, {36129, 62277}, {36134, 63759}, {39277, 6742}, {39287, 46155}, {39290, 43768}, {42405, 50433}, {46456, 97}, {50463, 6528}
X(64516) = barycentric quotient X(i)/X(j) for these (i, j): {2, 41078}, {5, 55132}, {6, 2081}, {54, 526}, {94, 18314}, {95, 3268}, {97, 8552}, {99, 1273}, {110, 1154}, {112, 11062}, {162, 51801}, {163, 2290}, {265, 6368}, {275, 44427}, {476, 5}, {648, 14918}, {933, 186}, {1141, 523}, {1157, 8562}, {1989, 12077}, {2148, 2624}, {2166, 2618}, {2167, 32679}, {2222, 2599}, {2623, 2088}, {3615, 6369}, {6344, 23290}, {8882, 47230}, {8883, 44816}, {11060, 55219}, {11077, 647}, {14559, 41586}, {14560, 51}, {14586, 50}, {14587, 52603}, {14859, 10412}, {15395, 36831}, {15412, 62551}, {15475, 41221}, {15958, 22115}, {16813, 14165}, {18315, 323}, {18384, 51513}, {18831, 340}, {18883, 63829}, {20573, 15415}, {23286, 16186}, {23895, 33530}, {23896, 33529}, {25044, 44809}, {30529, 20577}, {32662, 216}, {32678, 1953}, {32680, 14213}, {34386, 45792}, {35139, 311}, {36061, 44706}, {36078, 2594}, {36134, 6149}, {36306, 6116}, {36309, 6117}, {38413, 44711}, {38414, 44712}, {39277, 4467}, {39290, 62722}, {39295, 14570}, {41392, 52945}, {41512, 63735}, {43083, 35442}, {43768, 5664}, {43965, 21230}, {45147, 43958}, {46138, 850}, {46456, 324}, {46966, 54}, {50433, 17434}, {50463, 520}, {51268, 23870}, {51275, 23871}, {52153, 15451}, {54034, 14270}, {56399, 14391}, {60053, 343}, {64228, 9033}
As a point on the Euler line, X(64517) has Shinagawa coefficients {(E+F)^3 (5 E+11 F)-(E+F) (31 E+37 F) S^2+44 S^4,-3 (E+F)^3 (E+3 F)+3 (E+F) (7 E+13 F) S^2-36 S^4}.
See Antreas Hatzipolakis and Ercole Suppa, euclid 6488.
X(64517) lies on this line: {2, 3}
As a point on the Euler line, X(64518) has Shinagawa coefficients {16 (E+F)^3-3 (25 E-56 F) S^2,9 (E-8 F) S^2}.
See Antreas Hatzipolakis and Ercole Suppa, euclid 6490.
X(64518) lies on these lines: {2, 3}, {1153, 44386}, {11694, 18800}, {15597, 52036}, {18122, 63647}
X(64518) = midpoint of X(i) and X(j) for these (i, j): {2, 46066}, {14694, 57623}
X(64518) = reflection of X(46068) in X(2)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6502.
X(64519) lies on the circumcircle and these lines: {3, 38453}, {572, 53689}, {573, 5975}, {4297, 53902}
X(64519) = isogonal conjugate of the circumnormal-isogonal conjugate of X(38453)
X(64519) = circumperp conjugate of X(38453)
X(64519) = circumnormal-isogonal conjugate of X(38456)
X(64519) = intersection, other than A, B, C, of the circumcircle and the circumconic {{A, B, C, X(1), X(61223)}}
X(64519) = antipode in circumcircle of X(38453)
See Antreas Hatzipolakis, Elias Hagos and Ercole Suppa, euclid 6502.
X(64520) lies on the circumcircle and this line: {2222, 55335}
X(64520) = intersection, other than A, B, C, of the circumcircle and the circumconic {{A, B, C, X(11), X(59)}}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6502.
X(64521) lies on the circumcircle and this line: {100, 35100}
X(64521) = antipode in the circumcircle of X(64520)Points related to the 1st Pavlov-Altintaş triangle: X(64522)-X(64584)
This preamble and centers X(64522)-X(64584) were contributed by Ivan Pavlov on July 25, 2024.
Let IaIbIc be the intouch triangle. Let AI intersect IaIb and IaIc at points Ab and Ac resp. Let Na be the nine-point center of IaAbAc and similarly define Nb and Nc. In the following, NaNbNc is called the 1st Pavlov-Altintaş triangle. Its inverse triangle is called the 1st anti-Pavlov-Altintaş triangle. The barycentric coordinates of their A-vertices are:
1st Pavlov-Altintaş: -a*(b-c)^2 : b*((b-c)*c+a*(b+c)) : c*(b*(-b+c)+a*(b+c))
1st anti-Pavlov-Altintaş: a-b-c : c : b
The 1st Pavlov-Altintaş triangle is perspective to ABC with perspector X(13476). It is also bilogic to the intouch triangle and has the same centroid - X(354). The perspector of the intouch and 1st Pavlov-Altintaş triangles is an infinite point, X(513). Some other triangles perspective to the 1st Pavlov-Altintas include: AAOA, Aquila, Artzt, 8th Brocard, circumsymmedial, Lucas central, Lucas inner, Lucas reflection, Lucas tangents, 1st Pamfilos-Zhou, 1st and 2nd Sharygin, symmedial, tangential, inner-Yff, outer-Yff.
The 1st anti-Pavlov-Altintaş triangle is perspective to ABC with perspector X(75). Some other triangles perspective to it include: Gemini 16, Gemini 17, Gemini 111, Aquila, inner-Conway, inner-Garcia, Yff contact, inner-Yff, outer-Yff.
The 1st anti-Pavlov-Altintaş triangle is orthologic to the intouch with orhtology center X(3869). It is also orthologic to the 5th Conway and 1st Savin triangles with orthology centers resp. X(64002) and X(8).
For more information on some related triangles see this Euclid thread.
X(64522) lies on these lines: {1, 15622}, {11, 1425}, {12, 21252}, {56, 64548}, {57, 23383}, {65, 1193}, {109, 37806}, {225, 1876}, {354, 2654}, {496, 942}, {513, 30493}, {1465, 22300}, {4296, 50362}, {4347, 37536}, {5665, 11021}, {5842, 40644}, {6583, 51751}, {11680, 19367}, {15832, 35645}, {18838, 28013}, {20718, 37591}, {28087, 28109}
X(64522) = pole of line {1459, 1946} with respect to the DeLongchamps ellipse
X(64522) = pole of line {1042, 7354} with respect to the Feuerbach hyperbola
X(64522) = pole of line {1427, 2051} with respect to the dual conic of Yff parabola
X(64522) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65, 1393, 64550}, {65, 1457, 34434}
X(64523) lies on these lines: {1, 4557}, {2, 4553}, {6, 13476}, {9, 64553}, {11, 125}, {31, 64550}, {37, 17445}, {41, 64551}, {42, 64559}, {44, 20358}, {75, 61183}, {88, 34583}, {105, 692}, {116, 53835}, {190, 16482}, {238, 20718}, {239, 44671}, {244, 659}, {354, 2246}, {373, 17602}, {513, 1086}, {517, 3246}, {518, 4753}, {521, 17059}, {523, 24225}, {597, 25323}, {614, 53312}, {650, 38990}, {674, 3008}, {872, 64555}, {903, 4499}, {942, 2836}, {1015, 1084}, {1100, 58571}, {1111, 4965}, {1918, 40504}, {1964, 64556}, {2170, 17463}, {2209, 64557}, {2486, 17761}, {2643, 4132}, {2807, 15251}, {3011, 38472}, {3056, 17278}, {3120, 38390}, {3122, 27846}, {3125, 4164}, {3589, 17049}, {3618, 25050}, {3666, 38998}, {3675, 7202}, {3688, 17337}, {3722, 22313}, {3739, 19563}, {3742, 24685}, {3744, 22278}, {3756, 38992}, {3757, 58644}, {3772, 63511}, {3834, 9025}, {3888, 27191}, {3924, 34434}, {4000, 63498}, {4083, 55055}, {4124, 16732}, {4384, 58379}, {4395, 6007}, {4403, 29198}, {4422, 14839}, {4436, 16494}, {4440, 24482}, {4700, 9038}, {4802, 23772}, {4926, 24840}, {5091, 16686}, {5943, 17061}, {6594, 9957}, {7292, 50362}, {9024, 40480}, {9359, 16495}, {14523, 21867}, {14717, 23982}, {14973, 32914}, {15888, 46187}, {16602, 20359}, {17067, 29353}, {17197, 53564}, {17277, 40607}, {17348, 22271}, {17349, 64581}, {17353, 21865}, {17356, 17792}, {17366, 21746}, {17417, 17419}, {17724, 61166}, {18165, 29821}, {21278, 29484}, {21299, 29802}, {21362, 24405}, {21762, 38996}, {23560, 50516}, {24168, 35059}, {24191, 50514}, {24542, 61172}, {24789, 63513}, {25316, 51171}, {28597, 29396}, {31947, 38987}, {38346, 38347}, {38979, 55045}, {40137, 43960}, {40216, 55026}, {40601, 40941}, {55340, 64169}, {56805, 57039}
X(64523) = midpoint of X(i) and X(j) for these {i,j}: {6, 46149}, {44, 20358}, {239, 57024}, {354, 61708}, {1086, 3271}, {4553, 25048}
X(64523) = reflection of X(i) in X(j) for these {i,j}: {40521, 4422}
X(64523) = isogonal conjugate of X(63918)
X(64523) = complement of X(4553)
X(64523) = perspector of circumconic {{A, B, C, X(1019), X(4040)}}
X(64523) = center of circumconic {{A, B, C, X(6), X(17187)}}
X(64523) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 63918}, {59, 55076}, {765, 13476}, {1016, 2350}, {1110, 40216}, {1252, 17758}, {3952, 43076}, {4557, 53649}
X(64523) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 63918}, {513, 13476}, {514, 40216}, {661, 17758}, {693, 76}, {1015, 54118}, {1500, 61402}, {6615, 55076}, {17761, 3952}, {50337, 17165}
X(64523) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6, 513}, {1621, 4040}, {17143, 17494}, {17761, 38347}, {18785, 659}, {38859, 58324}, {39797, 649}, {55026, 514}, {60075, 650}, {61403, 1015}
X(64523) = X(i)-complementary conjugate of X(j) for these {i, j}: {58, 3005}, {82, 513}, {83, 3835}, {251, 514}, {308, 21262}, {513, 21249}, {514, 21248}, {649, 6292}, {667, 16587}, {1176, 20315}, {1474, 23285}, {2206, 52591}, {3112, 21260}, {3120, 46654}, {3122, 15449}, {4628, 4422}, {10566, 141}, {18070, 21245}, {18082, 31946}, {18098, 4129}, {18101, 124}, {18105, 1213}, {18107, 21250}, {18108, 10}, {18113, 5510}, {21207, 55070}, {32085, 20316}, {39179, 3739}, {43924, 17055}, {46288, 6586}, {46289, 650}, {51906, 6627}, {52376, 4369}, {52394, 512}, {55240, 1211}, {56245, 20317}, {58784, 3454}, {61404, 116}
X(64523) = X(i)-cross conjugate of X(j) for these {i, j}: {38365, 38347}
X(64523) = pole of line {3675, 53524} with respect to the incircle
X(64523) = pole of line {38346, 38365} with respect to the Brocard inellipse
X(64523) = pole of line {244, 665} with respect to the DeLongchamps ellipse
X(64523) = pole of line {523, 4724} with respect to the Feuerbach hyperbola
X(64523) = pole of line {650, 21260} with respect to the Kiepert hyperbola
X(64523) = pole of line {765, 63918} with respect to the Stammler hyperbola
X(64523) = pole of line {3121, 14296} with respect to the Steiner inellipse
X(64523) = pole of line {7035, 63918} with respect to the Wallace hyperbola
X(64523) = pole of line {812, 14838} with respect to the dual conic of Yff parabola
X(64523) = pole of line {442, 1089} with respect to the dual conic of Wallace hyperbola
X(64523) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {44, 1155, 20358}
X(64523) = X(4553)-of-medial-triangle
X(64523) = intersection, other than A, B, C, of circumconics {{A, B, C, X(244), X(2486)}}, {{A, B, C, X(513), X(21007)}}, {{A, B, C, X(1086), X(13476)}}, {{A, B, C, X(2973), X(21252)}}, {{A, B, C, X(3294), X(16507)}}, {{A, B, C, X(4557), X(7192)}}, {{A, B, C, X(16726), X(17761)}}, {{A, B, C, X(17494), X(43931)}}, {{A, B, C, X(18191), X(38347)}}, {{A, B, C, X(26846), X(61403)}}, {{A, B, C, X(38346), X(43921)}}
X(64523) = barycentric product X(i)*X(j) for these (i, j): {1, 17761}, {522, 58324}, {523, 57148}, {1015, 17143}, {1019, 4151}, {1086, 1621}, {1111, 4251}, {1146, 38859}, {1977, 40088}, {2170, 55082}, {2310, 33765}, {2486, 81}, {3733, 58361}, {3996, 53538}, {4040, 514}, {4858, 55086}, {13476, 26846}, {14004, 3942}, {16726, 4651}, {16727, 64169}, {17205, 3294}, {17277, 244}, {17494, 513}, {17924, 22160}, {18152, 3248}, {20954, 649}, {21007, 693}, {26847, 34434}, {38346, 75}, {38347, 7}, {38365, 85}, {40607, 61403}, {40619, 6}, {42454, 651}, {56537, 61404}, {57167, 650}, {57247, 663}
X(64523) = barycentric quotient X(i)/X(j) for these (i, j): {6, 63918}, {244, 17758}, {513, 54118}, {1015, 13476}, {1019, 53649}, {1086, 40216}, {1621, 1016}, {2170, 55076}, {2486, 321}, {3248, 2350}, {4040, 190}, {4151, 4033}, {4251, 765}, {16726, 39734}, {17143, 31625}, {17205, 40004}, {17277, 7035}, {17494, 668}, {17761, 75}, {20954, 1978}, {21007, 100}, {21727, 4103}, {22160, 1332}, {26846, 17143}, {38346, 1}, {38347, 8}, {38365, 9}, {38859, 1275}, {40607, 61402}, {40619, 76}, {42454, 4391}, {55086, 4564}, {56537, 61406}, {57129, 43076}, {57148, 99}, {57167, 4554}, {57247, 4572}, {58324, 664}, {58361, 27808}
X(64523) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 53391, 4557}, {1, 64554, 64552}, {2, 25048, 4553}, {6, 13476, 64561}, {6, 64524, 13476}, {239, 57024, 44671}, {244, 3248, 16726}, {1086, 3271, 513}, {3589, 17049, 22279}, {4422, 14839, 40521}, {16507, 16726, 3248}, {17277, 56537, 40607}, {18165, 29821, 58572}
X(64524) lies on these lines: {1, 5132}, {2, 22279}, {6, 13476}, {7, 513}, {10, 9049}, {11, 42447}, {31, 64559}, {37, 20358}, {44, 63522}, {48, 354}, {55, 64549}, {57, 3941}, {65, 1279}, {71, 59217}, {75, 57024}, {116, 44412}, {141, 17049}, {142, 674}, {206, 942}, {244, 1964}, {344, 40521}, {511, 25557}, {517, 42819}, {518, 16825}, {869, 64556}, {946, 58617}, {982, 16696}, {1001, 20718}, {1015, 8265}, {1026, 29439}, {1086, 21746}, {1125, 58410}, {1486, 5228}, {1918, 64557}, {1953, 17463}, {2389, 24389}, {2807, 20330}, {2808, 42356}, {2809, 61033}, {2875, 29957}, {2876, 51150}, {3008, 22277}, {3056, 4675}, {3271, 17365}, {3688, 17245}, {3742, 25523}, {3754, 49473}, {3759, 3873}, {3779, 17278}, {3826, 9052}, {3834, 17792}, {3870, 22278}, {3874, 4974}, {3881, 49489}, {4022, 21352}, {4083, 59857}, {4090, 24742}, {4361, 35892}, {4384, 22271}, {4553, 17234}, {4644, 63498}, {4670, 58583}, {4852, 64546}, {4890, 17395}, {5045, 52495}, {5091, 38863}, {5256, 22290}, {5542, 8679}, {5572, 44670}, {5836, 49467}, {5902, 16110}, {6007, 7263}, {6147, 58469}, {6697, 16608}, {7032, 16726}, {8053, 20367}, {9025, 17376}, {10473, 21769}, {10980, 18725}, {11019, 58574}, {12109, 25466}, {14839, 17243}, {15185, 21867}, {16014, 18180}, {16482, 17350}, {16507, 23524}, {16574, 16684}, {16777, 64552}, {17065, 57039}, {17142, 18137}, {17259, 40607}, {17277, 62872}, {17279, 21865}, {17300, 25048}, {17337, 20683}, {17366, 52020}, {17394, 50362}, {17443, 17447}, {17445, 21330}, {17718, 38472}, {18040, 20352}, {18143, 21278}, {18621, 37543}, {20116, 44661}, {21238, 30982}, {21258, 23305}, {21620, 58493}, {22299, 54392}, {22325, 29651}, {23343, 29380}, {23839, 50360}, {24220, 53564}, {24482, 31300}, {29353, 60980}, {29830, 61172}, {34371, 58563}, {34824, 64007}, {35612, 58572}, {37536, 50293}, {37703, 51377}, {38390, 61716}, {39734, 55026}, {43035, 64206}, {50516, 63527}
X(64524) = midpoint of X(i) and X(j) for these {i,j}: {4361, 35892}, {15185, 21867}
X(64524) = perspector of circumconic {{A, B, C, X(34018), X(46725)}}
X(64524) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 2141}
X(64524) = X(i)-Dao conjugate of X(j) for these {i, j}: {2140, 3681}, {23989, 40495}, {32664, 2141}
X(64524) = X(i)-Ceva conjugate of X(j) for these {i, j}: {692, 513}
X(64524) = pole of line {44319, 47970} with respect to the Bevan circle
X(64524) = pole of line {4040, 22160} with respect to the circumcircle
X(64524) = pole of line {241, 514} with respect to the DeLongchamps ellipse
X(64524) = pole of line {16580, 40690} with respect to the dual conic of Yff parabola
X(64524) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(57167)}}, {{A, B, C, X(2140), X(39797)}}, {{A, B, C, X(13476), X(24002)}}, {{A, B, C, X(20990), X(39734)}}, {{A, B, C, X(34444), X(43930)}}, {{A, B, C, X(55026), X(64169)}}
X(64524) = barycentric product X(i)*X(j) for these (i, j): {1, 2140}, {101, 19594}, {46725, 513}
X(64524) = barycentric quotient X(i)/X(j) for these (i, j): {31, 2141}, {2140, 75}, {19594, 3261}, {46725, 668}
X(64524) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 39797, 40638}, {6, 64560, 13476}, {244, 64555, 1964}, {4361, 35892, 44671}, {13476, 64523, 6}, {17259, 56542, 40607}, {17277, 62872, 64581}, {64553, 64554, 37}, {64557, 64558, 1918}
X(64525) lies on these lines: {1, 16528}, {2, 64529}, {3, 1724}, {4, 64528}, {5, 14131}, {20, 37536}, {30, 5482}, {36, 33656}, {55, 64533}, {56, 64534}, {373, 17583}, {376, 37482}, {404, 34461}, {511, 548}, {517, 550}, {581, 64247}, {901, 3871}, {952, 53002}, {958, 64542}, {970, 8703}, {1125, 64541}, {1149, 1385}, {1657, 37521}, {2646, 64539}, {2975, 64526}, {3246, 13624}, {3522, 5752}, {3534, 10441}, {3576, 64532}, {3616, 64527}, {4324, 50362}, {4855, 56885}, {5650, 57003}, {5754, 62320}, {5901, 29349}, {6011, 37469}, {7677, 64547}, {7987, 64537}, {9945, 29958}, {10108, 19765}, {10572, 35059}, {11112, 64544}, {15488, 15704}, {15489, 33923}, {15622, 26285}, {18180, 37256}, {19513, 48916}, {22392, 34463}, {24929, 64538}, {29229, 48934}, {34583, 37702}, {36005, 41723}, {48927, 64540}, {53790, 61286}, {57004, 58889}
X(64525) = midpoint of X(i) and X(j) for these {i,j}: {1, 64531}, {20, 37536}, {15488, 15704}
X(64525) = reflection of X(i) in X(j) for these {i,j}: {4, 64528}, {5, 14131}, {15489, 33923}, {34466, 3}, {64541, 1125}
X(64525) = anticomplement of X(64529)
X(64525) = X(3853)-of-anti-Artzt-triangle
X(64525) = X(3988)-of-inner-Garcia-triangle
X(64525) = X(6662)-of-2nd-circumperp-triangle
X(64525) = X(6663)-of-hexyl-triangle
X(64526) lies on these lines: {2, 64534}, {9, 64547}, {30, 64567}, {63, 64531}, {72, 4450}, {78, 64532}, {100, 34466}, {145, 64533}, {200, 56885}, {219, 12912}, {329, 64527}, {517, 5562}, {518, 64539}, {908, 64541}, {2975, 64525}, {3434, 37536}, {3555, 64538}, {3819, 15172}, {3873, 64535}, {4416, 15310}, {4420, 56884}, {5082, 37482}, {5482, 24390}, {5752, 17784}, {5853, 11573}, {10108, 17018}, {10916, 35059}, {11680, 64528}, {11681, 64529}, {11682, 64530}, {18180, 33110}, {22278, 31757}, {31419, 64544}, {31855, 57666}, {49732, 58469}
X(64526) = reflection of X(i) in X(j) for these {i,j}: {145, 64533}, {3555, 64538}, {64534, 64542}, {64547, 9}
X(64526) = anticomplement of X(64534)
X(64526) = X(6662)-of-inner-Conway-triangle
X(64526) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {200, 64537, 56885}, {64534, 64542, 2}
X(64527) lies on cubics K461, K655 and on these lines: {2, 64531}, {3, 16686}, {7, 64534}, {20, 64532}, {30, 64568}, {40, 45829}, {145, 64530}, {320, 10446}, {329, 64526}, {355, 56799}, {497, 64539}, {511, 48661}, {516, 5752}, {517, 3146}, {1058, 64538}, {1482, 14261}, {1656, 53002}, {2818, 5895}, {3616, 64525}, {3627, 31785}, {5687, 38389}, {5886, 26111}, {9519, 63967}, {9580, 11573}, {9778, 34466}, {9779, 64528}, {9780, 64529}, {9785, 64533}, {9812, 37536}, {10525, 14266}, {10580, 64535}, {10591, 35059}, {12435, 41869}, {12645, 53790}, {12912, 34048}, {17784, 56885}, {18228, 64542}, {18257, 26932}, {18480, 36919}, {18541, 58535}, {26046, 26446}, {26364, 38390}, {31778, 51118}, {37521, 40273}
X(64527) = reflection of X(i) in X(j) for these {i,j}: {20, 64532}, {145, 64530}, {5752, 64537}, {31778, 51118}, {31785, 3627}, {37482, 12699}, {64531, 64541}
X(64527) = anticomplement of X(64531)
X(64527) = X(i)-Dao conjugate of X(j) for these {i, j}: {38389, 513}, {64531, 64531}
X(64527) = pole of line {4063, 48293} with respect to the Conway circle
X(64527) = X(6662)-of-2nd-Conway-triangle
X(64527) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 64537, 5752}, {12699, 15310, 37482}, {64531, 64541, 2}
X(64528) lies on these lines: {2, 5752}, {3, 52524}, {4, 64525}, {5, 5482}, {11, 64534}, {12, 64533}, {30, 14131}, {79, 34583}, {140, 517}, {226, 64535}, {229, 37431}, {500, 19546}, {511, 3628}, {549, 15488}, {632, 970}, {942, 37634}, {952, 64570}, {1201, 10222}, {1385, 19513}, {1656, 37521}, {1699, 64531}, {2051, 49641}, {2886, 64542}, {3090, 37482}, {3526, 10441}, {3579, 30950}, {3624, 31778}, {3817, 64541}, {3831, 9956}, {3911, 15443}, {4187, 64544}, {4871, 9955}, {5400, 48907}, {5718, 10108}, {5777, 62621}, {5810, 18141}, {5886, 26094}, {6667, 58469}, {6915, 34461}, {7504, 33852}, {7678, 64547}, {7988, 64537}, {8227, 64532}, {8610, 50650}, {9779, 64527}, {11230, 19864}, {11231, 35631}, {11522, 64530}, {11680, 64526}, {12047, 35059}, {17575, 61643}, {17605, 64539}, {19335, 48903}, {19547, 37682}, {19549, 50317}, {19648, 48926}, {23383, 26285}, {24470, 64489}, {30852, 56885}, {33656, 63963}, {37693, 49557}, {40273, 53002}
X(64528) = midpoint of X(i) and X(j) for these {i,j}: {4, 64525}, {5, 5482}, {34466, 37536}, {40273, 53002}
X(64528) = reflection of X(i) in X(j) for these {i,j}: {64529, 5}
X(64528) = complement of X(34466)
X(64528) = X(6662)-of-3rd-Euler-triangle
X(64528) = X(6663)-of-Wasat-triangle
X(64528) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37536, 34466}
X(64529) lies on these lines: {2, 64525}, {4, 34466}, {5, 5482}, {10, 38390}, {11, 64533}, {12, 64534}, {21, 34461}, {30, 64570}, {381, 10441}, {511, 3850}, {517, 546}, {952, 64569}, {970, 3845}, {1210, 64535}, {1329, 64542}, {1698, 64531}, {3091, 37536}, {3259, 24390}, {3545, 37482}, {3628, 14131}, {3679, 64530}, {3822, 33656}, {3832, 5752}, {3853, 15489}, {3858, 15488}, {5072, 37521}, {5587, 64532}, {7679, 64547}, {7989, 64537}, {9780, 64527}, {11681, 64526}, {17530, 64544}, {17606, 64539},
X(64529) = midpoint of X(i) and X(j) for these {i,j}: {4, 34466}, {10, 64541}, {3853, 15489}
X(64529) = reflection of X(i) in X(j) for these {i,j}: {14131, 3628}, {64528, 5}
X(64529) = complement of X(64525)
X(64529) = X(6662)-of-4th-Euler-triangle
X(64530) lies on circumconic {{A, B, C, X(20615), X(38462)}} and on these lines: {1, 16528}, {4, 8}, {5, 121}, {30, 64571}, {145, 64527}, {946, 49993}, {1483, 29349}, {2098, 64539}, {2841, 13463}, {3340, 64534}, {3656, 5482}, {3679, 64529}, {3877, 17690}, {4301, 37536}, {7962, 64533}, {7991, 34466}, {8715, 34461}, {10222, 14261}, {10283, 53002}, {11278, 15310}, {11522, 64528}, {11526, 64547}, {11531, 64537}, {11682, 64526}, {14131, 61276}, {15829, 64542},
X(64530) = midpoint of X(i) and X(j) for these {i,j}: {145, 64527}, {11531, 64537}
X(64530) = reflection of X(i) in X(j) for these {i,j}: {8, 64541}, {7991, 34466}, {37536, 4301}, {64531, 1}
X(64530) = pole of line {1837, 4694} with respect to the Feuerbach hyperbola
X(64530) = X(6662)-of-excenters-reflections-triangle
X(64530) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {517, 64541, 8}
X(64531) lies on these lines: {1, 16528}, {2, 64527}, {3, 49997}, {5, 29349}, {9, 64542}, {20, 145}, {30, 44039}, {40, 48928}, {44, 573}, {55, 64539}, {57, 64534}, {63, 64526}, {100, 56885}, {165, 34466}, {222, 12912}, {513, 8715}, {516, 37536}, {1385, 56804}, {1445, 64547}, {1479, 35059}, {1483, 53790}, {1657, 31785}, {1697, 64533}, {1698, 64529}, {1699, 64528}, {1742, 48926}, {2818, 5894}, {3295, 64538}, {3336, 33656}, {3753, 50322}, {4324, 64580}, {5482, 12699}, {5752, 9778}, {5886, 14131}, {9519, 12005}, {10108, 37553}, {15488, 28178}, {18046, 22793}, {25440, 34461}, {26285, 52005}, {28198, 35631}, {31423, 45829}, {31778, 64005}, {33555, 37743}, {34463, 37732}, {34583, 37720}, {37521, 48661}
X(64531) = midpoint of X(i) and X(j) for these {i,j}: {1657, 31785}, {6361, 37482}, {31778, 64005}
X(64531) = reflection of X(i) in X(j) for these {i,j}: {1, 64525}, {5, 53002}, {12699, 5482}, {64527, 64541}, {64530, 1}, {64532, 3}, {64537, 34466}
X(64531) = complement of X(64527)
X(64531) = anticomplement of X(64541)
X(64531) = X(i)-Dao conjugate of X(j) for these {i, j}: {64541, 64541}
X(64531) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3871, 1}
X(64531) = pole of line {4694, 11376} with respect to the Feuerbach hyperbola
X(64531) = X(6662)-of-excentral-triangle
X(64531) = X(6663)-of-6th-mixtilinear-triangle
X(64531) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6361, 37482, 517}, {29349, 53002, 5}
X(64532) lies on these lines: {1, 10108}, {3, 49997}, {4, 8}, {20, 64527}, {30, 64572}, {40, 5400}, {56, 64539}, {78, 64526}, {381, 31785}, {392, 17676}, {499, 35059}, {511, 22791}, {513, 8666}, {549, 53002}, {550, 29349}, {916, 54198}, {936, 64542}, {942, 17721}, {946, 37536}, {957, 37435}, {970, 28174}, {991, 1279}, {999, 64538}, {1537, 5562}, {1699, 31778}, {2390, 10916}, {2818, 2883}, {3333, 64535}, {3576, 64525}, {3579, 5956}, {3583, 64580}, {3784, 11373}, {5482, 5886}, {5587, 64529}, {5603, 37482}, {6147, 58535}, {6796, 34461}, {7675, 64547}, {8227, 64528}, {8679, 49600}, {11230, 25492}, {11573, 12053}, {13464, 29353}, {13624, 28370}, {15488, 40273}, {18481, 50419}, {18493, 37521}, {19858, 49641}, {20039, 37727}, {21630, 23156}, {24390, 42448}, {27625, 31663}, {28160, 64568}, {28389, 37589}, {50621, 63997}, {61640, 64200}
X(64532) = midpoint of X(i) and X(j) for these {i,j}: {1, 64537}, {20, 64527}, {962, 5752}
X(64532) = reflection of X(i) in X(j) for these {i,j}: {4, 64541}, {40, 34466}, {15488, 40273}, {37536, 946}, {64531, 3}
X(64532) = pole of line {1837, 3670} with respect to the Feuerbach hyperbola
X(64532) = pole of line {1437, 35978} with respect to the Stammler hyperbola
X(64532) = X(6662)-of-hexyl-triangle
X(64532) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 51634, 64537}
X(64532) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 56884, 56885}, {517, 64541, 4}, {962, 5752, 517}
X(64533) lies on these lines: {1, 10108}, {8, 64542}, {10, 41682}, {11, 64529}, {12, 64528}, {55, 64525}, {56, 34466}, {65, 64535}, {73, 1385}, {145, 64526}, {388, 37536}, {495, 5482}, {513, 3884}, {517, 4292}, {942, 5724}, {952, 64573}, {1056, 37482}, {1697, 64531}, {3057, 64539}, {3600, 5752}, {4187, 6075}, {5045, 5717}, {5270, 50362}, {7962, 64530}, {8236, 64547}, {9655, 35645}, {9785, 64527}, {10039, 35059}, {12053, 64541}, {15310, 31792}, {19861, 56885}, {23156, 34434}, {24470, 45955}, {34790, 49991}
X(64533) = midpoint of X(i) and X(j) for these {i,j}: {145, 64526}, {3057, 64539}, {10106, 11573}, {23156, 34434}
X(64533) = reflection of X(i) in X(j) for these {i,j}: {8, 64542}, {65, 64535}, {64534, 1}
X(64533) = pole of line {4132, 48281} with respect to the incircle
X(64533) = pole of line {3670, 37722} with respect to the Feuerbach hyperbola
X(64533) = X(6662)-of-Hutson-intouch-triangle
X(64533) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10106, 11573, 517}
X(64534) lies on these lines: {1, 10108}, {2, 64526}, {7, 64527}, {11, 64528}, {12, 64529}, {30, 58535}, {55, 34466}, {56, 64525}, {57, 64531}, {65, 33656}, {149, 18180}, {226, 64541}, {354, 64535}, {389, 517}, {390, 5752}, {496, 5482}, {497, 37536}, {511, 15172}, {513, 3881}, {516, 58617}, {528, 58469}, {942, 63979}, {952, 44865}, {970, 10386}, {1058, 37482}, {3340, 64530}, {3664, 5045}, {3870, 56885}, {5853, 58497}, {10095, 58539}, {10222, 45046}, {11573, 64162}, {12109, 28174}, {12699, 17220}, {12912, 52424}, {14131, 15325}, {16608, 18257}, {24390, 64544}, {24470, 29349}, {29353, 40270}, {34753, 53002}
X(64534) = midpoint of X(i) and X(j) for these {i,j}: {7, 64547},
X(64534) = reflection of X(i) in X(j) for these {i,j}: {64526, 64542}, {64533, 1}, {64538, 5045}, {64539, 64535}
X(64534) = complement of X(64526)
X(64534) = anticomplement of X(64542)
X(64534) = X(i)-Dao conjugate of X(j) for these {i, j}: {24390, 8}, {64542, 64542}
X(64534) = pole of line {4057, 4063} with respect to the incircle
X(64534) = pole of line {12, 3670} with respect to the Feuerbach hyperbola
X(64534) = pole of line {4132, 4491} with respect to the Suppa-Cucoanes circle
X(64534) = X(6662)-of-intouch-triangle
X(64534) = X(6663)-of-Ursa-minor-triangle
X(64534) = barycentric product X(i)*X(j) for these (i, j): {3995, 64544}, {24390, 32911}
X(64534) = barycentric quotient X(i)/X(j) for these (i, j): {24390, 40013}, {64544, 39747}
X(64534) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64526, 64542}, {354, 64539, 64535}, {5045, 15310, 64538}
X(64535) lies on these lines: {1, 16528}, {5, 24237}, {7, 37536}, {57, 34466}, {65, 64533}, {226, 64528}, {354, 64534}, {513, 43972}, {517, 4298}, {518, 64542}, {553, 11573}, {942, 49745}, {1042, 1385}, {1210, 64529}, {3306, 56885}, {3333, 64532}, {3666, 10108}, {3670, 49557}, {3873, 64526}, {3937, 64544}, {4355, 31778}, {5482, 6147}, {5719, 14131}, {5752, 21454}, {5810, 63152}, {5885, 20617}, {9940, 62789}, {10580, 64527}, {10980, 64537}, {11019, 64541}, {11025, 64547}, {13407, 35059}, {15310, 50192}, {18180, 26842}, {23156, 64550}, {34583, 37731}
X(64535) = midpoint of X(i) and X(j) for these {i,j}: {65, 64533}, {942, 64538}, {64534, 64539}
X(64535) = pole of line {4694, 63997} with respect to the Feuerbach hyperbola
X(64535) = X(6662)-of-inverse-in-incircle-triangle
X(64535) = X(6663)-of-intouch-triangle
X(64535) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {354, 64539, 64534}
X(64536) lies on these lines: {1, 2}, {210, 64436}, {354, 596}, {516, 37536}, {518, 4075}, {536, 50192}, {726, 13476}, {740, 24176}, {942, 4891}, {1089, 62867}, {1126, 13741}, {1269, 3664}, {1574, 17388}, {2260, 3950}, {2650, 4975}, {3159, 3874}, {3315, 43993}, {3454, 4966}, {3670, 4065}, {3740, 64434}, {3742, 6532}, {3848, 64433}, {3873, 24068}, {3879, 18133}, {3881, 59717}, {3934, 17390}, {3993, 4022}, {4066, 49479}, {4360, 24170}, {4658, 32942}, {4857, 32949}, {4970, 24167}, {5204, 47040}, {5259, 32919}, {5284, 64072}, {6682, 58380}, {8715, 20470}, {13374, 29016}, {15569, 58387}, {16887, 41851}, {17376, 22793}, {17770, 57024}, {18398, 32915}, {18483, 48933}, {21070, 24512}, {21746, 50610}, {24046, 49470}, {25542, 32864}, {28228, 31778}, {32943, 37559}, {35631, 64566}, {36250, 49676}, {39550, 44039}, {50601, 64006}, {58560, 64430}, {63961, 64435}, {64149, 64184}
X(64536) = midpoint of X(i) and X(j) for these {i,j}: {596, 2901}, {3159, 3874}, {3881, 63800}, {35631, 64566}
X(64536) = reflection of X(i) in X(j) for these {i,j}: {24176, 58565}, {64185, 6532}, {64430, 58560}
X(64536) = pole of line {514, 26822} with respect to the Steiner inellipse
X(64536) = pole of line {86, 33771} with respect to the Wallace hyperbola
X(64536) = pole of line {21207, 55065} with respect to the dual conic of Stammler hyperbola
X(64536) = intersection, other than A, B, C, of circumconics {{A, B, C, X(42), X(43972)}}, {{A, B, C, X(3216), X(13476)}}, {{A, B, C, X(4651), X(42471)}}, {{A, B, C, X(20011), X(60617)}}
X(64536) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 3720, 1125}, {740, 58565, 24176}, {3742, 64185, 6532}, {64149, 64184, 64431}
X(64537) lies on these lines: {1, 10108}, {3, 238}, {4, 6327}, {5, 25957}, {30, 64575}, {40, 31855}, {57, 64539}, {78, 56884}, {165, 34466}, {200, 56885}, {355, 44865}, {382, 517}, {496, 3784}, {497, 11573}, {500, 31394}, {511, 12699}, {513, 62858}, {516, 5752}, {916, 63962}, {944, 62401}, {946, 29353}, {970, 29349}, {1699, 37536}, {2201, 20739}, {2390, 49168}, {2550, 58497}, {2818, 12779}, {3056, 63997}, {3333, 64538}, {3419, 42448}, {4326, 64547}, {4655, 50603}, {5178, 30438}, {5482, 8227}, {5880, 58469}, {7074, 12912}, {7987, 64525}, {7988, 64528}, {7989, 64529}, {8580, 64542}, {8757, 12410}, {9548, 64540}, {9955, 37521}, {10441, 22793}, {10974, 64016}, {10980, 64535}, {11531, 64530}, {17646, 44545}, {18480, 31785}, {24390, 26892}, {24851, 50617}, {25306, 63996}, {31781, 31822}, {33096, 50585}, {34462, 63985}, {38389, 58798}, {41014, 44151}, {49641, 59312}, {58617, 60896}
X(64537) = midpoint of X(i) and X(j) for these {i,j}: {5752, 64527}
X(64537) = reflection of X(i) in X(j) for these {i,j}: {1, 64532}, {10441, 22793}, {11531, 64530}, {31778, 4}, {31781, 31822}, {31785, 18480}, {37482, 946}, {37536, 64541}, {64531, 34466}
X(64537) = pole of line {4132, 4834} with respect to the Conway circle
X(64537) = pole of line {3670, 9581} with respect to the Feuerbach hyperbola
X(64537) = X(1351)-of-4th-Brocard-triangle
X(64537) = X(1351)-of-orthocentroidal-triangle
X(64537) = X(6662)-of-6th-mixtilinear-triangle
X(64537) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {946, 29353, 37482}, {5752, 64527, 516}, {34466, 64531, 165}, {37536, 64541, 1699}
X(64538) lies on these lines: {1, 64539}, {3, 6180}, {5, 40687}, {7, 37482}, {8, 50003}, {12, 35059}, {79, 50362}, {226, 5482}, {442, 3937}, {474, 56885}, {496, 64541}, {511, 24470}, {513, 1125}, {517, 4292}, {942, 49745}, {999, 64532}, {1058, 64527}, {1385, 1457}, {1463, 5266}, {2476, 26910}, {3295, 64531}, {3333, 64537}, {3555, 64526}, {3579, 22097}, {3628, 64489}, {3664, 5045}, {3666, 49557}, {3784, 37536}, {3953, 20615}, {4001, 34790}, {4014, 63997}, {5044, 17332}, {5249, 64544}, {5253, 56884}, {5762, 13348}, {5810, 26929}, {6937, 26914}, {9940, 40644}, {10441, 18541}, {11112, 23154}, {12436, 58497}, {12907, 30621}, {13411, 14131}, {15172, 29349}, {17365, 50597}, {17616, 18732}, {20367, 48928}, {22300, 23156}, {24929, 64525}, {34339, 45122}, {34466, 37582}, {37592, 49537}, {41340, 63995}, {58073, 62304}
X(64538) = midpoint of X(i) and X(j) for these {i,j}: {1, 64539}, {3555, 64526}, {4292, 11573}, {22300, 23156}
X(64538) = reflection of X(i) in X(j) for these {i,j}: {942, 64535}, {34790, 64542}, {58497, 12436}, {64534, 5045}
X(64538) = pole of line {3733, 4063} with respect to the incircle
X(64538) = pole of line {3953, 37722} with respect to the Feuerbach hyperbola
X(64538) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3784, 57282, 37536}, {4292, 11573, 517}, {5045, 15310, 64534}
X(64539) lies on these lines: {1, 64538}, {3, 1777}, {5, 35059}, {10, 513}, {30, 64577}, {55, 64531}, {56, 64532}, {57, 64537}, {210, 64542}, {354, 64534}, {404, 56884}, {497, 64527}, {516, 11573}, {517, 1770}, {518, 64526}, {942, 15310}, {1155, 34466}, {1376, 56885}, {1385, 4337}, {1739, 57666}, {1836, 37536}, {2098, 64530}, {2390, 17647}, {2392, 22300}, {2646, 64525}, {2818, 31775}, {3057, 64533}, {3474, 5752}, {3650, 3690}, {3784, 12699}, {3825, 38390}, {3888, 63996}, {3931, 49537}, {3937, 24390}, {4187, 38389}, {4295, 37482}, {4694, 20615}, {5044, 31895}, {5482, 12047}, {5530, 64540}, {5572, 64547}, {9579, 31778}, {9655, 31785}, {10108, 37593}, {10483, 64580}, {11112, 42448}, {12609, 64544}, {15171, 29349}, {17605, 64528}, {17606, 64529}, {18180, 20292}, {20718, 31737}, {31757, 64550}, {35645, 48661}, {41682, 49600}
X(64539) = midpoint of X(i) and X(j) for these {i,j}: {10483, 64580}
X(64539) = reflection of X(i) in X(j) for these {i,j}: {1, 64538}, {3057, 64533}, {64534, 64535}, {64547, 5572}
X(64539) = pole of line {667, 4694} with respect to the incircle
X(64539) = pole of line {496, 3782} with respect to the Feuerbach hyperbola
X(64539) = pole of line {4358, 24793} with respect to the Steiner inellipse
X(64539) = pole of line {3733, 4063} with respect to the Suppa-Cucoanes circle
X(64539) = X(6662)-of-Ursa-minor-triangle
X(64539) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3931, 49537, 49557}, {64534, 64535, 354}
X(64540) lies on these lines: {4, 36926}, {5, 49641}, {44, 573}, {513, 17748}, {517, 2901}, {550, 970}, {2051, 5482}, {5530, 64539}, {5752, 18481}, {9535, 37482}, {9548, 64537}, {9567, 16528}, {28370, 61109}, {34466, 35203}, {48927, 64525}
X(64540) = pole of line {31946, 50493} with respect to the excircles-radical circle
X(64541) lies on these lines: {2, 64527}, {4, 8}, {5, 49993}, {10, 38390}, {30, 64578}, {35, 34461}, {140, 29349}, {226, 64534}, {496, 64538}, {511, 40273}, {513, 24387}, {516, 34466}, {908, 64526}, {946, 48933}, {1125, 64525}, {1385, 32486}, {1699, 37536}, {2818, 5893}, {3452, 64542}, {3579, 19648}, {3628, 53002}, {3817, 64528}, {3834, 5482}, {3843, 31785}, {7741, 35059}, {8227, 45829}, {11019, 64535}, {11230, 14131}, {11263, 33656}, {12053, 64533}, {15489, 28178}, {17173, 64544}, {18257, 41883}, {18514, 64580}, {19543, 29229}, {21617, 64547}, {24390, 38389}, {28208, 64568}, {53790, 61510}
X(64541) = midpoint of X(i) and X(j) for these {i,j}: {4, 64532}, {8, 64530}, {37536, 64537}, {64527, 64531},
X(64541) = reflection of X(i) in X(j) for these {i,j}: {10, 64529}, {5482, 9955}, {53002, 3628}, {64525, 1125}
X(64541) = complement of X(64531)
X(64541) = X(6662)-of-Wasat-triangle-triangle
X(64541) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64527, 64531}, {4, 64532, 517}, {1699, 64537, 37536}, {9955, 15310, 5482}
X(64542) lies on these lines: {2, 64526}, {8, 64533}, {9, 64531}, {10, 49641}, {42, 10108}, {71, 2173}, {210, 64539}, {513, 4015}, {517, 11793}, {518, 64535}, {936, 64532}, {958, 64525}, {1329, 64529}, {1376, 34466}, {2550, 37536}, {2886, 64528}, {3293, 49557}, {3452, 64541}, {4001, 34790}, {5044, 44419}, {5482, 31419}, {5782, 9709}, {8580, 64537}, {15310, 63978}, {15829, 64530}, {18228, 64527}, {18230, 64547}, {22278, 31737}, {35338, 48926}
X(64542) = midpoint of X(i) and X(j) for these {i,j}: {8, 64533}, {34790, 64538}, {64526, 64534}
X(64542) = complement of X(64534)
X(64542) = pole of line {4132, 44316} with respect to the Spieker circle
X(64542) = X(6662)-of-2nd-Zaniah-triangle
X(64542) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64526, 64534}
X(64543) lies on these lines: {1, 19}, {37, 11028}, {57, 4319}, {142, 17059}, {226, 1827}, {354, 3668}, {497, 1119}, {516, 942}, {518, 59646}, {938, 50861}, {950, 1876}, {1439, 14100}, {2263, 11518}, {2809, 30621}, {2835, 12016}, {3333, 30265}, {3873, 45738}, {4329, 10580}, {5728, 8804}, {8680, 13476}, {9440, 18413}, {11018, 40646}, {11019, 18589}, {11020, 18655}, {13405, 40530}, {14760, 24929}, {59483, 62674}
X(64543) = X(571)-of-inverse-in-incircle
X(64543) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {942, 9944, 60945}, {31571, 31572, 63999}
X(64544) lies on circumconic {{A, B, C, X(1389), X(24390)}} and on these lines: {1, 18174}, {2, 5482}, {3, 1730}, {21, 517}, {28, 9940}, {51, 7483}, {58, 942}, {60, 58569}, {65, 52680}, {81, 5045}, {140, 5446}, {333, 34790}, {373, 13747}, {375, 59719}, {392, 17588}, {404, 14131}, {405, 37536}, {442, 61643}, {496, 17197}, {500, 28258}, {511, 6675}, {513, 11263}, {851, 48926}, {859, 1385}, {991, 16415}, {1071, 37113}, {1125, 2392}, {1154, 10021}, {1212, 14964}, {1408, 3660}, {1437, 4228}, {1764, 57523}, {1780, 5173}, {1828, 5439}, {1872, 52891}, {2194, 16193}, {2328, 64419}, {2810, 63282}, {2836, 58568}, {3035, 58501}, {3286, 37582}, {3295, 18163}, {3555, 16704}, {3579, 17524}, {3647, 20718}, {3753, 11115}, {3794, 11110}, {3812, 35059}, {3819, 50205}, {3937, 64535}, {3953, 64559}, {3976, 18192}, {4184, 31663}, {4187, 64528}, {4221, 31787}, {4225, 13624}, {4267, 24929}, {4278, 5122}, {4653, 9957}, {4658, 5049}, {4999, 58469}, {5249, 64538}, {5259, 50362}, {5324, 11018}, {5358, 54417}, {5650, 17590}, {5719, 29958}, {5752, 6857}, {5777, 25516}, {5885, 11101}, {5901, 61638}, {6688, 52264}, {6888, 34462}, {7419, 15178}, {7489, 39271}, {7535, 36746}, {8021, 37623}, {8731, 48882}, {9895, 10391}, {9947, 64405}, {9955, 17167}, {9956, 47515}, {10110, 52265}, {10167, 31900}, {10441, 16418}, {10470, 19251}, {11108, 37521}, {11112, 64525}, {11227, 52012}, {11374, 56885}, {11451, 17566}, {12609, 64539}, {13411, 58497}, {13754, 16617}, {14956, 22793}, {15488, 50241}, {15670, 22076}, {15680, 61699}, {15952, 31788}, {16049, 40296}, {16164, 41592}, {16215, 64421}, {16948, 31794}, {17056, 49557}, {17173, 64541}, {17185, 35631}, {17530, 64529}, {17536, 33852}, {17810, 19547}, {18169, 37592}, {18792, 63522}, {19531, 19860}, {20831, 37527}, {24390, 64534}, {25514, 36742}, {27000, 46498}, {28383, 50317}, {31419, 64526}, {31792, 64415}, {34339, 37227}, {34381, 41582}, {37292, 46623}, {37370, 48931}, {37544, 64382}, {37693, 57666}, {37730, 64582}, {38472, 58404}, {40980, 50195}, {44253, 58619}, {46882, 59681}, {52541, 52564}, {57002, 58889}
X(64544) = midpoint of X(i) and X(j) for these {i,j}: {21, 18180}, {57002, 58889}
X(64544) = pole of line {1385, 3555} with respect to the Stammler hyperbola
X(64544) = X(5045)-of-2nd-anti-Pavlov-triangle
X(64544) = barycentric product X(i)*X(j) for these (i, j): {24390, 81}, {39747, 64534}
X(64544) = barycentric quotient X(i)/X(j) for these (i, j): {24390, 321}, {64534, 3995}
X(64544) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 18180, 517}, {51, 7483, 34466}, {58, 18165, 942}, {859, 54356, 1385}, {4228, 64394, 1437}, {4653, 18178, 9957}, {17167, 37357, 9955}, {58404, 58474, 38472}
X(64545) lies on these lines: {1, 75}, {37, 3840}, {42, 20892}, {43, 30090}, {192, 982}, {244, 56185}, {354, 42027}, {518, 59565}, {519, 64007}, {536, 42053}, {537, 21080}, {714, 13476}, {726, 942}, {730, 3664}, {742, 25371}, {872, 25106}, {899, 30044}, {1215, 20891}, {1278, 17450}, {2901, 50117}, {3739, 6685}, {3831, 3842}, {3950, 6184}, {3993, 37592}, {4688, 22316}, {4699, 59297}, {4704, 30948}, {4772, 32860}, {17157, 42055}, {17755, 51902}, {18743, 53676}, {20256, 29671}, {20923, 59511}, {21796, 46843}, {22167, 29824}, {24003, 29982}, {24357, 29668}, {25295, 62867}, {27633, 40533}, {28850, 64126}, {29649, 64170}, {58693, 59517}
X(64545) = midpoint of X(i) and X(j) for these {i,j}: {2901, 50117}
X(64545) = reflection of X(i) in X(j) for these {i,j}: {59716, 58620}
X(64545) = pole of line {4369, 27315} with respect to the Steiner inellipse
X(64545) = intersection, other than A, B, C, of circumconics {{A, B, C, X(274), X(30045)}}, {{A, B, C, X(13476), X(34063)}}
X(64545) = barycentric product X(i)*X(j) for these (i, j): {1, 30045}
X(64545) = barycentric quotient X(i)/X(j) for these (i, j): {30045, 75}
X(64545) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {536, 58620, 59716}
X(64546) lies on these lines: {1, 6}, {2, 58655}, {42, 21330}, {65, 24523}, {75, 354}, {192, 3873}, {210, 4687}, {346, 1002}, {517, 49471}, {519, 17049}, {536, 13476}, {674, 17390}, {714, 4891}, {726, 3881}, {740, 942}, {758, 58400}, {1764, 10178}, {2260, 8299}, {2277, 63515}, {2667, 3666}, {2805, 38484}, {2810, 58554}, {3059, 27475}, {3664, 6007}, {3681, 27268}, {3688, 29574}, {3696, 3812}, {3702, 3889}, {3720, 3728}, {3726, 17446}, {3739, 3741}, {3740, 4698}, {3753, 49459}, {3759, 63522}, {3779, 17316}, {3783, 28244}, {3842, 34790}, {3848, 31238}, {3870, 34247}, {3874, 3993}, {3875, 64560}, {3879, 9025}, {3880, 49475}, {3892, 49479}, {3912, 52020}, {4032, 5173}, {4111, 24603}, {4357, 4890}, {4360, 20358}, {4430, 4704}, {4446, 20691}, {4688, 58560}, {4699, 64149}, {4709, 5883}, {4755, 40607}, {4851, 17792}, {4852, 64524}, {4871, 25106}, {5045, 24325}, {5208, 8822}, {5249, 21926}, {5836, 22316}, {5847, 39543}, {5902, 49469}, {7201, 17625}, {9038, 17332}, {9507, 40941}, {9943, 10441}, {10167, 35621}, {10446, 15726}, {10473, 63994}, {10476, 30271}, {10914, 49678}, {12675, 35631}, {12680, 51063}, {12710, 35632}, {12723, 49518}, {13374, 64088}, {14520, 21629}, {15624, 23853}, {17065, 21857}, {17157, 32915}, {17165, 22016}, {17229, 22279}, {17231, 25144}, {17234, 61034}, {17243, 22277}, {17303, 28600}, {17319, 62872}, {17348, 64554}, {17356, 24653}, {17378, 49537}, {17609, 26106}, {17755, 58618}, {18398, 49474}, {20891, 25295}, {20992, 62853}, {21238, 25102}, {21443, 58584}, {22167, 62867}, {24210, 53476}, {24471, 39775}, {25277, 29982}, {25384, 29652}, {27261, 46897}, {27482, 31342}, {27633, 63497}, {28849, 50658}, {35612, 39594}, {35620, 39584}, {37676, 40934}, {44663, 48858}, {49481, 58562}, {58561, 61549}
X(64546) = midpoint of X(i) and X(j) for these {i,j}: {65, 49470}, {984, 3555}, {3874, 3993}, {3879, 21746}, {10914, 49678}, {11997, 54344}, {12680, 51063}, {12723, 49518}
X(64546) = reflection of X(i) in X(j) for these {i,j}: {75, 58583}, {960, 15569}, {3696, 3812}, {3739, 58571}, {3740, 64552}, {4688, 58560}, {17755, 58618}, {21443, 58584}, {22271, 4698}, {24325, 5045}, {30271, 58567}, {34790, 3842}, {49481, 58562}, {61549, 58561}, {64088, 13374}
X(64546) = anticomplement of X(58655)
X(64546) = X(i)-Dao conjugate of X(j) for these {i, j}: {58655, 58655}
X(64546) = X(i)-complementary conjugate of X(j) for these {i, j}: {34445, 1213}, {39741, 3454}, {39970, 1211}, {40025, 21245}, {59113, 661}
X(64546) = pole of line {3309, 47948} with respect to the Conway circle
X(64546) = pole of line {4083, 8640} with respect to the DeLongchamps ellipse
X(64546) = pole of line {55, 86} with respect to the Feuerbach hyperbola
X(64546) = pole of line {650, 7199} with respect to the Steiner inellipse
X(64546) = pole of line {1018, 25310} with respect to the Yff parabola
X(64546) = pole of line {274, 32932} with respect to the Wallace hyperbola
X(64546) = pole of line {142, 16589} with respect to the dual conic of Yff parabola
X(64546) = X(6748)-of-inverse-in-Conway-triangle
X(64546) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(29968)}}, {{A, B, C, X(2176), X(13476)}}, {{A, B, C, X(3294), X(42027)}}, {{A, B, C, X(56537), X(62541)}}
X(64546) = barycentric product X(i)*X(j) for these (i, j): {1, 29968}
X(64546) = barycentric quotient X(i)/X(j) for these (i, j): {29968, 75}
X(64546) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 354, 58583}, {518, 15569, 960}, {984, 3555, 518}, {2667, 4022, 3666}, {3739, 58571, 3742}, {3741, 25124, 3739}, {4698, 22271, 3740}, {22271, 64552, 4698}, {25295, 29824, 20891}
X(64547) lies on these lines: {7, 64527}, {9, 64526}, {1445, 64531}, {3174, 56885}, {4326, 64537}, {5572, 64539}, {7675, 64532}, {7676, 34466}, {7677, 64525}, {7678, 64528}, {7679, 64529}, {8236, 64533}, {11025, 64535}, {11526, 64530}, {11573, 15006}, {15310, 63972}, {18230, 64542}, {21617, 64541}
X(64547) = reflection of X(i) in X(j) for these {i,j}: {7, 64534}, {11573, 15006}, {64526, 9}, {64539, 5572}
X(64547) = X(6662)-of-Honsberger-triangle
X(64548) lies on these lines: {1, 15621}, {2, 58644}, {37, 38}, {56, 64522}, {57, 18613}, {65, 1149}, {181, 3756}, {244, 64550}, {513, 1401}, {518, 3840}, {528, 40649}, {551, 942}, {614, 53312}, {959, 64442}, {982, 20718}, {1201, 34434}, {1420, 20617}, {3555, 49999}, {3677, 64553}, {3742, 22325}, {3873, 3952}, {4430, 30861}, {4553, 29840}, {4884, 40521}, {7191, 50362}, {7248, 64016}, {10453, 44671}, {10473, 21769}, {10582, 64554}, {14973, 30942}, {16610, 22278}, {16969, 64560}, {18165, 29820}, {18240, 58624}, {24471, 57033}, {30148, 37536}, {31330, 58379}, {37663, 61166}, {40588, 40959}, {62819, 64561}
X(64548) = pole of line {51662, 57155} with respect to the circumcircle
X(64548) = pole of line {44319, 62739} with respect to the incircle
X(64548) = pole of line {649, 854} with respect to the DeLongchamps ellipse
X(64549) lies on these lines: {1, 228}, {2, 9052}, {6, 64559}, {31, 64560}, {51, 3475}, {55, 64524}, {105, 5320}, {154, 354}, {373, 25568}, {517, 62856}, {518, 19723}, {942, 62834}, {968, 20358}, {1011, 55340}, {1824, 5572}, {3917, 38053}, {4228, 43149}, {5045, 62808}, {5542, 26892}, {5603, 6000}, {7190, 15503}, {7191, 35612}, {10578, 51377}, {11036, 42448}, {17049, 33171}, {17597, 18165}, {17728, 58574}, {19785, 39543}, {24477, 61643}, {26885, 52015}, {29817, 35645}, {32914, 35892}, {37521, 64149}, {38314, 39550}, {51099, 61678}
X(64549) = pole of line {4802, 21104} with respect to the DeLongchamps ellipse
X(64550) lies on circumconic {{A, B, C, X(34434), X(41797)}} and on these lines: {2, 20718}, {31, 64523}, {42, 13476}, {51, 513}, {55, 64524}, {57, 53297}, {65, 1193}, {72, 28611}, {75, 14973}, {142, 22276}, {181, 1086}, {197, 5228}, {210, 4688}, {226, 38472}, {244, 64548}, {354, 42040}, {375, 527}, {517, 549}, {518, 4685}, {553, 8679}, {612, 64553}, {902, 64559}, {942, 22300}, {968, 64554}, {1202, 2262}, {1836, 38390}, {1962, 64552}, {2051, 53566}, {3185, 43915}, {3336, 18180}, {3725, 64556}, {3754, 6682}, {3812, 22299}, {4292, 58493}, {4359, 22275}, {4850, 58572}, {5903, 17063}, {5943, 17768}, {5959, 34093}, {8049, 40619}, {9052, 49732}, {11263, 34466}, {11281, 15489}, {11552, 56884}, {11553, 28238}, {15443, 24914}, {16453, 42443}, {16610, 27635}, {16980, 52783}, {17049, 44419}, {17140, 22294}, {17245, 40966}, {17365, 23638}, {17596, 18165}, {18139, 61172}, {20367, 52139}, {22325, 24325}, {23156, 64535}, {26037, 40607}, {26842, 56878}, {27003, 50362}, {29309, 49736}, {31757, 64539}, {31993, 58642}, {32771, 58644}, {32860, 44671}, {32932, 57024}, {37544, 44545}, {37593, 58571}, {37662, 39793}, {39550, 40726}, {58574, 64162}, {59296, 64581}, {61358, 64561}, {63511, 64016}
X(64550) = midpoint of X(i) and X(j) for these {i,j}: {51, 11246}
X(64550) = reflection of X(i) in X(j) for these {i,j}: {64162, 58574}
X(64550) = X(i)-Dao conjugate of X(j) for these {i, j}: {41797, 17135}
X(64550) = pole of line {676, 1459} with respect to the DeLongchamps ellipse
X(64550) = pole of line {2051, 40515} with respect to the dual conic of Yff parabola
X(64550) = barycentric product X(i)*X(j) for these (i, j): {41797, 57}
X(64550) = barycentric quotient X(i)/X(j) for these (i, j): {41797, 312}
X(64550) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 11246, 513}, {65, 1393, 64522}
X(64551) lies on circumconic {{A, B, C, X(2224), X(55161)}} and on these lines: {1, 692}, {41, 64523}, {48, 354}, {560, 64555}, {604, 13476}, {674, 52086}, {999, 20470}, {1319, 1471}, {2268, 64553}, {2278, 20358}, {3204, 63522}, {4851, 25523}, {5050, 42885}, {7113, 64560}, {9310, 64554}, {10246, 23344}, {15934, 51687}, {17438, 21346}, {22356, 59217}, {35327, 52015}, {52134, 57024}
X(64551) = barycentric product X(i)*X(j) for these (i, j): {1, 55161}
X(64551) = barycentric quotient X(i)/X(j) for these (i, j): {55161, 75}
X(64552) lies on these lines: {1, 4557}, {2, 44671}, {9, 64561}, {37, 38}, {513, 17392}, {517, 6176}, {518, 551}, {536, 3742}, {740, 3833}, {1149, 49478}, {1962, 64550}, {2486, 17758}, {2667, 64556}, {3247, 64553}, {3681, 4687}, {3696, 49999}, {3739, 3840}, {3740, 4698}, {3873, 51488}, {4430, 27268}, {4553, 29569}, {4664, 64149}, {4681, 58583}, {4890, 17245}, {5045, 27784}, {5439, 49462}, {5883, 50111}, {5902, 20718}, {6007, 49738}, {7671, 27475}, {10177, 51057}, {10389, 15624}, {16482, 46922}, {16672, 64560}, {16777, 64524}, {16826, 57024}, {17243, 22279}, {17359, 28600}, {17463, 21808}, {17609, 49515}, {20913, 57034}, {25078, 58564}, {26102, 58572}, {34583, 37633}, {37635, 61729}, {49491, 52875}
X(64552) = midpoint of X(i) and X(j) for these {i,j}: {37, 354}, {3740, 64546}, {3848, 58620}, {3892, 50094}, {4430, 64581}, {5883, 50111}, {10177, 51057}
X(64552) = reflection of X(i) in X(j) for these {i,j}: {354, 58571}, {3681, 40607}, {3739, 3848}, {3740, 4698}, {13476, 354}, {22271, 3740}, {58379, 2}
X(64552) = pole of line {649, 891} with respect to the DeLongchamps ellipse
X(64552) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 64554, 64523}, {2, 44671, 58379}, {37, 58571, 13476}, {3892, 50094, 518}
X(64553) lies on these lines: {1, 3286}, {2, 21865}, {8, 18144}, {9, 64523}, {37, 20358}, {38, 1755}, {65, 7225}, {75, 17142}, {141, 14839}, {192, 57024}, {239, 64581}, {354, 3723}, {513, 3056}, {517, 3098}, {518, 4523}, {612, 64550}, {674, 3663}, {758, 49472}, {1086, 3688}, {1449, 64561}, {2268, 64551}, {3057, 4864}, {3247, 64552}, {3270, 60919}, {3271, 17334}, {3662, 4553}, {3677, 64548}, {3747, 64557}, {3755, 9049}, {3779, 17301}, {3789, 28634}, {3799, 17283}, {3873, 17393}, {3875, 44671}, {3891, 22275}, {3946, 22277}, {4111, 50098}, {4271, 21320}, {4360, 62872}, {4361, 22271}, {4364, 17049}, {4384, 40607}, {4392, 50362}, {4446, 57039}, {4517, 17278}, {4657, 22279}, {4735, 28358}, {6385, 17143}, {6646, 25048}, {7064, 17337}, {7190, 43915}, {7263, 64007}, {8049, 27807}, {9025, 17345}, {9957, 15570}, {10477, 49453}, {15624, 37555}, {16482, 17336}, {16684, 62817}, {16777, 58571}, {16814, 63522}, {17144, 30938}, {17235, 17792}, {17246, 21746}, {17279, 40521}, {17318, 35892}, {17366, 20683}, {17395, 52020}, {17444, 17447}, {17452, 17463}, {17761, 55076}, {18040, 28597}, {18133, 20352}, {18191, 36263}, {20367, 20990}, {20964, 64558}, {21278, 39995}, {21334, 21342}, {22299, 37549}, {22325, 32920}, {23051, 34434}, {24661, 39742}, {25279, 48629}, {28593, 30982}, {28639, 58583}, {33122, 61172}, {46149, 49509}
X(64553) = midpoint of X(i) and X(j) for these {i,j}: {3056, 17276}, {10477, 49453}
X(64553) = reflection of X(i) in X(j) for these {i,j}: {17792, 17235}, {22277, 3946}
X(64553) = anticomplement of X(21865)
X(64553) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34443, 1654}, {55026, 1330}
X(64553) = pole of line {1019, 44319} with respect to the circumcircle
X(64553) = pole of line {512, 4162} with respect to the DeLongchamps ellipse
X(64553) = pole of line {27918, 36488} with respect to the Feuerbach hyperbola
X(64553) = pole of line {1621, 18042} with respect to the Stammler hyperbola
X(64553) = pole of line {16755, 33891} with respect to the Steiner circumellipse
X(64553) = pole of line {17143, 33764} with respect to the Wallace hyperbola
X(64553) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(8049), X(16679)}}, {{A, B, C, X(8053), X(27807)}}
X(64553) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 20358, 64524}, {37, 64524, 64554}, {3056, 17276, 513}, {4361, 56542, 22271}, {16777, 64560, 58571}
X(64554) lies on these lines: {1, 4557}, {2, 57024}, {6, 58571}, {9, 13476}, {37, 20358}, {44, 354}, {45, 64560}, {344, 21865}, {513, 4675}, {518, 24331}, {674, 29571}, {942, 15254}, {968, 64550}, {1100, 63522}, {1445, 43915}, {1743, 64561}, {2140, 2486}, {2183, 3720}, {3271, 17392}, {3707, 9038}, {3742, 4670}, {3747, 64558}, {3753, 4702}, {3758, 16482}, {3812, 49484}, {3826, 39543}, {3834, 30953}, {3873, 17335}, {3892, 4753}, {4384, 44671}, {4432, 5883}, {4553, 17244}, {4663, 5045}, {4672, 58565}, {4687, 56537}, {4852, 58620}, {4890, 17366}, {4965, 7278}, {5272, 58572}, {5311, 64559}, {6007, 34824}, {6384, 30938}, {6666, 22277}, {8167, 35612}, {9054, 31285}, {9310, 64551}, {9345, 18191}, {10582, 64548}, {11375, 45963}, {15950, 53548}, {16832, 58379}, {17049, 17243}, {17063, 24696}, {17245, 21746}, {17259, 22271}, {17260, 64581}, {17279, 22279}, {17337, 52020}, {17348, 64546}, {17351, 58583}, {17451, 17463}, {18165, 26102}, {20964, 64557}, {20990, 55340}, {24327, 46843}, {25048, 29569}, {40131, 53312}, {40521, 41313}, {42356, 50658}, {47373, 52015}
X(64554) = midpoint of X(i) and X(j) for these {i,j}: {45, 64560}
X(64554) = pole of line {891, 54249} with respect to the DeLongchamps ellipse
X(64554) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64523, 64552, 1}
X(64555) lies on these lines: {1, 1258}, {244, 1964}, {354, 63504}, {560, 64551}, {756, 56537}, {872, 64523}, {1015, 21815}, {1100, 3726}, {1279, 61399}, {1386, 2650}, {2170, 9449}, {2309, 20358}, {3123, 21746}, {3248, 13476}, {3663, 23634}, {3725, 64559}, {3728, 21352}, {3747, 55340}, {3873, 18194}, {4259, 28403}, {7032, 64560}, {16507, 64561}, {16696, 42038}, {16710, 42053}, {17348, 21805}, {17394, 17450}, {17445, 22167}, {20090, 63526}, {20706, 23660}, {21278, 30982}, {23633, 28358}, {24661, 64149}, {27846, 52020}
X(64555) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17445, 57024, 22167}
X(64556) lies on these lines: {2, 37}, {6, 16726}, {38, 40607}, {39, 17337}, {42, 58571}, {44, 16574}, {213, 39797}, {239, 29437}, {244, 872}, {335, 29483}, {386, 5045}, {518, 3216}, {614, 15624}, {714, 25106}, {800, 37646}, {869, 64524}, {899, 4022}, {980, 17259}, {982, 64581}, {1086, 21796}, {1104, 16453}, {1279, 5132}, {1333, 11349}, {1418, 5165}, {1921, 29454}, {1964, 64523}, {2092, 17245}, {2664, 56537}, {2667, 64552}, {3589, 39798}, {3696, 50605}, {3725, 64550}, {3728, 58379}, {3840, 22316}, {3912, 21858}, {3946, 8610}, {4032, 43048}, {4255, 50203}, {4263, 17392}, {4271, 28350}, {4277, 4648}, {4446, 22323}, {4553, 24478}, {5069, 37650}, {6532, 20108}, {7032, 16507}, {7201, 26742}, {7277, 53543}, {10449, 21896}, {16696, 17277}, {16700, 32911}, {16716, 17682}, {16727, 39735}, {16728, 17352}, {17053, 17366}, {17231, 21857}, {17237, 21892}, {17348, 37596}, {17398, 31198}, {17749, 49515}, {18040, 59715}, {18143, 26772}, {18148, 59526}, {18150, 26756}, {19512, 50650}, {19543, 30271}, {20363, 29438}, {20718, 24443}, {21330, 44671}, {23488, 29557}, {24897, 41805}, {25125, 59514}, {28014, 37503}, {28248, 58642}, {29571, 56926}, {39974, 49738}, {49725, 50620}, {51415, 53476}, {58401, 64161}
X(64556) = reflection of X(i) in X(j) for these {i,j}: {20892, 3739}
X(64556) = complement of X(18137)
X(64556) = X(i)-Ceva conjugate of X(j) for these {i, j}: {53651, 513}
X(64556) = X(i)-complementary conjugate of X(j) for these {i, j}: {32, 40586}, {6577, 3835}, {8049, 626}, {34444, 141}, {39735, 21235}, {39797, 2887}, {40005, 40379}, {40147, 3454}, {40504, 21245}, {53651, 21262}
X(64556) = pole of line {1333, 63087} with respect to the Stammler hyperbola
X(64556) = pole of line {513, 23506} with respect to the Steiner inellipse
X(64556) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3995), X(39957)}}, {{A, B, C, X(18137), X(39797)}}
X(64556) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {244, 872, 13476}, {536, 3739, 20892}, {614, 15624, 64557}, {3666, 4698, 37}
X(64557) lies on circumconic {{A, B, C, X(3970), X(13476)}} and on these lines: {1, 6}, {31, 13476}, {75, 62806}, {105, 2220}, {540, 48823}, {614, 15624}, {748, 40607}, {1621, 33760}, {1918, 64524}, {2209, 64523}, {3739, 3744}, {3747, 64553}, {3915, 20718}, {3938, 22271}, {3941, 16726}, {4022, 29818}, {16696, 23407}, {17135, 17279}, {17357, 31330}, {18137, 20045}, {20964, 64554}, {22316, 50023}, {34444, 56853}, {41312, 50257}
X(64557) = pole of line {274, 62814} with respect to the Wallace hyperbola
X(64557) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {614, 15624, 64556}, {1918, 64524, 64558}
X(64558) lies on these lines: {6, 20367}, {31, 64523}, {37, 21371}, {43, 22323}, {44, 4363}, {57, 16726}, {980, 1100}, {1086, 4274}, {1386, 24464}, {1449, 18186}, {1918, 64524}, {2209, 13476}, {3747, 64554}, {3759, 62636}, {4641, 63060}, {5165, 5222}, {5256, 16666}, {9352, 36289}, {20964, 64553}, {28254, 46838}, {29966, 41310}, {33882, 62797}
X(64558) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1918, 64524, 64557}
X(64559) lies on these lines: {1, 4245}, {6, 64549}, {31, 64524}, {42, 64523}, {55, 55340}, {65, 595}, {81, 105}, {210, 3757}, {518, 19742}, {902, 64550}, {2223, 39797}, {2308, 13476}, {3057, 51715}, {3475, 63498}, {3683, 20358}, {3722, 22278}, {3725, 64555}, {3953, 64544}, {4553, 29851}, {5311, 64554}, {5943, 17724}, {13407, 57666}, {14523, 43214}, {14746, 40972}, {16482, 32938}, {17625, 51708}, {17718, 63511}, {23415, 38347}, {23638, 37703}, {28027, 58493}, {29820, 50362}, {32914, 57024}
X(64559) = pole of line {3100, 20222} with respect to the Feuerbach hyperbola
X(64559) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7191, 18165, 354}
X(64560) lies on these lines: {1, 3}, {2, 20683}, {6, 13476}, {7, 2481}, {31, 64549}, {38, 5283}, {45, 64554}, {69, 17049}, {75, 35892}, {105, 60722}, {142, 3779}, {181, 3475}, {210, 16832}, {213, 614}, {239, 3873}, {244, 869}, {274, 5208}, {497, 17753}, {513, 62223}, {518, 4384}, {672, 59217}, {674, 4675}, {758, 24331}, {948, 1362}, {1001, 62817}, {1002, 5222}, {1015, 3117}, {1107, 21342}, {1334, 3720}, {1401, 7195}, {1463, 59372}, {1469, 5542}, {1743, 63522}, {1836, 4056}, {2082, 20229}, {2171, 21346}, {2276, 60677}, {2664, 17063}, {3041, 28827}, {3056, 3664}, {3218, 23407}, {3271, 4644}, {3294, 4423}, {3315, 62813}, {3672, 4890}, {3681, 16815}, {3688, 4648}, {3706, 32104}, {3742, 16831}, {3754, 49458}, {3763, 22279}, {3789, 24603}, {3799, 29572}, {3868, 16823}, {3874, 16825}, {3875, 64546}, {3881, 49488}, {4000, 52020}, {4042, 29773}, {4191, 40638}, {4259, 25557}, {4363, 57024}, {4392, 40773}, {4430, 16816}, {4517, 29571}, {4553, 17313}, {4847, 17050}, {4859, 61034}, {4888, 49537}, {4896, 29353}, {5439, 39586}, {5572, 12723}, {5836, 49451}, {5883, 36480}, {6007, 42697}, {7032, 64555}, {7113, 64551}, {7353, 31570}, {7362, 31569}, {9054, 34824}, {10436, 58583}, {10453, 17143}, {10477, 24325}, {10521, 15658}, {11037, 50626}, {14154, 63822}, {14839, 17316}, {15668, 56537}, {16476, 32913}, {16672, 64552}, {16777, 58571}, {16826, 64149}, {16969, 64548}, {16972, 58562}, {16975, 17449}, {17119, 44671}, {17154, 31036}, {17259, 64581}, {17267, 21865}, {17278, 22277}, {17298, 17792}, {17378, 25048}, {17794, 30830}, {18165, 18206}, {20116, 32118}, {20455, 59405}, {20544, 30985}, {20680, 24578}, {20992, 55340}, {21240, 31330}, {21384, 62823}, {24248, 39543}, {24268, 62852}, {24471, 58563}, {28600, 29603}, {29597, 58560}, {29988, 63147}, {34791, 49495}, {38989, 56697}, {39341, 49490}, {40730, 52209}, {49478, 60673}
X(64560) = reflection of X(i) in X(j) for these {i,j}: {45, 64554}, {4517, 29571}
X(64560) = X(i)-Dao conjugate of X(j) for these {i, j}: {30949, 49450}
X(64560) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8693, 513}
X(64560) = pole of line {513, 665} with respect to the incircle
X(64560) = pole of line {513, 665} with respect to the DeLongchamps ellipse
X(64560) = pole of line {1, 4059} with respect to the Feuerbach hyperbola
X(64560) = pole of line {21, 56542} with respect to the Stammler hyperbola
X(64560) = pole of line {226, 40784} with respect to the dual conic of Yff parabola
X(64560) = X(458)-of-intouch
X(64560) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(2223)}}, {{A, B, C, X(55), X(2481)}}, {{A, B, C, X(57), X(30949)}}, {{A, B, C, X(241), X(13476)}}, {{A, B, C, X(981), X(3744)}}, {{A, B, C, X(2283), X(4569)}}, {{A, B, C, X(3296), X(37609)}}
X(64560) = barycentric product X(i)*X(j) for these (i, j): {1, 30949}
X(64560) = barycentric quotient X(i)/X(j) for these (i, j): {30949, 75}
X(64560) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 57, 2223}, {1, 982, 980}, {2, 62872, 56542}, {105, 62797, 60722}, {13476, 64524, 6}, {58571, 64553, 16777}
X(64561) lies on these lines: {6, 13476}, {9, 64552}, {44, 58571}, {86, 40607}, {354, 4722}, {513, 7277}, {518, 33682}, {524, 22279}, {651, 43915}, {757, 17943}, {872, 16726}, {894, 44671}, {1449, 64553}, {1743, 64554}, {2663, 16696}, {3879, 21865}, {4553, 20090}, {4557, 18164}, {4649, 20718}, {4667, 22277}, {4670, 22271}, {5750, 9038}, {9440, 40636}, {10436, 58379}, {16507, 64555}, {16668, 20358}, {17049, 32455}, {17120, 57024}, {17379, 64581}, {17390, 40521}, {20683, 63401}, {32913, 58572}, {38390, 61707}, {38472, 61652}, {46922, 56537}, {61358, 64550}, {62819, 64548}
X(64561) = midpoint of X(i) and X(j) for these {i,j}: {7277, 52020}
X(64561) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {651, 55102, 43915}
X(64562) lies on these lines: {1, 39711}, {8, 443}, {75, 62854}, {192, 3622}, {229, 8666}, {244, 1698}, {596, 62831}, {1125, 3971}, {1201, 31178}, {2975, 45738}, {3646, 4756}, {3869, 17140}, {3875, 56048}, {3889, 50625}, {4329, 42697}, {4968, 64149}, {5880, 21289}, {17154, 31359}, {17164, 62835}, {17609, 28605}, {28581, 39739}, {31264, 34595}, {31339, 62868}, {49499, 64581}, {52352, 62870}
X(64562) = midpoint of X(i) and X(j) for these {i,j}: {1, 39711}
X(64562) = anticomplement of X(56237)
X(64562) = X(i)-Dao conjugate of X(j) for these {i, j}: {56237, 56237}
X(64562) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {58, 3617}, {60, 12526}, {81, 32099}, {110, 4778}, {593, 10436}, {662, 48079}, {1333, 41839}, {1412, 62999}, {1449, 2895}, {2363, 3714}, {3361, 2475}, {3616, 1330}, {4565, 48268}, {4570, 4756}, {4652, 52364}, {4778, 3448}, {4790, 21221}, {4801, 21294}, {17553, 21291}, {19804, 21287}, {21454, 2893}, {31903, 4}, {42028, 69}, {48580, 150}, {58140, 148}
X(64562) = pole of line {4790, 4801} with respect to the Steiner circumellipse
X(64562) = pole of line {17393, 63158} with respect to the Wallace hyperbola
X(64562) = pole of line {4656, 33172} with respect to the dual conic of Yff parabola
X(64563) lies on these lines: {1, 4234}, {2, 56174}, {8, 210}, {75, 3890}, {145, 3175}, {190, 36846}, {192, 3623}, {320, 4329}, {643, 3915}, {1125, 24174}, {1222, 56082}, {1997, 63133}, {2098, 3685}, {2136, 3699}, {2802, 46937}, {3210, 45219}, {3244, 24068}, {3445, 62300}, {3622, 3666}, {3656, 25650}, {3680, 30568}, {3878, 50625}, {3922, 26103}, {3996, 15829}, {4301, 18134}, {5057, 64584}, {5836, 30829}, {7270, 30305}, {10107, 30947}, {10912, 56311}, {11682, 45738}, {12632, 44722}, {12640, 62297}, {12699, 34548}, {12701, 60452}, {13463, 29641}, {14923, 18743}, {17154, 39702}, {17158, 53332}, {17164, 62835}, {17777, 32049}, {19804, 58679}, {20041, 42044}, {21272, 33780}, {22016, 49450}, {29824, 64580}, {56078, 64205}
X(64563) = reflection of X(i) in X(j) for these {i,j}: {8, 59577}, {34860, 1}, {44720, 19582}
X(64563) = anticomplement of X(56174)
X(64563) = X(i)-Dao conjugate of X(j) for these {i, j}: {56174, 56174}
X(64563) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {58, 3621}, {60, 11682}, {81, 21296}, {110, 3667}, {145, 1330}, {593, 17151}, {662, 4106}, {1333, 17490}, {1412, 4373}, {1420, 2475}, {1743, 2895}, {3052, 1654}, {3667, 3448}, {4248, 4}, {4394, 21221}, {4462, 21294}, {4556, 4897}, {4565, 3676}, {4570, 3699}, {4591, 4927}, {4855, 52364}, {5435, 2893}, {8643, 148}, {16948, 8}, {18743, 21287}, {20818, 3151}, {33628, 2}, {41629, 69}, {52352, 3436}
X(64563) = pole of line {3699, 25268} with respect to the Kiepert parabola
X(64563) = pole of line {1408, 3915} with respect to the Stammler hyperbola
X(64563) = pole of line {4394, 4462} with respect to the Steiner circumellipse
X(64563) = pole of line {1014, 3875} with respect to the Wallace hyperbola
X(64563) = pole of line {5233, 24175} with respect to the dual conic of Yff parabola
X(64563) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(59577)}}, {{A, B, C, X(8), X(28370)}}, {{A, B, C, X(3701), X(34860)}}
X(64563) = barycentric product X(i)*X(j) for these (i, j): {28370, 312}
X(64563) = barycentric quotient X(i)/X(j) for these (i, j): {28370, 57}
X(64563) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 19582, 59577}, {3880, 19582, 44720}, {3880, 59577, 8}
X(64564) lies on circumconic {{A, B, C, X(1441), X(56727)}} and on these lines: {2, 158}, {4, 1441}, {8, 6515}, {21, 92}, {75, 51978}, {192, 6392}, {5271, 62810}, {6358, 10393}, {7650, 42455}, {12514, 45738}, {14361, 23661}, {17134, 37418}, {20320, 25935}, {24068, 31397}, {37095, 64420}
X(64564) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {28, 55109}, {58, 64081}, {3085, 1330}, {3553, 2895}, {19349, 3152}, {37383, 4}, {37550, 2475}, {55104, 52364}, {60494, 13219}, {62843, 8}
X(64565) lies on these lines: {1, 24237}, {2, 64569}, {3, 48863}, {4, 17749}, {10, 37331}, {20, 391}, {30, 15489}, {39, 49131}, {40, 64572}, {55, 64573}, {100, 64567}, {165, 44039}, {515, 550}, {516, 64578}, {517, 596}, {759, 6906}, {952, 53002}, {1155, 64577}, {2051, 15971}, {2654, 40687}, {3522, 10454}, {3667, 31803}, {4220, 64576}, {4292, 29307}, {4297, 41430}, {5881, 16528}, {7991, 64571}, {9778, 64568}, {13442, 50650}, {13478, 37022}, {17355, 30618}, {21363, 50419}, {29069, 31793}, {29353, 59303}, {51558, 62320}
X(64565) = midpoint of X(i) and X(j) for these {i,j}: {40, 64572}, {7991, 64571}, {44039, 64575}
X(64565) = reflection of X(i) in X(j) for these {i,j}: {4, 64570}, {64566, 3}
X(64565) = anticomplement of X(64569)
X(64565) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {165, 64575, 44039}
X(64566) lies on these lines: {1, 2051}, {2, 10454}, {3, 48863}, {4, 991}, {5, 515}, {8, 9568}, {10, 13731}, {20, 64247}, {21, 64576}, {30, 5482}, {56, 64573}, {225, 40677}, {405, 13478}, {411, 6011}, {516, 15488}, {519, 970}, {572, 13740}, {573, 10449}, {942, 29069}, {944, 995}, {950, 19542}, {952, 34466}, {1746, 5047}, {2646, 64577}, {2975, 64567}, {3185, 56861}, {3244, 9569}, {3576, 64572}, {3616, 64568}, {3840, 4192}, {3868, 54035}, {4891, 31779}, {5046, 17182}, {5188, 49132}, {5396, 5882}, {5400, 21214}, {5691, 26102}, {5718, 10106}, {5743, 5795}, {5754, 37727}, {5755, 24391}, {5786, 11108}, {5799, 63999}, {7987, 29827}, {9567, 50588}, {10440, 59302}, {10479, 61109}, {10882, 30942}, {13244, 27368}, {13323, 48866}, {16607, 29065}, {16678, 52357}, {18481, 19648}, {23361, 34589}, {29307, 64004}, {29311, 35633}, {35631, 64536}, {35635, 54318}, {37365, 48894}, {37646, 64582}, {37693, 45287}, {43174, 48886}, {43739, 52087}, {57719, 60135}
X(64566) = midpoint of X(i) and X(j) for these {i,j}: {1, 44039}
X(64566) = reflection of X(i) in X(j) for these {i,j}: {4, 64569}, {35631, 64536}, {64565, 3}, {64578, 1125}
X(64566) = anticomplement of X(64570)
X(64566) = X(i)-Dao conjugate of X(j) for these {i, j}: {64570, 64570}
X(64566) = pole of line {8714, 17420} with respect to the excircles-radical circle
X(64566) = pole of line {2260, 37646} with respect to the dual conic of Yff parabola
X(64566) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 51558, 2051}, {5, 6176, 1125}, {8, 21363, 9568}, {515, 1125, 64578}
X(64567) lies on these lines: {2, 64573}, {8, 48883}, {10, 22345}, {30, 64526}, {63, 44039}, {72, 515}, {78, 64572}, {100, 64565}, {200, 64575}, {329, 64568}, {355, 22458}, {518, 64577}, {519, 16980}, {908, 64578}, {952, 29958}, {2975, 64566}, {4696, 57287}, {8192, 48863}, {11680, 64569}, {11681, 64570}, {11682, 64571}, {11688, 64576}, {17499, 20096}, {23361, 52357}, {25237, 28598}
X(64567) = anticomplement of X(64573)
X(64568) lies on circumconic {{A, B, C, X(10454), X(51565)}} and on these lines: {1, 4}, {2, 44039}, {7, 64573}, {8, 1764}, {10, 10882}, {20, 64572}, {30, 64527}, {145, 10446}, {329, 64567}, {355, 10479}, {516, 64575}, {517, 64184}, {519, 12126}, {952, 10441}, {956, 5786}, {958, 1746}, {960, 54035}, {995, 51558}, {1125, 10887}, {1193, 50037}, {1482, 48899}, {1698, 64574}, {1837, 10475}, {2975, 13478}, {3146, 20037}, {3616, 64566}, {3741, 19647}, {3869, 29069}, {4297, 10434}, {5484, 10468}, {5587, 19863}, {5731, 10470}, {5793, 16435}, {5795, 18229}, {5853, 10442}, {5881, 10476}, {6738, 11021}, {7354, 29207}, {9535, 20036}, {9778, 64565}, {9779, 64569}, {9780, 64570}, {9791, 64576}, {9799, 10463}, {10435, 10890}, {10439, 28236}, {10444, 57287}, {10473, 10950}, {10474, 37740}, {10480, 10944}, {10856, 57284}, {10886, 19925}, {12550, 16124}, {18525, 19648}, {28160, 64532}, {28164, 45829}, {28204, 35631}, {28208, 64541}, {28224, 39550}, {35620, 37730}, {35634, 38455}, {37558, 45189}, {54331, 63968}
X(64568) = reflection of X(i) in X(j) for these {i,j}: {20, 64572}, {145, 64571}, {10454, 1}, {12435, 12545}, {44039, 64578}
X(64568) = anticomplement of X(44039)
X(64568) = pole of line {522, 4318} with respect to the Conway circle
X(64568) = X(185)-of-3rd-Conway-triangle
X(64568) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 515, 10454}, {8, 10465, 1764}, {145, 10446, 11521}, {355, 37620, 10479}, {519, 12545, 12435}
X(64569) lies on these lines: {2, 64565}, {4, 991}, {5, 20108}, {10, 15507}, {11, 64573}, {30, 14131}, {515, 546}, {517, 4075}, {952, 64529}, {1699, 44039}, {3817, 64578}, {3832, 10454}, {5806, 29069}, {6842, 31845}, {7988, 64575}, {8227, 64572}, {8229, 64576}, {9779, 64568}, {11522, 64571}, {11680, 64567}, {12572, 29307}, {17605, 64577},
X(64569) = midpoint of X(i) and X(j) for these {i,j}: {4, 64566}
X(64569) = reflection of X(i) in X(j) for these {i,j}: {64570, 5}
X(64569) = complement of X(64565)
X(64570) lies on these lines: {2, 10454}, {3, 17259}, {4, 17749}, {5, 20108}, {10, 15825}, {12, 64573}, {30, 64529}, {73, 40687}, {140, 515}, {386, 24220}, {404, 1746}, {474, 13478}, {516, 15489}, {572, 56766}, {950, 54387}, {952, 64528}, {1698, 44039}, {1764, 9568}, {2051, 3216}, {3667, 31871}, {3679, 64571}, {3828, 64574}, {5044, 29069}, {5051, 64576}, {5400, 15971}, {5587, 64572}, {5691, 62711}, {5786, 16408}, {5816, 56737}, {6686, 19925}, {6831, 42425}, {7989, 64575}, {9569, 48899}, {9780, 64568}, {10106, 37634}, {10440, 12545}, {10465, 26038}, {10882, 26037}, {11681, 64567}, {16569, 50037}, {17606, 64577}, {19335, 48937}, {19549, 50605}, {21363, 50702}, {23361, 41797}, {24618, 57283}, {29307, 64001}, {37662, 64582}
X(64570) = midpoint of X(i) and X(j) for these {i,j}: {4, 64565}, {10, 64578}
X(64570) = reflection of X(i) in X(j) for these {i,j}: {64569, 5}
X(64570) = complement of X(64566)
X(64571) lies on these lines: {1, 2051}, {4, 50637}, {8, 64578}, {10, 19549}, {30, 64530}, {145, 10446}, {382, 515}, {517, 64572}, {519, 10441}, {551, 64574}, {952, 15488}, {996, 37415}, {1222, 6996}, {2098, 64577}, {3057, 29069}, {3146, 14261}, {3241, 10454}, {3340, 64573}, {3663, 10106}, {3679, 64570}, {3890, 54035}, {5853, 43172}, {5881, 50625}, {7982, 48941}, {7991, 64565}, {10459, 24220}, {11522, 64569}, {11531, 64575}, {11533, 64576}, {11682, 64567}, {12513, 13478},
X(64571) = midpoint of X(i) and X(j) for these {i,j}: {145, 64568}, {11531, 64575}
X(64571) = reflection of X(i) in X(j) for these {i,j}: {8, 64578}, {7991, 64565}, {44039, 1}
X(64572) lies on circumconic {{A, B, C, X(41904), X(44039)}} and on these lines: {1, 15971}, {3, 10}, {4, 995}, {20, 64568}, {30, 64532}, {40, 64565}, {56, 64577}, {78, 64567}, {222, 5710}, {516, 54338}, {517, 64571}, {519, 31785}, {944, 991}, {950, 17721}, {978, 5400}, {1503, 18990}, {3576, 64566}, {3878, 29057}, {5014, 57287}, {5264, 45287}, {5587, 64570}, {5731, 10454}, {7683, 64172}, {8227, 64569}, {8235, 64576}, {10572, 24239}, {11322, 24997}, {14110, 29069}, {28470, 48075}, {34773, 48893}
X(64572) = midpoint of X(i) and X(j) for these {i,j}: {1, 64575}, {20, 64568}
X(64572) = reflection of X(i) in X(j) for these {i,j}: {4, 64578}, {40, 64565}, {44039, 3}
X(64572) = pole of line {3772, 61412} with respect to the dual conic of Yff parabola
X(64572) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 515, 44039}
X(64573) lies on these lines: {1, 15971}, {2, 64567}, {7, 64568}, {11, 64569}, {12, 64570}, {30, 58535}, {55, 64565}, {56, 64566}, {57, 44039}, {150, 5484}, {226, 64578}, {515, 942}, {944, 4306}, {952, 64533}, {1284, 64576}, {1401, 10950}, {3340, 64571}, {3600, 10454}, {3664, 10106}, {3953, 10572}, {5260, 24618}, {6284, 33551}, {7354, 21746}, {10570, 22769}, {18689, 20880}, {23536, 40677}, {24237, 37558}, {34589, 55362}, {40687, 59305}
X(64573) = complement of X(64567)
X(64573) = pole of line {17496, 21173} with respect to the incircle
X(64573) = pole of line {6354, 61412} with respect to the dual conic of Yff parabola
X(64573) = barycentric product X(i)*X(j) for these (i, j): {52358, 64582}
X(64573) = barycentric quotient X(i)/X(j) for these (i, j): {64582, 46880}
X(64574) lies on circumconic {{A, B, C, X(573), X(15654)}} and on these lines: {3, 10}, {4, 33109}, {8, 9548}, {20, 47639}, {30, 49641}, {40, 7283}, {43, 944}, {102, 8707}, {145, 9549}, {181, 64163}, {386, 5882}, {517, 63800}, {519, 970}, {551, 64571}, {573, 2321}, {946, 30116}, {950, 5255}, {952, 59303}, {1385, 6685}, {1695, 12245}, {1698, 64568}, {2051, 13464}, {3550, 10572}, {3634, 64578}, {3679, 10454}, {3754, 29069}, {3828, 64570}, {3831, 37620}, {4203, 24996}, {4745, 62185}, {5530, 10106}, {5587, 19853}, {5657, 59313}, {5731, 59299}, {5818, 59312}, {5881, 9534}, {5903, 54035}, {7686, 29054}, {7982, 9535}, {9567, 37727}, {9623, 35635}, {10175, 19858}, {10406, 11011}, {10408, 64110}, {10459, 51558}, {13740, 39573}, {29057, 31788}, {35203, 43174}, {35633, 45955}
X(64574) = midpoint of X(i) and X(j) for these {i,j}: {10, 44039}
X(64574) = reflection of X(i) in X(j) for these {i,j}: {64578, 3634}
X(64574) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 44039, 515}, {2536, 2537, 15654}, {30116, 50037, 946}
X(64575) lies on these lines: {1, 15971}, {3, 32918}, {4, 1193}, {8, 20}, {30, 64537}, {43, 5691}, {57, 64577}, {165, 44039}, {200, 64567}, {355, 37331}, {516, 64568}, {944, 4300}, {962, 20037}, {1469, 1503}, {1699, 64578}, {1742, 59310}, {3146, 20036}, {3220, 10570}, {3741, 4297}, {3869, 29057}, {4307, 10106}, {5587, 26030}, {5794, 18235}, {6210, 50419}, {7413, 10448}, {7987, 29827}, {7988, 64569}, {7989, 64570}, {8245, 64576}, {9840, 31339}, {11203, 31359}, {11531, 64571}, {12114, 37195}, {17016, 24257}, {17751, 20368}, {18481, 37425}, {19840, 37088}, {28164, 59303}, {31330, 50423}, {59299, 59387}
X(64575) = reflection of X(i) in X(j) for these {i,j}: {1, 64572}, {10454, 4297}, {11531, 64571}, {44039, 64565}
X(64575) = pole of line {21052, 21189} with respect to the excircles-radical circle
X(64575) = pole of line {6332, 20521} with respect to the Steiner circumellipse
X(64575) = pole of line {23681, 61412} with respect to the dual conic of Yff parabola
X(64575) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {44039, 64565, 165}
X(64576) lies on these lines: {10, 9840}, {21, 64566}, {515, 9959}, {846, 44039}, {1284, 64573}, {4220, 64565}, {4425, 64578}, {5051, 64570}, {8229, 64569}, {8235, 64572}, {8245, 64575}, {9791, 64568}, {11533, 64571}, {11688, 64567}, {17611, 64577},
X(64577) lies on these lines: {1, 4}, {10, 859}, {25, 10570}, {30, 64539}, {55, 44039}, {56, 64572}, {57, 64575}, {354, 64573}, {516, 64580}, {518, 64567}, {952, 5446}, {1155, 64565}, {1401, 7354}, {2098, 64571}, {2646, 64566}, {3575, 64507}, {5285, 40455}, {5724, 50622}, {5795, 28376}, {10457, 64582}, {10944, 50621}, {10950, 21746}, {11109, 41401}, {13478, 22760}, {15232, 52150}, {15971, 37558}, {17605, 64569}, {17606, 64570}, {17611, 64576}, {17647, 50605}, {17751, 57287}, {27621, 57284}, {28348, 56861}, {29069, 64043}, {37259, 56862}
X(64577) = pole of line {65, 2051} with respect to the Feuerbach hyperbola
X(64578) lies on these lines: {1, 9551}, {2, 44039}, {4, 995}, {5, 515}, {8, 64571}, {10, 15825}, {30, 64541}, {56, 13478}, {226, 64573}, {355, 50605}, {516, 64565}, {517, 64185}, {519, 35631}, {573, 10465}, {908, 64567}, {946, 36250}, {960, 29069}, {978, 50037}, {999, 5786}, {1042, 24237}, {1193, 2051}, {1699, 64575}, {1746, 2975}, {3616, 10454}, {3634, 64574}, {3667, 12688}, {3817, 64569}, {3840, 19546}, {4297, 9840}, {4425, 64576}, {5691, 21214}, {5793, 19517}, {10106, 39595}, {10446, 20036}, {10882, 31339}, {11521, 20040}, {15232, 34589}, {29311, 43164}, {29827, 37714}, {35649, 41723}, {37558, 40687}, {49997, 51558}, {64126, 64582}
X(64578) = midpoint of X(i) and X(j) for these {i,j}: {4, 64572}, {8, 64571}, {43164, 59303}, {44039, 64568},
X(64578) = reflection of X(i) in X(j) for these {i,j}: {10, 64570}, {64566, 1125}, {64574, 3634}
X(64578) = complement of X(44039)
X(64578) = pole of line {1400, 37646} with respect to the dual conic of Yff parabola
X(64578) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64568, 44039}, {515, 1125, 64566}, {43164, 59303, 29311}
X(64579) lies on these lines: {2, 277}, {8, 15853}, {63, 15490}, {200, 6605}, {644, 3870}, {846, 8580}, {3161, 3693}, {3873, 35341}, {3971, 13405}, {5296, 44798}, {8012, 41228}, {8055, 40784}, {11019, 26690}, {17093, 28740}, {19541, 56536}, {27396, 40869}, {40997, 52818}
X(64579) = X(i)-Dao conjugate of X(j) for these {i, j}: {3059, 1212}
X(64579) = X(i)-Ceva conjugate of X(j) for these {i, j}: {31618, 8}
X(64579) = pole of line {522, 693} with respect to the dual conic of Adams circle
X(64579) = pole of line {693, 3900} with respect to the dual conic of incircle
X(64579) = pole of line {644, 3939} with respect to the dual conic of Feuerbach hyperbola
X(64579) = pole of line {693, 45755} with respect to the dual conic of Suppa-Cucoanes circle
X(64579) = intersection, other than A, B, C, of circumconics {{A, B, C, X(277), X(10482)}}, {{A, B, C, X(6605), X(30628)}}, {{A, B, C, X(20880), X(55337)}}
X(64579) = barycentric product X(i)*X(j) for these (i, j): {30628, 8}
X(64579) = barycentric quotient X(i)/X(j) for these (i, j): {30628, 7}
X(64579) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3870, 24771, 644}
X(64580) lies on these lines: {1, 3}, {2, 34434}, {75, 14923}, {192, 20718}, {210, 59313}, {312, 3869}, {511, 10950}, {516, 64577}, {529, 23154}, {573, 56325}, {674, 41575}, {758, 24068}, {952, 6101}, {960, 25591}, {970, 40663}, {1829, 54396}, {1938, 48271}, {2390, 64002}, {2818, 11827}, {3175, 44663}, {3210, 20041}, {3583, 64532}, {3693, 20719}, {3827, 43216}, {3877, 26092}, {3878, 50605}, {3893, 49459}, {3922, 29825}, {4324, 64531}, {5752, 10573}, {5836, 31993}, {6327, 64584}, {8256, 51377}, {10459, 22097}, {10483, 64539}, {11573, 45287}, {12245, 59433}, {18178, 49487}, {18180, 30147}, {18395, 34466}, {18514, 64541}, {20647, 22298}, {21272, 21596}, {22300, 26028}, {25005, 38472}, {29824, 64563}, {29958, 34606}, {42448, 57288}
X(64580) = reflection of X(i) in X(j) for these {i,j}: {3869, 22299}, {10483, 64539}, {42448, 57288}, {45287, 11573}
X(64580) = anticomplement of X(34434)
X(64580) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 20060}, {6, 62998}, {58, 20040}, {59, 4551}, {572, 2}, {662, 18155}, {1252, 21362}, {2149, 56188}, {2185, 54121}, {2975, 8}, {4570, 53280}, {11109, 4}, {14534, 20028}, {14829, 69}, {17074, 7}, {17496, 150}, {17751, 1330}, {20986, 192}, {21061, 2895}, {21173, 149}, {22118, 6360}, {34278, 37653}, {37558, 2475}, {52139, 1654}, {52358, 2893}, {55323, 17778}, {57091, 33650}, {57165, 31290}, {57244, 21293}
X(64580) = pole of line {17496, 27346} with respect to the Steiner circumellipse
X(64580) = pole of line {21362, 56188} with respect to the Yff parabola
X(64580) = intersection, other than A, B, C, of circumconics {{A, B, C, X(56), X(55036)}}, {{A, B, C, X(312), X(1764)}}, {{A, B, C, X(10475), X(34434)}}
X(64580) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65, 3057, 3666}
X(64581) lies on these lines: {1, 6}, {2, 13476}, {8, 3770}, {38, 872}, {63, 15624}, {69, 4553}, {75, 3681}, {76, 22289}, {141, 20683}, {192, 4661}, {210, 3739}, {239, 64553}, {291, 46838}, {354, 4698}, {513, 17347}, {517, 48938}, {524, 3688}, {668, 33769}, {674, 4416}, {692, 19121}, {726, 22316}, {740, 24068}, {758, 49457}, {869, 16696}, {982, 64556}, {1282, 1761}, {2895, 21289}, {3661, 21865}, {3663, 22312}, {3678, 24325}, {3696, 34790}, {3740, 31238}, {3779, 4643}, {3789, 17303}, {3799, 17295}, {3842, 3874}, {3868, 19874}, {3869, 20248}, {3873, 4687}, {3879, 9038}, {3883, 9049}, {3949, 4712}, {3952, 18137}, {3988, 49491}, {4043, 17135}, {4067, 49510}, {4111, 4665}, {4127, 49449}, {4134, 49479}, {4357, 22277}, {4364, 52020}, {4430, 27268}, {4517, 4851}, {4525, 49504}, {4537, 49535}, {4557, 16574}, {4688, 58655}, {4699, 58379}, {4715, 49537}, {4751, 63961}, {4878, 56509}, {5224, 22279}, {5697, 49689}, {6007, 17334}, {6376, 22293}, {6664, 9055}, {7064, 17243}, {9054, 17332}, {12329, 23151}, {12782, 21858}, {14839, 17362}, {14973, 32937}, {17049, 17330}, {17233, 40521}, {17235, 61034}, {17259, 64560}, {17260, 64554}, {17277, 62872}, {17344, 17792}, {17348, 20358}, {17349, 64523}, {17361, 25279}, {17365, 64007}, {17379, 64561}, {18206, 20990}, {21342, 27636}, {22285, 60719}, {25048, 62989}, {26125, 43915}, {29054, 63967}, {30271, 63976}, {34784, 51052}, {44670, 45738}, {49499, 64562}, {59296, 64550}, {62817, 64169}
X(64581) = midpoint of X(i) and X(j) for these {i,j}: {984, 5904}, {3869, 49450}, {4067, 49510}, {5697, 49689}, {34784, 51052}
X(64581) = reflection of X(i) in X(j) for these {i,j}: {75, 22271}, {3555, 15569}, {3696, 34790}, {3874, 3842}, {4430, 64552}, {13476, 40607}, {17365, 64007}, {21746, 17332}, {24325, 3678}, {30271, 63976}
X(64581) = anticomplement of X(13476)
X(64581) = X(i)-isoconjugate-of-X(j) for these {i, j}: {32, 40008}
X(64581) = X(i)-Dao conjugate of X(j) for these {i, j}: {6376, 40008}, {13476, 13476}, {21753, 20963}
X(64581) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17143, 2}
X(64581) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 33110}, {6, 17300}, {59, 35338}, {101, 26824}, {110, 4151}, {251, 17034}, {662, 7199}, {757, 13476}, {765, 4553}, {1110, 54118}, {1252, 1018}, {1621, 8}, {3294, 2895}, {3996, 3436}, {4040, 149}, {4043, 21287}, {4151, 3448}, {4251, 2}, {4570, 4436}, {4651, 1330}, {14004, 4}, {17143, 6327}, {17277, 69}, {17494, 150}, {18152, 315}, {20954, 21293}, {21007, 4440}, {33765, 6604}, {38346, 54102}, {38365, 17036}, {38859, 36845}, {40088, 21275}, {40408, 39734}, {55082, 3434}, {55086, 145}, {56537, 21289}, {58361, 21294}, {64169, 1654}
X(64581) = pole of line {55, 17259} with respect to the Feuerbach hyperbola
X(64581) = pole of line {81, 64524} with respect to the Stammler hyperbola
X(64581) = pole of line {17494, 20954} with respect to the Steiner circumellipse
X(64581) = pole of line {1018, 54118} with respect to the Yff parabola
X(64581) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(39735)}}, {{A, B, C, X(6), X(8049)}}, {{A, B, C, X(69), X(20811)}}, {{A, B, C, X(75), X(16552)}}, {{A, B, C, X(213), X(40504)}}, {{A, B, C, X(518), X(6664)}}, {{A, B, C, X(1218), X(16684)}}, {{A, B, C, X(13476), X(20963)}}, {{A, B, C, X(17135), X(40007)}}, {{A, B, C, X(40088), X(63918)}}
X(64581) = barycentric product X(i)*X(j) for these (i, j): {1, 40006}, {40638, 76}
X(64581) = barycentric quotient X(i)/X(j) for these (i, j): {75, 40008}, {40006, 75}, {40638, 6}
X(64581) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 3681, 22271}, {518, 15569, 3555}, {984, 5904, 518}, {3740, 58583, 31238}, {3873, 4687, 58571}, {9054, 17332, 21746}, {13476, 40607, 2}, {17277, 62872, 64524}, {22271, 40504, 4651}
X(64582) lies on these lines: {1, 17197}, {8, 18163}, {10, 4267}, {20, 579}, {21, 950}, {39, 49131}, {58, 515}, {81, 10106}, {284, 1010}, {333, 5795}, {519, 18178}, {859, 1210}, {1043, 4483}, {1751, 37228}, {1834, 7683}, {1837, 56861}, {3286, 4297}, {3419, 19531}, {3452, 46877}, {3486, 17194}, {3600, 18164}, {3911, 4225}, {4266, 9534}, {4271, 9568}, {4276, 6684}, {4304, 17524}, {4308, 26818}, {4653, 63999}, {5837, 17185}, {6692, 37442}, {6738, 18165}, {8258, 54399}, {10454, 37642}, {10457, 64577}, {10461, 24391}, {10572, 52680}, {10950, 18191}, {11115, 57287}, {12437, 20258}, {13411, 47515}, {14953, 62774}, {15829, 17183}, {17167, 64160}, {17647, 54417}, {17754, 56984}, {18180, 64163}, {37646, 64566}, {37662, 64570}, {37730, 64544}, {62691, 63998}, {64126, 64578}, {64162, 64415}
X(64582) = pole of line {28274, 37583} with respect to the Stammler hyperbola
X(64582) = pole of line {37887, 53083} with respect to the dual conic of Yff parabola
X(64582) = barycentric product X(i)*X(j) for these (i, j): {46880, 64573}
X(64582) = barycentric quotient X(i)/X(j) for these (i, j): {64573, 52358}
X(64583) lies on circumconic {{A, B, C, X(3346), X(8747)}} and on these lines: {1, 29}, {2, 52384}, {8, 6001}, {75, 20246}, {85, 56872}, {189, 23661}, {192, 30694}, {318, 6260}, {322, 3436}, {1097, 14544}, {1441, 5932}, {1792, 18750}, {3346, 3998}, {5930, 64211}, {27383, 64194}, {37566, 54284}, {52346, 52366}
X(64583) = anticomplement of X(52384)
X(64583) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {21, 962}, {40, 2475}, {60, 62874}, {110, 8058}, {198, 17778}, {283, 280}, {284, 9965}, {329, 2893}, {333, 21279}, {643, 4397}, {662, 4131}, {1098, 20220}, {1790, 55119}, {1817, 7}, {1819, 20}, {2287, 189}, {2324, 2895}, {2360, 145}, {3194, 12649}, {5546, 6332}, {7054, 20223}, {7058, 20246}, {7074, 1654}, {7078, 3152}, {7080, 1330}, {7259, 20296}, {8058, 3448}, {8822, 3434}, {10397, 39352}, {13614, 34162}, {14298, 21221}, {27398, 69}, {41083, 56927}, {52378, 934}, {55111, 3151}, {57245, 13219}, {64082, 2897}
X(64584) lies on circumconic {{A, B, C, X(34), X(40457)}} and on these lines: {1, 4}, {2, 2217}, {21, 23369}, {75, 5086}, {192, 20060}, {345, 3436}, {1610, 17555}, {2385, 45738}, {2551, 34851}, {3869, 33066}, {4329, 21287}, {5057, 64563}, {5794, 5928}, {6327, 64580}, {6875, 37812}, {7354, 51414}, {8229, 22760}, {29846, 30943}
X(64584) = anticomplement of X(2217)
X(64584) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 64047}, {2, 10446}, {6, 37683}, {59, 109}, {100, 57091}, {190, 35519}, {333, 2995}, {573, 2}, {3185, 192}, {3192, 193}, {3869, 8}, {4225, 1}, {4417, 69}, {6589, 4440}, {7012, 61178}, {7115, 44765}, {10571, 145}, {17080, 7}, {17555, 4}, {21078, 2895}, {21189, 149}, {22134, 6360}, {22276, 1654}, {40452, 17164}, {40590, 17778}, {51612, 1370}, {52310, 39352}, {53081, 28605}, {56553, 347}, {57111, 34188}
Let ABC be a triangle and MaMbMc the medial triangle. Let (Oa) be the circle passing through Mb and Mc and touching the circumcircle of ABC on the negative side of BC. Define (Ob) and (Oc) cyclically. Let A' be the intersection, other than O, of (Ob) and (Oc). Define B' and C' cyclically. (1) The center of the inner Apollonius circle of (Oa), (Ob), (Oc) lies on the Euler line. (2) The circumcenter of A'B'C' lies on the Euler line. (Keita Miyamoto, July 14, 2024)
The centers described in (1) and (2) are X(64585) and X(64586), respectively. (Centers found by Peter Moses, July 23, 2024)
X(64585) lies on these lines: {2,3}, {6,11793}, {54,6090}, {64,16836}, {68,19588}, {141,39571}, {155,5050}, {182,17814}, {185,22112}, {389,17825}, {394,11426}, {498,16541}, {511,3527}, {569,3167}, {578,17811}, {625,54091}, {1154,5644}, {1181,43650}, {1216,1351}, {1350,10110}, {1352,64038}, {1498,37515}, {1503,31521}, {2548,8573}, {3199,36751}, {3426,46850}, {3531,41462}, {3564,11487}, {3614,18954}, {3796,14530}, {3817,9911}, {3818,44862}, {3819,37498}, {3917,10982}, {3964,32828}, {5085,6759}, {5093,15067}, {5422,11444}, {5446,33878}, {5447,44413}, {5544,37489}, {5562,10601}, {5646,37480}, {5650,11424}, {5651,19357}, {5708,62770}, {5709,26938}, {5818,8192}, {5886,12410}, {5891,12164}, {5892,12163}, {5907,37514}, {5943,17834}, {6000,33537}, {6101,44456}, {6688,46730}, {6800,43614}, {7173,10833}, {7330,26928}, {7689,32620}, {7746,34809}, {7776,45198}, {7988,37557}, {8193,8227}, {8717,46852}, {9306,37476}, {9695,23275}, {9712,52795}, {9723,19418}, {9777,11412}, {9786,11695}, {9798,10175}, {9861,36519}, {9919,36518}, {10171,49553}, {10263,55584}, {10516,18381}, {10541,56516}, {10564,61774}, {10576,13889}, {10577,13943}, {10984,32063}, {11402,43651}, {11411,45298}, {11438,59777}, {11459,43600}, {11477,15606}, {11820,13474}, {11898,13292}, {12006,64105}, {12017,64049}, {12161,26206}, {12168,15059}, {12174,15058}, {12309,14852}, {12310,23515}, {12315,15030}, {12329,13374}, {13093,64100}, {13171,64101}, {13175,23514}, {13222,23513}, {13336,18451}, {13347,44870}, {13434,15066}, {13567,45015}, {13630,64097}, {13754,15805}, {14061,39803}, {14561,37491}, {14673,36520}, {14826,31804}, {15068,55705}, {15082,37497}, {16252,31267}, {17810,46728}, {18920,18925}, {19459,40330}, {21766,64050}, {22769,58631}, {23039,37493}, {23328,46373}, {23709,44914}, {26864,43598}, {31831,39899}, {32142,39522}, {32205,33533}, {34507,53019}, {34787,61676}, {34986,43908}, {35237,46849}, {36747,62217}, {36753,58891}, {37478,62209}, {37488,38317}, {37505,37672}, {38108,60897}, {38110,61607}, {39832,64089}, {42582,44598}, {42583,44599}, {43573,50955}, {45045,47296}, {45958,64098}, {48876,64048}, {52163,55602}, {53093,64026}, {54798,60171}, {55692,61752}
X(64585) = complement of X(6803)
X(64585) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6804, 5}, {2, 6816, 7399}, {2, 7395, 3}, {2, 26205, 32954}, {3, 5, 1598}, {3, 381, 39568}, {3, 1656, 5020}, {3, 3851, 18534}, {3, 5020, 3517}, {3, 5055, 7529}, {3, 6642, 55572}, {3, 6644, 55574}, {3, 7506, 16195}, {3, 7529, 9909}, {3, 9818, 55571}, {3, 10244, 7512}, {3, 11479, 1597}, {3, 11484, 25}, {3, 18535, 11414}, {3, 35501, 11413}, {3, 61970, 44457}, {3, 62027, 47751}, {4, 7484, 3}, {5, 140, 3547}, {5, 7393, 3}, {5, 7516, 7387}, {5, 14790, 381}, {5, 16197, 3089}, {5, 16198, 3091}, {24, 5067, 11284}, {25, 3090, 11484}, {25, 7509, 3}, {25, 7512, 10244}, {140, 9818, 3}, {155, 33540, 10170}, {182, 17814, 19347}, {381, 10243, 1598}, {405, 474, 25876}, {468, 7464, 2070}, {549, 12085, 3}, {631, 1593, 3}, {631, 3089, 16197}, {1583, 1584, 37068}, {1656, 3526, 6639}, {1995, 37126, 9715}, {2045, 2046, 21841}, {2070, 7574, 62290}, {3090, 7509, 25}, {3091, 7485, 11414}, {3091, 11414, 18535}, {3515, 35921, 3}, {3523, 21312, 3}, {3523, 63664, 21312}, {3545, 10323, 5198}, {3628, 7514, 6642}, {3839, 45308, 33524}, {5020, 16195, 7506}, {5067, 7550, 24}, {5079, 54006, 7517}, {5422, 11444, 12160}, {5562, 10601, 11432}, {5891, 36752, 12164}, {6642, 7514, 3}, {6815, 34664, 382}, {6816, 7399, 381}, {6864, 37431, 7497}, {6905, 37246, 3}, {7387, 7393, 7516}, {7387, 7516, 3}, {7398, 59346, 7715}, {7401, 12362, 18494}, {7485, 11414, 3}, {7486, 37126, 1995}, {7506, 16195, 3517}, {7517, 54006, 3}, {7550, 11284, 3}, {9715, 37126, 3}, {10243, 14790, 39568}, {11313, 11314, 52251}, {11479, 16419, 3}, {13160, 16072, 3851}, {14709, 14710, 44273}, {14782, 14783, 7400}, {14784, 14785, 7392}, {16374, 37302, 3}, {17928, 54994, 3}, {30100, 52290, 24}, {35452, 61815, 3}, {37344, 54004, 3}
See X(64585).
X(64586) lies on these lines: {2,3}, {159,44503}, {9306,9937}, {9822,44470}, {9908,13567}, {12301,18390}, {13754,45045}, {14457,44665}, {19137,44479}, {32048,43586}, {63701,64035}
X(64586) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 7529, 235}, {3, 50143, 7395}, {24, 6816, 3}, {5020, 7506, 6642}, {6642, 7387, 6644}, {7503, 45172, 3}, {11479, 14130, 9818}, {16386, 37951, 2070}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6506.
X(64587) lies on these lines: {4, 59654}, {69, 146}, {110, 5895}, {113, 10257}, {125, 5893}, {550, 1511}, {1498, 10721}, {1503, 5095}, {1539, 6000}, {2935, 10706}, {3357, 61574},{5663, 9927}, {5878, 7728}, {5894, 5972}, {5925, 15035}, {6225, 63716}, {6247, 46686}, {6696, 36518}, {6759, 34584}, {9934, 38790}, {10113, 45957}, {10117, 38444}, {10192, 37853}, {10606, 64101}, {10620, 63695}, {10733, 61721}, {12041, 61749}, {12373, 12950}, {12374, 12940}, {12900, 23328}, {13417, 36982}, {14643, 20427}, {15055, 64024},{16111, 16252}, {17702, 51491}, {17812, 19149}, {17854, 41589}, {19504, 46372}, {23315, 38791}, {31978, 41671}, {34128, 43585}, {34774, 36201}, {38789, 48672}, {39084, 47114}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6506.
X(64588) lies on these lines: {4, 974}, {5, 1539}, {30, 15647}, {64, 14644}, {74, 5895}, {113, 5893}, {125, 10151}, {265, 5878}, {378, 7699}, {382, 9934}, {389, 22833}, {1177, 18550}, {1352, 2781}, {1498, 10733}, {1503, 12295}, {1511, 61749}, {1885, 3574}, {2778, 5777}, {2883, 17702}, {2935, 17928}, {3357, 20304}, {3521, 16222}, {5480, 10169}, {5663, 9927}, {5925, 15055}, {5972, 44241}, {6000, 10113}, {6247, 7687}, {6640, 20127}, {6696, 23515}, {6698, 34778}, {7706, 13364}, {10019, 10990},{10192, 38726}, {10257, 16111}, {10606, 15059}, {10706, 17847}, {11250, 13289}, {12133, 51757}, {12236, 44271}, {12250, 15081}, {12308, 64031}, {12825, 50009}, {12903, 12950}, {12904, 12940}, {13198, 44438}, {13293, 61574}, {13474, 32369}, {13851, 17856}, {15035, 64024}, {15036, 61680}, {15061, 20427}, {15088, 23329}, {15117, 37984}, {16163, 16252}, {18325, 44668}, {19456, 46372}, {20417, 43592}, {21649, 36982}, {23326, 48895}, {31978, 58498}, {32274, 34146}, {38724, 48672}, {38885, 48910}, {41673, 44440},{52071, 59495}
X(64588) = complement of the circumperp conjugate of X(40082)
X(64588) = pole of the line X(14391)X(46425) with respect to orthic inconic
See Antreas Hatzipolakis and Ercole Suppa, euclid 6506.
X(64589) lies on these lines: {49, 10992}, {99, 9544}, {110, 2482}, {114, 10540}, {115, 5012}, {182, 5461}, {184, 543}, {542, 19127}, {567, 9880}, {620, 9306}, {671,11003}, {1614, 14981}, {2936, 26864}, {3455, 6800}, {5651, 22247}, {6722, 43650}, {6759, 38745}, {8787, 32217}, {10488, 51797}, {10539, 20399}, {10991, 52525}, {11623, 64049}, {15462, 61755}, {18350, 38751}, {18374, 18800}, {32046, 38734}, {33586, 39839}, {33813, 40111}, {38738, 43574}, {38740, 61134}, {38747, 57011}, {46301, 56980}
As a point on the Euler line, X(64590) has Shinagawa coefficients {2*E-14*F,3*E+6*F}.
See Kadir Altintas and Ercole Suppa, euclid 6516.
X(64590) lies on these lines: {2, 3}, {599, 51730}, {3679, 51694}, {5642, 12227}, {7592, 61681}, {9140, 20771}, {15045, 61680}, {21969, 58482}, {33563, 63649}, {38794, 39522}, {43866,64037}, {44668, 47352}, {51734, 54132}
X(64590) = pole of the line X(5650)X(61701) with respect to Thomson-Gibert-Moses hyperbola
As a point on the Euler line, X(64591) has Shinagawa coefficients {3E+28F,-9E-12F}.
See Kadir Altintas and Ercole Suppa, euclid 6516.
X(64591) lies on these lines: {2, 3}, {539, 61646}, {599, 19154}, {1154, 61680}, {3679, 51696}, {9140, 20773}, {11255, 51185}, {11265, 13847}, {11266, 13846}, {11267, 16645}, {11268, 16644}, {12161, 64064}, {17834, 58435}, {21969, 58484}, {32223, 39522}, {33878, 46114}, {44673, 64098}, {61299, 61735}, {63649, 63734}
X(64591) = pole of the line X(5650)X(61702) with respect to Thomson-Gibert-Moses hyperbola
As a point on the Euler line, X(64592) has Shinagawa coefficients {9r^2+36r*R+36R^2-5s^2,6s^2}.
See Kadir Altintas and Ercole Suppa, euclid 6516.
X(64592) lies on these lines: {2, 3}, {599, 51731}, {903, 62652}, {3679, 51697}
X(64592) = pole of the line X(31153)X(40940) with respect to dual of Yff parabola
As a point on the Euler line, X(64593) has Shinagawa coefficients {7r^2+32r*R+36R^2-7s^2,-3(r^2+2r*R-s^2)}.
See Kadir Altintas and Ercole Suppa, euclid 6516.
X(64593) lies on these lines: {2, 3}, {3679, 51698}, {25055, 44661}
As a point on the Euler line, X(64594) has Shinagawa coefficients {5r^2+28r*R-9(-4R^2+s^2),-6r(r+2R)}.
See Kadir Altintas and Ercole Suppa, euclid 6516.
X(64594) lies on these lines: {2, 3}, {3679, 51699}
See Antreas Hatzipolakis and Peter Moses, euclid 6519.
X(64595) lies on these lines: { }
X(64595) = complement of X(64596)
See Antreas Hatzipolakis and Peter Moses, euclid 6519.
X(64596) lies on these lines: {5, 19192}, {11459, 16868}, {36412, 62947}
X(64596) = isogonal conjugate of X(64597)
X(64596) = anticomplement of X(64595)
X(64596) = cevapoint of X(5) and X(403)
See Antreas Hatzipolakis and Peter Moses, euclid 6519.
X(64597) lies on these lines: {3, 16867}, {6, 37917}, {23, 48914}, {24, 32411}, {30, 184}, {49, 5448}, {51, 37951}, {54, 186}, {110, 13851}, {125, 539}, {185, 2071}, {403, 578}, {569, 44452}, {1092, 10257}, {1147, 2072}, {1181, 18859}, {1204, 34152}, {2070, 19357}, {3043, 25739}, {3153, 9545}, {5012, 37941}, {5097, 37940}, {5504, 21649}, {6000, 15463}, {6146, 36966}, {6759, 57584}, {6776, 44450}, {7574, 10619}, {9666, 10149}, {9703, 18396}, {9706, 10296}, {10151, 11424}, {10539, 23323}, {10540, 46686}, {12228, 51393}, {12289, 59279}, {12897, 31726}, {13198, 21663}, {13346, 16386}, {13473, 26883}, {13754, 32607}, {15004, 44272}, {15462, 21639}, {15646, 32046}, {16976, 43652}, {18383, 44905}, {18400, 52416}, {18925, 46450}, {19347, 35452}, {19457, 50461}, {22109, 45780}, {37505, 58551}, {38936, 58261}, {44246, 64049}, {44907, 61644}, {47277, 51733}, {57582, 61743}
X(64597) = isogonal conjugate of X(64596)
X(64597) = crosspoint of X(54) and X(5504)
X(64597) = crosssum of X(5) and X(403)
X(64597) = {X(13198),X(43574)}-harmonic conjugate of X(21663)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6525.
X(64598) lies on this line: {1421, 55335}
X(64598) = isogonal conjugate of X(33562)
X(64598) = intersection, other than A, B, C, of the circumconics {{A, B, C, X(1), X(1421)}} and {{A, B, C, X(11), X(59)}}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6525.
X(64599) lies on these lines: {4, 38005}, {6, 25}, {66, 18950}, {69, 11451}, {141, 6688}, {143, 44479}, {157, 13342}, {160, 13341}, {182, 39522}, {373, 599},{389, 2781}, {511, 549}, {524, 5943}, {542, 11232}, {568, 14848}, {575, 5446}, {576, 5462}, {1084, 46305}, {1154, 18583}, {1173, 1177}, {1216, 25555}, {1352, 14845}, {1493, 6153}, {1503, 51745}, {1576, 5007}, {1992, 5640}, {2854, 20583}, {2979, 3618}, {3060, 59373}, {3066, 63180}, {3148, 33872}, {3313, 51171}, {3527, 8549}, {3564, 13364}, {3567, 35486}, {3589, 3819}, {3629, 9822}, {3917, 47352}, {4663, 58469}, {5032, 11188}, {5085, 36987}, {5095, 58495}, {5097, 58549}, {5421, 40981}, {5476, 13754}, {5480, 6000}, {5890, 14853}, {5891, 14561}, {6329, 11574}, {6749, 34854}, {7998, 63109}, {8548, 58545}, {8550, 10110}, {8584, 8681}, {9019, 21849}, {9730, 20423}, {9977, 58557}, {10095, 43130}, {10250, 44489}, {11002, 63127}, {11255, 58484}, {11649, 47544}, {11692, 15516}, {11694, 14984}, {12039, 41614}, {12099, 61657}, {12220, 63011}, {12272, 63073}, {13338, 52144}, {14855, 31670}, {14912, 31166}, {14913, 32455}, {15019, 53777}, {15026, 64067}, {15030, 38072}, {15045, 54132}, {15067, 38079}, {15303, 45237}, {15471, 51994}, {15520, 34382}, {15531, 63022}, {15534, 61667}, {15826, 58481}, {16511, 16789}, {16657, 36201}, {20576, 46184}, {20582, 63632}, {20791, 51212}, {21969, 51185}, {22151, 53863}, {25322, 32450}, {32062, 53023}, {32155, 58546}, {32191, 32411}, {36851, 43726}, {37505, 64061}, {41672, 58518}, {41714, 55714}, {44299, 63119},{44496, 58552}, {44497, 58478}, {44498, 58477}, {44500, 58486}, {45186, 53093}, {46847, 50959}, {54131, 64100},{58492, 64031}, {63123, 64023}, {63663, 64026}, {63673, 63697}
X(64599) = inverse in orthic inconic of X(12367)
X(64599) = pole of the line X(6)X(22336) with respect to Jerabek hyperbola
X(64599) = pole of the line X(427)X(7603) with respect to Kiepert hyperbola
X(64599) = pole of the line X(512)X(5104) with respect to orthic inconic
X(64599) = pole of the line X(69)X(16511) with respect to Stammler hyperbola
X(64599) = pole of the line X(2485)X(36900) with respect to Steiner inellipse
X(64599) = pole of the line X(6090)X(47352) with respect to Thomson-Gibert-Moses hyperbola
X(64599) = pole of the tripolar of X(22336) with respect to Brocard inellipse
See Antreas Hatzipolakis and Ercole Suppa, euclid 6525.
X(64600) lies on these lines: {1836, 42447}, {15726, 29957}
X(64600) = pole of the line X(10581)X(22108) with respect to orthic inconic
See Antreas Hatzipolakis and Peter Moses, euclid 6526.
X(64601) lies on these lines: {30, 113}, {110, 237}, {125, 52261}, {542, 44215}, {2854, 51735}, {5663, 44221}, {5972, 21531}, {7468, 35265}, {10546, 57618}, {11328, 15920}, {15035, 47620}, {17702, 44227}, {21177, 45082}, {35296, 54085}, {37906, 53735}, {45016, 63473}
X(64601) = midpoint of X(110) and X(237)
X(64601) = reflection of X(i) in X(j) for these {i,j}: {125, 52261}, {21531, 5972}
X(64601) = barycentric product X(11064)*X(54094)
X(64601) = barycentric quotient X(i)/X(j) for these {i,j}: {2420, 53603}, {54094, 16080}
See Antreas Hatzipolakis and Peter Moses, euclid 6526.
X(64602) lies on these lines: {30, 113}, {110, 384}, {125, 7819}, {542, 6661}, {698, 6593}, {2777, 44251}, {2854, 42421}, {3448, 19689}, {3972, 13210}, {5663, 44224}, {5972, 6656}, {7470, 15035}, {14643, 37243}, {14683, 19692}, {15059, 19694}, {17702, 44230}, {19697, 24981}, {32423, 44237}
X(64602) = midpoint of X(110) and X(384)
X(64602) = reflection of X(i) in X(j) for these {i,j}: {125, 7819}, {6656, 5972}
X(64602) = barycentric product X(11064)*X(37912)
X(64602) = barycentric quotient X(i)/X(j) for these {i,j}: {2420, 53918}, {37912, 16080}
See Antreas Hatzipolakis and Peter Moses, euclid 6526.
X(64603) lies on these lines: {30, 113}, {69, 34245}, {110, 401}, {125, 441}, {297, 5972}, {450, 23582}, {511, 7473}, {524, 46459}, {525, 3292}, {542, 40884}, {852, 22264}, {1316, 44127}, {1651, 58347}, {2777, 44252}, {2854, 51740}, {3284, 9033}, {3288, 3289}, {4240, 58343}, {5651, 40856}, {6090, 34360}, {9140, 44575}, {13414, 44332}, {13415, 44333}, {15035, 35474}, {15781, 19457}, {17702, 44231}, {30227, 64177}, {34982, 60774}, {36518, 44228}, {44578, 45311}
X(64603) = midpoint of X(110) and X(401)
X(64603) = reflection of X(i) in X(j) for these {i,j}: {125, 441}, {297, 5972}
X(64603) = X(i)-isoconjugate of X(j) for these (i,j): {9513, 36119}, {36131, 46245}
X(64603) = X(i)-Dao conjugate of X(j) for these (i,j): {1511, 9513}, {39008, 46245}, {39078, 16080}
X(64603) = crossdifference of every pair of points on line {2433, 6785}
X(64603) = barycentric product X(i)*X(j) for these {i,j}: {30, 63464}, {1316, 11064}, {3284, 44155}, {9033, 40866}
X(64603) = barycentric quotient X(i)/X(j) for these {i,j}: {1316, 16080}, {2420, 53699}, {3284, 9513}, {9033, 46245}, {35912, 53229}, {40866, 16077}, {44127, 8749}, {46249, 1304}, {47229, 18808}, {63464, 1494}
X(64604) lies on these lines: {2, 14982}, {3, 45019}, {6, 110}, {23, 33851}, {30, 113}, {67, 54013}, {125, 18358}, {323, 12824}, {394, 10752}, {399, 974}, {542, 37648}, {1112, 37517}, {1302, 40879}, {2781, 15066}, {2935, 15051}, {3531, 5504}, {4846, 5655}, {5092, 5972}, {5181, 32269}, {5609, 9730}, {5622, 63128}, {5648, 26255}, {5650, 12041}, {5651, 5663}, {6090, 9970}, {7426, 62381}, {7712, 13203}, {9143, 63084}, {9306, 19140}, {9976, 12099}, {10117, 55646}, {11284, 11579}, {11598, 12379}, {12367, 37980}, {12827, 47296}, {13198, 55705}, {14094, 37475}, {14643, 14805}, {14984, 34417}, {15034, 37497}, {15068, 25711}, {15080, 59767}, {15462, 26864}, {16105, 37483}, {16187, 32305}, {16534, 43586}, {16657, 30714}, {25556, 44084}, {33878, 41673}, {37511, 61679}, {37513, 38795}, {37962, 41617}, {39562, 62209}, {41671, 55715}, {61506, 63700}, {61574, 61743}, {64096, 64182}
X(64604) = midpoint of X(110) and X(1995)
X(64604) = reflection of X(30739) in X(5972)
X(64604) = X(2159)-isoconjugate of X(55973)
X(64604) = X(3163)-Dao conjugate of X(55973)
X(64604) = crossdifference of every pair of points on line {690, 2433}
X(64604) = barycentric product X(i)*X(j) for these {i,j}: {30, 41617}, {2407, 2780}, {11064, 37962}, {35266, 52496}
X(64604) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 55973}, {2420, 2696}, {2780, 2394}, {37962, 16080}, {41617, 1494}
X(64604) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 35259, 62516}, {113, 5642, 11064}, {1495, 1511, 16165}, {1495, 5642, 1511}, {1511, 20772, 1495}, {5642, 20772, 16165}, {9143, 63084, 64103}, {11064, 16165, 59495}
X(64605) lies on these lines: {30, 113}, {51, 110}, {185, 14094}, {394, 13417}, {1147, 7545}, {3292, 12824}, {5650, 15055}, {5651, 10620}, {5655, 43586}, {5972, 22352}, {6593, 21639}, {8541, 52697}, {9143, 10546}, {9306, 61679}, {11557, 50461}, {12827, 61691}, {13293, 15036}, {13366, 41670}, {14643, 18475}, {14708, 32235}, {14984, 44106}, {15462, 44110}, {15463, 52294}, {16223, 18445}, {18418, 61743}, {26881, 48898}, {43844, 62516}
X(64605) = midpoint of X(110) and X(13595)
X(64605) = {X(5642),X(20772)}-harmonic conjugate of X(1495)
X(64606) lies on these lines: {30, 113}, {69, 110}, {125, 13394}, {154, 14982}, {184, 19138}, {265, 45082}, {394, 19140}, {542, 26864}, {895, 64058}, {1843, 41670}, {3066, 32300}, {3818, 5094}, {4232, 52699}, {5095, 32269}, {5609, 44683}, {5651, 18580}, {6053, 12168}, {6593, 15448}, {7426, 15303}, {12140, 64101}, {12295, 61743}, {12827, 46818}, {12828, 32223}, {15035, 35485}, {15131, 48905}, {15462, 44080}, {16003, 32235}, {16111, 35268}, {32233, 61680}, {32237, 32271}, {32250, 45303}, {32275, 61644}, {32366, 45237}, {41673, 61679}, {41737, 64059}, {46261, 52101}, {56567, 63425}
X(64606) = midpoint of X(i) and X(j) for these {i,j}: {110, 7493}, {26864, 32227}
X(64606) = reflection of X(5094) in X(5972)
X(64606) = X(5505)-isoconjugate of X(36119)
X(64606) = X(1511)-Dao conjugate of X(5505)
X(64606) = barycentric product X(i)*X(j) for these {i,j}: {7426, 11064}, {16163, 58875}
X(64606) = barycentric quotient X(i)/X(j) for these {i,j}: {2420, 10098}, {3284, 5505}, {7426, 16080}
X(64606) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1495, 5642, 113}, {5642, 16163, 11064}, {11064, 16165, 16163}, {13394, 62516, 125}, {20772, 20773, 1495}
X(64607) lies on these lines: {2, 54501}, {30, 113}, {99, 110}, {125, 12042}, {247, 39809}, {476, 58979}, {526, 35345}, {542, 5191}, {685, 892}, {868, 5972}, {1316, 53725}, {1637, 2420}, {2407, 9033}, {5181, 39072}, {5467, 9003}, {5651, 57612}, {7422, 15035}, {7471, 9181}, {7473, 14999}, {9189, 57627}, {14270, 15329}, {14559, 53274}, {17702, 47200}, {34761, 50941}, {35259, 56967}, {51262, 60340}
X(64607) = midpoint of X(i) and X(j) for these {i,j}: {110, 4226}, {14559, 53274}
X(64607) = reflection of X(868) in X(5972)
X(64607) = X(i)-isoconjugate of X(j) for these (i,j): {2159, 14223}, {2349, 14998}, {35909, 36119}, {36096, 56792}
X(64607) = X(i)-Dao conjugate of X(j) for these (i,j): {1511, 35909}, {3163, 14223}, {23967, 2394}, {42426, 18808}, {62613, 5641}
X(64607) = crosssum of X(526) and X(34291)
X(64607) = trilinear pole of line {57431, 57464}
X(64607) = crossdifference of every pair of points on line {2433, 3124}
X(64607) = barycentric product X(i)*X(j) for these {i,j}: {30, 14999}, {542, 2407}, {2966, 57431}, {3233, 51227}, {5642, 50941}, {6148, 23968}, {7473, 11064}, {34761, 51389}, {36789, 51262}, {36885, 51372}, {42743, 60869}, {51457, 60511}
X(64607) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 14223}, {542, 2394}, {1495, 14998}, {1640, 12079}, {2407, 5641}, {2420, 842}, {3233, 51228}, {3284, 35909}, {5191, 2433}, {5642, 50942}, {6103, 18808}, {7473, 16080}, {14999, 1494}, {23968, 5627}, {41392, 54554}, {42743, 35910}, {51262, 40384}, {51389, 34765}, {51394, 35911}, {52951, 53177}, {57431, 2799}, {58348, 1637}, {60505, 17986}
X(64607) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 5468, 6333}, {1511, 51430, 5642}, {5191, 45662, 47082}, {5642, 16163, 51389}, {5642, 51431, 113}, {35314, 35315, 3268}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6537.
X(64608) lies on these lines: {298, 46833}, {396, 3163}, {524, 618}, {630, 44386}, {3180, 11131}, {5664, 14816}, {37786, 41887}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6537.
X(64609) lies on these lines: {299, 46834}, {395, 3163}, {524, 619}, {629, 44386}, {3181, 11130}, {5664, 14817}, {23896, 62690}, {37785, 41888}
See Antreas Hatzipolakis and Peter Moses, euclid 6538.
X(64610) lies on the Jerabek circumhyperbola and these lines: {3, 8254}, {4, 58489}, {6, 12254}, {51, 43891}, {64, 32351}, {74, 3574}, {265, 10095}, {389, 33565}, {1154, 34483}, {1173, 18400}, {1176, 29317}, {1568, 32396}, {3567, 45736}, {5169, 45788}, {5189, 14861}, {5900, 10628}, {6145, 43808}, {6242, 13622}, {6288, 13566}, {7730, 45972}, {10619, 34567}, {11559, 33332}, {12242, 57713}, {13418, 32352}, {13623, 15800}, {14483, 40240}, {14865, 34437}, {15002, 38322}, {19151, 35471}, {21400, 63672}, {22466, 63659}, {32337, 38433}, {32639, 40640}, {33539, 50138}
X(64610) = isogonal conjugate of X(34864)
X(64610) = barycentric quotient X(6)/X(34864)
X(64611) lies on the cubic K280 and these lines: {2, 514}, {6, 101}, {39, 39264}, {88, 24598}, {262, 24808}, {378, 8752}, {574, 17969}, {901, 38884}, {903, 7757}, {953, 32686}, {1168, 30116}, {3730, 14260}, {4080, 31036}, {4674, 17756}, {4997, 30830}, {5024, 45140}, {5701, 55244}, {15378, 31616}, {19250, 45144}, {23345, 24484}, {31227, 31234}, {32665, 62703}, {34179, 40150}, {34362, 35123}, {42723, 57015}
X(64611) = X(i)-isoconjugate of X(j) for these (i,j): {44, 675}, {519, 2224}, {900, 36087}, {902, 37130}, {2251, 43093}, {3762, 32682}, {23703, 60573}, {52680, 60135}
X(64611) = X(i)-Dao conjugate of X(j) for these (i,j): {9460, 43093}, {38990, 900}, {40594, 37130}, {40595, 675}, {53980, 8756}
X(64611) = crossdifference of every pair of points on line {900, 902}
X(64611) = barycentric product X(i)*X(j) for these {i,j}: {88, 57015}, {106, 3006}, {674, 903}, {901, 23887}, {1022, 42723}, {2225, 20568}, {4080, 14964}, {4997, 43039}, {8618, 57995}
X(64611) = barycentric quotient X(i)/X(j) for these {i,j}: {88, 37130}, {106, 675}, {674, 519}, {903, 43093}, {2225, 44}, {3006, 3264}, {4249, 46541}, {8618, 902}, {9456, 2224}, {14964, 16704}, {32665, 36087}, {32719, 32682}, {42723, 24004}, {43039, 3911}, {46150, 46158}, {51657, 1319}, {57015, 4358}
X(64612) lies on the cubic K280 and these lines: {2, 513}, {6, 100}, {7, 1357}, {59, 1397}, {192, 13476}, {518, 42720}, {672, 1026}, {840, 898}, {889, 4441}, {995, 62763}, {1002, 3227}, {1025, 1458}, {2414, 57469}, {3252, 14439}, {3286, 47048}, {3423, 37300}, {7032, 62769}, {8299, 34230}, {9309, 30610}, {16405, 45145}, {18771, 31628}, {24403, 64149}, {29824, 53340}, {30941, 55260}, {36294, 63961}, {41439, 42343}, {56753, 57468}, {60288, 60617}
X(64612) = isogonal conjugate of X(52902)
X(64612) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52902}, {6, 36816}, {105, 899}, {294, 52896}, {536, 1438}, {666, 3768}, {673, 3230}, {890, 51560}, {891, 36086}, {919, 4728}, {1027, 23343}, {1416, 4009}, {2195, 43037}, {4465, 51866}, {4526, 36146}, {5377, 19945}, {6381, 64216}, {13576, 62740}, {14430, 32735}, {14942, 62739}, {18785, 52897}, {23891, 43929}, {36138, 45338}, {45145, 54364}, {56853, 62755}
X(64612) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 52902}, {9, 36816}, {2238, 4465}, {6184, 536}, {17755, 6381}, {38980, 4728}, {38989, 891}, {39012, 45338}, {39014, 4526}, {39046, 899}, {39063, 43037}, {40609, 4009}, {62587, 35543}
X(64612) = trilinear pole of line {518, 665}
X(64612) = crossdifference of every pair of points on line {891, 3230}
X(64612) = barycentric product X(i)*X(j) for these {i,j}: {241, 36798}, {518, 3227}, {665, 889}, {672, 31002}, {739, 3263}, {898, 918}, {1026, 62619}, {2254, 4607}, {3286, 60288}, {3675, 5381}, {3912, 37129}, {18157, 62763}, {18206, 41683}, {42720, 43928}, {56753, 63852}
X(64612) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 36816}, {6, 52902}, {241, 43037}, {518, 536}, {665, 891}, {672, 899}, {739, 105}, {889, 36803}, {898, 666}, {926, 4526}, {1026, 23891}, {1458, 52896}, {2223, 3230}, {2254, 4728}, {2284, 23343}, {3227, 2481}, {3263, 35543}, {3286, 52897}, {3675, 52626}, {3693, 4009}, {3912, 6381}, {3930, 3994}, {4607, 51560}, {8299, 4465}, {18206, 62755}, {20683, 52959}, {23349, 43929}, {23892, 1027}, {24290, 14431}, {31002, 18031}, {32718, 919}, {34075, 36086}, {34230, 52900}, {36798, 36796}, {37129, 673}, {42720, 41314}, {42758, 42764}, {43928, 62635}, {52635, 62739}, {62763, 18785}
X(64612) = {X(36872),X(52768)}-harmonic conjugate of X(2)
X(64613) lies on the cubic K477 and these lines: {30, 599}, {67, 7737}, {125, 34288}, {1990, 3815}, {2452, 23327}, {3260, 9464}, {7493, 10130}, {9214, 9770}, {10002, 52661}, {11410, 63419}, {14981, 15454}, {16280, 35906}, {16303, 61735}, {18575, 31415}, {21765, 34417}, {21843, 30542}, {23288, 62384}, {31173, 46645}, {32133, 39602}, {37643, 39453}, {41359, 53015}, {45819, 61506}
X(64613) = isogonal conjugate of X(6800)
X(64613) = isotomic conjugate of X(14907)
X(64613) = isogonal conjugate of the anticomplement of X(45303)
X(64613) = isotomic conjugate of the anticomplement of X(5475)
X(64613) = isotomic conjugate of the isogonal conjugate of X(14906)
X(64613) = X(5475)-cross conjugate of X(2)
X(64613) = X(i)-isoconjugate of X(j) for these (i,j): {1, 6800}, {31, 14907}
X(64613) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 14907}, {3, 6800}
X(64613) = trilinear pole of line {1637, 3906}
X(64613) = barycentric product X(76)*X(14906)
X(64613) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 14907}, {6, 6800}, {14906, 6}
X(64614) lies on the cubic K168 and these lines: {2, 14248}, {3, 8770}, {6, 39128}, {25, 3565}, {69, 1368}, {1351, 31842}, {1370, 5203}, {2996, 7386}, {5020, 15261}, {5272, 8769}, {6337, 6341}, {7392, 52454}, {16419, 40809}, {19588, 53068}, {35136, 57518}, {46336, 47730}
X(64614) = complement of X(55023)
X(64614) = complement of the isogonal conjugate of X(19588)
X(64614) = complement of the isotomic conjugate of X(19583)
X(64614) = isotomic conjugate of the isogonal conjugate of X(53068)
X(64614) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 8770}, {48, 3926}, {1611, 226}, {1973, 6387}, {2128, 141}, {2519, 8287}, {4575, 58766}, {6392, 20305}, {6461, 18589}, {19583, 2887}, {19588, 10}, {33781, 5}, {33787, 21243}, {53068, 16605}
X(64614) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 8770}, {14248, 6391}
X(64614) = X(6461)-cross conjugate of X(19588)
X(64614) = X(i)-isoconjugate of X(j) for these (i,j): {19, 30558}, {92, 53067}, {193, 2129}, {1707, 55023}, {15369, 18156}
X(64614) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 30558}, {8770, 2}, {15261, 15369}, {22391, 53067}
X(64614) = crosspoint of X(2) and X(19583)
X(64614) = crosssum of X(6) and X(15369)
X(64614) = barycentric product X(i)*X(j) for these {i,j}: {76, 53068}, {1611, 6340}, {2128, 8769}, {2519, 35136}, {2996, 19588}, {6338, 14248}, {6391, 6392}, {6461, 34208}, {8770, 19583}
X(64614) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 30558}, {184, 53067}, {1611, 6353}, {2128, 18156}, {2519, 3566}, {6391, 6339}, {6392, 54412}, {6461, 6337}, {8770, 55023}, {14248, 63899}, {19583, 57518}, {19588, 193}, {38252, 2129}, {40319, 40322}, {53059, 15369}, {53068, 6}
X(64615) lies on the cubic K488 and these lines: {22, 1634}, {25, 53575}, {30, 14634}, {206, 1511}, {339, 2980}, {1576, 6636}, {3455, 9479}, {5063, 17409}, {7485, 40559}, {33801, 35520}, {37969, 47150}, {38872, 48453}, {46608, 51869}
X(64615) = isogonal conjugate of the anticomplement of X(1495)
X(64615) = isogonal conjugate of the isotomic conjugate of X(55032)
X(64615) = X(9407)-cross conjugate of X(6)
X(64615) = cevapoint of X(i) and X(j) for these (i,j): {39, 1495}, {669, 2088}, {9409, 38356}
X(64615) = trilinear pole of line {3051, 9210}
X(64615) = barycentric product X(6)*X(55032)
X(64615) = barycentric quotient X(55032)/X(76)
X(64616) lies on the cubic K299 and these lines: {4, 218}, {100, 24290}, {101, 2254}, {190, 644}, {919, 3309}, {1415, 57105}, {1618, 2509}, {2170, 10697}, {2246, 64234}, {20331, 20672}, {35349, 46392}, {52985, 64241}, {54230, 57192}
X(64616) = polar-circle-inverse of X(8735)
X(64616) = antigonal image of X(18343)
X(64616) = symgonal image of X(1083)
X(64616) = X(53213)-Ceva conjugate of X(100)
X(64616) = crossdifference of every pair of points on line {3271, 53550}
X(64616) = barycentric product X(100)*X(18343)
X(64616) = barycentric quotient X(18343)/X(693)
X(64617) lies on the cubic K202 and these lines: {1, 6460}, {4, 9}, {6, 52808}, {7, 1659}, {20, 30557}, {37, 52805}, {46, 8957}, {55, 30325}, {144, 13387}, {390, 2362}, {497, 6203}, {515, 64314}, {527, 5861}, {528, 49337}, {946, 32555}, {962, 30556}, {971, 34909}, {1100, 52806}, {1123, 4312}, {1335, 64057}, {1633, 8224}, {1836, 30324}, {3062, 13454}, {3474, 6204}, {5414, 13390}, {5853, 12628}, {7580, 60847}, {9778, 30413}, {9812, 30412}, {11495, 34121}, {13360, 15726}, {13437, 52819}, {14100, 58897}, {16777, 52809}, {17768, 49340}, {28194, 64309}, {30354, 60887}, {31730, 32556}, {43178, 55498}, {51364, 52420}
X(64617) = reflection of X(i) in X(j) for these {i,j}: {7, 45704}, {64336, 9}
X(64617) = isogonal conjugate of X(46376)
X(64617) = X(13387)-Ceva conjugate of X(7090)
X(64617) = X(i)-isoconjugate of X(j) for these (i,j): {1, 46376}, {6502, 15891}, {13389, 30336}, {40699, 53064}
X(64617) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 46376}, {14121, 13386}
X(64617) = barycentric product X(i)*X(j) for these {i,j}: {75, 46378}, {175, 7090}, {1123, 31547}, {1659, 30413}, {51841, 60854}
X(64617) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 46376}, {7090, 40699}, {7133, 15891}, {30413, 56385}, {31547, 1267}, {46378, 1}, {51841, 13389}, {60851, 30336}
X(64617) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 6213, 7090}, {40, 31561, 14121}, {5493, 31594, 51955}
X(64618) lies on the cubics K250 and K280 and these lines: {2, 2987}, {6, 10425}, {39, 14253}, {83, 47736}, {182, 3563}, {378, 32697}, {2065, 5050}, {5013, 57728}, {7790, 35142}, {10601, 57493}, {13335, 61446}, {15018, 52515}
X(64618) = barycentric product X(2987)*X(14568)
X(64618) = barycentric quotient X(i)/X(j) for these {i,j}: {2872, 55122}, {10425, 2858}, {14568, 51481}
X(64619) lies on the cubic K620 and these lines: {4, 1499}, {24, 111}, {25, 41936}, {671, 43678}, {892, 56015}, {1235, 52756}, {1593, 45143}, {1968, 17964}, {2207, 8753}, {3162, 8877}, {5523, 59422}, {5968, 39575}, {8743, 14246}, {9214, 41361}, {11470, 52233}, {14262, 23701}, {14580, 34158}, {27376, 64258}, {44161, 59762}
X(64619) = isogonal conjugate of X(53784)
X(64619) = polar conjugate of the isotomic conjugate of X(57485)
X(64619) = polar conjugate of the isogonal conjugate of X(51962)
X(64619) = X(10630)-Ceva conjugate of X(8753)
X(64619) = X(51962)-cross conjugate of X(57485)
X(64619) = X(i)-isoconjugate of X(j) for these (i,j): {1, 53784}, {255, 58078}, {326, 51823}, {3292, 37220}, {14210, 18876}, {24038, 41511}
X(64619) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 53784}, {468, 36792}, {6523, 58078}, {15259, 51823}, {15477, 18876}, {38971, 45807}, {61067, 6390}
X(64619) = barycentric product X(i)*X(j) for these {i,j}: {4, 57485}, {25, 59422}, {111, 5523}, {264, 51962}, {671, 14580}, {858, 8753}, {1560, 10630}, {2052, 34158}, {2393, 17983}, {5466, 46592}, {6524, 51253}, {9178, 61181}, {10415, 20410}, {10561, 60507}, {18669, 36128}, {21459, 46154}, {39269, 52142}
X(64619) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 53784}, {393, 58078}, {1560, 36792}, {2207, 51823}, {2393, 6390}, {5523, 3266}, {8753, 2373}, {14580, 524}, {17983, 46140}, {20410, 7664}, {32740, 18876}, {34158, 394}, {36128, 37220}, {41936, 41511}, {46592, 5468}, {47138, 45807}, {51253, 4176}, {51962, 3}, {57485, 69}, {59422, 305}
X(64619) = {X(4),X(52490)}-harmonic conjugate of X(14263)
X(64620) lies on the cubic K280 and these lines: {2, 2393}, {6, 2373}, {69, 14961}, {141, 57466}, {264, 5523}, {287, 33926}, {305, 62382}, {1180, 13575}, {1494, 7757}, {1799, 41614}, {3618, 10603}, {18018, 54347}, {19459, 40404}, {36879, 40413}
X(64620) = isogonal conjugate of X(52905)
X(64620) = X(1)-isoconjugate of X(52905)
X(64620) = X(3)-Dao conjugate of X(52905)
X(64620) = trilinear pole of line {525, 42665}
X(64620) = barycentric quotient X(6)/X(52905)
X(64621) lies on the cubic K412 and these lines: {2, 15265}, {4, 16089}, {5, 76}, {99, 11328}, {115, 40814}, {264, 19130}, {290, 381}, {297, 7790}, {316, 6785}, {458, 6528}, {598, 30491}, {850, 5640}, {1078, 47640}, {3066, 6331}, {3972, 10684}, {3978, 11185}, {5476, 44155}, {5480, 40822}, {5943, 51843}, {7757, 11672}, {7771, 35934}, {7827, 34235}, {9993, 44231}, {10796, 14382}, {14249, 18027}, {14561, 17984}, {14853, 44137}, {19573, 47846}, {32815, 63170}, {44133, 51396}, {46325, 63632}, {53127, 60707}
X(64621) = reflection of X(76) in X(14937)
X(64621) = complement of X(57450)
X(64622) lies on the cubic K202 and these lines: {7, 7090}, {9, 13389}, {40, 971}, {63, 46377}, {69, 31548}, {72, 31564}, {77, 30557}, {144, 13386}, {480, 30298}, {518, 30335}, {1001, 16213}, {13387, 45704}, {31562, 61003}
X(64622) = isogonal conjugate of X(46379)
X(64622) = X(6213)-cross conjugate of X(13388)
X(64622) = X(i)-isoconjugate of X(j) for these (i,j): {1, 46379}, {6, 64336}, {176, 60852}, {30412, 60849}, {42013, 51842}
X(64622) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 46379}, {9, 64336}, {13389, 176}
X(64622) = barycentric product X(i)*X(j) for these {i,j}: {75, 46377}, {13388, 40700}
X(64622) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 64336}, {6, 46379}, {2067, 51842}, {3084, 31548}, {13388, 176}, {15892, 14121}, {30335, 42013}, {30557, 30412}, {40700, 60853}, {46377, 1}, {64230, 16663}
X(64622) = {X(144),X(46422)}-harmonic conjugate of X(64336)
X(64623) lies on the cubic K202 and these lines: {1, 971}, {7, 13389}, {9, 13388}, {55, 30354}, {144, 175}, {481, 52819}, {516, 31532}, {612, 30288}, {910, 6203}, {1372, 61007}, {3084, 60966}, {5405, 60992}, {6212, 39795}, {10911, 60883}, {20059, 55397}, {30325, 60887}, {30355, 31391}, {31565, 51190}, {32556, 34495}, {55398, 60969}
X(64623) = X(i)-Ceva conjugate of X(j) for these (i,j): {175, 13388}, {30557, 13389}
X(64623) = barycentric product X(75)*X(8833)
X(64623) = barycentric quotient X(8833)/X(1)
X(64623) = {X(42013),X(64230)}-harmonic conjugate of X(13389)
X(64624) lies on the cubic K488 and these lines: {2, 51548}, {3, 1495}, {6, 18373}, {20, 41466}, {23, 12041}, {30, 74}, {49, 11456}, {64, 18436}, {110, 37950}, {125, 18325}, {146, 51391}, {186, 12133}, {323, 5663}, {376, 33533}, {378, 14805}, {381, 37470}, {382, 11438}, {399, 2935}, {468, 38728}, {511, 10620}, {512, 35002}, {541, 51360}, {546, 43584}, {548, 15062}, {550, 16659}, {567, 15072}, {568, 64099}, {599, 3098}, {858, 7728}, {1154, 37944}, {1204, 5073}, {1503, 12121}, {1511, 2071}, {1514, 2072}, {1531, 38790}, {1533, 6699}, {1597, 44084}, {1657, 3357}, {2393, 33878}, {2777, 7574}, {2916, 52099}, {2937, 64027}, {3231, 40115}, {3292, 12308}, {3431, 61752}, {3529, 32138}, {3530, 43613}, {3589, 13623}, {3830, 34417}, {3845, 10545}, {3853, 43601}, {3861, 43597}, {5092, 14855}, {5160, 10081}, {5189, 12244}, {5446, 43807}, {5505, 8705}, {5655, 11064}, {5888, 12100}, {5899, 21663}, {5907, 33541}, {6241, 37495}, {7286, 10065}, {7517, 37487}, {7527, 13339}, {7575, 15055}, {7687, 31726}, {7689, 17800}, {7691, 62144}, {7712, 35473}, {8703, 41462}, {10295, 38788}, {10296, 34584}, {10546, 11455}, {10575, 11430}, {10606, 12083}, {10610, 35478}, {10721, 18572}, {10752, 18449}, {11202, 35495}, {11250, 11464}, {11413, 15068}, {11440, 15704}, {11468, 17714}, {11563, 40685}, {11799, 15061}, {12085, 12160}, {12086, 13491}, {12088, 32210}, {12290, 18350}, {12302, 41615}, {12900, 51403}, {13202, 18403}, {13293, 15139}, {13353, 14865}, {13474, 43809}, {13596, 15018}, {13619, 61299}, {13754, 35452}, {14130, 37513}, {14157, 15051}, {14560, 14634}, {14643, 15122}, {14644, 44267}, {14851, 47324}, {14926, 15082}, {15021, 37967}, {15037, 40647}, {15041, 32110}, {15053, 15687}, {15054, 43576}, {15059, 44961}, {15066, 18435}, {15080, 18570}, {15081, 52403}, {15089, 17854}, {15681, 63425}, {15682, 48912}, {15684, 64095}, {16111, 29012}, {16117, 48919}, {18378, 43604}, {18445, 54992}, {18451, 58762}, {19596, 55646}, {21312, 23039}, {22462, 46852}, {30745, 61574}, {31861, 40280}, {32237, 37958}, {35498, 52100}, {35501, 44102}, {37923, 38633}, {38794, 46817}, {38848, 62013}, {41465, 54050}, {41613, 44883}, {43603, 58531}, {45959, 54434}, {46202, 55585}, {46728, 62143}, {46730, 49137}, {46818, 54995}, {47347, 57305}, {61136, 63040}, {63441, 64036}
X(64624) = midpoint of X(i) and X(j) for these {i,j}: {5189, 12244}, {10620, 35001}, {15054, 43576}
X(64624) = reflection of X(i) in X(j) for these {i,j}: {23, 12041}, {110, 37950}, {146, 51391}, {399, 10564}, {1495, 58871}, {1533, 6699}, {3581, 74}, {5899, 21663}, {7728, 858}, {10540, 2071}, {10721, 18572}, {12112, 1511}, {12308, 3292}, {12367, 3098}, {14157, 34152}, {14560, 14634}, {15139, 13293}, {18325, 125}, {20127, 50434}, {22115, 18859}, {32111, 15122}, {37477, 7464}, {37924, 32110}, {38790, 1531}, {41613, 44883}, {41615, 12302}, {63720, 37477}, {64182, 54995}
X(64624) = anticomplement of X(51548)
X(64624) = crossdifference of every pair of points on line {5306, 9209}
X(64624) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {378, 64098, 14805}, {399, 10564, 22115}, {399, 18859, 10564}, {1495, 58871, 3}, {1511, 12112, 10540}, {1657, 3357, 63392}, {2071, 12112, 1511}, {12084, 64030, 49}, {12086, 13491, 37472}, {15041, 37924, 32110}, {15122, 32111, 14643}
X(64625) lies on the cubic K280 and these lines: {2, 647}, {6, 98}, {39, 14265}, {187, 7422}, {290, 7757}, {378, 6531}, {574, 48452}, {2549, 34175}, {2715, 47737}, {2966, 7771}, {3815, 51404}, {3972, 54086}, {5024, 36822}, {5092, 51963}, {5309, 54991}, {5999, 14966}, {6785, 7735}, {7736, 52451}, {7738, 56688}, {7786, 14382}, {8779, 35912}, {9744, 51943}, {12042, 60504}, {13366, 51820}, {14355, 41932}, {15048, 51441}, {22712, 34359}, {39575, 52641}, {47044, 52038}
X(64625) = {X(34235),X(52672)}-harmonic conjugate of X(43665)
X(64626) lies on the cubics K168 and K1243 and these lines: {2, 42013}, {3, 8949}, {6, 6203}, {486, 31590}, {2067, 52420}, {2362, 17081}, {3084, 5408}, {5272, 8769}, {5391, 6337}, {13389, 24246}, {30336, 59691}
X(64626) = X(3)-cross conjugate of X(13388)
X(64626) = X(i)-isoconjugate of X(j) for these (i,j): {92, 53069}, {6204, 42013}, {57266, 60852}
X(64626) = X(i)-Dao conjugate of X(j) for these (i,j): {13389, 57266}, {22391, 53069}
X(64626) = barycentric product X(13388)*X(57270)
X(64626) = barycentric quotient X(i)/X(j) for these {i,j}: {184, 53069}, {2067, 6204}, {7347, 14121}, {13388, 57266}, {57270, 60853}
X(64627) lies on the cubics K168 and K1243 and these lines: {2, 7133}, {3, 8947}, {6, 6204}, {485, 31591}, {1267, 6337}, {2066, 3083}, {5272, 8769}, {6502, 52419}, {13388, 24245}, {16232, 17081}, {30335, 59691}
X(64627) = X(3)-cross conjugate of X(13389)
X(64627) = X(i)-isoconjugate of X(j) for these (i,j): {92, 53070}, {6203, 7133}, {57267, 60851}
X(64627) = X(i)-Dao conjugate of X(j) for these (i,j): {13388, 57267}, {22391, 53070}
X(64627) = barycentric product X(13389)*X(57269)
X(64627) = barycentric quotient X(i)/X(j) for these {i,j}: {184, 53070}, {6502, 6203}, {7348, 7090}, {13389, 57267}, {57269, 60854}
X(64628) lies on the cubic K477 and these lines: {2, 74}, {316, 1494}, {1304, 10295}, {2394, 9003}, {6334, 53383}, {10152, 35480}, {10296, 14989}, {10297, 12079}, {15341, 18877}, {39377, 44934}, {39378, 44933}, {40385, 52976}, {46339, 46808}
X(64628) = barycentric product X(4549)*X(16080)
X(64628) = barycentric quotient X(4549)/X(11064)
X(64628) = {X(74),X(52488)}-harmonic conjugate of X(60119)
X(64629) lies on the cubic K168 and these lines: {2, 24243}, {3, 6406}, {6, 494}, {372, 53062}, {485, 642}, {1147, 26507}, {1307, 6396}, {1327, 49435}, {1600, 5412}, {3068, 26506}, {5417, 45599}, {9738, 26293}, {12313, 49377}, {16419, 40809}, {56504, 59702}
X(64629) = isogonal conjugate of X(61391)
X(64629) = isotomic conjugate of the isogonal conjugate of X(53062)
X(64629) = X(i)-cross conjugate of X(j) for these (i,j): {3, 5409}, {32575, 372}
X(64629) = X(i)-isoconjugate of X(j) for these (i,j): {1, 61391}, {19, 24245}, {92, 53061}, {19216, 41516}
X(64629) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 61391}, {6, 24245}, {5408, 487}, {10960, 3069}, {22391, 53061}
X(64629) = cevapoint of X(3) and X(494)
X(64629) = barycentric product X(i)*X(j) for these {i,j}: {76, 53062}, {372, 5491}, {491, 494}, {1307, 54028}, {5409, 24243}, {26461, 45806}
X(64629) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 24245}, {6, 61391}, {184, 53061}, {372, 3069}, {494, 486}, {1307, 54030}, {1600, 39388}, {5409, 487}, {5412, 52291}, {5491, 34392}, {8946, 41516}, {26455, 8036}, {26461, 8576}, {26920, 10133}, {32575, 13934}, {53062, 6}
X(64629) = {X(45414),X(45595)}-harmonic conjugate of X(494)
X(64630) lies on the cubic K168 and these lines: {2, 24244}, {3, 6291}, {6, 493}, {371, 8950}, {486, 641}, {1147, 26498}, {1151, 8913}, {1306, 6200}, {1328, 49434}, {1599, 5413}, {3069, 26496}, {5419, 45600}, {9739, 26292}, {12314, 49378}, {16419, 40809}, {56506, 59702}
X(64630) = isogonal conjugate of X(61390)
X(64630) = isotomic conjugate of the isogonal conjugate of X(8950)
X(64630) = X(i)-cross conjugate of X(j) for these (i,j): {3, 5408}, {32568, 371}
X(64630) = X(i)-isoconjugate of X(j) for these (i,j): {1, 61390}, {19, 24246}, {92, 53060}, {19215, 41515}
X(64630) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 61390}, {6, 24246}, {5409, 488}, {10962, 3068}, {22391, 53060}
X(64630) = cevapoint of X(i) and X(j) for these (i,j): {3, 493}, {5408, 8913}
X(64630) = barycentric product X(i)*X(j) for these {i,j}: {76, 8950}, {371, 5490}, {492, 493}, {1306, 54029}, {5408, 24244}, {26454, 45805}
X(64630) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 24246}, {6, 61390}, {184, 53060}, {371, 3068}, {493, 485}, {1306, 54031}, {1599, 39387}, {5408, 488}, {5413, 5200}, {5490, 34391}, {8911, 10132}, {8948, 41515}, {8950, 6}, {26454, 8577}, {26460, 8035}, {32568, 13882}
X(64630) = {X(45415),X(45596)}-harmonic conjugate of X(493)
X(64631) lies on the Feuerbach circumhyperbola of the medial triangle, the cubic K168, and these lines: {2, 7133}, {3, 6213}, {6, 8941}, {9, 9616}, {10, 486}, {37, 1376}, {69, 5391}, {100, 42013}, {119, 44038}, {142, 5393}, {214, 35774}, {443, 1123}, {474, 8965}, {485, 41540}, {1336, 59591}, {1766, 8224}, {2550, 6351}, {3084, 5408}, {6260, 31561}, {6352, 59572}, {25524, 38487}
X(64631) = midpoint of X(52813) and X(57269)
X(64631) = complement of X(57269)
X(64631) = complement of the isotomic conjugate of X(57267)
X(64631) = isotomic conjugate of the isogonal conjugate of X(53070)
X(64631) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 30557}, {6203, 141}, {57267, 2887}
X(64631) = X(2)-Ceva conjugate of X(30557)
X(64631) = X(i)-isoconjugate of X(j) for these (i,j): {7348, 16232}, {57269, 60849}
X(64631) = X(30557)-Dao conjugate of X(2)
X(64631) = crosspoint of X(2) and X(57267)
X(64631) = barycentric product X(i)*X(j) for these {i,j}: {76, 53070}, {6203, 56386}, {30557, 57267}
X(64631) = barycentric quotient X(i)/X(j) for these {i,j}: {5414, 7348}, {6203, 13390}, {30557, 57269}, {53070, 6}
X(64631) = {X(2),X(52813)}-harmonic conjugate of X(57269)
X(64632) lies on the Feuerbach circumhyperbola of the medial triangle, the cubic K168, and these lines: {2, 42013}, {3, 6212}, {6, 8945}, {9, 30355}, {10, 485}, {37, 1376}, {69, 1267}, {100, 7133}, {142, 5405}, {214, 35775}, {443, 1336}, {486, 41540}, {1123, 59591}, {2066, 3083}, {2550, 6352}, {3811, 8953}, {3913, 38487}, {5687, 8965}, {6260, 31562}, {6351, 59572}, {9616, 45036}, {30413, 31413}, {31453, 32556}, {40653, 40869}
X(64632) = midpoint of X(52811) and X(57270)
X(64632) = complement of X(57270)
X(64632) = complement of the isotomic conjugate of X(57266)
X(64632) = isotomic conjugate of the isogonal conjugate of X(53069)
X(64632) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 30556}, {6204, 141}, {57266, 2887}
X(64632) = X(2)-Ceva conjugate of X(30556)
X(64632) = X(i)-isoconjugate of X(j) for these (i,j): {2362, 7347}, {57270, 60850}
X(64632) = X(30556)-Dao conjugate of X(2)
X(64632) = crosspoint of X(2) and X(57266)
X(64632) = barycentric product X(i)*X(j) for these {i,j}: {76, 53069}, {6204, 56385}, {30556, 57266}
X(64632) = barycentric quotient X(i)/X(j) for these {i,j}: {2066, 7347}, {6204, 1659}, {30556, 57270}, {53069, 6}
X(64632) = {X(2),X(52811)}-harmonic conjugate of X(57270)
X(64633) lies on the cubic K903 and these lines: {3, 669}, {23, 99}, {110, 187}, {237, 524}, {1995, 35606}, {5166, 33875}, {5912, 9149}, {5914, 33900}, {6792, 37465}, {9169, 11328}, {9212, 52773}, {14916, 37184}, {16042, 60863}, {32525, 37338}
X(64633) = circumcircle-inverse of X(5652)
X(64633) = crossdifference of every pair of points on line {3291, 8371}
X(64634) lies on the cubic K903 and these lines: {3, 512}, {23, 110}, {30, 53735}, {74, 38704}, {125, 16760}, {182, 5968}, {187, 14702}, {249, 15034}, {265, 57311}, {523, 53725}, {525, 31854}, {542, 36166}, {575, 13137}, {576, 44127}, {625, 54076}, {690, 46634}, {691, 15035}, {1499, 46987}, {1503, 47570}, {1511, 9181}, {2682, 23698}, {3906, 18332}, {5099, 17702}, {5642, 7471}, {5651, 33927}, {5663, 38613}, {5972, 16188}, {5999, 6054}, {6036, 51428}, {6785, 14002}, {9168, 63767}, {9218, 15020}, {9717, 14687}, {12073, 46633}, {12106, 31850}, {13857, 34312}, {14094, 33803}, {14643, 38953}, {14915, 18860}, {15040, 38582}, {15051, 38702}, {15448, 47584}, {20397, 35605}, {22265, 47288}, {32478, 54248}, {32609, 38583}, {34175, 46512}, {35266, 47351}, {35912, 52076}, {37123, 52994}, {38734, 58907}, {38740, 58908}, {38793, 40544}, {38794, 57307}, {51393, 53760}
X(64634) = midpoint of X(i) and X(j) for these {i,j}: {110, 842}, {22265, 47288}
X(64634) = reflection of X(i) in X(j) for these {i,j}: {125, 16760}, {9181, 1511}, {16188, 5972}, {47584, 15448}, {51428, 6036}, {53710, 46987}
X(64634) = reflection of X(53728) in the Euler line
X(64634) = circumcircle-inverse of X(34291)
X(64634) = crossdifference of every pair of points on line {230, 1640}
X(64634) = {X(3),X(33928)}-harmonic conjugate of X(47049)
X(64635) lies on the cubic K620 and these lines: {4, 513}, {8, 1309}, {24, 104}, {64, 38955}, {1093, 1118}, {1413, 34051}, {1593, 45145}, {2250, 41320}, {7435, 39175}, {12138, 56761}, {18816, 54412}, {34182, 36944}, {34234, 37258}, {36110, 56638}, {36819, 46878}, {51359, 51660}, {61429, 64120}
X(64635) = polar conjugate of the isotomic conjugate of X(57495)
X(64635) = X(1309)-Ceva conjugate of X(14312)
X(64635) = X(i)-isoconjugate of X(j) for these (i,j): {255, 54241}, {1295, 22350}, {2431, 24029}, {15405, 24028}
X(64635) = X(i)-Dao conjugate of X(j) for these (i,j): {6523, 54241}, {14571, 26611}, {53991, 517}
X(64635) = barycentric product X(i)*X(j) for these {i,j}: {4, 57495}, {2052, 39175}, {2405, 43728}, {6001, 16082}, {25640, 59196}, {34234, 51359}, {36795, 51399}
X(64635) = barycentric quotient X(i)/X(j) for these {i,j}: {393, 54241}, {2443, 23981}, {25640, 26611}, {39175, 394}, {41933, 15405}, {43058, 62402}, {43728, 2417}, {51359, 908}, {51399, 1465}, {57495, 69}
X(64636) lies on the cubic K280 and these lines: {2, 2592}, {4, 39}, {6, 1114}, {376, 15167}, {1313, 15048}, {1344, 5024}, {1345, 45141}, {1346, 3815}, {1347, 5523}, {5013, 14709}, {5063, 41942}, {7735, 15166}, {7737, 15161}, {7757, 15165}, {8106, 40138}, {8743, 14710}, {10737, 44526}, {16070, 41518}, {41941, 52905}
X(64637) lies on the cubic K280 and these lines: {2, 2593}, {4, 39}, {6, 1113}, {376, 15166}, {1312, 15048}, {1344, 45141}, {1345, 5024}, {1346, 5523}, {1347, 3815}, {5013, 14710}, {5063, 41941}, {7735, 15167}, {7737, 15160}, {7757, 15164}, {8105, 40138}, {8743, 14709}, {10736, 44526}, {16071, 41519}, {41942, 52905}
See Francisco Javier García Capitán , Sharing the centroid and more.
X(64638) lies on these lines: {2, 3}, {511, 39888}, {637, 9873}, {1503, 49038}, {1975, 58803}, {5490, 54935}, {5870, 9733}, {6201, 43119}, {6459, 31670}, {6460, 39876}, {6560, 7738}, {7690, 33364}, {7750, 58804}, {8982, 14927}, {10722, 33341}, {10784, 45488}, {26361, 45542}, {26429, 42413}, {26441, 51212}, {29181, 49039}, {29317, 42858}, {39874, 43133}, {41411, 42275}, {42258, 48910}, {42259, 48905}, {42264, 63548}
X(64638) = reflection of X(i) in X(j) for these {i,j}: {5870, 9733}, {64639, 20}
X(64638) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 382, 36658}, {4, 376, 11292}, {20, 11293, 376}, {376, 7375, 3}, {3543, 32489, 4}
See Francisco Javier García Capitán , Sharing the centroid and more.
X(64639) lies on these lines: {2, 3}, {511, 39887}, {638, 9873}, {1503, 49039}, {1975, 58804}, {5491, 54936}, {5871, 9732}, {6202, 43118}, {6459, 39875}, {6460, 31670}, {6561, 7738}, {7692, 33365}, {7750, 58803}, {8982, 51212}, {10722, 33340}, {10783, 45489}, {14927, 26441}, 26362, 45543}, {26430, 42414}, {29181, 49038}, {29317, 42859}, {39874, 43134}, {41410, 42276}, {42258, 48905}, {42259, 48910}, {42263, 63548}
X(64639) = reflection of X(i) in X(j) for these {i,j}: {5871, 9732}, {64638, 20}
X(64639) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 382, 36657}, {4, 376, 11291}, {20, 11294, 376}, {376, 7376, 3}, {3543, 32488, 4}
See Keita Miyamoto and Francisco Javier García Capitán, euclid 6555.
X(64640) lies on these lines: {3, 966}, {6, 16947}, {19, 5277}, {45, 198}, {48, 18755}, {197, 199}, {610, 35342}, {1213, 52273}, {1603, 1604}, {1609, 13738}, {1953, 40750}, {2183, 2305}, {4254, 20842}, {8573, 37257}, {17299, 23858}, {20876, 20877}, {35216, 56956}, {36744, 37259}, {38871, 38903}, {60544, 60564}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6567.
X(64641) lies on these lines: {2, 3}, {12383, 36254}
As a point on the Euler line, X(64642) has Shinagawa coefficients {15*E^2+48*E*F+384*F^2-64*S^2,-21*E^2-528*E*F+384*F^2+192*S^2}.
See Antreas Hatzipolakis and Ercole Suppa, euclid 6567.
X(64642) lies on these lines: {2, 3}, {14643, 33855}, {16168, 20393}, {32417, 61598}, {34153, 57471}
X(64642) = reflection of X(140) in X(523)X(14643)
X(64642) = complement of the circumperp conjugate of X(15766)
X(64643) lies on these lines: {1, 7239}, {2, 62587}, {11, 115}, {37, 24542}, {39, 17602}, {100, 26278}, {244, 21339}, {513, 1977}, {650, 6377}, {661, 8054}, {1194, 17061}, {1979, 24289}, {2275, 17720}, {2969, 6591}, {3121, 14296}, {3124, 64523}, {3666, 5976}, {3752, 24582}, {3756, 6588}, {4396, 57039}, {16604, 30818}, {16606, 64225}, {16726, 17198}, {16742, 16759}, {17475, 61172}, {17721, 63493}, {18037, 19786}, {22200, 64559}, {38347, 39786}, {40941, 47231}
X(64643) = complement of the isotomic conjugate of X(18108)
X(64643) = isotomic conjugate of the isogonal conjugate of X(55053)
X(64643) = X(i)-complementary conjugate of X(j) for these (i,j): {82, 21260}, {83, 21262}, {251, 3835}, {649, 21248}, {667, 21249}, {1919, 6292}, {1980, 16587}, {2206, 3005}, {3120, 55070}, {3122, 46654}, {4628, 27076}, {10547, 20315}, {10566, 626}, {18105, 3454}, {18108, 2887}, {39179, 21240}, {46288, 514}, {46289, 513}, {52376, 42327}, {52394, 23301}, {55240, 21245}, {61383, 3239}
X(64643) = X(76)-Ceva conjugate of X(513)
X(64643) = X(101)-isoconjugate of X(54458)
X(64643) = X(i)-Dao conjugate of X(j) for these (i,j): {667, 6}, {1015, 54458}
X(64643) = crosspoint of X(2) and X(18108)
X(64643) = crosssum of X(i) and X(j) for these (i,j): {1, 7239}, {6, 4553}, {213, 61172}
X(64643) = barycentric product X(i)*X(j) for these {i,j}: {1, 21210}, {76, 55053}, {244, 32926}, {513, 21301}, {514, 21389}, {649, 20952}, {693, 21005}, {1019, 21099}, {3261, 57047}, {6591, 28423}, {17924, 22157}, {40495, 57097}
X(64643) = barycentric quotient X(i)/X(j) for these {i,j}: {513, 54458}, {20952, 1978}, {21005, 100}, {21099, 4033}, {21210, 75}, {21301, 668}, {21389, 190}, {22157, 1332}, {32926, 7035}, {55053, 6}, {57047, 101}, {57097, 692}
X(64644) lies on these lines: {11, 693}, {76, 4583}, {115, 1111}, {120, 3263}, {350, 1281}, {918, 35505}, {1565, 3777}, {1566, 4858}, {3760, 51989}, {4142, 21208}, {4358, 16593}, {4509, 7336}, {6063, 30959}, {20974, 48094}, {21207, 48393}, {23773, 53583}, {27918, 39786}, {35119, 40623}, {40075, 64222}
X(64644) = isotomic conjugate of the isogonal conjugate of X(38989)
X(64644) = X(i)-complementary conjugate of X(j) for these (i,j): {251, 3716}, {665, 21249}, {2254, 21248}, {10566, 20544}, {18108, 20335}, {46289, 918}
X(64644) = X(i)-Ceva conjugate of X(j) for these (i,j): {76, 918}, {1111, 62429}
X(64644) = X(i)-isoconjugate of X(j) for these (i,j): {660, 32666}, {813, 919}, {1110, 52030}, {1252, 51866}, {1911, 5377}, {5378, 64216}, {18265, 39293}, {23990, 52209}, {34067, 36086}
X(64644) = X(i)-Dao conjugate of X(j) for these (i,j): {514, 52030}, {661, 51866}, {665, 6}, {918, 22116}, {1577, 33676}, {2238, 1252}, {3126, 7077}, {3716, 55}, {3912, 765}, {6651, 5377}, {17755, 5378}, {27918, 100}, {35094, 660}, {35119, 36086}, {38980, 813}, {38989, 34067}, {40623, 919}, {62552, 105}, {62558, 1438}
X(64644) = crosspoint of X(i) and X(j) for these (i,j): {693, 3263}, {30940, 52619}
X(64644) = crosssum of X(i) and X(j) for these (i,j): {6, 46163}, {692, 64216}, {34067, 40730}
X(64644) = crossdifference of every pair of points on line {32666, 34067}
X(64644) = barycentric product X(i)*X(j) for these {i,j}: {76, 38989}, {239, 62429}, {693, 62552}, {918, 3766}, {1086, 64223}, {1111, 17755}, {1921, 3675}, {3263, 27918}, {4124, 40704}, {4858, 39775}, {8299, 23989}, {17435, 18033}, {34253, 34387}
X(64644) = barycentric quotient X(i)/X(j) for these {i,j}: {239, 5377}, {244, 51866}, {659, 919}, {665, 34067}, {812, 36086}, {918, 660}, {1086, 52030}, {1111, 52209}, {2254, 813}, {3675, 292}, {3766, 666}, {3912, 5378}, {4124, 294}, {4435, 52927}, {4858, 33676}, {8299, 1252}, {8632, 32666}, {10030, 39293}, {17435, 7077}, {17755, 765}, {23773, 41531}, {23829, 4584}, {27846, 1438}, {27918, 105}, {34253, 59}, {35094, 22116}, {35505, 40730}, {38989, 6}, {39775, 4564}, {39786, 56853}, {43041, 36146}, {51329, 2149}, {62429, 335}, {62552, 100}, {64223, 1016}
X(64645) lies on these lines: {6, 13}, {30, 9408}, {146, 6794}, {339, 3589}, {1235, 14389}, {1531, 52950}, {1539, 52951}, {1990, 34334}, {2420, 6793}, {3124, 5305}, {3580, 44576}, {4846, 40354}, {5523, 15639}, {5664, 5976}, {6103, 6699}, {7664, 14316}, {9412, 20127}, {10317, 39008}, {12918, 48905}, {14398, 41079}, {14915, 41358}, {36435, 58789}, {37638, 62573}, {41361, 61206}
X(64645) = X(i)-complementary conjugate of X(j) for these (i,j): {1495, 21249}, {2173, 21248}, {9406, 6292}, {9407, 16587}, {36035, 55070}, {46288, 18593}, {46289, 30}
X(64645) = X(76)-Ceva conjugate of X(30)
X(64645) = X(i)-isoconjugate of X(j) for these (i,j): {2159, 55032}, {2349, 64615}
X(64645) = X(i)-Dao conjugate of X(j) for these (i,j): {1495, 6}, {3163, 55032}
X(64645) = crosssum of X(6) and X(46147)
X(64645) = crossdifference of every pair of points on line {526, 64615}
X(64645) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 55032}, {1495, 64615}
X(64646) lies on these lines: {2, 339}, {3, 64213}, {6, 110}, {22, 112}, {23, 8744}, {39, 52533}, {115, 1194}, {187, 47181}, {216, 6103}, {230, 63846}, {232, 3163}, {250, 53929}, {647, 60510}, {648, 2373}, {858, 1560}, {1180, 31236}, {1184, 2079}, {1196, 10418}, {1249, 7493}, {1625, 46128}, {1986, 7418}, {2492, 7664}, {2781, 36828}, {3580, 15595}, {4232, 45245}, {4239, 40582}, {7492, 18472}, {8745, 26284}, {9475, 15329}, {9609, 38872}, {9832, 39078}, {10313, 39176}, {13351, 44529}, {15905, 26283}, {16165, 28343}, {16318, 16387}, {21208, 40940}, {22240, 47228}, {24855, 47182}, {26257, 37895}, {34349, 34834}, {37801, 37804}, {37980, 52058}, {38652, 47230}, {40937, 47232}, {40941, 47231}, {40948, 46594}, {44468, 53346}, {46425, 62612}, {47426, 57485}, {52950, 56922}, {57481, 60002}
X(64646) = complement of X(18019)
X(64646) = complement of the isogonal conjugate of X(18374)
X(64646) = complement of the isotomic conjugate of X(23)
X(64646) = isotomic conjugate of the polar conjugate of X(20410)
X(64646) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 21234}, {23, 2887}, {31, 858}, {32, 16581}, {316, 21235}, {560, 187}, {604, 18637}, {923, 6698}, {1973, 62376}, {2492, 21253}, {8744, 20305}, {10317, 18589}, {14246, 21256}, {16568, 626}, {18374, 10}, {20944, 40379}, {32676, 9517}, {42659, 34846}, {46289, 9019}, {52142, 4892}, {52630, 42327}, {52916, 21259}, {55226, 21263}
X(64646) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 858}, {76, 9019}, {250, 46592}, {648, 9517}, {57481, 23}, {59422, 2393}
X(64646) = X(47426)-cross conjugate of X(6593)
X(64646) = X(i)-isoconjugate of X(j) for these (i,j): {1910, 36884}, {2157, 2373}, {3455, 37220}
X(64646) = X(i)-Dao conjugate of X(j) for these (i,j): {468, 57496}, {858, 2}, {5099, 60040}, {5181, 34897}, {11672, 36884}, {39169, 41511}, {40583, 2373}, {47138, 339}, {61067, 67}
X(64646) = crosspoint of X(i) and X(j) for these (i,j): {2, 23}, {250, 52630}, {14246, 37765}
X(64646) = crosssum of X(6) and X(67)
X(64646) = crossdifference of every pair of points on line {690, 3455}
X(64646) = barycentric product X(i)*X(j) for these {i,j}: {23, 858}, {69, 20410}, {250, 38971}, {316, 2393}, {1236, 18374}, {1560, 57481}, {5181, 14246}, {5523, 22151}, {6593, 59422}, {7664, 57485}, {8744, 62382}, {9517, 61181}, {9979, 61198}, {14580, 37804}, {14961, 37765}, {16568, 18669}, {36415, 57476}, {47138, 52630}, {47426, 52551}
X(64646) = barycentric quotient X(i)/X(j) for these {i,j}: {23, 2373}, {316, 46140}, {511, 36884}, {858, 18019}, {1560, 57496}, {2393, 67}, {2492, 60040}, {5523, 46105}, {8744, 60133}, {9019, 46165}, {10317, 18876}, {14580, 8791}, {14961, 34897}, {16568, 37220}, {18374, 1177}, {20410, 4}, {36415, 60002}, {38971, 339}, {46592, 935}, {47426, 14357}, {51962, 64218}, {52142, 10422}, {57485, 10415}, {61198, 17708}
X(64646) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23, 40583, 36415}, {36415, 40583, 52951}
X(64647) lies on these lines: {2, 11794}, {5, 39}, {22, 61194}, {76, 39575}, {98, 5661}, {147, 34235}, {216, 15819}, {232, 511}, {262, 15355}, {339, 3934}, {343, 14994}, {1194, 3124}, {1196, 40377}, {2021, 47079}, {2491, 2799}, {3094, 47049}, {5052, 14984}, {5188, 53795}, {5305, 52536}, {10317, 14675}, {13236, 15915}, {14580, 36789}, {14965, 58355}, {15462, 57260}, {15905, 22655}, {16308, 47568}, {17980, 52471}, {22240, 22712}, {23584, 47200}, {34359, 46272}, {36471, 53981}, {38974, 44953}, {40810, 51511}
X(64647) = midpoint of X(76) and X(41676)
X(64647) = reflection of X(339) in X(3934)
X(64647) = complement of the isotomic conjugate of X(51862)
X(64647) = isotomic conjugate of the isogonal conjugate of X(40601)
X(64647) = X(i)-complementary conjugate of X(j) for these (i,j): {82, 21531}, {237, 21249}, {560, 8623}, {1755, 21248}, {3405, 626}, {9417, 6292}, {9418, 16587}, {20022, 21235}, {34072, 24284}, {46288, 16609}, {46289, 511}, {51862, 2887}
X(64647) = X(i)-Ceva conjugate of X(j) for these (i,j): {76, 511}, {41676, 2799}
X(64647) = X(1910)-isoconjugate of X(55033)
X(64647) = X(i)-Dao conjugate of X(j) for these (i,j): {237, 6}, {11672, 55033}
X(64647) = crosspoint of X(i) and X(j) for these (i,j): {2, 51862}, {2421, 27867}
X(64647) = crosssum of X(i) and X(j) for these (i,j): {6, 20021}, {2395, 7668}
X(64647) = crossdifference of every pair of points on line {879, 51869}
X(64647) = barycentric product X(i)*X(j) for these {i,j}: {76, 40601}, {297, 14965}, {325, 60514}, {511, 14957}, {1959, 16564}
X(64647) = barycentric quotient X(i)/X(j) for these {i,j}: {511, 55033}, {14957, 290}, {14965, 287}, {16564, 1821}, {40601, 6}, {58355, 17974}, {60514, 98}
X(64647) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 60526, 2023}, {2023, 2493, 60526}
X(64648) lies on these lines: {2, 44766}, {4, 32}, {230, 39000}, {339, 5305}, {1289, 26269}, {1297, 45280}, {2508, 38652}, {23977, 50938}, {34137, 34237}, {36899, 39085}, {46425, 62612}
X(64648) = complement of the isotomic conjugate of X(21458)
X(64648) = X(i)-complementary conjugate of X(j) for these (i,j): {2312, 21248}, {21458, 2887}, {42671, 21249}, {46289, 1503}
X(64648) = X(i)-Ceva conjugate of X(j) for these (i,j): {76, 1503}, {53657, 55129}
X(64648) = X(i)-Dao conjugate of X(j) for these (i,j): {42671, 6}, {50938, 34129}
X(64648) = crosspoint of X(2) and X(21458)
X(64648) = crosssum of X(6) and X(46164)
X(64648) = barycentric product X(i)*X(j) for these {i,j}: {34137, 60516}, {38652, 57490}
X(64648) = barycentric quotient X(i)/X(j) for these {i,j}: {2508, 34212}, {16318, 34129}
X(64649 lies on these lines: {385, 18092}, {732, 3589}, {7794, 45108}, {9466, 19609}, {16890, 42006}, {21022, 21684}, {35540, 39998}, {59739, 61063}
X(64649) = isotomic conjugate of X(55085)
X(64649) = isotomic conjugate of the isogonal conjugate of X(55075)
X(64649) = X(34294)-cross conjugate of X(523)
X(64649) = X(i)-isoconjugate of X(j) for these (i,j): {31, 55085}, {560, 55081}, {14990, 24041}
X(64649) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 55085}, {3005, 14990}, {6374, 55081}
X(64649) = barycentric product X(i)*X(j) for these {i,j}: {76, 55075}, {19609, 52618}
X(64649) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 55085}, {76, 55081}, {3124, 14990}, {19609, 1634}, {55075, 6}
X(64650) lies on these lines: {32, 53273}, {39, 620}, {112, 19626}, {115, 804}, {148, 14700}, {512, 9427}, {733, 52034}, {1194, 7664}, {1196, 10418}, {2489, 2971}, {3124, 5113}, {3229, 56442}, {5305, 52536}, {5355, 8265}, {5475, 63557}, {6375, 9466}, {6377, 40619}, {6388, 62573}, {7761, 63572}, {7853, 63570}, {9431, 30229}, {14691, 32531}, {16589, 62587}, {35078, 52591}, {35971, 46665}, {39000, 47421}, {39018, 55152}
X(64650) = complement of the isotomic conjugate of X(18105)
X(64650) = isotomic conjugate of the isogonal conjugate of X(38996)
X(64650) = X(i)-complementary conjugate of X(j) for these (i,j): {82, 23301}, {83, 21263}, {251, 42327}, {560, 3005}, {669, 21249}, {798, 21248}, {1917, 52591}, {1924, 6292}, {2643, 55070}, {4117, 15449}, {4599, 36950}, {4630, 21254}, {9426, 16587}, {18070, 40379}, {18098, 21262}, {18105, 2887}, {46288, 4369}, {46289, 512}, {51906, 21253}, {55240, 626}, {58784, 21235}, {61383, 8062}
X(64650) = X(i)-Ceva conjugate of X(j) for these (i,j): {76, 512}, {1627, 21006}, {7760, 8711}
X(64650) = X(i)-isoconjugate of X(j) for these (i,j): {662, 55034}, {6664, 24041}
X(64650) = X(i)-Dao conjugate of X(j) for these (i,j): {669, 6}, {1084, 55034}, {3005, 6664}
X(64650) = crosspoint of X(i) and X(j) for these (i,j): {2, 18105}, {1627, 21006}
X(64650) = crosssum of X(i) and X(j) for these (i,j): {6, 4576}, {3051, 61219}, {6664, 55034}
X(64650) = crossdifference of every pair of points on line {1634, 10330}
X(64650) = barycentric product X(i)*X(j) for these {i,j}: {76, 38996}, {115, 1627}, {512, 44445}, {513, 22322}, {523, 21006}, {798, 20953}, {850, 57075}, {2501, 22159}, {2643, 33760}, {3124, 7760}, {8711, 58784}
X(64650) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 55034}, {1627, 4590}, {3124, 6664}, {7760, 34537}, {8711, 4576}, {18105, 6573}, {20953, 4602}, {21006, 99}, {22159, 4563}, {22322, 668}, {33760, 24037}, {38996, 6}, {44445, 670}, {57075, 110}
X(64650) = {X(115),X(1084)}-harmonic conjugate of X(51906)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6572.
X(64651) lies on these lines: {2, 3}, {399, 14354}
As a point on the Euler line, X(64652) has Shinagawa coefficients {9*E^2+288*F^2-32*S^2,-15*E^2-192*E*F-96*F^2+96*S^2}.
See Antreas Hatzipolakis and Ercole Suppa, euclid 6572.
X(64652) lies on these lines: {2, 3}, {110, 14993}, {476, 10272}, {523, 18285}, {1138, 38580}, {1511, 18319}, {1553, 14677}, {3233, 34209}, {5627, 32423}, {5972, 45694}, {10264, 22104}, {12121, 57471}, {14643, 51345}, {14934, 22251}, {15027,31876}, {15040, 34193}, {16168, 31378}, {25641, 34153}, {32417, 38609}, {52056, 64101}
X(64652) = reflection of X(5) in X(523)X(14643)
See Kadir Altintas and Francisco Javier García Capitán, euclid 6576.
X(64653) lies on these lines: {3, 76}, {4, 3314}, {5, 7778}, {6, 22525}, {20, 63044}, {30, 599}, {114, 7801}, {140, 3767}, {141, 37242}, {182, 538}, {298, 44465}, {299, 44461}, {325, 37348}, {381, 47618}, {384, 10788}, {385, 35925}, {511, 3734}, {543, 50977}, {549, 7610}, {550, 59363}, {574, 15819}, {575, 7798}, {576, 7804}, {631, 7783}, {736, 35424}, {1003, 2080}, {1232, 40947}, {1316, 15066}, {1351, 10796}, {1499, 46778}, {1597, 43976}, {1656, 7832}, {1657, 9873}, {2452, 41614}, {2549, 53475}, {2709, 53919}, {2794, 34507}, {3054, 10256}, {3095, 7770}, {3098, 44774}, {3398, 7754}, {3526, 7828}, {3788, 6721}, {3934, 9737}, {5024, 40108}, {5050, 22253}, {5054, 8860}, {5070, 7930}, {5149, 32135}, {5171, 7816}, {6090, 51430}, {6194, 11676}, {6228, 6229}, {6248, 17130}, {6312, 12975}, {6316, 12974}, {6321, 7841}, {6390, 37451}, {6776, 32836}, {7485, 39906}, {7503, 26179}, {7697, 13860}, {7709, 37455}, {7751, 13335}, {7781, 13334}, {7789, 37466}, {7794, 39838}, {7799, 43461}, {7810, 38738}, {7818,13449},{7833, 13172}, {7835, 38227}, {7836, 37446}, {7839, 10359}, {7854, 32152}, {7870, 64089}, {7883, 10723}, {7934, 14639}, {7942, 46219}, {8591, 60653}, {9301, 10000}, {9466, 18860}, {9744, 32833}, {9755, 26316}, {9832, 46634}, {9996, 35456}, {10516, 40250}, {10519, 32815}, {10983, 11272}, {11007, 37638}, {11171, 31859}, {11174, 32447}, {11185, 15980}, {11288, 14693}, {11295, 13102}, {11296, 13103}, {11318, 61576}, {11842, 14614}, {12117, 55164}, {12215, 35429}, {13564, 33802}, {13732, 50156}, {13862, 43453}, {14001, 20576}, {14033, 63428}, {14494, 32968}, {14532, 55610}, {14538, 25167}, {14539, 25157}, {14931, 43532}, {14994, 35387}, {15684, 34681}, {15694, 55801}, {15718, 46941}, {16084, 59248}, {18768, 44224}, {18907, 34380}, {22594, 44476}, {22623, 44475}, {24271, 37521}, {31276, 37334}, {31981, 32448}, {33532, 53274}, {35259, 37906}, {35385, 37004}, {35606, 62191}, {37344, 63736}, {37450, 47286}, {38110, 63633}, {40727, 49102}, {40879, 57612}, {43449, 44526}, {44518, 61600}, {50008, 62551}, {50641, 50955}, {50978, 63945}, {51389, 61644}, {56370, 64093}, {57588, 59767}, {60654, 64090}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6583.
X(64654) lies on these lines: {2, 2064}, {37, 20106}, {39, 1212}, {57, 5019}, {244, 40956}, {1104, 35650}, {1211, 2092}, {1214, 17053}, {1427, 20227}, {1447, 17080}, {1763, 16946}, {3772, 17861}, {3924, 36570}, {4646, 6743}, {4850, 5278}, {5437, 54317}, {16579, 28358}, {17054, 54431}, {18591, 40941}, {18592, 53387}, {19762, 24046}, {20254, 37819}, {20886, 33129}, {22380, 33945}, {40959, 40984}
X(64654) = complement of X(2064)
X(64654) = barycentric product of X(i) and X(j) for these (i,j): (1193, 17861), (1829, 41004), (1837, 24471), (1848, 26934), (2092, 16749), (2292, 17189)
X(64654) = barycentric quotient of X(i) and X(j) for these {i,j}: {1193, 40436}, {1829, 34406}, {2300, 56003}, {2354, 55994}, {3666, 59759}, {3772, 30710}
X(64654) = trilinear product of X(i) and X(j) for these (i,j): (960, 36570), (1193, 3772), (1829, 26934), (1837, 61412), (2092, 17189), (2300, 17861)
X(64654) = trilinear quotient of X(i) and X(j) for these (i,j): (1193, 56003), (1829, 55994), (1848, 34406), (2354, 56305), (3666, 40436), (3674, 34399)
X(64654) = pole of the line X(2886)X(49598) with respect to dual of Yff parabola
X(64654) = pole of the line X(17052)X(44417) with respect to Kiepert hyperbola
X(64654) = pole of the line X(663)X(832) with respect to Steiner inellipse}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6583.
X(64655) lies on these lines: {216, 53496}, {6509, 11064}, {15526, 34834}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6583.
X(64656) lies on these lines: {2, 6}, {125, 44079}, {235, 31978}, {403, 2883}, {427, 58483}, {441, 40320}, {468, 1660}, {1192, 15873}, {3003, 45200}, {6247, 6623}, {9729, 15760}, {9786, 18537}, {9818, 44158}, {10257, 13346}, {12233, 15024}, {13416, 41588}, {23291, 41735}, {26937, 46373}, {37197, 43695}, {44911, 61607}
X(64656) = complement of X(2063)
X(64656) = pole of the line X(2)X(14091) with respect to Kiepert hyperbola
See Antreas Hatzipolakis and Ercole Suppa, euclid 6583.
X(64657) lies on these lines: {39, 8364}, {1180, 7914}, {1194, 6292}, {1196, 7499}, {7815, 9465}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6583.
X(64658) lies on these lines: {1, 2}, {5, 58576}, {11, 6245}, {56, 7682}, {57, 64190}, {496, 31788}, {497, 37560}, {515, 41426}, {516, 59336}, {631, 33994}, {1466, 17728}, {1699, 11023}, {1785, 24171}, {3452, 50196}, {3660, 6260}, {3820, 16215}, {3911, 10310}, {4187,17626}, {4292,52860}, {4301, 12736}, {4311, 64145}, {4848,15558}, {5450, 57278}, {5573, 7952}, {7681, 18238}, {7741, 63970}, {9581, 12667}, {11507, 51724}, {11508, 59675}, {12915, 17527}, {17054, 51616}, {18240, 21077}, {18838, 54198}, {24213, 62789}, {36123, 40446}
X(64658) = complement of X(2057)
X(64658) = pole of the line X(2)X(31600) with respect to dual of Yff parabola
euclid 6586.
X(64659) lies on these lines: {1, 3}, {20, 17614}, {78, 9954}, {84, 31821}, {104, 60970}, {200, 30283}, {214, 38759}, {355, 6926}, {392, 6909}, {515, 3820}, {527,43176}, {936, 9947}, {958, 58650}, {960, 34862}, {971, 997}, {993, 31658}, {1125, 7956}, {1292, 38452}, {1519, 37429}, {1538, 6925}, {1768, 31165}, {2810, 11714}, {2975,17658}, {3421,5440}, {3452, 4297}, {3877, 17613}, {3897, 15717}, {3940, 63430}, {4298, 5763}, {4311, 31799}, {4511, 10167}, {4881, 7411}, {5044, 12114}, {5450, 31445}, {5493, 51714}, {5603, 62778}, {5658, 6987}, {5691, 20196}, {5806, 25524} ,{5812, 31776}, {5886, 6916}, {6261, 31805}, {6326, 63432}, {6827, 18516}, {6850, 9955}, {6865, 18481}, {6882, 38140}, {6891, 9956}, {6907, 11230}, {6922, 18480}, {6928, 33697}, {6948, 28146}, {7290, 8147}, {7580, 35262}, {7682, 10165}, {8583, 10241}, {8666, 58637}, {9709, 12650},{9856, 19861}, {9943, 30144}, {10156, 54318}, {10307, 54052}, {11260, 43174}, {12053, 31777}, {12672, 37403}, {18243, 37837}, {18446, 51489}, {21616, 22792}, {22793, 31775}, {22836, 58567}, {33597, 37423}, {34647, 60896}, {42819, 43151}, {45287, 50031}, {51705, 54192}, {52769, 58608}
X(64659) = midpoint of X(i) and X(j) for these {i,j}: {1, 6244}, {3, 37611}, {200, 30283}, {997, 63991}, {999, 6282}, {3452, 4297}, {3940, 63430}, {5289, 64129}, {12915, 31793}
X(64659) = reflection of X(i) in X(j) for these {i,j}: {7956, 1125}, {10269, 13624}, {51788, 1385}
X(64659) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3, 31787}, {3, 1482, 37560}, {3, 10246, 30503}, {3, 12702, 10270}, {3, 31786, 3579}, {40, 3576, 13462}, {960, 63983, 34862}, {3428, 3576, 5126}, {3576, 6282, 999}, {3576, 24929, 1385}, {3576, 50371, 24929}, {3579, 17502, 23961}, {5049, 37569, 10222}, {7987, 59340, 5204}, {14110, 37561, 37582}, {17642, 37605, 5193}, {19861, 37022, 9856}, {38013, 38014, 24928}
See Antreas Hatzipolakis and Peter Moses, euclid 6605.
X(64660) lies on the circumcircle and these lines: {3, 58975}, {5, 1302}, {107, 7576}, {110, 5891}, {376, 930}, {378, 933}, {925, 44239}, {1291, 7464}, {2070, 9060}, {3153, 16167}, {3518, 9064}, {7422, 9076}, {7488, 53958}, {10295, 52998}, {12060, 46966}, {18533, 20626}, {20185, 21312}, {29011, 46585}, {32710, 53246}, {37943, 53944}, {50401, 53945}
X(64660) = reflection of X(58975) in X(3)
See Keita Miyamoto and Francisco Javier García Capitán, euclid 6603.
X(64661) lies on these lines: {1, 5943}, {51, 551}, {373, 519}, {389, 9624}, {511, 25055}, {1125, 3917}, {1154, 38022}, {1386, 29959}, {1698, 10219}, {2393, 38023}, {3060, 3616}, {3241, 11451}, {3636, 16980}, {3656, 5892}, {3679, 6688}, {3796, 11365}, {3892, 61640}, {5313, 39543}, {5462, 61276}, {5603, 15045}, {5640, 38314}, {5650, 19883}, {5691, 13570}, {5734, 15028}, {5886, 13754}, {5901, 5946}, {6000, 38021}, {7982, 11695}, {8681, 16475}, {9589, 17704}, {9729, 11522}, {9730, 51709}, {9822, 16491}, {9955, 16194}, {10595, 58487}, {11735, 12824}, {13364, 50824}, {13391, 38028}, {13451, 51700}, {13598, 30389}, {14845, 28204}, {14984, 38040}, {15026, 61278}, {15060, 61272}, {15808, 31757}, {16776, 51006}, {16836, 31162}, {17609, 58497}, {19875, 63632}, {21746, 49997}, {21849, 51110}, {21969, 51108}, {22415, 40955}, {24473, 58574}, {25557, 56884}, {28352, 50597}, {29958, 50190}, {30308, 46847}, {32062, 50802}, {36987, 50828}, {42448, 58565}, {46934, 62188}, {47356, 61676}, {50759, 63522},{51005, 61667}, {51105, 58470}
See Keita Miyamoto and Francisco Javier García Capitán, euclid 6603.
X(64662) lies on these lines: {1, 389}, {2, 52796}, {3, 61398}, {4, 58469}, {8, 15043}, {40, 9729}, {51, 515}, {52, 1385}, {80, 58508}, {143, 34773}, {165, 16836}, {182, 15177}, {185, 946}, {355, 5462}, {373, 10175}, {375, 18908}, {511, 3576}, {517, 3058}, {519, 16226}, {551, 14831}, {568, 10246}, {578, 16472}, {602, 10974}, {912, 41581}, {944, 3567}, {952, 5946}, {962, 10574}, {970, 10902}, {1071, 42450}, {1125, 5562}, {1154, 38028}, {1181, 11365}, {1386, 19161}, {1482, 37481}, {1572, 50387}, {1698, 11695}, {1699, 6000}, {1843, 39870}, {1986, 11735}, {2801, 15049}, {2807, 5603}, {2808, 61705}, {2818, 5902}, {2979, 54445}, {3060, 5731}, {3616, 5889}, {3624, 11793}, {3817, 15030}, {3917, 10165}, {4297, 31757}, {5446, 18481}, {5550, 11444}, {5587, 5943}, {5640, 59387}, {5657, 15045}, {5663, 38034}, {5690, 12006}, {5691, 10110}, {5818, 15024}, {5876, 61272}, {5881, 23841}, {5882, 16980}, {5884, 42448}, {5886, 13754}, {5891, 11230}, {5892, 26446}, {5901, 6102}, {5907, 8227}, {6001, 41580}, {6688, 54447}, {7680, 34462}, {7968, 12239}, {7969, 12240}, {7982, 15012}, {7987, 15644}, {8193, 37514}, {9778, 20791}, {9779, 15305}, {9780, 15028}, {9812, 15072}, {9822, 39885}, {9864, 58503}, {9955, 12162}, {10575, 22793}, {10625, 13624}, {10984, 49553}, {11381, 18483}, {11522, 13382}, {11562, 12261}, {11709, 13417}, {11710, 39846}, {11711, 39817}, {11720, 21649}, {12005, 23154}, {12109, 37625}, {12266, 32352}, {12368, 41671}, {12699, 40647}, {12751, 58504}, {12784, 58515}, {13178, 58502}, {13211, 58498}, {13363, 38042}, {13464, 31728}, {13491, 40273}, {13532, 58506}, {13630, 22791}, {14531, 31738}, {14845, 38140}, {14855, 28146}, {14872, 58497}, {15026, 18357}, {15060, 61269}, {15489, 59331}, {17704, 35242}, {18493, 34783}, {19862, 31752}, {21849, 50811}, {21969, 51705}, {24474, 58575}, {31751, 45187}, {34146, 38035}, {34372, 56177}, {37515, 37557}, {41869, 46850}, {50896, 58507}, {50899, 58513}, {50903, 58505}, {51707, 54384}, {58548, 59388}
See Keita Miyamoto and Francisco Javier García Capitán, euclid 6603.
X(64663) lies on these lines: {1, 5462}, {51, 10246},{52, 3616}, {143, 51700}, {145, 15024}, {185, 18493}, {373, 5790}, {389, 5901}, {511, 38028}, {517, 5892}, {946, 40647}, {952, 5943}, {960, 58575}, {1125, 1216}, {1385, 5446}, {1483, 15026}, {1699, 14915}, {2807, 51709}, {3567, 3622}, {3617, 11465}, {3636, 31760}, {5603, 9730}, {5640, 7967}, {5690, 11695}, {5691, 44863}, {5844, 13363}, {5886, 13754}, {5907, 61272}, {5946, 10283}, {6000, 38034}, {6153, 12266}, {6688, 38042}, {9729, 22791},{9779, 16194}, {9812, 14855}, {10110, 34773}, {10170, 11230}, {10222, 58487}, {10595, 15043}, {11412, 46934}, {11451, 59388}, {11557, 11735}, {11692,51701}, {11723, 11806}, {12245, 15028}, {12410, 15805}, {13364, 28224}, {13373, 42450}, {13607, 58474}, {14641, 22793}, {14845, 59387}, {15060, 61270}, {15808, 31738}, {16475, 34382}, {16836, 28174}, {16980, 37624}, {19907, 58508}, {31937, 58617}, {32205, 61510}, {34791, 58647}, {40273, 46850}, {50824, 58470}
See Keita Miyamoto and Francisco Javier García Capitán, euclid 6603.
X(64664) lies on these lines: {1, 4004},{2, 72},{8, 50192},{9, 19536}, {30, 10167}, {46, 4428}, {57, 16370}, {63, 16857}, {65, 551}, {145, 50191}, {210, 3833}, {226, 17533}, {354, 519}, {376, 9940}, {381, 1071}, {392, 3742}, {405, 3928}, {474, 11518}, {484, 42819}, {517, 3524}, {518, 3921}, {547, 24475}, {549, 24474}, {553, 11113}, {597, 24476}, {758, 19883}, {912, 5055}, {956, 10980}, {971, 3839}, {1125, 4018}, {1210, 17530}, {1453, 39980}, {1737, 25557}, {1739, 49478}, {2771, 59377}, {2800, 38026}, {2801, 38076}, {3057, 33815}, {3175, 43220}, {3218, 16858}, {3219, 17547}, {3241, 5045}, {3244, 3922}, {3306, 5440}, {3336, 51715}, {3338, 11194}, {3419, 9776}, {3543, 5806}, {3545, 5927}, {3555, 3679}, {3601, 19705}, {3616, 31794}, {3622, 50193}, {3634, 4533}, {3655, 13373}, {3656, 34339}, {3666, 48855}, {3697, 3828}, {3698, 3881}, {3740, 3894}, {3754, 17609}, {3816, 11551}, {3827, 38023}, {3830, 13369}, {3848, 5692}, {3873, 53620}, {3878, 51108}, {3889, 31145}, {3916, 5708}, {3918, 34641}, {3919, 5919}, {3929, 17542}, {3951, 16853}, {3962, 19862}, {3984, 16863}, {3999, 30116}, {4005, 51073}, {4084, 51109}, {4539, 61686}, {4654, 17556}, {4666, 36279}, {4677, 34791}, {4723, 17146}, {4731, 38098}, {4757, 15808}, {4860, 54318}, {4870, 10199}, {4880, 15254}, {4930, 19861}, {5066, 40263}, {5071, 5777}, {5542, 17757}, {5563, 19524}, {5570, 10056}, {5728, 6173}, {5731, 58615}, {5836, 50190}, {5885, 12672}, {5903, 51105}, {5904, 19876}, {6001, 38021}, {6583, 50821}, {6797, 10031}, {6940, 10222}, {6942, 15178}, {6977, 61276}, {7686, 50811}, {8581, 51098}, {9021, 48310}, {9709, 62861}, {9943, 50865}, {10072, 13750}, {10156, 15708}, {10157, 61924}, {10177, 28534}, {10197, 41539}, {10273, 10283}, {10304, 11227}, {10707, 58587}, {11018, 15933}, {11220, 50687}, {11237, 17625}, {11238, 12711}, {11274, 17636}, {11520, 16408}, {11523, 16862},{11570, 45310}, {11573, 21969}, {12005, 50796}, {12009, 18480}, {12100, 37585}, {12528, 61936}, {12625, 56997}, {12680, 34648}, {12688, 50802}, {12736, 50843}, {13374, 15016}, {13407, 17619}, {13476, 51034}, {13587, 24929}, {13747, 63274}, {14110, 50828}, {14523, 50301}, {14988, 38022}, {15071, 30308}, {15570, 48696}, {15677, 58619}, {15683, 31805}, {15692, 31793}, {15694, 31837}, {15803, 19704}, {16842, 54422}, {16861, 31445}, {17051, 30384}, {17529, 24391}, {17549, 37582}, {17626, 50195}, {17654, 58604}, {18180, 42028}, {18527, 20292}, {19290, 35612}, {19804, 48850}, {20116, 51100}, {21077, 44847}, {21161, 37623}, {21165, 28451}, {21342, 56191}, {24174, 42043}, {26728, 37634}, {26877, 28461}, {28466, 37532}, {30117, 37520}, {30143, 32636}, {30350, 63137}, {31178, 58583}, {31446, 50795}, {31663, 62870}, {31787, 34632}, {31798, 50872}, {31822, 62042}, {31835, 61885}, {31870, 51705}, {33575, 61812}, {34378, 38089}, {34381, 59373}, {34628, 58567}, {34747, 58609}, {34772, 36006}, {37545, 62829}, {37562, 58561}, {37592, 42040}, {37723, 50239}, {42038, 59305}, {42057, 50083}, {44566, 53550}, {47356, 58562}, {47357, 58564}, {49483, 49999}, {49499, 59586}, {50824, 61541}, {51110, 58679}, {51787, 62862}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6609.
X(64665) lies on these lines: {140, 17974}, {297, 31626}, {6101, 54032}, {14767, 14938}, {28724, 39113}, {34828, 43994}, {52251, 63154}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6609.
X(64666) lies on these lines: {2, 3}, {18400, 61590}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64667) lies on these lines: {1, 2}, {31, 39980}, {57, 4428}, {63, 30350}, {81, 16487}, {165, 62856}, {269, 63110}, {354, 3928}, {376, 12651}, {553, 12560}, {940, 35227}, {968, 42038}, {1001, 3929}, {1279, 62842}, {1386, 39948}, {1490, 38021}, {1621, 10980}, {1743, 62867}, {1750, 50802}, {2177, 8056}, {2951, 59375}, {2975, 30343}, {3058, 4326}, {3174, 38093}, {3243, 4423}, {3247, 59216}, {3304, 13615}, {3305, 62863}, {3306, 62862}, {3333, 16370}, {3361, 17549}, {3524, 6769}, {3555, 17542}, {3601, 40726}, {3653, 37531}, {3656, 18443}, {3731, 42039}, {3742, 4421}, {3746, 37309}, {3748, 5437}, {3750, 62695}, {3839, 63981}, {3848, 46917}, {3889, 5234}, {4321, 4654}, {4328, 17320}, {4863, 20195}, {4864, 7322}, {4866, 17536}, {4883, 7290}, {5045, 16418}, {5055, 5534}, {5066, 18528}, {5223, 5284}, {5436, 17609}, {5528, 38095}, {5531, 59377}, {5558, 11106}, {5563, 20835}, {5665, 51773}, {5732, 38024}, {6282, 50828}, {6326, 38026}, {7308, 42871}, {7411, 30389}, {7987, 62870}, {8167, 15570}, {8226, 9624}, {8726, 28194}, {8727, 61276}, {9580, 25557}, {9776, 30331}, {10382, 11238}, {10383, 10385}, {10431, 11522}, {10439, 64549}, {10857, 50808}, {11038, 40998}, {11194, 51715}, {11220, 24644}, {11224, 62835}, {11518, 44663}, {12526, 24473}, {12565, 31162}, {15178, 19541}, {16484, 62818}, {16857, 57279}, {16858, 62874}, {17051, 31231}, {17093, 25723}, {17146, 25734}, {17194, 42028}, {17394, 40719}, {17642, 58564}, {17784, 43179}, {18153, 25303}, {18529, 41106}, {25430, 49465}, {25522, 63282}, {25590, 32943}, {27003, 31508}, {30827, 37703}, {31424, 50190}, {36946, 41229}, {37364, 61278}, {37700, 38022}, {37736, 45310}, {38053, 64162}, {41711, 51780}, {41815, 51699}, {42040, 62849}, {42041, 62869}, {50192, 54290}, {51709, 63992}, {53056, 61155}, {55082, 56309}, {56179, 63109}, {58565, 61763}, {60846, 62819}, {61159, 63214}
X(64667) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4666, 10582}, {1, 8580, 3957}, {1, 10582, 200}, {1, 29820, 2999}, {1, 54392, 4853}, {354, 38316, 4512}, {551, 45700, 25055}, {1001, 44841, 62823}, {3742, 10389, 64112}, {4428, 58560, 57}, {4666, 29817, 1}, {5284, 62815, 5223}, {42819, 58560, 4428}, {62856, 64149, 165}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64668) lies on these lines: {1, 3}, {2, 5534}, {4, 4666}, {5, 10582}, {20, 29817}, {84, 38316}, {104, 62829}, {140, 200}, {381, 63981}, {496, 10382}, {515, 6849}, {550, 12651}, {551, 6261}, {602, 62819}, {631, 3870}, {912, 31435}, {944, 6864}, {946, 41854}, {997, 31458}, {1001, 7330}, {1006, 62874}, {1058, 7675}, {1064, 28011}, {1125, 5720}, {1279, 36746}, {1483, 4853}, {1490, 5886}, {1621, 63399}, {1750, 9955}, {1802, 17438}, {2951, 48661}, {2999, 37698}, {3174, 38122}, {3243, 61122}, {3244, 12521}, {3306, 11491}, {3523, 3957}, {3526, 8580}, {3553, 4253}, {3554, 4251}, {3560, 63430}, {3616, 6846}, {3622, 18444}, {3624, 17857}, {3655, 12650}, {3720, 36670}, {3742, 11500}, {3811, 10165}, {3851, 18529}, {3873, 55104}, {3881, 52769}, {3889, 6986}, {3935, 10303}, {4298, 6868}, {4314, 6948}, {4321, 6147}, {4326, 15172}, {4423, 14872}, {4428, 64118}, {4512, 24467}, {4847, 6989}, {5249, 12116}, {5272, 37699}, {5287, 7397}, {5290, 6928}, {5436, 22758}, {5437, 11499}, {5528, 38124}, {5531, 34595}, {5603, 10884}, {5732, 12699}, {5758, 11038}, {5840, 41864}, {5882, 54318}, {5901, 63992}, {6326, 38032}, {6713, 37736}, {6765, 26446}, {6825, 11019}, {6827, 21620}, {6850, 63999}, {6883, 57279}, {6889, 26015}, {6891, 13405}, {6908, 10580}, {6926, 10578}, {6954, 64124}, {6959, 31249}, {6987, 11037}, {7171, 11496}, {7191, 7390}, {7290, 36742}, {7967, 17582}, {8167, 58631}, {8583, 37700}, {9623, 37727}, {9624, 63988}, {9845, 18519}, {10177, 52684}, {10393, 44675}, {10595, 64150}, {10864, 37234}, {11522, 50528}, {12005, 12514}, {12114, 51715}, {12520, 13464}, {12526, 24475}, {12560, 24470}, {12565, 22791}, {12629, 61287}, {12680, 18540}, {12700, 15170}, {12705, 13369}, {12864, 57284}, {14520, 46475}, {14986, 30284}, {15570, 58637}, {16132, 61275}, {16408, 64116}, {16469, 36750}, {16487, 51340}, {16842, 18908}, {16845, 19861}, {17022, 19512}, {17560, 54356}, {17614, 50203}, {22153, 40937}, {25522, 37713}, {25525, 26470}, {26201, 30304}, {26877, 35258}, {26921, 62823}, {29820, 36526}, {30143, 64328}, {31231, 31659}, {31837, 41863}, {32141, 64112}, {36745, 49478}, {36845, 37407}, {38029, 43149}, {38053, 55108}, {42871, 63976}, {43175, 64001}, {47357, 64190}, {48482, 51706}, {49736, 64119}
X(64668) = midpoint of X(1) and X(8726)
X(64668) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1385, 37611}, {1, 3576, 37531}, {1, 7987, 37569}, {1, 10383, 3295}, {1, 30389, 63391}, {1, 30503, 1482}, {40, 3576, 35202}, {1001, 12675, 7330}, {1385, 5045, 3}, {1385, 11249, 3576}, {3295, 9940, 3359}, {3622, 18444, 63986}, {5563, 24926, 37571}, {5563, 36946, 18398}, {10202, 16202, 40}, {10246, 16203, 24299}, {10246, 37615, 1}, {10267, 13373, 57}, {10268, 10980, 37532}, {10389, 37526, 11248}, {11496, 58567, 7171}, {15931, 50190, 12704}, {16203, 24299, 3576}, {37612, 37621, 165}, {37622, 40296, 40}, {37624, 61146, 1}, {37700, 38028, 8583}, {42819, 58567, 11496}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64669) lies on these lines: {1, 4}, {2, 6769}, {3, 10582}, {5, 200}, {10, 5804}, {20, 4666}, {40, 1001}, {42, 36694}, {57, 11496}, {84, 354}, {282, 1855}, {381, 5534}, {516, 8726}, {517, 11108}, {546, 18528}, {551, 37427}, {553, 64190}, {602, 60846}, {936, 2886}, {942, 3358}, {960, 7982}, {962, 30503}, {1012, 3333}, {1071, 5572}, {1103, 19372}, {1125, 6282}, {1389, 4866}, {1467, 4295}, {1482, 4853}, {1512, 51784}, {1621, 10268}, {1697, 7686}, {1709, 18398}, {1953, 7079}, {1998, 6828}, {2057, 30852}, {2093, 31870}, {2095, 54290}, {2951, 59386}, {2999, 37529}, {3057, 3577}, {3062, 64358}, {3072, 62875}, {3073, 62812}, {3085, 7682}, {3090, 8580}, {3091, 3870}, {3146, 29817}, {3174, 38150}, {3243, 14872}, {3295, 5806}, {3296, 12246}, {3304, 18237}, {3306, 10270}, {3338, 52027}, {3340, 45776}, {3361, 6906}, {3428, 5436}, {3560, 62824}, {3576, 37426}, {3601, 22753}, {3616, 37108}, {3632, 64335}, {3646, 64107}, {3742, 37526}, {3811, 3817}, {3832, 3957}, {3872, 5734}, {3874, 54370}, {3935, 5068}, {4208, 19861}, {4294, 10383}, {4301, 54318}, {4314, 50701}, {4321, 20330}, {4326, 5805}, {4328, 41010}, {4423, 7957}, {4512, 5709}, {4654, 64119}, {4847, 6846}, {4882, 5818}, {4915, 12654}, {5045, 63430}, {5129, 19860}, {5173, 10396}, {5219, 7681}, {5231, 6824}, {5234, 6920}, {5259, 41338}, {5272, 21554}, {5437, 10310}, {5439, 37560}, {5506, 11531}, {5528, 38152}, {5531, 59391}, {5587, 6765}, {5706, 7290}, {5707, 62842}, {5720, 9955}, {5732, 25557}, {5758, 40998}, {5768, 6744}, {5777, 41863}, {5842, 41864}, {5884, 7995}, {5886, 8583}, {5901, 37424}, {5902, 54156}, {6001, 11518}, {6223, 11038}, {6253, 12858}, {6326, 38038}, {6684, 7994}, {6745, 6964}, {6837, 26015}, {6847, 11019}, {6848, 13405}, {6864, 63146}, {6886, 25006}, {6891, 31249}, {6912, 62874}, {6913, 57279}, {6935, 64124}, {6936, 12120}, {6939, 21075}, {7171, 13373}, {7308, 63976}, {7330, 62823}, {7395, 40910}, {7671, 9960}, {7680, 9581}, {7956, 11374}, {7971, 64320}, {7992, 24644}, {8167, 58637}, {9624, 28628}, {9812, 10884}, {9856, 15934}, {9940, 10860}, {9947, 10222}, {10085, 50190}, {10384, 12710}, {10389, 11500}, {10580, 37434}, {10857, 31730}, {10980, 63399}, {11235, 38021}, {11248, 64112}, {11281, 61275}, {11529, 12672}, {12005, 30304}, {12526, 24474}, {12528, 62861}, {12565, 12699}, {12629, 12635}, {12675, 44841}, {12704, 31424}, {13462, 45977}, {15908, 25525}, {16204, 62826}, {17528, 51709}, {17718, 63966}, {18161, 41790}, {18493, 37533}, {22793, 41854}, {24389, 38037}, {30326, 63967}, {31162, 37428}, {37080, 52026}, {37275, 52015}, {37623, 38399}, {37700, 38034}, {37721, 64291}, {41012, 50399}, {54198, 64334}, {58565, 64129}, {58567, 58808}, {58660, 61660}, {64163, 64322}
X(64669) = midpoint of X(1) and X(8726)
X(64669) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 946, 63992}, {1, 1479, 10382}, {1, 1699, 1490}, {946, 13464, 3485}, {946, 48482, 1699}, {946, 63999, 4}, {962, 54392, 30503}, {3742, 64074, 37526}, {4423, 7957, 61122}, {5886, 37531, 8583}, {6744, 21628, 5768}, {8227, 37569, 936}, {9614, 11522, 946}, {10582, 12651, 3}, {11496, 13374, 57}, {12699, 18443, 12565}, {51715, 64077, 3576}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64670) lies on these lines: {1, 5}, {3, 4666}, {4, 29817}, {57, 58561}, {140, 10582}, {200, 3628}, {354, 24467}, {548, 12651}, {549, 6769}, {601, 17450}, {1001, 26921}, {1279, 5707}, {1385, 64077}, {1389, 62835}, {1482, 31838}, {1490, 38034}, {1621, 37532}, {1656, 3870}, {1697, 61541}, {3090, 3957}, {3174, 38171}, {3306, 11849}, {3333, 6914}, {3560, 5045}, {3616, 6989}, {3622, 6908}, {3656, 34618}, {3742, 11248}, {3748, 11499}, {3753, 12000}, {3811, 11230}, {3812, 37622}, {3845, 63981}, {3850, 18528}, {3857, 18529}, {3889, 6920}, {3935, 5067}, {4326, 61509}, {4853, 61597}, {4883, 36742}, {5439, 10679}, {5528, 38173}, {5603, 6851}, {5709, 38316}, {5732, 38041}, {6261, 51709}, {6583, 12514}, {6765, 38042}, {6824, 10580}, {6861, 26015}, {6862, 11019}, {6865, 10595}, {6887, 36845}, {6917, 63999}, {6929, 21620}, {6930, 11037}, {6944, 10578}, {6959, 13405}, {7330, 44841}, {7402, 17019}, {7407, 17024}, {7489, 62874}, {7516, 40910}, {7743, 10393}, {8167, 58630}, {8580, 55856}, {8583, 50394}, {8726, 28174}, {10222, 54318}, {10246, 37411}, {10247, 16853}, {10267, 13374}, {10383, 10386}, {10388, 61535}, {10389, 32141}, {10525, 51706}, {11249, 51715}, {11491, 62862}, {11496, 13373}, {11518, 14988}, {12650, 50824}, {15570, 58631}, {17609, 22758}, {18443, 22791}, {18446, 18493}, {19861, 50726}, {22765, 62829}, {29820, 37529}, {31231, 61520}, {31835, 41863}, {37531, 38028}, {37611, 51700}, {37612, 64149}, {37621, 62856}, {40273, 41854}, {45931, 62834}, {55108, 64162}, {58560, 64118}
X(64670) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5886, 37700}, {1, 9624, 45770}, {355, 5886, 7958}, {5901, 10943, 5886}, {11373, 61276, 5901}, {13374, 42819, 10267}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64671) lies on these lines: {1, 6}, {57, 58562}, {69, 4666}, {105, 54385}, {141, 10582}, {193, 29817}, {200, 3589}, {354, 7289}, {612, 37650}, {614, 4648}, {1038, 1471}, {1040, 2293}, {1253, 17469}, {1490, 38035}, {1721, 17301}, {2191, 3945}, {3174, 38186}, {3333, 36740}, {3361, 4265}, {3618, 3870}, {3666, 21002}, {3811, 38049}, {3827, 11518}, {3920, 37681}, {3957, 51171}, {4326, 51150}, {4344, 5262}, {4853, 51147}, {4915, 49679}, {5045, 37492}, {5085, 6769}, {5268, 17337}, {5272, 17245}, {5528, 38188}, {5534, 14561}, {5732, 38046}, {5800, 63999}, {6326, 38050}, {6765, 38047}, {8167, 58653}, {8580, 47355}, {9623, 49681}, {10383, 10387}, {10389, 12329}, {11025, 39273}, {12651, 44882}, {17024, 62997}, {18528, 19130}, {20978, 29819}, {21059, 62834}, {28194, 50294}, {37531, 38029}, {37700, 38040}, {49684, 54318}, {51192, 54392}, {53023, 63981}
X(64671) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16667, 8271}, {1386, 45728, 16475}, {3945, 7191, 2191}, {3957, 51171, 56179}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64672) lies on these lines: {1, 7}, {9, 354}, {55, 60955}, {57, 58563}, {142, 200}, {144, 4666}, {165, 2346}, {480, 5437}, {518, 11518}, {614, 14930}, {954, 3333}, {1001, 62824}, {1223, 27475}, {1445, 10980}, {1490, 38036}, {1699, 41857}, {3059, 3243}, {3062, 7671}, {3174, 6173}, {3296, 5759}, {3304, 38316}, {3338, 21153}, {3731, 21346}, {3811, 38054}, {3870, 62778}, {3874, 5223}, {4512, 60990}, {4860, 15837}, {4882, 40333}, {5045, 7330}, {5049, 63430}, {5231, 41573}, {5534, 38107}, {5558, 52653}, {5572, 16112}, {5809, 6744}, {6067, 25525}, {6326, 38055}, {6600, 64112}, {6765, 38052}, {6769, 21151}, {7673, 30337}, {7993, 14151}, {7994, 43151}, {8090, 8389}, {8167, 58678}, {8232, 11019}, {8257, 58607}, {8388, 8423}, {8543, 30343}, {8545, 11025}, {8580, 60996}, {8583, 38053}, {8732, 13405}, {9623, 34784}, {10177, 60965}, {10383, 60945}, {10388, 61022}, {10389, 11495}, {10398, 20116}, {10404, 52835}, {10865, 30318}, {11372, 12675}, {12669, 18219}, {13407, 38150}, {14100, 60953}, {15298, 18398}, {15299, 50190}, {15587, 42871}, {15888, 38200}, {16133, 24644}, {17718, 20195}, {20059, 29817}, {20330, 63992}, {21453, 50561}, {24389, 31146}, {25722, 62863}, {30628, 62815}, {31231, 59476}, {36973, 58608}, {37531, 38030}, {37700, 38041}, {38122, 63282}, {38399, 60974}, {41228, 42015}, {41861, 64197}, {47375, 60985}, {58635, 61660}, {59385, 63981}, {60919, 60982}, {60949, 62858}, {60964, 61033}, {60967, 63973}
X(64672) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7, 4326}, {1, 5542, 4321}, {1, 7271, 2293}, {1, 7274, 4319}, {1, 59372, 5732}, {7, 4326, 30353}, {9, 10390, 354}, {2346, 60938, 165}, {5542, 60895, 59372}, {8545, 11025, 30330}, {13405, 15841, 8732}, {30330, 30350, 11025}, {30356, 30357, 1721}, {44841, 60937, 5572}, {59372, 63974, 7}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64673) lies on these lines: {1, 2}, {3, 38399}, {4, 12565}, {5, 63992}, {7, 12527}, {9, 65}, {12, 25525}, {20, 11024}, {21, 165}, {34, 281}, {35, 37248}, {37, 728}, {40, 405}, {46, 5251}, {55, 1706}, {56, 5437}, {57, 958}, {63, 3339}, {72, 11529}, {77, 31994}, {80, 41859}, {85, 269}, {86, 16284}, {100, 62829}, {140, 37611}, {142, 388}, {210, 11523}, {221, 55432}, {223, 37558}, {226, 2551}, {241, 7273}, {326, 28653}, {329, 3671}, {348, 62793}, {354, 6762}, {355, 8728}, {377, 5691}, {392, 3646}, {404, 7987}, {442, 1490}, {443, 515}, {452, 516}, {474, 3576}, {517, 11108}, {518, 11518}, {528, 41864}, {587, 55425}, {846, 25906}, {891, 25926}, {894, 27288}, {937, 43531}, {942, 9708}, {944, 17582}, {946, 5084}, {950, 2550}, {956, 3333}, {960, 3340}, {962, 5129}, {968, 4642}, {986, 62818}, {988, 24174}, {993, 15803}, {1001, 1697}, {1005, 12511}, {1006, 10268}, {1010, 17194}, {1012, 37560}, {1104, 5269}, {1203, 10601}, {1213, 3553}, {1320, 45830}, {1329, 5219}, {1376, 3601}, {1385, 16408}, {1420, 25524}, {1441, 34059}, {1453, 5711}, {1482, 16853}, {1512, 6889}, {1519, 6898}, {1621, 53053}, {1656, 61146}, {1699, 2478}, {1721, 26117}, {1742, 50408}, {1743, 54421}, {1750, 5177}, {1754, 16346}, {1757, 25903}, {1764, 19283}, {1788, 5745}, {1829, 7719}, {1837, 3925}, {1864, 18251}, {1891, 25993}, {2093, 3754}, {2099, 15829}, {2136, 3303}, {2263, 5749}, {2292, 3731}, {2295, 16970}, {2324, 5257}, {2345, 51972}, {2360, 17581}, {2476, 7989}, {2646, 4413}, {2647, 24570}, {2886, 9581}, {2951, 3146}, {2975, 3306}, {3036, 37736}, {3057, 4423}, {3062, 9961}, {3090, 63986}, {3091, 64150}, {3142, 10887}, {3158, 4731}, {3174, 12625}, {3243, 40659}, {3247, 3694}, {3295, 63137}, {3305, 3869}, {3338, 5258}, {3359, 3560}, {3421, 21620}, {3428, 16293}, {3436, 5249}, {3452, 3485}, {3486, 10383}, {3487, 21075}, {3488, 63146}, {3554, 17398}, {3577, 14110}, {3579, 16418}, {3649, 28609}, {3654, 50202}, {3677, 17054}, {3678, 12559}, {3680, 5919}, {3681, 4866}, {3683, 3922}, {3715, 3962}, {3729, 56311}, {3739, 5793}, {3740, 12635}, {3742, 12513}, {3748, 51781}, {3816, 50443}, {3817, 6919}, {3820, 11374}, {3824, 9654}, {3826, 5727}, {3833, 8666}, {3848, 11260}, {3868, 5223}, {3873, 63135}, {3876, 30393}, {3877, 11531}, {3880, 37556}, {3885, 30337}, {3889, 30350}, {3897, 17531}, {3899, 5506}, {3911, 30478}, {3913, 10389}, {3915, 60846}, {3918, 5248}, {3927, 31794}, {3928, 5221}, {3929, 5302}, {3930, 7323}, {3931, 25091}, {3951, 60969}, {3968, 8715}, {3983, 44840}, {3984, 34195}, {4002, 5687}, {4015, 62860}, {4026, 54295}, {4063, 25901}, {4160, 25900}, {4183, 11471}, {4187, 7680}, {4188, 58221}, {4189, 16192}, {4193, 7988}, {4197, 37714}, {4204, 58889}, {4208, 10884}, {4225, 61124}, {4293, 12436}, {4295, 12572}, {4297, 6904}, {4298, 9776}, {4312, 64002}, {4314, 17784}, {4328, 4357}, {4424, 54287}, {4640, 5128}, {4646, 37553}, {4652, 53056}, {4761, 26017}, {4855, 53054}, {4859, 23536}, {4968, 20905}, {4972, 25017}, {4999, 31231}, {5047, 5250}, {5082, 63999}, {5119, 5259}, {5141, 61264}, {5218, 63990}, {5226, 8165}, {5247, 62812}, {5252, 20195}, {5253, 13462}, {5255, 62875}, {5266, 16485}, {5283, 9593}, {5284, 9819}, {5288, 51816}, {5296, 42289}, {5315, 63128}, {5316, 64160}, {5330, 16189}, {5342, 11109}, {5433, 31190}, {5450, 21164}, {5528, 38202}, {5531, 59415}, {5534, 5790}, {5584, 13615}, {5603, 17559}, {5657, 6769}, {5686, 18221}, {5690, 50205}, {5697, 25542}, {5698, 60972}, {5706, 16416}, {5710, 7290}, {5716, 64174}, {5720, 9956}, {5722, 31419}, {5731, 17580}, {5785, 18412}, {5805, 31799}, {5815, 11036}, {5818, 18446}, {5835, 17279}, {5837, 6666}, {5880, 9579}, {5881, 17529}, {5883, 62858}, {5886, 17527}, {5901, 51559}, {5902, 41229}, {6173, 10404}, {6175, 16143}, {6261, 6856}, {6264, 34123}, {6282, 6684}, {6284, 63643}, {6326, 20400}, {6675, 26446}, {6690, 37828}, {6692, 7288}, {6708, 19372}, {6862, 55302}, {6872, 64005}, {6906, 10270}, {6912, 63985}, {6913, 12705}, {6939, 63989}, {7171, 18761}, {7174, 25892}, {7190, 32003}, {7271, 32086}, {7274, 32098}, {7330, 34339}, {7483, 31423}, {7672, 60958}, {7675, 40333}, {7688, 37284}, {7705, 30315}, {7713, 62972}, {7962, 8167}, {7994, 43174}, {7995, 54370}, {8236, 12632}, {9578, 25466}, {9612, 12609}, {9620, 16589}, {9624, 17575}, {9709, 24929}, {9710, 37723}, {9711, 11281}, {9778, 11106}, {9800, 63973}, {9940, 63430}, {9957, 40587}, {10107, 15254}, {10164, 26062}, {10165, 17567}, {10167, 10864}, {10172, 40257}, {10179, 10912}, {10222, 16855}, {10246, 16863}, {10267, 50204}, {10365, 20262}, {10371, 17296}, {10384, 58608}, {10396, 42012}, {10434, 13738}, {10441, 19282}, {10476, 19518}, {10543, 34701}, {10563, 27819}, {10588, 58463}, {10827, 25962}, {10860, 31787}, {10888, 50037}, {10892, 37225}, {10902, 37249}, {10914, 25893}, {10980, 62874}, {11111, 31730}, {11113, 41869}, {11221, 18673}, {11224, 17534}, {11344, 59320}, {11362, 17552}, {11375, 30827}, {11512, 37617}, {11522, 41012}, {11525, 12260}, {11681, 31266}, {12053, 26105}, {12114, 37526}, {12512, 17576}, {12563, 21060}, {12652, 17697}, {12702, 16857}, {12737, 38763}, {13151, 18518}, {13161, 23681}, {13384, 59691}, {13624, 16417}, {13745, 52524}, {14005, 54356}, {14077, 25925}, {14837, 58339}, {15071, 64197}, {15178, 35272}, {15832, 59215}, {15852, 37059}, {15931, 37282}, {15934, 34790}, {15950, 24954}, {16200, 16854}, {16232, 31438}, {16295, 39578}, {16343, 63982}, {16344, 37530}, {16347, 62320}, {16348, 37537}, {16370, 35242}, {16456, 50317}, {16466, 17825}, {16469, 57280}, {16483, 59777}, {16601, 59216}, {16608, 17306}, {16673, 59733}, {16844, 37529}, {16859, 63468}, {16862, 17614}, {16865, 35258}, {17151, 24547}, {17164, 56082}, {17274, 32007}, {17303, 21933}, {17355, 56937}, {17502, 17573}, {17528, 18480}, {17532, 18492}, {17535, 30392}, {17554, 59417}, {17571, 31663}, {17590, 63143}, {17594, 24440}, {17606, 31245}, {17612, 58567}, {17619, 54447}, {17698, 25968}, {17718, 21031}, {17861, 20880}, {18357, 18528}, {18529, 50741}, {18992, 31473}, {19003, 63072}, {19533, 20368}, {19885, 19890}, {19907, 55861}, {20060, 27186}, {20070, 52653}, {20196, 25681}, {21153, 59340}, {21921, 40131}, {22136, 39523}, {22758, 37534}, {22937, 59318}, {24291, 59255}, {24309, 28029}, {24554, 54315}, {24556, 28619}, {24557, 64377}, {24914, 24953}, {24984, 36985}, {25009, 29066}, {25019, 37314}, {25067, 37548}, {25099, 37598}, {25243, 64071}, {25440, 30282}, {25568, 63274}, {25909, 30675}, {25924, 29350}, {25974, 49516}, {26546, 47724}, {26638, 64072}, {26669, 62831}, {26690, 52705}, {26695, 48295}, {26921, 61541}, {27065, 64047}, {27410, 57810}, {28164, 37435}, {28383, 37619}, {30326, 31803}, {30331, 56936}, {30674, 41340}, {31359, 32008}, {31445, 36279}, {31453, 51841}, {32024, 50127}, {34043, 55400}, {34501, 37724}, {34711, 38025}, {34791, 44841}, {35202, 37309}, {37229, 44425}, {37308, 59331}, {37436, 38204}, {37614, 44307}, {37698, 50432}, {37700, 38042}, {37721, 44256}, {38074, 50727}, {40149, 54396}, {43178, 51100}, {45081, 63644}, {46196, 54330}, {46917, 56176}, {46947, 61275}, {48897, 50169}, {49454, 58697}, {50394, 61510}, {50621, 63511}, {51090, 61009}, {52027, 59333}, {52706, 62215}, {54343, 55478}, {55285, 58329}, {55392, 63014}, {55859, 61148}, {55924, 62838}, {56182, 63157}, {56244, 59682}, {56987, 61086}, {57277, 63592}, {62832, 64149}, {62835, 64201}, {62856, 63142}, {64068, 64162}, {64319, 64333}
X(64673) = reflection of X(31435) in X(11108)
X(64673) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 8583}, {1, 10, 200}, {1, 1698, 936}, {1, 1722, 2999}, {1, 3679, 6765}, {1, 4882, 3870}, {1, 4915, 145}, {1, 8580, 78}, {1, 9623, 4853}, {1, 11519, 3241}, {1, 12127, 3623}, {1, 23511, 1193}, {2, 5554, 24987}, {2, 19860, 1}, {2, 24541, 3624}, {2, 24982, 1698}, {4, 30503, 12565}, {8, 54392, 1}, {9, 65, 12526}, {10, 551, 59722}, {10, 1125, 3085}, {10, 6738, 8}, {10, 10198, 31434}, {10, 13405, 7080}, {10, 30143, 3811}, {10, 49168, 3679}, {10, 54318, 1}, {40, 405, 4512}, {46, 5251, 31424}, {55, 3698, 1706}, {57, 958, 62824}, {63, 5260, 5234}, {78, 9780, 8580}, {142, 5795, 388}, {145, 4666, 1}, {388, 1467, 4321}, {392, 16842, 3646}, {405, 3753, 40}, {612, 3924, 1}, {614, 10459, 1}, {894, 27288, 30625}, {942, 9708, 57279}, {942, 57279, 62823}, {956, 5439, 3333}, {958, 3812, 57}, {962, 5129, 40998}, {988, 24174, 62695}, {997, 30147, 1}, {1001, 5836, 1697}, {1210, 19843, 5231}, {1329, 28628, 5219}, {1453, 5711, 62842}, {1621, 63130, 53053}, {1706, 5436, 55}, {1737, 19854, 5705}, {2099, 25917, 15829}, {2136, 38316, 3303}, {2551, 28629, 226}, {2646, 4413, 5438}, {2975, 3306, 3361}, {3083, 3084, 17019}, {3086, 9843, 31249}, {3339, 5234, 63}, {3340, 7308, 960}, {3436, 5249, 5290}, {3486, 26040, 57284}, {3577, 61122, 14110}, {3616, 3872, 1}, {3616, 7080, 13405}, {3617, 3870, 4882}, {3617, 20008, 8}, {3622, 36846, 1}, {3624, 31434, 10198}, {3634, 30147, 997}, {3646, 7982, 392}, {3671, 18250, 329}, {3683, 3922, 37567}, {3754, 12514, 2093}, {3811, 30143, 1}, {3811, 54318, 30143}, {3897, 17531, 35262}, {3897, 35262, 30389}, {3913, 51715, 10389}, {3918, 5248, 54286}, {4853, 10582, 1}, {5248, 54286, 61763}, {5287, 17016, 1}, {5554, 24987, 3679}, {5691, 38052, 377}, {5790, 37615, 5534}, {5880, 57288, 9579}, {5886, 17527, 25522}, {5902, 41229, 54422}, {6913, 31788, 12705}, {9578, 41867, 25466}, {10884, 59387, 63981}, {11109, 64211, 39585}, {11530, 38316, 2136}, {12520, 19925, 1750}, {15829, 51780, 25917}, {15934, 34790, 41863}, {18391, 19855, 10}, {18761, 40296, 7171}, {19890, 19900, 19885}, {21717, 27714, 10}, {24541, 25011, 2}, {29820, 59310, 1}, {31445, 36279, 54290}, {34195, 63961, 3984}, {54418, 59305, 1}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64674) lies on these lines: {1, 6}, {2, 3174}, {7, 4666}, {57, 58564}, {63, 11025}, {105, 380}, {142, 497}, {144, 29817}, {165, 60985}, {200, 6666}, {354, 60990}, {390, 54392}, {480, 3748}, {516, 8726}, {551, 63973}, {610, 52015}, {614, 4343}, {946, 5732}, {1445, 1621}, {1467, 12560}, {1490, 38037}, {1699, 60991}, {1750, 42356}, {2346, 42470}, {2550, 63999}, {2886, 20195}, {2951, 6173}, {3059, 4423}, {3305, 34784}, {3306, 7676}, {3485, 4321}, {3616, 7675}, {3742, 10857}, {3811, 38059}, {3870, 18230}, {3873, 60949}, {3890, 11526}, {4319, 59217}, {4335, 29820}, {4428, 7994}, {4512, 60974}, {5284, 30628}, {5528, 38205}, {5534, 38108}, {6282, 52769}, {6326, 38060}, {6600, 10389}, {6601, 64162}, {6765, 38057}, {6769, 21153}, {7308, 40659}, {7674, 8236}, {7677, 62829}, {7678, 31266}, {8167, 58634}, {8257, 10388}, {10580, 41573}, {10980, 60968}, {11235, 38093}, {11281, 16143}, {12514, 20116}, {12651, 63413}, {28070, 42449}, {28194, 30503}, {30331, 54318}, {30353, 60980}, {34919, 60961}, {35258, 60948}, {37531, 38031}, {37700, 38043}, {38036, 49177}, {38054, 43178}, {38150, 48482}, {40998, 61010}, {59389, 63981}, {60938, 64149}, {60979, 64262}, {61005, 61033}
X(64674) = reflection of X(31435) in X(1001)
X(64674) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1001, 5572, 9}, {1001, 51715, 38316}, {4326, 10582, 142}, {5284, 30628, 60958}, {61005, 61033, 62823}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64675) lies on these lines: {1, 2}, {3, 3742}, {4, 38053}, {9, 3874}, {11, 10393}, {21, 3338}, {35, 3306}, {36, 37285}, {38, 54287}, {40, 5883}, {46, 1621}, {55, 5439}, {56, 37284}, {57, 5248}, {63, 5259}, {72, 4423}, {86, 3673}, {142, 63999}, {169, 16503}, {210, 16842}, {224, 11680}, {354, 405}, {377, 19852}, {404, 59337}, {474, 37080}, {496, 28628}, {497, 12609}, {515, 6849}, {516, 8726}, {518, 11108}, {631, 37569}, {758, 11518}, {942, 1001}, {944, 6896}, {946, 6851}, {956, 17609}, {958, 5045}, {960, 12559}, {968, 3670}, {982, 62871}, {986, 16484}, {988, 4653}, {993, 3333}, {1006, 12704}, {1046, 15485}, {1058, 28629}, {1062, 17045}, {1071, 10177}, {1158, 10202}, {1279, 5711}, {1385, 5806}, {1446, 4341}, {1467, 3671}, {1468, 17450}, {1479, 5249}, {1482, 10179}, {1490, 3817}, {1697, 3754}, {1699, 10884}, {1706, 25439}, {1724, 62819}, {1750, 12571}, {1844, 55472}, {2093, 33815}, {2191, 43531}, {2257, 25081}, {2478, 13407}, {2802, 37556}, {2975, 51816}, {3090, 17857}, {3174, 38204}, {3189, 17582}, {3247, 25078}, {3295, 3812}, {3303, 3753}, {3305, 5904}, {3336, 35258}, {3337, 4652}, {3339, 60948}, {3340, 3884}, {3361, 5267}, {3475, 5084}, {3485, 34489}, {3487, 21616}, {3488, 17647}, {3560, 13373}, {3576, 3651}, {3579, 4428}, {3612, 5253}, {3646, 10176}, {3647, 3928}, {3678, 7308}, {3681, 17536}, {3697, 41711}, {3723, 4515}, {3740, 16853}, {3746, 62856}, {3748, 5687}, {3750, 24174}, {3816, 11374}, {3822, 9581}, {3824, 18527}, {3825, 5219}, {3833, 8715}, {3838, 9669}, {3841, 41867}, {3848, 16408}, {3868, 5284}, {3871, 62862}, {3873, 5047}, {3878, 11529}, {3881, 44841}, {3886, 28612}, {3889, 5260}, {3890, 25415}, {3892, 6762}, {3894, 3951}, {3898, 7982}, {3916, 4860}, {3918, 63137}, {3919, 7991}, {3927, 15254}, {3931, 17054}, {3991, 16777}, {4038, 16478}, {4187, 17718}, {4256, 11512}, {4294, 9776}, {4301, 30503}, {4314, 10383}, {4421, 63271}, {4430, 17570}, {4640, 5708}, {4658, 16475}, {4662, 15570}, {4888, 63366}, {4966, 5814}, {4999, 17051}, {5015, 17234}, {5044, 8167}, {5049, 12513}, {5129, 11038}, {5218, 58405}, {5234, 30350}, {5250, 5902}, {5251, 50190}, {5258, 62832}, {5266, 37674}, {5290, 61013}, {5302, 16857}, {5324, 52018}, {5358, 60721}, {5422, 56535}, {5425, 11682}, {5437, 25440}, {5493, 43166}, {5528, 38207}, {5531, 59419}, {5534, 10175}, {5542, 12572}, {5586, 50836}, {5603, 6899}, {5692, 11520}, {5719, 25681}, {5722, 25466}, {5730, 44840}, {5732, 38054}, {5749, 59728}, {5750, 21096}, {5768, 12617}, {5787, 5886}, {5794, 12433}, {5836, 6767}, {5837, 17706}, {5880, 15171}, {5901, 37356}, {6051, 37549}, {6147, 24703}, {6173, 41869}, {6198, 17917}, {6259, 38030}, {6326, 32557}, {6361, 47357}, {6583, 26921}, {6702, 37736}, {6706, 28639}, {6769, 10164}, {6845, 9624}, {6912, 10085}, {6913, 12675}, {6986, 41338}, {6990, 8227}, {7290, 62805}, {7330, 12005}, {7483, 17728}, {7741, 31266}, {7987, 37105}, {8236, 11024}, {8728, 64443}, {9345, 62847}, {9708, 34791}, {9799, 38037}, {9940, 11496}, {10013, 57748}, {10165, 37531}, {10246, 37837}, {10396, 62852}, {10404, 11113}, {10857, 12512}, {10980, 31424}, {11227, 64074}, {11230, 37700}, {11375, 37359}, {11415, 11551}, {11522, 64150}, {12631, 40587}, {12699, 49736}, {12738, 45310}, {13624, 40726}, {15299, 62864}, {15624, 16414}, {15829, 62822}, {16132, 38021}, {16137, 34647}, {16193, 57278}, {16203, 59366}, {16370, 32636}, {16418, 58560}, {16485, 63292}, {16589, 16973}, {16783, 40131}, {16845, 24477}, {16854, 61686}, {16855, 58451}, {16858, 62827}, {17063, 37573}, {17188, 17584}, {17321, 53596}, {17527, 63282}, {17534, 63961}, {17559, 25568}, {17594, 24046}, {17681, 27475}, {18219, 63973}, {18240, 51506}, {18444, 63988}, {18483, 41854}, {21346, 56839}, {22936, 24467}, {23681, 36250}, {24159, 24210}, {24161, 24217}, {24178, 48837}, {24443, 62849}, {24929, 25524}, {25086, 37658}, {25430, 56137}, {25525, 25639}, {25557, 57282}, {26127, 31053}, {26725, 37720}, {27003, 58887}, {27186, 52367}, {28609, 41870}, {28611, 63131}, {30852, 37731}, {31231, 58404}, {31259, 64153}, {31445, 50192}, {31926, 46883}, {32558, 39778}, {33124, 52258}, {34036, 37523}, {34790, 42871}, {34862, 58615}, {35202, 63141}, {35262, 37571}, {36946, 63135}, {37492, 58581}, {37554, 49480}, {37559, 62834}, {37607, 37817}, {37622, 63132}, {37869, 45126}, {48482, 55108}, {48897, 50226}, {50594, 63511}, {51111, 61762}, {54408, 54430}, {54422, 61024}, {59316, 61155}, {60895, 64004}, {61146, 61276}, {61302, 62216}
X(64675) = midpoint of X(11518) and X(31435)
X(64675) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 3811}, {1, 1125, 997}, {1, 1698, 3870}, {1, 2999, 59301}, {1, 3624, 78}, {1, 4853, 3635}, {1, 5272, 386}, {1, 6048, 3979}, {1, 8583, 22836}, {1, 9623, 3244}, {1, 10582, 1125}, {1, 12629, 51071}, {1, 17022, 30142}, {1, 25055, 19861}, {1, 25502, 5293}, {1, 26102, 975}, {1, 54392, 54318}, {4, 38053, 51706}, {8, 29817, 1}, {21, 64149, 3338}, {354, 405, 62858}, {404, 62870, 59337}, {551, 30143, 1}, {942, 1001, 12514}, {946, 18443, 12520}, {960, 15934, 12559}, {1125, 6744, 10}, {1125, 10916, 2}, {1125, 11019, 26363}, {1125, 22836, 8583}, {3086, 3616, 1125}, {3295, 3812, 54286}, {3305, 62861, 5904}, {3333, 5436, 993}, {3475, 5084, 21077}, {3487, 26105, 21616}, {3636, 30147, 1}, {3646, 11523, 10176}, {3720, 28082, 1}, {3742, 51715, 3}, {3812, 42819, 3295}, {3848, 56176, 16408}, {3873, 5047, 41229}, {4666, 54392, 1}, {5248, 58565, 57}, {5251, 50190, 62874}, {5259, 18398, 63}, {5262, 29814, 1}, {5886, 37615, 6261}, {5904, 25542, 3305}, {7308, 41863, 3678}, {8583, 11519, 12447}, {8583, 22836, 997}, {9843, 13405, 26364}, {9940, 11496, 64129}, {10580, 19843, 49627}, {10857, 12651, 12512}, {22837, 51103, 1}, {44841, 57279, 3881}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64676) lies on these lines: {1, 5}, {57, 18240}, {100, 4666}, {149, 5249}, {200, 6667}, {354, 1768}, {1320, 54392}, {1490, 38038}, {1697, 12736}, {1706, 13278}, {2800, 11518}, {2802, 37556}, {3035, 10582}, {3058, 31657}, {3174, 38205}, {3243, 46685}, {3256, 17626}, {3295, 58587}, {3303, 5541}, {3333, 10058}, {3338, 63281}, {3340, 15558}, {3475, 21635}, {3742, 13205}, {3811, 32557}, {3870, 31272}, {4654, 34789}, {4861, 5316}, {5049, 12773}, {5083, 11020}, {5290, 12764}, {5732, 9580}, {5840, 41864}, {5919, 12653}, {6765, 34122}, {6767, 6797}, {6769, 21154}, {7308, 14740}, {8167, 58663}, {8236, 20095}, {9623, 25416}, {9809, 11038}, {10222, 61660}, {11496, 58595}, {11529, 12758}, {12053, 18444}, {12532, 62861}, {12651, 38759}, {12705, 15528}, {15015, 37080}, {15570, 58683}, {17642, 31658}, {17660, 51768}, {18254, 41863}, {18443, 64138}, {22560, 51715}, {37531, 38032}, {42819, 58611}, {42871, 61718}, {54318, 64137}, {59390, 63981}
X(64676) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {{1, 11, 37736}, {1, 16173, 6326}, {11, 17718, 15017}, {1387, 37726, 16173}, {5083, 53055, 64372}, {44841, 64372, 5083}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64677) lies on these lines: {1, 5}, {57, 58566}, {165, 63272}, {200, 6668}, {354, 5259}, {614, 31880}, {758, 11518}, {1490, 38039}, {2975, 4666}, {3174, 38206}, {3340, 61122}, {3811, 38062}, {4999, 10582}, {5221, 38031}, {5528, 38209}, {5732, 38056}, {5842, 41864}, {6765, 38058}, {6769, 21155}, {10389, 11491}, {10396, 44841}, {15829, 54392}, {20060, 29817}, {25542, 61663}, {31262, 61648}, {37080, 40262}, {37531, 38033}, {41012, 63274}
X(64677) = {X(26470),X(37737)}-harmonic conjugate of X(37701)
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64678) lies on these lines: {1, 19}, {57, 1486}, {142, 11677}, {200, 40530}, {516, 8726}, {1119, 34036}, {1467, 2263}, {3720, 4319}, {3827, 11518}, {4329, 4666}, {6769, 21160}, {8271, 59681}, {10582, 18589}, {18443, 55340}, {20061, 29817}, {23305, 41867}, {24388, 37382}
X(64678) = {X(51687),X(64543)}-harmonic conjugate of X(19)
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64679) lies on these lines: {1, 7}, {2, 63981}, {3, 200}, {4, 10582}, {9, 8273}, {10, 10857}, {40, 3555}, {55, 9841}, {56, 10382}, {57, 58567}, {84, 4512}, {140, 18528}, {165, 6765}, {376, 6769}, {388, 10383}, {405, 1490}, {411, 3361}, {443, 515}, {518, 37551}, {572, 2297}, {573, 1208}, {610, 22654}, {936, 993}, {944, 4853}, {956, 9845}, {958, 58634}, {971, 31435}, {1071, 12526}, {1125, 1750}, {1385, 41854}, {1467, 3486}, {1621, 63984}, {1697, 9943}, {1699, 51706}, {1768, 16208}, {2999, 36698}, {3090, 18529}, {3146, 4666}, {3174, 5584}, {3243, 7957}, {3295, 10860}, {3303, 5918}, {3333, 7580}, {3339, 62852}, {3522, 3870}, {3523, 8580}, {3601, 63991}, {3624, 6886}, {3677, 15852}, {3744, 35658}, {3873, 63141}, {3874, 7991}, {3913, 10178}, {3935, 21734}, {3957, 50693}, {4847, 37108}, {5059, 29817}, {5231, 6908}, {5250, 7992}, {5269, 37501}, {5272, 7385}, {5290, 6836}, {5531, 38693}, {5587, 17529}, {5691, 6835}, {5720, 13624}, {6223, 40998}, {6245, 38399}, {6261, 11111}, {6796, 21164}, {6848, 31249}, {6912, 30389}, {6996, 17022}, {7070, 34046}, {7171, 10267}, {7411, 62874}, {7958, 59389}, {7994, 12512}, {9623, 17647}, {10085, 15931}, {10165, 17552}, {10268, 63399}, {10270, 11491}, {10304, 34646}, {10389, 64074}, {10430, 21628}, {10902, 49170}, {11019, 37421}, {11106, 19861}, {11112, 12650}, {11379, 16143}, {11495, 34791}, {11496, 58808}, {11500, 37526}, {11522, 41860}, {12514, 30304}, {12527, 37423}, {12612, 21620}, {14100, 51773}, {14872, 61122}, {16132, 57002}, {16408, 33574}, {16410, 52026}, {17554, 54445}, {18238, 64312}, {18443, 18481}, {19860, 56999}, {21153, 35202}, {25502, 36692}, {30282, 63983}, {31146, 37427}, {31787, 63137}, {31793, 41863}, {35445, 64128}, {36746, 62842}, {37198, 40910}, {37570, 62812}, {37736, 38759}, {53053, 63985}, {54422, 59340}, {61275, 63267}, {61763, 64129}
X(64679) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 20, 12651}, {1, 2951, 962}, {1, 4292, 12560}, {1, 5732, 12565}, {1, 64005, 43166}, {3, 63430, 62824}, {40, 12675, 62823}, {944, 30503, 4853}, {1385, 41854, 63992}, {1490, 3576, 8583}, {3295, 31805, 10860}, {3576, 10864, 405}, {3600, 7675, 1}, {4297, 4298, 20}, {4319, 4322, 1}, {5234, 7987, 6986}, {5250, 11220, 7992}, {5731, 10884, 1}, {7987, 9851, 5234}, {8273, 12680, 9}, {10085, 15931, 31424}, {11500, 37526, 64112}, {35202, 41229, 21153}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64680) lies on these lines: {1, 21}, {57, 58568}, {200, 6675}, {442, 10582}, {1697, 8261}, {2475, 4666}, {3295, 58619}, {3333, 37286}, {3649, 4321}, {3870, 15674}, {3957, 15676}, {4298, 15680}, {4853, 12658}, {4857, 51706}, {5045, 37292}, {5542, 14450}, {6769, 21161}, {6904, 30143}, {7701, 12675}, {9614, 11263}, {11522, 16143}, {12651, 44238}, {13743, 63430}, {18528, 46028}, {25522, 63289}, {37282, 37571}, {52269, 63981}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64681) lies on these lines: {1, 6}, {57, 58571}, {75, 4666}, {192, 29817}, {200, 4698}, {583, 52155}, {614, 2667}, {968, 4022}, {1742, 17392}, {1962, 21346}, {3672, 29814}, {3720, 4000}, {3739, 10582}, {3748, 34247}, {3870, 4687}, {3957, 27268}, {4068, 37555}, {4335, 4675}, {4343, 4648}, {4878, 17018}, {7308, 22271}, {8167, 58655}, {9623, 49475}, {10389, 15624}, {11518, 20718}, {13476, 44841}, {17278, 26102}, {21330, 62849}, {28194, 48855}, {37523, 42289}, {49470, 54392}, {49471, 54318}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64682) lies on these lines: {1, 39}, {76, 4666}, {194, 29817}, {200, 6683}, {2271, 18170}, {3742, 12338}, {3870, 7786}, {3934, 10582}, {6261, 22475}, {6769, 21163}, {7976, 54392}, {8167, 58656}, {15570, 58695}, {22682, 63981}, {22779, 51715}, {42819, 58622}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64683) lies on these lines: {1, 6}, {105, 2173}, {200, 6687}, {320, 4666}, {3834, 10582}, {4675, 29820}, {5053, 11716}, {9623, 49699}, {20072, 29817}, {28194, 30117}, {49700, 54318}, {49709, 54392}, {53534, 60353}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64684) lies on these lines: {1, 3}, {79, 38036}, {200, 58405}, {583, 2324}, {936, 64153}, {1728, 17625}, {1750, 7681}, {3811, 64151}, {3870, 59675}, {4311, 50695}, {4321, 9612}, {4666, 11415}, {4857, 41860}, {5053, 54385}, {5084, 13407}, {5720, 61534}, {6835, 9613}, {6837, 44675}, {6854, 10106}, {9614, 10431}, {9623, 36977}, {10072, 63988}, {10582, 21616}, {17529, 64087}, {17567, 24477}, {17728, 17857}, {20076, 54392}, {37722, 50528}, {42884, 64132}
X(64684) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {56, 354, 12704}, {56, 50196, 46}, {999, 34489, 1}, {1420, 18398, 61763}
See Keita Miyamoto and Peter Moses, euclid 6618.
X(64685) lies on these lines: {1, 51}, {57, 58574}, {200, 6688}, {1699, 64549}, {2390, 11518}, {2979, 4666}, {3819, 10582}, {3870, 11451}, {5534, 14845}, {9580, 64524}, {16487, 40952}, {26892, 30350}, {29817, 62187}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6620.
X(64686) lies on these lines: {4, 37841}, {6, 842}, {98, 385}, {265, 290}, {512, 10722}, {685, 1112}, {1976, 15107}, {2065, 51862}, {2679, 6785}, {2698, 12110}, {3060, 40820}, {3329, 61733}, {3972, 41330}, {5967, 11002}, {9301, 51869}, {11610, 35388}, {13558, 43754}, {14265, 53797}, {14984, 17932}, {20021, 37779}, {31670,52451}, {32540, 48673}, {36822, 38580}, {40428, 51440}, {51404, 52694}, {51820, 62187}
X(64686) = barycentric product of X(i) and X(j) for these (i,j): (43187, 45911), (43665, 60610), (45911, 43187), (60610, 43665)
X(64686) = trilinear product of X(i) and X(j) for these (i,j): (36036, 45911), (45911, 36036)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6620.
X(64687) lies on these lines: {76, 18321}, {99, 512}, {249, 1625}, {265, 290}, {511, 10723}, {526, 892}, {691, 10411}, {924, 31998}, {928, 17930}, {1078, 2698}, {1510, 4590}, {2679, 6787}, {2715, 52630}, {7752, 33330}, {7769, 57310}, {9517, 17932}, {10409, 14183}, {10410, 14184}, {14061, 14113}, {18440, 44969}, {20188, 33799}, {22999, 44361}, {23008, 44362}, {44042, 64133}
X(64687) = isotomic conjugate of the isogonal conjugate of X(60607)
X(64687) = barycentric product X(76)*X(60607)
X(64687) = trilinear product X(75)*X(60607)
X(64687) = pole of the line X(804)X(11616) with respect to Wallace hyperbola
See Antreas Hatzipolakis and Ercole Suppa, euclid 6620.
X(64688) lies on the incircle of the anticomplementary triangle and on these lines: {2, 3025}, {8, 53800}, {63, 34464}, {100, 513}, {145, 13756}, {265, 5080}, {517, 10724}, {518, 23152}, {519, 23153}, {758, 56691}, {953, 2975}, {956, 38586}, {1290, 3657}, {2222, 43355}, {3259, 11680}, {3738, 51562}, {3873, 24201}, {3909, 39185},{5176, 13532}, {5303, 38707}, {5375, 46389}, {5687, 38584}, {11681, 31841}, {14115, 31272}, {17483, 61696}, {17484, 60845}, {27529, 57313}, {31512, 38389}, {33646, 59377}, {40100, 52367}, {40263, 44982}, {53792, 56878}, {61185, 61637}
X(64688) = anticomplement of X(3025)
X(64688) = anticomplementary conjugate of the anticomplement of X(46649)
X(64688) = pole of the line X(2397)X(36804) with respect to Steiner circumellipse
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6628.
X(64689) lies on these lines: {2, 52000}, {3, 64}, {30, 13416}, {52, 26958}, {68, 43587}, {185, 64181}, {339, 51386}, {343, 1216}, {389, 6640}, {511, 2072}, {599, 9967}, {974, 6699}, {1154, 5159}, {1368, 15067}, {3546, 11444}, {3548, 5562}, {3763, 37511}, {3917, 13851}, {5447, 12605}, {5663, 16976}, {5972, 44907}, {6643, 7999}, {7509, 52416}, {7723, 17855}, {10110, 10255}, {10170, 15760}, {11487, 41738}, {11574, 43150}, {11591, 16196}, {12362, 30522}, {13348, 18563}, {14128, 31829}, {15060, 44241}, {15644, 18404}, {23039, 30771}, {32607, 51394}, {34146, 51425}, {44084, 44911}, {44247, 45959}, {44495, 45967}
See Ivan Pavlov, euclid 6629.
X(64690) lies on these lines: {69, 523}, {525, 3589}, {3763, 45801}, {6333, 45147}, {18311, 51170}, {53374, 63120}
X(64690) = perspector of circumconic {{A, B, C, X(8781), X(54459)}}
X(64690) = pole of line {2799, 6722} with respect to the Kiepert parabola
X(64690) = pole of line {325, 20063} with respect to the Steiner circumellipse
X(64690) = pole of line {23, 44377} with respect to the Steiner inellipse
X(64690) = pole of line {6390, 35296} with respect to the dual conic of the orthoptic circle of the Steiner inellipse
X(64691) lies on these lines: {2, 371}, {3, 45440}, {5, 6118}, {6, 641}, {32, 590}, {140, 143}, {141, 8981}, {187, 53487}, {372, 39387}, {395, 33393}, {396, 33394}, {485, 11292}, {489, 6453}, {490, 35822}, {491, 35812}, {492, 6419}, {524, 44482}, {575, 48772}, {591, 6417}, {597, 13966}, {615, 1504}, {631, 11825}, {632, 45872}, {638, 8960}, {1151, 11313}, {1352, 48735}, {1506, 50374}, {1583, 8276}, {1991, 13903}, {2460, 6656}, {3071, 32491}, {3090, 26441}, {3102, 7807}, {3103, 7792}, {3311, 45472}, {3312, 41490}, {3525, 10517}, {3526, 45489}, {3618, 5420}, {3972, 60274}, {4045, 43144}, {5007, 51395}, {5050, 48734}, {5395, 10195}, {5943, 15896}, {6200, 7389}, {6222, 10516}, {6228, 13879}, {6420, 45508}, {6422, 45577}, {6423, 45574}, {6564, 11294}, {6567, 7852}, {6669, 34562}, {6670, 34559}, {6811, 45553}, {7376, 32785}, {7388, 10576}, {7581, 33364}, {7582, 26361}, {7583, 32421}, {7745, 32432}, {7803, 45564}, {7834, 9738}, {7874, 51401}, {8252, 12962}, {8253, 11314}, {8361, 32435}, {8976, 13663}, {9675, 32490}, {9681, 58804}, {9692, 51952}, {9753, 11824}, {10515, 12257}, {11316, 47355}, {12314, 15293}, {13758, 45512}, {13972, 31406}, {16925, 45565}, {22596, 49114}, {23311, 42215}, {24206, 48773}, {26615, 42414}, {26619, 31412}, {32489, 35821}, {32497, 49220}, {32790, 62241}, {32805, 42009}, {32807, 58866}, {33425, 42166}, {33426, 42163}, {35771, 62987}, {35815, 62986}, {35820, 35949}, {37340, 53456}, {37341, 53467}, {37343, 48467}, {37649, 55865}, {38110, 49103}, {39388, 40274}, {43119, 48466}, {43558, 54626}, {43880, 61310}, {44657, 52669}, {45398, 48746}, {45411, 45554}, {45510, 45551}, {45576, 62201}, {53480, 62206}
X(64691) = midpoint of X(i) and X(j) for these {i,j}: {5, 43120}, {32, 640}, {371, 639}
X(64691) = complement of X(639)
X(64691) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 371, 639}, {2, 5418, 642}, {5, 45871, 6118}, {6, 11315, 641}
See Antreas Hatzipolakis and Peter Moses, euclid 6637.
X(64692) lies on these lines: {2, 64599}, {6, 1196}, {51, 597}, {52, 25555}, {182, 12083}, {373, 524}, {511, 5054}, {518, 64661}, {542, 14845}, {575, 7545}, {599, 6688}, {1154, 38079}, {1843, 6329}, {1992, 11451}, {2393, 5640}, {2781, 16226}, {2979, 63109}, {3060, 3313}, {3066, 32621}, {3589, 3917}, {3763, 10219}, {5032, 9027}, {5422, 19136}, {5462, 50649}, {5476, 9730}, {5480, 64100}, {5650, 48310}, {5892, 20423}, {5946, 18583}, {6000, 38072}, {6467, 58532}, {8584, 40670}, {9967, 58549}, {9969, 51171}, {9971, 51185}, {10110, 53093}, {10541, 13598}, {11188, 63127}, {11477, 11695}, {11649, 47455}, {12039, 37784}, {12099, 15303}, {12824, 15118}, {13337, 59707}, {13364, 50979}, {13391, 38110}, {13451, 51732}, {13570, 36990}, {13754, 14561}, {14853, 15045}, {14984, 59399}, {15019, 22151}, {15074, 58531}, {16194, 19130}, {16776, 40673}, {16836, 54131}, {20583, 61692}, {21358, 63632}, {21849, 54334}, {22829, 63011}, {23327, 41580}, {32062, 50959}, {32205, 64067}, {32366, 63123}, {35264, 64028}, {35707, 44106}, {36987, 50983}, {38005, 46336}, {38402, 55606}, {41153, 44323}, {41256, 43726}, {41593, 61775}, {43129, 55712}, {43130, 53092}, {51797, 55709}, {52697, 55713}
X(64692) = midpoint of X(i) and X(j) for these {i,j}: {5640, 59373}, {14853, 15045}
X(64692) = reflection of X(i) in X(j) for these {i,j}: {5650, 48310}, {21358, 63632}
X(64692) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5943, 29959}, {1992, 11451, 61676}, {3618, 58471, 3313}, {8584, 40670, 61667}, {16776, 63124, 40673}
Points related to crosspedal triangles, Part 2: X(64693)-X(64768)
This preamble and centers X(64693)-X(64768) were contributed by Ivan Pavlov on August 06, 2024.
Given a triangle ABC and two points P and Q not on its sides, let the line through Q parallel to AP intersect lines AB and AC at points Ab and Ac. Similarly define Ba, Bc, Ca, Cb. The lines BaCa, AbCb, AcBc form a triangle called here the P-crosspedal triangle of Q.
We remind the reader of two other definitions used below:
(1) Through Q construct a line parallel to AP and let A' be the intersection point with BC. Similarly define B' and C';
A'B'C' is called P-pedal triangle of Q
(2) The P-antipedal triangle of Q is the triangle A'B'C' such that ABC is P-pedal of Q wrt A'B'C'.
For more information and properties see Euclid 6286
X(64693) lies on these lines: {2, 12005}, {3, 15064}, {5, 3678}, {9, 6796}, {10, 119}, {40, 63961}, {65, 31399}, {72, 10175}, {140, 2801}, {210, 946}, {355, 10176}, {375, 31760}, {392, 47745}, {515, 5044}, {516, 58630}, {517, 3850}, {547, 6583}, {756, 37732}, {758, 9956}, {912, 3634}, {936, 5450}, {942, 10172}, {958, 5780}, {960, 58636}, {1071, 61686}, {1158, 8580}, {1490, 30393}, {1656, 3874}, {1698, 5884}, {2551, 64335}, {2802, 58674}, {2816, 58668}, {3090, 5904}, {3149, 3715}, {3305, 17857}, {3452, 63963}, {3579, 31871}, {3628, 58565}, {3652, 46684}, {3681, 8227}, {3697, 11362}, {3740, 5777}, {3754, 5694}, {3820, 64763}, {3828, 34339}, {3833, 24475}, {3868, 54447}, {3876, 5587}, {3878, 5790}, {3881, 11230}, {3898, 12645}, {3901, 30315}, {3918, 14988}, {3956, 5690}, {3968, 35004}, {3983, 12672}, {4134, 24474}, {4547, 9955}, {4662, 28234}, {4669, 23340}, {4711, 13600}, {4973, 45976}, {5067, 18398}, {5220, 6918}, {5260, 6326}, {5432, 41562}, {5506, 5531}, {5660, 6853}, {5692, 5818}, {5693, 9780}, {5791, 40249}, {5840, 58698}, {5882, 18908}, {5927, 31730}, {6246, 47033}, {6705, 32159}, {6763, 6946}, {6985, 60912}, {7294, 17660}, {7951, 15556}, {9519, 64541}, {9708, 40257}, {9709, 40256}, {9940, 58451}, {10122, 61648}, {10157, 18483}, {10164, 40263}, {10165, 14872}, {10202, 51073}, {10225, 19919}, {10284, 59400}, {10588, 18397}, {10902, 27065}, {11248, 60911}, {12528, 31423}, {12616, 18236}, {12665, 38133}, {13369, 58441}, {13373, 19878}, {13464, 34790}, {14110, 50796}, {14740, 16174}, {15016, 19877}, {15254, 64116}, {15481, 37623}, {18228, 48482}, {19875, 64021}, {19925, 31837}, {20116, 38318}, {20752, 25064}, {21616, 40259}, {22936, 33814}, {24025, 35194}, {24206, 34378}, {26446, 31803}, {26878, 44425}, {27784, 37698}, {28150, 58637}, {28174, 58675}, {28194, 58629}, {28232, 58688}, {28236, 31838}, {29054, 40607}, {29958, 52796}, {31419, 64762}, {31452, 61709}, {31659, 58449}, {31673, 64107}, {31937, 43174}, {37162, 49176}, {38752, 47320}, {57284, 62357}, {58634, 58660}, {58658, 58666}, {61562, 61622}, {61628, 64123}, {64118, 64198}
X(64693) = midpoint of X(i) and X(j) for these {i,j}: {5, 3678}, {10, 20117}, {72, 31870}, {140, 56762}, {3579, 31871}, {3754, 5694}, {5044, 58631}, {5777, 6684}, {6705, 32159}, {9956, 31835}, {12005, 63967}, {13464, 34790}, {14740, 16174}, {18483, 63976}, {19925, 31837}, {31937, 43174}
X(64693) = reflection of X(i) in X(j) for these {i,j}: {4015, 58632}, {13373, 19878}, {58565, 3628}
X(64693) = complement of X(12005)
X(64693) = pole of line {3738, 8062} with respect to the Spieker circle
X(64693) = X(1216)-of-K798i triangle
X(64693) = X(5449)-of-2nd-Zaniah triangle
X(64693) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3035, 3042, 6710}
X(64693) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63967, 12005}, {10, 20117, 2800}, {72, 10175, 31870}, {140, 56762, 2801}, {517, 58632, 4015}, {3740, 5777, 6684}, {3876, 5587, 31806}, {3983, 12672, 38127}, {5044, 58631, 515}, {5694, 38042, 3754}, {9956, 31835, 758}, {10157, 63976, 18483}, {18908, 25917, 5882}
X(64694) lies on these lines: {1, 7}, {2, 1766}, {3, 17321}, {4, 75}, {8, 21273}, {19, 27509}, {30, 50101}, {37, 36698}, {40, 4357}, {69, 517}, {86, 4221}, {144, 5813}, {150, 2823}, {192, 6999}, {307, 39579}, {319, 12245}, {326, 63986}, {329, 3687}, {332, 945}, {345, 19542}, {348, 41007}, {355, 42696}, {376, 17320}, {377, 24547}, {388, 12721}, {497, 12723}, {515, 3875}, {534, 7289}, {572, 26626}, {573, 17257}, {631, 17322}, {938, 32118}, {944, 4360}, {946, 10436}, {971, 51212}, {1058, 12722}, {1111, 31598}, {1266, 41869}, {1267, 2048}, {1444, 11249}, {1460, 3474}, {1699, 7996}, {1764, 10468}, {1836, 17635}, {1848, 56367}, {2270, 40880}, {2345, 7377}, {2478, 24993}, {2550, 18252}, {2961, 53596}, {3057, 10401}, {3090, 28653}, {3091, 12618}, {3146, 4452}, {3421, 63151}, {3434, 12530}, {3436, 20895}, {3616, 63968}, {3618, 64121}, {3656, 63110}, {3739, 36662}, {3879, 7982}, {4000, 6996}, {4219, 37581}, {4364, 37499}, {4373, 39732}, {4384, 64701}, {4389, 6361}, {4398, 29291}, {4440, 17481}, {4464, 61296}, {4699, 7384}, {4872, 39126}, {4967, 5587}, {5224, 5657}, {5232, 59417}, {5564, 59388}, {5691, 17151}, {5722, 21848}, {5744, 16566}, {5886, 63014}, {5903, 5933}, {5905, 17147}, {6604, 41004}, {6836, 17863}, {7291, 20061}, {7397, 16706}, {7402, 17289}, {7595, 57269}, {7967, 17393}, {7991, 17272}, {9436, 41010}, {9776, 17304}, {9778, 24309}, {9801, 9812}, {9944, 62697}, {9962, 10431}, {9965, 36850}, {10447, 12549}, {10452, 12435}, {10464, 64568}, {10595, 17394}, {11115, 17183}, {11362, 17270}, {11415, 20245}, {12699, 42697}, {12725, 37443}, {14021, 24554}, {14557, 54113}, {16548, 56445}, {17132, 64143}, {17271, 50810}, {17274, 28194}, {17302, 37416}, {17355, 18228}, {17862, 37185}, {18162, 24683}, {19645, 19785}, {20070, 41826}, {20430, 36674}, {21068, 27384}, {21078, 45744}, {21370, 55907}, {21375, 26065}, {24259, 30946}, {24463, 64134}, {24590, 25019}, {26118, 26234}, {28228, 53598}, {28606, 37419}, {29054, 49518}, {29057, 39774}, {29207, 51192}, {30271, 36706}, {31162, 50116}, {32087, 59387}, {34188, 55024}, {34627, 50088}, {34631, 50132}, {36659, 64728}, {36686, 61549}, {36731, 50107}, {36861, 64130}, {37531, 55391}, {41003, 64077}, {51118, 53594}, {52082, 54109}
X(64694) = reflection of X(i) in X(j) for these {i,j}: {20, 990}, {69, 64122}, {1766, 12610}, {3729, 10445}, {7996, 21629}, {10444, 3663}, {12652, 4301}, {12717, 946}, {20070, 61087}, {50107, 36731}
X(64694) = anticomplement of X(1766)
X(64694) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57642, 2}
X(64694) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3435, 2}, {8048, 69}, {15385, 651}, {34277, 3436}, {39167, 56943}, {40097, 4391}, {40454, 321}, {42467, 8}, {43703, 2895}, {46640, 513}, {57642, 6327}, {57777, 315}, {57781, 21275}, {58997, 3910}
X(64694) = pole of line {354, 10401} with respect to the Feuerbach hyperbola
X(64694) = pole of line {4025, 21174} with respect to the Steiner circumellipse
X(64694) = pole of line {3732, 14594} with respect to the Yff parabola
X(64694) = pole of line {944, 1043} with respect to the Wallace hyperbola
X(64694) = pole of line {7, 54418} with respect to the dual conic of Yff parabola
X(64694) = X(577)-of-2nd-Conway
X(64694) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(4320)}}, {{A, B, C, X(7), X(27539)}}, {{A, B, C, X(77), X(30479)}}, {{A, B, C, X(945), X(1042)}}, {{A, B, C, X(3668), X(58003)}}, {{A, B, C, X(56382), X(60197)}}
X(64694) = barycentric product X(i)*X(j) for these (i, j): {27539, 7}
X(64694) = barycentric quotient X(i)/X(j) for these (i, j): {27539, 8}
X(64694) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 4329, 17170}, {7, 962, 10446}, {516, 3663, 10444}, {516, 4301, 12652}, {516, 990, 20}, {1699, 7996, 21629}, {1766, 12610, 2}, {4862, 9589, 10442}
X(64695) lies on these lines: {1, 7}, {9, 75}, {37, 62383}, {40, 3673}, {46, 7264}, {55, 40719}, {57, 62697}, {69, 5853}, {85, 1697}, {86, 38316}, {142, 16831}, {144, 239}, {150, 3586}, {165, 1447}, {200, 30946}, {348, 12053}, {350, 30567}, {497, 9436}, {518, 3875}, {527, 1992}, {528, 17274}, {536, 50995}, {545, 51144}, {664, 7962}, {672, 24600}, {726, 5223}, {910, 24352}, {950, 6604}, {1001, 10436}, {1058, 53597}, {1111, 5119}, {1266, 5698}, {1445, 1766}, {1699, 7179}, {1743, 53602}, {2082, 30625}, {2098, 25716}, {2136, 16284}, {2223, 11495}, {2550, 4357}, {2796, 50836}, {3057, 9312}, {3059, 18252}, {3062, 41527}, {3212, 7991}, {3243, 4360}, {3247, 27475}, {3263, 30568}, {3294, 60958}, {3303, 4059}, {3576, 24203}, {3598, 9778}, {3601, 55082}, {3662, 20533}, {3665, 12701}, {3821, 38052}, {3870, 20347}, {3895, 30806}, {3923, 25590}, {3946, 59405}, {4000, 16970}, {4393, 20059}, {4419, 5819}, {4441, 11679}, {4660, 17272}, {4859, 53600}, {4872, 9580}, {4911, 41869}, {4912, 50997}, {4967, 38057}, {5224, 38200}, {5232, 59413}, {5250, 20880}, {5493, 10521}, {5564, 59414}, {5572, 12723}, {5686, 32087}, {5691, 56928}, {5845, 16973}, {5850, 49488}, {5919, 7223}, {6172, 16833}, {6173, 17320}, {6284, 30617}, {6381, 51284}, {6646, 41845}, {6762, 17158}, {7247, 9579}, {7671, 12718}, {7676, 24309}, {7677, 63968}, {7996, 30330}, {8232, 10445}, {8237, 12610}, {8545, 29069}, {8822, 18206}, {9581, 33298}, {9614, 17181}, {10384, 39126}, {10389, 14828}, {10980, 60717}, {11372, 29057}, {11522, 17084}, {12530, 30628}, {12717, 44735}, {14100, 17635}, {14548, 64162}, {15185, 54344}, {15485, 55967}, {15956, 60932}, {16552, 60949}, {16566, 60974}, {16593, 17282}, {16816, 61006}, {16823, 24280}, {16825, 28526}, {16826, 62778}, {16830, 59412}, {16832, 17355}, {16972, 17301}, {17095, 50443}, {17116, 31347}, {17117, 27484}, {17133, 50996}, {17271, 51102}, {17322, 20195}, {19860, 20244}, {24179, 52769}, {24209, 60912}, {24393, 42696}, {26234, 56518}, {26563, 63130}, {29181, 50175}, {29580, 59375}, {29584, 60984}, {31130, 56082}, {32007, 41864}, {34855, 56309}, {35258, 53381}, {41842, 48627}, {47357, 50116}, {49458, 53598}, {49710, 60905}, {50118, 61023}, {51929, 56900}
X(64695) = midpoint of X(i) and X(j) for these {i,j}: {12530, 30628}, {14100, 17635}
X(64695) = reflection of X(i) in X(j) for these {i,j}: {7, 3663}, {3059, 18252}, {3729, 9}, {12723, 5572}, {60960, 53602}
X(64695) = perspector of circumconic {{A, B, C, X(658), X(51560)}}
X(64695) = pole of line {354, 40719} with respect to the Feuerbach hyperbola
X(64695) = pole of line {4025, 47798} with respect to the Steiner circumellipse
X(64695) = pole of line {3716, 7658} with respect to the Steiner inellipse
X(64695) = pole of line {1026, 3732} with respect to the Yff parabola
X(64695) = pole of line {1043, 6762} with respect to the Wallace hyperbola
X(64695) = pole of line {7, 1738} with respect to the dual conic of Yff parabola
X(64695) = X(577)-of-Honsberger
X(64695) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6559)}}, {{A, B, C, X(7), X(36796)}}, {{A, B, C, X(9), X(1458)}}, {{A, B, C, X(190), X(41353)}}, {{A, B, C, X(269), X(673)}}, {{A, B, C, X(279), X(2481)}}, {{A, B, C, X(1042), X(18785)}}, {{A, B, C, X(3062), X(4334)}}, {{A, B, C, X(3160), X(41527)}}, {{A, B, C, X(3254), X(4331)}}, {{A, B, C, X(3729), X(41355)}}, {{A, B, C, X(4350), X(31638)}}, {{A, B, C, X(10390), X(42289)}}
X(64695) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 14189, 269}, {7, 8236, 3945}, {516, 3663, 7}, {673, 51052, 9}, {3875, 49518, 49446}
X(64696) lies on these lines: {1, 7}, {2, 10860}, {3, 52653}, {4, 11024}, {8, 971}, {9, 37421}, {10, 3062}, {40, 144}, {46, 60941}, {72, 54228}, {100, 329}, {165, 18228}, {376, 64659}, {377, 9800}, {388, 31391}, {411, 5698}, {497, 5918}, {515, 11525}, {517, 36996}, {519, 64697}, {527, 34632}, {631, 63266}, {938, 9943}, {946, 62778}, {1001, 6909}, {1058, 31805}, {1071, 30628}, {1125, 24644}, {1156, 5825}, {1158, 60970}, {1697, 60961}, {1698, 64699}, {1709, 5273}, {1788, 60910}, {2550, 6925}, {2801, 64056}, {2802, 56090}, {3059, 12528}, {3091, 38052}, {3358, 5744}, {3428, 54052}, {3434, 10430}, {3474, 60883}, {3522, 35262}, {3523, 43151}, {3579, 5811}, {3616, 21151}, {3826, 6932}, {3839, 51100}, {3895, 20059}, {4208, 21628}, {4229, 17183}, {4645, 9801}, {5056, 38204}, {5128, 61014}, {5223, 59417}, {5274, 64705}, {5435, 15299}, {5550, 38122}, {5603, 31657}, {5657, 5779}, {5686, 64197}, {5690, 60884}, {5691, 58834}, {5703, 64074}, {5762, 6361}, {5766, 7676}, {5785, 7995}, {5805, 9776}, {5817, 9780}, {5818, 38121}, {5843, 12702}, {5850, 7991}, {5851, 64189}, {5880, 6836}, {6001, 41228}, {6764, 12680}, {6838, 18230}, {6890, 38037}, {6943, 42356}, {6962, 15254}, {7080, 60966}, {7966, 28194}, {7992, 54398}, {7994, 41561}, {8227, 38123}, {9779, 37374}, {9799, 12777}, {9841, 10384}, {10167, 10580}, {10178, 26105}, {10248, 18482}, {10303, 38059}, {10304, 50836}, {10309, 11500}, {10595, 38030}, {11220, 36845}, {11522, 38054}, {12669, 15733}, {12686, 60935}, {12688, 15587}, {12699, 59386}, {12705, 37108}, {13374, 45084}, {14110, 54199}, {16112, 38057}, {17613, 31658}, {17650, 17668}, {17768, 33557}, {18493, 38111}, {19877, 38108}, {22791, 59380}, {24014, 31527}, {26062, 61012}, {28174, 60922}, {28610, 41338}, {30308, 38094}, {31162, 59375}, {31672, 38149}, {31730, 52026}, {31777, 64144}, {37714, 38201}, {38080, 50806}, {39581, 59620}, {40333, 63970}, {44280, 47470}, {45203, 45721}, {47033, 59413}, {50528, 54051}, {51516, 61524}, {51768, 64114}, {52457, 63413}, {52835, 60987}, {60911, 61023}, {60912, 60983}, {60979, 63141}, {63984, 64081}, {64190, 64280}
X(64696) = midpoint of X(i) and X(j) for these {i,j}: {5691, 58834}, {9961, 25722}, {20059, 20070}
X(64696) = reflection of X(i) in X(j) for these {i,j}: {8, 35514}, {20, 2951}, {144, 40}, {390, 5732}, {962, 7}, {3062, 10}, {5698, 11495}, {12528, 3059}, {12688, 15587}, {14100, 9943}, {30628, 1071}, {36991, 2550}, {54204, 41338}, {60884, 5690}, {63975, 5759}
X(64696) = anticomplement of X(11372)
X(64696) = pole of line {4025, 26695} with respect to the Steiner circumellipse
X(64696) = pole of line {934, 3732} with respect to the Yff parabola
X(64696) = X(1351)-of-2nd-Conway triangle
X(64696) = X(3062)-of-outer-Garcia triangle
X(64696) = intersection, other than A, B, C, of circumconics {{A, B, C, X(269), X(972)}}, {{A, B, C, X(279), X(55030)}}, {{A, B, C, X(971), X(6244)}}
X(64696) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 516, 962}, {40, 6223, 5815}, {390, 5732, 5731}, {516, 2951, 20}, {516, 5732, 390}, {2550, 15726, 36991}, {2550, 36991, 59387}, {5658, 6244, 64083}, {5698, 11495, 59418}, {9778, 63975, 5759}, {9778, 64083, 6244}, {9961, 25722, 971}, {10384, 60992, 14986}, {24644, 64698, 1125}, {38037, 64113, 60996}, {38052, 63973, 3091}, {38121, 60901, 5818}, {59412, 60959, 11024}
X(64697) lies on circumconic {{A, B, C, X(19605), X(24644)}} and on these lines: {1, 971}, {2, 30291}, {4, 45834}, {7, 5691}, {8, 43182}, {9, 3207}, {10, 64698}, {20, 5850}, {36, 64156}, {57, 24645}, {63, 100}, {84, 15298}, {142, 7989}, {144, 4297}, {145, 516}, {355, 38170}, {480, 59326}, {515, 4312}, {518, 2136}, {519, 64696}, {527, 34628}, {952, 4900}, {1001, 30392}, {1071, 3339}, {1385, 60884}, {1420, 60910}, {1445, 53057}, {1490, 3361}, {1698, 21151}, {1699, 5542}, {1750, 5728}, {2550, 37712}, {3057, 7990}, {3091, 38054}, {3243, 11224}, {3340, 31391}, {3358, 30282}, {3486, 60961}, {3576, 5779}, {3586, 60924}, {3601, 60909}, {3616, 64699}, {3624, 5817}, {3632, 35514}, {3839, 51098}, {4321, 10394}, {4326, 7995}, {4355, 63998}, {4853, 25722}, {4866, 14872}, {4882, 9943}, {5234, 5785}, {5290, 9799}, {5572, 30343}, {5587, 31657}, {5658, 10392}, {5686, 9588}, {5731, 51090}, {5805, 12678}, {5818, 38123}, {5843, 18481}, {5851, 64145}, {6001, 7966}, {7672, 30353}, {7988, 63970}, {7992, 53053}, {8227, 38030}, {8544, 40269}, {8580, 10167}, {9355, 60846}, {9580, 41706}, {9613, 60923}, {9814, 12560}, {9948, 51784}, {10178, 62218}, {10202, 18529}, {10304, 50834}, {10483, 64766}, {10857, 30393}, {10861, 64673}, {11038, 11522}, {11379, 18222}, {11407, 17612}, {11715, 51768}, {12528, 64679}, {12575, 54228}, {12675, 41861}, {13462, 15299}, {13624, 51516}, {15733, 18452}, {15837, 34862}, {15909, 57282}, {16112, 38316}, {16189, 34195}, {16865, 19861}, {18446, 53054}, {18480, 59380}, {18492, 38107}, {19925, 62778}, {25011, 30315}, {25557, 59389}, {28160, 60922}, {30308, 38024}, {31658, 58221}, {31672, 38036}, {31673, 59386}, {34595, 38108}, {34648, 59375}, {37714, 38052}, {38080, 50799}, {38111, 61261}, {38154, 64113}, {38158, 60996}, {41690, 60926}, {41700, 52026}, {41705, 50811}, {41712, 53056}, {42871, 64263}, {43161, 60905}, {43175, 50836}, {43180, 59385}, {51489, 63432}, {51785, 54227}, {52819, 64144}, {61264, 61595}
X(64697) = midpoint of X(i) and X(j) for these {i,j}: {11531, 58834}
X(64697) = reflection of X(i) in X(j) for these {i,j}: {8, 43182}, {144, 4297}, {3062, 1}, {3632, 35514}, {4312, 36996}, {5223, 5732}, {5691, 7}, {7991, 2951}, {7995, 4326}, {18412, 1071}, {36991, 5542}, {60884, 1385}, {60905, 43161}
X(64697) = pole of line {3900, 48017} with respect to the Conway circle
X(64697) = pole of line {57, 24644} with respect to the Feuerbach hyperbola
X(64697) = pole of line {60992, 62783} with respect to the dual conic of Yff parabola
X(64697) = X(193)-of-excenters-reflections triangle
X(64697) = X(3062)-of-5th-mixtilinear triangle
X(64697) = X(5921)-of-excentral triangle
X(64697) = X(6776)-of-6th-mixtilinear triangle
X(64697) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12680, 9851}, {1, 3062, 24644}, {1, 971, 3062}, {515, 36996, 4312}, {518, 2951, 7991}, {1071, 63981, 3339}, {2801, 5732, 5223}, {4321, 10394, 30330}, {5223, 5732, 165}, {5542, 36991, 1699}, {5686, 43151, 9588}, {5732, 12669, 30304}, {11038, 63973, 11522}, {11531, 58834, 516}, {38030, 60901, 8227}
X(64698) lies on these lines: {1, 21151}, {2, 3062}, {3, 4312}, {4, 38123}, {7, 165}, {8, 43176}, {9, 1768}, {10, 64697}, {40, 5586}, {142, 1699}, {144, 10164}, {377, 5691}, {382, 38172}, {390, 30389}, {516, 3522}, {518, 64204}, {954, 59326}, {962, 38054}, {971, 1698}, {1125, 24644}, {1387, 3576}, {1742, 4859}, {2093, 54178}, {2801, 64141}, {3146, 38151}, {3160, 60831}, {3339, 37108}, {3523, 51090}, {3543, 38094}, {3579, 59380}, {3624, 11372}, {3679, 9952}, {3872, 6224}, {4297, 59412}, {4326, 30379}, {4355, 5584}, {4428, 6173}, {4888, 9441}, {5218, 60961}, {5219, 31391}, {5223, 7080}, {5231, 25722}, {5290, 64111}, {5536, 60938}, {5542, 7991}, {5759, 16192}, {5762, 35242}, {5779, 31423}, {5785, 37112}, {5805, 64005}, {5833, 10884}, {5880, 15909}, {5881, 38121}, {5918, 41867}, {6684, 36996}, {6713, 51768}, {6895, 38150}, {6908, 10398}, {7320, 11038}, {7982, 38030}, {7988, 58834}, {7989, 36991}, {7992, 37407}, {7994, 61022}, {8232, 9814}, {8255, 41338}, {8273, 9589}, {8581, 31787}, {8732, 11407}, {9616, 60914}, {9940, 41861}, {9950, 29627}, {10167, 15587}, {10178, 25525}, {10430, 61029}, {10724, 38207}, {11227, 14100}, {11231, 60884}, {12630, 61289}, {12699, 38111}, {15298, 37560}, {15299, 37526}, {15717, 63975}, {15726, 20195}, {15803, 60923}, {15841, 30350}, {16208, 60895}, {16209, 21153}, {16832, 59688}, {17284, 59620}, {17549, 50836}, {19872, 38108}, {20059, 64108}, {21617, 30353}, {24465, 35445}, {30315, 38158}, {30331, 30392}, {30393, 41561}, {30424, 59418}, {31162, 38065}, {31183, 64741}, {31231, 60910}, {31508, 60993}, {31663, 60922}, {31730, 59386}, {33574, 37704}, {34628, 51100}, {34632, 51098}, {36838, 50561}, {37714, 40333}, {38093, 42356}, {38107, 41869}, {38115, 64084}, {38187, 51212}, {38454, 61020}, {39878, 47595}, {41705, 59381}, {41862, 61595}, {50808, 59375}, {50865, 59374}, {52819, 53056}, {54447, 60901}, {59215, 63625}, {60924, 61763}
X(64698) = reflection of X(i) in X(j) for these {i,j}: {37714, 40333}
X(64698) = X(3062)-of-Gemini-109 triangle
X(64698) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 43182, 3062}, {7, 43151, 165}, {40, 31657, 59372}, {142, 2951, 1699}, {1125, 64696, 24644}, {5732, 38052, 5691}, {5732, 64113, 38052}, {6173, 11495, 63974}, {7988, 58834, 63973}, {11372, 38122, 3624}, {21153, 60896, 60905}, {36991, 38204, 7989}, {38204, 43181, 36991}, {60996, 63973, 7988}
X(64699) lies on circumconic {{A, B, C, X(281), X(38254)}} and on these lines: {2, 3062}, {4, 9}, {5, 38172}, {7, 3817}, {8, 24644}, {11, 60961}, {142, 10171}, {144, 1699}, {153, 51768}, {226, 60910}, {515, 60901}, {517, 58678}, {518, 31821}, {527, 3829}, {946, 5779}, {971, 1125}, {1156, 21617}, {1387, 2801}, {1656, 38123}, {1698, 64696}, {1742, 25072}, {1836, 61014}, {2807, 58534}, {2951, 10164}, {3008, 64134}, {3059, 15064}, {3091, 4312}, {3358, 12436}, {3616, 64697}, {3634, 9842}, {3664, 9355}, {3667, 40551}, {3671, 10398}, {3832, 63975}, {3911, 31391}, {4297, 11106}, {4298, 15299}, {4301, 5223}, {4326, 60995}, {4384, 9950}, {4847, 60966}, {4915, 18222}, {5057, 15909}, {5071, 38094}, {5248, 64156}, {5542, 14986}, {5691, 52653}, {5704, 30424}, {5728, 12563}, {5732, 17558}, {5762, 18483}, {5785, 37434}, {5789, 5805}, {5843, 9955}, {5851, 60980}, {5853, 32537}, {5886, 60884}, {5927, 13405}, {5942, 63598}, {6172, 63974}, {6666, 15726}, {6675, 43181}, {6684, 61511}, {6701, 61595}, {6738, 10392}, {6745, 25722}, {6846, 54227}, {7674, 50801}, {7678, 60936}, {7988, 62778}, {7989, 59412}, {8226, 52819}, {8227, 36996}, {8232, 59687}, {9779, 20059}, {9812, 61006}, {9949, 64673}, {10004, 15913}, {10157, 15587}, {10863, 60992}, {10883, 60979}, {11019, 60937}, {11495, 60986}, {11522, 52665}, {12053, 60909}, {12512, 31658}, {12528, 41861}, {12575, 15298}, {12699, 51516}, {13257, 63258}, {15841, 60953}, {16418, 52769}, {17618, 60993}, {18243, 31657}, {19862, 21151}, {19878, 38122}, {21060, 30326}, {22793, 64065}, {22992, 64198}, {24389, 60973}, {28164, 31672}, {28236, 30331}, {28850, 59585}, {29571, 64741}, {30291, 64083}, {30308, 60984}, {30311, 41572}, {30353, 62775}, {31162, 50834}, {31211, 59620}, {31253, 38318}, {31399, 38121}, {31730, 59381}, {31994, 59170}, {34648, 50836}, {38075, 51100}, {38204, 63971}, {38454, 61000}, {40273, 61596}, {40998, 60969}, {41705, 59386}, {50808, 61023}, {58433, 63643}, {59380, 61268}, {59385, 60905}, {59688, 62398}, {60959, 64130}
X(64699) = midpoint of X(i) and X(j) for these {i,j}: {4, 51090}, {10, 11372}, {142, 16112}, {946, 5779}, {1156, 21635}, {3062, 43182}, {4297, 36991}, {4301, 5223}, {5542, 64197}, {5728, 31803}, {5759, 51118}, {22793, 64065}, {24389, 60973}, {31162, 50834}, {34648, 50836}, {40273, 61596}
X(64699) = reflection of X(i) in X(j) for these {i,j}: {5805, 12571}, {6684, 61511}, {12512, 31658}, {43151, 6666}, {43176, 1125}
X(64699) = complement of X(43182)
X(64699) = pole of line {1864, 61014} with respect to the Feuerbach hyperbola
X(64699) = pole of line {3160, 4000} with respect to the dual conic of Yff parabola
X(64699) = X(3062)-of-Gemini-110 triangle
X(64699) = X(6467)-of-3rd-Euler triangle
X(64699) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3062, 43182}, {10, 11372, 516}, {971, 1125, 43176}, {2951, 18230, 10164}, {3091, 4312, 38151}, {5817, 11372, 10}, {6666, 15726, 43151}, {6666, 43151, 58441}, {8227, 36996, 38054}, {38037, 64197, 5542}
X(64700) lies on these lines: {1, 7}, {2, 64701}, {3, 4357}, {4, 10436}, {8, 20246}, {9, 36698}, {27, 30687}, {30, 50116}, {40, 69}, {55, 10401}, {63, 573}, {75, 515}, {84, 6210}, {86, 946}, {99, 102}, {142, 6996}, {165, 17272}, {198, 40880}, {226, 23512}, {307, 411}, {319, 11362}, {320, 31730}, {326, 6261}, {348, 41010}, {355, 4967}, {376, 17274}, {412, 39579}, {464, 30675}, {511, 1071}, {517, 3879}, {534, 18161}, {550, 29085}, {572, 12610}, {610, 27509}, {894, 6999}, {944, 3875}, {950, 44735}, {971, 49132}, {1012, 31394}, {1064, 54308}, {1122, 5918}, {1158, 54404}, {1266, 18481}, {1268, 31399}, {1444, 11012}, {1447, 24213}, {1503, 30271}, {1630, 6518}, {1764, 10452}, {1765, 28287}, {1766, 3912}, {1944, 8804}, {2093, 5933}, {2807, 52385}, {3084, 9789}, {3576, 17321}, {3596, 64574}, {3662, 37416}, {3673, 64706}, {3868, 29311}, {3883, 29207}, {4360, 5882}, {4464, 37727}, {4643, 37499}, {5224, 6684}, {5249, 19645}, {5273, 63978}, {5279, 16550}, {5564, 47745}, {5657, 17270}, {5691, 25590}, {5750, 7377}, {5784, 64007}, {5805, 49130}, {5816, 24603}, {5881, 42696}, {6011, 43363}, {6735, 21286}, {6837, 28627}, {6925, 21279}, {7282, 37420}, {7289, 24683}, {7385, 63970}, {7397, 17282}, {7411, 41430}, {7580, 9436}, {8227, 63014}, {8720, 17770}, {9778, 21296}, {9799, 48878}, {9943, 24471}, {9965, 17364}, {10165, 17322}, {10167, 50658}, {10175, 28653}, {10391, 21746}, {10434, 37175}, {10447, 10454}, {10468, 10882}, {10860, 63152}, {11220, 29353}, {11329, 25023}, {11349, 25019}, {11433, 39592}, {11495, 47595}, {12512, 53598}, {12555, 63057}, {13464, 17394}, {13607, 17393}, {15310, 49711}, {17183, 24550}, {17320, 51705}, {17353, 64121}, {17377, 28234}, {17378, 28194}, {18446, 50656}, {18483, 41847}, {20070, 62999}, {20245, 64002}, {20880, 48890}, {21078, 22003}, {21375, 56078}, {24540, 41012}, {26651, 31015}, {27633, 62371}, {28204, 50099}, {28845, 59620}, {29097, 44238}, {30273, 49518}, {31162, 63110}, {32025, 38127}, {32099, 59417}, {33800, 62124}, {34379, 54422}, {37443, 45305}, {37567, 58800}, {37774, 59644}, {40257, 44179}, {40590, 45270}, {45789, 50693}, {48881, 63390}, {49537, 63995}, {50093, 64125}, {50101, 50811}, {53597, 64077}, {55391, 63391}
X(64700) = reflection of X(i) in X(j) for these {i,j}: {4416, 573}, {10446, 3664}
X(64700) = anticomplement of X(64701)
X(64700) = pole of line {109, 3732} with respect to the Yff parabola
X(64700) = pole of line {515, 1043} with respect to the Wallace hyperbola
X(64700) = pole of line {7, 1468} with respect to the dual conic of Yff parabola
X(64700) = X(216)-of-Conway triangle
X(64700) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(34277)}}, {{A, B, C, X(84), X(4320)}}, {{A, B, C, X(102), X(1042)}}, {{A, B, C, X(269), X(42467)}}, {{A, B, C, X(279), X(8048)}}, {{A, B, C, X(347), X(30479)}}, {{A, B, C, X(2739), X(5018)}}, {{A, B, C, X(3668), X(34393)}}, {{A, B, C, X(10444), X(34402)}}
X(64700) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 20, 10444}, {516, 3664, 10446}, {572, 12610, 17023}, {894, 6999, 10445}
X(64701) lies on these lines: {2, 64700}, {3, 5257}, {4, 9}, {5, 5750}, {6, 946}, {20, 5296}, {30, 64125}, {37, 515}, {44, 18483}, {45, 31673}, {57, 24213}, {72, 29311}, {115, 117}, {142, 64122}, {198, 1012}, {219, 21068}, {222, 226}, {225, 46011}, {329, 4416}, {346, 59387}, {355, 2321}, {379, 25019}, {381, 50115}, {391, 962}, {442, 50035}, {511, 5777}, {517, 3686}, {527, 36728}, {546, 29085}, {572, 1125}, {579, 64001}, {604, 44675}, {610, 6847}, {894, 7384}, {944, 3247}, {948, 41010}, {950, 5724}, {971, 50658}, {975, 991}, {1100, 13464}, {1210, 2285}, {1213, 6684}, {1400, 1765}, {1449, 5603}, {1699, 1743}, {1742, 1750}, {1746, 40940}, {1777, 2199}, {1864, 21746}, {1903, 43724}, {2050, 3452}, {2171, 64163}, {2178, 5450}, {2182, 6831}, {2260, 58036}, {2262, 12672}, {2268, 13411}, {2269, 10624}, {2325, 18480}, {2348, 7965}, {2807, 9119}, {2808, 58554}, {2956, 9612}, {3008, 12610}, {3073, 4264}, {3091, 5749}, {3149, 54322}, {3330, 51759}, {3707, 12699}, {3713, 21075}, {3723, 13607}, {3731, 5691}, {3817, 29635}, {3965, 63146}, {3986, 4297}, {4007, 59388}, {4029, 18525}, {4034, 12245}, {4058, 38155}, {4148, 9525}, {4254, 11496}, {4270, 37529}, {4357, 6996}, {4384, 64694}, {4700, 22791}, {5120, 22753}, {5292, 5715}, {5307, 64708}, {5356, 10265}, {5393, 30324}, {5405, 30325}, {5720, 50656}, {5788, 5812}, {5798, 29307}, {5839, 7982}, {5881, 17314}, {5882, 16777}, {5927, 29353}, {6245, 54405}, {6260, 34261}, {6737, 21078}, {6796, 54285}, {6913, 31394}, {6999, 17260}, {7377, 17353}, {7397, 17306}, {7406, 10444}, {7580, 41430}, {8227, 63055}, {8232, 64702}, {8545, 21279}, {8557, 26332}, {8727, 40869}, {9778, 62608}, {9956, 59680}, {10175, 17303}, {10436, 36662}, {11362, 17275}, {11522, 16667}, {12512, 37508}, {12527, 21061}, {12616, 24005}, {13405, 55100}, {13442, 16601}, {16972, 39870}, {17248, 37416}, {17281, 50796}, {17299, 47745}, {17330, 28194}, {17362, 28234}, {17733, 34379}, {17770, 27871}, {19868, 63968}, {20623, 42425}, {21090, 59728}, {21239, 44356}, {24224, 52819}, {24275, 56959}, {25023, 37233}, {26118, 40131}, {27508, 37434}, {28244, 62371}, {29207, 64174}, {29649, 59687}, {31162, 37654}, {31397, 54359}, {31730, 37499}, {36694, 38150}, {36731, 60986}, {39898, 51194}, {41007, 43035}, {44424, 53413}, {46835, 59644}, {47299, 63430}, {48878, 54433}, {48938, 49781}, {50650, 64570}, {55432, 63989}
X(64701) = midpoint of X(i) and X(j) for these {i,j}: {4416, 10446}
X(64701) = reflection of X(i) in X(j) for these {i,j}: {3664, 24220}
X(64701) = complement of X(64700)
X(64701) = pole of line {181, 1864} with respect to the Feuerbach hyperbola
X(64701) = pole of line {515, 1834} with respect to the Kiepert hyperbola
X(64701) = pole of line {3239, 21186} with respect to the Steiner inellipse
X(64701) = pole of line {56, 4000} with respect to the dual conic of Yff parabola
X(64701) = X(216)-of-2nd-extouch triangle
X(64701) = intersection, other than A, B, C, of circumconics {{A, B, C, X(40), X(43724)}}, {{A, B, C, X(222), X(573)}}, {{A, B, C, X(281), X(13478)}}, {{A, B, C, X(1826), X(40160)}}, {{A, B, C, X(10445), X(40444)}}
X(64701) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 9, 10445}, {5, 64121, 5750}, {19, 20262, 8074}, {1766, 5816, 10}, {7406, 17257, 10444}
X(64702) lies on these lines: {1, 7}, {2, 5838}, {3, 53597}, {9, 69}, {37, 5845}, {55, 9436}, {57, 14548}, {75, 5853}, {85, 950}, {86, 142}, {144, 17261}, {150, 31397}, {226, 4872}, {304, 34282}, {319, 24393}, {348, 3601}, {497, 40719}, {511, 5728}, {518, 3688}, {527, 4664}, {528, 50116}, {573, 1445}, {894, 20533}, {954, 41004}, {1001, 4357}, {1100, 51150}, {1429, 38855}, {1439, 50658}, {1447, 11019}, {1449, 59405}, {1565, 24929}, {1697, 6604}, {1890, 40983}, {1959, 60979}, {2082, 26101}, {2280, 51400}, {2550, 10436}, {3008, 16779}, {3059, 64007}, {3212, 6738}, {3303, 30617}, {3486, 9312}, {3598, 10580}, {3665, 37080}, {3673, 63999}, {3687, 45962}, {3875, 49771}, {4056, 13407}, {4059, 6284}, {4251, 34847}, {4262, 51775}, {4644, 41325}, {4648, 5819}, {4675, 62383}, {4851, 50995}, {4911, 21620}, {5223, 34379}, {5224, 6666}, {5232, 17284}, {5287, 36850}, {5572, 21746}, {5686, 32099}, {5736, 21617}, {5740, 61016}, {5795, 16284}, {5809, 48878}, {5850, 49520}, {6172, 29573}, {6173, 63110}, {6629, 51290}, {6744, 10521}, {7146, 52819}, {7179, 13405}, {7181, 37600}, {7198, 17609}, {7278, 45287}, {7671, 29353}, {7672, 29311}, {7676, 40910}, {7987, 17081}, {8232, 64701}, {9581, 52422}, {10384, 63152}, {10950, 25719}, {11495, 37580}, {12053, 55082}, {12527, 36854}, {13411, 17181}, {14100, 39775}, {15310, 63972}, {15589, 30567}, {15936, 60932}, {16593, 17353}, {16782, 28350}, {17060, 25964}, {17185, 30941}, {17243, 51144}, {17270, 38057}, {17271, 60986}, {17274, 47357}, {17321, 38316}, {17331, 29579}, {17363, 27484}, {17742, 60949}, {17770, 51090}, {20059, 29585}, {20195, 63014}, {21285, 24987}, {21296, 52653}, {24203, 63993}, {24701, 48902}, {25521, 40963}, {25590, 36479}, {25723, 34471}, {26626, 62778}, {26806, 41845}, {29571, 52084}, {29583, 61006}, {29598, 60996}, {29601, 60942}, {29602, 60957}, {29633, 38204}, {29637, 38059}, {30628, 64709}, {30946, 40998}, {30963, 32023}, {31394, 42884}, {33159, 38194}, {33949, 63274}, {41311, 51151}, {41313, 50997}, {41712, 58800}, {41826, 54392}, {49509, 49776}, {49768, 53598}, {50133, 60927}, {52769, 53596}, {54404, 60974}, {62697, 64162}
X(64702) = midpoint of X(i) and X(j) for these {i,j}: {144, 17364}, {14100, 49537}, {30628, 64709}, {50133, 60927}
X(64702) = reflection of X(i) in X(j) for these {i,j}: {7, 3664}, {3059, 64007}, {4416, 9}, {21746, 5572}
X(64702) = pole of line {514, 4435} with respect to the incircle
X(64702) = pole of line {354, 9436} with respect to the Feuerbach hyperbola
X(64702) = pole of line {672, 2328} with respect to the Stammler hyperbola
X(64702) = pole of line {4025, 48242} with respect to the Steiner circumellipse
X(64702) = pole of line {4458, 7658} with respect to the Steiner inellipse
X(64702) = pole of line {3732, 54440} with respect to the Yff parabola
X(64702) = pole of line {1043, 3912} with respect to the Wallace hyperbola
X(64702) = pole of line {7, 238} with respect to the dual conic of Yff parabola
X(64702) = X(216)-of-Honsberger triangle
X(64702) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(58004)}}, {{A, B, C, X(9), X(2263)}}, {{A, B, C, X(69), X(23603)}}, {{A, B, C, X(269), X(39273)}}, {{A, B, C, X(284), X(1458)}}, {{A, B, C, X(662), X(41353)}}, {{A, B, C, X(673), X(3668)}}, {{A, B, C, X(1042), X(1438)}}, {{A, B, C, X(2346), X(4318)}}, {{A, B, C, X(3912), X(16054)}}, {{A, B, C, X(4327), X(10390)}}, {{A, B, C, X(31637), X(56382)}}
X(64702) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17170, 3674}, {7, 14189, 3668}, {7, 8236, 3672}, {142, 16503, 17023}, {516, 3664, 7}, {1001, 47595, 4357}, {4872, 14828, 226}
X(64703) lies on these lines: {1, 4}, {3, 4342}, {8, 25522}, {10, 10912}, {35, 50828}, {40, 5265}, {56, 28194}, {145, 26129}, {496, 519}, {516, 24928}, {517, 34753}, {527, 42886}, {551, 3295}, {631, 9819}, {938, 16200}, {962, 61762}, {997, 21627}, {999, 4301}, {1000, 1698}, {1071, 10866}, {1125, 1387}, {1210, 2098}, {1319, 10624}, {1320, 24982}, {1376, 64767}, {1385, 10386}, {1388, 4304}, {1420, 30305}, {1482, 11019}, {1483, 18527}, {1697, 10165}, {2099, 17706}, {2800, 50196}, {3057, 5433}, {3086, 7962}, {3244, 5722}, {3333, 63985}, {3445, 24171}, {3555, 12059}, {3576, 9785}, {3600, 31162}, {3601, 11023}, {3616, 31393}, {3622, 35262}, {3635, 5087}, {3636, 12436}, {3656, 3671}, {3679, 47743}, {3746, 10090}, {3816, 33895}, {3847, 32537}, {3880, 6700}, {3884, 5745}, {3895, 59587}, {3911, 5697}, {3947, 18493}, {4292, 20323}, {4294, 51705}, {4298, 22791}, {4308, 41869}, {4311, 12701}, {4314, 10246}, {4315, 12699}, {4345, 7982}, {4701, 11545}, {4848, 10072}, {4861, 26127}, {5048, 37722}, {5049, 12563}, {5126, 12512}, {5261, 38021}, {5274, 5881}, {5330, 26015}, {5703, 61275}, {5704, 63143}, {5734, 11529}, {5795, 22837}, {5818, 50444}, {5837, 45700}, {5840, 15172}, {5853, 30144}, {5880, 30331}, {5901, 13405}, {5919, 13411}, {6001, 16215}, {6049, 50811}, {6361, 13462}, {6705, 17622}, {6738, 10222}, {6744, 50194}, {6767, 11499}, {7743, 19925}, {8227, 18220}, {9581, 47745}, {9589, 53058}, {9955, 51782}, {10039, 10172}, {10175, 50443}, {10589, 31399}, {10591, 37709}, {11036, 63984}, {11041, 16189}, {11236, 37739}, {11238, 37738}, {11240, 11682}, {11260, 12572}, {11376, 31397}, {11525, 56038}, {12433, 33179}, {12577, 39542}, {12640, 26364}, {12653, 44848}, {12654, 46947}, {12675, 46681}, {12688, 17624}, {12735, 38757}, {12915, 45776}, {13271, 17647}, {14028, 24167}, {15170, 51103}, {15171, 25405}, {15325, 43174}, {15829, 34625}, {15845, 63964}, {16137, 63972}, {17609, 64704}, {17642, 31806}, {18240, 34339}, {18481, 51783}, {21075, 36846}, {21669, 60961}, {23537, 47622}, {24927, 64138}, {25055, 30337}, {28228, 37582}, {30283, 54227}, {30960, 42057}, {38460, 41012}, {49600, 57284}, {51423, 62837}, {59572, 64202}, {63774, 63997}
X(64703) = midpoint of X(i) and X(j) for these {i,j}: {1, 12053}, {1210, 2098}, {3555, 12059}, {4301, 63983}, {4311, 12701}, {4848, 30323}, {21075, 36846}
X(64703) = reflection of X(i) in X(j) for these {i,j}: {63990, 1125}
X(64703) = pole of line {65, 17624} with respect to the Feuerbach hyperbola
X(64703) = pole of line {14837, 21222} with respect to the Steiner inellipse
X(64703) = pole of line {57, 51415} with respect to the dual conic of Yff parabola
X(64703) = X(1092)-of-incircle-circles triangle
X(64703) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11522, 1056}, {1, 12053, 515}, {1, 30384, 10106}, {1, 497, 5882}, {1, 5603, 21620}, {1, 950, 13607}, {1, 9614, 3476}, {946, 5882, 6256}, {1125, 2802, 63990}, {1210, 2098, 28234}, {1387, 9957, 1125}, {1420, 30305, 31730}, {3057, 44675, 6684}, {3086, 7962, 11362}, {3476, 9614, 31673}, {3656, 7373, 3671}, {4294, 63208, 51705}, {4311, 12701, 28150}, {4345, 14986, 7982}, {5048, 37722, 64163}, {5901, 31792, 13405}, {10072, 30323, 4848}, {10106, 30384, 18483}, {10591, 37709, 50796}, {22791, 51788, 4298}
X(64704) lies on circumconic {{A, B, C, X(5553), X(43724)}} and on these lines: {1, 1406}, {3, 64041}, {4, 5553}, {11, 6245}, {20, 64043}, {30, 64045}, {36, 5887}, {46, 912}, {55, 9943}, {56, 6001}, {57, 1858}, {65, 515}, {72, 1155}, {84, 22760}, {210, 12059}, {354, 3671}, {392, 5267}, {497, 9961}, {498, 40296}, {499, 31937}, {513, 1828}, {516, 64046}, {517, 4299}, {518, 8544}, {942, 1479}, {960, 4652}, {962, 18839}, {971, 1837}, {1042, 7004}, {1044, 37591}, {1158, 37579}, {1210, 1898}, {1319, 5450}, {1388, 45776}, {1407, 1854}, {1464, 17102}, {1466, 9942}, {1467, 7992}, {1470, 6261}, {1478, 34339}, {1490, 11502}, {1709, 34489}, {1737, 40263}, {1768, 37583}, {1770, 5840}, {1788, 12528}, {1872, 31849}, {2099, 12675}, {2292, 22053}, {2635, 24443}, {2646, 10167}, {2771, 10081}, {2800, 4311}, {2801, 4848}, {2802, 3555}, {3057, 4297}, {3146, 18419}, {3189, 3474}, {3304, 63994}, {3339, 61663}, {3340, 9845}, {3359, 11501}, {3486, 11220}, {3660, 9856}, {3745, 35672}, {3784, 41600}, {3812, 10895}, {3825, 5439}, {3911, 31803}, {4293, 64021}, {4295, 12116}, {4301, 5083}, {4306, 8758}, {4325, 11571}, {5122, 5694}, {5128, 5904}, {5172, 64118}, {5219, 30290}, {5221, 44547}, {5252, 31788}, {5570, 12699}, {5693, 15803}, {5720, 59336}, {5728, 17637}, {5777, 24914}, {5784, 21677}, {5794, 17616}, {5902, 9579}, {5903, 61296}, {5927, 17606}, {6260, 10958}, {6848, 12666}, {6958, 18856}, {7355, 40959}, {7686, 12943}, {8581, 15888}, {8614, 64722}, {9612, 15016}, {9940, 11375}, {10052, 37826}, {10072, 58573}, {10123, 47319}, {10178, 63756}, {10202, 12047}, {10391, 63984}, {10404, 50195}, {10483, 53615}, {10944, 16004}, {10966, 64150}, {11509, 18446}, {11575, 31821}, {12136, 51399}, {12514, 37578}, {12520, 26357}, {12529, 24477}, {12565, 54408}, {12664, 57285}, {12701, 50196}, {12736, 31673}, {12831, 21077}, {12832, 41560}, {12953, 15726}, {13601, 37740}, {13750, 57282}, {14110, 15326}, {14872, 40663}, {15104, 41348}, {17609, 64703}, {17615, 37828}, {17646, 24390}, {17654, 18976}, {17728, 64131}, {18391, 64358}, {18518, 36279}, {20420, 24465}, {23154, 52359}, {24467, 59317}, {26201, 50194}, {26892, 44545}, {31837, 58887}, {33178, 34043}, {34471, 58567}, {37562, 45287}, {40272, 41869}, {40293, 45770}, {57277, 64057}, {58637, 63212}
X(64704) = midpoint of X(i) and X(j) for these {i,j}: {15071, 63988}
X(64704) = reflection of X(i) in X(j) for these {i,j}: {56, 64132}, {72, 25440}, {1479, 942}, {1898, 1210}, {3057, 63987}, {12059, 63990}, {12688, 63989}, {12701, 50196}, {41538, 46}, {63985, 9943}, {64042, 56}
X(64704) = pole of line {5101, 16228} with respect to the Fuhrmann circle
X(64704) = pole of line {1459, 9001} with respect to the incircle
X(64704) = pole of line {946, 999} with respect to the Feuerbach hyperbola
X(64704) = pole of line {9001, 21173} with respect to the Suppa-Cucoanes circle
X(64704) = X(1092)-of-Ursa-minor triangle
X(64704) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {46, 912, 41538}, {56, 6001, 64042}, {57, 15071, 1858}, {65, 12680, 10950}, {65, 63995, 7354}, {1770, 11570, 24474}, {3057, 5918, 15338}, {4292, 5884, 65}, {4293, 64021, 64721}, {6001, 64132, 56}, {10167, 12709, 2646}, {15326, 45288, 14110}
X(64705) lies on these lines: {2, 1750}, {3, 10}, {4, 5437}, {5, 10156}, {11, 5918}, {20, 1210}, {30, 7682}, {40, 24477}, {55, 43175}, {57, 497}, {84, 6865}, {142, 1538}, {165, 4847}, {214, 64310}, {226, 10167}, {329, 30304}, {404, 64707}, {443, 19925}, {474, 63998}, {519, 5768}, {528, 13226}, {551, 18443}, {579, 10443}, {610, 53579}, {908, 11220}, {936, 9799}, {942, 4301}, {944, 3158}, {946, 3742}, {950, 1466}, {960, 9948}, {971, 3452}, {990, 39595}, {1040, 34050}, {1125, 6847}, {1447, 24213}, {1479, 64658}, {1490, 6700}, {1699, 9776}, {1709, 40998}, {1742, 24239}, {2095, 28194}, {2478, 63984}, {2551, 10864}, {2801, 21060}, {2886, 10178}, {2951, 8732}, {3085, 64679}, {3086, 12565}, {3244, 37531}, {3306, 10431}, {3358, 51090}, {3476, 3601}, {3522, 6734}, {3576, 6935}, {3587, 5770}, {3634, 37407}, {3671, 58626}, {3741, 10856}, {3840, 21629}, {3846, 59688}, {3880, 24391}, {3911, 7580}, {3928, 5759}, {4292, 6836}, {4304, 6909}, {4744, 24474}, {5273, 21153}, {5274, 64696}, {5281, 5731}, {5316, 5927}, {5325, 31658}, {5393, 31564}, {5405, 31563}, {5438, 64144}, {5493, 5709}, {5542, 11018}, {5657, 51781}, {5658, 30827}, {5691, 6904}, {5705, 37108}, {5717, 37501}, {5735, 21454}, {5817, 51780}, {5837, 33899}, {5853, 6244}, {6260, 6922}, {6692, 19541}, {6824, 19862}, {6827, 7171}, {6851, 26333}, {6857, 12617}, {6890, 10884}, {6891, 41854}, {6899, 63399}, {6905, 61115}, {6987, 52027}, {6989, 51073}, {7004, 64708}, {7411, 59491}, {7989, 37436}, {7994, 36845}, {8568, 44424}, {9614, 11023}, {9778, 26015}, {9842, 17527}, {9942, 21616}, {9961, 41012}, {10085, 12527}, {10171, 41867}, {10265, 38759}, {10310, 64117}, {10383, 13405}, {10445, 17754}, {10580, 43166}, {10624, 63985}, {10916, 12512}, {11219, 41853}, {11372, 26105}, {11495, 24389}, {11496, 51724}, {12053, 17626}, {12437, 38455}, {12680, 21075}, {13243, 17781}, {15064, 18227}, {15841, 60945}, {18228, 64197}, {20330, 58615}, {21151, 25525}, {21164, 28164}, {21620, 58567}, {21627, 31798}, {23512, 62774}, {24175, 53599}, {24392, 35514}, {24982, 37267}, {25006, 64108}, {28452, 50862}, {28609, 36996}, {30265, 40940}, {31424, 37423}, {31445, 61556}, {31673, 37281}, {31730, 37623}, {34742, 37428}, {35977, 44425}, {37276, 39531}, {37363, 64113}, {37533, 51071}, {37551, 43174}, {40249, 54198}, {44675, 64150}, {47621, 50114}, {50696, 62773}, {63430, 64111}, {63999, 64074}, {64077, 64124}
X(64705) = midpoint of X(i) and X(j) for these {i,j}: {4, 58808}, {20, 3586}, {329, 30304}, {497, 10860}, {1750, 10430}, {5768, 6282}, {6827, 7171}, {7994, 36845}, {63430, 64111}
X(64705) = reflection of X(i) in X(j) for these {i,j}: {3452, 37364}, {4297, 63991}, {4301, 63993}, {19541, 6692}, {51118, 26333}, {59687, 3452}, {63137, 43174}, {63992, 1125}
X(64705) = complement of X(1750)
X(64705) = X(i)-complementary conjugate of X(j) for these {i, j}: {36622, 2886}, {38268, 5}
X(64705) = pole of line {44448, 47808} with respect to the orthoptic circle of the Steiner Inellipse
X(64705) = pole of line {8581, 64042} with respect to the Feuerbach hyperbola
X(64705) = pole of line {948, 3772} with respect to the dual conic of Yff parabola
X(64705) = X(394)-of-Ascella triangle
X(64705) = X(1750)-of-medial triangle
X(64705) = X(6515)-of-Wasat triangle
X(64705) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 18339, 58808}
X(64705) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10430, 1750}, {3, 5745, 10164}, {3, 5787, 57284}, {3, 64706, 4297}, {4, 37526, 12436}, {142, 8727, 3817}, {226, 10167, 43177}, {497, 10860, 516}, {908, 11220, 41561}, {971, 3452, 59687}, {1040, 34050, 59645}, {1699, 11407, 9776}, {6847, 8726, 1125}, {6851, 37534, 64001}, {6851, 64001, 51118}, {6890, 10884, 13411}, {6899, 63399, 64004}, {8727, 11227, 142}, {10167, 37374, 226}, {20205, 34822, 10}, {37533, 64323, 51071}
X(64706) lies on circumconic {{A, B, C, X(41904), X(57284)}} and on these lines: {1, 7365}, {2, 63998}, {3, 10}, {4, 142}, {8, 37551}, {9, 9799}, {20, 57}, {30, 5806}, {40, 5768}, {84, 6987}, {165, 63146}, {226, 6836}, {388, 10383}, {411, 3911}, {443, 5691}, {452, 10430}, {497, 1467}, {516, 942}, {519, 31793}, {527, 1071}, {550, 37623}, {553, 64003}, {610, 6554}, {936, 64144}, {944, 6282}, {946, 6851}, {962, 11518}, {971, 12572}, {991, 5717}, {1001, 21628}, {1040, 5930}, {1125, 8727}, {1210, 7580}, {1446, 18650}, {1482, 64323}, {1490, 3452}, {1750, 5084}, {1766, 21096}, {1770, 30274}, {1817, 26001}, {2551, 63981}, {2784, 52822}, {3091, 41867}, {3146, 9776}, {3149, 6692}, {3295, 43175}, {3306, 50695}, {3358, 9948}, {3522, 5744}, {3576, 6847}, {3587, 11362}, {3601, 5731}, {3673, 64700}, {3833, 11227}, {3946, 30265}, {4219, 49542}, {4292, 10167}, {4294, 10860}, {4298, 11018}, {4301, 15934}, {4304, 37022}, {4314, 64074}, {4339, 35658}, {4757, 28228}, {4847, 5584}, {5129, 36991}, {5249, 6895}, {5436, 37434}, {5437, 50700}, {5438, 54051}, {5587, 37407}, {5698, 7992}, {5709, 31730}, {5759, 54422}, {5771, 31663}, {5805, 43182}, {5882, 37531}, {5918, 6284}, {6223, 52457}, {6244, 64117}, {6260, 6827}, {6261, 64310}, {6700, 37364}, {6701, 12571}, {6734, 7411}, {6738, 37544}, {6743, 58637}, {6745, 50031}, {6824, 10165}, {6826, 31673}, {6831, 58463}, {6857, 7987}, {6868, 7171}, {6869, 37534}, {6872, 63984}, {6899, 18446}, {6916, 64261}, {6922, 58461}, {6926, 52026}, {6989, 10175}, {7354, 17603}, {7415, 64582}, {7682, 37411}, {8582, 37270}, {8728, 19925}, {9121, 53996}, {9581, 37421}, {9843, 19541}, {9942, 31789}, {9960, 61002}, {10202, 28150}, {10268, 14647}, {10431, 54392}, {10454, 10856}, {10572, 15803}, {10916, 12511}, {10993, 46684}, {11019, 64077}, {11108, 63970}, {11220, 64002}, {11827, 63432}, {12053, 34489}, {12512, 64128}, {12527, 12680}, {12545, 35612}, {12547, 24705}, {12617, 52769}, {12649, 63141}, {12669, 61003}, {12688, 40998}, {13151, 51717}, {13226, 38759}, {13411, 37374}, {13464, 37615}, {13607, 37533}, {15852, 37597}, {16388, 18589}, {17612, 64000}, {18444, 63274}, {18483, 55108}, {22053, 40950}, {24474, 28194}, {24703, 54227}, {24982, 35977}, {25011, 35985}, {28160, 37281}, {28234, 37585}, {28849, 35633}, {30282, 31452}, {34619, 50811}, {34707, 50808}, {37523, 40960}, {37526, 50701}, {41561, 58798}, {41869, 63971}, {43177, 57282}, {50528, 63989}, {52027, 59345}, {52819, 62864}, {54398, 59418}, {63399, 63438}
X(64706) = midpoint of X(i) and X(j) for these {i,j}: {20, 950}, {1071, 64004}, {12527, 12680}, {12669, 61003}, {63998, 64707}
X(64706) = reflection of X(i) in X(j) for these {i,j}: {4298, 58567}, {4301, 40270}, {6743, 58637}, {20420, 12436}, {57284, 3}, {64001, 9940}
X(64706) = complement of X(63998)
X(64706) = pole of line {2257, 3772} with respect to the dual conic of Yff parabola
X(64706) = X(5562)-of-Ascella triangle
X(64706) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 64707, 63998}, {3, 515, 57284}, {3, 51755, 6684}, {3, 5787, 10}, {3, 5791, 10164}, {3, 6245, 5745}, {4, 8726, 142}, {30, 9940, 64001}, {40, 5768, 24391}, {944, 6282, 12437}, {1071, 37428, 64004}, {1750, 5084, 9842}, {4297, 64705, 3}, {5691, 10857, 443}, {6827, 41854, 6260}, {6836, 10884, 226}, {6851, 18443, 946}, {11227, 20420, 12436}, {12436, 28164, 20420}, {24391, 63413, 40}
X(64707) lies on these lines: {1, 10431}, {2, 63998}, {3, 54357}, {4, 5249}, {7, 950}, {8, 20}, {10, 7411}, {21, 4297}, {27, 25935}, {30, 1071}, {57, 50695}, {78, 64144}, {79, 51118}, {85, 1891}, {142, 6894}, {224, 908}, {226, 6895}, {355, 37426}, {377, 5691}, {388, 7675}, {390, 9800}, {404, 64705}, {411, 6245}, {452, 36991}, {516, 3868}, {938, 50696}, {946, 16132}, {962, 11520}, {971, 60979}, {1004, 24982}, {1012, 10267}, {1076, 3465}, {1125, 10883}, {1210, 36002}, {1259, 37022}, {1385, 37447}, {1621, 21628}, {1750, 2478}, {1770, 18389}, {2829, 12671}, {3100, 5930}, {3305, 37423}, {3306, 50700}, {3434, 12565}, {3436, 63981}, {3522, 5273}, {3576, 6837}, {3651, 51755}, {3746, 4304}, {3912, 19645}, {3951, 5759}, {4190, 9841}, {4197, 19925}, {4292, 5902}, {4293, 62836}, {4298, 11020}, {4299, 62810}, {4301, 63159}, {4311, 62873}, {4313, 10106}, {4314, 62800}, {4316, 54432}, {4384, 37419}, {4855, 54051}, {4872, 56382}, {5047, 63970}, {5057, 54227}, {5059, 9965}, {5208, 12545}, {5250, 43161}, {5279, 51972}, {5584, 25006}, {5587, 37112}, {5720, 6899}, {5731, 37434}, {5761, 6851}, {5777, 37428}, {5784, 57288}, {5787, 6734}, {5795, 38200}, {5853, 20070}, {6253, 9943}, {6260, 6840}, {6284, 15726}, {6505, 9121}, {6604, 18655}, {6684, 37105}, {6835, 8726}, {6839, 31673}, {6869, 63399}, {6870, 25525}, {6884, 10165}, {6890, 52026}, {6925, 64261}, {6934, 7171}, {6936, 18540}, {6993, 18492}, {7354, 10391}, {7965, 51715}, {7992, 44447}, {8273, 24564}, {9812, 11036}, {9842, 37162}, {10085, 64075}, {10167, 20420}, {10444, 10452}, {10857, 37462}, {10863, 26127}, {11112, 31805}, {12527, 41228}, {12528, 17781}, {12625, 60990}, {12680, 16465}, {13739, 18653}, {15683, 28610}, {16192, 31446}, {16208, 34628}, {16547, 41006}, {16823, 37443}, {17616, 64000}, {17647, 31424}, {18219, 64679}, {20835, 24987}, {20880, 48890}, {22937, 44238}, {26015, 64077}, {27385, 37374}, {28160, 34339}, {28186, 31775}, {28208, 37429}, {30030, 50424}, {35976, 44425}, {37104, 49542}, {37108, 59387}, {37248, 63991}, {37300, 63983}, {37302, 60743}, {41012, 63988}, {41860, 43740}, {41869, 55109}, {48482, 50528}, {54356, 63395}, {54422, 64005}, {61024, 63413}, {63430, 64079}
X(64707) = reflection of X(i) in X(j) for these {i,j}: {3146, 950}, {6253, 9943}, {12528, 64004}, {57287, 20}, {59355, 4292}, {63998, 64706}, {64003, 1071}
X(64707) = anticomplement of X(63998)
X(64707) = perspector of circumconic {{A, B, C, X(44327), X(50392)}}
X(64707) = pole of line {2360, 59320} with respect to the Stammler hyperbola
X(64707) = X(5562)-of-Conway triangle
X(64707) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 10884, 5249}, {8, 20, 63141}, {20, 10430, 63984}, {20, 515, 57287}, {20, 54398, 9778}, {20, 9799, 63}, {30, 1071, 64003}, {1490, 6836, 908}, {4292, 28164, 59355}, {4297, 12617, 15931}, {5691, 5732, 377}, {11220, 59355, 4292}, {18444, 37433, 946}
X(64708) lies on these lines: {1, 5758}, {2, 20223}, {7, 5287}, {9, 278}, {10, 201}, {33, 516}, {34, 12572}, {37, 226}, {40, 196}, {56, 34937}, {57, 1766}, {63, 34050}, {65, 4854}, {72, 5930}, {73, 3191}, {77, 5905}, {81, 41572}, {92, 20262}, {108, 5285}, {144, 18623}, {197, 2385}, {212, 23710}, {219, 34032}, {220, 34048}, {222, 527}, {223, 329}, {227, 21075}, {241, 3782}, {306, 4552}, {307, 321}, {515, 5928}, {517, 46017}, {553, 49747}, {612, 4331}, {651, 17781}, {664, 33066}, {908, 17080}, {1020, 36908}, {1038, 4292}, {1068, 55104}, {1076, 6245}, {1210, 37591}, {1323, 56848}, {1393, 9843}, {1400, 41342}, {1407, 17276}, {1441, 25013}, {1445, 19785}, {1465, 3452}, {1659, 31561}, {1708, 8557}, {1834, 4848}, {1848, 10445}, {1943, 4416}, {1999, 17950}, {2318, 4551}, {2321, 26942}, {2635, 59687}, {2654, 4301}, {3160, 64143}, {3175, 21096}, {3219, 37798}, {3305, 37800}, {3428, 51616}, {3553, 45126}, {3671, 37558}, {3677, 64747}, {3729, 56367}, {3745, 60883}, {3755, 41539}, {3772, 3911}, {3946, 52424}, {3955, 41349}, {3977, 28774}, {3995, 56559}, {4054, 52358}, {4296, 64002}, {4419, 7365}, {4654, 10481}, {5018, 33099}, {5228, 50068}, {5236, 25087}, {5307, 64701}, {5759, 7070}, {5762, 59611}, {6172, 18624}, {6357, 60942}, {6737, 56819}, {7004, 64705}, {7069, 63970}, {7078, 10402}, {7147, 21809}, {7288, 24171}, {7330, 53592}, {7580, 16870}, {9436, 20173}, {12527, 21147}, {13390, 31562}, {13411, 54320}, {15286, 47848}, {17022, 62780}, {17075, 28997}, {17086, 27064}, {17304, 56460}, {17355, 56366}, {17811, 61002}, {18228, 36640}, {18625, 29007}, {18750, 40880}, {20205, 64194}, {21621, 29069}, {21801, 37755}, {22053, 43177}, {22117, 59606}, {23703, 50808}, {24175, 31231}, {24248, 60786}, {24310, 56549}, {26006, 28950}, {26723, 37787}, {26724, 61016}, {26885, 56910}, {27540, 45738}, {28194, 60689}, {28739, 56082}, {30379, 33146}, {31142, 36636}, {33298, 42029}, {34033, 60905}, {34035, 60979}, {34036, 40998}, {37543, 52819}, {37544, 50067}, {39126, 62229}, {40960, 64750}, {42707, 57807}, {46974, 63438}, {50114, 52423}, {52408, 59647}, {53011, 61178}, {59613, 64065}, {60091, 60249}
X(64708) = complement of X(20223)
X(64708) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 285}, {21, 1436}, {27, 2188}, {28, 268}, {32, 57795}, {58, 282}, {60, 1903}, {81, 2192}, {84, 284}, {86, 7118}, {112, 61040}, {189, 2194}, {270, 41087}, {271, 1474}, {280, 1333}, {283, 7129}, {309, 57657}, {333, 2208}, {593, 53013}, {1014, 7367}, {1021, 8059}, {1172, 1433}, {1413, 2287}, {1422, 2328}, {1437, 7003}, {1444, 7154}, {1790, 7008}, {1812, 7151}, {2150, 39130}, {2185, 2357}, {2189, 52389}, {2193, 40836}, {2203, 44189}, {2206, 34404}, {2299, 41081}, {2332, 56972}, {3737, 36049}, {4183, 55117}, {4560, 32652}, {4636, 55242}, {6612, 56182}, {7054, 52384}, {7252, 13138}, {13853, 23609}, {21789, 37141}, {23189, 40117}, {40979, 57422}
X(64708) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 285}, {10, 282}, {37, 280}, {57, 81}, {226, 41081}, {281, 29}, {1214, 189}, {5514, 3737}, {6376, 57795}, {16596, 4560}, {24018, 16731}, {34591, 61040}, {36908, 1422}, {40586, 2192}, {40590, 84}, {40591, 268}, {40600, 7118}, {40603, 34404}, {40611, 1436}, {47345, 40836}, {51574, 271}, {55044, 1021}, {55063, 57081}, {56325, 39130}, {59608, 1440}, {61075, 7253}, {62564, 44189}, {62570, 309}, {62614, 57783}
X(64708) = X(i)-Ceva conjugate of X(j) for these {i, j}: {307, 10}, {321, 226}, {347, 227}, {40702, 57810}, {57810, 21075}
X(64708) = X(i)-cross conjugate of X(j) for these {i, j}: {21871, 21075}, {53009, 10}
X(64708) = pole of line {4077, 50332} with respect to the incircle
X(64708) = pole of line {3737, 17926} with respect to the polar circle
X(64708) = pole of line {226, 21933} with respect to the Kiepert hyperbola
X(64708) = pole of line {656, 59976} with respect to the Steiner inellipse
X(64708) = pole of line {15411, 57213} with respect to the dual conic of polar circle
X(64708) = pole of line {17880, 23978} with respect to the dual conic of Stammler hyperbola
X(64708) = pole of line {355, 388} with respect to the dual conic of Yff parabola
X(64708) = pole of line {1146, 7004} with respect to the dual conic of Wallace hyperbola
X(64708) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37410)}}, {{A, B, C, X(10), X(40)}}, {{A, B, C, X(37), X(2324)}}, {{A, B, C, X(196), X(347)}}, {{A, B, C, X(208), X(223)}}, {{A, B, C, X(226), X(329)}}, {{A, B, C, X(306), X(51368)}}, {{A, B, C, X(307), X(40212)}}, {{A, B, C, X(860), X(1817)}}, {{A, B, C, X(1826), X(1901)}}, {{A, B, C, X(2321), X(8804)}}, {{A, B, C, X(4082), X(57049)}}, {{A, B, C, X(6354), X(56285)}}, {{A, B, C, X(6356), X(6358)}}, {{A, B, C, X(7080), X(60188)}}, {{A, B, C, X(8058), X(8680)}}, {{A, B, C, X(8822), X(41003)}}, {{A, B, C, X(17056), X(27398)}}, {{A, B, C, X(18591), X(40967)}}, {{A, B, C, X(36908), X(51365)}}, {{A, B, C, X(41083), X(55010)}}, {{A, B, C, X(48357), X(54668)}}
X(64708) = barycentric product X(i)*X(j) for these (i, j): {1, 57810}, {10, 347}, {12, 8822}, {37, 40702}, {196, 306}, {198, 349}, {221, 313}, {223, 321}, {226, 329}, {227, 75}, {307, 7952}, {322, 65}, {342, 72}, {348, 53009}, {1214, 64211}, {1231, 2331}, {1441, 40}, {1446, 2324}, {1817, 6358}, {2199, 27801}, {2360, 34388}, {3194, 57807}, {3209, 40071}, {3668, 7080}, {4554, 55212}, {4566, 8058}, {14256, 2321}, {14837, 4552}, {17896, 4551}, {20336, 208}, {21075, 7}, {21871, 85}, {26942, 41083}, {27398, 6354}, {30713, 6611}, {39130, 55015}, {40149, 64082}, {40701, 71}, {41013, 7013}, {47372, 52385}, {52607, 57245}, {53008, 57479}, {55116, 56382}, {55241, 57185}, {57118, 850}, {57809, 7078}
X(64708) = barycentric quotient X(i)/X(j) for these (i, j): {1, 285}, {10, 280}, {12, 39130}, {37, 282}, {40, 21}, {42, 2192}, {65, 84}, {71, 268}, {72, 271}, {73, 1433}, {75, 57795}, {181, 2357}, {196, 27}, {198, 284}, {201, 52389}, {208, 28}, {213, 7118}, {221, 58}, {223, 81}, {225, 40836}, {226, 189}, {227, 1}, {228, 2188}, {306, 44189}, {313, 57793}, {321, 34404}, {322, 314}, {329, 333}, {342, 286}, {347, 86}, {349, 44190}, {656, 61040}, {756, 53013}, {1020, 37141}, {1042, 1413}, {1214, 41081}, {1254, 52384}, {1334, 7367}, {1400, 1436}, {1402, 2208}, {1427, 1422}, {1439, 56972}, {1441, 309}, {1817, 2185}, {1824, 7008}, {1826, 7003}, {1880, 7129}, {2171, 1903}, {2187, 2194}, {2197, 41087}, {2199, 1333}, {2324, 2287}, {2331, 1172}, {2333, 7154}, {2360, 60}, {3194, 270}, {3195, 2299}, {3209, 1474}, {3668, 1440}, {4551, 13138}, {4552, 44327}, {4554, 55211}, {4559, 36049}, {4566, 53642}, {4848, 56940}, {5930, 41084}, {6129, 3737}, {6354, 8808}, {6611, 1412}, {7011, 1790}, {7013, 1444}, {7074, 2328}, {7078, 283}, {7080, 1043}, {7114, 1437}, {7952, 29}, {8058, 7253}, {8803, 8886}, {8822, 261}, {10397, 23090}, {14256, 1434}, {14298, 1021}, {14837, 4560}, {17896, 18155}, {20336, 57783}, {21075, 8}, {21871, 9}, {26942, 56944}, {27398, 7058}, {37755, 52037}, {38374, 17205}, {39130, 46355}, {40212, 1817}, {40663, 56939}, {40701, 44129}, {40702, 274}, {40971, 4183}, {41013, 7020}, {41083, 46103}, {41088, 52158}, {47372, 1896}, {52023, 13156}, {52373, 55117}, {52384, 1256}, {53008, 57492}, {53009, 281}, {53321, 8059}, {55015, 8822}, {55111, 2327}, {55116, 2322}, {55212, 650}, {55241, 4631}, {56382, 34400}, {57101, 57081}, {57118, 110}, {57185, 55242}, {57245, 15411}, {57285, 52571}, {57652, 7151}, {57810, 75}, {59935, 57215}, {62192, 6612}, {64082, 1812}, {64211, 31623}
X(64708) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63, 57477, 34050}, {201, 225, 10}, {212, 23710, 59645}, {329, 347, 223}, {1076, 44706, 6245}, {1427, 4415, 226}, {21062, 22001, 8804}
X(64709) lies on these lines: {1, 28375}, {2, 21746}, {6, 33760}, {7, 62872}, {8, 511}, {10, 50585}, {37, 3809}, {42, 50584}, {43, 23659}, {51, 59296}, {63, 1742}, {69, 2876}, {72, 15310}, {75, 674}, {78, 6210}, {86, 64751}, {87, 20456}, {100, 573}, {144, 4499}, {145, 64006}, {192, 3688}, {210, 17331}, {219, 3573}, {239, 3056}, {256, 869}, {306, 25308}, {319, 9018}, {346, 3799}, {513, 17347}, {516, 3869}, {518, 17364}, {660, 50995}, {662, 1631}, {668, 25291}, {894, 3779}, {908, 45305}, {956, 48908}, {978, 50603}, {991, 2975}, {1150, 50646}, {1193, 50616}, {1278, 14839}, {1740, 3778}, {1964, 4443}, {2234, 4446}, {2293, 23407}, {2388, 25295}, {2979, 17135}, {3059, 43216}, {3060, 4651}, {3190, 11688}, {3240, 4263}, {3271, 17349}, {3293, 50592}, {3434, 10446}, {3436, 48878}, {3596, 21278}, {3616, 39543}, {3661, 17792}, {3664, 3873}, {3681, 4416}, {3685, 3781}, {3687, 25306}, {3696, 9047}, {3758, 22277}, {3786, 50295}, {3789, 17252}, {3792, 32941}, {3794, 33137}, {3868, 50307}, {3890, 63977}, {3912, 25279}, {3917, 10453}, {3948, 21299}, {3963, 24351}, {4067, 28508}, {4093, 4493}, {4195, 10822}, {4259, 5263}, {4307, 54383}, {4361, 25048}, {4389, 56537}, {4398, 64553}, {4511, 31394}, {4517, 17261}, {4553, 17233}, {4579, 12329}, {4645, 10477}, {4699, 17049}, {4787, 24478}, {4890, 29570}, {5080, 48938}, {5650, 30947}, {5687, 48875}, {5744, 50658}, {5904, 17770}, {5943, 26038}, {6646, 56542}, {7032, 24575}, {7186, 32853}, {7998, 29824}, {8679, 49450}, {9024, 17362}, {9025, 17363}, {9049, 49499}, {9052, 24349}, {9054, 17365}, {11680, 24220}, {11681, 48888}, {14923, 29311}, {16574, 35338}, {16885, 24482}, {17065, 23633}, {17202, 32773}, {17234, 57024}, {17272, 60929}, {17300, 35892}, {17346, 22271}, {17350, 20683}, {17367, 61034}, {17377, 44671}, {17379, 52020}, {17391, 64546}, {20012, 50577}, {20036, 50621}, {20245, 20556}, {20248, 53358}, {20358, 48627}, {20535, 52562}, {20670, 62989}, {20684, 21387}, {20961, 26037}, {21035, 24696}, {21755, 21787}, {23305, 37796}, {23638, 59295}, {24390, 48934}, {24599, 63523}, {25144, 29613}, {25505, 46898}, {26806, 64560}, {26893, 32932}, {29497, 52923}, {29628, 63522}, {30628, 64702}, {31737, 50633}, {48902, 52367}, {50579, 59302}, {50617, 59303}, {63961, 63978}
X(64709) = reflection of X(i) in X(j) for these {i,j}: {145, 64006}, {192, 3688}, {3868, 50307}, {17347, 64581}, {17364, 49537}, {21746, 64007}, {30628, 64702}
X(64709) = anticomplement of X(21746)
X(64709) = X(i)-Dao conjugate of X(j) for these {i, j}: {21746, 21746}
X(64709) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3449, 192}, {40419, 8}, {63148, 7}, {63188, 145}
X(64709) = pole of line {52614, 57056} with respect to the Steiner circumellipse
X(64709) = pole of line {1626, 16876} with respect to the Wallace hyperbola
X(64709) = X(264)-of-inner-Conway triangle
X(64709) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {43, 50613, 23659}, {513, 64581, 17347}, {518, 49537, 17364}, {1740, 3778, 24598}, {2293, 28287, 23407}, {3688, 6007, 192}, {3869, 25722, 12530}, {21278, 53338, 3596}, {21746, 64007, 2}
X(64710) lies on these lines: {1, 149}, {11, 3136}, {21, 45066}, {30, 12081}, {38, 17660}, {42, 81}, {48, 54065}, {55, 53324}, {58, 35204}, {73, 12739}, {80, 59305}, {104, 63291}, {110, 1283}, {119, 63318}, {214, 1193}, {238, 63917}, {244, 58591}, {323, 902}, {386, 15015}, {500, 2292}, {511, 3724}, {522, 12080}, {528, 37631}, {581, 6326}, {612, 5531}, {649, 38018}, {899, 1818}, {900, 14752}, {952, 5453}, {968, 64372}, {991, 1768}, {1064, 6265}, {1066, 63388}, {1156, 63384}, {1201, 12746}, {1317, 63295}, {1320, 63333}, {1458, 5083}, {1757, 56808}, {1862, 2356}, {2177, 13205}, {2254, 3722}, {2310, 34976}, {2340, 14740}, {2594, 41541}, {2610, 21341}, {2654, 12743}, {2667, 2805}, {2783, 63345}, {2800, 4300}, {2801, 3989}, {2802, 63354}, {2829, 63386}, {2831, 4137}, {3190, 32912}, {3682, 51506}, {3920, 5483}, {3938, 36482}, {4303, 11570}, {4337, 11571}, {4343, 63387}, {4511, 32843}, {4653, 46816}, {4883, 58611}, {5396, 22935}, {5492, 5495}, {5541, 63310}, {5840, 13408}, {5848, 63394}, {5854, 63415}, {5856, 63381}, {6154, 63401}, {6174, 61661}, {9024, 63359}, {9897, 30116}, {9978, 47625}, {10087, 54350}, {10090, 63340}, {10707, 63343}, {10738, 63323}, {10755, 63385}, {12331, 37698}, {13194, 63294}, {13199, 37529}, {13222, 63311}, {13228, 63312}, {13230, 63313}, {13235, 63315}, {13268, 63320}, {13269, 63321}, {13270, 63322}, {13271, 63324}, {13272, 63325}, {13273, 63326}, {13274, 63327}, {13278, 63341}, {13279, 63342}, {13922, 63336}, {13991, 63337}, {15792, 54078}, {16585, 46685}, {17018, 20095}, {19112, 63298}, {19113, 63299}, {20962, 58504}, {21283, 22837}, {21674, 54356}, {21805, 58663}, {22067, 62739}, {22560, 63316}, {22836, 31034}, {22938, 63317}, {25438, 63309}, {27627, 64012}, {28257, 58453}, {28352, 34123}, {30115, 41689}, {30950, 31272}, {31880, 49745}, {33814, 63307}, {34442, 54371}, {35882, 63330}, {35883, 63331}, {37558, 41558}, {40958, 64154}, {44307, 58683}, {48303, 62492}, {48533, 64354}, {48534, 64355}, {48680, 63296}, {48703, 63300}, {48704, 63301}, {48705, 63302}, {48706, 63303}, {48711, 63305}, {48712, 63306}, {48713, 63308}, {48714, 63328}, {48715, 63329}, {50317, 62354}, {53280, 53542}, {56878, 58285}, {60718, 61228}
X(64710) = reflection of X(i) in X(j) for these {i,j}: {63346, 5453}, {63365, 63370}
X(64710) = perspector of circumconic {{A, B, C, X(4584), X(39137)}}
X(64710) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4444, 672}
X(64710) = pole of line {20718, 55335} with respect to the Feuerbach hyperbola
X(64710) = pole of line {672, 5954} with respect to the Kiepert hyperbola
X(64710) = pole of line {238, 5127} with respect to the Stammler hyperbola
X(64710) = X(100)-of-2nd-Pavlov triangle
X(64710) = X(4647)-of-anti-inner-Garcia triangle
X(64710) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(149), X(8674)}}, {{A, B, C, X(291), X(5620)}}, {{A, B, C, X(3120), X(4570)}}, {{A, B, C, X(3446), X(33148)}}, {{A, B, C, X(11604), X(42552)}}, {{A, B, C, X(21907), X(37128)}}
X(64710) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 61220, 3120}, {952, 5453, 63346}
X(64711) lies on these lines: {2, 154}, {3, 114}, {4, 3815}, {5, 8721}, {6, 1513}, {20, 1007}, {30, 7618}, {98, 7607}, {132, 15274}, {140, 30794}, {147, 183}, {159, 61682}, {182, 37071}, {230, 6776}, {232, 37074}, {262, 14492}, {316, 54993}, {325, 1350}, {376, 22110}, {381, 11171}, {382, 58851}, {383, 41039}, {511, 9766}, {542, 7610}, {599, 6054}, {858, 59231}, {1080, 41038}, {1151, 6811}, {1152, 6813}, {1352, 15271}, {1499, 45681}, {1529, 42854}, {1656, 12054}, {2023, 11257}, {2782, 13085}, {2784, 49608}, {3054, 39874}, {3091, 63041}, {3146, 63077}, {3522, 7885}, {3524, 50571}, {3543, 63025}, {3545, 15428}, {3564, 8667}, {5023, 36998}, {5050, 52669}, {5094, 53267}, {5102, 41624}, {5116, 13860}, {5171, 63938}, {5188, 7776}, {5304, 12007}, {5306, 9752}, {5480, 7736}, {5868, 37463}, {5869, 37464}, {5921, 34229}, {5965, 63951}, {5984, 17004}, {5999, 8350}, {6114, 41041}, {6115, 41040}, {6194, 7788}, {6795, 36170}, {7000, 14230}, {7374, 14233}, {7608, 60326}, {7612, 60185}, {7735, 8550}, {7774, 11477}, {7777, 40236}, {7782, 8781}, {7792, 53093}, {7809, 22676}, {7866, 37479}, {7868, 37455}, {7887, 12203}, {7928, 15717}, {8547, 18122}, {8860, 11177}, {9300, 14853}, {9742, 62174}, {9748, 63024}, {9755, 35006}, {9770, 60658}, {9774, 22664}, {9924, 45198}, {10011, 48906}, {10304, 53016}, {10722, 44541}, {11151, 35955}, {11163, 54131}, {11168, 11180}, {11174, 13862}, {11287, 21163}, {11318, 36519}, {11331, 45031}, {13083, 41022}, {13084, 41023}, {13881, 14651}, {14458, 53108}, {14484, 60118}, {14880, 34127}, {14927, 34803}, {15576, 16318}, {16989, 55711}, {19161, 51412}, {19164, 61748}, {26864, 47200}, {30549, 40680}, {35901, 38975}, {36173, 59227}, {36751, 41761}, {36997, 37512}, {37242, 52771}, {37450, 53094}, {38072, 63101}, {38383, 44453}, {40824, 59548}, {41134, 60140}, {43118, 48467}, {43119, 48466}, {43537, 54921}, {43951, 54522}, {44377, 44882}, {45279, 52703}, {45510, 49325}, {45511, 49326}, {46264, 56370}, {47619, 51580}, {48881, 63098}, {50771, 63428}, {51212, 62988}, {51426, 52520}, {51872, 64653}, {53099, 54706}, {53104, 54851}, {54815, 60333}, {61684, 61737}
X(64711) = midpoint of X(i) and X(j) for these {i,j}: {2, 7710}, {8719, 53017}, {9770, 60658}, {15428, 46034}
X(64711) = reflection of X(i) in X(j) for these {i,j}: {7610, 40248}, {9756, 2}, {53017, 7694}
X(64711) = complement of X(53015)
X(64711) = pole of line {525, 1636} with respect to the orthoptic circle of the Steiner Inellipse
X(64711) = pole of line {7735, 13860} with respect to the Kiepert hyperbola
X(64711) = pole of line {35278, 61213} with respect to the Kiepert parabola
X(64711) = pole of line {1350, 37183} with respect to the Stammler hyperbola
X(64711) = X(5503)-of-McCay triangle
X(64711) = X(9756)-of-Gemini-107 triangle
X(64711) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {2, 7710, 34235}, {98, 1297, 9769}
X(64711) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(7607), X(57504)}}, {{A, B, C, X(9756), X(35140)}}, {{A, B, C, X(14494), X(42287)}}
X(64711) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1503, 9756}, {2, 7710, 1503}, {3, 114, 7778}, {4, 63424, 44526}, {30, 7694, 53017}, {132, 45141, 15274}, {147, 183, 15069}, {325, 37182, 1350}, {1513, 9744, 6}, {3545, 15428, 46034}, {6776, 58883, 230}, {9749, 9750, 3}, {9752, 14912, 5306}, {13860, 43460, 36990}, {13860, 43461, 31489}, {14912, 60657, 9752}, {31489, 36990, 13860}, {37446, 39646, 13881}, {37637, 64080, 98}
X(64712) lies on these lines: {1, 25358}, {2, 4969}, {8, 4364}, {9, 48636}, {10, 524}, {37, 4478}, {42, 50158}, {45, 50097}, {86, 60710}, {141, 4384}, {190, 594}, {306, 49730}, {319, 1213}, {320, 49733}, {391, 17293}, {519, 4708}, {527, 4691}, {536, 3626}, {545, 3679}, {597, 17308}, {599, 34824}, {966, 4445}, {1086, 17271}, {1125, 4725}, {1211, 33133}, {1268, 20090}, {3008, 20582}, {3589, 3686}, {3617, 4363}, {3629, 17303}, {3630, 10436}, {3631, 3739}, {3632, 41312}, {3661, 4422}, {3664, 28633}, {3707, 17359}, {3775, 50023}, {3834, 50991}, {3879, 6707}, {3912, 31285}, {3943, 17256}, {4021, 4545}, {4026, 42334}, {4029, 50084}, {4034, 4657}, {4060, 4681}, {4357, 4399}, {4361, 5232}, {4371, 17323}, {4389, 50098}, {4393, 5224}, {4395, 17237}, {4405, 17301}, {4407, 28503}, {4409, 6646}, {4415, 41816}, {4416, 7227}, {4419, 4678}, {4440, 62225}, {4555, 18823}, {4644, 10022}, {4651, 25349}, {4662, 34377}, {4669, 28309}, {4675, 22165}, {4687, 29618}, {4688, 7238}, {4698, 29606}, {4700, 63124}, {4701, 28329}, {4715, 4745}, {4733, 33082}, {4739, 53598}, {4741, 49727}, {4746, 17133}, {4755, 49765}, {4759, 62467}, {4795, 51066}, {4798, 19875}, {4967, 7228}, {5257, 17372}, {5296, 17309}, {5564, 17246}, {5750, 32455}, {5839, 17327}, {5846, 36480}, {6329, 17385}, {6542, 31144}, {7263, 17272}, {7277, 28604}, {9055, 49457}, {15534, 61313}, {15593, 39570}, {15668, 32099}, {15985, 60737}, {16672, 50079}, {16831, 50076}, {17014, 25503}, {17023, 50082}, {17119, 49741}, {17228, 17337}, {17229, 63978}, {17238, 17366}, {17245, 17287}, {17248, 17388}, {17250, 17395}, {17253, 42696}, {17255, 32087}, {17259, 29627}, {17277, 29587}, {17281, 61343}, {17295, 29589}, {17321, 62224}, {17325, 50112}, {17328, 17334}, {17331, 17340}, {17333, 62228}, {17338, 48640}, {17343, 17365}, {17346, 17369}, {17348, 31191}, {17360, 17392}, {17363, 17398}, {17374, 24603}, {17397, 50077}, {17768, 50312}, {20055, 50113}, {21296, 28635}, {25350, 59296}, {28301, 51070}, {28653, 63401}, {29069, 61510}, {29571, 50081}, {29574, 52706}, {29603, 50131}, {29610, 62231}, {29612, 50132}, {29628, 48639}, {37654, 61344}, {40999, 63782}, {41311, 49770}, {44416, 49724}, {46933, 63054}, {49726, 54280}, {50180, 59306}, {50275, 56191}
X(64712) = midpoint of X(i) and X(j) for these {i,j}: {8, 4364}, {10, 4690}, {4643, 4665}
X(64712) = reflection of X(i) in X(j) for these {i,j}: {1, 25358}, {4472, 10}
X(64712) = pole of line {18004, 28179} with respect to the Steiner circumellipse
X(64712) = pole of line {4789, 23770} with respect to the Steiner inellipse
X(64712) = pole of line {4927, 28340} with respect to the Suppa-Cucoanes circle
X(64712) = X(4472)-of-outer-Garcia triangle
X(64712) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4590), X(51353)}}, {{A, B, C, X(35162), X(55949)}}
X(64712) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 4364, 4971}, {8, 4748, 17318}, {10, 4690, 524}, {10, 524, 4472}, {141, 4384, 40480}, {190, 32025, 51353}, {319, 1213, 17390}, {594, 1654, 17332}, {966, 4445, 17243}, {1654, 32025, 594}, {1654, 51353, 190}, {3661, 17330, 4422}, {3679, 4643, 4665}, {3686, 17239, 3589}, {3912, 49731, 31285}, {3943, 17256, 49737}, {4643, 4665, 545}, {4651, 49717, 25349}, {4748, 17318, 4364}, {4967, 17344, 7228}, {5224, 17362, 17045}, {5564, 17252, 17246}, {17237, 50095, 4395}, {17250, 29617, 17395}, {17251, 17318, 4748}, {17256, 29615, 3943}, {17270, 17275, 141}, {17328, 48628, 17334}, {17346, 29593, 17369}, {17360, 29576, 17392}, {17374, 24603, 49738}, {25358, 28337, 1}, {49724, 56810, 44416}, {54280, 61321, 49726}
X(64713) lies on these lines: {2, 11175}, {3, 6}, {51, 1180}, {69, 7786}, {76, 3618}, {83, 12215}, {115, 53484}, {141, 6683}, {194, 33198}, {230, 58445}, {232, 30499}, {251, 22352}, {262, 3424}, {352, 39389}, {373, 9465}, {394, 39951}, {524, 10007}, {538, 597}, {542, 2023}, {625, 51848}, {698, 6329}, {732, 3589}, {736, 44380}, {1176, 59996}, {1194, 3124}, {1196, 6688}, {1285, 22676}, {1352, 7736}, {1386, 3997}, {1428, 5280}, {1506, 53475}, {1594, 51434}, {1843, 39575}, {1916, 5182}, {1976, 3108}, {2330, 5299}, {2548, 3818}, {2549, 48901}, {2782, 18583}, {2854, 46337}, {3009, 25100}, {3051, 3819}, {3117, 34236}, {3202, 64028}, {3231, 15082}, {3291, 63632}, {3501, 50629}, {3506, 14153}, {3564, 11272}, {3763, 7888}, {3767, 38317}, {3815, 24206}, {3917, 62991}, {3981, 58470}, {4048, 7804}, {5026, 42421}, {5103, 7861}, {5207, 7858}, {5254, 19130}, {5286, 6248}, {5304, 22712}, {5306, 10168}, {5359, 43650}, {5475, 48889}, {5476, 7739}, {5480, 15048}, {5650, 9463}, {5969, 36521}, {6034, 39593}, {6194, 63005}, {6782, 22691}, {6783, 22692}, {7709, 14482}, {7735, 15819}, {7737, 48898}, {7738, 31670}, {7745, 29012}, {7747, 29323}, {7748, 48895}, {7753, 11645}, {7757, 9741}, {7792, 51373}, {7805, 8177}, {7819, 41651}, {7827, 39266}, {7839, 56789}, {7889, 41756}, {7976, 59406}, {8369, 59552}, {8617, 62184}, {8743, 19124}, {9466, 40332}, {9606, 40107}, {9865, 10336}, {9969, 58486}, {10333, 12216}, {10387, 31461}, {10519, 61132}, {11179, 44422}, {11257, 14853}, {12007, 41672}, {12263, 38049}, {12782, 16475}, {13196, 51828}, {13410, 46906}, {13474, 48262}, {14881, 48906}, {14885, 21637}, {14928, 53489}, {15484, 22682}, {15989, 39798}, {18907, 44882}, {19053, 22723}, {19054, 22722}, {19102, 22642}, {19105, 22613}, {20859, 21849}, {22486, 63127}, {22720, 22725}, {22721, 22724}, {23660, 39543}, {27375, 58471}, {29317, 63548}, {31088, 46900}, {31239, 47355}, {32448, 59399}, {32515, 51732}, {33201, 63123}, {33478, 61331}, {33479, 61332}, {33706, 64243}, {37334, 39872}, {37637, 44774}, {38064, 63006}, {38110, 49111}, {39141, 62994}, {39784, 44772}, {40108, 48876}, {40126, 63128}, {42288, 62696}, {43976, 47738}, {44102, 53026}, {44519, 48879}, {44526, 48904}, {47277, 47580}, {47459, 47573}, {48942, 62203}, {49792, 52669}, {51735, 64599}, {52854, 53023}, {58621, 58695}, {58622, 58694}
X(64713) = midpoint of X(i) and X(j) for these {i,j}: {6, 39}, {76, 41622}, {2024, 2025}, {11179, 44422}, {13196, 51828}, {14881, 48906}, {14994, 32451}, {24256, 32449}, {47277, 47580}, {58621, 58695}, {58622, 58694}
X(64713) = reflection of X(i) in X(j) for these {i,j}: {141, 6683}, {3934, 3589}, {9969, 58486}, {27375, 58471}
X(64713) = inverse of X(5039) in 1st Brocard circle
X(64713) = inverse of X(9605) in 2nd Brocard circle
X(64713) = inverse of X(2021) in half Moses circle
X(64713) = isogonal conjugate of X(62894)
X(64713) = complement of X(14994)
X(64713) = X(i)-Ceva conjugate of X(j) for these {i, j}: {43357, 512}
X(64713) = X(i)-complementary conjugate of X(j) for these {i, j}: {82, 52658}, {263, 21249}, {2186, 21248}, {3402, 6292}, {42288, 10}, {42299, 2887}, {46289, 15819}, {46319, 16587}, {55240, 46656}
X(64713) = pole of line {512, 5039} with respect to the 1st Brocard circle
X(64713) = pole of line {512, 9605} with respect to the 2nd Brocard circle
X(64713) = pole of line {512, 2021} with respect to the half Moses circle
X(64713) = pole of line {512, 39684} with respect to the Moses circle
X(64713) = pole of line {512, 39684} with respect to the Brocard inellipse
X(64713) = pole of line {184, 251} with respect to the Jerabek hyperbola
X(64713) = pole of line {5, 5188} with respect to the Kiepert hyperbola
X(64713) = pole of line {2, 5039} with respect to the Stammler hyperbola
X(64713) = pole of line {3804, 31296} with respect to the Steiner circumellipse
X(64713) = pole of line {647, 4108} with respect to the Steiner inellipse
X(64713) = pole of line {76, 9605} with respect to the Wallace hyperbola
X(64713) = pole of line {520, 23285} with respect to the dual conic of DeLongchamps circle
X(64713) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {76, 38527, 41622}
X(64713) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5039)}}, {{A, B, C, X(3), X(30499)}}, {{A, B, C, X(4), X(37479)}}, {{A, B, C, X(6), X(60099)}}, {{A, B, C, X(32), X(11175)}}, {{A, B, C, X(54), X(5188)}}, {{A, B, C, X(76), X(9605)}}, {{A, B, C, X(182), X(3424)}}, {{A, B, C, X(262), X(1350)}}, {{A, B, C, X(511), X(3108)}}, {{A, B, C, X(1976), X(5007)}}, {{A, B, C, X(2987), X(44500)}}, {{A, B, C, X(7772), X(27375)}}, {{A, B, C, X(12212), X(42288)}}, {{A, B, C, X(14994), X(42299)}}, {{A, B, C, X(30435), X(59996)}}
X(64713) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {597, 32449, 24256}, {732, 3589, 3934}, {1194, 20965, 5943}, {1689, 1690, 1350}, {2024, 2025, 511}, {11205, 20965, 1194}, {24256, 32449, 538}
X(64714) lies on circumconic {{A, B, C, X(51348), X(59496)}} and on these lines: {2, 64}, {3, 14862}, {4, 11431}, {6, 62962}, {20, 51261}, {30, 155}, {146, 17812}, {154, 376}, {185, 58483}, {221, 3058}, {381, 1853}, {428, 15811}, {519, 7973}, {524, 41735}, {541, 10117}, {542, 6391}, {549, 10606}, {597, 52028}, {599, 34146}, {631, 15105}, {1075, 51342}, {1192, 62978}, {1204, 62965}, {1249, 58758}, {1503, 1992}, {1619, 54992}, {1907, 22334}, {2071, 59551}, {2192, 5434}, {2777, 15681}, {2935, 5655}, {3146, 44762}, {3197, 34618}, {3357, 5054}, {3426, 18388}, {3516, 64064}, {3524, 8567}, {3534, 5925}, {3545, 6247}, {3582, 10076}, {3584, 10060}, {3830, 12315}, {3839, 5893}, {3845, 14216}, {3851, 52102}, {4846, 10127}, {5055, 13093}, {5064, 11381}, {5071, 61735}, {5894, 10304}, {6001, 24473}, {6241, 52003}, {6285, 11237}, {6293, 36982}, {6621, 58797}, {7355, 11238}, {7507, 15011}, {7714, 13568}, {7865, 12502}, {8703, 17821}, {9899, 19875}, {9968, 11470}, {10182, 15718}, {10192, 15692}, {10193, 61829}, {10282, 15688}, {10516, 15305}, {10605, 32111}, {10675, 42154}, {10676, 42155}, {10706, 31180}, {10990, 55576}, {11001, 34782}, {11064, 58762}, {11202, 14093}, {11204, 15700}, {11206, 15683}, {11472, 60763}, {12262, 25055}, {12290, 22948}, {12379, 59767}, {12920, 34612}, {12930, 34606}, {13094, 45701}, {13095, 45700}, {13846, 49250}, {13847, 49251}, {14269, 18381}, {14530, 15689}, {14864, 61984}, {15063, 21312}, {15069, 44440}, {15152, 37460}, {15534, 64031}, {15682, 34781}, {15684, 18400}, {15685, 34785}, {15687, 18405}, {15693, 64027}, {15694, 35450}, {15696, 50414}, {15699, 61540}, {15701, 64063}, {15702, 23328}, {15703, 23329}, {15721, 58434}, {17800, 45185}, {17819, 41945}, {17820, 41946}, {17824, 46372}, {17826, 42942}, {17827, 42943}, {18376, 61996}, {18383, 61993}, {19087, 32788}, {19088, 32787}, {19132, 51737}, {19149, 43273}, {19709, 20299}, {19924, 39879}, {23324, 61980}, {23332, 61936}, {25563, 61864}, {26958, 51403}, {28194, 64022}, {30402, 42626}, {30403, 42625}, {30552, 45248}, {32062, 53023}, {32064, 61985}, {32138, 64591}, {32602, 34608}, {32767, 61933}, {34117, 37077}, {34319, 36201}, {34774, 64014}, {34780, 38335}, {34786, 62020}, {35260, 62063}, {37197, 64029}, {37201, 64062}, {40658, 50811}, {41362, 50687}, {41715, 54039}, {43831, 62980}, {44837, 64759}, {47352, 63420}, {50709, 62166}, {50956, 61542}, {51892, 56296}, {62017, 64034}, {62040, 64033}, {62120, 64726}, {62129, 64059}, {63343, 63371}
X(64714) = midpoint of X(i) and X(j) for these {i,j}: {2, 6225}, {3534, 48672}, {3830, 12315}, {11001, 64187}, {15682, 34781}, {41715, 54039}, {62040, 64033}
X(64714) = reflection of X(i) in X(j) for these {i,j}: {2, 2883}, {64, 2}, {154, 5656}, {2935, 5655}, {3534, 6759}, {3830, 22802}, {5925, 3534}, {7729, 41580}, {11001, 34782}, {14216, 3845}, {15534, 64031}, {15682, 51491}, {15685, 34785}, {20427, 8703}, {35450, 61747}, {43273, 19149}, {50811, 40658}, {54050, 10192}, {61088, 51737}, {64014, 34774}, {64037, 3830}
X(64714) = pole of line {11441, 58795} with respect to the Stammler hyperbola
X(64714) = X(64)-of-Gemini-107 triangle
X(64714) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64, 2883, 64024}, {1498, 5878, 5895}, {1498, 5895, 17845}, {2883, 6225, 64}, {5656, 15311, 154}, {6000, 41580, 7729}, {6759, 48672, 5925}, {12250, 16252, 8567}, {12315, 22802, 64037}, {13093, 61749, 40686}
X(64715) lies on these lines: {1, 1993}, {2, 44547}, {3, 55873}, {4, 912}, {8, 6515}, {10, 3580}, {12, 41571}, {21, 72}, {22, 64040}, {23, 40660}, {24, 9928}, {37, 56000}, {49, 51696}, {52, 41722}, {54, 24301}, {63, 10393}, {65, 2475}, {78, 18397}, {100, 7098}, {110, 11363}, {144, 145}, {224, 1708}, {226, 39772}, {321, 51978}, {411, 1071}, {511, 64039}, {517, 5889}, {519, 41628}, {758, 10572}, {895, 43703}, {920, 3811}, {942, 2476}, {960, 16865}, {971, 59355}, {1319, 58744}, {1331, 1780}, {1351, 11396}, {1385, 34148}, {1386, 63063}, {1482, 12160}, {1594, 12259}, {1824, 41723}, {1829, 3060}, {1864, 5046}, {1876, 19367}, {1897, 3559}, {1898, 5057}, {1902, 12111}, {1994, 64722}, {1998, 54422}, {2003, 52362}, {2551, 14454}, {2646, 9637}, {2771, 4018}, {2975, 45230}, {2979, 37613}, {3146, 6001}, {3152, 17950}, {3176, 6820}, {3193, 6198}, {3485, 3873}, {3555, 5887}, {3562, 37782}, {3564, 12135}, {3616, 37645}, {3622, 63092}, {3681, 10528}, {3746, 3870}, {3751, 40318}, {3822, 47319}, {3827, 64023}, {3874, 12047}, {3876, 6857}, {3927, 37284}, {4189, 10391}, {4640, 17637}, {4641, 56840}, {4663, 37784}, {5090, 11442}, {5279, 62691}, {5728, 60969}, {5729, 25875}, {5777, 6828}, {6261, 62874}, {6734, 18389}, {6842, 24475}, {6853, 10202}, {6869, 64358}, {6875, 31837}, {6876, 13369}, {6895, 12664}, {6925, 64021}, {7672, 12529}, {7957, 20066}, {8543, 15185}, {8545, 11520}, {9943, 35986}, {9960, 9965}, {10025, 46713}, {10399, 54392}, {10530, 24477}, {10916, 62859}, {11015, 37585}, {11344, 55872}, {11415, 36845}, {11523, 56545}, {12086, 12262}, {12272, 34381}, {12635, 22760}, {12680, 20067}, {12709, 16133}, {12710, 61155}, {14872, 20060}, {15556, 41572}, {17577, 24473}, {17603, 37291}, {17616, 37544}, {18412, 19860}, {18480, 50435}, {20008, 20214}, {21318, 48909}, {21740, 54391}, {23958, 64132}, {24541, 62852}, {31728, 53781}, {31937, 36852}, {33586, 64022}, {34195, 64041}, {34379, 40316}, {34729, 50962}, {35989, 56288}, {36846, 63210}, {37435, 60975}, {37700, 52270}, {39599, 49627}, {40658, 43605}, {40661, 54357}, {41574, 57285}, {41717, 42450}, {45038, 62305}, {50582, 50619}, {52359, 56878}, {62823, 63988}, {62826, 64042}
X(64715) = reflection of X(i) in X(j) for these {i,j}: {3868, 14054}, {3869, 1858}, {12111, 1902}, {41722, 52}, {57287, 15556}, {64002, 41562}
X(64715) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34, 2894}, {943, 52366}, {2259, 56943}, {2982, 4329}, {14775, 33650}, {15439, 20294}, {40395, 20245}, {40447, 21286}, {40570, 63}, {40573, 69}, {58993, 21302}, {60041, 1370}, {63193, 20243}
X(64715) = pole of line {942, 41608} with respect to the Stammler hyperbola
X(64715) = pole of line {650, 17924} with respect to the Steiner circumellipse
X(64715) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1175), X(9309)}}, {{A, B, C, X(9311), X(56041)}}, {{A, B, C, X(18123), X(43740)}}
X(64715) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63, 10393, 20846}, {72, 16465, 34772}, {224, 1708, 37301}, {518, 1858, 3869}, {758, 41562, 64002}, {912, 14054, 3868}, {3555, 5887, 62830}, {3868, 12528, 5905}, {3869, 10394, 6872}
X(64716) lies on circumconic {{A, B, C, X(3426), X(52041)}} and on these lines: {3, 206}, {4, 20079}, {6, 1597}, {20, 64719}, {25, 41715}, {30, 5596}, {64, 182}, {66, 381}, {69, 5656}, {154, 3098}, {159, 399}, {193, 54219}, {378, 19125}, {382, 1351}, {511, 1498}, {542, 6391}, {575, 52028}, {576, 58795}, {611, 6285}, {613, 7355}, {1176, 54994}, {1177, 10620}, {1181, 12294}, {1350, 6759}, {1352, 2883}, {1428, 10076}, {1598, 19161}, {1619, 3167}, {1657, 36989}, {1853, 19130}, {1885, 6225}, {1907, 12324}, {1974, 10605}, {2330, 10060}, {2393, 44454}, {2777, 11820}, {2935, 19140}, {3091, 61542}, {3172, 34137}, {3357, 5085}, {3517, 44679}, {3527, 15321}, {3534, 31166}, {3564, 41735}, {3566, 62307}, {3763, 61747}, {3830, 34775}, {3843, 51756}, {5020, 41580}, {5050, 13093}, {5054, 31267}, {5055, 6697}, {5092, 10606}, {5093, 8549}, {5480, 11432}, {5544, 61735}, {5895, 29012}, {5925, 48898}, {6247, 14561}, {6293, 37488}, {7387, 44544}, {7716, 21851}, {8567, 17508}, {9777, 32064}, {9833, 29181}, {9969, 18535}, {10249, 41593}, {10282, 31884}, {10516, 61749}, {10519, 61610}, {10602, 39874}, {10752, 12165}, {11202, 55646}, {11204, 55676}, {11414, 41716}, {11456, 19459}, {11598, 15462}, {12017, 19153}, {12085, 19139}, {12160, 34781}, {12163, 64052}, {12250, 25406}, {12262, 38029}, {12290, 39588}, {12292, 32251}, {12606, 48669}, {13293, 52697}, {13445, 19122}, {13564, 14530}, {13754, 37491}, {14810, 17821}, {14927, 64187}, {15072, 26206}, {15311, 34774}, {15578, 55682}, {15579, 55701}, {15581, 55580}, {15582, 55595}, {15583, 20423}, {15585, 54173}, {15694, 58450}, {17813, 55716}, {17814, 52520}, {17845, 29317}, {17847, 52098}, {17856, 34470}, {18400, 48910}, {18405, 48895}, {18451, 37511}, {18563, 48672}, {19137, 37475}, {19145, 49250}, {19146, 49251}, {20427, 44882}, {20806, 21312}, {21850, 36851}, {22802, 36990}, {23042, 53094}, {23329, 47355}, {24206, 64024}, {28708, 47090}, {32271, 63716}, {34780, 37493}, {34782, 48873}, {34785, 48872}, {34787, 55584}, {35228, 55639}, {36201, 38790}, {36982, 44492}, {37473, 40285}, {38110, 61540}, {38317, 40686}, {40318, 54039}, {41719, 48906}, {41725, 56918}, {44440, 46442}, {44668, 55724}, {48662, 48675}, {48884, 61721}, {48901, 64037}, {50414, 55614}, {50955, 54146}, {51538, 64034}
X(64716) = midpoint of X(i) and X(j) for these {i,j}: {1351, 12315}, {6225, 6776}, {14927, 64187}, {34781, 51212}
X(64716) = reflection of X(i) in X(j) for these {i,j}: {3, 19149}, {6, 34779}, {20, 64719}, {64, 182}, {1350, 6759}, {1351, 64031}, {1352, 2883}, {1657, 36989}, {2935, 19140}, {3534, 31166}, {5925, 48898}, {10620, 1177}, {12085, 19139}, {12163, 64052}, {13093, 63420}, {14216, 5480}, {17847, 52098}, {19149, 9968}, {20427, 44882}, {33878, 159}, {34778, 206}, {35450, 19153}, {36851, 21850}, {36990, 22802}, {39879, 1498}, {46264, 34774}, {48872, 34785}, {48873, 34782}, {48905, 34776}, {55584, 34787}, {61088, 48906}, {63420, 34117}, {63716, 32271}, {64037, 48901}
X(64716) = inverse of X(54080) in Stammler circle
X(64716) = perspector of circumconic {{A, B, C, X(9064), X(56008)}}
X(64716) = pole of line {8552, 8673} with respect to the circumcircle
X(64716) = pole of line {647, 8673} with respect to the Stammler circle
X(64716) = pole of line {14396, 62176} with respect to the MacBeath circumconic
X(64716) = pole of line {1370, 46818} with respect to the Stammler hyperbola
X(64716) = X(66)-of-anti-Ehrmann-mid triangle
X(64716) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {159, 2781, 33878}, {206, 34146, 34778}, {511, 1498, 39879}, {1351, 12315, 1503}, {1503, 64031, 1351}, {2777, 34776, 48905}, {5050, 13093, 63420}, {6000, 34779, 6}, {9968, 34146, 19149}, {12017, 35450, 44883}, {14530, 55610, 15577}, {19149, 34146, 3}, {19149, 34778, 206}, {23042, 64027, 53094}, {32063, 33878, 159}
X(64717) lies on these lines: {3, 70}, {4, 11402}, {5, 26864}, {6, 61139}, {20, 3564}, {22, 12429}, {24, 26869}, {25, 6146}, {26, 45731}, {30, 12160}, {64, 13622}, {68, 9715}, {74, 15696}, {125, 17821}, {155, 11750}, {184, 7507}, {185, 2393}, {186, 26944}, {235, 11206}, {378, 12254}, {381, 1614}, {382, 11456}, {394, 44829}, {403, 14530}, {427, 18925}, {539, 37486}, {550, 34469}, {578, 5064}, {1092, 31152}, {1154, 1657}, {1181, 12173}, {1498, 21659}, {1503, 1593}, {1597, 16659}, {1598, 12022}, {1656, 9707}, {1853, 13367}, {1885, 34781}, {1899, 3515}, {1993, 64718}, {2883, 51998}, {3146, 31802}, {3167, 37444}, {3448, 38444}, {3516, 14216}, {3517, 18912}, {3526, 11464}, {3528, 43903}, {3574, 17809}, {3575, 6776}, {3580, 16195}, {5050, 7544}, {5054, 23294}, {5073, 31815}, {5076, 32136}, {5094, 18381}, {5198, 12241}, {5691, 31811}, {5889, 12283}, {5925, 64029}, {5944, 61702}, {6090, 6643}, {6247, 11410}, {6622, 64059}, {6756, 9777}, {6759, 18396}, {6800, 58922}, {6815, 48906}, {7387, 44076}, {7395, 12134}, {7484, 64035}, {7487, 11245}, {7493, 61544}, {7500, 13142}, {7503, 18440}, {7530, 45970}, {7539, 37476}, {7576, 11432}, {7592, 18494}, {8567, 13399}, {9638, 9669}, {9818, 64036}, {10110, 62968}, {10112, 33586}, {10116, 37489}, {10282, 37453}, {10539, 16072}, {10605, 34785}, {10619, 11425}, {10982, 13419}, {11284, 64038}, {11403, 16655}, {11411, 44239}, {11414, 44665}, {11424, 36990}, {11462, 18512}, {11463, 18510}, {11466, 42815}, {11467, 42816}, {11468, 15688}, {11819, 37493}, {12024, 15873}, {12111, 31807}, {12118, 12166}, {12164, 12225}, {12315, 18560}, {12370, 18534}, {13093, 35481}, {13171, 32423}, {13340, 43896}, {13353, 56965}, {13470, 15068}, {13567, 55578}, {13851, 64024}, {14070, 25738}, {15106, 23236}, {15683, 32601}, {15811, 61744}, {17702, 19458}, {18386, 41362}, {18390, 45185}, {18405, 43831}, {18533, 18914}, {18913, 37931}, {18916, 37458}, {19118, 64719}, {26879, 55572}, {26882, 61701}, {26883, 62966}, {26937, 55576}, {31304, 45968}, {31810, 64051}, {31812, 41869}, {32249, 52093}, {34148, 34609}, {34786, 45110}, {34797, 64094}, {35450, 35491}, {35485, 61540}, {36747, 44407}, {36752, 45286}, {37198, 46264}, {40242, 49136}, {41040, 45256}, {41041, 45257}, {43608, 61811}, {59346, 64756}
X(64717) = reflection of X(i) in X(j) for these {i,j}: {4, 31804}, {382, 12161}, {1593, 19467}, {3146, 31802}, {5073, 31815}, {5691, 31811}, {12111, 31807}, {12166, 12118}, {12167, 6776}, {12173, 1181}, {32333, 12254}, {36990, 64028}, {41869, 31812}, {64051, 31810}
X(64717) = pole of line {26, 8780} with respect to the Stammler hyperbola
X(64717) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 31804, 11402}, {184, 64037, 7507}, {185, 17845, 37196}, {1181, 18400, 12173}, {1498, 21659, 44438}, {1503, 19467, 1593}, {6146, 9833, 25}, {6759, 18396, 37197}, {7592, 64032, 18494}, {9707, 25739, 1656}, {10619, 11550, 11425}, {10982, 13419, 62976}, {11206, 18945, 235}, {11456, 12289, 382}, {12241, 31383, 5198}, {17845, 64080, 185}, {18381, 19357, 5094}, {18925, 64034, 427}
X(64718) lies on circumconic {{A, B, C, X(1179), X(15319)}} and on these lines: {2, 44829}, {3, 18432}, {4, 569}, {5, 26881}, {20, 2888}, {22, 58922}, {24, 26913}, {26, 25739}, {30, 5889}, {52, 11232}, {54, 31723}, {68, 44831}, {110, 9833}, {156, 7574}, {265, 17714}, {323, 61751}, {381, 13470}, {382, 7592}, {511, 34799}, {576, 3146}, {631, 45286}, {858, 11449}, {1147, 46450}, {1181, 52842}, {1503, 12111}, {1568, 45185}, {1614, 18569}, {1657, 30522}, {1658, 23294}, {1853, 38444}, {1899, 31304}, {1993, 64717}, {2070, 26917}, {2071, 34785}, {2072, 26882}, {2979, 14516}, {3060, 6146}, {3091, 13419}, {3147, 12140}, {3153, 6759}, {3448, 46730}, {3528, 17712}, {3529, 11411}, {3541, 51033}, {3543, 13403}, {3547, 6030}, {3567, 11819}, {3574, 11003}, {3575, 10574}, {5189, 13346}, {5449, 7556}, {5640, 6756}, {6193, 23061}, {6225, 11061}, {6240, 15072}, {6247, 11454}, {6288, 7525}, {6800, 7507}, {7387, 50435}, {7391, 19467}, {7487, 18911}, {7488, 18381}, {7500, 18945}, {7512, 18474}, {7540, 9781}, {7553, 12022}, {7566, 37476}, {7576, 15043}, {7998, 64035}, {9714, 61701}, {9927, 12088}, {10112, 62187}, {10296, 22802}, {10297, 18504}, {10298, 20299}, {10316, 15340}, {10575, 34797}, {11381, 11645}, {11413, 17845}, {11422, 31804}, {11424, 62967}, {11425, 31133}, {11439, 16655}, {11441, 64033}, {11444, 12134}, {11451, 64038}, {11455, 52070}, {11459, 64036}, {11464, 13371}, {11468, 44242}, {11550, 14118}, {11818, 43651}, {12082, 12293}, {12173, 39588}, {12241, 34603}, {12254, 13352}, {12290, 18563}, {12362, 15056}, {12605, 15305}, {12897, 15682}, {13160, 15080}, {13201, 32423}, {13353, 63672}, {13367, 31074}, {13491, 32196}, {14157, 18404}, {14790, 34148}, {14805, 33332}, {14927, 36851}, {15004, 43838}, {15045, 31830}, {15055, 35503}, {15107, 31305}, {15360, 34726}, {15704, 50434}, {15761, 18394}, {15807, 62008}, {16661, 48898}, {17578, 61744}, {17821, 30744}, {17834, 41724}, {18324, 43608}, {18392, 41362}, {18430, 61750}, {18475, 52295}, {18533, 43601}, {18559, 40647}, {19122, 64719}, {20791, 31833}, {21451, 44082}, {23325, 58805}, {23329, 38448}, {31724, 61752}, {31976, 63421}, {32402, 45839}, {33523, 52397}, {33524, 48905}, {34786, 50009}, {35482, 39242}, {36990, 63664}, {38438, 40686}, {39138, 59290}, {43808, 64095}, {43817, 47485}, {44279, 58789}, {44491, 46264}, {44665, 64050}
X(64718) = midpoint of X(i) and X(j) for these {i,j}: {12111, 40241}
X(64718) = reflection of X(i) in X(j) for these {i,j}: {4, 11750}, {3146, 21659}, {5889, 34224}, {6243, 45731}, {12111, 12225}, {12278, 20}, {12290, 18563}, {16659, 12605}, {34797, 10575}, {61139, 44829}, {64032, 3}, {64051, 44076}
X(64718) = anticomplement of X(61139)
X(64718) = pole of line {1216, 7502} with respect to the Stammler hyperbola
X(64718) = pole of line {1238, 32820} with respect to the Wallace hyperbola
X(64718) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 11442, 7691}, {20, 14216, 11440}, {20, 18400, 12278}, {20, 2888, 46728}, {20, 64034, 11442}, {22, 64037, 58922}, {30, 34224, 5889}, {30, 44076, 64051}, {30, 45731, 6243}, {1503, 12225, 12111}, {9833, 37444, 110}, {11750, 44407, 4}, {12111, 40241, 1503}, {12605, 16659, 15305}, {16655, 52069, 11439}, {21659, 29012, 3146}, {44829, 61139, 2}
X(64719) lies on these lines: {2, 61542}, {3, 5596}, {4, 19125}, {5, 182}, {6, 6756}, {20, 64716}, {24, 26926}, {25, 6776}, {26, 159}, {30, 19139}, {66, 140}, {69, 9715}, {141, 10282}, {154, 1352}, {161, 41588}, {184, 15809}, {511, 34774}, {542, 10154}, {546, 34775}, {548, 34778}, {550, 34146}, {575, 15583}, {631, 20079}, {632, 6697}, {973, 1843}, {1176, 7399}, {1177, 32423}, {1351, 41719}, {1353, 2393}, {1498, 12362}, {1619, 15818}, {1853, 11548}, {1974, 6146}, {2781, 34153}, {2883, 29012}, {2892, 32609}, {3542, 39874}, {3549, 14530}, {3618, 64034}, {3628, 31267}, {3827, 24475}, {3867, 13419}, {5050, 7528}, {5085, 14216}, {5092, 6247}, {5480, 18400}, {5656, 14927}, {5878, 48905}, {5893, 48884}, {5894, 48892}, {5921, 7493}, {6000, 44882}, {6193, 37491}, {6696, 17508}, {7395, 25406}, {7487, 19119}, {7488, 46442}, {7502, 15577}, {7514, 63420}, {7539, 32064}, {7568, 34118}, {7715, 8550}, {8703, 63431}, {8721, 20993}, {9714, 39899}, {9924, 63722}, {9934, 32233}, {9968, 15704}, {10192, 24206}, {11818, 18583}, {11819, 21850}, {12017, 14786}, {12134, 19131}, {12315, 61088}, {13383, 18356}, {13490, 50979}, {14516, 19121}, {14561, 19132}, {14912, 37122}, {15026, 58494}, {15073, 46444}, {15258, 41766}, {15311, 48898}, {15462, 41602}, {15516, 23326}, {15580, 37936}, {15581, 37440}, {15585, 34507}, {16072, 64014}, {16655, 19124}, {17845, 31670}, {18382, 38136}, {18531, 32063}, {19118, 64717}, {19122, 64718}, {19123, 64032}, {19126, 64035}, {19128, 34224}, {19129, 64036}, {19130, 41362}, {19161, 37458}, {20427, 59411}, {21637, 61139}, {21841, 64080}, {23327, 51732}, {23328, 55674}, {23332, 58445}, {29181, 34779}, {29323, 51491}, {32337, 46448}, {32455, 34788}, {32767, 51126}, {34380, 34787}, {35260, 40330}, {37942, 47453}, {41593, 59399}, {41716, 44239}, {42353, 42671}, {44665, 64052}, {44668, 64067}, {51437, 56866}, {55856, 58450}, {61545, 61683}
X(64719) = midpoint of X(i) and X(j) for these {i,j}: {3, 5596}, {6, 9833}, {20, 64716}, {1498, 46264}, {5878, 48905}, {6193, 37491}, {6759, 34776}, {6776, 39879}, {9924, 63722}, {9934, 32233}, {12315, 61088}, {17845, 31670}, {19149, 36989}, {34774, 34782}, {34779, 34785}, {36851, 64033}
X(64719) = reflection of X(i) in X(j) for these {i,j}: {5, 206}, {66, 140}, {141, 10282}, {1352, 61610}, {1353, 41729}, {3818, 16252}, {5894, 48892}, {6247, 5092}, {15583, 575}, {18381, 3589}, {18382, 63699}, {21850, 34117}, {23300, 64061}, {34118, 58437}, {34507, 15585}, {34775, 546}, {34778, 548}, {34788, 32455}, {41362, 19130}, {48876, 15577}, {48884, 5893}
X(64719) = anticomplement of X(61542)
X(64719) = X(5596)-of-anti-X3-ABC-reflections triangle
X(64719) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 5596, 18338}
X(64719) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {154, 1352, 61610}, {206, 1503, 5}, {1503, 16252, 3818}, {1503, 3589, 18381}, {1503, 64061, 23300}, {5050, 64033, 36851}, {6759, 34776, 1503}, {6776, 11206, 39879}, {18381, 23042, 3589}, {18382, 63699, 38136}, {19132, 64037, 14561}, {19149, 36989, 30}, {23300, 64061, 38110}, {31166, 36989, 19149}, {34774, 34782, 511}, {34779, 34785, 29181}
X(64720) lies on circumconic {{A, B, C, X(1389), X(51223)}} and on these lines: {1, 58392}, {3, 81}, {4, 333}, {5, 5235}, {20, 5767}, {21, 517}, {28, 283}, {30, 4921}, {40, 58}, {46, 5323}, {55, 64420}, {56, 64421}, {86, 631}, {140, 5333}, {171, 43073}, {255, 1396}, {285, 52889}, {355, 64401}, {371, 64410}, {372, 64411}, {376, 41629}, {381, 64424}, {382, 64383}, {394, 37264}, {404, 7998}, {411, 5752}, {443, 26638}, {511, 3651}, {515, 64072}, {549, 42025}, {573, 2303}, {580, 1764}, {582, 19649}, {602, 10476}, {859, 22770}, {944, 7415}, {970, 1812}, {1006, 10441}, {1010, 5657}, {1014, 37582}, {1043, 12245}, {1064, 4281}, {1155, 1408}, {1160, 64404}, {1161, 64403}, {1172, 4269}, {1385, 64377}, {1412, 15803}, {1437, 1817}, {1478, 64408}, {1479, 64409}, {1482, 64415}, {1656, 64425}, {1766, 1778}, {1780, 5324}, {2077, 4278}, {2287, 3149}, {2328, 17560}, {2360, 62756}, {2817, 51966}, {2979, 35976}, {3193, 4225}, {3218, 18732}, {3286, 10310}, {3311, 64386}, {3312, 64385}, {3398, 64381}, {3428, 4267}, {3523, 8025}, {3524, 42028}, {3525, 25507}, {3576, 4658}, {3579, 37402}, {3654, 51669}, {3656, 17553}, {4184, 11248}, {4220, 48882}, {4227, 41722}, {4228, 35193}, {4234, 50810}, {4276, 11012}, {4653, 7982}, {5127, 5358}, {5398, 37399}, {5603, 11110}, {5706, 19262}, {5707, 61109}, {5755, 7549}, {5758, 25516}, {5886, 17557}, {6197, 23602}, {6361, 37422}, {6684, 25526}, {6769, 17194}, {6847, 16713}, {6876, 56439}, {6880, 31631}, {6915, 34466}, {6920, 15488}, {6927, 27398}, {6940, 15489}, {6942, 14868}, {6986, 37536}, {7387, 64395}, {7411, 37482}, {7413, 48941}, {7957, 18191}, {7991, 52680}, {8981, 64417}, {9525, 35055}, {9732, 64388}, {9733, 64387}, {9738, 64390}, {9739, 64389}, {9821, 64398}, {9895, 62777}, {10165, 28619}, {10306, 17524}, {10458, 37529}, {10525, 64406}, {10526, 64407}, {10679, 64422}, {10680, 64423}, {10902, 29311}, {11064, 24882}, {11115, 59417}, {11231, 17551}, {11251, 64402}, {11252, 64396}, {11253, 64397}, {11491, 56181}, {12702, 15952}, {13732, 37791}, {13966, 64418}, {14005, 26446}, {14110, 18178}, {15717, 26860}, {16049, 59318}, {16408, 24557}, {16415, 37659}, {16453, 63068}, {17185, 47512}, {17567, 24556}, {18164, 37526}, {18206, 63399}, {18417, 31806}, {19513, 27644}, {19543, 32911}, {19548, 48875}, {22139, 28258}, {22458, 62799}, {26064, 30444}, {33295, 36697}, {35203, 37527}, {36742, 37400}, {36745, 40153}, {36754, 61409}, {37531, 54356}, {37570, 63389}, {37584, 56840}, {44661, 54302}, {45923, 48930}, {45955, 64173}, {46877, 63986}, {48460, 64379}, {48461, 64380}, {49038, 64391}, {49039, 64392}
X(64720) = reflection of X(i) in X(j) for these {i,j}: {3651, 46623}
X(64720) = pole of line {405, 1385} with respect to the Stammler hyperbola
X(64720) = pole of line {5770, 44140} with respect to the Wallace hyperbola
X(64720) = X(3)-of-2nd-anti-Pavlov triangle
X(64720) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 48909, 63291}, {3, 48917, 63400}, {3, 64419, 81}, {3, 81, 64393}, {4, 333, 64405}, {4, 64405, 64399}, {20, 16704, 64384}, {40, 58, 4221}, {371, 64412, 64410}, {372, 64413, 64411}, {511, 46623, 3651}, {580, 1764, 37431}, {5235, 64400, 5}, {7415, 56018, 944}, {48924, 63307, 3}, {64382, 64414, 1}
X(64721) lies on these lines: {1, 3}, {4, 64042}, {8, 20928}, {10, 26481}, {11, 7686}, {12, 908}, {63, 22759}, {72, 5252}, {78, 11501}, {90, 18761}, {145, 41537}, {201, 10459}, {225, 1829}, {226, 3878}, {388, 3869}, {392, 10198}, {515, 1858}, {518, 10944}, {519, 14054}, {758, 10106}, {912, 18970}, {920, 22758}, {952, 13292}, {961, 2990}, {1068, 41722}, {1104, 1411}, {1122, 62780}, {1201, 1393}, {1210, 26475}, {1254, 1457}, {1317, 34791}, {1359, 2778}, {1361, 1365}, {1399, 1455}, {1400, 1953}, {1406, 4320}, {1445, 42842}, {1450, 24443}, {1451, 49487}, {1452, 26377}, {1469, 3827}, {1478, 5887}, {1512, 10958}, {1572, 56913}, {1737, 26470}, {1788, 10527}, {1830, 1887}, {1836, 12672}, {1837, 48482}, {1841, 21770}, {1864, 64261}, {1898, 5691}, {2262, 8557}, {2285, 21853}, {2362, 19050}, {2771, 18968}, {2800, 4292}, {2802, 12432}, {2975, 7098}, {3193, 5323}, {3474, 64079}, {3476, 3868}, {3485, 3877}, {3555, 37738}, {3556, 18954}, {3585, 31937}, {3600, 64047}, {3698, 5705}, {3753, 24914}, {3754, 3911}, {3812, 5433}, {3874, 63987}, {3880, 41575}, {3884, 64160}, {3885, 7672}, {3897, 58578}, {3899, 5290}, {4018, 17625}, {4084, 4315}, {4293, 64021}, {4295, 7702}, {4311, 5884}, {4848, 10916}, {4863, 10914}, {5083, 33812}, {5230, 44545}, {5427, 8261}, {5434, 34742}, {5692, 9578}, {5693, 9613}, {5728, 37724}, {5794, 64086}, {5836, 6734}, {5853, 41577}, {5881, 18397}, {5882, 18389}, {5904, 36922}, {6001, 7354}, {6797, 20118}, {7195, 23839}, {8581, 60933}, {9655, 40266}, {9670, 9848}, {9856, 13273}, {9943, 15326}, {10039, 13375}, {10404, 12709}, {10543, 12710}, {10693, 12903}, {10806, 64747}, {10826, 45630}, {10941, 12648}, {10949, 26015}, {10950, 44547}, {10956, 64139}, {11237, 28609}, {12116, 18391}, {12607, 51379}, {12649, 14923}, {12688, 12943}, {12736, 64124}, {12758, 33593}, {12832, 37726}, {13369, 21578}, {13464, 64284}, {14988, 18990}, {15325, 61541}, {15950, 58679}, {15955, 55101}, {16232, 19049}, {16466, 57277}, {16685, 56908}, {17636, 49176}, {17646, 50239}, {17654, 48694}, {17705, 22464}, {18732, 30493}, {19366, 43217}, {19860, 55871}, {20718, 63398}, {21077, 26482}, {21147, 64020}, {22791, 64127}, {25917, 30827}, {27286, 31359}, {31397, 31806}, {31870, 44675}, {33597, 64269}, {37708, 41686}, {39779, 45638}, {41723, 64382}, {44662, 56819}, {45776, 57285}, {45946, 59816}, {49627, 64767}, {51422, 64159}, {54292, 57280}, {57283, 62826}, {60909, 60965}, {61663, 64163}, {64157, 64292}
X(64721) = reflection of X(i) in X(j) for these {i,j}: {1829, 34434}, {10950, 44547}
X(64721) = inverse of X(64266) in Feuerbach hyperbola
X(64721) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 43345}
X(64721) = X(i)-Dao conjugate of X(j) for these {i, j}: {64275, 8}
X(64721) = pole of line {44426, 57091} with respect to the polar circle
X(64721) = pole of line {1, 6831} with respect to the Feuerbach hyperbola
X(64721) = pole of line {21, 64042} with respect to the Stammler hyperbola
X(64721) = X(65)-of-2nd-anti-circumperp-tangential triangle
X(64721) = X(6240)-of-intouch triangle
X(64721) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10039)}}, {{A, B, C, X(3), X(31837)}}, {{A, B, C, X(4), X(11249)}}, {{A, B, C, X(6), X(8071)}}, {{A, B, C, X(7), X(26437)}}, {{A, B, C, X(8), X(26357)}}, {{A, B, C, X(28), X(10202)}}, {{A, B, C, X(34), X(3338)}}, {{A, B, C, X(46), X(994)}}, {{A, B, C, X(225), X(37558)}}, {{A, B, C, X(513), X(22765)}}, {{A, B, C, X(942), X(1411)}}, {{A, B, C, X(957), X(10269)}}, {{A, B, C, X(959), X(1470)}}, {{A, B, C, X(961), X(18838)}}, {{A, B, C, X(998), X(17437)}}, {{A, B, C, X(1243), X(37532)}}, {{A, B, C, X(1389), X(24474)}}, {{A, B, C, X(1953), X(39271)}}, {{A, B, C, X(2990), X(3666)}}, {{A, B, C, X(3577), X(12704)}}, {{A, B, C, X(5563), X(13375)}}, {{A, B, C, X(10966), X(43740)}}, {{A, B, C, X(11012), X(64265)}}, {{A, B, C, X(22766), X(34430)}}, {{A, B, C, X(37601), X(41446)}}, {{A, B, C, X(41487), X(59334)}}
X(64721) = barycentric product X(i)*X(j) for these (i, j): {278, 31837}, {10039, 57}
X(64721) = barycentric quotient X(i)/X(j) for these (i, j): {1415, 43345}, {10039, 312}, {31837, 345}
X(64721) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 5903, 65}, {65, 1319, 942}, {65, 3057, 2099}, {388, 3869, 64041}, {4293, 64021, 64704}, {4320, 54400, 1406}, {10914, 41539, 41687}
X(64722) lies on these lines: {1, 6}, {3, 45126}, {4, 40658}, {8, 11427}, {10, 23292}, {28, 2262}, {34, 5706}, {40, 11425}, {47, 4640}, {51, 11363}, {52, 24301}, {54, 65}, {56, 37310}, {58, 17102}, {81, 37277}, {143, 51696}, {145, 63030}, {154, 7713}, {182, 37613}, {184, 1829}, {185, 12262}, {212, 37528}, {222, 64132}, {227, 3072}, {255, 3666}, {386, 46974}, {387, 34231}, {389, 1385}, {498, 4682}, {515, 12233}, {517, 578}, {580, 1214}, {601, 9371}, {603, 43058}, {774, 2308}, {820, 1193}, {912, 12161}, {942, 1147}, {946, 12241}, {990, 64057}, {1038, 36745}, {1040, 36746}, {1060, 36754}, {1062, 10391}, {1071, 2003}, {1074, 49745}, {1103, 5269}, {1125, 13567}, {1175, 2906}, {1181, 6001}, {1192, 7987}, {1210, 52260}, {1319, 19366}, {1399, 64118}, {1427, 3468}, {1442, 6986}, {1451, 20277}, {1456, 4295}, {1465, 37530}, {1482, 11426}, {1496, 17017}, {1620, 58221}, {1834, 56814}, {1858, 2904}, {1864, 6198}, {1898, 38336}, {1902, 11424}, {1905, 2194}, {1994, 64715}, {2317, 18673}, {2646, 11436}, {2771, 12227}, {2778, 15472}, {2836, 32245}, {2999, 15524}, {3057, 11429}, {3075, 3752}, {3085, 3745}, {3149, 56418}, {3562, 5262}, {3576, 9786}, {3579, 11430}, {3616, 11433}, {3622, 63031}, {3624, 26958}, {3740, 54401}, {3827, 64028}, {4292, 43035}, {4294, 41339}, {4297, 13568}, {4641, 44706}, {4719, 8071}, {5012, 64039}, {5398, 37565}, {5480, 49542}, {5550, 37643}, {5707, 37697}, {5713, 37695}, {5721, 40950}, {5818, 43841}, {5886, 39571}, {6505, 37282}, {7498, 53994}, {7515, 45206}, {7686, 57277}, {7687, 11699}, {7718, 14853}, {8614, 64704}, {9538, 10394}, {9955, 18390}, {10222, 37505}, {10246, 11432}, {11179, 34643}, {11396, 11402}, {11398, 37538}, {11435, 37080}, {11438, 13624}, {11720, 11746}, {12259, 13292}, {12710, 61398}, {13403, 22793}, {13411, 37594}, {14110, 54292}, {14529, 44545}, {14557, 57281}, {16410, 53996}, {17809, 64022}, {18388, 18480}, {18447, 37509}, {18455, 36750}, {18593, 37582}, {19862, 47296}, {20986, 52359}, {22350, 37539}, {31728, 51707}, {34712, 54131}, {34977, 36052}, {37408, 54420}, {37600, 63291}, {37685, 62864}, {37699, 51361}, {41538, 64339}, {43822, 51694}, {44495, 58535}, {46934, 63081}, {50195, 62805}, {51695, 58469}, {54289, 55399}, {54427, 59691}, {61397, 63976}, {63339, 64045}, {63658, 63698}
X(64722) = midpoint of X(i) and X(j) for these {i,j}: {11396, 64040}
X(64722) = pole of line {24, 55} with respect to the Feuerbach hyperbola
X(64722) = pole of line {81, 44547} with respect to the Stammler hyperbola
X(64722) = pole of line {521, 3700} with respect to the dual conic of DeLongchamps circle
X(64722) = pole of line {142, 18588} with respect to the dual conic of Yff parabola
X(64722) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(2190)}}, {{A, B, C, X(54), X(219)}}, {{A, B, C, X(81), X(44547)}}
X(64722) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3074, 37}, {184, 1829, 40660}, {580, 8555, 1214}, {1062, 36742, 10391}, {2003, 33178, 1071}, {11396, 11402, 64040}, {61397, 64349, 63976}
X(64723) lies on circumconic {{A, B, C, X(5665), X(9311)}} and on these lines: {7, 960}, {9, 65}, {40, 480}, {56, 60990}, {63, 354}, {72, 516}, {78, 11495}, {142, 3649}, {144, 145}, {210, 329}, {219, 1456}, {220, 2263}, {392, 5542}, {517, 4915}, {527, 5434}, {528, 17781}, {758, 5728}, {908, 3826}, {946, 6067}, {954, 12514}, {958, 60949}, {971, 5693}, {1212, 42289}, {1260, 7964}, {1386, 62799}, {2262, 3958}, {2771, 63277}, {2800, 6068}, {2836, 36101}, {2951, 31793}, {2975, 42819}, {3243, 5919}, {3555, 30331}, {3616, 58563}, {3696, 30807}, {3698, 38057}, {3706, 18750}, {3740, 40333}, {3812, 18230}, {3827, 21871}, {3868, 5572}, {3876, 58634}, {3878, 5850}, {3880, 7673}, {3886, 30625}, {3899, 41707}, {3901, 41861}, {3916, 52769}, {3929, 5173}, {3940, 50528}, {3983, 38200}, {4005, 40659}, {4015, 38201}, {4018, 30329}, {4295, 45120}, {4312, 5692}, {4321, 15829}, {4326, 11523}, {4519, 64194}, {4662, 59413}, {4679, 61660}, {4847, 7965}, {5044, 38052}, {5220, 60966}, {5263, 10025}, {5423, 44792}, {5439, 38059}, {5686, 5836}, {5695, 45738}, {5696, 37585}, {5759, 6001}, {5762, 5887}, {5784, 17768}, {5817, 7686}, {5851, 64139}, {5853, 6284}, {5856, 17638}, {5918, 63413}, {6172, 7672}, {6600, 37568}, {6601, 12701}, {6734, 42356}, {7675, 12635}, {7676, 56176}, {8236, 34791}, {8261, 11684}, {8543, 61024}, {8583, 60955}, {9856, 63974}, {9943, 59418}, {9954, 15104}, {11038, 58679}, {11682, 42871}, {12680, 43161}, {12709, 52819}, {13257, 21060}, {14988, 64065}, {15481, 60935}, {15569, 24635}, {15570, 62826}, {15726, 41228}, {16133, 60981}, {17604, 24703}, {17609, 38316}, {17632, 57288}, {17642, 30223}, {18482, 49177}, {20116, 24473}, {21153, 54290}, {21168, 64021}, {25466, 41857}, {25524, 60938}, {25681, 61019}, {26066, 60943}, {28609, 58648}, {28610, 63994}, {30332, 34784}, {31658, 60885}, {31671, 31937}, {31838, 38030}, {32636, 60968}, {34339, 59381}, {34790, 41869}, {35514, 63962}, {37566, 60974}, {37722, 41573}, {38092, 58629}, {38121, 58630}, {38149, 58631}, {38170, 58632}, {38185, 58633}, {38202, 46694}, {38203, 58636}, {41389, 44785}, {42884, 62858}, {43166, 57279}, {45043, 58683}, {46873, 58451}, {50836, 63972}, {51516, 64044}, {52835, 64171}, {60909, 60965}, {60910, 64043}, {60919, 64042}, {61006, 64047}, {61035, 64107}
X(64723) = midpoint of X(i) and X(j) for these {i,j}: {144, 3869}, {3962, 14100}, {30332, 34784}, {41228, 63975}
X(64723) = reflection of X(i) in X(j) for these {i,j}: {7, 960}, {65, 9}, {2951, 31793}, {3059, 72}, {3555, 30331}, {3868, 5572}, {4018, 30329}, {5728, 51090}, {5836, 58678}, {12680, 43161}, {14100, 5698}, {31391, 5784}, {31671, 31937}, {35514, 63976}, {44785, 41389}, {63974, 9856}
X(64723) = pole of line {2, 5809} with respect to the Feuerbach hyperbola
X(64723) = X(5480)-of-inner-Conway triangle
X(64723) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {72, 516, 3059}, {144, 3869, 518}, {518, 5698, 14100}, {758, 51090, 5728}, {3868, 52653, 5572}, {3876, 59412, 58634}, {5223, 11372, 42014}, {5784, 17768, 31391}, {5836, 58678, 5686}, {38200, 58635, 3983}, {41228, 63975, 15726}, {60883, 64041, 8581}
X(64724) lies on these lines: {2, 8541}, {4, 7883}, {6, 13622}, {23, 32239}, {24, 34507}, {25, 599}, {49, 12585}, {51, 54347}, {67, 19596}, {69, 1974}, {125, 2393}, {141, 427}, {184, 61683}, {186, 542}, {232, 15993}, {237, 15526}, {297, 8754}, {340, 419}, {343, 8263}, {378, 50977}, {403, 511}, {420, 648}, {428, 50991}, {468, 524}, {575, 10018}, {576, 7505}, {597, 52297}, {754, 37912}, {826, 21108}, {1205, 41603}, {1350, 44438}, {1352, 18533}, {1495, 47150}, {1503, 13399}, {1593, 54147}, {1596, 5891}, {1613, 36879}, {1992, 38282}, {2781, 51403}, {2930, 37920}, {3098, 35481}, {3147, 63722}, {3284, 44887}, {3515, 15069}, {3542, 11470}, {3564, 37935}, {3580, 8681}, {3619, 52299}, {3620, 6995}, {3630, 46444}, {3631, 44091}, {3763, 12167}, {3818, 35480}, {5032, 53857}, {5064, 50993}, {5094, 21358}, {5139, 44956}, {5201, 44896}, {5622, 44673}, {5965, 19128}, {5969, 46560}, {5972, 22151}, {6240, 18553}, {6403, 7577}, {6623, 50967}, {6697, 9973}, {6776, 11202}, {7575, 32275}, {7714, 50994}, {7716, 62976}, {7794, 27369}, {7826, 44162}, {8537, 14940}, {8623, 61218}, {9822, 37990}, {10295, 11645}, {10516, 18386}, {10602, 26958}, {11160, 62973}, {11179, 35486}, {11180, 37460}, {11188, 21243}, {11255, 60780}, {11405, 16511}, {11550, 61737}, {11574, 26156}, {12220, 31101}, {13169, 32267}, {13394, 53022}, {13473, 29181}, {13567, 40673}, {13619, 29012}, {14984, 63735}, {15020, 54216}, {15074, 43817}, {15118, 47276}, {15360, 37962}, {15533, 62965}, {15585, 26926}, {15750, 64080}, {16003, 37934}, {16163, 47569}, {16321, 51431}, {18374, 47450}, {18560, 55606}, {19118, 40341}, {19510, 37981}, {20582, 62958}, {21419, 34897}, {21637, 58437}, {21639, 61691}, {22165, 62978}, {23200, 35282}, {32127, 32263}, {32244, 37760}, {32272, 37958}, {34118, 61139}, {35325, 36824}, {35491, 55631}, {37196, 47353}, {37197, 53097}, {37347, 45118}, {37473, 43831}, {37765, 38294}, {37933, 63700}, {37977, 41724}, {40670, 41599}, {41614, 61646}, {43273, 55576}, {44084, 62381}, {44125, 62593}, {44126, 62592}, {44146, 50567}, {44375, 47200}, {45312, 50707}, {46151, 46157}, {47279, 47296}, {47328, 61676}, {50955, 55572}, {50990, 62979}, {51186, 62980}, {51438, 63547}, {52104, 55570}, {52290, 59373}, {59707, 62338}
X(64724) = midpoint of X(i) and X(j) for these {i,j}: {67, 19596}, {22151, 41721}, {32113, 62376}, {36824, 38303}
X(64724) = reflection of X(i) in X(j) for these {i,j}: {125, 62376}, {5095, 44102}, {5622, 44673}, {21639, 62375}, {22151, 5972}, {44102, 468}
X(64724) = complement of X(11416)
X(64724) = perspector of circumconic {{A, B, C, X(427), X(4235)}}
X(64724) = X(i)-isoconjugate-of-X(j) for these {i, j}: {82, 895}, {83, 36060}, {111, 34055}, {897, 1176}, {923, 1799}, {3112, 14908}, {4580, 36142}, {4599, 10097}, {10547, 46277}, {14977, 34072}, {28724, 36128}, {30786, 46289}
X(64724) = X(i)-Dao conjugate of X(j) for these {i, j}: {39, 30786}, {141, 895}, {1560, 83}, {2482, 1799}, {3124, 10097}, {6593, 1176}, {15449, 14977}, {23992, 4580}, {34452, 14908}, {40938, 671}, {48317, 58784}, {53981, 60863}, {53983, 5466}
X(64724) = X(i)-Ceva conjugate of X(j) for these {i, j}: {61207, 690}
X(64724) = pole of line {83, 5466} with respect to the polar circle
X(64724) = pole of line {26926, 32366} with respect to the Jerabek hyperbola
X(64724) = pole of line {1194, 44467} with respect to the Kiepert hyperbola
X(64724) = pole of line {32478, 46026} with respect to the Orthic inconic
X(64724) = pole of line {895, 1176} with respect to the Stammler hyperbola
X(64724) = pole of line {18311, 23285} with respect to the Steiner inellipse
X(64724) = pole of line {1368, 1799} with respect to the Wallace hyperbola
X(64724) = pole of line {4580, 34978} with respect to the dual conic of Wallace hyperbola
X(64724) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(41579)}}, {{A, B, C, X(39), X(29959)}}, {{A, B, C, X(141), X(524)}}, {{A, B, C, X(187), X(3313)}}, {{A, B, C, X(427), X(468)}}, {{A, B, C, X(690), X(6593)}}, {{A, B, C, X(1843), X(44102)}}, {{A, B, C, X(3266), X(8891)}}, {{A, B, C, X(3292), X(3917)}}, {{A, B, C, X(3867), X(60428)}}, {{A, B, C, X(5181), X(46165)}}, {{A, B, C, X(5642), X(14424)}}, {{A, B, C, X(5967), X(41586)}}, {{A, B, C, X(8024), X(51541)}}, {{A, B, C, X(15303), X(41583)}}, {{A, B, C, X(15471), X(27376)}}, {{A, B, C, X(16102), X(52094)}}, {{A, B, C, X(17171), X(21108)}}, {{A, B, C, X(21248), X(52898)}}, {{A, B, C, X(51371), X(51429)}}
X(64724) = barycentric product X(i)*X(j) for these (i, j): {4, 7813}, {39, 44146}, {141, 468}, {427, 524}, {1235, 187}, {1560, 46165}, {1843, 3266}, {3933, 60428}, {4235, 826}, {14210, 17442}, {14273, 4576}, {14417, 46151}, {14424, 648}, {16747, 21839}, {17171, 4062}, {20883, 896}, {21016, 6629}, {23285, 61207}, {27376, 6390}, {31068, 46026}, {31125, 5095}, {32459, 47730}, {34336, 46154}, {35325, 35522}, {37778, 3917}, {41676, 690}, {44102, 8024}, {57496, 9019}
X(64724) = barycentric quotient X(i)/X(j) for these (i, j): {39, 895}, {141, 30786}, {187, 1176}, {427, 671}, {468, 83}, {524, 1799}, {690, 4580}, {826, 14977}, {896, 34055}, {1235, 18023}, {1843, 111}, {1964, 36060}, {3005, 10097}, {3051, 14908}, {3292, 28724}, {3787, 6091}, {4235, 4577}, {5095, 52898}, {7813, 69}, {9019, 57481}, {14273, 58784}, {14424, 525}, {14567, 10547}, {17442, 897}, {20883, 46277}, {21108, 62626}, {27369, 32740}, {27376, 17983}, {35325, 691}, {37778, 46104}, {39691, 51258}, {41585, 52141}, {41676, 892}, {44102, 251}, {44146, 308}, {46154, 15398}, {58780, 22105}, {60428, 32085}, {61207, 827}, {61218, 32729}
X(64724) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 16789, 3917}, {141, 41583, 51360}, {141, 41584, 1843}, {141, 41585, 427}, {343, 8263, 61667}, {427, 41584, 41585}, {468, 524, 44102}, {524, 44102, 5095}, {2393, 62376, 125}, {5181, 8262, 41586}, {8537, 14940, 25555}, {11405, 52292, 47352}, {21639, 61691, 62375}, {32113, 62376, 2393}, {61683, 63129, 184}
X(64725) lies on these lines: {3, 3825}, {4, 1329}, {5, 35249}, {8, 37001}, {11, 20}, {12, 64078}, {30, 10525}, {55, 37437}, {72, 52860}, {165, 17619}, {355, 382}, {376, 10598}, {377, 7958}, {452, 25973}, {511, 39889}, {515, 10912}, {519, 40267}, {528, 12667}, {529, 40290}, {535, 8158}, {550, 26492}, {952, 16127}, {962, 10944}, {1001, 6850}, {1151, 13895}, {1152, 13952}, {1319, 40272}, {1479, 63991}, {1503, 12920}, {1657, 11928}, {1699, 17614}, {1709, 54290}, {1885, 11390}, {2777, 13213}, {2794, 12925}, {2801, 48664}, {2802, 52683}, {2829, 12513}, {3146, 3434}, {3436, 52836}, {3522, 10584}, {3529, 10785}, {3543, 34612}, {3583, 37022}, {3586, 9943}, {3627, 18516}, {3811, 22792}, {3813, 64120}, {3913, 6256}, {4297, 9668}, {4299, 10948}, {4301, 9655}, {4302, 10523}, {4413, 13729}, {4421, 18242}, {4423, 37163}, {5073, 18519}, {5101, 12173}, {5187, 59390}, {5217, 6932}, {5584, 11114}, {5587, 63266}, {5687, 41698}, {5691, 10914}, {5730, 34789}, {5731, 9670}, {5840, 11500}, {5904, 17661}, {5927, 45120}, {6253, 10522}, {6284, 6925}, {6459, 19024}, {6460, 19023}, {6796, 34626}, {6834, 24466}, {6838, 15338}, {6897, 8167}, {6898, 61158}, {6909, 10896}, {6923, 11496}, {6928, 64186}, {6938, 15908}, {6948, 7681}, {6960, 63756}, {6966, 7173}, {7080, 38757}, {7354, 10947}, {7580, 36152}, {7957, 17615}, {7988, 56997}, {7991, 52851}, {9579, 17625}, {9580, 17622}, {9581, 64128}, {9589, 37708}, {9669, 63983}, {10248, 59356}, {10306, 11236}, {10431, 52837}, {10728, 12245}, {10731, 52112}, {10786, 61153}, {10794, 12203}, {10826, 17613}, {10829, 39568}, {10949, 64079}, {11495, 31789}, {12182, 23698}, {12371, 12422}, {12433, 60896}, {12586, 29181}, {12608, 56177}, {12616, 28150}, {12635, 64119}, {12672, 41869}, {12679, 57287}, {12737, 48680}, {13294, 64509}, {15682, 34697}, {15726, 17649}, {15842, 50701}, {17556, 59326}, {17626, 58567}, {17647, 51118}, {17668, 52835}, {18236, 58637}, {25524, 26333}, {28164, 49600}, {28194, 34717}, {28236, 47746}, {35796, 42266}, {35797, 42267}, {42258, 44618}, {42259, 44619}, {43577, 43859}, {44669, 63962}, {50242, 59320}, {63324, 63386}
X(64725) = reflection of X(i) in X(j) for these {i,j}: {3811, 22792}, {3913, 6256}, {10912, 12700}, {12114, 10525}, {12635, 64119}, {13205, 12761}, {64074, 4}, {64076, 5}, {64120, 3813}
X(64725) = X(20)-of-inner-Johnson triangle
X(64725) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 11826, 1376}, {20, 10724, 12953}, {20, 7288, 38759}, {30, 10525, 12114}, {3146, 3434, 64000}, {5840, 12761, 13205}, {10525, 12114, 11235}, {10826, 64005, 17613}, {26333, 31775, 25524}
X(64726) lies on these lines: {2, 5893}, {3, 61606}, {4, 74}, {20, 394}, {22, 46373}, {30, 11411}, {64, 3146}, {69, 31369}, {110, 27082}, {146, 38942}, {154, 50693}, {185, 32601}, {323, 46372}, {376, 5878}, {459, 33893}, {511, 30443}, {541, 12118}, {550, 5656}, {631, 22802}, {1073, 63640}, {1131, 8991}, {1132, 13980}, {1370, 22528}, {1503, 5059}, {1620, 62973}, {1657, 34781}, {1853, 17578}, {1885, 11433}, {2071, 64759}, {2781, 64025}, {2883, 3522}, {2979, 36982}, {3060, 31978}, {3090, 64027}, {3091, 10606}, {3183, 59424}, {3184, 59361}, {3524, 61749}, {3525, 11204}, {3529, 6000}, {3532, 47296}, {3543, 6247}, {3619, 63431}, {3627, 35450}, {3830, 61540}, {3832, 6696}, {3839, 40686}, {3854, 61735}, {3855, 23329}, {5056, 23328}, {5071, 25563}, {5562, 36983}, {6146, 49670}, {6616, 51892}, {6622, 21663}, {6640, 38790}, {6759, 17538}, {7401, 43577}, {7464, 32321}, {7691, 33522}, {8549, 40318}, {9306, 43813}, {9544, 46374}, {9778, 12779}, {9812, 12262}, {9833, 11001}, {9899, 28164}, {9914, 11413}, {9919, 37814}, {9961, 64039}, {10151, 58378}, {10182, 61787}, {10192, 21734}, {10193, 61867}, {10299, 61747}, {10304, 16252}, {11202, 62092}, {11999, 31726}, {12103, 32063}, {12220, 12279}, {12278, 32244}, {12315, 15704}, {13201, 22534}, {14216, 33703}, {14361, 36965}, {14862, 62096}, {15005, 52448}, {15105, 49135}, {15138, 37444}, {15316, 35512}, {15682, 18381}, {15683, 17845}, {15717, 64024}, {16386, 53050}, {17821, 62097}, {18383, 62021}, {18400, 49138}, {18405, 50691}, {18560, 18909}, {18913, 44438}, {18918, 35490}, {18925, 35481}, {20725, 35602}, {23291, 34469}, {23332, 50689}, {25406, 34117}, {27089, 33546}, {30552, 37669}, {32140, 34584}, {32602, 35259}, {32767, 41099}, {34170, 41425}, {34286, 58758}, {34785, 41470}, {34786, 62042}, {35864, 42276}, {35865, 42275}, {39874, 64029}, {41464, 41735}, {41715, 46850}, {43841, 55575}, {44762, 62149}, {45771, 51394}, {50692, 50709}, {51358, 58797}, {51538, 63420}, {53496, 63536}, {58434, 61804}, {58795, 62152}, {61138, 64063}, {61680, 61791}, {62120, 64714}, {62124, 64059}, {62155, 64033}, {63657, 63726}
X(64726) = reflection of X(i) in X(j) for these {i,j}: {4, 20427}, {20, 5925}, {3146, 64}, {5895, 5894}, {6225, 20}, {12250, 64758}, {12315, 15704}, {12324, 12250}, {33703, 14216}, {34781, 1657}, {36983, 5562}, {48672, 550}, {49135, 64037}, {51212, 61088}, {54211, 1498}, {64033, 62155}, {64034, 13093}, {64037, 15105}, {64187, 3}
X(64726) = anticomplement of X(5895)
X(64726) = X(i)-Ceva conjugate of X(j) for these {i, j}: {34410, 2}
X(64726) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34410, 6327}
X(64726) = pole of line {6000, 6622} with respect to the Jerabek hyperbola
X(64726) = pole of line {107, 44060} with respect to the Kiepert parabola
X(64726) = pole of line {1498, 41427} with respect to the Stammler hyperbola
X(64726) = pole of line {20580, 58759} with respect to the Steiner circumellipse
X(64726) = pole of line {6527, 30552} with respect to the Wallace hyperbola
X(64726) = X(5894)-of-Gemini-111 triangle
X(64726) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1032), X(16080)}}, {{A, B, C, X(10152), X(15077)}}
X(64726) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1204, 37643}, {4, 20427, 54050}, {20, 54211, 1498}, {20, 6225, 11206}, {30, 13093, 64034}, {30, 64758, 12250}, {64, 3146, 32064}, {550, 48672, 5656}, {1498, 15311, 54211}, {1498, 54211, 6225}, {2777, 20427, 4}, {2883, 3522, 35260}, {5893, 5894, 8567}, {5895, 8567, 5893}, {5925, 15311, 20}, {6696, 61721, 3832}, {10606, 51491, 3091}, {12250, 64034, 13093}, {13093, 64034, 12324}
X(64727) lies on these lines: {1, 58583}, {2, 21926}, {3, 740}, {6, 1045}, {9, 58655}, {35, 49474}, {36, 49469}, {37, 1376}, {40, 518}, {55, 75}, {56, 49470}, {57, 64546}, {69, 4433}, {100, 192}, {239, 20992}, {284, 24264}, {480, 51052}, {519, 41430}, {527, 4097}, {536, 4421}, {573, 6007}, {726, 8715}, {742, 12329}, {874, 6374}, {940, 2667}, {956, 49459}, {958, 3696}, {966, 45705}, {984, 5687}, {991, 35104}, {993, 4709}, {999, 49471}, {1001, 3739}, {1011, 32860}, {1018, 60785}, {1486, 8301}, {1621, 4699}, {1716, 21857}, {1740, 21769}, {1742, 3169}, {2175, 54440}, {2223, 3875}, {2234, 28365}, {3286, 49486}, {3295, 24325}, {3685, 20923}, {3694, 18252}, {3728, 4414}, {3742, 64681}, {3747, 27623}, {3759, 36635}, {3797, 23868}, {3842, 9709}, {3871, 24349}, {3886, 37575}, {3923, 37502}, {3941, 4852}, {3980, 25124}, {3993, 25440}, {4000, 8299}, {4011, 25106}, {4022, 17595}, {4032, 37541}, {4068, 15668}, {4191, 32915}, {4199, 56953}, {4203, 4734}, {4360, 21010}, {4361, 8053}, {4363, 64169}, {4387, 18137}, {4413, 4687}, {4423, 4751}, {4427, 25277}, {4428, 4688}, {4447, 17314}, {4515, 58653}, {4557, 17262}, {4642, 49530}, {4686, 61153}, {4732, 9708}, {4764, 61154}, {4772, 61155}, {4812, 36559}, {4821, 61157}, {5132, 5695}, {5220, 22271}, {5432, 21927}, {6600, 24820}, {7075, 20995}, {7083, 17755}, {8167, 31238}, {8424, 36744}, {10267, 64728}, {10306, 29054}, {10310, 30273}, {11248, 29010}, {11322, 64161}, {11343, 27474}, {11358, 17592}, {11491, 63427}, {11496, 64088}, {11499, 20430}, {12513, 28581}, {12635, 20718}, {13476, 42871}, {13576, 27514}, {13587, 51054}, {14839, 64739}, {15569, 25524}, {16345, 27798}, {16370, 50086}, {16405, 46904}, {16417, 50111}, {16418, 50096}, {16684, 17119}, {17117, 23407}, {17156, 22060}, {17157, 32845}, {17318, 20990}, {17768, 48918}, {17788, 32117}, {19237, 31329}, {20367, 35892}, {20760, 21080}, {20794, 23363}, {20891, 32929}, {21495, 27480}, {21775, 21877}, {22316, 52139}, {24248, 53476}, {24357, 36528}, {25083, 40965}, {25269, 52923}, {25439, 49479}, {27471, 42843}, {27556, 46536}, {27639, 29982}, {28580, 31394}, {32921, 37590}, {33158, 50199}, {36740, 49531}, {37507, 49488}, {48696, 49448}, {56177, 63982}, {63304, 63398}
X(64727) = midpoint of X(i) and X(j) for these {i,j}: {1742, 3169}
X(64727) = reflection of X(i) in X(j) for these {i,j}: {64170, 15624}
X(64727) = pole of line {24560, 25925} with respect to the Steiner inellipse
X(64727) = pole of line {5208, 40874} with respect to the Wallace hyperbola
X(64727) = X(75)-of-anti-Mandart-incircle triangle
X(64727) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2665), X(8769)}}, {{A, B, C, X(8770), X(9082)}}
X(64727) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {35, 49474, 54410}, {100, 192, 34247}, {536, 15624, 64170}, {4421, 64170, 15624}
X(64728) lies on these lines: {2, 20430}, {3, 75}, {4, 4699}, {5, 3739}, {10, 24251}, {20, 4772}, {30, 4688}, {37, 140}, {182, 742}, {192, 631}, {228, 20879}, {376, 51040}, {381, 51044}, {496, 11997}, {511, 49481}, {517, 24325}, {518, 5690}, {536, 549}, {537, 50821}, {547, 51038}, {550, 4739}, {573, 29369}, {632, 4698}, {726, 6684}, {740, 1385}, {746, 13335}, {894, 37510}, {952, 3696}, {984, 26446}, {990, 36477}, {991, 29331}, {1009, 26538}, {1278, 3523}, {1483, 28581}, {1484, 2805}, {1656, 4751}, {1733, 37575}, {2782, 21443}, {3524, 4740}, {3525, 27268}, {3526, 4687}, {3530, 4686}, {3576, 49474}, {3579, 29054}, {3628, 31238}, {3644, 15720}, {3654, 31178}, {3655, 50086}, {3842, 11231}, {3993, 10165}, {4032, 37582}, {4192, 4359}, {4361, 37474}, {4664, 5054}, {4681, 14869}, {4704, 10303}, {4709, 5882}, {4718, 12108}, {4726, 15712}, {4755, 11539}, {4764, 61811}, {4788, 61820}, {4821, 15717}, {5050, 49496}, {5071, 51064}, {5446, 58499}, {5657, 24349}, {5844, 49478}, {5886, 40328}, {7201, 11374}, {8731, 17862}, {9588, 49532}, {9840, 20892}, {10164, 50117}, {10168, 50779}, {10246, 49470}, {10267, 64727}, {11171, 32453}, {11179, 51051}, {11362, 49479}, {11695, 58554}, {13373, 64546}, {13632, 37756}, {13731, 20891}, {14213, 22060}, {15026, 58485}, {15178, 49471}, {15310, 59620}, {15569, 38028}, {15681, 51065}, {15687, 51041}, {15692, 51043}, {15694, 51039}, {16058, 54284}, {16850, 24993}, {17225, 50983}, {19540, 19804}, {19546, 24589}, {20254, 27339}, {20881, 60723}, {21926, 26470}, {25124, 35631}, {27484, 36996}, {28204, 50096}, {29016, 48929}, {29028, 49131}, {29069, 48886}, {29073, 41430}, {29077, 49132}, {29327, 31394}, {30944, 48380}, {31317, 48875}, {31993, 37365}, {33813, 38612}, {34200, 51042}, {34718, 51055}, {36659, 64694}, {37727, 49459}, {38066, 50075}, {38068, 50777}, {38122, 51058}, {38127, 49510}, {38760, 51062}, {49450, 59503}, {49475, 61286}, {49483, 61524}, {49498, 63143}, {49523, 61614}, {49678, 61287}, {51052, 59381}, {63307, 63398}
X(64728) = midpoint of X(i) and X(j) for these {i,j}: {3, 75}, {376, 51040}, {381, 51044}, {549, 51048}, {3654, 31178}, {3655, 50086}, {4709, 5882}, {11179, 51051}, {11362, 49479}, {15681, 51065}, {20430, 63427}, {30271, 64088}, {34718, 51055}, {37727, 49459}
X(64728) = reflection of X(i) in X(j) for these {i,j}: {5, 3739}, {37, 140}, {549, 51049}, {5446, 58499}, {15687, 51041}, {20430, 61522}, {49471, 15178}, {49475, 61286}, {50779, 10168}, {51038, 547}, {51042, 34200}, {51045, 549}, {58554, 11695}, {64088, 61549}, {64546, 13373}
X(64728) = complement of X(20430)
X(64728) = anticomplement of X(61522)
X(64728) = pole of line {26640, 46383} with respect to the Steiner inellipse
X(64728) = X(75)-of-anti-X3-ABC-reflections triangle
X(64728) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20430, 61522}, {2, 63427, 20430}, {3, 75, 29010}, {30, 61549, 64088}, {536, 51049, 549}, {4688, 64088, 61549}, {15694, 51039, 51488}, {30271, 64088, 30}, {51048, 51049, 51045}
X(64729) lies on these lines: {2, 54838}, {3, 41465}, {4, 3426}, {5, 4550}, {6, 30}, {51, 974}, {64, 16198}, {74, 427}, {113, 44212}, {140, 4549}, {143, 22530}, {185, 973}, {323, 38323}, {376, 53780}, {381, 37643}, {382, 11431}, {389, 3627}, {393, 38920}, {399, 38321}, {541, 1539}, {546, 9786}, {549, 18388}, {550, 10610}, {578, 8717}, {1192, 3628}, {1353, 17702}, {1368, 37470}, {1480, 15171}, {1495, 37458}, {1511, 59553}, {1514, 1596}, {1531, 37648}, {1595, 20303}, {1620, 12108}, {2777, 5480}, {2883, 7715}, {3146, 11432}, {3431, 10295}, {3529, 11426}, {3531, 35512}, {3534, 11427}, {3543, 44750}, {3564, 63646}, {3575, 11456}, {3581, 15760}, {3830, 11433}, {3853, 39571}, {3861, 15752}, {5066, 26958}, {5133, 34796}, {5663, 19161}, {5890, 10938}, {5895, 17822}, {6000, 9969}, {6102, 12235}, {6240, 12254}, {6247, 32393}, {6580, 18990}, {6800, 47340}, {6823, 37478}, {7378, 35450}, {7576, 12112}, {7699, 52293}, {7986, 11544}, {8703, 23292}, {10110, 31978}, {10293, 10721}, {10301, 32111}, {10564, 44241}, {11001, 63030}, {11002, 62288}, {11064, 44273}, {11245, 35480}, {11425, 12103}, {11566, 11744}, {11745, 22802}, {11801, 34802}, {12167, 39874}, {12173, 18914}, {12241, 62036}, {12244, 35484}, {13382, 41362}, {13403, 62041}, {13488, 18431}, {13754, 14913}, {14389, 44285}, {14763, 59399}, {14805, 44249}, {15018, 52069}, {15037, 18563}, {15051, 44268}, {15068, 31833}, {15080, 44239}, {15311, 23300}, {15435, 18358}, {15682, 63031}, {15687, 18390}, {15699, 44673}, {15873, 22968}, {18494, 26926}, {18533, 26864}, {18537, 62209}, {18570, 52019}, {18583, 49669}, {18911, 47339}, {19039, 23259}, {19040, 23249}, {22660, 43586}, {26879, 63662}, {31829, 37483}, {31860, 64471}, {31861, 38136}, {32423, 49011}, {34224, 43596}, {36852, 40112}, {37473, 44791}, {37505, 62162}, {37984, 61506}, {41447, 61680}, {42283, 44634}, {42284, 44633}, {43588, 50006}, {43903, 52295}, {44107, 61744}, {44280, 59771}, {44547, 50193}, {45019, 46030}, {45968, 64183}, {47003, 52743}, {47096, 48912}, {48876, 50008}, {55572, 61606}, {63659, 63727}
X(64729) = midpoint of X(i) and X(j) for these {i,j}: {4, 64094}, {376, 53780}, {3146, 11820}, {3543, 44750}, {4846, 40909}, {10293, 10721}, {33534, 43621}
X(64729) = reflection of X(i) in X(j) for these {i,j}: {5, 7706}, {4549, 140}, {11472, 546}, {15687, 51993}, {15704, 8717}, {34802, 11801}, {48876, 50008}, {49669, 18583}, {64097, 18358}
X(64729) = pole of line {1514, 32062} with respect to the Jerabek hyperbola
X(64729) = pole of line {381, 5158} with respect to the Kiepert hyperbola
X(64729) = pole of line {9209, 61656} with respect to the Orthic inconic
X(64729) = pole of line {15066, 54994} with respect to the Stammler hyperbola
X(64729) = pole of line {9007, 9209} with respect to the dual conic of DeLongchamps circle
X(64729) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3531), X(58082)}}, {{A, B, C, X(4846), X(56270)}}, {{A, B, C, X(34288), X(54838)}}
X(64729) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1514, 34417, 1596}, {18420, 64097, 18358}, {33534, 43621, 30}
X(64730) lies on these lines: {2, 154}, {3, 16657}, {4, 33534}, {5, 16654}, {6, 46336}, {20, 3066}, {30, 373}, {51, 10691}, {125, 128}, {141, 8546}, {182, 11064}, {235, 13347}, {323, 12007}, {343, 7484}, {376, 20192}, {382, 5544}, {394, 14912}, {427, 38317}, {428, 6688}, {468, 5092}, {511, 43957}, {524, 7998}, {542, 15082}, {549, 39242}, {550, 34417}, {631, 12022}, {632, 12134}, {858, 3589}, {1350, 63084}, {1368, 19131}, {1370, 17825}, {1656, 16655}, {1657, 62209}, {1885, 17704}, {1899, 16419}, {1995, 44882}, {2777, 16836}, {3090, 16658}, {3124, 63548}, {3523, 12241}, {3525, 64035}, {3533, 34224}, {3564, 5650}, {3575, 44862}, {3580, 7496}, {3631, 5888}, {3819, 5965}, {3853, 44300}, {3917, 7734}, {5012, 53415}, {5054, 44665}, {5056, 16621}, {5068, 16656}, {5480, 16063}, {5640, 29181}, {5646, 15069}, {5651, 48906}, {5656, 6804}, {5893, 13203}, {5943, 7667}, {5972, 20190}, {6090, 11179}, {6388, 37512}, {6676, 61691}, {6677, 22352}, {6815, 18405}, {7386, 10601}, {7399, 23325}, {7465, 26005}, {7485, 13567}, {7493, 53094}, {7495, 47296}, {7503, 23328}, {7605, 10989}, {7703, 51127}, {8550, 15066}, {9140, 20582}, {9820, 37471}, {9832, 32525}, {10168, 47097}, {10300, 18583}, {10301, 48898}, {10303, 12024}, {10541, 59767}, {10545, 37900}, {11284, 46264}, {11433, 62174}, {11451, 52397}, {11645, 12045}, {11745, 15028}, {12100, 32225}, {12108, 12370}, {13339, 14643}, {14516, 55864}, {14561, 31152}, {14810, 47582}, {15080, 15448}, {15126, 58450}, {15311, 20791}, {15431, 61914}, {15805, 45089}, {16659, 61886}, {17508, 44210}, {18928, 33586}, {19130, 46517}, {20725, 49669}, {21766, 37644}, {23061, 32455}, {25964, 37449}, {26929, 55438}, {26939, 55437}, {29012, 63632}, {31521, 61737}, {32216, 38064}, {32223, 55674}, {34799, 61848}, {35268, 44212}, {36990, 59777}, {37454, 58445}, {37515, 61747}, {37645, 53093}, {37899, 48892}, {41603, 58437}, {41673, 44479}, {43575, 61821}, {44076, 55863}, {44201, 54006}, {45731, 61852}, {45970, 61835}, {47095, 48895}, {47313, 50971}, {47314, 50959}, {52284, 63119}, {54013, 64080}, {55711, 63082}, {55858, 64036}, {59659, 61134}, {61773, 64060}
X(64730) = midpoint of X(i) and X(j) for these {i,j}: {3917, 61712}
X(64730) = reflection of X(i) in X(j) for these {i,j}: {35283, 2}, {61658, 61712}, {61712, 45298}
X(64730) = pole of line {231, 7735} with respect to the Kiepert hyperbola
X(64730) = pole of line {52742, 54259} with respect to the Orthic inconic
X(64730) = pole of line {1350, 54041} with respect to the Stammler hyperbola
X(64730) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3424), X(45088)}}, {{A, B, C, X(35140), X(35283)}}
X(64730) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1503, 35283}, {2, 25406, 35259}, {2, 5085, 13394}, {2, 51737, 35266}, {2, 6800, 61507}, {3, 37648, 32269}, {3, 54012, 37648}, {1368, 38110, 61743}, {1368, 43650, 37649}, {3819, 11245, 64062}, {3917, 61712, 34380}, {7734, 45298, 3917}, {10300, 18583, 51360}, {34380, 45298, 61712}, {34380, 61712, 61658}, {43650, 61743, 38110}, {51737, 61507, 6800}
X(64731) lies on these lines: {1, 227}, {3, 5883}, {4, 3649}, {5, 12635}, {7, 2829}, {8, 6991}, {10, 1482}, {11, 2099}, {20, 45084}, {30, 60896}, {40, 4004}, {55, 48363}, {56, 30538}, {65, 11496}, {104, 4860}, {200, 11525}, {355, 36867}, {381, 21635}, {382, 12267}, {392, 3646}, {405, 2949}, {496, 64266}, {515, 5542}, {517, 1001}, {758, 6913}, {938, 3427}, {942, 12114}, {946, 5722}, {952, 20330}, {958, 24474}, {993, 2095}, {999, 11715}, {1000, 1389}, {1012, 1768}, {1125, 64315}, {1158, 31794}, {1159, 2800}, {1320, 63168}, {1329, 5761}, {1376, 37533}, {1388, 45977}, {1490, 16616}, {1512, 17718}, {1532, 10051}, {1699, 5425}, {1837, 10894}, {2771, 16112}, {2802, 6600}, {3057, 64342}, {3091, 34195}, {3306, 50371}, {3309, 7986}, {3339, 64118}, {3340, 45776}, {3485, 5804}, {3487, 18242}, {3488, 5842}, {3560, 22936}, {3671, 64119}, {3742, 37611}, {3753, 37569}, {3754, 10306}, {3811, 10222}, {3812, 37531}, {3817, 62822}, {3924, 5706}, {3940, 10175}, {4049, 28292}, {4867, 7988}, {5221, 6906}, {5427, 6950}, {5439, 63391}, {5450, 5708}, {5535, 16370}, {5665, 56273}, {5728, 6001}, {5730, 8227}, {5777, 12559}, {5794, 55108}, {5806, 6261}, {5901, 10198}, {6147, 6256}, {6245, 17706}, {6260, 12563}, {6265, 10247}, {6825, 11281}, {6826, 44669}, {6832, 21677}, {6864, 22991}, {6911, 22935}, {6918, 22836}, {6930, 17768}, {6934, 10543}, {6938, 11246}, {7682, 64110}, {7962, 64346}, {7971, 11379}, {7989, 41696}, {8275, 31434}, {9803, 10883}, {9957, 12260}, {10044, 37468}, {10073, 18393}, {10107, 49163}, {10177, 43166}, {10202, 63991}, {10532, 10950}, {10573, 63257}, {10597, 10944}, {10679, 64745}, {10893, 12047}, {11009, 15079}, {11036, 12667}, {11108, 31806}, {11224, 36835}, {11248, 61541}, {11278, 58643}, {11518, 12675}, {11520, 14872}, {11522, 45035}, {11523, 58631}, {11729, 45701}, {11827, 55109}, {12116, 64327}, {12245, 19855}, {12332, 12736}, {12433, 48482}, {14110, 54392}, {14151, 38152}, {14497, 24297}, {15016, 37022}, {15173, 64329}, {15299, 18421}, {16173, 64330}, {16174, 48667}, {16417, 54192}, {17532, 54154}, {18221, 37434}, {18446, 44840}, {18761, 24475}, {19925, 62860}, {22770, 30147}, {25415, 41539}, {26332, 37730}, {26333, 39542}, {31786, 64675}, {33179, 64116}, {34231, 36127}, {34339, 64074}, {34588, 60744}, {37002, 52783}, {41711, 59388}, {56426, 64165}, {59385, 64321}, {59387, 63159}, {63986, 64332}, {64001, 64310}
X(64731) = midpoint of X(i) and X(j) for these {i,j}: {1, 3577}, {4, 64324}, {355, 36867}, {946, 14563}, {1482, 40587}, {11041, 64322}
X(64731) = reflection of X(i) in X(j) for these {i,j}: {3427, 63980}, {11500, 64328}, {12114, 64334}, {64109, 5901}, {64315, 1125}, {64316, 37837}, {64317, 18242}, {64325, 13374}, {64335, 5}, {64733, 64732}, {64735, 1}
X(64731) = inverse of X(2099) in Feuerbach hyperbola
X(64731) = pole of line {2099, 18446} with respect to the Feuerbach hyperbola
X(64731) = X(3577)-of-anti-Aquila triangle
X(64731) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7686, 11500}, {517, 64732, 64733}, {1482, 40587, 28234}, {1482, 5886, 5289}, {3340, 64669, 45776}, {3485, 5804, 7681}, {5603, 11041, 64322}, {5603, 18391, 7680}, {7982, 64673, 63976}
X(64732) lies on these lines: {1, 3689}, {2, 11041}, {3, 3577}, {8, 36867}, {9, 1159}, {10, 5719}, {21, 4004}, {35, 3922}, {37, 4752}, {65, 191}, {72, 32635}, {100, 3753}, {140, 64315}, {142, 952}, {210, 5425}, {355, 3824}, {405, 50193}, {443, 37739}, {514, 4670}, {515, 31657}, {517, 1001}, {519, 3826}, {551, 3035}, {632, 1125}, {758, 15481}, {942, 956}, {958, 31794}, {971, 64320}, {997, 61158}, {1000, 1392}, {1126, 31503}, {1385, 3812}, {1698, 36922}, {2093, 16418}, {2320, 35271}, {2802, 42819}, {3243, 9623}, {3306, 5126}, {3340, 11108}, {3560, 64311}, {3579, 3754}, {3624, 11011}, {3636, 33895}, {3656, 26105}, {3679, 44840}, {3697, 34195}, {3740, 62822}, {3742, 51788}, {3816, 51709}, {3820, 64110}, {3822, 11698}, {3833, 22935}, {3838, 38140}, {3872, 5049}, {3918, 56176}, {3919, 4640}, {3983, 41696}, {3999, 16499}, {4002, 34772}, {4005, 16126}, {4018, 5260}, {4084, 5302}, {4323, 17559}, {4423, 25415}, {4649, 60353}, {4662, 62860}, {4663, 53114}, {4674, 4689}, {4682, 49682}, {4848, 6675}, {4867, 61686}, {4883, 49494}, {4930, 36835}, {5044, 64673}, {5048, 8275}, {5128, 17571}, {5223, 9708}, {5248, 10107}, {5426, 63211}, {5436, 12702}, {5437, 7966}, {5439, 24928}, {5440, 61156}, {5727, 17528}, {5775, 5791}, {5790, 25525}, {5795, 6147}, {5818, 64313}, {5836, 25439}, {5837, 50205}, {5853, 15935}, {5880, 28160}, {5886, 6978}, {5901, 9843}, {5919, 12653}, {6667, 11230}, {6690, 50821}, {6692, 38028}, {6736, 63282}, {6738, 31419}, {6911, 64312}, {7489, 10273}, {8162, 64203}, {8582, 37737}, {8728, 64163}, {9269, 14077}, {9345, 49487}, {9940, 64318}, {9956, 28628}, {9957, 54392}, {10156, 37611}, {10202, 12773}, {11260, 58565}, {11278, 14150}, {11551, 34606}, {11682, 16842}, {12436, 34773}, {12513, 50192}, {12609, 18480}, {12630, 15933}, {13384, 16417}, {13411, 44848}, {15178, 25524}, {15829, 16853}, {16137, 21075}, {16862, 56387}, {17527, 64160}, {17718, 51362}, {18421, 41712}, {18443, 64319}, {18491, 64328}, {19526, 63144}, {25466, 32213}, {26727, 29640}, {31197, 45763}, {31792, 64675}, {33697, 49113}, {33771, 56174}, {34339, 34862}, {37281, 64310}, {37313, 61155}, {37606, 64112}, {37623, 61541}, {38042, 58463}, {38149, 64321}, {40262, 64316}, {51787, 61159}, {54286, 61153}, {54391, 64664}, {57298, 64330}, {59337, 61154}, {63130, 63271}
X(64732) = midpoint of X(i) and X(j) for these {i,j}: {1, 40587}, {3, 3577}, {8, 36867}, {9, 1159}, {10, 14563}, {355, 64324}, {9623, 15934}, {9708, 11529}, {11041, 64734}, {64318, 64334}, {64320, 64326}, {64731, 64733}
X(64732) = reflection of X(i) in X(j) for these {i,j}: {64109, 1125}, {64315, 140}, {64316, 40262}, {64335, 9956}, {64735, 15178}
X(64732) = complement of X(64734)
X(64732) = X(3577)-of-anti-X3-ABC-reflections triangle
X(64732) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11041, 64734}, {355, 28629, 3824}, {1125, 28234, 64109}, {64320, 64326, 971}, {64731, 64733, 517}
X(64733) lies on circumconic {{A, B, C, X(3872), X(28234)}} and on these lines: {1, 631}, {2, 64322}, {3, 5836}, {8, 224}, {9, 2800}, {10, 5720}, {21, 40}, {55, 63132}, {56, 39779}, {78, 36922}, {100, 3576}, {140, 64109}, {165, 6950}, {200, 38127}, {355, 9710}, {484, 21165}, {515, 2550}, {516, 6930}, {517, 1001}, {519, 18443}, {549, 64742}, {936, 40257}, {946, 5084}, {958, 1158}, {993, 3359}, {997, 3035}, {1006, 5119}, {1376, 64312}, {1385, 3913}, {1482, 10179}, {1537, 4679}, {1621, 12703}, {1698, 6949}, {1699, 6965}, {1706, 6796}, {1750, 50796}, {2099, 64107}, {2551, 12608}, {2802, 52769}, {2951, 28172}, {2975, 59333}, {3149, 3698}, {3244, 12521}, {3340, 31806}, {3427, 12616}, {3428, 3753}, {3523, 4861}, {3579, 63754}, {3617, 17857}, {3626, 5534}, {3654, 28465}, {3679, 5531}, {3754, 5709}, {3811, 5690}, {3812, 22770}, {3870, 63143}, {3890, 7982}, {3895, 34486}, {4321, 38123}, {4666, 16200}, {4853, 5882}, {4900, 30389}, {5231, 10265}, {5234, 54156}, {5248, 49163}, {5258, 63399}, {5425, 15104}, {5450, 37560}, {5584, 37287}, {5587, 6932}, {5705, 64763}, {5759, 28194}, {5779, 6001}, {5789, 31494}, {5795, 6256}, {5818, 63988}, {5881, 10884}, {5884, 57279}, {5903, 55104}, {6260, 56273}, {6282, 38399}, {6326, 64141}, {6762, 12005}, {6875, 59316}, {6889, 10039}, {6897, 45287}, {6908, 64317}, {6937, 10827}, {6940, 37618}, {6947, 30384}, {6955, 21578}, {6963, 23708}, {6969, 10175}, {6986, 14923}, {7672, 11529}, {7962, 64676}, {7971, 20117}, {7987, 63752}, {8158, 13374}, {8666, 37534}, {9709, 37837}, {9746, 28292}, {9940, 12513}, {10156, 51788}, {10164, 37611}, {10393, 10573}, {10857, 51705}, {10902, 63130}, {11014, 17566}, {11108, 45776}, {11278, 64670}, {11496, 31798}, {12114, 31787}, {12514, 37562}, {12524, 26921}, {12565, 31673}, {12629, 13607}, {12635, 58643}, {12704, 64284}, {12736, 54408}, {13145, 24467}, {13205, 32613}, {13384, 54192}, {13528, 16370}, {13624, 63753}, {15016, 62874}, {16004, 64076}, {17502, 63751}, {17636, 34879}, {18250, 54198}, {18528, 38155}, {21231, 53996}, {22758, 64129}, {24297, 34474}, {25440, 64269}, {26066, 64279}, {28160, 43178}, {30147, 37531}, {31424, 40256}, {32633, 35242}, {34339, 62858}, {34489, 37407}, {36846, 64199}, {36867, 37615}, {37106, 63136}, {37569, 59417}, {37828, 52265}, {38460, 54445}, {41229, 64021}, {41859, 64291}, {48482, 64333}, {48667, 58666}, {50528, 59387}, {51077, 64667}, {57284, 64310}, {59413, 64321}, {62838, 64189}
X(64733) = midpoint of X(i) and X(j) for these {i,j}: {3, 40587}, {8, 64324}, {40, 3577}, {7966, 11525}, {9623, 30503}, {11362, 14563}, {64311, 64318}, {64319, 64320}
X(64733) = reflection of X(i) in X(j) for these {i,j}: {1158, 64311}, {3427, 12616}, {6261, 64328}, {48482, 64333}, {64109, 140}, {64315, 6684}, {64316, 6796}, {64325, 3812}, {64335, 10}, {64731, 64732}, {64735, 1385}
X(64733) = complement of X(64322)
X(64733) = X(4549)-of-1st-circumperp triangle
X(64733) = X(4550)-of-hexyl triangle
X(64733) = X(4846)-of-2nd-circumperp triangle
X(64733) = X(7706)-of-excentral triangle
X(64733) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {517, 64732, 64731}, {958, 31788, 1158}, {3576, 11525, 7966}, {4853, 8726, 5882}, {6684, 28234, 64315}, {11014, 31423, 19861}, {11362, 14563, 28234}, {26446, 61146, 997}, {30147, 43174, 37531}, {64319, 64320, 515}
X(64734) lies on these lines: {1, 5791}, {2, 11041}, {3, 5837}, {5, 3577}, {8, 392}, {9, 952}, {10, 1482}, {11, 3679}, {72, 10941}, {80, 4679}, {142, 1159}, {149, 3419}, {210, 12647}, {355, 960}, {405, 37739}, {442, 11682}, {443, 50193}, {514, 4643}, {515, 5779}, {517, 2550}, {519, 1001}, {936, 5690}, {944, 31445}, {958, 16202}, {993, 3655}, {997, 3035}, {1125, 14563}, {1376, 3654}, {1385, 5770}, {1387, 5231}, {1478, 31165}, {1698, 15950}, {1836, 3899}, {2886, 3656}, {3295, 6737}, {3340, 8728}, {3427, 5787}, {3452, 5790}, {3576, 13226}, {3617, 7705}, {3625, 51572}, {3626, 21627}, {3632, 5506}, {3652, 12514}, {3678, 32049}, {3789, 14077}, {3822, 34647}, {3869, 14450}, {3872, 25416}, {3876, 64087}, {3878, 5794}, {3911, 35272}, {3925, 25415}, {3927, 10106}, {3940, 31397}, {4004, 37462}, {4533, 56879}, {4662, 49169}, {4668, 4900}, {4677, 30393}, {4752, 17281}, {4848, 16408}, {4853, 47746}, {4867, 17718}, {4930, 64110}, {5087, 61263}, {5119, 6154}, {5126, 5744}, {5128, 17563}, {5234, 61296}, {5251, 37740}, {5252, 5692}, {5258, 37738}, {5259, 37724}, {5273, 7967}, {5438, 61524}, {5698, 28160}, {5705, 5901}, {5720, 64319}, {5730, 11374}, {5745, 10246}, {5777, 64317}, {5795, 12645}, {5844, 9623}, {5855, 54318}, {5882, 18249}, {5887, 6259}, {6224, 62838}, {6734, 11373}, {7317, 56090}, {7373, 24391}, {7483, 56387}, {7971, 37424}, {7982, 31419}, {8158, 9709}, {8580, 63143}, {9945, 35445}, {10051, 44784}, {10176, 15863}, {10222, 19843}, {10573, 25917}, {10609, 35258}, {10742, 37822}, {10944, 41229}, {11011, 19854}, {11108, 64163}, {11729, 38112}, {12526, 18990}, {12572, 18525}, {12625, 15172}, {12667, 31821}, {12701, 47033}, {12702, 57284}, {14110, 64332}, {14647, 64659}, {15170, 64368}, {15178, 30478}, {15712, 45036}, {15935, 38316}, {16792, 49681}, {17532, 51423}, {18228, 59388}, {18250, 47745}, {18395, 24954}, {20103, 38127}, {21616, 61261}, {24297, 59415}, {24390, 64367}, {24474, 64325}, {24477, 51788}, {26066, 30144}, {26363, 61276}, {26727, 62711}, {27131, 59416}, {30827, 38042}, {30852, 38058}, {31424, 34773}, {31435, 37730}, {31446, 61286}, {31458, 61282}, {34606, 37708}, {36920, 61686}, {37611, 64320}, {38060, 38097}, {38067, 64154}, {45770, 64275}, {49168, 58679}, {50821, 59572}
X(64734) = midpoint of X(i) and X(j) for these {i,j}: {1, 36922}, {8, 1000}, {72, 39779}, {944, 64313}, {8275, 11525}, {14110, 64332}
X(64734) = reflection of X(i) in X(j) for these {i,j}: {1, 64109}, {3, 64315}, {355, 64335}, {1159, 142}, {3577, 5}, {5787, 3427}, {11041, 64732}, {14563, 1125}, {24474, 64325}, {36867, 1}, {37727, 64735}, {40587, 10}, {64324, 1385}
X(64734) = complement of X(11041)
X(64734) = anticomplement of X(64732)
X(64734) = X(3577)-of-Johnson triangle
X(64734) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11041, 64732}, {8, 392, 5722}, {10, 13464, 31493}, {10, 28234, 40587}, {10, 5289, 5886}, {3679, 8275, 11525}, {3878, 5794, 12699}, {5730, 24987, 11374}, {11362, 12447, 9709}, {36922, 64109, 36867}
X(64735) lies on these lines: {1, 227}, {3, 3244}, {4, 13865}, {12, 10806}, {35, 8275}, {36, 16236}, {55, 104}, {56, 11041}, {214, 1376}, {390, 2829}, {405, 61296}, {411, 20057}, {514, 24328}, {515, 6767}, {517, 11495}, {519, 6600}, {944, 3303}, {952, 1001}, {956, 34486}, {958, 16202}, {999, 14563}, {1056, 5842}, {1058, 18242}, {1319, 64341}, {1385, 3913}, {1480, 3309}, {1482, 16117}, {1483, 5428}, {1616, 37699}, {1621, 64313}, {1697, 12675}, {2095, 3892}, {2346, 3427}, {3058, 12115}, {3241, 3428}, {3295, 5882}, {3304, 11491}, {3488, 64317}, {3636, 6918}, {3655, 10679}, {3748, 64332}, {3880, 8730}, {3900, 37628}, {4326, 6001}, {4413, 38665}, {4421, 10269}, {4423, 59388}, {4428, 22758}, {4860, 48363}, {4900, 30392}, {5218, 20418}, {5251, 61294}, {5288, 61289}, {5434, 37000}, {5534, 58679}, {5541, 58595}, {5603, 8162}, {5657, 51463}, {5687, 11525}, {5709, 58609}, {5720, 10179}, {5790, 8167}, {5836, 64668}, {5919, 18446}, {6154, 6955}, {6244, 51705}, {6253, 10597}, {6256, 15172}, {6261, 31792}, {6284, 10805}, {6796, 7373}, {6913, 28236}, {6985, 33179}, {6986, 20050}, {7580, 16200}, {7971, 30337}, {7972, 15175}, {8166, 64148}, {8168, 26446}, {8273, 12245}, {10167, 12703}, {10222, 64077}, {10283, 18491}, {10680, 61284}, {10786, 37722}, {10894, 12116}, {10902, 61288}, {11108, 47745}, {11194, 32613}, {11227, 63132}, {11236, 32213}, {11238, 63270}, {11249, 61286}, {11362, 12333}, {11499, 37624}, {11510, 37734}, {11531, 37426}, {11715, 37606}, {12000, 18481}, {12001, 61282}, {12005, 12702}, {12520, 13600}, {12575, 64119}, {12735, 22775}, {12773, 61159}, {13405, 64333}, {15170, 26333}, {15178, 25524}, {15931, 51093}, {18518, 61276}, {24929, 64334}, {26487, 32214}, {28194, 43182}, {28466, 51087}, {34471, 64337}, {34474, 61154}, {34773, 37622}, {36746, 37588}, {37002, 63273}, {37525, 51767}, {37556, 45776}, {37740, 57278}, {38669, 61155}, {38693, 61157}, {39883, 49465}, {40257, 64326}, {43179, 64156}, {49163, 58567}, {50843, 52148}, {51779, 63992}, {53053, 64118}, {54342, 64145}
X(64735) = midpoint of X(i) and X(j) for these {i,j}: {1, 7966}, {944, 64322}, {1000, 64324}, {7972, 64330}, {37727, 64734}
X(64735) = reflection of X(i) in X(j) for these {i,j}: {11500, 64312}, {64319, 37837}, {64323, 13607}, {64326, 40257}, {64335, 64109}, {64731, 1}, {64732, 15178}, {64733, 1385}
X(64735) = X(1000)-of-anti-Mandart-incircle triangle
X(64735) = X(7966)-of-anti-Aquila triangle
X(64735) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 64316, 64325}, {55, 64324, 64311}, {944, 3303, 11496}, {952, 64109, 64335}, {1000, 7967, 64324}, {3295, 5882, 12114}, {3655, 10679, 63991}, {12116, 15888, 10894}, {13607, 28234, 64323}, {16202, 37727, 958}, {34486, 61291, 956}, {34773, 37622, 64074}
X(64736) lies on these lines: {1, 140}, {7, 31145}, {8, 226}, {11, 11224}, {12, 4668}, {36, 61291}, {46, 61296}, {56, 3633}, {57, 519}, {65, 3632}, {73, 50575}, {80, 31162}, {145, 1420}, {165, 37740}, {200, 5855}, {388, 3625}, {484, 50811}, {517, 1864}, {528, 61007}, {912, 4338}, {944, 5128}, {952, 2093}, {956, 3256}, {1000, 51779}, {1317, 13462}, {1319, 51093}, {1405, 4873}, {1445, 41558}, {1467, 64768}, {1482, 50443}, {1697, 3488}, {1698, 11011}, {1708, 3895}, {1737, 16200}, {1743, 4534}, {1788, 3244}, {1836, 37712}, {1837, 11531}, {2003, 60689}, {2099, 3679}, {2136, 41575}, {2171, 4034}, {3036, 34647}, {3057, 15104}, {3218, 34716}, {3241, 3911}, {3243, 12648}, {3339, 10944}, {3361, 37738}, {3474, 28236}, {3485, 3626}, {3585, 61250}, {3600, 20053}, {3601, 11362}, {3617, 64160}, {3621, 10106}, {3635, 7288}, {3654, 30282}, {3656, 11545}, {3671, 4701}, {3680, 12649}, {3880, 41539}, {3913, 37583}, {3947, 4746}, {4295, 47745}, {4297, 41348}, {4304, 50810}, {4308, 20014}, {4323, 4678}, {4654, 4677}, {4691, 10588}, {4816, 5290}, {5119, 54342}, {5176, 28609}, {5288, 11509}, {5289, 20196}, {5554, 15829}, {5587, 18393}, {5657, 13384}, {5697, 41538}, {5719, 50823}, {5731, 63207}, {5853, 12848}, {5854, 41556}, {5919, 8275}, {6604, 63574}, {6738, 37556}, {7175, 49680}, {7672, 60982}, {7962, 18391}, {7982, 9581}, {7987, 37734}, {7991, 10950}, {8148, 9614}, {8227, 11009}, {9588, 34471}, {9613, 12645}, {9624, 18395}, {9797, 61630}, {10826, 11280}, {10914, 14054}, {11041, 31397}, {11376, 16189}, {11526, 38200}, {11529, 12647}, {11682, 27131}, {12437, 63133}, {12531, 21139}, {12625, 14923}, {12701, 58245}, {12832, 26726}, {15228, 37706}, {15803, 37727}, {15844, 64200}, {15950, 19875}, {17151, 58800}, {20049, 64142}, {20050, 63987}, {24393, 60995}, {24471, 49690}, {24929, 34718}, {26481, 64370}, {30305, 51791}, {30827, 62826}, {31393, 50817}, {31425, 37616}, {31434, 50194}, {32003, 52563}, {34489, 64744}, {34641, 51782}, {34701, 63136}, {34772, 64204}, {35445, 59417}, {37618, 61288}, {37704, 63210}, {37711, 41869}, {37724, 53053}, {37730, 41864}, {37736, 64056}, {37739, 61763}, {38097, 61015}, {38455, 62823}, {41540, 41863}, {41549, 44669}, {41553, 64746}, {41711, 44784}, {48803, 56451}, {48831, 56453}, {50129, 62774}, {53056, 61294}
X(64736) = reflection of X(i) in X(j) for these {i,j}: {3057, 64157}, {7962, 18391}, {9580, 5727}
X(64736) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2163, 3680}, {2320, 3445}, {2364, 8056}, {5549, 58794}, {6557, 28607}, {16945, 56094}, {30608, 38266}
X(64736) = X(i)-Dao conjugate of X(j) for these {i, j}: {8, 56094}, {36911, 6557}, {40587, 3680}, {45036, 2320}
X(64736) = X(i)-Ceva conjugate of X(j) for these {i, j}: {62780, 5219}
X(64736) = pole of line {5587, 9669} with respect to the Feuerbach hyperbola
X(64736) = pole of line {28217, 51648} with respect to the Suppa-Cucoanes circle
X(64736) = intersection, other than A, B, C, of circumconics {{A, B, C, X(145), X(3679)}}, {{A, B, C, X(1420), X(2099)}}, {{A, B, C, X(1743), X(4867)}}, {{A, B, C, X(3158), X(3711)}}, {{A, B, C, X(3940), X(4792)}}, {{A, B, C, X(4653), X(40587)}}, {{A, B, C, X(4717), X(4856)}}, {{A, B, C, X(4873), X(12640)}}, {{A, B, C, X(5219), X(5435)}}, {{A, B, C, X(18743), X(27747)}}, {{A, B, C, X(27739), X(41629)}}, {{A, B, C, X(27752), X(31227)}}, {{A, B, C, X(36920), X(39126)}}, {{A, B, C, X(51362), X(51433)}}
X(64736) = barycentric product X(i)*X(j) for these (i, j): {145, 5219}, {1420, 4671}, {3161, 62780}, {3679, 5435}, {4814, 62532}, {4848, 5235}, {4873, 62787}, {18743, 2099}, {30719, 4767}, {31227, 36920}, {39126, 45}, {43052, 43290}
X(64736) = barycentric quotient X(i)/X(j) for these (i, j): {45, 3680}, {145, 30608}, {1405, 3445}, {1420, 89}, {1743, 2320}, {2099, 8056}, {3052, 2364}, {3161, 56094}, {3679, 6557}, {4752, 31343}, {4774, 27831}, {4848, 30588}, {4873, 6556}, {5219, 4373}, {5435, 39704}, {30719, 52620}, {39126, 20569}, {62780, 27818}
X(64736) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40663, 31231}, {8, 3340, 9578}, {65, 3632, 37709}, {80, 31162, 51792}, {145, 4848, 1420}, {145, 51433, 3158}, {517, 5727, 9580}, {1788, 3244, 63208}, {2099, 36920, 3679}, {3654, 37728, 30282}, {3679, 16236, 2099}, {4654, 5252, 51789}, {4677, 18421, 5252}, {5252, 18421, 4654}, {5881, 5903, 9579}, {7982, 10573, 9581}, {12245, 64163, 1697}, {12645, 50193, 9613}, {13462, 34747, 1317}, {16236, 36920, 5219}, {18391, 28234, 7962}, {25415, 41684, 5587}, {50194, 59503, 31434}
X(64737) lies on these lines: {1, 5}, {2, 1617}, {7, 15346}, {10, 15844}, {30, 40292}, {46, 5771}, {55, 8727}, {56, 8728}, {57, 3925}, {63, 5857}, {65, 31419}, {85, 40615}, {140, 7742}, {142, 3660}, {149, 8543}, {226, 518}, {278, 427}, {347, 858}, {388, 442}, {390, 10883}, {497, 954}, {498, 6922}, {611, 26098}, {651, 33112}, {750, 43043}, {944, 33993}, {958, 47510}, {991, 51424}, {999, 6881}, {1001, 14022}, {1056, 6829}, {1058, 6990}, {1125, 50206}, {1214, 1368}, {1329, 5316}, {1441, 3006}, {1465, 29639}, {1478, 3428}, {1486, 33302}, {1532, 10590}, {1595, 1838}, {1621, 37358}, {1630, 56826}, {1699, 15298}, {1737, 61660}, {1836, 5762}, {1943, 33073}, {2256, 50036}, {2476, 5261}, {2550, 37363}, {2975, 47516}, {3085, 6831}, {3173, 3564}, {3256, 34612}, {3295, 6841}, {3361, 41859}, {3485, 24390}, {3600, 4197}, {3668, 23305}, {3703, 6358}, {3813, 64160}, {3817, 15845}, {3820, 61686}, {3822, 51782}, {3826, 3911}, {3841, 4298}, {3947, 25639}, {4187, 10588}, {4294, 37447}, {4848, 9710}, {5057, 29007}, {5083, 25557}, {5218, 37374}, {5226, 11680}, {5249, 17625}, {5290, 57285}, {5328, 11681}, {5432, 15931}, {5437, 25973}, {5572, 27869}, {5659, 11246}, {5713, 64069}, {5791, 37550}, {5805, 54408}, {5856, 8545}, {5880, 24465}, {6601, 8232}, {6675, 37579}, {6737, 12607}, {6830, 8164}, {6842, 9654}, {6882, 31479}, {6941, 8166}, {6991, 14986}, {7201, 21926}, {7288, 17529}, {7354, 37424}, {7680, 31397}, {7956, 17605}, {7965, 9580}, {8071, 37281}, {8581, 64115}, {9612, 15908}, {9655, 37401}, {10039, 14110}, {10106, 25466}, {10386, 16160}, {11230, 60769}, {11235, 42885}, {11501, 37356}, {12558, 12575}, {12588, 33137}, {12594, 34029}, {13411, 63980}, {13727, 27542}, {15185, 21617}, {15296, 24703}, {15909, 60919}, {16608, 26013}, {17080, 29664}, {17530, 34625}, {17660, 64345}, {18839, 20330}, {18990, 22759}, {20420, 26357}, {23304, 44411}, {24552, 28776}, {24953, 37583}, {25006, 41539}, {26942, 31330}, {30116, 51421}, {30275, 41555}, {30312, 64142}, {33136, 42289}, {34050, 64174}, {36482, 55010}, {37432, 37799}, {37468, 64280}, {38205, 41556}, {39542, 64041}, {41007, 45917}, {50195, 51755}, {50196, 55108}, {51784, 64346}, {52254, 60943}, {60909, 61716}, {61013, 64361}, {62843, 64408}
X(64737) = reflection of X(i) in X(j) for these {i,j}: {3428, 55300}
X(64737) = pole of line {900, 10006} with respect to the nine-point circle
X(64737) = pole of line {44428, 50347} with respect to the polar circle
X(64737) = pole of line {2245, 37541} with respect to the Kiepert hyperbola
X(64737) = pole of line {3911, 37597} with respect to the dual conic of Yff parabola
X(64737) = X(495)-of-1st-Johnson-Yff triangle
X(64737) = intersection, other than A, B, C, of circumconics {{A, B, C, X(80), X(60227)}}, {{A, B, C, X(1390), X(1807)}}
X(64737) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 37695, 15253}, {11, 12, 5219}, {12, 10957, 11375}, {12, 26481, 5}, {12, 5252, 495}, {226, 2886, 64127}, {226, 4847, 5173}, {495, 496, 5719}, {5726, 7951, 12}, {10957, 11375, 496}, {37363, 51416, 2550}
X(64738) lies on circumconic {{A, B, C, X(3254), X(60094)}} and on these lines: {1, 38060}, {2, 1156}, {3, 38131}, {4, 38159}, {5, 1158}, {6, 38195}, {7, 31272}, {8, 4578}, {9, 11}, {10, 528}, {12, 38218}, {100, 18230}, {104, 5817}, {119, 38108}, {142, 5851}, {214, 38059}, {390, 59415}, {405, 4305}, {516, 6702}, {518, 1387}, {522, 52873}, {527, 5087}, {900, 40551}, {908, 63254}, {952, 1001}, {960, 64205}, {971, 6713}, {1125, 2801}, {1145, 38057}, {1317, 38316}, {1320, 5686}, {1445, 24465}, {1484, 15296}, {1537, 38037}, {1698, 51768}, {1837, 47375}, {2478, 18231}, {2550, 34122}, {2829, 63970}, {3035, 6666}, {3036, 5853}, {3086, 5729}, {3622, 14151}, {3716, 59997}, {3816, 61004}, {3847, 18232}, {4069, 4853}, {5057, 37787}, {5083, 58564}, {5220, 45700}, {5223, 16173}, {5528, 6174}, {5542, 32557}, {5660, 64264}, {5698, 17556}, {5723, 62764}, {5732, 21154}, {5735, 38152}, {5759, 59391}, {5762, 60759}, {5779, 57298}, {5805, 23513}, {5840, 31658}, {5850, 33709}, {5854, 24393}, {5857, 8068}, {6172, 59377}, {6173, 59376}, {6675, 40539}, {6745, 15733}, {7678, 61026}, {8236, 12531}, {10177, 61015}, {10199, 25557}, {10525, 61524}, {10584, 60946}, {10589, 60940}, {10707, 61023}, {10724, 59418}, {10738, 59381}, {12735, 42819}, {14740, 58635}, {15185, 46685}, {15251, 24433}, {15863, 30331}, {19907, 38043}, {20119, 52653}, {21153, 24466}, {22799, 38139}, {23808, 25380}, {30424, 38207}, {31657, 34126}, {31672, 38761}, {33814, 38113}, {36868, 61028}, {36991, 38693}, {37736, 64674}, {38025, 50843}, {38026, 51099}, {38088, 51008}, {38090, 51002}, {38095, 60963}, {38097, 50842}, {38099, 51102}, {38104, 51100}, {38318, 58421}, {38319, 61595}, {38602, 60901}, {40659, 46694}, {41555, 60935}, {41556, 60995}, {46684, 63973}, {51090, 59419}, {52265, 58415}, {52835, 59390}, {52836, 59389}, {58608, 58683}, {58611, 58678}, {60905, 64155}, {62674, 62676}
X(64738) = midpoint of X(i) and X(j) for these {i,j}: {9, 11}, {1156, 10427}, {3254, 6068}, {15185, 46685}, {15863, 30331}, {31672, 38761}, {38211, 53055}, {38602, 60901}, {41555, 60935}, {46684, 63973}, {58608, 58683}, {58611, 58678}
X(64738) = reflection of X(i) in X(j) for these {i,j}: {142, 6667}, {3035, 6666}, {5083, 58564}, {12735, 42819}, {14740, 58635}, {40659, 46694}
X(64738) = inverse of X(6068) in Feuerbach hyperbola
X(64738) = complement of X(10427)
X(64738) = X(i)-complementary conjugate of X(j) for these {i, j}: {10426, 10}, {61230, 46415}
X(64738) = pole of line {6068, 15733} with respect to the Feuerbach hyperbola
X(64738) = pole of line {30565, 41798} with respect to the Steiner inellipse
X(64738) = X(1156)-of-Gemini-110 triangle
X(64738) = X(1177)-of-2nd-Zaniah triangle
X(64738) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {9, 11, 5514}
X(64738) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1156, 10427}, {7, 31272, 38205}, {9, 3254, 6068}, {11, 6068, 3254}, {3254, 6068, 5856}, {5851, 6667, 142}
X(64739) lies on these lines: {1, 142}, {2, 55340}, {3, 9052}, {6, 3939}, {7, 35338}, {8, 16713}, {9, 2293}, {31, 5037}, {37, 15733}, {40, 63395}, {42, 1449}, {43, 59584}, {48, 40910}, {55, 219}, {77, 3870}, {78, 3883}, {86, 59255}, {101, 1486}, {109, 23144}, {145, 37558}, {192, 522}, {200, 3686}, {218, 21002}, {241, 15185}, {332, 3996}, {344, 1026}, {386, 1386}, {480, 55432}, {517, 50656}, {518, 991}, {527, 1742}, {572, 12329}, {573, 674}, {579, 2223}, {581, 3811}, {612, 2900}, {664, 57792}, {672, 16688}, {995, 40499}, {1001, 56809}, {1002, 18164}, {1174, 7123}, {1212, 40659}, {1253, 2323}, {1376, 17049}, {1458, 3243}, {1621, 56813}, {1743, 4878}, {2141, 3730}, {2318, 4512}, {2324, 4326}, {2346, 37659}, {2667, 24394}, {2809, 18161}, {2810, 48908}, {3000, 60933}, {3056, 4266}, {3059, 40937}, {3066, 8694}, {3072, 8715}, {3161, 4069}, {3191, 4294}, {3193, 3871}, {3204, 16686}, {3207, 36641}, {3240, 61222}, {3247, 4343}, {3668, 41570}, {3720, 24392}, {3736, 3913}, {3745, 56178}, {3873, 17092}, {3880, 58583}, {3882, 25304}, {3912, 24388}, {3935, 17363}, {3941, 4253}, {3945, 7674}, {3957, 17391}, {3961, 25353}, {4105, 64343}, {4149, 4511}, {4254, 10387}, {4260, 37590}, {4300, 11523}, {4303, 41863}, {4318, 10571}, {4447, 35892}, {4551, 54425}, {5311, 56317}, {5856, 17365}, {6007, 64170}, {6510, 30621}, {6555, 55372}, {7671, 26669}, {7676, 62799}, {10177, 25067}, {10389, 25941}, {10679, 18451}, {12033, 17455}, {12625, 59305}, {13329, 45728}, {14839, 64727}, {16608, 50441}, {16670, 20978}, {17018, 54308}, {17059, 17234}, {17126, 53388}, {17245, 64443}, {17766, 22836}, {18162, 24309}, {19589, 41265}, {20195, 59217}, {20683, 20992}, {20990, 64751}, {21010, 52020}, {21346, 35293}, {21384, 22312}, {21746, 34247}, {22053, 62823}, {24386, 26102}, {24389, 29571}, {24635, 34784}, {24708, 60942}, {25716, 52980}, {26893, 54327}, {29696, 52923}, {29747, 62872}, {30116, 44669}, {30628, 57022}, {30682, 41353}, {37529, 64117}, {37699, 59722}, {37819, 56800}, {42079, 51058}, {42843, 64013}, {43924, 56314}, {52428, 58328}, {53391, 63498}, {54474, 61030}, {56808, 61155}, {60973, 64741}
X(64739) = reflection of X(i) in X(j) for these {i,j}: {573, 15624}, {3169, 4097}
X(64739) = perspector of circumconic {{A, B, C, X(5546), X(6078)}}
X(64739) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 60075}
X(64739) = X(i)-Dao conjugate of X(j) for these {i, j}: {210, 10}, {5452, 60075}, {17059, 522}, {52594, 23989}
X(64739) = X(i)-Ceva conjugate of X(j) for these {i, j}: {86, 9}, {664, 47676}, {3873, 4253}, {32015, 8012}, {35160, 672}
X(64739) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2141, 329}
X(64739) = X(i)-cross conjugate of X(j) for these {i, j}: {40599, 25082}
X(64739) = pole of line {17642, 40937} with respect to the Feuerbach hyperbola
X(64739) = pole of line {7, 17127} with respect to the Stammler hyperbola
X(64739) = pole of line {672, 47676} with respect to the Steiner circumellipse
X(64739) = pole of line {6063, 55082} with respect to the Wallace hyperbola
X(64739) = X(3688)-of-anti-Mandart-incircle
X(64739) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(55), X(7241)}}, {{A, B, C, X(142), X(7123)}}, {{A, B, C, X(218), X(24181)}}, {{A, B, C, X(219), X(3970)}}, {{A, B, C, X(277), X(284)}}, {{A, B, C, X(1174), X(4000)}}, {{A, B, C, X(1252), X(47676)}}, {{A, B, C, X(2175), X(61038)}}, {{A, B, C, X(2191), X(2194)}}, {{A, B, C, X(2328), X(3873)}}, {{A, B, C, X(3913), X(4097)}}, {{A, B, C, X(3939), X(56314)}}, {{A, B, C, X(4648), X(38825)}}, {{A, B, C, X(5853), X(6600)}}
X(64739) = barycentric product X(i)*X(j) for these (i, j): {1, 25082}, {21, 3970}, {312, 3941}, {1252, 17059}, {3873, 9}, {3939, 47676}, {4253, 8}, {4905, 644}, {17092, 200}, {17234, 55}, {21946, 4570}, {22277, 333}, {23761, 59149}, {27827, 3158}, {28660, 61038}, {33933, 41}, {40599, 86}, {52594, 664}
X(64739) = barycentric quotient X(i)/X(j) for these (i, j): {55, 60075}, {3873, 85}, {3941, 57}, {3970, 1441}, {4253, 7}, {4905, 24002}, {17059, 23989}, {17092, 1088}, {17234, 6063}, {21946, 21207}, {22277, 226}, {23761, 23100}, {25082, 75}, {27827, 62528}, {33933, 20567}, {40599, 10}, {47676, 52621}, {52594, 522}, {61038, 1400}
X(64739) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 60785, 4000}, {77, 3870, 8271}, {674, 15624, 573}, {2223, 3779, 579}, {2293, 2340, 9}, {3158, 3169, 4097}, {3939, 41457, 6600}, {3941, 22277, 4253}
X(64740) lies on these lines: {1, 10308}, {3, 5506}, {4, 1768}, {21, 3062}, {30, 40}, {56, 51768}, {57, 16141}, {63, 63280}, {79, 84}, {90, 64329}, {165, 3647}, {226, 41690}, {474, 61740}, {484, 31673}, {515, 4330}, {516, 3648}, {517, 11524}, {758, 7995}, {946, 16116}, {971, 37080}, {1012, 37571}, {1158, 1749}, {1385, 5426}, {1394, 15430}, {1454, 51790}, {1482, 2771}, {1484, 16159}, {1697, 16140}, {1698, 18540}, {1750, 3651}, {2136, 50871}, {2475, 19925}, {3146, 52126}, {3333, 11544}, {3337, 18483}, {3522, 60911}, {3576, 31649}, {3624, 7171}, {3627, 5535}, {3646, 15673}, {3649, 10085}, {3650, 57279}, {3667, 42740}, {3746, 63266}, {3817, 35010}, {4297, 15677}, {4857, 64352}, {5250, 15678}, {5441, 7966}, {5536, 10916}, {5538, 31803}, {5541, 18525}, {5587, 22798}, {5927, 59326}, {6001, 64281}, {6175, 7989}, {6326, 31828}, {6701, 7988}, {6763, 41869}, {6841, 37534}, {6845, 61703}, {6847, 14526}, {6909, 31871}, {6972, 15017}, {7284, 16005}, {7354, 64372}, {7991, 11684}, {7992, 64320}, {7997, 15064}, {8227, 49107}, {9275, 51748}, {9579, 18977}, {9580, 16142}, {9588, 10860}, {9589, 41691}, {9612, 10042}, {9614, 10050}, {9812, 20084}, {9841, 15670}, {9856, 20323}, {10122, 18219}, {10429, 15910}, {10543, 10864}, {11219, 61556}, {11240, 14450}, {11263, 64130}, {11919, 16154}, {11920, 16155}, {12114, 46816}, {12675, 36946}, {12679, 16160}, {13089, 64315}, {15071, 17637}, {15726, 59320}, {16006, 51816}, {16112, 37022}, {16117, 22936}, {16124, 29301}, {16125, 63399}, {16133, 24644}, {16150, 22793}, {17525, 31435}, {17728, 27197}, {17768, 63974}, {18243, 37701}, {19541, 41542}, {22792, 52850}, {26878, 63998}, {31424, 41860}, {31445, 41853}, {31938, 64197}, {33856, 37251}, {36991, 60912}, {37532, 52860}, {37712, 63142}, {37714, 63985}, {37731, 41543}, {39878, 63279}, {45632, 49177}, {48903, 63310}, {49169, 51897}, {50865, 62858}, {52836, 61553}, {61252, 63132}, {62874, 63285}
X(64740) = midpoint of X(i) and X(j) for these {i,j}: {10308, 21669}
X(64740) = reflection of X(i) in X(j) for these {i,j}: {1, 21669}, {3, 26202}, {40, 3652}, {79, 37447}, {191, 7701}, {1768, 3065}, {3746, 63266}, {7701, 16138}, {7991, 11684}, {15071, 17637}, {16116, 946}, {16117, 22936}, {16118, 4}, {16132, 13743}, {16143, 21}, {16150, 22793}, {33557, 3647}, {34628, 15678}, {39878, 63279}, {47032, 22798}, {49178, 6841}, {63267, 3}, {64005, 16113}, {64289, 49177}
X(64740) = pole of line {2533, 35057} with respect to the Conway circle
X(64740) = pole of line {35057, 39540} with respect to the incircle
X(64740) = pole of line {32636, 64131} with respect to the Feuerbach hyperbola
X(64740) = pole of line {21180, 35057} with respect to the Suppa-Cucoanes circle
X(64740) = X(3519)-of-hexyl triangle
X(64740) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 16113, 64005}, {30, 16138, 7701}, {30, 3652, 40}, {30, 7701, 191}, {40, 7701, 3652}, {79, 37447, 1699}, {3647, 33557, 165}, {10085, 11372, 11522}, {13743, 16132, 5426}, {22798, 47032, 5587}, {54370, 63984, 7987}
X(64741) lies on circumconic {{A, B, C, X(3062), X(14943)}} and on these lines: {1, 971}, {2, 59688}, {4, 50307}, {6, 1721}, {9, 1742}, {20, 54386}, {37, 16112}, {40, 1757}, {43, 10860}, {44, 11495}, {69, 21629}, {77, 2310}, {84, 256}, {87, 58034}, {165, 2348}, {170, 16572}, {171, 1750}, {193, 9801}, {238, 5732}, {241, 60910}, {511, 12717}, {513, 2961}, {516, 3751}, {517, 7996}, {518, 12652}, {519, 9950}, {614, 11220}, {651, 4319}, {975, 31871}, {978, 9841}, {982, 30304}, {984, 64197}, {986, 7992}, {990, 16475}, {991, 54370}, {1038, 1898}, {1044, 10396}, {1193, 63984}, {1445, 3000}, {1471, 8544}, {1490, 37552}, {1633, 2261}, {1697, 41680}, {1699, 4888}, {1707, 7580}, {1709, 17594}, {1722, 9943}, {1738, 63971}, {1743, 2951}, {1754, 41860}, {1766, 29353}, {1864, 60786}, {2082, 9309}, {2136, 2943}, {2263, 10394}, {2293, 8545}, {2340, 60966}, {2801, 16496}, {2808, 3056}, {3008, 43182}, {3073, 41854}, {3146, 54421}, {3551, 43747}, {3576, 8245}, {3664, 63973}, {3729, 28850}, {3731, 54474}, {3782, 41706}, {4307, 36991}, {4326, 9440}, {4383, 5918}, {4384, 59620}, {4675, 42356}, {4882, 8915}, {5228, 31391}, {5247, 12565}, {5255, 63981}, {5268, 5927}, {5272, 10167}, {5293, 35658}, {5438, 24265}, {5691, 29207}, {5851, 17276}, {5942, 23529}, {6223, 13161}, {6996, 43173}, {7271, 30330}, {7274, 9814}, {7982, 49498}, {7995, 37598}, {8069, 56824}, {9303, 17170}, {9812, 62819}, {9961, 54418}, {10178, 37679}, {10431, 41011}, {10436, 45305}, {10857, 17123}, {10868, 19861}, {12684, 37592}, {13329, 43178}, {15254, 50677}, {17668, 55432}, {23821, 24179}, {24210, 64130}, {24231, 36996}, {24728, 53602}, {25722, 28043}, {29571, 64699}, {31183, 64698}, {33144, 41561}, {34059, 56378}, {34852, 59600}, {35514, 49772}, {41351, 56310}, {43065, 56380}, {43166, 49490}, {48878, 50314}, {53014, 62997}, {53599, 60896}, {60973, 64739}
X(64741) = midpoint of X(i) and X(j) for these {i,j}: {193, 9801}
X(64741) = reflection of X(i) in X(j) for these {i,j}: {69, 21629}, {1721, 6}, {16496, 61086}
X(64741) = anticomplement of X(59688)
X(64741) = X(i)-Dao conjugate of X(j) for these {i, j}: {9312, 61413}, {41795, 30694}, {59688, 59688}
X(64741) = pole of line {4083, 9441} with respect to the Bevan circle
X(64741) = pole of line {3900, 17069} with respect to the incircle
X(64741) = pole of line {57, 64134} with respect to the Feuerbach hyperbola
X(64741) = pole of line {42309, 60992} with respect to the dual conic of Yff parabola
X(64741) = X(9308)-of-excentral triangle
X(64741) = barycentric product X(i)*X(j) for these (i, j): {41795, 7}
X(64741) = barycentric quotient X(i)/X(j) for these (i, j): {41795, 8}
X(64741) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3062, 64134}, {6, 15726, 1721}, {193, 9801, 28849}, {1419, 4907, 1}, {1742, 9355, 9}, {1743, 2951, 9441}
X(64742) lies on circumconic {{A, B, C, X(1392), X(56416)}} and on these lines: {1, 5}, {2, 64140}, {3, 1320}, {8, 57298}, {10, 34126}, {30, 64138}, {56, 38722}, {100, 10246}, {104, 1392}, {140, 1145}, {145, 6958}, {149, 6923}, {153, 10595}, {214, 5836}, {474, 12331}, {515, 22938}, {517, 4973}, {519, 12619}, {528, 31657}, {546, 38038}, {547, 38026}, {549, 64733}, {631, 64743}, {758, 33856}, {942, 41554}, {944, 10738}, {946, 22799}, {962, 38753}, {997, 59400}, {1012, 10247}, {1385, 2802}, {1388, 10090}, {1768, 16200}, {2098, 10058}, {2099, 10074}, {2771, 25485}, {2800, 3881}, {2801, 15570}, {2829, 22791}, {2932, 16203}, {3035, 38028}, {3036, 30144}, {3241, 12247}, {3244, 10265}, {3526, 64141}, {3576, 12653}, {3616, 38752}, {3623, 6833}, {3655, 12119}, {3656, 34789}, {3811, 11256}, {3833, 22935}, {3872, 38112}, {3937, 52478}, {4996, 37621}, {4999, 34352}, {5048, 12758}, {5054, 64746}, {5055, 50907}, {5083, 50194}, {5123, 15863}, {5603, 10742}, {5663, 31523}, {5690, 5854}, {5779, 53055}, {5790, 31272}, {5818, 32558}, {5840, 34773}, {5844, 25416}, {5882, 21630}, {6246, 22835}, {6361, 38754}, {6667, 38042}, {6702, 38177}, {6797, 25405}, {6955, 20095}, {7982, 12515}, {8148, 64189}, {9803, 20057}, {9945, 37615}, {9956, 32557}, {10031, 17532}, {10087, 34471}, {10267, 22560}, {10269, 13205}, {10707, 12747}, {10778, 12898}, {10912, 25438}, {11011, 11570}, {11014, 24466}, {11015, 18444}, {11849, 18861}, {12332, 37622}, {12611, 13464}, {12641, 47746}, {12645, 59415}, {12699, 64145}, {12702, 38693}, {12736, 24928}, {13226, 37533}, {13375, 20323}, {13607, 33281}, {13996, 38760}, {14217, 18481}, {16174, 18480}, {17100, 37535}, {17638, 33176}, {17652, 37562}, {17654, 23340}, {18240, 51788}, {18525, 59391}, {18526, 51517}, {18583, 38050}, {19916, 21343}, {20418, 46920}, {21154, 61524}, {21740, 61601}, {24927, 39776}, {26446, 64056}, {28174, 38761}, {28186, 64186}, {31649, 45065}, {33709, 38182}, {34122, 61510}, {34123, 51700}, {34339, 58595}, {34718, 50894}, {34748, 50890}, {35641, 48701}, {35642, 48700}, {35762, 48715}, {35763, 48714}, {35810, 35857}, {35811, 35856}, {36867, 64330}, {38055, 61509}, {38060, 61511}, {38069, 50842}, {38669, 48667}, {40273, 52836}, {45081, 61520}, {47745, 59419}, {50798, 59377}, {58504, 64663}, {58605, 62395}
X(64742) = midpoint of X(i) and X(j) for these {i,j}: {1, 12737}, {3, 1320}, {80, 37727}, {104, 1482}, {145, 19914}, {944, 10738}, {962, 38753}, {1317, 37726}, {1483, 1484}, {3244, 10265}, {3655, 50891}, {3811, 11256}, {5882, 21630}, {6264, 6265}, {7982, 12515}, {7993, 12738}, {8148, 64189}, {10698, 12773}, {10778, 12898}, {10912, 25438}, {11715, 64137}, {12641, 47746}, {12699, 64145}, {14217, 18481}, {17652, 37562}, {17654, 23340}, {19916, 21343}, {34718, 50894}, {34748, 50890}, {36867, 64330}, {38669, 48667}, {64138, 64191}
X(64742) = reflection of X(i) in X(j) for these {i,j}: {5, 1387}, {119, 5901}, {214, 15178}, {1145, 140}, {5690, 6713}, {11698, 11729}, {12611, 13464}, {18480, 16174}, {19907, 1}, {22799, 946}, {25485, 33179}, {33814, 1385}, {34339, 58595}, {38602, 11715}, {51525, 214}, {52836, 40273}, {61562, 51700}
X(64742) = complement of X(64140)
X(64742) = X(1320)-of-anti-X3-ABC-reflections triangle
X(64742) = X(1539)-of-2nd-circumperp triangle
X(64742) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 12737, 31523}, {3, 1320, 18342}, {100, 15343, 58123}, {3025, 6075, 44052}, {3244, 10265, 16338}, {11715, 11717, 64137}
X(64742) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12737, 952}, {1, 20586, 12735}, {1, 6264, 6265}, {1, 952, 19907}, {517, 11715, 38602}, {952, 11729, 11698}, {952, 1387, 5}, {952, 5901, 119}, {1145, 38032, 140}, {1385, 2802, 33814}, {1483, 10283, 32213}, {2771, 33179, 25485}, {5854, 6713, 5690}, {6265, 12737, 6264}, {10247, 12773, 10698}, {10283, 11698, 11729}, {11715, 64137, 517}, {16174, 18480, 38141}, {51700, 61562, 34123}, {64138, 64191, 30}
X(64743) lies on these lines: {1, 13144}, {2, 1000}, {4, 64140}, {7, 12641}, {8, 80}, {10, 12653}, {11, 3617}, {20, 952}, {56, 100}, {104, 35238}, {144, 528}, {153, 517}, {214, 3241}, {484, 519}, {631, 64742}, {962, 12751}, {1445, 41558}, {1482, 6979}, {1484, 6963}, {1647, 13541}, {1698, 32558}, {1788, 20586}, {2475, 3909}, {2800, 6223}, {2805, 49450}, {2829, 20070}, {2894, 10914}, {2932, 54391}, {2975, 13205}, {3035, 3622}, {3036, 10707}, {3057, 37162}, {3091, 64138}, {3244, 15015}, {3254, 59413}, {3303, 63917}, {3522, 64191}, {3543, 50907}, {3616, 58453}, {3623, 25416}, {3625, 9897}, {3626, 37718}, {3632, 3648}, {3633, 33337}, {3679, 21041}, {3681, 17638}, {3698, 58611}, {3868, 64768}, {3870, 16236}, {3871, 37728}, {3877, 17652}, {3880, 36920}, {3885, 5722}, {3887, 63246}, {3911, 38460}, {3935, 6326}, {3957, 14563}, {4295, 12749}, {4430, 11570}, {4440, 19636}, {4661, 12532}, {4674, 24864}, {4678, 6919}, {4767, 52871}, {4792, 24222}, {4861, 37291}, {4996, 25438}, {5067, 38044}, {5068, 38038}, {5119, 15677}, {5176, 44784}, {5435, 41554}, {5601, 13230}, {5602, 13228}, {5657, 12737}, {5844, 6905}, {5853, 50573}, {6154, 20054}, {6174, 50894}, {6264, 11362}, {6366, 52164}, {6594, 8236}, {6667, 46932}, {6702, 50891}, {6827, 19914}, {6848, 10698}, {6970, 19907}, {7674, 12730}, {7967, 33814}, {7972, 20050}, {8148, 11698}, {8715, 14800}, {9778, 64145}, {9780, 16173}, {9945, 10031}, {10247, 61562}, {10265, 63143}, {10303, 38032}, {10595, 38752}, {10609, 20014}, {10711, 50872}, {10738, 59388}, {11045, 64745}, {11256, 24477}, {11531, 21635}, {12515, 50810}, {12640, 34772}, {12647, 33110}, {12690, 50890}, {12773, 37403}, {14217, 59387}, {14513, 53799}, {17460, 26727}, {17636, 45043}, {19875, 33709}, {19877, 32557}, {20013, 38665}, {20060, 49169}, {20067, 38455}, {25005, 37704}, {25439, 35204}, {28212, 38756}, {30331, 61012}, {31272, 46933}, {33108, 63270}, {33812, 51093}, {34711, 37299}, {37705, 48680}, {38314, 50841}, {39349, 39350}, {42696, 56433}, {51506, 61155}, {51517, 61510}, {52157, 56797}, {58591, 62854}, {59400, 61601}, {63135, 64372}
X(64743) = midpoint of X(i) and X(j) for these {i,j}: {3621, 20095}
X(64743) = reflection of X(i) in X(j) for these {i,j}: {2, 64746}, {4, 64140}, {8, 64056}, {20, 64136}, {100, 13996}, {145, 100}, {149, 8}, {962, 12751}, {1320, 1145}, {3543, 50907}, {3633, 33337}, {5176, 44784}, {6224, 5541}, {6264, 11362}, {8148, 11698}, {9802, 80}, {9897, 3625}, {9963, 12732}, {10707, 50842}, {11531, 21635}, {12248, 12702}, {12653, 10}, {20049, 10031}, {20050, 7972}, {20085, 12531}, {26726, 214}, {38460, 51433}, {48680, 37705}, {50872, 10711}, {50894, 6174}, {64009, 64189}
X(64743) = anticomplement of X(1320)
X(64743) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 5176}, {6, 908}, {7, 21282}, {44, 329}, {56, 519}, {57, 320}, {58, 62826}, {59, 17780}, {106, 12531}, {109, 900}, {222, 3007}, {519, 3436}, {604, 17495}, {651, 21297}, {900, 33650}, {902, 144}, {909, 34234}, {1014, 17145}, {1023, 4462}, {1317, 21290}, {1319, 8}, {1400, 63071}, {1404, 2}, {1407, 1266}, {1411, 80}, {1412, 17160}, {1415, 21222}, {1416, 24841}, {1431, 32844}, {1461, 4453}, {1462, 53381}, {1635, 37781}, {1877, 4}, {1960, 39351}, {2149, 2397}, {2251, 3177}, {2325, 54113}, {3285, 63}, {3911, 69}, {4358, 21286}, {4564, 61186}, {4565, 53333}, {4570, 23831}, {4573, 53368}, {5298, 2891}, {5440, 52366}, {7316, 53372}, {9459, 21218}, {14584, 5080}, {14628, 21277}, {16704, 20245}, {22356, 56943}, {23344, 4468}, {23703, 513}, {30572, 3448}, {30576, 21273}, {30606, 54109}, {30725, 150}, {32669, 2401}, {32674, 10015}, {32675, 60480}, {32735, 53361}, {36920, 21291}, {37790, 21270}, {38828, 4927}, {40151, 4887}, {40663, 1330}, {43924, 20042}, {51422, 151}, {52680, 3869}, {53528, 149}, {53529, 152}, {53530, 153}, {53531, 20344}, {53532, 34188}, {61047, 17487}, {61210, 514}, {62669, 20295}, {62789, 3434}
X(64743) = pole of line {1639, 3762} with respect to the Steiner circumellipse
X(64743) = pole of line {2397, 2403} with respect to the Yff parabola
X(64743) = X(1145)-of-Gemini-111 triangle
X(64743) = X(2935)-of-inner-Conway triangle
X(64743) = intersection, other than A, B, C, of circumconics {{A, B, C, X(80), X(8686)}}, {{A, B, C, X(1000), X(41529)}}, {{A, B, C, X(1120), X(36596)}}, {{A, B, C, X(3218), X(30578)}}, {{A, B, C, X(3880), X(22560)}}, {{A, B, C, X(8046), X(18359)}}
X(64743) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 2802, 149}, {8, 9802, 80}, {80, 2802, 9802}, {80, 64139, 31018}, {100, 5854, 145}, {145, 63133, 4188}, {214, 26726, 3241}, {519, 5541, 6224}, {528, 12531, 20085}, {952, 12702, 12248}, {952, 12732, 9963}, {952, 64136, 20}, {952, 64189, 64009}, {1145, 1320, 2}, {1145, 1387, 64141}, {1320, 64141, 1387}, {1320, 64746, 1145}, {2802, 64056, 8}, {3621, 20095, 952}, {5854, 13996, 100}, {9963, 12732, 20095}, {12641, 39776, 12648}, {20085, 31145, 12531}
X(64744) lies on these lines: {1, 1145}, {2, 33895}, {3, 519}, {4, 32537}, {5, 34640}, {8, 210}, {10, 10912}, {20, 34711}, {40, 38455}, {56, 51433}, {65, 10940}, {100, 34880}, {145, 1319}, {191, 2136}, {355, 2802}, {392, 10051}, {404, 64746}, {443, 5836}, {516, 52683}, {517, 6256}, {518, 12245}, {528, 5881}, {529, 7991}, {551, 31480}, {855, 12642}, {944, 13528}, {952, 1158}, {956, 8668}, {1000, 17559}, {1056, 10107}, {1155, 36977}, {1317, 4855}, {1320, 11376}, {1329, 7962}, {1482, 10915}, {1532, 7982}, {2098, 6735}, {2099, 51432}, {2475, 3909}, {3036, 9581}, {3039, 4936}, {3158, 3633}, {3169, 4271}, {3189, 3621}, {3241, 6921}, {3244, 56177}, {3303, 25875}, {3476, 37267}, {3576, 32157}, {3617, 64361}, {3625, 4133}, {3626, 21627}, {3679, 3680}, {3717, 34807}, {3811, 5844}, {3871, 37740}, {3872, 26066}, {3895, 10950}, {3951, 34689}, {4301, 11236}, {4534, 55337}, {4677, 11113}, {4848, 41426}, {4919, 46835}, {5048, 5552}, {5176, 12701}, {5183, 20076}, {5289, 6736}, {5450, 13205}, {5541, 37707}, {5554, 5919}, {5587, 13463}, {5657, 11260}, {5687, 10094}, {5697, 24703}, {5790, 49600}, {5794, 10914}, {5855, 6765}, {6264, 32198}, {6600, 42886}, {6601, 7317}, {6675, 63644}, {6737, 8168}, {6834, 34619}, {6872, 12632}, {6925, 44663}, {6959, 10222}, {6967, 34625}, {7741, 12653}, {8148, 21077}, {8275, 15829}, {9957, 58649}, {10093, 11508}, {10247, 59719}, {10528, 11011}, {10916, 59503}, {10944, 13996}, {11235, 64767}, {11510, 41575}, {12447, 45115}, {12629, 32426}, {12635, 28234}, {12649, 36920}, {15297, 37730}, {17563, 54286}, {17757, 30323}, {18395, 41702}, {18481, 35460}, {19860, 45081}, {20050, 37605}, {21272, 30617}, {22560, 25440}, {22837, 26446}, {24046, 24864}, {24390, 64203}, {24914, 38460}, {25438, 26285}, {25439, 37739}, {26476, 55016}, {28609, 58245}, {28628, 31397}, {31165, 56879}, {34489, 64736}, {34716, 63469}, {34791, 37566}, {35615, 35634}, {36846, 40663}, {37429, 54422}, {37516, 49688}, {37722, 50842}, {38496, 53618}, {40587, 50726}, {45287, 56998}, {48668, 61244}, {49168, 58643}, {51423, 63209}, {61296, 64191}
X(64744) = midpoint of X(i) and X(j) for these {i,j}: {2136, 3632}, {3189, 3621}, {5881, 64202}, {12641, 64056}
X(64744) = reflection of X(i) in X(j) for these {i,j}: {4, 32537}, {145, 56176}, {1482, 10915}, {3680, 3813}, {3913, 12640}, {6264, 32198}, {7982, 12607}, {8148, 21077}, {10912, 10}, {12513, 11362}, {21627, 3626}, {32049, 49169}, {37727, 8715}, {47746, 22837}
X(64744) = anticomplement of X(33895)
X(64744) = perspector of circumconic {{A, B, C, X(646), X(55996)}}
X(64744) = pole of line {2827, 15863} with respect to the Fuhrmann circle
X(64744) = pole of line {8, 58657} with respect to the Feuerbach hyperbola
X(64744) = pole of line {1408, 7419} with respect to the Stammler hyperbola
X(64744) = pole of line {20317, 30725} with respect to the Steiner inellipse
X(64744) = X(64)-of-Fuhrmann triangle
X(64744) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11, 60003, 61079}
X(64744) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(9353)}}, {{A, B, C, X(341), X(12641)}}, {{A, B, C, X(1000), X(42020)}}, {{A, B, C, X(3478), X(3885)}}, {{A, B, C, X(3880), X(57666)}}, {{A, B, C, X(5559), X(44720)}}
X(64744) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1145, 37828}, {1, 64204, 64123}, {8, 3885, 1837}, {517, 49169, 32049}, {519, 11362, 12513}, {519, 12640, 3913}, {519, 8715, 37727}, {2098, 6735, 25681}, {2136, 3632, 44669}, {3057, 44784, 8}, {3057, 46677, 960}, {3679, 3680, 3813}, {5697, 64087, 24703}, {5881, 64202, 528}, {7982, 12607, 34647}, {10914, 12647, 5794}, {10944, 13996, 63130}, {12641, 64056, 5854}, {26446, 47746, 22837}
X(64745) lies on circumconic {{A, B, C, X(519), X(13278)}} and on these lines: {1, 88}, {2, 12758}, {8, 10940}, {10, 119}, {11, 3753}, {40, 12775}, {65, 1145}, {80, 5554}, {104, 59333}, {354, 25416}, {377, 10057}, {392, 31235}, {474, 12740}, {517, 3035}, {519, 5083}, {528, 6797}, {758, 6735}, {936, 13253}, {942, 5854}, {952, 5836}, {958, 12515}, {993, 3359}, {997, 10698}, {1125, 15558}, {1317, 10914}, {1329, 12611}, {1376, 6265}, {1387, 3812}, {1519, 3814}, {1537, 21616}, {1706, 6326}, {1768, 9623}, {2077, 48363}, {2550, 2801}, {2771, 3036}, {2829, 31788}, {2886, 12619}, {2932, 22768}, {3057, 34123}, {3244, 46681}, {3296, 12641}, {3434, 10073}, {3617, 12532}, {3679, 11571}, {3698, 17638}, {3869, 64141}, {3872, 10074}, {3874, 49169}, {3878, 5657}, {3880, 12735}, {3884, 58453}, {3892, 11041}, {3898, 5218}, {3918, 6702}, {3919, 5542}, {3968, 33108}, {4004, 13996}, {4996, 59327}, {5123, 61580}, {5439, 17652}, {5552, 5903}, {5687, 12739}, {5694, 58674}, {5697, 64012}, {5722, 13271}, {5794, 19914}, {5902, 11046}, {6594, 42843}, {6684, 55296}, {8256, 10942}, {9709, 48667}, {9946, 57284}, {10058, 19860}, {10107, 16137}, {10176, 15017}, {10200, 32557}, {10202, 33337}, {10222, 58604}, {10269, 11715}, {10531, 14217}, {10609, 17636}, {10679, 64731}, {10916, 12832}, {10935, 11024}, {11045, 64743}, {11112, 18976}, {12514, 64189}, {12665, 64021}, {12703, 64136}, {12737, 16203}, {12755, 59413}, {12763, 64087}, {12773, 40587}, {13373, 64282}, {13747, 25414}, {14803, 17100}, {16209, 38693}, {17098, 45393}, {17646, 38156}, {17654, 37725}, {18398, 26726}, {18802, 64045}, {19907, 59691}, {20118, 24390}, {21077, 55016}, {22837, 41554}, {23340, 31870}, {24036, 61239}, {24473, 50842}, {25413, 37828}, {25466, 32198}, {25485, 30144}, {31787, 38759}, {34918, 49178}, {37561, 51111}, {37736, 63137}, {38213, 47320}, {38758, 58649}, {41558, 63146}, {44663, 58663}, {45701, 50841}, {51433, 53615}
X(64745) = midpoint of X(i) and X(j) for these {i,j}: {1, 39776}, {8, 11570}, {65, 1145}, {119, 37562}, {1317, 10914}, {5903, 64139}, {10609, 17636}, {11571, 46685}, {12665, 64021}, {17654, 37725}, {18802, 64045}, {24473, 50842}, {41558, 63146}, {51433, 53615}
X(64745) = reflection of X(i) in X(j) for these {i,j}: {1387, 3812}, {3244, 46681}, {3635, 58625}, {3884, 58453}, {5694, 58674}, {6702, 3918}, {10222, 58604}, {12735, 58591}, {12736, 3754}, {15528, 34339}, {15558, 1125}, {18254, 10}, {38759, 31787}, {64137, 18240}
X(64745) = complement of X(12758)
X(64745) = pole of line {2827, 10074} with respect to the incircle
X(64745) = pole of line {5048, 51409} with respect to the Feuerbach hyperbola
X(64745) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1317, 6018, 10914}
X(64745) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 39776, 2802}, {1, 5541, 13278}, {10, 2800, 18254}, {119, 37562, 2800}, {952, 34339, 15528}, {1145, 10956, 10915}, {2802, 18240, 64137}, {2802, 3754, 12736}, {3359, 48695, 46684}, {3679, 11571, 46685}, {3880, 58591, 12735}, {5883, 64137, 18240}, {24982, 39692, 6702}
X(64746) lies on these lines: {1, 50841}, {2, 1000}, {8, 190}, {10, 30855}, {11, 53620}, {30, 50907}, {36, 100}, {63, 4677}, {80, 4669}, {88, 24864}, {104, 3654}, {145, 34753}, {214, 51093}, {376, 952}, {404, 64744}, {411, 38665}, {517, 10711}, {1317, 5435}, {1537, 50872}, {2094, 18802}, {2802, 3679}, {2804, 44553}, {2829, 34632}, {3035, 38314}, {3036, 9802}, {3241, 5854}, {3242, 51158}, {3244, 50844}, {3545, 64138}, {3621, 10609}, {3625, 50893}, {3626, 50889}, {3655, 34474}, {3828, 16173}, {3871, 37739}, {4421, 4996}, {4678, 12019}, {4745, 21630}, {4756, 50914}, {4997, 25030}, {5054, 64742}, {5734, 20400}, {5840, 34627}, {6224, 63212}, {6265, 50910}, {6326, 50817}, {6702, 51066}, {6942, 51525}, {9780, 59376}, {9884, 53729}, {10087, 62873}, {10265, 50827}, {10304, 64191}, {10728, 28198}, {10755, 47359}, {10827, 14923}, {10916, 56091}, {11015, 34639}, {11194, 17100}, {11274, 15015}, {11362, 38669}, {12640, 64199}, {12653, 19875}, {12730, 36920}, {12732, 20085}, {12737, 50821}, {12751, 28194}, {14217, 50796}, {15702, 38032}, {15703, 38044}, {19876, 32557}, {19907, 50805}, {19914, 28459}, {20050, 50846}, {20053, 62617}, {20119, 51102}, {25025, 31271}, {25055, 64137}, {26726, 51071}, {31140, 59416}, {31142, 64139}, {31164, 39776}, {31525, 50923}, {32041, 35168}, {33812, 51096}, {34605, 49169}, {34619, 62830}, {34620, 36972}, {34641, 63278}, {34789, 50906}, {36005, 44784}, {37375, 51379}, {38038, 61936}, {38050, 63109}, {38099, 51068}, {41553, 64736}, {50808, 64145}, {50810, 64189}, {50999, 51007}, {51000, 51157}, {51001, 51198}, {51008, 51192}, {51054, 51062}, {51103, 64012}, {51110, 58453}, {51147, 51199}, {51709, 64008}, {53055, 60986}
X(64746) = midpoint of X(i) and X(j) for these {i,j}: {2, 64743}, {4677, 5541}, {6326, 50817}, {13996, 50842}, {50907, 64136}
X(64746) = reflection of X(i) in X(j) for these {i,j}: {1, 50841}, {2, 1145}, {8, 50842}, {80, 4669}, {104, 3654}, {145, 50843}, {1320, 2}, {3241, 6174}, {3242, 51158}, {3244, 50844}, {3635, 50845}, {9884, 53729}, {10031, 100}, {10265, 50827}, {10707, 3679}, {10755, 47359}, {12531, 4677}, {12737, 50821}, {14217, 50796}, {19914, 50823}, {20050, 50846}, {20119, 51102}, {21630, 4745}, {26726, 51071}, {34747, 11274}, {34789, 50906}, {36005, 63136}, {50805, 19907}, {50872, 1537}, {50889, 3626}, {50890, 8}, {50891, 10}, {50892, 4691}, {50893, 3625}, {50894, 1}, {50907, 64140}, {50910, 6265}, {50923, 31525}, {50999, 51007}, {51000, 51157}, {51001, 51198}, {51054, 51062}, {51093, 214}, {51096, 33812}, {51147, 51199}, {51192, 51008}, {64145, 50808}, {64189, 50810}
X(64746) = pole of line {30565, 31171} with respect to the Steiner circumellipse
X(64746) = X(1320)-of-Gemini-107 triangle
X(64746) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1000), X(52746)}}, {{A, B, C, X(1121), X(37222)}}, {{A, B, C, X(1156), X(2718)}}
X(64746) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 34711, 11114}, {8, 528, 50890}, {10, 50891, 59377}, {30, 64140, 50907}, {100, 519, 10031}, {528, 50842, 8}, {1145, 1320, 64141}, {1145, 64743, 1320}, {2802, 3679, 10707}, {3679, 10707, 59415}, {5541, 12531, 9963}, {5854, 6174, 3241}, {13996, 50842, 528}, {15015, 34747, 11274}, {50907, 64136, 30}
X(64747) lies on circumconic {{A, B, C, X(1096), X(40154)}} and on these lines: {1, 6865}, {2, 1617}, {4, 11}, {7, 3660}, {12, 17559}, {36, 6916}, {57, 497}, {65, 1058}, {145, 14594}, {149, 64142}, {196, 40959}, {226, 4321}, {241, 17721}, {244, 4331}, {278, 614}, {279, 40615}, {281, 46345}, {329, 17625}, {376, 1470}, {377, 5265}, {388, 1125}, {390, 37541}, {443, 3841}, {496, 6851}, {499, 6864}, {535, 5193}, {631, 37579}, {927, 56850}, {946, 1467}, {995, 56821}, {997, 3421}, {999, 6827}, {1014, 14956}, {1056, 1319}, {1088, 40154}, {1155, 35514}, {1254, 28074}, {1285, 1415}, {1388, 37703}, {1412, 17188}, {1445, 6601}, {1466, 4294}, {1471, 11269}, {1476, 20076}, {1478, 6939}, {1479, 3361}, {1708, 24477}, {1788, 5082}, {1836, 59386}, {1992, 14612}, {2078, 5218}, {2478, 3600}, {2550, 3911}, {2551, 5316}, {3256, 10385}, {3340, 4342}, {3434, 5435}, {3436, 4308}, {3485, 34489}, {3524, 5172}, {3677, 64708}, {3711, 10944}, {4295, 13374}, {4299, 13370}, {4311, 12667}, {4551, 63126}, {4554, 6604}, {4654, 51098}, {4679, 8581}, {4848, 64068}, {4860, 60883}, {5173, 10580}, {5252, 61686}, {5274, 10431}, {5298, 64086}, {5433, 17582}, {5563, 10629}, {5758, 50196}, {5759, 54408}, {5812, 58576}, {5856, 12848}, {6826, 15325}, {6836, 14986}, {6893, 18990}, {6903, 26437}, {6954, 41345}, {6988, 7742}, {7191, 57477}, {7290, 34050}, {7292, 37800}, {7365, 34036}, {8071, 59345}, {8732, 64443}, {9785, 13601}, {9799, 64131}, {10530, 37301}, {10596, 18838}, {10806, 64721}, {10832, 37441}, {10996, 56414}, {11678, 18228}, {12116, 37550}, {12447, 37709}, {14069, 28773}, {16020, 37695}, {18240, 60895}, {18391, 61660}, {22836, 33812}, {24703, 63994}, {25006, 62776}, {26040, 31231}, {28771, 32957}, {29668, 36482}, {29824, 56927}, {30353, 60992}, {32773, 56460}, {32942, 56367}, {33108, 61019}, {36059, 64177}, {36845, 41539}, {37374, 42884}, {37642, 55086}, {37787, 64153}, {38149, 61649}, {40718, 60076}, {41325, 56546}, {41563, 62235}, {41712, 51463}, {48482, 64124}, {63962, 64132}, {63995, 64130}
X(64747) = pole of line {1056, 6001} with respect to the Feuerbach hyperbola
X(64747) = pole of line {948, 34050} with respect to the dual conic of Yff parabola
X(64747) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 56, 54366}, {3086, 4293, 22753}, {9785, 41824, 13601}
X(64748) lies on these lines: {1, 9551}, {2, 10454}, {3, 10}, {4, 386}, {5, 48894}, {6, 64582}, {8, 1764}, {20, 391}, {21, 1746}, {30, 970}, {43, 5691}, {55, 9552}, {56, 9555}, {72, 29069}, {78, 22020}, {181, 7354}, {218, 5776}, {376, 48852}, {382, 9567}, {388, 64573}, {485, 9557}, {516, 59303}, {519, 10441}, {524, 31774}, {550, 35203}, {572, 1010}, {940, 10106}, {944, 30116}, {950, 19765}, {952, 37536}, {960, 24269}, {994, 64021}, {997, 35635}, {1012, 19763}, {1043, 6996}, {1478, 10408}, {1503, 4260}, {1614, 9563}, {1657, 9566}, {1682, 6284}, {1685, 6561}, {1686, 6560}, {1695, 64005}, {1730, 10463}, {1837, 64577}, {2050, 4255}, {2172, 2908}, {2777, 34453}, {2794, 34454}, {2829, 34456}, {3029, 23698}, {3031, 17702}, {3032, 5840}, {3033, 64502}, {3091, 64569}, {3146, 9535}, {3191, 40491}, {3216, 51558}, {3430, 37088}, {3436, 64567}, {3576, 19858}, {3597, 60172}, {3687, 5016}, {3876, 54035}, {4274, 64159}, {4276, 6906}, {4279, 12110}, {4301, 4780}, {4306, 24237}, {5217, 31496}, {5396, 46704}, {5482, 28204}, {5530, 10572}, {5721, 7683}, {5731, 19853}, {5767, 37530}, {5799, 48847}, {5816, 13725}, {5853, 43170}, {5882, 50317}, {5930, 21621}, {6048, 62320}, {6253, 10822}, {6685, 19925}, {6738, 35612}, {7387, 9571}, {7745, 9547}, {7747, 9561}, {7756, 9560}, {7823, 41832}, {7987, 59312}, {7989, 29825}, {8703, 62185}, {9546, 63548}, {9549, 41869}, {9550, 64054}, {9553, 12943}, {9554, 12953}, {9556, 42260}, {9562, 34148}, {9564, 57288}, {9565, 29207}, {9840, 48888}, {10434, 31339}, {10440, 28164}, {10446, 20018}, {10478, 19767}, {10882, 31330}, {10974, 37468}, {12203, 13727}, {12545, 29311}, {19513, 50605}, {26117, 64576}, {28236, 37521}, {28581, 31779}, {29057, 31803}, {29307, 64003}, {34455, 64507}, {34457, 64500}, {34459, 64501}, {36745, 56959}, {37331, 48937}, {37415, 48863}, {37469, 64384}, {37522, 45287}, {37523, 40687}, {37712, 59313}, {48899, 50588}, {49542, 52903}, {49641, 64525}, {50054, 64121}, {54586, 61129}
X(64748) = midpoint of X(i) and X(j) for these {i,j}: {8, 64568}, {5691, 64575}, {12545, 59302}
X(64748) = reflection of X(i) in X(j) for these {i,j}: {1, 64578}, {20, 64565}, {10454, 64566}, {44039, 10}, {64566, 64570}
X(64748) = inverse of X(50368) in excircles-radical circle
X(64748) = complement of X(10454)
X(64748) = anticomplement of X(64566)
X(64748) = pole of line {240, 522} with respect to the excircles-radical circle
X(64748) = pole of line {36, 238} with respect to the excentral-hexyl ellipse
X(64748) = pole of line {6332, 23799} with respect to the Steiner inellipse
X(64748) = pole of line {1400, 3772} with respect to the dual conic of Yff parabola
X(64748) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {8, 18340, 64568}
X(64748) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3192), X(52139)}}, {{A, B, C, X(10570), X(55035)}}
X(64748) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10454, 64566}, {3, 5786, 13478}, {4, 386, 2051}, {8, 50702, 1764}, {10, 515, 44039}, {20, 9534, 573}, {43, 5691, 50037}, {376, 48852, 62189}, {573, 9534, 9568}, {12545, 59302, 29311}, {64566, 64570, 2}
X(64749) lies on these lines: {1, 2782}, {3, 13174}, {4, 2784}, {10, 14651}, {40, 98}, {57, 10069}, {99, 3576}, {114, 8227}, {115, 5587}, {147, 946}, {148, 515}, {165, 12042}, {376, 2796}, {516, 9862}, {517, 9860}, {519, 12243}, {542, 31162}, {543, 50811}, {551, 64090}, {631, 51578}, {690, 33535}, {962, 5984}, {1045, 2783}, {1281, 8235}, {1385, 13188}, {1420, 10089}, {1569, 9619}, {1697, 10053}, {1698, 38224}, {1699, 6033}, {1702, 49212}, {1703, 49213}, {1704, 47366}, {1705, 47365}, {2023, 9593}, {2077, 13173}, {2787, 6264}, {2792, 10446}, {2794, 41869}, {2795, 16132}, {2948, 18332}, {3029, 9548}, {3044, 9621}, {3333, 24472}, {3545, 50879}, {3586, 13183}, {3601, 10086}, {3624, 15561}, {3679, 11632}, {3923, 7709}, {4297, 13172}, {5250, 5985}, {5603, 21636}, {5691, 6321}, {5731, 20094}, {5881, 13178}, {5886, 51872}, {6036, 31423}, {6054, 12258}, {6055, 9881}, {6282, 52821}, {7970, 16200}, {7982, 7983}, {7987, 33813}, {7988, 61575}, {7989, 61576}, {7991, 51523}, {8591, 51705}, {8724, 25055}, {8726, 52822}, {9549, 34454}, {9583, 49266}, {9610, 39822}, {9611, 39851}, {9612, 12184}, {9613, 13182}, {9614, 12185}, {9622, 58058}, {9624, 11725}, {9625, 39857}, {9626, 39828}, {9875, 28204}, {9955, 38743}, {10476, 38481}, {11012, 22514}, {11014, 38498}, {11177, 28194}, {11522, 52090}, {11529, 59815}, {11646, 39885}, {11676, 50775}, {11705, 36776}, {11706, 61634}, {11711, 23235}, {11724, 61275}, {12177, 16475}, {12355, 28208}, {12368, 16278}, {12703, 49148}, {12704, 24469}, {13605, 18331}, {14061, 54447}, {14639, 18492}, {15092, 61264}, {15177, 39832}, {15452, 30282}, {15903, 60751}, {18480, 38732}, {18908, 58682}, {19875, 49102}, {19905, 50950}, {22566, 30308}, {22793, 38744}, {24727, 58036}, {24929, 51795}, {26446, 61560}, {28160, 38733}, {30389, 51524}, {31732, 39837}, {31738, 39807}, {34473, 35242}, {34627, 50884}, {34648, 50887}, {35774, 35825}, {35775, 35824}, {38034, 61599}, {38229, 61261}, {38531, 53260}, {38627, 58245}, {38741, 64005}, {41135, 50796}, {48657, 51709}, {50828, 52695}
X(64749) = midpoint of X(i) and X(j) for these {i,j}: {962, 5984}, {7983, 38664}
X(64749) = reflection of X(i) in X(j) for these {i,j}: {4, 11599}, {40, 98}, {99, 11710}, {147, 946}, {2948, 18332}, {3679, 11632}, {5691, 6321}, {5881, 13178}, {6054, 12258}, {7982, 7983}, {8591, 51705}, {9860, 12188}, {9864, 115}, {9881, 6055}, {11676, 50775}, {12368, 16278}, {13172, 4297}, {13174, 3}, {13188, 1385}, {14981, 11725}, {18331, 13605}, {23235, 11711}, {24469, 49147}, {31162, 50886}, {34627, 50884}, {34648, 50887}, {36776, 11705}, {38744, 22793}, {39807, 31738}, {39837, 31732}, {39885, 11646}, {48657, 51709}, {50950, 19905}, {61634, 11706}, {64005, 38741}, {64090, 551}, {64755, 1}
X(64749) = pole of line {804, 4707} with respect to the Conway circle
X(64749) = X(1298)-of-hexyl triangle
X(64749) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2782, 64755}, {99, 11710, 3576}, {114, 38220, 8227}, {115, 9864, 5587}, {517, 12188, 9860}, {542, 50886, 31162}, {2784, 11599, 4}, {6054, 12258, 38021}
X(64750) lies on these lines: {1, 6}, {2, 1897}, {3, 3100}, {4, 347}, {5, 1068}, {8, 25000}, {21, 55986}, {25, 21318}, {33, 1214}, {55, 11028}, {56, 32118}, {77, 971}, {154, 1726}, {198, 44661}, {222, 24430}, {223, 5927}, {240, 19329}, {241, 990}, {278, 8226}, {442, 7952}, {461, 56943}, {474, 17102}, {651, 5779}, {664, 48878}, {774, 5711}, {916, 45963}, {938, 5740}, {940, 62811}, {942, 7013}, {955, 1255}, {1011, 23171}, {1012, 1060}, {1020, 33536}, {1038, 37022}, {1074, 44217}, {1103, 3697}, {1172, 36017}, {1210, 3946}, {1376, 34977}, {1419, 64197}, {1442, 10394}, {1456, 54370}, {1465, 9817}, {1785, 17532}, {1824, 11347}, {1827, 37412}, {1837, 32594}, {1854, 37558}, {1861, 17073}, {1863, 37160}, {1864, 45126}, {1870, 6913}, {1872, 37413}, {1902, 37046}, {2915, 11399}, {3149, 37565}, {3157, 35194}, {3160, 36991}, {3219, 22117}, {3487, 5796}, {3560, 18447}, {3562, 3927}, {3677, 17626}, {3745, 62839}, {3826, 59458}, {4310, 38055}, {4329, 49132}, {4413, 24025}, {5018, 64134}, {5088, 51063}, {5256, 64157}, {5287, 11018}, {5691, 15832}, {5732, 59215}, {5751, 42447}, {5753, 15934}, {5777, 64347}, {5784, 53996}, {5805, 22464}, {5817, 54425}, {5824, 14986}, {6350, 33305}, {6360, 14004}, {6832, 38295}, {6883, 18455}, {6986, 9538}, {7069, 20277}, {7100, 8757}, {7411, 9539}, {7532, 41013}, {7688, 9611}, {7718, 13442}, {8727, 57477}, {9577, 15931}, {10004, 43736}, {10883, 37798}, {11019, 17599}, {11020, 17019}, {11113, 34231}, {11350, 20243}, {11363, 37052}, {11396, 13724}, {12664, 15836}, {12915, 62833}, {13615, 38288}, {15068, 23070}, {15430, 15726}, {15500, 37249}, {16370, 46974}, {17080, 19541}, {17086, 36652}, {17134, 49130}, {17463, 22769}, {18391, 64167}, {18593, 64152}, {18641, 56876}, {19544, 20254}, {20760, 38479}, {21333, 54326}, {23710, 37695}, {32047, 37234}, {36640, 59385}, {37320, 41340}, {37367, 51410}, {37426, 64054}, {37594, 62836}, {38052, 63625}, {40960, 64708}, {40971, 55875}, {41083, 56299}, {41344, 44706}, {43035, 63970}, {44692, 64673}, {45276, 56640}, {55400, 56294}, {57282, 62779}, {62333, 64339}, {64082, 64171}
X(64750) = X(i)-complementary conjugate of X(j) for these {i, j}: {56139, 1329}
X(64750) = pole of line {676, 17924} with respect to the polar circle
X(64750) = pole of line {55, 45126} with respect to the Feuerbach hyperbola
X(64750) = pole of line {17494, 39470} with respect to the Steiner circumellipse
X(64750) = pole of line {650, 39470} with respect to the Steiner inellipse
X(64750) = pole of line {3309, 58888} with respect to the Suppa-Cucoanes circle
X(64750) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(52781)}}, {{A, B, C, X(6), X(36122)}}, {{A, B, C, X(9), X(39531)}}, {{A, B, C, X(72), X(55986)}}, {{A, B, C, X(219), X(37741)}}, {{A, B, C, X(954), X(1255)}}, {{A, B, C, X(955), X(1100)}}, {{A, B, C, X(1530), X(7046)}}, {{A, B, C, X(3990), X(59144)}}
X(64750) = barycentric product X(i)*X(j) for these (i, j): {1530, 36101}, {39531, 63}
X(64750) = barycentric quotient X(i)/X(j) for these (i, j): {1530, 30807}, {39531, 92}
X(64750) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10398, 1449}, {1, 15299, 1386}, {1, 1736, 6}, {1, 37, 954}, {6, 1736, 5729}, {33, 1214, 7580}, {1442, 10394, 62183}, {7069, 20277, 34048}, {8727, 59611, 57477}, {37565, 37696, 3149}
X(64751) lies on these lines: {1, 674}, {2, 57024}, {6, 692}, {7, 13476}, {8, 44671}, {9, 22277}, {31, 5165}, {37, 3779}, {39, 4484}, {42, 2183}, {45, 20683}, {51, 4285}, {55, 2245}, {65, 4331}, {71, 4343}, {86, 64709}, {141, 35892}, {209, 968}, {269, 64206}, {284, 1631}, {291, 24696}, {320, 3873}, {346, 21865}, {354, 4675}, {386, 23383}, {513, 1002}, {516, 5751}, {518, 4643}, {572, 4497}, {573, 64169}, {579, 8053}, {583, 20992}, {584, 23868}, {869, 3122}, {941, 22301}, {942, 5880}, {966, 22271}, {995, 53307}, {1001, 4260}, {1045, 4446}, {1086, 64560}, {1100, 3056}, {1400, 15624}, {1429, 64551}, {1469, 49478}, {1633, 62797}, {1769, 2874}, {1964, 63497}, {2099, 2875}, {2176, 39688}, {2260, 2293}, {2276, 4735}, {2278, 17798}, {2309, 5069}, {2334, 16980}, {2345, 22279}, {2388, 30116}, {2389, 11529}, {2393, 3556}, {2810, 64165}, {2886, 35612}, {3672, 64553}, {3681, 17256}, {3688, 4890}, {3770, 21299}, {3778, 4261}, {3781, 15569}, {3789, 4708}, {3813, 35620}, {3868, 24723}, {3874, 4655}, {3888, 17378}, {3900, 11041}, {4000, 64524}, {4014, 62223}, {4026, 10477}, {4251, 4471}, {4272, 40954}, {4294, 51223}, {4361, 17049}, {4363, 6007}, {4364, 9054}, {4389, 62872}, {4393, 25048}, {4430, 4741}, {4553, 17316}, {4648, 58571}, {4649, 9018}, {4667, 29353}, {4798, 28600}, {4851, 17792}, {5135, 37576}, {5138, 20872}, {5208, 32773}, {5222, 64523}, {5296, 40607}, {5308, 64552}, {5320, 20988}, {5573, 58574}, {5728, 50861}, {5738, 11677}, {5752, 59301}, {5883, 24693}, {5902, 24715}, {5904, 24697}, {7064, 16675}, {7146, 17463}, {7174, 9049}, {9016, 49490}, {9320, 24457}, {9911, 36742}, {10580, 64548}, {11021, 24392}, {11495, 50658}, {11997, 21853}, {14523, 58562}, {14839, 17318}, {15185, 47595}, {15668, 64007}, {17065, 50584}, {17126, 61728}, {17257, 64581}, {17278, 61034}, {17301, 20358}, {17317, 25279}, {17321, 56537}, {17790, 24351}, {18165, 33137}, {18635, 23305}, {20456, 23634}, {20718, 64168}, {20961, 61358}, {20986, 37538}, {20990, 64739}, {21278, 25295}, {21889, 61704}, {22276, 37553}, {22312, 63978}, {24349, 24717}, {25291, 56249}, {26893, 37593}, {32784, 38485}, {37679, 53005}, {40910, 47373}, {44085, 61356}, {44094, 61398}
X(64751) = reflection of X(i) in X(j) for these {i,j}: {56542, 4364}
X(64751) = pole of line {665, 4893} with respect to the Brocard inellipse
X(64751) = pole of line {29830, 30941} with respect to the Stammler hyperbola
X(64751) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(513), X(60722)}}, {{A, B, C, X(692), X(1002)}}, {{A, B, C, X(1438), X(46018)}}, {{A, B, C, X(2175), X(13476)}}, {{A, B, C, X(33108), X(56853)}}, {{A, B, C, X(45966), X(64216)}}
X(64751) = barycentric product X(i)*X(j) for these (i, j): {101, 49300}, {33108, 6}
X(64751) = barycentric quotient X(i)/X(j) for these (i, j): {33108, 76}, {49300, 3261}
X(64751) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 16686, 60722}, {6, 37580, 692}, {42, 23633, 3764}, {42, 3764, 4277}, {2260, 2293, 3941}, {3688, 4890, 16777}, {17792, 64546, 4851}, {21746, 52020, 6}
X(64752) lies on these lines: {2, 23853}, {3, 8}, {6, 31}, {10, 13738}, {25, 281}, {35, 50581}, {36, 16499}, {38, 1403}, {40, 37195}, {56, 750}, {63, 37619}, {165, 22060}, {197, 199}, {200, 228}, {210, 3185}, {388, 47521}, {405, 26115}, {573, 51377}, {612, 1402}, {678, 23370}, {851, 2550}, {859, 5235}, {908, 31394}, {947, 43652}, {958, 28348}, {984, 5143}, {993, 996}, {999, 16374}, {1001, 16373}, {1331, 43146}, {1376, 4191}, {1486, 47523}, {1617, 7484}, {1621, 16058}, {1631, 20989}, {1995, 51621}, {2053, 6187}, {2187, 26885}, {2223, 16975}, {2551, 13724}, {3085, 37225}, {3145, 8193}, {3158, 54327}, {3240, 37502}, {3286, 37540}, {3293, 19763}, {3295, 16287}, {3304, 9345}, {3359, 63439}, {3421, 19262}, {3434, 4192}, {3436, 9840}, {3550, 59314}, {3588, 37499}, {3617, 4225}, {3681, 20760}, {3689, 15624}, {3711, 4557}, {3724, 3728}, {3730, 23988}, {3871, 16452}, {3872, 37620}, {3996, 19339}, {4088, 53262}, {4184, 16704}, {4413, 20470}, {4421, 19346}, {4423, 18613}, {4853, 10882}, {4882, 61124}, {5218, 30944}, {5220, 53280}, {5258, 15654}, {5260, 28383}, {5263, 16405}, {5264, 19762}, {5269, 40956}, {5291, 37586}, {5552, 13731}, {5584, 15622}, {5710, 54300}, {6048, 35206}, {6244, 7416}, {7080, 61109}, {8069, 52273}, {8715, 59302}, {9259, 62712}, {9342, 16409}, {9709, 16453}, {10527, 19513}, {11337, 38903}, {11344, 12410}, {11680, 19540}, {11688, 32937}, {12513, 32919}, {13588, 16738}, {13734, 64111}, {15066, 36942}, {15507, 31018}, {15625, 63756}, {15983, 50423}, {16064, 37577}, {16372, 37580}, {16506, 23832}, {16569, 27639}, {16788, 40910}, {16948, 17524}, {17126, 37507}, {17259, 23374}, {17784, 37400}, {18235, 33163}, {19543, 24390}, {19734, 59315}, {19843, 27622}, {21319, 25568}, {22344, 62824}, {22345, 57279}, {22837, 38484}, {23085, 62827}, {23207, 26901}, {23850, 37557}, {26227, 54410}, {27650, 29667}, {28349, 30478}, {28734, 30016}, {32911, 59300}, {32927, 64170}, {33104, 40109}, {33108, 47522}, {34868, 36152}, {35289, 46917}, {35448, 48917}, {37247, 37579}, {37684, 54391}, {43650, 55086}, {48875, 56878}, {49983, 61154}, {51380, 64125}, {53548, 56550}, {56162, 56853}
X(64752) = perspector of circumconic {{A, B, C, X(101), X(13136)}}
X(64752) = X(i)-Dao conjugate of X(j) for these {i, j}: {995, 4389}
X(64752) = X(i)-Ceva conjugate of X(j) for these {i, j}: {993, 45}, {996, 6}
X(64752) = pole of line {649, 900} with respect to the circumcircle
X(64752) = pole of line {3004, 39534} with respect to the polar circle
X(64752) = pole of line {86, 859} with respect to the Stammler hyperbola
X(64752) = pole of line {3904, 21225} with respect to the Steiner circumellipse
X(64752) = pole of line {46148, 62669} with respect to the Yff parabola
X(64752) = pole of line {2427, 52923} with respect to the Hutson-Moses hyperbola
X(64752) = pole of line {310, 17139} with respect to the Wallace hyperbola
X(64752) = pole of line {21207, 42759} with respect to the dual conic of Wallace hyperbola
X(64752) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(34234)}}, {{A, B, C, X(31), X(104)}}, {{A, B, C, X(42), X(38955)}}, {{A, B, C, X(55), X(24806)}}, {{A, B, C, X(71), X(14624)}}, {{A, B, C, X(212), X(1809)}}, {{A, B, C, X(281), X(2269)}}, {{A, B, C, X(672), X(56162)}}, {{A, B, C, X(902), X(36944)}}, {{A, B, C, X(2053), X(2361)}}, {{A, B, C, X(2177), X(36921)}}, {{A, B, C, X(2209), X(6187)}}, {{A, B, C, X(2267), X(23617)}}, {{A, B, C, X(3052), X(34429)}}
X(64752) = barycentric product X(i)*X(j) for these (i, j): {24806, 9}
X(64752) = barycentric quotient X(i)/X(j) for these (i, j): {24806, 85}
X(64752) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42, 902, 2209}, {55, 20992, 902}, {55, 52139, 1011}, {200, 10434, 228}, {902, 22343, 31}, {956, 5687, 5774}, {1376, 16678, 4191}, {15621, 52139, 55}
X(64753) lies on these lines: {1, 859}, {3, 758}, {6, 40978}, {10, 4557}, {12, 21319}, {21, 53280}, {35, 23845}, {40, 15624}, {48, 14529}, {55, 976}, {56, 2650}, {65, 228}, {72, 52139}, {73, 53321}, {100, 17164}, {191, 17524}, {198, 2294}, {497, 28098}, {501, 3733}, {513, 48897}, {520, 947}, {523, 64173}, {526, 53305}, {595, 5009}, {690, 53278}, {740, 3913}, {851, 3649}, {855, 10543}, {942, 20470}, {958, 20760}, {986, 5132}, {993, 22458}, {999, 63354}, {1001, 58386}, {1043, 11688}, {1046, 3286}, {1071, 53296}, {1104, 20967}, {1191, 3725}, {1284, 1834}, {1331, 55098}, {1376, 49598}, {1385, 53303}, {1403, 4255}, {1437, 53324}, {1482, 5496}, {1486, 3295}, {1631, 37547}, {1962, 3303}, {2098, 12081}, {2099, 31880}, {2183, 58493}, {2352, 54421}, {2390, 4300}, {2392, 48907}, {2646, 22345}, {2933, 11507}, {3191, 22299}, {3194, 53323}, {3207, 42669}, {3612, 23206}, {3714, 60723}, {3746, 20840}, {3811, 15621}, {3827, 37528}, {3868, 16678}, {3871, 32926}, {3901, 39578}, {3931, 52359}, {3958, 54322}, {4016, 36744}, {4065, 25439}, {4184, 11684}, {4191, 5221}, {4225, 34195}, {4245, 30143}, {4436, 63996}, {4491, 6089}, {4647, 5687}, {5267, 23169}, {5441, 13744}, {5692, 16287}, {5711, 20990}, {5883, 16414}, {5902, 16453}, {6370, 53277}, {6765, 44671}, {6767, 58380}, {6998, 53261}, {7416, 15071}, {7420, 37625}, {7421, 53252}, {7428, 37571}, {8053, 12514}, {8680, 24328}, {8731, 18253}, {9391, 53299}, {9840, 44669}, {9911, 10679}, {10176, 16286}, {10434, 11523}, {10834, 26358}, {11101, 63269}, {11281, 28258}, {11553, 58889}, {14547, 42450}, {15571, 35633}, {15622, 18446}, {16502, 40986}, {16679, 62805}, {16687, 57280}, {17768, 37425}, {18162, 37570}, {21677, 37225}, {21740, 53292}, {22344, 37600}, {22654, 25080}, {22769, 56839}, {23067, 37558}, {23167, 35628}, {31660, 37311}, {37154, 53566}, {37415, 42843}, {37503, 53037}, {37568, 54327}, {37619, 56176}, {38955, 56254}, {42666, 53308}, {53035, 58392}, {53249, 53262}, {53263, 53286}
X(64753) = midpoint of X(i) and X(j) for these {i,j}: {2292, 18673}
X(64753) = reflection of X(i) in X(j) for these {i,j}: {1, 42443}, {1482, 5496}, {42440, 3743}, {53286, 53263}
X(64753) = pole of line {656, 3737} with respect to the circumcircle
X(64753) = pole of line {523, 39541} with respect to the DeLongchamps ellipse
X(64753) = pole of line {2975, 11101} with respect to the Stammler hyperbola
X(64753) = X(2292)-of-anti-Mandart-incircle triangle
X(64753) = X(2650)-of-2nd-circumperp-tangential triangle
X(64753) = intersection, other than A, B, C, of circumconics {{A, B, C, X(859), X(56254)}}, {{A, B, C, X(947), X(53321)}}, {{A, B, C, X(8615), X(52150)}}, {{A, B, C, X(18165), X(60086)}}, {{A, B, C, X(18180), X(38955)}}, {{A, B, C, X(34434), X(59282)}}, {{A, B, C, X(53083), X(60135)}}
X(64753) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3185, 23383}, {1385, 55362, 53303}, {2650, 3724, 56}, {3295, 3743, 4068}, {3743, 44661, 42440}
X(64754) lies on these lines: {1, 5805}, {4, 1389}, {5, 17057}, {11, 7686}, {12, 946}, {30, 12600}, {40, 24953}, {55, 64280}, {56, 11023}, {65, 6245}, {72, 4301}, {354, 40249}, {355, 546}, {392, 7958}, {515, 3649}, {516, 57002}, {517, 6841}, {523, 42755}, {944, 64282}, {952, 15911}, {958, 962}, {1012, 64268}, {1319, 64001}, {1478, 52683}, {1482, 18517}, {1512, 3614}, {1519, 10955}, {1537, 6246}, {1836, 12676}, {1837, 3577}, {2346, 9785}, {2646, 64286}, {2800, 37447}, {3149, 15950}, {3303, 5603}, {3436, 64201}, {3485, 64298}, {3486, 36999}, {3656, 34699}, {3671, 12680}, {3679, 5763}, {3748, 13464}, {3753, 50031}, {3754, 37374}, {3839, 34700}, {3878, 8226}, {3925, 14110}, {4295, 12246}, {4299, 52682}, {5252, 5715}, {5258, 5762}, {5289, 6835}, {5559, 10827}, {5587, 64294}, {5659, 5791}, {5691, 37739}, {5722, 64292}, {5734, 59385}, {5804, 11238}, {5806, 13375}, {5812, 31162}, {5842, 10543}, {5901, 34486}, {5903, 8727}, {5919, 63256}, {6224, 59356}, {6284, 64279}, {6766, 41229}, {6831, 40663}, {6847, 37567}, {6894, 62826}, {7354, 7702}, {7681, 7704}, {7956, 10523}, {7965, 12672}, {8273, 28629}, {9778, 17574}, {10388, 12859}, {10404, 12650}, {10572, 52837}, {10894, 64322}, {10944, 26332}, {10954, 18393}, {11218, 11374}, {11246, 12114}, {11375, 64276}, {11510, 22753}, {11827, 12699}, {12047, 64271}, {12116, 64327}, {12513, 55109}, {12571, 15862}, {12611, 13600}, {12635, 13463}, {12667, 61716}, {12679, 64288}, {12688, 41562}, {12858, 63992}, {16139, 28212}, {16615, 59391}, {18357, 52850}, {18493, 26487}, {19925, 51409}, {21077, 64767}, {21627, 61030}, {24474, 51463}, {28174, 31649}, {28452, 46920}, {31157, 37623}, {34352, 38034}, {34471, 50701}, {34612, 37531}, {35250, 48661}, {36922, 37714}, {37711, 64766}, {37722, 64284}, {37724, 64261}, {37737, 44425}, {37740, 64287}, {59387, 64270}, {63989, 64332}, {64110, 64297}
X(64754) = midpoint of X(i) and X(j) for these {i,j}: {4, 1389}
X(64754) = reflection of X(i) in X(j) for these {i,j}: {944, 64282}, {45081, 63257}, {63257, 946}, {63287, 5603}, {64275, 5}, {64297, 64110}
X(64754) = inverse of X(7686) in Feuerbach hyperbola
X(64754) = pole of line {5173, 7686} with respect to the Feuerbach hyperbola
X(64754) = X(1389)-of-Euler triangle
X(64754) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {946, 63964, 38039}, {1532, 63257, 64273}
X(64755) lies on these lines: {1, 2782}, {3, 9860}, {4, 21636}, {40, 99}, {57, 10089}, {98, 3576}, {114, 5587}, {115, 8227}, {147, 515}, {148, 946}, {165, 33813}, {355, 51872}, {381, 9875}, {516, 13172}, {517, 13174}, {519, 64090}, {542, 33535}, {543, 31162}, {551, 12243}, {620, 31423}, {671, 38021}, {944, 2784}, {962, 20094}, {1125, 14651}, {1385, 12188}, {1420, 10069}, {1569, 9620}, {1697, 10086}, {1698, 15561}, {1699, 6321}, {1702, 49266}, {1703, 49267}, {2023, 9592}, {2077, 12178}, {2783, 6264}, {2787, 6326}, {3029, 9549}, {3044, 9622}, {3333, 59815}, {3545, 50884}, {3586, 12185}, {3601, 10053}, {3624, 38224}, {3679, 8724}, {3751, 12177}, {4297, 9862}, {5603, 11599}, {5613, 9901}, {5617, 9900}, {5657, 51578}, {5691, 6033}, {5731, 5984}, {5881, 9864}, {5969, 64084}, {6282, 52822}, {6770, 51115}, {6773, 51114}, {7970, 7982}, {7983, 16200}, {7987, 12042}, {7988, 61576}, {7989, 61575}, {7991, 51524}, {8591, 28194}, {8726, 52821}, {9548, 34454}, {9583, 49212}, {9610, 39851}, {9611, 39822}, {9612, 13182}, {9613, 12184}, {9614, 13183}, {9621, 58058}, {9624, 11724}, {9625, 39828}, {9626, 39857}, {9955, 38732}, {11005, 12407}, {11012, 22504}, {11014, 38499}, {11177, 51705}, {11529, 24472}, {11632, 25055}, {11710, 38664}, {11720, 22265}, {11725, 61275}, {12703, 49202}, {12704, 49201}, {15177, 39803}, {15452, 61763}, {18480, 38743}, {18908, 58681}, {21166, 35242}, {22793, 38733}, {23698, 41869}, {24929, 51796}, {26446, 61561}, {28160, 38744}, {28204, 48657}, {30389, 51523}, {31732, 39808}, {31738, 39836}, {34127, 34595}, {34627, 50879}, {34648, 50882}, {35774, 35879}, {35775, 35878}, {38034, 61600}, {38229, 61268}, {38628, 58245}, {38730, 64005}, {54447, 64089}
X(64755) = midpoint of X(i) and X(j) for these {i,j}: {962, 20094}, {7970, 23235}
X(64755) = reflection of X(i) in X(j) for these {i,j}: {4, 21636}, {40, 99}, {98, 11711}, {148, 946}, {355, 51872}, {3679, 8724}, {3751, 12177}, {5691, 6033}, {5881, 9864}, {6770, 51115}, {6773, 51114}, {7982, 7970}, {9860, 3}, {9862, 4297}, {9864, 14981}, {9875, 381}, {9900, 5617}, {9901, 5613}, {11177, 51705}, {12188, 1385}, {12243, 551}, {12407, 11005}, {13174, 13188}, {13178, 114}, {22265, 11720}, {31162, 50881}, {34627, 50879}, {34648, 50882}, {38664, 11710}, {38733, 22793}, {39808, 31732}, {39836, 31738}, {64005, 38730}, {64749, 1}
X(64755) = X(1303)-of-hexyl triangle
X(64755) = X(9860)-of-ABC-X3-reflections triangle
X(64755) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2782, 64749}, {98, 11711, 3576}, {114, 13178, 5587}, {517, 13188, 13174}, {543, 50881, 31162}, {11724, 38220, 9624}
X(64756) lies on these lines: {2, 54}, {4, 193}, {5, 63030}, {8, 9896}, {20, 11411}, {22, 12309}, {23, 9908}, {69, 6146}, {155, 1994}, {254, 5962}, {275, 18855}, {287, 28425}, {323, 15316}, {343, 18925}, {390, 12428}, {393, 43995}, {511, 20079}, {524, 64037}, {542, 34621}, {912, 64047}, {1069, 5274}, {1092, 23291}, {1181, 41614}, {1199, 8548}, {1352, 10112}, {1587, 35836}, {1588, 35837}, {1594, 63092}, {1656, 64177}, {1899, 43652}, {1992, 45089}, {2071, 12301}, {2904, 32605}, {3088, 11442}, {3090, 3167}, {3146, 12282}, {3157, 5261}, {3522, 12118}, {3523, 12359}, {3542, 41615}, {3543, 12293}, {3545, 61607}, {3546, 25738}, {3549, 9704}, {3567, 61666}, {3600, 18970}, {3617, 9928}, {3620, 7509}, {3622, 12259}, {3623, 9933}, {3832, 9927}, {3839, 22660}, {3854, 5448}, {4232, 41587}, {5056, 14852}, {5059, 17702}, {5067, 59553}, {5068, 5654}, {5446, 7408}, {5562, 8681}, {5663, 54211}, {5889, 21651}, {6152, 15741}, {6515, 7487}, {6623, 11441}, {6642, 63081}, {6776, 7400}, {6803, 11245}, {6815, 45968}, {6823, 39899}, {6995, 12134}, {7378, 36747}, {7395, 19588}, {7399, 14912}, {7401, 13292}, {7486, 9820}, {7488, 9937}, {7494, 31804}, {7503, 12166}, {7544, 63012}, {7550, 9925}, {7585, 49224}, {7586, 49225}, {7689, 50693}, {8718, 52404}, {8909, 8972}, {9537, 12417}, {9538, 9931}, {9815, 11225}, {9932, 10298}, {10071, 14986}, {10303, 47391}, {10528, 49162}, {10529, 49161}, {10608, 50572}, {10996, 18914}, {11412, 20080}, {11414, 39874}, {11433, 64035}, {11898, 12362}, {12022, 63703}, {12038, 61820}, {12241, 15069}, {12318, 37444}, {12420, 14683}, {14788, 51171}, {14826, 39571}, {15022, 41597}, {15083, 50689}, {15692, 44158}, {15750, 25712}, {18356, 44441}, {18420, 32358}, {18537, 31831}, {18569, 50708}, {18909, 61113}, {18931, 63631}, {19061, 63016}, {19062, 63015}, {19597, 54004}, {20191, 61816}, {21734, 52104}, {23158, 26876}, {31304, 37779}, {32048, 37913}, {32064, 37498}, {32974, 56267}, {34608, 64033}, {34782, 64060}, {34986, 43841}, {35603, 37784}, {37460, 41724}, {40330, 52016}, {41171, 51170}, {41619, 43598}, {41819, 63353}, {49321, 62987}, {49322, 62986}, {51394, 58378}, {59346, 64717}, {59349, 63701}
X(64756) = midpoint of X(i) and X(j) for these {i,j}: {49052, 49053}
X(64756) = reflection of X(i) in X(j) for these {i,j}: {4, 12429}, {8, 9896}, {20, 11411}, {68, 63652}, {5889, 21651}, {6193, 68}, {9936, 9927}, {12271, 5562}
X(64756) = anticomplement of X(6193)
X(64756) = X(i)-Ceva conjugate of X(j) for these {i, j}: {55031, 2}
X(64756) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34428, 8}, {41525, 5905}, {55031, 6327}
X(64756) = pole of line {44518, 53414} with respect to the Kiepert hyperbola
X(64756) = pole of line {2451, 2623} with respect to the MacBeath circumconic
X(64756) = pole of line {52, 3167} with respect to the Stammler hyperbola
X(64756) = pole of line {2501, 63829} with respect to the Steiner circumellipse
X(64756) = pole of line {14341, 63829} with respect to the Steiner inellipse
X(64756) = pole of line {6337, 7487} with respect to the Wallace hyperbola
X(64756) = X(68)-of-Gemini-111 triangle
X(64756) = intersection, other than A, B, C, of circumconics {{A, B, C, X(68), X(27364)}}, {{A, B, C, X(96), X(34208)}}, {{A, B, C, X(2996), X(57875)}}, {{A, B, C, X(14248), X(41271)}}
X(64756) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {68, 539, 6193}, {68, 6193, 2}, {68, 63649, 5449}, {539, 63652, 68}, {3167, 61544, 3090}, {5562, 8681, 12271}, {6515, 14516, 7487}, {7401, 13292, 63031}, {9815, 11225, 11431}, {11411, 44665, 20}, {12134, 64048, 6995}, {13142, 18440, 4}, {49052, 49053, 3564}
X(64757) lies on circumconic {{A, B, C, X(15321), X(15424)}} and on these lines: {3, 2916}, {4, 3521}, {5, 8718}, {20, 64180}, {30, 6288}, {49, 16659}, {52, 32273}, {140, 6030}, {265, 3627}, {381, 15805}, {382, 9927}, {546, 5643}, {549, 54036}, {567, 1595}, {568, 14216}, {1176, 7403}, {1209, 47748}, {1503, 37472}, {1657, 35240}, {1885, 58789}, {2070, 20191}, {2072, 16621}, {2777, 6145}, {3146, 18387}, {3153, 32137}, {3518, 15061}, {3519, 13391}, {3581, 7553}, {3830, 5895}, {3843, 44866}, {3853, 25739}, {5073, 18474}, {5076, 34563}, {5189, 11591}, {5663, 15800}, {5944, 35482}, {6000, 32365}, {6102, 62967}, {6240, 20127}, {6243, 11411}, {6247, 7540}, {6368, 53320}, {6759, 61711}, {7391, 18436}, {7528, 40280}, {7566, 64098}, {7728, 11381}, {8549, 34780}, {9019, 11663}, {9820, 10540}, {10627, 60466}, {11439, 15086}, {11455, 18377}, {11572, 31726}, {12006, 37349}, {12086, 12121}, {12102, 44755}, {12134, 37477}, {12173, 18385}, {12290, 44288}, {12309, 47527}, {12688, 18480}, {13152, 20115}, {13163, 43584}, {13339, 50137}, {13340, 34938}, {13371, 14643}, {13445, 45971}, {13474, 18403}, {13482, 36966}, {14118, 61299}, {14130, 44407}, {14790, 18435}, {15038, 18128}, {15072, 15084}, {15103, 15305}, {15704, 41171}, {17712, 54006}, {18350, 23335}, {18378, 20299}, {18383, 63716}, {18390, 62008}, {18427, 50009}, {18430, 31725}, {18439, 22661}, {18859, 45286}, {23236, 37495}, {25563, 37922}, {30551, 40685}, {31133, 32139}, {32348, 34006}, {33332, 52525}, {34613, 63734}, {34826, 37925}, {36752, 38072}, {36753, 46026}, {40686, 51519}, {45622, 62961}, {45959, 46450}, {50435, 62026}, {51548, 54001}, {52163, 61984}, {53779, 62028}, {58922, 62036}, {62332, 64035}
X(64757) = midpoint of X(i) and X(j) for these {i,j}: {382, 33541}
X(64757) = reflection of X(i) in X(j) for these {i,j}: {3, 18488}, {20, 64180}, {1657, 35240}, {3521, 4}, {8718, 5}, {18442, 15062}, {47748, 1209}, {52100, 64179}, {52525, 33332}, {54036, 549}
X(64757) = pole of line {5305, 18367} with respect to the Kiepert hyperbola
X(64757) = pole of line {5944, 6636} with respect to the Stammler hyperbola
X(64757) = X(8718)-of-Johnson triangle
X(64757) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 15062, 18442}, {381, 52100, 64179}, {11381, 31724, 7728}, {18488, 29012, 3}, {37495, 64036, 23236}
X(64758) lies on these lines: {3, 1661}, {4, 34469}, {5, 40920}, {20, 11820}, {24, 9919}, {30, 11411}, {64, 265}, {74, 37197}, {154, 62100}, {155, 541}, {376, 14530}, {381, 3357}, {548, 5656}, {550, 6225}, {568, 31978}, {1351, 61088}, {1498, 3534}, {1503, 17800}, {1593, 18431}, {1656, 10606}, {1657, 5925}, {1853, 5076}, {1885, 18916}, {3426, 3575}, {3526, 64027}, {3532, 44673}, {3830, 6247}, {3843, 51491}, {3851, 6696}, {5054, 8567}, {5055, 5893}, {5070, 23328}, {5072, 23329}, {5073, 14216}, {5876, 36983}, {6053, 45248}, {6759, 15696}, {9655, 10060}, {9668, 10076}, {9703, 46374}, {9833, 15681}, {9899, 28160}, {10182, 61793}, {10193, 61850}, {10282, 15688}, {10299, 61606}, {10539, 60746}, {11202, 62082}, {11204, 15720}, {11206, 12103}, {11432, 32601}, {11468, 37453}, {11472, 43577}, {11487, 31829}, {11598, 38789}, {11744, 15041}, {12084, 12412}, {12174, 35481}, {12233, 35501}, {12290, 37196}, {13203, 18377}, {13754, 30443}, {14862, 62074}, {15072, 44544}, {15585, 55624}, {15684, 41362}, {15704, 34781}, {15750, 32111}, {17821, 62085}, {17837, 37483}, {18383, 62016}, {18400, 49137}, {18438, 34146}, {18859, 32321}, {18931, 44226}, {20299, 61721}, {23039, 36982}, {23324, 62004}, {23325, 61990}, {23332, 61970}, {26944, 44438}, {31725, 34944}, {32064, 62036}, {32272, 36201}, {34782, 62131}, {34785, 58795}, {34786, 62040}, {35260, 46853}, {35864, 42264}, {35865, 42263}, {37984, 58378}, {41735, 55610}, {44762, 62142}, {44763, 45004}, {46372, 50461}, {49136, 64037}, {50709, 62053}, {55643, 61610}, {58434, 61815}, {61680, 61799}, {61735, 61946}, {61747, 61811}, {61803, 64063}, {62113, 64059}, {63671, 63726}
X(64758) = midpoint of X(i) and X(j) for these {i,j}: {12250, 64726}
X(64758) = reflection of X(i) in X(j) for these {i,j}: {3, 20427}, {382, 64}, {1351, 61088}, {1657, 5925}, {5073, 14216}, {5878, 5894}, {5895, 3357}, {6225, 550}, {9919, 12244}, {12315, 20}, {13093, 12250}, {14216, 15105}, {34780, 13093}, {34781, 15704}, {36983, 5876}, {48672, 3}, {49136, 64037}, {58795, 34785}, {64033, 1657}, {64187, 5}
X(64758) = pole of line {8057, 22089} with respect to the Stammler circle
X(64758) = pole of line {11413, 32063} with respect to the Stammler hyperbola
X(64758) = X(5895)-of-anti-Ehrmann-mid triangle
X(64758) = intersection, other than A, B, C, of circumconics {{A, B, C, X(265), X(51347)}}, {{A, B, C, X(39434), X(48672)}}
X(64758) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15311, 48672}, {30, 12250, 13093}, {30, 13093, 34780}, {64, 18405, 52102}, {64, 2777, 382}, {550, 6225, 32063}, {1657, 6000, 64033}, {3357, 5895, 381}, {5878, 20427, 5894}, {5894, 15311, 5878}, {5925, 6000, 1657}, {10606, 22802, 1656}, {12250, 64726, 30}, {15311, 20427, 3}, {20299, 61721, 61984}, {54050, 64187, 5}
X(64759) lies on circumconic {{A, B, C, X(74), X(51347)}} and on these lines: {3, 1661}, {4, 20303}, {5, 44883}, {22, 1498}, {23, 12324}, {24, 64}, {25, 6247}, {26, 6000}, {30, 9938}, {68, 1503}, {154, 10323}, {155, 2781}, {161, 12088}, {186, 12250}, {378, 5895}, {382, 9919}, {1216, 3098}, {1350, 35219}, {1593, 51491}, {1598, 63420}, {1619, 11414}, {1658, 52019}, {1660, 15644}, {1853, 10594}, {1995, 40686}, {2070, 11999}, {2071, 64726}, {2777, 12084}, {2935, 45014}, {2937, 12315}, {3089, 61088}, {3146, 63422}, {3357, 6644}, {3515, 15105}, {3520, 64187}, {3542, 34944}, {4550, 64027}, {5064, 32351}, {5198, 23324}, {5621, 63695}, {5656, 7512}, {5663, 9932}, {5893, 9818}, {5899, 34780}, {5925, 11413}, {6001, 49553}, {6225, 7488}, {6293, 11456}, {6642, 6696}, {6689, 7526}, {7393, 15578}, {7505, 32125}, {7509, 64024}, {7514, 61749}, {7516, 32600}, {7517, 14216}, {7529, 23332}, {7530, 18381}, {7723, 9934}, {7999, 54038}, {8276, 8991}, {8277, 13980}, {9590, 9899}, {9609, 32445}, {9659, 12940}, {9672, 12950}, {9833, 12083}, {10249, 63737}, {10298, 54211}, {10605, 19353}, {10606, 15062}, {10984, 41580}, {11438, 31978}, {11440, 36983}, {11746, 19360}, {11793, 63431}, {12082, 17845}, {12106, 61540}, {12779, 15177}, {13171, 37197}, {13564, 32063}, {13754, 46372}, {13861, 20299}, {14790, 32123}, {15811, 63728}, {17814, 34778}, {17821, 43813}, {18439, 44259}, {18534, 41362}, {19347, 64031}, {19457, 64588}, {21213, 26883}, {21663, 30443}, {22467, 40914}, {32140, 33563}, {32316, 32337}, {32345, 35502}, {34117, 44479}, {35450, 45735}, {36982, 63425}, {37515, 45979}, {37777, 58378}, {37925, 64034}, {38444, 45839}, {41715, 52525}, {43809, 52055}, {43866, 61735}, {44544, 61752}, {44837, 64714}, {46374, 47391}, {50435, 64037}, {63682, 63726}
X(64759) = midpoint of X(i) and X(j) for these {i,j}: {3, 9914}, {20427, 43695}
X(64759) = X(i)-Dao conjugate of X(j) for these {i, j}: {51936, 56296}
X(64759) = pole of line {8057, 40494} with respect to the circumcircle
X(64759) = pole of line {11413, 34782} with respect to the Stammler hyperbola
X(64759) = X(6247)-of-Ara triangle
X(64759) = X(9914)-of-anti-X3-ABC-reflections triangle
X(64759) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64, 10117, 24}, {1619, 11414, 34782}, {12088, 34781, 161}, {20427, 43695, 15311}, {32345, 61721, 35502}
X(64760) lies on the Bevan circle, circumconic {{A, B, C, X(972), X(3466)}}, and on these lines: {1, 102}, {3, 3464}, {4, 2816}, {9, 3042}, {10, 151}, {40, 1745}, {43, 34455}, {57, 1364}, {109, 165}, {117, 1698}, {124, 1699}, {226, 52167}, {515, 63417}, {516, 33650}, {517, 3465}, {573, 18599}, {653, 24030}, {851, 62340}, {928, 39156}, {1054, 2636}, {1282, 1763}, {1361, 1697}, {1394, 54083}, {1490, 2800}, {1695, 34459}, {1706, 3040}, {1750, 2184}, {1768, 3738}, {1795, 3345}, {2270, 20226}, {2629, 9355}, {2773, 9904}, {2779, 2939}, {2785, 9860}, {2792, 13174}, {2814, 5400}, {2835, 7994}, {2841, 16389}, {2853, 12408}, {3074, 5909}, {3075, 51490}, {3339, 12016}, {3576, 38600}, {3579, 38579}, {3624, 6711}, {3679, 50899}, {3697, 58685}, {5119, 52129}, {5538, 36001}, {5587, 10740}, {5691, 13532}, {5812, 34300}, {5886, 61564}, {7982, 51527}, {7987, 11700}, {8227, 38776}, {8677, 33811}, {9532, 13221}, {9586, 58051}, {9587, 58060}, {10703, 11531}, {10709, 19875}, {10716, 50865}, {10747, 41869}, {10771, 37718}, {11010, 38501}, {11727, 25055}, {14690, 38674}, {15015, 53740}, {15252, 53804}, {16192, 38697}, {16560, 34462}, {19872, 58419}, {20277, 37441}, {21228, 47605}, {22793, 38779}, {24031, 36100}, {28146, 38780}, {30392, 47115}, {31423, 57303}, {35242, 38607}, {37551, 52830}, {38042, 61603}, {50190, 58593}, {54081, 57281}, {54447, 61578}, {56824, 63468}, {64005, 64501}
X(64760) = reflection of X(i) in X(j) for these {i,j}: {1, 102}, {151, 10}, {1364, 52824}, {5691, 13532}, {10696, 11713}, {11531, 10703}, {38579, 3579}, {38674, 14690}, {41869, 10747}, {50865, 10716}, {64761, 40}
X(64760) = X(i)-Dao conjugate of X(j) for these {i, j}: {653, 18026}
X(64760) = X(i)-Ceva conjugate of X(j) for these {i, j}: {521, 1}
X(64760) = pole of line {8677, 33811} with respect to the Bevan circle
X(64760) = pole of line {2846, 14304} with respect to the polar circle
X(64760) = pole of line {2849, 12016} with respect to the Suppa-Cucoanes circle
X(64760) = X(102)-of-Aquila triangle
X(64760) = X(136)-of-6th-mixtilinear triangle
X(64760) = X(151)-of-outer-Garcia triangle
X(64760) = X(925)-of-excentral triangle
X(64760) = barycentric product X(i)*X(j) for these (i, j): {36100, 63792}, {39053, 521}
X(64760) = barycentric quotient X(i)/X(j) for these (i, j): {39053, 18026}, {63792, 64194}
X(64760) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 2818, 64761}, {40, 55311, 1745}, {102, 10696, 11713}, {102, 2817, 1}, {2817, 11713, 10696}, {11700, 38691, 7987}, {13532, 64507, 5691}
X(64761) lies on the Bevan circle and on these lines: {1, 104}, {9, 3040}, {10, 33650}, {19, 1743}, {36, 23205}, {40, 1745}, {43, 34459}, {46, 978}, {55, 53252}, {57, 1361}, {65, 3073}, {80, 9355}, {102, 165}, {117, 1699}, {124, 1698}, {151, 516}, {202, 51977}, {203, 51976}, {219, 1761}, {221, 3468}, {484, 6127}, {517, 38579}, {651, 24028}, {928, 1282}, {1046, 1710}, {1364, 1697}, {1409, 4424}, {1478, 2792}, {1537, 43043}, {1695, 34455}, {1706, 3042}, {1742, 2807}, {1836, 34300}, {1838, 52167}, {1935, 37562}, {2635, 48363}, {2773, 2948}, {2779, 9904}, {2785, 13174}, {2816, 6361}, {2817, 2956}, {2853, 13221}, {2943, 5697}, {3074, 31788}, {3075, 12672}, {3120, 4295}, {3339, 59816}, {3464, 53256}, {3465, 6001}, {3576, 38607}, {3579, 38573}, {3624, 6718}, {3679, 13532}, {3738, 5541}, {4559, 35046}, {5526, 52084}, {5587, 10747}, {5691, 50899}, {5886, 61571}, {5927, 58685}, {6326, 23703}, {7963, 15803}, {7971, 54083}, {7982, 51534}, {7987, 11713}, {8227, 57303}, {9532, 12408}, {9586, 58060}, {9587, 58051}, {9956, 38779}, {10571, 40256}, {10696, 11531}, {10709, 50865}, {10716, 19875}, {10740, 41869}, {10777, 37718}, {11734, 25055}, {12332, 51236}, {12515, 34586}, {12702, 64057}, {12736, 64013}, {15015, 53742}, {16128, 56416}, {16192, 38691}, {16560, 45022}, {16561, 22306}, {18480, 38780}, {19872, 58426}, {24410, 38955}, {25415, 32913}, {31423, 38776}, {31730, 63417}, {33645, 37815}, {35242, 38600}, {35281, 64139}, {36074, 38345}, {37551, 52824}, {38667, 63469}, {50190, 58600}, {51281, 64150}, {51842, 64309}, {51966, 52680}, {52659, 64193}, {54447, 61585}, {64005, 64507}
X(64761) = reflection of X(i) in X(j) for these {i,j}: {1, 109}, {102, 14690}, {1361, 52830}, {1795, 13539}, {5691, 50899}, {10703, 11700}, {11531, 10696}, {33650, 10}, {38573, 3579}, {38780, 18480}, {41869, 10740}, {50865, 10709}, {63417, 31730}, {64760, 40}
X(64761) = incircle-inverse of X(46681)
X(64761) = X(i)-Dao conjugate of X(j) for these {i, j}: {34234, 18816}
X(64761) = X(i)-Ceva conjugate of X(j) for these {i, j}: {517, 1}
X(64761) = pole of line {8677, 64761} with respect to the Bevan circle
X(64761) = pole of line {53305, 53535} with respect to the circumcircle
X(64761) = pole of line {3738, 46681} with respect to the incircle
X(64761) = pole of line {1319, 3465} with respect to the Feuerbach hyperbola
X(64761) = pole of line {3738, 4458} with respect to the Suppa-Cucoanes circle
X(64761) = X(109)-of-Aquila triangle
X(64761) = X(131)-of-6th-mixtilinear triangle
X(64761) = X(1300)-of-excentral triangle
X(64761) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(59998)}}, {{A, B, C, X(1795), X(2316)}}, {{A, B, C, X(3466), X(34051)}}, {{A, B, C, X(8752), X(34184)}}
X(64761) = barycentric product X(i)*X(j) for these (i, j): {59998, 651}
X(64761) = barycentric quotient X(i)/X(j) for these (i, j): {59998, 4391}
X(64761) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 2818, 64760}, {102, 14690, 165}, {104, 53530, 1}, {109, 10703, 11700}, {651, 64189, 24028}, {2800, 11700, 10703}, {2800, 13539, 1795}, {11713, 38697, 7987}, {50899, 64501, 5691}
X(64762) lies on circumconic {{A, B, C, X(7952), X(10266)}} and on these lines: {1, 4}, {2, 40256}, {3, 11813}, {5, 2800}, {10, 6980}, {11, 5884}, {12, 1537}, {30, 26287}, {40, 5180}, {84, 10266}, {104, 37735}, {142, 6892}, {355, 21635}, {484, 6949}, {496, 12005}, {499, 1727}, {516, 26285}, {517, 63964}, {908, 11362}, {912, 24387}, {942, 22835}, {952, 32910}, {1071, 13751}, {1125, 6914}, {1158, 3306}, {1483, 52074}, {1538, 7686}, {2771, 20288}, {2801, 10943}, {2802, 10942}, {2829, 5901}, {2886, 20117}, {3065, 16116}, {3149, 14882}, {3576, 15680}, {3582, 26877}, {3814, 37562}, {3817, 12616}, {3825, 34339}, {3871, 14217}, {3878, 6842}, {4189, 10165}, {4292, 34880}, {5057, 11012}, {5080, 11014}, {5083, 10948}, {5087, 31788}, {5141, 10175}, {5253, 48695}, {5443, 6906}, {5450, 5886}, {5690, 40260}, {5693, 11680}, {5842, 40273}, {5885, 6001}, {5887, 25639}, {5903, 6941}, {6246, 10950}, {6326, 52367}, {6684, 6863}, {6692, 6862}, {6705, 10199}, {6796, 11849}, {6920, 64268}, {6923, 30144}, {6929, 30147}, {6933, 10172}, {6968, 10573}, {7491, 51717}, {7681, 31870}, {7704, 33593}, {7741, 10265}, {7743, 12675}, {7982, 31053}, {7988, 54156}, {8226, 64274}, {8715, 37713}, {8727, 40249}, {9624, 31019}, {9812, 40265}, {10284, 18242}, {10525, 22836}, {10698, 37710}, {10738, 37733}, {10944, 25485}, {10949, 12831}, {11230, 64118}, {11826, 54192}, {12114, 18493}, {12332, 45976}, {12672, 17605}, {12736, 26476}, {12747, 21630}, {15866, 64124}, {15908, 31806}, {16128, 26321}, {16160, 33592}, {17577, 50908}, {20085, 61296}, {21077, 28234}, {22792, 51709}, {22793, 37837}, {22799, 61148}, {23708, 63399}, {24390, 63967}, {24926, 52851}, {26470, 31803}, {26475, 41562}, {28160, 33657}, {28204, 32905}, {31162, 63966}, {31418, 64335}, {31419, 64693}, {31825, 56884}, {36002, 64269}, {37701, 64188}, {37702, 59391}, {37722, 38038}, {38028, 49107}, {38570, 51883}, {54154, 62830}, {59392, 64291}
X(64762) = midpoint of X(i) and X(j) for these {i,j}: {4, 40257}, {944, 40264}, {946, 12608}, {5450, 64119}, {6796, 12699}, {10525, 22836}, {12616, 54198}, {18242, 22791}, {22793, 37837}
X(64762) = reflection of X(i) in X(j) for these {i,j}: {5690, 40260}, {63963, 9955}, {63980, 40259}, {64763, 5}
X(64762) = complement of X(40256)
X(64762) = X(5448)-of-Fuhrmann triangle
X(64762) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {11, 124, 3326}, {1387, 11733, 39546}
X(64762) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 40257, 515}, {5, 2800, 64763}, {226, 946, 13464}, {946, 5882, 30384}, {1519, 12047, 946}, {3817, 54198, 12616}, {5443, 34789, 6906}, {6001, 9955, 63963}, {7681, 39542, 31870}, {7741, 64021, 10265}, {12005, 16174, 496}, {13743, 22775, 5450}, {15908, 51409, 31806}, {38034, 63980, 40259}
X(64763) lies on circumconic {{A, B, C, X(10570), X(64290)}} and on these lines: {1, 6952}, {2, 40257}, {3, 10}, {4, 484}, {5, 2800}, {8, 6972}, {12, 5884}, {40, 6840}, {79, 59392}, {80, 6906}, {84, 37163}, {104, 14800}, {119, 31803}, {495, 12005}, {517, 24387}, {519, 46920}, {944, 37616}, {946, 1737}, {952, 26287}, {1158, 2475}, {1210, 2099}, {1317, 17662}, {1329, 20117}, {1385, 58404}, {1484, 10284}, {1490, 19875}, {1512, 31673}, {1537, 7173}, {1698, 6261}, {1765, 21011}, {1788, 26332}, {1837, 14882}, {2077, 5086}, {2476, 7705}, {2801, 10942}, {2802, 10943}, {2829, 18357}, {3576, 37291}, {3814, 5887}, {3820, 64693}, {3822, 34339}, {3841, 6001}, {3871, 49176}, {3878, 6882}, {4855, 5881}, {5036, 10445}, {5123, 5777}, {5253, 48694}, {5270, 16763}, {5432, 64297}, {5445, 6905}, {5499, 18242}, {5657, 6903}, {5690, 63980}, {5693, 11681}, {5704, 64322}, {5705, 64733}, {5818, 6256}, {5842, 61524}, {5882, 10039}, {6259, 12919}, {6260, 6937}, {6326, 27529}, {6361, 40265}, {6734, 6943}, {6735, 47745}, {6831, 40663}, {6833, 10573}, {6862, 30147}, {6881, 64273}, {6958, 30144}, {6971, 11813}, {6986, 64269}, {7680, 12432}, {7951, 64021}, {7971, 54447}, {7989, 54156}, {7992, 7997}, {8582, 10172}, {8728, 40249}, {9588, 64261}, {9952, 37737}, {10165, 24987}, {10197, 37615}, {10225, 18480}, {10593, 16174}, {10698, 37735}, {10785, 12647}, {10827, 63399}, {10894, 36279}, {10916, 28234}, {10944, 11715}, {10948, 15558}, {11231, 37837}, {11491, 14799}, {11849, 62354}, {12332, 13743}, {12672, 17606}, {13607, 31397}, {13747, 38133}, {15178, 32905}, {15528, 26482}, {17579, 50796}, {17665, 34122}, {17757, 63967}, {18483, 37567}, {20118, 25485}, {21620, 30274}, {21635, 40266}, {22775, 45976}, {22791, 40259}, {25639, 37562}, {26333, 54361}, {26437, 64124}, {27385, 58744}, {28096, 32486}, {31837, 54288}, {33858, 59382}, {34030, 59285}, {37256, 40264}, {37714, 52027}, {38183, 49107}, {38755, 48668}, {46933, 64148}, {48695, 59415}, {56420, 64565}, {61261, 64119}
X(64763) = midpoint of X(i) and X(j) for these {i,j}: {4, 40256}, {10, 12616}, {355, 5450}, {5690, 63980}, {6361, 40265}, {18242, 33899}, {18480, 64118}
X(64763) = reflection of X(i) in X(j) for these {i,j}: {18242, 40260}, {22791, 40259}, {32905, 15178}, {63964, 9956}, {64762, 5}
X(64763) = complement of X(40257)
X(64763) = X(5449)-of-Fuhrmann triangle
X(64763) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 18339, 40256}
X(64763) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 2800, 64762}, {10, 12616, 515}, {5818, 14647, 6256}, {5903, 6830, 946}, {6001, 9956, 63964}, {6952, 12247, 1}, {18242, 38042, 40260}, {33899, 38042, 18242}
X(64764) lies on these lines: {2, 67}, {3, 32271}, {5, 15133}, {6, 5181}, {10, 32298}, {110, 3589}, {113, 5085}, {125, 19125}, {140, 9970}, {141, 32244}, {182, 14643}, {184, 15128}, {206, 63716}, {265, 38317}, {373, 32227}, {468, 10510}, {511, 38794}, {524, 47458}, {542, 1656}, {569, 20301}, {575, 63700}, {590, 32253}, {597, 895}, {599, 5095}, {615, 32252}, {631, 2781}, {858, 18374}, {1125, 32278}, {1177, 15131}, {1350, 38793}, {1503, 64101}, {1511, 14561}, {2777, 53094}, {2836, 5439}, {2854, 3618}, {2930, 5642}, {3090, 32274}, {3313, 41671}, {3448, 63119}, {3525, 32247}, {3526, 45016}, {3619, 25321}, {3624, 32238}, {4413, 32256}, {5050, 64103}, {5054, 48679}, {5070, 32306}, {5092, 7728}, {5094, 32239}, {5432, 32290}, {5433, 32289}, {5449, 15069}, {5480, 15035}, {5621, 7395}, {5655, 10168}, {6034, 53735}, {6699, 51941}, {6723, 56565}, {7484, 32262}, {7493, 40949}, {7808, 32242}, {7914, 32268}, {8252, 49265}, {8253, 49264}, {8262, 22151}, {8550, 43836}, {9019, 37760}, {9140, 48310}, {10192, 38885}, {10272, 11579}, {10516, 12900}, {10706, 50983}, {11064, 47455}, {11178, 32272}, {11694, 38079}, {11720, 38047}, {12121, 19130}, {12584, 25555}, {13171, 31521}, {13202, 59411}, {13248, 58437}, {13595, 52363}, {13910, 19110}, {13972, 19111}, {14653, 34422}, {14853, 33851}, {14861, 34437}, {14984, 15026}, {15029, 64196}, {15036, 48881}, {15051, 29181}, {15059, 51126}, {15061, 19140}, {15116, 19153}, {15184, 32279}, {15303, 16176}, {16003, 37514}, {16010, 16534}, {16111, 55676}, {16163, 53023}, {16510, 63648}, {16511, 34470}, {17508, 20127}, {19510, 44102}, {19924, 37958}, {20126, 52098}, {20582, 41720}, {23042, 32743}, {24953, 32288}, {24981, 25330}, {25329, 34573}, {26363, 32310}, {26364, 32309}, {28708, 41673}, {31884, 48378}, {32245, 62375}, {32246, 40132}, {32255, 63109}, {32260, 61676}, {32273, 64182}, {32299, 40670}, {32303, 32785}, {32304, 32786}, {32740, 41939}, {34155, 40107}, {36201, 64024}, {36518, 36990}, {37853, 55673}, {37911, 62376}, {38723, 48901}, {38726, 48910}, {38788, 55674}, {38790, 55682}, {38791, 55684}, {46264, 61574}, {46686, 48905}, {47457, 62381}, {47549, 62382}, {48375, 55651}, {55856, 61543}, {63344, 63379}
X(64764) = reflection of X(i) in X(j) for these {i,j}: {15059, 51126}
X(64764) = pole of line {5159, 10317} with respect to the Kiepert hyperbola
X(64764) = pole of line {10510, 37784} with respect to the Stammler hyperbola
X(64764) = X(67)-of-Gemini-109 triangle
X(64764) = intersection, other than A, B, C, of circumconics {{A, B, C, X(316), X(6698)}}, {{A, B, C, X(10511), X(40347)}}
X(64764) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11061, 6698}, {2, 6593, 67}, {5, 15462, 32233}, {67, 6593, 34319}, {141, 41595, 32244}, {141, 52699, 64104}, {182, 14643, 14982}, {3526, 45016, 49116}, {5181, 32300, 6}, {5642, 15118, 2930}, {5972, 32300, 5181}, {6593, 6698, 11061}, {10272, 38110, 11579}, {15116, 19153, 32264}, {15303, 32257, 16176}, {19140, 58445, 15061}, {32244, 52699, 41595}, {47355, 52697, 125}
X(64765) lies on these lines: {1, 651}, {3, 1633}, {4, 528}, {7, 14878}, {9, 2800}, {11, 38037}, {21, 18645}, {40, 6594}, {80, 63970}, {100, 516}, {104, 1001}, {119, 2550}, {153, 390}, {214, 5732}, {411, 63752}, {518, 10698}, {527, 50908}, {946, 3254}, {952, 60901}, {954, 13257}, {971, 6265}, {1005, 50836}, {1537, 5856}, {1768, 11407}, {1776, 3660}, {2771, 10177}, {2802, 43166}, {2826, 62306}, {2829, 43161}, {2951, 15015}, {3091, 45043}, {3243, 25485}, {3358, 9946}, {3485, 38055}, {3560, 51529}, {3826, 64008}, {4312, 10090}, {4996, 63975}, {5223, 13253}, {5531, 24644}, {5735, 48713}, {5779, 48667}, {5805, 12611}, {5817, 12247}, {5853, 12751}, {5880, 6946}, {5887, 64198}, {6224, 36991}, {6246, 59389}, {6260, 64269}, {6326, 11372}, {6825, 38763}, {6905, 28534}, {6930, 47357}, {8581, 12740}, {9809, 52653}, {10306, 51525}, {10310, 63753}, {10384, 13227}, {10392, 41558}, {10707, 10883}, {11495, 34474}, {11570, 15299}, {11715, 38316}, {11729, 38053}, {12019, 38159}, {12047, 64155}, {12515, 31658}, {12560, 12736}, {12619, 38108}, {12739, 14100}, {12758, 15298}, {12775, 42843}, {12776, 42842}, {12831, 33925}, {13279, 60895}, {15017, 38052}, {15297, 64021}, {15726, 50371}, {15863, 38154}, {16133, 33593}, {20119, 30311}, {20418, 38060}, {21153, 46684}, {22767, 60956}, {28071, 61426}, {31937, 36868}, {37541, 60782}, {38031, 38602}, {38043, 61566}, {38139, 61553}, {38693, 52769}, {42356, 59391}, {43175, 64145}, {49177, 63989}, {51090, 51506}, {64199, 64291}
X(64765) = midpoint of X(i) and X(j) for these {i,j}: {153, 390}, {5223, 13253}, {5779, 48667}, {6224, 36991}, {6326, 11372}
X(64765) = reflection of X(i) in X(j) for these {i,j}: {40, 6594}, {80, 63970}, {104, 1001}, {1156, 54370}, {2550, 119}, {3243, 25485}, {3254, 946}, {5732, 214}, {5805, 12611}, {12515, 31658}, {36996, 25558}, {63971, 10427}, {64145, 43175}
X(64765) = pole of line {5537, 62756} with respect to the Stammler hyperbola
X(64765) = X(895)-of-2nd-circumperp triangle
X(64765) = X(5181)-of-hexyl triangle
X(64765) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {153, 390, 20344}
X(64765) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2801), X(6745)}}, {{A, B, C, X(4845), X(55966)}}, {{A, B, C, X(34894), X(60047)}}
X(64765) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1001, 5851, 104}, {1156, 14151, 10394}, {1156, 8543, 53055}, {2801, 54370, 1156}, {5851, 25558, 36996}
X(64766) lies on these lines: {1, 140}, {2, 15862}, {8, 17057}, {10, 38410}, {36, 13607}, {46, 7966}, {65, 7972}, {79, 952}, {80, 946}, {100, 3244}, {145, 3881}, {390, 5697}, {484, 37734}, {517, 4330}, {519, 5178}, {523, 14812}, {758, 12535}, {944, 3474}, {1000, 56035}, {1317, 3337}, {1482, 11238}, {1483, 3336}, {2093, 7990}, {2099, 9654}, {2136, 3338}, {2346, 13606}, {2802, 47319}, {2886, 3632}, {3243, 3633}, {3245, 12512}, {3340, 7702}, {3582, 33179}, {3746, 28234}, {3871, 14804}, {4668, 61032}, {4857, 11278}, {5298, 61281}, {5442, 10246}, {5443, 9956}, {5557, 56091}, {5691, 7971}, {5734, 45035}, {7741, 63257}, {7967, 37524}, {8275, 63255}, {8422, 18409}, {10222, 16173}, {10483, 64697}, {10573, 10589}, {10950, 11280}, {11010, 37728}, {11041, 18398}, {11224, 37721}, {11246, 61295}, {11531, 11827}, {12047, 64270}, {12245, 37571}, {13869, 50148}, {15180, 56095}, {15909, 56152}, {16118, 28224}, {16126, 38455}, {16139, 37563}, {16200, 37720}, {18221, 50190}, {20050, 33110}, {21398, 64265}, {24470, 62617}, {30424, 45287}, {34612, 34747}, {34772, 64056}, {37618, 64282}, {37692, 64294}, {37705, 61703}, {37711, 64754}, {37731, 50194}, {43731, 61261}, {63210, 64163}
X(64766) = midpoint of X(i) and X(j) for these {i,j}: {3633, 11524}
X(64766) = reflection of X(i) in X(j) for these {i,j}: {3632, 64200}, {5559, 1}, {64199, 3244}, {64291, 1389}
X(64766) = anticomplement of X(15862)
X(64766) = pole of line {5443, 9957} with respect to the Feuerbach hyperbola
X(64766) = X(5559)-of-5th-mixtilinear triangle
X(64766) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 41687, 5445}, {1, 5844, 5559}, {10573, 10595, 15079}, {10595, 15079, 37735}, {11011, 41684, 5443}
X(64767) lies on these lines: {1, 6904}, {3, 64205}, {4, 519}, {5, 12640}, {8, 9614}, {10, 11}, {142, 31792}, {145, 9613}, {381, 64768}, {474, 551}, {515, 10912}, {516, 12650}, {517, 6245}, {528, 5882}, {758, 9949}, {946, 3880}, {952, 22792}, {962, 12629}, {1125, 1706}, {1210, 14923}, {1320, 57287}, {1376, 64703}, {1479, 64203}, {1482, 5805}, {1697, 6857}, {1953, 3950}, {2098, 63146}, {2099, 3244}, {2136, 5603}, {2476, 3885}, {2551, 11525}, {3090, 64204}, {3158, 10595}, {3189, 16200}, {3241, 37435}, {3529, 34716}, {3555, 17634}, {3621, 51423}, {3625, 4863}, {3635, 5542}, {3663, 50637}, {3679, 6919}, {3754, 21625}, {3813, 6922}, {3817, 7704}, {3829, 31399}, {3872, 6872}, {3878, 45120}, {3893, 21075}, {3895, 13411}, {3913, 6918}, {3947, 26482}, {4208, 7320}, {4292, 36846}, {4297, 22837}, {4304, 4861}, {4311, 37256}, {4669, 17556}, {4847, 5697}, {4853, 12572}, {5082, 7962}, {5129, 9623}, {5154, 6735}, {5493, 8666}, {5690, 24386}, {5734, 12632}, {5836, 9843}, {5844, 64272}, {5854, 6246}, {5901, 59584}, {6700, 63137}, {6736, 30384}, {6737, 30323}, {6765, 12541}, {6766, 28228}, {6841, 23340}, {6921, 44675}, {6926, 43174}, {6940, 34486}, {6964, 45701}, {7288, 63138}, {7991, 34625}, {8728, 9957}, {9819, 19843}, {10222, 12437}, {11112, 34699}, {11235, 64744}, {11260, 31730}, {11373, 63990}, {11522, 34619}, {11530, 17559}, {12245, 24392}, {12513, 28194}, {12635, 12858}, {12641, 59391}, {15955, 63969}, {16125, 44669}, {17460, 23675}, {17648, 63989}, {18483, 32049}, {18525, 47746}, {19860, 51724}, {19925, 49169}, {21077, 64754}, {22835, 63644}, {24297, 34918}, {24389, 31806}, {28236, 54227}, {30147, 30331}, {31673, 38455}, {32537, 50796}, {37001, 51118}, {37403, 50808}, {41702, 45287}, {45776, 63970}, {49627, 64721}, {56799, 62297}
X(64767) = midpoint of X(i) and X(j) for these {i,j}: {4, 3680}, {962, 12629}, {6765, 12541}, {7982, 64068}, {18525, 47746}
X(64767) = reflection of X(i) in X(j) for these {i,j}: {3, 64205}, {10, 49600}, {946, 13463}, {2136, 59722}, {3913, 13464}, {4297, 22837}, {5493, 8666}, {5882, 33895}, {11362, 3813}, {12437, 10222}, {12640, 5}, {31730, 11260}, {32049, 18483}, {49169, 19925}, {64117, 1}
X(64767) = complement of X(64202)
X(64767) = pole of line {329, 16610} with respect to the dual conic of Yff parabola
X(64767) = X(3680)-of-Euler triangle
X(64767) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 3680, 519}, {528, 33895, 5882}, {2136, 5603, 59722}, {3880, 13463, 946}, {3913, 34640, 13464}, {4853, 30305, 12572}, {5836, 63993, 9843}, {10914, 12053, 10}, {44675, 63130, 59675}
X(64768) lies on these lines: {1, 47742}, {3, 519}, {5, 3680}, {8, 392}, {12, 64203}, {30, 64202}, {46, 13996}, {84, 952}, {140, 64204}, {145, 5440}, {355, 3880}, {377, 10914}, {381, 64767}, {404, 15179}, {452, 31145}, {517, 6259}, {548, 34716}, {1071, 12245}, {1145, 36846}, {1259, 37739}, {1317, 1420}, {1467, 64736}, {1482, 7682}, {1483, 3158}, {1656, 64205}, {1697, 3632}, {2802, 10742}, {3241, 17567}, {3244, 63990}, {3621, 17576}, {3625, 5795}, {3652, 44669}, {3656, 12607}, {3679, 17527}, {3811, 5854}, {3868, 64743}, {3872, 7483}, {3885, 5046}, {3893, 12647}, {4266, 17299}, {4677, 4866}, {4853, 5791}, {5126, 20050}, {5690, 12629}, {5779, 5853}, {5790, 21627}, {5844, 6765}, {5881, 34697}, {5886, 10912}, {6735, 11373}, {6849, 12856}, {6893, 64068}, {6944, 10222}, {7320, 17559}, {7982, 37725}, {7991, 34630}, {9623, 50205}, {10072, 37829}, {10247, 59722}, {10572, 36972}, {10573, 44784}, {11278, 25568}, {11376, 41702}, {11519, 63143}, {11525, 31419}, {12448, 58631}, {12541, 59388}, {12737, 55297}, {13600, 56089}, {14923, 57282}, {16126, 27197}, {17564, 51093}, {17566, 38460}, {18391, 20789}, {18481, 38455}, {18526, 64117}, {21290, 64563}, {24392, 61510}, {24927, 56176}, {25405, 59591}, {25416, 56387}, {26446, 32426}, {28234, 64326}, {33895, 45701}, {34717, 61248}, {37582, 63133}, {37624, 59584}, {37738, 48696}, {38067, 42842}, {49600, 61261}, {56091, 59416}, {56177, 61284}, {59719, 61277}
X(64768) = reflection of X(i) in X(j) for these {i,j}: {3, 12640}, {355, 49169}, {3680, 5}, {10912, 10915}, {12448, 58631}, {12629, 5690}, {12699, 32049}, {18526, 64117}, {37727, 3913}, {47746, 1}
X(64768) = X(3680)-of-Johnson triangle
X(64768) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 1000, 5044}, {519, 12640, 3}, {519, 3913, 37727}, {2802, 32049, 12699}, {3633, 64056, 41687}, {3880, 49169, 355}, {10912, 10915, 5886}, {33895, 45701, 61276}
See Antreas Hatzipolakis and Peter Moses, euclid 6653.
X(64769) lies on these lines: {6, 62606}, {323, 51545}, {399, 1495}, {1990, 3580}, {19457, 50464}, {34801, 35373}, {37638, 56399}
X(64769) = isotomic conjugate of the polar conjugate of X(35372)
X(64769) = X(i)-cross conjugate of X(j) for these (i,j): {21649, 69}, {50433, 3}
X(64769) = X(i)-isoconjugate of X(j) for these (i,j): {19, 12383}, {92, 52169}, {2173, 10421}, {24019, 38401}, {35201, 40389}
X(64769) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 12383}, {22391, 52169}, {35071, 38401}, {36896, 10421}
X(64769) = cevapoint of X(i) and X(j) for these (i,j): {6, 17835}, {520, 47414}
X(64769) = trilinear pole of line {9409, 14314}
X(64769) = barycentric product X(i)*X(j) for these {i,j}: {69, 35372}, {35373, 62338}
X(64769) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 12383}, {74, 10421}, {184, 52169}, {520, 38401}, {11079, 40389}, {35372, 4}, {35373, 1300}, {40390, 14165}
X(64770) lies on these lines: {563, 63760}
X(64771) lies on these lines: {560, 2964}
X(64771) = X(847)-isoconjugate of X(5964)
X(64771) = barycentric product X(63)*X(59279)
X(64771) = barycentric quotient X(i)/X(j) for these {i,j}: {563, 5964}, {5963, 57716}, {59279, 92}
X(64772) lies on these lines: {1577, 14213}
X(64772) = barycentric product X(i)*X(j) for these {i,j}: {850, 9219}, {9220, 20948}
X(64772) = barycentric quotient X(i)/X(j) for these {i,j}: {9219, 110}, {9220, 163}
X(64773) lies on these lines: {6334, 14618}, {18314, 45793}
X(64773) = X(14586)-isoconjugate of X(57717)
X(64773) = X(338)-Dao conjugate of X(63766)
X(64773) = barycentric product X(i)*X(j) for these {i,j}: {1879, 15415}, {18314, 63763}
X(64773) = barycentric quotient X(i)/X(j) for these {i,j}: {564, 36134}, {1879, 14586}, {2618, 57717}, {5449, 15958}, {18314, 63766}, {63763, 18315}
See Peter Moses, euclid 6671.
X(64774) lies on the circumcircle and these lines: {74, 16186}, {107, 14220}, {108, 36117}, {112, 32712}, {399, 32418}, {476, 9033}, {477, 2777}, {526, 1304}, {1141, 46090}, {1294, 20127}, {1300, 10152}, {1302, 30528}, {2436, 23969}, {2693, 5663}, {9060, 44769}, {9161, 40352}, {13530, 57472}, {14385, 16169}, {14919, 53188}, {15396, 15468}, {16166, 36831}, {16170, 53233}, {32640, 32732}, {32650, 59091}, {32715, 53944}, {36034, 59828}, {51262, 53872}, {53235, 53881}, {53757, 53957}
X(64774) = isogonal conjugate of X(55141)
X(64774) = isotomic conjugate of the polar conjugate of X(32712)
X(64774) = Thomson isogonal conjugate of X(64510)
X(64774) = Collings transform of X(15468)
X(64774) = X(i)-cross conjugate of X(j) for these (i,j): {526, 15396}, {46585, 250}, {46616, 10419}
X(64774) = X(i)-isoconjugate of X(j) for these (i,j): {1, 55141}, {162, 13212}, {656, 11251}, {1109, 42742}, {5663, 36035}, {9033, 36063}
X(64774) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 55141}, {125, 13212}, {40596, 11251}
X(64774) = cevapoint of X(i) and X(j) for these (i,j): {526, 15468}, {14220, 39985}
X(64774) = trilinear pole of line {6, 32640}
X(64774) = barycentric product X(i)*X(j) for these {i,j}: {63, 36117}, {69, 32712}, {74, 30528}, {477, 44769}, {2411, 15395}, {16077, 32663}, {34210, 39290}, {36034, 36102}
.
X(64774) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 55141}, {112, 11251}, {477, 41079}, {647, 13212}, {2420, 1553}, {2433, 6070}, {2436, 3258}, {15395, 2410}, {23357, 42742}, {30528, 3260}, {32640, 5663}, {32650, 14254}, {32663, 9033}, {32712, 4}, {32715, 47228}, {34210, 5664}, {36117, 92}, {36131, 36063}, {36151, 36035}, {44769, 35520}
See Peter Moses, euclid 6671.
X(64775) lies on the circumcircle and these lines: {67, 98}, {74, 3455}, {107, 14223}, {110, 35911}, {111, 10766}, {112, 35909}, {476, 2799}, {477, 2794}, {526, 2715}, {542, 2697}, {690, 935}, {691, 9517}, {842, 2781}, {1300, 11605}, {2367, 57452}, {2373, 36884}, {2421, 58979}, {2710, 5663}, {5649, 11636}, {9060, 51263}, {10097, 39413}, {14357, 53605}, {15342, 59098}, {20404, 53232}, {23350, 23969}, {44061, 53735}, {46157, 53945}, {58980, 61207}
X(64775) = isogonal conjugate of X(55142)
X(64775) = X(34291)-cross conjugate of X(10415)
X(64775) = X(i)-isoconjugate of X(j) for these (i,j): {1, 55142}, {897, 32313}, {1640, 16568}, {2247, 9979}, {6041, 20944}
X(64775) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 55142}, {6593, 32313}, {15900, 18312}
X(64775) = trilinear pole of line {6, 47415}
X(64775) = barycentric product X(i)*X(j) for these {i,j}: {67, 5649}, {842, 17708}, {3455, 6035}
X(64775) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 55142}, {67, 18312}, {187, 32313}, {842, 9979}, {935, 60502}, {3455, 1640}, {5649, 316}, {6035, 40074}, {23969, 52449}, {35909, 62563}, {52199, 33752}
See Peter Moses, euclid 6671.
X(64776) lies on the circumcircle and these lines: {74, 61444}, {111, 8681}, {352, 53974}, {524, 2374}, {691, 2434}, {1296, 20186}, {1300, 38951}, {1499, 20187}, {6093, 34161}, {9084, 41909}, {14659, 21448}, {15406, 30247}, {40119, 55977}
X(64776) = isogonal conjugate of X(55140)
X(64776) = Thomson isogonal conjugate of X(64508)
X(64776) = X(524)-cross conjugate of X(15406)
X(64776) = X(i)-isoconjugate of X(j) for these (i,j): {1, 55140}, {2408, 17466}, {3291, 14207}, {9134, 36277}
X(64776) = X(3)-Dao conjugate of X(55140)
X(64776) = cevapoint of X(i) and X(j) for these (i,j): {3292, 8644}, {55977, 58754}
X(64776) = trilinear pole of line {6, 47412}
X(64776) = barycentric product X(i)*X(j) for these {i,j}: {1296, 41909}, {2418, 15387}, {2434, 44182}
X(64776) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 55140}, {1296, 47286}, {2434, 126}, {15387, 2408}, {21448, 9134}, {32648, 14263}, {57467, 55271}
See Peter Moses, euclid 6671.
X(64777) lies on the circumcircle and these lines: {74, 34442}, {104, 10693}, {107, 14224}, {476, 2804}, {477, 2829}, {526, 2720}, {1290, 2850}, {1300, 39990}, {2687, 2778}, {2694, 2771}, {2745, 5663}, {2766, 8674}, {26700, 42768}
X(64777) = isogonal conjugate of X(55146)
X(64777) = X(i)-isoconjugate of X(j) for these (i,j): {1, 55146}, {2771, 21180}
X(64777) = X(3)-Dao conjugate of X(55146)
X(64777) = barycentric quotient X(6)/X(55146)
See Peter Moses, euclid 6671.
X(64778) lies on the circumcircle and these lines: {74, 18876}, {111, 46340}, {476, 55129}, {477, 64509}, {526, 46967}, {1177, 1297}, {1289, 60591}, {1300, 47110}, {2697, 36201}, {9517, 10423}, {13494, 56980}, {30247, 53760}, {58980, 61198}
X(64778) = barycentric quotient X(10423)/X(50188)
See Peter Moses, euclid 6671.
X(64779) lies on the circumcircle and these lines: {74, 54086}, {98, 16069}, {110, 57991}, {111, 46806}, {112, 46040}, {290, 43654}, {804, 22456}, {805, 17932}, {842, 46142}, {878, 18858}, {2710, 5152}, {2715, 57562}, {2782, 48259}, {3563, 46039}, {40870, 59023}, {51229, 53700}
X(64779) = isogonal conjugate of X(55143)
X(64779) = X(1)-isoconjugate of X(55143)
X(64779) = X(3)-Dao conjugate of X(55143)
X(64779) = cevapoint of X(46039) and X(46040)
X(64779) = trilinear pole of line {6, 2966}
X(64779) = barycentric product X(i)*X(j) for these {i,j}: {2698, 43187}, {2966, 46142}, {16069, 39291}, {46039, 55266}, {46040, 57991}
X(64779) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 55143}, {2421, 6072}, {2422, 6071}, {2698, 3569}, {2966, 2782}, {41173, 48452}, {46039, 55267}, {46040, 868}, {46142, 2799}, {51229, 41167}
X(64780) lies on these lines: {2, 92}, {30, 511}, {190, 40863}, {219, 45738}, {222, 20223}, {241, 4858}, {322, 3694}, {355, 24316}, {381, 39529}, {448, 648}, {664, 1944}, {671, 53191}, {857, 3007}, {1108, 17861}, {1121, 1952}, {1323, 44356}, {1375, 8756}, {1385, 24315}, {1494, 57862}, {1826, 41007}, {1943, 54107}, {2193, 56014}, {2223, 57031}, {3175, 22014}, {3262, 25083}, {3663, 42459}, {3668, 16608}, {3913, 15951}, {3928, 24310}, {3946, 59649}, {4081, 45281}, {4361, 60974}, {4363, 64053}, {4552, 30807}, {4659, 4853}, {4670, 30147}, {5777, 42456}, {5839, 60950}, {6354, 45206}, {7359, 26006}, {8609, 16732}, {9909, 20875}, {9956, 24317}, {9957, 24424}, {13624, 24684}, {14213, 18607}, {16578, 34852}, {17043, 40942}, {17079, 23603}, {17151, 60990}, {17262, 60973}, {17314, 61010}, {17318, 64054}, {17348, 60994}, {17950, 39351}, {18161, 64126}, {18480, 24682}, {18481, 24683}, {18593, 26011}, {18668, 48380}, {21084, 40659}, {21139, 52896}, {21933, 53596}, {22464, 26932}, {23583, 44336}, {23710, 33305}, {24400, 58330}, {24929, 56552}, {28610, 50106}, {32041, 53228}, {34744, 50083}, {36855, 44442}, {36949, 43035}, {40530, 59588}, {41804, 48381}, {41883, 64708}, {42044, 64143}, {52889, 62736}, {55076, 56718}, {55956, 59268}, {55998, 60965}, {58402, 59611}, {58457, 59646}
X(64780) = isogonal conjugate of X(32726)
X(64780) = polar conjugate of X(62742)
X(64780) = polar conjugate of the isogonal conjugate of X(62736)
X(64780) = trilinear pole of line {30691, 30692}
X(64780) = crossdifference of every pair of points on line {6, 1946}
X(64780) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {92, 1214, 6708}, {92, 6360, 1214}, {190, 40863, 52978}, {281, 347, 17073}, {322, 25252, 3694}, {448, 648, 52949}, {664, 1944, 6510}, {1948, 44354, 44360}
X(64781) lies on these lines: {2, 216}, {26, 7780}, {30, 511}, {53, 41005}, {99, 40888}, {141, 42459}, {187, 44375}, {297, 15526}, {316, 44363}, {338, 3003}, {340, 39352}, {376, 42329}, {381, 30258}, {389, 41481}, {401, 648}, {441, 1990}, {450, 34147}, {458, 5158}, {547, 10003}, {551, 57289}, {577, 9308}, {620, 44389}, {625, 44388}, {800, 41760}, {852, 52066}, {1316, 44102}, {1494, 1972}, {1495, 37926}, {1513, 62237}, {1632, 42671}, {1948, 35072}, {2450, 8754}, {2452, 21639}, {2453, 18374}, {3163, 40884}, {3199, 41009}, {3260, 14570}, {3292, 41202}, {3589, 59649}, {5032, 47740}, {5066, 42862}, {5112, 64724}, {5201, 60522}, {5446, 46977}, {5447, 6662}, {5462, 15912}, {5943, 42453}, {6638, 59660}, {6688, 59531}, {7387, 7751}, {7758, 34938}, {7759, 14790}, {7764, 23335}, {7781, 12085}, {7816, 19221}, {7843, 18569}, {8667, 9909}, {8716, 34808}, {9512, 52144}, {9766, 34609}, {9813, 35930}, {9822, 59566}, {10154, 13468}, {10282, 48581}, {11676, 38294}, {11793, 51888}, {13409, 42400}, {14023, 31305}, {14363, 38281}, {14581, 15013}, {15118, 16333}, {15694, 40329}, {16303, 62375}, {18026, 44354}, {18281, 50648}, {18324, 46893}, {18860, 48539}, {19568, 44442}, {19596, 37921}, {21356, 36889}, {22052, 46724}, {22151, 51372}, {24315, 48894}, {26870, 43999}, {32445, 59556}, {32456, 40879}, {32815, 53021}, {34003, 42556}, {34093, 44084}, {34351, 34506}, {34508, 46702}, {34509, 46703}, {34579, 34897}, {34622, 46776}, {34726, 63950}, {35073, 48316}, {36412, 45198}, {37067, 62196}, {38283, 59529}, {38297, 59527}, {39358, 44651}, {39568, 63933}, {39906, 40673}, {40074, 51373}, {40477, 44346}, {40484, 44334}, {41678, 60516}, {42368, 46394}, {44131, 63634}, {44135, 59197}, {44360, 52982}, {44560, 47233}, {44892, 47204}, {44894, 52604}, {45873, 58470}, {46788, 46808}, {47143, 60774}, {47322, 62376}, {51389, 62382}, {57529, 62261}, {58311, 58356}, {60524, 62338}
X(64781) = isogonal conjugate of X(26717)
X(64781) = isotomic conjugate of X(54973)
X(64781) = polar conjugate of X(57732)
X(64781) = isotomic conjugate of the isogonal conjugate of X(3331)
X(64781) = polar conjugate of the isogonal conjugate of X(852)
X(64781) = crossdifference of every pair of points on line {6, 39201}
X(64781) = barycentric product X(52491)*X(59572)
X(64781) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3164, 47383}, {2, 47383, 216}, {216, 264, 14767}, {216, 14767, 58454}, {264, 3164, 216}, {264, 47383, 2}, {324, 43988, 46832}, {393, 6527, 6389}, {401, 648, 3284}, {441, 1990, 23583}, {1494, 40885, 45312}, {2052, 46717, 6509}, {3164, 40896, 264}, {3260, 14570, 36212}, {9308, 20477, 577}, {15526, 52945, 297}, {18667, 31623, 18592}, {30258, 39530, 44924}, {39352, 40853, 340}, {45198, 56022, 36412}, {46106, 62308, 44436}, {46724, 56290, 22052}
X(64782) lies on these lines: {2, 311}, {30, 511}, {99, 44375}, {115, 44388}, {148, 44363}, {187, 44376}, {338, 36212}, {381, 41169}, {566, 59197}, {571, 56017}, {625, 53495}, {648, 44328}, {1879, 39113}, {3003, 14570}, {3613, 27364}, {5064, 9766}, {5485, 60130}, {6390, 44389}, {6823, 63923}, {7525, 7780}, {7526, 7781}, {8266, 8667}, {8716, 54994}, {8754, 45921}, {9967, 39910}, {11414, 63933}, {16310, 46184}, {18122, 32457}, {19161, 48716}, {23583, 44339}, {34990, 53474}, {37778, 41676}, {40888, 48540}, {41677, 44138}, {47113, 48974}, {51389, 62376}, {53416, 60524}, {59546, 63679}
X(64782) = isogonal conjugate of X(59056)
X(64782) = isotomic conjugate of the isogonal conjugate of X(45938)
X(64782) = crossdifference of every pair of points on line {6, 34952}
X(64782) = barycentric quotient X(44052)/X(28861)
X(64782) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {148, 44363, 53507}, {648, 44328, 52952}, {14570, 51481, 3003}
X(64783) lies on these lines: {2, 95}, {6, 10220}, {26, 7764}, {30, 511}, {99, 44363}, {115, 44375}, {216, 27377}, {297, 3284}, {316, 40888}, {340, 401}, {376, 26870}, {381, 42350}, {441, 40484}, {620, 44388}, {625, 44389}, {648, 40853}, {1316, 64724}, {1494, 44651}, {1634, 60522}, {1879, 63833}, {1991, 26875}, {3163, 36426}, {3629, 42459}, {4558, 60524}, {5112, 44102}, {6389, 32001}, {6748, 14767}, {7387, 7759}, {7751, 14790}, {7758, 31305}, {7780, 23335}, {8667, 34609}, {9380, 41679}, {9766, 9909}, {9813, 37242}, {11197, 35884}, {11416, 36163}, {12085, 63935}, {12242, 15780}, {14023, 34938}, {14461, 34147}, {18281, 34506}, {18569, 63924}, {18870, 51360}, {22052, 45198}, {22151, 51389}, {23200, 47200}, {31388, 35717}, {32002, 36412}, {32455, 59649}, {34505, 34725}, {34508, 46703}, {34509, 46702}, {34827, 46184}, {39568, 63932}, {40331, 61885}, {40477, 44216}, {40884, 45312}, {41202, 41586}, {47282, 51431}, {51372, 62382}, {53021, 64018}, {59531, 61677}, {60700, 62701}
X(64783) = isogonal conjugate of X(51222)
X(64783) = crossdifference of every pair of points on line {6, 15451}
X(64783) = X(10220)-line conjugate of X(6)
X(64783) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {95, 233, 6709}, {95, 17035, 233}, {97, 34836, 58417}, {297, 3284, 23583}, {340, 401, 15526}, {648, 40853, 52945}, {6748, 41008, 14767}, {17035, 40897, 95}, {32002, 56290, 36412}, {44375, 53507, 115}
See Ivan Pavlov, Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6709.
X(64784) lies on these lines: {1, 7335}, {3,318}, {522, 23224}
See Ivan Pavlov, Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6709.
X(64785) lies on these lines: {10, 1943}, {1947, 41013}, {2321, 7283}, {6757, 20320}, {15168, 20836}, {15628, 56974}
See Ivan Pavlov, Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6709.
X(64786) lies on these lines: {3, 35099}, {10, 38856}, {40, 2784}, {515, 9840}, {516, 4065}, {2772, 5562}, {4221, 4297}, {13442, 58389}, {21628, 21669}, {28845, 37528}, {29040, 37425}, {29093, 48919}, {48941, 49564}
X(64787) lies on these lines: {3, 4885}, {4, 650}, {5, 31287}, {20, 693}, {30, 511}, {376, 45320}, {377, 24562}, {381, 44567}, {443, 25925}, {452, 25009}, {497, 30235}, {631, 31250}, {946, 23806}, {962, 47729}, {2475, 26641}, {3091, 31209}, {3146, 17494}, {3522, 26985}, {3529, 48125}, {3543, 31150}, {3832, 27115}, {4297, 48295}, {4301, 48285}, {4411, 30271}, {5059, 26824}, {5466, 54555}, {5706, 22383}, {6284, 11934}, {6847, 28834}, {6850, 28984}, {6872, 26546}, {6904, 26695}, {6938, 40166}, {7681, 15283}, {8641, 11496}, {15280, 63980}, {15683, 47869}, {15971, 28374}, {17578, 26777}, {21789, 39536}, {25902, 50408}, {25981, 26117}, {27417, 50700}, {34628, 50760}, {47664, 49135}, {47724, 64005}, {48284, 51118}
X(64787) = Thomson-isogonal conjugate of X(32726)
X(64787) = orthopoint of X(64780)
X(64787) = crossdifference of every pair of points on line {6, 62736}
X(64787) = barycentric product X(i)*X(j) for these {i,j}: {1034, 1847}, {1260, 1847}, {1265, 1847}, {48174, 51768}
X(64787) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 1847}, {845, 1847}, {1035, 1847}, {1119, 1847}, {1847, 1847}, {2057, 1847}, {2091, 1847}
X(64787) = {X(4885),X(8142)}-harmonic conjugate of X(3)
X(64788) lies on these lines: {3, 30476}, {4, 647}, {20, 850}, {30, 511}, {186, 47255}, {376, 31174}, {381, 44560}, {382, 41300}, {403, 47251}, {468, 46991}, {578, 58310}, {631, 31277}, {2549, 7652}, {3146, 31296}, {3522, 31072}, {3543, 36900}, {5466, 60122}, {6587, 39533}, {7487, 28729}, {7687, 22264}, {9125, 37855}, {10295, 47004}, {10297, 46984}, {11799, 47442}, {14618, 42658}, {15683, 63786}, {16229, 39201}, {18312, 49669}, {34291, 53017}, {37242, 62688}, {37934, 47252}, {37952, 47264}, {37984, 47249}, {41038, 57122}, {41039, 57123}, {42660, 52737}, {43674, 54774}, {44280, 47259}, {44918, 63830}, {46985, 47248}, {46989, 47031}, {46990, 47308}, {46997, 47175}, {47001, 47310}, {47002, 47309}, {47254, 56369}, {47258, 62288}, {53275, 64711}
X(64788) = Thomson-isogonal conjugate of X(26717)
X(64788) = orthopoint of X(64781)
X(64788) = crossdifference of every pair of points on line {6, 852}
X(64788) = barycentric product X(i)*X(j) for these {i,j}: {1034, 1847}, {1260, 1847}, {1265, 1847}
X(64788) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 1847}, {845, 1847}, {1035, 1847}, {1119, 1847}, {1847, 1847}, {2057, 1847}, {2091, 1847}, {48340, 10073}
X(64788) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16229, 39201, 52585}, {46991, 47003, 468}
X(64789) lies on these lines: {4, 6753}, {5, 8651}, {30, 511}, {5926, 30476}, {11615, 16040}, {16229, 58756}, {18313, 49671}, {43674, 54913}
X(64789) = Thomson-isogonal conjugate of X(59056)
X(64789) = orthopoint of X(64782)
X(64789) = barycentric product X(i)*X(j) for these {i,j}: {1034, 1847}, {1260, 1847}, {1265, 1847}
X(64789) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 1847}, {845, 1847}, {1035, 1847}, {1119, 1847}, {1709, 63871}, {1847, 1847}, {2057, 1847}, {2091, 1847}
X(64790) lies on these lines: {4, 12077}, {20, 41298}, {30, 511}, {381, 44568}, {1181, 2623}, {3543, 44554}, {5466, 60121}, {15451, 42731}
X(64790) = Thomson-isogonal conjugate of X(51222)
X(64790) = orthopoint of X(64783)
X(64790) = barycentric product X(i)*X(j) for these {i,j}: {1034, 1847}, {1260, 1847}, {1265, 1847}
X(64790) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 1847}, {845, 1847}, {1035, 1847}, {1119, 1847}, {1847, 1847}, {2057, 1847}, {2091, 1847}
As a point on the Euler line, X(64791) has Shinagawa coefficients (3 r^2+8 r R+4 R^2-s^2,-r^2+8 r R+24 R^2-5 s^2).
See Tran Quang Hung and Ercole Suppa, euclid 6715.
X(64791) lies on these lines: {2, 3}, {515, 51403}
X(64791) = complement of the circumperp conjugate of X(37115)
X(64791) = reflection of X(186) in X(523)X(59998)
X(64791) = X(523)-vertex conjugate of-X(20838)
X(64791) = inverse in circumcircle of X(20838)
X(64791) = inverse in polar circle of X(412)
X(64791) = pole of the line X(523)X(20838) with respect to circumcircle
X(64791) = pole of the line X(412)X(523) with respect to polar circle
See Antreas Hatzipolakis and Ercole Suppa, euclid 6713.
X(64792) lies on these lines: {1, 399}, {2, 35000}, {3, 142}, {4, 37621}, {5, 100}, {21, 22791}, {30, 1621}, {31, 45923}, {35, 9955}, {36, 51709}, {55, 381}, {56, 11552}, {104, 10283}, {355, 25439}, {382, 10267}, {390, 34745}, {392, 35459}, {404, 61272}, {405, 12702}, {411, 40273}, {495, 10742}, {517, 3683}, {546, 11491}, {549, 5284}, {567, 692}, {595, 48903}, {601, 9345}, {943, 10386}, {952, 6912}, {956, 1482}, {958, 8148}, {993, 3656}, {999, 11551}, {1006, 28174}, {1012, 10246}, {1056, 34698},{1159, 57278}, {1260, 3419}, {1376, 5055}, {1532, 59382}, {1537, 5901}, {1617, 18541}, {1656, 4413}, {1699, 32613}, {1836, 41345}, {2070, 20988}, {2077, 11230}, {2346, 60901}, {2975, 3650}, {3059, 60885}, {3073, 4649}, {3090, 61156}, {3091, 32141}, {3243, 7330}, {3295, 5252}, {3303, 18526}, {3526, 10310}, {3579, 5259}, {3652, 3874}, {3746, 18480}, {3753, 35460}, {3830, 4428}, {3843, 11500}, {3851, 11499}, {3868, 13465}, {3871, 12690}, {3877, 35457}, {4294, 44229}, {4309, 18517}, {4421, 19709}, {4423, 5054}, {4512, 37584}, {5010, 38021}, {5047, 61524}, {5070, 61158}, {5072, 61154}, {5079, 61152}, {5172, 18393}, {5180, 5603}, {5223, 64369}, {5258, 11278}, {5396, 64013}, {5450, 61276}, {5537, 11231}, {5587, 12331}, {5690, 6920}, {5719, 8543}, {5883, 12515}, {6147, 16133}, {6199, 13887}, {6284, 37230}, {6395, 13940}, {6667, 55297}, {6763, 22936}, {6767, 18519}, {6841, 15171}, {6862, 10531}, {6887, 40333}, {6900, 20066}, {6905, 38034}, {6909, 38028}, {6946, 33814}, {6949, 61520}, {6974, 10596}, {6980, 26333}, {6985, 10129}, {7171, 38316}, {7411, 28178}, {7545, 20989}, {7688, 28198}, {7741, 14882}, {8167, 15694}, {8227, 26285}, {8273, 15696}, {8666, 28646}, {8715, 61261}, {9342, 15699}, {9624, 32612}, {9654, 11508}, {9655, 11510}, {9669, 11507}, {9670, 45630}, {9708, 34718}, {9856, 24299}, {10056, 18516}, {10058, 15950},{10247,22758}, {10284, 12653}, {10389, 18540}, {10540, 20986}, {10595, 32153}, {10902, 22793}, {11014, 26200}, {11108, 25011}, {11522, 26286}, {11729, 51636}, {12114, 37624}, {12611, 37701},{12645, 37622}, {12705, 37615}, {12743, 37710}, {12775, 57298}, {13369, 63266}, {13665, 44591}, {13785, 44590}, {14100, 40263}, {15931, 28146}, {16117, 41869}, {16160, 63269}, {16173, 35451}, {16408, 35251}, {16468, 37509}, {16617, 24390}, {17571, 35252}, {17577, 22938}, {17605, 32760}, {18445, 61398}, {18506, 62875}, {18510, 19000},{18512, 18999}, {18861, 38044}, {21669, 34773}, {22798, 63288}, {22937, 24468}, {25440, 61268}, {25466, 47032}, {26877, 58561}, {28160, 34486}, {28202, 41853}, {28443, 31162}, {28461, 54391}, {30308, 51817}, {31660, 46028}, {31937, 37080}, {33108, 34629}, {34474, 61270}, {35772, 42262}, {35773, 42265}, {37290, 63257}, {37533, 42012}, {38138, 38665}, {38669, 61283}, {38693, 61273}, {39877, 53091}, {41227, 44225}, {44846, 61840}, {51525, 61262}, {51529, 61280}, {58230, 63991}
X(64792) = crosssum of X(116) and X(63826)
X(64792) = pole of the line X(8674)X(21185) with respect to incircle
X(64792) = pole of the line X(35327)X(53283) with respect to Kiepert parabola
See Antreas Hatzipolakis and Ercole Suppa, euclid 6713.
X(64793) lies on these lines: {517, 3584}, {4717, 6735}
X(64793) = intersection, other than A, B, C, of circumconics {A, B, C, X(1), X(318)} and {A, B, C, X(8), X(3584)}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6713.
X(64794) lies on these lines: {1, 5}, {655, 5903}, {3585, 58739}, {4867, 51975}, {5902, 40437}, {14628, 63210}, {18393, 63750}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6713.
X(64795) lies on this line: {199, 4296}
X(64795) = intersection, other than A, B, C, of circumconics {A, B, C, X(21), X(199)} and {A, B, C, X(56), X(17798)}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6713.
X(64796) lies on these lines: {4, 8143}, {30, 58392}, {517, 48887}, {546, 2783}, {946, 1484}, {1699, 5492}, {3652, 64400}, {9959, 22793}, {10036, 59390}, {10478, 31828}, {19922, 22938}, {32167, 58383}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6713.
X(64797) lies on these lines: {1, 37443}, {2, 35099}, {3, 59723}, {10, 98}, {30, 58381}, {511, 49564}, {515, 48894}, {516, 3743}, {1125, 37360}, {1330, 8245}, {1503, 58386}, {1962, 48890}, {2772, 5907}, {2792, 9959}, {3178, 4220}, {4297, 4653}, {4658, 54160}, {8235, 56949}, {8258, 37527}, {9840, 38456}, {10180, 13442}, {11203, 46483}, {15973, 29040}, {17748, 19544}, {29181, 58385}, {35016, 37447}, {39605, 43460}
Let ABC be a triangle, and I its incenter. Let A'B'C' be the circumcevian triangle of I. Let (Oa), (Ob), (Oc) be the circles with diameters IA', IB', IC', respectively. Then, there exists a circle (Oi) simultaneously tangent to the circumcircle, (Oa), (Ob) and (Oc). (Keita Miyamoto, Peter Moses, August 13, 2024)
Here, the circle (Oi) is named the 5th Miyamoto-Moses-Apollonius circle.
X(64798) lies on this line: {1, 164}
X(64798) = midpoint of X(1) and X(18291)
X(64799) lies on the circumcircle and these lines: {1, 3659}, {56, 12809}, {100, 7588}, {8077, 13385}, {8091, 10496}
X(64799) = midpoint of X(1) and X(20114)
X(64799) = crosssum of X(1) and X(60027)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6726.
X(64800) lies on these lines: {6, 64}, {6587, 8673}
X(64800) = pole of the line X(25)X(13526) with respect to Jerabek hyperbola
See Antreas Hatzipolakis and Ercole Suppa, euclid 6730.
X(64801) lies on these lines: {2, 11643}, {3, 15533}, {25, 15820}, {98, 35473}, {184, 8588}, {187, 37808}, {574, 14908}, {3425, 35472}, {5206, 10547}, {14002, 45103}, {15515, 40319}, {37457, 52153}
X(64801) = isogonal conjugate of the anticomplement of X(8589)
X(64801) = X(206)-Dao conjugate of-X(14002)
X(64801) = X(75)-isoconjugate of-X(14002)
X(64801) = X(32)-reciprocal conjugate of-X(14002)
X(64801) = X(i)-vertex conjugate of-X(j) for these {i, j}: {4, 54482}, {45103, 45103}, {54487, 54901}, {54805, 54903}
X(64801) = barycentric quotient X(32)/X(14002)
X(64801) = trilinear quotient X(31)/X(14002)
X(64801) = intersection, other than A, B, C, of circumconics {A, B, C, X(2), X(187)} and {A, B, C, X(3), X(25)}
X(64801) = trilinear pole of the line: {3049, 62412}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6730.
X(64802) lies on the cubic K936 and these lines: {13, 44498}, {14, 44497}, {76, 54805}, {114, 22329}, {115, 44496}, {125, 40112}, {147, 44367}, {184, 47596}, {230, 41672}, {287, 44575} and many others
X(64802) = isogonal conjugate of X(43656)
X(64802) = isotomic conjugate of the antitomic conjugate of X(2)
X(64802) = antigonal conjugate of the circumnormal-isogonal conjugate of X(33638)
X(64802) = circumnormal-isogonal conjugate of X(33638)
X(64802) = circumtangential-isogonal conjugate of X(43656)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6730.
X(64803) lies on these lines: {1212, 25091}, {1898, 3059}, {3929, 35935}
X(64803) = intersection, other than A, B, C, of circumconics {A, B, C, X(4), X(1121)} and {A, B, C, X(9), X(85)}
X(64803) = trilinear pole of the line: {6608, 47800}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6730.
X(64804) lies on these lines: {1, 5806}, {2, 5787}, {3, 9}, {4, 4313}, {5, 515}, {20, 5440}, {21, 5927}, {30, 6260}, {35, 12688}, {36, 12680}, {40, 3940}, {41, 44424}, {55, 9856}, {56, 64157}, {65, 44425}, {72, 411}, {78, 7580}, {140, 6245}, {153, 33598}, {210, 59320}, {214, 38757}, {226, 20420}, {227, 45272}, {355, 6825}, {376, 6223}, {378, 12136}, {381, 24299}, {382, 33596}, {404, 10167}, {405, 10157}, {474, 10884}, {516, 5763}, {517, 3811}, {549, 6705}, {581, 37594}, {631, 9799}, {912, 9942}, {916, 970}, {942, 3149}, {944, 5722}, {946, 5719}, {958, 9947}, {990, 4255}, {1071, 6905}, {1155, 15071}, {1158, 31663}, {1319, 9581}, {1376, 12520}, {1389, 17097}, {1420, 30283}, {1479, 1538}, {1656, 13151}, {1699, 9670}, {1709, 5217}, {1745, 46974}, {1750, 3601}, {1864, 37583}, {1868, 4219}, {1898, 5172}, {2646, 5219}, {2771, 64188}, {2800, 51525}, {2808, 15489}, {2829, 22935}, {2947, 37694}, {3256, 17634}, {3295, 63992}, {3357, 3579}, {3419, 6838}, {3428, 17857}, {3452, 4297}, {3465, 17102}, {3487, 5805}, {3522, 12246}, {3528, 54052}, {3530, 61556}, {3534, 48664}, {3543, 33595}, {3576, 11108}, {3646, 38031}, {3651, 64107}, {3682, 61161}, {3689, 7991}, {3748, 11522}, {3817, 51715}, {3824, 6826}, {3916, 12528}, {4188, 11220}, {4299, 12678}, {4302, 12679}, {4640, 31803}, {4855, 37022}, {4996, 17661}, {5045, 22753}, {5084, 5731}, {5122, 63399}, {5204, 10085}, {5302, 15064}, {5439, 6915}, {5450, 17502}, {5534, 22770}, {5687, 31798}, {5728, 57283}, {5761, 12699}, {5768, 6927}, {5791, 6988}, {5804, 7967}, {5811, 59345}, {5812, 6869}, {5817 ,17558}, {5842, 12608}, {5882, 7682}, {5886, 6849}, {5918, 16143}, {5930, 15252}, {6147, 64001}, {6200, 49234}, {6221, 19068}, {6244, 12565}, {6253, 12047}, {6256, 28160}, {6257, 35247}, {6258, 35246}, {6326, 14110}, {6396, 49235}, {6398, 19067}, {6684, 33899}, {6690, 12617}, {6700, 37364}, {6765, 8158}, {6827, 12667}, {6856, 59387}, {6858, 61261}, {6864, 61595}, {6868, 37822}, {6876, 9960}, {6883, 12114}, {6911, 9940}, {6918, 18443}, {6924, 13369}, {6942, 64358}, {6969, 7319}, {7162, 40292}, {7308, 7987}, {7681, 18527}, {7690, 48748}, {7692, 48749}, {7743, 12116}, {7956, 63999}, {7971, 12702}, {7992, 35242}, {7995,35445}, {8669, 28850}, {8726, 10156}, {8727, 13411}, {8987, 35255}, {9709, 30503}, {9779, 62870}, {9844, 62873}, {9845, 13462}, {9910, 35243}, {9943, 25440}, {9948, 10164}, {9955, 48482}, {9957, 63986}, {9961, 17613}, {10165, 38158}, {10202, 37251}, {10222, 40257}, {10246, 12650}, {10310, 50528}, {10393, 11018}, {10571, 20324}, {11012, 14872}, {11231, 12616}, {11260, 28236}, {11363, 37372}, {11491, 12672}, {11499, 31788}, {12054, 12196}, {12119, 33898}, {12330, 35238}, {12436, 31657}, {12456, 35244}, {12457, 35245}, {12496, 35248}, {12514, 31821}, {12668, 35241}, {12676, 35249}, {12677, 35250}, {12686, 35251}, {12687, 35252}, {12738, 64280}, {13257, 64002}, {13607, 15935}, {13974, 35256}, {14646, 54228}, {15171, 63989}, {15852, 30115}, {15931, 25917}, {16417, 37526}, {16761, 26086}, {16845, 38108}, {17552, 54445}, {17573, 21164}, {17580, 21151}, {17582, 38122}, {18237, 35239}, {18357, 64286}, {18491, 64328}, {18518, 61146}, {18524, 37562}, {19919, 22937}, {20323, 37723}, {21075, 31799}, {23512, 27399}, {24474, 62359}, {24475, 40249}, {26287, 28208}, {26333, 31795}, {27385, 37374}, {28146, 64119}, {28174, 54198}, {28204, 45700}, {28901, 62186}, {31053, 59355}, {31672, 37434}, {31730, 54227}, {31786, 45770}, {31828, 33862}, {31937, 32613}, {32905, 51087}, {34772, 36002}, {34789, 41541}, {37411, 37531}, {37424, 57284}, {37554, 62183}, {37561, 63432}, {37574, 64134}, {37579, 64131}, {40267, 50371}, {46839, 56809}, {50054, 59637}, {50701, 57282}, {51755, 52265}, {56824, 64057}, {59331, 61705}, {63307, 63445}, {63987, 64352}, {64316, 64326}
X(64804) = complement of X(5787)
X(64804) = pole of the line X(210)X(212) with respect to Stevanovic circle
X(64804) = pole of the line X(3340)X(30223) with respect to Feuerbach hyperbola
See Antreas Hatzipolakis and Ercole Suppa, euclid 6730.
X(64805) lies on these lines: {23, 1503}, {5972, 9003}
X(64805) = pole of the line X(146)X(14566) with respect to {circumcircle,ninepoint circle}-inverter (or orthoptic circle of Steiner inellipse)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6730.
X(64806) lies on these lines: {39, 9469}, {148, 40236}, {620, 690}, {5152, 8784}, {6660,8178}
X(64806) = pole of the line X(147)X(62688) with respect to {circumcircle,ninepoint circle}-inverter (or orthoptic circle of Steiner inellipse)}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6730.
X(64807) lies on these lines: {147, 32472}, {2793, 6036}, {11616, 58752}
X(64807) = pole of the line X(148)X(11052) with respect to {circumcircle,ninepoint circle}-inverter (or orthoptic circle of Steiner inellipse)}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6735.
X(64808) lies on these lines: {5102, 14848}, {31489, 62977}
X(64808) = intersection, other than A, B, C, of circumconics {A, B, C, X(2), X(21358)} and {A, B, C, X(4), X(61887)}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6735.
X(64809) lies on these lines: {2, 54494}, {5, 99}, {69, 5071}, {76, 15022}, {183, 5079}, {316, 5055}, {325, 47478}, {597, 11161}, {1007, 61921}, {1078, 12812}, {3090, 7771}, {3544, 7782}, {3785, 5056}, {6033, 14159}, {6722, 16984}, {7603, 7827}, {7752, 61919}, {7768, 44904}, {7799, 61924}, {7802, 61905}, {7809, 61917}, {7832, 33010}, {7859, 32963}, {11057, 61913}, {11185, 61926}, {14907, 61912}, {31274, 33013}, {37688, 61916}, {39601, 51238}, {43459, 61900}, {48913, 61915}, {61914, 64018}
X(64809) = pole of the line X(5111)X(26613) with respect to Kiepert hyperbola
X(64809) = pole of the line X(5054)X(5965) with respect to Wallace hyperbola
See Antreas Hatzipolakis and Ercole Suppa, euclid 6735.
X(64810) lies on these lines: { }
X(64810) = intersection, other than A, B, C, of circumconics {A, B, C, X(1), X(15481)} and {A, B, C, X(9), X(60961)}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6735.
X(64811) lies on these lines: {1168, 25440}, {1319, 3869}, {1877, 17555}, {14584, 25005}
X(64811) = intersection, other than A, B, C, of circumconics {A, B, C, X(1), X(44)} and {A, B, C, X(21), X(318)}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6735.
X(64812) lies on these lines: {550, 15466}, {3529, 37669}, {40170, 49135}
X(64812) = intersection, other than A, B, C, of circumconics {A, B, C, X(1), X(44)} and {A, B, C, X(21), X(318)}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6735.
X(64813) lies on these lines: {1, 1538}, {2, 6259}, {3, 22792}, {4, 4313}, {5, 142}, {10, 31821}, {12,9856}, {30, 40262}, {72, 6932}, {84, 1656}, {119, 31788}, {226, 5806}, {355, 6982}, {381, 1490}, {382, 52026}, {442, 10157}, {495, 63989}, {498, 12679}, {499, 12678}, {515, 546}, {516, 64123}, {517, 10915}, {547, 61556}, {908, 31793}, {942, 1532}, {944, 7704}, {946,31792}, {952, 64205}, {960, 21635}, {1071, 6941}, {1158, 11231}, {1329, 31787}, {1385, 6256}, {1512, 50193}, {1519, 9957}, {1594, 12136}, {1699, 3303}, {2476, 5927}, {2646, 41698}, {2800, 4015}, {2829, 13624}, {2886, 9947}, {3090, 6223}, {3091, 5658}, {3358, 38318}, {3452, 37424}, {3525, 54052}, {3526, 48664}, {3545, 9799}, {3576, 40267}, {3579, 64119}, {3612, 37001}, {3616, 17618}, {3628, 6705}, {3634, 61511}, {3660, 26476}, {3814, 9943}, {3817, 51723}, {3825,58567}, {3832, 64144}, {3838, 19925}, {3841, 6001}, {3843, 64261}, {3916, 6960}, {4187, 11227}, {4193, 10167}, {4297, 5087}, {5044, 6907}, {5045, 7681}, {5055, 12684}, {5154, 11220}, {5217, 52860}, {5439, 6945}, {5440, 37437}, {5690, 54198}, {5691, 17605}, {5704, 36996}, {5705, 5779}, {5709, 60965}, {5714, 5805}, {5715, 18482}, {5777, 6842}, {5789, 64197}, {5790, 7971}, {5791, 5811}, {5882, 22835}, {5886, 12667}, {6147, 7682}, {6261, 18480}, {6684, 20400}, {6734, 13257}, {6745, 31777}, {6796, 28146}, {6825, 31445}, {6834, 37582}, {6838, 58798}, {6848, 57282}, {6874, 9960}, {6883, 56889}, {6908, 31658}, {6922, 31805}, {6980, 40263}, {7393, 9910}, {7741, 12680}, {7951, 12688}, {7956, 21620}, {7988, 10864}, {7992, 54447}, {8166, 11037}, {8976, 19068}, {9612, 19541}, {9654, 63992}, {9845, 50444}, {10105, 48931}, {10156, 17527}, {10175, 33899}, {10202, 18239}, {10525, 64116}, {10576, 49234}, {10577, 49235}, {10588, 64130}, {10884, 17556}, {10893, 18527}, {10895, 63988}, {11230, 12114}, {11500, 22793}, {12047, 64271}, {12115, 24928}, {12616, 18243}, {12650, 18493}, {12675, 58570}, {12699, 64148}, {12705, 31479}, {12761, 22935}, {13951, 19067}, {14882, 44425}, {15071, 17606}, {15845, 16215}, {15908, 34790}, {17559, 38122}, {17613, 27529}, {17757, 31798}, {18542, 61146}, {26087, 28204}, {26287, 28160}, {26446, 63962}, {30283, 50443}, {30852, 37022}, {31446, 51516}, {33858, 48697}, {33862, 64188}, {34789, 37568}, {38752, 46435}, {52684, 60953}, {57285, 64157}
X(64813) = complement of X(34862)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6753.
X(64814) lies on these lines: {6, 38856}, {40, 572}, {196, 54394}, {223, 1451}, {329, 405}, {943, 40956}, {1817, 17012}, {11108, 28626}
X(64814) = isogonal conjugate of X(5044)
X(64814) = X(3)-Dao conjugate of-X(5044)
X(64814) = X(54)-vertex conjugate of-X(44861)
X(64814) = crosssum of X(5044) and X(5044)
X(64814) = intersection, other than A, B, C, of circumconics {A, B, C, X(1), X(1014)} and {A, B, C, X(2), X(57748)}
X(64814) = trilinear pole of the line: {4790, 6129}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6753.
X(64815) lies on these lines: {20, 578}, {973, 11596}, {1078, 14615}, {1249, 10312}, {1294, 13568}, {1598, 1629}, {9786, 15318}, {10152, 13488}, {13567, 15319}, {37458, 38808}
X(64815) = isogonal conjugate of X(11793)
X(64815) = X(11745)-cross conjugate of-X(4)
X(64815) = X(3)-Dao conjugate of-X(11793)
X(64815) = X(54)-vertex conjugate of-X(45300)
X(64815) = crosssum of X(11793) and X(11793)
X(64815) = trilinear pole of the line: {3050, 6587}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6753.
X(64816) lies on the Feuerbach circumhyperbola and these lines: { }
X(64816) = isogonal conjugate of X(64817)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6753.
X(64817) lies on these lines: {1, 3}, {2, 5909}, {5, 20205}, {140, 58412}, {282, 6918}, {631, 52097}, {1490, 61671}, {2807, 58660}, {2817, 3812}, {5044, 11793}, {6684, 58460}, {6927, 14557}, {6935, 10373}, {9776, 56887}, {13614, 18180}, {14058, 44916}, {19904, 37696} ,{40953, 52027}
X(64817) = isogonal conjugate of X(64816)
X(64817) = complement of X(5909)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6753.
X(64818) lies on these lines: {2, 5908}, {3, 223}, {4, 51413}, {5, 10}, {140, 58412}, {389, 11018}, {631, 51490}, {1040, 19904}, {1440, 6926}, {1872, 10157}, {2818, 31787}, {3359, 34498}, {3827, 58660}, {6684, 20201}, {6705, 34371}, {6825, 31965}, {6844, 43213}, {6847, 14557}, {6848, 10373} ,{8679, 58588}, {9729, 9940}, {40953, 63966}
X(64818) = complement of X(5908)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6753.
X(64819) lies on these lines: {3, 64}, {2060, 5562}, {3079, 15644}, {3344, 11695}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6765.
X(64820) lies on these lines: {2, 12058}, {4, 51}, {6, 1619}, {22, 1974}, {24, 15644}, {25, 394}, {34, 63513}, {52, 1598}, {154, 50649}, {193, 1843}, {232, 20859}, {235, 343}, {373, 8889}, {378, 16836}, {427, 5943}, {428, 542}, {468, 3819}, {568, 18535}, {674, 41611}, {1181, 46363}, {1194, 2211}, {1216, 21841}, {1351, 52077}, {1593, 9729}, {1595, 5462}, {1596, 13754}, {1597, 9730}, {1885, 46850}, {1916, 60125}, {1968, 42295}, {1993, 11470}, {2979, 4232}, {3089, 5562}, {3515, 13348}, {3516, 17704}, {3517, 10625}, {3541, 11695}, {3542, 11793}, {3575, 13598}, {3796, 19118}, {3867, 58471}, {3917, 6353}, {4260, 44086}, {5012, 44102}, {5020, 37511}, {5064, 58470}, {5090, 23841}, {5094, 6688}, {5198, 16625}, {5422, 19124}, {5446, 6756}, {5480, 15809}, {5640, 7378}, {5650, 38282}, {6403, 7714}, {6467, 11206}, {6623, 15030}, {6997, 9822}, {7408, 11002}, {7466, 44092}, {7487, 45186}, {7715, 10263}, {7716, 63180}, {7718, 16980}, {7998, 62973}, {9909, 9967}, {9969, 15255}, {10095, 16198}, {10151, 46847}, {10170, 37942}, {10219, 52298}, {11396, 58535}, {11402, 44495}, {11403, 15012}, {11451, 52284}, {11807, 15473}, {12147, 12237}, {12148, 12238}, {12167, 58555}, {12298, 55573}, {12299, 55569}, {12300, 44959}, {13417, 44106}, {13488, 40647}, {13567, 34146}, {13570, 18386}, {14642, 56364}, {15004, 39588}, {15060, 44957}, {15073, 34750}, {15082, 52297}, {15107, 44091}, {15818, 64052}, {15887, 58492}, {17810, 19161}, {18438, 20850}, {18440, 61666}, {19128, 22352}, {20299, 58482}, {21851, 34417}, {23292, 45979}, {31978, 52003}, {34986, 44080}, {35473, 55166}, {35501, 40280}, {35603, 64026}, {36426, 52280}, {36987, 37460}, {37183, 52545}, {37197, 44870}, {37920, 55631}, {37971, 45118}, {37981, 58481}, {40413, 56430}, {44077, 44479}, {44299, 53857}, {45173, 51394}, {52301, 62187}, {55446, 61349}, {62958, 63632}
X(64820) = complement of X(12058)
X(64820) = crosssum of X(3) and X(1368)
X(64820) = crosspoint of X(4) and X(57388)
X(64820) = pole of the line X(520)X(16230) with respect to incircle of orthic triangle
X(64820) = pole of the line X(520)X(30735) with respect to polar circle
X(64820) = pole of the line X(235)X(39569) with respect to Huygens hyperbola
X(64820) = pole of the line X(4)X(57388) with respect to Jerabek hyperbola
X(64820) = pole of the line X(53)X(36424) with respect to Kiepert hyperbola
X(64820) = pole of the line X(647)X(41336) with respect to orthic inconic
X(64820) = pole of the line X(1092)X(6776) with respect to Stammler hyperbola
X(64820) = pole of the line X(3964)X(62698) with respect to Wallace hyperbola
X(64820) = pole of the line X(5972)X(20190) with respect to Walsmith rectangular hyperbola
See Antreas Hatzipolakis and Peter Moses, euclid 6770.
X(64821) lies on the nine-point circle of the medial triangle and these lines: {2, 3}, {230, 15167}, {2100, 3624}, {2102, 3616}, {2103, 5657}, {2104, 3618}, {2105, 10519}, {2574, 5972}, {2575, 6699}, {3564, 13414}, {5432, 51874}, {5433, 51873}, {6390, 46813}, {8116, 34380}, {10781, 31272}, {10782, 34474}, {14374, 43839}, {14500, 38727}, {15162, 47355}, {15325, 34593}, {43395, 51425}
X(64821) = midpoint of X(i) and X(j) for these {i,j}: {3, 1312}, {5, 35231}, {140, 31681}, {549, 13626}, {1113, 1313}, {1114, 20408}, {13414, 62592}, {15154, 20409}
X(64821) = complement of X(1313)
X(64821) = orthoptic-circle-of-the-Steiner-inellipse inverse of X(14808)
X(64821) = complement of the isogonal conjugate of X(15461)
X(64821) = X(i)-complementary conjugate of X(j) for these (i,j): {1822, 1313}, {2576, 62593}, {15461, 10}, {41941, 226}, {44125, 24040}, {50944, 21253}, {52131, 8287}, {53384, 34846}
X(64821) = X(53153)-Ceva conjugate of X(2575)
X(64821) = crosssum of X(6) and X(44126)
X(64821) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1113, 1313}, {2, 1312, 5159}, {2, 1344, 5}, {3, 57322, 1312}, {186, 46699, 45995}, {1656, 28447, 10750}, {2454, 2455, 44332}, {3523, 14808, 38709}, {3526, 15154, 57323}, {15154, 57323, 20409}
See Antreas Hatzipolakis and Peter Moses, euclid 6770.
X(64822) lies on the nine-point circle of the medial triangle and these lines: {2, 3}, {230, 15166}, {2101, 3624}, {2102, 5657}, {2103, 3616}, {2104, 10519}, {2105, 3618}, {2574, 6699}, {2575, 5972}, {3564, 13415}, {5432, 51873}, {5433, 51874}, {6390, 46810}, {8115, 34380}, {10781, 34474}, {10782, 31272}, {14375, 43839}, {14499, 38727}, {15163, 47355}, {15325, 34592}, {43396, 51425}
X(64822) = midpoint of X(i) and X(j) for these {i,j}: {3, 1313}, {5, 35232}, {140, 31682}, {549, 13627}, {1113, 20409}, {1114, 1312}, {13415, 62593}, {15155, 20408}
X(64822) = complement of X(1312)
X(64822) = orthoptic-circle-of-the-Steiner-inellipse inverse of X(14807)
X(64822) = complement of the isogonal conjugate of X(15460)
X(64822) = X(i)-complementary conjugate of X(j) for these (i,j): {1823, 1312}, {2577, 62592}, {15460, 10}, {41942, 226}, {44126, 24040}, {50945, 21253}, {52132, 8287}, {53385, 34846}
X(64822) = X(53154)-Ceva conjugate of X(2574)
X(64822) = crosssum of X(6) and X(44125)
X(64822) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1114, 1312}, {2, 1313, 5159}, {2, 1345, 5}, {3, 57323, 1313}, {186, 46698, 45994}, {1656, 28448, 10751}, {2454, 2455, 44333}, {3523, 14807, 38708}, {3526, 15155, 57322}, {15155, 57322, 20408}
Let IaIbIc be the cevian triangle of the incenter I. Denote by (cr) the circumconic with perspector I. Ray IaIb intersects (cr) at Ca. Ray IbIa intersects (cr) at Cb. Similarly define Ab, Ba, Bc, Ac. Let lines BaCa, AbCb, and AcBc form a triangle A'B'C'. Let lines BcCb, AcCa, and AbBa form a triangle A''B''C''. Both A'B'C' and A''B''C'' are perspective to the Montesdeoca-Hung triangle. X(64823) is the tripole of the line joining the two perspectors. (Ivan Pavlov, 17 Aug 2024).
X(64823) lies on these lines: {24624, 41809}, {37215, 55235}
X(64823) = isogonal conjugate of X(58842)
X(64823) = trilinear pole of line {1, 5974}
X(64823) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58842}, {512, 6703}, {649, 27714}
X(64823) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58842}, {5375, 27714}, {39054, 6703}
X(64823) = X(i)-cross conjugate of X(j) for these {i, j}: {2292, 24041}, {2363, 4600}, {58842, 1}
X(64823) = intersection, other than A, B, C, of circumconics: {{A, B, C, X(88), X(100)}}, {{A, B, C, X(4585), X(41809)}}, {{A, B, C, X(4627), X(53633)}}, {{A, B, C, X(4629), X(36069)}}
X(64823) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58842}, {100, 27714}, {662, 6703}
Let IaIbIc be the cevian triangle of the incenter I. Denote by (cr) the circumconic with perspector I. Ray IaIb intersects (cr) at Ca. Ray IbIa intersects (cr) at Cb. Similarly define Ab, Ba, Bc, Ac. Let lines BaCa, AbCb, and AcBc form a triangle A'B'C'. Let lines BcCb, AcCa, and AbBa form a triangle A''B''C''. Let T be the triangle formed by the Aubert (Steiner) lines of ABPC, BCPA, CAPB, where P=X(40). Both A'B'C' and A''B''C'' are perspective to T. X(64824) is the tripole of the line joining the two perspectors. (Ivan Pavlov, 17 Aug 2024).
X(64823) lies on these lines: {100, 53702}, {162, 1309}, {651, 17496}, {662, 13136}, {36037, 36098}
X(64824) = trilinear pole of line {1, 26095}
X(64824) = X(i)-isoconjugate-of-X(j) for these {i, j}: {572, 1769}, {2183, 21173}, {2975, 3310}, {10015, 20986}, {11998, 23981}, {14571, 23187}, {17074, 53549}, {22118, 39534}, {23706, 38344}
X(64824) = intersection, other than A, B, C, of circumconics {{A, B, C, X(88), X(100)}}, {{A, B, C, X(1309), X(13136)}}, {{A, B, C, X(4560), X(17496)}}
X(64824) = barycentric product X(i)*X(j) for these (i, j): {104, 56252}, {13136, 2051}, {18816, 56194}, {32641, 57905}, {34234, 56188}, {36037, 54121}, {53702, 75}, {57984, 59006}
X(64824) = barycentric quotient X(i)/X(j) for these (i, j): {104, 21173}, {1309, 11109}, {1795, 23187}, {2051, 10015}, {2401, 24237}, {13136, 14829}, {18816, 57244}, {20028, 23788}, {32641, 572}, {34234, 17496}, {34434, 1769}, {36037, 2975}, {37136, 17074}, {43728, 34589}, {51565, 57091}, {53702, 1}, {54121, 36038}, {56188, 908}, {56194, 517}, {56252, 3262}, {59006, 859}, {60817, 53549}, {61238, 11998}
X(64825) lies on these lines: {514, 661}, {2804, 39776}, {3310, 10015}, {3882, 4552}, {21385, 43991}, {24237, 40624}
X(64825) = perspector of circumconic {{A, B, C, X(75), X(17139)}}
X(64825) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 53702}, {909, 56194}, {2250, 59006}, {32641, 34434}, {34858, 56188}, {37136, 60817}
X(64825) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 53702}, {16586, 56188}, {23980, 56194}, {34589, 2250}, {46398, 2051}
X(64825) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4552, 16586}, {21272, 39776}, {24029, 908}, {35174, 52357}
X(64825) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {59073, 7}
X(64825) = pole of line {347, 62754} with respect to the DeLongchamps circle
X(64825) = pole of line {4467, 21273} with respect to the Kiepert parabola
X(64825) = pole of line {163, 32641} with respect to the Stammler hyperbola
X(64825) = pole of line {8, 4551} with respect to the Steiner circumellipse
X(64825) = pole of line {10, 34586} with respect to the Steiner inellipse
X(64825) = pole of line {522, 3869} with respect to the Yff parabola
X(64825) = pole of line {662, 13136} with respect to the Wallace hyperbola
X(64825) = pole of line {75, 56252} with respect to the dual conic of Hofstadter ellipse
X(64825) = intersection, other than A, B, C, of circumconics: {{A, B, C, X(514), X(24237)}}, {{A, B, C, X(661), X(3310)}}, {{A, B, C, X(693), X(23788)}}, {{A, B, C, X(1577), X(10015)}}, {{A, B, C, X(3936), X(16586)}}, {{A, B, C, X(3948), X(51381)}}, {{A, B, C, X(4391), X(17496)}}
X(64825) = barycentric product X(i)*X(j) for these (i, j): {517, 57244}, {2397, 24237}, {2975, 36038}, {10015, 14829}, {17496, 908}, {17751, 23788}, {21173, 3262}, {22464, 57091}, {24029, 40624}
X(64825) = barycentric quotient X(i)/X(j) for these (i, j): {1, 53702}, {517, 56194}, {572, 32641}, {859, 59006}, {908, 56188}, {1769, 34434}, {2975, 36037}, {3262, 56252}, {10015, 2051}, {11109, 1309}, {11998, 61238}, {14829, 13136}, {17074, 37136}, {17496, 34234}, {21173, 104}, {23187, 1795}, {23788, 20028}, {24237, 2401}, {34589, 43728}, {36038, 54121}, {53549, 60817}, {57091, 51565}, {57244, 18816}
X(64826) is the centroid of the tangential triangle of the X(1)-circumconcevian triangle (Ivan Pavlov, 17 Aug 2024).
X(64826) lies on these lines: {1, 3689}, {45, 36835}, {88, 5223}, {165, 748}, {4849, 10980}, {8056, 55935}, {9324, 60846}, {16676, 44798}, {17123, 52180}, {17595, 30393}, {30653, 64112}, {59207, 62711}
Let A' be the point, other than A, where the circle with diameter AI intersects the circumcircle, and define B' and C' cyclically. Then X(64827) is the symmedian point of A'B'C'. (Ivan Pavlov, 17 Aug 2024)
X(64827) lies on these lines: {1, 1350}, {2, 1696}, {3, 3663}, {6, 1423}, {7, 21}, {9, 25887}, {11, 21279}, {36, 4862}, {37, 57}, {45, 56547}, {55, 3598}, {65, 7190}, {69, 12513}, {75, 183}, {77, 1122}, {85, 28037}, {100, 4452}, {108, 1119}, {198, 4000}, {220, 27626}, {226, 4657}, {241, 28017}, {269, 1279}, {279, 51773}, {307, 30617}, {344, 5435}, {347, 7195}, {388, 4026}, {404, 31995}, {474, 25590}, {515, 24213}, {527, 5120}, {553, 41312}, {604, 6180}, {613, 1756}, {859, 17189}, {934, 7023}, {940, 61412}, {942, 46475}, {948, 28015}, {956, 17272}, {958, 4357}, {999, 3664}, {1086, 2178}, {1108, 7289}, {1259, 19850}, {1388, 1442}, {1400, 5228}, {1402, 40719}, {1407, 57037}, {1427, 28022}, {1439, 34489}, {1458, 40934}, {1461, 38855}, {1486, 1617}, {1616, 62791}, {1633, 21002}, {1788, 3932}, {2097, 18161}, {2099, 7269}, {2223, 11495}, {2352, 18655}, {3209, 5236}, {3212, 4360}, {3217, 4383}, {3295, 4021}, {3304, 3945}, {3306, 25099}, {3361, 7274}, {3554, 34371}, {3713, 25940}, {3729, 21477}, {3772, 15509}, {3875, 3913}, {3911, 17279}, {3946, 4254}, {4032, 24357}, {4188, 4373}, {4269, 37543}, {4298, 50290}, {4306, 37818}, {4346, 5204}, {4361, 16609}, {4419, 54322}, {4421, 50101}, {4428, 17320}, {4491, 43041}, {4497, 24405}, {4654, 41311}, {4687, 61018}, {4859, 37272}, {4888, 5563}, {4998, 57950}, {5022, 44421}, {5124, 49747}, {5219, 17384}, {5224, 56928}, {5687, 17151}, {6354, 28108}, {7011, 18589}, {7013, 37566}, {7053, 41426}, {7146, 16777}, {7179, 8167}, {7271, 13462}, {8666, 53598}, {8732, 16593}, {9310, 25878}, {10400, 16580}, {10436, 25524}, {10444, 64077}, {10446, 24203}, {10934, 63177}, {11194, 17274}, {11329, 48627}, {11343, 17304}, {11347, 23681}, {11499, 24209}, {11500, 17861}, {12114, 64122}, {12635, 55391}, {15668, 30097}, {16367, 17247}, {16412, 24199}, {16603, 17327}, {17132, 21539}, {17246, 54285}, {17276, 36743}, {17301, 36744}, {17355, 21526}, {17357, 31231}, {20470, 20876}, {20872, 22464}, {20905, 26267}, {21296, 54391}, {22753, 24179}, {24177, 37269}, {24796, 62779}, {24993, 26229}, {25440, 53594}, {26125, 41245}, {27623, 41526}, {27624, 62799}, {27659, 55405}, {27661, 55466}, {28083, 28113}, {28385, 63014}, {28402, 52134}, {28653, 61158}, {28739, 43053}, {28780, 31230}, {28978, 37789}, {31395, 36279}, {31643, 56129}, {34445, 56783}, {37499, 37555}, {37541, 52086}, {37583, 59247}, {37681, 61037}, {38859, 62783}, {40726, 50116}, {41004, 57278}, {44356, 55118}, {62781, 63574}, {62837, 62999}
X(64827) = reflection of X(i) in X(j) for these {i,j}: {59237, 3}
X(64827) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 39956}, {21, 56192}, {41, 40012}, {55, 34860}, {200, 56155}, {220, 42304}, {284, 56123}, {3158, 60789}, {3161, 60806}, {3169, 60807}, {4041, 8690}
X(64827) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 34860}, {478, 39956}, {3160, 40012}, {4394, 4534}, {6609, 56155}, {20317, 11}, {40590, 56123}, {40611, 56192}
X(64827) = X(i)-cross conjugate of X(j) for these {i, j}: {3214, 57}, {3915, 4383}
X(64827) = pole of line {3676, 4367} with respect to the circumcircle
X(64827) = pole of line {7178, 23729} with respect to the incircle
X(64827) = pole of line {10391, 17599} with respect to the Feuerbach hyperbola
X(64827) = pole of line {8, 3794} with respect to the Wallace hyperbola
X(64827) = pole of line {3664, 5711} with respect to the dual conic of Yff parabola
X(64827) = pole of line {6, 57} with respect to the dual conic of Moses-Feuerbach circumconic
X(64827) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(28387)}}, {{A, B, C, X(21), X(3217)}}, {{A, B, C, X(37), X(3214)}}, {{A, B, C, X(75), X(33947)}}, {{A, B, C, X(86), X(3875)}}, {{A, B, C, X(934), X(57950)}}, {{A, B, C, X(1001), X(35108)}}, {{A, B, C, X(1014), X(56358)}}, {{A, B, C, X(1444), X(15728)}}, {{A, B, C, X(3175), X(17321)}}, {{A, B, C, X(3286), X(16946)}}, {{A, B, C, X(3665), X(58008)}}, {{A, B, C, X(4106), X(17139)}}, {{A, B, C, X(4139), X(17768)}}, {{A, B, C, X(4389), X(56253)}}, {{A, B, C, X(4998), X(7023)}}, {{A, B, C, X(16705), X(18135)}}, {{A, B, C, X(17103), X(40438)}}, {{A, B, C, X(20992), X(56853)}}, {{A, B, C, X(52803), X(57858)}}
X(64827) = barycentric product X(i)*X(j) for these (i, j): {269, 30568}, {279, 3913}, {348, 4186}, {1014, 3175}, {1088, 3217}, {1412, 56253}, {1420, 27813}, {1434, 3214}, {3875, 57}, {3915, 85}, {4106, 651}, {4139, 4573}, {4383, 7}, {4498, 664}, {16946, 6063}, {18135, 56}, {20317, 934}, {21963, 4620}, {28387, 86}, {36838, 58334}, {42312, 658}, {57785, 61036}
X(64827) = barycentric quotient X(i)/X(j) for these (i, j): {7, 40012}, {56, 39956}, {57, 34860}, {65, 56123}, {269, 42304}, {1400, 56192}, {1407, 56155}, {3175, 3701}, {3214, 2321}, {3217, 200}, {3875, 312}, {3913, 346}, {3915, 9}, {4106, 4391}, {4139, 3700}, {4186, 281}, {4383, 8}, {4498, 522}, {4565, 8690}, {16945, 60806}, {16946, 55}, {17214, 17197}, {17477, 2170}, {18135, 3596}, {20317, 4397}, {21963, 21044}, {23777, 21132}, {28387, 10}, {30568, 341}, {40151, 60789}, {42312, 3239}, {56253, 30713}, {58334, 4130}, {61036, 210}
X(64827) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 17321, 41003}, {56, 1284, 1001}, {604, 52896, 6180}, {934, 62787, 7023}, {1122, 1319, 77}, {1400, 7225, 5228}, {1423, 1429, 6}, {9310, 28351, 25878}
Let A1 be the intersection of the perpendicular bisector of BC and line AX39173 and similarly define B1 and C1. Then A1, B1, and C1 are collinear on a line with tripole X(64828). (Ivan Pavlov, 17 Aug 2024).
X(64828) lies on these lines: {2, 6}, {21, 24482}, {99, 32722}, {110, 9058}, {190, 14570}, {511, 7425}, {513, 4236}, {645, 648}, {651, 662}, {671, 54548}, {691, 2746}, {859, 63852}, {1331, 2617}, {2397, 2427}, {2398, 7253}, {2966, 35147}, {3110, 60698}, {3658, 53406}, {3737, 54353}, {4221, 59787}, {4560, 62669}, {4573, 62532}, {4833, 23344}, {10755, 56154}, {15418, 55256}, {17139, 51987}, {36280, 37019}, {52663, 57985}
X(64828) = isogonal conjugate of X(55259)
X(64828) = trilinear pole of line {859, 42746}
X(64828) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 55259}, {10, 2423}, {42, 2401}, {65, 61238}, {71, 43933}, {104, 661}, {512, 34234}, {513, 2250}, {523, 909}, {647, 36123}, {649, 38955}, {798, 18816}, {810, 16082}, {1018, 15635}, {1400, 43728}, {1577, 34858}, {1795, 2501}, {1809, 55208}, {1880, 37628}, {1919, 57984}, {2342, 7178}, {2433, 52640}, {2720, 21044}, {3120, 32641}, {3122, 13136}, {3125, 36037}, {4017, 52663}, {4041, 34051}, {4120, 10428}, {4466, 14776}, {4516, 37136}, {7180, 51565}, {14578, 24006}, {15501, 55242}, {18785, 57468}, {21828, 40437}, {36110, 53560}, {36795, 51641}, {36819, 55261}, {36944, 55263}, {55255, 56638}
X(64828) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 55259}, {908, 4707}, {1145, 3700}, {1769, 52341}, {2245, 53527}, {3259, 3125}, {5375, 38955}, {9296, 57984}, {16586, 1577}, {23980, 523}, {25640, 2501}, {31998, 18816}, {34961, 52663}, {36830, 104}, {38981, 21044}, {39004, 53560}, {39026, 2250}, {39052, 36123}, {39054, 34234}, {39062, 16082}, {40582, 43728}, {40592, 2401}, {40602, 61238}, {40613, 661}, {45247, 61179}, {46398, 16732}
X(64828) = pole of line {669, 16680} with respect to the circumcircle
X(64828) = pole of line {2501, 3125} with respect to the polar circle
X(64828) = pole of line {99, 104} with respect to the Kiepert parabola
X(64828) = pole of line {6, 650} with respect to the Stammler hyperbola
X(64828) = pole of line {523, 7477} with respect to the Steiner circumellipse
X(64828) = pole of line {523, 34977} with respect to the Steiner inellipse
X(64828) = pole of line {4427, 7283} with respect to the Yff parabola
X(64828) = pole of line {190, 321} with respect to the Hutson-Moses hyperbola
X(64828) = pole of line {2, 905} with respect to the Wallace hyperbola
X(64828) = pole of line {14570, 31623} with respect to the dual conic of Jerabek hyperbola
X(64828) = pole of line {3265, 53332} with respect to the dual conic of Orthic inconic
X(64828) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(651)}}, {{A, B, C, X(6), X(1415)}}, {{A, B, C, X(69), X(668)}}, {{A, B, C, X(81), X(648)}}, {{A, B, C, X(86), X(811)}}, {{A, B, C, X(100), X(1150)}}, {{A, B, C, X(110), X(26637)}}, {{A, B, C, X(190), X(14829)}}, {{A, B, C, X(230), X(14571)}}, {{A, B, C, X(325), X(3262)}}, {{A, B, C, X(333), X(662)}}, {{A, B, C, X(394), X(1332)}}, {{A, B, C, X(517), X(524)}}, {{A, B, C, X(645), X(1812)}}, {{A, B, C, X(859), X(52897)}}, {{A, B, C, X(908), X(3936)}}, {{A, B, C, X(940), X(23981)}}, {{A, B, C, X(1213), X(61170)}}, {{A, B, C, X(1310), X(56433)}}, {{A, B, C, X(1465), X(35466)}}, {{A, B, C, X(1993), X(46640)}}, {{A, B, C, X(2183), X(2238)}}, {{A, B, C, X(2287), X(5546)}}, {{A, B, C, X(2804), X(9034)}}, {{A, B, C, X(2966), X(19623)}}, {{A, B, C, X(4238), X(37142)}}, {{A, B, C, X(4585), X(9268)}}, {{A, B, C, X(4604), X(17277)}}, {{A, B, C, X(4606), X(5372)}}, {{A, B, C, X(5712), X(23706)}}, {{A, B, C, X(5739), X(53151)}}, {{A, B, C, X(10026), X(21801)}}, {{A, B, C, X(11064), X(42716)}}, {{A, B, C, X(17139), X(30941)}}, {{A, B, C, X(17757), X(44396)}}, {{A, B, C, X(32040), X(46922)}}, {{A, B, C, X(36099), X(37642)}}, {{A, B, C, X(36106), X(37136)}}, {{A, B, C, X(37783), X(44769)}}, {{A, B, C, X(40571), X(46639)}}, {{A, B, C, X(42757), X(45952)}}
X(64828) = barycentric product X(i)*X(j) for these (i, j): {100, 17139}, {110, 3262}, {517, 99}, {662, 908}, {668, 859}, {1145, 4622}, {1414, 6735}, {1444, 53151}, {1457, 7257}, {1465, 645}, {1769, 4600}, {1785, 4592}, {2183, 799}, {2397, 81}, {2427, 274}, {3310, 4601}, {4246, 69}, {4584, 51381}, {4596, 51409}, {4614, 51423}, {4616, 51380}, {4620, 46393}, {4623, 51377}, {10015, 4567}, {14260, 55243}, {14571, 4563}, {15507, 4589}, {16586, 47318}, {17757, 52935}, {21801, 4610}, {22350, 811}, {22464, 643}, {23706, 332}, {23788, 765}, {23981, 314}, {24029, 333}, {36038, 4570}, {36797, 62402}, {42746, 46141}, {51987, 55260}, {55258, 6}
X(64828) = barycentric quotient X(i)/X(j) for these (i, j): {6, 55259}, {21, 43728}, {28, 43933}, {81, 2401}, {99, 18816}, {100, 38955}, {101, 2250}, {110, 104}, {162, 36123}, {163, 909}, {283, 37628}, {284, 61238}, {517, 523}, {643, 51565}, {645, 36795}, {648, 16082}, {662, 34234}, {668, 57984}, {859, 513}, {908, 1577}, {1333, 2423}, {1457, 4017}, {1465, 7178}, {1576, 34858}, {1769, 3120}, {1785, 24006}, {2183, 661}, {2397, 321}, {2427, 37}, {3262, 850}, {3286, 57468}, {3310, 3125}, {3658, 14266}, {3733, 15635}, {4236, 51832}, {4246, 4}, {4565, 34051}, {4567, 13136}, {4570, 36037}, {4575, 1795}, {5379, 1309}, {5546, 52663}, {6735, 4086}, {7435, 64635}, {7477, 38952}, {8677, 18210}, {10015, 16732}, {14010, 42455}, {14260, 55244}, {14571, 2501}, {15507, 4010}, {15632, 17757}, {16586, 4707}, {17139, 693}, {17757, 4036}, {21801, 4024}, {22350, 656}, {22464, 4077}, {23706, 225}, {23788, 1111}, {23981, 65}, {24029, 226}, {32661, 14578}, {34586, 53527}, {35049, 47317}, {36038, 21207}, {39173, 3657}, {42746, 2771}, {42757, 42759}, {46393, 21044}, {51377, 4705}, {51379, 52355}, {51409, 30591}, {51423, 4815}, {51433, 4404}, {51987, 55261}, {52031, 4049}, {52307, 53560}, {52378, 37136}, {53151, 41013}, {53530, 30572}, {53548, 53551}, {53549, 4516}, {54353, 36819}, {55258, 76}, {61672, 14431}, {62402, 17094}, {63852, 35353}
See Antreas Hatzipolakis and Ivan Pavlov, euclid 6782.
X(64829) lies on the circumconic {{A, B, C, X(32581), X(55075)}} and these lines: {4, 83}, {575, 55005}, {576, 14134}, {597, 31869}, {1503, 64494}, {20190, 55075}, {31989, 55708}, {48262, 53093}
X(64829) = midpoint of X(576) and X(14134)
See Antreas Hatzipolakis and Ivan Pavlov, euclid 6782.
X(64830) lies on these lines: {1, 60993}, {3, 30424}, {7, 40}, {9, 38123}, {30, 43181}, {46, 61021}, {142, 3358}, {144, 38130}, {165, 3982}, {355, 51100}, {515, 5880}, {516, 550}, {517, 43180}, {527, 6684}, {528, 13607}, {553, 5536}, {631, 60905}, {946, 6173}, {950, 64155}, {962, 59375}, {971, 3812}, {1482, 5542}, {2550, 47745}, {2801, 3918}, {2951, 59386}, {3336, 52819}, {3338, 60923}, {3485, 4312}, {3634, 64198}, {3671, 54178}, {4114, 41338}, {4297, 52682}, {5698, 10165}, {5714, 9814}, {5715, 45084}, {5735, 31730}, {5759, 16192}, {5762, 31663}, {5779, 38204}, {5784, 5884}, {5805, 43182}, {5818, 36996}, {5850, 12607}, {5851, 10172}, {6172, 31423}, {6260, 60987}, {6701, 61595}, {6850, 17706}, {6908, 60982}, {6940, 60885}, {7982, 30340}, {8227, 59374}, {8543, 37561}, {8545, 59333}, {8726, 30353}, {9940, 15726}, {10175, 64197}, {10394, 15016}, {10595, 38024}, {10902, 30295}, {11372, 62778}, {11531, 35514}, {12005, 15733}, {18230, 41705}, {18443, 28150}, {25681, 38122}, {26878, 61003}, {28194, 60895}, {28534, 50828}, {30275, 37526}, {30287, 62864}, {30331, 37624}, {30379, 64124}, {31672, 38151}, {33558, 58567}, {35010, 51768}, {37532, 60945}, {37560, 60953}, {38036, 64696}, {38054, 63983}, {38055, 64703}, {38107, 63973}, {38149, 64697}, {38158, 60884}, {38172, 60901}, {40273, 61509}, {49107, 60999}, {50371, 64110}, {58433, 60911}, {61028, 63967}
X(64830) = midpoint of X(i) and X(j) for these {i,j}: {3, 30424}, {142, 60896}, {946, 63971}, {4297, 52682}, {5735, 31730}, {5784, 5884}, {5805, 43182}, {5880, 43177}
X(64830) = reflection of X(i) in X(j) for these {i,j}: {6684, 64113}, {13464, 25557}, {60911, 58433}, {64198, 3634}, {64699, 61595}
X(64830) = pole of line {3554, 4328} with respect to the dual conic of the Yff parabola
X(64830) = X(5095)-of-K798i triangle
X(64830) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 25557, 13464}, {527, 64113, 6684}, {5880, 43177, 515}, {6173, 63971, 946}
See Antreas Hatzipolakis and Ivan Pavlov, euclid 6782.
X(64831) lies on these lines: {4, 2489}, {148, 64807}, {1499, 3850}, {3522, 11633}, {6658, 8644}, {14135, 38237}, {43674, 60209}
X(64831) = midpoint of X(148) and X(64807)
X(64831) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {148, 6719, 14090}
See Antreas Hatzipolakis and Ivan Pavlov, euclid 6782.
X(64832) lies on these lines: {4, 6591}, {513, 24387}, {3309, 9955}, {8027, 64527}, {30234, 37256}, {38238, 64531}
X(64832) = midpoint of X(148) and X(64807)
X(64832) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {149, 6714, 14079}
See Tran Viet Hung and César Lozada, Tran Viet Hung, problem 02/07/2024 (1).
X(64833) lies on these lines: {2, 20564}, {6, 70}, {111, 1288}, {115, 36416}, {251, 10550}, {1400, 2158}, {2165, 7505}, {2433, 55228}, {3767, 8882}, {5523, 59162}, {17907, 42354}, {28706, 42407}
X(64833) = polar conjugate of X(44128)
X(64833) = cevapoint of X(115) and X(6753)
X(64833) = X(44077)-cross conjugate of-X(4)
X(64833) = X(i)-Dao conjugate of-X(j) for these (i, j): (1249, 44128), (3162, 26), (5139, 55204), (15259, 8746)
X(64833) = X(i)-isoconjugate of-X(j) for these {i, j}: {26, 63}, {48, 44128}, {304, 44078}, {326, 8746}, {4592, 55204}, {24018, 52918}
X(64833) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4, 44128), (25, 26), (70, 69), (1288, 99), (1974, 44078), (2158, 63), (2207, 8746), (2489, 55204), (14581, 52953), (20564, 305), (32713, 52918), (44077, 34116), (55203, 52608), (55228, 525), (57415, 20563), (59162, 9723)
X(64833) = trilinear pole of the line {512, 55228} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(64833) = pole of the the tripolar of X(44128) with respect to the polar circle
X(64833) = pole of the line {24, 70} with respect to the Kiepert circumhyperbola
X(64833) = barycentric product X(i)*X(j) for these {i, j}: {4, 70}, {24, 57415}, {25, 20564}, {92, 2158}, {523, 1288}, {648, 55228}, {847, 59162}, {2489, 55203}
X(64833) = trilinear product X(i)*X(j) for these {i, j}: {4, 2158}, {19, 70}, {162, 55228}, {661, 1288}, {1973, 20564}
X(64833) = trilinear quotient X(i)/X(j) for these (i, j): (19, 26), (70, 63), (92, 44128), (1096, 8746), (1288, 662), (1973, 44078), (2158, 3), (20564, 304), (24019, 52918), (55203, 55202), (55228, 656)
See Tran Viet Hung and César Lozada, Tran Viet Hung, problem 02/07/2024 (1).
X(64834) lies on these lines: {19, 1990}, {28, 30602}, {33, 430}, {53, 11076}, {79, 1172}, {278, 18688}, {281, 451}, {1880, 1989}, {3064, 55236}, {6591, 43082}, {7129, 52372}, {17923, 20565}, {20624, 26700}
X(64834) = polar conjugate of X(319)
X(64834) = crosssum of X(219) and X(22136)
X(64834) = X(i)-cross conjugate of-X(j) for these (i, j): (1841, 19), (2355, 4), (6186, 79)
X(64834) = X(i)-Dao conjugate of-X(j) for these (i, j): (136, 7265), (1249, 319), (3162, 35), (5139, 55210), (5190, 4467), (5521, 14838), (6523, 52412), (7952, 42033), (14993, 52351), (15295, 52431), (20620, 57066), (32664, 52408), (36103, 3219), (39062, 55235), (40584, 52437), (40627, 22094), (40837, 17095), (47345, 40999), (53982, 42701), (55053, 23226), (56847, 306), (62602, 52421), (62605, 33939)
X(64834) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 52408}, {3, 3219}, {35, 63}, {48, 319}, {69, 2174}, {71, 56934}, {72, 40214}, {73, 56440}, {77, 52405}, {78, 2003}, {97, 35194}, {184, 33939}, {190, 23226}, {212, 17095}, {219, 1442}, {222, 4420}, {228, 34016}, {255, 52412}, {283, 16577}, {306, 17104}, {307, 35192}, {323, 1807}, {332, 21741}, {333, 22342}, {345, 1399}, {394, 6198}, {603, 42033}, {810, 55235}, {906, 4467}, {1214, 35193}, {1331, 14838}, {1332, 2605}, {1437, 3969}, {1790, 3678}, {1794, 16585}, {1796, 3647}, {1812, 2594}, {1813, 35057}, {1825, 6514}, {2161, 52437}, {2193, 40999}, {2289, 7282}, {3926, 14975}, {4558, 57099}, {4567, 22094}, {4575, 7265}, {4592, 55210}, {6149, 52351}, {6513, 56535}, {6516, 9404}
X(64834) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4, 319), (19, 3219), (25, 35), (27, 34016), (28, 56934), (31, 52408), (33, 4420), (34, 1442), (36, 52437), (79, 69), (92, 33939), (225, 40999), (273, 52421), (278, 17095), (281, 42033), (393, 52412), (607, 52405), (608, 2003), (648, 55235), (667, 23226), (1096, 6198), (1118, 7282), (1172, 56440), (1395, 1399), (1402, 22342), (1474, 40214), (1824, 3678), (1826, 3969), (1839, 3578), (1841, 16585), (1859, 31938), (1880, 16577), (1973, 2174), (1989, 52351), (2160, 63), (2181, 35194), (2203, 17104), (2204, 35192), (2299, 35193), (2355, 3647), (2489, 55210), (2501, 7265), (3064, 57066), (3122, 22094), (3615, 332), (4707, 45792), (6186, 3), (6344, 20566), (6591, 14838), (6742, 4561)
X(64834) = trilinear pole of the line {18344, 55236} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(64834) = Zosma transform of X(16553)
X(64834) = pole of the line {4467, 7265} with respect to the polar circle
X(64834) = barycentric product X(i)*X(j) for these {i, j}: {4, 79}, {11, 34922}, {19, 30690}, {25, 20565}, {27, 8818}, {28, 6757}, {29, 52382}, {34, 52344}, {36, 6344}, {92, 2160}, {94, 52413}, {158, 7100}, {225, 3615}, {264, 6186}, {273, 7073}, {278, 7110}, {281, 52374}, {318, 52372}, {320, 18384}, {393, 52381}
X(64834) = trilinear product X(i)*X(j) for these {i, j}: {4, 2160}, {19, 79}, {25, 30690}, {28, 8818}, {33, 52374}, {34, 7110}, {92, 6186}, {162, 55236}, {278, 7073}, {281, 52372}, {393, 7100}, {608, 52344}, {1096, 52381}, {1172, 52382}, {1474, 6757}, {1824, 52393}, {1826, 52375}, {1839, 57419}, {1841, 57710}, {1870, 1989}
X(64834) = trilinear quotient X(i)/X(j) for these (i, j): (4, 3219), (6, 52408), (19, 35), (25, 2174), (27, 56934), (28, 40214), (29, 56440), (33, 52405), (34, 2003), (53, 35194), (79, 63), (92, 319), (158, 52412), (225, 16577), (264, 33939), (273, 17095), (278, 1442), (281, 4420), (286, 34016), (318, 42033)
See Tran Viet Hung and César Lozada, Tran Viet Hung, problem 02/07/2024 (1).
X(64835) lies on these lines: {19, 53}, {33, 7140}, {80, 1172}, {278, 2006}, {281, 15065}, {759, 59083}, {1411, 7129}, {1785, 8756}, {1877, 8755}, {1880, 1989}, {1990, 11069}, {2173, 38945}, {2222, 20624}, {2983, 21675}, {6335, 20566}, {7079, 56416}
X(64835) = polar conjugate of X(320)
X(64835) = isogonal conjugate of X(22128)
X(64835) = cevapoint of X(1826) and X(8756)
X(64835) = crosspoint of X(6336) and X(36123)
X(64835) = crosssum of X(i) and X(j) for these {i, j}: {219, 22141}, {22350, 22356}
X(64835) = X(281)-beth conjugate of-X(1783)
X(64835) = X(i)-cross conjugate of-X(j) for these (i, j): (6187, 80), (14571, 19), (47235, 1783)
X(64835) = X(i)-Dao conjugate of-X(j) for these (i, j): (136, 4707), (1249, 320), (3162, 36), (5139, 21828), (5190, 4453), (5521, 3960), (6523, 17923), (7952, 32851), (14993, 52381), (15259, 52413), (15898, 63), (20619, 51583), (20620, 3904), (25640, 16586), (32664, 52407), (36103, 3218), (36909, 345), (39062, 55237), (40837, 17078), (47345, 41804), (55053, 22379), (56416, 3977), (62576, 40075), (62605, 20924)
X(64835) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 52407}, {3, 3218}, {36, 63}, {48, 320}, {69, 7113}, {77, 2323}, {184, 20924}, {190, 22379}, {212, 17078}, {214, 1797}, {219, 1443}, {222, 4511}, {255, 17923}, {283, 18593}, {295, 27950}, {304, 52434}, {307, 4282}, {323, 7100}, {326, 52413}, {345, 52440}, {348, 2361}, {394, 1870}, {603, 32851}, {654, 6516}, {758, 1790}, {810, 55237}, {860, 18604}, {906, 4453}, {1227, 32659}, {1331, 3960}, {1332, 53314}, {1437, 3936}, {1444, 2245}, {1459, 4585}, {1464, 1812}, {1795, 16586}, {1796, 4973}, {1813, 3738}, {1835, 6514}, {1983, 4025}, {2160, 52437}, {2193, 41804}, {3724, 17206}, {3904, 36059}, {3977, 16944}, {4091, 4242}, {4558, 53527}, {4561, 21758}, {4575, 4707}, {4592, 21828}
X(64835) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4, 320), (19, 3218), (25, 36), (31, 52407), (33, 4511), (34, 1443), (35, 52437), (80, 69), (92, 20924), (225, 41804), (264, 40075), (278, 17078), (281, 32851), (393, 17923), (607, 2323), (648, 55237), (667, 22379), (759, 1444), (1096, 1870), (1395, 52440), (1411, 77), (1783, 4585), (1807, 326), (1824, 758), (1826, 3936), (1857, 5081), (1877, 41801), (1880, 18593), (1973, 7113), (1974, 52434), (1989, 52381), (2006, 348), (2161, 63), (2201, 27950), (2204, 4282), (2207, 52413), (2212, 2361), (2222, 6516), (2333, 2245), (2341, 1812), (2355, 4973), (2489, 21828), (2501, 4707), (2969, 4089), (3064, 3904), (6059, 52427), (6187, 3), (6344, 20565), (6591, 3960), (6740, 332)
X(64835) = trilinear pole of the line {1824, 18344} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(64835) = Zosma transform of X(16554)
X(64835) = pole of the line {3904, 3960} with respect to the polar circle
X(64835) = barycentric product X(i)*X(j) for these {i, j}: {4, 80}, {19, 18359}, {25, 20566}, {28, 15065}, {29, 52383}, {33, 18815}, {34, 52409}, {35, 6344}, {92, 2161}, {108, 52356}, {158, 1807}, {225, 6740}, {264, 6187}, {273, 52371}, {278, 36910}, {281, 2006}, {286, 34857}, {318, 1411}, {319, 18384}, {393, 52351}
X(64835) = trilinear product X(i)*X(j) for these {i, j}: {4, 2161}, {19, 80}, {25, 18359}, {27, 34857}, {33, 2006}, {34, 36910}, {92, 6187}, {94, 14975}, {158, 52431}, {162, 55238}, {225, 2341}, {278, 52371}, {281, 1411}, {393, 1807}, {607, 18815}, {608, 52409}, {655, 18344}, {759, 1826}, {1096, 52351}, {1168, 8756}
X(64835) = trilinear quotient X(i)/X(j) for these (i, j): (4, 3218), (6, 52407), (19, 36), (25, 7113), (33, 2323), (80, 63), (92, 320), (158, 17923), (225, 18593), (242, 27950), (264, 20924), (273, 17078), (278, 1443), (281, 4511), (318, 32851), (393, 1870), (607, 2361), (608, 52440), (649, 22379), (655, 6516)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 03/07/2024.
X(64836) lies on the Feuerbach hyperbola and these lines: {1, 3832}, {9, 53620}, {21, 4413}, {80, 9812}, {104, 19541}, {355, 7317}, {938, 5557}, {962, 43734}, {1000, 59387}, {1156, 41712}, {1320, 41711}, {1387, 50864}, {1479, 13606}, {1837, 5556}, {3241, 51792}, {3296, 5722}, {3436, 15998}, {3680, 20053}, {4678, 4866}, {4900, 31145}, {5080, 6601}, {5252, 7320}, {5559, 30305}, {5561, 18391}, {5809, 34917}, {6246, 64330}, {7319, 10248}, {9802, 12641}, {10307, 31672}, {10580, 18490}, {17613, 55918}, {18421, 61992}, {34919, 59412}, {35258, 46933}, {36926, 56076}
X(64836) = isotomic conjugate of the anticomplement of X(16670)
X(64836) = cevapoint of X(11) and X(6006)
X(64836) = X(16670)-cross conjugate of-X(2)
X(64836) = trilinear pole of the line {650, 28169} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(64836) = perspector of the inconic with center X(16670)
X(64836) = trilinear quotient X(31145)/X(63913)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 07/07/2024.
X(64837) lies on these lines: {3, 6340}, {1216, 3547}, {14853, 31360}
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 07/07/2024.
X(64838) lies on these lines: {3, 60114}, {20, 9308}, {185, 6193}
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 10/07/2024.
X(64839) lies on these lines: {1, 3}, {1058, 33697}, {9655, 51791}, {9669, 51789}, {11019, 38176}, {11035, 31828}, {12127, 16863}, {38140, 51782}, {42819, 61000}, {61281, 64116}
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/07/2024.
X(64840) lies on these lines: {1, 7524}, {3, 2654}, {77, 64053}, {78, 7532}, {283, 60691}, {284, 59223}, {1795, 41344}, {1936, 56336}, {3422, 10046}, {6198, 56104}, {7531, 23707}
X(64840) = isogonal conjugate of the Cundy-Parry-Psi-transform of X(2654)
X(64840) = Cundy-Parry-Phi-transform of X(2654)
X(64840) = X(64841)-reciprocal conjugate of-X(63)
X(64840) = barycentric product X(92)*X(64841)
X(64840) = trilinear product X(4)*X(64841)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/07/2024.
X(64841) lies on these lines: {3, 2654}, {21, 51282}, {255, 40946}, {6875, 56261}
X(64841) = X(64840)-reciprocal conjugate of-X(92)
X(64841) = barycentric product X(63)*X(64840)
X(64841) = trilinear product X(3)*X(64840)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/07/2024.
X(64842) lies on these lines: {3, 14767}, {182, 19210}, {577, 43650}, {7485, 56337}, {37068, 56307}
X(64842) = isotomic conjugate of the polar conjugate of X(64846)
X(64842) = X(1147)-Dao conjugate of-X(26874)
X(64842) = X(158)-isoconjugate of-X(26874)
X(64842) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (577, 26874), (56341, 2052), (64846, 4)
X(64842) = barycentric product X(i)*X(j) for these {i, j}: {69, 64846}, {394, 56341}
X(64842) = trilinear product X(i)*X(j) for these {i, j}: {63, 64846}, {255, 56341}
X(64842) = trilinear quotient X(i)/X(j) for these (i, j): (255, 26874), (56341, 158)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/07/2024.
X(64843) lies on these lines: {4, 2646}, {29, 5705}, {158, 40950}, {273, 3664}, {281, 17275}, {318, 6737}, {7524, 56261}
X(64843) = polar conjugate of X(31266)
X(64843) = X(1249)-Dao conjugate of-X(31266)
X(64843) = X(48)-isoconjugate of-X(31266)
X(64843) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4, 31266), (56027, 63), (56062, 69), (56336, 394)
X(64843) = trilinear pole of the line {3064, 48277} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(64843) = pole of the the tripolar of X(31266) with respect to the polar circle
X(64843) = barycentric product X(i)*X(j) for these {i, j}: {4, 56062}, {92, 56027}, {2052, 56336}
X(64843) = trilinear product X(i)*X(j) for these {i, j}: {4, 56027}, {19, 56062}, {158, 56336}
X(64843) = trilinear quotient X(i)/X(j) for these (i, j): (92, 31266), (56027, 3), (56062, 63), (56336, 255)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/07/2024.
X(64844) lies on these lines: {4, 56068}, {264, 13488}, {382, 32085}, {393, 7748}, {1093, 1885}, {1179, 35490}, {1597, 14860}, {8884, 44438}
X(64844) = Cundy-Parry-Phi-transform of the polar conjugate of X(53415)
X(64844) = X(56068)-reciprocal conjugate of-X(394)
X(64844) = trilinear pole of the line {2501, 33968} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(64844) = barycentric product X(2052)*X(56068)
X(64844) = trilinear product X(158)*X(56068)
X(64844) = trilinear quotient X(56068)/X(255)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/07/2024.
X(64845) lies on these lines: {1, 57397}, {6, 748}, {31, 2241}, {81, 4384}, {604, 56496}, {739, 6013}, {873, 3759}, {1206, 2162}, {1333, 2280}, {1449, 10458}, {1911, 61358}, {1914, 34819}, {2205, 9346}, {2214, 46772}, {2298, 17156}, {4289, 28607}, {9345, 21753}, {14621, 37685}, {18785, 62819}, {32864, 63066}
X(64845) = isogonal conjugate of X(4687)
X(64845) = cevapoint of X(1015) and X(4832)
X(64845) = cross-difference of every pair of points on the line X(6005)X(47666)
X(64845) = X(56208)-beth conjugate of-X(56208)
X(64845) = X(1185)-cross conjugate of-X(31)
X(64845) = X(i)-Dao conjugate of-X(j) for these (i, j): (1084, 48407), (8054, 47666), (32664, 17018), (38996, 50483), (55053, 6005)
X(64845) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 17018}, {100, 47666}, {190, 6005}, {312, 16878}, {321, 39673}, {662, 48407}, {799, 50483}, {1978, 8655}
X(64845) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (31, 17018), (512, 48407), (649, 47666), (667, 6005), (669, 50483), (1397, 16878), (1980, 8655), (2206, 39673), (6013, 668), (10013, 75), (17110, 34284), (46772, 313), (56051, 76), (56087, 3596), (56208, 312), (56236, 321), (56496, 7)
X(64845) = barycentric product X(i)*X(j) for these {i, j}: {1, 10013}, {6, 56051}, {8, 56496}, {56, 56087}, {57, 56208}, {58, 46772}, {81, 56236}, {513, 6013}, {941, 17110}
X(64845) = trilinear product X(i)*X(j) for these {i, j}: {6, 10013}, {9, 56496}, {31, 56051}, {56, 56208}, {58, 56236}, {604, 56087}, {649, 6013}, {1333, 46772}, {2258, 17110}
X(64845) = trilinear quotient X(i)/X(j) for these (i, j): (6, 17018), (513, 47666), (604, 16878), (649, 6005), (661, 48407), (798, 50483), (1333, 39673), (1919, 8655), (6013, 190), (10013, 2), (17110, 10436), (46772, 321), (56051, 75), (56087, 312), (56208, 8), (56236, 10), (56496, 57)
X(64845) = (X(10013), X(56208))-harmonic conjugate of X(56236)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/07/2024.
X(64846) lies on these lines: {6, 42400}, {394, 59197}, {577, 43650}, {10311, 14533}, {15004, 52177}
X(64846) = isogonal conjugate of the polar conjugate of X(56341)
X(64846) = polar conjugate of the isotomic conjugate of X(64842)
X(64846) = X(22391)-Dao conjugate of-X(26874)
X(64846) = X(92)-isoconjugate of-X(26874)
X(64846) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (184, 26874), (56341, 264), (64842, 69)
X(64846) = barycentric product X(i)*X(j) for these {i, j}: {3, 56341}, {4, 64842}
X(64846) = trilinear product X(i)*X(j) for these {i, j}: {19, 64842}, {48, 56341}
X(64846) = trilinear quotient X(i)/X(j) for these (i, j): (48, 26874), (56341, 92)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 12/07/2024.
X(64847) lies on these lines: {1, 3}, {3982, 6049}, {7967, 51792}, {10595, 51790}, {11545, 61282}
X(64847) = pole of the line {513, 4770} with respect to the (circumcircle, incircle)-inverter)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 12/07/2024.
X(64848) lies on these lines: {1, 3}, {499, 61284}, {551, 1317}, {1404, 39260}, {1442, 56049}, {1478, 61279}, {1483, 17606}, {1737, 61283}, {3241, 31188}, {3476, 4870}, {3622, 37738}, {3623, 24914}, {3625, 7294}, {3635, 5433}, {3636, 10944}, {3742, 64353}, {3983, 30144}, {4315, 51104}, {5252, 38314}, {5434, 39782}, {6049, 10404}, {7741, 32900}, {7972, 11230}, {10175, 62617}, {10283, 17605}, {10573, 61282}, {11545, 61286}, {14151, 29007}, {15570, 37787}, {15950, 51103}, {20057, 41687}, {20118, 31397}, {24798, 25723}, {24805, 25716}, {26877, 37518}, {30384, 50824}, {40663, 51071}, {42871, 60947}, {43179, 60993}, {45287, 61278}, {51714, 64337}, {51767, 64732}, {51786, 56177}
X(64848) = crosssum of X(1) and X(10247)
X(64848) = X(34641)-beth conjugate of-X(34641)
X(64848) = X(34641)-reciprocal conjugate of-X(312)
X(64848) = barycentric product X(57)*X(34641)
X(64848) = trilinear product X(56)*X(34641)
X(64848) = trilinear quotient X(34641)/X(8)
X(64848) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 25405, 354), (1, 64849, 56), (1319, 11011, 57), (3057, 13751, 65)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 12/07/2024.
X(64849) lies on these lines: {1, 3}, {145, 31231}, {226, 6049}, {499, 61291}, {551, 9578}, {997, 4540}, {1317, 1698}, {1616, 2003}, {1737, 61288}, {1788, 51071}, {3247, 54377}, {3476, 3636}, {3485, 51103}, {3616, 37709}, {3622, 5219}, {3623, 3911}, {3624, 37738}, {3633, 5433}, {3635, 7288}, {3646, 12739}, {3655, 9614}, {3679, 38411}, {3890, 5083}, {3897, 41554}, {4308, 4654}, {4537, 57279}, {4848, 20057}, {4917, 38460}, {5727, 13607}, {5882, 50443}, {7330, 19907}, {7967, 9581}, {9579, 10595}, {9612, 10283}, {9613, 61276}, {10106, 38314}, {10895, 61274}, {10944, 25055}, {11373, 50824}, {11375, 51105}, {11530, 41553}, {12735, 38128}, {14923, 45036}, {15325, 61284}, {16489, 64020}, {17090, 25716}, {18990, 61279}, {19861, 37736}, {20014, 31188}, {20196, 24558}, {24914, 51093}, {37518, 64021}, {37707, 54447}, {38316, 51683}, {41864, 64703}, {45287, 61275}, {47444, 62705}, {63915, 64135}, {64041, 64260}
X(64849) = crosssum of X(1) and X(16189)
X(64849) = X(20052)-beth conjugate of-X(20052)
X(64849) = X(20052)-reciprocal conjugate of-X(312)
X(64849) = pole of the line {513, 50767} with respect to the (circumcircle, incircle)-inverter)
X(64849) = pole of the line {672, 17502} with respect to the Gheorghe circle
X(64849) = pole of the line {513, 24841} with respect to the Hatzipolakis-Lozada, circle
X(64849) = pole of the line {910, 17502} with respect to the Stevanovic circle
X(64849) = pole of the line {1, 60944} with respect to the Feuerbach circumhyperbola
X(64849) = barycentric product X(57)*X(20052)
X(64849) = trilinear product X(56)*X(20052)
X(64849) = trilinear quotient X(20052)/X(8)
X(64849) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 63208, 57), (56, 64848, 1), (25405, 37624, 1)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 18/07/2024.
X(64850) lies on these lines: {1, 2}, {3, 7989}, {4, 10172}, {5, 165}, {9, 3336}, {11, 51559}, {12, 3361}, {20, 58441}, {35, 4413}, {36, 16408}, {37, 61313}, {40, 1656}, {46, 7308}, {55, 16853}, {56, 5726}, {57, 50726}, {58, 17124}, {72, 58451}, {75, 56061}, {79, 63276}, {80, 31235}, {100, 17534}, {115, 31421}, {140, 5587}, {141, 31312}, {169, 16546}, {191, 3305}, {210, 18398}, {226, 5586}, {274, 20943}, {312, 28611}, {355, 632}, {377, 18513}, {381, 35242}, {405, 5010}, {442, 16118}, {443, 3585}, {452, 4324}, {474, 5251}, {484, 5087}, {495, 50038}, {515, 3525}, {516, 5056}, {517, 5070}, {547, 12699}, {549, 61261}, {550, 61263}, {569, 9586}, {590, 13947}, {594, 62648}, {595, 17125}, {599, 36834}, {615, 13893}, {631, 5691}, {756, 24046}, {942, 4005}, {944, 31399}, {946, 5067}, {952, 55859}, {958, 16862}, {960, 4004}, {962, 10171}, {984, 31238}, {988, 56736}, {993, 17531}, {1001, 16854}, {1051, 41930}, {1054, 52785}, {1089, 19804}, {1126, 9345}, {1155, 50740}, {1203, 37679}, {1213, 1743}, {1224, 8056}, {1268, 3875}, {1282, 31273}, {1329, 5234}, {1376, 5259}, {1385, 37712}, {1478, 17582}, {1479, 17559}, {1482, 55860}, {1483, 41992}, {1621, 17546}, {1697, 50444}, {1699, 3090}, {1702, 10577}, {1703, 10576}, {1706, 37563}, {1707, 32781}, {1724, 17122}, {1750, 6889}, {1757, 3834}, {1768, 38133}, {1829, 52298}, {1837, 5326}, {1995, 9591}, {2049, 37603}, {2093, 5445}, {2476, 64112}, {2478, 18514}, {2550, 4857}, {2551, 5270}, {2886, 17575}, {2948, 15059}, {2951, 6838}, {2979, 58474}, {3035, 12690}, {3062, 38108}, {3091, 10164}, {3097, 3934}, {3099, 7914}, {3159, 64435}, {3306, 6763}, {3333, 31479}, {3337, 5437}, {3339, 3649}, {3340, 39782}, {3416, 51126}, {3454, 25961}, {3523, 19925}, {3524, 31673}, {3526, 3576}, {3533, 5818}, {3545, 31730}, {3555, 3848}, {3579, 5055}, {3583, 5084}, {3586, 16845}, {3601, 17606}, {3614, 9579}, {3620, 59408}, {3628, 7991}, {3646, 5119}, {3647, 9352}, {3648, 58449}, {3653, 37705}, {3654, 61272}, {3655, 47598}, {3656, 47599}, {3678, 3894}, {3681, 58565}, {3683, 37572}, {3697, 3742}, {3698, 5697}, {3715, 5708}, {3731, 17303}, {3739, 25503}, {3740, 4533}, {3746, 4423}, {3751, 3763}, {3754, 3899}, {3760, 60706}, {3767, 31428}, {3812, 4018}, {3814, 4197}, {3817, 7486}, {3820, 37719}, {3822, 55867}, {3824, 3929}, {3825, 33108}, {3826, 4187}, {3832, 12512}, {3833, 3868}, {3839, 50829}, {3841, 4193}, {3842, 4751}, {3844, 16475}, {3851, 31663}, {3855, 28150}, {3873, 4015}, {3874, 4547}, {3876, 3901}, {3877, 3918}, {3892, 4540}, {3911, 5290}, {3921, 34791}, {3922, 5903}, {3925, 7741}, {3931, 31318}, {3943, 16673}, {3947, 4355}, {3962, 5044}, {3968, 14923}, {3971, 64437}, {3973, 5750}, {3983, 5045}, {4002, 58679}, {4021, 5936}, {4040, 48196}, {4063, 31251}, {4065, 27812}, {4075, 17155}, {4297, 10303}, {4298, 64114}, {4299, 17580}, {4302, 5129}, {4312, 18230}, {4316, 6904}, {4333, 5177}, {4338, 61029}, {4357, 4902}, {4358, 28612}, {4383, 37559}, {4385, 6533}, {4389, 25590}, {4527, 17286}, {4640, 41872}, {4647, 18743}, {4654, 34502}, {4663, 21358}, {4687, 49474}, {4698, 49462}, {4699, 49445}, {4700, 63055}, {4731, 9957}, {4755, 49452}, {4757, 10176}, {4806, 47837}, {4855, 5426}, {4859, 26104}, {4892, 41812}, {4909, 28626}, {4995, 41864}, {5020, 37557}, {5047, 9342}, {5054, 18480}, {5068, 51118}, {5071, 18483}, {5072, 28146}, {5079, 22793}, {5090, 52297}, {5094, 7713}, {5128, 17605}, {5154, 35258}, {5184, 31275}, {5217, 16857}, {5220, 38093}, {5223, 20195}, {5248, 17536}, {5249, 31446}, {5252, 7294}, {5257, 54389}, {5258, 16864}, {5260, 17535}, {5261, 31188}, {5264, 17123}, {5265, 51782}, {5267, 17572}, {5284, 8715}, {5294, 16570}, {5296, 32857}, {5316, 12047}, {5328, 18249}, {5432, 9581}, {5433, 9578}, {5441, 6675}, {5442, 7951}, {5443, 24954}, {5444, 37711}, {5493, 9779}, {5506, 10129}, {5531, 38752}, {5541, 31272}, {5563, 9708}, {5603, 58245}, {5640, 31737}, {5657, 11522}, {5687, 8167}, {5690, 9624}, {5698, 6666}, {5715, 6877}, {5731, 61856}, {5734, 58241}, {5790, 55858}, {5791, 30393}, {5817, 64698}, {5847, 63119}, {5881, 16239}, {5882, 61873}, {5886, 11531}, {5901, 16189}, {6264, 34126}, {6282, 6861}, {6376, 52716}, {6459, 9584}, {6565, 9582}, {6668, 25525}, {6687, 31151}, {6690, 17590}, {6702, 15015}, {6707, 17296}, {6828, 21153}, {6842, 10270}, {6853, 63988}, {6863, 30503}, {6878, 64261}, {6882, 10268}, {6897, 41698}, {6913, 59326}, {6918, 59320}, {6949, 63992}, {6960, 12565}, {6989, 10857}, {7161, 15296}, {7173, 9580}, {7174, 25539}, {7226, 24167}, {7484, 8185}, {7509, 9590}, {7516, 9626}, {7585, 49619}, {7586, 49618}, {7746, 9593}, {7786, 9902}, {7808, 10789}, {7982, 11230}, {7992, 18243}, {7993, 57298}, {7999, 31760}, {8040, 36250}, {8148, 61882}, {8164, 64124}, {8252, 18992}, {8253, 18991}, {8270, 56469}, {8972, 49547}, {9306, 9587}, {9312, 41807}, {9350, 33771}, {9574, 13881}, {9575, 31489}, {9585, 35255}, {9592, 31455}, {9612, 53056}, {9616, 42262}, {9622, 13353}, {9778, 12571}, {9782, 26792}, {9812, 61914}, {9819, 50443}, {9860, 64089}, {9875, 64019}, {9896, 64181}, {9897, 34122}, {9899, 64024}, {9901, 36770}, {9903, 31268}, {9904, 64101}, {10124, 34773}, {10156, 12680}, {10246, 55866}, {10404, 50395}, {10436, 17250}, {10589, 51785}, {10591, 38059}, {10592, 44847}, {10595, 16191}, {10827, 24953}, {10882, 19549}, {10896, 35445}, {10980, 50394}, {11010, 31262}, {11015, 58404}, {11219, 20400}, {11263, 27131}, {11278, 38066}, {11362, 61881}, {11363, 52292}, {11372, 38318}, {11375, 18421}, {11451, 31757}, {11518, 61648}, {11530, 64203}, {11539, 18357}, {11681, 62824}, {11852, 15184}, {12407, 38794}, {12526, 30852}, {12560, 61017}, {12622, 55168}, {12645, 61289}, {12653, 32557}, {12702, 15703}, {12767, 15017}, {12782, 31239}, {13174, 14061}, {13178, 31274}, {13374, 15104}, {13624, 15694}, {13731, 61124}, {13883, 13942}, {13888, 13936}, {13911, 32790}, {13941, 49548}, {13973, 32789}, {13996, 16173}, {14005, 52680}, {14217, 38319}, {14269, 50812}, {14531, 58548}, {14869, 61259}, {15028, 31732}, {15043, 31752}, {15079, 59337}, {15082, 23841}, {15338, 51792}, {15689, 51088}, {15692, 38076}, {15699, 31162}, {15705, 50862}, {15706, 50820}, {15707, 58219}, {15708, 34648}, {15709, 50796}, {15712, 61262}, {15717, 28164}, {15720, 28160}, {15723, 28204}, {16143, 22798}, {16200, 61878}, {16209, 37438}, {16297, 52139}, {16414, 39578}, {16417, 59319}, {16418, 59325}, {16456, 37522}, {16468, 17259}, {16469, 17337}, {16472, 17825}, {16473, 17811}, {16667, 17398}, {16844, 37574}, {16859, 63752}, {16866, 63756}, {16975, 25614}, {17057, 17619}, {17151, 17322}, {17163, 58387}, {17210, 33947}, {17275, 61302}, {17277, 43997}, {17291, 26083}, {17293, 60688}, {17306, 33159}, {17371, 50314}, {17393, 32089}, {17502, 55863}, {17504, 50799}, {17552, 59572}, {17578, 59420}, {17592, 39564}, {17754, 46196}, {18140, 32092}, {18193, 32780}, {18493, 50821}, {18526, 61871}, {19249, 23361}, {19265, 23383}, {19280, 32916}, {19321, 37576}, {19705, 63754}, {19732, 37604}, {19873, 19932}, {19927, 19937}, {19933, 19972}, {19944, 46894}, {20182, 25431}, {20582, 51124}, {21356, 64073}, {21385, 30795}, {21735, 28172}, {23058, 52705}, {24003, 25529}, {24049, 59218}, {24176, 32925}, {24178, 63621}, {24183, 33115}, {24184, 33161}, {24325, 49501}, {24342, 28546}, {24392, 64123}, {24720, 47794}, {24821, 27191}, {24926, 51577}, {24957, 52068}, {25086, 44798}, {25264, 41836}, {25466, 31190}, {25507, 64072}, {26060, 37162}, {26066, 30827}, {28154, 61970}, {28158, 50689}, {28174, 61900}, {28186, 61837}, {28190, 61808}, {28194, 61895}, {28198, 61908}, {28202, 61925}, {28208, 61843}, {28604, 55998}, {28609, 28646}, {28618, 56018}, {28620, 64401}, {30337, 37704}, {30424, 61023}, {30598, 32025}, {30963, 32104}, {31160, 57005}, {31209, 47724}, {31237, 49500}, {31243, 49712}, {31260, 37710}, {31264, 56522}, {31289, 49709}, {31418, 59675}, {31419, 34501}, {31422, 39565}, {31445, 37524}, {31447, 48661}, {31657, 52665}, {32261, 64764}, {32771, 59666}, {33152, 39559}, {33535, 34128}, {34127, 64749}, {34573, 38047}, {34627, 61866}, {34632, 61897}, {34638, 61954}, {34790, 50190}, {34860, 56134}, {35018, 61265}, {36152, 50204}, {37244, 59334}, {37552, 56735}, {37608, 56767}, {37624, 38176}, {37633, 55103}, {37680, 62805}, {37727, 61876}, {38028, 55862}, {38034, 61894}, {38049, 63120}, {38057, 58433}, {38074, 61865}, {38075, 43178}, {38081, 61292}, {38089, 50952}, {38101, 43180}, {38112, 61276}, {38118, 39878}, {38122, 64697}, {38182, 38762}, {38282, 49542}, {38317, 64084}, {38763, 49176}, {39781, 64849}, {40273, 61266}, {40296, 61705}, {40328, 49448}, {40334, 51688}, {40335, 51690}, {40660, 61735}, {41861, 58634}, {41984, 50824}, {43174, 46935}, {43830, 43866}, {44314, 45684}, {44381, 50776}, {44401, 50250}, {45326, 49276}, {45829, 53002}, {46895, 53039}, {46916, 63999}, {47478, 50825}, {47683, 47829}, {47726, 47807}, {48037, 48573}, {48197, 48352}, {48205, 50346}, {48216, 48320}, {48218, 48282}, {48883, 50416}, {49483, 59582}, {49511, 63121}, {50050, 51590}, {50054, 51593}, {50393, 59491}, {50788, 63027}, {50802, 61906}, {50803, 62120}, {50807, 61917}, {50808, 61924}, {50813, 61959}, {50815, 61812}, {50816, 62032}, {50828, 61861}, {50866, 62130}, {50869, 61962}, {50871, 58231}, {50874, 61983}, {51078, 62029}, {51083, 58204}, {51586, 62322}, {51700, 61288}, {51705, 61859}, {51709, 61883}, {52027, 63964}, {52654, 56051}, {54357, 58405}, {54430, 60782}, {54445, 58229}, {54448, 61848}, {55169, 58712}, {55170, 58722}, {55864, 59387}, {56453, 60786}, {58213, 61788}, {58248, 61884}, {58453, 59415}, {59372, 60996}, {59382, 64668}, {59400, 61284}, {60905, 60986}, {61244, 61874}, {61258, 61853}, {61260, 61824}, {61275, 61877}, {61291, 61510}, {61294, 61875}, {61330, 63978}, {63310, 63344}, {64178, 64436}
X(64850) = midpoint of X(5550) and X(46933)
X(64850) = complement of X(5550)
X(64850) = X(28230)-complementary conjugate of-X(513)
X(64850) = X(39026)-Dao conjugate of-X(28200)
X(64850) = X(513)-isoconjugate of-X(28200)
X(64850) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (101, 28200), (28199, 514), (58181, 649)
X(64850) = pole of the line {4057, 28165} with respect to the circumcircle
X(64850) = pole of the line {28175, 44316} with respect to the nine-point circle
X(64850) = pole of the line {3667, 48106} with respect to the orthoptic circle of Steiner inellipse
X(64850) = pole of the line {962, 3667} with respect to the Spieker circle
X(64850) = pole of the line {2, 4007} with respect to the circumhyperbola dual of Yff parabola
X(64850) = pole of the line {3057, 34747} with respect to the Feuerbach circumhyperbola
X(64850) = pole of the line {1213, 1449} with respect to the Kiepert circumhyperbola
X(64850) = pole of the line {514, 4820} with respect to the Steiner inellipse
X(64850) = pole of the line {86, 34595} with respect to the Steiner-Wallace hyperbola
X(64850) = barycentric product X(i)*X(j) for these {i, j}: {190, 28199}, {1978, 58181}
X(64850) = trilinear product X(i)*X(j) for these {i, j}: {100, 28199}, {668, 58181}
X(64850) = trilinear quotient X(i)/X(j) for these (i, j): (100, 28200), (28199, 513), (58181, 667)
X(64850) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 1698, 1), (8, 25055, 1), (10, 3624, 1), (499, 31434, 1), (551, 3633, 1), (978, 56191, 1), (1125, 3679, 1), (3086, 51784, 1), (3244, 51105, 1), (3293, 26102, 1), (3616, 3632, 1), (3622, 51093, 1), (3634, 19872, 1), (4816, 15808, 1), (5313, 59305, 1), (6048, 25502, 1), (17284, 29633, 1), (19875, 34595, 1), (29598, 29674, 1), (49997, 59311, 1)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6792.
X(64851) lies on these lines: {4, 1216}, {5, 46026}, {6, 1598}, {25, 13336}, {51, 34564}, {52, 428}, {113, 1906}, {143, 16624}, {155, 5198}, {185, 6756}, {193, 5446}, {1593, 33543}, {1596, 3574}, {1839, 1872}, {1843, 10263}, {1986, 46682}, {3518, 6030}, {3567, 6995}, {5422, 10594}, {5462, 7714}, {5895, 13474}, {6623, 44871}, {7576, 10575}, {7715, 12006}, {9730, 37122}, {10117, 19348}, {11576, 13431}, {12162, 40909}, {13202, 15738}, {13754, 15741}, {16194, 46027}, {26863, 52675}, {44079, 58531}, {45186, 64062}, {61664, 64759}
X(64851) = midpoint of X(4) and X(11387)
X(64851) = reflection of X(10625) in X(42021)
X(64851) = barycentric product X(1595)*X(5422)
See Antreas Hatzipolakis and Peter Moses, euclid 6798.
X(64852) lies on these lines: {2, 3}, {10, 51718}, {125, 37649}, {141, 9813}, {154, 39884}, {182, 23332}, {184, 45303}, {343, 34380}, {373, 54384}, {394, 61545}, {578, 61544}, {614, 37729}, {1194, 47298}, {1196, 43291}, {1352, 59553}, {1353, 11427}, {1503, 58447}, {1853, 48906}, {2781, 6688}, {3054, 10314}, {3410, 61655}, {3564, 21243}, {3580, 53863}, {3589, 6697}, {3763, 16789}, {3818, 10192}, {5050, 23291}, {5268, 37697}, {5272, 37696}, {5480, 61646}, {5943, 21851}, {6329, 32068}, {6340, 32829}, {6515, 61624}, {6667, 58402}, {6668, 58403}, {7583, 8280}, {7584, 8281}, {7736, 59657}, {7746, 40326}, {8254, 43588}, {8770, 43620}, {8854, 18538}, {8855, 18762}, {9019, 9822}, {9306, 18358}, {9729, 32396}, {9826, 40685}, {10175, 51707}, {10516, 59543}, {10961, 32789}, {10963, 32790}, {11056, 45201}, {11245, 14389}, {11433, 59399}, {11442, 61690}, {11550, 13394}, {11574, 51994}, {11898, 63092}, {12164, 43841}, {13292, 34826}, {13567, 18583}, {14561, 26958}, {14767, 44377}, {15252, 24239}, {15880, 18907}, {17810, 38136}, {18289, 42215}, {18290, 42216}, {18553, 61681}, {18950, 53091}, {19127, 19137}, {19862, 51692}, {20204, 30794}, {21015, 56464}, {24206, 53415}, {26869, 52719}, {26933, 56462}, {30768, 59642}, {30792, 44815}, {32767, 64038}, {34481, 63534}, {34803, 50572}, {37638, 41588}, {38110, 61735}, {38397, 41628}, {39530, 53506}, {44817, 45689}, {46261, 61606}, {47256, 59742}, {47354, 59699}, {53022, 61737}, {56304, 63175}, {58408, 58464}, {64060, 64067}
X(64852) = midpoint of X(i) and X(j) for these {i,j}: {5, 52262}, {10, 51718}, {140, 39504}, {141, 51744}, {427, 6676}, {11574, 51994}, {15760, 64474}, {16196, 45179}, {21243, 23292}, {44236, 46029}
X(64852) = complement of X(6676)
X(64852) = X(54703)-complementary conjugate of X(20305)
X(64852) = crosssum of X(6) and X(21637)
X(64852) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5, 6677}, {2, 427, 6676}, {2, 858, 7499}, {2, 1368, 140}, {2, 1995, 52297}, {2, 3091, 38282}, {2, 5094, 1368}, {2, 5133, 468}, {2, 6677, 37911}, {2, 6997, 37453}, {2, 7398, 52290}, {2, 8889, 3}, {2, 11548, 3628}, {2, 16051, 16419}, {2, 16419, 632}, {2, 30744, 30739}, {2, 31074, 7495}, {2, 31236, 427}, {2, 37454, 11548}, {2, 52284, 7494}, {2, 52299, 30771}, {2, 62958, 5159}, {5, 140, 9825}, {5, 547, 44912}, {5, 549, 18420}, {5, 632, 6642}, {5, 3628, 58465}, {5, 6677, 10128}, {5, 7526, 546}, {5, 9818, 44920}, {5, 44452, 10127}, {5, 63838, 11737}, {125, 37649, 45298}, {140, 546, 1658}, {140, 1368, 7734}, {140, 5094, 47629}, {140, 61736, 63860}, {427, 44210, 7391}, {547, 44236, 46029}, {547, 50142, 35018}, {632, 7516, 140}, {858, 7499, 10691}, {1656, 7404, 5}, {2454, 2455, 40889}, {3090, 11479, 5}, {3628, 11737, 15350}, {3628, 32144, 140}, {5000, 5001, 23047}, {5020, 7484, 6644}, {5055, 18537, 5}, {5094, 5159, 32144}, {5159, 11548, 2}, {5159, 37454, 3628}, {5169, 37897, 3861}, {5576, 7542, 6756}, {6639, 7403, 21841}, {6644, 23323, 31830}, {6756, 7542, 44277}, {6997, 37453, 44212}, {7378, 9909, 3627}, {7399, 37119, 16196}, {7494, 34609, 550}, {7494, 52284, 34609}, {7495, 31074, 7667}, {7495, 47315, 33923}, {7499, 10691, 3530}, {7539, 52298, 2}, {7569, 37119, 7399}, {7667, 31074, 47315}, {7734, 47629, 1368}, {10128, 37911, 6677}, {10565, 62975, 382}, {13361, 35018, 37439}, {14389, 23293, 11245}, {37439, 52293, 2}, {37454, 62958, 2}, {37649, 45298, 51732}, {44232, 50136, 23411}, {44920, 63679, 9818}, {47612, 47613, 12362}
See Antreas Hatzipolakis and Peter Moses, euclid 6798.
X(64853) lies on these lines: {1, 64370}, {2, 3}, {10, 5719}, {79, 53056}, {141, 51747}, {142, 34753}, {191, 7308}, {495, 19854}, {496, 31245}, {758, 3634}, {942, 40661}, {1125, 12433}, {1213, 24937}, {1330, 31205}, {1698, 11374}, {2771, 6723}, {2795, 6722}, {2886, 15172}, {3339, 3649}, {3452, 11263}, {3454, 62689}, {3616, 15935}, {3624, 5722}, {3646, 61268}, {3743, 17070}, {3824, 5745}, {3826, 47742}, {3841, 6690}, {3848, 58568}, {3913, 10198}, {3936, 49718}, {3940, 9780}, {4423, 10593}, {4658, 17056}, {5427, 7294}, {5432, 41859}, {5437, 54302}, {5439, 39772}, {5720, 33858}, {5748, 11684}, {5763, 26446}, {5775, 19877}, {5785, 20195}, {5791, 6147}, {5818, 64321}, {5844, 24987}, {6362, 33528}, {6666, 6701}, {6667, 19878}, {6681, 33961}, {6688, 58479}, {6707, 17052}, {7173, 25542}, {8666, 25466}, {9342, 63269}, {9528, 58424}, {9581, 10543}, {9710, 10197}, {10122, 64157}, {10175, 64804}, {11231, 33592}, {11520, 41574}, {11533, 24161}, {13993, 31473}, {15901, 61035}, {16159, 38113}, {16589, 43291}, {17194, 48927}, {17245, 45939}, {18482, 38059}, {18990, 24953}, {19855, 31479}, {19860, 61510}, {19862, 35016}, {20106, 39564}, {24541, 51700}, {24883, 63344}, {24898, 64377}, {24902, 35466}, {24936, 64167}, {25441, 28618}, {25446, 41014}, {25666, 44314}, {25973, 38114}, {26131, 31204}, {26543, 34380}, {31235, 35204}, {31423, 49177}, {31435, 38034}, {31658, 38204}, {31837, 61541}, {33594, 64193}, {34122, 39778}, {36812, 44377}, {37532, 61509}, {37659, 45931}, {37700, 38042}, {38108, 63966}, {38123, 38318}, {51126, 51729}, {58433, 58619}, {61029, 61614}, {61624, 63070}, {63276, 64289}
X(64853) = midpoint of X(i) and X(j) for these {i,j}: {10, 11281}, {141, 51747}, {191, 11544}, {442, 6675}, {942, 40661}, {3850, 11276}, {5499, 16617}, {6175, 15673}, {6701, 58449}, {11263, 18253}, {11277, 46028}, {15174, 47033}, {16137, 21677}, {33594, 64193}, {58586, 58692}, {58619, 58658}
X(64853) = complement of X(6675)
X(64853) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5, 50205}, {2, 442, 6675}, {2, 1656, 51559}, {2, 3090, 16853}, {2, 4193, 17590}, {2, 4197, 7483}, {2, 6856, 11108}, {2, 6931, 16854}, {2, 6933, 16842}, {2, 7504, 17575}, {2, 8728, 140}, {2, 16408, 632}, {2, 17529, 52264}, {2, 17582, 3526}, {2, 31254, 442}, {2, 33026, 32954}, {2, 33033, 7819}, {2, 33199, 33027}, {2, 50393, 16862}, {2, 50727, 5054}, {2, 52264, 16239}, {3, 1656, 6855}, {3, 6858, 5}, {5, 632, 6883}, {442, 15670, 2475}, {442, 17527, 46028}, {442, 57002, 6175}, {547, 11277, 46028}, {632, 6924, 140}, {1656, 6825, 5}, {1698, 26725, 21677}, {3090, 19541, 5}, {3526, 37230, 28465}, {3628, 50394, 2}, {3634, 58463, 5044}, {3824, 5745, 24470}, {5055, 6849, 5}, {5177, 16418, 3627}, {5791, 25525, 6147}, {6175, 15674, 57002}, {6675, 15673, 15674}, {6856, 11108, 5}, {6857, 17528, 550}, {6910, 17563, 12100}, {6910, 44217, 17563}, {6931, 16854, 17527}, {8728, 17564, 37462}, {15674, 57002, 15673}, {16370, 50240, 12103}, {16408, 19520, 6924}, {17529, 25962, 8728}, {17532, 50241, 3853}, {17558, 50741, 382}, {21677, 26725, 16137}, {25446, 41878, 41014}, {37161, 50739, 1657}
Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6804.
X(64854) lies on these lines: {{1, 58487}, {2, 389}, {3, 51}, {4, 5943}, {5, 113}, {6, 1092}, {10, 64662}, {20, 5640}, {22, 37515}, {24, 182}, {25, 10984}, {26, 13336}, {30, 15026}, {39, 46094}, {40, 58469}, {49, 15037}, {52, 140}, {54, 575}, {74, 41671}, {83, 37124}, {98, 58503}, {99, 58502}, {100, 58508}, {101, 58507}, {102, 58513}, {103, 58505}, {104, 58504}, {109, 58506}, {110, 58498}, {127, 16225}, {143, 549}, {155, 5651}, {181, 602}, {184, 6642}, {186, 43651}, {193, 11431}, {216, 46736}, {235, 64179}, {264, 1075}, {375, 14872}, {376, 9781}, {378, 15010}, {381, 11381}, {382, 40280}, {394, 11432}, {417, 61378}, {511, 631}, {546, 10575}, {547, 5876}, {548, 58531}, {550, 10095}, {567, 2931}, {568, 1216}, {569, 6644}, {578, 5422}, {590, 12240}, {597, 40929}, {601, 3271}, {615, 12239}, {620, 39817}, {632, 1154}, {944, 23841}, {970, 1006}, {973, 9967}, {1071, 58497}, {1112, 38727}, {1147, 13366}, {1181, 5020}, {1192, 54994}, {1199, 34986}, {1204, 9818}, {1292, 58509}, {1293, 58510}, {1294, 58511}, {1295, 58512}, {1296, 58514}, {1297, 58515}, {1350, 31521}, {1352, 18916}, {1368, 45089}, {1385, 16980}, {1425, 37697}, {1482, 64663}, {1495, 7506}, {1498, 45979}, {1533, 1906}, {1568, 12233}, {1593, 37475}, {1598, 3066}, {1656, 13754}, {1658, 37513}, {1899, 7401}, {1986, 6723}, {1995, 6759}, {2070, 37471}, {2071, 58551}, {2393, 17821}, {2548, 50387}, {2781, 38729}, {2807, 8227}, {2883, 32184}, {2937, 13339}, {2979, 10303}, {3060, 3523}, {3088, 64820}, {3090, 5890}, {3091, 6000}, {3098, 58549}, {3146, 20791}, {3184, 58524}, {3270, 37696}, {3292, 12161}, {3313, 32191}, {3357, 63664}, {3398, 63556}, {3428, 58490}, {3515, 37476}, {3517, 3796}, {3518, 61134}, {3520, 43597}, {3521, 10293}, {3524, 13348}, {3525, 3819}, {3530, 10263}, {3533, 7999}, {3538, 51212}, {3541, 12294}, {3545, 6241}, {3547, 61506}, {3548, 61743}, {3549, 61645}, {3574, 11585}, {3575, 64038}, {3576, 58548}, {3589, 19161}, {3592, 62247}, {3594, 62248}, {3627, 13364}, {3628, 5891}, {3634, 31732}, {3651, 58479}, {3818, 11457}, {3830, 14641}, {3832, 13474}, {3839, 12279}, {3843, 14915}, {3845, 18874}, {3850, 13491}, {3851, 64029}, {3855, 12290}, {3857, 32137}, {3937, 37612}, {4297, 58474}, {5012, 10282}, {5050, 6467}, {5054, 5447}, {5055, 34783}, {5056, 12111}, {5067, 11459}, {5068, 15305}, {5070, 10170}, {5071, 15058}, {5072, 18439}, {5079, 18435}, {5085, 9715}, {5092, 7512}, {5133, 20299}, {5159, 16227}, {5188, 58486}, {5448, 50143}, {5449, 37347}, {5643, 7527}, {5732, 58473}, {5759, 58472}, {5972, 21649}, {6036, 39846}, {6146, 9825}, {6247, 41580}, {6293, 61735}, {6509, 42441}, {6524, 62897}, {6639, 61691}, {6643, 54012}, {6689, 12606}, {6699, 13417}, {6776, 9822}, {6803, 11433}, {6804, 21971}, {6815, 39571}, {6862, 61643}, {6875, 15489}, {6883, 22076}, {6902, 15488}, {6922, 18180}, {6928, 58889}, {6947, 10441}, {6967, 37521}, {6997, 14216}, {7387, 34417}, {7392, 18909}, {7393, 22112}, {7395, 9786}, {7398, 34781}, {7399, 13567}, {7404, 26937}, {7405, 12359}, {7464, 58481}, {7484, 17834}, {7485, 46728}, {7486, 15056}, {7503, 11438}, {7509, 46730}, {7516, 37478}, {7517, 44106}, {7526, 21663}, {7528, 11550}, {7529, 26883}, {7544, 18381}, {7556, 20190}, {7558, 61646}, {7576, 44829}, {7592, 9306}, {7691, 58489}, {7706, 18404}, {7745, 15575}, {7998, 15606}, {8541, 44503}, {8550, 29959}, {8718, 52294}, {8887, 46106}, {8954, 8963}, {9607, 61675}, {9714, 35268}, {9777, 37498}, {9827, 10619}, {9862, 58537}, {9940, 51413}, {9971, 10541}, {9973, 55703}, {10018, 58447}, {10112, 32068}, {10127, 12134}, {10160, 31739}, {10163, 31763}, {10164, 31757}, {10165, 31760}, {10202, 23154}, {10219, 61886}, {10267, 51377}, {10314, 39643}, {10323, 13347}, {10605, 11479}, {10606, 58544}, {10627, 14869}, {10628, 15059}, {11002, 15717}, {11179, 43130}, {11245, 64035}, {11257, 58500}, {11284, 17814}, {11413, 58482}, {11414, 17810}, {11426, 35602}, {11427, 46363}, {11430, 13434}, {11449, 27365}, {11455, 61964}, {11464, 41714}, {11477, 64599}, {11539, 32142}, {11554, 31848}, {11557, 15061}, {11591, 55856}, {11592, 13421}, {11692, 37955}, {11746, 16163}, {11750, 31830}, {11800, 15035}, {11802, 43581}, {11806, 14643}, {11807, 15055}, {11808, 46865}, {12002, 62100}, {12017, 16195}, {12045, 61881}, {12084, 37470}, {12088, 38848}, {12108, 14449}, {12118, 58496}, {12119, 58501}, {12160, 17811}, {12163, 58545}, {12228, 17701}, {12235, 47391}, {12236, 38793}, {12244, 58536}, {12245, 58535}, {12248, 58543}, {12251, 58556}, {12272, 33748}, {12282, 64177}, {12307, 58557}, {12824, 20417}, {13172, 58538}, {13199, 58539}, {13292, 61712}, {13321, 15720}, {13334, 37114}, {13340, 61811}, {13353, 18475}, {13376, 13619}, {13391, 15712}, {13403, 38323}, {13450, 59529}, {13451, 33923}, {13464, 64661}, {13470, 38322}, {13568, 34664}, {13595, 52525}, {14033, 55306}, {14110, 58493}, {14118, 15053}, {14128, 15699}, {14130, 43604}, {14538, 58477}, {14539, 58478}, {14689, 58528}, {14709, 24651}, {14710, 24650}, {14788, 21243}, {14853, 52520}, {14912, 14913}, {15004, 36747}, {15011, 33537}, {15022, 64025}, {15029, 54037}, {15032, 43598}, {15038, 37495}, {15060, 35018}, {15062, 43603}, {15067, 16239}, {15069, 61676}, {15082, 61867}, {15087, 41597}, {15133, 43821}, {15473, 18560}, {15559, 19130}, {15646, 48914}, {15686, 55286}, {15906, 35004}, {16042, 43605}, {16111, 58516}, {16196, 18583}, {16197, 32269}, {16224, 34841}, {16261, 61945}, {16657, 31829}, {16924, 40254}, {16981, 61816}, {16982, 54044}, {17504, 55320}, {17578, 52093}, {18128, 64036}, {18350, 43845}, {18446, 58491}, {18474, 18952}, {18860, 58552}, {19347, 35259}, {19467, 60774}, {21163, 27375}, {21312, 58483}, {21659, 31833}, {21661, 34838}, {21734, 55166}, {22115, 44111}, {22802, 30443}, {22829, 45248}, {23039, 46219}, {23308, 32050}, {23332, 41589}, {24466, 58475}, {24813, 58553}, {25555, 37118}, {26892, 37534}, {26913, 32767}, {27374, 37451}, {30264, 58476}, {30271, 58485}, {30273, 58499}, {31737, 58441}, {31752, 51073}, {32046, 51393}, {32136, 40111}, {32138, 58546}, {32233, 58495}, {32284, 53092}, {32348, 58445}, {32366, 55711}, {32829, 51386}, {32911, 37275}, {33884, 61842}, {34146, 40686}, {34148, 34545}, {34236, 46626}, {34339, 42448}, {34382, 53091}, {34565, 36749}, {35486, 44479}, {36754, 40952}, {36978, 42944}, {36980, 42945}, {36989, 58494}, {36996, 58534}, {37119, 52000}, {37120, 48886}, {37122, 46264}, {37301, 55303}, {37473, 47352}, {37732, 53391}, {37953, 55698}, {38737, 39835}, {38738, 58518}, {38748, 39806}, {38749, 58517}, {38761, 58522}, {38773, 58521}, {38785, 58526}, {38898, 40685}, {39530, 44732}, {40247, 46936}, {41171, 43808}, {41425, 52288}, {41614, 44489}, {41716, 63119}, {43394, 43898}, {43573, 44076}, {43608, 43896}, {43613, 43899}, {43816, 58922}, {44102, 44480}, {44299, 61863}, {44324, 61858}, {44495, 59373}, {44544, 63714}, {44682, 58533}, {44865, 64358}, {44871, 61990}, {44882, 58532}, {45177, 49109}, {45967, 58806}, {46852, 61953}, {47301, 51888}, {47413, 53844}, {51419, 56885}, {51491, 63737}, {51737, 63688}, {52262, 54384}, {52796, 64850}, {54041, 61814}, {54047, 61831}, {54048, 61850}, {58488, 63392}, {58519, 63403}, {58520, 63404}, {58523, 63406}, {58525, 63407}, {58527, 63408}, {58529, 63410}, {58530, 63411}, {58540, 63416}, {58541, 63417}, {58542, 63418}, {58547, 63420}, {58554, 63427}, {58555, 63428}, {58558, 63438}, {58559, 63441}, {58647, 61640}, {59399, 63709}, {61667, 63722}, {61820, 62187}, {61834, 62188}, {63128, 64585}
X(64854) = midpoint of X(i) and X(j) for these {i,j}: {631, 3567}, {1656, 37481}, {3091, 10574}, {17578, 52093}
X(64854) = reflection of X(5562) in X(11444)
X(64854) = complement of X(11444)
X(64854) = X(64854)-Dao conjugate of X(11444)
X(64854) = pole of line {30, 1181} with respect to the Jerabek circumhyperbola
X(64854) = pole of line {3289, 5065} with respect to the ABCGK
X(64854) = pole of line {44149, 64585} with respect to the Steiner / Wallace right hyperbola
X(64854) = pole of line {3091, 3292} with respect to the Jerabek circumhyperbola of the medial triangle
X(64854) = pole of line {578, 631} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(64854) = pole of line {44149, 64585} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(64854) = pole of line {41079, 41300} with respect to the Steiner inellipse
X(64854) = pole of line {1656, 11064} with respect to the Thomson-Gibert-Moses hyperbola
X(64854) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 389, 5562}, {2, 5889, 11793}, {2, 15028, 11695}, {2, 15043, 389}, {2, 16226, 14831}, {3, 51, 45186}, {3, 5462, 51}, {3, 15805, 43650}, {3, 45186, 36987}, {4, 9729, 64100}, {4, 15024, 5943}, {4, 15045, 9729}, {5, 185, 15030}, {5, 9730, 185}, {5, 12006, 9730}, {5, 13630, 12162}, {5, 45956, 45959}, {5, 45957, 45958}, {20, 5640, 10110}, {25, 37514, 10984}, {26, 13336, 22352}, {52, 140, 3917}, {125, 9826, 16223}, {140, 5946, 52}, {140, 16881, 6101}, {143, 549, 10625}, {143, 10625, 21969}, {185, 373, 5}, {373, 9730, 15030}, {375, 58617, 14872}, {376, 9781, 13598}, {381, 40647, 11381}, {381, 64030, 46849}, {389, 5562, 14831}, {389, 11695, 2}, {389, 11793, 5889}, {389, 15043, 16226}, {546, 10575, 32062}, {567, 43809, 12038}, {568, 1216, 14531}, {568, 3526, 1216}, {569, 6644, 13367}, {578, 17928, 51394}, {1147, 36753, 13366}, {1216, 3526, 5650}, {3060, 3523, 15644}, {3090, 5890, 5907}, {3090, 11465, 6688}, {3524, 64051, 13348}, {3525, 11412, 3819}, {3545, 6241, 44870}, {3628, 6102, 5891}, {3819, 16625, 11412}, {3832, 15072, 13474}, {3850, 13491, 16194}, {3855, 12290, 46847}, {3855, 61136, 12290}, {5012, 44802, 10282}, {5054, 6243, 5447}, {5070, 18436, 10170}, {5422, 17928, 578}, {5462, 5892, 3}, {5562, 16226, 389}, {5650, 14531, 1216}, {5889, 11793, 5562}, {5890, 11465, 3090}, {5891, 6102, 45187}, {5907, 6688, 3090}, {5907, 15012, 5890}, {5943, 9729, 4}, {5943, 15045, 64100}, {5946, 6101, 16881}, {5972, 46430, 21649}, {6101, 16881, 52}, {6642, 36752, 184}, {6688, 15012, 5907}, {6699, 16222, 13417}, {6815, 63084, 39571}, {7395, 9786, 63425}, {7506, 64049, 1495}, {7527, 43601, 64027}, {7544, 18911, 18381}, {7592, 9306, 43844}, {9730, 12162, 13630}, {9730, 13363, 373}, {9786, 17825, 7395}, {9825, 45298, 6146}, {10110, 16836, 20}, {10574, 11451, 3091}, {10575, 14845, 546}, {11002, 15717, 64050}, {11381, 27355, 381}, {11695, 15043, 5562}, {12006, 13363, 5}, {12006, 32205, 13630}, {12108, 14449, 54042}, {12162, 13630, 185}, {13321, 15720, 37484}, {13348, 21849, 64051}, {13353, 45735, 18475}, {13363, 13630, 32205}, {13434, 22467, 11430}, {13434, 43584, 22467}, {13598, 17704, 376}, {13598, 58470, 9781}, {13630, 32205, 5}, {13630, 45958, 45957}, {14641, 44863, 3830}, {14708, 23515, 21650}, {14788, 26879, 21243}, {15004, 43652, 36747}, {15018, 22467, 13434}, {15018, 43584, 11430}, {15024, 15045, 4}, {15028, 15043, 2}, {15037, 43586, 44109}, {15047, 43809, 567}, {16042, 43605, 43614}, {16270, 41670, 15063}, {17704, 58470, 13598}, {34148, 34545, 37505}, {40647, 46849, 64030}, {43598, 43600, 15032}, {45957, 45958, 12162}, {45979, 58492, 1498}, {46849, 64030, 11381}
Contributed by Clark Kimberling and Peter Moses, August 21, 2024
Suppose X = x:y:z is a point on the infinity line. Then the following points are also on the infinity line:
y sin B - z sin C : : y tan B - z tan C :: y sec B - z sec C : :
The appearance of (i,j) in the following list means that if X(i) = x:y:z, then X(j) = y sin B - z sin C : :
(511,64855), (512,714), (513,726), (514,536), (516,64856), (517,64857), (518,522), (519,4777), (521,64858), (522,518), (523,740), (524,64859), (525,8680), (527,28898), (528,64860), (536,514), (537,900), (545,64861), (690,64863), (696,64864), (698,64865), (700788), (712,64866), (714,512), (716,64867), (726,513), (740,523), (742,824), (744,826), (746,63814), (752,29370), (758,64868), (784,64869), (786,64870), (788,700), (802,64871), (812,9055), (814,64872), (824,742), (826,744), (834,64873), (891,64874), (900,537)
The appearance of (i,j) in the following list means that if X(i) = x:y:z, then X(j) = y tan B - z tan C : :
(30,9007), (511,520), (512,8681), (513,34381), (514,9028), (517,9051), (518,521), (519,9031), (520,511), (521,518), (522,64875), (523,3564), (524,525), (525,524), (526,14984), (538,64876), (539,64877), (542,9033), (674,64878), (688,64879), (690,64880), (698,64881), (804,64882), (664883), (900,64884), (912,9001)
The appearance of (i,j) in the following list means that if X(i) = x:y:z, then X(j) = y sec B - z sec C : :
(513,9028), (514,912), (515,64885), (518,64886), (520,8680), (521,527), (522,64887), (523,64888), (525,758), (527,521), (758,525), (812,64889), (912,514)
X(64855) lies on these lines: {30, 511}, {37, 4529}, {75, 656}, {192, 7253}, {647, 24353}, {850, 24718}, {984, 4086}, {4024, 45882}, {4411, 47843}, {4467, 14296}, {4664, 45686}, {4842, 24720}, {17899, 55230}, {21259, 52623}, {22316, 57207}, {23189, 54410}, {25380, 59721}, {45660, 50094}
X(64855) = crossdifference of every pair of points on line {6, 9417}
X(64855) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64855) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {19394, 4856}, {57326, 53578}
X(64856) lies on these lines: {1, 49280}, {30, 511}, {37, 2509}, {75, 2400}, {649, 47700}, {650, 4088}, {659, 48088}, {676, 3239}, {905, 48272}, {984, 21189}, {1638, 47806}, {1639, 47800}, {2516, 2977}, {2517, 4411}, {2526, 16892}, {3004, 48039}, {3669, 48278}, {3700, 47123}, {3739, 21187}, {4010, 47131}, {4025, 50333}, {4106, 47691}, {4122, 7662}, {4142, 20317}, {4163, 55285}, {4382, 47705}, {4394, 48062}, {4408, 56124}, {4453, 47808}, {4458, 4522}, {4468, 50347}, {4474, 43052}, {4501, 43929}, {4724, 48087}, {4776, 48203}, {4790, 48106}, {4804, 4820}, {4808, 50501}, {4809, 47803}, {4813, 47702}, {4897, 48069}, {4944, 47832}, {4949, 48349}, {4951, 47833}, {7192, 47689}, {7658, 53573}, {7659, 47971}, {20295, 47692}, {21104, 49285}, {23684, 35519}, {23757, 49522}, {23770, 23813}, {23785, 49521}, {24349, 57091}, {25259, 47695}, {30565, 47798}, {40541, 59458}, {43067, 47690}, {44429, 47754}, {44567, 45344}, {45318, 45334}, {45320, 47887}, {46403, 49299}, {47653, 47940}, {47676, 47687}, {47685, 49302}, {47693, 49281}, {47694, 48271}, {47697, 49273}, {47698, 47962}, {47699, 47952}, {47701, 48026}, {47703, 48133}, {47704, 48125}, {47727, 49277}, {47729, 49274}, {47755, 48252}, {47758, 48232}, {47760, 47797}, {47761, 47809}, {47762, 48208}, {47765, 48179}, {47769, 48161}, {47770, 47804}, {47772, 48239}, {47802, 48227}, {47805, 48557}, {47810, 47880}, {47813, 47881}, {47821, 48223}, {47822, 48211}, {47823, 48200}, {47824, 48187}, {47870, 48237}, {47874, 48220}, {47886, 48193}, {47894, 48175}, {47919, 47943}, {47923, 48020}, {47924, 47950}, {47960, 48023}, {47972, 48082}, {48006, 48046}, {48029, 50340}, {48031, 50332}, {48032, 48117}, {48089, 48326}, {48095, 48118}, {48096, 50358}, {48102, 48124}, {48142, 48397}, {48164, 48422}, {48169, 48571}, {48174, 48558}, {48184, 58372}, {48188, 48219}, {48192, 48224}, {48266, 53558}, {48286, 49288}, {48300, 50517}, {48327, 49279}, {49272, 53343}, {50336, 50342}, {53551, 58335}
X(64856) = isogonal conjugate of X(59055)
X(64856) = crossdifference of every pair of points on line {6, 3220}
X(64856) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64856) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64856) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4458, 4522, 4885}, {4809, 48185, 47803}, {16892, 48077, 2526}, {44429, 48241, 47754}, {47804, 48171, 47770}
X(64857) lies on these lines: {30, 511}, {37, 3239}, {75, 4025}, {192, 23757}, {656, 4397}, {798, 47130}, {1459, 57091}, {1734, 4768}, {1769, 4391}, {2509, 4529}, {2517, 4017}, {3676, 4411}, {3739, 7658}, {3835, 48350}, {3993, 49288}, {4086, 20316}, {4688, 44551}, {4755, 45334}, {4828, 21183}, {6129, 8062}, {7253, 48303}, {7649, 46110}, {17072, 53527}, {20517, 21180}, {20907, 23785}, {21186, 21187}, {27485, 47757}, {28284, 47835}, {30572, 48278}, {47129, 57234}, {48325, 55969}, {55244, 59522}, {56125, 60574}, {59565, 59721}
X(64857) = crossdifference of every pair of points on line {6, 23531}
X(64857) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}, {15351, 49223}
X(64857) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64857) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2517, 4017, 47843}, {4086, 21189, 20316}
X(64858) lies on these lines: {3, 42456}, {30, 511}, {33, 20223}, {37, 216}, {73, 20222}, {75, 225}, {92, 24430}, {190, 23693}, {192, 3100}, {201, 23661}, {238, 24846}, {984, 10039}, {1278, 40896}, {1463, 23772}, {1736, 4858}, {1818, 4552}, {1897, 1936}, {2217, 23086}, {2635, 61185}, {3262, 44694}, {3739, 14767}, {3772, 24218}, {3826, 59621}, {3911, 44311}, {4318, 4861}, {4664, 47383}, {4698, 58454}, {5018, 24411}, {5136, 18477}, {5220, 21084}, {5745, 22027}, {6762, 64429}, {7004, 64194}, {10003, 61522}, {14547, 18662}, {17155, 24477}, {20430, 30258}, {20872, 23843}, {22465, 24325}, {24315, 46475}, {24474, 45131}, {24848, 32922}, {25568, 32925}, {27422, 28978}, {30271, 63433}, {30273, 42329}, {32921, 45728}, {32935, 45729}, {34822, 64708}, {34831, 41013}, {37565, 58411}, {39530, 64088}, {41541, 51062}, {45275, 49523}, {45281, 49493}, {58460, 59611}, {58463, 59638}
X(64858) = isogonal conjugate of X(59016)
X(64858) = isotomic conjugate of X(60046)
X(64858) = isotomic conjugate of the isogonal conjugate of X(45932)
X(64858) = crossdifference of every pair of points on line {6, 39199}
X(64858) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}, {43424, 53097}
X(64858) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {234, 2057}, {414, 2057}, {416, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {51612, 14940}
X(64858) = {X(41013),X(44706)}-harmonic conjugate of X(34831)
X(64859) lies on these lines: {2, 4931}, {30, 511}, {37, 14838}, {75, 1577}, {192, 4560}, {649, 47665}, {656, 24417}, {661, 17161}, {693, 4842}, {984, 4041}, {1635, 47870}, {3676, 48417}, {3700, 21196}, {3776, 48268}, {3835, 4820}, {4024, 4369}, {4025, 4500}, {4120, 45315}, {4122, 4913}, {4379, 48423}, {4380, 48436}, {4382, 47677}, {4411, 4823}, {4444, 4804}, {4453, 48416}, {4481, 21834}, {4486, 50341}, {4509, 4828}, {4529, 57066}, {4608, 48147}, {4664, 45671}, {4688, 45324}, {4728, 31094}, {4763, 27486}, {4786, 6590}, {4813, 47657}, {4838, 7192}, {4928, 47790}, {4932, 48397}, {4944, 47778}, {4951, 48225}, {4958, 47759}, {4976, 47884}, {4979, 47659}, {4984, 48567}, {4988, 44449}, {7201, 51664}, {16892, 47871}, {20295, 47673}, {20430, 39212}, {20908, 20954}, {21115, 47869}, {21183, 48419}, {21212, 45677}, {22043, 42327}, {23731, 47654}, {25259, 48000}, {26824, 47930}, {27483, 60042}, {30605, 48288}, {31148, 47792}, {31290, 47669}, {45313, 47881}, {45343, 45663}, {45675, 47785}, {45678, 47787}, {45679, 47767}, {45745, 48270}, {45746, 48049}, {47652, 48428}, {47653, 48114}, {47655, 48141}, {47656, 47971}, {47658, 50522}, {47660, 48429}, {47661, 48082}, {47664, 48117}, {47666, 50482}, {47667, 48076}, {47668, 47908}, {47762, 47873}, {47769, 47878}, {47923, 48435}, {47926, 49272}, {47932, 49273}, {47960, 49287}, {48008, 48271}, {48016, 49281}, {48101, 48438}, {48269, 48404}, {48398, 48427}, {48551, 57514}, {49286, 53580}, {49292, 50342}, {56130, 62619}
X(64859) = isogonal conjugate of X(59054)
X(64859) = isotomic conjugate of X(35180)
X(64859) = isotomic conjugate of the anticomplement of X(35134)
X(64859) = crossdifference of every pair of points on line {6, 922}
X(64859) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64859) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1653, 1038}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64859) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3700, 21196, 25666}, {3700, 47784, 45661}, {4024, 4467, 4369}, {4024, 4750, 4789}, {4120, 47782, 45315}, {4467, 4789, 4750}, {4750, 4789, 4369}, {4988, 44449, 47991}, {17161, 53339, 46915}, {21196, 45661, 47784}, {25259, 48277, 48000}, {27486, 47874, 4763}, {45343, 45669, 45663}, {45343, 45674, 47788}, {45661, 47784, 25666}, {45669, 47788, 45674}, {45674, 47788, 45663}, {45746, 48266, 48049}, {46915, 53339, 661}, {47656, 47971, 49291}, {47762, 48437, 47873}, {47785, 47879, 45675}, {47787, 47882, 45678}, {47790, 47886, 4928}, {47792, 53333, 31148}
X(64860) lies on these lines: {30, 511}, {75, 4768}, {335, 60479}, {661, 48158}, {676, 45326}, {984, 1769}, {1491, 48224}, {1638, 4458}, {1639, 45337}, {2254, 48571}, {2977, 13246}, {3716, 4088}, {3835, 47131}, {3904, 30573}, {4369, 48235}, {4379, 48187}, {4453, 45328}, {4522, 47123}, {4763, 4809}, {4830, 48408}, {4874, 48201}, {4893, 48223}, {4895, 49274}, {4913, 27486}, {4951, 48189}, {6545, 31131}, {6546, 44433}, {10196, 26275}, {14315, 28601}, {20516, 21180}, {21204, 48182}, {23057, 53334}, {24623, 47689}, {25666, 48195}, {28602, 45675}, {30572, 43041}, {30792, 59755}, {31148, 48254}, {33888, 63251}, {36848, 58372}, {44902, 45668}, {45315, 48177}, {45323, 48212}, {45663, 48217}, {46403, 47705}, {47687, 47704}, {47688, 48020}, {47690, 49292}, {47691, 48050}, {47692, 48023}, {47693, 48153}, {47694, 47700}, {47697, 48118}, {47698, 47972}, {47701, 47992}, {47702, 47945}, {47709, 47912}, {47713, 47948}, {47717, 48086}, {47772, 53361}, {47778, 48211}, {47779, 48200}, {47798, 48562}, {47808, 47887}, {47810, 48203}, {47811, 48239}, {47812, 48169}, {47813, 48208}, {47924, 47940}, {47951, 48590}, {47961, 47985}, {48000, 50340}, {48039, 48554}, {48049, 48349}, {48056, 53580}, {48063, 48088}, {48069, 48574}, {48072, 48096}, {48188, 48234}, {48236, 48578}, {49490, 53532}
X(64860) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64860) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1617, 1709}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {18715, 64049}
X(64860) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4088, 47695, 3716}, {4458, 50333, 25380}, {47691, 48077, 48050}, {47698, 47972, 48001}
X(64861) lies on these lines: {30, 511}, {37, 4369}, {75, 661}, {192, 7192}, {798, 17159}, {984, 4761}, {1278, 31290}, {3250, 4406}, {3261, 4502}, {3644, 48147}, {3709, 52602}, {3739, 25666}, {3835, 4411}, {4040, 24354}, {4077, 7201}, {4079, 4374}, {4363, 4833}, {4444, 24357}, {4664, 31148}, {4686,
47991}, {4687, 24924}, {4688, 45315}, {4728, 4828}, {4740, 47774}, {4750, 45882}, {4755, 45663}, {4764, 47903}, {4776, 27485}, {4789, 14296}, {4826, 17217}, {7199, 21834}, {14436, 47762}, {22316, 57077}, {25356, 50337}, {25384, 27929}, {36494, 56129}
X(64861) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64861) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64861) = {X(4079),X(4374)}-harmonic conjugate of X(42327)
X(64862) lies on these lines: {30, 511}, {37, 3960}, {75, 3762}, {190, 1023}, {192, 21222}, {335, 4080}, {649, 48557}, {661, 47894}, {903, 23598}, {984, 2254}, {1086, 61073}, {1577, 4828}, {1635, 31349}, {1638, 37691}, {1639, 45674}, {3700, 47891}, {3716, 4809}, {3776, 48269}, {3835, 47754}, {3842, 18004}, {4010, 58372}, {4024, 49291}, {4025, 25666}, {4120, 4453}, {4369, 25259}, {4370, 35124}, {4379, 52620}, {4380, 48117}, {4411, 4791}, {4432, 30605}, {4440, 39364}, {4458, 50326}, {4467, 48000}, {4486, 36848}, {4500, 49296}, {4521, 59550}, {4707, 21131}, {4750, 4763}, {4813, 47677}, {4820, 48399}, {4830, 48083}, {4895, 49490}, {4897, 47767}, {4931, 47780}, {4932, 48271}, {4944, 47779}, {4958, 21115}, {4979, 49273}, {4984, 47892}, {6546, 14435}, {9318, 14191}, {14321, 21212}, {16892, 44449}, {17161, 47917}, {17494, 48112}, {19957, 25351}, {20295, 47930}, {20908, 21606}, {21196, 47876}, {23795, 49520}, {24349, 53343}, {24623, 48577}, {26853, 48130}, {27012, 47793}, {27074, 47796}, {27475, 52228}, {28779, 47795}, {30579, 33888}, {31147, 48422}, {31148, 47870}, {31290, 47673}, {45313, 47770}, {45315, 47769}, {45328, 50094}, {45663, 47758}, {45679, 47884}, {45746, 47991}, {47653, 48019}, {47657, 47908}, {47658, 48438}, {47659, 48147}, {47662, 50525}, {47665, 48141}, {47676, 48266}, {47778, 52593}, {47923, 48079}, {47939, 48435}, {47950, 48592}, {47960, 48041}, {47995, 48427}, {48008, 48087}, {48013, 48576}, {48016, 48095}, {48038, 48404}, {48071, 49281}, {48114, 49302}, {49274, 53536}, {49287, 49299}
X(64862) = isogonal conjugate of X(28875)
X(64862) = Thomson-isogonal conjugate of X(28876)
X(64862) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64862) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {46081, 20384}
X(64862) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1638, 45661, 45678}, {1639, 45674, 45675}, {4025, 47765, 47882}, {4025, 48270, 25666}, {4120, 4453, 4928}, {4467, 48082, 48000}, {4750, 30565, 4763}, {4958, 21115, 21297}, {16892, 44449, 48049}, {25259, 47755, 47874}, {25259, 47971, 4369}, {45746, 48076, 47991}, {47676, 48266, 49289}, {47755, 47874, 4369}, {47758, 47879, 45663}, {47765, 47882, 25666}, {47769, 47886, 45315}, {47772, 53333, 1635}, {47874, 47971, 47755}, {47882, 48270, 47765}, {48571, 53339, 4728}
X(64863) lies on these lines: {6, 24292}, {30, 511}, {37, 16592}, {75, 799}, {99, 24345}, {115, 24348}, {148, 24711}, {190, 21254}, {192, 6758}, {903, 46912}, {984, 4736}, {2643, 4440}, {3739, 40546}, {3842, 4013}, {4128, 24722}, {8287, 21089}, {8591, 36224}, {17476, 17777}, {18159, 25138}
X(64863) = X(24292)-line conjugate of X(6)
X(64863) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64863) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64863) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 24345, 24714}, {148, 36223, 24711}, {190, 53559, 21254}
X(64864) lies on these lines: {30, 511}, {37, 21260}, {75, 667}, {192, 21301}, {669, 20909}, {1278, 31291}, {3739, 31288}, {3797, 24601}, {4063, 49474}, {4411, 52601}, {4455, 20906}, {4664, 31149}, {4687, 31251}, {7234, 21438}, {8640, 20952}, {20891, 28255}, {21350, 44445}, {24325, 48330}, {24719, 49452}, {27485, 47839}, {28606, 30968}, {39227, 64728}, {48333, 49470}
X(64864) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64864) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64865) lies on these lines: {30, 511}, {37, 22046}, {75, 798}, {192, 17217}, {649, 21438}, {661, 40849}, {669, 24356}, {894, 20981}, {3287, 4107}, {3709, 24782}, {3733, 4363}, {3768, 20949}, {3835, 25098}, {4017, 4444}, {4057, 24354}, {4357, 21099}, {4364, 31946}, {4369, 4374}, {4502, 48049}, {4504, 53553}, {4885, 21206}, {4897, 20508}, {5224, 21055}, {20295, 25271}, {20906, 20979}, {21191, 21348}, {24533, 30584}, {25258, 28372}, {25356, 44316}, {27469, 31296}, {27854, 49516}, {28960, 50458}, {51575, 58862}, {52615, 55184}
X(64865) = isogonal conjugate of X(58981)
X(64865) = crossdifference of every pair of points on line {6, 904}
X(64865) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64865) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64865) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {192, 17217, 21834}, {4374, 57234, 4369}, {14296, 45882, 4369}
X(64866) lies on these lines: {2, 27485}, {30, 511}, {37, 3835}, {75, 649}, {192, 20295}, {667, 24354}, {798, 20906}, {1278, 26853}, {3261, 57234}, {3676, 4032}, {3739, 31286}, {4369, 4411}, {4375, 24357}, {4379, 4828}, {4664, 31147}, {4686, 48016}, {4687, 30835}, {4688, 45313}, {4699, 27013}, {4704, 26798}, {4751, 31207}, {4755, 45339}, {17217, 17458}, {20907, 52602}, {20949, 20979}, {21099, 21262}, {21260, 25356}, {21301, 24698}, {21348, 42327}, {22316, 50487}, {25381, 25384}, {27138, 27268}
X(64866) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64866) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64867) lies on these lines: {30, 511}, {75, 3250}, {321, 4079}, {350, 47874}, {663, 24354}, {889, 33946}, {1575, 47882}, {3063, 54282}, {3261, 4728}, {3666, 21348}, {3807, 31625}, {4374, 17458}, {4502, 20949}, {4688, 45658}, {4763, 6586}, {4817, 17318}, {4928, 45659}, {17072, 25356}, {17147, 17159}, {17759, 47894}, {18080, 62619}, {20907, 42327}, {20909, 42664}, {21113, 23794}, {21138, 39011}, {21225, 47776}, {21262, 21958}, {21433, 27485}, {24326, 36848}, {25368, 45666}, {41142, 47886}, {41144, 47879}, {47780, 50762}
X(64867) = crossdifference of every pair of points on line {6, 52892}
X(64867) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64867) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64868) lies on these lines: {30, 511}, {37, 647}, {75, 850}, {192, 31296}, {656, 4036}, {876, 56128}, {1577, 53527}, {1769, 48264}, {2394, 54679}, {2517, 50350}, {2530, 14288}, {2605, 7253}, {2667, 23757}, {3739, 17069}, {4010, 48350}, {4017, 30591}, {4025, 4411}, {4064, 62566}, {4086, 57099}, {4108, 44433}, {4122, 17989}, {4374, 57214}, {4391, 53574}, {4453, 4828}, {4477, 15624}, {4524, 22271}, {4560, 50349}, {4664, 36900}, {4681, 41300}, {4688, 31174}, {4699, 31072}, {4740, 63786}, {4755, 44560}, {4791, 23809}, {4833, 48288}, {5996, 31131}, {8062, 31947}, {14618, 44428}, {16229, 39534}, {17496, 53314}, {21180, 21192}, {21189, 50327}, {23301, 50335}, {23800, 50334}, {27485, 47886}, {28284, 47872}, {30572, 51641}, {31238, 31277}, {42027, 55244}, {42664, 48266}, {44918, 44929}, {48321, 55969}, {50329, 50330}, {50556, 53276}
X(64868) = crossdifference of every pair of points on line {6, 859}
X(64868) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1121, 1709}, {1260, 2057}, {1265, 2057}, {25836, 36038}
X(64868) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64869) lies on these lines: {30, 511}, {37, 3741}, {42, 75}, {192, 7226}, {213, 24425}, {872, 20891}, {1278, 20011}, {2901, 49456}, {3009, 30939}, {3739, 6685}, {3783, 17790}, {3989, 4664}, {4022, 56185}, {4687, 31241}, {11364, 19623}, {15621, 64727}, {17144, 56129}, {21080, 64581}, {21878, 63570}, {22271, 59565}, {30273, 63389}, {41683, 50001}, {49491, 56125}, {49493, 64184}, {51063, 52856}, {58572, 58583}, {58644, 58655}, {61526, 61549}
X(64869) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}, {10113, 62513}
X(64869) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64870) lies on these lines: {30, 511}, {37, 3934}, {39, 75}, {76, 192}, {194, 1278}, {350, 20688}, {1015, 19565}, {1574, 10009}, {1921, 21830}, {3739, 6683}, {3993, 12263}, {4363, 5145}, {4664, 9466}, {4686, 32450}, {4687, 31239}, {4688, 44562}, {4699, 7786}, {4704, 31276}, {4740, 7757}, {4788, 20081}, {5052, 49496}, {5188, 30273}, {6248, 20430}, {7751, 12338}, {7781, 22779}, {7976, 24349}, {8149, 49187}, {9902, 49445}, {11257, 63427}, {11272, 61549}, {12782, 49474}, {13334, 64728}, {14994, 49509}, {17486, 22199}, {17759, 20671}, {20889, 21814}, {21327, 28596}, {22012, 22036}, {25349, 60090}, {32035, 54101}, {33706, 51043}, {41622, 49533}, {44422, 51040}, {49111, 51046}, {49481, 64713}, {51063, 52854}, {56185, 56186}, {58486, 58499}, {58500, 58554}, {58584, 58620}, {58656, 58693}, {61550, 61623}
X(64870) = barycentric product X(i)*X(j) for these {i,j}: {554, 63871}, {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64870) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {6999, 64095}, {13158, 11015}
X(64870) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 21443, 3934}, {75, 32453, 39}, {1921, 21830, 27076}
X(64871) lies on these lines: {6, 25264}, {30, 511}, {75, 3721}, {141, 20888}, {192, 25270}, {335, 20432}, {3589, 25092}, {3726, 18157}, {3742, 59564}, {4022, 16720}, {6665, 58606}, {7781, 43149}, {15569, 59515}, {21138, 59526}, {21342, 62541}, {22285, 22316}, {33935, 49509}, {38047, 40774}
X(64871) = X(25264)-line conjugate of X(6)
X(64871) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64871) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64872) lies on these lines: {3, 54220}, {4, 54165}, {20, 54221}, {30, 511}, {31, 192}, {37, 6679}, {75, 2887}, {209, 21080}, {1278, 6327}, {3993, 49480}, {4680, 49474}, {4699, 31237}, {4740, 31134}, {4788, 20064}, {17320, 33121}, {20575, 61623}, {23677, 25120}, {24325, 26728}, {24349, 49454}, {30269, 63427}, {49445, 49500}, {58390, 58400}
X(64872) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64872) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64872) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 18805, 6679}, {1278, 6327, 37003}
X(64873) lies on these lines: {30, 511}, {37, 10469}, {75, 3670}, {192, 19767}, {835, 5161}, {984, 4696}, {3159, 4681}, {3666, 22024}, {3706, 36862}, {3842, 59565}, {3931, 24068}, {4283, 17787}, {4686, 5295}, {4739, 24176}, {4980, 17155}, {5143, 32927}, {17157, 49493}, {17592, 32925}, {21080, 49456}, {24325, 27455}, {37598, 49517}
X(64873) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64873) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {234, 234}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {3327, 63947}, {33624, 46442}
X(64874) lies on these lines: {30, 511}, {37, 6377}, {75, 244}, {192, 872}, {668, 24338}, {984, 4738}, {1015, 25382}, {1086, 21100}, {1278, 17154}, {3123, 4033}, {3227, 35043}, {3248, 61183}, {3739, 40562}, {3807, 4664}, {3993, 34587}, {4674, 49474}, {4681, 52875}, {4686, 42027}, {4718, 4946}, {4764, 17157}, {4788, 20048}, {4868, 49456}, {4941, 30473}, {8683, 64727}, {9263, 24722}, {16495, 36798}, {17460, 49470}, {17793, 57023}, {21900, 40610}, {22313, 22316}, {39697, 50117}, {58396, 58401}
X(64874) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64874) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64874) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 1978, 52882}, {75, 41683, 244}, {192, 3952, 42083}, {9263, 36222, 24722}
X(64875) lies on these lines: {6, 7532}, {8, 28968}, {10, 3157}, {30, 511}, {68, 21077}, {69, 73}, {141, 6700}, {155, 10916}, {193, 5942}, {222, 34822}, {225, 5906}, {226, 5820}, {255, 34851}, {651, 1861}, {914, 1331}, {946, 12586}, {950, 37516}, {1001, 42460}, {1069, 45728}, {1352, 51759}, {1843, 14055}, {3100, 37781}, {3173, 4847}, {3416, 6736}, {3562, 46878}, {3751, 10573}, {3811, 11411}, {3911, 36059}, {3912, 23693}, {6193, 62858}, {6391, 15232}, {6510, 51366}, {6684, 47371}, {6776, 7289}, {7078, 34823}, {7352, 17647}, {10071, 21616}, {10072, 16475}, {10199, 38049}, {11019, 56294}, {12359, 59719}, {12513, 42461}, {12594, 31397}, {12832, 51198}, {14544, 23710}, {14913, 44548}, {18652, 21912}, {19588, 23361}, {20013, 20080}, {22769, 39870}, {23071, 60427}, {24477, 63174}, {30144, 49511}, {36643, 54420}, {36846, 51192}, {37836, 63612}, {39873, 64042}, {39889, 64119}, {41883, 58402}, {58462, 63840}, {58581, 58585}, {58653, 58657}, {61545, 61547}, {63357, 63450}
X(64875) = X(7532)-line conjugate of X(6)
X(64875) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64875) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {234, 234}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64876) lies on these lines: {6, 30476}, {30, 511}, {69, 647}, {193, 850}, {599, 44560}, {1992, 31174}, {3049, 52598}, {3618, 31277}, {11160, 36900}, {19126, 58310}, {20080, 31296}, {22264, 32257}, {31072, 51170}, {32113, 47442}, {32220, 47004}, {40341, 41300}, {46989, 47541}, {47001, 47551}, {47255, 52238}
X(64876) = crossdifference of every pair of points on line {6, 46522}
X(64876) = X(30476)-line conjugate of X(6)
X(64876) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64876) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {12252, 36695}
X(64877) lies on these lines: {6, 2623}, {30, 511}, {69, 41298}, {141, 38429}, {597, 44568}, {1116, 10168}, {1176, 15328}, {1992, 44554}, {2394, 54879}, {2916, 30511}, {3005, 60342}, {3288, 47138}, {3818, 43083}, {5476, 15475}, {9131, 13318}, {9979, 13315}, {10412, 19130}, {13290, 41583}, {14220, 34437}, {14380, 15321}, {14610, 42651}, {15453, 18125}, {15543, 51737}, {19128, 50946}, {25565, 39494}, {32600, 46608}, {39481, 44809}, {46026, 50543}, {47193, 63830}
X(64877) = isogonal conjugate of X(58975)
X(64877) = Thomson-isogonal conjugate of X(64660)
X(64877) = crossdifference of every pair of points on line {6, 1154}
X(64877) = X(i)-line conjugate of X(j) for these (i,j): {30, 1154}, {2623, 6}
X(64877) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64877) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {32516, 46335}
X(64878) lies on these lines: {3, 4091}, {30, 511}, {72, 6332}, {101, 15378}, {386, 52595}, {650, 44410}, {652, 22160}, {663, 53554}, {905, 53550}, {942, 14837}, {1459, 17976}, {3157, 57223}, {3874, 20517}, {4163, 34790}, {4449, 53562}, {5045, 52596}, {5904, 48272}, {9404, 34975}, {10449, 52622}, {23090, 57129}, {23187, 57241}, {35100, 50504}, {39476, 44827}, {44408, 53249}, {48387, 53301}, {57042, 57133}, {57279, 58339}
X(64878) = isogonal conjugate of X(26705)
X(64878) = isotomic conjugate of the isogonal conjugate of X(22388)
X(64878) = isogonal conjugate of the isotomic conjugate of X(57054)
X(64878) = isotomic conjugate of the polar conjugate of X(6586)
X(64878) = isogonal conjugate of the polar conjugate of X(25259)
X(64878) = Thomson-isogonal conjugate of X(41905)
X(64878) = crossdifference of every pair of points on line {6, 1836}
X(64878) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}, {31524, 47025}
X(64878) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64878) = {X(4091),X(57108)}-harmonic conjugate of X(3)
X(64879) lies on these lines: {6, 19597}, {30, 511}, {69, 4173}, {193, 10340}, {263, 63174}, {695, 6391}, {1843, 7762}, {3499, 19588}, {3511, 52967}, {5039, 43977}, {7767, 11574}, {7893, 12220}, {17932, 34238}, {32451, 40951}, {34236, 59553}, {37890, 63612}, {47286, 52460}
X(64879) = X(19597)-line conjugate of X(6)
X(64879) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64879) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {414, 416}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64880) lies on these lines: {6, 5181}, {30, 511}, {67, 6391}, {68, 5505}, {69, 125}, {74, 20187}, {110, 193}, {113, 1351}, {115, 36207}, {141, 6723}, {155, 19140}, {182, 5486}, {265, 11898}, {287, 46459}, {576, 5654}, {599, 45311}, {974, 52520}, {1147, 19138}, {1270, 13654}, {1271, 13774}, {1350, 37853}, {1352, 7687}, {1353, 1511}, {1495, 32220}, {1843, 40316}, {1992, 5642}, {2104, 14499}, {2105, 14500}, {2407, 47200}, {2452, 51389}, {2930, 6144}, {2931, 12584}, {3047, 19121}, {3167, 5648}, {3448, 20080}, {3580, 32127}, {3620, 15059}, {3629, 6593}, {3630, 25328}, {3631, 6698}, {3818, 63710}, {4590, 62348}, {5050, 38793}, {5085, 48375}, {5093, 14643}, {5102, 38792}, {5467, 41359}, {5477, 53735}, {5622, 10519}, {5655, 50962}, {5921, 10733}, {5987, 50248}, {6036, 40879}, {6053, 9970}, {6403, 15473}, {6467, 32285}, {6699, 48876}, {6721, 18122}, {6776, 16163}, {6791, 36696}, {7728, 44456}, {7890, 19597}, {8263, 61507}, {8541, 12827}, {8542, 12596}, {8548, 15115}, {8550, 33851}, {8584, 59553}, {9140, 11160}, {9813, 14561}, {9820, 22330}, {9822, 11746}, {9924, 32264}, {9925, 16510}, {9976, 49116}, {10117, 37491}, {10272, 61624}, {10516, 14914}, {10752, 15063}, {10754, 16278}, {10992, 48539}, {11008, 11061}, {11064, 47277}, {11178, 63650}, {11438, 63722}, {11477, 14982}, {11482, 38795}, {11574, 41673}, {11579, 20417}, {11720, 51196}, {11735, 49511}, {11800, 14913}, {12038, 33749}, {12039, 25555}, {12121, 39899}, {12164, 51941}, {12272, 32239}, {12294, 12825}, {12295, 18440}, {12302, 32305}, {12383, 32234}, {12900, 18583}, {12902, 32272}, {13169, 50992}, {13198, 19126}, {13202, 41737}, {13289, 37488}, {13417, 40228}, {13479, 35922}, {14852, 34507}, {14853, 36518}, {14912, 15035}, {15055, 62174}, {15061, 39562}, {15113, 23326}, {15526, 22143}, {16003, 37483}, {16111, 33878}, {16511, 58445}, {16534, 64067}, {19139, 25556}, {20127, 55584}, {20301, 23306}, {20304, 61545}, {20772, 41585}, {20806, 34470}, {21639, 62382}, {21850, 46686}, {22234, 64181}, {22660, 55718}, {22663, 44862}, {30714, 37489}, {32113, 32223}, {32269, 47279}, {32271, 37517}, {32661, 41672}, {34319, 45082}, {34417, 49125}, {34986, 41612}, {35266, 47541}, {35511, 39652}, {36891, 44556}, {37784, 64724}, {38726, 48906}, {38788, 55593}, {38794, 53091}, {39873, 46687}, {39897, 46683}, {40337, 40949}, {41583, 41615}, {41584, 41616}, {41586, 41617}, {41588, 41618}, {41614, 61644}, {41671, 58555}, {41720, 44082}, {44569, 47551}, {45237, 61667}, {47278, 47582}, {47280, 62381}, {51198, 53743}, {53351, 54395}, {58601, 58621}, {58671, 58694}, {58726, 64063}, {61665, 61666}, {63694, 63702}
X(64880) = isogonal conjugate of X(40119)
X(64880) = isotomic conjugate of the polar conjugate of X(10418)
X(64880) = Thomson-isogonal conjugate of X(53961)
X(64880) = X(5181)-line conjugate of X(6)
X(64880) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64880) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64880) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5181, 5972}, {6, 5972, 32300}, {69, 125, 32257}, {69, 895, 125}, {69, 4563, 52881}, {69, 64235, 4563}, {110, 193, 5095}, {141, 15118, 6723}, {193, 40317, 1974}, {265, 11898, 32275}, {1351, 63700, 113}, {2930, 6144, 64104}, {2930, 64104, 56565}, {3448, 20080, 32244}, {5095, 32114, 110}, {5622, 10519, 38727}, {5648, 15534, 15303}, {5921, 10733, 32250}, {11064, 53778, 47277}, {11800, 14913, 32246}, {12310, 19588, 2930}, {32113, 53777, 32223}, {41617, 41721, 41586}, {41737, 51212, 13202}
X(64881) lies on these lines: {30, 511}, {69, 3049}, {193, 2451}, {1992, 55190}, {3050, 40341}, {3288, 20080}, {3629, 39520}, {4108, 13303}, {4590, 32661}, {7779, 32320}, {11160, 45335}, {13302, 36900}, {14023, 42660}, {14607, 61199}, {17731, 23145}, {52038, 63182}
X(64881) = isotomic conjugate of the polar conjugate of X(44451)
X(64881) = crossdifference of every pair of points on line {6, 30496}
X(64881) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64881) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {28134, 32792}
X(64882) lies on these lines: {6, 59569}, {30, 511}, {69, 20819}, {193, 3186}, {287, 22143}, {290, 6391}, {648, 57258}, {800, 11672}, {1351, 43976}, {2421, 47211}, {2456, 40888}, {3167, 14614}, {3511, 19588}, {5306, 59553}, {6776, 30262}, {9307, 52091}, {32661, 41675}, {54998, 56268}, {56390, 57257}, {63065, 64177}, {63093, 63174}
X(64882) = crossdifference of every pair of points on line {6, 7656}
X(64882) = X(59569)-line conjugate of X(6)
X(64882) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64882) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64882) = {X(193),X(53350)}-harmonic conjugate of X(51335)
X(64883) lies on these lines: {5, 12585}, {6, 8280}, {30, 511}, {68, 576}, {69, 184}, {98, 44363}, {110, 64724}, {114, 44375}, {125, 22151}, {141, 53022}, {155, 34507}, {161, 37491}, {193, 7378}, {575, 12359}, {578, 11411}, {597, 32068}, {599, 3167}, {895, 18125}, {1147, 40107}, {1351, 18474}, {1352, 9813}, {1843, 46442}, {1899, 11511}, {2916, 19588}, {3292, 32257}, {3448, 11416}, {3455, 7813}, {3521, 55977}, {3580, 44102}, {3630, 63612}, {5095, 12827}, {5181, 41615}, {5449, 25555}, {5476, 14852}, {5477, 58312}, {5486, 43689}, {5654, 11178}, {5972, 62376}, {5986, 7779}, {6030, 11160}, {6036, 44388}, {6144, 6391}, {6193, 46728}, {6593, 32317}, {6698, 32283}, {6776, 63425}, {7826, 19597}, {8538, 25738}, {8542, 15083}, {9306, 63129}, {9512, 60524}, {9822, 13562}, {9929, 44471}, {9930, 44472}, {10112, 50649}, {10116, 15074}, {11061, 27085}, {11255, 18356}, {11477, 12429}, {11574, 26926}, {11898, 18445}, {12118, 52987}, {12164, 15069}, {12310, 25336}, {13292, 44495}, {15054, 54216}, {15063, 54162}, {15136, 40919}, {15462, 44673}, {15526, 58356}, {16176, 64214}, {16511, 33749}, {16835, 56268}, {18374, 32223}, {18475, 48876}, {18488, 36747}, {18553, 22660}, {18951, 44489}, {19061, 44473}, {19062, 44474}, {19139, 24206}, {19153, 61646}, {19467, 35240}, {19596, 41583}, {20080, 41464}, {20190, 44158}, {20299, 44469}, {20417, 54215}, {21356, 64177}, {24981, 41721}, {25556, 46085}, {32154, 43839}, {32267, 45082}, {32275, 63720}, {32284, 32358}, {32300, 62375}, {32600, 32621}, {34787, 61751}, {34986, 54347}, {38303, 61199}, {40673, 45968}, {42007, 48999}, {43595, 64180}, {44475, 48738}, {44476, 48739}, {44501, 49225}, {44502, 49224}, {44654, 49321}, {44655, 49322}, {45016, 63735}, {47391, 50977}, {52144, 62338}, {53021, 64179}, {54036, 63118}, {59373, 61712}, {61544, 63702}, {61545, 61619}, {61677, 64599}
X(64883) = X(8280)-line conjugate of X(6)
X(64883) = barycentric product X(i)*X(j) for these {i,j}: {554, 1652}, {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64883) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64883) = {X(193),X(11442)}-harmonic conjugate of X(8541)
X(64884) lies on these lines: {6, 59594}, {30, 511}, {69, 1565}, {193, 3732}, {613, 56294}, {1086, 36205}, {1146, 10756}, {2968, 22148}, {4551, 56848}, {6391, 38955}, {7289, 48906}, {17728, 59553}, {34586, 63612}, {42460, 42884}, {43146, 61524}, {51196, 51435}
X(64884) = X(59594)-line conjugate of X(6)
X(64884) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64884) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {24713, 25033}
X(64885) lies on these lines: {3, 58340}, {30, 511}, {63, 57184}, {69, 15416}, {222, 2431}, {651, 7128}, {652, 905}, {1019, 23090}, {1565, 52115}, {2095, 42772}, {3157, 34975}, {3669, 36054}, {4131, 6332}, {4391, 46400}, {7178, 46389}, {9810, 13302}, {9811, 13303}, {10397, 57233}, {11247, 28787}, {14298, 14837}, {14353, 51658}, {17094, 60494}, {17896, 59935}, {17924, 57166}, {21362, 52610}, {23727, 57243}, {24018, 57055}, {45709, 48971}, {45710, 49003}, {48107, 63245}, {48335, 57042}, {53833, 55063}
X(64885) = isogonal conjugate of X(40117)
X(64885) = isogonal conjugate of the anticomplement of X(53833)
X(64885) = isotomic conjugate of the polar conjugate of X(6129)
X(64885) = isogonal conjugate of the polar conjugate of X(17896)
X(64885) = trilinear pole of line {47432, 53557}
X(64885) = crossdifference of every pair of points on line {6, 33}
X(64885) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64885) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}
X(64885) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {652, 51664, 905}, {4131, 20296, 6332}
X(64886) lies on these lines: {30, 511}, {63, 652}, {226, 3239}, {2509, 14837}, {2522, 21107}, {3064, 17896}, {3173, 57042}, {4391, 48070}, {5745, 7658}, {5905, 25259}, {6332, 15413}, {8611, 23727}, {8896, 55232}, {16612, 21174}, {17094, 57055}, {20315, 24459}, {22001, 57169}, {57243, 57245}
X(64886) = isogonal conjugate of X(58944)
X(64886) = isotomic conjugate of the polar conjugate of X(47123)
X(64886) = crossdifference of every pair of points on line {6, 2212}
X(64886) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64886) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {53212, 31074}
X(64887) lies on these lines: {30, 511}, {63, 77}, {92, 1947}, {226, 6708}, {241, 52610}, {942, 56552}, {1439, 17073}, {1741, 4341}, {1763, 3684}, {1944, 1952}, {3157, 12514}, {3211, 60974}, {4566, 37805}, {4641, 22130}, {4643, 7352}, {5745, 53415}, {5887, 24316}, {6237, 63707}, {6360, 20078}, {6508, 40152}, {6511, 64455}, {9121, 54422}, {10605, 18446}, {14571, 45266}, {15836, 62858}, {16702, 32661}, {23075, 23853}, {24315, 34339}, {24682, 31937}, {24684, 40296}, {26932, 62402}, {34176, 59681}, {36949, 62326}, {37826, 39529}, {40843, 44360}, {44356, 59813}, {44916, 51755}, {56294, 62839}, {63447, 63448}
X(64887) = isogonal conjugate of X(20624)
X(64887) = isotomic conjugate of the polar conjugate of X(8758)
X(64887) = crossdifference of every pair of points on line {6, 18344}
X(64887) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}
X(64887) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {234, 234}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {42251, 44246}
X(64888) lies on these lines: {30, 511}, {48, 63}, {226, 7363}, {2256, 3173}, {2294, 8545}, {3157, 3743}, {3167, 53035}, {3647, 41608}, {4068, 42460}, {5693, 24316}, {5745, 58406}, {5884, 24315}, {5905, 21270}, {6237, 63967}, {8896, 51367}, {9119, 40530}, {11411, 23555}, {12164, 42440}, {15071, 24683}, {18589, 52385}, {20074, 20078}, {20117, 24317}, {24682, 31803}, {25081, 61004}, {25255, 60946}, {31163, 31164}, {31265, 31266}, {47371, 58392}, {61531, 61539}
X(64888) = barycentric product X(i)*X(j) for these {i,j}: {554, 1652}, {1034, 2057}, {1260, 2057}, {1265, 2057}, {45938, 53925}
X(64888) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {53986, 37117}
X(64889) lies on these lines: {30, 511}, {51, 31164}, {63, 295}, {101, 579}, {226, 5943}, {595, 3157}, {1362, 1397}, {1364, 22148}, {1851, 3060}, {3271, 36280}, {3433, 47391}, {4303, 22399}, {5185, 15906}, {5745, 64489}, {10219, 58463}, {10822, 34931}, {18389, 29957}, {18446, 64100}, {20078, 62188}, {20256, 59683}, {20760, 39796}, {23039, 52115}, {34928, 42463}, {46174, 61539}
X(64889) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2057}, {1260, 2057}, {1265, 2057}, {4373, 26390}
X(64889) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2057}, {845, 2057}, {1035, 2057}, {1119, 2057}, {1847, 2057}, {2057, 2057}, {2091, 2057}, {15372, 28688}
Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6813.
X(64890) lies on these lines: {2, 3}, {74, 13851}, {148, 56016}, {275, 19651}, {476, 23956}, {477, 33640}, {515, 31948}, {1154, 12292}, {1199, 13403}, {1300, 39371}, {1514, 15152}, {1531, 43574}, {1539, 3043}, {1699, 51701}, {1843, 48943}, {1986, 58789}, {2777, 13399}, {2914, 12112}, {3087, 47322}, {3357, 18394}, {5446, 43846}, {5890, 32411}, {5895, 16880}, {6000, 7722}, {6403, 48904}, {6746, 22948}, {6748, 47275}, {6759, 40242}, {7728, 30522}, {10098, 43663}, {10149, 12953}, {10152, 10421}, {10733, 13754}, {10735, 44972}, {11381, 48914}, {11456, 61721}, {11565, 43585}, {11649, 48884}, {11692, 14915}, {12133, 13391}, {12244, 15153}, {12289, 22802}, {12290, 34786}, {12294, 48942}, {12295, 50435}, {13376, 46850}, {14157, 15463}, {14537, 53026}, {14644, 21663}, {15081, 50709}, {16303, 40065}, {18848, 59278}, {19128, 29323}, {20774, 62490}, {21268, 32710}, {34224, 51491}, {36969, 56514}, {36970, 56515}, {40118, 58095}, {44872, 61691}, {44967, 44990}, {46045, 48364}, {51733, 53023}
Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6813.
X(64891) lies on these lines: {2, 3}, {49, 5893}, {265, 15311}, {1514, 5504}, {3521, 12241}, {5895,25738}, {6000, 11800}, {7728, 44665}, {10721, 50435}, {12121, 51425}, {13202, 13754}, {15317, 46372}, {16163, 59648}, {16655, 52863}, {18481, 51713}, {22115, 51998}, {22337, 50472}, {22802, 44076}, {23515, 44872}, {28164, 51701}, {29323, 47455}, {30522, 32111}, {32113, 48904}, {34584, 63839}, {34783, 51491}, {38292, 47162}, {38956, 62501}, {43574, 58885}, {46264, 51742}, {46431, 53781}, {46686, 51394}, {46850, 58551}
Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6813.
X(64892) lies on these lines: {526, 12052}, {924, 11746}, {6000, 51998}, {11751, 45237}
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 24/07/2024. (Aug 21, 2024)
X(64893) lies on these lines: {1, 3}, {4930, 20050}, {5330, 46931}, {5734, 10592}
X(64893) = reflection of X(64894) in X(1)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 24/07/2024. (Aug 21, 2024)
X(64894) lies on these lines: {1, 3}, {8, 19705}, {11, 15696}, {12, 61811}, {20, 10593}, {34, 55574}, {80, 38637}, {140, 5229}, {376, 9669}, {382, 7173}, {388, 15712}, {390, 62066}, {404, 46931}, {495, 15717}, {496, 3528}, {497, 33923}, {498, 15693}, {499, 3534}, {548, 7288}, {549, 9654}, {550, 5225}, {611, 55678}, {613, 55639}, {631, 9655}, {956, 37307}, {993, 17573}, {1056, 61791}, {1058, 62067}, {1124, 6451}, {1335, 6452}, {1398, 21844}, {1428, 55629}, {1469, 55682}, {1478, 15720}, {1479, 62100}, {1656, 15326}, {1657, 5433}, {2066, 6496}, {2067, 6456}, {3056, 55643}, {3058, 62070}, {3085, 12100}, {3086, 8703}, {3299, 6445}, {3301, 6446}, {3522, 15325}, {3523, 31479}, {3524, 18990}, {3526, 3614}, {3530, 4293}, {3582, 15695}, {3583, 62131}, {3584, 61797}, {3585, 46219}, {3600, 31480}, {3616, 19704}, {3617, 13587}, {3625, 11194}, {3634, 16417}, {3843, 4316}, {4188, 9708}, {4225, 27645}, {4294, 46853}, {4302, 62085}, {4317, 61793}, {4324, 62105}, {4325, 61818}, {4652, 35271}, {5020, 5370}, {5054, 7354}, {5055, 10483}, {5070, 12943}, {5072, 7294}, {5218, 44682}, {5261, 61807}, {5265, 21735}, {5267, 16408}, {5274, 62092}, {5281, 61787}, {5298, 14093}, {5303, 9780}, {5326, 61831}, {5414, 6497}, {5432, 61803}, {5434, 15706}, {5550, 16370}, {5552, 34740}, {6284, 15688}, {6407, 18995}, {6408, 18996}, {6455, 6502}, {6880, 40267}, {7286, 37955}, {7727, 38633}, {7741, 17800}, {7951, 55863}, {7972, 38636}, {8164, 61804}, {8540, 55595}, {8588, 16781}, {9341, 22332}, {9579, 28451}, {9670, 58192}, {9709, 19537}, {10056, 15716}, {10072, 62073}, {10304, 15171}, {10385, 15714}, {10386, 62064}, {10387, 55655}, {10529, 34707}, {10588, 12108}, {10589, 15704}, {10590, 14869}, {10591, 12103}, {10645, 54437}, {10646, 54438}, {10895, 15694}, {10896, 15681}, {11237, 15718}, {11238, 62088}, {11544, 21161}, {12019, 38693}, {12953, 62121}, {14986, 19708}, {15170, 15710}, {15172, 45759}, {15338, 62082}, {15655, 16502}, {15700, 52793}, {16402, 26115}, {16418, 19862}, {16431, 29579}, {17316, 21497}, {17549, 46934}, {18513, 61919}, {18514, 49139}, {19470, 38638}, {19706, 19854}, {21498, 26626}, {21539, 29596}, {31447, 37709}, {31461, 46846}, {35501, 54428}, {42115, 54403}, {42116, 54402}, {47743, 62097}
X(64894) = midpoint of X(1) and X(64895)
X(64894) = reflection of X(64893) in X(1)
X(64894) = pole of the line {21, 8163} with respect to the Stammler hyperbola
X(64894) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (5204, 5217, 36), (5204, 59319, 3)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 24/07/2024. (Aug 21, 2024)
X(64895) lies on these lines: {1, 3}, {9, 61770}, {3614, 9588}, {3617, 3929}, {3621, 3928}, {3625, 63138}, {3626, 54290}, {5225, 5493}, {5229, 43174}, {7173, 9589}, {7308, 46931}, {11682, 63915}, {12512, 64736}, {12526, 63916}, {20070, 31231}, {31426, 46846}
X(64895) = reflection of X(1) in X(64894)
X(64895) = pole of the line {513, 58168} with respect to the Bevan circle
X(64895) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (40, 41348, 57), (46, 37556, 57)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 24/07/2024. (Aug 21, 2024)
X(64896) lies on these lines: {1, 3}, {8, 11813}, {12, 5559}, {30, 7972}, {80, 5844}, {145, 5180}, {149, 519}, {191, 4861}, {497, 34631}, {498, 5734}, {513, 58167}, {515, 13253}, {518, 41702}, {529, 25416}, {535, 34611}, {758, 1320}, {912, 7993}, {1168, 34857}, {1317, 28174}, {1318, 4674}, {1389, 7161}, {1391, 56844}, {1392, 11279}, {2222, 28223}, {2308, 15955}, {2316, 21801}, {2392, 24681}, {2802, 45764}, {3241, 4302}, {3243, 28534}, {3244, 16126}, {3467, 21398}, {3577, 22835}, {3585, 4301}, {3625, 11524}, {3632, 5176}, {3633, 5057}, {3656, 7951}, {3678, 64201}, {3679, 3814}, {3680, 5560}, {3872, 3899}, {3880, 4867}, {3884, 5284}, {3901, 36846}, {3984, 4816}, {4293, 50872}, {4316, 28194}, {4324, 5882}, {4325, 63987}, {4345, 10072}, {4511, 5541}, {4668, 5087}, {4677, 11235}, {4695, 4792}, {4919, 5525}, {5123, 15829}, {5252, 61703}, {5274, 10573}, {5288, 33895}, {5326, 5901}, {5441, 37734}, {5444, 10283}, {5690, 37735}, {5730, 8168}, {5854, 51409}, {5881, 18514}, {5904, 10912}, {6264, 14988}, {6681, 25055}, {6763, 22837}, {6905, 25485}, {7727, 23153}, {7743, 36920}, {9037, 16496}, {9668, 50805}, {10483, 37738}, {10589, 12245}, {10590, 12647}, {10697, 34931}, {10698, 41689}, {11274, 36005}, {11523, 33956}, {12699, 37707}, {12701, 37706}, {12735, 15326}, {13391, 52524}, {13606, 16137}, {15015, 63136}, {15228, 28212}, {15338, 61286}, {15863, 37375}, {16118, 45287}, {16173, 40663}, {16548, 17455}, {17757, 64056}, {18513, 31162}, {19875, 31263}, {21578, 28228}, {22791, 37710}, {23708, 63143}, {26726, 38455}, {28186, 62617}, {28234, 30384}, {30294, 61709}, {31855, 61476}, {34743, 34747}, {37720, 41687}, {37730, 64766}, {37731, 45081}, {40109, 42042}, {40587, 58641}, {43731, 56152}, {43732, 56038}, {48293, 61637}, {52793, 61278}, {54154, 64138}, {54192, 64136}, {54391, 64137}, {56422, 56691}, {59311, 62352}, {61276, 61521}
X(64896) = midpoint of X(i) and X(j) for these (i, j): {145, 5180}, {5538, 11531}, {8148, 35457}
X(64896) = reflection of X(i) in X(j) for these (i, j): (1, 63210), (8, 11813), (36, 5048), (484, 1), (3245, 1319), (3632, 5176), (4677, 31160), (5183, 25405), (5541, 4511), (6905, 25485), (7991, 2077), (9897, 3583), (15326, 12735), (22765, 10222), (31855, 61476), (36005, 11274), (36920, 7743), (36975, 1317), (41347, 33179), (41684, 30384), (54154, 64138), (54391, 64137), (64056, 17757), (64136, 54192)
X(64896) = isogonal conjugate of the antigonal conjugate of X(17501)
X(64896) = cross-difference of every pair of points on the line X(650)X(16671)
X(64896) = X(24302)-Ceva conjugate of-X(1)
X(64896) = X(513)-vertex conjugate of-X(59319)
X(64896) = Gibert-Burek-Moses concurrent circles image of X(1482)
X(64896) = inverse of X(5563) in mixtilinear incircles radical circle
X(64896) = inverse of X(31792) in: incircle, de Longchamps ellipse
X(64896) = inverse of X(59319) in circumcircle
X(64896) = pole of the line {513, 59319} with respect to the circumcircle
X(64896) = pole of the line {513, 31792} with respect to the incircle
X(64896) = pole of the line {513, 5563} with respect to the mixtilinear incircles radical circle
X(64896) = pole of the line {513, 31792} with respect to the de Longchamps ellipse
X(64896) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (35, 10222, 1), (36, 5048, 1), (55, 62318, 36), (1482, 5697, 1), (2098, 5903, 1), (3057, 11009, 1), (3746, 11011, 1), (5119, 16200, 1), (5183, 25405, 36), (5425, 5919, 1), (5535, 13384, 36), (5902, 64897, 1), (7962, 25415, 1), (7982, 30323, 1), (10247, 37525, 1), (24926, 33179, 1)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 24/07/2024. (Aug 21, 2024)
X(64897) lies on these lines: {1, 3}, {2, 1000}, {4, 52683}, {7, 37429}, {8, 496}, {10, 10912}, {11, 5790}, {12, 18493}, {30, 3476}, {38, 47041}, {45, 2316}, {72, 36846}, {78, 51786}, {80, 11238}, {119, 15845}, {145, 1058}, {214, 4421}, {222, 1480}, {226, 3656}, {329, 3241}, {355, 9669}, {381, 5252}, {382, 12701}, {388, 22791}, {390, 6938}, {392, 3305}, {405, 3890}, {474, 14923}, {495, 1532}, {497, 952}, {498, 45081}, {514, 24352}, {515, 4342}, {519, 3452}, {527, 30331}, {551, 6692}, {855, 13097}, {936, 3680}, {943, 1392}, {944, 6223}, {946, 9654}, {950, 37727}, {956, 3219}, {957, 1255}, {958, 3884}, {962, 18990}, {997, 3880}, {1001, 3898}, {1056, 6925}, {1125, 37828}, {1168, 24864}, {1191, 15955}, {1317, 3058}, {1329, 49169}, {1376, 2802}, {1389, 5703}, {1476, 37403}, {1479, 10944}, {1483, 3486}, {1537, 12115}, {1656, 10039}, {1698, 37829}, {1737, 59503}, {1807, 3478}, {1837, 12645}, {1870, 37391}, {2094, 62863}, {2096, 4313}, {2264, 22147}, {2320, 56040}, {2346, 14497}, {2810, 3242}, {3085, 5901}, {3086, 5690}, {3090, 18220}, {3243, 63972}, {3244, 12635}, {3251, 48329}, {3297, 35641}, {3298, 35642}, {3445, 24046}, {3474, 28212}, {3485, 37406}, {3487, 5734}, {3534, 21578}, {3555, 11682}, {3582, 38066}, {3586, 28204}, {3616, 13747}, {3617, 47743}, {3622, 6921}, {3623, 6872}, {3648, 15174}, {3654, 3911}, {3655, 4304}, {3679, 20196}, {3698, 16863}, {3711, 4677}, {3816, 5854}, {3851, 10827}, {3878, 3927}, {3885, 5687}, {3891, 62401}, {3895, 5440}, {3913, 30144}, {3915, 52408}, {3920, 37366}, {3961, 13541}, {3968, 61158}, {4018, 62832}, {4186, 6198}, {4268, 16884}, {4271, 16777}, {4293, 28174}, {4294, 34773}, {4301, 57282}, {4305, 10386}, {4308, 6361}, {4314, 13607}, {4315, 28194}, {4323, 16137}, {4346, 56049}, {4383, 49494}, {4413, 6797}, {4847, 64734}, {4853, 5044}, {4857, 37707}, {4867, 31142}, {4879, 29126}, {5055, 23708}, {5176, 17556}, {5180, 34605}, {5218, 38028}, {5219, 51709}, {5229, 40273}, {5274, 12019}, {5434, 18541}, {5435, 50810}, {5438, 64202}, {5559, 18395}, {5587, 7743}, {5657, 15325}, {5726, 38021}, {5727, 18527}, {5779, 6264}, {5780, 9581}, {5794, 49600}, {5818, 10593}, {5836, 16408}, {5844, 18391}, {5881, 51785}, {5882, 12575}, {5886, 31397}, {6001, 30283}, {6224, 34611}, {6265, 41553}, {6326, 51767}, {6610, 8147}, {6700, 12640}, {6736, 64768}, {6834, 10595}, {6838, 63282}, {6914, 64742}, {6923, 64138}, {6967, 12245}, {6968, 38038}, {7052, 54435}, {7283, 64563}, {7288, 61524}, {7354, 48661}, {7682, 11374}, {7966, 64326}, {7969, 31474}, {8256, 10200}, {8257, 42819}, {8275, 63143}, {8580, 11525}, {8727, 64322}, {9538, 35998}, {9578, 9955}, {9580, 28160}, {9612, 51789}, {9613, 22793}, {9614, 18480}, {9619, 31461}, {9620, 62370}, {9623, 51780}, {9624, 51784}, {9655, 10106}, {9709, 10914}, {9780, 64201}, {9802, 49719}, {9856, 12650}, {9945, 34607}, {9956, 50443}, {9965, 63159}, {10043, 10949}, {10056, 15950}, {10057, 51517}, {10058, 18515}, {10072, 34718}, {10179, 54318}, {10385, 50824}, {10572, 18526}, {10573, 37722}, {10580, 11041}, {10582, 64732}, {10584, 34122}, {10588, 61272}, {10589, 38042}, {10590, 38034}, {10591, 18357}, {10609, 20075}, {10624, 18481}, {10702, 63770}, {10738, 10947}, {10866, 14872}, {10896, 37710}, {10915, 25681}, {10936, 63257}, {11019, 28234}, {11035, 12651}, {11108, 33895}, {11230, 31434}, {11235, 21630}, {11236, 11813}, {11237, 18393}, {11256, 18254}, {11260, 12514}, {11501, 37251}, {11502, 12331}, {12515, 41554}, {12559, 12710}, {12629, 15829}, {12648, 17757}, {12737, 15558}, {12747, 13274}, {12749, 38755}, {12758, 12773}, {12898, 46687}, {13405, 64731}, {13411, 31480}, {13606, 21398}, {13743, 16140}, {14260, 33151}, {14563, 51077}, {15175, 24302}, {15813, 25438}, {15952, 64421}, {16371, 63136}, {16417, 54286}, {16466, 61357}, {16483, 23112}, {16486, 30117}, {17054, 56804}, {17528, 34640}, {17564, 34711}, {17567, 63133}, {17614, 63130}, {17652, 52148}, {18519, 64041}, {18766, 43166}, {18976, 48680}, {20330, 30275}, {21454, 50872}, {21616, 32049}, {23135, 55432}, {23344, 49682}, {24558, 59591}, {24987, 31493}, {25417, 57664}, {25439, 56177}, {25485, 64735}, {26446, 44675}, {26910, 38512}, {28077, 36565}, {29815, 35996}, {30294, 61705}, {30827, 51362}, {31140, 50891}, {31231, 50821}, {32183, 55173}, {32554, 45635}, {32900, 41864}, {33535, 51794}, {33655, 54436}, {34040, 51654}, {34230, 49747}, {34371, 49465}, {35808, 44635}, {35809, 44636}, {37227, 64423}, {37503, 62239}, {37787, 42884}, {38314, 62773}, {39546, 61732}, {41012, 64087}, {41684, 61717}, {43135, 48805}, {47357, 60940}, {47623, 64176}, {48907, 64158}, {49557, 52524}, {50594, 50637}, {51795, 64755}, {51796, 64749}, {52541, 54319}, {52682, 60926}, {53055, 60944}, {54361, 61510}, {57284, 64767}, {61278, 61535}, {62207, 64449}, {62776, 64107}, {64530, 64538}
X(64897) = midpoint of X(i) and X(j) for these (i, j): {1, 7962}, {145, 3421}, {3476, 30305}, {6282, 7982}, {31142, 51093}, {37727, 37822}
X(64897) = reflection of X(i) in X(j) for these (i, j): (8, 3820), (40, 64659), (57, 51788), (999, 1), (3359, 1385), (3940, 5289), (5722, 63993), (5727, 18527), (6244, 37611), (7682, 13464), (8257, 42819), (12702, 35238), (18525, 18516), (36279, 999), (61535, 61278)
X(64897) = isogonal conjugate of the Cundy-Parry-Psi-transform of X(20323)
X(64897) = Cundy-Parry-Phi-transform of X(20323)
X(64897) = crosssum of X(35768) and X(35769)
X(64897) = pole of the line {1, 26742} with respect to the Feuerbach circumhyperbola
X(64897) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 3057, 3), (35, 34880, 3), (55, 22767, 3), (1319, 5119, 3), (3576, 13528, 3), (5048, 5919, 1), (6767, 10247, 1), (10222, 31792, 1), (10267, 40255, 3), (10966, 11508, 3), (33176, 37080, 1), (37568, 37618, 3), (37605, 59316, 3)
See Tran Viet Hung, Ivan Pavlov and César Lozada, Tran Viet Hung problem 30/07/2024. (Aug 21, 2024)
X(64898) lies on these lines: {3, 527}, {999, 64017}, {7960, 51773}, {38902, 60998}
See Tran Viet Hung, Ivan Pavlov and César Lozada, Tran Viet Hung problem 30/07/2024. (Aug 21, 2024)
X(64899) lies on these lines: {944, 15726}, {991, 995}, {3295, 48921}
Contributed by Clark Kimberling and Peter Moses, August 21, 2024
Suppose X = x:y:z is a point on the infinity line. Then the following points are also on the infinity line.
2 x sin A - y sin B – z sin C : : 2 x tan A - y tan B – z tan C : : 2x sec A - y sec B – z sec C : :
The appearance of (i,j) in the following list means that if X(i) = x:y:z, then X(j) = 2 x sin A - y sin B – z sin C : :
(30,64900), (512,64901), (513,4785), (514,513), (515,64902), (516,64903), (517,64904), (518,527), (519,4715), (520,64905), (522,4762), (523,28840), (524,28558), (527,28534), (528,64906), (529,64907), (536,519), (537,545), (545,64908), (698,64909), (700,716), (712,64910), (714,538), (716,64911), (726,536), (740,524), (742,752), (744,754), (746,33911), (758,64912), (812,64913), (824,64914), (900,812)
The appearance of (i,j) in the following list means that if X(i) = x:y:z, then X(j) = 2 x tan A - y tan B – z tan C : :
(30, 64915), (511,64781), (512, 64916), (513, 64917), (518,64780), (519, 64918), (520,23878), (521,4762), (523, 64919), (524,30), (525,523), (526, 64920), (538, 64921), (539, 64922), (542, 64923), (543, 64924), (690, 64925), (698, 64926), (732, 64927), (912, 64928)
The appearance of (i,j) in the following list means that if X(i) = x:y:z, then X(j) = 2 x secA - y sec B – z sec C : :
(514,64929), (515,64930), (517,64931), (518,64932), (519,64933), (521,522), (525,64934), (527,64780), (758,30), (912,519)
X(64900) lies on these lines: {2, 2173}, {3, 25362}, {27, 39704}, {30, 511}, {376, 24316}, {381, 24315}, {440, 16590}, {547, 25341}, {549, 24317}, {1762, 31153}, {3151, 17488}, {4644, 33094}, {6661, 25364}, {6678, 62682}, {7426, 25344}, {10989, 24322}, {14953, 53380}, {15670, 25359}, {24321, 31133}, {24452, 37098}, {24714, 24716}, {25343, 44210}, {25360, 44212}, {25363, 44217}, {31048, 61710}
X(64900) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64900) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64900) = {X(24682),X(24683)}-harmonic conjugate of X(24684)
X(64901) lies on these lines: {2, 798}, {30, 511}, {3572, 17378}, {3768, 20295}, {4063, 24354}, {4380, 27469}, {4428, 23400}, {4481, 45671}, {4664, 21834}, {4832, 52602}, {4979, 29771}, {6586, 45658}, {7199, 31148}, {17330, 27854}, {18071, 48114}, {20979, 31147}, {20981, 46922}, {21191, 45313}, {24506, 26248}, {24698, 24716}
X(64901) = isogonal conjugate of X(59030)
X(64901) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64901) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64901) = {X(798),X(17217)}-harmonic conjugate of X(42327)
X(64902) lies on these lines: {2, 2182}, {30, 511}, {222, 4654}, {1012, 24328}, {1456, 63054}, {1763, 3929}, {1836, 4644}, {3220, 16370}, {3838, 4670}, {4640, 4643}, {4667, 39542}, {4708, 24684}, {5123, 24324}, {5325, 41883}, {36850, 41846}, {44447, 64015}
X(64902) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64902) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64903) lies on these lines: {2, 910}, {7, 1100}, {9, 17239}, {20, 42050}, {30, 511}, {144, 319}, {390, 50130}, {553, 34855}, {673, 51922}, {1155, 24712}, {1530, 10710}, {2201, 50063}, {3543, 42048}, {3775, 51090}, {3823, 24358}, {3834, 24699}, {4312, 4649}, {4419, 30332}, {4640, 24694}, {4643, 5698}, {4654, 58320}, {4667, 30424}, {4670, 5880}, {4690, 5220}, {4708, 15254}, {5011, 10708}, {5087, 24685}, {5195, 6603}, {5695, 60905}, {5829, 18650}, {6172, 17281}, {6173, 16503}, {9580, 24352}, {16590, 61023}, {17264, 20533}, {17294, 50995}, {17346, 60927}, {17392, 64702}, {24608, 59374}, {38093, 62682}, {39704, 55937}, {41312, 47357}, {48805, 50836}, {48821, 51100}, {49726, 51144}, {49747, 64695}, {50076, 50996}, {50082, 51053}, {50092, 51151}, {50097, 51191}, {50101, 60984}, {50114, 51150}, {50124, 51002}, {50127, 50997}
X(64903) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64903) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1653, 416}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64904) lies on these lines: {2, 2183}, {30, 511}, {42, 3000}, {553, 1427}, {1458, 63054}, {3741, 4643}, {4271, 30097}, {4670, 6685}, {4748, 31241}, {17067, 52901}, {17135, 64015}, {17781, 18750}, {20470, 40726}, {24316, 63389}, {31164, 41846}
X(64904) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}, {52723, 61610}
X(64904) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {234, 2091}, {414, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64905) lies on these lines: {2, 656}, {10, 45660}, {30, 511}, {1459, 44550}, {3679, 4086}, {3737, 45671}, {4529, 17281}, {4685, 57207}, {4913, 50349}, {7629, 45701}, {7655, 45320}, {14429, 57066}, {15419, 63110}, {16370, 23189}, {16590, 57046}, {17271, 18160}, {17378, 57214}, {17496, 53532}, {17549, 23226}, {20315, 45683}, {20316, 45664}, {20954, 36038}, {21102, 44553}, {21172, 44551}, {21187, 44409}, {24718, 26013}, {28958, 47785}, {31148, 47844}, {31149, 50331}, {31150, 46385}, {45315, 47842}, {45328, 50350}, {45667, 51648}, {50338, 57091}, {60074, 60079}
X(64905) = crossdifference of every pair of points on line {6, 42669}
X(64905) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64905) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64905) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7253, 45686}, {2, 45686, 8062}, {656, 7253, 8062}, {656, 45686, 2}
X(64906) lies on these lines: {2, 2246}, {7, 63052}, {9, 17228}, {30, 511}, {190, 4873}, {335, 50133}, {673, 2364}, {903, 16834}, {1086, 4667}, {2161, 61004}, {2550, 24452}, {4366, 17254}, {4370, 29594}, {4432, 4643}, {4440, 50129}, {4644, 24715}, {4670, 25351}, {4758, 40480}, {4795, 5880}, {5698, 50316}, {6172, 17488}, {6174, 24318}, {9318, 10707}, {10031, 60692}, {16503, 27950}, {16590, 16593}, {17251, 24358}, {17346, 17755}, {17392, 36409}, {17487, 50079}, {24036, 55162}, {24333, 31140}, {25342, 45310}, {31349, 50074}, {32043, 40878}, {41845, 60984}, {41846, 61011}, {60999, 62682}
X(64906) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64906) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64907) lies on these lines: {2, 24700}, {30, 511}, {4363, 34739}, {4644, 33095}, {4654, 39704}, {5325, 16590}, {11113, 25371}, {17579, 24336}, {23512, 28609}, {24319, 31157}, {24334, 31141}, {24441, 34620}
X(64907) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64907) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {234, 2091}, {845, 2091}, {1035, 2091}, {1038, 414}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64908) lies on these lines: {1, 903}, {2, 4432}, {8, 17487}, {10, 4370}, {30, 511}, {100, 4945}, {190, 3679}, {214, 19636}, {244, 42026}, {551, 1086}, {673, 50836}, {678, 4080}, {874, 43270}, {1125, 62682}, {1266, 49700}, {1644, 30566}, {2161, 60079}, {3058, 42053}, {3241, 4440}, {3656, 24833}, {3685, 31151}, {3722, 44006}, {3791, 42058}, {3821, 48810}, {3828, 4422}, {3842, 49725}, {3923, 48829}, {4085, 50115}, {4096, 34612}, {4437, 50781}, {4480, 49701}, {4535, 5695}, {4642, 17537}, {4655, 50316}, {4660, 17281}, {4672, 50287}, {4677, 24821}, {4693, 17310}, {4702, 24692}, {4709, 50082}, {4732, 17330}, {4745, 36522}, {4868, 39974}, {4974, 62392}, {4997, 9324}, {6154, 21093}, {9458, 31171}, {16561, 54286}, {16593, 51100}, {17274, 32941}, {17333, 49457}, {17378, 49471}, {17382, 49482}, {17399, 25055}, {17738, 50126}, {17755, 50096}, {19875, 41138}, {19883, 50290}, {24248, 49473}, {24325, 49746}, {24331, 31139}, {24441, 36480}, {24710, 31172}, {24813, 50811}, {24817, 50810}, {24828, 50796}, {24841, 51093}, {24844, 50798}, {30332, 36588}, {31134, 32929}, {31349, 50086}, {34611, 42055}, {36237, 50890}, {36525, 51103}, {38098, 50312}, {38314, 50293}, {41801, 60718}, {41842, 50303}, {42054, 49719}, {43677, 54564}, {49456, 50286}, {49459, 50074}, {49469, 50132}, {49472, 50101}, {49485, 50081}, {49489, 64016}, {49684, 50108}, {49720, 50094}, {50080, 50300}, {50091, 53600}, {50111, 50301}, {50295, 53620}, {51071, 53534}
X(64908) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64908) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64908) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {903, 43287, 39704}, {4432, 24715, 25351}
X(64909) lies on these lines: {2, 256}, {30, 511}, {75, 50613}, {190, 3507}, {314, 3551}, {386, 4672}, {1045, 42043}, {2092, 50115}, {3663, 50611}, {3729, 50576}, {3736, 4234}, {3821, 50609}, {3923, 50591}, {4096, 50093}, {4655, 10449}, {8845, 13586}, {17333, 42054}, {18830, 19567}, {20018, 24695}, {21746, 64545}, {24248, 50636}, {24325, 50616}, {24451, 46032}, {24688, 50605}, {27958, 58861}, {32921, 50635}, {32935, 50581}, {32941, 50612}, {39780, 42057}, {42027, 49537}, {42053, 50116}, {42055, 50128}, {49472, 50629}, {49473, 50615}, {49489, 50600}, {49598, 50618}, {50302, 50614}, {50303, 51678}, {50608, 63997}, {50627, 58399}
X(64909) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64909) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {234, 234}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64910) lies on these lines: {2, 2228}, {30, 511}, {42, 3758}, {751, 32931}, {3679, 4494}, {3741, 17237}, {4479, 17149}, {4741, 17135}, {16590, 42056}, {16606, 39974}, {22316, 64709}, {23633, 30939}
X(64910) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64910) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64911) lies on these lines: {2, 2230}, {30, 511}, {350, 17378}, {871, 39704}, {1575, 17330}, {17346, 41142}, {17392, 30982}, {17759, 50074}, {17790, 50301}, {20530, 49738}, {24338, 49746}, {25382, 49725}, {35043, 40875}, {49740, 57037}, {50297, 57039}
X(64911) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64911) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}, {22859, 5037}
X(64912) lies on these lines: {2, 2245}, {6, 24296}, {30, 511}, {484, 24324}, {625, 50773}, {1284, 41312}, {1836, 4643}, {3286, 16370}, {3578, 42029}, {3663, 63359}, {3838, 4708}, {4363, 50160}, {4364, 39542}, {4419, 50184}, {4640, 4670}, {4644, 17018}, {4795, 49749}, {4887, 52901}, {5184, 24345}, {10022, 50163}, {11813, 25367}, {14636, 34647}, {15985, 17351}, {16383, 33844}, {17251, 17532}, {17276, 28369}, {17336, 30056}, {17781, 49724}, {21077, 48924}, {24441, 50179}, {25094, 37631}, {49721, 50159}, {49726, 50162}, {49741, 50173}, {49747, 50178}, {50259, 57006}
X(64912) = X(24296)-line conjugate of X(6)
X(64912) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64912) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {416, 234}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64913) lies on these lines: {2, 659}, {30, 511}, {190, 23354}, {549, 44805}, {551, 1960}, {553, 53539}, {650, 45323}, {665, 45657}, {667, 48406}, {693, 48234}, {876, 43262}, {903, 3226}, {1086, 3248}, {1491, 31150}, {1635, 36848}, {2526, 48190}, {2530, 45671}, {3058, 53523}, {3241, 21343}, {3679, 21385}, {3716, 45342}, {3768, 4370}, {3777, 44550}, {3828, 53571}, {3835, 45673}, {3928, 53403}, {4010, 48032}, {4040, 4992}, {4122, 48102}, {4380, 50359}, {4401, 23815}, {4448, 4728}, {4491, 53271}, {4724, 4806}, {4782, 24720}, {4800, 21297}, {4809, 6545}, {4810, 53343}, {4824, 48020}, {4830, 9508}, {4833, 17217}, {4874, 45320}, {4925, 49732}, {4927, 26275}, {4928, 45666}, {4948, 17494}, {4951, 48557}, {5434, 30725}, {6050, 44561}, {7212, 53528}, {7427, 53302}, {8689, 59522}, {10707, 13266}, {13246, 45668}, {14425, 30792}, {17487, 39354}, {18004, 48055}, {18160, 23794}, {21051, 31149}, {21146, 31148}, {21301, 48401}, {23789, 50512}, {24093, 34606}, {24097, 34605}, {24715, 24722}, {25380, 45691}, {25569, 38314}, {28602, 47884}, {31131, 47892}, {31291, 48323}, {39704, 59487}, {39982, 55261}, {39996, 52151}, {44429, 47829}, {44433, 47871}, {45315, 48050}, {45316, 48331}, {45337, 53580}, {45344, 48056}, {45664, 59521}, {45667, 48330}, {45669, 50348}, {45676, 48000}, {47652, 50340}, {47687, 48103}, {47689, 48140}, {47694, 47869}, {47697, 48120}, {47774, 47969}, {47776, 48244}, {47784, 48163}, {47788, 48247}, {47802, 48214}, {47803, 48198}, {47804, 48184}, {47805, 47833}, {47808, 47885}, {47811, 48180}, {47812, 48233}, {47822, 48572}, {47825, 48160}, {47827, 48164}, {47834, 48251}, {47928, 47940}, {47932, 50341}, {47933, 47946}, {47936, 48265}, {47964, 47985}, {47974, 48024}, {47977, 48267}, {48002, 48023}, {48008, 50335}, {48009, 48028}, {48010, 48593}, {48014, 49295}, {48030, 48042}, {48043, 48625}, {48063, 48090}, {48068, 49286}, {48072, 48394}, {48111, 48273}, {48150, 48279}, {48238, 48578}, {48289, 48335}, {48296, 51071}, {48324, 50760}, {48405, 49285}, {49301, 50342}, {50343, 58374}, {53572, 57605}
X(64913) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64913) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64913) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 659, 45314}, {2, 3837, 45340}, {2, 46403, 48167}, {2, 48167, 3837}, {659, 46403, 3837}, {659, 48167, 2}, {693, 50358, 48248}, {1635, 36848, 48229}, {3837, 45314, 2}, {4448, 4728, 48183}, {4724, 24719, 4806}, {4948, 50328, 48157}, {17494, 48157, 4948}, {44429, 48226, 47829}, {45314, 48167, 45340}, {47804, 48184, 48206}, {47805, 48170, 47833}, {47884, 48182, 28602}, {48164, 48240, 47827}
X(64914) lies on these lines: {2, 1491}, {30, 511}, {42, 4724}, {597, 36233}, {599, 35964}, {649, 50341}, {650, 45314}, {659, 4948}, {667, 45671}, {693, 48167}, {1577, 31149}, {1635, 48225}, {2254, 31148}, {2526, 3837}, {3241, 48298}, {3716, 45315}, {3741, 24720}, {3777, 17166}, {3835, 45342}, {4010, 31147}, {4122, 48077}, {4367, 44550}, {4369, 45328}, {4379, 36848}, {4380, 50339}, {4448, 4893}, {4728, 48189}, {4763, 48213}, {4776, 4800}, {4782, 4913}, {4784, 50356}, {4789, 31131}, {4804, 24719}, {4806, 48027}, {4809, 47886}, {4885, 45340}, {4927, 48163}, {4928, 48202}, {4951, 47870}, {4963, 47941}, {4992, 48092}, {7192, 50359}, {9508, 45313}, {14349, 48305}, {17072, 45332}, {17135, 48143}, {17494, 50358}, {18004, 48039}, {18821, 43099}, {18822, 43096}, {21051, 45664}, {21146, 31136}, {21212, 45668}, {21260, 45324}, {21301, 48392}, {24574, 47775}, {25380, 45663}, {25666, 45337}, {26275, 47784}, {28602, 47766}, {31286, 45691}, {39974, 55261}, {44429, 47833}, {44433, 47782}, {45341, 48290}, {45666, 47778}, {45673, 45676}, {45746, 50340}, {46403, 47869}, {47123, 48007}, {47131, 47960}, {47688, 47925}, {47691, 47968}, {47696, 48103}, {47698, 48083}, {47705, 47931}, {47760, 48183}, {47761, 48229}, {47762, 48244}, {47774, 47945}, {47788, 48182}, {47797, 47877}, {47802, 48206}, {47803, 47829}, {47804, 47827}, {47805, 47825}, {47810, 47822}, {47811, 48176}, {47812, 48238}, {47813, 47823}, {47814, 47872}, {47816, 47875}, {47818, 47888}, {47819, 47889}, {47820, 47893}, {47828, 48578}, {47834, 48164}, {47880, 48211}, {47881, 48200}, {47884, 48247}, {47885, 48250}, {47905, 48264}, {47909, 47946}, {47912, 48265}, {47928, 47969}, {47934, 48032}, {47940, 48080}, {47943, 53558}, {47948, 48267}, {47953, 47993}, {47956, 59590}, {47958, 48349}, {47964, 48001}, {47973, 48326}, {47982, 49295}, {47985, 48043}, {47992, 48028}, {47998, 53523}, {48002, 48029}, {48005, 59672}, {48015, 58375}, {48021, 48583}, {48042, 48394}, {48050, 48090}, {48066, 52601}, {48086, 48273}, {48098, 49292}, {48108, 58374}, {48122, 48279}, {48131, 48301}, {48158, 53361}, {48162, 48549}, {48194, 48562}, {48288, 48324}, {48289, 48327}, {48291, 48335}, {48351, 50449}, {48405, 50333}, {48422, 58372}
X(64914) = isogonal conjugate of X(59033)
X(64914) = crossdifference of every pair of points on line {6, 8624}
X(64914) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64914) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}, {61932, 38403}
X(64914) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1491, 45323}, {2, 47694, 48234}, {2, 48157, 1491}, {2, 48234, 4874}, {659, 4948, 31150}, {1491, 47694, 4874}, {1491, 48234, 2}, {2526, 7662, 3837}, {4804, 48020, 24719}, {4874, 45323, 2}, {31150, 47975, 4948}, {44429, 47833, 48198}, {44429, 48237, 47833}, {47694, 48157, 2}, {47697, 47975, 659}, {47802, 48220, 48206}, {47803, 48193, 47829}, {47804, 47827, 48214}, {47804, 48175, 47827}, {47805, 47825, 48226}, {47827, 48251, 47804}, {47833, 48160, 44429}, {47834, 48164, 48184}, {47945, 53343, 48024}, {48039, 49286, 18004}, {48157, 48234, 45323}, {48160, 48237, 48198}, {48175, 48251, 48214}
X(64915) lies on these lines: {2, 1990}, {4, 42831}, {5, 42830}, {30, 511}, {230, 48540}, {297, 1494}, {401, 39358}, {441, 3163}, {546, 42853}, {648, 40884}, {1316, 15471}, {1495, 16312}, {3524, 41204}, {3545, 6530}, {3631, 42459}, {5066, 18552}, {5858, 40665}, {5859, 40666}, {6748, 40896}, {7780, 33591}, {7789, 19221}, {9308, 34828}, {9766, 45279}, {11184, 30775}, {13567, 34288}, {14023, 34726}, {14836, 23292}, {15448, 16334}, {15526, 18487}, {16303, 47296}, {23583, 44346}, {32459, 40879}, {34573, 59649}, {34608, 63951}, {34621, 63933}, {35266, 46869}, {35937, 57822}, {37765, 44576}, {39352, 40885}, {40477, 44335}, {40888, 59634}, {40996, 45312}, {41005, 58408}, {44569, 46808}, {47097, 47172}, {48539, 63440}
X(64915) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64915) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64915) = {X(15526),X(18487)}-harmonic conjugate of X(44216)
X(64916) lies on these lines: {2, 2489}, {30, 511}, {2485, 44560}, {3267, 31174}, {6131, 8651}, {6563, 14273}, {8644, 63250}, {9822, 54273}, {9909, 21006}, {18313, 47617}, {30476, 35522}, {36900, 47133}, {41300, 55974}, {50548, 57087}
X(64916) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64916) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64917) lies on these lines: {2, 7649}, {30, 511}, {381, 16231}, {4057, 9909}, {6332, 45686}, {8062, 45683}, {14070, 39225}, {21187, 44551}, {30775, 59969}, {39534, 44928}, {44409, 45341}, {44442, 44444}, {45664, 52355}
X(64917) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64917) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64917) = {X(7649),X(20294)}-harmonic conjugate of X(20315)
X(64918) lies on these lines: {2, 3007}, {10, 25362}, {19, 24608}, {30, 511}, {281, 30844}, {306, 36889}, {551, 24315}, {1266, 18735}, {1826, 31048}, {1839, 40903}, {3187, 18661}, {3679, 24316}, {3828, 24317}, {7289, 50101}, {7291, 41803}, {9909, 23854}, {16560, 41140}, {18161, 50116}, {24682, 50796}, {24683, 50811}, {24684, 50828}, {48381, 53380}
X(64918) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64918) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {234, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64919) lies on these lines: {2, 2501}, {30, 511}, {381, 39533}, {647, 44552}, {669, 9909}, {850, 44554}, {2394, 41895}, {2485, 63830}, {2489, 44817}, {3265, 12077}, {3267, 18314}, {5466, 30775}, {5664, 11147}, {5915, 48540}, {5926, 14070}, {6334, 37350}, {6562, 50548}, {6587, 44560}, {7426, 47627}, {7631, 7663}, {8598, 44427}, {9209, 9979}, {10154, 45317}, {10279, 18281}, {14223, 60103}, {14273, 27088}, {14316, 45335}, {14618, 33228}, {14977, 36889}, {18311, 45681}, {18324, 46609}, {20577, 57069}, {24978, 61656}, {30451, 63094}, {30476, 44568}, {31176, 34609}, {32204, 34351}, {33294, 36900}, {33509, 50146}, {35297, 57065}, {39228, 53265}, {40727, 55271}, {41078, 52149}, {43665, 60095}, {43673, 60150}, {44010, 59927}, {44442, 44445}, {44565, 59652}, {46040, 54750}, {46995, 47216}, {50642, 54267}, {52459, 54659}, {54260, 56370}
X(64919) = crossdifference of every pair of points on line {6, 44200}
X(64919) = barycentric product X(i)*X(j) for these {i,j}: {554, 1653}, {1034, 2091}, {1039, 1709}, {1260, 2091}, {1265, 2091}, {46406, 62210}
X(64919) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64919) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2489, 52584, 44817}, {33294, 41298, 47122}
X(64920) lies on these lines: {2, 44817}, {30, 511}, {381, 17994}, {1989, 14592}, {2433, 46808}, {2492, 18312}, {3143, 8754}, {6334, 14273}, {8552, 35522}, {24978, 47138}, {43673, 54810}, {44212, 47206}
X(64920) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64920) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64920) = {X(35522),X(62307)}-harmonic conjugate of X(8552)
X(64921) lies on these lines: {30, 511}, {305, 3260}, {1196, 3003}, {3545, 44145}, {5201, 9909}, {5972, 16334}, {9813, 11286}, {10510, 47284}, {11064, 16312}, {11539, 45847}, {16303, 32223}, {16326, 47582}, {18114, 42830}, {18860, 36207}, {33228, 62237}, {41583, 47322}, {41626, 52144}, {47285, 51372}, {48540, 58849}, {53274, 58267}
X(64921) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}, {32513, 62352}
X(64921) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {234, 2091}, {414, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1652, 234}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64922) lies on these lines: {2, 231}, {30, 511}, {343, 14836}, {1989, 60524}, {3589, 10220}, {5858, 40712}, {5859, 40711}, {6128, 51481}, {6515, 34288}, {7525, 63927}, {7764, 10414}, {7779, 48540}, {7799, 44375}, {7813, 40879}, {7855, 19221}, {9766, 45918}, {19570, 44363}, {36889, 57875}, {46184, 61656}, {46998, 47594}, {52952, 56021}
X(64922) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64922) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}, {7105, 32470}, {30180, 5035}
X(64923) lies on these lines: {2, 648}, {6, 41145}, {26, 63927}, {30, 511}, {69, 51389}, {110, 46869}, {114, 36207}, {115, 48540}, {125, 2452}, {287, 1992}, {297, 18487}, {338, 6128}, {340, 40885}, {599, 15595}, {620, 40879}, {626, 19221}, {1272, 4558}, {1316, 5095}, {1561, 10752}, {1651, 47204}, {1972, 47383}, {1990, 40996}, {1993, 50433}, {2407, 35520}, {2453, 64104}, {2482, 40866}, {2930, 37921}, {3018, 62551}, {3284, 40884}, {3630, 42459}, {3631, 59649}, {5642, 46459}, {5858, 41889}, {6148, 14570}, {6330, 60874}, {6389, 56013}, {6722, 18122}, {7387, 63934}, {7764, 18281}, {7779, 62298}, {7780, 34351}, {7799, 40888}, {7809, 44363}, {9410, 39062}, {9740, 38918}, {9770, 30775}, {9909, 63951}, {11007, 32257}, {11050, 16075}, {11160, 40867}, {11178, 42830}, {12094, 15048}, {14070, 63952}, {14581, 44650}, {14836, 54347}, {15303, 50146}, {15351, 46270}, {15860, 52289}, {16077, 44653}, {16176, 47284}, {18552, 25561}, {23582, 31621}, {32224, 41583}, {32244, 36163}, {32300, 57588}, {32836, 53021}, {34288, 63129}, {34609, 60474}, {34725, 63932}, {34726, 63936}, {36426, 36430}, {37765, 44579}, {38738, 48539}, {38791, 47616}, {40506, 40512}, {40870, 44367}, {41092, 49932}, {41132, 49841}, {42831, 54131}, {44649, 52951}, {47285, 51431}, {49840, 49842}, {49931, 49971}, {50187, 51228}, {52149, 60524}, {54395, 62639}
X(64923) = isotomic conjugate of X(53201)
X(64923) = isotomic conjugate of the polar conjugate of X(47204)
X(64923) = trilinear pole of line {1651, 42733}
X(64923) = crossdifference of every pair of points on line {6, 9409}
X(64923) = X(41145)-line conjugate of X(6)
X(64923) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64923) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64923) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 648, 3163}, {2, 1494, 15526}, {2, 3163, 23583}, {2, 23583, 40477}, {2, 39352, 1494}, {2, 39358, 648}, {648, 1494, 2}, {648, 15526, 23583}, {648, 39352, 15526}, {1494, 39358, 3163}, {3163, 15526, 2}, {15526, 23583, 40484}, {18487, 45312, 297}, {39352, 39358, 2}, {40477, 40484, 2}
X(64924) lies on these lines: {30, 511}, {1007, 9214}, {2453, 15303}, {2482, 36207}, {3018, 37637}, {5972, 50146}, {6055, 48540}, {6723, 50147}, {7665, 37667}, {7687, 16279}, {16312, 35266}, {23055, 47200}, {32223, 50150}, {32257, 36194}, {32300, 34094}, {34319, 47284}, {41720, 51431}, {45311, 50149}
X(64924) = barycentric product X(i)*X(j) for these {i,j}: {234, 554}, {1034, 2091}, {1260, 2091}, {1265, 2091}, {33428, 55327}
X(64924) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64925) lies on these lines: {2, 14273}, {30, 511}, {1637, 14977}, {6334, 46067}, {7417, 36898}, {9909, 53272}, {10554, 14698}, {11616, 14070}, {13232, 45680}, {14694, 16230}, {39905, 53378}, {44427, 46069}, {45687, 55271}
X(64925) = barycentric product X(i)*X(j) for these {i,j}: {554, 1709}, {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64925) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64926) lies on these lines: {2, 59566}, {3, 38294}, {5, 62237}, {30, 511}, {230, 59649}, {385, 9909}, {1990, 44347}, {7779, 44442}, {7840, 34609}, {8859, 42453}, {10154, 22329}, {15912, 33591}, {15993, 42459}, {18324, 44375}, {22151, 47285}, {32225, 47143}, {34478, 44386}, {34608, 44367}
X(64926) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64926) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {234, 845}, {416, 234}, {845, 2091}, {899, 29692}, {1035, 2091}, {1119, 2091}, {1617, 1652}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64927) lies on these lines: {2, 3186}, {30, 511}, {376, 30262}, {381, 43976}, {648, 6660}, {800, 5306}, {1316, 11416}, {5999, 38294}, {6033, 44363}, {7788, 14615}, {9142, 44376}, {9307, 9909}, {11007, 64724}, {11574, 59566}, {12042, 44375}, {15526, 21536}, {15980, 62237}, {20975, 63736}, {22151, 51430}, {22515, 53507}, {23164, 35278}, {23583, 44347}, {34608, 63093}, {35002, 40888}, {37906, 44102}, {44388, 61575}, {50645, 59569}
X(64927) =barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}, {46196, 53646}
X(64927) =barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {234, 2091}, {414, 2091}, {416, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1709, 234}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64928) lies on these lines: {2, 3262}, {30, 511}, {1319, 24324}, {1445, 4361}, {3175, 4053}, {3870, 17318}, {3872, 4363}, {4364, 31397}, {4419, 12648}, {4643, 12647}, {4665, 4847}, {5123, 25367}, {5839, 41563}, {7263, 60992}, {8667, 57031}, {9766, 35552}, {10056, 41312}, {17151, 60968}, {17262, 60966}, {39765, 50106}
X(64928) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64928) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1164, 24682}, {1847, 2091}, {2057, 2091}, {2091, 2091}, {17941, 45587}, {49066, 6547}
X(64929) lies on these lines: {2, 17924}, {30, 511}, {381, 39536}, {905, 36038}, {3679, 58333}, {4885, 63825}, {11113, 18344}, {17896, 44550}, {20317, 60074}, {24006, 52599}, {28454, 39227}, {31150, 56320}, {45664, 57055}
X(64929) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64929) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}, {13305, 35039}, {42784, 40613}
X(64930) lies on these lines: {2, 280}, {30, 511}, {376, 18283}, {942, 45131}, {1465, 38462}, {1785, 2968}, {1897, 10538}, {2321, 42459}, {3175, 3191}, {3811, 64054}, {7743, 31680}, {8144, 22836}, {9909, 39600}, {17355, 59649}, {18505, 24682}, {22837, 32047}, {31793, 42456}, {34050, 56939}, {34936, 44442}, {37045, 52954}, {37591, 42051}, {51359, 63770}, {52977, 53642}
X(64930) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64930) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64930) = {X(1897),X(10538)}-harmonic conjugate of X(46974)
X(64931) lies on these lines: {2, 1074}, {30, 511}, {243, 11111}, {376, 45766}, {551, 51616}, {1125, 44901}, {1324, 9909}, {3679, 56825}, {4292, 45131}, {8808, 52121}, {14070, 54090}, {16869, 56862}, {16870, 47040}, {17355, 42459}, {22836, 64054}, {22837, 64053}, {23710, 37043}, {34609, 49554}, {34647, 56863}, {44442, 60448}, {49636, 62330}, {50366, 51889}
X(64931) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64931) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64932) lies on these lines: {1, 45281}, {2, 33}, {10, 64054}, {30, 511}, {197, 4421}, {220, 17281}, {376, 36984}, {475, 9643}, {547, 61518}, {1062, 58403}, {1125, 8144}, {3241, 4318}, {3244, 64053}, {3543, 52848}, {3635, 32047}, {3679, 36985}, {3717, 54440}, {3829, 23304}, {3913, 34724}, {5695, 6737}, {6604, 22464}, {7387, 8715}, {8666, 12085}, {8756, 37009}, {9644, 34120}, {9645, 25440}, {10572, 15076}, {11194, 54992}, {11235, 34609}, {12513, 34723}, {15951, 24391}, {16548, 18596}, {17382, 21258}, {23335, 24387}, {34607, 34608}, {34619, 34621}, {34620, 34622}, {34639, 34642}, {34640, 34643}, {34654, 34658}, {34655, 34659}, {34671, 34675}, {34672, 34676}, {34687, 34691}, {34688, 34692}, {34700, 34713}, {34704, 34721}, {34705, 34722}, {34706, 34725}, {34707, 34726}, {34708, 34727}, {34709, 34728}, {34710, 34729}, {34711, 34730}, {34823, 56876}, {36844, 44442}, {36907, 60079}, {37045, 52949}, {45275, 48829}
X(64932) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64932) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {234, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64932) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {33, 34822, 58402}, {33, 52365, 34822}, {4421, 34702, 9909}, {9909, 34703, 4421}
X(64933) lies on these lines: {2, 38462}, {30, 511}, {78, 55917}, {3679, 24430}, {5044, 44040}, {8144, 30144}, {9371, 50104}, {10072, 50103}, {11240, 50102}, {13369, 45131}, {35652, 47040}, {36846, 64053}
X(64933) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64933) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {234, 2091}, {414, 2091}, {416, 2091}, {845, 2091}, {1035, 2091}, {1038, 234}, {1119, 2091}, {1616, 414}, {1847, 2091}, {2057, 2091}, {2091, 2091}, {63871, 234}
X(64934) lies on these lines: {1, 4804}, {2, 1577}, {10, 4913}, {30, 511}, {381, 39212}, {650, 4791}, {661, 47683}, {667, 48234}, {693, 3960}, {905, 4823}, {1019, 31148}, {1022, 55953}, {1491, 31149}, {1734, 50764}, {2254, 47724}, {2530, 48167}, {3175, 57068}, {3578, 53045}, {3679, 4041}, {3716, 48284}, {3737, 45686}, {3762, 17494}, {4010, 48288}, {4024, 47682}, {4036, 45660}, {4040, 48264}, {4122, 50351}, {4129, 45315}, {4367, 48393}, {4378, 48120}, {4382, 27469}, {4391, 31150}, {4444, 60079}, {4449, 50760}, {4467, 4707}, {4654, 51664}, {4705, 4948}, {4730, 4774}, {4761, 50343}, {4820, 49280}, {4838, 47681}, {4885, 44561}, {4922, 48291}, {4931, 62634}, {4960, 48149}, {4976, 10015}, {4978, 17496}, {7178, 21192}, {8045, 45343}, {9508, 45332}, {13745, 21201}, {14349, 31147}, {14419, 47833}, {14431, 47827}, {16418, 21789}, {16892, 47680}, {17478, 48855}, {17925, 24006}, {19875, 21052}, {21120, 49724}, {21132, 49723}, {21188, 44551}, {21196, 50453}, {21222, 26824}, {21260, 45323}, {21301, 48157}, {21385, 29545}, {25666, 59737}, {29807, 47672}, {30234, 48220}, {30709, 47825}, {34914, 60043}, {37631, 48280}, {42029, 55184}, {45328, 50337}, {45667, 48295}, {45673, 59672}, {45676, 48005}, {47665, 47684}, {47687, 50171}, {47721, 50356}, {47727, 53558}, {47729, 48339}, {47774, 48612}, {48004, 48265}, {48012, 48190}, {48058, 48267}, {48065, 59590}, {48266, 49277}, {48273, 48348}, {48305, 48345}, {50155, 62635}, {50179, 62552}, {52374, 60044}
X(64934) = isogonal conjugate of X(59034)
X(64934) = crossdifference of every pair of points on line {6, 3724}
X(64934) = barycentric product X(i)*X(j) for these {i,j}: {1034, 2091}, {1260, 2091}, {1265, 2091}
X(64934) = barycentric quotient X(i)/X(j) for these {i,j}: {167, 2091}, {845, 2091}, {1035, 2091}, {1119, 2091}, {1653, 1038}, {1847, 2091}, {2057, 2091}, {2091, 2091}
X(64934) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1577, 45324}, {2, 4560, 45671}, {2, 45671, 14838}, {693, 48321, 3960}, {1577, 4560, 14838}, {1577, 45671, 2}, {4774, 50339, 4730}, {14838, 45324, 2}, {47672, 53536, 48320}, {48325, 48394, 48295}
X(64935) lise on the X-parabola of ABC (see X(12065)), the cubic K130, and these lines: {140, 523}, {476, 1291}, {850, 1232}, {1117, 15543}, {1263, 10264}, {1510, 10095}, {2395, 14579}, {2501, 6748}, {4024, 21012}, {5466, 13582}, {5671, 15475}, {8029, 62173}, {12006, 20188}, {13597, 43657}, {14367, 44809}, {15047, 38539}, {15328, 43704}, {35055, 47054}, {55199, 57123}, {55201, 57122}
X(64935) = isogonal conjugate of X(47053)
X(64935) = X(1291)-Ceva conjugate of X(1263)
X(64935) = X(526)-cross conjugate of X(523)
X(64935) = X(i)-isoconjugate of X(j) for these (i,j): {1, 47053}, {110, 1749}, {162, 50461}, {163, 37779}, {476, 51802}, {662, 11063}, {1101, 45147}, {1157, 2617}, {2914, 36061}, {4575, 37943}, {6140, 24041}, {10272, 36034}, {14570, 19306}, {32678, 40604}
X(64935) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 47053}, {115, 37779}, {125, 50461}, {136, 37943}, {244, 1749}, {523, 45147}, {1084, 11063}, {3005, 6140}, {3258, 10272}, {5664, 45790}, {16221, 2914}, {18334, 40604}, {38993, 5616}, {38994, 5612}, {60342, 8562}
X(64935) = cevapoint of X(i) and X(j) for these (i,j): {2088, 8029}, {2610, 12071}
X(64935) = crosssum of X(i) and X(j) for these (i,j): {523, 10277}, {6140, 11063}
X(64935) = trilinear pole of line {115, 55280}
X(64935) = crossdifference of every pair of points on line {5612, 5616}
X(64935) = barycentric product X(i)*X(j) for these {i,j}: {338, 1291}, {523, 13582}, {850, 14579}, {1263, 15412}, {1577, 51804}, {2394, 3471}, {3268, 11071}, {14618, 43704}, {15392, 44427}, {23870, 46072}, {23871, 46076}
X(64935) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 47053}, {115, 45147}, {512, 11063}, {523, 37779}, {526, 40604}, {647, 50461}, {661, 1749}, {1263, 14570}, {1291, 249}, {1637, 10272}, {2088, 8562}, {2394, 46751}, {2433, 3470}, {2501, 37943}, {2623, 1157}, {2624, 51802}, {3124, 6140}, {3471, 2407}, {6137, 5616}, {6138, 5612}, {8029, 10413}, {11071, 476}, {13582, 99}, {14579, 110}, {15392, 60053}, {15475, 56404}, {20578, 51267}, {20579, 51274}, {43704, 4558}, {46072, 23895}, {46076, 23896}, {47230, 2914}, {51804, 662}, {58900, 15766}, {58903, 15770}, {62551, 45790}
X(64936) lies on these lines: {6, 3200}, {140, 523}, {250, 3518}, {262, 7533}, {264, 1272}, {381, 45090}, {428, 60590}, {842, 1291}, {1263, 3613}, {2937, 3447}, {7953, 43657}
X(64936) = X(i)-isoconjugate of X(j) for these (i,j): {98, 1749}, {293, 37943}, {1821, 11063}, {1910, 37779}, {6140, 36036}, {19306, 53245}, {36084, 45147}, {36120, 50461}
X(64936) = X(i)-Dao conjugate of X(j) for these (i,j): {132, 37943}, {2679, 6140}, {11672, 37779}, {38987, 45147}, {40601, 11063}, {46094, 50461}, {55071, 8562}
X(64936) = crossdifference of every pair of points on line {11063, 45147}
X(64936) = barycentric product X(i)*X(j) for these {i,j}: {297, 43704}, {325, 14579}, {511, 13582}, {1291, 2799}, {1959, 51804}, {3471, 35910}, {11071, 51383}
X(64936) = barycentric quotient X(i)/X(j) for these {i,j}: {232, 37943}, {237, 11063}, {511, 37779}, {1263, 53245}, {1291, 2966}, {1755, 1749}, {2491, 6140}, {3289, 50461}, {3471, 60869}, {3569, 45147}, {13582, 290}, {14579, 98}, {14966, 47053}, {35910, 46751}, {41270, 1157}, {43704, 287}, {44114, 10413}, {51804, 1821}
X(64937) lies on the Lemoine asymptotic hyperbola and these lines: {140, 523}, {512, 13366}, {691, 1291}, {876, 51804}, {1263, 60037}, {6140, 15475}, {9178, 14579}, {13582, 60028}, {14367, 15567}, {22260, 57136}, {35364, 43704}
X(64937) = X(1291)-Ceva conjugate of X(14579)
X(64937) = X(14270)-cross conjugate of X(512)
X(64937) = X(i)-isoconjugate of X(j) for these (i,j): {75, 47053}, {99, 1749}, {662, 37779}, {799, 11063}, {811, 50461}, {4592, 37943}, {6140, 24037}, {24041, 45147}, {32680, 40604}, {35139, 51802}
X(64937) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 47053}, {512, 6140}, {1084, 37779}, {3005, 45147}, {5139, 37943}, {17423, 50461}, {38986, 1749}, {38996, 11063}, {60342, 45790}
X(64937) = crosspoint of X(i) and X(j) for these (i,j): {1291, 14579}, {1989, 53705}
X(64937) = crosssum of X(37779) and X(45147)
X(64937) = crossdifference of every pair of points on line {11063, 37779}
X(64937) = barycentric product X(i)*X(j) for these {i,j}: {115, 1291}, {512, 13582}, {523, 14579}, {526, 11071}, {661, 51804}, {1263, 2623}, {2433, 3471}, {2501, 43704}, {6137, 46072}, {6138, 46076}, {15392, 47230}, {43657, 55280}
X(64937) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 47053}, {512, 37779}, {669, 11063}, {798, 1749}, {1084, 6140}, {1291, 4590}, {2088, 45790}, {2433, 46751}, {2489, 37943}, {3049, 50461}, {3124, 45147}, {11071, 35139}, {13582, 670}, {14270, 40604}, {14398, 10272}, {14579, 99}, {22260, 10413}, {43657, 55279}, {43704, 4563}, {51804, 799}
X(64937) lies on the orthic asymptotic hyperbola and these lines: {2, 39183}, {140, 523}, {525, 64062}, {879, 43704}, {935, 1291}, {1263, 60036}, {2394, 13582}, {5664, 15412}, {14367, 42731}, {14566, 14618}, {14579, 60040}
X(64938) = X(8552)-cross conjugate of X(525)
X(64938) = X(i)-isoconjugate of X(j) for these (i,j): {19, 47053}, {112, 1749}, {162, 11063}, {163, 37943}, {2914, 32678}, {3470, 56829}, {10272, 36131}, {19306, 35360}, {24019, 50461}, {32676, 37779}
X(64938) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 47053}, {115, 37943}, {125, 11063}, {647, 45147}, {15526, 37779}, {18334, 2914}, {34591, 1749}, {35071, 50461}, {39008, 10272}
X(64938) = barycentric product X(i)*X(j) for these {i,j}: {339, 1291}, {525, 13582}, {850, 43704}, {1263, 62428}, {3267, 14579}, {3268, 15392}, {3471, 34767}, {11071, 45792}, {14208, 51804}
X(64938) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 47053}, {125, 45147}, {520, 50461}, {523, 37943}, {525, 37779}, {526, 2914}, {647, 11063}, {656, 1749}, {1263, 35360}, {1291, 250}, {3471, 4240}, {8552, 40604}, {9033, 10272}, {13582, 648}, {14380, 3470}, {14579, 112}, {14582, 56404}, {15392, 476}, {16186, 8562}, {20975, 6140}, {23286, 1157}, {34767, 46751}, {43704, 110}, {46072, 36306}, {46076, 36309}, {51804, 162}, {60009, 5612}, {60010, 5616}
X(64939) lies on the cubic K1364 and these lines: {2, 4048}, {83, 51126}, {141, 7905}, {625, 6704}, {732, 6683}, {2896, 47355}, {3589, 5007}, {3628, 29012}, {5103, 16897}, {7769, 51128}, {17357, 49612}, {20088, 63120}, {31168, 48310}, {32449, 42006}
X(64939) = midpoint of X(3589) and X(6292)
X(64939) = reflection of X(6704) in X(51127)
X(64939) = barycentric product X(3589)*X(60728)
X(64939) = barycentric quotient X(60728)/X(10159)
X(64940) lies on the cubic K1364 and these lines: {2, 353}, {512, 61045}, {524, 10007}, {547, 11645}, {597, 5008}, {598, 60238}, {3589, 3849}, {5085, 10033}, {8355, 14762}, {12150, 47352}, {20582, 63647}, {24256, 52691}, {33184, 48310}
X(64940) = midpoint of X(i) and X(j) for these {i,j}: {597, 15810}, {24256, 52691}
X(64940) = reflection of X(9731) in X(597)
X(64940) = barycentric product X(31950)*X(35356)
X(64940) = barycentric quotient X(35357)/X(31951)
X(64941) lies on the cubic K1364 and these lines: {2, 5477}, {193, 26613}, {381, 6776}, {524, 10008}, {597, 18584}, {598, 41895}, {1384, 1992}, {5032, 5052}, {7615, 39764}, {9300, 33692}, {9740, 51373}, {10011, 63107}, {11163, 60240}, {18800, 32815}, {33550, 51170}, {44839, 63022}, {60150, 60268}
X(64941) = midpoint of X(1992) and X(11147)
X(64941) = X(11147)-Dao conjugate of X(60240)
X(64941) = barycentric product X(1992)*X(23055)
X(64941) = barycentric quotient X(i)/X(j) for these {i,j}: {1992, 60240}, {23055, 5485}
X(64942) lies on the cubic K1364 and these lines: {2, 5503}, {6, 5215}, {141, 52229}, {182, 524}, {184, 10554}, {511, 11184}, {538, 44774}, {542, 7618}, {543, 11178}, {574, 599}, {597, 13720}, {1352, 53142}, {2549, 19662}, {3094, 9466}, {3098, 3849}, {5028, 47352}, {5039, 63028}, {5476, 9771}, {5485, 7790}, {5969, 7617}, {7615, 24206}, {7619, 14645}, {7775, 52987}, {7843, 55600}, {7844, 16509}, {9741, 21356}, {9770, 54173}, {9888, 49788}, {10484, 42011}, {26613, 41412}, {34511, 40107}, {43461, 50967}, {50991, 51123}, {50993, 51122}, {54169, 63945}, {55611, 63931}, {60240, 62895}
X(64942) = midpoint of X(i) and X(j) for these {i,j}: {599, 11165}, {1352, 53142}, {9770, 54173}
X(64942) = reflection of X(i) in X(j) for these {i,j}: {182, 7622}, {597, 63647}, {5476, 9771}, {7615, 24206}, {16509, 20582}
X(64942) = X(11166)-isoconjugate of X(55927)
X(64942) = X(i)-Dao conjugate of X(j) for these (i,j): {8542, 11166}, {11165, 11167}
X(64942) = crossdifference of every pair of points on line {9135, 46001}
X(64942) = barycentric product X(i)*X(j) for these {i,j}: {599, 11163}, {8704, 9146}
X(64942) = barycentric quotient X(i)/X(j) for these {i,j}: {574, 11166}, {599, 11167}, {8704, 8599}, {9145, 6233}, {11163, 598}, {11186, 46001}, {58749, 14327}
X(64943) lies on the cubic K1364 and these lines: {2, 187}, {230, 9830}, {511, 63101}, {512, 9189}, {524, 51373}, {543, 2021}, {1513, 6055}, {1691, 7610}, {1692, 63065}, {2030, 18800}, {5017, 11184}, {5052, 63028}, {5104, 42849}, {8592, 8859}, {9300, 9731}, {9774, 25406}, {10033, 51537}, {11167, 23055}, {19661, 37451}, {21163, 52691}, {37455, 55801}, {37688, 38010}, {43535, 60103}
X(64943) = midpoint of X(22329) and X(62578)
X(64943) = X(62578)-Dao conjugate of X(11167)
X(64943) = crossdifference of every pair of points on line {17414, 62191}
X(64943) = barycentric product X(i)*X(j) for these {i,j}: {99, 14327}, {8704, 34245}, {11163, 22329}
X(64943) = barycentric quotient X(i)/X(j) for these {i,j}: {2030, 11166}, {8704, 34246}, {11163, 5503}, {14327, 523}, {22329, 11167}
X(64943) = {X(187),X(5215)}-harmonic conjugate of X(5569)
X(64944) lies on the cubic K1364 and these lines: {2, 5471}, {15, 5459}, {396, 8598}, {524, 10617}, {530, 30560}, {598, 55951}, {3106, 13083}, {6772, 42062}, {6783, 45879}, {8594, 62198}, {8787, 33377}, {9123, 9194}, {9166, 51484}, {9763, 19781}, {26613, 37786}, {33517, 35931}, {36775, 41630}, {49862, 54618}
X(64944) = barycentric quotient X(37786)/X(55951)
X(64945) lies on the cubic K1364 and these lines: {2, 5472}, {16, 5460}, {395, 8598}, {524, 10616}, {531, 30559}, {598, 55950}, {3107, 13084}, {6775, 42063}, {6782, 45880}, {8595, 62197}, {8787, 33376}, {9123, 9195}, {9166, 51485}, {9761, 19780}, {26613, 37785}, {33518, 35932}, {44219, 61514}, {49861, 54617}
X(64945) = barycentric quotient X(37785)/X(55950)
X(64946) lies on the cubic K1364 and these lines: {2, 846}, {10, 17315}, {86, 16477}, {551, 42334}, {740, 3634}, {1100, 1125}, {1654, 3624}, {3817, 63402}, {3828, 4733}, {3834, 6693}, {3993, 27483}, {6533, 27605}, {17263, 51073}, {17298, 34595}, {17357, 31253}, {17768, 58433}, {19883, 31144}, {29604, 31336}, {60688, 60710}
X(64946) = midpoint of X(1125) and X(1213)
X(64946) = reflection of X(6707) in X(19878)
X(64946) = X(i)-isoconjugate of X(j) for these (i,j): {28615, 60669}, {47947, 59080}
X(64946) = X(1213)-Dao conjugate of X(60669)
X(64946) = crosspoint of X(60708) and X(60710)
X(64946) = crossdifference of every pair of points on line {5029, 50344}
X(64946) = barycentric product X(i)*X(j) for these {i,j}: {1125, 60710}, {1213, 60708}, {4359, 60688}
X(64946) = barycentric quotient X(i)/X(j) for these {i,j}: {1125, 60669}, {35327, 59080}, {60688, 1255}, {60708, 32014}, {60710, 1268}
X(64947) lies on the cubic K1364 and these lines: {2, 32}, {3, 32476}, {69, 10334}, {98, 8784}, {114, 35376}, {182, 6194}, {183, 3407}, {187, 5152}, {230, 9478}, {385, 732}, {511, 39089}, {699, 53621}, {733, 59026}, {1184, 3866}, {1207, 34482}, {1447, 19572}, {1580, 7081}, {1692, 39097}, {1916, 2076}, {2080, 5999}, {2458, 36849}, {3329, 10007}, {3398, 37455}, {3406, 54155}, {5007, 51827}, {5025, 9990}, {5027, 9185}, {5038, 63038}, {5039, 62994}, {5171, 12122}, {5182, 44367}, {5970, 59047}, {5980, 36759}, {5981, 36760}, {6179, 41755}, {6249, 12110}, {6287, 10104}, {6671, 41632}, {6672, 41642}, {7754, 10131}, {7767, 10333}, {7777, 41749}, {7779, 10352}, {7780, 44772}, {7839, 12054}, {7893, 10349}, {8725, 14880}, {8789, 51983}, {10064, 10802}, {10080, 10801}, {10353, 50248}, {10519, 63017}, {10998, 35436}, {12191, 51224}, {12194, 12264}, {12252, 37182}, {13111, 13860}, {13196, 50251}, {13356, 33004}, {14614, 39560}, {16986, 42534}, {17004, 42535}, {18993, 19092}, {18994, 19091}, {19570, 53765}, {22329, 58765}, {22712, 39750}, {32134, 61555}, {35006, 39093}, {35540, 56979}, {39141, 63046}, {41295, 59249}, {41623, 63018}, {44586, 49255}, {44587, 49254}, {54539, 60128}, {59266, 60101}, {60181, 60184}
X(64947) = midpoint of X(385) and X(8290)
X(64947) = reflection of X(9478) in X(230)
X(64947) = complement of X(9866)
X(64947) = X(3407)-Ceva conjugate of X(4027)
X(64947) = X(i)-isoconjugate of X(j) for these (i,j): {694, 60664}, {1581, 60667}, {1934, 60672}, {1967, 42006}, {43763, 59262}
X(64947) = X(i)-Dao conjugate of X(j) for these (i,j): {8290, 42006}, {19576, 60667}, {36213, 59262}, {39043, 60664}
X(64947) = crosspoint of X(39685) and X(59249)
X(64947) = crosssum of X(i) and X(j) for these (i,j): {732, 24256}, {39684, 59273}
X(64947) = crossdifference of every pair of points on line {882, 3005}
X(64947) = barycentric product X(i)*X(j) for these {i,j}: {385, 3329}, {419, 60702}, {732, 60860}, {880, 14318}, {1580, 60683}, {1691, 60707}, {1966, 60686}, {3978, 12212}, {8623, 59249}, {10007, 56976}, {35540, 41295}, {36213, 39685}
X(64947) = barycentric quotient X(i)/X(j) for these {i,j}: {385, 42006}, {1580, 60664}, {1691, 60667}, {3329, 1916}, {8623, 59262}, {10007, 56977}, {12212, 694}, {14318, 882}, {14602, 60672}, {41295, 733}, {51312, 43763}, {56915, 59273}, {56980, 43357}, {60683, 1934}, {60686, 1581}, {60702, 40708}, {60707, 18896}, {60860, 14970}
X(64947) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 83, 12206}, {32, 8150, 83}, {83, 1078, 6292}, {83, 6308, 2896}, {183, 24273, 42006}, {183, 59232, 3407}, {385, 1691, 4027}, {1691, 51325, 56915}, {2896, 7793, 6308}, {7787, 7793, 3785}, {8623, 56976, 16985}
X(64948) lies on the cubic K1364 and these lines: {2, 39764}, {4, 1353}, {6, 39143}, {193, 439}, {194, 63061}, {1570, 54097}, {7766, 40926}, {9734, 40925}, {9741, 35927}, {9742, 10011}, {20080, 32818}, {32988, 63123}
X(64948) = midpoint of X(193) and X(51579)
X(64948) = reflection of X(39143) in X(6)
X(64949) lies on the cubic K1364 and these lines: {2, 2418}, {182, 15597}, {524, 10011}, {2080, 63945}, {3564, 7610}, {5093, 9770}, {5107, 22110}, {9771, 38317}, {9877, 56370}, {11184, 18583}, {11898, 63029}, {16508, 37350}, {23055, 64941}
X(64949) = midpoint of X(i) and X(j) for these {i,j}: {6390, 40727}, {9877, 56370}, {16508, 37350}
X(64949) = barycentric product X(22110)*X(23055)
X(64949) = barycentric quotient X(i)/X(j) for these {i,j}: {22110, 60240}, {23055, 60103}
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 07/08/2024. (Aug 23, 2024)
X(64950) lies on these lines: {1, 3}, {2, 9670}, {4, 4995}, {8, 17574}, {10, 19526}, {11, 3525}, {12, 3146}, {20, 11237}, {21, 4421}, {30, 9656}, {33, 55578}, {73, 43691}, {100, 16865}, {109, 28157}, {140, 4309}, {198, 16675}, {376, 15888}, {381, 4330}, {382, 3584}, {388, 50693}, {390, 5433}, {404, 4428}, {405, 3828}, {474, 19883}, {480, 15481}, {495, 12103}, {496, 12108}, {497, 10303}, {498, 546}, {499, 10386}, {519, 19535}, {528, 6910}, {550, 9657}, {551, 19537}, {611, 52987}, {612, 9628}, {613, 20190}, {631, 3058}, {632, 15171}, {902, 4255}, {943, 64152}, {958, 4678}, {993, 4701}, {1001, 17531}, {1030, 16674}, {1056, 62084}, {1058, 61807}, {1124, 6454}, {1193, 21000}, {1250, 22236}, {1253, 1399}, {1335, 6453}, {1376, 5047}, {1428, 55684}, {1469, 55614}, {1478, 15704}, {1479, 3628}, {1621, 17572}, {1656, 9671}, {1657, 37719}, {1698, 16860}, {2041, 36441}, {2042, 36459}, {2066, 3594}, {2177, 2334}, {2241, 31652}, {2256, 22357}, {2269, 38296}, {2330, 11477}, {2475, 34626}, {2975, 20014}, {3024, 15034}, {3028, 15021}, {3056, 53093}, {3085, 3529}, {3086, 61814}, {3090, 4294}, {3091, 5218}, {3522, 5434}, {3523, 10385}, {3526, 4857}, {3530, 10072}, {3534, 5270}, {3560, 61258}, {3582, 15720}, {3583, 5072}, {3585, 49136}, {3592, 5414}, {3600, 62078}, {3614, 61964}, {3627, 4302}, {3649, 9778}, {3679, 17571}, {3689, 31424}, {3711, 31445}, {3871, 20053}, {3912, 21510}, {3913, 4189}, {3916, 41711}, {3951, 4640}, {3984, 35258}, {4258, 41423}, {4293, 62092}, {4299, 44245}, {4313, 40663}, {4314, 24914}, {4316, 62119}, {4317, 8703}, {4324, 9654}, {4325, 62100}, {4413, 5248}, {4423, 16862}, {4669, 8715}, {4679, 59587}, {4691, 5687}, {4870, 9589}, {4999, 20075}, {5007, 31451}, {5013, 10987}, {5054, 37720}, {5076, 31479}, {5079, 9668}, {5084, 6174}, {5132, 8692}, {5141, 34706}, {5160, 37953}, {5198, 52427}, {5225, 15022}, {5229, 49140}, {5237, 54436}, {5238, 54435}, {5259, 16855}, {5261, 62152}, {5274, 7294}, {5297, 63676}, {5298, 15717}, {5302, 64135}, {5310, 11284}, {5326, 10591}, {5393, 21571}, {5405, 21576}, {5441, 5790}, {5445, 54342}, {5609, 10065}, {5657, 10543}, {5731, 45081}, {6154, 19843}, {6198, 35479}, {6419, 19037}, {6420, 19038}, {6425, 18996}, {6426, 18995}, {6448, 31474}, {6684, 61717}, {6857, 34612}, {6872, 31141}, {6914, 61249}, {6921, 49736}, {7031, 31461}, {7173, 46936}, {7288, 61804}, {7354, 17538}, {7483, 31140}, {7741, 55857}, {7772, 31448}, {7786, 22711}, {7951, 61984}, {8164, 11541}, {8167, 63753}, {8168, 63754}, {8567, 32065}, {9612, 52638}, {9629, 54401}, {9645, 12107}, {9655, 62134}, {9669, 55858}, {9711, 31156}, {9780, 17543}, {10053, 51524}, {10058, 51525}, {10086, 51523}, {10087, 51529}, {10088, 51522}, {10149, 37952}, {10197, 50239}, {10327, 59592}, {10387, 10541}, {10404, 12512}, {10483, 62143}, {10578, 52783}, {10588, 50689}, {10589, 61863}, {10590, 62028}, {10592, 12102}, {10593, 55862}, {10638, 22238}, {10786, 37001}, {10927, 45550}, {10928, 45551}, {10991, 12350}, {11001, 31410}, {11111, 21031}, {11189, 17821}, {11194, 17548}, {11236, 15680}, {11398, 35502}, {11399, 44879}, {11499, 61259}, {11500, 21669}, {11517, 51573}, {12185, 20399}, {12513, 17549}, {12588, 64196}, {12764, 20400}, {12896, 15027}, {12904, 20397}, {13116, 51536}, {13183, 20398}, {13897, 53513}, {13898, 31499}, {13954, 53516}, {14986, 61798}, {15170, 15712}, {15172, 61810}, {15175, 18491}, {15325, 61808}, {15326, 62097}, {15452, 23235}, {15837, 64197}, {16371, 51108}, {16417, 63752}, {16483, 41451}, {16502, 53096}, {16669, 37503}, {16814, 36744}, {16866, 19875}, {16885, 54285}, {17023, 21532}, {17539, 48832}, {17573, 25055}, {17576, 34606}, {17718, 31730}, {17783, 24851}, {17784, 24953}, {18513, 62024}, {18514, 61968}, {18990, 62104}, {19327, 26241}, {19704, 51091}, {19705, 51106}, {21518, 29574}, {22331, 31477}, {22356, 37504}, {22758, 61245}, {25524, 61155}, {26888, 58795}, {28628, 63145}, {31157, 64068}, {31436, 50811}, {31475, 41946}, {31649, 32141}, {32153, 61293}, {33557, 64074}, {34611, 37291}, {35007, 54416}, {37307, 40726}, {37701, 48661}, {37721, 50821}, {37724, 43174}, {38729, 46687}, {41869, 61648}, {45701, 57002}, {48829, 56778}, {50808, 63274}, {53095, 63493}, {59421, 63272}, {61716, 63259}
X(64950) = cross-difference of every pair of points on the line X(650)X(28191)
X(64950) = crosspoint of X(59) and X(28230)
X(64950) = crosssum of X(11) and X(28229)
X(64950) = X(643)-beth conjugate of-X(46933)
X(64950) = X(28155)-zayin conjugate of-X(513)
X(64950) = pole of the line {513, 58178} with respect to the circumcircle
X(64950) = pole of the line {20980, 58178} with respect to the Brocard inellipse
X(64950) = pole of the line {21, 40726} with respect to the Stammler hyperbola
X(64950) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 41348, 65), (3, 3303, 56), (55, 5217, 56), (55, 63756, 1), (3303, 5217, 3), (5010, 5563, 3)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 07/08/2024. (Aug 23, 2024)
X(64951) lies on these lines: {1, 3}, {2, 9669}, {4, 5281}, {5, 4294}, {6, 24047}, {7, 63282}, {8, 16370}, {10, 4421}, {11, 3526}, {12, 382}, {15, 54438}, {16, 54437}, {20, 495}, {21, 3617}, {24, 7071}, {25, 5297}, {30, 3085}, {32, 31477}, {33, 3517}, {34, 55571}, {44, 4254}, {45, 36744}, {72, 35258}, {73, 43719}, {100, 405}, {109, 28149}, {140, 497}, {145, 17549}, {182, 10387}, {197, 20831}, {198, 16676}, {200, 31445}, {202, 36843}, {203, 36836}, {218, 41423}, {220, 4262}, {221, 3357}, {355, 4304}, {372, 31474}, {376, 18990}, {381, 498}, {386, 3052}, {388, 550}, {390, 496}, {392, 4855}, {399, 10065}, {404, 46934}, {452, 3820}, {474, 1621}, {499, 3058}, {500, 22117}, {516, 11374}, {528, 26363}, {546, 10588}, {548, 4293}, {549, 3086}, {574, 16781}, {595, 4255}, {601, 1253}, {611, 33878}, {612, 7302}, {613, 12017}, {632, 10589}, {899, 16058}, {902, 16466}, {943, 5556}, {944, 33899}, {950, 26446}, {952, 4305}, {954, 3651}, {956, 3621}, {958, 3626}, {962, 37737}, {991, 5399}, {993, 3625}, {995, 19252}, {1001, 16408}, {1011, 3240}, {1012, 11491}, {1015, 15815}, {1030, 16672}, {1043, 5774}, {1056, 3522}, {1058, 3523}, {1124, 6398}, {1125, 4428}, {1151, 35809}, {1152, 35808}, {1191, 4256}, {1250, 11485}, {1260, 4420}, {1335, 6221}, {1351, 2330}, {1376, 3634}, {1384, 54416}, {1387, 9785}, {1398, 3520}, {1469, 55610}, {1478, 1657}, {1479, 1656}, {1500, 3053}, {1597, 11398}, {1598, 52427}, {1609, 62210}, {1616, 41451}, {1698, 16857}, {1770, 17718}, {1788, 12433}, {1836, 63259}, {1864, 58630}, {1870, 3516}, {1914, 9605}, {1918, 50598}, {2066, 3312}, {2067, 6449}, {2070, 5160}, {2192, 10282}, {2241, 5013}, {2242, 5023}, {2271, 17735}, {2276, 30435}, {2346, 5551}, {2476, 20066}, {2550, 6675}, {2551, 50241}, {2975, 19535}, {3024, 32609}, {3028, 15041}, {3056, 5050}, {3100, 9715}, {3146, 8164}, {3149, 15911}, {3158, 31424}, {3167, 6238}, {3241, 5303}, {3244, 11194}, {3270, 19357}, {3297, 6396}, {3298, 6200}, {3299, 6395}, {3301, 6199}, {3311, 5414}, {3421, 17576}, {3434, 7483}, {3436, 57002}, {3474, 6147}, {3475, 24470}, {3485, 28174}, {3486, 5690}, {3487, 9778}, {3515, 6198}, {3524, 14986}, {3525, 5274}, {3528, 3600}, {3529, 5261}, {3530, 7288}, {3534, 7354}, {3555, 4652}, {3560, 18357}, {3582, 15701}, {3583, 3851}, {3584, 3830}, {3585, 5073}, {3586, 9956}, {3616, 16371}, {3622, 13587}, {3624, 7743}, {3627, 10590}, {3628, 10591}, {3636, 40726}, {3647, 5220}, {3654, 64163}, {3689, 41229}, {3697, 64135}, {3730, 4258}, {3753, 62829}, {3811, 3927}, {3843, 4330}, {3870, 3916}, {3878, 56177}, {3912, 21509}, {3935, 20835}, {3940, 12514}, {3947, 28150}, {4018, 63144}, {4245, 19760}, {4251, 42316}, {4257, 41434}, {4278, 18185}, {4295, 5719}, {4299, 15696}, {4313, 5657}, {4314, 5722}, {4316, 9657}, {4317, 62085}, {4319, 37696}, {4324, 12943}, {4325, 62105}, {4326, 31658}, {4354, 9642}, {4366, 11285}, {4413, 5259}, {4423, 16863}, {4512, 5044}, {4646, 37817}, {4663, 12329}, {4781, 16406}, {4794, 48387}, {4816, 5258}, {4857, 46219}, {4930, 33595}, {4972, 56779}, {5020, 5310}, {5024, 10987}, {5047, 46931}, {5055, 10896}, {5070, 7741}, {5080, 50242}, {5084, 47742}, {5120, 16666}, {5132, 16286}, {5148, 38225}, {5219, 22793}, {5250, 5440}, {5251, 61154}, {5253, 19537}, {5260, 19526}, {5263, 19273}, {5265, 10299}, {5267, 12513}, {5270, 62131}, {5280, 21309}, {5284, 16862}, {5298, 15700}, {5302, 18247}, {5326, 55857}, {5393, 21558}, {5405, 21561}, {5433, 15720}, {5434, 15688}, {5441, 28453}, {5445, 61717}, {5450, 30283}, {5493, 64110}, {5552, 11113}, {5703, 6361}, {5745, 64117}, {5765, 48918}, {5779, 15837}, {5790, 10572}, {5791, 63146}, {5818, 7319}, {5840, 26487}, {5886, 10624}, {5901, 30305}, {6019, 52698}, {6154, 24953}, {6285, 32063}, {6286, 55039}, {6409, 35768}, {6410, 35769}, {6417, 19037}, {6418, 19038}, {6450, 6502}, {6645, 33235}, {6692, 51724}, {6763, 41711}, {6796, 11496}, {6831, 37000}, {6857, 17784}, {6872, 17757}, {6908, 31777}, {6910, 20075}, {6911, 61272}, {6913, 11499}, {6914, 37705}, {6917, 61533}, {6918, 61268}, {6927, 7956}, {6934, 63257}, {6937, 13199}, {6938, 40267}, {6950, 64173}, {7005, 22238}, {7006, 22236}, {7031, 43136}, {7074, 36742}, {7080, 11111}, {7085, 36277}, {7086, 22361}, {7160, 9841}, {7286, 18859}, {7292, 7484}, {7294, 61850}, {7298, 20850}, {7330, 64116}, {7355, 35450}, {7506, 10833}, {7701, 60884}, {7754, 32107}, {7866, 26629}, {8053, 37502}, {8068, 48680}, {8144, 14070}, {8252, 35803}, {8253, 35802}, {8275, 61288}, {8540, 53092}, {8572, 56804}, {8606, 56843}, {9342, 16854}, {9534, 16300}, {9538, 38444}, {9566, 58772}, {9578, 28160}, {9580, 9955}, {9581, 11231}, {9599, 31467}, {9612, 28146}, {9614, 11230}, {9637, 12160}, {9645, 16195}, {9646, 13665}, {9651, 44519}, {9656, 49134}, {9660, 44622}, {9664, 13881}, {9665, 31489}, {9671, 61905}, {9673, 13621}, {9707, 11461}, {9856, 52026}, {10037, 12083}, {10039, 18525}, {10053, 13188}, {10058, 12331}, {10060, 12315}, {10066, 12307}, {10072, 15693}, {10086, 12188}, {10087, 12773}, {10088, 10620}, {10091, 15040}, {10093, 48668}, {10149, 37955}, {10164, 63999}, {10165, 11373}, {10197, 34626}, {10198, 17528}, {10200, 49736}, {10303, 47743}, {10308, 55920}, {10483, 11237}, {10525, 31659}, {10527, 37298}, {10543, 10573}, {10638, 11486}, {10884, 17613}, {10912, 51111}, {10950, 59503}, {10956, 38753}, {11124, 11247}, {11174, 53680}, {11238, 15694}, {11239, 34740}, {11286, 27020}, {11329, 29595}, {11343, 29579}, {11350, 17021}, {11362, 37739}, {11399, 55572}, {11406, 14017}, {11426, 11436}, {11429, 11432}, {11495, 30424}, {11500, 31673}, {11517, 13615}, {11684, 31660}, {11898, 39900}, {12047, 48661}, {12245, 37728}, {12316, 47378}, {12332, 12333}, {12512, 21620}, {12572, 59584}, {12647, 18526}, {12669, 37287}, {12699, 13411}, {12701, 18493}, {12705, 64804}, {12710, 58637}, {12711, 31837}, {12735, 38693}, {12738, 41166}, {12896, 38724}, {12940, 64758}, {13075, 59384}, {13076, 59383}, {13115, 13311}, {13116, 13310}, {13405, 31730}, {13407, 18541}, {13735, 59299}, {13743, 18518}, {13903, 19030}, {13905, 18512}, {13961, 19029}, {13963, 18510}, {14100, 59381}, {14974, 18755}, {15061, 46687}, {15174, 21161}, {15175, 17501}, {15254, 58634}, {15326, 62100}, {15484, 31460}, {15624, 39600}, {15808, 17573}, {16059, 30950}, {16173, 38636}, {16367, 16816}, {16394, 26115}, {16395, 29822}, {16403, 26227}, {16412, 29578}, {16431, 26626}, {16436, 17316}, {16477, 20992}, {16670, 54322}, {16823, 19323}, {16830, 19322}, {16858, 46933}, {16861, 46932}, {16948, 17524}, {17018, 19346}, {17023, 21539}, {17527, 59572}, {17536, 61156}, {17542, 19877}, {17547, 46930}, {17548, 54391}, {17556, 27529}, {17564, 47357}, {17637, 41686}, {18391, 28466}, {18480, 31434}, {18481, 31397}, {18513, 62023}, {18514, 61970}, {18524, 37234}, {18527, 41864}, {18543, 34745}, {18907, 31402}, {18922, 31804}, {19247, 52352}, {19251, 30116}, {19313, 26241}, {19369, 55724}, {19524, 38901}, {19549, 21321}, {19705, 38314}, {19763, 57523}, {19843, 34607}, {19854, 34612}, {20818, 37504}, {20872, 39582}, {21153, 63972}, {21511, 29583}, {21514, 29596}, {22458, 49515}, {22758, 61244}, {24703, 59719}, {24850, 29670}, {25430, 61767}, {26029, 33309}, {26040, 50205}, {26060, 50207}, {26105, 52264}, {26590, 32954}, {28447, 51874}, {28448, 51873}, {28451, 50821}, {29585, 35276}, {30331, 64124}, {31410, 62155}, {31436, 37709}, {31447, 37723}, {31499, 44623}, {31799, 59345}, {31859, 32005}, {32153, 61292}, {32635, 55918}, {35272, 58679}, {35800, 42264}, {35801, 42263}, {36573, 63997}, {36740, 64070}, {36743, 62212}, {36750, 61397}, {37105, 62800}, {37289, 63965}, {37296, 56181}, {37499, 55100}, {37507, 64169}, {37509, 61398}, {37702, 54342}, {37706, 51515}, {37720, 55863}, {37722, 61811}, {37731, 61716}, {38723, 46683}, {39227, 58334}, {40262, 63992}, {40587, 63130}, {40998, 59587}, {41014, 63140}, {42115, 54436}, {42116, 54435}, {45410, 45471}, {45411, 45470}, {45701, 57288}, {48386, 58336}, {50587, 52139}, {52740, 53299}, {52783, 63287}, {54354, 60714}, {54992, 64053}, {59380, 60919}, {63266, 64156}, {63272, 64342}
X(64951) = midpoint of X(3601) and X(61763)
X(64951) = reflection of X(9654) in X(3085)
X(64951) = isogonal conjugate of X(43733)
X(64951) = cross-difference of every pair of points on the line X(650)X(28175)
X(64951) = crosspoint of X(59) and X(28196)
X(64951) = crosssum of X(i) and X(j) for these {i, j}: {11, 28195}, {1086, 49294}
X(64951) = X(643)-beth conjugate of-X(9780)
X(64951) = X(27789)-Ceva conjugate of-X(6)
X(64951) = X(4533)-reciprocal conjugate of-X(321)
X(64951) = X(28147)-zayin conjugate of-X(513)
X(64951) = perspector of the circumconic through X(651) and X(28176)
X(64951) = pole of the line {513, 47987} with respect to the circumcircle
X(64951) = pole of the line {20980, 58179} with respect to the Brocard inellipse
X(64951) = pole of the line {21, 11544} with respect to the Stammler hyperbola
X(64951) = pole of the line {314, 43733} with respect to the Steiner-Wallace hyperbola
X(64951) = barycentric product X(81)*X(4533)
X(64951) = trilinear product X(58)*X(4533)
X(64951) = trilinear quotient X(4533)/X(10)
X(64951) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 5217, 3), (35, 55, 3), (36, 63756, 3), (55, 5217, 1), (56, 5010, 3), (3428, 59331, 3), (3746, 59319, 1), (5204, 59325, 3), (8069, 37601, 3), (8273, 59326, 3), (10267, 26285, 3), (10269, 26086, 3), (10310, 10902, 3), (11248, 32613, 3), (11249, 33862, 3), (24929, 50193, 1), (37582, 63271, 1)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 07/08/2024. (Aug 23, 2024)
X(64952) lies on these lines: {1, 3}, {2, 13607}, {4, 3636}, {8, 55864}, {9, 17438}, {10, 3533}, {30, 61277}, {104, 28192}, {140, 3632}, {145, 10165}, {191, 28463}, {214, 1706}, {355, 547}, {376, 51085}, {390, 64830}, {392, 19538}, {474, 64735}, {515, 3622}, {516, 62127}, {518, 55711}, {519, 15702}, {549, 50817}, {550, 61280}, {551, 944}, {581, 1149}, {631, 3244}, {632, 61292}, {946, 3543}, {952, 3624}, {962, 51705}, {1006, 62825}, {1064, 56804}, {1071, 10179}, {1125, 5067}, {1386, 5102}, {1483, 3679}, {1656, 37712}, {1698, 16239}, {1699, 3853}, {1702, 6437}, {1703, 6438}, {3083, 21552}, {3084, 21555}, {3090, 15808}, {3158, 22837}, {3241, 6684}, {3242, 55703}, {3243, 60912}, {3486, 37704}, {3523, 20057}, {3525, 3626}, {3526, 61289}, {3528, 28228}, {3582, 26487}, {3584, 26492}, {3616, 5056}, {3623, 11362}, {3628, 61244}, {3633, 26446}, {3635, 5657}, {3646, 17542}, {3652, 5426}, {3653, 5690}, {3654, 41983}, {3655, 3845}, {3656, 15686}, {3751, 39561}, {3828, 61868}, {3850, 5886}, {3851, 61271}, {3877, 12005}, {3889, 31806}, {3890, 5884}, {3897, 16858}, {3898, 64021}, {3899, 24475}, {4297, 10595}, {4301, 62113}, {4308, 64110}, {4313, 64703}, {4511, 63135}, {4512, 19539}, {4668, 11231}, {4677, 61847}, {4816, 38112}, {4861, 11525}, {4898, 59680}, {5054, 34747}, {5059, 5731}, {5071, 51082}, {5097, 16475}, {5288, 6883}, {5506, 37733}, {5603, 33703}, {5693, 58679}, {5734, 31730}, {5790, 32900}, {5844, 9588}, {5904, 31838}, {6264, 17535}, {6361, 62096}, {6431, 7968}, {6432, 7969}, {6433, 49226}, {6434, 49227}, {6480, 9615}, {6481, 35641}, {6484, 9616}, {6486, 35811}, {6487, 35810}, {6857, 64323}, {6940, 25439}, {7290, 7609}, {7701, 28461}, {7972, 38032}, {7988, 18525}, {7989, 28204}, {8583, 16854}, {9583, 44636}, {9589, 62123}, {9613, 15950}, {9617, 31439}, {9845, 51715}, {9864, 38746}, {9955, 61274}, {9956, 61887}, {10124, 50804}, {10175, 46934}, {10283, 11522}, {10303, 20050}, {10860, 62862}, {11230, 18526}, {11372, 42819}, {11523, 26878}, {11715, 64260}, {11735, 12407}, {11826, 15170}, {12245, 15719}, {12266, 55038}, {12368, 38792}, {12512, 62086}, {12571, 50868}, {12629, 56177}, {12645, 15723}, {12699, 61278}, {12751, 38758}, {12844, 55176}, {13178, 38735}, {13211, 38725}, {13532, 38782}, {15015, 64742}, {15570, 21153}, {15692, 51077}, {15694, 51087}, {15699, 61246}, {15701, 51094}, {15709, 34641}, {15715, 50814}, {15721, 50827}, {15839, 30117}, {16491, 37517}, {16496, 38029}, {16864, 64673}, {17536, 19861}, {18444, 63984}, {18480, 61946}, {18493, 61990}, {18991, 35762}, {18992, 35763}, {19862, 59388}, {19872, 41992}, {19883, 50818}, {20054, 61842}, {20070, 62081}, {21077, 34716}, {21151, 43179}, {21564, 56384}, {21569, 56427}, {21740, 38316}, {22791, 61279}, {22793, 34628}, {26726, 38760}, {28160, 62016}, {28174, 62106}, {28194, 62094}, {28198, 50820}, {28208, 61996}, {28224, 61268}, {28232, 50693}, {30264, 59372}, {30308, 61971}, {31425, 59417}, {31434, 37738}, {33858, 64740}, {34627, 51108}, {34631, 51107}, {34632, 62072}, {34648, 41150}, {34701, 49600}, {34718, 51097}, {34748, 51066}, {35018, 61257}, {35227, 54319}, {35401, 50806}, {37925, 51693}, {37940, 51701}, {38022, 61934}, {38024, 52682}, {38036, 43175}, {38074, 51109}, {38098, 61859}, {38176, 46219}, {38315, 55722}, {38335, 51709}, {38770, 50903}, {41722, 44878}, {45036, 54286}, {48661, 62140}, {48894, 48921}, {49176, 50843}, {49465, 55699}, {50796, 61927}, {50801, 61895}, {50812, 62089}, {50828, 61806}, {50830, 61839}, {50864, 61952}, {50865, 62158}, {51075, 62042}, {51080, 62161}, {51095, 61822}, {51104, 62077}, {51106, 62009}, {51781, 63915}, {54290, 62826}, {55582, 64084}, {56387, 57279}, {58609, 64107}, {59400, 61290}, {61245, 61890}, {61253, 61900}, {61259, 61917}, {61283, 61824}, {61294, 61875}, {63137, 64201}
X(64952) = midpoint of X(i) and X(j) for these (i, j): {1, 30389}, {3523, 20057}
X(64952) = reflection of X(i) in X(j) for these (i, j): (40, 16192), (3090, 15808), (9624, 3622), (10248, 946), (61256, 3090)
X(64952) = X(21)-beth conjugate of-X(64964)
X(64952) = pole of the line {21, 16200} with respect to the Stammler hyperbola
X(64952) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 1385, 40), (1, 21842, 57), (1, 30392, 3), (3, 11531, 40), (1385, 33179, 3), (1385, 37624, 1), (1482, 7987, 40), (2098, 64848, 1), (10246, 15178, 1), (11278, 31662, 3), (13384, 64849, 1)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 07/08/2024. (Aug 23, 2024)
X(64953) lies on these lines: {1, 3}, {2, 5881}, {4, 551}, {5, 3655}, {8, 10165}, {9, 2317}, {10, 3525}, {19, 22357}, {20, 13464}, {23, 51701}, {30, 11522}, {80, 38032}, {84, 2320}, {102, 47115}, {104, 5248}, {140, 3653}, {145, 6684}, {153, 26127}, {182, 16496}, {191, 12104}, {214, 5438}, {355, 3624}, {376, 4301}, {381, 51110}, {382, 34628}, {390, 64703}, {392, 5693}, {498, 37709}, {499, 5727}, {511, 16491}, {515, 3091}, {516, 10595}, {518, 53093}, {519, 631}, {546, 5691}, {547, 61258}, {549, 9588}, {550, 3656}, {572, 3247}, {575, 3751}, {576, 16475}, {581, 1201}, {601, 40091}, {632, 952}, {944, 1125}, {946, 3146}, {950, 37704}, {962, 26842}, {991, 35227}, {993, 15829}, {997, 51111}, {1001, 64197}, {1006, 8666}, {1071, 58679}, {1386, 11477}, {1387, 12119}, {1483, 3632}, {1572, 35007}, {1621, 5450}, {1656, 28204}, {1657, 50865}, {1699, 3627}, {1702, 6425}, {1703, 6426}, {1768, 19907}, {1829, 55578}, {2045, 36444}, {2046, 36462}, {2136, 22837}, {2650, 58392}, {2800, 3890}, {2975, 3951}, {3058, 31775}, {3083, 21553}, {3084, 21492}, {3085, 63987}, {3241, 3523}, {3242, 10541}, {3243, 52769}, {3244, 5657}, {3476, 13411}, {3485, 4311}, {3486, 44675}, {3487, 4315}, {3518, 7713}, {3522, 5734}, {3524, 31425}, {3526, 19875}, {3528, 5493}, {3529, 3636}, {3530, 3654}, {3533, 3828}, {3544, 15808}, {3545, 51108}, {3554, 37503}, {3582, 6863}, {3584, 6958}, {3586, 11376}, {3592, 7968}, {3594, 7969}, {3600, 64110}, {3617, 61848}, {3621, 38127}, {3623, 28234}, {3625, 58441}, {3626, 63915}, {3633, 5690}, {3634, 59388}, {3635, 10164}, {3640, 45551}, {3641, 45550}, {3646, 3897}, {3680, 6940}, {3720, 19647}, {3817, 61964}, {3843, 28208}, {3850, 38022}, {3855, 34648}, {3857, 61272}, {3869, 12005}, {3873, 31806}, {3877, 5884}, {3884, 64021}, {3915, 37469}, {3928, 6875}, {3984, 4511}, {4293, 64160}, {4305, 12053}, {4308, 21620}, {4309, 6948}, {4312, 38030}, {4313, 63993}, {4317, 4654}, {4355, 30264}, {4421, 33895}, {4652, 62826}, {4653, 64393}, {4666, 36002}, {4668, 61840}, {4669, 15702}, {4677, 5054}, {4745, 15709}, {4853, 5440}, {4855, 4861}, {4857, 6923}, {4870, 9657}, {4995, 31436}, {5007, 9575}, {5056, 50796}, {5067, 19883}, {5068, 50864}, {5070, 30315}, {5071, 51109}, {5072, 7988}, {5076, 18493}, {5079, 7989}, {5085, 49465}, {5198, 11363}, {5219, 45287}, {5223, 38031}, {5253, 6796}, {5258, 6883}, {5259, 22758}, {5270, 6928}, {5289, 31424}, {5290, 37737}, {5313, 37698}, {5315, 36742}, {5330, 35258}, {5426, 7701}, {5428, 16126}, {5432, 37738}, {5433, 37740}, {5434, 31789}, {5436, 6920}, {5437, 30147}, {5444, 37707}, {5453, 48883}, {5541, 64742}, {5550, 10175}, {5625, 39553}, {5687, 11525}, {5692, 31838}, {5730, 62824}, {5732, 42819}, {5735, 44238}, {5790, 55858}, {5794, 49176}, {5816, 62648}, {5818, 19862}, {5844, 61284}, {6173, 6934}, {6176, 21214}, {6261, 6912}, {6265, 7330}, {6361, 62092}, {6419, 18992}, {6420, 18991}, {6427, 19003}, {6428, 19004}, {6453, 9615}, {6454, 35774}, {6519, 9618}, {6713, 7972}, {6756, 34634}, {6762, 22836}, {6765, 11260}, {6825, 10072}, {6842, 37720}, {6878, 31458}, {6882, 37719}, {6889, 12625}, {6891, 10056}, {6897, 34701}, {6907, 37722}, {6915, 51683}, {6922, 15888}, {6936, 28609}, {6937, 24387}, {6946, 54318}, {6947, 34716}, {6949, 10199}, {6952, 10197}, {6961, 31452}, {6967, 45701}, {6978, 9578}, {6982, 10572}, {6984, 25525}, {6986, 62837}, {6987, 63274}, {6996, 29597}, {7091, 56027}, {7160, 63163}, {7162, 56036}, {7288, 64163}, {7308, 37700}, {7419, 54356}, {7483, 20418}, {7580, 64667}, {7772, 9619}, {7966, 17572}, {7984, 15020}, {7993, 22935}, {8129, 30411}, {8130, 30423}, {8550, 47358}, {8583, 16842}, {9538, 36984}, {9574, 31652}, {9579, 21578}, {9593, 22332}, {9612, 15950}, {9613, 11375}, {9616, 35642}, {9620, 53096}, {9623, 59691}, {9643, 37404}, {9708, 51577}, {9778, 62083}, {9780, 47745}, {9812, 49140}, {9856, 63432}, {9864, 20399}, {9897, 57298}, {9900, 20416}, {9901, 20415}, {9955, 61984}, {9956, 18526}, {10110, 64661}, {10129, 40259}, {10167, 45776}, {10179, 12672}, {10198, 10785}, {10200, 10786}, {10283, 12699}, {10299, 50810}, {10386, 24466}, {10444, 17394}, {10519, 49684}, {10573, 31231}, {10582, 12650}, {10860, 62856}, {10884, 58808}, {10888, 37869}, {10944, 31434}, {10990, 50878}, {10991, 50881}, {10992, 50886}, {10993, 50891}, {11001, 51106}, {11036, 63438}, {11191, 31791}, {11194, 54422}, {11231, 12645}, {11234, 31790}, {11240, 37112}, {11272, 22650}, {11372, 16132}, {11520, 37106}, {11539, 61297}, {11541, 51118}, {11682, 54290}, {11700, 38674}, {11709, 15054}, {11710, 38664}, {11711, 23235}, {11712, 38666}, {11713, 38667}, {11714, 38668}, {11716, 38670}, {11717, 38671}, {11718, 38672}, {11719, 38673}, {11720, 14094}, {11721, 38675}, {11722, 38676}, {11729, 64145}, {11826, 15172}, {12082, 51692}, {12102, 38034}, {12103, 22791}, {12114, 64260}, {12247, 33812}, {12265, 38689}, {12266, 15801}, {12407, 36253}, {12437, 34625}, {12512, 62084}, {12531, 38133}, {12577, 64004}, {12629, 56176}, {12653, 33814}, {12680, 61705}, {12735, 21154}, {12737, 15015}, {12751, 20400}, {12811, 61268}, {12812, 28224}, {12844, 55172}, {13178, 20398}, {13211, 20397}, {13253, 38602}, {13541, 38604}, {13747, 51112}, {14261, 47639}, {14872, 16860}, {14912, 49505}, {14986, 37797}, {15022, 46934}, {15069, 51003}, {15325, 37739}, {15682, 41150}, {15693, 31447}, {15694, 51066}, {15696, 28198}, {15698, 51107}, {15699, 61255}, {15707, 51094}, {15712, 50832}, {15719, 51091}, {15720, 34747}, {16113, 16137}, {16474, 36754}, {16483, 36746}, {16484, 37474}, {16486, 37501}, {16487, 62183}, {16625, 64662}, {16667, 64125}, {16673, 64121}, {16855, 35272}, {16862, 17614}, {16865, 31435}, {17170, 25723}, {17525, 41691}, {17527, 37725}, {17531, 19860}, {17543, 20117}, {18357, 61900}, {18483, 50688}, {19546, 26102}, {19708, 51104}, {19872, 38042}, {19876, 46219}, {19878, 38155}, {20049, 50827}, {20057, 59417}, {20070, 62078}, {20401, 50903}, {21151, 30331}, {21153, 42871}, {21165, 62822}, {21401, 51688}, {21402, 51690}, {21554, 48854}, {21565, 56384}, {21568, 56427}, {21734, 34632}, {21735, 50808}, {21740, 63430}, {22713, 61132}, {22793, 49136}, {23073, 40937}, {23155, 31825}, {24914, 37734}, {25440, 45036}, {25485, 38693}, {26066, 64283}, {26201, 40266}, {26487, 37711}, {26492, 37708}, {28146, 62143}, {28150, 62152}, {28164, 62028}, {28168, 62035}, {28174, 62104}, {28186, 61988}, {28202, 62131}, {28232, 58195}, {29580, 37416}, {29817, 35986}, {29826, 39572}, {30332, 64830}, {30714, 50921}, {31145, 38068}, {31673, 50689}, {31730, 62097}, {31870, 64149}, {33337, 64278}, {33520, 50898}, {33521, 50905}, {33538, 35193}, {33697, 62004}, {34474, 64137}, {34607, 64767}, {34631, 61138}, {34638, 62113}, {34641, 61836}, {34712, 34938}, {34718, 61811}, {34748, 55863}, {34772, 61122}, {34791, 64107}, {35479, 41722}, {35514, 43179}, {36846, 64199}, {36922, 64323}, {37438, 37726}, {37519, 54424}, {37699, 49997}, {37705, 55861}, {37710, 38033}, {37724, 52265}, {37733, 41229}, {37934, 47593}, {37946, 51693}, {38036, 43161}, {38053, 43175}, {38066, 51087}, {38074, 51082}, {38076, 61921}, {38083, 55860}, {38112, 61292}, {38140, 61935}, {38220, 38734}, {38315, 53097}, {38757, 64191}, {38760, 64056}, {40107, 50950}, {40273, 62044}, {40658, 58795}, {41705, 52653}, {41863, 54391}, {41989, 61266}, {41992, 61245}, {43177, 47357}, {44245, 61279}, {44811, 48337}, {46822, 62218}, {47495, 62344}, {48154, 61248}, {48661, 62134}, {48893, 52524}, {48894, 48897}, {49469, 64728}, {49532, 51046}, {50528, 64679}, {50799, 61940}, {50805, 61803}, {50806, 62023}, {50815, 62127}, {50819, 62147}, {50823, 61824}, {50829, 61817}, {50833, 61813}, {50871, 55856}, {50872, 62067}, {51068, 61846}, {51069, 61859}, {51072, 61844}, {51075, 62171}, {51077, 61791}, {51084, 61815}, {51092, 61812}, {51095, 61809}, {51096, 61822}, {51120, 62096}, {51713, 62288}, {51714, 64675}, {51715, 63992}, {53620, 55864}, {55873, 62874}, {59503, 61831}, {61254, 61892}, {61264, 61923}, {61271, 61955}, {61280, 62091}, {61281, 61802}, {61283, 61524}, {61290, 61837}, {61295, 61852}, {61510, 61858}, {61597, 61801}, {62870, 64150}, {64085, 64196}
X(64953) = midpoint of X(i) and X(j) for these (i, j): {1, 7987}, {3522, 5734}, {5882, 31399}, {16189, 63469}
X(64953) = reflection of X(i) in X(j) for these (i, j): (1, 37624), (3, 31666), (40, 35242), (5071, 51109), (5818, 19862), (7982, 16189), (8227, 3616), (11522, 61276), (18492, 8227), (35242, 7987), (37714, 1656), (51066, 15694), (61250, 5818), (63469, 3)
X(64953) = anticomplement of X(31399)
X(64953) = isogonal conjugate of the Cundy-Parry-Psi-transform of X(64964)
X(64953) = Cundy-Parry-Phi-transform of X(64964)
X(64953) = X(21)-beth conjugate of-X(3340)
X(64953) = X(31399)-Dao conjugate of-X(31399)
X(64953) = inverse of X(40) in Hung circle
X(64953) = pole of the line {672, 63214} with respect to the Gheorghe circle
X(64953) = pole of the line {40, 513} with respect to the Hung circle
X(64953) = pole of the line {910, 63214} with respect to the Stevanovic circle
X(64953) = pole of the line {21, 7982} with respect to the Stammler hyperbola
X(64953) = (2nd circumperp)-isogonal conjugate-of-X(63754)
X(64953) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 3576, 40), (1, 30389, 3), (3, 7982, 40), (3, 15178, 1), (1319, 34471, 1), (1385, 10246, 1), (1385, 15178, 3), (1388, 2646, 1), (1697, 59333, 40), (1697, 64849, 1), (3295, 25405, 1), (3340, 59331, 40), (3576, 7982, 3), (7962, 59332, 40), (7987, 63469, 3)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 07/08/2024. (Aug 23, 2024)
X(64954) lies on these lines: {1, 3}, {2, 61256}, {4, 15808}, {8, 15708}, {10, 15702}, {20, 61275}, {104, 28156}, {140, 61244}, {145, 61806}, {355, 16239}, {376, 3636}, {392, 19539}, {515, 5056}, {516, 62113}, {518, 55699}, {519, 15719}, {547, 3624}, {548, 61277}, {549, 3632}, {551, 11001}, {572, 16676}, {631, 3626}, {632, 61253}, {944, 3533}, {946, 5059}, {952, 61837}, {962, 62102}, {1125, 3545}, {1386, 55582}, {1483, 9588}, {1571, 15602}, {1698, 3655}, {1699, 62036}, {1702, 6429}, {1703, 6430}, {3241, 61796}, {3244, 3524}, {3523, 13607}, {3525, 28236}, {3526, 37712}, {3530, 61287}, {3543, 3616}, {3617, 5882}, {3621, 6684}, {3622, 31162}, {3625, 7967}, {3633, 41983}, {3646, 16859}, {3647, 15829}, {3656, 62098}, {3679, 11812}, {3751, 50664}, {3832, 5731}, {3843, 61271}, {3845, 18481}, {3850, 5691}, {3853, 5886}, {3897, 17535}, {4297, 9624}, {4305, 37704}, {4663, 55711}, {4677, 32900}, {4678, 38068}, {4691, 50818}, {4816, 37727}, {5008, 9575}, {5067, 5587}, {5097, 38029}, {5438, 51111}, {5603, 62127}, {5657, 61288}, {5690, 61813}, {5881, 9780}, {5901, 62155}, {6361, 50812}, {6431, 9583}, {6433, 44636}, {6434, 44635}, {6437, 7968}, {6438, 7969}, {6484, 35775}, {6485, 35774}, {6486, 9616}, {7713, 47485}, {7988, 61946}, {7989, 61911}, {8583, 17542}, {9589, 10283}, {9615, 35762}, {9955, 34628}, {9956, 61875}, {10303, 47745}, {10308, 16132}, {10595, 62096}, {11230, 61937}, {11522, 51700}, {11684, 56387}, {12245, 31425}, {12699, 15686}, {13464, 62110}, {15690, 22791}, {15692, 20057}, {15693, 34747}, {15705, 51077}, {15707, 51087}, {15709, 51082}, {15717, 28234}, {15723, 28204}, {16475, 37517}, {16491, 55594}, {16496, 55691}, {16854, 17614}, {16858, 19861}, {18357, 54447}, {18480, 61920}, {18493, 51110}, {18519, 25542}, {18525, 34595}, {18526, 19875}, {19711, 51093}, {19860, 36006}, {19876, 61862}, {19878, 61884}, {19883, 61913}, {20054, 50827}, {21735, 28228}, {22793, 61274}, {26446, 61295}, {28160, 61990}, {28186, 41991}, {28194, 62081}, {28208, 61950}, {28232, 62097}, {28463, 33858}, {30308, 33697}, {31253, 38074}, {31445, 51577}, {31730, 38314}, {34627, 51073}, {34641, 61822}, {34716, 59719}, {34748, 51084}, {37714, 61878}, {37944, 51701}, {38022, 61999}, {38098, 61833}, {38127, 61820}, {38176, 55863}, {38315, 55607}, {38316, 43178}, {38758, 64191}, {44682, 61281}, {46333, 51075}, {46853, 61280}, {48154, 61257}, {50528, 64260}, {50796, 61897}, {50801, 61861}, {50804, 61827}, {50814, 61780}, {50819, 51119}, {50865, 62140}, {51080, 62017}, {51094, 61797}, {51103, 62077}, {51108, 62009}, {51109, 61961}, {51709, 62158}, {55591, 64084}, {55703, 64070}, {58808, 62829}, {61246, 61853}, {61276, 62123}, {61289, 61811}
X(64954) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 16200, 40), (1385, 31662, 3), (1482, 58223, 165), (3579, 10246, 1), (7987, 63468, 3), (8148, 15178, 1), (11278, 13624, 3), (24926, 37524, 1), (32636, 34471, 1)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 09/08/2024. (Aug 23, 2024)
X(64955) lies on the cubics K680, K1056 and these lines: {35, 33669}, {42, 8614}, {55, 501}, {191, 210}, {1030, 1334}, {33670, 59140}
X(64955) = isogonal conjugate of X(3648)
X(64955) = crosssum of X(191) and X(63267)
X(64955) = X(6186)-cross conjugate of-X(6)
X(64955) = X(32664)-Dao conjugate of-X(16553)
X(64955) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 16553}, {1125, 33670}
X(64955) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (31, 16553), (28615, 33670)
X(64955) = X(35)-vertex conjugate of-X(35)
X(64955) = barycentric product X(19620)*X(57419)
X(64955) = trilinear quotient X(i)/X(j) for these (i, j): (6, 16553), (1126, 33670), (19620, 3578)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 09/08/2024. (Aug 23, 2024)
X(64956) lies on these lines: {62218, 63469}
X(64956) = isogonal conjugate of the anticomplement of X(5556)
X(64956) = X(5217)-vertex conjugate of-X(5217)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/08/2024 (bottom). (Aug 24, 2024)
X(64957) lies on these lines: {10, 56295}, {1330, 56288}, {21076, 46676}
X(64957) = cevapoint of X(4064) and X(21710)
X(64957) = X(3)-cross conjugate of-X(10)
X(64957) = X(i)-Dao conjugate of-X(j) for these (i, j): (10, 1710), (40591, 56295)
X(64957) = X(i)-isoconjugate of-X(j) for these {i, j}: {28, 56295}, {58, 1710}
X(64957) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (37, 1710), (71, 56295)
X(64957) = trilinear quotient X(i)/X(j) for these (i, j): (10, 1710), (72, 56295)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/08/2024 (bottom). (Aug 24, 2024)
X(64958) lies on these lines: {10, 56300}, {306, 1330}, {3695, 21076}
X(64958) = X(i)-cross conjugate of-X(j) for these (i, j): (4, 10), (64959, 63885)
X(64958) = X(i)-Dao conjugate of-X(j) for these (i, j): (10, 2939), (37, 3151), (1214, 18631)
X(64958) = X(i)-isoconjugate of-X(j) for these {i, j}: {58, 2939}, {1333, 3151}, {1437, 56301}, {2194, 18631}
X(64958) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (10, 3151), (37, 2939), (226, 18631), (1826, 56301), (34440, 58)
X(64958) = barycentric product X(313)*X(34440)
X(64958) = trilinear product X(321)*X(34440)
X(64958) = trilinear quotient X(i)/X(j) for these (i, j): (10, 2939), (321, 3151), (1441, 18631), (34440, 1333), (41013, 56301)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/08/2024 (bottom). (Aug 24, 2024)
X(64959) lies on these lines: {2, 15377}, {10, 199}, {27, 21046}, {42, 4213}, {71, 1654}, {306, 21587}, {2197, 16577}, {2359, 38822}, {3678, 3690}, {3949, 3969}, {6186, 15168}, {7560, 23899}, {21076, 28654}, {21092, 22000}
X(64959) = isogonal conjugate of X(40589)
X(64959) = cevapoint of X(i) and X(j) for these {i, j}: {6, 3437}, {523, 21046}, {661, 21054}, {3930, 20656}, {4024, 21710}, {4079, 21709}
X(64959) = crosspoint of X(63885) and X(64958)
X(64959) = X(6)-cross conjugate of-X(10)
X(64959) = X(i)-Dao conjugate of-X(j) for these (i, j): (10, 1761), (37, 1330), (115, 21187), (4075, 21076), (39026, 57062), (40586, 199), (40591, 22133), (40603, 20929)
X(64959) = X(i)-isoconjugate of-X(j) for these {i, j}: {28, 22133}, {58, 1761}, {81, 199}, {163, 21187}, {513, 57062}, {849, 21076}, {1330, 1333}, {2206, 20929}
X(64959) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (10, 1330), (37, 1761), (42, 199), (71, 22133), (101, 57062), (321, 20929), (523, 21187), (594, 21076), (3437, 58), (8044, 86), (40142, 593), (57778, 310)
X(64959) = trilinear pole of the line {23282, 53424} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(64959) = 1st Saragossa point of X(199)
X(64959) = barycentric product X(i)*X(j) for these {i, j}: {10, 8044}, {42, 57778}, {313, 3437}, {28654, 40142}
X(64959) = trilinear product X(i)*X(j) for these {i, j}: {37, 8044}, {213, 57778}, {321, 3437}, {1089, 40142}
X(64959) = trilinear quotient X(i)/X(j) for these (i, j): (10, 1761), (37, 199), (72, 22133), (100, 57062), (313, 20929), (321, 1330), (1089, 21076), (1577, 21187), (3437, 1333), (8044, 81), (40142, 849), (57778, 274)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/08/2024 (bottom). (Aug 24, 2024)
X(64960) lies on these lines: {10, 30447}, {12, 47057}
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 11/08/2024 (bottom). (Aug 25, 2024)
X(64961) lies on these lines: {10, 14873}, {12, 664}
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 15/08/2024 (bottom). (Aug 25, 2024)
X(64962) lies on these lines: {10, 53332}, {115, 4705}, {3120, 21725}, {21043, 21961}, {21709, 21710}, {40608, 50487}
X(64962) = X(2051)-Ceva conjugate of-X(4079)
X(64962) = X(2533)-Dao conjugate of-X(17103)
X(64962) = X(25667)-reciprocal conjugate of-X(4623)
X(64962) = barycentric product X(4705)*X(25667)
X(64962) = trilinear product X(4079)*X(25667)
X(64962) = trilinear quotient X(25667)/X(4610)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 16/08/2024. (Aug 25, 2024)
X(64963) lies on these lines: {1, 3}, {4, 16615}, {7, 10944}, {8, 3649}, {12, 3617}, {45, 2171}, {78, 10107}, {79, 18525}, {108, 28167}, {145, 5434}, {153, 5229}, {198, 62210}, {226, 3626}, {355, 9656}, {377, 5855}, {388, 3621}, {474, 3919}, {516, 37724}, {519, 10404}, {553, 3244}, {936, 3922}, {944, 11246}, {946, 61717}, {952, 9657}, {956, 4084}, {958, 11684}, {959, 40434}, {962, 9670}, {997, 4004}, {1317, 3600}, {1358, 62794}, {1376, 62830}, {1389, 12114}, {1400, 16672}, {1411, 4332}, {1468, 18360}, {1469, 9049}, {1478, 11544}, {1483, 4317}, {1698, 4870}, {1737, 61268}, {1770, 37739}, {1788, 4323}, {1836, 31673}, {1837, 18483}, {1887, 54446}, {2285, 16666}, {2334, 2650}, {3296, 34631}, {3475, 45081}, {3476, 52783}, {3485, 9780}, {3556, 56924}, {3577, 12688}, {3614, 6874}, {3622, 5298}, {3625, 3671}, {3632, 4654}, {3634, 4848}, {3647, 30147}, {3654, 63259}, {3754, 4413}, {3812, 11682}, {3869, 27065}, {3873, 10912}, {3878, 4423}, {3880, 11520}, {3885, 42871}, {3893, 41863}, {3899, 11108}, {3911, 15808}, {3913, 34195}, {3962, 9623}, {4292, 37740}, {4293, 37734}, {4295, 10950}, {4298, 37738}, {4299, 37728}, {4309, 28212}, {4338, 28160}, {4420, 12635}, {4430, 64201}, {4744, 8666}, {4816, 5290}, {4867, 9709}, {4955, 9312}, {5220, 7672}, {5247, 53115}, {5270, 12645}, {5302, 19860}, {5433, 46934}, {5554, 31141}, {5560, 14269}, {5586, 51093}, {5687, 62822}, {5692, 51572}, {5904, 40587}, {6147, 12647}, {6361, 10543}, {6738, 12701}, {7201, 49503}, {7319, 55924}, {9578, 36920}, {9612, 61256}, {9624, 61649}, {9654, 41684}, {9655, 11552}, {9671, 37702}, {10056, 16137}, {10573, 10895}, {10592, 64127}, {10624, 14563}, {10894, 12247}, {10896, 18391}, {10914, 12559}, {11238, 22791}, {11362, 17718}, {11553, 30116}, {12019, 38141}, {12047, 61261}, {12245, 15888}, {12560, 60909}, {12672, 61663}, {12953, 37730}, {13464, 17728}, {15254, 41712}, {15570, 60938}, {16236, 37709}, {17018, 63295}, {17097, 56203}, {17098, 31937}, {18761, 48668}, {18990, 61295}, {19037, 38235}, {19862, 24914}, {20070, 63273}, {21863, 54322}, {22759, 62235}, {22793, 37721}, {24297, 43733}, {24470, 61292}, {24982, 34647}, {25524, 62826}, {30332, 60883}, {31140, 49168}, {31145, 32634}, {31165, 64673}, {33895, 62832}, {34501, 45085}, {37106, 63272}, {37719, 59503}, {38513, 61696}, {39793, 50575}, {41436, 46190}, {57282, 61244}
X(64963) = isogonal conjugate of the Cundy-Parry-Psi-transform of X(13624)
X(64963) = Cundy-Parry-Phi-transform of X(13624)
X(64963) = isogonal conjugate of the Cundy-Parry-Phi-transform of X(16615)
X(64963) = Cundy-Parry-Psi-transform of X(16615)
X(64963) = X(1)-beth conjugate of-X(3339)
X(64963) = X(522)-isoconjugate of-X(28166)
X(64963) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1415, 28166), (16675, 8), (28165, 4391), (58165, 650), (64425, 314)
X(64963) = pole of the line {513, 30726} with respect to the incircle
X(64963) = pole of the line {513, 30726} with respect to the de Longchamps ellipse
X(64963) = pole of the line {1, 16616} with respect to the Feuerbach circumhyperbola
X(64963) = pole of the line {17496, 30724} with respect to the Steiner circumellipse
X(64963) = barycentric product X(i)*X(j) for these {i, j}: {7, 16675}, {65, 64425}, {651, 28165}, {4554, 58165}
X(64963) = trilinear product X(i)*X(j) for these {i, j}: {57, 16675}, {109, 28165}, {664, 58165}, {1400, 64425}
X(64963) = trilinear quotient X(i)/X(j) for these (i, j): (109, 28166), (16675, 9), (28165, 522), (58165, 663), (64425, 333)
X(64963) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 5221, 56), (1, 12702, 55), (57, 1388, 56), (65, 2099, 56), (65, 11011, 57), (942, 11278, 1), (1466, 18967, 56), (2099, 5221, 1), (3340, 18421, 65), (13624, 50194, 1)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 16/08/2024. (Aug 25, 2024)
X(64964) lies on these lines: {1, 3}, {2, 46872}, {7, 3623}, {8, 5219}, {9, 11526}, {10, 64736}, {12, 3632}, {34, 41434}, {84, 14497}, {145, 226}, {244, 15839}, {388, 3244}, {498, 63143}, {499, 61275}, {519, 3485}, {551, 1788}, {553, 4308}, {936, 4002}, {944, 9579}, {946, 5727}, {952, 9612}, {997, 3918}, {1191, 52423}, {1210, 10595}, {1317, 10404}, {1320, 5665}, {1389, 3577}, {1392, 7091}, {1405, 16676}, {1419, 7201}, {1421, 54418}, {1449, 2171}, {1450, 56804}, {1451, 40091}, {1478, 61296}, {1483, 57282}, {1616, 52424}, {1698, 15950}, {1699, 10950}, {1706, 4511}, {1737, 9624}, {1770, 50811}, {1836, 37734}, {1837, 11522}, {2003, 34040}, {2136, 4917}, {2263, 33633}, {3085, 28234}, {3158, 14923}, {3241, 4654}, {3243, 16133}, {3476, 3635}, {3486, 4301}, {3583, 18962}, {3584, 50817}, {3586, 22791}, {3600, 20057}, {3616, 4848}, {3621, 5226}, {3622, 3911}, {3624, 40663}, {3626, 10588}, {3633, 5252}, {3636, 7288}, {3649, 37738}, {3656, 9614}, {3679, 11375}, {3680, 3870}, {3697, 5730}, {3869, 3929}, {3872, 11523}, {3877, 5436}, {3890, 7672}, {3894, 45288}, {3898, 12432}, {3915, 55101}, {3928, 64047}, {4067, 57279}, {4292, 7967}, {4293, 13607}, {4295, 5882}, {4298, 51071}, {4305, 28194}, {4321, 15570}, {4327, 15600}, {4328, 4864}, {4338, 36975}, {4420, 51781}, {4662, 63916}, {4673, 6358}, {4677, 4870}, {4816, 39777}, {4853, 12635}, {4861, 6762}, {4930, 34790}, {5083, 62854}, {5229, 28236}, {5234, 31165}, {5261, 20050}, {5289, 64673}, {5290, 10944}, {5330, 54392}, {5434, 34719}, {5438, 56387}, {5443, 54447}, {5554, 30827}, {5603, 9581}, {5691, 37740}, {5726, 39782}, {5734, 12053}, {5795, 31142}, {5836, 46917}, {5844, 11374}, {5881, 12047}, {6049, 21454}, {6147, 61597}, {6692, 24558}, {7274, 19604}, {7308, 15829}, {7951, 64766}, {8000, 10698}, {8227, 10573}, {8236, 52819}, {8275, 45081}, {9613, 37727}, {9657, 61289}, {9848, 18979}, {10107, 64112}, {10572, 31162}, {10590, 47745}, {10826, 38021}, {10895, 37712}, {10956, 26726}, {11237, 34747}, {11260, 62823}, {11519, 41711}, {11520, 38460}, {11545, 61268}, {12245, 13411}, {12559, 22837}, {12560, 42871}, {12640, 63168}, {12653, 12739}, {12699, 37728}, {12709, 34791}, {12854, 45120}, {13253, 64372}, {13464, 18391}, {14563, 64703}, {15325, 61277}, {15888, 64127}, {16474, 64020}, {16616, 63992}, {16785, 56913}, {17090, 40719}, {17098, 21398}, {17474, 56546}, {17605, 37714}, {17606, 30286}, {17625, 58609}, {18393, 18492}, {18412, 64042}, {18990, 61287}, {19784, 56469}, {19836, 56467}, {20013, 21617}, {20076, 60933}, {22836, 63137}, {24392, 41575}, {24467, 61148}, {24470, 61283}, {24914, 25055}, {26742, 52541}, {30147, 31435}, {30305, 41864}, {30318, 60953}, {30332, 61021}, {31434, 37737}, {32098, 63578}, {35258, 51683}, {36845, 64205}, {37692, 41684}, {41539, 58679}, {41863, 62822}, {44635, 51841}, {44636, 51842}, {44663, 62824}, {45287, 61291}, {47057, 63333}, {50444, 61717}, {50575, 56198}, {51646, 53411}, {58816, 63574}, {59414, 60943}, {59584, 63133}, {61294, 61716}
X(64964) = midpoint of X(145) and X(5175)
X(64964) = reflection of X(i) in X(j) for these (i, j): (3601, 1), (9578, 3485)
X(64964) = isogonal conjugate of the Cundy-Parry-Psi-transform of X(64953)
X(64964) = Cundy-Parry-Phi-transform of X(64953)
X(64964) = crosssum of X(1) and X(30389)
X(64964) = X(4678)-beth conjugate of-X(4678)
X(64964) = X(522)-isoconjugate of-X(28192)
X(64964) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1415, 28192), (4678, 312), (58161, 650)
X(64964) = pole of the line {226, 4902} with respect to the circumhyperbola dual of Yff parabola
X(64964) = pole of the line {1, 40262} with respect to the Feuerbach circumhyperbola
X(64964) = pole of the line {905, 62575} with respect to the Steiner inellipse
X(64964) = barycentric product X(i)*X(j) for these {i, j}: {57, 4678}, {4554, 58161}
X(64964) = trilinear product X(i)*X(j) for these {i, j}: {56, 4678}, {664, 58161}
X(64964) = trilinear quotient X(i)/X(j) for these (i, j): (109, 28192), (4678, 8), (58161, 663)
X(64964) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 3340, 57), (1, 11531, 55), (1, 18421, 56), (1, 25415, 40), (65, 1420, 57), (942, 10247, 1), (999, 33179, 1), (1482, 50194, 1), (2099, 11011, 1), (3304, 33176, 1), (5173, 10389, 57)
X(64965) lies on the cubic K869 and these lines: {468, 20403}, {523, 43291}, {804, 14120}, {2492, 5099}, {11176, 36168}, {16760, 62506}
X(64965) = midpoint of X(2492) and X(5099)
X(64966) lies on these lines: {2, 3}, {115, 16320}, {187, 47243}, {230, 5099}, {523, 43291}, {597, 15539}, {842, 39663}, {1499, 47296}, {2453, 43620}, {2682, 61691}, {3564, 47550}, {5461, 62508}, {13881, 47284}, {15269, 34169}, {16316, 51258}, {16509, 50146}, {40544, 44381}, {46986, 52229}, {46998, 63945}, {46999, 47570}, {47246, 47326}, {47450, 53505}, {47453, 53499}, {47559, 47574}, {51733, 61755}
X(64966) = midpoint of X(i) and X(j) for these {i,j}: {115, 16320}, {230, 5099}, {468, 14120}, {7426, 37350}, {11799, 56370}, {16316, 51258}, {27088, 36196}, {46999, 47570}, {47326, 53419}, {47559, 47574}
X(64966) = reflection of X(40544) in X(44381)
X(64966) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {468, 10151, 46619}, {468, 47097, 47349}, {47246, 53419, 47326}
X(64967) lies on these lines: {2, 2006}, {6, 24149}, {7, 2994}, {75, 3219}, {92, 3218}, {149, 17860}, {312, 20887}, {321, 5233}, {614, 17890}, {982, 1109}, {1029, 52442}, {1441, 27186}, {1479, 52344}, {1733, 17127}, {1993, 24148}, {2345, 56465}, {2475, 20320}, {3210, 62305}, {3262, 32858}, {3616, 23555}, {3782, 4957}, {3928, 14212}, {3995, 40564}, {4000, 56461}, {4671, 20237}, {5012, 24332}, {5271, 55872}, {5361, 20882}, {6757, 18398}, {7191, 17871}, {7741, 63804}, {14616, 40214}, {16732, 33146}, {17024, 17884}, {17118, 55438}, {17119, 55466}, {17861, 33150}, {17862, 31019}, {17874, 29814}, {19721, 28606}, {20223, 55873}, {20236, 28605}, {20883, 56448}, {23690, 33131}, {24209, 26723}, {24430, 60804}, {27003, 54284}, {31053, 48380}
X(64967) = barycentric product X(i)*X(j) for these {i,j}: {75, 7741}, {86, 63804}, {333, 63809}, {14616, 63803}
X(64967) = barycentric quotient X(i)/X(j) for these {i,j}: {7741, 1}, {9219, 7951}, {63803, 758}, {63804, 10}, {63809, 226}
X(64967) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 24145, 20268}, {75, 20919, 32933}, {4858, 14213, 2}
X(64968) lies on these lines: {94, 20268}, {5392, 24148}
X(64969) lies on these lines: {2, 2006}, {6, 24148}, {8, 79}, {75, 1150}, {92, 3219}, {110, 24332}, {192, 62305}, {312, 20886}, {321, 3262}, {612, 17890}, {984, 1109}, {1441, 31019}, {1733, 17126}, {1993, 24149}, {2345, 56463}, {3006, 31084}, {3596, 61410}, {3920, 17871}, {3929, 14212}, {4000, 56459}, {4671, 20236}, {4980, 49722}, {5125, 41013}, {5143, 26227}, {5271, 55873}, {5372, 20882}, {11680, 45954}, {15065, 17057}, {16732, 33151}, {17018, 17874}, {17118, 22129}, {17119, 55437}, {17861, 33155}, {17862, 27186}, {17884, 29815}, {18668, 40903}, {20223, 55872}, {20883, 56449}, {20909, 47676}, {21028, 23293}, {23690, 33134}, {27065, 30854}, {31025, 40564}, {34772, 50558}
X(64969) = X(5397)-anticomplementary conjugate of X(69) Basepoints of perspective triangles: X(64970)-X(65084)
X(64969) = barycentric product X(i)*X(j) for these {i,j}: {75, 7951}, {190, 63825}, {15455, 63826}
X(64969) = barycentric quotient X(i)/X(j) for these {i,j}: {7951, 1}, {9219, 7741}, {18116, 2605}, {63825, 514}, {63826, 14838}
X(64969) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 20920, 1150}, {321, 3262, 33077}, {1441, 48380, 31019}, {6358, 14213, 2}
This preamble and centers X(64970)-X(65084) were contributed by Ivan Pavlov on Aug 26, 2024.
Given two perspective, but non-homothetic central triangles P1P2P3 and Q1Q2Q3 with perpsector S, determine the numbers x1, x2, and x3 such that:
xi*S + (1-xi)*Qi = Pi for each i=1,2,3 where the sum and equality are barycentric operations.
If such numbers exist they are unique and (x1:x2:x3) is a triangle center which we call 1st basepoint of P1P2P3 wrt Q1Q2Q3.
Similarly, using the conditions (1-xi)*S + xi*Qi = Pi, we can define the 2nd basepoint.
It can be proven that if the 1st basepoint exists, then the 2nd basepoint also exists.
For more information and results see this Euclid thread.
X(64970) lies on these lines: {2, 3}, {298, 648}, {302, 17907}, {340, 37786}, {621, 44700}, {5463, 6111}, {6110, 50855}, {6117, 40334}, {6330, 36306}, {9308, 34540}, {15595, 51016}, {16080, 42035}, {32001, 63032}, {34389, 59156}, {36302, 52194}, {41000, 60516}, {43530, 62934}
X(64970) = polar conjugate of X(54569)
X(64970) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(14538)}}, {{A, B, C, X(30), X(42035)}}, {{A, B, C, X(381), X(62934)}}, {{A, B, C, X(441), X(40709)}}, {{A, B, C, X(470), X(6330)}}, {{A, B, C, X(2409), X(36306)}}, {{A, B, C, X(55950), X(60660)}}
X(64970) = barycentric product X(i)*X(j) for these (i, j): {14538, 264}
X(64970) = barycentric quotient X(i)/X(j) for these (i, j): {4, 54569}, {14538, 3}
X(64970) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 297, 470}
X(64971) lies on these lines: {2, 3}, {299, 648}, {303, 17907}, {340, 37785}, {622, 44701}, {5464, 6110}, {6111, 50858}, {6116, 40335}, {6330, 36309}, {9308, 34541}, {15595, 51018}, {16080, 42036}, {32001, 63033}, {34390, 59156}, {36303, 52193}, {41001, 60516}, {43530, 62933}
X(64971) = polar conjugate of X(54570)
X(64971) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(14539)}}, {{A, B, C, X(30), X(42036)}}, {{A, B, C, X(381), X(62933)}}, {{A, B, C, X(441), X(40710)}}, {{A, B, C, X(471), X(6330)}}, {{A, B, C, X(2409), X(36309)}}, {{A, B, C, X(55951), X(60661)}}
X(64971) = barycentric product X(i)*X(j) for these (i, j): {14539, 264}
X(64971) = barycentric quotient X(i)/X(j) for these (i, j): {4, 54570}, {14539, 3}
X(64971) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 297, 471}
X(64972) lies on these lines: {2, 738}, {9, 1407}, {56, 200}, {57, 346}, {63, 56200}, {281, 1435}, {282, 6612}, {1412, 2287}, {1416, 5269}, {1427, 56199}, {3928, 36916}, {19605, 61380}
X(64972) = trilinear pole of line {43924, 3900}
X(64972) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 9785}
X(64972) = X(i)-cross conjugate of X(j) for these {i, j}: {1696, 1}, {9850, 7}
X(64972) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6762)}}, {{A, B, C, X(2), X(9)}}, {{A, B, C, X(56), X(57)}}, {{A, B, C, X(63), X(5437)}}, {{A, B, C, X(84), X(5438)}}, {{A, B, C, X(85), X(25430)}}, {{A, B, C, X(189), X(3680)}}, {{A, B, C, X(241), X(5269)}}, {{A, B, C, X(1476), X(8051)}}, {{A, B, C, X(2994), X(31509)}}, {{A, B, C, X(2999), X(9309)}}, {{A, B, C, X(3305), X(51780)}}, {{A, B, C, X(3306), X(3928)}}, {{A, B, C, X(4564), X(39948)}}, {{A, B, C, X(5665), X(60076)}}, {{A, B, C, X(6598), X(60237)}}, {{A, B, C, X(7284), X(36603)}}, {{A, B, C, X(7285), X(39963)}}, {{A, B, C, X(10390), X(57658)}}, {{A, B, C, X(31190), X(56545)}}, {{A, B, C, X(33576), X(60107)}}, {{A, B, C, X(34546), X(34918)}}, {{A, B, C, X(39962), X(43730)}}, {{A, B, C, X(41790), X(56218)}}, {{A, B, C, X(56195), X(56226)}}
X(64972) = barycentric quotient X(i)/X(j) for these (i, j): {1, 9785}, {52013, 32559}
X(64973) lies on the K295 cubic and on these lines: {2, 187}, {263, 9214}, {599, 42365}, {1992, 35138}, {11002, 61439}, {63170, 63854}
X(64973) = trilinear pole of line {8704, 64943}
X(64973) = X(i)-isoconjugate-of-X(j) for these {i, j}: {11166, 36263}
X(64973) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11163)}}, {{A, B, C, X(4), X(3849)}}, {{A, B, C, X(187), X(263)}}, {{A, B, C, X(671), X(55164)}}, {{A, B, C, X(5485), X(15810)}}, {{A, B, C, X(5569), X(9302)}}, {{A, B, C, X(7771), X(54840)}}, {{A, B, C, X(8176), X(54724)}}, {{A, B, C, X(8182), X(54678)}}, {{A, B, C, X(9214), X(51372)}}, {{A, B, C, X(11057), X(17503)}}, {{A, B, C, X(14327), X(63853)}}, {{A, B, C, X(14537), X(60281)}}, {{A, B, C, X(14762), X(54616)}}, {{A, B, C, X(14976), X(54896)}}, {{A, B, C, X(19569), X(54642)}}, {{A, B, C, X(26613), X(54752)}}, {{A, B, C, X(34245), X(35138)}}, {{A, B, C, X(40344), X(54637)}}
X(64973) = barycentric product X(i)*X(j) for these (i, j): {11163, 598}, {35138, 8704}
X(64973) = barycentric quotient X(i)/X(j) for these (i, j): {598, 11167}, {1383, 11166}, {8704, 3906}, {11163, 599}, {11186, 17414}, {11636, 6233}
X(64974) lies on these lines: {2, 44766}, {20, 99}, {1916, 43673}, {2419, 18019}, {3314, 26170}, {3933, 41676}, {4576, 46164}, {21458, 46967}, {28696, 32818}
X(64974) = isotomic conjugate of X(21458)
X(64974) = anticomplement of X(64648)
X(64974) = trilinear pole of line {141, 23881}
X(64974) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 21458}, {82, 42671}, {251, 2312}, {1503, 46289}, {34055, 51437}
X(64974) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 21458}, {39, 1503}, {141, 42671}, {40585, 2312}, {40938, 16318}, {64648, 64648}
X(64974) = X(i)-Ceva conjugate of X(j) for these {i, j}: {35140, 46164}
X(64974) = pole of line {6333, 46164} with respect to the Steiner circumellipse
X(64974) = pole of line {1503, 21458} with respect to the Wallace hyperbola
X(64974) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(315)}}, {{A, B, C, X(20), X(427)}}, {{A, B, C, X(39), X(30270)}}, {{A, B, C, X(66), X(31123)}}, {{A, B, C, X(99), X(1916)}}, {{A, B, C, X(141), X(37668)}}, {{A, B, C, X(147), X(20021)}}, {{A, B, C, X(253), X(39129)}}, {{A, B, C, X(826), X(2794)}}, {{A, B, C, X(1297), X(46164)}}, {{A, B, C, X(3313), X(56306)}}, {{A, B, C, X(3329), X(28675)}}, {{A, B, C, X(3424), X(27376)}}, {{A, B, C, X(3926), X(3933)}}, {{A, B, C, X(7796), X(60232)}}, {{A, B, C, X(7802), X(60190)}}, {{A, B, C, X(23285), X(46165)}}, {{A, B, C, X(32458), X(51371)}}, {{A, B, C, X(40824), X(52568)}}, {{A, B, C, X(40938), X(53851)}}, {{A, B, C, X(43537), X(47730)}}
X(64974) = barycentric product X(i)*X(j) for these (i, j): {141, 35140}, {1235, 64975}, {1297, 8024}, {2419, 41676}, {3933, 6330}, {43673, 4576}, {46164, 76}, {51371, 9476}
X(64974) = barycentric quotient X(i)/X(j) for these (i, j): {2, 21458}, {38, 2312}, {39, 42671}, {141, 1503}, {427, 16318}, {1235, 60516}, {1297, 251}, {1843, 51437}, {2419, 4580}, {3665, 43045}, {3917, 8779}, {3933, 441}, {4576, 34211}, {6330, 32085}, {7813, 35282}, {8024, 30737}, {9019, 28343}, {20021, 51963}, {23881, 55129}, {34212, 18105}, {35140, 83}, {35325, 2445}, {41676, 2409}, {43673, 58784}, {46151, 23977}, {46164, 6}, {46967, 58113}, {51343, 56975}, {51360, 6793}, {51371, 15595}, {64975, 1176}
X(64975) lies on the MacBeath circumconic and on these lines: {2, 44766}, {6, 15394}, {22, 110}, {69, 648}, {141, 16039}, {193, 56570}, {206, 56306}, {287, 2419}, {323, 52513}, {511, 44770}, {524, 48373}, {651, 5279}, {895, 2435}, {1032, 14944}, {1993, 40358}, {2986, 43673}, {2987, 34212}, {3964, 4558}, {4176, 4563}, {9476, 43187}, {11064, 17708}, {13138, 41086}, {14919, 61215}, {15291, 22151}, {15407, 36212}, {15988, 46640}, {18315, 33629}, {34384, 42405}, {34403, 42287}, {39265, 40802}, {41614, 51937}, {60053, 62382}
X(64975) = reflection of X(i) in X(j) for these {i,j}: {46639, 6}
X(64975) = isogonal conjugate of X(16318)
X(64975) = isotomic conjugate of X(60516)
X(64975) = trilinear pole of line {3, 2435}
X(64975) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 16318}, {4, 2312}, {19, 1503}, {31, 60516}, {33, 43045}, {75, 51437}, {82, 51434}, {92, 42671}, {132, 1910}, {158, 8779}, {240, 51963}, {281, 51647}, {393, 8766}, {441, 1096}, {647, 24024}, {656, 23977}, {661, 2409}, {1577, 2445}, {1755, 52641}, {1973, 30737}, {2190, 51363}, {6793, 36119}, {8767, 23976}, {9475, 36120}, {17442, 21458}, {17875, 57260}, {24023, 43717}, {35282, 36128}, {36084, 55275}, {57490, 57653}
X(64975) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 60516}, {3, 16318}, {5, 51363}, {6, 1503}, {141, 51434}, {206, 51437}, {1147, 8779}, {1511, 6793}, {6337, 30737}, {6503, 441}, {11672, 132}, {22391, 42671}, {36033, 2312}, {36830, 2409}, {36899, 52641}, {38987, 55275}, {39052, 24024}, {39071, 23976}, {39085, 51963}, {40596, 23977}, {41167, 57430}, {46094, 9475}, {55047, 55129}, {61505, 16230}, {62590, 15595}, {62606, 63856}
X(64975) = X(i)-Ceva conjugate of X(j) for these {i, j}: {35140, 1297}
X(64975) = X(i)-cross conjugate of X(j) for these {i, j}: {511, 69}, {8779, 3}, {10766, 895}, {17974, 43705}, {34137, 1176}, {44894, 1799}
X(64975) = pole of line {10766, 64975} with respect to the MacBeath circumconic
X(64975) = pole of line {132, 1503} with respect to the Stammler hyperbola
X(64975) = pole of line {1297, 34168} with respect to the Steiner circumellipse
X(64975) = pole of line {34841, 55129} with respect to the Steiner inellipse
X(64975) = pole of line {441, 9475} with respect to the Wallace hyperbola
X(64975) = pole of line {15595, 39473} with respect to the dual conic of polar circle
X(64975) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(22)}}, {{A, B, C, X(3), X(1350)}}, {{A, B, C, X(4), X(19149)}}, {{A, B, C, X(6), X(154)}}, {{A, B, C, X(54), X(14376)}}, {{A, B, C, X(63), X(5279)}}, {{A, B, C, X(67), X(17847)}}, {{A, B, C, X(69), X(394)}}, {{A, B, C, X(74), X(525)}}, {{A, B, C, X(76), X(28724)}}, {{A, B, C, X(97), X(2979)}}, {{A, B, C, X(98), X(19164)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(111), X(9157)}}, {{A, B, C, X(185), X(12294)}}, {{A, B, C, X(193), X(2063)}}, {{A, B, C, X(206), X(53851)}}, {{A, B, C, X(248), X(694)}}, {{A, B, C, X(263), X(60495)}}, {{A, B, C, X(265), X(56568)}}, {{A, B, C, X(275), X(40404)}}, {{A, B, C, X(323), X(45792)}}, {{A, B, C, X(459), X(34207)}}, {{A, B, C, X(511), X(15595)}}, {{A, B, C, X(647), X(1976)}}, {{A, B, C, X(1177), X(10117)}}, {{A, B, C, X(1296), X(48948)}}, {{A, B, C, X(1297), X(6330)}}, {{A, B, C, X(1503), X(15324)}}, {{A, B, C, X(1972), X(3267)}}, {{A, B, C, X(1993), X(28419)}}, {{A, B, C, X(2052), X(41715)}}, {{A, B, C, X(2139), X(3926)}}, {{A, B, C, X(2435), X(56601)}}, {{A, B, C, X(2715), X(10766)}}, {{A, B, C, X(3563), X(19165)}}, {{A, B, C, X(4580), X(16081)}}, {{A, B, C, X(5485), X(34801)}}, {{A, B, C, X(5504), X(34897)}}, {{A, B, C, X(5897), X(54975)}}, {{A, B, C, X(6333), X(36212)}}, {{A, B, C, X(6391), X(36609)}}, {{A, B, C, X(6464), X(15077)}}, {{A, B, C, X(6504), X(18124)}}, {{A, B, C, X(8552), X(34210)}}, {{A, B, C, X(9476), X(43717)}}, {{A, B, C, X(11064), X(16165)}}, {{A, B, C, X(11610), X(34137)}}, {{A, B, C, X(14380), X(33988)}}, {{A, B, C, X(18906), X(57008)}}, {{A, B, C, X(26881), X(30535)}}, {{A, B, C, X(33851), X(55981)}}, {{A, B, C, X(34802), X(51941)}}, {{A, B, C, X(34861), X(44073)}}, {{A, B, C, X(36823), X(53173)}}, {{A, B, C, X(40384), X(41511)}}, {{A, B, C, X(41081), X(56328)}}, {{A, B, C, X(41891), X(42330)}}, {{A, B, C, X(43216), X(44189)}}, {{A, B, C, X(46310), X(57845)}}, {{A, B, C, X(55033), X(62428)}}, {{A, B, C, X(56072), X(63154)}}, {{A, B, C, X(56179), X(64082)}}
X(64975) = barycentric product X(i)*X(j) for these (i, j): {3, 35140}, {110, 2419}, {326, 8767}, {394, 6330}, {511, 57761}, {1176, 64974}, {1297, 69}, {1799, 46164}, {2435, 99}, {3265, 44770}, {3569, 55274}, {3926, 43717}, {14944, 15394}, {15407, 325}, {32649, 52617}, {32687, 4143}, {34212, 4563}, {36212, 9476}, {39265, 6394}, {40708, 51343}, {43673, 4558}, {43705, 56687}, {46967, 57069}, {57549, 8779}
X(64975) = barycentric quotient X(i)/X(j) for these (i, j): {2, 60516}, {3, 1503}, {6, 16318}, {32, 51437}, {39, 51434}, {48, 2312}, {69, 30737}, {98, 52641}, {110, 2409}, {112, 23977}, {162, 24024}, {184, 42671}, {216, 51363}, {222, 43045}, {248, 51963}, {255, 8766}, {265, 43089}, {287, 57490}, {394, 441}, {511, 132}, {577, 8779}, {603, 51647}, {1176, 21458}, {1297, 4}, {1350, 1529}, {1576, 2445}, {2419, 850}, {2435, 523}, {3284, 6793}, {3289, 9475}, {3292, 35282}, {3569, 55275}, {4558, 34211}, {6330, 2052}, {8673, 55129}, {8766, 24023}, {8767, 158}, {8779, 23976}, {9476, 16081}, {10317, 28343}, {13754, 53568}, {14919, 63856}, {14941, 51960}, {14944, 14249}, {15394, 16096}, {15407, 98}, {17974, 34156}, {32649, 32713}, {32687, 6529}, {34137, 64648}, {34146, 50938}, {34212, 2501}, {35140, 264}, {36046, 24019}, {36092, 36126}, {36212, 15595}, {39265, 6530}, {41172, 57430}, {43673, 14618}, {43705, 56572}, {43717, 393}, {43754, 60506}, {44770, 107}, {46164, 427}, {46967, 1289}, {47409, 57296}, {51343, 419}, {51822, 34854}, {51937, 1990}, {52485, 52661}, {52613, 39473}, {55274, 43187}, {56601, 37778}, {56687, 44145}, {57761, 290}, {57799, 51257}, {61464, 36201}, {64974, 1235}
X(64976) lies on these lines: {1, 479}, {2, 728}, {3672, 28071}, {28057, 62697}
X(64976) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 32560}, {1190, 21446}, {4326, 52013}
X(64976) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 32560}
X(64976) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(390)}}, {{A, B, C, X(2), X(479)}}, {{A, B, C, X(7), X(30854)}}
X(64976) = barycentric quotient X(i)/X(j) for these (i, j): {1, 32560}, {5222, 10580}, {64977, 21450}
X(64977) lies on these lines: {2, 728}, {607, 1435}, {1462, 2999}, {2191, 3752}, {4000, 28070}, {28017, 30706}
X(64977) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1190, 8817}, {4326, 7131}, {7123, 10580}, {17410, 52778}
X(64977) = X(i)-Dao conjugate of X(j) for these {i, j}: {15487, 10580}
X(64977) = X(i)-cross conjugate of X(j) for these {i, j}: {12402, 7}
X(64977) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(614)}}, {{A, B, C, X(57), X(607)}}, {{A, B, C, X(1427), X(3914)}}, {{A, B, C, X(2051), X(41788)}}, {{A, B, C, X(3673), X(8056)}}, {{A, B, C, X(44733), X(51400)}}
X(64977) = barycentric product X(i)*X(j) for these (i, j): {21450, 64976}
X(64977) = barycentric quotient X(i)/X(j) for these (i, j): {614, 10580}, {7083, 4326}, {59031, 52778}
X(64978) lies on these lines: {2, 18654}, {7, 24211}, {12, 86}, {27, 8736}, {75, 24914}, {310, 34388}, {1400, 6650}, {5252, 30598}, {10401, 39704}, {17720, 44733}, {20028, 54355}, {37634, 64984}
X(64978) = trilinear pole of line {23733, 514}
X(64978) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 26840}, {60, 42066}, {1333, 38408}, {2150, 34528}, {2185, 9560}, {2194, 56949}, {4612, 17411}
X(64978) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 38408}, {1214, 56949}, {3160, 26840}, {56325, 34528}
X(64978) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(14011)}}, {{A, B, C, X(12), X(8736)}}, {{A, B, C, X(59), X(1400)}}, {{A, B, C, X(80), X(54677)}}, {{A, B, C, X(264), X(7224)}}, {{A, B, C, X(393), X(56164)}}, {{A, B, C, X(959), X(24914)}}, {{A, B, C, X(1037), X(45988)}}, {{A, B, C, X(2006), X(31643)}}, {{A, B, C, X(3144), X(35991)}}, {{A, B, C, X(3596), X(13478)}}, {{A, B, C, X(3668), X(4998)}}, {{A, B, C, X(5561), X(54722)}}, {{A, B, C, X(7035), X(37759)}}, {{A, B, C, X(7261), X(24211)}}, {{A, B, C, X(8044), X(20566)}}, {{A, B, C, X(17751), X(54355)}}, {{A, B, C, X(18812), X(34527)}}, {{A, B, C, X(21277), X(37770)}}, {{A, B, C, X(26751), X(57788)}}, {{A, B, C, X(39970), X(56287)}}, {{A, B, C, X(54121), X(60615)}}, {{A, B, C, X(56046), X(58022)}}, {{A, B, C, X(58008), X(60085)}}
X(64978) = barycentric product X(i)*X(j) for these (i, j): {18812, 226}, {34527, 7}
X(64978) = barycentric quotient X(i)/X(j) for these (i, j): {7, 26840}, {10, 38408}, {12, 34528}, {181, 9560}, {226, 56949}, {2171, 42066}, {18812, 333}, {34527, 8}
X(64979) lies on these lines: {1, 7318}, {2, 7269}, {7, 46}, {75, 5552}, {77, 10056}, {86, 3193}, {273, 1068}, {498, 7190}, {673, 60943}, {1440, 1442}, {1804, 15888}, {3584, 4328}, {3598, 39723}, {3672, 18815}, {4293, 7279}, {6650, 26125}, {7179, 39732}, {8232, 55937}, {10527, 57883}, {14621, 28739}, {17321, 58028}, {27475, 61019}, {28780, 39716}, {42318, 61017}, {52412, 64988}, {56047, 56367}, {57497, 57809}
X(64979) = isogonal conjugate of X(61398)
X(64979) = isotomic conjugate of X(10527)
X(64979) = trilinear pole of line {46389, 514}
X(64979) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 61398}, {31, 10527}, {42, 64394}, {55, 3338}, {56, 42012}, {57, 32561}, {101, 13401}, {651, 17412}, {2194, 12609}
X(64979) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 42012}, {2, 10527}, {3, 61398}, {223, 3338}, {1015, 13401}, {1214, 12609}, {5452, 32561}, {38991, 17412}, {40592, 64394}
X(64979) = X(i)-cross conjugate of X(j) for these {i, j}: {498, 2}, {7190, 7}
X(64979) = pole of line {10527, 61398} with respect to the Wallace hyperbola
X(64979) = pole of line {498, 7190} with respect to the dual conic of Yff parabola
X(64979) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(46)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(13407)}}, {{A, B, C, X(8), X(1065)}}, {{A, B, C, X(9), X(15298)}}, {{A, B, C, X(29), X(37112)}}, {{A, B, C, X(37), X(1037)}}, {{A, B, C, X(59), X(941)}}, {{A, B, C, X(69), X(54121)}}, {{A, B, C, X(77), X(52351)}}, {{A, B, C, X(79), X(60164)}}, {{A, B, C, X(80), X(54758)}}, {{A, B, C, X(92), X(40417)}}, {{A, B, C, X(95), X(8048)}}, {{A, B, C, X(103), X(56232)}}, {{A, B, C, X(264), X(13577)}}, {{A, B, C, X(279), X(7269)}}, {{A, B, C, X(280), X(56104)}}, {{A, B, C, X(281), X(2346)}}, {{A, B, C, X(332), X(46880)}}, {{A, B, C, X(346), X(55920)}}, {{A, B, C, X(347), X(1442)}}, {{A, B, C, X(388), X(60321)}}, {{A, B, C, X(393), X(1002)}}, {{A, B, C, X(498), X(10044)}}, {{A, B, C, X(650), X(3477)}}, {{A, B, C, X(693), X(8797)}}, {{A, B, C, X(943), X(36626)}}, {{A, B, C, X(1000), X(6740)}}, {{A, B, C, X(1224), X(5665)}}, {{A, B, C, X(1441), X(8817)}}, {{A, B, C, X(1443), X(3672)}}, {{A, B, C, X(1937), X(17038)}}, {{A, B, C, X(2165), X(13476)}}, {{A, B, C, X(2298), X(57727)}}, {{A, B, C, X(2335), X(37741)}}, {{A, B, C, X(3086), X(27529)}}, {{A, B, C, X(3596), X(40419)}}, {{A, B, C, X(4998), X(58008)}}, {{A, B, C, X(5553), X(60162)}}, {{A, B, C, X(5555), X(43531)}}, {{A, B, C, X(5556), X(60157)}}, {{A, B, C, X(5561), X(54757)}}, {{A, B, C, X(7160), X(36629)}}, {{A, B, C, X(7179), X(28739)}}, {{A, B, C, X(7320), X(51565)}}, {{A, B, C, X(8047), X(57645)}}, {{A, B, C, X(8759), X(56225)}}, {{A, B, C, X(8829), X(25430)}}, {{A, B, C, X(9309), X(46952)}}, {{A, B, C, X(9436), X(60943)}}, {{A, B, C, X(10013), X(43947)}}, {{A, B, C, X(10309), X(60174)}}, {{A, B, C, X(11239), X(45701)}}, {{A, B, C, X(17097), X(56136)}}, {{A, B, C, X(17321), X(17740)}}, {{A, B, C, X(28742), X(41785)}}, {{A, B, C, X(31618), X(64240)}}, {{A, B, C, X(33298), X(57809)}}, {{A, B, C, X(39983), X(52013)}}, {{A, B, C, X(40412), X(58029)}}, {{A, B, C, X(40719), X(61019)}}, {{A, B, C, X(41527), X(41791)}}, {{A, B, C, X(42407), X(56129)}}, {{A, B, C, X(43733), X(60173)}}, {{A, B, C, X(43736), X(56217)}}, {{A, B, C, X(43740), X(54972)}}, {{A, B, C, X(50442), X(58009)}}, {{A, B, C, X(51351), X(61017)}}, {{A, B, C, X(52392), X(57832)}}, {{A, B, C, X(55076), X(56144)}}, {{A, B, C, X(56048), X(56218)}}, {{A, B, C, X(56356), X(63192)}}, {{A, B, C, X(57831), X(57882)}}, {{A, B, C, X(59255), X(59475)}}, {{A, B, C, X(60160), X(61105)}}
X(64979) = barycentric product X(i)*X(j) for these (i, j): {7162, 85}, {56231, 75}
X(64979) = barycentric quotient X(i)/X(j) for these (i, j): {2, 10527}, {6, 61398}, {9, 42012}, {55, 32561}, {57, 3338}, {81, 64394}, {226, 12609}, {513, 13401}, {663, 17412}, {7162, 9}, {56231, 1}
X(64980) lies on these lines: {1, 971}, {2, 3160}, {7, 56043}, {34, 36122}, {57, 7955}, {88, 43047}, {105, 1420}, {222, 39948}, {223, 25430}, {241, 8056}, {277, 1323}, {278, 62544}, {279, 60831}, {738, 2170}, {948, 56218}, {955, 11518}, {1002, 3340}, {1170, 62792}, {1219, 63165}, {1280, 36846}, {1390, 21147}, {1423, 61630}, {1465, 39963}, {2951, 45228}, {2982, 47848}, {3227, 53640}, {3680, 6168}, {4350, 34056}, {4853, 39959}, {5222, 44794}, {5228, 39980}, {5573, 60813}, {7982, 63203}, {18623, 40069}, {30710, 44186}, {30719, 62635}, {35348, 43049}, {36603, 51302}, {37551, 51498}, {37887, 43066}, {51223, 51969}, {51364, 63592}, {54425, 59610}, {56355, 60966}, {58320, 60666}
X(64980) = perspector of circumconic {{A, B, C, X(53640), X(61240)}}
X(64980) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 64083}, {8, 3207}, {9, 165}, {21, 21872}, {41, 16284}, {55, 144}, {59, 13609}, {109, 57064}, {200, 1419}, {219, 63965}, {220, 3160}, {281, 22117}, {284, 21060}, {480, 9533}, {651, 58835}, {728, 17106}, {1253, 31627}, {2332, 50563}, {3063, 62533}, {3939, 7658}, {4847, 33634}, {5546, 55285}, {6602, 50561}, {7071, 50559}, {14827, 50560}
X(64980) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 64083}, {11, 57064}, {223, 144}, {478, 165}, {3160, 16284}, {6609, 1419}, {6615, 13609}, {10001, 62533}, {17113, 31627}, {38991, 58835}, {40590, 21060}, {40611, 21872}, {40617, 7658}, {43182, 45203}
X(64980) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3062, 57}, {10405, 42872}, {36620, 3062}
X(64980) = X(i)-cross conjugate of X(j) for these {i, j}: {269, 57}, {2310, 3676}, {5573, 19604}, {11051, 3062}
X(64980) = pole of line {57, 8917} with respect to the Feuerbach hyperbola
X(64980) = pole of line {3062, 8166} with respect to the dual conic of Yff parabola
X(64980) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(11372)}}, {{A, B, C, X(7), X(31994)}}, {{A, B, C, X(8), X(10384)}}, {{A, B, C, X(9), X(9311)}}, {{A, B, C, X(19), X(23058)}}, {{A, B, C, X(21), X(44559)}}, {{A, B, C, X(33), X(10939)}}, {{A, B, C, X(34), X(738)}}, {{A, B, C, X(56), X(59215)}}, {{A, B, C, X(58), X(62183)}}, {{A, B, C, X(84), X(514)}}, {{A, B, C, X(85), X(7091)}}, {{A, B, C, X(92), X(9856)}}, {{A, B, C, X(104), X(41790)}}, {{A, B, C, X(189), X(10864)}}, {{A, B, C, X(220), X(2291)}}, {{A, B, C, X(241), X(1420)}}, {{A, B, C, X(269), X(1419)}}, {{A, B, C, X(294), X(4907)}}, {{A, B, C, X(312), X(10866)}}, {{A, B, C, X(479), X(2124)}}, {{A, B, C, X(650), X(2125)}}, {{A, B, C, X(673), X(3680)}}, {{A, B, C, X(1019), X(45818)}}, {{A, B, C, X(1121), X(33576)}}, {{A, B, C, X(1323), X(4350)}}, {{A, B, C, X(1396), X(18624)}}, {{A, B, C, X(1407), X(36636)}}, {{A, B, C, X(1411), X(17107)}}, {{A, B, C, X(1434), X(5665)}}, {{A, B, C, X(1436), X(2338)}}, {{A, B, C, X(1440), X(34060)}}, {{A, B, C, X(1476), X(21446)}}, {{A, B, C, X(2163), X(56005)}}, {{A, B, C, X(2217), X(9503)}}, {{A, B, C, X(3008), X(36846)}}, {{A, B, C, X(3062), X(10405)}}, {{A, B, C, X(3340), X(5228)}}, {{A, B, C, X(3577), X(14377)}}, {{A, B, C, X(3676), X(43064)}}, {{A, B, C, X(4560), X(44692)}}, {{A, B, C, X(4853), X(5222)}}, {{A, B, C, X(4900), X(60092)}}, {{A, B, C, X(5560), X(34529)}}, {{A, B, C, X(6180), X(7153)}}, {{A, B, C, X(7100), X(7177)}}, {{A, B, C, X(7129), X(58906)}}, {{A, B, C, X(7955), X(10307)}}, {{A, B, C, X(8809), X(34059)}}, {{A, B, C, X(8830), X(8835)}}, {{A, B, C, X(10389), X(45227)}}, {{A, B, C, X(10390), X(10509)}}, {{A, B, C, X(10429), X(55110)}}, {{A, B, C, X(11051), X(19605)}}, {{A, B, C, X(16572), X(43065)}}, {{A, B, C, X(18359), X(30294)}}, {{A, B, C, X(24644), X(55937)}}, {{A, B, C, X(30283), X(34234)}}, {{A, B, C, X(30290), X(30690)}}, {{A, B, C, X(30725), X(43047)}}, {{A, B, C, X(36621), X(43760)}}, {{A, B, C, X(56038), X(60075)}}, {{A, B, C, X(56042), X(63148)}}, {{A, B, C, X(57641), X(58322)}}
X(64980) = barycentric product X(i)*X(j) for these (i, j): {1, 36620}, {189, 42872}, {269, 63165}, {312, 61380}, {513, 53640}, {514, 61240}, {3062, 7}, {4017, 55284}, {10405, 57}, {11051, 85}, {19605, 279}, {44186, 56}, {53622, 693}, {56718, 56783}, {59170, 63192}, {60813, 9312}, {60831, 9}, {62544, 7131}
X(64980) = barycentric quotient X(i)/X(j) for these (i, j): {1, 64083}, {7, 16284}, {34, 63965}, {56, 165}, {57, 144}, {65, 21060}, {269, 3160}, {279, 31627}, {479, 50561}, {603, 22117}, {604, 3207}, {650, 57064}, {663, 58835}, {664, 62533}, {738, 9533}, {1088, 50560}, {1400, 21872}, {1407, 1419}, {1439, 50563}, {2170, 13609}, {3062, 8}, {3669, 7658}, {4017, 55285}, {5575, 63626}, {7023, 17106}, {7177, 50559}, {8581, 10324}, {10405, 312}, {11051, 9}, {19605, 346}, {20978, 45228}, {36620, 75}, {37566, 41561}, {40133, 45203}, {42872, 329}, {44186, 3596}, {53622, 100}, {53640, 668}, {55284, 7257}, {56718, 3717}, {60831, 85}, {61240, 190}, {61380, 57}, {63164, 44797}, {63165, 341}
X(64980) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2124, 1419}, {1, 43064, 2124}, {40133, 62793, 57}, {43035, 59215, 36636}
X(64981) lies on cubic K1285 and on these lines: {2, 1501}, {32, 11196}, {385, 18902}, {1976, 36897}, {3114, 33336}, {3978, 4027}, {7766, 19222}, {16609, 63237}, {23357, 34537}, {33514, 35146}, {38830, 44167}, {53704, 58111}
X(64981) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 42061}, {694, 51836}, {1581, 3094}, {1916, 3116}, {1934, 3117}, {1967, 3314}, {3862, 3865}, {3863, 3864}, {9468, 56784}, {36214, 46507}, {37134, 50549}
X(64981) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 42061}, {8290, 3314}, {19576, 3094}, {39031, 3116}, {39043, 51836}, {39044, 56784}
X(64981) = pole of line {3094, 19602} with respect to the Stammler hyperbola
X(64981) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(385)}}, {{A, B, C, X(251), X(1915)}}, {{A, B, C, X(699), X(1691)}}, {{A, B, C, X(707), X(5027)}}, {{A, B, C, X(1501), X(14602)}}, {{A, B, C, X(5207), X(8783)}}, {{A, B, C, X(8024), X(40379)}}, {{A, B, C, X(9865), X(51582)}}, {{A, B, C, X(39931), X(46807)}}, {{A, B, C, X(42534), X(56979)}}, {{A, B, C, X(43450), X(60105)}}, {{A, B, C, X(46809), X(51430)}}, {{A, B, C, X(47736), X(60177)}}
X(64981) = barycentric product X(i)*X(j) for these (i, j): {1580, 3113}, {1691, 3114}, {1933, 46281}, {3407, 385}, {14295, 58111}, {14617, 56976}, {17984, 43722}, {18898, 3978}, {33514, 804}, {40820, 8840}
X(64981) = barycentric quotient X(i)/X(j) for these (i, j): {32, 42061}, {385, 3314}, {419, 5117}, {1580, 51836}, {1691, 3094}, {1933, 3116}, {1966, 56784}, {3113, 1934}, {3114, 18896}, {3407, 1916}, {4027, 9865}, {5027, 50549}, {14602, 3117}, {14617, 56977}, {18898, 694}, {18902, 18899}, {33514, 18829}, {43722, 36214}, {44089, 56920}, {56828, 46507}, {56975, 62696}, {56976, 62699}, {58111, 805}, {63244, 63219}
X(64982) lies on these lines: {2, 187}, {3, 30786}, {6, 10160}, {23, 21395}, {69, 3292}, {76, 7664}, {99, 47596}, {126, 33274}, {183, 1494}, {264, 468}, {287, 37638}, {305, 6390}, {325, 57822}, {328, 62698}, {599, 20380}, {647, 14977}, {842, 58043}, {1078, 2373}, {1992, 30516}, {3589, 30489}, {3796, 61382}, {5108, 20382}, {6340, 7494}, {6719, 7749}, {6800, 45018}, {7493, 11056}, {7495, 11059}, {7499, 59756}, {7610, 48540}, {7769, 56435}, {7782, 14360}, {7806, 9229}, {7844, 26257}, {7850, 26233}, {8030, 45796}, {8585, 17006}, {8599, 9168}, {8797, 40132}, {8860, 18818}, {10416, 22258}, {10418, 17004}, {10553, 34507}, {10603, 52290}, {11064, 42313}, {11176, 23287}, {11284, 40410}, {14165, 64983}, {18018, 40022}, {18024, 52145}, {20564, 64495}, {26255, 53127}, {34229, 36889}, {36948, 44128}, {37453, 40413}, {44451, 46001}, {45201, 65032}, {47597, 55958}
X(64982) = isogonal conjugate of X(8541)
X(64982) = isotomic conjugate of X(5094)
X(64982) = trilinear pole of line {30491, 525}
X(64982) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8541}, {19, 574}, {25, 36263}, {31, 5094}, {162, 17414}, {599, 1973}, {1964, 32581}, {3906, 32676}, {17442, 58761}, {36128, 62657}
X(64982) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 264}
X(64982) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 5094}, {3, 8541}, {6, 574}, {125, 17414}, {647, 8288}, {6337, 599}, {6505, 36263}, {15526, 3906}, {41884, 32581}, {52881, 39785}, {62569, 13857}, {62604, 9464}, {62607, 42008}
X(64982) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40826, 598}
X(64982) = X(i)-cross conjugate of X(j) for these {i, j}: {43697, 598}, {65006, 43697}
X(64982) = pole of line {8704, 13449} with respect to the orthoptic circle of the Steiner Inellipse
X(64982) = pole of line {574, 8541} with respect to the Stammler hyperbola
X(64982) = pole of line {599, 5094} with respect to the Wallace hyperbola
X(64982) = pole of line {3906, 4141} with respect to the dual conic of polar circle
X(64982) = pole of line {3268, 9209} with respect to the dual conic of anti-Artzt circle
X(64982) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(187)}}, {{A, B, C, X(6), X(60124)}}, {{A, B, C, X(23), X(52300)}}, {{A, B, C, X(25), X(6676)}}, {{A, B, C, X(68), X(7608)}}, {{A, B, C, X(76), X(316)}}, {{A, B, C, X(98), X(4846)}}, {{A, B, C, X(111), X(1176)}}, {{A, B, C, X(140), X(11284)}}, {{A, B, C, X(183), X(11064)}}, {{A, B, C, X(184), X(38279)}}, {{A, B, C, X(262), X(265)}}, {{A, B, C, X(290), X(43530)}}, {{A, B, C, X(325), X(37638)}}, {{A, B, C, X(394), X(37688)}}, {{A, B, C, X(525), X(3849)}}, {{A, B, C, X(549), X(47597)}}, {{A, B, C, X(598), X(10512)}}, {{A, B, C, X(625), X(36952)}}, {{A, B, C, X(631), X(40132)}}, {{A, B, C, X(895), X(39389)}}, {{A, B, C, X(1300), X(7612)}}, {{A, B, C, X(1368), X(37453)}}, {{A, B, C, X(1383), X(10511)}}, {{A, B, C, X(1485), X(8770)}}, {{A, B, C, X(1995), X(7495)}}, {{A, B, C, X(2165), X(2374)}}, {{A, B, C, X(2367), X(3972)}}, {{A, B, C, X(2501), X(60117)}}, {{A, B, C, X(3291), X(44451)}}, {{A, B, C, X(3519), X(60144)}}, {{A, B, C, X(3521), X(53100)}}, {{A, B, C, X(3763), X(45201)}}, {{A, B, C, X(4563), X(9170)}}, {{A, B, C, X(5020), X(7499)}}, {{A, B, C, X(5159), X(52292)}}, {{A, B, C, X(5485), X(23334)}}, {{A, B, C, X(6032), X(6325)}}, {{A, B, C, X(6353), X(7494)}}, {{A, B, C, X(6677), X(7484)}}, {{A, B, C, X(7386), X(38282)}}, {{A, B, C, X(7426), X(47596)}}, {{A, B, C, X(7603), X(11669)}}, {{A, B, C, X(7664), X(57481)}}, {{A, B, C, X(7761), X(51454)}}, {{A, B, C, X(7771), X(57799)}}, {{A, B, C, X(7804), X(53024)}}, {{A, B, C, X(7806), X(37894)}}, {{A, B, C, X(7898), X(42006)}}, {{A, B, C, X(7937), X(40050)}}, {{A, B, C, X(8176), X(42011)}}, {{A, B, C, X(8791), X(9307)}}, {{A, B, C, X(8858), X(60104)}}, {{A, B, C, X(9076), X(45835)}}, {{A, B, C, X(9080), X(60053)}}, {{A, B, C, X(9289), X(14712)}}, {{A, B, C, X(10153), X(37809)}}, {{A, B, C, X(10162), X(13377)}}, {{A, B, C, X(10185), X(42021)}}, {{A, B, C, X(10418), X(11176)}}, {{A, B, C, X(10604), X(11185)}}, {{A, B, C, X(13623), X(60175)}}, {{A, B, C, X(14376), X(60187)}}, {{A, B, C, X(14458), X(14537)}}, {{A, B, C, X(14484), X(43699)}}, {{A, B, C, X(14907), X(60101)}}, {{A, B, C, X(15077), X(53099)}}, {{A, B, C, X(15321), X(60141)}}, {{A, B, C, X(15464), X(55977)}}, {{A, B, C, X(15740), X(43537)}}, {{A, B, C, X(15749), X(60118)}}, {{A, B, C, X(15822), X(34816)}}, {{A, B, C, X(16051), X(52290)}}, {{A, B, C, X(16080), X(54124)}}, {{A, B, C, X(18022), X(34412)}}, {{A, B, C, X(18296), X(60328)}}, {{A, B, C, X(18401), X(40801)}}, {{A, B, C, X(18818), X(61345)}}, {{A, B, C, X(20573), X(60178)}}, {{A, B, C, X(21400), X(60329)}}, {{A, B, C, X(21843), X(53104)}}, {{A, B, C, X(26613), X(47389)}}, {{A, B, C, X(30516), X(43956)}}, {{A, B, C, X(30542), X(39602)}}, {{A, B, C, X(30771), X(52297)}}, {{A, B, C, X(31371), X(47586)}}, {{A, B, C, X(32533), X(60142)}}, {{A, B, C, X(32827), X(40824)}}, {{A, B, C, X(34205), X(35569)}}, {{A, B, C, X(34254), X(40022)}}, {{A, B, C, X(34405), X(60241)}}, {{A, B, C, X(34817), X(53864)}}, {{A, B, C, X(35142), X(60256)}}, {{A, B, C, X(37874), X(39287)}}, {{A, B, C, X(38263), X(39951)}}, {{A, B, C, X(40103), X(56072)}}, {{A, B, C, X(40118), X(60130)}}, {{A, B, C, X(40347), X(45838)}}, {{A, B, C, X(42410), X(44175)}}, {{A, B, C, X(43527), X(60855)}}, {{A, B, C, X(43528), X(43714)}}, {{A, B, C, X(43705), X(55982)}}, {{A, B, C, X(43722), X(52153)}}, {{A, B, C, X(43726), X(60125)}}, {{A, B, C, X(44182), X(57763)}}, {{A, B, C, X(44678), X(60181)}}, {{A, B, C, X(51224), X(60220)}}, {{A, B, C, X(52752), X(56399)}}, {{A, B, C, X(54774), X(57908)}}, {{A, B, C, X(60122), X(60590)}}
X(64982) = barycentric product X(i)*X(j) for these (i, j): {3, 40826}, {304, 55927}, {308, 65006}, {598, 69}, {1383, 305}, {1799, 23297}, {4563, 8599}, {10511, 37804}, {10512, 22151}, {11636, 3267}, {18818, 6390}, {30491, 670}, {30786, 51541}, {35138, 525}, {43697, 76}, {46001, 52608}, {52692, 57799}
X(64982) = barycentric quotient X(i)/X(j) for these (i, j): {2, 5094}, {3, 574}, {6, 8541}, {63, 36263}, {69, 599}, {83, 32581}, {125, 8288}, {305, 9464}, {525, 3906}, {598, 4}, {647, 17414}, {895, 42007}, {1176, 58761}, {1332, 3908}, {1383, 25}, {1799, 10130}, {3292, 62657}, {3977, 4141}, {4558, 9145}, {4563, 9146}, {4846, 60588}, {6390, 39785}, {6393, 51397}, {8599, 2501}, {10511, 8791}, {10512, 46105}, {11064, 13857}, {11636, 112}, {13394, 30516}, {14977, 23288}, {18818, 17983}, {20380, 5095}, {22151, 10510}, {23287, 14273}, {23297, 427}, {30489, 1843}, {30491, 512}, {30786, 42008}, {35138, 648}, {40826, 264}, {41614, 8542}, {43697, 6}, {46001, 2489}, {51541, 468}, {52692, 232}, {55927, 19}, {60872, 63855}, {61345, 4232}, {62382, 19510}, {65006, 39}, {65007, 14580}
X(64982) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1383, 23297}, {2, 9829, 55164}, {598, 51541, 61345}, {1383, 23297, 598}, {23297, 51541, 1383}
X(64983) lies on these lines: {2, 6524}, {4, 287}, {69, 297}, {95, 17907}, {253, 43981}, {305, 2052}, {324, 18018}, {458, 10002}, {1007, 47739}, {1093, 14064}, {1217, 26155}, {1799, 11547}, {5921, 33971}, {11427, 40823}, {14165, 64982}, {15466, 59756}, {17500, 40404}, {18024, 18027}, {19174, 37192}, {21447, 40032}, {23582, 57991}, {36948, 37067}, {37344, 52439}, {37643, 57864}, {37765, 57822}, {37778, 57819}, {40803, 42313}, {41766, 41769}, {43710, 43727}, {51023, 52282}, {52288, 60872}
X(64983) = isotomic conjugate of X(37188)
X(64983) = trilinear pole of line {16229, 16230}
X(64983) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 37188}, {48, 6776}, {163, 47194}, {255, 7735}, {326, 40825}, {577, 4008}, {822, 35278}, {2148, 42353}, {4100, 43976}, {6507, 6620}, {9247, 62698}, {40814, 52430}
X(64983) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 37188}, {115, 47194}, {216, 42353}, {1249, 6776}, {6523, 7735}, {15259, 40825}, {62576, 62698}
X(64983) = X(i)-cross conjugate of X(j) for these {i, j}: {40801, 55972}, {52251, 2}, {54260, 53639}, {56370, 35142}, {64919, 648}
X(64983) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(4), X(297)}}, {{A, B, C, X(76), X(1217)}}, {{A, B, C, X(83), X(18855)}}, {{A, B, C, X(132), X(53015)}}, {{A, B, C, X(232), X(263)}}, {{A, B, C, X(254), X(43678)}}, {{A, B, C, X(275), X(8801)}}, {{A, B, C, X(276), X(18840)}}, {{A, B, C, X(308), X(60221)}}, {{A, B, C, X(324), X(17500)}}, {{A, B, C, X(393), X(2052)}}, {{A, B, C, X(427), X(37187)}}, {{A, B, C, X(458), X(52283)}}, {{A, B, C, X(459), X(9308)}}, {{A, B, C, X(467), X(37192)}}, {{A, B, C, X(671), X(18850)}}, {{A, B, C, X(847), X(52583)}}, {{A, B, C, X(1105), X(2996)}}, {{A, B, C, X(1502), X(53481)}}, {{A, B, C, X(2165), X(60527)}}, {{A, B, C, X(2987), X(56307)}}, {{A, B, C, X(3090), X(37067)}}, {{A, B, C, X(3346), X(9289)}}, {{A, B, C, X(3926), X(15318)}}, {{A, B, C, X(4846), X(34579)}}, {{A, B, C, X(5395), X(14860)}}, {{A, B, C, X(5485), X(18852)}}, {{A, B, C, X(6662), X(14376)}}, {{A, B, C, X(6820), X(52280)}}, {{A, B, C, X(8796), X(32085)}}, {{A, B, C, X(9214), X(46106)}}, {{A, B, C, X(9290), X(15740)}}, {{A, B, C, X(11331), X(52288)}}, {{A, B, C, X(11547), X(19174)}}, {{A, B, C, X(14064), X(37344)}}, {{A, B, C, X(14494), X(42300)}}, {{A, B, C, X(14593), X(39645)}}, {{A, B, C, X(15466), X(43981)}}, {{A, B, C, X(16080), X(42298)}}, {{A, B, C, X(17983), X(56270)}}, {{A, B, C, X(18841), X(18854)}}, {{A, B, C, X(18846), X(53105)}}, {{A, B, C, X(18847), X(32532)}}, {{A, B, C, X(18848), X(38259)}}, {{A, B, C, X(18851), X(60219)}}, {{A, B, C, X(34225), X(59169)}}, {{A, B, C, X(34403), X(54114)}}, {{A, B, C, X(36611), X(54710)}}, {{A, B, C, X(37188), X(52251)}}, {{A, B, C, X(37643), X(40888)}}, {{A, B, C, X(37765), X(52449)}}, {{A, B, C, X(40801), X(40802)}}, {{A, B, C, X(40815), X(44556)}}, {{A, B, C, X(42354), X(60256)}}, {{A, B, C, X(51228), X(52485)}}, {{A, B, C, X(52395), X(54797)}}, {{A, B, C, X(52441), X(56339)}}, {{A, B, C, X(52487), X(60133)}}, {{A, B, C, X(56067), X(60241)}}
X(64983) = barycentric product X(i)*X(j) for these (i, j): {4, 55972}, {264, 40801}, {393, 40824}, {2052, 40802}, {16230, 41074}, {18027, 40799}
X(64983) = barycentric quotient X(i)/X(j) for these (i, j): {2, 37188}, {4, 6776}, {5, 42353}, {107, 35278}, {158, 4008}, {264, 62698}, {393, 7735}, {523, 47194}, {1093, 43976}, {2052, 40814}, {2207, 40825}, {6524, 6620}, {6530, 1513}, {10002, 7710}, {18027, 40822}, {33971, 9755}, {40799, 577}, {40801, 3}, {40802, 394}, {40803, 54032}, {40823, 14585}, {40824, 3926}, {41074, 17932}, {55972, 69}
X(64984) lies on these lines: {1, 11233}, {2, 12}, {7, 940}, {27, 225}, {57, 75}, {65, 1999}, {73, 64997}, {81, 20028}, {85, 57923}, {86, 226}, {272, 1169}, {273, 1435}, {310, 349}, {312, 2285}, {333, 1400}, {335, 63994}, {553, 903}, {651, 40153}, {673, 1416}, {675, 8687}, {738, 1088}, {951, 3912}, {999, 2050}, {1014, 52358}, {1246, 37543}, {1268, 3911}, {1427, 7176}, {1429, 40418}, {1440, 6612}, {1460, 5263}, {1477, 8707}, {2006, 64457}, {2099, 58820}, {2171, 34064}, {2213, 34255}, {2296, 55082}, {2359, 60041}, {3361, 18229}, {3687, 10106}, {4031, 39710}, {4298, 6996}, {4315, 37617}, {4321, 17022}, {4373, 21454}, {4552, 39769}, {4581, 60479}, {4654, 39704}, {4911, 21621}, {5219, 30598}, {5226, 19701}, {5228, 39741}, {5244, 40765}, {5287, 37523}, {5435, 5936}, {5905, 26625}, {6384, 7153}, {6548, 30724}, {6650, 24836}, {7091, 30567}, {7130, 57884}, {7131, 57925}, {7318, 7363}, {7413, 37609}, {10401, 27184}, {10404, 50400}, {14621, 29841}, {16099, 55010}, {18044, 58019}, {18097, 52394}, {28650, 31231}, {33133, 40160}, {36147, 51567}, {36570, 58018}, {36620, 61380}, {37088, 37554}, {37265, 37583}, {37390, 62809}, {37634, 64978}, {39749, 52013}, {41260, 63013}, {56052, 60715}, {58027, 60085}
X(64984) = isogonal conjugate of X(2269)
X(64984) = isotomic conjugate of X(3687)
X(64984) = trilinear pole of line {4581, 5018}
X(64984) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2269}, {2, 20967}, {4, 22074}, {6, 960}, {8, 2300}, {9, 1193}, {21, 2092}, {31, 3687}, {33, 22097}, {37, 4267}, {41, 4357}, {42, 17185}, {48, 46878}, {55, 3666}, {56, 3965}, {58, 21033}, {60, 21810}, {63, 40976}, {65, 46889}, {78, 2354}, {81, 40966}, {100, 52326}, {101, 17420}, {200, 61412}, {210, 40153}, {212, 1848}, {219, 1829}, {220, 24471}, {281, 22345}, {284, 2292}, {333, 3725}, {429, 2193}, {521, 61205}, {644, 6371}, {646, 57157}, {649, 61223}, {650, 53280}, {652, 61226}, {663, 3882}, {692, 3910}, {849, 61377}, {893, 18235}, {1172, 22076}, {1211, 2194}, {1253, 3674}, {1333, 3704}, {1334, 54308}, {1400, 46877}, {1415, 57158}, {1682, 2298}, {1812, 44092}, {2150, 20653}, {2175, 20911}, {3063, 53332}, {3185, 19608}, {3737, 61168}, {3939, 48131}, {4612, 42661}, {4719, 34820}, {5546, 50330}, {7054, 52567}, {7058, 59174}, {7085, 56841}, {7252, 61172}, {18697, 57657}, {34434, 46879}, {34858, 51407}, {39167, 56905}, {40141, 41581}, {41609, 56269}, {45218, 56181}, {52425, 54314}, {54417, 56914}
X(64984) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3965}, {2, 3687}, {3, 2269}, {9, 960}, {10, 21033}, {37, 3704}, {223, 3666}, {478, 1193}, {1015, 17420}, {1086, 3910}, {1146, 57158}, {1214, 1211}, {1249, 46878}, {3160, 4357}, {3162, 40976}, {4075, 61377}, {5375, 61223}, {6609, 61412}, {8054, 52326}, {10001, 53332}, {16586, 51407}, {17113, 3674}, {32664, 20967}, {36033, 22074}, {40582, 46877}, {40586, 40966}, {40589, 4267}, {40590, 2292}, {40592, 17185}, {40593, 20911}, {40597, 18235}, {40602, 46889}, {40611, 2092}, {40615, 3004}, {40617, 48131}, {40622, 21124}, {40837, 1848}, {47345, 429}, {52087, 1682}, {56325, 20653}, {59608, 41003}, {62570, 18697}, {62602, 54314}
X(64984) = X(i)-Ceva conjugate of X(j) for these {i, j}: {31643, 1220}
X(64984) = X(i)-cross conjugate of X(j) for these {i, j}: {1019, 651}, {1577, 653}, {2298, 1220}, {4017, 664}, {4298, 7}, {4369, 658}, {6002, 190}, {6996, 673}, {13161, 75}, {26146, 13149}, {29487, 37137}, {37607, 86}, {39595, 2}, {60086, 31643}, {62749, 36098}
X(64984) = pole of line {2269, 4267} with respect to the Stammler hyperbola
X(64984) = pole of line {2269, 3687} with respect to the Wallace hyperbola
X(64984) = pole of line {4298, 6996} with respect to the dual conic of Yff parabola
X(64984) = pole of line {65, 86} with respect to the dual conic of Moses-Feuerbach circumconic
X(64984) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(333)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(312)}}, {{A, B, C, X(8), X(60167)}}, {{A, B, C, X(12), X(225)}}, {{A, B, C, X(19), X(8770)}}, {{A, B, C, X(28), X(37092)}}, {{A, B, C, X(29), X(19645)}}, {{A, B, C, X(33), X(6559)}}, {{A, B, C, X(56), X(57)}}, {{A, B, C, X(58), X(54300)}}, {{A, B, C, X(59), X(1171)}}, {{A, B, C, X(63), X(40442)}}, {{A, B, C, X(65), X(43071)}}, {{A, B, C, X(77), X(57876)}}, {{A, B, C, X(79), X(1329)}}, {{A, B, C, X(80), X(4102)}}, {{A, B, C, X(81), X(1476)}}, {{A, B, C, X(83), X(32017)}}, {{A, B, C, X(84), X(2339)}}, {{A, B, C, X(85), X(278)}}, {{A, B, C, X(88), X(5253)}}, {{A, B, C, X(92), X(837)}}, {{A, B, C, X(104), X(2185)}}, {{A, B, C, X(106), X(53083)}}, {{A, B, C, X(171), X(37596)}}, {{A, B, C, X(189), X(9311)}}, {{A, B, C, X(190), X(47056)}}, {{A, B, C, X(279), X(3600)}}, {{A, B, C, X(284), X(34429)}}, {{A, B, C, X(286), X(58014)}}, {{A, B, C, X(306), X(52392)}}, {{A, B, C, X(514), X(529)}}, {{A, B, C, X(553), X(3911)}}, {{A, B, C, X(598), X(34523)}}, {{A, B, C, X(650), X(8605)}}, {{A, B, C, X(967), X(1037)}}, {{A, B, C, X(969), X(40417)}}, {{A, B, C, X(996), X(48832)}}, {{A, B, C, X(1000), X(42030)}}, {{A, B, C, X(1019), X(40153)}}, {{A, B, C, X(1029), X(18359)}}, {{A, B, C, X(1105), X(31623)}}, {{A, B, C, X(1120), X(2985)}}, {{A, B, C, X(1121), X(34606)}}, {{A, B, C, X(1211), X(34920)}}, {{A, B, C, X(1214), X(54339)}}, {{A, B, C, X(1220), X(14534)}}, {{A, B, C, X(1222), X(39694)}}, {{A, B, C, X(1255), X(5260)}}, {{A, B, C, X(1427), X(4032)}}, {{A, B, C, X(1432), X(28386)}}, {{A, B, C, X(1751), X(5665)}}, {{A, B, C, X(1791), X(2363)}}, {{A, B, C, X(1848), X(13161)}}, {{A, B, C, X(1937), X(56219)}}, {{A, B, C, X(1999), X(18812)}}, {{A, B, C, X(2222), X(53644)}}, {{A, B, C, X(2319), X(7050)}}, {{A, B, C, X(2346), X(56204)}}, {{A, B, C, X(2481), X(18021)}}, {{A, B, C, X(2982), X(4564)}}, {{A, B, C, X(2999), X(30567)}}, {{A, B, C, X(3296), X(30478)}}, {{A, B, C, X(3661), X(29841)}}, {{A, B, C, X(3666), X(37607)}}, {{A, B, C, X(3668), X(58005)}}, {{A, B, C, X(3674), X(4298)}}, {{A, B, C, X(3676), X(43053)}}, {{A, B, C, X(3687), X(39595)}}, {{A, B, C, X(3912), X(40940)}}, {{A, B, C, X(4313), X(20007)}}, {{A, B, C, X(4321), X(42309)}}, {{A, B, C, X(4384), X(17022)}}, {{A, B, C, X(4654), X(5219)}}, {{A, B, C, X(4999), X(5557)}}, {{A, B, C, X(5261), X(57826)}}, {{A, B, C, X(5265), X(44794)}}, {{A, B, C, X(5271), X(5287)}}, {{A, B, C, X(5434), X(52374)}}, {{A, B, C, X(5435), X(21454)}}, {{A, B, C, X(5555), X(60155)}}, {{A, B, C, X(5556), X(6557)}}, {{A, B, C, X(5558), X(56201)}}, {{A, B, C, X(5561), X(54586)}}, {{A, B, C, X(6336), X(20060)}}, {{A, B, C, X(6645), X(7176)}}, {{A, B, C, X(6654), X(27944)}}, {{A, B, C, X(6996), X(18155)}}, {{A, B, C, X(7017), X(54821)}}, {{A, B, C, X(7224), X(18025)}}, {{A, B, C, X(7284), X(42467)}}, {{A, B, C, X(7319), X(56086)}}, {{A, B, C, X(7320), X(30711)}}, {{A, B, C, X(7490), X(16054)}}, {{A, B, C, X(8056), X(14377)}}, {{A, B, C, X(8169), X(31507)}}, {{A, B, C, X(8748), X(40169)}}, {{A, B, C, X(10481), X(18087)}}, {{A, B, C, X(10509), X(21446)}}, {{A, B, C, X(11194), X(39980)}}, {{A, B, C, X(11236), X(60083)}}, {{A, B, C, X(11681), X(37203)}}, {{A, B, C, X(14554), X(42339)}}, {{A, B, C, X(15320), X(37865)}}, {{A, B, C, X(15474), X(60169)}}, {{A, B, C, X(17743), X(39703)}}, {{A, B, C, X(17758), X(25466)}}, {{A, B, C, X(18743), X(30699)}}, {{A, B, C, X(19607), X(51565)}}, {{A, B, C, X(19701), X(25507)}}, {{A, B, C, X(20076), X(56050)}}, {{A, B, C, X(23512), X(44734)}}, {{A, B, C, X(25417), X(63163)}}, {{A, B, C, X(31141), X(54928)}}, {{A, B, C, X(31359), X(60206)}}, {{A, B, C, X(32009), X(60235)}}, {{A, B, C, X(32020), X(40835)}}, {{A, B, C, X(34892), X(54553)}}, {{A, B, C, X(35058), X(55942)}}, {{A, B, C, X(36124), X(60617)}}, {{A, B, C, X(36603), X(40726)}}, {{A, B, C, X(36795), X(46103)}}, {{A, B, C, X(37129), X(57749)}}, {{A, B, C, X(37208), X(43736)}}, {{A, B, C, X(37520), X(37617)}}, {{A, B, C, X(37523), X(37543)}}, {{A, B, C, X(37660), X(42028)}}, {{A, B, C, X(37684), X(41629)}}, {{A, B, C, X(37870), X(62929)}}, {{A, B, C, X(39696), X(39702)}}, {{A, B, C, X(39698), X(40394)}}, {{A, B, C, X(40399), X(55938)}}, {{A, B, C, X(40414), X(52209)}}, {{A, B, C, X(40434), X(57721)}}, {{A, B, C, X(40444), X(50442)}}, {{A, B, C, X(40446), X(56224)}}, {{A, B, C, X(40843), X(52037)}}, {{A, B, C, X(41245), X(56783)}}, {{A, B, C, X(43733), X(45098)}}, {{A, B, C, X(51512), X(55962)}}, {{A, B, C, X(55922), X(56199)}}
X(64984) = barycentric product X(i)*X(j) for these (i, j): {1, 31643}, {75, 961}, {225, 57853}, {514, 6648}, {1169, 349}, {1220, 7}, {1240, 56}, {1254, 52550}, {1400, 40827}, {1412, 60264}, {1434, 14624}, {1441, 2363}, {1791, 273}, {1798, 57809}, {2298, 85}, {2359, 331}, {3261, 8687}, {3676, 8707}, {4554, 62749}, {4566, 57161}, {4581, 664}, {4625, 57162}, {6358, 64457}, {14534, 226}, {15420, 653}, {24002, 36147}, {30710, 57}, {32736, 52621}, {35519, 52928}, {36098, 693}, {60086, 86}
X(64984) = barycentric quotient X(i)/X(j) for these (i, j): {1, 960}, {2, 3687}, {4, 46878}, {6, 2269}, {7, 4357}, {9, 3965}, {10, 3704}, {12, 20653}, {21, 46877}, {25, 40976}, {31, 20967}, {34, 1829}, {37, 21033}, {42, 40966}, {48, 22074}, {56, 1193}, {57, 3666}, {58, 4267}, {65, 2292}, {73, 22076}, {81, 17185}, {85, 20911}, {100, 61223}, {108, 61226}, {109, 53280}, {171, 18235}, {222, 22097}, {225, 429}, {226, 1211}, {269, 24471}, {273, 54314}, {278, 1848}, {279, 3674}, {284, 46889}, {349, 1228}, {513, 17420}, {514, 3910}, {522, 57158}, {572, 46879}, {594, 61377}, {603, 22345}, {604, 2300}, {608, 2354}, {649, 52326}, {651, 3882}, {664, 53332}, {908, 51407}, {961, 1}, {1014, 54308}, {1169, 284}, {1193, 1682}, {1220, 8}, {1240, 3596}, {1254, 52567}, {1400, 2092}, {1402, 3725}, {1407, 61412}, {1412, 40153}, {1434, 16705}, {1441, 18697}, {1446, 45196}, {1791, 78}, {1798, 283}, {2171, 21810}, {2298, 9}, {2359, 219}, {2363, 21}, {3361, 4719}, {3668, 41003}, {3669, 48131}, {3676, 3004}, {4017, 50330}, {4032, 27697}, {4551, 61172}, {4559, 61168}, {4581, 522}, {4848, 4918}, {6648, 190}, {7153, 27455}, {7175, 28369}, {7176, 59509}, {7178, 21124}, {7249, 59191}, {8687, 101}, {8707, 3699}, {13478, 19608}, {14534, 333}, {14624, 2321}, {15420, 6332}, {18097, 27067}, {21147, 41600}, {24002, 4509}, {30710, 312}, {31643, 75}, {32674, 61205}, {32736, 3939}, {34036, 41581}, {34050, 51414}, {36098, 100}, {36147, 644}, {36570, 64654}, {40827, 28660}, {43924, 6371}, {52567, 6042}, {52928, 109}, {55323, 52087}, {57161, 7253}, {57162, 4041}, {57652, 44092}, {57785, 16739}, {57853, 332}, {58982, 4636}, {59159, 2330}, {60086, 10}, {60264, 30713}, {62749, 650}, {62761, 4009}, {64457, 2185}
X(64984) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {961, 60086, 1220}
X(64985) lies on these lines: {69, 7058}, {86, 2983}, {99, 18650}, {274, 1257}, {314, 1231}, {332, 951}, {1043, 3668}, {1509, 3926}, {2368, 29163}, {33297, 40445}, {44139, 57779}, {57825, 65015}
X(64985) = isogonal conjugate of X(40984)
X(64985) = isotomic conjugate of X(1834)
X(64985) = trilinear pole of line {3265, 7192}
X(64985) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 40984}, {6, 40977}, {19, 44093}, {25, 18673}, {31, 1834}, {42, 1104}, {213, 40940}, {228, 1842}, {440, 1973}, {512, 61221}, {798, 14543}, {950, 1402}, {1400, 2264}, {1918, 17863}, {2203, 21671}
X(64985) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 1834}, {3, 40984}, {6, 44093}, {9, 40977}, {6337, 440}, {6505, 18673}, {6626, 40940}, {31998, 14543}, {34021, 17863}, {36830, 53290}, {39054, 61221}, {40582, 2264}, {40592, 1104}, {40605, 950}, {40620, 29162}, {62564, 21671}
X(64985) = X(i)-cross conjugate of X(j) for these {i, j}: {4025, 99}, {46402, 670}
X(64985) = pole of line {40984, 44093} with respect to the Stammler hyperbola
X(64985) = pole of line {440, 950} with respect to the Wallace hyperbola
X(64985) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(3668)}}, {{A, B, C, X(7), X(14534)}}, {{A, B, C, X(67), X(40085)}}, {{A, B, C, X(69), X(76)}}, {{A, B, C, X(75), X(33116)}}, {{A, B, C, X(83), X(1246)}}, {{A, B, C, X(86), X(274)}}, {{A, B, C, X(95), X(57824)}}, {{A, B, C, X(98), X(42027)}}, {{A, B, C, X(249), X(57685)}}, {{A, B, C, X(253), X(60254)}}, {{A, B, C, X(261), X(310)}}, {{A, B, C, X(269), X(37128)}}, {{A, B, C, X(287), X(28786)}}, {{A, B, C, X(313), X(1494)}}, {{A, B, C, X(314), X(332)}}, {{A, B, C, X(321), X(54454)}}, {{A, B, C, X(671), X(8044)}}, {{A, B, C, X(811), X(6613)}}, {{A, B, C, X(951), X(1257)}}, {{A, B, C, X(1016), X(40422)}}, {{A, B, C, X(1175), X(56137)}}, {{A, B, C, X(1219), X(51512)}}, {{A, B, C, X(1441), X(60251)}}, {{A, B, C, X(2985), X(2997)}}, {{A, B, C, X(3596), X(57980)}}, {{A, B, C, X(4025), X(18650)}}, {{A, B, C, X(4373), X(24624)}}, {{A, B, C, X(4590), X(35150)}}, {{A, B, C, X(5224), X(17378)}}, {{A, B, C, X(7182), X(34399)}}, {{A, B, C, X(30701), X(58002)}}, {{A, B, C, X(30710), X(60041)}}, {{A, B, C, X(32017), X(40424)}}, {{A, B, C, X(34258), X(57818)}}, {{A, B, C, X(34282), X(44140)}}, {{A, B, C, X(35157), X(36036)}}, {{A, B, C, X(37142), X(56179)}}, {{A, B, C, X(37202), X(39749)}}, {{A, B, C, X(39695), X(40395)}}, {{A, B, C, X(40017), X(57792)}}, {{A, B, C, X(40408), X(56328)}}, {{A, B, C, X(40414), X(58005)}}, {{A, B, C, X(40802), X(57701)}}, {{A, B, C, X(45857), X(60090)}}, {{A, B, C, X(57858), X(62884)}}, {{A, B, C, X(57882), X(58027)}}
X(64985) = barycentric product X(i)*X(j) for these (i, j): {304, 40431}, {305, 57390}, {333, 58005}, {1257, 274}, {2983, 310}, {17206, 40445}, {28660, 951}, {29163, 52619}, {40414, 69}, {52396, 65015}
X(64985) = barycentric quotient X(i)/X(j) for these (i, j): {1, 40977}, {2, 1834}, {3, 44093}, {6, 40984}, {21, 2264}, {27, 1842}, {63, 18673}, {69, 440}, {81, 1104}, {86, 40940}, {99, 14543}, {110, 53290}, {274, 17863}, {306, 21671}, {333, 950}, {662, 61221}, {951, 1400}, {1043, 59646}, {1257, 37}, {2983, 42}, {4558, 61200}, {7192, 29162}, {17139, 51410}, {17206, 18650}, {29163, 4557}, {40414, 4}, {40431, 19}, {40445, 1826}, {52561, 3690}, {57390, 25}, {58005, 226}, {65015, 8747}
X(64986) lies on these lines: {2, 1032}, {69, 46351}, {253, 3346}, {264, 34403}, {2373, 59077}, {28783, 42287}
X(64986) = isotomic conjugate of X(6616)
X(64986) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 6616}, {154, 1712}, {204, 1498}, {610, 1033}
X(64986) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 6616}, {3343, 1498}, {3350, 3079}, {6587, 13613}, {14092, 1033}, {40839, 6523}
X(64986) = X(i)-cross conjugate of X(j) for these {i, j}: {459, 34403}, {3346, 1032}, {52559, 253}
X(64986) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(4), X(6247)}}, {{A, B, C, X(393), X(46347)}}, {{A, B, C, X(459), X(3343)}}, {{A, B, C, X(1249), X(15238)}}, {{A, B, C, X(3265), X(56594)}}, {{A, B, C, X(3344), X(3346)}}, {{A, B, C, X(6616), X(42465)}}, {{A, B, C, X(15394), X(34403)}}, {{A, B, C, X(51348), X(53050)}}
X(64986) = barycentric product X(i)*X(j) for these (i, j): {69, 64987}, {1032, 253}, {3267, 59077}, {3346, 34403}, {28783, 41530}, {47633, 52559}, {47849, 57921}
X(64986) = barycentric quotient X(i)/X(j) for these (i, j): {2, 6616}, {64, 1033}, {122, 13613}, {253, 14361}, {459, 6523}, {1032, 20}, {1073, 1498}, {2184, 1712}, {3344, 3079}, {3346, 1249}, {8805, 44695}, {8810, 44696}, {15394, 6617}, {28783, 154}, {34403, 6527}, {47633, 52578}, {47849, 610}, {52559, 3343}, {59077, 112}, {64987, 4}
X(64987) lies on the Kiepert hyperbola and on these lines: {2, 1032}, {4, 1073}, {76, 47435}, {98, 59077}, {226, 8805}, {253, 2052}, {459, 52559}, {2184, 8808}, {3091, 46353}, {6504, 52514}, {13157, 54710}, {14572, 16080}, {15400, 38253}, {17811, 60618}, {28783, 56346}, {31363, 40813}, {57483, 60114}
X(64987) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 6616}, {204, 6617}, {610, 1498}, {1097, 47437}, {1712, 15905}
X(64987) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 6616}, {3343, 6617}, {3344, 2060}, {3350, 36413}, {14092, 1498}, {40839, 14361}
X(64987) = X(i)-Ceva conjugate of X(j) for these {i, j}: {64986, 3346}
X(64987) = X(i)-cross conjugate of X(j) for these {i, j}: {6526, 253}
X(64987) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(253), X(1073)}}, {{A, B, C, X(393), X(20265)}}, {{A, B, C, X(525), X(42468)}}, {{A, B, C, X(1032), X(3346)}}, {{A, B, C, X(3343), X(6526)}}, {{A, B, C, X(3344), X(47633)}}, {{A, B, C, X(6330), X(37669)}}, {{A, B, C, X(6524), X(46347)}}, {{A, B, C, X(14362), X(40839)}}, {{A, B, C, X(46065), X(58759)}}
X(64987) = barycentric product X(i)*X(j) for these (i, j): {4, 64986}, {253, 3346}, {1032, 459}, {14362, 31943}, {28783, 52581}, {46353, 52559}, {59077, 850}
X(64987) = barycentric quotient X(i)/X(j) for these (i, j): {4, 6616}, {64, 1498}, {253, 6527}, {459, 14361}, {1032, 37669}, {1073, 6617}, {1562, 13613}, {3344, 36413}, {3346, 20}, {3350, 2060}, {6526, 6523}, {8805, 27382}, {8810, 18623}, {28783, 15905}, {28785, 31944}, {31942, 41085}, {31943, 14365}, {41489, 1033}, {46353, 52578}, {52559, 46351}, {59077, 110}, {60803, 8886}, {64986, 69}
X(64987) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1032, 3344}, {2, 14362, 3343}
X(64988) lies on these lines: {2, 280}, {4, 11212}, {7, 92}, {27, 84}, {57, 63186}, {75, 7017}, {86, 309}, {108, 39451}, {158, 20320}, {264, 58001}, {271, 5271}, {273, 2052}, {278, 1440}, {282, 40447}, {285, 44734}, {312, 40424}, {321, 58002}, {331, 1088}, {653, 20223}, {673, 7008}, {675, 40117}, {1246, 1903}, {1422, 16082}, {1897, 56233}, {2989, 3187}, {3673, 60516}, {4385, 52283}, {5081, 6820}, {6617, 10538}, {6994, 55937}, {7149, 46355}, {7151, 14621}, {7282, 11433}, {7318, 17923}, {8059, 39429}, {18026, 20921}, {18750, 34402}, {18928, 55394}, {21620, 37448}, {31909, 64997}, {33116, 57884}, {37269, 45766}, {37276, 41013}, {37420, 39592}, {39695, 48380}, {39700, 48381}, {42361, 46108}, {44190, 57923}, {52346, 64082}, {52412, 64979}
X(64988) = isotomic conjugate of X(64082)
X(64988) = trilinear pole of line {16231, 44426}
X(64988) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 198}, {6, 7078}, {9, 7114}, {31, 64082}, {40, 48}, {41, 7013}, {55, 7011}, {56, 55111}, {63, 2187}, {71, 2360}, {78, 2199}, {109, 10397}, {184, 329}, {196, 6056}, {208, 2289}, {212, 223}, {219, 221}, {222, 7074}, {227, 2193}, {228, 1817}, {255, 2331}, {322, 9247}, {347, 52425}, {394, 3195}, {577, 7952}, {603, 2324}, {652, 57118}, {692, 64885}, {906, 6129}, {1259, 3209}, {1260, 6611}, {1262, 47432}, {1397, 55112}, {1400, 1819}, {1415, 57101}, {1437, 21871}, {2149, 53557}, {2188, 40212}, {2200, 8822}, {3194, 3990}, {4055, 41083}, {4100, 47372}, {4575, 55212}, {7053, 7368}, {7080, 52411}, {7115, 55044}, {7125, 40971}, {7335, 55116}, {7358, 23979}, {8058, 32660}, {8750, 57233}, {14298, 36059}, {14827, 57479}, {14837, 32656}, {15905, 41088}, {40701, 62257}, {52430, 64211}
X(64988) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 55111}, {2, 64082}, {9, 7078}, {11, 10397}, {136, 55212}, {223, 7011}, {281, 1103}, {478, 7114}, {650, 53557}, {1086, 64885}, {1146, 57101}, {1249, 40}, {1577, 16596}, {3160, 7013}, {3162, 2187}, {3341, 219}, {5190, 6129}, {6523, 2331}, {7129, 12335}, {7952, 2324}, {20620, 14298}, {23050, 7368}, {26932, 57233}, {36103, 198}, {40582, 1819}, {40624, 57245}, {40625, 57213}, {40628, 55044}, {40837, 223}, {40943, 52097}, {47345, 227}, {62576, 322}, {62585, 55112}, {62602, 347}, {62605, 329}
X(64988) = X(i)-cross conjugate of X(j) for these {i, j}: {84, 309}, {158, 273}, {278, 92}, {7003, 7020}, {7661, 36118}, {8808, 189}, {18634, 85}, {20320, 75}, {24026, 46107}, {26932, 57215}
X(64988) = pole of line {6129, 10397} with respect to the polar circle
X(64988) = pole of line {158, 20320} with respect to the dual conic of Yff parabola
X(64988) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(57), X(17102)}}, {{A, B, C, X(79), X(56216)}}, {{A, B, C, X(84), X(8808)}}, {{A, B, C, X(85), X(23661)}}, {{A, B, C, X(91), X(37887)}}, {{A, B, C, X(92), X(318)}}, {{A, B, C, X(158), X(196)}}, {{A, B, C, X(189), X(280)}}, {{A, B, C, X(226), X(57723)}}, {{A, B, C, X(312), X(17862)}}, {{A, B, C, X(345), X(26871)}}, {{A, B, C, X(522), X(2184)}}, {{A, B, C, X(1043), X(2994)}}, {{A, B, C, X(1435), X(7649)}}, {{A, B, C, X(1751), X(57724)}}, {{A, B, C, X(1838), X(39708)}}, {{A, B, C, X(1847), X(1895)}}, {{A, B, C, X(1937), X(56345)}}, {{A, B, C, X(2208), X(55242)}}, {{A, B, C, X(3187), X(48381)}}, {{A, B, C, X(3261), X(40015)}}, {{A, B, C, X(5931), X(8048)}}, {{A, B, C, X(6336), X(56270)}}, {{A, B, C, X(6521), X(46110)}}, {{A, B, C, X(7003), X(57492)}}, {{A, B, C, X(8809), X(64082)}}, {{A, B, C, X(14014), X(17555)}}, {{A, B, C, X(15149), X(37279)}}, {{A, B, C, X(30710), X(37874)}}, {{A, B, C, X(34860), X(40399)}}, {{A, B, C, X(40165), X(57215)}}, {{A, B, C, X(40430), X(56041)}}, {{A, B, C, X(40836), X(55110)}}, {{A, B, C, X(40940), X(53816)}}, {{A, B, C, X(46350), X(46355)}}, {{A, B, C, X(55105), X(60084)}}
X(64988) = barycentric product X(i)*X(j) for these (i, j): {7, 7020}, {19, 44190}, {34, 57793}, {189, 92}, {225, 57795}, {264, 84}, {273, 280}, {278, 34404}, {282, 331}, {285, 57809}, {286, 39130}, {309, 4}, {312, 55110}, {342, 46355}, {561, 7151}, {1088, 57492}, {1118, 57783}, {1422, 7017}, {1433, 57806}, {1436, 1969}, {1440, 318}, {1903, 44129}, {2052, 41081}, {2192, 57787}, {2357, 57796}, {2358, 28660}, {2501, 55211}, {3261, 40117}, {6063, 7008}, {7003, 85}, {7129, 76}, {13138, 46107}, {17924, 44327}, {18022, 2208}, {20567, 7154}, {31623, 8808}, {37141, 46110}, {40836, 75}, {44130, 52384}, {44426, 53642}, {47436, 7149}, {52938, 61040}, {55242, 6331}
X(64988) = barycentric quotient X(i)/X(j) for these (i, j): {1, 7078}, {2, 64082}, {4, 40}, {7, 7013}, {9, 55111}, {11, 53557}, {19, 198}, {21, 1819}, {25, 2187}, {27, 1817}, {28, 2360}, {33, 7074}, {34, 221}, {56, 7114}, {57, 7011}, {84, 3}, {92, 329}, {108, 57118}, {158, 7952}, {189, 63}, {196, 40212}, {225, 227}, {264, 322}, {268, 2289}, {271, 1259}, {273, 347}, {278, 223}, {280, 78}, {281, 2324}, {282, 219}, {285, 283}, {286, 8822}, {309, 69}, {312, 55112}, {318, 7080}, {331, 40702}, {342, 55015}, {393, 2331}, {514, 64885}, {522, 57101}, {608, 2199}, {650, 10397}, {905, 57233}, {946, 52097}, {1088, 57479}, {1093, 47372}, {1096, 3195}, {1118, 208}, {1256, 1433}, {1413, 603}, {1422, 222}, {1433, 255}, {1435, 6611}, {1436, 48}, {1440, 77}, {1826, 21871}, {1847, 14256}, {1857, 40971}, {1903, 71}, {2052, 64211}, {2188, 6056}, {2192, 212}, {2208, 184}, {2310, 47432}, {2357, 228}, {2358, 1400}, {2501, 55212}, {3064, 14298}, {4391, 57245}, {4560, 57213}, {4858, 16596}, {6331, 55241}, {6612, 7099}, {7003, 9}, {7004, 55044}, {7008, 55}, {7020, 8}, {7079, 7368}, {7118, 52425}, {7129, 6}, {7149, 3342}, {7151, 31}, {7154, 41}, {7367, 1802}, {7649, 6129}, {7952, 1103}, {8059, 36059}, {8747, 3194}, {8808, 1214}, {13138, 1331}, {13853, 37755}, {17924, 14837}, {24026, 7358}, {31623, 27398}, {32652, 32656}, {34400, 7183}, {34404, 345}, {36049, 906}, {36123, 15501}, {37141, 1813}, {39130, 72}, {40117, 101}, {40149, 64708}, {40836, 1}, {41013, 21075}, {41081, 394}, {41087, 3990}, {44189, 3719}, {44190, 304}, {44327, 1332}, {44426, 8058}, {46107, 17896}, {46355, 271}, {52037, 40152}, {52384, 73}, {52389, 3682}, {52571, 1071}, {53010, 52386}, {53013, 2318}, {53642, 6516}, {55110, 57}, {55117, 7125}, {55211, 4563}, {55242, 647}, {56939, 5440}, {56940, 4855}, {56944, 3998}, {56972, 1804}, {57492, 200}, {57783, 1264}, {57793, 3718}, {57795, 332}, {57809, 57810}, {60799, 14379}, {60803, 19614}, {61040, 57241}, {61229, 23067}
X(64988) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 15466, 64211}, {75, 34404, 56944}, {2052, 54284, 273}, {7003, 55110, 189}
X(64989) lies on these lines: {2, 304}, {8, 3718}, {29, 314}, {69, 1829}, {75, 1220}, {76, 92}, {85, 17788}, {189, 56882}, {239, 2221}, {312, 57919}, {333, 2082}, {1008, 1245}, {1036, 52133}, {1121, 54982}, {1231, 1880}, {1310, 1311}, {1722, 1930}, {2994, 14258}, {3702, 56102}, {4673, 14942}, {5224, 31359}, {7020, 57793}, {14829, 57642}, {17016, 39731}, {18157, 65018}, {19607, 28916}, {20924, 64995}, {20925, 30690}, {20928, 57905}, {21615, 40011}, {33935, 56224}, {33939, 65029}, {34234, 37215}, {34284, 56044}
X(64989) = isotomic conjugate of X(2285)
X(64989) = trilinear pole of line {35518, 522}
X(64989) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1460}, {25, 2286}, {31, 2285}, {32, 388}, {41, 4320}, {56, 54416}, {109, 2484}, {213, 5323}, {604, 612}, {608, 7085}, {651, 8646}, {1037, 1184}, {1038, 1973}, {1395, 5227}, {1397, 2345}, {1400, 44119}, {1402, 2303}, {1409, 4206}, {1415, 8678}, {1919, 14594}, {1974, 56367}, {2175, 7365}, {2194, 8898}, {3974, 52410}, {4565, 50494}, {7102, 52411}, {7103, 52425}, {7197, 14827}
X(64989) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 54416}, {2, 2285}, {9, 1460}, {11, 2484}, {1146, 8678}, {1214, 8898}, {3160, 4320}, {3161, 612}, {6337, 1038}, {6376, 388}, {6505, 2286}, {6626, 5323}, {9296, 14594}, {38991, 8646}, {40582, 44119}, {40593, 7365}, {40605, 2303}, {40618, 51644}, {40624, 6590}, {40626, 2522}, {55064, 50494}, {59608, 10376}, {59619, 5286}, {62584, 5227}, {62585, 2345}, {62602, 7103}, {62647, 7085}
X(64989) = X(i)-cross conjugate of X(j) for these {i, j}: {11679, 75}, {30479, 57923}
X(64989) = pole of line {1038, 2285} with respect to the Wallace hyperbola
X(64989) = pole of line {2522, 51644} with respect to the dual conic of polar circle
X(64989) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(57), X(1829)}}, {{A, B, C, X(75), X(20911)}}, {{A, B, C, X(76), X(304)}}, {{A, B, C, X(274), X(3596)}}, {{A, B, C, X(318), X(52652)}}, {{A, B, C, X(429), X(60245)}}, {{A, B, C, X(960), X(39957)}}, {{A, B, C, X(961), X(9311)}}, {{A, B, C, X(1039), X(2339)}}, {{A, B, C, X(1880), X(2082)}}, {{A, B, C, X(2998), X(4451)}}, {{A, B, C, X(4110), X(52136)}}, {{A, B, C, X(4673), X(18157)}}, {{A, B, C, X(7058), X(52406)}}, {{A, B, C, X(7101), X(17788)}}, {{A, B, C, X(7131), X(42485)}}, {{A, B, C, X(11679), X(60084)}}, {{A, B, C, X(14829), X(20928)}}, {{A, B, C, X(20567), X(57921)}}, {{A, B, C, X(20570), X(57906)}}, {{A, B, C, X(20925), X(33939)}}, {{A, B, C, X(40014), X(57773)}}, {{A, B, C, X(40072), X(58013)}}, {{A, B, C, X(40827), X(57980)}}, {{A, B, C, X(45032), X(57725)}}, {{A, B, C, X(57783), X(57853)}}
X(64989) = barycentric product X(i)*X(j) for these (i, j): {333, 60197}, {522, 54982}, {1036, 561}, {1039, 305}, {1245, 40072}, {1310, 35519}, {1472, 40363}, {2082, 40831}, {2221, 28659}, {2339, 76}, {3596, 56328}, {28660, 56219}, {30479, 75}, {37215, 4391}, {57923, 8}
X(64989) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1460}, {2, 2285}, {7, 4320}, {8, 612}, {9, 54416}, {21, 44119}, {29, 4206}, {63, 2286}, {69, 1038}, {75, 388}, {78, 7085}, {85, 7365}, {86, 5323}, {226, 8898}, {253, 10375}, {273, 7103}, {304, 56367}, {312, 2345}, {314, 1010}, {318, 7102}, {333, 2303}, {341, 3974}, {345, 5227}, {522, 8678}, {650, 2484}, {663, 8646}, {668, 14594}, {1036, 31}, {1039, 25}, {1040, 19459}, {1088, 7197}, {1245, 1402}, {1310, 109}, {1472, 1397}, {2082, 1184}, {2221, 604}, {2339, 6}, {3596, 4385}, {3668, 10376}, {3718, 54433}, {4025, 51644}, {4041, 50494}, {4086, 48395}, {4329, 8900}, {4391, 6590}, {6332, 2522}, {11679, 34261}, {14258, 45126}, {17880, 26933}, {18155, 47844}, {30479, 1}, {35518, 23874}, {35519, 2517}, {36099, 32674}, {37215, 651}, {40072, 44154}, {41791, 40184}, {51686, 1395}, {54982, 664}, {56219, 1400}, {56328, 56}, {56841, 2354}, {57919, 19799}, {57923, 7}, {60197, 226}, {63195, 7131}
X(64990) lies on these lines: {2, 64991}, {7, 498}, {8, 57883}, {12, 7279}, {27, 37799}, {75, 27529}, {86, 40999}, {673, 7332}, {903, 55096}, {1442, 3584}, {1447, 39723}, {3085, 7318}, {5936, 26364}, {7179, 39728}, {10198, 28626}, {14621, 28780}, {26125, 39720}, {28741, 60873}, {55937, 60943}
X(64990) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 26842}, {55, 3337}, {2150, 5949}, {2194, 11263}, {3737, 21784}, {6186, 52126}
X(64990) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 3337}, {1214, 11263}, {3160, 26842}, {56325, 5949}
X(64990) = X(i)-cross conjugate of X(j) for these {i, j}: {7269, 7}, {31947, 651}, {44824, 100}
X(64990) = pole of line {7269, 64990} with respect to the dual conic of Yff parabola
X(64990) = pole of line {2895, 6358} with respect to the dual conic of Moses-Feuerbach circumconic
X(64990) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3336)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(8), X(498)}}, {{A, B, C, X(37), X(59)}}, {{A, B, C, X(79), X(60173)}}, {{A, B, C, X(95), X(54121)}}, {{A, B, C, X(281), X(55920)}}, {{A, B, C, X(451), X(37294)}}, {{A, B, C, X(693), X(40410)}}, {{A, B, C, X(1002), X(2165)}}, {{A, B, C, X(1037), X(39983)}}, {{A, B, C, X(1224), X(17097)}}, {{A, B, C, X(1441), X(4998)}}, {{A, B, C, X(1442), X(7045)}}, {{A, B, C, X(2346), X(7110)}}, {{A, B, C, X(2963), X(13476)}}, {{A, B, C, X(3085), X(5552)}}, {{A, B, C, X(3616), X(26364)}}, {{A, B, C, X(5397), X(11604)}}, {{A, B, C, X(5553), X(60163)}}, {{A, B, C, X(5556), X(60164)}}, {{A, B, C, X(5561), X(54727)}}, {{A, B, C, X(7179), X(28780)}}, {{A, B, C, X(7279), X(16577)}}, {{A, B, C, X(7319), X(60158)}}, {{A, B, C, X(8047), X(20565)}}, {{A, B, C, X(8048), X(36948)}}, {{A, B, C, X(8797), X(13577)}}, {{A, B, C, X(9436), X(61017)}}, {{A, B, C, X(9780), X(10198)}}, {{A, B, C, X(10309), X(60162)}}, {{A, B, C, X(20566), X(54454)}}, {{A, B, C, X(25430), X(56287)}}, {{A, B, C, X(34585), X(43947)}}, {{A, B, C, X(37741), X(56232)}}, {{A, B, C, X(39977), X(52377)}}, {{A, B, C, X(40216), X(57882)}}, {{A, B, C, X(40419), X(57830)}}, {{A, B, C, X(40999), X(60188)}}, {{A, B, C, X(43666), X(61105)}}, {{A, B, C, X(52392), X(57865)}}, {{A, B, C, X(56228), X(63192)}}, {{A, B, C, X(58007), X(63173)}}
X(64990) = barycentric product X(i)*X(j) for these (i, j): {4552, 7372}, {4998, 7332}, {7161, 85}, {64991, 75}
X(64990) = barycentric quotient X(i)/X(j) for these (i, j): {7, 26842}, {12, 5949}, {57, 3337}, {226, 11263}, {2594, 50657}, {3219, 52126}, {4552, 6758}, {4559, 21784}, {6354, 56849}, {6358, 42005}, {7161, 9}, {7332, 11}, {7372, 4560}, {21859, 21891}, {23067, 23084}, {55197, 12071}, {64991, 1}
X(64991) lies on these lines: {1, 7161}, {2, 64990}, {9, 56041}, {12, 5947}, {28, 1825}, {57, 21773}, {81, 16577}, {88, 26740}, {226, 21907}, {386, 51500}, {2003, 62210}, {2006, 7332}, {2171, 40143}, {2594, 30602}, {6354, 52374}, {7146, 52123}, {30144, 59760}
X(64991) = trilinear pole of line {42649, 513}
X(64991) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 3337}, {55, 26842}, {60, 5949}, {284, 11263}, {2150, 42005}, {2160, 52126}, {3615, 50657}, {4560, 21784}, {4636, 17422}, {6758, 7252}, {7054, 56849}
X(64991) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 26842}, {478, 3337}, {40590, 11263}, {56325, 42005}
X(64991) = X(i)-Ceva conjugate of X(j) for these {i, j}: {64990, 7161}
X(64991) = X(i)-cross conjugate of X(j) for these {i, j}: {52423, 57}, {55197, 4551}
X(64991) = pole of line {7161, 61105} with respect to the dual conic of Yff parabola
X(64991) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(6), X(7130)}}, {{A, B, C, X(42), X(2149)}}, {{A, B, C, X(58), X(37509)}}, {{A, B, C, X(189), X(14497)}}, {{A, B, C, X(226), X(4564)}}, {{A, B, C, X(312), X(6596)}}, {{A, B, C, X(998), X(39523)}}, {{A, B, C, X(1174), X(7073)}}, {{A, B, C, X(1262), X(2003)}}, {{A, B, C, X(1389), X(55987)}}, {{A, B, C, X(1825), X(6354)}}, {{A, B, C, X(2051), X(2167)}}, {{A, B, C, X(2185), X(14554)}}, {{A, B, C, X(2219), X(56232)}}, {{A, B, C, X(2320), X(60107)}}, {{A, B, C, X(2334), X(53995)}}, {{A, B, C, X(2994), X(21398)}}, {{A, B, C, X(3065), X(55027)}}, {{A, B, C, X(4567), X(34527)}}, {{A, B, C, X(5256), X(30144)}}, {{A, B, C, X(5287), X(30147)}}, {{A, B, C, X(6198), X(52062)}}, {{A, B, C, X(7161), X(34531)}}, {{A, B, C, X(15446), X(60155)}}, {{A, B, C, X(31629), X(37558)}}, {{A, B, C, X(41434), X(57418)}}, {{A, B, C, X(44178), X(56033)}}
X(64991) = barycentric product X(i)*X(j) for these (i, j): {1, 64990}, {7, 7161}, {4551, 7372}, {4564, 7332}
X(64991) = barycentric quotient X(i)/X(j) for these (i, j): {12, 42005}, {35, 52126}, {56, 3337}, {57, 26842}, {65, 11263}, {1254, 56849}, {2171, 5949}, {4551, 6758}, {7161, 8}, {7332, 4858}, {7372, 18155}, {14882, 13089}, {21741, 50657}, {57185, 17422}, {64990, 75}
X(64992) lies on these lines: {2, 95}, {54, 11225}, {94, 53028}, {252, 7512}, {343, 18315}, {1157, 7552}, {1658, 8884}, {6515, 63172}, {7488, 52677}, {10125, 19210}, {10298, 61440}, {19176, 37922}, {19179, 45735}, {38444, 59275}, {46724, 63763}
X(64992) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1953, 42059}
X(64992) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(58805)}}, {{A, B, C, X(13585), X(59492)}}, {{A, B, C, X(14918), X(42410)}}
X(64992) = barycentric product X(i)*X(j) for these (i, j): {58805, 95}
X(64992) = barycentric quotient X(i)/X(j) for these (i, j): {54, 42059}, {933, 6799}, {58805, 5}, {59492, 1263}
X(64993) lies on these lines: {1119, 1265}
X(64993) = isotomic conjugate of X(42018)
X(64993) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42018}, {657, 35350}, {1802, 17054}, {1946, 35349}, {9581, 52425}
X(64993) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42018}, {39053, 35349}, {62602, 9581}
X(64993) = X(i)-cross conjugate of X(j) for these {i, j}: {4462, 18026}, {14743, 2}
X(64993) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1265)}}, {{A, B, C, X(85), X(264)}}, {{A, B, C, X(95), X(348)}}, {{A, B, C, X(276), X(20569)}}, {{A, B, C, X(277), X(1105)}}, {{A, B, C, X(279), X(55346)}}, {{A, B, C, X(673), X(18848)}}, {{A, B, C, X(14743), X(42018)}}, {{A, B, C, X(17054), X(29162)}}, {{A, B, C, X(20568), X(52581)}}, {{A, B, C, X(40411), X(40420)}}, {{A, B, C, X(40414), X(63164)}}, {{A, B, C, X(42326), X(56261)}}, {{A, B, C, X(42330), X(56044)}}
X(64993) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42018}, {273, 9581}, {653, 35349}, {934, 35350}, {1119, 17054}, {1847, 23681}
X(64994) lies on these lines: {2, 85}, {7, 5918}, {57, 10509}, {269, 14828}, {553, 47374}, {3668, 62697}, {4350, 21453}, {5435, 53242}, {19804, 57792}, {21454, 50561}, {34018, 50392}, {56309, 62793}
X(64994) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 42015}, {220, 10579}, {657, 6575}, {6602, 63459}
X(64994) = X(i)-Dao conjugate of X(j) for these {i, j}: {3160, 42015}
X(64994) = X(i)-cross conjugate of X(j) for these {i, j}: {52817, 7}
X(64994) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(10509)}}, {{A, B, C, X(57), X(1212)}}, {{A, B, C, X(189), X(30695)}}, {{A, B, C, X(8713), X(44664)}}, {{A, B, C, X(23062), X(59181)}}, {{A, B, C, X(31627), X(34521)}}
X(64994) = barycentric product X(i)*X(j) for these (i, j): {4569, 8713}, {10578, 1088}, {14282, 36838}, {14324, 4635}, {60939, 85}
X(64994) = barycentric quotient X(i)/X(j) for these (i, j): {7, 42015}, {269, 10579}, {479, 63459}, {934, 6575}, {8713, 3900}, {10578, 200}, {14282, 4130}, {14324, 4171}, {52817, 15853}, {60939, 9}
X(64994) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1088, 17093, 85}
X(64995) lies on these lines: {2, 17092}, {8, 443}, {29, 17194}, {57, 40435}, {63, 32008}, {75, 4102}, {92, 142}, {226, 65029}, {312, 1269}, {333, 3306}, {342, 40165}, {894, 55988}, {3911, 56062}, {4666, 14942}, {4674, 36596}, {4997, 31266}, {5437, 34234}, {6557, 27827}, {7020, 62605}, {10436, 56224}, {16352, 52133}, {17400, 52381}, {17862, 59374}, {18359, 27186}, {19804, 42030}, {20924, 64989}, {20925, 28660}, {24564, 31359}, {26627, 40394}, {28605, 56086}, {30807, 56054}, {30852, 42339}, {30854, 32015}, {40013, 46937}, {46938, 56075}, {56201, 62773}
X(64995) = isotomic conjugate of X(3305)
X(64995) = trilinear pole of line {4905, 4978}
X(64995) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3295}, {25, 55466}, {31, 3305}, {32, 42696}, {41, 7190}, {55, 52424}, {101, 48340}, {110, 58299}, {213, 63158}, {692, 47965}, {1333, 3697}, {1397, 42032}, {2174, 56843}, {2175, 52422}, {2193, 53861}, {4917, 38266}, {32739, 48268}, {34446, 63128}, {34819, 51572}
X(64995) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 3305}, {9, 3295}, {37, 3697}, {223, 52424}, {244, 58299}, {1015, 48340}, {1086, 47965}, {3160, 7190}, {6376, 42696}, {6505, 55466}, {6626, 63158}, {40593, 52422}, {40619, 48268}, {47345, 53861}, {62585, 42032}, {62648, 51572}
X(64995) = X(i)-cross conjugate of X(j) for these {i, j}: {1698, 75}, {10980, 1088}, {21620, 7}
X(64995) = pole of line {3305, 63158} with respect to the Wallace hyperbola
X(64995) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3555)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(7), X(9776)}}, {{A, B, C, X(27), X(277)}}, {{A, B, C, X(57), X(942)}}, {{A, B, C, X(63), X(142)}}, {{A, B, C, X(75), X(873)}}, {{A, B, C, X(81), X(3873)}}, {{A, B, C, X(86), X(13577)}}, {{A, B, C, X(88), X(44733)}}, {{A, B, C, X(95), X(55106)}}, {{A, B, C, X(226), X(3306)}}, {{A, B, C, X(273), X(57831)}}, {{A, B, C, X(274), X(40012)}}, {{A, B, C, X(278), X(1056)}}, {{A, B, C, X(279), X(11037)}}, {{A, B, C, X(304), X(25526)}}, {{A, B, C, X(309), X(28626)}}, {{A, B, C, X(321), X(40014)}}, {{A, B, C, X(334), X(57923)}}, {{A, B, C, X(469), X(17581)}}, {{A, B, C, X(514), X(25430)}}, {{A, B, C, X(673), X(60156)}}, {{A, B, C, X(693), X(56074)}}, {{A, B, C, X(870), X(57925)}}, {{A, B, C, X(908), X(5437)}}, {{A, B, C, X(1088), X(40216)}}, {{A, B, C, X(1255), X(9311)}}, {{A, B, C, X(1441), X(58001)}}, {{A, B, C, X(1751), X(42326)}}, {{A, B, C, X(2051), X(39963)}}, {{A, B, C, X(2094), X(59374)}}, {{A, B, C, X(2167), X(7131)}}, {{A, B, C, X(2185), X(55985)}}, {{A, B, C, X(2186), X(65027)}}, {{A, B, C, X(2339), X(2349)}}, {{A, B, C, X(2985), X(32019)}}, {{A, B, C, X(3218), X(27186)}}, {{A, B, C, X(3305), X(4866)}}, {{A, B, C, X(3911), X(31266)}}, {{A, B, C, X(3912), X(4666)}}, {{A, B, C, X(4564), X(56041)}}, {{A, B, C, X(4935), X(18743)}}, {{A, B, C, X(5294), X(17282)}}, {{A, B, C, X(5936), X(41915)}}, {{A, B, C, X(6063), X(32021)}}, {{A, B, C, X(6336), X(56218)}}, {{A, B, C, X(6384), X(58013)}}, {{A, B, C, X(6692), X(30852)}}, {{A, B, C, X(7017), X(62927)}}, {{A, B, C, X(7101), X(7110)}}, {{A, B, C, X(7224), X(55967)}}, {{A, B, C, X(9258), X(65026)}}, {{A, B, C, X(10436), X(54311)}}, {{A, B, C, X(11024), X(57826)}}, {{A, B, C, X(11679), X(24564)}}, {{A, B, C, X(13478), X(64329)}}, {{A, B, C, X(15474), X(60169)}}, {{A, B, C, X(16352), X(31909)}}, {{A, B, C, X(17184), X(26627)}}, {{A, B, C, X(17923), X(20924)}}, {{A, B, C, X(18032), X(56212)}}, {{A, B, C, X(18140), X(46937)}}, {{A, B, C, X(19804), X(28605)}}, {{A, B, C, X(20568), X(34258)}}, {{A, B, C, X(20569), X(30710)}}, {{A, B, C, X(25525), X(59491)}}, {{A, B, C, X(26060), X(60258)}}, {{A, B, C, X(27003), X(31019)}}, {{A, B, C, X(27483), X(40025)}}, {{A, B, C, X(30598), X(40716)}}, {{A, B, C, X(30663), X(56329)}}, {{A, B, C, X(30829), X(46938)}}, {{A, B, C, X(31623), X(52147)}}, {{A, B, C, X(33078), X(37202)}}, {{A, B, C, X(34860), X(39747)}}, {{A, B, C, X(36124), X(60165)}}, {{A, B, C, X(37887), X(60085)}}, {{A, B, C, X(39700), X(39706)}}, {{A, B, C, X(39962), X(60071)}}, {{A, B, C, X(39981), X(45965)}}, {{A, B, C, X(40026), X(60097)}}, {{A, B, C, X(40027), X(51865)}}, {{A, B, C, X(40044), X(60082)}}, {{A, B, C, X(40843), X(63154)}}, {{A, B, C, X(41867), X(54357)}}, {{A, B, C, X(42318), X(60168)}}, {{A, B, C, X(56033), X(56230)}}, {{A, B, C, X(56051), X(60084)}}, {{A, B, C, X(57785), X(59255)}}, {{A, B, C, X(57792), X(59764)}}
X(64995) = barycentric product X(i)*X(j) for these (i, j): {312, 65028}, {561, 61375}, {3296, 75}, {20925, 52188}, {30679, 92}
X(64995) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3295}, {2, 3305}, {7, 7190}, {10, 3697}, {57, 52424}, {63, 55466}, {75, 42696}, {79, 56843}, {85, 52422}, {86, 63158}, {145, 4917}, {225, 53861}, {312, 42032}, {513, 48340}, {514, 47965}, {661, 58299}, {693, 48268}, {1698, 51572}, {3296, 1}, {3306, 63128}, {5119, 7086}, {7284, 6580}, {20925, 46951}, {30679, 63}, {61375, 31}, {65028, 57}
X(64996) lies on these lines: {239, 30022}, {305, 1447}, {28660, 31905}
X(64996) = X(i)-cross conjugate of X(j) for these {i, j}: {24560, 799}
X(64996) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(239)}}, {{A, B, C, X(7), X(3210)}}, {{A, B, C, X(305), X(561)}}, {{A, B, C, X(310), X(30022)}}, {{A, B, C, X(757), X(18147)}}, {{A, B, C, X(7034), X(34384)}}
X(64996) = barycentric quotient X(i)/X(j) for these (i, j): {3596, 38406}, {28660, 14011}
X(64997) lies on these lines: {2, 970}, {27, 1193}, {73, 64984}, {86, 22097}, {306, 1240}, {675, 59066}, {1393, 44733}, {1817, 14621}, {4225, 56047}, {4417, 57824}, {31909, 64988}
X(64997) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 13323}
X(64997) = X(i)-Dao conjugate of X(j) for these {i, j}: {40589, 13323}
X(64997) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(57), X(10441)}}, {{A, B, C, X(58), X(970)}}, {{A, B, C, X(73), X(306)}}, {{A, B, C, X(81), X(28660)}}, {{A, B, C, X(92), X(959)}}, {{A, B, C, X(256), X(37865)}}, {{A, B, C, X(312), X(5331)}}, {{A, B, C, X(469), X(4225)}}, {{A, B, C, X(1393), X(17167)}}, {{A, B, C, X(1817), X(31909)}}, {{A, B, C, X(60172), X(62185)}}
X(64997) = barycentric product X(i)*X(j) for these (i, j): {3261, 59066}, {3597, 86}
X(64997) = barycentric quotient X(i)/X(j) for these (i, j): {58, 13323}, {3597, 10}, {59066, 101}
X(64998) lies on the Kiepert hyperbola and on these lines: {1131, 6566}, {1151, 6568}, {51128, 64999}, {60315, 63121}
X(64998) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(249), X(1151)}}
X(64998) = barycentric quotient X(i)/X(j) for these (i, j): {1151, 32563}
X(64999) lies on the Kiepert hyperbola and on these lines: {1132, 6567}, {1152, 6569}, {51128, 64998}, {60316, 63121}
X(64999) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(249), X(1152)}}
X(64999) = barycentric quotient X(i)/X(j) for these (i, j): {1152, 32570}
X(65000) lies on these lines: {1, 45655}, {2, 7}, {4, 10305}, {8, 18419}, {11, 64130}, {20, 34489}, {55, 21151}, {56, 4295}, {65, 1056}, {145, 10940}, {165, 60924}, {189, 4858}, {196, 37790}, {222, 4000}, {223, 24177}, {269, 34052}, {278, 1086}, {376, 1319}, {388, 3753}, {497, 3660}, {938, 37437}, {942, 6850}, {954, 15804}, {962, 1420}, {1119, 55110}, {1122, 46017}, {1408, 31900}, {1429, 7125}, {1462, 57494}, {1466, 3487}, {1467, 4292}, {1519, 3086}, {1565, 55117}, {1617, 3474}, {1767, 5236}, {1770, 18223}, {1788, 17757}, {1836, 59386}, {1851, 3937}, {1864, 36996}, {2003, 5222}, {2006, 65002}, {2078, 9778}, {2096, 57278}, {2550, 17625}, {3256, 10578}, {3339, 10039}, {3340, 11037}, {3475, 37541}, {3476, 11112}, {3488, 37430}, {3560, 24470}, {3600, 4861}, {3916, 7288}, {4310, 8270}, {4331, 61376}, {4644, 52424}, {4862, 64708}, {5083, 36845}, {5173, 10569}, {5265, 11415}, {5708, 6842}, {5714, 6975}, {5758, 15803}, {5766, 34881}, {5805, 64207}, {5880, 63994}, {6180, 40688}, {6223, 9581}, {6358, 31995}, {6875, 34880}, {6893, 57282}, {6941, 57285}, {6961, 37582}, {7055, 10030}, {7677, 44447}, {9364, 33144}, {9578, 11024}, {9580, 64696}, {9782, 41824}, {9785, 63208}, {9841, 12053}, {10309, 64658}, {10382, 43177}, {10580, 60925}, {10589, 17618}, {10711, 12832}, {10980, 60923}, {11019, 60896}, {12115, 18391}, {14450, 41547}, {15934, 28458}, {17074, 19785}, {17366, 62207}, {17604, 41706}, {17642, 35514}, {22464, 63584}, {22759, 52783}, {23681, 34050}, {24231, 60786}, {26871, 53994}, {26914, 31387}, {30623, 40154}, {33146, 57477}, {34855, 56873}, {37022, 41426}, {37583, 55109}, {37736, 64146}, {41777, 44708}, {44675, 52027}, {52635, 62693}, {56848, 62787}
X(65000) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 42019}, {55, 56354}, {200, 53995}, {220, 56287}, {1253, 34401}
X(65000) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 56354}, {478, 42019}, {3554, 2057}, {6609, 53995}, {17113, 34401}, {38015, 8}, {38357, 57049}, {40650, 13458}, {49171, 9}
X(65000) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7, 63962}, {54240, 3669}
X(65000) = X(i)-cross conjugate of X(j) for these {i, j}: {3554, 3086}, {45639, 7}
X(65000) = pole of line {1058, 12675} with respect to the Feuerbach hyperbola
X(65000) = pole of line {241, 514} with respect to the dual conic of Mandart circle
X(65000) = pole of line {1, 10309} with respect to the dual conic of Yff parabola
X(65000) = pole of line {7, 15297} with respect to the dual conic of Moses-Feuerbach circumconic
X(65000) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3086)}}, {{A, B, C, X(9), X(3554)}}, {{A, B, C, X(63), X(10305)}}, {{A, B, C, X(189), X(56941)}}, {{A, B, C, X(269), X(56544)}}, {{A, B, C, X(278), X(908)}}, {{A, B, C, X(279), X(5905)}}, {{A, B, C, X(738), X(40212)}}, {{A, B, C, X(1119), X(7013)}}, {{A, B, C, X(1412), X(56549)}}, {{A, B, C, X(1422), X(49171)}}, {{A, B, C, X(2006), X(30827)}}, {{A, B, C, X(2982), X(55871)}}, {{A, B, C, X(3218), X(65002)}}, {{A, B, C, X(5257), X(24005)}}, {{A, B, C, X(13437), X(52419)}}, {{A, B, C, X(13459), X(52420)}}, {{A, B, C, X(23062), X(61010)}}, {{A, B, C, X(24029), X(32714)}}, {{A, B, C, X(28609), X(52374)}}, {{A, B, C, X(30852), X(45098)}}, {{A, B, C, X(33864), X(39732)}}, {{A, B, C, X(34401), X(45639)}}
X(65000) = barycentric product X(i)*X(j) for these (i, j): {273, 63399}, {279, 53994}, {1014, 17869}, {1088, 30223}, {1434, 24005}, {1440, 63962}, {3086, 7}, {3554, 85}, {13437, 40650}, {26871, 278}, {54284, 57}
X(65000) = barycentric quotient X(i)/X(j) for these (i, j): {56, 42019}, {57, 56354}, {269, 56287}, {279, 34401}, {1407, 53995}, {1440, 34413}, {1519, 6735}, {3086, 8}, {3554, 9}, {17869, 3701}, {19354, 1260}, {24005, 2321}, {26871, 345}, {26955, 3695}, {30223, 200}, {40650, 13425}, {45639, 26364}, {49171, 2057}, {53994, 346}, {54284, 312}, {63399, 78}, {63962, 7080}
X(65000) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 5435, 5905}, {7, 9776, 226}, {1086, 1407, 278}, {1617, 24465, 3474}, {8732, 9965, 1708}, {24177, 62789, 223}, {26871, 54284, 53994}
X(65001) lies on these lines: {2, 575}, {14567, 59007}, {22329, 35178}
X(65001) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8859)}}, {{A, B, C, X(98), X(64802)}}, {{A, B, C, X(1383), X(9716)}}, {{A, B, C, X(3292), X(38279)}}, {{A, B, C, X(7608), X(15850)}}, {{A, B, C, X(8787), X(37860)}}, {{A, B, C, X(10415), X(38397)}}, {{A, B, C, X(34507), X(52192)}}
X(65001) = barycentric product X(i)*X(j) for these (i, j): {7607, 8859}
X(65001) = barycentric quotient X(i)/X(j) for these (i, j): {7607, 42010}
X(65002) lies on these lines: {1, 18419}, {2, 55989}, {56, 32075}, {88, 1407}, {241, 56355}, {269, 36603}, {1262, 5376}, {1427, 26745}, {2006, 65000}, {2990, 23958}, {3218, 56354}, {8056, 37789}, {18811, 30710}, {32017, 34523}
X(65002) = isogonal conjugate of X(34524)
X(65002) = trilinear pole of line {46004, 513}
X(65002) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34524}, {9, 2098}, {55, 30827}, {220, 4862}, {341, 34543}, {346, 32577}, {480, 47444}, {2316, 44784}, {3699, 17424}
X(65002) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 34524}, {223, 30827}, {478, 2098}
X(65002) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65004, 63163}
X(65002) = X(i)-cross conjugate of X(j) for these {i, j}: {51656, 934}
X(65002) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(189), X(34529)}}, {{A, B, C, X(346), X(8602)}}, {{A, B, C, X(479), X(7045)}}, {{A, B, C, X(1262), X(1407)}}, {{A, B, C, X(4564), X(5435)}}, {{A, B, C, X(18419), X(42304)}}, {{A, B, C, X(43760), X(60831)}}
X(65002) = barycentric product X(i)*X(j) for these (i, j): {1, 65004}, {57, 63167}, {279, 55989}, {1407, 34523}, {18811, 56}, {46004, 6613}, {63163, 7}
X(65002) = barycentric quotient X(i)/X(j) for these (i, j): {6, 34524}, {56, 2098}, {57, 30827}, {269, 4862}, {738, 47444}, {1106, 32577}, {1319, 44784}, {18811, 3596}, {34523, 59761}, {41426, 15347}, {46004, 42337}, {52410, 34543}, {55989, 346}, {57181, 17424}, {63163, 8}, {63167, 312}, {65004, 75}
X(65003) lies on these lines: {1, 37787}, {2, 6603}, {6, 34056}, {7, 15730}, {55, 32076}, {57, 1055}, {88, 5228}, {89, 241}, {105, 2099}, {277, 30275}, {279, 4644}, {663, 35348}, {948, 21907}, {955, 24929}, {1002, 1319}, {1323, 60951}, {1388, 55087}, {1708, 39948}, {2006, 5222}, {3227, 60856}, {4511, 39959}, {5226, 37887}, {5526, 60944}, {5543, 42326}, {12848, 62705}, {18473, 40269}, {18810, 34018}, {34051, 62797}, {43052, 62635}, {45043, 53014}
X(65003) = isogonal conjugate of X(34522)
X(65003) = trilinear pole of line {6139, 43050}
X(65003) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34522}, {6, 5231}, {7, 32578}, {9, 4860}, {55, 6173}, {57, 42014}, {220, 21314}, {664, 17425}, {2291, 44785}, {8012, 58809}
X(65003) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 34522}, {9, 5231}, {223, 6173}, {478, 4860}, {5452, 42014}, {39025, 17425}
X(65003) = X(i)-Ceva conjugate of X(j) for these {i, j}: {63166, 55920}
X(65003) = pole of line {55920, 61008} with respect to the dual conic of Yff parabola
X(65003) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(55986)}}, {{A, B, C, X(6), X(663)}}, {{A, B, C, X(7), X(4564)}}, {{A, B, C, X(9), X(60975)}}, {{A, B, C, X(21), X(60092)}}, {{A, B, C, X(63), X(45100)}}, {{A, B, C, X(104), X(55937)}}, {{A, B, C, X(241), X(2099)}}, {{A, B, C, X(294), X(4644)}}, {{A, B, C, X(514), X(14497)}}, {{A, B, C, X(598), X(5385)}}, {{A, B, C, X(673), X(2320)}}, {{A, B, C, X(997), X(17014)}}, {{A, B, C, X(1016), X(56314)}}, {{A, B, C, X(1126), X(56005)}}, {{A, B, C, X(1156), X(54622)}}, {{A, B, C, X(1171), X(53995)}}, {{A, B, C, X(1174), X(4845)}}, {{A, B, C, X(1319), X(5228)}}, {{A, B, C, X(1320), X(39273)}}, {{A, B, C, X(1389), X(10405)}}, {{A, B, C, X(1392), X(9311)}}, {{A, B, C, X(1411), X(42290)}}, {{A, B, C, X(1434), X(63163)}}, {{A, B, C, X(1445), X(30275)}}, {{A, B, C, X(2161), X(40779)}}, {{A, B, C, X(3512), X(41446)}}, {{A, B, C, X(3577), X(36101)}}, {{A, B, C, X(4511), X(5222)}}, {{A, B, C, X(4567), X(55989)}}, {{A, B, C, X(7131), X(17097)}}, {{A, B, C, X(7319), X(55965)}}, {{A, B, C, X(8545), X(12848)}}, {{A, B, C, X(10509), X(56028)}}, {{A, B, C, X(18421), X(59215)}}, {{A, B, C, X(20007), X(54369)}}, {{A, B, C, X(29624), X(54318)}}, {{A, B, C, X(36605), X(56152)}}, {{A, B, C, X(37131), X(55948)}}, {{A, B, C, X(42317), X(52663)}}, {{A, B, C, X(52896), X(60856)}}, {{A, B, C, X(55918), X(60094)}}, {{A, B, C, X(55920), X(55954)}}, {{A, B, C, X(55964), X(60155)}}, {{A, B, C, X(55985), X(60170)}}, {{A, B, C, X(55987), X(60167)}}, {{A, B, C, X(56027), X(60075)}}, {{A, B, C, X(56049), X(63150)}}, {{A, B, C, X(60944), X(60951)}}
X(65003) = barycentric product X(i)*X(j) for these (i, j): {1, 63166}, {220, 34521}, {18810, 55}, {46003, 6606}, {55920, 7}, {55954, 57}, {58105, 693}
X(65003) = barycentric quotient X(i)/X(j) for these (i, j): {1, 5231}, {6, 34522}, {41, 32578}, {55, 42014}, {56, 4860}, {57, 6173}, {269, 21314}, {1155, 44785}, {3063, 17425}, {18810, 6063}, {34521, 57792}, {37541, 15346}, {46003, 6362}, {55920, 8}, {55954, 312}, {58105, 100}, {61373, 58809}, {63166, 75}
X(65004) lies on these lines: {2, 55989}, {7, 20323}, {75, 18811}, {269, 903}, {279, 36606}, {479, 16078}, {3668, 39707}, {4373, 62787}, {4888, 21453}, {6548, 43932}, {7045, 62536}, {27475, 60961}, {62783, 65081}
X(65004) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 34524}, {41, 30827}, {55, 2098}, {200, 32577}, {346, 34543}, {644, 17424}, {1253, 4862}, {6602, 47444}
X(65004) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 34524}, {223, 2098}, {3160, 30827}, {6609, 32577}, {17113, 4862}, {52659, 44784}
X(65004) = X(i)-cross conjugate of X(j) for these {i, j}: {30719, 658}, {63163, 63167}
X(65004) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(20323)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(104), X(56094)}}, {{A, B, C, X(269), X(7045)}}, {{A, B, C, X(341), X(10309)}}, {{A, B, C, X(749), X(43947)}}, {{A, B, C, X(1041), X(46972)}}, {{A, B, C, X(1275), X(23062)}}, {{A, B, C, X(3664), X(7271)}}, {{A, B, C, X(4888), X(10481)}}, {{A, B, C, X(4998), X(39126)}}, {{A, B, C, X(10307), X(14942)}}, {{A, B, C, X(19604), X(56359)}}, {{A, B, C, X(39702), X(40446)}}, {{A, B, C, X(40719), X(60961)}}, {{A, B, C, X(52803), X(56783)}}, {{A, B, C, X(55989), X(63163)}}
X(65004) = barycentric product X(i)*X(j) for these (i, j): {269, 34523}, {1088, 55989}, {18811, 57}, {63163, 85}, {63167, 7}, {65002, 75}
X(65004) = barycentric quotient X(i)/X(j) for these (i, j): {1, 34524}, {7, 30827}, {57, 2098}, {279, 4862}, {479, 47444}, {1106, 34543}, {1407, 32577}, {3911, 44784}, {18811, 312}, {34523, 341}, {43924, 17424}, {55989, 200}, {62787, 63621}, {63163, 9}, {63167, 8}, {65002, 1}
X(65005) lies on cubic K354 and on these lines: {2, 51}, {39, 3498}, {327, 7788}, {2186, 4876}, {3051, 26714}, {3117, 51997}, {7736, 51338}, {9300, 51543}, {14970, 36214}, {40820, 53865}, {42037, 42288}, {43718, 63024}
X(65005) = X(i)-isoconjugate-of-X(j) for these {i, j}: {182, 60664}, {3403, 60672}, {52134, 60667}
X(65005) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39968, 14252}
X(65005) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3329)}}, {{A, B, C, X(4), X(6194)}}, {{A, B, C, X(6), X(52658)}}, {{A, B, C, X(98), X(15819)}}, {{A, B, C, X(251), X(33873)}}, {{A, B, C, X(511), X(12212)}}, {{A, B, C, X(694), X(34236)}}, {{A, B, C, X(3060), X(41295)}}, {{A, B, C, X(3794), X(4876)}}, {{A, B, C, X(3917), X(21355)}}, {{A, B, C, X(10519), X(60702)}}, {{A, B, C, X(14318), X(47638)}}, {{A, B, C, X(14458), X(22712)}}, {{A, B, C, X(14484), X(44434)}}, {{A, B, C, X(33706), X(54582)}}, {{A, B, C, X(44422), X(54734)}}, {{A, B, C, X(54773), X(59249)}}
X(65005) = barycentric product X(i)*X(j) for these (i, j): {262, 3329}, {263, 60707}, {2186, 60683}, {10007, 42299}, {12212, 327}, {39685, 51543}
X(65005) = barycentric quotient X(i)/X(j) for these (i, j): {262, 42006}, {263, 60667}, {2186, 60664}, {3329, 183}, {10007, 14994}, {12212, 182}, {14318, 3288}, {26714, 43357}, {46319, 60672}, {51997, 60600}, {60683, 3403}, {60686, 52134}, {60707, 20023}
X(65006) lies on these lines: {2, 37808}, {3, 22087}, {22, 1383}, {30, 262}, {39, 9019}, {305, 6390}, {427, 23297}, {525, 13394}, {574, 9515}, {2781, 21163}, {3796, 54060}, {7495, 10511}, {11165, 47596}, {11636, 14675}, {14096, 46147}, {16509, 44420}, {20380, 47426}, {44210, 51541}
X(65006) = isogonal conjugate of X(32581)
X(65006) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 32581}, {19, 10130}, {82, 5094}, {92, 58761}, {3112, 8541}, {32085, 36263}
X(65006) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 32581}, {6, 10130}, {141, 5094}, {22391, 58761}, {34452, 8541}
X(65006) = X(i)-Ceva conjugate of X(j) for these {i, j}: {23297, 30489}
X(65006) = pole of line {5094, 10130} with respect to the Stammler hyperbola
X(65006) = pole of line {8541, 32581} with respect to the Wallace hyperbola
X(65006) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(39)}}, {{A, B, C, X(22), X(3796)}}, {{A, B, C, X(30), X(14096)}}, {{A, B, C, X(110), X(13394)}}, {{A, B, C, X(141), X(525)}}, {{A, B, C, X(184), X(41272)}}, {{A, B, C, X(3051), X(14908)}}, {{A, B, C, X(3521), X(27366)}}, {{A, B, C, X(4846), X(20021)}}, {{A, B, C, X(6390), X(20775)}}, {{A, B, C, X(6676), X(10547)}}, {{A, B, C, X(7767), X(11205)}}, {{A, B, C, X(14961), X(41328)}}, {{A, B, C, X(16102), X(43722)}}, {{A, B, C, X(16789), X(29959)}}, {{A, B, C, X(19127), X(42286)}}, {{A, B, C, X(27376), X(40441)}}, {{A, B, C, X(30489), X(43697)}}, {{A, B, C, X(36952), X(42551)}}
X(65006) = barycentric product X(i)*X(j) for these (i, j): {39, 64982}, {141, 43697}, {1383, 3933}, {3917, 598}, {11636, 2525}, {20775, 40826}, {23297, 3}, {30489, 69}, {30491, 4576}
X(65006) = barycentric quotient X(i)/X(j) for these (i, j): {3, 10130}, {6, 32581}, {39, 5094}, {184, 58761}, {598, 46104}, {1383, 32085}, {3051, 8541}, {3917, 599}, {3933, 9464}, {4020, 36263}, {11636, 42396}, {20775, 574}, {23297, 264}, {30489, 4}, {30491, 58784}, {43697, 83}, {64982, 308}, {65007, 21459}
X(65007) lies on these lines: {2, 37808}, {6, 11226}, {23, 22258}, {25, 1383}, {111, 18374}, {351, 523}, {468, 10511}, {858, 47426}, {1995, 19153}, {2393, 64646}, {5133, 23297}, {9465, 9971}, {11580, 21419}, {11636, 53929}, {14580, 20410}, {18018, 40022}
X(65007) = X(i)-isoconjugate-of-X(j) for these {i, j}: {574, 37220}, {2373, 36263}
X(65007) = X(i)-Dao conjugate of X(j) for these {i, j}: {61067, 599}, {64646, 9464}
X(65007) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10512, 30489}
X(65007) = pole of line {5169, 55974} with respect to the nine-point circle
X(65007) = pole of line {8288, 45096} with respect to the Kiepert hyperbola
X(65007) = pole of line {598, 57082} with respect to the Lemoine inellipse
X(65007) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(21459)}}, {{A, B, C, X(25), X(523)}}, {{A, B, C, X(111), X(5523)}}, {{A, B, C, X(351), X(47426)}}, {{A, B, C, X(468), X(18374)}}, {{A, B, C, X(1304), X(7426)}}, {{A, B, C, X(2857), X(4108)}}, {{A, B, C, X(5354), X(62382)}}, {{A, B, C, X(14961), X(21309)}}, {{A, B, C, X(22329), X(61198)}}, {{A, B, C, X(36900), X(52672)}}, {{A, B, C, X(51541), X(58953)}}
X(65007) = barycentric product X(i)*X(j) for these (i, j): {1383, 858}, {2393, 598}, {10511, 64646}, {11636, 47138}, {14580, 64982}, {18669, 55927}, {18818, 47426}, {21459, 65006}, {30491, 61181}, {43697, 5523}, {51541, 57485}, {52672, 52692}, {61198, 8599}
X(65007) = barycentric quotient X(i)/X(j) for these (i, j): {598, 46140}, {858, 9464}, {1383, 2373}, {2393, 599}, {14580, 5094}, {30489, 46165}, {46001, 60040}, {47426, 39785}, {51962, 42007}, {55927, 37220}, {57485, 42008}, {61198, 9146}
X(65008) lies on these lines: {2, 11215}, {338, 1648}, {670, 5468}, {690, 850}, {1649, 14272}, {9979, 10512}, {14295, 34763}
X(65008) = isotomic conjugate of X(32583)
X(65008) = trilinear pole of line {23992, 52628}
X(65008) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 32583}, {163, 42007}, {574, 36142}, {923, 9145}, {23288, 23995}, {32729, 36263}
X(65008) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 32583}, {115, 42007}, {690, 62412}, {1648, 62657}, {1649, 17414}, {2482, 9145}, {18314, 23288}, {23992, 574}, {36901, 42008}, {48317, 8541}, {52628, 19510}, {62563, 10510}, {62577, 3906}
X(65008) = pole of line {8541, 42007} with respect to the polar circle
X(65008) = pole of line {5, 23297} with respect to the Lemoine inellipse
X(65008) = pole of line {5486, 11185} with respect to the Steiner circumellipse
X(65008) = pole of line {16511, 17430} with respect to the Steiner inellipse
X(65008) = pole of line {9145, 17414} with respect to the Wallace hyperbola
X(65008) = pole of line {16509, 26235} with respect to the dual conic of circumcircle
X(65008) = pole of line {598, 11059} with respect to the dual conic of Brocard inellipse
X(65008) = pole of line {599, 3906} with respect to the dual conic of Stammler hyperbola
X(65008) = pole of line {574, 17414} with respect to the dual conic of Wallace hyperbola
X(65008) = intersection, other than A, B, C, of circumconics {{A, B, C, X(94), X(44146)}}, {{A, B, C, X(290), X(3266)}}, {{A, B, C, X(338), X(670)}}, {{A, B, C, X(690), X(1648)}}, {{A, B, C, X(2501), X(22105)}}, {{A, B, C, X(8599), X(23287)}}, {{A, B, C, X(9134), X(53365)}}, {{A, B, C, X(11215), X(13241)}}, {{A, B, C, X(14272), X(14273)}}, {{A, B, C, X(14417), X(62428)}}, {{A, B, C, X(34289), X(52145)}}, {{A, B, C, X(44176), X(57496)}}, {{A, B, C, X(52094), X(58268)}}
X(65008) = barycentric product X(i)*X(j) for these (i, j): {3266, 8599}, {10512, 18311}, {18818, 52629}, {20380, 52632}, {20382, 53080}, {23287, 76}, {35138, 52628}, {35522, 598}, {40826, 690}, {51541, 850}
X(65008) = barycentric quotient X(i)/X(j) for these (i, j): {2, 32583}, {338, 23288}, {523, 42007}, {524, 9145}, {598, 691}, {690, 574}, {850, 42008}, {1383, 32729}, {1648, 17414}, {1649, 62657}, {3266, 9146}, {8599, 111}, {14273, 8541}, {18311, 10510}, {18818, 34574}, {20380, 5467}, {20382, 351}, {22105, 58761}, {23287, 6}, {23297, 36827}, {23992, 62412}, {30491, 14908}, {35522, 599}, {40826, 892}, {42713, 3908}, {46001, 32740}, {51541, 110}, {52628, 3906}, {52629, 39785}, {55135, 8542}, {55927, 36142}, {62577, 19510}, {65009, 21460}
X(65009) lies on these lines: {2, 11215}, {351, 523}, {598, 46040}, {671, 11622}, {1992, 62412}, {2395, 18818}, {2407, 35138}, {39905, 41146}
X(65009) = X(i)-Dao conjugate of X(j) for these {i, j}: {39100, 9146}
X(65009) = pole of line {542, 598} with respect to the Lemoine inellipse
X(65009) = pole of line {1992, 17430} with respect to the Steiner circumellipse
X(65009) = pole of line {597, 17430} with respect to the Steiner inellipse
X(65009) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(21460)}}, {{A, B, C, X(351), X(2395)}}, {{A, B, C, X(523), X(46040)}}, {{A, B, C, X(2080), X(6094)}}, {{A, B, C, X(3228), X(22329)}}, {{A, B, C, X(9462), X(45146)}}, {{A, B, C, X(18818), X(52692)}}
X(65009) = barycentric product X(i)*X(j) for these (i, j): {21460, 65008}, {39099, 8599}, {59775, 598}
X(65009) = barycentric quotient X(i)/X(j) for these (i, j): {598, 53199}, {2080, 9145}, {8599, 43532}, {21460, 32583}, {39099, 9146}, {46001, 46316}, {59775, 599}
X(65010) lies on these lines: {2, 3943}, {10, 41434}, {1434, 3911}, {3616, 4819}, {4700, 42028}, {5558, 19877}, {9105, 28210}, {24183, 31248}, {25529, 31238}, {34860, 56134}
X(65010) = isotomic conjugate of X(58859)
X(65010) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 58859}, {2334, 16666}, {4606, 58139}, {21747, 25430}, {28209, 34074}
X(65010) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 58859}, {51576, 16666}, {62608, 551}
X(65010) = pole of line {3707, 26860} with respect to the Wallace hyperbola
X(65010) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1434)}}, {{A, B, C, X(391), X(30608)}}, {{A, B, C, X(1449), X(16672)}}, {{A, B, C, X(3911), X(3943)}}, {{A, B, C, X(4673), X(4997)}}, {{A, B, C, X(4778), X(28309)}}, {{A, B, C, X(5342), X(32015)}}, {{A, B, C, X(17160), X(32016)}}
X(65010) = barycentric product X(i)*X(j) for these (i, j): {3616, 55955}, {4778, 58128}, {19804, 40434}, {27797, 42028}
X(65010) = barycentric quotient X(i)/X(j) for these (i, j): {2, 58859}, {391, 3707}, {1449, 16666}, {3616, 551}, {4673, 3902}, {4773, 14435}, {4778, 28209}, {19804, 24589}, {21454, 4031}, {27797, 60267}, {28210, 8694}, {30723, 30722}, {30728, 30727}, {37593, 21806}, {40434, 25430}, {41434, 2334}, {42028, 26860}, {55955, 5936}, {56115, 4866}, {56134, 56237}, {58128, 53658}, {58140, 58139}
X(65010) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 65078, 40434}, {40434, 65078, 55955}
X(65011) lies on cubic K972 and on these lines: {2, 257}, {6, 893}, {7, 54117}, {25, 904}, {31, 1976}, {37, 20684}, {42, 4531}, {43, 1581}, {55, 41532}, {56, 2248}, {57, 37128}, {65, 16606}, {92, 16081}, {111, 29055}, {251, 51947}, {256, 941}, {308, 17788}, {604, 1169}, {661, 2395}, {694, 1469}, {1215, 2171}, {1400, 16584}, {1401, 3572}, {1836, 19637}, {2998, 40849}, {3870, 3903}, {3930, 56258}, {4417, 7018}, {4603, 56439}, {5256, 40432}, {7015, 60038}, {9468, 23543}, {17493, 62998}, {18743, 27805}, {32911, 45986}, {39780, 45218}, {39798, 61704}, {39939, 56554}, {41346, 46286}, {45988, 51986}, {52136, 56358}
X(65011) = isogonal conjugate of X(27958)
X(65011) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 27958}, {9, 17103}, {21, 894}, {55, 8033}, {58, 17787}, {60, 3963}, {63, 14006}, {81, 7081}, {86, 2329}, {99, 3287}, {171, 333}, {172, 314}, {261, 2295}, {270, 4019}, {274, 2330}, {284, 1909}, {332, 7119}, {385, 56154}, {643, 4369}, {644, 17212}, {645, 4367}, {662, 3907}, {757, 4095}, {1021, 6649}, {1043, 7175}, {1098, 4032}, {1215, 2185}, {1237, 2150}, {1414, 4529}, {1580, 36800}, {1812, 7009}, {1920, 2194}, {1966, 2311}, {2287, 7176}, {2328, 7196}, {2344, 56696}, {2533, 4612}, {3699, 18200}, {3737, 18047}, {3786, 40745}, {3939, 16737}, {3955, 31623}, {4140, 52935}, {4374, 5546}, {4459, 4567}, {4477, 4573}, {4512, 65019}, {4560, 4579}, {4590, 40608}, {4631, 7234}, {5027, 36806}, {6064, 16592}, {7122, 28660}, {7257, 20981}, {13588, 39936}, {14534, 18235}, {20964, 52379}, {22061, 57779}, {27891, 57264}, {40415, 56558}, {40731, 52652}, {52133, 56441}, {56242, 62534}, {56982, 60577}
X(65011) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 27958}, {10, 17787}, {223, 8033}, {478, 17103}, {1084, 3907}, {1214, 1920}, {2887, 56558}, {3162, 14006}, {9467, 2311}, {15267, 4032}, {16591, 3978}, {36908, 7196}, {38986, 3287}, {39092, 36800}, {40586, 7081}, {40590, 1909}, {40600, 2329}, {40607, 4095}, {40608, 4529}, {40611, 894}, {40617, 16737}, {40627, 4459}, {55060, 4369}, {56325, 1237}, {59608, 7205}
X(65011) = X(i)-cross conjugate of X(j) for these {i, j}: {7180, 37137}, {39780, 65}
X(65011) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1215)}}, {{A, B, C, X(2), X(6)}}, {{A, B, C, X(31), X(92)}}, {{A, B, C, X(43), X(740)}}, {{A, B, C, X(56), X(17084)}}, {{A, B, C, X(57), X(181)}}, {{A, B, C, X(65), X(1403)}}, {{A, B, C, X(85), X(45208)}}, {{A, B, C, X(213), X(3061)}}, {{A, B, C, X(226), X(1402)}}, {{A, B, C, X(257), X(893)}}, {{A, B, C, X(306), X(1409)}}, {{A, B, C, X(312), X(3725)}}, {{A, B, C, X(512), X(9315)}}, {{A, B, C, X(604), X(2171)}}, {{A, B, C, X(647), X(41081)}}, {{A, B, C, X(756), X(65026)}}, {{A, B, C, X(872), X(22230)}}, {{A, B, C, X(904), X(7116)}}, {{A, B, C, X(1088), X(4017)}}, {{A, B, C, X(1178), X(59191)}}, {{A, B, C, X(1284), X(1469)}}, {{A, B, C, X(1333), X(8818)}}, {{A, B, C, X(1401), X(4551)}}, {{A, B, C, X(1423), X(4032)}}, {{A, B, C, X(1431), X(7249)}}, {{A, B, C, X(1824), X(56882)}}, {{A, B, C, X(2051), X(45785)}}, {{A, B, C, X(2162), X(52208)}}, {{A, B, C, X(2319), X(4095)}}, {{A, B, C, X(2339), X(44092)}}, {{A, B, C, X(3709), X(19605)}}, {{A, B, C, X(5665), X(7143)}}, {{A, B, C, X(17788), X(51947)}}, {{A, B, C, X(20284), X(52136)}}, {{A, B, C, X(20535), X(20674)}}, {{A, B, C, X(40873), X(41882)}}, {{A, B, C, X(43682), X(57185)}}, {{A, B, C, X(52373), X(57681)}}
X(65011) = barycentric product X(i)*X(j) for these (i, j): {6, 60245}, {10, 1431}, {42, 7249}, {181, 32010}, {225, 7015}, {226, 893}, {256, 65}, {349, 7104}, {1042, 4451}, {1178, 12}, {1284, 1581}, {1400, 257}, {1402, 7018}, {1432, 37}, {1441, 904}, {1874, 36214}, {2171, 40432}, {3669, 56257}, {3903, 4017}, {4032, 59480}, {4603, 57185}, {16609, 694}, {27805, 7180}, {29055, 523}, {37137, 661}, {40149, 7116}, {40729, 85}, {51641, 56241}, {52651, 57}, {53559, 55018}, {57652, 7019}
X(65011) = barycentric quotient X(i)/X(j) for these (i, j): {6, 27958}, {12, 1237}, {25, 14006}, {37, 17787}, {42, 7081}, {56, 17103}, {57, 8033}, {65, 1909}, {181, 1215}, {213, 2329}, {226, 1920}, {256, 314}, {257, 28660}, {512, 3907}, {694, 36800}, {798, 3287}, {882, 60577}, {893, 333}, {904, 21}, {1042, 7176}, {1178, 261}, {1284, 1966}, {1356, 4128}, {1400, 894}, {1402, 171}, {1427, 7196}, {1431, 86}, {1432, 274}, {1469, 56696}, {1500, 4095}, {1874, 17984}, {1918, 2330}, {1967, 56154}, {2171, 3963}, {2197, 4019}, {3122, 4459}, {3212, 27891}, {3668, 7205}, {3669, 16737}, {3709, 4529}, {3725, 18235}, {3903, 7257}, {4017, 4374}, {4079, 4140}, {4128, 3023}, {4559, 18047}, {4603, 4631}, {7015, 332}, {7018, 40072}, {7104, 284}, {7116, 1812}, {7180, 4369}, {7249, 310}, {9468, 2311}, {16584, 56558}, {16609, 3978}, {17970, 1808}, {27805, 62534}, {29055, 99}, {32010, 18021}, {36065, 36036}, {37134, 36806}, {37137, 799}, {39780, 51575}, {40432, 52379}, {40729, 9}, {43924, 17212}, {50491, 30584}, {51641, 4367}, {52651, 312}, {53321, 6649}, {56257, 646}, {56556, 56441}, {57181, 18200}, {57652, 7009}, {57663, 65019}, {60245, 76}, {61052, 53559}, {61059, 4154}, {61364, 20964}, {63461, 4477}
X(65012) lies on these lines: {176, 16213}, {482, 1088}, {658, 10134}, {13456, 52419}, {58816, 65013}
X(65012) = X(i)-Dao conjugate of X(j) for these {i, j}: {16662, 10134}
X(65012) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(13456)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(8), X(176)}}, {{A, B, C, X(7045), X(13389)}}, {{A, B, C, X(7056), X(56386)}}, {{A, B, C, X(7347), X(56359)}}, {{A, B, C, X(13387), X(55983)}}, {{A, B, C, X(13437), X(56783)}}, {{A, B, C, X(55346), X(60853)}}
X(65012) = barycentric quotient X(i)/X(j) for these (i, j): {16663, 10134}
X(65013) lies on these lines: {175, 16214}, {481, 1088}, {658, 10135}, {13427, 52420}, {58816, 65012}
X(65013) = X(i)-Dao conjugate of X(j) for these {i, j}: {16663, 10135}
X(65013) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(13427)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(8), X(175)}}, {{A, B, C, X(7045), X(13388)}}, {{A, B, C, X(7056), X(56385)}}, {{A, B, C, X(7348), X(56359)}}, {{A, B, C, X(13386), X(55983)}}, {{A, B, C, X(13459), X(56783)}}, {{A, B, C, X(55346), X(60854)}}
X(65013) = barycentric quotient X(i)/X(j) for these (i, j): {16662, 10135}
X(65014) lies on these lines: {27, 46102}, {86, 4998}, {673, 14554}, {1025, 62619}, {50039, 60479}
X(65014) = trilinear pole of line {4552, 21362}
X(65014) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 52341}, {513, 53286}, {650, 21786}, {2170, 5053}, {3063, 21222}, {3271, 54391}, {7252, 21894}, {18344, 23087}
X(65014) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 52341}, {10001, 21222}, {39026, 53286}, {52659, 34590}
X(65014) = X(i)-cross conjugate of X(j) for these {i, j}: {517, 190}, {1739, 653}, {4674, 655}, {16610, 658}, {32486, 3257}, {49997, 651}
X(65014) = pole of line {52339, 52340} with respect to the dual conic of Wallace hyperbola
X(65014) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(899), X(1458)}}, {{A, B, C, X(1443), X(17160)}}, {{A, B, C, X(3264), X(22464)}}, {{A, B, C, X(3699), X(5377)}}, {{A, B, C, X(4998), X(35174)}}, {{A, B, C, X(5382), X(7035)}}
X(65014) = barycentric product X(i)*X(j) for these (i, j): {14554, 4998}, {50039, 664}
X(65014) = barycentric quotient X(i)/X(j) for these (i, j): {59, 5053}, {101, 53286}, {109, 21786}, {523, 52341}, {664, 21222}, {1813, 23087}, {3911, 34590}, {4551, 21894}, {4564, 54391}, {14554, 11}, {50039, 522}
X(65015) lies on these lines: {2, 36419}, {7, 46103}, {1246, 57390}, {16099, 52919}, {39700, 51354}, {57825, 64985}
X(65015) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 21671}, {71, 18673}, {72, 44093}, {228, 440}, {1104, 52386}, {1834, 3990}, {2264, 7066}, {3682, 40977}, {3998, 40984}, {7138, 59646}, {53290, 57109}, {55232, 61200}
X(65015) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 21671}
X(65015) = X(i)-cross conjugate of X(j) for these {i, j}: {27, 40414}, {17925, 52919}
X(65015) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(447), X(17925)}}, {{A, B, C, X(40395), X(53044)}}, {{A, B, C, X(46103), X(59482)}}
X(65015) = barycentric product X(i)*X(j) for these (i, j): {27, 40414}, {286, 40431}, {44129, 57390}, {64985, 8747}
X(65015) = barycentric quotient X(i)/X(j) for these (i, j): {4, 21671}, {27, 440}, {28, 18673}, {951, 7066}, {1257, 52387}, {1474, 44093}, {2983, 52386}, {5317, 40977}, {8747, 1834}, {36419, 40940}, {36421, 59646}, {40414, 306}, {40431, 72}, {40445, 3695}, {52919, 14543}, {52920, 61221}, {57390, 71}, {64985, 52396}
X(65016) lies on these lines: {2, 85}, {7, 57270}, {75, 40699}, {6063, 60853}, {7056, 13387}, {7182, 56386}, {57785, 61401}
X(65016) = X(i)-isoconjugate-of-X(j) for these {i, j}: {33, 53065}, {41, 42013}, {55, 60852}, {220, 60849}, {607, 2066}, {657, 54016}, {1253, 16232}, {2175, 14121}, {2212, 30556}, {6502, 7071}, {6602, 61400}, {7079, 53064}, {9447, 60853}, {13390, 14827}, {13427, 53066}
X(65016) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 60852}, {3160, 42013}, {13389, 55}, {16662, 46379}, {17113, 16232}, {40593, 14121}, {64631, 220}
X(65016) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6063, 65017}
X(65016) = X(i)-cross conjugate of X(j) for these {i, j}: {7056, 65017}
X(65016) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(13387)}}, {{A, B, C, X(241), X(13388)}}, {{A, B, C, X(948), X(1659)}}, {{A, B, C, X(1212), X(30557)}}, {{A, B, C, X(1427), X(61401)}}, {{A, B, C, X(6554), X(7090)}}, {{A, B, C, X(7182), X(57785)}}, {{A, B, C, X(30807), X(60854)}}, {{A, B, C, X(44664), X(54017)}}
X(65016) = barycentric product X(i)*X(j) for these (i, j): {305, 61401}, {1088, 56386}, {1659, 7182}, {2362, 57918}, {4569, 54017}, {13387, 65017}, {13388, 6063}, {20567, 2067}, {30557, 57792}, {41283, 53063}, {60854, 7056}, {64230, 76}, {65082, 85}
X(65016) = barycentric quotient X(i)/X(j) for these (i, j): {7, 42013}, {57, 60852}, {77, 2066}, {85, 14121}, {222, 53065}, {269, 60849}, {279, 16232}, {348, 30556}, {479, 61400}, {934, 54016}, {1088, 13390}, {1659, 33}, {1847, 61393}, {2067, 41}, {2362, 607}, {5414, 1253}, {6063, 60853}, {7053, 53064}, {7056, 13389}, {7090, 7079}, {7133, 7071}, {7177, 6502}, {7182, 56385}, {13388, 55}, {13390, 13427}, {13436, 30557}, {16663, 46379}, {24002, 58838}, {30557, 220}, {30682, 64229}, {52420, 5414}, {53063, 2175}, {53066, 14827}, {54017, 3900}, {56386, 200}, {60850, 2212}, {60854, 7046}, {61401, 25}, {64229, 34125}, {64230, 6}, {65017, 13386}, {65082, 9}
X(65016) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {85, 1088, 65017}
X(65017) lies on these lines: {2, 85}, {7, 57269}, {75, 40700}, {6063, 60854}, {7056, 13386}, {7182, 56385}, {57785, 61400}
X(65017) = X(i)-isoconjugate-of-X(j) for these {i, j}: {33, 53066}, {41, 7133}, {55, 60851}, {220, 60850}, {607, 5414}, {657, 54018}, {1253, 2362}, {1659, 14827}, {2067, 7071}, {2175, 7090}, {2212, 30557}, {6602, 61401}, {7079, 53063}, {9447, 60854}, {13456, 53065}
X(65017) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 60851}, {3160, 7133}, {13388, 55}, {16663, 46378}, {17113, 2362}, {40593, 7090}, {64632, 220}
X(65017) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6063, 65016}
X(65017) = X(i)-cross conjugate of X(j) for these {i, j}: {7056, 65016}
X(65017) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(13386)}}, {{A, B, C, X(241), X(13389)}}, {{A, B, C, X(948), X(13390)}}, {{A, B, C, X(1212), X(30556)}}, {{A, B, C, X(1427), X(61400)}}, {{A, B, C, X(6554), X(14121)}}, {{A, B, C, X(7182), X(57785)}}, {{A, B, C, X(30807), X(60853)}}, {{A, B, C, X(44664), X(54019)}}
X(65017) = barycentric product X(i)*X(j) for these (i, j): {305, 61400}, {1088, 56385}, {4569, 54019}, {13386, 65016}, {13389, 6063}, {13390, 7182}, {16232, 57918}, {20567, 6502}, {30556, 57792}, {41283, 53064}, {60853, 7056}, {64229, 76}
X(65017) = barycentric quotient X(i)/X(j) for these (i, j): {7, 7133}, {57, 60851}, {77, 5414}, {85, 7090}, {222, 53066}, {269, 60850}, {279, 2362}, {348, 30557}, {479, 61401}, {934, 54018}, {1088, 1659}, {1659, 13456}, {1847, 61392}, {2066, 1253}, {6063, 60854}, {6502, 41}, {7053, 53063}, {7056, 13388}, {7177, 2067}, {7182, 56386}, {13389, 55}, {13390, 33}, {13453, 30556}, {14121, 7079}, {16232, 607}, {16662, 46378}, {24002, 58840}, {30556, 220}, {30682, 64230}, {42013, 7071}, {52419, 2066}, {53064, 2175}, {53065, 14827}, {54019, 3900}, {56385, 200}, {60849, 2212}, {60853, 7046}, {61400, 25}, {64229, 6}, {64230, 34121}, {65016, 13387}
X(65017) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {85, 1088, 65016}
X(65018) lies on these lines: {2, 1434}, {8, 86}, {81, 30711}, {274, 312}, {333, 1509}, {873, 65058}, {1010, 4314}, {1311, 5545}, {2368, 8694}, {3691, 42302}, {4102, 29574}, {4518, 18827}, {4624, 18359}, {4633, 4997}, {4866, 14007}, {5333, 29624}, {5750, 32008}, {6557, 16705}, {10436, 12526}, {14828, 16458}, {17169, 17551}, {17206, 30608}, {17589, 56088}, {18157, 64989}, {18600, 56075}, {25508, 34820}, {27424, 51314}, {29605, 65025}, {33779, 40827}, {42028, 42030}, {52422, 63164}
X(65018) = isotomic conjugate of X(5257)
X(65018) = trilinear pole of line {7192, 47656}
X(65018) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 37593}, {25, 4047}, {31, 5257}, {41, 3671}, {42, 1449}, {65, 4258}, {71, 5338}, {100, 4832}, {101, 4822}, {213, 3616}, {391, 1402}, {461, 1409}, {604, 4061}, {651, 8653}, {692, 4841}, {872, 42028}, {1018, 58140}, {1214, 44100}, {1334, 3361}, {1397, 42712}, {1400, 4512}, {1415, 4843}, {1911, 4771}, {1918, 19804}, {1973, 4101}, {2200, 5342}, {2223, 14625}, {2333, 4652}, {4557, 4790}, {4734, 21759}, {4815, 32739}, {4819, 9456}, {4827, 53321}, {4829, 18268}, {4839, 34067}, {30728, 51641}
X(65018) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 5257}, {9, 37593}, {1015, 4822}, {1086, 4841}, {1146, 4843}, {3160, 3671}, {3161, 4061}, {4370, 4819}, {6337, 4101}, {6505, 4047}, {6626, 3616}, {6651, 4771}, {8054, 4832}, {34021, 19804}, {35068, 4829}, {35119, 4839}, {38991, 8653}, {40582, 4512}, {40592, 1449}, {40602, 4258}, {40605, 391}, {40619, 4815}, {40620, 4778}, {40625, 4765}, {55068, 4827}, {62585, 42712}, {62599, 14625}
X(65018) = X(i)-cross conjugate of X(j) for these {i, j}: {5333, 86}, {18228, 314}, {23880, 664}, {25430, 56048}, {47666, 190}, {47915, 53658}
X(65018) = pole of line {391, 1449} with respect to the Wallace hyperbola
X(65018) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(16831)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(10), X(4733)}}, {{A, B, C, X(27), X(14005)}}, {{A, B, C, X(75), X(58012)}}, {{A, B, C, X(76), X(1268)}}, {{A, B, C, X(79), X(55949)}}, {{A, B, C, X(81), X(25507)}}, {{A, B, C, X(86), X(274)}}, {{A, B, C, X(142), X(5750)}}, {{A, B, C, X(279), X(28626)}}, {{A, B, C, X(284), X(5022)}}, {{A, B, C, X(304), X(57832)}}, {{A, B, C, X(332), X(348)}}, {{A, B, C, X(673), X(43531)}}, {{A, B, C, X(996), X(49680)}}, {{A, B, C, X(1010), X(15149)}}, {{A, B, C, X(1120), X(39738)}}, {{A, B, C, X(1125), X(29574)}}, {{A, B, C, X(1222), X(32009)}}, {{A, B, C, X(1224), X(17758)}}, {{A, B, C, X(2296), X(34284)}}, {{A, B, C, X(2334), X(25430)}}, {{A, B, C, X(3500), X(55919)}}, {{A, B, C, X(3616), X(29624)}}, {{A, B, C, X(3624), X(29605)}}, {{A, B, C, X(3691), X(59207)}}, {{A, B, C, X(5331), X(37128)}}, {{A, B, C, X(5333), X(42028)}}, {{A, B, C, X(5931), X(23618)}}, {{A, B, C, X(5936), X(40023)}}, {{A, B, C, X(6625), X(27483)}}, {{A, B, C, X(7110), X(38930)}}, {{A, B, C, X(7306), X(16709)}}, {{A, B, C, X(11546), X(44733)}}, {{A, B, C, X(14007), X(31926)}}, {{A, B, C, X(14621), X(39736)}}, {{A, B, C, X(17175), X(60735)}}, {{A, B, C, X(17206), X(57985)}}, {{A, B, C, X(17368), X(27147)}}, {{A, B, C, X(17377), X(20569)}}, {{A, B, C, X(19862), X(49761)}}, {{A, B, C, X(20568), X(56061)}}, {{A, B, C, X(27475), X(59760)}}, {{A, B, C, X(28650), X(40014)}}, {{A, B, C, X(32018), X(55955)}}, {{A, B, C, X(33296), X(51314)}}, {{A, B, C, X(39708), X(60083)}}, {{A, B, C, X(39740), X(56042)}}, {{A, B, C, X(40004), X(44129)}}, {{A, B, C, X(40017), X(56052)}}, {{A, B, C, X(40403), X(40430)}}, {{A, B, C, X(40417), X(57906)}}, {{A, B, C, X(40432), X(55971)}}, {{A, B, C, X(41506), X(60243)}}, {{A, B, C, X(44190), X(57831)}}, {{A, B, C, X(47915), X(56237)}}
X(65018) = barycentric product X(i)*X(j) for these (i, j): {29, 57873}, {257, 65019}, {333, 57826}, {1434, 56086}, {1509, 60267}, {2334, 310}, {3261, 4627}, {4560, 4624}, {4606, 7199}, {4614, 693}, {4633, 514}, {4866, 57785}, {5936, 86}, {25430, 274}, {28660, 57663}, {35519, 5545}, {40023, 81}, {44130, 57701}, {47915, 799}, {52619, 8694}, {53658, 7192}, {56048, 75}, {56204, 85}, {56237, 873}, {58860, 99}
X(65018) = barycentric quotient X(i)/X(j) for these (i, j): {1, 37593}, {2, 5257}, {7, 3671}, {8, 4061}, {21, 4512}, {28, 5338}, {29, 461}, {63, 4047}, {69, 4101}, {81, 1449}, {86, 3616}, {239, 4771}, {274, 19804}, {284, 4258}, {286, 5342}, {312, 42712}, {314, 4673}, {333, 391}, {513, 4822}, {514, 4841}, {519, 4819}, {522, 4843}, {645, 30728}, {649, 4832}, {663, 8653}, {673, 14625}, {693, 4815}, {740, 4829}, {812, 4839}, {1014, 3361}, {1019, 4790}, {1021, 4827}, {1434, 21454}, {1444, 4652}, {1509, 42028}, {2299, 44100}, {2334, 42}, {3733, 58140}, {4560, 4765}, {4606, 1018}, {4614, 100}, {4624, 4552}, {4627, 101}, {4633, 190}, {4866, 210}, {5333, 62648}, {5545, 109}, {5936, 10}, {6629, 4831}, {7192, 4778}, {7199, 4801}, {8694, 4557}, {14626, 20683}, {16704, 4700}, {17096, 30723}, {17139, 51423}, {18155, 4811}, {23829, 50357}, {25430, 37}, {30939, 4742}, {30941, 4684}, {32010, 4835}, {33296, 4734}, {34820, 1334}, {40023, 321}, {47915, 661}, {48580, 53586}, {53658, 3952}, {54308, 4719}, {56048, 1}, {56086, 2321}, {56204, 9}, {56237, 756}, {57663, 1400}, {57701, 73}, {57826, 226}, {57873, 307}, {58860, 523}, {60267, 594}, {62755, 4706}, {65019, 894}
X(65019) lies on these lines: {2, 1434}, {86, 25419}, {4633, 25430}, {5936, 40164}, {7081, 17103}, {7155, 51356}, {8033, 17787}, {17731, 56205}
X(65019) = trilinear pole of line {17212, 3907}
X(65019) = X(i)-isoconjugate-of-X(j) for these {i, j}: {213, 4835}, {893, 37593}, {904, 5257}, {1967, 4771}, {3616, 40729}, {3903, 4832}, {4512, 65011}, {8653, 37137}, {56257, 58140}
X(65019) = X(i)-Dao conjugate of X(j) for these {i, j}: {6626, 4835}, {8290, 4771}, {16592, 4841}, {40597, 37593}, {62650, 5257}
X(65019) = pole of line {391, 4734} with respect to the Wallace hyperbola
X(65019) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(894)}}, {{A, B, C, X(1434), X(8033)}}
X(65019) = barycentric product X(i)*X(j) for these (i, j): {1909, 56048}, {4369, 4633}, {4374, 4614}, {14006, 57873}, {16737, 4606}, {17103, 5936}, {17212, 53658}, {25430, 8033}, {27958, 57826}, {56204, 7196}, {65018, 894}
X(65019) = barycentric quotient X(i)/X(j) for these (i, j): {86, 4835}, {171, 37593}, {385, 4771}, {894, 5257}, {3907, 4843}, {4039, 4829}, {4107, 4839}, {4367, 4822}, {4369, 4841}, {4374, 4815}, {4434, 4819}, {4606, 56257}, {4614, 3903}, {4633, 27805}, {5545, 29055}, {7081, 4061}, {7176, 3671}, {8033, 19804}, {14006, 461}, {16737, 4801}, {17103, 3616}, {17212, 4778}, {17787, 42712}, {18200, 4790}, {20981, 4832}, {25430, 52651}, {27958, 391}, {56048, 256}, {57663, 65011}, {57826, 60245}, {65018, 257}
X(65020) lies on these lines: {2, 4912}, {8, 1392}, {92, 30829}, {226, 63167}, {257, 29613}, {333, 30827}, {345, 56075}, {1220, 3624}, {1311, 8697}, {2994, 37758}, {3452, 30608}, {3634, 31359}, {4417, 55956}, {4997, 30568}, {5219, 40420}, {5233, 42030}, {5328, 56201}, {5333, 55942}, {6557, 32851}, {17743, 29630}, {18134, 65045}, {18359, 18743}, {19804, 65029}, {20317, 60480}, {28808, 56086}, {30852, 34234}, {41878, 56947}
X(65020) = isotomic conjugate of X(31231)
X(65020) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1388}, {31, 31231}, {56, 16885}, {604, 3632}, {651, 58155}, {1402, 4921}, {1415, 4926}, {1461, 4959}
X(65020) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 16885}, {2, 31231}, {9, 1388}, {1146, 4926}, {3161, 3632}, {35508, 4959}, {38991, 58155}, {40605, 4921}
X(65020) = X(i)-cross conjugate of X(j) for these {i, j}: {1392, 39707}
X(65020) = pole of line {4921, 31231} with respect to the Wallace hyperbola
X(65020) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(9), X(16814)}}, {{A, B, C, X(27), X(6931)}}, {{A, B, C, X(57), X(5048)}}, {{A, B, C, X(75), X(7321)}}, {{A, B, C, X(142), X(20196)}}, {{A, B, C, X(226), X(30827)}}, {{A, B, C, X(309), X(57884)}}, {{A, B, C, X(314), X(28650)}}, {{A, B, C, X(345), X(30829)}}, {{A, B, C, X(522), X(4912)}}, {{A, B, C, X(650), X(36630)}}, {{A, B, C, X(673), X(10589)}}, {{A, B, C, X(908), X(30852)}}, {{A, B, C, X(1088), X(56365)}}, {{A, B, C, X(1320), X(39962)}}, {{A, B, C, X(1392), X(26745)}}, {{A, B, C, X(2006), X(11376)}}, {{A, B, C, X(2051), X(5123)}}, {{A, B, C, X(2185), X(25430)}}, {{A, B, C, X(3255), X(17276)}}, {{A, B, C, X(3452), X(5219)}}, {{A, B, C, X(3596), X(17249)}}, {{A, B, C, X(3624), X(3687)}}, {{A, B, C, X(3634), X(11679)}}, {{A, B, C, X(3699), X(62540)}}, {{A, B, C, X(3705), X(29630)}}, {{A, B, C, X(4998), X(44186)}}, {{A, B, C, X(5226), X(5328)}}, {{A, B, C, X(5233), X(5333)}}, {{A, B, C, X(5316), X(25525)}}, {{A, B, C, X(5557), X(25681)}}, {{A, B, C, X(7081), X(29613)}}, {{A, B, C, X(7308), X(58463)}}, {{A, B, C, X(7705), X(60087)}}, {{A, B, C, X(8797), X(40424)}}, {{A, B, C, X(13478), X(17501)}}, {{A, B, C, X(14554), X(17606)}}, {{A, B, C, X(17336), X(36796)}}, {{A, B, C, X(17351), X(36800)}}, {{A, B, C, X(18155), X(40027)}}, {{A, B, C, X(18490), X(56218)}}, {{A, B, C, X(18743), X(32851)}}, {{A, B, C, X(19804), X(28808)}}, {{A, B, C, X(20317), X(30568)}}, {{A, B, C, X(25417), X(30607)}}, {{A, B, C, X(28741), X(28826)}}, {{A, B, C, X(30588), X(30713)}}, {{A, B, C, X(31623), X(36805)}}, {{A, B, C, X(35519), X(57947)}}, {{A, B, C, X(43733), X(45098)}}, {{A, B, C, X(45100), X(61770)}}, {{A, B, C, X(51567), X(62528)}}
X(65020) = barycentric product X(i)*X(j) for these (i, j): {333, 65021}, {1392, 75}, {26745, 312}, {35519, 8697}, {39707, 8}
X(65020) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1388}, {2, 31231}, {8, 3632}, {9, 16885}, {333, 4921}, {522, 4926}, {663, 58155}, {1392, 1}, {3244, 39781}, {3900, 4959}, {8697, 109}, {26745, 57}, {39707, 7}, {56387, 51577}, {65021, 226}
X(65020) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {26745, 65021, 39707}
X(65021) lies on the Kiepert hyperbola and on these lines: {2, 4912}, {4, 1392}, {10, 48646}, {76, 29577}, {98, 8697}, {1211, 65022}, {1751, 28609}, {3175, 4080}, {3622, 60077}, {3936, 4052}, {4054, 60267}, {4358, 40012}, {4359, 62884}, {4398, 31053}, {4415, 30588}, {4462, 60074}, {4654, 60085}, {4677, 60079}, {4685, 48645}, {4980, 34258}, {11346, 25055}, {13478, 31164}, {14534, 42025}, {17079, 57826}, {17310, 43676}, {17389, 53105}, {19722, 60082}, {19796, 62928}, {20942, 40021}, {24624, 41629}, {26580, 60203}, {29572, 60236}, {29584, 53109}, {31025, 56209}, {31179, 54586}, {33151, 62882}, {42044, 60261}, {42045, 60172}, {45100, 50071}, {50102, 60155}, {50105, 60254}, {51068, 54786}, {51103, 60078}, {55962, 64143}, {56559, 65044}, {60235, 64424}
X(65021) = isotomic conjugate of X(4921)
X(65021) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 4921}, {58, 16885}, {163, 4926}, {284, 1388}, {662, 58155}, {1333, 3632}, {2194, 31231}, {4565, 4959}
X(65021) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4921}, {10, 16885}, {37, 3632}, {115, 4926}, {1084, 58155}, {1214, 31231}, {40590, 1388}, {55064, 4959}
X(65021) = pole of line {28321, 58155} with respect to the orthoptic circle of the Steiner Inellipse
X(65021) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(37), X(16814)}}, {{A, B, C, X(42), X(29577)}}, {{A, B, C, X(92), X(39702)}}, {{A, B, C, X(306), X(3241)}}, {{A, B, C, X(313), X(17249)}}, {{A, B, C, X(335), X(17351)}}, {{A, B, C, X(469), X(11346)}}, {{A, B, C, X(523), X(4912)}}, {{A, B, C, X(525), X(28204)}}, {{A, B, C, X(903), X(1441)}}, {{A, B, C, X(1211), X(42025)}}, {{A, B, C, X(1214), X(10222)}}, {{A, B, C, X(1427), X(30575)}}, {{A, B, C, X(1903), X(55992)}}, {{A, B, C, X(3175), X(4358)}}, {{A, B, C, X(3656), X(63171)}}, {{A, B, C, X(3936), X(4462)}}, {{A, B, C, X(4054), X(17079)}}, {{A, B, C, X(4415), X(4945)}}, {{A, B, C, X(4654), X(26580)}}, {{A, B, C, X(4685), X(29572)}}, {{A, B, C, X(4980), X(31993)}}, {{A, B, C, X(5734), X(56382)}}, {{A, B, C, X(8818), X(56123)}}, {{A, B, C, X(19722), X(32782)}}, {{A, B, C, X(25055), X(56810)}}, {{A, B, C, X(28609), X(56559)}}, {{A, B, C, X(30690), X(65059)}}, {{A, B, C, X(31143), X(37631)}}, {{A, B, C, X(39962), X(56174)}}, {{A, B, C, X(42715), X(50102)}}, {{A, B, C, X(48629), X(48646)}}
X(65021) = barycentric product X(i)*X(j) for these (i, j): {10, 39707}, {226, 65020}, {850, 8697}, {1392, 1441}, {26745, 321}
X(65021) = barycentric quotient X(i)/X(j) for these (i, j): {2, 4921}, {10, 3632}, {37, 16885}, {65, 1388}, {226, 31231}, {512, 58155}, {523, 4926}, {1392, 21}, {4018, 51577}, {4041, 4959}, {4067, 63914}, {8697, 110}, {26745, 81}, {39707, 86}, {65020, 333}
X(65021) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39707, 65020, 26745}
X(65022) lies on the Kiepert hyperbola and on these lines: {2, 3723}, {4, 3654}, {76, 4980}, {98, 28196}, {594, 60203}, {1211, 65021}, {3175, 6539}, {3617, 60077}, {3679, 19738}, {3995, 56209}, {4358, 62884}, {4359, 40012}, {4444, 47675}, {4745, 60078}, {4921, 14534}, {17251, 54775}, {19723, 60082}, {19797, 60258}, {19819, 60285}, {21020, 34475}, {29593, 60236}, {29615, 32014}, {30588, 56810}, {31144, 65051}, {41809, 60267}, {41816, 60139}, {42044, 56210}, {42045, 55949}, {50105, 60206}, {51066, 60079}, {51068, 54624}, {59772, 63060}
X(65022) = isotomic conjugate of X(42025)
X(65022) = trilinear pole of line {48551, 523}
X(65022) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42025}, {48, 31901}, {58, 16884}, {110, 50525}, {163, 28195}, {662, 58144}, {1333, 3624}, {1408, 4034}, {4556, 48053}, {17104, 43261}
X(65022) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42025}, {10, 16884}, {37, 3624}, {115, 28195}, {244, 50525}, {1084, 58144}, {1249, 31901}, {55065, 47669}, {56847, 43261}, {59577, 4034}
X(65022) = X(i)-cross conjugate of X(j) for these {i, j}: {50449, 4033}
X(65022) = pole of line {28332, 58144} with respect to the orthoptic circle of the Steiner Inellipse
X(65022) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(37), X(3723)}}, {{A, B, C, X(65), X(56213)}}, {{A, B, C, X(75), X(17393)}}, {{A, B, C, X(81), X(56174)}}, {{A, B, C, X(257), X(3175)}}, {{A, B, C, X(306), X(53620)}}, {{A, B, C, X(523), X(28329)}}, {{A, B, C, X(525), X(28198)}}, {{A, B, C, X(594), X(43260)}}, {{A, B, C, X(1211), X(4921)}}, {{A, B, C, X(1255), X(56237)}}, {{A, B, C, X(1441), X(5564)}}, {{A, B, C, X(3578), X(41816)}}, {{A, B, C, X(3679), X(56810)}}, {{A, B, C, X(3701), X(4102)}}, {{A, B, C, X(3948), X(47675)}}, {{A, B, C, X(4674), X(39948)}}, {{A, B, C, X(4685), X(29593)}}, {{A, B, C, X(4852), X(46772)}}, {{A, B, C, X(5224), X(19738)}}, {{A, B, C, X(8013), X(29615)}}, {{A, B, C, X(19723), X(32782)}}, {{A, B, C, X(21020), X(59212)}}, {{A, B, C, X(30713), X(42030)}}, {{A, B, C, X(31143), X(49724)}}, {{A, B, C, X(31144), X(42045)}}, {{A, B, C, X(39980), X(56135)}}, {{A, B, C, X(41809), X(42028)}}, {{A, B, C, X(56159), X(56219)}}
X(65022) = barycentric product X(i)*X(j) for these (i, j): {10, 28650}, {594, 65025}, {4033, 48587}, {27789, 321}, {28196, 850}
X(65022) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42025}, {4, 31901}, {10, 3624}, {37, 16884}, {512, 58144}, {523, 28195}, {661, 50525}, {1089, 42031}, {2321, 4034}, {4024, 47669}, {4705, 48053}, {8818, 43261}, {27789, 81}, {28196, 110}, {28650, 86}, {48587, 1019}, {65025, 1509}
X(65023) lies on these lines: {2, 319}, {86, 17190}, {551, 596}, {553, 41820}, {1125, 3578}, {1509, 30581}, {3296, 3616}, {3622, 50043}, {5905, 53854}, {7100, 56947}, {8652, 9108}, {14377, 56070}, {25055, 56343}, {45222, 65078}
X(65023) = isotomic conjugate of X(43260)
X(65023) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 43260}, {1126, 16777}, {1255, 61358}, {1698, 28615}, {4596, 4826}, {4629, 48005}, {4632, 58290}, {4658, 52555}, {4813, 8701}, {4834, 37212}, {5221, 33635}
X(65023) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43260}, {1213, 1698}, {3120, 4838}, {3647, 16777}, {16726, 4960}, {35076, 4802}, {56846, 4654}, {59592, 4007}, {62588, 28605}
X(65023) = pole of line {5333, 43260} with respect to the Wallace hyperbola
X(65023) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(553)}}, {{A, B, C, X(81), X(32636)}}, {{A, B, C, X(86), X(319)}}, {{A, B, C, X(321), X(3649)}}, {{A, B, C, X(348), X(4001)}}, {{A, B, C, X(551), X(45222)}}, {{A, B, C, X(1100), X(30581)}}, {{A, B, C, X(1213), X(42025)}}, {{A, B, C, X(1269), X(39704)}}, {{A, B, C, X(1962), X(21904)}}, {{A, B, C, X(2308), X(40746)}}, {{A, B, C, X(3616), X(62923)}}, {{A, B, C, X(3683), X(6605)}}, {{A, B, C, X(3702), X(4102)}}, {{A, B, C, X(4654), X(33935)}}, {{A, B, C, X(4725), X(4977)}}, {{A, B, C, X(4870), X(4945)}}, {{A, B, C, X(7100), X(56846)}}, {{A, B, C, X(16709), X(17394)}}, {{A, B, C, X(41818), X(42028)}}, {{A, B, C, X(41823), X(43268)}}
X(65023) = barycentric product X(i)*X(j) for these (i, j): {1125, 30598}, {1269, 56343}, {16709, 56221}, {25417, 4359}, {28625, 52572}, {32042, 4977}, {37211, 4978}, {42030, 553}, {60203, 8025}
X(65023) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43260}, {553, 4654}, {1100, 16777}, {1125, 1698}, {1269, 30596}, {2308, 61358}, {3683, 3715}, {3686, 4007}, {3916, 3927}, {4359, 28605}, {4427, 4756}, {4647, 4066}, {4856, 4898}, {4969, 4727}, {4973, 4880}, {4974, 4716}, {4976, 4820}, {4977, 4802}, {4978, 4823}, {4979, 4813}, {4983, 48005}, {4984, 4958}, {4988, 4838}, {8025, 5333}, {8652, 8701}, {25417, 1255}, {28625, 52555}, {30598, 1268}, {31900, 31902}, {32042, 6540}, {32636, 5221}, {34819, 28615}, {36075, 36074}, {37211, 37212}, {42030, 4102}, {48074, 47947}, {50512, 4834}, {56070, 1796}, {56203, 32635}, {56343, 1126}, {60203, 6539}
X(65023) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25417, 42030}, {2, 42030, 60203}, {30598, 42030, 2}
X(65024) lies on these lines: {2, 3943}, {514, 4120}, {903, 62227}, {996, 3241}, {1000, 15170}, {1016, 40891}, {2726, 28210}, {3679, 31035}, {4080, 54974}, {4370, 16704}, {4671, 20569}, {4908, 63233}, {6542, 35168}, {8046, 17487}, {18145, 39997}, {28602, 34764}, {30564, 36911}, {30578, 62413}, {36592, 42026}, {36915, 62620}, {36954, 41140}, {37168, 42070}, {40509, 41141}
X(65024) = isotomic conjugate of X(42026)
X(65024) = trilinear pole of line {36912, 50841}
X(65024) = perspector of circumconic {{A, B, C, X(55955), X(58128)}}
X(65024) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42026}, {88, 21747}, {106, 16666}, {551, 9456}, {1417, 3707}, {3257, 58139}, {22357, 36125}, {28209, 32665}
X(65024) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42026}, {214, 16666}, {1647, 14435}, {4370, 551}, {35092, 28209}, {36912, 16590}, {52659, 4031}, {52871, 3707}, {55055, 58139}, {62571, 24589}
X(65024) = pole of line {28312, 49631} with respect to the orthoptic circle of the Steiner Inellipse
X(65024) = pole of line {27081, 55955} with respect to the Kiepert hyperbola
X(65024) = pole of line {3679, 28209} with respect to the Steiner circumellipse
X(65024) = pole of line {3828, 28209} with respect to the Steiner inellipse
X(65024) = pole of line {26860, 42026} with respect to the Wallace hyperbola
X(65024) = pole of line {3828, 65078} with respect to the dual conic of Yff parabola
X(65024) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(60346)}}, {{A, B, C, X(2), X(514)}}, {{A, B, C, X(44), X(16672)}}, {{A, B, C, X(900), X(28309)}}, {{A, B, C, X(902), X(39967)}}, {{A, B, C, X(903), X(17160)}}, {{A, B, C, X(1255), X(52680)}}, {{A, B, C, X(1319), X(27789)}}, {{A, B, C, X(1644), X(6542)}}, {{A, B, C, X(1647), X(40891)}}, {{A, B, C, X(3264), X(51317)}}, {{A, B, C, X(3943), X(4080)}}, {{A, B, C, X(3992), X(6539)}}, {{A, B, C, X(4562), X(17310)}}, {{A, B, C, X(4665), X(48416)}}, {{A, B, C, X(4671), X(4908)}}, {{A, B, C, X(4723), X(56086)}}, {{A, B, C, X(4742), X(21454)}}, {{A, B, C, X(4975), X(8025)}}, {{A, B, C, X(17119), X(43264)}}, {{A, B, C, X(17318), X(31147)}}, {{A, B, C, X(17487), X(30578)}}, {{A, B, C, X(18359), X(46791)}}, {{A, B, C, X(20042), X(41140)}}, {{A, B, C, X(20058), X(41141)}}, {{A, B, C, X(30576), X(56037)}}, {{A, B, C, X(36872), X(47759)}}, {{A, B, C, X(47790), X(52746)}}, {{A, B, C, X(47792), X(52747)}}, {{A, B, C, X(47873), X(61321)}}
X(65024) = barycentric product X(i)*X(j) for these (i, j): {519, 55955}, {3264, 41434}, {16704, 27797}, {30939, 56134}, {31011, 65078}, {40434, 4358}, {58128, 900}
X(65024) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42026}, {44, 16666}, {519, 551}, {900, 28209}, {902, 21747}, {1960, 58139}, {2325, 3707}, {3911, 4031}, {3992, 4714}, {4358, 24589}, {4439, 4407}, {4723, 3902}, {4908, 16590}, {6544, 14435}, {16704, 26860}, {17780, 4781}, {21805, 21806}, {22356, 22357}, {27797, 4080}, {28210, 901}, {30725, 30722}, {30731, 30727}, {36920, 39782}, {40434, 88}, {41434, 106}, {55955, 903}, {56115, 1320}, {56134, 4674}, {58128, 4555}, {65078, 62732}
X(65024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 27797, 55955}, {2, 55955, 65078}, {40434, 55955, 2}
X(65025) lies on these lines: {86, 1698}, {274, 27789}, {1434, 4654}, {1509, 5333}, {2368, 28196}, {17175, 55947}, {17394, 39708}, {28639, 32018}, {29605, 65018}, {29615, 32014}
X(65025) = trilinear pole of line {4802, 7192}
X(65025) = X(i)-isoconjugate-of-X(j) for these {i, j}: {32, 42031}, {42, 16884}, {101, 48053}, {213, 3624}, {692, 47669}, {872, 42025}, {1018, 58144}, {1402, 4034}, {4557, 50525}
X(65025) = X(i)-Dao conjugate of X(j) for these {i, j}: {1015, 48053}, {1086, 47669}, {6376, 42031}, {6626, 3624}, {40592, 16884}, {40605, 4034}, {40620, 28195}
X(65025) = pole of line {3624, 4034} with respect to the Wallace hyperbola
X(65025) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(29570)}}, {{A, B, C, X(2), X(79)}}, {{A, B, C, X(76), X(30598)}}, {{A, B, C, X(83), X(42335)}}, {{A, B, C, X(85), X(17360)}}, {{A, B, C, X(86), X(274)}}, {{A, B, C, X(257), X(1125)}}, {{A, B, C, X(1100), X(28639)}}, {{A, B, C, X(1255), X(39748)}}, {{A, B, C, X(3616), X(29605)}}, {{A, B, C, X(5839), X(28641)}}, {{A, B, C, X(6625), X(60669)}}, {{A, B, C, X(7261), X(17270)}}, {{A, B, C, X(15668), X(25508)}}, {{A, B, C, X(17275), X(28640)}}, {{A, B, C, X(17743), X(32009)}}, {{A, B, C, X(18140), X(31008)}}, {{A, B, C, X(25526), X(52137)}}, {{A, B, C, X(27483), X(43972)}}, {{A, B, C, X(27801), X(30588)}}, {{A, B, C, X(37595), X(37869)}}, {{A, B, C, X(37870), X(55942)}}, {{A, B, C, X(39949), X(56066)}}, {{A, B, C, X(56060), X(60239)}}
X(65025) = barycentric product X(i)*X(j) for these (i, j): {274, 27789}, {1509, 65022}, {28196, 52619}, {28650, 86}, {48587, 799}
X(65025) = barycentric quotient X(i)/X(j) for these (i, j): {75, 42031}, {81, 16884}, {86, 3624}, {333, 4034}, {513, 48053}, {514, 47669}, {1019, 50525}, {1509, 42025}, {3733, 58144}, {7192, 28195}, {27789, 37}, {28196, 4557}, {28650, 10}, {48587, 661}, {52393, 43261}, {65022, 594}
X(65026) lies on these lines: {2, 4495}, {31, 1908}, {45, 899}, {171, 30651}, {190, 56166}, {238, 30650}, {292, 750}, {748, 893}, {869, 2177}, {1405, 2225}, {2280, 4273}, {3121, 9345}, {4384, 4850}, {4664, 7035}, {8695, 28317}, {9284, 31134}, {9350, 21814}, {16584, 17124}, {17125, 30647}, {21352, 52655}, {26242, 29828}, {39044, 43095}, {40145, 51947}
X(65026) = isogonal conjugate of X(3758)
X(65026) = trilinear pole of line {3768, 4775}
X(65026) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3758}, {2, 17126}, {6, 64133}, {75, 609}, {81, 46897}, {86, 3997}, {100, 47762}, {238, 43262}, {651, 47729}, {662, 4761}, {739, 62627}, {765, 7208}, {2185, 7276}, {3809, 14621}, {4604, 4844}
X(65026) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3758}, {9, 64133}, {206, 609}, {513, 7208}, {1015, 4406}, {1084, 4761}, {8054, 47762}, {9470, 43262}, {32664, 17126}, {38991, 47729}, {40586, 46897}, {40600, 3997}, {40614, 62627}
X(65026) = X(i)-cross conjugate of X(j) for these {i, j}: {17125, 65027}, {30647, 31}
X(65026) = pole of line {609, 3758} with respect to the Stammler hyperbola
X(65026) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(649)}}, {{A, B, C, X(2), X(31)}}, {{A, B, C, X(6), X(45)}}, {{A, B, C, X(37), X(604)}}, {{A, B, C, X(38), X(57925)}}, {{A, B, C, X(39), X(7084)}}, {{A, B, C, X(41), X(650)}}, {{A, B, C, X(42), X(57)}}, {{A, B, C, X(43), X(3112)}}, {{A, B, C, X(48), X(52351)}}, {{A, B, C, X(55), X(39951)}}, {{A, B, C, X(56), X(21448)}}, {{A, B, C, X(81), X(37673)}}, {{A, B, C, X(85), X(661)}}, {{A, B, C, X(87), X(37132)}}, {{A, B, C, X(89), X(25426)}}, {{A, B, C, X(111), X(40746)}}, {{A, B, C, X(171), X(748)}}, {{A, B, C, X(213), X(56051)}}, {{A, B, C, X(238), X(750)}}, {{A, B, C, X(274), X(56162)}}, {{A, B, C, X(603), X(647)}}, {{A, B, C, X(665), X(43048)}}, {{A, B, C, X(739), X(40434)}}, {{A, B, C, X(751), X(3572)}}, {{A, B, C, X(756), X(65011)}}, {{A, B, C, X(873), X(3223)}}, {{A, B, C, X(941), X(38266)}}, {{A, B, C, X(1178), X(17038)}}, {{A, B, C, X(1193), X(29828)}}, {{A, B, C, X(1252), X(39389)}}, {{A, B, C, X(1255), X(2162)}}, {{A, B, C, X(1333), X(39983)}}, {{A, B, C, X(1402), X(56236)}}, {{A, B, C, X(1500), X(7180)}}, {{A, B, C, X(1581), X(1908)}}, {{A, B, C, X(1635), X(9319)}}, {{A, B, C, X(1646), X(3248)}}, {{A, B, C, X(1824), X(46331)}}, {{A, B, C, X(1921), X(61385)}}, {{A, B, C, X(2156), X(2339)}}, {{A, B, C, X(2157), X(55936)}}, {{A, B, C, X(2221), X(6186)}}, {{A, B, C, X(2258), X(2350)}}, {{A, B, C, X(2279), X(39963)}}, {{A, B, C, X(2296), X(9401)}}, {{A, B, C, X(3224), X(56066)}}, {{A, B, C, X(3666), X(26242)}}, {{A, B, C, X(3733), X(9348)}}, {{A, B, C, X(7077), X(11175)}}, {{A, B, C, X(8606), X(60495)}}, {{A, B, C, X(8632), X(27922)}}, {{A, B, C, X(9285), X(57947)}}, {{A, B, C, X(9315), X(25430)}}, {{A, B, C, X(9415), X(60716)}}, {{A, B, C, X(17124), X(17127)}}, {{A, B, C, X(17125), X(17126)}}, {{A, B, C, X(18140), X(57096)}}, {{A, B, C, X(26745), X(39961)}}, {{A, B, C, X(31008), X(62461)}}, {{A, B, C, X(32664), X(51947)}}, {{A, B, C, X(39962), X(39966)}}, {{A, B, C, X(39971), X(40735)}}, {{A, B, C, X(39981), X(60671)}}, {{A, B, C, X(40432), X(57129)}}, {{A, B, C, X(49979), X(57666)}}
X(65026) = barycentric product X(i)*X(j) for these (i, j): {1, 4492}, {32, 57920}, {4777, 8695}, {30635, 31}, {57725, 6}
X(65026) = barycentric quotient X(i)/X(j) for these (i, j): {1, 64133}, {6, 3758}, {31, 17126}, {32, 609}, {42, 46897}, {181, 7276}, {213, 3997}, {292, 43262}, {512, 4761}, {513, 4406}, {649, 47762}, {663, 47729}, {869, 3809}, {899, 62627}, {1015, 7208}, {4492, 75}, {4775, 4844}, {8695, 4597}, {30635, 561}, {57725, 76}, {57920, 1502}
X(65027) lies on these lines: {2, 30630}, {171, 30650}, {238, 30651}, {292, 748}, {750, 893}, {869, 20963}, {872, 64845}, {873, 4687}, {2276, 3720}, {3121, 9350}, {5333, 16831}, {9345, 21814}, {16584, 17124}, {19554, 40145}, {26627, 28592}, {33589, 56556}
X(65027) = isogonal conjugate of X(3759)
X(65027) = trilinear pole of line {4834, 788}
X(65027) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3759}, {2, 17127}, {75, 7031}, {81, 3896}, {100, 4380}, {171, 43263}, {190, 4401}, {662, 4170}, {757, 4099}, {1434, 4097}, {4564, 4965}, {4961, 37211}, {7189, 17743}, {16948, 27823}
X(65027) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3759}, {206, 7031}, {1084, 4170}, {8054, 4380}, {32664, 17127}, {40586, 3896}, {40607, 4099}, {55053, 4401}
X(65027) = X(i)-cross conjugate of X(j) for these {i, j}: {17125, 65026}, {17477, 649}
X(65027) = pole of line {3759, 7031} with respect to the Stammler hyperbola
X(65027) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(873)}}, {{A, B, C, X(2), X(31)}}, {{A, B, C, X(6), X(1255)}}, {{A, B, C, X(9), X(3217)}}, {{A, B, C, X(38), X(57923)}}, {{A, B, C, X(39), X(1472)}}, {{A, B, C, X(41), X(25082)}}, {{A, B, C, X(42), X(2279)}}, {{A, B, C, X(43), X(37132)}}, {{A, B, C, X(48), X(52381)}}, {{A, B, C, X(55), X(21448)}}, {{A, B, C, X(56), X(1390)}}, {{A, B, C, X(57), X(40148)}}, {{A, B, C, X(81), X(39966)}}, {{A, B, C, X(87), X(3112)}}, {{A, B, C, X(88), X(2162)}}, {{A, B, C, X(101), X(62540)}}, {{A, B, C, X(171), X(750)}}, {{A, B, C, X(212), X(647)}}, {{A, B, C, X(213), X(56236)}}, {{A, B, C, X(238), X(748)}}, {{A, B, C, X(312), X(661)}}, {{A, B, C, X(561), X(30663)}}, {{A, B, C, X(593), X(39389)}}, {{A, B, C, X(604), X(18601)}}, {{A, B, C, X(649), X(8056)}}, {{A, B, C, X(739), X(39962)}}, {{A, B, C, X(741), X(52654)}}, {{A, B, C, X(872), X(4687)}}, {{A, B, C, X(1096), X(56230)}}, {{A, B, C, X(1280), X(3445)}}, {{A, B, C, X(1402), X(56158)}}, {{A, B, C, X(1431), X(11175)}}, {{A, B, C, X(1581), X(57947)}}, {{A, B, C, X(1911), X(39981)}}, {{A, B, C, X(2156), X(7131)}}, {{A, B, C, X(2157), X(55985)}}, {{A, B, C, X(2298), X(45988)}}, {{A, B, C, X(3009), X(17026)}}, {{A, B, C, X(3108), X(40746)}}, {{A, B, C, X(3223), X(7035)}}, {{A, B, C, X(6187), X(7123)}}, {{A, B, C, X(9285), X(57948)}}, {{A, B, C, X(9309), X(56239)}}, {{A, B, C, X(9315), X(39963)}}, {{A, B, C, X(9456), X(39960)}}, {{A, B, C, X(17124), X(17126)}}, {{A, B, C, X(17125), X(17127)}}, {{A, B, C, X(18098), X(40401)}}, {{A, B, C, X(19554), X(32664)}}, {{A, B, C, X(23493), X(39970)}}, {{A, B, C, X(25426), X(27789)}}, {{A, B, C, X(28615), X(39983)}}, {{A, B, C, X(30701), X(38252)}}, {{A, B, C, X(32017), X(56162)}}, {{A, B, C, X(37128), X(40735)}}, {{A, B, C, X(37129), X(55997)}}, {{A, B, C, X(38266), X(39694)}}, {{A, B, C, X(39748), X(56138)}}, {{A, B, C, X(39967), X(40434)}}, {{A, B, C, X(40737), X(56166)}}, {{A, B, C, X(51866), X(56165)}}
X(65027) = barycentric product X(i)*X(j) for these (i, j): {1, 7241}, {30636, 31}
X(65027) = barycentric quotient X(i)/X(j) for these (i, j): {6, 3759}, {31, 17127}, {32, 7031}, {42, 3896}, {512, 4170}, {649, 4380}, {667, 4401}, {893, 43263}, {1500, 4099}, {3271, 4965}, {4834, 4961}, {7032, 7189}, {7241, 75}, {30636, 561}
X(65027) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16584, 17124, 65026}
X(65028) lies on these lines: {1, 376}, {2, 17092}, {7, 1255}, {81, 56846}, {105, 61375}, {222, 1170}, {241, 56217}, {274, 17079}, {278, 1418}, {527, 56230}, {948, 42326}, {957, 32065}, {1407, 2982}, {1427, 52188}, {1465, 44794}, {2006, 7365}, {2094, 40399}, {4000, 52374}, {4648, 4654}, {5435, 39962}, {19819, 55953}, {21454, 25417}, {26745, 63067}, {30701, 42033}, {41777, 43071}, {42047, 55952}, {50101, 65057}
X(65028) = isotomic conjugate of X(42032)
X(65028) = trilinear pole of line {30724, 513}
X(65028) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 3295}, {31, 42032}, {33, 55466}, {41, 42696}, {55, 3305}, {200, 52424}, {220, 7190}, {284, 3697}, {643, 58299}, {644, 48340}, {1253, 52422}, {1334, 63158}, {2327, 53861}, {3939, 47965}, {52405, 56843}, {52429, 63128}
X(65028) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42032}, {223, 3305}, {478, 3295}, {3160, 42696}, {6609, 52424}, {17113, 52422}, {40590, 3697}, {40615, 48268}, {40617, 47965}, {55060, 58299}
X(65028) = X(i)-cross conjugate of X(j) for these {i, j}: {4646, 19604}, {5069, 56155}, {5221, 7}, {62819, 40154}
X(65028) = pole of line {3296, 4654} with respect to the dual conic of Yff parabola
X(65028) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(6361)}}, {{A, B, C, X(7), X(552)}}, {{A, B, C, X(19), X(36916)}}, {{A, B, C, X(27), X(376)}}, {{A, B, C, X(40), X(54886)}}, {{A, B, C, X(92), X(54689)}}, {{A, B, C, X(189), X(14377)}}, {{A, B, C, X(196), X(54867)}}, {{A, B, C, X(222), X(1418)}}, {{A, B, C, X(226), X(27818)}}, {{A, B, C, X(281), X(2160)}}, {{A, B, C, X(514), X(28194)}}, {{A, B, C, X(673), X(10385)}}, {{A, B, C, X(937), X(54726)}}, {{A, B, C, X(1014), X(56356)}}, {{A, B, C, X(1121), X(54759)}}, {{A, B, C, X(1396), X(17107)}}, {{A, B, C, X(1412), X(17092)}}, {{A, B, C, X(1427), X(17079)}}, {{A, B, C, X(1434), X(42304)}}, {{A, B, C, X(1847), X(54831)}}, {{A, B, C, X(2221), X(54497)}}, {{A, B, C, X(2334), X(52424)}}, {{A, B, C, X(2994), X(54929)}}, {{A, B, C, X(3474), X(10509)}}, {{A, B, C, X(3669), X(57663)}}, {{A, B, C, X(4000), X(42033)}}, {{A, B, C, X(4102), X(9311)}}, {{A, B, C, X(4648), X(42028)}}, {{A, B, C, X(4654), X(5586)}}, {{A, B, C, X(4656), X(60267)}}, {{A, B, C, X(5221), X(52422)}}, {{A, B, C, X(6336), X(45098)}}, {{A, B, C, X(7365), X(17078)}}, {{A, B, C, X(8051), X(60085)}}, {{A, B, C, X(8747), X(54790)}}, {{A, B, C, X(14226), X(61392)}}, {{A, B, C, X(14241), X(61393)}}, {{A, B, C, X(17982), X(54885)}}, {{A, B, C, X(19796), X(42049)}}, {{A, B, C, X(23984), X(60120)}}, {{A, B, C, X(28610), X(60992)}}, {{A, B, C, X(36124), X(54690)}}, {{A, B, C, X(36623), X(57785)}}, {{A, B, C, X(36910), X(52223)}}, {{A, B, C, X(38825), X(39956)}}, {{A, B, C, X(40573), X(55956)}}, {{A, B, C, X(41790), X(54880)}}, {{A, B, C, X(42051), X(50101)}}, {{A, B, C, X(52382), X(56846)}}, {{A, B, C, X(54757), X(64814)}}, {{A, B, C, X(54788), X(55110)}}, {{A, B, C, X(54928), X(55948)}}
X(65028) = barycentric product X(i)*X(j) for these (i, j): {57, 64995}, {278, 30679}, {3296, 7}, {6063, 61375}, {17079, 52188}
X(65028) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42032}, {7, 42696}, {56, 3295}, {57, 3305}, {65, 3697}, {222, 55466}, {269, 7190}, {279, 52422}, {1014, 63158}, {1407, 52424}, {1420, 4917}, {1426, 53861}, {3296, 8}, {3669, 47965}, {3676, 48268}, {5221, 51572}, {7180, 58299}, {17079, 46951}, {30679, 345}, {43924, 48340}, {52188, 36916}, {52372, 56843}, {61375, 55}, {64995, 312}
X(65029) lies on these lines: {2, 30673}, {8, 392}, {9, 34234}, {29, 936}, {63, 40420}, {75, 4997}, {85, 908}, {92, 3452}, {189, 18228}, {226, 64995}, {312, 3264}, {321, 6557}, {329, 63164}, {333, 3305}, {693, 60480}, {1121, 30854}, {1220, 19861}, {2863, 59068}, {3239, 52627}, {3661, 52517}, {3679, 36596}, {3912, 55984}, {4102, 20942}, {4359, 38255}, {4671, 56075}, {4737, 4767}, {5205, 34446}, {5328, 26591}, {7308, 40435}, {10405, 64194}, {14942, 51564}, {17342, 52351}, {17615, 56164}, {19804, 65020}, {20196, 54284}, {24589, 65080}, {24982, 31359}, {26015, 60668}, {26637, 55942}, {26688, 40394}, {27131, 30690}, {30608, 30829}, {30711, 46938}, {30807, 55948}, {33939, 64989}, {52156, 62704}, {59491, 63167}
X(65029) = isotomic conjugate of X(3306)
X(65029) = trilinear pole of line {3762, 4404}
X(65029) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 999}, {25, 22129}, {31, 3306}, {32, 42697}, {56, 55432}, {57, 52428}, {560, 20925}, {604, 3872}, {649, 35281}, {1333, 3753}, {1397, 28808}, {1409, 17519}, {2175, 17079}, {2206, 4054}, {7113, 56426}, {21183, 32739}, {28607, 40587}, {61375, 63128}
X(65029) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 55432}, {2, 3306}, {9, 999}, {37, 3753}, {3161, 3872}, {5375, 35281}, {5452, 52428}, {6374, 20925}, {6376, 42697}, {6505, 22129}, {36911, 40587}, {40593, 17079}, {40603, 4054}, {40619, 21183}, {62571, 62621}, {62585, 28808}
X(65029) = X(i)-cross conjugate of X(j) for these {i, j}: {3679, 75}, {5316, 2}, {63993, 7}
X(65029) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(392)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(9), X(908)}}, {{A, B, C, X(21), X(56234)}}, {{A, B, C, X(27), X(5084)}}, {{A, B, C, X(57), X(9957)}}, {{A, B, C, X(63), X(3452)}}, {{A, B, C, X(75), X(693)}}, {{A, B, C, X(76), X(36805)}}, {{A, B, C, X(80), X(60085)}}, {{A, B, C, X(81), X(3890)}}, {{A, B, C, X(84), X(2051)}}, {{A, B, C, X(88), X(9311)}}, {{A, B, C, X(226), X(3305)}}, {{A, B, C, X(273), X(40422)}}, {{A, B, C, X(277), X(6336)}}, {{A, B, C, X(278), X(1058)}}, {{A, B, C, X(304), X(52351)}}, {{A, B, C, X(306), X(936)}}, {{A, B, C, X(309), X(5936)}}, {{A, B, C, X(318), X(36795)}}, {{A, B, C, X(321), X(18743)}}, {{A, B, C, X(329), X(18228)}}, {{A, B, C, X(331), X(62927)}}, {{A, B, C, X(469), X(47512)}}, {{A, B, C, X(514), X(39963)}}, {{A, B, C, X(596), X(55952)}}, {{A, B, C, X(993), X(10176)}}, {{A, B, C, X(1156), X(27475)}}, {{A, B, C, X(1210), X(5271)}}, {{A, B, C, X(1255), X(1476)}}, {{A, B, C, X(1268), X(20570)}}, {{A, B, C, X(1847), X(2006)}}, {{A, B, C, X(2167), X(2339)}}, {{A, B, C, X(2185), X(56352)}}, {{A, B, C, X(2186), X(65026)}}, {{A, B, C, X(2267), X(21801)}}, {{A, B, C, X(2297), X(2321)}}, {{A, B, C, X(2349), X(7131)}}, {{A, B, C, X(2997), X(58001)}}, {{A, B, C, X(3219), X(27131)}}, {{A, B, C, X(3306), X(4900)}}, {{A, B, C, X(3661), X(5205)}}, {{A, B, C, X(3679), X(20925)}}, {{A, B, C, X(3687), X(19861)}}, {{A, B, C, X(3912), X(47787)}}, {{A, B, C, X(4080), X(56127)}}, {{A, B, C, X(4359), X(20942)}}, {{A, B, C, X(4384), X(26015)}}, {{A, B, C, X(4468), X(27819)}}, {{A, B, C, X(4564), X(55936)}}, {{A, B, C, X(4671), X(30829)}}, {{A, B, C, X(4737), X(33934)}}, {{A, B, C, X(5219), X(54357)}}, {{A, B, C, X(5233), X(26637)}}, {{A, B, C, X(5249), X(7308)}}, {{A, B, C, X(5273), X(5748)}}, {{A, B, C, X(5328), X(5744)}}, {{A, B, C, X(5555), X(60155)}}, {{A, B, C, X(5560), X(54768)}}, {{A, B, C, X(5745), X(30852)}}, {{A, B, C, X(7018), X(57925)}}, {{A, B, C, X(7033), X(57923)}}, {{A, B, C, X(7233), X(56163)}}, {{A, B, C, X(7249), X(56239)}}, {{A, B, C, X(9258), X(65027)}}, {{A, B, C, X(11679), X(24982)}}, {{A, B, C, X(13577), X(56026)}}, {{A, B, C, X(14555), X(24556)}}, {{A, B, C, X(17184), X(26688)}}, {{A, B, C, X(17279), X(42709)}}, {{A, B, C, X(17284), X(49991)}}, {{A, B, C, X(17335), X(30588)}}, {{A, B, C, X(17758), X(55931)}}, {{A, B, C, X(27065), X(31053)}}, {{A, B, C, X(27539), X(55910)}}, {{A, B, C, X(27789), X(56029)}}, {{A, B, C, X(28650), X(46750)}}, {{A, B, C, X(30565), X(30566)}}, {{A, B, C, X(30680), X(56107)}}, {{A, B, C, X(30693), X(56200)}}, {{A, B, C, X(30710), X(34523)}}, {{A, B, C, X(30827), X(59491)}}, {{A, B, C, X(30854), X(37780)}}, {{A, B, C, X(31002), X(40028)}}, {{A, B, C, X(31019), X(35595)}}, {{A, B, C, X(32009), X(62882)}}, {{A, B, C, X(32017), X(32018)}}, {{A, B, C, X(32019), X(60251)}}, {{A, B, C, X(32023), X(57815)}}, {{A, B, C, X(33939), X(52412)}}, {{A, B, C, X(34860), X(39698)}}, {{A, B, C, X(36807), X(60242)}}, {{A, B, C, X(39962), X(42304)}}, {{A, B, C, X(39994), X(40014)}}, {{A, B, C, X(40216), X(44186)}}, {{A, B, C, X(40410), X(55106)}}, {{A, B, C, X(40424), X(57818)}}, {{A, B, C, X(42029), X(46938)}}, {{A, B, C, X(51975), X(52627)}}, {{A, B, C, X(55964), X(56217)}}, {{A, B, C, X(55965), X(55995)}}, {{A, B, C, X(56212), X(58013)}}, {{A, B, C, X(57858), X(60041)}}, {{A, B, C, X(59761), X(59764)}}
X(65029) = barycentric product X(i)*X(j) for these (i, j): {1, 58029}, {1000, 75}, {1441, 56107}, {30680, 92}, {34446, 561}, {36916, 85}, {51564, 693}, {52429, 6063}
X(65029) = barycentric quotient X(i)/X(j) for these (i, j): {1, 999}, {2, 3306}, {8, 3872}, {9, 55432}, {10, 3753}, {29, 17519}, {55, 52428}, {63, 22129}, {75, 42697}, {76, 20925}, {80, 56426}, {85, 17079}, {100, 35281}, {312, 28808}, {321, 4054}, {693, 21183}, {997, 52148}, {1000, 1}, {3305, 63128}, {3679, 40587}, {4358, 62621}, {5119, 1480}, {7284, 1481}, {14556, 2999}, {30680, 63}, {31397, 39779}, {34446, 31}, {36596, 1320}, {36916, 9}, {51564, 100}, {52429, 55}, {56107, 21}, {58029, 75}, {59068, 32665}
X(65030) lies on these lines: {2, 3933}, {66, 599}, {141, 4175}, {427, 7794}, {428, 40189}, {907, 9076}, {5064, 8801}, {8362, 65031}, {10691, 14259}, {11168, 53864}, {17301, 23051}, {20775, 34285}, {34603, 59780}, {37671, 40416}, {40425, 41624}, {41513, 52397}, {43098, 54971}
X(65030) = isotomic conjugate of X(42037)
X(65030) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42037}, {82, 30435}, {251, 62834}, {3618, 46289}, {3800, 34072}, {3803, 4628}, {3804, 4599}, {39731, 46288}
X(65030) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42037}, {39, 3618}, {141, 30435}, {3124, 3804}, {6665, 8362}, {15449, 3800}, {40182, 251}, {40585, 62834}, {40938, 6995}
X(65030) = pole of line {3618, 42037} with respect to the Wallace hyperbola
X(65030) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(66)}}, {{A, B, C, X(39), X(9605)}}, {{A, B, C, X(76), X(7754)}}, {{A, B, C, X(428), X(42554)}}, {{A, B, C, X(1235), X(60143)}}, {{A, B, C, X(1930), X(34578)}}, {{A, B, C, X(3933), X(4175)}}, {{A, B, C, X(5064), X(8362)}}, {{A, B, C, X(5305), X(60181)}}, {{A, B, C, X(5485), X(27376)}}, {{A, B, C, X(5503), X(31406)}}, {{A, B, C, X(7839), X(42551)}}, {{A, B, C, X(7920), X(60214)}}, {{A, B, C, X(9924), X(40938)}}, {{A, B, C, X(10302), X(52568)}}, {{A, B, C, X(16893), X(37671)}}, {{A, B, C, X(21248), X(41584)}}, {{A, B, C, X(30489), X(34572)}}, {{A, B, C, X(46225), X(54540)}}
X(65030) = barycentric product X(i)*X(j) for these (i, j): {141, 18840}, {1235, 34817}, {1930, 23051}, {3933, 8801}, {23285, 907}, {39951, 8024}, {54971, 826}
X(65030) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42037}, {38, 62834}, {39, 30435}, {141, 3618}, {427, 6995}, {826, 3800}, {907, 827}, {1930, 39731}, {2528, 3806}, {2530, 3803}, {3005, 3804}, {3917, 3796}, {3933, 3785}, {7794, 8362}, {7813, 3793}, {8024, 40022}, {8801, 32085}, {16892, 48060}, {18840, 83}, {23051, 82}, {34817, 1176}, {39951, 251}, {40187, 26224}, {48084, 48109}, {54971, 4577}, {56207, 56245}
X(65031) lies on these lines: {2, 5007}, {39, 61418}, {66, 3619}, {141, 11205}, {251, 16988}, {1031, 60728}, {1502, 16986}, {3096, 37353}, {3266, 59758}, {3456, 6636}, {3613, 37990}, {6292, 8024}, {6995, 8801}, {7868, 45838}, {7954, 9076}, {8362, 65030}, {8891, 31125}, {17400, 29648}, {21248, 23297}, {31101, 45096}
X(65031) = isotomic conjugate of X(39668)
X(65031) = complement of X(41917)
X(65031) = trilinear pole of line {826, 57222}
X(65031) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 39668}, {82, 7772}, {3763, 46289}, {4599, 8665}, {7950, 34072}
X(65031) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39668}, {39, 3763}, {141, 7772}, {3124, 8665}, {3589, 39784}, {15449, 7950}, {40938, 5064}
X(65031) = X(i)-cross conjugate of X(j) for these {i, j}: {3806, 4576}
X(65031) = pole of line {3763, 39668} with respect to the Wallace hyperbola
X(65031) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(66)}}, {{A, B, C, X(22), X(15080)}}, {{A, B, C, X(25), X(52554)}}, {{A, B, C, X(39), X(251)}}, {{A, B, C, X(76), X(7878)}}, {{A, B, C, X(1180), X(17042)}}, {{A, B, C, X(1235), X(7768)}}, {{A, B, C, X(1239), X(31360)}}, {{A, B, C, X(1843), X(3108)}}, {{A, B, C, X(3051), X(16986)}}, {{A, B, C, X(3266), X(8891)}}, {{A, B, C, X(3917), X(14919)}}, {{A, B, C, X(6179), X(47847)}}, {{A, B, C, X(6995), X(8362)}}, {{A, B, C, X(7858), X(60213)}}, {{A, B, C, X(8041), X(59213)}}, {{A, B, C, X(10130), X(21248)}}, {{A, B, C, X(16703), X(37870)}}, {{A, B, C, X(27366), X(60129)}}, {{A, B, C, X(27376), X(60285)}}, {{A, B, C, X(31107), X(37453)}}, {{A, B, C, X(37125), X(37990)}}, {{A, B, C, X(39951), X(46154)}}, {{A, B, C, X(52568), X(60278)}}
X(65031) = barycentric product X(i)*X(j) for these (i, j): {141, 43527}, {427, 65032}, {1235, 56072}, {1930, 56034}, {23285, 7954}, {39955, 8024}
X(65031) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39668}, {39, 7772}, {141, 3763}, {427, 5064}, {826, 7950}, {3005, 8665}, {6292, 39784}, {7954, 827}, {16892, 47923}, {39955, 251}, {43527, 83}, {56034, 82}, {56072, 1176}, {65032, 1799}
X(65031) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 39955, 43527}, {43527, 65032, 39955}
X(65032) lies on these lines: {2, 5007}, {3, 57852}, {69, 22352}, {76, 42052}, {95, 7788}, {183, 40410}, {264, 428}, {305, 7767}, {325, 63173}, {343, 60872}, {524, 31360}, {2373, 7954}, {7667, 65061}, {7811, 18018}, {16276, 57897}, {34608, 36889}, {40413, 62965}, {42313, 64062}, {44210, 65063}, {45201, 64982}
X(65032) = isotomic conjugate of X(5064)
X(65032) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 7772}, {31, 5064}, {162, 8665}, {1973, 3763}, {7950, 32676}
X(65032) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 5064}, {6, 7772}, {125, 8665}, {6337, 3763}, {15526, 7950}, {40618, 47923}
X(65032) = X(i)-cross conjugate of X(j) for these {i, j}: {56072, 43527}
X(65032) = pole of line {3763, 5064} with respect to the Wallace hyperbola
X(65032) = pole of line {7950, 8665} with respect to the dual conic of polar circle
X(65032) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(428)}}, {{A, B, C, X(22), X(52397)}}, {{A, B, C, X(25), X(10691)}}, {{A, B, C, X(67), X(60141)}}, {{A, B, C, X(68), X(14492)}}, {{A, B, C, X(76), X(7768)}}, {{A, B, C, X(98), X(42021)}}, {{A, B, C, X(183), X(64062)}}, {{A, B, C, X(251), X(41435)}}, {{A, B, C, X(262), X(3519)}}, {{A, B, C, X(265), X(54582)}}, {{A, B, C, X(290), X(60120)}}, {{A, B, C, X(343), X(7788)}}, {{A, B, C, X(376), X(34608)}}, {{A, B, C, X(394), X(37671)}}, {{A, B, C, X(598), X(7878)}}, {{A, B, C, X(599), X(45201)}}, {{A, B, C, X(1176), X(34572)}}, {{A, B, C, X(1179), X(60150)}}, {{A, B, C, X(3504), X(3917)}}, {{A, B, C, X(3785), X(42037)}}, {{A, B, C, X(4590), X(40831)}}, {{A, B, C, X(4846), X(54477)}}, {{A, B, C, X(5486), X(60125)}}, {{A, B, C, X(5641), X(54636)}}, {{A, B, C, X(6179), X(57644)}}, {{A, B, C, X(7484), X(10128)}}, {{A, B, C, X(7667), X(9909)}}, {{A, B, C, X(7759), X(60180)}}, {{A, B, C, X(7780), X(11167)}}, {{A, B, C, X(7849), X(36952)}}, {{A, B, C, X(7854), X(34897)}}, {{A, B, C, X(7858), X(60095)}}, {{A, B, C, X(8858), X(43535)}}, {{A, B, C, X(9289), X(60214)}}, {{A, B, C, X(10154), X(31152)}}, {{A, B, C, X(14023), X(60181)}}, {{A, B, C, X(14489), X(43970)}}, {{A, B, C, X(14841), X(60329)}}, {{A, B, C, X(14861), X(60326)}}, {{A, B, C, X(15077), X(54520)}}, {{A, B, C, X(15740), X(54519)}}, {{A, B, C, X(26861), X(53100)}}, {{A, B, C, X(31371), X(54815)}}, {{A, B, C, X(31407), X(54523)}}, {{A, B, C, X(32533), X(54717)}}, {{A, B, C, X(34384), X(34412)}}, {{A, B, C, X(34386), X(60217)}}, {{A, B, C, X(34405), X(54911)}}, {{A, B, C, X(34483), X(60175)}}, {{A, B, C, X(34609), X(44210)}}, {{A, B, C, X(35142), X(54776)}}, {{A, B, C, X(36616), X(48911)}}, {{A, B, C, X(39284), X(54124)}}, {{A, B, C, X(39287), X(59256)}}, {{A, B, C, X(39955), X(56072)}}, {{A, B, C, X(40050), X(60277)}}, {{A, B, C, X(41008), X(52559)}}, {{A, B, C, X(42052), X(57480)}}, {{A, B, C, X(43714), X(54539)}}, {{A, B, C, X(44176), X(54907)}}, {{A, B, C, X(45838), X(47847)}}, {{A, B, C, X(46104), X(54910)}}, {{A, B, C, X(54171), X(54785)}}, {{A, B, C, X(54810), X(56068)}}
X(65032) = barycentric product X(i)*X(j) for these (i, j): {304, 56034}, {305, 39955}, {1799, 65031}, {3267, 7954}, {43527, 69}, {56072, 76}
X(65032) = barycentric quotient X(i)/X(j) for these (i, j): {2, 5064}, {3, 7772}, {69, 3763}, {525, 7950}, {647, 8665}, {1799, 39668}, {4025, 47923}, {7767, 39784}, {7954, 112}, {39955, 25}, {43527, 4}, {56034, 19}, {56072, 6}, {65031, 427}
X(65032) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39955, 65031, 43527}
X(65033) lies on these lines: {2, 64295}, {75, 7809}, {319, 519}, {596, 903}, {958, 65035}, {2325, 3687}, {2985, 3578}, {4023, 4076}, {11237, 58008}, {31141, 65067}, {33938, 51975}, {34606, 57887}, {38462, 54314}, {41804, 65034}
X(65033) = isotomic conjugate of X(5434)
X(65033) = trilinear pole of line {1639, 28831}
X(65033) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 5434}, {604, 17369}, {1397, 4692}
X(65033) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 5434}, {3161, 17369}, {62585, 4692}
X(65033) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(54510)}}, {{A, B, C, X(2), X(261)}}, {{A, B, C, X(7), X(4021)}}, {{A, B, C, X(8), X(519)}}, {{A, B, C, X(11), X(4023)}}, {{A, B, C, X(75), X(319)}}, {{A, B, C, X(192), X(60214)}}, {{A, B, C, X(256), X(14492)}}, {{A, B, C, X(312), X(17320)}}, {{A, B, C, X(314), X(903)}}, {{A, B, C, X(333), X(17271)}}, {{A, B, C, X(529), X(34606)}}, {{A, B, C, X(958), X(11237)}}, {{A, B, C, X(1329), X(5298)}}, {{A, B, C, X(2321), X(43749)}}, {{A, B, C, X(2481), X(54692)}}, {{A, B, C, X(3718), X(57852)}}, {{A, B, C, X(4373), X(4464)}}, {{A, B, C, X(4451), X(33076)}}, {{A, B, C, X(4998), X(57822)}}, {{A, B, C, X(6063), X(36889)}}, {{A, B, C, X(7241), X(18361)}}, {{A, B, C, X(7261), X(54701)}}, {{A, B, C, X(11194), X(31141)}}, {{A, B, C, X(11609), X(39974)}}, {{A, B, C, X(20566), X(55958)}}, {{A, B, C, X(31643), X(56947)}}, {{A, B, C, X(34393), X(57815)}}, {{A, B, C, X(40419), X(54699)}}, {{A, B, C, X(44187), X(60202)}}
X(65033) = barycentric product X(i)*X(j) for these (i, j): {3596, 64295}, {41432, 76}
X(65033) = barycentric quotient X(i)/X(j) for these (i, j): {2, 5434}, {8, 17369}, {312, 4692}, {41432, 6}, {64295, 56}
X(65034) lies on these lines: {319, 9436}, {553, 3912}, {1376, 65036}, {3263, 44139}, {4995, 40419}, {11238, 32023}, {18821, 34612}, {30941, 41431}, {31140, 65065}, {41804, 65033}
X(65034) = isotomic conjugate of X(3058)
X(65034) = trilinear pole of line {28779, 30724}
X(65034) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 3058}, {41, 17366}, {2175, 7264}
X(65034) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 3058}, {3160, 17366}, {40593, 7264}
X(65034) = X(i)-cross conjugate of X(j) for these {i, j}: {17494, 4554}, {49732, 2}
X(65034) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(693)}}, {{A, B, C, X(7), X(552)}}, {{A, B, C, X(75), X(319)}}, {{A, B, C, X(85), X(32007)}}, {{A, B, C, X(261), X(57822)}}, {{A, B, C, X(286), X(903)}}, {{A, B, C, X(291), X(14492)}}, {{A, B, C, X(330), X(60214)}}, {{A, B, C, X(528), X(34612)}}, {{A, B, C, X(1376), X(11238)}}, {{A, B, C, X(2481), X(56947)}}, {{A, B, C, X(2550), X(10385)}}, {{A, B, C, X(2886), X(4995)}}, {{A, B, C, X(3058), X(49732)}}, {{A, B, C, X(3596), X(36889)}}, {{A, B, C, X(3826), X(4966)}}, {{A, B, C, X(3829), X(6174)}}, {{A, B, C, X(4102), X(18025)}}, {{A, B, C, X(4421), X(31140)}}, {{A, B, C, X(4492), X(18361)}}, {{A, B, C, X(4654), X(60717)}}, {{A, B, C, X(7182), X(57852)}}, {{A, B, C, X(7224), X(60172)}}, {{A, B, C, X(7233), X(52374)}}, {{A, B, C, X(7357), X(54929)}}, {{A, B, C, X(8049), X(60139)}}, {{A, B, C, X(18811), X(36588)}}, {{A, B, C, X(18895), X(60202)}}, {{A, B, C, X(20565), X(55958)}}, {{A, B, C, X(34399), X(39704)}}, {{A, B, C, X(35160), X(57785)}}, {{A, B, C, X(39741), X(54586)}}, {{A, B, C, X(43097), X(54686)}}, {{A, B, C, X(46395), X(62715)}}, {{A, B, C, X(54687), X(56164)}}
X(65034) = barycentric product X(i)*X(j) for these (i, j): {41431, 76}
X(65034) = barycentric quotient X(i)/X(j) for these (i, j): {2, 3058}, {7, 17366}, {85, 7264}, {41431, 6}
X(65035) lies on these lines: {551, 4357}, {958, 65033}, {3687, 3707}, {5434, 58008}, {31157, 65068}, {34606, 65067}
X(65035) = isotomic conjugate of X(11237)
X(65035) = trilinear pole of line {28958, 3910}
X(65035) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 11237}, {604, 61321}, {1415, 47873}
X(65035) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 11237}, {1146, 47873}, {3161, 61321}
X(65035) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(54544)}}, {{A, B, C, X(2), X(261)}}, {{A, B, C, X(7), X(5325)}}, {{A, B, C, X(8), X(551)}}, {{A, B, C, X(9), X(7194)}}, {{A, B, C, X(75), X(17361)}}, {{A, B, C, X(86), X(4102)}}, {{A, B, C, X(256), X(14458)}}, {{A, B, C, X(314), X(17394)}}, {{A, B, C, X(333), X(903)}}, {{A, B, C, X(958), X(5434)}}, {{A, B, C, X(1494), X(6063)}}, {{A, B, C, X(2481), X(54729)}}, {{A, B, C, X(5641), X(57922)}}, {{A, B, C, X(11194), X(34606)}}, {{A, B, C, X(11236), X(31157)}}, {{A, B, C, X(20028), X(54929)}}, {{A, B, C, X(32635), X(56049)}}, {{A, B, C, X(36910), X(50296)}}, {{A, B, C, X(50040), X(54510)}}, {{A, B, C, X(55022), X(59255)}}, {{A, B, C, X(55958), X(57883)}}, {{A, B, C, X(57884), X(57895)}}
X(65035) = barycentric quotient X(i)/X(j) for these (i, j): {2, 11237}, {8, 61321}, {522, 47873}
X(65036) lies on these lines: {693, 49719}, {1376, 65034}, {3058, 32023}, {6063, 49732}, {6174, 65069}, {9436, 17361}, {34612, 65065}
X(65036) = isotomic conjugate of X(11238)
X(65036) = trilinear pole of line {29002, 30726}
X(65036) = X(i)-cross conjugate of X(j) for these {i, j}: {31209, 4554}
X(65036) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(693)}}, {{A, B, C, X(55), X(49732)}}, {{A, B, C, X(75), X(17361)}}, {{A, B, C, X(100), X(49719)}}, {{A, B, C, X(291), X(14458)}}, {{A, B, C, X(903), X(18811)}}, {{A, B, C, X(1376), X(3058)}}, {{A, B, C, X(1494), X(3596)}}, {{A, B, C, X(4102), X(34409)}}, {{A, B, C, X(4421), X(34612)}}, {{A, B, C, X(5641), X(57924)}}, {{A, B, C, X(6174), X(11235)}}, {{A, B, C, X(7224), X(54586)}}, {{A, B, C, X(34523), X(62536)}}, {{A, B, C, X(39741), X(60172)}}, {{A, B, C, X(42030), X(46137)}}, {{A, B, C, X(51567), X(56947)}}, {{A, B, C, X(52374), X(56358)}}, {{A, B, C, X(54517), X(56164)}}, {{A, B, C, X(55955), X(58005)}}, {{A, B, C, X(55958), X(57884)}}, {{A, B, C, X(57883), X(57895)}}
X(65037) lies on these lines: {334, 25960}, {2887, 65038}, {3846, 57947}, {17125, 40415}, {30957, 30966}
X(65037) = isotomic conjugate of X(17124)
X(65037) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 17124}, {32, 17118}, {1501, 30637}
X(65037) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17124}, {6376, 17118}
X(65037) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(334)}}, {{A, B, C, X(10), X(30957)}}, {{A, B, C, X(86), X(60087)}}, {{A, B, C, X(238), X(25960)}}, {{A, B, C, X(310), X(62884)}}, {{A, B, C, X(312), X(873)}}, {{A, B, C, X(321), X(40027)}}, {{A, B, C, X(693), X(56212)}}, {{A, B, C, X(748), X(3846)}}, {{A, B, C, X(2296), X(14554)}}, {{A, B, C, X(2339), X(24041)}}, {{A, B, C, X(2887), X(17125)}}, {{A, B, C, X(6063), X(56169)}}, {{A, B, C, X(6384), X(60097)}}, {{A, B, C, X(7035), X(57923)}}, {{A, B, C, X(17123), X(25760)}}, {{A, B, C, X(25885), X(26010)}}, {{A, B, C, X(31002), X(34258)}}, {{A, B, C, X(31237), X(31289)}}, {{A, B, C, X(31330), X(46843)}}, {{A, B, C, X(57916), X(63173)}}
X(65037) = barycentric quotient X(i)/X(j) for these (i, j): {2, 17124}, {75, 17118}, {561, 30637}
X(65038) lies on these lines: {2887, 65037}, {3661, 24589}, {3836, 57948}, {7018, 25961}, {17124, 40415}, {48639, 56169}
X(65038) = isotomic conjugate of X(17125)
X(65038) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 17125}, {32, 17119}, {1501, 30638}
X(65038) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17125}, {6376, 17119}
X(65038) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(334)}}, {{A, B, C, X(75), X(24589)}}, {{A, B, C, X(76), X(56169)}}, {{A, B, C, X(85), X(7035)}}, {{A, B, C, X(171), X(25961)}}, {{A, B, C, X(750), X(3836)}}, {{A, B, C, X(873), X(57925)}}, {{A, B, C, X(2887), X(17124)}}, {{A, B, C, X(4600), X(32019)}}, {{A, B, C, X(7131), X(24041)}}, {{A, B, C, X(17122), X(25957)}}, {{A, B, C, X(17758), X(56166)}}, {{A, B, C, X(25938), X(25970)}}, {{A, B, C, X(28650), X(40426)}}, {{A, B, C, X(30663), X(65026)}}, {{A, B, C, X(31002), X(59255)}}, {{A, B, C, X(31237), X(58443)}}, {{A, B, C, X(32011), X(57722)}}, {{A, B, C, X(40013), X(56212)}}, {{A, B, C, X(40021), X(60678)}}, {{A, B, C, X(40027), X(40216)}}, {{A, B, C, X(56163), X(60236)}}, {{A, B, C, X(57917), X(63173)}}
X(65038) = barycentric quotient X(i)/X(j) for these (i, j): {2, 17125}, {75, 17119}, {561, 30638}, {57948, 43264}
X(65039) lies on these lines: {2, 799}, {86, 65077}, {274, 65059}, {552, 553}, {2669, 4685}, {3175, 52137}, {7304, 41629}, {16711, 52379}, {18827, 42055}, {19723, 34016}, {32010, 65071}, {33947, 56805}, {40409, 46922}
X(65039) = isotomic conjugate of X(43265)
X(65039) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 43265}, {213, 56196}, {762, 38813}, {872, 17743}, {983, 1500}, {4621, 50487}, {7033, 7109}, {7064, 7132}, {8684, 46390}
X(65039) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43265}, {6626, 56196}, {16584, 6535}, {41771, 594}, {52657, 756}
X(65039) = pole of line {1334, 41333} with respect to the Stammler hyperbola
X(65039) = pole of line {2238, 2321} with respect to the Wallace hyperbola
X(65039) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(982)}}, {{A, B, C, X(553), X(3662)}}, {{A, B, C, X(1412), X(37128)}}, {{A, B, C, X(1434), X(33947)}}, {{A, B, C, X(3674), X(7185)}}, {{A, B, C, X(3794), X(60721)}}, {{A, B, C, X(3865), X(34914)}}, {{A, B, C, X(16592), X(18905)}}
X(65039) = barycentric product X(i)*X(j) for these (i, j): {261, 7185}, {873, 982}, {1509, 3662}, {2887, 6628}, {3705, 552}, {3721, 57949}, {3776, 4610}, {3777, 4623}, {3794, 57785}, {17206, 31917}, {18021, 7248}, {20234, 763}, {23473, 59148}, {33930, 757}, {33947, 86}, {41777, 52379}, {57992, 7032}
X(65039) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43265}, {86, 56196}, {261, 56180}, {552, 56358}, {757, 983}, {873, 7033}, {982, 756}, {1509, 17743}, {2275, 1500}, {2887, 6535}, {3056, 7064}, {3662, 594}, {3705, 6057}, {3721, 762}, {3776, 4024}, {3777, 4705}, {3784, 3690}, {3794, 210}, {3808, 4155}, {3888, 40521}, {4610, 4621}, {6628, 40415}, {7032, 872}, {7184, 21803}, {7185, 12}, {7187, 21021}, {7248, 181}, {23473, 21700}, {31917, 1826}, {33891, 4037}, {33930, 1089}, {33946, 4103}, {33947, 10}, {36066, 8684}, {41777, 2171}, {50514, 50487}, {57949, 38810}, {57992, 7034}
X(65039) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {61403, 61407, 873}
X(65040) lies on these lines: {2, 7035}, {190, 4785}, {238, 519}, {536, 1921}, {537, 30663}, {668, 4762}, {788, 3799}, {824, 3807}, {3773, 40793}, {3783, 4439}, {3790, 56854}, {4562, 28840}, {5378, 50313}, {6632, 50105}, {9285, 42054}, {9362, 45313}, {17281, 57950}, {40835, 43265}, {47774, 54099}
X(65040) = isotomic conjugate of X(43266)
X(65040) = trilinear pole of line {3799, 3807}
X(65040) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 43266}, {244, 40746}, {667, 4817}, {764, 825}, {789, 3249}, {870, 1977}, {875, 23597}, {985, 1015}, {1357, 2344}, {1492, 21143}, {3248, 14621}, {4586, 8027}, {6545, 34069}, {52652, 61048}
X(65040) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43266}, {3789, 1015}, {6631, 4817}, {19584, 244}, {27481, 1086}, {38995, 21143}, {55049, 8027}, {61065, 6545}
X(65040) = X(i)-cross conjugate of X(j) for these {i, j}: {2276, 3799}, {3661, 3807}, {3789, 668}, {3790, 4505}, {27481, 190}
X(65040) = pole of line {32094, 50023} with respect to the Yff parabola
X(65040) = pole of line {17205, 23597} with respect to the Wallace hyperbola
X(65040) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(238)}}, {{A, B, C, X(519), X(824)}}, {{A, B, C, X(536), X(788)}}, {{A, B, C, X(765), X(31625)}}, {{A, B, C, X(3227), X(52029)}}, {{A, B, C, X(3717), X(3790)}}, {{A, B, C, X(3773), X(6541)}}, {{A, B, C, X(3774), X(21897)}}, {{A, B, C, X(3789), X(4762)}}, {{A, B, C, X(3864), X(34892)}}, {{A, B, C, X(4785), X(14621)}}, {{A, B, C, X(7035), X(57566)}}, {{A, B, C, X(17264), X(33931)}}, {{A, B, C, X(18145), X(40091)}}, {{A, B, C, X(27474), X(39749)}}, {{A, B, C, X(30966), X(55955)}}, {{A, B, C, X(31909), X(33309)}}
X(65040) = barycentric product X(i)*X(j) for these (i, j): {100, 4505}, {190, 3807}, {1016, 3661}, {1491, 57950}, {2276, 31625}, {3773, 4600}, {3790, 4998}, {3799, 668}, {4076, 7179}, {4439, 62536}, {6632, 824}, {7035, 984}, {33931, 765}, {57731, 62415}
X(65040) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43266}, {190, 4817}, {765, 985}, {788, 8027}, {824, 6545}, {869, 3248}, {874, 63222}, {984, 244}, {1016, 14621}, {1252, 40746}, {1469, 1357}, {1491, 764}, {2276, 1015}, {3250, 21143}, {3570, 23597}, {3661, 1086}, {3773, 3120}, {3774, 3121}, {3781, 3937}, {3783, 27846}, {3786, 18191}, {3790, 11}, {3797, 27918}, {3799, 513}, {3807, 514}, {4076, 52133}, {4439, 1647}, {4481, 8042}, {4505, 693}, {4517, 3271}, {4522, 21132}, {6632, 4586}, {7035, 870}, {7146, 53538}, {7179, 1358}, {16603, 53545}, {30966, 17205}, {33931, 1111}, {40728, 1977}, {40773, 16726}, {40790, 53541}, {46386, 3249}, {52029, 43921}, {57731, 1492}, {57950, 789}, {59149, 825}
X(65040) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {61402, 61406, 7035}
X(65041) lies on these lines: {2, 32107}, {76, 56212}, {86, 4479}, {335, 42029}, {350, 28626}, {3679, 65075}, {3741, 65043}, {4441, 30712}, {4980, 27494}, {6384, 20888}, {17210, 56052}, {27475, 42034}, {37652, 60873}, {39704, 42057}, {40418, 42043}, {48107, 62638}
X(65041) = isotomic conjugate of X(42042)
X(65041) = trilinear pole of line {30020, 514}
X(65041) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42042}, {32, 27268}, {32739, 47996}
X(65041) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42042}, {6376, 27268}, {40619, 47996}
X(65041) = X(i)-cross conjugate of X(j) for these {i, j}: {17248, 85}
X(65041) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(321), X(4479)}}, {{A, B, C, X(330), X(32107)}}, {{A, B, C, X(350), X(42029)}}, {{A, B, C, X(3551), X(16606)}}, {{A, B, C, X(3679), X(42057)}}, {{A, B, C, X(3741), X(42043)}}, {{A, B, C, X(4441), X(42034)}}, {{A, B, C, X(4980), X(30963)}}, {{A, B, C, X(6063), X(60678)}}, {{A, B, C, X(6376), X(20888)}}, {{A, B, C, X(18032), X(58013)}}, {{A, B, C, X(18827), X(39948)}}, {{A, B, C, X(32010), X(39980)}}, {{A, B, C, X(34860), X(60110)}}, {{A, B, C, X(35159), X(62528)}}, {{A, B, C, X(36602), X(39711)}}, {{A, B, C, X(40028), X(51865)}}, {{A, B, C, X(54128), X(55947)}}, {{A, B, C, X(54657), X(57723)}}, {{A, B, C, X(54740), X(57724)}}, {{A, B, C, X(56125), X(56211)}}
X(65041) = barycentric product X(i)*X(j) for these (i, j): {39736, 75}
X(65041) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42042}, {75, 27268}, {693, 47996}, {39736, 1}
X(65042) lies on these lines: {2, 20943}, {43, 40598}, {87, 25502}, {256, 30998}, {940, 20332}, {1221, 27268}, {3223, 3720}, {4699, 17038}, {9082, 58117}, {25507, 55971}, {26974, 32129}, {60236, 60792}
X(65042) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2162, 42043}, {4704, 7121}
X(65042) = X(i)-Dao conjugate of X(j) for these {i, j}: {40598, 4704}
X(65042) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32005)}}, {{A, B, C, X(2), X(43)}}, {{A, B, C, X(3835), X(57722)}}, {{A, B, C, X(3971), X(30588)}}, {{A, B, C, X(4699), X(56052)}}, {{A, B, C, X(4997), X(27538)}}, {{A, B, C, X(6376), X(20943)}}, {{A, B, C, X(6382), X(40013)}}, {{A, B, C, X(18197), X(25417)}}, {{A, B, C, X(20287), X(30571)}}, {{A, B, C, X(20979), X(39967)}}, {{A, B, C, X(25430), X(62421)}}, {{A, B, C, X(25502), X(53675)}}, {{A, B, C, X(30998), X(41318)}}, {{A, B, C, X(33296), X(39736)}}
X(65042) = barycentric product X(i)*X(j) for these (i, j): {43, 65043}, {192, 39740}, {20906, 58117}
X(65042) = barycentric quotient X(i)/X(j) for these (i, j): {43, 42043}, {192, 4704}, {39740, 330}, {58117, 932}, {65043, 6384}
X(65043) lies on these lines: {2, 20943}, {7, 4479}, {75, 59505}, {76, 40027}, {335, 42034}, {350, 30712}, {675, 58117}, {3741, 65041}, {4441, 36606}, {20942, 27475}, {27494, 42029}, {28626, 30963}, {31137, 65077}, {32011, 36634}, {37683, 60873}, {40418, 42042}, {43040, 44733}, {43067, 62638}
X(65043) = isotomic conjugate of X(42043)
X(65043) = trilinear pole of line {30091, 514}
X(65043) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42043}, {32, 4704}
X(65043) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42043}, {6376, 4704}
X(65043) = X(i)-cross conjugate of X(j) for these {i, j}: {17236, 85}
X(65043) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(76), X(20943)}}, {{A, B, C, X(290), X(44186)}}, {{A, B, C, X(312), X(4479)}}, {{A, B, C, X(330), X(32005)}}, {{A, B, C, X(350), X(42034)}}, {{A, B, C, X(596), X(60792)}}, {{A, B, C, X(3741), X(39974)}}, {{A, B, C, X(3840), X(36634)}}, {{A, B, C, X(4441), X(20942)}}, {{A, B, C, X(4685), X(31137)}}, {{A, B, C, X(18155), X(41851)}}, {{A, B, C, X(18298), X(59505)}}, {{A, B, C, X(18827), X(39980)}}, {{A, B, C, X(18832), X(60276)}}, {{A, B, C, X(20615), X(52654)}}, {{A, B, C, X(30963), X(42029)}}, {{A, B, C, X(32010), X(39948)}}, {{A, B, C, X(32020), X(40023)}}, {{A, B, C, X(32023), X(60678)}}, {{A, B, C, X(34860), X(60090)}}, {{A, B, C, X(36603), X(55945)}}, {{A, B, C, X(36871), X(53679)}}, {{A, B, C, X(40026), X(40030)}}, {{A, B, C, X(41683), X(56211)}}, {{A, B, C, X(43040), X(43067)}}, {{A, B, C, X(54885), X(57723)}}
X(65043) = barycentric product X(i)*X(j) for these (i, j): {3261, 58117}, {6384, 65042}, {39740, 75}
X(65043) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42043}, {75, 4704}, {39740, 1}, {58117, 101}, {65042, 43}
X(65044) lies on the Kiepert hyperbola and on these lines: {2, 65045}, {4, 5435}, {57, 54928}, {307, 4052}, {459, 17923}, {1445, 54586}, {1751, 31231}, {2051, 5740}, {3911, 54676}, {14986, 60158}, {21454, 60170}, {37797, 54499}, {56559, 65021}
X(65044) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 58786}, {284, 37567}, {2194, 28609}
X(65044) = X(i)-Dao conjugate of X(j) for these {i, j}: {1214, 28609}, {3160, 58786}, {40590, 37567}
X(65044) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(88), X(1214)}}, {{A, B, C, X(306), X(5704)}}, {{A, B, C, X(307), X(5435)}}, {{A, B, C, X(1441), X(40420)}}, {{A, B, C, X(3668), X(44794)}}, {{A, B, C, X(5740), X(14829)}}, {{A, B, C, X(31231), X(56559)}}, {{A, B, C, X(34862), X(52389)}}, {{A, B, C, X(54052), X(56944)}}
X(65044) = barycentric product X(i)*X(j) for these (i, j): {226, 65045}
X(65044) = barycentric quotient X(i)/X(j) for these (i, j): {7, 58786}, {65, 37567}, {226, 28609}, {65045, 333}
X(65045) lies on these lines: {2, 65044}, {8, 4640}, {29, 41629}, {69, 6557}, {92, 39126}, {312, 4416}, {527, 65047}, {1121, 3928}, {3929, 4102}, {4997, 30567}, {5325, 55954}, {14552, 56086}, {14942, 32853}, {17740, 30711}, {18134, 65020}, {18359, 18750}, {30690, 54284}, {37758, 38255}
X(65045) = isotomic conjugate of X(28609)
X(65045) = trilinear pole of line {522, 59980}
X(65045) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 37567}, {31, 28609}, {213, 58786}
X(65045) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28609}, {9, 37567}, {6626, 58786}
X(65045) = pole of line {28609, 58786} with respect to the Wallace hyperbola
X(65045) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(57), X(33576)}}, {{A, B, C, X(69), X(903)}}, {{A, B, C, X(75), X(57887)}}, {{A, B, C, X(81), X(55965)}}, {{A, B, C, X(278), X(43759)}}, {{A, B, C, X(286), X(34282)}}, {{A, B, C, X(519), X(30567)}}, {{A, B, C, X(527), X(3928)}}, {{A, B, C, X(553), X(3929)}}, {{A, B, C, X(673), X(34607)}}, {{A, B, C, X(1088), X(34409)}}, {{A, B, C, X(1434), X(60167)}}, {{A, B, C, X(1494), X(56596)}}, {{A, B, C, X(1751), X(42304)}}, {{A, B, C, X(3062), X(4416)}}, {{A, B, C, X(3345), X(54661)}}, {{A, B, C, X(4921), X(18134)}}, {{A, B, C, X(5325), X(6173)}}, {{A, B, C, X(7091), X(39948)}}, {{A, B, C, X(7319), X(44794)}}, {{A, B, C, X(8580), X(50095)}}, {{A, B, C, X(9311), X(13478)}}, {{A, B, C, X(11015), X(24624)}}, {{A, B, C, X(11019), X(17294)}}, {{A, B, C, X(14552), X(42028)}}, {{A, B, C, X(16704), X(39700)}}, {{A, B, C, X(17078), X(18750)}}, {{A, B, C, X(17740), X(42029)}}, {{A, B, C, X(18025), X(62528)}}, {{A, B, C, X(20942), X(37758)}}, {{A, B, C, X(26748), X(37222)}}, {{A, B, C, X(26750), X(60139)}}, {{A, B, C, X(29574), X(35613)}}, {{A, B, C, X(34863), X(54119)}}, {{A, B, C, X(35141), X(44186)}}, {{A, B, C, X(36588), X(58005)}}, {{A, B, C, X(36603), X(41790)}}, {{A, B, C, X(37131), X(39947)}}, {{A, B, C, X(40014), X(59759)}}, {{A, B, C, X(40419), X(55983)}}, {{A, B, C, X(42033), X(54284)}}, {{A, B, C, X(44733), X(54928)}}, {{A, B, C, X(54735), X(55938)}}
X(65045) = barycentric product X(i)*X(j) for these (i, j): {333, 65044}
X(65045) = barycentric quotient X(i)/X(j) for these (i, j): {1, 37567}, {2, 28609}, {86, 58786}, {65044, 226}
X(65046) lies on these lines: {1, 3091}, {2, 65047}, {7, 39980}, {57, 40968}, {81, 6180}, {226, 39948}, {274, 61413}, {277, 57477}, {279, 3772}, {346, 59759}, {347, 37887}, {948, 56043}, {1257, 55095}, {4000, 44794}, {5435, 36603}, {5723, 46873}, {8056, 36640}, {15474, 37798}, {25525, 62705}, {36871, 52358}, {37759, 39696}, {37787, 39947}, {37800, 56218}, {52374, 54366}
X(65046) = isogonal conjugate of X(62245)
X(65046) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 62245}, {9, 5204}, {33, 23140}, {41, 21296}, {55, 3928}, {212, 17917}, {284, 3962}, {2175, 21605}, {2194, 4035}
X(65046) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 62245}, {223, 3928}, {478, 5204}, {1214, 4035}, {3160, 21296}, {40590, 3962}, {40593, 21605}, {40837, 17917}
X(65046) = X(i)-cross conjugate of X(j) for these {i, j}: {1420, 7}, {41441, 7319}
X(65046) = pole of line {5435, 5691} with respect to the dual conic of Yff parabola
X(65046) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(19925)}}, {{A, B, C, X(7), X(5226)}}, {{A, B, C, X(19), X(51316)}}, {{A, B, C, X(27), X(3091)}}, {{A, B, C, X(92), X(59387)}}, {{A, B, C, X(189), X(6336)}}, {{A, B, C, X(196), X(16080)}}, {{A, B, C, X(226), X(3947)}}, {{A, B, C, X(281), X(46208)}}, {{A, B, C, X(312), X(1847)}}, {{A, B, C, X(346), X(393)}}, {{A, B, C, X(459), X(23984)}}, {{A, B, C, X(514), X(28236)}}, {{A, B, C, X(673), X(5274)}}, {{A, B, C, X(1086), X(31611)}}, {{A, B, C, X(1131), X(61392)}}, {{A, B, C, X(1132), X(61393)}}, {{A, B, C, X(1427), X(62207)}}, {{A, B, C, X(1440), X(56049)}}, {{A, B, C, X(1751), X(56086)}}, {{A, B, C, X(1945), X(30651)}}, {{A, B, C, X(2051), X(3817)}}, {{A, B, C, X(3219), X(54366)}}, {{A, B, C, X(4373), X(60254)}}, {{A, B, C, X(5261), X(57826)}}, {{A, B, C, X(5435), X(36621)}}, {{A, B, C, X(6180), X(40160)}}, {{A, B, C, X(9311), X(56201)}}, {{A, B, C, X(10405), X(13478)}}, {{A, B, C, X(10590), X(40573)}}, {{A, B, C, X(14377), X(45098)}}, {{A, B, C, X(18220), X(38255)}}, {{A, B, C, X(18359), X(60168)}}, {{A, B, C, X(23062), X(42318)}}, {{A, B, C, X(25525), X(34917)}}, {{A, B, C, X(27818), X(40420)}}, {{A, B, C, X(30699), X(37759)}}, {{A, B, C, X(30711), X(55962)}}, {{A, B, C, X(34529), X(55110)}}, {{A, B, C, X(36620), X(56783)}}, {{A, B, C, X(40154), X(56274)}}, {{A, B, C, X(43035), X(59612)}}, {{A, B, C, X(46873), X(60993)}}, {{A, B, C, X(51782), X(60076)}}, {{A, B, C, X(55938), X(56033)}}, {{A, B, C, X(56075), X(60107)}}, {{A, B, C, X(56264), X(56358)}}
X(65046) = barycentric product X(i)*X(j) for these (i, j): {7, 7319}, {57, 65047}, {41441, 85}
X(65046) = barycentric quotient X(i)/X(j) for these (i, j): {6, 62245}, {7, 21296}, {56, 5204}, {57, 3928}, {65, 3962}, {85, 21605}, {222, 23140}, {226, 4035}, {278, 17917}, {1420, 45036}, {7319, 8}, {41441, 9}, {63208, 63915}, {65047, 312}
X(65047) lies on these lines: {2, 65046}, {8, 3967}, {75, 56201}, {321, 30711}, {333, 3729}, {527, 65045}, {1121, 28609}, {4102, 31142}, {4664, 46880}, {6557, 20942}, {17781, 55956}, {18359, 20921}, {18743, 38255}, {20223, 34234}, {30807, 36605}, {31164, 56947}, {42027, 60812}
X(65047) = isotomic conjugate of X(3928)
X(65047) = trilinear pole of line {21052, 23678}
X(65047) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 5204}, {25, 23140}, {31, 3928}, {32, 21296}, {56, 62245}, {184, 17917}, {560, 21605}, {1333, 3962}, {2206, 4035}, {38266, 45036}
X(65047) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 62245}, {2, 3928}, {9, 5204}, {37, 3962}, {6374, 21605}, {6376, 21296}, {6505, 23140}, {40603, 4035}, {62605, 17917}
X(65047) = X(i)-cross conjugate of X(j) for these {i, j}: {145, 75}
X(65047) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(27), X(54766)}}, {{A, B, C, X(75), X(42034)}}, {{A, B, C, X(145), X(21605)}}, {{A, B, C, X(226), X(3929)}}, {{A, B, C, X(278), X(5225)}}, {{A, B, C, X(309), X(903)}}, {{A, B, C, X(321), X(42029)}}, {{A, B, C, X(322), X(1494)}}, {{A, B, C, X(331), X(59761)}}, {{A, B, C, X(514), X(36603)}}, {{A, B, C, X(527), X(28609)}}, {{A, B, C, X(553), X(31142)}}, {{A, B, C, X(1222), X(60254)}}, {{A, B, C, X(1255), X(55965)}}, {{A, B, C, X(1434), X(45100)}}, {{A, B, C, X(1847), X(54622)}}, {{A, B, C, X(2051), X(9311)}}, {{A, B, C, X(2184), X(4564)}}, {{A, B, C, X(2185), X(56033)}}, {{A, B, C, X(2349), X(56352)}}, {{A, B, C, X(2481), X(44186)}}, {{A, B, C, X(3577), X(63194)}}, {{A, B, C, X(3729), X(3967)}}, {{A, B, C, X(6336), X(60155)}}, {{A, B, C, X(7319), X(65046)}}, {{A, B, C, X(12701), X(52374)}}, {{A, B, C, X(13405), X(17294)}}, {{A, B, C, X(14554), X(42304)}}, {{A, B, C, X(15909), X(24703)}}, {{A, B, C, X(17078), X(20921)}}, {{A, B, C, X(17781), X(31164)}}, {{A, B, C, X(18743), X(20942)}}, {{A, B, C, X(19804), X(60097)}}, {{A, B, C, X(20570), X(39704)}}, {{A, B, C, X(20923), X(35652)}}, {{A, B, C, X(30693), X(36910)}}, {{A, B, C, X(30710), X(40023)}}, {{A, B, C, X(31165), X(39948)}}, {{A, B, C, X(32017), X(40014)}}, {{A, B, C, X(32023), X(55983)}}, {{A, B, C, X(34535), X(54676)}}, {{A, B, C, X(34860), X(60261)}}, {{A, B, C, X(34863), X(60257)}}, {{A, B, C, X(36609), X(40843)}}, {{A, B, C, X(46277), X(57925)}}, {{A, B, C, X(54760), X(64984)}}, {{A, B, C, X(54788), X(56218)}}, {{A, B, C, X(56030), X(60071)}}, {{A, B, C, X(56127), X(60267)}}
X(65047) = barycentric product X(i)*X(j) for these (i, j): {312, 65046}, {7319, 75}, {41441, 76}
X(65047) = barycentric quotient X(i)/X(j) for these (i, j): {1, 5204}, {2, 3928}, {9, 62245}, {10, 3962}, {63, 23140}, {75, 21296}, {76, 21605}, {92, 17917}, {145, 45036}, {321, 4035}, {3621, 63915}, {7319, 1}, {41441, 6}, {65046, 57}
X(65048) lies on these lines: {1, 2940}, {2, 8818}, {57, 1171}, {79, 6536}, {81, 2160}, {274, 30690}, {1929, 13486}, {4184, 6186}, {6539, 39722}, {25417, 40214}, {27186, 32014}, {35991, 56137}, {40143, 52558}
X(65048) = trilinear pole of line {14158, 513}
X(65048) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 17454}, {35, 1213}, {37, 3647}, {42, 3578}, {319, 20970}, {756, 17190}, {1100, 3678}, {1962, 3219}, {2003, 4046}, {2174, 4647}, {2308, 3969}, {2594, 3686}, {2605, 4115}, {3649, 52405}, {3683, 16577}, {3702, 21741}, {3958, 6198}, {4427, 55210}, {7265, 35327}, {8013, 40214}, {8663, 55235}, {21816, 56934}, {22080, 52412}, {35057, 61170}, {35342, 57099}
X(65048) = X(i)-Dao conjugate of X(j) for these {i, j}: {40589, 3647}, {40592, 3578}
X(65048) = X(i)-cross conjugate of X(j) for these {i, j}: {58, 40438}, {2160, 57419}
X(65048) = pole of line {3647, 17454} with respect to the Stammler hyperbola
X(65048) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(27), X(37405)}}, {{A, B, C, X(58), X(40214)}}, {{A, B, C, X(267), X(2940)}}, {{A, B, C, X(2160), X(8818)}}, {{A, B, C, X(4184), X(31904)}}, {{A, B, C, X(14838), X(19620)}}, {{A, B, C, X(17190), X(32636)}}, {{A, B, C, X(52375), X(52393)}}, {{A, B, C, X(52380), X(56440)}}, {{A, B, C, X(57419), X(60139)}}
X(65048) = barycentric product X(i)*X(j) for these (i, j): {1171, 30690}, {1255, 52393}, {1268, 52375}, {2160, 32014}, {13486, 4608}, {40438, 79}, {52558, 6757}, {55236, 62535}, {57419, 86}, {60139, 81}
X(65048) = barycentric quotient X(i)/X(j) for these (i, j): {58, 3647}, {79, 4647}, {81, 3578}, {593, 17190}, {1126, 3678}, {1171, 3219}, {1255, 3969}, {1333, 17454}, {2160, 1213}, {3615, 3702}, {6186, 1962}, {6742, 61174}, {6757, 52576}, {7073, 4046}, {7100, 41014}, {13486, 4427}, {30690, 1230}, {32014, 33939}, {40438, 319}, {47947, 7265}, {50344, 57099}, {52372, 3649}, {52375, 1125}, {52393, 4359}, {52558, 56934}, {57419, 10}, {58301, 58304}, {59179, 8040}, {60139, 321}, {62535, 55235}
X(65049) lies on the Kiepert hyperbola and on these lines: {2, 65050}, {3720, 60109}, {4035, 14554}, {17135, 56161}, {17751, 56172}, {18133, 57722}, {18743, 60071}, {19806, 54735}, {19810, 65051}, {20553, 60155}, {30588, 62588}, {46827, 60790}
X(65049) = isotomic conjugate of X(27643)
X(65049) = trilinear pole of line {523, 55184}
X(65049) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 27643}, {2206, 42044}
X(65049) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 27643}, {40603, 42044}
X(65049) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6383), X(25417)}}, {{A, B, C, X(15232), X(55990)}}, {{A, B, C, X(29687), X(41233)}}, {{A, B, C, X(36807), X(56246)}}, {{A, B, C, X(39747), X(42027)}}
X(65049) = barycentric product X(i)*X(j) for these (i, j): {321, 65050}
X(65049) = barycentric quotient X(i)/X(j) for these (i, j): {2, 27643}, {321, 42044}, {65050, 81}
X(65050) lies on these lines: {1, 32933}, {2, 65049}, {89, 45222}, {1022, 29302}, {1150, 8056}, {1255, 17394}, {3227, 50106}, {4664, 56037}, {16834, 39950}, {17379, 27789}, {19684, 25430}, {26745, 37683}, {32009, 62803}, {39797, 62853}, {39970, 63060}, {42025, 56066}, {42029, 55953}, {42044, 65057}
X(65050) = isotomic conjugate of X(42044)
X(65050) = trilinear pole of line {47795, 47818}
X(65050) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42044}, {42, 27643}
X(65050) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42044}, {40592, 27643}
X(65050) = pole of line {27643, 42044} with respect to the Wallace hyperbola
X(65050) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(321), X(9311)}}, {{A, B, C, X(514), X(39700)}}, {{A, B, C, X(519), X(29302)}}, {{A, B, C, X(536), X(50106)}}, {{A, B, C, X(553), X(26223)}}, {{A, B, C, X(604), X(39982)}}, {{A, B, C, X(903), X(2995)}}, {{A, B, C, X(1121), X(54744)}}, {{A, B, C, X(1150), X(41629)}}, {{A, B, C, X(1222), X(62923)}}, {{A, B, C, X(1434), X(60082)}}, {{A, B, C, X(1751), X(46638)}}, {{A, B, C, X(3228), X(32936)}}, {{A, B, C, X(3679), X(45222)}}, {{A, B, C, X(3995), X(56135)}}, {{A, B, C, X(4359), X(31359)}}, {{A, B, C, X(4651), X(16834)}}, {{A, B, C, X(4921), X(37683)}}, {{A, B, C, X(6513), X(15419)}}, {{A, B, C, X(7093), X(18108)}}, {{A, B, C, X(14377), X(40394)}}, {{A, B, C, X(16709), X(17394)}}, {{A, B, C, X(16833), X(20011)}}, {{A, B, C, X(17379), X(42025)}}, {{A, B, C, X(19684), X(42028)}}, {{A, B, C, X(19796), X(50105)}}, {{A, B, C, X(26037), X(29584)}}, {{A, B, C, X(28630), X(60139)}}, {{A, B, C, X(32911), X(39969)}}, {{A, B, C, X(34860), X(40013)}}, {{A, B, C, X(35168), X(54686)}}, {{A, B, C, X(39994), X(42304)}}, {{A, B, C, X(40426), X(64984)}}, {{A, B, C, X(42030), X(52379)}}, {{A, B, C, X(42044), X(42051)}}, {{A, B, C, X(50043), X(50101)}}, {{A, B, C, X(52393), X(56046)}}, {{A, B, C, X(55026), X(55945)}}, {{A, B, C, X(55990), X(56145)}}
X(65050) = barycentric product X(i)*X(j) for these (i, j): {65049, 81}
X(65050) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42044}, {81, 27643}, {65049, 321}
X(65051) lies on the Kiepert hyperbola and on these lines: {10, 32936}, {226, 50292}, {321, 32025}, {524, 60139}, {598, 63060}, {671, 3578}, {4052, 31143}, {4921, 60172}, {11599, 33075}, {17019, 30588}, {17346, 54744}, {19723, 54929}, {19810, 65049}, {23942, 40214}, {31144, 65022}, {32779, 60243}, {33133, 56226}, {37654, 54766}, {42025, 55949}, {50106, 60245}, {50796, 60634}
X(65051) = isotomic conjugate of X(42045)
X(65051) = trilinear pole of line {24959, 47839}
X(65051) = pole of line {49724, 65051} with respect to the Kiepert hyperbola
X(65051) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(8), X(50292)}}, {{A, B, C, X(75), X(57891)}}, {{A, B, C, X(81), X(41816)}}, {{A, B, C, X(257), X(52393)}}, {{A, B, C, X(524), X(3578)}}, {{A, B, C, X(525), X(57860)}}, {{A, B, C, X(897), X(40143)}}, {{A, B, C, X(903), X(32025)}}, {{A, B, C, X(1171), X(4674)}}, {{A, B, C, X(1494), X(36588)}}, {{A, B, C, X(1821), X(56947)}}, {{A, B, C, X(2987), X(40214)}}, {{A, B, C, X(3228), X(32936)}}, {{A, B, C, X(3679), X(17019)}}, {{A, B, C, X(4102), X(36590)}}, {{A, B, C, X(17787), X(50106)}}, {{A, B, C, X(19810), X(42044)}}, {{A, B, C, X(26665), X(50043)}}, {{A, B, C, X(31143), X(41629)}}, {{A, B, C, X(31144), X(42025)}}, {{A, B, C, X(32018), X(40394)}}, {{A, B, C, X(32779), X(42029)}}, {{A, B, C, X(33133), X(42034)}}, {{A, B, C, X(42045), X(49724)}}
X(65052) lies on these lines: {1150, 5219}, {3679, 32917}, {4384, 23598}, {25057, 35170}, {30608, 43757}
X(65052) = isotomic conjugate of X(26738)
X(65052) = trilinear pole of line {4702, 4777}
X(65052) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(80)}}, {{A, B, C, X(88), X(39952)}}, {{A, B, C, X(257), X(60247)}}, {{A, B, C, X(321), X(56062)}}, {{A, B, C, X(333), X(1150)}}, {{A, B, C, X(1016), X(62929)}}, {{A, B, C, X(2963), X(17275)}}, {{A, B, C, X(4358), X(55954)}}, {{A, B, C, X(4384), X(17780)}}, {{A, B, C, X(4391), X(30608)}}, {{A, B, C, X(4715), X(25057)}}, {{A, B, C, X(14621), X(24624)}}, {{A, B, C, X(16704), X(36818)}}, {{A, B, C, X(17335), X(24593)}}, {{A, B, C, X(25430), X(37633)}}, {{A, B, C, X(39706), X(56320)}}, {{A, B, C, X(42335), X(43759)}}, {{A, B, C, X(52500), X(58004)}}
X(65053) lies on these lines: {238, 716}, {536, 3783}, {1921, 30875}, {3797, 6381}, {36816, 56854}
X(65053) = isotomic conjugate of X(42046)
X(65053) = trilinear pole of line {4728, 30665}
X(65053) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(238)}}, {{A, B, C, X(75), X(514)}}, {{A, B, C, X(561), X(716)}}, {{A, B, C, X(726), X(4762)}}, {{A, B, C, X(1581), X(43095)}}, {{A, B, C, X(21443), X(52049)}}, {{A, B, C, X(30028), X(42054)}}
X(65054) lies on these lines: {44, 3783}, {238, 52957}, {519, 3797}, {751, 42084}, {752, 1921}, {1386, 40793}, {16468, 56854}, {18822, 64908}
X(65054) = isogonal conjugate of X(58863)
X(65054) = isotomic conjugate of X(43270)
X(65054) = trilinear pole of line {1635, 14402}
X(65054) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58863}, {31, 43270}, {292, 27931}
X(65054) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43270}, {3, 58863}, {19557, 27931}
X(65054) = pole of line {43270, 58863} with respect to the Wallace hyperbola
X(65054) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(44)}}, {{A, B, C, X(2), X(238)}}, {{A, B, C, X(31), X(752)}}, {{A, B, C, X(89), X(49712)}}, {{A, B, C, X(291), X(31349)}}, {{A, B, C, X(518), X(4785)}}, {{A, B, C, X(527), X(36276)}}, {{A, B, C, X(660), X(59043)}}, {{A, B, C, X(1386), X(1757)}}, {{A, B, C, X(1581), X(43097)}}, {{A, B, C, X(1929), X(37131)}}, {{A, B, C, X(2239), X(50300)}}, {{A, B, C, X(2382), X(3572)}}, {{A, B, C, X(3246), X(51297)}}, {{A, B, C, X(3257), X(8691)}}, {{A, B, C, X(4715), X(29350)}}, {{A, B, C, X(9073), X(36815)}}, {{A, B, C, X(12032), X(54619)}}, {{A, B, C, X(14665), X(35168)}}, {{A, B, C, X(17127), X(31151)}}, {{A, B, C, X(28288), X(42054)}}
X(65054) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43270}, {6, 58863}, {238, 27931}
X(65055) lies on these lines: {1, 59544}, {28, 41629}, {69, 8056}, {278, 19796}, {1255, 26065}, {3227, 42049}, {25101, 25430}, {42032, 55952}, {50043, 55953}
X(65055) = isotomic conjugate of X(42047)
X(65055) = trilinear pole of line {25923, 513}
X(65055) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42047}, {55, 28038}
X(65055) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42047}, {223, 28038}
X(65055) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(69), X(903)}}, {{A, B, C, X(345), X(19796)}}, {{A, B, C, X(536), X(42049)}}, {{A, B, C, X(553), X(26065)}}, {{A, B, C, X(2991), X(42467)}}, {{A, B, C, X(2994), X(54744)}}, {{A, B, C, X(7320), X(62884)}}, {{A, B, C, X(9311), X(60254)}}, {{A, B, C, X(14554), X(42360)}}, {{A, B, C, X(36916), X(56279)}}, {{A, B, C, X(39702), X(40420)}}, {{A, B, C, X(39732), X(51561)}}, {{A, B, C, X(39979), X(40151)}}, {{A, B, C, X(46638), X(60155)}}, {{A, B, C, X(55090), X(56044)}}, {{A, B, C, X(59544), X(60172)}}
X(65055) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42047}, {57, 28038}
X(65056) lies on these lines: {2, 65057}, {7, 18140}, {75, 22220}, {86, 23579}, {335, 29982}, {350, 65075}, {1240, 46827}, {24524, 30598}, {30829, 44733}, {31002, 56253}
X(65056) = isotomic conjugate of X(27627)
X(65056) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 27627}, {32, 42051}
X(65056) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 27627}, {6376, 42051}
X(65056) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(264), X(57947)}}, {{A, B, C, X(286), X(7035)}}, {{A, B, C, X(334), X(57830)}}, {{A, B, C, X(350), X(29982)}}, {{A, B, C, X(561), X(57877)}}, {{A, B, C, X(1014), X(32016)}}, {{A, B, C, X(1193), X(46827)}}, {{A, B, C, X(1400), X(22220)}}, {{A, B, C, X(3831), X(59305)}}, {{A, B, C, X(4358), X(26734)}}, {{A, B, C, X(6381), X(56253)}}, {{A, B, C, X(18140), X(20568)}}, {{A, B, C, X(18812), X(55990)}}, {{A, B, C, X(31643), X(36805)}}, {{A, B, C, X(42285), X(56032)}}
X(65056) = barycentric product X(i)*X(j) for these (i, j): {65057, 75}
X(65056) = barycentric quotient X(i)/X(j) for these (i, j): {2, 27627}, {75, 42051}, {65057, 1}
X(65057) lies on these lines: {1, 33309}, {2, 65056}, {57, 4360}, {81, 17319}, {88, 1999}, {89, 58820}, {239, 65074}, {291, 42057}, {314, 39747}, {536, 65059}, {959, 3241}, {1022, 6002}, {1258, 29584}, {3175, 3227}, {4139, 43928}, {4664, 39948}, {11679, 39963}, {16834, 39970}, {17350, 25417}, {19796, 34578}, {20942, 55952}, {29580, 56066}, {31036, 38247}, {36871, 42029}, {42044, 65050}, {48858, 51223}, {50101, 65028}
X(65057) = isotomic conjugate of X(42051)
X(65057) = trilinear pole of line {26078, 47793}
X(65057) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 27627}, {31, 42051}
X(65057) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42051}, {9, 27627}
X(65057) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(42360)}}, {{A, B, C, X(27), X(1016)}}, {{A, B, C, X(79), X(34527)}}, {{A, B, C, X(106), X(57749)}}, {{A, B, C, X(145), X(60167)}}, {{A, B, C, X(239), X(42057)}}, {{A, B, C, X(312), X(39702)}}, {{A, B, C, X(314), X(903)}}, {{A, B, C, X(335), X(42054)}}, {{A, B, C, X(519), X(1999)}}, {{A, B, C, X(536), X(3175)}}, {{A, B, C, X(1120), X(2985)}}, {{A, B, C, X(1221), X(42358)}}, {{A, B, C, X(1222), X(14534)}}, {{A, B, C, X(1389), X(54697)}}, {{A, B, C, X(1509), X(56224)}}, {{A, B, C, X(1751), X(56353)}}, {{A, B, C, X(3226), X(57785)}}, {{A, B, C, X(3241), X(11679)}}, {{A, B, C, X(3679), X(58820)}}, {{A, B, C, X(3741), X(29584)}}, {{A, B, C, X(3757), X(29574)}}, {{A, B, C, X(4362), X(17389)}}, {{A, B, C, X(4654), X(17350)}}, {{A, B, C, X(4664), X(42029)}}, {{A, B, C, X(5271), X(48858)}}, {{A, B, C, X(5557), X(62908)}}, {{A, B, C, X(5559), X(54119)}}, {{A, B, C, X(7320), X(60206)}}, {{A, B, C, X(9311), X(40012)}}, {{A, B, C, X(10453), X(16834)}}, {{A, B, C, X(14377), X(55988)}}, {{A, B, C, X(17264), X(19796)}}, {{A, B, C, X(17281), X(50068)}}, {{A, B, C, X(17319), X(42027)}}, {{A, B, C, X(18827), X(55997)}}, {{A, B, C, X(29580), X(43223)}}, {{A, B, C, X(34258), X(34860)}}, {{A, B, C, X(35168), X(56947)}}, {{A, B, C, X(35170), X(54775)}}, {{A, B, C, X(35652), X(42051)}}, {{A, B, C, X(38473), X(49543)}}, {{A, B, C, X(39594), X(50129)}}, {{A, B, C, X(39704), X(58021)}}, {{A, B, C, X(39739), X(58020)}}, {{A, B, C, X(41683), X(60264)}}, {{A, B, C, X(42032), X(50101)}}, {{A, B, C, X(43739), X(55992)}}, {{A, B, C, X(46638), X(60615)}}, {{A, B, C, X(52393), X(55990)}}, {{A, B, C, X(55945), X(56239)}}, {{A, B, C, X(56046), X(56145)}}
X(65057) = barycentric product X(i)*X(j) for these (i, j): {1, 65056}
X(65057) = barycentric quotient X(i)/X(j) for these (i, j): {1, 27627}, {2, 42051}, {65056, 75}
X(65058) lies on these lines: {2, 34283}, {8, 3794}, {38, 31359}, {81, 17743}, {85, 42304}, {92, 30035}, {257, 4359}, {314, 56086}, {873, 65018}, {1311, 8690}, {2064, 18359}, {4102, 17787}
X(65058) = isotomic conjugate of X(28387)
X(65058) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 28387}, {56, 61036}, {65, 16946}, {213, 64827}, {604, 3214}, {1042, 3217}, {1397, 3175}, {1400, 3915}, {1402, 4383}, {1409, 4186}, {1415, 4139}, {2149, 21963}, {52410, 59577}
X(65058) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 61036}, {2, 28387}, {650, 21963}, {1146, 4139}, {3161, 3214}, {6626, 64827}, {40582, 3915}, {40602, 16946}, {40605, 4383}, {40625, 4498}, {62585, 3175}
X(65058) = X(i)-cross conjugate of X(j) for these {i, j}: {341, 314}
X(65058) = pole of line {3217, 4383} with respect to the Wallace hyperbola
X(65058) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(63), X(30035)}}, {{A, B, C, X(81), X(3794)}}, {{A, B, C, X(314), X(873)}}, {{A, B, C, X(1432), X(10544)}}, {{A, B, C, X(2064), X(20924)}}, {{A, B, C, X(2350), X(4876)}}, {{A, B, C, X(3596), X(57947)}}, {{A, B, C, X(3975), X(27438)}}, {{A, B, C, X(4359), X(17787)}}, {{A, B, C, X(8042), X(17197)}}, {{A, B, C, X(20258), X(61412)}}, {{A, B, C, X(27391), X(30059)}}, {{A, B, C, X(39956), X(42304)}}, {{A, B, C, X(44130), X(44139)}}, {{A, B, C, X(55090), X(60320)}}
X(65058) = barycentric product X(i)*X(j) for these (i, j): {312, 65059}, {314, 34860}, {333, 40012}, {18021, 56192}, {28660, 39956}, {35519, 8690}, {52379, 56123}
X(65058) = barycentric quotient X(i)/X(j) for these (i, j): {2, 28387}, {8, 3214}, {9, 61036}, {11, 21963}, {21, 3915}, {29, 4186}, {86, 64827}, {284, 16946}, {312, 3175}, {314, 3875}, {333, 4383}, {341, 59577}, {522, 4139}, {1043, 3913}, {2287, 3217}, {3596, 56253}, {4560, 4498}, {7253, 42312}, {8690, 109}, {18155, 4106}, {18191, 17477}, {27424, 27432}, {28660, 18135}, {34860, 65}, {39956, 1400}, {40012, 226}, {42304, 1427}, {56123, 2171}, {56155, 1042}, {56192, 181}, {58329, 58334}, {65059, 57}
X(65059) lies on these lines: {1, 4234}, {2, 34283}, {57, 3759}, {81, 62300}, {86, 25430}, {88, 4921}, {105, 8690}, {274, 65039}, {279, 16711}, {291, 4685}, {314, 39694}, {333, 8056}, {536, 65057}, {553, 1432}, {894, 1255}, {959, 1401}, {1002, 35104}, {1224, 19870}, {1412, 7132}, {3227, 42051}, {4980, 55953}, {7192, 23834}, {8025, 27789}, {16696, 37870}, {16704, 26745}, {16726, 36805}, {18206, 39970}, {32009, 37596}, {34892, 42033}, {37756, 52374}, {38247, 62636}, {39703, 41834}, {39738, 40773}, {39962, 64424}, {40153, 60871}, {42034, 55952}, {50633, 51223}
X(65059) = isogonal conjugate of X(61036)
X(65059) = isotomic conjugate of X(3175)
X(65059) = trilinear pole of line {26144, 47796}
X(65059) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 61036}, {6, 3214}, {10, 16946}, {31, 3175}, {32, 56253}, {37, 3915}, {42, 4383}, {55, 28387}, {65, 3217}, {71, 4186}, {213, 3875}, {604, 59577}, {1020, 58334}, {1252, 21963}, {1334, 64827}, {1400, 3913}, {1402, 30568}, {1918, 18135}, {2209, 27432}, {4498, 4557}, {4559, 42312}
X(65059) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 3175}, {3, 61036}, {9, 3214}, {223, 28387}, {661, 21963}, {1015, 4139}, {3161, 59577}, {6376, 56253}, {6626, 3875}, {34021, 18135}, {40582, 3913}, {40589, 3915}, {40592, 4383}, {40602, 3217}, {40605, 30568}, {40620, 4106}, {40625, 20317}, {55067, 42312}, {62574, 27432}
X(65059) = X(i)-cross conjugate of X(j) for these {i, j}: {8, 86}, {3794, 57785}, {18211, 7192}, {21342, 39734}
X(65059) = pole of line {3217, 3915} with respect to the Stammler hyperbola
X(65059) = pole of line {3175, 3875} with respect to the Wallace hyperbola
X(65059) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(8), X(30568)}}, {{A, B, C, X(27), X(4234)}}, {{A, B, C, X(86), X(552)}}, {{A, B, C, X(239), X(4685)}}, {{A, B, C, X(257), X(60267)}}, {{A, B, C, X(286), X(903)}}, {{A, B, C, X(335), X(42055)}}, {{A, B, C, X(514), X(4052)}}, {{A, B, C, X(536), X(42051)}}, {{A, B, C, X(553), X(894)}}, {{A, B, C, X(671), X(26735)}}, {{A, B, C, X(673), X(2985)}}, {{A, B, C, X(1121), X(54686)}}, {{A, B, C, X(1333), X(39982)}}, {{A, B, C, X(1401), X(16696)}}, {{A, B, C, X(1412), X(37128)}}, {{A, B, C, X(1434), X(14534)}}, {{A, B, C, X(1812), X(15419)}}, {{A, B, C, X(3175), X(56174)}}, {{A, B, C, X(3226), X(57815)}}, {{A, B, C, X(3759), X(42030)}}, {{A, B, C, X(4082), X(4765)}}, {{A, B, C, X(4610), X(32041)}}, {{A, B, C, X(4762), X(35104)}}, {{A, B, C, X(4921), X(16704)}}, {{A, B, C, X(7714), X(26643)}}, {{A, B, C, X(8025), X(42025)}}, {{A, B, C, X(9278), X(43265)}}, {{A, B, C, X(9311), X(34258)}}, {{A, B, C, X(14377), X(56046)}}, {{A, B, C, X(16755), X(37756)}}, {{A, B, C, X(16833), X(20012)}}, {{A, B, C, X(16834), X(59296)}}, {{A, B, C, X(17011), X(19870)}}, {{A, B, C, X(17301), X(50048)}}, {{A, B, C, X(17320), X(19797)}}, {{A, B, C, X(18821), X(57852)}}, {{A, B, C, X(18827), X(57785)}}, {{A, B, C, X(20568), X(39700)}}, {{A, B, C, X(21454), X(60077)}}, {{A, B, C, X(24850), X(60172)}}, {{A, B, C, X(25501), X(29580)}}, {{A, B, C, X(32010), X(55947)}}, {{A, B, C, X(34283), X(54549)}}, {{A, B, C, X(34860), X(40012)}}, {{A, B, C, X(35170), X(54744)}}, {{A, B, C, X(39956), X(60806)}}, {{A, B, C, X(46638), X(57721)}}, {{A, B, C, X(52393), X(55942)}}, {{A, B, C, X(54128), X(55945)}}, {{A, B, C, X(55090), X(58279)}}, {{A, B, C, X(55988), X(56145)}}
X(65059) = barycentric product X(i)*X(j) for these (i, j): {57, 65058}, {274, 39956}, {314, 56155}, {333, 42304}, {693, 8690}, {1509, 56123}, {34860, 86}, {40012, 81}, {56192, 873}
X(65059) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3214}, {2, 3175}, {6, 61036}, {8, 59577}, {21, 3913}, {28, 4186}, {57, 28387}, {58, 3915}, {75, 56253}, {81, 4383}, {86, 3875}, {244, 21963}, {274, 18135}, {284, 3217}, {330, 27432}, {333, 30568}, {513, 4139}, {1014, 64827}, {1019, 4498}, {1333, 16946}, {3737, 42312}, {4560, 20317}, {7192, 4106}, {8042, 23777}, {8690, 100}, {21789, 58334}, {34860, 10}, {39956, 37}, {40012, 321}, {42304, 226}, {56123, 594}, {56155, 65}, {56192, 756}, {60789, 56174}, {65058, 312}
X(65060) lies on these lines: {2, 65061}, {6, 8889}, {111, 62973}, {232, 51316}, {251, 1968}, {1368, 61301}, {1383, 7408}, {6103, 34570}, {6353, 36616}, {8770, 38282}, {21448, 52297}, {34212, 59652}, {34572, 52284}, {39951, 62958}
X(65060) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 32006}, {63, 9909}
X(65060) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 32006}, {3162, 9909}
X(65060) = X(i)-cross conjugate of X(j) for these {i, j}: {19118, 4}
X(65060) = pole of line {6353, 16774} with respect to the Kiepert hyperbola
X(65060) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6)}}, {{A, B, C, X(4), X(8889)}}, {{A, B, C, X(98), X(6340)}}, {{A, B, C, X(305), X(34285)}}, {{A, B, C, X(427), X(7378)}}, {{A, B, C, X(459), X(6531)}}, {{A, B, C, X(1093), X(7612)}}, {{A, B, C, X(1368), X(6623)}}, {{A, B, C, X(2052), X(47735)}}, {{A, B, C, X(3089), X(16419)}}, {{A, B, C, X(3424), X(17703)}}, {{A, B, C, X(3455), X(3926)}}, {{A, B, C, X(4232), X(52297)}}, {{A, B, C, X(5094), X(7408)}}, {{A, B, C, X(6353), X(36611)}}, {{A, B, C, X(6524), X(16080)}}, {{A, B, C, X(6776), X(57855)}}, {{A, B, C, X(7487), X(11548)}}, {{A, B, C, X(8753), X(52583)}}, {{A, B, C, X(8801), X(60125)}}, {{A, B, C, X(8884), X(14494)}}, {{A, B, C, X(10603), X(47847)}}, {{A, B, C, X(14572), X(16318)}}, {{A, B, C, X(14593), X(56270)}}, {{A, B, C, X(16263), X(60127)}}, {{A, B, C, X(17983), X(55023)}}, {{A, B, C, X(34208), X(40413)}}, {{A, B, C, X(36612), X(40120)}}, {{A, B, C, X(41932), X(53496)}}, {{A, B, C, X(52284), X(52285)}}, {{A, B, C, X(55972), X(62935)}}, {{A, B, C, X(57518), X(60073)}}
X(65060) = barycentric product X(i)*X(j) for these (i, j): {25, 65061}, {16774, 4}
X(65060) = barycentric quotient X(i)/X(j) for these (i, j): {4, 32006}, {25, 9909}, {16774, 69}, {65061, 305}
X(65061) lies on these lines: {2, 65060}, {30, 65063}, {69, 16774}, {287, 37672}, {339, 21974}, {1494, 34609}, {1799, 1975}, {6340, 32818}, {7667, 65032}, {10691, 57822}, {13575, 62964}, {23292, 60872}, {30737, 35510}, {31152, 57852}, {36889, 62975}, {41009, 59756}
X(65061) = isotomic conjugate of X(9909)
X(65061) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 9909}, {560, 32006}
X(65061) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 9909}, {6374, 32006}
X(65061) = X(i)-cross conjugate of X(j) for these {i, j}: {193, 76}
X(65061) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(30), X(34609)}}, {{A, B, C, X(250), X(34427)}}, {{A, B, C, X(262), X(14528)}}, {{A, B, C, X(290), X(41530)}}, {{A, B, C, X(325), X(37672)}}, {{A, B, C, X(376), X(54707)}}, {{A, B, C, X(381), X(10691)}}, {{A, B, C, X(428), X(31152)}}, {{A, B, C, X(523), X(36616)}}, {{A, B, C, X(671), X(40009)}}, {{A, B, C, X(847), X(60185)}}, {{A, B, C, X(1093), X(60150)}}, {{A, B, C, X(1916), X(34861)}}, {{A, B, C, X(1975), X(42551)}}, {{A, B, C, X(3424), X(60822)}}, {{A, B, C, X(5064), X(7667)}}, {{A, B, C, X(5159), X(21974)}}, {{A, B, C, X(5641), X(54496)}}, {{A, B, C, X(6145), X(14458)}}, {{A, B, C, X(7788), X(23292)}}, {{A, B, C, X(9139), X(40144)}}, {{A, B, C, X(9909), X(38263)}}, {{A, B, C, X(14387), X(37874)}}, {{A, B, C, X(14492), X(14542)}}, {{A, B, C, X(18022), X(54636)}}, {{A, B, C, X(18848), X(54640)}}, {{A, B, C, X(31133), X(52397)}}, {{A, B, C, X(34168), X(54704)}}, {{A, B, C, X(34572), X(45096)}}, {{A, B, C, X(35142), X(54785)}}, {{A, B, C, X(40036), X(60277)}}, {{A, B, C, X(41009), X(62542)}}, {{A, B, C, X(44149), X(57902)}}, {{A, B, C, X(48374), X(54851)}}, {{A, B, C, X(52581), X(57799)}}, {{A, B, C, X(54973), X(60095)}}
X(65061) = barycentric product X(i)*X(j) for these (i, j): {305, 65060}, {16774, 76}
X(65061) = barycentric quotient X(i)/X(j) for these (i, j): {2, 9909}, {76, 32006}, {16774, 6}, {65060, 25}
X(65062) lies on these lines: {2, 14378}, {141, 15321}, {427, 3108}, {3456, 6636}, {5189, 61418}, {8024, 57852}, {41513, 57421}
X(65062) = isotomic conjugate of X(42052)
X(65062) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42052}, {6636, 17469}, {14247, 17457}, {18062, 37085}
X(65062) = X(i)-vertex conjugate of X(j) for these {i, j}: {6636, 65062}
X(65062) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 10159}
X(65062) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(66)}}, {{A, B, C, X(4), X(41366)}}, {{A, B, C, X(6), X(5064)}}, {{A, B, C, X(54), X(14492)}}, {{A, B, C, X(98), X(1487)}}, {{A, B, C, X(251), X(41464)}}, {{A, B, C, X(262), X(17711)}}, {{A, B, C, X(428), X(523)}}, {{A, B, C, X(847), X(14458)}}, {{A, B, C, X(930), X(41173)}}, {{A, B, C, X(1166), X(1297)}}, {{A, B, C, X(1494), X(34572)}}, {{A, B, C, X(3108), X(41435)}}, {{A, B, C, X(5627), X(54477)}}, {{A, B, C, X(10415), X(60125)}}, {{A, B, C, X(10422), X(53945)}}, {{A, B, C, X(14484), X(42021)}}, {{A, B, C, X(19307), X(54608)}}, {{A, B, C, X(34536), X(39284)}}, {{A, B, C, X(42052), X(46026)}}, {{A, B, C, X(43094), X(54540)}}
X(65062) = barycentric product X(i)*X(j) for these (i, j): {10159, 15321}, {14378, 40425}
X(65062) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42052}, {3108, 6636}, {3456, 5007}, {10159, 7768}, {14378, 6292}, {15321, 3589}, {31067, 57222}, {57421, 14247}
X(65063) lies on these lines: {30, 65061}, {287, 64060}, {305, 7667}, {315, 6340}, {1494, 9909}, {7714, 36889}, {7734, 59756}, {7788, 57800}, {13567, 60872}, {18018, 34603}, {37671, 40032}, {44210, 65032}
X(65063) = isotomic conjugate of X(34609)
X(65063) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(22), X(34603)}}, {{A, B, C, X(25), X(7667)}}, {{A, B, C, X(30), X(9909)}}, {{A, B, C, X(64), X(3425)}}, {{A, B, C, X(68), X(54709)}}, {{A, B, C, X(98), X(52441)}}, {{A, B, C, X(254), X(60185)}}, {{A, B, C, X(290), X(34412)}}, {{A, B, C, X(315), X(671)}}, {{A, B, C, X(376), X(7714)}}, {{A, B, C, X(1297), X(18848)}}, {{A, B, C, X(3504), X(60528)}}, {{A, B, C, X(5020), X(7734)}}, {{A, B, C, X(5064), X(44210)}}, {{A, B, C, X(5392), X(55032)}}, {{A, B, C, X(7788), X(13567)}}, {{A, B, C, X(8884), X(60150)}}, {{A, B, C, X(10154), X(34609)}}, {{A, B, C, X(13361), X(16419)}}, {{A, B, C, X(14457), X(14492)}}, {{A, B, C, X(15818), X(38321)}}, {{A, B, C, X(17811), X(37671)}}, {{A, B, C, X(22258), X(40119)}}, {{A, B, C, X(34285), X(55023)}}, {{A, B, C, X(34405), X(54922)}}, {{A, B, C, X(34861), X(54122)}}, {{A, B, C, X(35142), X(54930)}}, {{A, B, C, X(36616), X(41768)}}, {{A, B, C, X(40102), X(60141)}}, {{A, B, C, X(44175), X(54666)}}, {{A, B, C, X(46104), X(54798)}}, {{A, B, C, X(54124), X(54629)}}, {{A, B, C, X(54973), X(60218)}}
X(65064) lies on these lines: {2, 42343}, {241, 16602}, {650, 10589}, {672, 3973}, {2340, 4050}, {3693, 4903}, {5089, 38282}, {40141, 60782}
X(65064) = trilinear pole of line {926, 54255}
X(65064) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 25716}, {56, 25728}, {57, 4421}, {109, 31287}, {604, 25278}
X(65064) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 25728}, {9, 25716}, {11, 31287}, {3161, 25278}, {5452, 4421}
X(65064) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(53056)}}, {{A, B, C, X(2), X(55)}}, {{A, B, C, X(8), X(4050)}}, {{A, B, C, X(9), X(3973)}}, {{A, B, C, X(21), X(16570)}}, {{A, B, C, X(33), X(88)}}, {{A, B, C, X(89), X(7073)}}, {{A, B, C, X(100), X(10589)}}, {{A, B, C, X(200), X(39963)}}, {{A, B, C, X(277), X(4845)}}, {{A, B, C, X(281), X(2316)}}, {{A, B, C, X(294), X(8056)}}, {{A, B, C, X(346), X(16602)}}, {{A, B, C, X(941), X(2364)}}, {{A, B, C, X(1376), X(5274)}}, {{A, B, C, X(1436), X(51316)}}, {{A, B, C, X(2165), X(19302)}}, {{A, B, C, X(2319), X(6557)}}, {{A, B, C, X(3434), X(60782)}}, {{A, B, C, X(4876), X(38255)}}, {{A, B, C, X(5218), X(5284)}}, {{A, B, C, X(5281), X(8167)}}, {{A, B, C, X(5326), X(61155)}}, {{A, B, C, X(5547), X(41791)}}, {{A, B, C, X(9375), X(57726)}}, {{A, B, C, X(9442), X(38254)}}, {{A, B, C, X(9445), X(56331)}}, {{A, B, C, X(11051), X(65046)}}, {{A, B, C, X(14943), X(42318)}}, {{A, B, C, X(27818), X(64458)}}, {{A, B, C, X(35348), X(40154)}}, {{A, B, C, X(36603), X(42317)}}, {{A, B, C, X(39962), X(41798)}}, {{A, B, C, X(39966), X(60817)}}, {{A, B, C, X(53055), X(59572)}}, {{A, B, C, X(56086), X(56116)}}, {{A, B, C, X(56783), X(60813)}}
X(65064) = barycentric product X(i)*X(j) for these (i, j): {55, 65065}, {41439, 8}, {42343, 650}
X(65064) = barycentric quotient X(i)/X(j) for these (i, j): {1, 25716}, {8, 25278}, {9, 25728}, {55, 4421}, {650, 31287}, {41439, 7}, {42343, 4554}, {65065, 6063}
X(65065) lies on these lines: {2, 42343}, {528, 65069}, {3007, 65067}, {3912, 20942}, {4428, 40419}, {9436, 53594}, {11235, 18821}, {30941, 41439}, {31140, 65034}, {34612, 65036}, {59255, 59508}
X(65065) = isotomic conjugate of X(4421)
X(65065) = trilinear pole of line {26568, 918}
X(65065) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 4421}, {32, 25728}, {560, 25278}, {2175, 25716}, {31287, 32739}
X(65065) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4421}, {6374, 25278}, {6376, 25728}, {40593, 25716}, {40619, 31287}
X(65065) = X(i)-cross conjugate of X(j) for these {i, j}: {3829, 2}, {48627, 76}
X(65065) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(693)}}, {{A, B, C, X(75), X(20942)}}, {{A, B, C, X(76), X(20943)}}, {{A, B, C, X(264), X(903)}}, {{A, B, C, X(528), X(11235)}}, {{A, B, C, X(2481), X(44186)}}, {{A, B, C, X(2886), X(4428)}}, {{A, B, C, X(3058), X(31140)}}, {{A, B, C, X(3227), X(60095)}}, {{A, B, C, X(3596), X(36588)}}, {{A, B, C, X(3829), X(4421)}}, {{A, B, C, X(4762), X(59508)}}, {{A, B, C, X(7233), X(36603)}}, {{A, B, C, X(7249), X(39980)}}, {{A, B, C, X(10707), X(49719)}}, {{A, B, C, X(11238), X(34612)}}, {{A, B, C, X(18836), X(34578)}}, {{A, B, C, X(20565), X(39704)}}, {{A, B, C, X(36889), X(57887)}}, {{A, B, C, X(40012), X(57995)}}, {{A, B, C, X(54128), X(58860)}}, {{A, B, C, X(55948), X(57880)}}, {{A, B, C, X(57796), X(65059)}}
X(65065) = barycentric product X(i)*X(j) for these (i, j): {6063, 65064}, {41439, 76}, {42343, 693}
X(65065) = barycentric quotient X(i)/X(j) for these (i, j): {2, 4421}, {75, 25728}, {76, 25278}, {85, 25716}, {693, 31287}, {41439, 6}, {42343, 100}, {65064, 55}
X(65066) lies on these lines: {2, 65067}, {1193, 3340}, {3666, 5226}
X(65066) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 11194}
X(65066) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 11194}
X(65066) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(56)}}, {{A, B, C, X(34), X(88)}}, {{A, B, C, X(57), X(3340)}}, {{A, B, C, X(89), X(1411)}}, {{A, B, C, X(269), X(5936)}}, {{A, B, C, X(1407), X(65046)}}, {{A, B, C, X(1427), X(44794)}}, {{A, B, C, X(1465), X(43049)}}, {{A, B, C, X(1875), X(56270)}}, {{A, B, C, X(4452), X(16610)}}, {{A, B, C, X(6336), X(59263)}}, {{A, B, C, X(8056), X(18840)}}, {{A, B, C, X(9309), X(30608)}}, {{A, B, C, X(34446), X(40779)}}, {{A, B, C, X(42753), X(60491)}}, {{A, B, C, X(45098), X(53083)}}, {{A, B, C, X(56166), X(56783)}}
X(65066) = barycentric product X(i)*X(j) for these (i, j): {56, 65067}, {41446, 7}
X(65066) = barycentric quotient X(i)/X(j) for these (i, j): {56, 11194}, {41446, 8}, {65067, 3596}
X(65067) lies on these lines: {2, 65066}, {529, 65068}, {3007, 65065}, {3687, 42034}, {11236, 57887}, {31141, 65033}, {32087, 41446}, {34606, 65035}
X(65067) = isotomic conjugate of X(11194)
X(65067) = trilinear pole of line {47790, 3910}
X(65067) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(261)}}, {{A, B, C, X(75), X(42034)}}, {{A, B, C, X(264), X(903)}}, {{A, B, C, X(529), X(11236)}}, {{A, B, C, X(1121), X(55955)}}, {{A, B, C, X(1329), X(40726)}}, {{A, B, C, X(1441), X(32087)}}, {{A, B, C, X(3262), X(6604)}}, {{A, B, C, X(4518), X(55993)}}, {{A, B, C, X(5434), X(31141)}}, {{A, B, C, X(6063), X(36588)}}, {{A, B, C, X(11237), X(34606)}}, {{A, B, C, X(20566), X(32023)}}, {{A, B, C, X(36916), X(59260)}}, {{A, B, C, X(57822), X(57889)}}
X(65067) = barycentric product X(i)*X(j) for these (i, j): {3596, 65066}, {41446, 76}
X(65067) = barycentric quotient X(i)/X(j) for these (i, j): {2, 11194}, {41446, 6}, {65066, 56}
X(65068) lies on these lines: {529, 65067}, {3596, 34606}, {3687, 17346}, {11194, 57887}, {31157, 65035}, {34605, 54121}, {38468, 54314}
X(65068) = isotomic conjugate of X(11236)
X(65068) = trilinear pole of line {27486, 3910}
X(65068) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(261)}}, {{A, B, C, X(7), X(54768)}}, {{A, B, C, X(56), X(34606)}}, {{A, B, C, X(69), X(18821)}}, {{A, B, C, X(86), X(1121)}}, {{A, B, C, X(264), X(57889)}}, {{A, B, C, X(269), X(3512)}}, {{A, B, C, X(286), X(34282)}}, {{A, B, C, X(314), X(55956)}}, {{A, B, C, X(529), X(11194)}}, {{A, B, C, X(903), X(40417)}}, {{A, B, C, X(2975), X(34605)}}, {{A, B, C, X(5298), X(31141)}}, {{A, B, C, X(6063), X(55022)}}, {{A, B, C, X(11237), X(31157)}}, {{A, B, C, X(17378), X(29767)}}, {{A, B, C, X(20028), X(54735)}}, {{A, B, C, X(52376), X(55965)}}, {{A, B, C, X(54457), X(54745)}}, {{A, B, C, X(57881), X(59255)}}
X(65069) lies on these lines: {528, 65065}, {693, 34611}, {4421, 18821}, {6063, 34612}, {6174, 65036}, {32023, 49736}
X(65069) = isotomic conjugate of X(11235)
X(65069) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(693)}}, {{A, B, C, X(55), X(34612)}}, {{A, B, C, X(69), X(57887)}}, {{A, B, C, X(100), X(34611)}}, {{A, B, C, X(528), X(4421)}}, {{A, B, C, X(903), X(40417)}}, {{A, B, C, X(1376), X(49736)}}, {{A, B, C, X(3227), X(60218)}}, {{A, B, C, X(4428), X(49732)}}, {{A, B, C, X(4995), X(31140)}}, {{A, B, C, X(6174), X(11238)}}, {{A, B, C, X(7224), X(54928)}}, {{A, B, C, X(7350), X(14458)}}, {{A, B, C, X(31643), X(39704)}}, {{A, B, C, X(34409), X(51567)}}, {{A, B, C, X(39741), X(54676)}}, {{A, B, C, X(43948), X(54128)}}
X(65070) lies on these lines: {2, 65071}, {756, 18905}, {982, 16592}, {1215, 43265}, {1743, 2238}, {3124, 9335}, {3948, 17056}, {3950, 4037}, {4849, 21868}
X(65070) = trilinear pole of line {4729, 4155}
X(65070) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 17261}, {81, 60714}, {110, 25666}, {593, 4096}, {662, 4879}, {1333, 25280}
X(65070) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 17261}, {37, 25280}, {244, 25666}, {1084, 4879}, {40586, 60714}
X(65070) = X(i)-cross conjugate of X(j) for these {i, j}: {21921, 37}, {22174, 10}
X(65070) = pole of line {3662, 3816} with respect to the Kiepert hyperbola
X(65070) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(41875)}}, {{A, B, C, X(2), X(661)}}, {{A, B, C, X(6), X(17056)}}, {{A, B, C, X(10), X(4135)}}, {{A, B, C, X(12), X(262)}}, {{A, B, C, X(37), X(1743)}}, {{A, B, C, X(42), X(17244)}}, {{A, B, C, X(57), X(52208)}}, {{A, B, C, X(85), X(43686)}}, {{A, B, C, X(181), X(39966)}}, {{A, B, C, X(226), X(16606)}}, {{A, B, C, X(292), X(65011)}}, {{A, B, C, X(321), X(56158)}}, {{A, B, C, X(512), X(20569)}}, {{A, B, C, X(523), X(32023)}}, {{A, B, C, X(594), X(62884)}}, {{A, B, C, X(870), X(982)}}, {{A, B, C, X(876), X(40737)}}, {{A, B, C, X(1213), X(37679)}}, {{A, B, C, X(1254), X(60077)}}, {{A, B, C, X(1427), X(40747)}}, {{A, B, C, X(2051), X(8818)}}, {{A, B, C, X(2162), X(7180)}}, {{A, B, C, X(2171), X(39956)}}, {{A, B, C, X(2295), X(56044)}}, {{A, B, C, X(6378), X(52660)}}, {{A, B, C, X(7148), X(60236)}}, {{A, B, C, X(8033), X(16592)}}, {{A, B, C, X(8056), X(9278)}}, {{A, B, C, X(9281), X(25430)}}, {{A, B, C, X(11599), X(52654)}}, {{A, B, C, X(21856), X(40593)}}, {{A, B, C, X(23493), X(41771)}}, {{A, B, C, X(27475), X(54980)}}, {{A, B, C, X(35353), X(40216)}}, {{A, B, C, X(40148), X(55263)}}, {{A, B, C, X(41501), X(43672)}}, {{A, B, C, X(54668), X(56174)}}, {{A, B, C, X(55926), X(60116)}}, {{A, B, C, X(56162), X(57722)}}
X(65070) = barycentric product X(i)*X(j) for these (i, j): {65071, 756}
X(65070) = barycentric quotient X(i)/X(j) for these (i, j): {10, 25280}, {37, 17261}, {42, 60714}, {512, 4879}, {661, 25666}, {756, 4096}, {4729, 4964}, {65071, 873}
X(65071) lies on these lines: {2, 65070}, {239, 41629}, {350, 3664}, {3794, 65077}, {7033, 8033}, {18822, 42053}, {18827, 41527}, {32010, 65039}, {42055, 65073}
X(65071) = isotomic conjugate of X(4096)
X(65071) = trilinear pole of line {26851, 812}
X(65071) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 4096}, {42, 60714}, {213, 17261}, {1918, 25280}, {4557, 4879}
X(65071) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4096}, {6626, 17261}, {34021, 25280}, {40592, 60714}, {40620, 25666}
X(65071) = X(i)-cross conjugate of X(j) for these {i, j}: {21139, 7199}, {26806, 1509}
X(65071) = pole of line {4096, 17261} with respect to the Wallace hyperbola
X(65071) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(60792)}}, {{A, B, C, X(2), X(239)}}, {{A, B, C, X(269), X(757)}}, {{A, B, C, X(537), X(42053)}}, {{A, B, C, X(552), X(40164)}}, {{A, B, C, X(903), X(31643)}}, {{A, B, C, X(1929), X(60624)}}, {{A, B, C, X(3226), X(32021)}}, {{A, B, C, X(3676), X(51865)}}, {{A, B, C, X(4052), X(18032)}}, {{A, B, C, X(16709), X(17151)}}, {{A, B, C, X(17930), X(53226)}}, {{A, B, C, X(18827), X(57785)}}, {{A, B, C, X(28840), X(59622)}}, {{A, B, C, X(31161), X(42040)}}, {{A, B, C, X(36871), X(53679)}}, {{A, B, C, X(40737), X(43931)}}, {{A, B, C, X(52375), X(60078)}}
X(65071) = barycentric product X(i)*X(j) for these (i, j): {65070, 873}
X(65071) = barycentric quotient X(i)/X(j) for these (i, j): {2, 4096}, {81, 60714}, {86, 17261}, {274, 25280}, {1019, 4879}, {7192, 25666}, {65070, 756}
X(65072) lies on these lines: {239, 4641}, {350, 3879}, {537, 65073}, {732, 62625}, {1965, 7035}, {18822, 42055}, {27922, 29820}
X(65072) = isotomic conjugate of X(42054)
X(65072) = trilinear pole of line {27012, 47796}
X(65072) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(42057)}}, {{A, B, C, X(2), X(239)}}, {{A, B, C, X(38), X(60529)}}, {{A, B, C, X(75), X(42051)}}, {{A, B, C, X(86), X(2985)}}, {{A, B, C, X(286), X(903)}}, {{A, B, C, X(514), X(40038)}}, {{A, B, C, X(519), X(29820)}}, {{A, B, C, X(537), X(42055)}}, {{A, B, C, X(732), X(28840)}}, {{A, B, C, X(1965), X(43266)}}, {{A, B, C, X(3226), X(57785)}}, {{A, B, C, X(3879), X(4641)}}, {{A, B, C, X(14828), X(41629)}}, {{A, B, C, X(31161), X(42038)}}, {{A, B, C, X(32021), X(55997)}}, {{A, B, C, X(40415), X(56783)}}, {{A, B, C, X(42053), X(42054)}}, {{A, B, C, X(43097), X(56947)}}
X(65073) lies on these lines: {239, 3175}, {350, 4685}, {536, 39937}, {537, 65072}, {873, 60683}, {1447, 4360}, {3875, 8616}, {3961, 27922}, {18822, 42054}, {42055, 65071}
X(65073) = isotomic conjugate of X(42055)
X(65073) = trilinear pole of line {27074, 47793}
X(65073) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4685)}}, {{A, B, C, X(2), X(239)}}, {{A, B, C, X(75), X(3175)}}, {{A, B, C, X(314), X(903)}}, {{A, B, C, X(519), X(3961)}}, {{A, B, C, X(537), X(42054)}}, {{A, B, C, X(740), X(43265)}}, {{A, B, C, X(2481), X(55997)}}, {{A, B, C, X(3226), X(57815)}}, {{A, B, C, X(3227), X(17143)}}, {{A, B, C, X(3680), X(56098)}}, {{A, B, C, X(4052), X(39714)}}, {{A, B, C, X(4096), X(42055)}}, {{A, B, C, X(31161), X(42039)}}, {{A, B, C, X(41629), X(56026)}}, {{A, B, C, X(42053), X(42056)}}, {{A, B, C, X(52651), X(60664)}}
X(65074) lies on these lines: {2, 65075}, {45, 39736}, {239, 65057}, {274, 17260}, {291, 27627}, {330, 17277}, {3227, 16827}, {3729, 56051}, {8056, 62817}, {16815, 30710}, {16816, 39694}, {27644, 39950}, {28249, 39724}, {29578, 37870}, {29960, 34892}
X(65074) = isotomic conjugate of X(29982)
X(65074) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 42057}, {31, 29982}
X(65074) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 29982}, {9, 42057}
X(65074) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(83), X(55971)}}, {{A, B, C, X(239), X(27627)}}, {{A, B, C, X(899), X(16827)}}, {{A, B, C, X(978), X(16816)}}, {{A, B, C, X(1014), X(39717)}}, {{A, B, C, X(1126), X(32013)}}, {{A, B, C, X(1193), X(16815)}}, {{A, B, C, X(1400), X(17260)}}, {{A, B, C, X(3224), X(65027)}}, {{A, B, C, X(7292), X(29960)}}, {{A, B, C, X(13584), X(17501)}}, {{A, B, C, X(16833), X(27645)}}, {{A, B, C, X(17277), X(27644)}}, {{A, B, C, X(17743), X(39981)}}, {{A, B, C, X(18785), X(23617)}}, {{A, B, C, X(20036), X(54390)}}, {{A, B, C, X(20332), X(60075)}}, {{A, B, C, X(26736), X(55036)}}, {{A, B, C, X(28615), X(45988)}}, {{A, B, C, X(28660), X(56091)}}, {{A, B, C, X(29578), X(59305)}}, {{A, B, C, X(32008), X(37128)}}, {{A, B, C, X(32012), X(39748)}}, {{A, B, C, X(56174), X(60244)}}
X(65074) = barycentric product X(i)*X(j) for these (i, j): {1, 65075}
X(65074) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42057}, {2, 29982}, {65075, 75}
X(65075) lies on these lines: {2, 65074}, {75, 42054}, {86, 3750}, {335, 42051}, {350, 65056}, {519, 65077}, {903, 4685}, {3679, 65041}, {4479, 58019}, {6384, 17143}, {32911, 60873}, {33296, 39734}, {39704, 42042}
X(65075) = isotomic conjugate of X(42057)
X(65075) = trilinear pole of line {27292, 514}
X(65075) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42057}, {32, 29982}
X(65075) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42057}, {6376, 29982}
X(65075) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(65), X(3750)}}, {{A, B, C, X(291), X(42054)}}, {{A, B, C, X(350), X(42051)}}, {{A, B, C, X(519), X(4685)}}, {{A, B, C, X(1126), X(28509)}}, {{A, B, C, X(1222), X(13576)}}, {{A, B, C, X(1434), X(40024)}}, {{A, B, C, X(3112), X(55947)}}, {{A, B, C, X(3210), X(4479)}}, {{A, B, C, X(3223), X(7241)}}, {{A, B, C, X(3227), X(17143)}}, {{A, B, C, X(3551), X(39966)}}, {{A, B, C, X(3679), X(42042)}}, {{A, B, C, X(7033), X(55945)}}, {{A, B, C, X(18822), X(65059)}}, {{A, B, C, X(18827), X(55997)}}, {{A, B, C, X(31137), X(36634)}}, {{A, B, C, X(34860), X(56161)}}, {{A, B, C, X(39711), X(60109)}}, {{A, B, C, X(39742), X(39967)}}, {{A, B, C, X(39744), X(39747)}}, {{A, B, C, X(43097), X(54686)}}
X(65075) = barycentric product X(i)*X(j) for these (i, j): {65074, 75}
X(65075) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42057}, {75, 29982}, {65074, 1}
X(65076) lies on these lines: {2, 4754}, {38, 17038}, {87, 748}, {256, 3720}
X(65076) = isotomic conjugate of X(27438)
X(65076) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 27438}, {2162, 4685}, {7121, 22016}, {8616, 16606}, {17144, 21759}, {17349, 23493}
X(65076) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 27438}, {3835, 22215}, {40598, 22016}
X(65076) = X(i)-cross conjugate of X(j) for these {i, j}: {53676, 33296}
X(65076) = pole of line {17349, 27438} with respect to the Wallace hyperbola
X(65076) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(43)}}, {{A, B, C, X(88), X(1403)}}, {{A, B, C, X(310), X(33947)}}, {{A, B, C, X(873), X(33296)}}, {{A, B, C, X(1255), X(52136)}}, {{A, B, C, X(2176), X(65027)}}, {{A, B, C, X(2350), X(51973)}}, {{A, B, C, X(3720), X(4754)}}, {{A, B, C, X(8042), X(16742)}}, {{A, B, C, X(30545), X(57722)}}, {{A, B, C, X(40013), X(40848)}}
X(65076) = barycentric product X(i)*X(j) for these (i, j): {43, 65077}, {27644, 60236}, {31008, 39966}, {33296, 39742}
X(65076) = barycentric quotient X(i)/X(j) for these (i, j): {2, 27438}, {43, 4685}, {192, 22016}, {6377, 22215}, {16695, 48331}, {17217, 23794}, {18197, 48008}, {27644, 17349}, {33296, 17144}, {38832, 8616}, {39742, 42027}, {39966, 16606}, {60236, 60244}, {65077, 6384}
X(65077) lies on these lines: {2, 4754}, {75, 39742}, {81, 60873}, {86, 65039}, {274, 56212}, {335, 3175}, {519, 65075}, {673, 41629}, {903, 42057}, {1246, 17378}, {1434, 24801}, {3760, 6384}, {3794, 65071}, {4059, 7249}, {4373, 30941}, {4496, 27447}, {5936, 30966}, {14621, 42028}, {16711, 36854}, {16712, 24215}, {16887, 56052}, {31008, 40027}, {31137, 65043}, {33296, 39741}
X(65077) = isotomic conjugate of X(4685)
X(65077) = trilinear pole of line {27344, 514}
X(65077) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 4685}, {32, 22016}, {42, 8616}, {213, 17349}, {1252, 22215}, {1918, 17144}, {4557, 48331}, {27438, 62420}
X(65077) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4685}, {661, 22215}, {6376, 22016}, {6626, 17349}, {34021, 17144}, {40592, 8616}, {40620, 48008}, {62615, 27438}
X(65077) = X(i)-cross conjugate of X(j) for these {i, j}: {192, 274}
X(65077) = pole of line {4685, 8616} with respect to the Wallace hyperbola
X(65077) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(79), X(60624)}}, {{A, B, C, X(291), X(20615)}}, {{A, B, C, X(350), X(3175)}}, {{A, B, C, X(519), X(42057)}}, {{A, B, C, X(671), X(18299)}}, {{A, B, C, X(873), X(55947)}}, {{A, B, C, X(1002), X(60789)}}, {{A, B, C, X(1019), X(17179)}}, {{A, B, C, X(1222), X(60617)}}, {{A, B, C, X(1434), X(33947)}}, {{A, B, C, X(1909), X(4059)}}, {{A, B, C, X(2481), X(55997)}}, {{A, B, C, X(3551), X(39967)}}, {{A, B, C, X(3760), X(4496)}}, {{A, B, C, X(4052), X(7018)}}, {{A, B, C, X(4479), X(41839)}}, {{A, B, C, X(5557), X(60090)}}, {{A, B, C, X(16887), X(62541)}}, {{A, B, C, X(18827), X(57785)}}, {{A, B, C, X(30571), X(56237)}}, {{A, B, C, X(30941), X(41629)}}, {{A, B, C, X(30966), X(42028)}}, {{A, B, C, X(31137), X(42043)}}, {{A, B, C, X(34860), X(62921)}}, {{A, B, C, X(35153), X(56947)}}, {{A, B, C, X(39702), X(56164)}}, {{A, B, C, X(39742), X(39966)}}, {{A, B, C, X(43097), X(57784)}}, {{A, B, C, X(43732), X(60109)}}, {{A, B, C, X(60267), X(60678)}}
X(65077) = barycentric product X(i)*X(j) for these (i, j): {274, 39742}, {310, 39966}, {6384, 65076}, {60236, 86}
X(65077) = barycentric quotient X(i)/X(j) for these (i, j): {2, 4685}, {75, 22016}, {81, 8616}, {86, 17349}, {244, 22215}, {274, 17144}, {1019, 48331}, {6384, 27438}, {7192, 48008}, {7199, 23794}, {39742, 37}, {39966, 42}, {60236, 10}, {65076, 43}
X(65078) lies on these lines: {2, 3943}, {8, 41434}, {495, 3296}, {596, 1698}, {1125, 42437}, {1213, 62732}, {1509, 16704}, {4969, 8025}, {9108, 28210}, {14475, 46915}, {45222, 65023}, {58128, 60710}
X(65078) = X(i)-isoconjugate-of-X(j) for these {i, j}: {551, 28615}, {1126, 16666}, {1171, 21806}, {1255, 21747}, {37212, 58139}
X(65078) = X(i)-Dao conjugate of X(j) for these {i, j}: {1213, 551}, {3647, 16666}, {35076, 28209}, {56846, 4031}, {59592, 3707}, {62588, 24589}
X(65078) = pole of line {27081, 40434} with respect to the Kiepert hyperbola
X(65078) = pole of line {3828, 65024} with respect to the dual conic of Yff parabola
X(65078) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(553)}}, {{A, B, C, X(89), X(1100)}}, {{A, B, C, X(1213), X(3943)}}, {{A, B, C, X(1230), X(6539)}}, {{A, B, C, X(1268), X(7192)}}, {{A, B, C, X(1269), X(5936)}}, {{A, B, C, X(1698), X(18140)}}, {{A, B, C, X(2308), X(39966)}}, {{A, B, C, X(3702), X(56075)}}, {{A, B, C, X(4080), X(4647)}}, {{A, B, C, X(4977), X(28309)}}, {{A, B, C, X(27483), X(46896)}}, {{A, B, C, X(30581), X(39962)}}, {{A, B, C, X(30593), X(56061)}}, {{A, B, C, X(60873), X(61313)}}
X(65078) = barycentric product X(i)*X(j) for these (i, j): {1125, 55955}, {1269, 41434}, {4977, 58128}, {16709, 56134}, {27797, 8025}, {40434, 4359}, {62732, 65024}
X(65078) = barycentric quotient X(i)/X(j) for these (i, j): {553, 4031}, {1100, 16666}, {1125, 551}, {1962, 21806}, {2308, 21747}, {3686, 3707}, {3702, 3902}, {3775, 4407}, {4359, 24589}, {4427, 4781}, {4647, 4714}, {4717, 4793}, {4870, 39782}, {4977, 28209}, {4984, 14435}, {8025, 26860}, {22054, 22357}, {27797, 6539}, {28210, 8701}, {30724, 30722}, {30729, 30727}, {40434, 1255}, {41434, 1126}, {50512, 58139}, {55955, 1268}, {56115, 32635}, {58128, 6540}, {62732, 42026}, {65024, 31011}
X(65078) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 27797, 40434}, {2, 55955, 65024}, {40434, 55955, 27797}, {40434, 65010, 2}
X(65079) lies on these lines: {2, 5355}, {3763, 6664}, {7693, 43726}, {7931, 45108}, {12074, 46226}, {42367, 60728}, {52395, 52898}
X(65079) = X(i)-Dao conjugate of X(j) for these {i, j}: {6292, 597}, {15527, 12073}
X(65079) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(428)}}, {{A, B, C, X(1383), X(5007)}}, {{A, B, C, X(6292), X(7813)}}, {{A, B, C, X(10159), X(52570)}}, {{A, B, C, X(10330), X(62672)}}, {{A, B, C, X(31125), X(42554)}}, {{A, B, C, X(40103), X(44091)}}, {{A, B, C, X(52787), X(54459)}}
X(65079) = barycentric product X(i)*X(j) for these (i, j): {10302, 3589}, {39389, 39998}, {42367, 7927}
X(65079) = barycentric quotient X(i)/X(j) for these (i, j): {428, 10301}, {3589, 597}, {5007, 5008}, {7927, 12073}, {10302, 10159}, {10330, 35356}, {12074, 7953}, {39389, 3108}, {39998, 26235}, {42367, 35137}, {61211, 35357}
X(65080) lies on these lines: {2, 4480}, {1121, 29627}, {2325, 6557}, {3161, 4997}, {3622, 63169}, {4521, 60480}, {5226, 63167}, {5328, 30608}, {6745, 56088}, {14942, 62710}, {24589, 65029}, {30827, 56201}, {46872, 46933}
X(65080) = isotomic conjugate of X(31188)
X(65080) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 31188}, {604, 31145}
X(65080) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 31188}, {3161, 31145}
X(65080) = X(i)-cross conjugate of X(j) for these {i, j}: {62706, 8}
X(65080) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(7), X(4887)}}, {{A, B, C, X(79), X(45098)}}, {{A, B, C, X(88), X(1392)}}, {{A, B, C, X(281), X(2325)}}, {{A, B, C, X(346), X(31722)}}, {{A, B, C, X(1320), X(39963)}}, {{A, B, C, X(2320), X(40434)}}, {{A, B, C, X(3254), X(42318)}}, {{A, B, C, X(4373), X(52714)}}, {{A, B, C, X(5219), X(5328)}}, {{A, B, C, X(5226), X(30827)}}, {{A, B, C, X(5748), X(30852)}}, {{A, B, C, X(6745), X(29627)}}, {{A, B, C, X(14475), X(53523)}}, {{A, B, C, X(24589), X(28808)}}, {{A, B, C, X(28626), X(56349)}}, {{A, B, C, X(33696), X(54587)}}, {{A, B, C, X(40410), X(58002)}}
X(65080) = barycentric product X(i)*X(j) for these (i, j): {65081, 8}
X(65080) = barycentric quotient X(i)/X(j) for these (i, j): {2, 31188}, {8, 31145}, {3680, 58793}, {65081, 7}
X(65081) lies on these lines: {2, 4480}, {75, 4487}, {145, 903}, {519, 4373}, {527, 42318}, {545, 36807}, {673, 60984}, {3667, 6548}, {4346, 39704}, {4862, 30712}, {5936, 17274}, {6084, 62623}, {7321, 28650}, {20347, 56163}, {27475, 59375}, {28626, 50116}, {31145, 36588}, {32093, 36606}, {39707, 50101}, {39716, 50128}, {42697, 55955}, {44724, 62536}, {45789, 53620}, {51351, 62723}, {62783, 65004}
X(65081) = isotomic conjugate of X(31145)
X(65081) = trilinear pole of line {14425, 44561}
X(65081) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 31145}, {41, 31188}, {3052, 58793}
X(65081) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 31145}, {3160, 31188}, {24151, 58793}
X(65081) = X(i)-cross conjugate of X(j) for these {i, j}: {3241, 2}, {51792, 189}
X(65081) = pole of line {3241, 65081} with respect to the dual conic of Yff parabola
X(65081) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(145)}}, {{A, B, C, X(8), X(31722)}}, {{A, B, C, X(79), X(54623)}}, {{A, B, C, X(279), X(4887)}}, {{A, B, C, X(527), X(51351)}}, {{A, B, C, X(545), X(6084)}}, {{A, B, C, X(596), X(54624)}}, {{A, B, C, X(1219), X(43733)}}, {{A, B, C, X(1280), X(55922)}}, {{A, B, C, X(1327), X(55154)}}, {{A, B, C, X(1328), X(55155)}}, {{A, B, C, X(2481), X(41895)}}, {{A, B, C, X(3062), X(55992)}}, {{A, B, C, X(3241), X(31145)}}, {{A, B, C, X(3254), X(36916)}}, {{A, B, C, X(3296), X(60079)}}, {{A, B, C, X(3617), X(38314)}}, {{A, B, C, X(3622), X(31359)}}, {{A, B, C, X(4346), X(4945)}}, {{A, B, C, X(4480), X(10405)}}, {{A, B, C, X(4492), X(51036)}}, {{A, B, C, X(5551), X(54786)}}, {{A, B, C, X(5553), X(54726)}}, {{A, B, C, X(5556), X(6553)}}, {{A, B, C, X(5557), X(43533)}}, {{A, B, C, X(5561), X(24858)}}, {{A, B, C, X(7319), X(35577)}}, {{A, B, C, X(9436), X(60984)}}, {{A, B, C, X(10305), X(54516)}}, {{A, B, C, X(10307), X(54687)}}, {{A, B, C, X(17274), X(21454)}}, {{A, B, C, X(18822), X(38247)}}, {{A, B, C, X(19604), X(36603)}}, {{A, B, C, X(19875), X(46934)}}, {{A, B, C, X(19883), X(46931)}}, {{A, B, C, X(23617), X(31507)}}, {{A, B, C, X(25055), X(39708)}}, {{A, B, C, X(26745), X(56049)}}, {{A, B, C, X(27818), X(52714)}}, {{A, B, C, X(35160), X(55948)}}, {{A, B, C, X(36889), X(46136)}}, {{A, B, C, X(39702), X(63169)}}, {{A, B, C, X(39742), X(39975)}}, {{A, B, C, X(40028), X(60635)}}, {{A, B, C, X(40719), X(59375)}}, {{A, B, C, X(42026), X(42697)}}, {{A, B, C, X(43732), X(60077)}}, {{A, B, C, X(54758), X(61105)}}, {{A, B, C, X(56258), X(60624)}}
X(65081) = barycentric product X(i)*X(j) for these (i, j): {7, 65080}
X(65081) = barycentric quotient X(i)/X(j) for these (i, j): {2, 31145}, {7, 31188}, {8056, 58793}, {65080, 8}
X(65082) lies on these lines: {1, 488}, {2, 7}, {3, 31550}, {4, 31549}, {8, 175}, {10, 481}, {40, 31551}, {69, 5391}, {72, 39795}, {75, 492}, {77, 3084}, {85, 7090}, {86, 1659}, {145, 17802}, {176, 3616}, {239, 62987}, {264, 55459}, {269, 65083}, {273, 1586}, {309, 60854}, {317, 55428}, {319, 32802}, {320, 491}, {326, 55456}, {347, 46422}, {348, 13436}, {482, 1125}, {519, 31539}, {551, 31538}, {590, 17365}, {591, 4361}, {615, 1086}, {664, 64314}, {942, 63810}, {946, 31552}, {1001, 31566}, {1119, 3536}, {1145, 58042}, {1267, 32805}, {1271, 21296}, {1371, 25055}, {1372, 3679}, {1373, 3624}, {1374, 1698}, {1441, 11090}, {1442, 56427}, {1585, 7282}, {1621, 8237}, {2047, 57282}, {2048, 64126}, {2067, 17206}, {2345, 5590}, {2550, 31565}, {3068, 4644}, {3069, 4000}, {3083, 7190}, {3593, 31995}, {3617, 31602}, {3622, 17805}, {3632, 17803}, {3663, 5405}, {3664, 5393}, {3673, 7388}, {3759, 45421}, {4329, 9789}, {4363, 45472}, {4416, 51841}, {4419, 6352}, {4648, 6351}, {4872, 64617}, {4911, 7389}, {5222, 7586}, {5228, 31473}, {5414, 31637}, {5439, 39794}, {5550, 21169}, {5839, 5860}, {6213, 17170}, {6348, 13386}, {6356, 55885}, {6604, 30556}, {7056, 64622}, {7222, 26361}, {7232, 45473}, {7269, 56384}, {7277, 32787}, {7321, 32791}, {7595, 8224}, {8233, 36698}, {8243, 13389}, {8253, 62223}, {9028, 19215}, {10481, 31595}, {10885, 16440}, {13360, 34855}, {13453, 52422}, {13757, 37756}, {14121, 31547}, {16663, 40653}, {17023, 51842}, {17361, 32809}, {17364, 62986}, {17366, 32788}, {17801, 53620}, {19862, 21171}, {21629, 57269}, {22464, 55877}, {28870, 52806}, {31540, 31562}, {31601, 46934}, {32099, 32814}, {32795, 32812}, {32796, 32806}, {32798, 32810}, {34495, 57279}, {40700, 63165}, {44129, 61392}, {45872, 48631}, {48900, 52805}, {55385, 55452}, {55386, 55423}, {55387, 55420}, {55388, 55451}, {55393, 55479}, {55394, 55474}, {55398, 56927}, {63152, 64229}
X(65082) = isogonal conjugate of X(60852)
X(65082) = isotomic conjugate of X(14121)
X(65082) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 60852}, {4, 53065}, {6, 42013}, {9, 60849}, {19, 2066}, {25, 30556}, {31, 14121}, {32, 60853}, {33, 6502}, {41, 13390}, {55, 16232}, {212, 61393}, {220, 61400}, {281, 53064}, {607, 13389}, {650, 54016}, {692, 58838}, {1336, 53066}, {1806, 1824}, {1973, 56385}, {2067, 13427}, {5414, 64210}, {6212, 60851}, {7071, 64229}, {7133, 34125}, {13426, 53063}, {30335, 46379}
X(65082) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 14121}, {3, 60852}, {6, 2066}, {9, 42013}, {223, 16232}, {478, 60849}, {482, 32082}, {1086, 58838}, {3160, 13390}, {6337, 56385}, {6376, 60853}, {6505, 30556}, {13388, 6212}, {13389, 1}, {36033, 53065}, {40618, 54019}, {40837, 61393}, {64631, 9}
X(65082) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {15889, 3436}, {34215, 69}
X(65082) = X(i)-cross conjugate of X(j) for these {i, j}: {2067, 1659}, {30557, 56386}, {31534, 2}
X(65082) = pole of line {284, 2066} with respect to the Stammler hyperbola
X(65082) = pole of line {333, 14121} with respect to the Wallace hyperbola
X(65082) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6204)}}, {{A, B, C, X(2), X(13387)}}, {{A, B, C, X(9), X(7090)}}, {{A, B, C, X(57), X(13388)}}, {{A, B, C, X(63), X(3084)}}, {{A, B, C, X(69), X(85)}}, {{A, B, C, X(75), X(5490)}}, {{A, B, C, X(77), X(52419)}}, {{A, B, C, X(226), X(1659)}}, {{A, B, C, X(329), X(60854)}}, {{A, B, C, X(486), X(6203)}}, {{A, B, C, X(527), X(54017)}}, {{A, B, C, X(672), X(5414)}}, {{A, B, C, X(1400), X(2067)}}, {{A, B, C, X(1952), X(55021)}}, {{A, B, C, X(2285), X(2362)}}, {{A, B, C, X(5364), X(53066)}}, {{A, B, C, X(7133), X(40131)}}, {{A, B, C, X(11091), X(52381)}}, {{A, B, C, X(13386), X(30679)}}, {{A, B, C, X(53063), X(56556)}}
X(65082) = barycentric product X(i)*X(j) for these (i, j): {305, 60850}, {312, 64230}, {348, 7090}, {1659, 69}, {1805, 349}, {2067, 76}, {2362, 304}, {3718, 61401}, {3926, 61392}, {5414, 6063}, {7133, 7182}, {13388, 75}, {13389, 46745}, {13390, 5391}, {13436, 14121}, {20567, 53066}, {30557, 85}, {52420, 60853}, {53063, 561}, {54017, 664}, {56386, 7}, {57918, 60851}, {60854, 77}, {65016, 9}
X(65082) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42013}, {2, 14121}, {3, 2066}, {6, 60852}, {7, 13390}, {48, 53065}, {56, 60849}, {57, 16232}, {63, 30556}, {69, 56385}, {75, 60853}, {77, 13389}, {109, 54016}, {176, 64336}, {222, 6502}, {269, 61400}, {278, 61393}, {514, 58838}, {603, 53064}, {606, 53066}, {1335, 5414}, {1659, 4}, {1790, 1806}, {1805, 284}, {2067, 6}, {2362, 19}, {3084, 30557}, {4025, 54019}, {5391, 56386}, {5414, 55}, {6213, 7133}, {6502, 34125}, {7090, 281}, {7133, 33}, {7177, 64229}, {13387, 7090}, {13388, 1}, {13389, 6212}, {13390, 1336}, {13437, 61392}, {14121, 13426}, {16232, 64210}, {30557, 9}, {31548, 30412}, {34121, 60851}, {42013, 13427}, {46377, 30335}, {46421, 34910}, {46745, 60854}, {51842, 46379}, {52420, 13388}, {53063, 31}, {53066, 41}, {54017, 522}, {54018, 8750}, {56386, 8}, {58840, 3064}, {60850, 25}, {60851, 607}, {60854, 318}, {61392, 393}, {61400, 13460}, {61401, 34}, {64230, 57}, {64622, 15892}, {64626, 7347}, {65016, 85}
X(65082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 481, 57266}, {69, 5391, 56386}, {75, 492, 56385}, {320, 32792, 491}, {32805, 42697, 1267}
X(65083) lies on these lines: {1, 2}, {6, 55441}, {9, 13388}, {11, 15235}, {12, 15236}, {33, 3535}, {34, 3536}, {35, 1583}, {36, 1584}, {40, 16433}, {55, 55579}, {56, 55577}, {57, 30557}, {81, 19004}, {142, 1659}, {165, 16441}, {175, 18228}, {210, 3640}, {223, 31534}, {269, 65082}, {278, 55454}, {281, 55455}, {326, 32792}, {329, 481}, {354, 3641}, {388, 3539}, {394, 3301}, {482, 9776}, {491, 55456}, {492, 55457}, {497, 3540}, {517, 21547}, {587, 2331}, {590, 3553}, {615, 3554}, {940, 18991}, {1038, 55885}, {1040, 55890}, {1124, 17825}, {1335, 17811}, {1336, 56230}, {1372, 31018}, {1374, 5905}, {1385, 21548}, {1449, 31473}, {1478, 6805}, {1479, 6806}, {1482, 21545}, {1585, 55482}, {1586, 55481}, {1591, 7951}, {1592, 7741}, {1599, 5010}, {1600, 7280}, {1750, 31563}, {2052, 55465}, {2551, 31532}, {3298, 55442}, {3299, 10601}, {3302, 56354}, {3305, 55398}, {3306, 55397}, {3452, 13390}, {3576, 16432}, {3579, 21558}, {3740, 45713}, {3742, 45714}, {3745, 11371}, {3817, 61095}, {4383, 18992}, {4682, 45398}, {5437, 13389}, {5589, 62819}, {5927, 60903}, {7308, 30556}, {7968, 37679}, {7969, 37674}, {7982, 21546}, {7987, 16440}, {7991, 21553}, {8125, 10236}, {8126, 10235}, {9817, 55887}, {10164, 61094}, {10246, 21550}, {10857, 31564}, {11398, 15211}, {11399, 15212}, {11531, 21552}, {11547, 55435}, {12702, 21557}, {13360, 64229}, {13624, 21561}, {14165, 55464}, {15200, 54428}, {15215, 52427}, {16192, 21566}, {16200, 21544}, {16667, 63072}, {17502, 21575}, {17784, 31567}, {17917, 55424}, {17923, 55389}, {19003, 32911}, {19372, 55892}, {21060, 31569}, {21446, 61401}, {21492, 30389}, {21555, 30392}, {21559, 35242}, {21564, 63468}, {21565, 63469}, {21567, 58221}, {21572, 31663}, {31594, 46421}, {32804, 44179}, {32805, 55392}, {32806, 55391}, {32807, 55427}, {37682, 44635}, {40998, 52808}, {52412, 55390}, {55475, 62957}, {55476, 62956}, {60877, 60972}
X(65083) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 63689}
X(65083) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 63689}
X(65083) = pole of line {3057, 3640} with respect to the Feuerbach hyperbola
X(65083) = pole of line {58, 19003} with respect to the Stammler hyperbola
X(65083) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3298)}}, {{A, B, C, X(8), X(15891)}}, {{A, B, C, X(1336), X(14986)}}, {{A, B, C, X(3083), X(55442)}}, {{A, B, C, X(3084), X(56230)}}, {{A, B, C, X(3085), X(3300)}}, {{A, B, C, X(3086), X(3302)}}, {{A, B, C, X(5222), X(61401)}}, {{A, B, C, X(21446), X(56385)}}, {{A, B, C, X(56354), X(56427)}}
X(65083) = barycentric product X(i)*X(j) for these (i, j): {1, 32794}, {3298, 75}
X(65083) = barycentric quotient X(i)/X(j) for these (i, j): {1, 63689}, {3298, 1}, {32794, 75}, {55442, 3083}
X(65083) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3084, 1}, {2, 6347, 1698}, {10601, 55409, 3299}
X(65084) lies on the Kiepert hyperbola and on these lines: {4, 13857}, {98, 32216}, {597, 62927}, {598, 11064}, {599, 16080}, {1555, 54941}, {1992, 62924}, {14458, 47311}, {15066, 58268}, {30734, 60142}, {34289, 40112}, {37669, 54771}, {53415, 54774}
X(65084) = isogonal conjugate of X(58265)
X(65084) = trilinear pole of line {523, 54995}
X(65084) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(249), X(15066)}}, {{A, B, C, X(297), X(32216)}}, {{A, B, C, X(599), X(11064)}}, {{A, B, C, X(10603), X(54171)}}, {{A, B, C, X(11331), X(47311)}}, {{A, B, C, X(18020), X(57822)}}, {{A, B, C, X(23582), X(52147)}}, {{A, B, C, X(40384), X(40802)}}, {{A, B, C, X(44569), X(59767)}}
X(65084) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58265}, {376, 44750}
See Antreas Hatzipolakis and Peter Moses, euclid 6840.
X(65085) lies on these lines: {2, 3}, {74, 1568}, {110, 14156}, {113, 13445}, {125, 43574}, {323, 18932}, {539, 5504}, {542, 43572}, {1092, 23294}, {1138, 37802}, {1154, 15061}, {1236, 7799}, {1273, 1494}, {1291, 16336}, {1614, 61681}, {1899, 64597}, {2888, 13561}, {2979, 61724}, {3086, 10149}, {3448, 22115}, {3574, 43597}, {5562, 43608}, {5972, 14157}, {6188, 14993}, {6699, 51392}, {6723, 43576}, {6761, 16177}, {7691, 20191}, {8718, 64063}, {9706, 18128}, {9730, 61715}, {10264, 46114}, {10564, 15081}, {10625, 11692}, {11064, 12317}, {11459, 23329}, {11465, 58481}, {12038, 12254}, {12112, 51425}, {12242, 43600}, {12325, 12359}, {12383, 25739}, {13346, 26917}, {13352, 26913}, {13376, 45186}, {13391, 34128}, {13399, 14094}, {13482, 43836}, {14683, 40111}, {14831, 32339}, {15024, 58551}, {15035, 18400}, {15045, 61743}, {15059, 63735}, {15392, 44028}, {15644, 48914}, {18488, 43614}, {20397, 23061}, {24206, 43579}, {26879, 61658}, {28408, 39874}, {34148, 43808}, {35265, 59648}, {37472, 43816}, {37477, 63839}, {37496, 40685}, {37497, 61701}, {38793, 44407}, {43666, 54769}, {43839, 52525}, {44673, 51360}, {51403, 64101}, {53415, 54434}, {54041, 61644}, {54216, 61543}, {57306, 57316}, {57317, 57344}, {57329, 57377}
X(65085) = midpoint of X(i) and X(j) for these {i,j}: {2, 44450}, {10989, 37940}, {37922, 60462}
X(65085) = reflection of X(i) in X(j) for these {i,j}: {376, 37948}, {2070, 16532}, {16532, 140}, {35265, 59648}, {35489, 37941}, {37901, 37956}, {37940, 44214}, {37943, 2}, {37955, 549}
X(65085) = complement of X(46451)
X(65085) = circumcircle inverse of X(12088)
X(65085) = polar circle inverse of X(21841)
X(65085) = orthoptic-circle-of-the-Steiner-inellipse inverse of X(7667)
X(65085) = first Droz-Farney circle inverse of X(140)
X(65085) = Stammler circles radical circle inverse of X(20)
X(65085) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 10201}, {2, 376, 7552}, {2, 10201, 14940}, {2, 44441, 4}, {2, 58805, 34330}, {2, 61736, 6143}, {3, 3153, 13619}, {3, 10224, 34007}, {3, 30744, 7577}, {3, 37938, 3153}, {3, 61736, 2}, {5, 12086, 4}, {5, 18859, 52403}, {20, 6640, 14940}, {140, 48411, 2}, {186, 858, 46450}, {186, 10257, 631}, {403, 47090, 7464}, {427, 45173, 4}, {549, 13371, 38321}, {549, 38321, 22467}, {631, 46450, 186}, {858, 10257, 186}, {1113, 1114, 12088}, {1368, 37118, 35921}, {1656, 35452, 11563}, {2043, 2044, 50009}, {2071, 2072, 4}, {2071, 12086, 18859}, {2071, 30745, 2072}, {2072, 15122, 2071}, {3524, 30775, 3545}, {3524, 35489, 37941}, {3526, 5899, 44234}, {3546, 37119, 631}, {3548, 44441, 2}, {5054, 31152, 44837}, {5054, 60462, 37922}, {5159, 7464, 3090}, {5159, 47090, 403}, {5899, 44234, 37760}, {6640, 10201, 2}, {6644, 31074, 4}, {7396, 35486, 44831}, {7512, 7667, 376}, {10264, 46114, 50461}, {10297, 16386, 64890}, {10303, 60455, 7575}, {13371, 22467, 4}, {13626, 13627, 15759}, {15122, 30745, 4}, {15765, 18585, 43809}, {16386, 64890, 3529}, {18403, 34152, 20}, {18586, 18587, 44235}, {23335, 44211, 34603}, {23336, 37452, 14118}, {25739, 51394, 12383}, {34551, 34552, 34577}, {34603, 44211, 3518}, {37925, 63860, 3533}, {37942, 47091, 62344}, {57322, 57323, 549}
See Antreas Hatzipolakis and Peter Moses, euclid 6840.
X(65086) lies on these lines: {2, 3}, {74, 3258}, {110, 31378}, {113, 14508}, {125, 477}, {265, 38610}, {476, 6699}, {523, 1138}, {1553, 64101}, {1989, 47414}, {3448, 14934}, {5663, 45694}, {5670, 40662}, {6128, 32640}, {7687, 14989}, {10264, 33855}, {12041, 20957}, {12112, 16319}, {12244, 46045}, {12308, 33505}, {12317, 14611}, {12383, 47084}, {14094, 55308}, {14480, 16003}, {14644, 57471}, {14731, 46632}, {14851, 14993}, {15020, 31876}, {15059, 25641}, {15081, 34150}, {15111, 23329}, {16111, 44967}, {17702, 38701}, {18319, 40685}, {20125, 31945}, {20397, 38678}, {34128, 57305}, {34209, 38581}, {38609, 38728}, {38677, 38729}, {38700, 38727}, {38793, 60605}, {47296, 47323}
X(65086) = midpoint of X(i) and X(j) for these {i,j}: {477, 5627}, {10264, 33855}, {14851, 15061}
X(65086) = reflection of X(i) in X(j) for these {i,j}: {110, 31378}, {5627, 125}, {31378, 31379}, {36193, 64652}, {38700, 38727}, {51345, 38609}, {57305, 34128}, {60605, 38793}, {64642, 3628}, {64652, 140}
X(65086) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 16340, 17511}, {3154, 36164, 4}, {3258, 55319, 74}
See Antreas Hatzipolakis and Peter Moses, euclid 6840.
X(65087) lies on these lines: {2, 3}, {110, 51998}, {45968, 61721}
X(65087) = midpoint of X(3146) and X(37941)
X(65087) = reflection of X(i) in X(j) for these {i,j}: {35489, 47332}, {37922, 47336}, {37941, 10151}, {46451, 47310}
X(65087) = orthoptic-circle-of-the-Steiner-inellipse-inverse of X(21974)
X(65087) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {382, 3515, 3146}, {382, 3830, 18568}, {3515, 10151, 403}, {3543, 17578, 62964}, {3627, 64891, 57584}, {3830, 62966, 50687}, {6622, 35471, 3515}, {6995, 62964, 31133}, {47309, 64890, 47096}, {57584, 64891, 62288}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6851.
X(65088) lies on the Euler hyperbola and these lines: {30, 24981}, {548, 15454}, {549, 9214}, {3258, 46081}, {3471, 61792}, {3628, 14254}, {35906, 63633}, {37942, 52661}
X(65088) = reflection of X(46081) in X(3258)
X(65088) = isogonal conjugate of the circumperp conjugate of X(15021)
X(65088) = antigonal conjugate of X(46081)
X(65088) = intersection, other than A, B, C, of Euler hyperbola and circumconic {{A, B, C, X(3), X(37942)}}
X(65088) = antipode in Euler hyperbola of X(46081)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6851.
X(65089) lies on this line: {3851, 19347}
X(65089) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(19347)}} and {{A, B, C, X(4), X(3851)}}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6851.
X(65090) lies on these lines: {2, 59275}, {3, 57474}, {5, 8884}, {54, 5562}, {95, 52347}, {96, 60241}, {97, 31504}, {140, 34900}, {216, 7488}, {252, 631}, {275, 12225}, {933, 14118}, {3518, 63176}, {7503, 58079}, {10610, 50463}, {13160, 61440}, {13367, 18315}, {15958, 51033}, {18401, 42441}, {34148, 42487}, {34864, 44715}, {38444, 57489}, {38808, 41168}
X(65090) = isogonal conjugate of X(3574)
X(65090) = trilinear pole of the line: {2623, 10313}
X(65090) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7488)}} and {{A, B, C, X(3), X(5)}}
X(65090) = barycentric product of X(i)*X(j) for these (i,j): (54, 60241), (95, 41891), (97, 14860)
X(65090) = barycentric quotient of X(i)/X(j) for these {i,j}: {54, 23292}, {95, 26166}, {97, 41008}, {577, 31388}, {2167, 17859}, {8882, 3575}
X(65090) = trilinear product of X(i)*X(j) for these (i,j): (2148, 60241), (2167, 41891), (2169, 14860)
X(65090) = trilinear quotient of X(i)/X(j) for these (i,j): (95, 17859), (255, 31388), (2167, 23292), (2169, 13367), (2190, 3575), (41891, 1953)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6851.
X(65091) lies on these lines: {25, 38937}, {512, 57147}, {1495, 2071}, {3543, 14583}, {10419, 46431}, {13473, 34170}, {14581, 15262}
X(65091) = isogonal conjugate of X(37853)
X(65091) = trilinear pole of the line: {14398, 46425}
X(65091) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(13473)}} and {{A, B, C, X(4), X(2071)}}
See Antreas Hatzipolakis and Ercole Suppa, euclid 6851.
X(65092) lies on these lines: {2, 6053}, {3, 44787}, {4, 74}, {5, 38725}, {6, 19348}, {110, 10303}, {113, 5055}, {141, 542}, {146, 61936}, {265, 3534}, {389, 54376}, {399, 3526}, {541, 5066}, {548, 13470}, {631, 24981}, {974, 62958}, {1495, 44673}, {1503, 47451}, {1539, 23046}, {1656, 38792}, {1899, 10193}, {2771, 46694}, {2781, 58471}, {2914, 61659}, {2935, 35501}, {3258, 40630}, {3426, 26958}, {3448, 15051}, {3628, 5663}, {3856, 20396}, {3857, 46686}, {5072, 10620}, {5609, 61852}, {5621, 13289}, {5642, 12317}, {5655, 61883}, {5900, 57714}, {5965, 15122}, {6000, 15151}, {6143, 43596}, {6759, 58378}, {7486, 15059}, {7728, 61953}, {9140, 10304}, {9143, 61830}, {9934, 62973}, {9976, 49116}, {10113, 62041}, {10182, 26864}, {10272, 47598}, {10628, 16270}, {10657, 42955}, {10658, 42954}, {10706, 61926}, {10733, 15683}, {11202, 39874}, {11204, 23291}, {11410, 19457}, {11430, 25563}, {11456, 64063}, {11579, 32257}, {11801, 62034}, {11807, 12099}, {12041, 15704}, {12079,55319}, {12112, 13399}, {12121, 62082}, {12227, 15106}, {12295, 15027}, {12308, 38795}, {12383, 15698}, {12412, 32305}, {12902, 62107}, {13171, 55578}, {13293, 55575}, {13392, 14890}, {13403, 43607}, {14094, 61870}, {14643, 55860}, {14677, 33699}, {15021, 49140}, {15022, 15054}, {15032, 43608}, {15035, 61807}, {15042, 15706}, {15055, 50693}, {15526, 34842}, {15684, 20127}, {15738, 17855}, {16111, 17800}, {16534, 34128}, {17701, 34468}, {18381, 37487}, {18400, 37931}, {20125, 61865}, {21243, 37470}, {23332, 64729}, {25556, 32300}, {26879, 40240}, {29012, 47342}, {30714, 38728}, {32068, 44236}, {32423, 61792}, {32609, 61826}, {34153, 61785}, {35237, 61646}, {37118, 44109}, {37517, 44441}, {38626, 61598}, {38726, 62069}, {38788, 62142}, {38790, 61974}, {38793, 61832}, {38794, 61843}, {40640, 52171}, {44201, 55653}, {44904, 61574}, {50664, 52262}, {56567, 61872}, {61797, 64182}, {61895, 64101}, {61954, 64102}, {63735, 64624}
X(65092) = midpoint of X(i) and X(j) for these (i, j): {74, 7687}, {125, 20417}, {265, 37853}, {389, 54376}, {5972, 16003}, {6699, 10264}, {10620, 38791}, {11579, 32257}, {12041, 36253}, {12079, 55319}, {15738, 17855}, {20126, 45311}, {20379, 61548}, {38626, 61598}, {46686, 51522}
X(65092) = reflection of X(i) in X(j) for these (i, j): (6723, 20397), (12900, 40685), (48378, 6699)
X(65092) = complement of X(6053)
X(65092) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (74, 125, 7687), (74, 15081, 13202), (125, 10990, 14644), (125, 13202, 15081), (3448, 15057, 38727), (7687, 20417, 74), (10620, 23515, 38791), (12900, 20397, 40685), (12900, 40685, 6723), (13202, 15081, 7687), (15027, 15041, 12295), (15061, 16003, 5972), (30714, 38728, 48375)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6851.
X(65093) lies on these lines: {2, 15606}, {3, 21849}, {4, 51}, {5, 16254}, {6, 3517}, {20, 16226}, {24, 15004}, {25, 50414}, {26,575}, {30,12002}, {52, 1656}, {54, 13433}, {140, 143}, {186, 1173}, {373, 11412}, {468, 973}, {550, 5446}, {568, 3851}, {576, 6642}, {578, 3515}, {631, 21969}, {1112, 20417}, {1147, 5097}, {1154, 12046}, {1199, 1495}, {1216, 6688}, {1614, 44106}, {1657, 9730}, {2810, 58575}, {2818, 58493}, {2979, 61856}, {3060, 3523}, {3066, 12160}, {3089, 15010}, {3090, 14531}, {3091, 14831}, {3098, 15805}, {3516, 10982}, {3518, 13366}, {3522, 11002}, {3527, 3532}, {3530, 16982}, {3533, 3917}, {3545, 45187}, {3546, 20423}, {3818, 18951}, {3819, 6243}, {3850, 10095}, {3854, 15030}, {3858, 6102}, {5056, 5562}, {5059, 64100}, {5068, 5889}, {5073, 37481}, {5480, 20299}, {5650, 11465}, {5663, 44863}, {5891, 61919}, {5892, 10263}, {6101, 55859}, {6146, 61657}, {6684, 58548}, {6746, 44084}, {6759, 11432}, {6995, 11431}, {7488, 15019}, {7506, 34986}, {7525, 20190}, {7555, 55704}, {7592, 34417}, {7687, 13148}, {7715, 8550}, {7730, 40632}, {8681, 12235}, {9052, 58647}, {9306, 37493}, {9815, 64048}, {9822, 34507}, {9833, 63031}, {10116, 13490}, {10170, 61907}, {10219, 32205}, {10299, 64051}, {10574, 49135}, {10575, 62023}, {10601, 46728}, {10619, 11808}, {10625, 15720}, {10628, 11746}, {10821, 34468}, {10990, 11807}, {11202, 11426}, {11225, 12134}, {11245, 13419}, {11423, 44110}, {11424, 35477}, {11425, 55574}, {11430, 32534}, {11451, 46935}, {11459, 27355}, {11591, 44904}, {11623, 39835}, {11645, 18128}, {11649, 47460}, {11745, 43174}, {31830, 58806}, {32140, 48889}, {33586, 37515}, {33591, 63124}, {34224, 61712}, {34566, 34567}, {34783, 46847}, {36153, 37936}, {36979, 42978}, {36981, 42979}, {36987, 62067}, {37484, 61832}, {37925, 43600}, {37944, 43603}, {37984, 63659}, {38005, 42021}, {39806, 58503}, {40280, 62107}, {40647, 62036}, {42457, 46866}, {43392, 43823}, {43586, 55715}, {43831, 44959}, {44495, 64599}, {44802, 53863}, {50476, 61299}, {55166, 62061}, {55860, 63632}, {58484, 64472}, {58555, 64067}, {61784, 63414}, {61791, 64050}, {63688, 63714}
X(65093) = midpoint of X(i) and X(j) for these (i, j): {4, 13382}, {5, 16625}, {52, 11793}, {143, 5462}, {389, 10110}, {973, 58489}, {1112, 58498}, {3530, 16982}, {5446, 9729}, {5447, 14449}, {6102, 44870}, {10095, 16881}, {10263, 13348}, {11806, 58536}, {12236, 41671}, {18583, 21852}, {31757, 58487}, {31760, 58469}, {31830, 58806}, {32191, 58471}, {32411, 58551}, {39806, 58503}, {39835, 58502}
X(65093) = reflection of X(i) in X(j) for these (i, j): (11695, 5462), (17704, 12006), (40247, 5)
X(65093) = complement of X(15606)
X(65093) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (4, 389, 13382), (4, 5890, 64029), (4, 64029, 13474), (24, 15004, 37505), (25, 64026, 50414), (51, 185, 9781), (51, 389, 10110), (51, 3567, 389), (52, 5943, 11793), (143, 13363, 14449), (389, 13474, 5890), (1199, 38848, 1495), (1216, 15026, 6688), (5446, 5946, 9729), (5447, 5462, 13363), (5892, 10263, 13348), (7715, 8550, 45185), (10110, 13382, 4), (11002, 15043, 45186), (11432, 17810, 6759), (13363, 14449, 5447), (15043, 45186, 16836), (16625, 58470, 5)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6851.
X(65094) lies on these lines: {6, 24}, {51, 10619}, {52, 12363}, {140, 389}, {143, 12107}, {185, 427}, {195, 11432}, {394, 15043}, {539, 5462}, {568, 12606}, {578, 7502}, {1147, 1493}, {1199, 52417}, {1209, 7405}, {2888, 11433}, {2914, 46430}, {5097, 63709}, {5890, 12300}, {5943, 61544}, {6288, 39571}, {6746, 13366}, {6756, 10110}, {6776, 32359}, {7485, 7691}, {8550, 51994}, {9729, 10691}, {9977, 44489}, {10095, 45286}, {10628, 16270}, {11245, 32377}, {11271, 11431}, {11425, 64050}, {11427, 41590}, {11430, 44056}, {11436, 13079}, {11548, 32396}, {11746, 32423}, {12266, 64722}, {12325, 63129}, {13142, 58480}, {13351, 26876}, {13474, 16198}, {13568, 58557}, {14542, 61116}, {15045, 61773}, {15089, 16222}, {15739, 37119}, {18388, 45959}, {18390, 22804}, {18916, 34118}, {18984, 19366}, {19161, 21167}, {19347, 32379}, {20424, 52003}, {22466, 38006}, {32352, 61659}, {37935, 46363}, {41578, 63031}, {41589, 45089}, {52540, 58468}, {58488, 58807}
X(65094) = midpoint of X(i) and X(j) for these (i, j): {52, 12363}, {54, 973}, {389, 12242}, {6152, 11577}, {6689, 10115}, {10619, 11576}
X(65094) = reflection of X(9827) in X(5462)
X(65094) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (51, 10619, 11576), (54, 3567, 6152), (54, 6152, 11577), (973, 11577, 6152), (3567, 6152, 973), (6689, 12242, 23292), (12241, 58550, 63659)
See Antreas Hatzipolakis and Ercole Suppa, euclid 6851.
X(65095) lies on these lines: {3, 20772}, {4, 14984}, {5, 113}, {110, 1593}, {146, 6815}, {235, 12827}, {265, 45011}, {381, 15465}, {542, 12241}, {1112, 5889}, {1154, 47336}, {1498, 15462}, {1511, 12084}, {1539, 6101}, {1625, 44468}, {1986, 15751}, {2777, 11793}, {2781, 5893}, {2854, 46847}, {2883, 15116}, {3091, 12099}, {3541, 12292}, {3548, 5656}, {3832, 45237}, {5094, 15305}, {5159, 6000}, {5446, 44226}, {5562, 16105}, {5609, 18451}, {5621, 33537}, {5622, 11479}, {5642, 11381}, {5655, 43841}, {5972, 16196}, {6723, 15151}, {7592, 14094}, {7723, 38789}, {7728, 11487}, {8780, 11455}, {9820, 15115}, {9970, 32276}, {10539, 32137}, {10574, 15029}, {10575, 38795},{10706, 15058}, {11284, 15054}, {11746, 13487}, {12111, 12824}, {12362, 36201}, {13202, 41673}, {13391, 44267}, {13488, 17702}, {13491, 38398}, {13754, 37984}, {15035, 46431}, {15060, 50008}, {15113, 31978}, {15121, 62947}, {15122, 51425}, {15531, 16261}, {16165, 26883}, {16194, 30714}, {16881, 58516}, {17854, 64101}, {21243, 63695}, {32136, 38632}, {37950, 51393}, {60774, 63821}
X(65095) = midpoint of X(i) and X(j) for these (i, j): {110, 12133}, {146, 54376}, {1112, 12825}, {5562, 16105}, {5907, 38791}, {7728, 12358}, {12099, 54037}, {12111, 13148}, {12162, 25711}, {13202, 41673}, {15063, 15738}
X(65095) = reflection of X(i) in X(j) for these (i, j): (9826, 61574), (15151, 6723), (16270, 5), (20396, 11017), (60774, 63821)
X(65095) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (113, 12162, 25711), (12111, 12824, 13148), (15030, 15063, 15738), (15114, 61574, 5)
Contributed by Clark Kimberling and Peter Moses, August 28, 2024
Suppose that X = x(a,b,c) : : is a triangle center, and define
f(a,b,c) = x(a,-b,c) and g(a,b,c) = x(a,b,-c)
X'(a,b,c) = f(a,b,c) : f(b,c,a) : f(c,a,b)
X''(a,b,c) = g(a,b,c) : g(b,c,a) : g(c,a,b).
The point X' = X'(a,b,c) is here introduced as the sign-image of X. The set of triangle centers is partitioned by the sign-image operation into three subsets:
Type 1: self-sign-images X, for which X'=X;
Type 2: triangle centers X such that X' ≠ X and X' = X'';
Type 3: triangle centers X such that X' ≠ X''. In this case X' and X'' are a bicentric pair.
The appearance of k in the following list means that X(k) is self-sign-image:
1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 30, 31, 32, 38, 39, 47, 48, 49, 50, 51, 52, 53, 54, 61, 62, 63, 64, 66, 67, 68, 69, 70, 74, 75, 76, 82, 83, 91, 92, 93, 94, 95, 96, 97, 98, 99, 107, 110, 111, 112, 113, 114, 115, 122, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143
The appearance of (h,k) in the following list means that X(k) is the sign-image of X(h) and X(k) is a triangle center:
(7,8), (10,514), (12,11), (34,33), (35,36), (36,35), (37,513), (42,649), (56,55), (57,9), (65,650), (71,1459), (72,905), (73,652), (77,78), (84,40), (85,312), (87,43), (90,46)
The appearance of k in the following list means that X'(k) and X''(k) are a bicentric pair:
8, 9, 11, 21, 27, 28, 29, 33, 40, 41, 43, 44, 45, 46, 55, 58, 59, 60, 78, 79, 80, 81, 86, 88, 89, 100, 101, 102, 103, 104, 105, 106, 108, 109, 116, 117, 118, 119, 120, 121, 123, 124, 142, 144, 145, 149, 150, 151, 152, 153
Regarding triangfle centers of Type 2, the appearance of {j,k} in the following list means that X(k) is the sign-image of X(j) and X(j) is the sign-image of X(k):
{10,514}, {35,36}, {37,513}, {42,649}, {71,1459}, {72,905}, {171,238}, {172,1914}, {202,7006}, {203,7005}, {213,667}, {228,22383}, {239,894}, {242,7009}, {244,756}, {259,266}, {306,4025}, {313,3261}, {319,320}, {321,693}, {350,1909}, {357,1134}, {358,1135}
X(65096) lies on these lines: {2, 4118}, {6, 18805}, {10, 16580}, {31, 20444}, {32, 4412}, {37, 19563}, {75, 2209}, {560, 4836}, {744, 1918}, {1215, 21231}, {2175, 4381}, {2887, 20713}, {4837, 17481}, {8053, 24255}, {16609, 21238}, {17763, 20932}, {20236, 24425}, {20964, 35550}, {22300, 49598}
X(65096) = midpoint of X(1918) and X(20234)
X(65096) = complement of X(4118)
X(65096) = complement of the isotomic conjugate of X(38847)
X(65096) = X(i)-complementary conjugate of X(j) for these (i,j): {711, 40876}, {38826, 2}, {38830, 626}, {38847, 2887}, {40416, 141}, {44163, 40380}, {44165, 40379}, {44167, 39}, {58114, 826}
X(65096) = crosspoint of X(2) and X(38847)
X(65096) = crosssum of X(6) and X(2085)
X(65096) = barycentric product X(321)*X(18209)
X(65096) = barycentric quotient X(18209)/X(81)
X(65096) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 16580, 21235}, {1215, 21231, 28593}
X(65097) lies on these lines: {1, 647}, {6, 3700}, {8, 21719}, {10, 24960}, {37, 9404}, {42, 4477}, {81, 4467}, {239, 24622}, {314, 21437}, {425, 2501}, {521, 6591}, {522, 22383}, {523, 7252}, {525, 17498}, {612, 4524}, {648, 23999}, {649, 4083}, {650, 2605}, {652, 21347}, {661, 38469}, {663, 50519}, {770, 58888}, {850, 3187}, {940, 17069}, {1734, 2523}, {2295, 46381}, {2451, 7253}, {2522, 3900}, {3063, 6590}, {3064, 36054}, {3287, 4024}, {4155, 56242}, {4501, 57181}, {4879, 42664}, {4897, 18199}, {5256, 24782}, {5269, 57067}, {5271, 30476}, {5287, 25084}, {5311, 58286}, {6587, 39540}, {11679, 30864}, {14399, 16612}, {16751, 62801}, {16826, 25594}, {17094, 37543}, {17478, 46382}, {17926, 32320}, {20980, 48269}, {21007, 48276}, {21761, 21831}, {25258, 58820}, {39548, 50511}, {43060, 48283}, {45745, 48288}, {47704, 50522}, {47874, 57164}, {48277, 58773}, {50492, 62749}, {51643, 55208}
X(65097) = reflection of X(i) in X(j) for these {i,j}: {46383, 22383}, {55232, 16612}
X(65097) = isogonal conjugate of the isotomic conjugate of X(17899)
X(65097) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {87, 13219}, {7121, 39352}, {15373, 34186}, {32676, 21219}, {34071, 52364}, {61206, 41840}
X(65097) = X(21831)-cross conjugate of X(8062)
X(65097) = X(i)-isoconjugate of X(j) for these (i,j): {109, 7108}, {651, 7105}, {653, 7016}, {664, 7106}, {1942, 1981}, {2713, 8680}, {7107, 18026}
X(65097) = X(i)-Dao conjugate of X(j) for these (i,j): {11, 7108}, {8062, 525}, {16573, 75}, {38991, 7105}, {39025, 7106}
X(65097) = crosspoint of X(1) and X(648)
X(65097) = crosssum of X(i) and X(j) for these (i,j): {1, 647}, {512, 23543}
X(65097) = trilinear pole of line {16573, 35236}
X(65097) = X(65097) = crossdifference of every pair of points on line {43, 46}
X(65097) = barycentric product X(i)*X(j) for these {i,j}: {1, 8062}, {6, 17899}, {75, 21761}, {86, 21831}, {92, 22382}, {513, 7283}, {514, 54316}, {521, 1940}, {522, 1935}, {648, 16573}, {650, 1943}, {652, 1947}, {693, 26885}, {1950, 4391}, {2797, 37142}, {3064, 7364}, {3900, 6359}, {4025, 7076}, {6332, 7120}
X(65097) = barycentric quotient X(i)/X(j) for these {i,j}: {650, 7108}, {663, 7105}, {1935, 664}, {1940, 18026}, {1943, 4554}, {1946, 7016}, {1947, 46404}, {1950, 651}, {2797, 44150}, {3063, 7106}, {6359, 4569}, {7076, 1897}, {7120, 653}, {7283, 668}, {8062, 75}, {16573, 525}, {17899, 76}, {21761, 1}, {21831, 10}, {22382, 63}, {26885, 100}, {35236, 9391}, {40888, 15418}, {44096, 23353}, {54316, 190}
X(65097) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1021, 647}, {8, 26080, 21719}, {14399, 55232, 16612}
X(65098) lies on these lines: {63, 52613}, {448, 525}, {514, 36054}, {520, 3737}, {521, 46385}, {651, 39053}, {652, 905}, {4063, 8677}, {4367, 9391}, {4705, 9253}, {5706, 14308}, {8057, 44409}, {14395, 14838}, {17925, 32320}, {39470, 57167}
X(65098) = isogonal conjugate of the polar conjugate of X(23683)
X(65098) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3362, 13219}, {7049, 21294}
X(65098) = X(16595)-Dao conjugate of X(92)
X(65098) = crosspoint of X(63) and X(648)
X(65098) = crosssum of X(i) and X(j) for these (i,j): {19, 647}, {650, 1841}
X(65098) = crossdifference of every pair of points on line {33, 11435}
X(65098) = barycentric product X(i)*X(j) for these {i,j}: {3, 23683}, {326, 54238}, {648, 16595}, {26888, 35518}
X(65098) = barycentric quotient X(i)/X(j) for these {i,j}: {16595, 525}, {23683, 264}, {26888, 108}, {54238, 158}
X(65098) = {X(63),X(57213)}-harmonic conjugate of X(52613)
X(65099) lies on these lines: {1, 57081}, {2, 52355}, {75, 3267}, {145, 56092}, {447, 525}, {513, 3801}, {520, 3868}, {521, 43923}, {522, 693}, {523, 1325}, {648, 24000}, {656, 21187}, {676, 48173}, {905, 20294}, {1459, 3904}, {1476, 43737}, {2605, 6370}, {3810, 43924}, {3870, 57198}, {4064, 8062}, {4086, 21180}, {4142, 17420}, {4391, 7649}, {4397, 17899}, {4707, 6003}, {4811, 21185}, {4985, 21179}, {5214, 23879}, {6332, 21172}, {9013, 21121}, {10015, 20293}, {15413, 21178}, {15417, 57214}, {16612, 57197}, {17418, 23877}, {17498, 33294}, {18160, 21205}, {20517, 21189}, {21173, 23887}, {21437, 23557}, {28161, 47714}, {28423, 48243}, {41800, 53342}, {44550, 64917}, {47797, 50330}, {53522, 57091}
X(65099) = reflection of X(i) in X(j) for these {i,j}: {656, 21187}, {3904, 1459}, {4017, 4458}, {4064, 8062}, {4086, 21180}, {4391, 7649}, {4397, 21186}, {4811, 21185}, {4985, 21179}, {6332, 21172}, {7253, 44409}, {17420, 4142}, {20293, 10015}, {20294, 905}, {21189, 20517}, {53342, 41800}, {57066, 11125}, {57091, 53522}, {57158, 676}
X(65099) = anticomplement of X(52355)
X(65099) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {28, 33650}, {34, 3448}, {57, 13219}, {58, 34188}, {108, 1330}, {109, 52364}, {110, 52366}, {112, 329}, {162, 3436}, {163, 56943}, {278, 21294}, {603, 34186}, {604, 39352}, {608, 21221}, {648, 21286}, {653, 21287}, {1395, 148}, {1396, 150}, {1414, 1370}, {1415, 3151}, {1461, 2897}, {1474, 37781}, {2203, 39351}, {4565, 4329}, {32674, 2895}, {32676, 144}, {32713, 5942}, {32714, 2893}, {51651, 14721}, {61206, 3177}
X(65099) = X(i)-isoconjugate of X(j) for these (i,j): {100, 8615}, {692, 15314}
X(65099) = X(i)-Dao conjugate of X(j) for these (i,j): {1086, 15314}, {1104, 61221}, {8054, 8615}, {16612, 525}, {34846, 1}, {46878, 61226}
X(65099) = crosspoint of X(i) and X(j) for these (i,j): {75, 648}, {99, 59759}, {18026, 30710}
X(65099) = crosssum of X(i) and X(j) for these (i,j): {31, 647}, {1946, 2300}
X(65099) = trilinear pole of line {34846, 57606}
X(65099) = crossdifference of every pair of points on line {41, 2092}
X(65099) = barycentric product X(i)*X(j) for these {i,j}: {7, 57197}, {75, 16612}, {286, 57186}, {304, 54247}, {513, 2064}, {514, 7270}, {648, 34846}, {693, 5279}, {3261, 5285}, {4296, 4391}
X(65099) = barycentric quotient X(i)/X(j) for these {i,j}: {514, 15314}, {649, 8615}, {2064, 668}, {2881, 39690}, {4296, 651}, {5279, 100}, {5285, 101}, {7270, 190}, {16612, 1}, {34846, 525}, {37202, 2867}, {48890, 14543}, {54247, 19}, {57186, 72}, {57197, 8}
X(65099) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {676, 57158, 48173}, {4064, 8062, 57066}, {4064, 11125, 8062}, {4397, 21186, 23678}, {7253, 53352, 44409}
X(65100) lies on these lines: {4, 28473}, {19, 1019}, {28, 4367}, {92, 14618}, {278, 7178}, {423, 2501}, {514, 3064}, {523, 2074}, {525, 17926}, {905, 57196}, {1848, 4129}, {2906, 50574}, {3904, 46110}, {4160, 54247}, {4467, 44427}, {4560, 57065}, {5142, 21051}, {6591, 47660}, {7265, 35057}, {7501, 44811}, {7649, 28147}, {8045, 55206}, {14077, 18344}, {14331, 60494}, {14400, 57243}, {16230, 48288}, {23882, 57043}, {24006, 50449}, {28537, 39536}, {30384, 44426}, {31902, 59629}, {45746, 57094}, {47235, 47782}, {50346, 57200}, {52584, 62857}
X(65100) = reflection of X(i) in X(j) for these {i,j}: {17924, 3064}, {60494, 14331}
X(65100) = polar conjugate of X(6742)
X(65100) = polar conjugate of the isotomic conjugate of X(4467)
X(65100) = polar conjugate of the isogonal conjugate of X(2605)
X(65100) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {90, 13219}, {7040, 21294}, {36082, 2897}
X(65100) = X(2605)-cross conjugate of X(4467)
X(65100) = X(i)-isoconjugate of X(j) for these (i,j): {48, 6742}, {71, 13486}, {79, 906}, {101, 7100}, {163, 52388}, {184, 15455}, {212, 38340}, {219, 26700}, {265, 1983}, {651, 8606}, {692, 52381}, {758, 32662}, {1331, 2160}, {1332, 6186}, {1789, 4559}, {1790, 56193}, {1813, 7073}, {2245, 36061}, {3724, 60053}, {3927, 58954}, {4242, 50433}, {4574, 52375}, {4575, 8818}, {4585, 52153}, {4587, 52372}, {5546, 52390}, {6757, 32661}, {7110, 36059}, {30690, 32656}, {32660, 52344}, {34922, 36054}, {56839, 59011}, {57691, 61220}
X(65100) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 52388}, {136, 8818}, {1015, 7100}, {1086, 52381}, {1249, 6742}, {3700, 52355}, {5190, 79}, {5521, 2160}, {8287, 63}, {14838, 525}, {16221, 2245}, {20620, 7110}, {20982, 23154}, {38991, 8606}, {40622, 63171}, {40837, 38340}, {55042, 219}, {55067, 1789}, {62605, 15455}
X(65100) = crosspoint of X(92) and X(648)
X(65100) = crosssum of X(i) and X(j) for these (i,j): {48, 647}, {520, 53847}, {652, 22054}, {3049, 23196}
X(65100) = trilinear pole of line {8287, 22094}
X(65100) = crossdifference of every pair of points on line {212, 8606}
X(65100) = barycentric product X(i)*X(j) for these {i,j}: {4, 4467}, {19, 18160}, {27, 7265}, {35, 46107}, {75, 54244}, {92, 14838}, {162, 17886}, {264, 2605}, {273, 35057}, {278, 57066}, {286, 57099}, {319, 7649}, {331, 9404}, {445, 56320}, {514, 52412}, {522, 7282}, {648, 8287}, {693, 6198}, {811, 2611}, {1442, 44426}, {1825, 18155}, {1826, 16755}, {2003, 46110}, {2501, 34016}, {3064, 17095}, {3219, 17924}, {3969, 17925}, {4077, 11107}, {6331, 20982}, {6335, 7202}, {6528, 22094}, {6591, 33939}, {14618, 40214}, {14975, 40495}, {16577, 57215}, {18026, 53524}, {18344, 52421}, {21824, 55231}, {23226, 57806}, {24006, 56934}, {24624, 44427}, {44129, 55210}, {44428, 63778}, {52414, 60074}
X(65100) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 6742}, {28, 13486}, {34, 26700}, {35, 1331}, {92, 15455}, {278, 38340}, {319, 4561}, {513, 7100}, {514, 52381}, {523, 52388}, {663, 8606}, {759, 36061}, {1399, 36059}, {1442, 6516}, {1824, 56193}, {1825, 4551}, {1844, 61220}, {2003, 1813}, {2174, 906}, {2501, 8818}, {2594, 23067}, {2605, 3}, {2611, 656}, {3064, 7110}, {3219, 1332}, {3737, 1789}, {3969, 52609}, {4017, 52390}, {4420, 4571}, {4467, 69}, {6198, 100}, {6591, 2160}, {6741, 52355}, {7178, 63171}, {7202, 905}, {7265, 306}, {7282, 664}, {7649, 79}, {8287, 525}, {9404, 219}, {11107, 643}, {14775, 57710}, {14838, 63}, {14975, 692}, {16755, 17206}, {17104, 4575}, {17886, 14208}, {17924, 30690}, {17925, 52393}, {18160, 304}, {18344, 7073}, {20982, 647}, {21054, 4064}, {21141, 4466}, {21824, 55232}, {22094, 520}, {23226, 255}, {24006, 6757}, {24624, 60053}, {34016, 4563}, {34079, 32662}, {35057, 78}, {35235, 6370}, {36127, 34922}, {40214, 4558}, {40570, 59011}, {41502, 5546}, {43923, 52372}, {44095, 61197}, {44129, 55209}, {44426, 52344}, {44427, 3936}, {44428, 63642}, {46107, 20565}, {46468, 14544}, {47230, 2245}, {50657, 23084}, {52405, 4587}, {52412, 190}, {52414, 4585}, {53524, 521}, {53542, 1459}, {53554, 1818}, {54244, 1}, {55210, 71}, {56320, 57860}, {56934, 4592}, {57066, 345}, {57099, 72}, {57200, 52375}, {58304, 3690}, {59837, 50462}, {62172, 6739}
X(65100) = {X(92),X(57215)}-harmonic conjugate of X(14618)
X(65101) lies on these lines: {75, 2254}, {76, 3762}, {274, 3960}, {325, 523}, {334, 60577}, {350, 3716}, {514, 40495}, {659, 14296}, {661, 786}, {790, 21763}, {812, 46387}, {1086, 16727}, {1237, 18003}, {1978, 3807}, {3766, 4010}, {3777, 23807}, {3835, 21099}, {3887, 17143}, {4041, 57110}, {4374, 21146}, {4406, 48108}, {4408, 48090}, {4411, 48098}, {4441, 53343}, {4444, 18895}, {4458, 20518}, {4804, 20954}, {4895, 17144}, {4978, 52619}, {6376, 14430}, {7199, 18071}, {7212, 27951}, {14413, 31997}, {16992, 53308}, {17494, 27015}, {18031, 30997}, {18081, 48131}, {18277, 46390}, {20446, 20950}, {20907, 24720}, {20909, 50454}, {21222, 34284}, {21433, 36848}, {22384, 33295}, {25380, 60706}, {26824, 26855}, {46403, 53370}, {60719, 64862}
X(65101) = isotomic conjugate of X(813)
X(65101) = isotomic conjugate of the isogonal conjugate of X(812)
X(65101) = X(i)-Ceva conjugate of X(j) for these (i,j): {4602, 64222}, {6063, 64644}, {18036, 34387}, {27853, 1921}
X(65101) = X(20505)-cross conjugate of X(514)
X(65101) = X(i)-isoconjugate of X(j) for these (i,j): {6, 34067}, {31, 813}, {32, 660}, {100, 1922}, {101, 1911}, {109, 51858}, {190, 14598}, {291, 32739}, {292, 692}, {560, 4562}, {651, 18265}, {668, 18897}, {875, 1252}, {876, 23990}, {919, 40730}, {1110, 3572}, {1415, 7077}, {1501, 4583}, {1918, 4584}, {1919, 5378}, {1927, 18047}, {1978, 18893}, {2196, 8750}, {2205, 4589}, {2295, 17938}, {3051, 36081}, {3252, 32666}, {3570, 18267}, {3573, 51856}, {3862, 34069}, {4557, 18268}, {4579, 9468}, {7109, 36066}, {18900, 37207}, {30664, 40728}, {46288, 52922}, {51866, 54325}
X(65101) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 813}, {9, 34067}, {11, 51858}, {514, 3572}, {661, 875}, {812, 8632}, {1015, 1911}, {1086, 292}, {1146, 7077}, {1966, 3573}, {2238, 54325}, {3716, 46388}, {3912, 2284}, {6374, 4562}, {6376, 660}, {6377, 51973}, {6651, 101}, {8054, 1922}, {9296, 5378}, {16591, 4559}, {18277, 190}, {19557, 692}, {26932, 2196}, {27846, 21760}, {27918, 672}, {34021, 4584}, {35068, 4557}, {35078, 20964}, {35094, 3252}, {35119, 6}, {36901, 43534}, {38978, 7109}, {38980, 40730}, {38991, 18265}, {39028, 100}, {39029, 32739}, {39044, 4579}, {39786, 3747}, {40618, 295}, {40619, 291}, {40620, 741}, {40623, 31}, {40624, 4876}, {40625, 2311}, {55053, 14598}, {61065, 3862}, {62552, 649}, {62553, 1018}, {62558, 667}, {62610, 18047}, {64644, 38}
X(65101) = cevapoint of X(514) and X(20518)
X(65101) = crosspoint of X(i) and X(j) for these (i,j): {1921, 27853}, {1978, 18031}, {3112, 51560}
X(65101) = crosssum of X(1919) and X(9454)
X(65101) = crossdifference of every pair of points on line {32, 1922}
X(65101) = barycentric product X(i)*X(j) for these {i,j}: {75, 3766}, {76, 812}, {238, 40495}, {239, 3261}, {310, 4010}, {334, 27855}, {350, 693}, {513, 18891}, {514, 1921}, {522, 18033}, {561, 659}, {649, 44169}, {667, 44171}, {740, 52619}, {824, 63242}, {850, 33295}, {871, 30665}, {874, 1111}, {876, 64222}, {1086, 27853}, {1447, 35519}, {1502, 8632}, {1577, 30940}, {1978, 27918}, {3267, 31905}, {3570, 23989}, {3596, 43041}, {3676, 4087}, {3685, 52621}, {3716, 6063}, {3808, 7034}, {3948, 7199}, {3975, 24002}, {4025, 40717}, {4107, 44187}, {4124, 4572}, {4148, 57792}, {4155, 57992}, {4375, 18895}, {4391, 10030}, {4435, 20567}, {4444, 56660}, {4448, 57995}, {4602, 39786}, {5009, 44173}, {6385, 21832}, {6386, 27846}, {7018, 14296}, {7192, 35544}, {7212, 28660}, {14295, 32010}, {18022, 22384}, {18031, 62552}, {24459, 44129}, {27801, 50456}, {27951, 40845}, {33931, 63222}, {34856, 52617}, {40016, 46387}, {51560, 64644}, {52622, 62785}, {53556, 57796}, {62415, 63230}
X(65101) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 34067}, {2, 813}, {75, 660}, {76, 4562}, {238, 692}, {239, 101}, {242, 8750}, {244, 875}, {274, 4584}, {310, 4589}, {350, 100}, {513, 1911}, {514, 292}, {522, 7077}, {561, 4583}, {649, 1922}, {650, 51858}, {659, 31}, {663, 18265}, {667, 14598}, {668, 5378}, {693, 291}, {740, 4557}, {804, 20964}, {812, 6}, {824, 3862}, {850, 43534}, {870, 30664}, {871, 41072}, {873, 36066}, {874, 765}, {875, 18267}, {905, 2196}, {918, 3252}, {1019, 18268}, {1086, 3572}, {1111, 876}, {1178, 17938}, {1429, 1415}, {1447, 109}, {1914, 32739}, {1919, 18897}, {1921, 190}, {1930, 52922}, {1966, 4579}, {1980, 18893}, {2254, 40730}, {3112, 36081}, {3261, 335}, {3570, 1252}, {3572, 51856}, {3573, 1110}, {3596, 36801}, {3685, 3939}, {3716, 55}, {3766, 1}, {3808, 7032}, {3835, 51973}, {3837, 40155}, {3948, 1018}, {3975, 644}, {3978, 18047}, {4010, 42}, {4025, 295}, {4087, 3699}, {4107, 172}, {4124, 663}, {4148, 220}, {4155, 872}, {4164, 7122}, {4374, 18787}, {4375, 1914}, {4391, 4876}, {4432, 23344}, {4435, 41}, {4444, 52205}, {4448, 902}, {4455, 1918}, {4486, 2276}, {4508, 2242}, {4560, 2311}, {4800, 2177}, {4810, 61358}, {4974, 35327}, {5009, 1576}, {6385, 4639}, {6654, 919}, {7033, 8684}, {7192, 741}, {7193, 32656}, {7199, 37128}, {7212, 1400}, {8299, 54325}, {8632, 32}, {10030, 651}, {14295, 1215}, {14296, 171}, {14433, 3230}, {16609, 4559}, {17755, 2284}, {18033, 664}, {18155, 56154}, {18891, 668}, {20518, 9470}, {20769, 906}, {20906, 41531}, {20908, 52656}, {21207, 35352}, {21832, 213}, {22384, 184}, {23597, 40746}, {23989, 4444}, {24193, 8027}, {24284, 22061}, {24459, 71}, {27846, 667}, {27853, 1016}, {27854, 21788}, {27855, 238}, {27912, 41405}, {27918, 649}, {27922, 901}, {27929, 17735}, {27950, 1983}, {27951, 3509}, {30639, 40790}, {30665, 869}, {30870, 63228}, {30940, 662}, {31905, 112}, {32010, 805}, {33295, 110}, {34387, 60577}, {34856, 32713}, {35119, 8632}, {35519, 4518}, {35544, 3952}, {38348, 18266}, {39044, 3573}, {39775, 2283}, {39786, 798}, {39914, 34071}, {40495, 334}, {40717, 1897}, {40725, 2702}, {42767, 51377}, {43041, 56}, {44169, 1978}, {44171, 6386}, {46387, 3051}, {46390, 7109}, {47070, 2382}, {50456, 1333}, {51381, 2427}, {51435, 2426}, {52619, 18827}, {52621, 7233}, {53556, 228}, {53580, 3052}, {56660, 3570}, {58864, 18900}, {62415, 3864}, {62552, 672}, {62558, 21760}, {62625, 28841}, {62635, 51866}, {62637, 39420}, {62638, 63881}, {62785, 1461}, {63222, 985}, {63230, 1492}, {63237, 825}, {63242, 4586}, {64222, 874}, {64223, 1026}, {64644, 2254}
X(65101) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 20906, 1491}, {14296, 27855, 659}
X(65102) lies on these lines: {6, 6129}, {48, 23224}, {219, 521}, {220, 4130}, {513, 57237}, {520, 647}, {650, 15313}, {657, 663}, {798, 9245}, {905, 23146}, {1919, 8642}, {2287, 4397}, {2509, 2911}, {4017, 20980}, {4501, 42462}, {6591, 14298}, {6608, 46392}, {20818, 23187}, {22091, 22443}, {23090, 57055}, {24027, 36039}, {57134, 58340}
X(65102) = isogonal conjugate of X(13149)
X(65102) = isogonal conjugate of the isotomic conjugate of X(57055)
X(65102) = isotomic conjugate of the polar conjugate of X(8641)
X(65102) = isogonal conjugate of the polar conjugate of X(3900)
X(65102) = polar conjugate of the isotomic conjugate of X(58340)
X(65102) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 47432}, {48, 2638}, {101, 228}, {219, 3270}, {652, 1946}, {692, 1253}, {906, 212}, {1783, 55}, {1813, 22079}, {3900, 8641}, {7072, 3022}, {23090, 57108}, {57055, 58340}
X(65102) = X(39687)-cross conjugate of X(52425)
X(65102) = X(i)-isoconjugate of X(j) for these (i,j): {1, 13149}, {2, 36118}, {4, 658}, {7, 653}, {19, 4569}, {25, 46406}, {27, 4566}, {33, 36838}, {34, 4554}, {56, 46404}, {57, 18026}, {75, 32714}, {77, 54240}, {85, 108}, {86, 52607}, {92, 934}, {100, 1847}, {107, 56382}, {109, 331}, {162, 1446}, {190, 1119}, {196, 53642}, {222, 52938}, {225, 4573}, {264, 1461}, {269, 6335}, {273, 651}, {278, 664}, {279, 1897}, {281, 4626}, {286, 1020}, {318, 4617}, {342, 37141}, {348, 36127}, {514, 55346}, {607, 52937}, {608, 4572}, {648, 3668}, {668, 1435}, {693, 7128}, {799, 1426}, {811, 1427}, {823, 1439}, {905, 24032}, {927, 5236}, {1042, 6331}, {1088, 1783}, {1254, 55231}, {1262, 46107}, {1275, 7649}, {1398, 1978}, {1410, 57973}, {1414, 40149}, {1415, 57787}, {1434, 61178}, {1459, 57538}, {1824, 4635}, {1826, 4616}, {1876, 34085}, {1880, 4625}, {2973, 4619}, {3064, 59457}, {3676, 46102}, {4025, 23984}, {4565, 57809}, {4637, 41013}, {5249, 58993}, {6063, 32674}, {6356, 52919}, {6528, 52373}, {6614, 7017}, {7012, 24002}, {7045, 17924}, {7103, 37215}, {7115, 52621}, {7143, 55233}, {7282, 38340}, {7339, 46110}, {8059, 40701}, {8750, 57792}, {15413, 24033}, {15466, 36079}, {15742, 58817}, {20618, 52921}, {23062, 56183}, {23710, 60487}, {23973, 52781}, {24015, 36122}, {26934, 54948}, {36908, 53639}, {37139, 38461}, {41353, 54235}, {44129, 53321}
X(65102) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 46404}, {3, 13149}, {6, 4569}, {11, 331}, {125, 1446}, {206, 32714}, {521, 15413}, {656, 3261}, {1146, 57787}, {2968, 1969}, {3239, 40495}, {3270, 26540}, {5452, 18026}, {6505, 46406}, {6600, 6335}, {6608, 46110}, {6741, 52575}, {7358, 76}, {8054, 1847}, {11517, 4554}, {14714, 92}, {17115, 17924}, {17423, 1427}, {22391, 934}, {26932, 57792}, {32664, 36118}, {34467, 279}, {35072, 6063}, {35508, 264}, {36033, 658}, {38966, 2052}, {38983, 85}, {38985, 56382}, {38991, 273}, {38996, 1426}, {39006, 1088}, {39025, 278}, {40600, 52607}, {40608, 40149}, {40626, 20567}, {40628, 52621}, {46095, 24015}, {55044, 40701}, {55053, 1119}, {55064, 57809}, {55066, 3668}, {55068, 44129}, {62647, 4572}
X(65102) = crosspoint of X(i) and X(j) for these (i,j): {6, 32652}, {48, 692}, {55, 1783}, {101, 2328}, {212, 906}, {651, 37741}, {652, 57108}, {1813, 47487}, {3900, 57055}, {23090, 57134}
X(65102) = crosssum of X(i) and X(j) for these (i,j): {2, 17896}, {7, 905}, {92, 693}, {273, 17924}, {279, 24002}, {514, 3668}, {523, 53422}, {650, 1836}, {653, 36118}, {934, 32714}, {1851, 6591}, {17094, 55010}
X(65102) = crossdifference of every pair of points on line {4, 7}
X(65102) = barycentric product X(i)*X(j) for these {i,j}: {1, 57108}, {3, 3900}, {4, 58340}, {6, 57055}, {8, 1946}, {9, 652}, {10, 57134}, {19, 57057}, {32, 15416}, {33, 57241}, {37, 23090}, {41, 6332}, {42, 57081}, {48, 3239}, {55, 521}, {63, 657}, {65, 58338}, {69, 8641}, {71, 1021}, {72, 21789}, {73, 58329}, {77, 4105}, {78, 663}, {100, 3270}, {101, 34591}, {184, 4397}, {200, 1459}, {210, 23189}, {212, 522}, {213, 15411}, {219, 650}, {220, 905}, {222, 4130}, {228, 7253}, {268, 14298}, {281, 36054}, {282, 10397}, {283, 4041}, {284, 8611}, {332, 63461}, {345, 3063}, {346, 22383}, {348, 57180}, {512, 1792}, {513, 1260}, {514, 1802}, {520, 4183}, {603, 4163}, {644, 7117}, {647, 2287}, {649, 3692}, {656, 2328}, {661, 2327}, {667, 1265}, {692, 2968}, {810, 1043}, {822, 2322}, {895, 58331}, {906, 1146}, {1098, 55230}, {1176, 58335}, {1253, 4025}, {1259, 18344}, {1331, 2310}, {1332, 14936}, {1364, 56183}, {1444, 4524}, {1783, 35072}, {1790, 4171}, {1793, 53562}, {1797, 14427}, {1807, 53285}, {1809, 53549}, {1812, 3709}, {1813, 3119}, {1814, 52614}, {1815, 46392}, {1897, 2638}, {1919, 52406}, {2155, 57045}, {2170, 4587}, {2175, 35518}, {2188, 8058}, {2192, 57101}, {2193, 3700}, {2194, 52355}, {2196, 4148}, {2212, 52616}, {2289, 3064}, {2316, 14418}, {2318, 3737}, {2332, 24018}, {2340, 23696}, {3022, 6516}, {3271, 4571}, {3694, 7252}, {3937, 4578}, {3939, 7004}, {3990, 17926}, {4081, 36059}, {4091, 7079}, {4131, 7071}, {4391, 52425}, {4477, 7015}, {4515, 7254}, {4528, 36058}, {4529, 7116}, {4558, 36197}, {4560, 52370}, {4575, 52335}, {4845, 14414}, {5546, 53560}, {6056, 44426}, {6335, 39687}, {6514, 55206}, {6607, 40443}, {6608, 47487}, {7046, 23224}, {7054, 55232}, {7072, 59973}, {7074, 61040}, {7118, 57245}, {7358, 32652}, {7367, 64885}, {8606, 35057}, {8750, 24031}, {9247, 52622}, {13138, 47432}, {14380, 58337}, {14392, 60047}, {14395, 15627}, {14827, 15413}, {15629, 46391}, {20752, 28132}, {22079, 62725}, {24026, 32656}, {28071, 53550}, {30681, 57181}, {34259, 58332}, {36039, 57292}, {44040, 57103}, {52222, 58325}, {52307, 52663}
X(65102) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 4569}, {6, 13149}, {9, 46404}, {31, 36118}, {32, 32714}, {33, 52938}, {41, 653}, {48, 658}, {55, 18026}, {63, 46406}, {77, 52937}, {78, 4572}, {184, 934}, {212, 664}, {213, 52607}, {219, 4554}, {220, 6335}, {222, 36838}, {228, 4566}, {283, 4625}, {332, 55213}, {521, 6063}, {522, 57787}, {603, 4626}, {607, 54240}, {647, 1446}, {649, 1847}, {650, 331}, {652, 85}, {657, 92}, {663, 273}, {667, 1119}, {669, 1426}, {692, 55346}, {810, 3668}, {822, 56382}, {905, 57792}, {906, 1275}, {1021, 44129}, {1043, 57968}, {1098, 55229}, {1253, 1897}, {1260, 668}, {1265, 6386}, {1437, 4616}, {1459, 1088}, {1783, 57538}, {1790, 4635}, {1792, 670}, {1802, 190}, {1919, 1435}, {1946, 7}, {1980, 1398}, {2175, 108}, {2188, 53642}, {2193, 4573}, {2200, 1020}, {2212, 36127}, {2287, 6331}, {2310, 46107}, {2322, 57973}, {2327, 799}, {2328, 811}, {2332, 823}, {2488, 53237}, {2638, 4025}, {2968, 40495}, {3022, 44426}, {3049, 1427}, {3063, 278}, {3119, 46110}, {3239, 1969}, {3270, 693}, {3692, 1978}, {3700, 52575}, {3709, 40149}, {3900, 264}, {3937, 59941}, {4041, 57809}, {4105, 318}, {4130, 7017}, {4183, 6528}, {4397, 18022}, {4524, 41013}, {6056, 6516}, {6139, 38461}, {6332, 20567}, {6514, 55205}, {7004, 52621}, {7054, 55231}, {7117, 24002}, {7253, 57796}, {8611, 349}, {8638, 1876}, {8641, 4}, {8646, 7103}, {8750, 24032}, {9247, 1461}, {9447, 32674}, {10397, 40702}, {14298, 40701}, {14427, 46109}, {14827, 1783}, {14936, 17924}, {15411, 6385}, {15416, 1502}, {20818, 62532}, {21789, 286}, {22079, 35312}, {22096, 43932}, {22383, 279}, {23090, 274}, {23189, 57785}, {23224, 7056}, {23225, 34855}, {32656, 7045}, {32739, 7128}, {34591, 3261}, {35072, 15413}, {35518, 41283}, {36054, 348}, {36059, 59457}, {36197, 14618}, {39201, 1439}, {39687, 905}, {46388, 5236}, {47432, 17896}, {52370, 4552}, {52411, 4617}, {52425, 651}, {52614, 46108}, {56305, 54948}, {57055, 76}, {57057, 304}, {57081, 310}, {57108, 75}, {57134, 86}, {57180, 281}, {57241, 7182}, {58310, 1410}, {58329, 44130}, {58331, 44146}, {58335, 1235}, {58338, 314}, {58340, 69}, {61050, 18344}, {62257, 36059}, {63461, 225}
X(65102) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {652, 10397, 647}, {652, 36054, 22383}, {657, 663, 33525}, {657, 17412, 10581}, {3063, 57180, 657}
X(65103) lies on these lines: {19, 513}, {92, 20906}, {230, 231}, {281, 28132}, {607, 3063}, {608, 20980}, {652, 50338}, {657, 4041}, {905, 57196}, {1783, 7012}, {1824, 4079}, {1826, 16228}, {1848, 47760}, {1973, 48327}, {2522, 14331}, {4105, 4171}, {4397, 17926}, {7003, 61040}, {7297, 46389}, {7719, 21390}, {8735, 52946}, {14013, 17212}, {14298, 55232}, {17412, 58313}, {17442, 48332}, {17924, 47965}, {21127, 43923}, {39521, 52413}, {40117, 59058}, {40937, 59973}
X(65103) = polar conjugate of X(4569)
X(65103) = complement of the isotomic conjugate of X(46964)
X(65103) = polar conjugate of the isotomic conjugate of X(3900)
X(65103) = polar conjugate of the isogonal conjugate of X(8641)
X(65103) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 38966}, {46964, 2887}
X(65103) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 38966}, {19, 2310}, {281, 42069}, {459, 38388}, {653, 1827}, {1783, 33}, {1857, 3022}, {3064, 18344}, {6335, 1863}, {7003, 3270}, {13149, 4}, {40117, 25}, {56183, 7071}
X(65103) = X(i)-cross conjugate of X(j) for these (i,j): {3022, 1857}, {3709, 657}, {8641, 3900}, {14936, 607}
X(65103) = X(i)-isoconjugate of X(j) for these (i,j): {3, 658}, {7, 1813}, {48, 4569}, {57, 6516}, {63, 934}, {69, 1461}, {71, 4616}, {72, 4637}, {73, 4573}, {77, 651}, {78, 4617}, {85, 36059}, {86, 52610}, {99, 52373}, {100, 7177}, {101, 7056}, {108, 7183}, {109, 348}, {110, 56382}, {184, 46406}, {190, 7053}, {212, 36838}, {219, 4626}, {222, 664}, {228, 4635}, {255, 13149}, {269, 1332}, {278, 6517}, {279, 1331}, {307, 4565}, {326, 32714}, {345, 6614}, {394, 36118}, {479, 4587}, {603, 4554}, {652, 59457}, {653, 1804}, {662, 1439}, {668, 7099}, {738, 4571}, {799, 1410}, {905, 7045}, {906, 1088}, {1020, 1444}, {1042, 4563}, {1214, 1414}, {1262, 4025}, {1275, 1459}, {1402, 55205}, {1407, 4561}, {1409, 4625}, {1415, 7182}, {1425, 4610}, {1427, 4592}, {1434, 23067}, {1446, 4575}, {1565, 4619}, {1790, 4566}, {1803, 35312}, {1814, 41353}, {1815, 23973}, {3668, 4558}, {3676, 44717}, {3939, 30682}, {4091, 55346}, {4131, 7128}, {4556, 6356}, {4572, 52411}, {4636, 20618}, {6063, 32660}, {6332, 7339}, {7011, 53642}, {7013, 37141}, {7055, 32674}, {7125, 18026}, {7138, 55231}, {7289, 8269}, {7335, 46404}, {7340, 55234}, {15413, 24027}, {17094, 52378}, {17206, 53321}, {18607, 36048}, {23586, 57108}, {24013, 57055}, {24015, 36056}, {24016, 26006}, {26932, 59151}, {32656, 57792}, {34400, 57118}, {36049, 57479}, {36079, 37669}, {37136, 62402}, {37755, 52935}, {40443, 63203}, {47487, 61241}, {50559, 53622}, {52425, 52937}
X(65103) = X(i)-Dao conjugate of X(j) for these (i,j): {11, 348}, {136, 1446}, {244, 56382}, {522, 15413}, {656, 30805}, {1015, 7056}, {1084, 1439}, {1146, 7182}, {1249, 4569}, {2968, 304}, {3162, 934}, {3900, 57055}, {5139, 1427}, {5190, 1088}, {5452, 6516}, {5514, 57479}, {5521, 279}, {6523, 13149}, {6600, 1332}, {6608, 6332}, {6741, 1231}, {7358, 3926}, {7952, 4554}, {8054, 7177}, {13999, 17078}, {14714, 63}, {14936, 17170}, {15259, 32714}, {15607, 18607}, {17115, 905}, {20620, 85}, {20622, 24015}, {23050, 190}, {24771, 4561}, {35072, 7055}, {35508, 69}, {36103, 658}, {38966, 2}, {38983, 7183}, {38986, 52373}, {38991, 77}, {38996, 1410}, {39025, 222}, {40600, 52610}, {40605, 55205}, {40608, 1214}, {40617, 30682}, {40624, 57918}, {40837, 36838}, {50930, 57455}, {53990, 17093}, {55053, 7053}, {55057, 23603}, {55064, 307}, {55068, 17206}, {62602, 52937}, {62605, 46406}
X(65103) = cevapoint of X(3709) and X(55206)
X(65103) = crosspoint of X(i) and X(j) for these (i,j): {2, 46964}, {4, 13149}, {33, 1783}, {281, 56183}, {40117, 57492}
X(65103) = crosssum of X(i) and X(j) for these (i,j): {63, 4131}, {77, 905}, {652, 22053}, {1459, 22088}, {1473, 22383}, {3668, 21188}, {36054, 53847}
X(65103) = trilinear pole of line {3022, 36197}
X(65103) = crossdifference of every pair of points on line {3, 77}
X(65103) = barycentric product X(i)*X(j) for these {i,j}: {4, 3900}, {8, 18344}, {9, 3064}, {11, 56183}, {19, 3239}, {25, 4397}, {27, 4171}, {29, 4041}, {33, 522}, {34, 4163}, {37, 17926}, {41, 46110}, {55, 44426}, {92, 657}, {100, 42069}, {108, 4081}, {158, 57108}, {162, 52335}, {200, 7649}, {220, 17924}, {225, 58329}, {264, 8641}, {273, 4105}, {278, 4130}, {281, 650}, {286, 4524}, {318, 663}, {331, 57180}, {333, 55206}, {346, 6591}, {393, 57055}, {513, 7046}, {514, 7079}, {521, 1857}, {523, 4183}, {607, 4391}, {644, 8735}, {648, 36197}, {649, 7101}, {653, 3119}, {661, 2322}, {692, 21666}, {693, 7071}, {1021, 1826}, {1093, 58340}, {1146, 1783}, {1172, 3700}, {1253, 46107}, {1334, 57215}, {1577, 2332}, {1792, 58757}, {1824, 7253}, {1827, 62725}, {1855, 62747}, {1897, 2310}, {1973, 52622}, {2207, 15416}, {2212, 35519}, {2287, 2501}, {2299, 4086}, {2326, 4024}, {2328, 24006}, {2969, 4578}, {3022, 18026}, {3063, 7017}, {3709, 31623}, {3737, 53008}, {4082, 57200}, {4092, 52914}, {4515, 17925}, {4516, 36797}, {4528, 36125}, {4705, 59482}, {5089, 28132}, {5423, 43923}, {5514, 40117}, {6059, 35518}, {6129, 57492}, {6335, 14936}, {6336, 14427}, {6520, 57057}, {7003, 14298}, {7007, 14302}, {7008, 8058}, {7012, 23615}, {7129, 57049}, {7367, 59935}, {8611, 8748}, {8750, 24026}, {13149, 35508}, {14775, 64171}, {17983, 58331}, {18808, 58337}, {21789, 41013}, {23893, 60431}, {23970, 32714}, {24010, 36118}, {30692, 62742}, {32085, 58335}, {33525, 40447}, {36421, 55232}, {38966, 46964}, {41339, 60583}, {41509, 57089}, {43933, 51380}, {44130, 63461}, {44428, 52371}, {46392, 52781}, {51361, 53152}, {51418, 53150}, {51762, 55145}, {52356, 52427}, {52409, 58313}, {52614, 54235}, {56146, 57092}
X(65103) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 4569}, {19, 658}, {25, 934}, {27, 4635}, {28, 4616}, {29, 4625}, {33, 664}, {34, 4626}, {41, 1813}, {55, 6516}, {92, 46406}, {108, 59457}, {200, 4561}, {212, 6517}, {213, 52610}, {220, 1332}, {273, 52937}, {278, 36838}, {281, 4554}, {318, 4572}, {333, 55205}, {393, 13149}, {480, 4571}, {512, 1439}, {513, 7056}, {521, 7055}, {522, 7182}, {607, 651}, {608, 4617}, {649, 7177}, {650, 348}, {652, 7183}, {657, 63}, {661, 56382}, {663, 77}, {667, 7053}, {669, 1410}, {798, 52373}, {1021, 17206}, {1043, 55202}, {1096, 36118}, {1146, 15413}, {1172, 4573}, {1253, 1331}, {1395, 6614}, {1474, 4637}, {1783, 1275}, {1824, 4566}, {1827, 35312}, {1857, 18026}, {1886, 24015}, {1919, 7099}, {1946, 1804}, {1973, 1461}, {2175, 36059}, {2204, 4565}, {2207, 32714}, {2212, 109}, {2287, 4563}, {2299, 1414}, {2310, 4025}, {2322, 799}, {2326, 4610}, {2328, 4592}, {2332, 662}, {2333, 1020}, {2356, 41353}, {2489, 1427}, {2501, 1446}, {2969, 59941}, {3022, 521}, {3063, 222}, {3064, 85}, {3119, 6332}, {3239, 304}, {3270, 4131}, {3669, 30682}, {3700, 1231}, {3709, 1214}, {3900, 69}, {4041, 307}, {4079, 37755}, {4081, 35518}, {4105, 78}, {4130, 345}, {4163, 3718}, {4171, 306}, {4183, 99}, {4391, 57918}, {4397, 305}, {4515, 52609}, {4516, 17094}, {4524, 72}, {4705, 6356}, {6059, 108}, {6129, 57479}, {6591, 279}, {6602, 4587}, {7008, 53642}, {7046, 668}, {7071, 100}, {7079, 190}, {7101, 1978}, {7154, 37141}, {7649, 1088}, {8611, 52565}, {8641, 3}, {8735, 24002}, {8750, 7045}, {9447, 32660}, {13149, 57581}, {14427, 3977}, {14827, 906}, {14936, 905}, {17115, 17170}, {17924, 57792}, {17926, 274}, {18344, 7}, {21666, 40495}, {21789, 1444}, {23615, 17880}, {23970, 15416}, {24012, 57108}, {32714, 23586}, {33525, 18607}, {34591, 30805}, {35508, 57055}, {36118, 24011}, {36197, 525}, {36421, 55231}, {40982, 62754}, {42067, 43932}, {42069, 693}, {43923, 479}, {44130, 55213}, {44426, 6063}, {46110, 20567}, {46392, 26006}, {50487, 1425}, {52335, 14208}, {52614, 25083}, {52622, 40364}, {52914, 7340}, {53549, 62402}, {55206, 226}, {56183, 4998}, {57055, 3926}, {57057, 1102}, {57108, 326}, {57180, 219}, {57185, 20618}, {58313, 1443}, {58329, 332}, {58331, 6390}, {58335, 3933}, {58340, 3964}, {58838, 65017}, {58840, 65016}, {59482, 4623}, {61050, 1946}, {63461, 73}
X(65103) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {650, 3064, 6591}, {2501, 57094, 6591}
X(65104) lies on these lines: {4, 38324}, {11, 5190}, {19, 1635}, {25, 53287}, {101, 108}, {105, 9085}, {112, 53927}, {230, 231}, {278, 43050}, {608, 21786}, {652, 16612}, {654, 53527}, {661, 2616}, {663, 57092}, {667, 54247}, {770, 3063}, {812, 1848}, {909, 913}, {1435, 53544}, {1769, 46391}, {2600, 3738}, {2820, 4219}, {3737, 57212}, {5513, 20621}, {6197, 38327}, {11471, 38329}, {14837, 57230}, {14838, 17924}, {17420, 57200}, {21758, 46384}, {35348, 36122}, {44428, 53046}, {48297, 54244}, {48387, 58318}, {53285, 58313}
X(65104) = polar conjugate of X(35174)
X(65104) = polar conjugate of the isotomic conjugate of X(3738)
X(65104) = polar conjugate of the isogonal conjugate of X(8648)
X(65104) = X(31)-complementary conjugate of X(13999)
X(65104) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 13999}, {653, 1845}, {4242, 52427}, {36119, 2310}, {60584, 513}
X(65104) = X(i)-cross conjugate of X(j) for these (i,j): {8648, 3738}, {21828, 654}
X(65104) = X(i)-isoconjugate of X(j) for these (i,j): {3, 655}, {48, 35174}, {63, 2222}, {69, 32675}, {73, 47318}, {80, 1813}, {101, 52392}, {109, 52351}, {184, 46405}, {201, 37140}, {222, 51562}, {343, 36078}, {603, 36804}, {651, 1807}, {662, 52391}, {664, 52431}, {905, 52377}, {906, 18815}, {1020, 1793}, {1331, 2006}, {1332, 1411}, {1789, 63202}, {2161, 6516}, {2169, 62735}, {2594, 60053}, {4552, 57736}, {4558, 52383}, {4559, 57985}, {4575, 60091}, {6517, 64835}, {6740, 52610}, {16577, 36061}, {18359, 36059}, {20566, 32660}, {22342, 32680}, {22350, 53811}, {23067, 24624}, {26942, 36069}, {32662, 40999}, {32671, 57807}
X(65104) = X(i)-Dao conjugate of X(j) for these (i,j): {11, 52351}, {136, 60091}, {860, 42718}, {1015, 52392}, {1084, 52391}, {1249, 35174}, {3162, 2222}, {5190, 18815}, {5521, 2006}, {7952, 36804}, {13999, 2}, {14363, 62735}, {16221, 16577}, {20620, 18359}, {35128, 69}, {35204, 1332}, {36103, 655}, {38966, 36910}, {38982, 26942}, {38984, 63}, {38991, 1807}, {39025, 52431}, {40584, 6516}, {53525, 914}, {53982, 4552}, {53985, 14628}, {55067, 57985}, {57434, 345}, {62605, 46405}
X(65104) = crosspoint of X(i) and X(j) for these (i,j): {278, 36110}, {653, 36123}, {1897, 37203}, {4242, 17923}
X(65104) = crosssum of X(i) and X(j) for these (i,j): {652, 22350}, {1459, 2252}
X(65104) = crossdifference of every pair of points on line {3, 201}
X(65104) = barycentric product X(i)*X(j) for these {i,j}: {1, 44428}, {4, 3738}, {11, 4242}, {19, 3904}, {29, 53527}, {33, 4453}, {36, 44426}, {75, 58313}, {92, 654}, {104, 53047}, {264, 8648}, {270, 6370}, {273, 53285}, {275, 2600}, {281, 3960}, {286, 53562}, {318, 53314}, {320, 18344}, {324, 62734}, {513, 5081}, {522, 1870}, {523, 17515}, {650, 17923}, {693, 52427}, {860, 3737}, {1172, 4707}, {1835, 7253}, {1845, 43728}, {1897, 53525}, {2190, 6369}, {2245, 57215}, {2323, 17924}, {2361, 46107}, {2610, 46103}, {3064, 3218}, {4089, 56183}, {4282, 14618}, {4391, 52413}, {4511, 7649}, {4585, 8735}, {6591, 32851}, {7017, 21758}, {7113, 46110}, {11700, 53152}, {16082, 53046}, {17926, 18593}, {18155, 44113}, {21828, 31623}, {36110, 57434}, {39534, 56757}, {42666, 57779}, {43933, 64139}, {46102, 46384}, {51663, 59482}, {54244, 63642}
X(65104) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 35174}, {19, 655}, {25, 2222}, {33, 51562}, {36, 6516}, {53, 62735}, {92, 46405}, {281, 36804}, {512, 52391}, {513, 52392}, {650, 52351}, {654, 63}, {663, 1807}, {1172, 47318}, {1835, 4566}, {1870, 664}, {1973, 32675}, {1983, 44717}, {2189, 37140}, {2323, 1332}, {2361, 1331}, {2501, 60091}, {2600, 343}, {2610, 26942}, {3063, 52431}, {3064, 18359}, {3724, 23067}, {3737, 57985}, {3738, 69}, {3904, 304}, {3960, 348}, {4242, 4998}, {4282, 4558}, {4453, 7182}, {4511, 4561}, {4707, 1231}, {5081, 668}, {6369, 18695}, {6370, 57807}, {6591, 2006}, {7113, 1813}, {7649, 18815}, {8648, 3}, {8735, 60074}, {8750, 52377}, {14270, 22342}, {17515, 99}, {17923, 4554}, {18344, 80}, {21758, 222}, {21789, 1793}, {21828, 1214}, {22379, 1804}, {42069, 52356}, {42666, 201}, {44113, 4551}, {44426, 20566}, {44428, 75}, {46384, 26932}, {47230, 16577}, {51663, 6356}, {52407, 6517}, {52413, 651}, {52426, 906}, {52427, 100}, {52434, 36059}, {53047, 3262}, {53285, 78}, {53314, 77}, {53525, 4025}, {53527, 307}, {53562, 72}, {54244, 63778}, {57174, 22128}, {58313, 1}, {58328, 4571}, {62268, 36078}, {62734, 97}
X(65104) = {X(650),X(6591)}-harmonic conjugate of X(3064)
X(65105) lies on these lines: {19, 661}, {28, 4160}, {112, 35056}, {230, 231}, {281, 17926}, {607, 7252}, {652, 1734}, {1848, 25666}, {4705, 54247}, {8611, 57198}, {9404, 54244}, {14400, 16612}, {17924, 48003}
X(65105) = polar conjugate of the isotomic conjugate of X(35057)
X(65105) = X(i)-Ceva conjugate of X(j) for these (i,j): {162, 33}, {653, 1844}, {2190, 2310}
X(65105) = X(55210)-cross conjugate of X(9404)
X(65105) = X(i)-isoconjugate of X(j) for these (i,j): {3, 38340}, {63, 26700}, {79, 1813}, {109, 52381}, {110, 63171}, {222, 6742}, {603, 15455}, {651, 7100}, {656, 35049}, {658, 8606}, {662, 52390}, {1020, 1789}, {1214, 13486}, {1331, 52374}, {1332, 52372}, {1464, 60053}, {2160, 6516}, {3615, 52610}, {4091, 34922}, {4558, 52382}, {4565, 52388}, {4575, 43682}, {6517, 64834}, {11064, 36064}, {18593, 36061}, {20565, 32660}, {22350, 47317}, {23067, 52393}, {30690, 36059}, {32662, 41804}
X(65105) = X(i)-Dao conjugate of X(j) for these (i,j): {11, 52381}, {136, 43682}, {244, 63171}, {1084, 52390}, {3162, 26700}, {3700, 14208}, {5521, 52374}, {7952, 15455}, {8287, 348}, {16221, 18593}, {20620, 30690}, {36103, 38340}, {38966, 7110}, {38991, 7100}, {40596, 35049}, {55042, 63}, {55064, 52388}, {56948, 4592}
X(65105) = crosssum of X(i) and X(j) for these (i,j): {222, 51664}, {652, 4303}
X(65105) = crossdifference of every pair of points on line {3, 7100}
X(65105) = barycentric product X(i)*X(j) for these {i,j}: {4, 35057}, {8, 54244}, {19, 57066}, {29, 57099}, {33, 4467}, {35, 44426}, {92, 9404}, {162, 6741}, {186, 52356}, {281, 14838}, {318, 2605}, {319, 18344}, {522, 6198}, {523, 11107}, {607, 18160}, {650, 52412}, {1172, 7265}, {1577, 41502}, {1825, 7253}, {1897, 53524}, {2174, 46110}, {2341, 44427}, {2501, 56440}, {2611, 36797}, {3064, 3219}, {3900, 7282}, {4420, 7649}, {6591, 42033}, {14618, 35192}, {14775, 31938}, {14975, 35519}, {16577, 17926}, {17924, 52405}, {21054, 52914}, {24006, 35193}, {31623, 55210}, {34016, 55206}, {44428, 56422}, {57779, 58304}
X(65105) = barycentric quotient X(i)/X(j) for these {i,j}: {19, 38340}, {25, 26700}, {33, 6742}, {35, 6516}, {112, 35049}, {281, 15455}, {512, 52390}, {650, 52381}, {661, 63171}, {663, 7100}, {1825, 4566}, {2174, 1813}, {2299, 13486}, {2341, 60053}, {2501, 43682}, {2605, 77}, {2611, 17094}, {3064, 30690}, {4041, 52388}, {4420, 4561}, {4467, 7182}, {6198, 664}, {6591, 52374}, {6741, 14208}, {7265, 1231}, {7282, 4569}, {8641, 8606}, {9404, 63}, {11107, 99}, {14838, 348}, {14975, 109}, {18160, 57918}, {18344, 79}, {20982, 51664}, {21741, 52610}, {21789, 1789}, {21824, 57243}, {23226, 1804}, {31623, 55209}, {34016, 55205}, {35057, 69}, {35192, 4558}, {35193, 4592}, {41502, 662}, {42657, 50462}, {44426, 20565}, {47230, 18593}, {52356, 328}, {52405, 1332}, {52408, 6517}, {52412, 4554}, {53524, 4025}, {54244, 7}, {55206, 8818}, {55210, 1214}, {56440, 4563}, {57066, 304}, {57099, 307}, {58304, 201}, {58313, 56844}
X(65106) lies on these lines: {4, 28521}, {25, 23866}, {230, 231}, {242, 53580}, {659, 7212}, {812, 22384}, {1086, 2969}, {1851, 48032}, {1897, 3699}, {3716, 53556}, {4010, 4435}, {7199, 57200}, {8062, 35519}, {13256, 33137}, {17924, 29051}, {17925, 28843}, {18070, 24006}, {43923, 43931}
X(65106) = polar conjugate of X(4562)
X(65106) = polar conjugate of the isotomic conjugate of X(812)
X(65106) = polar conjugate of the isogonal conjugate of X(8632)
X(65106) = X(17982)-Ceva conjugate of X(2969)
X(65106) = X(8632)-cross conjugate of X(812)
X(65106) = X(i)-isoconjugate of X(j) for these (i,j): {3, 660}, {48, 4562}, {63, 813}, {69, 34067}, {71, 4584}, {100, 295}, {184, 4583}, {190, 2196}, {228, 4589}, {291, 1331}, {292, 1332}, {334, 32656}, {335, 906}, {337, 692}, {603, 36801}, {1176, 52922}, {1459, 5378}, {1808, 4551}, {1813, 4876}, {1911, 4561}, {2200, 4639}, {3690, 36066}, {3781, 30664}, {3784, 8684}, {3917, 36081}, {4518, 36059}, {4557, 57738}, {4574, 37128}, {4575, 43534}, {4579, 36214}, {6516, 7077}, {18268, 52609}, {22061, 37134}, {22367, 41209}, {23067, 56154}
X(65106) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 43534}, {1086, 337}, {1249, 4562}, {3162, 813}, {5190, 335}, {5521, 291}, {6651, 4561}, {7952, 36801}, {8054, 295}, {8632, 23147}, {19557, 1332}, {20620, 4518}, {21261, 22444}, {35068, 52609}, {35078, 4019}, {35119, 69}, {36103, 660}, {38978, 3690}, {39029, 1331}, {40623, 63}, {55053, 2196}, {62552, 4025}, {62558, 905}, {62605, 4583}
X(65106) = crosspoint of X(1897) and X(36124)
X(65106) = crosssum of X(i) and X(j) for these (i,j): {3, 22384}, {1459, 1818}, {20777, 22383}
X(65106) = crossdifference of every pair of points on line {3, 295}
X(65106) = barycentric product X(i)*X(j) for these {i,j}: {4, 812}, {19, 3766}, {27, 4010}, {29, 7212}, {92, 659}, {238, 17924}, {239, 7649}, {242, 514}, {264, 8632}, {273, 4435}, {278, 3716}, {281, 43041}, {286, 21832}, {350, 6591}, {523, 31905}, {525, 34856}, {649, 40717}, {653, 4124}, {693, 2201}, {740, 17925}, {811, 39786}, {862, 7199}, {1119, 4148}, {1284, 57215}, {1428, 46110}, {1429, 44426}, {1447, 3064}, {1874, 4560}, {1897, 27918}, {1914, 46107}, {2052, 22384}, {2501, 33295}, {2969, 3570}, {3261, 57654}, {3948, 57200}, {3975, 43923}, {4448, 6336}, {4455, 44129}, {5009, 14618}, {6335, 27846}, {7178, 14024}, {8747, 24459}, {10030, 18344}, {17493, 54229}, {17982, 27929}, {27853, 42067}, {35544, 43925}, {36124, 62552}, {41013, 50456}, {43933, 51381}, {46104, 46387}, {51435, 53150}
X(65106) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 4562}, {19, 660}, {25, 813}, {27, 4589}, {28, 4584}, {92, 4583}, {238, 1332}, {239, 4561}, {242, 190}, {281, 36801}, {286, 4639}, {419, 18047}, {514, 337}, {649, 295}, {659, 63}, {667, 2196}, {740, 52609}, {804, 4019}, {812, 69}, {862, 1018}, {1019, 57738}, {1428, 1813}, {1429, 6516}, {1783, 5378}, {1874, 4552}, {1914, 1331}, {1973, 34067}, {2201, 100}, {2210, 906}, {2501, 43534}, {2969, 4444}, {3064, 4518}, {3684, 4571}, {3716, 345}, {3747, 4574}, {3766, 304}, {4010, 306}, {4124, 6332}, {4148, 1265}, {4155, 3949}, {4435, 78}, {4448, 3977}, {4455, 71}, {4839, 4101}, {5009, 4558}, {5027, 22061}, {6591, 291}, {7199, 57987}, {7212, 307}, {7252, 1808}, {7649, 335}, {8632, 3}, {8735, 60577}, {14024, 645}, {14599, 32656}, {17442, 52922}, {17922, 40093}, {17924, 334}, {17925, 18827}, {18344, 4876}, {21832, 72}, {22384, 394}, {24459, 52396}, {27846, 905}, {27918, 4025}, {30940, 55202}, {31905, 99}, {33295, 4563}, {34856, 648}, {38367, 20777}, {39786, 656}, {40717, 1978}, {42067, 3572}, {42767, 51367}, {43041, 348}, {43925, 741}, {46107, 18895}, {46387, 3917}, {46390, 3690}, {50456, 1444}, {53556, 3998}, {54229, 30669}, {56828, 4579}, {57200, 37128}, {57654, 101}, {57779, 36806}
See Antreas Hatzipolakis and Peter Moses, euclid 6860.
X(65107) lies on these lines: {30, 5667}, {74, 186}, {112, 2693}, {378, 61508}, {1075, 36162}, {1515, 47152}, {2071, 11587}, {6760, 37941}, {7575, 38595}, {9862, 10295}, {11589, 37948}, {14165, 55319}, {14508, 46106}, {30745, 57344}, {31510, 48364}, {32111, 57587}, {34147, 38719}, {34170, 64890}, {36164, 41204}, {37952, 38625}, {44427, 55141}, {51939, 56369}
X(65107) = reflection of X(i) in X(j) for these {i,j}: {1515, 47152}, {2693, 34109}, {7464, 2693}, {38595, 7575}, {48364, 31510}, {64890, 34170}
X(65107) = crossdifference of every pair of points on line {14401, 62350}
See Antreas Hatzipolakis and Peter Moses, euclid 6875.
X(65108) lies on these lines: {143, 10224}, {526, 32743}, {13371, 52534}
X(65108) = complement of the isogonal conjugate of X(25739)
X(65108) = medial isogonal conjugate of X(51393)
X(65108) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 51393}, {25739, 10}
See Antreas Hatzipolakis and Peter Moses, euclid 6875.
X(65109) lies on these lines: {26, 16391}, {526, 13289}, {577, 7502}, {1092, 1511}, {2070, 14918}, {3964, 6148}, {5961, 24978}, {7488, 19210}, {7525, 64219}, {14379, 37814}, {15646, 40082}
X(65109) = isogonal conjugate of X(25739)
X(65109) = isogonal conjugate of the anticomplement of X(51393)
X(65109) = X(1)-isoconjugate of X(25739)
X(65109) = X(3)-Dao conjugate of X(25739)
X(65109) = cevapoint of X(i) and X(j) for these (i,j): {3, 2070}, {216, 1495}, {2088, 34952}
X(65109) = trilinear pole of line {32320, 52743}
X(65109) = barycentric quotient X(6)/X(25739)
See Antreas Hatzipolakis and Peter Moses, euclid 6875.
X(65110) lies on this line: {1614, 13198}
See Antreas Hatzipolakis and Peter Moses, euclid 6876.
X(65111) lies on these lines: {5, 49}, {140, 40640}, {549, 10628}, {550, 11805}, {1154, 16223}, {1511, 20424}, {2914, 10018}, {3574, 34153}, {3628, 33565}, {5972, 11702}, {6689, 10264}, {11561, 14448}, {13392, 22051}, {14049, 38795}, {15034, 30531}, {21357, 34330}, {22251, 54157}, {30551, 32196}, {32609, 61715}, {38794, 43580}
X(65111) = midpoint of X(32609) and X(61715)
X(65111) = {X(5972),X(11702)}-harmonic conjugate of X(21230)
Contributed by Clark Kimberling and Peter Moses, August 31, 2024
Suppose that X = x(a,b,c) : : is a triangle center, and define
f(a,b,c) = x(a,-b,-c)
X*(a,b,c) = f(a,b,c) : f(b,c,a) : f(c,a,b)
The point X* = X*(a,b,c) is here introduced as the double-sign-image of X. The set of triangle centers is partitioned by the double-sign-image operation into two subsets:
(1) double-self-sign-images X, for which X*=X;
(2) triangle centers X such that X* ≠ X.
The appearance of (h,k) in the following list means that X(k) = X*(h): (8,2), (9,1), (11,1086), (21,100), (27,1897), (28,1783), (29,1897), (33,19), (40,1), (41,31), (43,1), (44,1100), (45,16777), (46,1), (55,6), (58,101), (59,7341), (60,1252), (78,63), (79,80), (80,79), (81,100), (86,190), (88,65112), (89,65113), (100,81), (101,58), (104,65115), (108,1396), (109,1412), (116,65116), (121,65117), (124,65118)
X(65112) lies on these lines: {1, 9352}, {2, 3715}, {6, 9335}, {7, 37358}, {11, 26842}, {21, 3337}, {42, 88}, {56, 51683}, {57, 1621}, {81, 244}, {100, 354}, {165, 62862}, {171, 3315}, {200, 3306}, {226, 31272}, {404, 18398}, {518, 9342}, {553, 5057}, {750, 62814}, {942, 4511}, {982, 5311}, {1001, 23958}, {1054, 62867}, {1125, 4880}, {1155, 29817}, {1255, 46901}, {1320, 3919}, {1647, 33097}, {1817, 50378}, {1961, 42038}, {2093, 62835}, {2095, 54445}, {2346, 58607}, {2975, 3338}, {3218, 3683}, {3245, 51103}, {3296, 5552}, {3333, 3872}, {3339, 3890}, {3616, 5708}, {3622, 5221}, {3673, 62479}, {3677, 9347}, {3681, 5437}, {3720, 18201}, {3754, 64201}, {3756, 33107}, {3757, 24593}, {3816, 17483}, {3817, 13243}, {3834, 29872}, {3848, 27065}, {3871, 50190}, {3874, 17531}, {3920, 3999}, {4003, 17019}, {4392, 37674}, {4413, 4430}, {4557, 16057}, {4675, 29680}, {4871, 32940}, {4881, 44840}, {4915, 62832}, {5046, 52783}, {5049, 63136}, {5173, 37789}, {5178, 12436}, {5260, 5439}, {5268, 62868}, {5272, 62795}, {5297, 21342}, {5303, 32636}, {5333, 6682}, {5577, 37993}, {5883, 54391}, {5885, 45977}, {5902, 62826}, {5904, 17535}, {6532, 64072}, {6533, 64401}, {6583, 6940}, {6763, 17536}, {6915, 12005}, {7073, 53525}, {7191, 37520}, {9345, 17591}, {9350, 49498}, {9776, 33108}, {9782, 24390}, {10580, 34611}, {10582, 62838}, {10707, 11019}, {11246, 17051}, {12009, 33858}, {12702, 17504}, {14008, 53564}, {15803, 62870}, {16474, 24168}, {16569, 54352}, {17063, 32911}, {17122, 17449}, {17124, 62865}, {17290, 29864}, {17450, 17596}, {17595, 29814}, {17605, 59377}, {17728, 31019}, {17763, 42053}, {18141, 33089}, {18193, 28606}, {21453, 56543}, {21454, 60883}, {24594, 59296}, {25502, 36263}, {26102, 62796}, {27002, 46897}, {29688, 63343}, {29824, 64010}, {30090, 62482}, {30831, 49676}, {30852, 59372}, {30947, 32933}, {30950, 33761}, {30957, 41242}, {31164, 31249}, {32635, 51073}, {32912, 37687}, {32913, 37680}, {33142, 40688}, {33148, 37634}, {36279, 38314}, {37604, 62855}, {37621, 58605}, {40619, 57785}, {41700, 51098}, {41711, 61156}, {42014, 62778}, {51816, 64203}, {53056, 62856}, {56010, 62869}, {58626, 63917}, {62815, 64112}, {62823, 63961}
X(65112) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 64149, 1621}, {100, 354, 62863}, {354, 27003, 100}, {942, 5253, 34195}, {1155, 58560, 29817}, {3218, 3742, 5284}, {3306, 10980, 3873}, {3337, 58565, 21}, {3919, 37602, 1320}, {9345, 17591, 62851}, {11019, 20292, 10707}
X(65113) lies on these lines: {2, 1155}, {8, 4973}, {42, 89}, {46, 4188}, {57, 3957}, {63, 61156}, {65, 37307}, {88, 3052}, {100, 4430}, {145, 37582}, {149, 5435}, {165, 4666}, {200, 3218}, {244, 26745}, {354, 61157}, {902, 9335}, {1054, 17127}, {1159, 19705}, {1621, 63212}, {1707, 63096}, {1770, 5154}, {1788, 37256}, {2093, 4881}, {2320, 3919}, {3219, 30393}, {3306, 63207}, {3550, 29818}, {3579, 3622}, {3616, 37572}, {3623, 32636}, {3741, 24344}, {3752, 30652}, {3832, 64118}, {3871, 37545}, {3872, 15803}, {3873, 64343}, {3890, 63206}, {3916, 46933}, {4189, 54318}, {4427, 46938}, {4880, 25440}, {5059, 64128}, {5218, 26842}, {5311, 17596}, {5603, 10225}, {5657, 41347}, {6377, 30651}, {6594, 60971}, {7226, 56010}, {8012, 56350}, {9812, 46684}, {10164, 31019}, {13587, 36279}, {17024, 37540}, {17126, 29821}, {17484, 59572}, {17572, 56288}, {17595, 29815}, {17601, 29814}, {18391, 36004}, {19537, 62830}, {20075, 64142}, {24616, 59296}, {25417, 46904}, {25961, 59665}, {26910, 51377}, {29817, 35445}, {30578, 44446}, {30991, 33067}, {31445, 46931}, {36846, 53057}, {51073, 56203}, {61153, 62863}, {62856, 63214}, {63211, 64149}
X(65113) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {46, 4188, 64047}, {100, 23958, 4430}, {165, 27003, 61155}, {1155, 9352, 2}
X(65114) lies on these lines: {4, 1407}, {28, 3937}, {81, 24470}, {104, 1042}, {225, 34051}, {269, 63399}, {443, 22129}, {601, 4334}, {631, 6180}, {651, 37582}, {943, 22053}, {1406, 4293}, {1427, 26877}, {1443, 37565}, {1870, 64132}, {2310, 10308}, {3073, 61376}, {4220, 64538}, {4303, 63291}, {4306, 6906}, {4320, 64021}, {5435, 8757}, {6198, 63995}, {6847, 62787}, {9316, 11491}, {11573, 63400}, {17074, 57282}, {17582, 55406}, {21454, 36742}, {26842, 64394}, {26910, 37231}, {26914, 37117}, {32911, 37545}, {52372, 53525}
X(65115) lies on these lines: {6, 144}, {7, 16502}, {75, 33854}, {81, 17302}, {86, 26807}, {100, 27633}, {105, 40934}, {142, 16488}, {192, 32911}, {278, 21148}, {346, 4383}, {390, 1191}, {614, 17872}, {651, 20228}, {1014, 1015}, {1104, 3100}, {1462, 3668}, {1616, 25878}, {1914, 28358}, {2298, 17023}, {2303, 17045}, {2999, 54359}, {3596, 17541}, {3663, 5299}, {3664, 16784}, {3744, 25887}, {3915, 27626}, {3945, 16781}, {3946, 16470}, {4000, 4329}, {4021, 5280}, {4223, 37819}, {4319, 7290}, {4366, 27644}, {4452, 63075}, {5276, 17321}, {7190, 16780}, {11349, 17053}, {16466, 64168}, {16997, 26143}, {17189, 17761}, {17280, 37680}, {17322, 37675}, {17358, 37687}, {17383, 37633}, {17481, 33146}, {17863, 40129}, {21769, 37659}, {26243, 26971}, {26267, 28023}, {26837, 33150}, {26959, 55094}, {28014, 62778}, {37666, 55909}
X(65116) lies on these lines: {2, 33952}, {10, 4920}, {11, 21208}, {21, 33870}, {31, 33866}, {58, 33865}, {115, 21138}, {116, 3125}, {214, 15903}, {325, 57029}, {386, 33949}, {595, 33867}, {712, 20541}, {812, 1015}, {993, 33869}, {1111, 3120}, {1358, 1365}, {1739, 33864}, {2643, 17886}, {2975, 33868}, {3290, 5074}, {3454, 17211}, {3674, 23537}, {3754, 24211}, {3924, 4056}, {4437, 22035}, {4568, 26582}, {4872, 30117}, {5195, 40091}, {5224, 33948}, {5883, 24241}, {6549, 58860}, {7247, 15955}, {7272, 49487}, {7743, 57033}, {16583, 40690}, {16732, 21429}, {17052, 18179}, {17170, 24159}, {17181, 24046}, {21272, 24222}, {24036, 53600}, {24172, 24387}, {24185, 58898}, {24254, 25345}, {26728, 64702}, {35080, 53167}
X(65116) = complement of X(33952)
X(65116) = circumcircle-of-outer-Napoleon-triangle-inverse of X(33967)
X(65116) = X(i)-Ceva conjugate of X(j) for these (i,j): {5224, 45746}, {33935, 23879}, {33949, 14349}
X(65116) = X(i)-isoconjugate of X(j) for these (i,j): {692, 835}, {1018, 58951}, {1110, 43531}, {1252, 2214}, {32739, 37218}
X(65116) = X(i)-Dao conjugate of X(j) for these (i,j): {514, 43531}, {661, 2214}, {1086, 835}, {6590, 2345}, {14349, 57280}, {39016, 101}, {40619, 37218}, {41849, 1016}, {47842, 612}, {62586, 765}
X(65116) = crosspoint of X(i) and X(j) for these (i,j): {5224, 45746}, {7199, 57923}
X(65116) = crosssum of X(7085) and X(32656)
X(65116) = crossdifference of every pair of points on line {4557, 32739}
X(65116) = barycentric product X(i)*X(j) for these {i,j}: {11, 33949}, {244, 33935}, {386, 23989}, {469, 1565}, {514, 45746}, {693, 14349}, {834, 3261}, {850, 52615}, {1086, 5224}, {1111, 28606}, {6545, 33948}, {7192, 23879}, {7199, 47842}, {16726, 42714}, {17205, 56810}, {21207, 61409}, {42664, 52619}
X(65116) = barycentric quotient X(i)/X(j) for these {i,j}: {244, 2214}, {386, 1252}, {469, 15742}, {514, 835}, {693, 37218}, {834, 101}, {1086, 43531}, {1565, 57876}, {3261, 57977}, {3733, 58951}, {3937, 57704}, {5224, 1016}, {5515, 2345}, {6545, 43927}, {8637, 32739}, {14349, 100}, {17205, 56047}, {23282, 4103}, {23879, 3952}, {23989, 57824}, {28606, 765}, {33935, 7035}, {33948, 6632}, {33949, 4998}, {42664, 4557}, {45746, 190}, {47842, 1018}, {52615, 110}, {61409, 4570}
X(65116) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1086, 1565, 17205}, {17211, 20911, 3454}
X(65117) lies on these lines: {34, 50065}, {81, 26837}, {86, 1086}, {192, 4415}, {940, 4329}, {980, 41007}, {1211, 56914}, {1848, 3666}, {3100, 64158}, {3485, 19765}, {3662, 18156}, {3663, 16888}, {3672, 3782}, {3727, 26543}, {6354, 44733}, {11997, 24210}, {17365, 17481}, {17720, 54359}, {18697, 51571}, {21442, 26601}, {25245, 26611}, {26789, 37633}, {51422, 54292}
X(65117) = crosspoint of X(3674) and X(59191)
X(65117) = barycentric product X(i)*X(j) for these {i,j}: {4357, 24210}, {16739, 23668}, {20911, 41015}, {48400, 53332}
X(65117) = barycentric quotient X(i)/X(j) for these {i,j}: {16680, 32736}, {24210, 1220}, {41015, 2298}, {48400, 4581}
X(65118) lies on these lines: {7, 1813}, {116, 16732}, {124, 53540}, {142, 16888}, {226, 16578}, {812, 1015}, {1111, 4466}, {1358, 1367}, {1731, 24781}, {1751, 15474}, {3675, 17059}, {3911, 21452}, {3942, 4089}, {4292, 51698}, {4858, 23989}, {16596, 40615}, {17058, 21138}, {24224, 58898}, {24235, 26933}, {40617, 46398}, {43040, 63844}
X(65118) = X(i)-Ceva conjugate of X(j) for these (i,j): {348, 3676}, {15474, 514}
X(65118) = X(i)-isoconjugate of X(j) for these (i,j): {1018, 58986}, {1110, 1751}, {1252, 2218}, {2149, 56146}, {2997, 23990}, {32739, 51566}
X(65118) = X(i)-Dao conjugate of X(j) for these (i,j): {514, 1751}, {650, 56146}, {661, 2218}, {4988, 41506}, {7649, 281}, {40615, 1305}, {40619, 51566}, {43060, 1724}
X(65118) = barycentric product X(i)*X(j) for these {i,j}: {57, 17878}, {348, 5190}, {579, 23989}, {693, 23800}, {1086, 18134}, {1111, 3868}, {1565, 5125}, {3261, 43060}, {3676, 20294}, {4306, 34387}, {8676, 52621}, {15413, 57173}, {16727, 22021}, {17094, 57072}, {17197, 56559}, {17205, 57808}, {18155, 51658}, {23100, 57217}, {58333, 59941}
X(65118) = barycentric quotient X(i)/X(j) for these {i,j}: {11, 56146}, {244, 2218}, {579, 1252}, {693, 51566}, {1086, 1751}, {1111, 2997}, {2352, 1110}, {3120, 41506}, {3190, 6065}, {3676, 1305}, {3733, 58986}, {3868, 765}, {4306, 59}, {4466, 40161}, {5125, 15742}, {5190, 281}, {8676, 3939}, {17205, 272}, {17878, 312}, {18134, 1016}, {20294, 3699}, {21132, 23289}, {23800, 100}, {23989, 40011}, {43060, 101}, {51658, 4551}, {57072, 36797}, {57092, 56183}, {57173, 1783}, {57217, 59149}, {58333, 4578}
X(65118) = {X(1086),X(1565)}-harmonic conjugate of X(17197)
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65119) lies on these lines: {1, 3}, {8, 10058}, {30, 26482}, {80, 5687}, {90, 200}, {100, 1479}, {119, 6284}, {378, 54194}, {474, 37735}, {498, 6941}, {944, 10087}, {956, 12641}, {1012, 37710}, {1259, 37711}, {1376, 7741}, {1478, 64076}, {1519, 6796}, {1621, 10200}, {1727, 5904}, {2057, 58328}, {2066, 35772}, {2164, 52405}, {2950, 15071}, {2964, 61397}, {2975, 13278}, {3085, 37437}, {3583, 11499}, {3585, 11501}, {3586, 11517}, {3632, 8668}, {3731, 11434}, {3871, 49169}, {3913, 37706}, {4187, 15813}, {4294, 5046}, {4302, 6256}, {4304, 10915}, {4305, 12648}, {4309, 6963}, {4421, 17556}, {4857, 11502}, {5218, 6949}, {5248, 24982}, {5281, 6960}, {5414, 35773}, {5533, 26492}, {6286, 12341}, {6735, 8715}, {6906, 12647}, {6932, 31452}, {6958, 10947}, {7676, 60896}, {7727, 13204}, {7951, 11496}, {7972, 12332}, {8068, 10525}, {10053, 38499}, {10056, 37430}, {10065, 38508}, {10086, 38498}, {10088, 38497}, {10483, 64074}, {10528, 15680}, {10956, 15338}, {10958, 63273}, {11114, 45701}, {11239, 37299}, {11500, 41698}, {12114, 37707}, {12189, 38556}, {12327, 19470}, {12381, 38555}, {12758, 30144}, {12953, 18524}, {13116, 38510}, {13118, 38571}, {13189, 38557}, {13217, 38566}, {13311, 38519}, {13313, 38567}, {15171, 26476}, {17516, 26378}, {18395, 62333}, {18491, 18514}, {22760, 41684}, {25440, 30384}, {26459, 44591}, {26465, 44590}, {36975, 37022}, {38506, 49207}, {41166, 63967}, {41389, 56176}, {58738, 64069}
X(65119) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5010, 37561}, {1, 7280, 5193}, {1, 59316, 3359}, {3, 3295, 1388}, {3, 26358, 1}, {35, 3746, 3612}, {35, 5697, 3}, {40, 32760, 36152}, {55, 5217, 37621}, {55, 10310, 11508}, {55, 11248, 1}, {55, 11507, 3746}, {55, 14882, 3295}, {1470, 3295, 1}, {1479, 26364, 39692}, {2646, 23340, 1}, {3057, 26285, 14793}, {3295, 35251, 1470}, {3601, 12703, 1}, {3746, 59327, 1}, {5217, 10965, 10269}, {6244, 7742, 37572}, {8069, 10306, 5903}, {10269, 10965, 1}, {10310, 11508, 36}, {11491, 12775, 6256}, {11510, 35238, 7280}, {13528, 64045, 59330}, {14798, 59328, 165}, {18395, 63281, 62333}, {22768, 37622, 1}, {26437, 44455, 11280}, {35448, 37579, 484}, {40292, 64951, 35}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65120) lies on these lines: {1, 3}, {8, 48713}, {80, 956}, {90, 62824}, {104, 4302}, {405, 37735}, {499, 6963}, {944, 48694}, {958, 7741}, {993, 30384}, {1478, 6932}, {1479, 2975}, {2066, 35784}, {3149, 37710}, {3254, 15446}, {3583, 22758}, {3585, 22759}, {4193, 5260}, {4294, 11240}, {4299, 37430}, {4342, 17010}, {4857, 22760}, {5046, 10527}, {5231, 5258}, {5251, 23708}, {5261, 6960}, {5288, 37711}, {5414, 35785}, {5433, 38069}, {5657, 10090}, {5731, 10074}, {6284, 32153}, {6286, 22781}, {6902, 47743}, {6905, 12647}, {6941, 26332}, {6949, 10532}, {7580, 36975}, {7727, 22586}, {7951, 22753}, {7972, 22775}, {8070, 10526}, {8543, 60895}, {8666, 10572}, {10058, 30305}, {10198, 17566}, {10483, 64077}, {10529, 15680}, {10785, 64268}, {10948, 31789}, {11194, 57006}, {11491, 12776}, {11500, 37707}, {11502, 41684}, {12190, 38556}, {12382, 38555}, {12513, 37706}, {12953, 26321}, {13119, 38571}, {13190, 38557}, {13218, 38566}, {13314, 38567}, {15175, 34485}, {15868, 48482}, {17516, 26377}, {18514, 18761}, {19470, 22583}, {20846, 51111}, {29676, 52242}, {37437, 64079}, {37708, 44425}, {38497, 49151}, {38498, 49147}, {38499, 49201}, {38508, 49203}, {38510, 49205}, {38519, 49153}
X(65120) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5010, 34486}, {1, 5536, 5903}, {1, 7280, 2078}, {1, 11012, 36152}, {1, 14794, 10267}, {56, 35239, 7280}, {999, 40292, 37525}, {1385, 18839, 1}, {2078, 7280, 36152}, {2078, 11012, 7280}, {2975, 13279, 45700}, {3057, 26286, 59334}, {3428, 22767, 36}, {8071, 22770, 5903}, {10680, 26357, 1}, {10966, 11249, 1}, {16203, 37601, 37616}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65121) lies on these lines: {1, 11251}, {11, 30}, {35, 402}, {55, 11911}, {80, 11900}, {1479, 4240}, {1650, 7741}, {2066, 35790}, {3585, 11905}, {3746, 11912}, {4302, 11845}, {4857, 11906}, {5010, 26451}, {5119, 11852}, {5414, 35791}, {5697, 12438}, {5903, 12696}, {6284, 32162}, {6286, 12797}, {7280, 35241}, {7727, 13212}, {7951, 11897}, {7972, 12752}, {10572, 49585}, {10591, 45289}, {11831, 37525}, {11910, 63210}, {12369, 19470}, {12626, 37706}, {12953, 18508}, {18507, 18514}, {24926, 51712}
X(65121) = reflection of X(36) in X(11913)
X(65121) = {X(11251),X(11909)}-harmonic conjugate of X(1)
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65122) lies on these lines: {1, 7387}, {3, 3583}, {12, 7530}, {22, 1479}, {23, 4294}, {24, 4302}, {25, 35}, {26, 6284}, {36, 10046}, {55, 7517}, {56, 12083}, {80, 8193}, {90, 5285}, {382, 9659}, {388, 37925}, {497, 12088}, {498, 10594}, {499, 10323}, {1598, 7951}, {2066, 35776}, {2937, 9668}, {3295, 5899}, {3585, 10831}, {3586, 9591}, {3746, 10037}, {3760, 15574}, {4293, 12087}, {4299, 12082}, {4330, 9714}, {4857, 10832}, {5010, 6642}, {5119, 8185}, {5217, 7506}, {5218, 34484}, {5225, 7512}, {5414, 35777}, {5432, 13861}, {5697, 9798}, {5903, 9911}, {6238, 32048}, {6286, 9920}, {6636, 10591}, {6644, 15338}, {7173, 7516}, {7280, 35243}, {7727, 12310}, {7972, 9913}, {8192, 63210}, {9580, 9626}, {9655, 37924}, {9667, 16266}, {9669, 13564}, {9683, 44623}, {9712, 11113}, {9818, 18514}, {9919, 19470}, {10058, 11337}, {10117, 12896}, {10386, 37947}, {10483, 39568}, {10572, 49553}, {10588, 52294}, {10826, 37557}, {11365, 37525}, {12410, 37706}, {15171, 17714}, {18378, 64951}, {20831, 40292}, {37198, 59319}, {37546, 37711}
X(65122) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2937, 9668, 9672}, {3295, 5899, 9658}, {7387, 10833, 1}, {10046, 11414, 36}, {10831, 18534, 3585}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65123) lies on these lines: {1, 3}, {80, 8197}, {1479, 5601}, {2066, 35778}, {3583, 8200}, {3585, 11869}, {4302, 11843}, {4857, 11871}, {5414, 35781}, {5599, 7741}, {6284, 32146}, {6286, 12480}, {7727, 13208}, {7951, 8196}, {7972, 12462}, {9835, 37707}, {10572, 49555}, {11872, 41684}, {12365, 19470}, {12454, 37706}, {12953, 45379}, {18495, 18514}
X(65123) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11252, 11873, 1}, {11822, 11879, 36}, {12458, 26393, 5903}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65124) lies on these lines: {1, 3}, {80, 8204}, {1479, 5602}, {2066, 35780}, {3583, 8207}, {3585, 11870}, {4302, 11844}, {4857, 11872}, {5414, 35779}, {5600, 7741}, {6284, 32147}, {6286, 12481}, {7727, 13209}, {7951, 8203}, {7972, 12463}, {9834, 37707}, {10572, 49556}, {11871, 41684}, {12366, 19470}, {12455, 37706}, {12953, 45380}, {18497, 18514}
X(65124) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11253, 11874, 1}, {11823, 11880, 36}, {12459, 26417, 5903}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65125) lies on these lines: {1, 1161}, {6, 35}, {36, 10048}, {55, 11916}, {80, 5689}, {499, 10517}, {1271, 1479}, {2066, 35792}, {3056, 42858}, {3583, 6215}, {3585, 10923}, {3641, 5697}, {3746, 10040}, {4302, 10783}, {4857, 10925}, {5010, 26341}, {5119, 5589}, {5414, 35795}, {5591, 7741}, {5605, 63210}, {5875, 6284}, {5903, 12697}, {6202, 7951}, {6277, 6286}, {7280, 35246}, {7725, 19470}, {7727, 7732}, {7972, 12753}, {8540, 44483}, {10572, 49586}, {11370, 37525}, {12627, 37706}, {12953, 26336}, {18509, 18514}, {44471, 45571}, {45552, 59325}
X(65125) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1161, 10927, 1}, {10048, 11824, 36}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65126) lies on these lines: {1, 1160}, {6, 35}, {36, 10049}, {55, 11917}, {80, 5688}, {499, 10518}, {1270, 1479}, {2066, 35794}, {3056, 42859}, {3583, 6214}, {3585, 10924}, {3640, 5697}, {3746, 10041}, {4302, 10784}, {4857, 10926}, {5010, 26348}, {5119, 5588}, {5414, 35793}, {5590, 7741}, {5604, 63210}, {5874, 6284}, {5903, 12698}, {6201, 7951}, {6276, 6286}, {7280, 35247}, {7726, 19470}, {7727, 7733}, {7972, 12754}, {8540, 44484}, {10572, 49587}, {11371, 37525}, {12628, 37706}, {12953, 26346}, {18511, 18514}, {44472, 45570}, {45553, 59325}
X(65126) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1160, 10928, 1}, {10049, 11825, 36}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65127) lies on these lines: {1, 9821}, {32, 35}, {36, 3056}, {55, 9301}, {80, 9857}, {350, 7811}, {499, 10357}, {1015, 46283}, {1479, 2896}, {2066, 35782}, {3096, 7741}, {3099, 5119}, {3583, 9996}, {3585, 10873}, {3746, 10038}, {4302, 9862}, {4857, 10874}, {5010, 26316}, {5414, 35783}, {5433, 42787}, {5697, 9941}, {5903, 12497}, {6284, 32151}, {6286, 9985}, {7280, 35248}, {7727, 13210}, {7951, 9993}, {7972, 12499}, {9984, 19470}, {9997, 63210}, {10572, 49561}, {11368, 37525}, {12495, 37706}, {12953, 18503}, {18500, 18514}
X(65127) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3098, 10047, 36}, {9821, 10877, 1}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65128) lies on these lines: {1, 4}, {3, 9817}, {5, 1040}, {9, 54299}, {10, 4194}, {11, 1595}, {12, 1596}, {19, 3731}, {24, 5010}, {25, 35}, {27, 17022}, {28, 30282}, {29, 936}, {30, 1038}, {36, 1593}, {40, 1859}, {43, 4207}, {46, 1721}, {53, 3553}, {55, 1598}, {56, 1597}, {57, 1887}, {65, 3426}, {78, 7518}, {79, 1041}, {80, 1039}, {84, 3075}, {90, 1707}, {92, 6765}, {108, 3361}, {165, 1753}, {200, 318}, {208, 1844}, {235, 7951}, {264, 3760}, {269, 4056}, {273, 4328}, {282, 3362}, {286, 58788}, {378, 7280}, {381, 1062}, {382, 1060}, {389, 6285}, {406, 1698}, {412, 5732}, {427, 5272}, {429, 1717}, {451, 64850}, {461, 8580}, {469, 2999}, {475, 3624}, {484, 1452}, {498, 3089}, {499, 3088}, {546, 8144}, {578, 10535}, {607, 5526}, {609, 1968}, {612, 4294}, {614, 7378}, {663, 39532}, {971, 41344}, {975, 4198}, {990, 1210}, {1013, 31424}, {1061, 5560}, {1063, 5561}, {1069, 44413}, {1074, 6835}, {1076, 10431}, {1103, 39531}, {1112, 7727}, {1119, 7274}, {1125, 4200}, {1172, 1743}, {1203, 3195}, {1214, 37411}, {1425, 32062}, {1454, 53524}, {1500, 33842}, {1585, 55482}, {1586, 55476}, {1697, 1871}, {1709, 1771}, {1712, 10398}, {1724, 11323}, {1728, 1754}, {1770, 60786}, {1824, 4186}, {1826, 3293}, {1828, 30323}, {1829, 5697}, {1841, 3247}, {1845, 35665}, {1854, 7686}, {1864, 5706}, {1869, 56191}, {1875, 3340}, {1876, 18398}, {1878, 11396}, {1883, 23708}, {1885, 10483}, {1888, 11529}, {1890, 23050}, {1897, 5342}, {1902, 1905}, {1906, 37719}, {1907, 37720}, {1909, 58782}, {1935, 18540}, {1936, 7330}, {2000, 64002}, {2066, 35764}, {2093, 11471}, {2207, 5280}, {2275, 33843}, {2276, 3199}, {2324, 21073}, {2900, 3191}, {2956, 3062}, {3072, 30223}, {3074, 7070}, {3083, 55569}, {3084, 55573}, {3085, 4319}, {3091, 3100}, {3092, 3301}, {3093, 3299}, {3192, 5312}, {3295, 18535}, {3345, 3469}, {3515, 59325}, {3516, 59319}, {3517, 5217}, {3543, 4296}, {3554, 6748}, {3559, 17194}, {3601, 7497}, {3612, 4185}, {3614, 44960}, {3627, 37729}, {3679, 46878}, {3746, 5198}, {3761, 54412}, {3830, 18447}, {3832, 9539}, {3839, 9538}, {3843, 9644}, {3853, 32047}, {3920, 7408}, {3961, 52082}, {4183, 56831}, {4196, 26102}, {4212, 25502}, {4213, 16569}, {4214, 11363}, {4219, 15803}, {4292, 37104}, {4302, 7487}, {4324, 18533}, {4330, 37122}, {4354, 6623}, {4653, 54340}, {4656, 10624}, {4668, 56877}, {4853, 4894}, {4855, 17519}, {4882, 7046}, {5130, 37711}, {5155, 12135}, {5160, 37984}, {5174, 9623}, {5204, 55571}, {5219, 15763}, {5248, 62971}, {5259, 62972}, {5287, 6994}, {5293, 28076}, {5297, 52301}, {5338, 31508}, {5414, 35765}, {5432, 21841}, {5433, 64474}, {5438, 37393}, {5446, 6238}, {5534, 39529}, {5563, 11403}, {5587, 54295}, {5709, 24430}, {5720, 7524}, {5927, 7078}, {6000, 19366}, {6048, 40987}, {6212, 7133}, {6213, 42013}, {6284, 6756}, {6286, 11576}, {6289, 12911}, {6290, 12910}, {6759, 11429}, {6985, 54320}, {7031, 10311}, {7069, 55104}, {7074, 58631}, {7102, 50581}, {7129, 40065}, {7191, 7409}, {7296, 14581}, {7354, 13488}, {7355, 13474}, {7414, 58887}, {7466, 62871}, {7510, 37531}, {7687, 10118}, {7972, 12138}, {7987, 37305}, {7995, 64761}, {8270, 41869}, {8583, 11109}, {8750, 51768}, {9595, 53419}, {9628, 10896}, {9629, 10895}, {9631, 42277}, {9632, 22615}, {9635, 43457}, {9638, 15033}, {9642, 61984}, {9645, 9818}, {9786, 10060}, {9899, 40953}, {9931, 22660}, {10110, 11436}, {10594, 52427}, {10857, 37417}, {10982, 19354}, {11496, 51361}, {12133, 19470}, {12565, 37420}, {12888, 46686}, {12896, 46682}, {12953, 18494}, {15338, 37458}, {16192, 37441}, {16228, 48307}, {16231, 42312}, {17102, 19541}, {17151, 54314}, {17555, 64673}, {19504, 62316}, {20837, 59338}, {21628, 51375}, {25440, 35973}, {26686, 35920}, {29571, 37102}, {30145, 51783}, {30265, 37421}, {30267, 55875}, {31448, 59229}, {31902, 54407}, {34484, 51817}, {34595, 52252}, {35194, 37584}, {36118, 62793}, {36121, 62178}, {36660, 56098}, {37368, 37692}, {37387, 59337}, {37391, 37618}, {37523, 41854}, {37529, 42385}, {37558, 50528}, {37694, 44225}, {38336, 57277}, {38462, 54396}, {40263, 60691}, {40971, 53053}, {46467, 48897}, {54305, 56317}, {55392, 63155}, {55572, 63756}
X(65128) = reflection of X(1038) in X(37696)
X(65128) = polar conjugate of X(64995)
X(65128) = polar conjugate of the isotomic conjugate of X(3305)
X(65128) = X(i)-isoconjugate of X(j) for these (i,j): {3, 3296}, {6, 30679}, {48, 64995}, {69, 61375}, {219, 65028}, {22129, 52188}
X(65128) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 30679}, {1249, 64995}, {36103, 3296}
X(65128) = barycentric product X(i)*X(j) for these {i,j}: {4, 3305}, {19, 42696}, {27, 3697}, {33, 52422}, {34, 42032}, {92, 3295}, {158, 55466}, {281, 7190}, {318, 52424}, {333, 53861}, {811, 58299}, {1783, 48268}, {1826, 63158}, {1897, 47965}, {6335, 48340}, {18535, 65029}, {52412, 56843}
X(65128) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 30679}, {4, 64995}, {19, 3296}, {34, 65028}, {1973, 61375}, {3295, 63}, {3305, 69}, {3697, 306}, {7190, 348}, {18535, 3306}, {42032, 3718}, {42696, 304}, {47965, 4025}, {48268, 15413}, {48340, 905}, {52422, 7182}, {52424, 77}, {53861, 226}, {55466, 326}, {56843, 52381}, {58299, 656}, {63158, 17206}
X(65128) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1750, 1745}, {1, 56824, 73}, {4, 33, 1}, {4, 6198, 34}, {4, 7952, 1838}, {4, 11392, 3585}, {5, 64054, 1040}, {33, 34, 6198}, {34, 6198, 1}, {318, 14004, 39585}, {381, 1062, 19372}, {406, 1861, 1698}, {546, 8144, 37697}, {1585, 55482, 65083}, {1593, 11399, 36}, {1753, 7412, 165}, {1824, 4186, 7713}, {1829, 17516, 54397}, {1862, 1904, 5090}, {1902, 1905, 5903}, {2654, 18446, 1}, {3627, 37729, 64053}, {5198, 7071, 11398}, {7071, 11398, 3746}, {46878, 56876, 3679}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65129) lies on these lines: {1, 3}, {9, 7741}, {10, 55870}, {11, 26921}, {63, 90}, {72, 52050}, {80, 57279}, {191, 9614}, {283, 5358}, {497, 920}, {498, 7162}, {499, 55104}, {1058, 7098}, {1071, 41685}, {1158, 12116}, {1512, 10827}, {1698, 50208}, {1709, 48482}, {1727, 26015}, {1768, 11920}, {1794, 39947}, {3218, 4294}, {3219, 10591}, {3583, 7330}, {3586, 6763}, {3719, 30171}, {3872, 56152}, {4299, 7284}, {4302, 63399}, {4324, 7171}, {4652, 10058}, {4857, 30223}, {5231, 37358}, {6284, 24467}, {6734, 10522}, {6762, 37706}, {7082, 9669}, {10039, 10532}, {10050, 54302}, {10393, 62859}, {10527, 12514}, {10529, 30305}, {10530, 11415}, {10572, 12649}, {10589, 26878}, {10624, 49627}, {10943, 12701}, {10957, 12699}, {11373, 16139}, {11570, 12520}, {12047, 55109}, {12758, 13279}, {13369, 41537}, {15298, 21617}, {15518, 60919}, {18514, 18540}, {23708, 26363}, {31435, 37735}, {37711, 49168}, {45287, 64079}, {48713, 64139}, {56418, 56535}, {60926, 61019}
X(65129) = reflection of X(1) in X(10966)
X(65129) = crosspoint of X(2994) and X(64979)
X(65129) = crosssum of X(2178) and X(61398)
X(65129) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 59342}, {1, 165, 14798}, {1, 5709, 46}, {1, 11012, 37618}, {1, 37625, 25415}, {1, 58887, 37579}, {1, 59316, 10267}, {3, 64046, 1}, {40, 57, 58887}, {40, 5697, 5119}, {40, 12704, 11249}, {40, 37611, 59340}, {40, 59336, 37572}, {55, 37532, 17700}, {57, 18398, 3338}, {63, 1479, 90}, {1454, 3295, 17699}, {3057, 10680, 1}, {3338, 5119, 3612}, {5709, 54408, 1}, {9957, 18967, 1}, {10267, 18839, 1}, {11249, 64043, 1}, {24474, 26357, 1}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65130) lies on these lines: {1, 6923}, {4, 30323}, {10, 1479}, {11, 35}, {30, 10949}, {36, 10948}, {55, 11928}, {79, 17625}, {80, 10914}, {149, 4861}, {355, 3583}, {496, 14803}, {497, 3612}, {498, 10598}, {1071, 12750}, {1376, 7741}, {1385, 13274}, {1709, 48482}, {1727, 10916}, {2066, 35796}, {3057, 10057}, {3585, 10944}, {3746, 10523}, {4302, 10785}, {5010, 26492}, {5086, 12758}, {5414, 35797}, {5533, 37561}, {5903, 12700}, {6284, 10943}, {6286, 12926}, {6922, 59328}, {6938, 15868}, {7280, 35249}, {7727, 13213}, {7951, 10893}, {7972, 12761}, {9670, 40292}, {10043, 30305}, {10058, 24387}, {10073, 37562}, {10087, 63964}, {10269, 41699}, {10483, 64725}, {10522, 37711}, {10531, 37692}, {10584, 20107}, {10827, 26333}, {10912, 37706}, {11235, 16370}, {11373, 37525}, {12371, 19470}, {12699, 45288}, {12953, 18519}, {14798, 15908}, {17614, 37735}, {17647, 30384}, {18514, 18516}, {22758, 40272}, {25542, 25973}, {25893, 41859}, {37707, 41698}, {37710, 45776}
X(65130) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1479, 3434, 10826}, {10525, 10947, 1}, {10948, 11826, 36}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65131) lies on these lines: {1, 6928}, {4, 5119}, {12, 30}, {36, 6922}, {55, 11929}, {65, 16153}, {72, 80}, {355, 3583}, {498, 6934}, {519, 1479}, {958, 7741}, {1478, 3612}, {1727, 64002}, {1837, 41686}, {2066, 35798}, {2478, 23708}, {3149, 7951}, {3338, 10629}, {3579, 13273}, {3746, 10954}, {3822, 35979}, {4302, 10786}, {4325, 14800}, {4354, 51889}, {4857, 10950}, {4861, 5046}, {5010, 26487}, {5080, 10572}, {5270, 11374}, {5414, 35799}, {5812, 5903}, {6284, 10942}, {6286, 12936}, {6734, 10522}, {6827, 37618}, {6840, 45287}, {6903, 21578}, {6923, 59316}, {7280, 35250}, {7354, 14803}, {7491, 32760}, {7727, 13214}, {7972, 12762}, {8068, 11012}, {10073, 64046}, {10320, 59339}, {10483, 37022}, {10590, 50695}, {10742, 41541}, {10895, 40292}, {10955, 15171}, {11113, 15843}, {11500, 41698}, {11826, 59328}, {12372, 19470}, {12635, 37706}, {12953, 18518}, {14798, 31789}, {16139, 56790}, {17857, 37821}, {18395, 26921}, {18513, 61763}, {18514, 18517}, {18961, 58887}, {26332, 37692}, {31799, 59322}, {37708, 48482}, {47032, 63211}, {52383, 52408}
X(65131) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1479, 3436, 37711}, {10523, 11827, 36}, {10526, 10953, 1}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65132) lies on these lines: {1, 3}, {80, 10915}, {497, 15867}, {498, 10596}, {946, 10087}, {1259, 64203}, {1479, 10528}, {1727, 3555}, {2066, 35816}, {3244, 10058}, {3299, 45642}, {3301, 45643}, {3583, 10942}, {3585, 10956}, {3871, 30384}, {3913, 10826}, {4302, 10805}, {4857, 10958}, {5259, 5554}, {5414, 35817}, {5552, 7741}, {5687, 23708}, {6284, 32213}, {6286, 13121}, {7727, 13217}, {7951, 10531}, {7972, 12775}, {10483, 64078}, {10572, 49626}, {10599, 26333}, {10955, 15171}, {11496, 37708}, {12381, 19470}, {12616, 12750}, {12648, 37706}, {12749, 64291}, {12758, 34772}, {12953, 18545}, {18514, 18542}, {21398, 56108}, {24982, 25542}, {25438, 27385}, {32537, 37711}, {34719, 45701}, {45393, 64056}, {49192, 51803}, {49204, 62316}
X(65132) = reflection of X(59322) in X(14798)
X(65132) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5010, 16203}, {1, 11010, 34339}, {1, 11248, 36}, {1, 12703, 5903}, {1, 23340, 11009}, {1, 26358, 3746}, {1, 59327, 5563}, {35, 37602, 14800}, {55, 12000, 1}, {3295, 44455, 11510}, {3746, 5697, 35}, {10679, 10965, 1}, {26358, 37622, 1}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65133) lies on these lines: {1, 3}, {4, 15868}, {30, 10949}, {72, 22560}, {80, 5288}, {498, 10597}, {956, 10826}, {958, 23708}, {1479, 8666}, {1512, 37710}, {2066, 35818}, {2323, 3204}, {2975, 30384}, {3149, 37708}, {3299, 45640}, {3301, 45641}, {3583, 10943}, {3585, 10957}, {4297, 10074}, {4302, 10806}, {4324, 38761}, {4857, 10959}, {5187, 5258}, {5251, 37735}, {5414, 35819}, {6284, 32214}, {6286, 13122}, {6931, 26363}, {6968, 26332}, {7727, 13218}, {7951, 10532}, {7972, 12776}, {10090, 11362}, {10094, 63132}, {10483, 64079}, {10572, 49627}, {10827, 22753}, {10948, 11827}, {11920, 63430}, {12382, 19470}, {12513, 37711}, {12649, 37706}, {12701, 32153}, {12750, 48694}, {12758, 56288}, {12953, 18543}, {16132, 41537}, {16155, 46816}, {18514, 18544}, {22376, 34139}, {24541, 25542}, {26377, 54397}, {37707, 44425}, {48713, 64056}, {49191, 51803}, {49203, 62316}, {52050, 57279}
X(65133) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5010, 16202}, {1, 7280, 11510}, {1, 11012, 14798}, {1, 11249, 36}, {1, 12704, 5903}, {1, 14794, 34486}, {1, 24474, 11009}, {1, 26357, 3746}, {35, 37602, 24926}, {36, 3746, 59334}, {36, 5697, 35}, {36, 59325, 59332}, {36, 59326, 59319}, {36, 59328, 3}, {55, 12001, 1}, {56, 5119, 14803}, {56, 58887, 36}, {2098, 26286, 32760}, {3428, 37618, 59321}, {5119, 14803, 35}, {5563, 59322, 36}, {7962, 59334, 3746}, {10680, 10966, 1}, {11012, 14798, 59319}, {11249, 35238, 35252}, {11510, 35252, 7280}, {14801, 14802, 10269}, {22767, 22770, 46}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65134) lies on these lines: {1, 30}, {2, 7302}, {3, 3583}, {4, 35}, {5, 5010}, {8, 37006}, {9, 59341}, {10, 11114}, {11, 550}, {12, 3627}, {20, 36}, {33, 6240}, {34, 18560}, {40, 80}, {41, 5134}, {46, 2955}, {55, 382}, {56, 1657}, {57, 4333}, {65, 28146}, {145, 535}, {149, 8666}, {165, 5445}, {172, 9664}, {191, 3419}, {202, 43633}, {203, 43632}, {350, 7802}, {354, 31795}, {355, 11010}, {376, 499}, {377, 5259}, {381, 5217}, {388, 4309}, {390, 49135}, {405, 41859}, {411, 10058}, {427, 7298}, {428, 5268}, {442, 59338}, {443, 25542}, {484, 1837}, {495, 62036}, {496, 15326}, {497, 3529}, {515, 5697}, {516, 5903}, {517, 6243}, {528, 3632}, {529, 3633}, {546, 5432}, {548, 5433}, {549, 7173}, {611, 48910}, {612, 34603}, {613, 48905}, {614, 52397}, {920, 59324}, {942, 28154}, {944, 32905}, {946, 37525}, {950, 1770}, {958, 50242}, {962, 11009}, {968, 63319}, {993, 15680}, {999, 4325}, {1001, 50239}, {1003, 30103}, {1040, 12605}, {1056, 11541}, {1058, 4317}, {1062, 18563}, {1124, 42264}, {1125, 17579}, {1203, 48837}, {1210, 37524}, {1250, 19107}, {1335, 42263}, {1428, 48898}, {1469, 29317}, {1478, 3146}, {1490, 52860}, {1656, 63756}, {1698, 11113}, {1699, 3612}, {1709, 64261}, {1737, 31730}, {1870, 4354}, {1898, 37585}, {1914, 7748}, {1936, 58738}, {2066, 35820}, {2067, 42266}, {2077, 6928}, {2078, 18961}, {2093, 37721}, {2099, 48661}, {2275, 7756}, {2276, 7747}, {2307, 42157}, {2330, 48901}, {2475, 5248}, {2477, 37495}, {2549, 5299}, {2646, 18393}, {2654, 4337}, {2777, 7355}, {2829, 7971}, {2886, 57002}, {3028, 34584}, {3035, 63752}, {3056, 29012}, {3057, 28160}, {3062, 5559}, {3070, 9660}, {3085, 3543}, {3244, 34611}, {3245, 6361}, {3295, 5073}, {3299, 6560}, {3301, 6561}, {3303, 9655}, {3304, 49137}, {3336, 5722}, {3434, 5258}, {3436, 48696}, {3522, 10591}, {3528, 10589}, {3534, 3582}, {3576, 37735}, {3579, 18395}, {3584, 3830}, {3600, 49140}, {3601, 37701}, {3614, 3845}, {3624, 11112}, {3626, 49719}, {3635, 34605}, {3663, 29263}, {3679, 57288}, {3760, 7750}, {3761, 32819}, {3825, 4188}, {3841, 16865}, {3853, 51817}, {3884, 16120}, {3901, 17768}, {3925, 50241}, {4018, 28534}, {4026, 50391}, {4189, 25639}, {4292, 6744}, {4293, 5059}, {4295, 5425}, {4297, 21842}, {4304, 12047}, {4305, 9812}, {4311, 51783}, {4314, 13407}, {4338, 11529}, {4366, 33256}, {4396, 63935}, {4668, 34606}, {4680, 7283}, {4867, 11415}, {4880, 12649}, {4995, 10592}, {5046, 25440}, {5057, 11015}, {5076, 31479}, {5080, 8715}, {5119, 5691}, {5141, 58404}, {5187, 31263}, {5229, 10056}, {5251, 6872}, {5252, 37563}, {5254, 7031}, {5261, 50691}, {5267, 11680}, {5272, 7667}, {5280, 7737}, {5281, 50688}, {5297, 62963}, {5298, 15686}, {5310, 7391}, {5322, 20062}, {5332, 7765}, {5353, 42085}, {5357, 42086}, {5414, 35821}, {5426, 28628}, {5442, 37428}, {5444, 8227}, {5526, 17732}, {5533, 38761}, {5541, 64087}, {5552, 31160}, {5560, 61524}, {5561, 5719}, {5587, 37290}, {5603, 24926}, {5692, 57287}, {5841, 7982}, {5886, 37616}, {5904, 64002}, {5925, 10076}, {6198, 34797}, {6238, 7727}, {6253, 10827}, {6256, 37000}, {6261, 34789}, {6285, 6286}, {6449, 13898}, {6450, 13955}, {6502, 42267}, {6645, 19696}, {6681, 37307}, {6767, 9657}, {6827, 59326}, {6836, 59327}, {6842, 59331}, {6850, 15931}, {6868, 59320}, {6910, 31262}, {6914, 14794}, {6916, 35202}, {6922, 24466}, {6923, 10902}, {6925, 14798}, {6934, 14803}, {6938, 48482}, {6941, 24042}, {6950, 63963}, {6971, 26086}, {6980, 33862}, {6985, 59334}, {7005, 42431}, {7006, 42432}, {7051, 42099}, {7127, 16964}, {7171, 17437}, {7288, 17538}, {7294, 15712}, {7373, 49139}, {7576, 54401}, {7580, 36152}, {7743, 37605}, {7823, 25264}, {7833, 26959}, {7841, 30104}, {7987, 23708}, {7988, 37281}, {7991, 11827}, {8068, 37406}, {8069, 37411}, {8070, 37356}, {8164, 62021}, {8167, 56997}, {8703, 10593}, {8727, 52837}, {9541, 13904}, {9581, 58887}, {9589, 25415}, {9597, 16784}, {9612, 37731}, {9614, 16173}, {9629, 18447}, {9646, 42284}, {9648, 13925}, {9666, 61752}, {9671, 15696}, {9672, 12083}, {9817, 31833}, {9833, 12950}, {9955, 37600}, {9956, 63211}, {9957, 28168}, {10039, 31673}, {10046, 21312}, {10053, 10723}, {10060, 64037}, {10065, 10733}, {10072, 11001}, {10085, 12750}, {10086, 10722}, {10087, 10728}, {10088, 10721}, {10090, 37403}, {10106, 28172}, {10199, 36005}, {10385, 62042}, {10386, 15888}, {10525, 11012}, {10535, 34785}, {10590, 17578}, {10624, 28164}, {10638, 19106}, {10735, 13116}, {10738, 26286}, {10831, 47527}, {10833, 12085}, {10944, 28186}, {10950, 28174}, {11111, 19854}, {11237, 15684}, {11238, 15681}, {11246, 12433}, {11280, 37740}, {11355, 29633}, {11359, 19881}, {11361, 27020}, {11374, 61703}, {11398, 44438}, {11399, 37196}, {11436, 13403}, {11461, 40242}, {11500, 41698}, {11571, 12743}, {12053, 21578}, {12103, 15325}, {12121, 12374}, {12185, 38730}, {12254, 51803}, {12383, 62316}, {12512, 15079}, {12514, 47033}, {12515, 53616}, {12589, 48873}, {12702, 41684}, {12904, 20127}, {13183, 38741}, {13273, 63281}, {13274, 38753}, {13311, 44988}, {13735, 19846}, {13743, 18407}, {13744, 23361}, {13905, 23249}, {13963, 23259}, {14192, 44292}, {14450, 62860}, {14784, 14802}, {14785, 14801}, {14795, 37437}, {14927, 39901}, {14986, 15683}, {15015, 25681}, {15071, 41685}, {15452, 22505}, {15689, 64894}, {15800, 47378}, {15950, 40273}, {16113, 37584}, {16117, 56790}, {16128, 41689}, {16502, 44526}, {16785, 43618}, {16828, 48814}, {17501, 19875}, {17537, 26030}, {17571, 31245}, {17576, 31418}, {17606, 31663}, {17609, 31776}, {17647, 41866}, {17861, 20291}, {18406, 37234}, {18455, 18562}, {18480, 37568}, {18492, 35445}, {18499, 18761}, {18527, 32636}, {18533, 54428}, {19373, 42100}, {19687, 26590}, {19695, 26561}, {19784, 48817}, {19836, 48813}, {19858, 49735}, {19863, 37038}, {20060, 25439}, {20067, 62825}, {20095, 56880}, {20292, 30143}, {20420, 30282}, {22615, 44622}, {22644, 31472}, {22802, 26888}, {24248, 29050}, {24467, 49176}, {24914, 37718}, {25512, 48816}, {25524, 56998}, {26105, 57000}, {26363, 31159}, {26629, 33229}, {26686, 33250}, {26725, 62829}, {28178, 37730}, {28202, 50193}, {28444, 45630}, {28459, 35242}, {30286, 34618}, {30362, 48890}, {31015, 53591}, {31294, 51624}, {31423, 51792}, {31451, 62203}, {31460, 53418}, {31499, 42273}, {31777, 63469}, {31799, 63468}, {32900, 34698}, {32929, 36974}, {33134, 63292}, {33878, 39892}, {34706, 57006}, {35206, 37191}, {36250, 62802}, {36707, 37586}, {36999, 40292}, {37080, 54342}, {37163, 52769}, {37398, 54287}, {37425, 39578}, {37430, 45035}, {37482, 38474}, {37557, 56960}, {37574, 37693}, {37576, 49130}, {37587, 37722}, {37697, 52070}, {37727, 64896}, {39900, 51212}, {41227, 52845}, {41709, 54422}, {41853, 59321}, {41858, 44229}, {42096, 54435}, {42097, 54436}, {42154, 54403}, {42155, 54402}, {42260, 44623}, {42261, 44624}, {43178, 64155}, {44447, 49168}, {47743, 62127}, {50190, 63999}, {52129, 64507}, {54154, 59318}, {59330, 63985}, {62840, 63370}
X(65134) = reflection of X(i) in X(j) for these {i,j}: {1, 6284}, {40, 7491}, {1770, 950}, {5903, 10572}, {5904, 64002}, {7354, 15171}, {7991, 11827}, {10483, 1}, {11571, 12743}, {11826, 31789}, {19470, 12896}, {34605, 34649}, {34690, 34611}, {37707, 5697}, {45287, 10624}, {59355, 51118}
X(65134) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16118, 57282}, {3, 3583, 7741}, {3, 12953, 3583}, {4, 35, 7951}, {4, 4302, 35}, {5, 15338, 5010}, {11, 550, 7280}, {12, 3627, 18513}, {20, 1479, 36}, {36, 1479, 37720}, {46, 3586, 37702}, {46, 64005, 15228}, {55, 382, 3585}, {55, 3585, 37719}, {56, 1657, 4316}, {56, 9668, 4857}, {165, 10826, 5445}, {376, 499, 59319}, {376, 5225, 499}, {382, 4330, 37719}, {496, 15704, 15326}, {497, 3529, 4299}, {497, 4299, 5563}, {950, 1770, 5902}, {1058, 4317, 37602}, {1478, 4294, 3746}, {1657, 9668, 56}, {1699, 3612, 5443}, {1737, 31730, 37572}, {2646, 22793, 18393}, {3058, 18990, 1}, {3146, 4294, 1478}, {3295, 5073, 12943}, {3295, 12943, 5270}, {3534, 9669, 5204}, {3583, 4324, 3}, {3585, 4330, 55}, {3586, 64005, 46}, {3830, 64951, 10895}, {4297, 30384, 21842}, {4304, 12047, 37571}, {4304, 51118, 12047}, {4316, 4857, 56}, {4324, 12953, 7741}, {5010, 18514, 5}, {5057, 11015, 22836}, {5080, 20066, 8715}, {5119, 5691, 37710}, {5204, 9669, 3582}, {5434, 15172, 1}, {6284, 7354, 15171}, {6361, 10573, 3245}, {7354, 15171, 1}, {7737, 9598, 5280}, {9612, 59337, 37731}, {9614, 37618, 16173}, {9670, 17800, 4325}, {10543, 39542, 1}, {10895, 64951, 3584}, {11826, 31789, 165}, {12701, 18481, 1}, {15228, 37702, 46}, {15680, 52367, 993}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65135) lies on these lines: {1, 3398}, {32, 35}, {36, 182}, {55, 11842}, {80, 10791}, {83, 7741}, {98, 7951}, {499, 10359}, {609, 1691}, {1479, 7787}, {2066, 35766}, {2080, 5010}, {2307, 54298}, {2330, 39750}, {3583, 10796}, {3585, 10797}, {3746, 10801}, {4302, 10788}, {4857, 10798}, {5119, 10789}, {5171, 59325}, {5414, 35767}, {5697, 12194}, {5903, 12197}, {6284, 32134}, {6286, 12208}, {7095, 16549}, {7127, 36759}, {7280, 12054}, {7727, 13193}, {7972, 12199}, {10349, 30103}, {10483, 12203}, {10572, 49545}, {10800, 63210}, {11364, 37525}, {12192, 19470}, {12195, 37706}, {12837, 26316}, {12953, 18501}, {18502, 18514}, {34396, 40790}, {37479, 59319}
X(65135) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {182, 10802, 36}, {3398, 10799, 1}, {10797, 14880, 3585}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65136) lies on these lines: {1, 8981}, {30, 9648}, {35, 3068}, {36, 9540}, {55, 13903}, {80, 13893}, {371, 7951}, {550, 31500}, {590, 7741}, {1151, 10483}, {1479, 8972}, {1587, 59325}, {1702, 5443}, {2066, 35812}, {3299, 5418}, {3311, 13954}, {3582, 31474}, {3583, 8976}, {3584, 18996}, {3585, 6221}, {3627, 9662}, {3746, 13904}, {4299, 43509}, {4302, 13886}, {4316, 6449}, {4324, 13665}, {4857, 13898}, {5010, 7583}, {5119, 13888}, {5326, 19116}, {5414, 35815}, {5442, 51842}, {5444, 18992}, {5697, 8983}, {5903, 13912}, {6284, 13925}, {6286, 8995}, {6407, 12943}, {7280, 19028}, {7727, 8998}, {7972, 13913}, {8994, 19470}, {9582, 15228}, {9583, 37710}, {9615, 36975}, {9646, 31454}, {9660, 43879}, {9663, 18990}, {9689, 50239}, {10572, 49618}, {12953, 45384}, {13883, 37525}, {13902, 63210}, {13911, 37706}, {16173, 31432}, {18393, 31439}, {18512, 63756}, {18514, 18538}, {19037, 31487}, {19066, 24926}, {19117, 52793}, {31499, 32787}, {37731, 51841}
X(65136) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6221, 13897, 3585}, {8981, 13901, 1}, {9540, 13905, 36}, {19028, 35255, 7280}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65137) lies on these lines: {1, 13958}, {35, 3069}, {36, 13935}, {55, 13961}, {80, 13947}, {372, 7951}, {615, 7741}, {1152, 10483}, {1479, 13941}, {1588, 59325}, {1703, 5443}, {2066, 35814}, {3301, 5420}, {3312, 13897}, {3583, 13951}, {3584, 18995}, {3585, 6398}, {3746, 13962}, {4299, 43510}, {4302, 13939}, {4316, 6450}, {4324, 13785}, {4857, 13955}, {5010, 7584}, {5119, 13942}, {5326, 19117}, {5414, 35813}, {5442, 51841}, {5444, 18991}, {5697, 13971}, {5903, 13975}, {6284, 13993}, {6286, 13986}, {6408, 12943}, {7280, 19027}, {7727, 13990}, {7972, 13977}, {9647, 52046}, {9649, 44682}, {9663, 12108}, {10572, 49619}, {12953, 45385}, {13936, 37525}, {13959, 63210}, {13969, 19470}, {13973, 37706}, {18510, 63756}, {18514, 18762}, {19065, 24926}, {19116, 52793}, {37731, 51842}
X(65137) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6398, 13954, 3585}, {13935, 13963, 36}, {13958, 13966, 1}, {19027, 35256, 7280}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65138) lies on these lines: {1, 3312}, {6, 35}, {36, 372}, {55, 6418}, {56, 6395}, {80, 13936}, {371, 59325}, {498, 7581}, {1124, 6432}, {1152, 59319}, {1335, 3594}, {1479, 7586}, {1505, 5299}, {1587, 7951}, {1703, 5903}, {2066, 35770}, {2275, 62242}, {2362, 5425}, {3056, 42832}, {3069, 7741}, {3077, 58738}, {3086, 42523}, {3245, 49227}, {3298, 6471}, {3299, 3746}, {3311, 5010}, {3582, 18966}, {3583, 7584}, {3584, 19028}, {3585, 19027}, {3612, 19004}, {4294, 63016}, {4302, 7582}, {4324, 42215}, {4857, 19029}, {5062, 5280}, {5119, 19003}, {5217, 6417}, {5259, 63072}, {5326, 13925}, {5432, 19117}, {5444, 8983}, {5445, 13975}, {5697, 18992}, {6199, 63756}, {6284, 19116}, {6286, 19095}, {6398, 7280}, {6428, 19038}, {6460, 10483}, {6501, 64951}, {7173, 13993}, {7583, 13958}, {7727, 19110}, {7968, 63210}, {7969, 24926}, {7972, 19081}, {8540, 44481}, {9647, 41946}, {9649, 33923}, {9663, 15712}, {9688, 19704}, {10041, 45582}, {10572, 49547}, {10591, 63035}, {10881, 54428}, {11009, 35774}, {12953, 18510}, {13665, 13954}, {13785, 18514}, {13904, 13935}, {13942, 23708}, {13962, 37720}, {13966, 19030}, {13971, 37735}, {14803, 26465}, {18398, 51842}, {18965, 35256}, {18991, 37525}, {19059, 19470}, {19065, 37706}, {25542, 31473}, {37006, 49602}, {37524, 51841}, {44474, 45570}, {49257, 51803}, {49269, 62316}
X(65138) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {372, 3301, 36}, {1587, 13963, 7951}, {3299, 5414, 3746}, {3312, 19037, 1}, {5414, 6420, 3299}, {6398, 18996, 7280}, {19027, 42216, 3585}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65139) lies on these lines: {1, 3311}, {6, 35}, {36, 371}, {55, 6417}, {56, 6199}, {80, 13883}, {372, 59325}, {484, 31439}, {498, 7582}, {548, 9662}, {549, 9648}, {1124, 3592}, {1151, 59319}, {1335, 6431}, {1479, 7585}, {1504, 5299}, {1588, 7951}, {1702, 5903}, {2066, 3301}, {2275, 62241}, {3056, 42833}, {3068, 7741}, {3076, 58738}, {3086, 42522}, {3245, 49226}, {3297, 6470}, {3312, 5010}, {3530, 31500}, {3582, 18965}, {3583, 7583}, {3584, 19027}, {3585, 19028}, {3612, 19003}, {4294, 63015}, {4302, 7581}, {4324, 42216}, {4857, 19030}, {5058, 5280}, {5119, 19004}, {5217, 6418}, {5326, 13993}, {5414, 35771}, {5425, 16232}, {5432, 19116}, {5444, 13971}, {5445, 13912}, {5697, 18991}, {6221, 7280}, {6284, 19117}, {6286, 19096}, {6395, 63756}, {6427, 19037}, {6459, 10483}, {6500, 64951}, {7173, 13925}, {7584, 13901}, {7727, 19111}, {7968, 24926}, {7969, 63210}, {7972, 19082}, {8540, 44482}, {8981, 19029}, {8983, 37735}, {9540, 13962}, {9583, 21842}, {9616, 37572}, {9689, 19537}, {9691, 64894}, {10040, 45583}, {10572, 49548}, {10591, 63023}, {10880, 54428}, {11009, 35775}, {12953, 18512}, {13665, 18514}, {13785, 13897}, {13888, 23708}, {13898, 31487}, {13904, 37720}, {14803, 26459}, {16785, 31471}, {18398, 51841}, {18966, 35255}, {18992, 37525}, {19060, 19470}, {19066, 37706}, {31499, 32788}, {37006, 49601}, {37524, 51842}, {44473, 45571}, {49256, 51803}, {49268, 62316}
X(65139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {371, 3299, 36}, {1588, 13905, 7951}, {2066, 3301, 3746}, {2066, 6419, 3301}, {3311, 19038, 1}, {3311, 31474, 18996}, {6221, 18995, 7280}, {18996, 19038, 31474}, {18996, 31474, 1}, {19028, 42215, 3585}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65140) lies on these lines: {1, 381}, {2, 35}, {3, 9671}, {4, 4317}, {5, 3058}, {11, 30}, {12, 5066}, {13, 5357}, {14, 5353}, {34, 62974}, {40, 11928}, {46, 50865}, {55, 5055}, {56, 3830}, {79, 553}, {80, 519}, {90, 3928}, {100, 31263}, {104, 24042}, {113, 6126}, {115, 16784}, {140, 4330}, {149, 3814}, {172, 14537}, {202, 42973}, {203, 42972}, {265, 7343}, {350, 7809}, {354, 61703}, {376, 499}, {388, 41099}, {390, 61924}, {484, 28198}, {495, 38071}, {496, 3585}, {497, 3545}, {498, 5071}, {515, 16173}, {517, 37718}, {528, 17533}, {539, 51803}, {542, 62316}, {546, 5270}, {547, 4995}, {549, 6284}, {551, 10572}, {611, 38072}, {613, 47353}, {614, 31133}, {946, 37702}, {950, 5443}, {960, 3679}, {999, 14269}, {1015, 39563}, {1056, 61967}, {1058, 41106}, {1125, 5441}, {1155, 28202}, {1203, 3017}, {1250, 37835}, {1319, 28208}, {1428, 11645}, {1478, 3839}, {1656, 9670}, {1699, 5902}, {1727, 28534}, {1737, 3245}, {1837, 3656}, {2043, 36461}, {2044, 36443}, {2077, 10738}, {2098, 50798}, {2241, 18362}, {2275, 11648}, {2307, 41108}, {3027, 22566}, {3056, 11178}, {3085, 61936}, {3086, 3543}, {3090, 4309}, {3091, 37719}, {3241, 37706}, {3295, 19709}, {3299, 35803}, {3301, 35802}, {3303, 3851}, {3304, 3843}, {3336, 22793}, {3524, 4302}, {3534, 7280}, {3586, 17532}, {3600, 61989}, {3612, 17528}, {3614, 11737}, {3624, 44217}, {3627, 4325}, {3628, 63273}, {3654, 12701}, {3655, 11376}, {3760, 7788}, {3817, 37701}, {3828, 10624}, {3829, 11113}, {3850, 15888}, {3911, 15228}, {3944, 36583}, {4187, 49732}, {4193, 49719}, {4293, 50687}, {4299, 15682}, {4304, 5444}, {4311, 50862}, {4324, 5433}, {4396, 63939}, {4654, 18398}, {4677, 30323}, {4880, 5057}, {4881, 32557}, {4999, 17525}, {5010, 5054}, {5046, 5258}, {5048, 9897}, {5056, 31452}, {5070, 64950}, {5119, 7308}, {5123, 5541}, {5131, 28146}, {5154, 8715}, {5193, 13273}, {5204, 15681}, {5217, 15694}, {5218, 61899}, {5229, 61980}, {5251, 11680}, {5253, 15679}, {5261, 61958}, {5265, 15640}, {5267, 15678}, {5272, 31152}, {5280, 7753}, {5281, 61906}, {5299, 5309}, {5313, 48842}, {5322, 62963}, {5326, 47599}, {5370, 37901}, {5425, 5722}, {5432, 15699}, {5442, 31730}, {5475, 16785}, {5537, 6882}, {5561, 18541}, {5603, 52850}, {5642, 12896}, {5655, 12904}, {5691, 10893}, {5903, 9581}, {5919, 38140}, {6054, 10070}, {6198, 62982}, {6321, 12351}, {6661, 30103}, {6702, 63136}, {6734, 16155}, {6767, 61948}, {6980, 34486}, {7005, 41121}, {7006, 41122}, {7051, 36970}, {7127, 16268}, {7288, 11001}, {7292, 10989}, {7294, 11812}, {7354, 15687}, {7373, 61974}, {7576, 54428}, {7704, 40257}, {7727, 9140}, {7739, 9599}, {7924, 26959}, {7972, 10711}, {7988, 59337}, {8227, 37571}, {8540, 64802}, {8724, 13183}, {9166, 10053}, {9612, 9844}, {9655, 61993}, {9656, 61970}, {9657, 61984}, {9660, 52045}, {9661, 41945}, {9672, 51519}, {9779, 15933}, {9817, 56965}, {9956, 37563}, {10046, 54994}, {10054, 14639}, {10058, 13587}, {10073, 50908}, {10077, 41043}, {10078, 41042}, {10086, 23234}, {10124, 52793}, {10199, 14800}, {10386, 61910}, {10523, 34746}, {10525, 59326}, {10543, 61272}, {10588, 61932}, {10590, 61954}, {10592, 61942}, {10598, 48482}, {10638, 37832}, {10706, 19470}, {10709, 52129}, {10827, 51785}, {10916, 17781}, {10948, 34697}, {11010, 17606}, {11112, 14803}, {11189, 23325}, {11236, 37711}, {11240, 34690}, {11269, 48870}, {11522, 37721}, {11632, 12185}, {12019, 41684}, {12047, 12563}, {12053, 37710}, {12100, 15338}, {12374, 20126}, {12571, 13407}, {12589, 20423}, {12647, 38074}, {12943, 37587}, {12951, 25164}, {12952, 25154}, {12956, 35197}, {14054, 28609}, {14793, 28444}, {14794, 28443}, {14893, 18990}, {14986, 61985}, {15031, 25303}, {15298, 38075}, {15701, 63756}, {15703, 64951}, {16118, 32636}, {16127, 18223}, {16371, 34706}, {16857, 40292}, {17530, 49736}, {17720, 48824}, {17721, 48819}, {17745, 24045}, {18455, 38458}, {18586, 36441}, {18587, 36459}, {18965, 52047}, {18966, 52048}, {18969, 22515}, {19373, 36969}, {19876, 61763}, {21620, 51074}, {21842, 50443}, {22461, 36250}, {24217, 48825}, {25524, 50397}, {26363, 31156}, {28224, 38141}, {28453, 37564}, {28459, 59320}, {28808, 48798}, {30171, 42033}, {30305, 53620}, {31181, 64054}, {31397, 38076}, {31479, 61933}, {31480, 61937}, {33106, 45897}, {33140, 46521}, {33176, 51087}, {34627, 37707}, {34628, 37618}, {34648, 45287}, {34719, 45701}, {36451, 36466}, {36975, 44675}, {37428, 59321}, {37524, 41869}, {37704, 51792}, {37731, 63999}, {37943, 52427}, {38073, 60923}, {39900, 59373}, {39901, 51023}, {41012, 47033}, {41496, 52374}, {45081, 61259}, {46028, 63288}, {50810, 54361}, {51817, 61887}, {54775, 65050}, {60759, 63281}, {62116, 64894}
X(65140) = midpoint of X(i) and X(j) for these {i,j}: {3582, 3583}, {10707, 37375}
X(65140) = reflection of X(i) in X(j) for these {i,j}: {36, 3582}, {3582, 11}, {4881, 32557}, {5131, 61649}, {31160, 37375}
X(65140) = crosspoint of X(903) and X(56947)
X(65140) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5560, 18525}, {4, 37720, 5563}, {5, 3058, 3584}, {5, 4857, 3746}, {11, 3583, 36}, {80, 30384, 63210}, {104, 24042, 52851}, {149, 3814, 48696}, {381, 9669, 11238}, {381, 11238, 1}, {496, 3845, 5434}, {497, 3545, 10056}, {546, 37722, 5270}, {547, 15171, 4995}, {1479, 7741, 35}, {1479, 10591, 7741}, {3058, 3584, 3746}, {3545, 10056, 7951}, {3584, 4857, 3058}, {3586, 23708, 37525}, {3845, 5434, 3585}, {4316, 15325, 36}, {4995, 7173, 547}, {5046, 24387, 5258}, {5066, 15170, 12}, {5071, 10385, 498}, {5176, 21630, 41702}, {5722, 18393, 5425}, {9614, 10826, 5697}, {9669, 10896, 1}, {10572, 37735, 24926}, {10896, 11238, 381}, {11235, 17556, 3679}, {17605, 18527, 1}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65141) lies on these lines: {1, 1656}, {2, 35}, {3, 18514}, {4, 59319}, {5, 36}, {10, 5330}, {11, 3628}, {12, 547}, {30, 7294}, {33, 52296}, {46, 7988}, {55, 5070}, {56, 5055}, {79, 3911}, {80, 1125}, {90, 5437}, {125, 62316}, {140, 3583}, {172, 7603}, {191, 5087}, {381, 7280}, {388, 499}, {392, 1698}, {404, 20107}, {442, 6667}, {484, 9955}, {495, 61900}, {496, 3584}, {497, 61886}, {498, 1058}, {546, 4316}, {549, 4324}, {614, 7571}, {632, 6284}, {946, 3245}, {993, 5154}, {999, 61905}, {1203, 45939}, {1209, 51803}, {1210, 37701}, {1385, 37006}, {1478, 5056}, {1506, 5280}, {1594, 54428}, {1621, 20104}, {1699, 37572}, {1727, 3838}, {1737, 5443}, {1770, 5442}, {2307, 37835}, {2475, 6681}, {2476, 14800}, {2646, 37718}, {2975, 31160}, {3058, 61885}, {3085, 46936}, {3086, 7486}, {3091, 10483}, {3295, 15703}, {3299, 10576}, {3301, 10577}, {3303, 61892}, {3304, 61903}, {3336, 17605}, {3337, 61649}, {3525, 4302}, {3526, 5010}, {3533, 5225}, {3545, 4299}, {3600, 61912}, {3612, 34595}, {3614, 5270}, {3616, 37706}, {3624, 10826}, {3634, 30384}, {3646, 5119}, {3679, 34710}, {3814, 5258}, {3847, 7483}, {3850, 15326}, {3851, 5204}, {3918, 12758}, {4193, 5251}, {4293, 15022}, {4309, 61881}, {4330, 16239}, {4857, 5432}, {4995, 47599}, {4999, 17533}, {5054, 12953}, {5071, 7288}, {5072, 12943}, {5079, 10895}, {5122, 16118}, {5141, 15446}, {5217, 46219}, {5218, 60781}, {5219, 18398}, {5229, 61921}, {5261, 61906}, {5267, 37375}, {5272, 7539}, {5274, 31452}, {5288, 11681}, {5298, 10109}, {5299, 7746}, {5326, 15171}, {5353, 16967}, {5357, 16966}, {5370, 7533}, {5425, 11375}, {5434, 61910}, {5441, 19878}, {5444, 10572}, {5533, 58421}, {5587, 21842}, {5777, 15017}, {5818, 37707}, {5886, 11009}, {5901, 41684}, {5902, 12709}, {5903, 8227}, {5904, 30852}, {6126, 12900}, {6668, 45310}, {6691, 17530}, {6825, 35202}, {6829, 14804}, {6831, 59321}, {6855, 59323}, {6862, 59327}, {6863, 15931}, {6879, 59322}, {6881, 8070}, {6882, 59320}, {6918, 36152}, {6920, 10090}, {6931, 26363}, {6933, 10200}, {6949, 44425}, {6958, 59326}, {6959, 14798}, {6971, 11012}, {6979, 34890}, {6980, 37561}, {7031, 37637}, {7051, 42914}, {7127, 42489}, {7292, 7570}, {7295, 56468}, {7373, 61901}, {7489, 14792}, {7727, 15059}, {7743, 37563}, {7972, 64008}, {7989, 37618}, {8068, 38319}, {8976, 13955}, {9579, 61265}, {9581, 37571}, {9614, 19872}, {9654, 37587}, {9655, 61920}, {9661, 42583}, {9668, 55858}, {9669, 55857}, {9670, 51817}, {9671, 55866}, {9897, 15178}, {10021, 56790}, {10039, 10172}, {10056, 47743}, {10058, 17531}, {10072, 10588}, {10171, 12047}, {10175, 37710}, {10198, 10584}, {10535, 32767}, {10590, 61914}, {10592, 61907}, {10624, 31253}, {11010, 11231}, {11019, 36946}, {11237, 61908}, {11238, 61887}, {11280, 51709}, {12812, 18990}, {13751, 56762}, {13898, 13951}, {14940, 52427}, {15228, 18483}, {15694, 63756}, {16853, 40292}, {16922, 27020}, {17005, 25264}, {17057, 19861}, {17647, 64012}, {17717, 37559}, {18393, 24914}, {18538, 18966}, {18762, 18965}, {19373, 42915}, {19470, 64101}, {19540, 39578}, {19875, 30323}, {19925, 36975}, {24160, 28096}, {24387, 27529}, {25055, 37711}, {25431, 29657}, {26959, 32967}, {30103, 32992}, {30104, 33249}, {30282, 50726}, {31231, 37524}, {31283, 64054}, {33176, 38176}, {34466, 38474}, {37582, 61703}, {37605, 38140}, {37722, 61894}, {38066, 63209}, {38109, 61534}, {38458, 64339}, {39900, 63119}, {40259, 48363}, {40663, 61272}, {41694, 60988}, {41872, 55867}, {51700, 62616}, {54002, 56805}, {55860, 64951}, {61877, 63273}, {61970, 64894}
X(65141) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3825, 5259}, {2, 7741, 35}, {5, 5433, 3585}, {10, 37735, 63210}, {80, 1125, 24926}, {140, 3583, 59325}, {140, 7173, 3583}, {498, 10589, 37720}, {499, 3090, 7951}, {499, 7951, 5563}, {946, 5445, 3245}, {1698, 23708, 5697}, {3086, 37719, 37602}, {3526, 10896, 5010}, {3585, 5433, 36}, {3614, 15325, 5270}, {3624, 10826, 37525}, {3851, 5204, 18513}, {5067, 10589, 498}, {5432, 10593, 4857}, {5886, 18395, 11009}, {6667, 52795, 442}, {6949, 63963, 44425}, {7504, 31272, 1125}, {10572, 19862, 5444}, {10593, 55856, 5432}, {11230, 17606, 1}, {15171, 48154, 5326}, {15325, 35018, 3614}, {24387, 27529, 48696}, {24914, 61268, 18393}, {31246, 31493, 19875}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65142) lies on these lines: {1, 140}, {2, 35}, {3, 3585}, {4, 59325}, {5, 5010}, {8, 24926}, {10, 3897}, {11, 632}, {12, 549}, {33, 10018}, {34, 37118}, {36, 388}, {40, 5443}, {46, 37701}, {55, 3526}, {56, 3584}, {57, 5442}, {79, 5219}, {80, 1698}, {90, 7308}, {165, 37692}, {172, 31501}, {215, 37471}, {226, 37524}, {355, 37616}, {381, 4324}, {390, 61863}, {484, 11375}, {495, 14869}, {496, 4995}, {497, 3533}, {499, 1058}, {550, 3614}, {609, 31460}, {615, 31499}, {950, 15079}, {993, 14800}, {999, 55863}, {1038, 10257}, {1040, 7542}, {1056, 61836}, {1125, 3890}, {1250, 33417}, {1329, 37298}, {1385, 37707}, {1478, 3523}, {1656, 3583}, {1697, 16173}, {1737, 37571}, {1788, 5425}, {1914, 31455}, {2077, 6863}, {2276, 7749}, {2307, 16241}, {2476, 20104}, {2478, 31263}, {2646, 11231}, {3056, 58445}, {3058, 10124}, {3074, 58738}, {3085, 5265}, {3086, 31452}, {3090, 4302}, {3147, 54428}, {3295, 3582}, {3299, 5420}, {3301, 5418}, {3303, 61850}, {3304, 61840}, {3305, 63286}, {3336, 11374}, {3337, 17718}, {3524, 4299}, {3530, 7354}, {3576, 31659}, {3579, 18393}, {3586, 19872}, {3600, 15721}, {3601, 37702}, {3616, 6681}, {3619, 39900}, {3624, 5119}, {3628, 6284}, {3632, 64123}, {3634, 10572}, {3647, 27131}, {3653, 37738}, {3654, 11280}, {3679, 4999}, {3760, 37688}, {3814, 4189}, {3815, 7031}, {3822, 4188}, {3911, 18398}, {4293, 61820}, {4304, 51073}, {4305, 19877}, {4309, 10589}, {4325, 9654}, {4330, 5070}, {4338, 63207}, {4848, 38068}, {4855, 47033}, {4857, 46219}, {5045, 52638}, {5047, 10058}, {5055, 12953}, {5131, 57282}, {5183, 31447}, {5204, 5270}, {5225, 61886}, {5229, 10299}, {5251, 6910}, {5253, 10197}, {5258, 5552}, {5261, 15708}, {5267, 11681}, {5268, 7499}, {5280, 31497}, {5281, 61856}, {5288, 45701}, {5298, 15713}, {5299, 31401}, {5312, 37646}, {5332, 9698}, {5353, 42092}, {5357, 42089}, {5434, 11812}, {5441, 6675}, {5498, 32047}, {5657, 11009}, {5660, 7330}, {5692, 27385}, {5818, 37006}, {5886, 11010}, {5902, 12563}, {5903, 6684}, {5904, 59491}, {5972, 7727}, {6174, 31260}, {6221, 13954}, {6238, 43839}, {6285, 64063}, {6286, 6689}, {6398, 13897}, {6668, 11112}, {6691, 25055}, {6699, 19470}, {6711, 52129}, {6713, 7972}, {6723, 12896}, {6767, 61849}, {6796, 6952}, {6825, 59326}, {6831, 59338}, {6833, 44425}, {6882, 59331}, {6883, 59334}, {6889, 59327}, {6891, 15931}, {6921, 10198}, {6922, 21155}, {6924, 14794}, {6926, 35202}, {6934, 52850}, {6950, 63964}, {6954, 59320}, {6958, 10902}, {6967, 14798}, {6971, 33862}, {6980, 26086}, {6989, 10320}, {7173, 55856}, {7288, 10056}, {7295, 56454}, {7298, 37439}, {7302, 62937}, {7352, 20191}, {7355, 25563}, {7356, 32348}, {7373, 61843}, {7907, 27020}, {7987, 10827}, {8068, 37438}, {8144, 10125}, {8227, 59316}, {8981, 13958}, {9352, 11263}, {9540, 13963}, {9588, 25415}, {9596, 21843}, {9624, 61533}, {9655, 15693}, {9656, 61799}, {9657, 61818}, {9660, 42583}, {9668, 55857}, {9669, 55858}, {9670, 55866}, {9671, 61878}, {9817, 16238}, {9897, 61562}, {9955, 63211}, {9956, 37600}, {10020, 64054}, {10039, 10165}, {10063, 61132}, {10072, 15709}, {10164, 12047}, {10385, 61861}, {10527, 48696}, {10578, 36946}, {10590, 15717}, {10592, 15326}, {10593, 55859}, {10624, 19878}, {10638, 33416}, {11011, 50821}, {11230, 37568}, {11237, 15701}, {11238, 61864}, {11277, 16118}, {11285, 30104}, {11376, 37563}, {11392, 35486}, {11540, 15170}, {12108, 18990}, {12758, 58453}, {13405, 50190}, {13901, 13966}, {13905, 13935}, {14782, 14801}, {14783, 14802}, {14986, 61848}, {15171, 16239}, {15172, 61858}, {15228, 35242}, {15452, 34127}, {15674, 46816}, {15888, 37587}, {15950, 61524}, {16408, 40292}, {16418, 31246}, {17004, 25264}, {17057, 17647}, {17527, 31235}, {17605, 31663}, {18968, 48378}, {19027, 35255}, {19028, 35256}, {19366, 44673}, {19369, 50977}, {19372, 52262}, {19547, 37557}, {19854, 59572}, {19861, 64012}, {19862, 30384}, {19875, 24953}, {20108, 50617}, {23329, 26888}, {23336, 64053}, {23708, 34595}, {24902, 24934}, {25669, 33174}, {26487, 37561}, {26492, 34486}, {26959, 33015}, {28198, 63213}, {29662, 33771}, {30103, 33233}, {30366, 56778}, {30389, 37708}, {31224, 64675}, {31434, 37618}, {31448, 37637}, {32612, 59382}, {34471, 41684}, {34577, 63676}, {36835, 38271}, {37119, 52427}, {37582, 61648}, {37602, 61842}, {37603, 37693}, {37696, 44452}, {37721, 53054}, {37722, 61853}, {37734, 38112}, {37737, 61614}, {41861, 61016}, {43238, 54403}, {43239, 54402}, {44535, 54416}, {47743, 61859}, {55297, 59333}, {55865, 65083}, {59372, 59476}, {61275, 61534}, {61276, 61521}, {61815, 64894}
X(65142) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 31423, 5445}, {2, 35, 7741}, {3, 7951, 10483}, {3, 10895, 4316}, {5, 15338, 18514}, {5, 52793, 5010}, {10, 37525, 37706}, {12, 549, 7280}, {36, 498, 37719}, {140, 5432, 1}, {381, 63756, 4324}, {496, 11539, 7294}, {498, 631, 36}, {498, 4317, 8164}, {499, 5218, 3746}, {550, 3614, 18513}, {1478, 3523, 59319}, {1656, 5217, 3583}, {1698, 3612, 80}, {1698, 15015, 5794}, {2646, 11231, 18395}, {3035, 7483, 1698}, {3524, 10588, 4299}, {3525, 5218, 499}, {3624, 5119, 37735}, {3911, 63259, 18398}, {4995, 7294, 496}, {5010, 18514, 15338}, {5204, 31479, 5270}, {5219, 58887, 79}, {5251, 14803, 15446}, {5326, 52793, 5}, {5442, 37731, 57}, {6174, 31260, 31419}, {6690, 13747, 3624}, {6910, 26364, 5251}, {7987, 10827, 36975}, {10039, 10165, 21842}, {10164, 12047, 37572}, {10592, 15712, 15326}, {10826, 30282, 5441}, {15720, 31479, 5204}, {24953, 47742, 19875}, {27529, 37291, 993}, {30282, 64850, 10826}, {34595, 61763, 23708}, {59491, 59719, 5904}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65143) lies on these lines: {1, 3}, {2, 64362}, {21, 16155}, {30, 10957}, {80, 5258}, {104, 12750}, {405, 23708}, {411, 45287}, {498, 6880}, {499, 6947}, {956, 37711}, {958, 10826}, {993, 1479}, {1387, 5428}, {1478, 6838}, {1727, 3916}, {2066, 45640}, {2174, 2323}, {2478, 5251}, {2975, 10572}, {3086, 6992}, {3149, 10827}, {3193, 4276}, {3476, 6876}, {3478, 56336}, {3583, 26470}, {3585, 26481}, {3651, 21578}, {3829, 11113}, {4189, 30305}, {4294, 10529}, {4302, 5450}, {4304, 49627}, {4313, 10936}, {4330, 37726}, {4857, 26475}, {4996, 12758}, {5218, 10597}, {5259, 24541}, {5267, 10058}, {5270, 64477}, {5288, 37706}, {5414, 45641}, {5441, 26015}, {5559, 64269}, {5836, 19524}, {6284, 10943}, {6286, 49191}, {6684, 10090}, {6796, 12647}, {6834, 7951}, {6905, 10039}, {6914, 12701}, {6921, 10198}, {6925, 10483}, {6936, 37720}, {6938, 48482}, {6962, 37719}, {6985, 22759}, {7727, 49203}, {7972, 48694}, {8068, 55296}, {8666, 12649}, {10053, 13190}, {10065, 13218}, {10086, 12190}, {10087, 12776}, {10088, 12382}, {10949, 15338}, {10959, 15171}, {11500, 37708}, {12575, 17010}, {12687, 59366}, {12749, 64188}, {12953, 18544}, {13116, 13314}, {13119, 13311}, {15446, 43740}, {18514, 45630}, {18515, 18543}, {19470, 49151}, {22345, 54081}, {22753, 37692}, {22775, 33597}, {23361, 45046}, {25542, 25875}, {29639, 35996}, {35206, 51629}, {37293, 63136}, {37308, 58679}, {37710, 44425}, {40950, 54428}, {41012, 51506}, {45230, 62859}, {46816, 57002}, {47033, 51432}, {51624, 51628}, {52769, 60926}, {62858, 64715}, {64268, 64292}
X(65143) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3, 14798}, {1, 165, 59342}, {1, 484, 64721}, {1, 5010, 10267}, {1, 5709, 5903}, {1, 7280, 37579}, {1, 11012, 36}, {1, 14794, 10902}, {1, 37616, 24299}, {1, 37625, 11009}, {3, 3057, 32760}, {3, 5119, 35}, {3, 10966, 1}, {3, 22767, 37618}, {35, 36, 14803}, {35, 5563, 37525}, {35, 63210, 3746}, {36, 59320, 59321}, {40, 14793, 59327}, {46, 3428, 59322}, {55, 10680, 1}, {56, 40292, 3612}, {56, 51816, 5563}, {1385, 64046, 1}, {1470, 35239, 58887}, {2077, 11010, 59328}, {3057, 32760, 3746}, {3295, 18967, 1}, {3428, 8071, 46}, {3612, 5045, 24926}, {3612, 40292, 35}, {4302, 15868, 12116}, {5267, 10624, 10058}, {10222, 30323, 63210}, {10902, 14794, 59325}, {11010, 14792, 2077}, {11249, 26357, 1}, {11507, 22770, 25415}, {11510, 34880, 37583}, {14796, 14797, 59334}, {14801, 14802, 3576}, {18839, 24299, 1}, {22767, 37618, 5563}, {35252, 40295, 11249}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65144) lies on these lines: {1, 3}, {30, 10956}, {80, 6735}, {90, 8668}, {100, 30384}, {119, 3583}, {498, 10531}, {515, 10087}, {518, 1727}, {519, 10058}, {528, 17533}, {535, 11239}, {1012, 37708}, {1376, 23708}, {1478, 64078}, {1479, 3814}, {1519, 44425}, {1878, 11400}, {2066, 45642}, {2222, 16869}, {2342, 15381}, {2743, 53618}, {3434, 6931}, {3582, 38069}, {3585, 26482}, {3871, 5176}, {3913, 37711}, {4294, 5080}, {4302, 12115}, {4304, 49626}, {4309, 15867}, {4511, 12758}, {4857, 26476}, {5123, 5687}, {5218, 10596}, {5248, 5554}, {5259, 24982}, {5288, 15446}, {5414, 45643}, {5440, 13205}, {5533, 55297}, {5540, 60419}, {5842, 41698}, {6256, 37000}, {6284, 10942}, {6286, 49192}, {6968, 7951}, {6977, 15868}, {7727, 49204}, {7972, 48695}, {9037, 12594}, {10053, 13189}, {10065, 13217}, {10086, 12189}, {10088, 12381}, {10483, 64076}, {10624, 11813}, {10827, 11496}, {10955, 63273}, {10958, 15171}, {11491, 12608}, {12648, 25439}, {12701, 32141}, {12751, 37006}, {12953, 18542}, {13116, 13313}, {13118, 13311}, {15558, 54192}, {18499, 18514}, {19470, 49152}, {22835, 37692}, {28534, 42885}, {31160, 45701}, {35204, 39776}, {36976, 60896}, {37706, 49169}, {41684, 63281}, {44669, 46816}, {51433, 51506}, {63136, 64745}
X(65144) = reflection of X(i) in X(j) for these {i,j}: {36, 32760}, {32760, 55}
X(65144) = circumcircle inverse of X(58887)
X(65144) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 35, 14803}, {1, 484, 18838}, {1, 2077, 36}, {1, 5010, 10269}, {1, 11010, 37562}, {1, 11248, 59327}, {1, 37616, 24927}, {1, 49163, 5903}, {1, 59316, 59333}, {3, 10965, 1}, {35, 63210, 36}, {40, 14798, 59321}, {55, 5119, 35}, {55, 10679, 1}, {484, 2078, 36}, {1381, 1382, 58887}, {3295, 11509, 1}, {3295, 35000, 1319}, {5048, 30323, 63210}, {5570, 13528, 46}, {5597, 26424, 1}, {5598, 26400, 1}, {6735, 25438, 48696}, {7991, 36152, 59322}, {8069, 25415, 5563}, {10087, 12775, 12749}, {10306, 11508, 46}, {10679, 11248, 12703}, {10679, 35251, 44455}, {11248, 26358, 1}, {11510, 35448, 58887}, {12000, 22768, 1}, {12000, 64951, 22768}, {14801, 14802, 59332}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65145) lies on these lines: {1, 9739}, {35, 372}, {36, 45498}, {55, 45578}, {80, 45546}, {182, 5010}, {499, 45522}, {641, 7741}, {1479, 45508}, {3583, 45554}, {3585, 45560}, {3746, 45580}, {4302, 45510}, {4857, 45562}, {5119, 45530}, {5217, 45410}, {5414, 45565}, {5697, 45715}, {5903, 48740}, {6284, 48772}, {6286, 48774}, {7280, 7690}, {7727, 48786}, {7951, 45544}, {7972, 48686}, {10572, 48764}, {10987, 62205}, {12953, 45377}, {18514, 45542}, {19470, 48730}, {37525, 45500}, {37706, 48746}, {45553, 59325}, {45572, 63210}
X(65145) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9739, 45570, 1}, {45498, 45582, 36}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65146) lies on these lines: {1, 9738}, {35, 371}, {36, 45499}, {55, 45579}, {80, 45547}, {182, 5010}, {499, 45523}, {642, 7741}, {1479, 45509}, {2066, 45564}, {3583, 45555}, {3585, 45561}, {3746, 45581}, {4302, 45511}, {4857, 45563}, {5119, 45531}, {5217, 45411}, {5697, 45716}, {5903, 48741}, {6284, 48773}, {6286, 48775}, {7280, 7692}, {7727, 48787}, {7951, 45545}, {7972, 48687}, {10572, 48765}, {10987, 62206}, {12953, 45378}, {18514, 45543}, {19470, 48731}, {37525, 45501}, {37706, 48747}, {45552, 59325}, {45573, 63210}
X(65146) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9738, 45571, 1}, {45499, 45583, 36}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65147) lies on these lines: {1, 371}, {3, 3299}, {4, 13905}, {5, 13901}, {6, 35}, {11, 8981}, {12, 42215}, {30, 19028}, {33, 10880}, {36, 1124}, {46, 9616}, {55, 3301}, {56, 6221}, {65, 31439}, {80, 13911}, {140, 19029}, {172, 9675}, {372, 5010}, {381, 13897}, {390, 42522}, {484, 2362}, {485, 3583}, {496, 18965}, {497, 13904}, {498, 1588}, {499, 9540}, {549, 18966}, {590, 7741}, {609, 12963}, {615, 31499}, {631, 13962}, {1040, 10897}, {1062, 18457}, {1152, 59325}, {1335, 3592}, {1378, 5251}, {1478, 6459}, {1479, 3068}, {1504, 1914}, {1587, 4302}, {1703, 59316}, {1737, 13912}, {2241, 62241}, {2275, 62206}, {2276, 5058}, {2307, 51728}, {2330, 45571}, {3070, 9660}, {3071, 7951}, {3083, 55566}, {3245, 38235}, {3295, 6199}, {3297, 5563}, {3304, 6447}, {3312, 5217}, {3364, 7127}, {3467, 7133}, {3526, 13955}, {3584, 44622}, {3585, 6561}, {3612, 18992}, {3679, 31453}, {4293, 43512}, {4294, 7585}, {4299, 9541}, {4304, 49548}, {4316, 42260}, {4324, 6560}, {4325, 9681}, {4857, 44623}, {5119, 18991}, {5204, 6449}, {5218, 7582}, {5225, 13886}, {5258, 9678}, {5265, 9542}, {5280, 6424}, {5299, 6422}, {5414, 6419}, {5415, 19004}, {5418, 44624}, {5432, 7584}, {5433, 9648}, {5434, 52047}, {5533, 13913}, {5697, 7969}, {5903, 49226}, {6200, 6502}, {6284, 7583}, {6286, 49256}, {6398, 63756}, {6409, 59319}, {6417, 19037}, {6427, 64950}, {6453, 35769}, {6564, 18514}, {7288, 43509}, {7296, 62219}, {7727, 49268}, {7968, 37525}, {7972, 48700}, {8375, 16785}, {8396, 10040}, {8540, 44656}, {8972, 10591}, {8976, 10896}, {8983, 30384}, {9582, 51842}, {9585, 13462}, {9614, 13888}, {9615, 37618}, {9647, 41945}, {9661, 31454}, {9662, 15326}, {9669, 13898}, {9670, 31487}, {9679, 31473}, {9688, 11194}, {9897, 35882}, {10053, 19109}, {10058, 19113}, {10065, 19111}, {10086, 19056}, {10087, 19082}, {10088, 19060}, {10483, 42258}, {10572, 13883}, {10588, 23273}, {10826, 13893}, {11010, 35774}, {11265, 64054}, {12896, 46688}, {12953, 13665}, {13116, 19115}, {13311, 19094}, {13389, 47057}, {13922, 39692}, {13954, 18510}, {13958, 19116}, {13966, 52793}, {14803, 19047}, {15171, 19030}, {15338, 42216}, {18513, 35821}, {19003, 30282}, {19470, 49216}, {24926, 44636}, {25440, 63072}, {26458, 44591}, {26465, 44590}, {31440, 37721}, {35771, 51817}, {35802, 35815}, {35803, 35812}, {37706, 49232}, {44635, 63210}
X(65147) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 19038, 3299}, {55, 3311, 3301}, {371, 2066, 1}, {371, 35808, 2067}, {1124, 1151, 36}, {2066, 2067, 35808}, {2067, 35808, 1}, {3071, 9646, 7951}, {3295, 6199, 18996}, {5218, 7582, 13963}, {5433, 9648, 35255}, {6200, 6502, 7280}, {6221, 31474, 56}, {6417, 64951, 19037}, {6424, 31459, 5280}, {6561, 31472, 3585}, {9541, 31408, 4299}, {9582, 51842, 58887}, {9583, 31432, 1}, {9669, 13903, 13898}, {9675, 31471, 172}, {9681, 31475, 4325}
See Antreas Hatzipolakis and Peter Moses, euclid 6892.
X(65148) lies on these lines: {1, 372}, {3, 3301}, {4, 13963}, {5, 13958}, {6, 35}, {11, 13966}, {12, 42216}, {30, 19027}, {33, 10881}, {36, 1152}, {55, 3299}, {56, 6398}, {80, 13973}, {140, 19030}, {371, 5010}, {381, 13954}, {390, 42523}, {484, 16232}, {486, 3583}, {496, 18966}, {497, 13962}, {498, 1587}, {499, 13935}, {549, 18965}, {609, 12968}, {615, 7741}, {631, 13904}, {1040, 10898}, {1062, 18459}, {1124, 3594}, {1151, 59325}, {1377, 5251}, {1478, 6460}, {1479, 3069}, {1505, 1914}, {1588, 4302}, {1702, 59316}, {1737, 13975}, {2066, 6420}, {2067, 6396}, {2241, 62242}, {2275, 62205}, {2276, 5062}, {2330, 45570}, {3070, 7951}, {3084, 55567}, {3295, 6395}, {3298, 5563}, {3304, 6448}, {3311, 5217}, {3365, 7127}, {3467, 42013}, {3526, 13898}, {3584, 31472}, {3585, 6560}, {3612, 18991}, {4293, 43511}, {4294, 7586}, {4304, 49547}, {4316, 42261}, {4324, 6561}, {4857, 44624}, {5119, 18992}, {5204, 6450}, {5218, 7581}, {5225, 13939}, {5248, 63072}, {5259, 31473}, {5280, 6423}, {5299, 6421}, {5408, 65083}, {5416, 19003}, {5420, 44623}, {5432, 7583}, {5433, 35256}, {5434, 52048}, {5533, 13977}, {5697, 7968}, {5903, 49227}, {6221, 63756}, {6284, 7584}, {6286, 49257}, {6410, 59319}, {6418, 19038}, {6428, 64950}, {6454, 35768}, {6565, 18514}, {7288, 43510}, {7296, 62220}, {7727, 49269}, {7969, 37525}, {7972, 48701}, {8376, 16785}, {8416, 10041}, {8540, 44657}, {8981, 52793}, {9614, 13942}, {9669, 13955}, {9897, 35883}, {10053, 19108}, {10056, 31408}, {10058, 19112}, {10065, 19110}, {10086, 19055}, {10087, 19081}, {10088, 19059}, {10483, 42259}, {10572, 13936}, {10588, 23267}, {10591, 13941}, {10826, 13947}, {10896, 13951}, {11010, 35775}, {11266, 64054}, {12896, 46689}, {12953, 13785}, {13116, 19114}, {13311, 19093}, {13388, 47057}, {13897, 18512}, {13901, 19117}, {13971, 30384}, {13991, 39692}, {14803, 19048}, {15171, 19029}, {15338, 42215}, {18513, 35820}, {19004, 30282}, {19470, 49217}, {19854, 31413}, {24926, 44635}, {26459, 44591}, {26464, 44590}, {31411, 31497}, {31439, 63211}, {31499, 32787}, {35770, 51817}, {35802, 35813}, {35803, 35814}, {37706, 49233}, {44636, 63210}, {51841, 58887}
X(65148) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 19037, 3301}, {55, 3312, 3299}, {372, 5414, 1}, {372, 35809, 6502}, {1152, 1335, 36}, {2067, 6396, 7280}, {3295, 6395, 18995}, {5218, 7581, 13905}, {5414, 6502, 35809}, {6418, 64951, 19038}, {6502, 35809, 1}, {6560, 44622, 3585}, {9669, 13961, 13955}
See Antreas Hatzipolakis and Ivan Pavlov, euclid 6894.
X(65149) lies on these lines: {2, 13470}, {3, 161}, {4, 567}, {5, 26882}, {20, 30522}, {25, 43821}, {26, 265}, {30, 5889}, {49, 18569}, {54, 44288}, {113, 45185}, {156, 3153}, {184, 31724}, {381, 61139}, {382, 1181}, {550, 11454}, {568, 6146}, {1147, 7574}, {1154, 34799}, {1351, 5073}, {1498, 7728}, {1503, 18438}, {1593, 64757}, {1614, 18377}, {1656, 45286}, {1657, 10620}, {1658, 25739}, {2072, 34782}, {2883, 18323}, {2937, 9927}, {3060, 45970}, {3146, 61299}, {3521, 35480}, {3575, 37481}, {3581, 25738}, {3627, 11423}, {3830, 11426}, {3843, 13419}, {5076, 61744}, {5576, 14805}, {5944, 7577}, {5946, 11565}, {6000, 18562}, {6759, 18403}, {7502, 58922}, {7517, 18396}, {7540, 12241}, {7575, 26917}, {9781, 43575}, {9833, 10540}, {10018, 45622}, {10024, 18430}, {10224, 11464}, {10254, 18383}, {10255, 10282}, {10298, 13561}, {10574, 45971}, {10575, 18565}, {11412, 15100}, {11413, 12121}, {11422, 20424}, {11449, 37938}, {11456, 52843}, {11468, 15332}, {11550, 14130}, {11572, 18475}, {11576, 13630}, {11597, 32354}, {11645, 50649}, {11745, 45967}, {11819, 12022}, {12083, 12293}, {12118, 37477}, {12161, 15800}, {12162, 18564}, {12225, 18436}, {12290, 40241}, {12605, 18435}, {13406, 18394}, {13434, 63672}, {13491, 34797}, {14118, 34514}, {14516, 23039}, {14790, 37495}, {15043, 38322}, {15061, 32534}, {15331, 23294}, {15694, 44862}, {16013, 33282}, {16659, 52070}, {17712, 62100}, {17714, 50435}, {18350, 18531}, {18378, 18390}, {18392, 61750}, {18420, 37471}, {18445, 64717}, {18494, 36753}, {19357, 61711}, {19467, 31723}, {19506, 40276}, {22115, 37444}, {22658, 22808}, {31074, 43394}, {31833, 40280}, {32903, 43907}, {34350, 64624}, {35602, 64182}, {36201, 48672}, {37484, 44665}, {38444, 61702}, {43818, 62967}, {44263, 52525}, {50461, 61751}
X(65149) = midpoint of X(i) and X(j) for these (i, j): midpoint of X(i) and X(j) for these {i,j}: {12279, 40242}, {12289, 64718}, {12290, 40241}
X(65149) = reflection of X(i) in X(j) for these {i,j}: {3, 11750}, {382, 21659}, {5889, 45731}, {6243, 44076}, {12278, 550}, {16659, 52070}, {18436, 12225}, {18439, 18563}, {18565, 10575}, {34783, 34224}, {34797, 13491}, {64032, 5}, {64036, 12605}
X(65149) = pole of line {7488, 23039} with respect to the Stammler hyperbola
X(65149) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 32140, 63392}, {30, 34224, 34783}, {30, 44076, 6243}, {30, 45731, 5889}, {1503, 18563, 18439}, {9833, 18404, 10540}, {10024, 41362, 18430}, {11750, 18400, 3}, {12279, 40242, 30}, {12605, 64036, 18435}, {18394, 26881, 13406}, {19467, 31723, 37472}, {21659, 44407, 382}, {25739, 41482, 1658}, {32345, 64037, 18381}
See Antreas Hatzipolakis and Ivan Pavlov, euclid 6894.
X(65150) lies on the circumconic {{A, B, C, X(598), X(46672)}} and these lines: {2, 187}, {8352, 12505}, {11159, 46672}, {12506, 47061}, {31961, 35955}
See Kadir Altintas and Ercole Suppa, euclid 6895.
X(65151) lies on these lines: {2, 5656}, {3, 66}, {4, 74}, {5, 64}, {6, 64474}, {11, 10060}, {12, 10076}, {20, 11454}, {24, 16658}, {25, 16654}, {30, 1853}, {52, 58492}, {68, 12084}, {69, 37480}, {113, 15113}, {140, 1498}, {146, 32743}, {154, 549}, {182, 41719}, {184, 13399}, {185, 3541}, {186, 31383}, {265, 11598}, {343, 21312}, {355, 12262}, {376, 11204}, {378, 1899}, {381, 15311}, {382, 5894}, {389, 3088}, {394, 47090}, {427, 10605}, {459, 36876}, {485, 49251}, {486, 49250}, {498, 7355}, {499, 6285}, {523, 62665}, {546, 5895}, {547, 64714}, {548, 17845}, {550, 8567}, {568, 2781}, {578, 14912}, {631, 5651}, {632, 58795}, {1176, 23042}, {1181, 61690}, {1192 ,6756}, {1350, 44683}, {1351, 23326}, {1370, 63425}, {1495, 35486}, {1593, 16657}, {1595, 9786}, {1596, 26958}, {1597, 13567}, {1656, 2883}, {1657, 41362}, {1971, 21843}, {1992, 10250}, {2071, 11442}, {2192, 15325}, {2393, 35704}, {2697, 2764}, {2892, 32305}, {2935, 10264}, {3089, 13474}, {3090, 6225}, {3091, 7703}, {3098, 36851}, {3146, 18383}, {3147, 26883}, {3311, 8991}, {3312, 13980}, {3426, 47296}, {3448, 13293}, {3515, 16655}, {3516, 6146}, {3517, 16621}, {3520, 11457}, {3522, 14864}, {3523, 10282}, {3524, 10193}, {3525, 64063}, {3526, 12315}, {3529, 34786}, {3530, 17821}, {3532, 44836}, {3533, 14862}, {3542, 11381}, {3543, 18376}, {3546, 5907}, {3547, 46850}, {3548, 12162}, {3549, 10575}, {3564, 37497}, {3566, 21733}, {3575, 43903}, {3581, 18382}, {3589, 64716}, {3618, 34779}, {3627, 5925}, {3628, 64024}, {3740, 6001}, {3818, 61088}, {3830, 23324}, {3832, 64187}, {3843, 51491}, {3845, 61721}, {3851, 5893}, {4549, 14791}, {5054, 10192}, {5068, 54211}, {5092, 5596}, {5418, 12964}, {5420, 12970}, {5621, 44274}, {5654, 5663}, {5892, 41580}, {5901, 7973}, {5965, 11411}, {6053, 62708}, {6145, 32210}, {6241, 37119}, {6293, 13630}, {6353, 44673}, {6639, 64030}, {6640, 14643}, {6662, 59496}, {6697, 37470}, {6699, 9934}, {6776, 11430}, {6961, 14925}, {7387, 44158}, {7394, 15053}, {7395, 64730}, {7403, 9815}, {7404, 9729}, {7505, 12290}, {7506, 64759}, {7507, 34469}, {7527, 18911}, {7528, 18488}, {7529, 9914}, {7544, 43601}, {7545, 9919}, {7583, 19087}, {7584, 19088}, {7689, 14790}, {7741, 12950}, {7951, 12940}, {8227, 9899}, {8549, 37483}, {8889, 18388}, {9708, 20307}, {9709, 20306}, {9730, 14561}, {9956, 12779}, {10056, 32065}, {10072, 11189}, {10104, 12202}, {10117, 12106}, {10249, 11179}, {10255, 38789}, {10257, 18451}, {10299 ,45185}, {10519, 61667}, {10539, 38793}, {10574, 41725}, {10576, 35865}, {10577, 35864}, {10620, 23315}, {10675, 42092}, {10676, 42089}, {10982, 61657}, {10984, 32379}, {11182, 20186}, {11250, 12118}, {11413, 54040}, {11424, 18916}, {11425, 18914}, {11440, 37444}, {11455, 62961}, {11456, 37118}, {11468, 35471}, {11539, 61606}, {11550, 18533}, {11579, 13352}, {11744, 20304}, {12006, 44544}, {12017, 34774}, {12024, 55575}, {12041, 34514}, {12085, 12359}, {12163, 23335}, {12220, 15644}, {12241, 26944}, {12317, 43578}, {12383, 25564}, {13339, 64061}, {13340, 44668}, {13371, 32123}, {13391, 34751}, {13445, 23293}, {13754, 44441}, {14059, 57329}, {14530, 15720}, {14787, 40280}, {14865, 18912}, {15024, 63697}, {15045, 41715}, {15068, 15122}, {15100, 64025}, {15138, 50008}, {15139, 18580}, {15583, 33878}, {15647, 38728}, {15684, 50709}, {15694, 58434}, {15708, 46265}, {15811, 21841}, {16196, 17814}, {16618, 35237}, {16659, 32534}, {17819, 35255}, {17820, 35256}, {17822, 34380}, {17846, 54201}, {17928, 32321}, {18390, 23291}, {18420, 34944}, {18430, 20127}, {18569, 32138}, {19153, 38064}, {20079, 34776}, {20376,48669}, {23048,54132}, {23049,23300}, {23336,32139}, {24206,41735}, {25739,35481}, {26879,35502}, {29317,34938}, {29323,31305}, {31401,32445}, {32062,61645}, {32110, 51756}, {32184, 37481}, {32247, 55293}, {32337, 32401}, {32903, 62097}, {34224, 35477}, {34350, 63710}, {35243, 44201}, {35503, 64032}, {36990, 37458}, {37201, 46349}, {37472, 46374}, {37478, 48873}, {37494, 62332}, {37514, 38110}, {37934, 47450}, {38323, 61700}, {38435, 45839}, {40664, 52448}, {41171, 41738}, {41372, 51358}, {41587, 47527}, {41744, 44493}, {43584, 62937}, {44076, 47524}, {44273, 47353}, {44276, 63839}, {44287, 45956}, {46034, 54961}, {46728, 52398}, {50414, 61820}, {53094, 64719}, {54149, 64724}, {61524, 64022}
X(65151) = midpoint of X(i) and X(j) for these (i, j): {4, 54050}, {376, 32064}, {381, 35450}, {1853, 10606}, {3357, 23325}, {6247, 23328}, {10182, 52102}, {23049, 34778}, {46034, 54961}, {61737, 63420}
X(65152) = reflection of X(i) in X(j) for these (i, j): (2, 23329), (3, 23328), (4, 23325), (113, 15113), (154, 549), (376, 11204), (381, 23332), (1351, 23326), (1352, 61737), (1992, 10250), (3543, 18376), (3830, 23324), (5654, 18281), (5656, 61747), (6759, 10182), (10182, 25563), (11179, 10249), (11202, 10193), (11206, 11202), (20423, 23327), (20427, 54050), (23049, 23300), (23325, 20299), (23328, 6696), (31670, 23049), (32063, 10192), (41580, 5892), (41719, 182), (54050, 3357), (54132, 23048), (61721, 3845)
X(65151) = complement of X(5656)
X(65151) = anticomplement of X(61747)
X(65151) = cross-difference of every pair of points on the line {1636, 2485}
X(65151) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 5656, 61747), (3, 6247, 14216), (3, 14216, 9833), (3, 34780, 34782), (4, 3357, 20427), (4, 18931, 11438), (5, 64, 5878), (5, 61540, 64), (64, 40686, 5), (66, 44883, 46264), (631, 12324, 6759), (631, 35260, 10182), (1593, 26869, 16657), (1656, 13093, 2883), (3088, 18913, 389), (3090, 6225, 61749), (3091, 12250, 22802), (3357, 20299, 4), (3520, 11457, 19467), (3522, 64034, 34785), (3523, 34781, 10282), (3524, 11206, 11202), (3526, 12315, 16252), (3843, 64758, 51491), (3851, 48672, 5893), (5054, 32063, 10192), (5893, 15105, 48672), (6247, 6696, 3), (6759, 10182, 35260), (6759, 25563, 631), (6759, 52102, 12324), (8567, 64037, 550), (10193, 11202, 3524), (10257, 18451, 59543), (10984, 44679, 32379), (11250, 32140, 12118), (11438, 20417, 18931), (11550, 21663, 18533), (12290, 43608, 7505), (13352, 16003, 18917), (13352, 18917, 63722), (13445, 23293, 44440), (14864, 34785, 64034), (16657, 26869, 39571), (18381, 64027, 20), (22802, 32767, 3091), (23300, 34778, 31670), (25563, 52102, 6759), (26944, 55571, 12241), (40686, 61540, 5878)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 18/08/2024 (top). (Aug 29, 2024)
X(65152) lies on these lines: {2, 7234}, {10, 3835}, {42, 24749}, {649, 25637}, {650, 30968}, {661, 2533}, {693, 4705}, {804, 55210}, {1491, 4036}, {2787, 16751}, {3837, 4824}, {4010, 31946}, {4129, 50497}, {4369, 50489}, {4455, 27045}, {4651, 27138}, {4685, 45339}, {4728, 21727}, {4885, 57077}, {9134, 55197}, {9148, 58289}, {14431, 58361}, {15523, 21720}, {19874, 27345}, {20906, 21350}, {21055, 21726}, {21146, 44316}, {21301, 26049}, {22318, 48136}, {22322, 59747}, {23655, 59305}, {23815, 47675}, {23818, 47666}, {24924, 25126}, {25128, 30023}, {25299, 27527}, {25666, 31003}, {27674, 57131}, {29487, 59312}, {30203, 31339}, {30476, 50494}, {42327, 50524}, {47917, 48401}
X(65152) = crosspoint of X(10) and X(6386)
X(65152) = crosssum of X(58) and X(1980)
X(65152) = X(42327)-Ceva conjugate of-X(21836)
X(65152) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 42328), (42327, 667), (50491, 8640)
X(65152) = X(163)-isoconjugate of-X(42328)
X(65152) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (523, 42328), (18106, 52394), (18196, 757), (21763, 58), (21836, 1), (22387, 1790), (25264, 99), (34022, 4623), (42327, 86), (50524, 81)
X(65152) = perspector of the circumconic through X(25264) and X(42027)
X(65152) = pole of the line {672, 1213} with respect to the nine-point circle
X(65152) = pole of the line {6381, 21024} with respect to the Steiner inellipse
X(65152) = barycentric product X(i)*X(j) for these {i, j}: {10, 42327}, {75, 21836}, {313, 21763}, {321, 50524}, {523, 25264}, {1089, 18196}, {4705, 34022}, {15523, 18106}
X(65152) = trilinear product X(i)*X(j) for these {i, j}: {2, 21836}, {10, 50524}, {37, 42327}, {321, 21763}, {594, 18196}, {661, 25264}, {3954, 18106}, {4079, 34022}, {22387, 41013}
X(65152) = trilinear quotient X(i)/X(j) for these (i, j): (1577, 42328), (18106, 52376), (18196, 593), (21763, 1333), (21836, 6), (22387, 1437), (25264, 662), (34022, 4610), (42327, 81), (50524, 58)
X(65152) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (10, 3835, 50487), (21051, 23301, 661), (21055, 21962, 21726), (27045, 44445, 4455)
See Antreas Hatzipolakis and Peter Moses, euclid 6927.
X(65153) lies on the incircle and these lines: {1, 14026}, {11, 519}, {55, 2718}, {56, 2743}, {145, 16185}, {498, 57352}, {513, 6018}, {517, 1357}, {1317, 3667}, {1319, 37743}, {1320, 7336}, {1358, 4887}, {1365, 63210}, {2098, 3326}, {3025, 3057}, {3241, 60698}, {3244, 44046}, {3323, 38941}, {3328, 7962}, {4345, 19634}, {5577, 18839}, {5919, 47007}, {17460, 34194}, {23869, 33176}, {28234, 60058}
X(65153) = reflection of X(i) in X(j) for these {i,j}: {1319, 37743}, {14027, 1}
X(65153) = X(7)-Ceva conjugate of X(43055)
X(65153) = X(5854)-Dao conjugate of X(8)
X(65153) = crosspoint of X(7) and X(43055)
X(65153) = crosssum of X(43081) and X(56647)
X(65153) = barycentric product X(5854)*X(43055)
See Antreas Hatzipolakis and Peter Moses, euclid 6933.
X(65154) lies on these lines: {2, 3}, {98, 47147}, {107, 16315}, {111, 16318}, {112, 16317}, {393, 47184}, {935, 47350}, {1289, 10102}, {1301, 2770}, {1304, 2374}, {2393, 11746}, {3233, 44099}, {3563, 47148}, {3564, 12828}, {7735, 47162}, {8263, 35259}, {8541, 20192}, {9060, 40120}, {9064, 40118}, {9084, 10423}, {9107, 53956}, {10192, 51742}, {10418, 60428}, {10602, 35260}, {10603, 32815}, {14984, 44084}, {15344, 53948}, {16303, 59229}, {17994, 47159}, {19128, 40114}, {19136, 41585}, {26864, 54218}, {30249, 53929}, {32269, 64724}, {35266, 44102}, {35904, 62382}, {36201, 47296}, {36898, 47172}, {40097, 53943}, {44662, 51725}, {47461, 64058}, {63181, 63646}
X(65154) = midpoint of X(25) and X(468)
X(65154) = reflection of X(i) in X(j) for these {i,j}: {1368, 37911}, {5159, 6677}
X(65154) = polar circle inverse of X(16051)
X(65154) = orthoptic-circle-of-the-Steiner-inellipse inverse of X(6623)
X(65154) = X(656)-isoconjugate of X(53961)
X(65154) = X(40596)-Dao conjugate of X(53961)
X(65154) = barycentric quotient X(112)/X(53961)
X(65154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 23, 16386}, {4, 186, 54995}, {25, 37917, 23}, {25, 47597, 4}, {25, 62966, 52301}, {403, 6353, 468}, {468, 10151, 2}, {468, 37904, 186}, {468, 37981, 37911}, {858, 6995, 13473}, {1596, 44241, 44438}, {1995, 7426, 16387}, {4232, 26255, 25}, {4232, 37962, 7426}, {6353, 37777, 403}, {7426, 37962, 468}, {37777, 37951, 25}, {37904, 47094, 23}, {44212, 44260, 6677}, {44212, 44272, 468}, {44212, 44273, 47597}
See Antreas Hatzipolakis and Peter Moses, euclid 6964.
X(65155) lies on the Hatzipolakis-Moses-Morley hyperbola and these lines: {2, 15857}, {357, 8065}
X(65155) = isogonal conjugate of X(6120)
X(65155) = anticomplement of X(15857)
X(65155) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 6120}, {3603, 5456}
See Antreas Hatzipolakis and Peter Moses, euclid 6964.
X(65156) lies on this line: {2, 3276}
X(65156) = complement of X(3276)
X(65156) = complement of the isogonal conjugate of X(3606)
X(65156) = X(3606)-complementary conjugate of X(10)
See Antreas Hatzipolakis and Peter Moses, euclid 6968.
X(65157) lies on these lines: {2, 3276}, {5, 3280}, {140, 3281}, {3526, 8003}
X(65157) = perspector of the equilateral Hatzipolakis-Moses triangle with the Second Morley triangle
See Antreas Hatzipolakis and Peter Moses, euclid 6970.
X(65158) lies on these lines: {357, 5456}, {358, 1136}, {1134, 3278}, {3602, 41111}, {5390, 5454}
X(65159) lies on these lines: {7, 56233}, {40, 61493}, {56, 6068}, {57, 16578}, {100, 108}, {101, 651}, {109, 58991}, {144, 1804}, {190, 2406}, {198, 347}, {329, 7011}, {604, 23418}, {644, 56235}, {646, 4998}, {655, 65216}, {662, 65234}, {906, 32714}, {1014, 18645}, {1332, 4564}, {1445, 27396}, {1633, 2283}, {1696, 8232}, {1817, 64708}, {2324, 7013}, {2427, 52610}, {4606, 61240}, {5435, 17776}, {5546, 65232}, {7190, 47299}, {8732, 16593}, {11349, 22464}, {14733, 30237}, {21452, 37798}, {25737, 62669}, {26669, 62770}, {27508, 55119}, {27834, 37136}, {28739, 38869}, {30239, 65361}, {40212, 64082}, {55015, 55111}, {56549, 62798}
X(65159) = trilinear pole of line {40, 221}
X(65159) = perspector of circumconic {{A, B, C, X(7045), X(46102)}}
X(65159) = X(i)-isoconjugate-of-X(j) for these {i, j}: {11, 36049}, {19, 61040}, {21, 55242}, {84, 650}, {189, 663}, {268, 7649}, {271, 6591}, {280, 649}, {282, 513}, {285, 661}, {309, 3063}, {514, 2192}, {521, 7129}, {522, 1436}, {652, 40836}, {657, 1440}, {667, 34404}, {693, 7118}, {798, 57795}, {905, 7008}, {1019, 53013}, {1021, 52384}, {1146, 8059}, {1256, 14298}, {1413, 3239}, {1422, 3900}, {1433, 3064}, {1459, 7003}, {1903, 3737}, {1919, 57793}, {1946, 64988}, {2170, 13138}, {2188, 17924}, {2208, 4391}, {2310, 37141}, {2357, 4560}, {2358, 57081}, {3270, 65330}, {3271, 44327}, {3676, 7367}, {4025, 7154}, {4163, 6612}, {4858, 32652}, {6332, 7151}, {7004, 40117}, {7020, 22383}, {7117, 65213}, {7252, 39130}, {8808, 21789}, {14331, 60803}, {14936, 53642}, {18344, 41081}, {35348, 56763}, {42069, 65179}, {55110, 57108}, {56972, 65103}
X(65159) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 61040}, {57, 514}, {281, 44426}, {5375, 280}, {5514, 11}, {6631, 34404}, {9296, 57793}, {10001, 309}, {16596, 4858}, {31998, 57795}, {36830, 285}, {39026, 282}, {39053, 64988}, {40611, 55242}, {55044, 1146}, {55063, 2968}, {61075, 24026}
X(65159) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 651}, {4564, 64082}, {4998, 7080}, {6516, 100}, {7045, 1103}
X(65159) = X(i)-cross conjugate of X(j) for these {i, j}: {1103, 7045}, {6129, 347}, {14298, 40}, {14837, 1817}, {55111, 59}, {57101, 7013}, {64885, 329}
X(65159) = pole of line {326, 3869} with respect to the Kiepert parabola
X(65159) = pole of line {1021, 23189} with respect to the Stammler hyperbola
X(65159) = pole of line {24025, 36949} with respect to the Steiner inellipse
X(65159) = pole of line {40, 329} with respect to the Yff parabola
X(65159) = pole of line {63, 77} with respect to the Hutson-Moses hyperbola
X(65159) = pole of line {651, 65160} with respect to the dual conic of incircle
X(65159) = pole of line {345, 17080} with respect to the dual conic of Feuerbach hyperbola
X(65159) = pole of line {59, 1155} with respect to the dual conic of Moses-Feuerbach circumconic
X(65159) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(40), X(23890)}}, {{A, B, C, X(100), X(1813)}}, {{A, B, C, X(101), X(56183)}}, {{A, B, C, X(108), X(1461)}}, {{A, B, C, X(329), X(24029)}}, {{A, B, C, X(347), X(41353)}}, {{A, B, C, X(646), X(7080)}}, {{A, B, C, X(651), X(1897)}}, {{A, B, C, X(653), X(934)}}, {{A, B, C, X(1020), X(61178)}}, {{A, B, C, X(1332), X(64082)}}, {{A, B, C, X(1817), X(4242)}}, {{A, B, C, X(2406), X(40212)}}, {{A, B, C, X(2804), X(16596)}}, {{A, B, C, X(3960), X(14837)}}, {{A, B, C, X(6129), X(53544)}}, {{A, B, C, X(6335), X(65296)}}, {{A, B, C, X(7011), X(23981)}}, {{A, B, C, X(30239), X(32714)}}
X(65159) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {101, 1020, 651}, {108, 23067, 100}, {21362, 23890, 1461}
X(65160) lies on these lines: {4, 10743}, {9, 7101}, {19, 16561}, {29, 4518}, {92, 30568}, {100, 40117}, {101, 1309}, {108, 6574}, {112, 9059}, {162, 65190}, {190, 653}, {243, 4009}, {278, 8055}, {281, 3161}, {318, 6559}, {346, 55116}, {412, 46937}, {522, 35349}, {644, 1783}, {648, 53658}, {664, 6332}, {1813, 44327}, {2322, 52409}, {2405, 4552}, {2415, 65337}, {2899, 5125}, {3064, 30720}, {3699, 4587}, {3732, 4391}, {4130, 21859}, {4578, 30730}, {4756, 61180}, {5081, 60431}, {5423, 44695}, {5546, 56112}, {6557, 17917}, {7046, 28120}, {8707, 58945}, {11109, 17916}, {14004, 64579}, {17923, 62297}, {17927, 46558}, {24036, 36123}, {25259, 26693}, {26003, 46108}, {26611, 52780}, {32704, 59095}, {34591, 51565}, {35341, 61236}, {36118, 65195}, {38462, 60355}, {41391, 45766}, {52412, 56078}, {56082, 64211}, {57168, 57220}, {65223, 65226}
X(65160) = trilinear pole of line {33, 200}
X(65160) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 3669}, {7, 22383}, {27, 51640}, {34, 4091}, {48, 3676}, {56, 905}, {57, 1459}, {58, 51664}, {63, 43924}, {65, 7254}, {69, 57181}, {71, 7203}, {73, 1019}, {77, 649}, {109, 3942}, {184, 24002}, {212, 58817}, {219, 43932}, {222, 513}, {228, 17096}, {244, 1813}, {269, 652}, {278, 23224}, {279, 1946}, {283, 7216}, {307, 57129}, {348, 667}, {394, 43923}, {479, 65102}, {514, 603}, {520, 1396}, {521, 1407}, {522, 7099}, {525, 1408}, {604, 4025}, {608, 4131}, {647, 1014}, {650, 7053}, {651, 3937}, {656, 1412}, {663, 7177}, {693, 52411}, {738, 57108}, {757, 55234}, {764, 44717}, {810, 1434}, {849, 57243}, {906, 1358}, {934, 7117}, {1015, 6516}, {1086, 36059}, {1106, 6332}, {1111, 32660}, {1119, 36054}, {1214, 3733}, {1331, 53538}, {1332, 1357}, {1333, 17094}, {1364, 32714}, {1395, 30805}, {1397, 15413}, {1402, 15419}, {1409, 7192}, {1410, 4560}, {1413, 64885}, {1415, 1565}, {1427, 23189}, {1432, 22093}, {1435, 57241}, {1437, 7178}, {1439, 7252}, {1444, 7180}, {1461, 7004}, {1462, 53550}, {1790, 4017}, {1797, 53528}, {1803, 48151}, {1804, 6591}, {1812, 7250}, {1814, 53539}, {1919, 7182}, {1980, 57918}, {2006, 22379}, {2196, 43041}, {2221, 51644}, {2423, 62402}, {3049, 57785}, {3063, 7056}, {3248, 65164}, {3270, 4617}, {3271, 65296}, {3737, 52373}, {4554, 22096}, {4558, 53540}, {4565, 18210}, {4575, 53545}, {4790, 57701}, {6129, 55117}, {6611, 61040}, {6612, 57101}, {6614, 34591}, {7023, 57055}, {7125, 7649}, {7153, 22090}, {7335, 17924}, {7341, 55232}, {8641, 30682}, {8643, 27832}, {8677, 34051}, {9247, 52621}, {13149, 61054}, {14208, 16947}, {16726, 23067}, {17206, 51641}, {17925, 22341}, {18191, 52610}, {20615, 22154}, {20752, 43930}, {20780, 37626}, {21758, 52392}, {22086, 56049}, {22344, 60482}, {23086, 43051}, {23225, 34018}, {23226, 52374}, {30725, 36058}, {32658, 43042}, {35518, 52410}, {36057, 53544}, {40152, 57200}, {43925, 52385}, {52425, 59941}, {53542, 65300}, {57081, 62192}
X(65160) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 905}, {10, 51664}, {11, 3942}, {37, 17094}, {136, 53545}, {1146, 1565}, {1249, 3676}, {2968, 26932}, {3161, 4025}, {3162, 43924}, {4075, 57243}, {5190, 1358}, {5375, 77}, {5452, 1459}, {5521, 53538}, {6552, 6332}, {6600, 652}, {6631, 348}, {6741, 4466}, {7952, 514}, {9296, 7182}, {10001, 7056}, {11517, 4091}, {13999, 53546}, {14714, 7117}, {17073, 23727}, {20619, 30725}, {20620, 1086}, {20621, 53544}, {23050, 650}, {24771, 521}, {34961, 1790}, {35508, 7004}, {36103, 3669}, {38966, 2170}, {38991, 3937}, {39026, 222}, {39052, 1014}, {39053, 279}, {39060, 1088}, {39062, 1434}, {40181, 51644}, {40596, 1412}, {40599, 656}, {40602, 7254}, {40605, 15419}, {40607, 55234}, {40837, 58817}, {50441, 39470}, {55064, 18210}, {59577, 525}, {62576, 52621}, {62584, 30805}, {62585, 15413}, {62602, 59941}, {62605, 24002}, {62647, 4131}
X(65160) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6335, 1897}, {15742, 7046}, {36797, 56183}, {46102, 8}
X(65160) = X(i)-cross conjugate of X(j) for these {i, j}: {1018, 644}, {3064, 281}, {3239, 7101}, {3939, 3699}, {4163, 8}, {7046, 15742}, {18344, 29}, {40971, 7012}, {56183, 1897}, {57049, 346}
X(65160) = pole of line {1086, 1358} with respect to the polar circle
X(65160) = pole of line {3732, 61185} with respect to the Steiner circumellipse
X(65160) = pole of line {78, 280} with respect to the Yff parabola
X(65160) = pole of line {8, 7078} with respect to the Hutson-Moses hyperbola
X(65160) = pole of line {100, 108} with respect to the dual conic of incircle
X(65160) = pole of line {312, 27540} with respect to the dual conic of Feuerbach hyperbola
X(65160) = pole of line {16586, 24582} with respect to the dual conic of Suppa-Cucoanes circle
X(65160) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(664)}}, {{A, B, C, X(9), X(101)}}, {{A, B, C, X(162), X(9107)}}, {{A, B, C, X(190), X(644)}}, {{A, B, C, X(210), X(21859)}}, {{A, B, C, X(341), X(56252)}}, {{A, B, C, X(346), X(42718)}}, {{A, B, C, X(653), X(1783)}}, {{A, B, C, X(668), X(36802)}}, {{A, B, C, X(1000), X(53898)}}, {{A, B, C, X(1018), X(3939)}}, {{A, B, C, X(1309), X(1897)}}, {{A, B, C, X(2415), X(3161)}}, {{A, B, C, X(3064), X(8735)}}, {{A, B, C, X(3699), X(3952)}}, {{A, B, C, X(4163), X(6332)}}, {{A, B, C, X(4534), X(30725)}}, {{A, B, C, X(5548), X(59095)}}, {{A, B, C, X(5853), X(28915)}}, {{A, B, C, X(8750), X(58945)}}, {{A, B, C, X(12641), X(39444)}}, {{A, B, C, X(18086), X(33950)}}, {{A, B, C, X(23704), X(56536)}}, {{A, B, C, X(31624), X(36796)}}, {{A, B, C, X(32635), X(37138)}}, {{A, B, C, X(36118), X(65333)}}, {{A, B, C, X(53647), X(60488)}}
X(65160) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 6335, 653}, {3699, 36797, 65193}
X(65161) lies on these lines: {2, 16723}, {6, 18046}, {9, 18040}, {10, 23823}, {37, 26799}, {44, 18073}, {63, 29508}, {69, 18137}, {75, 1654}, {76, 17346}, {99, 15322}, {100, 46961}, {190, 646}, {193, 18147}, {239, 39995}, {274, 31144}, {312, 2895}, {313, 4416}, {319, 4043}, {320, 3975}, {321, 4690}, {333, 27792}, {341, 1330}, {350, 62231}, {391, 44147}, {513, 53338}, {514, 65191}, {524, 3948}, {527, 3264}, {536, 25298}, {573, 29711}, {579, 29507}, {645, 4585}, {651, 37218}, {662, 799}, {666, 57975}, {670, 27853}, {894, 29388}, {1213, 16709}, {1227, 4858}, {1230, 3578}, {1269, 3686}, {1332, 42719}, {1655, 4664}, {1743, 18044}, {1909, 17256}, {1992, 18135}, {2475, 44720}, {2796, 4783}, {2893, 59201}, {3122, 24517}, {3248, 17793}, {3257, 65229}, {3596, 17347}, {3699, 61220}, {3718, 20444}, {3739, 26857}, {3758, 6376}, {3759, 29764}, {3909, 3952}, {3963, 17332}, {3973, 18065}, {4358, 17374}, {4359, 4410}, {4383, 18739}, {4427, 61174}, {4552, 46480}, {4586, 54957}, {4670, 59212}, {4687, 26110}, {4751, 26045}, {5224, 34283}, {6335, 65170}, {7199, 40529}, {8025, 62588}, {9359, 24487}, {14829, 29490}, {16574, 29395}, {16696, 26772}, {17144, 50077}, {17277, 18143}, {17330, 20913}, {17335, 20917}, {17336, 17786}, {17341, 41876}, {17344, 20891}, {17345, 20892}, {17348, 29756}, {17349, 18144}, {17350, 29423}, {17351, 29705}, {17361, 20923}, {17370, 27320}, {17371, 27270}, {17372, 22016}, {17376, 29982}, {17378, 30830}, {17387, 17778}, {17781, 30713}, {17790, 20072}, {17794, 25048}, {18136, 32911}, {18140, 46922}, {18164, 29559}, {20090, 25660}, {20956, 35550}, {21100, 60725}, {21278, 64581}, {21287, 46738}, {21591, 30807}, {23354, 40521}, {24625, 25534}, {24957, 25472}, {25278, 50107}, {26563, 30892}, {26764, 59715}, {28931, 44148}, {29477, 30882}, {30729, 61170}, {30829, 37635}, {30963, 40721}, {31060, 50074}, {35177, 35181}, {36269, 52044}, {44140, 63001}, {52609, 65195}, {54986, 65280}, {60736, 64712}
X(65161) = reflection of X(i) in X(j) for these {i,j}: {30939, 3948}
X(65161) = isotomic conjugate of X(47947)
X(65161) = anticomplement of X(16726)
X(65161) = trilinear pole of line {1125, 1962}
X(65161) = perspector of circumconic {{A, B, C, X(7035), X(24037)}}
X(65161) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 50344}, {31, 47947}, {32, 4608}, {58, 58294}, {81, 58301}, {513, 28615}, {649, 1126}, {667, 1255}, {669, 32014}, {798, 40438}, {1015, 8701}, {1268, 1919}, {1977, 6540}, {1980, 32018}, {2206, 31010}, {2489, 57685}, {3121, 4596}, {3122, 4629}, {3124, 6578}, {3248, 37212}, {3733, 52555}, {4079, 52558}, {5029, 53688}, {8054, 59014}, {32635, 57181}, {33635, 43924}, {57204, 57854}
X(65161) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 47947}, {9, 50344}, {10, 58294}, {1100, 2605}, {1125, 661}, {1213, 513}, {3120, 3125}, {3634, 48019}, {3647, 649}, {4359, 4129}, {5375, 1126}, {6376, 4608}, {6631, 1255}, {9296, 1268}, {16726, 16726}, {21709, 21833}, {31998, 40438}, {35076, 244}, {39026, 28615}, {39054, 1171}, {40586, 58301}, {40603, 31010}, {44307, 47918}, {56846, 3669}, {59592, 650}, {62588, 514}
X(65161) = X(i)-Ceva conjugate of X(j) for these {i, j}: {668, 61174}, {4601, 75}, {7035, 6533}
X(65161) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {42, 54102}, {59, 3875}, {101, 17154}, {765, 75}, {1016, 17135}, {1018, 149}, {1110, 17147}, {1252, 1}, {1334, 17036}, {3952, 150}, {4033, 21293}, {4069, 37781}, {4076, 20245}, {4103, 3448}, {4557, 4440}, {4559, 58371}, {4564, 3873}, {4567, 17140}, {4570, 4360}, {4600, 17143}, {4998, 20244}, {5376, 17145}, {5378, 30941}, {5385, 17146}, {6065, 63}, {6551, 53333}, {6632, 512}, {6635, 53368}, {7035, 17137}, {7045, 17158}, {9268, 17160}, {15742, 17220}, {23990, 17148}, {30730, 33650}, {31625, 17138}, {40521, 21221}, {57731, 7192}, {57950, 17217}, {59149, 523}, {61402, 1330}
X(65161) = X(i)-cross conjugate of X(j) for these {i, j}: {4115, 4427}, {4977, 16709}, {4978, 4359}, {4979, 1125}, {4985, 1269}, {6533, 7035}, {30591, 75}
X(65161) = pole of line {23947, 50319} with respect to the Kiepert hyperbola
X(65161) = pole of line {4360, 17103} with respect to the Kiepert parabola
X(65161) = pole of line {798, 33882} with respect to the Stammler hyperbola
X(65161) = pole of line {3952, 4010} with respect to the Steiner circumellipse
X(65161) = pole of line {4145, 21254} with respect to the Steiner inellipse
X(65161) = pole of line {1, 596} with respect to the Yff parabola
X(65161) = pole of line {75, 26223} with respect to the Hutson-Moses hyperbola
X(65161) = pole of line {661, 1019} with respect to the Wallace hyperbola
X(65161) = pole of line {3708, 3942} with respect to the dual conic of polar circle
X(65161) = pole of line {4033, 4552} with respect to the dual conic of DeLongchamps ellipse
X(65161) = pole of line {5219, 18044} with respect to the dual conic of Feuerbach hyperbola
X(65161) = pole of line {99, 100} with respect to the dual conic of Hofstadter ellipse
X(65161) = intersection, other than A, B, C, of circumconics {{A, B, C, X(190), X(4427)}}, {{A, B, C, X(646), X(4631)}}, {{A, B, C, X(662), X(1018)}}, {{A, B, C, X(668), X(4623)}}, {{A, B, C, X(799), X(4033)}}, {{A, B, C, X(812), X(4977)}}, {{A, B, C, X(874), X(16709)}}, {{A, B, C, X(1125), X(23891)}}, {{A, B, C, X(1213), X(3570)}}, {{A, B, C, X(1269), X(57975)}}, {{A, B, C, X(3257), X(3882)}}, {{A, B, C, X(3578), X(4585)}}, {{A, B, C, X(3762), X(4978)}}, {{A, B, C, X(3768), X(4979)}}, {{A, B, C, X(3952), X(37205)}}, {{A, B, C, X(4359), X(24004)}}, {{A, B, C, X(4440), X(35511)}}, {{A, B, C, X(4505), X(54957)}}, {{A, B, C, X(4647), X(24039)}}, {{A, B, C, X(6558), X(30729)}}, {{A, B, C, X(16726), X(21385)}}, {{A, B, C, X(16732), X(30591)}}, {{A, B, C, X(31900), X(46499)}}, {{A, B, C, X(35339), X(37212)}}
X(65161) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 18133, 18046}, {9, 18040, 29396}, {190, 4033, 24004}, {190, 668, 4033}, {524, 3948, 30939}, {894, 56249, 29388}, {1654, 3770, 75}, {17277, 18143, 29446}, {17277, 44139, 18143}, {17336, 17786, 29712}, {17349, 18144, 29484}, {17350, 30473, 29423}
X(65162) lies on these lines: {2, 42761}, {4, 53792}, {19, 27}, {99, 112}, {190, 653}, {655, 65223}, {823, 65236}, {901, 1309}, {1281, 41499}, {1332, 32714}, {1783, 33951}, {1857, 44446}, {1897, 65166}, {2397, 31615}, {2399, 2406}, {3573, 5379}, {4427, 36797}, {4585, 53045}, {6012, 26706}, {7017, 32933}, {13149, 65164}, {20294, 53160}, {29163, 58993}, {30566, 37768}, {32674, 33946}, {46102, 62669}, {57456, 65336}, {65270, 65290}, {65331, 65344}
X(65162) = anticomplement of X(42761)
X(65162) = trilinear pole of line {860, 1870}
X(65162) = perspector of circumconic {{A, B, C, X(811), X(18020)}}
X(65162) = X(i)-isoconjugate-of-X(j) for these {i, j}: {80, 22383}, {125, 32671}, {184, 60074}, {513, 52431}, {647, 759}, {649, 1807}, {652, 1411}, {656, 34079}, {661, 57736}, {667, 52351}, {798, 57985}, {810, 24624}, {905, 6187}, {1168, 22086}, {1437, 55238}, {1459, 2161}, {1793, 7180}, {1946, 2006}, {1989, 23226}, {2222, 7117}, {2611, 32662}, {3049, 14616}, {3063, 52392}, {3271, 65299}, {3708, 36069}, {7004, 32675}, {7252, 52391}, {7254, 34857}, {14582, 17104}, {14838, 52153}, {20975, 37140}, {20982, 36061}, {22094, 32678}, {22096, 36804}, {23224, 64835}, {32655, 61039}, {32677, 61041}, {50433, 54244}, {52356, 52411}, {52380, 55234}, {61054, 65329}
X(65162) = X(i)-Dao conjugate of X(j) for these {i, j}: {44, 53532}, {2245, 8677}, {5375, 1807}, {6631, 52351}, {7359, 9033}, {10001, 52392}, {13999, 2170}, {16221, 20982}, {18334, 22094}, {23986, 61041}, {31998, 57985}, {34544, 23226}, {34586, 647}, {35069, 656}, {35128, 7004}, {35204, 652}, {36830, 57736}, {38982, 3708}, {38984, 7117}, {39026, 52431}, {39052, 759}, {39053, 2006}, {39060, 18815}, {39062, 24624}, {40584, 1459}, {40596, 34079}, {40612, 905}, {42761, 42761}, {46974, 46391}, {51583, 525}, {53982, 661}, {56847, 14582}, {57434, 34591}, {62605, 60074}
X(65162) = X(i)-Ceva conjugate of X(j) for these {i, j}: {16077, 36797}, {65223, 6335}
X(65162) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1309, 21294}, {14776, 21221}, {36037, 13219}
X(65162) = pole of line {23864, 53273} with respect to the circumcircle
X(65162) = pole of line {115, 661} with respect to the polar circle
X(65162) = pole of line {69, 347} with respect to the Kiepert parabola
X(65162) = pole of line {48, 647} with respect to the Stammler hyperbola
X(65162) = pole of line {110, 1309} with respect to the Steiner circumellipse
X(65162) = pole of line {5972, 8062} with respect to the Steiner inellipse
X(65162) = pole of line {78, 1330} with respect to the Yff parabola
X(65162) = pole of line {63, 525} with respect to the Wallace hyperbola
X(65162) = pole of line {4552, 46102} with respect to the dual conic of incircle
X(65162) = pole of line {15526, 24018} with respect to the dual conic of polar circle
X(65162) = pole of line {312, 28754} with respect to the dual conic of Feuerbach hyperbola
X(65162) = pole of line {2, 6335} with respect to the dual conic of Jerabek hyperbola
X(65162) = pole of line {99, 36067} with respect to the dual conic of Orthic inconic
X(65162) = pole of line {664, 14208} with respect to the dual conic of Hofstadter ellipse
X(65162) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(112)}}, {{A, B, C, X(27), X(653)}}, {{A, B, C, X(63), X(4558)}}, {{A, B, C, X(75), X(99)}}, {{A, B, C, X(92), X(648)}}, {{A, B, C, X(190), X(333)}}, {{A, B, C, X(286), X(18026)}}, {{A, B, C, X(320), X(35157)}}, {{A, B, C, X(655), X(901)}}, {{A, B, C, X(666), X(20924)}}, {{A, B, C, X(758), X(8680)}}, {{A, B, C, X(860), X(4235)}}, {{A, B, C, X(877), X(40703)}}, {{A, B, C, X(1309), X(17923)}}, {{A, B, C, X(1748), X(41679)}}, {{A, B, C, X(1755), X(2245)}}, {{A, B, C, X(1760), X(4611)}}, {{A, B, C, X(1761), X(57062)}}, {{A, B, C, X(1762), X(57251)}}, {{A, B, C, X(1983), X(4269)}}, {{A, B, C, X(2397), X(2399)}}, {{A, B, C, X(2407), X(3936)}}, {{A, B, C, X(2799), X(6370)}}, {{A, B, C, X(4552), X(14213)}}, {{A, B, C, X(6335), X(31623)}}, {{A, B, C, X(13136), X(32851)}}, {{A, B, C, X(14590), X(52414)}}, {{A, B, C, X(16568), X(52630)}}, {{A, B, C, X(18593), X(60056)}}, {{A, B, C, X(18750), X(36841)}}, {{A, B, C, X(20883), X(41676)}}, {{A, B, C, X(29163), X(61233)}}, {{A, B, C, X(36100), X(64828)}}, {{A, B, C, X(51583), X(57456)}}
X(65162) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 653, 6335}, {3573, 23353, 5379}, {4427, 61180, 36797}
X(65163) lies on these lines: {55, 1911}, {87, 8053}, {99, 59094}, {100, 932}, {330, 23370}, {643, 23864}, {667, 61235}, {669, 3952}, {692, 34071}, {799, 16695}, {813, 58981}, {1283, 8843}, {2053, 6187}, {2177, 7121}, {2223, 40881}, {2319, 15621}, {4436, 18830}, {4557, 61164}, {5383, 23400}, {6384, 16678}, {7234, 7239}, {8616, 33784}, {8683, 43931}, {8709, 35572}, {16606, 21856}, {16681, 27424}, {20475, 34252}, {21759, 64169}, {23385, 24524}, {37619, 52211}, {40720, 61155}, {43077, 58958}
X(65163) = isogonal conjugate of X(17217)
X(65163) = trilinear pole of line {213, 6378}
X(65163) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 17217}, {2, 18197}, {27, 25098}, {43, 7192}, {57, 27527}, {58, 20906}, {63, 17921}, {75, 16695}, {76, 57074}, {81, 3835}, {86, 4083}, {92, 23092}, {99, 3123}, {100, 23824}, {190, 16742}, {192, 1019}, {244, 62530}, {274, 20979}, {286, 22090}, {310, 8640}, {333, 43051}, {513, 33296}, {514, 27644}, {649, 31008}, {662, 21138}, {670, 38986}, {693, 38832}, {757, 21051}, {799, 6377}, {873, 50491}, {1014, 4147}, {1015, 36860}, {1403, 18155}, {1423, 4560}, {1509, 21834}, {2176, 7199}, {2209, 52619}, {3208, 17096}, {3212, 3737}, {3676, 56181}, {3733, 6376}, {4481, 52136}, {4595, 16726}, {4602, 21762}, {4992, 40438}, {6382, 57129}, {7203, 27538}, {7252, 30545}, {7253, 62791}, {7255, 41886}, {16696, 18107}, {17205, 52923}, {17218, 20287}, {17925, 22370}, {18169, 63224}, {18200, 63486}, {21835, 52612}, {22386, 57968}, {24533, 32010}, {27346, 53083}, {40432, 64865}, {40848, 50456}, {48008, 65076}
X(65163) = X(i)-vertex conjugate of X(j) for these {i, j}: {190, 4598}, {799, 799}, {4573, 4633}, {4584, 4603}, {4610, 4632}, {18830, 65185}, {56053, 62530}, {61234, 65167}
X(65163) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 17217}, {10, 20906}, {206, 16695}, {1084, 21138}, {3162, 17921}, {5375, 31008}, {5452, 27527}, {8054, 23824}, {22391, 23092}, {32664, 18197}, {36830, 7304}, {38986, 3123}, {38996, 6377}, {39026, 33296}, {40586, 3835}, {40600, 4083}, {40607, 21051}, {55053, 16742}, {62574, 52619}, {63618, 693}
X(65163) = X(i)-Ceva conjugate of X(j) for these {i, j}: {932, 65167}, {59094, 4598}
X(65163) = X(i)-cross conjugate of X(j) for these {i, j}: {1018, 4557}, {1924, 6}, {9491, 1918}, {22229, 37}
X(65163) = pole of line {190, 4598} with respect to the circumcircle
X(65163) = pole of line {4992, 16695} with respect to the Stammler hyperbola
X(65163) = pole of line {2176, 23546} with respect to the Hutson-Moses hyperbola
X(65163) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(799)}}, {{A, B, C, X(25), X(46597)}}, {{A, B, C, X(31), X(34594)}}, {{A, B, C, X(42), X(3952)}}, {{A, B, C, X(55), X(643)}}, {{A, B, C, X(99), X(53268)}}, {{A, B, C, X(100), X(692)}}, {{A, B, C, X(803), X(4586)}}, {{A, B, C, X(813), X(4559)}}, {{A, B, C, X(835), X(32739)}}, {{A, B, C, X(1018), X(4595)}}, {{A, B, C, X(1924), X(16695)}}, {{A, B, C, X(2162), X(58981)}}, {{A, B, C, X(4598), X(34071)}}, {{A, B, C, X(8707), X(34067)}}, {{A, B, C, X(21051), X(22229)}}, {{A, B, C, X(23864), X(63461)}}, {{A, B, C, X(27805), X(39967)}}, {{A, B, C, X(52139), X(54325)}}
X(65163) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 932, 4598}
X(65164) lies on these lines: {7, 30741}, {9, 30796}, {57, 17755}, {63, 7182}, {69, 2968}, {76, 56550}, {85, 55416}, {99, 109}, {100, 883}, {190, 658}, {222, 20742}, {226, 8781}, {296, 332}, {304, 7183}, {305, 56553}, {307, 30774}, {325, 16091}, {326, 62765}, {333, 52421}, {345, 7055}, {349, 40832}, {644, 4617}, {645, 44326}, {651, 37215}, {653, 799}, {668, 53642}, {813, 34083}, {934, 53332}, {1231, 17206}, {1331, 4025}, {1332, 52610}, {1813, 4563}, {2898, 44446}, {3218, 40704}, {3266, 56560}, {3699, 4998}, {3718, 7013}, {3952, 56543}, {4427, 35312}, {4561, 4571}, {4576, 65315}, {4598, 65237}, {4620, 55235}, {4631, 41206}, {4781, 61192}, {6063, 32939}, {6393, 51368}, {6649, 14594}, {7004, 31637}, {12215, 17975}, {13149, 65162}, {17336, 62704}, {20940, 34234}, {23691, 56383}, {30228, 38357}, {32933, 61413}, {33952, 63203}, {34085, 37206}, {40152, 57799}, {41353, 61223}, {52608, 55205}, {56549, 57518}
X(65164) = isotomic conjugate of X(3064)
X(65164) = trilinear pole of line {69, 73}
X(65164) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 3063}, {6, 18344}, {19, 663}, {21, 2489}, {25, 650}, {27, 63461}, {28, 3709}, {29, 798}, {31, 3064}, {32, 44426}, {33, 649}, {34, 657}, {41, 7649}, {55, 6591}, {56, 65103}, {58, 55206}, {108, 14936}, {112, 4516}, {210, 43925}, {220, 43923}, {270, 4079}, {278, 8641}, {281, 667}, {314, 57204}, {318, 1919}, {393, 1946}, {512, 1172}, {513, 607}, {514, 2212}, {521, 2207}, {522, 1973}, {523, 2204}, {560, 46110}, {608, 3900}, {644, 42067}, {652, 1096}, {661, 2299}, {669, 31623}, {692, 8735}, {810, 8748}, {884, 5089}, {905, 6059}, {926, 8751}, {1015, 56183}, {1021, 57652}, {1024, 2356}, {1039, 2484}, {1118, 65102}, {1119, 57180}, {1334, 57200}, {1395, 3239}, {1396, 4524}, {1398, 4130}, {1402, 17926}, {1415, 42069}, {1435, 4105}, {1474, 4041}, {1783, 3271}, {1824, 7252}, {1857, 22383}, {1880, 21789}, {1896, 3049}, {1918, 57215}, {1924, 44130}, {1974, 4391}, {1980, 7017}, {2161, 58313}, {2170, 8750}, {2175, 17924}, {2189, 4705}, {2193, 58757}, {2194, 2501}, {2203, 3700}, {2310, 32674}, {2322, 51641}, {2328, 55208}, {2332, 4017}, {2333, 3737}, {2971, 4612}, {3022, 32714}, {3121, 36797}, {3122, 65201}, {3124, 52914}, {3248, 65160}, {3669, 7071}, {4117, 55233}, {4183, 7180}, {4631, 42068}, {4895, 8752}, {5379, 63462}, {6129, 7154}, {6186, 65105}, {6187, 65104}, {6524, 36054}, {7046, 57181}, {7063, 55231}, {7079, 43924}, {7118, 54239}, {7151, 14298}, {7337, 57055}, {8638, 54235}, {8648, 64835}, {9447, 46107}, {13149, 61050}, {21044, 32676}, {24006, 57657}, {32713, 53560}, {35518, 36417}, {36124, 46388}, {37908, 55261}, {39109, 58888}, {40976, 62749}, {40982, 62748}, {40983, 62747}, {44100, 47915}, {46103, 50487}, {51858, 65106}, {53008, 57129}, {53581, 57779}
X(65164) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 65103}, {2, 3064}, {6, 663}, {9, 18344}, {10, 55206}, {63, 46389}, {223, 6591}, {226, 661}, {905, 42462}, {1086, 8735}, {1146, 42069}, {1214, 2501}, {3160, 7649}, {3239, 23615}, {5375, 33}, {6337, 522}, {6338, 6332}, {6374, 46110}, {6376, 44426}, {6503, 652}, {6505, 650}, {6631, 281}, {7358, 3119}, {9296, 318}, {9428, 44130}, {10001, 4}, {11517, 657}, {15526, 21044}, {26932, 2170}, {31998, 29}, {34021, 57215}, {34591, 4516}, {34961, 2332}, {35072, 2310}, {36033, 3063}, {36830, 2299}, {36908, 55208}, {38983, 14936}, {39006, 3271}, {39026, 607}, {39053, 393}, {39054, 1172}, {39060, 158}, {39062, 8748}, {40584, 58313}, {40591, 3709}, {40593, 17924}, {40605, 17926}, {40611, 2489}, {40612, 65104}, {40615, 2969}, {40618, 11}, {40626, 1146}, {47345, 58757}, {51574, 4041}, {52881, 14432}, {62564, 3700}, {62565, 523}, {62569, 14400}, {62570, 24006}, {62584, 3239}, {62604, 35519}, {62613, 52956}, {62614, 4086}, {62647, 3900}
X(65164) = X(i)-Ceva conjugate of X(j) for these {i, j}: {799, 4554}, {4572, 664}, {4620, 52565}
X(65164) = X(i)-cross conjugate of X(j) for these {i, j}: {345, 4998}, {1332, 4561}, {1813, 664}, {4025, 7182}, {6332, 69}, {15413, 17206}, {22443, 3}, {30805, 304}, {52565, 4620}, {52616, 7055}, {57242, 305}, {57243, 307}, {57245, 3718}, {65233, 6516}
X(65164) = pole of line {333, 24635} with respect to the Kiepert parabola
X(65164) = pole of line {663, 51726} with respect to the Stammler hyperbola
X(65164) = pole of line {200, 1742} with respect to the Yff parabola
X(65164) = pole of line {17257, 26658} with respect to the Hutson-Moses hyperbola
X(65164) = pole of line {243, 522} with respect to the Wallace hyperbola
X(65164) = pole of line {11, 1146} with respect to the dual conic of polar circle
X(65164) = pole of line {75, 7318} with respect to the dual conic of Feuerbach hyperbola
X(65164) = pole of line {1332, 52610} with respect to the dual conic of Orthic inconic
X(65164) = pole of line {4554, 18740} with respect to the dual conic of Hofstadter ellipse
X(65164) = pole of line {44717, 57750} with respect to the dual conic of Moses-Feuerbach circumconic
X(65164) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7462)}}, {{A, B, C, X(63), X(1025)}}, {{A, B, C, X(99), X(4554)}}, {{A, B, C, X(109), X(296)}}, {{A, B, C, X(190), X(643)}}, {{A, B, C, X(304), X(1978)}}, {{A, B, C, X(332), X(4631)}}, {{A, B, C, X(345), X(3699)}}, {{A, B, C, X(525), X(2785)}}, {{A, B, C, X(658), X(1414)}}, {{A, B, C, X(664), X(46404)}}, {{A, B, C, X(799), X(4592)}}, {{A, B, C, X(813), X(906)}}, {{A, B, C, X(2968), X(6332)}}, {{A, B, C, X(3926), X(55254)}}, {{A, B, C, X(4025), X(23829)}}, {{A, B, C, X(4235), X(30774)}}, {{A, B, C, X(4569), X(4573)}}, {{A, B, C, X(4587), X(35341)}}, {{A, B, C, X(4610), X(46406)}}, {{A, B, C, X(13149), X(54953)}}
X(65164) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 883, 65199}, {190, 658, 4554}, {345, 50559, 7055}, {3699, 65165, 4998}
X(65165) lies on these lines: {7, 3035}, {85, 64112}, {100, 658}, {144, 13609}, {149, 62723}, {150, 13226}, {165, 31627}, {190, 53640}, {226, 21948}, {348, 64108}, {883, 43290}, {927, 1293}, {1025, 4763}, {1054, 56783}, {1331, 7045}, {3306, 55082}, {3699, 4998}, {3939, 4626}, {4025, 25724}, {4421, 31526}, {4554, 65166}, {5435, 16593}, {5744, 33298}, {6604, 51583}, {9352, 33765}, {18026, 58135}, {21453, 27003}, {22003, 24052}, {23703, 65188}, {25737, 53337}, {35258, 62704}, {35341, 42303}, {37139, 37206}, {41353, 61222}, {47374, 47375}, {50559, 64083}, {53642, 53658}, {53659, 54953}, {65222, 65242}
X(65165) = trilinear pole of line {144, 1419}
X(65165) = X(i)-isoconjugate-of-X(j) for these {i, j}: {649, 19605}, {650, 11051}, {657, 64980}, {663, 3062}, {667, 63165}, {884, 56718}, {2310, 53622}, {3063, 10405}, {4130, 61380}, {8641, 36620}, {14936, 61240}, {57180, 60831}
X(65165) = X(i)-Dao conjugate of X(j) for these {i, j}: {7, 514}, {5375, 19605}, {6631, 63165}, {7658, 23615}, {10001, 10405}, {13609, 11}
X(65165) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 664}, {4998, 64083}
X(65165) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {58108, 37781}
X(65165) = X(i)-cross conjugate of X(j) for these {i, j}: {7658, 31627}, {58877, 64083}
X(65165) = pole of line {144, 165} with respect to the Yff parabola
X(65165) = pole of line {220, 61006} with respect to the Hutson-Moses hyperbola
X(65165) = pole of line {346, 348} with respect to the dual conic of Feuerbach hyperbola
X(65165) = pole of line {527, 1275} with respect to the dual conic of Moses-Feuerbach circumconic
X(65165) = intersection, other than A, B, C, of circumconics {{A, B, C, X(144), X(37206)}}, {{A, B, C, X(165), X(1293)}}, {{A, B, C, X(658), X(53640)}}, {{A, B, C, X(664), X(30610)}}, {{A, B, C, X(934), X(61240)}}, {{A, B, C, X(2398), X(3699)}}, {{A, B, C, X(6366), X(13609)}}, {{A, B, C, X(6516), X(58135)}}, {{A, B, C, X(7658), X(43042)}}, {{A, B, C, X(16284), X(53659)}}, {{A, B, C, X(18006), X(55285)}}
X(65165) = barycentric product X(i)*X(j) for these (i, j): {57, 62533}, {100, 31627}, {101, 50560}, {144, 664}, {165, 4554}, {190, 3160}, {1419, 668}, {1897, 50559}, {3207, 4572}, {3699, 9533}, {4620, 55285}, {4998, 7658}, {16284, 651}, {17106, 646}, {21060, 4573}, {21872, 4625}, {22117, 46404}, {50561, 644}, {50562, 643}, {50563, 648}, {57064, 59457}, {63965, 65164}, {64083, 658}
X(65165) = barycentric quotient X(i)/X(j) for these (i, j): {100, 19605}, {109, 11051}, {144, 522}, {165, 650}, {190, 63165}, {651, 3062}, {658, 36620}, {664, 10405}, {934, 64980}, {1025, 56718}, {1262, 53622}, {1275, 53640}, {1419, 513}, {3160, 514}, {3207, 663}, {4554, 44186}, {4620, 55284}, {4626, 60831}, {6614, 61380}, {7045, 61240}, {7658, 11}, {9533, 3676}, {13609, 23615}, {16284, 4391}, {17106, 3669}, {21060, 3700}, {21872, 4041}, {22117, 652}, {31627, 693}, {50559, 4025}, {50560, 3261}, {50561, 24002}, {50562, 4077}, {50563, 525}, {55285, 21044}, {57064, 4081}, {58835, 3119}, {58877, 13609}, {62533, 312}, {63965, 3064}, {64083, 3239}, {65174, 59170}, {65188, 62544}
X(65165) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 35312, 65194}, {100, 56543, 658}, {100, 658, 664}, {658, 65194, 35312}, {4998, 65164, 3699}
X(65166) lies on these lines: {2, 59580}, {8, 6154}, {35, 63996}, {55, 24349}, {63, 3996}, {65, 52352}, {75, 35258}, {99, 109}, {100, 190}, {110, 46961}, {149, 51583}, {165, 312}, {171, 3993}, {192, 37540}, {333, 3696}, {345, 9778}, {516, 32851}, {644, 35326}, {653, 36797}, {668, 58135}, {835, 901}, {846, 3842}, {874, 65185}, {883, 65194}, {894, 4689}, {902, 32845}, {903, 33148}, {931, 6013}, {1018, 28521}, {1043, 56288}, {1054, 4432}, {1155, 3685}, {1220, 24850}, {1279, 62300}, {1293, 8707}, {1420, 64563}, {1739, 33309}, {1897, 65162}, {1979, 17475}, {1999, 49461}, {2651, 30606}, {2796, 17719}, {3035, 4997}, {3052, 3210}, {3120, 25529}, {3474, 18134}, {3550, 32926}, {3579, 7283}, {3689, 62222}, {3712, 4645}, {3719, 10860}, {3722, 24841}, {3729, 35445}, {3756, 30577}, {3759, 36277}, {3888, 61172}, {3896, 41629}, {3914, 41806}, {3923, 17601}, {3977, 32850}, {3980, 40328}, {4000, 35261}, {4234, 4424}, {4360, 17126}, {4385, 59316}, {4387, 63212}, {4398, 26228}, {4414, 5263}, {4417, 44447}, {4421, 32937}, {4422, 26073}, {4440, 17724}, {4450, 33168}, {4512, 19804}, {4554, 65165}, {4597, 58133}, {4598, 65250}, {4650, 49678}, {4652, 4673}, {4773, 30728}, {4779, 64142}, {4819, 4831}, {4970, 41823}, {4975, 5131}, {5087, 59581}, {5195, 6390}, {5218, 24280}, {5233, 5698}, {5724, 51678}, {6014, 8706}, {6790, 9945}, {7081, 63211}, {7270, 31730}, {8720, 37588}, {9059, 28218}, {11246, 29839}, {14594, 23703}, {14829, 32929}, {15326, 60452}, {16706, 35263}, {17273, 33175}, {17277, 62838}, {17285, 33086}, {17593, 49482}, {17596, 32942}, {17764, 33140}, {20292, 41878}, {24542, 27191}, {24627, 49484}, {24723, 30832}, {25256, 25733}, {25568, 44446}, {25577, 61234}, {25728, 46917}, {25734, 64135}, {26139, 43055}, {26629, 41842}, {28530, 37759}, {28808, 64108}, {28956, 64154}, {29641, 59536}, {30567, 63207}, {30829, 64112}, {32025, 46918}, {32042, 35339}, {33068, 59692}, {33073, 59547}, {33118, 59544}, {33337, 41529}, {34594, 53637}, {35280, 53332}, {35338, 61223}, {35466, 62392}, {36086, 37215}, {37593, 42028}, {42033, 50808}, {42314, 51355}, {53534, 58371}, {53659, 58134}, {55095, 64010}, {61186, 65189}, {65225, 65230}
X(65166) = reflection of X(i) in X(j) for these {i,j}: {33140, 59665}
X(65166) = isotomic conjugate of X(58860)
X(65166) = anticomplement of X(62221)
X(65166) = trilinear pole of line {391, 1449}
X(65166) = perspector of circumconic {{A, B, C, X(1016), X(4620)}}
X(65166) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 47915}, {31, 58860}, {244, 8694}, {513, 2334}, {649, 25430}, {667, 5936}, {798, 65018}, {1015, 4606}, {1027, 14626}, {1086, 34074}, {1919, 40023}, {3063, 57826}, {3121, 4633}, {3122, 4614}, {3125, 4627}, {3248, 53658}, {3669, 34820}, {3733, 56237}, {4516, 5545}, {4866, 43924}, {7180, 56204}, {18344, 57701}, {56086, 57181}, {57129, 60267}
X(65166) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 58860}, {9, 47915}, {1698, 4802}, {3616, 28161}, {5257, 50457}, {5375, 25430}, {6631, 5936}, {9296, 40023}, {10001, 57826}, {31998, 65018}, {39026, 2334}, {39054, 56048}, {51576, 513}, {55056, 3120}, {62221, 62221}, {62608, 514}
X(65166) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32042, 190}
X(65166) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2149, 41913}, {28162, 149}, {58132, 21293}, {65259, 150}
X(65166) = X(i)-cross conjugate of X(j) for these {i, j}: {4765, 19804}, {4778, 3616}, {4790, 42028}, {58140, 1449}
X(65166) = pole of line {100, 23363} with respect to the circumcircle
X(65166) = pole of line {1, 333} with respect to the Kiepert parabola
X(65166) = pole of line {663, 3733} with respect to the Stammler hyperbola
X(65166) = pole of line {190, 17136} with respect to the Steiner circumellipse
X(65166) = pole of line {2, 1743} with respect to the Yff parabola
X(65166) = pole of line {6, 3622} with respect to the Hutson-Moses hyperbola
X(65166) = pole of line {522, 7192} with respect to the Wallace hyperbola
X(65166) = pole of line {344, 17095} with respect to the dual conic of Feuerbach hyperbola
X(65166) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(3699)}}, {{A, B, C, X(100), X(1414)}}, {{A, B, C, X(109), X(4557)}}, {{A, B, C, X(190), X(4573)}}, {{A, B, C, X(461), X(7462)}}, {{A, B, C, X(643), X(4578)}}, {{A, B, C, X(659), X(4790)}}, {{A, B, C, X(664), X(3952)}}, {{A, B, C, X(835), X(3616)}}, {{A, B, C, X(890), X(58140)}}, {{A, B, C, X(900), X(4773)}}, {{A, B, C, X(901), X(65313)}}, {{A, B, C, X(1293), X(53280)}}, {{A, B, C, X(1449), X(23343)}}, {{A, B, C, X(1897), X(4767)}}, {{A, B, C, X(2785), X(4843)}}, {{A, B, C, X(3361), X(23832)}}, {{A, B, C, X(3570), X(42028)}}, {{A, B, C, X(4436), X(37138)}}, {{A, B, C, X(4512), X(54353)}}, {{A, B, C, X(4571), X(4592)}}, {{A, B, C, X(4756), X(53658)}}, {{A, B, C, X(4765), X(23829)}}, {{A, B, C, X(4801), X(30565)}}, {{A, B, C, X(4822), X(17989)}}, {{A, B, C, X(4841), X(18004)}}, {{A, B, C, X(5342), X(56881)}}, {{A, B, C, X(6013), X(65225)}}, {{A, B, C, X(6014), X(23845)}}, {{A, B, C, X(8706), X(58134)}}, {{A, B, C, X(8707), X(43290)}}, {{A, B, C, X(13589), X(31903)}}, {{A, B, C, X(19804), X(37215)}}, {{A, B, C, X(21454), X(53337)}}, {{A, B, C, X(30723), X(47884)}}, {{A, B, C, X(47776), X(48580)}}, {{A, B, C, X(52923), X(65250)}}, {{A, B, C, X(58860), X(62221)}}
X(65166) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 190, 3699}, {100, 3952, 43290}, {100, 4427, 190}, {100, 4756, 17780}, {100, 57151, 65186}, {109, 54440, 643}, {190, 43290, 3952}, {902, 32845, 32922}, {1054, 4432, 25531}, {3035, 17777, 4997}, {3550, 32934, 32926}, {3977, 63145, 32850}, {4427, 4781, 100}, {4640, 32932, 333}, {17764, 59665, 33140}
X(65167) lies on these lines: {1, 9490}, {9, 87}, {37, 21759}, {44, 40881}, {45, 2162}, {101, 932}, {190, 4598}, {330, 16552}, {645, 4584}, {649, 61183}, {670, 18197}, {798, 4033}, {2161, 2319}, {3294, 23493}, {3494, 17744}, {4557, 61164}, {6383, 16574}, {8707, 58981}, {15966, 53676}, {17257, 27341}, {17336, 62419}, {17349, 32033}, {17742, 61427}, {18785, 21061}, {18793, 21835}, {20372, 39914}, {20375, 35032}, {29478, 34086}, {53338, 61235}, {53625, 58958}, {56257, 62753}, {60135, 60244}
X(65167) = isogonal conjugate of X(18197)
X(65167) = trilinear pole of line {42, 2229}
X(65167) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 18197}, {2, 16695}, {3, 17921}, {4, 23092}, {6, 17217}, {21, 43051}, {27, 22090}, {28, 25098}, {43, 1019}, {56, 27527}, {58, 3835}, {75, 57074}, {81, 4083}, {86, 20979}, {99, 6377}, {100, 16742}, {101, 23824}, {110, 21138}, {192, 3733}, {274, 8640}, {512, 7304}, {513, 27644}, {514, 38832}, {593, 21051}, {649, 33296}, {662, 3123}, {667, 31008}, {670, 21762}, {757, 21834}, {799, 38986}, {1015, 62530}, {1021, 62791}, {1171, 4992}, {1178, 64865}, {1333, 20906}, {1403, 4560}, {1412, 4147}, {1423, 3737}, {1509, 50491}, {2176, 7192}, {2209, 7199}, {3208, 7203}, {3212, 7252}, {3248, 36860}, {3669, 56181}, {4623, 21835}, {6331, 22386}, {6376, 57129}, {7255, 20284}, {16726, 52923}, {17187, 18107}, {17925, 20760}, {18155, 41526}, {18199, 20287}, {22370, 57200}, {24533, 40432}, {27346, 52150}, {40610, 56053}, {41531, 50456}, {48331, 65076}, {52619, 62420}
X(65167) = X(i)-vertex conjugate of X(j) for these {i, j}: {61234, 65163}
X(65167) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 27527}, {3, 18197}, {9, 17217}, {10, 3835}, {37, 20906}, {206, 57074}, {244, 21138}, {1015, 23824}, {1084, 3123}, {5375, 33296}, {6631, 31008}, {8054, 16742}, {16606, 23807}, {32664, 16695}, {36033, 23092}, {36103, 17921}, {38986, 6377}, {38996, 38986}, {39026, 27644}, {39054, 7304}, {40586, 4083}, {40591, 25098}, {40599, 4147}, {40600, 20979}, {40607, 21834}, {40611, 43051}, {52877, 14408}, {62574, 7199}, {62615, 52619}, {63618, 514}
X(65167) = X(i)-Ceva conjugate of X(j) for these {i, j}: {932, 65163}, {5383, 87}, {65163, 1018}
X(65167) = X(i)-cross conjugate of X(j) for these {i, j}: {669, 1}, {798, 21759}, {3952, 1018}, {22319, 291}, {23503, 213}, {62753, 4551}
X(65167) = pole of line {61234, 65163} with respect to the circumcircle
X(65167) = pole of line {18197, 57074} with respect to the Stammler hyperbola
X(65167) = pole of line {43, 213} with respect to the Yff parabola
X(65167) = pole of line {31, 87} with respect to the Hutson-Moses hyperbola
X(65167) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(670)}}, {{A, B, C, X(6), X(37205)}}, {{A, B, C, X(9), X(645)}}, {{A, B, C, X(37), X(4033)}}, {{A, B, C, X(87), X(56053)}}, {{A, B, C, X(101), X(190)}}, {{A, B, C, X(660), X(4551)}}, {{A, B, C, X(669), X(18197)}}, {{A, B, C, X(692), X(37218)}}, {{A, B, C, X(799), X(61234)}}, {{A, B, C, X(803), X(37133)}}, {{A, B, C, X(931), X(65250)}}, {{A, B, C, X(932), X(18830)}}, {{A, B, C, X(2284), X(21061)}}, {{A, B, C, X(3294), X(23343)}}, {{A, B, C, X(3709), X(21388)}}, {{A, B, C, X(3952), X(36863)}}, {{A, B, C, X(4594), X(53624)}}, {{A, B, C, X(4598), X(34071)}}, {{A, B, C, X(9282), X(9359)}}, {{A, B, C, X(17038), X(56241)}}
X(65167) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 4598, 18830}
X(65168) lies on these lines: {9, 1958}, {37, 59693}, {41, 50127}, {48, 3729}, {75, 572}, {86, 55100}, {99, 101}, {100, 109}, {198, 29497}, {239, 5053}, {284, 894}, {321, 1790}, {326, 1766}, {332, 22008}, {527, 20769}, {536, 7113}, {581, 19845}, {604, 3875}, {646, 18047}, {664, 1461}, {692, 4436}, {785, 6013}, {851, 17977}, {909, 20881}, {940, 53543}, {1018, 1332}, {1020, 6516}, {1266, 1429}, {1310, 28477}, {1412, 1999}, {1438, 56851}, {1444, 21061}, {1630, 25252}, {1813, 2406}, {1897, 65232}, {1959, 16548}, {1978, 4610}, {1981, 6335}, {2173, 20602}, {2174, 17351}, {2182, 25083}, {2267, 4384}, {2268, 10436}, {2278, 4363}, {2298, 54308}, {2359, 18697}, {2360, 7283}, {3191, 14868}, {3257, 37211}, {3271, 8301}, {3430, 19842}, {3570, 65185}, {3673, 30885}, {3758, 4251}, {3879, 7175}, {4033, 4482}, {4149, 12530}, {4238, 8750}, {4268, 4361}, {4287, 17118}, {4416, 54316}, {4440, 27950}, {4557, 23363}, {4562, 62464}, {4565, 65203}, {4586, 18830}, {4604, 37212}, {4606, 65259}, {4659, 52134}, {4670, 60721}, {4855, 8545}, {5687, 43146}, {5764, 56984}, {5782, 11343}, {6007, 17798}, {6514, 22001}, {7364, 64708}, {8300, 9359}, {8694, 43350}, {8897, 56848}, {14543, 65195}, {16732, 24324}, {17274, 25940}, {18726, 27059}, {21272, 63782}, {21362, 35342}, {21937, 50093}, {22000, 31631}, {22311, 56193}, {24268, 24334}, {33952, 65298}, {36146, 36802}, {37793, 61410}, {60703, 60723}, {65170, 65201}
X(65168) = trilinear pole of line {940, 958}
X(65168) = perspector of circumconic {{A, B, C, X(4564), X(4600)}}
X(65168) = X(i)-isoconjugate-of-X(j) for these {i, j}: {11, 32693}, {512, 37870}, {513, 941}, {514, 2258}, {649, 31359}, {650, 959}, {661, 5331}, {663, 44733}, {667, 34258}, {931, 3125}, {1980, 40828}, {2170, 65225}, {3063, 58008}, {3121, 65280}, {3122, 65230}, {3271, 32038}, {6591, 34259}, {7252, 60321}, {8678, 34260}
X(65168) = X(i)-Dao conjugate of X(j) for these {i, j}: {958, 6590}, {5257, 4815}, {5375, 31359}, {6631, 34258}, {10001, 58008}, {17417, 11}, {31993, 23879}, {34261, 522}, {34281, 6589}, {36830, 5331}, {39026, 941}, {39054, 37870}
X(65168) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4614, 100}
X(65168) = X(i)-cross conjugate of X(j) for these {i, j}: {17418, 10436}, {48144, 940}
X(65168) = pole of line {23845, 53268} with respect to the circumcircle
X(65168) = pole of line {86, 2975} with respect to the Kiepert parabola
X(65168) = pole of line {649, 3737} with respect to the Stammler hyperbola
X(65168) = pole of line {109, 835} with respect to the Steiner circumellipse
X(65168) = pole of line {6718, 16578} with respect to the Steiner inellipse
X(65168) = pole of line {10, 46} with respect to the Yff parabola
X(65168) = pole of line {9, 81} with respect to the Hutson-Moses hyperbola
X(65168) = pole of line {514, 18155} with respect to the Wallace hyperbola
X(65168) = pole of line {4466, 17880} with respect to the dual conic of polar circle
X(65168) = pole of line {28774, 33116} with respect to the dual conic of Feuerbach hyperbola
X(65168) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(651)}}, {{A, B, C, X(100), X(645)}}, {{A, B, C, X(109), X(662)}}, {{A, B, C, X(190), X(4551)}}, {{A, B, C, X(664), X(3882)}}, {{A, B, C, X(785), X(4627)}}, {{A, B, C, X(940), X(23703)}}, {{A, B, C, X(1025), X(10436)}}, {{A, B, C, X(1461), X(4610)}}, {{A, B, C, X(1978), X(4605)}}, {{A, B, C, X(2254), X(17418)}}, {{A, B, C, X(2268), X(54325)}}, {{A, B, C, X(2786), X(8672)}}, {{A, B, C, X(3738), X(23880)}}, {{A, B, C, X(3939), X(7259)}}, {{A, B, C, X(4185), X(4237)}}, {{A, B, C, X(4604), X(61225)}}, {{A, B, C, X(5307), X(61231)}}, {{A, B, C, X(7451), X(44734)}}, {{A, B, C, X(33948), X(57977)}}, {{A, B, C, X(43050), X(43067)}}, {{A, B, C, X(48074), X(48144)}}, {{A, B, C, X(56188), X(61177)}}
X(65168) = barycentric product X(i)*X(j) for these (i, j): {7, 65190}, {100, 10436}, {101, 34284}, {190, 940}, {664, 958}, {1016, 48144}, {1332, 5307}, {1414, 3714}, {1461, 61414}, {1468, 668}, {1867, 4592}, {1978, 5019}, {2268, 4554}, {3713, 658}, {4185, 4561}, {4567, 50457}, {4600, 8672}, {11679, 651}, {17418, 4998}, {23880, 4564}, {31615, 53526}, {31993, 662}, {34261, 37215}, {34281, 57977}, {43067, 765}, {44734, 65233}, {53536, 5376}, {53543, 6632}, {54396, 6516}, {59305, 99}
X(65168) = barycentric quotient X(i)/X(j) for these (i, j): {59, 65225}, {100, 31359}, {101, 941}, {109, 959}, {110, 5331}, {190, 34258}, {651, 44733}, {662, 37870}, {664, 58008}, {692, 2258}, {835, 34265}, {940, 514}, {958, 522}, {1331, 34259}, {1468, 513}, {1867, 24006}, {1978, 40828}, {2149, 32693}, {2268, 650}, {3713, 3239}, {3714, 4086}, {4185, 7649}, {4551, 60321}, {4564, 32038}, {4567, 65230}, {4570, 931}, {4600, 65280}, {5019, 649}, {5307, 17924}, {8639, 3122}, {8672, 3120}, {10436, 693}, {11679, 4391}, {17418, 11}, {23880, 4858}, {31993, 1577}, {34261, 6590}, {34281, 834}, {34284, 3261}, {43067, 1111}, {44734, 57215}, {48144, 1086}, {50457, 16732}, {53526, 40166}, {53543, 6545}, {53561, 42462}, {54396, 44426}, {54417, 3737}, {57061, 34263}, {58332, 2310}, {59305, 523}, {61168, 56914}, {61414, 52622}, {65190, 8}, {65225, 50040}, {65298, 34260}
X(65168) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 4579, 3939}, {100, 651, 3882}, {190, 4561, 65191}, {190, 662, 101}
X(65169) lies on these lines: {2, 16742}, {75, 3125}, {190, 646}, {194, 18148}, {304, 20452}, {1086, 30026}, {1654, 4110}, {1655, 2276}, {1909, 26759}, {1978, 33946}, {3216, 29425}, {3570, 7257}, {3761, 17286}, {3770, 17281}, {3909, 23354}, {4087, 49755}, {4562, 65282}, {4568, 27808}, {4602, 55239}, {7260, 21604}, {16552, 29713}, {16709, 50160}, {17144, 27424}, {17149, 26767}, {17499, 24524}, {18050, 28659}, {20440, 21331}, {20453, 57015}, {20917, 29587}, {21138, 62553}, {24652, 31997}, {25264, 56250}, {26774, 52043}, {29388, 56191}, {29397, 29433}, {29423, 30114}, {30083, 36791}, {35342, 55243}, {35538, 46180}, {46132, 57965}, {65280, 65288}
X(65169) = anticomplement of X(16742)
X(65169) = trilinear pole of line {3728, 3741}
X(65169) = X(i)-isoconjugate-of-X(j) for these {i, j}: {110, 40525}, {649, 57399}, {667, 1258}, {669, 40409}, {1015, 59102}, {1221, 1980}, {1919, 40418}, {21762, 59094}
X(65169) = X(i)-Dao conjugate of X(j) for these {i, j}: {75, 63224}, {244, 40525}, {1107, 4367}, {3122, 3121}, {3741, 798}, {5375, 57399}, {6631, 1258}, {9296, 40418}, {16742, 16742}, {21024, 4083}, {21838, 513}, {51575, 649}, {59565, 661}
X(65169) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {765, 17149}, {1110, 36857}, {4600, 34086}, {5383, 17135}, {23493, 54102}, {34071, 17154}, {65163, 4440}, {65167, 149}
X(65169) = X(i)-cross conjugate of X(j) for these {i, j}: {61165, 53338}
X(65169) = pole of line {3952, 22319} with respect to the Steiner circumellipse
X(65169) = pole of line {1, 25295} with respect to the Yff parabola
X(65169) = pole of line {1019, 1924} with respect to the Wallace hyperbola
X(65169) = pole of line {3952, 4010} with respect to the dual conic of DeLongchamps ellipse
X(65169) = pole of line {18055, 18743} with respect to the dual conic of Feuerbach hyperbola
X(65169) = pole of line {668, 670} with respect to the dual conic of Hofstadter ellipse
X(65169) = intersection, other than A, B, C, of circumconics {{A, B, C, X(190), X(7260)}}, {{A, B, C, X(812), X(63812)}}, {{A, B, C, X(874), X(65282)}}, {{A, B, C, X(1018), X(4602)}}, {{A, B, C, X(1107), X(40782)}}, {{A, B, C, X(1978), X(4595)}}, {{A, B, C, X(3741), X(23891)}}, {{A, B, C, X(3882), X(4562)}}, {{A, B, C, X(20891), X(24004)}}, {{A, B, C, X(53268), X(57965)}}
X(65169) = barycentric product X(i)*X(j) for these (i, j): {190, 20891}, {274, 61165}, {1107, 1978}, {2309, 6386}, {3728, 670}, {3741, 668}, {4595, 61417}, {16738, 4033}, {18169, 27808}, {18830, 59565}, {21024, 799}, {21713, 4623}, {21838, 4602}, {22206, 52612}, {30097, 646}, {45208, 62534}, {51575, 56241}, {53268, 561}, {53338, 75}, {61234, 76}, {63812, 7035}
X(65169) = barycentric quotient X(i)/X(j) for these (i, j): {100, 57399}, {190, 1258}, {661, 40525}, {668, 40418}, {765, 59102}, {799, 40409}, {1107, 649}, {1197, 1919}, {1978, 1221}, {2309, 667}, {3728, 512}, {3741, 513}, {4033, 60230}, {4595, 63238}, {6376, 63224}, {16738, 1019}, {18091, 18108}, {18169, 3733}, {20891, 514}, {21024, 661}, {21700, 50487}, {21713, 4705}, {21838, 798}, {22065, 22383}, {22206, 4079}, {23473, 50514}, {27880, 7234}, {30097, 3669}, {36863, 63232}, {39780, 51641}, {40627, 3121}, {45208, 7180}, {45216, 8640}, {50510, 3248}, {51411, 1769}, {51575, 4367}, {53268, 31}, {53338, 1}, {56901, 62749}, {59565, 4083}, {61165, 37}, {61234, 6}, {63812, 244}
X(65169) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {646, 668, 4595}
X(65170) lies on these lines: {27, 4641}, {44, 26003}, {72, 44698}, {101, 65232}, {144, 1249}, {162, 190}, {273, 1743}, {297, 20072}, {318, 50127}, {346, 56013}, {423, 27970}, {651, 653}, {894, 2322}, {1119, 37681}, {3172, 25242}, {3219, 41083}, {3758, 11109}, {4419, 40138}, {4644, 37448}, {4741, 11331}, {5702, 17014}, {6172, 7952}, {6335, 65161}, {6542, 56021}, {9308, 17350}, {16318, 56555}, {17347, 17907}, {17354, 44134}, {17555, 54280}, {18678, 64143}, {21362, 61236}, {22117, 56299}, {36048, 36049}, {36099, 37206}, {44765, 46639}, {52283, 64015}, {52288, 61330}, {62669, 65355}, {65168, 65201}
X(65170) = trilinear pole of line {1869, 3601}
X(65170) = X(i)-isoconjugate-of-X(j) for these {i, j}: {647, 63157}, {652, 5665}, {18210, 59079}, {22383, 43533}
X(65170) = X(i)-Dao conjugate of X(j) for these {i, j}: {39052, 63157}
X(65170) = pole of line {1146, 3120} with respect to the polar circle
X(65170) = pole of line {1043, 17134} with respect to the Kiepert parabola
X(65170) = pole of line {1459, 23090} with respect to the Stammler hyperbola
X(65170) = pole of line {1897, 14543} with respect to the Steiner circumellipse
X(65170) = pole of line {20, 306} with respect to the Yff parabola
X(65170) = pole of line {27, 329} with respect to the Hutson-Moses hyperbola
X(65170) = pole of line {4025, 15411} with respect to the Wallace hyperbola
X(65170) = pole of line {17216, 23983} with respect to the dual conic of polar circle
X(65170) = intersection, other than A, B, C, of circumconics {{A, B, C, X(162), X(32714)}}, {{A, B, C, X(190), X(4566)}}, {{A, B, C, X(643), X(651)}}, {{A, B, C, X(648), X(36118)}}, {{A, B, C, X(653), X(36797)}}, {{A, B, C, X(658), X(14543)}}, {{A, B, C, X(1331), X(52610)}}, {{A, B, C, X(1897), X(52607)}}, {{A, B, C, X(2406), X(5273)}}, {{A, B, C, X(3945), X(23973)}}, {{A, B, C, X(7490), X(46541)}}, {{A, B, C, X(36049), X(61197)}}
X(65170) = barycentric product X(i)*X(j) for these (i, j): {7, 65193}, {190, 7490}, {1869, 99}, {1897, 3945}, {5273, 653}, {18026, 3601}, {20007, 36118}, {62812, 6335}
X(65170) = barycentric quotient X(i)/X(j) for these (i, j): {108, 5665}, {162, 63157}, {1869, 523}, {1897, 43533}, {3601, 521}, {3945, 4025}, {4252, 1459}, {5273, 6332}, {7490, 514}, {62812, 905}, {65193, 8}
X(65170) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 648, 1897}, {651, 653, 36118}
X(65171) lies on these lines: {2, 40347}, {69, 3269}, {99, 112}, {194, 5976}, {339, 28438}, {385, 5866}, {974, 61113}, {1302, 58116}, {2396, 43188}, {2696, 53884}, {2966, 62522}, {3926, 28405}, {4563, 65311}, {4576, 61198}, {5913, 62310}, {8267, 31128}, {8716, 10607}, {9091, 34537}, {9723, 31859}, {10420, 53949}, {14420, 23181}, {34866, 40879}, {39127, 46712}, {39193, 47288}, {46721, 52067}, {48945, 64235}, {53273, 53350}, {60839, 63933}
X(65171) = trilinear pole of line {1368, 6467}
X(65171) = X(i)-isoconjugate-of-X(j) for these {i, j}: {683, 1924}, {798, 40413}
X(65171) = X(i)-Dao conjugate of X(j) for these {i, j}: {1196, 523}, {1368, 2489}, {5254, 16229}, {9428, 683}, {20975, 3124}, {22401, 3566}, {31998, 40413}, {36830, 57388}, {59561, 2501}, {63612, 647}
X(65171) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 53273}, {23964, 28419}, {34537, 69}
X(65171) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1101, 19583}, {3565, 21294}, {65178, 21221}
X(65171) = X(i)-cross conjugate of X(j) for these {i, j}: {61199, 53350}
X(65171) = pole of line {69, 305} with respect to the Kiepert parabola
X(65171) = pole of line {647, 41336} with respect to the Stammler hyperbola
X(65171) = pole of line {110, 3565} with respect to the Steiner circumellipse
X(65171) = pole of line {525, 2451} with respect to the Wallace hyperbola
X(65171) = pole of line {110, 925} with respect to the dual conic of nine-point circle
X(65171) = pole of line {51389, 64920} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(65171) = pole of line {1084, 6388} with respect to the dual conic of polar circle
X(65171) = pole of line {2, 1975} with respect to the dual conic of Jerabek hyperbola
X(65171) = pole of line {99, 670} with respect to the dual conic of Orthic inconic
X(65171) = intersection, other than A, B, C, of circumconics {{A, B, C, X(112), X(40347)}}, {{A, B, C, X(648), X(53350)}}, {{A, B, C, X(1368), X(4235)}}, {{A, B, C, X(2966), X(41678)}}, {{A, B, C, X(4580), X(14273)}}, {{A, B, C, X(14966), X(22401)}}, {{A, B, C, X(16237), X(53949)}}
X(65171) = barycentric product X(i)*X(j) for these (i, j): {305, 53273}, {1196, 52608}, {1368, 99}, {4563, 5254}, {4609, 682}, {6467, 670}, {12075, 47389}, {17872, 55202}, {18648, 190}, {18671, 799}, {21406, 662}, {22401, 6331}, {35136, 63612}, {45207, 55224}, {53350, 69}, {61199, 76}
X(65171) = barycentric quotient X(i)/X(j) for these (i, j): {99, 40413}, {110, 57388}, {670, 683}, {682, 669}, {1196, 2489}, {1368, 523}, {4563, 40405}, {4609, 57931}, {5254, 2501}, {6467, 512}, {12075, 8754}, {16716, 6591}, {18648, 514}, {18671, 661}, {21406, 1577}, {22401, 647}, {40326, 57071}, {53273, 25}, {53350, 4}, {59561, 16229}, {61199, 6}, {63612, 3566}
X(65171) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 41676, 14570}, {99, 4611, 4235}
X(65172) lies on these lines: {3, 3224}, {99, 3222}, {574, 51951}, {805, 59028}, {1576, 41337}, {2998, 8266}, {3455, 3504}, {19606, 41328}, {42551, 51869}
X(65172) = trilinear pole of line {3051, 19606}
X(65172) = X(i)-isoconjugate-of-X(j) for these {i, j}: {82, 23301}, {194, 55240}, {251, 20910}, {308, 23503}, {1577, 38834}, {1613, 18070}, {1740, 58784}, {2643, 62531}, {3112, 3221}, {4580, 51913}, {9491, 18833}, {10566, 21877}, {17149, 18105}, {18082, 50516}, {18098, 21191}, {18108, 21080}, {21056, 52376}, {23572, 56186}, {52618, 56836}
X(65172) = X(i)-vertex conjugate of X(j) for these {i, j}: {670, 53654}, {42371, 42371}
X(65172) = X(i)-Dao conjugate of X(j) for these {i, j}: {141, 23301}, {34452, 3221}, {40585, 20910}
X(65172) = X(i)-cross conjugate of X(j) for these {i, j}: {4576, 1634}
X(65172) = pole of line {9429, 32547} with respect to the 2nd Brocard circle
X(65172) = pole of line {670, 9429} with respect to the circumcircle
X(65172) = pole of line {1613, 41331} with respect to the Kiepert parabola
X(65172) = pole of line {9491, 23301} with respect to the Stammler hyperbola
X(65172) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(39681)}}, {{A, B, C, X(6), X(36881)}}, {{A, B, C, X(25), X(9062)}}, {{A, B, C, X(32), X(6573)}}, {{A, B, C, X(39), X(41337)}}, {{A, B, C, X(99), X(1576)}}, {{A, B, C, X(689), X(17965)}}, {{A, B, C, X(805), X(35325)}}, {{A, B, C, X(3224), X(59028)}}, {{A, B, C, X(4576), X(25424)}}, {{A, B, C, X(5118), X(41328)}}, {{A, B, C, X(6234), X(30254)}}, {{A, B, C, X(6572), X(14574)}}, {{A, B, C, X(9217), X(9431)}}, {{A, B, C, X(17938), X(35567)}}, {{A, B, C, X(27369), X(46598)}}, {{A, B, C, X(28469), X(35333)}}
X(65172) = barycentric product X(i)*X(j) for these (i, j): {110, 42551}, {1634, 2998}, {3051, 53654}, {3222, 39}, {3224, 4576}, {3504, 41676}, {4074, 59028}, {19606, 670}, {34248, 55239}, {35325, 43714}, {39927, 46161}
X(65172) = barycentric quotient X(i)/X(j) for these (i, j): {38, 20910}, {39, 23301}, {249, 62531}, {1576, 38834}, {1634, 194}, {1923, 23503}, {2998, 52618}, {3051, 3221}, {3222, 308}, {3223, 18070}, {3224, 58784}, {3504, 4580}, {4553, 22028}, {4576, 6374}, {16696, 23807}, {17187, 21191}, {19606, 512}, {20775, 2524}, {21035, 21056}, {21123, 21144}, {34248, 55240}, {35325, 3186}, {41331, 9491}, {41676, 51843}, {42551, 850}, {46148, 21080}, {51951, 18105}, {53654, 40016}, {55239, 18837}, {61218, 11325}
X(65173) lies on these lines: {77, 19604}, {241, 51839}, {269, 47636}, {279, 56646}, {347, 4373}, {644, 3669}, {651, 23704}, {664, 31343}, {934, 1293}, {3160, 3445}, {3680, 9451}, {4318, 61438}, {6556, 34060}, {6557, 57477}, {8056, 17080}, {9312, 27813}, {16945, 60716}, {17074, 40151}, {26698, 43049}, {27829, 56309}, {34080, 36146}, {65330, 65337}
X(65173) = isogonal conjugate of X(4162)
X(65173) = trilinear pole of line {57, 1122}
X(65173) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4162}, {6, 4521}, {8, 8643}, {9, 4394}, {21, 4729}, {41, 4462}, {55, 3667}, {56, 4546}, {58, 44729}, {101, 4534}, {109, 4953}, {145, 663}, {200, 51656}, {220, 30719}, {284, 14321}, {512, 52352}, {513, 3158}, {522, 3052}, {649, 3161}, {650, 1743}, {657, 5435}, {667, 44720}, {692, 4939}, {884, 4899}, {1015, 30720}, {1420, 3900}, {1919, 44723}, {2170, 57192}, {2194, 4404}, {2195, 4925}, {2316, 14425}, {2325, 2441}, {3063, 18743}, {3064, 20818}, {3271, 43290}, {3445, 4943}, {3669, 4936}, {3700, 33628}, {3709, 41629}, {3737, 4849}, {3756, 3939}, {3950, 7252}, {4041, 16948}, {4069, 18211}, {4105, 62787}, {4848, 21789}, {4855, 18344}, {5546, 21950}, {6065, 23764}, {6555, 43924}, {7077, 53580}, {8641, 39126}, {14284, 51476}
X(65173) = X(i)-vertex conjugate of X(j) for these {i, j}: {56, 644}
X(65173) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4546}, {3, 4162}, {9, 4521}, {10, 44729}, {11, 4953}, {223, 3667}, {478, 4394}, {1015, 4534}, {1086, 4939}, {1214, 4404}, {3160, 4462}, {3452, 14284}, {5375, 3161}, {6609, 51656}, {6631, 44720}, {9296, 44723}, {10001, 18743}, {24151, 522}, {39026, 3158}, {39054, 52352}, {39063, 4925}, {40590, 14321}, {40611, 4729}, {40617, 3756}, {45036, 4943}, {62575, 4391}
X(65173) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 5382}, {100, 651}, {1293, 27834}, {2827, 88}, {21362, 658}, {34039, 7128}, {43932, 7}, {48032, 43760}, {51656, 57}, {58794, 27818}, {63208, 4564}
X(65173) = pole of line {4488, 63130} with respect to the Yff parabola
X(65173) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(644)}}, {{A, B, C, X(7), X(668)}}, {{A, B, C, X(59), X(39443)}}, {{A, B, C, X(77), X(6516)}}, {{A, B, C, X(99), X(4606)}}, {{A, B, C, X(100), X(43290)}}, {{A, B, C, X(651), X(664)}}, {{A, B, C, X(655), X(53642)}}, {{A, B, C, X(927), X(6613)}}, {{A, B, C, X(932), X(1476)}}, {{A, B, C, X(1293), X(31343)}}, {{A, B, C, X(1305), X(54953)}}, {{A, B, C, X(1308), X(1783)}}, {{A, B, C, X(1310), X(4596)}}, {{A, B, C, X(1461), X(6571)}}, {{A, B, C, X(3160), X(41353)}}, {{A, B, C, X(3257), X(58131)}}, {{A, B, C, X(3445), X(34080)}}, {{A, B, C, X(4554), X(4617)}}, {{A, B, C, X(4624), X(4637)}}, {{A, B, C, X(5546), X(28291)}}, {{A, B, C, X(5548), X(53888)}}, {{A, B, C, X(6016), X(52013)}}, {{A, B, C, X(7091), X(65202)}}, {{A, B, C, X(9067), X(56358)}}, {{A, B, C, X(13138), X(13397)}}, {{A, B, C, X(27834), X(53647)}}, {{A, B, C, X(30237), X(60488)}}, {{A, B, C, X(37209), X(64984)}}, {{A, B, C, X(41431), X(59029)}}, {{A, B, C, X(52778), X(63163)}}, {{A, B, C, X(59125), X(65225)}}
X(65173) = barycentric product X(i)*X(j) for these (i, j): {100, 27818}, {101, 62528}, {109, 40014}, {190, 19604}, {279, 31343}, {664, 8056}, {1293, 85}, {1414, 4052}, {1897, 27832}, {2415, 56049}, {3445, 4554}, {3676, 5382}, {3680, 658}, {4373, 651}, {4573, 56174}, {4617, 6556}, {4998, 58794}, {6557, 934}, {10029, 36086}, {13397, 27815}, {16078, 57192}, {16945, 1978}, {27834, 7}, {27836, 52377}, {33963, 62532}, {34080, 6063}, {38266, 4572}, {38828, 75}, {40151, 668}, {45205, 8706}, {51656, 57578}, {53647, 57}, {65337, 77}
X(65173) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4521}, {6, 4162}, {7, 4462}, {9, 4546}, {37, 44729}, {56, 4394}, {57, 3667}, {59, 57192}, {65, 14321}, {100, 3161}, {101, 3158}, {109, 1743}, {190, 44720}, {226, 4404}, {241, 4925}, {269, 30719}, {513, 4534}, {514, 4939}, {604, 8643}, {644, 6555}, {650, 4953}, {651, 145}, {658, 39126}, {662, 52352}, {664, 18743}, {668, 44723}, {765, 30720}, {934, 5435}, {1020, 4848}, {1025, 4899}, {1293, 9}, {1319, 14425}, {1332, 44722}, {1400, 4729}, {1407, 51656}, {1414, 41629}, {1415, 3052}, {1417, 2441}, {1420, 31182}, {1429, 53580}, {1461, 1420}, {1813, 4855}, {2415, 4723}, {2429, 3689}, {3340, 14350}, {3445, 650}, {3669, 3756}, {3680, 3239}, {3752, 14284}, {3939, 4936}, {4017, 21950}, {4052, 4086}, {4373, 4391}, {4551, 3950}, {4552, 52353}, {4559, 4849}, {4564, 43290}, {4565, 16948}, {4617, 62787}, {5221, 4949}, {5382, 3699}, {6335, 44721}, {6557, 4397}, {7175, 4504}, {8056, 522}, {16079, 58794}, {16945, 649}, {19604, 514}, {21362, 12640}, {24029, 51433}, {27818, 693}, {27819, 44448}, {27829, 20907}, {27832, 4025}, {27833, 17860}, {27834, 8}, {31343, 346}, {31615, 44724}, {34080, 55}, {36042, 2316}, {36059, 20818}, {37141, 56940}, {38266, 663}, {38828, 1}, {40014, 35519}, {40151, 513}, {42717, 44728}, {43932, 40617}, {46367, 48334}, {51656, 40621}, {51839, 53523}, {53538, 23764}, {53647, 312}, {56049, 2403}, {56174, 3700}, {58794, 11}, {59095, 1261}, {59457, 62532}, {61225, 4856}, {62528, 3261}, {62669, 4487}, {62754, 45204}, {65232, 4248}, {65233, 52354}, {65337, 318}
X(65173) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {27834, 38828, 651}
X(65174) lies on these lines: {2, 43047}, {7, 2170}, {109, 2398}, {190, 644}, {279, 41785}, {514, 4566}, {658, 57455}, {665, 30610}, {666, 6613}, {934, 3732}, {1025, 21272}, {1414, 4560}, {1422, 28951}, {1461, 14543}, {2124, 34059}, {2405, 57193}, {3160, 3177}, {3241, 53530}, {3872, 28968}, {4565, 36841}, {7176, 18785}, {7278, 60229}, {9312, 26653}, {15558, 60934}, {17079, 37800}, {18623, 28921}, {18624, 18663}, {24203, 34056}, {25237, 25716}, {25242, 25718}, {25244, 25719}, {25249, 25720}, {25257, 25726}, {25261, 25723}, {27340, 31994}, {30695, 34060}, {30719, 62754}, {30807, 43044}, {34488, 45738}, {36838, 61241}, {43064, 44664}, {43989, 56309}, {44351, 52160}, {56322, 60487}, {65330, 65355}
X(65174) = reflection of X(i) in X(j) for these {i,j}: {4566, 63203}
X(65174) = trilinear pole of line {10167, 11019}
X(65174) = X(i)-isoconjugate-of-X(j) for these {i, j}: {652, 14493}, {657, 63192}, {3063, 56026}, {8641, 23618}
X(65174) = X(i)-Dao conjugate of X(j) for these {i, j}: {2310, 3119}, {10001, 56026}, {11019, 4130}, {43182, 650}, {59573, 3239}
X(65174) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {24027, 31527}, {53622, 150}, {61240, 21293}
X(65174) = pole of line {100, 53622} with respect to the Steiner circumellipse
X(65174) = pole of line {8, 971} with respect to the Yff parabola
X(65174) = pole of line {2, 3160} with respect to the dual conic of Feuerbach hyperbola
X(65174) = intersection, other than A, B, C, of circumconics {{A, B, C, X(644), X(30610)}}, {{A, B, C, X(666), X(25268)}}, {{A, B, C, X(883), X(6613)}}, {{A, B, C, X(918), X(60482)}}, {{A, B, C, X(2284), X(40133)}}, {{A, B, C, X(2397), X(20905)}}, {{A, B, C, X(4585), X(26818)}}, {{A, B, C, X(60992), X(62669)}}
X(65174) = barycentric product X(i)*X(j) for these (i, j): {190, 60992}, {1200, 46406}, {10167, 18026}, {11019, 664}, {14100, 4569}, {20905, 651}, {20978, 4572}, {21049, 4573}, {22088, 46404}, {26818, 4552}, {40133, 4554}, {41006, 658}, {43182, 53640}, {45202, 62532}, {59170, 65165}
X(65174) = barycentric quotient X(i)/X(j) for these (i, j): {108, 14493}, {658, 23618}, {664, 56026}, {934, 63192}, {1200, 657}, {10167, 521}, {11019, 522}, {14100, 3900}, {20905, 4391}, {20978, 663}, {21049, 3700}, {22088, 652}, {26818, 4560}, {40133, 650}, {41006, 3239}, {45203, 57064}, {45228, 58835}, {60992, 514}
X(65174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 63203, 4566}, {664, 65195, 4552}
X(65175) lies on these lines: {90, 1745}, {108, 36082}, {223, 2006}, {651, 65216}, {1079, 55495}, {4554, 18740}, {32038, 65290}, {63827, 65233}
X(65175) = trilinear pole of line {65, 21318}
X(65175) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 46389}, {46, 1021}, {48, 57083}, {63, 57124}, {110, 6506}, {650, 3193}, {652, 3559}, {663, 31631}, {1068, 23090}, {1098, 55214}, {1172, 59973}, {1800, 3064}, {2178, 7253}, {2287, 51648}, {2328, 21188}, {3157, 17926}, {4560, 61397}, {5552, 7252}, {5905, 21789}, {52033, 57081}, {56848, 58329}
X(65175) = X(i)-Dao conjugate of X(j) for these {i, j}: {244, 6506}, {1249, 57083}, {3162, 57124}, {15267, 55214}, {36908, 21188}, {40611, 46389}
X(65175) = X(i)-cross conjugate of X(j) for these {i, j}: {2501, 1}, {52610, 1020}, {55214, 65}
X(65175) = pole of line {1158, 41013} with respect to the Yff parabola
X(65175) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4558)}}, {{A, B, C, X(108), X(651)}}, {{A, B, C, X(226), X(61231)}}, {{A, B, C, X(282), X(4069)}}, {{A, B, C, X(7097), X(65167)}}, {{A, B, C, X(9355), X(9394)}}, {{A, B, C, X(18740), X(36145)}}, {{A, B, C, X(37141), X(61178)}}
X(65175) = barycentric product X(i)*X(j) for these (i, j): {65, 65290}, {226, 65216}, {662, 7363}, {1020, 2994}, {1275, 55248}, {1441, 36082}, {4551, 7318}, {4566, 90}, {20570, 53321}, {52607, 6513}, {60249, 651}
X(65175) = barycentric quotient X(i)/X(j) for these (i, j): {4, 57083}, {25, 57124}, {73, 59973}, {90, 7253}, {108, 3559}, {109, 3193}, {651, 31631}, {661, 6506}, {1020, 5905}, {1042, 51648}, {1069, 57081}, {1275, 55247}, {1400, 46389}, {1427, 21188}, {2164, 1021}, {4551, 5552}, {4566, 20930}, {6513, 15411}, {7072, 58329}, {7318, 18155}, {7363, 1577}, {36059, 1800}, {36082, 21}, {52610, 6505}, {53321, 46}, {55248, 1146}, {60249, 4391}, {65216, 333}, {65290, 314}
X(65176) lies on these lines: {4, 56891}, {68, 41361}, {96, 56298}, {99, 32697}, {107, 32692}, {110, 39416}, {112, 925}, {393, 47731}, {648, 30450}, {847, 6531}, {1249, 2165}, {1300, 47421}, {1990, 62361}, {2501, 32661}, {3172, 46200}, {3542, 60778}, {5392, 56296}, {5523, 5962}, {5546, 32698}, {6524, 39111}, {6529, 61209}, {8744, 60519}, {8745, 60783}, {8753, 14593}, {14361, 52350}, {32674, 36145}, {32695, 57219}, {32696, 60504}, {32711, 41392}, {32713, 32734}, {36099, 65251}, {37802, 51358}, {41204, 46039}
X(65176) = isogonal conjugate of X(52584)
X(65176) = trilinear pole of line {25, 53}
X(65176) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52584}, {2, 63832}, {3, 63827}, {24, 24018}, {47, 525}, {48, 6563}, {63, 924}, {69, 55216}, {75, 30451}, {255, 57065}, {304, 34952}, {306, 34948}, {317, 822}, {326, 6753}, {520, 1748}, {563, 850}, {571, 14208}, {647, 44179}, {656, 1993}, {661, 9723}, {810, 7763}, {1147, 1577}, {1459, 42700}, {2169, 63829}, {2180, 62428}, {2616, 52032}, {2632, 41679}, {4064, 18605}, {4592, 47421}, {5961, 32679}, {15412, 63801}, {17879, 61208}, {17881, 32661}, {20948, 52435}, {20975, 55249}, {23286, 63808}, {52317, 62277}
X(65176) = X(i)-vertex conjugate of X(j) for these {i, j}: {648, 14586}, {6529, 32640}, {32661, 65176}, {61208, 65309}
X(65176) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52584}, {206, 30451}, {1249, 6563}, {3162, 924}, {5139, 47421}, {6523, 57065}, {14363, 63829}, {15259, 6753}, {32664, 63832}, {34853, 525}, {36103, 63827}, {36830, 9723}, {37864, 647}, {39052, 44179}, {39062, 7763}, {40596, 1993}
X(65176) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30450, 925}, {65348, 32734}
X(65176) = X(i)-cross conjugate of X(j) for these {i, j}: {1576, 107}, {1625, 112}, {8746, 23964}, {21731, 1300}, {32734, 925}, {55265, 62361}, {58757, 4}
X(65176) = pole of line {30451, 52584} with respect to the Stammler hyperbola
X(65176) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(99)}}, {{A, B, C, X(6), X(32661)}}, {{A, B, C, X(107), X(6344)}}, {{A, B, C, X(112), X(648)}}, {{A, B, C, X(275), X(59007)}}, {{A, B, C, X(685), X(1289)}}, {{A, B, C, X(925), X(46134)}}, {{A, B, C, X(935), X(53639)}}, {{A, B, C, X(1172), X(5546)}}, {{A, B, C, X(1249), X(57219)}}, {{A, B, C, X(1562), X(41077)}}, {{A, B, C, X(1576), X(1625)}}, {{A, B, C, X(1990), X(3018)}}, {{A, B, C, X(2501), X(47236)}}, {{A, B, C, X(2713), X(44828)}}, {{A, B, C, X(2715), X(44766)}}, {{A, B, C, X(3565), X(44768)}}, {{A, B, C, X(4558), X(58964)}}, {{A, B, C, X(4630), X(26714)}}, {{A, B, C, X(5523), X(35907)}}, {{A, B, C, X(6331), X(20031)}}, {{A, B, C, X(6570), X(14586)}}, {{A, B, C, X(8743), X(58070)}}, {{A, B, C, X(9160), X(38534)}}, {{A, B, C, X(14781), X(16080)}}, {{A, B, C, X(15388), X(34538)}}, {{A, B, C, X(18831), X(30247)}}, {{A, B, C, X(21731), X(47421)}}, {{A, B, C, X(23977), X(41361)}}, {{A, B, C, X(30450), X(39416)}}, {{A, B, C, X(32692), X(32734)}}, {{A, B, C, X(40402), X(59002)}}, {{A, B, C, X(52917), X(59004)}}, {{A, B, C, X(55189), X(62917)}}, {{A, B, C, X(55277), X(56891)}}, {{A, B, C, X(57065), X(58757)}}, {{A, B, C, X(58095), X(65279)}}, {{A, B, C, X(58973), X(65305)}}, {{A, B, C, X(59086), X(65181)}}, {{A, B, C, X(61203), X(61206)}}
X(65176) = barycentric product X(i)*X(j) for these (i, j): {4, 925}, {5, 65348}, {19, 65251}, {25, 46134}, {53, 65273}, {107, 68}, {110, 847}, {112, 5392}, {162, 91}, {163, 57716}, {264, 32734}, {324, 32692}, {393, 65309}, {476, 5962}, {1302, 51833}, {1576, 55553}, {1820, 823}, {1973, 55215}, {2165, 648}, {2351, 6528}, {3542, 63958}, {14593, 99}, {15352, 55549}, {20563, 32713}, {20571, 32676}, {27367, 689}, {30450, 6}, {32697, 60519}, {32708, 52504}, {34385, 52604}, {35360, 96}, {36145, 92}, {39416, 6515}, {41515, 54030}, {41516, 54031}, {51481, 58961}, {52350, 6529}, {52779, 61363}, {52918, 57415}, {56272, 933}, {57703, 65183}, {57763, 58757}, {57875, 61193}, {57904, 61206}, {60501, 6331}, {62361, 687}
X(65176) = barycentric quotient X(i)/X(j) for these (i, j): {4, 6563}, {6, 52584}, {19, 63827}, {25, 924}, {31, 63832}, {32, 30451}, {53, 63829}, {68, 3265}, {91, 14208}, {96, 62428}, {107, 317}, {110, 9723}, {112, 1993}, {162, 44179}, {393, 57065}, {460, 57154}, {648, 7763}, {685, 31635}, {847, 850}, {925, 69}, {1576, 1147}, {1625, 52032}, {1783, 42700}, {1820, 24018}, {1973, 55216}, {1974, 34952}, {2165, 525}, {2203, 34948}, {2207, 6753}, {2351, 520}, {2489, 47421}, {2715, 51776}, {3199, 52317}, {4230, 51439}, {5392, 3267}, {5962, 3268}, {6529, 11547}, {8745, 15423}, {14560, 5961}, {14574, 52435}, {14581, 14397}, {14593, 523}, {18384, 43088}, {20563, 52617}, {23347, 51393}, {23582, 55227}, {23964, 41679}, {24006, 17881}, {24019, 1748}, {27367, 3005}, {30450, 76}, {32676, 47}, {32692, 97}, {32708, 52505}, {32713, 24}, {32734, 3}, {34397, 44808}, {35360, 39113}, {36145, 63}, {37802, 45792}, {39383, 5409}, {39384, 5408}, {39416, 6504}, {40348, 9007}, {41271, 23286}, {41515, 54028}, {41516, 54029}, {41937, 61208}, {46134, 305}, {51833, 30474}, {52350, 4143}, {52604, 52}, {52917, 55551}, {53329, 45780}, {55215, 40364}, {55250, 20902}, {55253, 53576}, {55549, 52613}, {55553, 44173}, {57716, 20948}, {57875, 15414}, {58757, 136}, {58961, 2987}, {60501, 647}, {61193, 467}, {61206, 571}, {61208, 63835}, {62361, 6334}, {65251, 304}, {65273, 34386}, {65309, 3926}, {65348, 95}
X(65176) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {648, 30450, 65309}
X(65177) lies on these lines: {4, 6053}, {99, 933}, {107, 110}, {136, 20774}, {162, 65226}, {250, 14611}, {275, 34986}, {925, 58994}, {1105, 43605}, {1302, 33640}, {1304, 59038}, {1625, 2442}, {1629, 1993}, {1634, 65182}, {1994, 55084}, {2052, 3167}, {2434, 65353}, {3292, 41204}, {3448, 14920}, {3564, 14165}, {5562, 38808}, {5965, 41203}, {5972, 16080}, {6090, 52147}, {6331, 57216}, {6531, 20976}, {7473, 30221}, {8884, 56292}, {9705, 56303}, {10152, 15063}, {11064, 51939}, {11422, 36794}, {11547, 63174}, {12092, 30248}, {13739, 62825}, {14480, 30716}, {20123, 34153}, {23181, 36841}, {30506, 55038}, {32269, 56021}, {35260, 56013}, {35278, 41676}, {35602, 57517}, {37124, 44109}, {38664, 41253}, {38714, 40948}, {43462, 63722}, {43844, 51031}, {52772, 57487}, {57118, 65232}, {65309, 65348}
X(65177) = trilinear pole of line {631, 3087}
X(65177) = X(i)-isoconjugate-of-X(j) for these {i, j}: {647, 56033}, {656, 3527}, {661, 63154}, {810, 8797}, {822, 8796}, {2616, 63176}, {2632, 58950}, {24006, 64219}, {24018, 34818}
X(65177) = X(i)-Dao conjugate of X(j) for these {i, j}: {5522, 125}, {36830, 63154}, {39052, 56033}, {39062, 8797}, {40596, 3527}
X(65177) = pole of line {125, 41221} with respect to the polar circle
X(65177) = pole of line {52913, 61195} with respect to the Johnson circumconic
X(65177) = pole of line {20, 343} with respect to the Kiepert parabola
X(65177) = pole of line {107, 1625} with respect to the MacBeath circumconic
X(65177) = pole of line {520, 15451} with respect to the Stammler hyperbola
X(65177) = pole of line {3265, 6368} with respect to the Wallace hyperbola
X(65177) = pole of line {7769, 17907} with respect to the dual conic of Jerabek hyperbola
X(65177) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(35360)}}, {{A, B, C, X(107), X(18831)}}, {{A, B, C, X(631), X(4240)}}, {{A, B, C, X(933), X(32713)}}, {{A, B, C, X(16230), X(47122)}}, {{A, B, C, X(44149), X(61181)}}, {{A, B, C, X(52917), X(58994)}}
X(65177) = barycentric product X(i)*X(j) for these (i, j): {112, 44149}, {631, 648}, {3087, 99}, {4563, 61348}, {11402, 6331}, {18020, 47122}, {26907, 42405}, {36748, 6528}
X(65177) = barycentric quotient X(i)/X(j) for these (i, j): {107, 8796}, {110, 63154}, {112, 3527}, {162, 56033}, {631, 525}, {648, 8797}, {1625, 63176}, {3087, 523}, {6755, 12077}, {11402, 647}, {23964, 58950}, {26907, 17434}, {32661, 64219}, {32713, 34818}, {35318, 31505}, {36748, 520}, {44149, 3267}, {47122, 125}, {61348, 2501}
X(65177) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 35311, 648}, {110, 35360, 52913}, {110, 648, 107}, {648, 52913, 35360}
X(65178) lies on these lines: {110, 3565}, {154, 1976}, {159, 1177}, {184, 42068}, {206, 32740}, {685, 52913}, {925, 6562}, {1660, 2882}, {1974, 53068}, {2393, 32741}, {2872, 32734}, {2996, 64059}, {3566, 4563}, {4577, 35136}, {6340, 11206}, {8780, 64614}, {14248, 26864}, {15270, 40319}, {32713, 61213}, {52143, 64216}, {52454, 64058}
X(65178) = reflection of X(i) in X(j) for these {i,j}: {32740, 206}
X(65178) = trilinear pole of line {32, 11326}
X(65178) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 3566}, {99, 17876}, {193, 1577}, {304, 57071}, {321, 3798}, {523, 18156}, {561, 8651}, {656, 54412}, {661, 57518}, {693, 4028}, {799, 6388}, {850, 1707}, {1109, 57216}, {3053, 20948}, {3261, 21874}, {4086, 17081}, {4602, 47430}, {5139, 55202}, {6337, 24006}, {6353, 14208}, {20910, 47733}, {21447, 24018}
X(65178) = X(i)-vertex conjugate of X(j) for these {i, j}: {2966, 43188}, {4558, 65311}, {4563, 4563}, {4609, 31614}, {35136, 57216}, {44766, 65324}, {65307, 65321}
X(65178) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 3566}, {15261, 523}, {36830, 57518}, {38986, 17876}, {38996, 6388}, {40368, 8651}, {40596, 54412}, {64614, 850}
X(65178) = X(i)-cross conjugate of X(j) for these {i, j}: {32661, 1576}, {57204, 6}
X(65178) = pole of line {4558, 61199} with respect to the circumcircle
X(65178) = pole of line {25, 15591} with respect to the Kiepert parabola
X(65178) = pole of line {3566, 51374} with respect to the Stammler hyperbola
X(65178) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(4563)}}, {{A, B, C, X(25), X(925)}}, {{A, B, C, X(64), X(39639)}}, {{A, B, C, X(66), X(55034)}}, {{A, B, C, X(99), X(39644)}}, {{A, B, C, X(110), X(685)}}, {{A, B, C, X(154), X(52913)}}, {{A, B, C, X(184), X(61213)}}, {{A, B, C, X(206), X(61207)}}, {{A, B, C, X(669), X(42068)}}, {{A, B, C, X(924), X(2872)}}, {{A, B, C, X(1503), X(2882)}}, {{A, B, C, X(1660), X(2445)}}, {{A, B, C, X(2393), X(2854)}}, {{A, B, C, X(3566), X(57204)}}, {{A, B, C, X(6331), X(9091)}}, {{A, B, C, X(14586), X(59116)}}, {{A, B, C, X(32649), X(44060)}}, {{A, B, C, X(32666), X(59005)}}, {{A, B, C, X(32696), X(59039)}}
X(65178) = barycentric product X(i)*X(j) for these (i, j): {25, 65311}, {32, 35136}, {110, 8770}, {112, 6391}, {163, 8769}, {1576, 2996}, {3565, 6}, {14248, 4558}, {14586, 27364}, {32661, 34208}, {32713, 60839}, {38252, 662}, {40319, 648}, {53059, 99}, {61206, 6340}
X(65178) = barycentric quotient X(i)/X(j) for these (i, j): {32, 3566}, {110, 57518}, {112, 54412}, {163, 18156}, {669, 6388}, {798, 17876}, {1501, 8651}, {1576, 193}, {1974, 57071}, {2206, 3798}, {2996, 44173}, {3565, 76}, {6391, 3267}, {8769, 20948}, {8770, 850}, {9426, 47430}, {14248, 14618}, {14574, 3053}, {14966, 51374}, {23357, 57216}, {27364, 15415}, {32661, 6337}, {32713, 21447}, {32739, 4028}, {35136, 1502}, {38252, 1577}, {40319, 525}, {53059, 523}, {57204, 5139}, {60839, 52617}, {61194, 41588}, {61206, 6353}, {61218, 41584}, {62194, 58766}, {65311, 305}
X(65178) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 3565, 65311}
X(65179) lies on the MacBeath circumconic and on these lines: {84, 8759}, {109, 13138}, {110, 8059}, {189, 2988}, {268, 1815}, {271, 603}, {648, 1414}, {651, 36049}, {934, 8064}, {1332, 6517}, {1413, 60049}, {1422, 2990}, {1433, 60047}, {1436, 60025}, {1440, 2989}, {1461, 4091}, {1797, 55117}, {1814, 56972}, {2986, 8808}, {3561, 46881}, {4565, 46639}, {13136, 44327}, {41081, 65302}, {61229, 65303}
X(65179) = trilinear pole of line {3, 1433}
X(65179) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 14298}, {9, 54239}, {19, 8058}, {29, 55212}, {33, 14837}, {34, 57049}, {40, 3064}, {55, 59935}, {108, 5514}, {158, 10397}, {196, 3900}, {198, 44426}, {208, 3239}, {227, 17926}, {281, 6129}, {329, 18344}, {342, 657}, {347, 65103}, {393, 57101}, {513, 55116}, {514, 40971}, {522, 2331}, {607, 17896}, {644, 38362}, {650, 7952}, {652, 47372}, {663, 64211}, {1096, 57245}, {1783, 38357}, {1857, 64885}, {2187, 46110}, {2324, 7649}, {3194, 3700}, {3195, 4391}, {3209, 4397}, {3318, 40117}, {3737, 53009}, {4041, 41083}, {6591, 7080}, {7007, 8063}, {7074, 17924}, {8641, 40701}, {8822, 55206}, {42069, 65159}, {47432, 54240}
X(65179) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 8058}, {223, 59935}, {478, 54239}, {1147, 10397}, {6503, 57245}, {11517, 57049}, {36033, 14298}, {38983, 5514}, {39006, 38357}, {39026, 55116}
X(65179) = X(i)-Ceva conjugate of X(j) for these {i, j}: {53642, 8059}
X(65179) = X(i)-cross conjugate of X(j) for these {i, j}: {652, 271}, {10397, 3}, {22124, 59}, {46391, 1795}, {57241, 77}
X(65179) = pole of line {8058, 10397} with respect to the Stammler hyperbola
X(65179) = pole of line {41081, 56545} with respect to the Hutson-Moses hyperbola
X(65179) = intersection, other than A, B, C, of circumconics {{A, B, C, X(48), X(8750)}}, {{A, B, C, X(63), X(653)}}, {{A, B, C, X(77), X(4626)}}, {{A, B, C, X(101), X(61224)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(222), X(1461)}}, {{A, B, C, X(326), X(53643)}}, {{A, B, C, X(905), X(40527)}}, {{A, B, C, X(1414), X(6517)}}, {{A, B, C, X(7011), X(31511)}}, {{A, B, C, X(8059), X(65330)}}, {{A, B, C, X(8064), X(36049)}}, {{A, B, C, X(23144), X(56786)}}, {{A, B, C, X(41081), X(44327)}}, {{A, B, C, X(46964), X(65216)}}
X(65180) lies on these lines: {29, 55101}, {57, 1957}, {58, 1940}, {92, 55086}, {101, 108}, {107, 109}, {158, 580}, {204, 8270}, {226, 7076}, {243, 13329}, {692, 53317}, {1096, 1708}, {1118, 1724}, {1331, 61180}, {1430, 3911}, {1451, 39585}, {1712, 54295}, {1754, 1857}, {1767, 8765}, {1813, 2617}, {1882, 56831}, {1897, 3939}, {2299, 40149}, {3194, 37558}, {6335, 65190}, {8750, 57218}, {13149, 65187}, {23067, 53323}, {32714, 61225}, {36797, 54440}, {52167, 64013}, {52921, 52938}
X(65180) = X(i)-isoconjugate-of-X(j) for these {i, j}: {521, 51223}, {905, 2335}, {1946, 57831}, {2194, 63220}, {2215, 6332}, {7004, 65227}, {7117, 54970}, {7252, 63235}, {26932, 36080}
X(65180) = X(i)-Dao conjugate of X(j) for these {i, j}: {1214, 63220}, {39053, 57831}
X(65180) = X(i)-cross conjugate of X(j) for these {i, j}: {46385, 39585}
X(65180) = intersection, other than A, B, C, of circumconics {{A, B, C, X(101), X(162)}}, {{A, B, C, X(107), X(1783)}}, {{A, B, C, X(108), X(65334)}}, {{A, B, C, X(405), X(7452)}}, {{A, B, C, X(653), X(4551)}}, {{A, B, C, X(1897), X(61236)}}, {{A, B, C, X(2812), X(23882)}}, {{A, B, C, X(3939), X(52921)}}, {{A, B, C, X(36050), X(54442)}}, {{A, B, C, X(46385), X(46393)}}
X(65180) = barycentric product X(i)*X(j) for these (i, j): {1, 65355}, {108, 5271}, {190, 54394}, {405, 653}, {1451, 6335}, {1882, 662}, {1897, 37543}, {4552, 56831}, {5295, 65232}, {23882, 7012}, {32674, 44140}, {39585, 651}, {46102, 46385}, {46404, 5320}
X(65180) = barycentric quotient X(i)/X(j) for these (i, j): {226, 63220}, {405, 6332}, {653, 57831}, {1451, 905}, {1882, 1577}, {4551, 63235}, {5271, 35518}, {5320, 652}, {7012, 54970}, {7115, 65227}, {8750, 2335}, {23882, 17880}, {32674, 51223}, {37543, 4025}, {39585, 4391}, {46385, 26932}, {54394, 514}, {56831, 4560}, {65355, 75}
X(65180) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {108, 1783, 4551}, {162, 653, 109}
X(65181) lies on these lines: {64, 57732}, {99, 59087}, {107, 1301}, {253, 393}, {459, 11547}, {525, 32646}, {648, 2404}, {653, 65224}, {685, 15384}, {823, 13149}, {1073, 2052}, {3343, 56296}, {6331, 44326}, {6335, 56235}, {6526, 17983}, {8764, 52158}, {9308, 15394}, {14249, 41085}, {14361, 40839}, {14362, 17037}, {14638, 57574}, {15459, 58759}, {15466, 57483}, {16081, 21447}, {20213, 64987}, {32687, 35571}, {44181, 65350}, {46065, 51358}, {46106, 52514}
X(65181) = isogonal conjugate of X(58796)
X(65181) = isotomic conjugate of X(20580)
X(65181) = trilinear pole of line {4, 64}
X(65181) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58796}, {20, 822}, {31, 20580}, {48, 8057}, {63, 42658}, {122, 163}, {154, 24018}, {162, 47409}, {204, 52613}, {255, 6587}, {326, 62176}, {520, 610}, {577, 17898}, {656, 15905}, {810, 37669}, {1101, 55269}, {1410, 57045}, {1562, 4575}, {1895, 32320}, {3198, 4091}, {3990, 21172}, {5930, 36054}, {6507, 44705}, {7125, 14308}, {8804, 23224}, {14331, 22341}, {14345, 35200}, {18750, 39201}, {19614, 57201}, {27382, 51640}, {30456, 57241}, {36908, 58340}, {37754, 52913}, {40933, 57057}, {41086, 57233}, {52948, 62665}
X(65181) = X(i)-vertex conjugate of X(j) for these {i, j}: {32649, 65276}
X(65181) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 20580}, {3, 58796}, {4, 57201}, {115, 122}, {122, 39020}, {125, 47409}, {133, 14345}, {136, 1562}, {523, 55269}, {1249, 8057}, {3162, 42658}, {3343, 52613}, {6523, 6587}, {13567, 58763}, {14092, 520}, {15259, 62176}, {36830, 35602}, {39062, 37669}, {40596, 15905}, {40839, 525}
X(65181) = X(i)-Ceva conjugate of X(j) for these {i, j}: {23582, 14572}, {44181, 6526}, {53639, 107}, {55268, 44181}, {57574, 253}
X(65181) = X(i)-cross conjugate of X(j) for these {i, j}: {523, 253}, {525, 2052}, {1301, 53639}, {6526, 44181}, {6529, 107}, {6587, 4}, {6622, 18020}, {33630, 32230}, {41489, 15384}, {52585, 275}, {58759, 459}, {59932, 34407}
X(65181) = pole of line {122, 1562} with respect to the polar circle
X(65181) = pole of line {6225, 6527} with respect to the Kiepert parabola
X(65181) = pole of line {107, 46639} with respect to the Steiner circumellipse
X(65181) = pole of line {20580, 58796} with respect to the Wallace hyperbola
X(65181) = pole of line {14615, 46741} with respect to the dual conic of Jerabek hyperbola
X(65181) = pole of line {55269, 57296} with respect to the dual conic of Wallace hyperbola
X(65181) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(99), X(41678)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(253), X(35571)}}, {{A, B, C, X(393), X(23977)}}, {{A, B, C, X(523), X(14638)}}, {{A, B, C, X(525), X(55127)}}, {{A, B, C, X(645), X(41207)}}, {{A, B, C, X(847), X(30251)}}, {{A, B, C, X(1289), X(16039)}}, {{A, B, C, X(1301), X(44326)}}, {{A, B, C, X(1304), X(4558)}}, {{A, B, C, X(2052), X(2404)}}, {{A, B, C, X(4563), X(47269)}}, {{A, B, C, X(6526), X(55268)}}, {{A, B, C, X(6529), X(32646)}}, {{A, B, C, X(18315), X(33640)}}, {{A, B, C, X(22456), X(35136)}}, {{A, B, C, X(30249), X(36841)}}, {{A, B, C, X(32687), X(32713)}}, {{A, B, C, X(59086), X(65176)}}
X(65181) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {648, 53639, 46639}
X(65182) lies on these lines: {3, 3462}, {4, 8901}, {22, 12384}, {107, 1624}, {110, 112}, {162, 23981}, {378, 12244}, {418, 56297}, {648, 23181}, {852, 51358}, {933, 46062}, {1301, 58950}, {1304, 39180}, {1576, 52917}, {1634, 65177}, {3574, 19172}, {6638, 56296}, {6750, 51887}, {6761, 62334}, {10594, 15960}, {11746, 47228}, {13417, 35908}, {15329, 35360}, {26895, 39575}, {35311, 50947}, {37937, 47248}, {41204, 44886}, {58070, 61194}
X(65182) = trilinear pole of line {389, 63634}
X(65182) = perspector of circumconic {{A, B, C, X(250), X(34538)}}
X(65182) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 40448}, {810, 42333}, {20902, 59009}, {24018, 40402}
X(65182) = X(i)-Dao conjugate of X(j) for these {i, j}: {34836, 3265}, {39062, 42333}, {40596, 40448}
X(65182) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14587, 24}
X(65182) = pole of line {107, 933} with respect to the circumcircle
X(65182) = pole of line {338, 2972} with respect to the polar circle
X(65182) = pole of line {22, 1498} with respect to the Kiepert parabola
X(65182) = pole of line {525, 15781} with respect to the Stammler hyperbola
X(65182) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 38577, 38585}, {1294, 18401, 38672}, {38605, 38616, 51532}
X(65182) = intersection, other than A, B, C, of circumconics {{A, B, C, X(107), X(32661)}}, {{A, B, C, X(110), X(15352)}}, {{A, B, C, X(389), X(2420)}}, {{A, B, C, X(933), X(1625)}}, {{A, B, C, X(1304), X(35324)}}, {{A, B, C, X(1636), X(39180)}}, {{A, B, C, X(4230), X(52280)}}, {{A, B, C, X(6750), X(53176)}}, {{A, B, C, X(14591), X(51887)}}, {{A, B, C, X(23181), X(52779)}}, {{A, B, C, X(45198), X(61198)}}, {{A, B, C, X(61207), X(63634)}}
X(65182) = barycentric product X(i)*X(j) for these (i, j): {107, 46832}, {110, 52280}, {112, 45198}, {162, 45224}, {275, 61195}, {389, 648}, {14570, 51887}, {16813, 42441}, {18315, 6750}, {19170, 35360}, {34836, 933}, {45225, 662}, {63634, 99}
X(65182) = barycentric quotient X(i)/X(j) for these (i, j): {112, 40448}, {389, 525}, {648, 42333}, {6750, 18314}, {19170, 62428}, {32713, 40402}, {42441, 60597}, {45198, 3267}, {45224, 14208}, {45225, 1577}, {46832, 3265}, {51887, 15412}, {52280, 850}, {57655, 59009}, {61195, 343}, {63634, 523}
X(65182) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {107, 1624, 46587}, {1624, 52604, 107}
X(65183) lies on these lines: {5, 41219}, {53, 53245}, {94, 2052}, {107, 925}, {112, 39418}, {264, 1972}, {324, 62722}, {648, 1625}, {655, 823}, {11794, 41677}, {14570, 61193}, {14618, 41678}, {15466, 62583}, {16813, 23582}, {18315, 52779}, {23290, 52604}, {31610, 40684}, {35360, 61195}, {40853, 43752}, {46394, 47383}, {53205, 54950}, {56188, 65204}
X(65183) = isogonal conjugate of X(46088)
X(65183) = trilinear pole of line {5, 324}
X(65183) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46088}, {48, 23286}, {54, 822}, {63, 58308}, {97, 810}, {255, 2623}, {520, 2148}, {525, 62267}, {560, 15414}, {577, 2616}, {647, 2169}, {656, 14533}, {661, 19210}, {933, 37754}, {1577, 62256}, {2167, 39201}, {2190, 32320}, {2624, 50463}, {2631, 46090}, {2632, 14586}, {3049, 62277}, {3265, 62269}, {3269, 36134}, {3708, 15958}, {6507, 58756}, {9247, 62428}, {14208, 62270}, {15412, 52430}, {16813, 42080}, {24018, 54034}, {34980, 65221}, {52613, 62268}, {57703, 63832}, {58310, 62276}
X(65183) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46088}, {5, 32320}, {137, 3269}, {216, 520}, {338, 15526}, {1249, 23286}, {2972, 35071}, {3162, 58308}, {6374, 15414}, {6523, 2623}, {6663, 17434}, {14363, 647}, {14920, 8552}, {15450, 34980}, {36830, 19210}, {39019, 2972}, {39052, 2169}, {39062, 97}, {40588, 39201}, {40596, 14533}, {45249, 58796}, {52032, 52613}, {52869, 1636}, {62576, 62428}
X(65183) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6528, 35360}, {23582, 2052}, {57556, 264}
X(65183) = X(i)-cross conjugate of X(j) for these {i, j}: {525, 31610}, {6368, 264}, {14129, 23582}, {17434, 5}, {18314, 324}, {23290, 62275}
X(65183) = pole of line {3269, 38352} with respect to the polar circle
X(65183) = pole of line {11441, 20477} with respect to the Kiepert parabola
X(65183) = pole of line {32320, 46088} with respect to the Stammler hyperbola
X(65183) = pole of line {35360, 58071} with respect to the Steiner circumellipse
X(65183) = pole of line {46088, 52613} with respect to the Wallace hyperbola
X(65183) = pole of line {343, 15466} with respect to the dual conic of Jerabek hyperbola
X(65183) = intersection, other than A, B, C, of circumconics {{A, B, C, X(53), X(52604)}}, {{A, B, C, X(94), X(648)}}, {{A, B, C, X(264), X(54950)}}, {{A, B, C, X(467), X(15329)}}, {{A, B, C, X(1625), X(32662)}}, {{A, B, C, X(2052), X(16813)}}, {{A, B, C, X(4558), X(36831)}}, {{A, B, C, X(5392), X(16039)}}, {{A, B, C, X(6368), X(15526)}}, {{A, B, C, X(6528), X(18817)}}, {{A, B, C, X(6529), X(61193)}}, {{A, B, C, X(17434), X(41219)}}, {{A, B, C, X(18314), X(41079)}}, {{A, B, C, X(18315), X(23181)}}, {{A, B, C, X(38342), X(42405)}}
X(65183) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6528, 15352, 648}
X(65184) lies on these lines: {2, 14652}, {4, 11587}, {20, 2917}, {107, 112}, {110, 925}, {476, 38861}, {512, 61195}, {523, 35311}, {930, 58975}, {933, 20626}, {1576, 35360}, {1601, 58805}, {1624, 4240}, {2407, 61182}, {2934, 7493}, {3432, 21451}, {4226, 23181}, {14586, 65348}, {14673, 37926}, {15139, 62308}, {17847, 44003}, {23315, 45289}, {41678, 52917}, {43768, 44668}, {56924, 62292}
X(65184) = X(i)-vertex conjugate of X(j) for these {i, j}: {14570, 23181}
X(65184) = X(i)-Dao conjugate of X(j) for these {i, j}: {10600, 523}
X(65184) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1101, 32354}, {16039, 21294}
X(65184) = pole of line {14570, 23181} with respect to the circumcircle
X(65184) = pole of line {128, 132} with respect to the orthoptic circle of the Steiner Inellipse
X(65184) = pole of line {136, 15526} with respect to the polar circle
X(65184) = pole of line {4, 54} with respect to the Kiepert parabola
X(65184) = pole of line {924, 52613} with respect to the Stammler hyperbola
X(65184) = pole of line {4558, 16039} with respect to the Steiner circumellipse
X(65184) = pole of line {4143, 6563} with respect to the Wallace hyperbola
X(65184) = intersection, other than A, B, C, of circumconics {{A, B, C, X(107), X(65309)}}, {{A, B, C, X(925), X(6529)}}, {{A, B, C, X(20626), X(61193)}}
X(65184) = barycentric product X(i)*X(j) for these (i, j): {6146, 648}, {10600, 16813}
X(65184) = barycentric quotient X(i)/X(j) for these (i, j): {6146, 525}, {10600, 60597}
X(65184) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 925, 14570}
X(65185) lies on these lines: {31, 34020}, {99, 100}, {109, 789}, {171, 31008}, {190, 4598}, {274, 32917}, {692, 4623}, {750, 18140}, {785, 59093}, {874, 65166}, {902, 62234}, {932, 59094}, {1054, 39044}, {1150, 17143}, {1155, 1921}, {1920, 4640}, {1965, 17596}, {1978, 4427}, {3501, 24615}, {3550, 17149}, {3570, 65168}, {4432, 18149}, {4434, 52049}, {4589, 36806}, {4756, 7035}, {4781, 53363}, {6376, 56010}, {6377, 30667}, {6384, 8616}, {8709, 43350}, {17126, 30964}, {18037, 41163}, {18169, 40418}, {32042, 57977}, {53355, 61187}, {54982, 62464}
X(65185) = trilinear pole of line {17379, 31997}
X(65185) = X(i)-isoconjugate-of-X(j) for these {i, j}: {649, 39967}, {667, 17038}, {669, 56052}, {798, 56066}, {1919, 56210}, {3122, 43359}
X(65185) = X(i)-vertex conjugate of X(j) for these {i, j}: {18830, 65163}
X(65185) = X(i)-Dao conjugate of X(j) for these {i, j}: {5224, 14349}, {5375, 39967}, {6631, 17038}, {9296, 56210}, {31998, 56066}
X(65185) = X(i)-Ceva conjugate of X(j) for these {i, j}: {37218, 668}
X(65185) = pole of line {4436, 18830} with respect to the circumcircle
X(65185) = pole of line {81, 34063} with respect to the Kiepert parabola
X(65185) = pole of line {667, 57074} with respect to the Stammler hyperbola
X(65185) = pole of line {53332, 61183} with respect to the Steiner circumellipse
X(65185) = pole of line {43, 894} with respect to the Yff parabola
X(65185) = pole of line {213, 17120} with respect to the Hutson-Moses hyperbola
X(65185) = pole of line {513, 18197} with respect to the Wallace hyperbola
X(65185) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(4598)}}, {{A, B, C, X(100), X(65167)}}, {{A, B, C, X(190), X(59094)}}, {{A, B, C, X(789), X(7257)}}, {{A, B, C, X(799), X(18830)}}, {{A, B, C, X(932), X(61234)}}, {{A, B, C, X(31997), X(55243)}}, {{A, B, C, X(43350), X(62841)}}
X(65185) = barycentric product X(i)*X(j) for these (i, j): {190, 31997}, {1978, 62841}, {4932, 7035}, {17379, 668}, {37218, 41849}, {43223, 799}
X(65185) = barycentric quotient X(i)/X(j) for these (i, j): {99, 56066}, {100, 39967}, {190, 17038}, {668, 56210}, {799, 56052}, {4567, 43359}, {4932, 244}, {17379, 513}, {28622, 50488}, {31997, 514}, {41849, 14349}, {43223, 661}, {62841, 649}
X(65185) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 799, 668}, {190, 4598, 61234}
X(65186) lies on these lines: {1, 27666}, {42, 63519}, {55, 9330}, {100, 190}, {101, 8701}, {109, 28210}, {110, 3939}, {210, 4184}, {354, 16057}, {835, 8708}, {901, 28226}, {931, 9059}, {1026, 65314}, {1897, 4250}, {1995, 6600}, {3240, 34247}, {3293, 27664}, {3681, 4210}, {3724, 5524}, {3732, 54118}, {3871, 31035}, {4191, 4661}, {4225, 4420}, {4246, 65193}, {4430, 16059}, {4551, 65315}, {4671, 5687}, {5640, 64739}, {7419, 56176}, {8652, 58125}, {8715, 64178}, {10545, 41457}, {14997, 37590}, {15507, 20095}, {15624, 63961}, {17136, 25310}, {17524, 32635}, {20470, 62236}, {27065, 54327}, {27812, 64753}, {28214, 28230}, {28218, 58110}, {28841, 29363}, {29199, 53625}, {35983, 46897}, {37138, 65256}, {37211, 40519}, {51377, 56808}
X(65186) = X(i)-isoconjugate-of-X(j) for these {i, j}: {244, 46961}, {3737, 35576}
X(65186) = X(i)-Dao conjugate of X(j) for these {i, j}: {28651, 693}
X(65186) = pole of line {100, 28196} with respect to the circumcircle
X(65186) = pole of line {2969, 53564} with respect to the polar circle
X(65186) = pole of line {3733, 4401} with respect to the Stammler hyperbola
X(65186) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {104, 28197, 38665}
X(65186) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(101), X(4427)}}, {{A, B, C, X(109), X(4781)}}, {{A, B, C, X(190), X(4627)}}, {{A, B, C, X(835), X(4436)}}, {{A, B, C, X(3699), X(28210)}}, {{A, B, C, X(3952), X(8694)}}, {{A, B, C, X(4756), X(58125)}}, {{A, B, C, X(8708), X(65313)}}, {{A, B, C, X(17780), X(28226)}}, {{A, B, C, X(18004), X(58298)}}, {{A, B, C, X(30565), X(47959)}}, {{A, B, C, X(47656), X(50333)}}
X(65186) = barycentric product X(i)*X(j) for these (i, j): {1252, 47656}, {4600, 58298}, {28196, 28651}, {47959, 765}
X(65186) = barycentric quotient X(i)/X(j) for these (i, j): {1252, 46961}, {4559, 35576}, {47656, 23989}, {47959, 1111}, {58298, 3120}
X(65186) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 4557, 65313}, {100, 4756, 4436}, {100, 52923, 4427}, {100, 57151, 65166}
X(65187) lies on these lines: {7, 64013}, {77, 52769}, {101, 651}, {109, 658}, {212, 56309}, {238, 62786}, {479, 17127}, {664, 3939}, {1088, 55086}, {1331, 35312}, {1414, 4616}, {1471, 42309}, {1754, 2898}, {3246, 34855}, {4554, 65190}, {4566, 57250}, {6516, 35338}, {6649, 62532}, {7177, 52015}, {7290, 63150}, {13149, 65180}, {13329, 14189}, {23973, 61241}, {35281, 56543}, {61225, 65296}
X(65187) = trilinear pole of line {2280, 5228}
X(65187) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 59269}, {522, 60673}, {650, 40779}, {657, 27475}, {663, 60668}, {667, 59260}, {1002, 3900}, {1021, 60677}, {1146, 8693}, {2279, 3239}, {2310, 37138}, {4105, 62784}, {4130, 42290}, {4171, 42302}, {6608, 59193}, {8641, 59255}, {10581, 42310}, {14936, 32041}, {57180, 62946}
X(65187) = X(i)-Dao conjugate of X(j) for these {i, j}: {6631, 59260}, {39026, 59269}, {55059, 52335}, {61076, 24026}
X(65187) = X(i)-cross conjugate of X(j) for these {i, j}: {4724, 5228}
X(65187) = pole of line {1021, 4105} with respect to the Stammler hyperbola
X(65187) = pole of line {63, 6605} with respect to the Hutson-Moses hyperbola
X(65187) = intersection, other than A, B, C, of circumconics {{A, B, C, X(101), X(1414)}}, {{A, B, C, X(109), X(1471)}}, {{A, B, C, X(651), X(927)}}, {{A, B, C, X(658), X(41353)}}, {{A, B, C, X(664), X(63203)}}, {{A, B, C, X(1020), X(4626)}}, {{A, B, C, X(3676), X(53544)}}, {{A, B, C, X(5228), X(23890)}}, {{A, B, C, X(24029), X(40719)}}
X(65187) = barycentric product X(i)*X(j) for these (i, j): {100, 42309}, {109, 60720}, {190, 59242}, {279, 54440}, {1001, 658}, {1275, 4724}, {1461, 4441}, {1471, 4554}, {2280, 4569}, {3696, 4637}, {3886, 4617}, {4384, 934}, {4565, 60734}, {4566, 60721}, {4616, 59207}, {4762, 7045}, {5228, 664}, {23151, 36118}, {28809, 6614}, {37658, 4626}, {40719, 651}, {41353, 63236}, {42289, 4573}, {45755, 59457}, {46406, 60722}, {53321, 60735}
X(65187) = barycentric quotient X(i)/X(j) for these (i, j): {101, 59269}, {109, 40779}, {190, 59260}, {651, 60668}, {658, 59255}, {934, 27475}, {1001, 3239}, {1262, 37138}, {1415, 60673}, {1461, 1002}, {1471, 650}, {2280, 3900}, {4384, 4397}, {4441, 52622}, {4617, 62784}, {4626, 62946}, {4724, 1146}, {4762, 24026}, {5228, 522}, {6614, 42290}, {7045, 32041}, {24027, 8693}, {37658, 4163}, {40719, 4391}, {40784, 4522}, {41353, 62622}, {42289, 3700}, {42309, 693}, {45755, 4081}, {53321, 60677}, {54440, 346}, {59242, 514}, {60720, 35519}, {60721, 7253}, {60722, 657}, {62786, 63223}
X(65187) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {651, 934, 41353}
X(65188) lies on these lines: {7, 3315}, {57, 6169}, {108, 934}, {109, 658}, {222, 31526}, {223, 36905}, {278, 2898}, {279, 40615}, {347, 34188}, {651, 2428}, {664, 668}, {693, 1897}, {1088, 34036}, {1421, 56783}, {1465, 14189}, {3160, 5328}, {3660, 62785}, {4318, 37780}, {4573, 57216}, {4617, 23973}, {6545, 32739}, {6571, 8707}, {8270, 31627}, {9312, 26736}, {13149, 36127}, {16502, 28110}, {17671, 41786}, {18623, 31527}, {23703, 65165}, {29055, 34083}, {31599, 37800}, {38357, 45276}, {41353, 61227}, {45742, 47848}
X(65188) = trilinear pole of line {2082, 4000}
X(65188) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 48070}, {100, 14935}, {522, 7084}, {649, 56243}, {650, 7123}, {657, 7131}, {663, 56179}, {1037, 3900}, {1041, 57108}, {3022, 8269}, {3063, 30701}, {3271, 52778}, {3709, 40403}, {4105, 56359}, {7252, 56260}, {8611, 57386}, {8641, 8817}, {30705, 57180}
X(65188) = X(i)-Dao conjugate of X(j) for these {i, j}: {1565, 26932}, {3160, 48070}, {4000, 4163}, {5375, 56243}, {6554, 522}, {8054, 14935}, {10001, 30701}, {14936, 3119}, {15487, 650}, {16583, 52355}, {18589, 4041}, {59619, 4397}
X(65188) = X(i)-Ceva conjugate of X(j) for these {i, j}: {46102, 7}
X(65188) = X(i)-cross conjugate of X(j) for these {i, j}: {1633, 3732}
X(65188) = pole of line {3729, 17784} with respect to the Yff parabola
X(65188) = pole of line {7, 30616} with respect to the Hutson-Moses hyperbola
X(65188) = pole of line {85, 16706} with respect to the dual conic of Feuerbach hyperbola
X(65188) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(108), X(1633)}}, {{A, B, C, X(109), X(614)}}, {{A, B, C, X(668), X(927)}}, {{A, B, C, X(934), X(4561)}}, {{A, B, C, X(3676), X(48398)}}, {{A, B, C, X(4551), X(62752)}}, {{A, B, C, X(4625), X(14594)}}
X(65188) = barycentric product X(i)*X(j) for these (i, j): {190, 7195}, {274, 62752}, {497, 658}, {1040, 13149}, {1414, 53510}, {1473, 46404}, {1633, 85}, {1851, 65164}, {2082, 4569}, {3673, 651}, {3732, 7}, {3914, 4573}, {4000, 664}, {4554, 614}, {4561, 61411}, {4620, 48403}, {4626, 6554}, {16502, 4572}, {16583, 4625}, {16750, 4551}, {17170, 653}, {18026, 7289}, {20235, 65232}, {21750, 55213}, {27509, 36118}, {28017, 668}, {30706, 52937}, {36838, 4319}, {40576, 41788}, {40961, 799}, {40965, 4635}, {41786, 53643}, {46406, 7083}, {48398, 4998}, {51400, 927}, {57785, 61160}, {61241, 64438}, {62544, 65165}
X(65188) = barycentric quotient X(i)/X(j) for these (i, j): {7, 48070}, {100, 56243}, {109, 7123}, {497, 3239}, {614, 650}, {649, 14935}, {651, 56179}, {658, 8817}, {664, 30701}, {934, 7131}, {1040, 57055}, {1414, 40403}, {1415, 7084}, {1461, 1037}, {1473, 652}, {1633, 9}, {1851, 3064}, {2082, 3900}, {3673, 4391}, {3732, 8}, {3914, 3700}, {4000, 522}, {4319, 4130}, {4551, 56260}, {4554, 57925}, {4564, 52778}, {4617, 56359}, {4626, 30705}, {5324, 1021}, {6554, 4163}, {7083, 657}, {7124, 57108}, {7195, 514}, {7289, 521}, {16502, 663}, {16583, 4041}, {16750, 18155}, {17115, 3119}, {17170, 6332}, {17441, 8611}, {18589, 52355}, {21750, 63461}, {28017, 513}, {28110, 17072}, {30706, 4105}, {32714, 1041}, {40934, 3709}, {40961, 661}, {40965, 4171}, {40987, 65103}, {41785, 44448}, {48398, 11}, {48403, 21044}, {51400, 50333}, {53510, 4086}, {61160, 210}, {61411, 7649}, {62752, 37}
X(65188) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {109, 3676, 658}, {664, 4554, 14594}
X(65189) lies on these lines: {99, 6014}, {190, 2415}, {279, 42020}, {664, 668}, {1222, 26563}, {1565, 21290}, {3732, 4482}, {4437, 39351}, {4534, 52157}, {4555, 33948}, {4572, 4626}, {6558, 65195}, {7181, 60367}, {9312, 44720}, {9369, 59507}, {17044, 27546}, {17136, 43290}, {21041, 25605}, {25718, 44722}, {31298, 32029}, {33780, 36846}, {58130, 58135}, {61186, 65166}
X(65189) = trilinear pole of line {5437, 31995}
X(65189) = X(i)-isoconjugate-of-X(j) for these {i, j}: {667, 7320}, {3063, 44794}, {56200, 57181}
X(65189) = X(i)-Dao conjugate of X(j) for these {i, j}: {6631, 7320}, {10001, 44794}, {22754, 663}
X(65189) = pole of line {3875, 32939} with respect to the Kiepert parabola
X(65189) = pole of line {3699, 21272} with respect to the Steiner circumellipse
X(65189) = pole of line {145, 3729} with respect to the Yff parabola
X(65189) = pole of line {4383, 24599} with respect to the Hutson-Moses hyperbola
X(65189) = pole of line {3737, 6006} with respect to the Wallace hyperbola
X(65189) = pole of line {85, 1997} with respect to the dual conic of Feuerbach hyperbola
X(65189) = intersection, other than A, B, C, of circumconics {{A, B, C, X(664), X(27834)}}, {{A, B, C, X(1026), X(4853)}}, {{A, B, C, X(2415), X(31995)}}, {{A, B, C, X(4551), X(6014)}}, {{A, B, C, X(4554), X(53647)}}, {{A, B, C, X(8706), X(30720)}}
X(65189) = barycentric product X(i)*X(j) for these (i, j): {190, 31995}, {646, 7271}, {1978, 3304}, {3698, 799}, {3699, 43983}, {4554, 4853}, {5437, 668}
X(65189) = barycentric quotient X(i)/X(j) for these (i, j): {190, 7320}, {664, 44794}, {3304, 649}, {3698, 661}, {3699, 56200}, {4853, 650}, {5437, 513}, {7271, 3669}, {31995, 514}, {43983, 3676}
X(65189) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 53647, 21272}, {664, 668, 3699}
X(65190) lies on these lines: {31, 30568}, {58, 56311}, {100, 101}, {109, 190}, {124, 28829}, {162, 65160}, {171, 4078}, {238, 62297}, {283, 3701}, {573, 26264}, {580, 46937}, {595, 19582}, {643, 645}, {750, 59779}, {931, 8694}, {1083, 28353}, {1293, 53625}, {1331, 3952}, {1332, 4551}, {1357, 24826}, {1365, 24835}, {1724, 2899}, {1936, 3717}, {2222, 59104}, {2328, 7081}, {2361, 4009}, {3161, 17126}, {4069, 4571}, {4427, 25268}, {4553, 53279}, {4554, 65187}, {5205, 13329}, {6335, 65180}, {8055, 17127}, {9059, 59006}, {9347, 25082}, {17777, 64013}, {18743, 55086}, {23691, 44425}, {25968, 51390}, {65198, 65206}
X(65190) = trilinear pole of line {958, 2268}
X(65190) = X(i)-isoconjugate-of-X(j) for these {i, j}: {244, 65225}, {667, 58008}, {931, 53540}, {941, 3669}, {1015, 32038}, {1086, 32693}, {2258, 3676}, {3733, 60321}, {4017, 5331}, {7180, 37870}, {18191, 52931}, {31359, 43924}, {34258, 57181}, {34259, 43923}
X(65190) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 44733}, {6631, 58008}, {17417, 1086}, {34261, 514}, {34961, 5331}, {39026, 959}
X(65190) = X(i)-cross conjugate of X(j) for these {i, j}: {17418, 958}
X(65190) = pole of line {1621, 52352} with respect to the Kiepert parabola
X(65190) = pole of line {1019, 43924} with respect to the Stammler hyperbola
X(65190) = pole of line {9, 345} with respect to the Yff parabola
X(65190) = pole of line {1, 59727} with respect to the Hutson-Moses hyperbola
X(65190) = pole of line {3676, 7199} with respect to the Wallace hyperbola
X(65190) = pole of line {101, 835} with respect to the dual conic of incircle
X(65190) = pole of line {17289, 25082} with respect to the dual conic of Feuerbach hyperbola
X(65190) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(645)}}, {{A, B, C, X(101), X(643)}}, {{A, B, C, X(190), X(61223)}}, {{A, B, C, X(644), X(7256)}}, {{A, B, C, X(958), X(1023)}}, {{A, B, C, X(1018), X(3699)}}, {{A, B, C, X(1026), X(11679)}}, {{A, B, C, X(1635), X(17418)}}, {{A, B, C, X(3887), X(23880)}}, {{A, B, C, X(7437), X(44734)}}, {{A, B, C, X(38325), X(53526)}}, {{A, B, C, X(53625), X(57192)}}, {{A, B, C, X(54396), X(61239)}}
X(65190) = barycentric product X(i)*X(j) for these (i, j): {100, 11679}, {109, 61414}, {190, 958}, {1016, 17418}, {1332, 54396}, {1468, 646}, {2268, 668}, {3699, 940}, {3713, 664}, {3714, 662}, {4033, 54417}, {4076, 48144}, {4571, 5307}, {10436, 644}, {23880, 765}, {31993, 643}, {34284, 3939}, {53526, 57731}, {59305, 645}, {65168, 8}
X(65190) = barycentric quotient X(i)/X(j) for these (i, j): {100, 44733}, {101, 959}, {190, 58008}, {643, 37870}, {644, 31359}, {765, 32038}, {940, 3676}, {958, 514}, {1018, 60321}, {1110, 32693}, {1252, 65225}, {1468, 3669}, {2268, 513}, {3699, 34258}, {3713, 522}, {3714, 1577}, {3939, 941}, {4587, 34259}, {5019, 43924}, {5546, 5331}, {8672, 53545}, {10436, 24002}, {11679, 693}, {17418, 1086}, {23880, 1111}, {31993, 4077}, {34284, 52621}, {48144, 1358}, {53561, 21132}, {54396, 17924}, {54417, 1019}, {58332, 2170}, {59305, 7178}, {61414, 35519}, {65168, 7}
X(65190) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 644, 61223}, {643, 3699, 3939}
X(65191) lies on these lines: {2, 24195}, {10, 2643}, {37, 3589}, {69, 24048}, {72, 2810}, {75, 24058}, {99, 101}, {141, 24090}, {142, 27705}, {192, 24067}, {306, 42710}, {321, 3452}, {514, 65161}, {522, 53338}, {523, 40529}, {594, 46826}, {646, 3807}, {668, 54986}, {908, 61410}, {1018, 52609}, {1026, 61169}, {1086, 24076}, {1227, 24237}, {1278, 24077}, {2321, 24086}, {3159, 42083}, {3662, 27727}, {3882, 53332}, {3912, 4053}, {3943, 24081}, {3952, 4069}, {3970, 42724}, {3977, 42701}, {3995, 17012}, {4009, 50747}, {4033, 4103}, {4357, 21810}, {4416, 21873}, {4606, 37210}, {4664, 46913}, {5295, 12019}, {5969, 17760}, {7035, 65229}, {14543, 30729}, {17234, 24050}, {17242, 27586}, {17464, 22021}, {17793, 21210}, {18134, 24066}, {18697, 21033}, {20336, 21078}, {24092, 36494}, {26700, 65372}, {27420, 45744}, {29456, 39765}, {30867, 31025}, {30895, 40586}, {31993, 37691}, {42363, 42720}, {42700, 62564}, {61223, 61226}
X(65191) = anticomplement of X(24195)
X(65191) = trilinear pole of line {1211, 2292}
X(65191) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 62749}, {512, 64457}, {593, 57162}, {604, 57161}, {649, 2363}, {667, 14534}, {961, 7252}, {1220, 57129}, {1333, 4581}, {1791, 43925}, {1798, 6591}, {1980, 40827}, {2203, 15420}, {2298, 3733}, {2359, 57200}, {3121, 65281}, {3122, 65255}, {3125, 58982}, {8687, 18191}, {16726, 32736}
X(65191) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 62749}, {37, 4581}, {960, 649}, {1211, 1019}, {2092, 3737}, {3125, 244}, {3161, 57161}, {3666, 514}, {4357, 17212}, {5375, 2363}, {6631, 14534}, {17419, 18191}, {24195, 24195}, {39026, 1169}, {39054, 64457}, {52087, 3733}, {56905, 7649}, {59509, 7192}, {62564, 15420}
X(65191) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 3882}, {4564, 306}, {7035, 10}, {24041, 21081}, {53332, 61172}
X(65191) = X(i)-cross conjugate of X(j) for these {i, j}: {3910, 321}, {21124, 1211}, {50330, 4357}
X(65191) = pole of line {86, 17164} with respect to the Kiepert parabola
X(65191) = pole of line {3882, 4427} with respect to the Steiner circumellipse
X(65191) = pole of line {10, 321} with respect to the Yff parabola
X(65191) = pole of line {81, 306} with respect to the Hutson-Moses hyperbola
X(65191) = pole of line {514, 18200} with respect to the Wallace hyperbola
X(65191) = pole of line {3882, 14543} with respect to the dual conic of incircle
X(65191) = pole of line {4466, 17219} with respect to the dual conic of polar circle
X(65191) = pole of line {1739, 3836} with respect to the dual conic of Yff parabola
X(65191) = pole of line {21131, 21132} with respect to the dual conic of Wallace hyperbola
X(65191) = intersection, other than A, B, C, of circumconics {{A, B, C, X(37), X(54328)}}, {{A, B, C, X(99), X(4552)}}, {{A, B, C, X(101), X(4103)}}, {{A, B, C, X(429), X(4237)}}, {{A, B, C, X(645), X(3952)}}, {{A, B, C, X(662), X(3882)}}, {{A, B, C, X(1978), X(4605)}}, {{A, B, C, X(3910), X(4858)}}, {{A, B, C, X(4069), X(7259)}}, {{A, B, C, X(4357), X(40529)}}, {{A, B, C, X(21124), X(30572)}}, {{A, B, C, X(48131), X(59737)}}, {{A, B, C, X(50330), X(50456)}}
X(65191) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 4561, 65168}, {321, 24069, 30566}, {3912, 22047, 24062}, {3912, 4053, 22047}, {4053, 42713, 3912}, {4115, 22003, 190}, {20336, 21078, 22008}, {21810, 27697, 4357}
X(65192) lies on these lines: {668, 56241}, {1026, 8706}, {3699, 3799}, {4041, 7257}, {7256, 61223}, {23354, 65209}, {30670, 65369}, {36800, 40608}
X(65192) = trilinear pole of line {346, 3985}
X(65192) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 56242}, {34, 22093}, {56, 4367}, {57, 20981}, {109, 53541}, {171, 43924}, {172, 3669}, {603, 54229}, {604, 4369}, {649, 7175}, {667, 7176}, {894, 57181}, {1014, 7234}, {1106, 3907}, {1357, 4579}, {1397, 4374}, {1400, 18200}, {1402, 17212}, {1407, 3287}, {1408, 2533}, {1412, 57234}, {1414, 4128}, {1415, 7200}, {1416, 53553}, {1417, 4922}, {1919, 7196}, {1980, 7205}, {2330, 43932}, {3248, 6649}, {3676, 7122}, {3955, 43923}, {4032, 57129}, {4477, 7023}, {4504, 16945}, {4529, 7366}, {4565, 16592}, {4573, 21755}, {7203, 20964}, {7207, 29055}, {17103, 51641}
X(65192) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4367}, {8, 4504}, {11, 53541}, {1146, 7200}, {2968, 4459}, {3161, 4369}, {5375, 7175}, {5452, 20981}, {6552, 3907}, {6631, 7176}, {6741, 53559}, {7952, 54229}, {9296, 7196}, {11517, 22093}, {24771, 3287}, {40582, 18200}, {40599, 57234}, {40605, 17212}, {40608, 4128}, {40609, 53553}, {52871, 4922}, {55064, 16592}, {59577, 2533}, {62585, 4374}
X(65192) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56241, 27805}
X(65192) = X(i)-cross conjugate of X(j) for these {i, j}: {4171, 312}
X(65192) = pole of line {14949, 17261} with respect to the Yff parabola
X(65192) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(7257)}}, {{A, B, C, X(312), X(4602)}}, {{A, B, C, X(341), X(7259)}}, {{A, B, C, X(643), X(1018)}}, {{A, B, C, X(644), X(3799)}}, {{A, B, C, X(646), X(4562)}}, {{A, B, C, X(668), X(3699)}}, {{A, B, C, X(1026), X(6736)}}, {{A, B, C, X(3700), X(9293)}}, {{A, B, C, X(6010), X(43073)}}
X(65193) lies on these lines: {27, 56316}, {29, 56176}, {92, 3158}, {100, 108}, {107, 8694}, {162, 3939}, {243, 3689}, {278, 64146}, {412, 3811}, {1013, 6600}, {2900, 37279}, {3189, 5125}, {3699, 4587}, {4246, 65186}, {5174, 12437}, {5281, 7046}, {5853, 17923}, {6154, 52167}, {6335, 43290}, {8707, 58944}, {13149, 65194}, {21077, 52846}, {41083, 56178}, {44695, 64083}, {52412, 59584}, {64135, 64211}, {65213, 65217}
X(65193) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1459, 5665}
X(65193) = pole of line {11, 53545} with respect to the polar circle
X(65193) = pole of line {65160, 65206} with respect to the dual conic of incircle
X(65193) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(7259)}}, {{A, B, C, X(108), X(65201)}}, {{A, B, C, X(653), X(36797)}}, {{A, B, C, X(3601), X(23981)}}, {{A, B, C, X(3699), X(4552)}}, {{A, B, C, X(4587), X(8694)}}
X(65193) = barycentric product X(i)*X(j) for these (i, j): {1869, 645}, {1897, 5273}, {3601, 6335}, {3699, 7490}, {3945, 65160}, {20007, 653}, {65170, 8}
X(65193) = barycentric quotient X(i)/X(j) for these (i, j): {1783, 5665}, {1869, 7178}, {3601, 905}, {5273, 4025}, {7490, 3676}, {20007, 6332}, {55346, 50392}, {65160, 43533}, {65170, 7}, {65201, 63157}
X(65193) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 1897, 653}, {3699, 36797, 65160}
X(65194) lies on these lines: {7, 6154}, {100, 658}, {190, 6606}, {883, 65166}, {927, 4624}, {1088, 3158}, {3035, 62723}, {3689, 14189}, {3722, 56783}, {3870, 33765}, {4554, 43290}, {5853, 37757}, {13149, 65193}, {17093, 64146}, {25716, 64112}, {25718, 64108}, {31627, 64135}, {35338, 42301}, {46917, 62704}
X(65194) = X(i)-isoconjugate-of-X(j) for these {i, j}: {663, 10390}, {2310, 58103}, {3063, 56054}, {3900, 34821}, {8641, 56348}
X(65194) = X(i)-Dao conjugate of X(j) for these {i, j}: {10001, 56054}
X(65194) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {58106, 37781}
X(65194) = pole of line {144, 4847} with respect to the Yff parabola
X(65194) = pole of line {348, 17263} with respect to the dual conic of Feuerbach hyperbola
X(65194) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(42301)}}, {{A, B, C, X(190), X(35312)}}, {{A, B, C, X(658), X(6606)}}, {{A, B, C, X(934), X(65222)}}, {{A, B, C, X(2283), X(8694)}}, {{A, B, C, X(18230), X(56543)}}, {{A, B, C, X(43042), X(58860)}}
X(65194) = barycentric product X(i)*X(j) for these (i, j): {10389, 4554}, {18230, 664}
X(65194) = barycentric quotient X(i)/X(j) for these (i, j): {651, 10390}, {658, 56348}, {664, 56054}, {1262, 58103}, {1461, 34821}, {10389, 650}, {18230, 522}
X(65194) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 35312, 65165}, {100, 61192, 664}, {100, 664, 658}, {664, 65165, 35312}
X(65195) lies on these lines: {1, 25237}, {2, 1111}, {7, 26140}, {8, 3177}, {9, 9317}, {10, 25244}, {37, 7200}, {42, 25249}, {63, 5773}, {72, 48923}, {75, 31169}, {78, 30625}, {85, 25082}, {99, 666}, {100, 1292}, {101, 17136}, {142, 53240}, {144, 2801}, {145, 25256}, {162, 41676}, {190, 644}, {192, 537}, {194, 16476}, {200, 43989}, {239, 25257}, {279, 28740}, {321, 50154}, {344, 17079}, {348, 28734}, {513, 62753}, {514, 1018}, {573, 20248}, {668, 30730}, {672, 46180}, {765, 56322}, {835, 58967}, {894, 25255}, {944, 30616}, {1015, 24403}, {1016, 30732}, {1025, 4566}, {1026, 3952}, {1088, 64579}, {1125, 25261}, {1212, 20880}, {1233, 40606}, {1331, 2398}, {1358, 16593}, {1577, 26794}, {1655, 6625}, {1930, 26770}, {2795, 13576}, {3039, 26007}, {3160, 28967}, {3616, 27340}, {3665, 33839}, {3673, 26690}, {3693, 30806}, {3729, 3872}, {3877, 51052}, {3885, 9311}, {3891, 22253}, {3930, 35102}, {3995, 22035}, {4080, 63334}, {4253, 20247}, {4416, 45744}, {4511, 10025}, {4554, 36838}, {4561, 30729}, {4595, 61186}, {4723, 40883}, {4781, 17494}, {4824, 40501}, {4847, 62731}, {4919, 60692}, {5080, 56555}, {5179, 33864}, {5552, 30694}, {6005, 7287}, {6065, 60065}, {6558, 65189}, {6734, 43672}, {6758, 24074}, {7080, 30695}, {7187, 27097}, {7264, 26964}, {9312, 28961}, {9457, 55998}, {9780, 27288}, {9881, 17497}, {14439, 21139}, {14543, 65168}, {14740, 44005}, {14953, 20602}, {16600, 18600}, {16720, 27040}, {16834, 17147}, {17075, 28420}, {17077, 20927}, {17092, 20946}, {17095, 28761}, {17140, 40637}, {17166, 46369}, {17169, 21808}, {17350, 25241}, {17495, 41140}, {17496, 25267}, {17729, 21372}, {17760, 56024}, {17761, 53381}, {17781, 56187}, {18662, 32933}, {18668, 32849}, {20269, 27132}, {20331, 21138}, {20347, 57015}, {21044, 24318}, {21090, 31058}, {21226, 28598}, {21314, 30813}, {21362, 22003}, {23649, 24172}, {24635, 28797}, {25065, 27058}, {25066, 26563}, {25083, 30807}, {25243, 25728}, {25254, 41252}, {25264, 64071}, {25729, 57287}, {25918, 26094}, {27109, 33930}, {28090, 39956}, {30941, 49753}, {31087, 50286}, {32040, 58135}, {35312, 35341}, {35335, 48151}, {35338, 65198}, {36118, 65160}, {40534, 43057}, {41825, 41839}, {47666, 61177}, {52609, 65161}, {61185, 65196}
X(65195) = reflection of X(i) in X(j) for these {i,j}: {8, 4712}, {1111, 24036}, {20347, 57015}, {21139, 21232}, {21272, 1018}, {30806, 3693}
X(65195) = inverse of X(4560) in Wallace hyperbola
X(65195) = isotomic conjugate of X(56322)
X(65195) = anticomplement of X(1111)
X(65195) = trilinear pole of line {142, 354}
X(65195) = perspector of circumconic {{A, B, C, X(4998), X(35171)}}
X(65195) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 58322}, {31, 56322}, {56, 62747}, {513, 1174}, {604, 62725}, {649, 2346}, {657, 61373}, {663, 1170}, {667, 32008}, {1803, 18344}, {1919, 57815}, {2149, 56284}, {2170, 53243}, {3063, 21453}, {3121, 55281}, {3271, 65222}, {3669, 10482}, {3676, 59141}, {3733, 56255}, {6591, 47487}, {6605, 43924}, {8641, 10509}, {56118, 57181}, {56157, 57129}
X(65195) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 62747}, {2, 56322}, {9, 58322}, {142, 650}, {354, 6586}, {650, 56284}, {1111, 1111}, {1212, 514}, {3119, 2310}, {3161, 62725}, {5375, 2346}, {6631, 32008}, {9296, 57815}, {10001, 21453}, {39026, 1174}, {40606, 513}, {46196, 47970}
X(65195) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 35341}, {765, 2}, {4998, 6067}
X(65195) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {32, 54102}, {59, 3434}, {100, 21293}, {101, 150}, {249, 17143}, {692, 149}, {765, 6327}, {1016, 315}, {1018, 21294}, {1101, 17140}, {1110, 8}, {1252, 69}, {1262, 6604}, {1576, 17154}, {2149, 7}, {2175, 17036}, {3939, 33650}, {4557, 3448}, {4564, 21285}, {4567, 17137}, {4570, 17135}, {4574, 13219}, {4590, 54112}, {4600, 17138}, {4619, 46402}, {4628, 25049}, {4998, 21280}, {5377, 20556}, {5379, 20242}, {6065, 3436}, {6066, 144}, {6632, 21304}, {7035, 21275}, {7109, 54104}, {7115, 56927}, {9268, 21282}, {15378, 17753}, {15742, 11442}, {23357, 4360}, {23963, 46720}, {23979, 4452}, {23990, 2}, {24027, 36845}, {31616, 3261}, {31625, 33796}, {32719, 20042}, {32739, 4440}, {40150, 44184}, {52378, 20244}, {52941, 674}, {57731, 21301}, {59101, 926}, {59149, 20295}
X(65195) = X(i)-cross conjugate of X(j) for these {i, j}: {6067, 4998}, {6362, 20880}, {21104, 142}, {35310, 35338}, {35338, 35312}, {35341, 65198}, {48151, 17169}
X(65195) = pole of line {75, 3873} with respect to the Kiepert parabola
X(65195) = pole of line {665, 7252} with respect to the Stammler hyperbola
X(65195) = pole of line {100, 101} with respect to the Steiner circumellipse
X(65195) = pole of line {3035, 3887} with respect to the Steiner inellipse
X(65195) = pole of line {7, 8} with respect to the Yff parabola
X(65195) = pole of line {2, 218} with respect to the Hutson-Moses hyperbola
X(65195) = pole of line {14408, 21320} with respect to the Hofstadter ellipse
X(65195) = pole of line {918, 4560} with respect to the Wallace hyperbola
X(65195) = pole of line {190, 658} with respect to the dual conic of incircle
X(65195) = pole of line {190, 46725} with respect to the dual conic of nine-point circle
X(65195) = pole of line {26932, 40618} with respect to the dual conic of polar circle
X(65195) = pole of line {42719, 43191} with respect to the dual conic of DeLongchamps ellipse
X(65195) = pole of line {1, 2} with respect to the dual conic of Feuerbach hyperbola
X(65195) = pole of line {6516, 40576} with respect to the dual conic of Orthic inconic
X(65195) = pole of line {4998, 6065} with respect to the dual conic of Moses-Feuerbach circumconic
X(65195) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(99), X(883)}}, {{A, B, C, X(142), X(62669)}}, {{A, B, C, X(190), X(46406)}}, {{A, B, C, X(644), X(4554)}}, {{A, B, C, X(651), X(1292)}}, {{A, B, C, X(664), X(35312)}}, {{A, B, C, X(666), X(4552)}}, {{A, B, C, X(918), X(4560)}}, {{A, B, C, X(919), X(4559)}}, {{A, B, C, X(1111), X(56322)}}, {{A, B, C, X(1212), X(2284)}}, {{A, B, C, X(1229), X(2397)}}, {{A, B, C, X(4585), X(16713)}}, {{A, B, C, X(6625), X(17169)}}, {{A, B, C, X(17494), X(47772)}}, {{A, B, C, X(21104), X(30725)}}, {{A, B, C, X(23599), X(60482)}}, {{A, B, C, X(30730), X(36803)}}, {{A, B, C, X(31624), X(54440)}}, {{A, B, C, X(60480), X(62306)}}
X(65195) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {85, 25082, 28742}, {99, 32028, 33951}, {190, 33946, 53332}, {190, 4552, 25268}, {190, 664, 644}, {190, 65205, 4552}, {279, 56937, 28740}, {514, 1018, 21272}, {1111, 24036, 2}, {2398, 4427, 54440}, {3177, 25242, 8}, {3693, 44664, 30806}, {3952, 25272, 4568}, {4552, 65174, 664}, {9312, 55337, 28961}, {14439, 21139, 21232}, {17136, 53337, 101}, {17760, 56024, 56318}
X(65196) lies on these lines: {2, 24235}, {8, 39770}, {10, 1109}, {37, 17724}, {72, 952}, {100, 6011}, {101, 59097}, {162, 190}, {306, 57862}, {321, 4712}, {514, 3909}, {518, 50747}, {522, 4427}, {523, 61172}, {542, 17781}, {644, 4115}, {726, 50755}, {835, 58986}, {1365, 27692}, {1824, 29243}, {3159, 3244}, {3175, 9041}, {3710, 42456}, {3717, 61410}, {3751, 32925}, {3882, 53349}, {3952, 4069}, {3957, 3995}, {3977, 64858}, {4024, 61163}, {4082, 42710}, {4463, 22001}, {4861, 9369}, {4934, 27560}, {6590, 61234}, {6734, 45926}, {6745, 42701}, {14206, 44694}, {17776, 25664}, {21807, 22010}, {24225, 24542}, {25006, 42708}, {44311, 51583}, {53358, 61168}, {53794, 57287}, {61169, 61220}, {61178, 65233}, {61180, 61233}, {61185, 65195}
X(65196) = anticomplement of X(24235)
X(65196) = trilinear pole of line {442, 2294}
X(65196) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 1175}, {663, 63193}, {667, 40412}, {905, 40570}, {943, 3733}, {1019, 2259}, {1333, 56320}, {1437, 14775}, {1794, 57200}, {2203, 63245}, {2982, 7252}, {7202, 59011}, {15439, 18191}, {22383, 40395}, {40435, 57129}
X(65196) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 56320}, {442, 3737}, {942, 1459}, {6631, 40412}, {16585, 7192}, {16732, 1111}, {18591, 1019}, {24235, 24235}, {39026, 1175}, {40937, 514}, {52119, 3120}, {62564, 63245}
X(65196) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 61233}, {765, 10}, {65205, 61161}
X(65196) = X(i)-cross conjugate of X(j) for these {i, j}: {23752, 442}
X(65196) = pole of line {1043, 17164} with respect to the Kiepert parabola
X(65196) = pole of line {3882, 14543} with respect to the Steiner circumellipse
X(65196) = pole of line {226, 306} with respect to the Yff parabola
X(65196) = pole of line {10, 2287} with respect to the Hutson-Moses hyperbola
X(65196) = pole of line {4025, 16755} with respect to the Wallace hyperbola
X(65196) = pole of line {4427, 61233} with respect to the dual conic of incircle
X(65196) = pole of line {17216, 17219} with respect to the dual conic of polar circle
X(65196) = pole of line {21132, 21134} with respect to the dual conic of Wallace hyperbola
X(65196) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(162), X(4551)}}, {{A, B, C, X(442), X(46541)}}, {{A, B, C, X(643), X(61233)}}, {{A, B, C, X(648), X(4552)}}, {{A, B, C, X(3952), X(36797)}}, {{A, B, C, X(4033), X(57973)}}, {{A, B, C, X(8750), X(61169)}}, {{A, B, C, X(23752), X(30572)}}, {{A, B, C, X(58986), X(61197)}}
X(65196) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65197, 65205, 61220}
X(65197) lies on these lines: {8, 11604}, {69, 20940}, {100, 190}, {312, 41228}, {329, 20445}, {522, 61223}, {643, 65206}, {645, 36797}, {668, 18026}, {1332, 1897}, {2550, 18037}, {3909, 53349}, {4103, 61239}, {4123, 28950}, {4397, 61174}, {4585, 14544}, {5218, 17611}, {7069, 27409}, {7259, 30729}, {12247, 21290}, {17165, 33108}, {23691, 64858}, {26704, 59104}, {31938, 51978}, {35519, 53363}, {53358, 62753}, {61169, 61220}
X(65197) = trilinear pole of line {6734, 40937}
X(65197) = X(i)-isoconjugate-of-X(j) for these {i, j}: {244, 15439}, {512, 63193}, {603, 14775}, {604, 56320}, {649, 2982}, {667, 60041}, {943, 43924}, {1015, 65217}, {1175, 4017}, {1395, 63245}, {1794, 43923}, {2170, 32651}, {2259, 3669}, {3248, 54952}, {3271, 36048}, {22383, 40573}, {40412, 51641}, {40435, 57181}, {40570, 51664}, {57129, 60188}
X(65197) = X(i)-Dao conjugate of X(j) for these {i, j}: {442, 513}, {3161, 56320}, {5375, 2982}, {6631, 60041}, {6734, 6003}, {7952, 14775}, {15607, 3271}, {16585, 3676}, {18591, 3669}, {34961, 1175}, {39007, 3937}, {39054, 63193}, {40937, 7178}, {52119, 1365}, {62584, 63245}
X(65197) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {6011, 149}, {65236, 150}
X(65197) = X(i)-cross conjugate of X(j) for these {i, j}: {61233, 65205}
X(65197) = pole of line {1365, 2969} with respect to the polar circle
X(65197) = pole of line {3733, 57139} with respect to the Stammler hyperbola
X(65197) = pole of line {190, 65236} with respect to the Steiner circumellipse
X(65197) = pole of line {2, 17861} with respect to the Yff parabola
X(65197) = pole of line {6, 12649} with respect to the Hutson-Moses hyperbola
X(65197) = pole of line {7192, 17094} with respect to the Wallace hyperbola
X(65197) = pole of line {643, 644} with respect to the dual conic of incircle
X(65197) = pole of line {1364, 1367} with respect to the dual conic of polar circle
X(65197) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(11604)}}, {{A, B, C, X(190), X(46404)}}, {{A, B, C, X(645), X(52609)}}, {{A, B, C, X(650), X(53257)}}, {{A, B, C, X(655), X(14543)}}, {{A, B, C, X(668), X(4571)}}, {{A, B, C, X(942), X(23832)}}, {{A, B, C, X(3952), X(36797)}}, {{A, B, C, X(4427), X(60488)}}, {{A, B, C, X(4557), X(61169)}}, {{A, B, C, X(5249), X(53337)}}, {{A, B, C, X(6734), X(17780)}}, {{A, B, C, X(7253), X(53342)}}, {{A, B, C, X(23343), X(40937)}}, {{A, B, C, X(53280), X(61197)}}
X(65197) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 3699, 4571}, {3952, 61185, 190}, {3952, 65198, 3699}, {61220, 65196, 65205}
X(65198) lies on these lines: {8, 3254}, {9, 38991}, {100, 190}, {210, 4459}, {346, 14943}, {522, 4069}, {645, 7253}, {653, 37223}, {668, 883}, {670, 53227}, {1026, 4552}, {1086, 40609}, {1227, 17165}, {1229, 3059}, {1332, 2398}, {3888, 53358}, {4033, 4397}, {4073, 27108}, {4103, 61237}, {4454, 6555}, {4553, 21272}, {4587, 30729}, {4738, 12736}, {4779, 19582}, {5281, 27538}, {9803, 21290}, {10005, 24349}, {16713, 21039}, {18151, 53382}, {20880, 61028}, {20946, 30628}, {25253, 44722}, {26651, 56179}, {30730, 61233}, {35338, 65195}, {44720, 49499}, {65190, 65206}
X(65198) = reflection of X(i) in X(j) for these {i,j}: {25268, 4069}
X(65198) = trilinear pole of line {1212, 4847}
X(65198) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 58322}, {244, 53243}, {604, 56322}, {663, 61373}, {667, 21453}, {1015, 65222}, {1106, 62725}, {1174, 3669}, {1407, 62747}, {1803, 6591}, {1919, 31618}, {2346, 43924}, {3063, 10509}, {3248, 6606}, {10482, 43932}, {24027, 56284}, {32008, 57181}, {43923, 47487}, {57129, 60229}, {58817, 59141}
X(65198) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 58322}, {142, 513}, {522, 56284}, {1212, 3676}, {3119, 2170}, {3161, 56322}, {4847, 3309}, {5375, 1170}, {6552, 62725}, {6631, 21453}, {9296, 31618}, {10001, 10509}, {24771, 62747}, {40606, 3669}
X(65198) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {59, 7674}, {100, 34547}, {1252, 56937}, {1292, 149}, {2428, 39353}, {15402, 20075}, {37206, 150}, {54987, 21293}, {57656, 54102}, {63906, 69}
X(65198) = X(i)-cross conjugate of X(j) for these {i, j}: {2488, 1212}, {6362, 4847}, {21127, 16713}, {35341, 65195}
X(65198) = pole of line {3733, 53539} with respect to the Stammler hyperbola
X(65198) = pole of line {190, 25736} with respect to the Steiner circumellipse
X(65198) = pole of line {2, 277} with respect to the Yff parabola
X(65198) = pole of line {6, 36845} with respect to the Hutson-Moses hyperbola
X(65198) = pole of line {7192, 21789} with respect to the Wallace hyperbola
X(65198) = pole of line {644, 3939} with respect to the dual conic of incircle
X(65198) = pole of line {1565, 3270} with respect to the dual conic of polar circle
X(65198) = pole of line {344, 61413} with respect to the dual conic of Feuerbach hyperbola
X(65198) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(3254)}}, {{A, B, C, X(142), X(53337)}}, {{A, B, C, X(190), X(46406)}}, {{A, B, C, X(354), X(23832)}}, {{A, B, C, X(522), X(53343)}}, {{A, B, C, X(644), X(54987)}}, {{A, B, C, X(645), X(1229)}}, {{A, B, C, X(650), X(53284)}}, {{A, B, C, X(653), X(61241)}}, {{A, B, C, X(659), X(21127)}}, {{A, B, C, X(668), X(4578)}}, {{A, B, C, X(883), X(3059)}}, {{A, B, C, X(890), X(2488)}}, {{A, B, C, X(900), X(6362)}}, {{A, B, C, X(1212), X(23343)}}, {{A, B, C, X(3570), X(16713)}}, {{A, B, C, X(3699), X(4572)}}, {{A, B, C, X(3952), X(36802)}}, {{A, B, C, X(4557), X(4566)}}, {{A, B, C, X(4571), X(37223)}}, {{A, B, C, X(4847), X(17780)}}, {{A, B, C, X(4858), X(30565)}}, {{A, B, C, X(6607), X(42341)}}, {{A, B, C, X(7253), X(50333)}}, {{A, B, C, X(21104), X(47884)}}, {{A, B, C, X(35326), X(53280)}}, {{A, B, C, X(53241), X(57018)}}
X(65198) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 3699, 4578}, {190, 65200, 100}, {522, 4069, 25268}, {3699, 65197, 3952}
X(65199) lies on these lines: {100, 883}, {109, 35574}, {190, 6606}, {200, 7182}, {651, 42720}, {658, 4998}, {664, 668}, {1897, 46107}, {3870, 21609}, {3935, 40704}, {3952, 61192}, {4468, 65208}, {4569, 53653}, {4573, 7256}, {6604, 40615}, {17780, 35312}, {28808, 52659}, {30829, 56418}, {31638, 38375}, {32029, 43063}, {37757, 49698}
X(65199) = trilinear pole of line {344, 1445}
X(65199) = X(i)-isoconjugate-of-X(j) for these {i, j}: {277, 3063}, {650, 57656}, {657, 17107}, {663, 2191}, {667, 6601}, {884, 57469}, {1292, 3271}, {8641, 40154}, {8642, 55013}, {17435, 32644}
X(65199) = X(i)-Dao conjugate of X(j) for these {i, j}: {220, 657}, {1040, 17115}, {3676, 6545}, {4468, 23761}, {4847, 6608}, {4904, 2310}, {6631, 6601}, {10001, 277}
X(65199) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6632, 4998}, {46406, 190}
X(65199) = X(i)-cross conjugate of X(j) for these {i, j}: {4468, 21609}, {17093, 4998}, {31605, 6604}, {44448, 344}, {51652, 1445}
X(65199) = pole of line {24635, 32939} with respect to the Kiepert parabola
X(65199) = pole of line {3729, 4847} with respect to the Yff parabola
X(65199) = pole of line {85, 17263} with respect to the dual conic of Feuerbach hyperbola
X(65199) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(658), X(17093)}}, {{A, B, C, X(664), X(6183)}}, {{A, B, C, X(668), X(35574)}}, {{A, B, C, X(1026), X(1897)}}, {{A, B, C, X(3699), X(53653)}}, {{A, B, C, X(4468), X(46107)}}, {{A, B, C, X(4554), X(6606)}}, {{A, B, C, X(4561), X(51560)}}, {{A, B, C, X(21609), X(46404)}}, {{A, B, C, X(31605), X(40615)}}, {{A, B, C, X(43041), X(43049)}}
X(65199) = barycentric product X(i)*X(j) for these (i, j): {100, 21609}, {190, 6604}, {218, 4572}, {344, 664}, {1016, 31605}, {1275, 44448}, {1445, 668}, {1617, 1978}, {3870, 4554}, {3991, 4625}, {4350, 646}, {4468, 4998}, {4569, 55337}, {6063, 65208}, {17093, 3699}, {21945, 55194}, {31625, 51652}, {31638, 883}, {40615, 6632}, {41539, 799}, {43049, 7035}, {46406, 6600}, {63897, 65200}
X(65199) = barycentric quotient X(i)/X(j) for these (i, j): {109, 57656}, {190, 6601}, {218, 663}, {344, 522}, {651, 2191}, {658, 40154}, {664, 277}, {934, 17107}, {1025, 57469}, {1445, 513}, {1617, 649}, {3309, 2170}, {3870, 650}, {3991, 4041}, {4350, 3669}, {4468, 11}, {4564, 1292}, {4572, 57791}, {4878, 3709}, {4904, 21132}, {4998, 37206}, {6600, 657}, {6604, 514}, {7719, 18344}, {15185, 21127}, {17093, 3676}, {21059, 3063}, {21609, 693}, {21945, 55195}, {23144, 1459}, {23760, 7336}, {24562, 7004}, {31605, 1086}, {31638, 885}, {37206, 55013}, {40615, 6545}, {41539, 661}, {41610, 3737}, {43049, 244}, {44448, 1146}, {51378, 46393}, {51652, 1015}, {53653, 60832}, {55337, 3900}, {65208, 55}
X(65199) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 883, 65164}, {658, 43290, 4998}, {664, 3699, 4554}
X(65200) lies on these lines: {8, 14151}, {69, 28057}, {100, 190}, {653, 15742}, {664, 54987}, {3174, 20946}, {4569, 53653}, {36802, 44327}
X(65200) = trilinear pole of line {16572, 21096}
X(65200) = X(i)-isoconjugate-of-X(j) for these {i, j}: {244, 53888}, {663, 64242}, {667, 42361}, {3248, 53653}, {42470, 43924}
X(65200) = X(i)-Dao conjugate of X(j) for these {i, j}: {200, 3900}, {6631, 42361}, {59979, 6545}
X(65200) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4569, 190}, {65199, 664}
X(65200) = pole of line {344, 1088} with respect to the dual conic of Feuerbach hyperbola
X(65200) = pole of line {765, 26015} with respect to the dual conic of Moses-Feuerbach circumconic
X(65200) = intersection, other than A, B, C, of circumconics {{A, B, C, X(653), X(8732)}}, {{A, B, C, X(3699), X(54987)}}, {{A, B, C, X(4578), X(53653)}}, {{A, B, C, X(16572), X(23343)}}, {{A, B, C, X(17780), X(36845)}}, {{A, B, C, X(20946), X(42720)}}
X(65200) = barycentric product X(i)*X(j) for these (i, j): {100, 20946}, {190, 36845}, {1978, 21002}, {3174, 4554}, {3699, 8732}, {16572, 668}, {21096, 99}, {24771, 4569}, {56937, 664}
X(65200) = barycentric quotient X(i)/X(j) for these (i, j): {190, 42361}, {644, 42470}, {651, 64242}, {1016, 53653}, {1252, 53888}, {3174, 650}, {8732, 3676}, {16572, 513}, {20946, 693}, {21002, 649}, {21096, 523}, {22153, 1459}, {24771, 3900}, {36845, 514}, {41573, 21104}, {56937, 522}, {59979, 2310}, {65199, 63897}
X(65200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 65198, 190}
X(65201) lies on these lines: {9, 44693}, {27, 51567}, {28, 1280}, {29, 1855}, {41, 318}, {78, 7156}, {99, 58944}, {100, 112}, {101, 107}, {108, 59079}, {110, 13138}, {163, 1021}, {200, 56375}, {270, 607}, {281, 2326}, {284, 2322}, {518, 14192}, {643, 52914}, {644, 56183}, {648, 653}, {651, 46639}, {811, 51560}, {823, 65207}, {1120, 1474}, {1172, 1320}, {1625, 23090}, {2074, 60355}, {2202, 3684}, {2204, 8851}, {2907, 7119}, {3699, 4587}, {3870, 56374}, {3903, 61205}, {4183, 41798}, {4242, 35342}, {4251, 11109}, {4262, 37295}, {4552, 41678}, {4557, 52604}, {4559, 7012}, {4560, 41676}, {4566, 7128}, {6335, 51566}, {6742, 17914}, {7079, 11107}, {7719, 13739}, {14571, 56830}, {17926, 51562}, {18831, 39177}, {32676, 36147}, {35069, 47228}, {37305, 63087}, {40116, 53683}, {46541, 51564}, {53290, 53761}, {55185, 56829}, {65168, 65170}
X(65201) = isogonal conjugate of X(51664)
X(65201) = trilinear pole of line {9, 33}
X(65201) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 51664}, {3, 7178}, {6, 17094}, {7, 647}, {11, 52610}, {12, 7254}, {34, 24018}, {48, 4077}, {56, 525}, {57, 656}, {58, 57243}, {63, 4017}, {65, 905}, {69, 7180}, {71, 3676}, {72, 3669}, {73, 514}, {77, 661}, {78, 7216}, {85, 810}, {86, 55234}, {92, 51640}, {109, 4466}, {112, 1367}, {125, 4565}, {181, 15419}, {201, 1019}, {222, 523}, {225, 4091}, {226, 1459}, {228, 24002}, {241, 10099}, {244, 65233}, {269, 8611}, {273, 822}, {278, 520}, {295, 7212}, {304, 51641}, {306, 43924}, {307, 649}, {326, 55208}, {331, 39201}, {345, 7250}, {348, 512}, {513, 1214}, {521, 1427}, {522, 52373}, {603, 1577}, {604, 14208}, {608, 3265}, {648, 61058}, {650, 1439}, {651, 18210}, {652, 3668}, {663, 56382}, {667, 1231}, {669, 57918}, {693, 1409}, {798, 7182}, {850, 52411}, {879, 43034}, {934, 53560}, {1014, 55232}, {1020, 7004}, {1037, 21107}, {1042, 6332}, {1086, 23067}, {1118, 52613}, {1331, 53545}, {1332, 53540}, {1356, 52608}, {1357, 52609}, {1358, 4574}, {1363, 15352}, {1364, 52607}, {1365, 4558}, {1396, 57109}, {1397, 3267}, {1400, 4025}, {1401, 4580}, {1402, 15413}, {1407, 52355}, {1410, 4391}, {1412, 4064}, {1414, 3708}, {1425, 4560}, {1434, 55230}, {1441, 22383}, {1444, 57185}, {1446, 1946}, {1565, 4559}, {1797, 30572}, {1803, 55282}, {1804, 2501}, {1813, 3120}, {1814, 53551}, {1880, 4131}, {2197, 7192}, {2200, 52621}, {2318, 58817}, {2435, 43045}, {2489, 7055}, {2605, 63171}, {2611, 65300}, {2616, 44708}, {2632, 65232}, {2720, 42761}, {3049, 6063}, {3122, 65164}, {3125, 6516}, {3690, 17096}, {3694, 43932}, {3700, 7053}, {3709, 7056}, {3733, 26942}, {3737, 37755}, {3937, 4552}, {3942, 4551}, {3949, 7203}, {3960, 52391}, {3998, 43923}, {4041, 7177}, {4086, 7099}, {4143, 7337}, {4516, 65296}, {4524, 30682}, {4563, 61052}, {4566, 7117}, {4573, 20975}, {4729, 27832}, {4832, 57873}, {4841, 57701}, {6046, 23090}, {6129, 52037}, {6354, 23189}, {6356, 7252}, {6357, 14380}, {6591, 52385}, {7013, 55242}, {7066, 17925}, {7125, 24006}, {7138, 57215}, {7143, 15411}, {7147, 57081}, {7181, 10097}, {7316, 14417}, {7335, 14618}, {7649, 40152}, {14838, 52390}, {15412, 30493}, {16732, 36059}, {17216, 32674}, {17924, 22341}, {20336, 57181}, {20618, 21789}, {21134, 52378}, {21207, 32660}, {21828, 52392}, {22093, 60245}, {22094, 38340}, {22379, 60091}, {23224, 40149}, {23226, 43682}, {23755, 40442}, {26932, 53321}, {28786, 43060}, {30805, 57652}, {39791, 56320}, {51644, 56219}, {52306, 52560}, {52370, 59941}, {52384, 64885}, {55212, 56972}, {55259, 62402}, {57129, 57807}
X(65201) = X(i)-vertex conjugate of X(j) for these {i, j}: {653, 1415}
X(65201) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 525}, {3, 51664}, {9, 17094}, {10, 57243}, {11, 4466}, {1249, 4077}, {3161, 14208}, {3162, 4017}, {5375, 307}, {5452, 656}, {5521, 53545}, {6600, 8611}, {6631, 1231}, {6741, 20902}, {7952, 1577}, {11517, 24018}, {14714, 53560}, {15259, 55208}, {20620, 16732}, {22391, 51640}, {23050, 3700}, {24771, 52355}, {31998, 7182}, {34591, 1367}, {34961, 63}, {35072, 17216}, {36103, 7178}, {36830, 77}, {38966, 21044}, {38981, 42761}, {38991, 18210}, {39026, 1214}, {39052, 7}, {39053, 1446}, {39054, 348}, {39062, 85}, {40582, 4025}, {40596, 57}, {40599, 4064}, {40600, 55234}, {40602, 905}, {40605, 15413}, {40608, 3708}, {55064, 125}, {55066, 61058}, {55067, 1565}, {55068, 26932}, {62585, 3267}, {62647, 3265}
X(65201) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 162}, {5379, 4183}, {24000, 56375}, {46254, 14006}, {65263, 4242}
X(65201) = X(i)-cross conjugate of X(j) for these {i, j}: {55, 7012}, {101, 5546}, {1021, 2322}, {3190, 765}, {4041, 318}, {4086, 56245}, {4183, 5379}, {8611, 9}, {17926, 2326}, {46393, 2341}, {55206, 33}, {56183, 36797}, {57198, 6605}, {58329, 21}, {65105, 281}, {65375, 643}
X(65201) = pole of line {4466, 8287} with respect to the polar circle
X(65201) = pole of line {4329, 8822} with respect to the Kiepert parabola
X(65201) = pole of line {652, 905} with respect to the Stammler hyperbola
X(65201) = pole of line {162, 14544} with respect to the Steiner circumellipse
X(65201) = pole of line {5279, 8804} with respect to the Yff parabola
X(65201) = pole of line {72, 4183} with respect to the Hutson-Moses hyperbola
X(65201) = pole of line {6332, 15413} with respect to the Wallace hyperbola
X(65201) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(4566)}}, {{A, B, C, X(9), X(14147)}}, {{A, B, C, X(21), X(1414)}}, {{A, B, C, X(29), X(811)}}, {{A, B, C, X(55), X(4559)}}, {{A, B, C, X(100), X(643)}}, {{A, B, C, X(101), X(906)}}, {{A, B, C, X(107), X(162)}}, {{A, B, C, X(112), X(24019)}}, {{A, B, C, X(163), X(284)}}, {{A, B, C, X(521), X(2811)}}, {{A, B, C, X(522), X(2806)}}, {{A, B, C, X(653), X(1783)}}, {{A, B, C, X(662), X(5546)}}, {{A, B, C, X(1018), X(61161)}}, {{A, B, C, X(1036), X(29055)}}, {{A, B, C, X(1305), X(36086)}}, {{A, B, C, X(3064), X(47235)}}, {{A, B, C, X(3555), X(23704)}}, {{A, B, C, X(4571), X(65227)}}, {{A, B, C, X(5548), X(29163)}}, {{A, B, C, X(17519), X(46541)}}, {{A, B, C, X(21789), X(39177)}}, {{A, B, C, X(32674), X(58944)}}, {{A, B, C, X(36049), X(37136)}}, {{A, B, C, X(36098), X(56112)}}, {{A, B, C, X(46964), X(53642)}}, {{A, B, C, X(58993), X(65333)}}
X(65201) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {112, 1783, 162}, {163, 61237, 54442}, {281, 41502, 2326}, {648, 662, 65232}, {2202, 3684, 5081}, {35342, 61236, 4242}
X(65202) lies on these lines: {9, 36814}, {63, 40013}, {100, 59014}, {101, 34594}, {163, 4628}, {190, 37205}, {292, 3294}, {596, 5282}, {649, 4103}, {668, 4063}, {1018, 4427}, {1019, 4568}, {1020, 62669}, {1023, 4559}, {2161, 21061}, {3219, 39747}, {3730, 58073}, {4040, 52922}, {4557, 21003}, {4629, 52935}, {33946, 48320}, {40148, 62763}
X(65202) = isogonal conjugate of X(4063)
X(65202) = isotomic conjugate of X(20949)
X(65202) = trilinear pole of line {42, 1100}
X(65202) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4063}, {2, 4057}, {3, 17922}, {4, 22154}, {6, 20295}, {8, 57238}, {10, 57080}, {31, 20949}, {56, 47793}, {57, 48307}, {58, 4129}, {75, 57096}, {81, 4132}, {86, 58288}, {101, 21208}, {190, 8054}, {279, 58336}, {333, 51650}, {513, 32911}, {514, 595}, {649, 4360}, {667, 18140}, {693, 2220}, {905, 4222}, {1019, 3293}, {1919, 40087}, {3669, 3871}, {3733, 3995}, {8632, 40093}, {23355, 27044}, {45222, 50344}, {56249, 57129}
X(65202) = X(i)-vertex conjugate of X(j) for these {i, j}: {163, 36147}, {1018, 40519}
X(65202) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 47793}, {2, 20949}, {3, 4063}, {9, 20295}, {10, 4129}, {206, 57096}, {1015, 21208}, {5375, 4360}, {5452, 48307}, {6631, 18140}, {9296, 40087}, {32664, 4057}, {36033, 22154}, {36103, 17922}, {39026, 32911}, {40586, 4132}, {40600, 58288}, {55053, 8054}
X(65202) = X(i)-Ceva conjugate of X(j) for these {i, j}: {34594, 40519}, {37205, 8050}, {59014, 1018}
X(65202) = X(i)-cross conjugate of X(j) for these {i, j}: {667, 1}, {4115, 1018}, {40521, 100}
X(65202) = pole of line {1018, 40519} with respect to the circumcircle
X(65202) = pole of line {16679, 17150} with respect to the Kiepert parabola
X(65202) = pole of line {4063, 57080} with respect to the Stammler hyperbola
X(65202) = pole of line {6, 3293} with respect to the Yff parabola
X(65202) = pole of line {58, 5253} with respect to the Hutson-Moses hyperbola
X(65202) = pole of line {4063, 20949} with respect to the Wallace hyperbola
X(65202) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(668)}}, {{A, B, C, X(9), X(644)}}, {{A, B, C, X(19), X(29149)}}, {{A, B, C, X(37), X(4103)}}, {{A, B, C, X(57), X(6016)}}, {{A, B, C, X(63), X(906)}}, {{A, B, C, X(84), X(1292)}}, {{A, B, C, X(90), X(52778)}}, {{A, B, C, X(99), X(660)}}, {{A, B, C, X(100), X(1929)}}, {{A, B, C, X(101), X(190)}}, {{A, B, C, X(163), X(799)}}, {{A, B, C, X(267), X(29151)}}, {{A, B, C, X(655), X(29127)}}, {{A, B, C, X(662), X(59085)}}, {{A, B, C, X(664), X(29351)}}, {{A, B, C, X(667), X(4063)}}, {{A, B, C, X(692), X(29303)}}, {{A, B, C, X(831), X(1414)}}, {{A, B, C, X(835), X(4551)}}, {{A, B, C, X(898), X(3903)}}, {{A, B, C, X(1019), X(21003)}}, {{A, B, C, X(1025), X(5282)}}, {{A, B, C, X(1026), X(16825)}}, {{A, B, C, X(1415), X(29014)}}, {{A, B, C, X(1783), X(6574)}}, {{A, B, C, X(2163), X(59029)}}, {{A, B, C, X(2170), X(3762)}}, {{A, B, C, X(2284), X(16552)}}, {{A, B, C, X(3257), X(36147)}}, {{A, B, C, X(3467), X(57731)}}, {{A, B, C, X(3952), X(53627)}}, {{A, B, C, X(4115), X(40521)}}, {{A, B, C, X(4568), X(54328)}}, {{A, B, C, X(4597), X(58117)}}, {{A, B, C, X(4598), X(43077)}}, {{A, B, C, X(6010), X(32665)}}, {{A, B, C, X(6013), X(37138)}}, {{A, B, C, X(7091), X(65173)}}, {{A, B, C, X(7284), X(46962)}}, {{A, B, C, X(8050), X(34594)}}, {{A, B, C, X(8707), X(56194)}}, {{A, B, C, X(8708), X(65250)}}, {{A, B, C, X(9067), X(39954)}}, {{A, B, C, X(15322), X(37212)}}, {{A, B, C, X(21390), X(25576)}}, {{A, B, C, X(28467), X(43739)}}, {{A, B, C, X(28480), X(32735)}}, {{A, B, C, X(29137), X(60055)}}, {{A, B, C, X(29163), X(32641)}}, {{A, B, C, X(29271), X(34073)}}, {{A, B, C, X(36049), X(37206)}}, {{A, B, C, X(37133), X(39797)}}, {{A, B, C, X(37205), X(40519)}}, {{A, B, C, X(39950), X(52612)}}
X(65202) = barycentric product X(i)*X(j) for these (i, j): {1, 8050}, {10, 34594}, {37, 37205}, {42, 65286}, {100, 596}, {101, 40013}, {190, 39798}, {1018, 39747}, {3952, 39949}, {4359, 59014}, {20615, 3699}, {40085, 662}, {40086, 765}, {40148, 668}, {40519, 75}, {57151, 60790}, {57915, 692}
X(65202) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20295}, {2, 20949}, {6, 4063}, {9, 47793}, {19, 17922}, {31, 4057}, {32, 57096}, {37, 4129}, {42, 4132}, {48, 22154}, {55, 48307}, {100, 4360}, {101, 32911}, {190, 18140}, {213, 58288}, {513, 21208}, {596, 693}, {604, 57238}, {660, 40093}, {667, 8054}, {668, 40087}, {692, 595}, {1018, 3995}, {1253, 58336}, {1333, 57080}, {1402, 51650}, {3939, 3871}, {3952, 56249}, {4115, 62588}, {4557, 3293}, {8050, 75}, {8750, 4222}, {20615, 3676}, {21859, 56326}, {32739, 2220}, {34594, 86}, {35342, 45222}, {37205, 274}, {39747, 7199}, {39798, 514}, {39949, 7192}, {40013, 3261}, {40085, 1577}, {40086, 1111}, {40148, 513}, {40519, 1}, {40521, 4075}, {57915, 40495}, {59014, 1255}, {65286, 310}
X(65203) lies on these lines: {32, 145}, {50, 3943}, {100, 1415}, {101, 110}, {112, 835}, {172, 34772}, {190, 4558}, {251, 29840}, {346, 577}, {571, 17314}, {609, 3870}, {644, 906}, {901, 28467}, {919, 932}, {1018, 1983}, {1110, 57084}, {1262, 6516}, {1914, 38460}, {2965, 17388}, {2975, 11998}, {4565, 65168}, {4612, 56188}, {4996, 13006}, {5063, 54389}, {6078, 58947}, {6574, 58972}, {7031, 36846}, {7054, 38871}, {15440, 29163}, {22033, 57062}, {29018, 59120}, {33871, 61330}, {34075, 34080}, {39652, 54101}, {41679, 65204}, {52426, 56530}
X(65203) = trilinear pole of line {572, 9562}
X(65203) = X(i)-isoconjugate-of-X(j) for these {i, j}: {244, 56188}, {513, 2051}, {514, 34434}, {523, 53083}, {649, 54121}, {661, 20028}, {667, 57905}, {1015, 56252}, {1019, 51870}, {1086, 56194}, {1577, 52150}, {3120, 65260}, {3125, 65275}, {4017, 46880}, {16732, 59006}, {21124, 40453}, {24002, 60817}, {42753, 64824}, {42754, 53702}
X(65203) = X(i)-Dao conjugate of X(j) for these {i, j}: {1193, 21124}, {5375, 54121}, {6631, 57905}, {34589, 16732}, {34961, 46880}, {36830, 20028}, {39026, 2051}
X(65203) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4612, 100}
X(65203) = pole of line {332, 4184} with respect to the Kiepert parabola
X(65203) = pole of line {514, 6589} with respect to the Stammler hyperbola
X(65203) = pole of line {71, 21076} with respect to the Yff parabola
X(65203) = pole of line {21, 60} with respect to the Hutson-Moses hyperbola
X(65203) = intersection, other than A, B, C, of circumconics {{A, B, C, X(101), X(44765)}}, {{A, B, C, X(110), X(36037)}}, {{A, B, C, X(163), X(8687)}}, {{A, B, C, X(572), X(28467)}}, {{A, B, C, X(835), X(1331)}}, {{A, B, C, X(906), X(22118)}}, {{A, B, C, X(932), X(2975)}}, {{A, B, C, X(1897), X(65313)}}, {{A, B, C, X(4243), X(11109)}}, {{A, B, C, X(5546), X(36147)}}, {{A, B, C, X(11998), X(17496)}}, {{A, B, C, X(20986), X(34080)}}, {{A, B, C, X(21061), X(65202)}}, {{A, B, C, X(21859), X(56188)}}, {{A, B, C, X(32653), X(32739)}}
X(65203) = barycentric product X(i)*X(j) for these (i, j): {100, 2975}, {101, 14829}, {110, 17751}, {190, 572}, {1110, 57244}, {1252, 17496}, {4612, 56325}, {4636, 52357}, {11109, 1331}, {11998, 31615}, {14973, 52935}, {15742, 23187}, {17074, 644}, {20986, 668}, {21061, 662}, {21173, 765}, {22118, 6335}, {24237, 59149}, {37558, 643}, {46879, 6648}, {52139, 99}, {52358, 5546}, {55323, 645}, {55362, 8706}, {57091, 59}, {57165, 86}, {58339, 7045}
X(65203) = barycentric quotient X(i)/X(j) for these (i, j): {100, 54121}, {101, 2051}, {110, 20028}, {163, 53083}, {190, 57905}, {572, 514}, {692, 34434}, {765, 56252}, {1110, 56194}, {1252, 56188}, {1576, 52150}, {2975, 693}, {4557, 51870}, {4570, 65275}, {5546, 46880}, {11109, 46107}, {11998, 40166}, {14829, 3261}, {14973, 4036}, {17074, 24002}, {17496, 23989}, {17751, 850}, {20986, 513}, {21061, 1577}, {21173, 1111}, {22118, 905}, {23187, 1565}, {24237, 23100}, {37558, 4077}, {46879, 3910}, {52087, 21124}, {52139, 523}, {55323, 7178}, {57091, 34387}, {57165, 10}, {58339, 24026}
X(65203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {644, 906, 1252}
X(65204) lies on these lines: {4, 29343}, {162, 190}, {192, 264}, {232, 33889}, {273, 3644}, {286, 56319}, {297, 3943}, {317, 17314}, {318, 4664}, {340, 6542}, {346, 17907}, {458, 17318}, {646, 2397}, {653, 37212}, {3807, 61226}, {3995, 31623}, {4360, 36794}, {4419, 44134}, {4552, 18026}, {7282, 17315}, {7952, 50107}, {9308, 17262}, {11331, 17269}, {17160, 26003}, {17305, 53025}, {17388, 27377}, {17395, 52289}, {18315, 44765}, {41679, 65203}, {50110, 56814}, {56188, 65183}
X(65204) = trilinear pole of line {469, 3876}
X(65204) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 43927}, {513, 57704}, {667, 57876}, {810, 56047}, {1459, 2214}, {18210, 58951}, {22096, 37218}, {22383, 43531}
X(65204) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 43927}, {6631, 57876}, {39016, 3937}, {39026, 57704}, {39062, 56047}, {41849, 4025}, {62586, 905}
X(65204) = X(i)-cross conjugate of X(j) for these {i, j}: {65313, 33948}
X(65204) = pole of line {1015, 3120} with respect to the polar circle
X(65204) = pole of line {4025, 7254} with respect to the Wallace hyperbola
X(65204) = pole of line {92, 16585} with respect to the dual conic of Jerabek hyperbola
X(65204) = intersection, other than A, B, C, of circumconics {{A, B, C, X(162), X(6335)}}, {{A, B, C, X(190), X(27808)}}, {{A, B, C, X(469), X(46541)}}, {{A, B, C, X(643), X(646)}}, {{A, B, C, X(1331), X(52609)}}, {{A, B, C, X(2397), X(28606)}}
X(65204) = barycentric product X(i)*X(j) for these (i, j): {162, 42714}, {190, 469}, {264, 65313}, {1783, 33935}, {1897, 5224}, {1978, 44103}, {15742, 45746}, {18020, 23282}, {18026, 3876}, {28606, 6335}, {33948, 4}, {33949, 65160}, {56810, 648}, {56926, 6331}
X(65204) = barycentric quotient X(i)/X(j) for these (i, j): {4, 43927}, {101, 57704}, {190, 57876}, {386, 1459}, {469, 514}, {648, 56047}, {834, 3937}, {1783, 2214}, {1897, 43531}, {3876, 521}, {5224, 4025}, {8637, 22096}, {14349, 3942}, {15742, 835}, {23282, 125}, {23879, 4466}, {26911, 64878}, {28606, 905}, {33935, 15413}, {33948, 69}, {42714, 14208}, {44103, 649}, {45746, 1565}, {47842, 18210}, {56810, 525}, {56926, 647}, {61409, 7254}, {65313, 3}
X(65204) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 1897, 648}
X(65205) lies on these lines: {2, 16732}, {6, 25241}, {7, 18714}, {10, 23820}, {20, 2831}, {69, 25252}, {75, 16713}, {81, 25254}, {86, 25255}, {99, 112}, {100, 13397}, {110, 59097}, {190, 644}, {192, 4644}, {241, 37788}, {319, 45744}, {326, 45738}, {333, 39770}, {344, 948}, {345, 6360}, {346, 20932}, {347, 18721}, {514, 3882}, {523, 4436}, {536, 25257}, {643, 4427}, {653, 6516}, {662, 14543}, {668, 52609}, {1025, 4605}, {1234, 18591}, {1444, 11683}, {1760, 17134}, {1959, 8680}, {2396, 4623}, {2414, 32041}, {2486, 53373}, {2795, 4516}, {3177, 54280}, {3262, 25083}, {3729, 55392}, {3926, 21595}, {3936, 18668}, {3995, 24076}, {4033, 42720}, {4236, 53282}, {4329, 18720}, {4360, 62797}, {4391, 18740}, {4554, 6335}, {4557, 53358}, {4567, 56320}, {4608, 37143}, {4625, 15418}, {4664, 25237}, {8052, 65220}, {8299, 23772}, {14953, 16568}, {15455, 27133}, {17075, 28738}, {17147, 30579}, {17220, 18041}, {17221, 18042}, {17336, 25243}, {17351, 25245}, {17479, 32933}, {17762, 25242}, {18049, 18656}, {18206, 39765}, {18655, 18713}, {18657, 18715}, {18658, 18716}, {18659, 18717}, {18660, 18718}, {18661, 18722}, {18662, 32939}, {18666, 21287}, {20556, 35552}, {20927, 28748}, {20930, 27396}, {21138, 28283}, {21589, 28777}, {26738, 31035}, {27472, 56882}, {27514, 40903}, {28755, 41808}, {33066, 56187}, {35960, 39350}, {37796, 41804}, {46725, 63813}, {51978, 56839}, {53323, 61180}, {53367, 57115}, {56023, 56834}, {61169, 61220}
X(65205) = reflection of X(i) in X(j) for these {i,j}: {75, 16728}, {3262, 25083}, {3882, 22003}, {17139, 1959}, {20556, 35552}, {39765, 18206}
X(65205) = isotomic conjugate of X(56320)
X(65205) = anticomplement of X(16732)
X(65205) = trilinear pole of line {442, 942}
X(65205) = perspector of circumconic {{A, B, C, X(4998), X(18020)}}
X(65205) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 56320}, {48, 14775}, {513, 2259}, {649, 943}, {656, 40570}, {661, 1175}, {663, 2982}, {667, 40435}, {798, 40412}, {810, 40395}, {1794, 6591}, {1919, 40422}, {1946, 40573}, {1973, 63245}, {2170, 15439}, {2310, 32651}, {2611, 59011}, {3063, 60041}, {3271, 65217}, {3709, 63193}, {14936, 36048}, {54244, 57691}
X(65205) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 56320}, {442, 650}, {942, 647}, {1249, 14775}, {5249, 14838}, {5375, 943}, {6337, 63245}, {6631, 40435}, {9296, 40422}, {10001, 60041}, {15607, 14936}, {16585, 514}, {16732, 16732}, {18591, 513}, {31998, 40412}, {36830, 1175}, {39007, 7117}, {39026, 2259}, {39053, 40573}, {39062, 40395}, {40596, 40570}, {40937, 523}, {40952, 52589}, {52119, 115}
X(65205) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4567, 2}
X(65205) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {59, 2893}, {100, 21294}, {101, 3448}, {110, 150}, {163, 149}, {249, 17135}, {250, 17220}, {662, 21293}, {692, 21221}, {765, 21287}, {827, 25049}, {1101, 75}, {1110, 2895}, {1252, 1330}, {1331, 13219}, {1576, 4440}, {1918, 54104}, {2149, 2475}, {2206, 54102}, {4567, 6327}, {4570, 69}, {4590, 17138}, {4600, 315}, {4601, 21275}, {4620, 21280}, {4628, 25051}, {5379, 21270}, {5546, 33650}, {9274, 39765}, {14574, 21224}, {14587, 17221}, {23357, 1}, {23963, 17148}, {23990, 1654}, {23995, 17147}, {24041, 17137}, {32656, 39352}, {32739, 148}, {34072, 25048}, {44174, 18658}, {47390, 17134}, {52378, 3434}, {57655, 3187}, {57657, 17036}, {59152, 17159}, {65375, 37781}
X(65205) = X(i)-cross conjugate of X(j) for these {i, j}: {61161, 61220}, {61197, 61180}, {61233, 65197}
X(65205) = pole of line {4236, 53273} with respect to the circumcircle
X(65205) = pole of line {149, 2806} with respect to the DeLongchamps circle
X(65205) = pole of line {115, 5521} with respect to the polar circle
X(65205) = pole of line {7, 8} with respect to the Kiepert parabola
X(65205) = pole of line {647, 2605} with respect to the Stammler hyperbola
X(65205) = pole of line {100, 110} with respect to the Steiner circumellipse
X(65205) = pole of line {3035, 5972} with respect to the Steiner inellipse
X(65205) = pole of line {8, 79} with respect to the Yff parabola
X(65205) = pole of line {2, 2911} with respect to the Hutson-Moses hyperbola
X(65205) = pole of line {448, 525} with respect to the Wallace hyperbola
X(65205) = pole of line {190, 15455} with respect to the dual conic of incircle
X(65205) = pole of line {190, 14570} with respect to the dual conic of nine-point circle
X(65205) = pole of line {51389, 51390} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(65205) = pole of line {15526, 16595} with respect to the dual conic of polar circle
X(65205) = pole of line {645, 648} with respect to the dual conic of DeLongchamps ellipse
X(65205) = pole of line {2, 6} with respect to the dual conic of Feuerbach hyperbola
X(65205) = pole of line {2, 37} with respect to the dual conic of Jerabek hyperbola
X(65205) = pole of line {99, 108} with respect to the dual conic of Orthic inconic
X(65205) = pole of line {3952, 4566} with respect to the dual conic of Hofstadter ellipse
X(65205) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 13199, 13200}
X(65205) = intersection, other than A, B, C, of circumconics {{A, B, C, X(112), X(4559)}}, {{A, B, C, X(190), X(46404)}}, {{A, B, C, X(442), X(4235)}}, {{A, B, C, X(643), X(15455)}}, {{A, B, C, X(644), X(6335)}}, {{A, B, C, X(648), X(4552)}}, {{A, B, C, X(651), X(13149)}}, {{A, B, C, X(877), X(1234)}}, {{A, B, C, X(1332), X(4554)}}, {{A, B, C, X(2284), X(40937)}}, {{A, B, C, X(4560), X(49274)}}, {{A, B, C, X(5249), X(62669)}}, {{A, B, C, X(6331), X(52609)}}, {{A, B, C, X(6370), X(44427)}}, {{A, B, C, X(14590), X(16585)}}, {{A, B, C, X(14966), X(18591)}}, {{A, B, C, X(16732), X(56320)}}, {{A, B, C, X(37143), X(63782)}}, {{A, B, C, X(45273), X(45926)}}, {{A, B, C, X(60489), X(62306)}}
X(65205) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 4552, 2397}, {190, 664, 1332}, {514, 22003, 3882}, {1959, 8680, 17139}, {4427, 14544, 643}, {4552, 65195, 190}, {14543, 17136, 662}, {25083, 64780, 3262}, {60476, 60477, 4585}
X(65206) lies on these lines: {2, 56317}, {8, 27531}, {100, 108}, {145, 18467}, {321, 56178}, {521, 3909}, {522, 4427}, {643, 65197}, {644, 1639}, {664, 50392}, {919, 8707}, {1331, 61185}, {2000, 17077}, {2398, 4551}, {2900, 3187}, {3100, 7360}, {3158, 26267}, {3900, 61172}, {3939, 3952}, {4571, 25268}, {5494, 5657}, {5546, 36797}, {5853, 20045}, {6011, 44065}, {7070, 28950}, {7437, 53761}, {8694, 9057}, {13589, 53349}, {14543, 61221}, {14544, 61220}, {17780, 56248}, {24388, 26230}, {26139, 60368}, {28774, 52365}, {39766, 44669}, {50404, 61720}, {65190, 65198}
X(65206) = reflection of X(i) in X(j) for these {i,j}: {4427, 53388}
X(65206) = trilinear pole of line {950, 2264}
X(65206) = perspector of circumconic {{A, B, C, X(4076), X(46102)}}
X(65206) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 951}, {667, 58005}, {1257, 43924}, {2983, 3669}, {7004, 59090}, {29163, 53538}, {51641, 64985}, {51664, 57390}
X(65206) = X(i)-Dao conjugate of X(j) for these {i, j}: {440, 3676}, {950, 44409}, {1834, 522}, {6631, 58005}, {39026, 951}, {40940, 17094}, {59646, 7178}
X(65206) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {6011, 33650}
X(65206) = pole of line {23189, 57139} with respect to the Stammler hyperbola
X(65206) = pole of line {651, 65236} with respect to the Steiner circumellipse
X(65206) = pole of line {3039, 36949} with respect to the Steiner inellipse
X(65206) = pole of line {329, 440} with respect to the Yff parabola
X(65206) = pole of line {145, 219} with respect to the Hutson-Moses hyperbola
X(65206) = pole of line {17096, 31603} with respect to the Wallace hyperbola
X(65206) = pole of line {3699, 4587} with respect to the dual conic of incircle
X(65206) = pole of line {28739, 56937} with respect to the dual conic of Feuerbach hyperbola
X(65206) = intersection, other than A, B, C, of circumconics {{A, B, C, X(108), X(644)}}, {{A, B, C, X(643), X(44065)}}, {{A, B, C, X(653), X(3699)}}, {{A, B, C, X(919), X(53290)}}, {{A, B, C, X(950), X(30731)}}, {{A, B, C, X(1897), X(6558)}}, {{A, B, C, X(4552), X(36797)}}, {{A, B, C, X(5546), X(23067)}}, {{A, B, C, X(9057), X(30728)}}, {{A, B, C, X(14594), X(56112)}}, {{A, B, C, X(23981), X(61200)}}, {{A, B, C, X(30730), X(61178)}}, {{A, B, C, X(51562), X(61180)}}
X(65206) = barycentric product X(i)*X(j) for these (i, j): {190, 950}, {312, 61221}, {1104, 646}, {1834, 645}, {2264, 668}, {3596, 53290}, {3699, 40940}, {14543, 8}, {17863, 644}, {18650, 65160}, {29162, 4076}, {36797, 440}, {40977, 7257}, {40984, 62534}, {59646, 664}, {61200, 7017}
X(65206) = barycentric quotient X(i)/X(j) for these (i, j): {101, 951}, {190, 58005}, {440, 17094}, {644, 1257}, {645, 64985}, {950, 514}, {1104, 3669}, {1834, 7178}, {2264, 513}, {3939, 2983}, {6065, 29163}, {7115, 59090}, {14543, 7}, {17863, 24002}, {18673, 51664}, {21671, 57243}, {29162, 1358}, {36797, 40414}, {40940, 3676}, {40977, 4017}, {40984, 7180}, {52921, 65015}, {53290, 56}, {59646, 522}, {61200, 222}, {61221, 57}, {65160, 40445}, {65201, 40431}
X(65206) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 1897, 4552}, {522, 53388, 4427}, {1331, 61185, 62669}, {14544, 61220, 63782}
X(65207) lies on these lines: {12, 318}, {59, 57083}, {75, 40626}, {92, 324}, {108, 835}, {190, 653}, {225, 41683}, {273, 335}, {278, 39698}, {307, 53009}, {342, 7101}, {648, 35174}, {651, 24035}, {811, 65232}, {823, 65201}, {1020, 1577}, {1441, 31043}, {1783, 65355}, {1826, 21091}, {1880, 27809}, {1897, 4551}, {1947, 52412}, {1978, 46404}, {3952, 61178}, {4080, 40149}, {4552, 52607}, {4624, 13149}, {17555, 52357}, {17763, 56822}, {17902, 28776}, {17906, 17924}, {17918, 28780}, {17985, 17987}, {18736, 56553}, {26942, 62605}, {53151, 61177}, {56881, 61180}
X(65207) = trilinear pole of line {10, 201}
X(65207) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 7252}, {6, 23189}, {11, 32661}, {21, 22383}, {28, 36054}, {48, 3737}, {55, 7254}, {56, 23090}, {57, 57134}, {58, 652}, {60, 647}, {78, 57129}, {81, 1946}, {110, 7117}, {112, 1364}, {163, 7004}, {184, 4560}, {212, 1019}, {219, 3733}, {222, 21789}, {261, 3049}, {270, 822}, {284, 1459}, {332, 1919}, {513, 2193}, {520, 2189}, {521, 1333}, {603, 1021}, {604, 57081}, {645, 22096}, {648, 61054}, {654, 57736}, {656, 2150}, {663, 1790}, {667, 1812}, {810, 2185}, {849, 8611}, {905, 2194}, {906, 18191}, {1014, 65102}, {1172, 23224}, {1175, 52306}, {1259, 43925}, {1396, 58340}, {1397, 15411}, {1407, 58338}, {1408, 57055}, {1412, 57108}, {1444, 3063}, {1474, 57241}, {1576, 26932}, {1792, 57181}, {1793, 21758}, {1798, 52326}, {1802, 7203}, {1808, 8632}, {2053, 23092}, {2170, 4575}, {2175, 15419}, {2204, 4131}, {2206, 6332}, {2208, 57213}, {2289, 57200}, {2299, 4091}, {2311, 22384}, {2326, 51640}, {2327, 43924}, {2341, 22379}, {2638, 65232}, {3270, 4565}, {3271, 4558}, {3289, 60568}, {3937, 5546}, {3942, 65375}, {4025, 57657}, {6056, 17925}, {7099, 58329}, {7192, 52425}, {7253, 52411}, {7335, 17926}, {9247, 18155}, {17197, 32656}, {17219, 32739}, {18344, 18604}, {38344, 59006}, {39177, 62266}, {39201, 46103}, {47390, 55195}, {47411, 59005}, {52430, 57215}
X(65207) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 23090}, {9, 23189}, {10, 652}, {37, 521}, {115, 7004}, {136, 2170}, {223, 7254}, {226, 4091}, {244, 7117}, {1214, 905}, {1249, 3737}, {3161, 57081}, {4075, 8611}, {4858, 26932}, {5190, 18191}, {5375, 283}, {5452, 57134}, {6631, 1812}, {6741, 34591}, {7952, 1021}, {9296, 332}, {10001, 1444}, {24771, 58338}, {34588, 47411}, {34589, 38344}, {34591, 1364}, {36103, 7252}, {36901, 17880}, {39026, 2193}, {39052, 60}, {39053, 81}, {39060, 86}, {39062, 2185}, {40586, 1946}, {40590, 1459}, {40591, 36054}, {40593, 15419}, {40596, 2150}, {40599, 57108}, {40603, 6332}, {40611, 22383}, {40619, 17219}, {40622, 3942}, {40626, 16731}, {40837, 1019}, {47345, 513}, {51574, 57241}, {52872, 14418}, {53982, 654}, {55064, 3270}, {55065, 53560}, {55066, 61054}, {56325, 656}, {56905, 17420}, {59577, 57055}, {62565, 4131}, {62570, 4025}, {62576, 18155}, {62585, 15411}, {62602, 7192}, {62605, 4560}, {62614, 52616}
X(65207) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6335, 4552}, {18026, 61178}, {46102, 92}
X(65207) = X(i)-cross conjugate of X(j) for these {i, j}: {2171, 7012}, {3700, 318}, {4086, 1441}, {4605, 4552}, {8611, 10}, {14618, 92}, {24006, 57809}, {35307, 4551}, {55208, 225}
X(65207) = pole of line {654, 2170} with respect to the polar circle
X(65207) = pole of line {61178, 61185} with respect to the Steiner circumellipse
X(65207) = pole of line {78, 56187} with respect to the Yff parabola
X(65207) = pole of line {92, 28950} with respect to the Hutson-Moses hyperbola
X(65207) = pole of line {4552, 24035} with respect to the dual conic of incircle
X(65207) = pole of line {312, 18736} with respect to the dual conic of Feuerbach hyperbola
X(65207) = intersection, other than A, B, C, of circumconics {{A, B, C, X(85), X(38340)}}, {{A, B, C, X(92), X(648)}}, {{A, B, C, X(190), X(335)}}, {{A, B, C, X(226), X(1020)}}, {{A, B, C, X(321), X(42718)}}, {{A, B, C, X(653), X(36127)}}, {{A, B, C, X(1018), X(61161)}}, {{A, B, C, X(3700), X(4081)}}, {{A, B, C, X(4241), X(31043)}}, {{A, B, C, X(4551), X(4605)}}, {{A, B, C, X(4565), X(44733)}}, {{A, B, C, X(6648), X(46405)}}, {{A, B, C, X(14618), X(57215)}}, {{A, B, C, X(15455), X(18740)}}, {{A, B, C, X(18026), X(54240)}}
X(65207) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6335, 18026, 653}
X(65208) lies on these lines: {9, 37736}, {63, 6602}, {100, 101}, {109, 1252}, {220, 23988}, {658, 4564}, {664, 37206}, {1025, 1813}, {1174, 3957}, {1331, 2284}, {1897, 3064}, {1998, 60370}, {2329, 54357}, {3306, 9310}, {3870, 38375}, {4468, 65199}, {4551, 23704}, {4552, 46725}, {8701, 28879}, {14740, 28345}, {17615, 51418}, {28230, 28903}, {35281, 35326}, {43349, 54118}, {51949, 56507}
X(65208) = trilinear pole of line {218, 4878}
X(65208) = X(i)-isoconjugate-of-X(j) for these {i, j}: {244, 37206}, {277, 513}, {514, 2191}, {522, 17107}, {667, 57791}, {693, 57656}, {764, 63906}, {1015, 54987}, {1086, 1292}, {2414, 43921}, {3669, 6601}, {3733, 60265}, {3937, 65339}, {32644, 62429}, {43049, 55013}, {57469, 62635}
X(65208) = X(i)-Dao conjugate of X(j) for these {i, j}: {220, 522}, {3309, 23760}, {4904, 4858}, {6631, 57791}, {39026, 277}
X(65208) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 3939}, {4564, 1445}, {65222, 100}
X(65208) = X(i)-cross conjugate of X(j) for these {i, j}: {1617, 1252}
X(65208) = pole of line {1621, 20244} with respect to the Kiepert parabola
X(65208) = pole of line {3939, 65195} with respect to the Steiner circumellipse
X(65208) = pole of line {9, 3434} with respect to the Yff parabola
X(65208) = pole of line {1, 1170} with respect to the Hutson-Moses hyperbola
X(65208) = pole of line {25082, 28741} with respect to the dual conic of Feuerbach hyperbola
X(65208) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(65333)}}, {{A, B, C, X(109), X(1617)}}, {{A, B, C, X(110), X(35280)}}, {{A, B, C, X(218), X(1023)}}, {{A, B, C, X(344), X(42723)}}, {{A, B, C, X(644), X(6078)}}, {{A, B, C, X(658), X(1445)}}, {{A, B, C, X(1026), X(1897)}}, {{A, B, C, X(3064), X(4468)}}, {{A, B, C, X(3309), X(3887)}}, {{A, B, C, X(3939), X(35341)}}, {{A, B, C, X(4233), X(7437)}}, {{A, B, C, X(7719), X(61239)}}, {{A, B, C, X(8632), X(8642)}}, {{A, B, C, X(28879), X(35342)}}
X(65208) = barycentric product X(i)*X(j) for these (i, j): {55, 65199}, {100, 3870}, {101, 344}, {190, 218}, {1018, 41610}, {1252, 4468}, {1332, 7719}, {1445, 644}, {1617, 3699}, {2284, 31638}, {3309, 765}, {3939, 6604}, {3991, 662}, {4076, 51652}, {4350, 4578}, {4878, 99}, {4904, 59149}, {6600, 664}, {7035, 8642}, {21059, 668}, {23144, 65160}, {27819, 57192}, {31605, 6065}, {31615, 38375}, {36037, 51378}, {41539, 643}, {44448, 59}, {55337, 651}
X(65208) = barycentric quotient X(i)/X(j) for these (i, j): {101, 277}, {109, 40154}, {190, 57791}, {218, 514}, {344, 3261}, {692, 2191}, {765, 54987}, {1018, 60265}, {1110, 1292}, {1252, 37206}, {1415, 17107}, {1445, 24002}, {1617, 3676}, {3309, 1111}, {3870, 693}, {3939, 6601}, {3991, 1577}, {4350, 59941}, {4468, 23989}, {4878, 523}, {4904, 23100}, {6600, 522}, {6604, 52621}, {7719, 17924}, {8642, 244}, {21059, 513}, {32739, 57656}, {38375, 40166}, {41539, 4077}, {41610, 7199}, {44448, 34387}, {51378, 36038}, {51652, 1358}, {54236, 26721}, {54325, 57469}, {55337, 4391}, {57250, 14268}, {59149, 63906}, {65199, 6063}
X(65209) lies on these lines: {100, 3903}, {110, 4603}, {149, 19637}, {244, 1581}, {256, 46901}, {257, 46909}, {649, 58981}, {799, 18829}, {893, 7191}, {1978, 56241}, {2611, 30942}, {3218, 41532}, {3873, 65011}, {3952, 27805}, {4451, 20892}, {5211, 17493}, {7226, 52651}, {8620, 51979}, {21341, 40729}, {23354, 65192}, {32010, 55026}, {56257, 61163}, {61180, 65332}
X(65209) = isotomic conjugate of X(63244)
X(65209) = trilinear pole of line {3061, 3094}
X(65209) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 63244}, {983, 4367}, {2533, 38813}, {3113, 58862}, {3287, 7132}, {3407, 45882}, {4459, 8685}, {7033, 56242}, {7234, 40415}, {7255, 20964}, {17743, 20981}, {30671, 64981}
X(65209) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 63244}, {2887, 7234}, {3061, 64865}, {19563, 804}, {19602, 3805}, {41771, 4374}, {41886, 3907}, {52657, 4369}, {52658, 58862}
X(65209) = X(i)-cross conjugate of X(j) for these {i, j}: {3808, 1581}
X(65209) = pole of line {256, 2329} with respect to the Hutson-Moses hyperbola
X(65209) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(3888)}}, {{A, B, C, X(110), X(4609)}}, {{A, B, C, X(244), X(3808)}}, {{A, B, C, X(799), X(56982)}}, {{A, B, C, X(982), X(3952)}}, {{A, B, C, X(1978), X(33946)}}
X(65209) = barycentric product X(i)*X(j) for these (i, j): {190, 3865}, {256, 33946}, {257, 3888}, {2275, 56241}, {2887, 4603}, {3061, 65289}, {3662, 3903}, {3705, 37137}, {3721, 4594}, {3778, 7260}, {3863, 668}, {18829, 18904}, {27805, 982}, {30670, 3314}, {32010, 7239}, {33947, 56257}, {41777, 65192}
X(65209) = barycentric quotient X(i)/X(j) for these (i, j): {2, 63244}, {982, 4369}, {2275, 4367}, {3056, 3287}, {3061, 3907}, {3094, 3805}, {3116, 45882}, {3117, 58862}, {3662, 4374}, {3721, 2533}, {3777, 7200}, {3778, 57234}, {3863, 513}, {3865, 514}, {3888, 894}, {3903, 17743}, {4073, 4529}, {4594, 38810}, {4603, 40415}, {7032, 20981}, {7239, 1215}, {16584, 7234}, {18829, 40834}, {18904, 804}, {20284, 24533}, {27805, 7033}, {29055, 7132}, {30670, 3407}, {33891, 14296}, {33946, 1909}, {33947, 16737}, {37137, 56358}, {40432, 7255}, {40499, 2329}, {41886, 64865}, {56257, 56196}, {56805, 4107}, {62753, 2295}
X(65209) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3903, 37137, 100}
X(65210) lies on these lines: {100, 649}, {110, 8684}, {149, 60844}, {291, 17449}, {335, 31348}, {693, 1978}, {876, 4562}, {899, 41531}, {1491, 3807}, {3218, 14200}, {3250, 3799}, {3797, 63234}, {3935, 7077}, {3952, 27805}, {4358, 4518}, {5378, 5386}, {8620, 51973}, {17230, 22116}, {17756, 52656}, {30664, 59120}, {61180, 65338}
X(65210) = isotomic conjugate of X(63222)
X(65210) = trilinear pole of line {984, 3094}
X(65210) = perspector of circumconic {{A, B, C, X(5378), X(57566)}}
X(65210) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 23597}, {31, 63222}, {649, 63237}, {659, 985}, {667, 63230}, {812, 40746}, {825, 27918}, {1492, 27846}, {1914, 4817}, {1919, 63242}, {4164, 40763}, {8632, 14621}, {40747, 50456}
X(65210) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 63222}, {9, 23597}, {3789, 659}, {5375, 63237}, {6631, 63230}, {9296, 63242}, {19584, 812}, {19602, 3808}, {27481, 3766}, {36906, 4817}, {38995, 27846}
X(65210) = X(i)-cross conjugate of X(j) for these {i, j}: {30665, 984}
X(65210) = pole of line {3808, 50456} with respect to the Stammler hyperbola
X(65210) = pole of line {672, 33888} with respect to the Yff parabola
X(65210) = pole of line {238, 4876} with respect to the Hutson-Moses hyperbola
X(65210) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(1978)}}, {{A, B, C, X(110), X(4609)}}, {{A, B, C, X(649), X(693)}}, {{A, B, C, X(813), X(4583)}}, {{A, B, C, X(824), X(37998)}}, {{A, B, C, X(3783), X(23354)}}, {{A, B, C, X(3797), X(42720)}}, {{A, B, C, X(3952), X(61164)}}, {{A, B, C, X(4505), X(59120)}}, {{A, B, C, X(46148), X(52922)}}
X(65210) = barycentric product X(i)*X(j) for these (i, j): {100, 63234}, {101, 63228}, {190, 3864}, {291, 3807}, {292, 4505}, {335, 3799}, {1252, 63219}, {2276, 4583}, {3314, 8684}, {3661, 660}, {3773, 4584}, {3862, 668}, {4562, 984}, {5378, 824}, {23596, 765}, {30665, 57566}, {30671, 7035}, {33931, 813}, {36801, 7146}, {63241, 692}, {65040, 876}
X(65210) = barycentric quotient X(i)/X(j) for these (i, j): {1, 23597}, {2, 63222}, {100, 63237}, {190, 63230}, {291, 4817}, {660, 14621}, {668, 63242}, {813, 985}, {869, 8632}, {876, 43266}, {984, 812}, {1491, 27918}, {2276, 659}, {3094, 3808}, {3250, 27846}, {3661, 3766}, {3736, 50456}, {3774, 4455}, {3783, 4375}, {3797, 27855}, {3799, 239}, {3807, 350}, {3862, 513}, {3864, 514}, {4505, 1921}, {4517, 4435}, {4562, 870}, {5378, 4586}, {7146, 43041}, {8684, 3407}, {23596, 1111}, {30665, 35119}, {30671, 244}, {33931, 65101}, {34067, 40746}, {36801, 52652}, {40790, 4107}, {57566, 41072}, {63219, 23989}, {63228, 3261}, {63234, 693}, {63241, 40495}, {65040, 874}
X(65211) lies on these lines: {11, 918}, {100, 926}, {335, 47695}, {518, 650}, {693, 40704}, {4437, 50333}, {4712, 34905}, {60481, 62622}
X(65211) = trilinear pole of line {3126, 17435}
X(65211) = perspector of circumconic {{A, B, C, X(14947), X(60481)}}
X(65211) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 34906}, {101, 56896}, {919, 9318}, {1438, 40865}, {5091, 36086}
X(65211) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 34906}, {1015, 56896}, {6184, 40865}, {38980, 9318}, {38989, 5091}
X(65211) = intersection, other than A, B, C, of circumconics {{A, B, C, X(11), X(100)}}, {{A, B, C, X(110), X(665)}}, {{A, B, C, X(335), X(518)}}, {{A, B, C, X(926), X(52305)}}, {{A, B, C, X(2284), X(62429)}}, {{A, B, C, X(3126), X(63742)}}, {{A, B, C, X(3323), X(6078)}}, {{A, B, C, X(3675), X(6548)}}, {{A, B, C, X(3952), X(24290)}}, {{A, B, C, X(17435), X(62726)}}, {{A, B, C, X(34905), X(53607)}}
X(65211) = barycentric product X(i)*X(j) for these (i, j): {518, 60481}, {3126, 53214}, {14947, 918}, {34905, 75}, {59049, 62430}
X(65211) = barycentric quotient X(i)/X(j) for these (i, j): {1, 34906}, {513, 56896}, {518, 40865}, {665, 5091}, {2254, 9318}, {9319, 36086}, {14947, 666}, {34905, 1}, {60481, 2481}
X(65212) lies on these lines: {1, 88}, {11, 4080}, {80, 39697}, {149, 19636}, {528, 42026}, {537, 4945}, {900, 903}, {1145, 24183}, {1168, 54391}, {1318, 62826}, {1387, 51583}, {1623, 53303}, {3218, 14190}, {3257, 62235}, {3681, 52140}, {3873, 52031}, {3952, 4997}, {4013, 59419}, {4392, 52900}, {6336, 61180}, {13266, 23345}, {13277, 55244}, {17449, 30575}, {20568, 40619}, {22306, 58587}, {26015, 60578}, {52925, 62236}, {61768, 62837}, {63851, 64151}
X(65212) = perspector of circumconic {{A, B, C, X(3257), X(54974)}}
X(65212) = pole of line {1623, 4491} with respect to the circumcircle
X(65212) = pole of line {2827, 37691} with respect to the incircle
X(65212) = pole of line {903, 21222} with respect to the Steiner circumellipse
X(65212) = pole of line {1023, 23838} with respect to the Hutson-Moses hyperbola
X(65212) = pole of line {908, 6549} with respect to the dual conic of Yff parabola
X(65212) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6548)}}, {{A, B, C, X(80), X(21297)}}, {{A, B, C, X(100), X(903)}}, {{A, B, C, X(214), X(4453)}}, {{A, B, C, X(678), X(900)}}, {{A, B, C, X(2177), X(23352)}}, {{A, B, C, X(4256), X(57707)}}, {{A, B, C, X(4927), X(17460)}}
X(65212) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {88, 1320, 100}, {88, 3315, 106}, {149, 62732, 19636}, {244, 4674, 88}
X(65213) lies on these lines: {2, 55058}, {4, 280}, {20, 46350}, {27, 37202}, {29, 52389}, {33, 41081}, {84, 412}, {88, 5125}, {92, 11372}, {100, 40117}, {107, 65224}, {108, 37141}, {162, 36049}, {189, 36101}, {190, 65270}, {268, 1013}, {271, 318}, {282, 23707}, {309, 37214}, {522, 36127}, {651, 1897}, {653, 14304}, {658, 18026}, {662, 7452}, {673, 7008}, {1156, 7003}, {1309, 8059}, {1821, 2357}, {1895, 3341}, {1903, 37142}, {2349, 2816}, {3559, 24624}, {4238, 65244}, {4242, 65216}, {5779, 7046}, {6081, 26704}, {6223, 34162}, {7129, 37129}, {7151, 20332}, {7541, 56939}, {7952, 41084}, {14944, 56944}, {17923, 44901}, {18283, 60599}, {27834, 53151}, {38357, 52780}, {41083, 41086}, {43760, 55110}, {46541, 65254}, {61178, 65234}, {65193, 65217}
X(65213) = anticomplement of X(55058)
X(65213) = trilinear pole of line {1, 281}
X(65213) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 6129}, {6, 64885}, {19, 57233}, {40, 1459}, {48, 14837}, {56, 57101}, {57, 10397}, {108, 55044}, {109, 53557}, {184, 17896}, {196, 36054}, {198, 905}, {208, 57241}, {221, 521}, {222, 14298}, {223, 652}, {227, 23189}, {255, 54239}, {329, 22383}, {347, 1946}, {513, 7078}, {520, 3194}, {522, 7114}, {577, 59935}, {603, 8058}, {604, 57245}, {647, 1817}, {649, 64082}, {650, 7011}, {656, 2360}, {663, 7013}, {810, 8822}, {822, 41083}, {934, 47432}, {1400, 57213}, {1415, 16596}, {1790, 55212}, {1819, 4017}, {2187, 4025}, {2199, 6332}, {2331, 4091}, {3195, 4131}, {3669, 55111}, {6087, 36055}, {6611, 57055}, {7004, 57118}, {7099, 57049}, {7117, 65159}, {7254, 21871}, {7952, 23224}, {8641, 57479}, {8677, 15501}, {14256, 65102}, {36040, 57291}, {36059, 38357}, {41082, 42658}, {55112, 57181}
X(65213) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 36127}
X(65213) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 57101}, {6, 57233}, {9, 64885}, {11, 53557}, {1146, 16596}, {1249, 14837}, {2968, 7358}, {3161, 57245}, {3341, 521}, {5375, 64082}, {5452, 10397}, {6523, 54239}, {7952, 8058}, {10017, 57291}, {14714, 47432}, {20620, 38357}, {34961, 1819}, {36103, 6129}, {38983, 55044}, {39026, 7078}, {39052, 1817}, {39053, 347}, {39060, 40702}, {39062, 8822}, {40582, 57213}, {40596, 2360}, {51221, 6087}, {52389, 8057}, {55058, 55058}, {62605, 17896}
X(65213) = X(i)-Ceva conjugate of X(j) for these {i, j}: {53642, 653}
X(65213) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {65374, 34188}
X(65213) = X(i)-cross conjugate of X(j) for these {i, j}: {108, 1897}, {521, 29}, {522, 280}, {652, 41081}, {1728, 765}, {1741, 4564}, {1750, 24032}, {1753, 7012}, {2270, 7128}, {3239, 92}, {14302, 8}, {14331, 2}, {36049, 44327}, {40117, 65330}, {61229, 13138}
X(65213) = pole of line {3318, 6087} with respect to the polar circle
X(65213) = pole of line {27382, 56943} with respect to the Yff parabola
X(65213) = pole of line {7078, 27382} with respect to the Hutson-Moses hyperbola
X(65213) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7452)}}, {{A, B, C, X(27), X(52920)}}, {{A, B, C, X(30), X(2816)}}, {{A, B, C, X(84), X(8059)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(107), X(10152)}}, {{A, B, C, X(108), X(36044)}}, {{A, B, C, X(412), X(4246)}}, {{A, B, C, X(522), X(2968)}}, {{A, B, C, X(643), X(43347)}}, {{A, B, C, X(664), X(14544)}}, {{A, B, C, X(1309), X(1897)}}, {{A, B, C, X(1414), X(43346)}}, {{A, B, C, X(2765), X(36050)}}, {{A, B, C, X(3559), X(4242)}}, {{A, B, C, X(3699), X(52938)}}, {{A, B, C, X(4238), X(37279)}}, {{A, B, C, X(4240), X(52846)}}, {{A, B, C, X(4571), X(36037)}}, {{A, B, C, X(5125), X(46541)}}, {{A, B, C, X(5704), X(17780)}}, {{A, B, C, X(7256), X(35157)}}, {{A, B, C, X(13138), X(53642)}}, {{A, B, C, X(14331), X(55058)}}, {{A, B, C, X(36049), X(61229)}}, {{A, B, C, X(36110), X(40097)}}
X(65214) lies on these lines: {100, 57108}, {162, 1624}, {190, 53211}, {241, 1952}, {243, 8758}, {296, 1155}, {647, 55346}, {650, 653}, {651, 652}, {658, 905}, {662, 7045}, {673, 1465}, {771, 1813}, {799, 15411}, {823, 17926}, {1156, 1937}, {1758, 2655}, {1936, 8763}, {9358, 65216}, {23981, 36086}, {36100, 40843}, {37130, 37757}, {37203, 56815}, {59041, 59090}
X(65214) = trilinear pole of line {1, 185}
X(65214) = X(i)-isoconjugate-of-X(j) for these {i, j}: {243, 652}, {513, 58325}, {521, 2202}, {522, 1951}, {647, 15146}, {649, 7360}, {650, 1936}, {657, 5088}, {663, 1944}, {851, 1021}, {1020, 1984}, {1430, 57055}, {1946, 1948}, {1981, 3270}, {2326, 9391}, {3239, 26884}, {6332, 51726}, {6518, 18344}, {7253, 42669}, {8680, 21789}, {23353, 34591}, {51645, 58329}
X(65214) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 7360}, {39026, 58325}, {39052, 15146}, {39053, 1948}, {39060, 57812}
X(65214) = X(i)-cross conjugate of X(j) for these {i, j}: {851, 55346}, {928, 7}, {1758, 7045}, {2655, 24032}, {3002, 59}, {52222, 37142}
X(65214) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(63), X(1309)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(108), X(65296)}}, {{A, B, C, X(109), X(13149)}}, {{A, B, C, X(241), X(1465)}}, {{A, B, C, X(243), X(929)}}, {{A, B, C, X(278), X(2720)}}, {{A, B, C, X(650), X(652)}}, {{A, B, C, X(1155), X(2635)}}, {{A, B, C, X(1301), X(1624)}}, {{A, B, C, X(1813), X(54240)}}, {{A, B, C, X(7045), X(7128)}}, {{A, B, C, X(9357), X(9394)}}, {{A, B, C, X(32651), X(52607)}}, {{A, B, C, X(56815), X(61231)}}
X(65214) = barycentric product X(i)*X(j) for these (i, j): {1, 53211}, {108, 57801}, {226, 41206}, {1020, 35145}, {1214, 41207}, {1937, 664}, {1945, 4554}, {1949, 46404}, {1952, 651}, {4569, 61427}, {18026, 296}, {37142, 4566}, {40843, 653}, {53321, 57980}, {59041, 6356}
X(65214) = barycentric quotient X(i)/X(j) for these (i, j): {100, 7360}, {101, 58325}, {108, 243}, {109, 1936}, {162, 15146}, {296, 521}, {651, 1944}, {653, 1948}, {934, 5088}, {1020, 8680}, {1275, 15418}, {1415, 1951}, {1425, 9391}, {1813, 6518}, {1937, 522}, {1945, 650}, {1949, 652}, {1952, 4391}, {2249, 1021}, {4566, 44150}, {7128, 1981}, {18026, 57812}, {21789, 1984}, {32674, 2202}, {37142, 7253}, {40843, 6332}, {41206, 333}, {41207, 31623}, {52222, 34591}, {53211, 75}, {53321, 851}, {57801, 35518}, {59041, 59482}, {61427, 3900}
X(65215) lies on these lines: {4, 673}, {19, 12718}, {21, 37202}, {88, 7466}, {100, 58944}, {108, 658}, {190, 56183}, {651, 8750}, {653, 1633}, {662, 4238}, {799, 36797}, {949, 23707}, {1005, 36100}, {1013, 3423}, {1783, 36086}, {1897, 37206}, {4242, 65242}, {7071, 51190}, {7437, 65216}, {10394, 36101}, {14776, 37136}, {18026, 34085}, {26706, 58989}, {37142, 62691}
X(65215) = trilinear pole of line {1, 607}
X(65215) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 47123}, {6, 64886}, {77, 6182}, {521, 2263}, {647, 16054}, {652, 948}, {657, 23603}, {905, 40131}, {1459, 2550}, {4025, 37580}
X(65215) = X(i)-vertex conjugate of X(j) for these {i, j}: {6516, 32674}
X(65215) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 64886}, {36103, 47123}, {39052, 16054}
X(65215) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(1783)}}, {{A, B, C, X(21), X(934)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(108), X(8750)}}, {{A, B, C, X(109), X(1633)}}, {{A, B, C, X(1005), X(7452)}}, {{A, B, C, X(1013), X(4246)}}, {{A, B, C, X(1026), X(41785)}}, {{A, B, C, X(1292), X(54952)}}, {{A, B, C, X(1415), X(57659)}}, {{A, B, C, X(3559), X(7437)}}, {{A, B, C, X(4628), X(58991)}}, {{A, B, C, X(5546), X(13395)}}, {{A, B, C, X(6516), X(36049)}}, {{A, B, C, X(7466), X(46541)}}, {{A, B, C, X(13138), X(53643)}}, {{A, B, C, X(32641), X(44059)}}, {{A, B, C, X(36118), X(65201)}}
X(65215) = barycentric product X(i)*X(j) for these (i, j): {108, 58004}, {281, 6183}, {1897, 39273}, {3423, 6335}, {18026, 949}, {46108, 58989}, {56098, 653}, {58944, 75}, {63150, 65160}
X(65215) = barycentric quotient X(i)/X(j) for these (i, j): {1, 64886}, {19, 47123}, {108, 948}, {162, 16054}, {607, 6182}, {934, 23603}, {949, 521}, {1783, 2550}, {3423, 905}, {6183, 348}, {8750, 40131}, {32674, 2263}, {39273, 4025}, {56098, 6332}, {58004, 35518}, {58944, 1}, {58989, 1814}
X(65216) lies on these lines: {2, 37203}, {3, 7040}, {88, 17080}, {90, 411}, {100, 13256}, {162, 3658}, {190, 65290}, {651, 65175}, {655, 65159}, {673, 2164}, {920, 55495}, {934, 38340}, {1069, 23707}, {1332, 65248}, {1816, 37142}, {1817, 24624}, {2994, 34234}, {4242, 65213}, {6512, 65246}, {6513, 36100}, {6516, 65247}, {7042, 58887}, {7437, 65215}, {9358, 65214}, {36101, 60974}, {55248, 65220}
X(65216) = isogonal conjugate of X(46389)
X(65216) = trilinear pole of line {1, 90}
X(65216) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46389}, {9, 51648}, {19, 59973}, {21, 55214}, {46, 650}, {55, 21188}, {109, 6506}, {453, 55248}, {512, 31631}, {514, 61397}, {521, 52033}, {522, 2178}, {647, 3559}, {649, 5552}, {652, 1068}, {654, 56417}, {661, 3193}, {663, 5905}, {1214, 57124}, {1406, 3239}, {1409, 57083}, {1800, 2501}, {3063, 20930}, {3064, 3157}, {3737, 21853}, {3900, 56848}, {6505, 18344}, {7252, 21077}, {39943, 57102}
X(65216) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46389}, {6, 59973}, {11, 6506}, {223, 21188}, {478, 51648}, {5375, 5552}, {10001, 20930}, {36830, 3193}, {39052, 3559}, {39054, 31631}, {40611, 55214}
X(65216) = X(i)-cross conjugate of X(j) for these {i, j}: {650, 7040}, {1813, 651}, {3064, 21}, {6985, 55346}, {15313, 7}, {36743, 59}, {46389, 1}, {48269, 1476}, {54420, 7012}, {58887, 7045}, {58888, 4}, {61228, 664}
X(65216) = pole of line {46389, 59973} with respect to the Stammler hyperbola
X(65216) = pole of line {1158, 5552} with respect to the Yff parabola
X(65216) = pole of line {1993, 56352} with respect to the Hutson-Moses hyperbola
X(65216) = pole of line {17776, 31600} with respect to the dual conic of Feuerbach hyperbola
X(65216) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1332)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(108), X(4565)}}, {{A, B, C, X(163), X(59083)}}, {{A, B, C, X(404), X(4237)}}, {{A, B, C, X(643), X(65330)}}, {{A, B, C, X(645), X(65331)}}, {{A, B, C, X(646), X(31628)}}, {{A, B, C, X(650), X(42069)}}, {{A, B, C, X(925), X(4558)}}, {{A, B, C, X(1025), X(61019)}}, {{A, B, C, X(1305), X(6516)}}, {{A, B, C, X(1461), X(2222)}}, {{A, B, C, X(1813), X(13397)}}, {{A, B, C, X(1816), X(1981)}}, {{A, B, C, X(1817), X(4242)}}, {{A, B, C, X(4236), X(11329)}}, {{A, B, C, X(4238), X(24580)}}, {{A, B, C, X(4573), X(65334)}}, {{A, B, C, X(4612), X(30610)}}, {{A, B, C, X(5546), X(40117)}}, {{A, B, C, X(6335), X(46640)}}, {{A, B, C, X(7437), X(16054)}}, {{A, B, C, X(9058), X(65298)}}, {{A, B, C, X(13256), X(24002)}}, {{A, B, C, X(36037), X(44327)}}, {{A, B, C, X(53952), X(65300)}}
X(65217) lies on these lines: {88, 2982}, {100, 15439}, {101, 653}, {109, 65227}, {110, 65244}, {162, 4551}, {190, 4587}, {651, 906}, {655, 14543}, {658, 1813}, {662, 65233}, {664, 65247}, {673, 2259}, {823, 65201}, {943, 1156}, {1794, 23707}, {4552, 65236}, {4564, 65238}, {4565, 65256}, {4566, 38340}, {5745, 34234}, {7012, 61169}, {13395, 59060}, {24624, 60188}, {32680, 35174}, {36101, 61024}, {37128, 63193}, {37140, 65299}, {37143, 63782}, {37203, 40573}, {40412, 65264}, {65193, 65213}
X(65217) = trilinear pole of line {1, 201}
X(65217) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 52306}, {7, 33525}, {9, 50354}, {11, 61197}, {212, 23595}, {244, 61233}, {284, 23752}, {442, 7252}, {513, 40937}, {514, 14547}, {521, 1841}, {522, 2260}, {523, 46882}, {649, 6734}, {650, 942}, {652, 1838}, {654, 45926}, {656, 46884}, {657, 62779}, {661, 54356}, {663, 5249}, {905, 1859}, {1015, 65197}, {1019, 40967}, {1865, 23189}, {2170, 61220}, {2294, 3737}, {3064, 4303}, {3271, 65205}, {3669, 64171}, {4391, 40956}, {4560, 40952}, {7004, 61236}, {7117, 61180}, {7178, 8021}, {7180, 51978}, {8611, 46883}, {14597, 44426}, {17197, 61169}, {17924, 23207}, {17926, 39791}, {18155, 40978}, {18191, 61161}, {18344, 18607}, {21789, 55010}, {26932, 53323}, {37993, 56320}, {41214, 65334}, {46890, 52355}
X(65217) = X(i)-vertex conjugate of X(j) for these {i, j}: {653, 692}
X(65217) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 50354}, {5375, 6734}, {36033, 52306}, {36830, 54356}, {39026, 40937}, {40590, 23752}, {40596, 46884}, {40837, 23595}
X(65217) = X(i)-cross conjugate of X(j) for these {i, j}: {35, 7045}, {71, 7012}, {226, 4564}, {284, 59}, {3651, 55346}, {15439, 36048}
X(65217) = pole of line {2894, 2949} with respect to the Yff parabola
X(65217) = pole of line {2982, 40937} with respect to the Hutson-Moses hyperbola
X(65217) = intersection, other than A, B, C, of circumconics {{A, B, C, X(71), X(61169)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(101), X(906)}}, {{A, B, C, X(109), X(65232)}}, {{A, B, C, X(648), X(36037)}}, {{A, B, C, X(664), X(13395)}}, {{A, B, C, X(666), X(4612)}}, {{A, B, C, X(1020), X(2222)}}, {{A, B, C, X(1025), X(21617)}}, {{A, B, C, X(1305), X(1414)}}, {{A, B, C, X(1332), X(1897)}}, {{A, B, C, X(2736), X(35338)}}, {{A, B, C, X(4551), X(4605)}}, {{A, B, C, X(4565), X(36146)}}, {{A, B, C, X(4566), X(35174)}}, {{A, B, C, X(4619), X(4629)}}, {{A, B, C, X(5745), X(24029)}}, {{A, B, C, X(6648), X(31615)}}, {{A, B, C, X(15439), X(32651)}}, {{A, B, C, X(24019), X(36080)}}, {{A, B, C, X(29163), X(36147)}}, {{A, B, C, X(36048), X(54952)}}, {{A, B, C, X(54240), X(54970)}}
X(65217) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58993, 65334, 653}
X(65218) lies on these lines: {4, 57435}, {88, 36122}, {100, 40116}, {103, 1309}, {108, 61240}, {162, 1021}, {190, 15742}, {521, 651}, {522, 653}, {655, 60583}, {658, 1897}, {662, 5379}, {673, 1861}, {971, 7291}, {1783, 65243}, {2338, 23707}, {3900, 7128}, {4242, 37139}, {8544, 37131}, {14953, 37202}, {18025, 37214}, {24624, 52891}, {34922, 38340}, {36002, 36100}, {37136, 37628}, {37141, 61040}, {37143, 53150}, {37215, 57928}, {43762, 56869}
X(65218) = trilinear pole of line {1, 1783}
X(65218) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 676}, {6, 39470}, {516, 1459}, {521, 1456}, {647, 14953}, {649, 26006}, {652, 43035}, {905, 910}, {927, 47422}, {1461, 57292}, {1565, 2426}, {1795, 42756}, {1886, 4091}, {2398, 3937}, {3270, 23973}, {3669, 51376}, {3733, 51366}, {7177, 46392}, {7254, 17747}, {15419, 51436}, {22086, 63851}, {22383, 30807}, {23696, 53547}, {32656, 58259}, {32657, 58280}, {53550, 56639}
X(65218) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 39470}, {5375, 26006}, {25640, 42756}, {35508, 57292}, {36103, 676}, {39052, 14953}
X(65218) = X(i)-cross conjugate of X(j) for these {i, j}: {910, 7128}, {1736, 765}, {8558, 4564}
X(65218) = pole of line {42756, 57439} with respect to the polar circle
X(65218) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(84), X(2728)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(516), X(971)}}, {{A, B, C, X(521), X(522)}}, {{A, B, C, X(664), X(46964)}}, {{A, B, C, X(1026), X(26001)}}, {{A, B, C, X(1309), X(5379)}}, {{A, B, C, X(1861), X(65338)}}, {{A, B, C, X(1897), X(56183)}}, {{A, B, C, X(2222), X(29374)}}, {{A, B, C, X(2766), X(36110)}}, {{A, B, C, X(3887), X(57435)}}, {{A, B, C, X(4238), X(26003)}}, {{A, B, C, X(4242), X(52891)}}, {{A, B, C, X(7291), X(14953)}}, {{A, B, C, X(7452), X(36002)}}, {{A, B, C, X(16077), X(40431)}}, {{A, B, C, X(18026), X(65201)}}, {{A, B, C, X(36118), X(40117)}}
X(65219) lies on these lines: {19, 88}, {100, 9088}, {190, 17906}, {1772, 51288}, {1783, 3257}, {3478, 23707}, {4000, 34234}
X(65219) = trilinear pole of line {1, 1828}
X(65219) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 47766}, {6, 9031}, {63, 48327}, {71, 47845}, {521, 54377}, {647, 4234}, {652, 3476}, {1459, 54389}, {4737, 22383}
X(65219) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 9031}, {3162, 48327}, {36103, 47766}, {39052, 4234}
X(65219) = X(i)-cross conjugate of X(j) for these {i, j}: {37391, 55346}, {48335, 92}, {62695, 7128}
X(65219) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(1783)}}, {{A, B, C, X(75), X(934)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(108), X(65336)}}, {{A, B, C, X(2397), X(4000)}}, {{A, B, C, X(6335), X(17906)}}
X(65219) = barycentric product X(i)*X(j) for these (i, j): {75, 9088}, {18026, 3478}
X(65219) = barycentric quotient X(i)/X(j) for these (i, j): {1, 9031}, {19, 47766}, {25, 48327}, {28, 47845}, {108, 3476}, {162, 4234}, {1783, 54389}, {1897, 4737}, {3478, 521}, {9088, 1}, {32674, 54377}
X(65220) lies on these lines: {100, 2701}, {162, 18344}, {190, 3700}, {650, 662}, {651, 661}, {653, 2501}, {655, 55238}, {658, 7178}, {673, 17963}, {799, 4391}, {896, 1156}, {897, 1155}, {1821, 64194}, {1931, 11608}, {1936, 2651}, {1959, 36100}, {2644, 4558}, {3257, 61179}, {8052, 65205}, {17931, 65230}, {17947, 34234}, {17973, 23707}, {24602, 37202}, {36098, 57162}, {37128, 37791}, {37131, 37520}, {37136, 55259}, {37141, 55242}, {37214, 37796}, {38340, 55236}, {39054, 65257}, {55248, 65216}
X(65220) = trilinear pole of line {1, 2648}
X(65220) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 5075}, {6, 2785}, {9, 51642}, {284, 18006}, {333, 17992}, {415, 647}, {512, 40882}, {522, 17966}, {523, 5060}, {652, 17985}, {661, 2651}, {663, 17950}, {2701, 35086}, {3064, 17975}, {17942, 21044}, {41499, 52222}
X(65220) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 2785}, {478, 51642}, {32664, 5075}, {36830, 2651}, {39052, 415}, {39054, 40882}, {40590, 18006}
X(65220) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(14202)}}, {{A, B, C, X(81), X(1290)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(241), X(35466)}}, {{A, B, C, X(650), X(661)}}, {{A, B, C, X(666), X(2222)}}, {{A, B, C, X(813), X(32641)}}, {{A, B, C, X(896), X(1155)}}, {{A, B, C, X(1020), X(4612)}}, {{A, B, C, X(1959), X(64194)}}, {{A, B, C, X(2651), X(41206)}}, {{A, B, C, X(3570), X(37791)}}, {{A, B, C, X(4238), X(46574)}}, {{A, B, C, X(4554), X(36050)}}, {{A, B, C, X(4573), X(6011)}}, {{A, B, C, X(4603), X(38470)}}, {{A, B, C, X(5549), X(8693)}}, {{A, B, C, X(7045), X(24041)}}, {{A, B, C, X(9357), X(9395)}}, {{A, B, C, X(33637), X(43190)}}
X(65220) = barycentric product X(i)*X(j) for these (i, j): {1, 35154}, {162, 57841}, {2648, 664}, {2652, 99}, {2701, 75}, {11608, 662}, {17931, 65}, {17947, 651}, {17963, 4554}, {17973, 18026}, {57675, 811}
X(65220) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2785}, {31, 5075}, {56, 51642}, {65, 18006}, {108, 17985}, {109, 1758}, {110, 2651}, {162, 415}, {163, 5060}, {651, 17950}, {662, 40882}, {1402, 17992}, {1415, 17966}, {2648, 522}, {2652, 523}, {2701, 1}, {11608, 1577}, {17931, 314}, {17947, 4391}, {17963, 650}, {17973, 521}, {18000, 4516}, {23353, 41499}, {35154, 75}, {36059, 17975}, {57675, 656}, {57841, 14208}
X(65221) lies on these lines: {54, 37142}, {95, 24581}, {100, 933}, {162, 36134}, {163, 823}, {190, 18831}, {275, 24624}, {276, 37219}, {563, 57806}, {648, 655}, {651, 18315}, {653, 16813}, {811, 65251}, {897, 2190}, {1821, 2148}, {2167, 2349}, {2616, 36084}, {4599, 62720}, {8882, 37128}, {15412, 60056}, {23707, 35196}, {32676, 65252}, {37132, 62268}, {37136, 39177}, {37220, 62276}, {52914, 65244}, {58756, 60057}
X(65221) = trilinear pole of line {1, 1748}
X(65221) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 15451}, {3, 12077}, {4, 17434}, {5, 647}, {6, 6368}, {25, 60597}, {48, 2618}, {51, 525}, {53, 520}, {54, 57195}, {68, 52317}, {69, 55219}, {71, 21102}, {74, 14391}, {112, 35442}, {115, 23181}, {125, 1625}, {184, 18314}, {216, 523}, {217, 850}, {233, 39180}, {264, 42293}, {265, 2081}, {275, 34983}, {311, 3049}, {324, 39201}, {339, 61194}, {343, 512}, {394, 51513}, {418, 14618}, {577, 23290}, {656, 1953}, {661, 44706}, {667, 42698}, {669, 28706}, {684, 60517}, {686, 60035}, {798, 18695}, {810, 14213}, {878, 60524}, {905, 21807}, {930, 47424}, {933, 39019}, {1154, 14582}, {1173, 35441}, {1393, 8611}, {1459, 21011}, {1568, 2433}, {1577, 62266}, {1637, 44715}, {2052, 58305}, {2179, 14208}, {2181, 24018}, {2351, 63829}, {2395, 44716}, {2435, 51363}, {2485, 41168}, {2489, 52347}, {2501, 5562}, {2600, 52391}, {2617, 3708}, {2963, 57135}, {2972, 61193}, {3078, 39181}, {3199, 3265}, {3267, 40981}, {3269, 35360}, {3289, 61196}, {3519, 57137}, {3569, 53174}, {3700, 30493}, {4024, 44709}, {4041, 44708}, {4558, 41221}, {4705, 16697}, {6137, 44713}, {6138, 44714}, {6587, 8798}, {7004, 35307}, {7069, 51664}, {7178, 44707}, {9409, 62722}, {10097, 41586}, {11062, 43083}, {11077, 55132}, {13157, 42658}, {13450, 32320}, {13754, 35361}, {14380, 52945}, {14569, 52613}, {14570, 20975}, {14575, 15415}, {15352, 41219}, {15412, 61378}, {15526, 52604}, {16813, 41212}, {17167, 55230}, {18180, 55232}, {18315, 24862}, {20577, 51477}, {20578, 44711}, {20579, 44712}, {23286, 36412}, {27371, 58353}, {27372, 33294}, {30451, 56272}, {32078, 39183}, {32692, 55073}, {34980, 65183}, {39469, 53245}, {41078, 52153}, {41222, 52932}, {42445, 50946}, {44710, 55195}, {45259, 57273}, {45793, 58308}, {46088, 60828}, {47122, 63176}, {52617, 61346}, {55250, 63801}, {57065, 61363}, {58310, 62274}, {61216, 63735}, {62260, 62428}
X(65221) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 6368}, {1249, 2618}, {6505, 60597}, {6631, 42698}, {31998, 18695}, {32664, 15451}, {34591, 35442}, {36033, 17434}, {36103, 12077}, {36830, 44706}, {39052, 5}, {39054, 343}, {39062, 14213}, {40596, 1953}, {62603, 14208}, {62605, 18314}
X(65221) = X(i)-cross conjugate of X(j) for these {i, j}: {47, 24041}, {48, 24000}, {163, 36134}, {2616, 40440}
X(65221) = intersection, other than A, B, C, of circumconics {{A, B, C, X(88), X(100)}}, {{A, B, C, X(163), X(32660)}}, {{A, B, C, X(648), X(46103)}}, {{A, B, C, X(20883), X(62720)}}, {{A, B, C, X(32676), X(36104)}}, {{A, B, C, X(36105), X(57968)}}
X(65222) lies on these lines: {88, 1170}, {100, 53243}, {101, 658}, {109, 37138}, {190, 6606}, {226, 673}, {655, 56322}, {662, 1025}, {664, 37206}, {799, 7259}, {1156, 2346}, {1414, 65256}, {1803, 32008}, {3219, 6605}, {4251, 59475}, {4551, 36086}, {4564, 35312}, {4571, 37223}, {6183, 53244}, {7045, 35326}, {10509, 41572}, {10572, 64438}, {17484, 62728}, {23707, 47487}, {24624, 60229}, {26722, 42311}, {31618, 37130}, {36039, 65245}, {37139, 62747}, {43760, 61373}, {53337, 65236}, {55281, 65230}, {56255, 65261}, {61185, 62725}, {65165, 65242}
X(65222) = isogonal conjugate of X(21127)
X(65222) = trilinear pole of line {1, 1170}
X(65222) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 21127}, {2, 2488}, {6, 6362}, {7, 10581}, {9, 48151}, {11, 35326}, {55, 21104}, {57, 6608}, {142, 663}, {244, 35341}, {279, 6607}, {284, 55282}, {354, 650}, {512, 16713}, {513, 1212}, {514, 2293}, {522, 1475}, {649, 4847}, {657, 10481}, {661, 17194}, {667, 1229}, {693, 20229}, {884, 51384}, {905, 1827}, {926, 53241}, {1015, 65198}, {1019, 21039}, {1174, 57252}, {1253, 23599}, {1418, 3900}, {1459, 1855}, {2170, 35338}, {2310, 63203}, {2423, 51416}, {2432, 51424}, {3022, 61241}, {3059, 3669}, {3063, 20880}, {3064, 22053}, {3239, 61376}, {3271, 65195}, {3676, 8012}, {3709, 17169}, {3737, 21808}, {3925, 7252}, {4041, 18164}, {4560, 52020}, {6139, 62731}, {6332, 40983}, {7192, 21795}, {8551, 59941}, {8641, 59181}, {10579, 14283}, {14827, 63218}, {14936, 35312}, {16708, 63461}, {17924, 22079}, {18191, 35310}, {21789, 52023}, {34522, 46003}, {43924, 51972}, {43932, 45791}, {53237, 65102}, {53242, 57180}
X(65222) = X(i)-vertex conjugate of X(j) for these {i, j}: {658, 692}
X(65222) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 21127}, {9, 6362}, {223, 21104}, {478, 48151}, {5375, 4847}, {5452, 6608}, {6631, 1229}, {10001, 20880}, {17113, 23599}, {32664, 2488}, {36830, 17194}, {39026, 1212}, {39054, 16713}, {40590, 55282}, {40606, 57252}
X(65222) = X(i)-cross conjugate of X(j) for these {i, j}: {7, 4564}, {55, 7045}, {218, 765}, {3730, 7012}, {4251, 59}, {7411, 55346}, {7676, 59457}, {21127, 1}, {42325, 7}, {58322, 21453}, {62747, 2346}
X(65222) = pole of line {4847, 60970} with respect to the Yff parabola
X(65222) = pole of line {1170, 1212} with respect to the Hutson-Moses hyperbola
X(65222) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(35312)}}, {{A, B, C, X(55), X(35326)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(101), X(7259)}}, {{A, B, C, X(109), X(4637)}}, {{A, B, C, X(110), X(4619)}}, {{A, B, C, X(226), X(1025)}}, {{A, B, C, X(514), X(42552)}}, {{A, B, C, X(643), X(666)}}, {{A, B, C, X(664), X(6183)}}, {{A, B, C, X(927), X(1414)}}, {{A, B, C, X(4571), X(65296)}}, {{A, B, C, X(4573), X(31615)}}, {{A, B, C, X(13138), X(32040)}}, {{A, B, C, X(13149), X(32041)}}, {{A, B, C, X(23599), X(42325)}}, {{A, B, C, X(24029), X(54357)}}, {{A, B, C, X(29007), X(56543)}}, {{A, B, C, X(36037), X(43190)}}, {{A, B, C, X(43191), X(55185)}}
X(65223) lies on these lines: {88, 16082}, {92, 65249}, {100, 1309}, {162, 36037}, {190, 52622}, {281, 56753}, {648, 65260}, {651, 4391}, {653, 46110}, {655, 65162}, {658, 3261}, {660, 43933}, {673, 1948}, {823, 35321}, {1492, 14776}, {1821, 2250}, {17924, 46119}, {18026, 65234}, {18816, 36101}, {23707, 51565}, {34234, 46109}, {35516, 65246}, {36098, 36110}, {36100, 36795}, {36123, 37129}, {37136, 39294}, {37141, 54953}, {37142, 38955}, {37202, 57984}, {65160, 65226}
X(65223) = trilinear pole of line {1, 318}
X(65223) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 23220}, {3, 3310}, {6, 8677}, {48, 1769}, {56, 52307}, {184, 10015}, {222, 53549}, {248, 42751}, {517, 22383}, {577, 39534}, {603, 46393}, {647, 859}, {649, 22350}, {652, 1457}, {901, 47420}, {906, 42753}, {1415, 35014}, {1459, 2183}, {1465, 1946}, {1576, 42761}, {1875, 36054}, {1960, 57478}, {2200, 23788}, {2397, 22096}, {2427, 3937}, {2432, 56973}, {2804, 52411}, {3049, 17139}, {3063, 62402}, {4558, 42752}, {7117, 23981}, {7254, 51377}, {9247, 36038}, {10017, 32643}, {14260, 22086}, {14571, 23224}, {14578, 42757}, {14908, 42760}, {18877, 42750}, {23757, 32659}, {32641, 35012}, {32655, 42769}, {32656, 42754}, {32657, 42756}, {32658, 42758}, {32660, 35015}, {32661, 42759}, {41220, 65331}, {51379, 57181}, {51987, 53550}
X(65223) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 52307}, {9, 8677}, {1146, 35014}, {1249, 1769}, {4858, 42761}, {5190, 42753}, {5375, 22350}, {7952, 46393}, {10001, 62402}, {32664, 23220}, {36103, 3310}, {36944, 46391}, {38979, 47420}, {39039, 42751}, {39052, 859}, {39053, 1465}, {39060, 22464}, {57434, 38353}, {62576, 36038}, {62605, 10015}
X(65223) = X(i)-cross conjugate of X(j) for these {i, j}: {515, 24032}, {1737, 7035}, {3738, 40440}, {3762, 92}, {4242, 811}, {14304, 75}, {34234, 39294}, {35321, 36037}, {37420, 55346}
X(65223) = pole of line {10538, 22350} with respect to the Yff parabola
X(65223) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(53211)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(668), X(52938)}}, {{A, B, C, X(1309), X(65331)}}, {{A, B, C, X(3261), X(4391)}}, {{A, B, C, X(6335), X(46404)}}, {{A, B, C, X(8707), X(14546)}}, {{A, B, C, X(15742), X(39294)}}, {{A, B, C, X(24035), X(64194)}}, {{A, B, C, X(36141), X(43739)}}, {{A, B, C, X(46794), X(56753)}}, {{A, B, C, X(51560), X(58000)}}
X(65224) lies on these lines: {19, 19611}, {27, 65246}, {64, 37142}, {100, 1301}, {107, 65213}, {190, 53639}, {253, 24604}, {459, 24624}, {648, 658}, {651, 46639}, {653, 65181}, {656, 36092}, {1172, 41082}, {1748, 2184}, {1821, 2155}, {2633, 36084}, {23707, 52158}, {24001, 65251}, {37128, 41489}, {37141, 65232}, {37215, 44326}, {37219, 52581}, {37220, 57921}, {40117, 53886}, {58759, 60056}
X(65224) = trilinear pole of line {1, 204}
X(65224) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 42658}, {3, 6587}, {4, 58796}, {6, 8057}, {20, 647}, {25, 20580}, {30, 61215}, {48, 17898}, {64, 57201}, {69, 62176}, {71, 21172}, {73, 14331}, {74, 14345}, {107, 47409}, {110, 1562}, {112, 122}, {154, 525}, {204, 24018}, {222, 14308}, {250, 55269}, {305, 62175}, {394, 44705}, {512, 37669}, {520, 1249}, {521, 30456}, {523, 15905}, {610, 656}, {652, 5930}, {667, 42699}, {810, 18750}, {822, 1895}, {905, 3198}, {1042, 57045}, {1073, 58342}, {1301, 39020}, {1394, 8611}, {1459, 8804}, {1559, 2430}, {1636, 10152}, {2501, 35602}, {2525, 51508}, {2972, 57219}, {3049, 14615}, {3172, 3265}, {3269, 52913}, {4091, 53011}, {6368, 33629}, {6525, 52613}, {7070, 51664}, {8779, 61189}, {9033, 15291}, {10397, 52078}, {13613, 59077}, {14249, 32320}, {14343, 60674}, {15466, 39201}, {15526, 57153}, {17434, 38808}, {20975, 36841}, {22383, 52345}, {23286, 42459}, {36908, 57108}, {40384, 58352}, {40616, 53321}, {40933, 57055}, {41086, 64885}, {44770, 57296}, {55127, 59499}
X(65224) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 8057}, {244, 1562}, {1249, 17898}, {3343, 24018}, {6505, 20580}, {6631, 42699}, {14092, 656}, {32664, 42658}, {34591, 122}, {36033, 58796}, {36103, 6587}, {38985, 47409}, {39052, 20}, {39054, 37669}, {39062, 18750}, {40596, 610}, {40839, 1577}, {55068, 40616}
X(65224) = X(i)-cross conjugate of X(j) for these {i, j}: {656, 19611}, {11347, 7128}, {18594, 24000}, {24018, 92}, {24019, 162}, {32714, 648}, {40117, 107}, {57055, 40431}, {65374, 53886}
X(65224) = intersection, other than A, B, C, of circumconics {{A, B, C, X(27), X(7435)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(107), X(65232)}}, {{A, B, C, X(648), X(65201)}}, {{A, B, C, X(1748), X(24001)}}, {{A, B, C, X(1981), X(37258)}}, {{A, B, C, X(4592), X(53211)}}, {{A, B, C, X(15322), X(61236)}}, {{A, B, C, X(24019), X(32714)}}, {{A, B, C, X(32676), X(36046)}}, {{A, B, C, X(36126), X(65330)}}
X(65225) lies on these lines: {1, 43759}, {88, 959}, {100, 4559}, {101, 36098}, {109, 662}, {110, 65253}, {162, 32674}, {190, 4551}, {386, 50040}, {651, 52931}, {653, 61226}, {664, 799}, {673, 2258}, {823, 36127}, {941, 1156}, {1411, 5331}, {1945, 37142}, {3699, 65229}, {3725, 64984}, {4604, 61225}, {4636, 65255}, {14594, 37218}, {19861, 31359}, {23703, 37211}, {34259, 36100}, {37130, 58008}, {37870, 65264}, {65166, 65230}, {65256, 65315}
X(65225) = isogonal conjugate of X(17418)
X(65225) = trilinear pole of line {1, 573}
X(65225) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 17418}, {6, 23880}, {7, 58332}, {9, 48144}, {21, 8672}, {55, 43067}, {101, 53526}, {244, 65190}, {284, 50457}, {314, 8639}, {513, 958}, {514, 2268}, {521, 4185}, {522, 1468}, {644, 53543}, {647, 44734}, {649, 11679}, {650, 940}, {651, 53561}, {652, 5307}, {663, 10436}, {1459, 54396}, {1867, 23189}, {2170, 65168}, {2316, 53536}, {3063, 34284}, {3669, 3713}, {3714, 3733}, {3737, 59305}, {4391, 5019}, {6588, 34279}, {7252, 31993}, {57181, 61414}
X(65225) = X(i)-vertex conjugate of X(j) for these {i, j}: {163, 36050}, {643, 1415}, {692, 36098}, {5546, 52928}
X(65225) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 17418}, {9, 23880}, {223, 43067}, {478, 48144}, {1015, 53526}, {5375, 11679}, {10001, 34284}, {38991, 53561}, {39026, 958}, {39052, 44734}, {40590, 50457}, {40611, 8672}
X(65225) = X(i)-cross conjugate of X(j) for these {i, j}: {386, 59}, {2285, 4564}, {6005, 7}, {12514, 7012}, {17418, 1}, {17594, 7045}, {37400, 55346}, {54386, 765}
X(65225) = pole of line {10437, 11679} with respect to the Yff parabola
X(65225) = pole of line {958, 959} with respect to the Hutson-Moses hyperbola
X(65225) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(28162)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(101), X(3699)}}, {{A, B, C, X(108), X(1414)}}, {{A, B, C, X(109), X(664)}}, {{A, B, C, X(110), X(1897)}}, {{A, B, C, X(643), X(1783)}}, {{A, B, C, X(931), X(65280)}}, {{A, B, C, X(1026), X(2999)}}, {{A, B, C, X(4561), X(29143)}}, {{A, B, C, X(4588), X(6742)}}, {{A, B, C, X(5221), X(23703)}}, {{A, B, C, X(6335), X(43188)}}, {{A, B, C, X(8652), X(51562)}}, {{A, B, C, X(8701), X(51564)}}, {{A, B, C, X(12560), X(41353)}}, {{A, B, C, X(13486), X(33637)}}, {{A, B, C, X(23981), X(37523)}}, {{A, B, C, X(30610), X(62534)}}, {{A, B, C, X(32675), X(59015)}}, {{A, B, C, X(36077), X(54240)}}, {{A, B, C, X(43350), X(58132)}}, {{A, B, C, X(59038), X(65333)}}, {{A, B, C, X(59125), X(65173)}}
X(65226) lies on these lines: {7, 88}, {9, 34234}, {100, 51564}, {101, 37136}, {144, 30680}, {162, 65177}, {390, 952}, {527, 65249}, {528, 36596}, {651, 2427}, {653, 21362}, {655, 3732}, {658, 24029}, {664, 3257}, {673, 8545}, {1025, 65242}, {1445, 65241}, {2349, 60942}, {2406, 61240}, {4552, 27834}, {5732, 23707}, {6172, 36101}, {12848, 43760}, {14556, 60934}, {24624, 29007}, {37131, 50573}, {37142, 56107}, {37203, 60973}, {37222, 37787}, {42309, 43762}, {43757, 60944}, {60966, 65246}, {61227, 65227}, {65160, 65223}
X(65226) = reflection of X(i) in X(j) for these {i,j}: {7, 52659}, {34234, 9}
X(65226) = trilinear pole of line {1, 631}
X(65226) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 21183}, {513, 55432}, {514, 52428}, {647, 17519}, {649, 3872}, {650, 999}, {654, 56426}, {663, 3306}, {667, 28808}, {2170, 35281}, {3063, 42697}, {3753, 7252}, {8641, 17079}, {18344, 22129}
X(65226) = X(i)-vertex conjugate of X(j) for these {i, j}: {692, 37136}
X(65226) = X(i)-Dao conjugate of X(j) for these {i, j}: {3160, 21183}, {5375, 3872}, {6631, 28808}, {10001, 42697}, {39026, 55432}, {39052, 17519}
X(65226) = X(i)-cross conjugate of X(j) for these {i, j}: {376, 55346}, {3476, 4998}, {4266, 59}, {5119, 7045}, {6006, 7}, {56824, 24032}, {63126, 1016}
X(65226) = pole of line {3872, 5744} with respect to the Yff parabola
X(65226) = pole of line {5744, 55432} with respect to the Hutson-Moses hyperbola
X(65226) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(664)}}, {{A, B, C, X(9), X(101)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(144), X(2406)}}, {{A, B, C, X(527), X(952)}}, {{A, B, C, X(1025), X(8545)}}, {{A, B, C, X(1813), X(21362)}}, {{A, B, C, X(1897), X(13136)}}, {{A, B, C, X(2737), X(32041)}}, {{A, B, C, X(3699), X(50039)}}, {{A, B, C, X(4582), X(30610)}}, {{A, B, C, X(10307), X(53898)}}, {{A, B, C, X(12848), X(53337)}}, {{A, B, C, X(24002), X(62623)}}, {{A, B, C, X(36118), X(54952)}}, {{A, B, C, X(43191), X(44765)}}, {{A, B, C, X(44327), X(55996)}}, {{A, B, C, X(54970), X(65330)}}
X(65226) = barycentric product X(i)*X(j) for these (i, j): {109, 58029}, {1000, 664}, {4566, 56107}, {4569, 52429}, {30680, 653}, {34446, 4572}, {36916, 658}, {51564, 7}, {65029, 651}
X(65226) = barycentric quotient X(i)/X(j) for these (i, j): {7, 21183}, {59, 35281}, {100, 3872}, {101, 55432}, {109, 999}, {162, 17519}, {190, 28808}, {651, 3306}, {658, 17079}, {664, 42697}, {692, 52428}, {1000, 522}, {1813, 22129}, {2222, 56426}, {4551, 3753}, {4552, 4054}, {4554, 20925}, {30680, 6332}, {34446, 663}, {36916, 3239}, {51564, 8}, {52429, 3900}, {56107, 7253}, {58029, 35519}, {59068, 2316}, {59129, 1481}, {62669, 62621}, {65029, 4391}
X(65227) lies on these lines: {88, 5708}, {100, 4574}, {101, 162}, {109, 65217}, {110, 65254}, {190, 54970}, {295, 37128}, {651, 23067}, {653, 4551}, {662, 1331}, {673, 5256}, {799, 4561}, {823, 1897}, {936, 7572}, {1156, 2335}, {1807, 24624}, {2215, 37129}, {3699, 37218}, {5779, 33761}, {27834, 57151}, {37130, 57831}, {37202, 63235}, {43758, 45128}, {61227, 65226}
X(65227) = isogonal conjugate of X(46385)
X(65227) = trilinear pole of line {1, 71}
X(65227) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46385}, {6, 23882}, {27, 46382}, {213, 15417}, {405, 513}, {521, 54394}, {522, 1451}, {649, 5271}, {650, 37543}, {656, 56831}, {667, 44140}, {693, 5320}, {1459, 39585}, {1882, 23189}, {3733, 5295}, {4040, 14549}, {7004, 65180}, {7117, 65355}, {42706, 43925}
X(65227) = X(i)-vertex conjugate of X(j) for these {i, j}: {162, 692}
X(65227) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46385}, {9, 23882}, {5375, 5271}, {6626, 15417}, {6631, 44140}, {39026, 405}, {40596, 56831}
X(65227) = X(i)-cross conjugate of X(j) for these {i, j}: {581, 59}, {46382, 40435}, {46385, 1}, {50449, 40433}, {54405, 4564}, {55104, 7012}
X(65227) = pole of line {405, 51223} with respect to the Hutson-Moses hyperbola
X(65227) = pole of line {15417, 46385} with respect to the Wallace hyperbola
X(65227) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(28148)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(101), X(295)}}, {{A, B, C, X(107), X(54952)}}, {{A, B, C, X(108), X(36048)}}, {{A, B, C, X(109), X(3466)}}, {{A, B, C, X(110), X(664)}}, {{A, B, C, X(668), X(931)}}, {{A, B, C, X(833), X(52935)}}, {{A, B, C, X(1026), X(5256)}}, {{A, B, C, X(1414), X(13397)}}, {{A, B, C, X(3699), X(5546)}}, {{A, B, C, X(4242), X(25516)}}, {{A, B, C, X(4246), X(7572)}}, {{A, B, C, X(4559), X(28624)}}, {{A, B, C, X(4571), X(65201)}}, {{A, B, C, X(4597), X(8690)}}, {{A, B, C, X(4627), X(44327)}}, {{A, B, C, X(5708), X(23703)}}, {{A, B, C, X(6606), X(59038)}}, {{A, B, C, X(6742), X(8652)}}, {{A, B, C, X(8694), X(36049)}}, {{A, B, C, X(15439), X(36127)}}, {{A, B, C, X(16415), X(46541)}}, {{A, B, C, X(28196), X(51562)}}, {{A, B, C, X(32656), X(61169)}}, {{A, B, C, X(34594), X(58132)}}, {{A, B, C, X(35281), X(61227)}}, {{A, B, C, X(36077), X(54970)}}, {{A, B, C, X(43290), X(57151)}}, {{A, B, C, X(43356), X(58135)}}, {{A, B, C, X(53649), X(59012)}}
X(65227) = barycentric product X(i)*X(j) for these (i, j): {1, 54970}, {101, 57831}, {162, 63235}, {190, 51223}, {306, 36077}, {2215, 668}, {2335, 664}, {36080, 75}, {51875, 65247}
X(65227) = barycentric quotient X(i)/X(j) for these (i, j): {1, 23882}, {6, 46385}, {86, 15417}, {100, 5271}, {101, 405}, {109, 37543}, {112, 56831}, {190, 44140}, {228, 46382}, {1018, 5295}, {1415, 1451}, {1783, 39585}, {2215, 513}, {2335, 522}, {7012, 65355}, {7115, 65180}, {32674, 54394}, {32739, 5320}, {36077, 27}, {36080, 1}, {51223, 514}, {54970, 75}, {57831, 3261}, {63235, 14208}
X(65228) lies on these lines: {1, 49}, {9, 52351}, {12, 57263}, {35, 35194}, {40, 80}, {46, 56419}, {57, 1020}, {63, 18359}, {94, 57645}, {267, 1710}, {484, 63750}, {655, 16548}, {759, 1175}, {1411, 3340}, {1708, 18815}, {1762, 21362}, {1768, 14204}, {1807, 3601}, {2003, 7202}, {2222, 28471}, {2595, 7741}, {2597, 3737}, {2599, 17104}, {2605, 62766}, {2608, 4551}, {3219, 41226}, {3460, 37732}, {3929, 36910}, {5536, 60845}, {5540, 56415}, {10260, 59331}, {11010, 58739}, {14628, 21367}, {16577, 40214}, {20602, 35174}, {35445, 52371}, {56417, 59335}, {56547, 64295}
X(65228) = trilinear pole of line {2594, 2605}
X(65228) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 63642}, {9, 56844}, {36, 7110}, {79, 2323}, {94, 215}, {654, 6742}, {1989, 4996}, {2160, 4511}, {2166, 34544}, {2245, 3615}, {2361, 30690}, {3218, 7073}, {4282, 6757}, {4551, 62746}, {6186, 32851}, {7113, 52344}, {8606, 17923}, {8648, 15455}, {20565, 52426}, {38340, 53285}, {52374, 58328}, {52381, 52427}
X(65228) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 63642}, {478, 56844}, {8287, 3904}, {11597, 34544}, {15898, 7110}, {34544, 4996}
X(65228) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57645, 1}, {63778, 56422}
X(65228) = X(i)-cross conjugate of X(j) for these {i, j}: {50, 1}, {2290, 17104}
X(65228) = pole of line {654, 55126} with respect to the Bevan circle
X(65228) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(94)}}, {{A, B, C, X(19), X(2174)}}, {{A, B, C, X(35), X(57)}}, {{A, B, C, X(50), X(215)}}, {{A, B, C, X(655), X(1020)}}, {{A, B, C, X(1086), X(3512)}}, {{A, B, C, X(1442), X(62780)}}, {{A, B, C, X(1825), X(6354)}}, {{A, B, C, X(2006), X(41226)}}, {{A, B, C, X(3772), X(42033)}}, {{A, B, C, X(4674), X(42701)}}, {{A, B, C, X(8557), X(41441)}}, {{A, B, C, X(14838), X(43043)}}, {{A, B, C, X(18785), X(55210)}}, {{A, B, C, X(26743), X(47054)}}, {{A, B, C, X(35194), X(60074)}}, {{A, B, C, X(37646), X(56440)}}, {{A, B, C, X(56848), X(65134)}}
X(65228) = barycentric product X(i)*X(j) for these (i, j): {1, 63778}, {323, 34535}, {1399, 20566}, {1411, 319}, {1442, 80}, {1807, 7282}, {1825, 57985}, {2006, 3219}, {2166, 7279}, {2222, 4467}, {2477, 63759}, {2599, 39277}, {2605, 35174}, {4560, 63202}, {14616, 2594}, {14838, 655}, {16577, 24624}, {17095, 2161}, {18160, 32675}, {18359, 2003}, {18815, 35}, {40214, 60091}, {40999, 759}, {41226, 57}, {47054, 64990}, {52383, 56934}, {52392, 6198}, {52421, 6187}, {56422, 7}, {57645, 6149}, {65100, 65299}
X(65228) = barycentric quotient X(i)/X(j) for these (i, j): {1, 63642}, {35, 4511}, {50, 34544}, {56, 56844}, {80, 52344}, {655, 15455}, {759, 3615}, {1399, 36}, {1411, 79}, {1442, 320}, {1825, 860}, {2003, 3218}, {2006, 30690}, {2161, 7110}, {2174, 2323}, {2222, 6742}, {2477, 6149}, {2594, 758}, {2605, 3738}, {3219, 32851}, {6149, 4996}, {6187, 7073}, {6198, 5081}, {7252, 62746}, {14838, 3904}, {14975, 52427}, {16577, 3936}, {17095, 20924}, {18815, 20565}, {21741, 2245}, {21794, 4053}, {34535, 94}, {40999, 35550}, {41226, 312}, {52383, 6757}, {52391, 52388}, {52421, 40075}, {53542, 53525}, {54244, 44428}, {56422, 8}, {57645, 63759}, {57736, 1789}, {63202, 4552}, {63750, 2166}, {63778, 75}
X(65228) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {655, 24624, 60091}
X(65229) lies on these lines: {88, 4359}, {100, 646}, {190, 65282}, {604, 45242}, {645, 65260}, {651, 668}, {658, 4572}, {660, 4581}, {662, 4033}, {673, 1240}, {799, 35334}, {1018, 7258}, {1220, 37129}, {1492, 32736}, {1978, 37215}, {2298, 20332}, {3257, 65161}, {3596, 24612}, {3699, 65225}, {4552, 37137}, {4562, 37134}, {4607, 62749}, {6335, 36099}, {7035, 65191}, {8687, 65373}, {14624, 16738}, {19811, 34234}, {24004, 37212}, {24624, 60264}, {31643, 43760}, {36804, 37140}, {64984, 65241}
X(65229) = isotomic conjugate of X(48131)
X(65229) = trilinear pole of line {1, 312}
X(65229) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 57157}, {6, 6371}, {31, 48131}, {32, 3004}, {56, 52326}, {513, 2300}, {560, 4509}, {593, 42661}, {604, 17420}, {649, 1193}, {663, 61412}, {667, 3666}, {669, 16705}, {798, 54308}, {960, 57181}, {1015, 53280}, {1019, 3725}, {1333, 50330}, {1397, 3910}, {1459, 2354}, {1829, 22383}, {1919, 4357}, {1924, 16739}, {1977, 53332}, {1980, 20911}, {2092, 3733}, {2206, 21124}, {2269, 43924}, {2292, 57129}, {3063, 24471}, {3248, 3882}, {3669, 20967}, {3768, 62769}, {3937, 61205}, {4267, 7180}, {6591, 22345}, {6648, 41224}, {7250, 46889}, {7254, 44092}, {8635, 17108}, {8640, 27455}, {8687, 61051}, {8707, 39015}, {14412, 38882}, {16695, 45218}, {17185, 51641}, {17939, 57462}, {22074, 43923}, {22076, 43925}, {35506, 52928}, {45197, 57074}, {52410, 57158}
X(65229) = X(i)-vertex conjugate of X(j) for these {i, j}: {40519, 65230}
X(65229) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 52326}, {2, 48131}, {9, 6371}, {37, 50330}, {3161, 17420}, {5375, 1193}, {6374, 4509}, {6376, 3004}, {6631, 3666}, {9296, 4357}, {9428, 16739}, {10001, 24471}, {17419, 61051}, {31998, 54308}, {32664, 57157}, {39026, 2300}, {39054, 40153}, {40603, 21124}, {62585, 3910}
X(65229) = X(i)-cross conjugate of X(j) for these {i, j}: {10, 7035}, {333, 1016}, {830, 3112}, {21061, 765}, {35334, 36147}, {57155, 86}, {62749, 1220}
X(65229) = pole of line {1193, 27064} with respect to the Yff parabola
X(65229) = pole of line {2300, 27064} with respect to the Hutson-Moses hyperbola
X(65229) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(57975)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(645), X(8706)}}, {{A, B, C, X(646), X(668)}}, {{A, B, C, X(666), X(52612)}}, {{A, B, C, X(670), X(51560)}}, {{A, B, C, X(789), X(4625)}}, {{A, B, C, X(811), X(839)}}, {{A, B, C, X(813), X(65167)}}, {{A, B, C, X(889), X(4623)}}, {{A, B, C, X(1978), X(6335)}}, {{A, B, C, X(2397), X(19811)}}, {{A, B, C, X(3570), X(16738)}}, {{A, B, C, X(3699), X(7258)}}, {{A, B, C, X(3952), X(65338)}}, {{A, B, C, X(4033), X(36804)}}, {{A, B, C, X(4359), X(24004)}}, {{A, B, C, X(4552), X(4562)}}, {{A, B, C, X(4584), X(59102)}}, {{A, B, C, X(4594), X(8709)}}, {{A, B, C, X(6010), X(32665)}}, {{A, B, C, X(6648), X(8707)}}, {{A, B, C, X(8050), X(54986)}}, {{A, B, C, X(9059), X(44765)}}, {{A, B, C, X(27805), X(56248)}}, {{A, B, C, X(29052), X(57960)}}, {{A, B, C, X(35009), X(65298)}}, {{A, B, C, X(35574), X(55281)}}, {{A, B, C, X(51563), X(57959)}}
X(65230) lies on these lines: {88, 5333}, {99, 651}, {100, 645}, {163, 65255}, {190, 7257}, {314, 24633}, {333, 43759}, {643, 36098}, {653, 811}, {658, 4625}, {799, 3882}, {897, 31359}, {941, 17379}, {1018, 7258}, {2258, 37132}, {4594, 37137}, {4612, 65253}, {5278, 24624}, {5331, 37129}, {17931, 65220}, {34259, 37142}, {36860, 37133}, {37219, 40828}, {53338, 65250}, {55281, 65222}, {55284, 61240}, {65166, 65225}
X(65230) = isotomic conjugate of X(50457)
X(65230) = trilinear pole of line {1, 333}
X(65230) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 8639}, {6, 8672}, {31, 50457}, {42, 48144}, {213, 43067}, {512, 940}, {523, 5019}, {647, 4185}, {661, 1468}, {667, 31993}, {669, 34284}, {798, 10436}, {810, 5307}, {958, 7180}, {1400, 17418}, {1402, 23880}, {1427, 58332}, {1867, 22383}, {2268, 4017}, {3122, 65168}, {3713, 7250}, {3714, 57181}, {4557, 53543}, {11679, 51641}, {17110, 50483}, {53321, 53561}, {54417, 57185}
X(65230) = X(i)-vertex conjugate of X(j) for these {i, j}: {40519, 65229}
X(65230) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 50457}, {9, 8672}, {5375, 59305}, {6626, 43067}, {6631, 31993}, {31998, 10436}, {32664, 8639}, {34961, 2268}, {36830, 1468}, {39052, 4185}, {39054, 940}, {39062, 5307}, {40582, 17418}, {40592, 48144}, {40605, 23880}, {40625, 53526}, {55068, 53561}
X(65230) = X(i)-cross conjugate of X(j) for these {i, j}: {386, 7035}, {1010, 4600}, {6005, 40439}, {12514, 24041}, {65166, 99}
X(65230) = pole of line {23880, 43067} with respect to the Wallace hyperbola
X(65230) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(99), X(645)}}, {{A, B, C, X(163), X(1018)}}, {{A, B, C, X(643), X(7258)}}, {{A, B, C, X(648), X(4610)}}, {{A, B, C, X(670), X(51563)}}, {{A, B, C, X(1978), X(54970)}}, {{A, B, C, X(3570), X(17379)}}, {{A, B, C, X(3952), X(54986)}}, {{A, B, C, X(4552), X(27805)}}, {{A, B, C, X(4565), X(4603)}}, {{A, B, C, X(4584), X(4627)}}, {{A, B, C, X(4585), X(5278)}}, {{A, B, C, X(4602), X(32041)}}, {{A, B, C, X(28624), X(65298)}}, {{A, B, C, X(28841), X(65167)}}, {{A, B, C, X(35180), X(42362)}}, {{A, B, C, X(44765), X(46961)}}, {{A, B, C, X(51560), X(57959)}}
X(65230) = barycentric product X(i)*X(j) for these (i, j): {1, 65280}, {75, 931}, {163, 40828}, {190, 37870}, {314, 65225}, {799, 941}, {2258, 670}, {5331, 668}, {7257, 959}, {28660, 32693}, {31359, 99}, {32038, 333}, {34258, 662}, {34259, 811}, {44733, 645}, {58008, 643}
X(65230) = barycentric quotient X(i)/X(j) for these (i, j): {1, 8672}, {2, 50457}, {21, 17418}, {31, 8639}, {81, 48144}, {86, 43067}, {99, 10436}, {100, 59305}, {110, 1468}, {162, 4185}, {163, 5019}, {190, 31993}, {333, 23880}, {643, 958}, {645, 11679}, {648, 5307}, {662, 940}, {799, 34284}, {931, 1}, {941, 661}, {959, 4017}, {1019, 53543}, {1021, 53561}, {1897, 1867}, {2258, 512}, {2328, 58332}, {3699, 3714}, {4560, 53526}, {4567, 65168}, {4636, 54417}, {5331, 513}, {5546, 2268}, {7258, 61414}, {7259, 3713}, {16704, 53536}, {31359, 523}, {32038, 226}, {32693, 1400}, {34258, 1577}, {34259, 656}, {36797, 54396}, {37870, 514}, {40828, 20948}, {44733, 7178}, {52931, 1254}, {58008, 4077}, {65225, 65}, {65280, 75}
X(65231) lies on these lines: {100, 663}, {190, 650}, {239, 34234}, {241, 65241}, {649, 651}, {653, 6591}, {658, 3669}, {662, 7252}, {673, 16610}, {799, 4560}, {884, 23832}, {899, 1156}, {1155, 9432}, {1492, 35281}, {1821, 37759}, {2423, 37136}, {4598, 6631}, {4850, 37222}, {5205, 9371}, {7035, 25268}, {9358, 37141}, {17595, 24499}, {26273, 57037}, {28798, 37758}, {34085, 62635}, {37130, 37756}, {61214, 65248}
X(65231) = trilinear pole of line {1, 3271}
X(65231) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 56530}, {647, 15150}, {649, 5205}, {650, 9364}, {663, 40862}, {667, 40875}
X(65231) = X(i)-vertex conjugate of X(j) for these {i, j}: {31615, 32666}
X(65231) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 5205}, {6631, 40875}, {39026, 56530}, {39052, 15150}
X(65231) = X(i)-cross conjugate of X(j) for these {i, j}: {2821, 7}, {62371, 59}
X(65231) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(901)}}, {{A, B, C, X(57), X(666)}}, {{A, B, C, X(81), X(51562)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(109), X(30610)}}, {{A, B, C, X(241), X(16610)}}, {{A, B, C, X(646), X(1461)}}, {{A, B, C, X(649), X(650)}}, {{A, B, C, X(893), X(34067)}}, {{A, B, C, X(899), X(1155)}}, {{A, B, C, X(1293), X(4554)}}, {{A, B, C, X(2051), X(46405)}}, {{A, B, C, X(2222), X(31628)}}, {{A, B, C, X(2731), X(42467)}}, {{A, B, C, X(2737), X(5205)}}, {{A, B, C, X(2743), X(31615)}}, {{A, B, C, X(3903), X(35009)}}, {{A, B, C, X(4565), X(56248)}}, {{A, B, C, X(4573), X(56194)}}, {{A, B, C, X(4591), X(36804)}}, {{A, B, C, X(4617), X(31343)}}, {{A, B, C, X(5382), X(7035)}}, {{A, B, C, X(6014), X(32041)}}, {{A, B, C, X(9082), X(26273)}}, {{A, B, C, X(9357), X(9361)}}, {{A, B, C, X(14727), X(54128)}}, {{A, B, C, X(28218), X(54118)}}, {{A, B, C, X(30650), X(32718)}}, {{A, B, C, X(37756), X(42723)}}, {{A, B, C, X(37759), X(42717)}}, {{A, B, C, X(39741), X(46135)}}, {{A, B, C, X(42343), X(58124)}}
X(65231) = barycentric product X(i)*X(j) for these (i, j): {1, 53208}, {664, 9365}, {668, 9432}, {52517, 651}, {65367, 75}
X(65231) = barycentric quotient X(i)/X(j) for these (i, j): {100, 5205}, {101, 56530}, {109, 9364}, {162, 15150}, {190, 40875}, {651, 40862}, {9365, 522}, {9432, 513}, {52517, 4391}, {53208, 75}, {65367, 1}
X(65232) lies on these lines: {6, 57737}, {7, 2326}, {27, 1412}, {28, 34056}, {56, 270}, {77, 3213}, {99, 58945}, {101, 65170}, {107, 8059}, {108, 110}, {109, 36077}, {112, 934}, {163, 1020}, {196, 40214}, {241, 56830}, {273, 604}, {643, 65233}, {648, 653}, {811, 65207}, {823, 37136}, {1014, 1172}, {1326, 56909}, {1396, 56049}, {1414, 4556}, {1420, 13739}, {1461, 24019}, {1474, 56783}, {1625, 52610}, {1783, 4627}, {1790, 41083}, {1897, 65168}, {2073, 2078}, {2260, 63193}, {2360, 44698}, {2905, 7120}, {3733, 52604}, {3882, 4242}, {4552, 41676}, {4560, 41678}, {4610, 4625}, {4626, 4637}, {5053, 26003}, {5546, 65159}, {6610, 52955}, {7125, 44697}, {7128, 17925}, {8545, 11107}, {16754, 65253}, {16813, 39177}, {17094, 39052}, {17940, 43923}, {23353, 53323}, {32676, 36146}, {36119, 59818}, {37141, 65224}, {40862, 44330}, {44331, 56869}, {46151, 47844}, {52775, 59005}, {57118, 65177}, {58993, 59010}
X(65232) = isogonal conjugate of X(8611)
X(65232) = trilinear pole of line {28, 34}
X(65232) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8611}, {3, 3700}, {6, 52355}, {8, 647}, {9, 656}, {10, 652}, {11, 4574}, {12, 23090}, {21, 55232}, {33, 24018}, {37, 521}, {41, 14208}, {42, 6332}, {48, 4086}, {55, 525}, {63, 4041}, {65, 57055}, {69, 3709}, {71, 522}, {72, 650}, {73, 3239}, {77, 4171}, {78, 661}, {100, 53560}, {112, 7068}, {125, 5546}, {181, 15411}, {200, 51664}, {201, 1021}, {210, 905}, {212, 1577}, {213, 35518}, {219, 523}, {220, 17094}, {225, 57057}, {226, 57108}, {228, 4391}, {271, 55212}, {281, 520}, {283, 4024}, {284, 4064}, {304, 63461}, {306, 663}, {307, 657}, {312, 810}, {318, 822}, {321, 1946}, {326, 55206}, {332, 4079}, {333, 55230}, {345, 512}, {348, 4524}, {513, 3694}, {514, 2318}, {594, 23189}, {607, 3265}, {643, 3708}, {644, 18210}, {645, 20975}, {649, 3710}, {669, 57919}, {684, 15628}, {686, 56103}, {693, 52370}, {798, 3718}, {850, 52425}, {879, 59734}, {1018, 7004}, {1043, 55234}, {1073, 14308}, {1146, 23067}, {1172, 57109}, {1214, 3900}, {1231, 8641}, {1259, 2501}, {1260, 7178}, {1264, 2489}, {1265, 7180}, {1331, 21044}, {1332, 4516}, {1334, 4025}, {1402, 15416}, {1409, 4397}, {1439, 4130}, {1441, 65102}, {1459, 2321}, {1792, 57185}, {1793, 2610}, {1802, 4077}, {1812, 4705}, {1813, 52335}, {1826, 57241}, {1857, 52613}, {1903, 57101}, {2171, 57081}, {2175, 3267}, {2193, 4036}, {2197, 7253}, {2200, 35519}, {2289, 24006}, {2310, 65233}, {2316, 14429}, {2328, 57243}, {2333, 52616}, {2357, 57245}, {2631, 44693}, {2632, 65201}, {2638, 65207}, {2968, 4559}, {3049, 3596}, {3063, 20336}, {3064, 3682}, {3120, 4587}, {3125, 4571}, {3269, 36797}, {3270, 4552}, {3271, 52609}, {3688, 4580}, {3690, 4560}, {3692, 4017}, {3693, 10099}, {3695, 7252}, {3701, 22383}, {3712, 10097}, {3737, 3949}, {3930, 23696}, {3937, 30730}, {3939, 4466}, {3942, 4069}, {3952, 7117}, {3990, 44426}, {3998, 18344}, {4055, 46110}, {4081, 52610}, {4091, 53008}, {4092, 4558}, {4105, 56382}, {4140, 7015}, {4143, 6059}, {4163, 52373}, {4551, 34591}, {4557, 26932}, {4636, 21046}, {4674, 14418}, {4876, 53556}, {5440, 61179}, {5547, 14417}, {6056, 14618}, {6057, 7254}, {6354, 58338}, {6358, 57134}, {6516, 36197}, {6730, 7591}, {7017, 39201}, {7063, 52608}, {7064, 15419}, {7065, 15352}, {7066, 17926}, {7077, 24459}, {7101, 51640}, {7250, 30681}, {7265, 8606}, {7359, 14380}, {8057, 30457}, {8058, 41087}, {8676, 40161}, {9033, 15627}, {9404, 52388}, {10397, 39130}, {10570, 52310}, {14298, 52389}, {14331, 53012}, {15412, 44707}, {15420, 40966}, {20902, 65375}, {21789, 26942}, {21801, 37628}, {21871, 61040}, {23289, 51574}, {35072, 61178}, {36054, 41013}, {37755, 58329}, {38955, 52307}, {40149, 58340}, {40628, 56259}, {51379, 55259}, {51641, 52406}, {52351, 53562}, {52385, 65103}, {52978, 55244}, {53013, 64885}
X(65232) = X(i)-vertex conjugate of X(j) for these {i, j}: {653, 32652}, {1020, 65375}, {1813, 8750}
X(65232) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 8611}, {9, 52355}, {223, 525}, {478, 656}, {1249, 4086}, {3160, 14208}, {3162, 4041}, {5375, 3710}, {5521, 21044}, {6609, 51664}, {6626, 35518}, {8054, 53560}, {10001, 20336}, {15259, 55206}, {31998, 3718}, {34591, 7068}, {34961, 3692}, {36103, 3700}, {36830, 78}, {36908, 57243}, {39026, 3694}, {39052, 8}, {39053, 321}, {39054, 345}, {39060, 313}, {39062, 312}, {40589, 521}, {40590, 4064}, {40592, 6332}, {40593, 3267}, {40596, 9}, {40602, 57055}, {40605, 15416}, {40611, 55232}, {40617, 4466}, {40620, 17880}, {40622, 20902}, {40837, 1577}, {47345, 4036}, {55060, 3708}, {55067, 2968}, {62602, 850}
X(65232) = X(i)-cross conjugate of X(j) for these {i, j}: {112, 162}, {278, 7128}, {608, 7012}, {1019, 27}, {1459, 63193}, {1461, 4565}, {3737, 1014}, {4017, 273}, {4306, 7045}, {7252, 270}, {51664, 57}, {55208, 34}, {56848, 35049}
X(65232) = pole of line {8822, 16049} with respect to the Kiepert parabola
X(65232) = pole of line {521, 652} with respect to the Stammler hyperbola
X(65232) = pole of line {3101, 64002} with respect to the Yff parabola
X(65232) = pole of line {6332, 8611} with respect to the Wallace hyperbola
X(65232) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(27), X(823)}}, {{A, B, C, X(108), X(653)}}, {{A, B, C, X(110), X(662)}}, {{A, B, C, X(112), X(24019)}}, {{A, B, C, X(162), X(648)}}, {{A, B, C, X(163), X(59010)}}, {{A, B, C, X(190), X(13397)}}, {{A, B, C, X(278), X(52607)}}, {{A, B, C, X(514), X(2850)}}, {{A, B, C, X(651), X(664)}}, {{A, B, C, X(1019), X(17197)}}, {{A, B, C, X(1020), X(26700)}}, {{A, B, C, X(1461), X(1813)}}, {{A, B, C, X(1474), X(32676)}}, {{A, B, C, X(1897), X(36099)}}, {{A, B, C, X(2720), X(32651)}}, {{A, B, C, X(3669), X(51643)}}, {{A, B, C, X(4617), X(37141)}}, {{A, B, C, X(7254), X(39177)}}, {{A, B, C, X(14543), X(44065)}}, {{A, B, C, X(17096), X(39179)}}, {{A, B, C, X(32674), X(58945)}}, {{A, B, C, X(36145), X(58987)}}, {{A, B, C, X(37140), X(55183)}}, {{A, B, C, X(52775), X(54240)}}, {{A, B, C, X(58992), X(65298)}}, {{A, B, C, X(59067), X(65375)}}
X(65232) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {648, 662, 65201}
X(65233) lies on these lines: {7, 27514}, {9, 25000}, {12, 5880}, {57, 18139}, {63, 343}, {71, 307}, {77, 2197}, {78, 296}, {100, 109}, {101, 13395}, {190, 653}, {306, 40152}, {345, 56553}, {573, 28739}, {579, 56927}, {643, 65232}, {644, 56235}, {645, 4998}, {655, 65236}, {662, 65217}, {664, 54970}, {831, 53243}, {905, 23113}, {1018, 1020}, {1305, 29014}, {1332, 1813}, {1445, 16593}, {1730, 28776}, {1764, 28774}, {1765, 21270}, {2250, 21091}, {2252, 9028}, {2283, 4553}, {3682, 62765}, {3692, 7013}, {3694, 52385}, {3729, 34388}, {3952, 61229}, {4019, 57807}, {4558, 44717}, {4574, 52610}, {5249, 60188}, {14543, 21362}, {17740, 56550}, {17776, 56549}, {17975, 17977}, {21361, 28997}, {25083, 62402}, {25268, 57245}, {32849, 56560}, {40576, 54440}, {41342, 56559}, {44710, 57081}, {51367, 51368}, {53321, 61172}, {56826, 56886}, {61178, 65196}, {61236, 65355}, {63203, 63782}, {63827, 65175}, {65314, 65315}
X(65233) = isotomic conjugate of X(57215)
X(65233) = trilinear pole of line {72, 73}
X(65233) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 7252}, {8, 43925}, {9, 57200}, {11, 112}, {19, 3737}, {21, 6591}, {25, 4560}, {27, 663}, {28, 650}, {29, 649}, {31, 57215}, {33, 1019}, {34, 1021}, {55, 17925}, {56, 17926}, {58, 3064}, {60, 2501}, {81, 18344}, {107, 7117}, {110, 8735}, {162, 2170}, {232, 60568}, {244, 65201}, {250, 55195}, {261, 2489}, {270, 661}, {278, 21789}, {281, 3733}, {284, 7649}, {286, 3063}, {318, 57129}, {393, 23189}, {512, 46103}, {513, 1172}, {514, 2299}, {521, 5317}, {522, 1474}, {523, 2189}, {607, 7192}, {608, 7253}, {645, 42067}, {648, 3271}, {652, 8747}, {667, 31623}, {693, 2204}, {757, 55206}, {759, 65104}, {798, 57779}, {884, 15149}, {1014, 65103}, {1015, 36797}, {1024, 54407}, {1098, 55208}, {1118, 23090}, {1333, 44426}, {1364, 6529}, {1396, 3900}, {1435, 58329}, {1459, 8748}, {1783, 18191}, {1857, 7254}, {1896, 22383}, {1919, 44130}, {1973, 18155}, {2053, 17921}, {2150, 24006}, {2181, 39177}, {2194, 17924}, {2203, 4391}, {2206, 46110}, {2212, 7199}, {2287, 43923}, {2310, 65232}, {2311, 65106}, {2322, 43924}, {2326, 4017}, {2332, 3676}, {2354, 57161}, {2969, 5546}, {2971, 55196}, {3125, 52914}, {3572, 14024}, {3669, 4183}, {4565, 42069}, {4858, 32676}, {5190, 58986}, {6059, 15419}, {7004, 24019}, {7071, 17096}, {7079, 7203}, {7115, 56283}, {7180, 59482}, {7337, 15411}, {8676, 40574}, {8750, 17197}, {14010, 32702}, {14775, 46882}, {15352, 61054}, {16726, 56183}, {18020, 63462}, {18021, 57204}, {18101, 35325}, {24624, 58313}, {26932, 32713}, {33635, 46542}, {34079, 44428}, {34387, 61206}, {36420, 52355}, {37908, 62635}, {44113, 60571}, {46107, 57657}, {52375, 65105}, {52920, 53560}, {57212, 60816}
X(65233) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 17926}, {2, 57215}, {6, 3737}, {10, 3064}, {37, 44426}, {125, 2170}, {223, 17925}, {226, 514}, {244, 8735}, {478, 57200}, {905, 40213}, {1214, 17924}, {5375, 29}, {6337, 18155}, {6505, 4560}, {6631, 31623}, {9296, 44130}, {10001, 286}, {11517, 1021}, {15267, 55208}, {15526, 4858}, {26932, 17197}, {31998, 57779}, {34586, 65104}, {34591, 11}, {34961, 2326}, {35069, 44428}, {35071, 7004}, {36033, 7252}, {36830, 270}, {38985, 7117}, {39006, 18191}, {39019, 60804}, {39026, 1172}, {39054, 46103}, {40586, 18344}, {40590, 7649}, {40591, 650}, {40603, 46110}, {40607, 55206}, {40611, 6591}, {40628, 56283}, {51574, 522}, {55064, 42069}, {55066, 3271}, {56325, 24006}, {62564, 4391}, {62565, 693}, {62570, 46107}, {62573, 17880}, {62614, 35519}, {62647, 7253}
X(65233) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 4552}, {4998, 78}, {6516, 23067}, {44717, 63}, {46102, 64082}, {65014, 22350}
X(65233) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2149, 52676}
X(65233) = X(i)-cross conjugate of X(j) for these {i, j}: {525, 63}, {656, 307}, {8611, 72}, {24018, 306}, {51664, 1214}
X(65233) = pole of line {14723, 23845} with respect to the circumcircle
X(65233) = pole of line {2975, 17221} with respect to the Kiepert parabola
X(65233) = pole of line {23113, 40518} with respect to the MacBeath circumconic
X(65233) = pole of line {3737, 57212} with respect to the Stammler hyperbola
X(65233) = pole of line {4552, 61185} with respect to the Steiner circumellipse
X(65233) = pole of line {3, 63} with respect to the Yff parabola
X(65233) = pole of line {9, 16577} with respect to the Hutson-Moses hyperbola
X(65233) = pole of line {18155, 57215} with respect to the Wallace hyperbola
X(65233) = pole of line {2170, 3904} with respect to the dual conic of polar circle
X(65233) = pole of line {312, 52358} with respect to the dual conic of Feuerbach hyperbola
X(65233) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7451)}}, {{A, B, C, X(63), X(4558)}}, {{A, B, C, X(71), X(54325)}}, {{A, B, C, X(78), X(645)}}, {{A, B, C, X(100), X(1332)}}, {{A, B, C, X(109), X(296)}}, {{A, B, C, X(190), X(1331)}}, {{A, B, C, X(226), X(61231)}}, {{A, B, C, X(306), X(4033)}}, {{A, B, C, X(307), X(1025)}}, {{A, B, C, X(343), X(4585)}}, {{A, B, C, X(525), X(3738)}}, {{A, B, C, X(651), X(4566)}}, {{A, B, C, X(656), X(2254)}}, {{A, B, C, X(662), X(61220)}}, {{A, B, C, X(831), X(35338)}}, {{A, B, C, X(906), X(29014)}}, {{A, B, C, X(1018), X(3939)}}, {{A, B, C, X(1214), X(23703)}}, {{A, B, C, X(3694), X(4069)}}, {{A, B, C, X(3882), X(4592)}}, {{A, B, C, X(3998), X(42718)}}, {{A, B, C, X(4551), X(4605)}}, {{A, B, C, X(4571), X(4606)}}, {{A, B, C, X(8611), X(14392)}}, {{A, B, C, X(17094), X(43050)}}, {{A, B, C, X(22003), X(53388)}}, {{A, B, C, X(24029), X(40152)}}, {{A, B, C, X(37136), X(61227)}}, {{A, B, C, X(37205), X(57876)}}, {{A, B, C, X(51664), X(53528)}}, {{A, B, C, X(61225), X(65300)}}
X(65233) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1018, 1020, 4552}, {1025, 3882, 651}, {1332, 6516, 1813}, {21362, 61237, 14543}
X(65234) lies on these lines: {7, 34234}, {9, 36100}, {88, 1445}, {100, 24029}, {144, 65246}, {658, 2406}, {662, 65159}, {673, 12848}, {934, 37136}, {1020, 37141}, {1156, 2800}, {1813, 65259}, {2349, 29007}, {8545, 36101}, {8732, 65241}, {18026, 65223}, {24624, 41572}, {30379, 37222}, {37131, 60363}, {37203, 41563}, {37206, 62669}, {37787, 65249}, {61178, 65213}
X(65234) = reflection of X(i) in X(j) for these {i,j}: {36100, 9}
X(65234) = trilinear pole of line {1, 227}
X(65234) = X(i)-isoconjugate-of-X(j) for these {i, j}: {650, 3576}, {652, 34231}, {663, 5744}
X(65234) = X(i)-cross conjugate of X(j) for these {i, j}: {1012, 55346}, {2093, 7045}
X(65234) = pole of line {54051, 64316} with respect to the Yff parabola
X(65234) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(934)}}, {{A, B, C, X(9), X(1783)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(514), X(46041)}}, {{A, B, C, X(527), X(2800)}}, {{A, B, C, X(1020), X(61178)}}, {{A, B, C, X(1025), X(12848)}}, {{A, B, C, X(1445), X(62669)}}, {{A, B, C, X(2346), X(53811)}}, {{A, B, C, X(4571), X(65299)}}, {{A, B, C, X(6183), X(35157)}}, {{A, B, C, X(43190), X(65331)}}, {{A, B, C, X(44765), X(56235)}}, {{A, B, C, X(54240), X(56188)}}
X(65234) = barycentric product X(i)*X(j) for these (i, j): {3577, 664}, {4552, 55938}, {50442, 651}
X(65234) = barycentric quotient X(i)/X(j) for these (i, j): {108, 34231}, {109, 3576}, {651, 5744}, {3577, 522}, {36925, 4768}, {44730, 4985}, {50442, 4391}, {55938, 4560}
X(65235) lies on these lines: {7, 16594}, {9, 88}, {100, 6014}, {142, 31271}, {144, 30578}, {190, 6009}, {527, 31171}, {528, 36924}, {545, 673}, {644, 3257}, {651, 1023}, {658, 62669}, {897, 15481}, {1001, 37129}, {1156, 2802}, {4606, 21362}, {4767, 6006}, {8545, 43760}, {18230, 58413}, {20092, 61006}, {23343, 37138}, {24029, 61240}, {24624, 60942}, {25737, 65236}, {36100, 60966}, {36101, 36973}, {37130, 40029}, {37131, 56551}, {53337, 65242}, {60935, 65249}
X(65235) = midpoint of X(i) and X(j) for these {i,j}: {144, 30578}
X(65235) = reflection of X(i) in X(j) for these {i,j}: {7, 16594}, {88, 9}
X(65235) = trilinear pole of line {1, 3689}
X(65235) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 8656}, {6, 6006}, {513, 16670}, {649, 3241}, {650, 13462}, {663, 64142}, {667, 30829}, {1019, 21870}, {2163, 52593}, {3733, 4029}, {4982, 50344}, {7649, 23073}, {43924, 62706}
X(65235) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 6006}, {5375, 3241}, {6631, 30829}, {32664, 8656}, {39026, 16670}, {40587, 52593}
X(65235) = X(i)-cross conjugate of X(j) for these {i, j}: {4752, 100}, {63468, 7045}
X(65235) = pole of line {4767, 51564} with respect to the Steiner circumellipse
X(65235) = pole of line {3241, 3306} with respect to the Yff parabola
X(65235) = pole of line {89, 3306} with respect to the Hutson-Moses hyperbola
X(65235) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(6016)}}, {{A, B, C, X(7), X(668)}}, {{A, B, C, X(9), X(644)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(144), X(24029)}}, {{A, B, C, X(513), X(6009)}}, {{A, B, C, X(518), X(545)}}, {{A, B, C, X(527), X(2802)}}, {{A, B, C, X(646), X(42343)}}, {{A, B, C, X(666), X(29351)}}, {{A, B, C, X(932), X(2346)}}, {{A, B, C, X(934), X(53658)}}, {{A, B, C, X(1001), X(23343)}}, {{A, B, C, X(1025), X(6172)}}, {{A, B, C, X(1292), X(3062)}}, {{A, B, C, X(1461), X(58124)}}, {{A, B, C, X(2406), X(60966)}}, {{A, B, C, X(4554), X(50039)}}, {{A, B, C, X(4565), X(8699)}}, {{A, B, C, X(4582), X(31343)}}, {{A, B, C, X(4591), X(58123)}}, {{A, B, C, X(4627), X(28230)}}, {{A, B, C, X(4638), X(58126)}}, {{A, B, C, X(4767), X(40434)}}, {{A, B, C, X(6540), X(13396)}}, {{A, B, C, X(8545), X(53337)}}, {{A, B, C, X(9067), X(55967)}}, {{A, B, C, X(14074), X(43751)}}, {{A, B, C, X(28184), X(65298)}}, {{A, B, C, X(31171), X(46779)}}, {{A, B, C, X(32041), X(46480)}}
X(65235) = barycentric product X(i)*X(j) for these (i, j): {1, 53659}, {100, 36588}, {101, 40029}, {190, 39963}, {3257, 36915}, {4900, 664}, {6014, 75}, {36924, 4618}, {41436, 668}, {56075, 651}, {56159, 99}
X(65235) = barycentric quotient X(i)/X(j) for these (i, j): {1, 6006}, {31, 8656}, {45, 52593}, {100, 3241}, {101, 16670}, {109, 13462}, {190, 30829}, {644, 62706}, {651, 64142}, {906, 23073}, {1018, 4029}, {4557, 21870}, {4752, 36911}, {4900, 522}, {6014, 1}, {35342, 4982}, {36588, 693}, {36915, 3762}, {39963, 514}, {40029, 3261}, {41436, 513}, {52925, 36593}, {53659, 75}, {56075, 4391}, {56159, 523}
X(65236) lies on these lines: {2, 40622}, {10, 41495}, {63, 24624}, {88, 24175}, {100, 6011}, {142, 43760}, {144, 21221}, {162, 61180}, {329, 2349}, {655, 65233}, {662, 14543}, {673, 11683}, {823, 65162}, {897, 41501}, {1156, 6598}, {3869, 37142}, {4552, 65217}, {4558, 37140}, {24635, 37128}, {25737, 65235}, {26563, 43762}, {27003, 65241}, {36086, 61184}, {36101, 60979}, {37202, 45738}, {53337, 65222}
X(65236) = anticomplement of X(40622)
X(65236) = trilinear pole of line {1, 442}
X(65236) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 6003}, {9, 57139}, {41, 31603}, {163, 8286}, {284, 57107}, {512, 56439}, {647, 13739}, {649, 34772}, {650, 37583}, {661, 56840}, {667, 33116}, {3733, 59733}, {4017, 56948}, {5174, 22383}, {7180, 56946}, {7252, 15556}, {40622, 65375}, {41503, 51664}
X(65236) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 6003}, {115, 8286}, {478, 57139}, {3160, 31603}, {4988, 23775}, {5375, 34772}, {6631, 33116}, {34961, 56948}, {36830, 56840}, {39052, 13739}, {39054, 56439}, {40590, 57107}, {40622, 40622}, {55065, 21961}
X(65236) = X(i)-cross conjugate of X(j) for these {i, j}: {5546, 6742}, {5755, 59}, {7178, 2}, {53388, 664}, {61233, 100}
X(65236) = pole of line {7, 34195} with respect to the Kiepert parabola
X(65236) = pole of line {643, 65197} with respect to the Steiner circumellipse
X(65236) = pole of line {226, 2475} with respect to the Yff parabola
X(65236) = pole of line {226, 2982} with respect to the Hutson-Moses hyperbola
X(65236) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(645)}}, {{A, B, C, X(63), X(4558)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(92), X(4033)}}, {{A, B, C, X(99), X(4566)}}, {{A, B, C, X(107), X(3952)}}, {{A, B, C, X(110), X(1020)}}, {{A, B, C, X(142), X(53337)}}, {{A, B, C, X(648), X(4552)}}, {{A, B, C, X(666), X(56188)}}, {{A, B, C, X(668), X(1305)}}, {{A, B, C, X(670), X(2995)}}, {{A, B, C, X(901), X(32651)}}, {{A, B, C, X(1018), X(59079)}}, {{A, B, C, X(1025), X(60970)}}, {{A, B, C, X(1290), X(65232)}}, {{A, B, C, X(2415), X(24175)}}, {{A, B, C, X(3573), X(24635)}}, {{A, B, C, X(3903), X(53683)}}, {{A, B, C, X(4554), X(44765)}}, {{A, B, C, X(4569), X(43349)}}, {{A, B, C, X(4572), X(51568)}}, {{A, B, C, X(4625), X(35154)}}, {{A, B, C, X(5546), X(61233)}}, {{A, B, C, X(6335), X(51562)}}, {{A, B, C, X(6648), X(54118)}}, {{A, B, C, X(7178), X(40622)}}, {{A, B, C, X(10405), X(35177)}}, {{A, B, C, X(13397), X(32714)}}, {{A, B, C, X(15455), X(47318)}}, {{A, B, C, X(23831), X(62795)}}, {{A, B, C, X(24004), X(26724)}}, {{A, B, C, X(25268), X(26563)}}, {{A, B, C, X(29163), X(32641)}}, {{A, B, C, X(32038), X(43190)}}, {{A, B, C, X(54121), X(56241)}}, {{A, B, C, X(54458), X(54979)}}, {{A, B, C, X(56248), X(65336)}}, {{A, B, C, X(59491), X(62669)}}
X(65236) = barycentric product X(i)*X(j) for these (i, j): {190, 37887}, {6011, 75}, {6598, 664}, {41501, 99}, {43683, 662}, {43708, 811}
X(65236) = barycentric quotient X(i)/X(j) for these (i, j): {1, 6003}, {7, 31603}, {56, 57139}, {65, 57107}, {100, 34772}, {109, 37583}, {110, 56840}, {162, 13739}, {190, 33116}, {523, 8286}, {643, 56946}, {662, 56439}, {1018, 59733}, {1897, 5174}, {3120, 23775}, {4024, 21961}, {4551, 15556}, {5546, 56948}, {6011, 1}, {6598, 522}, {7178, 40622}, {37887, 514}, {41501, 523}, {43683, 1577}, {43708, 656}, {56183, 56316}, {61220, 39772}, {61225, 41547}
X(65237) lies on these lines: {100, 4467}, {190, 4529}, {241, 37128}, {650, 37137}, {651, 3287}, {658, 4369}, {662, 16755}, {664, 1492}, {673, 3512}, {1155, 7061}, {1156, 7261}, {1447, 63875}, {1821, 10030}, {4573, 65257}, {4598, 65164}, {7045, 36098}, {24002, 38340}, {34234, 40845}, {37135, 57460}, {37202, 40704}, {43761, 56413}
X(65237) = trilinear pole of line {1, 147}
X(65237) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 4458}, {522, 19554}, {650, 17798}, {657, 5018}, {663, 3509}, {926, 40754}, {3063, 4645}, {3287, 41532}, {3907, 41882}, {4391, 18262}, {7252, 20715}, {18038, 60577}, {18265, 27951}, {18344, 20741}, {40724, 46388}
X(65237) = X(i)-Dao conjugate of X(j) for these {i, j}: {3160, 4458}, {10001, 4645}
X(65237) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65293, 51614}
X(65237) = X(i)-cross conjugate of X(j) for these {i, j}: {514, 63875}, {2786, 7}, {6999, 55346}, {24287, 64984}, {24290, 21453}, {53344, 99}, {53600, 39293}
X(65237) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(53224)}}, {{A, B, C, X(76), X(35169)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(241), X(16609)}}, {{A, B, C, X(650), X(3287)}}, {{A, B, C, X(666), X(36801)}}, {{A, B, C, X(1305), X(46406)}}, {{A, B, C, X(2690), X(17758)}}, {{A, B, C, X(2701), X(3497)}}, {{A, B, C, X(2702), X(41532)}}, {{A, B, C, X(2966), X(65351)}}, {{A, B, C, X(4467), X(16755)}}, {{A, B, C, X(4615), X(46143)}}
X(65237) = barycentric product X(i)*X(j) for these (i, j): {1, 65293}, {109, 18036}, {664, 7261}, {3512, 4554}, {4569, 7281}, {4572, 8852}, {34085, 40781}, {37137, 40846}, {40845, 651}, {51614, 7}, {65289, 7061}
X(65237) = barycentric quotient X(i)/X(j) for these (i, j): {7, 4458}, {109, 17798}, {651, 3509}, {664, 4645}, {927, 40724}, {934, 5018}, {1415, 19554}, {1813, 20741}, {3512, 650}, {4551, 20715}, {4552, 4071}, {4554, 17789}, {7061, 3907}, {7261, 522}, {7281, 3900}, {8852, 663}, {8926, 54271}, {10030, 27951}, {18036, 35519}, {29055, 41532}, {36146, 40754}, {37137, 40873}, {40845, 4391}, {41534, 3287}, {51614, 8}, {63782, 4987}, {63875, 60577}, {65289, 52135}, {65293, 75}
X(65238) lies on these lines: {63, 65240}, {88, 21907}, {100, 523}, {142, 37131}, {162, 7649}, {190, 1577}, {514, 662}, {527, 31175}, {651, 7178}, {660, 35352}, {673, 16568}, {799, 3261}, {897, 1738}, {908, 2349}, {1156, 11604}, {2607, 5883}, {3218, 24624}, {3257, 4049}, {3732, 4604}, {4564, 65217}, {4570, 23752}, {4599, 10566}, {4707, 47318}, {14206, 34234}, {18014, 37135}, {20332, 30930}, {22003, 31010}, {27003, 37222}, {36085, 62626}, {36101, 37796}, {37203, 52414}, {59491, 65249}
X(65238) = reflection of X(i) in X(j) for these {i,j}: {56935, 3218}
X(65238) = trilinear pole of line {1, 149}
X(65238) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 42670}, {3, 47235}, {6, 8674}, {9, 51646}, {37, 42741}, {513, 17796}, {523, 19622}, {647, 2074}, {650, 5172}, {661, 5127}, {667, 32849}, {1290, 35090}, {1946, 37799}, {2433, 16164}, {22383, 56877}, {47227, 51470}
X(65238) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 8674}, {478, 51646}, {6631, 32849}, {32664, 42670}, {36103, 47235}, {36830, 5127}, {39026, 17796}, {39052, 2074}, {39053, 37799}, {39054, 37783}, {40589, 42741}
X(65238) = X(i)-cross conjugate of X(j) for these {i, j}: {5535, 7045}, {6840, 55346}, {21180, 75}, {53527, 86}
X(65238) = pole of line {758, 56935} with respect to the Kiepert parabola
X(65238) = pole of line {13146, 17484} with respect to the Yff parabola
X(65238) = pole of line {17484, 17796} with respect to the Hutson-Moses hyperbola
X(65238) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(47318)}}, {{A, B, C, X(27), X(36167)}}, {{A, B, C, X(57), X(4591)}}, {{A, B, C, X(86), X(35154)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(514), X(523)}}, {{A, B, C, X(527), X(17768)}}, {{A, B, C, X(648), X(15455)}}, {{A, B, C, X(666), X(36804)}}, {{A, B, C, X(908), X(14206)}}, {{A, B, C, X(927), X(35171)}}, {{A, B, C, X(1020), X(4556)}}, {{A, B, C, X(1025), X(60989)}}, {{A, B, C, X(1268), X(51614)}}, {{A, B, C, X(2160), X(2702)}}, {{A, B, C, X(3911), X(35466)}}, {{A, B, C, X(4552), X(6758)}}, {{A, B, C, X(4584), X(39137)}}, {{A, B, C, X(4615), X(8046)}}, {{A, B, C, X(4622), X(56935)}}, {{A, B, C, X(17930), X(35147)}}
X(65238) = barycentric product X(i)*X(j) for these (i, j): {1, 35156}, {190, 21907}, {1290, 75}, {5620, 99}, {11604, 664}
X(65238) = barycentric quotient X(i)/X(j) for these (i, j): {1, 8674}, {19, 47235}, {31, 42670}, {56, 51646}, {58, 42741}, {101, 17796}, {109, 5172}, {110, 5127}, {162, 2074}, {163, 19622}, {190, 32849}, {653, 37799}, {662, 37783}, {1290, 1}, {1897, 56877}, {5620, 523}, {11125, 57447}, {11604, 522}, {13589, 5497}, {21180, 5520}, {21907, 514}, {23703, 41541}, {35156, 75}, {53527, 38982}, {58076, 21180}, {61225, 41542}
X(65239) lies on these lines: {88, 17946}, {100, 512}, {190, 661}, {239, 11611}, {514, 799}, {649, 662}, {651, 7180}, {653, 55208}, {655, 60484}, {658, 7216}, {896, 17954}, {897, 899}, {908, 1821}, {1156, 6007}, {1959, 34234}, {3218, 37128}, {3257, 55263}, {3571, 46904}, {4564, 36098}, {4584, 21828}, {7035, 65191}, {17961, 20332}, {18001, 18015}, {24041, 65255}, {24504, 62796}, {24627, 37222}, {30997, 37130}, {37131, 56509}, {37142, 57680}, {37202, 57847}, {37212, 58294}, {55237, 65258}
X(65239) = trilinear pole of line {1, 3122}
X(65239) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 5040}, {6, 2787}, {81, 17989}, {422, 647}, {512, 19623}, {513, 5291}, {523, 5006}, {649, 17763}, {650, 5061}, {667, 17790}, {798, 5209}, {1333, 18003}, {2703, 35079}, {3121, 17935}, {3125, 17944}, {6591, 17977}, {17987, 22383}
X(65239) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 2787}, {37, 18003}, {5375, 17763}, {6631, 17790}, {31998, 5209}, {32664, 5040}, {39026, 5291}, {39052, 422}, {39054, 19623}, {40586, 17989}
X(65239) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17929, 2703}
X(65239) = pole of line {5291, 17946} with respect to the Hutson-Moses hyperbola
X(65239) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4584)}}, {{A, B, C, X(57), X(4615)}}, {{A, B, C, X(81), X(35148)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(109), X(1978)}}, {{A, B, C, X(110), X(27805)}}, {{A, B, C, X(239), X(3218)}}, {{A, B, C, X(512), X(514)}}, {{A, B, C, X(527), X(6007)}}, {{A, B, C, X(668), X(35009)}}, {{A, B, C, X(896), X(899)}}, {{A, B, C, X(901), X(4562)}}, {{A, B, C, X(908), X(1959)}}, {{A, B, C, X(3911), X(55262)}}, {{A, B, C, X(3952), X(4603)}}, {{A, B, C, X(4033), X(4556)}}, {{A, B, C, X(4551), X(4610)}}, {{A, B, C, X(4559), X(7260)}}, {{A, B, C, X(4564), X(7035)}}, {{A, B, C, X(4565), X(54986)}}, {{A, B, C, X(5386), X(59096)}}, {{A, B, C, X(7315), X(9361)}}, {{A, B, C, X(8046), X(9510)}}, {{A, B, C, X(17012), X(56811)}}, {{A, B, C, X(17929), X(35147)}}
X(65239) = barycentric product X(i)*X(j) for these (i, j): {1, 35147}, {10, 17929}, {162, 57847}, {2703, 75}, {4564, 60484}, {11609, 664}, {11611, 662}, {17939, 313}, {17946, 190}, {17954, 668}, {17961, 1978}, {17981, 4561}, {18015, 4600}, {57680, 811}
X(65239) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2787}, {10, 18003}, {31, 5040}, {42, 17989}, {99, 5209}, {100, 17763}, {101, 5291}, {109, 5061}, {162, 422}, {163, 5006}, {190, 17790}, {662, 19623}, {1331, 17977}, {1897, 17987}, {2703, 1}, {4570, 17944}, {4600, 17935}, {11609, 522}, {11611, 1577}, {17929, 86}, {17939, 58}, {17946, 514}, {17954, 513}, {17961, 649}, {17971, 1459}, {17981, 7649}, {18002, 3122}, {18015, 3120}, {35147, 75}, {53689, 62749}, {57680, 656}, {57847, 14208}, {60484, 4858}
X(65240) lies on these lines: {27, 65263}, {30, 100}, {63, 65238}, {88, 41800}, {162, 1785}, {190, 14206}, {226, 37136}, {323, 651}, {333, 32680}, {514, 2349}, {653, 52414}, {655, 3219}, {662, 908}, {1156, 14224}, {1577, 34234}, {3218, 38340}, {3257, 17781}, {15776, 65244}, {37139, 54357}, {37141, 37797}
X(65240) = trilinear pole of line {1, 11125}
X(65240) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2771}, {647, 37966}, {8609, 61463}, {42746, 55259}
X(65240) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 2771}, {4988, 57423}, {39052, 37966}
X(65240) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(17484)}}, {{A, B, C, X(27), X(30)}}, {{A, B, C, X(57), X(35000)}}, {{A, B, C, X(63), X(5127)}}, {{A, B, C, X(81), X(48698)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(92), X(1029)}}, {{A, B, C, X(226), X(908)}}, {{A, B, C, X(323), X(333)}}, {{A, B, C, X(329), X(37797)}}, {{A, B, C, X(527), X(54357)}}, {{A, B, C, X(1751), X(7164)}}, {{A, B, C, X(2006), X(11698)}}, {{A, B, C, X(2861), X(35164)}}, {{A, B, C, X(3911), X(17781)}}, {{A, B, C, X(4391), X(17923)}}, {{A, B, C, X(4564), X(40435)}}, {{A, B, C, X(6336), X(10742)}}, {{A, B, C, X(13478), X(18524)}}, {{A, B, C, X(13582), X(18359)}}, {{A, B, C, X(15776), X(37279)}}, {{A, B, C, X(60139), X(64984)}}
X(65240) = barycentric product X(i)*X(j) for these (i, j): {1, 46141}, {2687, 75}, {14224, 664}
X(65240) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2771}, {162, 37966}, {2687, 1}, {3120, 57423}, {14224, 522}, {21180, 55146}, {34234, 52499}, {36052, 61463}, {39991, 1737}, {46141, 75}
X(65241) lies on these lines: {7, 16594}, {56, 100}, {57, 190}, {88, 2403}, {162, 4248}, {241, 65231}, {651, 1407}, {653, 1435}, {655, 37789}, {658, 738}, {662, 1412}, {799, 1434}, {1156, 23836}, {1416, 9364}, {1445, 65226}, {1477, 6079}, {3257, 3911}, {3306, 17107}, {3732, 46116}, {4598, 7153}, {4606, 57663}, {6612, 37141}, {8056, 42304}, {8732, 65234}, {9311, 62695}, {24618, 43759}, {24627, 25917}, {27003, 65236}, {37129, 37627}, {37209, 41245}, {37223, 52013}, {42338, 61412}, {43043, 46119}, {43760, 47884}, {56081, 59779}, {61240, 61380}, {64984, 65229}
X(65241) = isotomic conjugate of X(62297)
X(65241) = trilinear pole of line {1, 23836}
X(65241) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3880}, {9, 1149}, {31, 62297}, {41, 1266}, {44, 45247}, {55, 16610}, {219, 1878}, {281, 23205}, {284, 4695}, {644, 6085}, {646, 8660}, {649, 23705}, {902, 52140}, {1320, 20972}, {2316, 17460}, {2325, 17109}, {3063, 61186}, {3689, 52206}, {6018, 40400}, {7252, 61176}, {9456, 52871}
X(65241) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 62297}, {9, 3880}, {223, 16610}, {478, 1149}, {3160, 1266}, {3669, 62559}, {4370, 52871}, {5375, 23705}, {10001, 61186}, {40590, 4695}, {40594, 52140}, {40595, 45247}, {40615, 4927}, {52659, 16594}
X(65241) = X(i)-cross conjugate of X(j) for these {i, j}: {519, 7}, {24216, 1088}, {26727, 903}, {40400, 1120}, {53528, 664}, {56009, 21453}
X(65241) = pole of line {1120, 30725} with respect to the Steiner circumellipse
X(65241) = pole of line {60374, 61483} with respect to the dual conic of Yff parabola
X(65241) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(145)}}, {{A, B, C, X(7), X(64142)}}, {{A, B, C, X(27), X(4188)}}, {{A, B, C, X(56), X(57)}}, {{A, B, C, X(80), X(26748)}}, {{A, B, C, X(81), X(62837)}}, {{A, B, C, X(85), X(62919)}}, {{A, B, C, X(86), X(37684)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(189), X(63133)}}, {{A, B, C, X(241), X(9364)}}, {{A, B, C, X(277), X(30608)}}, {{A, B, C, X(278), X(63167)}}, {{A, B, C, X(333), X(979)}}, {{A, B, C, X(514), X(4997)}}, {{A, B, C, X(519), X(16594)}}, {{A, B, C, X(650), X(6559)}}, {{A, B, C, X(903), X(30577)}}, {{A, B, C, X(908), X(18802)}}, {{A, B, C, X(1120), X(36805)}}, {{A, B, C, X(1121), X(13996)}}, {{A, B, C, X(1317), X(2006)}}, {{A, B, C, X(1445), X(3306)}}, {{A, B, C, X(3008), X(47884)}}, {{A, B, C, X(3218), X(37789)}}, {{A, B, C, X(3676), X(35160)}}, {{A, B, C, X(3729), X(62695)}}, {{A, B, C, X(4564), X(34051)}}, {{A, B, C, X(4859), X(59779)}}, {{A, B, C, X(4998), X(56783)}}, {{A, B, C, X(5744), X(8732)}}, {{A, B, C, X(7192), X(51567)}}, {{A, B, C, X(7233), X(62723)}}, {{A, B, C, X(8046), X(18359)}}, {{A, B, C, X(9082), X(51845)}}, {{A, B, C, X(13478), X(36602)}}, {{A, B, C, X(17595), X(51301)}}, {{A, B, C, X(24002), X(39994)}}, {{A, B, C, X(24175), X(56078)}}, {{A, B, C, X(25430), X(56031)}}, {{A, B, C, X(26727), X(62582)}}, {{A, B, C, X(27475), X(64151)}}, {{A, B, C, X(32008), X(39963)}}, {{A, B, C, X(36807), X(58371)}}, {{A, B, C, X(37540), X(51302)}}, {{A, B, C, X(39126), X(52803)}}, {{A, B, C, X(39698), X(60482)}}, {{A, B, C, X(39962), X(40435)}}, {{A, B, C, X(40617), X(61079)}}, {{A, B, C, X(44733), X(44794)}}, {{A, B, C, X(47892), X(63233)}}, {{A, B, C, X(54128), X(56026)}}, {{A, B, C, X(56201), X(56202)}}, {{A, B, C, X(56947), X(60087)}}, {{A, B, C, X(60107), X(65045)}}
X(65241) = barycentric product X(i)*X(j) for these (i, j): {75, 8686}, {1120, 7}, {1811, 273}, {3676, 6079}, {23836, 664}, {36805, 57}, {37627, 668}, {40400, 85}, {56642, 903}
X(65241) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3880}, {2, 62297}, {7, 1266}, {34, 1878}, {56, 1149}, {57, 16610}, {65, 4695}, {88, 52140}, {100, 23705}, {106, 45247}, {109, 23832}, {519, 52871}, {603, 23205}, {664, 61186}, {1120, 8}, {1149, 6018}, {1317, 62666}, {1319, 17460}, {1404, 20972}, {1417, 17109}, {1434, 16711}, {1811, 78}, {1877, 5151}, {3676, 4927}, {3911, 16594}, {4551, 61176}, {6079, 3699}, {8686, 1}, {23836, 522}, {30725, 21129}, {36805, 312}, {37627, 513}, {40400, 9}, {40617, 62559}, {40663, 21041}, {43081, 61484}, {43924, 6085}, {52556, 2325}, {56642, 519}, {61483, 5854}
X(65242) lies on these lines: {2, 1156}, {57, 43762}, {88, 5222}, {100, 14074}, {651, 56543}, {664, 37139}, {673, 3306}, {897, 52764}, {1025, 65226}, {3732, 37143}, {4242, 65215}, {4384, 34234}, {5744, 24582}, {14829, 37213}, {16054, 24624}, {17780, 37223}, {24580, 36100}, {35281, 36086}, {35312, 61240}, {37141, 63782}, {37203, 37389}, {43760, 64142}, {53337, 65235}, {54357, 65261}, {65165, 65222}
X(65242) = isotomic conjugate of X(47787)
X(65242) = trilinear pole of line {1, 4419}
X(65242) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 14077}, {31, 47787}, {41, 30181}, {657, 62792}, {663, 8545}, {667, 50107}, {1996, 8641}, {6139, 46644}, {47386, 57180}
X(65242) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 47787}, {9, 14077}, {3160, 30181}, {6631, 50107}
X(65242) = X(i)-cross conjugate of X(j) for these {i, j}: {8257, 4564}, {28292, 7}, {46919, 2}, {56380, 24011}
X(65242) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(664)}}, {{A, B, C, X(27), X(52935)}}, {{A, B, C, X(57), X(101)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(666), X(51564)}}, {{A, B, C, X(927), X(4597)}}, {{A, B, C, X(1025), X(3306)}}, {{A, B, C, X(1897), X(4573)}}, {{A, B, C, X(3658), X(37389)}}, {{A, B, C, X(3699), X(43190)}}, {{A, B, C, X(3911), X(43057)}}, {{A, B, C, X(4242), X(16054)}}, {{A, B, C, X(4617), X(58991)}}, {{A, B, C, X(4817), X(45695)}}, {{A, B, C, X(5222), X(17780)}}, {{A, B, C, X(7452), X(24580)}}, {{A, B, C, X(9058), X(36146)}}, {{A, B, C, X(10566), X(47762)}}, {{A, B, C, X(18087), X(27003)}}, {{A, B, C, X(32040), X(51562)}}, {{A, B, C, X(43349), X(58133)}}, {{A, B, C, X(46406), X(64995)}}, {{A, B, C, X(46919), X(47787)}}, {{A, B, C, X(52620), X(62623)}}, {{A, B, C, X(53337), X(64142)}}, {{A, B, C, X(59031), X(63203)}}
X(65242) = barycentric product X(i)*X(j) for these (i, j): {14074, 75}, {34919, 664}, {55984, 651}
X(65242) = barycentric quotient X(i)/X(j) for these (i, j): {1, 14077}, {2, 47787}, {7, 30181}, {109, 37541}, {190, 50107}, {651, 8545}, {658, 1996}, {934, 62792}, {4626, 47386}, {14074, 1}, {34919, 522}, {35338, 61028}, {37139, 46644}, {55984, 4391}
X(65243) lies on these lines: {1, 36101}, {88, 36277}, {100, 26716}, {109, 61240}, {190, 2398}, {238, 56716}, {658, 23973}, {660, 57192}, {673, 55937}, {934, 65245}, {1156, 16670}, {1783, 65218}, {2114, 43760}, {3246, 37131}, {3573, 27834}, {3939, 4606}, {4663, 65261}, {16948, 37128}, {24624, 54668}, {36089, 36136}, {36100, 62838}, {37130, 55983}
X(65243) = trilinear pole of line {1, 910}
X(65243) = X(i)-isoconjugate-of-X(j) for these {i, j}: {101, 61673}, {513, 5223}, {514, 42316}, {657, 10004}, {3063, 59200}
X(65243) = X(i)-vertex conjugate of X(j) for these {i, j}: {677, 1461}
X(65243) = X(i)-Dao conjugate of X(j) for these {i, j}: {1015, 61673}, {5375, 29616}, {10001, 59200}, {39026, 5223}
X(65243) = X(i)-cross conjugate of X(j) for these {i, j}: {11372, 7012}, {35280, 100}, {45755, 81}, {54250, 57}
X(65243) = pole of line {5223, 37658} with respect to the Hutson-Moses hyperbola
X(65243) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(934)}}, {{A, B, C, X(58), X(32722)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(109), X(677)}}, {{A, B, C, X(110), X(3939)}}, {{A, B, C, X(644), X(1414)}}, {{A, B, C, X(1897), X(4626)}}, {{A, B, C, X(3246), X(52985)}}, {{A, B, C, X(3573), X(16948)}}, {{A, B, C, X(4616), X(9057)}}, {{A, B, C, X(5556), X(18026)}}, {{A, B, C, X(8750), X(32735)}}, {{A, B, C, X(10308), X(26706)}}, {{A, B, C, X(13138), X(59125)}}, {{A, B, C, X(13486), X(58991)}}, {{A, B, C, X(30244), X(64013)}}, {{A, B, C, X(32641), X(58105)}}, {{A, B, C, X(36049), X(53243)}}
X(65243) = barycentric product X(i)*X(j) for these (i, j): {1, 32040}, {100, 55937}, {101, 55983}, {26716, 75}, {35517, 36136}, {42317, 664}, {54668, 662}, {59259, 692}
X(65243) = barycentric quotient X(i)/X(j) for these (i, j): {100, 29616}, {101, 5223}, {109, 59215}, {513, 61673}, {664, 59200}, {692, 42316}, {934, 10004}, {26716, 1}, {32040, 75}, {32721, 911}, {36136, 103}, {42317, 522}, {54668, 1577}, {55937, 693}, {55983, 3261}, {59259, 40495}
X(65244) lies on these lines: {21, 37203}, {100, 59010}, {110, 65217}, {162, 7437}, {411, 24624}, {651, 2617}, {653, 3658}, {673, 1817}, {823, 7451}, {1156, 43729}, {1816, 34234}, {4238, 65213}, {4575, 65254}, {13614, 65246}, {15776, 65240}, {35981, 43764}, {37219, 57910}, {41509, 65261}, {52914, 65221}
X(65244) = trilinear pole of line {1, 15656}
X(65244) = X(i)-isoconjugate-of-X(j) for these {i, j}: {73, 57089}, {307, 58318}, {513, 3191}, {647, 37279}, {650, 41342}, {656, 41227}, {661, 62798}, {663, 52673}, {3737, 15443}
X(65244) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 62798}, {39026, 3191}, {39052, 37279}, {40596, 41227}
X(65244) = X(i)-cross conjugate of X(j) for these {i, j}: {23067, 110}
X(65244) = pole of line {3191, 56000} with respect to the Hutson-Moses hyperbola
X(65244) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7437)}}, {{A, B, C, X(3), X(7451)}}, {{A, B, C, X(21), X(925)}}, {{A, B, C, X(28), X(58986)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(107), X(5546)}}, {{A, B, C, X(108), X(163)}}, {{A, B, C, X(404), X(13589)}}, {{A, B, C, X(411), X(4242)}}, {{A, B, C, X(644), X(36126)}}, {{A, B, C, X(811), X(13138)}}, {{A, B, C, X(1290), X(36134)}}, {{A, B, C, X(1305), X(1331)}}, {{A, B, C, X(1816), X(4246)}}, {{A, B, C, X(1817), X(4238)}}, {{A, B, C, X(2617), X(35360)}}, {{A, B, C, X(4203), X(46597)}}, {{A, B, C, X(4236), X(13588)}}, {{A, B, C, X(4565), X(36077)}}, {{A, B, C, X(4566), X(61220)}}, {{A, B, C, X(4575), X(6516)}}, {{A, B, C, X(7411), X(53160)}}, {{A, B, C, X(7435), X(13614)}}, {{A, B, C, X(7450), X(35995)}}, {{A, B, C, X(15776), X(37966)}}, {{A, B, C, X(35977), X(57600)}}
X(65244) = barycentric product X(i)*X(j) for these (i, j): {163, 57910}, {41509, 4573}, {43729, 664}, {57719, 662}, {59010, 75}
X(65244) = barycentric quotient X(i)/X(j) for these (i, j): {101, 3191}, {109, 41342}, {110, 62798}, {112, 41227}, {162, 37279}, {163, 580}, {651, 52673}, {1172, 57089}, {2204, 58318}, {4559, 15443}, {41509, 3700}, {43729, 522}, {57719, 1577}, {57910, 20948}, {59010, 1}, {61197, 45038}
X(65245) lies on these lines: {100, 677}, {162, 4637}, {190, 1275}, {241, 36101}, {650, 4617}, {653, 4626}, {655, 60581}, {658, 7658}, {662, 32668}, {673, 9503}, {823, 7199}, {905, 24013}, {934, 65243}, {1156, 1443}, {2400, 23973}, {24015, 34085}, {34234, 37757}, {36039, 65222}, {36086, 41353}, {38340, 61241}
X(65245) = isogonal conjugate of X(46392)
X(65245) = trilinear pole of line {1, 103}
X(65245) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46392}, {220, 676}, {513, 51418}, {516, 657}, {650, 41339}, {663, 40869}, {885, 56785}, {910, 3900}, {926, 56900}, {1146, 2426}, {1456, 4130}, {1566, 52927}, {1886, 57108}, {2398, 14936}, {3270, 41321}, {4105, 43035}, {4524, 14953}, {7071, 39470}, {7253, 51436}, {8641, 30807}, {8750, 57292}, {17747, 21789}, {18344, 51376}, {23973, 35508}, {24012, 24015}, {52614, 56639}
X(65245) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46392}, {26932, 57292}, {39026, 51418}
X(65245) = X(i)-cross conjugate of X(j) for these {i, j}: {241, 7045}, {11349, 55346}, {46392, 1}
X(65245) = intersection, other than A, B, C, of circumconics {{A, B, C, X(88), X(100)}}, {{A, B, C, X(241), X(24015)}}, {{A, B, C, X(650), X(7658)}}, {{A, B, C, X(677), X(9503)}}, {{A, B, C, X(1275), X(7045)}}, {{A, B, C, X(1414), X(36838)}}, {{A, B, C, X(2728), X(41790)}}, {{A, B, C, X(4131), X(7199)}}, {{A, B, C, X(4626), X(4637)}}, {{A, B, C, X(41353), X(62786)}}
X(65246) lies on these lines: {2, 37141}, {20, 100}, {27, 65224}, {57, 63876}, {63, 653}, {144, 65234}, {162, 283}, {189, 23983}, {190, 3719}, {271, 318}, {329, 394}, {333, 823}, {658, 7183}, {662, 6514}, {908, 37136}, {1156, 43737}, {2417, 36100}, {5744, 61240}, {6512, 65216}, {13614, 65244}, {23695, 36084}, {35516, 65223}, {36044, 36093}, {37139, 37774}, {60966, 65226}
X(65246) = trilinear pole of line {1, 8058}
X(65246) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 6001}, {9, 51660}, {48, 51359}, {55, 43058}, {104, 47434}, {219, 51399}, {521, 2443}, {647, 7435}, {1415, 14312}, {1946, 2405}, {2182, 56634}, {2194, 51365}, {14571, 39175}, {14578, 25640}, {32647, 58264}
X(65246) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 6001}, {223, 43058}, {281, 1528}, {478, 51660}, {1146, 14312}, {1214, 51365}, {1249, 51359}, {39052, 7435}, {39053, 2405}, {40613, 47434}
X(65246) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {15629, 34550}
X(65246) = X(i)-cross conjugate of X(j) for these {i, j}: {1785, 75}, {15629, 51565}, {34050, 2}
X(65246) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(318)}}, {{A, B, C, X(4), X(64111)}}, {{A, B, C, X(7), X(56596)}}, {{A, B, C, X(20), X(27)}}, {{A, B, C, X(57), X(1767)}}, {{A, B, C, X(63), X(271)}}, {{A, B, C, X(77), X(8822)}}, {{A, B, C, X(85), X(55963)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(92), X(837)}}, {{A, B, C, X(144), X(5744)}}, {{A, B, C, X(153), X(6336)}}, {{A, B, C, X(253), X(63186)}}, {{A, B, C, X(273), X(55024)}}, {{A, B, C, X(278), X(12667)}}, {{A, B, C, X(312), X(60114)}}, {{A, B, C, X(514), X(2829)}}, {{A, B, C, X(908), X(4997)}}, {{A, B, C, X(1751), X(3347)}}, {{A, B, C, X(1959), X(23695)}}, {{A, B, C, X(2006), X(37725)}}, {{A, B, C, X(2184), X(11500)}}, {{A, B, C, X(2988), X(51565)}}, {{A, B, C, X(3306), X(60966)}}, {{A, B, C, X(4391), X(52780)}}, {{A, B, C, X(7097), X(8748)}}, {{A, B, C, X(13614), X(37279)}}, {{A, B, C, X(17781), X(59491)}}, {{A, B, C, X(22464), X(34393)}}, {{A, B, C, X(36795), X(46102)}}, {{A, B, C, X(37774), X(37780)}}, {{A, B, C, X(40435), X(55987)}}, {{A, B, C, X(46137), X(55346)}}, {{A, B, C, X(50442), X(57826)}}, {{A, B, C, X(54357), X(60979)}}
X(65246) = barycentric product X(i)*X(j) for these (i, j): {63, 65342}, {1295, 75}, {2417, 653}, {2431, 46404}, {35518, 36044}, {43737, 664}
X(65246) = barycentric quotient X(i)/X(j) for these (i, j): {1, 6001}, {4, 51359}, {34, 51399}, {56, 51660}, {57, 43058}, {102, 56634}, {162, 7435}, {226, 51365}, {522, 14312}, {653, 2405}, {1295, 1}, {1785, 25640}, {1795, 39175}, {2183, 47434}, {2417, 6332}, {2431, 652}, {7952, 1528}, {15405, 1795}, {21186, 55139}, {32647, 32674}, {32674, 2443}, {34234, 57495}, {35015, 57445}, {36044, 108}, {36123, 64635}, {43737, 522}, {54241, 1785}, {57291, 35580}, {65342, 92}
X(65247) lies on these lines: {63, 37203}, {75, 46886}, {88, 15474}, {100, 13397}, {514, 65248}, {662, 3732}, {664, 65217}, {673, 1760}, {897, 23604}, {1156, 5225}, {4558, 65254}, {6516, 65216}, {18151, 18750}, {18747, 36101}, {20332, 28090}, {20914, 37214}, {24624, 43675}, {28787, 37142}, {37131, 37774}, {40702, 43762}, {43760, 61019}
X(65247) = trilinear pole of line {1, 224}
X(65247) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 57094}, {6, 15313}, {48, 57044}, {212, 57230}, {228, 57073}, {512, 40571}, {513, 2911}, {523, 41332}, {647, 30733}, {649, 3811}, {650, 37579}, {657, 4341}, {661, 1780}, {663, 1708}, {667, 17776}, {906, 5521}, {2164, 57102}, {2353, 26217}, {2501, 41608}, {3063, 56927}, {3064, 3215}, {3173, 18344}, {6591, 11517}, {7252, 41538}, {17877, 32739}, {22383, 56876}, {47235, 61453}
X(65247) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 15313}, {1249, 57044}, {5190, 5521}, {5375, 3811}, {6631, 17776}, {10001, 56927}, {36103, 57094}, {36830, 1780}, {39026, 2911}, {39052, 30733}, {39054, 40571}, {40619, 17877}, {40837, 57230}, {51473, 649}
X(65247) = X(i)-cross conjugate of X(j) for these {i, j}: {1331, 664}, {5709, 7045}, {6836, 55346}, {7649, 75}, {21188, 2}, {23797, 310}, {23800, 86}, {53599, 39293}
X(65247) = pole of line {1770, 3811} with respect to the Yff parabola
X(65247) = pole of line {2911, 5905} with respect to the Hutson-Moses hyperbola
X(65247) = pole of line {278, 28753} with respect to the dual conic of Feuerbach hyperbola
X(65247) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(514), X(55126)}}, {{A, B, C, X(646), X(65336)}}, {{A, B, C, X(648), X(4554)}}, {{A, B, C, X(666), X(6335)}}, {{A, B, C, X(927), X(54987)}}, {{A, B, C, X(1020), X(65298)}}, {{A, B, C, X(1025), X(60974)}}, {{A, B, C, X(1305), X(53652)}}, {{A, B, C, X(1897), X(15455)}}, {{A, B, C, X(1978), X(52919)}}, {{A, B, C, X(3732), X(4033)}}, {{A, B, C, X(4552), X(43190)}}, {{A, B, C, X(4572), X(53643)}}, {{A, B, C, X(4573), X(54970)}}, {{A, B, C, X(10566), X(48408)}}, {{A, B, C, X(17930), X(57969)}}, {{A, B, C, X(40015), X(62540)}}, {{A, B, C, X(44327), X(47318)}}, {{A, B, C, X(53337), X(61019)}}, {{A, B, C, X(53653), X(56596)}}, {{A, B, C, X(53906), X(55105)}}
X(65248) lies on these lines: {88, 2990}, {100, 1618}, {162, 4570}, {514, 65247}, {651, 44717}, {653, 4564}, {655, 2397}, {765, 61043}, {908, 37203}, {914, 32851}, {915, 29241}, {1156, 45393}, {1332, 65216}, {3657, 37135}, {4585, 37136}, {20332, 32655}, {32698, 36099}, {36052, 37129}, {37131, 60974}, {43760, 63190}, {61214, 65231}
X(65248) = trilinear pole of line {1, 1331}
X(65248) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 55126}, {119, 2423}, {244, 61239}, {513, 8609}, {649, 1737}, {650, 18838}, {663, 64115}, {665, 52456}, {667, 48380}, {912, 6591}, {1015, 56881}, {2170, 61231}, {2252, 7649}, {3064, 51649}, {3125, 3658}, {3310, 14266}, {8735, 56410}, {10015, 51824}, {43933, 47408}, {52413, 61039}
X(65248) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 55126}, {5375, 1737}, {6631, 48380}, {39026, 8609}
X(65248) = X(i)-cross conjugate of X(j) for these {i, j}: {908, 4564}, {909, 9268}, {2077, 7045}, {2323, 765}, {65104, 40436}
X(65248) = pole of line {1737, 41699} with respect to the Yff parabola
X(65248) = pole of line {2990, 8609} with respect to the Hutson-Moses hyperbola
X(65248) = intersection, other than A, B, C, of circumconics {{A, B, C, X(88), X(100)}}, {{A, B, C, X(514), X(15313)}}, {{A, B, C, X(908), X(914)}}, {{A, B, C, X(929), X(4584)}}, {{A, B, C, X(1618), X(2742)}}, {{A, B, C, X(2397), X(4585)}}, {{A, B, C, X(4556), X(15439)}}, {{A, B, C, X(4564), X(4570)}}, {{A, B, C, X(4589), X(58000)}}, {{A, B, C, X(4592), X(51566)}}, {{A, B, C, X(6516), X(53652)}}, {{A, B, C, X(13136), X(31615)}}, {{A, B, C, X(29014), X(36145)}}, {{A, B, C, X(29127), X(36147)}}, {{A, B, C, X(31628), X(65336)}}, {{A, B, C, X(36037), X(47318)}}
X(65248) = barycentric product X(i)*X(j) for these (i, j): {63, 65344}, {190, 2990}, {304, 32698}, {1331, 46133}, {1332, 37203}, {1978, 32655}, {3657, 4600}, {3699, 63190}, {4561, 915}, {6099, 75}, {36052, 668}, {36106, 69}, {45393, 664}
X(65248) = barycentric quotient X(i)/X(j) for these (i, j): {1, 55126}, {59, 61231}, {100, 1737}, {101, 8609}, {109, 18838}, {190, 48380}, {651, 64115}, {765, 56881}, {906, 2252}, {913, 6591}, {915, 7649}, {1252, 61239}, {1331, 912}, {1332, 914}, {1807, 61039}, {2990, 514}, {3657, 3120}, {4570, 3658}, {6099, 1}, {22350, 42769}, {23703, 12832}, {32655, 649}, {32698, 19}, {36037, 14266}, {36052, 513}, {36059, 51649}, {36086, 52456}, {36106, 4}, {37203, 17924}, {39173, 1769}, {45393, 522}, {46133, 46107}, {61043, 53525}, {61214, 2170}, {61228, 41552}, {63190, 3676}, {65344, 92}
X(65249) lies on these lines: {2, 655}, {57, 37136}, {63, 3257}, {88, 905}, {92, 65223}, {100, 517}, {162, 17515}, {190, 908}, {514, 34234}, {527, 65226}, {651, 1465}, {653, 3911}, {658, 17078}, {673, 47785}, {998, 36090}, {1156, 46041}, {2051, 64824}, {2185, 37140}, {2320, 60687}, {2717, 35011}, {3306, 37139}, {4560, 24624}, {4564, 16586}, {4833, 37142}, {4850, 36087}, {4858, 34535}, {5744, 37143}, {7541, 56939}, {16610, 46119}, {35258, 36086}, {37141, 37789}, {37222, 50943}, {37787, 65234}, {59491, 65238}, {60935, 65235}
X(65249) = isogonal conjugate of X(2265)
X(65249) = trilinear pole of line {1, 1769}
X(65249) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2265}, {6, 952}, {44, 52478}, {55, 43043}, {953, 61066}, {1252, 6075}, {1960, 57456}, {2183, 61481}, {6073, 41933}, {32641, 35013}
X(65249) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 2265}, {9, 952}, {223, 43043}, {661, 6075}, {40595, 52478}
X(65249) = X(i)-cross conjugate of X(j) for these {i, j}: {1772, 75}, {2265, 1}, {2800, 7}, {35050, 1414}, {43048, 2}
X(65249) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(2167)}}, {{A, B, C, X(4), X(48363)}}, {{A, B, C, X(27), X(6905)}}, {{A, B, C, X(57), X(92)}}, {{A, B, C, X(63), X(905)}}, {{A, B, C, X(81), X(62826)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(89), X(44559)}}, {{A, B, C, X(189), X(8046)}}, {{A, B, C, X(329), X(8051)}}, {{A, B, C, X(527), X(3306)}}, {{A, B, C, X(693), X(7045)}}, {{A, B, C, X(757), X(54121)}}, {{A, B, C, X(1443), X(36917)}}, {{A, B, C, X(1577), X(18593)}}, {{A, B, C, X(1817), X(7541)}}, {{A, B, C, X(2006), X(6265)}}, {{A, B, C, X(2184), X(36603)}}, {{A, B, C, X(2339), X(56062)}}, {{A, B, C, X(2725), X(35348)}}, {{A, B, C, X(2990), X(4997)}}, {{A, B, C, X(3752), X(42709)}}, {{A, B, C, X(4358), X(5382)}}, {{A, B, C, X(4858), X(16586)}}, {{A, B, C, X(5744), X(37787)}}, {{A, B, C, X(6336), X(10698)}}, {{A, B, C, X(12032), X(35365)}}, {{A, B, C, X(14838), X(52414)}}, {{A, B, C, X(17080), X(57716)}}, {{A, B, C, X(17484), X(27003)}}, {{A, B, C, X(30608), X(55936)}}, {{A, B, C, X(34393), X(63190)}}, {{A, B, C, X(35355), X(53181)}}, {{A, B, C, X(39962), X(55987)}}, {{A, B, C, X(39980), X(56033)}}, {{A, B, C, X(43363), X(62723)}}, {{A, B, C, X(46102), X(59196)}}, {{A, B, C, X(54357), X(60989)}}, {{A, B, C, X(55985), X(63167)}}, {{A, B, C, X(56352), X(65020)}}, {{A, B, C, X(60935), X(64142)}}
X(65249) = barycentric product X(i)*X(j) for these (i, j): {1, 46136}, {63, 65345}, {75, 953}, {3257, 50943}, {4564, 60582}, {18816, 61482}, {35011, 36038}, {37629, 54953}, {46041, 664}, {52479, 903}
X(65249) = barycentric quotient X(i)/X(j) for these (i, j): {1, 952}, {6, 2265}, {57, 43043}, {104, 61481}, {106, 52478}, {244, 6075}, {953, 1}, {1769, 35013}, {1772, 31841}, {2265, 61066}, {2718, 56644}, {3257, 57456}, {24028, 6073}, {35011, 36037}, {37629, 2804}, {41343, 39758}, {46041, 522}, {46136, 75}, {50943, 3762}, {52479, 519}, {59018, 2222}, {60582, 4858}, {61482, 517}, {65345, 92}
X(65250) lies on these lines: {1, 4094}, {2, 55059}, {45, 897}, {88, 17593}, {99, 65258}, {100, 24052}, {110, 62535}, {190, 65288}, {643, 65257}, {660, 1018}, {662, 3573}, {673, 6651}, {799, 874}, {894, 56703}, {1156, 60675}, {1492, 54440}, {3240, 37132}, {3799, 37138}, {3903, 37134}, {4557, 37212}, {4598, 65166}, {4606, 52923}, {4607, 4781}, {4613, 37207}, {5220, 65261}, {11684, 36101}, {16477, 20332}, {16666, 25426}, {17029, 62625}, {23831, 37216}, {24592, 56658}, {24624, 36815}, {37130, 60678}, {53338, 65230}
X(65250) = isogonal conjugate of X(4784)
X(65250) = anticomplement of X(55059)
X(65250) = trilinear pole of line {1, 1573}
X(65250) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4784}, {6, 28840}, {56, 4913}, {58, 4824}, {512, 51356}, {513, 4649}, {514, 60697}, {523, 59243}, {647, 31904}, {649, 16826}, {650, 60715}, {663, 60717}, {667, 60706}, {798, 51314}, {1019, 60724}, {1459, 60699}, {1919, 60719}, {2163, 4948}, {2382, 45657}, {3063, 60732}, {3572, 20142}, {3669, 60711}, {3676, 60713}, {3733, 3842}, {4753, 23345}, {4963, 56343}, {5625, 50344}, {6591, 60701}, {7649, 60703}, {43924, 60731}, {57129, 60736}, {57181, 60730}
X(65250) = X(i)-vertex conjugate of X(j) for these {i, j}: {163, 4596}, {660, 40519}
X(65250) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4913}, {3, 4784}, {9, 28840}, {10, 4824}, {5375, 16826}, {6631, 60706}, {9296, 60719}, {10001, 60732}, {31998, 51314}, {36830, 51311}, {39026, 4649}, {39052, 31904}, {39054, 51356}, {40587, 4948}, {51572, 4963}, {55059, 55059}
X(65250) = X(i)-cross conjugate of X(j) for these {i, j}: {4784, 1}, {9279, 37}, {24512, 1016}, {48886, 59}
X(65250) = pole of line {1001, 4393} with respect to the Kiepert parabola
X(65250) = pole of line {16826, 25427} with respect to the Yff parabola
X(65250) = pole of line {4649, 30571} with respect to the Hutson-Moses hyperbola
X(65250) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(99)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(101), X(32042)}}, {{A, B, C, X(110), X(2054)}}, {{A, B, C, X(163), X(29151)}}, {{A, B, C, X(668), X(6013)}}, {{A, B, C, X(670), X(3952)}}, {{A, B, C, X(692), X(29329)}}, {{A, B, C, X(931), X(65167)}}, {{A, B, C, X(932), X(58135)}}, {{A, B, C, X(1023), X(60690)}}, {{A, B, C, X(1026), X(16815)}}, {{A, B, C, X(1415), X(29171)}}, {{A, B, C, X(2284), X(15254)}}, {{A, B, C, X(3799), X(32041)}}, {{A, B, C, X(4551), X(24052)}}, {{A, B, C, X(4559), X(43359)}}, {{A, B, C, X(4622), X(8691)}}, {{A, B, C, X(4639), X(27805)}}, {{A, B, C, X(4781), X(16666)}}, {{A, B, C, X(5546), X(56203)}}, {{A, B, C, X(6742), X(46193)}}, {{A, B, C, X(8708), X(65202)}}, {{A, B, C, X(15322), X(52935)}}, {{A, B, C, X(17593), X(23703)}}, {{A, B, C, X(17780), X(30950)}}, {{A, B, C, X(23831), X(36277)}}, {{A, B, C, X(29121), X(32653)}}, {{A, B, C, X(29127), X(55918)}}, {{A, B, C, X(29351), X(58134)}}, {{A, B, C, X(36803), X(54118)}}, {{A, B, C, X(46961), X(57959)}}, {{A, B, C, X(53606), X(55929)}}
X(65250) = barycentric product X(i)*X(j) for these (i, j): {1, 65288}, {100, 27483}, {101, 60678}, {190, 30571}, {1978, 60671}, {3807, 40748}, {3952, 60680}, {25426, 668}, {28841, 75}, {37138, 56658}, {59194, 61174}, {59261, 662}, {59272, 799}, {60675, 664}, {60676, 99}, {62625, 660}
X(65250) = barycentric quotient X(i)/X(j) for these (i, j): {1, 28840}, {6, 4784}, {9, 4913}, {37, 4824}, {45, 4948}, {99, 51314}, {100, 16826}, {101, 4649}, {109, 60715}, {110, 51311}, {162, 31904}, {163, 59243}, {190, 60706}, {644, 60731}, {651, 60717}, {662, 51356}, {664, 60732}, {668, 60719}, {692, 60697}, {906, 60703}, {1018, 3842}, {1023, 4753}, {1331, 60701}, {1332, 60729}, {1783, 60699}, {3573, 20142}, {3699, 60730}, {3799, 27495}, {3939, 60711}, {3952, 60736}, {4557, 60724}, {16777, 4963}, {20331, 45657}, {25426, 513}, {27483, 693}, {28841, 1}, {30571, 514}, {35342, 5625}, {40748, 4817}, {59261, 1577}, {59272, 661}, {60671, 649}, {60675, 522}, {60676, 523}, {60678, 3261}, {60680, 7192}, {61163, 59219}, {61174, 59203}, {62625, 3766}, {65288, 75}
X(65251) lies on these lines: {63, 57716}, {68, 37142}, {91, 897}, {100, 925}, {190, 46134}, {333, 37203}, {651, 65309}, {653, 30450}, {662, 18740}, {799, 55215}, {811, 65221}, {1492, 32734}, {1577, 65262}, {1760, 1820}, {2165, 37128}, {2349, 18750}, {5392, 24624}, {20563, 37202}, {24001, 65224}, {35174, 65273}, {36085, 55250}, {36099, 65176}, {37219, 57904}
X(65251) = isogonal conjugate of X(55216)
X(65251) = isotomic conjugate of X(63827)
X(65251) = trilinear pole of line {1, 91}
X(65251) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 55216}, {2, 34952}, {3, 6753}, {4, 30451}, {6, 924}, {19, 63832}, {24, 647}, {25, 52584}, {31, 63827}, {32, 6563}, {37, 34948}, {47, 661}, {50, 43088}, {52, 2623}, {54, 52317}, {68, 58760}, {74, 14397}, {110, 47421}, {125, 61208}, {136, 32661}, {184, 57065}, {317, 3049}, {467, 58308}, {512, 1993}, {520, 8745}, {523, 571}, {525, 44077}, {563, 24006}, {667, 42700}, {669, 7763}, {798, 44179}, {810, 1748}, {850, 52436}, {925, 39013}, {1147, 2501}, {1989, 44808}, {2180, 2616}, {2351, 15423}, {2422, 51439}, {2433, 51393}, {2489, 9723}, {2491, 31635}, {3133, 55253}, {3269, 52917}, {4705, 18605}, {5961, 47230}, {6754, 65309}, {8911, 58867}, {11547, 39201}, {14270, 18883}, {14380, 52952}, {14576, 23286}, {14582, 52416}, {14618, 52435}, {17994, 51776}, {20975, 41679}, {21731, 52505}, {26920, 58865}, {32654, 57154}, {32692, 55072}, {34116, 55228}, {41213, 65273}, {47390, 55278}, {52000, 61216}, {52032, 58756}, {54034, 63829}, {55204, 59162}, {60775, 63959}
X(65251) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 63827}, {3, 55216}, {6, 63832}, {9, 924}, {244, 47421}, {6376, 6563}, {6505, 52584}, {6631, 42700}, {31998, 44179}, {32664, 34952}, {34544, 44808}, {34853, 661}, {36033, 30451}, {36103, 6753}, {36830, 47}, {36901, 17881}, {37864, 798}, {39052, 24}, {39054, 1993}, {39062, 1748}, {40589, 34948}, {62605, 57065}
X(65251) = X(i)-cross conjugate of X(j) for these {i, j}: {1577, 57716}, {4575, 811}, {18595, 24000}, {24006, 75}, {55216, 1}, {55250, 91}
X(65251) = pole of line {34948, 55216} with respect to the Stammler hyperbola
X(65251) = pole of line {55216, 63827} with respect to the Wallace hyperbola
X(65251) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(55202)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(811), X(35174)}}, {{A, B, C, X(1760), X(62720)}}, {{A, B, C, X(15455), X(18740)}}, {{A, B, C, X(18750), X(24001)}}, {{A, B, C, X(36036), X(57968)}}, {{A, B, C, X(52609), X(60206)}}
X(65251) = barycentric product X(i)*X(j) for these (i, j): {1, 46134}, {68, 811}, {75, 925}, {91, 99}, {110, 20571}, {162, 20563}, {163, 57904}, {304, 65176}, {1820, 6331}, {2165, 799}, {2351, 57968}, {2617, 34385}, {4558, 57716}, {4575, 55553}, {4590, 55250}, {4592, 847}, {4602, 60501}, {5392, 662}, {14213, 65273}, {14593, 55202}, {18695, 65348}, {24006, 57763}, {30450, 63}, {32661, 57898}, {32680, 37802}, {32692, 62272}, {32734, 561}, {33808, 63958}, {36145, 76}, {52350, 823}, {52504, 65262}, {55215, 6}, {55549, 57973}, {65309, 92}
X(65251) = barycentric quotient X(i)/X(j) for these (i, j): {1, 924}, {2, 63827}, {3, 63832}, {6, 55216}, {19, 6753}, {31, 34952}, {48, 30451}, {58, 34948}, {63, 52584}, {68, 656}, {75, 6563}, {91, 523}, {92, 57065}, {96, 2616}, {99, 44179}, {110, 47}, {162, 24}, {163, 571}, {190, 42700}, {648, 1748}, {661, 47421}, {662, 1993}, {799, 7763}, {811, 317}, {823, 11547}, {847, 24006}, {850, 17881}, {920, 63959}, {925, 1}, {1625, 2180}, {1733, 57154}, {1748, 15423}, {1820, 647}, {1953, 52317}, {2165, 661}, {2166, 43088}, {2168, 2623}, {2173, 14397}, {2351, 810}, {2617, 52}, {4556, 18605}, {4575, 1147}, {4590, 55249}, {4592, 9723}, {5392, 1577}, {6149, 44808}, {14213, 63829}, {14570, 63808}, {20563, 14208}, {20571, 850}, {23181, 63801}, {24000, 52917}, {24006, 136}, {24019, 8745}, {30450, 92}, {32661, 563}, {32676, 44077}, {32680, 18883}, {32692, 2148}, {32734, 31}, {36036, 31635}, {36061, 5961}, {36129, 52415}, {36145, 6}, {37802, 32679}, {44174, 4575}, {46134, 75}, {46254, 55227}, {52350, 24018}, {54030, 55398}, {54031, 55397}, {55215, 76}, {55216, 39013}, {55250, 115}, {55277, 62719}, {55549, 822}, {56272, 2618}, {56829, 52952}, {57716, 14618}, {57763, 4592}, {57904, 20948}, {60501, 798}, {63958, 921}, {65176, 19}, {65262, 52505}, {65273, 2167}, {65309, 63}, {65348, 2190}
X(65252) lies on these lines: {1, 1821}, {100, 26714}, {163, 36084}, {190, 65271}, {262, 24624}, {263, 37128}, {327, 37219}, {651, 65310}, {653, 46153}, {662, 23997}, {673, 60679}, {799, 2617}, {897, 2186}, {1967, 56681}, {2227, 56678}, {2349, 36263}, {3402, 36277}, {4575, 4599}, {6037, 29055}, {16948, 20332}, {32676, 65221}, {37137, 63741}, {37142, 43718}, {37202, 42313}, {37204, 55202}, {52631, 60057}
X(65252) = trilinear pole of line {1, 1755}
X(65252) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 3288}, {6, 23878}, {99, 6784}, {182, 523}, {183, 512}, {237, 63746}, {290, 9420}, {385, 39680}, {458, 647}, {513, 60723}, {514, 60726}, {520, 33971}, {525, 10311}, {526, 56401}, {649, 60737}, {656, 60685}, {661, 52134}, {667, 42711}, {669, 20023}, {798, 3403}, {822, 51315}, {842, 45321}, {850, 34396}, {2422, 51373}, {2433, 51372}, {2623, 59197}, {2799, 51542}, {3049, 44144}, {3569, 46806}, {4041, 60716}, {5027, 8842}, {6037, 62596}, {6130, 39683}, {14096, 58784}, {14994, 18105}, {15412, 59208}, {23286, 39530}, {31296, 60497}, {33569, 34536}, {59804, 65271}
X(65252) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 23878}, {5375, 60737}, {6631, 42711}, {31998, 3403}, {32664, 3288}, {36830, 52134}, {38986, 6784}, {39026, 60723}, {39052, 458}, {39054, 183}, {40596, 60685}
X(65252) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(163)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(2617), X(32676)}}, {{A, B, C, X(4575), X(46153)}}, {{A, B, C, X(24039), X(36289)}}, {{A, B, C, X(25424), X(51563)}}, {{A, B, C, X(43531), X(59034)}}
X(65252) = barycentric product X(i)*X(j) for these (i, j): {1, 65271}, {63, 65349}, {100, 60679}, {162, 42313}, {163, 327}, {262, 662}, {263, 799}, {325, 36132}, {1581, 39681}, {1755, 53196}, {1821, 63741}, {1959, 6037}, {2186, 99}, {2617, 42300}, {3402, 670}, {4602, 46319}, {24019, 59257}, {24037, 52631}, {26714, 75}, {32680, 57268}, {32716, 46238}, {36036, 51543}, {36084, 46807}, {42288, 55239}, {43718, 811}, {52926, 62276}, {54032, 823}, {65310, 92}
X(65252) = barycentric quotient X(i)/X(j) for these (i, j): {1, 23878}, {31, 3288}, {99, 3403}, {100, 60737}, {101, 60723}, {107, 51315}, {110, 52134}, {112, 60685}, {162, 458}, {163, 182}, {190, 42711}, {262, 1577}, {263, 661}, {327, 20948}, {662, 183}, {692, 60726}, {798, 6784}, {799, 20023}, {811, 44144}, {1821, 63746}, {1967, 39680}, {2186, 523}, {2247, 45321}, {2617, 59197}, {3402, 512}, {4565, 60716}, {6037, 1821}, {9417, 9420}, {24019, 33971}, {26714, 1}, {32676, 10311}, {32678, 56401}, {32716, 1910}, {36084, 46806}, {36132, 98}, {37134, 8842}, {39681, 1966}, {42075, 33569}, {42288, 55240}, {42299, 18070}, {42313, 14208}, {43718, 656}, {46319, 798}, {51997, 54252}, {52631, 2643}, {52926, 1953}, {53196, 46273}, {54032, 24018}, {57268, 32679}, {60679, 693}, {63741, 1959}, {65271, 75}, {65310, 63}, {65349, 92}
X(65252) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39342, 42075, 1821}
X(65253) lies on these lines: {81, 36100}, {100, 4575}, {110, 65225}, {162, 46588}, {163, 65260}, {190, 4558}, {653, 4565}, {897, 2217}, {1156, 16948}, {1821, 2995}, {2349, 62795}, {3737, 36094}, {4612, 65230}, {13478, 24624}, {15232, 57682}, {16754, 65232}, {19607, 34234}, {26540, 37202}, {26704, 59130}, {32641, 64824}, {36101, 56834}, {37142, 56840}, {37219, 57906}
X(65253) = trilinear pole of line {1, 1437}
X(65253) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 52310}, {10, 6589}, {37, 21189}, {71, 59915}, {124, 4559}, {512, 4417}, {513, 21078}, {514, 22276}, {522, 40590}, {523, 573}, {525, 3192}, {647, 17555}, {652, 56827}, {661, 3869}, {756, 16754}, {1577, 3185}, {1824, 57184}, {1880, 57111}, {2333, 57242}, {2489, 51612}, {3700, 10571}, {4024, 4225}, {4041, 17080}, {4551, 38345}, {22134, 24006}, {47411, 61178}, {47842, 53081}
X(65253) = X(i)-Dao conjugate of X(j) for these {i, j}: {36033, 52310}, {36830, 3869}, {39026, 21078}, {39052, 17555}, {39054, 4417}, {40589, 21189}, {55067, 124}
X(65253) = X(i)-cross conjugate of X(j) for these {i, j}: {1415, 110}, {30212, 7}, {32653, 59005}, {36050, 54951}, {53279, 99}
X(65253) = pole of line {6589, 21189} with respect to the Stammler hyperbola
X(65253) = pole of line {1812, 21078} with respect to the Hutson-Moses hyperbola
X(65253) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(46588)}}, {{A, B, C, X(81), X(65232)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(108), X(46640)}}, {{A, B, C, X(110), X(4612)}}, {{A, B, C, X(163), X(8687)}}, {{A, B, C, X(934), X(4592)}}, {{A, B, C, X(1169), X(32676)}}, {{A, B, C, X(1783), X(36145)}}, {{A, B, C, X(2222), X(56188)}}, {{A, B, C, X(3882), X(9070)}}, {{A, B, C, X(4558), X(4565)}}, {{A, B, C, X(32038), X(33637)}}, {{A, B, C, X(36050), X(44765)}}, {{A, B, C, X(51568), X(55202)}}
X(65253) = barycentric product X(i)*X(j) for these (i, j): {1, 54951}, {110, 2995}, {163, 57906}, {274, 32653}, {1014, 56112}, {1444, 26704}, {2217, 99}, {3737, 57757}, {10570, 1414}, {13478, 662}, {15232, 52935}, {15386, 18155}, {19607, 651}, {36050, 86}, {40160, 4612}, {42550, 65281}, {44765, 81}, {59005, 75}
X(65253) = barycentric quotient X(i)/X(j) for these (i, j): {28, 59915}, {48, 52310}, {58, 21189}, {101, 21078}, {108, 56827}, {110, 3869}, {162, 17555}, {163, 573}, {283, 57111}, {593, 16754}, {662, 4417}, {692, 22276}, {1333, 6589}, {1415, 40590}, {1444, 57242}, {1576, 3185}, {1790, 57184}, {2217, 523}, {2995, 850}, {3737, 124}, {4565, 17080}, {4592, 51612}, {7252, 38345}, {10570, 4086}, {13478, 1577}, {15232, 4036}, {15386, 4551}, {19607, 4391}, {23189, 34588}, {26704, 41013}, {32653, 37}, {32661, 22134}, {32676, 3192}, {36050, 10}, {44765, 321}, {53082, 23879}, {54951, 75}, {56112, 3701}, {57906, 20948}, {58951, 53081}, {58982, 40452}, {59005, 1}
X(65254) lies on these lines: {88, 1817}, {100, 58986}, {110, 65227}, {112, 653}, {162, 13589}, {163, 651}, {190, 5546}, {272, 673}, {658, 4565}, {799, 4612}, {897, 2218}, {1751, 24624}, {1821, 2997}, {4558, 65247}, {4575, 65244}, {7054, 37086}, {7437, 32676}, {27418, 37202}, {37203, 40574}, {37218, 51566}, {37219, 40011}, {46541, 65213}
X(65254) = trilinear pole of line {1, 1762}
X(65254) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 51658}, {10, 43060}, {37, 23800}, {72, 57173}, {73, 57043}, {209, 514}, {226, 8676}, {512, 18134}, {513, 22021}, {523, 579}, {647, 5125}, {649, 57808}, {661, 3868}, {663, 56559}, {693, 2198}, {1214, 57092}, {1400, 20294}, {1427, 58333}, {1577, 2352}, {2197, 57072}, {3120, 57217}, {3190, 7178}, {3700, 4306}, {4017, 27396}, {4557, 65118}, {5190, 23067}, {7649, 51574}, {17094, 41320}, {21044, 65315}, {23752, 40572}
X(65254) = X(i)-vertex conjugate of X(j) for these {i, j}: {4552, 32676}
X(65254) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 51658}, {5375, 57808}, {34961, 27396}, {36830, 3868}, {39026, 22021}, {39052, 5125}, {39054, 18134}, {40582, 20294}, {40589, 23800}, {40625, 17878}
X(65254) = X(i)-cross conjugate of X(j) for these {i, j}: {906, 110}, {54354, 24041}
X(65254) = pole of line {23800, 43060} with respect to the Stammler hyperbola
X(65254) = pole of line {1782, 57808} with respect to the Yff parabola
X(65254) = pole of line {22021, 40571} with respect to the Hutson-Moses hyperbola
X(65254) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(13589)}}, {{A, B, C, X(21), X(4237)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(112), X(163)}}, {{A, B, C, X(404), X(46499)}}, {{A, B, C, X(643), X(65232)}}, {{A, B, C, X(644), X(24019)}}, {{A, B, C, X(811), X(35169)}}, {{A, B, C, X(919), X(32676)}}, {{A, B, C, X(1332), X(13397)}}, {{A, B, C, X(1817), X(46541)}}, {{A, B, C, X(2222), X(56248)}}, {{A, B, C, X(4236), X(16050)}}, {{A, B, C, X(4238), X(24606)}}, {{A, B, C, X(4552), X(6011)}}, {{A, B, C, X(4556), X(59112)}}, {{A, B, C, X(6335), X(33637)}}, {{A, B, C, X(7437), X(37086)}}, {{A, B, C, X(11320), X(46597)}}, {{A, B, C, X(29014), X(57217)}}, {{A, B, C, X(31015), X(53160)}}
X(65254) = barycentric product X(i)*X(j) for these (i, j): {1, 65274}, {100, 272}, {110, 2997}, {163, 40011}, {1305, 21}, {1332, 40574}, {1414, 56146}, {1751, 662}, {2218, 99}, {15467, 65375}, {28786, 52914}, {41506, 52935}, {51566, 58}, {57784, 692}, {58986, 75}
X(65254) = barycentric quotient X(i)/X(j) for these (i, j): {21, 20294}, {56, 51658}, {58, 23800}, {100, 57808}, {101, 22021}, {110, 3868}, {162, 5125}, {163, 579}, {270, 57072}, {272, 693}, {651, 56559}, {662, 18134}, {692, 209}, {906, 51574}, {1019, 65118}, {1172, 57043}, {1305, 1441}, {1333, 43060}, {1474, 57173}, {1576, 2352}, {1751, 1577}, {2194, 8676}, {2218, 523}, {2299, 57092}, {2328, 58333}, {2997, 850}, {4560, 17878}, {5546, 27396}, {32739, 2198}, {40011, 20948}, {40574, 17924}, {41506, 4036}, {51566, 313}, {56146, 4086}, {57784, 40495}, {58986, 1}, {65274, 75}, {65375, 3190}
X(65255) lies on these lines: {88, 30581}, {100, 4612}, {163, 65230}, {190, 4556}, {261, 24583}, {651, 52935}, {655, 6648}, {660, 32736}, {897, 2363}, {1169, 37128}, {1798, 37142}, {3882, 64823}, {4565, 37137}, {4581, 60055}, {4610, 37215}, {4636, 65225}, {8687, 43069}, {14534, 24624}, {15420, 60056}, {24041, 65239}, {36085, 62749}, {36147, 37212}, {37202, 57853}, {37219, 40827}
X(65255) = trilinear pole of line {1, 849}
X(65255) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 42661}, {12, 52326}, {37, 50330}, {42, 21124}, {115, 53280}, {125, 61205}, {181, 3910}, {429, 647}, {512, 1211}, {513, 21810}, {523, 2092}, {525, 44092}, {594, 6371}, {661, 2292}, {669, 1228}, {756, 48131}, {798, 18697}, {872, 4509}, {960, 57185}, {1193, 4024}, {1500, 3004}, {1577, 3725}, {1829, 55232}, {1848, 55230}, {2171, 17420}, {2300, 4036}, {2354, 4064}, {2501, 22076}, {2643, 3882}, {3005, 27067}, {3120, 61168}, {3122, 65191}, {3124, 53332}, {3125, 61172}, {3666, 4705}, {3704, 7180}, {3708, 61226}, {3709, 41003}, {4017, 21033}, {4079, 4357}, {4267, 55197}, {4391, 59174}, {6042, 62749}, {7178, 40966}, {8672, 56914}, {14394, 38882}, {16705, 58289}, {20911, 50487}, {21051, 45218}, {21834, 45197}, {28654, 57157}, {40976, 57243}, {43924, 61377}, {45196, 63461}, {46878, 55234}
X(65255) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 20653}, {31998, 18697}, {32664, 42661}, {34961, 21033}, {36830, 2292}, {39026, 21810}, {39052, 429}, {39054, 1211}, {40589, 50330}, {40592, 21124}
X(65255) = X(i)-cross conjugate of X(j) for these {i, j}: {58, 24041}, {62749, 2363}
X(65255) = pole of line {21810, 64457} with respect to the Hutson-Moses hyperbola
X(65255) = intersection, other than A, B, C, of circumconics {{A, B, C, X(88), X(100)}}, {{A, B, C, X(1169), X(32736)}}, {{A, B, C, X(4565), X(53628)}}, {{A, B, C, X(4612), X(52935)}}, {{A, B, C, X(4628), X(36142)}}, {{A, B, C, X(6648), X(14534)}}, {{A, B, C, X(9070), X(54986)}}
X(65255) = barycentric product X(i)*X(j) for these (i, j): {1, 65281}, {109, 52550}, {162, 57853}, {163, 40827}, {190, 64457}, {261, 36098}, {593, 65229}, {757, 8707}, {1169, 799}, {1220, 52935}, {1509, 36147}, {1798, 811}, {2185, 6648}, {2298, 4610}, {2359, 55231}, {2363, 99}, {4590, 62749}, {4612, 64984}, {14534, 662}, {24041, 4581}, {30710, 4556}, {31643, 4636}, {32736, 873}, {40452, 54951}, {52379, 8687}, {58982, 75}, {65282, 849}
X(65255) = barycentric quotient X(i)/X(j) for these (i, j): {31, 42661}, {58, 50330}, {60, 17420}, {81, 21124}, {99, 18697}, {100, 20653}, {101, 21810}, {109, 52567}, {110, 2292}, {162, 429}, {163, 2092}, {249, 3882}, {250, 61226}, {593, 48131}, {643, 3704}, {644, 61377}, {662, 1211}, {757, 3004}, {799, 1228}, {849, 6371}, {1098, 57158}, {1101, 53280}, {1169, 661}, {1220, 4036}, {1414, 41003}, {1509, 4509}, {1576, 3725}, {1791, 4064}, {1798, 656}, {2150, 52326}, {2185, 3910}, {2298, 4024}, {2359, 55232}, {2363, 523}, {4556, 3666}, {4567, 65191}, {4570, 61172}, {4573, 45196}, {4575, 22076}, {4581, 1109}, {4599, 27067}, {4610, 20911}, {4612, 3687}, {4636, 960}, {5546, 21033}, {6648, 6358}, {8687, 2171}, {8707, 1089}, {14534, 1577}, {15420, 20902}, {24041, 53332}, {30710, 52623}, {32676, 44092}, {32736, 756}, {36098, 12}, {36147, 594}, {40827, 20948}, {52550, 35519}, {52914, 46878}, {52928, 1254}, {52935, 4357}, {53280, 6042}, {57162, 21043}, {57853, 14208}, {58982, 1}, {59005, 42550}, {62749, 115}, {64457, 514}, {65229, 28654}, {65281, 75}, {65375, 40966}
X(65256) lies on these lines: {2, 65264}, {6, 61403}, {81, 673}, {86, 27190}, {88, 39950}, {100, 43076}, {110, 36086}, {162, 4250}, {190, 4576}, {660, 63918}, {897, 13476}, {1414, 65222}, {1821, 40216}, {2287, 37214}, {2350, 32911}, {3570, 37205}, {4551, 16751}, {4565, 65217}, {4573, 34085}, {4599, 52935}, {4604, 64828}, {4607, 62530}, {5235, 34234}, {7192, 35326}, {17758, 24624}, {27644, 27666}, {37130, 40004}, {37138, 65186}, {37142, 37659}, {39046, 53707}, {65225, 65315}
X(65256) = isotomic conjugate of X(58361)
X(65256) = trilinear pole of line {1, 3286}
X(65256) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 4151}, {10, 21007}, {31, 58361}, {37, 4040}, {42, 17494}, {81, 21727}, {210, 58324}, {213, 20954}, {512, 17277}, {513, 3294}, {514, 64169}, {647, 14004}, {649, 4651}, {661, 1621}, {667, 4043}, {669, 18152}, {756, 57148}, {798, 17143}, {1018, 64523}, {1019, 40607}, {1334, 57167}, {1826, 22160}, {1924, 40088}, {3700, 55086}, {3709, 55082}, {3737, 20616}, {3952, 38346}, {3996, 7180}, {4171, 38859}, {4524, 33765}, {4551, 38347}, {4552, 38365}, {4557, 17761}, {43915, 62747}, {50520, 62646}, {55240, 56537}
X(65256) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 58361}, {9, 4151}, {1015, 2486}, {5375, 4651}, {6626, 20954}, {6631, 4043}, {9428, 40088}, {31998, 17143}, {36830, 1621}, {39026, 3294}, {39052, 14004}, {39054, 17277}, {40586, 21727}, {40589, 4040}, {40592, 17494}, {40620, 40619}
X(65256) = X(i)-cross conjugate of X(j) for these {i, j}: {2350, 63918}, {4557, 99}, {7192, 81}, {24948, 1255}, {32913, 24041}, {35326, 110}, {46148, 34594}, {47970, 40438}
X(65256) = pole of line {4040, 21007} with respect to the Stammler hyperbola
X(65256) = pole of line {86, 3294} with respect to the Hutson-Moses hyperbola
X(65256) = pole of line {17494, 20954} with respect to the Wallace hyperbola
X(65256) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4250)}}, {{A, B, C, X(81), X(110)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(101), X(43190)}}, {{A, B, C, X(163), X(8693)}}, {{A, B, C, X(274), X(11794)}}, {{A, B, C, X(648), X(4627)}}, {{A, B, C, X(666), X(8701)}}, {{A, B, C, X(813), X(39276)}}, {{A, B, C, X(1019), X(61403)}}, {{A, B, C, X(1255), X(6742)}}, {{A, B, C, X(1414), X(51563)}}, {{A, B, C, X(3570), X(32911)}}, {{A, B, C, X(4565), X(59012)}}, {{A, B, C, X(4575), X(65296)}}, {{A, B, C, X(4576), X(4589)}}, {{A, B, C, X(4584), X(4610)}}, {{A, B, C, X(4585), X(37633)}}, {{A, B, C, X(4586), X(53627)}}, {{A, B, C, X(4593), X(53624)}}, {{A, B, C, X(4603), X(4615)}}, {{A, B, C, X(4633), X(43356)}}, {{A, B, C, X(5235), X(64828)}}, {{A, B, C, X(7192), X(57148)}}, {{A, B, C, X(9090), X(36148)}}, {{A, B, C, X(16751), X(18155)}}, {{A, B, C, X(27644), X(62530)}}, {{A, B, C, X(35312), X(41353)}}, {{A, B, C, X(35326), X(54325)}}, {{A, B, C, X(36797), X(56204)}}, {{A, B, C, X(56053), X(59093)}}, {{A, B, C, X(63784), X(65059)}}
X(65256) = barycentric product X(i)*X(j) for these (i, j): {1, 53649}, {100, 39734}, {101, 40004}, {110, 40216}, {190, 39950}, {1414, 55076}, {2350, 799}, {13476, 99}, {17758, 662}, {43076, 75}, {54118, 81}, {63918, 7192}
X(65256) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4151}, {2, 58361}, {42, 21727}, {58, 4040}, {81, 17494}, {86, 20954}, {99, 17143}, {100, 4651}, {101, 3294}, {110, 1621}, {162, 14004}, {163, 4251}, {190, 4043}, {513, 2486}, {593, 57148}, {643, 3996}, {662, 17277}, {670, 40088}, {692, 64169}, {799, 18152}, {1014, 57167}, {1019, 17761}, {1333, 21007}, {1412, 58324}, {1414, 55082}, {1434, 57247}, {1437, 22160}, {1634, 56537}, {2350, 661}, {3733, 64523}, {4557, 40607}, {4559, 20616}, {4589, 40094}, {4637, 33765}, {7192, 40619}, {7252, 38347}, {13476, 523}, {17758, 1577}, {18191, 42454}, {39734, 693}, {39950, 514}, {40004, 3261}, {40216, 850}, {43076, 1}, {53649, 75}, {54118, 321}, {55076, 4086}, {57129, 38346}, {57148, 26846}, {63918, 3952}
X(65257) lies on these lines: {81, 21833}, {100, 17943}, {110, 2644}, {190, 22033}, {643, 65250}, {662, 21383}, {673, 40164}, {757, 16592}, {799, 21604}, {897, 13610}, {1414, 37137}, {1821, 51865}, {2248, 37128}, {4573, 65237}, {6625, 24624}, {14985, 60055}, {18757, 37132}, {36066, 37134}, {39054, 65220}, {39276, 43763}
X(65257) = trilinear pole of line {1, 1326}
X(65257) = X(i)-isoconjugate-of-X(j) for these {i, j}: {42, 21196}, {110, 6627}, {213, 50451}, {512, 1654}, {513, 21879}, {523, 18755}, {647, 4213}, {649, 21085}, {661, 846}, {663, 27691}, {667, 27569}, {669, 51857}, {798, 17762}, {893, 24381}, {2501, 22139}, {2905, 55230}, {3124, 57060}, {3709, 17084}, {4079, 6626}, {4155, 45783}, {4556, 21709}, {4705, 38814}, {4988, 38836}, {14844, 55210}, {17990, 39921}, {18004, 51332}, {46390, 52207}, {53581, 64224}, {57234, 63627}
X(65257) = X(i)-Dao conjugate of X(j) for these {i, j}: {244, 6627}, {5375, 21085}, {6626, 50451}, {6631, 27569}, {31998, 17762}, {36830, 846}, {39026, 21879}, {39052, 4213}, {39054, 1654}, {40592, 21196}, {40597, 24381}
X(65257) = X(i)-cross conjugate of X(j) for these {i, j}: {661, 52208}, {4705, 40438}, {37527, 7045}, {52935, 662}, {57234, 2363}
X(65257) = pole of line {21196, 50451} with respect to the Wallace hyperbola
X(65257) = intersection, other than A, B, C, of circumconics {{A, B, C, X(88), X(100)}}, {{A, B, C, X(110), X(1171)}}, {{A, B, C, X(661), X(21833)}}, {{A, B, C, X(1414), X(36066)}}, {{A, B, C, X(4103), X(21383)}}, {{A, B, C, X(4573), X(14534)}}, {{A, B, C, X(4603), X(17930)}}, {{A, B, C, X(4610), X(13486)}}, {{A, B, C, X(26700), X(35180)}}, {{A, B, C, X(35148), X(38470)}}
X(65257) = barycentric product X(i)*X(j) for these (i, j): {1, 53655}, {100, 40164}, {110, 51865}, {662, 6625}, {2248, 799}, {4610, 52208}, {13610, 99}, {15377, 55231}, {18757, 670}, {52935, 63885}, {53628, 75}
X(65257) = barycentric quotient X(i)/X(j) for these (i, j): {81, 21196}, {86, 50451}, {99, 17762}, {100, 21085}, {101, 21879}, {110, 846}, {162, 4213}, {163, 18755}, {171, 24381}, {190, 27569}, {651, 27691}, {661, 6627}, {662, 1654}, {799, 51857}, {1414, 17084}, {2248, 661}, {4556, 38814}, {4575, 22139}, {4623, 64224}, {4705, 21709}, {6625, 1577}, {13486, 14844}, {13610, 523}, {15377, 55232}, {18757, 512}, {24041, 57060}, {36066, 52207}, {40164, 693}, {40777, 4122}, {51865, 850}, {52208, 4024}, {52935, 6626}, {53628, 1}, {53655, 75}, {63885, 4036}
X(65258) lies on these lines: {88, 4615}, {99, 65250}, {100, 4589}, {162, 18020}, {190, 4584}, {651, 4620}, {660, 17934}, {662, 4590}, {741, 9150}, {799, 4369}, {805, 53631}, {876, 60057}, {892, 897}, {1019, 24037}, {1492, 52935}, {1821, 43187}, {3572, 37134}, {4367, 9425}, {4444, 36085}, {4562, 37212}, {4573, 7180}, {4598, 4631}, {18829, 53655}, {20142, 37128}, {24624, 40017}, {36084, 57991}, {36800, 65261}, {37133, 52612}, {37142, 57738}, {37202, 57987}, {40459, 47376}, {41209, 43763}, {55237, 65239}, {65352, 65354}
X(65258) = isogonal conjugate of X(46390)
X(65258) = trilinear pole of line {1, 99}
X(65258) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46390}, {6, 4155}, {37, 4455}, {42, 21832}, {181, 4435}, {213, 4010}, {238, 4079}, {239, 50487}, {350, 53581}, {512, 2238}, {523, 41333}, {647, 862}, {659, 1500}, {661, 3747}, {667, 4037}, {669, 3948}, {740, 798}, {756, 8632}, {804, 40729}, {812, 872}, {874, 1084}, {875, 35068}, {1284, 3709}, {1914, 4705}, {1924, 35544}, {2086, 3903}, {2201, 55230}, {2210, 4024}, {2333, 53556}, {2422, 50440}, {3063, 7235}, {3124, 3573}, {3572, 4094}, {3766, 7109}, {3985, 51641}, {4036, 14599}, {4093, 55240}, {4117, 27853}, {4433, 7180}, {4557, 39786}, {5027, 52651}, {16609, 63461}, {18892, 52623}, {55232, 57654}
X(65258) = X(i)-vertex conjugate of X(j) for these {i, j}: {213, 36133}
X(65258) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46390}, {9, 4155}, {6626, 4010}, {6631, 4037}, {9428, 35544}, {9470, 4079}, {10001, 7235}, {31998, 740}, {36830, 3747}, {36906, 4705}, {39052, 862}, {39054, 2238}, {40589, 4455}, {40592, 21832}, {62557, 4024}
X(65258) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39292, 37128}
X(65258) = X(i)-cross conjugate of X(j) for these {i, j}: {3570, 99}, {4444, 18827}, {4584, 36066}, {4589, 65285}, {18206, 24041}, {33295, 24037}, {46390, 1}
X(65258) = pole of line {1931, 2669} with respect to the Kiepert parabola
X(65258) = pole of line {4455, 46390} with respect to the Stammler hyperbola
X(65258) = pole of line {4010, 4839} with respect to the Wallace hyperbola
X(65258) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(51225)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(892), X(4590)}}, {{A, B, C, X(898), X(36133)}}, {{A, B, C, X(3570), X(20142)}}, {{A, B, C, X(3572), X(4369)}}, {{A, B, C, X(4555), X(32014)}}, {{A, B, C, X(4562), X(63896)}}, {{A, B, C, X(4573), X(53631)}}, {{A, B, C, X(4589), X(4639)}}, {{A, B, C, X(4610), X(4623)}}, {{A, B, C, X(16609), X(27853)}}, {{A, B, C, X(17930), X(17934)}}, {{A, B, C, X(52612), X(52935)}}
X(65258) = barycentric product X(i)*X(j) for these (i, j): {1, 65285}, {162, 57987}, {274, 4584}, {291, 4623}, {292, 52612}, {295, 55229}, {334, 52935}, {335, 4610}, {660, 873}, {670, 741}, {1509, 4562}, {3570, 57554}, {4444, 4590}, {4563, 65352}, {4583, 757}, {4589, 86}, {4625, 56154}, {4639, 81}, {17103, 18829}, {18268, 4602}, {18827, 99}, {18895, 4556}, {24037, 876}, {34067, 57992}, {34537, 3572}, {36066, 75}, {36800, 4573}, {36801, 552}, {36806, 57}, {37128, 799}, {37134, 8033}, {39276, 55239}, {39292, 4369}, {40017, 662}, {46159, 689}, {52207, 53655}, {57738, 811}, {60577, 7340}
X(65258) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4155}, {6, 46390}, {58, 4455}, {81, 21832}, {86, 4010}, {99, 740}, {110, 3747}, {162, 862}, {163, 41333}, {190, 4037}, {261, 3716}, {291, 4705}, {292, 4079}, {295, 55230}, {334, 4036}, {335, 4024}, {337, 4064}, {552, 43041}, {593, 8632}, {643, 4433}, {645, 3985}, {660, 756}, {662, 2238}, {664, 7235}, {670, 35544}, {741, 512}, {757, 659}, {763, 50456}, {799, 3948}, {813, 1500}, {873, 3766}, {876, 2643}, {1019, 39786}, {1414, 1284}, {1434, 7212}, {1444, 53556}, {1509, 812}, {1634, 4093}, {1911, 50487}, {1922, 53581}, {2185, 4435}, {2311, 3709}, {3570, 35068}, {3572, 3124}, {3573, 4094}, {4444, 115}, {4556, 1914}, {4562, 594}, {4573, 16609}, {4583, 1089}, {4584, 37}, {4589, 10}, {4590, 3570}, {4610, 239}, {4612, 3684}, {4623, 350}, {4631, 3975}, {4639, 321}, {5378, 40521}, {7058, 4148}, {17103, 804}, {17139, 42767}, {17206, 24459}, {17941, 4154}, {18268, 798}, {18827, 523}, {18895, 52623}, {20981, 2086}, {24037, 874}, {24041, 3573}, {34067, 872}, {34537, 27853}, {35352, 21043}, {36066, 1}, {36800, 3700}, {36801, 6057}, {36806, 312}, {37128, 661}, {37134, 52651}, {39276, 55240}, {39292, 27805}, {40017, 1577}, {40095, 21714}, {42028, 4839}, {46159, 3005}, {52612, 1921}, {52935, 238}, {53631, 39926}, {55229, 40717}, {55243, 4783}, {56154, 4041}, {56934, 53563}, {57554, 4444}, {57738, 656}, {57987, 14208}, {60577, 4092}, {65166, 4829}, {65283, 36815}, {65285, 75}, {65338, 7140}, {65352, 2501}
X(65258) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {36806, 65285, 4639}
X(65259) lies on these lines: {2, 43759}, {11, 19641}, {88, 2999}, {100, 13245}, {101, 27834}, {190, 17136}, {653, 63782}, {673, 17379}, {897, 17016}, {1156, 19861}, {1332, 37212}, {1813, 65234}, {4579, 37223}, {4585, 37211}, {4606, 65168}, {5278, 34234}, {5333, 18645}, {28283, 37129}
X(65259) = trilinear pole of line {1, 3052}
X(65259) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 48338}, {6, 28161}, {513, 3731}, {649, 3617}, {650, 3340}, {657, 62783}, {661, 64415}, {663, 5226}, {667, 42034}, {3445, 14350}, {3669, 62218}, {3733, 4058}, {3984, 6591}, {4394, 10563}
X(65259) = X(i)-vertex conjugate of X(j) for these {i, j}: {692, 27834}
X(65259) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 28161}, {1015, 62221}, {5375, 3617}, {6631, 42034}, {32664, 48338}, {36830, 64415}, {39026, 3731}, {45036, 14350}
X(65259) = X(i)-cross conjugate of X(j) for these {i, j}: {5437, 4564}, {7987, 7045}, {47915, 25417}, {48144, 81}
X(65259) = pole of line {3617, 3929} with respect to the Yff parabola
X(65259) = pole of line {940, 3731} with respect to the Hutson-Moses hyperbola
X(65259) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(32038)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(101), X(38828)}}, {{A, B, C, X(110), X(1461)}}, {{A, B, C, X(645), X(43190)}}, {{A, B, C, X(666), X(29199)}}, {{A, B, C, X(934), X(4597)}}, {{A, B, C, X(1025), X(62778)}}, {{A, B, C, X(1310), X(4555)}}, {{A, B, C, X(1332), X(63782)}}, {{A, B, C, X(1414), X(58133)}}, {{A, B, C, X(2999), X(17780)}}, {{A, B, C, X(4556), X(28166)}}, {{A, B, C, X(4565), X(4588)}}, {{A, B, C, X(4573), X(44765)}}, {{A, B, C, X(4584), X(58117)}}, {{A, B, C, X(4585), X(5333)}}, {{A, B, C, X(4586), X(29227)}}, {{A, B, C, X(4591), X(28206)}}, {{A, B, C, X(4596), X(58134)}}, {{A, B, C, X(4616), X(43349)}}, {{A, B, C, X(4627), X(8652)}}, {{A, B, C, X(4629), X(28152)}}, {{A, B, C, X(4817), X(13245)}}, {{A, B, C, X(5278), X(64828)}}, {{A, B, C, X(6335), X(46480)}}, {{A, B, C, X(6606), X(9086)}}, {{A, B, C, X(6648), X(55996)}}, {{A, B, C, X(6742), X(44327)}}, {{A, B, C, X(8693), X(34071)}}, {{A, B, C, X(30555), X(32736)}}, {{A, B, C, X(30610), X(56188)}}, {{A, B, C, X(36049), X(59079)}}, {{A, B, C, X(36147), X(53630)}}
X(65259) = barycentric product X(i)*X(j) for these (i, j): {1, 58132}, {100, 30712}, {190, 39980}, {28162, 75}, {31503, 99}, {56201, 651}, {56226, 662}
X(65259) = barycentric quotient X(i)/X(j) for these (i, j): {1, 28161}, {31, 48338}, {100, 3617}, {101, 3731}, {109, 3340}, {110, 64415}, {190, 42034}, {513, 62221}, {651, 5226}, {934, 62783}, {1018, 4058}, {1293, 10563}, {1331, 3984}, {1743, 14350}, {3939, 62218}, {28162, 1}, {30712, 693}, {31503, 523}, {35338, 61031}, {39980, 514}, {56201, 4391}, {56226, 1577}, {58132, 75}
X(65260) lies on these lines: {6, 26856}, {81, 34234}, {88, 53083}, {100, 2617}, {110, 36098}, {162, 7461}, {163, 65253}, {190, 14570}, {645, 65229}, {648, 65223}, {653, 57220}, {673, 20028}, {897, 34434}, {1020, 16754}, {1332, 37218}, {1746, 2051}, {1821, 54121}, {2349, 62796}, {4560, 64824}, {4565, 37136}, {4585, 37205}, {7253, 61202}, {16749, 37130}, {16948, 37129}, {36087, 57148}, {36101, 40773}, {37133, 55256}, {37202, 37659}, {37219, 57905}
X(65260) = trilinear pole of line {1, 859}
X(65260) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 51662}, {37, 21173}, {42, 17496}, {54, 52322}, {101, 53566}, {213, 57244}, {512, 14829}, {513, 21061}, {514, 52139}, {522, 55323}, {523, 572}, {647, 11109}, {649, 17751}, {650, 37558}, {661, 2975}, {663, 52358}, {1019, 14973}, {1021, 20617}, {1086, 57165}, {1400, 57091}, {1427, 58339}, {1577, 20986}, {1826, 23187}, {2171, 57125}, {3120, 65203}, {3737, 56325}, {4041, 17074}, {4551, 11998}, {4557, 24237}, {4559, 34589}, {4581, 52087}, {7252, 52357}, {22118, 24006}, {23493, 27346}, {38344, 61178}
X(65260) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 51662}, {1015, 53566}, {5375, 17751}, {6626, 57244}, {36830, 2975}, {39026, 21061}, {39052, 11109}, {39054, 14829}, {40582, 57091}, {40589, 21173}, {40592, 17496}, {40625, 40624}, {55067, 34589}
X(65260) = X(i)-cross conjugate of X(j) for these {i, j}: {4559, 110}, {4560, 81}, {23845, 99}, {25667, 1258}, {56194, 65275}
X(65260) = pole of line {333, 21061} with respect to the Hutson-Moses hyperbola
X(65260) = pole of line {17496, 27346} with respect to the Wallace hyperbola
X(65260) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1020)}}, {{A, B, C, X(81), X(648)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(109), X(44765)}}, {{A, B, C, X(110), X(645)}}, {{A, B, C, X(163), X(1783)}}, {{A, B, C, X(249), X(23592)}}, {{A, B, C, X(666), X(59102)}}, {{A, B, C, X(811), X(934)}}, {{A, B, C, X(901), X(6648)}}, {{A, B, C, X(1332), X(4575)}}, {{A, B, C, X(1414), X(7257)}}, {{A, B, C, X(1461), X(28624)}}, {{A, B, C, X(2617), X(14570)}}, {{A, B, C, X(3737), X(26856)}}, {{A, B, C, X(3882), X(3952)}}, {{A, B, C, X(4556), X(47318)}}, {{A, B, C, X(4577), X(17929)}}, {{A, B, C, X(4585), X(32911)}}, {{A, B, C, X(23997), X(62813)}}, {{A, B, C, X(38828), X(59113)}}, {{A, B, C, X(40773), X(55256)}}, {{A, B, C, X(52931), X(61226)}}, {{A, B, C, X(56188), X(56194)}}
X(65261) lies on these lines: {7, 8287}, {9, 662}, {33, 162}, {37, 651}, {88, 61179}, {100, 210}, {142, 31278}, {144, 21221}, {190, 319}, {226, 658}, {312, 799}, {518, 37135}, {527, 31175}, {653, 1826}, {655, 63778}, {673, 2786}, {897, 35347}, {1156, 8674}, {1757, 36086}, {1903, 37141}, {2250, 37136}, {2341, 37140}, {4599, 56245}, {4663, 65243}, {5220, 65250}, {6007, 60057}, {9034, 36101}, {14616, 32680}, {17484, 31058}, {17740, 37210}, {17768, 60055}, {17781, 37206}, {18230, 40539}, {24619, 44449}, {24624, 53339}, {27834, 43216}, {31297, 61006}, {36800, 65258}, {37137, 52651}, {37212, 59140}, {41509, 65244}, {54357, 65242}, {56255, 65222}
X(65261) = midpoint of X(i) and X(j) for these {i,j}: {144, 21221}
X(65261) = reflection of X(i) in X(j) for these {i,j}: {7, 8287}, {662, 9}
X(65261) = trilinear pole of line {1, 4041}
X(65261) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 17768}, {55, 43066}, {28471, 35066}
X(65261) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 17768}, {223, 43066}
X(65261) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(15481)}}, {{A, B, C, X(2), X(29007)}}, {{A, B, C, X(4), X(55965)}}, {{A, B, C, X(7), X(319)}}, {{A, B, C, X(9), X(33)}}, {{A, B, C, X(27), X(35989)}}, {{A, B, C, X(57), X(60942)}}, {{A, B, C, X(63), X(41572)}}, {{A, B, C, X(74), X(52378)}}, {{A, B, C, X(76), X(55991)}}, {{A, B, C, X(80), X(4564)}}, {{A, B, C, X(84), X(9311)}}, {{A, B, C, X(85), X(90)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(103), X(60025)}}, {{A, B, C, X(104), X(1121)}}, {{A, B, C, X(335), X(765)}}, {{A, B, C, X(513), X(3512)}}, {{A, B, C, X(514), X(3065)}}, {{A, B, C, X(516), X(9034)}}, {{A, B, C, X(518), X(1757)}}, {{A, B, C, X(527), X(8674)}}, {{A, B, C, X(671), X(4567)}}, {{A, B, C, X(759), X(47947)}}, {{A, B, C, X(903), X(2991)}}, {{A, B, C, X(1262), X(15337)}}, {{A, B, C, X(1434), X(10308)}}, {{A, B, C, X(1445), X(17781)}}, {{A, B, C, X(1910), X(24479)}}, {{A, B, C, X(2185), X(3255)}}, {{A, B, C, X(2346), X(56037)}}, {{A, B, C, X(2987), X(4570)}}, {{A, B, C, X(2996), X(40436)}}, {{A, B, C, X(3062), X(4416)}}, {{A, B, C, X(3467), X(17758)}}, {{A, B, C, X(3497), X(57666)}}, {{A, B, C, X(4649), X(5220)}}, {{A, B, C, X(4663), X(5223)}}, {{A, B, C, X(5325), X(60937)}}, {{A, B, C, X(6043), X(57690)}}, {{A, B, C, X(6625), X(40430)}}, {{A, B, C, X(7131), X(38271)}}, {{A, B, C, X(7313), X(48074)}}, {{A, B, C, X(7319), X(55986)}}, {{A, B, C, X(8545), X(54357)}}, {{A, B, C, X(8773), X(35162)}}, {{A, B, C, X(9282), X(39979)}}, {{A, B, C, X(9442), X(9503)}}, {{A, B, C, X(9505), X(43751)}}, {{A, B, C, X(10390), X(46971)}}, {{A, B, C, X(10394), X(41228)}}, {{A, B, C, X(10693), X(11608)}}, {{A, B, C, X(15175), X(60083)}}, {{A, B, C, X(15227), X(40076)}}, {{A, B, C, X(15254), X(51294)}}, {{A, B, C, X(17484), X(37787)}}, {{A, B, C, X(21446), X(63167)}}, {{A, B, C, X(26750), X(34919)}}, {{A, B, C, X(32635), X(63191)}}, {{A, B, C, X(36128), X(53686)}}, {{A, B, C, X(36599), X(44178)}}, {{A, B, C, X(36605), X(63163)}}, {{A, B, C, X(37797), X(60935)}}, {{A, B, C, X(39749), X(55989)}}, {{A, B, C, X(40023), X(56220)}}, {{A, B, C, X(43730), X(64980)}}, {{A, B, C, X(54497), X(56320)}}, {{A, B, C, X(55920), X(56039)}}, {{A, B, C, X(55922), X(55925)}}, {{A, B, C, X(56203), X(57826)}}, {{A, B, C, X(56204), X(63384)}}, {{A, B, C, X(64836), X(65003)}}
X(65261) = barycentric product X(i)*X(j) for these (i, j): {1, 35141}, {28471, 75}, {35347, 99}
X(65261) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17768}, {57, 43066}, {28471, 1}, {35141, 75}, {35347, 523}
X(65262) lies on these lines: {100, 10420}, {162, 1101}, {190, 18878}, {651, 43755}, {653, 687}, {662, 63827}, {799, 62719}, {897, 36053}, {1577, 65251}, {1821, 20884}, {2986, 24624}, {5504, 37142}, {14910, 37128}, {15328, 60055}, {15421, 60056}, {18750, 36102}, {18879, 37140}, {32708, 36099}, {36095, 62720}, {37202, 57829}, {37219, 40832}, {37220, 46238}
X(65262) = trilinear pole of line {1, 4575}
X(65262) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 21731}, {3, 47236}, {4, 686}, {6, 55121}, {25, 6334}, {74, 55265}, {113, 2433}, {115, 15329}, {125, 61209}, {403, 647}, {512, 3580}, {523, 3003}, {525, 44084}, {526, 56403}, {661, 1725}, {690, 60498}, {924, 62361}, {1637, 14264}, {1986, 14582}, {1989, 60342}, {2088, 41512}, {2315, 24006}, {2489, 62338}, {2501, 13754}, {2623, 63735}, {3049, 44138}, {3124, 61188}, {3569, 52451}, {4705, 18609}, {10097, 12828}, {10420, 39021}, {14270, 57486}, {15475, 34834}, {16221, 32662}, {16237, 20975}, {18314, 61372}, {18781, 58900}, {18808, 47405}, {34212, 53568}, {34952, 52504}, {39170, 47230}, {41079, 51821}
X(65262) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 55121}, {6505, 6334}, {32664, 21731}, {34544, 60342}, {36033, 686}, {36103, 47236}, {36830, 1725}, {39052, 403}, {39054, 3580}
X(65262) = X(i)-cross conjugate of X(j) for these {i, j}: {6149, 24041}
X(65262) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(36105)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(1101), X(52378)}}, {{A, B, C, X(1577), X(2616)}}, {{A, B, C, X(14206), X(36061)}}, {{A, B, C, X(20884), X(46238)}}, {{A, B, C, X(36104), X(36142)}}
X(65262) = barycentric product X(i)*X(j) for these (i, j): {1, 18878}, {48, 57932}, {63, 687}, {162, 57829}, {163, 40832}, {304, 32708}, {1300, 4592}, {1414, 56103}, {1577, 18879}, {2173, 55264}, {2986, 662}, {4575, 65267}, {5504, 811}, {10420, 75}, {14910, 799}, {15328, 24041}, {36034, 52552}, {36053, 99}, {36114, 69}, {43755, 92}, {46254, 61216}, {52505, 65251}
X(65262) = barycentric quotient X(i)/X(j) for these (i, j): {1, 55121}, {19, 47236}, {31, 21731}, {48, 686}, {63, 6334}, {110, 1725}, {162, 403}, {163, 3003}, {662, 3580}, {687, 92}, {811, 44138}, {1101, 15329}, {1300, 24006}, {2173, 55265}, {2617, 63735}, {2986, 1577}, {4556, 18609}, {4575, 13754}, {4592, 62338}, {5504, 656}, {6149, 60342}, {10420, 1}, {14910, 661}, {15328, 1109}, {15421, 20902}, {15454, 36035}, {18878, 75}, {18879, 662}, {24041, 61188}, {32661, 2315}, {32676, 44084}, {32678, 56403}, {32680, 57486}, {32708, 19}, {36034, 14264}, {36053, 523}, {36061, 39170}, {36084, 52451}, {36114, 4}, {36142, 60498}, {36145, 62361}, {40832, 20948}, {43755, 63}, {52505, 63827}, {52557, 2624}, {55264, 33805}, {56103, 4086}, {57829, 14208}, {57932, 1969}, {60035, 2618}, {61216, 3708}, {65251, 52504}
X(65263) lies on these lines: {27, 65240}, {74, 37142}, {88, 56830}, {92, 36102}, {100, 1304}, {162, 656}, {190, 16077}, {240, 897}, {648, 38340}, {651, 44769}, {653, 15459}, {662, 24018}, {799, 46254}, {823, 1577}, {1156, 14192}, {1492, 32715}, {1494, 37202}, {1821, 2159}, {1955, 35200}, {2173, 2349}, {2394, 60056}, {2642, 36104}, {8749, 37128}, {16080, 24624}, {18808, 60055}, {23692, 23707}, {24001, 32680}, {32695, 36099}, {33805, 37220}, {36085, 62720}, {36097, 36117}
X(65263) = isogonal conjugate of X(2631)
X(65263) = trilinear pole of line {1, 162}
X(65263) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2631}, {2, 9409}, {3, 1637}, {4, 1636}, {6, 9033}, {25, 41077}, {30, 647}, {48, 36035}, {54, 14391}, {64, 14345}, {65, 14395}, {66, 14396}, {68, 14397}, {69, 14398}, {71, 11125}, {72, 14399}, {73, 14400}, {74, 14401}, {112, 1650}, {113, 61216}, {125, 2420}, {133, 2430}, {184, 41079}, {186, 18558}, {265, 52743}, {476, 47414}, {512, 11064}, {520, 1990}, {523, 3284}, {525, 1495}, {526, 56399}, {656, 2173}, {684, 35906}, {686, 15454}, {810, 14206}, {822, 1784}, {878, 51389}, {1304, 39008}, {1511, 14582}, {1568, 2623}, {2081, 64228}, {2407, 20975}, {2433, 16163}, {2435, 6793}, {2501, 51394}, {2632, 56829}, {2682, 65321}, {3049, 3260}, {3163, 14380}, {3258, 32662}, {3265, 14581}, {3267, 9407}, {3269, 4240}, {3569, 35912}, {5504, 55265}, {5642, 10097}, {5664, 52153}, {6587, 11589}, {8552, 14583}, {8611, 51654}, {9406, 14208}, {9408, 34767}, {9411, 60872}, {9517, 60496}, {13857, 30491}, {14270, 57482}, {14499, 52131}, {14500, 52132}, {14919, 58346}, {15328, 47405}, {15451, 43768}, {15526, 23347}, {16080, 58345}, {16186, 41392}, {16240, 62665}, {18557, 34397}, {18653, 55230}, {18877, 58263}, {20123, 58900}, {23286, 52945}, {32320, 52661}, {32661, 58261}, {32663, 55141}, {34570, 57295}, {35071, 58071}, {36298, 60009}, {36299, 60010}, {38956, 61215}, {39176, 43083}, {39201, 46106}, {39469, 60869}, {40352, 52624}, {42293, 43752}, {43701, 47433}, {46425, 51346}, {47228, 53235}, {47230, 51254}, {50433, 62172}, {51382, 55234}, {51420, 55232}, {52955, 57109}
X(65263) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 2631}, {9, 9033}, {1249, 36035}, {6505, 41077}, {9410, 14208}, {32664, 9409}, {34591, 1650}, {36033, 1636}, {36103, 1637}, {36896, 656}, {39052, 30}, {39054, 11064}, {39062, 14206}, {40596, 2173}, {40602, 14395}, {62605, 41079}, {62606, 24018}
X(65263) = X(i)-cross conjugate of X(j) for these {i, j}: {1725, 24041}, {2173, 24000}, {2631, 1}, {32678, 36114}, {32679, 92}, {56829, 162}
X(65263) = pole of line {2631, 14395} with respect to the Stammler hyperbola
X(65263) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(36104)}}, {{A, B, C, X(27), X(37966)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(240), X(62720)}}, {{A, B, C, X(656), X(1577)}}, {{A, B, C, X(2173), X(32678)}}, {{A, B, C, X(5379), X(24000)}}, {{A, B, C, X(24001), X(36114)}}, {{A, B, C, X(35342), X(61236)}}, {{A, B, C, X(36046), X(36142)}}, {{A, B, C, X(40116), X(57390)}}, {{A, B, C, X(40395), X(65331)}}
X(65263) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {656, 2633, 24000}
X(65264) lies on these lines: {2, 65256}, {6, 26856}, {86, 651}, {100, 333}, {162, 14004}, {190, 314}, {261, 572}, {286, 653}, {655, 14616}, {658, 57785}, {660, 36800}, {799, 14829}, {897, 60574}, {2250, 64824}, {11998, 65275}, {14534, 36098}, {29437, 29490}, {32010, 37137}, {37870, 65225}, {40412, 65217}
X(65264) = trilinear pole of line {1, 4560}
X(65264) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 20718}, {37, 20470}, {42, 20367}, {213, 20347}, {647, 4250}, {1824, 20744}, {1918, 20448}, {18785, 39046}
X(65264) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 20718}, {6626, 20347}, {34021, 20448}, {39052, 4250}, {40589, 20470}, {40592, 20367}, {40620, 20520}
X(65264) = X(i)-cross conjugate of X(j) for these {i, j}: {3286, 86}, {13576, 18827}, {53343, 99}
X(65264) = pole of line {20470, 39046} with respect to the Stammler hyperbola
X(65264) = pole of line {20347, 20367} with respect to the Wallace hyperbola
X(65264) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4043)}}, {{A, B, C, X(6), X(572)}}, {{A, B, C, X(27), X(1171)}}, {{A, B, C, X(81), X(29767)}}, {{A, B, C, X(86), X(261)}}, {{A, B, C, X(88), X(100)}}, {{A, B, C, X(1029), X(56246)}}, {{A, B, C, X(1150), X(46922)}}, {{A, B, C, X(1222), X(40827)}}, {{A, B, C, X(1246), X(60167)}}, {{A, B, C, X(1434), X(40408)}}, {{A, B, C, X(1751), X(39981)}}, {{A, B, C, X(2051), X(45108)}}, {{A, B, C, X(2669), X(14195)}}, {{A, B, C, X(3512), X(10566)}}, {{A, B, C, X(4251), X(16552)}}, {{A, B, C, X(15232), X(60320)}}, {{A, B, C, X(15320), X(60172)}}, {{A, B, C, X(17206), X(57668)}}, {{A, B, C, X(29437), X(32911)}}, {{A, B, C, X(31618), X(35144)}}, {{A, B, C, X(32008), X(32014)}}, {{A, B, C, X(36807), X(40017)}}, {{A, B, C, X(38955), X(54497)}}, {{A, B, C, X(39971), X(60615)}}, {{A, B, C, X(40433), X(64984)}}, {{A, B, C, X(40435), X(42335)}}, {{A, B, C, X(47947), X(60135)}}, {{A, B, C, X(56853), X(62749)}}, {{A, B, C, X(57536), X(57554)}}, {{A, B, C, X(57719), X(57905)}}, {{A, B, C, X(57980), X(62723)}}
X(65264) = barycentric product X(i)*X(j) for these (i, j): {4560, 53644}, {53707, 75}, {60574, 99}
X(65264) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20718}, {58, 20470}, {81, 20367}, {86, 20347}, {162, 4250}, {274, 20448}, {1790, 20744}, {3286, 39046}, {7192, 20520}, {53644, 4552}, {53707, 1}, {60574, 523}
X(65265) lies on the Steiner circumellipse and on these lines: {30, 14944}, {99, 20580}, {107, 44552}, {190, 36092}, {232, 57761}, {290, 9476}, {297, 35140}, {393, 35088}, {525, 6529}, {648, 8057}, {671, 34170}, {1249, 46097}, {1297, 54973}, {1494, 6330}, {2404, 2419}, {2409, 2966}, {2416, 32646}, {2435, 53205}, {3543, 52485}, {5641, 56601}, {6528, 34538}, {6587, 44181}, {8767, 35145}, {14638, 57574}, {15352, 65266}, {16077, 43673}, {16096, 44334}, {23590, 33294}, {37200, 39265}, {54988, 64975}
X(65265) = reflection of X(i) in X(j) for these {i,j}: {16096, 44334}
X(65265) = isotomic conjugate of X(39473)
X(65265) = trilinear pole of line {2, 107}
X(65265) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 39473}, {441, 810}, {520, 2312}, {647, 8766}, {656, 8779}, {822, 1503}, {2409, 37754}, {24018, 42671}, {24024, 35071}
X(65265) = X(i)-vertex conjugate of X(j) for these {i, j}: {394, 32725}
X(65265) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39473}, {107, 63791}, {122, 57296}, {23976, 60341}, {36901, 58258}, {39052, 8766}, {39062, 441}, {40596, 8779}
X(65265) = X(i)-cross conjugate of X(j) for these {i, j}: {297, 23582}, {520, 57761}, {1503, 44181}, {23977, 107}, {33294, 57549}, {39473, 2}, {43673, 6330}, {61189, 35140}
X(65265) = pole of line {61189, 65265} with respect to the Steiner circumellipse
X(65265) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(297), X(685)}}, {{A, B, C, X(394), X(6080)}}, {{A, B, C, X(459), X(22239)}}, {{A, B, C, X(525), X(2416)}}, {{A, B, C, X(2867), X(16096)}}, {{A, B, C, X(4240), X(44216)}}, {{A, B, C, X(6529), X(32646)}}, {{A, B, C, X(7473), X(62955)}}, {{A, B, C, X(9476), X(44770)}}, {{A, B, C, X(15459), X(23582)}}, {{A, B, C, X(16230), X(35088)}}, {{A, B, C, X(32649), X(43717)}}, {{A, B, C, X(32725), X(56364)}}, {{A, B, C, X(47105), X(56601)}}
X(65266) lies on the Steiner circumellipse and on these lines: {2, 55047}, {4, 40421}, {30, 16097}, {66, 290}, {69, 56599}, {76, 58075}, {99, 1289}, {112, 53657}, {264, 35140}, {315, 59432}, {427, 46241}, {648, 44766}, {670, 61181}, {671, 43678}, {850, 32713}, {877, 46134}, {1494, 18018}, {2966, 41679}, {3228, 13854}, {4577, 6331}, {5641, 44138}, {14376, 54973}, {15352, 65265}, {17984, 34138}, {41677, 65271}, {44134, 54988}, {51843, 60495}, {54976, 55560}
X(65266) = isotomic conjugate of X(8673)
X(65266) = anticomplement of X(55047)
X(65266) = trilinear pole of line {2, 1235}
X(65266) = X(i)-isoconjugate-of-X(j) for these {i, j}: {22, 810}, {31, 8673}, {48, 2485}, {72, 21122}, {163, 38356}, {206, 656}, {525, 17453}, {560, 57069}, {647, 2172}, {798, 20806}, {822, 8743}, {905, 21034}, {1577, 22075}, {1760, 3049}, {1924, 34254}, {1973, 58359}, {2156, 57202}, {2159, 14396}, {2200, 16757}, {4456, 22383}, {4548, 51664}, {7251, 8611}, {9247, 33294}, {14208, 20968}, {17186, 55232}, {17409, 24018}, {18187, 32739}, {23995, 55273}, {32676, 47413}, {52430, 59932}
X(65266) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 8673}, {115, 38356}, {1249, 2485}, {3163, 14396}, {6337, 58359}, {6374, 57069}, {9428, 34254}, {15526, 47413}, {18314, 55273}, {31998, 20806}, {36830, 10316}, {36901, 127}, {39052, 2172}, {39062, 22}, {40596, 206}, {40619, 18187}, {55047, 55047}, {62576, 33294}
X(65266) = X(i)-cross conjugate of X(j) for these {i, j}: {66, 44183}, {112, 6331}, {850, 40421}, {1632, 30450}, {3267, 264}, {7391, 23582}, {8673, 2}, {18656, 55346}, {46151, 648}, {51884, 44181}, {64023, 250}
X(65266) = pole of line {46151, 65266} with respect to the Steiner circumellipse
X(65266) = pole of line {8673, 58359} with respect to the Wallace hyperbola
X(65266) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(32713)}}, {{A, B, C, X(69), X(46639)}}, {{A, B, C, X(95), X(30441)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(110), X(18125)}}, {{A, B, C, X(112), X(11605)}}, {{A, B, C, X(264), X(15352)}}, {{A, B, C, X(317), X(877)}}, {{A, B, C, X(933), X(44770)}}, {{A, B, C, X(2867), X(16039)}}, {{A, B, C, X(4240), X(31133)}}, {{A, B, C, X(8673), X(55047)}}, {{A, B, C, X(22456), X(30450)}}, {{A, B, C, X(35360), X(59100)}}, {{A, B, C, X(47138), X(53569)}}
X(65267) lies on the Steiner circumellipse and on these lines: {4, 65284}, {69, 46134}, {76, 58081}, {97, 52505}, {99, 264}, {290, 15328}, {315, 56684}, {317, 6528}, {340, 18817}, {648, 1993}, {664, 57809}, {670, 18022}, {687, 2966}, {892, 46111}, {2970, 36207}, {3260, 18878}, {4577, 46104}, {5408, 54030}, {5409, 54031}, {5504, 8795}, {6331, 53192}, {8749, 46106}, {14615, 46746}, {15421, 54973}, {15454, 54100}, {16077, 40423}, {20572, 46139}, {35136, 44133}, {40074, 65277}, {40427, 54959}, {46927, 47269}, {54952, 56103}
X(65267) = isotomic conjugate of X(13754)
X(65267) = trilinear pole of line {2, 14618}
X(65267) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2315}, {31, 13754}, {48, 3003}, {163, 686}, {184, 1725}, {255, 44084}, {403, 52430}, {560, 62338}, {563, 62361}, {810, 15329}, {822, 61209}, {2159, 47405}, {2200, 18609}, {3580, 9247}, {4575, 21731}, {44706, 61372}, {62267, 63735}
X(65267) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 13754}, {9, 2315}, {115, 686}, {136, 21731}, {1249, 3003}, {3163, 47405}, {6374, 62338}, {6523, 44084}, {34834, 34333}, {36901, 6334}, {39062, 15329}, {62576, 3580}, {62605, 1725}, {62606, 53785}
X(65267) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 57760}, {323, 276}, {2986, 40832}, {3260, 264}, {13754, 2}, {15328, 687}, {15454, 40427}, {18808, 46456}, {44427, 6331}, {55121, 30450}, {56577, 40423}, {60035, 2986}
X(65267) = pole of line {686, 21731} with respect to the polar circle
X(65267) = pole of line {13754, 34333} with respect to the Wallace hyperbola
X(65267) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(378)}}, {{A, B, C, X(69), X(97)}}, {{A, B, C, X(74), X(39985)}}, {{A, B, C, X(94), X(3260)}}, {{A, B, C, X(95), X(801)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(250), X(57732)}}, {{A, B, C, X(253), X(55031)}}, {{A, B, C, X(264), X(2052)}}, {{A, B, C, X(265), X(8431)}}, {{A, B, C, X(297), X(46239)}}, {{A, B, C, X(325), X(44375)}}, {{A, B, C, X(328), X(850)}}, {{A, B, C, X(895), X(35098)}}, {{A, B, C, X(1989), X(15928)}}, {{A, B, C, X(2986), X(40423)}}, {{A, B, C, X(5392), X(57819)}}, {{A, B, C, X(5504), X(60035)}}, {{A, B, C, X(5890), X(11459)}}, {{A, B, C, X(5891), X(9730)}}, {{A, B, C, X(5892), X(10170)}}, {{A, B, C, X(6063), X(57885)}}, {{A, B, C, X(13582), X(57766)}}, {{A, B, C, X(14910), X(15328)}}, {{A, B, C, X(14919), X(43767)}}, {{A, B, C, X(15454), X(58942)}}, {{A, B, C, X(16080), X(58016)}}, {{A, B, C, X(18848), X(57677)}}, {{A, B, C, X(34384), X(54774)}}, {{A, B, C, X(36889), X(44176)}}, {{A, B, C, X(43710), X(56307)}}, {{A, B, C, X(44133), X(54412)}}, {{A, B, C, X(55560), X(55562)}}, {{A, B, C, X(57765), X(57894)}}, {{A, B, C, X(57817), X(65084)}}
X(65268) lies on the Steiner circumellipse and on these lines: {99, 250}, {190, 36095}, {290, 685}, {316, 61489}, {317, 5641}, {340, 35140}, {648, 23964}, {668, 5379}, {670, 18020}, {671, 5523}, {850, 32713}, {877, 18878}, {892, 61181}, {1304, 1494}, {2419, 32649}, {2485, 44183}, {2966, 16237}, {3267, 40596}, {4580, 53657}, {6528, 32230}, {10313, 52513}, {15384, 53639}, {18823, 51823}, {18876, 54973}, {32715, 53331}, {35179, 52913}, {36823, 53200}, {44146, 46140}, {52916, 65269}, {54412, 58078}
X(65268) = isogonal conjugate of X(42665)
X(65268) = trilinear pole of line {2, 112}
X(65268) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42665}, {48, 47138}, {228, 21109}, {647, 18669}, {656, 2393}, {798, 62382}, {810, 858}, {822, 5523}, {2631, 60499}, {2632, 46592}, {3049, 20884}, {3708, 61198}, {14580, 24018}, {21017, 22383}
X(65268) = X(i)-vertex conjugate of X(j) for these {i, j}: {69, 32715}
X(65268) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 42665}, {1249, 47138}, {31998, 62382}, {36830, 14961}, {39052, 18669}, {39062, 858}, {40596, 2393}, {62597, 38971}
X(65268) = X(i)-cross conjugate of X(j) for these {i, j}: {23, 23582}, {935, 65350}, {2393, 44183}, {37784, 4590}, {44146, 18020}
X(65268) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(46619)}}, {{A, B, C, X(69), X(2867)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(250), X(685)}}, {{A, B, C, X(264), X(15459)}}, {{A, B, C, X(687), X(22456)}}, {{A, B, C, X(850), X(2419)}}, {{A, B, C, X(877), X(16237)}}, {{A, B, C, X(935), X(5523)}}, {{A, B, C, X(1990), X(47150)}}, {{A, B, C, X(4235), X(37855)}}, {{A, B, C, X(4240), X(7426)}}, {{A, B, C, X(10603), X(53944)}}, {{A, B, C, X(17932), X(44769)}}, {{A, B, C, X(20031), X(32085)}}, {{A, B, C, X(32649), X(32713)}}, {{A, B, C, X(32715), X(57388)}}, {{A, B, C, X(41511), X(65306)}}, {{A, B, C, X(43187), X(54108)}}, {{A, B, C, X(51862), X(58070)}}, {{A, B, C, X(53708), X(56307)}}
X(65269) lies on the Steiner circumellipse and on these lines: {2, 55048}, {67, 290}, {76, 39269}, {99, 935}, {250, 23285}, {264, 5641}, {316, 11605}, {648, 850}, {671, 44146}, {877, 35139}, {1494, 10989}, {2966, 14590}, {3228, 8791}, {3260, 35140}, {4577, 18020}, {6331, 35138}, {14221, 46134}, {14970, 65351}, {16083, 53229}, {18823, 57496}, {22456, 64775}, {34897, 54973}, {35142, 44138}, {44155, 53200}, {44183, 53657}, {52916, 65268}
X(65269) = isogonal conjugate of X(42659)
X(65269) = isotomic conjugate of X(9517)
X(65269) = anticomplement of X(55048)
X(65269) = trilinear pole of line {2, 339}
X(65269) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42659}, {23, 810}, {31, 9517}, {48, 2492}, {656, 18374}, {661, 10317}, {798, 22151}, {822, 8744}, {1924, 37804}, {2157, 57203}, {3049, 16568}, {9247, 9979}, {36142, 47415}
X(65269) = X(i)-vertex conjugate of X(j) for these {i, j}: {1485, 46456}
X(65269) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 9517}, {3, 42659}, {1249, 2492}, {9428, 37804}, {14357, 42665}, {15900, 647}, {23992, 47415}, {31998, 22151}, {36830, 10317}, {36901, 62563}, {39062, 23}, {40583, 57203}, {40596, 18374}, {55048, 55048}, {62576, 9979}, {62595, 33752}, {62613, 16165}
X(65269) = X(i)-cross conjugate of X(j) for these {i, j}: {935, 65356}, {4235, 6331}, {5189, 23582}, {9019, 250}, {9517, 2}, {18657, 55346}, {19577, 44168}, {35522, 264}, {61181, 648}
X(65269) = pole of line {61181, 65269} with respect to the Steiner circumellipse
X(65269) = pole of line {9517, 16165} with respect to the Wallace hyperbola
X(65269) = pole of line {57426, 62594} with respect to the dual conic of Stammler hyperbola
X(65269) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7482)}}, {{A, B, C, X(66), X(2715)}}, {{A, B, C, X(67), X(36884)}}, {{A, B, C, X(69), X(44769)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(110), X(36828)}}, {{A, B, C, X(264), X(22456)}}, {{A, B, C, X(316), X(691)}}, {{A, B, C, X(317), X(14221)}}, {{A, B, C, X(340), X(877)}}, {{A, B, C, X(685), X(30716)}}, {{A, B, C, X(850), X(3267)}}, {{A, B, C, X(2867), X(60053)}}, {{A, B, C, X(3260), X(30737)}}, {{A, B, C, X(4240), X(10989)}}, {{A, B, C, X(9060), X(41896)}}, {{A, B, C, X(9517), X(55048)}}, {{A, B, C, X(10420), X(13485)}}, {{A, B, C, X(14560), X(15321)}}, {{A, B, C, X(16083), X(44155)}}, {{A, B, C, X(18020), X(44183)}}, {{A, B, C, X(39193), X(44768)}}, {{A, B, C, X(40423), X(57761)}}, {{A, B, C, X(44146), X(59762)}}, {{A, B, C, X(56473), X(65321)}}
X(65269) = barycentric product X(i)*X(j) for these (i, j): {69, 65356}, {76, 935}, {670, 8791}, {2157, 57968}, {6331, 67}, {14357, 59762}, {17708, 264}, {18019, 648}, {18023, 60503}, {34897, 6528}, {46105, 99}, {46140, 60507}, {57476, 65268}, {57496, 892}
X(65269) = barycentric quotient X(i)/X(j) for these (i, j): {2, 9517}, {4, 2492}, {6, 42659}, {23, 57203}, {67, 647}, {99, 22151}, {107, 8744}, {110, 10317}, {112, 18374}, {264, 9979}, {297, 33752}, {648, 23}, {670, 37804}, {690, 47415}, {811, 16568}, {850, 62563}, {892, 57481}, {935, 6}, {2157, 810}, {2407, 16165}, {2409, 28343}, {3455, 3049}, {4235, 6593}, {4240, 52951}, {4558, 58357}, {6331, 316}, {6528, 37765}, {8791, 512}, {9517, 55048}, {10415, 10097}, {10511, 30491}, {11605, 2485}, {16081, 52076}, {16237, 12824}, {17708, 3}, {17983, 10561}, {18019, 525}, {18020, 52630}, {23582, 52916}, {34897, 520}, {35522, 62594}, {39269, 47138}, {41676, 9019}, {44129, 21205}, {44146, 18311}, {44766, 54060}, {46105, 523}, {46456, 52449}, {52916, 36415}, {57496, 690}, {57968, 20944}, {58980, 57655}, {59762, 52551}, {60496, 9409}, {60502, 55142}, {60503, 187}, {60507, 2393}, {61181, 64646}, {65266, 37801}, {65268, 60002}, {65350, 14246}, {65356, 4}
X(65270) lies on the Steiner circumellipse and on these lines: {92, 34393}, {99, 40117}, {189, 18816}, {190, 65213}, {264, 46137}, {271, 54966}, {282, 60046}, {290, 1903}, {309, 18025}, {648, 13138}, {653, 53642}, {664, 6335}, {823, 53639}, {903, 64988}, {1121, 7020}, {2358, 35159}, {2481, 7003}, {2966, 32652}, {3226, 7129}, {3227, 40836}, {4391, 54240}, {4569, 46404}, {7008, 60014}, {7017, 44189}, {7151, 18825}, {31623, 56944}, {35145, 39130}, {37141, 54953}, {40717, 53228}, {52389, 54973}, {54989, 57783}, {65162, 65290}
X(65270) = isotomic conjugate of X(64885)
X(65270) = trilinear pole of line {2, 280}
X(65270) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 57233}, {31, 64885}, {40, 22383}, {48, 6129}, {56, 10397}, {184, 14837}, {198, 1459}, {208, 36054}, {221, 652}, {223, 1946}, {521, 2199}, {577, 54239}, {603, 14298}, {604, 57101}, {647, 2360}, {649, 7078}, {650, 7114}, {663, 7011}, {667, 64082}, {810, 1817}, {822, 3194}, {905, 2187}, {1397, 57245}, {1402, 57213}, {1415, 53557}, {1437, 55212}, {1461, 47432}, {1819, 7180}, {2331, 23224}, {3049, 8822}, {3063, 7013}, {3195, 4091}, {3209, 57241}, {6611, 57108}, {7117, 57118}, {8058, 52411}, {9247, 17896}, {32643, 57291}, {32660, 38357}, {32674, 55044}, {39201, 41083}, {43924, 55111}, {52430, 59935}
X(65270) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 10397}, {2, 64885}, {1146, 53557}, {1249, 6129}, {3161, 57101}, {3341, 652}, {5375, 7078}, {6505, 57233}, {6631, 64082}, {7952, 14298}, {10001, 7013}, {35072, 55044}, {35508, 47432}, {39052, 2360}, {39053, 223}, {39060, 347}, {39062, 1817}, {40605, 57213}, {40624, 16596}, {62576, 17896}, {62585, 57245}, {62605, 14837}
X(65270) = X(i)-cross conjugate of X(j) for these {i, j}: {653, 6335}, {962, 55346}, {4391, 34404}, {4397, 264}, {6332, 31623}, {64885, 2}
X(65270) = pole of line {57213, 64885} with respect to the Wallace hyperbola
X(65270) = pole of line {18750, 56595} with respect to the dual conic of Feuerbach hyperbola
X(65270) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(32714)}}, {{A, B, C, X(8), X(56235)}}, {{A, B, C, X(92), X(24035)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(189), X(37141)}}, {{A, B, C, X(286), X(52919)}}, {{A, B, C, X(651), X(43346)}}, {{A, B, C, X(823), X(13149)}}, {{A, B, C, X(1903), X(32652)}}, {{A, B, C, X(2994), X(46640)}}, {{A, B, C, X(6335), X(46404)}}
X(65271) lies on the Steiner circumellipse and on these lines: {2, 290}, {6, 43664}, {30, 39682}, {76, 14252}, {99, 1625}, {110, 2966}, {112, 18831}, {190, 65252}, {193, 51338}, {194, 51997}, {262, 381}, {263, 1992}, {376, 54032}, {519, 53194}, {523, 53199}, {524, 46142}, {536, 53198}, {538, 53197}, {542, 9513}, {574, 48992}, {599, 1494}, {648, 1634}, {662, 65291}, {668, 42717}, {670, 2396}, {850, 36886}, {903, 60679}, {1975, 60601}, {1987, 35937}, {1989, 42300}, {2186, 18827}, {2407, 35138}, {3225, 3511}, {3226, 41629}, {3227, 24473}, {3402, 18826}, {4226, 35178}, {4558, 4577}, {5118, 48961}, {5641, 7840}, {5649, 40866}, {6331, 31174}, {6528, 41676}, {6776, 40803}, {7788, 35140}, {9766, 35142}, {10706, 53201}, {11054, 38889}, {11794, 63786}, {12177, 53865}, {12215, 57259}, {14559, 54959}, {14568, 63711}, {14607, 46144}, {14970, 36214}, {15352, 54950}, {16712, 43093}, {18829, 52631}, {22329, 35146}, {23342, 35179}, {23878, 53196}, {31296, 63784}, {32734, 65273}, {32833, 46140}, {34384, 40588}, {35136, 57150}, {35165, 37792}, {35935, 60046}, {35941, 54976}, {37785, 60015}, {37786, 60016}, {39291, 45329}, {41677, 65266}, {42371, 52608}, {43188, 44560}, {51224, 57268}, {51880, 54033}, {52926, 63741}, {54975, 64714}
X(65271) = midpoint of X(i) and X(j) for these {i,j}: {2, 39355}
X(65271) = reflection of X(i) in X(j) for these {i,j}: {2, 11672}, {290, 2}
X(65271) = isogonal conjugate of X(3288)
X(65271) = isotomic conjugate of X(23878)
X(65271) = trilinear pole of line {2, 51}
X(65271) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3288}, {31, 23878}, {182, 661}, {183, 798}, {458, 810}, {512, 52134}, {513, 60726}, {647, 60685}, {649, 60723}, {656, 10311}, {662, 6784}, {667, 60737}, {669, 3403}, {822, 33971}, {1577, 34396}, {1580, 39680}, {1821, 9420}, {1919, 42711}, {1924, 20023}, {2616, 59208}, {2624, 56401}, {3709, 60716}, {9417, 63746}, {14096, 55240}, {36132, 62596}, {39201, 51315}, {59804, 65252}
X(65271) = X(i)-vertex conjugate of X(j) for these {i, j}: {1576, 2966}, {18315, 32696}, {35278, 65310}
X(65271) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23878}, {3, 3288}, {511, 33569}, {1084, 6784}, {5375, 60723}, {6631, 60737}, {9296, 42711}, {9428, 20023}, {23967, 45321}, {31998, 183}, {36830, 182}, {38997, 59804}, {39009, 62596}, {39026, 60726}, {39052, 60685}, {39054, 52134}, {39058, 63746}, {39062, 458}, {39092, 39680}, {40596, 10311}, {40601, 9420}, {62596, 39009}, {62613, 51372}
X(65271) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6037, 39681}, {53196, 63741}
X(65271) = X(i)-cross conjugate of X(j) for these {i, j}: {647, 40803}, {1352, 18020}, {7774, 4590}, {22240, 250}, {23878, 2}, {26714, 65349}, {32451, 34537}, {33569, 511}, {45907, 6}, {52631, 42299}, {54257, 3}, {63741, 53196}
X(65271) = pole of line {35278, 39681} with respect to the circumcircle
X(65271) = pole of line {183, 1350} with respect to the Kiepert parabola
X(65271) = pole of line {52926, 63741} with respect to the Steiner circumellipse
X(65271) = pole of line {45319, 45336} with respect to the Steiner inellipse
X(65271) = pole of line {3288, 23878} with respect to the Wallace hyperbola
X(65271) = pole of line {1007, 47738} with respect to the dual conic of Jerabek hyperbola
X(65271) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(110)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(112), X(1625)}}, {{A, B, C, X(308), X(39632)}}, {{A, B, C, X(381), X(4235)}}, {{A, B, C, X(523), X(46040)}}, {{A, B, C, X(524), X(2782)}}, {{A, B, C, X(538), X(34383)}}, {{A, B, C, X(542), X(40866)}}, {{A, B, C, X(599), X(2407)}}, {{A, B, C, X(647), X(31174)}}, {{A, B, C, X(687), X(59098)}}, {{A, B, C, X(691), X(18818)}}, {{A, B, C, X(827), X(30450)}}, {{A, B, C, X(850), X(36900)}}, {{A, B, C, X(907), X(1634)}}, {{A, B, C, X(925), X(42396)}}, {{A, B, C, X(1289), X(16813)}}, {{A, B, C, X(1296), X(6094)}}, {{A, B, C, X(1992), X(23342)}}, {{A, B, C, X(2574), X(50945)}}, {{A, B, C, X(2575), X(50944)}}, {{A, B, C, X(2799), X(46245)}}, {{A, B, C, X(3565), X(13578)}}, {{A, B, C, X(4226), X(52282)}}, {{A, B, C, X(4554), X(8690)}}, {{A, B, C, X(4573), X(65059)}}, {{A, B, C, X(4603), X(62534)}}, {{A, B, C, X(4609), X(58118)}}, {{A, B, C, X(4611), X(41677)}}, {{A, B, C, X(5467), X(32447)}}, {{A, B, C, X(5468), X(11163)}}, {{A, B, C, X(7473), X(40885)}}, {{A, B, C, X(7788), X(34211)}}, {{A, B, C, X(7840), X(14999)}}, {{A, B, C, X(7953), X(18315)}}, {{A, B, C, X(7954), X(38342)}}, {{A, B, C, X(9069), X(9133)}}, {{A, B, C, X(9087), X(32729)}}, {{A, B, C, X(9100), X(62672)}}, {{A, B, C, X(11058), X(63466)}}, {{A, B, C, X(11636), X(46456)}}, {{A, B, C, X(12074), X(44769)}}, {{A, B, C, X(14607), X(22329)}}, {{A, B, C, X(15459), X(30247)}}, {{A, B, C, X(16081), X(53937)}}, {{A, B, C, X(18800), X(48947)}}, {{A, B, C, X(26714), X(32716)}}, {{A, B, C, X(30476), X(44560)}}, {{A, B, C, X(31296), X(63786)}}, {{A, B, C, X(34898), X(58090)}}, {{A, B, C, X(36885), X(46807)}}, {{A, B, C, X(39681), X(42299)}}, {{A, B, C, X(43351), X(44766)}}, {{A, B, C, X(43535), X(53603)}}, {{A, B, C, X(44061), X(54899)}}, {{A, B, C, X(46639), X(58116)}}, {{A, B, C, X(52917), X(55252)}}, {{A, B, C, X(56008), X(59100)}}, {{A, B, C, X(58975), X(65306)}}
X(65271) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 26714, 39681}, {11672, 39355, 290}
X(65272) lies on the Steiner circumellipse and on these lines: {4, 53197}, {76, 53200}, {99, 22089}, {264, 46142}, {286, 53198}, {648, 2451}, {671, 59762}, {685, 4577}, {877, 35362}, {886, 53149}, {1494, 18024}, {1502, 46145}, {2966, 41174}, {3225, 6531}, {3228, 16081}, {5641, 18022}, {6331, 31174}, {6394, 54976}, {6528, 16229}, {12833, 46134}, {14618, 53230}, {17932, 18831}, {18826, 36120}, {32696, 33514}, {35145, 46273}, {35151, 57796}, {39266, 46140}, {43665, 53202}, {44129, 53194}, {44132, 53229}, {54973, 57799}, {57968, 65289}
X(65272) = isotomic conjugate of X(39469)
X(65272) = trilinear pole of line {2, 6331}
X(65272) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 39469}, {48, 2491}, {237, 810}, {240, 58310}, {560, 684}, {647, 9417}, {656, 9418}, {798, 3289}, {822, 2211}, {878, 42075}, {1755, 3049}, {1917, 6333}, {1919, 42702}, {1924, 36212}, {3569, 9247}, {4575, 58260}, {17994, 52430}, {34859, 37754}, {39201, 57653}
X(65272) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39469}, {136, 58260}, {1249, 2491}, {6374, 684}, {9296, 42702}, {9428, 36212}, {31998, 3289}, {35078, 47418}, {36899, 3049}, {36901, 41172}, {39052, 9417}, {39058, 647}, {39062, 237}, {39085, 58310}, {40596, 9418}, {62576, 3569}, {62595, 58262}
X(65272) = X(i)-cross conjugate of X(j) for these {i, j}: {290, 41174}, {850, 57541}, {877, 6331}, {11442, 57562}, {14295, 264}, {14957, 23582}, {30737, 57556}, {39469, 2}, {51481, 44168}, {53149, 16081}, {53331, 276}, {53345, 308}, {53371, 30450}
X(65272) = pole of line {3978, 16089} with respect to the dual conic of Jerabek hyperbola
X(65272) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(317), X(12833)}}, {{A, B, C, X(476), X(44176)}}, {{A, B, C, X(689), X(42405)}}, {{A, B, C, X(805), X(52446)}}, {{A, B, C, X(879), X(2451)}}, {{A, B, C, X(4576), X(35319)}}, {{A, B, C, X(10425), X(41208)}}, {{A, B, C, X(14295), X(16230)}}, {{A, B, C, X(31174), X(63746)}}, {{A, B, C, X(32729), X(55028)}}, {{A, B, C, X(39266), X(61181)}}, {{A, B, C, X(41174), X(59762)}}, {{A, B, C, X(41209), X(44770)}}
X(65273) lies on the Steiner circumellipse and on these lines: {2, 57890}, {95, 35142}, {96, 671}, {97, 52505}, {99, 18315}, {290, 34385}, {577, 55553}, {648, 925}, {892, 55253}, {1494, 57875}, {2165, 60034}, {2168, 18827}, {2623, 57763}, {3228, 41271}, {4558, 46134}, {5392, 46138}, {6528, 16813}, {14570, 14586}, {15412, 18878}, {15958, 52932}, {18831, 41677}, {21449, 55560}, {32734, 65271}, {35139, 64516}, {35174, 65251}, {39116, 57489}, {52968, 64782}, {52975, 64783}
X(65273) = reflection of X(i) in X(j) for these {i,j}: {57890, 2}
X(65273) = isogonal conjugate of X(52317)
X(65273) = isotomic conjugate of X(63829)
X(65273) = trilinear pole of line {2, 54}
X(65273) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52317}, {5, 55216}, {31, 63829}, {47, 12077}, {51, 63827}, {52, 661}, {53, 63832}, {467, 810}, {512, 63808}, {523, 2180}, {563, 23290}, {571, 2618}, {656, 14576}, {798, 39113}, {924, 1953}, {1748, 15451}, {2179, 6563}, {2181, 52584}, {2290, 43088}, {2501, 63801}, {2617, 47421}, {3133, 55250}, {6753, 44706}, {14213, 34952}, {17881, 61194}, {21011, 34948}, {36145, 55072}, {41213, 65251}, {44179, 55219}, {57065, 62266}
X(65273) = X(i)-vertex conjugate of X(j) for these {i, j}: {32734, 41679}
X(65273) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 63829}, {3, 52317}, {31998, 39113}, {34853, 12077}, {36830, 52}, {37864, 55219}, {39013, 55072}, {39019, 55073}, {39054, 63808}, {39062, 467}, {40596, 14576}, {62603, 6563}
X(65273) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57573, 55552}
X(65273) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 57763}, {4558, 18315}, {6334, 65326}, {6368, 55553}, {11412, 18020}, {15958, 18831}, {32692, 65348}, {55253, 96}, {63829, 2}
X(65273) = pole of line {14516, 39113} with respect to the Kiepert parabola
X(65273) = pole of line {15958, 52932} with respect to the Steiner circumellipse
X(65273) = pole of line {52317, 63829} with respect to the Wallace hyperbola
X(65273) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(52760)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(687), X(4558)}}, {{A, B, C, X(925), X(30450)}}, {{A, B, C, X(930), X(14570)}}, {{A, B, C, X(933), X(16813)}}, {{A, B, C, X(4226), X(41237)}}, {{A, B, C, X(4590), X(57639)}}, {{A, B, C, X(14590), X(57474)}}
X(65274) lies on the Steiner circumellipse and on these lines: {99, 4636}, {110, 664}, {162, 18026}, {190, 5546}, {272, 903}, {283, 57997}, {290, 40011}, {333, 40574}, {349, 40602}, {643, 668}, {662, 54970}, {671, 1751}, {799, 57976}, {1414, 4569}, {2218, 18827}, {2997, 14616}, {6528, 52921}, {13486, 65292}, {23289, 35154}, {35141, 56146}, {35162, 41506}, {43093, 57784}
X(65274) = trilinear pole of line {2, 272}
X(65274) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 43060}, {42, 23800}, {55, 51658}, {65, 8676}, {71, 57173}, {73, 57092}, {209, 513}, {512, 3868}, {514, 2198}, {523, 2352}, {579, 661}, {649, 22021}, {667, 57808}, {798, 18134}, {810, 5125}, {1042, 58333}, {1402, 20294}, {1409, 57043}, {3063, 56559}, {3125, 57217}, {3190, 4017}, {4041, 4306}, {4516, 65315}, {6591, 51574}, {7180, 27396}, {41320, 51664}, {56000, 57185}
X(65274) = X(i)-vertex conjugate of X(j) for these {i, j}: {664, 1576}
X(65274) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 51658}, {5375, 22021}, {6631, 57808}, {10001, 56559}, {31998, 18134}, {34961, 3190}, {36830, 579}, {39026, 209}, {39054, 3868}, {39062, 5125}, {40589, 43060}, {40592, 23800}, {40602, 8676}, {40605, 20294}, {40620, 65118}
X(65274) = X(i)-cross conjugate of X(j) for these {i, j}: {1331, 662}, {7538, 23582}, {37652, 4590}
X(65274) = pole of line {27, 18134} with respect to the Kiepert parabola
X(65274) = pole of line {8676, 43060} with respect to the Stammler hyperbola
X(65274) = pole of line {20294, 23800} with respect to the Wallace hyperbola
X(65274) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(107), X(3699)}}, {{A, B, C, X(110), X(162)}}, {{A, B, C, X(112), X(36086)}}, {{A, B, C, X(644), X(53683)}}, {{A, B, C, X(811), X(47318)}}, {{A, B, C, X(1305), X(51566)}}, {{A, B, C, X(1897), X(59097)}}, {{A, B, C, X(2363), X(3565)}}, {{A, B, C, X(4614), X(55281)}}, {{A, B, C, X(6331), X(51614)}}, {{A, B, C, X(13138), X(34594)}}, {{A, B, C, X(23999), X(57757)}}, {{A, B, C, X(37206), X(44766)}}
X(65274) = barycentric product X(i)*X(j) for these (i, j): {101, 57784}, {110, 40011}, {190, 272}, {1305, 333}, {1751, 99}, {2218, 799}, {2997, 662}, {4573, 56146}, {15467, 5546}, {23289, 4620}, {40574, 4561}, {41506, 4610}, {51566, 81}, {58986, 76}, {65254, 75}
X(65274) = barycentric quotient X(i)/X(j) for these (i, j): {28, 57173}, {29, 57043}, {57, 51658}, {58, 43060}, {81, 23800}, {99, 18134}, {100, 22021}, {101, 209}, {110, 579}, {163, 2352}, {190, 57808}, {272, 514}, {284, 8676}, {333, 20294}, {643, 27396}, {648, 5125}, {662, 3868}, {664, 56559}, {692, 2198}, {1172, 57092}, {1305, 226}, {1331, 51574}, {1751, 523}, {2218, 661}, {2287, 58333}, {2997, 1577}, {4565, 4306}, {4570, 57217}, {4636, 56000}, {5546, 3190}, {7192, 65118}, {18155, 17878}, {23289, 21044}, {28786, 57243}, {40011, 850}, {40161, 4064}, {40574, 7649}, {41506, 4024}, {46103, 57072}, {51566, 321}, {52378, 65315}, {56146, 3700}, {57784, 3261}, {58986, 6}, {65254, 1}
X(65275) lies on the Steiner circumellipse and on these lines: {86, 18816}, {99, 59006}, {110, 54951}, {190, 14570}, {290, 37678}, {662, 6648}, {668, 56194}, {671, 2051}, {903, 20028}, {1121, 46880}, {1414, 54953}, {1494, 17271}, {2481, 33296}, {3226, 52150}, {3227, 41629}, {4360, 14616}, {4417, 34267}, {4559, 4560}, {4561, 57977}, {4573, 6613}, {7199, 62754}, {7257, 65282}, {11998, 65264}, {17136, 53649}, {17731, 35151}, {18025, 30966}, {18827, 34063}, {35155, 37792}, {35162, 51870}
X(65275) = trilinear pole of line {2, 573}
X(65275) = X(i)-isoconjugate-of-X(j) for these {i, j}: {42, 21173}, {55, 51662}, {181, 57125}, {213, 17496}, {244, 57165}, {512, 2975}, {513, 52139}, {523, 20986}, {572, 661}, {649, 21061}, {650, 55323}, {663, 37558}, {667, 17751}, {692, 53566}, {798, 14829}, {810, 11109}, {1042, 58339}, {1402, 57091}, {1824, 23187}, {1918, 57244}, {2148, 52322}, {2501, 22118}, {3063, 52358}, {3125, 65203}, {3709, 17074}, {3733, 14973}, {4559, 11998}, {7252, 56325}, {20617, 21789}, {21759, 27346}, {52087, 62749}
X(65275) = X(i)-vertex conjugate of X(j) for these {i, j}: {1576, 54951}
X(65275) = X(i)-Dao conjugate of X(j) for these {i, j}: {216, 52322}, {223, 51662}, {1086, 53566}, {5375, 21061}, {6626, 17496}, {6631, 17751}, {10001, 52358}, {31998, 14829}, {34021, 57244}, {36830, 572}, {39026, 52139}, {39054, 2975}, {39062, 11109}, {40592, 21173}, {40605, 57091}, {40620, 24237}, {40625, 34589}, {55067, 11998}
X(65275) = X(i)-cross conjugate of X(j) for these {i, j}: {4551, 662}, {18155, 86}, {20040, 1016}, {21362, 799}, {53280, 190}, {56194, 65260}, {62998, 4590}
X(65275) = pole of line {314, 1764} with respect to the Kiepert parabola
X(65275) = pole of line {53280, 65275} with respect to the Steiner circumellipse
X(65275) = pole of line {17496, 21173} with respect to the Wallace hyperbola
X(65275) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4559)}}, {{A, B, C, X(75), X(4566)}}, {{A, B, C, X(86), X(811)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(110), X(1897)}}, {{A, B, C, X(163), X(5331)}}, {{A, B, C, X(658), X(6331)}}, {{A, B, C, X(662), X(7257)}}, {{A, B, C, X(874), X(34063)}}, {{A, B, C, X(931), X(3699)}}, {{A, B, C, X(1043), X(65201)}}, {{A, B, C, X(1310), X(51566)}}, {{A, B, C, X(2407), X(17271)}}, {{A, B, C, X(2421), X(37678)}}, {{A, B, C, X(4033), X(53332)}}, {{A, B, C, X(4551), X(53280)}}, {{A, B, C, X(4558), X(4561)}}, {{A, B, C, X(4573), X(62534)}}, {{A, B, C, X(6742), X(34594)}}, {{A, B, C, X(11794), X(43190)}}, {{A, B, C, X(37138), X(43359)}}, {{A, B, C, X(40430), X(53683)}}, {{A, B, C, X(56188), X(56252)}}, {{A, B, C, X(56194), X(59006)}}
X(65276) lies on the Steiner circumellipse and on these lines: {2, 20232}, {99, 34211}, {107, 44552}, {112, 35571}, {290, 14614}, {376, 54975}, {524, 46145}, {648, 2409}, {670, 36841}, {671, 2794}, {1494, 1992}, {2407, 35179}, {2966, 60506}, {4558, 54971}, {5641, 22329}, {6179, 37200}, {6528, 57219}, {7757, 54973}, {12150, 46140}, {14999, 46144}, {17941, 35136}, {18025, 41629}, {18026, 57193}, {18829, 57216}, {32833, 54958}, {35142, 62955}, {35150, 37792}, {51224, 53201}
X(65276) = reflection of X(i) in X(j) for these {i,j}: {2, 23976}, {35140, 2}
X(65276) = trilinear pole of line {2, 154}
X(65276) = X(i)-isoconjugate-of-X(j) for these {i, j}: {512, 51304}, {647, 23052}, {656, 45141}, {661, 1350}, {798, 37668}, {810, 52283}, {822, 10002}, {2155, 14343}, {12037, 32676}
X(65276) = X(i)-vertex conjugate of X(j) for these {i, j}: {32649, 65181}, {44326, 61206}
X(65276) = X(i)-Dao conjugate of X(j) for these {i, j}: {15526, 12037}, {31998, 37668}, {36830, 1350}, {39052, 23052}, {39054, 51304}, {39062, 52283}, {40596, 45141}, {45245, 14343}
X(65276) = X(i)-cross conjugate of X(j) for these {i, j}: {35278, 99}, {51212, 18020}, {54259, 4}, {54267, 98}, {63042, 4590}
X(65276) = pole of line {14927, 37668} with respect to the Kiepert parabola
X(65276) = pole of line {26714, 35571} with respect to the MacBeath circumconic
X(65276) = pole of line {35278, 65276} with respect to the Steiner circumellipse
X(65276) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(107)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(112), X(1461)}}, {{A, B, C, X(523), X(52459)}}, {{A, B, C, X(524), X(2794)}}, {{A, B, C, X(691), X(65322)}}, {{A, B, C, X(827), X(4558)}}, {{A, B, C, X(925), X(36886)}}, {{A, B, C, X(933), X(56008)}}, {{A, B, C, X(1289), X(16039)}}, {{A, B, C, X(1302), X(17708)}}, {{A, B, C, X(1992), X(2407)}}, {{A, B, C, X(2421), X(14614)}}, {{A, B, C, X(2987), X(53937)}}, {{A, B, C, X(3265), X(44552)}}, {{A, B, C, X(3543), X(4235)}}, {{A, B, C, X(4226), X(62955)}}, {{A, B, C, X(4563), X(42396)}}, {{A, B, C, X(5503), X(53692)}}, {{A, B, C, X(7473), X(44216)}}, {{A, B, C, X(7954), X(18315)}}, {{A, B, C, X(11636), X(44769)}}, {{A, B, C, X(11794), X(53862)}}, {{A, B, C, X(14999), X(22329)}}, {{A, B, C, X(17941), X(57216)}}, {{A, B, C, X(30247), X(48373)}}, {{A, B, C, X(32697), X(58098)}}, {{A, B, C, X(34572), X(58966)}}, {{A, B, C, X(58994), X(65306)}}, {{A, B, C, X(59098), X(60053)}}, {{A, B, C, X(59136), X(62900)}}
X(65276) = barycentric product X(i)*X(j) for these (i, j): {20, 35571}, {110, 59256}, {3424, 99}, {42287, 648}, {58963, 76}, {60674, 6331}
X(65276) = barycentric quotient X(i)/X(j) for these (i, j): {20, 14343}, {99, 37668}, {107, 10002}, {110, 1350}, {112, 45141}, {162, 23052}, {525, 12037}, {648, 52283}, {662, 51304}, {685, 45031}, {2409, 1529}, {3424, 523}, {35278, 7710}, {35571, 253}, {41173, 47382}, {42287, 525}, {46639, 40813}, {58963, 6}, {59256, 850}, {60674, 647}
X(65277) lies on the Steiner circumellipse and on these lines: {2, 55152}, {76, 14253}, {99, 3566}, {290, 19599}, {325, 35142}, {523, 35136}, {648, 4590}, {670, 33799}, {671, 7799}, {880, 53196}, {892, 62645}, {1494, 57872}, {1975, 47736}, {2396, 2966}, {2858, 9131}, {2987, 3228}, {3225, 32654}, {3926, 35088}, {5641, 36891}, {7757, 64618}, {8667, 35146}, {8773, 18827}, {9487, 23055}, {11160, 18823}, {17731, 53646}, {18826, 36051}, {18829, 35364}, {34157, 53197}, {40074, 65267}, {46134, 52608}, {46142, 52091}, {46145, 56572}
X(65277) = isogonal conjugate of X(42663)
X(65277) = isotomic conjugate of X(55122)
X(65277) = anticomplement of X(55152)
X(65277) = trilinear pole of line {2, 2987}
X(65277) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42663}, {31, 55122}, {230, 798}, {460, 810}, {512, 8772}, {656, 44099}, {661, 1692}, {669, 1733}, {1924, 51481}, {2422, 17462}, {2643, 61213}
X(65277) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 55122}, {3, 42663}, {5976, 55267}, {6388, 51610}, {9428, 51481}, {15525, 51613}, {31998, 230}, {36830, 1692}, {39054, 8772}, {39062, 460}, {40596, 44099}, {55152, 55152}, {62613, 51431}
X(65277) = X(i)-cross conjugate of X(j) for these {i, j}: {98, 39292}, {99, 55266}, {325, 4590}, {6563, 57553}, {10425, 65354}, {16230, 42407}, {54103, 57991}, {55122, 2}, {62645, 8781}
X(65277) = pole of line {230, 46236} with respect to the Kiepert parabola
X(65277) = pole of line {5477, 42663} with respect to the Wallace hyperbola
X(65277) = pole of line {41181, 51610} with respect to the dual conic of polar circle
X(65277) = pole of line {2395, 55266} with respect to the dual conic of Orthic inconic
X(65277) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(2858)}}, {{A, B, C, X(98), X(36898)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(325), X(17932)}}, {{A, B, C, X(523), X(3566)}}, {{A, B, C, X(685), X(46606)}}, {{A, B, C, X(689), X(55279)}}, {{A, B, C, X(691), X(33799)}}, {{A, B, C, X(805), X(32716)}}, {{A, B, C, X(930), X(55034)}}, {{A, B, C, X(1138), X(2696)}}, {{A, B, C, X(3565), X(9132)}}, {{A, B, C, X(4226), X(44768)}}, {{A, B, C, X(4235), X(33228)}}, {{A, B, C, X(4576), X(20189)}}, {{A, B, C, X(4590), X(47389)}}, {{A, B, C, X(5468), X(22110)}}, {{A, B, C, X(6037), X(41209)}}, {{A, B, C, X(6082), X(62672)}}, {{A, B, C, X(6331), X(42297)}}, {{A, B, C, X(6333), X(35088)}}, {{A, B, C, X(8667), X(14607)}}, {{A, B, C, X(9069), X(63784)}}, {{A, B, C, X(9124), X(58091)}}, {{A, B, C, X(9134), X(45687)}}, {{A, B, C, X(9182), X(11160)}}, {{A, B, C, X(10425), X(32697)}}, {{A, B, C, X(13575), X(53953)}}, {{A, B, C, X(23055), X(56429)}}, {{A, B, C, X(31614), X(53080)}}, {{A, B, C, X(32717), X(53893)}}, {{A, B, C, X(35511), X(42398)}}, {{A, B, C, X(55122), X(55152)}}
X(65278) lies on the Steiner circumellipse and on these lines: {99, 826}, {290, 39093}, {385, 9477}, {523, 4577}, {524, 17949}, {597, 18823}, {670, 23285}, {671, 754}, {827, 62452}, {1494, 57845}, {3225, 16985}, {3228, 46286}, {4563, 65287}, {4590, 31067}, {5641, 37671}, {7779, 15573}, {9182, 42367}, {17957, 57945}, {18829, 53379}, {35140, 40876}, {35146, 63038}, {39941, 53229}, {42371, 44173}
X(65278) = reflection of X(i) in X(j) for these {i,j}: {7779, 15573}, {40850, 385}
X(65278) = isogonal conjugate of X(5113)
X(65278) = isotomic conjugate of X(9479)
X(65278) = trilinear pole of line {2, 4048}
X(65278) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 5113}, {31, 9479}, {38, 17997}, {420, 810}, {512, 17799}, {656, 44090}, {798, 7779}, {1964, 18010}, {2084, 40850}, {3005, 34054}, {8061, 46228}
X(65278) = X(i)-vertex conjugate of X(j) for these {i, j}: {32729, 37880}
X(65278) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 9479}, {3, 5113}, {31998, 7779}, {36830, 2076}, {39054, 17799}, {39062, 420}, {39079, 24973}, {40596, 44090}, {41884, 18010}, {62452, 40850}
X(65278) = X(i)-cross conjugate of X(j) for these {i, j}: {523, 9477}, {9479, 2}, {14316, 76}, {17941, 99}, {41209, 53621}, {50248, 4590}, {50542, 10159}
X(65278) = pole of line {17941, 65278} with respect to the Steiner circumellipse
X(65278) = pole of line {5113, 9479} with respect to the Wallace hyperbola
X(65278) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(98), X(53379)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(251), X(36827)}}, {{A, B, C, X(385), X(46294)}}, {{A, B, C, X(476), X(53080)}}, {{A, B, C, X(523), X(826)}}, {{A, B, C, X(524), X(754)}}, {{A, B, C, X(597), X(9182)}}, {{A, B, C, X(691), X(9218)}}, {{A, B, C, X(2421), X(39093)}}, {{A, B, C, X(3222), X(44766)}}, {{A, B, C, X(4563), X(58119)}}, {{A, B, C, X(4576), X(52936)}}, {{A, B, C, X(4590), X(57545)}}, {{A, B, C, X(5468), X(44367)}}, {{A, B, C, X(6037), X(44768)}}, {{A, B, C, X(9132), X(58121)}}, {{A, B, C, X(9150), X(17708)}}, {{A, B, C, X(9186), X(11636)}}, {{A, B, C, X(14420), X(14424)}}, {{A, B, C, X(14607), X(63038)}}, {{A, B, C, X(14999), X(37671)}}, {{A, B, C, X(16095), X(52630)}}, {{A, B, C, X(17930), X(36036)}}, {{A, B, C, X(17941), X(40850)}}, {{A, B, C, X(35511), X(62451)}}, {{A, B, C, X(36517), X(56980)}}
X(65278) = barycentric product X(i)*X(j) for these (i, j): {11606, 99}, {17941, 9477}, {17949, 4577}, {17957, 4593}, {46286, 670}, {46970, 76}, {57678, 6331}, {57845, 648}
X(65278) = barycentric quotient X(i)/X(j) for these (i, j): {2, 9479}, {6, 5113}, {83, 18010}, {99, 7779}, {110, 2076}, {112, 44090}, {251, 17997}, {648, 420}, {662, 17799}, {827, 46228}, {4226, 12830}, {4577, 40850}, {4599, 34054}, {5113, 24973}, {11606, 523}, {14316, 46669}, {17941, 8290}, {17949, 826}, {17957, 8061}, {46286, 512}, {46970, 6}, {57678, 647}, {57845, 525}
X(65279) lies on the Steiner circumellipse and on these lines: {76, 38539}, {99, 1291}, {290, 43704}, {316, 1263}, {340, 14106}, {532, 11118}, {533, 11117}, {671, 13582}, {850, 46139}, {892, 64935}, {1273, 1494}, {2966, 64938}, {3228, 14579}, {3260, 46138}, {3471, 5641}, {4577, 14221}, {7809, 15392}, {18020, 33513}, {18827, 51804}, {18829, 64937}, {23872, 32037}, {23873, 32036}, {31998, 53192}, {46142, 64936}
X(65279) = isogonal conjugate of X(6140)
X(65279) = isotomic conjugate of X(45147)
X(65279) = trilinear pole of line {2, 13582}
X(65279) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6140}, {31, 45147}, {163, 10413}, {512, 1749}, {661, 11063}, {798, 37779}, {810, 37943}, {2624, 56404}, {2643, 47053}, {12077, 19306}, {15475, 51802}
X(65279) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 45147}, {3, 6140}, {115, 10413}, {31998, 37779}, {36830, 11063}, {39054, 1749}, {39062, 37943}, {40604, 8562}, {62613, 10272}
X(65279) = X(i)-cross conjugate of X(j) for these {i, j}: {10264, 39295}, {10411, 99}, {10412, 2986}, {24978, 76}, {44450, 23582}, {45147, 2}, {53495, 52940}, {64935, 13582}
X(65279) = pole of line {10411, 65279} with respect to the Steiner circumellipse
X(65279) = pole of line {6140, 6592} with respect to the Wallace hyperbola
X(65279) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(249), X(57803)}}, {{A, B, C, X(532), X(533)}}, {{A, B, C, X(691), X(44768)}}, {{A, B, C, X(850), X(23872)}}, {{A, B, C, X(1235), X(14221)}}, {{A, B, C, X(1273), X(3260)}}, {{A, B, C, X(4240), X(65085)}}, {{A, B, C, X(10425), X(17708)}}, {{A, B, C, X(18020), X(57764)}}, {{A, B, C, X(40423), X(57758)}}, {{A, B, C, X(40705), X(64516)}}, {{A, B, C, X(58095), X(65176)}}
X(65279) = barycentric product X(i)*X(j) for these (i, j): {1291, 76}, {4590, 64935}, {13582, 99}, {14579, 670}, {18020, 64938}, {34537, 64937}, {43187, 64936}, {43704, 6331}, {51804, 799}
X(65279) = barycentric quotient X(i)/X(j) for these (i, j): {2, 45147}, {6, 6140}, {99, 37779}, {110, 11063}, {249, 47053}, {323, 8562}, {476, 56404}, {523, 10413}, {648, 37943}, {662, 1749}, {1263, 12077}, {1291, 6}, {2407, 10272}, {3471, 1637}, {4558, 50461}, {7799, 45790}, {10411, 40604}, {11071, 15475}, {13582, 523}, {14367, 58903}, {14579, 512}, {14590, 2914}, {15392, 14582}, {17402, 5616}, {17403, 5612}, {18315, 1157}, {23895, 51267}, {23896, 51274}, {24978, 46439}, {36134, 19306}, {41078, 43958}, {43704, 647}, {44769, 3470}, {46072, 20578}, {46076, 20579}, {51804, 661}, {64935, 115}, {64936, 3569}, {64937, 3124}, {64938, 125}
X(65280) lies on the Steiner circumellipse and on these lines: {99, 931}, {110, 65281}, {190, 7257}, {290, 34259}, {314, 31165}, {645, 4559}, {648, 61205}, {664, 799}, {668, 61172}, {670, 53332}, {671, 34258}, {941, 3228}, {959, 35159}, {960, 40827}, {2258, 18826}, {3226, 5331}, {3227, 37870}, {3952, 65282}, {6331, 18026}, {6540, 55245}, {7260, 65289}, {18827, 31359}, {32042, 55243}, {33948, 57977}, {35176, 44733}, {53642, 55211}, {54986, 65161}, {55209, 65292}, {65169, 65288}
X(65280) = isogonal conjugate of X(8639)
X(65280) = isotomic conjugate of X(8672)
X(65280) = trilinear pole of line {2, 314}
X(65280) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8639}, {31, 8672}, {32, 50457}, {213, 48144}, {512, 1468}, {661, 5019}, {667, 59305}, {669, 10436}, {798, 940}, {810, 4185}, {958, 51641}, {1042, 58332}, {1402, 17418}, {1918, 43067}, {1919, 31993}, {1924, 34284}, {2268, 7180}, {3049, 5307}, {3121, 65168}
X(65280) = X(i)-vertex conjugate of X(j) for these {i, j}: {1576, 65281}
X(65280) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 8672}, {3, 8639}, {6376, 50457}, {6626, 48144}, {6631, 59305}, {9296, 31993}, {9428, 34284}, {31998, 940}, {34021, 43067}, {36830, 5019}, {39054, 1468}, {39062, 4185}, {40605, 17418}, {40620, 53543}
X(65280) = X(i)-cross conjugate of X(j) for these {i, j}: {5739, 4590}, {8672, 2}, {23880, 40827}, {28606, 31625}, {34283, 34537}
X(65280) = pole of line {8639, 8672} with respect to the Wallace hyperbola
X(65280) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(110), X(3903)}}, {{A, B, C, X(660), X(43359)}}, {{A, B, C, X(789), X(51566)}}, {{A, B, C, X(799), X(4631)}}, {{A, B, C, X(811), X(4623)}}, {{A, B, C, X(874), X(31997)}}, {{A, B, C, X(931), X(65225)}}, {{A, B, C, X(1414), X(4594)}}, {{A, B, C, X(4566), X(42363)}}, {{A, B, C, X(4589), X(4614)}}, {{A, B, C, X(8050), X(43356)}}, {{A, B, C, X(27805), X(43188)}}, {{A, B, C, X(51560), X(59093)}}
X(65281) lies on the Steiner circumellipse and on these lines: {99, 55196}, {110, 65280}, {190, 4556}, {261, 31157}, {290, 1798}, {662, 54986}, {664, 4610}, {668, 4631}, {671, 14534}, {892, 4581}, {903, 30593}, {1169, 3228}, {1220, 35162}, {1414, 65289}, {1415, 4612}, {1494, 57853}, {2363, 18827}, {2966, 15420}, {3227, 64457}, {4562, 36147}, {4590, 35147}, {4623, 54982}, {4999, 31620}, {6540, 6578}, {7340, 65293}, {14970, 39276}, {17935, 65282}, {18026, 55231}, {18816, 52550}, {18829, 36066}, {35154, 57161}
X(65281) = isogonal conjugate of X(42661)
X(65281) = trilinear pole of line {2, 261}
X(65281) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42661}, {42, 50330}, {181, 17420}, {213, 21124}, {429, 810}, {512, 2292}, {522, 59174}, {523, 3725}, {649, 21810}, {656, 44092}, {661, 2092}, {663, 52567}, {667, 20653}, {669, 18697}, {756, 6371}, {798, 1211}, {872, 3004}, {1089, 57157}, {1193, 4705}, {1228, 1924}, {1500, 48131}, {1829, 55230}, {2084, 27067}, {2171, 52326}, {2269, 57185}, {2300, 4024}, {2354, 55232}, {2643, 53280}, {3121, 65191}, {3122, 61172}, {3124, 3882}, {3125, 61168}, {3666, 4079}, {3704, 51641}, {3708, 61205}, {4017, 40966}, {4357, 50487}, {4509, 7109}, {7180, 21033}, {20911, 53581}, {20975, 61226}, {21834, 45218}, {41003, 63461}, {45197, 50491}, {54308, 58289}, {57181, 61377}, {61052, 61223}
X(65281) = X(i)-vertex conjugate of X(j) for these {i, j}: {1576, 65280}
X(65281) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 42661}, {5375, 21810}, {6626, 21124}, {6631, 20653}, {9428, 1228}, {31998, 1211}, {34961, 40966}, {36830, 2092}, {39054, 2292}, {39062, 429}, {40592, 50330}, {40596, 44092}, {62452, 27067}
X(65281) = X(i)-cross conjugate of X(j) for these {i, j}: {81, 4590}, {314, 18020}, {3910, 31620}, {4581, 14534}, {15420, 40827}, {16049, 23582}, {26843, 57545}
X(65281) = pole of line {21124, 42661} with respect to the Wallace hyperbola
X(65281) = intersection, other than A, B, C, of circumconics {{A, B, C, X(81), X(17935)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(110), X(1415)}}, {{A, B, C, X(1414), X(36066)}}, {{A, B, C, X(1492), X(53628)}}, {{A, B, C, X(2363), X(36147)}}, {{A, B, C, X(4556), X(6578)}}, {{A, B, C, X(4610), X(4631)}}, {{A, B, C, X(6516), X(17932)}}
X(65282) lies on the Steiner circumellipse and on these lines: {2, 39015}, {99, 8707}, {190, 65229}, {646, 21859}, {664, 1978}, {671, 60264}, {889, 4581}, {903, 1240}, {1220, 3226}, {2298, 18825}, {3227, 30710}, {3228, 14624}, {3596, 31141}, {3952, 65280}, {4033, 54986}, {4505, 57969}, {4562, 65169}, {4577, 32736}, {4583, 18829}, {4586, 36147}, {6386, 54982}, {7257, 65275}, {17935, 65281}, {18827, 40827}, {31625, 35147}, {35159, 60086}, {35334, 57960}, {53216, 57162}
X(65282) = isogonal conjugate of X(57157)
X(65282) = isotomic conjugate of X(6371)
X(65282) = anticomplement of X(39015)
X(65282) = trilinear pole of line {2, 1240}
X(65282) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 57157}, {31, 6371}, {32, 48131}, {560, 3004}, {604, 52326}, {649, 2300}, {667, 1193}, {669, 54308}, {798, 40153}, {849, 42661}, {890, 62769}, {1397, 17420}, {1501, 4509}, {1919, 3666}, {1924, 16705}, {1977, 3882}, {1980, 4357}, {2092, 57129}, {2206, 50330}, {2269, 57181}, {2354, 22383}, {3063, 61412}, {3248, 53280}, {3725, 3733}, {4267, 51641}, {9426, 16739}, {20967, 43924}, {22096, 61226}, {36098, 41224}, {36147, 39015}, {45218, 57074}, {61048, 61223}
X(65282) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 6371}, {3, 57157}, {3161, 52326}, {4075, 42661}, {5375, 2300}, {6374, 3004}, {6376, 48131}, {6631, 1193}, {9296, 3666}, {9428, 16705}, {10001, 61412}, {31998, 40153}, {38992, 41224}, {39015, 39015}, {40603, 50330}, {62585, 17420}
X(65282) = X(i)-cross conjugate of X(j) for these {i, j}: {314, 7035}, {321, 31625}, {4581, 30710}, {6371, 2}, {17751, 1016}, {47660, 308}
X(65282) = pole of line {6371, 57157} with respect to the Wallace hyperbola
X(65282) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(28480)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(115), X(18003)}}, {{A, B, C, X(321), X(17935)}}, {{A, B, C, X(660), X(4559)}}, {{A, B, C, X(901), X(8050)}}, {{A, B, C, X(1310), X(35008)}}, {{A, B, C, X(1978), X(62534)}}, {{A, B, C, X(3952), X(21859)}}, {{A, B, C, X(4602), X(36803)}}, {{A, B, C, X(6371), X(39015)}}, {{A, B, C, X(17929), X(29233)}}, {{A, B, C, X(29279), X(54458)}}
X(65283) lies on the Steiner circumellipse and on these lines: {80, 35162}, {99, 4467}, {110, 48288}, {190, 4567}, {249, 4560}, {261, 46136}, {290, 36036}, {476, 4608}, {648, 65100}, {655, 6648}, {659, 17939}, {662, 45671}, {664, 52935}, {666, 60571}, {668, 4600}, {670, 24037}, {671, 24624}, {691, 50343}, {757, 35175}, {759, 18827}, {903, 4622}, {1098, 35164}, {1414, 4077}, {1494, 57985}, {1509, 18821}, {1577, 39054}, {1931, 46800}, {2341, 35144}, {2481, 52380}, {2605, 53192}, {2966, 9273}, {3228, 34079}, {4586, 32671}, {4597, 4610}, {5641, 34016}, {6528, 23999}, {6540, 51562}, {6626, 52639}, {6740, 35141}, {17731, 61479}, {32004, 35153}, {35142, 36105}, {39277, 46138}, {40214, 60013}, {46160, 57945}, {50351, 53379}, {56320, 60053}
X(65283) = isogonal conjugate of X(42666)
X(65283) = isotomic conjugate of X(6370)
X(65283) = trilinear pole of line {2, 662}
X(65283) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42666}, {6, 2610}, {12, 8648}, {31, 6370}, {36, 4705}, {37, 21828}, {42, 53527}, {55, 51663}, {65, 53562}, {115, 1983}, {181, 3738}, {201, 58313}, {213, 4707}, {320, 50487}, {512, 758}, {523, 3724}, {594, 21758}, {649, 4053}, {654, 2171}, {656, 44113}, {661, 2245}, {669, 35550}, {756, 53314}, {798, 3936}, {810, 860}, {872, 4453}, {1254, 53285}, {1464, 4041}, {1500, 3960}, {1870, 55230}, {1919, 61410}, {2197, 65104}, {2323, 57185}, {2624, 8818}, {3124, 4585}, {3218, 4079}, {3709, 18593}, {4024, 7113}, {4036, 52434}, {4242, 20975}, {4282, 55197}, {6757, 14270}, {7140, 22379}, {20924, 53581}, {39149, 42653}, {40988, 55263}, {41804, 63461}, {52356, 61060}, {52413, 55232}, {56844, 58304}
X(65283) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 6370}, {3, 42666}, {9, 2610}, {223, 51663}, {5375, 4053}, {6626, 4707}, {9296, 61410}, {15898, 4705}, {31998, 3936}, {36830, 2245}, {39054, 758}, {39062, 860}, {40589, 21828}, {40592, 53527}, {40596, 44113}, {40602, 53562}, {62613, 6739}
X(65283) = X(i)-cross conjugate of X(j) for these {i, j}: {2407, 4573}, {4560, 57555}, {6370, 2}, {6740, 39295}, {16704, 4590}, {17139, 18020}, {17161, 57788}, {18662, 57568}, {39765, 4998}, {39766, 1016}, {39767, 1275}, {49274, 32014}, {57736, 9273}
X(65283) = pole of line {21828, 42666} with respect to the Stammler hyperbola
X(65283) = pole of line {37783, 46800} with respect to the Hutson-Moses hyperbola
X(65283) = pole of line {4707, 4736} with respect to the Wallace hyperbola
X(65283) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(60055)}}, {{A, B, C, X(58), X(17939)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(110), X(32641)}}, {{A, B, C, X(162), X(58982)}}, {{A, B, C, X(476), X(51562)}}, {{A, B, C, X(691), X(2363)}}, {{A, B, C, X(1414), X(6578)}}, {{A, B, C, X(4077), X(4467)}}, {{A, B, C, X(4567), X(4600)}}, {{A, B, C, X(4596), X(64823)}}, {{A, B, C, X(4612), X(52935)}}, {{A, B, C, X(6083), X(36037)}}, {{A, B, C, X(6742), X(43354)}}, {{A, B, C, X(17708), X(37143)}}
X(65284) lies on the Steiner circumellipse and on these lines: {4, 65267}, {69, 56598}, {76, 1494}, {99, 1302}, {110, 18878}, {113, 40832}, {290, 4846}, {315, 54988}, {316, 39985}, {648, 61209}, {670, 61188}, {671, 34289}, {3228, 34288}, {3260, 10706}, {3978, 53221}, {4577, 32738}, {4586, 36149}, {6331, 16077}, {7799, 56709}, {20023, 46140}, {35139, 41512}, {35142, 58782}, {46142, 56925}
X(65284) = isogonal conjugate of X(42660)
X(65284) = isotomic conjugate of X(8675)
X(65284) = trilinear pole of line {2, 3003}
X(65284) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42660}, {31, 8675}, {378, 810}, {560, 30474}, {656, 44080}, {661, 5063}, {798, 15066}, {1577, 52438}, {1919, 42704}, {1924, 32833}
X(65284) = X(i)-vertex conjugate of X(j) for these {i, j}: {1576, 18878}
X(65284) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 8675}, {3, 42660}, {6374, 30474}, {9296, 42704}, {9428, 32833}, {31998, 15066}, {36830, 5063}, {39062, 378}, {40596, 44080}, {62613, 10564}
X(65284) = X(i)-cross conjugate of X(j) for these {i, j}: {5890, 249}, {8675, 2}, {37644, 4590}, {44440, 23582}, {46229, 40832}
X(65284) = pole of line {8675, 10564} with respect to the Wallace hyperbola
X(65284) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(110)}}, {{A, B, C, X(76), X(6331)}}, {{A, B, C, X(83), X(43188)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(685), X(59098)}}, {{A, B, C, X(827), X(32695)}}, {{A, B, C, X(877), X(11185)}}, {{A, B, C, X(1302), X(60119)}}, {{A, B, C, X(2996), X(11794)}}, {{A, B, C, X(5485), X(36886)}}, {{A, B, C, X(9066), X(54733)}}, {{A, B, C, X(9069), X(54899)}}, {{A, B, C, X(9100), X(54819)}}, {{A, B, C, X(41895), X(63784)}}, {{A, B, C, X(43532), X(53603)}}
X(65284) = barycentric product X(i)*X(j) for these (i, j): {264, 65323}, {1302, 76}, {1502, 32738}, {4846, 6331}, {34288, 670}, {34289, 99}, {36083, 46234}, {36149, 561}, {43187, 56925}, {57819, 648}
X(65284) = barycentric quotient X(i)/X(j) for these (i, j): {2, 8675}, {6, 42660}, {76, 30474}, {99, 15066}, {110, 5063}, {112, 44080}, {648, 378}, {668, 42704}, {670, 32833}, {1302, 6}, {1576, 52438}, {2407, 10564}, {2966, 11653}, {3260, 46229}, {4846, 647}, {6331, 44134}, {9064, 47649}, {14570, 5891}, {30450, 51833}, {32681, 40352}, {32738, 32}, {34288, 512}, {34289, 523}, {36083, 2159}, {36149, 31}, {39263, 9209}, {52933, 40353}, {56925, 3569}, {57819, 525}, {60119, 2433}, {60588, 17414}, {65323, 3}
X(65285) lies on the Steiner circumellipse and on these lines: {86, 35166}, {99, 4367}, {190, 4584}, {274, 35173}, {290, 57738}, {334, 35162}, {648, 46254}, {668, 2533}, {670, 4374}, {671, 40017}, {741, 18826}, {799, 31148}, {873, 18822}, {875, 886}, {876, 18829}, {903, 4634}, {1494, 57987}, {1509, 35172}, {3225, 18268}, {3228, 37128}, {4017, 4625}, {4583, 6540}, {4586, 4610}, {7192, 34537}, {8033, 35146}, {18021, 53218}, {30940, 57554}, {35144, 36800}, {35167, 52379}, {46159, 57938}, {52935, 62468}, {54986, 55202}
X(65285) = isotomic conjugate of X(4155)
X(65285) = trilinear pole of line {2, 799}
X(65285) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 46390}, {31, 4155}, {42, 4455}, {213, 21832}, {238, 50487}, {239, 53581}, {512, 3747}, {659, 872}, {661, 41333}, {669, 740}, {798, 2238}, {810, 862}, {812, 7109}, {874, 4117}, {875, 4094}, {881, 4154}, {1084, 3570}, {1284, 63461}, {1500, 8632}, {1914, 4079}, {1918, 4010}, {1919, 4037}, {1924, 3948}, {2210, 4705}, {3716, 61364}, {4024, 14599}, {4036, 18892}, {4093, 18105}, {4433, 51641}, {5009, 58289}, {9426, 35544}, {9427, 27853}, {18894, 52623}, {55230, 57654}
X(65285) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4155}, {9, 46390}, {6626, 21832}, {9296, 4037}, {9428, 3948}, {9470, 50487}, {31998, 2238}, {34021, 4010}, {36830, 41333}, {36906, 4079}, {39054, 3747}, {39062, 862}, {40592, 4455}, {40620, 39786}, {62557, 4705}
X(65285) = X(i)-cross conjugate of X(j) for these {i, j}: {874, 799}, {875, 37128}, {4155, 2}, {4589, 65258}, {7192, 57554}, {17140, 57566}, {17166, 52209}, {30940, 34537}, {30941, 4590}, {56154, 39292}, {62636, 44168}
X(65285) = pole of line {2238, 2669} with respect to the Kiepert parabola
X(65285) = pole of line {4094, 4155} with respect to the Wallace hyperbola
X(65285) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(513), X(9422)}}, {{A, B, C, X(660), X(63874)}}, {{A, B, C, X(805), X(34067)}}, {{A, B, C, X(876), X(2533)}}, {{A, B, C, X(4427), X(53363)}}, {{A, B, C, X(4576), X(52922)}}, {{A, B, C, X(4584), X(4589)}}, {{A, B, C, X(4598), X(53631)}}, {{A, B, C, X(4601), X(4634)}}, {{A, B, C, X(4607), X(9150)}}, {{A, B, C, X(4623), X(52612)}}
X(65285) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4639, 65258, 36806}
X(65286) lies on the Steiner circumellipse and on these lines: {76, 58073}, {86, 53650}, {99, 34594}, {190, 37205}, {274, 3226}, {314, 903}, {596, 17143}, {664, 55243}, {668, 4576}, {671, 40013}, {799, 6540}, {874, 53649}, {3227, 39747}, {3228, 39798}, {4555, 7257}, {4577, 52935}, {4602, 54985}, {7192, 27808}, {14616, 57915}, {18826, 40148}, {20615, 35159}, {35147, 40086}, {35166, 52137}, {40519, 57959}, {55245, 58130}
X(65286) = isotomic conjugate of X(4132)
X(65286) = trilinear pole of line {2, 3770}
X(65286) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 58288}, {31, 4132}, {32, 4129}, {37, 57096}, {42, 4057}, {55, 51650}, {213, 4063}, {512, 595}, {661, 2220}, {667, 3293}, {669, 4360}, {798, 32911}, {810, 4222}, {1042, 58336}, {1334, 57238}, {1402, 48307}, {1500, 57080}, {1918, 20295}, {1919, 3995}, {1924, 18140}, {1980, 56249}, {2200, 17922}, {2205, 20949}, {2333, 22154}, {3871, 51641}, {4557, 8054}, {9426, 40087}
X(65286) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4132}, {9, 58288}, {223, 51650}, {6376, 4129}, {6626, 4063}, {6631, 3293}, {9296, 3995}, {9428, 18140}, {31998, 32911}, {34021, 20295}, {36830, 2220}, {39054, 595}, {39062, 4222}, {40589, 57096}, {40592, 4057}, {40605, 48307}
X(65286) = X(i)-cross conjugate of X(j) for these {i, j}: {1019, 274}, {4033, 799}, {4132, 2}, {8050, 37205}, {20950, 40017}, {32863, 4590}, {44444, 14534}, {48293, 32017}
X(65286) = pole of line {4057, 4063} with respect to the Wallace hyperbola
X(65286) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(75), X(27808)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(274), X(4602)}}, {{A, B, C, X(314), X(7257)}}, {{A, B, C, X(660), X(43076)}}, {{A, B, C, X(874), X(17143)}}, {{A, B, C, X(4576), X(4589)}}, {{A, B, C, X(4594), X(4596)}}, {{A, B, C, X(4639), X(52612)}}, {{A, B, C, X(8050), X(34594)}}
X(65287) lies on the Steiner circumellipse and on these lines: {2, 3225}, {69, 43664}, {99, 25424}, {290, 7788}, {524, 53231}, {599, 3228}, {671, 7818}, {3222, 45317}, {4563, 65278}, {4577, 57150}, {4609, 31176}, {7809, 53197}, {7840, 35146}, {7883, 57935}, {16712, 53641}, {18827, 51844}, {23342, 35138}, {31168, 43094}
X(65287) = reflection of X(i) in X(j) for these {i,j}: {3225, 2}
X(65287) = isotomic conjugate of X(25423)
X(65287) = trilinear pole of line {2, 10335}
X(65287) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 25423}, {512, 51291}, {669, 52138}, {798, 7766}, {923, 45680}, {1924, 41259}
X(65287) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 25423}, {2482, 45680}, {9428, 41259}, {31998, 7766}, {36830, 59232}, {39054, 51291}
X(65287) = X(i)-cross conjugate of X(j) for these {i, j}: {14318, 10159}, {25423, 2}, {54262, 76}
X(65287) = pole of line {25423, 45680} with respect to the Wallace hyperbola
X(65287) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3222)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(599), X(23342)}}, {{A, B, C, X(669), X(31176)}}, {{A, B, C, X(689), X(36886)}}, {{A, B, C, X(1634), X(58121)}}, {{A, B, C, X(2421), X(7788)}}, {{A, B, C, X(4563), X(57852)}}, {{A, B, C, X(4576), X(63784)}}, {{A, B, C, X(7840), X(14607)}}, {{A, B, C, X(9066), X(53080)}}, {{A, B, C, X(11058), X(33638)}}, {{A, B, C, X(11163), X(34203)}}, {{A, B, C, X(14492), X(39639)}}, {{A, B, C, X(23301), X(45317)}}
X(65287) = barycentric product X(i)*X(j) for these (i, j): {110, 59258}, {25424, 76}, {43688, 99}, {51844, 799}, {52660, 670}
X(65287) = barycentric quotient X(i)/X(j) for these (i, j): {2, 25423}, {99, 7766}, {110, 59232}, {524, 45680}, {662, 51291}, {670, 41259}, {799, 52138}, {4576, 32449}, {4609, 10010}, {25424, 6}, {43688, 523}, {51450, 18105}, {51844, 661}, {52660, 512}, {59258, 850}
X(65288) lies on the Steiner circumellipse and on these lines: {2, 18827}, {37, 56703}, {99, 3570}, {190, 65250}, {519, 35173}, {536, 35166}, {551, 3227}, {645, 53655}, {664, 61170}, {668, 4115}, {670, 27853}, {671, 3679}, {799, 31148}, {903, 4688}, {1018, 6540}, {1121, 31165}, {1494, 31158}, {2481, 50095}, {3226, 25426}, {3228, 4664}, {3799, 53648}, {3807, 32041}, {3952, 4562}, {4595, 53658}, {14616, 17346}, {14970, 42054}, {17264, 35152}, {17294, 20538}, {17310, 35153}, {18822, 40891}, {18825, 60671}, {18829, 27805}, {20529, 29575}, {23891, 58128}, {24074, 32042}, {29615, 35162}, {31143, 43097}, {31167, 43098}, {35143, 50127}, {35144, 50107}, {35180, 62644}, {46922, 60680}, {65169, 65280}
X(65288) = midpoint of X(i) and X(j) for these {i,j}: {2, 39367}
X(65288) = reflection of X(i) in X(j) for these {i,j}: {2, 35068}, {18827, 2}
X(65288) = isotomic conjugate of X(28840)
X(65288) = trilinear pole of line {2, 1962}
X(65288) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 4784}, {31, 28840}, {513, 60697}, {604, 4913}, {649, 4649}, {661, 59243}, {663, 60715}, {667, 16826}, {669, 51314}, {798, 51356}, {810, 31904}, {875, 20142}, {1333, 4824}, {1919, 60706}, {1980, 60719}, {3063, 60717}, {3669, 60713}, {3733, 60724}, {3842, 57129}, {4948, 28607}, {4963, 34819}, {6591, 60703}, {22383, 60699}, {43924, 60711}, {57181, 60731}
X(65288) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28840}, {9, 4784}, {37, 4824}, {3161, 4913}, {5375, 4649}, {6631, 16826}, {9296, 60706}, {10001, 60717}, {31998, 51356}, {35123, 45657}, {36830, 59243}, {36911, 4948}, {39026, 60697}, {39054, 51311}, {39062, 31904}, {62648, 4963}
X(65288) = X(i)-cross conjugate of X(j) for these {i, j}: {4804, 75}, {24325, 7035}, {28840, 2}, {42334, 4600}, {54256, 10}, {54258, 37}
X(65288) = pole of line {3993, 16826} with respect to the Yff parabola
X(65288) = pole of line {20142, 28840} with respect to the Wallace hyperbola
X(65288) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(799)}}, {{A, B, C, X(42), X(59030)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(551), X(23891)}}, {{A, B, C, X(643), X(42030)}}, {{A, B, C, X(661), X(31148)}}, {{A, B, C, X(662), X(1018)}}, {{A, B, C, X(812), X(43266)}}, {{A, B, C, X(1026), X(50095)}}, {{A, B, C, X(3257), X(8691)}}, {{A, B, C, X(3903), X(4584)}}, {{A, B, C, X(4033), X(4602)}}, {{A, B, C, X(4369), X(45315)}}, {{A, B, C, X(4585), X(17346)}}, {{A, B, C, X(4615), X(37210)}}, {{A, B, C, X(4632), X(6742)}}, {{A, B, C, X(4688), X(24004)}}, {{A, B, C, X(5388), X(65040)}}, {{A, B, C, X(6011), X(60172)}}, {{A, B, C, X(7192), X(47774)}}, {{A, B, C, X(9070), X(36085)}}, {{A, B, C, X(17254), X(62669)}}, {{A, B, C, X(23354), X(29584)}}, {{A, B, C, X(25666), X(45663)}}, {{A, B, C, X(27929), X(45665)}}, {{A, B, C, X(29615), X(62644)}}, {{A, B, C, X(35068), X(40529)}}, {{A, B, C, X(40891), X(56811)}}, {{A, B, C, X(55213), X(65041)}}
X(65288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {35068, 39367, 18827}
X(65289) lies on the Steiner circumellipse and on these lines: {7, 18827}, {57, 35143}, {75, 290}, {85, 53559}, {99, 4594}, {100, 65291}, {109, 62464}, {190, 27805}, {256, 2481}, {257, 1121}, {320, 35151}, {350, 53198}, {522, 65293}, {527, 40873}, {648, 4603}, {651, 4586}, {662, 2966}, {664, 3888}, {666, 21362}, {668, 56241}, {671, 60245}, {893, 60014}, {903, 7249}, {1020, 6648}, {1414, 65281}, {1423, 3225}, {1431, 3226}, {1432, 3227}, {1447, 35165}, {1581, 39775}, {1821, 39040}, {1916, 4440}, {1967, 3123}, {3228, 65011}, {4014, 61421}, {4017, 4625}, {4357, 40846}, {4389, 14616}, {4419, 35144}, {4451, 18025}, {4458, 4569}, {4552, 4562}, {4554, 18830}, {4572, 46132}, {4573, 53655}, {6604, 35176}, {6613, 41353}, {6646, 40099}, {7015, 60046}, {7018, 18816}, {7019, 34393}, {7260, 65280}, {10030, 53222}, {16591, 36800}, {16609, 35146}, {17272, 35141}, {17493, 35167}, {22003, 32041}, {23996, 35044}, {28391, 39917}, {33940, 43093}, {35150, 52135}, {35159, 39126}, {35180, 63782}, {39919, 64909}, {40432, 55082}, {57887, 59191}, {57968, 65272}
X(65289) = reflection of X(i) in X(j) for these {i,j}: {40846, 4357}
X(65289) = isotomic conjugate of X(3907)
X(65289) = trilinear pole of line {2, 257}
X(65289) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3287}, {8, 56242}, {9, 20981}, {21, 7234}, {31, 3907}, {33, 22093}, {41, 4369}, {55, 4367}, {56, 4477}, {110, 40608}, {171, 663}, {172, 650}, {212, 54229}, {284, 57234}, {513, 2330}, {522, 7122}, {604, 4529}, {643, 4128}, {645, 21755}, {649, 2329}, {652, 7119}, {657, 7175}, {667, 7081}, {692, 4459}, {798, 27958}, {810, 14006}, {884, 4447}, {894, 3063}, {1333, 4140}, {1334, 18200}, {1919, 17787}, {1933, 60577}, {1946, 7009}, {2053, 24533}, {2175, 4374}, {2194, 2533}, {2195, 53553}, {2295, 7252}, {2344, 45882}, {3271, 4579}, {3737, 20964}, {3903, 61053}, {3939, 53541}, {3955, 18344}, {4095, 57129}, {4107, 51858}, {4164, 7077}, {4612, 21823}, {4636, 21725}, {5027, 56154}, {5546, 16592}, {7121, 30584}, {7176, 8641}, {14296, 18265}, {17103, 63461}, {17420, 59159}, {18111, 40972}, {22373, 36797}, {52133, 58862}, {53559, 65375}, {57264, 64865}
X(65289) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4477}, {2, 3907}, {9, 3287}, {37, 4140}, {223, 4367}, {244, 40608}, {478, 20981}, {1086, 4459}, {1214, 2533}, {3160, 4369}, {3161, 4529}, {5375, 2329}, {6631, 7081}, {9296, 17787}, {10001, 894}, {16591, 804}, {16592, 3023}, {31998, 27958}, {37137, 9860}, {39026, 2330}, {39053, 7009}, {39062, 14006}, {39063, 53553}, {40590, 57234}, {40593, 4374}, {40598, 30584}, {40611, 7234}, {40615, 7200}, {40617, 53541}, {40622, 53559}, {40837, 54229}, {52659, 4922}, {55060, 4128}, {59507, 28006}, {62575, 27831}
X(65289) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {55018, 329}
X(65289) = X(i)-cross conjugate of X(j) for these {i, j}: {38, 4564}, {661, 85}, {2254, 1581}, {3903, 27805}, {3907, 2}, {4388, 46102}, {6646, 1275}, {29055, 65332}, {29840, 1016}, {56928, 4998}
X(65289) = pole of line {11683, 27958} with respect to the Kiepert parabola
X(65289) = pole of line {65209, 65289} with respect to the Steiner circumellipse
X(65289) = pole of line {7081, 17739} with respect to the Yff parabola
X(65289) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(4552)}}, {{A, B, C, X(10), X(8691)}}, {{A, B, C, X(75), X(662)}}, {{A, B, C, X(86), X(15455)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(3888)}}, {{A, B, C, X(307), X(65300)}}, {{A, B, C, X(522), X(4458)}}, {{A, B, C, X(645), X(51614)}}, {{A, B, C, X(651), X(4572)}}, {{A, B, C, X(661), X(53559)}}, {{A, B, C, X(799), X(6649)}}, {{A, B, C, X(1020), X(1414)}}, {{A, B, C, X(1492), X(65338)}}, {{A, B, C, X(2701), X(8750)}}, {{A, B, C, X(3123), X(8632)}}, {{A, B, C, X(3663), X(21362)}}, {{A, B, C, X(4017), X(61052)}}, {{A, B, C, X(4373), X(51563)}}, {{A, B, C, X(4492), X(4557)}}, {{A, B, C, X(4551), X(55213)}}, {{A, B, C, X(4594), X(27805)}}, {{A, B, C, X(4628), X(29095)}}, {{A, B, C, X(6011), X(36086)}}, {{A, B, C, X(6386), X(35008)}}, {{A, B, C, X(17254), X(56543)}}, {{A, B, C, X(27853), X(36860)}}, {{A, B, C, X(36099), X(52938)}}, {{A, B, C, X(51560), X(56188)}}
X(65290) lies on the Steiner circumellipse and on these lines: {75, 46133}, {90, 2481}, {99, 36082}, {190, 65216}, {522, 6517}, {658, 65292}, {671, 60249}, {903, 7318}, {1069, 60046}, {1121, 2994}, {2164, 60014}, {6512, 54966}, {7040, 33298}, {8822, 14616}, {10001, 53211}, {18025, 36626}, {18816, 20570}, {32038, 65175}, {65162, 65270}
X(65290) = trilinear pole of line {2, 914}
X(65290) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 46389}, {25, 59973}, {41, 21188}, {46, 663}, {55, 51648}, {73, 57124}, {284, 55214}, {512, 3193}, {513, 61397}, {650, 2178}, {652, 52033}, {657, 56848}, {667, 5552}, {798, 31631}, {810, 3559}, {1068, 1946}, {1406, 3900}, {1415, 6506}, {3063, 5905}, {3157, 18344}, {7252, 21853}, {8648, 56417}
X(65290) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 46389}, {223, 51648}, {1146, 6506}, {3160, 21188}, {6505, 59973}, {6631, 5552}, {10001, 5905}, {31998, 31631}, {39026, 61397}, {39053, 1068}, {39054, 3193}, {39062, 3559}, {40590, 55214}
X(65290) = X(i)-cross conjugate of X(j) for these {i, j}: {6516, 664}, {10529, 1016}, {11415, 46102}, {20078, 1275}, {44426, 333}, {62858, 4564}
X(65290) = pole of line {92, 31631} with respect to the Kiepert parabola
X(65290) = pole of line {6516, 65290} with respect to the Steiner circumellipse
X(65290) = pole of line {5552, 5942} with respect to the Yff parabola
X(65290) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(1305)}}, {{A, B, C, X(63), X(6517)}}, {{A, B, C, X(75), X(4561)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(643), X(43347)}}, {{A, B, C, X(653), X(1414)}}, {{A, B, C, X(655), X(934)}}, {{A, B, C, X(1309), X(3699)}}, {{A, B, C, X(4592), X(65251)}}, {{A, B, C, X(4626), X(58993)}}, {{A, B, C, X(26706), X(36086)}}
X(65290) = barycentric product X(i)*X(j) for these (i, j): {190, 7318}, {314, 65175}, {1069, 46404}, {2164, 4572}, {2994, 664}, {4554, 90}, {18026, 6513}, {20570, 651}, {36082, 76}, {36626, 658}, {46406, 7072}, {52938, 6512}, {55247, 57696}, {60249, 99}, {65164, 7040}, {65216, 75}
X(65290) = barycentric quotient X(i)/X(j) for these (i, j): {1, 46389}, {7, 21188}, {57, 51648}, {63, 59973}, {65, 55214}, {90, 650}, {99, 31631}, {101, 61397}, {108, 52033}, {109, 2178}, {190, 5552}, {522, 6506}, {648, 3559}, {651, 46}, {653, 1068}, {655, 56417}, {662, 3193}, {664, 5905}, {934, 56848}, {1069, 652}, {1172, 57124}, {1461, 1406}, {1708, 57102}, {1813, 3157}, {2164, 663}, {2994, 522}, {4551, 21853}, {4552, 21077}, {4554, 20930}, {4558, 1800}, {6512, 57241}, {6513, 521}, {6516, 6505}, {6517, 6511}, {7040, 3064}, {7072, 657}, {7318, 514}, {20570, 4391}, {31623, 57083}, {36082, 6}, {36626, 3239}, {55248, 4516}, {57696, 55248}, {60249, 523}, {60794, 36054}, {65175, 65}, {65216, 1}
X(65291) lies on the Steiner circumellipse and on these lines: {99, 8685}, {100, 65289}, {109, 18830}, {190, 4621}, {651, 4562}, {662, 65271}, {664, 4579}, {903, 56358}, {983, 2481}, {1014, 18827}, {1121, 17743}, {1633, 53208}, {3227, 7132}, {4551, 57969}, {4552, 4586}, {4559, 57965}, {4569, 6649}, {7033, 18816}, {8684, 52923}, {14616, 40415}, {14727, 36086}, {18025, 56180}, {35141, 56196}, {36036, 53196}
X(65291) = isotomic conjugate of X(3810)
X(65291) = trilinear pole of line {2, 1429}
X(65291) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8, 50514}, {31, 3810}, {41, 3776}, {55, 3777}, {244, 40499}, {512, 3794}, {513, 3056}, {514, 20665}, {522, 7032}, {649, 3061}, {650, 2275}, {657, 41777}, {663, 982}, {667, 3705}, {1019, 20684}, {2194, 3801}, {3063, 3662}, {3271, 3888}, {3287, 3863}, {3721, 7252}, {3737, 3778}, {3784, 18344}, {3808, 7077}, {3900, 7248}, {4073, 43924}, {4136, 57129}, {4531, 7192}, {4560, 16584}, {7185, 8641}, {7649, 20753}, {18155, 40935}, {18191, 62753}, {33947, 63461}
X(65291) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 3810}, {223, 3777}, {1214, 3801}, {3160, 3776}, {5375, 3061}, {6631, 3705}, {10001, 3662}, {39026, 3056}, {39054, 3794}, {52659, 53533}
X(65291) = X(i)-cross conjugate of X(j) for these {i, j}: {31, 4564}, {3212, 4998}, {3810, 2}, {3905, 7035}, {17350, 1275}, {25304, 57750}, {32937, 46102}, {48094, 85}
X(65291) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(4579)}}, {{A, B, C, X(646), X(51614)}}, {{A, B, C, X(651), X(1014)}}, {{A, B, C, X(655), X(4572)}}, {{A, B, C, X(662), X(36036)}}, {{A, B, C, X(1293), X(34071)}}, {{A, B, C, X(1897), X(36801)}}, {{A, B, C, X(3573), X(52923)}}, {{A, B, C, X(4606), X(55281)}}, {{A, B, C, X(8750), X(34067)}}, {{A, B, C, X(9086), X(55996)}}, {{A, B, C, X(44765), X(51560)}}
X(65291) = barycentric product X(i)*X(j) for these (i, j): {76, 8685}, {190, 56358}, {651, 7033}, {668, 7132}, {1415, 7034}, {4554, 983}, {4573, 56196}, {4621, 7}, {10030, 8684}, {16603, 33514}, {17743, 664}, {38810, 4551}, {40415, 4552}, {56180, 658}
X(65291) = barycentric quotient X(i)/X(j) for these (i, j): {2, 3810}, {7, 3776}, {57, 3777}, {100, 3061}, {101, 3056}, {109, 2275}, {190, 3705}, {226, 3801}, {604, 50514}, {644, 4073}, {651, 982}, {658, 7185}, {662, 3794}, {664, 3662}, {692, 20665}, {906, 20753}, {934, 41777}, {983, 650}, {1252, 40499}, {1415, 7032}, {1429, 3808}, {1461, 7248}, {1813, 3784}, {3776, 3020}, {3911, 53533}, {3952, 4136}, {4551, 3721}, {4552, 2887}, {4554, 33930}, {4557, 20684}, {4559, 3778}, {4564, 3888}, {4566, 16888}, {4573, 33947}, {4579, 56558}, {4621, 8}, {4998, 33946}, {6649, 7187}, {7033, 4391}, {7132, 513}, {7255, 17197}, {8684, 4876}, {8685, 6}, {17743, 522}, {21859, 7237}, {23067, 20727}, {29055, 3863}, {37137, 3865}, {38810, 18155}, {38813, 7252}, {40415, 4560}, {56180, 3239}, {56196, 3700}, {56358, 514}
X(65292) lies on the Steiner circumellipse and on these lines: {7, 14616}, {75, 1494}, {79, 2481}, {85, 6757}, {99, 26700}, {150, 265}, {190, 15455}, {290, 52390}, {320, 46141}, {350, 53215}, {648, 24001}, {658, 65290}, {664, 6742}, {671, 43682}, {811, 16077}, {1111, 2166}, {1121, 17862}, {1414, 4077}, {1565, 52200}, {2160, 60014}, {2966, 35049}, {3226, 52372}, {3227, 19796}, {3615, 55082}, {4554, 32042}, {4566, 35174}, {4572, 54957}, {4872, 51883}, {7100, 60046}, {7321, 18816}, {8818, 35144}, {10030, 35152}, {13486, 65274}, {17078, 50148}, {17181, 58740}, {17753, 56845}, {18025, 20880}, {18593, 60013}, {18827, 52382}, {23674, 33298}, {35145, 63171}, {35164, 63642}, {51663, 53192}, {52621, 65293}, {52938, 54968}, {55209, 65280}
X(65292) = isotomic conjugate of X(35057)
X(65292) = trilinear pole of line {2, 7110}
X(65292) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 9404}, {31, 35057}, {32, 57066}, {33, 23226}, {35, 663}, {41, 14838}, {48, 65105}, {55, 2605}, {60, 58304}, {212, 54244}, {284, 55210}, {512, 35193}, {521, 14975}, {647, 41502}, {649, 52405}, {650, 2174}, {657, 2003}, {661, 35192}, {667, 4420}, {692, 53524}, {798, 56440}, {810, 11107}, {1021, 21741}, {1399, 3900}, {1442, 8641}, {1576, 6741}, {1825, 57134}, {1919, 42033}, {1946, 6198}, {2175, 4467}, {2194, 57099}, {2195, 53554}, {2341, 2624}, {2594, 21789}, {2611, 65375}, {3063, 3219}, {3709, 40214}, {3939, 53542}, {4041, 17104}, {5546, 20982}, {6740, 14270}, {7265, 57657}, {7343, 42657}, {8648, 56422}, {9447, 18160}, {18344, 52408}, {52425, 65100}, {56934, 63461}
X(65292) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35057}, {9, 9404}, {223, 2605}, {1086, 53524}, {1214, 57099}, {1249, 65105}, {3160, 14838}, {4858, 6741}, {5375, 52405}, {6376, 57066}, {6631, 4420}, {8287, 3024}, {9296, 42033}, {10001, 3219}, {16591, 53563}, {31998, 56440}, {36830, 35192}, {38340, 9904}, {39052, 41502}, {39053, 6198}, {39054, 35193}, {39060, 52412}, {39062, 11107}, {39063, 53554}, {40590, 55210}, {40593, 4467}, {40615, 7202}, {40617, 53542}, {40622, 2611}, {40837, 54244}, {56847, 4041}, {62570, 7265}, {62602, 65100}
X(65292) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {55017, 329}
X(65292) = X(i)-cross conjugate of X(j) for these {i, j}: {1577, 85}, {3874, 4564}, {6742, 15455}, {17483, 1275}, {21276, 57757}, {35057, 2}, {36038, 63759}, {52367, 46102}, {52390, 35049}, {55186, 75}, {63782, 4554}
X(65292) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(55181)}}, {{A, B, C, X(7), X(1414)}}, {{A, B, C, X(65), X(29055)}}, {{A, B, C, X(75), X(811)}}, {{A, B, C, X(85), X(4635)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(883), X(32007)}}, {{A, B, C, X(1577), X(17886)}}, {{A, B, C, X(1783), X(2691)}}, {{A, B, C, X(2864), X(52937)}}, {{A, B, C, X(19796), X(41314)}}, {{A, B, C, X(30257), X(36086)}}, {{A, B, C, X(43740), X(65201)}}
X(65292) = barycentric product X(i)*X(j) for these (i, j): {264, 65300}, {1978, 52372}, {2160, 4572}, {3262, 47317}, {4554, 79}, {4569, 7110}, {4573, 6757}, {4625, 8818}, {6742, 85}, {13486, 349}, {15413, 34922}, {15455, 7}, {18026, 52381}, {18160, 55017}, {18593, 35139}, {20565, 651}, {26700, 76}, {30690, 664}, {32680, 41804}, {35049, 850}, {36064, 46234}, {38340, 75}, {43682, 99}, {46404, 7100}, {46405, 56844}, {46406, 7073}, {52344, 658}, {52374, 668}, {52382, 799}, {52390, 6331}, {55209, 65}, {63171, 811}
X(65292) = barycentric quotient X(i)/X(j) for these (i, j): {1, 9404}, {2, 35057}, {4, 65105}, {7, 14838}, {57, 2605}, {65, 55210}, {75, 57066}, {79, 650}, {85, 4467}, {94, 52356}, {99, 56440}, {100, 52405}, {109, 2174}, {110, 35192}, {162, 41502}, {190, 4420}, {222, 23226}, {226, 57099}, {241, 53554}, {273, 65100}, {278, 54244}, {476, 2341}, {514, 53524}, {648, 11107}, {651, 35}, {653, 6198}, {655, 56422}, {658, 1442}, {662, 35193}, {664, 3219}, {668, 42033}, {934, 2003}, {1020, 2594}, {1414, 40214}, {1441, 7265}, {1461, 1399}, {1464, 2624}, {1577, 6741}, {1789, 23090}, {1813, 52408}, {1835, 47230}, {2160, 663}, {2171, 58304}, {3615, 1021}, {3669, 53542}, {3676, 7202}, {4017, 20982}, {4077, 8287}, {4552, 3678}, {4554, 319}, {4565, 17104}, {4566, 16577}, {4569, 17095}, {4572, 33939}, {4573, 56934}, {4625, 34016}, {6063, 18160}, {6186, 3063}, {6742, 9}, {6757, 3700}, {7073, 657}, {7100, 652}, {7110, 3900}, {7178, 2611}, {8606, 65102}, {8818, 4041}, {10404, 30600}, {11076, 42657}, {13149, 7282}, {13486, 284}, {14838, 3024}, {15455, 8}, {16609, 53563}, {18026, 52412}, {18593, 526}, {20565, 4391}, {26700, 6}, {30690, 522}, {32674, 14975}, {32680, 6740}, {34922, 1783}, {35049, 110}, {35174, 41226}, {36064, 2159}, {38340, 1}, {41804, 32679}, {43682, 523}, {46406, 52421}, {47317, 104}, {51663, 2088}, {51664, 22094}, {52344, 3239}, {52372, 649}, {52374, 513}, {52375, 7252}, {52381, 521}, {52382, 661}, {52388, 8611}, {52390, 647}, {52393, 3737}, {52569, 4976}, {52607, 1825}, {52610, 22342}, {53321, 21741}, {55209, 314}, {55236, 4516}, {56193, 1334}, {56844, 654}, {57785, 16755}, {60053, 1793}, {61225, 17454}, {63171, 656}, {63782, 3647}, {64834, 18344}, {65205, 31938}, {65300, 3}
X(65293) lies on the Steiner circumellipse and on these lines: {75, 35150}, {85, 35163}, {190, 4529}, {290, 18033}, {522, 65289}, {527, 40846}, {664, 3907}, {1121, 40845}, {1275, 6648}, {2481, 7261}, {3225, 39930}, {3226, 39919}, {3512, 60014}, {4374, 4569}, {4554, 4586}, {4625, 53655}, {7340, 65281}, {9436, 18827}, {10030, 63895}, {17254, 53212}, {18036, 18816}, {35143, 40862}, {35167, 64231}, {52621, 65292}
X(65293) = trilinear pole of line {2, 20940}
X(65293) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 18262}, {650, 19554}, {663, 17798}, {2175, 4458}, {3063, 3509}, {3287, 41882}, {5018, 8641}, {8638, 40724}, {40754, 46388}
X(65293) = X(i)-Dao conjugate of X(j) for these {i, j}: {10001, 3509}, {40593, 4458}
X(65293) = X(i)-cross conjugate of X(j) for these {i, j}: {693, 63895}, {4088, 31618}
X(65293) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(522), X(3907)}}, {{A, B, C, X(1275), X(7340)}}, {{A, B, C, X(18160), X(52621)}}, {{A, B, C, X(34083), X(46404)}}, {{A, B, C, X(37135), X(40873)}}
X(65293) = barycentric product X(i)*X(j) for these (i, j): {3512, 4572}, {4554, 7261}, {18036, 651}, {40781, 46135}, {40845, 664}, {40846, 65289}, {46406, 7281}, {51614, 85}, {65237, 75}
X(65293) = barycentric quotient X(i)/X(j) for these (i, j): {85, 4458}, {109, 19554}, {651, 17798}, {658, 5018}, {664, 3509}, {927, 40754}, {1415, 18262}, {3512, 663}, {4552, 20715}, {4554, 4645}, {4572, 17789}, {6516, 20741}, {7061, 3287}, {7261, 650}, {7281, 657}, {8852, 3063}, {18033, 27951}, {18036, 4391}, {29055, 41882}, {34085, 40724}, {37137, 41532}, {40781, 926}, {40845, 522}, {40846, 3907}, {51614, 9}, {63895, 60577}, {64231, 3716}, {65237, 1}, {65289, 40873}
X(65294) lies on the Steiner circumellipse and on these lines: {99, 24016}, {190, 1275}, {269, 53217}, {279, 35094}, {522, 4626}, {648, 4616}, {658, 32040}, {664, 59457}, {666, 60581}, {668, 57928}, {677, 6606}, {1088, 35164}, {1121, 17078}, {2400, 35157}, {2424, 14727}, {2481, 43736}, {3668, 35150}, {4025, 23586}, {4569, 24011}, {4586, 32668}, {6528, 52619}, {9436, 18025}, {18026, 36838}, {53212, 60984}, {53228, 57792}
X(65294) = trilinear pole of line {2, 658}
X(65294) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 46392}, {516, 8641}, {649, 51418}, {657, 910}, {663, 41339}, {676, 1253}, {1021, 51436}, {1024, 56785}, {1456, 4105}, {1886, 65102}, {2310, 2426}, {3063, 40869}, {23973, 24012}, {43035, 57180}, {46388, 56900}
X(65294) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 46392}, {658, 63790}, {5375, 51418}, {10001, 40869}, {17113, 676}, {40618, 57292}, {45250, 52614}
X(65294) = X(i)-cross conjugate of X(j) for these {i, j}: {2400, 52156}, {4025, 57548}, {9436, 1275}, {23973, 658}, {43042, 56668}, {46402, 57752}, {50333, 30705}, {57455, 36838}
X(65294) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(522), X(57064)}}, {{A, B, C, X(927), X(9436)}}, {{A, B, C, X(1275), X(24011)}}, {{A, B, C, X(1309), X(13577)}}, {{A, B, C, X(4573), X(52937)}}, {{A, B, C, X(4616), X(36838)}}, {{A, B, C, X(15419), X(30805)}}, {{A, B, C, X(35094), X(43042)}}, {{A, B, C, X(46964), X(56183)}}
X(65294) = barycentric product X(i)*X(j) for these (i, j): {103, 46406}, {279, 57928}, {1275, 2400}, {2338, 52937}, {4998, 60581}, {18025, 658}, {23973, 57548}, {24016, 76}, {32668, 561}, {36101, 4569}, {43736, 4554}, {46135, 52213}, {52156, 664}, {56668, 927}, {57792, 677}, {57996, 934}, {65245, 75}
X(65294) = barycentric quotient X(i)/X(j) for these (i, j): {1, 46392}, {100, 51418}, {103, 657}, {279, 676}, {651, 41339}, {658, 516}, {664, 40869}, {677, 220}, {911, 8641}, {927, 56900}, {934, 910}, {1262, 2426}, {1275, 2398}, {1815, 57108}, {2283, 56785}, {2338, 4105}, {2400, 1146}, {2424, 14936}, {4025, 57292}, {4566, 17747}, {4569, 30807}, {4616, 14953}, {4617, 1456}, {4626, 43035}, {6516, 51376}, {7056, 39470}, {15634, 42462}, {18025, 3239}, {23586, 23973}, {23973, 23972}, {24011, 24015}, {24015, 24014}, {24016, 6}, {32642, 14827}, {32668, 31}, {36039, 1253}, {36056, 65102}, {36101, 3900}, {36118, 1886}, {36122, 65103}, {40116, 7071}, {41353, 9502}, {43042, 1566}, {43736, 650}, {46406, 35517}, {52156, 522}, {52213, 926}, {53150, 42069}, {53321, 51436}, {55346, 41321}, {56668, 50333}, {57928, 346}, {57996, 4397}, {60581, 11}, {65218, 7079}, {65245, 1}
X(65295) lies on the Steiner circumellipse and on these lines: {4, 56666}, {99, 36067}, {102, 60046}, {190, 46102}, {225, 35149}, {317, 46136}, {648, 65297}, {664, 55346}, {666, 60584}, {903, 56869}, {1121, 52780}, {2481, 36121}, {2966, 32643}, {4025, 36118}, {4391, 54240}, {4586, 32667}, {5081, 22464}, {6332, 39053}, {17896, 18026}, {35145, 41207}, {35157, 53152}, {40701, 56634}, {53218, 54412}
X(65295) = isotomic conjugate of X(39471)
X(65295) = trilinear pole of line {2, 196}
X(65295) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 46391}, {31, 39471}, {184, 14304}, {212, 53522}, {515, 1946}, {652, 2182}, {663, 46974}, {1455, 57108}, {1459, 51361}, {2188, 6087}, {2361, 61041}, {2425, 34591}, {2638, 23987}, {8755, 36054}, {24035, 39687}, {32652, 57291}, {34050, 65102}, {51421, 57134}
X(65295) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39471}, {9, 46391}, {653, 63792}, {16596, 57291}, {39053, 515}, {39060, 64194}, {40837, 53522}, {46398, 10017}, {62605, 14304}
X(65295) = X(i)-cross conjugate of X(j) for these {i, j}: {1309, 65336}, {2405, 13149}, {5081, 46102}, {10015, 56666}, {22464, 55346}, {23987, 653}, {39471, 2}, {46400, 57751}, {53152, 52780}
X(65295) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(1309), X(5081)}}, {{A, B, C, X(4025), X(4391)}}, {{A, B, C, X(16230), X(18006)}}, {{A, B, C, X(24032), X(41207)}}, {{A, B, C, X(36118), X(54240)}}
X(65295) = barycentric product X(i)*X(j) for these (i, j): {102, 46404}, {264, 65297}, {1275, 53152}, {1309, 56666}, {1969, 36040}, {2399, 55346}, {4998, 60584}, {18022, 32643}, {18026, 36100}, {23987, 57551}, {32667, 561}, {34393, 653}, {36067, 76}, {36121, 4554}, {40701, 6081}, {52780, 664}
X(65295) = barycentric quotient X(i)/X(j) for these (i, j): {1, 46391}, {2, 39471}, {92, 14304}, {102, 652}, {108, 2182}, {196, 6087}, {278, 53522}, {651, 46974}, {653, 515}, {1783, 51361}, {2006, 61041}, {2399, 2968}, {2406, 38554}, {2432, 3270}, {4566, 51368}, {6081, 268}, {10015, 10017}, {14837, 57291}, {15629, 57108}, {18026, 64194}, {23984, 23987}, {23987, 23986}, {24032, 24035}, {24035, 24034}, {32643, 184}, {32667, 31}, {32677, 1946}, {32714, 1455}, {34393, 6332}, {36040, 48}, {36055, 36054}, {36067, 6}, {36100, 521}, {36118, 34050}, {36121, 650}, {36127, 8755}, {39053, 63792}, {46404, 35516}, {52607, 51421}, {52780, 522}, {53152, 1146}, {55346, 2406}, {60000, 8677}, {60584, 11}, {65297, 3}, {65329, 59283}, {65331, 56638}, {65335, 63857}
X(65296) lies on the MacBeath circumconic and on these lines: {6, 23587}, {7, 8759}, {57, 60025}, {63, 1815}, {69, 7358}, {77, 7004}, {85, 2988}, {100, 677}, {109, 6183}, {110, 934}, {222, 1814}, {269, 60049}, {279, 2990}, {348, 22129}, {394, 50559}, {648, 4569}, {651, 658}, {662, 46639}, {664, 13138}, {895, 1439}, {905, 65304}, {1088, 2989}, {1275, 4554}, {1331, 6516}, {1332, 52610}, {1407, 2991}, {1427, 2987}, {1446, 2986}, {1461, 65298}, {1797, 7177}, {1936, 56383}, {1993, 57498}, {1996, 6180}, {4563, 55205}, {4566, 65303}, {13243, 43736}, {22053, 40443}, {23144, 30682}, {23973, 35312}, {24015, 43190}, {34028, 50561}, {43358, 53632}, {61225, 65187}
X(65296) = isogonal conjugate of X(65103)
X(65296) = trilinear pole of line {3, 77}
X(65296) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 65103}, {4, 657}, {9, 18344}, {19, 3900}, {21, 55206}, {25, 3239}, {27, 4524}, {28, 4171}, {29, 3709}, {33, 650}, {34, 4130}, {41, 44426}, {42, 17926}, {55, 3064}, {92, 8641}, {101, 42069}, {108, 3119}, {112, 52335}, {158, 65102}, {162, 36197}, {200, 6591}, {220, 7649}, {273, 57180}, {278, 4105}, {281, 663}, {318, 3063}, {393, 57108}, {512, 2322}, {513, 7079}, {514, 7071}, {522, 607}, {523, 2332}, {608, 4163}, {649, 7046}, {652, 1857}, {653, 3022}, {661, 4183}, {667, 7101}, {728, 43923}, {1021, 1824}, {1043, 2489}, {1096, 57055}, {1146, 8750}, {1172, 4041}, {1253, 17924}, {1783, 2310}, {1826, 21789}, {1827, 62747}, {1880, 58329}, {1897, 14936}, {1973, 4397}, {1974, 52622}, {2170, 56183}, {2175, 46110}, {2204, 4086}, {2212, 4391}, {2299, 3700}, {2326, 4705}, {2327, 58757}, {2328, 2501}, {2333, 7253}, {2356, 28132}, {3271, 65160}, {3939, 8735}, {4079, 59482}, {4081, 32674}, {4082, 43925}, {4515, 57200}, {4516, 65201}, {4528, 8752}, {6059, 6332}, {6520, 58340}, {6524, 57057}, {6558, 42067}, {7008, 14298}, {7063, 55233}, {7073, 65105}, {7115, 23615}, {7151, 57049}, {7154, 8058}, {7252, 53008}, {7367, 54239}, {13149, 24012}, {14427, 36125}, {14827, 46107}, {21666, 32739}, {23289, 41320}, {23351, 60431}, {24010, 32714}, {31623, 63461}, {35508, 36118}, {36122, 46392}, {36124, 52614}, {36128, 58331}, {36421, 55230}, {36910, 58313}, {46404, 61050}, {52371, 65104}, {53285, 64835}, {55208, 56182}, {57045, 61349}
X(65296) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 65103}, {6, 3900}, {125, 36197}, {223, 3064}, {226, 3700}, {478, 18344}, {1015, 42069}, {1147, 65102}, {3160, 44426}, {5375, 7046}, {6337, 4397}, {6338, 15416}, {6503, 57055}, {6505, 3239}, {6609, 6591}, {6631, 7101}, {7358, 23970}, {10001, 318}, {11517, 4130}, {17113, 17924}, {22391, 8641}, {26932, 1146}, {34467, 14936}, {34591, 52335}, {35072, 4081}, {36033, 657}, {36830, 4183}, {36908, 2501}, {37867, 58340}, {38983, 3119}, {39006, 2310}, {39026, 7079}, {39054, 2322}, {40591, 4171}, {40592, 17926}, {40593, 46110}, {40611, 55206}, {40617, 8735}, {40618, 24026}, {40619, 21666}, {40628, 23615}, {46095, 46392}, {59608, 24006}, {62565, 4086}, {62647, 4163}
X(65296) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1275, 348}, {4569, 934}, {4573, 658}, {23586, 57479}, {59457, 1804}
X(65296) = X(i)-cross conjugate of X(j) for these {i, j}: {63, 7045}, {652, 40443}, {905, 77}, {1804, 59457}, {1813, 6516}, {4091, 1444}, {7011, 55346}, {22131, 59}, {23144, 44717}, {64885, 69}, {65102, 3}
X(65296) = pole of line {1817, 18750} with respect to the Kiepert parabola
X(65296) = pole of line {3900, 65102} with respect to the Stammler hyperbola
X(65296) = pole of line {934, 46964} with respect to the Steiner circumellipse
X(65296) = pole of line {40555, 55145} with respect to the Steiner inellipse
X(65296) = pole of line {144, 348} with respect to the Hutson-Moses hyperbola
X(65296) = pole of line {4397, 17926} with respect to the Wallace hyperbola
X(65296) = pole of line {1146, 7358} with respect to the dual conic of polar circle
X(65296) = pole of line {347, 3262} with respect to the dual conic of Feuerbach hyperbola
X(65296) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(63), X(100)}}, {{A, B, C, X(101), X(23601)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(222), X(36059)}}, {{A, B, C, X(345), X(30610)}}, {{A, B, C, X(348), X(4554)}}, {{A, B, C, X(658), X(1414)}}, {{A, B, C, X(905), X(1638)}}, {{A, B, C, X(906), X(35326)}}, {{A, B, C, X(934), X(13149)}}, {{A, B, C, X(1444), X(4610)}}, {{A, B, C, X(1812), X(4636)}}, {{A, B, C, X(4571), X(65222)}}, {{A, B, C, X(4573), X(6517)}}, {{A, B, C, X(4617), X(24016)}}, {{A, B, C, X(4626), X(4637)}}, {{A, B, C, X(7358), X(15416)}}, {{A, B, C, X(23603), X(41353)}}, {{A, B, C, X(30679), X(54118)}}, {{A, B, C, X(32714), X(52610)}}, {{A, B, C, X(51642), X(51664)}}, {{A, B, C, X(57055), X(58835)}}, {{A, B, C, X(57455), X(57479)}}
X(65296) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {651, 4617, 658}
X(65297) lies on the MacBeath circumconic and on these lines: {59, 1331}, {102, 14733}, {108, 521}, {110, 36067}, {287, 17950}, {518, 14203}, {648, 65295}, {651, 7128}, {653, 44765}, {1262, 1813}, {1332, 4564}, {1461, 4091}, {1814, 32677}, {1815, 15629}, {1993, 60000}, {2399, 2406}, {2432, 65304}, {2988, 52780}, {3218, 36100}, {4558, 32643}, {4563, 4620}, {8677, 14776}, {8759, 36121}, {14919, 56560}, {17942, 43754}, {24029, 65299}, {32667, 65298}, {62402, 63068}, {65303, 65312}
X(65297) = trilinear pole of line {3, 102}
X(65297) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 46391}, {6, 14304}, {9, 53522}, {19, 39471}, {282, 6087}, {514, 51361}, {515, 650}, {521, 8755}, {522, 2182}, {654, 59283}, {663, 64194}, {1021, 51421}, {1455, 3239}, {2310, 2406}, {2399, 42076}, {2425, 24026}, {2432, 24034}, {3063, 35516}, {3064, 46974}, {3270, 24035}, {3271, 42718}, {3900, 34050}, {7452, 53560}, {23893, 51408}, {23987, 34591}, {40117, 57291}, {42755, 52663}, {46393, 56638}, {51424, 62747}
X(65297) = X(i)-vertex conjugate of X(j) for these {i, j}: {14776, 65297}
X(65297) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 39471}, {9, 14304}, {478, 53522}, {10001, 35516}, {36033, 46391}
X(65297) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65295, 36067}
X(65297) = X(i)-cross conjugate of X(j) for these {i, j}: {2323, 59}, {2425, 109}, {2432, 102}, {32641, 901}, {32643, 36067}
X(65297) = pole of line {1309, 2405} with respect to the Steiner circumellipse
X(65297) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(14776)}}, {{A, B, C, X(7), X(24016)}}, {{A, B, C, X(59), X(1262)}}, {{A, B, C, X(81), X(65331)}}, {{A, B, C, X(108), X(1461)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(284), X(40116)}}, {{A, B, C, X(518), X(34371)}}, {{A, B, C, X(521), X(4091)}}, {{A, B, C, X(653), X(4565)}}, {{A, B, C, X(655), X(901)}}, {{A, B, C, X(2323), X(32641)}}, {{A, B, C, X(3257), X(4619)}}, {{A, B, C, X(4591), X(37139)}}, {{A, B, C, X(13404), X(35184)}}, {{A, B, C, X(17942), X(17950)}}, {{A, B, C, X(33637), X(65216)}}, {{A, B, C, X(36082), X(38828)}}
X(65298) lies on the MacBeath circumconic and on these lines: {101, 1310}, {110, 32676}, {163, 4558}, {190, 36147}, {287, 1910}, {648, 3732}, {651, 32674}, {662, 4563}, {692, 1331}, {895, 923}, {909, 2339}, {911, 1815}, {913, 2990}, {1036, 34068}, {1039, 8759}, {1415, 1813}, {1438, 1449}, {1461, 65296}, {1472, 62769}, {1797, 2221}, {1974, 23075}, {2159, 14919}, {2224, 16783}, {2281, 18268}, {2284, 34074}, {2576, 8115}, {2577, 8116}, {4251, 30878}, {4586, 54982}, {14543, 44765}, {32667, 65297}, {32675, 65299}, {32678, 60053}, {33952, 65168}, {34072, 65307}, {34079, 56219}, {36131, 44769}, {36141, 65304}, {36142, 65321}, {36145, 65309}, {36146, 65301}, {36149, 65323}, {36151, 65325}, {51686, 60049}, {60134, 60197}
X(65298) = isogonal conjugate of X(6590)
X(65298) = trilinear pole of line {3, 31}
X(65298) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6590}, {2, 8678}, {4, 2522}, {6, 2517}, {19, 23874}, {37, 47844}, {75, 2484}, {76, 8646}, {81, 48395}, {274, 50494}, {281, 51644}, {388, 650}, {513, 2345}, {514, 612}, {522, 2285}, {523, 2303}, {525, 4206}, {649, 4385}, {661, 1010}, {693, 54416}, {798, 44154}, {905, 7102}, {1038, 3064}, {1460, 4391}, {1577, 44119}, {1783, 26933}, {2170, 14594}, {2286, 44426}, {3239, 4320}, {3610, 57200}, {3669, 3974}, {3700, 5323}, {3900, 7365}, {4130, 7197}, {5227, 7649}, {5517, 65303}, {6591, 54433}, {7085, 17924}, {7103, 57055}, {7253, 8898}, {8816, 17115}, {10375, 14331}, {17421, 59083}, {18344, 56367}, {54982, 55046}
X(65298) = X(i)-vertex conjugate of X(j) for these {i, j}: {651, 32736}, {662, 8750}
X(65298) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 6590}, {6, 23874}, {9, 2517}, {206, 2484}, {5375, 4385}, {31998, 44154}, {32664, 8678}, {36033, 2522}, {36830, 1010}, {39006, 26933}, {39016, 5515}, {39026, 2345}, {40586, 48395}, {40589, 47844}
X(65298) = X(i)-cross conjugate of X(j) for these {i, j}: {1496, 7045}, {30435, 1252}
X(65298) = pole of line {2484, 6590} with respect to the Stammler hyperbola
X(65298) = pole of line {835, 32691} with respect to the Steiner circumellipse
X(65298) = pole of line {2339, 28606} with respect to the Hutson-Moses hyperbola
X(65298) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(100), X(4565)}}, {{A, B, C, X(101), X(163)}}, {{A, B, C, X(109), X(190)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(666), X(785)}}, {{A, B, C, X(825), X(8750)}}, {{A, B, C, X(901), X(4606)}}, {{A, B, C, X(1293), X(37212)}}, {{A, B, C, X(1449), X(2284)}}, {{A, B, C, X(1459), X(48070)}}, {{A, B, C, X(2421), X(25898)}}, {{A, B, C, X(3257), X(28162)}}, {{A, B, C, X(3732), X(52610)}}, {{A, B, C, X(3939), X(4628)}}, {{A, B, C, X(4557), X(28847)}}, {{A, B, C, X(4584), X(59135)}}, {{A, B, C, X(4588), X(27834)}}, {{A, B, C, X(4591), X(8694)}}, {{A, B, C, X(4604), X(4629)}}, {{A, B, C, X(4627), X(8652)}}, {{A, B, C, X(6335), X(37137)}}, {{A, B, C, X(9058), X(65216)}}, {{A, B, C, X(28895), X(32736)}}, {{A, B, C, X(29063), X(33952)}}, {{A, B, C, X(32691), X(37215)}}, {{A, B, C, X(37141), X(58991)}}, {{A, B, C, X(58992), X(65232)}}
X(65298) = barycentric product X(i)*X(j) for these (i, j): {1, 1310}, {31, 54982}, {48, 65341}, {100, 56328}, {109, 30479}, {163, 60197}, {190, 2221}, {1036, 664}, {1039, 6516}, {1245, 99}, {1415, 64989}, {1472, 668}, {2281, 799}, {2339, 651}, {4561, 51686}, {32691, 69}, {34260, 65168}, {36099, 63}, {37215, 6}, {56219, 662}, {57923, 692}
X(65298) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2517}, {3, 23874}, {6, 6590}, {31, 8678}, {32, 2484}, {42, 48395}, {48, 2522}, {58, 47844}, {59, 14594}, {99, 44154}, {100, 4385}, {101, 2345}, {109, 388}, {110, 1010}, {163, 2303}, {560, 8646}, {603, 51644}, {692, 612}, {834, 5515}, {906, 5227}, {1036, 522}, {1039, 44426}, {1245, 523}, {1310, 75}, {1331, 54433}, {1332, 19799}, {1415, 2285}, {1459, 26933}, {1461, 7365}, {1472, 513}, {1576, 44119}, {1813, 56367}, {1918, 50494}, {2221, 514}, {2281, 661}, {2339, 4391}, {3939, 3974}, {4574, 3610}, {6614, 7197}, {8750, 7102}, {30479, 35519}, {32656, 7085}, {32660, 2286}, {32676, 4206}, {32691, 4}, {32739, 54416}, {36059, 1038}, {36099, 92}, {37215, 76}, {51686, 7649}, {54982, 561}, {56219, 1577}, {56328, 693}, {57923, 40495}, {60197, 20948}, {65341, 1969}
X(65299) lies on the MacBeath circumconic and on these lines: {6, 23593}, {59, 110}, {80, 8759}, {514, 651}, {518, 1411}, {521, 1331}, {648, 35174}, {662, 18315}, {677, 52377}, {895, 52391}, {905, 1813}, {908, 2006}, {914, 22128}, {1332, 6332}, {1797, 62402}, {1807, 60047}, {1814, 9028}, {1815, 6510}, {1944, 2989}, {2161, 60025}, {2341, 63778}, {2986, 60091}, {2988, 18359}, {2991, 49783}, {4558, 44717}, {4585, 13136}, {13138, 51562}, {16577, 60022}, {22123, 23120}, {23189, 44710}, {24029, 65297}, {32675, 65298}, {34048, 52212}, {37140, 65217}, {42405, 57973}, {43756, 56540}, {52610, 65300}
X(65299) = isogonal conjugate of X(65104)
X(65299) = trilinear pole of line {3, 201}
X(65299) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 65104}, {2, 58313}, {4, 654}, {6, 44428}, {19, 3738}, {25, 3904}, {27, 53562}, {29, 21828}, {33, 3960}, {36, 3064}, {92, 8648}, {270, 2610}, {278, 53285}, {281, 53314}, {318, 21758}, {514, 52427}, {522, 52413}, {607, 4453}, {649, 5081}, {650, 1870}, {661, 17515}, {663, 17923}, {860, 7252}, {909, 53047}, {1021, 1835}, {1172, 53527}, {1443, 65103}, {1464, 17926}, {1783, 53525}, {1825, 62746}, {1830, 62750}, {1845, 61238}, {2170, 4242}, {2189, 6370}, {2190, 2600}, {2299, 4707}, {2323, 7649}, {2326, 51663}, {2361, 17924}, {3218, 18344}, {3271, 65162}, {3615, 47230}, {3724, 57215}, {4282, 24006}, {4511, 6591}, {4560, 44113}, {6369, 8882}, {7012, 46384}, {7113, 44426}, {8755, 61042}, {14776, 46398}, {32702, 57434}, {36123, 53046}, {42666, 46103}, {46107, 52426}, {46110, 52434}, {53546, 56183}, {56844, 65105}
X(65299) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 65104}, {5, 2600}, {6, 3738}, {9, 44428}, {226, 4707}, {5375, 5081}, {6505, 3904}, {15898, 3064}, {22391, 8648}, {23980, 53047}, {32664, 58313}, {36033, 654}, {36830, 17515}, {39006, 53525}
X(65299) = X(i)-Ceva conjugate of X(j) for these {i, j}: {35174, 2222}, {47318, 655}
X(65299) = X(i)-cross conjugate of X(j) for these {i, j}: {22123, 59}, {46391, 78}, {53532, 77}
X(65299) = pole of line {2600, 3738} with respect to the Stammler hyperbola
X(65299) = pole of line {515, 21368} with respect to the Yff parabola
X(65299) = pole of line {655, 908} with respect to the Hutson-Moses hyperbola
X(65299) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(59), X(44717)}}, {{A, B, C, X(63), X(3257)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(345), X(50039)}}, {{A, B, C, X(514), X(521)}}, {{A, B, C, X(518), X(9028)}}, {{A, B, C, X(653), X(36050)}}, {{A, B, C, X(662), X(2617)}}, {{A, B, C, X(771), X(4554)}}, {{A, B, C, X(813), X(2359)}}, {{A, B, C, X(908), X(914)}}, {{A, B, C, X(1783), X(4587)}}, {{A, B, C, X(2335), X(36107)}}, {{A, B, C, X(4551), X(4605)}}, {{A, B, C, X(4585), X(22128)}}, {{A, B, C, X(24029), X(42718)}}, {{A, B, C, X(36061), X(37140)}}, {{A, B, C, X(36804), X(52351)}}
X(65299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {35174, 65329, 62735}
X(65300) lies on the MacBeath circumconic and on these lines: {63, 14919}, {79, 8759}, {110, 9811}, {222, 63171}, {648, 24001}, {651, 38340}, {662, 35049}, {677, 35338}, {895, 52390}, {1071, 7100}, {2160, 60025}, {2986, 43682}, {2988, 30690}, {2990, 52374}, {6180, 8818}, {6742, 13138}, {13136, 15455}, {18593, 60022}, {22145, 50433}, {43756, 56848}, {52372, 60049}, {52381, 65302}, {52610, 65299}
X(65300) = isogonal conjugate of X(65105)
X(65300) = trilinear pole of line {3, 7100}
X(65300) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 65105}, {4, 9404}, {9, 54244}, {19, 35057}, {25, 57066}, {29, 55210}, {33, 14838}, {35, 3064}, {55, 65100}, {112, 6741}, {281, 2605}, {523, 41502}, {607, 4467}, {650, 6198}, {657, 7282}, {661, 11107}, {663, 52412}, {1021, 1825}, {1172, 57099}, {1442, 65103}, {1783, 53524}, {2174, 44426}, {2212, 18160}, {2299, 7265}, {2501, 35193}, {2594, 17926}, {2611, 65201}, {3219, 18344}, {4391, 14975}, {4420, 6591}, {6740, 47230}, {7202, 56183}, {7649, 52405}, {20982, 36797}, {21824, 52914}, {24006, 35192}, {41226, 58313}, {46103, 58304}, {53542, 65160}, {55206, 56934}, {56422, 65104}
X(65300) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 65105}, {6, 35057}, {223, 65100}, {226, 7265}, {478, 54244}, {6505, 57066}, {34591, 6741}, {36033, 9404}, {36830, 11107}, {39006, 53524}
X(65300) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65292, 26700}
X(65300) = X(i)-cross conjugate of X(j) for these {i, j}: {656, 77}, {22122, 59}, {44706, 7045}, {51664, 63171}
X(65300) = pole of line {35057, 65105} with respect to the Stammler hyperbola
X(65300) = pole of line {17781, 52381} with respect to the Hutson-Moses hyperbola
X(65300) = intersection, other than A, B, C, of circumconics {{A, B, C, X(63), X(662)}}, {{A, B, C, X(72), X(8691)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(222), X(52610)}}, {{A, B, C, X(348), X(4552)}}, {{A, B, C, X(525), X(35053)}}, {{A, B, C, X(653), X(53206)}}, {{A, B, C, X(905), X(35055)}}, {{A, B, C, X(4025), X(45756)}}, {{A, B, C, X(13486), X(38340)}}, {{A, B, C, X(14592), X(35050)}}, {{A, B, C, X(15455), X(52381)}}, {{A, B, C, X(37141), X(44063)}}, {{A, B, C, X(51663), X(51664)}}, {{A, B, C, X(53952), X(65216)}}, {{A, B, C, X(56269), X(65375)}}
X(65300) = barycentric product X(i)*X(j) for these (i, j): {3, 65292}, {664, 7100}, {1332, 52374}, {1409, 55209}, {1414, 52388}, {1789, 4566}, {1813, 30690}, {2160, 65164}, {4561, 52372}, {4569, 8606}, {4592, 52382}, {6516, 79}, {6742, 77}, {13486, 307}, {15455, 222}, {18593, 60053}, {20565, 36059}, {26700, 69}, {34922, 4131}, {35049, 525}, {36061, 41804}, {38340, 63}, {43682, 4558}, {52381, 651}, {52390, 99}, {52393, 65233}, {63171, 662}, {65296, 7110}
X(65300) = barycentric quotient X(i)/X(j) for these (i, j): {3, 35057}, {6, 65105}, {48, 9404}, {56, 54244}, {57, 65100}, {63, 57066}, {73, 57099}, {77, 4467}, {79, 44426}, {109, 6198}, {110, 11107}, {163, 41502}, {222, 14838}, {265, 52356}, {348, 18160}, {603, 2605}, {651, 52412}, {656, 6741}, {906, 52405}, {934, 7282}, {1214, 7265}, {1331, 4420}, {1332, 42033}, {1409, 55210}, {1459, 53524}, {1789, 7253}, {1813, 3219}, {2160, 3064}, {4558, 56440}, {4575, 35193}, {6186, 18344}, {6516, 319}, {6742, 318}, {7100, 522}, {7335, 23226}, {8606, 3900}, {13486, 29}, {15455, 7017}, {17094, 17886}, {18593, 44427}, {23067, 3678}, {23226, 3024}, {26700, 4}, {30690, 46110}, {32660, 2174}, {32661, 35192}, {32662, 2341}, {35049, 648}, {36059, 35}, {36061, 6740}, {36064, 36119}, {38340, 92}, {43682, 14618}, {47317, 16082}, {51640, 22094}, {51663, 35235}, {51664, 8287}, {52372, 7649}, {52374, 17924}, {52381, 4391}, {52382, 24006}, {52388, 4086}, {52390, 523}, {52393, 57215}, {52610, 16577}, {53321, 1825}, {55234, 21824}, {56193, 53008}, {56844, 44428}, {63171, 1577}, {65164, 33939}, {65233, 3969}, {65292, 264}, {65296, 17095}, {65299, 41226}
X(65301) lies on the MacBeath circumconic and on these lines: {110, 927}, {239, 1462}, {320, 56783}, {648, 46135}, {651, 666}, {664, 36086}, {673, 60025}, {677, 883}, {1331, 4025}, {1332, 15413}, {1815, 26006}, {2481, 8759}, {2988, 18031}, {2990, 34018}, {4554, 26692}, {4558, 15419}, {13136, 15418}, {13138, 51560}, {31637, 60047}, {36146, 65298}
X(65301) = trilinear pole of line {3, 348}
X(65301) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 46388}, {19, 926}, {33, 665}, {34, 52614}, {92, 8638}, {607, 2254}, {650, 2356}, {657, 1876}, {661, 37908}, {663, 5089}, {672, 18344}, {918, 2212}, {1024, 42071}, {1458, 65103}, {1861, 3063}, {1973, 50333}, {2204, 4088}, {2223, 3064}, {2299, 24290}, {2332, 53551}, {2340, 6591}, {3286, 55206}, {3709, 54407}, {5236, 8641}, {7071, 53544}, {7079, 53539}, {8735, 54325}, {8750, 17435}, {9454, 44426}, {9455, 46110}, {15149, 63461}
X(65301) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 926}, {226, 24290}, {6337, 50333}, {10001, 1861}, {11517, 52614}, {22391, 8638}, {26932, 17435}, {33675, 44426}, {36033, 46388}, {36830, 37908}, {62554, 18344}, {62565, 4088}, {62599, 3064}
X(65301) = X(i)-Ceva conjugate of X(j) for these {i, j}: {46135, 927}
X(65301) = X(i)-cross conjugate of X(j) for these {i, j}: {20811, 59}, {39470, 69}
X(65301) = pole of line {10025, 40704} with respect to the Hutson-Moses hyperbola
X(65301) = intersection, other than A, B, C, of circumconics {{A, B, C, X(63), X(660)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(304), X(4555)}}, {{A, B, C, X(658), X(53643)}}, {{A, B, C, X(898), X(34055)}}, {{A, B, C, X(2398), X(26006)}}, {{A, B, C, X(2400), X(4025)}}, {{A, B, C, X(4569), X(4573)}}, {{A, B, C, X(57853), X(65258)}}
X(65302) lies on the MacBeath circumconic and on these lines: {2, 222}, {7, 55963}, {21, 104}, {63, 1813}, {78, 255}, {81, 648}, {100, 1364}, {145, 280}, {219, 30680}, {323, 52499}, {345, 394}, {348, 22129}, {416, 65305}, {677, 3935}, {909, 2339}, {914, 22128}, {938, 36123}, {1812, 4558}, {1993, 23122}, {2342, 36819}, {2401, 2990}, {2423, 2991}, {2720, 26703}, {2975, 7335}, {2987, 55259}, {3218, 36100}, {3219, 55987}, {4358, 13136}, {4422, 17811}, {5253, 30493}, {5554, 24537}, {6001, 15405}, {7361, 62798}, {8759, 43728}, {9965, 41514}, {10759, 59788}, {15066, 56753}, {15524, 38460}, {16594, 25934}, {18359, 53811}, {20744, 21940}, {25954, 60025}, {26884, 62971}, {26892, 35973}, {37628, 60047}, {37783, 44769}, {40457, 61492}, {40571, 46639}, {41081, 65179}, {41610, 65322}, {52381, 65300}, {54953, 62799}, {65331, 65342}
X(65302) = isogonal conjugate of X(14571)
X(65302) = trilinear pole of line {3, 23187}
X(65302) = perspector of circumconic {{A, B, C, X(54953), X(57753)}}
X(65302) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 14571}, {4, 2183}, {6, 1785}, {9, 1875}, {19, 517}, {25, 908}, {27, 51377}, {28, 21801}, {33, 1465}, {101, 39534}, {108, 46393}, {119, 913}, {281, 1457}, {393, 22350}, {607, 22464}, {608, 6735}, {649, 53151}, {653, 53549}, {859, 1826}, {909, 21664}, {1145, 8752}, {1435, 51380}, {1474, 17757}, {1769, 1783}, {1845, 2161}, {1846, 2316}, {1861, 51987}, {1897, 3310}, {1973, 3262}, {2333, 17139}, {2427, 7649}, {2804, 32674}, {3064, 23981}, {5089, 54364}, {7115, 35015}, {8750, 10015}, {8756, 14260}, {16082, 42078}, {18344, 24029}, {23980, 36123}, {32675, 53047}, {34234, 42072}, {34586, 64835}, {36110, 60339}, {36127, 52307}, {40116, 42756}, {52212, 52427}, {52413, 56416}
X(65302) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 14571}, {6, 517}, {9, 1785}, {478, 1875}, {1015, 39534}, {5375, 53151}, {6337, 3262}, {6505, 908}, {14578, 54064}, {23980, 21664}, {26932, 10015}, {34467, 3310}, {35072, 2804}, {35128, 53047}, {36033, 2183}, {36830, 4246}, {38983, 46393}, {39004, 60339}, {39006, 1769}, {39175, 8609}, {40584, 1845}, {40591, 21801}, {40618, 36038}, {40628, 35015}, {51574, 17757}, {60339, 3326}, {62647, 6735}
X(65302) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18816, 104}, {57753, 53786}
X(65302) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {909, 34550}, {15405, 4329}
X(65302) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 15405}, {912, 69}, {2431, 6081}, {14578, 104}, {46974, 77}, {52307, 100}, {52407, 1444}, {53786, 57753}
X(65302) = pole of line {517, 14571} with respect to the Stammler hyperbola
X(65302) = pole of line {104, 1295} with respect to the Steiner circumellipse
X(65302) = pole of line {2804, 6713} with respect to the Steiner inellipse
X(65302) = pole of line {13136, 62669} with respect to the Hutson-Moses hyperbola
X(65302) = pole of line {3262, 14571} with respect to the Wallace hyperbola
X(65302) = pole of line {10015, 26611} with respect to the dual conic of polar circle
X(65302) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(21)}}, {{A, B, C, X(7), X(326)}}, {{A, B, C, X(48), X(2298)}}, {{A, B, C, X(69), X(26637)}}, {{A, B, C, X(72), X(392)}}, {{A, B, C, X(77), X(30712)}}, {{A, B, C, X(81), X(222)}}, {{A, B, C, X(86), X(62277)}}, {{A, B, C, X(88), X(905)}}, {{A, B, C, X(89), X(7177)}}, {{A, B, C, X(97), X(1790)}}, {{A, B, C, X(104), X(16082)}}, {{A, B, C, X(105), X(293)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(145), X(64082)}}, {{A, B, C, X(189), X(3719)}}, {{A, B, C, X(219), X(22129)}}, {{A, B, C, X(226), X(21740)}}, {{A, B, C, X(268), X(2287)}}, {{A, B, C, X(275), X(829)}}, {{A, B, C, X(283), X(55942)}}, {{A, B, C, X(285), X(1259)}}, {{A, B, C, X(294), X(652)}}, {{A, B, C, X(296), X(9372)}}, {{A, B, C, X(304), X(18465)}}, {{A, B, C, X(321), X(5887)}}, {{A, B, C, X(401), X(416)}}, {{A, B, C, X(525), X(2771)}}, {{A, B, C, X(693), X(57801)}}, {{A, B, C, X(739), X(32658)}}, {{A, B, C, X(850), X(57850)}}, {{A, B, C, X(914), X(3904)}}, {{A, B, C, X(1071), X(3998)}}, {{A, B, C, X(1073), X(34048)}}, {{A, B, C, X(1214), X(1385)}}, {{A, B, C, X(1264), X(8048)}}, {{A, B, C, X(1462), X(22145)}}, {{A, B, C, X(1795), X(34051)}}, {{A, B, C, X(1796), X(31626)}}, {{A, B, C, X(1807), X(4358)}}, {{A, B, C, X(1809), X(34234)}}, {{A, B, C, X(2349), X(52780)}}, {{A, B, C, X(2481), X(63245)}}, {{A, B, C, X(2994), X(44189)}}, {{A, B, C, X(3083), X(13388)}}, {{A, B, C, X(3084), X(13389)}}, {{A, B, C, X(3692), X(55989)}}, {{A, B, C, X(3935), X(26006)}}, {{A, B, C, X(4373), X(19611)}}, {{A, B, C, X(6332), X(18359)}}, {{A, B, C, X(6514), X(19607)}}, {{A, B, C, X(7055), X(13577)}}, {{A, B, C, X(11064), X(16164)}}, {{A, B, C, X(14578), X(34858)}}, {{A, B, C, X(16731), X(23983)}}, {{A, B, C, X(17191), X(41801)}}, {{A, B, C, X(18444), X(56382)}}, {{A, B, C, X(21739), X(37781)}}, {{A, B, C, X(23135), X(40400)}}, {{A, B, C, X(24537), X(27174)}}, {{A, B, C, X(33858), X(63171)}}, {{A, B, C, X(36055), X(63068)}}, {{A, B, C, X(36607), X(36609)}}, {{A, B, C, X(36918), X(52392)}}, {{A, B, C, X(37669), X(40571)}}, {{A, B, C, X(40715), X(41804)}}, {{A, B, C, X(41798), X(57055)}}, {{A, B, C, X(45127), X(60082)}}, {{A, B, C, X(55400), X(56046)}}, {{A, B, C, X(55979), X(56266)}}, {{A, B, C, X(56003), X(56269)}}, {{A, B, C, X(56070), X(56338)}}, {{A, B, C, X(58012), X(64393)}}, {{A, B, C, X(63154), X(64841)}}
X(65302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {34051, 52663, 34234}
X(65303) lies on the MacBeath circumconic and on these lines: {2, 17421}, {100, 4558}, {110, 1783}, {651, 53349}, {668, 4563}, {1018, 1331}, {1332, 3952}, {1449, 56225}, {1797, 4674}, {1813, 4551}, {1814, 5800}, {1830, 60025}, {1897, 46640}, {2994, 44105}, {4566, 65296}, {5380, 65321}, {5554, 24537}, {14919, 25909}, {61229, 65179}, {65297, 65312}
X(65303) = anticomplement of X(17421)
X(65303) = trilinear pole of line {3, 37}
X(65303) = X(i)-isoconjugate-of-X(j) for these {i, j}: {406, 1459}, {513, 12514}, {514, 36744}, {521, 1452}, {522, 64020}, {649, 5739}, {2484, 14258}, {4025, 44086}, {5517, 65298}, {17421, 32691}, {42707, 57129}
X(65303) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 5739}, {17421, 17421}, {36830, 27174}, {39026, 12514}, {55046, 5517}
X(65303) = X(i)-cross conjugate of X(j) for these {i, j}: {2522, 2}, {48395, 2298}
X(65303) = pole of line {1310, 59083} with respect to the Steiner circumellipse
X(65303) = pole of line {2345, 3876} with respect to the Hutson-Moses hyperbola
X(65303) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(80), X(100)}}, {{A, B, C, X(108), X(6742)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(162), X(664)}}, {{A, B, C, X(643), X(65227)}}, {{A, B, C, X(644), X(8701)}}, {{A, B, C, X(833), X(4555)}}, {{A, B, C, X(883), X(5800)}}, {{A, B, C, X(934), X(13486)}}, {{A, B, C, X(1897), X(9058)}}, {{A, B, C, X(2522), X(17421)}}, {{A, B, C, X(4240), X(25909)}}, {{A, B, C, X(4246), X(24537)}}, {{A, B, C, X(36037), X(65225)}}, {{A, B, C, X(36049), X(58992)}}, {{A, B, C, X(37135), X(43350)}}, {{A, B, C, X(52914), X(53349)}}
X(65303) = barycentric product X(i)*X(j) for these (i, j): {100, 60156}, {321, 59130}, {1783, 57832}, {46010, 668}, {56225, 664}, {57667, 6335}, {59083, 69}
X(65303) = barycentric quotient X(i)/X(j) for these (i, j): {100, 5739}, {101, 12514}, {109, 45126}, {110, 27174}, {692, 36744}, {1310, 14258}, {1415, 64020}, {1783, 406}, {2522, 17421}, {3952, 42707}, {8678, 5517}, {32674, 1452}, {46010, 513}, {56225, 522}, {57667, 905}, {57832, 15413}, {59083, 4}, {59130, 81}, {60156, 693}
X(65304) lies on the MacBeath circumconic and on these lines: {110, 14733}, {648, 17926}, {650, 651}, {652, 1813}, {895, 17975}, {905, 65296}, {1121, 2988}, {1156, 8759}, {1331, 44717}, {1332, 57055}, {1815, 22128}, {2291, 60025}, {2432, 65297}, {2989, 62723}, {2990, 34056}, {4558, 23090}, {4563, 15411}, {35340, 61231}, {36141, 65298}, {40116, 59105}, {44765, 57757}, {56320, 60487}, {62756, 62764}
X(65304) = trilinear pole of line {3, 1813}
X(65304) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 6366}, {33, 1638}, {92, 6139}, {108, 33573}, {278, 14392}, {281, 14413}, {393, 14414}, {513, 60431}, {527, 18344}, {650, 23710}, {657, 38461}, {661, 52891}, {663, 37805}, {1055, 44426}, {1155, 3064}, {1172, 30574}, {1323, 65103}, {2501, 62756}, {6591, 6745}, {6603, 7649}, {7012, 52334}, {23890, 42069}, {54239, 56763}
X(65304) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 6366}, {22391, 6139}, {36830, 52891}, {38983, 33573}, {39026, 60431}
X(65304) = X(i)-Ceva conjugate of X(j) for these {i, j}: {35157, 14733}
X(65304) = intersection, other than A, B, C, of circumconics {{A, B, C, X(63), X(37143)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(650), X(652)}}, {{A, B, C, X(666), X(1812)}}, {{A, B, C, X(901), X(1790)}}, {{A, B, C, X(6513), X(51562)}}, {{A, B, C, X(7045), X(44717)}}, {{A, B, C, X(35187), X(40407)}}, {{A, B, C, X(36085), X(57668)}}
X(65304) = barycentric product X(i)*X(j) for these (i, j): {3, 35157}, {219, 60487}, {304, 36141}, {305, 32728}, {394, 65335}, {1121, 1813}, {1156, 6516}, {1331, 62723}, {1332, 34056}, {2291, 65164}, {2968, 59105}, {4592, 62764}, {6517, 65340}, {14733, 69}, {37139, 63}, {41798, 65296}, {44717, 60479}, {60047, 664}
X(65304) = barycentric quotient X(i)/X(j) for these (i, j): {3, 6366}, {73, 30574}, {101, 60431}, {109, 23710}, {110, 52891}, {184, 6139}, {212, 14392}, {222, 1638}, {255, 14414}, {603, 14413}, {651, 37805}, {652, 33573}, {906, 6603}, {934, 38461}, {1121, 46110}, {1156, 44426}, {1331, 6745}, {1813, 527}, {2291, 3064}, {4575, 62756}, {6516, 30806}, {7117, 52334}, {14733, 4}, {18889, 65103}, {23351, 42069}, {32660, 1055}, {32728, 25}, {34056, 17924}, {34068, 18344}, {35157, 264}, {36059, 1155}, {36141, 19}, {37139, 92}, {56410, 12831}, {59105, 55346}, {60047, 522}, {60487, 331}, {61493, 59935}, {62723, 46107}, {62764, 24006}, {63748, 21666}, {65296, 37780}, {65335, 2052}
X(65305) lies on the MacBeath circumconic and on these lines: {110, 32320}, {250, 18315}, {287, 401}, {416, 65302}, {450, 2986}, {476, 1298}, {520, 648}, {576, 40804}, {685, 39469}, {852, 14919}, {877, 43187}, {895, 1987}, {1993, 57500}, {2987, 15143}, {3580, 14510}, {4563, 15631}, {5640, 65325}, {14966, 43754}, {15329, 53175}, {23582, 58305}, {34211, 63741}, {35360, 41208}, {44768, 62519}, {60036, 60053}
X(65305) = isogonal conjugate of X(6130)
X(65305) = trilinear pole of line {3, 1625}
X(65305) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6130}, {523, 1955}, {656, 41204}, {798, 44137}, {810, 16089}, {1577, 1971}, {2313, 15412}, {2616, 32428}, {14208, 58311}
X(65305) = X(i)-vertex conjugate of X(j) for these {i, j}: {685, 65305}, {6529, 44828}
X(65305) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 6130}, {31998, 44137}, {36830, 401}, {39062, 16089}, {40596, 41204}
X(65305) = X(i)-Ceva conjugate of X(j) for these {i, j}: {41208, 53205}, {53205, 53708}
X(65305) = X(i)-cross conjugate of X(j) for these {i, j}: {2966, 805}, {4230, 110}, {60036, 1298}
X(65305) = pole of line {4230, 65305} with respect to the MacBeath circumconic
X(65305) = pole of line {6130, 52128} with respect to the Stammler hyperbola
X(65305) = pole of line {22456, 53173} with respect to the Steiner circumellipse
X(65305) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(16077)}}, {{A, B, C, X(4), X(2713)}}, {{A, B, C, X(6), X(685)}}, {{A, B, C, X(54), X(935)}}, {{A, B, C, X(99), X(44828)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(250), X(476)}}, {{A, B, C, X(340), X(19167)}}, {{A, B, C, X(401), X(2966)}}, {{A, B, C, X(416), X(4246)}}, {{A, B, C, X(450), X(15329)}}, {{A, B, C, X(511), X(805)}}, {{A, B, C, X(520), X(6080)}}, {{A, B, C, X(576), X(53155)}}, {{A, B, C, X(852), X(3284)}}, {{A, B, C, X(1304), X(46426)}}, {{A, B, C, X(1625), X(33513)}}, {{A, B, C, X(2867), X(15407)}}, {{A, B, C, X(4226), X(15143)}}, {{A, B, C, X(5504), X(13494)}}, {{A, B, C, X(6528), X(32661)}}, {{A, B, C, X(10422), X(53944)}}, {{A, B, C, X(14483), X(32732)}}, {{A, B, C, X(15958), X(54950)}}, {{A, B, C, X(23061), X(51263)}}, {{A, B, C, X(36885), X(63472)}}, {{A, B, C, X(39099), X(61198)}}, {{A, B, C, X(58973), X(65176)}}
X(65305) = barycentric product X(i)*X(j) for these (i, j): {3, 53205}, {110, 1972}, {216, 41208}, {249, 60036}, {394, 65358}, {1298, 14570}, {1956, 662}, {1987, 99}, {2966, 40804}, {14941, 648}, {18829, 32542}, {39683, 65271}, {41210, 5562}, {43187, 57500}, {52177, 6331}, {53708, 69}
X(65305) = barycentric quotient X(i)/X(j) for these (i, j): {6, 6130}, {99, 44137}, {110, 401}, {112, 41204}, {163, 1955}, {648, 16089}, {1298, 15412}, {1576, 1971}, {1625, 32428}, {1956, 1577}, {1972, 850}, {1987, 523}, {2715, 32545}, {4230, 62595}, {14941, 525}, {14966, 52128}, {26714, 39682}, {32542, 804}, {39469, 38974}, {39683, 23878}, {40804, 2799}, {41208, 276}, {41210, 8795}, {47390, 62523}, {52177, 647}, {53175, 3269}, {53205, 264}, {53708, 4}, {57500, 3569}, {60036, 338}, {61206, 58311}, {62519, 2970}, {65358, 2052}
X(65306) lies on the MacBeath circumconic and on these lines: {23, 895}, {110, 8673}, {249, 4563}, {287, 2373}, {297, 2986}, {323, 52513}, {525, 15388}, {648, 23964}, {651, 36095}, {1304, 64778}, {1993, 36823}, {2421, 43755}, {4235, 17708}, {4558, 23357}, {6515, 51823}, {14919, 18876}, {14999, 65309}, {15329, 43754}, {16039, 41678}, {32661, 65324}, {32985, 53784}, {34211, 60040}, {37645, 65325}, {43187, 60179}, {44770, 53176}, {46165, 52898}, {52630, 61198}
X(65306) = isogonal conjugate of X(47138)
X(65306) = trilinear pole of line {3, 1177}
X(65306) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 47138}, {37, 21109}, {92, 42665}, {513, 21017}, {523, 18669}, {656, 5523}, {661, 858}, {798, 1236}, {923, 62577}, {1109, 61198}, {1577, 2393}, {2642, 59422}, {3708, 61181}, {4705, 17172}, {5181, 23894}, {14208, 14580}, {14961, 24006}, {20902, 46592}, {36035, 60499}
X(65306) = X(i)-vertex conjugate of X(j) for these {i, j}: {2, 32696}, {32729, 65321}, {32734, 65324}
X(65306) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 47138}, {2482, 62577}, {22391, 42665}, {31998, 1236}, {36830, 858}, {39026, 21017}, {39054, 20884}, {40589, 21109}, {40596, 5523}, {55048, 38971}
X(65306) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65268, 10423}
X(65306) = X(i)-cross conjugate of X(j) for these {i, j}: {524, 249}, {10317, 250}, {61207, 110}
X(65306) = pole of line {61207, 65306} with respect to the MacBeath circumconic
X(65306) = pole of line {5181, 21109} with respect to the Stammler hyperbola
X(65306) = pole of line {935, 10423} with respect to the Steiner circumellipse
X(65306) = pole of line {47138, 62577} with respect to the Wallace hyperbola
X(65306) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1304)}}, {{A, B, C, X(23), X(691)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(249), X(2715)}}, {{A, B, C, X(251), X(32696)}}, {{A, B, C, X(297), X(2421)}}, {{A, B, C, X(323), X(34211)}}, {{A, B, C, X(476), X(32697)}}, {{A, B, C, X(524), X(2393)}}, {{A, B, C, X(525), X(8673)}}, {{A, B, C, X(671), X(64775)}}, {{A, B, C, X(935), X(19330)}}, {{A, B, C, X(1289), X(4611)}}, {{A, B, C, X(1993), X(14999)}}, {{A, B, C, X(2966), X(10420)}}, {{A, B, C, X(5392), X(53205)}}, {{A, B, C, X(5467), X(53777)}}, {{A, B, C, X(5468), X(37784)}}, {{A, B, C, X(5649), X(9060)}}, {{A, B, C, X(7953), X(63784)}}, {{A, B, C, X(10422), X(10423)}}, {{A, B, C, X(10425), X(13485)}}, {{A, B, C, X(17932), X(54108)}}, {{A, B, C, X(18876), X(64778)}}, {{A, B, C, X(33640), X(44326)}}, {{A, B, C, X(41511), X(65268)}}, {{A, B, C, X(42396), X(59004)}}, {{A, B, C, X(58113), X(61206)}}, {{A, B, C, X(58975), X(65271)}}
X(65306) = barycentric product X(i)*X(j) for these (i, j): {3, 65268}, {110, 2373}, {163, 37220}, {249, 60040}, {1177, 99}, {1576, 46140}, {2966, 36823}, {4558, 60133}, {10422, 5468}, {10423, 69}, {17708, 60002}, {18876, 648}, {36095, 63}, {41511, 4235}, {43754, 52486}, {44766, 52513}, {46165, 827}, {51823, 65321}
X(65306) = barycentric quotient X(i)/X(j) for these (i, j): {6, 47138}, {58, 21109}, {99, 1236}, {101, 21017}, {110, 858}, {112, 5523}, {163, 18669}, {184, 42665}, {250, 61181}, {524, 62577}, {662, 20884}, {691, 59422}, {935, 39269}, {1177, 523}, {1576, 2393}, {1624, 41603}, {2373, 850}, {2715, 52672}, {4556, 17172}, {4558, 62382}, {5467, 5181}, {9145, 19510}, {9517, 38971}, {10422, 5466}, {10423, 4}, {15329, 12827}, {17708, 57476}, {18876, 525}, {19153, 55151}, {23357, 61198}, {32640, 60499}, {32661, 14961}, {32729, 57485}, {36095, 92}, {36823, 2799}, {37220, 20948}, {41511, 14977}, {44766, 52512}, {46140, 44173}, {46165, 23285}, {52513, 33294}, {53784, 45807}, {57655, 46592}, {60002, 9979}, {60040, 338}, {60133, 14618}, {61206, 14580}, {61207, 1560}, {64778, 2697}, {65268, 264}
X(65307) lies on the MacBeath circumconic and on these lines: {83, 2986}, {99, 44766}, {110, 827}, {249, 4576}, {251, 1994}, {287, 343}, {305, 22075}, {394, 57480}, {511, 56917}, {648, 4577}, {651, 4599}, {689, 2715}, {895, 1176}, {1501, 32451}, {1691, 51459}, {2421, 18315}, {2989, 52394}, {2990, 52376}, {3448, 9076}, {3629, 41909}, {4563, 32661}, {4580, 60053}, {6800, 14247}, {14919, 28724}, {16039, 34211}, {18105, 60054}, {23181, 43754}, {33632, 56007}, {34072, 65298}, {35316, 60052}, {35317, 60051}, {37779, 52898}, {37804, 46243}, {41628, 56006}, {43357, 59076}, {44768, 58784}, {53885, 58112}, {57216, 65324}, {61199, 65321}
X(65307) = trilinear pole of line {3, 1176}
X(65307) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 8061}, {19, 826}, {25, 62418}, {37, 21108}, {38, 2501}, {39, 24006}, {92, 3005}, {162, 39691}, {264, 2084}, {427, 661}, {512, 20883}, {513, 21016}, {523, 17442}, {656, 27376}, {688, 1969}, {798, 1235}, {1096, 2525}, {1109, 35325}, {1577, 1843}, {1824, 16892}, {1826, 2530}, {1880, 48278}, {1930, 2489}, {1964, 14618}, {1973, 23285}, {2333, 48084}, {2616, 27371}, {2643, 41676}, {2969, 35309}, {2971, 55239}, {3404, 16230}, {3665, 55206}, {3703, 55208}, {3708, 46151}, {3954, 7649}, {4079, 16747}, {4705, 17171}, {6591, 15523}, {14424, 36128}, {17924, 21035}, {20948, 27369}, {21044, 46152}, {21123, 41013}, {21814, 46107}, {23894, 64724}, {23994, 61218}
X(65307) = X(i)-vertex conjugate of X(j) for these {i, j}: {4563, 32734}, {6331, 32696}, {65178, 65321}
X(65307) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 826}, {125, 39691}, {6337, 23285}, {6503, 2525}, {6505, 62418}, {22391, 3005}, {31998, 1235}, {36033, 8061}, {36830, 427}, {39026, 21016}, {39054, 20883}, {40589, 21108}, {40596, 27376}, {41884, 14618}, {62452, 264}
X(65307) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4577, 827}
X(65307) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 249}, {10316, 250}, {58353, 1799}
X(65307) = pole of line {1369, 6636} with respect to the Kiepert parabola
X(65307) = pole of line {826, 21108} with respect to the Stammler hyperbola
X(65307) = pole of line {827, 53949} with respect to the Steiner circumellipse
X(65307) = pole of line {2525, 23285} with respect to the Wallace hyperbola
X(65307) = pole of line {39691, 62417} with respect to the dual conic of polar circle
X(65307) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(46543)}}, {{A, B, C, X(69), X(4576)}}, {{A, B, C, X(99), X(4611)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(343), X(2421)}}, {{A, B, C, X(525), X(60352)}}, {{A, B, C, X(647), X(5113)}}, {{A, B, C, X(689), X(1799)}}, {{A, B, C, X(827), X(42396)}}, {{A, B, C, X(925), X(32697)}}, {{A, B, C, X(930), X(40173)}}, {{A, B, C, X(933), X(2966)}}, {{A, B, C, X(1304), X(43188)}}, {{A, B, C, X(2715), X(14574)}}, {{A, B, C, X(4630), X(58113)}}, {{A, B, C, X(5052), X(56389)}}, {{A, B, C, X(6467), X(61199)}}, {{A, B, C, X(7953), X(52608)}}, {{A, B, C, X(8858), X(59047)}}, {{A, B, C, X(10425), X(46134)}}, {{A, B, C, X(11794), X(58975)}}, {{A, B, C, X(47443), X(59039)}}
X(65307) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 4630, 827}
X(65308) lies on the MacBeath circumconic and on these lines: {2, 17708}, {3, 43754}, {6, 5649}, {23, 110}, {69, 56399}, {76, 6035}, {193, 48373}, {249, 36790}, {250, 6593}, {287, 525}, {297, 340}, {394, 57481}, {520, 895}, {576, 40804}, {647, 10766}, {1993, 36823}, {2710, 53691}, {2986, 10754}, {2987, 14998}, {3284, 4558}, {3580, 34138}, {4563, 6393}, {11477, 39265}, {19778, 60052}, {19779, 60051}, {20806, 43755}, {34174, 50641}, {37784, 46639}, {38413, 44718}, {38414, 44719}, {40112, 50639}, {41617, 48453}, {42313, 63464}, {44767, 57504}, {44768, 59436}, {50942, 62307}, {53929, 64775}, {54554, 60255}, {62382, 65309}, {62428, 65326}
X(65308) = reflection of X(i) in X(j) for these {i,j}: {44769, 6}
X(65308) = isogonal conjugate of X(6103)
X(65308) = isotomic conjugate of X(60502)
X(65308) = trilinear pole of line {3, 684}
X(65308) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6103}, {4, 2247}, {19, 542}, {31, 60502}, {92, 5191}, {162, 1640}, {240, 34369}, {656, 35907}, {661, 7473}, {811, 6041}, {1755, 52491}, {1784, 48451}, {1910, 54380}, {2173, 17986}, {2312, 47105}, {2642, 53155}, {18312, 32676}, {36128, 45662}, {46786, 57653}
X(65308) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 60502}, {3, 6103}, {6, 542}, {125, 1640}, {11672, 54380}, {15526, 18312}, {17423, 6041}, {22391, 5191}, {23967, 38552}, {36033, 2247}, {36830, 7473}, {36896, 17986}, {36899, 52491}, {39085, 34369}, {40596, 35907}, {51472, 2493}, {55048, 55142}, {62606, 51227}
X(65308) = X(i)-Ceva conjugate of X(j) for these {i, j}: {5641, 842}, {5649, 35911}
X(65308) = X(i)-cross conjugate of X(j) for these {i, j}: {14984, 69}, {35911, 5649}
X(65308) = pole of line {542, 6103} with respect to the Stammler hyperbola
X(65308) = pole of line {842, 2697} with respect to the Steiner circumellipse
X(65308) = pole of line {16760, 47214} with respect to the Steiner inellipse
X(65308) = pole of line {6103, 60502} with respect to the Wallace hyperbola
X(65308) = pole of line {1640, 18312} with respect to the dual conic of polar circle
X(65308) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(23)}}, {{A, B, C, X(3), X(76)}}, {{A, B, C, X(6), X(647)}}, {{A, B, C, X(30), X(48871)}}, {{A, B, C, X(69), X(323)}}, {{A, B, C, X(74), X(10752)}}, {{A, B, C, X(97), X(23061)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(112), X(10766)}}, {{A, B, C, X(263), X(43706)}}, {{A, B, C, X(265), X(19140)}}, {{A, B, C, X(394), X(520)}}, {{A, B, C, X(523), X(47213)}}, {{A, B, C, X(671), X(9970)}}, {{A, B, C, X(694), X(52153)}}, {{A, B, C, X(843), X(10097)}}, {{A, B, C, X(1173), X(62911)}}, {{A, B, C, X(1176), X(15107)}}, {{A, B, C, X(1177), X(16080)}}, {{A, B, C, X(1993), X(62382)}}, {{A, B, C, X(2394), X(32710)}}, {{A, B, C, X(2693), X(53201)}}, {{A, B, C, X(3580), X(20806)}}, {{A, B, C, X(3926), X(55976)}}, {{A, B, C, X(5649), X(51263)}}, {{A, B, C, X(6391), X(56021)}}, {{A, B, C, X(6504), X(56473)}}, {{A, B, C, X(6593), X(62594)}}, {{A, B, C, X(9381), X(13417)}}, {{A, B, C, X(9513), X(63473)}}, {{A, B, C, X(10159), X(40441)}}, {{A, B, C, X(10630), X(30491)}}, {{A, B, C, X(12584), X(34897)}}, {{A, B, C, X(13472), X(62916)}}, {{A, B, C, X(13582), X(18125)}}, {{A, B, C, X(14376), X(55980)}}, {{A, B, C, X(15077), X(54453)}}, {{A, B, C, X(15421), X(60013)}}, {{A, B, C, X(15470), X(57487)}}, {{A, B, C, X(25322), X(61679)}}, {{A, B, C, X(28724), X(54513)}}, {{A, B, C, X(34403), X(55999)}}, {{A, B, C, X(35265), X(42287)}}, {{A, B, C, X(35911), X(51228)}}, {{A, B, C, X(37669), X(37784)}}, {{A, B, C, X(40112), X(41614)}}, {{A, B, C, X(43676), X(43689)}}, {{A, B, C, X(44549), X(52518)}}, {{A, B, C, X(45788), X(60209)}}, {{A, B, C, X(50712), X(51258)}}, {{A, B, C, X(55957), X(57271)}}
X(65309) lies on the MacBeath circumconic and on these lines: {2, 43756}, {6, 56006}, {68, 895}, {69, 2165}, {96, 5562}, {99, 18315}, {110, 925}, {155, 40698}, {193, 47731}, {287, 20563}, {323, 52504}, {328, 57875}, {338, 394}, {343, 57647}, {524, 62361}, {525, 43755}, {648, 30450}, {651, 65251}, {1812, 2990}, {1992, 56007}, {1993, 39116}, {2407, 46639}, {2421, 44766}, {4558, 6334}, {6193, 8906}, {10916, 60049}, {11064, 37802}, {11411, 32132}, {14593, 14826}, {14919, 37669}, {14999, 65306}, {17197, 60025}, {28419, 64975}, {34211, 56008}, {36145, 65298}, {36841, 44769}, {39111, 63174}, {40330, 56892}, {41614, 41909}, {41679, 61188}, {42405, 55227}, {43187, 55225}, {43754, 44174}, {46640, 64828}, {56017, 59155}, {57763, 65321}, {62382, 65308}, {65177, 65348}
X(65309) = reflection of X(i) in X(j) for these {i,j}: {56006, 6}
X(65309) = isogonal conjugate of X(6753)
X(65309) = isotomic conjugate of X(57065)
X(65309) = trilinear pole of line {3, 68}
X(65309) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6753}, {4, 55216}, {19, 924}, {24, 661}, {25, 63827}, {31, 57065}, {47, 2501}, {91, 58760}, {92, 34952}, {136, 163}, {158, 30451}, {162, 47421}, {317, 798}, {393, 63832}, {512, 1748}, {571, 24006}, {656, 8745}, {810, 11547}, {1096, 52584}, {1101, 55278}, {1109, 61208}, {1577, 44077}, {1826, 34948}, {1973, 6563}, {2190, 52317}, {2489, 44179}, {2616, 14576}, {2624, 52415}, {2643, 41679}, {2971, 55249}, {3708, 52917}, {6754, 65251}, {14397, 36119}, {15422, 63801}, {17881, 61206}, {34338, 36145}, {52432, 55250}, {58756, 63808}, {62268, 63829}
X(65309) = X(i)-vertex conjugate of X(j) for these {i, j}: {61208, 65176}
X(65309) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 57065}, {3, 6753}, {5, 52317}, {6, 924}, {115, 136}, {125, 47421}, {523, 55278}, {1147, 30451}, {1511, 14397}, {6337, 6563}, {6503, 52584}, {6505, 63827}, {22391, 34952}, {24245, 58865}, {24246, 58867}, {31998, 317}, {34116, 58760}, {34853, 2501}, {35067, 57154}, {36033, 55216}, {36830, 24}, {37864, 2489}, {39013, 34338}, {39054, 1748}, {39062, 11547}, {40596, 8745}, {47421, 55072}, {52032, 63829}
X(65309) = X(i)-Ceva conjugate of X(j) for these {i, j}: {46134, 925}, {55277, 57763}, {57763, 68}, {65273, 4558}
X(65309) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {57638, 4329}, {63958, 21294}
X(65309) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 57638}, {68, 57763}, {523, 69}, {525, 5392}, {647, 96}, {17431, 486}, {17432, 485}, {30451, 3}, {40494, 57800}, {52742, 265}, {55549, 44174}
X(65309) = pole of line {136, 47421} with respect to the polar circle
X(65309) = pole of line {4, 8905} with respect to the Kiepert parabola
X(65309) = pole of line {924, 6753} with respect to the Stammler hyperbola
X(65309) = pole of line {925, 4558} with respect to the Steiner circumellipse
X(65309) = pole of line {34843, 34844} with respect to the Steiner inellipse
X(65309) = pole of line {6563, 6753} with respect to the Wallace hyperbola
X(65309) = pole of line {2052, 42376} with respect to the dual conic of Jerabek hyperbola
X(65309) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(30512)}}, {{A, B, C, X(68), X(55277)}}, {{A, B, C, X(69), X(35136)}}, {{A, B, C, X(99), X(328)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(338), X(525)}}, {{A, B, C, X(523), X(57154)}}, {{A, B, C, X(670), X(17932)}}, {{A, B, C, X(925), X(30450)}}, {{A, B, C, X(1289), X(2966)}}, {{A, B, C, X(2407), X(36841)}}, {{A, B, C, X(2421), X(20806)}}, {{A, B, C, X(4561), X(54951)}}, {{A, B, C, X(5467), X(8538)}}, {{A, B, C, X(10420), X(41679)}}, {{A, B, C, X(14999), X(62382)}}, {{A, B, C, X(15419), X(17197)}}, {{A, B, C, X(15459), X(47269)}}, {{A, B, C, X(15740), X(20187)}}, {{A, B, C, X(16813), X(43188)}}, {{A, B, C, X(28419), X(34211)}}, {{A, B, C, X(32661), X(58949)}}, {{A, B, C, X(32692), X(32734)}}, {{A, B, C, X(35178), X(48539)}}, {{A, B, C, X(45792), X(62624)}}
X(65309) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {648, 30450, 65176}, {54030, 54031, 925}
X(65310) lies on the MacBeath circumconic and on these lines: {3, 287}, {23, 46807}, {99, 6037}, {107, 42405}, {110, 14966}, {237, 10753}, {262, 1995}, {263, 576}, {648, 1634}, {651, 65252}, {895, 5158}, {1576, 18315}, {2989, 7419}, {4243, 55996}, {4563, 23181}, {9145, 44769}, {11672, 63472}, {12177, 32599}, {14919, 54032}, {15329, 65324}, {17708, 36829}, {32661, 43754}, {35278, 39681}, {41909, 46319}, {44766, 50947}, {51444, 52153}, {52631, 60054}, {57268, 60022}
X(65310) = trilinear pole of line {3, 217}
X(65310) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 23878}, {92, 3288}, {182, 24006}, {458, 661}, {523, 60685}, {647, 51315}, {656, 33971}, {798, 44144}, {811, 6784}, {1577, 10311}, {2489, 3403}, {2501, 52134}, {2616, 39530}, {6591, 60737}, {7649, 60723}, {17924, 60726}, {57653, 63746}
X(65310) = X(i)-vertex conjugate of X(j) for these {i, j}: {648, 685}, {6529, 18831}, {32734, 43754}, {35278, 65271}
X(65310) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 23878}, {17423, 6784}, {22391, 3288}, {31998, 44144}, {36830, 458}, {39052, 51315}, {40596, 33971}
X(65310) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65271, 26714}
X(65310) = X(i)-cross conjugate of X(j) for these {i, j}: {19139, 44174}
X(65310) = pole of line {35278, 65271} with respect to the circumcircle
X(65310) = pole of line {1350, 37184} with respect to the Kiepert parabola
X(65310) = pole of line {9420, 23878} with respect to the Stammler hyperbola
X(65310) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(99)}}, {{A, B, C, X(107), X(1576)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(248), X(53937)}}, {{A, B, C, X(576), X(52035)}}, {{A, B, C, X(1173), X(65176)}}, {{A, B, C, X(1289), X(14586)}}, {{A, B, C, X(1995), X(15329)}}, {{A, B, C, X(4226), X(37465)}}, {{A, B, C, X(4243), X(7419)}}, {{A, B, C, X(5158), X(5467)}}, {{A, B, C, X(6528), X(6570)}}, {{A, B, C, X(6529), X(58973)}}, {{A, B, C, X(7468), X(35298)}}, {{A, B, C, X(8690), X(36059)}}, {{A, B, C, X(9160), X(34802)}}, {{A, B, C, X(11636), X(32662)}}, {{A, B, C, X(15958), X(43351)}}, {{A, B, C, X(26714), X(53196)}}, {{A, B, C, X(30247), X(32640)}}, {{A, B, C, X(41173), X(43706)}}, {{A, B, C, X(42313), X(63741)}}
X(65310) = barycentric product X(i)*X(j) for these (i, j): {3, 65271}, {63, 65252}, {110, 42313}, {112, 59257}, {262, 4558}, {263, 4563}, {287, 63741}, {394, 65349}, {1331, 60679}, {2186, 4592}, {3289, 53196}, {3402, 55202}, {14570, 51444}, {17932, 51543}, {23181, 42300}, {26714, 69}, {32661, 327}, {32716, 6393}, {34386, 52926}, {36212, 6037}, {36214, 39681}, {36885, 65308}, {43718, 99}, {43754, 46807}, {46319, 52608}, {47389, 52631}, {54032, 648}, {57268, 60053}
X(65310) = barycentric quotient X(i)/X(j) for these (i, j): {3, 23878}, {99, 44144}, {110, 458}, {112, 33971}, {162, 51315}, {163, 60685}, {184, 3288}, {262, 14618}, {263, 2501}, {287, 63746}, {906, 60723}, {1331, 60737}, {1332, 42711}, {1576, 10311}, {1625, 39530}, {2186, 24006}, {3049, 6784}, {4558, 183}, {4563, 20023}, {4575, 52134}, {4592, 3403}, {6037, 16081}, {17970, 39680}, {23181, 59197}, {26714, 4}, {32656, 60726}, {32661, 182}, {32662, 56401}, {32716, 6531}, {36132, 36120}, {36885, 60502}, {39681, 17984}, {42313, 850}, {43718, 523}, {43754, 46806}, {46319, 2489}, {51444, 15412}, {51543, 16230}, {52631, 8754}, {52926, 53}, {53196, 60199}, {54032, 525}, {57268, 44427}, {59257, 3267}, {60679, 46107}, {63741, 297}, {65252, 92}, {65271, 264}, {65327, 8842}, {65349, 2052}
X(65310) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 63741, 26714}
X(65311) lies on the MacBeath circumconic and on these lines: {2, 56006}, {6, 56007}, {69, 6387}, {110, 3565}, {287, 6340}, {394, 2987}, {648, 35136}, {895, 6391}, {1812, 2991}, {1995, 41385}, {2063, 64975}, {2421, 46639}, {2986, 2996}, {3167, 64614}, {4558, 61199}, {4563, 65171}, {4576, 65324}, {5468, 44766}, {6090, 14248}, {9129, 41673}, {14919, 60839}, {14999, 48373}, {15066, 43756}, {43187, 55224}, {52016, 53068}, {56008, 61198}
X(65311) = reflection of X(i) in X(j) for these {i,j}: {56007, 6}
X(65311) = isogonal conjugate of X(57071)
X(65311) = anticomplement of X(63614)
X(65311) = trilinear pole of line {3, 6391}
X(65311) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 57071}, {19, 3566}, {92, 8651}, {112, 17876}, {162, 6388}, {661, 6353}, {662, 5139}, {798, 54412}, {810, 21447}, {811, 47430}, {1577, 19118}, {1707, 2501}, {1824, 3798}, {2489, 18156}, {3053, 24006}, {4028, 6591}, {7649, 21874}, {17081, 55206}, {36105, 51613}, {41584, 55240}
X(65311) = X(i)-vertex conjugate of X(j) for these {i, j}: {4558, 65178}, {32729, 56008}
X(65311) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 57071}, {6, 3566}, {125, 6388}, {1084, 5139}, {8770, 58882}, {15261, 2489}, {17423, 47430}, {22391, 8651}, {31998, 54412}, {34591, 17876}, {36830, 6353}, {39001, 51613}, {39062, 21447}, {63614, 63614}, {64614, 2501}
X(65311) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3565, 4558}, {35136, 3565}
X(65311) = X(i)-cross conjugate of X(j) for these {i, j}: {512, 69}, {647, 8770}, {2451, 57648}, {2519, 6}
X(65311) = pole of line {4558, 65178} with respect to the circumcircle
X(65311) = pole of line {25, 19583} with respect to the Kiepert parabola
X(65311) = pole of line {3566, 57071} with respect to the Stammler hyperbola
X(65311) = pole of line {3565, 65171} with respect to the Steiner circumellipse
X(65311) = pole of line {6388, 63614} with respect to the dual conic of polar circle
X(65311) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(13398)}}, {{A, B, C, X(69), X(53367)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(112), X(40347)}}, {{A, B, C, X(512), X(6388)}}, {{A, B, C, X(647), X(3124)}}, {{A, B, C, X(1301), X(2966)}}, {{A, B, C, X(2063), X(34211)}}, {{A, B, C, X(2421), X(37669)}}, {{A, B, C, X(4559), X(16680)}}, {{A, B, C, X(4561), X(59065)}}, {{A, B, C, X(4584), X(55207)}}, {{A, B, C, X(4603), X(55205)}}, {{A, B, C, X(5468), X(20806)}}, {{A, B, C, X(10425), X(57216)}}, {{A, B, C, X(14417), X(60352)}}, {{A, B, C, X(17932), X(35575)}}, {{A, B, C, X(28419), X(61198)}}, {{A, B, C, X(32661), X(59115)}}, {{A, B, C, X(44326), X(59039)}}, {{A, B, C, X(60834), X(62542)}}
X(65311) = barycentric product X(i)*X(j) for these (i, j): {3, 35136}, {110, 6340}, {305, 65178}, {2996, 4558}, {3565, 69}, {4563, 8770}, {4592, 8769}, {6391, 99}, {38252, 55202}, {40319, 670}, {52608, 53059}, {53068, 54956}, {60839, 648}
X(65311) = barycentric quotient X(i)/X(j) for these (i, j): {3, 3566}, {6, 57071}, {99, 54412}, {110, 6353}, {184, 8651}, {512, 5139}, {647, 6388}, {648, 21447}, {656, 17876}, {906, 21874}, {1331, 4028}, {1576, 19118}, {1634, 41584}, {1790, 3798}, {2996, 14618}, {3049, 47430}, {3167, 58766}, {3565, 4}, {4558, 193}, {4563, 57518}, {4575, 1707}, {4592, 18156}, {6340, 850}, {6391, 523}, {8681, 57087}, {8769, 24006}, {8770, 2501}, {10425, 63613}, {14248, 58757}, {23181, 41588}, {27364, 23290}, {32661, 3053}, {35136, 264}, {40319, 512}, {53059, 2489}, {60839, 525}, {61199, 40326}, {64614, 58882}, {65178, 25}
X(65311) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 3565, 65178}
X(65312) lies on these lines: {4, 19367}, {20, 52830}, {22, 34032}, {23, 56910}, {108, 110}, {109, 13589}, {149, 53548}, {196, 11445}, {225, 41723}, {226, 14008}, {278, 3060}, {323, 41349}, {511, 37798}, {664, 3909}, {851, 56560}, {858, 51365}, {942, 7548}, {1020, 61220}, {1068, 5889}, {1415, 57194}, {1425, 2475}, {1426, 64715}, {2617, 4243}, {2979, 57477}, {3028, 10778}, {4551, 24029}, {4552, 65314}, {4554, 4576}, {4566, 18026}, {5640, 37800}, {6888, 34956}, {6923, 19368}, {6960, 40644}, {7952, 12111}, {11446, 63965}, {31019, 45963}, {32038, 52931}, {34035, 35996}, {35360, 54240}, {45122, 59415}, {52827, 64142}, {65297, 65303}
X(65312) = X(i)-isoconjugate-of-X(j) for these {i, j}: {652, 62879}
X(65312) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {65225, 34188}
X(65312) = pole of line {18026, 32038} with respect to the Steiner circumellipse
X(65312) = intersection, other than A, B, C, of circumconics {{A, B, C, X(110), X(18026)}}, {{A, B, C, X(162), X(33637)}}, {{A, B, C, X(2476), X(4246)}}, {{A, B, C, X(4566), X(36059)}}, {{A, B, C, X(35174), X(65313)}}
X(65312) = barycentric product X(i)*X(j) for these (i, j): {2476, 651}, {56908, 99}
X(65312) = barycentric quotient X(i)/X(j) for these (i, j): {108, 62879}, {2476, 4391}, {56908, 523}
X(65312) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {108, 651, 110}, {1020, 61220, 65315}
X(65313) lies on these lines: {2, 20256}, {3, 13243}, {22, 1260}, {55, 33761}, {63, 4210}, {72, 4225}, {100, 190}, {101, 110}, {109, 8701}, {144, 35980}, {149, 15507}, {228, 3219}, {244, 27666}, {323, 17976}, {404, 22458}, {511, 56808}, {651, 23067}, {835, 931}, {851, 17484}, {858, 51366}, {894, 35983}, {901, 8694}, {1255, 18185}, {1284, 33139}, {1293, 28210}, {1305, 54952}, {1310, 65372}, {1757, 3724}, {1897, 4246}, {1977, 52127}, {1978, 62530}, {2979, 56813}, {3060, 3190}, {3185, 3681}, {3191, 41723}, {3315, 54333}, {3732, 46725}, {3882, 65314}, {3920, 20967}, {3927, 16451}, {3940, 4216}, {3995, 56181}, {4188, 20805}, {4191, 22149}, {4192, 26792}, {4245, 63159}, {4551, 24029}, {4552, 53349}, {4561, 4576}, {4588, 28196}, {4651, 11688}, {4661, 23853}, {5132, 62796}, {5143, 21805}, {5260, 64753}, {6646, 35984}, {7419, 34772}, {7998, 56809}, {8697, 58125}, {8698, 58110}, {8708, 46961}, {9070, 65370}, {9963, 13744}, {11003, 23095}, {11322, 17350}, {13587, 23169}, {15624, 62838}, {15934, 19291}, {16056, 17483}, {16057, 27003}, {16059, 23958}, {16371, 23170}, {17126, 34247}, {19308, 20796}, {20013, 28376}, {20078, 37262}, {20470, 62235}, {21320, 27628}, {21362, 61220}, {23085, 37307}, {23089, 37309}, {23161, 50947}, {28148, 28176}, {28152, 28200}, {28162, 28214}, {28184, 28230}, {28218, 28226}, {28624, 43359}, {28841, 29329}, {29199, 43350}, {30653, 37590}, {37301, 42461}, {37405, 38856}, {46923, 52020}, {53302, 63917}, {56538, 64401}, {58992, 65361}
X(65313) = isogonal conjugate of X(43927)
X(65313) = trilinear pole of line {386, 28622}
X(65313) = perspector of circumconic {{A, B, C, X(1016), X(4570)}}
X(65313) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 43927}, {244, 835}, {513, 43531}, {514, 2214}, {661, 56047}, {667, 57824}, {1015, 37218}, {3248, 57977}, {6591, 57876}, {16732, 58951}, {17924, 57704}
X(65313) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 43927}, {386, 28623}, {6631, 57824}, {36830, 56047}, {39016, 1086}, {39026, 43531}, {41849, 3261}, {62586, 693}
X(65313) = X(i)-Ceva conjugate of X(j) for these {i, j}: {931, 100}
X(65313) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {28624, 149}
X(65313) = X(i)-cross conjugate of X(j) for these {i, j}: {834, 386}
X(65313) = pole of line {100, 8652} with respect to the circumcircle
X(65313) = pole of line {2969, 53566} with respect to the polar circle
X(65313) = pole of line {1, 4184} with respect to the Kiepert parabola
X(65313) = pole of line {514, 3733} with respect to the Stammler hyperbola
X(65313) = pole of line {190, 4574} with respect to the Steiner circumellipse
X(65313) = pole of line {2, 71} with respect to the Yff parabola
X(65313) = pole of line {6, 21} with respect to the Hutson-Moses hyperbola
X(65313) = pole of line {3261, 7192} with respect to the Wallace hyperbola
X(65313) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {104, 28145, 38665}
X(65313) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(163)}}, {{A, B, C, X(101), X(3952)}}, {{A, B, C, X(109), X(4427)}}, {{A, B, C, X(110), X(190)}}, {{A, B, C, X(386), X(8694)}}, {{A, B, C, X(469), X(4243)}}, {{A, B, C, X(833), X(13589)}}, {{A, B, C, X(834), X(900)}}, {{A, B, C, X(890), X(8637)}}, {{A, B, C, X(1293), X(4781)}}, {{A, B, C, X(1331), X(52609)}}, {{A, B, C, X(2774), X(23879)}}, {{A, B, C, X(3570), X(61409)}}, {{A, B, C, X(3699), X(5546)}}, {{A, B, C, X(4436), X(46961)}}, {{A, B, C, X(4557), X(32739)}}, {{A, B, C, X(4756), X(8652)}}, {{A, B, C, X(4767), X(28196)}}, {{A, B, C, X(5029), X(18004)}}, {{A, B, C, X(8050), X(53338)}}, {{A, B, C, X(9070), X(53279)}}, {{A, B, C, X(14349), X(30565)}}, {{A, B, C, X(15343), X(53606)}}, {{A, B, C, X(17989), X(50488)}}, {{A, B, C, X(28210), X(43290)}}, {{A, B, C, X(28606), X(42720)}}, {{A, B, C, X(32042), X(59012)}}, {{A, B, C, X(45746), X(50333)}}, {{A, B, C, X(47776), X(52615)}}, {{A, B, C, X(54952), X(65315)}}, {{A, B, C, X(58992), X(61185)}}
X(65313) = barycentric product X(i)*X(j) for these (i, j): {3, 65204}, {100, 28606}, {101, 5224}, {110, 56810}, {163, 42714}, {190, 386}, {1016, 834}, {1252, 45746}, {1331, 469}, {3876, 651}, {3952, 61409}, {4567, 47842}, {4601, 50488}, {14349, 765}, {23282, 249}, {23879, 4570}, {26911, 43190}, {31625, 8637}, {33935, 692}, {33948, 6}, {33949, 3939}, {42664, 4600}, {44103, 4561}, {56926, 99}, {59149, 65116}, {62586, 8652}
X(65313) = barycentric quotient X(i)/X(j) for these (i, j): {6, 43927}, {101, 43531}, {110, 56047}, {190, 57824}, {386, 514}, {469, 46107}, {692, 2214}, {765, 37218}, {834, 1086}, {1016, 57977}, {1252, 835}, {1331, 57876}, {3876, 4391}, {5224, 3261}, {8637, 1015}, {14349, 1111}, {23282, 338}, {23879, 21207}, {26911, 25259}, {28606, 693}, {32656, 57704}, {33935, 40495}, {33948, 76}, {33949, 52621}, {34281, 48144}, {42664, 3120}, {42714, 20948}, {43359, 28621}, {44103, 7649}, {45746, 23989}, {47842, 16732}, {50488, 3125}, {52615, 17205}, {56810, 850}, {56926, 523}, {61409, 7192}, {65116, 23100}, {65204, 264}
X(65313) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 4557, 65186}, {100, 52923, 3952}, {100, 57151, 190}, {101, 1331, 110}, {228, 3219, 4184}, {651, 23067, 65315}, {4551, 24029, 65312}, {4557, 53280, 100}
X(65314) lies on these lines: {10, 35636}, {23, 56529}, {100, 110}, {190, 3909}, {306, 38480}, {323, 17977}, {344, 5640}, {345, 2979}, {511, 32849}, {644, 61173}, {668, 891}, {815, 835}, {858, 51367}, {906, 57119}, {1018, 57217}, {1026, 65186}, {1310, 8701}, {1370, 55112}, {2895, 3690}, {3060, 17776}, {3688, 33175}, {3699, 61177}, {3781, 33077}, {3792, 32848}, {3882, 65313}, {3888, 4427}, {3917, 33168}, {3932, 56878}, {4158, 52364}, {4552, 65312}, {4756, 40521}, {4767, 61166}, {5739, 26911}, {6335, 35360}, {7998, 17740}, {13397, 29163}, {14839, 33148}, {17390, 61728}, {21334, 29872}, {22276, 33078}, {22306, 59415}, {24542, 25048}, {25308, 32929}, {26893, 32858}, {29026, 43348}, {32025, 63961}, {32851, 33852}, {33083, 40966}, {33139, 35104}, {33170, 64006}, {33637, 59104}, {36080, 43356}, {41723, 57808}, {46918, 64007}, {51377, 60459}, {65233, 65315}
X(65314) = trilinear pole of line {4261, 56541}
X(65314) = perspector of circumconic {{A, B, C, X(4567), X(31625)}}
X(65314) = X(i)-isoconjugate-of-X(j) for these {i, j}: {839, 3248}, {3120, 59112}
X(65314) = X(i)-Dao conjugate of X(j) for these {i, j}: {4261, 23882}, {5375, 60082}, {32782, 48107}, {39026, 54336}
X(65314) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2215, 54102}, {36080, 4440}, {54970, 150}, {65227, 149}
X(65314) = X(i)-cross conjugate of X(j) for these {i, j}: {838, 4261}
X(65314) = pole of line {21, 17147} with respect to the Kiepert parabola
X(65314) = pole of line {668, 52609} with respect to the Steiner circumellipse
X(65314) = pole of line {192, 3187} with respect to the Yff parabola
X(65314) = pole of line {37, 5047} with respect to the Hutson-Moses hyperbola
X(65314) = pole of line {693, 3733} with respect to the Wallace hyperbola
X(65314) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(27808)}}, {{A, B, C, X(110), X(668)}}, {{A, B, C, X(662), X(1978)}}, {{A, B, C, X(692), X(3952)}}, {{A, B, C, X(815), X(33948)}}, {{A, B, C, X(838), X(891)}}, {{A, B, C, X(3658), X(5142)}}, {{A, B, C, X(4261), X(41314)}}, {{A, B, C, X(5040), X(18003)}}, {{A, B, C, X(42717), X(56564)}}, {{A, B, C, X(43356), X(54970)}}, {{A, B, C, X(53363), X(54458)}}
X(65314) = barycentric product X(i)*X(j) for these (i, j): {100, 32782}, {110, 56564}, {1332, 5142}, {4261, 668}, {31625, 838}, {56541, 99}
X(65314) = barycentric quotient X(i)/X(j) for these (i, j): {100, 60082}, {101, 54336}, {838, 1015}, {1016, 839}, {4261, 513}, {5142, 17924}, {31625, 57979}, {32782, 693}, {56541, 523}, {56564, 850}
X(65314) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 1332, 110}, {3952, 21272, 53349}, {4553, 61172, 100}
X(65315) lies on these lines: {20, 20764}, {22, 7011}, {56, 3315}, {100, 658}, {108, 13397}, {109, 110}, {162, 4243}, {323, 17975}, {347, 35980}, {511, 56560}, {651, 23067}, {653, 3658}, {851, 37798}, {858, 51368}, {901, 8059}, {1020, 61220}, {1214, 4184}, {1262, 36030}, {1305, 36077}, {1331, 1461}, {1398, 37301}, {1410, 34772}, {1441, 35983}, {1633, 53322}, {1897, 7451}, {2979, 56553}, {3060, 56549}, {3100, 62736}, {3724, 5018}, {4210, 17080}, {4225, 4296}, {4551, 65186}, {4576, 65164}, {7411, 23171}, {7421, 18447}, {7998, 56550}, {9538, 38284}, {17086, 35984}, {23890, 61221}, {24029, 61227}, {32047, 37115}, {35987, 38288}, {65225, 65256}, {65233, 65314}
X(65315) = isogonal conjugate of X(23289)
X(65315) = trilinear pole of line {579, 4306}
X(65315) = perspector of circumconic {{A, B, C, X(1275), X(52378)}}
X(65315) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23289}, {272, 4041}, {513, 56146}, {522, 2218}, {650, 1751}, {663, 2997}, {1305, 2310}, {3063, 40011}, {3271, 51566}, {3737, 41506}, {4516, 65274}, {8611, 40574}, {8641, 15467}, {21044, 65254}, {57784, 63461}, {58074, 65102}
X(65315) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 23289}, {72, 52355}, {10001, 40011}, {39026, 56146}
X(65315) = X(i)-cross conjugate of X(j) for these {i, j}: {8676, 579}
X(65315) = pole of line {1633, 53324} with respect to the circumcircle
X(65315) = pole of line {34969, 42069} with respect to the polar circle
X(65315) = pole of line {63, 4225} with respect to the Kiepert parabola
X(65315) = pole of line {522, 21789} with respect to the Stammler hyperbola
X(65315) = pole of line {664, 52610} with respect to the Steiner circumellipse
X(65315) = pole of line {7253, 23289} with respect to the Wallace hyperbola
X(65315) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(65375)}}, {{A, B, C, X(109), X(4566)}}, {{A, B, C, X(110), X(664)}}, {{A, B, C, X(579), X(56543)}}, {{A, B, C, X(658), X(4565)}}, {{A, B, C, X(906), X(44065)}}, {{A, B, C, X(1305), X(23067)}}, {{A, B, C, X(2283), X(2352)}}, {{A, B, C, X(2398), X(3190)}}, {{A, B, C, X(4306), X(8059)}}, {{A, B, C, X(4453), X(23800)}}, {{A, B, C, X(4569), X(59012)}}, {{A, B, C, X(4575), X(6516)}}, {{A, B, C, X(5075), X(18006)}}, {{A, B, C, X(5125), X(7450)}}, {{A, B, C, X(6366), X(8676)}}, {{A, B, C, X(17136), X(58992)}}, {{A, B, C, X(43042), X(43060)}}, {{A, B, C, X(51646), X(51658)}}, {{A, B, C, X(54952), X(65313)}}
X(65315) = barycentric product X(i)*X(j) for these (i, j): {109, 18134}, {110, 56559}, {190, 4306}, {209, 4573}, {579, 664}, {1262, 20294}, {1275, 8676}, {1414, 22021}, {1813, 5125}, {2198, 4625}, {2352, 4554}, {3190, 658}, {3868, 651}, {4565, 57808}, {4566, 56000}, {4567, 51658}, {19367, 44765}, {23800, 4564}, {27396, 934}, {43060, 4998}, {57217, 7}
X(65315) = barycentric quotient X(i)/X(j) for these (i, j): {6, 23289}, {101, 56146}, {109, 1751}, {209, 3700}, {579, 522}, {651, 2997}, {658, 15467}, {664, 40011}, {1262, 1305}, {1415, 2218}, {2198, 4041}, {2352, 650}, {3190, 3239}, {3868, 4391}, {4306, 514}, {4559, 41506}, {4564, 51566}, {4565, 272}, {4573, 57784}, {5125, 46110}, {8676, 1146}, {18134, 35519}, {20294, 23978}, {22021, 4086}, {23067, 40161}, {23800, 4858}, {27396, 4397}, {36118, 58074}, {43060, 11}, {51574, 52355}, {51658, 16732}, {52378, 65274}, {52610, 28786}, {56000, 7253}, {56559, 850}, {57043, 21666}, {57217, 8}, {57501, 57108}
X(65315) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {109, 1813, 110}, {651, 23067, 65313}, {1020, 61220, 65312}, {2283, 53321, 100}, {4296, 22341, 4225}
X(65316) lies on these lines: {22, 57488}, {23, 74}, {52, 3470}, {110, 250}, {511, 14919}, {852, 37477}, {1351, 9717}, {1494, 15360}, {1495, 62606}, {1995, 35910}, {2070, 50464}, {2394, 57627}, {2420, 2433}, {3060, 57487}, {3580, 17986}, {4240, 16077}, {5627, 63735}, {7426, 51227}, {7488, 38933}, {7493, 63856}, {8675, 32738}, {9139, 65320}, {10296, 57472}, {10421, 50435}, {11454, 38937}, {12295, 14989}, {13352, 14385}, {14264, 37489}, {15107, 40384}, {15459, 35360}, {26255, 36890}, {32223, 53768}, {32225, 46808}, {32583, 63741}, {32681, 53958}, {34150, 47348}, {39290, 65317}, {40353, 46233}, {46261, 53785}, {47596, 60870}
X(65316) = trilinear pole of line {4550, 5158}
X(65316) = perspector of circumconic {{A, B, C, X(15395), X(57570)}}
X(65316) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 46809}, {1577, 51545}, {2631, 43530}, {3431, 36035}
X(65316) = X(i)-Dao conjugate of X(j) for these {i, j}: {4550, 9033}, {5158, 46229}, {36830, 46809}
X(65316) = X(i)-cross conjugate of X(j) for these {i, j}: {14314, 381}
X(65316) = pole of line {5502, 14560} with respect to the circumcircle
X(65316) = pole of line {5664, 9033} with respect to the Stammler hyperbola
X(65316) = pole of line {16077, 16237} with respect to the Steiner circumellipse
X(65316) = intersection, other than A, B, C, of circumconics {{A, B, C, X(110), X(16077)}}, {{A, B, C, X(250), X(9060)}}, {{A, B, C, X(381), X(2437)}}, {{A, B, C, X(476), X(2420)}}, {{A, B, C, X(520), X(34767)}}, {{A, B, C, X(5158), X(65305)}}, {{A, B, C, X(9064), X(32738)}}, {{A, B, C, X(32225), X(63741)}}, {{A, B, C, X(53958), X(65322)}}
X(65316) = barycentric product X(i)*X(j) for these (i, j): {110, 46808}, {381, 44769}, {1304, 37638}, {1531, 34568}, {3581, 39290}, {15459, 63425}, {16077, 5158}, {18477, 65263}, {32640, 44135}, {36831, 4993}, {51544, 99}
X(65316) = barycentric quotient X(i)/X(j) for these (i, j): {110, 46809}, {381, 41079}, {1304, 43530}, {1531, 52624}, {1576, 51545}, {3581, 5664}, {4550, 46229}, {5158, 9033}, {15395, 54959}, {18478, 18557}, {18479, 18558}, {18487, 58263}, {32640, 3431}, {32695, 16263}, {34416, 14398}, {34417, 1637}, {44769, 57822}, {46808, 850}, {51544, 523}, {63425, 41077}
X(65316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23, 46788, 74}, {110, 36831, 44769}, {1304, 44769, 110}
X(65317) lies on these lines: {23, 56397}, {94, 511}, {110, 476}, {265, 11564}, {1352, 52449}, {1531, 18300}, {1989, 15360}, {2979, 57482}, {3060, 57486}, {3580, 51847}, {5640, 43084}, {5889, 58725}, {11412, 58723}, {11459, 14254}, {14595, 37779}, {15107, 53768}, {15958, 64516}, {18436, 59274}, {32662, 47053}, {35139, 35316}, {35360, 46456}, {39290, 65316}, {41171, 58733}, {53693, 58983}, {56292, 58925}, {56400, 64105}
X(65317) = trilinear pole of line {566, 56408}
X(65317) = perspector of circumconic {{A, B, C, X(39295), X(57546)}}
X(65317) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2624, 7578}
X(65317) = pole of line {30, 18301} with respect to the Kiepert parabola
X(65317) = pole of line {526, 57136} with respect to the Stammler hyperbola
X(65317) = pole of line {2407, 35139} with respect to the Steiner circumellipse
X(65317) = pole of line {3268, 62173} with respect to the Wallace hyperbola
X(65317) = intersection, other than A, B, C, of circumconics {{A, B, C, X(110), X(11564)}}, {{A, B, C, X(935), X(14480)}}, {{A, B, C, X(3233), X(51391)}}, {{A, B, C, X(7471), X(7577)}}, {{A, B, C, X(14559), X(56408)}}, {{A, B, C, X(16167), X(60605)}}, {{A, B, C, X(53693), X(54959)}}
X(65317) = barycentric product X(i)*X(j) for these (i, j): {23039, 46456}, {35139, 566}, {36829, 94}, {39290, 51391}, {56408, 99}, {60053, 7577}
X(65317) = barycentric quotient X(i)/X(j) for these (i, j): {476, 7578}, {566, 526}, {7577, 44427}, {18117, 2088}, {23039, 8552}, {35139, 57899}, {36829, 323}, {51391, 5664}, {56408, 523}
X(65317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {476, 60053, 110}, {35316, 35317, 35139}, {41512, 46155, 476}
X(65318) lies on these lines: {2, 51}, {23, 13414}, {110, 1114}, {323, 13415}, {468, 24650}, {850, 15165}, {858, 25407}, {1113, 15107}, {1154, 57323}, {1313, 3580}, {1345, 15066}, {2574, 9140}, {3564, 20406}, {4576, 46810}, {8115, 23061}, {10113, 10750}, {11064, 25408}, {12824, 64481}, {13391, 57322}, {15156, 43396}, {18911, 41518}, {20409, 32617}, {35360, 46812}, {36830, 57025}, {41724, 44126}, {47582, 64821}
X(65318) = reflection of X(i) in X(j) for these {i,j}: {65319, 2}
X(65318) = perspector of circumconic {{A, B, C, X(39299), X(57544)}}
X(65318) = pole of line {39241, 44125} with respect to the polar circle
X(65318) = intersection, other than A, B, C, of circumconics {{A, B, C, X(110), X(15165)}}, {{A, B, C, X(262), X(1114)}}, {{A, B, C, X(263), X(44124)}}, {{A, B, C, X(850), X(2575)}}, {{A, B, C, X(8116), X(42313)}}, {{A, B, C, X(15460), X(27867)}}
X(65318) = barycentric product X(i)*X(j) for these (i, j): {1347, 8116}
X(65318) = barycentric quotient X(i)/X(j) for these (i, j): {1347, 2593}
X(65318) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1114, 8116, 110}, {11002, 32225, 65319}
X(65319) lies on these lines: {2, 51}, {23, 13415}, {110, 1113}, {323, 13414}, {468, 24651}, {850, 15164}, {858, 25408}, {1114, 15107}, {1154, 57322}, {1312, 3580}, {1344, 15066}, {2575, 9140}, {3564, 20405}, {4576, 46813}, {8116, 23061}, {10113, 10751}, {11064, 25407}, {12824, 64480}, {13391, 57323}, {15157, 43395}, {18911, 41519}, {20408, 32616}, {35360, 46815}, {36830, 57026}, {41724, 44125}, {47582, 64822}
X(65319) = reflection of X(i) in X(j) for these {i,j}: {65318, 2}
X(65319) = inverse of X(2574) in Stammler hyperbola
X(65319) = perspector of circumconic {{A, B, C, X(39298), X(57543)}}
X(65319) = pole of line {39240, 44126} with respect to the polar circle
X(65319) = intersection, other than A, B, C, of circumconics {{A, B, C, X(110), X(15164)}}, {{A, B, C, X(262), X(1113)}}, {{A, B, C, X(263), X(44123)}}, {{A, B, C, X(850), X(2574)}}, {{A, B, C, X(8115), X(42313)}}, {{A, B, C, X(15461), X(27867)}}
X(65319) = barycentric product X(i)*X(j) for these (i, j): {1346, 8115}
X(65319) = barycentric quotient X(i)/X(j) for these (i, j): {1346, 2592}
X(65319) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1113, 8115, 110}, {11002, 32225, 65318}
X(65320) lies on these lines: {6, 110}, {67, 25322}, {74, 53687}, {125, 25047}, {262, 9759}, {511, 36827}, {526, 17993}, {576, 10560}, {671, 690}, {691, 15107}, {3060, 57485}, {3580, 51258}, {4576, 15059}, {5012, 57481}, {5969, 42008}, {7664, 15118}, {7998, 52152}, {8705, 52197}, {9138, 9178}, {9139, 65316}, {9155, 12099}, {10558, 53863}, {11002, 51980}, {13192, 17964}, {14263, 38523}, {15360, 16092}, {15398, 23061}, {17983, 35360}, {18023, 36901}, {20975, 40283}, {40915, 64880}, {41724, 51405}
X(65320) = reflection of X(i) in X(j) for these {i,j}: {110, 46131}, {36827, 46783}, {46131, 3124}
X(65320) = perspector of circumconic {{A, B, C, X(691), X(57539)}}
X(65320) = X(i)-isoconjugate-of-X(j) for these {i, j}: {39450, 42081}
X(65320) = pole of line {6055, 19912} with respect to the orthoptic circle of the Steiner Inellipse
X(65320) = pole of line {858, 64258} with respect to the Kiepert hyperbola
X(65320) = pole of line {11634, 44010} with respect to the Kiepert parabola
X(65320) = pole of line {2492, 5461} with respect to the Steiner inellipse
X(65320) = pole of line {1649, 52628} with respect to the dual conic of Wallace hyperbola
X(65320) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(5466)}}, {{A, B, C, X(67), X(53365)}}, {{A, B, C, X(110), X(671)}}, {{A, B, C, X(690), X(39689)}}, {{A, B, C, X(2502), X(18007)}}, {{A, B, C, X(2987), X(52699)}}, {{A, B, C, X(3124), X(15359)}}, {{A, B, C, X(6593), X(9979)}}
X(65320) = barycentric product X(i)*X(j) for these (i, j): {46127, 671}
X(65320) = barycentric quotient X(i)/X(j) for these (i, j): {10630, 39450}, {15359, 52628}, {46127, 524}
X(65320) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {111, 39024, 32740}, {111, 895, 110}, {511, 46783, 36827}, {2854, 3124, 46131}, {3124, 46154, 111}, {5968, 60498, 5640}
X(65321) lies on the MacBeath circumconic and on these lines: {2, 52668}, {23, 53770}, {69, 62594}, {99, 35188}, {110, 249}, {111, 323}, {287, 11064}, {394, 57481}, {524, 9225}, {525, 4563}, {647, 4558}, {648, 892}, {651, 36085}, {671, 2986}, {878, 43754}, {895, 3292}, {1331, 55230}, {1332, 55232}, {1813, 55234}, {1993, 57491}, {2421, 2433}, {2434, 34574}, {2502, 52198}, {2623, 18315}, {2709, 53690}, {2715, 45773}, {2991, 37783}, {3229, 19626}, {3291, 37784}, {3580, 56006}, {5380, 65303}, {5466, 44768}, {5468, 17708}, {5651, 21460}, {5968, 6090}, {6091, 52144}, {9143, 34320}, {9178, 60054}, {9190, 23348}, {9306, 10559}, {10420, 35191}, {13857, 14833}, {14582, 14977}, {14919, 36212}, {15066, 60022}, {28419, 56569}, {30491, 32661}, {32697, 47230}, {34211, 48373}, {36142, 65298}, {36894, 37669}, {37804, 41511}, {40814, 60863}, {42405, 59762}, {43187, 43665}, {43755, 61216}, {44718, 60024}, {44719, 60023}, {44766, 57216}, {44767, 61190}, {52630, 61198}, {53202, 64460}, {57763, 65309}, {61199, 65307}
X(65321) = isogonal conjugate of X(14273)
X(65321) = trilinear pole of line {3, 895}
X(65321) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 14273}, {4, 2642}, {19, 690}, {92, 351}, {162, 1648}, {187, 24006}, {240, 52038}, {468, 661}, {656, 60428}, {798, 44146}, {810, 37778}, {811, 21906}, {896, 2501}, {897, 58780}, {922, 14618}, {1096, 14417}, {1109, 61207}, {1577, 44102}, {1649, 36128}, {1824, 4750}, {1826, 14419}, {1880, 14432}, {1973, 35522}, {2173, 52475}, {2247, 53156}, {2489, 14210}, {2643, 4235}, {2682, 65263}, {2971, 24039}, {3712, 55208}, {4062, 6591}, {5095, 23894}, {7181, 55206}, {7649, 21839}, {8754, 23889}, {17442, 22105}, {32676, 52628}, {36104, 51429}, {45775, 55270}, {55240, 64724}
X(65321) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 32697}, {4235, 32709}, {32696, 47443}, {32729, 65306}, {32734, 65328}, {65178, 65307}
X(65321) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 14273}, {6, 690}, {125, 1648}, {6337, 35522}, {6338, 45807}, {6503, 14417}, {6593, 58780}, {15477, 2489}, {15526, 52628}, {15899, 2501}, {17423, 21906}, {22391, 351}, {31998, 44146}, {36033, 2642}, {36830, 468}, {36896, 52475}, {39000, 51429}, {39061, 14618}, {39062, 37778}, {39085, 52038}, {39169, 2492}, {40596, 60428}, {52881, 52629}, {55048, 5099}, {62607, 850}
X(65321) = X(i)-Ceva conjugate of X(j) for these {i, j}: {892, 691}, {34539, 57481}, {52940, 30786}
X(65321) = X(i)-cross conjugate of X(j) for these {i, j}: {525, 41511}, {647, 15398}, {9517, 69}, {10097, 895}, {10766, 57742}, {14961, 250}, {22151, 249}, {42665, 305}
X(65321) = pole of line {23, 5866} with respect to the Kiepert parabola
X(65321) = pole of line {10097, 65321} with respect to the MacBeath circumconic
X(65321) = pole of line {690, 5095} with respect to the Stammler hyperbola
X(65321) = pole of line {691, 53351} with respect to the Steiner circumellipse
X(65321) = pole of line {37742, 40544} with respect to the Steiner inellipse
X(65321) = pole of line {126, 1560} with respect to the Wallace hyperbola
X(65321) = pole of line {1648, 52628} with respect to the dual conic of polar circle
X(65321) = pole of line {858, 3566} with respect to the dual conic of Yff hyperbola
X(65321) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7468)}}, {{A, B, C, X(3), X(2709)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(249), X(10425)}}, {{A, B, C, X(305), X(18829)}}, {{A, B, C, X(394), X(14999)}}, {{A, B, C, X(512), X(525)}}, {{A, B, C, X(524), X(8681)}}, {{A, B, C, X(671), X(35191)}}, {{A, B, C, X(691), X(15398)}}, {{A, B, C, X(801), X(57932)}}, {{A, B, C, X(805), X(9218)}}, {{A, B, C, X(827), X(52608)}}, {{A, B, C, X(933), X(43188)}}, {{A, B, C, X(1304), X(2966)}}, {{A, B, C, X(1799), X(9150)}}, {{A, B, C, X(2421), X(11064)}}, {{A, B, C, X(2434), X(3292)}}, {{A, B, C, X(4561), X(6578)}}, {{A, B, C, X(5107), X(56389)}}, {{A, B, C, X(5468), X(22151)}}, {{A, B, C, X(5653), X(35909)}}, {{A, B, C, X(6331), X(59039)}}, {{A, B, C, X(9091), X(32696)}}, {{A, B, C, X(9124), X(55977)}}, {{A, B, C, X(9213), X(14977)}}, {{A, B, C, X(9476), X(40384)}}, {{A, B, C, X(9517), X(45807)}}, {{A, B, C, X(15387), X(32729)}}, {{A, B, C, X(18876), X(64775)}}, {{A, B, C, X(21639), X(61207)}}, {{A, B, C, X(30786), X(45773)}}, {{A, B, C, X(32661), X(59008)}}, {{A, B, C, X(34470), X(60503)}}, {{A, B, C, X(35325), X(61199)}}, {{A, B, C, X(37804), X(52630)}}, {{A, B, C, X(50941), X(57481)}}, {{A, B, C, X(56473), X(65269)}}, {{A, B, C, X(61198), X(62382)}}
X(65321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 32583, 691}, {110, 36827, 32729}, {11064, 51405, 30786}, {32583, 32729, 36827}
X(65322) lies on the MacBeath circumconic and on these lines: {6, 14919}, {69, 62583}, {110, 9064}, {112, 44769}, {193, 2986}, {287, 1992}, {323, 40386}, {524, 65325}, {895, 1351}, {2407, 4563}, {2420, 4558}, {3629, 65326}, {5921, 52452}, {8675, 32738}, {14927, 64505}, {18554, 64802}, {32110, 61448}, {34211, 65324}, {37489, 52168}, {37784, 60022}, {40318, 43756}, {41392, 60053}, {41610, 65302}, {41614, 51937}, {41617, 48453}, {46229, 65323}
X(65322) = reflection of X(i) in X(j) for these {i,j}: {69, 62583}, {14919, 6}
X(65322) = isogonal conjugate of X(9209)
X(65322) = trilinear pole of line {3, 1495}
X(65322) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 9209}, {19, 9007}, {376, 661}, {656, 40138}, {798, 44133}, {810, 52147}, {822, 47392}, {1577, 26864}, {36149, 53832}, {40348, 63827}
X(65322) = X(i)-vertex conjugate of X(j) for these {i, j}: {4558, 14560}, {32713, 44769}, {32738, 65322}
X(65322) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 9209}, {6, 9007}, {31998, 44133}, {36830, 376}, {39062, 52147}, {40596, 40138}
X(65322) = pole of line {9007, 9209} with respect to the Stammler hyperbola
X(65322) = pole of line {1302, 9064} with respect to the Steiner circumellipse
X(65322) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(112)}}, {{A, B, C, X(69), X(6528)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(511), X(64923)}}, {{A, B, C, X(524), X(5663)}}, {{A, B, C, X(892), X(35575)}}, {{A, B, C, X(1176), X(44828)}}, {{A, B, C, X(1296), X(2966)}}, {{A, B, C, X(1301), X(15459)}}, {{A, B, C, X(1351), X(5467)}}, {{A, B, C, X(1992), X(2421)}}, {{A, B, C, X(5505), X(53187)}}, {{A, B, C, X(8675), X(46229)}}, {{A, B, C, X(9033), X(35911)}}, {{A, B, C, X(14570), X(47269)}}, {{A, B, C, X(14999), X(41617)}}, {{A, B, C, X(30528), X(30535)}}, {{A, B, C, X(32697), X(58099)}}, {{A, B, C, X(32713), X(59136)}}, {{A, B, C, X(33513), X(43352)}}, {{A, B, C, X(34211), X(41614)}}, {{A, B, C, X(34898), X(58090)}}, {{A, B, C, X(41610), X(64828)}}
X(65322) = barycentric product X(i)*X(j) for these (i, j): {69, 9064}, {110, 36889}, {3426, 99}, {4558, 56270}, {51990, 6331}
X(65322) = barycentric quotient X(i)/X(j) for these (i, j): {3, 9007}, {6, 9209}, {99, 44133}, {107, 47392}, {110, 376}, {112, 40138}, {648, 52147}, {1301, 58758}, {1302, 39263}, {1576, 26864}, {3426, 523}, {8675, 53832}, {9060, 52447}, {9064, 4}, {32681, 40385}, {32734, 40348}, {36889, 850}, {46587, 1515}, {51990, 647}, {53958, 59430}, {56270, 14618}, {61448, 9003}
X(65323) lies on the MacBeath circumconic and on these lines: {6, 2986}, {69, 14919}, {99, 32681}, {110, 1302}, {193, 43756}, {287, 41614}, {524, 60022}, {542, 54925}, {648, 61209}, {895, 4846}, {1992, 2987}, {2421, 65324}, {2990, 41610}, {3629, 57647}, {5656, 59429}, {6148, 40385}, {9190, 48960}, {10330, 56008}, {10753, 32220}, {11456, 39263}, {12383, 40387}, {14570, 46639}, {18315, 36841}, {22151, 65325}, {32111, 47103}, {32451, 41909}, {32661, 43755}, {36149, 65298}, {46229, 65322}, {47405, 57829}, {51196, 60049}
X(65323) = reflection of X(i) in X(j) for these {i,j}: {69, 62569}, {2986, 6}
X(65323) = trilinear pole of line {3, 4549}
X(65323) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 8675}, {92, 42660}, {378, 661}, {798, 44134}, {1577, 44080}, {1973, 30474}, {5063, 24006}, {51833, 55216}
X(65323) = X(i)-vertex conjugate of X(j) for these {i, j}: {648, 32715}, {32734, 43755}
X(65323) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 8675}, {6337, 30474}, {22391, 42660}, {31998, 44134}, {36830, 378}, {51471, 9209}, {62569, 46229}, {62613, 62628}
X(65323) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65284, 1302}
X(65323) = X(i)-cross conjugate of X(j) for these {i, j}: {9007, 69}, {63649, 57763}
X(65323) = pole of line {1302, 53958} with respect to the Steiner circumellipse
X(65323) = pole of line {30474, 46229} with respect to the Wallace hyperbola
X(65323) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(57627)}}, {{A, B, C, X(6), X(32661)}}, {{A, B, C, X(69), X(99)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(524), X(17702)}}, {{A, B, C, X(525), X(9003)}}, {{A, B, C, X(687), X(925)}}, {{A, B, C, X(1992), X(52035)}}, {{A, B, C, X(2421), X(41614)}}, {{A, B, C, X(2966), X(30247)}}, {{A, B, C, X(3267), X(62624)}}, {{A, B, C, X(9007), X(46229)}}, {{A, B, C, X(14570), X(36841)}}, {{A, B, C, X(15352), X(30249)}}, {{A, B, C, X(15396), X(41511)}}, {{A, B, C, X(15459), X(43188)}}, {{A, B, C, X(16813), X(47269)}}, {{A, B, C, X(17932), X(35138)}}, {{A, B, C, X(30528), X(42313)}}, {{A, B, C, X(32681), X(32738)}}, {{A, B, C, X(34568), X(40404)}}, {{A, B, C, X(36789), X(62569)}}, {{A, B, C, X(39290), X(60872)}}
X(65323) = barycentric product X(i)*X(j) for these (i, j): {3, 65284}, {110, 57819}, {304, 36149}, {305, 32738}, {1302, 69}, {4846, 99}, {17932, 56925}, {34288, 4563}, {34289, 4558}
X(65323) = barycentric quotient X(i)/X(j) for these (i, j): {3, 8675}, {69, 30474}, {99, 44134}, {110, 378}, {184, 42660}, {925, 51833}, {1302, 4}, {1332, 42704}, {1576, 44080}, {2407, 62628}, {4558, 15066}, {4563, 32833}, {4846, 523}, {9007, 53832}, {11064, 46229}, {23181, 5891}, {32661, 5063}, {32681, 8749}, {32738, 25}, {34288, 2501}, {34289, 14618}, {36083, 36119}, {36149, 19}, {43754, 11653}, {53958, 58081}, {56925, 16230}, {57819, 850}, {60119, 18808}, {65284, 264}
X(65324) lies on the MacBeath circumconic and on these lines: {2, 895}, {99, 35188}, {110, 4235}, {287, 15066}, {323, 52501}, {394, 36792}, {458, 2986}, {648, 61198}, {651, 37217}, {1332, 42721}, {1499, 15406}, {1797, 52759}, {1814, 26637}, {1993, 41909}, {2418, 9146}, {2421, 65323}, {2987, 37645}, {4558, 5468}, {4576, 65311}, {6515, 56007}, {8593, 37860}, {8600, 38343}, {11064, 57466}, {13608, 32985}, {14514, 58768}, {14608, 52275}, {14919, 36890}, {15304, 32133}, {15329, 65310}, {26645, 60047}, {32583, 48539}, {32661, 65306}, {34211, 65322}, {40112, 50639}, {44766, 61199}, {51831, 52283}, {55847, 62382}, {57216, 65307}
X(65324) = trilinear pole of line {3, 5486}
X(65324) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 30209}, {25, 14209}, {661, 1995}, {798, 11185}, {923, 55135}, {1577, 19136}, {2159, 44203}, {14207, 52174}, {23894, 53777}, {29959, 55240}
X(65324) = X(i)-vertex conjugate of X(j) for these {i, j}: {648, 32729}, {32734, 65306}, {44766, 65178}
X(65324) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 30209}, {2482, 55135}, {3163, 44203}, {6505, 14209}, {31998, 11185}, {35133, 5512}, {36830, 1995}
X(65324) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {15406, 4329}
X(65324) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 15406}, {2434, 6082}, {9145, 99}
X(65324) = pole of line {30209, 53777} with respect to the Stammler hyperbola
X(65324) = pole of line {1296, 30247} with respect to the Steiner circumellipse
X(65324) = pole of line {40556, 44813} with respect to the Steiner inellipse
X(65324) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(99)}}, {{A, B, C, X(83), X(6233)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(275), X(59007)}}, {{A, B, C, X(323), X(51478)}}, {{A, B, C, X(394), X(32661)}}, {{A, B, C, X(458), X(15329)}}, {{A, B, C, X(850), X(39905)}}, {{A, B, C, X(925), X(35178)}}, {{A, B, C, X(1302), X(2966)}}, {{A, B, C, X(2421), X(15066)}}, {{A, B, C, X(2434), X(8542)}}, {{A, B, C, X(4240), X(37188)}}, {{A, B, C, X(4576), X(57216)}}, {{A, B, C, X(5181), X(36792)}}, {{A, B, C, X(5546), X(56045)}}, {{A, B, C, X(6082), X(9146)}}, {{A, B, C, X(6331), X(43351)}}, {{A, B, C, X(8600), X(32583)}}, {{A, B, C, X(11794), X(44326)}}, {{A, B, C, X(14999), X(40112)}}, {{A, B, C, X(15118), X(41498)}}, {{A, B, C, X(16511), X(42286)}}, {{A, B, C, X(20404), X(58268)}}, {{A, B, C, X(26714), X(32640)}}, {{A, B, C, X(30247), X(60317)}}, {{A, B, C, X(32901), X(39639)}}, {{A, B, C, X(52231), X(56429)}}, {{A, B, C, X(52235), X(61486)}}, {{A, B, C, X(63179), X(63646)}}
X(65324) = barycentric product X(i)*X(j) for these (i, j): {3266, 35188}, {4558, 60266}, {5468, 60317}, {5486, 99}, {13608, 35179}, {30247, 69}, {37217, 63}, {39157, 6082}, {46144, 53764}
X(65324) = barycentric quotient X(i)/X(j) for these (i, j): {3, 30209}, {30, 44203}, {63, 14209}, {99, 11185}, {110, 1995}, {524, 55135}, {1296, 14262}, {1499, 5512}, {1576, 19136}, {1634, 29959}, {2709, 34241}, {4235, 37855}, {4558, 41614}, {5467, 53777}, {5486, 523}, {6082, 34166}, {9145, 8542}, {13608, 1499}, {15406, 1296}, {30247, 4}, {32709, 8753}, {35188, 111}, {36115, 36128}, {37217, 92}, {44061, 38331}, {51239, 6088}, {51831, 59932}, {53764, 2793}, {57466, 47138}, {60266, 14618}, {60317, 5466}, {61443, 2780}
X(65325) lies on the MacBeath circumconic and on these lines: {2, 30528}, {30, 110}, {323, 648}, {394, 57482}, {524, 65322}, {525, 14919}, {651, 36102}, {895, 9007}, {1331, 36062}, {1993, 48373}, {2411, 60022}, {2697, 64774}, {3580, 46639}, {4558, 11064}, {5640, 65305}, {14920, 23582}, {15066, 17708}, {18315, 43768}, {22151, 65323}, {35912, 43754}, {36151, 65298}, {37645, 65306}, {37669, 43755}, {44770, 52485}, {47071, 53235}
X(65325) = isogonal conjugate of X(47228)
X(65325) = trilinear pole of line {3, 9033}
X(65325) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 47228}, {6, 36063}, {19, 5663}, {661, 7480}, {1973, 35520}, {2159, 11251}, {2173, 52493}, {36131, 55141}
X(65325) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 47228}, {6, 5663}, {9, 36063}, {647, 6070}, {3163, 11251}, {6337, 35520}, {14401, 13212}, {36830, 7480}, {36896, 52493}, {39008, 55141}, {51475, 3018}, {62606, 46788}
X(65325) = X(i)-cross conjugate of X(j) for these {i, j}: {17702, 69}, {32663, 477}
X(65325) = pole of line {5663, 47228} with respect to the Stammler hyperbola
X(65325) = pole of line {477, 2693} with respect to the Steiner circumellipse
X(65325) = pole of line {31379, 45681} with respect to the Steiner inellipse
X(65325) = pole of line {35520, 47228} with respect to the Wallace hyperbola
X(65325) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(30)}}, {{A, B, C, X(3), X(37477)}}, {{A, B, C, X(4), X(32111)}}, {{A, B, C, X(6), X(40114)}}, {{A, B, C, X(69), X(9141)}}, {{A, B, C, X(94), X(7728)}}, {{A, B, C, X(97), X(249)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(265), X(5655)}}, {{A, B, C, X(275), X(14157)}}, {{A, B, C, X(323), X(394)}}, {{A, B, C, X(523), X(47148)}}, {{A, B, C, X(524), X(9007)}}, {{A, B, C, X(671), X(10706)}}, {{A, B, C, X(879), X(2770)}}, {{A, B, C, X(1073), X(10540)}}, {{A, B, C, X(2394), X(46045)}}, {{A, B, C, X(3265), X(13485)}}, {{A, B, C, X(3519), X(40113)}}, {{A, B, C, X(3580), X(6504)}}, {{A, B, C, X(4993), X(42330)}}, {{A, B, C, X(5641), X(34767)}}, {{A, B, C, X(10721), X(16080)}}, {{A, B, C, X(12121), X(56063)}}, {{A, B, C, X(14918), X(60597)}}, {{A, B, C, X(14920), X(15526)}}, {{A, B, C, X(14934), X(15421)}}, {{A, B, C, X(15066), X(22151)}}, {{A, B, C, X(18020), X(62428)}}, {{A, B, C, X(18550), X(54807)}}, {{A, B, C, X(30535), X(41511)}}, {{A, B, C, X(32730), X(61216)}}, {{A, B, C, X(34897), X(64182)}}, {{A, B, C, X(37645), X(62382)}}, {{A, B, C, X(38005), X(60193)}}, {{A, B, C, X(43572), X(57875)}}, {{A, B, C, X(43576), X(55982)}}, {{A, B, C, X(43670), X(54453)}}, {{A, B, C, X(44549), X(60161)}}, {{A, B, C, X(51228), X(62624)}}, {{A, B, C, X(51405), X(54607)}}, {{A, B, C, X(54803), X(60872)}}
X(65326) lies on the MacBeath circumconic and on these lines: {2, 18315}, {5, 49}, {94, 275}, {97, 343}, {125, 15958}, {288, 30529}, {328, 57875}, {476, 1298}, {651, 24149}, {858, 54062}, {933, 3448}, {1332, 42698}, {1813, 52381}, {1993, 16039}, {2413, 57647}, {3484, 50435}, {3580, 46064}, {3629, 65322}, {4563, 28706}, {5449, 46089}, {5889, 34304}, {8884, 18300}, {13157, 41628}, {14920, 18831}, {15412, 60022}, {18027, 42405}, {18576, 58785}, {19180, 57482}, {19188, 63160}, {20574, 44516}, {25044, 25738}, {34799, 58079}, {37779, 43768}, {38413, 44714}, {38414, 44713}, {39295, 43766}, {43754, 53174}, {44766, 60515}, {51444, 52153}, {59771, 63172}, {60053, 62360}, {62428, 65308}
X(65326) = isogonal conjugate of X(11062)
X(65326) = isotomic conjugate of X(14918)
X(65326) = trilinear pole of line {3, 6368}
X(65326) = perspector of circumconic {{A, B, C, X(57758), X(64516)}}
X(65326) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 11062}, {4, 2290}, {6, 51801}, {19, 1154}, {31, 14918}, {51, 52414}, {53, 6149}, {162, 2081}, {186, 1953}, {323, 2181}, {340, 2179}, {1273, 1973}, {2151, 6116}, {2152, 6117}, {2180, 5962}, {2617, 47230}, {2618, 14591}, {2624, 35360}, {14165, 62266}, {14213, 34397}, {19627, 62273}, {32676, 41078}, {32679, 52604}, {35194, 52413}, {44706, 52418}
X(65326) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 14918}, {3, 11062}, {6, 1154}, {9, 51801}, {125, 2081}, {6337, 1273}, {11077, 54067}, {14993, 53}, {15295, 3199}, {15526, 41078}, {36033, 2290}, {39019, 55132}, {39170, 52945}, {40578, 6116}, {40579, 6117}, {56399, 63735}, {62603, 340}
X(65326) = X(i)-Ceva conjugate of X(j) for these {i, j}: {46138, 1141}
X(65326) = X(i)-cross conjugate of X(j) for these {i, j}: {265, 46138}, {539, 69}, {577, 12028}, {6334, 65273}, {9033, 18831}, {11077, 1141}, {14592, 60053}, {50433, 50463}
X(65326) = pole of line {14592, 65326} with respect to the MacBeath circumconic
X(65326) = pole of line {1154, 11062} with respect to the Stammler hyperbola
X(65326) = pole of line {1141, 18401} with respect to the Steiner circumellipse
X(65326) = pole of line {24978, 34837} with respect to the Steiner inellipse
X(65326) = pole of line {1273, 11062} with respect to the Wallace hyperbola
X(65326) = pole of line {2081, 41078} with respect to the dual conic of polar circle
X(65326) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5)}}, {{A, B, C, X(3), X(567)}}, {{A, B, C, X(4), X(12022)}}, {{A, B, C, X(49), X(394)}}, {{A, B, C, X(54), X(97)}}, {{A, B, C, X(63), X(24149)}}, {{A, B, C, X(69), X(14389)}}, {{A, B, C, X(76), X(41171)}}, {{A, B, C, X(83), X(55978)}}, {{A, B, C, X(94), X(265)}}, {{A, B, C, X(95), X(4993)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(248), X(57407)}}, {{A, B, C, X(276), X(19176)}}, {{A, B, C, X(323), X(11597)}}, {{A, B, C, X(328), X(18883)}}, {{A, B, C, X(401), X(41202)}}, {{A, B, C, X(458), X(54375)}}, {{A, B, C, X(525), X(13582)}}, {{A, B, C, X(801), X(43598)}}, {{A, B, C, X(1073), X(18350)}}, {{A, B, C, X(2052), X(16000)}}, {{A, B, C, X(3519), X(62951)}}, {{A, B, C, X(3521), X(54663)}}, {{A, B, C, X(3615), X(30690)}}, {{A, B, C, X(5392), X(58922)}}, {{A, B, C, X(5486), X(56267)}}, {{A, B, C, X(5504), X(12228)}}, {{A, B, C, X(6288), X(11140)}}, {{A, B, C, X(6504), X(14516)}}, {{A, B, C, X(8796), X(38443)}}, {{A, B, C, X(8836), X(40710)}}, {{A, B, C, X(8838), X(40709)}}, {{A, B, C, X(8901), X(43766)}}, {{A, B, C, X(9033), X(14920)}}, {{A, B, C, X(9289), X(54913)}}, {{A, B, C, X(10272), X(11064)}}, {{A, B, C, X(11538), X(43575)}}, {{A, B, C, X(11564), X(14644)}}, {{A, B, C, X(11801), X(18366)}}, {{A, B, C, X(13434), X(31626)}}, {{A, B, C, X(13579), X(44076)}}, {{A, B, C, X(13585), X(45970)}}, {{A, B, C, X(14376), X(60255)}}, {{A, B, C, X(14542), X(60161)}}, {{A, B, C, X(14643), X(56063)}}, {{A, B, C, X(15077), X(60256)}}, {{A, B, C, X(15740), X(54792)}}, {{A, B, C, X(15749), X(54778)}}, {{A, B, C, X(21400), X(54927)}}, {{A, B, C, X(23236), X(34897)}}, {{A, B, C, X(36296), X(41907)}}, {{A, B, C, X(36297), X(41908)}}, {{A, B, C, X(37669), X(41628)}}, {{A, B, C, X(42313), X(62899)}}, {{A, B, C, X(44877), X(64101)}}, {{A, B, C, X(47388), X(60111)}}, {{A, B, C, X(52668), X(61216)}}, {{A, B, C, X(55980), X(56266)}}, {{A, B, C, X(56071), X(56338)}}, {{A, B, C, X(59763), X(60872)}}, {{A, B, C, X(60034), X(62724)}}
X(65326) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {265, 50463, 1141}, {46138, 65360, 94}
X(65327) lies on the MacBeath circumconic and on these lines: {110, 669}, {287, 12215}, {647, 4563}, {648, 2489}, {651, 4584}, {694, 2987}, {733, 2858}, {880, 2395}, {882, 60054}, {895, 36214}, {1916, 2986}, {3049, 4558}, {3292, 17970}, {9225, 47642}, {9468, 39099}, {15422, 42405}, {32526, 56442}
X(65327) = trilinear pole of line {3, 1808}
X(65327) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 804}, {92, 5027}, {242, 57234}, {419, 661}, {523, 56828}, {659, 1840}, {798, 17984}, {811, 2086}, {862, 4369}, {1096, 24284}, {1577, 44089}, {1580, 2501}, {1691, 24006}, {1824, 4107}, {1826, 4164}, {1874, 3287}, {1926, 57204}, {1933, 14618}, {1966, 2489}, {1973, 14295}, {2201, 2533}, {2238, 54229}, {2295, 65106}, {2333, 14296}, {2395, 56679}, {4010, 7119}, {4039, 6591}, {7009, 21832}, {8754, 56982}, {11183, 36128}, {56788, 62720}
X(65327) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 804}, {6337, 14295}, {6503, 24284}, {9467, 2489}, {17423, 2086}, {22391, 5027}, {31998, 17984}, {36830, 419}, {39092, 2501}, {47648, 16230}
X(65327) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18829, 805}, {39292, 40708}
X(65327) = X(i)-cross conjugate of X(j) for these {i, j}: {647, 15391}, {878, 43705}, {39469, 69}
X(65327) = pole of line {237, 19599} with respect to the Kiepert parabola
X(65327) = pole of line {804, 12829} with respect to the Stammler hyperbola
X(65327) = pole of line {14295, 24284} with respect to the Wallace hyperbola
X(65327) = pole of line {232, 46236} with respect to the dual conic of Jerabek hyperbola
X(65327) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(53893)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(647), X(669)}}, {{A, B, C, X(805), X(65351)}}, {{A, B, C, X(880), X(12215)}}, {{A, B, C, X(886), X(43714)}}, {{A, B, C, X(1576), X(43188)}}, {{A, B, C, X(2396), X(36212)}}, {{A, B, C, X(2713), X(53202)}}, {{A, B, C, X(5111), X(56389)}}, {{A, B, C, X(14586), X(55189)}}, {{A, B, C, X(15391), X(17938)}}, {{A, B, C, X(18878), X(56004)}}, {{A, B, C, X(19599), X(65277)}}, {{A, B, C, X(30530), X(60610)}}, {{A, B, C, X(32661), X(52608)}}
X(65327) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17938, 46161, 805}
X(65328) lies on the MacBeath circumconic and on these lines: {99, 17708}, {110, 9208}, {184, 895}, {287, 37638}, {598, 2986}, {648, 35138}, {1383, 2987}, {1915, 30489}, {5986, 10511}, {7812, 64973}, {8593, 14567}, {8599, 44768}, {15534, 20380}, {30491, 32661}, {44555, 51541}, {46001, 60054}
X(65328) = trilinear pole of line {3, 22087}
X(65328) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 3906}, {92, 17414}, {162, 8288}, {574, 24006}, {661, 5094}, {1577, 8541}, {2501, 36263}, {8061, 32581}
X(65328) = X(i)-vertex conjugate of X(j) for these {i, j}: {32734, 65321}
X(65328) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 3906}, {125, 8288}, {22391, 17414}, {36830, 5094}
X(65328) = X(i)-Ceva conjugate of X(j) for these {i, j}: {35138, 11636}
X(65328) = X(i)-cross conjugate of X(j) for these {i, j}: {30491, 43697}, {41614, 249}
X(65328) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(6233)}}, {{A, B, C, X(99), X(1799)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(184), X(32661)}}, {{A, B, C, X(647), X(9208)}}, {{A, B, C, X(2421), X(37638)}}, {{A, B, C, X(2966), X(58994)}}, {{A, B, C, X(9145), X(55977)}}, {{A, B, C, X(26714), X(32662)}}, {{A, B, C, X(32697), X(53958)}}, {{A, B, C, X(33640), X(43188)}}, {{A, B, C, X(44116), X(61213)}}, {{A, B, C, X(52153), X(59136)}}, {{A, B, C, X(52608), X(58121)}}
X(65328) = barycentric product X(i)*X(j) for these (i, j): {3, 35138}, {110, 64982}, {1383, 4563}, {4558, 598}, {4577, 65006}, {4592, 55927}, {11636, 69}, {17932, 52692}, {23297, 65307}, {30491, 4590}, {32661, 40826}, {37804, 58953}, {43697, 99}, {46001, 47389}, {51541, 65321}
X(65328) = barycentric quotient X(i)/X(j) for these (i, j): {3, 3906}, {110, 5094}, {184, 17414}, {598, 14618}, {647, 8288}, {827, 32581}, {895, 23288}, {1383, 2501}, {1576, 8541}, {4558, 599}, {4563, 9464}, {4575, 36263}, {8599, 2970}, {11636, 4}, {23200, 62412}, {30491, 115}, {32661, 574}, {35138, 264}, {43697, 523}, {46001, 8754}, {47390, 9145}, {52692, 16230}, {55927, 24006}, {58953, 8791}, {64982, 850}, {65006, 826}, {65307, 10130}, {65321, 42008}
X(65329) lies on these lines: {80, 62742}, {92, 14628}, {107, 2222}, {243, 14204}, {648, 35174}, {653, 655}, {823, 16813}, {1807, 8764}, {1895, 59283}, {1897, 44426}, {2006, 16082}, {6335, 36804}, {6336, 37790}, {7012, 24006}, {16080, 60091}, {16577, 65359}, {18359, 52780}, {18815, 37805}, {24035, 53811}, {37770, 37799}, {46405, 65341}, {52167, 60845}, {52351, 65342}, {52391, 57732}, {54235, 64835}, {55238, 65343}
X(65329) = trilinear pole of line {4, 80}
X(65329) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 654}, {9, 22379}, {36, 652}, {48, 3738}, {63, 8648}, {78, 21758}, {184, 3904}, {212, 3960}, {219, 53314}, {222, 53285}, {255, 65104}, {283, 21828}, {394, 58313}, {521, 7113}, {577, 44428}, {650, 52407}, {656, 4282}, {663, 22128}, {822, 17515}, {905, 2361}, {906, 53525}, {1443, 65102}, {1459, 2323}, {1464, 23090}, {1789, 2624}, {1790, 53562}, {1795, 53046}, {1807, 57174}, {1870, 36054}, {1946, 3218}, {1983, 7004}, {2169, 2600}, {2193, 53527}, {2245, 23189}, {2252, 61043}, {2720, 38353}, {4025, 52426}, {4091, 52427}, {4453, 52425}, {4511, 22383}, {6332, 52434}, {6369, 14533}, {14418, 16944}, {18593, 57134}, {22086, 62703}, {22342, 62746}, {22346, 62750}, {44706, 62734}, {46391, 58741}, {52413, 57241}, {52440, 57055}, {61054, 65162}
X(65329) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 22379}, {1249, 3738}, {3162, 8648}, {5190, 53525}, {6523, 65104}, {13999, 35128}, {14363, 2600}, {15898, 652}, {25640, 53046}, {36103, 654}, {36909, 57055}, {38981, 38353}, {39053, 3218}, {39060, 320}, {40596, 4282}, {40837, 3960}, {47345, 53527}, {56416, 14418}, {62602, 4453}, {62605, 3904}
X(65329) = X(i)-cross conjugate of X(j) for these {i, j}: {1784, 24032}, {2222, 35174}, {37799, 46102}, {52356, 18815}, {65104, 4}
X(65329) = pole of line {35128, 53046} with respect to the polar circle
X(65329) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37136)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(643), X(56248)}}, {{A, B, C, X(651), X(15455)}}, {{A, B, C, X(655), X(36804)}}, {{A, B, C, X(2222), X(65299)}}, {{A, B, C, X(17924), X(44426)}}, {{A, B, C, X(35174), X(57645)}}, {{A, B, C, X(36039), X(56232)}}, {{A, B, C, X(53211), X(60041)}}
X(65329) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {62735, 65299, 35174}
X(65330) lies on these lines: {19, 56972}, {27, 52037}, {34, 7020}, {84, 62742}, {92, 41081}, {107, 8059}, {108, 58990}, {189, 278}, {243, 52007}, {273, 282}, {648, 1414}, {651, 1897}, {653, 934}, {664, 6335}, {1422, 16082}, {1433, 8764}, {1440, 7003}, {1903, 57737}, {2262, 63186}, {2358, 65352}, {4625, 6331}, {4626, 13149}, {6336, 55110}, {7129, 54235}, {8808, 16080}, {34056, 40836}, {36048, 36049}, {36118, 54240}, {36146, 65333}, {41906, 58984}, {55242, 65343}, {58995, 65362}, {65173, 65337}, {65174, 65355}
X(65330) = isogonal conjugate of X(10397)
X(65330) = isotomic conjugate of X(57245)
X(65330) = trilinear pole of line {4, 57}
X(65330) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 10397}, {3, 14298}, {6, 57101}, {31, 57245}, {33, 57233}, {40, 652}, {42, 57213}, {48, 8058}, {55, 64885}, {196, 58340}, {198, 521}, {208, 57057}, {212, 14837}, {219, 6129}, {221, 57055}, {223, 57108}, {227, 23090}, {283, 55212}, {329, 1946}, {347, 65102}, {513, 55111}, {603, 57049}, {650, 7078}, {651, 47432}, {657, 7013}, {661, 1819}, {663, 64082}, {667, 55112}, {692, 16596}, {810, 27398}, {905, 7074}, {906, 38357}, {1415, 7358}, {1459, 2324}, {1783, 55044}, {2187, 6332}, {2289, 54239}, {2331, 57241}, {2360, 8611}, {3239, 7114}, {3270, 65159}, {3900, 7011}, {4091, 40971}, {5514, 36059}, {6056, 59935}, {7080, 22383}, {7952, 36054}, {15501, 52307}, {17896, 52425}, {21871, 23189}, {23224, 55116}, {34591, 57118}, {57134, 64708}, {57180, 57479}
X(65330) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 57245}, {3, 10397}, {9, 57101}, {223, 64885}, {278, 8063}, {1015, 53557}, {1086, 16596}, {1146, 7358}, {1249, 8058}, {3341, 57055}, {5190, 38357}, {6631, 55112}, {7952, 57049}, {20620, 5514}, {36103, 14298}, {36830, 1819}, {38991, 47432}, {39006, 55044}, {39026, 55111}, {39053, 329}, {39060, 322}, {39062, 27398}, {40592, 57213}, {40616, 55058}, {40837, 14837}, {55058, 55063}, {62602, 17896}
X(65330) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65270, 653}
X(65330) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {8064, 34188}
X(65330) = X(i)-cross conjugate of X(j) for these {i, j}: {514, 189}, {522, 273}, {905, 27}, {1459, 56972}, {3064, 7020}, {6129, 63186}, {8059, 53642}, {21172, 7}, {32714, 653}, {36127, 36118}, {40117, 65213}
X(65330) = pole of line {5514, 13612} with respect to the polar circle
X(65330) = pole of line {653, 13138} with respect to the Steiner circumellipse
X(65330) = pole of line {6223, 56943} with respect to the Yff parabola
X(65330) = pole of line {10397, 57213} with respect to the Wallace hyperbola
X(65330) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(92), X(2405)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(190), X(41906)}}, {{A, B, C, X(278), X(23987)}}, {{A, B, C, X(514), X(26932)}}, {{A, B, C, X(522), X(55144)}}, {{A, B, C, X(643), X(65216)}}, {{A, B, C, X(645), X(60487)}}, {{A, B, C, X(651), X(664)}}, {{A, B, C, X(658), X(14544)}}, {{A, B, C, X(662), X(43346)}}, {{A, B, C, X(1332), X(37136)}}, {{A, B, C, X(13138), X(37141)}}, {{A, B, C, X(32714), X(36127)}}, {{A, B, C, X(38340), X(50392)}}, {{A, B, C, X(57215), X(60482)}}
X(65331) lies on the Moses-Feuerbach circumconic and on these lines: {104, 62742}, {107, 2720}, {109, 522}, {278, 40218}, {514, 653}, {648, 4560}, {651, 4391}, {685, 60568}, {885, 14776}, {929, 59103}, {1462, 54235}, {1795, 8764}, {2401, 2405}, {4573, 6331}, {4581, 52928}, {4617, 13149}, {6336, 60578}, {7316, 17983}, {16080, 37799}, {16082, 34051}, {17923, 34050}, {17924, 23984}, {24035, 53811}, {32641, 32651}, {36123, 60579}, {37805, 52663}, {38828, 65337}, {39294, 60480}, {40577, 44699}, {43728, 60583}, {44356, 52781}, {54368, 62745}, {55259, 65343}, {60479, 65335}, {60577, 65338}, {65162, 65344}, {65302, 65342}
X(65331) = isogonal conjugate of X(52307)
X(65331) = trilinear pole of line {4, 11}
X(65331) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52307}, {3, 46393}, {9, 8677}, {48, 2804}, {63, 53549}, {78, 3310}, {101, 35014}, {212, 10015}, {219, 1769}, {312, 23220}, {517, 652}, {521, 2183}, {649, 51379}, {650, 22350}, {657, 62402}, {859, 8611}, {906, 35015}, {908, 1946}, {1457, 57055}, {1465, 57108}, {1785, 36054}, {1795, 60339}, {1807, 53046}, {1875, 57057}, {2222, 38353}, {2289, 39534}, {2427, 7004}, {3270, 24029}, {4587, 42753}, {4895, 57478}, {6735, 22383}, {14260, 14418}, {14571, 57241}, {21801, 23189}, {22464, 65102}, {23706, 35072}, {23788, 52370}, {23980, 37628}, {23981, 34591}, {36038, 52425}, {37136, 41215}, {41220, 65223}, {42761, 65375}
X(65331) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52307}, {478, 8677}, {1015, 35014}, {1249, 2804}, {3162, 53549}, {5190, 35015}, {5375, 51379}, {25640, 60339}, {36103, 46393}, {38984, 38353}, {39053, 908}, {39060, 3262}, {40622, 42761}, {40837, 10015}, {62602, 36038}
X(65331) = X(i)-cross conjugate of X(j) for these {i, j}: {1870, 55346}, {2401, 16082}, {2405, 54240}, {2720, 54953}, {18838, 4998}, {21786, 28}, {23987, 36118}, {30725, 278}, {37790, 46102}, {44428, 273}, {53522, 7}
X(65331) = pole of line {35015, 55153} with respect to the polar circle
X(65331) = pole of line {2406, 43737} with respect to the Steiner circumellipse
X(65331) = intersection, other than A, B, C, of circumconics {{A, B, C, X(107), X(648)}}, {{A, B, C, X(109), X(651)}}, {{A, B, C, X(514), X(522)}}, {{A, B, C, X(645), X(65216)}}, {{A, B, C, X(1172), X(40116)}}, {{A, B, C, X(1783), X(59084)}}, {{A, B, C, X(7012), X(7128)}}, {{A, B, C, X(13136), X(36037)}}, {{A, B, C, X(14546), X(36098)}}, {{A, B, C, X(17923), X(24035)}}, {{A, B, C, X(23353), X(54407)}}, {{A, B, C, X(37139), X(47318)}}, {{A, B, C, X(37141), X(44765)}}, {{A, B, C, X(40395), X(65263)}}
X(65332) lies on these lines: {92, 16081}, {107, 29055}, {108, 30670}, {162, 685}, {243, 41532}, {256, 62742}, {257, 52780}, {278, 17082}, {648, 4603}, {653, 37137}, {1432, 16082}, {1897, 3903}, {6331, 7260}, {6335, 27805}, {7015, 8764}, {7249, 52781}, {16080, 60245}, {19637, 52167}, {61178, 65338}, {61180, 65209}
X(65332) = trilinear pole of line {4, 240}
X(65332) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 3287}, {9, 22093}, {48, 3907}, {78, 20981}, {171, 652}, {172, 521}, {212, 4369}, {219, 4367}, {222, 4477}, {283, 57234}, {345, 56242}, {603, 4529}, {645, 22373}, {650, 3955}, {810, 27958}, {822, 14006}, {894, 1946}, {905, 2330}, {906, 4459}, {1437, 4140}, {1459, 2329}, {1812, 7234}, {2193, 2533}, {2289, 54229}, {2295, 23189}, {2318, 18200}, {3737, 22061}, {4032, 57134}, {4374, 52425}, {4558, 40608}, {4579, 7117}, {4587, 53541}, {6332, 7122}, {7009, 36054}, {7081, 22383}, {7119, 57241}, {7175, 57108}, {7176, 65102}, {15373, 30584}, {17212, 52370}
X(65332) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 22093}, {1249, 3907}, {5190, 4459}, {7952, 4529}, {16591, 24284}, {36103, 3287}, {39053, 894}, {39060, 1909}, {39062, 27958}, {40837, 4369}, {47345, 2533}, {62602, 4374}
X(65332) = X(i)-cross conjugate of X(j) for these {i, j}: {17442, 7012}, {29055, 65289}
X(65332) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(55211)}}, {{A, B, C, X(92), X(162)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(108), X(46404)}}, {{A, B, C, X(226), X(26700)}}, {{A, B, C, X(278), X(61178)}}, {{A, B, C, X(651), X(1978)}}, {{A, B, C, X(658), X(35148)}}, {{A, B, C, X(3903), X(4603)}}, {{A, B, C, X(4637), X(44733)}}
X(65333) lies on these lines: {4, 56850}, {33, 6654}, {100, 25009}, {105, 243}, {107, 919}, {108, 927}, {242, 52480}, {294, 62742}, {297, 56855}, {458, 60857}, {648, 666}, {653, 7012}, {673, 1861}, {885, 14776}, {1897, 3064}, {5236, 54234}, {5377, 65344}, {6331, 36797}, {6335, 15742}, {6336, 23710}, {8756, 65340}, {13576, 16080}, {14775, 52927}, {14942, 52780}, {16081, 56853}, {18026, 34085}, {18344, 46102}, {26704, 65371}, {31905, 52209}, {36146, 65330}, {46163, 65349}, {51560, 65341}, {53151, 63745}
X(65333) = isogonal conjugate of X(53550)
X(65333) = trilinear pole of line {4, 218}
X(65333) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 53550}, {3, 2254}, {48, 918}, {63, 665}, {75, 23225}, {77, 926}, {78, 53539}, {212, 43042}, {219, 53544}, {228, 23829}, {241, 652}, {283, 53551}, {348, 46388}, {513, 1818}, {514, 20752}, {518, 1459}, {520, 54407}, {521, 1458}, {603, 50333}, {647, 18206}, {656, 3286}, {672, 905}, {810, 30941}, {822, 15149}, {876, 20778}, {1025, 7117}, {1026, 3937}, {1331, 3675}, {1362, 23696}, {1437, 4088}, {1565, 54325}, {1790, 24290}, {1795, 42758}, {1807, 53555}, {1813, 17435}, {1861, 23224}, {1876, 57241}, {1946, 9436}, {2196, 62552}, {2223, 4025}, {2283, 7004}, {2284, 3942}, {2356, 4131}, {3049, 18157}, {3126, 36057}, {3270, 41353}, {3912, 22383}, {3930, 7254}, {4091, 5089}, {5236, 36054}, {6332, 52635}, {7015, 53553}, {7100, 53554}, {7177, 52614}, {7182, 8638}, {8677, 36819}, {9454, 15413}, {15419, 39258}, {18210, 54353}, {20749, 35355}, {22116, 22384}, {22350, 57468}, {32656, 62429}, {32658, 53583}, {34230, 53532}, {34855, 57108}, {37628, 53548}, {62786, 65102}
X(65333) = X(i)-vertex conjugate of X(j) for these {i, j}: {28, 32641}, {56, 54953}, {4238, 32644}
X(65333) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 53550}, {206, 23225}, {1249, 918}, {3162, 665}, {5375, 25083}, {5521, 3675}, {7952, 50333}, {20621, 3126}, {25640, 42758}, {33675, 15413}, {36103, 2254}, {39026, 1818}, {39052, 18206}, {39053, 9436}, {39060, 40704}, {39062, 30941}, {40596, 3286}, {40837, 43042}, {62554, 905}, {62599, 4025}
X(65333) = X(i)-cross conjugate of X(j) for these {i, j}: {242, 15742}, {919, 666}, {4250, 162}, {5089, 46102}, {28132, 673}, {41321, 653}
X(65333) = pole of line {3126, 3675} with respect to the polar circle
X(65333) = pole of line {20778, 23225} with respect to the Stammler hyperbola
X(65333) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(929)}}, {{A, B, C, X(21), X(14733)}}, {{A, B, C, X(101), X(54952)}}, {{A, B, C, X(105), X(32735)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(108), X(8750)}}, {{A, B, C, X(242), X(54407)}}, {{A, B, C, X(243), X(23353)}}, {{A, B, C, X(644), X(1305)}}, {{A, B, C, X(651), X(9057)}}, {{A, B, C, X(666), X(36803)}}, {{A, B, C, X(673), X(56786)}}, {{A, B, C, X(677), X(2346)}}, {{A, B, C, X(835), X(4606)}}, {{A, B, C, X(927), X(36086)}}, {{A, B, C, X(943), X(32641)}}, {{A, B, C, X(1309), X(5379)}}, {{A, B, C, X(1783), X(26705)}}, {{A, B, C, X(1861), X(41321)}}, {{A, B, C, X(2218), X(32675)}}, {{A, B, C, X(2222), X(39026)}}, {{A, B, C, X(2398), X(26001)}}, {{A, B, C, X(2402), X(25009)}}, {{A, B, C, X(3064), X(7649)}}, {{A, B, C, X(4241), X(26003)}}, {{A, B, C, X(4246), X(62971)}}, {{A, B, C, X(6606), X(37138)}}, {{A, B, C, X(8708), X(55181)}}, {{A, B, C, X(8756), X(23710)}}, {{A, B, C, X(9311), X(60487)}}, {{A, B, C, X(36084), X(40412)}}, {{A, B, C, X(56850), X(63745)}}, {{A, B, C, X(58993), X(65201)}}, {{A, B, C, X(59038), X(65225)}}
X(65334) lies on these lines: {101, 653}, {107, 15439}, {294, 54235}, {644, 6335}, {645, 6331}, {648, 4552}, {651, 13149}, {943, 62742}, {1783, 54240}, {1794, 8764}, {1897, 3939}, {2311, 65352}, {2316, 6336}, {2338, 40942}, {2341, 40395}, {2982, 16082}, {4845, 65340}, {5547, 17983}, {5548, 65336}, {14775, 52927}, {15627, 16080}, {15628, 16081}, {15629, 40435}, {32641, 32651}, {36048, 36049}
X(65334) = isogonal conjugate of X(52306)
X(65334) = trilinear pole of line {4, 12}
X(65334) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52306}, {77, 33525}, {219, 50354}, {514, 23207}, {520, 46884}, {521, 2260}, {522, 14597}, {647, 54356}, {650, 4303}, {652, 942}, {656, 46882}, {663, 18607}, {905, 14547}, {1021, 39791}, {1364, 61236}, {1459, 40937}, {1838, 36054}, {1841, 57241}, {1859, 4091}, {1946, 5249}, {2193, 23752}, {2294, 23189}, {3737, 18591}, {3937, 61233}, {6056, 23595}, {6332, 40956}, {6734, 22383}, {7004, 61197}, {7117, 61220}, {7252, 56839}, {7254, 40967}, {8021, 51664}, {41214, 65217}, {55010, 57134}, {62779, 65102}
X(65334) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52306}, {39052, 54356}, {39053, 5249}, {40596, 46882}, {47345, 23752}
X(65334) = X(i)-cross conjugate of X(j) for these {i, j}: {1172, 7012}, {6198, 55346}, {15439, 54952}, {40149, 46102}, {41538, 4998}, {56320, 40447}
X(65334) = intersection, other than A, B, C, of circumconics {{A, B, C, X(101), X(294)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(655), X(4552)}}, {{A, B, C, X(823), X(1309)}}, {{A, B, C, X(2982), X(32651)}}, {{A, B, C, X(4573), X(65216)}}, {{A, B, C, X(37141), X(43190)}}, {{A, B, C, X(44765), X(56235)}}
X(65334) = barycentric product X(i)*X(j) for these (i, j): {4, 54952}, {108, 40422}, {190, 40573}, {318, 36048}, {1794, 52938}, {1897, 60041}, {2259, 46404}, {2982, 6335}, {14775, 4998}, {15439, 264}, {18026, 943}, {32651, 7017}, {35320, 40440}, {36797, 52560}, {40395, 4552}, {40412, 61178}, {40435, 653}, {40447, 651}, {46102, 56320}, {58993, 8}, {60188, 648}, {65217, 92}
X(65334) = barycentric quotient X(i)/X(j) for these (i, j): {6, 52306}, {34, 50354}, {108, 942}, {109, 4303}, {112, 46882}, {162, 54356}, {225, 23752}, {607, 33525}, {651, 18607}, {653, 5249}, {692, 23207}, {943, 521}, {1175, 23189}, {1415, 14597}, {1783, 40937}, {1794, 57241}, {1897, 6734}, {2259, 652}, {2982, 905}, {4551, 56839}, {4559, 18591}, {7012, 61220}, {7115, 61197}, {8750, 14547}, {14775, 11}, {15439, 3}, {15742, 65197}, {24019, 46884}, {32651, 222}, {32674, 2260}, {35320, 44706}, {36048, 77}, {36118, 62779}, {36127, 1838}, {36797, 51978}, {40395, 4560}, {40422, 35518}, {40435, 6332}, {40447, 4391}, {40570, 7252}, {40573, 514}, {46102, 65205}, {52560, 17094}, {52607, 55010}, {53321, 39791}, {53323, 37993}, {54952, 69}, {56183, 64171}, {56320, 26932}, {58993, 7}, {59060, 56269}, {60041, 4025}, {60188, 525}, {61178, 442}, {65217, 63}
X(65334) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {653, 65217, 58993}
X(65335) lies on these lines: {107, 14733}, {243, 1156}, {648, 17926}, {653, 3064}, {685, 32728}, {1121, 52780}, {1897, 46102}, {5236, 6336}, {8764, 60047}, {13149, 17924}, {16082, 34056}, {17923, 52781}, {17983, 17985}, {23710, 37769}, {24032, 54240}, {37790, 54235}, {37805, 46644}, {41207, 62757}, {60479, 65331}
X(65335) = trilinear pole of line {4, 653}
X(65335) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 14414}, {48, 6366}, {63, 6139}, {212, 1638}, {219, 14413}, {222, 14392}, {521, 1055}, {527, 1946}, {647, 62756}, {652, 1155}, {663, 6510}, {822, 52891}, {1323, 65102}, {1459, 6603}, {2193, 30574}, {3270, 23890}, {6610, 57108}, {6745, 22383}, {23224, 60431}, {23346, 34591}, {23710, 36054}, {33573, 36059}
X(65335) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 14414}, {1249, 6366}, {3162, 6139}, {20620, 33573}, {39052, 62756}, {39053, 527}, {39060, 30806}, {40837, 1638}, {47345, 30574}
X(65335) = X(i)-cross conjugate of X(j) for these {i, j}: {14733, 35157}, {23710, 55346}, {63748, 62723}
X(65335) = pole of line {33573, 35091} with respect to the polar circle
X(65335) = intersection, other than A, B, C, of circumconics {{A, B, C, X(92), X(1309)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(243), X(62757)}}, {{A, B, C, X(658), X(42343)}}, {{A, B, C, X(3064), X(17924)}}, {{A, B, C, X(4624), X(32038)}}, {{A, B, C, X(5236), X(37790)}}, {{A, B, C, X(24032), X(41207)}}, {{A, B, C, X(36129), X(40395)}}, {{A, B, C, X(37139), X(60487)}}
X(65335) = barycentric product X(i)*X(j) for these (i, j): {281, 60487}, {664, 65340}, {1121, 653}, {1156, 18026}, {1897, 62723}, {1969, 36141}, {2052, 65304}, {2291, 46404}, {13149, 41798}, {14733, 264}, {18022, 32728}, {21666, 59105}, {34056, 6335}, {35157, 4}, {37139, 92}, {46102, 60479}, {52938, 60047}, {55346, 63748}, {61493, 65270}, {62764, 811}, {63857, 65295}
X(65335) = barycentric quotient X(i)/X(j) for these (i, j): {1, 14414}, {4, 6366}, {25, 6139}, {33, 14392}, {34, 14413}, {107, 52891}, {108, 1155}, {162, 62756}, {225, 30574}, {278, 1638}, {651, 6510}, {653, 527}, {1121, 6332}, {1156, 521}, {1783, 6603}, {1877, 30573}, {1897, 6745}, {2291, 652}, {3064, 33573}, {4845, 57108}, {7128, 23890}, {8735, 52334}, {13149, 37780}, {14733, 3}, {18026, 30806}, {18889, 65102}, {23351, 3270}, {23710, 62579}, {23893, 34591}, {23987, 51408}, {32674, 1055}, {32714, 6610}, {32728, 184}, {34056, 905}, {34068, 1946}, {35157, 69}, {35348, 7004}, {36118, 1323}, {36127, 23710}, {36141, 48}, {37139, 63}, {40117, 56763}, {41798, 57055}, {54240, 37805}, {55346, 56543}, {60047, 57241}, {60479, 26932}, {60487, 348}, {61493, 64885}, {62723, 4025}, {62764, 656}, {63748, 2968}, {63857, 39471}, {65304, 394}, {65340, 522}
X(65336) lies on these lines: {2, 65345}, {88, 16082}, {107, 901}, {190, 65337}, {242, 36125}, {243, 14193}, {648, 4555}, {653, 3257}, {685, 32719}, {903, 52781}, {1320, 62742}, {1861, 65340}, {1897, 7649}, {1981, 23598}, {4080, 16080}, {4582, 6335}, {4997, 52780}, {5376, 65344}, {5548, 65334}, {6336, 8756}, {10015, 13136}, {13149, 62532}, {15466, 57478}, {17927, 17983}, {19634, 52167}, {37805, 54235}, {39294, 60480}, {46162, 65349}, {52925, 61180}, {57456, 65162}, {61179, 65343}
X(65336) = isogonal conjugate of X(22086)
X(65336) = trilinear pole of line {4, 145}
X(65336) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 22086}, {3, 1635}, {6, 53532}, {44, 1459}, {48, 900}, {56, 14418}, {63, 1960}, {184, 3762}, {212, 30725}, {219, 53528}, {222, 4895}, {513, 22356}, {514, 23202}, {519, 22383}, {521, 1404}, {603, 1639}, {647, 52680}, {649, 5440}, {652, 1319}, {656, 3285}, {667, 3977}, {810, 16704}, {822, 37168}, {902, 905}, {906, 1647}, {1022, 22371}, {1023, 3937}, {1331, 2087}, {1333, 14429}, {1437, 4120}, {1444, 14407}, {1790, 4730}, {1797, 3251}, {1877, 36054}, {1946, 3911}, {2193, 30572}, {2196, 4448}, {2251, 4025}, {3049, 30939}, {3942, 23344}, {4528, 7099}, {4530, 36059}, {4768, 52411}, {4922, 7116}, {6544, 36058}, {7004, 61210}, {7053, 14427}, {7117, 23703}, {7254, 21805}, {8756, 23224}, {9459, 15413}, {14408, 23086}, {14578, 23757}, {22096, 24004}, {30576, 55230}, {36037, 47420}, {38266, 39472}, {43924, 52978}, {52431, 53535}, {62789, 65102}
X(65336) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 14418}, {3, 22086}, {9, 53532}, {37, 14429}, {1249, 900}, {3162, 1960}, {3259, 47420}, {5190, 1647}, {5375, 5440}, {5521, 2087}, {6631, 3977}, {7952, 1639}, {9460, 4025}, {20619, 6544}, {20620, 4530}, {23050, 14427}, {36103, 1635}, {39026, 22356}, {39052, 52680}, {39053, 3911}, {39062, 16704}, {40594, 905}, {40595, 1459}, {40596, 3285}, {40837, 30725}, {45247, 52307}, {47345, 30572}, {53985, 35092}, {62582, 6332}, {62605, 3762}
X(65336) = X(i)-cross conjugate of X(j) for these {i, j}: {901, 4555}, {1309, 65295}, {1785, 55346}, {8756, 15742}, {17923, 46102}, {23678, 75}, {35013, 46136}, {39534, 264}, {43933, 46133}, {53151, 18026}, {65162, 648}
X(65336) = pole of line {1647, 2087} with respect to the polar circle
X(65336) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(655)}}, {{A, B, C, X(75), X(927)}}, {{A, B, C, X(86), X(35157)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(190), X(8706)}}, {{A, B, C, X(666), X(36804)}}, {{A, B, C, X(1268), X(57928)}}, {{A, B, C, X(1309), X(17923)}}, {{A, B, C, X(1861), X(37805)}}, {{A, B, C, X(3257), X(4582)}}, {{A, B, C, X(4555), X(57788)}}, {{A, B, C, X(5936), X(51568)}}, {{A, B, C, X(6648), X(15455)}}, {{A, B, C, X(7649), X(17924)}}, {{A, B, C, X(8709), X(54979)}}, {{A, B, C, X(14534), X(32680)}}, {{A, B, C, X(15742), X(39294)}}, {{A, B, C, X(17906), X(52607)}}, {{A, B, C, X(31643), X(58000)}}, {{A, B, C, X(37140), X(60235)}}, {{A, B, C, X(37143), X(50039)}}, {{A, B, C, X(38340), X(56188)}}, {{A, B, C, X(53225), X(55955)}}
X(65337) lies on these lines: {2, 6336}, {4, 31316}, {107, 1293}, {190, 65336}, {281, 27817}, {297, 17951}, {450, 17978}, {458, 60865}, {468, 17988}, {648, 53647}, {653, 27834}, {1897, 17780}, {2415, 65160}, {3680, 62742}, {4052, 16080}, {4373, 52283}, {5382, 65344}, {6331, 55262}, {6335, 24004}, {6557, 52780}, {8056, 16082}, {11109, 36872}, {17555, 52746}, {17983, 52747}, {26003, 46797}, {27819, 54235}, {27833, 54240}, {38828, 65331}, {65173, 65330}
X(65337) = trilinear pole of line {4, 3680}
X(65337) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 4394}, {48, 3667}, {63, 8643}, {145, 22383}, {184, 4462}, {212, 30719}, {219, 51656}, {222, 4162}, {513, 20818}, {603, 4521}, {647, 16948}, {649, 4855}, {652, 1420}, {656, 33628}, {810, 41629}, {822, 4248}, {905, 3052}, {906, 3756}, {1437, 14321}, {1459, 1743}, {1790, 4729}, {1946, 5435}, {2196, 53580}, {2403, 23202}, {2441, 5440}, {3937, 57192}, {4504, 7116}, {4534, 36059}, {4546, 7099}, {4574, 18211}, {4575, 21950}, {4849, 7254}, {4925, 32658}, {4939, 32660}, {9456, 39472}, {14425, 36058}, {44722, 57181}, {52354, 57129}, {62787, 65102}
X(65337) = X(i)-Dao conjugate of X(j) for these {i, j}: {136, 21950}, {1249, 3667}, {3162, 8643}, {4370, 39472}, {5190, 3756}, {5375, 4855}, {7952, 4521}, {20619, 14425}, {20620, 4534}, {24151, 905}, {36103, 4394}, {39026, 20818}, {39052, 16948}, {39053, 5435}, {39060, 39126}, {39062, 41629}, {40596, 33628}, {40837, 30719}, {62575, 4025}, {62605, 4462}
X(65337) = X(i)-cross conjugate of X(j) for these {i, j}: {1293, 53647}, {17917, 46102}, {21129, 46109}, {55134, 903}, {65160, 1897}
X(65337) = pole of line {3756, 4534} with respect to the polar circle
X(65337) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(190)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(525), X(9524)}}, {{A, B, C, X(646), X(37206)}}, {{A, B, C, X(655), X(44327)}}, {{A, B, C, X(658), X(56188)}}, {{A, B, C, X(4241), X(52283)}}, {{A, B, C, X(8056), X(38828)}}, {{A, B, C, X(17906), X(36118)}}, {{A, B, C, X(27834), X(31316)}}, {{A, B, C, X(36037), X(56235)}}, {{A, B, C, X(37139), X(46640)}}, {{A, B, C, X(42343), X(42408)}}
X(65338) lies on these lines: {107, 813}, {108, 8684}, {162, 42396}, {243, 14200}, {291, 16082}, {335, 52781}, {648, 4562}, {653, 660}, {1861, 33676}, {1897, 6591}, {4518, 52780}, {4583, 65341}, {4876, 62742}, {5378, 65344}, {6335, 7649}, {15149, 17927}, {16080, 43534}, {52167, 60844}, {60577, 65331}, {61178, 65332}, {61180, 65210}
X(65338) = isogonal conjugate of X(22384)
X(65338) = trilinear pole of line {4, 1840}
X(65338) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 22384}, {3, 659}, {48, 812}, {58, 53556}, {63, 8632}, {71, 50456}, {184, 3766}, {212, 43041}, {222, 4435}, {238, 1459}, {239, 22383}, {242, 23224}, {255, 65106}, {513, 7193}, {521, 1428}, {603, 3716}, {649, 20769}, {652, 1429}, {656, 5009}, {810, 33295}, {822, 31905}, {874, 22096}, {905, 1914}, {906, 27918}, {1027, 20778}, {1284, 23189}, {1331, 27846}, {1333, 24459}, {1437, 4010}, {1444, 4455}, {1447, 1946}, {1790, 21832}, {2193, 7212}, {2196, 4375}, {2201, 4091}, {2210, 4025}, {2238, 7254}, {3049, 30940}, {3573, 3937}, {4107, 7116}, {4124, 36059}, {4131, 57654}, {4148, 7099}, {4164, 7015}, {4448, 36058}, {4558, 39786}, {9247, 65101}, {14024, 51640}, {14599, 15413}, {15419, 41333}, {17972, 38348}, {18786, 22093}, {22090, 34252}, {22379, 36815}, {23696, 51329}, {25098, 51321}, {32658, 62552}, {34055, 46387}, {62785, 65102}
X(65338) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 22384}, {10, 53556}, {37, 24459}, {1249, 812}, {3162, 8632}, {5190, 27918}, {5375, 20769}, {5521, 27846}, {6523, 65106}, {7952, 3716}, {9470, 1459}, {16587, 24284}, {20619, 4448}, {20620, 4124}, {36103, 659}, {36906, 905}, {39026, 7193}, {39053, 1447}, {39060, 10030}, {39062, 33295}, {40596, 5009}, {40837, 43041}, {47345, 7212}, {62557, 4025}, {62576, 65101}, {62605, 3766}
X(65338) = X(i)-cross conjugate of X(j) for these {i, j}: {240, 7012}, {813, 4562}, {17927, 15742}, {65106, 4}
X(65338) = pole of line {4124, 4448} with respect to the polar circle
X(65338) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(34085)}}, {{A, B, C, X(75), X(36086)}}, {{A, B, C, X(100), X(4572)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(162), X(46152)}}, {{A, B, C, X(596), X(1308)}}, {{A, B, C, X(660), X(8684)}}, {{A, B, C, X(1220), X(35174)}}, {{A, B, C, X(2730), X(57719)}}, {{A, B, C, X(4562), X(40098)}}, {{A, B, C, X(6591), X(7649)}}, {{A, B, C, X(27805), X(37133)}}, {{A, B, C, X(36093), X(36106)}}, {{A, B, C, X(37135), X(53208)}}
X(65339) lies on these lines: {2, 54235}, {100, 25009}, {107, 1292}, {277, 16082}, {648, 54987}, {653, 1025}, {1026, 1897}, {2052, 57499}, {6331, 55260}, {6335, 42720}, {6601, 62742}, {16080, 60265}, {46106, 52502}, {52781, 64211}, {61180, 63743}, {63906, 65344}
X(65339) = isotomic conjugate of X(24562)
X(65339) = trilinear pole of line {4, 6601}
X(65339) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 24562}, {48, 3309}, {63, 8642}, {184, 4468}, {212, 43049}, {218, 1459}, {219, 51652}, {652, 1617}, {663, 23144}, {810, 41610}, {822, 4233}, {905, 21059}, {1445, 1946}, {1818, 2440}, {3870, 22383}, {3937, 65208}, {4350, 65102}, {4878, 7254}, {4904, 32656}, {7719, 23224}, {21945, 32661}, {23225, 31638}, {31605, 52425}, {36059, 38375}, {44448, 52411}
X(65339) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 24562}, {1249, 3309}, {3162, 8642}, {20620, 38375}, {39053, 1445}, {39060, 6604}, {39062, 41610}, {40837, 43049}, {62602, 31605}, {62605, 4468}
X(65339) = X(i)-cross conjugate of X(j) for these {i, j}: {1292, 54987}, {55133, 2481}, {56183, 18026}
X(65339) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(100)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(525), X(9520)}}, {{A, B, C, X(693), X(25009)}}, {{A, B, C, X(1305), X(51568)}}, {{A, B, C, X(4624), X(15455)}}, {{A, B, C, X(11794), X(53683)}}, {{A, B, C, X(36838), X(43190)}}
X(65340) lies on these lines: {4, 653}, {29, 648}, {107, 2291}, {158, 54240}, {273, 13149}, {281, 1897}, {318, 6335}, {415, 65350}, {1861, 65336}, {3542, 36610}, {4845, 65334}, {6331, 44130}, {8756, 65333}, {14733, 32706}, {16080, 47210}, {16082, 35348}, {17555, 52746}, {23710, 37769}, {23893, 62742}, {34056, 40836}, {36123, 60579}, {37139, 43764}, {44428, 52781}, {52780, 53152}
X(65340) = trilinear pole of line {4, 3064}
X(65340) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 1155}, {6, 6510}, {48, 527}, {63, 1055}, {73, 62756}, {109, 14414}, {184, 30806}, {212, 1323}, {219, 6610}, {222, 6603}, {255, 23710}, {521, 23346}, {577, 37805}, {603, 6745}, {652, 23890}, {906, 1638}, {1331, 14413}, {1946, 56543}, {2196, 24685}, {4575, 30574}, {6056, 38461}, {6139, 6516}, {6174, 36058}, {6366, 36059}, {6647, 7116}, {7011, 56763}, {7125, 60431}, {22341, 52891}, {23202, 36887}, {35293, 36057}, {36055, 51408}, {37780, 52425}, {42082, 60047}
X(65340) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 6510}, {11, 14414}, {136, 30574}, {1249, 527}, {3162, 1055}, {5190, 1638}, {5521, 14413}, {6523, 23710}, {7952, 6745}, {20619, 6174}, {20620, 6366}, {20621, 35293}, {36103, 1155}, {38966, 14392}, {39053, 56543}, {40837, 1323}, {51221, 51408}, {53985, 30573}, {62602, 37780}, {62605, 30806}
X(65340) = X(i)-cross conjugate of X(j) for these {i, j}: {2291, 1121}, {23710, 4}, {37769, 40446}, {62764, 1156}
X(65340) = pole of line {1638, 6174} with respect to the polar circle
X(65340) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36279)}}, {{A, B, C, X(2), X(12848)}}, {{A, B, C, X(4), X(29)}}, {{A, B, C, X(9), X(5729)}}, {{A, B, C, X(80), X(12019)}}, {{A, B, C, X(91), X(1067)}}, {{A, B, C, X(104), X(44693)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(406), X(31903)}}, {{A, B, C, X(415), X(468)}}, {{A, B, C, X(650), X(1937)}}, {{A, B, C, X(897), X(8759)}}, {{A, B, C, X(903), X(40450)}}, {{A, B, C, X(915), X(36119)}}, {{A, B, C, X(917), X(34922)}}, {{A, B, C, X(1120), X(1219)}}, {{A, B, C, X(1156), X(41798)}}, {{A, B, C, X(1268), X(2346)}}, {{A, B, C, X(1311), X(34393)}}, {{A, B, C, X(1440), X(56263)}}, {{A, B, C, X(1861), X(8756)}}, {{A, B, C, X(1990), X(47210)}}, {{A, B, C, X(2291), X(60047)}}, {{A, B, C, X(3477), X(17038)}}, {{A, B, C, X(4248), X(17555)}}, {{A, B, C, X(5559), X(55076)}}, {{A, B, C, X(7012), X(36122)}}, {{A, B, C, X(7110), X(34917)}}, {{A, B, C, X(7649), X(36124)}}, {{A, B, C, X(14942), X(18815)}}, {{A, B, C, X(34056), X(61493)}}, {{A, B, C, X(36624), X(62948)}}, {{A, B, C, X(36798), X(56365)}}, {{A, B, C, X(36910), X(43672)}}, {{A, B, C, X(36916), X(45097)}}, {{A, B, C, X(51565), X(64330)}}, {{A, B, C, X(52156), X(56322)}}, {{A, B, C, X(63748), X(63857)}}
X(65341) lies on these lines: {107, 811}, {305, 17903}, {648, 799}, {653, 4554}, {668, 1897}, {685, 36036}, {789, 32691}, {1978, 6335}, {4583, 65338}, {4593, 42396}, {4602, 6331}, {6336, 20568}, {13149, 46406}, {15352, 57973}, {16080, 33805}, {16081, 46273}, {17983, 46277}, {18031, 54235}, {30450, 55215}, {30479, 62742}, {40017, 65352}, {46404, 54240}, {46405, 65329}, {51560, 65333}, {52780, 64989}, {52781, 57923}
X(65341) = isotomic conjugate of X(2522)
X(65341) = trilinear pole of line {4, 75}
X(65341) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 2484}, {31, 2522}, {32, 23874}, {41, 51644}, {48, 8678}, {63, 8646}, {184, 6590}, {612, 22383}, {647, 44119}, {649, 7085}, {652, 1460}, {663, 2286}, {667, 5227}, {810, 2303}, {822, 4206}, {1010, 3049}, {1038, 3063}, {1459, 54416}, {1790, 50494}, {1919, 54433}, {1946, 2285}, {1980, 19799}, {2200, 47844}, {2517, 9247}, {4320, 65102}, {8898, 57134}, {26933, 32739}
X(65341) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 2522}, {1249, 8678}, {3160, 51644}, {3162, 8646}, {5375, 7085}, {6376, 23874}, {6631, 5227}, {9296, 54433}, {10001, 1038}, {36103, 2484}, {39052, 44119}, {39053, 2285}, {39060, 388}, {39062, 2303}, {40619, 26933}, {62576, 2517}, {62605, 6590}
X(65341) = X(i)-cross conjugate of X(j) for these {i, j}: {1310, 54982}
X(65341) = intersection, other than A, B, C, of circumconics {{A, B, C, X(107), X(648)}}, {{A, B, C, X(668), X(789)}}, {{A, B, C, X(18026), X(55231)}}
X(65341) = barycentric product X(i)*X(j) for these (i, j): {4, 54982}, {1039, 4572}, {1245, 57968}, {1310, 264}, {1897, 57923}, {1969, 65298}, {2339, 46404}, {18026, 30479}, {32691, 561}, {36099, 76}, {37215, 92}, {51686, 6386}, {56219, 6331}, {60197, 648}, {64989, 653}
X(65341) = barycentric quotient X(i)/X(j) for these (i, j): {2, 2522}, {4, 8678}, {7, 51644}, {19, 2484}, {25, 8646}, {75, 23874}, {92, 6590}, {100, 7085}, {107, 4206}, {108, 1460}, {162, 44119}, {190, 5227}, {264, 2517}, {286, 47844}, {648, 2303}, {651, 2286}, {653, 2285}, {664, 1038}, {668, 54433}, {693, 26933}, {811, 1010}, {1036, 1946}, {1039, 663}, {1245, 810}, {1310, 3}, {1633, 19459}, {1783, 54416}, {1824, 50494}, {1897, 612}, {1978, 19799}, {2221, 22383}, {2281, 3049}, {2339, 652}, {4033, 3610}, {4554, 56367}, {6335, 2345}, {13149, 7365}, {18026, 388}, {30479, 521}, {32691, 31}, {36099, 6}, {36118, 4320}, {37215, 63}, {41013, 48395}, {51686, 667}, {52607, 8898}, {54982, 69}, {56219, 647}, {56328, 1459}, {56841, 52326}, {57923, 4025}, {57968, 44154}, {60197, 525}, {64989, 6332}, {65298, 48}
X(65342) lies on these lines: {2, 54240}, {21, 107}, {63, 653}, {78, 1895}, {92, 41081}, {297, 65343}, {345, 6335}, {348, 13149}, {425, 685}, {648, 1812}, {2052, 34277}, {15352, 31623}, {36038, 52780}, {43737, 53353}, {46106, 52500}, {52351, 65329}, {65302, 65331}
X(65342) = trilinear pole of line {4, 43737}
X(65342) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 6001}, {212, 43058}, {219, 51660}, {577, 51359}, {822, 7435}, {1795, 47434}, {2183, 39175}, {2289, 51399}, {2443, 57241}, {14312, 32660}
X(65342) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 6001}, {25640, 47434}, {40837, 43058}
X(65342) = X(i)-cross conjugate of X(j) for these {i, j}: {104, 46133}, {2804, 18026}
X(65342) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(21)}}, {{A, B, C, X(92), X(40701)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(264), X(57827)}}, {{A, B, C, X(278), X(1767)}}, {{A, B, C, X(297), X(425)}}, {{A, B, C, X(525), X(9528)}}, {{A, B, C, X(1847), X(1895)}}, {{A, B, C, X(2988), X(6740)}}, {{A, B, C, X(18815), X(36038)}}, {{A, B, C, X(18816), X(57983)}}, {{A, B, C, X(30710), X(57974)}}, {{A, B, C, X(51567), X(55346)}}
X(65342) = barycentric product X(i)*X(j) for these (i, j): {1295, 264}, {2417, 54240}, {18026, 43737}, {18816, 54241}, {35519, 36044}, {65246, 92}
X(65342) = barycentric quotient X(i)/X(j) for these (i, j): {4, 6001}, {34, 51660}, {104, 39175}, {107, 7435}, {158, 51359}, {278, 43058}, {1118, 51399}, {1295, 3}, {2431, 36054}, {14312, 58264}, {14571, 47434}, {16082, 57495}, {32647, 1415}, {36044, 109}, {36121, 56634}, {40149, 51365}, {43737, 521}, {44426, 14312}, {47372, 1528}, {54240, 2405}, {54241, 517}, {65246, 63}
X(65343) lies on these lines: {107, 2714}, {297, 65342}, {468, 43746}, {648, 650}, {653, 661}, {685, 7435}, {1897, 4041}, {2501, 54240}, {3700, 6335}, {4391, 6331}, {6330, 57850}, {7178, 13149}, {55238, 65329}, {55242, 65330}, {55259, 65331}, {57683, 57732}, {61179, 65336}
X(65343) = trilinear pole of line {4, 4516}
X(65343) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 2798}, {425, 822}, {647, 23695}, {652, 41349}, {36054, 56822}
X(65343) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 2798}, {39052, 23695}
X(65343) = X(i)-cross conjugate of X(j) for these {i, j}: {2714, 53191}
X(65343) = intersection, other than A, B, C, of circumconics {{A, B, C, X(107), X(648)}}, {{A, B, C, X(158), X(41207)}}, {{A, B, C, X(297), X(7435)}}, {{A, B, C, X(650), X(661)}}, {{A, B, C, X(2766), X(40149)}}
X(65343) = barycentric product X(i)*X(j) for these (i, j): {4, 53191}, {107, 57850}, {264, 2714}, {18026, 43746}, {57683, 6528}
X(65343) = barycentric quotient X(i)/X(j) for these (i, j): {4, 2798}, {107, 425}, {108, 41349}, {162, 23695}, {2714, 3}, {36127, 56822}, {43746, 521}, {53191, 69}, {57683, 520}, {57850, 3265}
X(65344) lies on the Hutson-Moses hyperbola and on these lines: {107, 5379}, {645, 30450}, {648, 4567}, {653, 4564}, {666, 46133}, {765, 1897}, {898, 915}, {1016, 6335}, {1275, 13149}, {1332, 17924}, {2990, 13136}, {3257, 6336}, {3657, 57740}, {4584, 65352}, {4601, 6331}, {5376, 65336}, {5377, 65333}, {5378, 65338}, {5380, 17983}, {5382, 65337}, {14776, 53151}, {45393, 62742}, {46102, 54240}, {63906, 65339}, {65162, 65331}
X(65344) = trilinear pole of line {4, 100}
X(65344) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 55126}, {513, 2252}, {649, 912}, {650, 51649}, {652, 18838}, {667, 914}, {909, 42769}, {1459, 8609}, {1737, 22383}, {1946, 64115}, {2170, 56410}, {3937, 61239}, {7113, 61039}, {7117, 61231}
X(65344) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 55126}, {5375, 912}, {6631, 914}, {23980, 42769}, {39026, 2252}, {39053, 64115}
X(65344) = X(i)-cross conjugate of X(j) for these {i, j}: {2397, 6335}, {15500, 55346}
X(65344) = intersection, other than A, B, C, of circumconics {{A, B, C, X(107), X(648)}}, {{A, B, C, X(655), X(2397)}}, {{A, B, C, X(666), X(765)}}, {{A, B, C, X(1783), X(14776)}}, {{A, B, C, X(4582), X(7017)}}, {{A, B, C, X(14775), X(17924)}}
X(65344) = barycentric product X(i)*X(j) for these (i, j): {100, 46133}, {190, 37203}, {264, 6099}, {668, 915}, {1978, 913}, {2990, 6335}, {18026, 45393}, {32698, 76}, {36106, 75}, {53151, 57753}, {65248, 92}
X(65344) = barycentric quotient X(i)/X(j) for these (i, j): {4, 55126}, {59, 56410}, {80, 61039}, {100, 912}, {101, 2252}, {108, 18838}, {109, 51649}, {190, 914}, {517, 42769}, {653, 64115}, {913, 649}, {915, 513}, {1309, 14266}, {1783, 8609}, {1897, 1737}, {2427, 47408}, {2990, 905}, {3657, 18210}, {4242, 11570}, {5379, 3658}, {6099, 3}, {6335, 48380}, {7012, 61231}, {14776, 51824}, {15742, 56881}, {32655, 22383}, {32698, 6}, {36052, 1459}, {36106, 1}, {37203, 514}, {39173, 8677}, {45393, 521}, {46133, 693}, {53151, 119}, {56881, 34332}, {61214, 7117}, {65248, 63}, {65333, 52456}
X(65345) lies on these lines: {2, 65336}, {92, 14628}, {107, 953}, {278, 40218}, {514, 6336}, {519, 1785}, {648, 16704}, {653, 3911}, {1016, 26611}, {1086, 59196}, {4358, 6335}, {16082, 17924}, {34764, 53157}, {37790, 54240}, {46041, 62742}
X(65345) = trilinear pole of line {4, 18341}
X(65345) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 2265}, {48, 952}, {212, 43043}, {22356, 52478}
X(65345) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 952}, {36103, 2265}, {39535, 61066}, {40837, 43043}
X(65345) = X(i)-cross conjugate of X(j) for these {i, j}: {953, 46136}
X(65345) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(514)}}, {{A, B, C, X(27), X(39284)}}, {{A, B, C, X(92), X(275)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(278), X(1785)}}, {{A, B, C, X(1086), X(26611)}}, {{A, B, C, X(2990), X(60251)}}, {{A, B, C, X(14165), X(65100)}}, {{A, B, C, X(34050), X(65046)}}, {{A, B, C, X(46107), X(55346)}}
X(65345) = barycentric product X(i)*X(j) for these (i, j): {4, 46136}, {264, 953}, {4555, 53157}, {18026, 46041}, {46102, 60582}, {50943, 65336}, {65249, 92}
X(65345) = barycentric quotient X(i)/X(j) for these (i, j): {4, 952}, {19, 2265}, {278, 43043}, {953, 3}, {2969, 6075}, {21664, 6073}, {36123, 61481}, {36125, 52478}, {39534, 35013}, {46041, 521}, {46136, 69}, {52479, 5440}, {53157, 900}, {60582, 26932}, {61482, 22350}, {65249, 63}, {65336, 57456}
X(65346) lies on these lines: {17, 16080}, {62, 51268}, {107, 16806}, {110, 36306}, {112, 930}, {470, 36304}, {648, 17402}, {685, 55199}, {1990, 40667}, {2970, 56515}, {6110, 8172}, {6111, 11600}, {6330, 40712}, {6331, 55220}, {8174, 44701}, {8741, 17983}, {11139, 58911}, {16081, 16249}, {23896, 46456}, {32585, 57732}, {35360, 36309}
X(65346) = trilinear pole of line {4, 15}
X(65346) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 23872}, {61, 656}, {63, 55221}, {302, 810}, {473, 822}, {661, 52348}, {3376, 60009}, {3708, 52605}, {10642, 24018}, {55201, 63760}
X(65346) = X(i)-vertex conjugate of X(j) for these {i, j}: {1576, 65347}
X(65346) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 23872}, {3162, 55221}, {10639, 63830}, {36830, 52348}, {39062, 302}, {40596, 61}
X(65346) = X(i)-cross conjugate of X(j) for these {i, j}: {16806, 32036}, {35311, 65347}, {35443, 470}, {64468, 250}
X(65346) = intersection, other than A, B, C, of circumconics {{A, B, C, X(107), X(648)}}, {{A, B, C, X(110), X(6151)}}, {{A, B, C, X(925), X(23895)}}, {{A, B, C, X(930), X(32036)}}, {{A, B, C, X(32037), X(43351)}}, {{A, B, C, X(36840), X(53957)}}
X(65346) = barycentric product X(i)*X(j) for these (i, j): {17, 648}, {25, 55220}, {107, 40712}, {112, 34389}, {470, 60051}, {472, 930}, {8741, 99}, {10641, 46139}, {11144, 65347}, {16806, 264}, {18020, 55199}, {18831, 36300}, {19779, 36309}, {21461, 6331}, {32036, 4}, {32585, 6528}, {38342, 62}, {52606, 93}
X(65346) = barycentric quotient X(i)/X(j) for these (i, j): {4, 23872}, {17, 525}, {25, 55221}, {62, 63830}, {107, 473}, {110, 52348}, {112, 61}, {250, 52605}, {472, 41298}, {648, 302}, {930, 40711}, {5995, 50468}, {8603, 60010}, {8741, 523}, {10641, 1510}, {10642, 57142}, {16806, 3}, {18020, 55198}, {21461, 647}, {32036, 69}, {32585, 520}, {32713, 10642}, {32737, 32586}, {34389, 3267}, {36300, 6368}, {36306, 8838}, {36309, 16771}, {38342, 34390}, {40712, 3265}, {51890, 60009}, {52606, 44180}, {52670, 20577}, {52930, 52349}, {55199, 125}, {55220, 305}, {58869, 20975}, {60051, 40709}, {61193, 52671}, {65347, 11143}
X(65347) lies on these lines: {18, 16080}, {61, 51275}, {107, 16807}, {110, 36309}, {112, 930}, {471, 36305}, {648, 17403}, {685, 55201}, {1990, 40668}, {2970, 56514}, {6110, 11601}, {6111, 8173}, {6330, 40711}, {6331, 55222}, {8175, 44700}, {8742, 17983}, {11138, 58910}, {16081, 16250}, {23895, 46456}, {32586, 57732}, {35360, 36306}
X(65347) = trilinear pole of line {4, 16}
X(65347) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 23873}, {62, 656}, {63, 55223}, {303, 810}, {472, 822}, {661, 52349}, {3383, 60010}, {3708, 52606}, {10641, 24018}, {55199, 63760}
X(65347) = X(i)-vertex conjugate of X(j) for these {i, j}: {1576, 65346}
X(65347) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 23873}, {3162, 55223}, {10640, 63830}, {36830, 52349}, {39062, 303}, {40596, 62}
X(65347) = X(i)-cross conjugate of X(j) for these {i, j}: {16807, 32037}, {35311, 65346}, {35444, 471}, {64469, 250}
X(65347) = intersection, other than A, B, C, of circumconics {{A, B, C, X(107), X(648)}}, {{A, B, C, X(110), X(2981)}}, {{A, B, C, X(925), X(23896)}}, {{A, B, C, X(930), X(32037)}}, {{A, B, C, X(32036), X(43351)}}, {{A, B, C, X(36839), X(53957)}}
X(65347) = barycentric product X(i)*X(j) for these (i, j): {18, 648}, {25, 55222}, {107, 40711}, {112, 34390}, {471, 60052}, {473, 930}, {8742, 99}, {10642, 46139}, {11143, 65346}, {16807, 264}, {18020, 55201}, {18831, 36301}, {19778, 36306}, {21462, 6331}, {32037, 4}, {32586, 6528}, {38342, 61}, {52605, 93}
X(65347) = barycentric quotient X(i)/X(j) for these (i, j): {4, 23873}, {18, 525}, {25, 55223}, {61, 63830}, {107, 472}, {110, 52349}, {112, 62}, {250, 52606}, {473, 41298}, {648, 303}, {930, 40712}, {5994, 50469}, {8604, 60009}, {8742, 523}, {10641, 57143}, {10642, 1510}, {16807, 3}, {18020, 55200}, {21462, 647}, {32037, 69}, {32586, 520}, {32713, 10641}, {32737, 32585}, {34390, 3267}, {36301, 6368}, {36306, 16770}, {36309, 8836}, {38342, 34389}, {40711, 3265}, {51891, 60010}, {52605, 44180}, {52671, 20577}, {52929, 52348}, {55201, 125}, {55222, 305}, {58870, 20975}, {60052, 40710}, {61193, 52670}, {65346, 11144}
X(65348) lies on these lines: {96, 10018}, {107, 32692}, {110, 30450}, {648, 925}, {685, 55253}, {687, 15958}, {847, 58079}, {5962, 14106}, {6330, 57875}, {6331, 18831}, {11547, 39111}, {14586, 65184}, {15352, 32734}, {16081, 41271}, {18315, 63958}, {23181, 58756}, {37802, 51939}, {57703, 57732}, {65177, 65309}
X(65348) = trilinear pole of line {4, 96}
X(65348) = X(i)-isoconjugate-of-X(j) for these {i, j}: {5, 63832}, {47, 6368}, {48, 63829}, {52, 656}, {63, 52317}, {216, 63827}, {343, 55216}, {467, 822}, {523, 63801}, {525, 2180}, {563, 18314}, {647, 63808}, {661, 52032}, {810, 39113}, {924, 44706}, {1147, 2618}, {1748, 17434}, {1953, 52584}, {6563, 62266}, {14213, 30451}, {14576, 24018}, {15451, 44179}, {18695, 34952}, {36134, 55073}
X(65348) = X(i)-vertex conjugate of X(j) for these {i, j}: {4, 15958}, {14586, 35360}, {23181, 65348}
X(65348) = X(i)-Dao conjugate of X(j) for these {i, j}: {135, 55072}, {137, 55073}, {1249, 63829}, {3162, 52317}, {34853, 6368}, {36830, 52032}, {37864, 15451}, {39052, 63808}, {39062, 39113}, {40596, 52}
X(65348) = X(i)-cross conjugate of X(j) for these {i, j}: {110, 933}, {1632, 52779}, {14586, 16813}, {15422, 275}, {32692, 65273}, {32734, 32692}, {55121, 1141}, {57154, 23233}, {65184, 107}
X(65348) = pole of line {55072, 55073} with respect to the polar circle
X(65348) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(930)}}, {{A, B, C, X(6), X(23181)}}, {{A, B, C, X(54), X(15958)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(110), X(14586)}}, {{A, B, C, X(925), X(46134)}}, {{A, B, C, X(933), X(18831)}}, {{A, B, C, X(1990), X(47201)}}, {{A, B, C, X(4240), X(10018)}}, {{A, B, C, X(6037), X(53657)}}, {{A, B, C, X(13398), X(18878)}}, {{A, B, C, X(15395), X(32230)}}, {{A, B, C, X(20626), X(35360)}}, {{A, B, C, X(32692), X(52932)}}, {{A, B, C, X(32708), X(59004)}}, {{A, B, C, X(53176), X(58079)}}
X(65349) lies on these lines: {4, 263}, {67, 42299}, {107, 26714}, {110, 42396}, {112, 685}, {262, 5094}, {276, 15897}, {290, 63472}, {327, 44134}, {393, 51338}, {427, 65005}, {648, 1634}, {653, 46153}, {877, 4576}, {1897, 46148}, {1990, 51543}, {3172, 60601}, {3498, 12143}, {4232, 46156}, {4553, 6335}, {6330, 11331}, {6336, 46150}, {6528, 53196}, {15352, 46151}, {16813, 32713}, {17983, 46154}, {18384, 65360}, {31916, 52781}, {35278, 54267}, {36827, 36885}, {40138, 43718}, {42300, 42873}, {46149, 54235}, {46152, 54240}, {46155, 46456}, {46157, 52492}, {46159, 65352}, {46161, 65351}, {46162, 65336}, {46163, 65333}, {46166, 46815}, {46167, 46812}, {46359, 52780}, {54032, 56605}, {57268, 65359}
X(65349) = trilinear pole of line {4, 39}
X(65349) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 23878}, {63, 3288}, {182, 656}, {183, 810}, {336, 9420}, {458, 822}, {520, 60685}, {647, 52134}, {905, 60726}, {1459, 60723}, {3049, 3403}, {4592, 6784}, {10311, 24018}, {14208, 34396}, {22383, 60737}, {32320, 51315}
X(65349) = X(i)-vertex conjugate of X(j) for these {i, j}: {685, 1576}
X(65349) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 23878}, {3162, 3288}, {5139, 6784}, {39052, 52134}, {39062, 183}, {40596, 182}, {42426, 45321}
X(65349) = X(i)-cross conjugate of X(j) for these {i, j}: {6403, 250}, {26714, 65271}, {41371, 32230}, {52926, 26714}, {54269, 6}, {54273, 25}
X(65349) = pole of line {6784, 45321} with respect to the polar circle
X(65349) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(63859)}}, {{A, B, C, X(4), X(112)}}, {{A, B, C, X(67), X(110)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(263), X(63741)}}, {{A, B, C, X(290), X(53937)}}, {{A, B, C, X(476), X(35138)}}, {{A, B, C, X(691), X(65284)}}, {{A, B, C, X(827), X(46134)}}, {{A, B, C, X(892), X(1302)}}, {{A, B, C, X(925), X(4577)}}, {{A, B, C, X(933), X(44770)}}, {{A, B, C, X(1289), X(18831)}}, {{A, B, C, X(1576), X(65305)}}, {{A, B, C, X(1625), X(58973)}}, {{A, B, C, X(1990), X(47202)}}, {{A, B, C, X(2409), X(11331)}}, {{A, B, C, X(4240), X(5094)}}, {{A, B, C, X(4241), X(31916)}}, {{A, B, C, X(6035), X(41173)}}, {{A, B, C, X(6037), X(65271)}}, {{A, B, C, X(7954), X(46139)}}, {{A, B, C, X(8105), X(53153)}}, {{A, B, C, X(8106), X(53154)}}, {{A, B, C, X(10293), X(53972)}}, {{A, B, C, X(11636), X(35139)}}, {{A, B, C, X(14528), X(44828)}}, {{A, B, C, X(14574), X(27374)}}, {{A, B, C, X(15274), X(23977)}}, {{A, B, C, X(16077), X(30247)}}, {{A, B, C, X(18384), X(32713)}}, {{A, B, C, X(18878), X(59098)}}, {{A, B, C, X(26714), X(53196)}}, {{A, B, C, X(32738), X(38005)}}, {{A, B, C, X(33513), X(65176)}}, {{A, B, C, X(35136), X(59038)}}, {{A, B, C, X(35137), X(43351)}}, {{A, B, C, X(43187), X(43188)}}, {{A, B, C, X(44134), X(61181)}}, {{A, B, C, X(44768), X(53957)}}, {{A, B, C, X(58994), X(65269)}}
X(65350) lies on these lines: {4, 63853}, {99, 65353}, {107, 691}, {111, 16081}, {297, 671}, {415, 65340}, {419, 8753}, {423, 6336}, {425, 62742}, {450, 895}, {458, 60863}, {468, 10416}, {648, 892}, {653, 36085}, {685, 4240}, {877, 34760}, {1637, 2966}, {1990, 17948}, {2052, 57491}, {3168, 10559}, {4235, 50941}, {5641, 62594}, {6330, 30786}, {6331, 14618}, {9979, 17708}, {10097, 65357}, {14977, 15459}, {15422, 16813}, {15466, 57481}, {17907, 52551}, {32583, 35360}, {34574, 61181}, {36128, 65352}, {36827, 36885}, {37174, 52450}, {37778, 44182}, {38342, 55251}, {44181, 65181}, {46989, 47288}, {51358, 51405}, {52147, 65359}, {52632, 65356}, {52940, 60338}
X(65350) = isotomic conjugate of X(14417)
X(65350) = trilinear pole of line {4, 576}
X(65350) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 2642}, {31, 14417}, {48, 690}, {63, 351}, {71, 14419}, {187, 656}, {228, 4750}, {255, 14273}, {468, 822}, {524, 810}, {525, 922}, {560, 45807}, {647, 896}, {661, 3292}, {798, 6390}, {1409, 14432}, {1459, 21839}, {1577, 23200}, {1648, 4575}, {1649, 36060}, {2631, 9717}, {2632, 61207}, {3049, 14210}, {3708, 5467}, {4020, 22105}, {4062, 22383}, {4592, 21906}, {9247, 35522}, {10097, 42081}, {14208, 14567}, {16702, 55230}, {20975, 23889}, {24018, 44102}, {52373, 58331}
X(65350) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 2966}, {4235, 32648}
X(65350) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 14417}, {136, 1648}, {1249, 690}, {1560, 1649}, {3162, 351}, {5099, 47415}, {5139, 21906}, {6374, 45807}, {6523, 14273}, {15477, 3049}, {15899, 647}, {23967, 39474}, {31998, 6390}, {36103, 2642}, {36830, 3292}, {38970, 51429}, {39052, 896}, {39061, 525}, {39062, 524}, {40596, 187}, {40938, 14424}, {48317, 23992}, {62576, 35522}, {62597, 62594}, {62607, 3265}
X(65350) = X(i)-Ceva conjugate of X(j) for these {i, j}: {59762, 892}
X(65350) = X(i)-cross conjugate of X(j) for these {i, j}: {468, 18020}, {691, 892}, {935, 65268}, {4235, 648}, {5466, 46111}, {5523, 32230}, {8430, 9154}, {14273, 4}, {14977, 671}, {37765, 23582}, {44564, 2}, {55142, 5641}, {57491, 34539}, {61181, 6528}
X(65350) = pole of line {1648, 1649} with respect to the polar circle
X(65350) = pole of line {39474, 53155} with respect to the Steiner circumellipse
X(65350) = pole of line {11054, 37765} with respect to the dual conic of Jerabek hyperbola
X(65350) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(476)}}, {{A, B, C, X(99), X(52141)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(110), X(55279)}}, {{A, B, C, X(111), X(32729)}}, {{A, B, C, X(297), X(4240)}}, {{A, B, C, X(420), X(46543)}}, {{A, B, C, X(423), X(46541)}}, {{A, B, C, X(468), X(935)}}, {{A, B, C, X(523), X(41357)}}, {{A, B, C, X(689), X(35137)}}, {{A, B, C, X(691), X(15398)}}, {{A, B, C, X(805), X(14565)}}, {{A, B, C, X(892), X(53080)}}, {{A, B, C, X(925), X(35178)}}, {{A, B, C, X(1302), X(65271)}}, {{A, B, C, X(1304), X(32697)}}, {{A, B, C, X(1637), X(2799)}}, {{A, B, C, X(1916), X(14734)}}, {{A, B, C, X(2374), X(36898)}}, {{A, B, C, X(2407), X(44569)}}, {{A, B, C, X(2501), X(14618)}}, {{A, B, C, X(5466), X(62629)}}, {{A, B, C, X(5649), X(9060)}}, {{A, B, C, X(6083), X(31628)}}, {{A, B, C, X(8587), X(20404)}}, {{A, B, C, X(8770), X(9091)}}, {{A, B, C, X(9066), X(54990)}}, {{A, B, C, X(9080), X(9133)}}, {{A, B, C, X(9150), X(65277)}}, {{A, B, C, X(11794), X(53957)}}, {{A, B, C, X(14417), X(44564)}}, {{A, B, C, X(16077), X(18020)}}, {{A, B, C, X(16166), X(40173)}}, {{A, B, C, X(32694), X(60128)}}, {{A, B, C, X(34760), X(63853)}}, {{A, B, C, X(37139), X(40430)}}, {{A, B, C, X(37765), X(65268)}}, {{A, B, C, X(37778), X(62237)}}, {{A, B, C, X(55142), X(62594)}}
X(65350) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4240, 5466, 53155}
X(65351) lies on these lines: {107, 805}, {297, 694}, {419, 9467}, {450, 17970}, {468, 17980}, {648, 2489}, {653, 37134}, {685, 4230}, {882, 61181}, {1916, 16080}, {2501, 6331}, {3569, 43187}, {6330, 40708}, {14970, 65269}, {17907, 40810}, {18020, 35325}, {36214, 57732}, {39292, 65354}, {43188, 44451}, {45336, 53199}, {46161, 65349}, {56981, 65356}
X(65351) = isotomic conjugate of X(24284)
X(65351) = trilinear pole of line {4, 147}
X(65351) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 24284}, {48, 804}, {63, 5027}, {71, 4164}, {172, 53556}, {228, 4107}, {385, 810}, {419, 822}, {520, 56828}, {525, 1933}, {647, 1580}, {656, 1691}, {659, 22061}, {798, 12215}, {1966, 3049}, {2086, 4592}, {2200, 14296}, {2238, 22093}, {2295, 22384}, {3570, 22373}, {3708, 56980}, {3955, 21832}, {4039, 22383}, {7122, 24459}, {7193, 57234}, {7234, 20769}, {9247, 14295}, {11183, 36060}, {14208, 14602}, {20975, 56982}, {24018, 44089}, {36036, 47418}
X(65351) = X(i)-vertex conjugate of X(j) for these {i, j}: {2353, 53202}
X(65351) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 24284}, {1249, 804}, {1560, 11183}, {2679, 47418}, {3162, 5027}, {5139, 2086}, {9467, 3049}, {31998, 12215}, {39052, 1580}, {39062, 385}, {39092, 647}, {40596, 1691}, {47648, 684}, {62576, 14295}
X(65351) = X(i)-cross conjugate of X(j) for these {i, j}: {420, 18020}, {805, 18829}, {877, 648}, {17994, 264}, {22456, 53205}, {53149, 35142}, {53347, 671}, {53371, 99}, {55143, 46142}, {56981, 14970}
X(65351) = pole of line {2086, 11183} with respect to the polar circle
X(65351) = pole of line {232, 17984} with respect to the dual conic of Jerabek hyperbola
X(65351) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(43187)}}, {{A, B, C, X(4), X(59762)}}, {{A, B, C, X(76), X(691)}}, {{A, B, C, X(83), X(35139)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(297), X(4230)}}, {{A, B, C, X(476), X(6035)}}, {{A, B, C, X(670), X(3222)}}, {{A, B, C, X(694), X(17938)}}, {{A, B, C, X(877), X(17984)}}, {{A, B, C, X(892), X(31998)}}, {{A, B, C, X(935), X(55270)}}, {{A, B, C, X(2396), X(6037)}}, {{A, B, C, X(2489), X(2501)}}, {{A, B, C, X(2715), X(34138)}}, {{A, B, C, X(7473), X(11331)}}, {{A, B, C, X(9186), X(42286)}}, {{A, B, C, X(9192), X(25322)}}, {{A, B, C, X(18020), X(44183)}}, {{A, B, C, X(18829), X(39291)}}, {{A, B, C, X(32662), X(36952)}}, {{A, B, C, X(32708), X(43678)}}, {{A, B, C, X(39058), X(53196)}}, {{A, B, C, X(40423), X(44182)}}, {{A, B, C, X(42313), X(43754)}}, {{A, B, C, X(43665), X(44823)}}, {{A, B, C, X(45336), X(59775)}}, {{A, B, C, X(53876), X(54749)}}, {{A, B, C, X(55189), X(55218)}}
X(65352) lies on these lines: {19, 648}, {27, 295}, {92, 6331}, {107, 741}, {242, 423}, {243, 14196}, {278, 17082}, {286, 334}, {297, 51225}, {653, 1880}, {813, 39438}, {1870, 15147}, {2311, 65334}, {2358, 65330}, {3572, 16081}, {4444, 16080}, {4584, 65344}, {5307, 52207}, {6520, 15352}, {15149, 17927}, {18787, 46883}, {19635, 52167}, {31905, 52209}, {36128, 65350}, {40017, 65341}, {46159, 65349}, {65258, 65354}
X(65352) = trilinear pole of line {4, 4444}
X(65352) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 2238}, {37, 7193}, {42, 20769}, {48, 740}, {63, 3747}, {69, 41333}, {71, 238}, {72, 1914}, {73, 3684}, {101, 53556}, {184, 3948}, {212, 16609}, {219, 1284}, {222, 4433}, {228, 239}, {242, 3990}, {248, 50440}, {306, 2210}, {350, 2200}, {394, 862}, {603, 3985}, {647, 3573}, {659, 4574}, {692, 24459}, {810, 3570}, {874, 3049}, {906, 4010}, {1018, 22384}, {1331, 21832}, {1332, 4455}, {1409, 3685}, {1428, 3694}, {1429, 2318}, {1437, 4037}, {1447, 52370}, {1874, 2289}, {2193, 7235}, {2196, 4368}, {2201, 3682}, {3949, 5009}, {3998, 57654}, {4019, 61385}, {4039, 7116}, {4093, 34055}, {4155, 4558}, {4435, 23067}, {4592, 46390}, {4783, 32659}, {8298, 57681}, {9247, 35544}, {12215, 40729}, {14599, 20336}, {18785, 20778}, {18786, 22061}, {18793, 20750}, {18892, 40071}, {52373, 58327}
X(65352) = X(i)-vertex conjugate of X(j) for these {i, j}: {34179, 35145}
X(65352) = X(i)-Dao conjugate of X(j) for these {i, j}: {1015, 53556}, {1086, 24459}, {1249, 740}, {3162, 3747}, {5139, 46390}, {5190, 4010}, {5521, 21832}, {7952, 3985}, {9470, 71}, {16592, 24284}, {36103, 2238}, {36906, 72}, {39039, 50440}, {39052, 3573}, {39062, 3570}, {40589, 7193}, {40592, 20769}, {40837, 16609}, {45162, 47416}, {47345, 7235}, {62557, 306}, {62576, 35544}, {62605, 3948}
X(65352) = X(i)-cross conjugate of X(j) for these {i, j}: {240, 273}, {741, 18827}, {15149, 27}, {65106, 811}
X(65352) = pole of line {4010, 4839} with respect to the polar circle
X(65352) = pole of line {7193, 20778} with respect to the Stammler hyperbola
X(65352) = pole of line {20750, 20769} with respect to the Wallace hyperbola
X(65352) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(62853)}}, {{A, B, C, X(2), X(1999)}}, {{A, B, C, X(4), X(31904)}}, {{A, B, C, X(19), X(92)}}, {{A, B, C, X(27), X(286)}}, {{A, B, C, X(28), X(31909)}}, {{A, B, C, X(29), X(14013)}}, {{A, B, C, X(57), X(29967)}}, {{A, B, C, X(75), X(19791)}}, {{A, B, C, X(81), X(5208)}}, {{A, B, C, X(85), X(2363)}}, {{A, B, C, X(105), X(38479)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(226), X(13610)}}, {{A, B, C, X(239), X(27321)}}, {{A, B, C, X(242), X(17927)}}, {{A, B, C, X(278), X(7009)}}, {{A, B, C, X(295), X(741)}}, {{A, B, C, X(314), X(55968)}}, {{A, B, C, X(334), X(335)}}, {{A, B, C, X(514), X(759)}}, {{A, B, C, X(673), X(14616)}}, {{A, B, C, X(1014), X(60679)}}, {{A, B, C, X(1396), X(31917)}}, {{A, B, C, X(1821), X(4581)}}, {{A, B, C, X(1847), X(40431)}}, {{A, B, C, X(8747), X(40411)}}, {{A, B, C, X(9311), X(40430)}}, {{A, B, C, X(9499), X(26702)}}, {{A, B, C, X(13739), X(37448)}}, {{A, B, C, X(15149), X(31905)}}, {{A, B, C, X(16465), X(39273)}}, {{A, B, C, X(19642), X(24624)}}, {{A, B, C, X(27475), X(40438)}}, {{A, B, C, X(31908), X(31925)}}, {{A, B, C, X(31912), X(31916)}}, {{A, B, C, X(36101), X(53707)}}, {{A, B, C, X(36800), X(37128)}}, {{A, B, C, X(40515), X(57419)}}, {{A, B, C, X(58074), X(63187)}}
X(65353) lies on these lines: {2, 17983}, {4, 63854}, {99, 65350}, {107, 1296}, {297, 17952}, {450, 17979}, {458, 14608}, {468, 37860}, {648, 5468}, {653, 37216}, {2434, 65177}, {5485, 16080}, {6335, 42721}, {6336, 52759}, {13492, 44146}, {16081, 21448}, {37863, 52288}, {46106, 52496}, {55977, 57732}
X(65353) = trilinear pole of line {4, 5485}
X(65353) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 1499}, {63, 8644}, {71, 30234}, {184, 14207}, {228, 4786}, {647, 36277}, {656, 1384}, {810, 1992}, {822, 4232}, {4575, 6791}, {9125, 36060}
X(65353) = X(i)-Dao conjugate of X(j) for these {i, j}: {136, 6791}, {1249, 1499}, {1560, 9125}, {3162, 8644}, {39052, 36277}, {39062, 1992}, {40596, 1384}, {53992, 35133}, {62605, 14207}
X(65353) = X(i)-cross conjugate of X(j) for these {i, j}: {1296, 35179}, {48539, 99}, {52290, 18020}, {55135, 671}
X(65353) = pole of line {6791, 9125} with respect to the polar circle
X(65353) = pole of line {11054, 58782} with respect to the dual conic of Jerabek hyperbola
X(65353) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(99)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(459), X(65176)}}, {{A, B, C, X(525), X(9529)}}, {{A, B, C, X(925), X(17708)}}, {{A, B, C, X(1302), X(36886)}}, {{A, B, C, X(4240), X(52283)}}, {{A, B, C, X(4563), X(35178)}}, {{A, B, C, X(6233), X(60187)}}, {{A, B, C, X(11794), X(59038)}}, {{A, B, C, X(15466), X(57219)}}, {{A, B, C, X(32697), X(58994)}}, {{A, B, C, X(35136), X(53080)}}
X(65353) = barycentric product X(i)*X(j) for these (i, j): {1296, 264}, {2434, 46111}, {5485, 648}, {17983, 2418}, {21448, 6331}, {35179, 4}, {37216, 92}, {52477, 892}, {55923, 811}, {55977, 6528}, {57467, 59762}
X(65353) = barycentric quotient X(i)/X(j) for these (i, j): {4, 1499}, {25, 8644}, {27, 4786}, {28, 30234}, {92, 14207}, {107, 4232}, {112, 1384}, {162, 36277}, {186, 9126}, {468, 9125}, {648, 1992}, {877, 51438}, {1296, 3}, {2418, 6390}, {2434, 3292}, {2501, 6791}, {4235, 27088}, {4240, 35266}, {5094, 62568}, {5485, 525}, {6331, 11059}, {6335, 42724}, {6528, 58782}, {8753, 2444}, {10098, 61452}, {14262, 30209}, {17983, 2408}, {21448, 647}, {30247, 13608}, {32648, 14908}, {34336, 58284}, {35179, 69}, {36045, 36060}, {37216, 63}, {39238, 3049}, {39533, 14856}, {46151, 41585}, {52477, 690}, {53351, 53778}, {55923, 656}, {55977, 520}, {62237, 55140}, {65350, 52141}
X(65353) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {297, 17952, 52477}
X(65354) lies on these lines: {107, 10425}, {297, 57553}, {340, 892}, {468, 63613}, {648, 4590}, {653, 4620}, {670, 30450}, {685, 877}, {687, 55226}, {1897, 4600}, {2501, 4563}, {2987, 16081}, {3563, 9150}, {4601, 6335}, {4615, 6336}, {6330, 57872}, {6331, 34537}, {8781, 16080}, {9170, 52290}, {35364, 57739}, {39292, 65351}, {42297, 58961}, {43705, 57732}, {47389, 57065}, {52940, 60338}, {65258, 65352}
X(65354) = trilinear pole of line {4, 99}
X(65354) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 55122}, {63, 42663}, {230, 810}, {460, 822}, {647, 8772}, {656, 1692}, {661, 52144}, {798, 3564}, {878, 17462}, {1733, 3049}, {2643, 56389}, {3708, 61213}, {24018, 44099}
X(65354) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 55122}, {3162, 42663}, {15525, 51610}, {31998, 3564}, {35088, 41181}, {36830, 52144}, {39052, 8772}, {39062, 230}, {40596, 1692}, {62595, 55267}
X(65354) = X(i)-cross conjugate of X(j) for these {i, j}: {297, 18020}, {2396, 6331}, {10425, 65277}, {60338, 35142}
X(65354) = pole of line {51613, 55152} with respect to the polar circle
X(65354) = pole of line {40867, 51374} with respect to the Kiepert parabola
X(65354) = pole of line {17932, 53149} with respect to the Steiner circumellipse
X(65354) = pole of line {35067, 47406} with respect to the Wallace hyperbola
X(65354) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(44768)}}, {{A, B, C, X(76), X(14221)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(297), X(2396)}}, {{A, B, C, X(670), X(42297)}}, {{A, B, C, X(683), X(886)}}, {{A, B, C, X(877), X(41074)}}, {{A, B, C, X(892), X(4590)}}, {{A, B, C, X(2421), X(65305)}}, {{A, B, C, X(2501), X(57071)}}, {{A, B, C, X(2855), X(40824)}}, {{A, B, C, X(2996), X(53895)}}, {{A, B, C, X(4235), X(52477)}}, {{A, B, C, X(4563), X(35136)}}, {{A, B, C, X(4577), X(55279)}}, {{A, B, C, X(5468), X(44369)}}, {{A, B, C, X(16077), X(55270)}}, {{A, B, C, X(44770), X(47443)}}, {{A, B, C, X(46144), X(55972)}}, {{A, B, C, X(52035), X(60073)}}, {{A, B, C, X(52476), X(60338)}}, {{A, B, C, X(55266), X(65277)}}
X(65355) lies on these lines: {7, 9308}, {81, 1947}, {100, 108}, {329, 56296}, {393, 56927}, {644, 6335}, {648, 651}, {1172, 57809}, {1249, 28739}, {1783, 65207}, {1948, 62799}, {2052, 62798}, {2323, 52982}, {6516, 14570}, {7282, 56014}, {8748, 52673}, {13395, 58965}, {14361, 27540}, {28951, 64988}, {36118, 63782}, {41083, 52358}, {56300, 57810}, {61236, 65233}, {62669, 65170}, {65174, 65330}
X(65355) = trilinear pole of line {405, 1882}
X(65355) = X(i)-isoconjugate-of-X(j) for these {i, j}: {521, 2215}, {652, 51223}, {1459, 2335}, {7004, 36080}, {7117, 65227}, {57657, 63220}
X(65355) = X(i)-Dao conjugate of X(j) for these {i, j}: {38967, 53560}, {39060, 57831}, {62570, 63220}
X(65355) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {58965, 33650}
X(65355) = pole of line {11, 31653} with respect to the polar circle
X(65355) = pole of line {23189, 36054} with respect to the Stammler hyperbola
X(65355) = pole of line {651, 36127} with respect to the Steiner circumellipse
X(65355) = pole of line {92, 219} with respect to the Hutson-Moses hyperbola
X(65355) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(648)}}, {{A, B, C, X(108), X(65334)}}, {{A, B, C, X(651), X(23067)}}, {{A, B, C, X(681), X(65181)}}, {{A, B, C, X(823), X(1897)}}, {{A, B, C, X(2804), X(23882)}}, {{A, B, C, X(4552), X(18026)}}, {{A, B, C, X(6335), X(61180)}}, {{A, B, C, X(23981), X(37543)}}, {{A, B, C, X(54240), X(61178)}}
X(65355) = barycentric product X(i)*X(j) for these (i, j): {108, 44140}, {1882, 99}, {5271, 653}, {18026, 405}, {23882, 46102}, {37543, 6335}, {39585, 664}, {54394, 668}, {65180, 75}
X(65355) = barycentric quotient X(i)/X(j) for these (i, j): {108, 51223}, {405, 521}, {1441, 63220}, {1451, 1459}, {1783, 2335}, {1882, 523}, {4552, 63235}, {5271, 6332}, {5295, 52355}, {5320, 1946}, {7012, 65227}, {7115, 36080}, {18026, 57831}, {23882, 26932}, {32674, 2215}, {37543, 905}, {39585, 522}, {44140, 35518}, {46102, 54970}, {46385, 7004}, {54394, 513}, {56831, 3737}, {65180, 1}
X(65355) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {648, 18026, 651}, {653, 1897, 4552}
X(65356) lies on these lines: {67, 51939}, {107, 935}, {648, 850}, {685, 43665}, {1897, 52623}, {2052, 57496}, {6330, 18019}, {6331, 44173}, {8791, 14165}, {10415, 17983}, {15466, 57476}, {16080, 46105}, {22456, 58980}, {23582, 42396}, {39269, 51260}, {52632, 65350}, {56981, 65351}
X(65356) = trilinear pole of line {4, 67}
X(65356) = X(i)-isoconjugate-of-X(j) for these {i, j}: {23, 822}, {48, 9517}, {63, 42659}, {255, 2492}, {656, 10317}, {661, 58357}, {810, 22151}, {9979, 52430}, {16568, 39201}, {18374, 24018}, {20944, 58310}, {37754, 52916}
X(65356) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 9517}, {3162, 42659}, {5099, 55048}, {6523, 2492}, {15900, 520}, {36830, 58357}, {39062, 22151}, {40596, 10317}, {48317, 47415}
X(65356) = X(i)-cross conjugate of X(j) for these {i, j}: {935, 65269}, {2492, 4}, {60040, 671}
X(65356) = pole of line {47415, 55048} with respect to the polar circle
X(65356) = pole of line {316, 34163} with respect to the dual conic of Jerabek hyperbola
X(65356) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1304)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(112), X(36828)}}, {{A, B, C, X(275), X(53205)}}, {{A, B, C, X(523), X(47004)}}, {{A, B, C, X(850), X(14618)}}, {{A, B, C, X(933), X(11794)}}, {{A, B, C, X(935), X(10415)}}, {{A, B, C, X(8791), X(58980)}}, {{A, B, C, X(10423), X(37801)}}, {{A, B, C, X(13854), X(32696)}}, {{A, B, C, X(14165), X(53176)}}, {{A, B, C, X(21459), X(37765)}}, {{A, B, C, X(30248), X(55279)}}, {{A, B, C, X(32687), X(32708)}}, {{A, B, C, X(32697), X(53923)}}, {{A, B, C, X(33640), X(43188)}}, {{A, B, C, X(39413), X(60507)}}, {{A, B, C, X(40173), X(53962)}}, {{A, B, C, X(46106), X(58071)}}, {{A, B, C, X(58994), X(65271)}}
X(65356) = barycentric product X(i)*X(j) for these (i, j): {4, 65269}, {107, 18019}, {264, 935}, {2157, 57973}, {6331, 8791}, {6528, 67}, {11605, 65266}, {15352, 34897}, {17708, 2052}, {23962, 58980}, {39269, 65268}, {46105, 648}, {46111, 60503}, {57496, 65350}
X(65356) = barycentric quotient X(i)/X(j) for these (i, j): {4, 9517}, {25, 42659}, {67, 520}, {107, 23}, {110, 58357}, {112, 10317}, {393, 2492}, {648, 22151}, {823, 16568}, {935, 3}, {1289, 54060}, {2052, 9979}, {2157, 822}, {2492, 55048}, {3455, 39201}, {4240, 16165}, {6331, 37804}, {6528, 316}, {6529, 8744}, {6530, 33752}, {8744, 57203}, {8791, 647}, {9076, 58353}, {11605, 8673}, {14273, 47415}, {14618, 62563}, {15352, 37765}, {17708, 394}, {18019, 3265}, {23582, 52630}, {23977, 28343}, {32230, 52916}, {32713, 18374}, {34897, 52613}, {37778, 18311}, {46105, 525}, {46151, 9019}, {57496, 14417}, {57973, 20944}, {58980, 23357}, {60496, 1636}, {60503, 3292}, {60507, 14961}, {65269, 69}, {65350, 57481}
X(65357) lies on these lines: {107, 512}, {415, 8764}, {450, 52463}, {468, 1942}, {525, 6331}, {647, 648}, {653, 55234}, {685, 878}, {686, 53205}, {687, 61216}, {1897, 55230}, {2433, 15459}, {2501, 15352}, {2623, 16813}, {6330, 57864}, {6335, 55232}, {10097, 65350}, {14582, 46456}, {16081, 51358}, {43462, 65359}, {54240, 57185}
X(65357) = trilinear pole of line {4, 1942}
X(65357) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 2797}, {450, 822}, {662, 35236}, {810, 40888}, {851, 22382}, {24018, 44096}, {32320, 41497}
X(65357) = X(i)-vertex conjugate of X(j) for these {i, j}: {2351, 53205}
X(65357) = X(i)-Dao conjugate of X(j) for these {i, j}: {1084, 35236}, {1249, 2797}, {39062, 40888}
X(65357) = intersection, other than A, B, C, of circumconics {{A, B, C, X(107), X(648)}}, {{A, B, C, X(297), X(46587)}}, {{A, B, C, X(512), X(525)}}, {{A, B, C, X(1304), X(2052)}}, {{A, B, C, X(34289), X(65306)}}
X(65357) = barycentric product X(i)*X(j) for these (i, j): {107, 57864}, {264, 2713}, {1942, 6528}, {41207, 7108}
X(65357) = barycentric quotient X(i)/X(j) for these (i, j): {4, 2797}, {107, 450}, {512, 35236}, {648, 40888}, {1942, 520}, {2249, 22382}, {2713, 3}, {6529, 41368}, {32713, 44096}, {36126, 41497}, {41206, 7364}, {41207, 1943}, {57864, 3265}
X(65358) lies on these lines: {107, 647}, {520, 648}, {523, 15352}, {685, 58070}, {1972, 6330}, {1987, 1990}, {2052, 57500}, {3265, 6331}, {6335, 57109}, {6530, 16081}, {14380, 15459}, {15274, 51960}, {15451, 34538}, {16813, 23286}, {41204, 52177}, {42396, 58353}, {43083, 46456}, {53175, 58071}
X(65358) = trilinear pole of line {4, 1987}
X(65358) = X(i)-isoconjugate-of-X(j) for these {i, j}: {255, 6130}, {401, 822}, {520, 1955}, {1971, 24018}, {3708, 62523}
X(65358) = X(i)-vertex conjugate of X(j) for these {i, j}: {32649, 41173}
X(65358) = X(i)-Dao conjugate of X(j) for these {i, j}: {6523, 6130}
X(65358) = X(i)-Ceva conjugate of X(j) for these {i, j}: {41210, 53708}
X(65358) = X(i)-cross conjugate of X(j) for these {i, j}: {3569, 2052}, {6130, 4}, {53175, 1987}, {53708, 53205}
X(65358) = intersection, other than A, B, C, of circumconics {{A, B, C, X(107), X(648)}}, {{A, B, C, X(264), X(44770)}}, {{A, B, C, X(520), X(523)}}, {{A, B, C, X(847), X(10423)}}, {{A, B, C, X(935), X(14536)}}, {{A, B, C, X(1093), X(32695)}}, {{A, B, C, X(1990), X(58071)}}, {{A, B, C, X(2764), X(15318)}}, {{A, B, C, X(6530), X(32687)}}, {{A, B, C, X(10415), X(53944)}}, {{A, B, C, X(14560), X(52604)}}, {{A, B, C, X(31510), X(57526)}}, {{A, B, C, X(41210), X(53205)}}, {{A, B, C, X(53708), X(65305)}}
X(65358) = barycentric product X(i)*X(j) for these (i, j): {4, 53205}, {107, 1972}, {264, 53708}, {1298, 65183}, {1956, 823}, {1987, 6528}, {2052, 65305}, {14941, 15352}, {18020, 62519}, {23582, 60036}, {41208, 53}, {41210, 5}, {51960, 65265}, {53175, 57556}
X(65358) = barycentric quotient X(i)/X(j) for these (i, j): {107, 401}, {250, 62523}, {393, 6130}, {1956, 24018}, {1972, 3265}, {1987, 520}, {6528, 44137}, {6529, 41204}, {14941, 52613}, {15352, 16089}, {17994, 38974}, {20031, 32545}, {24019, 1955}, {32713, 1971}, {41208, 34386}, {41210, 95}, {51960, 39473}, {52177, 32320}, {53175, 35071}, {53205, 69}, {53708, 3}, {58070, 52128}, {60036, 15526}, {61193, 32428}, {62519, 125}, {65305, 394}
X(65359) lies on these lines: {2, 46456}, {15, 36309}, {16, 36306}, {107, 186}, {249, 36789}, {323, 648}, {338, 40384}, {653, 36102}, {685, 14355}, {687, 15466}, {1897, 36130}, {2052, 15459}, {3431, 43707}, {6331, 7799}, {6335, 42701}, {9213, 17983}, {14165, 15352}, {14220, 57732}, {14618, 16080}, {15412, 65360}, {16577, 65329}, {16813, 32663}, {30450, 37802}, {43462, 65357}, {52147, 65350}, {57268, 65349}
X(65359) = trilinear pole of line {4, 14220}
X(65359) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 5663}, {255, 47228}, {577, 36063}, {822, 7480}, {2315, 39986}, {2631, 53233}, {9247, 35520}
X(65359) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 5663}, {6523, 47228}, {62576, 35520}
X(65359) = X(i)-cross conjugate of X(j) for these {i, j}: {47228, 4}, {55130, 35139}
X(65359) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(15)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(275), X(23582)}}, {{A, B, C, X(276), X(60138)}}, {{A, B, C, X(338), X(36789)}}, {{A, B, C, X(477), X(65325)}}, {{A, B, C, X(525), X(62501)}}, {{A, B, C, X(2052), X(14618)}}, {{A, B, C, X(34990), X(58416)}}, {{A, B, C, X(37778), X(42298)}}, {{A, B, C, X(46789), X(52494)}}, {{A, B, C, X(53201), X(54837)}}
X(65359) = barycentric product X(i)*X(j) for these (i, j): {264, 477}, {340, 43707}, {1494, 52494}, {1969, 36151}, {2052, 65325}, {2411, 46456}, {14220, 6528}, {14618, 30528}, {16077, 53178}, {16080, 46789}, {18027, 32663}, {18817, 34210}, {35139, 53158}, {36062, 57806}, {36102, 92}, {36130, 75}, {39985, 65267}
X(65359) = barycentric quotient X(i)/X(j) for these (i, j): {4, 5663}, {107, 7480}, {158, 36063}, {264, 35520}, {393, 47228}, {477, 3}, {1300, 39986}, {1304, 53233}, {2411, 8552}, {2970, 6070}, {4240, 42742}, {6344, 34209}, {14220, 520}, {16080, 46788}, {30528, 4558}, {32650, 32662}, {32663, 577}, {32712, 32640}, {34210, 22115}, {34334, 1553}, {36047, 36061}, {36062, 255}, {36102, 63}, {36117, 36034}, {36130, 1}, {36151, 48}, {39985, 13754}, {43707, 265}, {46456, 2410}, {46789, 11064}, {52494, 30}, {52661, 11251}, {53158, 526}, {53178, 9033}, {58086, 17702}, {58261, 13212}, {65267, 39988}, {65325, 394}
X(65360) lies on these lines: {2, 38342}, {54, 58943}, {61, 51275}, {62, 51268}, {94, 275}, {107, 1141}, {276, 6331}, {476, 39452}, {687, 40427}, {847, 58079}, {933, 2970}, {1989, 8794}, {2052, 11077}, {11079, 15459}, {15412, 65359}, {18384, 65349}, {18817, 18883}, {30529, 37766}, {51887, 56407}
X(65360) = trilinear pole of line {4, 10412}
X(65360) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 2290}, {48, 1154}, {50, 44706}, {216, 6149}, {255, 11062}, {323, 62266}, {418, 52414}, {577, 51801}, {1273, 9247}, {1953, 22115}, {2081, 4575}, {2151, 44712}, {2152, 44711}, {2179, 52437}, {2624, 23181}, {14918, 52430}, {18695, 19627}
X(65360) = X(i)-Dao conjugate of X(j) for these {i, j}: {128, 47423}, {136, 2081}, {1249, 1154}, {6523, 11062}, {14993, 216}, {15295, 217}, {36103, 2290}, {40578, 44712}, {40579, 44711}, {62576, 1273}, {62603, 52437}
X(65360) = X(i)-cross conjugate of X(j) for these {i, j}: {1141, 46138}, {1989, 1141}, {11062, 4}, {37943, 39286}, {43088, 35139}, {47230, 933}, {55150, 46139}
X(65360) = pole of line {2081, 47423} with respect to the polar circle
X(65360) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(61)}}, {{A, B, C, X(94), X(6344)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(275), X(276)}}, {{A, B, C, X(324), X(847)}}, {{A, B, C, X(1141), X(65326)}}, {{A, B, C, X(1989), X(11077)}}, {{A, B, C, X(3580), X(41665)}}, {{A, B, C, X(7578), X(59278)}}, {{A, B, C, X(9381), X(14618)}}, {{A, B, C, X(11547), X(58079)}}, {{A, B, C, X(14165), X(37766)}}, {{A, B, C, X(14592), X(58704)}}, {{A, B, C, X(14860), X(39284)}}, {{A, B, C, X(15412), X(43766)}}, {{A, B, C, X(21449), X(43462)}}, {{A, B, C, X(36612), X(60256)}}, {{A, B, C, X(39183), X(62722)}}, {{A, B, C, X(51222), X(60517)}}, {{A, B, C, X(56067), X(62927)}}, {{A, B, C, X(57899), X(62926)}}
X(65360) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {94, 65326, 46138}
X(65361) lies on the circumcircle and on these lines: {72, 104}, {105, 17642}, {106, 1167}, {107, 53151}, {112, 2427}, {190, 41906}, {644, 40117}, {675, 40424}, {692, 58991}, {759, 56259}, {917, 40444}, {1290, 34151}, {1309, 3952}, {1331, 8059}, {2222, 61222}, {2291, 52405}, {2376, 40397}, {2720, 23067}, {2726, 56529}, {2730, 6065}, {4571, 43347}, {5546, 59010}, {15728, 63185}, {30239, 65159}, {43078, 51632}, {58992, 65313}
X(65361) = trilinear pole of line {6, 1167}
X(65361) = X(i)-isoconjugate-of-X(j) for these {i, j}: {11, 61227}, {244, 61185}, {278, 40628}, {513, 1210}, {514, 1108}, {522, 37566}, {649, 17862}, {667, 1226}, {693, 40958}, {1019, 21933}, {1071, 7649}, {1086, 61237}, {1111, 53288}, {1864, 3676}, {3737, 57285}, {4858, 61212}, {6129, 52571}, {7178, 40979}, {23204, 46107}
X(65361) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 17862}, {6631, 1226}, {39026, 1210}
X(65361) = X(i)-cross conjugate of X(j) for these {i, j}: {40, 59}, {212, 1252}, {38857, 7012}
X(65361) = intersection, other than A, B, C, of circumconics {{A, B, C, X(72), X(2427)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(644), X(1331)}}, {{A, B, C, X(1897), X(5548)}}, {{A, B, C, X(2283), X(17642)}}, {{A, B, C, X(5546), X(36106)}}, {{A, B, C, X(34151), X(56877)}}, {{A, B, C, X(56280), X(61222)}}
X(65361) = barycentric product X(i)*X(j) for these (i, j): {100, 40399}, {101, 40424}, {1167, 190}, {1331, 40444}, {40397, 4571}, {55112, 58984}, {56259, 662}, {63185, 644}
X(65361) = barycentric quotient X(i)/X(j) for these (i, j): {100, 17862}, {101, 1210}, {190, 1226}, {212, 40628}, {692, 1108}, {906, 1071}, {1110, 61237}, {1167, 514}, {1252, 61185}, {1415, 37566}, {2149, 61227}, {2427, 1532}, {4557, 21933}, {4559, 57285}, {23990, 53288}, {32739, 40958}, {36049, 52571}, {40399, 693}, {40424, 3261}, {40444, 46107}, {56259, 1577}, {58984, 55110}, {63185, 24002}, {65375, 40979}
X(65362) lies on the circumcircle and on these lines: {2, 13612}, {84, 102}, {104, 46355}, {106, 1256}, {108, 37141}, {109, 13138}, {189, 972}, {271, 52027}, {280, 1295}, {285, 26701}, {934, 53642}, {2357, 29056}, {2716, 56939}, {6245, 48358}, {14312, 30239}, {32652, 58972}, {36049, 58946}, {36067, 61040}, {44327, 58991}, {58995, 65330}
X(65362) = reflection of X(i) in X(j) for these {i,j}: {48358, 6245}
X(65362) = anticomplement of X(13612)
X(65362) = trilinear pole of line {6, 282}
X(65362) = X(i)-isoconjugate-of-X(j) for these {i, j}: {40, 6129}, {109, 3318}, {196, 10397}, {198, 14837}, {208, 57101}, {221, 8058}, {223, 14298}, {513, 1103}, {650, 40212}, {663, 55015}, {1461, 61075}, {1817, 55212}, {2187, 17896}, {2331, 64885}, {3209, 57245}, {6611, 57049}, {7078, 54239}, {8063, 57454}, {38357, 57118}
X(65362) = X(i)-Dao conjugate of X(j) for these {i, j}: {11, 3318}, {282, 8063}, {3341, 8058}, {13612, 13612}, {35508, 61075}, {39026, 1103}
X(65362) = X(i)-cross conjugate of X(j) for these {i, j}: {1622, 59}, {3900, 282}, {8059, 13138}, {23224, 1433}, {40117, 37141}
X(65362) = pole of line {3318, 13612} with respect to the polar circle
X(65362) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(31511)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(668), X(61185)}}, {{A, B, C, X(693), X(2968)}}, {{A, B, C, X(4397), X(14312)}}, {{A, B, C, X(4571), X(54953)}}, {{A, B, C, X(13138), X(53642)}}
X(65363) lies on the circumcircle and on these lines: {100, 6632}, {101, 57731}, {105, 4518}, {106, 291}, {109, 31615}, {292, 59035}, {660, 901}, {739, 1922}, {765, 2382}, {789, 57950}, {825, 59149}, {898, 34067}, {927, 4583}, {1016, 8299}, {1252, 9111}, {1308, 4562}, {2222, 36801}, {2726, 4076}, {4557, 59043}, {6635, 23343}, {7035, 9073}, {9081, 31073}
X(65363) = trilinear pole of line {6, 765}
X(65363) = X(i)-isoconjugate-of-X(j) for these {i, j}: {100, 24193}, {238, 764}, {239, 21143}, {244, 659}, {350, 8027}, {513, 27846}, {649, 27918}, {812, 1015}, {1019, 39786}, {1027, 38989}, {1086, 8632}, {1357, 3716}, {1428, 21132}, {1914, 6545}, {1921, 3249}, {1977, 65101}, {2238, 8042}, {2969, 22384}, {3125, 50456}, {3248, 3766}, {3271, 43041}, {3572, 35119}, {3937, 65106}, {4124, 43924}, {4435, 53538}, {4448, 43922}, {4455, 17205}, {8034, 33295}, {8661, 27922}, {14599, 23100}, {16726, 21832}, {46051, 52205}, {46387, 61404}, {46390, 61403}, {60577, 61061}
X(65363) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 27918}, {8054, 24193}, {9470, 764}, {36906, 6545}, {39026, 27846}
X(65363) = X(i)-cross conjugate of X(j) for these {i, j}: {660, 5378}, {2284, 1016}, {3573, 765}, {54328, 4567}
X(65363) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(291), X(660)}}, {{A, B, C, X(662), X(39276)}}, {{A, B, C, X(765), X(6635)}}, {{A, B, C, X(874), X(2284)}}, {{A, B, C, X(1280), X(4555)}}, {{A, B, C, X(1922), X(34067)}}, {{A, B, C, X(3573), X(8300)}}, {{A, B, C, X(4518), X(4583)}}, {{A, B, C, X(5376), X(6632)}}, {{A, B, C, X(5548), X(8851)}}, {{A, B, C, X(23343), X(23344)}}, {{A, B, C, X(36802), X(56111)}}, {{A, B, C, X(57950), X(59149)}}
X(65364) lies on the circumcircle and on these lines: {1, 28485}, {37, 25433}, {81, 745}, {98, 8857}, {100, 33946}, {101, 3888}, {104, 37331}, {105, 5253}, {106, 7194}, {190, 65369}, {292, 733}, {644, 28883}, {651, 8685}, {675, 40038}, {727, 3502}, {932, 1633}, {1332, 29026}, {4562, 8684}, {4579, 28486}, {4599, 59076}, {28856, 35342}, {29055, 46153}, {52778, 52923}
X(65364) = trilinear pole of line {6, 982}
X(65364) = X(i)-isoconjugate-of-X(j) for these {i, j}: {213, 18077}, {512, 33954}, {513, 3961}, {522, 41346}, {649, 17280}, {650, 56547}, {663, 56928}, {667, 33938}, {3494, 4083}, {3835, 34249}
X(65364) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 17280}, {6626, 18077}, {6631, 33938}, {39026, 3961}, {39054, 33954}
X(65364) = X(i)-cross conjugate of X(j) for these {i, j}: {21123, 81}
X(65364) = pole of line {38, 1582} with respect to the Kiepert parabola
X(65364) = pole of line {3496, 6646} with respect to the Yff parabola
X(65364) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(292), X(46153)}}, {{A, B, C, X(651), X(3888)}}, {{A, B, C, X(660), X(1414)}}, {{A, B, C, X(664), X(1220)}}, {{A, B, C, X(668), X(37135)}}, {{A, B, C, X(1015), X(18108)}}, {{A, B, C, X(1633), X(52923)}}, {{A, B, C, X(3903), X(36086)}}, {{A, B, C, X(4246), X(37331)}}, {{A, B, C, X(4622), X(65202)}}, {{A, B, C, X(8050), X(13486)}}, {{A, B, C, X(39949), X(52935)}}
X(65364) = barycentric product X(i)*X(j) for these (i, j): {100, 39724}, {101, 40038}, {190, 7194}, {3502, 4598}, {43749, 651}
X(65364) = barycentric quotient X(i)/X(j) for these (i, j): {86, 18077}, {100, 17280}, {101, 3961}, {109, 56547}, {190, 33938}, {651, 56928}, {662, 33954}, {1415, 41346}, {3502, 3835}, {4579, 17741}, {7194, 514}, {21123, 55043}, {34071, 3494}, {39724, 693}, {40038, 3261}, {43749, 4391}
X(65365) lies on the circumcircle and on these lines: {1, 2712}, {21, 59827}, {99, 17212}, {100, 4367}, {101, 6163}, {106, 7312}, {111, 7292}, {551, 2718}, {741, 1149}, {1284, 8686}, {1621, 2721}, {2382, 54310}, {2726, 16823}, {2752, 2975}, {2758, 54335}, {3257, 53682}, {5380, 14419}, {20459, 35106}, {28471, 38460}, {28482, 60353}, {29055, 43924}, {39445, 47626}
X(65365) = trilinear pole of line {6, 1054}
X(65365) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 45661}, {37, 53412}, {513, 5524}
X(65365) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 45661}, {39026, 5524}, {40589, 53412}
X(65365) = pole of line {896, 39339} with respect to the Kiepert parabola
X(65365) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4622)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(651), X(35180)}}, {{A, B, C, X(1149), X(1284)}}, {{A, B, C, X(3257), X(6163)}}, {{A, B, C, X(4367), X(17212)}}, {{A, B, C, X(4618), X(9505)}}, {{A, B, C, X(5557), X(35156)}}, {{A, B, C, X(27834), X(35177)}}, {{A, B, C, X(60353), X(62644)}}
X(65365) = barycentric product X(i)*X(j) for these (i, j): {190, 7312}
X(65365) = barycentric quotient X(i)/X(j) for these (i, j): {1, 45661}, {58, 53412}, {101, 5524}, {7312, 514}
X(65366) lies on the circumcircle and on these lines: {1, 53688}, {100, 23861}, {104, 14636}, {105, 19318}, {106, 9277}, {111, 3920}, {662, 53628}, {741, 1193}, {813, 61168}, {2375, 2670}, {2702, 35342}, {2712, 5529}, {3799, 8694}, {4115, 59085}, {4557, 65369}, {4596, 4983}, {5293, 28482}, {9108, 16823}, {38470, 62644}
X(65366) = trilinear pole of line {6, 846}
X(65366) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 1961}, {649, 28604}
X(65366) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 28604}, {36830, 1963}, {39026, 1961}
X(65366) = pole of line {1962, 1963} with respect to the Kiepert parabola
X(65366) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4596)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(662), X(3903)}}, {{A, B, C, X(1018), X(37135)}}, {{A, B, C, X(1193), X(61168)}}, {{A, B, C, X(1414), X(65250)}}, {{A, B, C, X(4238), X(19318)}}, {{A, B, C, X(4246), X(14636)}}, {{A, B, C, X(4557), X(23861)}}, {{A, B, C, X(5293), X(62644)}}, {{A, B, C, X(17940), X(34076)}}
X(65366) = barycentric product X(i)*X(j) for these (i, j): {190, 9277}, {9281, 99}, {17934, 6158}
X(65366) = barycentric quotient X(i)/X(j) for these (i, j): {100, 28604}, {101, 1961}, {110, 1963}, {6158, 18014}, {9277, 514}, {9281, 523}, {17943, 6157}
X(65367) lies on the circumcircle and on these lines: {1, 2726}, {98, 60353}, {99, 3737}, {100, 663}, {101, 3063}, {104, 238}, {105, 1149}, {106, 9432}, {109, 667}, {675, 7292}, {739, 1055}, {741, 859}, {813, 2427}, {901, 46597}, {927, 1027}, {932, 6163}, {934, 43924}, {995, 2718}, {997, 2757}, {1016, 8706}, {1026, 6079}, {1083, 2751}, {1262, 59123}, {1311, 38460}, {1458, 8686}, {1951, 59131}, {2291, 3230}, {2370, 3100}, {2382, 16483}, {2716, 49128}, {2724, 12652}, {2758, 30115}, {3109, 53920}, {6905, 15323}, {7290, 14665}, {9082, 33849}, {9266, 53625}, {19554, 35105}, {21788, 35106}, {32666, 59101}, {39445, 45763}, {40499, 52778}, {43655, 61432}, {52092, 53703}
X(65367) = trilinear pole of line {6, 9432}
X(65367) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 5205}, {514, 56530}, {522, 9364}, {649, 40875}, {650, 40862}, {656, 15150}
X(65367) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 40875}, {39026, 5205}, {40596, 15150}
X(65367) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32665)}}, {{A, B, C, X(56), X(36086)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(238), X(859)}}, {{A, B, C, X(663), X(667)}}, {{A, B, C, X(664), X(34080)}}, {{A, B, C, X(1016), X(1262)}}, {{A, B, C, X(1026), X(1149)}}, {{A, B, C, X(1055), X(3230)}}, {{A, B, C, X(1178), X(17939)}}, {{A, B, C, X(5548), X(32735)}}, {{A, B, C, X(34085), X(39970)}}, {{A, B, C, X(34434), X(35174)}}, {{A, B, C, X(37168), X(46597)}}, {{A, B, C, X(40437), X(63881)}}
X(65367) = barycentric product X(i)*X(j) for these (i, j): {1, 65231}, {109, 52517}, {190, 9432}, {651, 9365}, {53208, 6}
X(65367) = barycentric quotient X(i)/X(j) for these (i, j): {100, 40875}, {101, 5205}, {109, 40862}, {112, 15150}, {692, 56530}, {1415, 9364}, {9365, 4391}, {9432, 514}, {52517, 35519}, {53208, 76}, {65231, 75}
X(65368) lies on the circumcircle and on these lines: {40, 915}, {99, 53652}, {103, 64889}, {104, 56278}, {105, 39947}, {106, 11249}, {212, 2376}, {573, 9085}, {675, 39695}, {759, 37585}, {917, 5759}, {1331, 13397}, {1477, 37578}, {1766, 20624}, {2077, 43078}, {3939, 6011}, {5657, 40101}, {8059, 56410}, {8686, 37618}, {9058, 61221}, {23067, 36082}, {32691, 57218}, {32706, 64111}, {40117, 61239}
X(65368) = trilinear pole of line {6, 34430}
X(65368) = X(i)-isoconjugate-of-X(j) for these {i, j}: {224, 7649}, {513, 12649}, {514, 1723}, {522, 34489}, {2900, 3676}, {3211, 17924}
X(65368) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 12649}
X(65368) = X(i)-cross conjugate of X(j) for these {i, j}: {43923, 1167}
X(65368) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(40), X(56410)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(516), X(64889)}}, {{A, B, C, X(1331), X(36106)}}, {{A, B, C, X(2283), X(41338)}}, {{A, B, C, X(5759), X(56742)}}, {{A, B, C, X(11249), X(23703)}}, {{A, B, C, X(23832), X(37618)}}, {{A, B, C, X(23981), X(63391)}}
X(65368) = barycentric product X(i)*X(j) for these (i, j): {100, 39947}, {101, 39695}, {190, 34430}, {1332, 41505}, {53652, 6}, {56278, 651}, {57794, 906}
X(65368) = barycentric quotient X(i)/X(j) for these (i, j): {101, 12649}, {692, 1723}, {906, 224}, {1415, 34489}, {2427, 51432}, {32656, 3211}, {34430, 514}, {39695, 3261}, {39947, 693}, {41505, 17924}, {53652, 76}, {56278, 4391}
X(65369) lies on the circumcircle and on these lines: {105, 5260}, {106, 39977}, {109, 3799}, {190, 65364}, {644, 825}, {675, 40033}, {741, 40794}, {1018, 2702}, {1308, 39185}, {1310, 52923}, {1332, 29075}, {3952, 38470}, {4557, 65366}, {13396, 33948}, {28895, 57192}, {30664, 36801}, {30670, 65192}, {40521, 53628}
X(65369) = trilinear pole of line {6, 3961}
X(65369) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 29821}, {649, 17302}, {667, 33944}, {3733, 4425}, {16726, 21383}, {17205, 23861}
X(65369) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 17302}, {6631, 33944}, {39026, 29821}
X(65369) = X(i)-cross conjugate of X(j) for these {i, j}: {846, 765}
X(65369) = pole of line {17469, 39244} with respect to the Hutson-Moses hyperbola
X(65369) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(644), X(3799)}}, {{A, B, C, X(660), X(36147)}}, {{A, B, C, X(1018), X(40794)}}, {{A, B, C, X(37135), X(65202)}}, {{A, B, C, X(37212), X(55179)}}
X(65369) = barycentric product X(i)*X(j) for these (i, j): {100, 39722}, {101, 40033}, {190, 39977}
X(65369) = barycentric quotient X(i)/X(j) for these (i, j): {100, 17302}, {101, 29821}, {190, 33944}, {1018, 4425}, {39722, 693}, {39977, 514}, {40033, 3261}
X(65370) lies on the circumcircle and on these lines: {105, 3705}, {106, 3976}, {107, 7256}, {108, 4571}, {190, 6011}, {643, 58986}, {646, 26704}, {668, 1305}, {739, 56003}, {759, 1043}, {833, 53280}, {915, 34406}, {1026, 8685}, {1978, 2864}, {2222, 3699}, {2731, 4076}, {2743, 30721}, {3573, 29083}, {3952, 33637}, {6012, 23845}, {8707, 42380}, {9070, 65313}, {9085, 55994}, {15344, 56305}, {15728, 34399}, {53388, 58947}
X(65370) = trilinear pole of line {6, 26690}
X(65370) = X(i)-isoconjugate-of-X(j) for these {i, j}: {244, 53279}, {512, 17189}, {513, 3924}, {649, 3772}, {667, 17861}, {798, 16749}, {1837, 43924}, {3669, 40968}, {3733, 21935}, {4017, 40980}, {6591, 26934}, {62749, 64654}
X(65370) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 3772}, {6631, 17861}, {31998, 16749}, {34961, 40980}, {39026, 3924}, {39054, 17189}
X(65370) = X(i)-cross conjugate of X(j) for these {i, j}: {219, 1016}, {3869, 765}, {5279, 4567}, {38875, 46102}
X(65370) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(643), X(668)}}, {{A, B, C, X(660), X(36050)}}, {{A, B, C, X(1026), X(3705)}}, {{A, B, C, X(1043), X(3699)}}, {{A, B, C, X(3976), X(23703)}}, {{A, B, C, X(4555), X(13138)}}, {{A, B, C, X(4571), X(7256)}}, {{A, B, C, X(17780), X(30144)}}
X(65370) = barycentric product X(i)*X(j) for these (i, j): {100, 59759}, {190, 40436}, {1332, 34406}, {4561, 55994}, {34399, 644}, {42380, 56}, {56003, 668}
X(65370) = barycentric quotient X(i)/X(j) for these (i, j): {99, 16749}, {100, 3772}, {101, 3924}, {109, 36570}, {190, 17861}, {644, 1837}, {662, 17189}, {1018, 21935}, {1252, 53279}, {1331, 26934}, {1332, 41004}, {3939, 40968}, {5546, 40980}, {34399, 24002}, {34406, 17924}, {40436, 514}, {42380, 3596}, {53280, 64654}, {55994, 7649}, {56003, 513}, {56305, 6591}, {59759, 693}
X(65371) lies on the circumcircle and on these lines: {99, 14727}, {100, 8641}, {101, 48294}, {103, 238}, {106, 51845}, {666, 932}, {667, 934}, {673, 29352}, {840, 9309}, {884, 927}, {1016, 52778}, {1293, 36086}, {1477, 58320}, {2291, 6169}, {2371, 56530}, {2382, 16487}, {2725, 9311}, {2726, 42884}, {2862, 32023}, {7128, 59128}, {8685, 32666}, {8706, 36802}, {9067, 51560}, {9266, 53630}, {9439, 12032}, {26704, 65333}, {32728, 59105}, {32735, 59123}, {36146, 53622}
X(65371) = isogonal conjugate of X(42341)
X(65371) = trilinear pole of line {6, 1633}
X(65371) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42341}, {513, 56714}, {518, 4449}, {649, 40883}, {665, 3729}, {672, 4885}, {918, 9310}, {926, 9312}, {1026, 4014}, {1376, 2254}, {1861, 22091}, {2223, 20907}, {2284, 21139}, {3286, 21052}, {3900, 41355}, {3912, 20980}, {3930, 18199}, {4513, 53544}, {9316, 50333}, {17218, 20683}, {46388, 61413}
X(65371) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 42341}, {5375, 40883}, {39026, 56714}, {45252, 50333}, {62554, 4885}, {62599, 20907}
X(65371) = X(i)-cross conjugate of X(j) for these {i, j}: {3063, 6185}, {4879, 52030}
X(65371) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(57928)}}, {{A, B, C, X(19), X(35157)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(82), X(13136)}}, {{A, B, C, X(660), X(9452)}}, {{A, B, C, X(667), X(884)}}, {{A, B, C, X(1016), X(7128)}}, {{A, B, C, X(4616), X(8750)}}, {{A, B, C, X(31209), X(48294)}}, {{A, B, C, X(32719), X(34443)}}, {{A, B, C, X(32735), X(36802)}}, {{A, B, C, X(36142), X(40412)}}
X(65371) = barycentric product X(i)*X(j) for these (i, j): {105, 30610}, {190, 51845}, {666, 9309}, {6169, 664}, {14727, 6}, {32023, 919}, {34085, 9439}, {36086, 9311}, {51560, 9315}
X(65371) = barycentric quotient X(i)/X(j) for these (i, j): {6, 42341}, {100, 40883}, {101, 56714}, {105, 4885}, {109, 6168}, {673, 20907}, {919, 1376}, {927, 61413}, {1027, 21139}, {1438, 4449}, {1461, 41355}, {6169, 522}, {9309, 918}, {9315, 2254}, {14727, 76}, {18785, 21052}, {30610, 3263}, {32658, 22091}, {32666, 9310}, {32735, 6180}, {36086, 3729}, {36146, 9312}, {43929, 4014}, {51845, 514}, {52927, 4513}, {59101, 61415}, {64216, 20980}
X(65372) lies on the circumcircle and on these lines: {105, 5278}, {106, 19861}, {108, 3952}, {110, 4571}, {112, 644}, {190, 13397}, {741, 56045}, {1252, 59134}, {1290, 4756}, {1292, 4427}, {1310, 65313}, {1331, 58967}, {1633, 43348}, {3699, 9058}, {4578, 58991}, {4767, 26711}, {9088, 61226}, {26700, 65191}, {38470, 52923}
X(65372) = trilinear pole of line {6, 3694}
X(65372) = X(i)-isoconjugate-of-X(j) for these {i, j}: {649, 19785}, {2478, 43924}, {41340, 57200}
X(65372) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 19785}
X(65372) = X(i)-cross conjugate of X(j) for these {i, j}: {7085, 1252}, {8193, 59}, {12514, 765}
X(65372) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(644), X(3952)}}, {{A, B, C, X(1897), X(53652)}}, {{A, B, C, X(8050), X(13138)}}, {{A, B, C, X(17780), X(19861)}}, {{A, B, C, X(36147), X(65227)}}, {{A, B, C, X(53647), X(55185)}}
X(65372) = barycentric product X(i)*X(j) for these (i, j): {190, 56220}, {3952, 56045}
X(65372) = barycentric quotient X(i)/X(j) for these (i, j): {100, 19785}, {644, 2478}, {4574, 41340}, {56045, 7192}, {56220, 514}
X(65373) lies on the circumcircle and on these lines: {101, 646}, {105, 56202}, {106, 58021}, {109, 668}, {110, 7257}, {190, 6010}, {645, 59066}, {727, 987}, {739, 56046}, {741, 1010}, {815, 53338}, {835, 46597}, {874, 1310}, {934, 4572}, {1978, 38470}, {2703, 33948}, {3596, 49128}, {4505, 29143}, {4561, 29055}, {8687, 65229}, {9078, 17522}, {9082, 59353}
X(65373) = trilinear pole of line {6, 312}
X(65373) = X(i)-isoconjugate-of-X(j) for these {i, j}: {649, 2277}, {667, 986}, {1919, 27184}
X(65373) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 2277}, {6631, 986}, {9296, 27184}
X(65373) = X(i)-cross conjugate of X(j) for these {i, j}: {958, 1016}, {6133, 2}
X(65373) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(75), X(57976)}}, {{A, B, C, X(646), X(668)}}, {{A, B, C, X(670), X(51566)}}, {{A, B, C, X(811), X(18830)}}, {{A, B, C, X(874), X(1010)}}, {{A, B, C, X(4614), X(57959)}}, {{A, B, C, X(4623), X(58135)}}, {{A, B, C, X(37218), X(65280)}}, {{A, B, C, X(53332), X(56248)}}, {{A, B, C, X(53658), X(57950)}}
X(65373) = barycentric product X(i)*X(j) for these (i, j): {190, 58021}, {1978, 987}, {4554, 56202}, {28659, 59015}, {56046, 668}
X(65373) = barycentric quotient X(i)/X(j) for these (i, j): {100, 2277}, {190, 986}, {668, 27184}, {987, 649}, {56046, 513}, {56202, 650}, {58021, 514}, {59015, 604}
X(65374) lies on the circumcircle and on these lines: {64, 102}, {84, 1295}, {104, 60799}, {106, 60803}, {107, 65213}, {108, 61229}, {112, 36049}, {189, 41905}, {280, 41904}, {934, 13138}, {972, 2184}, {1073, 2192}, {1294, 39130}, {1297, 2357}, {1433, 41088}, {2370, 56940}, {2732, 11589}, {2734, 56939}, {26701, 52158}, {34168, 56944}, {44327, 59038}, {56235, 58991}
X(65374) = trilinear pole of line {6, 7367}
X(65374) = X(i)-isoconjugate-of-X(j) for these {i, j}: {20, 6129}, {40, 21172}, {108, 55058}, {154, 17896}, {223, 14331}, {610, 14837}, {1249, 64885}, {1394, 8058}, {1817, 6587}, {2360, 17898}, {3194, 8057}, {3213, 57245}, {10397, 44697}, {14298, 18623}, {15905, 59935}, {16596, 57193}, {32714, 55063}, {41082, 58342}, {44696, 57101}
X(65374) = X(i)-Dao conjugate of X(j) for these {i, j}: {14092, 14837}, {14390, 57233}, {38983, 55058}
X(65374) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65224, 40117}
X(65374) = X(i)-cross conjugate of X(j) for these {i, j}: {652, 1073}, {57108, 282}
X(65374) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(522), X(24031)}}, {{A, B, C, X(652), X(55044)}}, {{A, B, C, X(36049), X(61229)}}
X(65374) = barycentric product X(i)*X(j) for these (i, j): {190, 60803}, {253, 36049}, {1073, 65213}, {1301, 56944}, {2357, 44326}, {13138, 2184}, {19611, 40117}, {19614, 65270}, {30457, 53642}, {32652, 57921}, {37141, 44692}, {39130, 46639}, {41087, 53639}, {44327, 64}, {52389, 65224}, {56235, 84}, {60799, 6335}
X(65374) = barycentric quotient X(i)/X(j) for these (i, j): {64, 14837}, {652, 55058}, {1301, 41083}, {1436, 21172}, {1903, 17898}, {2155, 6129}, {2184, 17896}, {2192, 14331}, {2357, 6587}, {8059, 18623}, {13138, 18750}, {14379, 57233}, {19614, 64885}, {30457, 8058}, {32652, 610}, {36049, 20}, {36079, 14256}, {37141, 33673}, {40117, 1895}, {41087, 8057}, {41489, 54239}, {44327, 14615}, {46639, 8822}, {56235, 322}, {57108, 55063}, {60799, 905}, {60803, 514}, {65213, 15466}
X(65375) lies on these lines: {1, 16599}, {31, 21756}, {35, 40602}, {58, 1066}, {99, 58947}, {100, 58986}, {101, 112}, {109, 110}, {162, 4551}, {163, 692}, {284, 2195}, {516, 23692}, {601, 17104}, {643, 4612}, {662, 3737}, {827, 29052}, {1110, 4557}, {1253, 35192}, {1414, 41353}, {1624, 23067}, {1625, 61202}, {1634, 23189}, {2150, 2175}, {2310, 2341}, {2328, 2342}, {3190, 41503}, {3939, 4587}, {4069, 7259}, {4558, 54353}, {4965, 8300}, {16686, 34079}, {19622, 19624}, {21784, 23861}, {23703, 54442}, {24027, 52610}, {32652, 32661}, {36080, 58951}, {41339, 52949}, {43076, 58974}, {51361, 58337}, {53280, 61200}, {56948, 64739}, {59061, 59079}, {59063, 59067}
X(65375) = isogonal conjugate of X(4077)
X(65375) = trilinear pole of line {41, 212}
X(65375) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4077}, {2, 7178}, {4, 17094}, {7, 523}, {10, 3676}, {11, 4566}, {12, 7192}, {27, 57243}, {34, 14208}, {37, 24002}, {42, 52621}, {56, 850}, {57, 1577}, {65, 693}, {73, 46107}, {75, 4017}, {76, 7180}, {77, 24006}, {85, 661}, {92, 51664}, {99, 1365}, {107, 1367}, {109, 21207}, {115, 4573}, {181, 52619}, {190, 53545}, {210, 59941}, {222, 14618}, {225, 4025}, {226, 514}, {269, 4086}, {273, 656}, {274, 57185}, {278, 525}, {279, 3700}, {304, 55208}, {307, 7649}, {312, 7216}, {313, 43924}, {321, 3669}, {331, 647}, {335, 7212}, {338, 4565}, {348, 2501}, {349, 649}, {512, 6063}, {513, 1441}, {522, 3668}, {553, 31010}, {561, 51641}, {594, 17096}, {604, 20948}, {608, 3267}, {650, 1446}, {651, 16732}, {653, 4466}, {658, 21044}, {664, 3120}, {668, 53540}, {669, 41283}, {670, 61052}, {798, 20567}, {810, 57787}, {903, 30572}, {905, 40149}, {1014, 4036}, {1019, 6358}, {1020, 4858}, {1042, 35519}, {1086, 4552}, {1088, 4041}, {1089, 7203}, {1109, 1414}, {1111, 4551}, {1118, 3265}, {1119, 52355}, {1214, 17924}, {1231, 6591}, {1254, 18155}, {1275, 55195}, {1356, 4609}, {1357, 27808}, {1358, 3952}, {1397, 44173}, {1400, 3261}, {1401, 52618}, {1402, 40495}, {1412, 52623}, {1426, 35518}, {1427, 4391}, {1434, 4024}, {1439, 44426}, {1447, 35352}, {1459, 57809}, {1509, 55197}, {1565, 61178}, {1847, 8611}, {1880, 15413}, {2006, 4707}, {2171, 7199}, {2321, 58817}, {2394, 6357}, {2481, 53551}, {2489, 57918}, {2528, 41284}, {2533, 7249}, {2611, 65292}, {2643, 4625}, {2973, 23067}, {2997, 51658}, {3004, 60086}, {3064, 56382}, {3122, 4572}, {3125, 4554}, {3596, 7250}, {3649, 4608}, {3665, 58784}, {3671, 58860}, {3701, 43932}, {3709, 57792}, {3733, 34388}, {3801, 56358}, {3911, 4049}, {3932, 43930}, {3942, 65207}, {3960, 60091}, {4010, 7233}, {4033, 53538}, {4052, 30719}, {4080, 30725}, {4088, 56783}, {4092, 4616}, {4171, 23062}, {4369, 60245}, {4404, 19604}, {4415, 60482}, {4444, 16609}, {4453, 52383}, {4467, 52382}, {4516, 4569}, {4524, 57880}, {4559, 23989}, {4560, 6354}, {4581, 41003}, {4605, 17197}, {4620, 21131}, {4626, 52335}, {4705, 57785}, {4729, 62528}, {4804, 62784}, {4817, 16603}, {4841, 57826}, {5466, 7181}, {6046, 7253}, {6528, 61058}, {6539, 30724}, {6548, 40663}, {7055, 58757}, {7198, 31065}, {7209, 21834}, {7265, 52374}, {7316, 35522}, {7337, 52617}, {7340, 8029}, {7372, 56849}, {8287, 38340}, {8672, 58008}, {8736, 15419}, {8808, 14837}, {8809, 17898}, {8817, 48403}, {9293, 17085}, {9426, 41287}, {13149, 53560}, {13576, 43042}, {14321, 27818}, {14616, 51663}, {14838, 43682}, {16727, 21859}, {16892, 18097}, {17078, 55238}, {17095, 55236}, {17216, 36127}, {17747, 60581}, {17886, 26700}, {17896, 52384}, {17925, 26942}, {17926, 20618}, {18026, 18210}, {18593, 60074}, {18623, 58759}, {18815, 53527}, {20336, 43923}, {20902, 65232}, {21104, 60229}, {21124, 64984}, {21188, 60249}, {21453, 55282}, {22383, 52575}, {23599, 56255}, {23752, 60041}, {24290, 34018}, {26932, 52607}, {27797, 30722}, {27801, 57181}, {30574, 62723}, {30588, 43052}, {30723, 60267}, {31603, 41501}, {31643, 50330}, {34387, 53321}, {35160, 53558}, {35353, 43037}, {35576, 47656}, {36197, 36838}, {36620, 55285}, {36621, 59589}, {37755, 57215}, {40622, 65236}, {40702, 55242}, {40704, 55261}, {42759, 54953}, {42761, 65331}, {43034, 43665}, {43041, 43534}, {43045, 43673}, {43049, 60265}, {43051, 60244}, {43067, 60321}, {44129, 55234}, {44733, 50457}, {45196, 62749}, {46110, 52373}, {48402, 60076}, {50453, 60085}, {51368, 60584}, {51640, 57806}, {51650, 57915}, {51659, 58026}, {51662, 54121}, {52023, 56322}, {52037, 59935}, {52622, 62192}, {53559, 65289}, {54394, 63220}, {55010, 56320}, {57200, 57807}, {63171, 65100}
X(65375) = X(i)-vertex conjugate of X(j) for these {i, j}: {163, 61197}, {651, 32714}, {1020, 65232}
X(65375) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 850}, {3, 4077}, {11, 21207}, {206, 4017}, {3161, 20948}, {5375, 349}, {5452, 1577}, {6600, 4086}, {6741, 23994}, {11517, 14208}, {22391, 51664}, {31998, 20567}, {32664, 7178}, {34961, 75}, {36033, 17094}, {36830, 85}, {38985, 1367}, {38986, 1365}, {38991, 16732}, {39025, 3120}, {39026, 1441}, {39052, 331}, {39054, 6063}, {39062, 57787}, {40368, 51641}, {40582, 3261}, {40589, 24002}, {40592, 52621}, {40596, 273}, {40599, 52623}, {40602, 693}, {40605, 40495}, {40608, 1109}, {55042, 17886}, {55053, 53545}, {55064, 338}, {55067, 23989}, {55068, 34387}, {56948, 18160}, {62585, 44173}, {62647, 3267}
X(65375) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 163}, {1101, 35192}, {4570, 284}, {4636, 5546}, {36034, 1983}
X(65375) = X(i)-cross conjugate of X(j) for these {i, j}: {55, 1110}, {46388, 2311}, {52425, 2149}, {57134, 2328}, {63461, 41}
X(65375) = pole of line {163, 53290} with respect to the circumcircle
X(65375) = pole of line {1631, 4225} with respect to the Kiepert parabola
X(65375) = pole of line {522, 693} with respect to the Stammler hyperbola
X(65375) = pole of line {4456, 20602} with respect to the Yff parabola
X(65375) = pole of line {4077, 23877} with respect to the Wallace hyperbola
X(65375) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36516)}}, {{A, B, C, X(21), X(4249)}}, {{A, B, C, X(55), X(4557)}}, {{A, B, C, X(100), X(65315)}}, {{A, B, C, X(101), X(906)}}, {{A, B, C, X(109), X(643)}}, {{A, B, C, X(112), X(163)}}, {{A, B, C, X(219), X(52610)}}, {{A, B, C, X(284), X(662)}}, {{A, B, C, X(521), X(9518)}}, {{A, B, C, X(522), X(2878)}}, {{A, B, C, X(644), X(36080)}}, {{A, B, C, X(651), X(36039)}}, {{A, B, C, X(663), X(42670)}}, {{A, B, C, X(919), X(32651)}}, {{A, B, C, X(1036), X(8691)}}, {{A, B, C, X(1415), X(59061)}}, {{A, B, C, X(1576), X(4636)}}, {{A, B, C, X(1946), X(42662)}}, {{A, B, C, X(2293), X(35338)}}, {{A, B, C, X(2335), X(4552)}}, {{A, B, C, X(2773), X(3900)}}, {{A, B, C, X(4041), X(42666)}}, {{A, B, C, X(4069), X(61223)}}, {{A, B, C, X(4183), X(7450)}}, {{A, B, C, X(4551), X(61169)}}, {{A, B, C, X(4569), X(43358)}}, {{A, B, C, X(4614), X(6575)}}, {{A, B, C, X(5075), X(8641)}}, {{A, B, C, X(5549), X(32665)}}, {{A, B, C, X(7257), X(29052)}}, {{A, B, C, X(15455), X(56232)}}, {{A, B, C, X(24019), X(59010)}}, {{A, B, C, X(32666), X(58947)}}, {{A, B, C, X(32714), X(36141)}}, {{A, B, C, X(52927), X(58974)}}, {{A, B, C, X(56269), X(65300)}}, {{A, B, C, X(57134), X(58329)}}, {{A, B, C, X(59067), X(65232)}}
X(65375) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {692, 1576, 163}, {35327, 53325, 61197}
See Kadir Altintas and Francisco Javier García Capitán, euclid 6975.
X(65376) lies on these lines: {2, 3}, {32, 42459}, {52, 1353}, {154, 61607}, {182, 11745}, {184, 31802}, {206, 13346}, {343, 61139}, {389, 21852}, {511, 34774}, {524, 61751}, {569, 19154}, {578, 21850}, {1154, 34750}, {1192, 48905}, {1350, 13562}, {1351, 18925}, {1503, 46730}, {2165, 5023}, {3564, 9833}, {3574, 13394}, {4319, 8144}, {4320, 32047}, {5085, 9815}, {5878, 32602}, {6146, 41588}, {6193, 34380}, {6247, 29012}, {6465, 32177}, {6466, 32178}, {6696, 51756}, {7991, 34712}, {8550, 16625}, {9019, 41589}, {9645, 15171}, {9729, 9969}, {9786, 46264}, {10263, 43595}, {10282, 59553}, {10283, 51696}, {10316, 59657}, {10619, 21969}, {11206, 12164}, {11265, 19117}, {11266, 19116}, {11411, 64033}, {11425, 31670}, {11750, 41587}, {12134, 37478}, {12359, 44407}, {13142, 19467}, {13348, 48881}, {13419, 39884}, {13567, 44829}, {13598, 58550}, {14576, 22401}, {14927, 18913}, {15107, 41482}, {15644, 48874}, {16105, 16163}, {16655, 63425}, {17704, 48892}, {18583, 37476}, {18914, 37489}, {19125, 51212}, {19139, 37498}, {23328, 29323}, {27364, 34449}, {30435, 59649}, {32062, 35240}, {34286, 41766}, {40348, 46200}, {41719, 63702}, {43136, 52223}, {46728, 48876}, {61544, 64037}
See Antreas Hatzipolakis and Peter Moses, euclid 6982.
X(65377) lies on the nine-point circle and these lines: { }
X(65377) = complement of X(65380)
See Antreas Hatzipolakis and Peter Moses, euclid 6982.
X(65378) lies on this line: {230, 231}
X(65378) = crossdifference of every pair of points on line {3, 358}
See Antreas Hatzipolakis and Peter Moses, euclid 6982.
X(65379) lies on Hatzipolakis-Moses-Morley hyperbola and these lines: {357, 1136}, {10632, 16871}
X(65379) = isogonal conjugate of X(16840)
X(65379) = polar conjugate of the isotomic conjugate of X(7309)
X(65379) = barycentric product X(4)*X(7309)
X(65379) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 16840}, {7309, 69}
See Antreas Hatzipolakis and Peter Moses, euclid 6987.
X(65380) lies on the circumcircle and this line: {2, 65377}
X(65380) = anticomplement of X(65377)
X(65380) = isotomic conjugate of the anticomplement of X(65378)
X(65380) = Collings transform of X(15857)
X(65380) = X(65378)-cross conjugate of X(2)
X(65380) = trilinear pole of line {6, 3604}
X(65380) = barycentric quotient X(65378)/X(65377)
See Antreas Hatzipolakis and Peter Moses, euclid 6987.
X(65381) lies on the Hatzipolakis-Moses-Morley hyperbola and these lines: {2, 3}, {357, 52522}, {7309, 65379}
See Antreas Hatzipolakis and Peter Moses, euclid 6987.
X(65382) lies on the circumcircle, the Hatzipolakis-Moses-Morley hyperbola and this line: {4, 65377}
X(65382) = reflection of X(4) in X(65377)
X(65382) = Collings transform of X(65377)
X(65382) = trilinear pole of line {6, 65378}
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 19/09/2024. (Sep 21, 2024)
X(65383) lies on these lines: {1, 3522}, {2, 3649}, {4, 16006}, {7, 3617}, {8, 5586}, {56, 32633}, {57, 46934}, {65, 3621}, {79, 61985}, {145, 553}, {226, 46931}, {388, 34502}, {1071, 31794}, {1159, 6934}, {1317, 3600}, {1406, 63039}, {1537, 5708}, {3091, 11544}, {3146, 5902}, {3336, 61820}, {3339, 3947}, {3579, 11036}, {3622, 65384}, {3623, 39781}, {3625, 4355}, {3671, 5550}, {3812, 28647}, {3832, 9809}, {4031, 4323}, {4190, 39783}, {4298, 16236}, {4452, 39773}, {4654, 46933}, {4678, 10404}, {5059, 11246}, {5068, 15079}, {5229, 45043}, {5434, 20014}, {5441, 62145}, {5556, 62180}, {7995, 11379}, {9948, 18483}, {10543, 62129}, {11035, 39779}, {12019, 43733}, {12649, 64262}, {15174, 15697}, {15692, 16137}, {15717, 37524}, {16118, 62030}, {16133, 17570}, {18419, 41537}, {24987, 59375}, {30332, 60945}, {30340, 37567}, {30424, 36991}, {31295, 33667}, {32636, 39782}, {36279, 37112}, {37267, 39778}, {37435, 39772}, {39774, 62999}, {39777, 52783}, {39780, 63580}
X(65383) = reflection of X(5558) in X(18217)
X(65383) = crosspoint of X(7) and X(65384)
X(65383) = X(9780)-Dao conjugate of-X(8)
X(65383) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (3622, 30711), (65384, 28626)
X(65383) = pole of the the tripolar of X(65384) with respect to the incircle
X(65383) = X(52518)-of-intouch triangle
X(65383) = barycentric product X(9780)*X(65384)
X(65383) = trilinear product X(i)*X(j) for these {i, j}: {3247, 65384}, {3339, 3622}
X(65383) = (X(11246), X(18221))-harmonic conjugate of X(5059)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 19/09/2024. (Sep 21, 2024)
X(65384) lies on these lines: {1, 10304}, {2, 7}, {8, 5221}, {30, 938}, {46, 11037}, {56, 4323}, {65, 3241}, {81, 56846}, {89, 52374}, {165, 11038}, {189, 56947}, {241, 5543}, {279, 39980}, {354, 8236}, {376, 942}, {381, 24470}, {388, 26060}, {390, 10980}, {479, 33765}, {519, 3339}, {549, 3487}, {551, 3361}, {950, 15683}, {959, 17114}, {962, 3338}, {982, 4344}, {999, 4345}, {1014, 42028}, {1056, 3654}, {1058, 28198}, {1125, 5586}, {1155, 10578}, {1159, 50824}, {1210, 3839}, {1418, 17080}, {1434, 16711}, {1443, 5256}, {1458, 42042}, {1466, 13587}, {1788, 11237}, {1876, 7714}, {1892, 62975}, {1992, 24471}, {3008, 62794}, {3058, 3474}, {3160, 5228}, {3210, 4460}, {3296, 3579}, {3303, 5558}, {3333, 9785}, {3336, 10056}, {3337, 4295}, {3340, 6049}, {3475, 4995}, {3485, 5298}, {3488, 3534}, {3522, 11518}, {3524, 5703}, {3543, 4292}, {3545, 5704}, {3586, 15640}, {3601, 62063}, {3616, 4640}, {3622, 65383}, {3649, 5550}, {3655, 31794}, {3666, 17092}, {3671, 5265}, {3679, 4298}, {3742, 52653}, {3772, 63576}, {3828, 5290}, {3845, 18541}, {3873, 64146}, {3916, 17561}, {3947, 19876}, {4000, 18625}, {4032, 4740}, {4102, 63164}, {4190, 12536}, {4297, 18221}, {4304, 15697}, {4307, 18193}, {4312, 5274}, {4315, 51093}, {4328, 44303}, {4334, 42043}, {4346, 39595}, {4355, 5261}, {4402, 37683}, {4421, 51099}, {4423, 16133}, {4454, 30567}, {4488, 18743}, {4650, 16020}, {4676, 26112}, {4754, 49730}, {4771, 17490}, {4870, 7288}, {4888, 33795}, {4955, 31225}, {5054, 6147}, {5055, 5714}, {5059, 37723}, {5122, 15698}, {5222, 24608}, {5252, 51072}, {5281, 5542}, {5393, 21169}, {5556, 10896}, {5557, 31452}, {5563, 5734}, {5719, 15693}, {5722, 15682}, {5726, 51069}, {5731, 5902}, {5758, 37612}, {5766, 11575}, {5791, 50727}, {5918, 7671}, {6361, 15170}, {6738, 34628}, {6744, 34638}, {7011, 21503}, {7175, 63108}, {7176, 16834}, {7198, 32098}, {7268, 49543}, {7319, 34648}, {7320, 7991}, {7672, 63994}, {8591, 59815}, {8703, 15934}, {9143, 59817}, {9352, 63168}, {9533, 42309}, {9579, 50687}, {9581, 61985}, {9612, 61936}, {9779, 17728}, {9780, 10404}, {9812, 11238}, {10032, 41549}, {10106, 31145}, {10156, 21168}, {10164, 59372}, {10707, 24465}, {11019, 50865}, {11024, 62858}, {11036, 15692}, {11111, 64664}, {11177, 24472}, {11227, 59418}, {11374, 15702}, {11520, 37267}, {11529, 51705}, {11679, 52709}, {12433, 15681}, {12436, 54398}, {12541, 62832}, {12630, 17784}, {13388, 17805}, {13389, 17802}, {13405, 30340}, {13411, 15708}, {13462, 51103}, {14450, 26129}, {14829, 31995}, {14986, 31162}, {15672, 41547}, {15690, 15935}, {15717, 63274}, {16192, 18217}, {16236, 51096}, {16371, 57283}, {17012, 56848}, {17013, 47057}, {17294, 32003}, {17301, 36640}, {17580, 54422}, {17595, 37631}, {18141, 42033}, {18391, 37006}, {18421, 51071}, {18990, 34627}, {19708, 24929}, {20057, 64963}, {22345, 27654}, {24046, 48870}, {24175, 37681}, {24177, 37666}, {24391, 56999}, {24473, 37544}, {24477, 59412}, {25718, 50129}, {26105, 63975}, {29611, 50052}, {29627, 32007}, {30282, 62059}, {30286, 50801}, {30424, 50802}, {30947, 44446}, {31994, 50095}, {32079, 55937}, {32087, 37655}, {32939, 42032}, {34255, 50043}, {34605, 41824}, {34631, 50193}, {36279, 50810}, {36588, 64984}, {36603, 44794}, {36845, 49719}, {37520, 50068}, {37749, 59819}, {38021, 64124}, {39126, 42034}, {40663, 51068}, {40891, 43040}, {41777, 63052}, {43180, 50829}, {44447, 65112}, {47357, 58560}, {50626, 56155}, {51066, 51782}, {51790, 62002}, {51841, 63059}, {51842, 63058}, {55010, 64592}, {55948, 65045}, {60076, 65022}, {62208, 63583}, {62240, 62695}, {62300, 63057}, {62782, 62812}
X(65384) = X(i)-cross conjugate of-X(j) for these (i, j): (16667, 3622), (65383, 7)
X(65384) = X(650)-isoconjugate of-X(28226)
X(65384) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (109, 28226), (3622, 8), (3986, 2321), (14351, 4521), (16667, 9), (28225, 522), (58138, 663), (65383, 9780)
X(65384) = X(47921)-zayin conjugate of-X(657)
X(65384) = pole of the line {1, 3543} with respect to the circumhyperbola dual of Yff parabola
X(65384) = pole of the line {333, 3161} with respect to the Steiner-Wallace hyperbola
X(65384) = barycentric product X(i)*X(j) for these {i, j}: {7, 3622}, {85, 16667}, {664, 28225}, {1434, 3986}, {4572, 58138}, {28626, 65383}
X(65384) = trilinear product X(i)*X(j) for these {i, j}: {7, 16667}, {57, 3622}, {651, 28225}, {1014, 3986}, {4554, 58138}, {14351, 65173}, {39948, 65383}
X(65384) = trilinear quotient X(i)/X(j) for these (i, j): (651, 28226), (3622, 9), (3986, 210), (14351, 4162), (16667, 55), (28225, 650), (58138, 3063)
X(65384) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 553, 7), (2, 2094, 28610), (2, 3929, 61023), (2, 9965, 17781), (7, 57, 5435), (7, 5435, 5226), (57, 63, 60948), (57, 226, 64142), (57, 553, 2), (57, 4031, 21454), (354, 9778, 8236), (376, 942, 15933), (376, 15933, 4313), (3218, 9776, 5273), (3306, 9965, 18228), (3474, 4860, 10580), (3474, 10580, 30332), (5226, 5435, 31188), (5273, 9776, 60996), (5542, 53056, 5281)
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 19/09/2024. (Sep 21, 2024)
X(65385) lies on these lines: {1, 548}, {7, 11237}, {145, 52783}, {551, 4031}, {553, 1317}, {3626, 34502}, {3649, 3911}, {3982, 51069}, {4114, 4669}, {4298, 39777}, {4315, 39781}, {5183, 63258}, {5252, 5586}, {5265, 15950}, {5434, 16236}, {7178, 39771}, {11552, 40273}, {16006, 16125}
X(65385) = crosspoint of X(7) and X(4031)
X(65385) = X(664)-Ceva conjugate of-X(30722)
X(65385) = X(3828)-Dao conjugate of-X(8)
X(65385) = pole of the line {28209, 30722} with respect to the incircle
X(65385) = intouch-isogonal conjugate-of-X(5049)
X(65385) = X(14483)-of-intouch triangle
X(65385) = barycentric product X(3828)*X(4031)
X(65385) = trilinear quotient X(3828)/X(56115)
The following proposition is proved in Macaulay, F.S., Geometrical conics, Cambridge, 1895, pp 241:
Prop. 77: If two triangles are circumscribed to a conic, they are also inscribed to a conic; and conversely.
In the preamble just before X(14713), there were described a set of conics circumscribing some selected pairs of triangles. Then, according to the reciprocal of the previous proposition, all pairs of triangles having a common circumconic also have a common inconic.
Let T=ABC, T'=A'B'C' be two triangles. The cross-triangle of T and T' is defined as the triangle A*B*C*, with A*=BC'∩B'C, B*=CA'∩C'A and C*=AB'∩A'B. Then, by Brianchon theorem, the points A, B, C, A", B", C" lie on a conic if A*, B*, C* are collinear or coincident points, i.e., if A*B*C* is a degenerate triangle. This is the required condition for T and T' to be inscribed in a common conic and, consequently, to be circumscribed to another common conic.
An extensive list of centers of inconics of pairs of triangles can be seen here. For definitions of all triangles listed here, check the Index of triangles referenced in ETC.
X(65386) lies on these lines: {22, 669}, {25, 65393}, {230, 231}, {351, 33294}, {525, 5027}, {550, 1499}, {804, 3265}, {826, 41300}, {850, 9131}, {1368, 10190}, {1632, 18020}, {1649, 31279}, {1658, 5926}, {2799, 8651}, {3566, 6333}, {3800, 50549}, {4108, 41298}, {7667, 25423}, {8644, 50548}, {9009, 17710}, {9134, 31277}, {9168, 16063}, {10154, 45317}, {10278, 14341}, {15647, 36739}, {30476, 55122}, {31296, 50552}, {36900, 50545}, {39533, 44960}, {44267, 62507}, {45689, 58882}
X(65386) = midpoint of X(i) and X(j) for these (i, j): {647, 50553}, {669, 6563}, {3265, 6562}, {5926, 8151}, {31296, 50552}, {46953, 57154}, {47128, 55280}
X(65386) = reflection of X(i) in X(j) for these (i, j): (2501, 44451), (6587, 58766)
X(65386) = complement of the isotomic conjugate of X(42297)
X(65386) = cross-difference of every pair of points on the line X(3)X(3981)
X(65386) = crosspoint of X(i) and X(j) for these {i, j}: {2, 42297}, {99, 9307}
X(65386) = crosssum of X(512) and X(9306)
X(65386) = X(i)-complementary conjugate of-X(j) for these (i, j): (42297, 2887), (42407, 21253), (56004, 8287)
X(65386) = X(16925)-reciprocal conjugate of-X(99)
X(65386) = center of the inconic with perspector X(42297)
X(65386) = perspector of the circumconic through X(4) and X(16925)
X(65386) = inverse of X(6587) in Kiepert parabola
X(65386) = pole of the line {7840, 44442} with respect to the anticomplementary circle
X(65386) = pole of the line {25, 317} with respect to the circumcircle
X(65386) = pole of the line {36207, 44438} with respect to the 2nd Droz-Farny circle
X(65386) = pole of the line {427, 44377} with respect to the nine-point circle
X(65386) = pole of the line {4, 7891} with respect to the orthoptic circle of Steiner inellipse
X(65386) = pole of the line {7396, 7779} with respect to the power circles radical circle
X(65386) = pole of the line {2450, 3566} with respect to the Kiepert parabola
X(65386) = pole of the line {155, 1613} with respect to the MacBeath circumconic
X(65386) = pole of the line {193, 3552} with respect to the Steiner circumellipse
X(65386) = pole of the line {6, 6393} with respect to the Steiner inellipse
X(65386) = pole of the line {4563, 53371} with respect to the Steiner-Wallace hyperbola
X(65386) = barycentric product X(523)*X(16925)
X(65386) = trilinear product X(661)*X(16925)
X(65386) = trilinear quotient X(16925)/X(662)
X(65386) = X(65393)-of-Ara triangle
X(65386) = (X(669), X(11123))-harmonic conjugate of X(6563)
X(65387) lies on these lines: {1, 7504}, {2, 18412}, {11, 3748}, {498, 10176}, {1621, 30852}, {3085, 3884}, {3295, 40259}, {3452, 6690}, {3742, 65388}, {3814, 13411}, {3878, 15865}, {5330, 51784}, {5703, 37702}, {6853, 12432}, {8070, 63259}, {10039, 15862}, {10175, 37730}, {10954, 51111}, {11374, 31870}, {18977, 52793}
X(65387) = complement of the isotomic conjugate of X(42321)
X(65387) = crosspoint of X(2) and X(42321)
X(65387) = X(42321)-complementary conjugate of-X(2887)
X(65387) = center of the inconic with perspector X(42321)
X(65387) = pole of the the tripolar of X(42321) with respect to the Steiner inellipse
X(65388) lies on these lines: {1, 58453}, {2, 14740}, {11, 516}, {63, 31272}, {80, 5704}, {100, 31224}, {119, 64124}, {214, 1210}, {499, 3878}, {938, 64012}, {1387, 11362}, {1737, 15863}, {2802, 3086}, {3035, 11019}, {3333, 64008}, {3452, 6667}, {3742, 65387}, {3817, 24465}, {5083, 17728}, {5265, 64145}, {5435, 34789}, {6702, 8666}, {6738, 34123}, {10072, 50841}, {10090, 35976}, {11715, 15325}, {12611, 34753}, {12915, 58663}, {13405, 31235}, {14217, 47743}, {15558, 24914}, {16174, 40256}, {21620, 58421}, {31837, 34126}, {37704, 64136}, {38205, 61002}, {38752, 46681}, {38760, 63999}, {44675, 64137}, {58591, 64157}, {63975, 64155}
X(65388) = complement of the isotomic conjugate of X(42324)
X(65388) = crosspoint of X(2) and X(42324)
X(65388) = X(42324)-complementary conjugate of-X(2887)
X(65388) = center of the inconic with perspector X(42324)
X(65388) = pole of the the tripolar of X(42324) with respect to the Steiner inellipse
X(65388) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (11, 3911, 46684), (499, 12736, 32557)
X(65389) lies on these lines: {2, 65434}, {3, 23878}, {4, 647}, {5, 44560}, {20, 36900}, {30, 47247}, {140, 30476}, {186, 47254}, {389, 54269}, {523, 37934}, {550, 30209}, {631, 31174}, {850, 3523}, {3522, 31296}, {3533, 31277}, {8550, 8675}, {8704, 65419}, {10295, 47250}, {11623, 62489}, {15412, 42658}, {15644, 54272}, {15717, 63786}, {16619, 47442}, {18925, 54268}, {31072, 61834}, {39469, 65425}, {46983, 47339}, {47003, 47248}, {47122, 64790}, {47261, 47338}, {52585, 65403}
X(65389) = midpoint of X(i) and X(j) for these (i, j): {10295, 47250}, {15412, 42658}, {47003, 47248}
X(65389) = anticomplement of X(65434)
X(65389) = cross-difference of every pair of points on the line X(852)X(52703)
X(65389) = X(65434)-Dao conjugate of-X(65434)
X(65389) = perspector of the circumconic through X(57732) and X(60193)
X(65389) = pole of the line {232, 15302} with respect to the orthoptic circle of Steiner inellipse
X(65389) = pole of the line {3545, 64781} with respect to the polar circle
X(65390) lies on these lines: {3, 512}, {4, 4108}, {39, 65425}, {523, 62438}, {631, 5996}, {647, 5926}, {669, 30209}, {850, 64789}, {1499, 3265}, {2485, 39214}, {2799, 65419}, {3800, 42658}, {5188, 8704}, {6756, 16229}, {7404, 44918}, {7405, 34964}, {7487, 14618}, {8644, 11615}, {14417, 65436}, {23285, 32472}, {31277, 39511}
X(65390) = reflection of X(i) in X(j) for these (i, j): (647, 5926), (2485, 39214), (11615, 65422)
X(65390) = cross-difference of every pair of points on the line X(230)X(40126)
X(65390) = perspector of the circumconic through X(2987) and X(62926)
X(65390) = pole of the line {511, 9813} with respect to the circumcircle
X(65390) = (X(11615), X(65422))-harmonic conjugate of X(8644)
X(65391) lies on these lines: {4, 47815}, {5, 48561}, {35, 59977}, {36, 3669}, {40, 3309}, {517, 48329}, {631, 47819}, {667, 11249}, {905, 44805}, {1385, 48346}, {1842, 39536}, {2526, 44824}, {2814, 4401}, {3803, 28473}, {4162, 5697}, {4905, 58887}, {6362, 65392}, {28537, 50517}, {38327, 48018}, {39225, 51648}
X(65391) = midpoint of X(40) and X(48111)
X(65391) = reflection of X(i) in X(j) for these (i, j): (905, 44805), (2526, 44824), (3669, 39227), (48018, 38327), (48346, 1385), (51648, 39225)
X(65391) = pole of the line {518, 3149} with respect to the Bevan circle
X(65391) = pole of the line {8279, 11248} with respect to the circumcircle
X(65392) lies on these lines: {3, 6182}, {35, 650}, {40, 14077}, {1938, 37585}, {6362, 65391}, {8760, 11248}, {9366, 37562}, {9373, 35448}, {32195, 54255}
X(65392) = X(65436)-of-excentral triangle, when ABC is acute
X(65392) = X(65419)-of-1st circumperp triangle, when ABC is acute
X(65393) lies on these lines: {25, 65386}, {427, 2501}, {523, 65394}, {546, 39533}, {1499, 13488}, {1995, 6563}, {2489, 50548}, {3265, 47206}, {3566, 13400}, {5159, 14341}, {12077, 16229}, {13487, 44931}, {17994, 33294}, {47217, 65154}
X(65393) = cross-difference of every pair of points on the line X(23115)X(52077)
X(65393) = pole of the line {25, 317} with respect to the incircle-of-orthic triangle
X(65393) = pole of the line {3542, 21445} with respect to the orthoptic circle of Steiner inellipse
X(65393) = pole of the line {385, 1370} with respect to the polar circle
X(65393) = pole of the line {297, 315} with respect to the orthic inconic
X(65393) = X(65386)-of-anti-Ara triangle
X(65394) lies on these lines: {4, 3005}, {523, 65393}, {647, 16229}, {669, 14618}, {804, 2501}, {850, 47206}, {2797, 3265}, {5064, 45333}, {6995, 58784}, {17994, 31296}, {23290, 53263}, {47217, 62489}, {50545, 59932}
X(65394) = reflection of X(65455) in X(16229)
X(65394) = cross-difference of every pair of points on the line X(6638)X(23115)
X(65394) = perspector of the circumconic through X(43710) and X(52583)
X(65394) = pole of the line {25, 183} with respect to the incircle-of-orthic triangle
X(65394) = pole of the line {1370, 3164} with respect to the polar circle
X(65394) = pole of the line {83, 458} with respect to the orthic inconic
X(65395) lies on these lines: {11, 244}, {523, 65393}
X(65395) = cross-difference of every pair of points on the line X(101)X(23115)
X(65395) = perspector of the circumconic through X(514) and X(52583)
X(65395) = pole of the line {25, 2968} with respect to the incircle-of-orthic triangle
X(65395) = pole of the line {1370, 1897} with respect to the polar circle
X(65395) = pole of the line {1146, 2207} with respect to the orthic inconic
X(65396) lies on these lines: {115, 804}, {523, 65393}, {59900, 65403}
X(65396) = cross-difference of every pair of points on the line X(1634)X(23115)
X(65396) = X(54080)-reciprocal conjugate of-X(4558)
X(65396) = perspector of the circumconic through X(52583) and X(58784)
X(65396) = pole of the line {25, 339} with respect to the incircle-of-orthic triangle
X(65396) = pole of the line {1370, 41676} with respect to the polar circle
X(65396) = pole of the line {338, 2207} with respect to the orthic inconic
X(65396) = barycentric product X(14618)*X(54080)
X(65396) = trilinear product X(24006)*X(54080)
X(65396) = trilinear quotient X(54080)/X(4575)
As a conic with center in the infinity, it is a parabola.
X(65397) lies on these lines: {30, 511}, {13301, 47695}
X(65398) lies on these lines: {1, 31734}, {388, 12614}, {516, 65454}, {999, 12622}, {1056, 12523}, {3487, 55176}, {3600, 12518}, {4292, 31767}, {4355, 11528}, {5434, 8422}, {5571, 10106}, {7354, 11234}, {12577, 58616}, {18990, 32183}, {21620, 55172}
X(65398) = midpoint of X(i) and X(j) for these (i, j): {1, 31734}, {4292, 31767}, {5571, 10106}, {7354, 31770}, {8422, 31735}, {18990, 32183}
X(65398) = reflection of X(i) in X(j) for these (i, j): (58616, 12577), (65476, 1)
X(65398) = X(31728)-of-incircle-circles triangle, when ABC is acute
X(65398) = X(31734)-of-anti-Aquila triangle
X(65398) = X(65399)-of-Hutson intouch triangle, when ABC is acute
X(65398) = X(65423)-of-intouch triangle, when ABC is acute
X(65398) = X(65435)-of-Ursa-minor triangle, when ABC is acute
X(65398) = X(65476)-of-5th mixtilinear triangle
X(65398) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (5434, 8422, 31735), (7354, 11234, 31770)
X(65399) lies on these lines: {1, 2979}, {2, 58474}, {3, 31728}, {4, 65435}, {8, 33884}, {10, 3917}, {30, 31751}, {51, 19862}, {52, 10165}, {58, 3792}, {72, 23156}, {140, 31760}, {404, 62352}, {511, 1125}, {515, 1216}, {516, 15644}, {517, 10627}, {518, 23157}, {519, 64573}, {535, 22299}, {595, 7186}, {674, 3881}, {758, 11573}, {942, 63370}, {946, 10625}, {960, 2392}, {978, 50593}, {1071, 31817}, {1154, 13624}, {1350, 49553}, {1385, 6101}, {1469, 30142}, {1698, 7998}, {1699, 64050}, {2475, 38474}, {2807, 12512}, {3056, 30148}, {3060, 3624}, {3313, 49511}, {3576, 11412}, {3579, 54042}, {3616, 62188}, {3634, 3819}, {3650, 58893}, {3678, 8679}, {3817, 45186}, {3822, 37536}, {3828, 23841}, {3833, 58493}, {3840, 50601}, {3916, 56894}, {4067, 23154}, {4297, 5562}, {5044, 9037}, {5045, 9047}, {5248, 37482}, {5267, 22076}, {5447, 6684}, {5482, 58404}, {5550, 62187}, {5587, 7999}, {5640, 34595}, {5650, 51073}, {5691, 11444}, {5886, 37484}, {5889, 7987}, {5891, 31673}, {5904, 23155}, {5907, 28164}, {5943, 19878}, {6102, 17502}, {6681, 34466}, {7485, 16473}, {8185, 15066}, {8227, 64051}, {9587, 15080}, {9798, 62217}, {9955, 13391}, {9956, 32142}, {10110, 10171}, {10263, 11230}, {10574, 58221}, {11365, 33878}, {11574, 34379}, {11591, 28160}, {11793, 19925}, {12571, 13598}, {12699, 13340}, {12702, 54047}, {14963, 22065}, {15049, 25917}, {15060, 33697}, {15067, 18480}, {18357, 44324}, {18481, 23039}, {19872, 44299}, {19883, 21969}, {20470, 48928}, {20718, 64538}, {21334, 36250}, {22060, 35468}, {25639, 50362}, {28146, 63414}, {28168, 45959}, {30116, 50630}, {31819, 33574}, {35242, 54041}, {37607, 41329}, {50597, 59301}, {50625, 64709}, {51103, 58535}, {58441, 58487}
X(65399) = midpoint of X(i) and X(j) for these (i, j): {1, 31737}, {3, 31738}, {72, 23156}, {946, 10625}, {1071, 31817}, {1385, 6101}, {3313, 49511}, {4067, 23154}, {4297, 5562}, {11412, 31732}
X(65399) = reflection of X(i) in X(j) for these (i, j): (4, 65435), (6684, 5447), (9956, 32142), (12512, 13348), (13598, 12571), (19925, 11793), (31752, 1216), (31757, 1125), (31760, 140), (65423, 3)
X(65399) = anticomplement of X(58474)
X(65399) = X(58474)-Dao conjugate of-X(58474)
X(65399) = pole of the line {14008, 29631} with respect to the Stammler hyperbola
X(65399) = X(31737)-of-anti-Aquila triangle
X(65399) = X(31738)-of-anti-X3-ABC reflections triangle
X(65399) = X(65398)-of-anti-Hutson intouch triangle
X(65399) = X(65423)-of-ABC-X3 reflections triangle
X(65399) = X(65435)-of-anti-Euler triangle
X(65399) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 2979, 31737), (3576, 11412, 31732), (50597, 64006, 59301)
X(65400) lies on these lines: {538, 4173}, {2387, 3934}, {3491, 7849}, {5167, 7861}, {5876, 17710}, {6310, 32457}, {6683, 40951}, {7780, 63554}, {7843, 41262}, {9292, 47101}, {13207, 15031}, {14962, 63569}, {31239, 61727}, {32450, 55005}, {40344, 52042}
X(65400) = reflection of X(40951) in X(6683)
X(65401) lies on these lines: {2, 2520}, {512, 6333}, {513, 4468}, {1734, 46383}, {2473, 44435}, {3888, 54110}, {4131, 6182}, {6139, 26641}, {9256, 50505}
X(65401) = reflection of X(2520) in X(65410)
X(65401) = anticomplement of X(2520)
X(65401) = cross-difference of every pair of points on the line X(16502)X(42295)
X(65401) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (34409, 33650), (37741, 39351), (54968, 5906), (55965, 37781), (56005, 4440)
X(65401) = X(2520)-Dao conjugate of-X(2520)
X(65401) = perspector of the circumconic through X(30701) and X(42407)
X(65401) = pole of the line {1851, 41762} with respect to the polar circle
X(65401) = pole of the line {346, 3926} with respect to the Steiner circumellipse
X(65401) = pole of the line {3788, 17279} with respect to the Steiner inellipse
X(65401) = (X(2520), X(65410))-harmonic conjugate of X(2)
X(65402) lies on these lines: {4, 51}, {5, 46363}, {6, 1196}, {154, 21313}, {343, 11793}, {373, 11427}, {511, 1368}, {542, 11746}, {578, 10601}, {800, 6638}, {1503, 58483}, {1619, 17810}, {3060, 7396}, {3819, 26958}, {3917, 37643}, {4232, 34750}, {5462, 9825}, {5640, 7398}, {5644, 11426}, {6353, 6467}, {6677, 34382}, {6688, 23292}, {6776, 44079}, {6803, 45011}, {8550, 45979}, {9729, 12241}, {9786, 13598}, {9969, 15583}, {10192, 32366}, {11245, 44084}, {11430, 43650}, {11432, 18451}, {11438, 21312}, {11451, 63030}, {12283, 62979}, {12294, 23291}, {13346, 45045}, {13754, 44920}, {15606, 41586}, {15887, 41589}, {16836, 61113}, {19161, 21849}, {21971, 51170}, {23158, 59707}, {23841, 44547}, {32068, 58480}, {32284, 59553}, {43130, 44489}, {44479, 61646}, {46737, 58471}
X(65402) = midpoint of X(i) and X(j) for these (i, j): {389, 18390}, {1899, 64820}
X(65402) = cross-difference of every pair of points on the line X(3566)X(32320)
X(65402) = crosssum of X(3) and X(6677)
X(65402) = perspector of the circumconic through X(3565) and X(15352)
X(65402) = pole of the line {53, 1368} with respect to the Kiepert circumhyperbola
X(65402) = pole of the line {193, 1092} with respect to the Stammler hyperbola
X(65402) = pole of the line {2489, 52585} with respect to the Steiner inellipse
X(65402) = pole of the line {3964, 57518} with respect to the Steiner-Wallace hyperbola
X(65402) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (51, 1899, 64820), (51, 11433, 389), (5020, 52077, 9306), (5020, 61666, 14913), (5943, 14913, 5020), (6688, 44495, 23292), (11746, 58550, 58470), (26958, 50649, 3819)
As a conic with center in the infinity, it is a parabola. Its focus is X(65500).
X(65403) lies on these lines: {3, 18314}, {4, 15412}, {5, 27363}, {30, 511}, {74, 32439}, {134, 48318}, {578, 58308}, {647, 16229}, {850, 22089}, {2394, 54664}, {6130, 14618}, {14592, 18570}, {15543, 35885}, {23286, 23290}, {39228, 44818}, {42405, 57635}, {45259, 51513}, {52585, 65389}, {54003, 61196}, {59900, 65396}
X(65403) = isogonal conjugate of X(1303)
X(65403) = cross-difference of every pair of points on the line X(6)X(6638)
X(65403) = crosspoint of X(i) and X(j) for these {i, j}: {4, 52779}, {99, 40448}, {107, 57408}
X(65403) = crosssum of X(i) and X(j) for these {i, j}: {3, 58305}, {389, 512}, {520, 3819}, {525, 34850}, {6368, 21243}, {39469, 52128}
X(65403) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (1303, 8), (9251, 3448), (9290, 21294)
X(65403) = X(i)-Ceva conjugate of-X(j) for these (i, j): (4, 130), (42405, 6)
X(65403) = X(i)-complementary conjugate of-X(j) for these (i, j): (1, 130), (1303, 10), (9251, 125), (9290, 21253), (57686, 34846)
X(65403) = X(130)-cross conjugate of-X(27359)
X(65403) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 9290), (125, 57686), (244, 9251), (15526, 57855), (42293, 17434)
X(65403) = X(53175)-hirst inverse of-X(60036)
X(65403) = X(i)-isoconjugate of-X(j) for these {i, j}: {110, 9251}, {162, 57686}, {163, 9290}, {32676, 57855}
X(65403) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (130, 17434), (436, 648), (523, 9290), (525, 57855), (647, 57686), (661, 9251), (1954, 662), (1970, 110), (8754, 62520), (9252, 811), (9291, 6331), (16813, 57635), (21449, 18831), (27359, 35360), (42331, 76), (42405, 57759), (56290, 99), (62521, 2052)
X(65403) = X(i)-vertex conjugate of-X(j) for these {i, j}: {3, 32428}, {57635, 57635}
X(65403) = ideal of tripolar of X(i) for these i: {436, 21449, 43710, 56290}
X(65403) = pedal antipodal perspector of X(1303)
X(65403) = perspector of the circumconic through X(2) and X(436)
X(65403) = barycentric product X(i)*X(j) for these {i, j}: {6, 42331}, {130, 42405}, {394, 62521}, {436, 525}, {523, 56290}, {647, 9291}, {656, 9252}, {850, 1970}, {1577, 1954}, {2970, 62522}, {6368, 21449}, {27359, 62428}
X(65403) = trilinear product X(i)*X(j) for these {i, j}: {31, 42331}, {255, 62521}, {436, 656}, {523, 1954}, {647, 9252}, {661, 56290}, {810, 9291}, {1577, 1970}
X(65403) = trilinear quotient X(i)/X(j) for these (i, j): (436, 162), (523, 9251), (656, 57686), (1577, 9290), (1954, 110), (1970, 163), (9252, 648), (9291, 811), (14208, 57855), (21449, 65221), (42331, 75), (56290, 662), (62521, 158)
X(65404) lies on these lines: {1, 1427}, {3, 960}, {4, 3838}, {10, 64804}, {20, 1836}, {21, 12688}, {30, 551}, {36, 10167}, {40, 4421}, {55, 64150}, {56, 10391}, {65, 411}, {72, 59320}, {78, 5584}, {103, 8691}, {104, 63432}, {165, 5440}, {214, 38759}, {354, 18444}, {376, 28534}, {392, 15931}, {405, 63988}, {497, 1319}, {515, 2886}, {516, 8255}, {517, 25439}, {518, 3428}, {944, 11260}, {950, 64127}, {953, 2691}, {958, 1490}, {962, 10385}, {971, 993}, {999, 5572}, {1001, 1012}, {1006, 15254}, {1064, 1386}, {1071, 11012}, {1125, 8727}, {1214, 45272}, {1376, 30503}, {1420, 64679}, {1709, 7987}, {1727, 59319}, {1768, 33598}, {1837, 6838}, {1854, 54320}, {1859, 37258}, {2287, 59079}, {2550, 54051}, {2883, 37836}, {2951, 53054}, {2975, 12680}, {3149, 3812}, {3486, 37421}, {3522, 44447}, {3579, 14988}, {3601, 12565}, {3612, 37022}, {3616, 10431}, {3649, 64003}, {3651, 14110}, {3683, 37106}, {3689, 59417}, {3740, 5720}, {3742, 18443}, {3753, 44425}, {3916, 15071}, {4189, 9961}, {4300, 37539}, {4325, 16152}, {4511, 7411}, {4662, 17857}, {4679, 6992}, {4881, 54348}, {4999, 6245}, {5010, 17613}, {5087, 6827}, {5217, 63985}, {5248, 9856}, {5251, 5927}, {5267, 34862}, {5302, 5777}, {5327, 7415}, {5536, 24473}, {5538, 41853}, {5603, 42819}, {5691, 17532}, {5730, 59340}, {5787, 26363}, {5794, 6908}, {5806, 30143}, {5836, 11500}, {5880, 50701}, {5884, 37623}, {5886, 13151}, {5918, 6909}, {6260, 57288}, {6282, 11495}, {6326, 7688}, {6675, 12617}, {6796, 15813}, {6831, 31936}, {6836, 11375}, {6840, 17605}, {6865, 25681}, {6868, 64119}, {6872, 12679}, {6876, 64021}, {6914, 13624}, {6923, 18481}, {6924, 40296}, {6960, 17606}, {6962, 24914}, {6974, 54445}, {6985, 7686}, {6986, 25917}, {6987, 24703}, {6988, 26066}, {7508, 17502}, {7957, 34772}, {7971, 10268}, {8071, 64132}, {8273, 19861}, {8715, 31798}, {8726, 25524}, {9614, 21842}, {9799, 30478}, {9960, 15823}, {10165, 64705}, {10176, 31658}, {10267, 45776}, {10404, 64079}, {10860, 30282}, {10902, 12672}, {11014, 33895}, {11111, 64130}, {11194, 63430}, {11235, 50811}, {11249, 12675}, {11362, 64116}, {12114, 41854}, {12511, 22836}, {12608, 31789}, {12609, 20420}, {12616, 52265}, {12699, 24299}, {12711, 37583}, {13369, 26286}, {13374, 37615}, {14100, 62873}, {14828, 62385}, {15569, 30265}, {16209, 19537}, {16418, 54370}, {16788, 44424}, {17044, 18589}, {17647, 37424}, {17768, 63438}, {19541, 54318}, {19843, 64144}, {21077, 31799}, {22770, 34791}, {22935, 46684}, {24036, 64121}, {24316, 64902}, {24474, 33858}, {24541, 64707}, {24806, 51361}, {24928, 63999}, {25440, 31787}, {26446, 64335}, {27385, 50031}, {28629, 50700}, {30271, 63423}, {30389, 41860}, {31445, 31803}, {31786, 40257}, {32214, 34773}, {35239, 37700}, {37420, 60681}, {37426, 63391}, {37564, 64704}, {37571, 64005}, {37585, 37733}, {37606, 43178}, {37620, 53292}, {37979, 41722}, {41003, 64700}, {41541, 64189}, {43175, 63993}, {44547, 59317}, {50242, 52860}, {53252, 63439}, {57282, 64075}, {58679, 63986}, {59345, 63962}, {59421, 63211}
X(65404) = midpoint of X(i) and X(j) for these (i, j): {1, 7580}, {20, 1836}, {55, 64150}, {1012, 50528}, {3428, 18446}, {6923, 18481}
X(65404) = reflection of X(i) in X(j) for these (i, j): (4, 3838), (4640, 3), (6914, 13624), (8727, 1125), (10391, 58567)
X(65404) = X(21)-beth conjugate of-X(1427)
X(65404) = pole of the line {22760, 62864} with respect to the Feuerbach circumhyperbola
X(65404) = X(343)-of-2nd circumperp triangle, when ABC is acute
X(65404) = X(3838)-of-anti-Euler triangle
X(65404) = X(4640)-of-ABC-X3 reflections triangle
X(65404) = X(7580)-of-anti-Aquila triangle
X(65404) = X(10391)-of-2nd circumperp tangential triangle
X(65404) = X(23292)-of-hexyl triangle, when ABC is acute
X(65404) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 6261, 960), (3, 9943, 64128), (3, 12520, 9943), (3, 37837, 59691), (40, 33597, 56176), (56, 10884, 58567), (78, 5584, 58637), (946, 1385, 51715), (1709, 7987, 16370), (3576, 5732, 63991), (3576, 50528, 1012), (3576, 63992, 1001), (3601, 12565, 64074), (3651, 21740, 14110), (4297, 51717, 1385), (5918, 37600, 6909), (11012, 16132, 1071), (18443, 22753, 3742), (30503, 52026, 1376), (51695, 51721, 51715)
X(65405) lies on these lines: {2, 7964}, {3, 518}, {5, 516}, {7, 1155}, {9, 165}, {10, 63413}, {11, 61016}, {20, 5302}, {35, 5728}, {37, 9441}, {40, 1001}, {44, 1742}, {45, 1721}, {46, 954}, {55, 1445}, {57, 58563}, {63, 480}, {71, 56715}, {100, 3059}, {142, 6690}, {210, 7411}, {220, 56380}, {226, 59476}, {241, 1253}, {354, 2346}, {390, 1788}, {497, 62775}, {517, 42819}, {527, 43151}, {528, 10265}, {549, 20330}, {692, 65416}, {958, 37551}, {960, 5584}, {971, 6796}, {991, 4663}, {1100, 54474}, {1158, 64156}, {1212, 5527}, {1385, 15570}, {1386, 13329}, {1389, 14110}, {1418, 9440}, {1698, 52835}, {1754, 4682}, {1836, 60943}, {2283, 22079}, {2550, 6836}, {2646, 7672}, {2801, 33814}, {2938, 50198}, {3057, 7677}, {3174, 4421}, {3219, 5918}, {3243, 7987}, {3246, 61086}, {3358, 11500}, {3359, 42843}, {3474, 8232}, {3522, 5686}, {3523, 38053}, {3555, 35202}, {3576, 42871}, {3651, 58638}, {3683, 9778}, {3689, 34784}, {3742, 41338}, {3748, 11025}, {3751, 50677}, {3817, 61001}, {3916, 5223}, {4297, 24393}, {4312, 37572}, {4326, 35445}, {4335, 17601}, {4343, 4689}, {4413, 60958}, {4422, 21629}, {4428, 7994}, {4698, 48900}, {4995, 60932}, {5010, 18412}, {5044, 12511}, {5119, 42884}, {5128, 12560}, {5217, 7675}, {5220, 5732}, {5281, 60939}, {5432, 21617}, {5493, 38059}, {5537, 10177}, {5542, 37582}, {5657, 43161}, {5698, 6838}, {5735, 31425}, {5759, 5880}, {5762, 64113}, {5779, 43178}, {5836, 59340}, {5851, 6594}, {5852, 43177}, {5853, 43174}, {6067, 59491}, {6173, 63268}, {6211, 30271}, {6244, 8257}, {6326, 7688}, {6361, 38037}, {6745, 61003}, {6870, 40333}, {6947, 13528}, {6986, 7957}, {7674, 24477}, {7676, 14100}, {7991, 38316}, {8255, 52819}, {8273, 34791}, {8543, 63206}, {8544, 60909}, {8545, 63212}, {9352, 62778}, {9355, 15492}, {9446, 10509}, {9588, 38200}, {9943, 55104}, {10434, 35892}, {11038, 15717}, {11246, 41857}, {11362, 43175}, {11526, 34471}, {12512, 31445}, {12616, 61524}, {12669, 37105}, {12702, 38031}, {12755, 41541}, {13405, 60945}, {15185, 15931}, {15298, 58887}, {15299, 59316}, {15692, 51099}, {15733, 60994}, {16503, 18788}, {16814, 64134}, {16842, 63469}, {16885, 64741}, {17243, 28849}, {17332, 59688}, {17348, 28850}, {17351, 59620}, {17605, 61017}, {17706, 43179}, {18481, 38126}, {19541, 58451}, {20195, 63974}, {21168, 63971}, {21734, 62827}, {22277, 50658}, {22937, 64198}, {24309, 64125}, {24929, 30329}, {25557, 37623}, {26062, 52653}, {29007, 30295}, {29181, 35203}, {30284, 37600}, {30330, 31508}, {30379, 60919}, {30503, 44663}, {31423, 38150}, {31730, 38130}, {31786, 33895}, {34628, 38097}, {34632, 38025}, {34638, 38101}, {35986, 63961}, {36002, 61686}, {36706, 38047}, {36976, 61019}, {37364, 64443}, {37524, 59372}, {38122, 60895}, {40659, 58651}, {41430, 64121}, {42885, 59333}, {47375, 60990}, {50808, 60986}, {50829, 60999}, {50835, 62063}, {51090, 59675}, {53056, 60955}, {54370, 59381}, {56288, 64723}, {58433, 58441}, {58678, 61005}, {59320, 59691}, {59389, 64005}, {60910, 60947}, {60933, 64698}, {60937, 63207}, {60979, 61035}, {61013, 61648}, {61122, 64077}, {64154, 64189}
X(65405) = midpoint of X(i) and X(j) for these (i, j): {9, 11495}, {10, 63413}, {40, 1001}, {1158, 64156}, {2951, 16112}, {3358, 11500}, {3579, 31658}, {4297, 24393}, {5220, 5732}, {5759, 5880}, {5779, 43178}, {6244, 8257}, {6594, 46684}, {6600, 60974}, {11362, 43175}, {31730, 63970}, {43182, 60942}, {50808, 60986}
X(65405) = reflection of X(i) in X(j) for these (i, j): (3826, 6684), (15254, 31658), (15481, 60912), (15570, 1385), (42356, 6666), (42819, 52769), (60999, 50829), (65426, 3), (65452, 58433), (65466, 58634)
X(65405) = X(i)-zayin conjugate of-X(j) for these (i, j): (6608, 513), (58635, 40)
X(65405) = pole of the line {7671, 29007} with respect to the Feuerbach circumhyperbola
X(65405) = pole of the line {4130, 24562} with respect to the Steiner inellipse
X(65405) = X(141)-of-1st circumperp triangle, when ABC is acute
X(65405) = X(3589)-of-excentral triangle, when ABC is acute
X(65405) = X(5572)-of-anti-Mandart-incircle triangle
X(65405) = X(34573)-of-6th mixtilinear triangle, when ABC is acute
X(65405) = X(44882)-of-2nd circumperp triangle, when ABC is acute
X(65405) = X(64195)-of-2nd Zaniah triangle, when ABC is acute
X(65405) = X(65426)-of-ABC-X3 reflections triangle
X(65405) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 58637, 56176), (9, 165, 11495), (9, 1376, 58634), (9, 2951, 16112), (40, 21153, 1001), (55, 1445, 5572), (100, 60970, 3059), (241, 1253, 30621), (1155, 15837, 7), (2346, 60948, 354), (5217, 41712, 7675), (6986, 7957, 51715), (7676, 37787, 14100), (7688, 64107, 65404), (11495, 16112, 2951), (14100, 63211, 7676), (29007, 30295, 31391), (31730, 38130, 63970), (58441, 65452, 58433)
X(65406) lies on these lines: {512, 65407}, {520, 6587}, {647, 2422}, {924, 44451}, {21243, 30476}
X(65406) = complement of the complementary conjugate of X(53569)
X(65406) = cross-difference of every pair of points on the line X(1498)X(1513)
X(65406) = X(i)-complementary conjugate of-X(j) for these (i, j): (34405, 34846), (56004, 16595), (56307, 16573), (56364, 16592)
X(65406) = perspector of the circumconic through X(3346) and X(6339)
X(65406) = pole of the line {393, 3926} with respect to the Steiner inellipse
X(65407) lies on these lines: {2, 65486}, {11, 244}, {512, 65406}
X(65407) = complement of X(65486)
X(65407) = cross-difference of every pair of points on the line X(101)X(1611)
X(65407) = perspector of the circumconic through X(514) and X(6339)
X(65407) = pole of the line {20999, 37491} with respect to the circumcircle
X(65407) = pole of the line {1086, 3926} with respect to the Steiner inellipse
X(65408) lies on these lines: {2, 65484}, {115, 125}, {512, 65406}, {3566, 14341}, {3620, 57087}, {6333, 34290}, {14417, 63733}
X(65408) = complement of X(65484)
X(65408) = cross-difference of every pair of points on the line X(110)X(1611)
X(65408) = X(i)-complementary conjugate of-X(j) for these (i, j): (8769, 36472), (8773, 5139), (36051, 15525), (36105, 63612), (38252, 55152)
X(65408) = perspector of the circumconic through X(523) and X(6339)
X(65408) = pole of the line {7669, 37491} with respect to the circumcircle
X(65408) = pole of the line {98, 20080} with respect to the orthoptic circle of Steiner inellipse
X(65408) = pole of the line {523, 15525} with respect to the Kiepert circumhyperbola
X(65408) = pole of the line {148, 54097} with respect to the Steiner circumellipse
X(65408) = pole of the line {115, 2996} with respect to the Steiner inellipse
X(65408) = X(58882)-of-1st Brocard triangle
X(65409) lies on these lines: {2, 65445}, {512, 65406}, {514, 12447}, {663, 3126}, {3452, 59903}, {3741, 17072}, {3900, 7658}
X(65409) = complement of X(65445)
X(65409) = cross-difference of every pair of points on the line X(1611)X(1615)
X(65409) = X(i)-complementary conjugate of-X(j) for these (i, j): (34399, 124), (40436, 5514), (52775, 24005), (54948, 63840), (56003, 13609)
X(65409) = perspector of the circumconic through X(6339) and X(42483)
X(65409) = pole of the line {279, 3926} with respect to the Steiner inellipse
X(65410) lies on these lines: {2, 2520}, {512, 65406}, {513, 2490}, {514, 2473}, {649, 3126}, {4131, 4524}, {4932, 17072}, {6139, 24562}, {8641, 25900}, {15584, 46396}
X(65410) = midpoint of X(i) and X(j) for these (i, j): {2520, 65401}, {4131, 4524}
X(65410) = complement of X(2520)
X(65410) = cross-difference of every pair of points on the line X(1611)X(1616)
X(65410) = X(i)-complementary conjugate of-X(j) for these (i, j): (34409, 124), (37741, 1146), (52776, 24005), (54968, 63840), (55965, 26932), (56005, 1086)
X(65410) = perspector of the circumconic through X(6339) and X(6553)
X(65410) = pole of the line {346, 3926} with respect to the Steiner inellipse
X(65410) = (X(2), X(65401))-harmonic conjugate of X(2520)
As a conic with center in the infinity, it is a parabola. Its focus is X(10215).
X(65411) lies on these lines: {30, 511}, {505, 45087}, {2254, 13301}, {8076, 10231}, {10496, 55363}
X(65411) = isogonal conjugate of X(10496)
X(65411) = circumtangential-isogonal conjugate of X(10496)
X(65411) = circumnormal-isogonal conjugate of the isogonal conjugate of X(55174)
X(65411) = cross-difference of every pair of points on the line X(6)X(7707)
X(65411) = crosspoint of X(7) and X(45875)
X(65411) = crosssum of X(55) and X(45877)
X(65411) = X(7025)-aleph conjugate of-X(20114)
X(65411) = X(10496)-anticomplementary conjugate of-X(8)
X(65411) = X(55363)-Ceva conjugate of-X(1)
X(65411) = X(10496)-complementary conjugate of-X(10)
X(65411) = X(3)-vertex conjugate of-X(55174)
X(65411) = X(i)-zayin conjugate of-X(j) for these (i, j): (6728, 8075), (10495, 164), (45878, 503)
X(65411) = pedal antipodal perspector of X(10496)
X(65412) lies on these lines: {241, 514}, {522, 14353}, {1519, 1769}, {2487, 8712}, {3239, 47795}, {3309, 52596}, {3737, 28225}, {4025, 47796}, {4091, 58817}, {4453, 6332}, {4560, 21183}, {4765, 4978}, {4801, 47785}, {4962, 44409}, {8058, 51648}, {20317, 44902}, {28161, 59750}, {28529, 44314}, {43932, 64885}, {47757, 48144}, {47758, 48131}, {47800, 48151}, {47820, 48015}, {47981, 48580}, {47995, 48570}, {48121, 48574}, {48136, 48245}, {48149, 48554}
X(65412) = midpoint of X(i) and X(j) for these (i, j): {905, 3676}, {3669, 14837}, {3960, 21188}, {4765, 4978}, {7658, 30723}, {10015, 30719}, {21172, 23800}
X(65412) = reflection of X(21188) in X(59612)
X(65412) = crosspoint of X(658) and X(1440)
X(65412) = crosssum of X(657) and X(7074)
X(65412) = X(i)-Dao conjugate of-X(j) for these (i, j): (11, 36629), (1015, 38271), (1146, 36624)
X(65412) = X(i)-isoconjugate of-X(j) for these {i, j}: {101, 38271}, {109, 36629}, {1415, 36624}
X(65412) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (513, 38271), (522, 36624), (650, 36629), (9965, 190), (15803, 100), (21866, 1018), (23072, 1331), (27383, 3699), (37519, 101), (65414, 10)
X(65412) = X(65159)-zayin conjugate of-X(657)
X(65412) = perspector of the circumconic through X(7) and X(9965)
X(65412) = pole of the line {7, 1210} with respect to the incircle
X(65412) = pole of the line {614, 44431} with respect to the orthoptic circle of Steiner inellipse
X(65412) = pole of the line {281, 3950} with respect to the polar circle
X(65412) = pole of the line {9709, 17355} with respect to the Spieker circle
X(65412) = pole of the line {11, 3942} with respect to the circumhyperbola dual of Yff parabola
X(65412) = pole of the line {145, 4292} with respect to the Steiner circumellipse
X(65412) = pole of the line {1, 6904} with respect to the Steiner inellipse
X(65412) = barycentric product X(i)*X(j) for these {i, j}: {86, 65414}, {514, 9965}, {693, 15803}, {3261, 37519}, {3676, 27383}, {7199, 21866}, {23072, 46107}
X(65412) = trilinear product X(i)*X(j) for these {i, j}: {81, 65414}, {513, 9965}, {514, 15803}, {693, 37519}, {3669, 27383}, {7192, 21866}, {17924, 23072}
X(65412) = trilinear quotient X(i)/X(j) for these (i, j): (514, 38271), (522, 36629), (4391, 36624), (9965, 100), (15803, 101), (21866, 4557), (23072, 906), (27383, 644), (37519, 692)
X(65412) = (X(1638), X(3669))-harmonic conjugate of X(14837)
X(65413) lies on these lines: {513, 2473}, {514, 40137}, {521, 4885}, {650, 58324}, {661, 905}, {1538, 3309}, {1638, 46389}, {2526, 21189}, {2999, 23792}, {3063, 28042}, {3676, 14298}, {3798, 30198}, {3887, 59752}, {4524, 14077}, {4940, 23806}, {10015, 48398}, {14300, 46919}, {14353, 53551}, {21188, 64885}, {21195, 48049}, {25924, 57055}, {27417, 57167}, {41800, 48554}, {43049, 46393}, {43932, 59612}
X(65413) = midpoint of X(3676) and X(14298)
X(65413) = reflection of X(43932) in X(59612)
X(65413) = X(60107)-complementary conjugate of-X(124)
X(65413) = perspector of the circumconic through X(969) and X(56043)
X(65413) = pole of the line {7274, 10980} with respect to the incircle
X(65413) = pole of the line {1441, 3672} with respect to the Steiner inellipse
X(65414) lies on these lines: {513, 14837}, {521, 21188}, {523, 656}, {650, 2523}, {676, 15313}, {900, 7649}, {918, 20316}, {1459, 1638}, {1769, 14284}, {2487, 3733}, {2773, 59875}, {3737, 41800}, {3910, 47843}, {4453, 20293}, {4707, 52355}, {4843, 30591}, {5957, 59974}, {6362, 50350}, {6366, 51648}, {6587, 14321}, {8674, 39540}, {10015, 23800}, {21120, 50354}, {25009, 50357}, {28209, 46385}, {30724, 48342}, {34958, 35057}, {48283, 57108}
X(65414) = midpoint of X(i) and X(j) for these (i, j): {656, 7178}, {4707, 52355}, {7649, 7655}, {10015, 23800}, {21120, 50354}
X(65414) = reflection of X(i) in X(j) for these (i, j): (3733, 2487), (14321, 31946), (21121, 7657)
X(65414) = cross-difference of every pair of points on the line X(284)X(2256)
X(65414) = crosspoint of X(4566) and X(8808)
X(65414) = X(i)-Dao conjugate of-X(j) for these (i, j): (244, 38271), (6741, 36624), (55064, 36629)
X(65414) = X(i)-isoconjugate of-X(j) for these {i, j}: {110, 38271}, {4565, 36629}
X(65414) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (661, 38271), (3700, 36624), (4041, 36629), (9965, 99), (15803, 662), (21866, 100), (23072, 4558), (27383, 645), (37519, 110), (65412, 86)
X(65414) = perspector of the circumconic through X(226) and X(3296)
X(65414) = pole of the line {3333, 3649} with respect to the incircle
X(65414) = pole of the line {3142, 5230} with respect to the nine-point circle
X(65414) = pole of the line {29, 145} with respect to the polar circle
X(65414) = pole of the line {18210, 21044} with respect to the Kiepert circumhyperbola
X(65414) = pole of the line {281, 1901} with respect to the orthic inconic
X(65414) = pole of the line {16777, 17056} with respect to the Steiner inellipse
X(65414) = barycentric product X(i)*X(j) for these {i, j}: {10, 65412}, {523, 9965}, {693, 21866}, {850, 37519}, {1577, 15803}, {7178, 27383}, {14618, 23072}
X(65414) = trilinear product X(i)*X(j) for these {i, j}: {37, 65412}, {514, 21866}, {523, 15803}, {661, 9965}, {1577, 37519}, {4017, 27383}, {23072, 24006}
X(65414) = trilinear quotient X(i)/X(j) for these (i, j): (523, 38271), (3700, 36629), (4086, 36624), (9965, 662), (15803, 110), (21866, 101), (23072, 4575), (27383, 643), (37519, 163)
X(65414) = (X(656), X(2457))-harmonic conjugate of X(7178)
X(65415) lies on these lines: {1, 15006}, {6, 1323}, {7, 33633}, {9, 2124}, {71, 63203}, {77, 142}, {223, 3452}, {226, 1029}, {269, 3946}, {279, 1449}, {282, 32446}, {307, 63782}, {347, 527}, {348, 3686}, {514, 59644}, {579, 34497}, {604, 52563}, {610, 2391}, {651, 52405}, {664, 2321}, {1100, 10481}, {1214, 5325}, {1418, 50114}, {1443, 60992}, {2323, 34028}, {3247, 62705}, {3663, 6610}, {3668, 4667}, {3669, 40590}, {3755, 5018}, {4007, 25718}, {4296, 12437}, {5745, 18623}, {5750, 9312}, {5837, 15832}, {5882, 32047}, {6666, 54425}, {6692, 36636}, {7177, 54420}, {10164, 59613}, {16668, 43186}, {16884, 58816}, {17014, 60955}, {17086, 50092}, {18163, 62192}, {18624, 25525}, {22464, 60962}, {25723, 26125}, {28015, 63208}, {28079, 47444}, {34059, 40942}, {36640, 60933}, {39126, 50109}, {40869, 56309}, {40937, 43064}, {43182, 59458}, {53994, 62388}, {59611, 59687}, {60982, 62997}
X(65415) = midpoint of X(347) and X(1419)
X(65415) = cevapoint of X(2124) and X(47057)
X(65415) = pole of the line {3337, 15299} with respect to the circumhyperbola dual of Yff parabola
X(65415) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (77, 43035, 142), (269, 3946, 61022), (279, 1449, 60945), (54425, 59215, 6666)
X(65416) lies on these lines: {1, 37273}, {2, 54008}, {3, 12335}, {48, 241}, {57, 37519}, {77, 198}, {141, 37836}, {142, 1385}, {214, 21255}, {223, 11212}, {269, 24328}, {515, 21239}, {573, 6510}, {610, 59215}, {692, 65405}, {910, 18161}, {1214, 1630}, {1229, 17136}, {1319, 4000}, {1386, 16679}, {1418, 18162}, {1442, 2262}, {2178, 24471}, {2267, 25067}, {2347, 51653}, {2646, 4648}, {3207, 7289}, {3946, 24928}, {4361, 11260}, {4640, 9306}, {4851, 56176}, {4859, 21842}, {5440, 17296}, {5942, 61693}, {6505, 11350}, {6706, 25523}, {7011, 46330}, {9259, 28022}, {11712, 41430}, {12610, 17043}, {14557, 47057}, {15624, 30621}, {16453, 64722}, {16578, 64121}, {16608, 51775}, {17044, 18589}, {17073, 37837}, {17221, 20905}, {17306, 17614}, {18261, 25405}, {18634, 33597}, {20206, 40555}, {20818, 60974}, {23585, 40590}, {25930, 54322}, {28639, 34830}, {36016, 52385}, {37269, 45126}, {42819, 62383}
X(65416) = midpoint of X(77) and X(198)
X(65416) = reflection of X(21239) in X(58412)
X(65416) = complement of X(54008)
X(65416) = crosspoint of X(2) and X(34411)
X(65416) = X(34411)-complementary conjugate of-X(2887)
X(65416) = center of the inconic with perspector X(34411)
X(65416) = pole of the the tripolar of X(34411) with respect to the Steiner inellipse
X(65416) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (141, 59693, 59691), (1442, 11349, 2262)
X(65417) lies on these lines: {2, 60280}, {4, 5034}, {6, 382}, {30, 5052}, {32, 46264}, {39, 1503}, {69, 7781}, {110, 59768}, {115, 182}, {141, 7863}, {187, 44882}, {193, 7802}, {511, 7756}, {542, 1569}, {543, 18906}, {574, 1352}, {597, 39563}, {611, 9651}, {613, 9664}, {626, 12215}, {732, 7826}, {754, 32451}, {1351, 44526}, {1353, 5107}, {1506, 3818}, {1570, 8550}, {1571, 39885}, {1691, 7755}, {1692, 5254}, {2076, 48892}, {2458, 12203}, {2549, 2794}, {3070, 48742}, {3071, 48743}, {3410, 38862}, {3564, 32152}, {3589, 39565}, {3618, 7902}, {3767, 5033}, {3787, 7667}, {3815, 39884}, {4045, 43449}, {4048, 7820}, {5007, 64196}, {5013, 18440}, {5017, 6781}, {5024, 48662}, {5026, 51848}, {5038, 19130}, {5050, 44518}, {5085, 7746}, {5092, 7749}, {5097, 53505}, {5104, 48885}, {5116, 11646}, {5207, 7764}, {5309, 40825}, {5355, 53499}, {5475, 36990}, {5965, 44453}, {6388, 18911}, {7737, 14927}, {7738, 9873}, {7739, 64014}, {7753, 11645}, {7790, 39141}, {7810, 14994}, {7890, 41622}, {9597, 39900}, {9598, 39901}, {9830, 10007}, {10329, 21243}, {10516, 31455}, {11173, 48872}, {11179, 11648}, {12017, 13881}, {12588, 31451}, {13330, 29317}, {14810, 15993}, {14901, 32233}, {18362, 38064}, {18583, 53419}, {19124, 27371}, {20977, 61712}, {29323, 44500}, {31415, 51537}, {31448, 39891}, {33878, 44519}, {35301, 37803}, {35387, 38738}, {35902, 61755}, {37648, 40350}, {38110, 63534}, {43457, 48889}, {43619, 51212}, {44535, 55682}, {44541, 55629}, {48873, 63043}
X(65417) = midpoint of X(i) and X(j) for these (i, j): {193, 7802}, {9873, 39874}
X(65417) = reflection of X(i) in X(j) for these (i, j): (69, 7830), (7747, 6), (7890, 41622)
X(65417) = pole of the line {525, 52591} with respect to the Moses circle
X(65417) = pole of the line {632, 13334} with respect to the Evans conic
X(65417) = pole of the line {546, 50774} with respect to the Kiepert circumhyperbola
X(65417) = pole of the line {19687, 50771} with respect to the Steiner-Wallace hyperbola
X(65417) = X(7750)-of-1st Brocard triangle
X(65417) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2549, 6776, 5028), (3094, 32429, 1569), (3767, 25406, 5033), (3818, 50659, 1506), (5017, 48898, 6781), (5028, 6776, 5477), (5092, 53475, 7749), (5116, 11646, 24206), (5254, 48906, 1692), (48889, 53484, 43457)
X(65418) lies on these lines: {3, 351}, {5, 11176}, {20, 19912}, {24, 47230}, {140, 804}, {512, 65422}, {575, 9023}, {576, 9188}, {631, 9147}, {632, 45689}, {647, 5926}, {686, 19357}, {1499, 8651}, {2492, 11616}, {2793, 44820}, {2799, 32204}, {2869, 14271}, {3517, 17994}, {3525, 53365}, {3526, 9148}, {3566, 45856}, {4155, 58382}, {6088, 11621}, {6132, 9517}, {6140, 39477}, {6642, 44817}, {7907, 13306}, {8151, 45687}, {8552, 53263}, {8644, 32231}, {8704, 65420}, {9123, 16220}, {9125, 32228}, {9138, 15034}, {9213, 37953}, {10279, 55122}, {10280, 44564}, {11620, 62506}, {12105, 20403}, {14094, 19902}, {19901, 38675}, {21731, 44810}, {22105, 44813}, {23236, 36255}, {24978, 57154}, {34351, 64920}, {34952, 63830}, {38327, 58380}, {39227, 42653}, {39501, 44814}, {39511, 64789}, {47442, 62507}, {61138, 62177}
X(65418) = midpoint of X(i) and X(j) for these (i, j): {3, 11615}, {351, 9126}, {647, 5926}, {2492, 11616}, {6132, 14270}, {6140, 39477}, {8151, 62438}, {8552, 53263}, {8644, 32231}, {9147, 16235}, {21731, 44810}, {22105, 44813}, {24978, 57154}, {34952, 63830}, {38327, 58380}, {39227, 42653}
X(65418) = cross-difference of every pair of points on the line X(10418)X(44529)
X(65418) = pole of the line {2854, 5093} with respect to the circumcircle
X(65418) = X(11615)-of-anti-X3-ABC reflections triangle
X(65418) = X(65418)-of-circumsymmedial triangle
X(65418) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 351, 11615), (631, 9147, 62433), (631, 62433, 16235), (9126, 11615, 3), (45687, 62438, 8151)
X(65419) lies on these lines: {2, 65436}, {4, 1499}, {26, 669}, {512, 62438}, {2485, 32473}, {2799, 65390}, {3566, 18314}, {5576, 23301}, {5926, 6563}, {7540, 25423}, {7556, 8151}, {7565, 10280}, {8704, 65389}, {10024, 59740}, {12077, 64789}, {15099, 31279}, {30209, 50548}, {32379, 65440}, {50946, 59744}, {52300, 59927}
X(65419) = reflection of X(i) in X(j) for these (i, j): (6563, 5926), (8151, 65422)
X(65419) = anticomplement of X(65436)
X(65419) = X(65436)-Dao conjugate of-X(65436)
X(65419) = perspector of the circumconic through X(17983) and X(62899)
X(65419) = pole of the line {7514, 44388} with respect to the circumcircle
X(65419) = pole of the line {41231, 47286} with respect to the Steiner circumellipse
X(65420) lies on these lines: {39, 8644}, {76, 15724}, {3202, 9426}, {3221, 58486}, {3906, 8651}, {6683, 32472}, {8704, 65418}, {9489, 23099}
X(65420) = cross-difference of every pair of points on the line X(9870)X(15271)
X(65421) lies on these lines: {3, 2854}, {32, 32154}, {524, 13334}, {3001, 22062}, {3934, 11594}, {5188, 9019}, {7998, 18573}, {8266, 41579}, {8362, 20113}, {9027, 65429}, {13335, 37283}, {50991, 59707}
X(65421) = pole of the line {2780, 12308} with respect to the 2nd Brocard circle
X(65422) lies on these lines: {3, 669}, {5, 45317}, {26, 64919}, {140, 25423}, {512, 65418}, {523, 12105}, {575, 9009}, {632, 23301}, {2501, 3518}, {3053, 59928}, {3525, 44445}, {3526, 31176}, {3628, 39511}, {3800, 34952}, {6563, 38435}, {7555, 32204}, {7556, 8151}, {8644, 11615}, {10279, 12106}, {10303, 31299}, {10594, 39533}, {14002, 59927}, {15562, 62510}, {31279, 55858}, {37967, 62507}, {64789, 65434}
X(65422) = midpoint of X(i) and X(j) for these (i, j): {669, 5926}, {8151, 65419}, {11615, 65390}
X(65422) = reflection of X(39511) in X(44451)
X(65422) = pole of the line {524, 5055} with respect to the circumcircle
X(65422) = pole of the line {524, 62033} with respect to the Nguyen-Moses circle
X(65422) = pole of the line {524, 62027} with respect to the Stammler circle
X(65422) = (X(8644), X(65390))-harmonic conjugate of X(11615)
X(65423) lies on these lines: {1, 10574}, {2, 65435}, {3, 31728}, {4, 58474}, {10, 185}, {30, 31760}, {40, 5890}, {51, 51118}, {52, 31730}, {140, 31751}, {143, 28146}, {165, 5889}, {389, 516}, {411, 62352}, {511, 12512}, {515, 40647}, {517, 13630}, {916, 3678}, {944, 61136}, {946, 9730}, {1125, 2807}, {1154, 31663}, {1698, 12111}, {1699, 15043}, {1742, 50593}, {2392, 9943}, {2772, 5777}, {2779, 34339}, {2979, 16192}, {3060, 64005}, {3567, 41869}, {3579, 6102}, {3634, 5907}, {3817, 64854}, {3881, 58617}, {4297, 64100}, {4301, 64662}, {4347, 11436}, {5446, 28150}, {5462, 18483}, {5562, 10164}, {5587, 6241}, {5663, 9956}, {5690, 45956}, {5691, 15072}, {5752, 12511}, {5876, 11231}, {5943, 12571}, {5946, 22793}, {6000, 19925}, {6684, 13754}, {7729, 12779}, {7987, 20791}, {7988, 15028}, {7989, 15305}, {8227, 15045}, {9037, 31805}, {9047, 31819}, {9441, 41329}, {9587, 11449}, {9590, 52525}, {9780, 64025}, {9786, 49553}, {9899, 41715}, {9955, 12006}, {10167, 23156}, {10171, 11695}, {10175, 12162}, {10575, 31673}, {11412, 35242}, {11413, 16473}, {11459, 31423}, {11793, 58441}, {12290, 18492}, {12294, 59408}, {12688, 15049}, {12699, 37481}, {13382, 43174}, {13491, 18480}, {13598, 28158}, {14641, 28172}, {14831, 50808}, {15012, 58469}, {15056, 64850}, {15058, 54447}, {16881, 28178}, {18439, 61261}, {21969, 34638}, {23157, 58567}, {25639, 34462}, {26446, 34783}, {28164, 46850}, {31817, 64107}, {31834, 61614}, {31871, 58497}, {34379, 52520}, {38042, 45957}, {44547, 52003}
X(65423) = midpoint of X(i) and X(j) for these (i, j): {3, 31728}, {10, 185}, {40, 31732}, {52, 31730}, {3579, 6102}, {5889, 31737}, {10575, 31673}, {13491, 18480}, {14831, 50808}, {21969, 34638}
X(65423) = reflection of X(i) in X(j) for these (i, j): (4, 58474), (1125, 9729), (3678, 58690), (3881, 58617), (5907, 3634), (9955, 12006), (18483, 5462), (19925, 58487), (23157, 58567), (31751, 140), (31752, 6684), (31757, 389), (31871, 58497), (58469, 15012), (65399, 3)
X(65423) = anticomplement of X(65435)
X(65423) = X(65435)-Dao conjugate of-X(65435)
X(65423) = X(31728)-of-anti-X3-ABC reflections triangle
X(65423) = X(58474)-of-anti-Euler triangle
X(65423) = X(65399)-of-ABC-X3 reflections triangle
X(65423) = X(65476)-of-anti-Hutson intouch triangle
X(65423) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (40, 5890, 31732), (165, 5889, 31737)
As a conic with center in the infinity, it is a parabola. Its focus is X(65501).
X(65424) lies on these lines: {30, 511}, {663, 52726}, {1734, 53562}, {4091, 48338}, {39476, 53300}, {44410, 48294}, {48287, 53550}, {48386, 53285}
X(65424) = isogonal conjugate of the circumperp conjugate of X(65501)
X(65424) = cross-difference of every pair of points on the line X(6)X(13898)
X(65425) lies on these lines: {39, 65390}, {389, 512}, {8704, 31745}, {39469, 65389}
X(65426) lies on these lines: {1, 1418}, {3, 518}, {7, 2646}, {9, 3207}, {20, 38053}, {36, 5728}, {40, 42871}, {55, 10178}, {56, 5572}, {65, 30284}, {72, 35202}, {104, 20219}, {142, 4297}, {165, 3243}, {214, 5851}, {354, 7411}, {390, 1319}, {480, 4855}, {515, 3826}, {516, 550}, {517, 15570}, {527, 43176}, {528, 11715}, {954, 3612}, {958, 58634}, {960, 8273}, {971, 5450}, {990, 15569}, {991, 1386}, {1001, 1012}, {1006, 63432}, {1125, 42356}, {1155, 7672}, {1279, 1742}, {1376, 10857}, {1420, 4326}, {1445, 5204}, {1458, 30621}, {1621, 5918}, {1750, 8167}, {1768, 4640}, {1837, 61019}, {2550, 5731}, {2801, 15481}, {2951, 30389}, {2975, 3059}, {3057, 7676}, {3174, 12513}, {3486, 8732}, {3522, 11038}, {3523, 38057}, {3579, 12005}, {3601, 4321}, {3624, 59389}, {3651, 58568}, {3683, 11220}, {3689, 64108}, {3742, 7580}, {3748, 9778}, {3812, 8726}, {3848, 19541}, {3873, 7964}, {3880, 7966}, {3897, 59412}, {4312, 37525}, {4428, 10860}, {4511, 64723}, {4663, 13329}, {5045, 12511}, {5048, 7673}, {5126, 63972}, {5220, 21153}, {5223, 5440}, {5248, 31805}, {5302, 6986}, {5303, 60970}, {5542, 24929}, {5584, 34791}, {5686, 15717}, {5691, 20195}, {5759, 50371}, {5805, 13151}, {5809, 7288}, {5853, 11260}, {5880, 6934}, {6067, 57287}, {6210, 63390}, {6666, 64804}, {6690, 64705}, {6796, 58588}, {6992, 12678}, {7280, 18412}, {7354, 21617}, {7677, 14100}, {8236, 20323}, {8255, 12573}, {8543, 31391}, {8581, 18450}, {9441, 49478}, {9588, 59414}, {10164, 13226}, {10165, 63970}, {10179, 64150}, {10304, 51099}, {10391, 37578}, {10882, 35892}, {10902, 64128}, {11227, 58578}, {11526, 37567}, {12114, 65466}, {12520, 58679}, {12560, 13384}, {12635, 60990}, {12669, 37106}, {14151, 63211}, {15185, 59320}, {15705, 50835}, {16112, 17614}, {17768, 43177}, {18443, 64731}, {18481, 38122}, {19925, 58433}, {24299, 38030}, {24928, 30331}, {25466, 64706}, {27475, 37416}, {28160, 61595}, {28534, 60896}, {29181, 48893}, {30318, 63756}, {30329, 37582}, {31423, 38154}, {31649, 31666}, {34628, 38093}, {35016, 38054}, {35986, 64149}, {36698, 38186}, {36991, 54445}, {37424, 64443}, {37499, 51194}, {37571, 59372}, {37618, 42884}, {38031, 54370}, {38052, 56997}, {38073, 50819}, {38082, 50833}, {38158, 61001}, {43179, 51788}, {43182, 51717}, {47357, 64696}, {49484, 59620}, {50693, 62870}, {59340, 60968}
X(65426) = midpoint of X(i) and X(j) for these (i, j): {1, 11495}, {40, 42871}, {142, 4297}, {550, 20330}, {1001, 5732}, {3174, 12513}, {5542, 63413}, {5880, 43161}, {12635, 60990}
X(65426) = reflection of X(i) in X(j) for these (i, j): (15254, 52769), (15481, 31658), (19925, 58433), (42356, 1125), (42819, 1385), (52769, 13624), (65405, 3)
X(65426) = X(21)-beth conjugate of-X(1418)
X(65426) = pole of the line {4228, 7964} with respect to the Stammler hyperbola
X(65426) = X(141)-of-2nd circumperp triangle, when ABC is acute
X(65426) = X(3589)-of-hexyl triangle, when ABC is acute
X(65426) = X(5572)-of-2nd circumperp tangential triangle
X(65426) = X(11495)-of-anti-Aquila triangle
X(65426) = X(44882)-of-1st circumperp triangle, when ABC is acute
X(65426) = X(65405)-of-ABC-X3 reflections triangle
X(65426) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (56, 7675, 5572), (2951, 30389, 38316), (3576, 5732, 1001), (6986, 12680, 5302), (8273, 10884, 960), (10167, 15931, 4640), (14100, 37605, 7677), (21151, 43161, 5880)
X(65427) lies on these lines: {5, 516}, {165, 170}, {1155, 58816}, {2140, 10164}, {2808, 31663}, {17753, 64108}, {34848, 50808}, {39789, 63211}, {52155, 63469}
X(65427) = perspector of the circumconic through X(42301) and X(43191)
X(65427) = X(6683)-of-excentral triangle, when ABC is acute
X(65427) = X(3934)-of-1st circumperp triangle, when ABC is acute
X(65428) lies on these lines: {1, 4401}, {513, 58156}, {514, 1960}, {659, 48287}, {663, 1019}, {667, 4879}, {905, 48345}, {1125, 28470}, {1319, 30719}, {1420, 51652}, {2832, 58794}, {3249, 57050}, {3251, 50355}, {3803, 48348}, {3960, 48329}, {4040, 48341}, {4063, 8656}, {4083, 58150}, {4129, 45316}, {4162, 30234}, {4367, 4794}, {4378, 48065}, {4449, 58153}, {4504, 59672}, {4775, 48064}, {4782, 48347}, {4784, 58159}, {4943, 56176}, {4983, 48587}, {6161, 48075}, {14413, 48111}, {14419, 48018}, {14838, 48327}, {16483, 57238}, {29358, 48299}, {47729, 47818}, {47915, 48058}, {48012, 48322}, {48045, 48582}, {48066, 48324}, {48091, 50517}, {48099, 48612}, {48303, 53411}, {48323, 48623}, {48333, 58151}, {48336, 58157}, {48337, 58140}, {48595, 50523}
X(65428) = midpoint of X(i) and X(j) for these (i, j): {1, 4401}, {659, 48287}, {667, 48294}, {905, 48345}, {1960, 48330}, {3803, 48348}, {3960, 48329}, {4040, 48343}, {4367, 4794}, {4378, 48065}, {4504, 59672}, {4775, 48064}, {4782, 48347}, {4879, 48011}, {6161, 48075}, {14838, 48327}, {48012, 48322}, {48066, 48324}, {48323, 48623}, {48328, 48331}
X(65428) = X(21)-beth conjugate of-X(4498)
X(65428) = perspector of the circumconic through X(42302) and X(60873)
X(65428) = X(4401)-of-anti-Aquila triangle
X(65428) = X(52585)-of-2nd circumperp triangle, when ABC is acute
X(65428) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 8643, 4401), (667, 4879, 48011), (667, 25569, 48294), (1960, 48328, 48331), (4367, 58155, 4794), (48011, 48294, 4879), (48330, 48331, 48328), (48347, 58149, 4782)
X(65429) lies on these lines: {3, 524}, {23, 9300}, {39, 8705}, {160, 6329}, {237, 63124}, {523, 32516}, {597, 37465}, {1634, 20582}, {2854, 13334}, {3589, 20775}, {3631, 41328}, {5013, 8547}, {5201, 32455}, {7492, 41624}, {8584, 37184}, {9027, 65421}, {9145, 12054}, {9149, 58446}, {13357, 46337}, {14002, 63101}, {14096, 50991}, {15826, 41335}, {20190, 34383}, {33980, 63028}, {34990, 44323}, {36182, 63548}, {37283, 37479}
X(65429) = pole of the line {1499, 3830} with respect to the 2nd Brocard circle
X(65429) = pole of the line {1995, 8556} with respect to the Stammler hyperbola
X(65430) lies on these lines: {6, 9716}, {547, 25555}, {576, 7575}, {597, 38397}, {1176, 10510}, {3431, 11477}, {8584, 47458}, {10541, 41398}, {11232, 36253}, {11482, 11935}, {22151, 38402}, {32455, 58450}, {35921, 53093}, {53092, 58891}
X(65430) = pole of the line {15534, 38397} with respect to the Stammler hyperbola
X(65431) lies on these lines: {3, 32426}, {9026, 13624}
X(65432) lies on these lines: {3239, 3900}, {21302, 50333}, {29278, 58333}, {65433, 65503}
X(65432) = X(17056)-Dao conjugate of-X(4626)
X(65432) = X(6614)-isoconjugate of-X(17097)
X(65432) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2646, 4617), (4130, 17097), (5745, 4626), (6737, 658), (17136, 23586), (21748, 6614), (23970, 56321), (53324, 23971), (58329, 63194)
X(65432) = perspector of the circumconic through X(346) and X(60254)
X(65432) = barycentric product X(i)*X(j) for these {i, j}: {3239, 6737}, {4163, 5745}, {17136, 23970}
X(65432) = trilinear product X(i)*X(j) for these {i, j}: {2646, 4163}, {3900, 6737}, {4081, 53388}, {4130, 5745}, {17136, 24010}, {21677, 58329}, {56182, 62566}
X(65432) = trilinear quotient X(i)/X(j) for these (i, j): (2646, 6614), (4163, 17097), (5745, 4617), (6737, 934), (17136, 24013), (53388, 7339)
X(65433) lies on these lines: {100, 190}, {57055, 57108}, {65432, 65503}
X(65433) = cross-difference of every pair of points on the line X(1015)X(1435)
X(65433) = X(i)-isoconjugate of-X(j) for these {i, j}: {1398, 53211}, {1435, 65214}, {41207, 62192}
X(65433) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1260, 65214), (1984, 17925), (3692, 53211), (6518, 4626), (7360, 13149), (56182, 41207), (58325, 36118)
X(65433) = perspector of the circumconic through X(1016) and X(3692)
X(65433) = barycentric product X(i)*X(j) for these {i, j}: {1984, 52609}, {4163, 6518}, {7360, 57055}
X(65433) = trilinear product X(i)*X(j) for these {i, j}: {4130, 6518}, {7360, 57108}, {57055, 58325}
X(65433) = trilinear quotient X(i)/X(j) for these (i, j): (1265, 53211), (1984, 57200), (3692, 65214), (6518, 4617), (7360, 36118), (58325, 32714)
X(65434) lies on these lines: {2, 65389}, {3, 30476}, {4, 31174}, {5, 23878}, {546, 30209}, {576, 64876}, {647, 3090}, {850, 3091}, {1656, 44560}, {3146, 31072}, {3525, 31277}, {5056, 36900}, {5068, 63786}, {5079, 41300}, {8675, 59741}, {8704, 65436}, {10110, 54272}, {11793, 54269}, {15022, 31296}, {20186, 59568}, {20399, 62489}, {37953, 47255}, {37957, 47264}, {46989, 47339}, {64789, 65422}
X(65434) = complement of X(65389)
X(65434) = pole of the line {10245, 64781} with respect to the circumcircle
X(65435) lies on these lines: {1, 15056}, {2, 65423}, {4, 65399}, {5, 31751}, {185, 19862}, {381, 31738}, {389, 10171}, {511, 12571}, {516, 11793}, {517, 14128}, {916, 58565}, {946, 5891}, {1125, 5907}, {1216, 18483}, {1385, 15060}, {1656, 31728}, {1699, 11444}, {2772, 9940}, {2807, 3634}, {2842, 31821}, {3576, 15058}, {3624, 12111}, {3817, 5562}, {3819, 12512}, {3917, 51118}, {4297, 15030}, {5447, 28150}, {5876, 11230}, {5889, 7988}, {5927, 23156}, {6684, 10170}, {6894, 38474}, {6915, 62352}, {7987, 15305}, {7998, 64005}, {7999, 41869}, {8227, 11459}, {9590, 43614}, {9729, 19878}, {9955, 11591}, {10165, 12162}, {10248, 33884}, {10574, 34595}, {11573, 31871}, {12279, 58221}, {12558, 37536}, {13348, 28158}, {13624, 45959}, {15067, 22793}, {16881, 61267}, {18436, 61268}, {28146, 32142}, {28160, 45958}, {28164, 44870}, {28172, 46849}, {31834, 61269}, {43174, 52796}, {45305, 50610}
X(65435) = midpoint of X(i) and X(j) for these (i, j): {4, 65399}, {5, 31751}, {946, 31752}, {1125, 5907}, {1216, 18483}, {5562, 31757}, {9955, 11591}, {11573, 31871}, {13624, 45959}
X(65435) = reflection of X(i) in X(j) for these (i, j): (9729, 19878), (58474, 5)
X(65435) = complement of X(65423)
X(65435) = X(58474)-of-Johnson triangle
X(65435) = X(65398)-of-anti-Ursa minor triangle
X(65435) = X(65399)-of-Euler triangle
X(65435) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (946, 5891, 31752), (1699, 11444, 31737), (3817, 5562, 31757), (8227, 11459, 31732)
X(65436) lies on these lines: {2, 65419}, {3, 669}, {523, 47341}, {1594, 2501}, {3566, 11615}, {6563, 37444}, {7507, 39533}, {7568, 44451}, {8151, 14791}, {8704, 65434}, {13371, 23301}, {14417, 65390}, {18117, 59744}, {44445, 47528}
X(65436) = reflection of X(2501) in X(39511)
X(65436) = complement of X(65419)
X(65436) = pole of the line {44376, 62237} with respect to the polar circle
X(65437) lies on these lines: {5, 514}, {4449, 37718}, {5047, 48218}, {37162, 47795}, {37701, 48294}, {37702, 48287}, {48386, 62359}, {65438, 65449}
X(65437) = pole of the line {516, 22936} with respect to the nine-point circle
X(65438) lies on these lines: {5, 516}, {10, 61699}, {1125, 25444}, {1698, 35468}, {3136, 58449}, {25648, 31253}, {65437, 65449}
X(65438) = X(52540)-of-4th Euler triangle, when ABC is acute
X(65439) lies on these lines: {2, 4934}, {10, 542}, {115, 2640}, {523, 40539}, {543, 21089}, {662, 4092}, {897, 24957}, {2643, 11725}, {8043, 34990}, {17058, 24345}, {59671, 64007}
X(65439) = midpoint of X(662) and X(4092)
X(65439) = complement of X(4934)
X(65439) = pole of the line {620, 690} with respect to the Spieker circle
X(65439) = X(18315)-of-2nd Zaniah triangle, when ABC is acute
X(65440) lies on these lines: {25, 30451}, {110, 6563}, {154, 669}, {159, 9009}, {182, 14341}, {184, 2501}, {206, 57128}, {512, 46005}, {578, 39533}, {924, 6132}, {1499, 6759}, {1503, 23301}, {1853, 31279}, {3566, 5027}, {5926, 10282}, {6587, 58310}, {10192, 44451}, {11206, 44445}, {14529, 56242}, {18381, 39511}, {21646, 44110}, {30442, 53318}, {31299, 64059}, {32379, 65419}
X(65440) = reflection of X(i) in X(j) for these (i, j): (5926, 10282), (18381, 39511)
X(65440) = cross-difference of every pair of points on the line X(13881)X(26958)
X(65440) = crosssum of X(523) and X(41005)
X(65440) = perspector of the circumconic through X(41894) and X(55999)
X(65440) = pole of the line {3167, 3289} with respect to the circumcircle
X(65440) = pole of the line {297, 44451} with respect to the Kiepert parabola
X(65441) lies on these lines: {19, 31}, {33, 2357}, {40, 197}, {55, 8602}, {65, 1035}, {196, 2385}, {207, 8803}, {380, 20986}, {610, 10537}, {3197, 3198}, {7070, 60784}, {11124, 50501}, {18673, 19614}, {26377, 37550}, {30503, 52139}
X(65441) = isogonal conjugate of the isotomic conjugate of X(64583)
X(65441) = X(64583)-reciprocal conjugate of-X(76)
X(65441) = pole of the line {14298, 57101} with respect to the circumcircle
X(65441) = barycentric product X(6)*X(64583)
X(65441) = trilinear product X(31)*X(64583)
X(65441) = trilinear quotient X(64583)/X(75)
X(65441) = X(17832)-of-anti-Mandart-incircle triangle
X(65442) lies on these lines: {187, 237}, {513, 30719}, {520, 48302}, {810, 40984}, {905, 2821}, {926, 4162}, {928, 39541}, {2328, 21789}, {2520, 8678}, {2605, 53305}, {3057, 21120}, {3239, 3900}, {4041, 40966}, {6129, 7250}, {6363, 6615}, {15283, 17072}, {53285, 58336}, {57108, 58334}
X(65442) = midpoint of X(i) and X(j) for these (i, j): {663, 53549}, {3057, 21120}
X(65442) = reflection of X(i) in X(j) for these (i, j): (2488, 663), (7250, 6129), (39541, 48294), (65445, 17115)
X(65442) = isogonal conjugate of X(6613)
X(65442) = Gibert-circumtangential conjugate of X(59123)
X(65442) = cross-difference of every pair of points on the line X(2)X(1407)
X(65442) = crosspoint of X(i) and X(j) for these {i, j}: {6, 59123}, {9, 61222}, {663, 3900}, {2347, 23845}
X(65442) = crosssum of X(i) and X(j) for these {i, j}: {2, 42337}, {522, 6692}, {664, 934}, {1476, 60482}, {40420, 56323}
X(65442) = X(i)-Ceva conjugate of-X(j) for these (i, j): (9, 14936), (23845, 2347), (59123, 6)
X(65442) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 59123), (2170, 85), (3452, 4569), (3752, 4572), (6600, 8706), (12640, 668), (14714, 1222), (17115, 56323), (35508, 32017), (38991, 40420), (39025, 1476), (40608, 56173), (59507, 46406)
X(65442) = X(i)-isoconjugate of-X(j) for these {i, j}: {75, 59123}, {269, 8706}, {651, 40420}, {658, 23617}, {664, 1476}, {934, 1222}, {1261, 4626}, {1275, 62748}, {1414, 56173}, {1461, 32017}, {3451, 4554}, {4564, 60482}, {4569, 51476}, {4616, 56190}, {4617, 52549}, {4637, 56258}, {6516, 40446}, {7045, 56323}, {59478, 62754}
X(65442) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 59123), (220, 8706), (657, 1222), (663, 40420), (1122, 36838), (1201, 658), (1828, 13149), (2347, 664), (3057, 4554), (3063, 1476), (3271, 60482), (3452, 4572), (3663, 46406), (3709, 56173), (3752, 4569), (3900, 32017), (4105, 52549), (4524, 56258), (6363, 279), (6615, 85), (6736, 1978), (8641, 23617), (14936, 56323), (18163, 4625), (20228, 934), (21120, 6063), (21796, 4566), (22072, 65164), (22344, 65296), (23845, 1275), (28006, 7205), (40982, 653), (42336, 738), (42337, 76), (45219, 62532), (48334, 1088), (52563, 52937), (57180, 1261), (59173, 4626)
X(65442) = perspector of the circumconic through X(6) and X(346)
X(65442) = pole of the line {6, 1604} with respect to the circumcircle
X(65442) = pole of the line {3340, 4907} with respect to the incircle
X(65442) = pole of the line {264, 1119} with respect to the polar circle
X(65442) = pole of the line {6, 1604} with respect to the Brocard inellipse
X(65442) = pole of the line {3340, 13476} with respect to the de Longchamps ellipse
X(65442) = pole of the line {4534, 11998} with respect to the Feuerbach circumhyperbola
X(65442) = pole of the line {200, 3056} with respect to the Mandart inellipse
X(65442) = pole of the line {99, 6613} with respect to the Stammler hyperbola
X(65442) = pole of the line {194, 30695} with respect to the Steiner circumellipse
X(65442) = pole of the line {39, 6554} with respect to the Steiner inellipse
X(65442) = pole of the line {670, 4616} with respect to the Steiner-Wallace hyperbola
X(65442) = pole of the line {20979, 57064} with respect to the Yff parabola
X(65442) = barycentric product X(i)*X(j) for these {i, j}: {6, 42337}, {9, 6615}, {55, 21120}, {200, 48334}, {346, 6363}, {522, 2347}, {649, 6736}, {650, 3057}, {657, 3663}, {663, 3452}, {1021, 4642}, {1122, 4130}, {1146, 23845}, {1201, 3239}, {1828, 57055}, {2170, 61222}, {2310, 21362}, {3063, 20895}, {3064, 22072}, {3119, 62754}
X(65442) = trilinear product X(i)*X(j) for these {i, j}: {31, 42337}, {41, 21120}, {55, 6615}, {200, 6363}, {220, 48334}, {521, 40982}, {650, 2347}, {657, 3752}, {663, 3057}, {667, 6736}, {1021, 21796}, {1122, 4105}, {1201, 3900}, {1828, 57108}, {2310, 23845}, {3022, 62754}, {3063, 3452}, {3239, 20228}, {3271, 61222}, {3663, 8641}
X(65442) = trilinear quotient X(i)/X(j) for these (i, j): (31, 59123), (200, 8706), (650, 40420), (657, 23617), (663, 1476), (1122, 4626), (1201, 934), (1828, 36118), (2170, 60482), (2310, 56323), (2347, 651), (3057, 664), (3063, 3451), (3239, 32017), (3452, 4554), (3663, 4569), (3752, 658), (3900, 1222), (4041, 56173), (4105, 1261)
X(65442) = X(65455)-of-excentral triangle, when ABC is acute
X(65442) = (X(663), X(1946))-harmonic conjugate of X(1960)
X(65443) lies on these lines: {3239, 3900}, {8599, 12073}
X(65444) lies on these lines: {850, 6368}, {3239, 3900}
X(65444) = cross-difference of every pair of points on the line X(1407)X(14585)
X(65444) = X(42447)-reciprocal conjugate of-X(32651)
X(65444) = perspector of the circumconic through X(346) and X(18027)
X(65444) = pole of the line {1604, 35225} with respect to the circumcircle
X(65444) = pole of the line {184, 1119} with respect to the polar circle
X(65444) = pole of the line {317, 30695} with respect to the Steiner circumellipse
X(65445) lies on these lines: {2, 65409}, {42, 663}, {226, 59903}, {460, 512}, {514, 6738}, {885, 21302}, {1946, 50504}, {2488, 8678}, {3063, 55206}, {3239, 3900}, {4036, 23289}, {4041, 8641}, {6139, 50501}
X(65445) = reflection of X(i) in X(j) for these (i, j): (2520, 18344), (65442, 17115)
X(65445) = anticomplement of X(65409)
X(65445) = cross-difference of every pair of points on the line X(394)X(1407)
X(65445) = crosspoint of X(i) and X(j) for these {i, j}: {3900, 18344}, {40968, 53279}
X(65445) = crosssum of X(934) and X(6516)
X(65445) = X(i)-Ceva conjugate of-X(j) for these (i, j): (281, 14936), (53279, 40968)
X(65445) = X(i)-Dao conjugate of-X(j) for these (i, j): (11, 34399), (6523, 54948), (6600, 65370), (7117, 348), (14714, 40436), (15259, 52775), (35508, 59759), (38966, 34406), (65409, 65409)
X(65445) = X(i)-isoconjugate of-X(j) for these {i, j}: {109, 34399}, {255, 54948}, {269, 65370}, {326, 52775}, {658, 56003}, {934, 40436}, {1461, 59759}, {6507, 42381}, {7366, 42380}, {55994, 65296}
X(65445) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (220, 65370), (393, 54948), (650, 34399), (657, 40436), (1837, 4554), (2207, 52775), (3772, 4569), (3900, 59759), (3924, 658), (5423, 42380), (6524, 42381), (8641, 56003), (17189, 4635), (17861, 46406), (36570, 4626), (40968, 664), (40980, 4573), (53279, 1275), (65103, 34406)
X(65445) = perspector of the circumconic through X(346) and X(393)
X(65445) = pole of the line {1604, 1609} with respect to the circumcircle
X(65445) = pole of the line {1420, 4907} with respect to the incircle
X(65445) = pole of the line {800, 2183} with respect to the 1st Lozada, circle
X(65445) = pole of the line {69, 1119} with respect to the polar circle
X(65445) = pole of the line {800, 2183} with respect to the Brocard inellipse
X(65445) = pole of the line {6392, 30695} with respect to the Steiner circumellipse
X(65445) = pole of the line {3767, 6554} with respect to the Steiner inellipse
X(65445) = barycentric product X(i)*X(j) for these {i, j}: {522, 40968}, {650, 1837}, {657, 17861}, {1021, 21935}, {1146, 53279}, {3239, 3924}, {3700, 40980}, {3772, 3900}, {4163, 36570}, {4171, 17189}, {4524, 16749}, {41004, 65103}
X(65445) = trilinear product X(i)*X(j) for these {i, j}: {650, 40968}, {657, 3772}, {663, 1837}, {2310, 53279}, {3900, 3924}, {4041, 40980}, {4130, 36570}, {4524, 17189}, {8641, 17861}, {21789, 21935}, {26934, 65103}
X(65445) = trilinear quotient X(i)/X(j) for these (i, j): (158, 54948), (200, 65370), (522, 34399), (657, 56003), (1096, 52775), (1837, 664), (3239, 59759), (3772, 658), (3900, 40436), (3924, 934), (6520, 42381), (16749, 4635), (17189, 4616), (17861, 4569), (21935, 4566), (26934, 65296), (30693, 42380), (36570, 4617), (40968, 651), (40980, 1414)
X(65446) lies on these lines: {2, 65495}, {99, 110}, {3239, 3900}
X(65446) = anticomplement of X(65495)
X(65446) = cross-difference of every pair of points on the line X(1407)X(3124)
X(65446) = X(65495)-Dao conjugate of-X(65495)
X(65446) = perspector of the circumconic through X(346) and X(4590)
X(65446) = pole of the line {1604, 1634} with respect to the circumcircle
X(65446) = pole of the line {1119, 8754} with respect to the polar circle
X(65446) = pole of the line {99, 30695} with respect to the Steiner circumellipse
X(65446) = pole of the line {620, 6554} with respect to the Steiner inellipse
X(65446) = pole of the line {523, 4616} with respect to the Steiner-Wallace hyperbola
X(65446) = pole of the line {1654, 57064} with respect to the Yff parabola
X(65447) lies on these lines: {669, 688}, {3239, 3900}
X(65447) = cross-difference of every pair of points on the line X(76)X(1407)
X(65447) = X(61051)-Dao conjugate of-X(6063)
X(65447) = perspector of the circumconic through X(32) and X(346)
X(65447) = pole of the line {1604, 1613} with respect to the circumcircle
X(65447) = pole of the line {1119, 18022} with respect to the polar circle
X(65447) = pole of the line {8264, 30695} with respect to the Steiner circumellipse
X(65447) = pole of the line {6554, 8265} with respect to the Steiner inellipse
X(65447) = pole of the line {4609, 4616} with respect to the Steiner-Wallace hyperbola
X(65447) = barycentric product X(23638)*X(52326)
X(65448) lies on these lines: {2, 65483}, {100, 190}, {3059, 30692}, {3119, 4081}, {3239, 3900}, {6366, 38376}, {21060, 39470}, {57049, 58835}
X(65448) = anticomplement of X(65483)
X(65448) = cross-difference of every pair of points on the line X(1015)X(1407)
X(65448) = X(i)-Dao conjugate of-X(j) for these (i, j): (2968, 62723), (3161, 60487), (3900, 23351), (6552, 35157), (6594, 934), (6600, 14733), (6608, 35348), (24771, 37139), (35091, 279), (35110, 4626), (35508, 34056), (40629, 479), (62579, 3676), (65483, 65483)
X(65448) = X(i)-isoconjugate of-X(j) for these {i, j}: {244, 59105}, {269, 14733}, {279, 36141}, {604, 60487}, {1088, 32728}, {1106, 35157}, {1156, 6614}, {1407, 37139}, {1435, 65304}, {1461, 34056}, {2291, 4617}, {4626, 34068}, {7099, 65335}, {7339, 35348}, {23351, 24013}, {23893, 23971}
X(65448) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (8, 60487), (200, 37139), (220, 14733), (346, 35157), (527, 4626), (1055, 6614), (1155, 4617), (1252, 59105), (1253, 36141), (1260, 65304), (1638, 479), (3119, 35348), (3239, 62723), (3900, 34056), (4081, 60479), (4105, 2291), (4130, 1156), (4163, 1121), (4171, 62764), (6139, 1407), (6366, 279), (6603, 934), (6745, 658), (7046, 65335), (14392, 57), (14413, 738), (14414, 7177), (14827, 32728), (23346, 23971), (23890, 24013), (23970, 63748), (24010, 23893), (30806, 36838), (33573, 3676), (35508, 23351), (38376, 37757), (52334, 1358), (56543, 23586), (57180, 34068), (60431, 36118), (61035, 61241), (62756, 4637)
X(65448) = perspector of the circumconic through X(346) and X(1016)
X(65448) = pole of the line {100, 1604} with respect to the circumcircle
X(65448) = pole of the line {1119, 2969} with respect to the polar circle
X(65448) = pole of the line {190, 5528} with respect to the Steiner circumellipse
X(65448) = pole of the line {4422, 6554} with respect to the Steiner inellipse
X(65448) = pole of the line {4616, 7192} with respect to the Steiner-Wallace hyperbola
X(65448) = pole of the line {2, 57064} with respect to the Yff parabola
X(65448) = barycentric product X(i)*X(j) for these {i, j}: {312, 14392}, {346, 6366}, {527, 4163}, {1638, 5423}, {3239, 6745}, {3699, 33573}, {4076, 52334}, {4130, 30806}, {4397, 6603}, {6139, 59761}, {7101, 14414}, {14413, 30693}, {23970, 56543}
X(65448) = trilinear product X(i)*X(j) for these {i, j}: {8, 14392}, {200, 6366}, {341, 6139}, {527, 4130}, {644, 33573}, {728, 1638}, {1155, 4163}, {3239, 6603}, {3900, 6745}, {4105, 30806}, {5423, 14413}, {7046, 14414}, {23890, 23970}, {24010, 56543}, {30574, 56182}, {38376, 42064}, {56763, 57049}, {57055, 60431}
X(65448) = trilinear quotient X(i)/X(j) for these (i, j): (200, 14733), (220, 36141), (312, 60487), (341, 35157), (346, 37139), (527, 4617), (765, 59105), (1155, 6614), (1253, 32728), (1638, 738), (3239, 34056), (3692, 65304), (4081, 35348), (4105, 34068), (4130, 2291), (4163, 1156), (4397, 62723), (6139, 1106), (6366, 269), (6603, 1461)
X(65449) lies on these lines: {2, 4705}, {5, 44824}, {10, 29298}, {512, 25666}, {514, 3634}, {650, 21260}, {659, 47816}, {661, 47837}, {663, 899}, {667, 31209}, {693, 31251}, {838, 25142}, {1491, 47794}, {1577, 47827}, {1698, 2533}, {1734, 47822}, {2254, 48553}, {2526, 48561}, {2530, 47793}, {2787, 14838}, {2977, 29098}, {3035, 40544}, {3762, 47893}, {3831, 4147}, {3835, 50504}, {3837, 48003}, {3960, 48401}, {4041, 47839}, {4129, 9508}, {4369, 48005}, {4391, 47888}, {4401, 48214}, {4490, 47795}, {4522, 29194}, {4560, 14431}, {4730, 47840}, {4763, 50512}, {4776, 4834}, {4784, 48551}, {4808, 47797}, {4824, 64850}, {4874, 48012}, {4893, 50352}, {4978, 30795}, {4983, 47836}, {5958, 65450}, {6050, 44567}, {6372, 25380}, {8043, 31946}, {8678, 31287}, {9422, 40533}, {10278, 12071}, {14349, 47835}, {17069, 29090}, {17072, 29188}, {18004, 21192}, {21052, 48288}, {21212, 29354}, {21301, 27115}, {23815, 47802}, {24948, 65152}, {28602, 29128}, {29051, 53571}, {29142, 53573}, {29154, 50453}, {30835, 48273}, {31207, 47912}, {36848, 47970}, {41800, 48047}, {45315, 48053}, {45323, 48066}, {47760, 50501}, {47761, 47956}, {47784, 48395}, {47807, 48402}, {47817, 50328}, {47823, 47959}, {47824, 47949}, {47825, 48393}, {47828, 48267}, {47833, 48407}, {47838, 50355}, {47842, 48205}, {47872, 48409}, {47875, 47975}, {47918, 48569}, {47967, 48216}, {48024, 48573}, {48049, 58179}, {48058, 48180}, {48079, 58181}, {48092, 48559}, {48165, 50345}, {48204, 50330}, {50335, 59672}, {51073, 54265}, {59521, 64934}, {65437, 65438}
X(65449) = midpoint of X(i) and X(j) for these (i, j): {5, 44824}, {650, 21260}, {3835, 50504}, {3837, 48003}, {3960, 48401}, {4129, 9508}, {4369, 48005}, {4705, 52601}, {4874, 48012}, {8043, 31946}, {14838, 21051}, {17072, 50507}, {18004, 21192}, {23815, 47965}, {48049, 58179}, {50335, 59672}
X(65449) = reflection of X(31288) in X(31287)
X(65449) = complement of X(52601)
X(65449) = pole of the line {9569, 29301} with respect to the excircles radical circle
X(65449) = pole of the line {502, 11795} with respect to the nine-point circle
X(65449) = pole of the line {3647, 29301} with respect to the Spieker circle
X(65449) = pole of the line {57461, 64523} with respect to the Kiepert circumhyperbola
X(65449) = pole of the line {1655, 2895} with respect to the Steiner inellipse
X(65449) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 4705, 52601), (17072, 47778, 50507), (21051, 47829, 14838), (31209, 47814, 667), (47802, 47965, 23815), (48012, 48196, 4874)
X(65450) lies on these lines: {6, 57185}, {44, 513}, {197, 16874}, {1621, 42319}, {2262, 21353}, {2605, 55212}, {2681, 38390}, {3185, 7234}, {3309, 4949}, {3700, 8674}, {4024, 8702}, {4132, 12077}, {4369, 9034}, {4521, 63978}, {5958, 65449}, {6003, 14321}, {8774, 17069}, {12572, 28292}, {30203, 34434}, {40589, 57182}, {55214, 59837}
X(65450) = reflection of X(13401) in X(2516)
X(65450) = cross-difference of every pair of points on the line X(1)X(6597)
X(65450) = crosspoint of X(i) and X(j) for these {i, j}: {57, 5606}, {100, 64991}
X(65450) = crosssum of X(i) and X(j) for these {i, j}: {9, 8702}, {650, 37564}
X(65450) = X(30238)-Ceva conjugate of-X(55)
X(65450) = X(i)-Dao conjugate of-X(j) for these (i, j): (32664, 39633), (38991, 6597)
X(65450) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 39633}, {651, 6597}
X(65450) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (31, 39633), (663, 6597)
X(65450) = X(i)-zayin conjugate of-X(j) for these (i, j): (9, 39633), (650, 6597), (30200, 57)
X(65450) = perspector of the circumconic through X(1) and X(39164)
X(65450) = pole of the line {92, 32859} with respect to the polar circle
X(65450) = pole of the line {908, 1211} with respect to the Spieker circle
X(65450) = pole of the line {2310, 21043} with respect to the Feuerbach circumhyperbola
X(65450) = pole of the line {65, 11363} with respect to the orthic inconic
X(65450) = trilinear quotient X(i)/X(j) for these (i, j): (6, 39633), (650, 6597), (41550, 65205), (41551, 63782)
X(65450) = X(57195)-of-2nd Zaniah triangle, when ABC is acute
X(65451) lies on these lines: {11, 5173}, {354, 41561}, {1519, 3649}, {1699, 41706}, {3817, 51463}, {5433, 64669}, {5603, 40663}, {5804, 10944}, {7965, 11019}, {7988, 38175}, {9812, 17051}, {13464, 45081}
X(65452) lies on these lines: {1, 59385}, {2, 63974}, {3, 142}, {4, 5542}, {5, 38179}, {7, 1699}, {9, 3817}, {10, 38150}, {11, 52819}, {40, 38204}, {144, 5231}, {165, 60996}, {382, 38030}, {390, 11522}, {515, 15935}, {517, 58634}, {518, 5806}, {519, 3577}, {527, 3829}, {551, 43161}, {553, 7965}, {962, 38052}, {971, 12005}, {997, 43166}, {1537, 38152}, {1656, 38130}, {1709, 60938}, {1721, 63589}, {1750, 64672}, {1836, 60992}, {2346, 11218}, {2550, 4301}, {2807, 58472}, {2951, 9812}, {3086, 4312}, {3091, 5223}, {3174, 22836}, {3254, 21635}, {3543, 38024}, {3579, 38171}, {3624, 59418}, {3626, 7686}, {3627, 38041}, {3636, 43175}, {3826, 43174}, {3828, 7680}, {4297, 38053}, {4326, 30275}, {4887, 64134}, {4896, 64741}, {5071, 38101}, {5536, 61024}, {5572, 58626}, {5603, 30331}, {5686, 7989}, {5691, 11038}, {5715, 5811}, {5732, 38054}, {5735, 26363}, {5759, 8227}, {5762, 9955}, {5785, 31418}, {5818, 38210}, {5853, 13463}, {6067, 8226}, {6172, 30308}, {6173, 43182}, {6666, 10171}, {6684, 50394}, {6743, 6835}, {7678, 41572}, {7982, 38149}, {7988, 18230}, {7991, 40333}, {8255, 15006}, {8583, 59412}, {8727, 60945}, {9950, 42697}, {10164, 20195}, {10392, 10896}, {10398, 10591}, {10481, 30682}, {11372, 30424}, {11531, 59413}, {11680, 60979}, {12577, 30283}, {12630, 16189}, {12669, 18398}, {13159, 37447}, {13253, 45043}, {13464, 43179}, {15726, 58564}, {15911, 63972}, {16112, 60962}, {17605, 60919}, {17768, 20288}, {19862, 21153}, {21151, 41869}, {22791, 38137}, {22793, 31657}, {24644, 53057}, {25557, 43176}, {26333, 51098}, {28236, 42871}, {29668, 43173}, {30311, 60936}, {30340, 64697}, {31162, 35514}, {31391, 60993}, {31399, 38126}, {33558, 58608}, {34627, 51101}, {34648, 51099}, {36971, 61014}, {36990, 38046}, {36991, 59372}, {38055, 52836}, {38056, 52837}, {38075, 50834}, {38093, 50808}, {38143, 64085}, {38205, 46684}, {40273, 61509}, {41338, 60958}, {41573, 61011}, {45305, 53598}, {50865, 59374}, {54370, 60990}, {58433, 58441}, {59381, 61268}, {60910, 61021}, {60911, 61005}, {60961, 63275}, {61030, 65466}, {63258, 64162}
X(65452) = midpoint of X(i) and X(j) for these (i, j): {4, 5542}, {7, 63973}, {946, 5805}, {2550, 4301}, {3254, 21635}, {4297, 52835}, {5732, 51118}, {5735, 51090}, {11372, 30424}, {13159, 37447}, {16112, 60962}, {18482, 20330}, {22793, 31657}, {31162, 51100}, {34627, 51101}, {34648, 51099}, {40273, 61509}, {60895, 63970}
X(65452) = reflection of X(i) in X(j) for these (i, j): (6684, 61595), (20116, 13374), (43151, 142), (43174, 3826), (43175, 3636), (43176, 25557), (43179, 13464), (43181, 31657), (63970, 12571), (64699, 42356), (64830, 61509), (65405, 58433)
X(65452) = crosspoint of X(10405) and X(21453)
X(65452) = crosssum of X(2293) and X(3207)
X(65452) = pole of the line {7658, 21185} with respect to the incircle
X(65452) = pole of the line {6, 279} with respect to the circumhyperbola dual of Yff parabola
X(65452) = pole of the line {31391, 61021} with respect to the Feuerbach circumhyperbola
X(65452) = X(1843)-of-3rd Euler triangle, when ABC is acute
X(65452) = X(5542)-of-Euler triangle
X(65452) = X(11574)-of-Wasat triangle, when ABC is acute
X(65452) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (4, 38036, 5542), (7, 1699, 63973), (7, 5274, 30330), (3091, 5223, 38158), (4301, 38151, 2550), (5735, 38037, 51090), (5759, 8227, 38059), (9812, 62778, 2951), (11372, 59386, 30424), (31162, 38073, 51100), (38053, 52835, 4297), (38054, 51118, 5732), (50802, 64699, 42356), (58433, 65405, 58441)
As a conic with center in the infinity, it is a parabola. Its focus is X(65502).
X(65453) lies on these lines: {30, 511}, {1130, 45878}, {13301, 48032}
X(65453) = isogonal conjugate of the circumperp conjugate of X(10497)
X(65453) = crosspoint of X(7) and X(43192)
X(65453) = crosssum of X(55) and X(10495)
X(65453) = X(i)-zayin conjugate of-X(j) for these (i, j): (6730, 8108), (45877, 363)
X(65454) lies on these lines: {1, 168}, {164, 30337}, {516, 65398}, {3057, 5571}, {3295, 55172}, {5919, 8422}, {9957, 32183}, {10106, 31770}, {10624, 31734}, {12523, 31393}, {12622, 63993}, {13600, 31791}, {31792, 53007}, {58679, 58689}
X(65454) = midpoint of X(i) and X(j) for these (i, j): {1, 31767}, {3057, 5571}, {8422, 31766}, {9957, 32183}, {10106, 31770}, {10624, 31734}, {13600, 31791}
X(65454) = reflection of X(i) in X(j) for these (i, j): (58616, 1), (58689, 58679)
X(65454) = X(1125)-of-Hutson intouch triangle, when ABC is acute
X(65454) = X(12512)-of-intouch triangle, when ABC is acute
X(65454) = X(12571)-of-Ursa-minor triangle, when ABC is acute
X(65454) = X(31730)-of-incircle-circles triangle, when ABC is acute
X(65454) = X(31767)-of-anti-Aquila triangle
X(65454) = X(51118)-of-inverse-in-incircle triangle, when ABC is acute
X(65454) = X(58616)-of-5th mixtilinear triangle
X(65454) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3057, 11234, 5571), (5919, 8422, 31766)
X(65455) lies on these lines: {647, 16229}, {804, 57071}, {2797, 20580}, {3566, 13400}, {22089, 47206}
X(65455) = reflection of X(65394) in X(16229)
X(65455) = cross-difference of every pair of points on the line X(6638)X(52077)
X(65455) = pole of the line {3164, 37201} with respect to the polar circle
X(65455) = pole of the line {394, 801} with respect to the orthic inconic
X(65456) lies on these lines: {11, 244}, {3566, 13400}
X(65456) = cross-difference of every pair of points on the line X(101)X(52077)
X(65456) = pole of the line {394, 1146} with respect to the orthic inconic
X(65457) lies on these lines: {115, 804}, {3566, 13400}
X(65457) = cross-difference of every pair of points on the line X(1634)X(52077)
X(65457) = pole of the line {5139, 35588} with respect to the Jerabek circumhyperbola
X(65457) = pole of the line {512, 6754} with respect to the Kiepert circumhyperbola
X(65457) = pole of the line {338, 394} with respect to the orthic inconic
X(65458) lies on these lines: {187, 237}, {523, 8584}, {3050, 9178}, {8599, 12073}, {11182, 45335}
X(65458) = reflection of X(11182) in X(45335)
X(65458) = cross-difference of every pair of points on the line X(2)X(8586)
X(65458) = X(1084)-Dao conjugate of-X(10484)
X(65458) = X(662)-isoconjugate of-X(10484)
X(65458) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (512, 10484), (10485, 99)
X(65458) = perspector of the circumconic through X(6) and X(8587)
X(65458) = pole of the line {574, 5640} with respect to the 1st Brocard circle
X(65458) = pole of the line {262, 10484} with respect to the orthoptic circle of Steiner inellipse
X(65458) = pole of the line {194, 7618} with respect to the Steiner circumellipse
X(65458) = pole of the line {39, 7619} with respect to the Steiner inellipse
X(65458) = barycentric product X(523)*X(10485)
X(65458) = trilinear product X(661)*X(10485)
X(65458) = trilinear quotient X(i)/X(j) for these (i, j): (661, 10484), (10485, 662)
X(65459) lies on these lines: {187, 237}, {850, 6368}, {3265, 41167}, {6587, 15508}, {16040, 58310}, {17434, 17994}, {34983, 58757}
X(65459) = reflection of X(58310) in X(16040)
X(65459) = cross-difference of every pair of points on the line X(2)X(14585)
X(65459) = perspector of the circumconic through X(6) and X(18027)
X(65459) = pole of the line {6, 35225} with respect to the circumcircle
X(65459) = pole of the line {3613, 23292} with respect to the nine-point circle
X(65459) = pole of the line {262, 578} with respect to the orthoptic circle of Steiner inellipse
X(65459) = pole of the line {184, 264} with respect to the polar circle
X(65459) = pole of the line {6, 35225} with respect to the Brocard inellipse
X(65459) = pole of the line {324, 23635} with respect to the MacBeath inconic
X(65459) = pole of the line {194, 317} with respect to the Steiner circumellipse
X(65459) = pole of the line {39, 53477} with respect to the Steiner inellipse
X(65459) = barycentric product X(21117)*X(26893)
X(65460) lies on these lines: {1, 30}, {2, 49718}, {3, 1014}, {5, 5712}, {6, 50205}, {21, 41819}, {57, 48924}, {58, 63401}, {69, 50409}, {81, 6675}, {86, 41014}, {140, 940}, {145, 50169}, {193, 16844}, {325, 33770}, {386, 17392}, {442, 37635}, {468, 2906}, {511, 5045}, {524, 1125}, {540, 3636}, {548, 19765}, {550, 4340}, {551, 49728}, {613, 28369}, {999, 48930}, {1056, 46704}, {1154, 16193}, {1211, 28619}, {1213, 28620}, {1434, 41810}, {1509, 6390}, {2303, 52259}, {2895, 17514}, {3244, 49734}, {3333, 48882}, {3487, 18631}, {3530, 37522}, {3564, 5719}, {3578, 5550}, {3616, 42045}, {3622, 13745}, {3623, 50171}, {3624, 49724}, {3628, 5718}, {3631, 52782}, {3664, 24470}, {3745, 63282}, {3746, 15447}, {3946, 52495}, {4046, 41812}, {4205, 17778}, {4307, 10386}, {4349, 48893}, {4658, 17056}, {4667, 31445}, {4869, 56736}, {4909, 34937}, {5049, 49557}, {5625, 56949}, {5703, 15936}, {5708, 48917}, {5716, 15935}, {5717, 12433}, {6000, 16201}, {6767, 37425}, {6841, 63338}, {7373, 9840}, {7483, 14996}, {7819, 20132}, {10580, 48877}, {11018, 13754}, {11019, 48887}, {11037, 48941}, {11108, 63007}, {11110, 20090}, {11359, 19783}, {11374, 59613}, {13728, 63056}, {14552, 16457}, {15673, 16948}, {15808, 49729}, {15934, 48909}, {16020, 50261}, {16239, 37634}, {16617, 64420}, {16845, 62997}, {16884, 24159}, {17300, 56734}, {17316, 50153}, {17379, 17698}, {17527, 63008}, {17557, 20086}, {17590, 63074}, {17768, 58380}, {19273, 63057}, {19334, 31303}, {19684, 50318}, {19766, 48815}, {19862, 49730}, {21620, 48931}, {21677, 63310}, {24883, 63343}, {25650, 42028}, {26109, 56018}, {26131, 64167}, {26860, 56778}, {28212, 37548}, {29585, 50168}, {31393, 48915}, {35018, 37693}, {37633, 52264}, {44238, 63297}, {44669, 63370}, {45931, 52265}, {46467, 63965}, {46934, 50256}, {48847, 50238}, {48861, 50395}, {48894, 51788}, {50125, 50606}, {50262, 52229}, {50264, 63940}, {50266, 63945}, {50299, 50590}, {51559, 63089}, {56993, 63009}, {58469, 58571}
X(65460) = midpoint of X(i) and X(j) for these (i, j): {1, 49743}, {3244, 49734}, {5045, 10108}
X(65460) = complement of X(49718)
X(65460) = pole of the line {523, 4960} with respect to the incircle
X(65460) = pole of the line {8818, 37500} with respect to the Kiepert circumhyperbola
X(65460) = pole of the line {13615, 35193} with respect to the Stammler hyperbola
X(65460) = pole of the line {41800, 46915} with respect to the Steiner inellipse
X(65460) = X(6675)-of-2nd Pavlov triangle
X(65460) = X(35719)-of-inverse-in-incircle triangle, when ABC is acute
X(65460) = X(46025)-of-incircle-circles triangle, when ABC is acute
X(65460) = X(49743)-of-anti-Aquila triangle
X(65460) = X(58468)-of-intouch triangle, when ABC is acute
X(65460) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 37631, 49743), (3244, 50226, 49734), (3616, 42045, 49716), (37635, 64377, 442)
X(65461) lies on these lines: {513, 676}, {8599, 12073}
X(65462) lies on these lines: {513, 676}, {850, 6368}
X(65462) = cross-difference of every pair of points on the line X(220)X(14585)
X(65462) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (41007, 13136), (42448, 32641)
X(65462) = perspector of the circumconic through X(279) and X(18027)
X(65462) = pole of the line {1617, 35225} with respect to the circumcircle
X(65462) = pole of the line {184, 7046} with respect to the polar circle
X(65462) = pole of the line {317, 4452} with respect to the Steiner circumellipse
X(65462) = barycentric product X(10015)*X(41007)
X(65462) = trilinear product X(i)*X(j) for these {i, j}: {1769, 41007}, {36038, 42448}
X(65462) = trilinear quotient X(41007)/X(36037)
X(65463) lies on these lines: {2, 65496}, {99, 110}, {513, 676}
X(65463) = anticomplement of X(65496)
X(65463) = cross-difference of every pair of points on the line X(220)X(3124)
X(65463) = X(65496)-Dao conjugate of-X(65496)
X(65463) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4897, 60251), (17476, 35354)
X(65463) = perspector of the circumconic through X(279) and X(4590)
X(65463) = pole of the line {1617, 1634} with respect to the circumcircle
X(65463) = pole of the line {7046, 8754} with respect to the polar circle
X(65463) = pole of the line {2, 57088} with respect to the Kiepert parabola
X(65463) = pole of the line {99, 4452} with respect to the Steiner circumellipse
X(65463) = pole of the line {620, 4000} with respect to the Steiner inellipse
X(65463) = pole of the line {523, 7256} with respect to the Steiner-Wallace hyperbola
X(65463) = barycentric product X(4897)*X(35466)
X(65463) = trilinear quotient X(17058)/X(35354)
X(65464) lies on these lines: {513, 676}, {669, 688}
X(65464) = cross-difference of every pair of points on the line X(76)X(220)
X(65464) = crosssum of X(36802) and X(36803)
X(65464) = X(40419)-isoconjugate of-X(51560)
X(65464) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (9449, 36802), (21746, 36803)
X(65464) = perspector of the circumconic through X(32) and X(279)
X(65464) = pole of the line {1613, 1617} with respect to the circumcircle
X(65464) = pole of the line {7046, 18022} with respect to the polar circle
X(65464) = pole of the line {3051, 23653} with respect to the Brocard inellipse
X(65464) = pole of the line {4452, 8264} with respect to the Steiner circumellipse
X(65464) = pole of the line {4000, 8265} with respect to the Steiner inellipse
X(65464) = pole of the line {4609, 7256} with respect to the Steiner-Wallace hyperbola
X(65464) = barycentric product X(i)*X(j) for these {i, j}: {665, 21746}, {9449, 43042}, {9454, 21118}, {16588, 53539}
X(65464) = trilinear product X(i)*X(j) for these {i, j}: {9449, 53544}, {9455, 21118}
X(65464) = trilinear quotient X(i)/X(j) for these (i, j): (17451, 36803), (21746, 51560)
X(65465) lies on these lines: {1, 474}, {7, 354}, {56, 63141}, {390, 10178}, {515, 5045}, {516, 58577}, {518, 3452}, {528, 11018}, {614, 30621}, {938, 34791}, {942, 4301}, {960, 14986}, {1058, 9943}, {1210, 4662}, {1699, 10569}, {1750, 30350}, {3057, 5435}, {3333, 63991}, {3476, 17609}, {3586, 50190}, {3660, 64162}, {3848, 13405}, {4640, 42884}, {4847, 58634}, {5049, 37728}, {5274, 8581}, {5281, 5919}, {5728, 28609}, {5745, 58679}, {5853, 58623}, {6259, 12675}, {6738, 16215}, {6767, 63132}, {7373, 7686}, {9025, 57033}, {9940, 40270}, {9957, 10164}, {10156, 31792}, {10453, 63151}, {10860, 10980}, {11035, 19925}, {11227, 30331}, {12564, 50192}, {14760, 58612}, {15172, 58573}, {15587, 24392}, {16201, 58565}, {16216, 58561}, {17658, 31249}, {17784, 64149}, {18389, 50196}, {30343, 62178}, {36973, 62823}, {39595, 59812}, {46681, 58613}, {58567, 58576}, {58637, 64124}, {64127, 64352}
X(65465) = midpoint of X(i) and X(j) for these (i, j): {497, 63994}, {942, 63993}, {11019, 12915}, {12675, 26333}
X(65465) = reflection of X(18227) in X(3816)
X(65465) = cross-difference of every pair of points on the line X(4394)X(57180)
X(65465) = crosssum of X(55) and X(20323)
X(65465) = perspector of the circumconic through X(27834) and X(36838)
X(65465) = pole of the line {650, 30198} with respect to the incircle
X(65465) = pole of the line {3452, 10481} with respect to the circumhyperbola dual of Yff parabola
X(65465) = pole of the line {7, 2098} with respect to the Feuerbach circumhyperbola
X(65465) = X(13567)-of-inverse-in-incircle triangle, when ABC is acute
X(65465) = X(53415)-of-intouch triangle, when ABC is acute
X(65465) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 17626, 3742), (354, 497, 63994), (354, 10580, 5572), (3742, 5836, 5437), (5045, 5806, 12577), (6738, 16215, 58609), (11018, 18240, 58560), (58576, 63999, 58567)
X(65466) lies on these lines: {7, 61663}, {9, 165}, {11, 5572}, {142, 58578}, {355, 518}, {516, 20117}, {908, 7965}, {960, 6253}, {971, 3826}, {1001, 33597}, {1071, 3812}, {1898, 60925}, {2801, 60980}, {3059, 3434}, {5660, 36868}, {5696, 59389}, {5720, 11496}, {5728, 10826}, {5777, 17768}, {6690, 10157}, {6796, 60911}, {8226, 41548}, {10178, 54357}, {11246, 41572}, {12114, 65426}, {14100, 60943}, {15064, 58651}, {15481, 18491}, {15733, 42356}, {17615, 60979}, {17616, 25973}, {17625, 58563}, {17857, 42885}, {31391, 41563}, {38454, 40659}, {40263, 60896}, {40269, 54448}, {41566, 61011}, {61030, 65452}
X(65466) = midpoint of X(i) and X(j) for these (i, j): {16112, 17668}, {40263, 60896}
X(65466) = reflection of X(i) in X(j) for these (i, j): (15481, 58631), (65405, 58634)
X(65466) = pole of the line {38454, 41563} with respect to the Feuerbach circumhyperbola
X(65466) = X(3589)-of-Ursa-major triangle, when ABC is acute
X(65466) = X(5572)-of-inner-Johnson triangle
X(65466) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (11, 17620, 5572), (5927, 17668, 16112), (11495, 16112, 1709), (15587, 41871, 17668)
X(65467) lies on these lines: {850, 6368}, {8599, 12073}, {9517, 9979}
X(65467) = X(5099)-Dao conjugate of-X(19151)
X(65467) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2492, 19151), (5169, 17708)
X(65467) = perspector of the circumconic through X(18027) and X(37765)
X(65467) = pole of the line {67, 184} with respect to the polar circle
X(65467) = barycentric product X(5169)*X(9979)
X(65468) lies on these lines: {351, 12077}, {460, 512}, {647, 59849}, {804, 44568}, {826, 9208}, {1637, 17414}, {5466, 45103}, {8599, 12073}, {8644, 55122}, {9134, 32478}, {9188, 64877}, {10278, 32473}, {50548, 53365}
X(65468) = midpoint of X(i) and X(j) for these (i, j): {351, 12077}, {50548, 53365}
X(65468) = cross-difference of every pair of points on the line X(394)X(53095)
X(65468) = crosspoint of X(2501) and X(8599)
X(65468) = crosssum of X(4558) and X(9145)
X(65468) = X(i)-Dao conjugate of-X(j) for these (i, j): (6523, 54949), (15259, 52777)
X(65468) = X(i)-isoconjugate of-X(j) for these {i, j}: {255, 54949}, {326, 52777}, {6507, 42393}
X(65468) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (393, 54949), (2207, 52777), (6524, 42393), (53418, 99)
X(65468) = perspector of the circumconic through X(393) and X(53101)
X(65468) = pole of the line {3839, 9752} with respect to the orthoptic circle of Steiner inellipse
X(65468) = pole of the line {69, 62960} with respect to the polar circle
X(65468) = pole of the line {25, 18429} with respect to the orthic inconic
X(65468) = pole of the line {6392, 7620} with respect to the Steiner circumellipse
X(65468) = pole of the line {3767, 7617} with respect to the Steiner inellipse
X(65468) = barycentric product X(523)*X(53418)
X(65468) = trilinear product X(661)*X(53418)
X(65468) = trilinear quotient X(i)/X(j) for these (i, j): (158, 54949), (1096, 52777), (6520, 42393), (53418, 662)
X(65469) lies on these lines: {99, 110}, {512, 9189}, {523, 47545}, {1499, 4786}, {2793, 9135}, {6791, 35234}, {8371, 42663}, {8599, 12073}, {15724, 45680}, {55122, 64941}
X(65469) = midpoint of X(i) and X(j) for these (i, j): {8371, 42663}, {9168, 39904}
X(65469) = reflection of X(6333) in X(9168)
X(65469) = cross-difference of every pair of points on the line X(3124)X(21448)
X(65469) = crosspoint of X(17937) and X(22329)
X(65469) = crosssum of X(17999) and X(21448)
X(65469) = X(17937)-Ceva conjugate of-X(22329)
X(65469) = X(i)-Dao conjugate of-X(j) for these (i, j): (2793, 18012), (11147, 46144), (35133, 5503), (61071, 5485), (62568, 34246), (62578, 35179)
X(65469) = X(27088)-hirst inverse of-X(37745)
X(65469) = X(2709)-isoconjugate of-X(55923)
X(65469) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1384, 2709), (1499, 5503), (1992, 46144), (2030, 1296), (2793, 5485), (6791, 34246), (9135, 21448), (17937, 57569), (18800, 2418), (22329, 35179), (61071, 18012)
X(65469) = perspector of the circumconic through X(1992) and X(4590)
X(65469) = pole of the line {114, 9770} with respect to the orthoptic circle of Steiner inellipse
X(65469) = pole of the line {512, 1296} with respect to the Stammler hyperbola
X(65469) = pole of the line {99, 11148} with respect to the Steiner circumellipse
X(65469) = pole of the line {620, 11165} with respect to the Steiner inellipse
X(65469) = pole of the line {523, 35179} with respect to the Steiner-Wallace hyperbola
X(65469) = barycentric product X(i)*X(j) for these {i, j}: {1499, 22329}, {1992, 2793}, {2408, 18800}, {6791, 34245}, {9125, 63853}, {9135, 11059}, {17937, 35133}
X(65469) = trilinear product X(i)*X(j) for these {i, j}: {2030, 14207}, {2793, 36277}
X(65469) = trilinear quotient X(i)/X(j) for these (i, j): (2793, 55923), (14207, 5503), (22329, 37216), (36277, 2709)
X(65469) = X(45327)-of-anti-McCay triangle
X(65469) = X(18800)-of-1st Parry triangle
X(65469) = X(1637)-of-anti-Artzt triangle
X(65470) lies on these lines: {669, 688}, {8599, 12073}
X(65470) = X(13410)-reciprocal conjugate of-X(53080)
X(65470) = barycentric product X(351)*X(13410)
X(65471) lies on these lines: {100, 190}, {8599, 12073}
X(65471) = perspector of the circumconic through X(1016) and X(50121)
X(65472) lies on these lines: {4, 50548}, {107, 46970}, {460, 512}, {850, 6368}, {6753, 55122}, {12077, 17994}, {14618, 47126}, {15422, 53149}, {16229, 33294}, {36827, 46151}, {47128, 59932}, {52317, 53386}
X(65472) = cross-difference of every pair of points on the line X(394)X(14585)
X(65472) = crosspoint of X(27376) and X(46151)
X(65472) = crosssum of X(28724) and X(58353)
X(65472) = X(i)-Ceva conjugate of-X(j) for these (i, j): (2207, 8754), (46151, 27376)
X(65472) = X(i)-Dao conjugate of-X(j) for these (i, j): (136, 1799), (1084, 28724), (3005, 58353), (3124, 394), (3162, 65307), (5139, 1176), (6523, 4577), (15259, 827), (15449, 3926), (40938, 4563), (53983, 69), (55043, 326), (55050, 577)
X(65472) = X(i)-isoconjugate of-X(j) for these {i, j}: {63, 65307}, {255, 4577}, {326, 827}, {394, 4599}, {577, 4593}, {662, 28724}, {689, 52430}, {1176, 4592}, {1799, 4575}, {3926, 34072}, {4558, 34055}, {6507, 42396}, {10547, 55202}, {14585, 37204}, {24041, 58353}
X(65472) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (25, 65307), (158, 4593), (393, 4577), (427, 4563), (512, 28724), (688, 577), (826, 3926), (1096, 4599), (1235, 52608), (1843, 4558), (2052, 689), (2084, 255), (2207, 827), (2489, 1176), (2501, 1799), (2525, 4176), (3005, 394), (3124, 58353), (6524, 42396), (8061, 326), (8754, 4580), (9494, 14585), (15422, 39287), (17442, 4592), (18027, 42371), (20883, 55202), (21016, 4561), (21108, 17206), (27369, 32661), (27373, 4611), (27376, 99), (36417, 4630), (39691, 3265), (41375, 55225), (41676, 47389), (46151, 4590), (50521, 18604), (57204, 10547), (57806, 37204), (58757, 83), (61218, 47390)
X(65472) = perspector of the circumconic through X(393) and X(18027)
X(65472) = pole of the line {1609, 35225} with respect to the circumcircle
X(65472) = pole of the line {1843, 46442} with respect to the incircle-of-orthic triangle
X(65472) = pole of the line {7487, 9752} with respect to the orthoptic circle of Steiner inellipse
X(65472) = pole of the line {69, 184} with respect to the polar circle
X(65472) = pole of the line {324, 15809} with respect to the MacBeath inconic
X(65472) = pole of the line {25, 13881} with respect to the orthic inconic
X(65472) = pole of the line {317, 6392} with respect to the Steiner circumellipse
X(65472) = barycentric product X(i)*X(j) for these {i, j}: {107, 39691}, {115, 46151}, {141, 58757}, {158, 8061}, {393, 826}, {427, 2501}, {523, 27376}, {688, 18027}, {1096, 62418}, {1235, 2489}, {1826, 21108}, {1843, 14618}, {2052, 3005}, {2084, 57806}, {2207, 23285}, {2525, 6524}, {2970, 35325}, {7649, 21016}, {8754, 41676}, {12077, 19174}
X(65472) = trilinear product X(i)*X(j) for these {i, j}: {38, 58757}, {158, 3005}, {393, 8061}, {661, 27376}, {688, 57806}, {826, 1096}, {1824, 21108}, {1843, 24006}, {2052, 2084}, {2207, 62418}, {2489, 20883}, {2501, 17442}, {2643, 46151}, {6591, 21016}, {24019, 39691}
X(65472) = trilinear quotient X(i)/X(j) for these (i, j): (19, 65307), (158, 4577), (393, 4599), (427, 4592), (661, 28724), (688, 52430), (826, 326), (1096, 827), (1235, 55202), (1843, 4575), (2052, 4593), (2084, 577), (2207, 34072), (2501, 34055), (2525, 1102), (2643, 58353), (3005, 255), (6520, 42396), (8061, 394), (17442, 4558)
X(65472) = (X(12075), X(51513))-harmonic conjugate of X(2501)
X(65473) lies on these lines: {99, 110}, {525, 15423}, {850, 6368}, {924, 6563}, {2081, 2799}, {3265, 6132}, {3580, 47236}, {6334, 34834}, {9134, 23293}, {11442, 55122}, {12827, 55121}
X(65473) = cross-difference of every pair of points on the line X(3124)X(14585)
X(65473) = crosspoint of X(44138) and X(61188)
X(65473) = crosssum of X(1576) and X(53329)
X(65473) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (1299, 21221), (46969, 18664)
X(65473) = X(16077)-Ceva conjugate of-X(317)
X(65473) = X(i)-Dao conjugate of-X(j) for these (i, j): (113, 32734), (16178, 14593), (34834, 925), (35588, 184), (39005, 2351), (39013, 14910), (39021, 2165), (52584, 15328)
X(65473) = X(i)-isoconjugate of-X(j) for these {i, j}: {1820, 32708}, {2351, 36114}, {14910, 36145}, {32734, 36053}, {60501, 65262}
X(65473) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (24, 32708), (317, 687), (403, 65176), (686, 2351), (924, 14910), (1725, 36145), (1748, 36114), (1993, 10420), (3003, 32734), (3580, 925), (6334, 68), (6563, 2986), (7763, 18878), (9723, 43755), (16172, 39416), (21731, 60501), (44138, 30450), (44179, 65262), (44808, 52557), (47236, 14593), (52000, 112), (52584, 5504), (55121, 2165), (57065, 1300), (62338, 65309), (63827, 36053), (63829, 60035)
X(65473) = perspector of the circumconic through X(4590) and X(7763)
X(65473) = pole of the line {1634, 35225} with respect to the circumcircle
X(65473) = pole of the line {184, 8754} with respect to the polar circle
X(65473) = pole of the line {2, 38380} with respect to the Kiepert parabola
X(65473) = pole of the line {512, 32734} with respect to the Stammler hyperbola
X(65473) = pole of the line {99, 317} with respect to the Steiner circumellipse
X(65473) = pole of the line {620, 6644} with respect to the Steiner inellipse
X(65473) = pole of the line {523, 925} with respect to the Steiner-Wallace hyperbola
X(65473) = barycentric product X(i)*X(j) for these {i, j}: {317, 6334}, {3267, 52000}, {3580, 6563}, {7763, 55121}, {44138, 52584}, {57065, 62338}
X(65473) = trilinear product X(i)*X(j) for these {i, j}: {1725, 6563}, {1748, 6334}, {3580, 63827}, {14208, 52000}, {15329, 17881}, {44138, 63832}, {44179, 55121}
X(65473) = trilinear quotient X(i)/X(j) for these (i, j): (317, 36114), (1725, 32734), (1748, 32708), (3580, 36145), (6334, 1820), (6563, 36053), (7763, 65262), (17881, 15328), (44179, 10420), (52000, 32676), (55249, 18879), (63827, 14910)
X(65474) lies on these lines: {669, 688}, {850, 6368}, {39691, 41221}
X(65474) = cross-difference of every pair of points on the line X(76)X(14585)
X(65474) = crosspoint of X(2491) and X(16230)
X(65474) = crosssum of X(43187) and X(43754)
X(65474) = X(21243)-Dao conjugate of-X(17932)
X(65474) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (23635, 43187), (40951, 2966)
X(65474) = perspector of the circumconic through X(32) and X(18027)
X(65474) = pole of the line {1613, 35225} with respect to the circumcircle
X(65474) = pole of the line {184, 18022} with respect to the polar circle
X(65474) = pole of the line {317, 8264} with respect to the Steiner circumellipse
X(65474) = barycentric product X(i)*X(j) for these {i, j}: {2491, 21243}, {2799, 40951}, {3569, 23635}, {17994, 22416}, {44114, 45215}
X(65474) = trilinear quotient X(i)/X(j) for these (i, j): (23635, 36036), (40951, 36084)
X(65475) lies on these lines: {100, 190}, {850, 6368}
X(65475) = cross-difference of every pair of points on the line X(1015)X(14585)
X(65475) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (3190, 35182), (20294, 2989), (41320, 32699), (48381, 1305), (57043, 917)
X(65475) = perspector of the circumconic through X(1016) and X(18027)
X(65475) = pole of the line {100, 35225} with respect to the circumcircle
X(65475) = pole of the line {184, 2969} with respect to the polar circle
X(65475) = pole of the line {190, 317} with respect to the Steiner circumellipse
X(65475) = pole of the line {2, 57043} with respect to the Yff parabola
X(65475) = barycentric product X(20294)*X(48381)
X(65475) = trilinear product X(i)*X(j) for these {i, j}: {1736, 20294}, {17878, 56742}, {27396, 55125}
X(65475) = trilinear quotient X(27396)/X(35182)
X(65476) lies on these lines: {1, 31734}, {177, 3058}, {390, 12518}, {497, 12614}, {516, 58616}, {528, 58444}, {950, 31766}, {1058, 12523}, {3295, 12622}, {3488, 55173}, {5571, 64162}, {5853, 58689}, {6284, 11191}, {10624, 31768}, {12908, 15171}, {15170, 32183}, {18258, 49736}, {21633, 30331}, {55172, 63993}, {55174, 63999}
X(65476) = midpoint of X(i) and X(j) for these (i, j): {1, 31769}, {177, 31770}, {950, 31766}, {6284, 31735}, {10624, 31768}, {12908, 15171}
X(65476) = reflection of X(65398) in X(1)
X(65476) = X(31738)-of-incircle-circles triangle, when ABC is acute
X(65476) = X(31769)-of-anti-Aquila triangle
X(65476) = X(58474)-of-Ursa-minor triangle, when ABC is acute
X(65476) = X(65398)-of-5th mixtilinear triangle
X(65476) = X(65399)-of-intouch triangle, when ABC is acute
X(65476) = X(65423)-of-Hutson intouch triangle, when ABC is acute
X(65476) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (177, 3058, 31770), (6284, 11191, 31735)
X(65477) lies on these lines: {11, 244}, {520, 6587}, {23982, 24030}
X(65477) = cross-difference of every pair of points on the line X(101)X(1498)
X(65477) = X(32668)-complementary conjugate of-X(6389)
X(65477) = perspector of the circumconic through X(514) and X(3346)
X(65477) = pole of the line {1897, 14361} with respect to the polar circle
X(65477) = pole of the line {514, 40616} with respect to the circumhyperbola dual of Yff parabola
X(65477) = pole of the line {122, 661} with respect to the Kiepert circumhyperbola
X(65477) = pole of the line {64, 1146} with respect to the orthic inconic
X(65477) = pole of the line {393, 1086} with respect to the Steiner inellipse
X(65478) lies on these lines: {6, 14345}, {115, 125}, {520, 6587}, {2433, 47236}, {9033, 46425}, {9209, 62176}, {13567, 39473}
X(65478) = cross-difference of every pair of points on the line X(110)X(1498)
X(65478) = crosspoint of X(18808) and X(58759)
X(65478) = X(43701)-Ceva conjugate of-X(512)
X(65478) = X(i)-complementary conjugate of-X(j) for these (i, j): (1096, 16177), (24022, 57128), (32695, 18589), (36119, 55069), (36131, 6389), (40354, 16595)
X(65478) = X(i)-Dao conjugate of-X(j) for these (i, j): (1084, 5897), (3184, 36841)
X(65478) = X(662)-isoconjugate of-X(5897)
X(65478) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (512, 5897), (15311, 99), (46065, 44326), (62346, 36841)
X(65478) = center of the circumconic through X(43701) and X(57290)
X(65478) = perspector of the circumconic through X(523) and X(3346)
X(65478) = pole of the line {648, 14361} with respect to the polar circle
X(65478) = pole of the line {20975, 44079} with respect to the Brocard inellipse
X(65478) = pole of the line {122, 523} with respect to the Kiepert circumhyperbola
X(65478) = pole of the line {2777, 17838} with respect to the MacBeath circumconic
X(65478) = pole of the line {64, 125} with respect to the orthic inconic
X(65478) = pole of the line {115, 393} with respect to the Steiner inellipse
X(65478) = barycentric product X(i)*X(j) for these {i, j}: {523, 15311}, {3184, 18808}, {6587, 46065}, {43701, 50937}, {58759, 62346}
X(65478) = trilinear product X(661)*X(15311)
X(65478) = trilinear quotient X(i)/X(j) for these (i, j): (661, 5897), (15311, 662)
X(65479) lies on these lines: {520, 6587}, {3900, 7658}
X(65479) = cross-difference of every pair of points on the line X(1498)X(1615)
X(65479) = perspector of the circumconic through X(3346) and X(42483)
X(65479) = pole of the line {279, 393} with respect to the Steiner inellipse
X(65480) lies on these lines: {513, 2490}, {520, 6587}, {652, 60339}
X(65480) = cross-difference of every pair of points on the line X(1498)X(1616)
X(65480) = X(i)-complementary conjugate of-X(j) for these (i, j): (52775, 11019), (56305, 2968)
X(65480) = perspector of the circumconic through X(3346) and X(6553)
X(65480) = pole of the line {346, 393} with respect to the Steiner inellipse
X(65481) lies on these lines: {4394, 16192}, {7280, 30234}, {59859, 62437}
X(65482) lies on these lines: {1, 28521}, {514, 4521}, {676, 44315}, {764, 3716}, {812, 1015}, {891, 19947}, {905, 48008}, {1022, 3762}, {1125, 2832}, {1387, 2827}, {2530, 48291}, {3616, 48032}, {3667, 39540}, {3669, 4106}, {3676, 28468}, {3887, 23814}, {3904, 6545}, {3907, 23815}, {4369, 48335}, {4378, 48050}, {4382, 44550}, {4444, 4876}, {4449, 47819}, {4504, 28519}, {4728, 21222}, {4730, 45328}, {4763, 21385}, {4801, 30061}, {4830, 14419}, {4897, 30722}, {4922, 48167}, {4927, 30725}, {4978, 18071}, {6084, 40480}, {6366, 44314}, {7178, 28497}, {7192, 26854}, {10015, 21204}, {14349, 47991}, {14413, 46403}, {14432, 49301}, {17072, 48346}, {21115, 49274}, {21297, 53536}, {21343, 36848}, {23738, 47840}, {23765, 47841}, {23789, 48348}, {24720, 48332}, {24924, 27014}, {28478, 30723}, {28487, 34958}, {28490, 30719}, {28501, 30724}, {29051, 48289}, {32212, 53573}, {45667, 48327}, {45675, 58413}, {47812, 48298}, {48049, 48320}, {48079, 48144}, {48089, 48325}, {48091, 48588}, {48279, 50339}, {48282, 48556}, {48321, 49289}
X(65482) = midpoint of X(i) and X(j) for these (i, j): {764, 3716}, {1022, 4928}, {4369, 48335}, {4378, 48050}, {17072, 48346}, {20317, 58794}, {23789, 48348}, {24720, 48332}, {48049, 48320}, {48089, 48325}, {48321, 49289}
X(65482) = reflection of X(i) in X(j) for these (i, j): (676, 44315), (25380, 19947), (32212, 53573), (53580, 1125)
X(65482) = cross-difference of every pair of points on the line X(3052)X(4557)
X(65482) = X(661)-Dao conjugate of-X(23835)
X(65482) = X(1252)-isoconjugate of-X(23835)
X(65482) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (244, 23835), (23831, 765), (45142, 813), (62300, 190)
X(65482) = perspector of the circumconic through X(4373) and X(7192)
X(65482) = pole of the line {23392, 36641} with respect to the circumcircle
X(65482) = pole of the line {75, 537} with respect to the incircle
X(65482) = pole of the line {513, 1357} with respect to the circumhyperbola dual of Yff parabola
X(65482) = pole of the line {4129, 17058} with respect to the Kiepert circumhyperbola
X(65482) = pole of the line {4965, 24392} with respect to the Mandart inellipse
X(65482) = pole of the line {3621, 17154} with respect to the Steiner circumellipse
X(65482) = pole of the line {8, 244} with respect to the Steiner inellipse
X(65482) = barycentric product X(i)*X(j) for these {i, j}: {514, 62300}, {1111, 23831}, {45142, 65101}
X(65482) = trilinear product X(i)*X(j) for these {i, j}: {513, 62300}, {1086, 23831}, {3766, 45142}
X(65482) = trilinear quotient X(i)/X(j) for these (i, j): (1086, 23835), (23831, 1252), (45142, 34067), (62300, 100)
X(65483) lies on these lines: {2, 65448}, {11, 244}, {3900, 7658}, {23587, 59458}
X(65483) = complement of X(65448)
X(65483) = cross-difference of every pair of points on the line X(101)X(1615)
X(65483) = X(i)-complementary conjugate of-X(j) for these (i, j): (269, 46415), (1106, 35091), (4617, 31844), (6614, 10427), (36141, 6554), (59105, 24003), (60487, 21244)
X(65483) = X(56741)-reciprocal conjugate of-X(644)
X(65483) = perspector of the circumconic through X(514) and X(10307)
X(65483) = pole of the line {11, 3062} with respect to the incircle
X(65483) = pole of the line {514, 13609} with respect to the circumhyperbola dual of Yff parabola
X(65483) = pole of the line {1146, 64130} with respect to the orthic inconic
X(65483) = pole of the line {279, 1086} with respect to the Steiner inellipse
X(65483) = barycentric product X(i)*X(j) for these {i, j}: {24002, 56741}, {60479, 63777}
X(65483) = trilinear product X(i)*X(j) for these {i, j}: {3676, 56741}, {35348, 63777}
X(65483) = trilinear quotient X(56741)/X(3939)
X(65484) lies on these lines: {2, 65408}, {99, 110}, {113, 21905}, {193, 57087}, {460, 512}, {1499, 10011}, {1637, 63733}, {3566, 3798}, {5139, 6388}, {5477, 42663}, {6562, 50644}, {32478, 50550}, {38359, 57154}
X(65484) = midpoint of X(i) and X(j) for these (i, j): {193, 57087}, {6562, 50644}, {38359, 57154}
X(65484) = anticomplement of X(65408)
X(65484) = cross-difference of every pair of points on the line X(394)X(2987)
X(65484) = crosspoint of X(i) and X(j) for these {i, j}: {460, 4226}, {648, 63613}, {685, 51820}
X(65484) = crosssum of X(i) and X(j) for these {i, j}: {684, 52091}, {35364, 43705}
X(65484) = X(i)-Ceva conjugate of-X(j) for these (i, j): (685, 6353), (63613, 15525)
X(65484) = X(3566)-daleth conjugate of-X(8651)
X(65484) = X(i)-Dao conjugate of-X(j) for these (i, j): (114, 35136), (2489, 60338), (6388, 57872), (15525, 8781), (39001, 6391), (39072, 3565), (51579, 65277), (55152, 2996), (65408, 65408)
X(65484) = X(3566)-hirst inverse of-X(58766)
X(65484) = X(i)-isoconjugate of-X(j) for these {i, j}: {3565, 8773}, {6391, 36105}, {8769, 10425}, {35136, 36051}, {38252, 65277}
X(65484) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (193, 65277), (230, 35136), (1692, 3565), (3053, 10425), (3566, 8781), (5139, 60338), (6353, 65354), (6388, 62645), (8651, 2987), (19118, 32697), (42663, 8770), (47430, 35364), (51610, 525), (51613, 523), (52144, 65311), (55122, 2996), (57071, 35142)
X(65484) = trilinear pole of the line {51610, 51613} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65484) = perspector of the circumconic through X(193) and X(230)
X(65484) = pole of the line {1609, 1634} with respect to the circumcircle
X(65484) = pole of the line {800, 47406} with respect to the 1st Lozada, circle
X(65484) = pole of the line {114, 193} with respect to the orthoptic circle of Steiner inellipse
X(65484) = pole of the line {69, 8754} with respect to the polar circle
X(65484) = pole of the line {800, 47406} with respect to the Brocard inellipse
X(65484) = pole of the line {2, 6562} with respect to the Kiepert parabola
X(65484) = pole of the line {1611, 52077} with respect to the MacBeath circumconic
X(65484) = pole of the line {512, 3565} with respect to the Stammler hyperbola
X(65484) = pole of the line {99, 439} with respect to the Steiner circumellipse
X(65484) = pole of the line {620, 3767} with respect to the Steiner inellipse
X(65484) = pole of the line {523, 35136} with respect to the Steiner-Wallace hyperbola
X(65484) = barycentric product X(i)*X(j) for these {i, j}: {99, 51613}, {193, 55122}, {230, 3566}, {648, 51610}, {3564, 57071}, {4226, 6388}, {8651, 51481}, {42663, 57518}, {56891, 57154}
X(65484) = trilinear product X(i)*X(j) for these {i, j}: {162, 51610}, {662, 51613}, {1707, 55122}, {1733, 8651}, {3566, 8772}, {17876, 61213}, {18156, 42663}
X(65484) = trilinear quotient X(i)/X(j) for these (i, j): (1707, 10425), (1733, 35136), (3566, 8773), (6353, 36105), (8651, 36051), (8772, 3565), (17876, 62645), (18156, 65277), (42663, 38252), (51610, 656), (51613, 661), (55122, 8769)
X(65484) = X(6562)-of-1st Brocard triangle
X(65485) lies on these lines: {25, 2623}, {51, 12077}, {389, 64790}, {460, 512}, {647, 39469}, {669, 688}, {879, 42299}, {1510, 45259}, {1637, 21646}, {3060, 41298}, {3221, 6562}, {3265, 54272}, {9969, 64877}, {9979, 11450}, {15451, 17434}, {16040, 42651}, {37085, 58317}, {44568, 58470}, {47122, 54269}
X(65485) = reflection of X(44568) in X(58470)
X(65485) = isogonal conjugate of the isotomic conjugate of X(15451)
X(65485) = polar conjugate of the isotomic conjugate of X(42293)
X(65485) = isogonal conjugate of the polar conjugate of X(55219)
X(65485) = cross-difference of every pair of points on the line X(76)X(275)
X(65485) = crosspoint of X(i) and X(j) for these {i, j}: {51, 61194}, {512, 3049}, {15451, 55219}
X(65485) = crosssum of X(i) and X(j) for these {i, j}: {69, 15414}, {99, 6331}, {275, 58756}, {523, 53477}, {850, 26166}, {1232, 3267}
X(65485) = X(i)-Ceva conjugate of-X(j) for these (i, j): (512, 55219), (15451, 42293), (27375, 20975), (60501, 1084)
X(65485) = X(3049)-daleth conjugate of-X(2491)
X(65485) = X(i)-Dao conjugate of-X(j) for these (i, j): (5, 670), (6, 55218), (115, 57790), (125, 34384), (130, 69), (136, 57844), (137, 18022), (206, 18831), (338, 44161), (1084, 276), (2972, 305), (3162, 42405), (5139, 8795), (6523, 54950), (15259, 52779), (15450, 76), (17423, 95), (38986, 40440), (38996, 275), (39019, 1502), (40368, 933), (40588, 6331), (52032, 4609), (52878, 877), (55066, 62276), (63463, 264)
X(65485) = X(i)-isoconjugate of-X(j) for these {i, j}: {19, 55218}, {54, 57968}, {63, 42405}, {75, 18831}, {76, 65221}, {95, 811}, {97, 57973}, {99, 40440}, {162, 34384}, {163, 57790}, {255, 54950}, {275, 799}, {276, 662}, {304, 16813}, {326, 52779}, {561, 933}, {648, 62276}, {670, 2190}, {823, 34386}, {1969, 18315}, {2167, 6331}, {4100, 42369}, {4575, 57844}, {4592, 8795}, {4602, 8882}, {4609, 62268}, {6507, 42401}, {6528, 62277}, {8884, 55202}, {14213, 52939}, {15412, 46254}, {18022, 36134}, {23999, 62428}, {55229, 56254}, {55231, 56246}
X(65485) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (3, 55218), (25, 42405), (32, 18831), (51, 6331), (216, 670), (217, 99), (343, 4609), (393, 54950), (418, 4563), (512, 276), (523, 57790), (560, 65221), (647, 34384), (669, 275), (798, 40440), (810, 62276), (1093, 42369), (1501, 933), (1924, 2190), (1953, 57968), (1974, 16813), (2179, 811), (2181, 57973), (2207, 52779), (2489, 8795), (2501, 57844), (3049, 95), (3199, 6528), (5562, 52608), (6368, 1502), (6524, 42401), (9426, 8882), (9427, 58756), (12077, 18022), (14398, 43752), (14575, 18315), (15451, 76), (17434, 305), (18314, 44161), (23181, 34537), (23216, 2623), (24862, 15415), (27374, 41676), (34980, 15414), (34983, 28706), (39201, 34386), (40373, 14586), (40981, 648), (41219, 4143), (42068, 15422)
X(65485) = perspector of the circumconic through X(32) and X(216)
X(65485) = pole of the line {1609, 1613} with respect to the circumcircle
X(65485) = pole of the line {800, 3051} with respect to the 1st Lozada, circle
X(65485) = pole of the line {69, 8795} with respect to the polar circle
X(65485) = pole of the line {61658, 64783} with respect to the Taylor circle
X(65485) = pole of the line {800, 3051} with respect to the Brocard inellipse
X(65485) = pole of the line {216, 343} with respect to the Johnson circumconic
X(65485) = pole of the line {6562, 9491} with respect to the Kiepert parabola
X(65485) = pole of the line {19597, 52077} with respect to the MacBeath circumconic
X(65485) = pole of the line {25, 32445} with respect to the orthic inconic
X(65485) = pole of the line {670, 18831} with respect to the Stammler hyperbola
X(65485) = pole of the line {6392, 8264} with respect to the Steiner circumellipse
X(65485) = pole of the line {3767, 8265} with respect to the Steiner inellipse
X(65485) = barycentric product X(i)*X(j) for these {i, j}: {3, 55219}, {4, 42293}, {5, 3049}, {6, 15451}, {25, 17434}, {32, 6368}, {51, 647}, {53, 39201}, {125, 61194}, {184, 12077}, {216, 512}, {217, 523}, {324, 58310}, {343, 669}, {393, 58305}, {418, 2501}, {520, 3199}, {525, 40981}, {577, 51513}, {656, 2179}
X(65485) = trilinear product X(i)*X(j) for these {i, j}: {19, 42293}, {31, 15451}, {48, 55219}, {51, 810}, {216, 798}, {217, 661}, {343, 1924}, {512, 62266}, {560, 6368}, {647, 2179}, {656, 40981}, {669, 44706}, {822, 3199}, {1096, 58305}, {1953, 3049}, {1973, 17434}, {2181, 39201}, {2618, 14575}, {3708, 61194}, {9247, 12077}
X(65485) = trilinear quotient X(i)/X(j) for these (i, j): (5, 57968), (19, 42405), (31, 18831), (32, 65221), (51, 811), (53, 57973), (63, 55218), (158, 54950), (216, 799), (217, 662), (343, 4602), (418, 4592), (512, 40440), (560, 933), (647, 62276), (656, 34384), (661, 276), (669, 2190), (798, 275), (810, 95)
X(65485) = (X(669), X(3049))-harmonic conjugate of X(58310)
X(65486) lies on these lines: {2, 65407}, {100, 190}, {460, 512}, {48269, 50501}
X(65486) = anticomplement of X(65407)
X(65486) = cross-difference of every pair of points on the line X(394)X(1015)
X(65486) = X(65407)-Dao conjugate of-X(65407)
X(65486) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (14974, 29241), (17314, 54979)
X(65486) = perspector of the circumconic through X(393) and X(1016)
X(65486) = pole of the line {100, 1609} with respect to the circumcircle
X(65486) = pole of the line {69, 2969} with respect to the polar circle
X(65486) = pole of the line {1, 6562} with respect to the Kiepert parabola
X(65486) = pole of the line {190, 6392} with respect to the Steiner circumellipse
X(65486) = pole of the line {3767, 4422} with respect to the Steiner inellipse
X(65486) = barycentric product X(i)*X(j) for these {i, j}: {3011, 48269}, {17314, 29240}
X(65486) = trilinear product X(3011)*X(50501)
X(65486) = trilinear quotient X(i)/X(j) for these (i, j): (46937, 54979), (50501, 60049)
X(65487) lies on these lines: {11, 244}, {647, 16229}
X(65487) = cross-difference of every pair of points on the line X(101)X(6638)
X(65487) = perspector of the circumconic through X(514) and X(43710)
X(65487) = pole of the line {11, 53} with respect to the nine-point circle
X(65487) = pole of the line {1897, 3164} with respect to the polar circle
X(65487) = pole of the line {661, 34980} with respect to the Kiepert circumhyperbola
X(65487) = pole of the line {1146, 2052} with respect to the orthic inconic
X(65488) lies on these lines: {4, 6130}, {5, 2797}, {30, 44818}, {115, 804}, {133, 6086}, {381, 41079}, {403, 47214}, {523, 16231}, {526, 7687}, {546, 9517}, {647, 16229}, {684, 3091}, {690, 45259}, {3545, 45319}, {3566, 59652}, {3627, 44810}, {3832, 53345}, {5907, 64439}, {6140, 39509}, {6334, 44203}, {14639, 31953}, {24978, 39491}, {41254, 45689}, {42733, 44427}
X(65488) = midpoint of X(i) and X(j) for these (i, j): {4, 6130}, {3627, 44810}, {5907, 64439}, {16229, 59745}, {39491, 44204}
X(65488) = complement of the circumperp conjugate of X(53723)
X(65488) = cross-difference of every pair of points on the line X(1634)X(6638)
X(65488) = perspector of the circumconic through X(43710) and X(56270)
X(65488) = pole of the line {53, 115} with respect to the nine-point circle
X(65488) = pole of the line {4232, 47202} with respect to the orthoptic circle of Steiner inellipse
X(65488) = pole of the line {376, 3164} with respect to the polar circle
X(65488) = pole of the line {512, 34980} with respect to the Kiepert circumhyperbola
X(65488) = pole of the line {338, 2052} with respect to the orthic inconic
X(65488) = pole of the line {3124, 37643} with respect to the Steiner inellipse
X(65488) = X(6130)-of-Euler triangle
X(65489) lies on these lines: {111, 53890}, {187, 237}, {251, 14998}, {526, 2491}, {804, 1637}, {2081, 10329}, {2433, 46286}, {6030, 13318}, {6041, 53263}, {8675, 45907}, {9138, 14660}, {9147, 13309}, {9185, 13307}, {9209, 25423}, {9979, 13306}, {14417, 59775}, {58900, 63787}
X(65489) = midpoint of X(9979) and X(13306)
X(65489) = reflection of X(10567) in X(2491)
X(65489) = cross-difference of every pair of points on the line X(2)X(7711)
X(65489) = X(1084)-Dao conjugate of-X(9302)
X(65489) = X(662)-isoconjugate of-X(9302)
X(65489) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (512, 9302), (9301, 99)
X(65489) = perspector of the circumconic through X(6) and X(9301)
X(65489) = pole of the line {44423, 52693} with respect to the Gallatly circle
X(65489) = pole of the line {6, 12308} with respect to the Moses circle
X(65489) = pole of the line {262, 5309} with respect to the orthoptic circle of Steiner inellipse
X(65489) = pole of the line {264, 63018} with respect to the polar circle
X(65489) = pole of the line {7668, 51428} with respect to the Kiepert circumhyperbola
X(65489) = pole of the line {51, 41254} with respect to the orthic inconic
X(65489) = pole of the line {194, 20423} with respect to the Steiner circumellipse
X(65489) = pole of the line {39, 6034} with respect to the Steiner inellipse
X(65489) = barycentric product X(523)*X(9301)
X(65489) = trilinear product X(661)*X(9301)
X(65489) = trilinear quotient X(i)/X(j) for these (i, j): (661, 9302), (9301, 662)
X(65489) = X(39)-of-{these triangles}: {2nd Parry, 3rd Parry}
X(65489) = X(5188)-of-1st Parry triangle
X(65489) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (6137, 6138, 5113), (13306, 22734, 9979)
X(65490) lies on these lines: {11, 116}, {3669, 4106}, {3835, 4162}, {4107, 58369}, {24354, 54359}, {42312, 42327}
X(65490) = pole of the line {75, 2310} with respect to the incircle
X(65490) = pole of the line {650, 1357} with respect to the circumhyperbola dual of Yff parabola
X(65490) = pole of the line {1111, 24174} with respect to the Steiner inellipse
X(65491) lies on these lines: {513, 21195}, {521, 4885}, {650, 57167}, {693, 4827}, {905, 50449}, {4130, 53357}, {4778, 7658}, {10015, 28590}, {21188, 39470}, {33562, 40554}, {53579, 59612}
X(65491) = midpoint of X(i) and X(j) for these (i, j): {650, 57167}, {693, 4827}, {4130, 53357}
X(65491) = X(60092)-complementary conjugate of-X(124)
X(65491) = pole of the line {1441, 10578} with respect to the Steiner inellipse
X(65492) lies on these lines: {513, 11263}, {514, 1125}, {523, 6675}, {2787, 47203}, {3309, 16160}, {21201, 50757}, {21203, 50574}, {29150, 37369}, {37047, 47799}, {44824, 61520}
X(65492) = pole of the line {239, 37783} with respect to the Steiner inellipse
X(65493) lies on these lines: {11, 2078}, {1768, 5435}, {3582, 6246}, {5428, 60759}, {5531, 31146}, {5541, 6944}, {6960, 33709}, {6979, 21630}, {17483, 21635}, {34126, 61792}
X(65494) lies on these lines: {523, 656}, {676, 4162}, {2490, 29082}, {4905, 10015}, {6362, 48018}, {6366, 21188}, {21120, 23738}, {21952, 44729}, {24290, 59521}, {28213, 47921}, {34959, 59629}, {44566, 59672}
X(65494) = midpoint of X(7178) and X(55285)
X(65494) = reflection of X(59589) in X(59521)
X(65494) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 36605), (6741, 36625), (40611, 58108), (40622, 38254), (55064, 36627)
X(65494) = X(i)-isoconjugate of-X(j) for these {i, j}: {21, 58108}, {163, 36605}, {4565, 36627}, {38254, 65375}
X(65494) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (523, 36605), (1400, 58108), (3700, 36625), (4041, 36627), (7178, 38254), (20059, 99), (33633, 1414), (38293, 5546), (53056, 662), (59612, 86)
X(65494) = perspector of the circumconic through X(226) and X(20059)
X(65494) = pole of the line {29, 20008} with respect to the polar circle
X(65494) = pole of the line {4934, 21044} with respect to the Kiepert circumhyperbola
X(65494) = pole of the line {17056, 23903} with respect to the Steiner inellipse
X(65494) = barycentric product X(i)*X(j) for these {i, j}: {10, 59612}, {523, 20059}, {1577, 53056}, {4086, 33633}
X(65494) = trilinear product X(i)*X(j) for these {i, j}: {37, 59612}, {523, 53056}, {661, 20059}, {3700, 33633}, {4077, 38293}
X(65494) = trilinear quotient X(i)/X(j) for these (i, j): (65, 58108), (1577, 36605), (3700, 36627), (4077, 38254), (4086, 36625), (20059, 662), (33633, 4565), (38293, 65375), (53056, 110), (59612, 81)
X(65494) = (X(7178), X(30574))-harmonic conjugate of X(55285)
X(65495) lies on these lines: {2, 65446}, {115, 125}, {3900, 7658}
X(65495) = complement of X(65446)
X(65495) = cross-difference of every pair of points on the line X(110)X(1615)
X(65495) = perspector of the circumconic through X(523) and X(42483)
X(65495) = pole of the line {3062, 4934} with respect to the incircle
X(65495) = pole of the line {13609, 21196} with respect to the circumhyperbola dual of Yff parabola
X(65495) = pole of the line {115, 279} with respect to the Steiner inellipse
X(65496) lies on these lines: {2, 65463}, {115, 125}, {513, 2490}
X(65496) = complement of X(65463)
X(65496) = cross-difference of every pair of points on the line X(110)X(1616)
X(65496) = perspector of the circumconic through X(523) and X(6553)
X(65496) = pole of the line {115, 346} with respect to the Steiner inellipse
X(65497) lies on these lines: {99, 110}, {669, 688}, {699, 6380}, {887, 14406}, {888, 38366}, {3051, 9429}, {9427, 23216}, {39689, 59802}, {53354, 58784}
X(65497) = isogonal conjugate of X(57993)
X(65497) = cross-difference of every pair of points on the line X(76)X(3124)
X(65497) = crosspoint of X(i) and X(j) for these {i, j}: {32, 32717}, {4577, 6579}, {5118, 33875}
X(65497) = crosssum of X(i) and X(j) for these {i, j}: {76, 9148}, {523, 30736}, {34087, 60028}
X(65497) = X(i)-Ceva conjugate of-X(j) for these (i, j): (5118, 33875), (32717, 32)
X(65497) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 886), (38996, 34087), (38998, 4609), (39010, 1502), (40368, 9150), (40369, 32717), (62611, 850)
X(65497) = X(i)-isoconjugate of-X(j) for these {i, j}: {75, 886}, {561, 9150}, {799, 34087}, {1502, 36133}, {1928, 32717}, {3228, 4602}, {4609, 37132}
X(65497) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 886), (669, 34087), (887, 76), (888, 1502), (1501, 9150), (1645, 850), (1917, 36133), (3231, 4609), (5118, 44168), (9148, 40362), (9233, 32717), (9426, 3228), (9427, 60028), (14406, 8024), (32717, 57571), (33875, 670), (33918, 115), (41294, 892), (52625, 44173)
X(65497) = perspector of the circumconic through X(32) and X(4590)
X(65497) = pole of the line {2, 30495} with respect to the 1st Brocard circle
X(65497) = pole of the line {1613, 1634} with respect to the circumcircle
X(65497) = pole of the line {8754, 18022} with respect to the polar circle
X(65497) = pole of the line {3051, 38998} with respect to the Brocard inellipse
X(65497) = pole of the line {2, 9491} with respect to the Kiepert parabola
X(65497) = pole of the line {19597, 61199} with respect to the MacBeath circumconic
X(65497) = pole of the line {512, 670} with respect to the Stammler hyperbola
X(65497) = pole of the line {99, 8264} with respect to the Steiner circumellipse
X(65497) = pole of the line {620, 8265} with respect to the Steiner inellipse
X(65497) = pole of the line {523, 4609} with respect to the Steiner-Wallace hyperbola
X(65497) = barycentric product X(i)*X(j) for these {i, j}: {6, 887}, {32, 888}, {110, 1645}, {251, 14406}, {512, 33875}, {538, 9426}, {669, 3231}, {690, 41294}, {1084, 5118}, {1501, 9148}, {1576, 52625}, {1919, 52894}, {1924, 2234}, {1980, 52893}, {3049, 46522}, {4590, 33918}, {9427, 23342}, {32717, 39010}
X(65497) = trilinear product X(i)*X(j) for these {i, j}: {31, 887}, {163, 1645}, {560, 888}, {798, 33875}, {1917, 9148}, {1924, 3231}, {1980, 52894}, {2234, 9426}, {2642, 41294}, {4117, 5118}, {14406, 46289}, {24041, 33918}
X(65497) = trilinear quotient X(i)/X(j) for these (i, j): (31, 886), (560, 9150), (798, 34087), (887, 75), (888, 561), (1501, 36133), (1645, 1577), (1917, 32717), (1924, 3228), (2234, 4609), (3231, 4602), (4117, 60028), (9148, 1928), (9426, 37132), (14406, 1930), (33875, 799), (33918, 2643), (36133, 57571), (41294, 36085), (46522, 57968)
X(65498) lies on these lines: {100, 190}, {669, 688}, {8640, 20979}
X(65498) = cross-difference of every pair of points on the line X(76)X(330)
X(65498) = X(34067)-Ceva conjugate of-X(2209)
X(65498) = X(i)-isoconjugate of-X(j) for these {i, j}: {87, 54985}, {3226, 18830}, {4598, 32020}, {6384, 8709}, {32039, 40844}
X(65498) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2176, 54985), (6373, 6383), (8640, 32020), (21760, 18830), (21762, 62638), (57050, 64226), (62420, 8709)
X(65498) = perspector of the circumconic through X(32) and X(1016)
X(65498) = pole of the line {100, 1613} with respect to the circumcircle
X(65498) = pole of the line {2969, 18022} with respect to the polar circle
X(65498) = pole of the line {43, 3051} with respect to the Brocard inellipse
X(65498) = pole of the line {1, 9491} with respect to the Kiepert parabola
X(65498) = pole of the line {670, 3733} with respect to the Stammler hyperbola
X(65498) = pole of the line {190, 8264} with respect to the Steiner circumellipse
X(65498) = pole of the line {4422, 8265} with respect to the Steiner inellipse
X(65498) = pole of the line {4609, 7192} with respect to the Steiner-Wallace hyperbola
X(65498) = barycentric product X(i)*X(j) for these {i, j}: {1575, 8640}, {2176, 6373}, {3009, 20979}, {3837, 62420}, {4083, 21760}, {16695, 21830}, {21762, 23354}, {25142, 51864}, {38367, 41531}
X(65498) = trilinear product X(i)*X(j) for these {i, j}: {2209, 6373}, {3009, 8640}, {20979, 21760}, {21830, 57074}, {38367, 51973}, {51864, 57050}
X(65498) = trilinear quotient X(i)/X(j) for these (i, j): (43, 54985), (2209, 8709), (3009, 18830), (6373, 6384), (8640, 3226), (20979, 32020), (21760, 4598), (25142, 64226), (38367, 39914), (38986, 62638), (51864, 32039), (57050, 40844)
X(65499) lies on these lines: {2, 17115}, {10, 9373}, {513, 2490}, {521, 24675}, {650, 1027}, {905, 4477}, {1376, 28984}, {2550, 29005}, {2886, 4885}, {3309, 31286}, {3900, 7658}, {4369, 8678}, {8641, 25925}, {8760, 9956}, {9511, 57055}, {10855, 54271}, {11934, 31250}, {14077, 21212}, {42341, 43932}
X(65499) = complementary conjugate of the complement of X(8269)
X(65499) = complement of X(17115)
X(65499) = cross-difference of every pair of points on the line X(1615)X(1616)
X(65499) = X(i)-complementary conjugate of-X(j) for these (i, j): (1037, 1146), (1041, 6506), (7045, 17115), (7084, 35508), (7123, 13609), (7131, 26932), (8269, 10), (8817, 124), (30705, 116), (56179, 5514), (56359, 11), (59128, 6), (59133, 40869), (62538, 5510), (63178, 4904)
X(65499) = X(6167)-reciprocal conjugate of-X(664)
X(65499) = perspector of the circumconic through X(6167) and X(6553)
X(65499) = pole of the line {3452, 18252} with respect to the Spieker circle
X(65499) = pole of the line {279, 304} with respect to the Steiner inellipse
X(65499) = barycentric product X(522)*X(6167)
X(65499) = trilinear product X(650)*X(6167)
X(65499) = trilinear quotient X(6167)/X(651)
X(65499) = X(65393)-of-Wasat triangle, when ABC is acute
X(65499) = X(65386)-of-2nd Zaniah triangle, when ABC is acute
X(65500) lies on these lines: {4, 13527}, {51, 130}, {52, 129}, {53, 1263}, {112, 47424}, {143, 27359}, {511, 34839}, {1154, 61588}, {1298, 3567}, {1303, 3060}, {1994, 58065}, {3284, 7575}, {3518, 58069}, {5462, 34838}, {5890, 44989}, {6243, 57335}, {6748, 10214}, {10095, 61589}, {11432, 22551}, {12236, 32438}, {13321, 38594}, {16625, 38734}, {17810, 22552}, {32411, 59533}, {39019, 53808}
X(65500) = midpoint of X(i) and X(j) for these (i, j): {52, 129}, {130, 21661}, {20411, 20412}
X(65500) = reflection of X(i) in X(j) for these (i, j): (34838, 5462), (61589, 10095)
X(65500) = crosssum of X(3) and X(39019)
X(65500) = orthoassociate of X(13527)
X(65500) = inverse of X(13527) in polar circle
X(65500) = pole of the line {933, 46062} with respect to the orthic inconic
X(65500) = X(99)-of-2nd anti-Conway triangle
X(65500) = X(115)-of-orthic triangle
X(65500) = X(620)-of-anti-Wasat triangle
X(65500) = X(38738)-of-2nd Euler triangle
X(65500) = (X(51), X(21661))-harmonic conjugate of X(130)
X(65501) lies on the circumcircle and these lines: {100, 17860}, {101, 355}, {109, 1836}, {110, 14008}, {158, 52776}, {929, 54090}, {5057, 43355}, {14719, 31732}, {59016, 64013}
X(65501) = circumperp conjugate of the isogonal conjugate of X(65424)
X(65501) = areal center of cevian and pedal triangles of X(65424)
X(65501) = V-transform of X(65424)
X(65501) = X(65520)-of-anti-Euler triangle
X(65501) = X(65514)-of-ABC-X3 reflections triangle
X(65501) = X(21662)-of-hexyl triangle, when ABC is acute
X(65501) = X(14720)-of-1st circumperp triangle, when ABC is acute
X(65501) = X(14719)-of-2nd circumperp triangle, when ABC is acute
X(65502) lies on the incircle and these lines: {1, 10491}, {55, 10497}, {174, 10504}, {1358, 10499}, {3022, 31766}, {10489, 12646}, {10501, 11234}, {52999, 55342}
X(65502) = reflection of X(10491) in X(1)
X(65502) = infinity-incircle transform of X(65453)
X(65502) = antipode of X(10491) in incircle
X(65502) = X(38574)-of-incircle-circles triangle, when ABC is acute
X(65502) = X(10497)-of-Mandart-incircle triangle
X(65502) = X(10491)-of-5th mixtilinear triangle
X(65502) = X(5185)-of-excenters-reflections triangle, when ABC is acute
X(65502) = X(152)-of-inverse-in-incircle triangle, when ABC is acute
X(65502) = X(118)-of-Ursa-minor triangle, when ABC is acute
X(65502) = X(103)-of-intouch triangle, when ABC is acute
X(65502) = X(101)-of-Hutson intouch triangle, when ABC is acute
X(65503) lies on these lines: {187, 237}, {65432, 65433}
X(65503) = perspector of the circumconic through X(6) and X(51539)
X(65504) lies on these lines: {513, 676}, {65432, 65433}
X(65505) lies on these lines: {8599, 12073}, {65432, 65433}
X(65506) lies on these lines: {850, 6368}, {65432, 65433}
As a conic with center in the infinity, it is a parabola. Its focus is X(65513).
X(65507) lies on these lines: {30, 511}, {65432, 65433}
X(65507) = X(950)-reciprocal conjugate of-X(50392)
X(65507) = ideal of tripolar of X(59646)
X(65507) = perspector of the circumconic through X(2) and X(59646)
X(65508) lies on these lines: {460, 512}, {65432, 65433}
X(65509) lies on these lines: {99, 110}, {65432, 65433}
X(65510) lies on these lines: {669, 688}, {65432, 65433}
As a conic with center in the infinity, it is a parabola. Its focus is X(65512).
X(65511) lies on these lines: {30, 511}
X(65511) = isogonal conjugate of the anticomplement of X(65512)
X(65511) = complementary conjugate of X(65512)
X(65511) = X(4)-Ceva conjugate of-X(65512)
X(65511) = X(1)-complementary conjugate of-X(65512)
X(65511) = X(38351)-Dao conjugate of-X(1265)
X(65511) = ideal of tripolar of X(17054)
X(65511) = perspector of the circumconic through X(2) and X(17054)
X(65511) = barycentric product X(17054)*X(29162)
X(65512) lies on the nine-point circle and these lines: {}
X(65512) = complement of the isogonal conjugate of X(65511)
X(65512) = complementary conjugate of X(65511)
X(65512) = X(4)-Ceva conjugate of-X(65511)
X(65512) = X(i)-complementary conjugate of-X(j) for these (i, j): (1, 65511), (65511, 10)
X(65513) lies on the nine-point circle and these lines: {}
X(65513) = complement of the isogonal conjugate of X(65507)
X(65513) = complementary conjugate of X(65507)
X(65513) = X(4)-Ceva conjugate of-X(65507)
X(65513) = X(i)-complementary conjugate of-X(j) for these (i, j): (1, 65507), (65507, 10)
X(65514) lies on the circumcircle and these lines: {2, 65520}, {3, 65501}, {4, 65519}, {103, 18481}, {109, 23737}, {993, 14987}, {14720, 31737}
X(65514) = reflection of X(i) in X(j) for these (i, j): (4, 65519), (65501, 3)
X(65514) = isogonal conjugate of X(65424)
X(65514) = circumtangential-isogonal conjugate of X(65424)
X(65514) = circumnormal-isogonal conjugate of the isogonal conjugate of X(65501)
X(65514) = circumperp conjugate of X(65501)
X(65514) = circumnormal-isogonal conjugate of the complementary conjugate of X(65519)
X(65514) = anticomplement of X(65520)
X(65514) = X(65520)-Dao conjugate of-X(65520)
X(65514) = trilinear pole of the line {6, 13898} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65514) = Collings transform of X(65519)
X(65514) = V-transform of X(65501)
X(65514) = X(65519)-of-anti-Euler triangle
X(65514) = X(65501)-of-ABC-X3 reflections triangle
X(65514) = X(21662)-of-excentral triangle, when ABC is acute
X(65514) = X(14720)-of-2nd circumperp triangle, when ABC is acute
X(65514) = X(14719)-of-1st circumperp triangle, when ABC is acute
X(65515) lies on these lines: {6, 1511}, {51, 5139}, {52, 31842}, {143, 7737}, {389, 23698}, {578, 51460}, {1112, 47236}, {3053, 63709}, {3060, 3565}, {3563, 3567}, {6243, 57357}, {6746, 10311}, {9721, 13754}, {11433, 65518}, {16270, 34866}, {39835, 55122}
X(65515) = midpoint of X(52) and X(31842)
X(65515) = pole of the line {110, 13398} with respect to the orthic inconic
X(65515) = X(9721)-of-orthocentroidal triangle
X(65516) lies on these lines: {6, 10016}, {51, 3259}, {52, 31841}, {57, 3025}, {59, 14667}, {143, 5903}, {511, 22102}, {513, 15914}, {568, 38954}, {578, 39479}, {901, 3060}, {953, 3567}, {1112, 1830}, {1168, 51896}, {1866, 6746}, {5890, 44979}, {5905, 64688}, {5946, 38617}, {6243, 57313}, {7982, 13756}, {10263, 38614}, {11028, 18839}, {12006, 14800}, {12236, 53615}, {13321, 38586}, {15043, 38707}, {15381, 54064}, {15632, 34372}, {31760, 64721}, {38705, 64051}, {39806, 53792}, {55314, 58508}, {55317, 58504}
X(65516) = midpoint of X(i) and X(j) for these (i, j): {52, 31841}, {10263, 38614}
X(65516) = reflection of X(i) in X(j) for these (i, j): (55314, 58508), (55317, 58504)
X(65516) = pole of the line {32698, 32702} with respect to the orthic inconic
X(65517) lies on these lines: {6, 842}, {51, 2679}, {52, 33330}, {143, 53797}, {230, 511}, {249, 2079}, {512, 12076}, {805, 3060}, {1112, 2501}, {1351, 5941}, {2065, 19165}, {2698, 3567}, {2871, 15630}, {3815, 61733}, {6071, 39846}, {6072, 39817}, {6243, 57310}, {6792, 11002}, {12829, 13137}, {15544, 18907}, {16188, 21850}, {20403, 58900}, {36830, 39024}, {38703, 64051}, {55312, 58503}
X(65517) = midpoint of X(i) and X(j) for these (i, j): {52, 33330}, {805, 16979}, {6071, 39846}, {6072, 39817}
X(65517) = reflection of X(i) in X(j) for these (i, j): (55312, 58503), (55313, 58502)
X(65517) = crosssum of X(3) and X(41181)
X(65517) = perspector of the circumconic through X(46606) and X(53691)
X(65517) = inverse of X(1112) in Dou circles radical circle
X(65517) = pole of the line {460, 1112} with respect to the Dou circles radical circle
X(65517) = pole of the line {114, 58909} with respect to the Kiepert circumhyperbola
X(65517) = pole of the line {4230, 32696} with respect to the orthic inconic
X(65517) = (X(805), X(3060))-harmonic conjugate of X(16979)
X(65518) lies on the Steiner 2nd circle and these lines: {2, 2079}, {4, 99}, {30, 5866}, {69, 265}, {115, 4558}, {127, 28725}, {148, 65171}, {316, 46450}, {325, 3153}, {376, 21395}, {381, 9723}, {631, 51460}, {1272, 39118}, {1368, 34883}, {1370, 2373}, {3265, 24974}, {3926, 18404}, {5099, 39193}, {5189, 5971}, {6031, 16063}, {6091, 7386}, {6390, 18403}, {6516, 13273}, {6643, 31842}, {6997, 7664}, {7391, 14360}, {7401, 15565}, {7528, 57356}, {7574, 62338}, {8797, 18537}, {10297, 52437}, {11433, 65515}, {13203, 53331}, {13219, 32006}, {13512, 31723}, {13851, 51386}, {14790, 53796}, {14791, 64018}, {15760, 44180}, {18019, 40123}, {18420, 34803}, {18568, 32837}, {18569, 32816}, {19598, 39842}, {20477, 44402}, {22555, 57008}, {28437, 62563}, {28438, 35923}, {32255, 64235}, {36163, 53570}, {36851, 39127}, {50435, 51439}
X(65518) = anticomplement of X(2079)
X(65518) = isotomic conjugate of the isogonal conjugate of X(12310)
X(65518) = anticomplementary conjugate of the anticomplement of X(54453)
X(65518) = X(54453)-anticomplementary conjugate of-X(8)
X(65518) = X(13485)-Ceva conjugate of-X(69)
X(65518) = X(2079)-Dao conjugate of-X(2079)
X(65518) = X(12310)-reciprocal conjugate of-X(6)
X(65518) = inverse of X(99) in anticomplementary circle
X(65518) = pole of the line {99, 3565} with respect to the anticomplementary circle
X(65518) = pole of the line {18313, 55122} with respect to the Johnson triangle circumcircle
X(65518) = pole of the line {34397, 52144} with respect to the Stammler hyperbola
X(65518) = pole of the line {186, 3564} with respect to the Steiner-Wallace hyperbola
X(65518) = barycentric product X(76)*X(12310)
X(65518) = trilinear product X(75)*X(12310)
X(65518) = trilinear quotient X(12310)/X(31)
X(65518) = X(934)-of-anti-inverse-in-incircle triangle
X(65519) lies on the nine-point circle and these lines: {2, 65501}, {4, 65514}, {5, 65520}, {116, 1385}, {124, 4640}, {1155, 13141}, {21662, 31752}
X(65519) = midpoint of X(4) and X(65514)
X(65519) = reflection of X(65520) in X(5)
X(65519) = complement of X(65501)
X(65519) = complementary conjugate of the circumnormal-isogonal conjugate of X(65514)
X(65519) = Poncelet point of X(65514)
X(65519) = center of the circumconic through X(4) and X(65514)
X(65519) = X(65520)-of-Johnson triangle
X(65519) = X(65514)-of-Euler triangle
X(65519) = X(14720)-of-3rd Euler triangle, when ABC is acute
X(65519) = X(14719)-of-4th Euler triangle, when ABC is acute
X(65520) lies on the nine-point circle and these lines: {2, 65514}, {4, 65501}, {5, 65519}, {118, 18480}
X(65520) = midpoint of X(4) and X(65501)
X(65520) = reflection of X(65519) in X(5)
X(65520) = complementary conjugate of X(65424)
X(65520) = complement of X(65514)
X(65520) = X(4)-Ceva conjugate of-X(65424)
X(65520) = X(i)-complementary conjugate of-X(j) for these (i, j): (1, 65424), (65424, 10)
X(65520) = Poncelet point of X(i) for these i: {12614, 14008, 65501}
X(65520) = center of the circumconic through X(4) and X(12614)
X(65520) = X(65519)-of-Johnson triangle
X(65520) = X(65501)-of-Euler triangle
X(65520) = X(21662)-of-Wasat triangle, when ABC is acute
X(65520) = X(14720)-of-4th Euler triangle, when ABC is acute
X(65520) = X(14719)-of-3rd Euler triangle, when ABC is acute
X(65521) lies on these lines: {1, 927}, {57, 813}, {226, 27942}, {354, 15615}, {1054, 4998}, {3676, 5083}, {3911, 31380}, {5988, 9436}, {7178, 40459}, {9320, 59813}
X(65521) = reflection of X(15615) in X(40458)
X(65521) = inverse of X(927) in incircle
X(65521) = pole of the line {813, 927} with respect to the incircle
X(65521) = X(22456)-of-inverse-in-incircle triangle, when ABC is acute
X(65521) = X(38974)-of-intouch triangle, when ABC is acute
X(65521) = (X(354), X(15615))-harmonic conjugate of X(40458)
X(65522) lies on these lines: {1, 2717}, {36, 47621}, {57, 1308}, {59, 5540}, {65, 3322}, {354, 3328}, {513, 59813}, {514, 5083}, {516, 12736}, {517, 11028}, {942, 53801}, {1319, 5144}, {1323, 3660}, {2078, 5011}, {2801, 60579}, {5199, 17615}, {5902, 33645}, {7178, 59817}, {10015, 43914}
X(65522) = midpoint of X(65) and X(3322)
X(65522) = reflection of X(i) in X(j) for these (i, j): (1323, 3660), (17615, 5199)
X(65522) = inverse of X(14733) in incircle
X(65522) = pole of the line {1308, 4394} with respect to the incircle
X(65522) = pole of the line {4862, 12831} with respect to the Feuerbach circumhyperbola
X(65522) = X(40544)-of-Ursa-minor triangle, when ABC is acute
X(65522) = X(5099)-of-intouch triangle, when ABC is acute
X(65522) = X(691)-of-inverse-in-incircle triangle, when ABC is acute
X(65523) lies on these lines: {1, 99}, {57, 6010}, {226, 44950}, {354, 1356}, {518, 3037}, {1210, 45162}, {3586, 44940}, {5530, 49650}, {9579, 45152}, {11374, 57308}
X(65523) = inverse of X(99) in incircle
X(65523) = pole of the line {99, 3882} with respect to the incircle
X(65523) = X(52779)-of-inverse-in-incircle triangle, when ABC is acute
X(65523) = X(38976)-of-intouch triangle, when ABC is acute
X(65524) lies on these lines: {1, 399}, {6, 47231}, {55, 9904}, {58, 16164}, {65, 5504}, {74, 63291}, {77, 34879}, {81, 105}, {100, 40612}, {113, 63318}, {125, 17056}, {215, 942}, {265, 56417}, {323, 518}, {511, 63451}, {517, 37477}, {526, 53550}, {541, 63449}, {542, 3745}, {895, 63385}, {1054, 53743}, {1100, 38347}, {1112, 63293}, {1155, 18593}, {1319, 61638}, {1362, 2772}, {1364, 2646}, {1456, 6357}, {1511, 32636}, {1836, 18625}, {2254, 3722}, {2777, 63386}, {2778, 3057}, {2781, 63349}, {2842, 11717}, {2854, 63359}, {2948, 63310}, {3242, 17847}, {3338, 32609}, {3448, 9347}, {3475, 14683}, {3579, 46819}, {3683, 16585}, {3756, 5642}, {4414, 20277}, {4658, 56405}, {4682, 9140}, {4870, 12261}, {5121, 5972}, {5453, 5663}, {5902, 11935}, {6149, 41542}, {7702, 59653}, {7732, 63321}, {7733, 63322}, {7984, 63333}, {8998, 63336}, {9033, 53522}, {9143, 62807}, {9627, 34043}, {10035, 63282}, {10081, 37600}, {10091, 17609}, {10113, 63317}, {10264, 63259}, {10404, 12383}, {10620, 59337}, {10693, 57667}, {10700, 31523}, {11237, 12407}, {12080, 45147}, {12310, 63311}, {12373, 64055}, {12375, 63330}, {12376, 63331}, {12826, 18178}, {12902, 63296}, {12903, 63326}, {12904, 17605}, {13193, 63294}, {13204, 63304}, {13208, 63312}, {13209, 63313}, {13210, 63315}, {13211, 63319}, {13212, 63320}, {13213, 63324}, {13214, 63325}, {13217, 63341}, {13218, 63342}, {13407, 32423}, {13408, 17702}, {13990, 63337}, {14984, 63452}, {15059, 63344}, {15888, 63370}, {16272, 17768}, {18210, 53324}, {19110, 63298}, {19111, 63299}, {19470, 24929}, {22586, 63316}, {24981, 63401}, {32167, 63288}, {33649, 41541}, {38458, 58587}, {41339, 43066}, {44782, 52362}, {45946, 63334}, {47484, 63354}, {48535, 64354}, {48536, 64355}, {48786, 63302}, {48787, 63303}, {49098, 63305}, {49099, 63306}, {49203, 63308}, {49204, 63309}, {49268, 63328}, {49269, 63329}, {49369, 63300}, {49370, 63301}, {63396, 64339}
X(65524) = midpoint of X(1) and X(6126)
X(65524) = reflection of X(i) in X(j) for these (i, j): (1155, 51881), (13408, 63455), (63348, 5453), (63352, 63374)
X(65524) = cross-difference of every pair of points on the line X(2775)X(5540)
X(65524) = crosssum of X(1) and X(53524)
X(65524) = X(55)-line conjugate of-X(9904)
X(65524) = inverse of X(17660) in incircle
X(65524) = pole of the line {8674, 11670} with respect to the incircle
X(65524) = pole of the line {36, 2071} with respect to the Feuerbach circumhyperbola
X(65524) = pole of the line {4236, 53283} with respect to the Kiepert parabola
X(65524) = pole of the line {14395, 24290} with respect to the MacBeath circumconic
X(65524) = X(110)-of-2nd Pavlov triangle
X(65524) = X(354)-of-anti-orthocentroidal triangle
X(65524) = X(6126)-of-anti-Aquila triangle
X(65524) = X(14652)-of-intouch triangle, when ABC is acute
X(65524) = X(14769)-of-Ursa-minor triangle, when ABC is acute
X(65524) = X(35718)-of-Fuhrmann triangle, when ABC is acute
X(65524) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 8614, 17637), (1, 61225, 53524), (63295, 63446, 2646), (63339, 63388, 65)
This section continues the Centers of common circumconics: X(14713)-X(14781) (See preamble just before X(14713)).
For definitions of all triangles listed here, check the Index of triangles referenced in ETC.
X(65525) lies on these lines: {11, 65548}, {55, 14722}, {56, 65541}, {1086, 3022}, {2310, 21127}, {4014, 40615}, {8255, 39789}, {15587, 16593}, {39063, 63258}, {39790, 52870}, {40622, 65546}
X(65525) = crosspoint of X(7) and X(21127)
X(65525) = crosssum of X(55) and X(65222)
X(65525) = X(i)-Ceva conjugate of-X(j) for these (i, j): (2, 10581), (43750, 21104)
X(65525) = X(i)-complementary conjugate of-X(j) for these (i, j): (31, 10581), (9440, 513), (9446, 17072)
X(65525) = X(10581)-Dao conjugate of-X(2)
X(65525) = center of the circumconic with perspector X(10581)
X(65525) = perspector of the circumconic with center X(10581)
X(65525) = pole of the the tripolar of X(21127) with respect to the incircle
X(65526) lies on these lines: {4, 55028}, {25, 34452}, {232, 428}, {3867, 14715}, {40684, 44146}
X(65527) lies on the circumcircle and these lines: {1141, 6102}, {1300, 6242}
X(65528) lies on these lines: {3, 40496}, {55, 40611}, {56, 14753}, {100, 55036}, {7421, 11491}
X(65528) = reflection of X(40496) in X(3)
X(65529) lies on these lines: {3, 14723}, {55, 65533}, {56, 14714}, {103, 44408}, {104, 7440}
X(65529) = reflection of X(14723) in X(3)
X(65529) = circumnormal-isogonal conjugate of X(48387)
X(65530) lies on these lines: {2, 14774}, {8, 596}, {5272, 8054}, {36951, 62673}
X(65530) = complement of X(14774)
X(65531) lies on these lines: {2, 14737}
X(65531) = complement of X(14737)
X(65532) lies on these lines: {2, 14716}, {3740, 17239}
X(65532) = midpoint of X(14716) and X(14756)
X(65532) = complement of X(14756)
X(65532) = (X(2), X(14716))-harmonic conjugate of X(14756)
X(65533) lies on these lines: {1, 4566}, {55, 65529}, {56, 14723}, {1362, 4449}, {17460, 53547}, {42289, 50194}
X(65533) = reflection of X(14714) in X(1)
X(65534) lies on the tangential circle and these lines: {3, 129}, {6, 65500}, {22, 1303}, {24, 1298}, {25, 130}, {154, 22552}, {184, 21661}, {378, 44989}, {577, 3165}, {1993, 58065}, {2070, 38594}, {2081, 13558}, {2917, 19165}, {2931, 32438}, {5683, 8471}, {6642, 34838}, {6794, 61217}, {7506, 57333}, {7514, 61588}, {9707, 58069}, {10311, 34131}, {13861, 61589}, {39828, 46730}, {41373, 54067}
X(65534) = midpoint of X(3) and X(22551)
X(65534) = isogonal conjugate of the cyclocevian conjugate of X(35360)
X(65534) = X(17434)-Ceva conjugate of-X(6)
X(65534) = X(16813)-Dao conjugate of-X(42405)
X(65534) = inverse of X(38976) in circumcircle
X(65534) = pole of the line {130, 38976} with respect to the circumcircle
X(65535) lies on these lines: {9, 173}, {166, 8089}
X(65536) lies on these lines: {1, 7169}, {58, 4227}, {84, 3073}, {109, 54295}, {991, 64347}, {1040, 1394}, {10571, 10884}
X(65537) lies on these lines: {104, 38461}, {514, 653}, {693, 934}, {927, 59103}, {2401, 53150}, {2720, 58993}, {3669, 23984}, {3676, 6614}, {4453, 65295}, {4616, 52619}, {14776, 65540}, {15634, 36123}, {32702, 62635}, {39053, 65412}
X(65537) = cevapoint of X(i) and X(j) for these {i, j}: {278, 39534}, {513, 43058}, {1875, 3669}, {2401, 36123}
X(65537) = X(i)-cross conjugate of-X(j) for these (i, j): (1875, 23984), (36110, 65331), (39534, 278)
X(65537) = X(i)-Dao conjugate of-X(j) for these (i, j): (478, 52307), (3259, 41215), (6609, 8677), (39053, 6735), (40617, 35014), (40837, 2804)
X(65537) = X(i)-isoconjugate of-X(j) for these {i, j}: {9, 52307}, {78, 53549}, {200, 8677}, {212, 2804}, {219, 46393}, {341, 23220}, {517, 57108}, {663, 51379}, {908, 65102}, {1260, 1769}, {1459, 51380}, {1785, 58340}, {1802, 10015}, {1946, 6735}, {2183, 57055}, {2427, 34591}, {2638, 53151}, {3310, 3692}, {3900, 22350}, {3939, 35014}, {4105, 62402}, {14427, 57478}, {14571, 57057}, {17757, 57134}, {21801, 23090}, {36037, 41215}, {51377, 57081}
X(65537) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (34, 46393), (56, 52307), (104, 57055), (278, 2804), (608, 53549), (651, 51379), (653, 6735), (909, 57108), (1119, 10015), (1309, 346), (1398, 3310), (1407, 8677), (1435, 1769), (1461, 22350), (1783, 51380), (1795, 57057), (1847, 36038), (1875, 60339), (2401, 2968), (2423, 3270), (2720, 219), (2969, 52316), (3310, 41215), (3669, 35014), (4566, 51367), (4617, 62402), (13136, 1265), (13149, 3262), (14578, 58340), (14776, 220), (16082, 4397), (17925, 14010), (18816, 15416), (23984, 53151), (32641, 1260), (32669, 212), (32702, 55), (32714, 517), (34051, 521), (34858, 65102), (36037, 3692), (36110, 9), (36118, 908), (36123, 3239), (37136, 78), (39294, 3699), (39534, 55153), (43933, 1146), (52410, 23220), (52607, 17757)
X(65537) = X(2947)-zayin conjugate of-X(46393)
X(65537) = trilinear pole of the line {278, 1086} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65537) = perspector of the central inconic through X(39534) and X(43933)
X(65537) = barycentric product X(i)*X(j) for these {i, j}: {7, 65331}, {85, 36110}, {104, 13149}, {269, 65223}, {273, 37136}, {278, 54953}, {279, 1309}, {331, 2720}, {658, 36123}, {934, 16082}, {1119, 13136}, {1275, 43933}, {1847, 36037}, {2401, 55346}, {3676, 39294}, {6063, 32702}, {7282, 47317}, {14776, 57792}, {18026, 34051}, {18816, 32714}
X(65537) = trilinear product X(i)*X(j) for these {i, j}: {7, 36110}, {34, 54953}, {57, 65331}, {85, 32702}, {104, 36118}, {269, 1309}, {273, 2720}, {278, 37136}, {331, 32669}, {653, 34051}, {909, 13149}, {934, 36123}, {1088, 14776}, {1111, 59103}, {1119, 36037}, {1407, 65223}, {1435, 13136}, {1461, 16082}, {1847, 32641}, {2401, 7128}
X(65537) = trilinear quotient X(i)/X(j) for these (i, j): (34, 53549), (57, 52307), (104, 57108), (269, 8677), (273, 2804), (278, 46393), (664, 51379), (909, 65102), (934, 22350), (1106, 23220), (1119, 1769), (1309, 200), (1435, 3310), (1769, 41215), (1795, 58340), (1847, 10015), (1897, 51380), (2401, 34591), (2720, 212), (3676, 35014)
X(65538) lies on these lines: {657, 1461}, {663, 6614}, {934, 3900}, {4616, 7253}
X(65538) = X(24016)-hirst inverse of-X(53622)
X(65538) = X(i)-isoconjugate of-X(j) for these {i, j}: {144, 46392}, {516, 58835}, {910, 57064}, {1254, 65509}, {7658, 51418}
X(65538) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (103, 57064), (911, 58835), (2424, 13609), (7054, 65509), (24016, 144), (32668, 165), (53622, 40869), (61380, 676), (65245, 16284)
X(65538) = X(45721)-zayin conjugate of-X(46392)
X(65538) = trilinear pole of the line {1407, 11051} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65538) = barycentric product X(i)*X(j) for these {i, j}: {677, 60831}, {3062, 65245}, {10405, 24016}, {11051, 65294}, {32668, 44186}, {43736, 61240}, {52156, 53622}, {57928, 61380}
X(65538) = trilinear product X(i)*X(j) for these {i, j}: {3062, 24016}, {10405, 32668}, {11051, 65245}, {36039, 60831}, {43736, 53622}
X(65538) = trilinear quotient X(i)/X(j) for these (i, j): (103, 58835), (1098, 65509), (11051, 46392), (24016, 165), (32668, 3207), (36101, 57064), (53622, 41339), (61240, 40869), (65245, 144), (65294, 16284)
X(65539) lies on these lines: {850, 4616}, {934, 4036}, {1461, 4024}
X(65539) = trilinear pole of the line {115, 1407} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65540) lies on these lines: {110, 4616}, {692, 934}, {1461, 32739}, {6606, 6613}, {14776, 65537}, {34858, 61373}
X(65540) = isogonal conjugate of the isotomic conjugate of X(65545)
X(65540) = X(i)-cross conjugate of-X(j) for these (i, j): (604, 23971), (738, 7339)
X(65540) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 6607), (6609, 6362)
X(65540) = X(i)-isoconjugate of-X(j) for these {i, j}: {8, 6608}, {75, 6607}, {142, 4130}, {200, 6362}, {312, 10581}, {341, 2488}, {346, 21127}, {354, 4163}, {514, 45791}, {522, 3059}, {650, 51972}, {657, 1229}, {728, 21104}, {1146, 35341}, {1212, 3239}, {1233, 57180}, {1855, 57055}, {2293, 4397}, {2310, 65198}, {3119, 65195}, {3261, 8551}, {3900, 4847}, {3925, 58329}, {4081, 35338}, {4105, 20880}, {4171, 16713}, {4391, 8012}, {5423, 48151}, {7253, 21039}, {20229, 52622}, {23970, 63203}, {24010, 35312}, {55282, 56182}
X(65540) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 6607), (109, 51972), (604, 6608), (692, 45791), (934, 1229), (1106, 21127), (1170, 4397), (1174, 4163), (1262, 65198), (1397, 10581), (1407, 6362), (1415, 3059), (1461, 4847), (4617, 20880), (4626, 1233), (6606, 59761), (6614, 142), (7023, 21104), (7339, 65195), (7366, 48151), (10509, 35519), (21453, 52622), (23971, 35312), (24027, 35341), (40443, 15416), (52410, 2488), (53243, 346), (61373, 4391), (62192, 55282), (65222, 341), (65545, 76), (65552, 23978)
X(65540) = X(10860)-zayin conjugate of-X(21127)
X(65540) = trilinear pole of the line {32, 1407} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65540) = barycentric product X(i)*X(j) for these {i, j}: {6, 65545}, {109, 10509}, {269, 65222}, {279, 53243}, {651, 61373}, {934, 1170}, {1174, 4626}, {1262, 65552}, {1407, 6606}, {1415, 42311}, {1461, 21453}, {1803, 36118}, {2346, 4617}, {6614, 32008}, {7339, 56322}, {23971, 62725}, {24013, 62747}, {32714, 40443}, {55281, 62192}
X(65540) = trilinear product X(i)*X(j) for these {i, j}: {31, 65545}, {109, 61373}, {269, 53243}, {1106, 6606}, {1170, 1461}, {1174, 4617}, {1407, 65222}, {1415, 10509}, {1803, 32714}, {2346, 6614}, {7339, 58322}, {23971, 62747}, {24027, 65552}
X(65540) = trilinear quotient X(i)/X(j) for these (i, j): (31, 6607), (56, 6608), (101, 45791), (109, 3059), (269, 6362), (604, 10581), (651, 51972), (658, 1229), (738, 21104), (934, 4847), (1106, 2488), (1170, 3239), (1174, 4130), (1262, 35341), (1407, 21127), (1415, 8012), (1461, 1212), (1803, 57055), (2346, 4163), (4617, 142)
X(65541) lies on these lines: {3, 14722}, {56, 65525}, {103, 53302}, {6608, 38451}, {12114, 65548}
X(65541) = reflection of X(14722) in X(3)
X(65542) lies on these lines: {2321, 42378}, {2328, 7046}
X(65543) lies on these lines: {1, 3704}, {2, 1043}, {3, 66}, {5, 48863}, {6, 37176}, {8, 35466}, {10, 6675}, {12, 29846}, {21, 1211}, {30, 3454}, {35, 44419}, {56, 33171}, {58, 524}, {69, 4252}, {72, 44416}, {78, 32777}, {140, 6176}, {183, 56733}, {226, 50054}, {230, 21024}, {306, 37539}, {325, 33954}, {377, 30811}, {386, 3589}, {404, 5347}, {405, 5743}, {442, 25645}, {519, 6693}, {525, 21203}, {536, 34937}, {550, 48835}, {620, 2784}, {740, 1125}, {846, 59592}, {899, 25992}, {936, 17279}, {946, 49484}, {958, 8731}, {960, 34851}, {964, 5718}, {966, 4258}, {975, 17243}, {976, 3703}, {997, 1062}, {1009, 54300}, {1010, 17056}, {1046, 59574}, {1104, 3687}, {1150, 56781}, {1213, 11110}, {1329, 37370}, {1330, 4234}, {1375, 5438}, {1376, 28258}, {1714, 56779}, {1792, 26543}, {2245, 10461}, {2292, 3712}, {2345, 5703}, {2475, 24946}, {2895, 16948}, {2975, 33175}, {3002, 25066}, {3035, 3831}, {3085, 5793}, {3416, 37552}, {3430, 29181}, {3487, 4363}, {3616, 20182}, {3619, 37339}, {3624, 33135}, {3631, 4257}, {3649, 4418}, {3685, 65117}, {3695, 30115}, {3710, 50104}, {3741, 4999}, {3763, 56737}, {3771, 25466}, {3773, 8669}, {3811, 49524}, {3813, 32941}, {3834, 12436}, {3840, 6691}, {3915, 28273}, {3932, 5293}, {3936, 11115}, {4026, 37573}, {4046, 27368}, {4101, 4641}, {4104, 5302}, {4188, 33172}, {4189, 32782}, {4195, 4417}, {4205, 4653}, {4217, 27739}, {4256, 34573}, {4267, 15985}, {4304, 50050}, {4364, 62871}, {4383, 17526}, {4415, 7283}, {4422, 5044}, {4643, 31424}, {4720, 24883}, {4851, 37554}, {4966, 37607}, {4968, 17724}, {5047, 5241}, {5051, 64158}, {5178, 29872}, {5192, 37663}, {5217, 26034}, {5224, 56769}, {5233, 17697}, {5235, 15674}, {5253, 33173}, {5254, 56765}, {5263, 41877}, {5266, 5846}, {5433, 30942}, {5719, 7227}, {5737, 6857}, {5741, 11319}, {5814, 37817}, {5955, 54318}, {6147, 7228}, {6284, 25760}, {6390, 16887}, {6678, 20106}, {6679, 59303}, {6700, 52260}, {6910, 37660}, {7238, 24470}, {7263, 24159}, {7419, 32269}, {7483, 10479}, {7745, 37100}, {8062, 42337}, {10449, 37646}, {11281, 49598}, {12514, 59580}, {12618, 64804}, {13411, 44417}, {13567, 37248}, {13740, 37662}, {13741, 51415}, {13742, 37679}, {14005, 24936}, {15447, 35978}, {15670, 49730}, {15673, 49729}, {16061, 54365}, {16617, 48887}, {16845, 17259}, {17206, 59538}, {17234, 56768}, {17245, 56766}, {17251, 50739}, {17265, 17582}, {17332, 31445}, {17390, 37594}, {17539, 31037}, {17580, 53665}, {17588, 41809}, {17740, 37549}, {17768, 24850}, {18139, 19284}, {18235, 64753}, {19512, 64570}, {19528, 36740}, {19721, 25519}, {19879, 60714}, {20083, 48847}, {21081, 63292}, {21258, 24384}, {24327, 44387}, {24935, 53417}, {24953, 31330}, {25079, 44910}, {25441, 64167}, {25663, 26051}, {25914, 29637}, {26117, 30832}, {26131, 51669}, {26582, 30175}, {26686, 31027}, {26942, 37583}, {26989, 27096}, {27385, 30818}, {28530, 63997}, {28628, 50314}, {30828, 50408}, {32779, 34772}, {32784, 37574}, {32918, 52793}, {32943, 37722}, {32947, 63273}, {33069, 52783}, {33077, 62802}, {33087, 37608}, {33089, 36565}, {34822, 59691}, {37836, 59701}, {41818, 46934}, {43531, 50059}, {44379, 49560}, {44898, 51693}, {47040, 50058}, {47595, 51609}, {49473, 49613}, {49716, 52680}, {49768, 58628}, {50750, 63282}, {51126, 56735}, {51128, 56736}, {56018, 61661}, {56986, 63089}, {56987, 63126}, {58386, 59723}
X(65543) = midpoint of X(i) and X(j) for these (i, j): {1, 3704}, {58, 41014}, {1043, 1834}, {1330, 64159}, {21081, 63292}, {24850, 56949}
X(65543) = complement of X(1834)
X(65543) = crosspoint of X(2) and X(64985)
X(65543) = crosssum of X(6) and X(40984)
X(65543) = X(i)-complementary conjugate of-X(j) for these (i, j): (951, 442), (1257, 3454), (2983, 1211), (29163, 4129), (40414, 20305), (40431, 5), (57390, 226), (64985, 2887)
X(65543) = center of the inconic with perspector X(64985)
X(65543) = pole of the line {966, 3767} with respect to the Kiepert circumhyperbola
X(65543) = pole of the line {22, 4252} with respect to the Stammler hyperbola
X(65543) = pole of the line {3265, 7192} with respect to the Steiner inellipse
X(65543) = pole of the line {315, 3945} with respect to the Steiner-Wallace hyperbola
X(65543) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 33160, 3704), (2, 1043, 1834), (8, 56778, 35466), (10, 6675, 62689), (21, 1211, 49728), (386, 17698, 3589), (1010, 25650, 17056), (1330, 4234, 64159), (2475, 24946, 30831), (3936, 11115, 49745), (4653, 24931, 4205), (25663, 26051, 41878), (29846, 54331, 12), (30832, 52352, 26117)
X(65544) lies on these lines: {242, 7360}, {6736, 7283}
X(65545) lies on the circumcircle and these lines: {2, 38973}, {7, 38451}, {100, 4569}, {101, 658}, {103, 5542}, {104, 42311}, {105, 61373}, {109, 4626}, {110, 4616}, {664, 6575}, {972, 40443}, {1292, 36838}, {1308, 59457}, {2291, 10509}, {2346, 15731}, {2371, 32008}, {4617, 8693}, {4637, 59067}, {6614, 59135}, {7056, 53910}, {14733, 65552}, {23586, 58322}, {35312, 43344}, {43349, 52937}, {59031, 65165}, {59064, 65296}
X(65545) = isogonal conjugate of X(6607)
X(65545) = circumtangential-isogonal conjugate of X(6607)
X(65545) = anticomplement of X(38973)
X(65545) = isotomic conjugate of the isogonal conjugate of X(65540)
X(65545) = cevapoint of X(i) and X(j) for these {i, j}: {57, 58322}, {513, 45227}, {514, 65452}, {934, 4626}, {2488, 23653}, {10509, 65552}
X(65545) = X(i)-cross conjugate of-X(j) for these (i, j): (57, 23586), (4350, 1275), (23062, 59457), (65552, 10509)
X(65545) = X(i)-Dao conjugate of-X(j) for these (i, j): (223, 6608), (478, 10581), (5375, 45791), (6609, 2488), (10001, 51972), (17113, 6362), (38973, 38973)
X(65545) = X(i)-isoconjugate of-X(j) for these {i, j}: {9, 10581}, {55, 6608}, {142, 57180}, {200, 2488}, {220, 21127}, {354, 4105}, {480, 48151}, {514, 8551}, {649, 45791}, {650, 8012}, {657, 1212}, {663, 3059}, {1021, 21795}, {1253, 6362}, {1475, 4130}, {1827, 57108}, {1855, 65102}, {2293, 3900}, {3022, 35338}, {3063, 51972}, {3119, 35326}, {3239, 20229}, {4524, 17194}, {4847, 8641}, {6602, 21104}, {14936, 35341}, {21039, 21789}, {24012, 35312}, {35508, 63203}, {52020, 58329}, {52064, 61241}
X(65545) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (56, 10581), (57, 6608), (100, 45791), (109, 8012), (269, 21127), (279, 6362), (479, 21104), (651, 3059), (658, 4847), (664, 51972), (692, 8551), (738, 48151), (934, 1212), (1020, 21039), (1170, 3900), (1174, 4105), (1275, 65198), (1407, 2488), (1461, 2293), (1803, 57108), (2346, 4130), (4569, 1229), (4616, 16713), (4617, 354), (4626, 142), (4637, 17194), (6606, 346), (6614, 1475), (7045, 35341), (7339, 35326), (10509, 522), (21453, 3239), (23586, 35312), (24013, 63203), (31618, 4397), (32008, 4163), (32714, 1827), (36118, 1855), (36838, 20880), (40443, 57055), (42311, 4391), (52937, 1233), (53243, 220), (53321, 21795), (56322, 4081), (58322, 3119), (59457, 65195), (61241, 6067), (61373, 650), (62725, 23970)
X(65545) = X(170)-zayin conjugate of-X(21127)
X(65545) = trilinear pole of the line {6, 279} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65545) = Collings transform of X(i) for these i: {17113, 45227, 65452}
X(65545) = barycentric product X(i)*X(j) for these {i, j}: {76, 65540}, {279, 6606}, {651, 42311}, {658, 21453}, {664, 10509}, {934, 31618}, {1088, 65222}, {1170, 4569}, {1174, 52937}, {1275, 65552}, {2346, 36838}, {4554, 61373}, {4616, 60229}, {4617, 57815}, {4626, 32008}, {13149, 40443}, {23586, 62725}, {24011, 62747}, {53243, 57792}, {56322, 59457}
X(65545) = trilinear product X(i)*X(j) for these {i, j}: {75, 65540}, {109, 42311}, {269, 6606}, {279, 65222}, {651, 10509}, {658, 1170}, {664, 61373}, {934, 21453}, {1088, 53243}, {1174, 36838}, {1461, 31618}, {1803, 13149}, {2346, 4626}, {4617, 32008}, {4637, 60229}, {6614, 57815}, {7045, 65552}, {23586, 62747}, {24013, 62725}, {36118, 40443}
X(65545) = trilinear quotient X(i)/X(j) for these (i, j): (7, 6608), (57, 10581), (101, 8551), (190, 45791), (269, 2488), (279, 21127), (479, 48151), (651, 8012), (658, 1212), (664, 3059), (934, 2293), (1020, 21795), (1088, 6362), (1170, 657), (1174, 57180), (1275, 35341), (1461, 20229), (1803, 65102), (2346, 4105), (4554, 51972)
X(65546) lies on these lines: {4, 36120}, {7, 4635}, {11, 1356}, {30, 63822}, {115, 512}, {148, 3903}, {758, 51464}, {1111, 4170}, {1357, 31890}, {1365, 3022}, {1367, 31892}, {1537, 39780}, {1565, 4014}, {2170, 4822}, {2310, 61052}, {2782, 61421}, {3023, 6002}, {3027, 28850}, {3110, 11725}, {4128, 16613}, {4804, 21139}, {4890, 5049}, {4983, 20982}, {16591, 58034}, {17761, 38989}, {21746, 39542}, {27008, 47840}, {40622, 65525}
X(65546) = midpoint of X(148) and X(3903)
X(65546) = reflection of X(i) in X(j) for these (i, j): (3110, 11725), (40608, 115)
X(65546) = crosspoint of X(7) and X(661)
X(65546) = crosssum of X(55) and X(662)
X(65546) = X(i)-Ceva conjugate of-X(j) for these (i, j): (1440, 7180), (43750, 7178)
X(65546) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (21960, 668), (23774, 274), (24622, 670), (32932, 4601)
X(65546) = orthojoin of X(3287)
X(65546) = orthopole of tripolar of X(37137)
X(65546) = perspector of the circumconic through X(2395) and X(21960)
X(65546) = pole of the line {2642, 2643} with respect to the incircle
X(65546) = pole of the line {4897, 6002} with respect to the Feuerbach circumhyperbola
X(65546) = barycentric product X(i)*X(j) for these {i, j}: {37, 23774}, {512, 24622}, {513, 21960}, {3125, 32932}
X(65546) = trilinear product X(i)*X(j) for these {i, j}: {42, 23774}, {649, 21960}, {798, 24622}, {3122, 32932}
X(65546) = trilinear quotient X(i)/X(j) for these (i, j): (21960, 190), (23774, 86), (24622, 799), (32932, 4600)
X(65547) lies on these lines: {4, 55345}, {11245, 53420}
X(65548) lies on these lines: {11, 65525}, {1376, 14722}, {12114, 65541}
X(65549) lies on these lines: {7, 21208}, {57, 39006}, {1111, 1210}, {3668, 7682}, {4566, 5400}, {5723, 40940}, {18026, 44311}, {34852, 40483}
X(65549) = pole of the line {3007, 37374} with respect to the circumhyperbola dual of Yff parabola
X(65550) lies on these lines: {942, 63840}, {29307, 63978}
X(65551) lies on these lines: {514, 58034}, {4063, 39156}, {9355, 21390}
X(65552) lies on these lines: {7, 23599}, {279, 48151}, {512, 43930}, {513, 50360}, {514, 657}, {663, 3676}, {693, 3900}, {885, 42311}, {927, 4566}, {1170, 7178}, {2346, 28473}, {3309, 24002}, {4444, 17084}, {4555, 6606}, {4564, 35312}, {6548, 21453}, {7192, 21789}, {7253, 52619}, {10509, 23351}, {14733, 65545}, {14776, 65537}, {18344, 30804}, {46006, 59930}, {52621, 53343}, {53150, 65100}
X(65552) = midpoint of X(57090) and X(57167)
X(65552) = reflection of X(i) in X(j) for these (i, j): (7, 23599), (56322, 62747)
X(65552) = isotomic conjugate of X(65198)
X(65552) = cevapoint of X(i) and X(j) for these {i, j}: {513, 3676}, {514, 3309}
X(65552) = cross-difference of every pair of points on the line X(2293)X(8012)
X(65552) = crosspoint of X(i) and X(j) for these {i, j}: {6606, 21453}, {10509, 65545}
X(65552) = crosssum of X(i) and X(j) for these {i, j}: {2293, 2488}, {6607, 8012}, {6608, 21039}, {8642, 61399}
X(65552) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (1170, 34547), (53243, 56937), (53244, 144)
X(65552) = X(i)-Ceva conjugate of-X(j) for these (i, j): (6606, 21453), (65222, 7), (65545, 10509)
X(65552) = X(i)-cross conjugate of-X(j) for these (i, j): (513, 58322), (2170, 279), (17463, 278), (58322, 56322), (64523, 57)
X(65552) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 65198), (9, 35341), (11, 3059), (223, 35338), (244, 21039), (478, 35326), (513, 2488), (514, 6362), (661, 21127), (1015, 1212), (1084, 21795), (1086, 4847), (1146, 51972), (3160, 65195), (5190, 1855), (5521, 1827), (6615, 6608), (8054, 2293), (17113, 35312), (17115, 6607), (34467, 22079), (35508, 45791), (38991, 8012), (40590, 35310), (40615, 142), (40617, 354), (40619, 1229), (40620, 16713), (40622, 3925), (40629, 61035), (46398, 51416), (55053, 20229), (55060, 52020)
X(65552) = X(i)-isoconjugate of-X(j) for these {i, j}: {6, 35341}, {9, 35326}, {31, 65198}, {41, 65195}, {55, 35338}, {59, 6608}, {100, 2293}, {101, 1212}, {109, 3059}, {110, 21039}, {190, 20229}, {220, 63203}, {284, 35310}, {354, 3939}, {643, 52020}, {644, 1475}, {651, 8012}, {658, 8551}, {662, 21795}, {692, 4847}, {765, 2488}, {906, 1855}, {1110, 6362}, {1229, 32739}, {1252, 21127}, {1253, 35312}, {1331, 1827}, {1415, 51972}, {1461, 45791}, {1897, 22079}, {3925, 65375}, {4557, 17194}, {4564, 10581}, {4571, 40983}, {4578, 61376}, {5546, 21808}, {6065, 48151}, {6602, 61241}, {6607, 7045}, {22053, 56183}
X(65552) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 35341), (2, 65198), (7, 65195), (56, 35326), (57, 35338), (65, 35310), (244, 21127), (269, 63203), (279, 35312), (479, 61241), (512, 21795), (513, 1212), (514, 4847), (522, 51972), (649, 2293), (650, 3059), (661, 21039), (663, 8012), (667, 20229), (693, 1229), (1015, 2488), (1019, 17194), (1086, 6362), (1170, 100), (1174, 3939), (1358, 21104), (1638, 61035), (1803, 1331), (2170, 6608), (2346, 644), (3271, 10581), (3669, 354), (3676, 142), (3900, 45791), (4017, 21808), (6591, 1827), (6605, 4578), (6606, 1016), (7178, 3925), (7180, 52020), (7192, 16713), (7203, 18164), (7649, 1855), (8641, 8551), (10015, 51416), (10509, 664), (14936, 6607), (17096, 17169), (21104, 6067), (21453, 190)
X(65552) = X(35338)-zayin conjugate of-X(21127)
X(65552) = trilinear pole of the line {1086, 14936} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65552) = perspector of the circumconic through X(10509) and X(21453)
X(65552) = pole of the line {7, 3730} with respect to the Adams circle
X(65552) = pole of the line {10509, 38859} with respect to the circumcircle
X(65552) = pole of the line {16601, 45227} with respect to the incircle
X(65552) = pole of the line {1827, 1855} with respect to the polar circle
X(65552) = pole of the line {85, 3870} with respect to the Steiner circumellipse
X(65552) = pole of the line {6706, 13405} with respect to the Steiner inellipse
X(65552) = barycentric product X(i)*X(j) for these {i, j}: {7, 56322}, {85, 58322}, {279, 62725}, {513, 31618}, {514, 21453}, {522, 10509}, {650, 42311}, {693, 1170}, {1086, 6606}, {1088, 62747}, {1111, 65222}, {1146, 65545}, {1174, 52621}, {1275, 56284}, {1803, 46107}, {2346, 24002}, {3669, 57815}, {3676, 32008}, {4391, 61373}, {6605, 59941}
X(65552) = trilinear product X(i)*X(j) for these {i, j}: {7, 58322}, {57, 56322}, {244, 6606}, {269, 62725}, {279, 62747}, {513, 21453}, {514, 1170}, {522, 61373}, {649, 31618}, {650, 10509}, {663, 42311}, {1019, 60229}, {1086, 65222}, {1111, 53243}, {1174, 24002}, {1803, 17924}, {2310, 65545}, {2346, 3676}, {3669, 32008}, {6605, 58817}
X(65552) = trilinear quotient X(i)/X(j) for these (i, j): (2, 35341), (7, 35338), (11, 6608), (57, 35326), (75, 65198), (85, 65195), (226, 35310), (244, 2488), (279, 63203), (513, 2293), (514, 1212), (522, 3059), (523, 21039), (649, 20229), (650, 8012), (657, 8551), (661, 21795), (693, 4847), (1086, 21127), (1088, 35312)
X(65553) lies on these lines: {514, 658}, {693, 4569}, {927, 59105}, {3676, 4626}, {4453, 65294}, {4616, 7192}, {14733, 65545}, {15634, 62723}, {23351, 65558}, {32728, 65562}, {53150, 65335}
X(65553) = isotomic conjugate of X(65448)
X(65553) = cevapoint of X(i) and X(j) for these {i, j}: {513, 43064}, {23351, 34056}
X(65553) = X(i)-cross conjugate of-X(j) for these (i, j): (23351, 34056), (65483, 2)
X(65553) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 65448), (223, 14392), (6609, 6139), (17113, 6366), (40615, 33573)
X(65553) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 65448}, {55, 14392}, {200, 6139}, {480, 14413}, {527, 57180}, {657, 6603}, {1055, 4130}, {1155, 4105}, {1253, 6366}, {1638, 6602}, {4524, 62756}, {6745, 8641}, {7071, 14414}, {23346, 24010}, {23890, 35508}, {24012, 56543}, {60431, 65102}
X(65553) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 65448), (57, 14392), (279, 6366), (479, 1638), (658, 6745), (738, 14413), (934, 6603), (1121, 4163), (1156, 4130), (1358, 52334), (1407, 6139), (2291, 4105), (3676, 33573), (4617, 1155), (4626, 527), (4637, 62756), (6614, 1055), (7177, 14414), (14733, 220), (23351, 35508), (23586, 56543), (23893, 24010), (23971, 23346), (24013, 23890), (32728, 14827), (34056, 3900), (34068, 57180), (35157, 346), (35348, 3119), (36118, 60431), (36141, 1253), (36838, 30806), (37139, 200), (37757, 38376), (59105, 1252), (60479, 4081), (60487, 8), (61241, 61035), (62723, 3239), (62764, 4171), (63748, 23970), (65304, 1260), (65335, 7046), (65545, 62728)
X(65553) = trilinear pole of the line {279, 1086} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65553) = perspector of the inconic with center X(65483)
X(65553) = barycentric product X(i)*X(j) for these {i, j}: {7, 60487}, {279, 35157}, {658, 62723}, {1088, 37139}, {1121, 4626}, {1156, 36838}, {2291, 52937}, {4569, 34056}, {4635, 62764}, {7056, 65335}, {14733, 57792}, {23351, 57581}, {23586, 63748}, {23893, 24011}, {23989, 59105}, {59457, 60479}, {62731, 65545}
X(65553) = trilinear product X(i)*X(j) for these {i, j}: {57, 60487}, {269, 35157}, {279, 37139}, {658, 34056}, {934, 62723}, {1088, 14733}, {1111, 59105}, {1121, 4617}, {1156, 4626}, {1847, 65304}, {2291, 36838}, {4616, 62764}, {7177, 65335}, {23351, 24011}, {23586, 23893}, {24013, 63748}, {34068, 52937}, {35348, 59457}, {36141, 57792}
X(65553) = trilinear quotient X(i)/X(j) for these (i, j): (7, 14392), (75, 65448), (269, 6139), (479, 14413), (658, 6603), (1088, 6366), (1121, 4130), (1156, 4105), (2291, 57180), (4569, 6745), (4616, 62756), (4617, 1055), (4626, 1155), (7056, 14414), (13149, 60431), (14733, 1253), (23062, 1638), (23351, 24012), (23586, 23890), (23893, 35508)
X(65554) lies on these lines: {110, 52619}, {514, 15378}, {675, 15634}, {692, 693}, {1576, 7192}, {6548, 32719}, {17925, 61206}, {26705, 35190}
X(65554) = X(i)-isoconjugate of-X(j) for these {i, j}: {674, 1734}, {2225, 25259}, {6586, 57015}, {15624, 23887}, {20974, 42723}
X(65554) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (675, 25259), (2224, 1734), (14377, 23887), (32682, 3730), (36087, 3681), (43190, 3006)
X(65554) = X(8049)-vertex conjugate of-X(32642)
X(65554) = trilinear pole of the line {32, 1086} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65554) = barycentric product X(675)*X(43190)
X(65554) = trilinear product X(i)*X(j) for these {i, j}: {2224, 43190}, {14377, 36087}
X(65554) = trilinear quotient X(i)/X(j) for these (i, j): (675, 1734), (2224, 6586), (32682, 15624), (36087, 3730), (37130, 25259), (43190, 57015), (57750, 42723), (60573, 38358)
X(65555) lies on these lines: {514, 6625}, {693, 51865}, {7192, 8029}, {23105, 52619}
X(65555) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (6625, 62644), (60042, 1654), (60050, 18755)
X(65555) = trilinear pole of the line {1086, 61339} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65555) = barycentric product X(6625)*X(60042)
X(65555) = trilinear product X(i)*X(j) for these {i, j}: {13610, 60042}, {51865, 60050}
X(65555) = trilinear quotient X(i)/X(j) for these (i, j): (51865, 62644), (60042, 846)
X(65556) lies on these lines: {2, 14759}, {10, 1565}, {75, 537}, {519, 57033}, {1015, 16602}, {1054, 65189}, {17090, 63577}, {21272, 24003}, {58467, 61186}
X(65556) = complement of X(14759)
X(65556) = crosspoint of X(4373) and X(32016)
X(65556) = pole of the line {1266, 57033} with respect to the circumhyperbola dual of Yff parabola
X(65556) = pole of the line {4928, 53364} with respect to the Steiner inellipse
X(65557) lies on these lines: {4, 61217}, {53, 6529}, {115, 6748}, {10628, 65500}, {18383, 27358}
X(65557) = pole of the line {18400, 41204} with respect to the Kiepert circumhyperbola
X(65558) lies on these lines: {657, 658}, {663, 4626}, {3900, 4569}, {4616, 21789}, {23351, 65553}
X(65558) = X(i)-isoconjugate of-X(j) for these {i, j}: {4105, 62738}, {52888, 57180}
X(65558) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4617, 62738), (4626, 52888), (62744, 4130)
X(65558) = trilinear pole of the line {279, 14936} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65558) = barycentric product X(36838)*X(62744)
X(65558) = trilinear product X(4626)*X(62744)
X(65558) = trilinear quotient X(i)/X(j) for these (i, j): (4626, 62738), (36838, 52888), (62744, 4105)
X(65559) lies on these lines: {523, 4616}, {658, 4024}, {4036, 4569}
X(65559) = isotomic conjugate of X(65446)
X(65559) = X(65495)-cross conjugate of-X(2)
X(65559) = X(2)-Dao conjugate of-X(65446)
X(65559) = X(31)-isoconjugate of-X(65446)
X(65559) = X(2)-reciprocal conjugate of-X(65446)
X(65559) = trilinear pole of the line {115, 279} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65559) = perspector of the inconic with center X(65495)
X(65559) = trilinear quotient X(75)/X(65446)
X(65560) lies on these lines: {2, 14738}, {1086, 23903}
X(65560) = complement of X(14738)
X(65561) lies on these lines: {2, 14757}, {594, 3952}, {17476, 58413}
X(65561) = complement of X(14757)
X(65562) lies on these lines: {658, 32739}, {692, 4569}, {1576, 4616}, {32728, 65553}, {51150, 63148}
X(65562) = X(i)-isoconjugate of-X(j) for these {i, j}: {341, 65464}, {2254, 52562}, {17451, 52614}, {40997, 46388}
X(65562) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (919, 52562), (927, 40997), (3449, 52614), (32735, 16588), (52410, 65464), (63148, 50333)
X(65562) = trilinear pole of the line {32, 279} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65562) = barycentric product X(i)*X(j) for these {i, j}: {927, 63148}, {34085, 63188}
X(65562) = trilinear product X(i)*X(j) for these {i, j}: {927, 63188}, {36146, 63148}
X(65562) = trilinear quotient X(i)/X(j) for these (i, j): (1106, 65464), (34085, 40997), (36086, 52562), (36146, 16588), (63188, 926)
See Peter Moses, euclid 7009.
X(65563) lies on the Feuerbach circumhyperbola of the orthic triangle and these lines: {2, 74}, {3, 32601}, {4, 3426}, {5, 15751}, {6, 15311}, {20, 155}, {30, 193}, {52, 3146}, {185, 64187}, {376, 26864}, {382, 15741}, {390, 1480}, {525, 16251}, {648, 18850}, {1181, 64726}, {1249, 38920}, {1495, 5656}, {1499, 53016}, {1514, 6623}, {1614, 8717}, {1839, 53994}, {1843, 6000}, {1899, 13202}, {1986, 10938}, {2777, 5095}, {2883, 37487}, {2904, 15032}, {2914, 35481}, {3088, 3574}, {3089, 5878}, {3090, 34469}, {3091, 11472}, {3431, 10293}, {3522, 4549}, {3529, 11820}, {3541, 18431}, {3543, 37644}, {3566, 62172}, {3600, 6580}, {3620, 64097}, {3832, 7706}, {3854, 23294}, {4232, 32111}, {4295, 40950}, {5059, 13431}, {5067, 43903}, {5654, 58871}, {5663, 5921}, {5893, 43592}, {5895, 18909}, {5925, 18925}, {6225, 7487}, {7401, 11469}, {7408, 11455}, {7486, 43607}, {7500, 34796}, {7687, 23291}, {8889, 35450}, {9707, 62097}, {10295, 41450}, {10298, 52019}, {10303, 32620}, {10304, 35254}, {11008, 40196}, {11430, 20427}, {11457, 17578}, {11468, 61820}, {11738, 61116}, {12112, 18533}, {12289, 50692}, {12290, 64851}, {13403, 16624}, {13754, 20080}, {14054, 64047}, {15066, 61113}, {15107, 34621}, {15448, 41447}, {16111, 41467}, {16253, 40138}, {16879, 18945}, {18913, 22802}, {18918, 61721}, {18931, 47296}, {19041, 23273}, {19042, 23267}, {23249, 44637}, {23259, 44638}, {25739, 50687}, {32603, 53091}, {33878, 35513}, {34224, 49135}, {35483, 61690}, {37478, 52404}, {37645, 50434}, {39263, 59430}, {41424, 64714}, {43608, 61914}, {43713, 61680}, {47392, 58758}, {49138, 64717}, {50644, 58780}, {51170, 64096}, {51993, 62005}, {53780, 62042}, {56966, 63127}, {64025, 64756}, {64029, 64034}
X(65563) = reflection of X(i) in X(j) for these {i,j}: {4, 64094}, {376, 44750}, {3426, 64729}, {3529, 11820}, {12244, 10293}, {41465, 35237}, {49670, 6776}, {62042, 53780}
X(65563) = orthic isogonal conjugate of X(6623)
X(65563) = X(i)-Ceva conjugate of X(j) for these (i,j): {4, 6623}, {648, 9209}
X(65563) = X(i)-Dao conjugate of X(j) for these (i,j): {16253, 18850}, {37643, 69}
X(65563) = crosspoint of X(4) and X(376)
X(65563) = crosssum of X(3) and X(3426)
X(65563) = barycentric product X(i)*X(j) for these {i,j}: {376, 37643}, {10605, 52147}
X(65563) = barycentric quotient X(i)/X(j) for these {i,j}: {6623, 56270}, {37643, 36889}, {40138, 18850}
X(65563) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1514, 10605, 37643}, {1514, 37643, 6623}, {3426, 64094, 64729}, {3426, 64729, 4}, {35237, 41465, 20}
See Peter Moses, euclid 7009.
X(65564) lies on these lines: {3, 39072}, {5, 182}, {76, 50732}, {110, 1975}, {154, 3148}, {156, 2782}, {184, 460}, {685, 62576}, {1181, 45030}, {1614, 39646}, {1625, 20968}, {1971, 15270}, {1976, 13881}, {2001, 59635}, {2393, 44499}, {2871, 23128}, {3224, 14601}, {5012, 7851}, {5167, 40373}, {5876, 40121}, {6721, 64063}, {7789, 9306}, {8406, 12964}, {8414, 12970}, {9292, 41336}, {14585, 61213}, {16385, 42826}, {18451, 20993}, {19153, 32734}, {21177, 52436}, {32716, 60601}, {44127, 63554}
X(65564) = midpoint of X(30427) and X(30428)
X(65564) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 2909, 19156}, {30390, 30391, 64061}
See Peter Moses, euclid 7009.
X(65565) lies on these lines: {5, 182}, {6, 1173}, {22, 110}, {25, 32191}, {49, 31670}, {54, 53023}, {64, 55671}, {69, 59351}, {141, 10539}, {156, 511}, {159, 195}, {160, 61748}, {184, 428}, {524, 64052}, {542, 19154}, {567, 9833}, {1092, 48881}, {1147, 29181}, {1176, 10516}, {1352, 10540}, {1469, 9667}, {1495, 19161}, {1498, 7509}, {1853, 7571}, {1971, 12212}, {1974, 8550}, {2080, 15270}, {2393, 5097}, {3056, 9652}, {3098, 9968}, {3357, 55669}, {3564, 64472}, {3763, 43598}, {3827, 6583}, {4577, 8920}, {5085, 52525}, {5092, 15579}, {5447, 7525}, {5448, 14862}, {5596, 7558}, {5651, 7499}, {6000, 15578}, {6403, 19596}, {6697, 64063}, {6776, 18374}, {7387, 64195}, {7394, 11003}, {7519, 63082}, {7553, 13352}, {7566, 32395}, {7699, 14157}, {8549, 19132}, {8717, 15311}, {8718, 59411}, {9019, 19139}, {9544, 51212}, {9545, 51538}, {9967, 35707}, {10984, 44762}, {11202, 55655}, {11842, 15257}, {12007, 19136}, {12017, 43811}, {12294, 44110}, {13336, 51126}, {13339, 14216}, {13861, 58532}, {14560, 43089}, {14912, 56918}, {14926, 32063}, {14927, 28708}, {15069, 19121}, {15139, 35260}, {15321, 52295}, {15516, 41593}, {15576, 32713}, {16187, 58434}, {17821, 34778}, {18358, 44491}, {19128, 64080}, {19130, 32046}, {19153, 39879}, {20299, 58450}, {22112, 23332}, {22115, 48873}, {25337, 61545}, {31723, 36989}, {32139, 63740}, {32217, 37971}, {32344, 51797}, {32445, 59232}, {33801, 44716}, {34148, 48910}, {34779, 55587}, {34787, 55722}, {37480, 46374}, {37489, 41589}, {37495, 43621}, {37813, 42671}, {37947, 55720}, {38851, 41450}, {40111, 48874}, {41579, 44480}, {43574, 48872}, {45014, 48905}, {47355, 61134}, {47474, 51733}, {55584, 64031}, {55629, 64716}, {55666, 64027}, {55676, 58795}, {58471, 64026}, {61542, 61606}
X(65565) = midpoint of X(i) and X(j) for these {i,j}: {6, 15581}, {159, 34117}, {206, 6759}, {1498, 44883}, {3098, 9968}, {5596, 34118}, {7387, 64195}, {9833, 18382}, {15577, 19149}, {19130, 45185}
X(65565) = reflection of X(i) in X(j) for these {i,j}: {6697, 64063}, {15579, 5092}, {20299, 58450}, {35228, 10282}, {64061, 206}
X(65565) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {154, 19149, 15577}, {1498, 23041, 44883}, {6776, 18374, 51730}, {63658, 63663, 63688}
See Ivan Pavlov, euclid 7012.
X(65566) lies on these lines: {3, 15619}, {53, 232}, {550, 20299}, {1853, 35885}, {15557, 31868}, {18381, 35728}, {21243, 38429}, {33992, 61743}
X(65566) = pole of line {233, 647} with respect to the nine-point circle
See Ivan Pavlov, euclid 7012.
X(65567) lies on these lines: {1, 18400}, {33, 6750}, {55, 58735}, {1062, 10600}, {6198, 8884}, {8144, 32428}, {18455, 36245}, {37729, 37846}, {37733, 45272}
X(65568) lies on these lines: {3, 1798}, {60, 4267}, {63, 4558}, {81, 593}, {110, 3185}, {212, 1808}, {261, 2189}, {283, 6514}, {285, 1098}, {333, 19607}, {343, 57985}, {348, 1509}, {1414, 34035}, {1790, 4288}, {1804, 7341}, {1812, 2193}, {1993, 36744}, {4282, 17185}, {4565, 17080}, {4612, 7058}, {4636, 6061}, {5546, 56440}, {18021, 55196}, {29206, 58982}, {56934, 62857}, {57685, 57704}
X(65568) = isogonal conjugate of X(8736)
X(65568) = isotomic conjugate of the polar conjugate of X(60)
X(65568) = isogonal conjugate of the polar conjugate of X(261)
X(65568) = X(261)-Ceva conjugate of X(60)
X(65568) = X(i)-cross conjugate of X(j) for these (i,j): {1790, 2185}, {7117, 23189}, {22056, 3}
X(65568) = X(i)-isoconjugate of X(j) for these (i,j): {1, 8736}, {4, 2171}, {6, 56285}, {10, 1880}, {12, 19}, {25, 6358}, {33, 6354}, {34, 594}, {37, 225}, {42, 40149}, {57, 7140}, {65, 1826}, {92, 181}, {108, 4024}, {115, 7012}, {158, 2197}, {162, 55197}, {201, 393}, {213, 57809}, {226, 1824}, {273, 1500}, {278, 756}, {281, 1254}, {321, 57652}, {331, 872}, {512, 65207}, {604, 7141}, {608, 1089}, {653, 4705}, {661, 61178}, {1091, 2189}, {1096, 26942}, {1109, 7115}, {1118, 3949}, {1395, 28654}, {1396, 6535}, {1400, 41013}, {1426, 2321}, {1427, 53008}, {1435, 6057}, {1441, 2333}, {1825, 8818}, {1847, 7064}, {1857, 37755}, {1893, 60677}, {1897, 57185}, {1918, 52575}, {1969, 61364}, {1973, 34388}, {2149, 2970}, {2207, 57807}, {2326, 7314}, {2358, 21075}, {2501, 4551}, {2643, 46102}, {3952, 55208}, {4036, 32674}, {4041, 52607}, {4079, 18026}, {4092, 7128}, {4103, 43923}, {4559, 24006}, {4564, 8754}, {4566, 55206}, {4605, 18344}, {6046, 7079}, {6520, 7066}, {7046, 7147}, {7101, 7143}, {7109, 57787}, {7337, 52369}, {7649, 21859}, {13853, 40971}, {21824, 34922}, {36127, 55232}, {42666, 65329}, {44113, 60091}, {46404, 50487}, {52384, 53009}, {54240, 55230}, {58757, 65233}
X(65568) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 8736}, {6, 12}, {9, 56285}, {125, 55197}, {650, 2970}, {905, 338}, {1147, 2197}, {3161, 7141}, {5452, 7140}, {6337, 34388}, {6503, 26942}, {6505, 6358}, {6626, 57809}, {11517, 594}, {22391, 181}, {34021, 52575}, {34467, 57185}, {35072, 4036}, {36033, 2171}, {36830, 61178}, {37867, 7066}, {38983, 4024}, {39054, 65207}, {40582, 41013}, {40589, 225}, {40592, 40149}, {40602, 1826}, {40625, 14618}, {40626, 52623}, {40628, 1109}, {55067, 24006}, {62584, 28654}, {62647, 1089}
X(65568) = cevapoint of X(i) and X(j) for these (i,j): {3, 22118}, {283, 2193}, {1790, 18604}, {7117, 23189}
X(65568) = crosspoint of X(249) and X(4612)
X(65568) = crosssum of X(115) and X(57185)
X(65568) = crossdifference of every pair of points on line {4705, 55197}
X(65568) = barycentric product X(i)*X(j) for these {i,j}: {3, 261}, {21, 1444}, {27, 6514}, {48, 52379}, {58, 332}, {60, 69}, {63, 2185}, {77, 1098}, {78, 757}, {81, 1812}, {86, 283}, {99, 23189}, {184, 18021}, {212, 873}, {219, 1509}, {222, 7058}, {249, 26932}, {255, 57779}, {270, 326}, {274, 2193}, {284, 17206}, {304, 2150}, {314, 1437}, {333, 1790}, {345, 593}, {348, 7054}, {394, 46103}, {521, 52935}, {552, 1260}, {645, 7254}, {647, 55196}, {652, 4610}, {763, 3694}, {849, 3718}, {905, 4612}, {1014, 1792}, {1101, 17880}, {1265, 7341}, {1364, 18020}, {1414, 57081}, {1434, 2327}, {1789, 56934}, {1797, 30606}, {1804, 59482}, {1808, 33295}, {1946, 4623}, {2170, 62719}, {2189, 3926}, {2318, 6628}, {2326, 7183}, {3270, 7340}, {3271, 47389}, {3737, 4592}, {3937, 6064}, {4025, 4636}, {4131, 52914}, {4267, 57853}, {4556, 6332}, {4558, 4560}, {4563, 7252}, {4565, 15411}, {4570, 17219}, {4573, 23090}, {4575, 18155}, {4590, 7117}, {4616, 58338}, {4625, 57134}, {4631, 22383}, {5546, 15419}, {6061, 7056}, {7004, 24041}, {18604, 31623}, {22056, 31620}, {22345, 52550}, {26856, 44717}, {34387, 47390}, {36054, 55231}, {52370, 57949}, {55207, 57129}
X(65568) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 56285}, {3, 12}, {6, 8736}, {8, 7141}, {11, 2970}, {21, 41013}, {48, 2171}, {55, 7140}, {58, 225}, {60, 4}, {63, 6358}, {69, 34388}, {78, 1089}, {81, 40149}, {86, 57809}, {110, 61178}, {184, 181}, {201, 1091}, {212, 756}, {219, 594}, {222, 6354}, {249, 46102}, {255, 201}, {261, 264}, {270, 158}, {274, 52575}, {283, 10}, {284, 1826}, {326, 57807}, {332, 313}, {345, 28654}, {394, 26942}, {521, 4036}, {577, 2197}, {593, 278}, {603, 1254}, {647, 55197}, {652, 4024}, {662, 65207}, {757, 273}, {849, 34}, {873, 57787}, {906, 21859}, {1092, 7066}, {1098, 318}, {1101, 7012}, {1259, 3695}, {1260, 6057}, {1333, 1880}, {1364, 125}, {1408, 1426}, {1425, 7314}, {1437, 65}, {1444, 1441}, {1509, 331}, {1789, 6757}, {1790, 226}, {1792, 3701}, {1793, 15065}, {1798, 60086}, {1800, 21077}, {1804, 6356}, {1808, 43534}, {1812, 321}, {1813, 4605}, {1819, 21075}, {1946, 4705}, {2150, 19}, {2185, 92}, {2189, 393}, {2193, 37}, {2194, 1824}, {2206, 57652}, {2289, 3949}, {2318, 6535}, {2327, 2321}, {2328, 53008}, {3270, 4092}, {3271, 8754}, {3561, 56327}, {3690, 6058}, {3719, 52369}, {3737, 24006}, {3937, 1365}, {3955, 7211}, {4091, 57243}, {4225, 56827}, {4267, 429}, {4556, 653}, {4558, 4552}, {4560, 14618}, {4565, 52607}, {4575, 4551}, {4587, 4103}, {4610, 46404}, {4612, 6335}, {4636, 1897}, {5009, 1874}, {6056, 3690}, {6061, 7046}, {6332, 52623}, {6514, 306}, {7004, 1109}, {7053, 6046}, {7054, 281}, {7058, 7017}, {7099, 7147}, {7117, 115}, {7125, 37755}, {7193, 7235}, {7215, 1367}, {7252, 2501}, {7254, 7178}, {7335, 1425}, {7341, 1119}, {7342, 1398}, {14575, 61364}, {17104, 1825}, {17206, 349}, {17219, 21207}, {17880, 23994}, {18021, 18022}, {18604, 1214}, {20753, 7237}, {20803, 51879}, {22074, 21810}, {22096, 61052}, {22118, 56325}, {22345, 52567}, {22361, 21674}, {22379, 51663}, {22383, 57185}, {23090, 3700}, {23145, 21958}, {23189, 523}, {23357, 7115}, {23609, 4183}, {26932, 338}, {30576, 37790}, {30606, 46109}, {32661, 4559}, {36054, 55232}, {37140, 65329}, {41608, 41538}, {46103, 2052}, {46882, 1865}, {47390, 59}, {52370, 762}, {52379, 1969}, {52425, 1500}, {52935, 18026}, {54417, 1867}, {55117, 13853}, {55196, 6331}, {56269, 41508}, {57042, 21721}, {57081, 4086}, {57129, 55208}, {57134, 4041}, {57241, 4064}, {57657, 2333}, {57736, 52383}, {57779, 57806}, {61054, 20975}
X(65568) = {X(593),X(7054)}-harmonic conjugate of X(2185)
X(65569) lies on these lines: {1, 21}, {2, 1081}, {9, 5362}, {15, 42701}, {48, 19299}, {75, 2154}, {100, 51688}, {533, 3578}, {618, 39150}, {1082, 2307}, {1094, 51806}, {1653, 5367}, {2153, 18722}, {2173, 15772}, {3180, 19551}, {3218, 5240}, {3639, 54357}, {4467, 23870}, {7026, 21739}, {10651, 33108}, {14206, 51805}, {17402, 56934}, {17484, 51271}, {17494, 54023}, {17781, 53588}, {19772, 36929}, {33529, 40999}, {37833, 64153}, {39153, 54378}, {41804, 41887}, {54402, 55399}, {54403, 55400}, {54437, 55405}, {54438, 55406}
X(65569) = isogonal conjugate of X(2153)
X(65569) = isotomic conjugate of the isogonal conjugate of X(2151)
X(65569) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {7026, 21287}, {19551, 1330}, {33655, 2893}, {34079, 36928}
X(65569) = X(11073)-complementary conjugate of X(25639)
X(65569) = X(298)-Ceva conjugate of X(44688)
X(65569) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2153}, {2, 3457}, {3, 8737}, {4, 36296}, {6, 13}, {14, 11081}, {15, 11080}, {16, 1989}, {17, 11083}, {18, 11142}, {25, 40709}, {32, 300}, {51, 51275}, {61, 11139}, {62, 11082}, {74, 36299}, {94, 34395}, {110, 20578}, {111, 52039}, {187, 36307}, {249, 30452}, {265, 8740}, {299, 11060}, {395, 2381}, {396, 16459}, {463, 47481}, {471, 52153}, {476, 6138}, {512, 23895}, {523, 5995}, {532, 11084}, {604, 44690}, {619, 11089}, {647, 36306}, {690, 9206}, {1251, 33655}, {1495, 36308}, {1990, 39377}, {2152, 2166}, {2154, 51805}, {2160, 46073}, {2161, 39153}, {2306, 19551}, {2378, 11537}, {2379, 18777}, {2501, 38414}, {2981, 8014}, {3438, 51270}, {3440, 40578}, {3441, 41889}, {3458, 11078}, {3489, 51276}, {5318, 41892}, {5612, 11071}, {5618, 57122}, {5994, 23283}, {6104, 11087}, {6110, 39380}, {6111, 11079}, {6116, 11077}, {6137, 36839}, {6151, 61370}, {6344, 46113}, {8603, 11581}, {8738, 50465}, {8739, 10217}, {8741, 50468}, {8838, 21461}, {8882, 44713}, {10630, 30454}, {10641, 52204}, {11063, 46072}, {11072, 39151}, {11073, 42677}, {11075, 46071}, {11085, 36208}, {11086, 36211}, {11088, 11601}, {14358, 42623}, {14373, 40581}, {14560, 23871}, {14579, 51267}, {14642, 44702}, {15475, 17403}, {16770, 21462}, {18384, 44719}, {19780, 53029}, {23588, 52342}, {23964, 41997}, {32586, 46925}, {34537, 41993}, {40355, 41888}, {40384, 41995}, {51446, 59209}, {55221, 60051}
X(65569) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 2153}, {9, 13}, {244, 20578}, {3161, 44690}, {6376, 300}, {6505, 40709}, {10639, 3383}, {11597, 2152}, {30471, 75}, {32664, 3457}, {34544, 16}, {35443, 1109}, {36033, 36296}, {36103, 8737}, {38993, 661}, {39052, 36306}, {39054, 23895}, {40579, 2166}, {40580, 1}, {40581, 51805}, {40584, 39153}, {41888, 14206}, {43961, 1577}, {47898, 24006}
X(65569) = cevapoint of X(1) and X(19298)
X(65569) = crosssum of X(6) and X(42623)
X(65569) = trilinear pole of line {32679, 54027}
X(65569) = barycentric product X(i)*X(j) for these {i,j}: {1, 298}, {7, 44688}, {15, 75}, {63, 470}, {76, 2151}, {92, 44718}, {299, 51806}, {300, 1094}, {301, 6149}, {303, 3384}, {304, 8739}, {319, 39152}, {320, 46077}, {561, 34394}, {662, 23870}, {799, 6137}, {811, 60010}, {1577, 17402}, {1969, 46112}, {2153, 11129}, {2154, 7799}, {2167, 33529}, {2349, 41887}, {3179, 46175}, {6117, 62277}, {6782, 8773}, {9204, 36085}, {19604, 44725}, {19611, 44700}, {23896, 32679}, {24041, 30465}, {34390, 35198}, {37773, 40713}, {40440, 44711}, {40710, 52414}
X(65569) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 13}, {6, 2153}, {8, 44690}, {14, 2166}, {15, 1}, {16, 51805}, {19, 8737}, {31, 3457}, {35, 46073}, {36, 39153}, {48, 36296}, {50, 2152}, {62, 3383}, {63, 40709}, {75, 300}, {162, 36306}, {163, 5995}, {202, 3179}, {298, 75}, {301, 63759}, {470, 92}, {661, 20578}, {662, 23895}, {896, 52039}, {897, 36307}, {1094, 15}, {1095, 36208}, {1250, 19551}, {1749, 51267}, {1895, 44702}, {2151, 6}, {2152, 11081}, {2153, 11080}, {2154, 1989}, {2167, 51275}, {2173, 36299}, {2307, 33655}, {2349, 36308}, {2624, 6138}, {2632, 41997}, {2643, 30452}, {3200, 35198}, {3384, 18}, {4117, 41993}, {4575, 38414}, {5239, 36933}, {5353, 39151}, {5357, 42677}, {5616, 1749}, {5994, 32678}, {6110, 1784}, {6126, 46071}, {6137, 661}, {6149, 16}, {6782, 1733}, {8739, 19}, {11086, 2154}, {17402, 662}, {19298, 40578}, {19299, 41889}, {19373, 2306}, {23870, 1577}, {23896, 32680}, {30465, 1109}, {32679, 23871}, {33529, 14213}, {34394, 31}, {35198, 62}, {35199, 6104}, {35200, 39377}, {35201, 6111}, {36072, 54026}, {36142, 9206}, {36209, 51806}, {36309, 36129}, {37773, 1081}, {38413, 36061}, {39152, 79}, {41887, 14206}, {42074, 41995}, {42081, 30454}, {44688, 8}, {44700, 1895}, {44706, 44713}, {44711, 44706}, {44718, 63}, {44725, 44720}, {46075, 50148}, {46077, 80}, {46112, 48}, {51801, 6116}, {51802, 5612}, {51804, 46072}, {51805, 36211}, {51806, 14}, {52414, 471}, {54027, 54015}, {60010, 656}
X(65569) = {X(9),X(51976)}-harmonic conjugate of X(5362)
X(65570) lies on these lines: {1, 21}, {2, 554}, {9, 5367}, {16, 42701}, {48, 19298}, {75, 2153}, {100, 51690}, {532, 3578}, {559, 3219}, {619, 39151}, {1095, 51805}, {1652, 5362}, {2154, 18722}, {2173, 15771}, {3181, 7126}, {3218, 5239}, {3638, 54357}, {4467, 23871}, {7043, 21739}, {10652, 33108}, {14206, 51806}, {17403, 56934}, {17484, 51264}, {17494, 54021}, {17781, 53589}, {19773, 36928}, {33530, 40999}, {37830, 64153}, {39152, 54379}, {41804, 41888}, {54402, 55400}, {54403, 55399}, {54437, 55406}, {54438, 55405}
X(65570) = isogonal conjugate of X(2154)
X(65570) = complement of the isogonal conjugate of X(42624)
X(65570) = isotomic conjugate of the isogonal conjugate of X(2152)
X(65570) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {7043, 21287}, {7052, 2893}, {7126, 1330}, {34079, 36929}
X(65570) = X(i)-complementary conjugate of X(j) for these (i,j): {7150, 141}, {11072, 25639}, {42624, 10}
X(65570) = X(299)-Ceva conjugate of X(44689)
X(65570) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2154}, {2, 3458}, {3, 8738}, {4, 36297}, {6, 14}, {13, 11086}, {15, 1989}, {16, 11085}, {17, 11141}, {18, 11088}, {25, 40710}, {32, 301}, {51, 51268}, {61, 11087}, {62, 11138}, {74, 36298}, {94, 34394}, {110, 20579}, {111, 52040}, {187, 36310}, {249, 30453}, {265, 8739}, {298, 11060}, {395, 16460}, {396, 2380}, {462, 47482}, {470, 52153}, {476, 6137}, {512, 23896}, {523, 5994}, {533, 11089}, {604, 44691}, {618, 11084}, {647, 36309}, {690, 9207}, {1495, 36311}, {1990, 39378}, {2151, 2166}, {2153, 51806}, {2160, 46077}, {2161, 39152}, {2378, 18776}, {2379, 11549}, {2501, 38413}, {2981, 61371}, {3439, 51277}, {3441, 40579}, {3457, 11092}, {3490, 51269}, {5321, 41893}, {5616, 11071}, {5619, 57123}, {5995, 23284}, {6105, 11082}, {6110, 11079}, {6111, 39381}, {6117, 11077}, {6138, 36840}, {6151, 8015}, {6344, 46112}, {7052, 33653}, {7126, 33654}, {8604, 11582}, {8737, 50466}, {8740, 10218}, {8742, 50469}, {8836, 21462}, {8882, 44714}, {10630, 30455}, {10642, 52203}, {11063, 46076}, {11072, 42680}, {11073, 39150}, {11075, 46075}, {11080, 36209}, {11081, 36210}, {11083, 11600}, {14372, 40580}, {14560, 23870}, {14579, 51274}, {14642, 44703}, {15475, 17402}, {16771, 21461}, {18384, 44718}, {19781, 53030}, {23588, 52343}, {23964, 41998}, {32585, 46926}, {34537, 41994}, {40355, 41887}, {40384, 41996}, {51447, 59210}, {55223, 60052}
X(65570) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 2154}, {9, 14}, {244, 20579}, {3161, 44691}, {6376, 301}, {6505, 40710}, {10640, 3376}, {11597, 2151}, {30472, 75}, {32664, 3458}, {34544, 15}, {35444, 1109}, {36033, 36297}, {36103, 8738}, {38994, 661}, {39052, 36309}, {39054, 23896}, {40578, 2166}, {40580, 51806}, {40581, 1}, {40584, 39152}, {41887, 14206}, {43962, 1577}, {47899, 24006}
X(65570) = cevapoint of X(1) and X(19299)
X(65570) = trilinear pole of line {32679, 54025}
X(65570) = barycentric product X(i)*X(j) for these {i,j}: {1, 299}, {7, 44689}, {16, 75}, {63, 471}, {76, 2152}, {92, 44719}, {298, 51805}, {300, 6149}, {301, 1095}, {302, 3375}, {304, 8740}, {319, 39153}, {320, 46073}, {561, 34395}, {662, 23871}, {799, 6138}, {811, 60009}, {1577, 17403}, {1969, 46113}, {2153, 7799}, {2154, 11128}, {2167, 33530}, {2349, 41888}, {6116, 62277}, {6783, 8773}, {9205, 36085}, {19604, 44726}, {19611, 44701}, {23895, 32679}, {24041, 30468}, {34389, 35199}, {37772, 40714}, {40440, 44712}, {40709, 52414}, {41225, 46176}
X(65570) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 14}, {6, 2154}, {8, 44691}, {13, 2166}, {15, 51806}, {16, 1}, {19, 8738}, {31, 3458}, {35, 46077}, {36, 39152}, {48, 36297}, {50, 2151}, {61, 3376}, {63, 40710}, {75, 301}, {162, 36309}, {163, 5994}, {203, 41225}, {299, 75}, {300, 63759}, {471, 92}, {661, 20579}, {662, 23896}, {896, 52040}, {897, 36310}, {1094, 36209}, {1095, 16}, {1749, 51274}, {1895, 44703}, {2151, 11086}, {2152, 6}, {2153, 1989}, {2154, 11085}, {2167, 51268}, {2173, 36298}, {2349, 36311}, {2624, 6137}, {2632, 41998}, {2643, 30453}, {3201, 35199}, {3375, 17}, {4117, 41994}, {4575, 38413}, {5240, 36932}, {5353, 42680}, {5357, 39150}, {5612, 1749}, {5995, 32678}, {6111, 1784}, {6126, 46075}, {6138, 661}, {6149, 15}, {6783, 1733}, {7005, 7150}, {7051, 33654}, {7127, 33653}, {7150, 14359}, {8740, 19}, {10638, 7126}, {11081, 2153}, {17403, 662}, {19299, 40579}, {23871, 1577}, {23895, 32680}, {30468, 1109}, {32679, 23870}, {33530, 14213}, {34395, 31}, {35198, 6105}, {35199, 61}, {35200, 39378}, {35201, 6110}, {36073, 54024}, {36142, 9207}, {36208, 51805}, {36306, 36129}, {37772, 554}, {38414, 36061}, {39153, 79}, {41888, 14206}, {42074, 41996}, {42081, 30455}, {44689, 8}, {44701, 1895}, {44706, 44714}, {44712, 44706}, {44719, 63}, {44726, 44720}, {46071, 50148}, {46073, 80}, {46113, 48}, {51801, 6117}, {51802, 5616}, {51804, 46076}, {51805, 13}, {51806, 36210}, {52414, 470}, {54025, 54014}, {60009, 656}
X(65570) = {X(9),X(51977)}-harmonic conjugate of X(5367)
X(65571) lies on these lines: {1, 21}, {2, 1082}, {554, 17483}, {559, 3218}, {662, 2154}, {908, 53588}, {1081, 31019}, {2152, 16568}, {3181, 33653}, {3219, 5239}, {3376, 63760}, {3434, 37833}, {3639, 5249}, {5057, 51749}, {5353, 54444}, {10651, 20292}, {11680, 51750}, {23958, 37773}, {25722, 30356}, {27003, 37772}, {30338, 36845}, {33393, 42678}, {33395, 42681}, {37795, 62998}, {37830, 44447}, {37831, 40713}, {53589, 59491}, {54435, 55400}, {54436, 55399}
X(65571) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {33653, 1330}, {33654, 2893}
X(65571) = X(i)-isoconjugate of X(j) for these (i,j): {2, 21461}, {3, 8741}, {4, 32585}, {6, 17}, {13, 8603}, {14, 51890}, {15, 11139}, {16, 11087}, {18, 51547}, {25, 40712}, {32, 34389}, {54, 36300}, {62, 2963}, {99, 58869}, {110, 55199}, {396, 34321}, {472, 51477}, {512, 32036}, {523, 16806}, {647, 65346}, {669, 55220}, {930, 55223}, {2154, 3375}, {2380, 40667}, {2981, 36304}, {3458, 19779}, {3519, 10641}, {6137, 60051}, {8740, 52203}, {10677, 11082}, {11080, 37848}, {11081, 11600}, {11144, 21462}, {23302, 57384}, {23873, 32737}, {52930, 55201}
X(65571) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 17}, {244, 55199}, {600, 42676}, {5507, 42679}, {6376, 34389}, {6505, 40712}, {10640, 1}, {32664, 21461}, {36033, 32585}, {36103, 8741}, {38986, 58869}, {39052, 65346}, {39054, 32036}, {40581, 3375}, {62600, 75}
X(65571) = barycentric product X(i)*X(j) for these {i,j}: {1, 302}, {61, 75}, {63, 473}, {92, 52348}, {299, 3376}, {301, 35199}, {304, 10642}, {661, 55198}, {662, 23872}, {799, 55221}, {1577, 52605}, {2154, 11132}, {2964, 34390}, {32791, 42681}, {32792, 42678}, {51806, 52220}, {52671, 62277}
X(65571) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 17}, {16, 3375}, {18, 2962}, {19, 8741}, {31, 21461}, {48, 32585}, {61, 1}, {63, 40712}, {75, 34389}, {162, 65346}, {163, 16806}, {302, 75}, {473, 92}, {661, 55199}, {662, 32036}, {798, 58869}, {799, 55220}, {1094, 37848}, {1953, 36300}, {2151, 8603}, {2152, 51890}, {2153, 11139}, {2154, 11087}, {2964, 62}, {3201, 1095}, {3299, 42676}, {3301, 42679}, {3376, 14}, {6104, 51805}, {10642, 19}, {11083, 2153}, {11135, 2152}, {11137, 2151}, {11141, 2154}, {16807, 36148}, {23872, 1577}, {35198, 10677}, {35199, 16}, {42678, 3302}, {42681, 3300}, {51806, 11600}, {52348, 63}, {52605, 662}, {55198, 799}, {55221, 661}, {63760, 52349}
X(65571) = {X(1082),X(5240)}-harmonic conjugate of X(2)
X(65572) lies on these lines: {1, 21}, {2, 559}, {554, 31019}, {662, 2153}, {908, 53589}, {1081, 17483}, {1082, 3218}, {1251, 3180}, {2151, 16568}, {3219, 5240}, {3383, 63760}, {3434, 37830}, {3638, 5249}, {5057, 51750}, {5357, 54444}, {10652, 20292}, {11680, 51749}, {23958, 37772}, {25722, 30357}, {27003, 37773}, {30339, 36845}, {33392, 42679}, {33394, 42676}, {37794, 62998}, {37833, 44447}, {37834, 40714}, {53588, 59491}, {54435, 55399}, {54436, 55400}
X(65572) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1251, 1330}, {2306, 2893}
X(65572) = X(i)-isoconjugate of X(j) for these (i,j): {2, 21462}, {3, 8742}, {4, 32586}, {6, 18}, {13, 51891}, {14, 8604}, {15, 11082}, {16, 11138}, {17, 51546}, {25, 40711}, {32, 34390}, {54, 36301}, {61, 2963}, {99, 58870}, {110, 55201}, {395, 34322}, {473, 51477}, {512, 32037}, {523, 16807}, {647, 65347}, {669, 55222}, {930, 55221}, {2153, 3384}, {2381, 40668}, {3457, 19778}, {3519, 10642}, {6138, 60052}, {6151, 36305}, {8739, 52204}, {10678, 11087}, {11085, 37850}, {11086, 11601}, {11143, 21461}, {23303, 57385}, {23872, 32737}, {52929, 55199}
X(65572) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 18}, {244, 55201}, {600, 42678}, {5507, 42681}, {6376, 34390}, {6505, 40711}, {10639, 1}, {32664, 21462}, {36033, 32586}, {36103, 8742}, {38986, 58870}, {39052, 65347}, {39054, 32037}, {40580, 3384}, {62601, 75}
X(65572) = barycentric product X(i)*X(j) for these {i,j}: {1, 303}, {62, 75}, {63, 472}, {92, 52349}, {298, 3383}, {300, 35198}, {304, 10641}, {661, 55200}, {662, 23873}, {799, 55223}, {1577, 52606}, {2153, 11133}, {2964, 34389}, {32791, 42679}, {32792, 42676}, {51805, 52221}, {52670, 62277}
X(65572) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 18}, {15, 3384}, {17, 2962}, {19, 8742}, {31, 21462}, {48, 32586}, {62, 1}, {63, 40711}, {75, 34390}, {162, 65347}, {163, 16807}, {303, 75}, {472, 92}, {661, 55201}, {662, 32037}, {798, 58870}, {799, 55222}, {1095, 37850}, {1953, 36301}, {2151, 51891}, {2152, 8604}, {2153, 11082}, {2154, 11138}, {2964, 61}, {3200, 1094}, {3299, 42678}, {3301, 42681}, {3383, 13}, {6105, 51806}, {10641, 19}, {11088, 2154}, {11134, 2152}, {11136, 2151}, {11142, 2153}, {16806, 36148}, {23873, 1577}, {35198, 15}, {35199, 10678}, {42676, 3302}, {42679, 3300}, {51805, 11601}, {52349, 63}, {52606, 662}, {55200, 799}, {55223, 661}, {63760, 52348}
X(65572) = {X(559),X(5239)}-harmonic conjugate of X(2)
X(65573) lies on these lines: {21, 4570}, {59, 518}, {100, 522}, {101, 21390}, {109, 53685}, {190, 53644}, {523, 4552}, {651, 660}, {664, 57167}, {860, 17757}, {934, 2748}, {960, 57141}, {1014, 4620}, {1018, 4171}, {1026, 24029}, {1110, 1736}, {1252, 5089}, {1284, 3932}, {1431, 5378}, {1447, 3263}, {1897, 57089}, {2283, 23343}, {2346, 5377}, {2752, 59101}, {3952, 23067}, {4017, 4551}, {4069, 65233}, {4578, 65159}, {4581, 50039}, {5260, 55091}, {5692, 62741}, {6516, 57054}, {6986, 14887}, {7451, 56881}, {8543, 62721}, {12081, 22220}, {14594, 65313}, {17780, 23981}, {47318, 57093}, {51506, 63755}, {62235, 63918}
X(65573) = isogonal conjugate of X(18191)
X(65573) = isogonal conjugate of the complement of X(3909)
X(65573) = X(31615)-Ceva conjugate of X(21859)
X(65573) = X(i)-cross conjugate of X(j) for these (i,j): {10, 100}, {37, 4552}, {65, 4551}, {72, 3952}, {209, 1783}, {210, 1018}, {1400, 651}, {1402, 4559}, {2318, 644}, {3191, 1897}, {3694, 65233}, {21061, 190}, {21078, 4033}, {21859, 31615}, {22021, 65207}, {22275, 668}, {24053, 4632}, {41538, 61178}, {41539, 4566}, {56538, 835}, {60723, 4613}
X(65573) = X(i)-isoconjugate of X(j) for these (i,j): {1, 18191}, {6, 17197}, {9, 16726}, {11, 58}, {21, 244}, {25, 17219}, {27, 7117}, {28, 7004}, {29, 3937}, {41, 16727}, {55, 17205}, {60, 3120}, {81, 2170}, {86, 3271}, {109, 56283}, {110, 21132}, {163, 40166}, {261, 3122}, {270, 18210}, {283, 2969}, {284, 1086}, {314, 3248}, {332, 42067}, {333, 1015}, {513, 3737}, {514, 7252}, {521, 57200}, {522, 3733}, {593, 21044}, {643, 764}, {644, 8042}, {645, 21143}, {649, 4560}, {650, 1019}, {652, 17925}, {657, 17096}, {663, 7192}, {667, 18155}, {741, 4124}, {757, 4516}, {759, 53525}, {884, 23829}, {1014, 2310}, {1021, 3669}, {1043, 1357}, {1098, 53540}, {1111, 2194}, {1146, 1412}, {1172, 3942}, {1178, 4459}, {1333, 4858}, {1334, 61403}, {1358, 2328}, {1364, 8747}, {1396, 34591}, {1400, 26856}, {1408, 24026}, {1415, 40213}, {1434, 14936}, {1474, 26932}, {1565, 2299}, {1790, 8735}, {1977, 28660}, {2053, 23824}, {2150, 16732}, {2185, 3125}, {2189, 4466}, {2203, 17880}, {2206, 34387}, {2287, 53538}, {2311, 27918}, {2319, 16742}, {2341, 53546}, {3063, 7199}, {3064, 7254}, {3121, 52379}, {3249, 62534}, {3285, 60578}, {3615, 53542}, {3676, 21789}, {3680, 18211}, {3900, 7203}, {4391, 57129}, {4556, 55195}, {4565, 42462}, {4570, 7336}, {4591, 52338}, {4610, 63462}, {5546, 6545}, {6332, 43925}, {6371, 57161}, {7054, 53545}, {7253, 43924}, {7257, 8027}, {7303, 40608}, {7341, 52335}, {7649, 23189}, {9315, 16759}, {11998, 53083}, {14432, 43926}, {16947, 23978}, {17187, 18101}, {21828, 60571}, {22096, 44130}, {22383, 57215}, {23989, 57657}, {27846, 56154}, {34589, 52150}, {38347, 39950}, {38365, 39734}, {42454, 43076}, {43923, 57081}, {43932, 58329}, {52375, 53524}, {52378, 64445}, {53521, 60568}
X(65573) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 18191}, {9, 17197}, {10, 11}, {11, 56283}, {12, 53566}, {37, 4858}, {115, 40166}, {223, 17205}, {226, 1565}, {244, 21132}, {478, 16726}, {1145, 14010}, {1146, 40213}, {1214, 1111}, {3160, 16727}, {5375, 4560}, {6505, 17219}, {6631, 18155}, {6741, 42455}, {8299, 4124}, {10001, 7199}, {15267, 53540}, {17761, 42454}, {34586, 53525}, {36908, 1358}, {39026, 3737}, {40582, 26856}, {40586, 2170}, {40590, 1086}, {40591, 7004}, {40599, 1146}, {40600, 3271}, {40603, 34387}, {40607, 4516}, {40611, 244}, {50330, 7336}, {51574, 26932}, {55060, 764}, {55064, 42462}, {56325, 16732}, {59577, 24026}, {62564, 17880}, {62566, 1090}, {62570, 23989}
X(65573) = cevapoint of X(i) and X(j) for these (i,j): {1, 53280}, {37, 4557}, {56, 61225}, {65, 4551}, {72, 23067}, {100, 5260}, {210, 1018}, {1402, 4559}, {3694, 4069}, {3952, 17751}
X(65573) = crosspoint of X(i) and X(j) for these (i,j): {765, 15742}, {4564, 4998}
X(65573) = crosssum of X(i) and X(j) for these (i,j): {244, 3937}, {2170, 3271}
X(65573) = trilinear pole of line {1018, 4551}
X(65573) = barycentric product X(i)*X(j) for these {i,j}: {10, 4564}, {12, 4567}, {37, 4998}, {59, 321}, {65, 1016}, {72, 46102}, {99, 21859}, {100, 4552}, {108, 52609}, {109, 4033}, {181, 4601}, {190, 4551}, {210, 1275}, {226, 765}, {306, 7012}, {313, 2149}, {349, 1110}, {523, 31615}, {643, 4605}, {644, 4566}, {646, 53321}, {651, 3952}, {658, 4069}, {664, 1018}, {668, 4559}, {756, 4620}, {762, 7340}, {934, 30730}, {1014, 61402}, {1020, 3699}, {1089, 52378}, {1214, 15742}, {1252, 1441}, {1262, 3701}, {1331, 65207}, {1332, 61178}, {1400, 7035}, {1402, 31625}, {1414, 4103}, {1415, 27808}, {1427, 4076}, {1446, 6065}, {1897, 65233}, {2171, 4600}, {2321, 7045}, {3694, 55346}, {3710, 7128}, {3930, 39293}, {3936, 52377}, {4017, 6632}, {4077, 59149}, {4086, 4619}, {4515, 59457}, {4554, 4557}, {4555, 61171}, {4570, 6358}, {4571, 52607}, {4573, 40521}, {4574, 18026}, {4705, 55194}, {4848, 5382}, {5376, 40663}, {5378, 16609}, {5379, 26942}, {5384, 16603}, {6335, 23067}, {6540, 61170}, {6606, 35310}, {6648, 61172}, {6649, 56257}, {7115, 20336}, {7178, 57731}, {7180, 57950}, {7206, 35049}, {7212, 65363}, {7239, 65291}, {21078, 57757}, {24027, 30713}, {36098, 65191}, {41013, 44717}, {41539, 63906}, {54952, 61161}, {61164, 65289}, {65196, 65217}
X(65573) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 17197}, {6, 18191}, {7, 16727}, {10, 4858}, {12, 16732}, {21, 26856}, {37, 11}, {42, 2170}, {56, 16726}, {57, 17205}, {59, 81}, {63, 17219}, {65, 1086}, {71, 7004}, {72, 26932}, {73, 3942}, {100, 4560}, {101, 3737}, {108, 17925}, {109, 1019}, {181, 3125}, {190, 18155}, {201, 4466}, {210, 1146}, {213, 3271}, {226, 1111}, {228, 7117}, {306, 17880}, {321, 34387}, {522, 40213}, {523, 40166}, {644, 7253}, {650, 56283}, {651, 7192}, {661, 21132}, {664, 7199}, {692, 7252}, {756, 21044}, {762, 4092}, {765, 333}, {906, 23189}, {934, 17096}, {1014, 61403}, {1016, 314}, {1018, 522}, {1020, 3676}, {1025, 23829}, {1042, 53538}, {1110, 284}, {1214, 1565}, {1252, 21}, {1254, 53545}, {1259, 16731}, {1262, 1014}, {1275, 57785}, {1284, 27918}, {1334, 2310}, {1376, 16759}, {1400, 244}, {1402, 1015}, {1403, 16742}, {1409, 3937}, {1415, 3733}, {1423, 23824}, {1427, 1358}, {1441, 23989}, {1461, 7203}, {1464, 53546}, {1500, 4516}, {1824, 8735}, {1880, 2969}, {1897, 57215}, {2149, 58}, {2171, 3120}, {2197, 18210}, {2238, 4124}, {2245, 53525}, {2295, 4459}, {2318, 34591}, {2321, 24026}, {2594, 7202}, {3125, 7336}, {3690, 53560}, {3694, 2968}, {3700, 42455}, {3701, 23978}, {3939, 1021}, {3950, 4939}, {3952, 4391}, {3970, 17059}, {3990, 1364}, {4017, 6545}, {4033, 35519}, {4041, 42462}, {4069, 3239}, {4077, 23100}, {4103, 4086}, {4115, 4985}, {4169, 4768}, {4171, 23615}, {4515, 4081}, {4516, 64445}, {4551, 514}, {4552, 693}, {4554, 52619}, {4557, 650}, {4559, 513}, {4564, 86}, {4566, 24002}, {4567, 261}, {4570, 2185}, {4571, 15411}, {4574, 521}, {4587, 57081}, {4600, 52379}, {4601, 18021}, {4605, 4077}, {4619, 1414}, {4620, 873}, {4674, 60578}, {4705, 55195}, {4730, 52338}, {4849, 4534}, {4878, 38375}, {4998, 274}, {5260, 40625}, {5378, 36800}, {5379, 46103}, {6065, 2287}, {6358, 21207}, {6516, 15419}, {6632, 7257}, {6649, 16737}, {7012, 27}, {7035, 28660}, {7045, 1434}, {7064, 36197}, {7115, 28}, {7180, 764}, {7239, 3810}, {7340, 57949}, {15742, 31623}, {17751, 40624}, {18098, 18101}, {18593, 4089}, {20616, 2486}, {20683, 17435}, {21011, 60804}, {21044, 1090}, {21061, 34589}, {21078, 124}, {21741, 53542}, {21794, 2611}, {21797, 55335}, {21801, 35015}, {21805, 4530}, {21821, 4542}, {21859, 523}, {21871, 38357}, {22276, 38345}, {23067, 905}, {23979, 1408}, {23990, 2194}, {24027, 1412}, {24029, 23788}, {24290, 52305}, {30730, 4397}, {31615, 99}, {31625, 40072}, {32674, 57200}, {35307, 21102}, {35309, 48278}, {35310, 6362}, {36059, 7254}, {36074, 4840}, {36147, 57161}, {36197, 5532}, {37558, 24237}, {40149, 2973}, {40521, 3700}, {40988, 51402}, {41539, 4904}, {43924, 8042}, {44710, 16697}, {44717, 1444}, {46102, 286}, {50487, 63462}, {51641, 21143}, {52139, 11998}, {52370, 3270}, {52377, 24624}, {52378, 757}, {52609, 35518}, {52923, 27527}, {53321, 3669}, {53562, 46384}, {55100, 64416}, {55194, 4623}, {56183, 17926}, {56325, 53566}, {57731, 645}, {57808, 17878}, {57950, 62534}, {59149, 643}, {59151, 4637}, {59305, 53526}, {61163, 48264}, {61164, 3907}, {61166, 21120}, {61168, 17420}, {61170, 4977}, {61171, 900}, {61172, 3910}, {61178, 17924}, {61364, 3121}, {61402, 3701}, {62752, 48398}, {64169, 38347}, {65203, 57125}, {65207, 46107}, {65233, 4025}
X(65573) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {765, 4564, 59}, {2283, 23343, 62669}
X(65574) lies on these lines: {10, 6356}, {12, 53008}, {37, 2331}, {40, 64}, {65, 53013}, {100, 5896}, {201, 210}, {253, 322}, {459, 1148}, {1073, 9708}, {1301, 43659}, {1807, 52158}, {1824, 31942}, {2968, 16388}, {3695, 4082}, {3949, 4515}, {3998, 57414}, {4866, 8282}, {5295, 52566}, {6526, 41013}, {19614, 20280}, {40933, 52389}
X(65574) = reflection of X(40933X(65574) = ) in X(52389)
X(65574) = X(44692)-Ceva conjugate of X(53012)
X(65574) = X(i)-cross conjugate of X(j) for these (i,j): {1254, 10}, {1824, 37}
X(65574) = X(i)-isoconjugate of X(j) for these (i,j): {3, 44698}, {20, 58}, {21, 1394}, {27, 15905}, {60, 5930}, {81, 610}, {86, 154}, {110, 21172}, {204, 1444}, {283, 44696}, {284, 18623}, {593, 8804}, {649, 36841}, {757, 3198}, {849, 52345}, {1014, 7070}, {1098, 40933}, {1249, 1790}, {1333, 18750}, {1408, 52346}, {1412, 27382}, {1437, 1895}, {1459, 52913}, {1474, 37669}, {1812, 3213}, {1919, 55224}, {2185, 30456}, {2193, 44697}, {2194, 33673}, {2206, 14615}, {2360, 41084}, {3172, 17206}, {4025, 57153}, {4091, 57219}, {4556, 6587}, {4565, 14331}, {4610, 62176}, {7054, 36908}, {7338, 52158}, {8747, 35602}, {15291, 18653}, {16887, 51508}, {17167, 33629}, {38808, 44709}, {52612, 62175}, {52919, 58796}
X(65574) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 20}, {37, 18750}, {244, 21172}, {1214, 33673}, {3343, 1444}, {4075, 52345}, {5375, 36841}, {9296, 55224}, {14092, 81}, {14390, 18604}, {15267, 40933}, {36103, 44698}, {40586, 610}, {40590, 18623}, {40599, 27382}, {40600, 154}, {40603, 14615}, {40607, 3198}, {40611, 1394}, {40839, 286}, {47345, 44697}, {51574, 37669}, {55064, 14331}, {55065, 17898}, {59577, 52346}
X(65574) = crosspoint of X(i) and X(j) for these (i,j): {253, 2184}, {8806, 39130}
X(65574) = crosssum of X(154) and X(610)
X(65574) = trilinear pole of line {4171, 55212}
X(65574) = barycentric product X(i)*X(j) for these {i,j}: {10, 2184}, {37, 253}, {42, 57921}, {64, 321}, {72, 459}, {92, 53012}, {100, 58759}, {213, 41530}, {226, 44692}, {228, 52581}, {313, 2155}, {523, 56235}, {1073, 41013}, {1441, 30457}, {1824, 34403}, {1826, 19611}, {2171, 5931}, {2321, 8809}, {2333, 57780}, {3998, 6526}, {4036, 46639}, {4064, 65224}, {4705, 44326}, {6358, 52158}, {13157, 56254}, {20336, 41489}, {27801, 33581}, {31942, 42699}, {53639, 55232}, {57109, 65181}
X(65574) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 18750}, {19, 44698}, {37, 20}, {42, 610}, {64, 81}, {65, 18623}, {72, 37669}, {100, 36841}, {181, 30456}, {210, 27382}, {213, 154}, {225, 44697}, {226, 33673}, {228, 15905}, {253, 274}, {321, 14615}, {459, 286}, {594, 52345}, {661, 21172}, {668, 55224}, {756, 8804}, {1073, 1444}, {1254, 36908}, {1334, 7070}, {1400, 1394}, {1500, 3198}, {1783, 52913}, {1824, 1249}, {1826, 1895}, {1880, 44696}, {1903, 41084}, {2155, 58}, {2171, 5930}, {2184, 86}, {2321, 52346}, {2333, 204}, {3198, 36413}, {3695, 42699}, {3990, 35602}, {4024, 17898}, {4041, 14331}, {4705, 6587}, {5931, 52379}, {8798, 16697}, {8804, 1097}, {8809, 1434}, {14379, 18604}, {14642, 1437}, {19611, 17206}, {19614, 1790}, {21807, 42459}, {30456, 7338}, {30457, 21}, {33581, 1333}, {36079, 4637}, {41013, 15466}, {41088, 1817}, {41489, 28}, {41530, 6385}, {44326, 4623}, {44692, 333}, {46639, 52935}, {50487, 62176}, {52158, 2185}, {52566, 18603}, {52581, 57796}, {53012, 63}, {53639, 55231}, {55232, 8057}, {56235, 99}, {57109, 20580}, {57652, 3213}, {57921, 310}, {58759, 693}, {61349, 5317}
X(65574) = {X(2184),X(44692)}-harmonic conjugate of X(64)
X(65575) lies on these lines: {21, 522}, {28, 59915}, {58, 21173}, {81, 1459}, {86, 46402}, {100, 4570}, {250, 37966}, {333, 20293}, {514, 57246}, {523, 42741}, {657, 2287}, {659, 3004}, {934, 59041}, {1010, 48243}, {1021, 57081}, {1325, 62495}, {1444, 16755}, {1817, 47785}, {2303, 6586}, {3737, 3738}, {4036, 5260}, {4184, 48242}, {4225, 39199}, {4228, 47798}, {4397, 58332}, {4560, 14024}, {4990, 7253}, {5235, 20316}, {5253, 31947}, {9000, 41610}, {11110, 48173}, {13588, 47828}, {14005, 48228}, {16158, 38469}, {16754, 57200}, {17557, 48186}, {27174, 27486}, {32475, 64720}, {32676, 65253}, {36068, 65362}, {39210, 45671}, {46041, 52380}, {46385, 57189}, {48303, 64415}, {54239, 54340}, {56000, 57237}, {57227, 57241}
X(65575) = midpoint of X(21) and X(57093)
X(65575) = X(i)-Ceva conjugate of X(j) for these (i,j): {261, 26856}, {4612, 7054}, {4636, 21}, {52914, 60}, {52935, 2185}
X(65575) = X(i)-isoconjugate of X(j) for these (i,j): {6, 4605}, {10, 53321}, {12, 109}, {37, 1020}, {42, 4566}, {57, 21859}, {65, 4551}, {71, 52607}, {73, 61178}, {100, 1254}, {101, 6354}, {108, 201}, {115, 4619}, {181, 664}, {225, 23067}, {226, 4559}, {227, 61229}, {269, 40521}, {594, 1461}, {644, 7147}, {651, 2171}, {653, 2197}, {658, 1500}, {756, 934}, {762, 4637}, {872, 4569}, {1018, 1427}, {1042, 3952}, {1262, 4024}, {1275, 4079}, {1400, 4552}, {1407, 4103}, {1409, 65207}, {1415, 6358}, {1425, 1897}, {1783, 37755}, {1813, 8736}, {1826, 52610}, {1880, 65233}, {3668, 4557}, {3690, 36118}, {3699, 7143}, {3939, 6046}, {3949, 32714}, {4036, 24027}, {4092, 59151}, {4564, 57185}, {4572, 61364}, {4626, 7064}, {4636, 7314}, {4705, 7045}, {6057, 6614}, {6356, 8750}, {7066, 36127}, {7109, 46406}, {7115, 57243}, {7128, 55232}, {7211, 29055}, {20617, 56194}, {20653, 52928}, {21015, 59128}, {21671, 59090}, {21675, 32651}, {21794, 38340}, {21853, 65175}, {23979, 52623}, {24033, 57109}, {26942, 32674}, {30730, 62192}, {36059, 56285}, {36098, 52567}, {46102, 55234}, {51663, 52377}, {52378, 55197}, {52560, 61169}, {52931, 59305}, {55230, 55346}
X(65575) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 4605}, {11, 12}, {521, 57109}, {522, 4036}, {656, 4064}, {1015, 6354}, {1146, 6358}, {2968, 1089}, {5452, 21859}, {6600, 40521}, {7358, 3695}, {8054, 1254}, {14714, 756}, {17115, 4705}, {17197, 41003}, {20620, 56285}, {24771, 4103}, {26932, 6356}, {34467, 1425}, {35072, 26942}, {35508, 594}, {38966, 7140}, {38983, 201}, {38991, 2171}, {38992, 52567}, {39006, 37755}, {39007, 41393}, {39025, 181}, {40582, 4552}, {40589, 1020}, {40592, 4566}, {40602, 4551}, {40617, 6046}, {40620, 1446}, {40624, 34388}, {40625, 1441}, {40626, 57807}, {40628, 57243}, {55065, 1091}, {55067, 226}, {55068, 10}
X(65575) = cevapoint of X(i) and X(j) for these (i,j): {1, 34462}, {1021, 21789}, {3737, 23189}
X(65575) = crosspoint of X(i) and X(j) for these (i,j): {261, 4612}, {662, 40412}, {2185, 52935}, {52914, 59482}
X(65575) = crosssum of X(i) and X(j) for these (i,j): {181, 57185}, {512, 40977}, {661, 40952}, {756, 55232}, {2171, 4705}, {21813, 50487}
X(65575) = crossdifference of every pair of points on line {1254, 1500}
X(65575) = barycentric product X(i)*X(j) for these {i,j}: {11, 4612}, {21, 4560}, {27, 57081}, {28, 15411}, {60, 4391}, {81, 7253}, {86, 1021}, {100, 26856}, {107, 16731}, {249, 42455}, {261, 650}, {270, 6332}, {274, 21789}, {283, 57215}, {284, 18155}, {286, 23090}, {314, 7252}, {333, 3737}, {513, 7058}, {514, 1098}, {521, 46103}, {522, 2185}, {552, 4130}, {593, 4397}, {643, 17197}, {645, 18191}, {652, 57779}, {657, 873}, {663, 52379}, {693, 7054}, {757, 3239}, {849, 52622}, {905, 59482}, {1019, 1043}, {1146, 52935}, {1434, 58329}, {1444, 17926}, {1509, 3900}, {1792, 17925}, {2150, 35519}, {2189, 35518}, {2287, 7192}, {2310, 4610}, {2326, 4025}, {2328, 7199}, {3063, 18021}, {3270, 55231}, {3271, 4631}, {3904, 52380}, {4131, 36421}, {4171, 6628}, {4183, 15419}, {4511, 60571}, {4516, 55196}, {4524, 57949}, {4529, 7303}, {4556, 24026}, {4567, 56283}, {4570, 40213}, {4578, 61403}, {4623, 14936}, {4636, 4858}, {6061, 24002}, {7256, 16726}, {7259, 17205}, {17096, 56182}, {17185, 57161}, {17219, 65201}, {23189, 31623}, {23838, 30606}, {23983, 52920}, {24031, 52919}, {24041, 42462}, {26932, 52914}, {44129, 57134}, {46880, 57125}, {52326, 52550}, {57158, 64457}
X(65575) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 4605}, {21, 4552}, {28, 52607}, {29, 65207}, {55, 21859}, {58, 1020}, {60, 651}, {81, 4566}, {200, 4103}, {220, 40521}, {261, 4554}, {270, 653}, {283, 65233}, {284, 4551}, {513, 6354}, {521, 26942}, {522, 6358}, {552, 36838}, {593, 934}, {649, 1254}, {650, 12}, {652, 201}, {657, 756}, {663, 2171}, {757, 658}, {763, 4616}, {849, 1461}, {873, 46406}, {905, 6356}, {1019, 3668}, {1021, 10}, {1043, 4033}, {1098, 190}, {1101, 4619}, {1146, 4036}, {1172, 61178}, {1333, 53321}, {1437, 52610}, {1459, 37755}, {1509, 4569}, {1792, 52609}, {1946, 2197}, {2150, 109}, {2185, 664}, {2189, 108}, {2193, 23067}, {2194, 4559}, {2287, 3952}, {2310, 4024}, {2326, 1897}, {2328, 1018}, {3063, 181}, {3064, 56285}, {3239, 1089}, {3270, 55232}, {3271, 57185}, {3287, 7211}, {3669, 6046}, {3733, 1427}, {3737, 226}, {3900, 594}, {4024, 1091}, {4130, 6057}, {4171, 6535}, {4391, 34388}, {4397, 28654}, {4435, 7235}, {4477, 21021}, {4516, 55197}, {4524, 762}, {4556, 7045}, {4560, 1441}, {4578, 61402}, {4612, 4998}, {4636, 4564}, {6061, 644}, {6332, 57807}, {6628, 4635}, {7004, 57243}, {7054, 100}, {7058, 668}, {7192, 1446}, {7252, 65}, {7253, 321}, {7254, 1439}, {7341, 4617}, {8021, 61161}, {8641, 1500}, {14936, 4705}, {15411, 20336}, {16731, 3265}, {17197, 4077}, {17926, 41013}, {18155, 349}, {18191, 7178}, {18344, 8736}, {21789, 37}, {22383, 1425}, {23090, 72}, {23189, 1214}, {23609, 5546}, {24026, 52623}, {26856, 693}, {34591, 4064}, {35072, 57109}, {36054, 7066}, {40213, 21207}, {42455, 338}, {42462, 1109}, {43924, 7147}, {43925, 1426}, {46103, 18026}, {46877, 65191}, {46889, 61172}, {48307, 56326}, {52306, 41393}, {52326, 52567}, {52379, 4572}, {52380, 655}, {52914, 46102}, {52919, 24032}, {52920, 23984}, {52935, 1275}, {53285, 4053}, {56182, 30730}, {56283, 16732}, {57055, 3695}, {57057, 52387}, {57081, 306}, {57108, 3949}, {57125, 52358}, {57129, 1042}, {57134, 71}, {57174, 3028}, {57180, 7064}, {57181, 7143}, {57185, 7314}, {57215, 57809}, {57779, 46404}, {58329, 2321}, {58338, 3694}, {58340, 52386}, {59482, 6335}, {60571, 18815}, {61403, 59941}, {65102, 3690}, {65103, 7140}
X(65576) lies on these lines: {12, 34829}, {65, 4647}, {72, 73}, {78, 23067}, {518, 4032}, {758, 15443}, {912, 1216}, {960, 16577}, {1425, 26942}, {2171, 12709}, {3695, 7066}, {3869, 4552}, {3970, 20616}, {4559, 17742}, {5440, 22342}, {5717, 44547}, {5814, 19366}, {10454, 64580}, {14829, 56412}, {14973, 20617}, {16788, 20739}, {21061, 37558}, {22001, 22299}, {52385, 57807}
X(65576) = isotomic conjugate of the polar conjugate of X(56325)
X(65576) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 26942}, {17751, 52357}
X(65576) = X(i)-isoconjugate of X(j) for these (i,j): {29, 52150}, {270, 34434}, {1172, 53083}, {1474, 46880}, {2051, 2189}, {2299, 20028}
X(65576) = X(i)-Dao conjugate of X(j) for these (i,j): {12, 4}, {226, 20028}, {51574, 46880}
X(65576) = barycentric product X(i)*X(j) for these {i,j}: {63, 52357}, {69, 56325}, {72, 52358}, {201, 14829}, {306, 37558}, {307, 21061}, {345, 20617}, {348, 14973}, {572, 57807}, {1214, 17751}, {1231, 52139}, {2975, 26942}, {3695, 17074}, {20336, 55323}, {22118, 34388}, {51662, 52609}
X(65576) = barycentric quotient X(i)/X(j) for these {i,j}: {72, 46880}, {73, 53083}, {201, 2051}, {572, 270}, {1214, 20028}, {1409, 52150}, {2197, 34434}, {2975, 46103}, {14829, 57779}, {14973, 281}, {17751, 31623}, {20617, 278}, {20986, 2189}, {21061, 29}, {22118, 60}, {23067, 65260}, {26942, 54121}, {37558, 27}, {51662, 17925}, {52139, 1172}, {52357, 92}, {52358, 286}, {55323, 28}, {56325, 4}, {57165, 65201}, {57807, 57905}, {65203, 52914}, {65233, 65275}
X(65576) = {X(14973),X(20617)}-harmonic conjugate of X(52357)
X(65577) lies on these lines: {7, 46331}, {201, 3701}, {226, 306}, {312, 4552}, {1089, 1254}, {1457, 3702}, {4032, 20891}, {4358, 16577}, {4359, 26740}, {4559, 28997}, {4696, 15556}, {6354, 34388}, {14829, 40624}, {15443, 56318}, {17184, 37636}, {17862, 54311}, {19807, 28774}, {21021, 42708}, {26942, 28654}, {40013, 60091}, {52358, 56325}
X(65577) = isotomic conjugate of the isogonal conjugate of X(56325)
X(65577) = X(76)-Ceva conjugate of X(34388)
X(65577) = X(i)-isoconjugate of X(j) for these (i,j): {284, 52150}, {593, 60817}, {2150, 34434}, {2194, 53083}, {2206, 46880}, {7252, 59006}, {20028, 57657}
X(65577) = X(i)-Dao conjugate of X(j) for these (i,j): {12, 6}, {1214, 53083}, {4391, 26856}, {34589, 7252}, {40590, 52150}, {40603, 46880}, {56325, 34434}, {62570, 20028}
X(65577) = barycentric product X(i)*X(j) for these {i,j}: {75, 52357}, {76, 56325}, {313, 37558}, {321, 52358}, {349, 21061}, {1441, 17751}, {2975, 34388}, {3596, 20617}, {6063, 14973}, {6358, 14829}, {11109, 57807}, {17074, 28654}, {27801, 55323}, {27808, 51662}
X(65577) = barycentric quotient X(i)/X(j) for these {i,j}: {12, 34434}, {65, 52150}, {226, 53083}, {321, 46880}, {572, 2150}, {756, 60817}, {1441, 20028}, {2975, 60}, {4551, 59006}, {4552, 65260}, {6358, 2051}, {11109, 270}, {14829, 2185}, {14973, 55}, {17074, 593}, {17751, 21}, {20617, 56}, {21061, 284}, {34388, 54121}, {37558, 58}, {40624, 26856}, {51662, 3733}, {52139, 2194}, {52357, 1}, {52358, 81}, {53566, 18191}, {55323, 1333}, {56325, 6}, {57165, 65375}, {60086, 40453}
X(65578) lies on these lines: {2, 1020}, {7, 1764}, {10, 1425}, {12, 7143}, {37, 226}, {307, 22020}, {347, 10478}, {1254, 10408}, {1398, 43531}, {1439, 31993}, {1446, 56214}, {2051, 17080}, {4605, 6358}, {5249, 64194}, {14110, 21620}, {14973, 20617}, {17074, 24237}, {17167, 37798}, {21061, 52358}, {24220, 57477}, {41393, 56327}
X(65578) = X(56325)-cross conjugate of X(52357)
X(65578) = X(i)-isoconjugate of X(j) for these (i,j): {1021, 59006}, {2185, 60817}, {2194, 46880}, {2287, 52150}, {2328, 53083}, {7054, 34434}, {21789, 65260}, {40453, 46889}
X(65578) = X(i)-Dao conjugate of X(j) for these (i,j): {12, 9}, {1193, 46889}, {1214, 46880}, {34589, 1021}, {36908, 53083}, {59608, 20028}
X(65578) = cevapoint of X(20617) and X(56325)
X(65578) = crosssum of X(41) and X(60817)
X(65578) = barycentric product X(i)*X(j) for these {i,j}: {7, 52357}, {75, 20617}, {85, 56325}, {226, 52358}, {349, 55323}, {1088, 14973}, {1441, 37558}, {1446, 21061}, {3668, 17751}, {4605, 17496}, {6354, 14829}, {6356, 11109}, {6358, 17074}
X(65578) = barycentric quotient X(i)/X(j) for these {i,j}: {181, 60817}, {226, 46880}, {572, 7054}, {1020, 65260}, {1042, 52150}, {1254, 34434}, {1427, 53083}, {2975, 1098}, {3668, 20028}, {4566, 65275}, {4605, 56188}, {6354, 2051}, {11109, 59482}, {14829, 7058}, {14973, 200}, {17074, 2185}, {17751, 1043}, {20617, 1}, {21061, 2287}, {24237, 26856}, {37558, 21}, {51662, 3737}, {52087, 46889}, {52139, 2328}, {52357, 8}, {52358, 333}, {53321, 59006}, {55323, 284}, {56325, 9}
X(65578) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {226, 64708, 22000}, {6358, 37755, 4605}
X(65579) lies on the cubic K859b and these lines: {2, 19774}, {4, 3181}, {13, 648}, {14, 264}, {112, 11300}, {298, 11094}, {303, 44714}, {324, 472}, {381, 9308}, {458, 42975}, {470, 11092}, {473, 1993}, {533, 6117}, {618, 6110}, {621, 11093}, {1080, 2967}, {1235, 11304}, {1249, 37170}, {8743, 11303}, {11117, 18831}, {32000, 37171}, {33960, 51220}, {34508, 58732}, {37765, 50855}, {41016, 44704}
X(65579) = polar conjugate of the isogonal conjugate of X(40580)
X(65579) = X(i)-Ceva conjugate of X(j) for these (i,j): {14, 11094}, {264, 470}
X(65579) = X(2153)-isoconjugate of X(64246)
X(65579) = X(i)-Dao conjugate of X(j) for these (i,j): {15, 3}, {40580, 64246}
X(65579) = barycentric product X(i)*X(j) for these {i,j}: {264, 40580}, {301, 64250}, {470, 621}, {11092, 11093}
X(65579) = barycentric quotient X(i)/X(j) for these {i,j}: {15, 64246}, {470, 2992}, {621, 40709}, {3129, 36296}, {8738, 14372}, {8739, 3438}, {11093, 11078}, {14368, 44719}, {23715, 3480}, {39262, 47481}, {40580, 3}, {51270, 10217}, {56514, 40156}, {64250, 16}
X(65580) lies on the cubic K859a and these lines: {2, 19775}, {4, 3180}, {13, 264}, {14, 648}, {112, 11299}, {299, 11093}, {302, 44713}, {324, 473}, {381, 9308}, {383, 2967}, {458, 42974}, {471, 11078}, {472, 1993}, {532, 6116}, {619, 6111}, {622, 11094}, {1235, 11303}, {1249, 37171}, {8743, 11304}, {11118, 18831}, {32000, 37170}, {33959, 51219}, {34509, 58732}, {36794, 61719}, {37765, 50858}, {41017, 44704}
X(65580) = polar conjugate of the isogonal conjugate of X(40581)
X(65580) = X(i)-Ceva conjugate of X(j) for these (i,j): {13, 11093}, {264, 471}
X(65580) = X(2154)-isoconjugate of X(64245)
X(65580) = X(i)-Dao conjugate of X(j) for these (i,j): {16, 3}, {40581, 64245}
X(65580) = barycentric product X(i)*X(j) for these {i,j}: {264, 40581}, {300, 64251}, {471, 622}, {11078, 11094}
X(65580) = barycentric quotient X(i)/X(j) for these {i,j}: {16, 64245}, {471, 2993}, {622, 40710}, {3130, 36297}, {8737, 14373}, {8740, 3439}, {11094, 11092}, {14369, 44718}, {23714, 3479}, {39261, 47482}, {40581, 3}, {51277, 10218}, {56515, 40157}, {64251, 15}
X(65581) lies on these lines: {4, 7}, {75, 17555}, {92, 393}, {108, 17134}, {158, 57809}, {208, 18655}, {297, 20171}, {307, 51359}, {318, 5051}, {321, 459}, {322, 1897}, {653, 1766}, {1229, 52283}, {1249, 30807}, {1441, 7952}, {1785, 17861}, {2997, 36121}, {3176, 57810}, {3672, 4194}, {6335, 46738}, {7108, 53417}, {7120, 24268}, {14004, 62697}, {17903, 27540}, {17907, 20927}, {19645, 44697}, {19788, 37279}, {20914, 36103}, {26267, 38860}, {26563, 32000}, {33673, 36118}, {44695, 50698}
X(65581) = polar conjugate of X(7097)
X(65581) = isotomic conjugate of the isogonal conjugate of X(36103)
X(65581) = polar conjugate of the isotomic conjugate of X(20914)
X(65581) = polar conjugate of the isogonal conjugate of X(1763)
X(65581) = X(76)-Ceva conjugate of X(92)
X(65581) = X(1763)-cross conjugate of X(20914)
X(65581) = X(i)-isoconjugate of X(j) for these (i,j): {3, 7169}, {48, 7097}, {184, 7219}, {255, 40169}, {2194, 47344}, {9247, 40015}
X(65581) = X(i)-Dao conjugate of X(j) for these (i,j): {19, 6}, {1214, 47344}, {1249, 7097}, {6523, 40169}, {36103, 7169}, {62576, 40015}, {62605, 7219}
X(65581) = cevapoint of X(1763) and X(36103)
X(65581) = barycentric product X(i)*X(j) for these {i,j}: {4, 20914}, {75, 17903}, {76, 36103}, {92, 4329}, {264, 1763}, {273, 27540}, {286, 21062}, {331, 54295}, {561, 21148}, {1969, 3556}, {6335, 21174}, {22119, 57806}, {44129, 52359}
X(65581) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 7097}, {19, 7169}, {92, 7219}, {226, 47344}, {264, 40015}, {393, 40169}, {1763, 3}, {1863, 40176}, {3556, 48}, {4329, 63}, {8900, 2286}, {17903, 1}, {20914, 69}, {21062, 72}, {21148, 31}, {21174, 905}, {22119, 255}, {27540, 78}, {36103, 6}, {52359, 71}, {54295, 219}
X(65581) = {X(393),X(53510)}-harmonic conjugate of X(92)
X(65582) lies on these lines: {4, 15314}, {7, 8048}, {34, 269}, {108, 347}, {196, 226}, {208, 3668}, {273, 39732}, {278, 55463}, {342, 14257}, {406, 41003}, {478, 32714}, {653, 28739}, {1439, 51399}, {1441, 13575}, {1763, 17903}, {1905, 24471}, {3213, 43035}, {3596, 18026}, {6046, 6059}, {11398, 64827}, {34937, 56887}, {41010, 51359}, {57807, 61178}
X(65582) = X(85)-Ceva conjugate of X(278)
X(65582) = X(36103)-cross conjugate of X(17903)
X(65582) = X(i)-isoconjugate of X(j) for these (i,j): {78, 7169}, {212, 7219}, {219, 7097}, {1259, 40169}, {2328, 47344}, {40015, 52425}
X(65582) = X(i)-Dao conjugate of X(j) for these (i,j): {19, 9}, {36908, 47344}, {40180, 1038}, {40837, 7219}, {62602, 40015}
X(65582) = barycentric product X(i)*X(j) for these {i,j}: {7, 17903}, {34, 20914}, {85, 36103}, {273, 1763}, {278, 4329}, {331, 3556}, {653, 21174}, {1119, 27540}, {1847, 54295}, {6063, 21148}
X(65582) = barycentric quotient X(i)/X(j) for these {i,j}: {34, 7097}, {273, 40015}, {278, 7219}, {608, 7169}, {1427, 47344}, {1763, 78}, {3556, 219}, {4329, 345}, {8900, 5227}, {17903, 8}, {20914, 3718}, {21062, 3710}, {21148, 55}, {21174, 6332}, {22119, 1259}, {27540, 1265}, {36103, 9}, {40183, 1038}, {40987, 40176}, {52359, 3694}, {54295, 3692}
X(65583) lies on these lines: {1, 204}, {2, 2138}, {27, 39732}, {28, 614}, {81, 8048}, {112, 1817}, {269, 1396}, {278, 5317}, {306, 1783}, {475, 19724}, {857, 18686}, {1172, 1848}, {1763, 36103}, {2207, 37388}, {2299, 7290}, {2332, 2999}, {3172, 11347}, {4219, 54426}, {4329, 17903}, {7490, 45786}, {14954, 19993}, {18642, 18687}, {21483, 45141}, {32714, 36908}, {37185, 41361}, {41083, 41364}
X(65583) = X(86)-Ceva conjugate of X(28)
X(65583) = X(i)-isoconjugate of X(j) for these (i,j): {9, 47344}, {71, 7219}, {72, 7097}, {228, 40015}, {306, 7169}, {3998, 40169}
X(65583) = X(i)-Dao conjugate of X(j) for these (i,j): {19, 10}, {478, 47344}
X(65583) = cevapoint of X(i) and X(j) for these (i,j): {204, 3162}, {21148, 36103}
X(65583) = barycentric product X(i)*X(j) for these {i,j}: {27, 1763}, {28, 4329}, {81, 17903}, {86, 36103}, {162, 21174}, {274, 21148}, {286, 3556}, {1396, 27540}, {1474, 20914}
X(65583) = barycentric quotient X(i)/X(j) for these {i,j}: {27, 40015}, {28, 7219}, {56, 47344}, {1474, 7097}, {1763, 306}, {2203, 7169}, {3556, 72}, {4329, 20336}, {17903, 321}, {20914, 40071}, {21062, 52369}, {21148, 37}, {21174, 14208}, {22119, 3998}, {36103, 10}, {52359, 3695}, {54295, 3710}
X(65584) lies on the MacBeath inconic and these lines: {3, 26704}, {4, 151}, {25, 9056}, {117, 14304}, {273, 2973}, {355, 7141}, {407, 2970}, {2968, 6831}, {2969, 37368}, {2972, 3142}, {23978, 60758}, {23987, 56973}, {25640, 44426}, {38554, 59205}
X(65584) = polar conjugate of the isotomic conjugate of X(59205)
X(65584) = polar conjugate of the isogonal conjugate of X(23986)
X(65584) = X(23986)-cross conjugate of X(59205)
X(65584) = X(i)-isoconjugate of X(j) for these (i,j): {102, 36055}, {9247, 57551}
X(65584) = X(i)-Dao conjugate of X(j) for these (i,j): {515, 3}, {51221, 102}, {57291, 57241}, {62576, 57551}
X(65584) = barycentric product X(i)*X(j) for these {i,j}: {4, 59205}, {92, 24034}, {264, 23986}, {1359, 7017}, {1969, 42076}, {2052, 38554}, {8755, 35516}, {14304, 24035}
X(65584) = barycentric quotient X(i)/X(j) for these {i,j}: {264, 57551}, {1359, 222}, {2182, 36055}, {8755, 102}, {23986, 3}, {23987, 65297}, {24034, 63}, {38554, 394}, {42076, 48}, {59205, 69}
X(65585) lies on the MacBeath inconic and these lines: {3, 2370}, {4, 10744}, {25, 9059}, {119, 4397}, {121, 4768}, {264, 2973}, {318, 7141}, {339, 16052}, {1000, 7046}, {1145, 4723}, {1883, 2969}, {2968, 4187}, {2970, 44143}, {36791, 42070}
X(65585) = polar conjugate of X(2226)
X(65585) = isotomic conjugate of the isogonal conjugate of X(42070)
X(65585) = polar conjugate of the isotomic conjugate of X(36791)
X(65585) = polar conjugate of the isogonal conjugate of X(4370)
X(65585) = X(264)-Ceva conjugate of X(46109)
X(65585) = X(4370)-cross conjugate of X(36791)
X(65585) = X(i)-isoconjugate of X(j) for these (i,j): {48, 2226}, {63, 41935}, {88, 32659}, {106, 36058}, {184, 679}, {603, 1318}, {1797, 9456}, {4638, 22383}, {9247, 54974}, {14575, 57929}, {23202, 59150}
X(65585) = X(i)-Dao conjugate of X(j) for these (i,j): {214, 36058}, {519, 3}, {900, 3937}, {1249, 2226}, {1647, 1459}, {3162, 41935}, {4370, 1797}, {7952, 1318}, {20619, 106}, {53985, 23345}, {62576, 54974}, {62605, 679}
X(65585) = cevapoint of X(i) and X(j) for these (i,j): {4370, 42070}, {23644, 47425}
X(65585) = crosspoint of X(264) and X(46109)
X(65585) = crosssum of X(184) and X(32659)
X(65585) = barycentric product X(i)*X(j) for these {i,j}: {4, 36791}, {76, 42070}, {92, 4738}, {264, 4370}, {331, 4152}, {519, 46109}, {678, 1969}, {1017, 18022}, {1317, 7017}, {1897, 52627}, {3264, 8756}, {4358, 38462}, {4543, 46404}, {4723, 37790}, {6336, 58254}, {16729, 41013}, {18027, 22371}, {21821, 57796}, {46107, 53582}
X(65585) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 2226}, {25, 41935}, {44, 36058}, {92, 679}, {264, 54974}, {281, 1318}, {519, 1797}, {678, 48}, {902, 32659}, {1017, 184}, {1145, 57478}, {1317, 222}, {1897, 4638}, {1969, 57929}, {3251, 22383}, {4152, 219}, {4370, 3}, {4542, 7117}, {4543, 652}, {4738, 63}, {5151, 52206}, {6335, 4618}, {6336, 59150}, {6544, 1459}, {8028, 22356}, {8756, 106}, {16729, 1444}, {21821, 228}, {22371, 577}, {33922, 22086}, {35092, 3937}, {36791, 69}, {37790, 56049}, {38462, 88}, {41013, 30575}, {42070, 6}, {46109, 903}, {46541, 4591}, {52627, 4025}, {53582, 1331}, {58254, 3977}, {61047, 52411}, {65336, 39414}
X(65586) lies on the MacBeath inconic and these lines: {3, 10420}, {4, 14670}, {25, 842}, {30, 16933}, {110, 10689}, {136, 46439}, {186, 323}, {250, 19504}, {325, 34336}, {339, 6563}, {403, 34334}, {427, 38552}, {468, 2967}, {523, 2970}, {858, 2974}, {1112, 7480}, {2972, 3154}, {3258, 16186}, {5099, 16178}, {10419, 35372}, {12052, 44889}, {12079, 20975}, {12133, 52493}, {13409, 36178}, {15329, 16978}, {17847, 30715}, {18114, 22104}, {21664, 37982}, {30447, 34332}, {33329, 34335}, {44084, 47215}, {46199, 48376}
X(65587) lies on the MacBeath inconic and these lines:{25, 9086}, {92, 2973}, {264, 21666}, {1441, 2968}, {7046, 18026}, {30806, 38461}, {31844, 42762}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 7018.
X(65588) lies on these lines: {6, 10204}, {511, 11820}, {33962, 55722}
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 02/10/2024. (Oct 2, 2024)
X(65589) lies on these lines: {1, 3}, {3218, 34747}, {3654, 15228}, {3679, 16558}, {4316, 59417}, {4668, 56288}, {4677, 63136}, {4744, 61157}, {5493, 18395}, {5657, 18513}, {5726, 16140}, {6361, 18514}, {9778, 41684}, {11545, 65134}, {12515, 34628}, {19875, 27065}, {31188, 34632}, {51066, 54286}, {51768, 60947}
X(65589) = midpoint of X(12702) and X(65590)
X(65589) = pole of the line {4604, 21362} with respect to the Yff parabola
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 02/10/2024. (Oct 2, 2024)
X(65590) lies on these lines: {1, 3}, {993, 5055}, {1656, 59392}, {3534, 10707}, {3830, 18515}, {4588, 28203}, {5073, 5450}, {5251, 15703}, {5267, 18493}, {6942, 12645}, {11194, 18524}, {12104, 46934}, {12511, 62093}, {34748, 54391}, {41853, 62109}, {62121, 63983}
X(65590) = reflection of X(12702) in X(65589)
X(65590) = pole of the line {513, 50767} with respect to the Stammler circle
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 02/10/2024. (Oct 2, 2024)
X(65591) lies on these lines: {1, 3}, {5734, 19704}, {6834, 34740}, {14217, 38637}, {28162, 28235}
X(65591) = reflection of X(65592) in X(3)
X(65591) = X(65592)-of-ABC-X3 reflections triangle
See Tran Viet Hung and César Lozada, Tran Viet Hung problem 02/10/2024. (Oct 2, 2024)
X(65592) lies on these lines: {1, 3}, {6890, 34707}, {8699, 28163}, {28451, 31447}, {38031, 61814}, {51118, 63753}
X(65592) = reflection of X(65591) in X(3)
X(65592) = X(65591)-of-ABC-X3 reflections triangle
See Peter Moses, euclid 7034.
X(65593) lies on these lines: { }
X(65593) = perspector of the Steiner inellipse of the circumedial triangle
See Peter Moses, euclid 7034.
X(65594) lies on the Steiner inellipse of the circumedial triangle and these lines: {2, 20382}, {115, 3849}, {5939, 32424}, {5976, 8704}, {6031, 14731}, {9080, 9829}, {12505, 13241}
X(65594) = midpoint of X(12505) and X(13241)
See Peter Moses, euclid 7034.
X(65595) lies on the Steiner inellipse of the circumedial triangle and these lines: {2, 34227}, {69, 5648}, {76, 31744}, {99, 32424}, {183, 6322}, {325, 2482}, {1975, 12505}, {5976, 8704}, {6232, 51580}, {7664, 9123}, {7750, 31729}, {7769, 32156}, {7788, 47075}, {10162, 37647}, {10163, 10418}, {11594, 16320}, {14653, 14907}, {14866, 32819}, {31606, 59635}, {37671, 47074}
See Peter Moses, euclid 7034.
X(65596) lies on the Steiner inellipse of the circumedial triangle and these lines: {2, 67}, {98, 32424}, {115, 3849}, {183, 6322}, {6031, 63029}, {7792, 10162}
See Peter Moses, euclid 7034.
X(65597) lies on the Steiner inellipse of the circumedial triangle and these lines: {2, 353}, {183, 1494}, {316, 51430}, {325, 5642}, {1649, 3268}, {5989, 30786}, {7792, 10418}, {7868, 35279}, {9100, 11628}, {17416, 61064}, {22329, 23992}, {30516, 63101}, {37688, 47200}, {38650, 50550}, {40884, 51389}
X(65598) lies on the cubic K1365 and these lines: {2, 19615}, {69, 19595}, {315, 5596}, {1235, 58075}, {1370, 3926}, {6394, 28406}
X(65598) = isogonal conjugate of X(20993)
X(65598) = isotomic conjugate of X(5596)
X(65598) = polar conjugate of X(8879)
X(65598) = anticomplement of the isogonal conjugate of X(19613)
X(65598) = isotomic conjugate of the anticomplement of X(66)
X(65598) = isotomic conjugate of the complement of X(20079)
X(65598) = isotomic conjugate of the isogonal conjugate of X(34427)
X(65598) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {19613, 8}, {19615, 192}, {19616, 2}, {34427, 17481}
X(65598) = X(i)-cross conjugate of X(j) for these (i,j): {66, 2}, {27376, 76}, {39129, 18018}
X(65598) = X(i)-isoconjugate of X(j) for these (i,j): {1, 20993}, {6, 16544}, {19, 22135}, {31, 5596}, {32, 20931}, {48, 8879}, {692, 21190}, {1333, 21079}, {1973, 28696}, {18596, 46769}
X(65598) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 5596}, {3, 20993}, {6, 22135}, {9, 16544}, {37, 21079}, {1086, 21190}, {1249, 8879}, {6337, 28696}, {6376, 20931}, {40938, 19595}
X(65598) = cevapoint of X(i) and X(j) for these (i,j): {2, 20079}, {523, 62573}, {525, 53822}, {19615, 22262}
X(65598) = trilinear pole of line {3265, 23881}
X(65598) = barycentric product X(i)*X(j) for these {i,j}: {76, 34427}, {1502, 22262}, {18018, 19613}, {19615, 40421}, {19616, 46244}
X(65598) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 16544}, {2, 5596}, {3, 22135}, {4, 8879}, {6, 20993}, {10, 21079}, {69, 28696}, {75, 20931}, {427, 19595}, {514, 21190}, {19613, 22}, {19615, 206}, {19616, 2172}, {22262, 32}, {34207, 46769}, {34427, 6}
X(65599) lies on the cubic K1365 and these lines: {2, 2138}, {4, 66}, {69, 19595}, {92, 4911}, {112, 28696}, {459, 62911}, {1370, 59165}, {1895, 5015}, {5523, 6392}, {6515, 60516}, {7762, 51358}, {7879, 56296}, {12384, 37444}, {14376, 51509}, {20806, 46741}, {27376, 63129}, {32006, 34163}
X(65599) = anticomplement of X(52041)
X(65599) = anticomplement of the isogonal conjugate of X(41361)
X(65599) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {19, 7500}, {75, 13575}, {92, 36851}, {159, 6360}, {162, 57069}, {811, 52617}, {1370, 4329}, {3162, 192}, {17407, 17481}, {18596, 20}, {18629, 52365}, {21582, 1370}, {33584, 18663}, {41361, 8}, {41766, 5905}, {57086, 4560}, {58075, 17492}
X(65599) = X(315)-Ceva conjugate of X(4)
X(65599) = X(13854)-Dao conjugate of X(66)
X(65599) = {X(66),X(27373)}-harmonic conjugate of X(4)
X(65600) lies on the Kiepert circumhyperbola of the anticomplementary triangle, the cubic K1365 and these lines: {2, 1343}, {3, 66}, {4, 1670}, {69, 1671}, {315, 10999}, {1342, 6776}, {1899, 15247}, {3410, 15250}, {3818, 8160}, {5207, 38721}, {8161, 34507}, {11442, 15245}
X(65600) = anticomplement of X(1676)
X(65600) = anticomplement of the isogonal conjugate of X(1671)
X(65600) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1671, 8}, {16246, 21270}, {41378, 192}
X(65600) = X(10999)-Ceva conjugate of X(1671)
X(65601) lies on the Kiepert circumhyperbola of the anticomplementary triangle, the cubic K1365 and these lines: {2, 1342}, {3, 66}, {4, 1671}, {69, 1670}, {315, 11000}, {1343, 6776}, {1899, 15248}, {3410, 15249}, {3818, 8161}, {5207, 38720}, {8160, 34507}, {11442, 15244}, {11547, 16246}
X(65601) = anticomplement of X(1677)
X(65601) = anticomplement of the isogonal conjugate of X(1670)
X(65601) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1670, 8}, {41379, 192}
X(65601) = X(11000)-Ceva conjugate of X(1670)
X(65602) lies on the cubics K267 and K1365 and these lines: {2, 1343}, {160, 15244}, {315, 2387}
X(65602) = anticomplement of X(41378)
X(65602) = isotomic conjugate of the anticomplement of X(41379)
X(65602) = X(1676)-anticomplementary conjugate of X(192)
X(65602) = X(41379)-cross conjugate of X(2)
X(65602) = barycentric quotient X(i)/X(j) for these {i,j}: {1670, 1671}, {1676, 1677}, {41379, 41378}
X(65603) lies on the cubics K267 and K1365 and these lines: {2, 1342}, {160, 15245}, {315, 2387}
X(65603) = anticomplement of X(41379)
X(65603) = isotomic conjugate of the anticomplement of X(41378)
X(65603) = X(1677)-anticomplementary conjugate of X(192)
X(65603) = X(41378)-cross conjugate of X(2)
X(65603) = barycentric quotient X(i)/X(j) for these {i,j}: {1671, 1670}, {1677, 1676}, {41378, 41379}
X(65604) lies on these lines: {2, 4723}, {497, 517}, {982, 1737}, {1111, 5587}, {3673, 4346}, {37715, 62697}, {54318, 59511}
X(65605) lies on these lines: {1, 7225}, {3, 902}, {40, 78}, {65, 36509}, {515, 5014}, {517, 3938}, {573, 3217}, {840, 28520}, {916, 42461}, {1037, 1042}, {1457, 37577}, {1473, 3428}, {3430, 7991}, {3576, 62806}, {3877, 35975}, {3913, 33587}, {4300, 37474}, {5247, 9309}, {5255, 36510}, {5731, 49704}, {9778, 63423}, {31435, 35667}
X(65606) lies on the cubic K1366 and these lines: {4, 17869}, {3556, 40097}
X(65606) = X(75)-Ceva conjugate of X(34277)
X(65607) lies on the cubic K1366 and these lines: {8, 1943}, {63, 1619}, {78, 7111}, {1106, 24031}, {1265, 37669}, {1792, 1801}, {2000, 40015}, {2287, 7097}, {3692, 22132}, {5749, 41084}, {7177, 19611}
X(65607) = isogonal conjugate of X(36103)
X(65607) = isotomic conjugate of X(65581)
X(65607) = isogonal conjugate of the complement of X(7219)
X(65607) = isotomic conjugate of the polar conjugate of X(7097)
X(65607) = isogonal conjugate of the polar conjugate of X(40015)
X(65607) = X(40015)-Ceva conjugate of X(7097)
X(65607) = X(i)-cross conjugate of X(j) for these (i,j): {6, 63}, {20280, 1}, {47344, 7219}
X(65607) = X(i)-isoconjugate of X(j) for these (i,j): {1, 36103}, {2, 21148}, {4, 3556}, {6, 17903}, {19, 1763}, {25, 4329}, {28, 52359}, {31, 65581}, {34, 54295}, {37, 65583}, {55, 65582}, {393, 22119}, {608, 27540}, {1039, 8900}, {1474, 21062}, {1973, 20914}, {8750, 21174}
X(65607) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 65581}, {3, 36103}, {6, 1763}, {9, 17903}, {223, 65582}, {6337, 20914}, {6505, 4329}, {11517, 54295}, {26932, 21174}, {32664, 21148}, {36033, 3556}, {40589, 65583}, {40591, 52359}, {51574, 21062}, {62647, 27540}
X(65607) = cevapoint of X(i) and X(j) for these (i,j): {6, 7169}, {1459, 24031}
X(65607) = barycentric product X(i)*X(j) for these {i,j}: {3, 40015}, {63, 7219}, {69, 7097}, {304, 7169}, {333, 47344}, {3926, 40169}
X(65607) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 17903}, {2, 65581}, {3, 1763}, {6, 36103}, {31, 21148}, {48, 3556}, {57, 65582}, {58, 65583}, {63, 4329}, {69, 20914}, {71, 52359}, {72, 21062}, {78, 27540}, {219, 54295}, {255, 22119}, {905, 21174}, {2286, 8900}, {7097, 4}, {7169, 19}, {7219, 92}, {40015, 264}, {40169, 393}, {40176, 1863}, {47344, 226}
X(65608) lies on the cubic K1367 and these lines: {2, 6}, {30, 53710}, {115, 525}, {125, 523}, {265, 46634}, {338, 850}, {511, 36170}, {542, 16760}, {690, 14120}, {826, 34953}, {842, 1550}, {1495, 47171}, {1499, 5099}, {1503, 11005}, {2623, 53576}, {2682, 3566}, {2777, 46988}, {2854, 47557}, {3124, 62572}, {3564, 53725}, {3800, 35605}, {3906, 15359}, {5641, 41254}, {6388, 23991}, {6587, 6791}, {6699, 46981}, {7471, 32269}, {7687, 46982}, {9140, 53136}, {11006, 36196}, {11645, 46992}, {14915, 46993}, {15059, 53379}, {15061, 46633}, {15448, 47246}, {15526, 23992}, {15545, 57311}, {17702, 46987}, {29181, 36173}, {31644, 39691}, {35909, 36189}, {38393, 44114}, {38730, 54248}, {44526, 60704}, {45311, 46980}, {47239, 61691}, {47565, 64880}, {47616, 63534}, {58907, 59549}
X(65608) = midpoint of X(i) and X(j) for these {i,j}: {125, 51429}, {265, 46634}, {325, 3580}, {842, 1550}, {5099, 15357}, {5641, 51227}, {9140, 53136}, {11005, 36166}, {11006, 36196}, {43961, 43962}
X(65608) = reflection of X(i) in X(j) for these {i,j}: {230, 47296}, {1495, 47171}, {11064, 44377}, {46980, 45311}, {46981, 6699}, {46982, 7687}, {51258, 15359}
X(65608) = complement of X(14999)
X(65608) = complement of the isogonal conjugate of X(14998)
X(65608) = complement of the isotomic conjugate of X(14223)
X(65608) = X(i)-complementary conjugate of X(j) for these (i,j): {661, 16188}, {798, 23967}, {842, 4369}, {1973, 60510}, {2159, 60340}, {5641, 42327}, {5649, 21254}, {14223, 2887}, {14998, 10}, {35909, 18589}
X(65608) = X(5641)-Ceva conjugate of X(523)
X(65608) = X(i)-Dao conjugate of X(j) for these (i,j): {1640, 542}, {57465, 3233}
X(65608) = crosspoint of X(2) and X(14223)
X(65608) = crossdifference of every pair of points on line {512, 2420}
X(65608) = barycentric product X(i)*X(j) for these {i,j}: {338, 54439}, {850, 34291}
X(65608) = barycentric quotient X(i)/X(j) for these {i,j}: {12079, 54495}, {34291, 110}, {54439, 249}, {60509, 7473}
X(65608) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6189, 6190, 62639}, {39022, 39023, 62551}
X(65609) lies on the cubic K1367 and these lines: {4, 1499}, {111, 2697}, {338, 850}, {523, 10415}, {525, 14364}, {671, 33294}, {858, 47138}, {3265, 42008}, {6563, 14977}, {8430, 12077}, {9213, 47122}, {9979, 53419}, {10630, 41254}, {23301, 45096}, {52672, 57485}
X(65609) = X(i)-Ceva conjugate of X(j) for these (i,j): {2052, 10555}, {10630, 64258}
X(65609) = X(i)-isoconjugate of X(j) for these (i,j): {896, 65306}, {1177, 23889}, {3292, 36095}, {4575, 51823}, {32676, 53784}
X(65609) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 51823}, {15526, 53784}, {15899, 65306}, {38971, 524}, {52628, 36792}, {61067, 5467}, {64646, 5468}
X(65609) = barycentric product X(i)*X(j) for these {i,j}: {523, 59422}, {671, 47138}, {850, 57485}, {858, 5466}, {1236, 9178}, {2393, 52632}, {3267, 64619}, {5523, 14977}, {10561, 57476}, {10630, 62577}, {20884, 23894}, {21017, 62626}, {42665, 46111}, {44173, 51962}, {51258, 61181}, {52672, 62629}
X(65609) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 65306}, {525, 53784}, {858, 5468}, {2393, 5467}, {2501, 51823}, {5466, 2373}, {5523, 4235}, {8430, 36823}, {8753, 10423}, {9178, 1177}, {10097, 18876}, {10561, 60002}, {14580, 61207}, {14618, 58078}, {17983, 65268}, {18669, 23889}, {20884, 24039}, {21109, 6629}, {34158, 32661}, {36128, 36095}, {42665, 3292}, {47138, 524}, {51962, 1576}, {52632, 46140}, {57485, 110}, {59422, 99}, {62577, 36792}, {64258, 60040}, {64619, 112}
X(65609) = {X(5466),X(10561)}-harmonic conjugate of X(2501)
X(65610) lies on the cubic K1367 and these lines: {2, 523}, {4, 3566}, {6, 2501}, {51, 924}, {125, 136}, {311, 850}, {512, 9730}, {520, 61666}, {525, 14852}, {526, 9979}, {690, 9880}, {804, 42738}, {826, 1209}, {1007, 62645}, {1116, 18556}, {1499, 53017}, {1637, 6041}, {3800, 10279}, {3815, 55267}, {4240, 61213}, {5467, 30512}, {5489, 59741}, {5664, 15475}, {6055, 55122}, {6132, 9131}, {7468, 60511}, {8675, 61667}, {9033, 9171}, {9175, 55142}, {11184, 64919}, {12075, 22260}, {12106, 34952}, {14223, 34368}, {14355, 52076}, {14424, 53567}, {15543, 58346}, {16188, 55131}, {18039, 30735}, {18808, 34208}, {18867, 45147}, {32193, 45259}, {34175, 38939}, {35912, 53149}, {37930, 44823}, {41254, 51480}, {45331, 55130}, {53418, 58780}, {54274, 65468}, {58784, 64935}, {58882, 63551}
X(65610) = midpoint of X(9134) and X(16230)
X(65610) = reflection of X(i) in X(j) for these {i,j}: {9131, 6132}, {14424, 53567}, {32193, 45259}, {53263, 32193}, {53266, 10278}
X(65610) = X(14221)-Ceva conjugate of X(54395)
X(65610) = X(i)-isoconjugate of X(j) for these (i,j): {896, 35191}, {1101, 51480}, {4575, 40118}, {36034, 51457}, {36084, 40083}
X(65610) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 40118}, {523, 51480}, {2493, 14999}, {3258, 51457}, {15899, 35191}, {16188, 110}, {36189, 15462}, {38987, 40083}
X(65610) = crosspoint of X(i) and X(j) for these (i,j): {850, 14223}, {14221, 54395}
X(65610) = crosssum of X(3) and X(34291)
X(65610) = crossdifference of every pair of points on line {187, 13754}
X(65610) = barycentric product X(i)*X(j) for these {i,j}: {115, 14221}, {338, 7468}, {523, 54395}, {671, 55131}, {850, 2493}, {2799, 34175}, {14223, 16188}, {14618, 14984}, {18312, 38939}, {44427, 51847}
X(65610) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 35191}, {115, 51480}, {1637, 51457}, {1640, 51474}, {2493, 110}, {2501, 40118}, {3569, 40083}, {7468, 249}, {14221, 4590}, {14984, 4558}, {16188, 14999}, {34175, 2966}, {38939, 5649}, {51847, 60053}, {52515, 10425}, {54395, 99}, {55131, 524}
X(65611) lies on the cubic K1367 and these lines: {6, 525}, {125, 512}, {187, 14417}, {249, 4563}, {523, 64218}, {524, 45807}, {598, 57082}, {690, 44102}, {843, 2373}, {1177, 3566}, {1499, 5621}, {1649, 39201}, {2482, 52613}, {5181, 8673}, {9517, 62376}, {10630, 41254}, {14223, 57065}, {15387, 41511}, {35146, 46140}, {39062, 65268}, {51999, 53784}
X(65611) = X(i)-complementary conjugate of X(j) for these (i,j): {24019, 52533}, {59175, 16595}, {60503, 18589}, {65356, 21256}
X(65611) = X(65306)-Ceva conjugate of X(524)
X(65611) = X(i)-cross conjugate of X(j) for these (i,j): {3269, 14357}, {47415, 468}, {58780, 690}
X(65611) = X(i)-isoconjugate of X(j) for these (i,j): {163, 59422}, {662, 57485}, {691, 18669}, {799, 51962}, {811, 34158}, {858, 36142}, {897, 61198}, {2393, 36085}, {4592, 64619}, {20884, 32729}, {24019, 51253}, {36060, 61181}
X(65611) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 59422}, {1084, 57485}, {1560, 61181}, {1648, 5181}, {1649, 47138}, {5139, 64619}, {6593, 61198}, {17423, 34158}, {23992, 858}, {35071, 51253}, {38988, 2393}, {38996, 51962}, {48317, 5523}, {62594, 62382}
X(65611) = crossdifference of every pair of points on line {2393, 51962}
X(65611) = barycentric product X(i)*X(j) for these {i,j}: {351, 46140}, {524, 60040}, {525, 51823}, {647, 58078}, {690, 2373}, {1177, 35522}, {2501, 53784}, {2642, 37220}, {10422, 52629}, {14417, 60133}, {22105, 46165}, {52628, 65306}
X(65611) = barycentric quotient X(i)/X(j) for these {i,j}: {187, 61198}, {351, 2393}, {468, 61181}, {512, 57485}, {520, 51253}, {523, 59422}, {669, 51962}, {690, 858}, {1177, 691}, {1648, 47138}, {1649, 5181}, {2373, 892}, {2489, 64619}, {2642, 18669}, {3049, 34158}, {4750, 17172}, {10422, 34574}, {14273, 5523}, {14417, 62382}, {18876, 65321}, {35522, 1236}, {44102, 46592}, {46140, 53080}, {51823, 648}, {52038, 52672}, {53784, 4563}, {54274, 47426}, {58078, 6331}, {58780, 1560}, {60040, 671}, {60133, 65350}
X(65612) lies on the cubic K1367 and these lines: {2, 2419}, {4, 523}, {6, 525}, {24, 46614}, {25, 47216}, {39, 2485}, {115, 127}, {253, 14977}, {378, 46615}, {427, 55273}, {520, 50649}, {1640, 50942}, {1649, 47249}, {1975, 57069}, {2492, 44427}, {3268, 46425}, {3566, 61088}, {4580, 10548}, {6130, 42738}, {8029, 59742}, {8057, 15069}, {9479, 44821}, {13567, 23616}, {13881, 14566}, {14537, 23878}, {14592, 60515}, {15421, 52041}, {23881, 52624}, {26958, 38240}, {34767, 37643}, {37930, 46609}, {37937, 60512}, {42854, 44705}, {47296, 52720}, {59900, 59932}, {60597, 62577}
X(65612) = reflection of X(i) in X(j) for these {i,j}: {35522, 6334}, {44427, 2492}, {59932, 59900}
X(65612) = X(i)-isoconjugate of X(j) for these (i,j): {163, 2697}, {18669, 64778}
X(65612) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 2697}, {647, 60591}, {5099, 46340}, {6103, 7473}, {35594, 10317}, {38970, 47110}
X(65612) = crosspoint of X(14223) and X(14618)
X(65612) = crossdifference of every pair of points on line {1576, 2393}
X(65612) = barycentric product X(i)*X(j) for these {i,j}: {339, 37937}, {525, 50188}, {850, 2781}, {3268, 43090}
X(65612) = barycentric quotient X(i)/X(j) for these {i,j}: {125, 60591}, {523, 2697}, {1177, 64778}, {2492, 46340}, {2781, 110}, {8749, 59108}, {16230, 47110}, {37937, 250}, {40079, 43754}, {42426, 7473}, {43090, 476}, {50188, 648}
X(65612) = {X(41172),X(52628)}-harmonic conjugate of X(62551)
X(65613) lies on the cubic K1367 and these lines: {4, 6}, {115, 523}, {125, 2501}, {230, 36166}, {338, 14618}, {842, 34366}, {1637, 3154}, {2549, 56967}, {3258, 9209}, {3269, 38361}, {3566, 53569}, {6034, 34175}, {6103, 52464}, {8754, 44705}, {14998, 36189}, {34370, 43090}, {34981, 59900}, {37987, 60510}, {51404, 52076}
X(65613) = midpoint of X(1990) and X(53419)
X(65613) = polar conjugate of the isotomic conjugate of X(37987)
X(65613) = X(i)-Dao conjugate of X(j) for these (i,j): {37987, 14999}, {60510, 69}
X(65613) = crosspoint of X(4) and X(14223)
X(65613) = crossdifference of every pair of points on line {520, 5467}
X(65613) = barycentric product X(i)*X(j) for these {i,j}: {4, 37987}, {14223, 60510}
X(65613) = barycentric quotient X(i)/X(j) for these {i,j}: {37987, 69}, {60510, 14999}
X(65613) = {X(5523),X(6530)}-harmonic conjugate of X(1990)
X(65614) lies on the cubic K1367 and these lines: {2, 525}, {74, 3566}, {338, 14618}, {403, 55121}, {523, 5627}, {826, 32112}, {3580, 6334}, {9007, 57147}, {12079, 34953}, {14264, 52451}, {16080, 57065}, {18312, 18557}, {18808, 52487}, {36189, 56792}, {36841, 44769}, {40384, 41254}, {44427, 47296}
X(65614) = X(55264)-Ceva conjugate of X(1494)
X(65614) = X(i)-cross conjugate of X(j) for these (i,j): {6334, 2394}, {55265, 55121}
X(65614) = X(i)-isoconjugate of X(j) for these (i,j): {163, 15454}, {1495, 65262}, {2173, 10420}, {2420, 36053}, {3284, 36114}, {4575, 51965}, {5504, 56829}, {9406, 18878}, {32678, 39371}
X(65614) = X(i)-Dao conjugate of X(j) for these (i,j): {113, 2420}, {115, 15454}, {136, 51965}, {2088, 1511}, {3003, 3233}, {6334, 5664}, {9410, 18878}, {16178, 1990}, {18334, 39371}, {34834, 2407}, {36896, 10420}, {36901, 52552}, {39005, 3284}, {39021, 30}, {39174, 32661}, {47230, 62172}, {55121, 55265}, {56792, 6}, {62606, 43755}
X(65614) = cevapoint of X(i) and X(j) for these (i,j): {686, 60342}, {55121, 55265}
X(65614) = crosspoint of X(i) and X(j) for these (i,j): {1494, 55264}, {16080, 39290}
X(65614) = crosssum of X(3284) and X(52743)
X(65614) = barycentric product X(i)*X(j) for these {i,j}: {403, 34767}, {850, 14264}, {1494, 55121}, {2394, 3580}, {6334, 16080}, {12079, 61188}, {14380, 44138}, {18808, 62338}, {31621, 55265}, {39021, 55264}, {44173, 51821}
X(65614) = barycentric quotient X(i)/X(j) for these {i,j}: {74, 10420}, {113, 3233}, {403, 4240}, {523, 15454}, {526, 39371}, {686, 3284}, {850, 52552}, {1494, 18878}, {2349, 65262}, {2394, 2986}, {2433, 14910}, {2501, 51965}, {3003, 2420}, {3580, 2407}, {6334, 11064}, {8749, 32708}, {10412, 39375}, {12079, 15328}, {14264, 110}, {14380, 5504}, {14919, 43755}, {16080, 687}, {16221, 62172}, {18808, 1300}, {21731, 1495}, {31621, 55264}, {34767, 57829}, {36119, 36114}, {39021, 55265}, {44084, 23347}, {44769, 18879}, {47236, 1990}, {51821, 1576}, {55121, 30}, {55265, 3163}, {56403, 41392}, {56792, 15470}, {60342, 1511}
X(65615) lies on the cubic K1367 and these lines: {6, 2501}, {115, 647}, {523, 11079}, {525, 64769}, {669, 58346}, {1637, 3284}, {1990, 14397}, {2986, 10754}, {3233, 41392}, {6529, 23964}, {6587, 14910}, {9209, 15470}, {11064, 41079}, {14566, 15421}, {40384, 41254}, {47230, 53416}, {52743, 56399}
X(65615) = X(32708)-Ceva conjugate of X(1990)
X(65615) = X(i)-cross conjugate of X(j) for these (i,j): {3124, 14583}, {14401, 1637}
X(65615) = X(i)-isoconjugate of X(j) for these (i,j): {662, 14264}, {799, 51821}, {823, 53785}, {1725, 44769}, {2159, 61188}, {2315, 16077}, {2349, 15329}, {3580, 36034}, {13754, 65263}, {16237, 35200}, {36131, 62338}
X(65615) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 16237}, {1084, 14264}, {1650, 62569}, {3163, 61188}, {3258, 3580}, {38996, 51821}, {39008, 62338}, {57295, 6334}
X(65615) = cevapoint of X(i) and X(j) for these (i,j): {1637, 52743}, {14398, 58346}
X(65615) = crosssum of X(3003) and X(60342)
X(65615) = crossdifference of every pair of points on line {13754, 14264}
X(65615) = barycentric product X(i)*X(j) for these {i,j}: {30, 15328}, {512, 52552}, {523, 15454}, {525, 51965}, {526, 39375}, {1300, 9033}, {1637, 2986}, {1990, 15421}, {9409, 65267}, {10412, 39371}, {10419, 58263}, {10420, 58261}, {12028, 62172}, {14222, 51254}, {14254, 15470}, {14398, 40832}, {14910, 41079}, {35361, 43768}, {36035, 36053}, {39986, 53178}, {40388, 52624}, {40423, 58346}, {40427, 52743}, {46106, 61216}
X(65615) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 61188}, {512, 14264}, {669, 51821}, {1300, 16077}, {1495, 15329}, {1637, 3580}, {1990, 16237}, {9033, 62338}, {9409, 13754}, {14398, 3003}, {14399, 18609}, {14401, 62569}, {14581, 61209}, {14583, 41512}, {14910, 44769}, {15328, 1494}, {15454, 99}, {35361, 62722}, {39201, 53785}, {39371, 10411}, {39375, 35139}, {40388, 34568}, {51965, 648}, {52552, 670}, {52743, 34834}, {58346, 113}, {61216, 14919}
X(65616) lies on the cubic K1367 and these lines: {2, 98}, {6, 60504}, {249, 34473}, {338, 14265}, {523, 2065}, {1576, 10753}, {6034, 34175}, {11596, 32545}, {14356, 52081}, {14639, 58907}, {34810, 56788}, {34953, 38224}, {51963, 52472}
X(65616) = X(47082)-cross conjugate of X(98)
X(65616) = X(47082)-Dao conjugate of X(114)
X(65616) = barycentric product X(34536)*X(47079)
X(65616) = barycentric quotient X(i)/X(j) for these {i,j}: {2715, 53695}, {47079, 36790}
X(65616) = {X(6055),X(51820)}-harmonic conjugate of X(98)
X(65617) lies on the cubic K1367 and these lines: {6, 13}, {125, 14583}, {338, 14254}, {523, 5627}, {5622, 14560}, {9140, 41512}, {9214, 59428}, {10113, 52772}, {14223, 34368}, {15061, 51345}, {15081, 52472}, {20126, 58733}, {36189, 43090}, {39295, 54501}, {44889, 52153}, {52056, 55319}
X(65617) = X(6149)-isoconjugate of X(54527)
X(65617) = X(14993)-Dao conjugate of X(54527)
X(65617) = crosspoint of X(5627) and X(54554)
X(65617) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 54527}, {52464, 14920}
X(65617) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 14, 41392}, {265, 14356, 14559}
X(65618) lies on the cubic K1367 and these lines: {5, 5968}, {6, 36183}, {30, 51862}, {98, 250}, {115, 232}, {125, 511}, {325, 339}, {427, 12079}, {468, 8901}, {826, 32112}, {842, 34175}, {1316, 3425}, {1485, 37930}, {1594, 39269}, {2697, 5622}, {2970, 6530}, {3447, 36166}, {5133, 14356}, {8430, 12077}, {9139, 11596}, {11799, 52692}, {16083, 46142}, {20975, 38552}, {21017, 21046}, {34370, 43090}, {37990, 64936}, {40801, 57583}, {46982, 53570}, {60502, 60590}
X(65618) = isogonal conjugate of X(15462)
X(65618) = polar conjugate of X(41253)
X(65618) = X(i)-cross conjugate of X(j) for these (i,j): {54380, 98}, {60500, 14223}
X(65618) = X(i)-isoconjugate of X(j) for these (i,j): {1, 15462}, {48, 41253}, {163, 62307}, {1101, 36189}, {6149, 53768}
X(65618) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 15462}, {115, 62307}, {523, 36189}, {1249, 41253}, {14993, 53768}
X(65618) = cevapoint of X(i) and X(j) for these (i,j): {1640, 20975}, {53132, 60342}
X(65618) = trilinear pole of line {3569, 32312}
X(65618) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 41253}, {6, 15462}, {115, 36189}, {523, 62307}, {1989, 53768}
X(65619) lies on the cubic K1367 and these lines: {2, 1637}, {6, 14273}, {115, 55267}, {125, 55265}, {427, 9134}, {523, 6128}, {570, 2492}, {1194, 47230}, {8430, 12077}, {9722, 47138}, {36189, 55131}, {55122, 57598}
X(65619) = X(41254)-Ceva conjugate of X(125)
X(65619) = crossdifference of every pair of points on line {5191, 14984}
X(65619) = {X(14998),X(60510)}-harmonic conjugate of X(1637)
X(65620) lies on the cubic K1367 and these lines: {2, 3233}, {6, 35912}, {23, 8902}, {30, 115}, {74, 3566}, {98, 523}, {111, 2697}, {125, 468}, {157, 37930}, {186, 60514}, {338, 38552}, {403, 53570}, {542, 16760}, {669, 47252}, {858, 53577}, {1316, 9756}, {1499, 47502}, {1513, 47239}, {2782, 46987}, {2794, 14120}, {3154, 47200}, {3288, 47505}, {3564, 47570}, {5099, 10991}, {5159, 13611}, {5191, 36189}, {5318, 57585}, {5321, 57593}, {5912, 48981}, {6036, 36170}, {6103, 52464}, {7417, 8371}, {7418, 44821}, {7422, 42733}, {7472, 34473}, {7473, 41254}, {9007, 48984}, {9418, 51733}, {10151, 44099}, {11177, 53136}, {11623, 51258}, {12079, 47220}, {12188, 46634}, {13202, 58907}, {14659, 53931}, {16315, 62509}, {30549, 47285}, {34845, 36183}, {36176, 45030}, {36196, 44969}, {37987, 47085}, {38227, 47241}, {38582, 46633}, {38613, 51523}, {38664, 38704}, {38680, 47292}, {39201, 47003}, {39874, 52473}, {43460, 47244}, {47152, 65154}, {53726, 62507}, {53890, 53935}
X(65620) = midpoint of X(i) and X(j) for these {i,j}: {98, 36166}, {842, 60508}, {5099, 10991}, {11177, 53136}, {12188, 46634}, {38613, 51523}, {38664, 47293}, {38680, 47292}
X(65620) = reflection of X(i) in X(j) for these {i,j}: {1513, 47239}, {36170, 6036}, {46980, 6055}, {46981, 12042}, {46982, 115}, {46988, 14120}, {51258, 11623}
X(65620) = X(i)-Ceva conjugate of X(j) for these (i,j): {7473, 523}, {41254, 6}
X(65620) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {98, 842, 60508}, {36166, 60508, 842}, {38664, 38704, 47293}
X(65621) lies on the cubic K1367 and these lines: {2, 94}, {6, 41512}, {115, 39170}, {125, 56403}, {523, 11079}, {541, 56395}, {1640, 51480}, {6128, 14583}, {14254, 44468}, {34370, 43090}, {41392, 52010}
X(65621) = crosspoint of X(40427) and X(54554)
X(65622) lies on the cubic K1367 and these lines: {2, 60498}, {6, 60511}, {125, 511}, {338, 524}, {401, 37784}, {523, 895}, {1995, 46124}, {2986, 10754}, {3124, 11064}, {10752, 41512}, {14221, 41254}, {14984, 36189}, {22486, 34289}, {40112, 62311}
X(65622) = anticomplement of the isotomic conjugate of X(41254)
X(65622) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {5622, 4329}, {41254, 6327}
X(65622) = X(i)-Ceva conjugate of X(j) for these (i,j): {14221, 523}, {41254, 2}
X(65623) lies on the cubic K1367 and these lines: {4, 690}, {6, 9033}, {115, 60500}, {338, 58263}, {389, 9517}, {512, 974}, {520, 32246}, {523, 15118}, {525, 7687}, {526, 9969}, {826, 32112}, {7927, 10821}, {8673, 12236}, {23300, 55121}
X(65623) = midpoint of X(35909) and X(60509)
X(65623) = X(41254)-Ceva conjugate of X(115)
X(65624) lies on the cubic K1367 and these lines: {4, 60499}, {6, 60512}, {115, 232}, {338, 1990}, {419, 15262}, {468, 47427}, {523, 8749}, {3269, 15311}, {5622, 35907}, {14223, 57065}, {43717, 51480}
X(65624) = X(41254)-Ceva conjugate of X(4)
See Sriram Panchapakesan and César Lozada, euclid 7054.
X(65625) lies on these lines: {13, 15}, {524, 11119}, {8014, 23302}, {8838, 44383}, {11555, 16772}
X(65625) = X(13)-daleth conjugate of-X(46078)
X(65625) = inverse of X(46078) in 1st Simmons inconic
X(65625) = pole of the line {13, 41472} with respect to the Kiepert circumhyperbola
X(65625) = pole of the line {523, 16530} with respect to the 1st Simmons inconic
X(65625) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (13, 396, 34325), (396, 34325, 11537), (396, 48255, 13)
See Sriram Panchapakesan and César Lozada, euclid 7054.
X(65626) lies on these lines: {14, 16}, {524, 11120}, {8015, 23303}, {8836, 44382}, {11556, 16773}
X(65626) = X(14)-daleth conjugate of-X(46074)
X(65626) = inverse of X(46074) in 2nd Simmons inconic
X(65626) = pole of the line {14, 41473} with respect to the Kiepert circumhyperbola
X(65626) = pole of the line {523, 16529} with respect to the 2nd Simmons inconic
X(65626) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (14, 395, 34326), (395, 34326, 11549), (395, 48256, 14)
See Sriram Panchapakesan and César Lozada, euclid 7054.
X(65627) lies on the cubic K002 and these lines: {6, 39164}, {39022, 39165}
X(65627) = complement of the isotomic conjugate of X(39161)
X(65627) = Dao image of X(39164)
X(65627) = barycentric product X(i)*X(j) for these {i, j}: {39160, 60612}, {39161, 39164}
See Sriram Panchapakesan and César Lozada, euclid 7054.
X(65628) lies on the cubic K002 and these lines: {6, 39165}, {39022, 39164}
X(65628) = complement of the isotomic conjugate of X(39160)
X(65628) = Dao image of X(39165)
X(65628) = barycentric product X(i)*X(j) for these {i,j}: {39160, 39165}, {39161, 60613}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 7059.
X(65629) lies on these lines: {546, 6346}, {14857, 33332}
X(m,n) = (insimilicenter, exsimilicenter) of circles
Hatzipolakis-Suppa circle, anticomplementary circle X(3543, 3146)
Hatzipolakis-Suppa circle, circumcircle X (4, 30)
Hatzipolakis-Suppa circle, 2nd Lemoine circle (or cosine circle) X(35820, 35821)
Hatzipolakis-Suppa circle, half-Moses circle X(65630, 44526)
Hatzipolakis-Suppa circle, incircle X(12943,12953)
Hatzipolakis-Suppa circle, Johnson triangle circumcircle X(3627, 30)
Hatzipolakis-Suppa circle, 1st Johnson-Yff circle X(65631 ,6284)
Hatzipolakis-Suppa circle, 2nd Johnson-Yff circle X(7354,65532)
Hatzipolakis-Suppa circle, Moses circle X(62203, 65633)
Hatzipolakis-Suppa circle, nine-point circle X(4, 20)
Hatzipolakis-Suppa circle, sine triple angle circle X(6759, 13352)
Hatzipolakis-Suppa circle, Stammler circle X(3830, 5073)
Hatzipolakis-Suppa circle, Steiner circle X(17578, 33703)
Hatzipolakis-Suppa circle, incircle of orthic triangle X(44438, 12173)
Hatzipolakis-Suppa circle, Lucas inner circle X(8981, 9541)
Hatzipolakis-Suppa circle, Lucas radical circle X(6564, 42266)
Hatzipolakis-Suppa circle, Lucas(-1) inner circle X(?, 13966)
Hatzipolakis-Suppa circle, Lucas(-1) circles radical circle X(42267, 6565)
For definitions of circles listed here, check the Extended glossary.
X(65630) lies on these lines: {2, 5023}, {3, 1506}, {4, 6}, {5, 3053}, {20, 3815}, {24, 44538}, {25, 44523}, {30, 2548}, {32, 381}, {39, 382}, {51, 63544}, {69, 32979}, {76, 40341}, {83, 598}, {112, 7547}, {114, 44532}, {115, 3843}, {140, 5210}, {141, 32006}, {148, 7921}, {172, 10896}, {183, 7823}, {187, 1656}, {193, 63923}, {194, 14042}, {230, 3091}, {232, 12173}, {262, 54873}, {315, 599}, {316, 2076}, {325, 14035}, {376, 31404}, {378, 9608}, {384, 7773}, {385, 33018}, {439, 34803}, {458, 26958}, {460, 17810}, {546, 3767}, {548, 31417}, {550, 31401}, {574, 1657}, {625, 32954}, {626, 11286}, {671, 7894}, {999, 9665}, {1003, 7752}, {1007, 32981}, {1015, 9655}, {1030, 37415}, {1078, 44543}, {1184, 7394}, {1194, 62976}, {1285, 3855}, {1327, 19105}, {1328, 19102}, {1384, 3851}, {1478, 16781}, {1500, 9668}, {1569, 38733}, {1571, 28146}, {1572, 18480}, {1593, 34866}, {1597, 44528}, {1598, 44524}, {1609, 11479}, {1611, 6997}, {1613, 62949}, {1691, 10358}, {1870, 9595}, {1914, 10895}, {1915, 57533}, {1968, 7507}, {1971, 64024}, {1975, 7785}, {1992, 2996}, {2023, 10722}, {2079, 7506}, {2241, 9654}, {2242, 9669}, {2275, 12943}, {2276, 12953}, {2549, 3627}, {2794, 44531}, {3054, 5056}, {3055, 3523}, {3094, 48910}, {3146, 7736}, {3172, 18386}, {3199, 18494}, {3295, 9650}, {3311, 35831}, {3312, 35830}, {3329, 33019}, {3399, 54482}, {3522, 62993}, {3526, 5206}, {3529, 31400}, {3534, 31467}, {3543, 7738}, {3544, 46453}, {3560, 44520}, {3575, 59229}, {3583, 54416}, {3585, 16502}, {3589, 32974}, {3592, 39660}, {3594, 39661}, {3618, 5395}, {3628, 21843}, {3629, 6392}, {3673, 62223}, {3734, 7776}, {3785, 8556}, {3830, 7748}, {3832, 7735}, {3839, 5306}, {3845, 5305}, {3849, 7815}, {3850, 43620}, {3853, 15048}, {3854, 37689}, {3858, 43291}, {3861, 5319}, {3934, 63931}, {3972, 7887}, {4258, 36654}, {4302, 31460}, {4385, 62224}, {5007, 61984}, {5008, 61975}, {5017, 10516}, {5024, 5073}, {5025, 10583}, {5038, 43273}, {5039, 48889}, {5041, 11648}, {5046, 5275}, {5052, 18440}, {5054, 15513}, {5055, 7749}, {5058, 13665}, {5062, 13785}, {5068, 62992}, {5072, 35007}, {5076, 7772}, {5085, 53484}, {5093, 35832}, {5116, 59411}, {5277, 17556}, {5280, 18514}, {5299, 18513}, {5304, 50689}, {5309, 14269}, {5355, 61991}, {5359, 37349}, {5477, 11482}, {5899, 9700}, {5943, 15575}, {6144, 7762}, {6179, 15031}, {6221, 31481}, {6248, 13330}, {6284, 9596}, {6410, 21737}, {6421, 35820}, {6422, 35821}, {6423, 6565}, {6424, 6564}, {6655, 11174}, {6656, 47355}, {6658, 7777}, {6680, 11318}, {6759, 9604}, {6823, 36748}, {6872, 37661}, {6913, 44517}, {6918, 44542}, {6995, 15437}, {7354, 9599}, {7387, 44521}, {7388, 8253}, {7389, 8252}, {7395, 8553}, {7398, 40326}, {7406, 37662}, {7517, 44525}, {7530, 44522}, {7578, 54683}, {7610, 7793}, {7697, 46321}, {7739, 15687}, {7750, 15271}, {7754, 7812}, {7755, 18424}, {7763, 19687}, {7765, 62008}, {7769, 33235}, {7774, 14068}, {7775, 7816}, {7783, 11163}, {7786, 33234}, {7787, 7851}, {7788, 7900}, {7789, 14033}, {7792, 14063}, {7797, 14062}, {7798, 63922}, {7800, 44678}, {7802, 11285}, {7803, 33229}, {7804, 7825}, {7805, 18546}, {7806, 32993}, {7808, 7842}, {7809, 7881}, {7833, 42849}, {7836, 14034}, {7838, 22253}, {7845, 17130}, {7846, 33219}, {7852, 33241}, {7858, 31859}, {7860, 7879}, {7862, 11288}, {7867, 31173}, {7868, 7885}, {7874, 33242}, {7883, 51186}, {7891, 19686}, {7899, 33220}, {7904, 33020}, {7911, 60855}, {7932, 14045}, {7934, 33217}, {7941, 32821}, {8352, 51185}, {8375, 8960}, {8376, 58866}, {8588, 15720}, {8589, 62100}, {8667, 20065}, {8976, 9675}, {8981, 9602}, {9112, 42991}, {9113, 42990}, {9541, 9601}, {9600, 42266}, {9603, 13352}, {9606, 33703}, {9607, 17578}, {9613, 62370}, {9619, 28160}, {9620, 22793}, {9657, 63493}, {9698, 17800}, {9745, 14002}, {9756, 36998}, {9771, 35287}, {9969, 40325}, {10296, 16308}, {10311, 37197}, {10312, 35488}, {10314, 40320}, {10323, 15109}, {10542, 53505}, {10983, 23698}, {11173, 34507}, {11184, 33007}, {11289, 43028}, {11290, 43029}, {11303, 16645}, {11304, 16644}, {12082, 50660}, {12102, 63633}, {12110, 42535}, {12362, 36751}, {12601, 35840}, {12602, 35841}, {12829, 14639}, {12902, 46301}, {12963, 42265}, {12968, 42262}, {13108, 46313}, {13111, 43183}, {13161, 16884}, {13240, 63556}, {13357, 22682}, {13567, 62950}, {14001, 32827}, {14023, 64093}, {14614, 20088}, {14712, 16921}, {14901, 38789}, {14907, 32992}, {15171, 31409}, {15338, 31497}, {15491, 32990}, {15515, 15696}, {15603, 61855}, {15655, 46219}, {16318, 63662}, {16932, 31076}, {16989, 32996}, {17004, 33024}, {17005, 33014}, {17006, 33010}, {17008, 32995}, {17129, 63951}, {17131, 63936}, {17500, 56428}, {17683, 26145}, {18840, 50993}, {18841, 18844}, {18842, 18843}, {19130, 40825}, {19780, 42095}, {19781, 42098}, {21358, 23334}, {22505, 44536}, {22728, 32452}, {23292, 37174}, {28150, 31396}, {28154, 31430}, {30496, 42299}, {31407, 49138}, {31411, 42215}, {31441, 31663}, {31443, 64005}, {31448, 65134}, {31450, 62155}, {31457, 62121}, {31463, 42258}, {31470, 62170}, {31476, 64951}, {31490, 57288}, {31652, 49137}, {32459, 32829}, {32828, 63928}, {32830, 50771}, {32962, 37688}, {32964, 37647}, {32968, 64018}, {32973, 44377}, {32987, 58446}, {32988, 44381}, {32991, 34229}, {33023, 63041}, {33192, 63101}, {33201, 37690}, {33244, 63083}, {34482, 63538}, {35480, 39575}, {35930, 44539}, {37446, 39656}, {38259, 63122}, {39563, 61993}, {39593, 62000}, {39601, 61946}, {41408, 42918}, {41409, 42919}, {41895, 63062}, {42147, 61332}, {42148, 61331}, {42157, 63199}, {42158, 63198}, {42268, 49221}, {42269, 49220}, {42270, 62202}, {42273, 62201}, {42431, 63200}, {42432, 63201}, {43619, 62036}, {44537, 63665}, {45103, 53105}, {46951, 63944}, {47322, 47339}, {48884, 64713}, {48905, 50659}, {49136, 53096}, {50687, 63024}, {51171, 54097}, {52250, 63104}, {52454, 57688}, {53093, 53499}, {53102, 60146}, {54714, 54858}, {54868, 60619}, {56395, 58733}, {59546, 62988}, {60644, 62944}, {61985, 63006}, {63004, 63537}, {63005, 63536}
X(65630) = reflection of X(i) in X(j) for these (i, j): (5013, 2548), (8556, 32983), (44519, 5013)
X(65630) = insimilicenter of Hatzipolakis-Suppa circle and half-Moses circle
X(65630) = inverse in orthosymmedial circle of X(44518)
X(65630) = pole of the tripolar of X(5395) wrt the orthic inconic
X(65630) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (4, 7745, 6), (5, 3053, 37637), (5, 7737, 3053), (20, 3815, 15815), (20, 15815, 44541), (32, 381, 13881), (32, 39590, 381), (39, 382, 44526), (39, 62203, 382), (76, 63932, 40341), (183, 7823, 63938), (187, 1656, 44535), (316, 7770, 7784), (382, 15484, 39), (384, 7773, 7778), (546, 18907, 3767), (550, 31401, 53095), (1007, 32981, 59545), (1384, 3851, 7746), (1975, 7785, 9766), (3146, 7736, 63548), (3534, 31467, 37512), (3734, 7843, 7776), (3815, 15815, 31492), (3830, 9605, 7748), (3832, 7735, 63534), (3843, 30435, 115), (5024, 5073, 7756), (5206, 7603, 3526), (5304, 50689, 63533), (5359, 37349, 63541), (5395, 32982, 3618), (5475, 7747, 3), (6781, 31455, 3), (7736, 63548, 22332), (7745, 53418, 4), (7746, 43457, 3851), (7748, 7753, 9605), (7770, 7784, 3763), (7785, 11361, 1975), (7823, 16044, 183), (7921, 14066, 148), (14537, 39590, 32), (15484, 62203, 44526), (18584, 44535, 1656), (31401, 43618, 550), (31492, 44541, 15815), (32006, 32971, 141), (35832, 35833, 5093), (42645, 42646, 5480)
X(65631) lies on these lines: {1, 3627}, {3, 3614}, {4, 11}, {5, 7280}, {10, 63206}, {12, 30}, {20, 5432}, {36, 546}, {55, 3146}, {65, 16006}, {79, 37730}, {80, 16118}, {115, 9341}, {140, 4316}, {172, 53419}, {226, 10543}, {378, 9658}, {381, 4299}, {382, 1478}, {388, 3058}, {390, 50690}, {484, 3652}, {495, 62036}, {496, 15687}, {497, 9657}, {498, 1657}, {499, 3843}, {515, 11011}, {528, 20060}, {529, 52367}, {535, 24390}, {550, 7951}, {952, 11280}, {962, 63209}, {999, 5076}, {1056, 9670}, {1058, 62017}, {1060, 63676}, {1124, 22615}, {1155, 19925}, {1250, 42109}, {1254, 53524}, {1317, 22791}, {1319, 18483}, {1329, 17579}, {1335, 22644}, {1358, 4056}, {1376, 31295}, {1479, 3830}, {1482, 62617}, {1503, 19369}, {1539, 18968}, {1597, 18954}, {1698, 50240}, {1699, 63208}, {1727, 16138}, {1770, 18480}, {1836, 3340}, {1837, 3339}, {1870, 9628}, {2066, 42271}, {2067, 42284}, {2078, 7965}, {2098, 9812}, {2275, 53418}, {2307, 5318}, {2475, 3925}, {2477, 14157}, {2594, 52524}, {2646, 28164}, {2975, 62969}, {3023, 39838}, {3024, 13202}, {3027, 39809}, {3028, 12295}, {3035, 37256}, {3056, 51163}, {3057, 51118}, {3085, 9656}, {3091, 5204}, {3245, 61510}, {3303, 62028}, {3304, 5225}, {3336, 12019}, {3361, 51792}, {3436, 34612}, {3486, 61716}, {3529, 5217}, {3582, 14893}, {3583, 3853}, {3586, 10404}, {3600, 11238}, {3628, 59319}, {3649, 10572}, {3650, 54288}, {3671, 50862}, {3746, 62034}, {3817, 37605}, {3822, 57002}, {3839, 7288}, {3845, 5298}, {3861, 4325}, {3874, 12690}, {4188, 31235}, {4209, 31192}, {4294, 11237}, {4297, 17605}, {4302, 5073}, {4314, 63287}, {4317, 9669}, {4330, 62038}, {4333, 26446}, {4400, 63941}, {4413, 37435}, {4848, 34648}, {4857, 62013}, {4999, 17577}, {5010, 10592}, {5059, 5218}, {5066, 65141}, {5079, 64894}, {5080, 21031}, {5082, 34689}, {5086, 17768}, {5160, 9627}, {5172, 21669}, {5252, 41869}, {5254, 7296}, {5265, 61985}, {5267, 17530}, {5270, 15171}, {5281, 50692}, {5290, 37703}, {5322, 52285}, {5353, 42137}, {5357, 42136}, {5370, 37454}, {5414, 42272}, {5425, 11544}, {5441, 5719}, {5445, 61259}, {5561, 37728}, {5563, 12102}, {5657, 63215}, {5722, 44286}, {5724, 24851}, {5841, 15908}, {5893, 10535}, {5901, 36975}, {5903, 62616}, {6046, 7282}, {6057, 7270}, {6154, 12607}, {6174, 11681}, {6198, 57584}, {6253, 6256}, {6285, 51491}, {6502, 42283}, {6560, 19027}, {6561, 19028}, {6564, 9647}, {6565, 18966}, {6658, 26629}, {6668, 17549}, {6690, 15680}, {6691, 37375}, {6759, 9653}, {6767, 62024}, {6842, 30264}, {6923, 11827}, {6938, 10894}, {6971, 21154}, {6972, 38759}, {7005, 19107}, {7006, 19106}, {7051, 42102}, {7127, 42165}, {7158, 38956}, {7286, 18323}, {7355, 41362}, {7756, 31460}, {8164, 11541}, {8703, 65142}, {8976, 9663}, {8981, 9649}, {9541, 9648}, {9580, 30337}, {9596, 44526}, {9613, 12701}, {9646, 42266}, {9651, 62203}, {9652, 13352}, {9660, 35800}, {9661, 35786}, {9662, 13901}, {9667, 26883}, {9668, 62023}, {9671, 14986}, {9672, 35502}, {9780, 63212}, {9955, 21578}, {10037, 47527}, {10039, 28146}, {10056, 15684}, {10072, 38335}, {10149, 64891}, {10198, 50242}, {10385, 62032}, {10386, 35404}, {10406, 64748}, {10431, 10953}, {10526, 11826}, {10589, 50689}, {10593, 61988}, {10638, 42108}, {10721, 12903}, {10722, 13182}, {10723, 12184}, {10724, 12763}, {10733, 12373}, {10735, 12945}, {10832, 11403}, {10944, 12699}, {10957, 65120}, {10958, 20420}, {11009, 28224}, {11010, 28178}, {11114, 25466}, {11235, 20076}, {11361, 26561}, {11392, 44438}, {12047, 28160}, {12101, 65140}, {12103, 59325}, {12588, 48910}, {12647, 48661}, {12667, 36999}, {12678, 64261}, {12940, 64037}, {12950, 61721}, {13077, 52854}, {13296, 44988}, {13411, 28172}, {13851, 26955}, {13958, 42259}, {14041, 26686}, {15170, 62022}, {15228, 61524}, {15932, 16141}, {15933, 50867}, {15950, 18481}, {16616, 18838}, {17532, 24953}, {17678, 25992}, {17800, 31479}, {18393, 34773}, {18492, 24914}, {18517, 34697}, {18984, 32340}, {18995, 23259}, {18996, 23249}, {19029, 23261}, {19030, 23251}, {19297, 53421}, {19373, 42101}, {19695, 27020}, {21677, 64002}, {21842, 38034}, {21935, 64159}, {22793, 45287}, {24470, 37702}, {25639, 31157}, {26040, 50725}, {26364, 56998}, {26590, 33019}, {28150, 37568}, {28174, 37710}, {28190, 37737}, {31160, 47742}, {31162, 37738}, {31408, 52666}, {31448, 43619}, {31452, 49134}, {31472, 42263}, {31497, 44519}, {31670, 39897}, {31672, 60883}, {31730, 63213}, {31775, 50031}, {34434, 38389}, {34706, 34749}, {34753, 37718}, {36002, 37564}, {36990, 39873}, {37567, 59387}, {37572, 38042}, {37709, 50865}, {37719, 62041}, {37720, 62006}, {39891, 51212}, {40267, 40271}, {42104, 54436}, {42105, 54435}, {42160, 54402}, {42161, 54403}, {42225, 65147}, {42226, 65148}, {42264, 44622}, {44226, 54428}, {49136, 64951}, {50038, 50239}, {52835, 60919}, {58887, 61261}, {61598, 62316}
X(65631) = reflection of X(i) in X(j) for these (i, j): (12, 3585), (15338, 12), (30264, 6842)
X(65631) = insimilicenter of Hatzipolakis-Suppa circle and 1st Johnson-Yff circle
X(65631) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 3614, 5326), (4, 4293, 10896), (4, 7354, 11), (4, 7681, 59390), (4, 12943, 7354), (5, 7280, 7294), (5, 10483, 15326), (12, 15338, 4995), (20, 10588, 63756), (20, 10895, 5432), (36, 546, 7173), (56, 10896, 47743), (381, 4299, 5433), (382, 1478, 6284), (388, 3543, 12953), (388, 12953, 3058), (495, 62036, 65134), (495, 65134, 63273), (496, 15687, 18514), (550, 7951, 52793), (1478, 6284, 15888), (1479, 9655, 5434), (1770, 18480, 40663), (1836, 5691, 10950), (1837, 9579, 11246), (2475, 57288, 3925), (3146, 5229, 55), (3529, 10590, 5217), (3583, 18990, 37722), (3830, 9655, 1479), (3853, 18990, 3583), (4293, 47743, 56), (5073, 9654, 4302), (5267, 17530, 31260), (6564, 9647, 18965), (7294, 15326, 7280), (9541, 13897, 9648), (10483, 18513, 5), (10588, 63756, 5432), (10592, 15704, 5010), (10895, 63756, 10588), (13901, 42258, 9662)
X(65632) lies on these lines: {1, 3627}, {3, 7173}, {4, 12}, {5, 5010}, {8, 4942}, {11, 30}, {20, 5433}, {35, 546}, {56, 3146}, {65, 9844}, {79, 12433}, {80, 28174}, {140, 4324}, {149, 529}, {165, 51792}, {202, 19106}, {203, 19107}, {215, 14157}, {377, 8167}, {378, 9673}, {381, 4302}, {382, 999}, {388, 8162}, {390, 11237}, {484, 12019}, {495, 15687}, {496, 10483}, {497, 3543}, {498, 3843}, {499, 1657}, {515, 1317}, {516, 5183}, {517, 33519}, {528, 5080}, {550, 7741}, {553, 50869}, {590, 31500}, {758, 12690}, {942, 34502}, {950, 3649}, {952, 64896}, {1056, 62017}, {1058, 9657}, {1062, 63669}, {1124, 22644}, {1155, 28150}, {1250, 42101}, {1319, 28164}, {1335, 22615}, {1358, 4872}, {1376, 44847}, {1387, 28190}, {1469, 51163}, {1478, 3058}, {1503, 8540}, {1532, 24042}, {1539, 12896}, {1597, 10833}, {1621, 62969}, {1698, 63214}, {1699, 13384}, {1737, 28146}, {1834, 2308}, {1836, 3586}, {1837, 2093}, {1845, 43911}, {1870, 9629}, {1878, 44670}, {1914, 53419}, {2066, 42284}, {2067, 42271}, {2099, 9812}, {2276, 53418}, {2307, 42164}, {2475, 5284}, {2646, 18483}, {2654, 63295}, {2886, 11114}, {3023, 39809}, {3024, 12295}, {3027, 39838}, {3028, 13202}, {3035, 37375}, {3057, 31673}, {3086, 9671}, {3090, 63756}, {3091, 5217}, {3245, 11545}, {3295, 5076}, {3303, 5229}, {3304, 62028}, {3324, 38956}, {3421, 34720}, {3434, 34606}, {3436, 8168}, {3474, 61717}, {3485, 10248}, {3488, 61716}, {3529, 5204}, {3530, 65141}, {3584, 14893}, {3585, 3853}, {3600, 50690}, {3624, 50240}, {3628, 59325}, {3746, 12102}, {3814, 6174}, {3816, 17579}, {3817, 37600}, {3839, 5218}, {3845, 4995}, {3847, 4188}, {3861, 4330}, {3911, 28158}, {3925, 11113}, {4038, 49745}, {4081, 5081}, {4189, 31260}, {4293, 11238}, {4299, 5073}, {4304, 17605}, {4309, 9654}, {4325, 62038}, {4342, 50862}, {4396, 63941}, {4680, 6057}, {4845, 10725}, {4857, 18990}, {4972, 17537}, {4999, 15680}, {5057, 44669}, {5059, 7288}, {5123, 63145}, {5160, 18323}, {5172, 36002}, {5176, 13996}, {5180, 5855}, {5252, 9580}, {5254, 5332}, {5265, 50692}, {5270, 15172}, {5281, 61985}, {5310, 52285}, {5321, 7127}, {5353, 42136}, {5357, 42137}, {5414, 42283}, {5441, 37737}, {5444, 61269}, {5561, 15935}, {5563, 62034}, {5691, 7962}, {5719, 61703}, {5722, 11246}, {5724, 33095}, {5727, 50865}, {5787, 52860}, {5840, 35000}, {5841, 10738}, {5844, 37006}, {5893, 26888}, {5919, 51783}, {6154, 17757}, {6285, 41362}, {6502, 42272}, {6560, 19029}, {6561, 19030}, {6564, 9660}, {6565, 13958}, {6658, 26686}, {6667, 13587}, {6681, 59376}, {6690, 17577}, {6691, 37256}, {6759, 9666}, {6836, 64725}, {6840, 10724}, {6872, 24953}, {6882, 24466}, {6917, 7958}, {6928, 11826}, {6934, 10893}, {6980, 21155}, {7051, 42108}, {7280, 10593}, {7286, 62288}, {7302, 37454}, {7355, 51491}, {7373, 62024}, {7491, 15908}, {7526, 65122}, {7688, 31789}, {7743, 21578}, {8976, 9648}, {8981, 9662}, {9541, 9663}, {9578, 53052}, {9579, 10980}, {9581, 53056}, {9589, 41687}, {9599, 44526}, {9646, 35786}, {9647, 35802}, {9649, 18965}, {9652, 26883}, {9655, 62023}, {9659, 35502}, {9661, 42266}, {9664, 62203}, {9667, 13352}, {9802, 32426}, {10046, 47527}, {10056, 38335}, {10058, 62359}, {10072, 15684}, {10151, 52427}, {10175, 63211}, {10200, 56998}, {10385, 62007}, {10386, 37719}, {10404, 44841}, {10525, 11827}, {10526, 44455}, {10543, 12047}, {10572, 22793}, {10573, 48661}, {10588, 50689}, {10592, 61988}, {10609, 11813}, {10624, 45081}, {10638, 42102}, {10707, 20067}, {10721, 12904}, {10722, 13183}, {10723, 12185}, {10728, 13274}, {10733, 12374}, {10735, 12955}, {10741, 34931}, {10831, 11403}, {10949, 48482}, {10950, 12699}, {10956, 41698}, {11010, 18357}, {11111, 31245}, {11236, 20075}, {11361, 26590}, {11374, 44286}, {11375, 53054}, {11393, 44438}, {11541, 47743}, {11680, 31157}, {12103, 59319}, {12589, 48910}, {12679, 64261}, {12688, 45288}, {12940, 61721}, {12950, 64037}, {13079, 32340}, {13273, 53055}, {13297, 44988}, {13407, 31795}, {13851, 26956}, {14041, 26629}, {14269, 31479}, {14794, 31649}, {14986, 50691}, {15170, 62015}, {15228, 28182}, {15726, 18838}, {16118, 24470}, {17533, 31235}, {17606, 31730}, {17784, 31141}, {18499, 18516}, {18782, 28459}, {18966, 42259}, {18982, 52854}, {19027, 23261}, {19028, 23251}, {19037, 23259}, {19038, 23249}, {19373, 42109}, {19695, 26959}, {19925, 37568}, {20066, 64123}, {21669, 37564}, {22791, 37734}, {24914, 63207}, {25405, 28160}, {25524, 31295}, {25542, 50238}, {25639, 57002}, {26363, 50242}, {26561, 33019}, {27639, 37191}, {28172, 44675}, {28212, 41684}, {28224, 62617}, {28228, 36920}, {31162, 37740}, {31221, 37416}, {31272, 36004}, {31452, 61990}, {31460, 39590}, {31670, 39873}, {31672, 60919}, {33697, 45287}, {34699, 34739}, {36005, 45310}, {36990, 39897}, {37291, 52795}, {37411, 62333}, {37525, 38034}, {37616, 61272}, {37720, 62041}, {38950, 39148}, {39751, 62493}, {39892, 51212}, {42104, 54435}, {42105, 54436}, {42160, 54403}, {42161, 54402}, {42263, 44623}, {42264, 44624}, {51421, 53529}, {52367, 57288}, {52835, 60883}, {59316, 61261}, {61984, 64951}, {62143, 64894}, {63676, 64349}, {64337, 64804}
X(65632) = midpoint of X(6840) and X(10724)
X(65632) = reflection of X(i) in X(j) for these (i, j): (11, 3583), (484, 12019), (1532, 24042), (3245, 11545), (4316, 15325), (6154, 17757), (10609, 11813), (13996, 5176), (15326, 11), (21578, 7743), (24466, 6882), (36005, 45310), (36975, 1387), (62617, 63210), (63145, 5123)
X(65632) = exsimilicenter of Hatzipolakis-Suppa circle and 2nd Johnson-Yff circle
X(65632) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 7173, 7294), (4, 4294, 10895), (4, 6284, 12), (4, 12953, 6284), (5, 5010, 5326), (5, 15338, 52793), (5, 65134, 15338), (11, 15326, 5298), (12, 6284, 63273), (20, 10896, 5433), (35, 546, 3614), (55, 10895, 8164), (381, 4302, 5432), (382, 1479, 7354), (495, 15687, 18513), (496, 62036, 10483), (497, 3543, 12943), (497, 12943, 5434), (1478, 9668, 3058), (1479, 7354, 37722), (1532, 24042, 59390), (1870, 9629, 10149), (3146, 5225, 56), (3529, 10591, 5204), (3583, 4316, 65140), (3585, 15171, 15888), (3830, 9668, 1478), (3853, 15171, 3585), (4294, 8164, 55), (4316, 65140, 15325), (5010, 5326, 52793), (5073, 9669, 4299), (5326, 15338, 5010), (5691, 12701, 10944), (6564, 9660, 13901), (6928, 11826, 50031), (9541, 13898, 9663), (10593, 15704, 7280), (15325, 65140, 11), (18499, 18516, 34746), (18514, 65134, 5), (18965, 42258, 9649)
X(65633) lies on these lines: {2, 55808}, {3, 39565}, {4, 574}, {5, 15515}, {6, 5073}, {20, 115}, {30, 32}, {39, 382}, {76, 33256}, {83, 54737}, {99, 7825}, {140, 18424}, {148, 7751}, {183, 63922}, {187, 1657}, {194, 63931}, {230, 15704}, {232, 35490}, {315, 543}, {316, 7781}, {376, 7749}, {378, 9700}, {381, 37512}, {384, 7872}, {546, 31455}, {548, 63534}, {550, 7746}, {577, 18563}, {620, 14063}, {626, 33017}, {671, 7793}, {1003, 7861}, {1015, 12953}, {1078, 18546}, {1370, 34481}, {1384, 49139}, {1500, 12943}, {1504, 35820}, {1505, 35821}, {1569, 10722}, {1656, 8589}, {1691, 48896}, {1692, 48905}, {1870, 9635}, {1975, 7818}, {2076, 48879}, {2241, 65134}, {2242, 10483}, {2548, 3543}, {2549, 3146}, {2937, 34866}, {3053, 17800}, {3054, 33923}, {3055, 3858}, {3070, 62241}, {3071, 62242}, {3094, 48884}, {3096, 3734}, {3199, 44438}, {3522, 43620}, {3526, 39601}, {3529, 3767}, {3534, 13881}, {3552, 7844}, {3585, 31451}, {3627, 5475}, {3788, 33229}, {3815, 3853}, {3830, 5013}, {3843, 7603}, {3849, 7754}, {3851, 53095}, {3861, 31457}, {3934, 33234}, {3972, 7902}, {4045, 14035}, {5007, 49136}, {5008, 49133}, {5023, 15681}, {5024, 62023}, {5028, 29012}, {5033, 48898}, {5034, 48901}, {5041, 62040}, {5052, 48910}, {5058, 42263}, {5059, 7755}, {5062, 42264}, {5076, 31652}, {5107, 64080}, {5171, 6321}, {5210, 62131}, {5286, 43618}, {5319, 50692}, {5355, 11541}, {5461, 33208}, {5471, 42160}, {5472, 42161}, {5585, 62107}, {6284, 9651}, {6292, 32986}, {6564, 9674}, {6658, 7790}, {6680, 33007}, {6722, 32964}, {6759, 9696}, {7354, 9664}, {7519, 59768}, {7735, 49138}, {7736, 62028}, {7737, 7765}, {7738, 7753}, {7739, 62042}, {7745, 62036}, {7750, 17131}, {7761, 17130}, {7763, 33279}, {7769, 14062}, {7771, 33267}, {7775, 7783}, {7782, 7862}, {7786, 14042}, {7794, 32815}, {7795, 33238}, {7796, 20094}, {7798, 7823}, {7800, 32826}, {7803, 33280}, {7808, 7847}, {7812, 40246}, {7813, 32006}, {7815, 7833}, {7816, 7841}, {7820, 32974}, {7822, 8357}, {7826, 64018}, {7828, 33257}, {7830, 11185}, {7834, 19687}, {7843, 31859}, {7846, 19686}, {7857, 33265}, {7859, 14034}, {7860, 7916}, {7865, 7910}, {7869, 7911}, {7885, 7908}, {7886, 33235}, {7887, 32456}, {7889, 14033}, {7896, 7898}, {7914, 7924}, {7940, 14045}, {8352, 34504}, {8353, 59635}, {8721, 39838}, {8981, 9684}, {9300, 35404}, {9541, 9685}, {9601, 45384}, {9605, 14537}, {9607, 62038}, {9675, 42266}, {9697, 13352}, {9698, 17578}, {9821, 38733}, {10311, 34797}, {10316, 18562}, {10721, 41367}, {11057, 17129}, {11614, 61832}, {11646, 52987}, {11742, 44535}, {12083, 44528}, {12173, 33843}, {12815, 21735}, {13509, 40242}, {14061, 33014}, {14075, 62047}, {14130, 44521}, {14907, 33271}, {14971, 35287}, {15031, 33004}, {15048, 62041}, {15301, 32821}, {15482, 16044}, {15602, 18584}, {15655, 62142}, {15686, 63543}, {15696, 37637}, {16589, 50239}, {17538, 21843}, {18492, 31422}, {18503, 46283}, {18581, 36958}, {18582, 36959}, {18859, 44523}, {18907, 62044}, {20065, 41748}, {21312, 44527}, {21659, 39913}, {22332, 62024}, {23004, 47066}, {23005, 47068}, {23251, 62206}, {23261, 62205}, {23698, 30270}, {28080, 35076}, {30435, 49134}, {31152, 40350}, {31274, 32972}, {31400, 50688}, {31404, 50687}, {31411, 52667}, {31467, 38335}, {31481, 42284}, {31489, 61984}, {32452, 36997}, {32832, 33253}, {33227, 44381}, {35007, 49137}, {35955, 47617}, {36523, 52943}, {38741, 62356}, {39575, 64890}, {39593, 43136}, {39764, 46264}, {41134, 45017}, {42429, 62199}, {42430, 62200}, {42433, 62197}, {42434, 62198}, {42988, 63196}, {42989, 63197}, {43291, 62144}, {44938, 63908}, {47286, 63935}, {48880, 53475}, {48895, 50659}, {48943, 64713}, {53418, 62026}, {62127, 62992}
X(65633) = reflection of X(i) in X(j) for these (i, j): (32, 7748), (1975, 7842)
X(65633) = exsimilicenter of Hatzipolakis-Suppa circle and Moses circle
X(65633) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (4, 7756, 574), (4, 31401, 43457), (4, 43619, 7756), (20, 115, 5206), (32, 7748, 11648), (39, 382, 62203), (99, 7825, 7888), (99, 33019, 7825), (148, 7802, 7751), (148, 19691, 7802), (316, 7781, 7903), (381, 44519, 37512), (382, 44526, 39), (384, 7872, 7913), (550, 7746, 8588), (550, 53419, 7746), (1657, 44518, 187), (1975, 7842, 7818), (2549, 3146, 7747), (2549, 7747, 7772), (3529, 3767, 6781), (3534, 13881, 15513), (3627, 63548, 5475), (3734, 6655, 7935), (3830, 5013, 39590), (3843, 15815, 7603), (5286, 49135, 43618), (5475, 63548, 53096), (7761, 32819, 17130), (7782, 14041, 7862), (7816, 7841, 7867), (7847, 11361, 7808), (7910, 17128, 7865), (11185, 32997, 7830), (11742, 44535, 62100), (15513, 39563, 13881), (17538, 63533, 21843), (19695, 32819, 7761), (32826, 33272, 7800)
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 7075.
X(65634) lies on these lines: { }
X(65634) = crosspoint of X(9146) and X(43956) [Peter Moses]
Contributed by Clark Kimberling and Peter Moses, October, 2024.
Suppose that P is a point on the circumcircle of a triangle ABC, and that U is the isogonal conjugate of P, so that U is on the line at infinity. The U-antipode of P is the point, other than P, in which the line PU meets the circumcircle. If P = p : q : r (on the circumcircle), then a 1st barycentric for the U-antipode of P is given by:
a^2*q*r/(a^2*q*(q - r)*r - p*(q + r)*(c^2*q - b^2*r)) : : .
this being the Collings transform of the isogonal conjugate of P.
The appearance of (i,j,k) in the following list means that X(k) = X(j)-antipode of X(i) and k < 65000 :
(74,30,476), (98,511,805), (99,512,805), (100,513,901), (101,514,927), (102,515,1309), (103,516,927), (104,517,901), (105,518,6078), (106,519,6079), (107,520,6080), (108,521,6081), (109,522,1309), (110,523,476), (111,524,6082), (112,525,2867), (476,526,16170), (477,5663,16170), (691,690,20404), (759,758,6083), (842,542,20404), (930,1510,54049), (1113,2574,110), (1114,2575,110), (1141,1154,54049), (1292,3309,6078), (1293,3667,6079), (1294,6000,6080), (1295,6001,6081), (1296,1499,6082), (1297,1503,2867), (1304,9033,53881), (1379,3413,99), (1380,3414,99), (1381,3307,100), (1382,3308,100), (2222,3738,35011), (2693,2777,53881), (2716,2800,35011), (6011,6003,6083)
The appearance of (i,j,k) in the following list means that X(k) = X(j)-antipode of X(i) and k > 65000 :
(741,740,65635), (813,812,65636), (840,528,65637), (843,543,65638), (901,900,65639), (925, 924, 65640), (929,928,65641), (934,3900,65642), (935,9517,65643), (1290,8674,65644), (1291,45147,65645), (1308,3887,65646), (2700,2784,65647), (2710,2794,65648), (2718,2802,65649), (8686,3880,65650)
X(65635) lies on the circumcircle and these lines: {105, 14195}, {106, 5209}, {109, 4600}, {110, 6064}, {668, 29151}, {719, 34996}, {740, 741}, {874, 36066}, {901, 17935}, {2703, 55243}, {6002, 6010}
X(65635) = Collings transform of X(i) for these i: {740, 6002}
X(65635) = X(2238)-cross conjugate of X(34537)
X(65635) = X(35104)-isoconjugate of X(51641)
X(65635) = cevapoint of X(i) and X(j) for these (i,j): {99, 874}, {740, 6002}
X(65635) = trilinear pole of line {6, 645}
X(65635) = barycentric product X(i)*X(j) for these {i,j}: {645, 35159}, {35108, 62534}
X(65635) = barycentric quotient X(i)/X(j) for these {i,j}: {645, 35104}, {874, 46842}, {35108, 7180}, {35159, 7178}
X(65636) lies on the circumcircle and these lines: {100, 27855}, {101, 4375}, {109, 39293}, {739, 63236}, {812, 813}, {840, 53219}, {874, 65363}, {919, 57536}, {12032, 28850}, {30664, 63222}, {46802, 59049}
X(65636) = Collings transform of X(i) for these i: {812, 28850}
X(65636) = X(43063)-isoconjugate of X(46388)
X(65636) = cevapoint of X(812) and X(28850)
X(65636) = trilinear pole of line {6, 666}
X(65636) = barycentric product X(i)*X(j) for these {i,j}: {666, 53219}, {14665, 36803}
X(65636) = barycentric quotient X(i)/X(j) for these {i,j}: {666, 14839}, {927, 43063}, {14665, 665}, {46802, 3126}, {53219, 918}
X(65637) lies on the circumcircle and these lines: {2, 35585}, {106, 34578}, {528, 840}, {900, 6078}, {901, 6084}, {952, 28914}, {953, 28915}, {1477, 3254}, {2742, 2826}, {6551, 53337}, {59021, 63745}
X(65637) = anticomplement of X(35585)
X(65637) = Collings transform of X(i) for these i: {528, 2826}
X(65637) = cevapoint of X(528) and X(2826)
X(65637) = trilinear pole of line {6, 35113}
X(65638) lies on the circumcircle and these lines: {2, 35586}, {543, 843}, {804, 6082}, {805, 6088}, {2698, 33962}, {2709, 2793}, {2782, 6093}, {34760, 53690}, {53882, 62508}
X(65638) = anticomplement of X(35586)
X(65638) = Thomson-isogonal conjugate of X(53798)
X(65638) = Collings transform of X(i) for these i: {543, 2793}
X(65638) = cevapoint of X(543) and X(2793)
X(65638) = trilinear pole of line {6, 35087}
X(65639) lies on the circumcircle and these lines: {2, 35587}, {55, 44052}, {74, 56756}, {80, 106}, {101, 6544}, {105, 14204}, {109, 15343}, {840, 37222}, {900, 901}, {952, 953}, {2222, 46649}, {2757, 17100}, {6548, 39414}, {6551, 17780}, {56416, 56644}
X(65639) = anticomplement of X(35587)
X(65639) = reflection of X(51562) in line X(1)X(5)
X(65639) = Thomson-isogonal conjugate of X(53800)
X(65639) = Collings transform of X(i) for these i: {900, 952, 56416}
X(65639) = X(i)-cross conjugate of X(j) for these (i,j): {2265, 23592}, {35013, 56644}
X(65639) = X(i)-isoconjugate of X(j) for these (i,j): {36, 24457}, {654, 43048}, {1769, 56751}, {2802, 53314}, {3025, 37630}, {21758, 30566}, {53535, 61476}
X(65639) = X(15898)-Dao conjugate of X(24457)
X(65639) = cevapoint of X(i) and X(j) for these (i,j): {900, 952}, {35013, 56416}
X(65639) = trilinear pole of line {6, 34232}
X(65639) = barycentric product X(i)*X(j) for these {i,j}: {2718, 36804}, {37222, 51562}
X(65639) = barycentric quotient X(i)/X(j) for these {i,j}: {2161, 24457}, {2222, 43048}, {2718, 3960}, {32641, 56751}, {37222, 4453}, {51562, 30566}
X(65640) lies on the circumcircle and these lines: {2, 35588}, {112, 58760}, {477, 11412}, {924, 925}, {1300, 13754}, {7689, 32710}, {12111, 53924}, {19167, 23233}
X(65640) = anticomplement of X(35588)
X(65640) = Thomson-isogonal conjugate of X(53802)
X(65640) = Collings transform of X(i) for these i: {924, 5449, 13754, 62335, 64689}
X(65640) = X(13557)-isoconjugate of X(24006)
X(65640) = cevapoint of X(i) and X(j) for these (i,j): {512, 62335}, {520, 64689}, {924, 13754}, {5449, 55121}
X(65640) = trilinear pole of line {6, 39013}
X(65640) = barycentric quotient X(32661)/X(13557)
X(65641) lies on the circumcircle and these lines: {2, 35590}, {104, 61427}, {105, 296}, {926, 1309}, {927, 8677}, {928, 929}, {2720, 23225}, {2723, 2807}, {2724, 2818}, {2734, 2808}
X(65641) = anticomplement of X(35590)
X(65641) = Collings transform of X(i) for these i: {928, 2807}
X(65641) = cevapoint of X(928) and X(2807)
X(65641) = trilinear pole of line {6, 39017}
X(65642) lies on the circumcircle and these lines: {2, 35593}, {105, 56718}, {108, 61240}, {109, 677}, {934, 3900}, {971, 972}, {2371, 32625}, {2717, 3062}, {2723, 63165}, {2724, 10405}, {11051, 43079}, {15731, 36101}, {26716, 36039}, {62725, 65545}
X(65642) = anticomplement of X(35593)
X(65642) = Thomson-isogonal conjugate of X(53804)
X(65642) = Collings transform of X(i) for these i: {971, 3900}
X(65642) = X(657)-cross conjugate of X(59195)
X(65642) = X(i)-isoconjugate of X(j) for these (i,j): {165, 676}, {910, 7658}, {9533, 46392}
X(65642) = cevapoint of X(971) and X(3900)
X(65642) = trilinear pole of line {6, 2338}
X(65642) = barycentric product X(i)*X(j) for these {i,j}: {346, 65538}, {677, 10405}, {2338, 53640}, {11051, 57928}, {36039, 44186}
X(65642) = barycentric quotient X(i)/X(j) for these {i,j}: {103, 7658}, {677, 144}, {11051, 676}, {24016, 9533}, {32642, 3207}, {32668, 17106}, {36039, 165}, {40116, 63965}, {53622, 43035}, {65245, 50561}, {65538, 279}
X(65643) lies on the circumcircle and these lines: {2, 35594}, {112, 57203}, {476, 2881}, {477, 53795}, {526, 2867}, {935, 9517}, {2697, 2781}, {5663, 53912}
X(65643) = anticomplement of X(35594)
X(65643) = Collings transform of X(i) for these i: {2781, 9517}
X(65643) = cevapoint of X(2781) and X(9517)
X(65643) = trilinear pole of line {6, 55048}
X(65644) lies on the circumcircle and these lines: {55, 44054}, {106, 7343}, {476, 900}, {477, 952}, {526, 901}, {759, 3065}, {953, 5663}, {1290, 8674}, {2687, 2771}, {5951, 12515}
X(65644) = Thomson-isogonal conjugate of X(53809)
X(65644) = Collings transform of X(i) for these i: {2771, 8674}
X(65644) = cevapoint of X(2771) and X(8674)
X(65644) = trilinear pole of line {6, 35090}
X(65645) lies on the circumcircle and these lines: {265, 33643}, {476, 25149}, {477, 25150}, {526, 54049}, {1291, 43965}, {5663, 15907}, {5966, 34308}, {14979, 32423}
X(65645) = Collings transform of X(i) for these i: {32423, 45147}
X(65645) = cevapoint of X(32423) and X(45147)
X(65646) lies on the circumcircle and these lines: {105, 1156}, {106, 4845}, {900, 927}, {901, 926}, {952, 2724}, {953, 2808}, {1308, 3887}, {2222, 37139}, {2717, 2801}, {9057, 15343}, {18821, 53183}, {23344, 59101}, {37131, 53181}
X(65646) = Thomson-isogonal conjugate of X(53801)
X(65646) = Collings transform of X(i) for these i: {2801, 3887}
X(65646) = X(i)-isoconjugate of X(j) for these (i,j): {527, 1643}, {528, 14413}, {1638, 2246}, {14190, 30573}, {23890, 52946}
X(65646) = cevapoint of X(2801) and X(3887)
X(65646) = trilinear pole of line {6, 35116}
X(65646) = barycentric quotient X(i)/X(j) for these {i,j}: {840, 1638}, {14733, 5723}, {23351, 52946}, {34068, 1643}
X(65647) lies on the circumcircle and these lines: {105, 7061}, {741, 7281}, {804, 927}, {805, 926}, {2698, 2808}, {2700, 2784}, {2702, 2786}, {2724, 2782}
X(65647) = Collings transform of X(i) for these i: {2784, 2786}
X(65647) = cevapoint of X(2784) and X(2786)
X(65647) = trilinear pole of line {6, 35080}
X(65648) lies on the circumcircle and these lines: {2, 46413}, {98, 62431}, {110, 62555}, {804, 2867}, {805, 2881}, {2698, 53795}, {2710, 2794}, {2715, 2799}, {2782, 53912}, {18858, 56981}, {34765, 53691}
X(65648) = anticomplement of X(46413)
X(65648) = Collings transform of X(i) for these i: {2794, 2799}
X(65648) = cevapoint of X(2794) and X(2799)
X(65648) = trilinear pole of line {6, 35088}
X(65649) lies on the circumcircle and these lines: {105, 14193}, {106, 61484}, {109, 9268}, {900, 6079}, {901, 6085}, {952, 44873}, {953, 53790}, {1320, 8686}, {2718, 2802}, {2743, 2827}, {6551, 23832}, {17100, 43081}, {56647, 62703}
X(65649) = Thomson-isogonal conjugate of X(53799)
X(65649) = Collings transform of X(i) for these i: {2802, 2827, 62703}
X(65649) = X(i)-isoconjugate of X(j) for these (i,j): {1635, 43055}, {5854, 53528}
X(65649) = cevapoint of X(2802) and X(2827)
X(65649) = trilinear pole of line {6, 5548}
X(65649) = barycentric product X(4582)*X(43081)
X(65649) = barycentric quotient X(i)/X(j) for these {i,j}: {901, 43055}, {5548, 5854}, {43081, 30725}, {61484, 21129}
X(65650) lies on the circumcircle and these lines: {104, 1339}, {2415, 6079}, {2718, 12629}, {3445, 56635}, {3880, 8686}, {4394, 53630}, {8668, 43081}, {30198, 30236}
X(65650) = Collings transform of X(i) for these i: {3445, 3880, 30198}
X(65650) = X(6085)-cross conjugate of X(56635)
X(65650) = X(513)-isoconjugate of X(37743)
X(65650) = X(39026)-Dao conjugate of X(37743)
X(65650) = cevapoint of X(i) and X(j) for these (i,j): {2429, 3939}, {3445, 6085}, {3880, 30198}
X(65650) = trilinear pole of line {6, 56795}
X(65650) = barycentric quotient X(101)/X(37743)
Let T' = A'B'C' and T" = A"B"C" be two triangles circumscribed by a conic. Let Ab = B'C'∩A"C" and Ac = B'C'∩A"B", and denote Bc, Ca and Ba, Cb cyclically. Let Pa = AbBc∩AcCb, and define Pb, Pc cyclically. Then:
X(65651) lies on these lines: {30, 511}, {659, 13301}, {3659, 55342}, {6728, 10492}, {21618, 45304}
X(65651) = isogonal conjugate of X(3659)
X(65651) = isotomic conjugate of the anticomplement of X(61072)
X(65651) = cevapoint of X(i) and X(j) for these {i, j}: {1, 20114}, {513, 6728}, {10495, 65696}
X(65651) = cross-difference of every pair of points on the line X(6)X(259)
X(65651) = crosspoint of X(i) and X(j) for these {i, j}: {7, 55328}, {1488, 55331}, {7057, 55342}
X(65651) = crosssum of X(i) and X(j) for these {i, j}: {513, 10500}, {10495, 15997}
X(65651) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (101, 556), (3659, 8), (16011, 149), (16015, 150), (42017, 33650), (45874, 7057), (55331, 69)
X(65651) = X(i)-Ceva conjugate of-X(j) for these (i, j): (2, 61072), (4, 45304), (7, 21623), (2089, 6732), (7057, 10504), (43192, 177), (45876, 16015), (55328, 173), (55331, 236), (55342, 1)
X(65651) = X(i)-complementary conjugate of-X(j) for these (i, j): (1, 45304), (6, 21623), (31, 61072), (2091, 17059), (3659, 10), (16011, 11), (16015, 116), (42017, 124), (45874, 178), (55331, 141)
X(65651) = X(i)-cross conjugate of-X(j) for these (i, j): (513, 65661), (6732, 2089), (45877, 10492), (61072, 2)
X(65651) = X(i)-Dao conjugate of-X(j) for these (i, j): (9, 55331), (11, 42017), (236, 55332), (1015, 16015), (8054, 16011), (10494, 7028), (10504, 53122), (13443, 55342), (15495, 45876), (21623, 7048), (40617, 2091), (61072, 2)
X(65651) = X(i)-isoconjugate of-X(j) for these {i, j}: {6, 55331}, {100, 16011}, {101, 16015}, {109, 42017}, {188, 45874}, {259, 45875}, {266, 55363}, {2091, 3939}, {6733, 15997}, {7028, 58968}, {43192, 53119}, {45876, 60539}, {55342, 60554}
X(65651) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 55331), (173, 55342), (174, 45876), (188, 55332), (259, 55363), (266, 45875), (513, 16015), (649, 16011), (650, 42017), (2089, 55341), (3669, 2091), (6728, 2090), (6729, 15997), (10492, 7048), (10495, 7028), (45877, 188), (45878, 259), (55331, 59443), (65661, 174), (65696, 39121)
X(65651) = X(i)-zayin conjugate of-X(j) for these (i, j): (522, 52797), (13443, 43192)
X(65651) = trilinear pole of the line {6732, 61072} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65651) = center of the circumconic with perspector X(61072)
X(65651) = perspector of: the circumconic with center X(61072), the inconic with center X(61072)
X(65651) = barycentric product X(i)*X(j) for these {i, j}: {556, 65661}, {4146, 45877}, {6732, 55341}, {7057, 10492}, {10504, 55331}, {21623, 55342}
X(65651) = trilinear product X(i)*X(j) for these {i, j}: {173, 10492}, {174, 45877}, {188, 65661}, {2089, 10495}, {3659, 10504}, {4146, 45878}, {6732, 43192}, {55331, 61072}
X(65651) = trilinear quotient X(i)/X(j) for these (i, j): (2, 55331), (174, 45875), (188, 55363), (266, 45874), (513, 16011), (514, 16015), (522, 42017), (556, 55332), (2089, 43192), (3676, 2091), (4146, 45876), (6728, 15997), (6732, 10495), (7057, 55342), (10492, 258), (10495, 53119), (10504, 65651), (18886, 55328), (21623, 10492), (45877, 259)
X(65651) = (2nd midarc)-isotomic conjugate-of-X(10491)
X(65651) = (midarc)-isotomic conjugate-of-X(65502)
X(65651) = (medial)-isotomic conjugate-of-X(61072)
X(65652) lies on these lines: {2, 39453}, {524, 10304}, {3003, 7736}, {7426, 42850}
X(65652) = anticomplement of X(65676)
X(65652) = X(65676)-Dao conjugate of-X(65676)
X(65653) lies on these lines: {511, 53019}, {1495, 5024}
X(65654) lies on these lines: {2, 37511}, {4, 52}, {6, 17409}, {22, 9967}, {24, 10625}, {25, 394}, {51, 125}, {143, 1595}, {154, 44439}, {184, 11470}, {185, 1885}, {235, 5562}, {373, 15010}, {378, 5422}, {389, 1593}, {403, 5891}, {428, 524}, {468, 3917}, {541, 1986}, {568, 1597}, {1154, 1596}, {1196, 35325}, {1205, 41616}, {1216, 3542}, {1235, 33798}, {1368, 12058}, {1598, 6243}, {1853, 60774}, {1899, 34146}, {1906, 14531}, {1907, 6746}, {1974, 3313}, {1993, 40914}, {2211, 20859}, {2393, 31383}, {2979, 6353}, {3088, 3567}, {3089, 11412}, {3147, 5447}, {3515, 15644}, {3516, 9729}, {3517, 37484}, {3541, 5462}, {3575, 45186}, {3796, 44479}, {3819, 37453}, {3981, 14580}, {4232, 62188}, {4259, 44086}, {4260, 44097}, {4563, 40413}, {5028, 36417}, {5064, 21849}, {5094, 5943}, {5186, 39846}, {5640, 8889}, {5650, 52297}, {5876, 44226}, {5890, 63031}, {5894, 52003}, {5907, 37197}, {5946, 64474}, {6000, 18396}, {6101, 21841}, {6102, 13488}, {6152, 64851}, {6241, 54211}, {6403, 6995}, {6467, 34774}, {6622, 11444}, {6623, 11459}, {6636, 19128}, {6688, 52298}, {6756, 10263}, {6776, 41715}, {7378, 11002}, {7408, 16981}, {7484, 52520}, {7487, 64051}, {7507, 10110}, {7577, 14845}, {7998, 38282}, {9047, 41611}, {9909, 18438}, {9969, 63129}, {10116, 46443}, {10151, 15030}, {10539, 32048}, {10575, 18560}, {11206, 15073}, {11381, 21652}, {11403, 16625}, {11410, 16836}, {11451, 52299}, {11473, 12239}, {11474, 12240}, {11550, 18382}, {11557, 12901}, {11574, 19118}, {11591, 44960}, {11743, 32352}, {12052, 28144}, {12131, 39817}, {12133, 21649}, {12135, 16980}, {12173, 13598}, {12220, 34608}, {12300, 41578}, {13340, 55572}, {13348, 15750}, {13391, 37458}, {13403, 41725}, {13473, 32062}, {14831, 62962}, {14855, 35481}, {14865, 15019}, {15004, 19124}, {15060, 37984}, {15067, 37942}, {15473, 38321}, {15809, 21850}, {17810, 37473}, {18914, 44544}, {19127, 22352}, {19504, 34986}, {20302, 63683}, {20791, 60765}, {21243, 37981}, {21525, 30214}, {26869, 65402}, {26879, 43896}, {27365, 46682}, {32110, 44269}, {33884, 62973}, {34336, 59535}, {34751, 36990}, {34854, 57533}, {35603, 64049}, {35908, 51821}, {36987, 37931}, {37481, 55571}, {37516, 44105}, {37920, 55606}, {37935, 54042}, {37951, 43586}, {40316, 40337}, {43574, 45173}, {44162, 46546}, {44889, 46831}, {45179, 63735}, {45780, 46261}, {53023, 61739}, {54003, 61378}, {57388, 63069}, {58470, 62980}, {58483, 61506}
X(65654) = midpoint of X(6243) and X(58891)
X(65654) = reflection of X(i) in X(j) for these (i, j): (25, 64820), (10605, 389), (12058, 1368), (12828, 1112), (63129, 9969)
X(65654) = cross-difference of every pair of points on the line X(22159)X(30451)
X(65654) = crosspoint of X(4) and X(56307)
X(65654) = crosssum of X(3) and X(1899)
X(65654) = perspector of the circumconic through X(30450) and X(39417)
X(65654) = inverse of X(19161) in Hatzipolakis-Lozada, hyperbola
X(65654) = inverse of X(44899) in incircle-of-orthic triangle
X(65654) = pole of the line {924, 2501} with respect to the incircle-of-orthic triangle
X(65654) = pole of the line {924, 30735} with respect to the polar circle
X(65654) = pole of the line {185, 1503} with respect to the Hatzipolakis-Lozada, hyperbola
X(65654) = pole of the line {235, 1503} with respect to the Jerabek circumhyperbola
X(65654) = pole of the line {15578, 50649} with respect to the Moses-Jerabek conic
X(65654) = pole of the line {3569, 6753} with respect to the orthic inconic
X(65654) = pole of the line {1147, 3546} with respect to the Stammler hyperbola
X(65654) = pole of the line {9723, 62698} with respect to the Steiner-Wallace hyperbola
X(65654) = X(394)-of-anti-Ara triangle
X(65654) = X(1370)-of-1st orthosymmedial triangle
X(65654) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (4, 3060, 47328), (51, 12294, 427), (51, 13417, 54384), (51, 54384, 19161), (378, 52000, 9730), (427, 1112, 51), (1593, 45010, 10982), (2211, 20859, 40938), (3917, 44079, 468), (6995, 62187, 6403), (12162, 61666, 11442), (41580, 50649, 184)
X(65655) lies on these lines: {2, 65679}, {3, 65668}, {4, 65677}, {20, 34935}, {102, 65514}
X(65655) = reflection of X(i) in X(j) for these (i, j): (4, 65677), (65668, 3)
X(65655) = anticomplement of X(65679)
X(65655) = X(65679)-Dao conjugate of-X(65679)
X(65655) = X(65677)-of-anti-Euler triangle
X(65655) = X(65668)-of-ABC-X3 reflections triangle
X(65656) lies on these lines: {6, 647}, {389, 30209}, {512, 54259}, {520, 6587}, {526, 59652}, {686, 6753}, {850, 11433}, {924, 2501}, {2485, 17434}, {2506, 3569}, {12241, 64788}, {13400, 65694}, {13567, 30476}, {16040, 62176}, {17810, 54268}, {26958, 31277}, {30211, 46425}, {31072, 63081}, {31296, 63031}, {50647, 55265}
X(65656) = midpoint of X(6587) and X(14346)
X(65656) = reflection of X(6587) in X(58895)
X(65656) = cross-difference of every pair of points on the line X(30)X(155)
X(65656) = crosspoint of X(4) and X(46639)
X(65656) = crosssum of X(3) and X(6587)
X(65656) = X(i)-complementary conjugate of-X(j) for these (i, j): (91, 55069), (1096, 136), (14593, 34846), (36145, 6389), (60501, 16595), (65176, 18589)
X(65656) = X(1084)-Dao conjugate of-X(59496)
X(65656) = X(662)-isoconjugate of-X(59496)
X(65656) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (512, 59496), (11441, 99)
X(65656) = perspector of the circumconic through X(74) and X(254)
X(65656) = pole of the line {13754, 44705} with respect to the Dou circles radical circle
X(65656) = pole of the line {6515, 6820} with respect to the polar circle
X(65656) = pole of the line {122, 136} with respect to the Kiepert circumhyperbola
X(65656) = pole of the line {64, 12085} with respect to the MacBeath circumconic
X(65656) = pole of the line {3, 64} with respect to the orthic inconic
X(65656) = pole of the line {393, 847} with respect to the Steiner inellipse
X(65656) = barycentric product X(523)*X(11441)
X(65656) = trilinear product X(661)*X(11441)
X(65656) = trilinear quotient X(i)/X(j) for these (i, j): (661, 59496), (11441, 662)
X(65656) = (X(17434), X(30442))-harmonic conjugate of X(2485)
X(65657) lies on these lines: {2, 65663}, {3, 65658}, {522, 1770}, {17220, 46402}
X(65657) = reflection of X(65658) in X(3)
X(65657) = anticomplement of X(65663)
X(65657) = X(65663)-Dao conjugate of-X(65663)
X(65657) = X(65658)-of-ABC-X3 reflections triangle
X(65658) lies on these lines: {3, 65657}, {4, 65663}, {6003, 48080}
X(65658) = reflection of X(i) in X(j) for these (i, j): (4, 65663), (65657, 3)
X(65658) = X(65663)-of-anti-Euler triangle
X(65658) = X(65657)-of-ABC-X3 reflections triangle
X(65659) lies on these lines: {1, 3676}, {3, 649}, {4, 3835}, {5, 30835}, {20, 20295}, {30, 31147}, {40, 15599}, {56, 65697}, {74, 2700}, {78, 4468}, {101, 61106}, {102, 28838}, {103, 953}, {104, 12032}, {106, 28914}, {140, 31207}, {376, 4785}, {405, 25924}, {474, 25955}, {512, 684}, {513, 50371}, {514, 44827}, {631, 31286}, {650, 30199}, {661, 8760}, {663, 905}, {788, 63389}, {936, 4521}, {991, 14812}, {1064, 14205}, {1292, 40499}, {1293, 28293}, {1296, 2705}, {1350, 9002}, {1459, 3960}, {1565, 14714}, {2646, 44319}, {2742, 3939}, {2814, 48335}, {2821, 4775}, {2826, 4724}, {3064, 57276}, {3091, 27138}, {3146, 26798}, {3522, 26853}, {3523, 27013}, {3524, 45313}, {3528, 48016}, {3545, 45339}, {3601, 58324}, {3667, 3737}, {4025, 62436}, {4091, 8676}, {4105, 14077}, {4106, 64787}, {4375, 36489}, {4449, 28473}, {4905, 51652}, {5720, 47765}, {5732, 6006}, {6008, 8142}, {6261, 28589}, {6545, 37533}, {7380, 30764}, {7513, 46107}, {9000, 53249}, {9313, 30269}, {9840, 28398}, {10884, 48013}, {10984, 58315}, {17697, 26694}, {18200, 64393}, {18443, 47758}, {18444, 47755}, {18446, 28846}, {21172, 48307}, {23100, 59362}, {25381, 36543}, {26117, 26596}, {27485, 64088}, {27673, 61109}, {28159, 28876}, {28203, 28892}, {28474, 28520}, {29066, 62432}, {29241, 53906}, {30209, 42664}, {30273, 64866}, {34772, 47676}, {37531, 48398}, {37700, 48082}, {39227, 58140}, {41854, 49284}, {42312, 44409}, {48294, 65412}
X(65659) = midpoint of X(20) and X(20295)
X(65659) = reflection of X(i) in X(j) for these (i, j): (4, 3835), (40, 15599), (649, 3), (4091, 44408), (62436, 4025)
X(65659) = circumperp conjugate of X(46407)
X(65659) = cross-difference of every pair of points on the line X(3011)X(7735)
X(65659) = X(21)-beth conjugate of-X(3676)
X(65659) = X(78)-gimel conjugate of-X(15599)
X(65659) = perspector of the circumconic through X(39273) and X(40802)
X(65659) = pole of the line {674, 1350} with respect to the circumcircle
X(65659) = pole of the line {376, 527} with respect to the hexyl circle
X(65659) = pole of the line {527, 5728} with respect to the incircle
X(65659) = pole of the line {674, 55582} with respect to the Nguyen-Moses circle
X(65659) = pole of the line {29639, 51400} with respect to the orthoptic circle of Steiner inellipse
X(65659) = pole of the line {902, 2030} with respect to the Schoute circle
X(65659) = pole of the line {674, 55584} with respect to the Stammler circle
X(65659) = pole of the line {990, 5757} with respect to the excentral-hexyl ellipse
X(65659) = pole of the line {47845, 53326} with respect to the Kiepert parabola
X(65659) = pole of the line {4237, 35278} with respect to the Stammler hyperbola
X(65659) = pole of the line {25939, 37597} with respect to the Steiner inellipse
X(65659) = (ABC-X3 reflections)-isogonal conjugate-of-X(24813)
X(65659) = (2nd circumperp)-isogonal conjugate-of-X(53302)
X(65659) = X(65697)-of-2nd circumperp tangential triangle
X(65659) = X(62432)-of-anti-inner-Garcia triangle
X(65659) = X(3835)-of-anti-Euler triangle
X(65659) = X(850)-of-2nd circumperp triangle
X(65659) = X(649)-of-ABC-X3 reflections triangle
X(65659) = X(647)-of-hexyl triangle
X(65660) lies on these lines: {2, 24462}, {42, 20525}, {100, 190}, {316, 512}, {918, 17165}, {926, 17135}, {2340, 8714}, {4453, 17140}, {6327, 46401}, {17146, 30704}, {24349, 48571}, {32937, 47772}, {48169, 57091}, {48269, 58288}, {49273, 63812}, {49276, 56318}
X(65660) = isotomic conjugate of the anticomplement of X(38990)
X(65660) = anticomplement of X(65703)
X(65660) = cross-difference of every pair of points on the line X(1015)X(3051)
X(65660) = crosspoint of X(190) and X(43093)
X(65660) = crosssum of X(i) and X(j) for these {i, j}: {39, 65703}, {649, 8618}
X(65660) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (675, 149), (2224, 4440), (32682, 192), (36087, 2), (37130, 150), (43093, 21293), (52941, 17494), (60135, 21221), (65554, 4430)
X(65660) = X(38990)-cross conjugate of-X(2)
X(65660) = X(65703)-Dao conjugate of-X(65703)
X(65660) = X(38990)-reciprocal conjugate of-X(65703)
X(65660) = perspector of: the circumconic through X(308) and X(1016), the inconic with center X(38990)
X(65660) = pole of the line {100, 8266} with respect to the circumcircle
X(65660) = pole of the line {100, 573} with respect to the incircle of anticomplementary triangle
X(65660) = pole of the line {1843, 2969} with respect to the polar circle
X(65660) = pole of the line {1, 31296} with respect to the Kiepert parabola
X(65660) = pole of the line {76, 190} with respect to the Steiner circumellipse
X(65660) = pole of the line {3934, 4422} with respect to the Steiner inellipse
X(65660) = pole of the line {1634, 7192} with respect to the Steiner-Wallace hyperbola
X(65660) = pole of the line {2, 2412} with respect to the Yff parabola
X(65661) lies on these lines: {1, 65411}, {513, 663}, {6728, 10492}, {8077, 65453}, {43192, 45874}
X(65661) = reflection of X(65696) in X(1)
X(65661) = isogonal conjugate of X(55363)
X(65661) = cross-difference of every pair of points on the line X(9)X(259)
X(65661) = crosspoint of X(i) and X(j) for these {i, j}: {1, 10496}, {174, 45876}, {2089, 43192}
X(65661) = crosssum of X(i) and X(j) for these {i, j}: {1, 65411}, {259, 45878}, {10495, 53119}
X(65661) = X(21)-beth conjugate of-X(65411)
X(65661) = X(i)-Ceva conjugate of-X(j) for these (i, j): (57, 61072), (13444, 10490), (43192, 266), (45875, 173), (45876, 174), (55342, 65662)
X(65661) = X(i)-cross conjugate of-X(j) for these (i, j): (513, 65651), (45878, 45877), (61072, 57)
X(65661) = X(i)-Dao conjugate of-X(j) for these (i, j): (9, 55332), (223, 45876), (478, 45875), (1015, 2090), (8054, 15997), (21623, 53123), (61072, 556)
X(65661) = X(i)-isoconjugate of-X(j) for these {i, j}: {6, 55332}, {8, 45874}, {9, 45875}, {55, 45876}, {100, 15997}, {101, 2090}, {188, 3659}, {259, 55331}, {644, 41799}, {6733, 42017}, {45878, 59443}, {53119, 55342}
X(65661) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 55332), (56, 45875), (57, 45876), (266, 55331), (513, 2090), (604, 45874), (649, 15997), (6729, 42017), (10492, 53123), (43924, 41799), (45875, 59443), (45877, 8), (45878, 9), (65651, 556)
X(65661) = X(3659)-zayin conjugate of-X(10495)
X(65661) = perspector of the circumconic through X(57) and X(174)
X(65661) = pole of the line {52510, 55174} with respect to the Adams circle
X(65661) = pole of the line {56, 10490} with respect to the circumcircle
X(65661) = pole of the line {12435, 12554} with respect to the Conway circle
X(65661) = pole of the line {6769, 55174} with respect to the hexyl circle
X(65661) = pole of the line {65, 177} with respect to the incircle
X(65661) = pole of the line {21623, 24237} with respect to the circumhyperbola dual of Yff parabola
X(65661) = pole of the line {7004, 10501} with respect to the Feuerbach circumhyperbola
X(65661) = pole of the line {643, 55363} with respect to the Stammler hyperbola
X(65661) = pole of the line {174, 3210} with respect to the Steiner circumellipse
X(65661) = pole of the line {3752, 16015} with respect to the Steiner inellipse
X(65661) = pole of the line {7257, 55363} with respect to the Steiner-Wallace hyperbola
X(65661) = barycentric product X(i)*X(j) for these {i, j}: {7, 45877}, {85, 45878}, {174, 65651}, {2089, 10492}, {6732, 55328}, {10495, 18886}, {10504, 45875}, {12809, 55332}, {21623, 43192}, {45876, 61072}
X(65661) = trilinear product X(i)*X(j) for these {i, j}: {7, 45878}, {57, 45877}, {266, 65651}, {6732, 13444}, {10504, 45874}, {12809, 55363}, {21623, 58968}, {45875, 61072}
X(65661) = trilinear quotient X(i)/X(j) for these (i, j): (2, 55332), (7, 45876), (56, 45874), (57, 45875), (174, 55331), (266, 3659), (513, 15997), (514, 2090), (2089, 55342), (3669, 41799), (6728, 42017), (10492, 7028), (12809, 65661), (18886, 55341), (45876, 59443), (45877, 9), (45878, 55), (61072, 45877)
X(65661) = X(65696)-of-5th mixtilinear triangle
X(65661) = X(59915)-of-2nd circumperp triangle
X(65661) = X(54239)-of-excentral triangle
X(65661) = X(39199)-of-intouch triangle
X(65662) lies on these lines: {1, 164}, {57, 61635}, {65, 10490}, {145, 174}, {390, 8242}, {944, 8092}, {5441, 16147}, {7590, 8000}, {7707, 60533}, {7966, 8082}, {7971, 8096}, {7972, 8098}, {7990, 8090}, {8351, 11041}, {10698, 12772}, {10890, 11895}, {11924, 18221}, {13100, 13125}, {18456, 64173}, {30408, 64766}, {45087, 64697}
X(65662) = reflection of X(15997) in X(1)
X(65662) = crosssum of X(1) and X(12523)
X(65662) = X(i)-beth conjugate of-X(j) for these (i, j): (1, 10490), (21, 55172)
X(65662) = X(55342)-Ceva conjugate of-X(65661)
X(65662) = trilinear quotient X(21622)/X(178)
X(65662) = X(40950)-of-excenters-reflections triangle
X(65662) = X(23361)-of-Hutson intouch triangle
X(65662) = X(15997)-of-5th mixtilinear triangle
X(65662) = X(15622)-of-intouch triangle
X(65663) lies on these lines: {2, 65657}, {4, 65658}, {71, 657}, {513, 5570}, {3064, 15313}, {35604, 38357}
X(65663) = midpoint of X(4) and X(65658)
X(65663) = complement of X(65657)
X(65663) = cross-difference of every pair of points on the line X(2911)X(3157)
X(65663) = crosssum of X(3) and X(50350)
X(65663) = X(1479)-Ceva conjugate of-X(11)
X(65663) = perspector of the circumconic through X(7040) and X(15474)
X(65663) = pole of the line {3, 4354} with respect to the incircle
X(65663) = pole of the line {5905, 56876} with respect to the polar circle
X(65663) = pole of the line {1, 584} with respect to the orthic inconic
X(65663) = X(65658)-of-Euler triangle
X(65664) lies on these lines: {55, 14392}, {103, 105}, {513, 663}, {516, 39077}, {649, 17115}, {652, 6608}, {654, 11193}, {657, 4041}, {661, 2520}, {676, 1360}, {812, 885}, {926, 2170}, {934, 53622}, {1024, 2195}, {1635, 6139}, {1946, 21127}, {2161, 23351}, {2488, 4979}, {3683, 14418}, {3738, 53055}, {3887, 51768}, {3900, 54255}, {4105, 14298}, {4455, 8638}, {4729, 65445}, {6084, 21132}, {8648, 16686}, {15283, 24924}, {17410, 58140}, {22108, 42657}, {25900, 65401}, {46392, 56785}, {48322, 65442}
X(65664) = reflection of X(4041) in X(657)
X(65664) = cross-difference of every pair of points on the line X(9)X(77)
X(65664) = crosspoint of X(i) and X(j) for these {i, j}: {9, 36086}, {513, 1024}, {673, 4626}, {2195, 8750}, {43736, 61240}
X(65664) = crosssum of X(i) and X(j) for these {i, j}: {7, 53357}, {57, 2254}, {100, 1025}, {522, 26001}, {672, 4105}, {4025, 9436}
X(65664) = X(105)-Ceva conjugate of-X(2170)
X(65664) = X(513)-daleth conjugate of-X(663)
X(65664) = X(i)-Dao conjugate of-X(j) for these (i, j): (1, 57928), (11, 18025), (223, 65294), (478, 65245), (661, 60581), (1015, 52156), (1146, 57996), (1566, 85), (6615, 2400), (8054, 43736), (20622, 18026), (23972, 4554), (38980, 56668), (38991, 36101), (39025, 103), (39077, 883), (46095, 6516), (50441, 668)
X(65664) = X(61240)-he conjugate of-X(3900)
X(65664) = X(i)-isoconjugate of-X(j) for these {i, j}: {7, 677}, {8, 24016}, {9, 65245}, {55, 65294}, {56, 57928}, {59, 2400}, {77, 65218}, {85, 36039}, {100, 43736}, {101, 52156}, {103, 664}, {109, 18025}, {312, 32668}, {348, 40116}, {651, 36101}, {653, 1815}, {658, 2338}, {666, 52213}, {911, 4554}, {919, 56668}, {1025, 9503}, {1252, 60581}, {1415, 57996}, {1813, 52781}, {2424, 4998}, {4620, 55257}, {6063, 32642}, {6516, 36122}, {18026, 36056}, {32657, 46404}, {33298, 35184}, {36136, 59200}, {44717, 53150}, {64083, 65538}
X(65664) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (9, 57928), (41, 677), (56, 65245), (57, 65294), (244, 60581), (513, 52156), (516, 4554), (522, 57996), (604, 24016), (607, 65218), (649, 43736), (650, 18025), (663, 36101), (676, 85), (884, 9503), (910, 664), (1360, 24015), (1397, 32668), (1456, 658), (1886, 18026), (1946, 1815), (2170, 2400), (2175, 36039), (2212, 40116), (2254, 56668), (2426, 4564), (3063, 103), (8641, 2338), (9447, 32642), (9502, 883), (14953, 4625), (18344, 52781), (30807, 4572), (39470, 7182), (40869, 668), (41339, 190), (43035, 4569), (46392, 8), (51376, 4561), (51418, 3699), (51436, 4551), (56639, 34085), (56785, 1026), (56900, 51560), (57292, 35518)
X(65664) = X(36146)-zayin conjugate of-X(2254)
X(65664) = perspector of the circumconic through X(33) and X(57)
X(65664) = pole of the line {56, 2170} with respect to the circumcircle
X(65664) = pole of the line {12435, 38479} with respect to the Conway circle
X(65664) = pole of the line {65, 1360} with respect to the incircle
X(65664) = pole of the line {85, 318} with respect to the polar circle
X(65664) = pole of the line {1410, 1475} with respect to the Brocard inellipse
X(65664) = pole of the line {21195, 24237} with respect to the circumhyperbola dual of Yff parabola
X(65664) = pole of the line {650, 3119} with respect to the Feuerbach circumhyperbola
X(65664) = pole of the line {3271, 14100} with respect to the Mandart inellipse
X(65664) = pole of the line {1827, 2262} with respect to the orthic inconic
X(65664) = pole of the line {3752, 20310} with respect to the Steiner inellipse
X(65664) = pole of the line {7257, 55205} with respect to the Steiner-Wallace hyperbola
X(65664) = barycentric product X(i)*X(j) for these {i, j}: {7, 46392}, {9, 676}, {33, 39470}, {108, 57292}, {513, 40869}, {514, 41339}, {516, 650}, {521, 1886}, {522, 910}, {663, 30807}, {885, 9502}, {1024, 50441}, {1456, 3239}, {1566, 36086}, {2170, 2398}, {2254, 56900}, {2426, 4858}, {3022, 24015}, {3063, 35517}, {3119, 23973}
X(65664) = trilinear product X(i)*X(j) for these {i, j}: {11, 2426}, {55, 676}, {57, 46392}, {513, 41339}, {516, 663}, {607, 39470}, {649, 40869}, {650, 910}, {652, 1886}, {657, 43035}, {665, 56900}, {884, 50441}, {919, 1566}, {926, 56639}, {1024, 9502}, {1456, 3900}, {2342, 42756}, {2398, 3271}, {3022, 23973}, {3063, 30807}
X(65664) = trilinear quotient X(i)/X(j) for these (i, j): (7, 65294), (8, 57928), (11, 2400), (33, 65218), (41, 36039), (55, 677), (56, 24016), (57, 65245), (513, 43736), (514, 52156), (516, 664), (522, 18025), (604, 32668), (607, 40116), (650, 36101), (652, 1815), (657, 2338), (663, 103), (665, 52213), (676, 7)
X(65664) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (55, 46393, 14392), (652, 11934, 6608), (2520, 8641, 661)
X(65665) lies on these lines: {115, 125}, {513, 663}, {676, 3649}, {3743, 32679}, {4854, 6366}, {10015, 63997}, {30691, 39793}
X(65665) = cross-difference of every pair of points on the line X(9)X(110)
X(65665) = perspector of the circumconic through X(57) and X(523)
X(65665) = pole of the line {56, 7669} with respect to the circumcircle
X(65665) = pole of the line {65, 4934} with respect to the incircle
X(65665) = pole of the line {318, 648} with respect to the polar circle
X(65665) = pole of the line {1475, 20975} with respect to the Brocard inellipse
X(65665) = pole of the line {21196, 24237} with respect to the circumhyperbola dual of Yff parabola
X(65665) = pole of the line {125, 2262} with respect to the orthic inconic
X(65665) = pole of the line {249, 643} with respect to the Stammler hyperbola
X(65665) = pole of the line {148, 3210} with respect to the Steiner circumellipse
X(65665) = pole of the line {115, 3752} with respect to the Steiner inellipse
X(65665) = pole of the line {4590, 7257} with respect to the Steiner-Wallace hyperbola
X(65666) lies on these lines: {513, 663}, {1648, 8029}
X(65666) = cross-difference of every pair of points on the line X(9)X(249)
X(65666) = perspector of the circumconic through X(57) and X(115)
X(65666) = pole of the line {318, 18020} with respect to the polar circle
X(65666) = pole of the line {1475, 55384} with respect to the Brocard inellipse
X(65666) = pole of the line {2262, 58907} with respect to the orthic inconic
X(65666) = pole of the line {643, 59152} with respect to the Stammler hyperbola
X(65666) = pole of the line {3210, 54104} with respect to the Steiner circumellipse
X(65666) = pole of the line {3752, 23991} with respect to the Steiner inellipse
X(65666) = pole of the line {7257, 31614} with respect to the Steiner-Wallace hyperbola
X(65667) lies on these lines: {2, 65678}, {3260, 15574}, {18420, 44375}
X(65667) = anticomplement of X(65678)
X(65667) = X(65678)-Dao conjugate of-X(65678)
X(65668) lies on these lines: {2, 65677}, {3, 65655}, {4, 14529}, {109, 1836}
X(65668) = reflection of X(i) in X(j) for these (i, j): (4, 65679), (65655, 3)
X(65668) = anticomplement of X(65677)
X(65668) = X(65677)-Dao conjugate of-X(65677)
X(65668) = X(65679)-of-anti-Euler triangle
X(65668) = X(65655)-of-ABC-X3 reflections triangle
X(65669) lies on these lines: {2, 2610}, {58, 49276}, {63, 42744}, {81, 918}, {86, 4453}, {99, 110}, {320, 350}, {333, 30565}, {1638, 5333}, {1639, 5235}, {3310, 25060}, {3738, 55022}, {3762, 21739}, {3910, 57189}, {4467, 7372}, {4560, 23876}, {4608, 56321}, {6546, 53412}, {8025, 48571}, {9511, 35983}, {16704, 47772}, {17212, 47755}, {18200, 47971}, {21222, 57076}, {25526, 62435}, {30992, 30995}, {35623, 65703}, {38477, 38480}, {45326, 64425}
X(65669) = reflection of X(21222) in X(57076)
X(65669) = anticomplement of X(2610)
X(65669) = anticomplementary conjugate of the anticomplement of X(37140)
X(65669) = isotomic conjugate of the anticomplement of X(38982)
X(65669) = isotomic conjugate of the isogonal conjugate of X(42741)
X(65669) = cross-difference of every pair of points on the line X(213)X(3124)
X(65669) = crosspoint of X(i) and X(j) for these {i, j}: {86, 65283}, {99, 14616}
X(65669) = crosssum of X(i) and X(j) for these {i, j}: {42, 42666}, {512, 3724}, {8648, 20959}
X(65669) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (759, 21221), (4556, 6224), (9273, 523), (9274, 4560), (14616, 21294), (24624, 3448), (32671, 192), (32675, 56291), (34079, 148), (36069, 2), (37140, 8), (40214, 14731), (47318, 1330), (52380, 37781), (57736, 39352), (57985, 13219), (58979, 662), (65283, 69)
X(65669) = X(55237)-Ceva conjugate of-X(16704)
X(65669) = X(38982)-cross conjugate of-X(2)
X(65669) = X(i)-Dao conjugate of-X(j) for these (i, j): (1086, 5620), (2610, 2610), (6626, 65238), (34021, 35156), (35090, 37), (40592, 1290), (40620, 21907), (40625, 11604), (53988, 1824)
X(65669) = X(i)-isoconjugate of-X(j) for these {i, j}: {42, 1290}, {213, 65238}, {692, 5620}, {1918, 35156}
X(65669) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (81, 1290), (86, 65238), (274, 35156), (514, 5620), (2074, 1783), (4560, 11604), (5127, 101), (5172, 4559), (7192, 21907), (8674, 37), (17796, 4557), (19622, 692), (32849, 3952), (37783, 100), (37799, 61178), (38982, 2610), (41541, 61171), (41542, 61170), (42670, 213), (42741, 6), (47235, 1824), (51646, 1400), (57447, 1637)
X(65669) = perspector of: the circumconic through X(274) and X(4590), the inconic with center X(38982)
X(65669) = pole of the line {1634, 16678} with respect to the circumcircle
X(65669) = pole of the line {1764, 32863} with respect to the Conway circle
X(65669) = pole of the line {1824, 8754} with respect to the polar circle
X(65669) = pole of the line {6360, 39352} with respect to the power circles radical circle
X(65669) = pole of the line {2, 1577} with respect to the Kiepert parabola
X(65669) = pole of the line {512, 692} with respect to the Stammler hyperbola
X(65669) = pole of the line {75, 99} with respect to the Steiner circumellipse
X(65669) = pole of the line {620, 3739} with respect to the Steiner inellipse
X(65669) = pole of the line {100, 523} with respect to the Steiner-Wallace hyperbola
X(65669) = pole of the line {1654, 17494} with respect to the Yff parabola
X(65669) = barycentric product X(i)*X(j) for these {i, j}: {76, 42741}, {274, 8674}, {693, 37783}, {2074, 15413}, {3261, 5127}, {6385, 42670}, {7192, 32849}, {15419, 56877}, {17796, 52619}, {19622, 40495}, {28660, 51646}
X(65669) = trilinear product X(i)*X(j) for these {i, j}: {75, 42741}, {86, 8674}, {310, 42670}, {314, 51646}, {514, 37783}, {693, 5127}, {1019, 32849}, {2074, 4025}, {3261, 19622}, {5172, 18155}, {7199, 17796}, {17206, 47235}, {38982, 65283}
X(65669) = trilinear quotient X(i)/X(j) for these (i, j): (86, 1290), (274, 65238), (310, 35156), (693, 5620), (2074, 8750), (5127, 692), (7199, 21907), (8674, 42), (18155, 11604), (19622, 32739), (32849, 1018), (37783, 101), (38982, 42666), (42670, 1918), (42741, 31), (47235, 2333), (51646, 1402)
X(65670) lies on these lines: {1, 7}, {11, 28352}, {38, 3057}, {42, 3486}, {55, 10448}, {78, 2899}, {200, 6552}, {212, 22760}, {497, 1201}, {774, 14110}, {851, 2646}, {899, 1837}, {950, 1193}, {958, 1253}, {960, 2310}, {976, 28104}, {1040, 3924}, {1066, 18481}, {1106, 63991}, {1107, 2269}, {1149, 12053}, {1457, 6284}, {1496, 12114}, {2098, 38496}, {2340, 12437}, {2650, 10391}, {3214, 5727}, {3270, 10544}, {3601, 27621}, {3616, 26050}, {3691, 53561}, {4186, 52092}, {4642, 9371}, {4849, 17632}, {4907, 15829}, {5274, 21214}, {5281, 59311}, {6737, 65671}, {7004, 64043}, {9316, 37022}, {9581, 27627}, {9819, 50637}, {10543, 14547}, {10572, 22350}, {10866, 45219}, {14714, 17793}, {17449, 64046}, {17452, 18671}, {37570, 62873}, {49487, 54295}, {52524, 64110}
X(65670) = crosspoint of X(1) and X(1043)
X(65670) = crosssum of X(1) and X(1042)
X(65670) = X(799)-Ceva conjugate of-X(657)
X(65670) = X(65503)-reciprocal conjugate of-X(657)
X(65670) = pole of the line {17418, 44408} with respect to the circumcircle
X(65670) = pole of the line {514, 40467} with respect to the incircle
X(65670) = pole of the line {354, 1201} with respect to the Feuerbach circumhyperbola
X(65670) = pole of the line {1042, 1043} with respect to the Steiner-Wallace hyperbola
X(65670) = barycentric product X(46406)*X(65503)
X(65670) = trilinear product X(4569)*X(65503)
X(65670) = trilinear quotient X(65503)/X(8641)
X(65670) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 20, 1042), (1, 4297, 1458), (1, 4304, 4300), (1, 4313, 2293), (20, 1042, 3000), (1837, 22072, 899), (2646, 2654, 3720), (6737, 65671, 65673)
X(65671) lies on these lines: {1, 9799}, {7, 45742}, {33, 39595}, {222, 51617}, {269, 10430}, {354, 39789}, {390, 62818}, {497, 3663}, {516, 62811}, {950, 3666}, {990, 11019}, {1040, 3008}, {2310, 40998}, {2999, 5809}, {3022, 5579}, {3100, 40940}, {3486, 37553}, {3664, 10391}, {3668, 10431}, {3914, 45275}, {4314, 62871}, {4319, 4847}, {4328, 10580}, {4383, 10392}, {5274, 23681}, {5324, 58326}, {6737, 65670}, {9812, 62780}, {10383, 29571}, {10473, 63601}, {10521, 40959}, {10624, 44706}, {11220, 62789}, {12053, 17597}
X(65671) = crosspoint of X(7) and X(1043)
X(65671) = crosssum of X(55) and X(1042)
X(65671) = pole of the line {657, 1021} with respect to the incircle
X(65671) = pole of the line {1122, 10481} with respect to the Feuerbach circumhyperbola
X(65671) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (10391, 40960, 3664), (65670, 65673, 6737)
X(65672) lies on these lines: {8, 90}, {92, 10883}, {318, 64564}, {1441, 65684}, {23661, 44256}, {50696, 56943}
X(65672) = crosspoint of X(264) and X(1043)
X(65672) = crosssum of X(184) and X(1042)
X(65672) = pole of the line {657, 1021} with respect to the MacBeath inconic
X(65673) lies on these lines: {1, 6837}, {8, 4319}, {10, 27521}, {65, 1827}, {515, 774}, {950, 2292}, {968, 3486}, {1254, 63998}, {1837, 1853}, {1858, 40950}, {1877, 1898}, {2650, 40960}, {3012, 5930}, {4320, 9799}, {4331, 5691}, {4332, 21628}, {4907, 12625}, {6737, 65670}, {6738, 42289}, {9316, 9948}, {12053, 49454}, {16870, 21935}, {18391, 65128}
X(65673) = crosspoint of X(4) and X(1043)
X(65673) = crosssum of X(3) and X(1042)
X(65673) = pole of the line {407, 1828} with respect to the Feuerbach circumhyperbola
X(65673) = pole of the line {657, 1021} with respect to the orthic inconic
X(65673) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1837, 1854, 3914), (1858, 40950, 41011), (6737, 65671, 65670)
X(65674) lies on these lines: {20, 24018}, {21, 58338}, {99, 24016}, {522, 663}, {1043, 15411}, {4367, 53269}, {4467, 65685}
X(65674) = cevapoint of X(57064) and X(58835)
X(65674) = crosspoint of X(i) and X(j) for these {i, j}: {99, 1043}, {333, 55284}
X(65674) = crosssum of X(512) and X(1042)
X(65674) = X(i)-Ceva conjugate of-X(j) for these (i, j): (4573, 2287), (55284, 333)
X(65674) = X(i)-Dao conjugate of-X(j) for these (i, j): (4130, 3700), (7658, 523), (13609, 3668), (40582, 61240), (40602, 53622), (40605, 53640), (40620, 60831), (40625, 36620), (55067, 64980), (55068, 3062)
X(65674) = X(i)-isoconjugate of-X(j) for these {i, j}: {65, 53622}, {1018, 61380}, {1020, 11051}, {1400, 61240}, {1402, 53640}, {3062, 53321}, {4559, 64980}
X(65674) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (21, 61240), (144, 4566), (165, 1020), (284, 53622), (333, 53640), (1021, 3062), (3207, 53321), (3733, 61380), (3737, 64980), (4560, 36620), (7058, 55284), (7192, 60831), (7253, 10405), (7658, 3668), (13609, 523), (21060, 4605), (21789, 11051), (22117, 52610), (55285, 6354), (57064, 10), (58329, 19605), (58835, 37), (63965, 52607), (64083, 4552)
X(65674) = pole of the line {657, 1021} with respect to the Kiepert parabola
X(65674) = pole of the line {109, 53622} with respect to the Stammler hyperbola
X(65674) = pole of the line {664, 23973} with respect to the Steiner-Wallace hyperbola
X(65674) = barycentric product X(i)*X(j) for these {i, j}: {86, 57064}, {99, 13609}, {144, 7253}, {274, 58835}, {1021, 16284}, {1043, 7658}, {4560, 64083}, {7058, 55285}, {15411, 63965}, {31627, 58329}
X(65674) = trilinear product X(i)*X(j) for these {i, j}: {81, 57064}, {86, 58835}, {144, 1021}, {165, 7253}, {662, 13609}, {1098, 55285}, {2287, 7658}, {3160, 58329}, {3737, 64083}, {16284, 21789}, {21060, 65575}, {57081, 63965}
X(65674) = trilinear quotient X(i)/X(j) for these (i, j): (21, 53622), (144, 1020), (165, 53321), (314, 53640), (333, 61240), (1019, 61380), (1021, 11051), (4560, 64980), (7199, 60831), (7253, 3062), (7658, 1427), (13609, 661), (16284, 4566), (18155, 36620), (55285, 1254), (57064, 37), (58835, 42), (64083, 4551)
X(65674) = (X(4560), X(58329))-harmonic conjugate of X(7253)
X(65675) lies on these lines: {6, 45739}, {25, 41}, {1042, 11347}, {1183, 1193}, {1185, 1200}, {2264, 3725}, {2309, 20967}, {3009, 40962}, {3010, 3198}, {3778, 23638}, {14936, 40966}, {23632, 23640}
X(65675) = crosspoint of X(6) and X(1043)
X(65675) = crosssum of X(i) and X(j) for these {i, j}: {2, 1042}, {269, 6359}
X(65675) = X(65163)-Ceva conjugate of-X(8641)
X(65675) = pole of the line {657, 1021} with respect to the Brocard inellipse
X(65676) lies on these lines: {2, 39453}, {524, 3545}, {1990, 7736}, {5201, 11284}, {42849, 47097}
X(65676) = complement of X(65652)
X(65676) = X(43956)-of-Artzt triangle
X(65677) lies on these lines: {2, 65668}, {4, 65655}, {5, 65679}, {124, 4640}
X(65677) = midpoint of X(4) and X(65655)
X(65677) = reflection of X(65679) in X(5)
X(65677) = complement of X(65668)
X(65677) = X(65679)-of-Johnson triangle
X(65677) = X(65655)-of-Euler triangle
X(65678) lies on these lines: {2, 65667}, {7514, 44388}
X(65678) = complement of X(65667)
X(65679) lies on these lines: {2, 65655}, {4, 14529}, {5, 65677}, {117, 65520}
X(65679) = midpoint of X(4) and X(65668)
X(65679) = reflection of X(65677) in X(5)
X(65679) = complement of X(65655)
X(65679) = X(65677)-of-Johnson triangle
X(65679) = X(65668)-of-Euler triangle
X(65680) lies on these lines: {6, 1769}, {9, 3738}, {37, 53532}, {44, 513}, {101, 651}, {144, 53357}, {198, 53305}, {284, 35055}, {294, 1024}, {391, 4148}, {514, 50573}, {521, 4171}, {526, 2294}, {665, 53528}, {900, 42462}, {926, 2170}, {1156, 3887}, {1638, 3321}, {1757, 13259}, {1937, 52222}, {2178, 22379}, {2291, 15731}, {2520, 6608}, {2820, 5540}, {3063, 6615}, {3064, 48266}, {3569, 40977}, {3686, 4768}, {3958, 6370}, {4017, 20980}, {4131, 25924}, {4529, 20293}, {4728, 24712}, {4814, 6182}, {4822, 58332}, {4932, 27417}, {4958, 14400}, {6006, 14330}, {6068, 6366}, {6084, 40520}, {6139, 14392}, {7216, 64885}, {9029, 48322}, {9502, 53535}, {14282, 28225}, {14331, 48269}, {14413, 42082}, {17412, 48340}, {17439, 21320}, {17455, 42768}, {21828, 52307}, {22383, 55212}, {23730, 43042}, {23819, 49287}, {24792, 63589}, {26017, 46400}, {26985, 46402}, {36054, 55214}, {48151, 57180}, {50354, 57237}, {52306, 55210}, {53277, 54322}, {53286, 58370}, {58817, 59612}
X(65680) = midpoint of X(144) and X(53357)
X(65680) = reflection of X(i) in X(j) for these (i, j): (21127, 657), (23730, 43042)
X(65680) = polar conjugate of the isotomic conjugate of X(14414)
X(65680) = isogonal conjugate of X(37139)
X(65680) = cross-difference of every pair of points on the line X(1)X(651)
X(65680) = crosspoint of X(i) and X(j) for these {i, j}: {1, 37139}, {650, 23893}, {651, 1156}, {1155, 23890}, {1638, 6366}
X(65680) = crosssum of X(i) and X(j) for these {i, j}: {57, 43050}, {514, 30379}, {650, 1155}, {651, 23890}, {1156, 23893}, {2291, 35348}
X(65680) = X(i)-Ceva conjugate of-X(j) for these (i, j): (651, 42082), (1156, 2310), (1308, 55), (1638, 14413), (6366, 14392), (23890, 1155), (23893, 650), (37139, 1), (60094, 11), (60431, 33573), (61230, 663), (65222, 15730)
X(65680) = X(6139)-cross conjugate of-X(14413)
X(65680) = X(i)-Dao conjugate of-X(j) for these (i, j): (9, 35157), (11, 1121), (206, 36141), (223, 60487), (1015, 62723), (1084, 62764), (6594, 190), (6615, 60479), (8054, 34056), (14714, 41798), (17115, 23893), (32664, 14733), (33573, 30806), (35091, 75), (35110, 4554), (36033, 65304), (36103, 65335), (38991, 1156), (39025, 2291), (40629, 85), (52870, 4569), (52879, 658), (52880, 65164), (62579, 4391)
X(65680) = X(4895)-hirst inverse of-X(17435)
X(65680) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 14733}, {3, 65335}, {4, 65304}, {6, 35157}, {55, 60487}, {59, 60479}, {75, 36141}, {76, 32728}, {100, 34056}, {101, 62723}, {109, 1121}, {220, 65553}, {651, 1156}, {653, 60047}, {658, 4845}, {662, 62764}, {664, 2291}, {934, 41798}, {1146, 59105}, {1262, 63748}, {1275, 23351}, {1813, 65340}, {4554, 34068}, {4564, 35348}, {4569, 18889}, {4619, 60579}, {6139, 57563}, {7045, 23893}, {13138, 61493}, {14074, 46644}, {23346, 57565}, {53243, 62731}, {63857, 65297}
X(65680) = X(i)-line conjugate of-X(j) for these (i, j): (101, 651), (926, 2310), (2820, 9355), (3887, 1156), (14413, 42082)
X(65680) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 35157), (19, 65335), (31, 14733), (32, 36141), (48, 65304), (57, 60487), (269, 65553), (512, 62764), (513, 62723), (527, 4554), (560, 32728), (649, 34056), (650, 1121), (657, 41798), (663, 1156), (1055, 651), (1155, 664), (1323, 4569), (1638, 85), (1946, 60047), (2170, 60479), (2310, 63748), (3063, 2291), (3271, 35348), (4895, 52746), (6139, 1), (6366, 75), (6510, 65164), (6603, 190), (6610, 658), (6745, 668), (8641, 4845), (14392, 8), (14413, 7), (14414, 69), (14936, 23893), (18344, 65340), (20958, 35340), (21127, 62731), (23346, 7045), (23710, 18026), (23890, 1275), (23893, 57565), (24027, 59105), (30574, 1441), (30806, 4572), (33573, 4391), (35293, 883), (37139, 57563), (37780, 46406)
X(65680) = X(i)-zayin conjugate of-X(j) for these (i, j): (9, 14733), (43, 35157), (46, 65304), (63, 36141), (101, 35348), (170, 65553), (513, 34056), (514, 2291), (521, 61493), (650, 1156), (651, 23893), (652, 60047), (657, 4845), (661, 62764), (905, 41798), (1155, 651), (1156, 23890), (1308, 43050), (1742, 60487), (1745, 65335), (1759, 32728), (1776, 1813), (2170, 35340), (2958, 59105), (3887, 57), (4040, 62723), (4551, 60479), (5011, 109), (5030, 4551), (15726, 934), (21173, 1121), (21390, 34068), (23890, 650), (23893, 1155), (30295, 63203), (35348, 37787), (36002, 1020), (37787, 101), (43065, 100), (56741, 61240), (60479, 5030), (60782, 24029), (61224, 63748), (61230, 30379)
X(65680) = perspector of the circumconic through X(1) and X(650)
X(65680) = pole of the line {52508, 52509} with respect to the Adams circle
X(65680) = pole of the line {57, 934} with respect to the Bevan circle
X(65680) = pole of the line {55, 17439} with respect to the circumcircle
X(65680) = pole of the line {354, 3022} with respect to the incircle
X(65680) = pole of the line {92, 1121} with respect to the polar circle
X(65680) = pole of the line {517, 14392} with respect to the Stevanovic circle
X(65680) = pole of the line {42, 7117} with respect to the Brocard inellipse
X(65680) = pole of the line {17761, 21195} with respect to the circumhyperbola dual of Yff parabola
X(65680) = pole of the line {354, 38530} with respect to the de Longchamps ellipse
X(65680) = pole of the line {5435, 13478} with respect to the excentral-hexyl ellipse
X(65680) = pole of the line {650, 2310} with respect to the Feuerbach circumhyperbola
X(65680) = pole of the line {661, 3270} with respect to the Jerabek circumhyperbola
X(65680) = pole of the line {1254, 3157} with respect to the MacBeath circumconic
X(65680) = pole of the line {3057, 3271} with respect to the Mandart inellipse
X(65680) = pole of the line {65, 3270} with respect to the orthic inconic
X(65680) = pole of the line {662, 1021} with respect to the Stammler hyperbola
X(65680) = pole of the line {192, 63168} with respect to the Steiner circumellipse
X(65680) = pole of the line {37, 24025} with respect to the Steiner inellipse
X(65680) = pole of the line {799, 37139} with respect to the Steiner-Wallace hyperbola
X(65680) = pole of the line {40, 649} with respect to the Yff parabola
X(65680) = barycentric product X(i)*X(j) for these {i, j}: {1, 6366}, {4, 14414}, {7, 14392}, {8, 14413}, {9, 1638}, {21, 30574}, {75, 6139}, {269, 65448}, {513, 6745}, {514, 6603}, {521, 23710}, {522, 1155}, {523, 62756}, {527, 650}, {651, 33573}, {652, 37805}, {656, 52891}, {657, 37780}, {663, 30806}, {885, 35293}
X(65680) = trilinear product X(i)*X(j) for these {i, j}: {2, 6139}, {6, 6366}, {9, 14413}, {19, 14414}, {55, 1638}, {57, 14392}, {59, 52334}, {109, 33573}, {284, 30574}, {513, 6603}, {522, 1055}, {527, 663}, {647, 52891}, {649, 6745}, {650, 1155}, {652, 23710}, {657, 1323}, {661, 62756}, {1024, 35293}, {1146, 23346}
X(65680) = trilinear quotient X(i)/X(j) for these (i, j): (2, 35157), (3, 65304), (4, 65335), (6, 14733), (7, 60487), (11, 60479), (31, 36141), (32, 32728), (279, 65553), (513, 34056), (514, 62723), (522, 1121), (527, 664), (650, 1156), (652, 60047), (657, 4845), (661, 62764), (663, 2291), (1055, 109), (1146, 63748)
X(65680) = (1st circumperp)-isotomic conjugate-of-X(14733)
X(65680) = X(5027)-of-Honsberger triangle
X(65680) = X(14273)-of-excentral triangle
X(65680) = X(40890)-of-2nd Sharygin triangle
X(65680) = X(53272)-of-intouch triangle
X(65680) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2246, 2254, 1635), (2590, 2591, 657)
X(65681) lies on these lines: {44, 513}, {1648, 8029}
X(65681) = cross-difference of every pair of points on the line X(1)X(249)
X(65681) = X(35347)-Ceva conjugate of-X(2643)
X(65681) = X(3005)-Dao conjugate of-X(59088)
X(65681) = X(i)-isoconjugate of-X(j) for these {i, j}: {249, 60055}, {24041, 59088}
X(65681) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2643, 60055), (3124, 59088)
X(65681) = X(662)-zayin conjugate of-X(59088)
X(65681) = perspector of the circumconic through X(1) and X(115)
X(65681) = pole of the line {92, 18020} with respect to the polar circle
X(65681) = pole of the line {42, 55384} with respect to the Brocard inellipse
X(65681) = pole of the line {11, 10278} with respect to the Kiepert circumhyperbola
X(65681) = pole of the line {65, 58907} with respect to the orthic inconic
X(65681) = pole of the line {662, 59152} with respect to the Stammler hyperbola
X(65681) = pole of the line {192, 54104} with respect to the Steiner circumellipse
X(65681) = pole of the line {37, 23991} with respect to the Steiner inellipse
X(65681) = pole of the line {799, 31614} with respect to the Steiner-Wallace hyperbola
X(65681) = trilinear quotient X(i)/X(j) for these (i, j): (115, 60055), (2643, 59088)
X(65682) lies on these lines: {497, 30620}, {1836, 3271}, {1837, 40962}, {1851, 65687}, {4847, 52528}
X(65682) = crosspoint of X(8) and X(1119)
X(65682) = crosssum of X(56) and X(1260)
X(65682) = pole of the line {3669, 6591} with respect to the Mandart inellipse
X(65682) = (X(1851), X(65687))-harmonic conjugate of X(65688)
X(65683) lies on these lines: {9, 1837}, {30, 6205}, {80, 56532}, {4262, 34122}, {5525, 37702}, {6284, 41322}, {12019, 16788}, {16783, 18357}, {40663, 41319}, {53418, 65695}
X(65683) = crosspoint of X(8) and X(598)
X(65683) = crosssum of X(56) and X(574)
X(65683) = pole of the line {41501, 55927} with respect to the Kiepert circumhyperbola
X(65683) = pole of the line {522, 650} with respect to the Lemoine inellipse
X(65683) = pole of the line {351, 523} with respect to the Mandart inellipse
X(65683) = (X(53418), X(65695))-harmonic conjugate of X(65698)
X(65684) lies on these lines: {1, 23292}, {2, 1897}, {3, 52365}, {4, 56943}, {5, 41013}, {8, 405}, {9, 45802}, {10, 25091}, {33, 33305}, {92, 8226}, {200, 3932}, {226, 59575}, {280, 443}, {306, 64171}, {318, 442}, {347, 57534}, {427, 21318}, {1006, 56877}, {1074, 64930}, {1214, 1861}, {1441, 65672}, {1503, 1726}, {1736, 13567}, {1809, 19525}, {1824, 19542}, {1864, 45206}, {1985, 7140}, {2321, 3693}, {2886, 6358}, {3101, 49132}, {3416, 42012}, {3717, 17658}, {3925, 4081}, {3998, 5295}, {4126, 14740}, {4939, 15845}, {5081, 11113}, {5090, 13442}, {5662, 22410}, {5729, 11433}, {5805, 20223}, {6198, 7515}, {6350, 7580}, {6708, 53008}, {6907, 38462}, {6923, 34332}, {7069, 41883}, {7123, 33163}, {7360, 33116}, {7718, 37052}, {8727, 64194}, {8728, 23661}, {10538, 11112}, {12135, 13733}, {14544, 59613}, {16608, 21911}, {20277, 36949}, {20588, 30620}, {21666, 34335}, {23528, 31419}, {23542, 50067}, {24430, 26932}, {25973, 52112}, {26061, 28125}, {29641, 51416}, {32858, 41228}, {39591, 43213}, {40688, 44311}
X(65684) = isotomic conjugate of the isogonal conjugate of X(42447)
X(65684) = crosspoint of X(8) and X(264)
X(65684) = crosssum of X(56) and X(184)
X(65684) = X(23581)-Ceva conjugate of-X(16608)
X(65684) = X(16608)-Dao conjugate of-X(3)
X(65684) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (16608, 7), (21911, 226), (23581, 85), (23726, 3676), (39796, 222), (42447, 6)
X(65684) = pole of the line {676, 39199} with respect to the polar circle
X(65684) = pole of the line {3688, 40944} with respect to the Feuerbach circumhyperbola
X(65684) = pole of the line {522, 650} with respect to the MacBeath inconic
X(65684) = pole of the line {297, 525} with respect to the Mandart inellipse
X(65684) = pole of the line {14344, 39470} with respect to the Steiner inellipse
X(65684) = barycentric product X(i)*X(j) for these {i, j}: {8, 16608}, {9, 23581}, {76, 42447}, {333, 21911}, {3699, 23726}, {7017, 39796}
X(65684) = trilinear product X(i)*X(j) for these {i, j}: {9, 16608}, {21, 21911}, {55, 23581}, {75, 42447}, {318, 39796}, {644, 23726}, {36048, 65444}
X(65684) = trilinear quotient X(i)/X(j) for these (i, j): (16608, 57), (21911, 65), (23581, 7), (23726, 3669), (39796, 603), (42447, 31)
X(65684) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (8, 17776, 1260), (427, 21318, 41007), (3925, 4081, 17860)
X(65685) lies on these lines: {1, 525}, {2, 55285}, {8, 57066}, {99, 7340}, {512, 48290}, {514, 50508}, {521, 14312}, {522, 4162}, {523, 4833}, {643, 39054}, {663, 3910}, {690, 48328}, {826, 48347}, {918, 4449}, {1019, 1499}, {1125, 41800}, {1577, 28473}, {1639, 4147}, {1697, 57121}, {2533, 47788}, {2605, 57081}, {2785, 7178}, {2786, 4504}, {2804, 56324}, {3004, 48136}, {3566, 4367}, {3669, 50357}, {3700, 3907}, {3716, 21120}, {3800, 47682}, {3810, 53523}, {3900, 6332}, {3904, 6362}, {4041, 14432}, {4083, 47890}, {4086, 56092}, {4170, 29126}, {4391, 4990}, {4467, 65674}, {4560, 4843}, {4707, 34958}, {4775, 29142}, {4811, 4977}, {4895, 48278}, {9508, 57088}, {16678, 22089}, {23770, 29082}, {23875, 48287}, {23876, 48294}, {28478, 50517}, {28481, 48324}, {29051, 48280}, {29062, 48285}, {29094, 48403}, {29162, 47728}, {29168, 58163}, {29200, 48344}, {29226, 48055}, {29240, 48273}, {29278, 47729}, {29284, 48330}, {29288, 48333}, {29298, 48395}, {29304, 48295}, {29312, 58160}, {29324, 50326}, {29354, 48296}, {29366, 48396}, {35057, 52355}, {39540, 65099}, {42337, 57091}, {47972, 58161}, {47988, 48123}, {47989, 48129}, {48166, 48401}, {48206, 59743}, {48209, 65414}, {48282, 49276}, {50342, 59549}, {53356, 65494}
X(65685) = midpoint of X(i) and X(j) for these (i, j): {4895, 48278}, {47682, 48337}, {48282, 49276}, {48333, 49279}
X(65685) = reflection of X(i) in X(j) for these (i, j): (3004, 48136), (4391, 4990), (4707, 34958), (4897, 4367), (21120, 3716), (47890, 48299), (47988, 48123), (47989, 48129), (48395, 49290), (50333, 6332), (50347, 663), (50357, 3669), (65099, 39540)
X(65685) = anticomplement of X(55285)
X(65685) = cross-difference of every pair of points on the line X(478)X(39690)
X(65685) = crosspoint of X(8) and X(99)
X(65685) = crosssum of X(i) and X(j) for these {i, j}: {56, 512}, {523, 23304}
X(65685) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (3062, 3448), (4565, 31527), (10405, 21294), (11051, 21221), (53622, 2475), (55284, 6327), (61240, 2893)
X(65685) = X(1043)-beth conjugate of-X(57066)
X(65685) = X(i)-Ceva conjugate of-X(j) for these (i, j): (53655, 333), (55284, 2)
X(65685) = X(i)-Dao conjugate of-X(j) for these (i, j): (17069, 523), (55285, 55285)
X(65685) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4416, 664), (4640, 651), (4934, 7178), (17069, 7)
X(65685) = perspector of the circumconic through X(4416) and X(34277)
X(65685) = pole of the line {1444, 3435} with respect to the circumcircle
X(65685) = pole of the line {1503, 1854} with respect to the incircle
X(65685) = pole of the line {11684, 64696} with respect to the incircle of anticomplementary triangle
X(65685) = pole of the line {407, 14257} with respect to the polar circle
X(65685) = pole of the line {3152, 20216} with respect to the power circles radical circle
X(65685) = pole of the line {2968, 40608} with respect to the Feuerbach circumhyperbola
X(65685) = pole of the line {522, 650} with respect to the Kiepert parabola
X(65685) = pole of the line {2, 6} with respect to the Mandart inellipse
X(65685) = pole of the line {16680, 53324} with respect to the Stammler hyperbola
X(65685) = pole of the line {333, 5792} with respect to the Steiner circumellipse
X(65685) = pole of the line {1375, 16832} with respect to the Steiner inellipse
X(65685) = barycentric product X(i)*X(j) for these {i, j}: {8, 17069}, {522, 4416}, {645, 4934}, {4391, 4640}
X(65685) = trilinear product X(i)*X(j) for these {i, j}: {9, 17069}, {522, 4640}, {643, 4934}, {650, 4416}
X(65685) = trilinear quotient X(i)/X(j) for these (i, j): (4416, 651), (4640, 109), (4934, 4017), (17069, 57)
X(65686) lies on these lines: {9, 46}, {597, 598}
X(65686) = pole of the line {1, 598} with respect to the Kiepert circumhyperbola
X(65687) lies on these lines: {1, 939}, {6, 354}, {31, 65}, {34, 1407}, {38, 1212}, {73, 52541}, {204, 1876}, {210, 3011}, {212, 1279}, {223, 3660}, {244, 1427}, {269, 64207}, {517, 16485}, {938, 1097}, {942, 1453}, {948, 63994}, {971, 23681}, {1086, 63995}, {1122, 26892}, {1201, 17609}, {1428, 44087}, {1851, 65682}, {1864, 3772}, {2262, 40959}, {2299, 18191}, {2999, 11018}, {3271, 40961}, {3742, 5712}, {3752, 14547}, {3812, 5716}, {3914, 14100}, {4000, 10391}, {4847, 14523}, {5173, 7290}, {5222, 11020}, {5439, 5717}, {5728, 40940}, {5784, 24789}, {9850, 23675}, {10167, 24177}, {10202, 51340}, {10394, 62208}, {11227, 62695}, {12680, 23536}, {15852, 24443}, {16465, 26723}, {16572, 62823}, {16583, 20229}, {16700, 54411}, {16968, 20358}, {17194, 37597}, {17435, 20311}, {17612, 24175}, {20227, 30456}, {20264, 64658}, {26934, 40970}, {32636, 54431}, {37646, 61660}, {63007, 64149}
X(65687) = crosspoint of X(i) and X(j) for these {i, j}: {1, 1119}, {1422, 40154}
X(65687) = crosssum of X(i) and X(j) for these {i, j}: {1, 1260}, {2324, 6600}
X(65687) = X(36049)-Ceva conjugate of-X(513)
X(65687) = pole of the line {34847, 40677} with respect to the circumhyperbola dual of Yff parabola
X(65687) = pole of the line {4394, 51648} with respect to the de Longchamps ellipse
X(65687) = pole of the line {2385, 4319} with respect to the Feuerbach circumhyperbola
X(65687) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 10900, 1260), (244, 40958, 1427), (65682, 65688, 1851)
X(65688) lies on these lines: {7, 8}, {11, 41010}, {19, 1086}, {37, 28081}, {40, 4862}, {55, 3663}, {56, 2218}, {57, 1723}, {71, 17276}, {196, 37790}, {226, 17355}, {269, 1358}, {273, 16099}, {307, 24914}, {347, 1319}, {355, 17885}, {604, 53545}, {1111, 64122}, {1118, 1119}, {1439, 18838}, {1836, 12723}, {1837, 17861}, {1842, 17054}, {1851, 65682}, {1875, 65582}, {2093, 4902}, {2264, 4000}, {2285, 52023}, {2294, 4675}, {2995, 23989}, {3101, 33146}, {3189, 4452}, {3598, 62783}, {3662, 11683}, {3664, 52563}, {3665, 10436}, {3666, 28108}, {3672, 37080}, {3674, 24549}, {3752, 28107}, {3772, 26934}, {3782, 10319}, {3925, 25590}, {3945, 44840}, {4329, 12701}, {4346, 37568}, {4373, 17784}, {4415, 28038}, {4419, 28015}, {4654, 50048}, {4887, 37567}, {4888, 11529}, {5435, 31232}, {5575, 40617}, {6047, 54422}, {6173, 54424}, {7179, 55096}, {7225, 17301}, {7243, 10447}, {7271, 63574}, {7702, 10400}, {11375, 41003}, {11376, 24179}, {16732, 54008}, {17189, 40980}, {17272, 21677}, {17278, 54324}, {17728, 53596}, {17863, 28109}, {17895, 21270}, {18634, 40535}, {20872, 22464}, {23536, 64022}, {24779, 59681}, {28023, 28112}, {37550, 62780}, {41245, 63588}, {53594, 63146}
X(65688) = cevapoint of X(3924) and X(36570)
X(65688) = crosspoint of X(7) and X(1119)
X(65688) = crosssum of X(55) and X(1260)
X(65688) = X(i)-beth conjugate of-X(j) for these (i, j): (2, 30811), (17861, 17861)
X(65688) = X(i)-Ceva conjugate of-X(j) for these (i, j): (7, 41004), (13149, 3669)
X(65688) = X(i)-cross conjugate of-X(j) for these (i, j): (3924, 3772), (64654, 16749)
X(65688) = X(i)-Dao conjugate of-X(j) for these (i, j): (223, 40436), (478, 56003), (3160, 59759), (3772, 1265), (7117, 57055), (9296, 42380), (17113, 34399), (40837, 34406)
X(65688) = X(i)-isoconjugate of-X(j) for these {i, j}: {9, 56003}, {41, 59759}, {55, 40436}, {78, 56305}, {212, 34406}, {219, 55994}, {663, 65370}, {1253, 34399}, {1919, 42380}
X(65688) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (7, 59759), (34, 55994), (56, 56003), (57, 40436), (278, 34406), (279, 34399), (608, 56305), (651, 65370), (668, 42380), (1837, 346), (3772, 8), (3924, 9), (16749, 314), (17189, 333), (17861, 312), (21935, 2321), (26934, 78), (36570, 1), (40968, 200), (40980, 2287), (41004, 345), (53279, 644), (64654, 960), (65445, 4130)
X(65688) = pole of the line {3669, 6591} with respect to the incircle
X(65688) = pole of the line {950, 3663} with respect to the circumhyperbola dual of Yff parabola
X(65688) = pole of the line {497, 14523} with respect to the Feuerbach circumhyperbola
X(65688) = pole of the line {2194, 56948} with respect to the Stammler hyperbola
X(65688) = pole of the line {4885, 28590} with respect to the Steiner inellipse
X(65688) = barycentric product X(i)*X(j) for these {i, j}: {7, 3772}, {57, 17861}, {65, 16749}, {75, 36570}, {85, 3924}, {226, 17189}, {273, 26934}, {278, 41004}, {279, 1837}, {1088, 40968}, {1434, 21935}, {1446, 40980}, {24002, 53279}, {31643, 64654}, {36838, 65445}
X(65688) = trilinear product X(i)*X(j) for these {i, j}: {2, 36570}, {7, 3924}, {34, 41004}, {56, 17861}, {57, 3772}, {65, 17189}, {269, 1837}, {278, 26934}, {279, 40968}, {1014, 21935}, {1400, 16749}, {3668, 40980}, {3676, 53279}, {4626, 65445}, {64654, 64984}
X(65688) = trilinear quotient X(i)/X(j) for these (i, j): (7, 40436), (34, 56305), (57, 56003), (85, 59759), (273, 34406), (278, 55994), (664, 65370), (1088, 34399), (1837, 200), (1978, 42380), (3772, 9), (3924, 55), (16749, 333), (17189, 21), (17861, 8), (21935, 210), (26934, 219), (36570, 6), (40968, 220), (40980, 2328)
X(65688) = X(8745)-of-intouch triangle
X(65688) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (7, 75, 30617), (7, 85, 10401), (7, 7195, 1122), (56, 63575, 3668), (1851, 65687, 65682), (17861, 41004, 1837), (24179, 41007, 11376)
X(65689) lies on these lines: {4, 4452}, {273, 2969}, {347, 37366}, {427, 3263}, {1441, 37439}, {1862, 3875}, {1878, 3663}, {3672, 17516}, {12138, 64122}
X(65689) = crosspoint of X(264) and X(1119)
X(65689) = crosssum of X(184) and X(1260)
X(65689) = pole of the line {3669, 6591} with respect to the MacBeath inconic
X(65690) lies on these lines: {21184, 29240}, {48013, 48039}
X(65690) = crosspoint of X(99) and X(1119)
X(65690) = crosssum of X(512) and X(1260)
X(65690) = pole of the line {3669, 6591} with respect to the Kiepert parabola
X(65691) lies on these lines: {6, 10934}, {31, 52020}, {51, 1400}, {184, 7083}, {511, 27624}, {604, 3271}, {1108, 42447}, {1475, 20978}, {3270, 3554}, {3917, 27626}, {3937, 28017}, {4000, 22440}, {5222, 50658}, {37993, 54321}
X(65691) = crosspoint of X(6) and X(1119)
X(65691) = crosssum of X(2) and X(1260)
X(65691) = pole of the line {3669, 6591} with respect to the Brocard inellipse
X(65692) lies on these lines: {513, 21120}, {522, 47700}, {3667, 4498}, {4017, 47801}
X(65692) = crosspoint of X(190) and X(1119)
X(65692) = crosssum of X(649) and X(1260)
X(65692) = pole of the line {2136, 41575} with respect to the Bevan circle
X(65692) = pole of the line {1, 26065} with respect to the incircle of anticomplementary triangle
X(65692) = pole of the line {26685, 30568} with respect to the Steiner circumellipse
X(65692) = pole of the line {3669, 6591} with respect to the Yff parabola
X(65693) lies on these lines: {1, 166}, {9, 12646}, {168, 1697}, {177, 3057}, {390, 8084}, {8083, 11191}, {10501, 11234}
X(65693) = reflection of X(i) in X(j) for these (i, j): (8422, 10968), (65699, 1)
X(65693) = (midarc)-isogonal conjugate-of-X(58868)
X(65693) = X(65699)-of-5th mixtilinear triangle
X(65693) = X(63970)-of-Ursa-minor triangle
X(65693) = X(36991)-of-inverse-in-incircle triangle
X(65693) = X(5732)-of-intouch triangle
X(65693) = X(9)-of-Hutson intouch triangle
X(65694) lies on these lines: {4, 43709}, {6, 38359}, {30, 511}, {64, 15328}, {66, 35364}, {74, 40048}, {110, 53953}, {125, 16178}, {351, 13223}, {686, 2501}, {879, 34207}, {925, 46969}, {1177, 51480}, {1853, 65610}, {2883, 60342}, {2935, 15470}, {3265, 46953}, {3569, 47125}, {3657, 43703}, {4143, 35522}, {5466, 54778}, {5489, 9914}, {5894, 38401}, {5895, 62172}, {6132, 59706}, {6562, 57154}, {6563, 57275}, {6759, 61756}, {9142, 48989}, {9145, 48958}, {10117, 30715}, {10264, 57512}, {10279, 10412}, {11744, 15453}, {12250, 18808}, {13400, 65656}, {14380, 43695}, {15139, 47627}, {16172, 57065}, {23300, 56739}, {23301, 65459}, {27087, 44816}, {30735, 33294}, {34952, 54061}, {34963, 39510}, {34967, 39511}, {41362, 43088}, {45261, 59568}, {46608, 64759}, {47194, 53263}, {53331, 57069}, {57638, 65309}, {58757, 58892}, {58812, 58888}, {58882, 65472}, {59652, 65478}
X(65694) = isogonal conjugate of X(13398)
X(65694) = cross-difference of every pair of points on the line X(6)X(1147)
X(65694) = crosspoint of X(i) and X(j) for these {i, j}: {4, 925}, {99, 2052}, {110, 57387}
X(65694) = crosssum of X(i) and X(j) for these {i, j}: {3, 924}, {512, 577}, {523, 11585}
X(65694) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (921, 3448), (6504, 21294), (13398, 8), (60775, 21221)
X(65694) = X(i)-Ceva conjugate of-X(j) for these (i, j): (4, 135), (99, 6503), (925, 34853), (44064, 3), (57065, 2501), (65309, 6)
X(65694) = X(i)-complementary conjugate of-X(j) for these (i, j): (1, 135), (163, 6503), (921, 125), (4575, 34853), (6504, 21253), (13398, 10), (15316, 34846), (39416, 63843), (57998, 53575), (60775, 8287), (63958, 34825)
X(65694) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 6504), (125, 15316), (135, 34756), (136, 254), (137, 8800), (139, 39114), (244, 921), (1084, 60775), (2165, 65309), (4858, 57998), (5139, 39109), (6753, 57065), (16178, 16172), (34853, 63958), (39013, 57484), (46093, 60835)
X(65694) = X(i)-isoconjugate of-X(j) for these {i, j}: {47, 63958}, {110, 921}, {162, 15316}, {163, 6504}, {254, 4575}, {662, 60775}, {1576, 57998}, {4592, 39109}, {8800, 36134}, {36126, 60835}, {36145, 57484}
X(65694) = X(i)-line conjugate of-X(j) for these (i, j): (30, 34382), (38359, 6)
X(65694) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (135, 57065), (155, 4558), (512, 60775), (523, 6504), (647, 15316), (661, 921), (920, 662), (924, 57484), (1577, 57998), (1609, 110), (2165, 63958), (2489, 39109), (2501, 254), (3542, 648), (6515, 99), (6753, 34756), (8883, 18315), (12077, 8800), (14593, 39416), (14618, 46746), (15478, 43755), (32320, 60835), (33808, 799), (34853, 65309), (35603, 41679), (39116, 46134), (40697, 4563), (41587, 14570), (44816, 323), (47236, 16172), (47731, 925), (51425, 2407), (51513, 41536), (52317, 40678), (55265, 59497), (57070, 317), (58792, 59155), (58812, 3542), (58888, 21), (63959, 1993), (64455, 4592)
X(65694) = X(i)-vertex conjugate of-X(j) for these {i, j}: {3, 44665}, {68, 54061}, {57638, 57638}
X(65694) = center of the circumconic through X(58812) and X(65694)
X(65694) = perspector of the circumconic through X(2) and X(847)
X(65694) = barycentric product X(i)*X(j) for these {i, j}: {68, 57070}, {94, 44816}, {135, 65309}, {155, 14618}, {523, 6515}, {525, 3542}, {661, 33808}, {850, 1609}, {920, 1577}, {924, 39116}, {1441, 58888}, {2394, 51425}, {2501, 40697}, {5392, 63959}, {6563, 47731}, {8883, 18314}, {15412, 41587}, {24006, 64455}, {34853, 57065}, {52582, 58792}
X(65694) = trilinear product X(i)*X(j) for these {i, j}: {91, 63959}, {155, 24006}, {226, 58888}, {512, 33808}, {523, 920}, {656, 3542}, {661, 6515}, {1577, 1609}, {1820, 57070}, {2166, 44816}, {2501, 64455}, {2616, 41587}, {2618, 8883}, {39116, 55216}, {47731, 63827}
X(65694) = trilinear quotient X(i)/X(j) for these (i, j): (91, 63958), (155, 4575), (523, 921), (656, 15316), (661, 60775), (850, 57998), (920, 110), (1577, 6504), (1609, 163), (2618, 8800), (3542, 162), (6515, 662), (8883, 36134), (24006, 254), (33808, 99), (39116, 65251), (40697, 4592), (41587, 2617), (44816, 6149), (47731, 36145)
X(65695) lies on these lines: {1, 574}, {10, 21057}, {37, 65}, {42, 4128}, {213, 3754}, {517, 24512}, {672, 21332}, {762, 4067}, {1449, 5114}, {1743, 54382}, {2238, 3753}, {2243, 16788}, {2650, 20691}, {2802, 16971}, {3125, 3919}, {3230, 5883}, {3340, 54317}, {3698, 21874}, {3726, 5902}, {3727, 5903}, {3780, 5836}, {3922, 16605}, {3954, 4084}, {3987, 20970}, {4004, 16583}, {4674, 40747}, {4695, 21904}, {4699, 21281}, {4757, 28594}, {5228, 37789}, {5710, 16884}, {9259, 27003}, {9346, 49494}, {9620, 63099}, {10107, 41015}, {17365, 30806}, {17450, 20358}, {53418, 65683}, {60353, 60697}
X(65695) = cross-difference of every pair of points on the line X(3737)X(48226)
X(65695) = crosspoint of X(1) and X(598)
X(65695) = crosssum of X(1) and X(574)
X(65695) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (50128, 274), (65458, 48226)
X(65695) = pole of the line {44, 513} with respect to the Lemoine inellipse
X(65695) = barycentric product X(i)*X(j) for these {i, j}: {37, 50128}, {27777, 53114}
X(65695) = trilinear product X(i)*X(j) for these {i, j}: {42, 50128}, {27777, 28658}
X(65695) = trilinear quotient X(i)/X(j) for these (i, j): (27777, 5235), (50128, 86)
X(65695) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 6205, 574), (65, 2295, 3721), (213, 3754, 21951), (3125, 3997, 46907), (3919, 3997, 3125), (5903, 17750, 3727), (65683, 65698, 53418)
X(65696) lies on these lines: {1, 65411}, {513, 4162}, {6728, 6729}
X(65696) = reflection of X(65661) in X(1)
X(65696) = cevapoint of X(4162) and X(6729)
X(65696) = cross-difference of every pair of points on the line X(173)X(266)
X(65696) = crosspoint of X(i) and X(j) for these {i, j}: {1, 55363}, {1488, 55332}
X(65696) = crosssum of X(i) and X(j) for these {i, j}: {1, 65661}, {8422, 65651}
X(65696) = X(65651)-Ceva conjugate of-X(10495)
X(65696) = X(i)-isoconjugate of-X(j) for these {i, j}: {12644, 13444}, {24242, 43192}
X(65696) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (8078, 55341), (61635, 55328)
X(65696) = perspector of the circumconic through X(188) and X(258)
X(65696) = pole of the line {3057, 8422} with respect to the incircle
X(65696) = pole of the line {16019, 17490} with respect to the Steiner circumellipse
X(65696) = pole of the line {16016, 16602} with respect to the Steiner inellipse
X(65696) = barycentric product X(i)*X(j) for these {i, j}: {10492, 12646}, {39121, 65651}
X(65696) = trilinear product X(8078)*X(10495)
X(65696) = trilinear quotient X(i)/X(j) for these (i, j): (8078, 43192), (10495, 24242), (12646, 55342), (39121, 55331), (61635, 13444)
X(65696) = X(65661)-of-5th mixtilinear triangle
X(65696) = X(54239)-of-excenters-reflections triangle
X(65696) = X(39199)-of-Hutson intouch triangle
X(65697) lies on these lines: {1, 58324}, {11, 3835}, {55, 649}, {56, 65659}, {65, 28292}, {101, 6066}, {210, 4521}, {354, 3676}, {390, 26853}, {497, 20295}, {512, 4162}, {513, 11934}, {518, 4468}, {521, 50347}, {522, 50518}, {523, 50519}, {650, 926}, {652, 663}, {654, 8641}, {661, 9029}, {788, 50503}, {1155, 15599}, {1357, 44045}, {1859, 3064}, {2499, 48026}, {2520, 11193}, {2774, 4794}, {3022, 3025}, {3056, 9002}, {3057, 29350}, {3058, 4785}, {3309, 4897}, {3667, 51662}, {3669, 39541}, {3700, 54271}, {3741, 59673}, {3873, 23761}, {3900, 4976}, {4040, 64878}, {4375, 36488}, {4413, 25955}, {4423, 25924}, {4429, 26571}, {4435, 9437}, {4449, 23740}, {4724, 9000}, {4775, 58369}, {4834, 58334}, {4840, 42312}, {4995, 45313}, {5218, 27013}, {5263, 26652}, {5274, 26798}, {5432, 31286}, {5577, 5582}, {5580, 59807}, {6006, 14100}, {6018, 6024}, {6182, 13401}, {6589, 65703}, {9010, 50490}, {9313, 50521}, {10391, 48013}, {10589, 27138}, {11238, 31147}, {17115, 46389}, {21321, 27673}, {42319, 42322}, {42341, 48087}, {47883, 57232}, {50506, 50510}
X(65697) = midpoint of X(4724) and X(53554)
X(65697) = reflection of X(i) in X(j) for these (i, j): (650, 2488), (3669, 39541), (44319, 3676), (46389, 17115), (48026, 2499), (50506, 50510), (50513, 50514)
X(65697) = cross-difference of every pair of points on the line X(218)X(226)
X(65697) = crosspoint of X(i) and X(j) for these {i, j}: {7, 101}, {1172, 26706}
X(65697) = crosssum of X(i) and X(j) for these {i, j}: {1, 58324}, {55, 514}, {65, 43049}, {3676, 24796}, {16593, 55133}
X(65697) = X(200)-beth conjugate of-X(4521)
X(65697) = X(7192)-Ceva conjugate of-X(650)
X(65697) = X(i)-Dao conjugate of-X(j) for these (i, j): (210, 3952), (17059, 8), (38991, 60075), (52594, 3261)
X(65697) = X(651)-isoconjugate of-X(60075)
X(65697) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (663, 60075), (3873, 4554), (3941, 651), (4253, 664), (4905, 85), (17059, 3261), (17092, 4569), (17234, 4572), (21946, 850), (22277, 4552), (23761, 23989), (25082, 668), (40599, 3952), (47676, 6063), (52594, 8), (61038, 4559), (64739, 190)
X(65697) = perspector of the circumconic through X(277) and X(284)
X(65697) = pole of the line {48, 672} with respect to the circumcircle
X(65697) = pole of the line {3, 41} with respect to the (circumcircle, incircle)-inverter)
X(65697) = pole of the line {674, 2900} with respect to the Conway circle
X(65697) = pole of the line {6, 31} with respect to the incircle
X(65697) = pole of the line {55, 64553} with respect to the de Longchamps ellipse
X(65697) = pole of the line {812, 1015} with respect to the Feuerbach circumhyperbola
X(65697) = pole of the line {3691, 3715} with respect to the Mandart inellipse
X(65697) = pole of the line {17278, 20269} with respect to the Steiner inellipse
X(65697) = barycentric product X(i)*X(j) for these {i, j}: {7, 52594}, {9, 4905}, {55, 47676}, {101, 17059}, {110, 21946}, {513, 25082}, {514, 64739}, {522, 4253}, {650, 3873}, {663, 17234}, {1252, 23761}, {3063, 33933}, {3737, 3970}, {3900, 17092}, {3941, 4391}, {4162, 27827}, {4560, 22277}, {7192, 40599}
X(65697) = trilinear product X(i)*X(j) for these {i, j}: {41, 47676}, {55, 4905}, {57, 52594}, {163, 21946}, {513, 64739}, {522, 3941}, {649, 25082}, {650, 4253}, {657, 17092}, {663, 3873}, {692, 17059}, {1019, 40599}, {1110, 23761}, {3063, 17234}, {3737, 22277}, {3970, 7252}, {18155, 61038}
X(65697) = trilinear quotient X(i)/X(j) for these (i, j): (650, 60075), (3873, 664), (3941, 109), (3970, 4552), (4253, 651), (4905, 7), (17059, 693), (17092, 658), (17234, 4554), (21946, 1577), (22277, 4551), (23761, 1111), (25082, 190), (33933, 4572), (40599, 1018), (47676, 85), (52594, 9), (64739, 100)
X(65697) = (intouch)-isogonal conjugate-of-X(1086)
X(65697) = (Mandart-incircle)-isogonal conjugate-of-X(24840)
X(65697) = X(647)-of-Ursa-minor triangle
X(65697) = X(649)-of-Mandart-incircle triangle
X(65697) = X(850)-of-intouch triangle
X(65697) = X(31296)-of-inverse-in-incircle triangle
X(65697) = X(65659)-of-2nd anti-circumperp-tangential triangle
X(65697) = (X(354), X(44319))-harmonic conjugate of X(3676)
X(65698) lies on these lines: {1, 30}, {7, 31599}, {31, 17070}, {55, 17775}, {65, 53614}, {149, 17365}, {516, 4689}, {528, 24725}, {545, 29832}, {553, 51615}, {896, 2886}, {940, 9812}, {1699, 37634}, {1770, 37599}, {3434, 64070}, {3999, 30424}, {4054, 28566}, {4312, 17721}, {4364, 24724}, {4663, 41011}, {4883, 51783}, {5057, 5297}, {5524, 33096}, {7292, 20292}, {9756, 37540}, {11112, 45763}, {11246, 18201}, {12047, 37589}, {15447, 31394}, {17126, 62221}, {17724, 61716}, {17726, 24248}, {17768, 33104}, {17779, 24715}, {21242, 28508}, {21282, 49524}, {24330, 50278}, {24695, 31140}, {25385, 28494}, {28512, 48641}, {28530, 33070}, {28534, 29639}, {29823, 49741}, {31079, 49726}, {31091, 49721}, {32939, 60446}, {35466, 36277}, {37522, 40273}, {53418, 65683}
X(65698) = crosspoint of X(7) and X(598)
X(65698) = crosssum of X(55) and X(574)
X(65698) = X(65461)-reciprocal conjugate of-X(47884)
X(65698) = pole of the line {351, 523} with respect to the incircle
X(65698) = pole of the line {241, 514} with respect to the Lemoine inellipse
X(65698) = (X(53418), X(65695))-harmonic conjugate of X(65683)
X(65699) lies on these lines: {1, 166}, {7, 177}, {57, 168}, {65, 2091}, {173, 45707}, {188, 3243}, {7371, 13385}, {8113, 44841}, {8388, 55328}, {10491, 10506}, {10968, 11033}, {21465, 30419}
X(65699) = reflection of X(i) in X(j) for these (i, j): (177, 8083), (65693, 1)
X(65699) = crosspoint of X(7) and X(1488)
X(65699) = crosssum of X(55) and X(53118)
X(65699) = X(10503)-reciprocal conjugate of-X(16016)
X(65699) = pole of the line {10492, 45877} with respect to the incircle
X(65699) = trilinear quotient X(10503)/X(16012)
X(65699) = (inverse-in-incircle)-isotomic conjugate-of-X(177)
X(65699) = (2nd midarc)-isotomic conjugate-of-X(8422)
X(65699) = X(65693)-of-5th mixtilinear triangle
X(65699) = X(5779)-of-incircle-circles triangle
X(65699) = X(5732)-of-Hutson intouch triangle
X(65699) = X(142)-of-Ursa-minor triangle
X(65699) = X(9)-of-intouch triangle
X(65699) = X(7)-of-inverse-in-incircle triangle
X(65700) lies on these lines: {1, 650}, {354, 11934}, {513, 54261}, {521, 676}, {693, 10580}, {905, 6608}, {926, 65413}, {2254, 14353}, {2499, 39541}, {2820, 43932}, {3309, 3676}, {3887, 59612}, {3900, 7658}, {4314, 8142}, {4666, 24562}, {4885, 11019}, {5045, 8760}, {6182, 11018}, {6744, 29066}, {9373, 16215}, {10578, 31209}, {10582, 25925}, {10980, 54255}, {12915, 17115}, {13405, 31287}, {21104, 21185}, {21625, 48295}, {24201, 59814}, {25009, 36845}, {26641, 29817}, {30198, 53523}, {32195, 50196}, {44409, 47123}, {63999, 64787}
X(65700) = reflection of X(7658) in X(17427)
X(65700) = cross-difference of every pair of points on the line X(1155)X(1615)
X(65700) = X(i)-complementary conjugate of-X(j) for these (i, j): (269, 5511), (1407, 40615), (2191, 5514), (6614, 6600), (17107, 26932), (40154, 124), (57656, 13609)
X(65700) = perspector of the circumconic through X(1156) and X(42483)
X(65700) = pole of the line {9, 165} with respect to the incircle
X(65700) = pole of the line {13609, 40615} with respect to the circumhyperbola dual of Yff parabola
X(65700) = pole of the line {165, 18725} with respect to the de Longchamps ellipse
X(65700) = pole of the line {277, 279} with respect to the Steiner inellipse
X(65700) = X(14341)-of-Ursa-minor triangle
X(65700) = X(2501)-of-inverse-in-incircle triangle
X(65701) lies on these lines: {2, 3667}, {513, 4789}, {514, 4024}, {522, 46915}, {649, 45661}, {812, 47769}, {824, 4958}, {900, 1491}, {1499, 8352}, {1994, 39525}, {2786, 31147}, {3151, 20294}, {3239, 26853}, {3700, 48079}, {3798, 27138}, {3835, 4750}, {4025, 26798}, {4106, 4949}, {4120, 4785}, {4380, 14321}, {4440, 30190}, {4467, 4940}, {4500, 48019}, {4728, 28867}, {4778, 47792}, {4810, 47698}, {4897, 45677}, {4926, 47782}, {4931, 28859}, {4944, 48567}, {4962, 47783}, {4977, 48423}, {4984, 47778}, {6002, 9810}, {6006, 47763}, {6008, 30565}, {6545, 28906}, {7192, 49284}, {7381, 44444}, {17011, 42312}, {17019, 43924}, {21297, 28846}, {23729, 49272}, {26985, 48013}, {27013, 59751}, {28209, 50326}, {28217, 47762}, {28220, 49275}, {28332, 30234}, {28840, 51317}, {28878, 47869}, {28898, 48550}, {30605, 47728}, {39386, 47788}, {45746, 48049}, {47663, 48114}, {47665, 47988}, {47667, 48026}, {47757, 53333}, {47764, 47775}, {47765, 47776}, {47894, 48554}, {47939, 48274}, {48076, 49289}, {48147, 48417}, {48271, 49297}, {48592, 50522}, {56810, 59839}
X(65701) = midpoint of X(i) and X(j) for these (i, j): {20295, 53339}, {44449, 47871}
X(65701) = reflection of X(i) in X(j) for these (i, j): (2, 47786), (649, 45661), (4380, 47884), (4440, 30190), (4467, 47880), (4750, 3835), (4897, 45677), (4984, 47778), (25259, 53339), (27486, 4776), (44435, 31147), (47676, 47871), (47728, 30605), (47755, 4728), (47763, 47787), (47771, 4120), (47775, 47764), (47776, 47765), (47781, 47759), (47791, 47790), (47871, 4106), (47880, 4940), (47884, 14321), (47894, 48554), (48567, 4944), (53333, 47757), (53339, 48269)
X(65701) = anticomplement of X(4786)
X(65701) = cross-difference of every pair of points on the line X(2242)X(2308)
X(65701) = crosspoint of X(i) and X(j) for these {i, j}: {190, 598}, {32014, 35179}
X(65701) = crosssum of X(i) and X(j) for these {i, j}: {574, 649}, {8644, 20970}
X(65701) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (692, 11148), (1296, 75), (5485, 21293), (21448, 149), (35179, 17137), (36045, 17162), (37216, 17135), (39238, 9263), (55923, 150), (65353, 20242)
X(65701) = X(4786)-Dao conjugate of-X(4786)
X(65701) = X(50121)-reciprocal conjugate of-X(190)
X(65701) = X(3908)-zayin conjugate of-X(649)
X(65701) = perspector of the circumconic through X(1268) and X(50121)
X(65701) = pole of the line {4021, 51615} with respect to the incircle
X(65701) = pole of the line {519, 7610} with respect to the orthoptic circle of Steiner inellipse
X(65701) = pole of the line {17134, 17162} with respect to the power circles radical circle
X(65701) = pole of the line {1, 2} with respect to the Lemoine inellipse
X(65701) = pole of the line {10, 4419} with respect to the Steiner circumellipse
X(65701) = pole of the line {3634, 4364} with respect to the Steiner inellipse
X(65701) = pole of the line {351, 523} with respect to the Yff parabola
X(65701) = barycentric product X(514)*X(50121)
X(65701) = trilinear product X(513)*X(50121)
X(65701) = trilinear quotient X(50121)/X(100)
X(65701) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3700, 48079, 49282), (4106, 4949, 44449), (4106, 44449, 47676), (20295, 25259, 49298), (20295, 48269, 25259), (20295, 49273, 49294), (31290, 48268, 47674), (48049, 48266, 45746), (48082, 49287, 47650), (48114, 48270, 47663)
X(65702) lies on these lines: {1, 3}, {4, 18623}, {5, 59613}, {6, 20310}, {7, 63965}, {9, 22117}, {10, 53415}, {33, 222}, {34, 5806}, {37, 8558}, {63, 64750}, {72, 3562}, {73, 64804}, {77, 7580}, {81, 162}, {109, 57418}, {142, 59645}, {154, 21370}, {189, 461}, {212, 31658}, {221, 9856}, {223, 19541}, {226, 15252}, {255, 31445}, {278, 5805}, {282, 1449}, {394, 2000}, {495, 51375}, {603, 34862}, {650, 14756}, {651, 5927}, {912, 37729}, {938, 7498}, {954, 5287}, {990, 1407}, {1071, 6198}, {1103, 9709}, {1210, 52260}, {1364, 20122}, {1376, 53996}, {1386, 11019}, {1419, 1750}, {1433, 7008}, {1439, 4219}, {1456, 1699}, {1465, 20277}, {1503, 21621}, {1538, 34029}, {1736, 4641}, {1818, 56178}, {1824, 26884}, {1864, 2003}, {1870, 37380}, {1872, 40396}, {1887, 7335}, {1898, 8614}, {1961, 9440}, {2906, 57392}, {3100, 10167}, {3149, 64347}, {3157, 5777}, {3220, 61671}, {3332, 7365}, {3955, 64121}, {4336, 9316}, {4682, 13405}, {4906, 18240}, {5020, 42460}, {5044, 7078}, {5399, 64116}, {5712, 5803}, {5722, 15524}, {5762, 59611}, {5784, 56317}, {5930, 20420}, {6245, 40658}, {6357, 18482}, {7009, 64126}, {7069, 64198}, {7191, 17626}, {7330, 23072}, {7412, 51490}, {7686, 59285}, {7952, 57282}, {8144, 13369}, {8727, 34050}, {9306, 59681}, {9347, 10578}, {9370, 9947}, {9539, 11220}, {9817, 10157}, {10382, 62183}, {10580, 62807}, {11020, 14996}, {11022, 20831}, {11372, 34033}, {11429, 36059}, {12688, 34043}, {12904, 17605}, {13614, 64377}, {14058, 51699}, {14557, 33849}, {16058, 20793}, {16465, 37782}, {17019, 62800}, {18624, 59385}, {23070, 40263}, {26885, 61662}, {34790, 64069}, {34822, 58460}, {37366, 51413}, {38336, 64704}, {39542, 51616}, {39595, 51617}, {40942, 59657}, {41883, 58402}, {42019, 58645}, {42884, 62834}, {44225, 56814}, {52423, 61660}, {55108, 59647}, {56848, 64152}, {57278, 64166}, {64020, 64131}, {64057, 65128}
X(65702) = midpoint of X(i) and X(j) for these (i, j): {33, 222}, {1060, 60691}
X(65702) = reflection of X(i) in X(j) for these (i, j): (34822, 58460), (41883, 58402), (64708, 59611)
X(65702) = complement of the isotomic conjugate of X(34398)
X(65702) = crosspoint of X(2) and X(34398)
X(65702) = X(i)-complementary conjugate of-X(j) for these (i, j): (34398, 2887), (37741, 34823), (52776, 20316), (56005, 18589), (63187, 141)
X(65702) = center of the inconic with perspector X(34398)
X(65702) = perspector of the circumconic through X(651) and X(46964)
X(65702) = pole of the line {910, 12688} with respect to the Stevanovic circle
X(65702) = pole of the line {3900, 36054} with respect to the MacBeath circumconic
X(65702) = pole of the line {905, 57196} with respect to the Steiner inellipse
X(65702) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 940, 11018), (1, 3075, 17102), (394, 2000, 64171), (3100, 17074, 10167), (3157, 37696, 5777), (4682, 30621, 13405), (5805, 59606, 278), (9817, 34048, 10157), (34050, 40960, 8727)
X(65703) lies on these lines: {2, 24462}, {11, 244}, {31, 654}, {38, 918}, {42, 926}, {58, 42744}, {187, 237}, {650, 58286}, {756, 1639}, {982, 4453}, {984, 30565}, {1734, 27486}, {2308, 22086}, {2426, 32656}, {2499, 58300}, {2610, 20966}, {3670, 62435}, {3741, 20525}, {3801, 16892}, {4025, 8714}, {4079, 14436}, {4392, 48571}, {4905, 47755}, {6373, 8034}, {6589, 65697}, {7226, 47772}, {9032, 55263}, {17449, 30704}, {17989, 34857}, {21189, 47798}, {23740, 47672}, {26098, 46401}, {30671, 62446}, {33105, 46397}, {35365, 53326}, {35623, 65669}, {40471, 48276}, {42078, 42079}
X(65703) = reflection of X(42) in X(3310)
X(65703) = isogonal conjugate of the isotomic conjugate of X(23887)
X(65703) = Gibert-circumtangential conjugate of X(32682)
X(65703) = complement of X(65660)
X(65703) = cross-difference of every pair of points on the line X(2)X(101)
X(65703) = crosspoint of X(i) and X(j) for these {i, j}: {6, 32682}, {101, 60049}, {675, 43190}
X(65703) = crosssum of X(i) and X(j) for these {i, j}: {2, 23887}, {514, 3011}, {674, 6586}
X(65703) = X(i)-Ceva conjugate of-X(j) for these (i, j): (2, 38990), (675, 20974), (32682, 6), (35365, 649)
X(65703) = X(31)-complementary conjugate of-X(38990)
X(65703) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 32682), (1015, 37130), (1084, 60135), (1086, 43093), (8054, 675), (32664, 36087), (38990, 2), (53980, 1897), (55053, 2224)
X(65703) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 36087}, {75, 32682}, {100, 675}, {101, 37130}, {190, 2224}, {662, 60135}, {692, 43093}, {693, 52941}, {3681, 65554}, {4564, 60573}
X(65703) = X(24462)-line conjugate of-X(2)
X(65703) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (31, 36087), (32, 32682), (512, 60135), (513, 37130), (514, 43093), (649, 675), (667, 2224), (674, 190), (2225, 100), (3006, 1978), (3271, 60573), (8618, 101), (14964, 99), (21123, 46158), (23887, 76), (32739, 52941), (38990, 65660), (42723, 7035), (43039, 664), (51657, 651), (57015, 668), (64611, 4555)
X(65703) = center of the circumconic with perspector X(38990)
X(65703) = perspector of the circumconic with center X(38990)
X(65703) = pole of the line {6, 20974} with respect to the circumcircle
X(65703) = pole of the line {11, 21746} with respect to the incircle
X(65703) = pole of the line {11, 3613} with respect to the nine-point circle
X(65703) = pole of the line {262, 995} with respect to the orthoptic circle of Steiner inellipse
X(65703) = pole of the line {264, 1897} with respect to the polar circle
X(65703) = pole of the line {6, 20974} with respect to the Brocard inellipse
X(65703) = pole of the line {514, 20974} with respect to the circumhyperbola dual of Yff parabola
X(65703) = pole of the line {513, 11998} with respect to the Feuerbach circumhyperbola
X(65703) = pole of the line {661, 7668} with respect to the Kiepert circumhyperbola
X(65703) = pole of the line {669, 16681} with respect to the Kiepert parabola
X(65703) = pole of the line {4534, 23638} with respect to the Mandart inellipse
X(65703) = pole of the line {51, 1146} with respect to the orthic inconic
X(65703) = pole of the line {99, 4570} with respect to the Stammler hyperbola
X(65703) = pole of the line {194, 4440} with respect to the Steiner circumellipse
X(65703) = pole of the line {39, 1086} with respect to the Steiner inellipse
X(65703) = pole of the line {670, 4600} with respect to the Steiner-Wallace hyperbola
X(65703) = pole of the line {6546, 20979} with respect to the Yff parabola
X(65703) = barycentric product X(i)*X(j) for these {i, j}: {6, 23887}, {244, 42723}, {513, 57015}, {514, 674}, {522, 43039}, {523, 14964}, {649, 3006}, {693, 2225}, {900, 64611}, {3261, 8618}, {4249, 4466}, {4391, 51657}, {5513, 35365}
X(65703) = trilinear product X(i)*X(j) for these {i, j}: {31, 23887}, {513, 674}, {514, 2225}, {522, 51657}, {649, 57015}, {650, 43039}, {661, 14964}, {667, 3006}, {693, 8618}, {1015, 42723}, {1635, 64611}, {4249, 18210}
X(65703) = trilinear quotient X(i)/X(j) for these (i, j): (6, 36087), (31, 32682), (513, 675), (514, 37130), (649, 2224), (661, 60135), (674, 100), (692, 52941), (693, 43093), (2170, 60573), (2225, 101), (2530, 46158), (3006, 668), (4249, 5379), (8618, 692), (14964, 662), (23887, 75), (42723, 1016), (43039, 651), (51657, 109)
X(65703) = (medial)-isotomic conjugate-of-X(38990)
X(65703) = (X(663), X(5075))-harmonic conjugate of X(8645)
X(65704) lies on these lines: {11, 244}, {86, 4425}, {1648, 8029}, {6627, 21043}, {21135, 23763}
X(65704) = cross-difference of every pair of points on the line X(101)X(249)
X(65704) = crosspoint of X(i) and X(j) for these {i, j}: {4024, 11599}, {6625, 60042}
X(65704) = crosssum of X(1326) and X(4556)
X(65704) = X(i)-Ceva conjugate of-X(j) for these (i, j): (3120, 41180), (18014, 21131)
X(65704) = X(i)-Dao conjugate of-X(j) for these (i, j): (523, 35162), (3005, 28482), (35114, 4590), (41180, 4610), (51578, 4600)
X(65704) = X(i)-isoconjugate of-X(j) for these {i, j}: {1101, 35162}, {24041, 28482}
X(65704) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (115, 35162), (3124, 28482), (10026, 4600), (17770, 4590), (20666, 4570), (20685, 765), (21131, 60042), (41180, 17731)
X(65704) = perspector of the circumconic through X(115) and X(514)
X(65704) = pole of the line {1897, 18020} with respect to the polar circle
X(65704) = pole of the line {20974, 55384} with respect to the Brocard inellipse
X(65704) = pole of the line {514, 1509} with respect to the circumhyperbola dual of Yff parabola
X(65704) = pole of the line {661, 10278} with respect to the Kiepert circumhyperbola
X(65704) = pole of the line {1146, 58907} with respect to the orthic inconic
X(65704) = pole of the line {4570, 59152} with respect to the Stammler hyperbola
X(65704) = pole of the line {4440, 54104} with respect to the Steiner circumellipse
X(65704) = pole of the line {1086, 23991} with respect to the Steiner inellipse
X(65704) = pole of the line {4600, 21085} with respect to the Steiner-Wallace hyperbola
X(65704) = barycentric product X(i)*X(j) for these {i, j}: {115, 17770}, {1111, 20685}, {3120, 10026}, {11599, 41180}, {20666, 21207}, {21131, 62644}
X(65704) = trilinear product X(i)*X(j) for these {i, j}: {1086, 20685}, {2643, 17770}, {3125, 10026}, {9278, 41180}, {16732, 20666}
X(65704) = trilinear quotient X(i)/X(j) for these (i, j): (1109, 35162), (2643, 28482), (10026, 4567), (17770, 24041), (20685, 1252), (41180, 1931)
X(65705) lies on these lines: {241, 514}, {676, 40133}, {891, 46388}, {926, 2170}, {1212, 6366}, {1475, 30691}, {3762, 28143}, {4449, 57180}, {4724, 17425}, {4875, 50333}, {5011, 52730}, {9442, 23893}, {14413, 46392}, {17451, 53550}, {21222, 28132}, {34522, 53285}, {36838, 61241}
X(65705) = reflection of X(52614) in X(1212)
X(65705) = cross-difference of every pair of points on the line X(55)X(651)
X(65705) = crosspoint of X(36838) and X(62744)
X(65705) = crosssum of X(57180) and X(62738)
X(65705) = X(62744)-Ceva conjugate of-X(3022)
X(65705) = X(1015)-Dao conjugate of-X(62744)
X(65705) = X(i)-isoconjugate of-X(j) for these {i, j}: {101, 62744}, {6602, 65558}
X(65705) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (479, 65558), (513, 62744), (3000, 664), (44664, 4554), (52888, 190), (52980, 46406), (62738, 100)
X(65705) = perspector of the circumconic through X(7) and X(650)
X(65705) = pole of the line {7, 3022} with respect to the incircle
X(65705) = pole of the line {281, 18026} with respect to the polar circle
X(65705) = pole of the line {7117, 21746} with respect to the Brocard inellipse
X(65705) = pole of the line {11, 21195} with respect to the circumhyperbola dual of Yff parabola
X(65705) = pole of the line {650, 3022} with respect to the Feuerbach circumhyperbola
X(65705) = pole of the line {497, 3271} with respect to the Mandart inellipse
X(65705) = pole of the line {1836, 3270} with respect to the orthic inconic
X(65705) = barycentric product X(i)*X(j) for these {i, j}: {514, 52888}, {522, 3000}, {650, 44664}, {657, 52980}, {693, 62738}, {6608, 62759}
X(65705) = trilinear product X(i)*X(j) for these {i, j}: {513, 52888}, {514, 62738}, {650, 3000}, {663, 44664}, {8641, 52980}, {10581, 62759}
X(65705) = trilinear quotient X(i)/X(j) for these (i, j): (514, 62744), (3000, 651), (10581, 62767), (23062, 65558), (44664, 664), (52888, 100), (52980, 4569), (62738, 101)
X(65705) = X(887)-of-intouch triangle
X(65706) lies on these lines: {926, 2170}, {1648, 8029}
X(65706) = cross-difference of every pair of points on the line X(249)X(651)
X(65706) = perspector of the circumconic through X(115) and X(650)
X(65706) = pole of the line {18020, 18026} with respect to the polar circle
X(65706) = pole of the line {7117, 55384} with respect to the Brocard inellipse
X(65706) = pole of the line {650, 7054} with respect to the Feuerbach circumhyperbola
X(65706) = pole of the line {3270, 58907} with respect to the orthic inconic
X(65706) = barycentric product X(37982)*X(53560)
X(65707) lies on these lines: {115, 125}, {241, 514}, {649, 29136}, {918, 62675}, {1213, 6370}, {2642, 6089}, {4041, 4838}, {8674, 47234}, {9278, 18014}, {17422, 55282}, {24617, 24619}, {34959, 59629}, {53527, 55195}
X(65707) = midpoint of X(2642) and X(21131)
X(65707) = complement of the isotomic conjugate of X(60055)
X(65707) = cross-difference of every pair of points on the line X(55)X(110)
X(65707) = crosspoint of X(2) and X(60055)
X(65707) = X(i)-complementary conjugate of-X(j) for these (i, j): (59088, 141), (60055, 2887)
X(65707) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 35141), (244, 65261), (1084, 28471), (35066, 99)
X(65707) = X(i)-isoconjugate of-X(j) for these {i, j}: {110, 65261}, {163, 35141}, {249, 35347}, {662, 28471}
X(65707) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (512, 28471), (523, 35141), (661, 65261), (2643, 35347), (17768, 99), (43066, 4573)
X(65707) = center of the inconic with perspector X(60055)
X(65707) = perspector of the circumconic through X(7) and X(523)
X(65707) = pole of the line {1486, 7669} with respect to the circumcircle
X(65707) = pole of the line {7, 4616} with respect to the incircle
X(65707) = pole of the line {7668, 44412} with respect to the nine-point circle
X(65707) = pole of the line {98, 44431} with respect to the orthoptic circle of Steiner inellipse
X(65707) = pole of the line {281, 648} with respect to the polar circle
X(65707) = pole of the line {20975, 21746} with respect to the Brocard inellipse
X(65707) = pole of the line {11, 21196} with respect to the circumhyperbola dual of Yff parabola
X(65707) = pole of the line {523, 4092} with respect to the Kiepert circumhyperbola
X(65707) = pole of the line {4897, 11123} with respect to the Kiepert parabola
X(65707) = pole of the line {8288, 65698} with respect to the Lemoine inellipse
X(65707) = pole of the line {125, 1836} with respect to the orthic inconic
X(65707) = pole of the line {249, 5546} with respect to the Stammler hyperbola
X(65707) = pole of the line {145, 148} with respect to the Steiner circumellipse
X(65707) = pole of the line {1, 115} with respect to the Steiner inellipse
X(65707) = pole of the line {645, 4590} with respect to the Steiner-Wallace hyperbola
X(65707) = barycentric product X(i)*X(j) for these {i, j}: {523, 17768}, {3700, 43066}
X(65707) = trilinear product X(i)*X(j) for these {i, j}: {661, 17768}, {4041, 43066}, {35066, 35347}
X(65707) = trilinear quotient X(i)/X(j) for these (i, j): (115, 35347), (523, 65261), (661, 28471), (1577, 35141), (17768, 662), (43066, 1414)
X(65708) lies on these lines: {241, 514}, {1648, 8029}
X(65708) = cross-difference of every pair of points on the line X(55)X(249)
X(65708) = perspector of the circumconic through X(7) and X(115)
X(65708) = pole of the line {281, 18020} with respect to the polar circle
X(65708) = pole of the line {21746, 55384} with respect to the Brocard inellipse
X(65708) = pole of the line {8287, 10278} with respect to the Kiepert circumhyperbola
X(65708) = pole of the line {1836, 58907} with respect to the orthic inconic
X(65708) = pole of the line {5546, 59152} with respect to the Stammler hyperbola
X(65708) = pole of the line {145, 54104} with respect to the Steiner circumellipse
X(65708) = pole of the line {1, 23991} with respect to the Steiner inellipse
X(65708) = pole of the line {645, 31614} with respect to the Steiner-Wallace hyperbola
X(65709) lies on these lines: {187, 237}, {323, 526}, {520, 30219}, {523, 3580}, {690, 51360}, {1648, 8029}, {1649, 41167}, {2433, 40355}, {2780, 64624}, {3258, 53132}, {6370, 51465}, {9138, 15107}, {13290, 55142}, {13291, 16188}, {16186, 55071}, {17994, 44084}, {19912, 51548}, {34397, 47230}, {58871, 61776}, {61198, 61213}
X(65709) = Gibert-circumtangential conjugate of X(58979)
X(65709) = cross-difference of every pair of points on the line X(2)X(249)
X(65709) = crosspoint of X(i) and X(j) for these {i, j}: {6, 58979}, {115, 10412}, {125, 61216}, {526, 2088}, {2433, 56792}, {35235, 47230}
X(65709) = crosssum of X(i) and X(j) for these {i, j}: {249, 52603}, {250, 16237}, {476, 39295}, {523, 24975}, {526, 34990}, {6370, 40539}
X(65709) = X(i)-Ceva conjugate of-X(j) for these (i, j): (476, 55384), (526, 2088), (2433, 3124), (10412, 115), (15470, 47414), (43709, 3269), (58979, 6)
X(65709) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 58979), (512, 14560), (523, 35139), (526, 10411), (1084, 39295), (3005, 476), (5664, 670), (11597, 59152), (16221, 18020), (18334, 4590), (21905, 14559), (40604, 31614), (60342, 99), (62572, 34537)
X(65709) = X(i)-isoconjugate of-X(j) for these {i, j}: {75, 58979}, {249, 32680}, {476, 24041}, {662, 39295}, {1101, 35139}, {2166, 59152}, {4590, 32678}, {9273, 15455}, {14560, 24037}, {18020, 36061}, {32662, 46254}
X(65709) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 58979), (50, 59152), (115, 35139), (186, 55270), (323, 31614), (512, 39295), (526, 4590), (1084, 14560), (2088, 99), (2624, 24041), (2643, 32680), (3124, 476), (3268, 34537), (8029, 94), (8552, 47389), (8754, 46456), (9213, 52940), (10412, 57546), (14270, 249), (16186, 4563), (18334, 10411), (20975, 60053), (20982, 65283), (21906, 14559), (22260, 1989), (23099, 11060), (23105, 20573), (32679, 24037), (33919, 43084), (34397, 47443), (35235, 6331), (42344, 51479), (47230, 18020), (52668, 45773), (60777, 57991), (61339, 10412), (62551, 670)
X(65709) = perspector of the circumconic through X(6) and X(115)
X(65709) = pole of the line {6, 23357} with respect to the circumcircle
X(65709) = pole of the line {3613, 27867} with respect to the nine-point circle
X(65709) = pole of the line {262, 39295} with respect to the orthoptic circle of Steiner inellipse
X(65709) = pole of the line {264, 18020} with respect to the polar circle
X(65709) = pole of the line {6, 23357} with respect to the Brocard inellipse
X(65709) = pole of the line {7668, 10278} with respect to the Kiepert circumhyperbola
X(65709) = pole of the line {669, 39857} with respect to the Kiepert parabola
X(65709) = pole of the line {51, 58907} with respect to the orthic inconic
X(65709) = pole of the line {99, 14559} with respect to the Stammler hyperbola
X(65709) = pole of the line {194, 54104} with respect to the Steiner circumellipse
X(65709) = pole of the line {39, 18122} with respect to the Steiner inellipse
X(65709) = pole of the line {670, 31614} with respect to the Steiner-Wallace hyperbola
X(65709) = barycentric product X(i)*X(j) for these {i, j}: {50, 23105}, {115, 526}, {125, 47230}, {323, 8029}, {338, 14270}, {512, 62551}, {523, 2088}, {647, 35235}, {868, 60777}, {1109, 2624}, {1637, 56792}, {1648, 9213}, {2081, 8901}, {2433, 3258}, {2436, 6070}, {2501, 16186}, {2610, 2611}, {2643, 32679}, {2971, 45792}, {3124, 3268}
X(65709) = trilinear product X(i)*X(j) for these {i, j}: {115, 2624}, {526, 2643}, {661, 2088}, {798, 62551}, {810, 35235}, {1109, 14270}, {2610, 20982}, {2611, 42666}, {3124, 32679}, {3708, 47230}, {6149, 8029}, {21824, 21828}
X(65709) = trilinear quotient X(i)/X(j) for these (i, j): (31, 58979), (115, 32680), (526, 24041), (661, 39295), (1109, 35139), (2088, 662), (2611, 65283), (2624, 249), (2643, 476), (3124, 32678), (3268, 24037), (3708, 60053), (6149, 59152), (8029, 2166), (8552, 62719), (8754, 36129), (14270, 1101), (16186, 4592), (20975, 36061), (20982, 37140)
X(65709) = X(13291)-of-anti-orthocentroidal triangle
X(65710) lies on the cubic K1368 and these lines: {2, 525}, {20, 1499}, {54, 62428}, {69, 523}, {76, 850}, {99, 110}, {320, 62397}, {512, 2979}, {520, 15531}, {599, 14977}, {826, 34290}, {1649, 3265}, {1992, 18311}, {2710, 2857}, {2780, 54037}, {2793, 50641}, {2799, 39905}, {3566, 11123}, {3619, 45801}, {5641, 34765}, {7664, 14932}, {10190, 59549}, {11459, 30209}, {12073, 41298}, {13306, 59775}, {14223, 54395}, {18808, 44134}, {20186, 54039}, {32478, 54036}, {44445, 50551}, {45693, 59773}, {45792, 53369}, {46616, 52437}, {50942, 62307}, {53186, 53929}
X(65710) = reflection of X(i) in X(j) for these {i,j}: {69, 45808}, {1992, 18311}, {3268, 6333}, {14977, 599}, {39904, 45687}, {53331, 3268}, {53369, 45792}, {53374, 2}, {53378, 69}, {62663, 34290}
X(65710) = anticomplement of X(1640)
X(65710) = anticomplement of the isogonal conjugate of X(5649)
X(65710) = anticomplement of the isotomic conjugate of X(6035)
X(65710) = isotomic conjugate of the isogonal conjugate of X(34291)
X(65710) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {842, 21221}, {5641, 21294}, {5649, 8}, {6035, 6327}, {36096, 37779}, {64775, 17482}
X(65710) = X(6035)-Ceva conjugate of X(2)
X(65710) = X(i)-Dao conjugate of X(j) for these (i,j): {57465, 3163}, {65608, 542}
X(65710) = crosspoint of X(99) and X(5641)
X(65710) = crosssum of X(512) and X(5191)
X(65710) = trilinear pole of line {57465, 65608}
X(65710) = crossdifference of every pair of points on line {1495, 1692}
X(65710) = barycentric product X(i)*X(j) for these {i,j}: {76, 34291}, {99, 65608}, {850, 54439}
X(65710) = barycentric quotient X(i)/X(j) for these {i,j}: {2394, 54495}, {34291, 6}, {54439, 110}, {60509, 6103}, {65608, 523}
X(65710) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2396, 61188, 5468}, {30508, 30509, 3268}, {62555, 62642, 62645}, {62631, 62632, 62663}
X(65711) lies on the cubic K1368 and these lines: {2, 648}, {5, 339}, {20, 99}, {22, 1634}, {23, 340}, {69, 110}, {95, 54459}, {125, 53348}, {127, 41676}, {253, 30769}, {264, 5169}, {305, 51967}, {316, 10296}, {317, 7519}, {325, 523}, {328, 18018}, {401, 7840}, {468, 40996}, {541, 36890}, {542, 52094}, {868, 56390}, {1007, 30789}, {1272, 1370}, {2071, 7799}, {2493, 62551}, {2847, 6527}, {2972, 30739}, {3153, 7809}, {3164, 7897}, {3314, 11672}, {4611, 28726}, {7417, 41360}, {7488, 7768}, {7763, 51884}, {7774, 31636}, {7778, 19221}, {7779, 10313}, {7811, 10298}, {10718, 35923}, {11413, 32821}, {11799, 44146}, {12037, 15595}, {13575, 57829}, {15589, 52711}, {16386, 59634}, {17974, 63722}, {32820, 52071}, {32833, 44440}, {34897, 40856}, {35911, 62307}, {37929, 52437}, {37980, 52149}, {38448, 54071}, {38553, 51872}, {40107, 52128}, {46787, 54395}
X(65711) = isotomic conjugate of X(2697)
X(65711) = anticomplement of X(6103)
X(65711) = anticomplement of the isogonal conjugate of X(65308)
X(65711) = isotomic conjugate of the anticomplement of X(42426)
X(65711) = isotomic conjugate of the isogonal conjugate of X(2781)
X(65711) = isotomic conjugate of the polar conjugate of X(50188)
X(65711) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {842, 5905}, {5641, 21270}, {5649, 7253}, {6035, 21300}, {35909, 21221}, {36096, 41079}, {65308, 8}
X(65711) = X(i)-cross conjugate of X(j) for these (i,j): {2781, 50188}, {42426, 2}
X(65711) = X(i)-isoconjugate of X(j) for these (i,j): {31, 2697}, {2157, 46340}, {2631, 59108}, {32676, 60591}
X(65711) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 2697}, {15526, 60591}, {35594, 42659}, {40583, 46340}, {62595, 47110}, {65612, 37987}
X(65711) = crosspoint of X(264) and X(5641)
X(65711) = crosssum of X(184) and X(5191)
X(65711) = crossdifference of every pair of points on line {32, 9409}
X(65711) = barycentric product X(i)*X(j) for these {i,j}: {69, 50188}, {76, 2781}, {99, 65612}, {3267, 37937}, {7799, 43090}, {40079, 44132}
X(65711) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 2697}, {23, 46340}, {297, 47110}, {525, 60591}, {1304, 59108}, {1554, 6793}, {2781, 6}, {37937, 112}, {40079, 248}, {42426, 6103}, {43090, 1989}, {47427, 5191}, {50188, 4}, {60502, 58087}, {60512, 35907}, {65306, 64778}, {65612, 523}
X(65711) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {325, 62338, 3266}, {684, 35522, 3268}, {22339, 22340, 30737}
X(65712) lies on the cubics K260, K1315, K1368 and these lines: {2, 41511}, {4, 14364}, {6, 525}, {69, 110}, {193, 65306}, {317, 5641}, {524, 51823}, {577, 2482}, {1249, 5485}, {1992, 60002}, {2434, 62664}, {5467, 6390}, {6593, 34336}, {9233, 23992}, {10422, 63646}, {10423, 53186}, {11185, 34574}, {14559, 41612}, {15303, 36890}, {33769, 35138}, {34319, 36884}, {44146, 53777}, {47389, 59152}
X(65712) = reflection of X(60503) in X(6593)
X(65712) = isogonal conjugate of X(57485)
X(65712) = isotomic conjugate of X(59422)
X(65712) = complement of X(56569)
X(65712) = anticomplement of the isogonal conjugate of X(60002)
X(65712) = isotomic conjugate of the anticomplement of X(14357)
X(65712) = isotomic conjugate of the polar conjugate of X(51823)
X(65712) = isogonal conjugate of the polar conjugate of X(58078)
X(65712) = polar conjugate of the isotomic conjugate of X(53784)
X(65712) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1177, 17482}, {2373, 21274}, {16568, 2892}, {36095, 9517}, {60002, 8}
X(65712) = X(58078)-Ceva conjugate of X(51823)
X(65712) = X(i)-cross conjugate of X(j) for these (i,j): {184, 34161}, {3292, 18876}, {5095, 524}, {14357, 2}, {52629, 5468}
X(65712) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57485}, {31, 59422}, {63, 64619}, {75, 51962}, {92, 34158}, {111, 18669}, {163, 65609}, {858, 923}, {897, 2393}, {1096, 51253}, {5523, 36060}, {14961, 36128}, {20884, 32740}, {23894, 61198}, {36142, 47138}
X(65712) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 59422}, {3, 57485}, {115, 65609}, {187, 64646}, {206, 51962}, {524, 5181}, {1560, 5523}, {2482, 858}, {3162, 64619}, {6503, 51253}, {6593, 2393}, {14417, 38971}, {18876, 19330}, {22391, 34158}, {23992, 47138}, {52881, 62382}
X(65712) = cevapoint of X(i) and X(j) for these (i,j): {524, 6593}, {690, 62594}, {2482, 3292}
X(65712) = crosssum of X(i) and X(j) for these (i,j): {2393, 47426}, {34158, 51962}
X(65712) = trilinear pole of line {187, 14417}
X(65712) = barycentric product X(i)*X(j) for these {i,j}: {3, 58078}, {4, 53784}, {69, 51823}, {99, 65611}, {187, 46140}, {524, 2373}, {896, 37220}, {1177, 3266}, {5468, 60040}, {6390, 60133}, {10422, 36792}, {10423, 45807}, {14417, 65268}, {18876, 44146}, {34161, 56685}, {34336, 41511}, {35522, 65306}, {36823, 52145}, {46165, 52898}
X(65712) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 59422}, {6, 57485}, {25, 64619}, {32, 51962}, {184, 34158}, {187, 2393}, {394, 51253}, {468, 5523}, {523, 65609}, {524, 858}, {690, 47138}, {896, 18669}, {1177, 111}, {2373, 671}, {2482, 5181}, {3266, 1236}, {3292, 14961}, {4062, 21017}, {4235, 61181}, {4750, 21109}, {5095, 1560}, {5467, 61198}, {5967, 52672}, {6390, 62382}, {6593, 64646}, {6629, 17172}, {9717, 60499}, {10422, 10630}, {14210, 20884}, {18876, 895}, {34161, 56579}, {36823, 5968}, {37220, 46277}, {39689, 47426}, {39785, 19510}, {41511, 15398}, {44102, 14580}, {46140, 18023}, {46165, 31125}, {51823, 4}, {52629, 62577}, {53784, 69}, {57496, 39269}, {58078, 264}, {60002, 14246}, {60040, 5466}, {60133, 17983}, {60503, 60507}, {61207, 46592}, {62594, 38971}, {65268, 65350}, {65306, 691}, {65611, 523}
X(65713) lies on the cubic K1368 and these lines: {99, 523}, {110, 685}, {182, 14382}, {250, 47256}, {290, 11579}, {316, 1503}, {340, 3564}, {525, 648}, {542, 5641}, {670, 18878}, {671, 65613}, {877, 53351}, {1990, 47286}, {2966, 23878}, {3260, 12215}, {3265, 30221}, {3268, 14480}, {4577, 14560}, {5182, 34369}, {5649, 62307}, {5921, 56572}, {6528, 32230}, {11185, 34574}, {14611, 30474}, {15454, 40423}, {18831, 65269}, {35137, 65279}, {38613, 54089}, {39462, 48947}, {41204, 44146}, {55226, 61188}, {57804, 65354}, {57991, 62642}
X(65713) = reflection of X(i) in X(j) for these {i,j}: {2966, 40866}, {47286, 1990}
X(65713) = X(i)-isoconjugate of X(j) for these (i,j): {163, 60500}, {810, 60590}
X(65713) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 60500}, {39062, 60590}
X(65713) = cevapoint of X(542) and X(62307)
X(65713) = crosssum of X(647) and X(10567)
X(65713) = barycentric product X(i)*X(j) for these {i,j}: {99, 41254}, {5622, 6331}, {6035, 60508}, {7418, 43187}
X(65713) = barycentric quotient X(i)/X(j) for these {i,j}: {523, 60500}, {648, 60590}, {5622, 647}, {7418, 3569}, {41254, 523}, {60508, 1640}
X(65713) = {X(850),X(54108)}-harmonic conjugate of X(18020)
X(65714) lies on the cubic K1368 and these lines: {2, 523}, {4, 525}, {107, 110}, {193, 9007}, {264, 850}, {376, 5664}, {381, 2394}, {512, 15072}, {520, 3060}, {542, 14223}, {647, 15355}, {842, 2697}, {879, 46512}, {924, 41715}, {1176, 15328}, {1249, 2501}, {2071, 53330}, {2395, 47737}, {2799, 6054}, {3091, 5489}, {3265, 63098}, {3524, 18556}, {3543, 58346}, {3800, 16220}, {3839, 42733}, {5071, 14566}, {5641, 34765}, {6587, 37689}, {7736, 62384}, {7927, 8723}, {7950, 23105}, {8057, 63174}, {8675, 11188}, {9003, 41720}, {9529, 41077}, {10033, 23878}, {10412, 31065}, {11050, 34312}, {11177, 42738}, {14618, 51260}, {15412, 19176}, {23870, 41042}, {23871, 41043}, {33928, 63464}, {35912, 52076}, {37668, 62555}, {39474, 53156}, {39491, 41099}, {41254, 65623}, {41761, 44445}, {44891, 47175}, {45289, 53320}, {47071, 53159}, {53365, 55121}
X(65714) = midpoint of X(3543) and X(63248)
X(65714) = reflection of X(i) in X(j) for these {i,j}: {376, 5664}, {2394, 381}, {3543, 58346}, {9979, 16230}, {11177, 42738}, {18556, 45681}, {53345, 9979}, {53383, 2}
X(65714) = reflection of X(53383) in the Euler line
X(65714) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {5649, 4329}, {36096, 3153}
X(65714) = X(53155)-Ceva conjugate of X(53161)
X(65714) = X(i)-Dao conjugate of X(j) for these (i,j): {37987, 542}, {60510, 525}
X(65714) = cevapoint of X(523) and X(65623)
X(65714) = crosspoint of X(648) and X(5641)
X(65714) = crosssum of X(647) and X(5191)
X(65714) = trilinear pole of line {37987, 60510}
X(65714) = crossdifference of every pair of points on line {187, 3269}
X(65714) = barycentric product X(i)*X(j) for these {i,j}: {99, 65613}, {648, 37987}, {5641, 60510}
X(65714) = barycentric quotient X(i)/X(j) for these {i,j}: {37987, 525}, {60510, 542}, {65613, 523}
X(65714) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4240, 53351, 34211}, {9214, 62629, 5466}, {18556, 45681, 3524}, {53153, 53154, 53345}
X(65715) lies on the cubics K1315 and K1368 and these lines: {2, 39290}, {6, 51227}, {69, 74}, {141, 35910}, {193, 44769}, {264, 850}, {317, 16077}, {1138, 36889}, {3164, 18301}, {3580, 16237}, {3589, 60870}, {3618, 63856}, {4846, 31621}, {6389, 14919}, {6795, 40630}, {14264, 61188}, {15454, 40423}, {16080, 17907}, {17986, 18440}, {19776, 19777}, {21850, 35908}, {37644, 62606}, {37645, 57487}, {37648, 57488}, {45198, 52766}, {51346, 56576}, {56580, 57762}
X(65715) = isotomic conjugate of X(15454)
X(65715) = anticomplement of X(56399)
X(65715) = polar conjugate of X(51965)
X(65715) = anticomplement of the isogonal conjugate of X(57487)
X(65715) = isotomic conjugate of the anticomplement of X(39170)
X(65715) = isotomic conjugate of the complement of X(56686)
X(65715) = isotomic conjugate of the isogonal conjugate of X(14264)
X(65715) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {92, 59428}, {2349, 3153}, {14385, 6360}, {16080, 63642}, {36119, 37779}, {52414, 146}, {57487, 8}, {65263, 526}
X(65715) = X(i)-cross conjugate of X(j) for these (i,j): {113, 3580}, {39170, 2}, {62338, 1494}, {65473, 16077}
X(65715) = X(i)-isoconjugate of X(j) for these (i,j): {31, 15454}, {48, 51965}, {163, 65615}, {560, 52552}, {1495, 36053}, {2173, 14910}, {2631, 32708}, {2986, 9406}, {9409, 36114}, {10419, 42074}, {14398, 65262}, {56829, 61216}
X(65715) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 15454}, {113, 1495}, {115, 65615}, {1249, 51965}, {2088, 52743}, {3003, 3163}, {3580, 1511}, {6334, 3258}, {6374, 52552}, {9410, 2986}, {11064, 16163}, {34834, 30}, {36896, 14910}, {39005, 9409}, {39021, 1637}, {39174, 184}, {40604, 39371}, {56792, 512}, {62606, 5504}
X(65715) = cevapoint of X(i) and X(j) for these (i,j): {2, 56686}, {113, 3580}, {525, 56792}, {13754, 34834}
X(65715) = crosssum of X(9407) and X(9408)
X(65715) = trilinear pole of line {3580, 6334}
X(65715) = barycentric product X(i)*X(j) for these {i,j}: {76, 14264}, {99, 65614}, {113, 31621}, {1494, 3580}, {1502, 51821}, {1725, 33805}, {2394, 61188}, {6334, 16077}, {14919, 44138}, {16080, 62338}, {16237, 34767}, {18027, 53785}
X(65715) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 15454}, {4, 51965}, {74, 14910}, {76, 52552}, {94, 39375}, {113, 3163}, {323, 39371}, {403, 1990}, {523, 65615}, {686, 9409}, {1304, 32708}, {1494, 2986}, {1725, 2173}, {1986, 39176}, {2349, 36053}, {2394, 15328}, {3003, 1495}, {3580, 30}, {6334, 9033}, {12824, 52951}, {13754, 3284}, {14264, 6}, {14380, 61216}, {14385, 52557}, {14919, 5504}, {15329, 2420}, {16077, 687}, {16080, 1300}, {16237, 4240}, {18609, 51420}, {18781, 11070}, {21731, 14398}, {31621, 40423}, {34333, 47405}, {34767, 15421}, {34834, 1511}, {39170, 56399}, {40384, 10419}, {41512, 41392}, {44084, 14581}, {44138, 46106}, {44769, 10420}, {46788, 39986}, {46808, 58942}, {51227, 51456}, {51821, 32}, {52000, 52952}, {52451, 35906}, {53568, 6793}, {53785, 577}, {55121, 1637}, {55265, 58346}, {56403, 14583}, {57486, 14254}, {57487, 38936}, {57488, 51895}, {58940, 51545}, {60342, 52743}, {61188, 2407}, {61209, 23347}, {62338, 11064}, {62569, 16163}, {62722, 60035}, {63735, 52945}, {65263, 36114}, {65614, 523}
X(65716) lies on the X-parabola [see X(12065], the cubics K1353 and K1368, and these lines: {2, 9717}, {6, 9214}, {99, 62645}, {110, 5466}, {476, 62663}, {523, 2407}, {542, 34174}, {575, 5967}, {648, 18808}, {850, 5468}, {892, 59152}, {1649, 30221}, {2395, 60504}, {2501, 4240}, {3233, 8029}, {4036, 42716}, {7417, 44420}, {9168, 14480}, {10412, 14559}, {10418, 48450}, {15069, 56687}, {15328, 53350}, {15543, 62613}, {21732, 34246}, {35311, 60503}, {35314, 62632}, {35315, 62631}, {41309, 52752}, {50187, 52234}, {52472, 60696}, {53232, 62307}
X(65716) = isogonal conjugate of X(34291)
X(65716) = isotomic conjugate of the anticomplement of X(1640)
X(65716) = X(i)-cross conjugate of X(j) for these (i,j): {1640, 2}, {64607, 476}, {65610, 4}
X(65716) = X(i)-isoconjugate of X(j) for these (i,j): {1, 34291}, {163, 65608}, {661, 54439}
X(65716) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 34291}, {115, 65608}, {36830, 54439}, {42426, 60509}
X(65716) = cevapoint of X(i) and X(j) for these (i,j): {512, 2493}, {523, 542}, {690, 46986}, {6593, 55142}
X(65716) = trilinear pole of line {30, 115}
X(65716) = barycentric product X(2407)*X(54495)
X(65716) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 34291}, {110, 54439}, {523, 65608}, {6103, 60509}, {54495, 2394}
X(65717) lies on the cubic K1368 and these lines: {110, 61191}, {113, 525}, {115, 60500}, {125, 41167}, {512, 16163}, {520, 5095}, {523, 5181}, {526, 22105}, {542, 35909}, {647, 5642}, {684, 690}, {826, 18557}, {850, 12827}, {879, 5972}, {1634, 14559}, {3569, 9033}, {6103, 60591}, {6333, 35522}, {8754, 58263}, {9003, 23287}, {9517, 14900}, {16230, 41079}, {20772, 47261}, {24981, 60352}, {34156, 34157}, {34291, 51480}
X(65717) = reflection of X(i) in X(j) for these {i,j}: {125, 41167}, {879, 5972}
X(65717) = X(i)-isoconjugate of X(j) for these (i,j): {162, 5622}, {163, 41254}, {7418, 36084}
X(65717) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 41254}, {125, 5622}, {38987, 7418}
X(65717) = cevapoint of X(i) and X(j) for these (i,j): {542, 5972}, {1649, 39474}, {57464, 65709}
X(65717) = crosssum of X(2781) and X(34291)
X(65717) = trilinear pole of line {1648, 1650}
X(65717) = crossdifference of every pair of points on line {5622, 7418}
X(65717) = barycentric product X(i)*X(j) for these {i,j}: {99, 60500}, {525, 60590}
X(65717) = barycentric quotient X(i)/X(j) for these {i,j}: {523, 41254}, {647, 5622}, {1640, 60508}, {3569, 7418}, {60500, 523}, {60590, 648}
X(65718) lies on the cubic K1368 and these lines: {2, 9717}, {4, 47293}, {5, 5968}, {23, 50947}, {25, 16933}, {30, 99}, {110, 468}, {113, 525}, {114, 523}, {141, 47049}, {147, 36166}, {403, 41676}, {524, 47584}, {538, 46999}, {542, 16760}, {620, 46981}, {698, 47579}, {850, 34336}, {858, 62308}, {1352, 33928}, {1503, 47570}, {2452, 37071}, {2782, 14120}, {2794, 46987}, {3233, 47220}, {5099, 14981}, {6795, 7778}, {7777, 36183}, {7897, 15915}, {9168, 57607}, {9742, 36181}, {9744, 36177}, {9766, 60696}, {10011, 16315}, {10257, 46637}, {10297, 10748}, {14653, 47333}, {15561, 46633}, {16092, 23234}, {18440, 56572}, {20127, 54248}, {20304, 34953}, {20399, 40544}, {23698, 46988}, {30739, 33927}, {32459, 53737}, {33988, 59767}, {34291, 62307}, {34312, 47311}, {36196, 64090}, {46998, 64802}, {47332, 52229}, {52090, 57311}
X(65718) = midpoint of X(i) and X(j) for these {i,j}: {4, 47293}, {147, 36166}, {5099, 14981}, {6033, 46634}, {6054, 53136}, {36196, 64090}
X(65718) = reflection of X(i) in X(j) for these {i,j}: {16315, 10011}, {36170, 114}, {40544, 20399}, {46981, 620}, {51258, 5}, {65620, 16760}
X(65718) = complement of X(60508)
X(65718) = X(54439)-anticomplementary conjugate of X(4329)
X(65718) = X(17986)-Ceva conjugate of X(30)
X(65718) = barycentric product X(99)*X(65619)
X(65718) = barycentric quotient X(65619)/X(523)
X(65718) = {X(46986),X(65620)}-harmonic conjugate of X(16760)
X(65719) lies on the cubic K1368 and these lines: {2, 36894}, {110, 858}, {141, 35910}, {297, 340}, {523, 5181}, {525, 15595}, {542, 37987}, {850, 36789}, {2493, 65608}, {5254, 47616}, {6587, 62583}, {14570, 62382}, {15069, 56687}, {44569, 62311}, {47296, 53475}, {54395, 65613}
X(65719) = X(51405)-Ceva conjugate of X(524)
X(65719) = barycentric product X(99)*X(65623)
X(65719) = barycentric quotient X(65623)/X(523)
X(65720) lies on the cubic K1368 and these lines: {74, 525}, {99, 53383}, {110, 879}, {290, 850}, {512, 10733}, {520, 32244}, {523, 895}, {648, 18808}, {690, 15054}, {5622, 62307}, {9033, 53331}, {11005, 56687}, {15059, 41167}, {41254, 65623}, {56571, 56572}
X(65720) = reflection of X(110) in X(879)
X(65720) = X(41254)-anticomplementary conjugate of X(21294)
X(65721) lies on the cubic K1368 and these lines: {99, 1236}, {290, 54108}, {525, 60513}, {648, 37778}, {850, 12827}, {1235, 15454}, {2393, 3260}, {13754, 44146}, {39099, 41743}, {60502, 65624}
X(65721) = anticomplement of the isogonal conjugate of X(41253)
X(65721) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {15462, 6360}, {41253, 8}
X(65722) lies on the cubic K1369 and these lines: {2, 99}, {3, 125}, {30, 47220}, {32, 37644}, {39, 14389}, {69, 248}, {110, 14981}, {114, 1316}, {147, 35278}, {187, 3580}, {231, 53474}, {237, 32223}, {316, 401}, {323, 7813}, {325, 40884}, {338, 46184}, {394, 4175}, {441, 525}, {511, 47526}, {524, 58267}, {542, 5191}, {570, 3589}, {858, 18860}, {868, 23698}, {1272, 3163}, {1370, 63410}, {1531, 44231}, {1576, 56565}, {2080, 41586}, {2407, 35520}, {2782, 47200}, {2794, 4226}, {2854, 41359}, {3014, 53274}, {3018, 24975}, {3148, 3818}, {3154, 46987}, {3258, 46634}, {3284, 62338}, {3448, 10991}, {3788, 41238}, {3926, 4563}, {4235, 50188}, {5181, 9145}, {5642, 8724}, {5972, 9155}, {6033, 51431}, {6070, 46633}, {6103, 60502}, {6128, 18122}, {6292, 40604}, {6337, 62708}, {6781, 35933}, {7473, 42426}, {7495, 21163}, {7799, 44575}, {7801, 14901}, {7806, 40814}, {8369, 37648}, {8429, 14928}, {8749, 44402}, {9737, 14003}, {10607, 20208}, {11007, 33813}, {11623, 53346}, {11842, 61712}, {12079, 46981}, {14357, 33927}, {14570, 23583}, {14982, 53568}, {14999, 23967}, {15093, 61659}, {15118, 46127}, {15367, 58429}, {16235, 62507}, {16280, 53725}, {16760, 36189}, {18876, 52350}, {20399, 46512}, {21166, 35922}, {21243, 37457}, {21731, 32121}, {23200, 64883}, {24981, 52090}, {26958, 35302}, {27088, 44569}, {29012, 37916}, {30789, 36163}, {31127, 38747}, {32225, 37461}, {32459, 47296}, {32985, 37643}, {33237, 63128}, {34291, 51480}, {34511, 37645}, {35002, 51360}, {36181, 39838}, {36841, 39352}, {37340, 46833}, {37341, 46834}, {37688, 59197}, {39785, 40112}, {40708, 60872}, {40867, 45018}, {41145, 50567}, {41275, 61646}, {42671, 46818}, {44578, 59634}, {44887, 59707}, {46546, 48892}, {47326, 47348}, {51430, 51872}, {57588, 61561}
X(65722) = midpoint of X(i) and X(j) for these {i,j}: {2407, 35520}, {3014, 53274}
X(65722) = reflection of X(3018) in X(24975)
X(65722) = complement of X(54395)
X(65722) = isotomic conjugate of the polar conjugate of X(542)
X(65722) = psi-transform of X(56438)
X(65722) = X(i)-complementary conjugate of X(j) for these (i,j): {40118, 20305}, {51480, 21253}
X(65722) = X(i)-isoconjugate of X(j) for these (i,j): {19, 842}, {162, 14998}, {1096, 65308}, {1910, 52492}, {1973, 5641}, {14223, 32676}, {23350, 36104}, {24019, 35909}, {36096, 47230}, {36119, 48453}, {36120, 52199}, {36142, 53156}
X(65722) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 842}, {125, 14998}, {542, 6103}, {1511, 48453}, {6337, 5641}, {6503, 65308}, {11672, 52492}, {15526, 14223}, {23967, 4}, {23992, 53156}, {35067, 34174}, {35071, 35909}, {35582, 14273}, {39000, 23350}, {42426, 393}, {46094, 52199}, {52881, 52094}, {55048, 53177}, {62569, 51228}, {62590, 46787}, {62594, 50942}
X(65722) = crosssum of X(6) and X(2493)
X(65722) = crossdifference of every pair of points on line {25, 351}
X(65722) = barycentric product X(i)*X(j) for these {i,j}: {69, 542}, {304, 2247}, {305, 5191}, {394, 60502}, {524, 51405}, {525, 14999}, {892, 39474}, {1640, 4563}, {3265, 7473}, {3926, 6103}, {4143, 35907}, {4558, 18312}, {6041, 52608}, {6333, 34761}, {6390, 16092}, {6393, 34369}, {6394, 54380}, {11064, 51227}, {14417, 50941}, {23968, 45792}, {30786, 45662}, {34767, 64607}, {36212, 46786}, {43087, 52437}, {47389, 51428}, {51386, 52491}, {51456, 62338}
X(65722) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 842}, {69, 5641}, {265, 54554}, {394, 65308}, {511, 52492}, {520, 35909}, {525, 14223}, {542, 4}, {647, 14998}, {684, 23350}, {690, 53156}, {1640, 2501}, {2247, 19}, {3284, 48453}, {3289, 52199}, {3564, 34174}, {3917, 46157}, {4558, 5649}, {4563, 6035}, {5191, 25}, {6041, 2489}, {6103, 393}, {6333, 34765}, {6390, 52094}, {7473, 107}, {9517, 53177}, {11064, 51228}, {12215, 57452}, {14417, 50942}, {14984, 38939}, {14999, 648}, {16092, 17983}, {18312, 14618}, {22115, 52179}, {23967, 6103}, {32662, 23969}, {34369, 6531}, {34761, 685}, {35907, 6529}, {35912, 53866}, {36061, 36096}, {36212, 46787}, {36885, 65349}, {39474, 690}, {42743, 4230}, {43087, 6344}, {43754, 53691}, {45662, 468}, {46786, 16081}, {48451, 8749}, {50941, 65350}, {51227, 16080}, {51262, 1304}, {51405, 671}, {51428, 8754}, {51456, 1300}, {51474, 40118}, {52613, 35911}, {53132, 35235}, {53232, 935}, {54380, 6530}, {58252, 38552}, {58348, 16240}, {60502, 2052}, {60505, 35907}, {61446, 3563}, {64607, 4240}, {64880, 56603}
X(65722) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 99, 51389}, {325, 40884, 51372}, {441, 6390, 11064}, {441, 54075, 44436}, {6390, 11064, 36212}, {8552, 24284, 14417}, {9155, 15000, 5972}, {14417, 41077, 6333}, {14981, 35282, 110}, {28437, 28725, 115}, {28438, 28726, 620}, {40709, 40710, 125}, {45662, 53132, 47082}, {46811, 46814, 36212}
X(65723) lies on the cubic K1369 and these lines: {2, 523}, {3, 525}, {30, 18556}, {69, 3265}, {122, 125}, {157, 669}, {183, 62555}, {216, 647}, {230, 62384}, {351, 13290}, {376, 2394}, {381, 14566}, {512, 15030}, {520, 3917}, {526, 14424}, {549, 5664}, {690, 61776}, {826, 44814}, {1640, 6041}, {1651, 47219}, {2525, 22078}, {2528, 41328}, {2799, 6055}, {3005, 60342}, {3566, 54050}, {3830, 39491}, {3906, 21163}, {5054, 45681}, {5191, 32313}, {5467, 34211}, {6103, 60510}, {6130, 9979}, {6334, 9409}, {6368, 32078}, {6563, 53347}, {6587, 62992}, {7473, 51262}, {7927, 34347}, {8057, 38240}, {9818, 53330}, {14652, 14809}, {14685, 47216}, {14999, 34761}, {15000, 40550}, {15329, 53371}, {15692, 63248}, {16188, 18312}, {16230, 44564}, {17008, 33294}, {18114, 58262}, {18808, 47217}, {20208, 40920}, {22240, 47233}, {23055, 44552}, {31521, 50552}, {40913, 46616}, {43537, 43673}, {44427, 44818}, {47229, 55267}, {51474, 61446}, {53232, 60505}, {54439, 65720}, {65612, 65620}
X(65723) = midpoint of X(i) and X(j) for these {i,j}: {2, 53383}, {376, 2394}
X(65723) = reflection of X(i) in X(j) for these {i,j}: {381, 14566}, {684, 14417}, {1640, 45321}, {3830, 39491}, {5664, 549}, {8029, 53266}, {9979, 6130}, {16230, 44564}, {42738, 6055}, {45662, 60340}, {58346, 381}
X(65723) = complement of X(65714)
X(65723) = isotomic conjugate of the polar conjugate of X(1640)
X(65723) = isogonal conjugate of the polar conjugate of X(18312)
X(65723) = tripolar centroid for these (i,j): {287, 51227}
X(65723) = X(i)-Ceva conjugate of X(j) for these (i,j): {7473, 542}, {18312, 1640}, {51456, 53132}, {53232, 45662}, {60591, 520}
X(65723) = X(i)-isoconjugate of X(j) for these (i,j): {19, 5649}, {162, 842}, {186, 36096}, {240, 53691}, {1973, 6035}, {5641, 32676}, {23969, 52414}, {24000, 35909}, {24019, 65308}, {36084, 52492}, {36092, 40080}, {36104, 46787}, {36119, 51263}, {36129, 52179}, {36131, 51228}, {48453, 65263}
X(65723) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 5649}, {125, 842}, {542, 7473}, {647, 14223}, {1511, 51263}, {1649, 53156}, {6337, 6035}, {15526, 5641}, {17434, 35911}, {23967, 648}, {35071, 65308}, {35582, 468}, {38987, 52492}, {39000, 46787}, {39008, 51228}, {39085, 53691}, {41167, 23350}, {42426, 107}, {60340, 62172}, {62594, 52094}
X(65723) = crosspoint of X(i) and X(j) for these (i,j): {523, 51480}, {542, 7473}
X(65723) = crosssum of X(i) and X(j) for these (i,j): {110, 7468}, {842, 35909}
X(65723) = crossdifference of every pair of points on line {112, 186}
X(65723) = barycentric product X(i)*X(j) for these {i,j}: {3, 18312}, {69, 1640}, {125, 14999}, {305, 6041}, {520, 60502}, {525, 542}, {671, 39474}, {684, 46786}, {690, 51405}, {2247, 14208}, {3265, 6103}, {3267, 5191}, {4563, 51428}, {6333, 34369}, {6334, 51456}, {7473, 15526}, {8552, 43087}, {9033, 51227}, {14417, 16092}, {14977, 45662}, {17986, 41077}, {34897, 55142}, {35911, 38552}, {39473, 47105}, {42313, 45321}, {53132, 60053}, {53173, 54380}, {53232, 62563}
X(65723) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 5649}, {69, 6035}, {125, 14223}, {248, 53691}, {520, 65308}, {525, 5641}, {542, 648}, {647, 842}, {684, 46787}, {1640, 4}, {1648, 53156}, {2247, 162}, {2972, 35911}, {3269, 35909}, {3284, 51263}, {3569, 52492}, {5191, 112}, {6041, 25}, {6103, 107}, {7473, 23582}, {9033, 51228}, {9409, 48453}, {14417, 52094}, {14582, 54554}, {14999, 18020}, {16092, 65350}, {17986, 15459}, {18312, 264}, {20975, 14998}, {23967, 7473}, {24284, 57452}, {34369, 685}, {34761, 60179}, {35907, 32230}, {39469, 52199}, {39474, 524}, {41172, 23350}, {43087, 46456}, {45321, 458}, {45662, 4235}, {46048, 60505}, {46786, 22456}, {47105, 65265}, {47427, 37937}, {48451, 1304}, {51227, 16077}, {51405, 892}, {51428, 2501}, {51456, 687}, {52153, 23969}, {53132, 44427}, {55142, 37765}, {57464, 62172}, {60502, 6528}, {61446, 32697}
X(65724) lies on the cubic K1369 and these lines: {2, 65713}, {115, 523}, {125, 647}, {187, 1503}, {525, 15526}, {542, 23967}, {574, 14357}, {1084, 39021}, {1637, 6070}, {1640, 57464}, {1990, 12003}, {3003, 52967}, {3284, 3564}, {5158, 10217}, {5489, 21134}, {5661, 24206}, {6103, 17986}, {6776, 34156}, {9209, 12079}, {9243, 43589}, {14683, 23357}, {15449, 18334}, {15451, 20975}, {18121, 39565}, {23878, 35088}, {36166, 36204}, {39019, 55048}, {42306, 61215}, {51428, 57465}
X(65724) = midpoint of X(17986) and X(60508)
X(65724) = reflection of X(1990) in X(43291)
X(65724) = complement of X(65713)
X(65724) = complement of the isotomic conjugate of X(65717)
X(65724) = isotomic conjugate of the polar conjugate of X(51428)
X(65724) = X(i)-complementary conjugate of X(j) for these (i,j): {60500, 21253}, {60590, 21259}, {65717, 2887}
X(65724) = X(i)-Ceva conjugate of X(j) for these (i,j): {6103, 1640}, {51405, 39474}
X(65724) = X(i)-isoconjugate of X(j) for these (i,j): {162, 5649}, {6035, 32676}, {14590, 36096}, {24000, 65308}, {51263, 65263}, {53691, 62720}
X(65724) = X(i)-Dao conjugate of X(j) for these (i,j): {125, 5649}, {647, 5641}, {15526, 6035}, {23967, 18020}, {35582, 4235}, {41167, 46787}, {42426, 23582}, {57295, 51228}, {60340, 14920}
X(65724) = crosspoint of X(i) and X(j) for these (i,j): {2, 65717}, {542, 18312}, {1640, 6103}
X(65724) = crosssum of X(i) and X(j) for these (i,j): {648, 41253}, {5649, 65308}
X(65724) = crossdifference of every pair of points on line {250, 4230}
X(65724) = barycentric product X(i)*X(j) for these {i,j}: {69, 51428}, {125, 542}, {265, 53132}, {339, 5191}, {525, 1640}, {647, 18312}, {1648, 51405}, {1650, 17986}, {2247, 20902}, {3267, 6041}, {3269, 60502}, {5466, 39474}, {5489, 7473}, {6103, 15526}, {16186, 43087}, {23616, 35907}, {41172, 46786}, {45662, 51258}
X(65724) = barycentric quotient X(i)/X(j) for these {i,j}: {125, 5641}, {525, 6035}, {542, 18020}, {647, 5649}, {878, 53691}, {1640, 648}, {3269, 65308}, {5191, 250}, {6041, 112}, {6103, 23582}, {9409, 51263}, {14999, 55270}, {17986, 42308}, {18312, 6331}, {20975, 842}, {33919, 53156}, {34369, 60179}, {39474, 5468}, {41172, 46787}, {44114, 52492}, {46786, 41174}, {51405, 52940}, {51428, 4}, {53132, 340}, {57464, 14920}
X(65724) = {X(34366),X(60508)}-harmonic conjugate of X(6103)
X(65725) lies on the cubics K260, K284, K1369 and these lines: {2, 41511}, {3, 15900}, {6, 67}, {66, 15388}, {69, 17708}, {127, 36884}, {141, 525}, {157, 3455}, {159, 34190}, {574, 14357}, {577, 23967}, {935, 35902}, {5486, 10415}, {5523, 39269}, {8589, 52974}, {11165, 20208}, {14961, 19510}, {17416, 59994}, {18019, 64620}, {40380, 40553}, {41760, 46105}, {41939, 59175}, {54347, 57496}, {57476, 62382}, {60499, 60507}
X(65725) = midpoint of X(i) and X(j) for these {i,j}: {67, 60503}, {56569, 65712}
X(65725) = isogonal conjugate of X(60002)
X(65725) = complement of X(65712)
X(65725) = complement of the isogonal conjugate of X(57485)
X(65725) = complement of the isotomic conjugate of X(59422)
X(65725) = isogonal conjugate of the isotomic conjugate of X(57476)
X(65725) = isogonal conjugate of the polar conjugate of X(39269)
X(65725) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 14357}, {897, 2393}, {923, 468}, {2393, 16597}, {18669, 126}, {34158, 1214}, {36060, 54075}, {51962, 37}, {57485, 10}, {59422, 2887}, {64619, 226}, {65609, 21253}
X(65725) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 14357}, {67, 2393}
X(65725) = X(47426)-cross conjugate of X(858)
X(65725) = X(i)-isoconjugate of X(j) for these (i,j): {1, 60002}, {1177, 16568}, {9517, 36095}, {18374, 37220}
X(65725) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 60002}, {5181, 22151}, {14357, 2}, {14961, 7664}, {15900, 2373}, {38971, 9979}, {61067, 23}, {64646, 316}
X(65725) = crosspoint of X(i) and X(j) for these (i,j): {2, 59422}, {10415, 46105}, {39269, 57476}
X(65725) = crosssum of X(i) and X(j) for these (i,j): {23, 36415}, {6593, 10317}
X(65725) = crossdifference of every pair of points on line {9517, 18374}
X(65725) = barycentric product X(i)*X(j) for these {i,j}: {3, 39269}, {6, 57476}, {67, 858}, {525, 60507}, {1236, 3455}, {2157, 20884}, {2393, 18019}, {5181, 10415}, {5523, 34897}, {8791, 62382}, {10511, 19510}, {14357, 59422}, {14961, 46105}, {17708, 47138}, {42665, 65269}
X(65725) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 60002}, {67, 2373}, {858, 316}, {935, 65268}, {1236, 40074}, {2393, 23}, {3455, 1177}, {5181, 7664}, {5523, 37765}, {8791, 60133}, {14357, 65712}, {14580, 8744}, {14961, 22151}, {18019, 46140}, {18669, 16568}, {20884, 20944}, {21017, 21094}, {21109, 21205}, {39269, 264}, {42665, 9517}, {46592, 52916}, {47138, 9979}, {47426, 6593}, {51962, 52142}, {57476, 76}, {57485, 14246}, {57496, 58078}, {59422, 52551}, {60507, 648}, {61198, 52630}, {62382, 37804}, {64218, 10422}
X(65725) = {X(2),X(56569)}-harmonic conjugate of X(65712)
X(65726) lies on the cubics K260 and K1369 and these lines: {2, 40428}, {4, 46237}, {6, 523}, {69, 248}, {98, 5033}, {115, 65616}, {193, 2966}, {206, 1976}, {230, 51820}, {393, 685}, {1249, 6531}, {1692, 14265}, {2065, 14384}, {2715, 36472}, {3564, 53783}, {3618, 52081}, {3767, 39085}, {5477, 36875}, {6037, 51338}, {6103, 60506}, {6776, 34156}, {7735, 36899}, {7736, 47737}, {7738, 8861}, {8553, 47635}, {14355, 52672}, {14382, 39141}, {14600, 53174}, {14912, 32545}, {15391, 43718}, {17008, 46806}, {17974, 31842}, {20021, 45838}, {35912, 48906}, {39078, 62562}, {41181, 52473}
X(65726) = isogonal conjugate of X(57493)
X(65726) = complement of X(56572)
X(65726) = complement of the isotomic conjugate of X(56687)
X(65726) = isotomic conjugate of the polar conjugate of X(51820)
X(65726) = isogonal conjugate of the polar conjugate of X(14265)
X(65726) = polar conjugate of the isotomic conjugate of X(53783)
X(65726) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 34156}, {8772, 132}, {56687, 2887}
X(65726) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 34156}, {287, 3564}, {685, 55122}, {14265, 51820}, {41932, 248}
X(65726) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57493}, {19, 52091}, {92, 34157}, {232, 8773}, {240, 2987}, {297, 36051}, {1755, 35142}, {1959, 3563}, {3569, 36105}, {8781, 57653}, {23997, 60338}, {32654, 40703}, {35364, 62720}, {39374, 52414}
X(65726) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57493}, {6, 52091}, {114, 297}, {3564, 62590}, {22391, 34157}, {34156, 2}, {35067, 325}, {36212, 32458}, {36899, 35142}, {39001, 3569}, {39069, 240}, {39072, 232}, {39085, 2987}, {41181, 6333}, {51610, 55267}, {55152, 16230}, {56788, 2501}, {62562, 60338}
X(65726) = crosspoint of X(i) and X(j) for these (i,j): {2, 56687}, {287, 47388}, {685, 57562}
X(65726) = crosssum of X(i) and X(j) for these (i,j): {232, 2967}, {511, 47406}, {684, 59805}
X(65726) = crossdifference of every pair of points on line {511, 17994}
X(65726) = barycentric product X(i)*X(j) for these {i,j}: {3, 14265}, {4, 53783}, {69, 51820}, {98, 3564}, {114, 47388}, {230, 287}, {248, 51481}, {290, 52144}, {293, 1733}, {336, 8772}, {460, 6394}, {525, 60504}, {879, 4226}, {1692, 57799}, {2065, 2974}, {17932, 55122}, {17974, 44145}, {34156, 56687}, {34536, 47406}, {35912, 36875}, {41181, 57562}, {41932, 62590}, {43665, 56389}, {51776, 60519}
X(65726) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 52091}, {6, 57493}, {98, 35142}, {184, 34157}, {230, 297}, {248, 2987}, {287, 8781}, {293, 8773}, {460, 6530}, {878, 35364}, {879, 62645}, {1692, 232}, {1733, 40703}, {1976, 3563}, {2395, 60338}, {2715, 32697}, {2966, 65354}, {3564, 325}, {4226, 877}, {6394, 57872}, {8772, 240}, {12829, 39931}, {14265, 264}, {14600, 32654}, {17932, 65277}, {17974, 43705}, {34156, 56572}, {35067, 62590}, {35912, 36891}, {36084, 36105}, {40820, 47736}, {41181, 35088}, {42663, 17994}, {43754, 10425}, {44099, 34854}, {47388, 40428}, {47406, 36790}, {51335, 2967}, {51481, 44132}, {51820, 4}, {52144, 511}, {52153, 39374}, {53783, 69}, {55122, 16230}, {56389, 2421}, {60504, 648}, {61213, 4230}, {62590, 32458}
X(65726) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 34369, 51963}, {6, 51963, 35906}, {5967, 34369, 35906}, {5967, 51963, 6}, {6776, 47388, 34156}, {36899, 40820, 7735}, {52081, 60862, 3618}
X(65727) lies on the cubic K1369 and these lines: {2, 2966}, {4, 842}, {69, 56399}, {115, 2394}, {125, 879}, {127, 15421}, {325, 60511}, {339, 14592}, {393, 15459}, {523, 868}, {525, 62563}, {543, 52094}, {1316, 36825}, {1640, 65608}, {2794, 7422}, {5489, 51258}, {6103, 48453}, {14120, 42733}, {14618, 52628}, {14977, 15526}, {14998, 60040}, {32528, 57452}, {34765, 46245}, {46787, 54395}, {50187, 51228}, {65612, 65613}
X(65727) = midpoint of X(54395) and X(65711)
X(65727) = on the orthic-asymptotic hyperbola
X(65727) = X(5641)-Ceva conjugate of X(35909)
X(65727) = X(i)-isoconjugate of X(j) for these (i,j): {163, 7473}, {250, 2247}, {1101, 6103}, {4575, 35907}, {14999, 32676}, {23995, 60502}, {36104, 42743}, {36131, 64607}, {51262, 56829}
X(65727) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 7473}, {136, 35907}, {523, 6103}, {647, 542}, {15526, 14999}, {18314, 60502}, {39000, 42743}, {39008, 64607}, {55267, 54380}
X(65727) = barycentric product X(i)*X(j) for these {i,j}: {125, 5641}, {338, 65308}, {339, 842}, {525, 14223}, {850, 35909}, {879, 34765}, {3267, 14998}, {14618, 35911}, {14977, 50942}, {51258, 52094}
X(65727) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 6103}, {125, 542}, {338, 60502}, {523, 7473}, {525, 14999}, {684, 42743}, {842, 250}, {868, 54380}, {879, 34761}, {1640, 60505}, {2501, 35907}, {3708, 2247}, {5466, 53155}, {5641, 18020}, {5649, 47443}, {6035, 55270}, {9033, 64607}, {12079, 17986}, {14223, 648}, {14380, 51262}, {14582, 23968}, {14977, 50941}, {14998, 112}, {20975, 5191}, {23350, 4230}, {34765, 877}, {35909, 110}, {35911, 4558}, {50942, 4235}, {51258, 16092}, {51404, 34369}, {53177, 52916}, {65308, 249}
X(65728) lies on the cubic K1369 and these lines: {2, 9717}, {115, 55267}, {125, 1649}, {141, 47047}, {512, 55071}, {523, 868}, {542, 5191}, {647, 1648}, {1494, 6035}, {1640, 57464}, {3005, 16186}, {3154, 9168}, {3258, 11123}, {5967, 8550}, {6070, 8371}, {9140, 60611}, {14995, 18122}, {15526, 65717}, {20975, 60342}, {30465, 35444}, {30468, 35443}, {34291, 65608}, {37637, 39078}, {53166, 57607}
X(65728) = complement of X(65716)
X(65728) = complement of the isogonal conjugate of X(34291)
X(65728) = complement of the isotomic conjugate of X(65710)
X(65728) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 1640}, {34291, 10}, {54439, 4369}, {65608, 21253}, {65710, 2887}
X(65728) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 1640}, {12079, 53132}
X(65728) = X(i)-Dao conjugate of X(j) for these (i,j): {1640, 2}, {65608, 99}
X(65728) = crosspoint of X(i) and X(j) for these (i,j): {2, 65710}, {523, 542}
X(65728) = crosssum of X(110) and X(842)
X(65728) = crossdifference of every pair of points on line {7468, 14998}
X(65728) = barycentric product X(i)*X(j) for these {i,j}: {525, 60509}, {542, 65608}, {1494, 57465}, {1640, 65710}, {18312, 34291}
X(65728) = barycentric quotient X(i)/X(j) for these {i,j}: {1640, 65716}, {34291, 5649}, {57465, 30}, {60509, 648}, {65608, 5641}, {65710, 6035}
X(65729) lies on the cubic K1369 and these lines: {2, 9717}, {3, 51258}, {23, 62727}, {30, 115}, {98, 36170}, {125, 3292}, {140, 14357}, {265, 34953}, {339, 6390}, {468, 2970}, {511, 47238}, {523, 6036}, {525, 6699}, {631, 47293}, {842, 16092}, {858, 8901}, {1499, 33511}, {2697, 34366}, {5099, 38740}, {5622, 51405}, {6103, 60590}, {6676, 57482}, {6719, 14341}, {6795, 37637}, {7472, 14651}, {7612, 36163}, {7806, 36183}, {8371, 47159}, {9166, 44969}, {9175, 18312}, {11623, 40544}, {12068, 47200}, {14120, 38224}, {16315, 56370}, {19163, 63838}, {23514, 46988}, {35912, 48906}, {37688, 52145}, {38737, 46987}, {38739, 46634}, {39899, 52473}, {40118, 47108}, {41939, 50979}, {44529, 51456}, {46809, 47097}, {47173, 47262}, {47239, 62490}, {47242, 47570}
X(65729) = midpoint of X(i) and X(j) for these {i,j}: {3, 51258}, {98, 36170}, {115, 46981}, {6055, 46980}, {11623, 40544}, {14120, 46633}, {16188, 65620}, {16315, 56370}, {38749, 46982}, {47242, 47570}, {60508, 65718}
X(65729) = complement of X(65718)
X(65729) = X(i)-isoconjugate of X(j) for these (i,j): {19, 54439}, {162, 34291}, {32676, 65710}
X(65729) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 54439}, {125, 34291}, {647, 65608}, {15526, 65710}
X(65729) = cevapoint of X(3) and X(39562)
X(65729) = barycentric product X(i)*X(j) for these {i,j}: {525, 65716}, {11064, 54495}
X(65729) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 54439}, {125, 65608}, {525, 65710}, {647, 34291}, {1640, 60509}, {54495, 16080}, {65716, 648}
X(65729) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 60508, 65718}, {6055, 16188, 65620}, {38224, 46633, 14120}, {46980, 65620, 16188}
X(65730) lies on the cubic K1369 and these lines: {2, 52668}, {69, 56399}, {115, 65622}, {125, 3292}, {247, 511}, {249, 40867}, {343, 62594}, {523, 5181}, {524, 16310}, {525, 62590}, {542, 51456}, {647, 62569}, {1640, 18312}, {3291, 3580}, {6103, 14999}, {14221, 54395}, {14341, 62583}, {14984, 51847}, {15526, 36212}, {31655, 51938}, {34156, 43754}, {47296, 63614}
X(65730) = midpoint of X(69) and X(60053)
X(65730) = complement of the isogonal conjugate of X(2493)
X(65730) = complement of the isotomic conjugate of X(54395)
X(65730) = isotomic conjugate of the polar conjugate of X(16188)
X(65730) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 14984}, {661, 36189}, {1755, 47079}, {2493, 10}, {7468, 4369}, {14221, 42327}, {14984, 18589}, {36142, 55131}, {54395, 2887}, {65610, 21253}
X(65730) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 14984}, {892, 55131}
X(65730) = X(i)-Dao conjugate of X(j) for these (i,j): {2493, 4}, {23967, 40118}
X(65730) = crosspoint of X(2) and X(54395)
X(65730) = barycentric product X(i)*X(j) for these {i,j}: {69, 16188}, {525, 60511}
X(65730) = barycentric quotient X(i)/X(j) for these {i,j}: {542, 40118}, {14984, 842}, {16188, 4}, {51847, 54554}, {55131, 53156}, {60511, 648}
X(65731) lies on the cubic K1369 and these lines: {2, 65717}, {115, 10097}, {125, 879}, {512, 7687}, {520, 32257}, {523, 15118}, {525, 6699}, {542, 18312}, {690, 6130}, {1640, 6103}, {2492, 45801}, {5972, 40550}, {6723, 41167}, {8552, 15115}, {9033, 24284}, {9517, 36253}, {12099, 47175}, {14380, 15526}, {23583, 45327}, {30476, 45311}, {59741, 65488}
X(65731) = midpoint of X(i) and X(j) for these {i,j}: {125, 879}, {65717, 65720}
X(65731) = reflection of X(i) in X(j) for these {i,j}: {5972, 40550}, {41167, 6723}
X(65731) = complement of X(65717)
X(65731) = complement of the isotomic conjugate of X(65713)
X(65731) = X(i)-complementary conjugate of X(j) for these (i,j): {1101, 34291}, {5622, 34846}, {41254, 21253}, {65713, 2887}
X(65731) = crosspoint of X(i) and X(j) for these (i,j): {2, 65713}, {34761, 47388}
X(65731) = crosssum of X(2967) and X(23350)
X(65731) = barycentric product X(i)*X(j) for these {i,j}: {525, 60508}, {5622, 18312}
X(65731) = barycentric quotient X(i)/X(j) for these {i,j}: {1640, 60590}, {5622, 5649}, {60508, 648}
X(65731) = {X(2),X(65720)}-harmonic conjugate of X(65717)
X(65732) lies on the cubic K1369 and these lines: {2, 65721}, {125, 41167}, {140, 14357}, {290, 5649}, {338, 18311}, {339, 5664}, {523, 3150}, {525, 2088}, {3589, 43084}, {6103, 60502}, {15526, 62577}, {18314, 62563}, {23285, 62551}
X(65732) = complement of the isotomic conjugate of X(62307)
X(65732) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 18312}, {15462, 4369}, {36189, 21253}, {41253, 21259}, {62307, 2887}
X(65732) = X(2)-Ceva conjugate of X(18312)
X(65732) = X(18312)-Dao conjugate of X(2)
X(65732) = crosspoint of X(2) and X(62307)
X(65732) = barycentric product X(i)*X(j) for these {i,j}: {525, 60513}, {18312, 62307}
X(65732) = barycentric quotient X(i)/X(j) for these {i,j}: {36189, 842}, {60513, 648}, {62307, 5649}
X(65733) lies on the cubic K1369 and these lines: {2, 52668}, {32, 23967}, {115, 10097}, {125, 61216}, {525, 2088}, {542, 51457}, {647, 1648}, {1692, 60505}, {2433, 6388}, {2715, 36472}, {3124, 14582}, {41181, 47049}
X(65733) = X(i)-isoconjugate of X(j) for these (i,j): {163, 14221}, {662, 7468}, {1101, 54395}, {2493, 24041}
X(65733) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 14221}, {523, 54395}, {1084, 7468}, {3005, 2493}
X(65733) = cevapoint of X(3124) and X(51428)
X(65733) = crosssum of X(2493) and X(7468)
X(65733) = trilinear pole of line {20975, 33919}
X(65733) = barycentric product X(i)*X(j) for these {i,j}: {125, 40118}, {523, 51480}, {12079, 51457}
X(65733) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 54395}, {512, 7468}, {523, 14221}, {1640, 60511}, {3124, 2493}, {8029, 65610}, {20975, 14984}, {33919, 55131}, {35191, 45773}, {40118, 18020}, {51428, 16188}, {51441, 34175}, {51480, 99}
X(65734) lies on the cubics K1367 and K1369 and these lines: {2, 36894}, {6, 63856}, {125, 468}, {237, 14634}, {323, 31068}, {338, 1990}, {441, 524}, {523, 15118}, {1640, 50942}, {2770, 51938}, {3266, 11064}, {3580, 52898}, {3589, 43084}, {5621, 37937}, {5622, 17986}, {5967, 8550}, {11623, 40542}, {13567, 51823}, {16080, 23964}, {23292, 57496}, {34369, 65608}, {36189, 43090}, {41254, 65613}, {41997, 52039}, {41998, 52040}, {44569, 51541}, {44891, 51737}, {51227, 65308}, {51257, 52289}, {53576, 62376}
X(65734) = midpoint of X(34369) and X(65608)
X(65734) = complement of X(65719)
X(65734) = X(60500)-cross conjugate of X(51480)
X(65734) = X(i)-isoconjugate of X(j) for these (i,j): {163, 65714}, {1101, 65613}
X(65734) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 65714}, {523, 65613}, {647, 37987}
X(65734) = cevapoint of X(i) and X(j) for these (i,j): {6, 5621}, {125, 1640}, {52743, 53132}
X(65734) = trilinear pole of line {690, 5489}
X(65734) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 65613}, {125, 37987}, {523, 65714}, {1640, 60510}
X(65735) lies on the cubic K1369 and these lines: {2, 1304}, {115, 34212}, {523, 3150}, {577, 23967}, {647, 1650}, {3265, 58258}, {9530, 47110}, {14380, 15526}, {34156, 43754}, {43083, 47413}
X(65735) = X(2697)-Ceva conjugate of X(60591)
X(65735) = X(i)-isoconjugate of X(j) for these (i,j): {162, 37937}, {2781, 24000}
X(65735) = X(i)-Dao conjugate of X(j) for these (i,j): {125, 37937}, {525, 65711}, {647, 50188}
X(65735) = crosspoint of X(2697) and X(60591)
X(65735) = crosssum of X(2781) and X(37937)
X(65735) = barycentric product X(i)*X(j) for these {i,j}: {525, 60591}, {2697, 15526}
X(65735) = barycentric quotient X(i)/X(j) for these {i,j}: {125, 50188}, {647, 37937}, {1640, 60512}, {2697, 23582}, {3269, 2781}, {5489, 65612}, {15526, 65711}, {60591, 648}
X(65736) lies on the cubic K1369 and these lines: {2, 65721}, {39, 14264}, {115, 232}, {187, 41270}, {237, 2393}, {248, 23357}, {3269, 3289}, {5622, 40079}, {5661, 40799}, {11672, 12827}, {15526, 36212}, {15993, 57466}, {48452, 59023}
X(65736) = isogonal conjugate of X(41253)
X(65736) = complement of X(65721)
X(65736) = isogonal conjugate of the polar conjugate of X(65618)
X(65736) = X(i)-isoconjugate of X(j) for these (i,j): {1, 41253}, {92, 15462}, {162, 62307}, {52414, 53768}
X(65736) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 41253}, {125, 62307}, {22391, 15462}
X(65736) = trilinear pole of line {686, 39469}
X(65736) = barycentric product X(3)*X(65618)
X(65736) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 41253}, {184, 15462}, {647, 62307}, {1640, 60513}, {20975, 36189}, {52153, 53768}, {65618, 264}
See Peter Moses, euclid 7087.
X(65737) lies on these lines: {1576, 34845}, {2491, 34981}, {3049, 7668}, {39469, 53575}
X(65737) = X(i)-isoconjugate of X(j) for these (i,j): {163, 46726}, {1101, 34845}
X(65737) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 46726}, {523, 34845}
X(65737) = barycentric product X(850)*X(36198)
X(65737) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 34845}, {523, 46726}, {23105, 36199}, {36198, 110}
In the plane of a triangle ABC, let
OA = circle through A tangent to line BC and to the circumcircle
AB = OA∩AB, and define BC and CA cyclically
AC = Oa∩AC, and define BA and CB cyclically
The circles OA, OB, OC and points AB, BC, CA, AC, BA, CB
are defined in X(593); see X(65738)x1. Let
A' =ACBA∩CAAB, and define B' and C' cyclically; see X(65738)x2.
The lines AA', BB', CC' concur in X(65738). (Andrey Savin, October 13, 2024). See also X(65739).
Barycentrics associated with the construction of X(65738) follow:
OA = -2*a^2*b*c : b^2*(-a^2 + b^2 - c^2) : c^2*(-a^2 - b^2 + c^2)
radius = 2*R*(1 + Cos[A]) / (2 + Cos[A] + Cot[w]*Sin[A])
AB = a^2 : -((a - b - c)*(a + b + c)) :
(Peter Moses, October 13, 2024)
The point X(65738) is here named the internal Savin point.
X(65738) lies on these lines: {2, 12}, {23, 40956}, {36, 17011}, {593, 47479}, {604, 1994}, {1014, 26842}, {1400, 34545}, {1402, 65739}, {2178, 63074}, {5124, 62851}, {5287, 37587}, {5563, 17019}, {11340, 17013}, {15246, 37609}, {17045, 40592}, {19308, 45222}, {21773, 32911}, {41820, 56934}, {50378, 59477}
X(65738) = crosssum of X(594) and X(17362)
Continuing from X(65738), the external Savin point is the point given by
OA = 2*a^2*b*c : b^2*(-a^2 + b^2 - c^2) : c^2*(-a^2 - b^2 + c^2)
AB = -a^2 : (a + b - c)*(a - b + c) : 0
(Peter Moses, October 14, 2024)
X(65739) lies on these lines: {1, 4996}, {2, 11}, {3, 5330}, {8, 10087}, {10, 53616}, {20, 12775}, {21, 952}, {23, 9978}, {31, 1994}, {35, 214}, {42, 34545}, {63, 37736}, {80, 5248}, {104, 4189}, {110, 53873}, {119, 5046}, {145, 11508}, {153, 6872}, {323, 902}, {377, 13199}, {392, 22935}, {394, 21000}, {404, 5901}, {405, 12331}, {411, 1537}, {474, 38044}, {517, 27086}, {529, 48698}, {900, 16158}, {958, 12531}, {960, 41541}, {993, 7972}, {1005, 13257}, {1145, 3871}, {1155, 58591}, {1156, 61025}, {1252, 23988}, {1259, 3621}, {1317, 2975}, {1320, 3295}, {1385, 17654}, {1402, 65738}, {1484, 7483}, {1617, 23958}, {1768, 35258}, {1862, 62971}, {1993, 3052}, {2077, 4881}, {2078, 3218}, {2177, 15018}, {2223, 35296}, {2346, 5856}, {2475, 5840}, {2476, 10738}, {2783, 5985}, {2800, 10902}, {2801, 64297}, {2802, 3746}, {2829, 15680}, {2932, 64951}, {2950, 10884}, {3036, 5260}, {3045, 20986}, {3219, 41553}, {3256, 27003}, {3303, 22560}, {3337, 58625}, {3616, 10090}, {3622, 11507}, {3689, 58663}, {3724, 58397}, {3869, 12739}, {3877, 6265}, {3878, 14795}, {3890, 12740}, {3897, 12737}, {3935, 14740}, {3957, 62852}, {4187, 61562}, {4188, 11248}, {4193, 32141}, {4305, 6224}, {4511, 32760}, {4512, 5531}, {4640, 17660}, {5047, 34122}, {5086, 12743}, {5141, 59391}, {5154, 11499}, {5172, 62826}, {5250, 6326}, {5251, 15863}, {5253, 14882}, {5258, 15862}, {5259, 6702}, {5267, 33812}, {5541, 19860}, {5554, 25438}, {5687, 64141}, {5731, 48695}, {5857, 17484}, {6594, 61012}, {6600, 61026}, {6713, 37291}, {6905, 11729}, {6986, 64193}, {7489, 59416}, {7504, 60759}, {7676, 10427}, {8070, 27529}, {8715, 25005}, {9024, 15988}, {9963, 37228}, {10031, 12773}, {10306, 37301}, {10310, 37307}, {10528, 45393}, {10679, 37300}, {10724, 11496}, {10742, 11114}, {10956, 20060}, {11012, 25485}, {11113, 11698}, {11570, 14798}, {11715, 34486}, {12332, 17548}, {12514, 12532}, {12735, 54391}, {13243, 20835}, {13278, 64743}, {13587, 35000}, {15015, 19861}, {15246, 37619}, {15253, 24145}, {15914, 17494}, {15931, 46684}, {16418, 50890}, {16865, 38665}, {17532, 48680}, {17543, 38629}, {17549, 38602}, {17566, 38762}, {17573, 38636}, {17574, 51529}, {17576, 64009}, {17577, 22938}, {18240, 29817}, {18524, 37375}, {19112, 44590}, {19113, 44591}, {19525, 64742}, {21630, 24541}, {21842, 34758}, {23858, 65186}, {24465, 26842}, {24466, 37256}, {24987, 63281}, {25439, 64056}, {25440, 37735}, {26639, 40910}, {27065, 46694}, {30305, 65119}, {30323, 64362}, {34772, 64139}, {37298, 61566}, {37299, 38761}, {37579, 64047}, {38058, 61553}, {38756, 50242}, {41701, 62838}, {48715, 63072}, {51377, 58504}, {62856, 64676}, {62969, 64186}, {63136, 64745}, {63269, 63270}
X(65739) = midpoint of X(3746) and X(35204)
X(65739) = crosssum of X(1086) and X(17365)
X(65739) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {35, 214, 17100}, {100, 1621, 11}, {100, 63917, 3035}, {405, 12331, 59415}, {10087, 51506, 8}, {24646, 24647, 11680}, {33814, 34123, 404}
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 7092.
X(65740) lies on the circumconic {{A,B,C,X(1),X(2)}} and these lines: {1, 8258}, {28, 2907}, {57, 3882}, {81, 40605}, {88, 3936}, {89, 20090}, {100, 961}, {105, 5211}, {277, 24620}, {278, 3210}, {330, 17740}, {345, 39694}, {646, 30710}, {1022, 4707}, {1054, 17748}, {2006, 37759}, {4612, 64457}, {4850, 39724}, {7052, 37794}, {7132, 37684}, {15474, 17490}, {17282, 39963}, {17495, 21907}, {17776, 39703}, {20882, 37887}, {24183, 30831}, {25430, 56519}, {30699, 65046}, {32779, 39722}, {32849, 39698}, {33116, 56184}, {33168, 35058}, {33655, 37795}, {41839, 56218}
X(65740) = isotomic conjugate of X(37759)
X(65740) = isotomic conjugate of the anticomplement of X(32851)
X(65740) = X(36935)-anticomplementary conjugate of X(21286)
X(65740) = X(32851)-cross conjugate of X(2)
X(65740) = X(i)-isoconjugate of X(j) for these (i,j): {6, 60353}, {31, 37759}, {42, 37791}, {604, 36926}, {902, 47056}
X(65740) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 37759}, {9, 60353}, {3161, 36926}, {40592, 37791}, {40594, 47056}
X(65740) = cevapoint of X(i) and X(j) for these (i,j): {758, 2092}, {1015, 3738}
X(65740) = trilinear pole of line {513, 960}
X(65740) = pole of line {37759, 37791} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(65740) = pole of line {30572, 51643} with respect to the Steiner circumellipse
X(65740) = barycentric product X(i)*X(j) for these {i,j}: {86, 34895}, {320, 36935}
X(65740) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 60353}, {2, 37759}, {8, 36926}, {81, 37791}, {88, 47056}, {320, 41873}, {34895, 10}, {36935, 80}
X(65741) lies on these lines: {1, 6}, {31, 47523}, {48, 62214}, {55, 3764}, {81, 20072}, {182, 37819}, {284, 21796}, {320, 940}, {404, 28249}, {415, 56830}, {478, 1463}, {513, 5061}, {572, 17053}, {595, 4274}, {608, 4186}, {692, 39688}, {752, 5711}, {859, 3285}, {995, 5114}, {1015, 5053}, {1086, 6996}, {1149, 1404}, {1400, 1950}, {1405, 3915}, {1407, 28039}, {1429, 57037}, {1611, 20995}, {1731, 49758}, {1914, 2183}, {1995, 38904}, {2092, 33771}, {2161, 56911}, {2182, 3290}, {2241, 4266}, {2245, 17735}, {2267, 2275}, {2268, 2277}, {2278, 21008}, {2298, 4645}, {2330, 40934}, {3122, 17798}, {3125, 16548}, {3782, 50400}, {3834, 25527}, {3836, 34261}, {4286, 16287}, {4363, 41236}, {4370, 33309}, {4383, 33116}, {4700, 50028}, {5211, 33854}, {5710, 49709}, {5783, 31289}, {6180, 28014}, {6687, 37679}, {7113, 8610}, {7122, 22172}, {8614, 55323}, {9456, 40595}, {13740, 17369}, {14020, 57280}, {16047, 27644}, {16611, 60361}, {17054, 37415}, {17697, 54389}, {17811, 25894}, {19729, 26223}, {20227, 64121}, {20331, 35992}, {21495, 28283}, {21892, 54316}, {25496, 40401}, {25536, 52897}, {28011, 54377}, {28078, 28739}, {31243, 37682}, {37501, 63390}, {37759, 37791}, {40091, 45955}, {41772, 55406}, {49710, 62805}
X(65741) = isogonal conjugate of X(65740)
X(65741) = isogonal conjugate of the isotomic conjugate of X(37759)
X(65741) = X(37791)-Ceva conjugate of X(60353)
X(65741) = X(i)-isoconjugate of X(j) for these (i,j): {81, 34895}, {3218, 36935}
X(65741) = X(40586)-Dao conjugate of X(34895)
X(65741) = crosspoint of X(i) and X(j) for these (i,j): {759, 14534}, {1016, 2222}
X(65741) = crosssum of X(i) and X(j) for these (i,j): {758, 2092}, {1015, 3738}
X(65741) = crossdifference of every pair of points on line {513, 960}
X(65741) = X(i)-line conjugate of X(j) for these (i,j): {1, 960}, {5061, 513}
X(65741) = pole of line {442, 1220} with respect to the Kiepert circumhyperbola
X(65741) = pole of line {101, 2092} with respect to the ABCGK
X(65741) = pole of line {1, 38903} with respect to the ABCGI
X(65741) = pole of line {42, 23858} with respect to the ABCIK
X(65741) = pole of line {1376, 24445} with respect to the Feuerbach circumhyperbola of the medial triangle
X(65741) = pole of line {81, 40605} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(65741) = pole of line {1, 8258} with respect to the Kiepert circumhyperbola of the excentral triangle
X(65741) = pole of line {15313, 44545} with respect to the Orthic inconic
X(65741) = pole of line {513, 5247} with respect to the Mandart circumellipse, CC9
X(65741) = pole of line {100, 30721} with respect to the Hutson-Moses hyperbola
X(65741) = pole of line {667, 1402} with respect to the circumcircle
X(65741) = barycentric product X(i)*X(j) for these {i,j}: {1, 60353}, {6, 37759}, {37, 37791}, {44, 47056}, {56, 36926}, {6187, 41873}
X(65741) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 34895}, {6187, 36935}, {36926, 3596}, {37759, 76}, {37791, 274}, {41873, 40075}, {47056, 20568}, {60353, 75}
X(65741) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2268, 2277, 5110}, {3246, 16796, 1191}, {7113, 8610, 9259}, {16502, 55432, 6}
Contributed by Clark Kimberling and Peter Moses, October 17, 2024.
Suppose that U and V are given by normalized barycentrics U = (u,v,w) and U' = (u',v',w'). The D-map of U and V is here introduced as the point u'' : v'' : w'' given by
u'' = SA(u - u')2, v'' = SB(v - v')2, w'' = SC(w - w')2.
The name D-map corresponds to the fact that |UU'|2 = u''+v''+w''. If U and U' lie on a line L, then every pair of points on L have the same D-map. If U and U' are triangle centers, then the D-map of U and U' are triangle centers.
The appearance of (i,j,k) in the following list means that the D-map of X(i) and X(j) is X(k), where k < 60000.
(1, 4, 38554)
(2, 3, 16163) (Euler line)
(3, 10, 38554)
(8, 20, 38554)
(13, 15, 16163)
(14, 16, 16163)
(44, 513, 3937) (anti-orthic axis)
(230, 231, 125) (orthic axis)
(241, 514, 1565) (Gergonne line)
(325, 523, 125) (de Longchamps axis)
(522, 650, 2968) (Garcia-Reznik line)
(513, 663, 3937) (Helman line)
The appearance of (i,j,k) in the following list means that the D-map of X(i) and X(j) is X(k), where k > 60000.
(1, 2, 65742)
(1, 3, 65743)
(1, 6, 65744)
(1, 7, 65745)
(1, 21, 65746)
(2, 6, 65747)
(3,6, 65748)
(4, 6, 65749)
(6, 13, 65750)
(187, 237, 65751)
(650, 663, 65752)
X(65742) lies on these lines: {3, 1811}, {8, 1387}, {11, 49998}, {69, 1565}, {72, 3937}, {78, 1062}, {104, 4578}, {106, 9041}, {121, 519}, {125, 41014}, {190, 9945}, {952, 3699}, {997, 49688}, {1017, 4370}, {1026, 34586}, {1145, 17780}, {1260, 1809}, {1317, 4152}, {1332, 22141}, {1483, 44720}, {3589, 30115}, {3756, 6715}, {3952, 10609}, {3977, 5440}, {4126, 37525}, {4415, 48836}, {4767, 6224}, {4899, 5126}, {5846, 56807}, {6555, 7967}, {9053, 45763}, {9963, 30578}, {12690, 30566}, {14429, 39472}, {15522, 38384}, {15935, 30829}, {17527, 50624}, {21282, 51409}, {22147, 30681}, {24203, 32087}, {24929, 25101}, {27549, 37606}, {31853, 64504}, {34587, 53534}, {36791, 42070}
X(65742) = midpoint of X(3699) and X(6790)
X(65742) = reflection of X(3756) in X(6789)
X(65742) = isotomic conjugate of the isogonal conjugate of X(22371)
X(65742) = isotomic conjugate of the polar conjugate of X(4370)
X(65742) = isogonal conjugate of the polar conjugate of X(36791)
X(65742) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 3977}, {36791, 4370}
X(65742) = X(22371)-cross conjugate of X(4370)
X(65742) = X(i)-isoconjugate of X(j) for these (i,j): {19, 2226}, {25, 679}, {34, 1318}, {88, 8752}, {92, 41935}, {106, 36125}, {1474, 30575}, {1973, 54974}, {1974, 57929}, {4638, 6591}, {6336, 9456}
X(65742) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 2226}, {214, 36125}, {519, 4}, {900, 2969}, {1647, 7649}, {4370, 6336}, {6337, 54974}, {6505, 679}, {11517, 1318}, {22391, 41935}, {51574, 30575}
X(65742) = crosspoint of X(i) and X(j) for these (i,j): {69, 3977}, {519, 57506}
X(65742) = crosssum of X(i) and X(j) for these (i,j): {25, 8752}, {106, 39264}
X(65742) = crossdifference of every pair of points on line {2441, 8752}
X(65742) = barycentric product X(i)*X(j) for these {i,j}: {3, 36791}, {63, 4738}, {69, 4370}, {72, 16729}, {76, 22371}, {304, 678}, {305, 1017}, {345, 1317}, {348, 4152}, {394, 65585}, {519, 3977}, {1331, 52627}, {1797, 58254}, {2415, 39472}, {3264, 22356}, {3926, 42070}, {4025, 53582}, {4358, 5440}, {4543, 65164}, {4561, 6544}, {24004, 53532}, {57919, 61047}
X(65742) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 2226}, {44, 36125}, {63, 679}, {69, 54974}, {72, 30575}, {184, 41935}, {219, 1318}, {304, 57929}, {519, 6336}, {678, 19}, {902, 8752}, {1017, 25}, {1317, 278}, {1331, 4638}, {1332, 4618}, {1797, 59150}, {3251, 6591}, {3977, 903}, {4152, 281}, {4370, 4}, {4542, 8735}, {4543, 3064}, {4738, 92}, {5440, 88}, {6544, 7649}, {8028, 8756}, {14418, 23838}, {14429, 4049}, {16729, 286}, {17780, 65336}, {21821, 1824}, {22082, 52206}, {22086, 23345}, {22356, 106}, {22371, 6}, {22428, 39264}, {23202, 9456}, {35092, 2969}, {36791, 264}, {39472, 2403}, {42070, 393}, {52627, 46107}, {52978, 1320}, {53532, 1022}, {53582, 1897}, {58254, 46109}, {61047, 608}, {65585, 2052}
X(65742) = {X(1317),X(4152)}-harmonic conjugate of X(4738)
X(65743) lies on these lines: {1, 58487}, {3, 1331}, {40, 2841}, {51, 37533}, {72, 2968}, {73, 22346}, {78, 5562}, {100, 2818}, {102, 3939}, {104, 2810}, {119, 517}, {125, 21530}, {185, 37700}, {307, 1565}, {389, 34772}, {513, 24466}, {549, 46174}, {631, 64489}, {651, 52830}, {915, 42067}, {952, 34462}, {953, 6551}, {970, 4158}, {1092, 7078}, {1265, 12245}, {1361, 23101}, {1807, 3270}, {2390, 13528}, {2807, 6326}, {2842, 46684}, {2850, 16163}, {3035, 31849}, {3428, 53294}, {5720, 15030}, {5840, 31847}, {6282, 36987}, {6516, 7215}, {6713, 61674}, {6906, 29958}, {8677, 42769}, {8679, 50371}, {10724, 61729}, {11248, 42448}, {13199, 29349}, {16836, 18444}, {18446, 64100}, {21362, 33810}, {21664, 26611}, {21669, 44865}, {22758, 61640}, {23980, 59800}, {32486, 53391}, {33814, 61638}, {34586, 53548}, {35281, 38579}, {37531, 45186}, {37725, 61166}, {38513, 53790}, {45022, 52659}, {46044, 55317}, {61731, 64008}, {63425, 63436}
X(65743) = midpoint of X(38513) and X(64136)
X(65743) = reflection of X(i) in X(j) for these {i,j}: {3937, 3}, {6073, 15632}, {31849, 3035}, {37725, 61166}, {38389, 31847}, {46044, 55317}
X(65743) = isotomic conjugate of the polar conjugate of X(23980)
X(65743) = isogonal conjugate of the polar conjugate of X(26611)
X(65743) = X(26611)-Ceva conjugate of X(23980)
X(65743) = X(i)-isoconjugate of X(j) for these (i,j): {19, 59196}, {92, 41933}, {104, 36123}, {909, 16082}, {1973, 57550}, {2423, 65223}, {36037, 43933}, {36110, 43728}, {61238, 65331}
X(65743) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 59196}, {517, 4}, {2804, 21666}, {3259, 43933}, {6337, 57550}, {8677, 3937}, {22391, 41933}, {23980, 16082}, {35014, 44426}, {39004, 43728}, {40613, 36123}, {57293, 513}
X(65743) = crosspoint of X(i) and X(j) for these (i,j): {517, 39173}, {57478, 62402}
X(65743) = crosssum of X(i) and X(j) for these (i,j): {104, 14266}, {2423, 22096}
X(65743) = barycentric product X(i)*X(j) for these {i,j}: {3, 26611}, {63, 24028}, {69, 23980}, {222, 55016}, {304, 42078}, {305, 59800}, {345, 1361}, {394, 21664}, {859, 51367}, {905, 15632}, {908, 22350}, {1016, 35012}, {1145, 57478}, {1275, 41215}, {1332, 42757}, {1465, 51379}, {2397, 8677}, {3326, 44717}, {3926, 42072}, {6516, 60339}, {23101, 65302}, {57919, 61057}
X(65743) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 59196}, {69, 57550}, {184, 41933}, {517, 16082}, {1361, 278}, {2183, 36123}, {2427, 1309}, {3310, 43933}, {8677, 2401}, {15632, 6335}, {21664, 2052}, {22350, 34234}, {23220, 2423}, {23980, 4}, {23981, 65331}, {24028, 92}, {26611, 264}, {35012, 1086}, {41215, 1146}, {41220, 7117}, {42072, 393}, {42078, 19}, {42757, 17924}, {47408, 14266}, {47420, 56761}, {47434, 64635}, {51367, 57984}, {51379, 36795}, {52307, 43728}, {55016, 7017}, {55153, 21666}, {59800, 25}, {60339, 44426}, {61057, 608}
X(65744) lies on these lines: {3, 1810}, {63, 295}, {72, 1565}, {100, 52823}, {120, 518}, {219, 36057}, {306, 2968}, {394, 1260}, {644, 2808}, {1332, 3270}, {1350, 38876}, {1362, 4712}, {1818, 20749}, {2875, 3908}, {3292, 22371}, {3873, 4260}, {4437, 34337}, {6184, 39686}, {9317, 14839}, {14520, 25082}, {14826, 17784}, {20683, 56714}, {22148, 62217}, {22352, 60703}, {25006, 38055}, {29653, 62852}, {31865, 64503}, {35341, 58035}
X(65744) = isotomic conjugate of the isogonal conjugate of X(20776)
X(65744) = isotomic conjugate of the polar conjugate of X(6184)
X(65744) = isogonal conjugate of the polar conjugate of X(4437)
X(65744) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 25083}, {4437, 6184}
X(65744) = X(20776)-cross conjugate of X(6184)
X(65744) = X(i)-isoconjugate of X(j) for these (i,j): {4, 51838}, {19, 6185}, {34, 62715}, {92, 41934}, {105, 36124}, {673, 8751}, {1027, 65333}, {1438, 54235}, {1973, 57537}
X(65744) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 6185}, {518, 4}, {918, 2973}, {6184, 54235}, {6337, 57537}, {11517, 62715}, {17435, 17924}, {22391, 41934}, {36033, 51838}, {39046, 36124}
X(65744) = crosspoint of X(i) and X(j) for these (i,j): {69, 25083}, {518, 34159}
X(65744) = crosssum of X(i) and X(j) for these (i,j): {25, 8751}, {105, 14267}
X(65744) = crossdifference of every pair of points on line {2440, 8751}
X(65744) = barycentric product X(i)*X(j) for these {i,j}: {3, 4437}, {63, 4712}, {69, 6184}, {72, 16728}, {76, 20776}, {304, 42079}, {305, 39686}, {345, 1362}, {394, 34337}, {518, 25083}, {906, 62430}, {1331, 53583}, {1332, 3126}, {1814, 23102}, {1818, 3912}, {3263, 20752}, {3926, 42071}, {20778, 40217}, {42720, 53550}, {57919, 61055}
X(65744) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 6185}, {48, 51838}, {69, 57537}, {184, 41934}, {219, 62715}, {518, 54235}, {672, 36124}, {1362, 278}, {1818, 673}, {2223, 8751}, {2284, 65333}, {3126, 17924}, {4437, 264}, {4712, 92}, {6184, 4}, {16728, 286}, {20728, 14267}, {20749, 52210}, {20752, 105}, {20776, 6}, {20778, 6654}, {23102, 46108}, {23225, 43929}, {23612, 5089}, {25083, 2481}, {34337, 2052}, {35094, 2973}, {35505, 2969}, {39686, 25}, {42071, 393}, {42079, 19}, {53550, 62635}, {53583, 46107}, {61055, 608}
X(65744) = {X(1818),X(20778)}-harmonic conjugate of X(20749)
X(65745) lies on these lines: {3, 348}, {4, 27541}, {20, 3732}, {40, 728}, {63, 2968}, {100, 329}, {103, 5845}, {105, 30242}, {118, 516}, {125, 440}, {514, 63403}, {664, 53804}, {917, 2969}, {952, 63416}, {1146, 31852}, {1360, 24014}, {1427, 24025}, {1763, 10860}, {2724, 59101}, {2826, 24466}, {3198, 22001}, {3937, 10167}, {4512, 25968}, {4566, 15725}, {5762, 16091}, {6361, 37412}, {6710, 31851}, {6712, 61673}, {6776, 64884}, {7046, 17784}, {10725, 61730}, {17044, 38690}, {20344, 35514}, {21665, 42073}, {23972, 59799}
X(65745) = midpoint of X(20) and X(3732)
X(65745) = reflection of X(i) in X(j) for these {i,j}: {1146, 31852}, {1530, 40869}, {1536, 910}, {1541, 53579}, {1565, 3}, {6074, 3234}, {31851, 6710}
X(65745) = isotomic conjugate of the polar conjugate of X(23972)
X(65745) = isogonal conjugate of the polar conjugate of X(59206)
X(65745) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 26006}, {15742, 2398}, {59206, 23972}
X(65745) = X(i)-isoconjugate of X(j) for these (i,j): {19, 59195}, {103, 36122}, {911, 52781}, {1973, 57548}, {2424, 65218}, {36039, 53150}
X(65745) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 59195}, {516, 4}, {1566, 53150}, {6337, 57548}, {23972, 52781}, {39470, 1565}, {46095, 103}, {57292, 514}, {62591, 18025}
X(65745) = crosspoint of X(i) and X(j) for these (i,j): {69, 26006}, {516, 54233}, {2398, 15742}
X(65745) = crosssum of X(i) and X(j) for these (i,j): {103, 54232}, {2424, 3937}
X(65745) = barycentric product X(i)*X(j) for these {i,j}: {3, 59206}, {63, 24014}, {69, 23972}, {222, 55019}, {304, 42077}, {305, 59799}, {345, 1360}, {394, 21665}, {516, 26006}, {1331, 58280}, {2398, 39470}, {3234, 4025}, {3926, 42073}, {14953, 51366}, {54233, 62591}
X(65745) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 59195}, {69, 57548}, {516, 52781}, {676, 53150}, {910, 36122}, {1360, 278}, {2426, 40116}, {3234, 1897}, {21665, 2052}, {23972, 4}, {24014, 92}, {26006, 18025}, {39470, 2400}, {42073, 393}, {42077, 19}, {47407, 54232}, {47422, 56787}, {55019, 7017}, {56785, 60001}, {58280, 46107}, {59206, 264}, {59799, 25}
X(65746) lies on these lines: {72, 125}, {643, 5663}, {662, 52831}, {758, 31845}, {2968, 41014}, {3028, 4736}, {3269, 4574}, {3695, 7066}, {3916, 3937}, {6739, 64139}, {8287, 18254}, {22128, 52407}, {37346, 64041}
X(65746) = isotomic conjugate of the polar conjugate of X(35069)
X(65746) = X(4592)-Ceva conjugate of X(8552)
X(65746) = X(i)-isoconjugate of X(j) for these (i,j): {34, 62713}, {270, 63750}, {1973, 57555}, {2189, 34535}
X(65746) = X(i)-Dao conjugate of X(j) for these (i,j): {758, 4}, {6149, 270}, {6337, 57555}, {6370, 2970}, {11517, 62713}
X(65746) = crosspoint of X(758) and X(39166)
X(65746) = crosssum of X(759) and X(38938)
X(65746) = barycentric product X(i)*X(j) for these {i,j}: {63, 4736}, {69, 35069}, {345, 3028}, {4996, 26942}, {34544, 57807}, {52407, 61410}, {57919, 61060}
X(65746) = barycentric quotient X(i)/X(j) for these {i,j}: {69, 57555}, {201, 34535}, {215, 2189}, {219, 62713}, {2197, 63750}, {3028, 278}, {4736, 92}, {4996, 46103}, {26942, 57645}, {34544, 270}, {35069, 4}, {47417, 38938}, {61060, 608}
X(65747) lies on these lines: {69, 125}, {99, 10553}, {111, 14916}, {126, 524}, {394, 4175}, {542, 9146}, {576, 56435}, {877, 16240}, {1092, 53784}, {1366, 7067}, {1499, 38805}, {1565, 4001}, {2482, 8030}, {3292, 6390}, {4576, 14928}, {5095, 34336}, {5108, 6719}, {5181, 10417}, {5468, 5642}, {5477, 45672}, {6333, 16163}, {7665, 50639}, {7813, 62657}, {9169, 58427}, {10552, 18800}, {11064, 62590}, {14856, 22338}, {15098, 64508}, {36739, 64690}, {40112, 51397}, {54274, 58284}, {62299, 64802}
X(65747) = midpoint of X(9146) and X(38940)
X(65747) = reflection of X(6791) in X(5108)
X(65747) = isotomic conjugate of the polar conjugate of X(2482)
X(65747) = isogonal conjugate of the polar conjugate of X(36792)
X(65747) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 6390}, {4563, 14417}, {36792, 2482}
X(65747) = X(i)-isoconjugate of X(j) for these (i,j): {19, 10630}, {92, 41936}, {111, 36128}, {897, 8753}, {923, 17983}, {1096, 15398}, {1973, 57539}
X(65747) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 10630}, {524, 4}, {690, 8754}, {1648, 2501}, {2482, 17983}, {6337, 57539}, {6503, 15398}, {6593, 8753}, {14417, 10555}, {22391, 41936}, {52881, 671}, {62594, 5466}
X(65747) = crosspoint of X(i) and X(j) for these (i,j): {69, 6390}, {524, 34161}
X(65747) = crosssum of X(i) and X(j) for these (i,j): {25, 8753}, {111, 14263}
X(65747) = crossdifference of every pair of points on line {2444, 8753}
X(65747) = barycentric product X(i)*X(j) for these {i,j}: {3, 36792}, {63, 24038}, {69, 2482}, {72, 16733}, {304, 42081}, {305, 39689}, {345, 1366}, {348, 7067}, {394, 34336}, {524, 6390}, {895, 23106}, {1649, 4563}, {3266, 3292}, {3926, 5095}, {4558, 52629}, {5181, 53784}, {5467, 45807}, {5468, 14417}, {8030, 30786}, {17206, 52068}, {23992, 47389}, {34161, 52881}, {34897, 62661}, {52608, 54274}
X(65747) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 10630}, {69, 57539}, {184, 41936}, {187, 8753}, {394, 15398}, {524, 17983}, {896, 36128}, {1366, 278}, {1649, 2501}, {2482, 4}, {3266, 46111}, {3292, 111}, {4558, 34574}, {5095, 393}, {5468, 65350}, {6390, 671}, {7067, 281}, {8030, 468}, {9177, 52490}, {14417, 5466}, {16733, 286}, {23106, 44146}, {23200, 32740}, {23992, 8754}, {24038, 92}, {30454, 8737}, {30455, 8738}, {33915, 14273}, {34336, 2052}, {36792, 264}, {39689, 25}, {42081, 19}, {45807, 52632}, {47389, 57552}, {47412, 14263}, {47426, 64619}, {52068, 1826}, {52629, 14618}, {54274, 2489}, {58780, 58757}, {59801, 2971}, {62594, 10555}, {62656, 62237}, {62661, 37765}
X(65747) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1366, 7067, 24038}, {5468, 50567, 5642}, {10552, 31128, 18800}, {45672, 62658, 5477}
X(65748) lies on these lines: {3, 1808}, {69, 53174}, {98, 34383}, {114, 325}, {125, 343}, {127, 30214}, {184, 23217}, {394, 6638}, {512, 38738}, {549, 46172}, {577, 14600}, {620, 31850}, {631, 64490}, {684, 39469}, {1092, 10316}, {1147, 40373}, {1350, 2882}, {1355, 7062}, {1565, 11573}, {2387, 18860}, {2421, 52128}, {2698, 47389}, {2967, 23611}, {3095, 27374}, {3289, 46094}, {3563, 42068}, {3933, 5562}, {3937, 18607}, {4176, 63428}, {4558, 17974}, {5889, 7906}, {5999, 61101}, {6036, 6784}, {6752, 9723}, {6785, 64089}, {6787, 10723}, {9419, 11672}, {9517, 14689}, {9737, 40951}, {10607, 63531}, {11674, 55005}, {12251, 40050}, {13137, 22103}, {15630, 61485}, {18321, 38730}, {23698, 31848}, {31127, 33884}, {31406, 64854}, {31859, 40254}, {33548, 49111}, {38750, 41330}, {39806, 61733}, {39807, 61734}, {46046, 55312}
X(65748) = midpoint of X(i) and X(j) for these {i,j}: {5999, 61101}, {18321, 38730}
X(65748) = reflection of X(i) in X(j) for these {i,j}: {1513, 51427}, {6072, 15631}, {13137, 22103}, {15630, 61485}, {31850, 620}, {46046, 55312}
X(65748) = isotomic conjugate of the polar conjugate of X(11672)
X(65748) = isogonal conjugate of the polar conjugate of X(36790)
X(65748) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 36212}, {36790, 11672}
X(65748) = X(i)-isoconjugate of X(j) for these (i,j): {19, 34536}, {92, 41932}, {98, 36120}, {158, 47388}, {1821, 6531}, {1910, 16081}, {1973, 57541}, {2190, 60594}, {24006, 41173}, {36036, 53149}, {36104, 43665}, {46273, 57260}
X(65748) = X(i)-Dao conjugate of X(j) for these (i,j): {5, 60594}, {6, 34536}, {511, 4}, {1147, 47388}, {2679, 53149}, {5976, 60199}, {6337, 57541}, {11672, 16081}, {22391, 41932}, {39000, 43665}, {39073, 52641}, {40601, 6531}, {41172, 14618}, {46094, 98}, {57294, 512}, {62590, 290}
X(65748) = crosspoint of X(i) and X(j) for these (i,j): {69, 36212}, {511, 34157}
X(65748) = crosssum of X(i) and X(j) for these (i,j): {25, 6531}, {98, 14265}, {2422, 23216}, {2501, 51441}
X(65748) = crossdifference of every pair of points on line {2422, 6531}
X(65748) = barycentric product X(i)*X(j) for these {i,j}: {3, 36790}, {63, 23996}, {69, 11672}, {72, 16725}, {184, 32458}, {232, 51386}, {237, 6393}, {287, 23098}, {304, 42075}, {305, 9419}, {325, 3289}, {345, 1355}, {348, 7062}, {394, 2967}, {511, 36212}, {647, 15631}, {684, 2421}, {1092, 36426}, {2396, 39469}, {3964, 51334}, {4558, 41167}, {4563, 58262}, {6333, 14966}, {23611, 57799}, {32661, 62555}, {34157, 62590}, {35088, 47390}, {36214, 46888}, {36425, 40050}, {42702, 51369}, {47406, 52091}
X(65748) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 34536}, {69, 57541}, {184, 41932}, {216, 60594}, {237, 6531}, {325, 60199}, {511, 16081}, {577, 47388}, {684, 43665}, {1355, 278}, {1755, 36120}, {2396, 65272}, {2421, 22456}, {2491, 53149}, {2967, 2052}, {3289, 98}, {6393, 18024}, {7062, 281}, {9418, 57260}, {9419, 25}, {9475, 52641}, {11672, 4}, {14966, 685}, {15631, 6331}, {16725, 286}, {23098, 297}, {23611, 232}, {23996, 92}, {32458, 18022}, {32661, 41173}, {36212, 290}, {36425, 1974}, {36790, 264}, {39469, 2395}, {41167, 14618}, {42075, 19}, {44716, 53245}, {46888, 17984}, {47390, 57562}, {47406, 14265}, {47418, 56788}, {51334, 1093}, {51386, 57799}, {58262, 2501}, {59805, 2970}
X(65748) = {X(1355),X(7062)}-harmonic conjugate of X(23996)
X(65749) lies on these lines: {2, 98}, {4, 57219}, {5, 46173}, {107, 3079}, {132, 1503}, {159, 34131}, {525, 14689}, {648, 14944}, {1181, 22146}, {1498, 2138}, {1562, 2794}, {2445, 50938}, {2777, 13200}, {3269, 10991}, {6103, 64080}, {6524, 31383}, {6720, 43389}, {6794, 10735}, {12037, 34841}, {16240, 43952}, {18337, 38699}, {18400, 41377}, {21659, 39646}, {33971, 62261}, {38747, 60704}, {46097, 47105}, {53912, 57655}
X(65749) = reflection of X(i) in X(j) for these {i,j}: {5, 46173}, {1562, 18338}, {43389, 6720}, {47105, 46097}
X(65749) = isotomic conjugate of the polar conjugate of X(23976)
X(65749) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 441}, {32230, 2409}
X(65749) = X(i)-isoconjugate of X(j) for these (i,j): {1297, 8767}, {1973, 57549}, {2435, 36092}, {36046, 43673}
X(65749) = X(i)-Dao conjugate of X(j) for these (i,j): {1503, 4}, {6337, 57549}, {15595, 35140}, {23976, 6330}, {33504, 43673}, {39071, 1297}, {39073, 39265}, {57296, 525}, {65726, 9476}
X(65749) = crosspoint of X(i) and X(j) for these (i,j): {69, 441}, {1503, 34156}, {2409, 32230}
X(65749) = crosssum of X(i) and X(j) for these (i,j): {25, 43717}, {1297, 39265}, {2435, 2972}
X(65749) = crossdifference of every pair of points on line {2435, 3569}
X(65749) = barycentric product X(i)*X(j) for these {i,j}: {63, 24023}, {69, 23976}, {441, 1503}, {648, 60341}, {2409, 39473}, {3265, 15639}, {8779, 30737}, {15595, 34156}, {35282, 36894}, {58256, 64975}
X(65749) = barycentric quotient X(i)/X(j) for these {i,j}: {69, 57549}, {441, 35140}, {1503, 6330}, {2312, 8767}, {2409, 65265}, {2445, 32687}, {6793, 52485}, {8779, 1297}, {9475, 39265}, {15639, 107}, {23976, 4}, {24023, 92}, {34156, 9476}, {35282, 56601}, {39473, 2419}, {42671, 43717}, {58256, 60516}, {60341, 525}
X(65749) = {X(1899),X(47200)}-harmonic conjugate of X(125)
X(65750) lies on these lines: {69, 17932}, {125, 3292}, {325, 6055}, {524, 65620}, {525, 16163}, {542, 1550}, {2682, 18332}, {5095, 60590}, {5642, 65718}, {6390, 51394}, {9144, 44969}, {10553, 18020}, {16760, 51429}, {39474, 65723}
X(65750) = reflection of X(i) in X(j) for these {i,j}: {2682, 18332}, {51429, 53725}, {57431, 14999}
X(65750) = isotomic conjugate of the polar conjugate of X(23967)
X(65750) = X(69)-Ceva conjugate of X(65722)
X(65750) = X(1973)-isoconjugate of X(57547)
X(65750) = X(i)-Dao conjugate of X(j) for these (i,j): {542, 4}, {6337, 57547}, {35582, 53156}, {57464, 44427}, {65730, 5641}
X(65750) = crosspoint of X(i) and X(j) for these (i,j): {69, 65722}, {542, 51474}
X(65750) = crosssum of X(842) and X(38939)
X(65750) = barycentric product X(i)*X(j) for these {i,j}: {69, 23967}, {394, 38552}, {542, 65722}, {3265, 60505}, {14999, 65723}, {39474, 50941}, {45662, 51405}, {51474, 65730}, {58252, 65308}, {60053, 60340}
X(65750) = barycentric quotient X(i)/X(j) for these {i,j}: {69, 57547}, {23967, 4}, {38552, 2052}, {39474, 50942}, {46048, 6103}, {58252, 60502}, {60340, 44427}, {60505, 107}, {65722, 5641}, {65723, 14223}
X(65751) lies on these lines: {2, 64490}, {3, 1808}, {4, 9292}, {5, 46172}, {6, 2882}, {20, 63559}, {25, 61204}, {30, 63560}, {32, 2909}, {51, 15510}, {69, 52608}, {99, 34383}, {112, 1976}, {115, 512}, {125, 127}, {140, 63569}, {148, 46303}, {184, 14908}, {187, 2387}, {211, 35007}, {217, 682}, {230, 5167}, {249, 3044}, {263, 1285}, {325, 35060}, {385, 55005}, {511, 38642}, {620, 3111}, {688, 59801}, {694, 9431}, {754, 14962}, {766, 5164}, {810, 22373}, {827, 13193}, {887, 1084}, {974, 6467}, {1092, 40319}, {1181, 52170}, {1356, 7063}, {1691, 3852}, {1916, 38527}, {1974, 40354}, {2084, 15615}, {2386, 50387}, {2393, 53499}, {2698, 12176}, {2794, 31850}, {2871, 39846}, {2971, 3124}, {3269, 9409}, {3491, 7807}, {3564, 48445}, {3972, 61727}, {4531, 9560}, {5025, 32547}, {5943, 53489}, {6033, 41330}, {6036, 31848}, {6752, 40947}, {6754, 8754}, {6785, 10722}, {6787, 14061}, {7754, 58212}, {7777, 61745}, {7783, 58211}, {9755, 40254}, {10568, 44468}, {10605, 63531}, {11672, 21444}, {11674, 21445}, {12215, 64879}, {12833, 22103}, {13586, 61101}, {14444, 62412}, {15544, 39835}, {16068, 53797}, {17423, 39201}, {18321, 38224}, {20982, 50488}, {32761, 39834}, {35297, 51427}, {40050, 43714}, {40847, 59028}, {41262, 63935}, {42295, 62546}, {44114, 47421}, {47211, 59698}
X(65751) = midpoint of X(i) and X(j) for these {i,j}: {1916, 38527}, {17970, 63554}
X(65751) = reflection of X(i) in X(j) for these {i,j}: {5, 46172}, {325, 35060}, {2679, 14113}, {5167, 230}, {6071, 15630}, {6786, 3111}, {12833, 22103}, {31848, 6036}
X(65751) = reflection of X(2679) in the Brocard axis
X(65751) = isotomic conjugate of the isogonal conjugate of X(23216)
X(65751) = isogonal conjugate of the isotomic conjugate of X(20975)
X(65751) = isotomic conjugate of the polar conjugate of X(1084)
X(65751) = isogonal conjugate of the polar conjugate of X(3124)
X(65751) = X(62935)-complementary conjugate of X(8062)
X(65751) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 647}, {184, 3049}, {1501, 688}, {1974, 669}, {1976, 2491}, {2351, 42293}, {3124, 1084}, {6524, 2489}, {9292, 512}, {14575, 65485}, {17970, 39469}, {34238, 878}, {40146, 9426}, {40319, 39201}, {43714, 525}
X(65751) = X(23216)-cross conjugate of X(1084)
X(65751) = X(i)-isoconjugate of X(j) for these (i,j): {2, 46254}, {4, 24037}, {19, 34537}, {27, 4601}, {69, 23999}, {75, 18020}, {92, 4590}, {99, 811}, {100, 55229}, {107, 55202}, {110, 57968}, {112, 4602}, {158, 47389}, {162, 670}, {190, 55231}, {249, 1969}, {250, 561}, {264, 24041}, {273, 6064}, {286, 4600}, {304, 23582}, {305, 24000}, {310, 5379}, {318, 7340}, {648, 799}, {651, 55233}, {653, 4631}, {662, 6331}, {823, 4563}, {873, 15742}, {877, 36036}, {1101, 18022}, {1102, 34538}, {1577, 55270}, {1783, 52612}, {1897, 4623}, {1928, 57655}, {1959, 41174}, {1973, 44168}, {2052, 62719}, {4176, 24021}, {4558, 57973}, {4567, 44129}, {4570, 57796}, {4572, 52914}, {4592, 6528}, {4593, 41676}, {4609, 32676}, {4610, 6335}, {4612, 46404}, {4620, 31623}, {4625, 36797}, {4634, 46541}, {4998, 57779}, {6507, 57556}, {7012, 18021}, {20641, 44183}, {20948, 47443}, {23889, 59762}, {23964, 40364}, {23995, 44161}, {23997, 65272}, {24006, 31614}, {24019, 52608}, {24039, 65350}, {30450, 55249}, {35325, 37204}, {40703, 57991}, {41679, 55215}, {42396, 55239}, {43187, 62720}, {46102, 52379}, {46238, 60179}, {55194, 57215}, {55196, 65207}, {55224, 65224}, {55227, 65251}, {62534, 65232}
X(65751) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 34537}, {125, 670}, {206, 18020}, {244, 57968}, {512, 4}, {520, 4176}, {523, 18022}, {525, 40050}, {647, 1502}, {1084, 6331}, {1147, 47389}, {2679, 877}, {3005, 264}, {5139, 6528}, {6337, 44168}, {8054, 55229}, {9494, 11325}, {15526, 4609}, {17423, 99}, {18314, 44161}, {21905, 44146}, {22391, 4590}, {23285, 40362}, {23301, 3186}, {32664, 46254}, {34467, 4623}, {34591, 4602}, {35071, 52608}, {36033, 24037}, {38985, 55202}, {38986, 811}, {38991, 55233}, {38996, 648}, {39006, 52612}, {40368, 250}, {40369, 57655}, {40627, 44129}, {50330, 57796}, {50497, 286}, {55050, 41676}, {55053, 55231}, {55066, 799}, {57294, 15631}, {62562, 65272}, {62649, 17984}
X(65751) = crosspoint of X(i) and X(j) for these (i,j): {32, 512}, {69, 647}, {184, 3049}, {669, 1974}, {879, 15391}, {881, 34238}, {2207, 58756}, {2489, 6524}, {3124, 20975}, {50487, 61364}
X(65751) = crosssum of X(i) and X(j) for these (i,j): {2, 53350}, {4, 41676}, {25, 648}, {76, 99}, {107, 21447}, {264, 6331}, {305, 670}, {317, 55252}, {880, 5976}, {1634, 4074}, {3964, 4563}, {4230, 39931}, {4590, 18020}, {4623, 18021}, {15164, 46810}, {15165, 46813}, {55227, 55551}
X(65751) = crossdifference of every pair of points on line {648, 670}
X(65751) = barycentric product X(i)*X(j) for these {i,j}: {3, 3124}, {6, 20975}, {25, 3269}, {31, 3708}, {32, 125}, {48, 2643}, {69, 1084}, {71, 3122}, {72, 3121}, {76, 23216}, {115, 184}, {127, 40146}, {181, 7117}, {213, 18210}, {217, 8901}, {219, 61052}, {228, 3125}, {237, 51404}, {248, 44114}, {287, 58260}, {304, 4117}, {305, 9427}, {338, 14575}, {339, 1501}, {345, 1356}, {348, 7063}, {351, 10097}, {393, 34980}, {394, 2971}, {512, 647}, {520, 2489}, {523, 3049}, {525, 669}, {560, 20902}, {577, 8754}, {594, 22096}, {607, 61058}, {649, 55230}, {656, 798}, {661, 810}, {663, 55234}, {667, 55232}, {684, 2422}, {688, 4580}, {868, 14600}, {872, 3942}, {878, 3569}, {879, 2491}, {881, 24284}, {895, 21906}, {905, 50487}, {1015, 3690}, {1096, 37754}, {1109, 9247}, {1365, 52425}, {1402, 53560}, {1409, 4516}, {1410, 36197}, {1425, 14936}, {1437, 21833}, {1459, 4079}, {1500, 3937}, {1562, 33581}, {1565, 7109}, {1648, 14908}, {1650, 40354}, {1918, 4466}, {1919, 4064}, {1924, 14208}, {1946, 57185}, {1973, 2632}, {1974, 15526}, {1976, 41172}, {1977, 3695}, {2086, 36214}, {2088, 52153}, {2197, 3271}, {2200, 3120}, {2206, 21046}, {2207, 2972}, {2351, 47421}, {2353, 38356}, {2395, 39469}, {2433, 9409}, {2501, 39201}, {2623, 15451}, {2679, 15391}, {2970, 14585}, {3248, 3949}, {3265, 57204}, {3267, 9426}, {3289, 51441}, {3917, 51906}, {3926, 42068}, {4025, 53581}, {4092, 52411}, {4558, 22260}, {4563, 23099}, {4574, 8034}, {4705, 22383}, {5489, 61206}, {6041, 35909}, {6388, 40319}, {6391, 47430}, {6520, 42080}, {6524, 35071}, {6784, 43718}, {7015, 21823}, {7116, 21725}, {7254, 58289}, {8029, 32661}, {8574, 60352}, {8611, 51641}, {8736, 61054}, {10547, 39691}, {11060, 16186}, {12077, 58308}, {14270, 14582}, {14380, 14398}, {14533, 41221}, {14567, 51258}, {14595, 18334}, {14618, 58310}, {15166, 44125}, {15167, 44126}, {15398, 59801}, {15412, 65485}, {15422, 58305}, {15630, 36212}, {17414, 30491}, {17434, 58756}, {19610, 22143}, {20618, 61050}, {20775, 34294}, {21131, 32656}, {21134, 32739}, {21731, 61216}, {22373, 52651}, {23067, 63462}, {23200, 64258}, {23286, 55219}, {23610, 52608}, {23962, 40373}, {26932, 61364}, {27375, 38352}, {30452, 46112}, {30453, 46113}, {32320, 58757}, {32662, 65709}, {35442, 62271}, {36793, 44162}, {36897, 47418}, {40355, 47414}, {40981, 53576}, {42067, 52386}, {46088, 51513}, {47390, 61339}, {47409, 61349}, {47415, 64218}, {51640, 55206}, {51664, 63461}, {52370, 53540}
X(65751) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 34537}, {31, 46254}, {32, 18020}, {48, 24037}, {69, 44168}, {115, 18022}, {125, 1502}, {184, 4590}, {228, 4601}, {338, 44161}, {339, 40362}, {512, 6331}, {520, 52608}, {525, 4609}, {577, 47389}, {647, 670}, {649, 55229}, {656, 4602}, {661, 57968}, {663, 55233}, {667, 55231}, {669, 648}, {688, 41676}, {798, 811}, {810, 799}, {822, 55202}, {878, 43187}, {881, 65351}, {1084, 4}, {1356, 278}, {1459, 52612}, {1501, 250}, {1576, 55270}, {1924, 162}, {1946, 4631}, {1973, 23999}, {1974, 23582}, {1976, 41174}, {2086, 17984}, {2200, 4600}, {2205, 5379}, {2395, 65272}, {2422, 22456}, {2489, 6528}, {2491, 877}, {2632, 40364}, {2643, 1969}, {2971, 2052}, {3049, 99}, {3121, 286}, {3122, 44129}, {3124, 264}, {3125, 57796}, {3269, 305}, {3690, 31625}, {3708, 561}, {3942, 57992}, {4117, 19}, {4580, 42371}, {6524, 57556}, {6784, 44144}, {7063, 281}, {7109, 15742}, {7117, 18021}, {8754, 18027}, {8901, 57790}, {9178, 59762}, {9233, 57655}, {9247, 24041}, {9426, 112}, {9427, 25}, {9494, 35325}, {10097, 53080}, {14574, 47443}, {14575, 249}, {14595, 57546}, {14600, 57991}, {14601, 60179}, {14908, 52940}, {15422, 54950}, {15526, 40050}, {15630, 16081}, {17970, 39292}, {18210, 6385}, {20902, 1928}, {20975, 76}, {21906, 44146}, {22096, 1509}, {22143, 61497}, {22260, 14618}, {22373, 8033}, {22383, 4623}, {22386, 7304}, {23099, 2501}, {23216, 6}, {23286, 55218}, {23610, 2489}, {32661, 31614}, {34952, 55227}, {34980, 3926}, {35071, 4176}, {36417, 32230}, {36793, 40360}, {38352, 33769}, {38356, 40073}, {39201, 4563}, {39469, 2396}, {40146, 44183}, {40354, 42308}, {40373, 23357}, {41221, 62274}, {41993, 8737}, {41994, 8738}, {42068, 393}, {42080, 1102}, {42658, 55224}, {42659, 55226}, {44114, 44132}, {44125, 57543}, {44126, 57544}, {44162, 23964}, {47418, 5976}, {47430, 54412}, {50487, 6335}, {51404, 18024}, {51441, 60199}, {51640, 55205}, {51664, 55213}, {51906, 46104}, {52065, 1824}, {52411, 7340}, {52425, 6064}, {52430, 62719}, {52439, 34538}, {52618, 42395}, {53560, 40072}, {53581, 1897}, {55230, 1978}, {55232, 6386}, {55234, 4572}, {57204, 107}, {58260, 297}, {58310, 4558}, {58756, 42405}, {59801, 34336}, {61052, 331}, {61058, 57918}, {61361, 47390}, {61364, 46102}, {62175, 52913}, {65485, 14570}
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 63554, 4173}, {32, 40951, 27374}, {9292, 63555, 4}
X(65752) lies on these lines: {125, 7358}, {200, 1018}, {650, 11918}, {1260, 4587}, {3022, 3119}, {3270, 34591}, {3900, 5514}, {3937, 24031}, {7215, 64878}, {11381, 44692}, {35072, 57108}, {36101, 52825}, {38554, 64107}
X(65752) = reflection of X(38388) in X(5514)
X(65752) = isotomic conjugate of the polar conjugate of X(35508)
X(65752) = isogonal conjugate of the polar conjugate of X(23970)
X(65752) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 57055}, {7046, 4130}, {19611, 647}, {23970, 35508}
X(65752) = X(i)-isoconjugate of X(j) for these (i,j): {4, 24013}, {19, 23586}, {25, 24011}, {34, 59457}, {92, 23971}, {108, 4626}, {269, 55346}, {273, 7339}, {279, 7128}, {479, 7012}, {653, 4617}, {658, 32714}, {738, 46102}, {934, 36118}, {1119, 7045}, {1262, 1847}, {1275, 1435}, {1461, 13149}, {1973, 57581}, {4637, 52607}, {6614, 18026}, {7053, 24032}, {7056, 24033}, {7099, 57538}, {7115, 23062}, {7177, 23984}, {32674, 36838}
X(65752) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 23586}, {521, 7056}, {656, 1088}, {905, 57880}, {3239, 57792}, {3900, 4}, {6337, 57581}, {6505, 24011}, {6600, 55346}, {6608, 273}, {7358, 4569}, {11517, 59457}, {14714, 36118}, {17115, 1119}, {22391, 23971}, {23050, 24032}, {35072, 36838}, {35508, 13149}, {36033, 24013}, {38983, 4626}, {40626, 52937}, {40628, 23062}, {58776, 14615}
X(65752) = crosspoint of X(i) and X(j) for these (i,j): {69, 57055}, {220, 57108}, {3900, 7367}, {4130, 7046}
X(65752) = crosssum of X(i) and X(j) for these (i,j): {20, 3732}, {25, 32714}, {279, 36118}, {934, 14256}, {4617, 7053}
X(65752) = crossdifference of every pair of points on line {4617, 32714}
X(65752) = barycentric product X(i)*X(j) for these {i,j}: {3, 23970}, {63, 24010}, {69, 35508}, {78, 3119}, {200, 34591}, {219, 4081}, {220, 2968}, {304, 24012}, {345, 3022}, {346, 3270}, {480, 26932}, {521, 4130}, {652, 4163}, {728, 7004}, {1146, 1260}, {1265, 14936}, {1792, 36197}, {1802, 24026}, {2310, 3692}, {2327, 52335}, {2638, 7101}, {3239, 57108}, {3271, 30681}, {3700, 58338}, {3900, 57055}, {4105, 6332}, {4171, 57081}, {4397, 65102}, {4524, 15411}, {4587, 23615}, {5423, 7117}, {6602, 17880}, {7046, 35072}, {7071, 23983}, {7079, 24031}, {7182, 52064}, {7358, 7367}, {8611, 58329}, {8641, 15416}, {35518, 57180}, {53560, 56182}, {57919, 61050}
X(65752) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 23586}, {48, 24013}, {63, 24011}, {69, 57581}, {184, 23971}, {219, 59457}, {220, 55346}, {480, 46102}, {521, 36838}, {652, 4626}, {657, 36118}, {1253, 7128}, {1260, 1275}, {1364, 30682}, {1802, 7045}, {1946, 4617}, {2310, 1847}, {2638, 7177}, {2968, 57792}, {3022, 278}, {3119, 273}, {3270, 279}, {3900, 13149}, {4081, 331}, {4105, 653}, {4130, 18026}, {4163, 46404}, {4524, 52607}, {6332, 52937}, {6602, 7012}, {7004, 23062}, {7046, 57538}, {7071, 23984}, {7079, 24032}, {7117, 479}, {8641, 32714}, {14936, 1119}, {23090, 4616}, {23970, 264}, {24010, 92}, {24012, 19}, {26932, 57880}, {34591, 1088}, {35072, 7056}, {35508, 4}, {39687, 7053}, {47432, 14256}, {52064, 33}, {52425, 7339}, {57055, 4569}, {57081, 4635}, {57108, 658}, {57134, 4637}, {57180, 108}, {58338, 4573}, {58340, 65296}, {61050, 608}, {65102, 934}, {65433, 15418}
X(65753) lies on the cubic K1370 and these lines: {2, 216}, {3, 2453}, {67, 10749}, {94, 14919}, {115, 127}, {122, 2970}, {401, 14590}, {441, 24975}, {523, 3150}, {577, 40879}, {1632, 34217}, {1650, 3258}, {2072, 14356}, {2407, 3260}, {3267, 65727}, {3818, 16194}, {5664, 62598}, {7422, 44145}, {7761, 35923}, {8749, 51967}, {8754, 55069}, {10718, 18866}, {11064, 56399}, {16186, 43083}, {18023, 57799}, {18122, 41005}, {34828, 44386}, {35088, 62577}, {37987, 38393}, {40996, 53474}, {44146, 45312}, {51481, 62639}, {60502, 64923}
X(65753) = complement of X(16237)
X(65753) = complement of the isogonal conjugate of X(61216)
X(65753) = complement of the isotomic conjugate of X(15421)
X(65753) = isotomic conjugate of the polar conjugate of X(58261)
X(65753) = polar conjugate of the isogonal conjugate of X(1650)
X(65753) = X(i)-complementary conjugate of X(j) for these (i,j): {48, 60342}, {661, 46085}, {810, 62569}, {822, 131}, {2986, 21259}, {3708, 16221}, {5504, 4369}, {14910, 8062}, {15328, 20305}, {15421, 2887}, {32708, 23998}, {36053, 30476}, {36114, 59698}, {43755, 21254}, {57829, 42327}, {61216, 10}
X(65753) = X(i)-Ceva conjugate of X(j) for these (i,j): {94, 525}, {264, 58263}, {3260, 9033}, {46106, 41079}, {51967, 523}, {57482, 52624}, {65267, 520}
X(65753) = X(i)-isoconjugate of X(j) for these (i,j): {110, 36131}, {112, 36034}, {162, 32640}, {163, 1304}, {250, 2159}, {662, 32715}, {1101, 8749}, {1576, 65263}, {2349, 57655}, {4575, 32695}, {9247, 42308}, {16080, 23995}, {18877, 24000}, {23357, 36119}, {23964, 35200}, {24037, 40351}, {24041, 40354}, {32676, 44769}
X(65753) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 1304}, {125, 32640}, {133, 23964}, {136, 32695}, {244, 36131}, {512, 40351}, {523, 8749}, {525, 14919}, {647, 74}, {1084, 32715}, {1511, 23357}, {1637, 186}, {1650, 2420}, {3005, 40354}, {3163, 250}, {3258, 112}, {4858, 65263}, {5664, 57487}, {8552, 323}, {9033, 3284}, {14401, 3}, {15526, 44769}, {18314, 16080}, {23285, 1494}, {34591, 36034}, {35441, 44715}, {36901, 16077}, {38999, 32661}, {39008, 110}, {39019, 36831}, {42306, 54057}, {46425, 2071}, {55267, 35908}, {57295, 6}, {62551, 14590}, {62569, 249}, {62576, 42308}, {62598, 648}, {62613, 47443}, {65478, 12096}, {65731, 48451}
X(65753) = crosspoint of X(i) and X(j) for these (i,j): {2, 15421}, {328, 3267}, {14592, 57482}, {41079, 46106}
X(65753) = crosssum of X(i) and X(j) for these (i,j): {6, 61209}, {18877, 32640}, {32715, 40354}, {34397, 61206}
X(65753) = trilinear pole of line {13212, 57424}
X(65753) = crossdifference of every pair of points on line {1576, 32640}
X(65753) = barycentric product X(i)*X(j) for these {i,j}: {30, 339}, {69, 58261}, {125, 3260}, {264, 1650}, {328, 3258}, {338, 11064}, {525, 41079}, {850, 9033}, {1637, 3267}, {1784, 17879}, {1990, 36793}, {2394, 52624}, {2631, 20948}, {3284, 23962}, {3708, 46234}, {5664, 14592}, {9409, 44173}, {14206, 20902}, {14208, 36035}, {14618, 41077}, {15526, 46106}, {16177, 51967}, {18557, 44427}, {20573, 47414}, {34767, 58263}, {35442, 43752}, {35912, 62431}, {52485, 58258}, {54988, 57424}, {57482, 62551}
X(65753) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 250}, {115, 8749}, {125, 74}, {264, 42308}, {265, 15395}, {338, 16080}, {339, 1494}, {402, 54057}, {512, 32715}, {523, 1304}, {525, 44769}, {647, 32640}, {656, 36034}, {661, 36131}, {850, 16077}, {868, 35908}, {1084, 40351}, {1109, 36119}, {1495, 57655}, {1562, 15291}, {1577, 65263}, {1636, 32661}, {1637, 112}, {1650, 3}, {1784, 24000}, {1990, 23964}, {2394, 34568}, {2407, 47443}, {2501, 32695}, {2631, 163}, {2632, 35200}, {2682, 44102}, {3124, 40354}, {3258, 186}, {3260, 18020}, {3269, 18877}, {3284, 23357}, {3708, 2159}, {5489, 14380}, {5664, 14590}, {6070, 52493}, {6368, 36831}, {9033, 110}, {9409, 1576}, {11064, 249}, {13212, 5663}, {14220, 64774}, {14391, 1625}, {14397, 61208}, {14398, 61206}, {14401, 2420}, {14499, 15460}, {14500, 15461}, {14581, 41937}, {14592, 39290}, {14618, 15459}, {15526, 14919}, {16177, 2071}, {16186, 14385}, {18557, 60053}, {18558, 32662}, {20902, 2349}, {20975, 40352}, {23105, 18808}, {23616, 62665}, {35442, 44715}, {35912, 57742}, {36035, 162}, {39008, 3284}, {41077, 4558}, {41079, 648}, {41997, 39377}, {41998, 39378}, {46106, 23582}, {46234, 46254}, {47414, 50}, {51258, 9139}, {51394, 47390}, {52624, 2407}, {52661, 32230}, {52743, 14591}, {55141, 7480}, {55265, 61209}, {55269, 61215}, {55276, 2442}, {57295, 5502}, {57424, 6000}, {57482, 39295}, {58261, 4}, {58263, 4240}, {58346, 23347}, {60869, 60179}, {62172, 53176}, {62551, 57487}, {65615, 32708}, {65723, 51262}, {65724, 48451}
X(65753) = {X(18312),X(62431)}-harmonic conjugate of X(52628)
X(65754) lies on the cubic K1370 and these lines: {2, 523}, {3, 45681}, {5, 5489}, {30, 5664}, {51, 520}, {114, 132}, {115, 60500}, {232, 55275}, {325, 23350}, {378, 22089}, {381, 525}, {402, 31945}, {512, 64100}, {526, 12824}, {542, 42738}, {549, 18556}, {826, 39494}, {868, 35088}, {879, 45327}, {924, 41580}, {1007, 3265}, {1116, 7927}, {1499, 44750}, {1636, 1637}, {1640, 57618}, {1650, 3258}, {1992, 9007}, {2394, 3545}, {2407, 3233}, {2452, 62350}, {2501, 45141}, {3167, 8057}, {3268, 45319}, {3815, 62384}, {3839, 63248}, {3906, 39482}, {5055, 14566}, {6033, 35909}, {6054, 14223}, {6368, 11197}, {6587, 7735}, {6644, 39201}, {7774, 33294}, {8675, 29959}, {9003, 14697}, {9148, 55121}, {9209, 47597}, {9409, 44202}, {9517, 42731}, {14356, 32112}, {14484, 43673}, {14489, 53173}, {15355, 47233}, {15928, 62307}, {20126, 42739}, {21525, 38354}, {24974, 62173}, {31174, 52720}, {34810, 35912}, {35906, 51937}, {35908, 56605}, {36207, 63464}, {36876, 58757}, {41079, 44204}, {44203, 46229}, {44438, 44705}, {44891, 47004}, {45259, 53345}, {48778, 54029}, {48779, 54028}, {59745, 62947}
X(65754) = midpoint of X(i) and X(j) for these {i,j}: {2, 65714}, {6054, 14223}
X(65754) = reflection of X(i) in X(j) for these {i,j}: {3, 45681}, {879, 45327}, {3268, 45319}, {8029, 65610}, {9409, 44202}, {11123, 34291}, {18556, 549}, {41079, 44204}, {42733, 381}, {65723, 2}
X(65754) = complement of X(53383)
X(65754) = reflection of X(65723) in the Euler line
X(65754) = tripolar centroid for these (i,j): {297, 51228}
X(65754) = X(i)-Ceva conjugate of X(j) for these (i,j): {2799, 58351}, {14356, 868}
X(65754) = X(58351)-cross conjugate of X(2799)
X(65754) = X(i)-isoconjugate of X(j) for these (i,j): {74, 36084}, {98, 36034}, {248, 65263}, {287, 36131}, {293, 1304}, {336, 32715}, {685, 35200}, {1821, 32640}, {1910, 44769}, {2159, 2966}, {2349, 2715}, {11653, 36083}, {14919, 36104}, {36036, 40352}, {36119, 43754}
X(65754) = X(i)-Dao conjugate of X(j) for these (i,j): {132, 1304}, {133, 685}, {868, 36875}, {1511, 43754}, {1650, 35912}, {2679, 40352}, {3163, 2966}, {3258, 98}, {11672, 44769}, {14401, 53173}, {35088, 1494}, {38970, 16080}, {38987, 74}, {38999, 17974}, {39000, 14919}, {39008, 287}, {39039, 65263}, {40601, 32640}, {41167, 14380}, {41172, 35910}, {55071, 14385}, {55267, 2394}, {57295, 879}, {62569, 17932}, {62595, 16077}, {62598, 290}, {62613, 57991}
X(65754) = crosspoint of X(i) and X(j) for these (i,j): {2407, 36891}, {4240, 52485}
X(65754) = crosssum of X(i) and X(j) for these (i,j): {74, 32112}, {879, 52451}, {1976, 60777}
X(65754) = crossdifference of every pair of points on line {74, 187}
X(65754) = barycentric product X(i)*X(j) for these {i,j}: {30, 2799}, {297, 9033}, {325, 1637}, {511, 41079}, {523, 51389}, {684, 46106}, {868, 2407}, {1494, 58351}, {1959, 36035}, {1990, 6333}, {2420, 62431}, {2421, 58261}, {2631, 40703}, {3260, 3569}, {5642, 62629}, {5664, 14356}, {6530, 41077}, {9409, 44132}, {11064, 16230}, {14223, 57431}, {14399, 42703}, {32112, 36789}, {35906, 62555}, {35908, 52624}, {35910, 58263}, {36891, 55267}, {41167, 60869}, {46229, 56925}
X(65754) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 2966}, {232, 1304}, {237, 32640}, {240, 65263}, {297, 16077}, {511, 44769}, {684, 14919}, {868, 2394}, {1495, 2715}, {1636, 17974}, {1637, 98}, {1650, 53173}, {1755, 36034}, {1990, 685}, {2173, 36084}, {2211, 32715}, {2407, 57991}, {2420, 57742}, {2491, 40352}, {2631, 293}, {2682, 52038}, {2799, 1494}, {3260, 43187}, {3284, 43754}, {3569, 74}, {4240, 60179}, {6530, 15459}, {6793, 60506}, {8430, 9139}, {9033, 287}, {9409, 248}, {11064, 17932}, {14206, 36036}, {14356, 39290}, {14391, 53174}, {14398, 1976}, {14401, 35912}, {14581, 32696}, {16230, 16080}, {17994, 8749}, {32112, 40384}, {34854, 32695}, {35906, 41173}, {35908, 34568}, {36035, 1821}, {36891, 55266}, {39469, 18877}, {41077, 6394}, {41079, 290}, {41167, 35910}, {41172, 14380}, {44114, 2433}, {46106, 22456}, {48453, 53691}, {51389, 99}, {51431, 60504}, {52743, 14355}, {55265, 52451}, {55267, 36875}, {57431, 14999}, {57653, 36131}, {58261, 43665}, {58263, 60869}, {58343, 2420}, {58346, 35906}, {58351, 30}, {59805, 32112}
{X(18311),X(46986)}-harmonic conjugate of X(1649)
X(65770) lies on the cubic K1370 and these lines: {2, 65350}, {4, 54808}, {30, 1990}, {39, 18121}, {115, 523}, {132, 232}, {148, 65713}, {187, 62509}, {868, 41172}, {1503, 1570}, {1637, 3258}, {2501, 3154}, {2682, 57464}, {2799, 35088}, {3269, 55219}, {6070, 12077}, {6103, 36166}, {8029, 60500}, {11648, 51980}, {14356, 34370}, {14583, 60496}, {14731, 23589}, {15526, 64919}, {17994, 38368}, {35906, 52472}, {36204, 60508}, {37350, 64915}, {41181, 51429}, {46988, 53419}
X(65755) = midpoint of X(i) and X(j) for these {i,j}: {148, 65713}, {52472, 53866}
X(65755) = reflection of X(i) in X(j) for these {i,j}: {115, 65613}, {65724, 115}
X(65755) = X(35906)-Ceva conjugate of X(1637)
X(65755) = X(i)-isoconjugate of X(j) for these (i,j): {2159, 57991}, {2349, 57742}, {2966, 36034}, {17932, 36131}, {32640, 36036}, {35200, 60179}, {36084, 44769}, {43754, 65263}
X(65755) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 60179}, {2679, 32640}, {3163, 57991}, {3258, 2966}, {14401, 6394}, {38970, 16077}, {38987, 44769}, {39008, 17932}, {41167, 14919}, {55267, 1494}, {57295, 287}, {62598, 43187}
X(65755) = crosspoint of X(i) and X(j) for these (i,j): {1637, 35906}, {2799, 14356}
X(65755) = crosssum of X(i) and X(j) for these (i,j): {2715, 14355}, {35910, 44769}
X(65755) = crossdifference of every pair of points on line {5467, 14380}
X(65755) = barycentric product X(i)*X(j) for these {i,j}: {30, 868}, {115, 51389}, {511, 58261}, {1495, 62431}, {1637, 2799}, {1650, 6530}, {2394, 58351}, {3258, 14356}, {3260, 44114}, {3569, 41079}, {9033, 16230}, {9214, 51429}, {32112, 58263}, {35088, 35906}, {41172, 46106}, {56605, 57424}, {59805, 60869}
X(65755) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 57991}, {868, 1494}, {1495, 57742}, {1637, 2966}, {1650, 6394}, {1990, 60179}, {2491, 32640}, {2682, 5967}, {3569, 44769}, {6530, 42308}, {9033, 17932}, {9409, 43754}, {14398, 2715}, {16230, 16077}, {17994, 1304}, {35906, 57562}, {36035, 36036}, {41079, 43187}, {41172, 14919}, {44114, 74}, {46106, 41174}, {51389, 4590}, {51429, 36890}, {57424, 36893}, {57430, 63856}, {58260, 40352}, {58261, 290}, {58351, 2407}, {59805, 35910}
X(65755) = {X(57430),X(59805)}-harmonic conjugate of X(41181)
X(65756) lies on the cubic K1370 and these lines: {2, 648}, {30, 52469}, {74, 2794}, {98, 36875}, {115, 2394}, {125, 523}, {132, 35908}, {543, 36890}, {868, 16230}, {1637, 62551}, {9717, 47200}, {14120, 52475}, {17986, 36166}, {35088, 62629}, {35906, 63856}, {35910, 51389}
X(65756) = X(i)-isoconjugate of X(j) for these (i,j): {1101, 35906}, {2173, 57742}, {2420, 36084}, {9406, 57991}, {23995, 60869}, {43754, 56829}
X(65756) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 35906}, {647, 35912}, {2799, 51389}, {9410, 57991}, {18314, 60869}, {35088, 2407}, {36896, 57742}, {38970, 4240}, {38987, 2420}, {41167, 3284}, {55267, 30}
X(65756) = crossdifference of every pair of points on line {2420, 9409}
X(65756) = barycentric product X(i)*X(j) for these {i,j}: {74, 62431}, {325, 12079}, {338, 35910}, {339, 35908}, {850, 32112}, {868, 1494}, {2394, 2799}, {6333, 18808}, {16230, 34767}
X(65756) = barycentric quotient X(i)/X(j) for these {i,j}: {74, 57742}, {115, 35906}, {125, 35912}, {338, 60869}, {868, 30}, {1494, 57991}, {2394, 2966}, {2433, 2715}, {2799, 2407}, {3569, 2420}, {12079, 98}, {14380, 43754}, {16080, 60179}, {16230, 4240}, {17994, 23347}, {18808, 685}, {23350, 51263}, {32112, 110}, {34767, 17932}, {35088, 51389}, {35908, 250}, {35910, 249}, {41172, 3284}, {44114, 1495}, {51429, 5642}, {56792, 14355}, {57430, 6793}, {58260, 9407}, {62431, 3260}
X(65757) lies on the cubic K1370 and these lines: {2, 14618}, {3, 46371}, {5, 523}, {115, 65732}, {131, 132}, {525, 13567}, {850, 2394}, {868, 16221}, {1637, 5664}, {2485, 3767}, {2797, 33813}, {2799, 62577}, {6334, 47236}, {6644, 62489}, {7706, 30209}, {9818, 53266}, {12228, 57136}, {18314, 34836}, {18557, 52743}, {20207, 45681}, {23285, 65612}, {30476, 52600}, {35088, 39021}, {41167, 46085}, {44452, 44814}, {52585, 63847}, {57486, 65614}, {62551, 62598}
X(65757) = midpoint of X(6334) and X(47236)
X(65757) = complement of X(15421)
X(65757) = complement of the isogonal conjugate of X(61209)
X(65757) = complement of the isotomic conjugate of X(16237)
X(65757) = isotomic conjugate of the isogonal conjugate of X(55265)
X(65757) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 3134}, {163, 10257}, {403, 21253}, {1725, 127}, {1973, 2088}, {2315, 122}, {3003, 34846}, {15329, 18589}, {16237, 2887}, {24019, 13754}, {32676, 11064}, {32678, 12358}, {36131, 6699}, {36145, 64689}, {44084, 8287}, {56829, 52010}, {61209, 10}
X(65757) = X(i)-Ceva conjugate of X(j) for these (i,j): {850, 55121}, {6528, 13754}, {14618, 41079}, {30450, 46106}
X(65757) = X(i)-isoconjugate of X(j) for these (i,j): {163, 10419}, {560, 55264}, {2159, 10420}, {4575, 40388}, {5504, 36131}, {14910, 36034}, {18877, 36114}, {32640, 36053}, {32708, 35200}, {40352, 65262}
X(65757) = X(i)-Dao conjugate of X(j) for these (i,j): {113, 32640}, {115, 10419}, {133, 32708}, {136, 40388}, {1637, 15470}, {2088, 14385}, {3003, 110}, {3163, 10420}, {3258, 14910}, {6374, 55264}, {11064, 4558}, {16178, 8749}, {34834, 44769}, {36901, 40423}, {39005, 18877}, {39008, 5504}, {39021, 74}, {56792, 40353}, {57295, 61216}, {62569, 43755}, {62598, 2986}, {62613, 18879}
X(65757) = crosspoint of X(i) and X(j) for these (i,j): {2, 16237}, {30450, 52504}
X(65757) = crosssum of X(6) and X(61216)
X(65757) = crossdifference of every pair of points on line {50, 40352}
X(65757) = barycentric product X(i)*X(j) for these {i,j}: {76, 55265}, {113, 850}, {3260, 55121}, {3580, 41079}, {5664, 57486}, {6334, 46106}, {9033, 44138}, {14618, 62569}, {36789, 65614}, {40427, 58790}, {58261, 61188}, {58263, 65715}
X(65757) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 10420}, {76, 55264}, {113, 110}, {403, 1304}, {523, 10419}, {686, 18877}, {850, 40423}, {1637, 14910}, {1725, 36034}, {1784, 36114}, {1990, 32708}, {2407, 18879}, {2501, 40388}, {3003, 32640}, {3258, 15470}, {3260, 18878}, {3580, 44769}, {6334, 14919}, {9033, 5504}, {11064, 43755}, {14206, 65262}, {15328, 39379}, {16319, 53776}, {21731, 40352}, {34104, 15329}, {36035, 36053}, {39985, 64774}, {41079, 2986}, {41512, 15395}, {44084, 32715}, {44138, 16077}, {46106, 687}, {47236, 8749}, {47405, 32661}, {52743, 52557}, {55121, 74}, {55141, 39986}, {55265, 6}, {57486, 39290}, {58261, 15328}, {58263, 15454}, {58790, 34834}, {59497, 13398}, {60342, 14385}, {62172, 38936}, {62569, 4558}, {63735, 36831}, {65614, 40384}
X(65757) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5664, 41079, 52624}, {14566, 14592, 18312}
X(65758) lies on the cubic K1370 and these lines: {2, 2501}, {115, 525}, {132, 36170}, {232, 44817}, {523, 6036}, {1499, 4846}, {1637, 11064}, {2697, 3563}, {2799, 44377}, {2987, 65325}, {5664, 36891}, {6529, 23582}, {6720, 46115}, {8057, 42065}, {8781, 14223}, {10425, 14999}, {12068, 41357}, {16230, 56370}, {33228, 44427}, {34810, 35912}, {35142, 53201}, {40428, 62629}, {46981, 61446}
X(65758) = midpoint of X(16230) and X(56370)
X(65758) = X(i)-isoconjugate of X(j) for these (i,j): {163, 36875}, {230, 36034}, {1733, 32640}, {2159, 4226}, {2349, 61213}, {3564, 36131}, {8772, 44769}, {36119, 56389}, {52144, 65263}
X(65758) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 36875}, {1511, 56389}, {3163, 4226}, {3258, 230}, {39008, 3564}, {62598, 51481}
X(65758) = crossdifference of every pair of points on line {52144, 61213}
X(65758) = barycentric product X(i)*X(j) for these {i,j}: {30, 62645}, {523, 36891}, {1637, 8781}, {2987, 41079}, {3260, 35364}, {8773, 36035}, {9033, 35142}, {10425, 58261}, {11064, 60338}
X(65758) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 4226}, {523, 36875}, {1495, 61213}, {1637, 230}, {2987, 44769}, {3284, 56389}, {3563, 1304}, {9033, 3564}, {9214, 52035}, {9409, 52144}, {14398, 1692}, {32654, 32640}, {35142, 16077}, {35364, 74}, {35906, 60504}, {36035, 1733}, {36051, 36034}, {36891, 99}, {41079, 51481}, {58346, 51431}, {60338, 16080}, {61446, 51262}, {62645, 1494}
X(65759) lies on the cubic K1370 and these lines: {2, 107}, {115, 34212}, {125, 23616}, {523, 15526}, {1637, 1650}, {2435, 14220}, {2799, 57606}, {3163, 51937}, {56601, 64923}, {60510, 61505}
X(65759) = X(i)-isoconjugate of X(j) for these (i,j): {2409, 36034}, {34211, 36131}
X(65759) = X(i)-Dao conjugate of X(j) for these (i,j): {647, 63856}, {3258, 2409}, {14401, 441}, {39008, 34211}, {57295, 1503}
X(65759) = barycentric product X(i)*X(j) for these {i,j}: {339, 51937}, {1637, 2419}, {1650, 6330}, {2435, 41079}, {9033, 43673}, {15526, 52485}, {58261, 64975}
X(65759) = barycentric quotient X(i)/X(j) for these {i,j}: {125, 63856}, {1637, 2409}, {1650, 441}, {2435, 44769}, {6330, 42308}, {9033, 34211}, {14398, 2445}, {34212, 1304}, {43673, 16077}, {51937, 250}, {52485, 23582}, {58261, 60516}
X(65760) lies on the cubic K1370 and these lines: {2, 14221}, {115, 65622}, {511, 868}, {523, 65722}, {524, 6128}, {1637, 11064}, {2407, 3260}, {2799, 36212}, {3003, 24975}, {3258, 62569}, {3291, 23589}, {5159, 47207}, {31998, 41254}, {35088, 62590}
X(65760) = midpoint of X(2407) and X(3260)
X(65760) = reflection of X(3003) in X(24975)
X(65760) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 51389}, {53266, 21253}
X(65760) = X(2)-Ceva conjugate of X(51389)
X(65760) = X(51389)-Dao conjugate of X(2)
X(65760) = barycentric product X(i)*X(j) for these {i,j}: {325, 34810}, {3260, 47049}
X(65760) = barycentric quotient X(i)/X(j) for these {i,j}: {34810, 98}, {47049, 74}, {55071, 56792}
X(65761) lies on the cubic K1370 and these lines: {2, 10555}, {30, 114}, {98, 36875}, {115, 14357}, {620, 34161}, {1637, 1649}, {5181, 51457}, {5477, 51429}, {5642, 8030}, {6721, 14356}, {7664, 32458}, {31274, 40517}
X(65761) = X(36142)-isoconjugate of X(53374)
X(65761) = X(23992)-Dao conjugate of X(53374)
X(65761) = cevapoint of X(1649) and X(51429)
X(65761) = barycentric quotient X(690)/X(53374)
X(65762) lies on the cubic K1370 and these lines: {2, 14618}, {30, 47230}, {112, 6753}, {115, 647}, {184, 512}, {237, 17994}, {523, 65736}, {1300, 59023}, {2485, 14910}, {2489, 3163}, {2491, 58351}, {2799, 36212}, {2986, 46040}, {3003, 55130}, {3289, 3569}, {8430, 47079}, {9213, 10419}, {15328, 43718}, {18878, 53230}
X(65762) = X(i)-isoconjugate of X(j) for these (i,j): {293, 16237}, {336, 61209}, {662, 52451}, {1725, 2966}, {1821, 15329}, {1910, 61188}, {2315, 22456}, {3003, 36036}, {3580, 36084}, {36104, 62338}
X(65762) = X(i)-Dao conjugate of X(j) for these (i,j): {132, 16237}, {1084, 52451}, {2679, 3003}, {11672, 61188}, {38970, 44138}, {38987, 3580}, {39000, 62338}, {40601, 15329}, {41167, 6334}, {55071, 34834}
X(65762) = crosssum of X(35912) and X(60777)
X(65762) = trilinear pole of line {39469, 44114}
X(65762) = crossdifference of every pair of points on line {3580, 15329}
X(65762) = barycentric product X(i)*X(j) for these {i,j}: {232, 15421}, {297, 61216}, {511, 15328}, {684, 1300}, {687, 41172}, {868, 10420}, {2491, 40832}, {2799, 14910}, {2986, 3569}, {5504, 16230}, {14356, 15470}, {15454, 32112}, {17994, 57829}, {18878, 44114}, {23350, 51456}, {35910, 65615}, {39469, 65267}
X(65762) = barycentric quotient X(i)/X(j) for these {i,j}: {232, 16237}, {237, 15329}, {511, 61188}, {512, 52451}, {684, 62338}, {687, 41174}, {1300, 22456}, {2211, 61209}, {2491, 3003}, {2986, 43187}, {3569, 3580}, {5504, 17932}, {10420, 57991}, {14910, 2966}, {15328, 290}, {15421, 57799}, {16230, 44138}, {17994, 403}, {32112, 65715}, {32708, 60179}, {35361, 53245}, {36053, 36036}, {39469, 13754}, {41172, 6334}, {44114, 55121}, {58260, 21731}, {61216, 287}, {65267, 65272}, {65615, 60869}
X(65763) lies on the cubic K1370 and these lines: {115, 65610}, {690, 7687}, {868, 16230}, {1637, 35906}, {2799, 14356}, {3163, 62172}, {10278, 65731}, {22104, 44564}, {34840, 34841}, {38393, 55121}, {56967, 62651}
X(65763) = midpoint of X(868) and X(16230)
X(65763) = crosspoint of X(4240) and X(6530)
X(65763) = crosssum of X(14380) and X(17974)
X(65763) = barycentric product X(2799)*X(52472)
X(65763) = barycentric quotient X(52472)/X(2966)
X(65764) lies on the cubic K1370 and these lines: {2, 14221}, {30, 2088}, {115, 65610}, {523, 65733}, {1648, 3258}, {3163, 21906}, {14113, 61733}, {35088, 39021}, {35235, 47236}, {44114, 55122}
X(65764) = barycentric quotient X(i)/X(j) for these {i,j}: {8029, 53266}, {44114, 47049}
X(65765) lies on the cubic K1370 and these lines: {2, 65613}, {115, 65734}, {132, 468}, {524, 3163}, {868, 1503}, {1637, 47296}, {1990, 62551}, {2799, 44334}, {3266, 36789}, {41995, 52039}, {41996, 52040}, {44576, 51228}, {50942, 55267}
X(65765) = midpoint of X(1990) and X(62551)
X(65765) = X(6793)-cross conjugate of X(4)
X(65765) = X(163)-isoconjugate of X(53383)
X(65765) = X(115)-Dao conjugate of X(53383)
X(65765) = cevapoint of X(i) and X(j) for these (i,j): {868, 1637}, {3569, 16186}, {10151, 16318}
X(65765) = trilinear pole of line {690, 13202}
X(65765) = barycentric quotient X(523)/X(53383)
X(65766) lies on the cubisc K1370 and K1371 and these lines: {30, 6334}, {115, 65723}, {131, 132}, {523, 65722}, {690, 16163}, {1637, 60340}, {2799, 40080}, {3163, 9475}, {3258, 14417}, {6394, 62645}, {8779, 52038}, {9033, 53132}, {11123, 65717}, {14559, 53274}
X(65766) = reflection of X(1637) in X(60340)
X(65766) = on the Euler-line-asymptotic hyperbola (see X(1650))
X(65766) = X(36034)-isoconjugate of X(52472)
X(65766) = X(i)-Dao conjugate of X(j) for these (i,j): {3258, 52472}, {65728, 1550}
X(65766) = cevapoint of X(41172) and X(65709)
X(65766) = trilinear pole of line {1648, 14401}
X(65766) = barycentric quotient X(i)/X(j) for these {i,j}: {1637, 52472}, {1640, 1550}
X(65767) lies on the cubic K1371 and these lines: {2, 99}, {6, 41625}, {30, 74}, {50, 53474}, {94, 23588}, {98, 4226}, {110, 1316}, {112, 60502}, {125, 23698}, {146, 1561}, {182, 30540}, {187, 35933}, {193, 64923}, {248, 290}, {251, 18372}, {287, 2395}, {323, 538}, {328, 14910}, {338, 4558}, {458, 31859}, {523, 895}, {542, 51431}, {754, 37779}, {868, 6321}, {1272, 6128}, {1494, 62639}, {1632, 25051}, {1916, 39291}, {1975, 41238}, {1976, 46648}, {1989, 24975}, {1993, 22146}, {1995, 9775}, {2394, 2986}, {2407, 48540}, {2453, 2854}, {2592, 44333}, {2593, 44332}, {2794, 3448}, {3849, 44555}, {3972, 40814}, {4590, 18023}, {5012, 39906}, {5063, 44135}, {5191, 12188}, {5622, 6795}, {5640, 35930}, {5986, 9157}, {6033, 57598}, {6248, 37335}, {7391, 44988}, {7668, 14060}, {7737, 37644}, {7739, 63036}, {7798, 11004}, {7804, 15018}, {7998, 64653}, {8288, 37638}, {8724, 57618}, {8749, 16237}, {9142, 53274}, {9146, 15066}, {9148, 53247}, {9155, 13188}, {9609, 15271}, {10723, 31127}, {10752, 60696}, {10796, 15019}, {11007, 15059}, {11174, 41231}, {11579, 62490}, {11632, 45662}, {11657, 14834}, {12066, 16080}, {12177, 46124}, {13172, 35922}, {14033, 63084}, {14389, 15048}, {14559, 48988}, {14712, 44651}, {14918, 40889}, {14999, 48721}, {15014, 46106}, {15035, 36177}, {15093, 55038}, {15988, 17351}, {16280, 17702}, {16770, 22513}, {16771, 22512}, {20021, 38873}, {22151, 64782}, {23061, 32515}, {23235, 46512}, {25155, 60858}, {25165, 60859}, {30465, 40709}, {30468, 40710}, {32121, 55122}, {32456, 35296}, {34834, 44468}, {35278, 38664}, {35345, 49006}, {36189, 46634}, {36212, 46571}, {36822, 46303}, {37183, 58849}, {37784, 64781}, {40112, 52229}, {40870, 40871}, {40884, 47286}, {41253, 41676}, {41626, 58267}, {43705, 44377}, {43756, 65326}, {44328, 60516}, {46718, 54104}, {54651, 58268}, {62950, 62988}
X(65767) = midpoint of X(3448) and X(36181)
X(65767) = reflection of X(i) in X(j) for these {i,j}: {110, 1316}, {146, 1561}, {323, 51372}, {10752, 60696}, {14999, 48721}, {36163, 125}
X(65767) = anticomplement of X(51389)
X(i)-anticomplementary conjugate of X(j) for these (i,j): {1910, 146}, {2159, 147}, {36034, 62642}
X(65767) = X(i)-Dao conjugate of X(j) for these (i,j): {34810, 230}, {47049, 3003}
X(65767) = crosspoint of X(i) and X(j) for these (i,j): {290, 40832}, {1494, 8781}, {2966, 39295}, {16077, 41174}
X(65767) = crosssum of X(i) and X(j) for these (i,j): {1495, 1692}, {2088, 3569}
X(65767) = trilinear pole of line {34810, 47049}
X(65767) = crossdifference of every pair of points on line {351, 51335}
X(65767) = barycentric product X(i)*X(j) for these {i,j}: {99, 53266}, {290, 47049}, {1494, 34810}
X(65767) = barycentric quotient X(i)/X(j) for these {i,j}: {34810, 30}, {47049, 511}, {53266, 523}
X(65767) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 99, 54439}, {2, 148, 54395}, {99, 671, 48982}, {99, 41254, 2}, {115, 65722, 2}, {265, 53132, 9140}, {671, 50941, 111}, {4226, 53346, 98}, {11078, 11092, 9140}, {24975, 53495, 1989}, {40854, 40855, 110}
X(65768) lies on the cubic K1371 and these lines: {2, 65350}, {30, 340}, {99, 523}, {148, 65724}, {316, 62509}, {476, 3268}, {648, 64919}, {685, 877}, {687, 15421}, {1297, 5999}, {1503, 51438}, {1990, 35297}, {2799, 2966}, {6530, 10011}, {6563, 7471}, {7769, 18121}, {8598, 64915}, {10411, 14560}, {10754, 34369}, {14061, 65613}, {14480, 41298}, {14587, 18831}, {17932, 53379}, {36173, 65711}
X(65768) = reflection of X(i) in X(j) for these {i,j}: {148, 65724}, {10754, 34369}, {65713, 99}
X(65768) = X(36034)-anticomplementary conjugate of X(39359)
X(65768) = barycentric product X(i)*X(j) for these {i,j}: {1550, 6035}, {52473, 65354}
X(65768) = barycentric quotient X(i)/X(j) for these {i,j}: {1550, 1640}, {52472, 1637}
X(65768) = {X(99),X(14221)}-harmonic conjugate of X(4590)
X(65769) lies on the cubic K1371 and these lines: {2, 10555}, {30, 98}, {99, 59422}, {114, 9214}, {115, 59423}, {147, 52035}, {476, 10416}, {892, 54103}, {895, 39819}, {3268, 5466}, {5968, 64089}, {6054, 51926}, {10556, 47200}, {10557, 52141}, {16237, 17983}, {31125, 36849}, {31127, 42008}, {44534, 64258}, {52632, 57799}
X(65770) lies on the cubic K1371 and these lines: {2, 476}, {3, 523}, {4, 14884}, {20, 14508}, {30, 53274}, {69, 74}, {127, 131}, {186, 16237}, {511, 4226}, {549, 14995}, {631, 30717}, {1138, 3524}, {1316, 14687}, {1511, 14559}, {1553, 52488}, {2799, 40080}, {3018, 21843}, {3164, 10298}, {3233, 9717}, {3431, 54959}, {4240, 47215}, {6194, 7492}, {7422, 62490}, {7471, 33927}, {7473, 35908}, {7493, 47200}, {7502, 8266}, {9168, 63767}, {9970, 35278}, {10754, 65616}, {14694, 47170}, {15928, 47285}, {16186, 30512}, {20304, 65617}, {30737, 52145}, {35912, 53383}, {36177, 46127}, {47047, 47079}, {47150, 54380}, {47327, 57627}, {47570, 57607}, {51254, 56686}, {53793, 57612}, {57603, 62509}, {61446, 62645}
X(65770) = reflection of X(i) in X(j) for these {i,j}: {14559, 1511}, {14995, 549}, {52472, 14356}, {52772, 3}
X(65770) = complement of X(52472)
X(65770) = anticomplement of X(14356)
X(65770) = reflection of X(52772) in the Euler line
X(65770) = anticomplement of the isogonal conjugate of X(14355)
X(65770) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {98, 63642}, {293, 3153}, {1910, 37779}, {2624, 39359}, {6149, 147}, {14355, 8}, {36084, 526}, {36104, 41079}, {60777, 21221}
X(65770) = X(53866)-Ceva conjugate of X(542)
X(65770) = crosspoint of X(290) and X(40427)
X(65770) = crossdifference of every pair of points on line {3003, 14398}
X(65770) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 52472, 14356}, {3, 46632, 47050}, {46632, 47050, 59291}, {51898, 51899, 18331}
X(65771) lies on the cubic K1371 and these lines: {2, 2966}, {20, 99}, {30, 36890}, {69, 523}, {316, 57611}, {325, 4226}, {340, 16237}, {2857, 55972}, {6036, 53783}, {6103, 37667}, {6394, 30789}, {9473, 15589}, {11160, 40867}, {32815, 34193}, {36822, 63768}
X(65771) = anticomplement of X(35906)
X(65771) = anticomplement of the isogonal conjugate of X(35910)
X(65771) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1755, 39358}, {1959, 146}, {2159, 385}, {2349, 511}, {3405, 25045}, {23997, 63248}, {32112, 21221}, {33805, 14957}, {35200, 401}, {35908, 5905}, {35910, 8}, {36034, 2799}, {36119, 51481}, {65263, 53345}
X(65771) = crosspoint of X(1494) and X(40428)
X(65771) = crosssum of X(1495) and X(51335)
X(65772) lies on the cubic K1371 and these lines: {2, 2501}, {30, 6334}, {99, 249}, {114, 523}, {127, 38970}, {230, 2799}, {1297, 36166}, {1499, 18556}, {1550, 36875}, {3268, 3580}, {3566, 38749}, {7471, 47627}, {10011, 16230}, {14223, 60073}, {35297, 44427}
X(65772) = reflection of X(16230) in X(10011)
X(65772) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {36034, 325}, {36131, 3564}, {36875, 21294}
X(65772) = crosspoint of X(i) and X(j) for these (i,j): {1494, 55266}, {16077, 57553}
X(65772) = crossdifference of every pair of points on line {44114, 52144}
X(65773) lies on the cubic K1371 and these lines: {2, 648}, {99, 63248}, {110, 476}, {146, 2794}, {147, 52035}, {385, 46787}, {2407, 3268}, {2799, 34211}, {12228, 36177}, {14566, 41392}, {15421, 41676}, {23588, 39290}, {32661, 63249}
X(65773) = crosspoint of X(2966) and X(39290)
X(65773) = crosssum of X(3569) and X(52743)
X(65773) = crossdifference of every pair of points on line {2088, 9409}
X(65774) lies on the cubic K1371 and these lines: {2, 65613}, {99, 65719}, {287, 524}, {441, 2799}, {476, 858}, {523, 65722}, {1503, 4226}, {1990, 16237}, {3268, 11064}, {15421, 54075}, {44436, 46425}, {44578, 51228}, {45331, 64915}, {65622, 65734}
X(65774) = reflection of X(1990) in X(24975)
X(65774) = X(53383)-anticomplementary conjugate of X(21294)
X(65775) lies on the cubic K1371 and these lines: {30, 44427}, {99, 65714}, {476, 2966}, {523, 54395}, {690, 10723}, {1297, 1300}, {1494, 18808}, {2799, 34174}, {4226, 16230}, {62663, 65720}
X(65775) = reflection of X(4226) in X(16230)
X(65776) lies on the cubic K1372 and these lines: {2, 98}, {30, 51228}, {99, 6035}, {250, 523}, {1302, 2715}, {1494, 51262}, {1637, 4240}, {2395, 60504}, {2407, 9033}, {2799, 4226}, {3014, 31636}, {3018, 6531}, {3163, 9214}, {4230, 53265}, {5502, 11176}, {6037, 11636}, {6394, 35520}, {7471, 52076}, {9211, 43187}, {14220, 30528}, {14559, 15395}, {22456, 58994}, {34810, 51430}, {36084, 38340}, {41173, 52035}, {51389, 65759}, {51431, 52472}, {53383, 65773}, {53701, 58948}, {58978, 59098}
X(65776) = reflection of X(i) in X(j) for these {i,j}: {287, 5967}, {9214, 3163}
X(65776) = isogonal conjugate of X(32112)
X(65776) = antitomic image of X(9214)
X(65776) = X(65754)-cross conjugate of X(30)
X(65776) = X(i)-isoconjugate of X(j) for these (i,j): {1, 32112}, {163, 65756}, {240, 14380}, {656, 35908}, {661, 35910}, {684, 36119}, {868, 36034}, {1755, 2394}, {1959, 2433}, {2159, 2799}, {2349, 3569}, {2491, 33805}, {12079, 23997}, {16230, 35200}, {34767, 57653}, {41172, 65263}
X(65776) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 32112}, {30, 65754}, {115, 65756}, {133, 16230}, {1511, 684}, {3163, 2799}, {3258, 868}, {36830, 35910}, {36899, 2394}, {39085, 14380}, {40596, 35908}, {62562, 12079}, {62569, 6333}, {62598, 62431}, {62613, 325}, {65760, 62555}
X(65776) = cevapoint of X(i) and X(j) for these (i,j): {30, 65754}, {1637, 51431}
X(65776) = trilinear pole of line {30, 2420}
X(65776) = crossdifference of every pair of points on line {3569, 41172}
X(65776) = barycentric product X(i)*X(j) for these {i,j}: {30, 2966}, {98, 2407}, {99, 35906}, {110, 60869}, {287, 4240}, {290, 2420}, {293, 24001}, {336, 56829}, {648, 35912}, {685, 11064}, {1495, 43187}, {1637, 57991}, {1990, 17932}, {2173, 36036}, {2715, 3260}, {3284, 22456}, {6037, 51372}, {9033, 60179}, {9409, 41174}, {14206, 36084}, {14999, 53866}, {23347, 57799}, {34761, 51228}, {36891, 60504}, {39291, 51430}, {41079, 57742}, {41173, 51389}, {43754, 46106}, {46786, 51263}, {51431, 55266}, {57562, 65754}
X(65776) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 32112}, {30, 2799}, {98, 2394}, {110, 35910}, {112, 35908}, {248, 14380}, {287, 34767}, {523, 65756}, {685, 16080}, {1495, 3569}, {1637, 868}, {1976, 2433}, {1990, 16230}, {2395, 12079}, {2407, 325}, {2420, 511}, {2715, 74}, {2966, 1494}, {3081, 58351}, {3163, 65754}, {3233, 51389}, {3284, 684}, {4240, 297}, {6531, 18808}, {9214, 62629}, {9407, 2491}, {9409, 41172}, {11064, 6333}, {14398, 44114}, {14581, 17994}, {17974, 62665}, {23347, 232}, {24001, 40703}, {32696, 8749}, {34761, 51227}, {35906, 523}, {35912, 525}, {36036, 33805}, {36084, 2349}, {36104, 36119}, {41079, 62431}, {41392, 14356}, {42716, 42703}, {43754, 14919}, {48453, 23350}, {51228, 34765}, {51263, 46787}, {51389, 62555}, {51431, 55267}, {52451, 65614}, {52951, 33752}, {53866, 14223}, {56829, 240}, {57742, 44769}, {58346, 65755}, {60179, 16077}, {60504, 36875}, {60506, 63856}, {60777, 56792}, {60869, 850}, {65754, 35088}
X(65776) = {X(1976),X(5967)}-harmonic conjugate of X(65616)
X(65777) lies on the cubic K1372 and these lines: {2, 9141}, {30, 2420}, {98, 54527}, {230, 54380}, {287, 46808}, {476, 2395}, {523, 60505}, {1637, 4240}, {1692, 65764}, {2394, 2966}, {2799, 34211}, {3233, 14401}, {5967, 11657}, {10313, 14966}, {14910, 57260}
X(65777) = X(60179)-Ceva conjugate of X(35912)
X(65777) = X(58351)-cross conjugate of X(3163)
X(65777) = X(i)-isoconjugate of X(j) for these (i,j): {2349, 32112}, {36034, 65756}
X(65777) = X(i)-Dao conjugate of X(j) for these (i,j): {30, 2799}, {3258, 65756}
X(65777) = cevapoint of X(3163) and X(58351)
X(65777) = crosssum of X(3569) and X(32112)
X(65777) = trilinear pole of line {3163, 58348}
X(65777) = barycentric product X(i)*X(j) for these {i,j}: {98, 3233}, {685, 16163}, {1099, 36084}, {2407, 35906}, {2420, 60869}, {2715, 36789}, {2966, 3163}, {4240, 35912}, {9408, 43187}, {14401, 60179}, {16240, 17932}, {34334, 43754}, {36036, 42074}, {53866, 64607}, {57562, 58351}, {57742, 58263}, {57991, 58346}
X(65777) = barycentric quotient X(i)/X(j) for these {i,j}: {1495, 32112}, {1637, 65756}, {2420, 35910}, {2715, 40384}, {2966, 31621}, {3081, 65754}, {3163, 2799}, {3233, 325}, {9408, 3569}, {16163, 6333}, {16240, 16230}, {23347, 35908}, {35906, 2394}, {35912, 34767}, {36435, 58351}, {58263, 62431}, {58343, 41167}, {58344, 44114}, {58346, 868}, {58349, 51429}, {58351, 35088}
X(65778) lies on the cubic K1372 and these lines: {2, 647}, {30, 9409}, {98, 2697}, {112, 2966}, {148, 15351}, {287, 65325}, {290, 53201}, {339, 525}, {520, 53174}, {523, 2967}, {879, 4846}, {1636, 11064}, {1637, 46106}, {2799, 30737}, {3267, 35911}, {7480, 47004}, {12042, 39201}, {12384, 52076}, {18314, 46115}, {18558, 57482}, {18850, 64788}, {23105, 53783}, {28438, 52613}, {35906, 65757}, {36893, 63247}, {47256, 65729}, {52472, 52485}
X(65778) = X(i)-isoconjugate of X(j) for these (i,j): {163, 35908}, {232, 36034}, {237, 65263}, {240, 32640}, {511, 36131}, {1304, 1755}, {1959, 32715}, {2159, 4230}, {8749, 23997}, {9417, 16077}, {14966, 36119}, {32676, 35910}, {35200, 58070}, {40352, 62720}, {44769, 57653}
X(65778) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 35908}, {133, 58070}, {647, 32112}, {1511, 14966}, {3163, 4230}, {3258, 232}, {14401, 684}, {15526, 35910}, {36899, 1304}, {38999, 3289}, {39008, 511}, {39058, 16077}, {39085, 32640}, {57295, 3569}, {62562, 8749}, {62569, 2421}, {62598, 297}, {65757, 2799}
X(65778) = trilinear pole of line {9033, 65753}
X(65778) = barycentric product X(i)*X(j) for these {i,j}: {287, 41079}, {290, 9033}, {336, 36035}, {525, 60869}, {850, 35912}, {879, 3260}, {1636, 60199}, {1637, 57799}, {1650, 22456}, {2631, 46273}, {2966, 65753}, {3267, 35906}, {9409, 18024}, {11064, 43665}, {16081, 41077}, {17932, 58261}, {46106, 53173}
X(65778) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 4230}, {98, 1304}, {125, 32112}, {248, 32640}, {287, 44769}, {290, 16077}, {293, 36034}, {523, 35908}, {525, 35910}, {878, 40352}, {879, 74}, {1636, 3289}, {1637, 232}, {1650, 684}, {1821, 65263}, {1910, 36131}, {1976, 32715}, {1990, 58070}, {2395, 8749}, {2422, 40354}, {2631, 1755}, {3260, 877}, {3284, 14966}, {6531, 32695}, {9033, 511}, {9409, 237}, {11064, 2421}, {14206, 62720}, {14398, 2211}, {14581, 34859}, {16081, 15459}, {22456, 42308}, {35906, 112}, {35912, 110}, {36035, 240}, {41077, 36212}, {41079, 297}, {43665, 16080}, {51404, 2433}, {52624, 51389}, {53173, 14919}, {53174, 36831}, {58261, 16230}, {60869, 648}, {65753, 2799}, {65754, 2967}, {65758, 57493}
X(65778) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16083, 37858, 46786}, {43665, 52145, 18312}
X(65779) lies on the cubic K1372 and these lines: {2, 35909}, {30, 9409}, {74, 98}, {186, 14270}, {230, 3569}, {248, 2395}, {476, 2966}, {523, 5191}, {526, 53132}, {868, 6130}, {1511, 5664}, {1637, 35906}, {2407, 9033}, {2409, 16230}, {2411, 14355}, {2799, 40080}, {3268, 60340}, {4226, 53345}, {5967, 9003}, {9185, 58349}, {9517, 57603}, {11081, 23283}, {11086, 23284}, {12042, 65723}, {15469, 35912}, {18316, 43665}, {21525, 53263}, {34156, 59291}, {39176, 62172}, {46608, 51869}, {51430, 65754}, {52763, 60869}, {53783, 62438}
X(65779) = midpoint of X(4226) and X(53345)
X(65779) = reflection of X(i) in X(j) for these {i,j}: {868, 6130}, {3268, 60340}
X(65779) = X(i)-Ceva conjugate of X(j) for these (i,j): {685, 14355}, {2966, 35906}
X(65779) = X(i)-isoconjugate of X(j) for these (i,j): {1755, 39290}, {5627, 23997}, {11079, 62720}, {14356, 36034}, {32678, 35910}, {35908, 36061}
X(65779) = X(i)-Dao conjugate of X(j) for these (i,j): {1637, 2799}, {3258, 14356}, {3284, 2421}, {8552, 6333}, {14918, 877}, {16221, 35908}, {18334, 35910}, {36899, 39290}, {60342, 32112}, {62551, 325}, {62562, 5627}
X(65779) = crosssum of X(511) and X(32112)
X(65779) = trilinear pole of line {3258, 52743}
X(65779) = barycentric product X(i)*X(j) for these {i,j}: {98, 5664}, {287, 62172}, {290, 52743}, {526, 60869}, {879, 14920}, {1511, 43665}, {2395, 6148}, {2966, 3258}, {3260, 60777}, {3268, 35906}, {14355, 41079}, {22456, 47414}, {35912, 44427}
X(65779) = barycentric quotient X(i)/X(j) for these {i,j}: {98, 39290}, {526, 35910}, {878, 11079}, {1511, 2421}, {1637, 14356}, {2088, 32112}, {2395, 5627}, {2422, 40355}, {2715, 15395}, {3258, 2799}, {5664, 325}, {6148, 2396}, {14355, 44769}, {14920, 877}, {35201, 62720}, {35906, 476}, {35912, 60053}, {39176, 4230}, {47230, 35908}, {47414, 684}, {52743, 511}, {60777, 74}, {60869, 35139}, {62172, 297}
X(65780) lies on the cubic K1372 and these lines: {23, 94}, {287, 37784}, {523, 60502}, {686, 3580}, {687, 2966}, {1637, 46106}, {2394, 44146}, {2407, 3260}, {2409, 44145}, {2799, 51481}, {3003, 16237}, {53245, 64781}
X(65780) = reflection of X(i) in X(j) for these {i,j}: {3260, 65753}, {16237, 3003}
X(65780) = X(i)-Ceva conjugate of X(j) for these (i,j): {290, 52451}, {16081, 60869}
X(65780) = X(i)-isoconjugate of X(j) for these (i,j): {1755, 10419}, {9417, 40423}, {36034, 65762}
X(65780) = X(i)-Dao conjugate of X(j) for these (i,j): {3003, 511}, {3258, 65762}, {11064, 36212}, {34834, 35910}, {36899, 10419}, {39021, 32112}, {39058, 40423}, {65753, 2799}
X(65780) = trilinear pole of line {113, 65757}
X(65780) = barycentric product X(i)*X(j) for these {i,j}: {113, 290}, {2966, 65757}, {3260, 52451}, {3580, 60869}, {16081, 62569}, {35912, 44138}, {43187, 55265}, {47405, 60199}
X(65780) = barycentric quotient X(i)/X(j) for these {i,j}: {98, 10419}, {113, 511}, {290, 40423}, {403, 35908}, {1637, 65762}, {3580, 35910}, {6531, 40388}, {35906, 14910}, {35912, 5504}, {43187, 55264}, {47405, 3289}, {52451, 74}, {55121, 32112}, {55265, 3569}, {60869, 2986}, {62569, 36212}, {65757, 2799}
X(65781) lies on the cubic K1372 and these lines: {230, 297}, {287, 2395}, {476, 39374}, {2065, 56925}, {2409, 3563}, {8781, 55266}, {10723, 41173}, {35906, 36891}, {36181, 60506}, {39809, 51820}, {41253, 57493}, {51431, 52472}, {52081, 52091}, {54395, 60504}
X(65781) = X(i)-cross conjugate of X(j) for these (i,j): {30, 36891}, {11064, 60869}
X(65781) = X(i)-isoconjugate of X(j) for these (i,j): {74, 17462}, {114, 2159}, {1755, 36875}, {2349, 51335}, {8772, 35910}, {36034, 55267}, {36119, 47406}
X(65781) = X(i)-Dao conjugate of X(j) for these (i,j): {1511, 47406}, {3163, 114}, {3258, 55267}, {36899, 36875}, {57295, 41181}, {62569, 62590}
X(65781) = cevapoint of X(30) and X(35906)
X(65781) = trilinear pole of line {34810, 35912}
X(65781) = barycentric product X(i)*X(j) for these {i,j}: {30, 40428}, {98, 36891}, {1637, 55266}, {2065, 3260}, {2966, 65758}, {2987, 60869}, {8781, 35906}, {35142, 35912}
X(65781) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 114}, {98, 36875}, {1495, 51335}, {1637, 55267}, {2065, 74}, {2173, 17462}, {2987, 35910}, {3284, 47406}, {3563, 35908}, {11064, 62590}, {35364, 32112}, {35906, 230}, {35912, 3564}, {36891, 325}, {40428, 1494}, {53866, 34174}, {60869, 51481}, {65758, 2799}
X(65782) lies on the cubic K1372 and these lines: {2, 525}, {30, 1637}, {112, 476}, {113, 38975}, {115, 6587}, {441, 2799}, {523, 3163}, {647, 31945}, {1990, 55141}, {2395, 34810}, {2966, 62629}, {3268, 44578}, {5915, 50642}, {9979, 40884}, {14417, 44346}, {14910, 47125}, {35906, 51937}, {36899, 52038}, {44216, 44564}, {45801, 56399}, {47085, 62612}
X(65782) = midpoint of X(i) and X(j) for these {i,j}: {2966, 62629}, {9979, 40884}
X(65782) = reflection of X(i) in X(j) for these {i,j}: {14417, 44346}, {44216, 44564}
X(65782) = X(i)-complementary conjugate of X(j) for these (i,j): {2173, 36471}, {9406, 35088}, {35906, 21253}
X(65782) = X(i)-Ceva conjugate of X(j) for these (i,j): {2966, 30}, {43673, 9033}
X(65782) = X(36034)-isoconjugate of X(65765)
X(65782) = X(i)-Dao conjugate of X(j) for these (i,j): {3258, 65765}, {65754, 2799}
X(65782) = crosspoint of X(648) and X(52485)
X(65782) = crosssum of X(6) and X(32112)
X(65782) = crossdifference of every pair of points on line {1495, 5502}
X(65782) = barycentric product X(30)*X(53383)
X(65782) = barycentric quotient X(i)/X(j) for these {i,j}: {1637, 65765}, {53383, 1494}
X(65783) lies on the cubic K1372 and these lines: {69, 65616}, {230, 54380}, {523, 53783}, {542, 65726}, {2395, 34810}, {2409, 44145}, {2799, 40080}, {2966, 52472}, {3564, 5967}, {14356, 35906}, {18312, 34156}
X(65783) = X(i)-cross conjugate of X(j) for these (i,j): {1637, 2966}, {60340, 34761}
X(65783) = X(36034)-isoconjugate of X(65763)
X(65783) = X(i)-Dao conjugate of X(j) for these (i,j): {3258, 65763}, {34156, 52473}
X(65783) = cevapoint of X(35912) and X(53783)
X(65783) = trilinear pole of line {8779, 52038}
X(65783) = barycentric product X(2966)*X(65766)
X(65783) = barycentric quotient X(i)/X(j) for these {i,j}: {1637, 65763}, {2966, 65768}, {34369, 1550}, {35906, 52472}, {65726, 52473}, {65766, 2799}
Let ABC be a triangle and P', P" two distinct points. The following facts are widely known:
In all the previous cases, there are two triangles inscribed in a conic. Therefore, by the proposition if two triangles are circumscribed to a conic, they are also inscribed to a conic; and conversely, used in the preamble before X(65386), every pair of those of triangles are tangent to a common conic, here accordingly named, the bicircumcevian-, bicircumanticevian-, bicevian-, bianticevian-, bipedal- and biantipedal- inconic of T' and T".
This section includes the centers and perspectors of these inconics for P'=X(i) and P"=X(j), with 1≤{i, j}≤11. A list of already known centers and perspectors can be seen here.
As a remarkable note, for any P' and P", ABC is autopolar with respect to the bicevian inconic of P' and P".
X(65784) lies on these lines: {187, 237}, {526, 2914}, {690, 3574}, {1510, 12060}, {6750, 16230}, {24862, 41221}, {32737, 61203}, {34983, 57195}
X(65784) = midpoint of X(15451) and X(42650)
X(65784) = Gibert-circumtangential conjugate of X(46966)
X(65784) = isogonal conjugate of the isotomic conjugate of X(55132)
X(65784) = cross-difference of every pair of points on the line X(2)X(18315)
X(65784) = crosspoint of X(i) and X(j) for these {i, j}: {6, 46966}, {1154, 2439}, {10412, 12077}, {11062, 53176}
X(65784) = crosssum of X(i) and X(j) for these {i, j}: {2, 55132}, {1141, 2413}, {1154, 63830}, {18315, 52603}, {43083, 65326}
X(65784) = X(i)-Ceva conjugate of-X(j) for these (i, j): (1141, 47424), (10412, 12077), (46966, 6), (53176, 11062)
X(65784) = X(i)-Dao conjugate of-X(j) for these (i, j): (130, 50463), (137, 46138), (206, 46966), (1154, 10411), (6663, 35139), (15450, 65326), (17433, 95), (18402, 18831), (35591, 63172), (40588, 64516), (61504, 46139), (63463, 1141)
X(65784) = X(i)-isoconjugate of-X(j) for these {i, j}: {75, 46966}, {2167, 64516}, {36134, 46138}, {65221, 65326}
X(65784) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 46966), (51, 64516), (186, 52939), (1273, 55218), (2081, 95), (2439, 57764), (11062, 18831), (12077, 46138), (15451, 65326), (24862, 14592), (36412, 35139), (41078, 34384), (42293, 50463), (51513, 65360), (53176, 57573), (55132, 76), (55219, 1141), (57195, 328), (61378, 60053), (62259, 32680), (62260, 476), (62261, 46456), (65485, 11077)
X(65784) = perspector of the circumconic through X(6) and X(11062)
X(65784) = pole of the line {6, 11077} with respect to the circumcircle
X(65784) = pole of the line {1141, 3613} with respect to the nine-point circle
X(65784) = pole of the line {264, 18831} with respect to the polar circle
X(65784) = pole of the line {6, 11077} with respect to the Brocard inellipse
X(65784) = pole of the line {3269, 58903} with respect to the Jerabek circumhyperbola
X(65784) = pole of the line {669, 2934} with respect to the Kiepert parabola
X(65784) = pole of the line {51, 24862} with respect to the orthic inconic
X(65784) = pole of the line {99, 46966} with respect to the Stammler hyperbola
X(65784) = barycentric product X(i)*X(j) for these {i, j}: {5, 2081}, {6, 55132}, {51, 41078}, {137, 2439}, {186, 57195}, {526, 36412}, {1087, 2624}, {1154, 12077}, {1273, 55219}, {2290, 2618}, {2599, 2600}, {3268, 62260}, {6368, 11062}, {8552, 62261}, {14165, 34983}, {14270, 45793}, {14590, 24862}, {14918, 15451}, {32679, 62259}, {34520, 46002}
X(65784) = trilinear product X(i)*X(j) for these {i, j}: {31, 55132}, {526, 62259}, {1087, 14270}, {1953, 2081}, {2179, 41078}, {2290, 12077}, {2624, 36412}, {15451, 51801}, {32679, 62260}
X(65784) = trilinear quotient X(i)/X(j) for these (i, j): (31, 46966), (1087, 35139), (1953, 64516), (2081, 2167), (2290, 18315), (2618, 46138), (11062, 65221), (36412, 32680), (41078, 62276), (51801, 18831), (52414, 52939), (55132, 75), (61378, 36061), (62259, 476), (62260, 32678), (62261, 36129)
X(65785) lies on these lines: {30, 511}, {17434, 42650}, {34983, 57195}
X(65785) = isogonal conjugate of the anticomplement of X(65786)
X(65785) = complementary conjugate of X(65786)
X(65785) = cross-difference of every pair of points on the line X(6)X(288)
X(65785) = crosspoint of X(i) and X(j) for these {i, j}: {5, 35318}, {233, 35311}, {6368, 57195}
X(65785) = crosssum of X(i) and X(j) for these {i, j}: {54, 39181}, {288, 39180}
X(65785) = X(i)-Ceva conjugate of-X(j) for these (i, j): (4, 65786), (5, 39019), (6368, 35441), (23607, 41212), (35311, 233)
X(65785) = X(i)-complementary conjugate of-X(j) for these (i, j): (1, 65786), (59143, 34846)
X(65785) = X(i)-Dao conjugate of-X(j) for these (i, j): (125, 59143), (130, 20574), (137, 39286), (140, 18831), (233, 52939), (6368, 62724), (6663, 33513), (15450, 288), (35442, 95), (39019, 31617)
X(65785) = X(i)-isoconjugate of-X(j) for these {i, j}: {162, 59143}, {288, 65221}, {36134, 39286}
X(65785) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (140, 52939), (233, 18831), (647, 59143), (3078, 648), (6368, 31617), (12077, 39286), (14978, 42405), (15451, 288), (24862, 39183), (32078, 18315), (34983, 31626), (35311, 57573), (35441, 95), (36412, 33513), (39019, 62724), (42293, 20574), (53386, 16813), (57195, 40410), (59164, 6331)
X(65785) = center of the central inconic through X(62724) and X(65785)
X(65785) = perspector of the circumconic through X(2) and X(233)
X(65785) = barycentric product X(i)*X(j) for these {i, j}: {5, 35441}, {140, 57195}, {233, 6368}, {525, 3078}, {647, 59164}, {14978, 17434}, {15451, 57811}, {18314, 32078}, {34983, 40684}, {35311, 39019}, {35318, 35442}, {53386, 60597}
X(65785) = trilinear product X(i)*X(j) for these {i, j}: {656, 3078}, {810, 59164}, {1953, 35441}, {2618, 32078}, {17438, 57195}
X(65785) = trilinear quotient X(i)/X(j) for these (i, j): (233, 65221), (656, 59143), (1087, 33513), (2618, 39286), (3078, 162), (20879, 52939), (32078, 36134), (35441, 2167), (59164, 811)
X(65786) lies on the nine-point circle and these lines: {137, 39019}, {14635, 18402}, {35441, 35592}
X(65786) = complement of the isogonal conjugate of X(65785)
X(65786) = complementary conjugate of X(65785)
X(65786) = X(i)-Ceva conjugate of-X(j) for these (i, j): (4, 65785), (54449, 6368)
X(65786) = X(i)-complementary conjugate of-X(j) for these (i, j): (1, 65785), (810, 52540), (2618, 10184), (3078, 8062), (35441, 21231), (59164, 21259), (65785, 10)
X(65786) = center of the circumconic through X(4) and X(54449)
X(65787) lies on the nine-point circle and these lines: {2, 6578}, {114, 51586}, {3258, 4988}, {6627, 38960}, {15611, 35076}, {23064, 46660}
X(65787) = complementary conjugate of X(6367)
X(65787) = complement of X(6578)
X(65787) = X(4)-Ceva conjugate of-X(6367)
X(65787) = X(i)-complementary conjugate of-X(j) for these (i, j): (1, 6367), (42, 8043), (430, 8062), (512, 3743), (523, 27798), (594, 48049), (661, 6707), (756, 4977), (1100, 21196), (1125, 52601), (1213, 4369), (1230, 42327), (1500, 48003), (1962, 523), (2308, 31947), (2355, 21187), (2643, 3120), (3124, 16726), (3125, 24185), (4024, 17239), (4041, 18253), (4079, 44307), (4359, 52602), (4427, 21254), (4647, 512), (4705, 3634), (4976, 21233), (4979, 17045), (4983, 1125), (4988, 3739), (6367, 10), (8013, 513), (8663, 37), (20970, 14838), (21816, 514), (30591, 3741), (35327, 16598), (35342, 620), (44143, 21259), (52576, 21260)
X(65787) = center of the circumconic through X(4) and X(35468)
X(65787) = pole of the line {6367, 8043} with respect to the Kiepert circumhyperbola
X(65788) lies on these lines: {460, 512}, {520, 20580}, {2524, 39469}, {2713, 23582}, {3049, 62175}, {32320, 39201}, {54034, 58308}
X(65788) = cross-difference of every pair of points on the line X(394)X(801)
X(65788) = crosspoint of X(i) and X(j) for these {i, j}: {6, 1624}, {512, 39201}, {16035, 61204}
X(65788) = crosssum of X(99) and X(6528)
X(65788) = X(i)-Dao conjugate of-X(j) for these (i, j): (125, 57775), (136, 57843), (244, 57972), (2883, 6528), (3269, 76), (5139, 57677), (13567, 670), (17423, 1105), (35071, 40830), (38985, 57955), (38986, 821), (46093, 57800)
X(65788) = X(i)-isoconjugate of-X(j) for these {i, j}: {99, 821}, {107, 57955}, {110, 57972}, {162, 57775}, {775, 6528}, {801, 823}, {811, 1105}, {4575, 57843}, {4592, 57677}, {24019, 40830}, {36126, 57800}, {41890, 57973}, {57806, 59039}
X(65788) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (185, 6331), (417, 4563), (520, 40830), (647, 57775), (661, 57972), (774, 57973), (798, 821), (800, 6528), (820, 799), (822, 57955), (2489, 57677), (2501, 57843), (3049, 1105), (6508, 57968), (6509, 670), (14585, 59039), (16035, 42405), (32320, 57800), (39201, 801), (44079, 15352), (58310, 41890), (61374, 648)
X(65788) = perspector of the circumconic through X(393) and X(577)
X(65788) = pole of the line {1609, 9244} with respect to the circumcircle
X(65788) = pole of the line {185, 800} with respect to the 1st Lozada, circle
X(65788) = pole of the line {69, 57677} with respect to the polar circle
X(65788) = pole of the line {185, 800} with respect to the Brocard inellipse
X(65788) = pole of the line {6638, 52077} with respect to the MacBeath circumconic
X(65788) = pole of the line {25, 63531} with respect to the orthic inconic
X(65788) = pole of the line {6528, 55224} with respect to the Stammler hyperbola
X(65788) = barycentric product X(i)*X(j) for these {i, j}: {185, 647}, {235, 32320}, {417, 2501}, {512, 6509}, {520, 800}, {525, 61374}, {661, 820}, {774, 822}, {810, 6508}, {1624, 3269}, {2972, 61204}, {3049, 41005}, {13567, 39201}, {15451, 19180}, {16035, 17434}, {19166, 42293}, {34980, 41678}, {44079, 52613}, {52566, 58796}, {58763, 61349}
X(65788) = trilinear product X(i)*X(j) for these {i, j}: {185, 810}, {512, 820}, {656, 61374}, {774, 39201}, {798, 6509}, {800, 822}, {3049, 6508}, {17858, 58310}, {37754, 61204}
X(65788) = trilinear quotient X(i)/X(j) for these (i, j): (185, 811), (417, 4592), (512, 821), (520, 57955), (523, 57972), (656, 57775), (774, 6528), (800, 823), (810, 1105), (820, 99), (822, 801), (1624, 23999), (6508, 6331), (6509, 799), (13567, 57973), (24006, 57843), (24018, 40830), (39201, 775), (41005, 57968), (44079, 36126)
X(65789) lies on these lines: {6368, 14618}, {32320, 39201}, {34983, 57195}
X(65789) = cross-difference of every pair of points on the line X(2052)X(21449)
X(65789) = crosspoint of X(i) and X(j) for these {i, j}: {216, 61195}, {34983, 58305}
X(65789) = X(i)-Dao conjugate of-X(j) for these (i, j): (389, 18831), (46832, 54950)
X(65789) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (6750, 42401), (34836, 54950), (42441, 42405)
X(65789) = perspector of the circumconic through X(577) and X(34836)
X(65789) = barycentric product X(i)*X(j) for these {i, j}: {17434, 42441}, {34836, 58305}, {34983, 46832}
X(65790) lies on these lines: {513, 676}, {32320, 39201}
X(65790) = cross-difference of every pair of points on the line X(220)X(2052)
X(65790) = perspector of the circumconic through X(279) and X(577)
X(65790) = pole of the line {1617, 41373} with respect to the circumcircle
X(65790) = barycentric product X(39796)*X(52306)
X(65791) lies on these lines: {3239, 3900}, {32320, 39201}
X(65791) = cross-difference of every pair of points on the line X(1407)X(2052)
X(65791) = perspector of the circumconic through X(346) and X(577)
X(65791) = pole of the line {1604, 41373} with respect to the circumcircle
X(65791) = barycentric product X(40944)*X(52307)
X(65792) lies on these lines: {657, 4105}, {32320, 39201}
X(65792) = cross-difference of every pair of points on the line X(279)X(2052)
X(65792) = perspector of the circumconic through X(220) and X(577)
X(65792) = pole of the line {1615, 41373} with respect to the circumcircle
X(65792) = pole of the line {4616, 6528} with respect to the Stammler hyperbola
X(65792) = barycentric product X(i)*X(j) for these {i, j}: {10397, 40945}, {40943, 58340}, {52097, 65102}
X(65793) lies on these lines: {4024, 4705}, {32320, 39201}
X(65793) = cross-difference of every pair of points on the line X(593)X(2052)
X(65793) = perspector of the circumconic through X(577) and X(594)
X(65793) = pole of the line {35212, 41373} with respect to the circumcircle
X(65793) = barycentric product X(52310)*X(55351)
X(65794) lies on these lines: {460, 512}, {34983, 57195}
X(65794) = X(63463)-Dao conjugate of-X(65090)
X(65794) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (3575, 52939), (55219, 65090)
X(65794) = perspector of the circumconic through X(393) and X(36412)
X(65794) = pole of the line {25, 63552} with respect to the orthic inconic
X(65794) = barycentric product X(i)*X(j) for these {i, j}: {3574, 12077}, {3575, 57195}
X(65795) lies on these lines: {460, 512}, {657, 4105}, {661, 2488}, {663, 58299}, {926, 14298}, {3900, 57049}, {4895, 65442}, {8638, 58303}
X(65795) = cross-difference of every pair of points on the line X(279)X(394)
X(65795) = crosspoint of X(657) and X(18344)
X(65795) = crosssum of X(658) and X(6516)
X(65795) = X(33)-Ceva conjugate of-X(14936)
X(65795) = X(i)-Dao conjugate of-X(j) for these (i, j): (6260, 4569), (7004, 7182), (14714, 40424), (39025, 63185)
X(65795) = X(i)-isoconjugate of-X(j) for these {i, j}: {658, 40399}, {664, 63185}, {934, 40424}, {1088, 65361}, {1167, 4569}, {4616, 56259}, {40397, 65164}, {40444, 65296}
X(65795) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (657, 40424), (1108, 4569), (1210, 46406), (1864, 4554), (3063, 63185), (8641, 40399), (14827, 65361), (23204, 65296), (37566, 36838), (40628, 7182), (40958, 658), (40979, 4625), (53288, 1275), (61212, 59457)
X(65795) = perspector of the circumconic through X(220) and X(393)
X(65795) = pole of the line {1609, 1615} with respect to the circumcircle
X(65795) = pole of the line {198, 800} with respect to the 1st Lozada, circle
X(65795) = pole of the line {198, 800} with respect to the Brocard inellipse
X(65795) = pole of the line {6392, 46706} with respect to the Steiner circumellipse
X(65795) = barycentric product X(i)*X(j) for these {i, j}: {33, 40628}, {650, 1864}, {657, 1210}, {1071, 65103}, {1108, 3900}, {1146, 53288}, {2310, 61237}, {3119, 61227}, {3239, 40958}, {3611, 17926}, {4041, 40979}, {4081, 61212}, {4130, 37566}, {8641, 17862}, {14936, 61185}, {21789, 21933}
X(65795) = trilinear product X(i)*X(j) for these {i, j}: {607, 40628}, {657, 1108}, {663, 1864}, {1210, 8641}, {2310, 53288}, {3022, 61227}, {3119, 61212}, {3709, 40979}, {3900, 40958}, {4105, 37566}, {14936, 61237}
X(65795) = trilinear quotient X(i)/X(j) for these (i, j): (657, 40399), (663, 63185), (1108, 658), (1210, 4569), (1253, 65361), (1864, 664), (3900, 40424), (4524, 56259), (8641, 1167), (17862, 46406), (37566, 4626), (40628, 348), (40958, 934), (40979, 4573), (53288, 7045), (61227, 59457), (61237, 1275), (65103, 40444)
X(65795) = (X(4524), X(65804))-harmonic conjugate of X(8641)
X(65796) lies on these lines: {460, 512}, {523, 3239}, {649, 1637}, {650, 6089}, {690, 48269}, {2799, 3835}, {3268, 27138}, {3700, 21099}, {4024, 4705}, {4079, 55197}, {4155, 4524}, {6370, 14321}, {8029, 8663}, {8672, 47124}, {9979, 20295}, {12077, 42664}, {14417, 30835}, {16230, 57043}, {18004, 57199}, {31286, 44564}, {42666, 55212}
X(65796) = midpoint of X(12077) and X(42664)
X(65796) = cross-difference of every pair of points on the line X(394)X(593)
X(65796) = crosspoint of X(i) and X(j) for these {i, j}: {1834, 14543}, {2501, 4024}
X(65796) = crosssum of X(4556) and X(4558)
X(65796) = X(i)-Ceva conjugate of-X(j) for these (i, j): (1826, 115), (14543, 1834)
X(65796) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 64985), (136, 40414), (440, 4610), (4466, 17206), (5139, 57390), (40607, 29163), (40940, 4563), (59646, 99)
X(65796) = X(i)-isoconjugate of-X(j) for these {i, j}: {163, 64985}, {757, 29163}, {951, 4612}, {1257, 4556}, {2983, 52935}, {4558, 40431}, {4575, 40414}, {4592, 57390}
X(65796) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (440, 4563), (523, 64985), (1104, 52935), (1500, 29163), (1834, 99), (2264, 4612), (2489, 57390), (2501, 40414), (4079, 2983), (4705, 1257), (14543, 4590), (17863, 4623), (18673, 4592), (21671, 4561), (29162, 1509), (40940, 4610), (40977, 662), (40984, 110), (44093, 4558), (53290, 249), (61221, 24041), (65206, 6064)
X(65796) = perspector of the circumconic through X(393) and X(594)
X(65796) = pole of the line {1609, 35212} with respect to the circumcircle
X(65796) = pole of the line {7390, 9752} with respect to the orthoptic circle of Steiner inellipse
X(65796) = pole of the line {69, 7058} with respect to the polar circle
X(65796) = pole of the line {6392, 46707} with respect to the Steiner circumellipse
X(65796) = pole of the line {966, 3767} with respect to the Steiner inellipse
X(65796) = barycentric product X(i)*X(j) for these {i, j}: {115, 14543}, {338, 53290}, {440, 2501}, {523, 1834}, {594, 29162}, {850, 40984}, {1104, 4036}, {1109, 61221}, {1365, 65206}, {1577, 40977}, {1842, 4064}, {2970, 61200}, {4024, 40940}, {4705, 17863}, {7649, 21671}, {14618, 44093}, {18673, 24006}
X(65796) = trilinear product X(i)*X(j) for these {i, j}: {115, 61221}, {523, 40977}, {661, 1834}, {756, 29162}, {950, 57185}, {1104, 4024}, {1109, 53290}, {1577, 40984}, {1842, 55232}, {2501, 18673}, {2643, 14543}, {4079, 17863}, {4705, 40940}, {6591, 21671}, {24006, 44093}
X(65796) = trilinear quotient X(i)/X(j) for these (i, j): (440, 4592), (756, 29163), (950, 4612), (1104, 4556), (1577, 64985), (1834, 662), (2264, 4636), (2501, 40431), (4024, 1257), (4705, 2983), (14543, 24041), (17863, 4610), (18673, 4558), (21671, 1332), (24006, 40414), (29162, 757), (40940, 52935), (40977, 110), (40984, 163), (44093, 4575)
X(65797) lies on these lines: {669, 688}, {34983, 57195}
X(65797) = X(55072)-Dao conjugate of-X(34384)
X(65797) = perspector of the circumconic through X(32) and X(36412)
X(65798) lies on these lines: {513, 676}, {34983, 57195}
X(65798) = perspector of the circumconic through X(279) and X(36412)
X(65799) lies on these lines: {3239, 3900}, {34983, 57195}
X(65799) = perspector of the circumconic through X(346) and X(36412)
X(65800) lies on these lines: {657, 4105}, {34983, 57195}
X(65800) = perspector of the circumconic through X(220) and X(36412)
X(65801) lies on these lines: {4024, 4705}, {34983, 57195}
X(65801) = perspector of the circumconic through X(594) and X(36412)
X(65802) lies on these lines: {657, 4105}, {669, 688}
X(65802) = isogonal conjugate of the isotomic conjugate of X(65442)
X(65802) = cross-difference of every pair of points on the line X(76)X(279)
X(65802) = crosssum of X(i) and X(j) for these {i, j}: {4569, 4572}, {4885, 5836}
X(65802) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 6613), (2170, 20567), (12640, 6386), (40368, 59123)
X(65802) = X(i)-isoconjugate of-X(j) for these {i, j}: {75, 6613}, {561, 59123}, {658, 32017}, {1088, 8706}, {1222, 4569}, {1261, 52937}, {1476, 4572}, {4554, 40420}, {4625, 56173}, {4635, 56258}, {23617, 46406}, {36838, 52549}
X(65802) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 6613), (1201, 46406), (1501, 59123), (2347, 4572), (6363, 57792), (6615, 20567), (8641, 32017), (14827, 8706), (18163, 55213), (20228, 4569), (21120, 41283), (40982, 46404), (42336, 23062), (42337, 1502), (59173, 52937), (65442, 76)
X(65802) = perspector of the circumconic through X(32) and X(220)
X(65802) = pole of the line {1613, 1615} with respect to the circumcircle
X(65802) = pole of the line {3051, 30706} with respect to the Brocard inellipse
X(65802) = pole of the line {670, 4616} with respect to the Stammler hyperbola
X(65802) = pole of the line {8264, 46706} with respect to the Steiner circumellipse
X(65802) = barycentric product X(i)*X(j) for these {i, j}: {6, 65442}, {32, 42337}, {41, 6615}, {220, 6363}, {652, 40982}, {657, 1201}, {663, 2347}, {728, 42336}, {1122, 57180}, {1253, 48334}, {1828, 65102}, {1919, 6736}, {2175, 21120}, {3057, 3063}, {3752, 8641}, {3900, 20228}, {4105, 59173}, {14936, 23845}, {18163, 63461}, {21789, 21796}
X(65802) = trilinear product X(i)*X(j) for these {i, j}: {31, 65442}, {480, 42336}, {560, 42337}, {657, 20228}, {1201, 8641}, {1253, 6363}, {1946, 40982}, {1980, 6736}, {2175, 6615}, {2347, 3063}, {9447, 21120}, {14827, 48334}, {57180, 59173}, {61050, 62754}
X(65802) = trilinear quotient X(i)/X(j) for these (i, j): (31, 6613), (560, 59123), (657, 32017), (1122, 52937), (1201, 4569), (1253, 8706), (2347, 4554), (3057, 4572), (3063, 40420), (3752, 46406), (6363, 1088), (6615, 6063), (6736, 6386), (8641, 1222), (17183, 55213), (20228, 658), (21120, 20567), (40982, 18026), (42336, 479), (42337, 561)
X(65803) lies on these lines: {669, 688}, {4024, 4705}
X(65803) = cross-difference of every pair of points on the line X(76)X(593)
X(65803) = perspector of the circumconic through X(32) and X(594)
X(65803) = pole of the line {1613, 35212} with respect to the circumcircle
X(65803) = pole of the line {8264, 46707} with respect to the Steiner circumellipse
X(65803) = pole of the line {6537, 8265} with respect to the Steiner inellipse
X(65803) = barycentric product X(i)*X(j) for these {i, j}: {4016, 50488}, {8637, 20654}, {20966, 42664}, {40986, 47842}
X(65803) = trilinear product X(i)*X(j) for these {i, j}: {20966, 50488}, {40986, 42664}
X(65804) lies on these lines: {512, 65664}, {513, 676}, {657, 4105}, {663, 20980}, {926, 4162}, {1174, 23351}, {3900, 57064}, {6182, 65445}, {8653, 62176}, {15283, 46399}
X(65804) = reflection of X(4524) in X(657)
X(65804) = cross-difference of every pair of points on the line X(144)X(220)
X(65804) = crosspoint of X(513) and X(657)
X(65804) = crosssum of X(100) and X(658)
X(65804) = X(1)-Ceva conjugate of-X(14936)
X(65804) = X(i)-Dao conjugate of-X(j) for these (i, j): (2310, 75), (11019, 668), (14714, 56026), (38991, 23618), (39025, 63192), (43182, 4569), (59573, 4572)
X(65804) = X(i)-isoconjugate of-X(j) for these {i, j}: {651, 23618}, {664, 63192}, {934, 56026}
X(65804) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (657, 56026), (663, 23618), (1200, 664), (3063, 63192), (11019, 46406), (14100, 4554), (20978, 658), (40133, 4569), (41006, 4572), (60992, 52937)
X(65804) = perspector of the circumconic through X(220) and X(279)
X(65804) = pole of the line {1615, 1617} with respect to the circumcircle
X(65804) = pole of the line {57, 63601} with respect to the incircle
X(65804) = pole of the line {56, 23653} with respect to the Brocard inellipse
X(65804) = pole of the line {3056, 52562} with respect to the Mandart inellipse
X(65804) = pole of the line {4452, 46706} with respect to the Steiner circumellipse
X(65804) = barycentric product X(i)*X(j) for these {i, j}: {522, 1200}, {650, 14100}, {657, 11019}, {663, 41006}, {3022, 65174}, {3239, 20978}, {3900, 40133}, {4105, 60992}, {4162, 45202}, {4521, 45229}, {4524, 26818}, {8641, 20905}, {10167, 65103}, {21049, 21789}
X(65804) = trilinear product X(i)*X(j) for these {i, j}: {650, 1200}, {657, 40133}, {663, 14100}, {3063, 41006}, {3900, 20978}, {4162, 45229}, {8641, 11019}, {22088, 65103}, {57180, 60992}
X(65804) = trilinear quotient X(i)/X(j) for these (i, j): (650, 23618), (663, 63192), (1200, 651), (3900, 56026), (11019, 4569), (14100, 664), (20905, 46406), (20978, 934), (22088, 65296), (26818, 4635), (40133, 658), (41006, 4554), (45228, 65165), (45229, 65173), (60992, 36838)
X(65804) = (X(8641), X(65795))-harmonic conjugate of X(4524)
X(65805) lies on these lines: {513, 676}, {4024, 4705}
X(65805) = cross-difference of every pair of points on the line X(220)X(593)
X(65805) = X(4854)-reciprocal conjugate of-X(4633)
X(65805) = perspector of the circumconic through X(279) and X(594)
X(65805) = pole of the line {1617, 35212} with respect to the circumcircle
X(65805) = pole of the line {4452, 46707} with respect to the Steiner circumellipse
X(65805) = pole of the line {4000, 6537} with respect to the Steiner inellipse
X(65805) = barycentric product X(i)*X(j) for these {i, j}: {4841, 4854}, {21673, 30723}
X(65805) = trilinear product X(4822)*X(4854)
X(65805) = trilinear quotient X(4854)/X(4614)
X(65806) lies on these lines: {3239, 3900}, {4024, 4705}
X(65806) = cross-difference of every pair of points on the line X(593)X(1407)
X(65806) = X(i)-Dao conjugate of-X(j) for these (i, j): (5745, 4616), (21044, 1434), (55064, 63194)
X(65806) = X(4565)-isoconjugate of-X(63194)
X(65806) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2650, 4637), (4041, 63194), (4171, 40430), (6737, 4610), (17056, 4616), (18698, 4635), (21674, 658), (21677, 4573), (21811, 1414), (42708, 4569), (62566, 1434), (65432, 7058)
X(65806) = perspector of the circumconic through X(346) and X(594)
X(65806) = pole of the line {1604, 35212} with respect to the circumcircle
X(65806) = pole of the line {200, 23902} with respect to the Mandart inellipse
X(65806) = pole of the line {30695, 46707} with respect to the Steiner circumellipse
X(65806) = pole of the line {6537, 6554} with respect to the Steiner inellipse
X(65806) = barycentric product X(i)*X(j) for these {i, j}: {2321, 62566}, {3239, 21674}, {3700, 21677}, {3900, 42708}, {4024, 6737}, {4082, 23755}, {4086, 21811}, {4171, 18698}, {6354, 65432}, {22003, 52335}
X(65806) = trilinear product X(i)*X(j) for these {i, j}: {210, 62566}, {657, 42708}, {1254, 65432}, {3700, 21811}, {3900, 21674}, {4041, 21677}, {4092, 53388}, {4171, 17056}, {4515, 23755}, {4524, 18698}, {4705, 6737}, {22003, 36197}
X(65806) = trilinear quotient X(i)/X(j) for these (i, j): (3700, 63194), (6737, 52935), (17056, 4637), (18698, 4616), (21674, 934), (21677, 1414), (21811, 4565), (42708, 658), (62566, 1014), (65432, 1098)
X(65807) lies on these lines: {657, 4105}, {4024, 4705}
X(65807) = cross-difference of every pair of points on the line X(279)X(593)
X(65807) = X(i)-Dao conjugate of-X(j) for these (i, j): (942, 4616), (39007, 552), (40607, 58993)
X(65807) = X(i)-isoconjugate of-X(j) for these {i, j}: {757, 58993}, {4635, 40570}, {4637, 40395}
X(65807) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1500, 58993), (4524, 40395), (7064, 65334), (18591, 4616), (41393, 36838), (52306, 552), (56839, 4635), (59177, 65296), (64171, 55231)
X(65807) = perspector of the circumconic through X(220) and X(594)
X(65807) = pole of the line {1615, 35212} with respect to the circumcircle
X(65807) = pole of the line {46706, 46707} with respect to the Steiner circumellipse
X(65807) = barycentric product X(i)*X(j) for these {i, j}: {3695, 33525}, {4130, 41393}, {4171, 56839}, {6057, 52306}, {8611, 40967}, {21675, 57108}, {55232, 64171}, {59163, 65103}
X(65807) = trilinear product X(i)*X(j) for these {i, j}: {3949, 33525}, {4105, 41393}, {4171, 18591}, {4524, 56839}, {21675, 65102}, {55230, 64171}
X(65807) = trilinear quotient X(i)/X(j) for these (i, j): (756, 58993), (3690, 36048), (4171, 40395), (18591, 4637), (21675, 13149), (41393, 4626), (56839, 4616)
X(65808) lies on these lines: {1, 4534}, {2, 1565}, {3, 6554}, {4, 27541}, {5, 169}, {6, 59594}, {8, 57192}, {9, 119}, {10, 30618}, {11, 5540}, {19, 1596}, {30, 910}, {37, 59588}, {41, 37730}, {101, 952}, {116, 5845}, {118, 31852}, {140, 1212}, {150, 31640}, {220, 5690}, {230, 49758}, {242, 51366}, {355, 23058}, {381, 5819}, {404, 26793}, {442, 27068}, {495, 40131}, {496, 2082}, {514, 6710}, {515, 5199}, {517, 8074}, {519, 44897}, {528, 21090}, {644, 1145}, {650, 13006}, {812, 4422}, {948, 31184}, {956, 26258}, {999, 40127}, {1060, 46344}, {1111, 26007}, {1213, 62652}, {1358, 31192}, {1368, 15487}, {1375, 30807}, {1385, 41006}, {1387, 2170}, {1503, 31897}, {1566, 34805}, {1737, 2348}, {2183, 7359}, {2246, 12019}, {2550, 10743}, {2792, 63978}, {2809, 62674}, {2826, 3035}, {2973, 59206}, {3109, 5546}, {3207, 34773}, {3234, 44012}, {3730, 61524}, {3752, 63633}, {4187, 33950}, {4251, 12433}, {4253, 34753}, {4530, 12735}, {4904, 9318}, {5011, 17747}, {5134, 28178}, {5305, 16583}, {5526, 40663}, {5552, 56536}, {5813, 30808}, {5839, 22147}, {5844, 6603}, {5856, 24346}, {6001, 31896}, {6700, 52528}, {6706, 58442}, {6735, 41391}, {6883, 15288}, {7819, 25994}, {9945, 35342}, {13226, 58036}, {13747, 26690}, {14985, 16562}, {15252, 65813}, {15325, 43065}, {17170, 17675}, {17451, 37737}, {17744, 21031}, {17757, 60355}, {18328, 38690}, {19512, 34852}, {20262, 51755}, {20818, 53994}, {21139, 43057}, {21232, 40534}, {21808, 63282}, {22758, 38902}, {23972, 36205}, {24025, 65814}, {24045, 40273}, {24582, 65195}, {24828, 45282}, {25066, 47742}, {26074, 34122}, {28118, 35273}, {28346, 28850}, {28915, 50441}, {31273, 61673}, {34522, 38028}, {34586, 61224}, {36949, 39470}, {37727, 63592}, {38015, 42018}, {38042, 56746}, {38764, 53804}, {40560, 63793}, {40943, 59649}, {44664, 51775}, {49997, 57019}, {56937, 59591}, {58418, 58898}, {59543, 59613}, {59644, 64121}, {59646, 64125}
X(65808) = midpoint of X(i) and X(j) for these (i, j): {10, 51435}, {101, 1146}, {118, 31852}, {242, 51366}, {910, 5179}, {1565, 3732}, {1566, 34805}, {3234, 44012}, {5011, 17747}, {5199, 53579}, {8074, 40869}, {51406, 61730}
X(65808) = reflection of X(i) in X(j) for these (i, j): (116, 40483), (17044, 6710), (58898, 58418)
X(65808) = complement of X(1565)
X(65808) = crosspoint of X(2) and X(15742)
X(65808) = crosssum of X(6) and X(3937)
X(65808) = X(i)-complementary conjugate of-X(j) for these (i, j): (33, 46100), (59, 34822), (108, 17059), (112, 17761), (162, 53564), (692, 2968), (765, 1368), (1018, 127), (1110, 3), (1252, 18589), (1783, 116), (1897, 21252), (1973, 6547), (2149, 17073), (2212, 46101), (3939, 123), (4557, 34846), (4564, 18639), (5379, 3741), (6065, 34823), (7012, 2886), (7115, 142), (7128, 21258), (8750, 11), (15742, 2887), (23990, 1214), (32656, 55044), (32674, 4904), (32676, 244), (46102, 17046), (56183, 124), (65375, 34588)
X(65808) = center of the inconic with perspector X(15742)
X(65808) = pole of the line {918, 3960} with respect to the Spieker circle
X(65808) = pole of the line {6547, 18455} with respect to the Kiepert circumhyperbola
X(65808) = pole of the line {644, 1783} with respect to the Steiner inellipse
X(65808) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 3732, 1565), (9, 59671, 59680), (101, 61730, 1146), (169, 46835, 5), (650, 13006, 65818), (1111, 26007, 52826), (1146, 51406, 101), (3035, 3039, 24036), (4251, 21049, 12433)
X(65809) lies on these lines: {2, 253}, {3, 393}, {4, 15905}, {5, 6}, {30, 53}, {32, 9825}, {37, 15252}, {39, 63679}, {69, 52251}, {95, 37765}, {115, 44920}, {132, 46700}, {140, 216}, {141, 44334}, {230, 800}, {232, 6676}, {233, 547}, {264, 441}, {297, 41008}, {381, 3087}, {382, 61301}, {401, 56022}, {428, 10313}, {468, 15355}, {523, 58436}, {524, 58408}, {546, 3284}, {548, 22052}, {549, 36751}, {550, 36748}, {570, 3018}, {571, 31833}, {631, 33630}, {632, 52703}, {648, 45198}, {1172, 6831}, {1368, 55415}, {1595, 23115}, {1609, 6644}, {1625, 43917}, {1630, 51421}, {1656, 15851}, {1657, 62195}, {1713, 35466}, {1865, 20420}, {1885, 41890}, {1950, 8735}, {1951, 8736}, {1968, 31829}, {2193, 31789}, {2207, 6823}, {2257, 37695}, {2965, 61656}, {3003, 16238}, {3054, 16306}, {3068, 55887}, {3069, 55892}, {3091, 36413}, {3172, 6815}, {3197, 34030}, {3530, 10979}, {3553, 37696}, {3554, 37697}, {3589, 14767}, {3613, 51744}, {3627, 61315}, {3628, 5158}, {3815, 64852}, {3843, 33636}, {3850, 6749}, {3851, 62213}, {5007, 40136}, {5020, 7735}, {5056, 5702}, {5065, 5254}, {5133, 52058}, {5286, 11479}, {5304, 7392}, {5306, 10128}, {5523, 34664}, {6641, 14569}, {6642, 8573}, {6678, 37646}, {6708, 39595}, {6720, 8368}, {6756, 10316}, {6793, 35283}, {7395, 41361}, {7399, 8743}, {7401, 30435}, {7403, 22120}, {7404, 9605}, {7499, 22240}, {7522, 37642}, {7549, 18685}, {7585, 55881}, {7586, 55882}, {7746, 46432}, {8553, 37814}, {8745, 15760}, {8755, 40937}, {8791, 37454}, {8797, 59373}, {8882, 10317}, {8969, 13567}, {9220, 23323}, {9512, 26926}, {9818, 15048}, {10020, 11062}, {10024, 52418}, {10127, 13345}, {10154, 59229}, {10257, 47162}, {10984, 56866}, {11245, 34965}, {11547, 26906}, {12100, 18487}, {12103, 61314}, {12108, 62196}, {12362, 27376}, {12812, 15860}, {13383, 14576}, {13630, 50671}, {14152, 40402}, {14269, 36427}, {14390, 20265}, {14571, 59671}, {14577, 64472}, {14743, 17278}, {14961, 64474}, {15030, 15341}, {15646, 47322}, {16303, 44452}, {16328, 44234}, {18420, 18907}, {18424, 63821}, {21448, 37689}, {21841, 63634}, {23607, 61355}, {26868, 42215}, {26953, 41516}, {27377, 52247}, {30258, 59661}, {33537, 46829}, {33885, 47093}, {34828, 64781}, {34836, 61658}, {35937, 43980}, {36422, 61810}, {36431, 61858}, {37188, 43981}, {37649, 63175}, {40799, 44156}, {40885, 40897}, {40888, 53481}, {41758, 45735}, {44338, 46115}, {44911, 47168}, {45800, 57529}, {46184, 59702}, {48154, 62701}, {50666, 56370}, {52070, 53416}, {52704, 61894}, {57528, 60106}, {58446, 58464}, {58447, 59662}, {59681, 65813}, {61312, 61790}
X(65809) = midpoint of X(i) and X(j) for these (i, j): {53, 577}, {9308, 41005}
X(65809) = complement of X(41005)
X(65809) = cross-difference of every pair of points on the line X(924)X(42658)
X(65809) = crosspoint of X(2) and X(1105)
X(65809) = crosssum of X(6) and X(185)
X(65809) = X(i)-complementary conjugate of-X(j) for these (i, j): (775, 1368), (821, 21243), (1105, 2887), (41890, 18589), (57414, 20309), (57775, 21235)
X(65809) = center of the inconic with perspector X(1105)
X(65809) = perspector of the circumconic through X(925) and X(53639)
X(65809) = pole of the line {6587, 57065} with respect to the polar circle
X(65809) = pole of the line {3, 47296} with respect to the Evans conic
X(65809) = pole of the line {3, 2929} with respect to the Kiepert circumhyperbola
X(65809) = pole of the line {1993, 15905} with respect to the Stammler hyperbola
X(65809) = pole of the line {450, 2451} with respect to the Steiner inellipse
X(65809) = pole of the line {7763, 37669} with respect to the Steiner-Wallace hyperbola
X(65809) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 9308, 41005), (2, 32000, 20208), (3, 393, 42459), (140, 59649, 216), (216, 1990, 59649), (297, 56290, 41008), (381, 38292, 3087), (1656, 59655, 15851), (3091, 36413, 40065), (3284, 36412, 6748), (6748, 36412, 546), (6749, 61327, 3850), (14767, 23583, 3589), (15252, 59483, 37), (15851, 59655, 40138)
X(65810) lies on these lines: {7, 6056}, {5249, 26006}, {7411, 23207}, {33765, 62779}
X(65810) = isogonal conjugate of X(42447)
X(65810) = isotomic conjugate of X(65684)
X(65810) = cevapoint of X(i) and X(j) for these {i, j}: {3, 7}, {1086, 44408}
X(65810) = X(i)-cross conjugate of-X(j) for these (i, j): (22160, 651), (65816, 2)
X(65810) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 65684), (1214, 21911), (3160, 16608), (40593, 23581), (40615, 23726)
X(65810) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 65684}, {33, 39796}, {41, 16608}, {2175, 23581}, {2194, 21911}
X(65810) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 65684), (7, 16608), (85, 23581), (222, 39796), (226, 21911), (3676, 23726)
X(65810) = trilinear pole of the line {39470, 57167} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65810) = perspector of the inconic with center X(65816)
X(65810) = pole of the line {42447, 65684} with respect to the Steiner-Wallace hyperbola
X(65810) = trilinear quotient X(i)/X(j) for these (i, j): (75, 65684), (77, 39796), (85, 16608), (1441, 21911), (6063, 23581), (24002, 23726)
X(65811) lies on these lines: {8, 7335}, {404, 23661}, {2975, 4397}, {6735, 7270}, {13136, 40944}
X(65811) = isotomic conjugate of X(41007)
X(65811) = isogonal conjugate of X(42448)
X(65811) = cevapoint of X(i) and X(j) for these {i, j}: {3, 8}, {2968, 57091}
X(65811) = X(i)-cross conjugate of-X(j) for these (i, j): (52307, 13136), (59671, 2)
X(65811) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 41007), (3161, 41883), (11517, 40944), (46398, 65462)
X(65811) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 41007}, {34, 40944}, {604, 41883}
X(65811) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 41007), (8, 41883), (219, 40944), (10015, 65462)
X(65811) = trilinear pole of the line {57042, 57156} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65811) = perspector of the inconic with center X(59671)
X(65811) = pole of the line {41007, 42448} with respect to the Steiner-Wallace hyperbola
X(65811) = trilinear quotient X(i)/X(j) for these (i, j): (75, 41007), (78, 40944), (312, 41883), (36038, 65462)
X(65812) lies on these lines: {3, 7141}, {304, 55094}, {5552, 56367}, {7465, 19799}, {44765, 55351}
X(65812) = isogonal conjugate of X(42450)
X(65812) = cevapoint of X(i) and X(j) for these {i, j}: {3, 10}, {20654, 55364}
X(65812) = X(52310)-cross conjugate of-X(44765)
X(65812) = X(i)-Dao conjugate of-X(j) for these (i, j): (10, 42440), (4075, 21670), (40591, 55351)
X(65812) = X(i)-isoconjugate of-X(j) for these {i, j}: {28, 55351}, {58, 42440}, {849, 21670}
X(65812) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (37, 42440), (71, 55351), (594, 21670)
X(65812) = trilinear pole of the line {23874, 57042} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65812) = trilinear quotient X(i)/X(j) for these (i, j): (10, 42440), (72, 55351), (1089, 21670)
X(65813) lies on these lines: {11, 22144}, {119, 1783}, {906, 5840}, {1146, 1807}, {1951, 5841}, {2006, 5540}, {3035, 65814}, {6713, 7117}, {11499, 17905}, {15252, 65808}, {16869, 31896}, {23583, 36949}, {27076, 40534}, {37696, 46835}, {59681, 65809}
X(65813) = midpoint of X(906) and X(8735)
X(65813) = X(8750)-complementary conjugate of-X(5521)
X(65813) = pole of the line {1783, 53358} with respect to the Steiner inellipse
X(65813) = (X(3035), X(65814))-harmonic conjugate of X(65818)
X(65814) lies on these lines: {528, 22144}, {1249, 40117}, {1783, 2829}, {2272, 45929}, {3035, 65813}, {7117, 20418}, {14838, 40555}, {17905, 63980}, {23882, 40561}, {24025, 65808}, {24036, 65824}, {56890, 65104}, {59644, 59649}
X(65814) = (X(65813), X(65818))-harmonic conjugate of X(3035)
X(65815) lies on these lines: {1785, 7541}, {55359, 65331}
X(65815) = polar conjugate of X(36949)
X(65815) = cevapoint of X(4) and X(11)
X(65815) = X(52316)-cross conjugate of-X(65331)
X(65815) = X(i)-Dao conjugate of-X(j) for these (i, j): (1249, 36949), (62605, 18689)
X(65815) = X(i)-isoconjugate of-X(j) for these {i, j}: {48, 36949}, {184, 18689}
X(65815) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4, 36949), (92, 18689), (8735, 55359)
X(65815) = pole of the the tripolar of X(36949) with respect to the polar circle
X(65815) = trilinear quotient X(i)/X(j) for these (i, j): (92, 36949), (264, 18689)
X(65816) lies on these lines: {1, 3925}, {2, 1897}, {3, 278}, {5, 33}, {7, 22117}, {12, 33178}, {30, 1074}, {34, 37424}, {55, 15253}, {140, 23710}, {142, 59645}, {212, 5762}, {222, 31657}, {255, 24470}, {497, 15251}, {954, 19785}, {1040, 8727}, {1215, 24980}, {1376, 65824}, {1503, 40677}, {1626, 2834}, {1886, 40937}, {2969, 16064}, {3008, 64157}, {3100, 8226}, {3946, 13405}, {4224, 51410}, {4995, 60359}, {5089, 6676}, {5432, 45946}, {5719, 22350}, {5728, 26723}, {5805, 7070}, {6147, 7078}, {6354, 13329}, {6357, 22053}, {6675, 17102}, {6690, 16579}, {6881, 18455}, {6907, 37697}, {6914, 60757}, {6991, 9538}, {7069, 61511}, {7580, 37800}, {7952, 11108}, {9440, 33147}, {10157, 16870}, {11018, 40940}, {11227, 34050}, {16056, 23171}, {17528, 34231}, {18623, 21151}, {20834, 36124}, {31658, 64708}, {31805, 53592}, {32047, 44222}, {33150, 62800}, {37271, 38288}, {38122, 59606}, {49743, 64722}
X(65816) = complement of X(65684)
X(65816) = crosspoint of X(2) and X(65810)
X(65816) = crosssum of X(6) and X(42447)
X(65816) = X(65810)-complementary conjugate of-X(2887)
X(65816) = center of the inconic with perspector X(65810)
X(65816) = pole of the line {39470, 57167} with respect to the Steiner inellipse
X(65816) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (142, 59645, 65702), (1040, 37695, 8727), (31657, 59613, 222)
X(65817) lies on these lines: {5, 62265}, {5178, 6735}
X(65817) = cevapoint of X(5) and X(9)
X(65817) = X(9)-Dao conjugate of-X(12005)
X(65817) = X(6)-isoconjugate of-X(12005)
X(65817) = X(1)-reciprocal conjugate of-X(12005)
X(65817) = trilinear pole of the line {2804, 57198} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65817) = trilinear quotient X(2)/X(12005)
X(65818) lies on these lines: {3, 1783}, {5, 8735}, {100, 22144}, {216, 59671}, {523, 23993}, {607, 6924}, {650, 13006}, {906, 33814}, {952, 7117}, {1565, 24499}, {3035, 65813}, {6958, 17905}, {7124, 32141}, {7359, 22059}, {8608, 15325}, {9945, 61161}, {14838, 17044}, {14936, 34460}, {15252, 65104}, {16573, 36155}, {22070, 61524}, {34586, 61237}, {43063, 52826}
X(65818) = crosssum of X(6) and X(38389)
X(65818) = pole of the line {2427, 57151} with respect to the Steiner inellipse
X(65818) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (650, 13006, 65808), (3035, 65814, 65813)
X(65819) lies on these lines: {11, 57410}, {238, 1737}, {239, 48380}, {929, 55366}, {1429, 64115}, {52456, 61426}
X(65819) = isogonal conjugate of X(13006)
X(65819) = cevapoint of X(i) and X(j) for these {i, j}: {6, 11}, {650, 34949}
X(65819) = X(i)-cross conjugate of-X(j) for these (i, j): (6, 57410), (52331, 929)
X(65819) = X(i)-Dao conjugate of-X(j) for these (i, j): (650, 46100), (22391, 23198), (40592, 16701)
X(65819) = X(i)-isoconjugate of-X(j) for these {i, j}: {42, 16701}, {92, 23198}, {2149, 46100}, {4564, 55366}
X(65819) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (11, 46100), (81, 16701), (184, 23198), (3271, 55366), (57410, 59)
X(65819) = trilinear pole of the line {659, 14667} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65819) = pole of the line {13006, 16701} with respect to the Steiner-Wallace hyperbola
X(65819) = barycentric product X(34387)*X(57410)
X(65819) = trilinear product X(4858)*X(57410)
X(65819) = trilinear quotient X(i)/X(j) for these (i, j): (48, 23198), (86, 16701), (2170, 55366), (4858, 46100), (57410, 2149)
X(65820) lies on these lines: {7, 6057}, {319, 4061}, {1434, 33078}, {3969, 6604}, {4624, 4854}, {17093, 40999}
X(65820) = isotomic conjugate of X(40998)
X(65820) = cevapoint of X(i) and X(j) for these {i, j}: {7, 10}, {3219, 3870}
X(65820) = X(4841)-cross conjugate of-X(4624)
X(65820) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 40998), (10, 42446), (37, 38930), (1214, 4854), (3160, 3946), (4075, 21673), (17113, 10521), (40615, 23729)
X(65820) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 40998}, {41, 3946}, {58, 42446}, {849, 21673}, {1253, 10521}, {1333, 38930}, {2194, 4854}
X(65820) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 40998), (7, 3946), (10, 38930), (37, 42446), (226, 4854), (279, 10521), (594, 21673), (3676, 23729), (38811, 58), (38825, 55), (63191, 1)
X(65820) = trilinear pole of the line {7265, 22042} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65820) = barycentric product X(i)*X(j) for these {i, j}: {75, 63191}, {313, 38811}, {6063, 38825}
X(65820) = trilinear product X(i)*X(j) for these {i, j}: {2, 63191}, {85, 38825}, {321, 38811}
X(65820) = trilinear quotient X(i)/X(j) for these (i, j): (10, 42446), (75, 40998), (85, 3946), (321, 38930), (1088, 10521), (1089, 21673), (1441, 4854), (24002, 23729), (38811, 1333), (38825, 41), (63191, 6)
X(65821) lies on these lines: {7, 5532}, {11, 59457}, {527, 10001}, {18810, 61716}, {55370, 60487}
X(65821) = cevapoint of X(7) and X(11)
X(65821) = X(52334)-cross conjugate of-X(60487)
X(65821) = X(i)-Dao conjugate of-X(j) for these (i, j): (514, 55370), (1214, 21914), (3160, 17044), (40615, 23730)
X(65821) = X(i)-isoconjugate of-X(j) for these {i, j}: {41, 17044}, {1110, 55370}, {2194, 21914}
X(65821) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (7, 17044), (226, 21914), (1086, 55370), (3676, 23730)
X(65821) = trilinear pole of the line {1638, 37771} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65821) = trilinear quotient X(i)/X(j) for these (i, j): (85, 17044), (1111, 55370), (1441, 21914), (24002, 23730)
X(65822) lies on these lines: {1, 56094}, {8, 12}, {10, 1043}, {45, 346}, {75, 62780}, {86, 57833}, {190, 21677}, {313, 25280}, {318, 56285}, {333, 5086}, {341, 1089}, {1222, 4847}, {1268, 27714}, {1826, 2322}, {1837, 17277}, {2550, 56205}, {3626, 4013}, {3696, 4451}, {4651, 14008}, {4678, 6556}, {4691, 6538}, {5229, 17347}, {5260, 56946}, {5794, 14829}, {5827, 48850}, {6734, 40442}, {6736, 56118}, {7270, 63194}, {9578, 49450}, {12447, 37758}, {17272, 40014}, {23352, 28183}, {25446, 37730}, {30606, 37152}, {32087, 56349}, {47033, 56133}, {54288, 63996}, {58132, 59602}
X(65822) = midpoint of X(8) and X(30543)
X(65822) = isotomic conjugate of X(3664)
X(65822) = cevapoint of X(i) and X(j) for these {i, j}: {1, 56288}, {2, 4416}, {8, 10}, {42, 573}, {4061, 62608}
X(65822) = X(i)-cross conjugate of-X(j) for these (i, j): (3700, 190), (63978, 2)
X(65822) = X(i)-Dao conjugate of-X(j) for these (i, j): (1, 2646), (2, 3664), (10, 2650), (37, 17056), (115, 23755), (3161, 5745), (4075, 21674), (5452, 21748), (6552, 6737), (6631, 17136), (6741, 62566), (7952, 40950), (11517, 22361), (36103, 40985), (39026, 53324), (40599, 21811), (40603, 18698), (59577, 21677)
X(65822) = X(i)-isoconjugate of-X(j) for these {i, j}: {3, 40985}, {31, 3664}, {34, 22361}, {56, 2646}, {57, 21748}, {58, 2650}, {163, 23755}, {407, 1437}, {513, 53324}, {603, 40950}, {604, 5745}, {667, 17136}, {849, 21674}, {1106, 6737}, {1333, 17056}, {1408, 21677}, {1412, 21811}, {2206, 18698}, {2217, 37836}, {22003, 57129}, {43924, 53388}
X(65822) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 3664), (8, 5745), (9, 2646), (10, 17056), (19, 40985), (37, 2650), (55, 21748), (101, 53324), (190, 17136), (210, 21811), (219, 22361), (281, 40950), (321, 18698), (346, 6737), (523, 23755), (573, 37836), (594, 21674), (644, 53388), (1089, 42708), (1826, 407), (2321, 21677), (3700, 62566), (3952, 22003), (4416, 59602), (4931, 30604), (17097, 57), (40430, 81), (40442, 222), (56321, 514), (57668, 1790), (57833, 17206), (60235, 86), (63194, 1014)
X(65822) = trilinear pole of the line {3239, 4024} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65822) = perspector of the inconic with center X(63978)
X(65822) = barycentric product X(i)*X(j) for these {i, j}: {10, 60235}, {190, 56321}, {312, 17097}, {321, 40430}, {1826, 57833}, {3701, 63194}, {7017, 40442}
X(65822) = trilinear product X(i)*X(j) for these {i, j}: {8, 17097}, {10, 40430}, {37, 60235}, {100, 56321}, {318, 40442}, {1824, 57833}, {2321, 63194}, {41013, 57668}
X(65822) = trilinear quotient X(i)/X(j) for these (i, j): (4, 40985), (8, 2646), (9, 21748), (10, 2650), (75, 3664), (78, 22361), (100, 53324), (312, 5745), (313, 18698), (318, 40950), (321, 17056), (341, 6737), (668, 17136), (1089, 21674), (1577, 23755), (2321, 21811), (3699, 53388), (3701, 21677), (3869, 37836), (4033, 22003)
X(65823) lies on these lines: {8, 7336}, {11, 4076}, {519, 1738}, {4385, 51975}, {4582, 55376}, {4723, 59415}, {5082, 21306}, {6079, 26073}, {52746, 62540}
X(65823) = cevapoint of X(i) and X(j) for these {i, j}: {8, 11}, {4543, 54270}
X(65823) = X(i)-cross conjugate of-X(j) for these (i, j): (30731, 4997), (52338, 4582)
X(65823) = X(i)-Dao conjugate of-X(j) for these (i, j): (1, 3722), (11, 6161), (522, 55376), (650, 6547), (1146, 6546), (3161, 4422), (7952, 1862), (51402, 33905), (62585, 4986)
X(65823) = X(i)-isoconjugate of-X(j) for these {i, j}: {56, 3722}, {109, 6161}, {603, 1862}, {604, 4422}, {1397, 4986}, {1415, 6546}, {2149, 6547}, {24027, 55376}, {32094, 57181}, {43924, 46973}
X(65823) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (8, 4422), (9, 3722), (11, 6547), (281, 1862), (312, 4986), (522, 6546), (644, 46973), (650, 6161), (1146, 55376), (1639, 33905), (3699, 32094), (46972, 57), (58373, 3669), (62540, 664)
X(65823) = pole of the line {190, 24795} with respect to the circumhyperbola dual of Yff parabola
X(65823) = barycentric product X(i)*X(j) for these {i, j}: {312, 46972}, {522, 62540}, {646, 58373}
X(65823) = trilinear product X(i)*X(j) for these {i, j}: {8, 46972}, {650, 62540}, {3699, 58373}
X(65823) = trilinear quotient X(i)/X(j) for these (i, j): (8, 3722), (312, 4422), (318, 1862), (522, 6161), (646, 32094), (3596, 4986), (3699, 46973), (4391, 6546), (4768, 33905), (4858, 6547), (24026, 55376), (46972, 56), (58373, 43924), (62540, 651)
X(65824) lies on these lines: {3, 2834}, {100, 15253}, {142, 30621}, {522, 4422}, {528, 15251}, {651, 10427}, {676, 2804}, {1086, 3939}, {1331, 24465}, {1376, 65816}, {1633, 51419}, {2310, 64738}, {2323, 61035}, {3008, 15733}, {4000, 6600}, {5723, 35338}, {5834, 47042}, {5857, 13329}, {6174, 45946}, {17059, 40480}, {17061, 59584}, {17278, 64443}, {17356, 24388}, {17366, 64739}, {17724, 61222}, {19512, 44670}, {24036, 65814}, {24980, 36949}, {24988, 65206}, {31657, 45729}, {33814, 60757}, {40560, 63793}
X(65824) = midpoint of X(1086) and X(3939)
X(65824) = reflection of X(17059) in X(40480)
X(65824) = X(i)-complementary conjugate of-X(j) for these (i, j): (109, 5511), (1292, 124), (1415, 40615), (2191, 46100), (24027, 6600), (63906, 21244)
X(65824) = center of the central inconic through X(1617) and X(6601)
X(65824) = pole of the line {9521, 19915} with respect to the circumcircle
X(65824) = pole of the line {651, 2428} with respect to the Steiner inellipse
X(65824) = (X(3035), X(59458))-harmonic conjugate of X(16578)
X(65825) lies on these lines: {11, 6065}, {908, 3008}, {5853, 6735}, {26003, 60355}, {55380, 60488}
X(65825) = cevapoint of X(9) and X(11)
X(65825) = X(23704)-cross conjugate of-X(14942)
X(65825) = X(i)-Dao conjugate of-X(j) for these (i, j): (1, 24036), (9, 5083)
X(65825) = X(i)-isoconjugate of-X(j) for these {i, j}: {6, 5083}, {56, 24036}, {1262, 55380}
X(65825) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 5083), (9, 24036), (2310, 55380)
X(65825) = trilinear pole of the line {2804, 15914} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65825) = trilinear quotient X(i)/X(j) for these (i, j): (2, 5083), (8, 24036), (1146, 55380)
X(65826) lies on these lines: {1737, 24231}, {5818, 14266}, {26074, 44184}, {50039, 55382}
X(65826) = cevapoint of X(10) and X(11)
X(65826) = X(52341)-cross conjugate of-X(50039)
X(65826) = X(i)-Dao conjugate of-X(j) for these (i, j): (4075, 21676), (62566, 55382)
X(65826) = X(849)-isoconjugate of-X(21676)
X(65826) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (594, 21676), (21044, 55382)
X(65826) = trilinear pole of the line {22035, 23887} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65826) = trilinear quotient X(1089)/X(21676)
X(65827) lies on these lines: {530, 16267}, {11537, 37640}
X(65827) = trilinear pole of the line {9123, 9200} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65828) lies on these lines: {531, 16268}, {11549, 37641}
X(65828) = trilinear pole of the line {9123, 9201} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65829) lies on these lines: {264, 850}, {520, 3265}, {525, 7658}, {647, 23616}, {14417, 58796}, {30209, 44870}, {30476, 38240}, {31277, 52720}
X(65829) = crosssum of X(32713) and X(57153)
X(65829) = X(34403)-Ceva conjugate of-X(15526)
X(65829) = X(i)-Dao conjugate of-X(j) for these (i, j): (1562, 1249), (15526, 18848), (26958, 52913), (35071, 41894)
X(65829) = X(i)-isoconjugate of-X(j) for these {i, j}: {18848, 32676}, {24000, 46005}, {24019, 41894}
X(65829) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (520, 41894), (525, 18848), (1204, 112), (3269, 46005), (5895, 57219), (14638, 34410), (18691, 823), (26958, 107), (37197, 6529), (40995, 648), (46432, 32713)
X(65829) = perspector of the circumconic through X(3926) and X(35510)
X(65829) = pole of the line {1495, 3079} with respect to the polar circle
X(65829) = pole of the line {340, 5059} with respect to the Steiner circumellipse
X(65829) = pole of the line {20, 6389} with respect to the Steiner inellipse
X(65829) = barycentric product X(i)*X(j) for these {i, j}: {525, 40995}, {1204, 3267}, {3265, 26958}, {4143, 37197}, {5895, 14638}, {18691, 24018}, {46432, 52617}
X(65829) = trilinear product X(i)*X(j) for these {i, j}: {520, 18691}, {656, 40995}, {1204, 14208}, {24018, 26958}
X(65829) = trilinear quotient X(i)/X(j) for these (i, j): (1204, 32676), (2632, 46005), (14208, 18848), (18691, 107), (24018, 41894), (26958, 24019), (40995, 162)
X(65830) lies on these lines: {2, 43956}, {30, 10516}
X(65830) = complement of X(43956)
X(65831) lies on these lines: {386, 8643}, {1125, 28470}, {1960, 48030}, {4401, 59301}
X(65832) lies on these lines: {6, 30650}, {649, 4604}, {17277, 57948}
X(65832) = isogonal conjugate of X(4379)
X(65832) = X(i)-Dao conjugate of-X(j) for these (i, j): (9, 4411), (5375, 3761), (5452, 4474), (8054, 4403), (32664, 4378), (39026, 4363), (39029, 4508)
X(65832) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 4378}, {6, 4411}, {57, 4474}, {100, 4403}, {244, 4482}, {291, 4508}, {513, 4363}, {514, 750}, {649, 3761}, {650, 7223}, {659, 7245}, {693, 2242}, {876, 4396}, {1022, 62659}, {1635, 4510}, {3572, 4495}, {3676, 4390}, {3733, 4377}, {4410, 50344}, {4494, 43924}, {4503, 4581}, {4506, 23345}, {23352, 29908}
X(65832) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 4411), (31, 4378), (55, 4474), (100, 3761), (101, 4363), (109, 7223), (644, 4494), (649, 4403), (692, 750), (751, 693), (813, 7245), (901, 4510), (1018, 4377), (1023, 4506), (1252, 4482), (1914, 4508), (3573, 4495), (23344, 62659), (30650, 514), (32739, 2242), (35342, 4410), (57948, 40495)
X(65832) = X(6)-vertex conjugate of-X(4604)
X(65832) = trilinear pole of the line {869, 902} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65832) = pole of the line {4379, 4396} with respect to the Stammler hyperbola
X(65832) = barycentric product X(i)*X(j) for these {i, j}: {100, 751}, {190, 30650}, {692, 57948}
X(65832) = trilinear product X(i)*X(j) for these {i, j}: {100, 30650}, {101, 751}, {32739, 57948}
X(65832) = trilinear quotient X(i)/X(j) for these (i, j): (2, 4411), (6, 4378), (9, 4474), (100, 4363), (101, 750), (190, 3761), (238, 4508), (513, 4403), (651, 7223), (660, 7245), (692, 2242), (751, 514), (765, 4482), (1023, 62659), (3257, 4510), (3570, 4495), (3573, 4396), (3699, 4494), (3939, 4390), (3952, 4377)
X(65833) lies on these lines: {2821, 65428}, {3309, 58679}, {3884, 28576}
X(65834) lies on these lines: {3, 59835}, {3309, 5248}, {4162, 62871}, {53287, 65392}
X(65835) lies on the Steiner circumellipse and these lines: {2, 54988}, {648, 46587}, {671, 2790}, {1494, 57488}, {1992, 54973}, {2404, 6528}, {47383, 54975}
X(65835) = reflection of X(54988) in X(2)
X(65835) = X(36830)-Dao conjugate of-X(37480)
X(65835) = X(i)-isoconjugate of-X(j) for these {i, j}: {661, 37480}, {822, 41372}
X(65835) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (107, 41372), (110, 37480)
X(65835) = trilinear pole of the line {2, 5656} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65835) = pole of the the tripolar of X(37480) with respect to the Stammler hyperbola
X(65835) = trilinear quotient X(i)/X(j) for these (i, j): (662, 37480), (823, 41372)
X(65836) lies on these lines: {6, 44557}, {512, 35138}, {5468, 62412}
X(65836) = cevapoint of X(512) and X(5640)
X(65836) = X(36830)-Dao conjugate of-X(3734)
X(65836) = X(661)-isoconjugate of-X(3734)
X(65836) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (110, 3734), (44557, 523)
X(65836) = X(6)-vertex conjugate of-X(35138)
X(65836) = trilinear pole of the line {187, 353} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65836) = pole of the the tripolar of X(3734) with respect to the Stammler hyperbola
X(65836) = barycentric product X(99)*X(44557)
X(65836) = trilinear product X(662)*X(44557)
X(65836) = trilinear quotient X(i)/X(j) for these (i, j): (662, 3734), (44557, 661)
X(65837) lies on these lines: {4, 9292}, {512, 6528}, {877, 39469}, {1624, 4230}, {2790, 5186}, {5895, 9289}, {57219, 58070}
X(65837) = isogonal conjugate of X(22089)
X(65837) = polar conjugate of X(30476)
X(65837) = isotomic conjugate of the anticomplement of X(62176)
X(65837) = cevapoint of X(i) and X(j) for these {i, j}: {4, 512}, {523, 23332}, {1368, 8057}, {2883, 58342}
X(65837) = crosssum of X(2524) and X(42658)
X(65837) = X(i)-cross conjugate of-X(j) for these (i, j): (512, 9292), (2491, 16081), (3221, 25), (8651, 393), (41678, 107), (62176, 2)
X(65837) = X(i)-Dao conjugate of-X(j) for these (i, j): (1015, 16758), (1249, 30476), (2679, 57294), (3162, 2451), (5190, 21137), (6523, 16229), (14091, 17773), (36103, 17478), (39052, 1958), (39062, 1975), (40596, 9306), (62605, 17893)
X(65837) = X(i)-isoconjugate of-X(j) for these {i, j}: {3, 17478}, {48, 30476}, {63, 2451}, {101, 16758}, {184, 17893}, {228, 17215}, {255, 16229}, {520, 1957}, {647, 1958}, {656, 9306}, {810, 1975}, {822, 9308}, {906, 21137}, {1437, 21050}, {1968, 24018}, {36036, 57294}
X(65837) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4, 30476), (19, 17478), (25, 2451), (27, 17215), (92, 17893), (107, 9308), (112, 9306), (162, 1958), (235, 17773), (393, 16229), (513, 16758), (648, 1975), (1826, 21050), (2491, 57294), (4230, 56437), (7649, 21137), (9255, 24018), (9258, 656), (9289, 3265), (9292, 647), (9307, 525), (24019, 1957), (32713, 1968), (41678, 59527), (43188, 69), (51336, 520), (58070, 15143)
X(65837) = X(i)-vertex conjugate of-X(j) for these {i, j}: {3, 6528}, {18831, 32661}, {44828, 44828}
X(65837) = trilinear pole of the line {232, 800} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65837) = perspector of the inconic with center X(62176)
X(65837) = pole of the line {21137, 57294} with respect to the polar circle
X(65837) = pole of the line {154, 3164} with respect to the Kiepert parabola
X(65837) = barycentric product X(i)*X(j) for these {i, j}: {4, 43188}, {107, 9289}, {648, 9307}, {811, 9258}, {823, 9255}, {6331, 9292}, {6528, 51336}
X(65837) = trilinear product X(i)*X(j) for these {i, j}: {19, 43188}, {107, 9255}, {162, 9307}, {648, 9258}, {811, 9292}, {823, 51336}, {9289, 24019}
X(65837) = trilinear quotient X(i)/X(j) for these (i, j): (4, 17478), (19, 2451), (92, 30476), (107, 1957), (158, 16229), (162, 9306), (264, 17893), (286, 17215), (514, 16758), (648, 1958), (811, 1975), (823, 9308), (9255, 520), (9258, 647), (9289, 24018), (9292, 810), (9307, 656), (17924, 21137), (24019, 1968), (41013, 21050)
X(65838) lies on these lines: {3, 15412}, {5, 27363}, {30, 15451}, {140, 18314}, {523, 15646}, {826, 10610}, {1510, 30481}, {8673, 65389}, {13349, 23873}, {13350, 23872}, {20577, 42731}, {38613, 38618}
X(65838) = midpoint of X(3) and X(15412)
X(65838) = reflection of X(i) in X(j) for these (i, j): (5, 63830), (18314, 140)
X(65838) = pole of the line {10224, 32428} with respect to the nine-point circle
X(65839) lies on these lines: {647, 65322}, {2847, 35906}, {51937, 52699}
X(65839) = X(36830)-Dao conjugate of-X(32817)
X(65839) = X(i)-isoconjugate of-X(j) for these {i, j}: {661, 32817}, {1577, 6090}
X(65839) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (110, 32817), (1576, 6090), (23347, 15144), (44556, 850)
X(65839) = X(6)-vertex conjugate of-X(65322)
X(65839) = trilinear pole of the line {1384, 1495} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65839) = pole of the the tripolar of X(32817) with respect to the Stammler hyperbola
X(65839) = barycentric product X(110)*X(44556)
X(65839) = trilinear product X(163)*X(44556)
X(65839) = trilinear quotient X(i)/X(j) for these (i, j): (163, 6090), (662, 32817), (44556, 1577), (56829, 15144)
X(65840) lies on these lines: {928, 5882}, {944, 53549}, {3309, 30719}, {5836, 44819}, {7967, 53550}
X(65840) = midpoint of X(944) and X(53549)
X(65840) = reflection of X(5836) in X(44819)
X(65841) lies on these lines: {4, 18335}, {512, 24978}, {690, 18314}, {826, 53345}, {1116, 39504}, {1658, 39481}, {7927, 62438}, {10254, 18308}, {34964, 42732}, {50548, 53365}
X(65841) = pole of the line {54, 32152} with respect to the 1st Brocard circle
X(65841) = pole of the line {5965, 8537} with respect to the polar circle
X(65842) lies on these lines: {35, 18344}, {3309, 6796}, {3887, 6050}, {3900, 52739}, {4040, 7634}, {4091, 14392}, {5218, 17924}, {8678, 48386}, {9373, 39476}, {20317, 50366}
X(65842) = midpoint of X(4040) and X(7634)
X(65843) lies on these lines: {20, 525}, {26, 39201}, {186, 39228}, {512, 57154}, {523, 44246}, {2848, 52584}, {3542, 44705}, {11799, 59745}, {18531, 18556}, {39510, 44958}, {44810, 57065}
X(65843) = reflection of X(i) in X(j) for these (i, j): (57065, 44810), (59932, 39228)
X(65844) lies on these lines: {68, 58756}, {129, 33330}, {297, 525}, {343, 63829}, {36472, 46655}, {41587, 51513}
X(65844) = complement of the isotomic conjugate of X(65845)
X(65844) = crosspoint of X(2) and X(65845)
X(65844) = X(i)-complementary conjugate of-X(j) for these (i, j): (925, 21231), (1087, 46655), (1820, 2972), (1953, 136), (2179, 39013), (32734, 16577), (36145, 140), (56272, 21253), (61363, 16595), (65251, 3819), (65845, 2887)
X(65844) = center of the inconic with perspector X(65845)
X(65844) = pole of the line {5, 45793} with respect to the Steiner inellipse
X(65845) lies on these lines: {5, 41213}, {68, 25051}, {94, 5392}, {648, 30450}, {655, 65251}, {847, 8754}, {925, 23181}, {1972, 20563}, {35139, 64516}
X(65845) = isotomic conjugate of the anticomplement of X(65844)
X(65845) = cevapoint of X(i) and X(j) for these {i, j}: {5, 52317}, {343, 18314}
X(65845) = X(30450)-Ceva conjugate of-X(14570)
X(65845) = X(i)-cross conjugate of-X(j) for these (i, j): (12077, 847), (23290, 311), (52317, 5), (65844, 2)
X(65845) = X(i)-Dao conjugate of-X(j) for these (i, j): (5, 30451), (137, 47421), (139, 34338), (216, 924), (6663, 52317), (14363, 6753), (34853, 2623), (40588, 34952), (52032, 52584), (52869, 14397)
X(65845) = X(i)-isoconjugate of-X(j) for these {i, j}: {47, 2623}, {54, 55216}, {571, 2616}, {924, 2148}, {1748, 58308}, {2167, 34952}, {2169, 6753}, {2190, 30451}, {6563, 62269}, {8882, 63832}, {36134, 47421}, {52584, 62268}, {54034, 63827}, {57065, 62267}
X(65845) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (5, 924), (51, 34952), (53, 6753), (68, 23286), (91, 2616), (216, 30451), (311, 6563), (324, 57065), (343, 52584), (467, 15423), (925, 54), (1154, 44808), (1625, 571), (1953, 55216), (2165, 2623), (2351, 58308), (2617, 47), (5392, 15412), (12077, 47421), (14213, 63827), (14570, 1993), (14576, 58760), (14593, 58756), (18180, 34948), (20563, 62428), (23181, 1147), (23290, 136), (30450, 275), (32734, 54034), (35360, 24), (36145, 2148), (36412, 52317), (41587, 63959), (44174, 15958), (44706, 63832), (45793, 63829), (46134, 95), (52317, 39013), (52604, 44077), (52945, 14397), (55215, 62276), (55549, 46088), (56272, 523), (61193, 8745), (61194, 52436), (61363, 39201), (65176, 8882), (65183, 11547), (65251, 2167), (65309, 97)
X(65845) = trilinear pole of the line {5, 45793} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65845) = perspector of the inconic with center X(65844)
X(65845) = pole of the line {34338, 47421} with respect to the polar circle
X(65845) = barycentric product X(i)*X(j) for these {i, j}: {5, 46134}, {99, 56272}, {311, 925}, {324, 65309}, {343, 30450}, {1625, 57904}, {1953, 55215}, {2617, 20571}, {5392, 14570}, {14213, 65251}, {20563, 35360}, {23181, 55553}, {23290, 57763}, {28706, 65176}, {32734, 62278}, {36145, 62272}, {45793, 65273}, {52350, 65183}
X(65845) = trilinear product X(i)*X(j) for these {i, j}: {5, 65251}, {51, 55215}, {91, 14570}, {311, 36145}, {662, 56272}, {925, 14213}, {1087, 65273}, {1625, 20571}, {1953, 46134}, {2617, 5392}, {18695, 65176}, {23181, 57716}, {30450, 44706}, {32734, 62272}, {57973, 61363}
X(65845) = trilinear quotient X(i)/X(j) for these (i, j): (5, 55216), (91, 2623), (311, 63827), (343, 63832), (925, 2148), (1087, 52317), (1820, 58308), (1953, 34952), (2617, 571), (2618, 47421), (5392, 2616), (14213, 924), (14570, 47), (15415, 17881), (17167, 34948), (18695, 52584), (20571, 15412), (23181, 563), (30450, 2190), (32734, 62269)
X(65845) = (X(30450), X(46134))-harmonic conjugate of X(65309)
X(65846) lies on these lines: {2, 52614}, {85, 65705}, {522, 676}, {665, 60490}, {928, 2140}, {3716, 24285}, {3739, 53573}, {6366, 6706}, {6607, 46399}, {10015, 24774}, {10581, 52621}, {14377, 52730}, {21195, 24720}, {24775, 24792}, {24782, 24793}, {30949, 53550}, {31250, 54266}, {52739, 55161}, {53300, 62383}
X(65846) = midpoint of X(i) and X(j) for these (i, j): {85, 65705}, {10581, 52621}
X(65846) = complement of X(52614)
X(65846) = cross-difference of every pair of points on the line X(3207)X(35215)
X(65846) = crosspoint of X(2) and X(65847)
X(65846) = X(i)-complementary conjugate of-X(j) for these (i, j): (57, 1566), (105, 13609), (269, 35094), (604, 39014), (658, 120), (673, 5514), (927, 3452), (934, 16593), (1438, 35508), (1461, 6184), (1462, 1146), (1814, 40616), (4569, 20540), (4617, 50441), (4626, 17060), (4637, 8299), (7045, 62552), (9503, 57292), (32735, 1212), (34018, 124), (34085, 1329), (36086, 6554), (36146, 9), (39293, 20317), (46135, 21244), (53538, 35509), (56783, 26932), (65301, 34823), (65847, 2887)
X(65846) = center of the inconic with perspector X(65847)
X(65846) = pole of the line {1146, 4147} with respect to the circumhyperbola dual of Yff parabola
X(65846) = pole of the line {7, 2481} with respect to the Steiner inellipse
X(65847) lies on these lines: {7, 15615}, {658, 34085}, {664, 4449}, {2481, 62744}, {4554, 4885}, {4569, 53227}, {4573, 18199}, {18031, 52156}, {34018, 57537}, {36838, 57581}, {56667, 57880}
X(65847) = isotomic conjugate of X(52614)
X(65847) = cevapoint of X(i) and X(j) for these {i, j}: {7, 665}, {2481, 28132}
X(65847) = X(i)-cross conjugate of-X(j) for these (i, j): (665, 7), (28132, 2481), (34085, 46135), (45902, 52030), (65846, 2)
X(65847) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 52614), (223, 46388), (478, 8638), (3160, 926), (10001, 2340), (17113, 665), (33675, 3900), (38989, 39014), (62554, 8641), (62599, 657)
X(65847) = X(46135)-hirst inverse of-X(46406)
X(65847) = X(i)-isoconjugate of-X(j) for these {i, j}: {9, 8638}, {31, 52614}, {41, 926}, {55, 46388}, {657, 2223}, {665, 1253}, {672, 8641}, {1025, 61050}, {1458, 57180}, {2254, 14827}, {2340, 3063}, {2356, 65102}, {3239, 9455}, {3900, 9454}, {4105, 52635}, {6602, 53539}, {7079, 23225}, {9447, 50333}, {14936, 54325}, {21789, 39258}, {36086, 39014}
X(65847) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 52614), (7, 926), (56, 8638), (57, 46388), (105, 8641), (279, 665), (294, 57180), (479, 53539), (658, 672), (664, 2340), (665, 39014), (666, 220), (673, 657), (884, 61050), (885, 3022), (919, 14827), (927, 55), (934, 2223), (1020, 39258), (1088, 2254), (1275, 2284), (1446, 24290), (1461, 9454), (1462, 3063), (1814, 65102), (2481, 3900), (4554, 3693), (4566, 20683), (4569, 518), (4572, 3717), (4616, 3286), (4617, 52635), (4626, 1458), (4635, 18206), (5723, 14411), (6063, 50333), (7045, 54325), (7053, 23225), (7056, 53550), (13149, 5089), (13576, 4524), (14942, 4105), (18031, 3239), (23062, 53544), (24002, 17435), (24011, 41353), (24015, 9502), (28132, 35508), (31637, 57108), (32735, 2175)
X(65847) = X(1742)-zayin conjugate of-X(46388)
X(65847) = trilinear pole of the line {7, 2481} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65847) = perspector of the inconic with center X(65846)
X(65847) = barycentric product X(i)*X(j) for these {i, j}: {7, 46135}, {85, 34085}, {279, 36803}, {331, 65301}, {658, 18031}, {666, 57792}, {673, 46406}, {927, 6063}, {1088, 51560}, {2481, 4569}, {4554, 34018}, {4572, 56783}, {14942, 52937}, {20567, 36146}, {28132, 57581}, {32735, 41283}, {36796, 36838}, {36802, 57880}, {39293, 52621}
X(65847) = trilinear product X(i)*X(j) for these {i, j}: {7, 34085}, {57, 46135}, {85, 927}, {105, 46406}, {269, 36803}, {273, 65301}, {279, 51560}, {294, 52937}, {658, 2481}, {664, 34018}, {666, 1088}, {673, 4569}, {934, 18031}, {1462, 4572}, {4554, 56783}, {4626, 36796}, {4635, 13576}, {6063, 36146}, {13149, 31637}, {14942, 36838}
X(65847) = trilinear quotient X(i)/X(j) for these (i, j): (7, 46388), (57, 8638), (75, 52614), (85, 926), (658, 2223), (666, 1253), (673, 8641), (927, 41), (934, 9454), (1024, 61050), (1088, 665), (1275, 54325), (1461, 9455), (2254, 39014), (2481, 657), (4554, 2340), (4566, 39258), (4569, 672), (4572, 3693), (4626, 52635)
X(65848) lies on these lines: {514, 4521}, {6363, 21260}, {24782, 47794}
X(65848) = complement of the isotomic conjugate of X(65849)
X(65848) = crosspoint of X(2) and X(65849)
X(65848) = X(i)-complementary conjugate of-X(j) for these (i, j): (9, 15611), (41, 39015), (1220, 4904), (2298, 3756), (3699, 51571), (6648, 11019), (8687, 52541), (8707, 142), (14624, 8286), (30710, 17059), (32736, 3752), (35334, 17055), (36098, 4000), (36147, 1), (56245, 55054), (65229, 2886), (65255, 59477), (65282, 17046), (65849, 2887)
X(65848) = center of the inconic with perspector X(65849)
X(65848) = pole of the line {9, 39} with respect to the Spieker circle
X(65848) = pole of the line {8, 23638} with respect to the Steiner inellipse
X(65849) lies on these lines: {8, 41224}, {190, 65229}, {1240, 36807}, {3596, 30826}, {4033, 27805}, {4554, 6386}, {25534, 28358}, {30710, 36805}, {60251, 60264}
X(65849) = isotomic conjugate of the anticomplement of X(65848)
X(65849) = cevapoint of X(8) and X(52326)
X(65849) = X(i)-cross conjugate of-X(j) for these (i, j): (52326, 8), (65848, 2)
X(65849) = X(i)-Dao conjugate of-X(j) for these (i, j): (3161, 6371), (5452, 57157), (6552, 52326), (6631, 61412), (9296, 24471), (38992, 39015), (62585, 48131)
X(65849) = X(i)-isoconjugate of-X(j) for these {i, j}: {57, 57157}, {604, 6371}, {667, 61412}, {1106, 52326}, {1193, 57181}, {1397, 48131}, {1919, 24471}, {1980, 3674}, {2300, 43924}, {3882, 61048}, {4509, 41280}, {16947, 50330}, {17420, 52410}, {36098, 39015}, {40153, 51641}
X(65849) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (8, 6371), (55, 57157), (190, 61412), (312, 48131), (341, 17420), (346, 52326), (644, 2300), (645, 40153), (646, 3666), (668, 24471), (1220, 43924), (1240, 3676), (1978, 3674), (2298, 57181), (3596, 3004), (3699, 1193), (3701, 50330), (4069, 3725), (4076, 53280), (4571, 22345), (4578, 20967), (4581, 1357), (6057, 42661), (6558, 2269), (6648, 1407), (7256, 4267), (7257, 54308), (7258, 17185), (8687, 52410), (8707, 56), (14624, 7180), (27808, 41003), (28659, 4509), (30710, 3669), (30713, 21124), (30730, 2092), (31643, 43932), (32736, 1397), (36098, 1106), (36147, 604), (40521, 59174), (40827, 17096), (52326, 39015), (57158, 61051), (58982, 7342), (59761, 3910), (60086, 7250), (60264, 7178), (62534, 16705), (65160, 2354)
X(65849) = trilinear pole of the line {8, 23638} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65849) = perspector of the inconic with center X(65848)
X(65849) = barycentric product X(i)*X(j) for these {i, j}: {8, 65282}, {312, 65229}, {645, 60264}, {646, 30710}, {1240, 3699}, {3596, 8707}, {6648, 59761}, {14624, 62534}, {28659, 36147}, {30730, 40827}, {32736, 40363}
X(65849) = trilinear product X(i)*X(j) for these {i, j}: {8, 65229}, {9, 65282}, {312, 8707}, {341, 6648}, {643, 60264}, {644, 1240}, {646, 1220}, {3596, 36147}, {3699, 30710}, {4069, 40827}, {4103, 52550}, {6558, 31643}, {7257, 14624}, {7258, 60086}, {28659, 32736}, {35334, 62539}, {36098, 59761}
X(65849) = trilinear quotient X(i)/X(j) for these (i, j): (9, 57157), (312, 6371), (341, 52326), (646, 1193), (668, 61412), (1220, 57181), (1240, 3669), (1978, 24471), (3596, 48131), (3699, 2300), (4103, 59174), (6386, 3674), (6558, 20967), (6648, 1106), (7257, 40153), (7258, 4267), (8707, 604), (14624, 51641), (17420, 39015), (28659, 3004)
X(65850) lies on these lines: {10, 52328}, {190, 27808}, {335, 57824}, {1089, 37842}, {4033, 61167}, {4632, 62534}, {20654, 59138}, {52609, 56188}
X(65850) = isotomic conjugate of X(52615)
X(65850) = cevapoint of X(i) and X(j) for these {i, j}: {10, 42664}, {20654, 23282}
X(65850) = X(i)-cross conjugate of-X(j) for these (i, j): (661, 34265), (23282, 59138), (42664, 10), (52586, 2)
X(65850) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 52615), (37, 834), (4075, 42664), (6631, 61409), (36901, 65116), (40586, 8637), (40603, 14349)
X(65850) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 52615}, {81, 8637}, {386, 57129}, {593, 50488}, {667, 61409}, {834, 1333}, {849, 42664}, {2206, 14349}
X(65850) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 52615), (10, 834), (42, 8637), (190, 61409), (313, 45746), (321, 14349), (594, 42664), (756, 50488), (835, 58), (850, 65116), (1089, 47842), (2214, 57129), (3952, 386), (4033, 28606), (4103, 56926), (27808, 5224), (28654, 23879), (37218, 81), (42664, 39016), (43531, 3733), (57824, 7192), (57876, 7254), (57977, 86)
X(65850) = trilinear pole of the line {10, 20966} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65850) = perspector of the inconic with center X(52586)
X(65850) = barycentric product X(i)*X(j) for these {i, j}: {10, 57977}, {313, 835}, {321, 37218}, {3952, 57824}, {27808, 43531}
X(65850) = trilinear product X(i)*X(j) for these {i, j}: {10, 37218}, {37, 57977}, {321, 835}, {1018, 57824}, {2214, 27808}, {4033, 43531}
X(65850) = trilinear quotient X(i)/X(j) for these (i, j): (37, 8637), (75, 52615), (313, 14349), (321, 834), (594, 50488), (668, 61409), (835, 1333), (1089, 42664), (4033, 386), (20948, 65116), (27801, 45746), (27808, 28606), (28654, 47842), (37218, 58), (43531, 57129), (47842, 39016), (57824, 1019), (57977, 81)
X(65851) lies on these lines: {213, 37646}, {918, 1086}, {5249, 13567}
X(65851) = complement of the isotomic conjugate of X(65852)
X(65851) = crosspoint of X(2) and X(65852)
X(65851) = X(i)-complementary conjugate of-X(j) for these (i, j): (929, 21232), (2170, 15612), (65852, 2887)
X(65851) = center of the inconic with perspector X(65852)
X(65851) = pole of the line {11, 47394} with respect to the Steiner inellipse
X(65852) lies on these lines: {11, 52330}, {514, 18161}, {522, 17860}, {666, 58000}
X(65852) = isotomic conjugate of the anticomplement of X(65851)
X(65852) = cevapoint of X(11) and X(52331)
X(65852) = X(i)-cross conjugate of-X(j) for these (i, j): (47137, 44426), (52331, 11), (65851, 2)
X(65852) = X(i)-Dao conjugate of-X(j) for these (i, j): (650, 928), (64440, 52331)
X(65852) = X(928)-isoconjugate of-X(2149)
X(65852) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (11, 928), (929, 59), (52331, 39017), (58000, 4998), (64445, 52331)
X(65852) = trilinear pole of the line {11, 47394} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65852) = perspector of the inconic with center X(65851)
X(65852) = barycentric product X(i)*X(j) for these {i, j}: {11, 58000}, {929, 34387}
X(65852) = trilinear product X(i)*X(j) for these {i, j}: {929, 4858}, {2170, 58000}
X(65852) = trilinear quotient X(i)/X(j) for these (i, j): (929, 2149), (1090, 52331), (4858, 928), (58000, 4564)
X(65853) lies on these lines: {30, 511}, {351, 352}, {805, 6082}, {843, 64220}, {2679, 31654}, {2698, 6093}, {5104, 9135}, {6092, 33330}, {9127, 11176}, {9178, 52198}, {9184, 53882}, {44042, 44048}, {57310, 57361}, {57347, 57362}
X(65853) = isogonal conjugate of X(65638)
X(65853) = isogonal conjugate of the anticomplement of X(35586)
X(65853) = crossdifference of every pair of points on line {6, 35087}
X(65853) = {X(352),X(9212)}-harmonic conjugate of X(351)
X(65854) lies on these lines: {30, 511}, {36, 39478}, {901, 4638}, {3025, 53525}, {3259, 56893}, {3814, 53574}, {5570, 59956}, {13756, 24457}, {22765, 39200}, {23152, 42763}, {23153, 23838}, {34464, 53401}, {38614, 52732}, {38617, 45949}, {56881, 64688}
X(65854) = isogonal conjugate of X(65639)
X(65854) = isogonal conjugate of the anticomplement of X(35587)
X(65854) = crossdifference of every pair of points on line {6, 34232}
X(65854) = barycentric quotient X(23964)/X(25701)
X(65855) lies on these lines: {8, 19917}, {30, 511}, {190, 932}, {659, 11689}, {890, 17165}, {1086, 5518}, {3709, 40464}, {3837, 20366}, {14426, 24165}, {15323, 24813}, {20375, 21391}, {21349, 49447}, {24828, 50936}, {48330, 57235}
X(65855) = crossdifference of every pair of points on line {6, 40610}
X(65855) = barycentric quotient X(42700)/X(5559)
X(65856) lies on these lines: {3, 39493}, {23, 26275}, {30, 511}, {186, 39534}, {476, 901}, {477, 953}, {484, 35055}, {858, 30792}, {867, 5520}, {1290, 13589}, {1325, 42741}, {2070, 39478}, {2687, 14127}, {3025, 33965}, {3258, 3259}, {5189, 31131}, {5899, 39200}, {7477, 42746}, {10989, 48182}, {13619, 44428}, {13756, 33964}, {14989, 44979}, {15646, 44815}, {20957, 40100}, {22102, 22104}, {24201, 59823}, {25641, 31841}, {33645, 59825}, {37311, 48384}, {37901, 44433}, {38580, 38584}, {38581, 38586}, {38609, 38614}, {38610, 38617}, {38678, 38682}, {38700, 38705}, {38701, 38707}, {39751, 51663}, {44967, 44973}, {46487, 47788}, {47270, 51631}, {57305, 57313}, {57306, 57320}
X(65856) = isogonal conjugate of X(65644)
X(65856) = crossdifference of every pair of points on line {6, 35090}
X(65856) = barycentric product X(3346)*X(27446)
X(65857) lies on these lines: {30, 511}, {476, 6080}, {477, 44874}, {1304, 5502}, {2693, 46613}, {3258, 35579}, {7740, 38625}, {9409, 65107}, {10151, 57516}, {15262, 15292}, {16177, 57128}, {18577, 58263}, {44992, 53320}
X(65857) = isogonal conjugate of X(53881)
X(65857) = crossdifference of every pair of points on line {6, 39008}
X(65857) = barycentric product X(9502)*X(49883)
X(65858) lies on these lines: {30, 511}, {901, 927}, {953, 2724}, {1155, 1638}, {1566, 3259}, {3025, 44043}, {3322, 42763}, {3328, 30573}, {5011, 22108}, {5057, 30565}, {5087, 45326}, {5179, 28603}, {7112, 21433}, {13756, 59808}, {14190, 61477}, {14475, 14477}, {14732, 44009}, {22102, 40554}, {31841, 33331}, {44973, 44975}, {52334, 65680}, {57313, 57315}, {57320, 57353}
X(65858) = isogonal conjugate of X(65646)
X(65858) = crossdifference of every pair of points on line {6, 35116}
X(65858) = barycentric quotient X(i)/X(j) for these {i,j}: {53945, 42546}, {63152, 2682}
X(65858) = {X(1155),X(41162)}-harmonic conjugate of X(6139)
X(65859) lies on these lines: {15, 351}, {30, 511}, {621, 53365}, {623, 45689}, {9126, 13350}, {9147, 51484}, {9148, 50855}, {9171, 11617}, {9208, 11618}, {11176, 45879}, {14538, 61776}, {21401, 65418}
X(65859) = Thomson-isogonal conjugate of X(44875)
X(65859) = crossdifference of every pair of points on line {6, 61068}
X(65859) = {X(15),X(9162)}-harmonic conjugate of X(351)
X(65860) lies on these lines: {16, 351}, {30, 511}, {622, 53365}, {624, 45689}, {2698, 44875}, {9126, 13349}, {9147, 51485}, {9148, 50858}, {9171, 11618}, {9208, 11617}, {11176, 45880}, {14539, 61776}, {21402, 65418}
X(65860) = crossdifference of every pair of points on line {6, 61069}
X(65860) = barycentric quotient X(56561)/X(60699)
X(65860) = {X(16),X(9163)}-harmonic conjugate of X(351)
X(65861) lies on these lines: {30, 511}, {476, 927}, {477, 2724}, {1566, 3258}, {2688, 46596}, {2690, 46595}, {5196, 42744}, {7479, 42745}, {14731, 14732}, {22104, 40554}, {25641, 33331}, {33964, 59808}, {33965, 44043}, {44967, 44975}, {57305, 57315}, {57306, 57353}
X(65862) lies on these lines: {23, 47884}, {30, 511}, {476, 6078}, {477, 28914}, {858, 45677}, {2691, 46593}, {2752, 46586}, {3258, 5519}, {4789, 24585}, {4927, 10989}, {5189, 47871}, {7426, 14425}, {7475, 42747}, {33965, 44045}, {37901, 47892}
X(65863) lies on these lines: {30, 511}, {476, 6082}, {477, 6093}, {2492, 5913}, {2770, 46589}, {3258, 31654}, {5971, 35522}, {6092, 25641}, {9178, 34320}, {9213, 62294}, {33965, 44048}, {53604, 53882}, {57305, 57361}, {57306, 57362}
X(65864) lies on these lines: {30, 511}, {805, 901}, {953, 2698}, {2511, 5164}, {2679, 3259}, {2703, 18002}, {3025, 44042}, {17989, 56878}, {22102, 22103}, {31841, 33330}, {38703, 38705}, {44971, 44973}, {57310, 57313}, {57320, 57347}, {65516, 65517}
X(65864) = crossdifference of every pair of points on line {6, 35079}
X(65865) lies on these lines: {30, 511}, {805, 927}, {1566, 2679}, {2698, 2724}, {2702, 18001}, {14196, 61434}, {17990, 41323}, {22103, 40554}, {33330, 33331}, {44042, 44043}, {44971, 44975}, {57310, 57315}, {57347, 57353}
X(65865) = isogonal conjugate of X(65647)
X(65865) = crossdifference of every pair of points on line {6, 35080}
X(65866) lies on these lines: {30, 511}, {901, 6079}, {953, 44873}, {1647, 3259}, {3025, 44046}, {5121, 26275}, {5205, 31131}, {7336, 24131}, {22102, 59997}, {24188, 43909}, {25996, 60409}, {30792, 50535}, {44433, 50533}, {47622, 53314}, {47786, 62621}, {59957, 60374}
X(65866) = isogonal conjugate of X(65649)
X(65866) = crossdifference of every pair of points on line {6, 5548}
X(65866) = barycentric quotient X(1602)/X(5215)
X(65867) lies on these lines: {2, 3310}, {69, 46401}, {75, 4453}, {99, 53611}, {312, 30565}, {314, 65669}, {321, 918}, {325, 523}, {654, 1150}, {668, 891}, {900, 1227}, {926, 17135}, {1111, 3120}, {1577, 48416}, {1638, 4359}, {1639, 4358}, {3676, 17894}, {3741, 20525}, {3762, 4120}, {3776, 20909}, {3904, 18359}, {3936, 46397}, {4374, 47780}, {4391, 47790}, {4462, 47769}, {4467, 57244}, {4647, 62435}, {4671, 47772}, {4768, 20900}, {4928, 59736}, {4978, 52623}, {6063, 63742}, {6371, 20295}, {6545, 20908}, {6548, 21433}, {7192, 56323}, {8034, 20512}, {16704, 22086}, {17140, 30704}, {17165, 42341}, {17899, 47796}, {18031, 63748}, {18071, 47660}, {20907, 21183}, {20937, 21606}, {20949, 48550}, {20950, 47871}, {20952, 29739}, {21438, 47676}, {24462, 31330}, {24589, 44902}, {24622, 26985}, {25667, 47661}, {27114, 52326}, {28605, 48571}, {29312, 62415}, {57995, 63216}, {58286, 59721}, {59522, 59713}
X(65867) = midpoint of X(17135) and X(65660)
X(65867) = reflection of X(65703) in X(3741)
X(65867) = isogonal conjugate of X(32719)
X(65867) = isotomic conjugate of X(901)
X(65867) = anticomplement of X(3310)
X(65867) = anticomplement of the isogonal conjugate of X(13136)
X(65867) = isotomic conjugate of the anticomplement of X(3259)
X(65867) = isotomic conjugate of the isogonal conjugate of X(900)
X(65867) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {104, 4440}, {190, 153}, {664, 36918}, {909, 9263}, {1309, 5905}, {2250, 148}, {2720, 3210}, {13136, 8}, {14776, 21216}, {18816, 150}, {32641, 192}, {34051, 58371}, {34234, 149}, {34858, 21224}, {35321, 17035}, {36037, 2}, {36110, 30699}, {36795, 33650}, {36819, 39353}, {37136, 145}, {38955, 21221}, {39294, 521}, {51565, 37781}, {52663, 39351}, {53702, 62998}, {54953, 7}, {57984, 21294}, {61238, 17036}, {64824, 20060}, {65223, 4}, {65331, 12649}
X(65867) = X(i)-Ceva conjugate of X(j) for these (i,j): {1978, 36791}, {3261, 52627}, {20566, 34387}, {57995, 23989}
X(65867) = X(i)-cross conjugate of X(j) for these (i,j): {3259, 2}, {52627, 3261}
X(65867) = X(i)-isoconjugate of X(j) for these (i,j): {1, 32719}, {6, 32665}, {31, 901}, {32, 3257}, {88, 32739}, {101, 9456}, {106, 692}, {213, 4591}, {560, 4555}, {604, 5548}, {667, 9268}, {906, 8752}, {1022, 23990}, {1023, 41935}, {1110, 23345}, {1415, 2316}, {1417, 3939}, {1576, 4674}, {1743, 32645}, {1783, 32659}, {1918, 4622}, {1919, 5376}, {1980, 62536}, {2205, 4615}, {2251, 4638}, {3052, 36042}, {3248, 6551}, {4618, 9459}, {8750, 36058}, {9247, 65336}, {32656, 36125}, {32666, 34230}, {46162, 46289}
X(65867) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 901}, {3, 32719}, {9, 32665}, {39, 46162}, {44, 1983}, {214, 692}, {514, 23345}, {519, 23344}, {900, 1960}, {1015, 9456}, {1086, 106}, {1146, 2316}, {1577, 23838}, {1639, 654}, {1647, 902}, {3161, 5548}, {3911, 23981}, {3960, 53314}, {4370, 101}, {4521, 2441}, {4858, 4674}, {4988, 55263}, {5190, 8752}, {5516, 3052}, {6374, 4555}, {6376, 3257}, {6544, 649}, {6626, 4591}, {6631, 9268}, {9296, 5376}, {9460, 4638}, {16610, 23832}, {20619, 8750}, {21894, 21786}, {24151, 36042}, {26932, 36058}, {34021, 4622}, {35092, 6}, {35094, 34230}, {36901, 4080}, {38979, 31}, {39006, 32659}, {40617, 1417}, {40618, 1797}, {40619, 88}, {40624, 1320}, {46398, 14260}, {51402, 55}, {52659, 109}, {52871, 3939}, {52872, 4557}, {53985, 25}, {55055, 32}, {59737, 4491}, {62559, 1149}, {62571, 100}, {62576, 65336}
X(65867) = cevapoint of X(3762) and X(4768)
X(65867) = crosspoint of X(i) and X(j) for these (i,j): {668, 18816}, {1978, 57995}, {6063, 46405}
X(65867) = crosssum of X(i) and X(j) for these (i,j): {184, 23220}, {1919, 9459}, {23638, 53549}
X(65867) = crossdifference of every pair of points on line {32, 1977}
X(65867) = barycentric product X(i)*X(j) for these {i,j}: {44, 40495}, {75, 3762}, {76, 900}, {85, 4768}, {310, 4120}, {514, 3264}, {519, 3261}, {561, 1635}, {693, 4358}, {850, 16704}, {903, 52627}, {1111, 24004}, {1227, 60074}, {1502, 1960}, {1577, 30939}, {1639, 6063}, {1647, 1978}, {1969, 53532}, {2087, 6386}, {2325, 52621}, {3120, 55262}, {3267, 37168}, {3285, 44173}, {3596, 30725}, {3911, 35519}, {3943, 52619}, {3977, 46107}, {3992, 7199}, {4025, 46109}, {4448, 18895}, {4528, 57792}, {4530, 4572}, {4671, 63217}, {4723, 24002}, {4730, 6385}, {4777, 63240}, {4791, 63226}, {4895, 20567}, {4922, 44187}, {6544, 57995}, {6548, 36791}, {6550, 31625}, {14418, 57787}, {14429, 44129}, {15413, 38462}, {16732, 55243}, {17780, 23989}, {18022, 22086}, {20948, 52680}, {23888, 58027}, {28659, 53528}, {28660, 30572}, {34387, 62669}, {35518, 37790}, {46405, 51402}, {52622, 62789}
X(65867) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 32665}, {2, 901}, {6, 32719}, {8, 5548}, {44, 692}, {75, 3257}, {76, 4555}, {86, 4591}, {141, 46162}, {190, 9268}, {214, 1983}, {264, 65336}, {274, 4622}, {310, 4615}, {513, 9456}, {514, 106}, {519, 101}, {522, 2316}, {668, 5376}, {693, 88}, {850, 4080}, {900, 6}, {902, 32739}, {903, 4638}, {905, 36058}, {918, 34230}, {996, 32686}, {1000, 59068}, {1016, 6551}, {1023, 1110}, {1086, 23345}, {1111, 1022}, {1145, 2427}, {1227, 4585}, {1317, 61210}, {1319, 1415}, {1459, 32659}, {1577, 4674}, {1635, 31}, {1639, 55}, {1647, 649}, {1877, 32674}, {1960, 32}, {1978, 62536}, {2087, 667}, {2325, 3939}, {2401, 10428}, {3120, 55263}, {3251, 2251}, {3259, 3310}, {3261, 903}, {3264, 190}, {3285, 1576}, {3445, 32645}, {3596, 4582}, {3669, 1417}, {3756, 2441}, {3762, 1}, {3904, 62703}, {3911, 109}, {3943, 4557}, {3960, 16944}, {3977, 1331}, {3992, 1018}, {4025, 1797}, {4120, 42}, {4358, 100}, {4370, 23344}, {4391, 1320}, {4448, 1914}, {4453, 40215}, {4487, 57192}, {4528, 220}, {4530, 663}, {4671, 52925}, {4723, 644}, {4730, 213}, {4738, 1023}, {4768, 9}, {4791, 4792}, {4858, 23838}, {4895, 41}, {4922, 172}, {4927, 52206}, {4957, 23352}, {4958, 61358}, {4969, 35327}, {4975, 35342}, {4984, 2308}, {5298, 36075}, {5440, 906}, {6385, 4634}, {6544, 902}, {6545, 43922}, {6548, 2226}, {6550, 1015}, {6630, 53682}, {7649, 8752}, {8056, 36042}, {8661, 1977}, {8756, 8750}, {10015, 14260}, {14407, 1918}, {14408, 2209}, {14418, 212}, {14425, 3052}, {14427, 1253}, {14429, 71}, {14435, 21747}, {14436, 18900}, {14439, 54325}, {14584, 32675}, {14628, 2222}, {16594, 23832}, {16704, 110}, {16732, 55244}, {16892, 46150}, {17780, 1252}, {17924, 36125}, {20568, 4618}, {20908, 36814}, {21129, 1149}, {21198, 39148}, {21207, 4049}, {22086, 184}, {22356, 32656}, {23100, 6549}, {23344, 23990}, {23345, 41935}, {23703, 2149}, {23757, 2183}, {23887, 64611}, {23888, 995}, {23989, 6548}, {24002, 56049}, {24004, 765}, {24188, 21143}, {28602, 17735}, {30572, 1400}, {30573, 1055}, {30583, 3230}, {30606, 4636}, {30725, 56}, {30731, 6065}, {30939, 662}, {31011, 8701}, {31059, 17943}, {31625, 6635}, {33920, 8649}, {33922, 1017}, {34387, 60480}, {34590, 21786}, {34764, 2384}, {35092, 1960}, {35519, 4997}, {36038, 52031}, {36791, 17780}, {36872, 34075}, {36915, 6014}, {36944, 32641}, {37168, 112}, {37790, 108}, {38462, 1783}, {39472, 20818}, {39771, 1404}, {40218, 2720}, {40495, 20568}, {40663, 4559}, {45144, 32642}, {45314, 21793}, {45677, 45140}, {46107, 6336}, {46109, 1897}, {46781, 2718}, {47420, 23220}, {50943, 953}, {51402, 654}, {51406, 2426}, {51415, 23845}, {51422, 2425}, {51463, 35326}, {52338, 3271}, {52623, 4013}, {52627, 519}, {52659, 23981}, {52680, 163}, {53528, 604}, {53532, 48}, {53533, 2275}, {53535, 7113}, {53536, 1468}, {54974, 39414}, {55243, 4567}, {55262, 4600}, {56761, 2423}, {56939, 36049}, {57051, 33882}, {58254, 53582}, {58282, 31182}, {60074, 1168}, {60480, 1318}, {62413, 53634}, {62621, 35281}, {62630, 41405}, {62669, 59}, {62789, 1461}, {63217, 89}, {63226, 4604}, {63233, 4588}, {63240, 4597}, {65024, 28210}, {65101, 27922}
X(65867) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 20906, 44435}, {693, 35519, 850}, {693, 47656, 50557}, {20952, 29739, 47652}
X(65868) lies on these lines: {63, 39470}, {99, 53612}, {100, 658}, {325, 523}, {521, 4025}, {525, 57184}, {676, 53353}, {900, 46401}, {918, 23737}, {1565, 2968}, {2417, 36100}, {2804, 36038}, {3310, 10015}, {4467, 46400}, {4791, 18118}, {4847, 55123}, {6084, 43991}, {20296, 57245}, {21107, 25098}, {22464, 45945}, {39471, 52392}, {39534, 42751}, {46402, 47894}
X(65868) = isogonal conjugate of X(14776)
X(65868) = isotomic conjugate of X(1309)
X(65868) = anticomplement of the isogonal conjugate of X(65297)
X(65868) = isotomic conjugate of the anticomplement of X(10017)
X(65868) = isotomic conjugate of the isogonal conjugate of X(8677)
X(65868) = isotomic conjugate of the polar conjugate of X(10015)
X(65868) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {102, 37781}, {651, 151}, {6081, 189}, {32643, 192}, {32667, 193}, {32677, 39351}, {36040, 2}, {36067, 5905}, {36100, 33650}, {65295, 21270}, {65297, 8}
X(65868) = X(i)-Ceva conjugate of X(j) for these (i,j): {4554, 26611}, {4555, 69}, {46405, 343}
X(65868) = X(i)-cross conjugate of X(j) for these (i,j): {8677, 10015}, {10017, 2}, {35012, 57478}, {42769, 905}
X(65868) = X(i)-isoconjugate of X(j) for these (i,j): {1, 14776}, {9, 32702}, {19, 32641}, {25, 36037}, {31, 1309}, {32, 65223}, {33, 2720}, {41, 65331}, {55, 36110}, {104, 8750}, {108, 2342}, {112, 2250}, {281, 32669}, {607, 37136}, {692, 36123}, {909, 1783}, {1110, 43933}, {1253, 65537}, {1897, 34858}, {1973, 13136}, {2212, 54953}, {2310, 59103}, {3063, 39294}, {7115, 61238}, {8882, 35321}, {11383, 36090}, {16082, 32739}, {32674, 52663}, {32676, 38955}, {36106, 51824}
X(65868) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 1309}, {3, 14776}, {6, 32641}, {223, 36110}, {478, 32702}, {514, 43933}, {905, 43728}, {908, 4242}, {1086, 36123}, {1145, 56183}, {1465, 23987}, {3160, 65331}, {3259, 25}, {6337, 13136}, {6376, 65223}, {6505, 36037}, {8677, 23220}, {10001, 39294}, {10015, 44428}, {15526, 38955}, {16586, 1897}, {17113, 65537}, {23980, 1783}, {26932, 104}, {34467, 34858}, {34591, 2250}, {35072, 52663}, {38981, 33}, {38983, 2342}, {39002, 51824}, {39004, 55}, {39006, 909}, {40613, 8750}, {40618, 34234}, {40619, 16082}, {40626, 51565}, {40628, 61238}, {42761, 860}, {46398, 4}, {55153, 281}, {60339, 650}
X(65868) = crosspoint of X(i) and X(j) for these (i,j): {99, 57985}, {264, 65295}, {664, 34393}
X(65868) = crosssum of X(i) and X(j) for these (i,j): {25, 58313}, {512, 44113}
X(65868) = crossdifference of every pair of points on line {32, 607}
X(65868) = barycentric product X(i)*X(j) for these {i,j}: {63, 36038}, {69, 10015}, {76, 8677}, {99, 42761}, {304, 1769}, {305, 3310}, {306, 23788}, {348, 2804}, {517, 15413}, {525, 17139}, {859, 3267}, {905, 3262}, {908, 4025}, {1465, 35518}, {1502, 23220}, {1565, 2397}, {1785, 30805}, {3261, 22350}, {3926, 39534}, {4391, 62402}, {4554, 35014}, {4561, 42754}, {4563, 42759}, {6063, 52307}, {6332, 22464}, {7182, 46393}, {7192, 51367}, {15419, 17757}, {17880, 24029}, {18210, 55258}, {24002, 51379}, {30786, 42760}, {35015, 65164}, {39471, 56666}, {42751, 57799}, {42752, 52608}, {52392, 53045}, {53549, 57918}
X(65868) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 1309}, {3, 32641}, {6, 14776}, {7, 65331}, {56, 32702}, {57, 36110}, {63, 36037}, {69, 13136}, {75, 65223}, {77, 37136}, {222, 2720}, {279, 65537}, {348, 54953}, {514, 36123}, {517, 1783}, {521, 52663}, {525, 38955}, {603, 32669}, {652, 2342}, {656, 2250}, {664, 39294}, {693, 16082}, {859, 112}, {905, 104}, {908, 1897}, {1086, 43933}, {1262, 59103}, {1457, 32674}, {1459, 909}, {1465, 108}, {1565, 2401}, {1769, 19}, {2183, 8750}, {2397, 15742}, {2804, 281}, {3262, 6335}, {3267, 57984}, {3310, 25}, {3937, 2423}, {4025, 34234}, {4091, 1795}, {4131, 65302}, {6332, 51565}, {6735, 65160}, {7004, 61238}, {8677, 6}, {10015, 4}, {14010, 17926}, {15413, 18816}, {16586, 4242}, {17139, 648}, {18210, 55259}, {22350, 101}, {22383, 34858}, {22464, 653}, {23220, 32}, {23224, 14578}, {23757, 8756}, {23788, 27}, {23981, 7115}, {24029, 7012}, {26611, 53151}, {26932, 43728}, {35012, 3310}, {35014, 650}, {35015, 3064}, {35518, 36795}, {36038, 92}, {38353, 53285}, {39173, 32698}, {39534, 393}, {42750, 1990}, {42751, 232}, {42752, 2489}, {42753, 6591}, {42754, 7649}, {42755, 8755}, {42756, 1886}, {42757, 14571}, {42758, 5089}, {42759, 2501}, {42760, 468}, {42761, 523}, {42762, 23710}, {42769, 8609}, {44706, 35321}, {45928, 23711}, {46393, 33}, {46398, 44428}, {47420, 1960}, {49280, 36921}, {51367, 3952}, {51379, 644}, {52307, 55}, {52316, 42069}, {52392, 53811}, {53045, 5081}, {53046, 52427}, {53549, 607}, {56666, 65295}, {56973, 2425}, {57478, 901}, {60000, 36067}, {62402, 651}, {64825, 11109}, {64828, 5379}, {64885, 15501}, {65743, 2427}
X(65868) = {X(35518),X(57242)}-harmonic conjugate of X(3265)
X(65869) lies on these lines: {325, 523}, {885, 2481}, {1978, 41315}, {2821, 20244}, {2826, 20880}, {3239, 59713}, {3762, 23100}, {4462, 52621}, {4468, 20335}, {4509, 27712}, {4858, 23989}, {18151, 20940}, {20908, 53583}, {24002, 26546}, {54987, 65198}
X(65869) = isotomic conjugate of X(6078)
X(65869) = isotomic conjugate of the anticomplement of X(5519)
X(65869) = isotomic conjugate of the isogonal conjugate of X(6084)
X(65869) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {673, 34547}, {1292, 20533}, {2191, 39353}, {32644, 192}, {36041, 2}, {36086, 56937}, {36146, 7674}, {37206, 20344}, {54987, 20552}
X(65869) = X(18031)-Ceva conjugate of X(23989)
X(65869) = X(5519)-cross conjugate of X(2)
X(65869) = X(i)-isoconjugate of X(j) for these (i,j): {31, 6078}, {1280, 32739}, {6066, 37626}, {9454, 39272}, {23990, 35355}
X(65869) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 6078}, {3008, 2284}, {6084, 8659}, {16593, 101}, {33675, 39272}, {35111, 3939}, {39048, 692}, {40615, 1477}, {40618, 1810}, {40619, 1280}, {56900, 52927}, {61074, 6}
X(65869) = crosspoint of X(i) and X(j) for these (i,j): {2481, 54987}, {46135, 57792}
X(65869) = crosssum of X(i) and X(j) for these (i,j): {2223, 8642}, {8638, 14827}
X(65869) = crossdifference of every pair of points on line {32, 39686}
X(65869) = barycentric product X(i)*X(j) for these {i,j}: {76, 6084}, {310, 53558}, {561, 48032}, {918, 56667}, {1279, 40495}, {1502, 8659}, {3008, 3261}, {5853, 52621}, {6063, 53523}, {23989, 53337}
X(65869) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 6078}, {693, 1280}, {1111, 35355}, {1279, 692}, {2481, 39272}, {2976, 3052}, {3008, 101}, {3261, 36807}, {3676, 1477}, {4025, 1810}, {5853, 3939}, {6084, 6}, {8659, 32}, {16593, 2284}, {20780, 32656}, {24002, 43760}, {34387, 60576}, {43042, 56643}, {48032, 31}, {51419, 2427}, {51839, 34080}, {52210, 919}, {52621, 35160}, {53337, 1252}, {53523, 55}, {53534, 23344}, {53552, 54325}, {53558, 42}, {54234, 8750}, {56667, 666}, {56793, 2440}, {56796, 2428}, {61074, 8659}
X(65869) = {X(53370),X(63221)}-harmonic conjugate of X(53343)
X(65870) lies on these lines: {2, 2793}, {125, 41125}, {325, 523}, {351, 62662}, {671, 690}, {804, 8371}, {888, 7998}, {1499, 8352}, {1649, 9131}, {1995, 34519}, {2408, 42008}, {2789, 9810}, {5468, 52035}, {6088, 12093}, {6089, 27812}, {7496, 11616}, {8288, 38361}, {9146, 18012}, {9147, 9189}, {9168, 55122}, {14223, 62671}, {14273, 52284}, {14417, 44010}, {16220, 32228}, {18911, 39904}, {19912, 39492}, {32472, 47587}, {33915, 41724}, {34174, 63768}, {40916, 53272}, {46336, 47139}, {57813, 60028}, {65467, 65610}
X(65870) = midpoint of X(5466) and X(53365)
X(65870) = reflection of X(i) in X(j) for these {i,j}: {351, 62662}, {1649, 45689}, {3268, 9191}, {5466, 9134}, {9123, 2}, {9131, 1649}, {9147, 9189}, {9185, 8371}, {9189, 45688}, {9191, 9148}, {9485, 9125}, {9979, 5466}, {19912, 39492}, {44010, 14417}
X(65870) = isotomic conjugate of X(6082)
X(65870) = complement of X(9485)
X(65870) = anticomplement of X(9125)
X(65870) = isotomic conjugate of the anticomplement of X(31654)
X(65870) = isotomic conjugate of the isogonal conjugate of X(6088)
X(65870) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {32648, 192}, {36045, 2}, {36142, 11148}, {37216, 14360}
X(65870) = X(65008)-Ceva conjugate of X(9979)
X(65870) = X(31654)-cross conjugate of X(2)
X(65870) = X(i)-isoconjugate of X(j) for these (i,j): {31, 6082}, {163, 34898}, {922, 39296}
X(65870) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 6082}, {115, 34898}, {5512, 13493}, {16597, 8691}, {35133, 34581}, {39061, 39296}, {61071, 18775}
X(65870) = crosspoint of X(i) and X(j) for these (i,j): {598, 892}, {671, 35179}
X(65870) = crosssum of X(i) and X(j) for these (i,j): {187, 8644}, {351, 574}, {5467, 35357}
X(65870) = crossdifference of every pair of points on line {32, 9486}
X(65870) = barycentric product X(i)*X(j) for these {i,j}: {76, 6088}, {523, 11054}, {850, 11580}, {4442, 4789}, {8599, 62309}, {12093, 43665}
X(65870) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 6082}, {523, 34898}, {671, 39296}, {1499, 34581}, {2793, 18775}, {4442, 37210}, {4789, 51561}, {6088, 6}, {9872, 9145}, {10354, 2434}, {11054, 99}, {11580, 110}, {12093, 2421}, {13492, 1296}, {16611, 8691}, {31654, 9125}, {39157, 65324}, {62309, 9146}
X(65870) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9485, 9125}, {9125, 9485, 9123}, {9134, 53365, 9979}
X(65871) lies on these lines: {20, 2848}, {107, 110}, {147, 2799}, {325, 523}, {525, 51940}, {879, 31636}, {1297, 34168}, {1636, 2501}, {2071, 52737}, {2394, 44921}, {5466, 44877}, {5664, 44810}, {6130, 65754}, {6333, 35140}, {8057, 33294}, {9003, 11061}, {9517, 44427}, {13114, 14273}, {13203, 55121}, {14944, 39473}, {25644, 54071}, {30789, 53383}, {34186, 55127}, {46512, 65623}
X(65871) = reflection of X(i) in X(j) for these {i,j}: {20, 41077}, {3265, 14343}, {9979, 65714}, {53345, 16230}
X(65871) = isotomic conjugate of X(2867)
X(65871) = anticomplement of the isogonal conjugate of X(44770)
X(65871) = isotomic conjugate of the anticomplement of X(33504)
X(65871) = isotomic conjugate of the isogonal conjugate of X(2881)
X(65871) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {162, 12384}, {6330, 21294}, {8767, 3448}, {32649, 192}, {32687, 5905}, {36046, 2}, {36092, 4}, {43717, 21221}, {44770, 8}, {65265, 21270}
X(65871) = X(33504)-cross conjugate of X(2)
X(65871) = X(i)-isoconjugate of X(j) for these (i,j): {31, 2867}, {810, 39297}
X(65871) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 2867}, {13611, 48448}, {34846, 26702}, {35968, 10229}, {39062, 39297}, {57606, 1503}, {62612, 525}
X(65871) = crosspoint of X(i) and X(j) for these (i,j): {264, 65265}, {648, 35140}
X(65871) = crosssum of X(647) and X(42671)
X(65871) = trilinear pole of line {57606, 62612}
X(65871) = crossdifference of every pair of points on line {32, 1204}
X(65871) = barycentric product X(i)*X(j) for these {i,j}: {76, 2881}, {648, 57606}, {850, 52058}, {857, 65099}, {3260, 15292}, {35140, 62612}
X(65871) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 2867}, {648, 39297}, {2881, 6}, {15292, 74}, {16612, 26702}, {52058, 110}, {56794, 2445}, {57606, 525}, {61505, 2435}, {62612, 1503}, {65099, 37202}
X(65871) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16230, 53345, 9979}, {53345, 65714, 16230}
X(65872) lies on these lines: {316, 690}, {325, 523}, {340, 16230}, {385, 1637}, {524, 9141}, {525, 8352}, {892, 5466}, {2501, 56021}, {2793, 5999}, {2799, 7840}, {3906, 39266}, {5641, 34765}, {7471, 9182}, {8859, 44564}, {9003, 39099}, {9185, 26276}, {14221, 14607}, {15475, 18829}, {33919, 53365}, {34205, 62651}, {39359, 63248}, {52094, 55142}
X(65872) = reflection of X(i) in X(j) for these {i,j}: {385, 1637}, {3268, 325}, {9979, 62629}
X(65872) = isotomic conjugate of X(20404)
X(65872) = isotomic conjugate of the anticomplement of X(35582)
X(65872) = isotomic conjugate of the isogonal conjugate of X(20403)
X(65872) = X(35582)-cross conjugate of X(2)
X(65872) = X(31)-isoconjugate of X(20404)
X(65872) = X(2)-Dao conjugate of X(20404)
X(65872) = crosspoint of X(892) and X(5641)
X(65872) = crosssum of X(i) and X(j) for these (i,j): {187, 10567}, {351, 5191}
X(65872) = crossdifference of every pair of points on line {32, 59801}
X(65872) = barycentric product X(i)*X(j) for these {i,j}: {76, 20403}, {523, 22254}
X(65872) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 20404}, {20403, 6}, {22254, 99}
X(65872) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {850, 3260, 14295}, {5466, 53378, 53347}
X(65873) lies on these lines: {325, 523}, {351, 659}, {512, 4378}, {513, 8663}, {514, 42661}, {690, 764}, {804, 5992}, {876, 18009}, {891, 42666}, {1365, 2611}, {1962, 48032}, {2254, 4155}, {2530, 6367}, {2832, 3743}, {4010, 8034}, {4502, 4526}, {4824, 58289}, {4988, 50330}, {6085, 14752}, {6370, 48326}, {9279, 48023}, {10180, 53580}, {18015, 55244}, {21349, 48408}, {23765, 59629}, {23768, 48080}, {42758, 55122}, {48047, 58360}, {49598, 65482}
X(65873) = reflection of X(i) in X(j) for these {i,j}: {49598, 65482}, {50538, 1491}
X(65873) = isotomic conjugate of X(65635)
X(65873) = X(40017)-Ceva conjugate of X(3124)
X(65873) = X(i)-isoconjugate of X(j) for these (i,j): {31, 65635}, {643, 35108}, {35159, 65375}
X(65873) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 65635}, {35095, 645}, {40622, 35159}, {46842, 99}, {55060, 35108}
X(65873) = crosspoint of X(i) and X(j) for these (i,j): {523, 876}, {18827, 54986}
X(65873) = crosssum of X(110) and X(3573)
X(65873) = crossdifference of every pair of points on line {32, 5546}
X(65873) = barycentric product X(i)*X(j) for these {i,j}: {876, 46842}, {7178, 35104}
X(65873) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 65635}, {7178, 35159}, {7180, 35108}, {35104, 645}, {46842, 874}
X(65874) lies on these lines: {325, 523}, {513, 3693}, {522, 20335}, {764, 23102}, {876, 4562}, {899, 3310}, {2254, 3930}, {3126, 3675}, {3783, 24462}, {4724, 52614}, {6168, 53539}, {33891, 47695}, {46403, 56555}
X(65874) = midpoint of X(2254) and X(3930)
X(65874) = isotomic conjugate of X(65636)
X(65874) = X(i)-isoconjugate of X(j) for these (i,j): {31, 65636}, {14665, 36086}, {32666, 53219}
X(65874) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 65636}, {17435, 46802}, {35094, 53219}, {38989, 14665}
X(65874) = crosspoint of X(4562) and X(53210)
X(65874) = crossdifference of every pair of points on line {32, 919}
X(65874) = barycentric product X(i)*X(j) for these {i,j}: {918, 14839}, {3126, 46798}, {43063, 50333}
X(65874) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 65636}, {665, 14665}, {918, 53219}, {3126, 46802}, {14839, 666}, {43063, 927}
X(65875) lies on the circumcircle and these lines: {1, 1290}, {35, 901}, {36, 110}, {56, 34921}, {58, 36069}, {65, 2222}, {79, 476}, {99, 320}, {100, 484}, {101, 2245}, {104, 6003}, {106, 2605}, {108, 1835}, {109, 1464}, {112, 52413}, {513, 759}, {517, 6011}, {1293, 35000}, {1308, 24929}, {1309, 5174}, {1319, 26700}, {2392, 53633}, {2689, 7354}, {2690, 39542}, {2692, 34773}, {2720, 37583}, {2742, 7688}, {2743, 3579}, {2758, 62323}, {3025, 13868}, {5563, 6584}, {9059, 60459}, {13273, 34172}, {22765, 39633}, {28658, 58955}, {33858, 53936}, {36975, 53611}, {50344, 53254}
X(65875) = reflection of X(5127) in X(36)
X(65875) = reflection of X(759) in the X(1)X(3) line
X(65875) = X(758)-isoconjugate of X(61479)
X(65875) = trilinear pole of line {6, 21828}
X(65875) = barycentric quotient X(34079)/X(61479)
X(65876) lies on the circumcircle and these lines: {1, 2701}, {28, 59041}, {71, 813}, {81, 36069}, {99, 5088}, {100, 851}, {101, 758}, {103, 6003}, {104, 4367}, {105, 47797}, {107, 242}, {108, 1284}, {109, 1758}, {110, 2651}, {112, 1870}, {226, 2222}, {476, 30690}, {514, 759}, {516, 6011}, {649, 2249}, {741, 1459}, {805, 7015}, {919, 40754}, {1290, 1621}, {1309, 7009}, {1444, 36066}, {1457, 29055}, {2736, 41430}, {5127, 43076}, {5144, 8691}, {5994, 39152}, {5995, 39153}, {13397, 62314}, {38470, 51621}, {53114, 58955}
X(65876) = trilinear pole of line {6, 53527}
X(65877) lies on the circumcircle and these lines: {10, 2222}, {21, 36069}, {100, 1324}, {102, 6003}, {108, 860}, {109, 758}, {110, 4511}, {112, 56830}, {476, 52344}, {515, 6011}, {522, 759}, {901, 56288}, {925, 10538}, {934, 41804}, {993, 2701}, {1283, 36935}, {1290, 2975}, {2690, 54335}, {3006, 9070}, {5127, 59006}, {5251, 34309}, {20294, 39435}, {26709, 60358}, {30115, 32682}, {36078, 56254}, {44184, 54081}, {45272, 58986}, {59097, 62342}
X(65878) lies on the circumcircle and these lines: {1, 59117}, {3, 2748}, {100, 4899}, {105, 3667}, {106, 3309}, {518, 1293}, {519, 1292}, {901, 3870}, {919, 1743}, {927, 39126}, {2743, 4421}, {9097, 14126}, {53296, 53896}, {53897, 64129}
X(65878) = reflection of X(2748) in X(3)
X(65878) = isogonal conjugate of X(9519)
X(65878) = isogonal conjugate of the anticomplement of X(9519)
X(65878) = isogonal conjugate of the complement of X(9519)
X(65878) = Thomson-isogonal conjugate of X(2832)
X(65878) = X(1)-isoconjugate of X(9519)
X(65878) = X(3)-Dao conjugate of X(9519)
X(65878) = barycentric quotient X(6)/X(9519)
X(65879) lies on the circumcircle and these lines: {72, 2222}, {107, 5081}, {108, 758}, {112, 2323}, {283, 36069}, {521, 759}, {1290, 3869}, {1295, 6003}, {5127, 59005}, {6001, 6011}, {26704, 56877}, {52405, 59062}
X(65880) lies on the circumcircle and these lines: {3, 53970}, {98, 758}, {99, 6003}, {511, 759}, {512, 6011}, {991, 12031}, {1983, 2715}, {2687, 63400}, {2708, 3430}, {23997, 36069}, {37508, 53179}
X(65880) = reflection of X(53970) in X(3)
X(65880) = reflection of X(6011) in the Brocard axis
X(65881) lies on the circumcircle and these lines: {40, 2687}, {74, 2077}, {100, 6003}, {104, 758}, {105, 5536}, {106, 22765}, {109, 57139}, {477, 16113}, {513, 6011}, {517, 759}, {840, 15931}, {953, 11012}, {1331, 33637}, {1385, 2718}, {1477, 41341}, {2651, 53707}, {2695, 11827}, {2716, 14110}, {2758, 5690}, {5537, 28471}, {5563, 43081}, {12030, 16139}, {19628, 39136}, {39630, 53280}
X(65881) = reflection of X(22765) in X(49118)
X(65881) = reflection of X(6011) in the OI line
X(65881) = X(51646)-cross conjugate of X(1)
X(65881) = X(i)-isoconjugate of X(j) for these (i,j): {650, 37797}, {23838, 41558}
X(65881) = cevapoint of X(649) and X(2361)
X(65881) = barycentric product X(651)*X(6596)
X(65881) = barycentric quotient X(i)/X(j) for these {i,j}: {109, 37797}, {1983, 39778}, {6596, 4391}, {61197, 41557}, {61210, 41558}
X(65882) lies on the circumcircle and these lines: {40, 2708}, {101, 6003}, {103, 758}, {514, 6011}, {516, 759}, {840, 18444}, {2249, 2651}, {2716, 63438}, {5127, 59074}, {12032, 63395}, {36516, 65659}
X(65882) = Collings transform of X(1936)
X(65882) = X(51642)-cross conjugate of X(1)
X(65882) = cevapoint of X(513) and X(1936)
X(65882) = trilinear pole of line {6, 39032}
X(65883) lies on the circumcircle and these lines: {102, 758}, {105, 8229}, {109, 6003}, {515, 759}, {522, 6011}, {934, 31603}, {953, 21740}, {1300, 45766}, {2687, 11491}, {2716, 4297}, {34309, 44425}
X(65883) = X(51643)-cross conjugate of X(1)
X(65884) lies on the circumcircle and these lines: {3, 53186}, {111, 1503}, {112, 1499}, {352, 26717}, {524, 1297}, {525, 1296}, {691, 34211}, {842, 6776}, {1300, 41377}, {2763, 14916}, {3565, 53379}, {9136, 37689}, {10102, 37643}, {40119, 63768}, {53929, 64014}
X(65884) = reflection of X(53186) in X(3)
X(65884) = isogonal conjugate of X(62506)
X(65884) = isogonal conjugate of the anticomplement of X(62506)
X(65884) = isogonal conjugate of the complement of X(62506)
X(65884) = X(1)-isoconjugate of X(62506)
X(65884) = X(3)-Dao conjugate of X(62506)
X(65884) = trilinear pole of line {6, 35282}
X(65884) = barycentric quotient X(6)/X(62506)
X(65885) lies on the circumcircle and these lines: {105, 758}, {111, 5526}, {518, 759}, {741, 5127}, {1290, 3573}, {1292, 6003}, {3309, 6011}, {5315, 9097}, {5525, 53686}, {6065, 8701}, {36069, 54353}
X(65885) = X(513)-isoconjugate of X(33139)
X(65885) = X(39026)-Dao conjugate of X(33139)
X(65885) = trilinear pole of line {6, 64710}
X(65885) = barycentric quotient X(101)/X(33139)
X(65886) lies on the circumcircle and these lines: {98, 5205}, {100, 30721}, {104, 47624}, {105, 5211}, {106, 758}, {519, 759}, {643, 53633}, {644, 28467}, {649, 6010}, {741, 2651}, {1201, 12029}, {1252, 8687}, {1293, 6003}, {2701, 3573}, {3667, 6011}, {4076, 8707}, {4571, 53625}, {4578, 9104}, {5127, 59072}, {5524, 28482}, {5529, 38453}, {7191, 9097}, {9058, 52923}, {26711, 57151}, {28485, 34997}, {38470, 53280}, {57192, 59109}, {61223, 64519}, {62644, 65365}
X(65886) = X(i)-isoconjugate of X(j) for these (i,j): {513, 60353}, {514, 65741}, {649, 37759}, {661, 37791}, {1635, 47056}, {36926, 43924}
X(65886) = X(i)-Dao conjugate of X(j) for these (i,j): {5375, 37759}, {36830, 37791}, {39026, 60353}
X(65886) = cevapoint of X(i) and X(j) for these (i,j): {9, 4730}, {667, 2323}
X(65886) = trilinear pole of line {6, 5429}
X(65886) = barycentric product X(i)*X(j) for these {i,j}: {100, 65740}, {662, 34895}, {4585, 36935}
X(65886) = barycentric quotient X(i)/X(j) for these {i,j}: {100, 37759}, {101, 60353}, {110, 37791}, {644, 36926}, {692, 65741}, {901, 47056}, {4585, 41873}, {34895, 1577}, {36935, 60074}, {65740, 693}
Contributed by Clark Kimberling and Peter Moses, October 22, 2024.
Suppose that distinct points U and U' are given by normalized barycentrics U = (u,v,w) and U' = (u',v',w'). The W-map of U and U' is here introduced as the point W(U,U') given by
W = W(U,U') = (u - u')2 : (v - v')2 : (w - w')2.
As a barycentric square, the point W lies on the Steiner inellipse, and the point W* = u-u' : v-v' : w-w' lies on the line at infinity. Let g(W*) = isogonal conjugate of W*, so that g(W*) lies on the circumcircle. Then W = crosspoint(X(2) and W*) = crosssum(X(6) and g(W*)).
The W-map is related to the D-map introduced in the preamble just before X(65742). If U and U' lie on a line L, then every pair of points on L have the same W-map. Thus, W(U,U') can be regarded as a mapping from the line L = UU' to W(U,U'), for which we write W(L), as well as W(U,U'). If U and U' are triangle centers, then W(U,U') is a triangle center.
W(Euler line) = W(X(2),X(3)) = X(3163) = crosssum of X(6) and X(74)
W(Brocard axis) = W(X(3),X(6)) = X(11672) = crosssum of X(6) and X(98)
W(IO line) = W(X(1),X(3)) = X(23980) = crosssum of X(6) and X(104)
W(orthic axis) = W(X(230),X(231)) = X(115) = crosssum of X(6) and X(110)
W(anti-orthic axis) = W(X(44),X(513)) = X(1015) = crosssum of X(6) and X(100)
W(Lemoine axis) = W(X(187),X(237)) = X(1084) = crosssum of X(6) and X(99)
W(de Longchamps axis) = W(X(325),X(523)) = X(115) = crosssum of X(6) and X(110)
W(Gergonne line) = W(X(241),X(514)) = X(1086) = crosssum of X(6) and X(101)
W(Soddy line) = W(X(1),X(7)) = X(23972) = crosssum of X(6) and X(103)
W(Nagel line) = W(X(1),X(2)) = X(4370) = crosssum of X(6) and X(106)
W(Fermat line) = W(X(6),X(13)) = X(23967) = crosssum of X(6) and X(842)
W(Napoleon axis) = W(X(6),X(17)) = X(65917) = crosssum of X(6) and X(5966)
W(van Aubel line) = W(X(4),X(6)) = X(23976) = crosssum of X(6) and X(1297)
W(GK line) = W(X(2),X(6)) = X(2482) = crosssum of X(6) and X(111)
W(IN line) = W(X(1),X(5)) = X(61066)
W(IK line) = W(X(1),X(6)) = X(6184)
W(Hatzipolakis axis) = W(X(5),X(523)) = X(115) = crosssum of X(6) and X(110)
W(Koiller line) = W(X(650),X(663)) = X(35508) = crosssum of X(6) and X(934)
W(Garcia-Reznick line) = W(X(522),X(650)) = X(1146) = crosssum of X(6) and X(109)
W(Helman line) = W(X(513),X(663)) = X(1015) = crosssum of X(6) and X(100)
W(Steiner minor axis) = W(X(2),X(1340)) = X(39022) = crosssum of X(6) and X(1380)
W(Steiner major axis) = W(X(2),X(1341)) = X(39023) = crosssum of X(6) and X(1279)
The appearance of (i,j,k) in the following list means that W(X(i),X(j)) = X(k), where k < 65887. (1,2,4370), (1,3,23980), (1,4,23986), (1,5,61066), (1,6,6184), (1,7,23972), (1,21,35069), (1,79,3163), (1,75,35068), (1,87,20532), (1,88,35129), (1,142,35111), (1,147,35082), (1,190,35123), (2,3,3163), (2,6,2482), (2,7,35110), (2,11,35113), (2,13,61068), (2,14,61069), (2,32,61064), (2,37,13466), (2,38,35123), (2,39,35073), (2,44,35124), (2,45,35121), (2,51,11672), (2,98,23967), (2,99,35087), (2,165,23972), (3,6,11672), (3,8,61066), (3,10,23986), (3,66,23976), (3,67,23967), (3,69,35067), (3,76,61070), (3,142,23972), (4,6,23976), (4,8,23980), (4,9,23972), (4,69,11672), (4,145,61066), (4,147,61070), (5,6,35067), (5,10,23980), (5,39,61070), (5,141,11672), (5,182,23976), (6,7,35093), (6,13,23967), (6,25,61067), (6,76,61063), (6,99,35077), (6,190,35126), (7,8,6184), (7,21,35066), (7,80,35116), (7,192,35120), (8,9,35111), (8,20,23986), (8,79,35069), (8,80,35129), (8,144,23972), (8,190,35113), (8,192,35068), (9,46,35066), (9,48,35116), (9,75,35120), (9,80,35113), (10,11,35129), (10,12,35069), (10,37,35068), (10,75,20532), (10,98,35082), (10,140,61066), (10,141,6184), (10,190,35085), (11,36,3163), (11,118,35116), (12,35,3163), (13,15,3163), (14,16,3163), (19,27,35075), (20,64,23976), (20,145,23980), (20,185,11672), (21,99,35084), (22,161,23976), (22,184,11672), (23,110,11672), (40,191,3163), (52,185,3163), (53,577,3163), (55,495,3163), (56,496,3163), (61,397,3163), (62,398,3163), (64,68,3163), (74,265,3163), (80,484,3163), (98,671,3163), (99,316,3163), (110,477,3163), (115,187,3163), (143,389,3163), (146,323,3163), (148,385,3163), (182,597,3163), (36,80,23986), (36,100,4370), (37,39,20532), (37,86,35127), (38,42,6184), (39,141,61063), (44,190,13466), (46,78,35069), (55,63,6184), (56,78,6184), (57,85,35074), (57,200,6184), (58,86,35114), (58,99,35117), (59,100,35072), (63,100,35116), (66,68,11672), (67,74,23976), (69,74,23967), (69,144,35093), (69,194,61063), (74,98,23992), (75,141,35126), (81,99,35089), (86,99,35085), (86,142,35115), (98,100,35083), (98,109,35081), (99,100,35079), (99,101,35080), (99,102,35081), (99,104,35083), (99,109,35086), (99,110,23992), (99,112,35088), (99,187,35073), (100,101,35125), (100,108,55153), (100,109,35128), (100,110,35090), (100,190,35092), (101,109,39017), (102,103,39017), (107,110,39008), (113,114,23992), (114,132,35088), (115,120,35084), (115,125,23992), (115,127,35088), (116,119,35116), (116,124,39017), (117,118,39017), (122,125,39008), (125,136,39021), (140,141,35067), (140,143,11672), (144,145,6184), (146,147,23992), (146,148,23967), (151,152,39017), (155,159,11672), (162,190,35122), (171,181,11672)
The appearance of (i,j,k) in the following list means that W(X(i),X(j)) = X(k), where k > 65886.
(1,19,65887), (1,39,65888), (1,41,65889), (1,76,65890), (1,84,65891), (1,85,65892), (1,90,65893), (1,99,65894), (1,104,65895), (2,12,65896), (2,17,65897), (2,18, 65898), (2,31,65899), (2,85,65900), (2,92,65901), (2,94,65902), (2,187,65903), (3,9,65904), (3,49, 65905), (3, 54,65906), (3,64,65907), (3,74,65908), (3,95,65909), (3,101,65910), (3,101,65910), (3,113,65911), (3,114,65912), (3,110,65913), (4,67,65914), (4,99,65915), (4,195,65916), (6,17,65917), (6,22,65918), (6,31,65919), (6,67,65920), (6,75,65921), (6,101,65922), (6,110, 65923), (6,169,65924), (6,194,65925), (7,104,65926), (8,21,65927), (8,193,65928), (9,43,65929), (9,55,65930), (9,165,65931), (10,21,65932), (10,86,65933), (11,113,65934), (19,25,65935), (19,57,65936), (22,98,65937), (32,99, 65938), (37,101,65939), (38,75,65940), (42,81,65941), (63,194,65942), (75,77,65943), (75,99,65944), (81,105,65945), (99,108,65946), (104,105,65947)
X(65887) lies on the Steiner inellipse and these lines: {37, 15526}, {115, 16583}, {1015, 1104}, {1086, 1901}, {1146, 1834}, {2092, 35508}, {6354, 21813}, {9475, 21789}, {33504, 53982}, {38930, 61075}
X(65887) = complement of the isotomic conjugate of X(44661)
X(65887) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 44661}, {32, 1375}, {857, 626}, {1402, 1861}, {1918, 910}, {3220, 3741}, {7291, 21240}, {39690, 141}, {44661, 2887}
X(65887) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 44661}, {162, 2881}
X(65887) = X(26702)-isoconjugate of X(37202)
X(65887) = X(44661)-Dao conjugate of X(2)
X(65887) = crosspoint of X(2) and X(44661)
X(65887) = crosssum of X(6) and X(26702)
X(65887) = barycentric product X(i)*X(j) for these {i,j}: {8, 3320}, {857, 39690}, {44661, 44661}
X(65887) = barycentric quotient X(i)/X(j) for these {i,j}: {3320, 7}, {39690, 37202}
X(65888) lies on the Steiner inellipse and these lines: {2, 53219}, {9, 39014}, {37, 35119}, {141, 35094}, {513, 6184}, {518, 1015}, {536, 61076}, {1084, 2238}, {1086, 1575}, {1146, 3932}, {1573, 5701}, {2276, 24338}, {3508, 39015}, {3789, 35026}, {4370, 45673}, {4762, 13466}, {25382, 44798}, {35509, 46100}, {52656, 52922}
X(65888) = complement of X(53219)
X(65888) = complement of the isotomic conjugate of X(14839)
X(65888) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 14839}, {14839, 2887}, {43063, 17046}
X(65888) = X(2)-Ceva conjugate of X(14839)
X(65888) = X(14839)-Dao conjugate of X(2)
X(65888) = crosspoint of X(2) and X(14839)
X(65888) = crosssum of X(6) and X(14665)
X(65888) = barycentric product X(14839)*X(14839)
X(65888) = barycentric quotient X(14839)/X(53219)
X(65889) lies on the Steiner inellipse and these lines: {6, 52927}, {37, 35094}, {1015, 1279}, {1086, 3290}, {1633, 62554}, {2276, 35125}, {6184, 6586}, {16686, 41934}, {17366, 35119}, {20672, 23990}, {35072, 51418}
X(65889) = complement of the isotomic conjugate of X(2809)
X(65889) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2809}, {32, 26007}, {2809, 2887}
X(65889) = X(2)-Ceva conjugate of X(2809)
X(65889) = X(2809)-Dao conjugate of X(2)
X(65889) = crosspoint of X(2) and X(2809)
X(65889) = crosssum of X(6) and X(2725)
X(65889) = barycentric product X(2809)*X(2809)
X(65890) lies on the Steiner inellipse and these lines: {2, 43096}, {37, 55049}, {141, 61065}, {742, 35119}, {1015, 24325}, {1086, 21264}, {2235, 35539}, {35123, 64914}, {35964, 43099}, {36256, 37133}
X(65890) = complement of X(43096)
X(65890) = complement of the isogonal conjugate of X(8622)
X(65890) = complement of the isotomic conjugate of X(730)
X(65890) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 730}, {730, 2887}, {1492, 62446}, {2235, 141}, {8622, 10}, {35539, 21235}, {62446, 55061}
X(65890) = X(2)-Ceva conjugate of X(730)
X(65890) = X(730)-Dao conjugate of X(2)
X(65890) = crosspoint of X(2) and X(730)
X(65890) = crosssum of X(6) and X(731)
X(65890) = barycentric product X(i)*X(j) for these {i,j}: {730, 730}, {8622, 35539}
X(65890) = barycentric quotient X(i)/X(j) for these {i,j}: {730, 43096}, {8622, 731}
X(65891) lies on the Steiner inellipse and these lines: {6, 268}, {32, 14578}, {37, 61075}, {115, 1865}, {800, 1015}, {1086, 1427}, {1108, 1146}, {2092, 35071}, {6184, 47408}, {8557, 35508}, {8609, 55153}, {18591, 39020}, {35090, 40135}
X(65891) = complement of the isotomic conjugate of X(6001)
X(65891) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 6001}, {32, 34050}, {560, 14571}, {1397, 51616}, {1918, 3330}, {2443, 46396}, {6001, 2887}, {7435, 21259}, {43058, 17046}, {51359, 21243}, {51660, 2886}
X(65891) = X(2)-Ceva conjugate of X(6001)
X(65891) = X(i)-isoconjugate of X(j) for these (i,j): {1295, 65246}, {2417, 36044}
X(65891) = X(i)-Dao conjugate of X(j) for these (i,j): {6001, 2}, {35580, 2417}, {53991, 65342}
X(65891) = crosspoint of X(i) and X(j) for these (i,j): {2, 6001}, {43058, 56634}
X(65891) = crosssum of X(6) and X(1295)
X(65891) = crossdifference of every pair of points on line {1295, 6087}
X(65891) = barycentric product X(i)*X(j) for these {i,j}: {108, 58264}, {6001, 6001}, {25640, 39175}, {47434, 57495}
X(65891) = barycentric quotient X(58264)/X(35518)
X(65892) lies on the Steiner inellipse and these lines: {2, 53210}, {6, 666}, {37, 39014}, {142, 35094}, {518, 1146}, {522, 6184}, {527, 61076}, {1086, 9436}, {4762, 35110}, {5701, 35128}, {17754, 24411}, {35508, 40869}, {36219, 39012}, {48315, 59573}
X(65892) = complement of X(53210)
X(65892) = complement of the isotomic conjugate of X(28850)
X(65892) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 28850}, {32, 43063}, {14197, 20544}, {28850, 2887}
X(65892) = X(2)-Ceva conjugate of X(28850)
X(65892) = X(28850)-Dao conjugate of X(2)
X(65892) = crosspoint of X(2) and X(28850)
X(65892) = crosssum of X(6) and X(12032)
X(65892) = barycentric product X(i)*X(j) for these {i,j}: {8, 59808}, {28850, 28850}
X(65892) = barycentric quotient X(i)/X(j) for these {i,j}: {28850, 53210}, {59808, 7}
X(65893) lies on the Steiner inellipse and these lines: {2, 46133}, {115, 18591}, {216, 1015}, {219, 577}, {1086, 1214}, {2092, 39013}, {3163, 47235}, {3284, 35090}, {35128, 46974}, {55153, 63849}
X(65893) = complement of X(46133)
X(65893) = complement of the isotomic conjugate of X(912)
X(65893) = isogonal conjugate of the polar conjugate of X(34332)
X(65893) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 912}, {810, 3139}, {912, 2887}, {914, 626}, {1737, 21243}, {1918, 45886}, {2252, 141}, {3658, 21259}, {8609, 20305}, {32656, 55126}, {51649, 2886}, {56410, 17072}
X(65893) = X(2)-Ceva conjugate of X(912)
X(65893) = X(i)-isoconjugate of X(j) for these (i,j): {913, 46133}, {915, 37203}
X(65893) = X(912)-Dao conjugate of X(2)
X(65893) = crosspoint of X(2) and X(912)
X(65893) = crosssum of X(6) and X(915)
X(65893) = crossdifference of every pair of points on line {915, 39534}
X(65893) = barycentric product X(i)*X(j) for these {i,j}: {3, 34332}, {119, 53786}, {912, 912}, {914, 2252}
X(65893) = barycentric quotient X(i)/X(j) for these {i,j}: {912, 46133}, {2252, 37203}, {34332, 264}, {53786, 57753}
X(65894) lies on the Steiner inellipse and these lines: {115, 740}, {523, 35068}, {1015, 4974}, {1086, 10026}, {1213, 35080}, {2482, 28840}, {4370, 45676}, {4590, 9509}, {6543, 61339}, {17045, 35119}, {23992, 24348}, {34528, 35088}, {35078, 36227}, {44396, 61065}
X(65894) = complement of the isogonal conjugate of X(5147)
X(65894) = X(5147)-complementary conjugate of X(10)
X(65894) = crosssum of X(6) and X(12031)
X(65894) = barycentric quotient X(5147)/X(12031)
X(65895) lies on the Steiner inellipse and these lines: {6, 32641}, {37, 55153}, {44, 35072}, {650, 23986}, {1015, 8607}, {1086, 1465}, {1108, 35092}, {1146, 8609}, {4370, 47408}, {6589, 23980}, {8557, 35125}
X(65895) = complement of the isotomic conjugate of X(2800)
X(65895) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2800}, {32, 43043}, {2800, 2887}
X(65895) = X(2)-Ceva conjugate of X(2800)
X(65895) = X(2800)-Dao conjugate of X(2)
X(65895) = crosspoint of X(2) and X(2800)
X(65895) = crosssum of X(6) and X(2716)
X(65895) = crossdifference of every pair of points on line {2716, 35013}
X(65895) = barycentric product X(2800)*X(2800)
X(65896) lies on the Steiner inellipse and these lines: {2, 6648}, {478, 31141}, {529, 52970}, {1086, 39595}, {1146, 5750}, {3509, 35091}, {14394, 14412}, {17053, 39015}, {31157, 56325}, {35092, 60353}, {55153, 56906}
X(65896) = midpoint of X(2) and X(6648)
X(65896) = complement of X(57887)
X(65896) = complement of the isotomic conjugate of X(529)
X(65896) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 529}, {529, 2887}, {43036, 17046}, {52970, 142}
X(65896) = X(2)-Ceva conjugate of X(529)
X(65896) = X(529)-Dao conjugate of X(2)
X(65896) = crosspoint of X(2) and X(529)
X(65896) = crosssum of X(6) and X(38882)
X(65896) = barycentric product X(529)*X(529)
X(65896) = barycentric quotient X(529)/X(57887)
X(65897) lies on the Steiner inellipse and these lines: {2, 11087}, {30, 33500}, {115, 619}, {299, 6148}, {465, 15526}, {531, 15609}, {532, 18803}, {1084, 40696}, {5642, 45147}, {35443, 61069}, {41888, 43961}
X(65897) = midpoint of X(2) and X(32036)
X(65897) = complement of X(11117)
X(65897) = complement of the isotomic conjugate of X(532)
X(65897) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 532}, {532, 2887}, {2152, 44383}, {8014, 63803}, {14446, 21253}, {23714, 20305}, {52750, 21256}
X(65897) = X(2)-Ceva conjugate of X(532)
X(65897) = X(532)-Dao conjugate of X(2)
X(65897) = crosspoint of X(2) and X(532)
X(65897) = crosssum of X(6) and X(2380)
X(65897) = barycentric product X(i)*X(j) for these {i,j}: {298, 42003}, {299, 30462}, {532, 532}
X(65897) = barycentric quotient X(i)/X(j) for these {i,j}: {532, 11117}, {30462, 14}, {42003, 13}
X(65898) lies on the Steiner inellipse and these lines: {2, 11082}, {30, 33498}, {115, 618}, {298, 6148}, {466, 15526}, {530, 15610}, {533, 18804}, {1084, 40695}, {5642, 45147}, {35444, 61068}, {41887, 43962}
X(65898) = midpoint of X(2) and X(32037)
X(65898) = complement of X(11118)
X(65898) = complement of the isotomic conjugate of X(533)
X(65898) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 533}, {533, 2887}, {2151, 44382}, {8015, 63803}, {14447, 21253}, {23715, 20305}, {52751, 21256}
X(65898) = X(2)-Ceva conjugate of X(533)
X(65898) = X(533)-Dao conjugate of X(2)
X(65898) = crosspoint of X(2) and X(533)
X(65898) = crosssum of X(6) and X(2381)
X(65898) = barycentric product X(i)*X(j) for these {i,j}: {298, 30459}, {299, 42004}, {533, 533}
X(65898) = barycentric quotient X(i)/X(j) for these {i,j}: {533, 11118}, {30459, 13}, {42004, 14}
X(65899) lies on the Steiner inellipse and these lines: {2, 4586}, {115, 41193}, {752, 52957}, {1086, 4670}, {1146, 50305}, {1501, 42058}, {4809, 14402}, {6174, 35123}, {16584, 55049}, {19557, 31151}, {31134, 32664}, {35092, 50023}
X(65899) = midpoint of X(2) and X(4586)
X(65899) = reflection of X(61065) in X(2)
X(65899) = complement of X(43097)
X(65899) = complement of the isogonal conjugate of X(8626)
X(65899) = complement of the isotomic conjugate of X(752)
X(65899) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 752}, {752, 2887}, {2243, 141}, {4070, 21244}, {4144, 21245}, {4809, 21252}, {8626, 10}, {14402, 61065}, {14438, 116}, {30874, 40379}, {34069, 33904}, {35548, 21235}, {52957, 2}, {62448, 55061}
X(65899) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 752}, {752, 8032}, {4586, 33904}
X(65899) = X(8032)-cross conjugate of X(752)
X(65899) = X(i)-Dao conjugate of X(j) for these (i,j): {752, 2}, {33904, 61065}
X(65899) = crosspoint of X(2) and X(752)
X(65899) = crosssum of X(6) and X(753)
X(65899) = trilinear pole of line {8032, 33568}
X(65899) = crossdifference of every pair of points on line {753, 62448}
X(65899) = barycentric product X(i)*X(j) for these {i,j}: {752, 752}, {4586, 33568}, {8032, 43097}, {8626, 35548}, {30874, 52957}
X(65899) = barycentric quotient X(i)/X(j) for these {i,j}: {752, 43097}, {8032, 752}, {8626, 753}, {33568, 824}
X(65900) lies on the Steiner inellipse and these lines: {2, 4569}, {115, 18635}, {142, 1146}, {536, 48315}, {1015, 4000}, {1086, 11019}, {6173, 61076}, {9436, 35091}, {13466, 42341}, {14943, 38093}, {17073, 35072}, {20206, 61075}, {31169, 40593}, {35094, 41555}, {39011, 57033}, {44664, 52980}
X(65900) = midpoint of X(2) and X(4569)
X(65900) = reflection of X(35508) in X(2)
X(65900) = complement of the isotomic conjugate of X(44664)
X(65900) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 44664}, {3000, 141}, {44664, 2887}, {52888, 1329}, {52980, 17047}, {62738, 3452}, {65705, 124}
X(65900) = X(2)-Ceva conjugate of X(44664)
X(65900) = X(44664)-Dao conjugate of X(2)
X(65900) = crosspoint of X(2) and X(44664)
X(65900) = barycentric product X(i)*X(j) for these {i,j}: {44664, 44664}, {52888, 52980}
X(65901) lies on the Steiner inellipse and these lines: {2, 18026}, {226, 1146}, {381, 2808}, {442, 15526}, {1015, 3772}, {1086, 1210}, {2482, 2798}, {18592, 35071}, {30691, 30692}, {35508, 46835}, {39036, 64781}, {52982, 64780}
X(65901) = midpoint of X(2) and X(18026)
X(65901) = reflection of X(35072) in X(2)
X(65901) = complement of the isotomic conjugate of X(64780)
X(65901) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 64780}, {2635, 141}, {2637, 123}, {30691, 116}, {52889, 21246}, {52982, 21243}, {62736, 18589}, {64780, 2887}
X(65901) = X(2)-Ceva conjugate of X(64780)
X(65901) = X(i)-isoconjugate of X(j) for these (i,j): {23707, 32726}, {36140, 63744}
X(65901) = X(i)-Dao conjugate of X(j) for these (i,j): {33572, 521}, {64780, 2}
X(65901) = crosspoint of X(2) and X(64780)
X(65901) = crosssum of X(6) and X(32726)
X(65901) = barycentric product X(64780)*X(64780)
X(65901) = barycentric quotient X(2635)/X(23707)
X(65902) lies on the Steiner inellipse and these lines: {2, 18334}, {115, 3580}, {623, 43962}, {624, 43961}, {2072, 15526}, {2482, 31174}, {7603, 13162}, {7753, 35078}, {7810, 16535}, {9466, 35088}, {16188, 34209}
X(65902) = midpoint of X(2) and X(35139)
X(65902) = reflection of X(18334) in X(2)
X(65902) = complement of X(60013)
X(65902) = complement of the isogonal conjugate of X(3016)
X(65902) = X(i)-complementary conjugate of X(j) for these (i,j): {3016, 10}, {32678, 64461}
X(65902) = X(35139)-Ceva conjugate of X(64461)
X(65902) = X(64461)-Dao conjugate of X(18334)
X(65902) = crosssum of X(6) and X(32730)
X(65902) = barycentric quotient X(3016)/X(32730)
X(65903) lies on the Steiner inellipse and these lines: {2, 17416}, {115, 597}, {1084, 9465}, {1641, 35073}, {5306, 35133}, {5642, 35087}, {6593, 31173}, {11168, 15526}, {11672, 45331}, {15303, 35088}, {22329, 23992}, {35077, 44397}
X(65903) = midpoint of X(2) and X(35138)
X(65903) = reflection of X(17416) in X(2)
X(65903) = complement of the isotomic conjugate of X(3849)
X(65903) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 3849}, {3849, 2887}, {60867, 21256}
X(65903) = X(2)-Ceva conjugate of X(3849)
X(65903) = X(3849)-Dao conjugate of X(2)
X(65903) = crosspoint of X(2) and X(3849)
X(65903) = crosssum of X(6) and X(6323)
X(65903) = barycentric product X(3849)*X(3849)
X(65904) lies on the Steiner inellipse and these lines: {1, 35072}, {2, 46137}, {6, 2338}, {115, 44993}, {216, 59215}, {220, 36049}, {577, 32652}, {1015, 17054}, {1086, 1108}, {1146, 1210}, {1212, 20264}, {8609, 35091}, {9502, 23980}, {15526, 18635}, {43065, 55153}
X(65904) = complement of X(46137)
X(65904) = complement of the isotomic conjugate of X(971)
X(65904) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 971}, {32, 43035}, {971, 2887}, {2272, 141}, {43044, 17046}, {51364, 17047}
X(65904) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 971}, {45250, 2272}
X(65904) = X(971)-Dao conjugate of X(2)
X(65904) = crosspoint of X(i) and X(j) for these (i,j): {2, 971}, {43044, 56640}
X(65904) = crosssum of X(6) and X(972)
X(65904) = barycentric product X(971)*X(971)
X(65904) = barycentric quotient X(971)/X(46137)
X(65905) lies on the Steiner inellipse and these lines: {2, 65267}, {6, 39013}, {115, 131}, {343, 6509}, {577, 18877}, {686, 47405}, {1084, 5158}, {3003, 39021}, {3163, 47230}, {3284, 18334}, {8571, 39170}, {11672, 60342}, {35088, 44388}, {39019, 46085}
X(65905) = complement of X(65267)
X(65905) = complement of the isotomic conjugate of X(13754)
X(65905) = isogonal conjugate of the polar conjugate of X(34333)
X(65905) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 13754}, {560, 16310}, {686, 21253}, {810, 3134}, {1725, 21243}, {2315, 141}, {3003, 20305}, {9247, 11064}, {13754, 2887}, {15329, 21259}, {44084, 63840}, {52430, 10257}, {62267, 14156}, {62338, 21235}
X(65905) = X(2)-Ceva conjugate of X(13754)
X(65905) = X(13754)-Dao conjugate of X(2)
X(65905) = crosspoint of X(2) and X(13754)
X(65905) = crosssum of X(6) and X(1300)
X(65905) = barycentric product X(i)*X(j) for these {i,j}: {3, 34333}, {113, 53785}, {13754, 13754}
X(65905) = barycentric quotient X(i)/X(j) for these {i,j}: {13754, 65267}, {34333, 264}, {53785, 40423}
X(65906) lies on the Steiner inellipse and these lines: {2, 46138}, {6, 39018}, {50, 18334}, {115, 128}, {216, 34520}, {577, 14586}, {1511, 22052}, {2081, 47423}, {15526, 34834}, {17434, 47405}, {39013, 63845}
X(65906) = complement of X(46138)
X(65906) = complement of the isotomic conjugate of X(1154)
X(65906) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 1154}, {50, 21231}, {51, 63803}, {560, 231}, {1154, 2887}, {1273, 21235}, {1953, 34827}, {2081, 21253}, {2179, 3580}, {2181, 63839}, {2290, 141}, {6149, 3819}, {11062, 20305}, {19627, 16577}, {51801, 21243}, {52414, 34850}, {62266, 2072}
X(65906) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 1154}, {14570, 55132}
X(65906) = X(2167)-isoconjugate of X(14859)
X(65906) = X(i)-Dao conjugate of X(j) for these (i,j): {1154, 2}, {18402, 65360}, {35591, 2413}, {40588, 14859}
X(65906) = crosspoint of X(2) and X(1154)
X(65906) = crosssum of X(6) and X(1141)
X(65906) = crossdifference of every pair of points on line {1141, 10412}
X(65906) = barycentric product X(i)*X(j) for these {i,j}: {1154, 1154}, {10411, 65784}, {45793, 63834}, {52603, 55132}
X(65906) = barycentric quotient X(i)/X(j) for these {i,j}: {51, 14859}, {1154, 46138}, {11062, 65360}, {65784, 10412}
X(65907) lies on the Steiner inellipse and these lines: {2, 54988}, {6, 35071}, {32, 18877}, {53, 115}, {216, 20265}, {577, 14390}, {3003, 39008}, {3163, 46425}, {5158, 53851}, {9119, 35072}, {11672, 47405}, {13567, 15526}, {18334, 40135}, {39013, 46432}
X(65907) = midpoint of X(2) and X(65835)
X(65907) = complement of X(54988)
X(65907) = complement of the isotomic conjugate of X(6000)
X(65907) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 6000}, {560, 1990}, {6000, 2887}, {46587, 21259}
X(65907) = X(2)-Ceva conjugate of X(6000)
X(65907) = X(2416)-isoconjugate of X(36043)
X(65907) = X(i)-Dao conjugate of X(j) for these (i,j): {6000, 2}, {35579, 2416}
X(65907) = crosspoint of X(2) and X(6000)
X(65907) = crosssum of X(6) and X(1294)
X(65907) = crossdifference of every pair of points on line {1294, 6086}
X(65907) = barycentric product X(i)*X(j) for these {i,j}: {133, 39174}, {6000, 6000}, {40948, 52646}, {47433, 57488}, {51964, 62583}
X(65907) = barycentric quotient X(i)/X(j) for these {i,j}: {6000, 54988}, {39174, 57762}
X(65908) lies on the Steiner inellipse and these lines: {6, 18334}, {115, 3003}, {187, 39987}, {216, 39008}, {577, 32640}, {647, 3163}, {800, 39021}, {3284, 35071}, {3580, 15526}, {5158, 55048}, {17434, 47405}, {18122, 35088}, {34209, 47228}, {39013, 40135}
X(65908) = complement of the isotomic conjugate of X(5663)
X(65908) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 5663}, {560, 3018}, {810, 37985}, {5663, 2887}, {7480, 21259}, {23995, 55308}, {35520, 21235}, {36063, 21243}, {47228, 20305}
X(65908) = X(2)-Ceva conjugate of X(5663)
X(65908) = X(i)-isoconjugate of X(j) for these (i,j): {477, 36102}, {2411, 36047}, {36062, 65359}, {36130, 65325}
X(65908) = X(i)-Dao conjugate of X(j) for these (i,j): {5663, 2}, {18809, 65359}, {35581, 2411}
X(65908) = crosspoint of X(2) and X(5663)
X(65908) = crosssum of X(6) and X(477)
X(65908) = crossdifference of every pair of points on line {477, 16171}
X(65908) = barycentric product X(i)*X(j) for these {i,j}: {5663, 5663}, {53233, 55141}
X(65908) = barycentric quotient X(47228)/X(65359)
X(65909) lies on the Steiner inellipse and these lines: {5, 35318}, {115, 129}, {140, 35071}, {233, 14767}, {401, 16089}, {577, 16813}, {6663, 46394}, {7755, 39018}, {11672, 45259}, {24862, 36412}, {36422, 55074}
X(65909) = complement of the isotomic conjugate of X(32428)
X(65909) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 32428}, {1955, 3819}, {1971, 21231}, {2179, 297}, {2313, 141}, {32428, 2887}
X(65909) = X(2)-Ceva conjugate of X(32428)
X(65909) = X(32428)-Dao conjugate of X(2)
X(65909) = crosspoint of X(2) and X(32428)
X(65909) = crosssum of X(6) and X(1298)
X(65909) = crossdifference of every pair of points on line {1298, 53175}
X(65909) = barycentric product X(32428)*X(32428)
X(65910) lies on the Steiner inellipse and these lines: {2, 53228}, {6, 39014}, {115, 33331}, {518, 35072}, {521, 6184}, {577, 32642}, {1086, 8608}, {1108, 35119}, {5701, 55153}, {6586, 23972}, {16608, 35094}, {61076, 64780}
X(65910) = complement of X(53228)
X(65910) = complement of the isotomic conjugate of X(2808)
X(65910) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2808}, {2808, 2887}, {23694, 20544}
X(65910) = X(2)-Ceva conjugate of X(2808)
X(65910) = X(2808)-Dao conjugate of X(2)
X(65910) = crosspoint of X(2) and X(2808)
X(65910) = crosssum of X(6) and X(2724)
X(65910) = barycentric product X(2808)*X(2808)
X(65910) = barycentric quotient X(2808)/X(53228)
X(65911) lies on the Steiner inellipse and these lines: {6, 39008}, {32, 32663}, {115, 1990}, {187, 47087}, {800, 18334}, {3003, 35071}, {3163, 6587}, {3284, 39020}, {15526, 47296}, {39021, 46432}, {44909, 46211}
X(65911) = complement of the isotomic conjugate of X(2777)
X(65911) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2777}, {560, 47228}, {2777, 2887}, {31510, 21259}
X(65911) = X(2)-Ceva conjugate of X(2777)
X(65911) = X(2777)-Dao conjugate of X(2)
X(65911) = crosspoint of X(2) and X(2777)
X(65911) = crosssum of X(6) and X(2693)
X(65911) = crossdifference of every pair of points on line {2693, 46613}
X(65911) = barycentric product X(i)*X(j) for these {i,j}: {1552, 12113}, {2777, 2777}, {18809, 51475}, {31510, 62350}
X(65912) lies on the Steiner inellipse and these lines: {2, 46145}, {6, 35088}, {115, 1503}, {230, 15526}, {232, 1084}, {523, 23976}, {2485, 11672}, {2549, 39008}, {6531, 61339}, {7735, 23992}, {15449, 39095}, {16320, 35133}, {23967, 62384}, {39020, 63440}, {55152, 65726}
X(65912) = complement of X(46145)
X(65912) = complement of the isotomic conjugate of X(2794)
X(65912) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2794}, {2794, 2887}
X(65912) = X(2)-Ceva conjugate of X(2794)
X(65912) = X(2794)-Dao conjugate of X(2)
X(65912) = crosspoint of X(2) and X(2794)
X(65912) = crosssum of X(6) and X(2710)
X(65912) = barycentric product X(2794)*X(2794)
X(65912) = barycentric quotient X(2794)/X(46145)
X(65913) lies on the Steiner inellipse and these lines: {6, 55153}, {44, 61075}, {115, 3330}, {1015, 14571}, {1086, 34050}, {1108, 35128}, {3554, 35092}, {4370, 57049}, {6588, 23980}, {8557, 35091}, {8609, 35072}
X(65913) = complement of the isotomic conjugate of X(2829)
X(65913) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2829}, {2829, 2887}
X(65913) = X(2)-Ceva conjugate of X(2829)
X(65913) = X(2829)-Dao conjugate of X(2)
X(65913) = crosspoint of X(2) and X(2829)
X(65913) = crosssum of X(6) and X(2745)
X(65913) = barycentric product X(2829)*X(2829)
X(65914) lies on the Steiner inellipse and these lines: {6, 55048}, {32, 14385}, {39, 39008}, {115, 232}, {187, 12096}, {647, 23976}, {800, 23992}, {1084, 40135}, {2482, 52613}, {2485, 3163}, {3003, 15526}, {3284, 55047}, {14961, 39020}, {52590, 61067}
X(65914) = complement of the isotomic conjugate of X(2781)
X(65914) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2781}, {560, 6103}, {2781, 2887}, {37937, 21259}, {65711, 21235}
X(65914) = X(2)-Ceva conjugate of X(2781)
X(65914) = X(2781)-Dao conjugate of X(2)
X(65914) = crosspoint of X(2) and X(2781)
X(65914) = crosssum of X(6) and X(2697)
X(65914) = crossdifference of every pair of points on line {2697, 46594}
X(65914) = barycentric product X(i)*X(j) for these {i,j}: {2781, 2781}, {42426, 51472}
X(65915) lies on the Steiner inellipse and these lines: {6, 55152}, {69, 35088}, {115, 1570}, {230, 15525}, {523, 35067}, {2482, 64919}, {2489, 11672}, {15526, 44377}, {23992, 36207}, {34810, 39008}
X(65915) = complement of the isotomic conjugate of X(23698)
X(65915) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 23698}, {23698, 2887}
X(65915) = X(2)-Ceva conjugate of X(23698)
X(65915) = X(23698)-Dao conjugate of X(2)
X(65915) = crosspoint of X(2) and X(23698)
X(65915) = crosssum of X(6) and X(23700)
X(65915) = barycentric product X(23698)*X(23698)
X(65916) lies on the Steiner inellipse and these lines: {50, 115}, {323, 15526}, {570, 18334}, {3003, 39018}, {3163, 12077}, {3284, 39019}, {22052, 39008}, {32662, 36412}, {35088, 44386}, {36422, 47414}
X(65916) = complement of the isotomic conjugate of X(32423)
X(65916) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 32423}, {560, 47226}, {32423, 2887}
X(65916) = X(2)-Ceva conjugate of X(32423)
X(65916) = X(32423)-Dao conjugate of X(2)
X(65916) = crosspoint of X(2) and X(32423)
X(65916) = crosssum of X(6) and X(14979)
X(65916) = barycentric product X(32423)*X(32423)
X(65917) lies on the Steiner inellipse and these lines: {2, 60034}, {3, 39019}, {32, 39171}, {39, 15345}, {50, 23992}, {115, 140}, {187, 6592}, {401, 7925}, {570, 1084}, {3631, 15526}, {15109, 15449}, {23967, 47406}, {36422, 59739}
X(65917) = complement of X(60034)
X(65917) = complement of the isotomic conjugate of X(5965)
X(65917) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 5965}, {5965, 2887}
X(65917) = X(2)-Ceva conjugate of X(5965)
X(65917) = X(5965)-Dao conjugate of X(2)
X(65917) = crosspoint of X(2) and X(5965)
X(65917) = crosssum of X(6) and X(5966)
X(65917) = barycentric product X(5965)*X(5965)
X(65917) = barycentric quotient X(5965)/X(60034)
X(65918) lies on the Steiner inellipse and these lines: {39, 15449}, {115, 1194}, {1084, 5007}, {3005, 47426}, {6292, 15526}, {8623, 18334}, {10317, 18374}, {23967, 52591}, {35088, 64647}, {40377, 55050}
X(65918) = complement of the isotomic conjugate of X(9019)
X(65918) = X(i)-complementary conjugate of X(j) for these (i,j): {23, 21238}, {31, 9019}, {39, 21234}, {1923, 187}, {1964, 858}, {3051, 16581}, {9019, 2887}, {18374, 1215}, {18715, 626}
X(65918) = X(2)-Ceva conjugate of X(9019)
X(65918) = X(9076)-isoconjugate of X(37221)
X(65918) = X(9019)-Dao conjugate of X(2)
X(65918) = crosspoint of X(2) and X(9019)
X(65918) = crosssum of X(6) and X(9076)
X(65918) = barycentric product X(i)*X(j) for these {i,j}: {23, 60463}, {7794, 36415}, {9019, 9019}
X(65918) = barycentric quotient X(i)/X(j) for these {i,j}: {36415, 52395}, {60463, 18019}
X(65919) lies on the Steiner inellipse and these lines: {2, 43093}, {32, 32656}, {39, 1086}, {115, 3136}, {354, 1015}, {1084, 20970}, {1146, 1573}, {23988, 36230}, {35119, 49758}, {39014, 52963}, {51406, 52592}
X(65919) = complement of X(43093)
X(65919) = complement of the isogonal conjugate of X(8618)
X(65919) = complement of the isotomic conjugate of X(674)
X(65919) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 674}, {560, 3011}, {674, 2887}, {2225, 141}, {3006, 21235}, {4249, 21259}, {8618, 10}, {14964, 21240}, {42723, 21262}, {43039, 17046}, {51657, 2886}, {57015, 626}, {65703, 21252}
X(65919) = X(2)-Ceva conjugate of X(674)
X(65919) = X(i)-isoconjugate of X(j) for these (i,j): {675, 37130}, {2224, 43093}
X(65919) = X(674)-Dao conjugate of X(2)
X(65919) = crosspoint of X(2) and X(674)
X(65919) = crosssum of X(6) and X(675)
X(65919) = crossdifference of every pair of points on line {675, 53276}
X(65919) = barycentric product X(i)*X(j) for these {i,j}: {674, 674}, {2225, 57015}, {3006, 8618}, {32739, 62556}
X(65919) = barycentric quotient X(i)/X(j) for these {i,j}: {674, 43093}, {2225, 37130}, {8618, 675}
X(65920) lies on the Steiner inellipse and these lines: {32, 14357}, {39, 55048}, {115, 468}, {187, 15526}, {574, 39008}, {647, 61067}, {2482, 3265}, {5475, 35088}, {14961, 55047}, {35133, 40135}
X(65920) = X(i)-complementary conjugate of X(j) for these (i,j): {560, 44467}, {46619, 21259}
X(65920) = crosssum of X(6) and X(53929)
X(65921) lies on the Steiner inellipse and these lines: {2, 57944}, {10, 61065}, {39, 55049}, {115, 5977}, {668, 29945}, {730, 35119}, {760, 35094}, {1015, 17023}, {1086, 3821}, {1146, 30847}, {50305, 61076}
X(65921) = complement of X(57944)
X(65921) = complement of the isogonal conjugate of X(8624)
X(65921) = complement of the isotomic conjugate of X(742)
X(65921) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 742}, {742, 2887}, {2239, 141}, {8624, 10}, {35545, 21235}
X(65921) = X(2)-Ceva conjugate of X(742)
X(65921) = X(742)-Dao conjugate of X(2)
X(65921) = crosspoint of X(2) and X(742)
X(65921) = crosssum of X(6) and X(743)
X(65921) = barycentric product X(i)*X(j) for these {i,j}: {742, 742}, {8624, 35545}
X(65921) = barycentric quotient X(i)/X(j) for these {i,j}: {742, 57944}, {8624, 743}
X(65922) lies on the Steiner inellipse and these lines: {2, 53218}, {39, 35092}, {513, 23980}, {517, 1015}, {1084, 2245}, {1086, 8610}, {1146, 1575}, {1329, 55153}, {3752, 35119}, {4370, 6586}, {5662, 35094}, {8608, 40621}, {17735, 39015}, {24289, 39011}
X(65922) = complement of X(53218)
X(65922) = complement of the isotomic conjugate of X(2810)
X(65922) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2810}, {2810, 2887}
X(65922) = X(2)-Ceva conjugate of X(2810)
X(65922) = X(2810)-Dao conjugate of X(2)
X(65922) = crosspoint of X(2) and X(2810)
X(65922) = crosssum of X(6) and X(2726)
X(65922) = barycentric product X(2810)*X(2810)
X(65922) = barycentric quotient X(2810)/X(53218)
X(65923) lies on the Steiner inellipse and these lines: {3, 55048}, {32, 39169}, {39, 23992}, {115, 858}, {187, 1084}, {574, 18334}, {647, 2482}, {1576, 15477}, {3003, 35133}, {3005, 47426}, {5355, 35078}, {7813, 14961}, {7820, 61077}, {7853, 35088}, {17416, 52961}, {17964, 61503}, {40349, 55047}
X(65923) = complement of the isotomic conjugate of X(2854)
X(65923) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2854}, {560, 10418}, {2854, 2887}, {7482, 21259}, {44467, 20305}, {46783, 21256}, {52197, 4892}
X(65923) = X(2)-Ceva conjugate of X(2854)
X(65923) = X(2854)-Dao conjugate of X(2)
X(65923) = crosspoint of X(2) and X(2854)
X(65923) = crosssum of X(6) and X(2770)
X(65923) = crossdifference of every pair of points on line {2770, 46589}
X(65923) = barycentric product X(i)*X(j) for these {i,j}: {2854, 2854}, {9177, 46783}
X(65923) = barycentric quotient X(9177)/X(52501)
X(65924) lies on the Steiner inellipse and these lines: {3, 1015}, {32, 51473}, {115, 21530}, {577, 32658}, {1084, 18591}, {1086, 18589}, {1146, 16605}, {2092, 15525}, {14961, 35090}, {22401, 35072}, {23980, 42769}, {35508, 42018}
X(65924) = complement of the isotomic conjugate of X(34381)
X(65924) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 34381}, {810, 3140}, {1738, 21243}, {3290, 20305}, {4236, 21259}, {9247, 25083}, {20728, 20540}, {32656, 2977}, {34381, 2887}
X(65924) = X(2)-Ceva conjugate of X(34381)
X(65924) = X(34381)-Dao conjugate of X(2)
X(65924) = crosspoint of X(2) and X(34381)
X(65924) = crosssum of X(6) and X(15344)
X(65924) = crossdifference of every pair of points on line {2977, 15344}
X(65924) = barycentric product X(34381)*X(34381)
X(65924) = barycentric quotient X(20728)/X(57499)
X(65925) lies on the Steiner inellipse and these lines: {2, 3225}, {76, 115}, {141, 1084}, {325, 35078}, {887, 2482}, {1015, 21240}, {4357, 40610}, {6292, 55050}, {6786, 61063}, {7813, 39010}, {15526, 50666}
X(65925) = midpoint of X(2) and X(65287)
X(65925) = complement of X(3225)
X(65925) = complement of the isogonal conjugate of X(3229)
X(65925) = complement of the isotomic conjugate of X(698)
X(65925) = isotomic conjugate of the isogonal conjugate of X(59802)
X(65925) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 698}, {698, 2887}, {798, 2086}, {799, 9429}, {1755, 40810}, {1964, 35540}, {2227, 141}, {3229, 10}, {9429, 16592}, {32540, 16609}, {32748, 37}, {35524, 21235}, {36821, 4892}, {41337, 4369}, {51322, 19563}, {51907, 2}, {51912, 39080}, {52460, 226}
X(65925) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 698}, {55034, 9429}
X(65925) = X(699)-isoconjugate of X(43761)
X(65925) = X(i)-Dao conjugate of X(j) for these (i,j): {698, 2}, {3229, 32544}, {39080, 699}, {40810, 51992}
X(65925) = crosspoint of X(2) and X(698)
X(65925) = crosssum of X(6) and X(699)
X(65925) = barycentric product X(i)*X(j) for these {i,j}: {76, 59802}, {698, 698}, {3229, 35524}
X(65925) = barycentric quotient X(i)/X(j) for these {i,j}: {698, 3225}, {2227, 43761}, {3229, 699}, {39080, 32544}, {47648, 51992}, {59567, 8858}, {59802, 6}
X(65926) lies on the Steiner inellipse and these lines: {1, 55153}, {6, 35091}, {115, 50940}, {1086, 6610}, {1108, 35125}, {1146, 44675}, {4370, 57064}, {6129, 23980}, {6603, 61075}, {8609, 35508}, {14837, 35110}, {35072, 43065}, {35128, 40133}
X(65926) = X(32)-complementary conjugate of X(43047)
X(65926) = crosssum of X(6) and X(53911)
X(65927) lies on the Steiner inellipse and these lines: {9, 115}, {220, 2341}, {1015, 40937}, {1084, 16588}, {1086, 5745}, {1100, 40621}, {1146, 3686}, {1944, 35094}, {2323, 35092}, {35080, 49776}, {35086, 40869}
X(65927) = complement of the isotomic conjugate of X(44669)
X(65927) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 44669}, {35466, 17046}, {44669, 2887}, {65375, 6089}
X(65927) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 44669}, {65236, 6089}
X(65927) = X(44669)-Dao conjugate of X(2)
X(65927) = crosspoint of X(2) and X(44669)
X(65927) = barycentric product X(i)*X(j) for these {i,j}: {8, 34194}, {44669, 44669}
X(65927) = barycentric quotient X(34194)/X(7)
X(65928) lies on the Steiner inellipse and these lines: {37, 55046}, {39, 39016}, {115, 4205}, {594, 37586}, {958, 1146}, {1015, 37592}, {1086, 4657}, {35068, 51406}, {35069, 47431}, {35080, 50252}, {35092, 50020}, {59515, 59545}
X(65928) = complement of the isotomic conjugate of X(5847)
X(65928) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 5847}, {5847, 2887}, {43054, 17046}
X(65928) = X(2)-Ceva conjugate of X(5847)
X(65928) = X(5847)-Dao conjugate of X(2)
X(65928) = crosspoint of X(2) and X(5847)
X(65928) = crosssum of X(6) and X(28476)
X(65928) = barycentric product X(5847)*X(5847)
X(65929) lies on the Steiner inellipse and these lines: {1, 1084}, {115, 1573}, {960, 35508}, {1015, 3742}, {1086, 1107}, {1146, 3741}, {6786, 40627}, {8299, 39014}, {15526, 18639}, {30109, 35094}, {35079, 43065}, {35119, 50014}
X(65929) = complement of the isotomic conjugate of X(6007)
X(65929) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 6007}, {6007, 2887}, {43059, 17046}
X(65929) = X(2)-Ceva conjugate of X(6007)
X(65929) = X(6007)-Dao conjugate of X(2)
X(65929) = crosspoint of X(2) and X(6007)
X(65929) = crosssum of X(6) and X(6015)
X(65929) = barycentric product X(6007)*X(6007)
X(65930) lies on the Steiner inellipse and these lines: {220, 3939}, {1015, 16588}, {1040, 34526}, {1086, 1212}, {1146, 4847}, {1642, 23980}, {6603, 35125}, {14936, 42064}, {26698, 62705}, {35091, 60419}, {35110, 43050}, {41555, 43065}, {49758, 61074}
X(65930) = complement of the isotomic conjugate of X(15733)
X(65930) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 15733}, {2175, 6745}, {15733, 2887}, {26015, 17047}, {43065, 17046}
X(65930) = X(2)-Ceva conjugate of X(15733)
X(65930) = X(15728)-isoconjugate of X(43762)
X(65930) = X(15733)-Dao conjugate of X(2)
X(65930) = crosspoint of X(i) and X(j) for these (i,j): {2, 15733}, {43065, 56636}
X(65930) = crosssum of X(6) and X(15728)
X(65930) = barycentric product X(i)*X(j) for these {i,j}: {8, 5580}, {15733, 15733}
X(65930) = barycentric quotient X(5580)/X(7)
X(65931) lies on the Steiner inellipse and these lines: {1, 35508}, {6, 4845}, {650, 63777}, {1015, 5573}, {1086, 10481}, {1146, 11019}, {14936, 34056}, {34522, 35072}, {35091, 43065}, {42048, 61076}
X(65931) = complement of the isotomic conjugate of X(15726)
X(65931) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 15726}, {32, 1323}, {15726, 2887}, {43064, 17046}
X(65931) = X(2)-Ceva conjugate of X(15726)
X(65931) = X(15726)-Dao conjugate of X(2)
X(65931) = crosspoint of X(i) and X(j) for these (i,j): {2, 15726}, {43064, 56637}
X(65931) = crosssum of X(6) and X(15731)
X(65931) = barycentric product X(15726)*X(15726)
X(65932) lies on the Steiner inellipse and these lines: {37, 35090}, {44, 115}, {594, 35122}, {650, 35069}, {1015, 56531}, {1086, 3218}, {1100, 35092}, {1146, 2323}, {3700, 4370}, {35128, 40937}, {40621, 62211}
X(65932) = X(65238)-Ceva conjugate of X(65856)
X(65932) = crosssum of X(6) and X(65875)
X(65932) = barycentric product X(8)*X(31524)
X(65932) = barycentric quotient X(31524)/X(7)
X(65933) lies on the Steiner inellipse and these lines: {115, 3634}, {594, 37212}, {1015, 3743}, {1086, 6651}, {1125, 35076}, {1146, 18253}, {1931, 6157}, {4370, 39256}, {4988, 35085}, {17398, 39340}
X(65933) = X(i)-complementary conjugate of X(j) for these (i,j): {1326, 27798}, {1962, 20546}, {2308, 49676}, {17735, 17239}, {18266, 3634}, {20970, 20337}, {64215, 6707}
X(65933) = X(57461)-Dao conjugate of X(4608)
X(65933) = crosssum of X(6) and X(53688)
X(65933) = crossdifference of every pair of points on line {18001, 53688}
X(65934) lies on the Steiner inellipse and these lines: {2, 46141}, {6, 35090}, {115, 8609}, {187, 47086}, {647, 23980}, {650, 3163}, {1015, 3003}, {1086, 18593}, {1100, 35128}, {1146, 56531}, {2092, 18334}, {2323, 3284}, {18591, 39008}, {40937, 55153}
X(65934) = complement of X(46141)
X(65934) = complement of the isotomic conjugate of X(2771)
X(65934) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2771}, {1918, 3013}, {2771, 2887}, {37966, 21259}
X(65934) = X(2)-Ceva conjugate of X(2771)
X(65934) = X(2687)-isoconjugate of X(65240)
X(65934) = X(2771)-Dao conjugate of X(2)
X(65934) = crosspoint of X(2) and X(2771)
X(65934) = crosssum of X(6) and X(2687)
X(65934) = crossdifference of every pair of points on line {2687, 14127}
X(65934) = barycentric product X(2771)*X(2771)
X(65934) = barycentric quotient X(2771)/X(46141)
X(65935) lies on the Steiner inellipse and these lines: {115, 20623}, {614, 1015}, {1084, 53387}, {1086, 16583}, {1146, 20310}, {1500, 7079}, {5309, 61076}, {14581, 59799}, {15526, 16589}, {16588, 35072}, {35094, 49758}
X(65935) = complement of the isotomic conjugate of X(44670)
X(65935) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 44670}, {32, 51775}, {560, 8758}, {1918, 851}, {2175, 50366}, {5179, 626}, {44670, 2887}
X(65935) = X(2)-Ceva conjugate of X(44670)
X(65935) = X(37214)-isoconjugate of X(43363)
X(65935) = X(44670)-Dao conjugate of X(2)
X(65935) = crosspoint of X(2) and X(44670)
X(65935) = crosssum of X(6) and X(43363)
X(65935) = barycentric product X(44670)*X(44670)
X(65936) lies on the Steiner inellipse and these lines: {4, 1086}, {440, 39020}, {1015, 1427}, {1146, 3772}, {1834, 15526}, {3752, 35072}, {4415, 61075}, {6554, 23982}, {16583, 35508}, {35122, 44334}
X(65936) = X(16870)-complementary conjugate of X(21244)
X(65937) lies on the Steiner inellipse and these lines: {5, 39021}, {115, 13754}, {230, 39013}, {343, 35088}, {1084, 16310}, {2501, 11672}, {7749, 18334}, {10257, 35071}, {15526, 44388}, {39008, 52010}
X(65937) = crosssum of X(6) and X(59025)
X(65938) lies on the Steiner inellipse and these lines: {2, 53231}, {115, 698}, {141, 35078}, {325, 1084}, {2482, 25423}, {3314, 23992}, {4045, 39010}, {15449, 35540}, {18896, 61339}, {35088, 40810}
X(65938) = complement of X(53231)
X(65938) = crosssum of X(6) and X(53966)
X(65939) lies on the Steiner inellipse and these lines: {10, 35122}, {37, 35086}, {115, 5179}, {514, 35075}, {1015, 3002}, {1086, 8680}, {1146, 50014}, {1500, 35090}, {3239, 35068}, {3709, 23980}, {3912, 15526}, {4370, 64905}, {5060, 17735}, {6586, 35069}, {35072, 58325}, {35119, 40940}
X(65939) = crosssum of X(6) and X(65876)
X(65940) lies on the Steiner inellipse and these lines: {2, 18826}, {10, 1084}, {115, 2887}, {1015, 3741}, {1086, 20888}, {3124, 60288}, {16587, 55050}, {16589, 40610}, {20548, 35080}, {30109, 35119}, {30229, 62534}
X(65940) = complement of X(18826)
X(65940) = complement of the isotomic conjugate of X(714)
X(65940) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 714}, {213, 6381}, {714, 2887}, {2229, 141}, {4557, 14426}, {35532, 21235}, {53366, 23301}
X(65940) = X(2)-Ceva conjugate of X(714)
X(65940) = X(714)-Dao conjugate of X(2)
X(65940) = crosspoint of X(2) and X(714)
X(65940) = crosssum of X(6) and X(715)
X(65940) = barycentric product X(714)*X(714)
X(65940) = barycentric quotient X(714)/X(18826)
X(65941) lies on the Steiner inellipse and these lines: {37, 35079}, {44, 1084}, {115, 1575}, {513, 35069}, {650, 35068}, {758, 1015}, {960, 35128}, {1086, 57039}, {1107, 35092}, {1146, 59734}, {3647, 18334}, {3666, 35119}, {3709, 4370}, {13466, 64934}, {21879, 35090}
X(65941) = X(61433)-complementary conjugate of X(21241)
X(65941) = X(65239)-Ceva conjugate of X(65864)
X(65942) lies on the Steiner inellipse and these lines: {2, 60014}, {115, 17052}, {141, 1146}, {142, 1015}, {325, 35086}, {982, 1086}, {1084, 17056}, {3452, 35508}, {9025, 35119}, {9443, 35120}, {16593, 39014}, {18589, 35072}, {20528, 40610}, {20935, 30631}, {31844, 35091}, {50092, 61076}
X(65942) = complement of X(60014)
X(65942) = complement of the isotomic conjugate of X(46180)
X(65942) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 46180}, {46180, 2887}
X(65942) = X(2)-Ceva conjugate of X(46180)
X(65942) = X(46180)-Dao conjugate of X(2)
X(65942) = crosspoint of X(2) and X(46180)
X(65942) = crosssum of X(6) and X(59020)
X(65942) = barycentric product X(46180)*X(46180)
X(65942) = barycentric quotient X(46180)/X(60014)
X(65943) lies on the Steiner inellipse and these lines: {2, 53209}, {10, 55153}, {37, 39017}, {226, 35094}, {517, 1146}, {522, 23980}, {1015, 44675}, {1577, 35075}, {3239, 6184}, {20310, 39014}, {35072, 40869}
X(65943) = complement of X(53209)
X(65943) = X(52480)-complementary conjugate of X(20544)
X(65944) lies on the Steiner inellipse and these lines: {115, 758}, {523, 35069}, {1015, 50757}, {1146, 10026}, {1213, 35086}, {2482, 64934}, {4999, 35128}, {16589, 35090}, {17056, 35080}, {21024, 35122}, {23992, 36227}
X(65944) = complement of the isogonal conjugate of X(5202)
X(65944) = X(5202)-complementary conjugate of X(10)
X(65944) = crosssum of X(6) and X(53970)
X(65944) = barycentric quotient X(5202)/X(53970)
X(65945) lies on the Steiner inellipse and these lines: {36, 187}, {39, 35090}, {115, 3290}, {241, 35131}, {647, 6184}, {905, 2482}, {1086, 16581}, {1146, 16611}, {2092, 23992}, {3666, 35094}, {14961, 35072}, {18591, 55048}, {25062, 35122}, {35092, 41015}, {35128, 37599}
X(65945) = complement of the isotomic conjugate of X(2836)
X(65945) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2836}, {560, 47231}, {1918, 2503}, {2836, 2887}, {7476, 21259}, {47232, 20305}
X(65945) = X(2)-Ceva conjugate of X(2836)
X(65945) = X(2836)-Dao conjugate of X(2)
X(65945) = crosspoint of X(2) and X(2836)
X(65945) = crosssum of X(6) and X(2752)
X(65945) = crossdifference of every pair of points on line {2752, 46586}
X(65945) = barycentric product X(2836)*X(2836)
X(65946) lies on the Steiner inellipse and these lines: {2, 53191}, {115, 521}, {523, 35072}, {1084, 6588}, {1146, 8062}, {2482, 64780}, {4885, 15526}, {6510, 35075}, {11672, 14571}, {35071, 59973}, {35081, 36227}, {35084, 36207}, {39008, 57095}
X(65946) = complement of X(53191)
X(65946) = complement of the isotomic conjugate of X(2798)
X(65946) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2798}, {425, 21259}, {2798, 2887}, {23695, 512}, {41349, 17072}
X(65946) = X(2)-Ceva conjugate of X(2798)
X(65946) = X(2798)-Dao conjugate of X(2)
X(65946) = crosspoint of X(2) and X(2798)
X(65946) = crosssum of X(6) and X(2714)
X(65946) = barycentric product X(2798)*X(2798)
X(65946) = barycentric quotient X(2798)/X(53191)
X(65947) lies on the Steiner inellipse and these lines: {6, 35113}, {44, 35111}, {1015, 52946}, {1086, 3676}, {1108, 35116}, {3290, 23980}, {6184, 8609}, {8557, 61066}, {17435, 55153}, {35066, 62211}, {35508, 46101}, {41555, 43065}
X(65947) = complement of the isotomic conjugate of X(2826)
X(65947) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2826}, {32, 43050}, {667, 6745}, {2826, 2887}, {3660, 17072}, {15733, 59971}, {26015, 21260}, {37788, 21262}, {43065, 3835}, {43924, 15733}
X(65947) = X(2)-Ceva conjugate of X(2826)
X(65947) = X(2826)-Dao conjugate of X(2)
X(65947) = crosspoint of X(2) and X(2826)
X(65947) = crosssum of X(6) and X(2742)
X(65947) = barycentric product X(2826)*X(2826)
X(65947) = barycentric quotient X(5580)/X(6065)
See Van Khea and Peter Moses, euclid 7119.
X(65948) lies on these lines: {1, 38038}, {2, 10724}, {3, 3847}, {4, 11}, {5, 3035}, {6, 38147}, {7, 38152}, {8, 38156}, {9, 38159}, {10, 38161}, {12, 38163}, {20, 21154}, {30, 6713}, {40, 34122}, {55, 6968}, {80, 1537}, {100, 3091}, {119, 381}, {140, 38319}, {149, 3832}, {153, 3839}, {214, 3817}, {355, 5854}, {376, 59376}, {382, 38761}, {389, 58475}, {497, 64735}, {515, 1387}, {516, 6702}, {517, 3036}, {546, 946}, {550, 34126}, {962, 59415}, {971, 15528}, {1001, 6982}, {1012, 10090}, {1145, 5587}, {1156, 38306}, {1210, 24465}, {1317, 5603}, {1320, 38307}, {1329, 10525}, {1376, 6973}, {1479, 18242}, {1484, 3845}, {1532, 3583}, {1598, 54065}, {1656, 38760}, {1836, 12832}, {1862, 23047}, {2077, 17533}, {2771, 5806}, {2800, 6797}, {2801, 65452}, {2802, 19925}, {2804, 44929}, {2807, 58501}, {2818, 38390}, {2886, 6929}, {2950, 11372}, {3062, 46435}, {3090, 31235}, {3146, 38693}, {3149, 10058}, {3254, 38308}, {3309, 52873}, {3434, 55016}, {3534, 38069}, {3543, 59377}, {3545, 6174}, {3579, 38182}, {3582, 52851}, {3585, 5533}, {3627, 38602}, {3813, 11928}, {3816, 6923}, {3825, 31775}, {3829, 22758}, {3830, 38753}, {3843, 10742}, {3850, 38758}, {3851, 10993}, {3853, 61566}, {3854, 20095}, {3855, 6154}, {3857, 51525}, {3858, 11698}, {3925, 6965}, {4193, 11826}, {4297, 32557}, {4301, 15863}, {4996, 6912}, {4999, 37290}, {5046, 15908}, {5055, 38762}, {5066, 61562}, {5072, 38763}, {5073, 38754}, {5083, 13374}, {5187, 10310}, {5225, 11500}, {5450, 10593}, {5480, 5848}, {5691, 16173}, {5715, 13257}, {5732, 38205}, {5805, 5851}, {5817, 6068}, {5818, 64136}, {5856, 63970}, {5881, 25416}, {5927, 12665}, {6000, 58508}, {6001, 12736}, {6224, 9779}, {6256, 9669}, {6284, 6941}, {6326, 12690}, {6560, 13977}, {6561, 13913}, {6690, 6980}, {6714, 57605}, {6827, 11495}, {6831, 39692}, {6834, 12953}, {6843, 64154}, {6844, 12332}, {6891, 64725}, {6905, 65632}, {6906, 7173}, {6907, 52769}, {6913, 51506}, {6915, 17100}, {6949, 15338}, {6971, 55297}, {6976, 31245}, {7682, 10265}, {7687, 8674}, {7972, 11522}, {7988, 64012}, {7995, 12767}, {8227, 12119}, {8703, 38084}, {8735, 65814}, {9373, 42863}, {9581, 64119}, {9656, 10597}, {9670, 10786}, {9671, 12116}, {9812, 64189}, {9913, 18535}, {9946, 58613}, {9955, 11729}, {10006, 64787}, {10151, 12138}, {10171, 58453}, {10276, 31764}, {10427, 38150}, {10516, 51007}, {10531, 10895}, {10532, 12763}, {10596, 11237}, {10698, 62616}, {10711, 41099}, {10767, 14644}, {10768, 14639}, {11238, 12115}, {11479, 13222}, {11604, 52269}, {11715, 31673}, {12295, 53753}, {12619, 22793}, {12675, 18240}, {12702, 38128}, {12735, 13464}, {12743, 17605}, {12751, 18492}, {12773, 61984}, {13143, 64291}, {13202, 53715}, {13226, 64001}, {13570, 58543}, {13922, 42265}, {13991, 42262}, {14054, 15094}, {14269, 38756}, {14496, 64290}, {14497, 23959}, {14647, 52116}, {14740, 58631}, {14853, 51198}, {15033, 58056}, {15171, 63964}, {18481, 38032}, {18514, 37468}, {18861, 21669}, {19081, 23249}, {19082, 23259}, {19112, 42561}, {19113, 31412}, {19541, 64188}, {19907, 38034}, {23514, 53720}, {23515, 53711}, {24302, 37707}, {26726, 37712}, {28164, 33709}, {30308, 64011}, {31730, 38133}, {31849, 38389}, {34773, 38044}, {35514, 38202}, {36518, 53743}, {36519, 53729}, {37447, 56790}, {37714, 64056}, {37730, 64762}, {37736, 64669}, {38021, 50843}, {38026, 50811}, {38060, 43161}, {38072, 51008}, {38074, 50842}, {38076, 50841}, {38090, 43273}, {38099, 50810}, {38104, 50808}, {38109, 64792}, {38119, 46264}, {38168, 48906}, {38207, 43182}, {38636, 61923}, {38637, 62024}, {38665, 61964}, {38669, 50689}, {38755, 61970}, {39809, 53733}, {39838, 53722}, {40273, 61553}, {41698, 65140}, {42270, 48715}, {42273, 48714}, {42283, 48700}, {42284, 48701}, {44870, 58539}, {46684, 51118}, {46694, 63976}, {50908, 64278}, {51409, 54154}, {51529, 61988}, {51702, 61519}, {51718, 61518}, {51792, 63992}, {54448, 64743}, {55359, 64512}, {61985, 64009}
X(65948) = midpoint of X(i) and X(j) for these {i,j}: {3, 64186}, {4, 11}, {5, 22938}, {80, 1537}, {104, 52836}, {119, 10738}, {149, 37725}, {355, 64138}, {382, 38761}, {946, 6246}, {1145, 14217}, {1484, 22799}, {1532, 3583}, {3627, 38602}, {3853, 61566}, {4301, 15863}, {5691, 64191}, {5881, 25416}, {6326, 12690}, {6797, 9856}, {6905, 65632}, {10698, 62616}, {10724, 24466}, {10742, 37726}, {10993, 48680}, {11715, 31673}, {12295, 53753}, {12619, 22793}, {13202, 53715}, {13257, 49176}, {14054, 15094}, {31849, 38389}, {37447, 56790}, {39809, 53733}, {39838, 53722}, {40273, 61553}, {44870, 58539}, {46684, 51118}, {51409, 54154}, {59390, 59391}
X(65948) = reflection of X(i) in X(j) for these {i,j}: {3, 6667}, {100, 20400}, {389, 58475}, {1387, 16174}, {3035, 5}, {5083, 13374}, {6713, 60759}, {9946, 58613}, {10993, 35023}, {11729, 9955}, {12675, 18240}, {12735, 13464}, {14740, 58631}, {15528, 58587}, {20418, 11}, {31764, 10276}, {33814, 58421}, {38759, 6713}, {61580, 3850}, {63976, 46694}, {64192, 946}, {64193, 6702}
X(65948) = complement of X(24466)
X(65948) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10724, 24466}, {3, 23513, 6667}, {4, 104, 52836}, {4, 10591, 12114}, {4, 10598, 56}, {4, 10785, 37001}, {4, 10893, 7681}, {4, 10896, 63980}, {4, 59391, 11}, {5, 33814, 58421}, {11, 52836, 104}, {11, 59390, 4}, {20, 31272, 21154}, {80, 1699, 1537}, {381, 10738, 119}, {381, 26333, 7680}, {382, 57298, 38761}, {1484, 3845, 22799}, {3090, 34474, 31235}, {3545, 13199, 64008}, {3843, 51517, 10742}, {3851, 48680, 38752}, {5587, 14217, 1145}, {5691, 16173, 64191}, {6713, 60759, 45310}, {8227, 12119, 34123}, {10742, 51517, 37726}, {10895, 13274, 10956}, {10896, 13273, 11}, {10993, 38752, 35023}, {11928, 37821, 3813}, {13199, 64008, 6174}, {22938, 38141, 5}, {23513, 64186, 3}, {33814, 58421, 3035}, {38752, 48680, 10993}, {38759, 45310, 6713}, {51118, 59419, 46684}
See Van Khea and Peter Moses, euclid 7119.
X(65949) lies on these lines: {1, 38039}, {2, 30264}, {3, 6668}, {4, 12}, {5, 993}, {6, 38148}, {7, 38153}, {8, 38157}, {9, 38160}, {10, 38162}, {11, 38163}, {20, 21155}, {30, 31659}, {40, 38058}, {65, 12691}, {119, 12615}, {355, 5855}, {381, 529}, {382, 59382}, {389, 58476}, {515, 37737}, {546, 946}, {550, 38114}, {758, 5777}, {958, 6867}, {962, 59416}, {1329, 6917}, {1387, 40259}, {1389, 62616}, {1478, 63980}, {1532, 65143}, {1537, 64291}, {1699, 30323}, {2476, 11827}, {2829, 3585}, {2886, 10526}, {2975, 3091}, {3090, 31260}, {3146, 59421}, {3428, 6871}, {3534, 38070}, {3545, 31157}, {3579, 38183}, {3583, 63257}, {3614, 6905}, {3814, 37281}, {3817, 51111}, {3822, 31789}, {3832, 10893}, {3843, 12000}, {3858, 7956}, {3861, 24042}, {4134, 61510}, {4297, 38062}, {4996, 6915}, {5080, 7548}, {5204, 6879}, {5229, 6844}, {5480, 5849}, {5587, 12526}, {5603, 37734}, {5691, 37701}, {5694, 15064}, {5715, 18492}, {5732, 38206}, {5775, 38306}, {5805, 5852}, {5857, 63970}, {6690, 7491}, {6691, 6971}, {6796, 10592}, {6830, 7354}, {6833, 12943}, {6841, 33961}, {6845, 64000}, {6874, 24953}, {6906, 65631}, {6907, 12511}, {6928, 25466}, {6951, 50031}, {6952, 15326}, {6965, 7958}, {6980, 55296}, {6982, 64077}, {7951, 37468}, {7995, 64119}, {8703, 38085}, {9654, 48482}, {9656, 12115}, {9657, 10785}, {9671, 10596}, {9956, 18253}, {10175, 31445}, {10265, 24470}, {10516, 51009}, {10532, 10896}, {10597, 11238}, {10942, 18407}, {11012, 17530}, {11237, 12116}, {11929, 12607}, {12019, 31870}, {12571, 22835}, {12675, 58566}, {12702, 38129}, {15908, 17577}, {16125, 31750}, {16160, 22799}, {18481, 38033}, {18483, 44685}, {18990, 20418}, {20420, 63964}, {21669, 52836}, {31673, 64804}, {31730, 38134}, {34773, 38045}, {35514, 38203}, {37447, 41698}, {38021, 51112}, {38027, 50811}, {38034, 61148}, {38061, 43161}, {38063, 64191}, {38076, 51113}, {38091, 43273}, {38100, 50810}, {38105, 50808}, {38120, 46264}, {38135, 38761}, {38158, 64198}, {38169, 48906}, {38184, 38602}, {38208, 43182}, {38219, 46684}, {45310, 61534}, {51702, 61518}, {51718, 61519}, {51792, 64669}, {58636, 63976}, {59387, 62830}, {64110, 64282}
X(65949) = midpoint of X(i) and X(j) for these {i,j}: {4, 12}, {3585, 6831}, {6906, 65631}, {11491, 52837}
X(65949) = reflection of X(i) in X(j) for these {i,j}: {3, 6668}, {389, 58476}, {4999, 5}, {12675, 58566}, {31659, 61512}, {63976, 58636}
X(65949) = complement of X(30264)
X(65949) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 38109, 6668}, {4, 10590, 11500}, {4, 10599, 55}, {4, 10786, 36999}, {4, 10894, 7680}, {4, 10895, 18242}, {4, 11491, 52837}, {4, 59392, 12}, {12, 52837, 11491}, {381, 26332, 7681}, {3585, 52850, 6831}, {5229, 6844, 12114}, {11929, 37820, 12607}, {18990, 63963, 20418}
See Van Khea and Peter Moses, euclid 7119.
X(65950) lies on these lines: {2, 30265}, {3, 40530}, {4, 9}, {5, 18589}, {20, 21160}, {25, 39475}, {27, 103}, {28, 4297}, {30, 61517}, {33, 13405}, {34, 6738}, {92, 4847}, {118, 1824}, {124, 50930}, {132, 42425}, {158, 273}, {165, 37104}, {226, 1859}, {235, 39579}, {240, 3663}, {278, 11019}, {381, 534}, {515, 7497}, {946, 1871}, {950, 54394}, {971, 16608}, {1096, 40940}, {1125, 57276}, {1486, 1598}, {1595, 23305}, {1596, 7680}, {1784, 23689}, {1848, 3817}, {1876, 30329}, {1882, 10395}, {1888, 4848}, {1893, 42069}, {1900, 1906}, {2181, 3914}, {2263, 18391}, {3085, 4319}, {3089, 10198}, {3090, 31261}, {3091, 4329}, {3545, 31158}, {3755, 14571}, {3827, 5480}, {3832, 20061}, {4198, 5691}, {4200, 64673}, {4219, 10164}, {4231, 6011}, {4233, 15931}, {4304, 54368}, {4314, 41227}, {4353, 23052}, {5125, 8582}, {5174, 6736}, {5236, 5542}, {5732, 37102}, {5927, 26942}, {6245, 6523}, {6248, 46181}, {6708, 8727}, {6734, 45738}, {6743, 56876}, {7466, 44425}, {7490, 64705}, {7511, 31673}, {7518, 24987}, {7537, 19862}, {7682, 10002}, {8680, 15762}, {12688, 58890}, {14119, 62493}, {14853, 51210}, {14954, 35263}, {15942, 28164}, {20420, 34823}, {21620, 64543}, {24248, 51288}, {25935, 63395}, {25993, 38204}, {30687, 37371}, {37245, 63983}, {37377, 63998}, {37381, 37805}, {37387, 49542}, {40149, 43672}, {40998, 55472}, {44178, 55105}, {60685, 63969}
X(65950) = midpoint of X(i) and X(j) for these {i,j}: {4, 19}, {15942, 37395}
X(65950) = reflection of X(i) in X(j) for these {i,j}: {3, 40530}, {18589, 5}
X(65950) = complement of X(30265)
X(65950) = polar conjugate of the isotomic conjugate of X(25935)
X(65950) = X(905)-isoconjugate of X(59063)
X(65950) = barycentric product X(i)*X(j) for these {i,j}: {4, 25935}, {92, 5728}, {1536, 52781}, {2052, 63395}
X(65950) = barycentric quotient X(i)/X(j) for these {i,j}: {1536, 26006}, {5728, 63}, {8750, 59063}, {25935, 69}, {63395, 394}
X(65950) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 63970, 51758}, {281, 1861, 10}, {1848, 37372, 3817}, {1871, 15763, 946}
Let A'B'C' be the cevian triangle of X(7) and Iab, Iac the X(1) of ABA', ACA', respectively. Define Ibc, Iba and Ica, Icb cyclically. Let A*B*C* be the triangle bounded by IabIac, IbcIba, IcaIcb. The triangles ABC, A*B*C* are orthologic. The orthologic center (ABC, A*B*C*) is X(7) and the reciprocal is X(65951)
See Antreas Hatzipolakis and Peter Moses, euclid 7126.
X(65951) lies on these lines: { }
X(65952) lies on the cubic K1373 and these lines: {2, 56718}, {8, 63624}, {9, 6169}, {11, 48627}, {55, 17261}, {75, 2310}, {85, 64134}, {144, 145}, {190, 4319}, {239, 60910}, {312, 60812}, {335, 24840}, {497, 41794}, {664, 64741}, {765, 1253}, {982, 3663}, {1120, 7962}, {1278, 63600}, {1837, 62392}, {1861, 4429}, {2293, 4664}, {2751, 65371}, {3062, 9312}, {3100, 4676}, {3161, 3693}, {3675, 63586}, {3717, 4073}, {3729, 4907}, {3758, 4336}, {4373, 5274}, {4862, 35160}, {9439, 52352}, {10384, 49446}, {10866, 17480}, {10939, 27340}, {12053, 34860}, {13727, 15430}, {14727, 53210}, {17350, 41339}, {17353, 45275}, {17490, 17604}, {20359, 39703}, {24003, 30610}, {24538, 56940}, {25243, 25722}, {28058, 34524}, {31225, 59620}, {39250, 39924}, {44040, 46937}
X(65952) = isogonal conjugate of X(9316)
X(65952) = isotomic conjugate of X(9312)
X(65952) = anticomplement of X(59573)
X(65952) = isotomic conjugate of the anticomplement of X(41006)
X(65952) = isotomic conjugate of the isogonal conjugate of X(9439)
X(65952) = X(32023)-Ceva conjugate of X(9311)
X(65952) = X(i)-cross conjugate of X(j) for these (i,j): {3061, 312}, {3452, 8}, {3912, 14942}, {30854, 60668}, {41006, 2}, {45206, 29}
X(65952) = X(i)-isoconjugate of X(j) for these (i,j): {1, 9316}, {6, 6180}, {31, 9312}, {32, 61413}, {56, 1376}, {57, 9310}, {59, 4014}, {108, 22091}, {109, 4449}, {279, 16283}, {604, 3729}, {651, 20980}, {1015, 61415}, {1407, 4513}, {1408, 3967}, {1409, 56014}, {1415, 4885}, {1416, 56714}, {1438, 6168}, {2149, 21139}, {2195, 41355}, {4559, 18199}, {32735, 42341}
X(65952) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 1376}, {2, 9312}, {3, 9316}, {9, 6180}, {11, 4449}, {650, 21139}, {1146, 4885}, {3161, 3729}, {3752, 59507}, {5452, 9310}, {6184, 6168}, {6376, 61413}, {6615, 4014}, {6741, 21052}, {24771, 4513}, {38983, 22091}, {38991, 20980}, {39063, 41355}, {40609, 56714}, {40624, 20907}, {40625, 17218}, {45252, 1}, {55062, 24749}, {55067, 18199}, {59577, 3967}, {62575, 27829}
X(65952) = cevapoint of X(i) and X(j) for these (i,j): {1, 64129}, {9, 4319}, {514, 24775}, {522, 2310}
X(65952) = crosspoint of X(i) and X(j) for these (i,j): {4373, 56265}, {7155, 63165}
X(65952) = crosssum of X(3052) and X(20995)
X(65952) = trilinear pole of line {4147, 4521}
X(65952) = barycentric product X(i)*X(j) for these {i,j}: {8, 9311}, {9, 32023}, {76, 9439}, {192, 60812}, {312, 9309}, {522, 30610}, {3263, 6169}, {3596, 9315}, {20287, 27424}, {27498, 27538}
X(65952) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 6180}, {2, 9312}, {6, 9316}, {8, 3729}, {9, 1376}, {11, 21139}, {29, 56014}, {55, 9310}, {75, 61413}, {200, 4513}, {241, 41355}, {518, 6168}, {522, 4885}, {650, 4449}, {652, 22091}, {663, 20980}, {765, 61415}, {1253, 16283}, {2170, 4014}, {2321, 3967}, {3452, 59507}, {3693, 56714}, {3700, 21052}, {3717, 40883}, {3737, 18199}, {4007, 4942}, {4373, 27829}, {4391, 20907}, {4560, 17218}, {6169, 105}, {9309, 57}, {9311, 7}, {9315, 56}, {9439, 6}, {14727, 34085}, {20287, 1423}, {30610, 664}, {32023, 85}, {41006, 59573}, {51845, 1462}, {60812, 330}, {60813, 64980}, {65371, 36146}
X(65952) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 2310, 63597}, {3729, 4907, 14942}
X(65953) lies on the cubic K1373 and these lines: {1, 59621}, {2, 9445}, {7, 8}, {9, 28058}, {78, 3685}, {144, 28057}, {190, 480}, {192, 2340}, {193, 28124}, {200, 1721}, {294, 7155}, {318, 1827}, {329, 9801}, {346, 14943}, {894, 28043}, {1282, 24728}, {1654, 28118}, {1742, 3177}, {2398, 63088}, {2951, 30625}, {3161, 3693}, {3198, 9778}, {3570, 8844}, {3661, 23529}, {3705, 51400}, {3713, 24351}, {3886, 52507}, {3912, 63598}, {4073, 17755}, {4081, 17233}, {4847, 24199}, {4899, 6736}, {5281, 21811}, {5696, 48878}, {6745, 25101}, {7080, 27544}, {7081, 21387}, {9950, 21060}, {14100, 30854}, {17234, 61035}, {17277, 42014}, {17294, 63594}, {17379, 28125}, {18252, 30946}, {20905, 30628}, {20935, 31526}, {21039, 26059}, {24341, 26125}, {24799, 31183}, {25722, 30807}, {28072, 52888}, {28131, 63001}, {28795, 52157}, {34019, 56310}, {34852, 63597}, {52562, 64007}, {56882, 64709}, {59296, 64171}
X(65953) = reflection of X(39126) in X(59573)
X(65953) = isotomic conjugate of X(43750)
X(65953) = X(i)-Ceva conjugate of X(j) for these (i,j): {200, 8}, {3729, 3161}, {20935, 3177}, {32932, 56313}, {32937, 19582}
X(65953) = X(20935)-cross conjugate of X(8)
X(65953) = X(i)-isoconjugate of X(j) for these (i,j): {31, 43750}, {604, 56265}, {663, 53632}, {1407, 64458}, {2175, 60811}
X(65953) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 43750}, {85, 1088}, {3161, 56265}, {21195, 4014}, {24771, 64458}, {40593, 60811}
X(65953) = crosssum of X(649) and X(61050)
X(65953) = barycentric product X(i)*X(j) for these {i,j}: {8, 3177}, {9, 20935}, {200, 40593}, {312, 1742}, {314, 21856}, {333, 21084}, {341, 34497}, {346, 31526}, {3596, 20995}, {3699, 21195}, {3717, 51846}, {7017, 20793}
X(65953) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 43750}, {8, 56265}, {85, 60811}, {200, 64458}, {651, 53632}, {1742, 57}, {3177, 7}, {20793, 222}, {20935, 85}, {20995, 56}, {21084, 226}, {21195, 3676}, {21856, 65}, {31526, 279}, {34497, 269}, {40593, 1088}, {51846, 56783}
X(65953) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 4012, 8}, {75, 3059, 8}, {1742, 21084, 3177}
X(65954) lies on the cubic K1373 and these lines: {7, 192}, {9, 33676}, {190, 56897}, {522, 2321}, {660, 12530}, {813, 1766}, {2311, 40979}, {3161, 4518}, {3729, 40217}, {12723, 40730}, {17738, 56895}, {24280, 52085}, {25269, 63234}, {40968, 51858}, {43534, 56144}, {52209, 64695}
X(65954) = X(i)-isoconjugate of X(j) for these (i,j): {103, 1429}, {911, 1447}, {1428, 36101}, {1914, 43736}, {2210, 52156}, {3716, 32668}, {4435, 24016}, {9503, 51329}, {36039, 43041}
X(65954) = X(i)-Dao conjugate of X(j) for these (i,j): {1566, 43041}, {23972, 1447}, {36906, 43736}, {39077, 34253}, {40869, 39775}, {50441, 239}, {62557, 52156}
X(65954) = crosspoint of X(335) and X(33676)
X(65954) = crosssum of X(1914) and X(51329)
X(65954) = barycentric product X(i)*X(j) for these {i,j}: {334, 41339}, {335, 40869}, {516, 4518}, {676, 36801}, {2398, 60577}, {4583, 65664}, {4876, 30807}, {7077, 35517}, {17747, 36800}, {33676, 50441}, {40217, 56900}
X(65954) = barycentric quotient X(i)/X(j) for these {i,j}: {291, 43736}, {335, 52156}, {516, 1447}, {676, 43041}, {910, 1429}, {3252, 52213}, {4444, 60581}, {4518, 18025}, {4876, 36101}, {7077, 103}, {9502, 34253}, {17747, 16609}, {30807, 10030}, {35517, 18033}, {36801, 57928}, {40217, 56668}, {40869, 239}, {41339, 238}, {43035, 62785}, {46392, 4435}, {50441, 39775}, {51376, 20769}, {51418, 3684}, {51858, 911}, {56900, 6654}, {60577, 2400}, {65664, 659}
X(65955) lies on the cubic K1373 and these lines: {7, 56668}, {69, 144}, {86, 2400}, {103, 789}, {269, 53217}, {3570, 27945}, {3729, 40217}, {7155, 43736}, {26651, 59195}, {52156, 56102}
X(65955) = X(i)-cross conjugate of X(j) for these (i,j): {39775, 350}, {51435, 239}
X(65955) = X(i)-isoconjugate of X(j) for these (i,j): {292, 910}, {516, 1911}, {676, 34067}, {875, 2398}, {876, 2426}, {1456, 7077}, {1886, 2196}, {1922, 30807}, {9502, 51866}, {14598, 35517}, {17747, 18268}, {37128, 51436}, {40730, 56639}, {43035, 51858}
X(65955) = X(i)-Dao conjugate of X(j) for these (i,j): {239, 28346}, {2238, 9502}, {3912, 50441}, {6651, 516}, {18277, 35517}, {19557, 910}, {35068, 17747}, {35119, 676}, {39028, 30807}, {45250, 3252}
X(65955) = cevapoint of X(i) and X(j) for these (i,j): {239, 51435}, {3685, 17755}
X(65955) = trilinear pole of line {239, 4148}
X(65955) = barycentric product X(i)*X(j) for these {i,j}: {103, 1921}, {238, 57996}, {239, 18025}, {350, 36101}, {677, 65101}, {812, 57928}, {911, 18891}, {1815, 40717}, {2338, 18033}, {2400, 3570}, {2424, 27853}, {3685, 52156}, {3975, 43736}, {4148, 65294}, {9503, 64223}, {51435, 57548}
X(65955) = barycentric quotient X(i)/X(j) for these {i,j}: {103, 292}, {238, 910}, {239, 516}, {242, 1886}, {350, 30807}, {677, 813}, {740, 17747}, {812, 676}, {874, 42719}, {911, 1911}, {1429, 1456}, {1447, 43035}, {1815, 295}, {1921, 35517}, {2338, 7077}, {2400, 4444}, {2424, 3572}, {3570, 2398}, {3684, 41339}, {3685, 40869}, {3747, 51436}, {4366, 51435}, {4432, 51406}, {4435, 65664}, {6651, 28346}, {6654, 56639}, {8299, 9502}, {9503, 52030}, {17755, 50441}, {18025, 335}, {27922, 63851}, {33295, 14953}, {34253, 53547}, {36039, 34067}, {36056, 2196}, {36101, 291}, {39775, 39063}, {51435, 23972}, {52156, 7233}, {57928, 4562}, {57996, 334}, {58327, 51418}
X(65956) lies on the cubic K1373 and these lines: {2, 56897}, {6, 33674}, {9, 33676}, {105, 38869}, {144, 673}, {192, 6654}, {294, 7155}, {346, 14942}, {666, 1743}, {894, 56895}, {1278, 63236}, {3287, 23617}, {3729, 6185}, {4452, 52210}, {5749, 40724}, {26685, 62599}, {59579, 61477}
X(65956) = X(6185)-Ceva conjugate of X(14942)
X(65956) = X(3717)-Dao conjugate of X(4437)
X(65956) = barycentric product X(2481)*X(19589)
X(65956) = barycentric quotient X(i)/X(j) for these {i,j}: {19589, 518}, {27830, 10029}
X(65957) lies on the cubic K1373 and these lines: {1, 59573}, {2, 63624}, {7, 145}, {9, 6169}, {192, 3158}, {200, 14522}, {346, 19605}, {2136, 49446}, {4000, 5573}, {4012, 4901}, {5845, 39878}, {7155, 42317}, {25243, 46917}, {25722, 25725}, {35445, 65206}, {50441, 63625}
X(65957) = complement of X(63624)
X(65957) = X(3729)-Ceva conjugate of X(9)
X(65957) = barycentric product X(3729)*X(45252)
X(65957) = barycentric quotient X(45252)/X(9311)
See Antreas Hatzipolakis and César Lozada, euclid 7129.
X(65958) lies on these lines: {8, 765}, {10, 55382}, {11, 65826}, {59, 1016}, {345, 44710}, {1284, 3932}, {3952, 4086}, {4017, 4552}, {4036, 40521}, {4551, 51650}, {6065, 15742}, {17420, 50039}, {23354, 62669}
X(65958) = cevapoint of X(i) and X(j) for these {i, j}: {10, 61172}, {181, 21859}, {594, 40521}, {4103, 6057}
X(65958) = X(i)-cross conjugate of-X(j) for these (i, j): (181, 21859), (1089, 3952), (2171, 4552), (6057, 4103), (21676, 10)
X(65958) = X(i)-Dao conjugate of-X(j) for these (i, j): (10, 18191), (37, 17197), (523, 7336), (758, 3025), (1214, 17205), (1500, 38347), (3160, 61403), (3161, 26856), (4075, 11), (6741, 56283), (15267, 1357), (40590, 16726), (40607, 3271), (55065, 21132), (56325, 1086), (62564, 17219), (62570, 16727)
X(65958) = X(i)-isoconjugate of-X(j) for these {i, j}: {11, 849}, {41, 61403}, {58, 18191}, {60, 244}, {261, 3248}, {270, 3937}, {284, 16726}, {593, 2170}, {604, 26856}, {757, 3271}, {764, 4636}, {1015, 2185}, {1019, 7252}, {1086, 2150}, {1098, 1357}, {1101, 7336}, {1333, 17197}, {1977, 52379}, {2189, 3942}, {2194, 17205}, {2203, 17219}, {2310, 7341}, {3249, 4631}, {3733, 3737}, {4560, 57129}, {4612, 21143}, {5546, 8042}, {7054, 53538}, {7203, 21789}, {7342, 24026}, {16727, 57657}, {21758, 60571}, {22096, 57779}, {23189, 57200}, {43924, 65575}
X(65958) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (7, 61403), (8, 26856), (10, 17197), (12, 1086), (37, 18191), (59, 593), (65, 16726), (115, 7336), (181, 1015), (201, 3942), (226, 17205), (306, 17219), (594, 11), (644, 65575), (756, 2170), (762, 4516), (765, 2185), (1016, 261), (1018, 3737), (1020, 7203), (1089, 4858), (1110, 2150), (1252, 60), (1254, 53538), (1262, 7341), (1275, 552), (1441, 16727), (1500, 3271), (2149, 849), (2171, 244), (2197, 3937), (3027, 35119), (3690, 7117), (3695, 26932), (3700, 56283), (3949, 7004), (3952, 4560), (3967, 16759), (4013, 60578), (4017, 8042), (4024, 21132), (4033, 18155), (4036, 40166), (4037, 4124), (4053, 53525), (4069, 1021), (4076, 7058), (4086, 40213), (4092, 64445), (4099, 4965)
X(65958) = X(34460)-zayin conjugate of-X(649)
X(65958) = trilinear pole of the line {4103, 21859} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65958) = perspector of the central inconic through X(12) and X(181)
X(65958) = barycentric product X(i)*X(j) for these {i,j}: {7, 61402}, {12, 1016}, {59, 28654}, {181, 31625}, {321, 65573}, {594, 4998}, {664, 4103}, {668, 21859}, {765, 6358}, {1089, 4564}, {1252, 34388}, {1275, 6057}, {2171, 7035}, {3027, 57566}, {3695, 46102}, {3699, 4605}, {3952, 4552}, {4033, 4551}, {4036, 31615}, {4076, 6354}
X(65958) = trilinear product X(i)*X(j) for these {i,j}: {10, 65573}, {12, 765}, {57, 61402}, {59, 1089}, {181, 7035}, {190, 21859}, {201, 15742}, {594, 4564}, {644, 4605}, {651, 4103}, {664, 40521}, {756, 4998}, {762, 4620}, {1016, 2171}, {1018, 4552}, {1020, 30730}, {1110, 34388}, {1252, 6358}, {1254, 4076}, {2149, 28654}
X(65958) = trilinear quotient X(i)/X(j) for these (i,j): (10, 18191), (12, 244), (59, 849), (85, 61403), (181, 3248), (201, 3937), (226, 16726), (312, 26856), (321, 17197), (349, 16727), (594, 2170), (756, 3271), (765, 60), (1016, 2185), (1018, 7252), (1089, 11), (1091, 1365), (1109, 7336), (1252, 2150), (1254, 1357)
See Antreas Hatzipolakis and César Lozada, euclid 7129.
X(65959) lies on these lines: {4, 250}, {1568, 39569}, {23290, 35360}, {23582, 47390}
X(65959) = cevapoint of X(5) and X(61195)
X(65959) = X(60828)-cross conjugate of-X(35360)
X(65959) = X(i)-Dao conjugate of-X(j) for these (i, j): (216, 53576), (6663, 125), (14363, 8901), (46394, 38352)
X(65959) = X(i)-isoconjugate of-X(j) for these {i, j}: {1109, 46089}, {2148, 53576}, {2169, 8901}, {2616, 23286}
X(65959) = X(i)-reciprocal conjugate of-X(j), and X(65959) = barycentric quotient X(i)/X(j), for these (i, j): (5, 53576), (53, 8901), (1087, 20902), (1625, 23286), (14570, 62428), (23357, 46089), (35360, 15412), (36412, 125), (45793, 339), (46394, 34980), (52604, 2623), (57195, 5489), (60828, 338), (61194, 58308), (61378, 3269), (62259, 3708), (62260, 20975), (62261, 115)
X(65959) = barycentric product X(i)*X(j) for these {i,j}: {249, 60828}, {250, 45793}, {4590, 62261}, {14570, 35360}, {18020, 36412}, {23181, 65183}, {46254, 62259}
X(65959) = trilinear product X(i)*X(j) for these {i,j}: {250, 1087}, {1101, 60828}, {2617, 35360}, {18020, 62259}, {23999, 61378}, {24041, 62261}, {46254, 62260}
X(65959) = trilinear quotient X(i)/X(j) for these (i,j): (1087, 125), (1101, 46089), (2617, 23286), (14213, 53576), (35360, 2616), (36412, 3708), (45793, 20902), (60828, 1109), (62259, 20975), (62261, 2643)
See Antreas Hatzipolakis and César Lozada, euclid 7129.
X(65960) lies on these lines: {4, 6072}, {69, 249}, {4590, 57655}, {51371, 64724}
X(65960) = X(59995)-cross conjugate of-X(4576)
X(65960) = X(i)-Dao conjugate of-X(j) for these (i, j): (6665, 125), (40938, 34294), (52042, 65751), (59994, 38352)
X(65960) = X(i)-isoconjugate of-X(j) for these {i, j}: {3708, 59996}, {34055, 51906}
X(65960) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (250, 59996), (427, 34294), (1843, 51906), (4175, 15526), (4576, 4580), (7794, 125), (8041, 20975), (18020, 52395), (35325, 18105), (41676, 58784), (52042, 38352), (55270, 52936), (59994, 65751), (59995, 339)
X(65960) = barycentric product X(i)*X(j) for these {i,j}: {250, 59995}, {2528, 55270}, {4175, 23582}, {4576, 41676}, {7794, 18020}
X(65960) = trilinear product X(i)*X(j) for these {i,j}: {4175, 24000}, {8041, 46254}, {35325, 55239}
X(65960) = trilinear quotient X(i)/X(j) for these (i,j): (4175, 2632), (7794, 3708), (17442, 51906), (20883, 34294), (41676, 55240), (46254, 52395), (55239, 4580), (59995, 20902)
See Antreas Hatzipolakis and César Lozada, euclid 7129.
X(65961) lies on these lines: {6528, 46371}, {52779, 58979}
X(65961) = polar conjugate of the complement of X(54108)
X(65961) = cevapoint of X(47390) and X(47443)
X(65961) = X(47390)-cross conjugate of-X(47443)
X(65961) = X(i)-Dao conjugate of-X(j) for these (i, j): (9428, 23107), (31998, 23616), (39062, 5489)
X(65961) = X(i)-isoconjugate of-X(j) for these {i, j}: {115, 37754}, {798, 23616}, {810, 5489}, {1109, 34980}, {1924, 23107}, {2632, 20975}, {2643, 2972}, {2970, 42080}, {2971, 24020}, {3269, 3708}, {6507, 61339}, {17879, 65751}
X(65961) = X(i)-reciprocal conjugate of-X(j), and barycentric quotient X(i)/X(j), for these (i, j): (99, 23616), (249, 2972), (250, 3269), (648, 5489), (670, 23107), (1101, 37754), (6524, 61339), (6529, 8029), (15352, 23105), (18020, 15526), (23357, 34980), (23582, 125), (23590, 8754), (23964, 20975), (23975, 2971), (23999, 20902), (24000, 3708), (31614, 4143), (32230, 115), (34538, 2970), (41937, 65751), (46254, 17879), (47389, 23974), (47390, 35071), (47443, 520), (52913, 55269), (52919, 21134), (55270, 3265), (59152, 52613), (59153, 512), (62719, 24020)
X(65961) = trilinear pole of the line {2407, 47443} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(65961) = perspector of the central inconic through X(18020) and X(32230)
X(65961) = pole of the the tripolar of X(23616) with respect to the Steiner-Wallace hyperbola
X(65961) = barycentric product X(i)*X(j) for these {i,j}: {107, 55270}, {670, 59153}, {4590, 32230}, {6528, 47443}, {6529, 31614}, {15352, 59152}, {18020, 23582}, {23590, 47389}, {24000, 46254}, {24021, 62719}, {47390, 57556}, {52913, 55268}
X(65961) = trilinear product X(i)*X(j) for these {i,j}: {250, 23999}, {799, 59153}, {823, 47443}, {18020, 24000}, {23590, 62719}, {23964, 46254}, {24019, 55270}, {24022, 47389}, {24041, 32230}, {36126, 59152}
X(65961) = trilinear quotient X(i)/X(j) for these (i,j): (249, 37754), (799, 23616), (811, 5489), (1101, 34980), (4602, 23107), (6520, 61339), (18020, 2632), (23582, 3708), (23999, 125), (24000, 20975), (24021, 8754), (24022, 2971), (24041, 2972), (32230, 2643), (36126, 8029), (46254, 15526), (47389, 24020), (47390, 42080), (47443, 822), (55270, 24018)
See Antreas Hatzipolakis and César Lozada, euclid 7129.
X(65962) lies on these lines: {520, 23583}, {523, 5972}, {1503, 38792}, {1990, 59558}, {6530, 51394}, {11064, 47158}, {32300, 65719}, {34947, 53569}
X(65962) = midpoint of X(i) and X(j) for these (i, j): {6530, 51394}, {11064, 47158}, {34947, 53569}
X(65962) = X(59153)-complementary conjugate of-X(8287)
X(65962) = center of the central inconic through X(18020) and X(32230)
X(65962) = pole of the line {2407, 47443} with respect to the Steiner inellipse
X(65963) lies on this line: {43048, 65249}
X(65963) = isogonal conjugate of X(61066)
X(65963) = isogonal conjugate of the complement of X(46136)
X(65963) = X(i)-cross conjugate of X(j) for these (i,j): {6, 953}, {654, 35011}
X(65963) = X(i)-isoconjugate of X(j) for these (i,j): {1, 61066}, {9, 3319}, {952, 2265}
X(65963) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 61066}, {478, 3319}
X(65963) = cevapoint of X(6) and X(953)
X(65963) = trilinear pole of line {953, 65854}
X(65963) = barycentric product X(i)*X(j) for these {i,j}: {953, 46136}, {65249, 65249}
X(65963) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 61066}, {56, 3319}, {953, 952}
X(65964) lies on the cubic K1373 and these lines: {9, 2319}, {75, 3617}, {144, 6555}, {312, 63600}, {346, 65952}, {1222, 3242}, {3699, 17350}, {5128, 62222}, {6552, 59573}, {63165, 65954}
X(65964) = X(3729)-Ceva conjugate of X(346)
X(65965) lies on the cubic K1373 and these lines: {7, 14942}, {75, 65955}, {192, 28071}, {885, 42337}, {927, 2951}, {3161, 6559}, {4907, 6185}, {6654, 14100}, {43182, 61436}, {63236, 63600}, {65952, 65956}
X(65965) = X(3729)-Ceva conjugate of X(65956)
X(65966) lies on the cubic K1374 and these lines: {2, 9311}, {7, 145}, {144, 63626}, {350, 40014}, {1002, 10107}, {3912, 6557}, {5222, 8056}, {6556, 18025}, {14942, 33963}, {21272, 36638}, {30827, 30833}
X(65966) = X(6557)-Ceva conjugate of X(4373)
X(65966) = X(64083)-cross conjugate of X(144)
X(65966) = X(i)-isoconjugate of X(j) for these (i,j): {1743, 11051}, {3052, 3062}, {4162, 53622}, {4936, 61380}
X(65966) = X(i)-Dao conjugate of X(j) for these (i,j): {7, 5435}, {7658, 4953}, {13609, 3667}, {24151, 3062}, {62575, 10405}
X(65966) = barycentric product X(i)*X(j) for these {i,j}: {144, 4373}, {165, 40014}, {3160, 6557}, {3680, 31627}, {6556, 9533}, {7658, 53647}, {8056, 16284}, {27818, 64083}, {58794, 62533}
X(65966) = barycentric quotient X(i)/X(j) for these {i,j}: {144, 145}, {165, 1743}, {1419, 1420}, {3160, 5435}, {3207, 3052}, {3445, 11051}, {3680, 19605}, {4373, 10405}, {6557, 63165}, {7658, 3667}, {8056, 3062}, {9533, 62787}, {13609, 4953}, {16284, 18743}, {19604, 64980}, {21060, 3950}, {21872, 4849}, {22117, 20818}, {27818, 36620}, {31627, 39126}, {38828, 53622}, {40014, 44186}, {55285, 14321}, {57064, 4546}, {64083, 3161}, {65173, 61240}
X(65966) = {X(3680),X(27818)}-harmonic conjugate of X(4373)
X(65967) lies on the cubic K1374 and these lines: {8, 45252}, {346, 19605}, {1997, 36620}, {3062, 56076}, {3161, 53579}, {3239, 9812}, {3912, 6557}, {5274, 63592}, {8055, 20533}, {20942, 33677}
X(65967) = X(10405)-Ceva conjugate of X(63165)
X(65967) = X(i)-cross conjugate of X(j) for these (i,j): {145, 3161}, {63624, 8}
X(65967) = X(i)-isoconjugate of X(j) for these (i,j): {144, 16945}, {165, 40151}, {1419, 3445}, {3160, 38266}, {3207, 19604}
X(65967) = X(i)-Dao conjugate of X(j) for these (i,j): {8, 144}, {3756, 7658}, {45036, 1419}
X(65967) = barycentric product X(i)*X(j) for these {i,j}: {145, 63165}, {3062, 44720}, {3158, 44186}, {3161, 10405}, {4546, 53640}, {6555, 36620}, {11051, 44723}, {18743, 19605}, {44729, 55284}
X(65967) = barycentric quotient X(i)/X(j) for these {i,j}: {145, 3160}, {1420, 17106}, {1743, 1419}, {3062, 19604}, {3158, 165}, {3161, 144}, {4521, 7658}, {5435, 9533}, {6555, 64083}, {10405, 27818}, {11051, 40151}, {18743, 31627}, {19605, 8056}, {39126, 50561}, {43290, 65165}, {44186, 62528}, {44720, 16284}, {44729, 55285}, {52354, 50563}, {63165, 4373}
X(65968) lies on the cubic K1374 and these lines: {2, 9311}, {8, 60812}, {346, 65952}, {3008, 30610}, {3501, 9315}, {4876, 40869}, {6553, 60813}, {9309, 17792}, {17284, 32023}, {33677, 36807}, {51845, 56714}
X(65968) = X(3717)-Dao conjugate of X(40883)
X(65968) = barycentric product X(19589)*X(32023)
X(65968) = barycentric quotient X(i)/X(j) for these {i,j}: {19589, 1376}, {19593, 6168}, {27830, 27829}
X(65969) lies on the cubic K1374 and these lines: {2, 1280}, {8, 2170}, {11, 3974}, {105, 4578}, {120, 6552}, {147, 2789}, {346, 14942}, {350, 52662}, {1447, 4899}, {1916, 65192}, {3021, 4779}, {3263, 33677}, {3679, 5988}, {3705, 4901}, {3717, 40869}, {4042, 7172}, {6084, 20344}, {6556, 18025}, {7081, 24393}, {7774, 39354}, {7840, 39368}, {9451, 52157}, {11814, 28655}, {18743, 26139}, {24524, 30758}, {27510, 27542}, {31085, 31091}, {32850, 40883}, {36221, 65198}, {37665, 40621}, {42720, 52164}
X(65969) = X(3912)-Ceva conjugate of X(346)
X(65969) = X(56)-isoconjugate of X(9452)
X(65969) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 9452}, {6559, 673}
X(65969) = barycentric product X(i)*X(j) for these {i,j}: {8, 52157}, {312, 9451}
X(65969) = barycentric quotient X(i)/X(j) for these {i,j}: {9, 9452}, {9451, 57}, {9453, 1462}, {52157, 7}
X(65970) lies on the cubic K1374 and these lines: {7, 190}, {8, 220}, {346, 14943}, {1281, 3501}, {3717, 52507}, {3912, 10025}, {4919, 41006}, {6068, 31722}, {8834, 10699}, {17464, 17794}, {24771, 29641}, {27129, 30625}, {28058, 40869}, {29839, 64579}, {44351, 65195}, {52084, 52164}
X(65970) = X(i)-Ceva conjugate of X(j) for these (i,j): {3912, 8}, {10025, 65953}
X(65970) = X(14942)-Dao conjugate of X(673)
X(65970) = crosssum of X(649) and X(61056)
X(65970) = barycentric product X(i)*X(j) for these {i,j}: {8, 52164}, {312, 52084}
X(65970) = barycentric quotient X(i)/X(j) for these {i,j}: {52084, 57}, {52164, 7}, {56721, 43760}
X(65971) lies on the cubic K1374 and these lines: {2, 3119}, {7, 14942}, {8, 348}, {279, 28850}, {350, 40704}, {1146, 31994}, {1818, 57768}, {1997, 36620}, {4876, 43750}, {5853, 9436}, {9312, 26531}, {10186, 62705}, {24014, 45276}, {28739, 56310}, {31527, 57477}, {38053, 62674}, {41353, 58035}, {56933, 62669}
X(65971) = reflection of X(i) in X(j) for these {i,j}: {25718, 664}, {39351, 63592}
X(65971) = X(3912)-Ceva conjugate of X(7)
X(65971) = X(56783)-Dao conjugate of X(673)
X(65971) = barycentric product X(40704)*X(56720)
X(65971) = barycentric quotient X(56720)/X(294)
X(65971) = {X(664),X(52156)}-harmonic conjugate of X(50441)
X(65972) lies on the cubic K1375 and these lines: {2, 44817}, {20, 62433}, {22, 804}, {69, 40048}, {94, 2394}, {98, 2373}, {99, 925}, {325, 523}, {339, 868}, {525, 62377}, {686, 3580}, {1370, 53365}, {1494, 65267}, {1637, 18312}, {1995, 47206}, {2780, 44440}, {2974, 34336}, {3448, 9517}, {5133, 17994}, {6334, 47236}, {7493, 9147}, {12827, 55121}, {14389, 14397}, {16386, 61776}, {18019, 62645}, {30744, 45689}, {34767, 51967}, {41512, 61188}, {45807, 65710}, {65753, 65756}
X(65972) = reflection of X(41079) in X(14592)
X(65972) = isotomic conjugate of X(10420)
X(65972) = anticomplement of X(47230)
X(65972) = polar conjugate of X(32708)
X(65972) = anticomplement of the isogonal conjugate of X(60053)
X(65972) = isotomic conjugate of the anticomplement of X(16221)
X(65972) = isotomic conjugate of the isogonal conjugate of X(55121)
X(65972) = polar conjugate of the isogonal conjugate of X(6334)
X(65972) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {63, 14731}, {265, 21221}, {328, 21294}, {476, 5905}, {662, 12383}, {4575, 18301}, {4592, 1272}, {14560, 21216}, {32662, 192}, {32678, 193}, {32680, 4}, {35139, 21270}, {36061, 2}, {36096, 54395}, {36129, 6515}, {39295, 7253}, {46456, 5906}, {52153, 21220}, {60053, 8}, {65251, 39118}, {65262, 15454}
X(65972) = X(i)-Ceva conjugate of X(j) for these (i,j): {1494, 339}, {20573, 338}
X(65972) = X(16221)-cross conjugate of X(2)
X(65972) = X(i)-isoconjugate of X(j) for these (i,j): {31, 10420}, {32, 65262}, {48, 32708}, {163, 14910}, {184, 36114}, {560, 18878}, {687, 9247}, {798, 18879}, {1576, 36053}, {1973, 43755}, {5504, 32676}, {15328, 23995}, {32678, 52557}
X(65972) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 10420}, {113, 1576}, {115, 14910}, {338, 60035}, {647, 61216}, {1249, 32708}, {2088, 50}, {3003, 2420}, {3580, 52603}, {4858, 36053}, {5664, 15470}, {6334, 526}, {6337, 43755}, {6374, 18878}, {6376, 65262}, {15526, 5504}, {16178, 25}, {18314, 15328}, {18334, 52557}, {23285, 15421}, {31998, 18879}, {34834, 110}, {35588, 52435}, {36901, 2986}, {39005, 184}, {39021, 6}, {55121, 21731}, {55267, 65762}, {56399, 32662}, {56792, 40352}, {62551, 39371}, {62576, 687}, {62598, 15454}, {62605, 36114}, {65732, 51456}, {65753, 30}, {65905, 32661}
X(65972) = cevapoint of X(6334) and X(55121)
X(65972) = crosspoint of X(264) and X(35139)
X(65972) = crosssum of X(184) and X(14270)
X(65972) = barycentric product X(i)*X(j) for these {i,j}: {76, 55121}, {264, 6334}, {305, 47236}, {338, 61188}, {339, 16237}, {403, 3267}, {525, 44138}, {686, 18022}, {850, 3580}, {1494, 65757}, {1502, 21731}, {1725, 20948}, {3003, 44173}, {3260, 65614}, {3268, 57486}, {5392, 65473}, {6563, 52504}, {14618, 62338}, {15329, 23962}, {20573, 60342}, {41079, 65715}
X(65972) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 10420}, {4, 32708}, {69, 43755}, {75, 65262}, {76, 18878}, {92, 36114}, {99, 18879}, {113, 2420}, {125, 61216}, {264, 687}, {338, 15328}, {339, 15421}, {403, 112}, {523, 14910}, {525, 5504}, {526, 52557}, {686, 184}, {850, 2986}, {868, 65762}, {1577, 36053}, {1725, 163}, {1986, 14591}, {2394, 10419}, {3003, 1576}, {3267, 57829}, {3580, 110}, {5664, 39371}, {6334, 3}, {6563, 52505}, {12827, 61198}, {12828, 61207}, {13754, 32661}, {14264, 32640}, {14592, 12028}, {14618, 1300}, {15329, 23357}, {16221, 47230}, {16237, 250}, {18022, 57932}, {18312, 51456}, {18314, 60035}, {18808, 40388}, {21731, 32}, {24978, 58924}, {34834, 52603}, {39021, 21731}, {39170, 32662}, {41079, 15454}, {44084, 61206}, {44138, 648}, {44173, 40832}, {44427, 38936}, {47236, 25}, {52000, 61208}, {52451, 2715}, {52487, 58959}, {52504, 925}, {55121, 6}, {55265, 1495}, {56403, 14560}, {57486, 476}, {58261, 65615}, {60342, 50}, {60498, 32729}, {61188, 249}, {61209, 57655}, {62338, 4558}, {62361, 32734}, {62551, 15470}, {63735, 1625}, {65473, 1993}, {65614, 74}, {65715, 44769}, {65757, 30}, {65780, 65776}
X(65972) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {850, 3267, 30474}, {22339, 22340, 6563}
X(65973) lies on the cubic K1375 and these lines: {2, 525}, {30, 3268}, {74, 2857}, {99, 1304}, {297, 2799}, {325, 6333}, {339, 850}, {523, 1494}, {868, 34765}, {1637, 44576}, {2419, 47105}, {6563, 13219}, {9155, 47263}, {9979, 44216}, {14380, 54124}, {14417, 40884}, {16080, 52459}, {18022, 44173}, {18311, 58875}, {18808, 55972}, {35088, 62629}, {35908, 52486}, {36875, 62642}, {46751, 64690}, {53383, 65771}
X(65973) = reflection of X(i) in X(j) for these {i,j}: {9979, 44216}, {40884, 14417}, {62629, 35088}
X(65973) = isotomic conjugate of X(65776)
X(65973) = anticomplement of X(65782)
X(65973) = antitomic image of X(62629)
X(65973) = isotomic conjugate of the isogonal conjugate of X(32112)
X(65973) = X(36034)-anticomplementary conjugate of X(65774)
X(65973) = X(65754)-cross conjugate of X(2799)
X(65973) = X(i)-isoconjugate of X(j) for these (i,j): {31, 65776}, {163, 35906}, {248, 56829}, {293, 23347}, {1495, 36084}, {1910, 2420}, {2159, 65777}, {2173, 2715}, {2966, 9406}, {3284, 36104}, {9407, 36036}, {14600, 24001}, {32676, 35912}
X(65973) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 65776}, {115, 35906}, {132, 23347}, {868, 51431}, {2679, 9407}, {2799, 65754}, {3163, 65777}, {5664, 65779}, {5976, 2407}, {9410, 2966}, {11672, 2420}, {15526, 35912}, {23285, 65778}, {35088, 30}, {36896, 2715}, {36901, 60869}, {38970, 1990}, {38987, 1495}, {39000, 3284}, {39039, 56829}, {41167, 9409}, {55267, 1637}, {61505, 51937}, {62595, 4240}, {62606, 43754}, {65760, 3233}, {65763, 58346}
X(65973) = cevapoint of X(2799) and X(65754)
X(65973) = trilinear pole of line {2799, 65756}
X(65973) = barycentric product X(i)*X(j) for these {i,j}: {76, 32112}, {99, 65756}, {297, 34767}, {325, 2394}, {850, 35910}, {1494, 2799}, {2396, 12079}, {3267, 35908}, {6333, 16080}, {6393, 18808}, {14380, 44132}, {31621, 65754}, {34765, 51227}, {36890, 62629}, {44769, 62431}
X(65973) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 65776}, {30, 65777}, {74, 2715}, {232, 23347}, {240, 56829}, {297, 4240}, {325, 2407}, {339, 65778}, {511, 2420}, {523, 35906}, {525, 35912}, {684, 3284}, {850, 60869}, {868, 1637}, {1494, 2966}, {2349, 36084}, {2394, 98}, {2433, 1976}, {2491, 9407}, {2799, 30}, {3569, 1495}, {6333, 11064}, {8749, 32696}, {12079, 2395}, {14223, 53866}, {14356, 41392}, {14380, 248}, {14919, 43754}, {16077, 60179}, {16080, 685}, {16230, 1990}, {17994, 14581}, {18808, 6531}, {23350, 48453}, {32112, 6}, {33752, 52951}, {33805, 36036}, {34765, 51228}, {34767, 287}, {35088, 65754}, {35908, 112}, {35910, 110}, {36119, 36104}, {36875, 60504}, {40703, 24001}, {41172, 9409}, {42703, 42716}, {44114, 14398}, {44769, 57742}, {46787, 51263}, {51227, 34761}, {51389, 3233}, {55267, 51431}, {56792, 60777}, {58351, 3081}, {62431, 41079}, {62551, 65779}, {62555, 51389}, {62629, 9214}, {62645, 65781}, {62665, 17974}, {63856, 60506}, {65614, 52451}, {65754, 3163}, {65755, 58346}, {65756, 523}
X(65973) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {34767, 52766, 62363}, {34767, 65710, 36890}
X(65974) lies on the cubic K1375 and these lines: {30, 36890}, {74, 65648}, {98, 1494}, {325, 877}, {524, 65777}, {868, 34765}, {1650, 3268}, {2394, 43673}, {2799, 65756}, {3081, 9141}, {12079, 34767}
X(65974) = X(9406)-isoconjugate of X(57562)
X(65974) = X(i)-Dao conjugate of X(j) for these (i,j): {2799, 30}, {9410, 57562}, {35088, 65776}, {41172, 2420}, {55267, 35906}
X(65974) = barycentric product X(i)*X(j) for these {i,j}: {325, 65756}, {1494, 35088}, {2394, 62555}, {12079, 32458}, {35910, 62431}
X(65974) = barycentric quotient X(i)/X(j) for these {i,j}: {868, 35906}, {1494, 57562}, {2394, 41173}, {2799, 65776}, {12079, 41932}, {32112, 2715}, {35088, 30}, {35910, 57742}, {41167, 2420}, {46052, 65754}, {59805, 1495}, {62431, 60869}, {62555, 2407}, {65754, 65777}, {65756, 98}
X(65975) lies on the cubic K1375 and these lines: {2, 60511}, {3, 76}, {30, 61188}, {69, 523}, {325, 868}, {538, 2088}, {599, 36790}, {2493, 7778}, {3260, 23342}, {3734, 32761}, {5641, 7788}, {14999, 35906}, {32836, 36890}, {35910, 51389}, {37637, 47406}, {46777, 51481}, {53793, 64687}, {62338, 62551}
X(65975) = isotomic conjugate of the isogonal conjugate of X(47049)
X(65975) = X(1494)-Ceva conjugate of X(325)
X(65975) = X(i)-Dao conjugate of X(j) for these (i,j): {34810, 51820}, {51389, 30}, {55267, 65764}
X(65975) = crossdifference of every pair of points on line {1692, 2491}
X(65975) = barycentric product X(i)*X(j) for these {i,j}: {76, 47049}, {325, 65767}, {1494, 65760}, {2396, 53266}
X(65975) = barycentric quotient X(i)/X(j) for these {i,j}: {868, 65764}, {34810, 35906}, {47049, 6}, {53266, 2395}, {55071, 2088}, {65760, 30}, {65767, 98}
X(65975) = {X(69),X(36891)}-harmonic conjugate of X(65771)
X(65976) lies on the cubic K1375 and these lines: {2, 60509}, {30, 6334}, {74, 98}, {325, 6333}, {868, 16230}, {1494, 18808}, {9033, 62639}, {9134, 12079}, {9717, 45687}, {10749, 13556}, {34174, 36875}, {38749, 65723}, {55121, 62551}
X(65976) = reflection of X(16230) in X(868)
X(65976) = X(i)-Ceva conjugate of X(j) for these (i,j): {1494, 65756}, {18808, 32112}
X(65976) = X(i)-isoconjugate of X(j) for these (i,j): {163, 65781}, {9406, 55266}, {36051, 65776}
X(65976) = X(i)-Dao conjugate of X(j) for these (i,j): {114, 65776}, {115, 65781}, {230, 2407}, {868, 30}, {9410, 55266}, {35088, 36891}, {55152, 35906}, {55267, 65758}
X(65976) = trilinear pole of line {41181, 55267}
X(65976) = barycentric product X(i)*X(j) for these {i,j}: {114, 2394}, {1494, 55267}, {2799, 36875}, {4226, 65756}, {16077, 41181}, {18808, 62590}, {32112, 51481}
X(65976) = barycentric quotient X(i)/X(j) for these {i,j}: {114, 2407}, {230, 65776}, {523, 65781}, {868, 65758}, {1494, 55266}, {2394, 40428}, {2433, 2065}, {2799, 36891}, {32112, 2987}, {35908, 32697}, {35910, 10425}, {36875, 2966}, {41181, 9033}, {51335, 2420}, {51431, 65777}, {55122, 35906}, {55267, 30}, {65756, 62645}
X(65977) lies on the cubic K1375 and these lines: {2, 2501}, {30, 44427}, {98, 523}, {112, 57065}, {148, 525}, {325, 2799}, {339, 14618}, {1499, 53016}, {1513, 16230}, {1550, 52472}, {2489, 38652}, {2967, 36170}, {3566, 10722}, {6334, 33228}, {12384, 36173}, {23870, 33518}, {23871, 33517}, {47236, 51358}, {50719, 54029}, {50720, 54028}, {59805, 65608}, {65755, 65756}
X(65977) = reflection of X(i) in X(j) for these {i,j}: {1513, 16230}, {65772, 65758}
X(65977) = anticomplement of X(65772)
X(65977) = X(i)-Ceva conjugate of X(j) for these (i,j): {687, 297}, {1494, 868}
X(65977) = X(163)-isoconjugate of X(65783)
X(65977) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 65783}, {55267, 65766}, {65755, 30}
X(65977) = barycentric product X(i)*X(j) for these {i,j}: {868, 65768}, {1494, 65763}, {1550, 34765}
X(65977) = barycentric quotient X(i)/X(j) for these {i,j}: {523, 65783}, {868, 65766}, {1550, 34761}, {52472, 65776}, {65763, 30}, {65768, 57991}
{X(65758),X(65772)}-harmonic conjugate of X(2)
X(65978) lies on the cubic K1375 and these lines: {2, 98}, {30, 65774}, {115, 46416}, {523, 15526}, {868, 2799}, {1494, 9214}, {2972, 40470}, {9033, 62551}, {14356, 35908}, {14995, 64923}, {36471, 53832}, {65754, 65756}
X(65978) = midpoint of X(1494) and X(9214)
X(65978) = complement of X(65776)
X(65978) = complement of the isogonal conjugate of X(32112)
X(65978) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 65782}, {240, 57128}, {1755, 5664}, {2159, 2799}, {2349, 24284}, {2433, 16609}, {5360, 57046}, {23997, 31945}, {32112, 10}, {35908, 8062}, {35910, 4369}, {36119, 6130}, {57653, 14401}, {65756, 21253}
X(65978) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 65782}, {1494, 2799}
X(65978) = X(i)-Dao conjugate of X(j) for these (i,j): {55267, 65765}, {65754, 30}, {65782, 2}
X(65978) = barycentric product X(2799)*X(53383)
X(65978) = barycentric quotient X(i)/X(j) for these {i,j}: {868, 65765}, {53383, 2966}, {65782, 65776}
X(65979) lies on the cubic K1375 and these lines: {2, 41392}, {30, 74}, {94, 2394}, {339, 57486}, {1494, 1989}, {14356, 35908}, {14919, 18883}, {16080, 39295}, {17986, 53768}, {30529, 62730}, {35910, 51389}, {56395, 60870}, {56399, 64923}, {57482, 60502}
X(65979) = X(i)-isoconjugate of X(j) for these (i,j): {163, 65779}, {248, 35201}, {293, 39176}, {1511, 1910}, {2173, 14355}, {2624, 65776}, {6149, 35906}, {36084, 52743}
X(65979) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 65779}, {132, 39176}, {5976, 6148}, {11672, 1511}, {14993, 35906}, {35088, 5664}, {36896, 14355}, {38970, 62172}, {38987, 52743}, {39039, 35201}, {41167, 47414}, {55267, 3258}, {62595, 14920}
X(65979) = cevapoint of X(2799) and X(65756)
X(65979) = trilinear pole of line {14356, 32112}
X(65979) = barycentric product X(i)*X(j) for these {i,j}: {94, 35910}, {325, 5627}, {328, 35908}, {1494, 14356}, {2799, 39290}, {11079, 44132}, {15395, 62431}, {32112, 35139}, {39295, 65756}
X(65979) = barycentric quotient X(i)/X(j) for these {i,j}: {74, 14355}, {94, 60869}, {232, 39176}, {240, 35201}, {265, 35912}, {297, 14920}, {325, 6148}, {476, 65776}, {511, 1511}, {523, 65779}, {868, 3258}, {1989, 35906}, {2433, 60777}, {2799, 5664}, {3569, 52743}, {5627, 98}, {11079, 248}, {14356, 30}, {14592, 65778}, {15395, 57742}, {16230, 62172}, {32112, 526}, {34370, 48453}, {35908, 186}, {35910, 323}, {39290, 2966}, {40355, 1976}, {41172, 47414}, {41392, 65777}, {50464, 17974}, {54554, 53866}, {57486, 65780}, {65756, 62551}
X(65980) lies on the cubic K1375 and these lines: {2, 35907}, {98, 468}, {232, 65756}, {297, 2799}, {523, 50188}, {868, 6530}, {1494, 6330}, {1503, 2409}, {1637, 51358}, {1990, 62551}, {2394, 5523}, {4235, 65774}, {14919, 34129}, {34138, 35910}, {36875, 41204}, {41676, 65719}, {54074, 62665}, {60527, 62376}
X(65980) = X(i)-Ceva conjugate of X(j) for these (i,j): {1494, 35908}, {16080, 63856}
X(65980) = X(i)-isoconjugate of X(j) for these (i,j): {293, 51937}, {2173, 15407}, {9406, 57761}
X(65980) = X(i)-Dao conjugate of X(j) for these (i,j): {132, 51937}, {232, 30}, {441, 11064}, {9410, 57761}, {23976, 35912}, {36896, 15407}, {39073, 3284}, {50938, 35906}, {55267, 65759}
X(65980) = barycentric product X(i)*X(j) for these {i,j}: {132, 1494}, {297, 63856}, {15595, 16080}, {17875, 36119}, {30737, 35908}, {35910, 60516}
X(65980) = barycentric quotient X(i)/X(j) for these {i,j}: {74, 15407}, {132, 30}, {232, 51937}, {868, 65759}, {1494, 57761}, {1503, 35912}, {2409, 65776}, {6530, 52485}, {9475, 3284}, {15595, 11064}, {16080, 9476}, {16318, 35906}, {32112, 2435}, {35908, 1297}, {35910, 64975}, {55275, 1637}, {60516, 60869}, {63856, 287}
X(65981) lies on the cubic K1375 and these lines: {2, 60503}, {30, 935}, {67, 98}, {132, 35908}, {325, 36884}, {339, 39269}, {2794, 14357}, {10415, 12079}, {10766, 34366}, {17708, 30789}, {18019, 62645}, {57799, 65269}
X(65982) lies on the cubic K1375 and these lines: {2, 60504}, {98, 868}, {287, 2395}, {325, 441}, {339, 57490}, {2794, 60506}, {5967, 51431}, {10722, 40820}, {35906, 63856}, {41145, 51963}
X(65982) = X(1494)-Ceva conjugate of X(98)
X(65982) = X(35906)-Dao conjugate of X(30)
X(65982) = barycentric product X(98)*X(65771)
X(65982) = barycentric quotient X(65771)/X(325)
X(65982) = {X(287),X(65781)}-harmonic conjugate of X(65767)
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 7145.
X(65983) lies on this line: {14683, 37943}
X(65983) = isogonal conjugate X(65984)
See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 7145.
X(65984) lies on these lines: {6, 3200}, {232, 11063}, {2493, 15302}, {3018, 7749}, {8745, 36423}, {8791, 52154}
X(65984) = isogonal conjugate X(65983) Points releated to the extouch-of-Fuhrmann triangle: X(65985)-X(66071)
This preamble and centers X(65985)-X(66071) were contributed by Ivan Pavlov on October 30, 2024.
For more information and constructions of the extouch-of-Fuhrmann triangle see this Euclid thread.
X(65985) lies on these lines: {2, 3}, {11, 33178}, {12, 63319}, {81, 43712}, {115, 16716}, {125, 18180}, {339, 16747}, {495, 30142}, {496, 23304}, {946, 2778}, {1717, 7741}, {1853, 5707}, {3444, 53421}, {3574, 34462}, {3695, 19839}, {3739, 25639}, {5090, 37729}, {5130, 32047}, {10593, 17070}, {13605, 47319}, {21243, 37536}, {21260, 65492}, {24470, 26933}, {44316, 59750}
X(65985) = inverse of X(44898) in nine-point circle
X(65985) = inverse of X(44898) in MacBeath inconic
X(65985) = complement of X(2915)
X(65985) = X(i)-Ceva conjugate of X(j) for these {i, j}: {59075, 523}
X(65985) = X(i)-complementary conjugate of X(j) for these {i, j}: {43712, 10}
X(65985) = pole of line {523, 8043} with respect to the nine-point circle
X(65985) = pole of line {6, 3444} with respect to the Kiepert hyperbola
X(65985) = pole of line {523, 8043} with respect to the MacBeath inconic
X(65985) = intersection, other than A, B, C, of circumconics {{A, B, C, X(451), X(43712)}}, {{A, B, C, X(2915), X(57695)}}, {{A, B, C, X(3613), X(52252)}}, {{A, B, C, X(37305), X(61133)}}
X(65986) lies on these lines: {1, 5812}, {56, 64345}, {57, 2886}, {65, 49176}, {497, 60895}, {946, 48694}, {1836, 30304}, {2078, 13405}, {3254, 61021}, {3337, 65994}, {3485, 51111}, {4295, 5768}, {4298, 11263}, {5082, 12432}, {7702, 45632}, {10165, 37583}, {17637, 49177}, {24470, 65987}, {26437, 61716}, {34789, 66020}, {37625, 45634}, {49170, 64119}, {66015, 66046}
X(65987) lies on these lines: {1, 11826}, {57, 7681}, {65, 12751}, {79, 24465}, {388, 49169}, {946, 48695}, {1210, 46435}, {3337, 65995}, {5553, 61114}, {5880, 60937}, {5884, 6256}, {7702, 9612}, {9581, 12676}, {11023, 26333}, {11263, 12436}, {11509, 64345}, {12761, 65998}, {17637, 18838}, {24470, 65986}, {64155, 66020}
X(65988) lies on these lines: {1, 550}, {2, 191}, {7, 11010}, {46, 64345}, {65, 9897}, {79, 546}, {382, 5902}, {484, 3982}, {946, 1768}, {1698, 51573}, {2306, 42779}, {3244, 6224}, {3338, 16767}, {3339, 7702}, {3474, 63255}, {3530, 3649}, {3585, 30424}, {3626, 5270}, {3632, 3868}, {3671, 37616}, {3820, 34501}, {3833, 63285}, {3851, 5221}, {4298, 64896}, {4317, 20057}, {4338, 5586}, {5010, 57283}, {5079, 61716}, {5223, 5852}, {5248, 5303}, {5441, 62151}, {5442, 61853}, {5535, 49107}, {5563, 65991}, {5691, 5884}, {5883, 64289}, {5885, 16150}, {6154, 66006}, {6906, 37587}, {7992, 64119}, {8727, 13865}, {10543, 62141}, {11531, 28458}, {11544, 35018}, {11551, 12512}, {14869, 37701}, {15687, 37702}, {15688, 37571}, {15720, 37524}, {16137, 62087}, {18221, 49135}, {18398, 48661}, {18990, 64766}, {24465, 45764}, {28198, 36946}, {31423, 38114}, {31870, 66048}, {32635, 43732}, {33102, 63310}, {33654, 42780}
X(65988) = reflection of X(i) in X(j) for these {i,j}: {1, 5557}, {5506, 9782}, {5557, 34502}
X(65988) = X(5557) of Aquila triangle
X(65988) = pole of line {4977, 8043} with respect to the Suppa-Cucoanes circle
X(65988) = pole of line {3982, 17011} with respect to the dual conic of Yff parabola
X(65988) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5557, 28174, 1}, {28174, 34502, 5557}
X(65989) lies on these lines: {149, 519}, {1016, 30578}, {1086, 8046}, {3911, 37771}, {4080, 6630}, {4358, 18151}, {4440, 16704}, {5226, 14628}, {17484, 62231}, {21454, 40218}, {37635, 60692}
X(65989) = trilinear pole of line {12019, 21180}
X(65989) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 15015}
X(65989) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 15015}
X(65989) = X(i)-cross conjugate of X(j) for these {i, j}: {14028, 903}, {16173, 7}
X(65989) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(514)}}, {{A, B, C, X(27), X(54794)}}, {{A, B, C, X(57), X(64896)}}, {{A, B, C, X(88), X(12653)}}, {{A, B, C, X(89), X(44559)}}, {{A, B, C, X(92), X(1029)}}, {{A, B, C, X(149), X(673)}}, {{A, B, C, X(278), X(3583)}}, {{A, B, C, X(908), X(4801)}}, {{A, B, C, X(1086), X(30578)}}, {{A, B, C, X(2006), X(9897)}}, {{A, B, C, X(2226), X(58794)}}, {{A, B, C, X(3218), X(5226)}}, {{A, B, C, X(4080), X(4440)}}, {{A, B, C, X(4564), X(27789)}}, {{A, B, C, X(4608), X(8047)}}, {{A, B, C, X(4654), X(17484)}}, {{A, B, C, X(4671), X(4956)}}, {{A, B, C, X(26142), X(27070)}}, {{A, B, C, X(26749), X(36588)}}, {{A, B, C, X(37635), X(40882)}}, {{A, B, C, X(39705), X(46275)}}
X(65990) lies on these lines: {1, 5787}, {4, 11263}, {40, 993}, {65, 1768}, {84, 5884}, {550, 30503}, {952, 66006}, {1012, 37625}, {1490, 65949}, {3244, 6264}, {3333, 64334}, {3872, 12842}, {5538, 21677}, {5691, 64345}, {5732, 5880}, {5855, 12629}, {6326, 6831}, {7411, 19860}, {7508, 10268}, {7702, 9579}, {8227, 31936}, {9856, 44840}, {12672, 66009}, {12705, 45632}, {15071, 17637}, {18406, 41540}, {21669, 47319}, {37434, 64324}, {37728, 64288}, {37736, 64291}, {41854, 41865}, {54193, 63146}, {64676, 65991}
X(65991) lies on these lines: {1, 381}, {8, 1392}, {11, 3244}, {55, 17573}, {65, 1387}, {79, 24928}, {354, 5884}, {390, 2646}, {946, 52836}, {1125, 3057}, {1319, 4299}, {1385, 4330}, {1698, 2098}, {1837, 3623}, {3058, 3636}, {3303, 61275}, {3304, 59372}, {3582, 11278}, {3584, 13606}, {3633, 50443}, {3656, 32636}, {3748, 12859}, {4995, 15808}, {5045, 39782}, {5154, 33956}, {5563, 65988}, {5603, 10404}, {5734, 17728}, {5886, 10051}, {5901, 5919}, {6745, 17648}, {7962, 34595}, {7982, 61649}, {8581, 64160}, {9624, 61648}, {9670, 64952}, {9957, 52638}, {10043, 11011}, {10107, 25414}, {10222, 16173}, {10283, 64345}, {10543, 11263}, {10572, 64848}, {10595, 64322}, {10609, 41540}, {11038, 63275}, {15950, 64703}, {16137, 17609}, {17636, 27385}, {17660, 66013}, {18253, 64046}, {20014, 54361}, {28645, 54391}, {30384, 34773}, {30424, 38055}, {31231, 63209}, {31730, 37605}, {33179, 37720}, {34471, 41864}, {37080, 61276}, {37722, 63257}, {47319, 64042}, {50906, 62617}, {64676, 65990}
X(65991) = midpoint of X(i) and X(j) for these {i,j}: {1, 45035}, {1392, 7705}
X(65991) = reflection of X(i) in X(j) for these {i,j}: {39781, 1}
X(65991) = inverse of X(3244) in Feuerbach hyperbola
X(65991) = pole of line {3244, 3873} with respect to the Feuerbach hyperbola
X(65991) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 28204, 39781}, {1, 45035, 28204}, {5048, 11376, 17606}
X(65992) lies on these lines: {1, 7965}, {65, 12767}, {1467, 7702}, {1699, 10884}, {2951, 5880}, {3062, 12669}, {3244, 7993}, {3927, 64369}, {5234, 6912}, {5531, 66006}, {5538, 12447}, {5884, 7992}, {8001, 11531}, {10980, 18219}, {11518, 17637}, {41860, 41865}, {64264, 66009}
X(65993) lies on these lines: {1, 42020}, {2, 988}, {3, 50535}, {10, 496}, {65, 16594}, {121, 10915}, {946, 11814}, {996, 1125}, {1210, 24003}, {1722, 1997}, {3090, 39605}, {3452, 46827}, {3756, 59577}, {3823, 3847}, {3831, 5316}, {3885, 60443}, {4187, 62673}, {4193, 60423}, {4432, 59675}, {4871, 21075}, {5121, 46937}, {5530, 30829}, {8582, 25079}, {9026, 49511}, {9843, 59511}, {10916, 59684}, {17054, 59731}, {17308, 33042}, {17385, 25354}, {17675, 30826}, {21616, 49993}, {24171, 58467}, {24174, 62297}, {25011, 25591}, {28018, 52353}, {45204, 63800}, {49529, 59666}, {49627, 59669}, {58405, 59544}, {59587, 62630}
X(65993) = midpoint of X(i) and X(j) for these {i,j}: {1, 42020}, {2899, 11512}
X(65993) = reflection of X(i) in X(j) for these {i,j}: {10, 2885}, {3445, 1125}
X(65993) = complement of X(11512)
X(65993) = X(2899) of Gemini 110 triangle
X(65993) = X(i)-complementary conjugate of X(j) for these {i, j}: {42360, 141}
X(65993) = pole of line {4462, 28478} with respect to the Steiner inellipse
X(65993) = pole of line {11679, 16602} with respect to the dual conic of Yff parabola
X(65993) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2899, 11512}, {1210, 24003, 59685}, {2885, 3880, 10}
X(65994) lies on these lines: {1, 48519}, {11, 65995}, {46, 7702}, {65, 10057}, {79, 8068}, {100, 41540}, {377, 12647}, {946, 10058}, {1478, 5884}, {1709, 6831}, {2886, 17437}, {3337, 65986}, {3585, 65998}, {5880, 15298}, {10043, 10532}, {10073, 66013}, {10826, 41688}, {11263, 13411}, {11507, 64345}, {12736, 47319}, {13750, 16152}, {16113, 59321}, {20292, 39599}, {32760, 63262}, {47033, 53615}, {53616, 66017}, {64155, 66009}, {64191, 66003}
X(65994) = inverse of X(65995) in Feuerbach hyperbola
X(65995) lies on these lines: {1, 37290}, {11, 65994}, {65, 10073}, {79, 5533}, {946, 10074}, {1479, 5884}, {1537, 66003}, {3337, 65987}, {3338, 7702}, {3434, 10573}, {3583, 64292}, {5570, 16153}, {5880, 15299}, {6246, 66046}, {10052, 10531}, {10057, 64042}, {10085, 64119}, {10122, 13129}, {11263, 16152}, {15845, 17437}, {22766, 64345}, {23708, 41688}, {32760, 59719}, {34789, 65998}
X(65995) = inverse of X(65994) in Feuerbach hyperbola
X(65995) = pole of line {34339, 65994} with respect to the Feuerbach hyperbola
X(65996) lies on these lines: {46, 1532}, {65, 12749}, {79, 119}, {80, 65998}, {946, 10090}, {2077, 16155}, {3337, 65997}, {5884, 10573}, {6246, 66048}, {11263, 59719}, {11509, 45976}, {13407, 56120}, {14803, 44675}, {16154, 17637}, {64155, 65132}
X(65997) lies on these lines: {65, 12750}, {79, 37726}, {946, 12776}, {999, 64345}, {3337, 65996}, {3338, 5880}, {5563, 41540}, {5884, 12116}, {12687, 64119}, {16155, 17637}, {37701, 42842}
X(65998) lies on these lines: {1, 84}, {2, 12666}, {4, 5553}, {65, 2829}, {72, 2077}, {79, 46435}, {80, 65996}, {104, 64042}, {119, 12616}, {404, 48697}, {513, 53047}, {515, 37562}, {517, 64076}, {518, 49163}, {912, 1158}, {938, 5555}, {942, 26333}, {946, 15528}, {971, 5880}, {1470, 1858}, {1490, 59333}, {1519, 12688}, {1737, 41560}, {1768, 59327}, {1898, 26476}, {2771, 34862}, {2778, 51490}, {2800, 3244}, {2801, 10915}, {2950, 66006}, {3057, 54176}, {3358, 42843}, {3359, 9943}, {3585, 65994}, {3817, 6245}, {3868, 64078}, {5450, 5887}, {5552, 12528}, {5554, 12667}, {5693, 41389}, {5722, 12676}, {5777, 26364}, {5842, 64707}, {5884, 6738}, {5885, 22792}, {5886, 18260}, {6261, 10269}, {6705, 31803}, {6735, 14872}, {6906, 56941}, {6938, 64043}, {6959, 18856}, {7681, 37566}, {7686, 9579}, {9856, 58588}, {9940, 10200}, {9942, 37534}, {10167, 16132}, {10399, 15239}, {10531, 63962}, {10826, 41704}, {10942, 33899}, {11570, 66013}, {12005, 21625}, {12115, 64358}, {12332, 56176}, {12664, 64345}, {12669, 60925}, {12703, 54156}, {12761, 65987}, {13278, 66002}, {15016, 41865}, {16209, 52026}, {18239, 18242}, {19904, 49207}, {22753, 64132}, {24475, 66009}, {24927, 40257}, {26446, 32159}, {30424, 31870}, {34381, 49165}, {34772, 66055}, {34789, 65995}, {37002, 64721}, {44547, 56889}, {54290, 63976}, {64021, 64120}
X(65998) = midpoint of X(i) and X(j) for these {i,j}: {84, 15071}, {1071, 17649}, {3868, 64190}, {64021, 64120}
X(65998) = reflection of X(i) in X(j) for these {i,j}: {72, 64118}, {5887, 5450}, {6256, 34339}, {6261, 13369}, {9856, 58588}, {11500, 9943}, {12114, 18238}, {12688, 63980}, {18239, 18242}, {22792, 5885}, {31803, 6705}, {40263, 12616}, {54198, 12005}, {54227, 40249}, {64119, 942}
X(65998) = complement of X(12666)
X(65998) = X(1071) of anti-outer-Yff
X(65998) = pole of line {56, 1519} with respect to the Feuerbach hyperbola
X(65998) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1433), X(5553)}}, {{A, B, C, X(12686), X(44692)}}
X(65998) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7992, 12686}, {971, 34339, 6256}, {1071, 12711, 12675}, {1071, 17649, 6001}, {6001, 18238, 12114}
X(65999) lies on these lines: {1, 5180}, {2, 12769}, {79, 6595}, {404, 48702}, {2771, 66046}, {3627, 5884}, {5880, 12745}, {7483, 64345}, {11263, 15325}, {12600, 16128}, {18985, 52783}
X(65999) = midpoint of X(i) and X(j) for these {i,j}: {12409, 14450}
X(65999) = reflection of X(i) in X(j) for these {i,j}: {12267, 18244}
X(65999) = complement of X(12769)
X(66000) lies on these lines: {7, 80}, {104, 18460}, {1387, 30347}, {1768, 30401}, {2771, 63283}, {2800, 52805}, {5083, 30342}, {6204, 6326}, {6224, 52811}, {6264, 30320}, {6265, 30386}, {9946, 30277}, {9952, 30289}, {10265, 30381}, {11571, 30426}, {12515, 30297}, {12611, 30307}, {12619, 30314}, {12691, 30325}, {12758, 30334}, {12767, 30355}, {12770, 30361}, {12771, 30369}, {12772, 30419}, {12774, 30407}, {17638, 30376}, {18254, 30413}, {18458, 35775}, {49240, 52807}
X(66000) = reflection of X(i) in X(j) for these {i,j}: {66001, 11570}
X(66000) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2801, 11570, 66001}
PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |