leftri rightri


This is PART 14: Centers X(26001) - X(28000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)


leftri

Collineation mappings involving Gemini triangle 38: X(26001)-X(26026)

rightri

Extending the preamble just before X(24537), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 38, as in centers X(26001)-X(26026). Then

m(X) = 2 b c (a - b + c) (a + b - c) x + (a - b - c) (a^2 + b^2 - c^2) y + (a - b - c) (a^2 - b^2 + c^2) z : :

A point X lies on the Euler line if and only if m(X) also lies on the Euler line. (Clark Kimberling, October 29, 2018)


X(26001) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^4 b - 2 a^2 b^3 + b^5 + a^4 c - 2 a^3 b c + 2 a^2 b^2 c - 2 a b^3 c + b^4 c + 2 a^2 b c^2 + 4 a b^2 c^2 - 2 b^3 c^2 - 2 a^2 c^3 - 2 a b c^3 - 2 b^2 c^3 + b c^4 + c^5 : :

X(26001) lies on these lines: {1, 2}, {4, 24590}, {7, 20262}, {11, 26002}, {56, 25931}, {57, 23058}, {63, 6554}, {75, 25019}, {142, 26540}, {241, 1146}, {269, 5942}, {281, 1445}, {515, 11349}, {594, 25067}, {673, 1861}, {908, 26005}, {1449, 24553}, {2262, 21239}, {2270, 21279}, {2321, 26669}, {3218, 5199}, {3666, 21049}, {3739, 25964}, {4000, 24005}, {4025, 4391}, {4357, 20905}, {4359, 25002}, {4416, 26651}, {4431, 25243}, {4858, 22464}, {4967, 25001}, {5179, 20367}, {5249, 13567}, {5257, 24554}, {5435, 20205}, {5787, 11347}, {6245, 24604}, {7291, 8074}, {7384, 27000}, {8756, 16560}, {16608, 21617}, {17275, 25878}, {20888, 26592}, {21495, 25954}, {24789, 26958}, {25023, 26538}, {26004, 26007}, {26010, 26019}


X(26002) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    -a^6 b^2 + 3 a^4 b^4 - 3 a^2 b^6 + b^8 + 2 a^6 b c + 2 a^5 b^2 c - 4 a^4 b^3 c - 4 a^3 b^4 c + 2 a^2 b^5 c + 2 a b^6 c - a^6 c^2 + 2 a^5 b c^2 - 2 a^4 b^2 c^2 + 4 a^3 b^3 c^2 - a^2 b^4 c^2 + 2 a b^5 c^2 - 4 b^6 c^2 - 4 a^4 b c^3 + 4 a^3 b^2 c^3 + 4 a^2 b^3 c^3 - 4 a b^4 c^3 + 3 a^4 c^4 - 4 a^3 b c^4 - a^2 b^2 c^4 - 4 a b^3 c^4 + 6 b^4 c^4 + 2 a^2 b c^5 + 2 a b^2 c^5 - 3 a^2 c^6 + 2 a b c^6 - 4 b^2 c^6 + c^8 : :

X(26002) lies on these lines: {2, 3}, {11, 26001}, {77, 15849}, {241, 6506}, {1329, 25930}, {7681, 24590}


X(26003) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    (a^2 + b^2 - c^2) (a^2 - b^2 + c^2) (a^4 - a^3 b - a^2 b^2 + a b^3 - a^3 c - a^2 b c + a b^2 c + b^3 c - a^2 c^2 + a b c^2 - 2 b^2 c^2 + a c^3 + b c^3) : :

X(26003) lies on these lines: {2, 3}, {9, 273}, {34, 25930}, {53, 17337}, {63, 1847}, {92, 3305}, {142, 7282}, {144, 1119}, {239, 1897}, {264, 2322}, {275, 17758}, {278, 18228}, {281, 18230}, {317, 17234}, {318, 4384}, {333, 18736}, {340, 17297}, {342, 1445}, {673, 1861}, {908, 4564}, {1021, 1577}, {1235, 26592}, {1753, 24590}, {1785, 3008}, {1839, 25993}, {1841, 25067}, {3087, 4648}, {3912, 5081}, {5174, 25935}, {5222, 7952}, {5226, 17917}, {6748, 17245}, {6749, 17392}, {9308, 17349}, {17300, 27377}, {17352, 17907}

X(26003) = orthocentroidal-circle-inverse of X(37448)
X(26003) = {X(2),X(4)}-harmonic conjugate of X(37448)


X(26004) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    2 a^8 - 2 a^7 b - 3 a^6 b^2 + 2 a^5 b^3 + a^4 b^4 + 2 a^3 b^5 - a^2 b^6 - 2 a b^7 + b^8 - 2 a^7 c + 4 a^5 b^2 c - 2 a^4 b^3 c - 2 a^3 b^4 c + 4 a^2 b^5 c - 2 b^7 c - 3 a^6 c^2 + 4 a^5 b c^2 - 2 a^4 b^2 c^2 - 3 a^2 b^4 c^2 + 4 a b^5 c^2 + 2 a^5 c^3 - 2 a^4 b c^3 - 2 a b^4 c^3 + 2 b^5 c^3 + a^4 c^4 - 2 a^3 b c^4 - 3 a^2 b^2 c^4 - 2 a b^3 c^4 - 2 b^4 c^4 + 2 a^3 c^5 + 4 a^2 b c^5 + 4 a b^2 c^5 + 2 b^3 c^5 - a^2 c^6 - 2 a c^7 - 2 b c^7 + c^8 : :

X(26004) lies on these lines: {2, 3}, {14838, 26017}, {26001, 26007}


X(26005) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^4 b^2 - 2 a^2 b^4 + b^6 + 2 a^4 b c - 2 a^3 b^2 c - 2 a^2 b^3 c + 2 a b^4 c + a^4 c^2 - 2 a^3 b c^2 + 8 a^2 b^2 c^2 - 2 a b^3 c^2 - b^4 c^2 - 2 a^2 b c^3 - 2 a b^2 c^3 - 2 a^2 c^4 + 2 a b c^4 - b^2 c^4 + c^6 : :

X(26005) lies on these lines: {2, 6}, {11, 26010}, {238, 25968}, {440, 21363}, {594, 26591}, {899, 25882}, {908, 26001}, {1736, 2968}, {1788, 20306}, {1834, 24983}, {2887, 25973}, {3452, 26942}, {3687, 25091}, {3911, 26932}, {4364, 26635}, {4415, 17862}, {5219, 16608}, {5723, 17923}, {6247, 6848}, {6847, 15873}, {6949, 26879}, {6959, 12359}, {14557, 21621}, {17810, 26118}, {20905, 26580}, {25019, 25939}, {26014, 26016}


X(26006) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    (a^2 - b^2 - c^2) (2 a^3 - a^2 b - b^3 - a^2 c + b^2 c + b c^2 - c^3) : :
Barycentrics    (cot A) ((a - b) cot C + (a - c) cot B) : :
Barycentrics    (cos A) (a^2 - b^2 cos C - c^2 cos B) : :

X(26006) lies on these lines: {1, 2}, {6, 25019}, {9, 26668}, {40, 24580}, {48, 18589}, {63, 348}, {77, 27509}, {86, 2327}, {110, 2741}, {125, 20754}, {142, 2289}, {205, 21062}, {219, 307}, {223, 27540}, {226, 9310}, {241, 17044}, {278, 27413}, {347, 27382}, {379, 946}, {394, 4001}, {441, 525}, {515, 857}, {516, 14953}, {517, 1375}, {534, 2173}, {610, 4329}, {908, 4564}, {962, 24604}, {968, 26649}, {1100, 25964}, {1214, 22070}, {1813, 6518}, {1819, 16054}, {1944, 22464}, {2187, 24605}, {2328, 26647}, {2360, 24606}, {3007, 14543}, {3430, 26252}, {3576, 14021}, {3589, 25067}, {3663, 26651}, {3686, 25000}, {3879, 26540}, {3946, 20905}, {4466, 9028}, {4657, 25878}, {4855, 25932}, {5227, 25915}, {5250, 24609}, {5294, 23292}, {5717, 25017}, {5750, 25001}, {5930, 27410}, {6510, 26932}, {6684, 24581}, {8804, 17134}, {10436, 24553}, {13161, 26678}, {15988, 25023}, {17086, 27420}, {17353, 26669}, {17355, 25243}, {17859, 26165}, {18594, 20061}, {24179, 24779}, {24203, 24781}, {25082, 25087}

X(26006) = isogonal conjugate of polar conjugate of X(35517)
X(26006) = isotomic conjugate of polar conjugate of X(516)
X(26006) = complement of polar conjugate of X(917)
X(26006) = crossdifference of every pair of points on line X(25)X(649)
X(26006) = X(19)-isoconjugate of X(103)


X(26007) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(11), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    2 a^4 - 2 a^3 b + a^2 b^2 - 2 a b^3 + b^4 - 2 a^3 c + 2 a b^2 c - 2 b^3 c + a^2 c^2 + 2 a b c^2 + 2 b^2 c^2 - 2 a c^3 - 2 b c^3 + c^4 : :

X(26007) lies on these lines: {2, 11}, {12, 17682}, {41, 21258}, {101, 4904}, {142, 24685}, {169, 3665}, {241, 514}, {479, 658}, {664, 4534}, {1086, 9318}, {1146, 9317}, {1194, 3752}, {1358, 3732}, {1438, 17060}, {1479, 17675}, {1565, 5540}, {2098, 26658}, {2170, 17044}, {2246, 5845}, {2348, 9436}, {3666, 25070}, {3689, 3912}, {4000, 26273}, {4209, 7354}, {4258, 26101}, {4422, 14439}, {5305, 24790}, {6284, 17671}, {6547, 8649}, {6710, 17761}, {7819, 25992}, {8256, 26653}, {10950, 26531}, {11349, 20989}, {17056, 21341}, {17683, 25466}, {17728, 24600}, {26001, 26004}


X(26008) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    -a^8 b^2 + 2 a^6 b^4 - 2 a^2 b^8 + b^10 + 2 a^8 b c + 2 a^7 b^2 c - 2 a^6 b^3 c - 2 a^5 b^4 c - 2 a^4 b^5 c - 2 a^3 b^6 c + 2 a^2 b^7 c + 2 a b^8 c - a^8 c^2 + 2 a^7 b c^2 + 2 a^5 b^3 c^2 + 2 a^3 b^5 c^2 - 4 a^2 b^6 c^2 + 2 a b^7 c^2 - 3 b^8 c^2 - 2 a^6 b c^3 + 2 a^5 b^2 c^3 + 2 a^2 b^5 c^3 - 2 a b^6 c^3 + 2 a^6 c^4 - 2 a^5 b c^4 + 4 a^2 b^4 c^4 - 2 a b^5 c^4 + 2 b^6 c^4 - 2 a^4 b c^5 + 2 a^3 b^2 c^5 + 2 a^2 b^3 c^5 - 2 a b^4 c^5 - 2 a^3 b c^6 - 4 a^2 b^2 c^6 - 2 a b^3 c^6 + 2 b^4 c^6 + 2 a^2 b c^7 + 2 a b^2 c^7 - 2 a^2 c^8 + 2 a b c^8 - 3 b^2 c^8 + c^10 : :

X(26008) lies on these lines: {2, 3}


X(26009) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    -a^8 b^2 + 2 a^6 b^4 - 2 a^2 b^8 + b^10 + 2 a^8 b c + 2 a^7 b^2 c - 2 a^6 b^3 c - 2 a^5 b^4 c - 2 a^4 b^5 c - 2 a^3 b^6 c + 2 a^2 b^7 c + 2 a b^8 c - a^8 c^2 + 2 a^7 b c^2 + 2 a^6 b^2 c^2 - 2 a^2 b^6 c^2 + 2 a b^7 c^2 - 3 b^8 c^2 - 2 a^6 b c^3 + 2 a^4 b^3 c^3 + 2 a^3 b^4 c^3 - 2 a b^6 c^3 + 2 a^6 c^4 - 2 a^5 b c^4 + 2 a^3 b^3 c^4 + 4 a^2 b^4 c^4 - 2 a b^5 c^4 + 2 b^6 c^4 - 2 a^4 b c^5 - 2 a b^4 c^5 - 2 a^3 b c^6 - 2 a^2 b^2 c^6 - 2 a b^3 c^6 + 2 b^4 c^6 + 2 a^2 b c^7 + 2 a b^2 c^7 - 2 a^2 c^8 + 2 a b c^8 - 3 b^2 c^8 + c^10 : :

X(26009) lies on these lines: {2, 3}


X(26010) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^3 b^3 - a^2 b^4 - a b^5 + b^6 + 2 a^4 b c - 2 a^3 b^2 c - 3 a^2 b^3 c + 4 a b^4 c - b^5 c - 2 a^3 b c^2 + 8 a^2 b^2 c^2 - 3 a b^3 c^2 - b^4 c^2 + a^3 c^3 - 3 a^2 b c^3 - 3 a b^2 c^3 + 2 b^3 c^3 - a^2 c^4 + 4 a b c^4 - b^2 c^4 - a c^5 - b c^5 + c^6 : :

X(26010) lies on these lines: {2, 31}, {11, 26005}, {124, 3911}, {343, 3840}, {726, 26611}, {899, 23541}, {978, 17555}, {1193, 24983}, {3816, 13567}, {5087, 26011}, {5741, 25941}, {24984, 27627}, {26001, 26019}


X(26011) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^5 b - 2 a^3 b^3 + a b^5 + a^5 c - 2 a^4 b c + 2 a^3 b^2 c - 3 a b^4 c + 2 b^5 c + 2 a^3 b c^2 + 2 a b^3 c^2 - 2 a^3 c^3 + 2 a b^2 c^3 - 4 b^3 c^3 - 3 a b c^4 + a c^5 + 2 b c^5 : :

X(26011) lies on these lines: {2, 37}, {11, 1861}, {92, 1427}, {226, 6708}, {518, 26013}, {525, 3239}, {908, 26001}, {1104, 11109}, {1150, 26651}, {1465, 4858}, {1738, 25882}, {3011, 25968}, {3706, 25941}, {3713, 25934}, {4054, 25019}, {5087, 26010}, {7270, 25983}, {9371, 26095}, {11679, 17811}, {12618, 14022}, {15852, 26027}, {17102, 20320}, {25000, 26580}


X(26012) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(41), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    -a^2 b^3 + b^5 + 2 a^3 b c - b^3 c^2 - a^2 c^3 - b^2 c^3 + c^5 : :

X(26012) lies on these lines: {1, 7380}, {2, 41}, {5, 226}, {6, 20305}, {11, 20358}, {37, 24317}, {44, 8287}, {57, 4911}, {69, 21244}, {116, 3008}, {150, 1429}, {325, 3912}, {524, 21237}, {604, 21270}, {672, 857}, {908, 26019}, {1211, 3831}, {1400, 5740}, {1737, 16609}, {1825, 1848}, {1837, 24268}, {2347, 25000}, {3589, 21236}, {3666, 24211}, {3782, 24172}, {4357, 25371}, {5249, 17048}, {5712, 10588}, {5750, 17052}, {7146, 17181}, {7291, 24712}, {8609, 21091}, {16888, 17861}, {17023, 17062}, {17303, 25363}, {21069, 25078}, {21232, 25007}, {24318, 25083}, {26013, 26020}, {26176, 26963}


X(26013) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^4 b^2 - a^3 b^3 - a^2 b^4 + a b^5 + a^2 b^3 c - 2 a b^4 c + b^5 c + a^4 c^2 + a b^3 c^2 - a^3 c^3 + a^2 b c^3 + a b^2 c^3 - 2 b^3 c^3 - a^2 c^4 - 2 a b c^4 + a c^5 + b c^5 : :

X(26013) lies on these lines: {1, 2}, {11, 26005}, {38, 17862}, {46, 14058}, {243, 1861}, {291, 16082}, {343, 2887}, {515, 851}, {516, 14956}, {518, 26011}, {774, 23528}, {850, 4025}, {946, 1985}, {1468, 24537}, {1725, 23580}, {1736, 24026}, {1776, 24410}, {1818, 26031}, {2886, 13567}, {3580, 21241}, {3696, 25939}, {3706, 25091}, {3925, 25970}, {4191, 6796}, {5173, 6708}, {5247, 11109}, {5278, 25885}, {10601, 25496}, {11433, 26098}, {11499, 16059}, {17871, 24218}, {25024, 26587}, {26012, 26020}


X(26014) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^5 b - 2 a^4 b^2 + 2 a^3 b^3 - 2 a^2 b^4 + a b^5 + a^5 c - 2 a^3 b^2 c + a b^4 c - 2 a^4 c^2 - 2 a^3 b c^2 + 6 a^2 b^2 c^2 - 2 a b^3 c^2 - 2 b^4 c^2 + 2 a^3 c^3 - 2 a b^2 c^3 + 4 b^3 c^3 - 2 a^2 c^4 + a b c^4 - 2 b^2 c^4 + a c^5 : :

X(26014) lies on these lines: {2, 37}, {239, 26025}, {6063, 20310}, {26005, 26016}


X(26015) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(200), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^2 b - 2 a b^2 + b^3 + a^2 c + 2 a b c - b^2 c - 2 a c^2 - b c^2 + c^3 : :

X(26015) lies on these lines: {1, 2}, {5, 3555}, {6, 17721}, {7, 24389}, {11, 518}, {36, 12750}, {38, 24210}, {56, 1004}, {57, 3434}, {63, 497}, {65, 3813}, {72, 496}, {84, 10431}, {100, 2078}, {142, 11025}, {149, 516}, {165, 20075}, {210, 3816}, {226, 3873}, {238, 1331}, {244, 1738}, {283, 1067}, {329, 5274}, {354, 2886}, {377, 3333}, {390, 5744}, {442, 5045}, {515, 13279}, {517, 6075}, {522, 693}, {527, 1156}, {528, 1155}, {553, 20292}, {740, 12080}, {912, 1519}, {942, 20612}, {946, 3868}, {950, 1005}, {952, 1512}, {956, 5722}, {962, 6245}, {982, 3914}, {984, 24217}, {999, 3419}, {1058, 5250}, {1086, 3999}, {1100, 17726}, {1150, 3883}, {1280, 2006}, {1320, 10265}, {1376, 4863}, {1420, 12625}, {1445, 6601}, {1476, 6598}, {1538, 13257}, {1621, 5745}, {1699, 5905}, {1836, 11235}, {1837, 12513}, {1861, 1897}, {1864, 15845}, {1936, 2342}, {1996, 6604}, {2321, 8568}, {2323, 4700}, {2475, 4298}, {2476, 3889}, {2550, 3306}, {2784, 5990}, {3035, 3689}, {3058, 4640}, {3120, 17449}, {3175, 4884}, {3189, 4855}, {3242, 17720}, {3243, 5219}, {3303, 26066}, {3304, 5794}, {3305, 26105}, {3361, 4190}, {3436, 6762}, {3452, 3681}, {3485, 11520}, {3574, 5777}, {3600, 5175}, {3649, 10957}, {3660, 10427}, {3663, 4392}, {3674, 20247}, {3677, 19785}, {3685, 3977}, {3693, 3943}, {3697, 17527}, {3712, 4702}, {3717, 4358}, {3742, 3925}, {3748, 6690}, {3755, 4850}, {3756, 16610}, {3772, 17597}, {3782, 21342}, {3817, 4430}, {3822, 3892}, {3826, 17051}, {3829, 17605}, {3834, 20541}, {3869, 12053}, {3871, 6684}, {3874, 12047}, {3875, 24388}, {3880, 13996}, {3881, 13407}, {3885, 11362}, {3886, 17740}, {3890, 5837}, {3893, 8256}, {3894, 18393}, {3895, 5657}, {3913, 24914}, {3916, 15171}, {3928, 9580}, {3936, 4684}, {3937, 15310}, {3947, 5141}, {3952, 4899}, {3953, 23537}, {3962, 26475}, {3976, 23536}, {3994, 4712}, {4001, 4388}, {4018, 8727}, {4054, 24349}, {4104, 25960}, {4189, 4314}, {4193, 21075}, {4253, 21073}, {4294, 4652}, {4349, 14996}, {4434, 17765}, {4514, 14829}, {4649, 17722}, {4656, 7226}, {4661, 21060}, {4679, 5220}, {4706, 8758}, {4848, 14923}, {4857, 6763}, {4860, 5880}, {4864, 17724}, {4867, 16173}, {4875, 21049}, {4883, 17056}, {4956, 17132}, {4996, 17010}, {5046, 12527}, {5048, 5855}, {5086, 10106}, {5126, 10609}, {5177, 11037}, {5178, 5253}, {5208, 17167}, {5290, 6871}, {5316, 24393}, {5435, 17784}, {5440, 15325}, {5442, 14798}, {5534, 6834}, {5537, 11219}, {5563, 17647}, {5572, 6067}, {5586, 10941}, {5691, 20076}, {5709, 6361}, {5730, 11373}, {5735, 9812}, {5815, 6919}, {5839, 24005}, {5850, 17484}, {5854, 20118}, {5904, 21616}, {5927, 7956}, {6769, 6890}, {7290, 24597}, {7330, 10531}, {7411, 11012}, {7580, 11249}, {7681, 14872}, {7741, 21077}, {7982, 12616}, {8666, 10572}, {9284, 17448}, {9335, 24175}, {9614, 11415}, {10025, 17036}, {10395, 11523}, {10589, 25568}, {10680, 18525}, {10950, 11260}, {11113, 18527}, {11238, 17781}, {11376, 12635}, {11522, 12617}, {12512, 20066}, {12607, 17606}, {12609, 18398}, {12619, 25416}, {12675, 15908}, {13138, 15499}, {13226, 17613}, {14956, 18206}, {15185, 21617}, {16418, 18530}, {17474, 21029}, {17491, 23821}, {17609, 25466}, {17774, 18134}, {18201, 24715}, {18239, 18243}, {18492, 26332}, {18653, 19642}, {19925, 20060}, {20835, 26357}, {21096, 25082}, {21242, 24325}, {21255, 25959}, {21296, 24213}

X(26015) = complement of X(3935)
X(26015) = anticomplement of X(6745)
X(26015) = inverse-in-inellipse-centered-at-X(10) of X(2)


X(26016) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    -a^5 b + 3 a^4 b^2 - 2 a^3 b^3 - a b^5 + b^6 - a^5 c + 2 a^4 b c - 2 a^2 b^3 c + a b^4 c + 3 a^4 c^2 + 2 a^2 b^2 c^2 + b^4 c^2 - 2 a^3 c^3 - 2 a^2 b c^3 - 4 b^3 c^3 + a b c^4 + b^2 c^4 - a c^5 + c^6 : :

X(26016) lies on these lines: {1, 2}, {7291, 21382}, {20911, 25002}, {26005, 26014}


X(26017) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(661), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    (b - c) (a^5 - a^4 b - a^3 b^2 + a^2 b^3 - a^4 c - a^3 b c + 2 a^2 b^2 c - a b^3 c + b^4 c - a^3 c^2 + 2 a^2 b c^2 - 2 a b^2 c^2 - b^3 c^2 + a^2 c^3 - a b c^3 - b^2 c^3 + b c^4) : :

X(26017) lies on these lines: {2, 661}, {9, 4077}, {514, 24562}, {649, 25009}, {657, 693}, {812, 26546}, {850, 4529}, {1021, 1577}, {2522, 14837}, {4379, 26695}, {4885, 14298}, {8062, 24718}, {14838, 26004}, {17072, 18344}, {17811, 18199}, {21146, 25926}


X(26018) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^8 - a^7 b + a^5 b^3 - 4 a^4 b^4 + a^3 b^5 + 4 a^2 b^6 - a b^7 - b^8 - a^7 c - 3 a^6 b c - a^5 b^2 c + 5 a^4 b^3 c + 5 a^3 b^4 c - a^2 b^5 c - 3 a b^6 c - b^7 c - a^5 b c^2 + 2 a^4 b^2 c^2 - 6 a^3 b^3 c^2 - a b^5 c^2 + 6 b^6 c^2 + a^5 c^3 + 5 a^4 b c^3 - 6 a^3 b^2 c^3 - 6 a^2 b^3 c^3 + 5 a b^4 c^3 + b^5 c^3 - 4 a^4 c^4 + 5 a^3 b c^4 + 5 a b^3 c^4 - 10 b^4 c^4 + a^3 c^5 - a^2 b c^5 - a b^2 c^5 + b^3 c^5 + 4 a^2 c^6 - 3 a b c^6 + 6 b^2 c^6 - a c^7 - b c^7 - c^8 : :

X(26018) lies on these lines: {2, 3}


X(26019) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    -a^3 b^2 - a^2 b^3 + a b^4 + b^5 + a^2 b^2 c + b^4 c - a^3 c^2 + a^2 b c^2 - 2 b^3 c^2 - a^2 c^3 - 2 b^2 c^3 + a c^4 + b c^4 + c^5 : :

X(26019) lies on these lines: {2, 3}, {11, 239}, {12, 16826}, {325, 3948}, {496, 4393}, {908, 26012}, {1329, 3661}, {1778, 24895}, {1959, 21044}, {2893, 25679}, {3580, 17174}, {3662, 21239}, {3814, 3912}, {3816, 17397}, {3825, 17023}, {3847, 17367}, {4384, 7741}, {5254, 24598}, {5949, 6707}, {6542, 17757}, {7173, 16815}, {7951, 16831}, {9722, 18747}, {10593, 16816}, {11681, 17316}, {12607, 17389}, {17167, 25977}, {19719, 19754}, {19791, 19839}, {20486, 20531}, {21926, 27483}, {24603, 25639}, {26001, 26010}


X(26020) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    (a^2 + b^2 - c^2) (a^2 - b^2 + c^2) (a^3 b^2 - a^2 b^3 - a b^4 + b^5 - 2 a^3 b c - a^2 b^2 c + 4 a b^3 c - b^4 c + a^3 c^2 - a^2 b c^2 - 2 a b^2 c^2 - a^2 c^3 + 4 a b c^3 - a c^4 - b c^4 + c^5) : :

X(26020) lies on these lines: {2, 3}, {11, 1861}, {33, 3816}, {34, 1329}, {120, 13999}, {123, 1465}, {908, 1876}, {1376, 11393}, {1395, 25938}, {1398, 3436}, {1753, 7681}, {1785, 5121}, {1829, 24982}, {1870, 17757}, {1892, 3306}, {1897, 5211}, {5081, 5205}, {5090, 19861}, {5554, 11396}, {10200, 11399}, {11392, 25524}, {11398, 26364}, {16082, 17987}, {16997, 27377}, {17721, 23050}, {26012, 26013}


X(26021) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    (a^2 + b^2 - c^2) (a^2 - b^2 + c^2) (2 a^5 b - a^4 b^2 - 2 a^3 b^3 + b^6 + 2 a^5 c - 4 a^4 b c - 8 a^3 b^2 c + 4 a^2 b^3 c + 6 a b^4 c - a^4 c^2 - 8 a^3 b c^2 - 2 a^2 b^2 c^2 + 2 a b^3 c^2 + b^4 c^2 - 2 a^3 c^3 + 4 a^2 b c^3 + 2 a b^2 c^3 - 4 b^3 c^3 + 6 a b c^4 + b^2 c^4 + c^6) : :

X(26021) lies on these lines: {2, 3}


X(26022) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    (a^2 + b^2 - c^2) (a^2 - b^2 + c^2) (a^5 b^2 + a^4 b^3 - 2 a^3 b^4 - 2 a^2 b^5 + a b^6 + b^7 - 5 a^4 b^2 c - 2 a^3 b^3 c + 4 a^2 b^4 c + 2 a b^5 c + b^6 c + a^5 c^2 - 5 a^4 b c^2 - 10 a^3 b^2 c^2 + 2 a^2 b^3 c^2 + 5 a b^4 c^2 - b^5 c^2 + a^4 c^3 - 2 a^3 b c^3 + 2 a^2 b^2 c^3 - b^4 c^3 - 2 a^3 c^4 + 4 a^2 b c^4 + 5 a b^2 c^4 - b^3 c^4 - 2 a^2 c^5 + 2 a b c^5 - b^2 c^5 + a c^6 + b c^6 + c^7) : :

X(26022) lies on these lines:


X(26023) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    (a^2 + b^2 - c^2) (a^2 - b^2 + c^2) (2 a^3 b + a^2 b^2 - 2 a b^3 - b^4 + 2 a^3 c + 4 a^2 b c - 2 b^3 c + a^2 c^2 - 2 a c^3 - 2 b c^3 - c^4) : :

X(26023) lies on these lines: {2, 3}, {239, 17923}, {273, 27483}, {286, 1213}, {1838, 24603}, {5081, 27399}, {5174, 16826}, {17917, 26626}, {17924, 27486}


X(26024) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^8 - a^7 b + a^6 b^2 + a^5 b^3 - 7 a^4 b^4 + a^3 b^5 + 7 a^2 b^6 - a b^7 - 2 b^8 - a^7 c - 5 a^6 b c - 3 a^5 b^2 c + 9 a^4 b^3 c + 9 a^3 b^4 c - 3 a^2 b^5 c - 5 a b^6 c - b^7 c + a^6 c^2 - 3 a^5 b c^2 + 4 a^4 b^2 c^2 - 10 a^3 b^3 c^2 + a^2 b^4 c^2 - 3 a b^5 c^2 + 10 b^6 c^2 + a^5 c^3 + 9 a^4 b c^3 - 10 a^3 b^2 c^3 - 10 a^2 b^3 c^3 + 9 a b^4 c^3 + b^5 c^3 - 7 a^4 c^4 + 9 a^3 b c^4 + a^2 b^2 c^4 + 9 a b^3 c^4 - 16 b^4 c^4 + a^3 c^5 - 3 a^2 b c^5 - 3 a b^2 c^5 + b^3 c^5 + 7 a^2 c^6 - 5 a b c^6 + 10 b^2 c^6 - a c^7 - b c^7 - 2 c^8 : :

X(26024) lies on these lines: {2, 3}


X(26025) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^8 - a^7 b - a^6 b^2 + a^5 b^3 - a^4 b^4 + a^3 b^5 + a^2 b^6 - a b^7 - a^7 c - 3 a^6 b c + a^5 b^2 c + 3 a^4 b^3 c + 3 a^3 b^4 c + a^2 b^5 c - 3 a b^6 c - b^7 c - a^6 c^2 + a^5 b c^2 + 2 a^4 b^2 c^2 - 6 a^3 b^3 c^2 + a^2 b^4 c^2 + a b^5 c^2 + 2 b^6 c^2 + a^5 c^3 + 3 a^4 b c^3 - 6 a^3 b^2 c^3 - 6 a^2 b^3 c^3 + 3 a b^4 c^3 + b^5 c^3 - a^4 c^4 + 3 a^3 b c^4 + a^2 b^2 c^4 + 3 a b^3 c^4 - 4 b^4 c^4 + a^3 c^5 + a^2 b c^5 + a b^2 c^5 + b^3 c^5 + a^2 c^6 - 3 a b c^6 + 2 b^2 c^6 - a c^7 - b c^7 : :

X(26025) lies on these lines: {2, 3}, {239, 26014}


X(26026) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 38

Barycentrics    a^6 b^2 - 2 a^5 b^3 + 3 a^4 b^4 - 2 a^3 b^5 - a^2 b^6 + b^8 + 2 a^6 b c - 2 a^4 b^3 c - 2 a^3 b^4 c + 2 a b^6 c + a^6 c^2 + 2 a^3 b^3 c^2 + a^2 b^4 c^2 - 2 b^6 c^2 - 2 a^5 c^3 - 2 a^4 b c^3 + 2 a^3 b^2 c^3 + 2 a^2 b^3 c^3 - 2 a b^4 c^3 - 2 b^5 c^3 + 3 a^4 c^4 - 2 a^3 b c^4 + a^2 b^2 c^4 - 2 a b^3 c^4 + 6 b^4 c^4 - 2 a^3 c^5 - 2 b^3 c^5 - a^2 c^6 + 2 a b c^6 - 2 b^2 c^6 + c^8 : :

X(26026) lies on these lines: {2, 3}

leftri

Collineation mappings involving Gemini triangle 39: X(26027)-X(26084)

rightri

Extending the preamble just before X(24537), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 39, as in centers X(26027)-X(26084). Then

m(X) = 2 b c (a - b - c) x - a c(a + b + c) y - a b (a + b + c) z : :

A point X lies on the Euler line if and only if m(X) also lies on the Euler line. (Clark Kimberling, October 29, 2018)


X(26027) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^6 b + a^5 b^2 - 2 a^4 b^3 - 2 a^3 b^4 + a^2 b^5 + a b^6 + a^6 c + 3 a^5 b c - a^4 b^2 c - 2 a^3 b^3 c - a^2 b^4 c - a b^5 c + b^6 c + a^5 c^2 - a^4 b c^2 - a b^4 c^2 + b^5 c^2 - 2 a^4 c^3 - 2 a^3 b c^3 + 2 a b^3 c^3 - 2 b^4 c^3 - 2 a^3 c^4 - a^2 b c^4 - a b^2 c^4 - 2 b^3 c^4 + a^2 c^5 - a b c^5 + b^2 c^5 + a c^6 + b c^6 : :

X(26027) lies on these lines: {2, 3}, {8, 73}, {10, 1745}, {318, 1214}, {966, 3330}, {1788, 19366}, {2183, 5749}, {2551, 26031}, {2635, 9780}, {2654, 3616}, {4645, 5552}, {5342, 6708}, {6349, 7952}, {6734, 27339}, {7080, 26942}, {9612, 27287}, {15852, 26011}, {17080, 23661}, {26041, 26043}


X(26028) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^6 b + a^5 b^2 - 2 a^4 b^3 - 2 a^3 b^4 + a^2 b^5 + a b^6 + a^6 c + 2 a^5 b c - a^4 b^2 c - 2 a^3 b^3 c - a^2 b^4 c + b^6 c + a^5 c^2 - a^4 b c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 - a b^4 c^2 + b^5 c^2 - 2 a^4 c^3 - 2 a^3 b c^3 - 2 a^2 b^2 c^3 - 2 b^4 c^3 - 2 a^3 c^4 - a^2 b c^4 - a b^2 c^4 - 2 b^3 c^4 + a^2 c^5 + b^2 c^5 + a c^6 + b c^6 : :

X(26028) lies on these lines: {2, 3}, {8, 2594}, {4417, 5552}, {4645, 27529}, {9780, 26031}, {17095, 18738}, {22300, 26115}, {26034, 26364}


X(26029) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b + 2 a^2 b^2 + a b^3 + a^3 c + a^2 b c - 3 a b^2 c + b^3 c + 2 a^2 c^2 - 3 a b c^2 + 2 b^2 c^2 + a c^3 + b c^3 : :

X(26029) lies on these lines: {1, 2}, {46, 17350}, {100, 17697}, {341, 3752}, {346, 21796}, {377, 26073}, {442, 26772}, {740, 27291}, {986, 27538}, {1058, 26139}, {1089, 1278}, {1220, 4413}, {1329, 4429}, {1376, 4195}, {1575, 25610}, {2345, 21892}, {2551, 4201}, {3210, 3701}, {3303, 25531}, {3662, 21075}, {3672, 18140}, {3697, 27311}, {3760, 4452}, {3820, 16062}, {4188, 15654}, {4352, 6376}, {4385, 17490}, {4454, 4721}, {4642, 19582}, {4646, 18743}, {4657, 25109}, {4673, 21896}, {4695, 25591}, {4737, 17480}, {4968, 24620}, {5260, 19278}, {5687, 13741}, {6210, 26685}, {9709, 13740}, {11415, 26791}, {17303, 25629}, {17691, 26687}, {17756, 27523}, {17869, 26612}, {20498, 26132}, {24174, 24349}, {25242, 25994}, {26040, 26051}, {26041, 26042}, {26050, 26062}, {26077, 26083}, {27102, 27334}


X(26030) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b + 2 a^2 b^2 + a b^3 + a^3 c + 2 a^2 b c + b^3 c + 2 a^2 c^2 + 2 b^2 c^2 + a c^3 + b c^3 : :

X(26030) lies on these lines: {1, 2}, {5, 4972}, {12, 4202}, {35, 11319}, {46, 26223}, {55, 5192}, {100, 13740}, {256, 27033}, {404, 1220}, {740, 27261}, {964, 1376}, {1089, 17147}, {1215, 24443}, {1329, 5051}, {1469, 17077}, {1575, 25629}, {1621, 13741}, {1706, 14554}, {1909, 27162}, {2183, 5749}, {2228, 26042}, {2276, 27040}, {2277, 14624}, {2347, 5750}, {2476, 4429}, {3264, 17321}, {3454, 27041}, {3666, 3701}, {3670, 17165}, {3697, 4981}, {3702, 4646}, {3752, 4968}, {3761, 18600}, {3820, 13728}, {3826, 27042}, {3923, 27078}, {3931, 4358}, {4201, 5080}, {4385, 4850}, {4413, 16454}, {4424, 25253}, {4645, 26067}, {4649, 27145}, {4698, 24751}, {4754, 25350}, {5010, 17539}, {5218, 17526}, {5251, 16347}, {5252, 26126}, {5260, 19270}, {5294, 6684}, {5432, 8240}, {5482, 11231}, {5687, 24552}, {6376, 16705}, {6381, 25599}, {6690, 25992}, {8728, 24988}, {9596, 26085}, {11115, 25440}, {11681, 16062}, {15888, 25914}, {17140, 24046}, {17184, 21077}, {17674, 25466}, {20140, 27169}, {24325, 27311}, {25017, 25882}, {25499, 27076}, {25611, 27032}, {26051, 26060}, {26057, 26065}


X(26031) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(11), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    (b + c) (a^5 - 2 a^3 b^2 + a b^4 + a^3 b c + a^2 b^2 c - 3 a b^3 c + b^4 c - 2 a^3 c^2 + a^2 b c^2 + 4 a b^2 c^2 - b^3 c^2 - 3 a b c^3 - b^2 c^3 + a c^4 + b c^4) : :

X(26031) lies on these lines: {2, 11}, {10, 73}, {474, 26126}, {1362, 27339}, {1698, 5400}, {1788, 10822}, {1818, 26013}, {2254, 26078}, {2551, 26027}, {2887, 21912}, {3120, 21914}, {3698, 22313}, {4425, 21913}, {5229, 26050}, {9780, 26028}, {16578, 24026}, {18134, 27517}, {18141, 27518}


X(26032) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^6 + a^4 b^2 - a^2 b^4 - b^6 + 2 a^4 b c + 2 a b^4 c + a^4 c^2 + b^4 c^2 - a^2 c^4 + 2 a b c^4 + b^2 c^4 - c^6 : :

X(26032) lies on these lines: {2, 3}, {144, 17007}, {1853, 26579}, {3219, 26034}, {4123, 16580}, {4463, 17481}, {4645, 5905}, {5800, 17778}, {12588, 25308}


X(26033) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^6 + a^4 b^2 - a^2 b^4 - b^6 + 2 a^4 b c - a^3 b^2 c - a^2 b^3 c + 2 a b^4 c + a^4 c^2 - a^3 b c^2 - a^2 b^2 c^2 - a b^3 c^2 + b^4 c^2 - a^2 b c^3 - a b^2 c^3 - a^2 c^4 + 2 a b c^4 + b^2 c^4 - c^6 : :

X(26033) lies on these lines: {2, 3}, {659, 25299}, {3952, 4645}


X(26034) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 - a^2 b - a b^2 - b^3 - a^2 c - b^2 c - a c^2 - b c^2 - c^3 : :

X(26034) lies on these lines: {2, 31}, {8, 38}, {9, 15487}, {10, 46}, {42, 69}, {43, 5739}, {55, 141}, {58, 19784}, {200, 17272}, {210, 4643}, {306, 17594}, {312, 24723}, {321, 24248}, {329, 4683}, {333, 4429}, {345, 4414}, {474, 27657}, {498, 3454}, {595, 19836}, {612, 4357}, {614, 3883}, {672, 966}, {756, 4019}, {846, 17776}, {851, 1211}, {896, 9780}, {899, 14555}, {902, 3619}, {940, 4026}, {958, 1473}, {968, 3912}, {984, 10327}, {993, 7293}, {1036, 19527}, {1150, 4972}, {1215, 4655}, {1403, 12588}, {1654, 2227}, {1698, 1707}, {1709, 12618}, {1738, 5271}, {1755, 26063}, {1761, 2345}, {1824, 18252}, {1962, 17316}, {2177, 3620}, {2187, 14826}, {2221, 5711}, {2223, 7800}, {2225, 26036}, {2232, 26043}, {2236, 26042}, {2308, 3618}, {2478, 3831}, {2550, 6817}, {2895, 3240}, {3011, 25527}, {3052, 3763}, {3219, 26032}, {3242, 4030}, {3416, 3666}, {3434, 3741}, {3616, 17469}, {3662, 3757}, {3683, 17279}, {3705, 24627}, {3715, 17332}, {3720, 18141}, {3745, 4657}, {3747, 27248}, {3751, 4001}, {3752, 3966}, {3755, 17156}, {3769, 19786}, {3821, 4362}, {3826, 19732}, {3844, 4640}, {3914, 11679}, {3925, 5737}, {3974, 4419}, {4003, 4914}, {4046, 4445}, {4259, 22275}, {4363, 11246}, {4384, 23682}, {4413, 5743}, {4450, 24552}, {4512, 17284}, {4646, 10371}, {4849, 17344}, {4865, 6682}, {5230, 16062}, {5256, 5847}, {5269, 17306}, {5311, 17321}, {5314, 25440}, {5552, 26057}, {5774, 11359}, {5793, 7354}, {5846, 17599}, {6057, 17262}, {6999, 9778}, {7081, 27184}, {9598, 21024}, {11031, 18391}, {11269, 14829}, {12586, 15621}, {16570, 19875}, {16825, 24169}, {17184, 26227}, {17596, 17740}, {17598, 19993}, {17676, 17751}, {17792, 26893}, {20368, 26118}, {21000, 21358}, {21240, 26101}, {24349, 26840}, {24597, 25453}, {24693, 27798}, {24695, 26223}, {26028, 26364}, {26038, 26073}, {26128, 26228}


X(26035) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b + a b^3 + a^3 c + 2 a^2 b c + 2 a b^2 c + b^3 c + 2 a b c^2 + 2 b^2 c^2 + a c^3 + b c^3 : :

X(26035) lies on these lines: {1, 21070}, {2, 39}, {6, 8}, {10, 672}, {32, 11115}, {37, 4968}, {75, 17489}, {105, 405}, {141, 4754}, {281, 4185}, {377, 966}, {379, 5273}, {391, 4274}, {404, 26244}, {573, 15971}, {894, 17137}, {1010, 5276}, {1150, 5021}, {1213, 4202}, {1334, 17355}, {1475, 3741}, {1575, 25629}, {1851, 17920}, {1909, 17289}, {2276, 26115}, {2549, 17676}, {3053, 16393}, {3496, 4418}, {3720, 21071}, {3735, 17164}, {3739, 20880}, {3954, 17165}, {3975, 19808}, {4253, 10479}, {4359, 16583}, {5051, 5254}, {5206, 16397}, {5257, 23536}, {5275, 16454}, {5277, 19284}, {5278, 19281}, {5300, 17275}, {5308, 19701}, {6376, 27026}, {6542, 19717}, {9780, 20331}, {10472, 16713}, {11319, 24275}, {13728, 15048}, {16502, 24552}, {16604, 26094}, {16818, 20888}, {16998, 17688}, {17033, 17368}, {17135, 20963}, {17277, 17686}, {17303, 19874}, {17316, 19684}, {17359, 24656}, {17750, 17751}, {19743, 20055}, {21024, 24512}, {21808, 24325}, {24989, 27376}, {25000, 26550}, {26058, 26072}, {26059, 26961}, {27071, 27251}


X(26036) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(41), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^4 - 2 a^3 b + 2 a^2 b^2 - b^4 - 2 a^3 c + 2 a^2 b c + 2 a b^2 c + 2 a^2 c^2 + 2 a b c^2 + 2 b^2 c^2 - c^4 : :

X(26036) lies on these lines: {2, 41}, {4, 9}, {6, 25466}, {8, 3930}, {101, 26363}, {198, 5742}, {213, 26098}, {218, 442}, {220, 2886}, {226, 4384}, {377, 672}, {388, 21384}, {391, 1405}, {405, 8299}, {443, 17754}, {607, 25985}, {910, 26066}, {978, 7736}, {1212, 5794}, {1334, 3434}, {1478, 16552}, {1479, 3294}, {1714, 5280}, {1738, 9593}, {2082, 24987}, {2225, 26034}, {2246, 9780}, {2329, 19843}, {2893, 26045}, {3008, 25525}, {3085, 3684}, {3207, 4999}, {3208, 5082}, {3419, 16601}, {3436, 3691}, {3487, 16825}, {3679, 7323}, {4251, 10198}, {4258, 6690}, {4520, 12701}, {4662, 17275}, {4875, 5252}, {5230, 5276}, {5273, 6999}, {5436, 19868}, {5749, 26051}, {5783, 15973}, {7384, 18228}, {7774, 16827}, {9310, 10527}, {11236, 17330}, {12649, 21808}, {13161, 16517}, {16788, 19854}, {17170, 24694}, {22127, 24512}, {24318, 25583}, {26037, 26052}


X(26037) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a b^2 + 3 a b c + b^2 c + a c^2 + b c^2 : :

X(26037) lies on these lines: {1, 2}, {9, 4418}, {31, 17277}, {38, 19804}, {55, 17259}, {75, 756}, {141, 25961}, {171, 5278}, {210, 3739}, {291, 24988}, {310, 6376}, {312, 21020}, {333, 750}, {649, 25627}, {672, 966}, {748, 5263}, {749, 16709}, {851, 26066}, {958, 4191}, {982, 4981}, {984, 4359}, {993, 4210}, {1011, 1376}, {1150, 17122}, {1211, 3826}, {1213, 2276}, {1268, 2296}, {1329, 3136}, {1574, 21838}, {1575, 25624}, {1861, 4207}, {1962, 4687}, {2238, 17303}, {2239, 19808}, {2308, 17349}, {2345, 25623}, {2350, 21384}, {2550, 6818}, {2551, 6817}, {2886, 5241}, {3210, 3989}, {3219, 3980}, {3681, 24325}, {3715, 4363}, {3745, 17348}, {3761, 16748}, {3791, 9347}, {3923, 27065}, {3925, 5743}, {3971, 9330}, {4023, 17056}, {4046, 17243}, {4104, 5249}, {4147, 4379}, {4184, 25440}, {4192, 26446}, {4199, 5955}, {4413, 5737}, {4441, 4967}, {4665, 6057}, {4683, 5880}, {4703, 20292}, {4751, 21805}, {4893, 17072}, {5235, 13588}, {5247, 16454}, {5791, 16056}, {7226, 24165}, {7308, 13576}, {9568, 12435}, {9708, 16059}, {9709, 16058}, {10440, 10478}, {11246, 17332}, {14829, 17124}, {17123, 24552}, {17248, 17759}, {17251, 24690}, {17275, 24512}, {17289, 25611}, {17750, 21753}, {17889, 26580}, {18154, 21727}, {20347, 25590}, {21223, 27318}, {23791, 26777}, {24342, 26223}, {25385, 27131}, {26036, 26052}, {26044, 26073}, {26060, 26064}, {26128, 26724}


X(26038) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^2 b - a b^2 + a^2 c - 5 a b c - b^2 c - a c^2 - b c^2 : :

X(26038) lies on these lines: {1, 2}, {37, 4734}, {38, 24620}, {69, 25144}, {75, 3740}, {100, 16058}, {171, 17349}, {210, 19804}, {321, 4903}, {333, 4413}, {391, 17754}, {756, 3210}, {956, 16409}, {966, 1575}, {984, 17490}, {1150, 9342}, {1215, 4699}, {1278, 3971}, {1376, 4203}, {1654, 26135}, {2238, 5749}, {2239, 26065}, {2276, 5296}, {2550, 25135}, {2975, 16059}, {3061, 22173}, {3434, 6822}, {3436, 6821}, {3662, 4104}, {3681, 24589}, {3685, 7308}, {3696, 18743}, {3759, 4682}, {3769, 17348}, {3826, 4417}, {3921, 4737}, {3925, 5233}, {3980, 17350}, {3996, 4423}, {4023, 18134}, {4210, 15654}, {4429, 5743}, {4640, 17335}, {4645, 14555}, {4704, 4970}, {4748, 25349}, {5080, 6817}, {5278, 11358}, {5328, 20545}, {5657, 19540}, {5744, 16056}, {6210, 9778}, {6384, 25280}, {7155, 27439}, {7229, 24514}, {9330, 17147}, {10440, 10446}, {16604, 24528}, {17236, 24169}, {17251, 25350}, {17260, 17594}, {17275, 25311}, {17280, 25623}, {17358, 25611}, {17592, 27268}, {17756, 21838}, {19808, 26083}, {21060, 24199}, {21264, 25116}, {24749, 27345}, {26034, 26073}


X(26039) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(45), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    5 a^2 + 2 a b + 3 b^2 + 2 a c + 6 b c + 3 c^2 : :

X(26039) lies on these lines: {1, 2321}, {2, 45}, {6, 3617}, {7, 17385}, {8, 16666}, {9, 3634}, {10, 16670}, {37, 5550}, {44, 966}, {144, 17327}, {346, 16672}, {551, 4873}, {594, 3621}, {599, 4747}, {1100, 20050}, {1449, 3625}, {1698, 24695}, {2246, 26040}, {2325, 3624}, {3247, 15808}, {3616, 17281}, {3618, 16816}, {3622, 3943}, {3626, 5839}, {3672, 7227}, {3707, 19875}, {3945, 17293}, {4029, 25055}, {4461, 17045}, {4644, 17308}, {4648, 17241}, {4657, 7229}, {4665, 17014}, {4677, 4982}, {4678, 4969}, {4708, 6172}, {4727, 20057}, {4798, 5308}, {4887, 7222}, {5257, 19872}, {5746, 15650}, {5936, 17348}, {16676, 17355}, {16815, 17368}, {17012, 19822}, {17067, 25590}, {17160, 17381}, {17572, 19297}


X(26040) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(55), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 - a^2 b + a b^2 - b^3 - a^2 c + 6 a b c + b^2 c + a c^2 + b c^2 - c^3 : :

X(26040) lies on these lines: {1, 12521}, {2, 11}, {3, 19855}, {4, 165}, {5, 6244}, {7, 210}, {8, 354}, {9, 3474}, {10, 57}, {12, 4208}, {33, 25993}, {35, 16845}, {40, 6864}, {42, 4648}, {43, 5712}, {56, 17580}, {65, 11024}, {75, 3974}, {142, 200}, {144, 3715}, {226, 8580}, {329, 3740}, {355, 11227}, {376, 5251}, {377, 1155}, {442, 10588}, {474, 1617}, {496, 16863}, {515, 10857}, {516, 7308}, {518, 9776}, {553, 5223}, {612, 4000}, {631, 6796}, {672, 966}, {756, 4419}, {899, 10460}, {910, 17303}, {936, 3485}, {946, 7994}, {958, 6904}, {962, 25917}, {1002, 4651}, {1010, 5324}, {1056, 3679}, {1058, 3624}, {1125, 5082}, {1329, 5177}, {1478, 19875}, {1479, 17559}, {1699, 5316}, {1709, 5817}, {1722, 5716}, {1738, 5268}, {1836, 18228}, {1864, 15587}, {2078, 6681}, {2246, 26039}, {2272, 26063}, {2348, 5749}, {2478, 19877}, {3008, 5269}, {3052, 17337}, {3085, 8728}, {3086, 16408}, {3090, 5537}, {3091, 7965}, {3158, 6601}, {3256, 3841}, {3305, 5698}, {3306, 24477}, {3340, 12447}, {3476, 9623}, {3486, 10383}, {3523, 24953}, {3525, 12116}, {3579, 6849}, {3583, 19876}, {3616, 3748}, {3617, 4860}, {3632, 17706}, {3634, 5084}, {3646, 10624}, {3660, 4002}, {3663, 7322}, {3677, 24175}, {3683, 9778}, {3689, 10578}, {3744, 16020}, {3745, 5222}, {3753, 5173}, {3755, 17022}, {3782, 7613}, {3817, 20196}, {3820, 10590}, {3838, 5748}, {3844, 5800}, {3983, 5815}, {4061, 17296}, {4082, 4659}, {4190, 5260}, {4197, 5552}, {4293, 9708}, {4294, 11108}, {4295, 5044}, {4307, 4383}, {4309, 25542}, {4355, 4866}, {4356, 25430}, {4359, 10327}, {4433, 27253}, {4461, 6057}, {4470, 24315}, {4512, 6666}, {4645, 14555}, {4654, 21060}, {4675, 4849}, {4679, 9812}, {4699, 16990}, {4731, 5252}, {4847, 5437}, {4863, 10580}, {5067, 10531}, {5128, 18249}, {5129, 6284}, {5217, 17558}, {5219, 20103}, {5220, 9965}, {5231, 6692}, {5248, 17552}, {5249, 25568}, {5261, 21031}, {5297, 19785}, {5328, 17605}, {5536, 10532}, {5587, 6916}, {5657, 6854}, {5686, 21454}, {5687, 17529}, {5739, 20290}, {5794, 17603}, {5818, 6897}, {5836, 17642}, {5853, 10582}, {6361, 6896}, {6743, 11518}, {6745, 25525}, {6764, 17609}, {6826, 26446}, {6827, 11231}, {6835, 7964}, {6846, 10310}, {6850, 9956}, {6857, 25440}, {6887, 11248}, {6951, 17057}, {6964, 15908}, {6989, 11499}, {7069, 24341}, {7074, 25878}, {7080, 25466}, {7174, 24177}, {7392, 11677}, {7967, 7993}, {8165, 10895}, {8171, 15325}, {8583, 10388}, {9535, 10824}, {9579, 18250}, {9589, 11379}, {9710, 25524}, {10172, 26333}, {10178, 10430}, {10527, 17531}, {10591, 17527}, {10855, 17625}, {11018, 18391}, {11106, 15338}, {11221, 18698}, {11269, 17124}, {15171, 16853}, {16043, 16819}, {16569, 26098}, {16862, 24390}, {17570, 20066}, {21010, 27304}, {21912, 26939}, {23207, 25932}, {26029, 26051}, {26228, 26724}


X(26041) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(69), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^4 b + a^3 b^2 + a^2 b^3 + a b^4 + a^4 c + 3 a^3 b c - 2 a^2 b^2 c - a b^3 c + b^4 c + a^3 c^2 - 2 a^2 b c^2 - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 - a b c^3 + b^2 c^3 + a c^4 + b c^4 : :

X(26041) lies on these lines: {2, 6}, {10, 1716}, {75, 16605}, {264, 25021}, {345, 21857}, {1108, 25895}, {2183, 26685}, {2551, 4429}, {3718, 16583}, {3975, 4000}, {4352, 25470}, {4357, 27299}, {17270, 27248}, {20336, 21216}, {21035, 27549}, {26027, 26043}, {26029, 26042}, {26056, 26072}, {27047, 27280}


X(26042) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b^2 + a^2 b^3 + a^2 b^2 c + a^3 c^2 + a^2 b c^2 - a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26042) lies on these lines: {2, 37}, {8, 1964}, {10, 1740}, {39, 3596}, {45, 27111}, {69, 26752}, {194, 313}, {322, 25918}, {894, 24315}, {966, 2235}, {984, 25120}, {1441, 26134}, {1698, 16571}, {1755, 26053}, {2227, 26061}, {2228, 26030}, {2234, 9780}, {2236, 26034}, {2237, 26085}, {2245, 17350}, {3097, 21080}, {3247, 25510}, {3616, 17445}, {3764, 7155}, {3778, 24351}, {3875, 26959}, {3963, 24598}, {4357, 27091}, {4393, 5153}, {4446, 24327}, {4741, 26756}, {4967, 17030}, {5294, 19591}, {5749, 26076}, {7187, 20930}, {9596, 26058}, {10436, 27020}, {17178, 17373}, {17230, 27145}, {17232, 27017}, {17233, 26979}, {17236, 27095}, {17238, 27044}, {17323, 25534}, {21238, 21299}, {25504, 27272}, {25538, 25590}, {25635, 26069}, {26029, 26041}, {26063, 26081}


X(26043) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^4 b^3 + a^3 b^4 + a^3 b^3 c + a^4 c^3 + a^3 b c^3 - a b^3 c^3 + b^4 c^3 + a^3 c^4 + b^3 c^4 : :

X(26043) lies on these lines: {2, 39}, {377, 26072}, {672, 27091}, {966, 2231}, {2228, 26030}, {2230, 9780}, {2232, 26034}, {2233, 26058}, {17486, 27801}, {26027, 26041}


X(26044) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 - 2 a^2 b - 4 a b^2 - b^3 - 2 a^2 c - 7 a b c - 4 b^2 c - 4 a c^2 - 4 b c^2 - c^3 : :

X(26044) lies on these lines: {2, 6}, {8, 1962}, {10, 846}, {896, 9780}, {1330, 1698}, {1655, 3210}, {1761, 3219}, {1999, 5257}, {2183, 27065}, {2475, 2551}, {3151, 26063}, {3617, 3704}, {3739, 26840}, {3770, 19804}, {3882, 7308}, {3975, 4359}, {4708, 19786}, {5249, 17252}, {5271, 17248}, {9791, 21020}, {14005, 20077}, {16589, 25058}, {17250, 24789}, {17326, 26723}, {17499, 24603}, {19877, 26131}, {20929, 27705}, {24697, 27798}, {26037, 26073}, {26053, 26059}, {26070, 26081}


X(26045) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b^2 + a^2 b^3 + a^3 b c + 5 a^2 b^2 c + 3 a b^3 c + a^3 c^2 + 5 a^2 b c^2 + 5 a b^2 c^2 + b^3 c^2 + a^2 c^3 + 3 a b c^3 + b^2 c^3 : :

X(26045) lies on these lines: {2, 6}, {8, 2667}, {10, 1045}, {21, 22369}, {75, 1655}, {261, 5277}, {314, 16589}, {1444, 16917}, {2183, 17260}, {2234, 9780}, {2550, 26117}, {2551, 26051}, {2893, 26036}, {3739, 3770}, {4357, 16819}, {4645, 19874}, {5257, 25427}, {5839, 25426}, {10436, 17499}, {16696, 25457}, {16705, 25470}, {17250, 26149}, {17270, 27255}, {17303, 26076}, {17321, 18904}, {17322, 26801}, {17762, 27565}, {19877, 26135}, {26055, 26068}


X(26046) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b + 2 a^2 b^2 + a b^3 + a^3 c - a^2 b c - 9 a b^2 c + b^3 c + 2 a^2 c^2 - 9 a b c^2 + 2 b^2 c^2 + a c^3 + b c^3 : :

X(26046) lies on these lines: {1, 2}, {341, 24620}, {1574, 27523}, {1575, 25612}, {2551, 26073}, {9709, 17697}, {25631, 26077}


X(26047) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(200), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 + 5 a^2 b - a b^2 + 3 b^3 + 5 a^2 c - 10 a b c + b^2 c - a c^2 + b c^2 + 3 c^3 : :

X(26047) lies on these lines: {1, 2}, {461, 5101}, {2348, 5749}, {3677, 10005}, {3914, 8055}, {3974, 4402}, {4000, 5423}, {4082, 4452}, {4429, 18228}, {5772, 19804}, {9776, 24988}, {9778, 26685}, {26065, 26073}


X(26048) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b^2 + a^2 b^3 + a^3 b c - a^2 b^2 c - a b^3 c + a^3 c^2 - a^2 b c^2 - 3 a b^2 c^2 + b^3 c^2 + a^2 c^3 - a b c^3 + b^2 c^3 : :

X(26048) lies on these lines: {1, 2}, {44, 26076}, {594, 27111}, {649, 22224}, {966, 2235}, {1268, 27042}, {1575, 3975}, {1654, 27102}, {2238, 18278}, {3210, 18135}, {3752, 25107}, {3948, 17759}, {3965, 25975}, {4395, 25534}, {4473, 27036}, {4699, 26149}, {5687, 11353}, {5749, 26077}, {6645, 25946}, {9263, 25298}, {17787, 21892}, {21226, 24598}, {21858, 25660}, {24478, 25120}, {26756, 26806}


X(26049) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(693), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    (b - c) (a^4 b - a^2 b^3 + a^4 c + a^3 b c - 2 a^2 b^2 c - 2 a^2 b c^2 - a b^2 c^2 + b^3 c^2 - a^2 c^3 + b^2 c^3) : :

X(26049) lies on these lines: {2, 650}, {75, 25271}, {513, 25636}, {649, 27527}, {652, 26652}, {659, 23301}, {661, 27345}, {798, 20295}, {812, 27293}, {850, 21225}, {1491, 6133}, {3210, 25098}, {3835, 4063}, {4147, 23655}, {4416, 23725}, {6586, 25258}, {16751, 17496}, {21127, 25008}, {21727, 26115}, {23806, 27184}, {27013, 27114}


X(26050) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^6 b + a^5 b^2 - 2 a^4 b^3 - 2 a^3 b^4 + a^2 b^5 + a b^6 + a^6 c + 5 a^5 b c - a^4 b^2 c - 2 a^3 b^3 c - a^2 b^4 c - 3 a b^5 c + b^6 c + a^5 c^2 - a^4 b c^2 + 4 a^3 b^2 c^2 + 4 a^2 b^3 c^2 - a b^4 c^2 + b^5 c^2 - 2 a^4 c^3 - 2 a^3 b c^3 + 4 a^2 b^2 c^3 + 6 a b^3 c^3 - 2 b^4 c^3 - 2 a^3 c^4 - a^2 b c^4 - a b^2 c^4 - 2 b^3 c^4 + a^2 c^5 - 3 a b c^5 + b^2 c^5 + a c^6 + b c^6 : :

X(26050) lies on these lines: {2, 3}, {8, 1042}, {10, 1044}, {145, 1066}, {1448, 7360}, {3000, 9780}, {3701, 25242}, {4645, 5906}, {5229, 26031}, {26029, 26062}


X(26051) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^4 + a^3 b + 2 a^2 b^2 + a b^3 - b^4 + a^3 c + 5 a^2 b c + 5 a b^2 c + b^3 c + 2 a^2 c^2 + 5 a b c^2 + 4 b^2 c^2 + a c^3 + b c^3 - c^4 : :

X(26051) lies on these lines: {2, 3}, {8, 2650}, {10, 894}, {58, 25446}, {86, 1834}, {148, 5988}, {239, 5717}, {333, 20077}, {341, 3770}, {387, 17379}, {896, 9780}, {942, 26806}, {1043, 17056}, {1220, 3925}, {1478, 19853}, {1655, 25242}, {1706, 3882}, {2550, 26110}, {2551, 26045}, {2893, 10436}, {2895, 3617}, {3583, 25512}, {3585, 16828}, {3616, 24161}, {3624, 26139}, {3786, 10381}, {4418, 21674}, {5080, 19874}, {5263, 25466}, {5295, 6542}, {5712, 20018}, {5716, 19851}, {5749, 26036}, {9791, 24851}, {10449, 17300}, {12572, 17260}, {13161, 16830}, {17248, 19859}, {17302, 23537}, {20533, 27255}, {24440, 24693}, {26029, 26040}, {26030, 26060}


X(26052) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^6 + a^4 b^2 - a^2 b^4 - b^6 + 2 a^4 b c - 2 a^3 b^2 c - 2 a^2 b^3 c + 2 a b^4 c + a^4 c^2 - 2 a^3 b c^2 - 2 a^2 b^2 c^2 - 2 a b^3 c^2 + b^4 c^2 - 2 a^2 b c^3 - 2 a b^2 c^3 - a^2 c^4 + 2 a b c^4 + b^2 c^4 - c^6 : :

X(26052) lies on these lines: {2, 3}, {8, 17441}, {9, 15487}, {10, 1763}, {33, 18589}, {55, 11677}, {69, 18138}, {72, 10327}, {184, 26668}, {197, 23305}, {226, 612}, {329, 4645}, {388, 1427}, {497, 1279}, {614, 950}, {910, 17303}, {1211, 1853}, {1441, 7102}, {1824, 4329}, {1861, 10319}, {1890, 9816}, {1899, 5739}, {1901, 5275}, {2000, 18651}, {2550, 3198}, {3434, 3757}, {3487, 3920}, {3488, 7191}, {3586, 5272}, {3917, 10477}, {5268, 9612}, {5276, 5746}, {5297, 5714}, {5712, 5800}, {5744, 26929}, {7172, 20344}, {14547, 26130}, {17810, 25964}, {21015, 27540}, {26036, 26037}


X(26053) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^7 b^2 + a^6 b^3 - 2 a^5 b^4 - 2 a^4 b^5 + a^3 b^6 + a^2 b^7 + 3 a^7 b c + 5 a^6 b^2 c - a^5 b^3 c - 6 a^4 b^4 c - 3 a^3 b^5 c + a^2 b^6 c + a b^7 c + a^7 c^2 + 5 a^6 b c^2 + 3 a^5 b^2 c^2 - 5 a^4 b^3 c^2 - 5 a^3 b^4 c^2 - a^2 b^5 c^2 + a b^6 c^2 + b^7 c^2 + a^6 c^3 - a^5 b c^3 - 5 a^4 b^2 c^3 - 2 a^3 b^3 c^3 - a^2 b^4 c^3 - a b^5 c^3 + b^6 c^3 - 2 a^5 c^4 - 6 a^4 b c^4 - 5 a^3 b^2 c^4 - a^2 b^3 c^4 - 2 a b^4 c^4 - 2 b^5 c^4 - 2 a^4 c^5 - 3 a^3 b c^5 - a^2 b^2 c^5 - a b^3 c^5 - 2 b^4 c^5 + a^3 c^6 + a^2 b c^6 + a b^2 c^6 + b^3 c^6 + a^2 c^7 + a b c^7 + b^2 c^7 : :

X(26053) lies on these lines: {2, 3}, {92, 18666}, {1214, 1947}, {1755, 26042}, {2893, 27339}, {26044, 26059}


X(26054) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^7 + 2 a^6 b + 2 a^5 b^2 - a^4 b^3 - 3 a^3 b^4 - b^7 + 2 a^6 c + 5 a^5 b c - 6 a^3 b^3 c - 2 a^2 b^4 c + a b^5 c + 2 a^5 c^2 - 6 a^3 b^2 c^2 - 6 a^2 b^3 c^2 + 2 b^5 c^2 - a^4 c^3 - 6 a^3 b c^3 - 6 a^2 b^2 c^3 - 2 a b^3 c^3 - b^4 c^3 - 3 a^3 c^4 - 2 a^2 b c^4 - b^3 c^4 + a b c^5 + 2 b^2 c^5 - c^7 : :

X(26054) lies on these lines: {2, 3}, {7, 26131}, {8, 18673}, {10, 2939}, {63, 1330}, {71, 1761}, {846, 1770}, {2173, 9780}, {2292, 4295}, {2893, 6734}, {2947, 12520}, {3868, 17778}, {5262, 14547}, {5273, 26064}


X(26055) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^8 b^2 + 2 a^7 b^3 - a^6 b^4 - 4 a^5 b^5 - a^4 b^6 + 2 a^3 b^7 + a^2 b^8 + a^8 b c + 5 a^7 b^2 c + a^6 b^3 c - 7 a^5 b^4 c - 5 a^4 b^5 c - a^3 b^6 c + 3 a^2 b^7 c + 3 a b^8 c + a^8 c^2 + 5 a^7 b c^2 + 3 a^6 b^2 c^2 - 3 a^5 b^3 c^2 - 4 a^4 b^4 c^2 - 5 a^3 b^5 c^2 - a^2 b^6 c^2 + 3 a b^7 c^2 + b^8 c^2 + 2 a^7 c^3 + a^6 b c^3 - 3 a^5 b^2 c^3 + 4 a^3 b^4 c^3 - 3 a^2 b^5 c^3 - 3 a b^6 c^3 + 2 b^7 c^3 - a^6 c^4 - 7 a^5 b c^4 - 4 a^4 b^2 c^4 + 4 a^3 b^3 c^4 - 3 a b^5 c^4 - b^6 c^4 - 4 a^5 c^5 - 5 a^4 b c^5 - 5 a^3 b^2 c^5 - 3 a^2 b^3 c^5 - 3 a b^4 c^5 - 4 b^5 c^5 - a^4 c^6 - a^3 b c^6 - a^2 b^2 c^6 - 3 a b^3 c^6 - b^4 c^6 + 2 a^3 c^7 + 3 a^2 b c^7 + 3 a b^2 c^7 + 2 b^3 c^7 + a^2 c^8 + 3 a b c^8 + b^2 c^8 : :

X(26055) lies on these lines: {2, 3}, {8, 2658}, {10, 1047}, {318, 18667}, {26045, 26068}


X(26056) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^6 b + a^5 b^2 - 2 a^4 b^3 - 2 a^3 b^4 + a^2 b^5 + a b^6 + a^6 c + 7 a^5 b c - a^4 b^2 c - 2 a^3 b^3 c - a^2 b^4 c - 5 a b^5 c + b^6 c + a^5 c^2 - a^4 b c^2 + 8 a^3 b^2 c^2 + 8 a^2 b^3 c^2 - a b^4 c^2 + b^5 c^2 - 2 a^4 c^3 - 2 a^3 b c^3 + 8 a^2 b^2 c^3 + 10 a b^3 c^3 - 2 b^4 c^3 - 2 a^3 c^4 - a^2 b c^4 - a b^2 c^4 - 2 b^3 c^4 + a^2 c^5 - 5 a b c^5 + b^2 c^5 + a c^6 + b c^6 : :

X(26056) lies on these lines: {2, 3}, {26041, 26072}


X(26057) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^6 b + a^5 b^2 - 2 a^4 b^3 - 2 a^3 b^4 + a^2 b^5 + a b^6 + a^6 c + 3 a^5 b c - 3 a^4 b^2 c - 6 a^3 b^3 c - 3 a^2 b^4 c - a b^5 c + b^6 c + a^5 c^2 - 3 a^4 b c^2 - 6 a^3 b^2 c^2 - 6 a^2 b^3 c^2 - 3 a b^4 c^2 + b^5 c^2 - 2 a^4 c^3 - 6 a^3 b c^3 - 6 a^2 b^2 c^3 - 2 a b^3 c^3 - 2 b^4 c^3 - 2 a^3 c^4 - 3 a^2 b c^4 - 3 a b^2 c^4 - 2 b^3 c^4 + a^2 c^5 - a b c^5 + b^2 c^5 + a c^6 + b c^6 : :

X(26057) lies on these lines: {2, 3}, {46, 894}, {1210, 27305}, {1714, 5145}, {3085, 4645}, {3550, 10198}, {5552, 26034}, {9612, 27254}, {26029, 26041}, {26030, 26065}


X(26058) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    -a^4 b^3 - a^3 b^4 + a^5 b c - a^4 b^2 c - a^3 b^3 c - a^2 b^4 c - a b^5 c - a^4 b c^2 - a b^4 c^2 - a^4 c^3 - a^3 b c^3 + a b^3 c^3 - b^4 c^3 - a^3 c^4 - a^2 b c^4 - a b^2 c^4 - b^3 c^4 - a b c^5 : :

X(26058) lies on these lines: {2, 3}, {148, 27262}, {2233, 26043}, {2896, 27312}, {4645, 26752}, {9596, 26042}, {26035, 26072}


X(26059) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(7), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    (a - b - c) (a^3 b - a b^3 + a^3 c + 5 a^2 b c + a b^2 c - b^3 c + a b c^2 + 2 b^2 c^2 - a c^3 - b c^3) : :

X(26059) lies on these lines: {2, 7}, {8, 2293}, {10, 1742}, {75, 1212}, {86, 220}, {192, 27317}, {219, 17379}, {239, 25601}, {314, 346}, {333, 3713}, {391, 27514}, {958, 4195}, {1441, 3177}, {1757, 3085}, {2324, 16826}, {2551, 26045}, {3000, 9780}, {3730, 10446}, {3923, 19843}, {3945, 27253}, {4772, 4858}, {5234, 19853}, {6603, 17394}, {7379, 26939}, {10456, 17355}, {10460, 10578}, {15817, 19308}, {16050, 16738}, {17238, 26932}, {19855, 24342}, {20072, 27267}, {24456, 24744}, {24547, 26690}, {24635, 25001}, {26029, 26041}, {26035, 26961}, {26044, 26053}


X(26060) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(35), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^4 - b^4 + 3 a^2 b c + 5 a b^2 c + 5 a b c^2 + 2 b^2 c^2 - c^4 : :

X(26060) lies on these lines: {2, 35}, {4, 11231}, {5, 9342}, {8, 443}, {9, 3648}, {10, 3218}, {11, 17535}, {21, 3826}, {43, 26131}, {79, 26792}, {100, 8728}, {149, 3624}, {165, 6894}, {377, 1155}, {404, 3925}, {442, 27529}, {750, 24883}, {962, 6854}, {1329, 6175}, {1376, 4197}, {1621, 17529}, {1698, 2475}, {1770, 27065}, {2077, 6884}, {2476, 4413}, {2550, 3616}, {2886, 17531}, {3434, 5550}, {3524, 18517}, {3579, 6900}, {3585, 3828}, {3634, 5046}, {3678, 17483}, {3811, 27186}, {3868, 9782}, {3876, 5880}, {4002, 5176}, {4188, 19854}, {4190, 19855}, {4201, 19874}, {4208, 5552}, {4302, 16859}, {4420, 5249}, {4429, 16454}, {4857, 19878}, {4872, 25585}, {5010, 15674}, {5015, 24589}, {5044, 20292}, {5067, 10525}, {5178, 5439}, {5260, 11112}, {5263, 17674}, {5266, 26724}, {5297, 23537}, {5300, 19804}, {5303, 17563}, {5791, 9352}, {5904, 26842}, {6224, 19860}, {6284, 17536}, {6684, 6839}, {6835, 9778}, {6864, 9812}, {6895, 10164}, {6901, 26446}, {6951, 9956}, {6991, 10310}, {7486, 26333}, {9668, 16854}, {9669, 16864}, {10527, 17580}, {11680, 16408}, {11681, 17528}, {12436, 25006}, {13587, 24953}, {13740, 24988}, {15338, 16858}, {15586, 17303}, {17572, 26363}, {17680, 27026}, {26030, 26051}, {26037, 26064}\

X(26060) = anticomplement of X(25542)


X(26061) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(38), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 + a^2 b + b^3 + a^2 c + b^2 c + b c^2 + c^3 : :

X(26061) lies on these lines: {2, 38}, {6, 15523}, {8, 16478}, {10, 31}, {45, 6536}, {63, 1698}, {69, 4722}, {321, 25453}, {354, 17357}, {498, 11031}, {518, 24943}, {672, 17303}, {748, 17353}, {894, 16991}, {896, 9780}, {976, 17698}, {993, 19867}, {1089, 20083}, {1213, 5282}, {1473, 4413}, {1707, 19875}, {1962, 17776}, {2225, 25616}, {2227, 26042}, {2239, 19808}, {2292, 19784}, {2308, 3416}, {2312, 26063}, {2345, 21020}, {2887, 24725}, {3006, 25496}, {3187, 3773}, {3589, 3703}, {3706, 17359}, {3720, 17279}, {3844, 4641}, {3869, 19879}, {3914, 17355}, {3923, 4972}, {3925, 17369}, {3932, 5311}, {3989, 4657}, {4042, 17293}, {4365, 17281}, {4418, 4429}, {4672, 6327}, {4683, 17350}, {4854, 17340}, {5251, 5314}, {5749, 21026}, {6679, 26227}, {7085, 21671}, {10453, 17358}, {12526, 19880}, {16706, 17155}, {17156, 17286}, {17275, 21764}, {24295, 24552}, {25760, 27064}


X(26062) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(40), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    3 a^4 + 2 a^3 b - 4 a^2 b^2 - 2 a b^3 + b^4 + 2 a^3 c + 6 a b^2 c - 4 a^2 c^2 + 6 a b c^2 - 2 b^2 c^2 - 2 a c^3 + c^4 : :

X(26062) lies on these lines: {2, 40}, {4, 17613}, {7, 5552}, {8, 56}, {10, 4293}, {20, 10270}, {46, 329}, {57, 7080}, {65, 27383}, {100, 938}, {165, 452}, {377, 1155}, {443, 26446}, {474, 5657}, {516, 6919}, {517, 17567}, {631, 3753}, {944, 16371}, {952, 17573}, {1004, 9799}, {1167, 1771}, {1210, 17784}, {1329, 3474}, {1482, 17564}, {1697, 6692}, {1698, 1770}, {1706, 3911}, {1737, 5175}, {2093, 6700}, {2094, 3336}, {2183, 5749}, {2476, 3826}, {2478, 9778}, {2550, 24914}, {3035, 3485}, {3057, 3616}, {3085, 9776}, {3218, 5815}, {3241, 20323}, {3339, 6745}, {3359, 6848}, {3361, 6736}, {3434, 5704}, {3436, 9352}, {3452, 5128}, {3523, 19860}, {3579, 5084}, {3600, 6735}, {3623, 17706}, {3871, 10580}, {3872, 5265}, {4187, 6361}, {4188, 5554}, {4190, 12616}, {4193, 9812}, {4295, 5748}, {4679, 6933}, {4848, 5438}, {5129, 25011}, {5183, 24954}, {5221, 25568}, {5226, 27529}, {5328, 11415}, {5550, 6690}, {5603, 13747}, {5690, 16417}, {5768, 11499}, {5790, 17563}, {5804, 11248}, {5818, 11112}, {5825, 17668}, {5828, 20060}, {5836, 7288}, {5880, 10588}, {6856, 11231}, {6931, 9779}, {7982, 24558}, {9800, 19541}, {9965, 21075}, {10303, 24541}, {10528, 11037}, {11240, 12541}, {12245, 17614}, {12526, 20103}, {13996, 20057}, {17580, 24987}, {18391, 25440}, {21454, 27525}, {25019, 27530}, {26029, 26050}


X(26063) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(48), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^5 - a^4 b + 2 a^2 b^3 - a b^4 - b^5 - a^4 c + 2 a^2 b^2 c - b^4 c + 2 a^2 b c^2 + 2 a b^2 c^2 + 2 b^3 c^2 + 2 a^2 c^3 + 2 b^2 c^3 - a c^4 - b c^4 - c^5 : :

X(26063) lies on these lines: {2, 48}, {4, 9}, {5, 219}, {6, 12}, {8, 1953}, {11, 2256}, {37, 1837}, {80, 2335}, {119, 5778}, {150, 25521}, {197, 1011}, {198, 1213}, {210, 2262}, {284, 498}, {318, 6520}, {329, 3958}, {377, 2252}, {388, 2260}, {442, 19350}, {579, 1478}, {610, 1698}, {612, 14547}, {631, 22054}, {908, 5271}, {958, 5742}, {965, 1329}, {1100, 17718}, {1108, 5252}, {1436, 4413}, {1441, 24316}, {1630, 19854}, {1656, 20818}, {1714, 5747}, {1723, 10827}, {1751, 2259}, {1755, 26034}, {1765, 6256}, {1781, 18395}, {1802, 6846}, {1836, 21866}, {1853, 3197}, {1857, 7069}, {1901, 10895}, {2173, 9780}, {2182, 17303}, {2238, 2911}, {2257, 9578}, {2261, 5750}, {2265, 5749}, {2272, 26040}, {2273, 3767}, {2287, 11681}, {2289, 6824}, {2294, 18391}, {2300, 2548}, {2302, 10198}, {2312, 26061}, {3085, 5802}, {3090, 22356}, {3151, 26044}, {3211, 6881}, {3419, 3694}, {3525, 22357}, {3616, 17438}, {3628, 23073}, {3686, 21075}, {3826, 5781}, {3975, 20927}, {4329, 21231}, {4362, 5839}, {5055, 22147}, {5086, 27396}, {5220, 5829}, {5227, 6734}, {5251, 13726}, {5282, 21014}, {5433, 37519}, {5746, 10590}, {5755, 10526}, {5776, 18242}, {5792, 17327}, {5798, 10894}, {7522, 26942}, {9599, 21769}, {9958, 18491}, {10327, 21278}, {16713, 21286}, {16788, 19784}, {17582, 22088}, {18594, 19875}, {21239, 25878}, {26042, 26081}


X(26064) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(58), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^4 - 2 a^2 b^2 - 2 a b^3 - b^4 - 3 a^2 b c - 5 a b^2 c - 2 b^3 c - 2 a^2 c^2 - 5 a b c^2 - 2 b^2 c^2 - 2 a c^3 - 2 b c^3 - c^4 : :

X(26064) lies on these lines: {1, 2895}, {2, 58}, {8, 192}, {10, 191}, {21, 1211}, {81, 4205}, {141, 5047}, {238, 27270}, {333, 5051}, {377, 966}, {404, 5743}, {442, 5235}, {452, 2893}, {846, 20653}, {896, 9780}, {964, 5224}, {1046, 27714}, {1213, 1778}, {2476, 5737}, {3616, 16478}, {3770, 4968}, {3868, 4643}, {3882, 5250}, {3936, 11110}, {4104, 4420}, {4197, 19732}, {4202, 17277}, {4357, 5262}, {4417, 16342}, {4425, 27368}, {4645, 19874}, {4658, 20086}, {4683, 14450}, {4748, 5716}, {4981, 5015}, {5046, 10479}, {5241, 17531}, {5273, 26054}, {5277, 6537}, {5278, 16062}, {5292, 5361}, {5333, 17514}, {5550, 26109}, {5739, 13725}, {5741, 19270}, {5810, 19262}, {6327, 19853}, {7270, 17256}, {9534, 17676}, {11114, 17251}, {11115, 27081}, {12579, 21085}, {14020, 17271}, {15674, 25645}, {15676, 24946}, {16817, 17184}, {17056, 17557}, {17238, 17697}, {17588, 25650}, {18228, 26120}, {19854, 25958}, {21020, 24851}, {26037, 26060}

X(26064) = anticomplement of X(25526)


X(26065) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(63), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    3 a^3 + a^2 b - a b^2 + b^3 + a^2 c + b^2 c - a c^2 + b c^2 + c^3 : :

X(26065) lies on these lines: {2, 7}, {6, 345}, {8, 31}, {10, 1707}, {21, 7085}, {38, 3616}, {44, 14555}, {45, 6703}, {69, 4641}, {81, 7123}, {92, 26665}, {189, 17743}, {191, 19784}, {193, 306}, {321, 24597}, {333, 1778}, {344, 940}, {346, 1999}, {387, 7283}, {404, 1473}, {497, 4676}, {612, 27549}, {896, 9780}, {938, 17697}, {942, 13742}, {966, 19808}, {1009, 20760}, {1264, 2273}, {1698, 16570}, {1730, 26961}, {1743, 3687}, {1755, 26042}, {1812, 2911}, {2221, 17740}, {2239, 26038}, {2247, 26081}, {2887, 24695}, {2899, 8258}, {3210, 5222}, {3241, 17469}, {3474, 4429}, {3488, 13735}, {3618, 3666}, {3620, 4001}, {3661, 14552}, {3710, 20009}, {3717, 5269}, {3730, 17185}, {3758, 5712}, {3769, 3974}, {3772, 17351}, {3868, 17526}, {3870, 10460}, {3914, 24280}, {3927, 17698}, {3977, 5256}, {4188, 7293}, {4189, 5314}, {4332, 19860}, {4419, 19786}, {4438, 4672}, {4472, 19744}, {4644, 18134}, {4656, 25728}, {4712, 10578}, {5221, 25992}, {5253, 25879}, {5278, 19281}, {5320, 17977}, {5703, 11031}, {5737, 17369}, {5743, 16885}, {6350, 15988}, {6763, 19836}, {7102, 14006}, {10327, 17126}, {11319, 12649}, {11342, 19716}, {11679, 17355}, {11681, 25984}, {13461, 19066}, {14001, 25083}, {14829, 17354}, {16061, 23151}, {16298, 22458}, {17022, 25101}, {17121, 20043}, {17141, 26626}, {17165, 26228}, {17256, 19827}, {17258, 19812}, {17279, 18141}, {18206, 27248}, {18651, 27127}, {20073, 25734}, {21526, 23089}, {24248, 25453}, {25091, 26658}, {26029, 26050}, {26030, 26057}, {26047, 26073}


X(26066) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(65), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    (a - b - c) (a^3 + 2 a^2 b - b^3 + 2 a^2 c + 2 a b c + b^2 c + b c^2 - c^3) : :

X(26066) lies on these lines: {1, 4999}, {2, 65}, {3, 10}, {4, 4640}, {5, 12514}, {6, 5530}, {8, 2320}, {9, 46}, {11, 5250}, {12, 63}, {19, 5742}, {21, 1837}, {35, 3419}, {40, 2886}, {55, 6734}, {56, 24987}, {57, 25466}, {58, 5725}, {72, 498}, {78, 5432}, {140, 997}, {210, 5552}, {281, 14018}, {283, 5348}, {329, 10588}, {345, 3714}, {377, 1155}, {388, 5744}, {392, 499}, {405, 1737}, {517, 6862}, {518, 3085}, {527, 3947}, {529, 9578}, {551, 17706}, {573, 5831}, {750, 21674}, {758, 11374}, {851, 26037}, {910, 26036}, {912, 26487}, {936, 3035}, {942, 10198}, {956, 10039}, {962, 6860}, {965, 19350}, {966, 2182}, {986, 3772}, {1001, 1210}, {1125, 5289}, {1150, 10371}, {1158, 6907}, {1159, 19862}, {1191, 24239}, {1212, 1575}, {1452, 25985}, {1478, 3916}, {1656, 21616}, {1697, 3813}, {1706, 9588}, {1714, 4261}, {1770, 17532}, {1834, 17594}, {1836, 2476}, {1940, 17555}, {2099, 24541}, {2268, 21014}, {2278, 17275}, {2292, 17720}, {2478, 3683}, {2550, 6836}, {2975, 5252}, {3036, 9897}, {3057, 10527}, {3090, 5087}, {3091, 5698}, {3178, 4851}, {3185, 13731}, {3189, 5281}, {3218, 10404}, {3219, 11681}, {3295, 10916}, {3303, 26015}, {3305, 25973}, {3339, 25525}, {3416, 5135}, {3452, 3634}, {3474, 5177}, {3555, 10056}, {3556, 19544}, {3579, 18407}, {3584, 5904}, {3585, 17057}, {3612, 3679}, {3616, 17728}, {3624, 15829}, {3666, 5230}, {3701, 19807}, {3704, 11679}, {3740, 6889}, {3753, 19854}, {3781, 24655}, {3828, 5325}, {3829, 9614}, {3831, 17279}, {3838, 4295}, {3868, 17718}, {3871, 4863}, {3874, 10197}, {3876, 27529}, {3877, 11376}, {3878, 5886}, {3884, 11373}, {3899, 5443}, {3911, 25524}, {3913, 4847}, {3915, 17721}, {3927, 21077}, {3928, 5290}, {3931, 5292}, {4047, 5747}, {4185, 5155}, {4189, 5086}, {4193, 4679}, {4414, 21935}, {4512, 9581}, {4642, 24892}, {4643, 24315}, {4645, 25613}, {4652, 7354}, {4657, 17048}, {4662, 7080}, {5044, 5694}, {5057, 5141}, {5084, 15254}, {5090, 20832}, {5119, 24390}, {5219, 6668}, {5220, 21075}, {5221, 5249}, {5234, 11112}, {5235, 16049}, {5248, 5722}, {5251, 18395}, {5260, 25005}, {5433, 19861}, {5657, 5836}, {5686, 27525}, {5703, 5775}, {5704, 26105}, {5709, 7680}, {5719, 12559}, {5743, 20306}, {5770, 12675}, {5784, 12669}, {5818, 6934}, {5887, 6863}, {5905, 10585}, {5919, 10529}, {6001, 6825}, {6667, 25522}, {6691, 8583}, {6735, 22768}, {6824, 7686}, {6838, 12688}, {6857, 18391}, {6908, 9943}, {6917, 9956}, {6932, 12679}, {6933, 11415}, {6980, 18233}, {6991, 24329}, {7082, 10958}, {7330, 18242}, {8167, 9843}, {8256, 9623}, {9564, 10974}, {10106, 11194}, {10175, 12572}, {10179, 14986}, {10395, 13615}, {10441, 22276}, {10479, 16455}, {10572, 16370}, {10587, 17609}, {10624, 11235}, {10786, 14872}, {10826, 11113}, {11236, 12527}, {11281, 11529}, {11344, 11502}, {11509, 24982}, {11680, 12701}, {11682, 15950}, {11827, 21165}, {12575, 24386}, {12617, 19541}, {12635, 13411}, {12699, 25639}, {13405, 24391}, {15843, 17700}, {15865, 18389}, {16968, 21965}, {17278, 24174}, {17595, 23536}, {17597, 28027}, {18228, 19877}, {19860, 24953}, {21231, 25104}, {24443, 24789}, {24583, 26621}, {26029, 26041}


X(26067) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(82), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^5 - a^4 b - a^3 b^2 - 3 a^2 b^3 - a b^4 - b^5 - a^4 c - 3 a^2 b^2 c - b^4 c - a^3 c^2 - 3 a^2 b c^2 - a b^2 c^2 - 3 b^3 c^2 - 3 a^2 c^3 - 3 b^2 c^3 - a c^4 - b c^4 - c^5 : :

X(26067) lies on these lines: {2, 82}, {8, 17457}, {10, 16556}, {2236, 26034}, {2244, 9780}, {2896, 18082}, {4645, 26030}


X(26068) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(85), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    (a - b - c) (a^4 b^2 - a^2 b^4 + 2 a^3 b^2 c + a^4 c^2 + 2 a^3 b c^2 + 3 a^2 b^2 c^2 - b^4 c^2 + 2 b^3 c^3 - a^2 c^4 - b^2 c^4) : :

X(26068) lies on these lines: {2, 85}, {9, 27020}, {76, 16588}, {349, 21218}, {958, 19312}, {7770, 15288}, {16819, 23058}, {24505, 27326}, {26029, 26041}, {26045, 26055}, {26110, 27382}


X(26069) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(87), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b^2 - a^2 b^3 - 2 a^3 b c + 3 a^2 b^2 c + 2 a b^3 c + a^3 c^2 + 3 a^2 b c^2 + a b^2 c^2 - b^3 c^2 - a^2 c^3 + 2 a b c^3 - b^2 c^3 : :

X(26069) lies on these lines: {2, 87}, {8, 192}, {9, 20667}, {37, 25311}, {69, 26105}, {966, 1575}, {2551, 4645}, {3226, 17321}, {3248, 25535}, {4704, 25292}, {6376, 7155}, {9780, 25624}, {10453, 17343}, {16706, 24753}, {17275, 24717}, {17300, 26103}, {17792, 27538}, {18194, 26143}, {25635, 26042}


X(26070) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(88), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    5 a^3 - 2 a^2 b - 4 a b^2 + 3 b^3 - 2 a^2 c + a b c - 4 a c^2 + 3 c^3 : :

X(26070) lies on these lines: {1, 8258}, {2, 45}, {8, 678}, {10, 9324}, {89, 17300}, {100, 958}, {244, 5550}, {966, 26071}, {1054, 3634}, {2246, 5273}, {3246, 5211}, {3722, 20050}, {4201, 9780}, {4438, 17601}, {16816, 17740}, {20072, 27757}, {24620, 25242}, {26044, 26081}


X(26071) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(89), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    8 a^3 - 5 a^2 b - 13 a b^2 - 5 a^2 c - 17 a b c - 9 b^2 c - 13 a c^2 - 9 b c^2 : :

X(26071) lies on these lines: {2, 44}, {333, 16672}, {966, 26070}, {3617, 23937}, {5302, 18231}


X(26072) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    -a^4 b^3 - a^3 b^4 + a^5 b c - a^3 b^3 c - a b^5 c + 2 a^3 b^2 c^2 + 2 a^2 b^3 c^2 - a^4 c^3 - a^3 b c^3 + 2 a^2 b^2 c^3 + 3 a b^3 c^3 - b^4 c^3 - a^3 c^4 - b^3 c^4 - a b c^5 : :

X(26072) lies on these lines: {2, 99}, {8, 4128}, {10, 5539}, {377, 26043}, {668, 21220}, {6625, 26752}, {7257, 16592}, {20349, 27044}, {26035, 26058}, {26041, 26056}, {26074, 26076}


X(26073) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(100), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 - 2 a^2 b - b^3 - 2 a^2 c + 5 a b c - c^3 : :

X(26073) lies on these lines: {2, 11}, {8, 244}, {10, 1054}, {43, 17778}, {88, 1219}, {145, 3315}, {210, 26840}, {377, 26029}, {404, 20999}, {659, 26076}, {678, 5550}, {899, 4645}, {966, 20331}, {1086, 3699}, {1283, 25440}, {1635, 26074}, {1654, 21220}, {1698, 26117}, {1699, 27130}, {1738, 5205}, {1739, 16086}, {1836, 26791}, {1837, 25979}, {2246, 5749}, {2551, 26046}, {3120, 9458}, {3240, 17300}, {3616, 3722}, {3634, 9324}, {3820, 17678}, {3952, 4440}, {4188, 23843}, {4201, 9780}, {4383, 20101}, {4388, 16569}, {4427, 4473}, {4514, 16602}, {4689, 17263}, {4847, 27002}, {5082, 26093}, {5211, 16610}, {5296, 14439}, {5297, 17302}, {6702, 10774}, {8580, 27184}, {9350, 25957}, {9508, 26075}, {10327, 17490}, {17531, 23858}, {17719, 25351}, {17724, 27191}, {17777, 24003}, {17780, 24188}, {18141, 20012}, {19278, 19855}, {23833, 24193}, {26030, 26051}, {26034, 26038}, {26037, 26044}, {26047, 26065}

X(26073) = anticomplement of X(25531)


X(26074) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(101), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    (a - b - c) (a^3 - a^2 b + a b^2 + b^3 - a^2 c - a b c - b^2 c + a c^2 - b c^2 + c^3) : :

X(26074) lies on these lines: {2, 101}, {8, 2170}, {9, 11604}, {10, 5540}, {11, 644}, {41, 27529}, {80, 24036}, {149, 1018}, {169, 25005}, {218, 11681}, {220, 4193}, {355, 26690}, {391, 2316}, {672, 5080}, {1213, 3196}, {1635, 26073}, {1837, 25082}, {2161, 2345}, {2246, 9780}, {2265, 5749}, {2348, 5123}, {2475, 16549}, {3036, 4534}, {3207, 17566}, {3616, 17439}, {3730, 5046}, {3814, 5526}, {4253, 20060}, {5030, 20067}, {5086, 25066}, {5701, 21859}, {5750, 16554}, {5816, 12034}, {7291, 25007}, {9317, 24318}, {9956, 27068}, {15680, 24047}, {17181, 26653}, {17750, 26131}, {21053, 26075}, {21232, 24712}, {26072, 26076}

X(26074) = anticomplement of X(25532)


X(26075) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(110), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^6 - a^5 b - a^4 b^2 + 2 a^3 b^3 + a^2 b^4 - a b^5 - b^6 - a^5 c - b^5 c - a^4 c^2 - a^2 b^2 c^2 + b^4 c^2 + 2 a^3 c^3 + 2 b^3 c^3 + a^2 c^4 + b^2 c^4 - a c^5 - b c^5 - c^6 : :

X(26075) lies on these lines: {2, 98}, {8, 2611}, {10, 21381}, {100, 21221}, {643, 8287}, {966, 2503}, {1158, 2475}, {1654, 3909}, {1793, 4189}, {9508, 26073}, {21053, 26074}

X(26075) = anticomplement of X(25533)


X(26076) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(190), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b^2 + a^2 b^3 - 3 a^3 b c + a^2 b^2 c - a b^3 c + a^3 c^2 + a^2 b c^2 - 3 a b^2 c^2 + b^3 c^2 + a^2 c^3 - a b c^3 + b^2 c^3 : :

X(26076) lies on these lines: {2, 45}, {8, 3248}, {10, 9359}, {44, 26048}, {292, 2345}, {646, 1015}, {659, 26073}, {966, 26077}, {1654, 20355}, {2325, 25510}, {3271, 24485}, {3758, 26752}, {4033, 9263}, {5749, 26042}, {5750, 24578}, {6542, 26975}, {7240, 25140}, {17264, 26113}, {17300, 27136}, {17303, 26045}, {19951, 23774}, {20072, 27044}, {24487, 25048}, {26072, 26074}


X(26077) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c - a^2 b^2 c - 2 a b^3 c + a^3 c^2 - a^2 b c^2 - 5 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(26077) lies on these lines: {2, 37}, {10, 87}, {966, 26076}, {3617, 25293}, {3963, 27318}, {4110, 16604}, {5749, 26048}, {9780, 25624}, {17238, 20343}, {25631, 26046}, {26029, 26083}


X(26078) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(900), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    (b - c) (a^4 + a^3 b - a^2 b^2 - a b^3 + a^3 c + 3 a^2 b c - 3 a b^2 c + b^3 c - a^2 c^2 - 3 a b c^2 + 2 b^2 c^2 - a c^3 + b c^3) : :

X(26078) lies on these lines: {2, 900}, {522, 3582}, {659, 26073}, {665, 2345}, {1769, 25380}, {2254, 26031}, {2517, 23880}, {2815, 5657}, {3960, 4768}, {5749, 22108}, {13266, 24988}, {14315, 27342}


X(26079) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(187), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    2 a^4 - a^3 b - a b^3 - 2 b^4 - a^3 c + 2 a^2 b c + 2 a b^2 c - b^3 c + 2 a b c^2 + 2 b^2 c^2 - a c^3 - b c^3 - 2 c^4 : :

X(26079) lies on these lines: {2, 187}, {6, 17679}, {39, 17690}, {377, 966}, {649, 17072}, {754, 25468}, {1055, 21241}, {2475, 27040}, {3230, 21282}, {3285, 4202}, {5276, 17678}, {5300, 17299}, {6175, 26244}, {6781, 24956}, {7267, 25383}, {7745, 17674}, {7779, 16711}, {7784, 17683}, {16910, 26100}, {17300, 17680}, {17307, 17686}, {17345, 20880}, {17491, 21839}


X(26080) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(647), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    (b - c) (a^5 - a b^4 + a^3 b c - a^2 b^2 c - a b^3 c + b^4 c - a^2 b c^2 + 3 b^3 c^2 - a b c^3 + 3 b^2 c^3 - a c^4 + b c^4) : :

X(26080) lies on these lines: {2, 647}, {8, 21719}, {10, 1021}, {649, 17072}, {650, 2517}, {652, 20316}, {661, 4581}, {966, 9404}, {2345, 3700}, {2522, 4391}, {2523, 17496}, {3239, 21186}, {4086, 16612}, {4397, 6591}, {4467, 19822}, {7252, 21721}, {8062, 8611}, {17924, 25009}, {18155, 19808}, {20293, 22383}


X(26081) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(662), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^5 - a^4 b - a^3 b^2 + a^2 b^3 - a b^4 - b^5 - a^4 c + a^2 b^2 c - b^4 c - a^3 c^2 + a^2 b c^2 + 3 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 - a c^4 - b c^4 - c^5 : :

X(26081) lies on these lines: {2, 662}, {8, 2643}, {10, 2640}, {75, 1654}, {115, 645}, {148, 190}, {238, 20558}, {897, 3617}, {1213, 9509}, {2247, 26065}, {2652, 5794}, {3616, 17467}, {3758, 6625}, {3772, 17778}, {5207, 15994}, {9508, 26073}, {20072, 20349}, {21254, 24711}, {21277, 27321}, {26042, 26063}, {26044, 26070}, {26072, 26074}

X(26081) = anticomplement of X(25536)


X(26082) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(894), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^3 b^2 + a^2 b^3 - a^3 b c + 3 a^2 b^2 c + a b^3 c + a^3 c^2 + 3 a^2 b c^2 + a b^2 c^2 + b^3 c^2 + a^2 c^3 + a b c^3 + b^2 c^3 : :

X(26082) lies on these lines: {2, 7}, {8, 2309}, {192, 26801}, {966, 2235}, {1107, 17787}, {1654, 26752}, {3729, 17030}, {3758, 26110}, {3963, 21226}, {3986, 25510}, {4416, 27020}, {4431, 16829}, {4473, 27261}, {9780, 25624}, {16738, 17280}, {17249, 26142}, {17300, 27032}, {17303, 26045}, {17369, 27164}, {26113, 27268}, {26769, 26812}

X(26082) = anticomplement of X(25538)


X(26083) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(984), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    2 a^3 + 3 a^2 b + a b^2 + 2 b^3 + 3 a^2 c + a b c + 3 b^2 c + a c^2 + 3 b c^2 + 2 c^3 : :

X(26083) lies on these lines: {1, 17268}, {2, 38}, {7, 10588}, {8, 1386}, {10, 16468}, {44, 966}, {518, 17371}, {726, 17383}, {894, 1698}, {1757, 17238}, {2228, 26030}, {3616, 5772}, {3634, 3662}, {3740, 19827}, {3751, 17292}, {3758, 3844}, {3773, 4393}, {3790, 17023}, {3932, 17381}, {3967, 19812}, {4026, 17354}, {4078, 17397}, {4429, 17369}, {4649, 17230}, {4663, 17228}, {5220, 17307}, {5550, 17263}, {15569, 17342}, {19808, 26038}, {26029, 26077}

X(26083) = anticomplement of X(25539)


X(26084) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(26), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^10 - a^8 b^2 - 2 a^6 b^4 + 2 a^4 b^6 + a^2 b^8 - b^10 + 2 a^8 b c - 4 a^6 b^3 c + 2 a^5 b^4 c + 2 a^4 b^5 c - 4 a^3 b^6 c + 2 a b^8 c - a^8 c^2 - 4 a^6 b^2 c^2 + 2 a^4 b^4 c^2 + 3 b^8 c^2 - 4 a^6 b c^3 - 4 a b^6 c^3 - 2 a^6 c^4 + 2 a^5 b c^4 + 2 a^4 b^2 c^4 - 2 a^2 b^4 c^4 + 2 a b^5 c^4 - 2 b^6 c^4 + 2 a^4 b c^5 + 2 a b^4 c^5 + 2 a^4 c^6 - 4 a^3 b c^6 - 4 a b^3 c^6 - 2 b^4 c^6 + a^2 c^8 + 2 a b c^8 + 3 b^2 c^8 - c^10 : :

X(26084) lies on these lines: {2, 3}


X(26085) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^4 - a^3 b - a b^3 - b^4 - a^3 c - b^3 c - a c^3 - b c^3 - c^4 : :

X(26085) lies on these lines: {2, 32}, {4, 27040}, {6, 4202}, {8, 3721}, {10, 1759}, {37, 5300}, {41, 2887}, {69, 26978}, {76, 16910}, {213, 6327}, {377, 966}, {379, 1211}, {384, 16991}, {385, 16906}, {964, 1213}, {1334, 4660}, {1654, 17680}, {2225, 26034}, {2233, 26043}, {2237, 26042}, {2243, 9780}, {2271, 3936}, {2345, 5341}, {2476, 26244}, {2549, 26770}, {3686, 23536}, {3972, 16909}, {4201, 22380}, {4262, 25645}, {4372, 25345}, {4450, 14974}, {4643, 20880}, {4680, 16600}, {4805, 21240}, {4968, 17275}, {5015, 26242}, {5016, 16583}, {5051, 5275}, {5192, 7745}, {5224, 17686}, {5276, 16062}, {5283, 17676}, {5816, 15971}, {7737, 11319}, {7758, 18600}, {7774, 27162}, {7791, 27109}, {9596, 26030}, {9599, 26094}, {16589, 22430}, {16908, 17003}, {16998, 17673}, {17259, 17672}, {17330, 17679}, {20553, 27248}, {22426, 26117}, {24586, 24995}, {26961, 27039}

X(26085) = anticomplement of X(25497)


X(26086) =  X(1)X(3)∩X(5)X(24042)

Barycentrics    a^2 (2 a^5-2 a^4 (b+c)-4 a^3 (b^2-b c+c^2)-(b-c)^2 (2 b^3+3 b^2 c+3 b c^2+2 c^3)+a^2 (4 b^3+b^2 c+b c^2+4 c^3)+2 a (b^4-2 b^3 c+b^2 c^2-2 b c^3+c^4)) : :
X(26086) = 3*X[376]+X[10526], X[548]-X[5841], 5*X[631]-X[10525]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28545.

X(26086) lies on these lines: {1,3}, {5,24042}, {21,11231}, {140,3825}, {186,1872}, {355,6950}, {376,10526}, {404,11230}, {548,5841}, {631,10525}, {4188,5886}, {4302,6958}, {4996,10914}, {5267,5690}, {5428,10164}, {5440,5694}, {5657,17548}, {5881,18515}, {5887,17100}, {6684,7508}, {6713,15171}, {6833,18407}, {6842,24466}, {6882,15338}, {6905,22793}, {6906,18480}, {6914,9956}, {6924,9955}, {6935,18517}, {6942,12699}, {10572,12619}, {10993,24390}, {12515,21740}

X(26086) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {1,3,23961}, {3,35,1385}, {3,1482,7280}, {3,2077,3579}, {3,10679,5204}, {3,10902,17502}, {3,11849,36}, {35,14792,3057}, {36,11849,10222}, {6914,25440,9956}


X(26087) =  X(1)X(3)∩X(10)X(19907)

Barycentrics    a (2 a^6-4 a^5 b-2 a^4 b^2+8 a^3 b^3-2 a^2 b^4-4 a b^5+2 b^6-4 a^5 c+12 a^4 b c-9 a^3 b^2 c-8 a^2 b^3 c+13 a b^4 c-4 b^5 c-2 a^4 c^2-9 a^3 b c^2+22 a^2 b^2 c^2-9 a b^3 c^2-2 b^4 c^2+8 a^3 c^3-8 a^2 b c^3-9 a b^2 c^3+8 b^3 c^3-2 a^2 c^4+13 a b c^4-2 b^2 c^4-4 a c^5-4 b c^5+2 c^6) : :
X(26087) = X[952]-X[24387], 3*X[7967]+X[10525], X[10526]-5*X[10595]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28548.

X(26087) lies on these lines: {1,3}, {10,19907}, {952,24387}, {1317,6842}, {3825,5901}, {4861,6265}, {5154,5886}, {5882,21630}, {7967,10525}, {10526,10595}, {10914,22935}, {11230,17619}, {12737,21740}

X(26087) = reflection of X(11567) in X(1)
X(26087) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {1385,10222,3057}, {13145,15178,1385}, {21842,25413,23961}


X(26088) =  MIDPOINT OF X(6583) AND X(12672)

Barycentrics    -a (a^5 b-a^4 b^2-2 a^3 b^3+2 a^2 b^4+a b^5-b^6+a^5 c-4 a^4 b c+9 a^3 b^2 c+6 a^2 b^3 c-10 a b^4 c-2 b^5 c-a^4 c^2+9 a^3 b c^2-18 a^2 b^2 c^2+9 a b^3 c^2+b^4 c^2-2 a^3 c^3+6 a^2 b c^3+9 a b^2 c^3+4 b^3 c^3+2 a^2 c^4-10 a b c^4+b^2 c^4+a c^5-2 b c^5-c^6) : :
X(26088) = 7*X[1385]-3*X[5918], 3*X[1699]+X[10284], X[2771]-X[3881], 9*X[3656]-X[3868], 5*X[3890]+3*X[12699], 5*X[5439]-3*X[13145], 3*X[5603]-X[5885], X[6583]+X[12672]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28549.

X(26088) lies on these lines: {1,22461}, {5,10}, {149,18480}, {1385,5918}, {1621,13624}, {1699,10284}, {2771,3881}, {3585,9957}, {3656,3868}, {3890,12699}, {5180,12600}, {5439,13145}, { 5603,5885}, {6264,10222}, {6583, 12672}, {15178,18444}, {16160, 21630}

X(26088) = midpoint X(6583) and X(12672)


X(26089) =  MIDPOINT OF X(944) AND X(5885)

Barycentrics    a (a^5 b-a^4 b^2-2 a^3 b^3+2 a^2 b^4+a b^5-b^6+a^5 c+12 a^4 b c-7 a^3 b^2 c-10 a^2 b^3 c+6 a b^4 c-2 b^5 c-a^4 c^2-7 a^3 b c^2+14 a^2 b^2 c^2-7 a b^3 c^2+b^4 c^2-2 a^3 c^3-10 a^2 b c^3-7 a b^2 c^3+4 b^3 c^3+2 a^2 c^4+6 a b c^4+b^2 c^4+a c^5-2 b c^5-c^6) : :
X(26089) = X[517]-X[550], X[944]+X[5885], X[2771]-X[3884], 9*X[3655]-X[3869], 5*X[3889]+3*X[18481], 2*X[4540]-3*X[11812]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28549.

X(26089) lies on these lines: {1,22461}, {517,550}, {944,5885}, {1385,5251}, {2771,3884}, { 2975,4420}, {3655,3869}, {3889,18481}, {4540,11812}, {4857, 5049}, {5045,5434}, {6224,10914}, {6912,15178}

X(26089) = midpoint X(944) and X(5885)


X(26090) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(24), WHERE A'B'C' = GEMINI TRIANGLE 39

Barycentrics    a^10 - a^8 b^2 - 2 a^6 b^4 + 2 a^4 b^6 + a^2 b^8 - b^10 + 2 a^8 b c - 4 a^6 b^3 c + 2 a^5 b^4 c + 2 a^4 b^5 c - 4 a^3 b^6 c + 2 a b^8 c - a^8 c^2 - 2 a^6 b^2 c^2 + 2 a^4 b^4 c^2 - 2 a^2 b^6 c^2 + 3 b^8 c^2 - 4 a^6 b c^3 + 4 a^4 b^3 c^3 + 4 a^3 b^4 c^3 - 4 a b^6 c^3 - 2 a^6 c^4 + 2 a^5 b c^4 + 2 a^4 b^2 c^4 + 4 a^3 b^3 c^4 + 2 a^2 b^4 c^4 + 2 a b^5 c^4 - 2 b^6 c^4 + 2 a^4 b c^5 + 2 a b^4 c^5 + 2 a^4 c^6 - 4 a^3 b c^6 - 2 a^2 b^2 c^6 - 4 a b^3 c^6 - 2 b^4 c^6 + a^2 c^8 + 2 a b c^8 + 3 b^2 c^8 - c^10 : :

X(26090) lies on these lines: {2, 3}

leftri

Collineation mappings involving Gemini triangle 40: X(26091)-X(26152)

rightri

Extending the preamble just before X(24537), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 40, as in centers X(26091)-X(26152). Then

m(X) = b c (a + b + c) x + a c (a - b + c) y + a b (a + b - c) z : :

A point X lies on the Euler line if and only if m(X) also lies on the Euler line. (Clark Kimberling, October 29, 2018)


X(26091) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (a - b - c) (a^5 b + 2 a^4 b^2 - 2 a^2 b^4 - a b^5 + a^5 c - a^4 b c + 2 a^2 b^3 c - a b^4 c - b^5 c + 2 a^4 c^2 + 2 a b^3 c^2 + 2 a^2 b c^3 + 2 a b^2 c^3 + 2 b^3 c^3 - 2 a^2 c^4 - a b c^4 - a c^5 - b c^5) : :

X(26091) lies on these lines: {1, 14058}, {2, 3}, {31, 3075}, {92, 17102}, {388, 26095}, {1457, 3616}, {1465, 5342}, {1936, 10527}, {3085, 10448}, {4512, 19863}, {4652, 27339}, {5433, 20992}, {13411, 27287}, {14986, 15501}, {20256, 23085}, {26094, 26129}, {26105, 26126}, {26106, 26108}


X(26092) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (a - b - c) (a^5 b + 2 a^4 b^2 - 2 a^2 b^4 - a b^5 + a^5 c + a^3 b^2 c + 3 a^2 b^3 c - b^5 c + 2 a^4 c^2 + a^3 b c^2 + a b^3 c^2 + 3 a^2 b c^3 + a b^2 c^3 + 2 b^3 c^3 - 2 a^2 c^4 - a c^5 - b c^5) : :

X(26092) lies on these lines: {2, 3}, {499, 595}, {3193, 14829}, {3616, 26095}, {3897, 26115}


X(26093) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b + 2 a^2 b^2 + a b^3 + a^3 c - 5 a^2 b c - a b^2 c + b^3 c + 2 a^2 c^2 - a b c^2 + 2 b^2 c^2 + a c^3 + b c^3 : :

X(26093) lies on these lines: {1, 2}, {40, 27002}, {56, 17697}, {346, 17053}, {740, 27343}, {958, 25531}, {982, 19582}, {999, 13741}, {1001, 19278}, {1284, 7288}, {1463, 11375}, {2275, 27523}, {2478, 26139}, {3333, 27064}, {3672, 27162}, {3701, 17480}, {3702, 17490}, {3976, 25079}, {4195, 5253}, {4657, 24668}, {4673, 16610}, {5082, 26073}, {5084, 5484}, {9335, 17164}, {9669, 17678}, {11319, 19769}, {15717, 26997}, {16342, 27145}, {16738, 17557}, {17279, 24739}, {20530, 24652}, {21075, 27130}, {22220, 24349}, {26105, 26117}, {26116, 26129}, {26143, 26150}


X(26094) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b + 2 a^2 b^2 + a b^3 + a^3 c - 2 a^2 b c + b^3 c + 2 a^2 c^2 + 2 b^2 c^2 + a c^3 + b c^3 : :

X(26094) lies on these lines: {1, 2}, {11, 4202}, {36, 11319}, {38, 25079}, {56, 5192}, {238, 27145}, {350, 27162}, {404, 23383}, {474, 24552}, {496, 4972}, {740, 27311}, {964, 25524}, {982, 25591}, {1284, 5433}, {2275, 27040}, {2345, 8610}, {2886, 17674}, {2975, 13741}, {3338, 26223}, {3670, 25253}, {3702, 3752}, {3760, 18600}, {3777, 4874}, {3816, 5051}, {3923, 27017}, {3953, 17165}, {4054, 24171}, {4423, 16342}, {4645, 26133}, {4646, 4742}, {5047, 25531}, {5253, 13740}, {5259, 16347}, {5263, 17531}, {5284, 19270}, {5300, 17721}, {5303, 13735}, {5482, 11230}, {7280, 17539}, {7288, 17526}, {7483, 24542}, {9599, 26085}, {10483, 17537}, {11375, 26126}, {16468, 17178}, {16604, 26035}, {17164, 24046}, {17184, 21616}, {20244, 24170}, {20530, 24668}, {22220, 24325}, {23541, 25877}, {26091, 26129}, {26107, 26108}, {26117, 26127}, {26123, 26132}


X(26095) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(11), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^5 b - 2 a^3 b^3 + a b^5 + a^5 c - 4 a^4 b c + 3 a^3 b^2 c + a^2 b^3 c - 2 a b^4 c + b^5 c + 3 a^3 b c^2 - 2 a^2 b^2 c^2 + a b^3 c^2 - 2 a^3 c^3 + a^2 b c^3 + a b^2 c^3 - 2 b^3 c^3 - 2 a b c^4 + a c^5 + b c^5 : :

X(26095) lies on these lines: {2, 11}, {4, 15666}, {56, 27506}, {86, 6649}, {388, 26091}, {406, 10321}, {1066, 14058}, {1361, 3485}, {1769, 3716}, {1846, 4194}, {2551, 25513}, {3041, 25568}, {3085, 25490}, {3086, 16483}, {3616, 26092}, {3952, 24433}, {4858, 24025}, {5136, 8069}, {6712, 20266}, {9371, 26011}, {10523, 11105}


X(26096) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^6 + a^4 b^2 - a^2 b^4 - b^6 - 2 a^4 b c - 2 a b^4 c + a^4 c^2 + b^4 c^2 - a^2 c^4 - 2 a b c^4 + b^2 c^4 - c^6 : :

X(26096) lies on these lines: {2, 3}, {192, 497}, {614, 3944}, {1352, 3794}, {1479, 3705}, {1853, 26530}, {3421, 20056}, {4388, 7155}, {7295, 27512}

X(26096) = anticomplement of X(37099)


X(26097) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^6 + a^4 b^2 - a^2 b^4 - b^6 - 2 a^4 b c + a^3 b^2 c + a^2 b^3 c - 2 a b^4 c + a^4 c^2 + a^3 b c^2 - a^2 b^2 c^2 + a b^3 c^2 + b^4 c^2 + a^2 b c^3 + a b^2 c^3 - a^2 c^4 - 2 a b c^4 + b^2 c^4 - c^6 : :

X(26097) lies on these lines: {2, 3}, {3120, 7292}, {3837, 26148}, {4459, 5057}, {5211, 5992}, {24436, 27548}


X(26098) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 + a^2 b + a b^2 - b^3 + a^2 c + b^2 c + a c^2 + b c^2 - c^3 : :

X(26098) lies on these lines: {1, 4}, {2, 31}, {3, 21321}, {5, 5711}, {6, 2886}, {7, 256}, {8, 1215}, {10, 14555}, {11, 940}, {12, 5710}, {36, 19262}, {37, 24703}, {38, 5905}, {40, 5530}, {42, 3434}, {43, 2550}, {55, 4192}, {56, 9840}, {57, 6210}, {58, 26363}, {63, 24695}, {69, 3741}, {81, 11269}, {142, 1716}, {149, 17018}, {193, 21242}, {213, 26036}, {221, 15844}, {329, 984}, {330, 6625}, {344, 4011}, {345, 3923}, {354, 1463}, {377, 1193}, {390, 3750}, {442, 16466}, {443, 978}, {498, 5264}, {499, 26126}, {511, 10473}, {516, 17594}, {517, 5725}, {553, 18193}, {595, 10198}, {601, 6833}, {602, 6889}, {612, 908}, {614, 5249}, {846, 5698}, {870, 7018}, {894, 3705}, {975, 21616}, {986, 4295}, {988, 4292}, {1001, 4199}, {1008, 18134}, {1036, 4185}, {1125, 4138}, {1191, 25466}, {1203, 1714}, {1245, 12609}, {1386, 3772}, {1460, 19544}, {1468, 10527}, {1582, 4212}, {1707, 5745}, {1724, 19854}, {1738, 2999}, {1836, 3666}, {1909, 21590}, {1985, 19734}, {2099, 5724}, {2177, 20075}, {2292, 11415}, {2295, 9596}, {2308, 24597}, {2345, 4071}, {2476, 5230}, {2548, 17750}, {2650, 12649}, {3006, 26223}, {3052, 6690}, {3072, 6825}, {3073, 6824}, {3085, 5255}, {3086, 4340}, {3120, 17017}, {3195, 25985}, {3333, 28039}, {3421, 20498}, {3436, 10459}, {3452, 5268}, {3474, 17596}, {3550, 5218}, {3616, 4892}, {3618, 21241}, {3664, 11019}, {3672, 17600}, {3677, 4654}, {3742, 4675}, {3744, 17718}, {3745, 17605}, {3749, 13405}, {3751, 4847}, {3752, 5880}, {3782, 17599}, {3817, 4349}, {3840, 18141}, {3886, 4028}, {3914, 5256}, {3925, 4383}, {3931, 12699}, {3936, 24552}, {3945, 4038}, {3961, 25568}, {4000, 17889}, {4220, 5329}, {4224, 7295}, {4252, 4999}, {4300, 6836}, {4310, 17598}, {4331, 17080}, {4339, 5703}, {4344, 5226}, {4362, 25385}, {4392, 17483}, {4417, 5263}, {4418, 17740}, {4423, 16850}, {4425, 17321}, {4438, 4672}, {4644, 24333}, {4648, 20335}, {4650, 5744}, {4655, 6682}, {4660, 6685}, {4667, 24386}, {4682, 5087}, {4703, 17257}, {4716, 20043}, {4850, 20292}, {4854, 20182}, {4888, 10980}, {5018, 7365}, {5121, 5437}, {5219, 5269}, {5247, 19843}, {5266, 11374}, {5273, 7262}, {5292, 25639}, {5297, 27131}, {5573, 6173}, {5706, 15908}, {5847, 11679}, {6284, 19765}, {6871, 21935}, {6872, 10448}, {7083, 25514}, {7226, 17484}, {7290, 25525}, {7292, 27186}, {7736, 17754}, {8167, 17245}, {8731, 20992}, {9599, 24512}, {9776, 17063}, {9778, 17601}, {9812, 17592}, {10453, 17778}, {10458, 14956}, {10480, 15488}, {10578, 17715}, {11246, 17595}, {11263, 24159}, {11433, 26013}, {11512, 12436}, {16475, 17064}, {16478, 24161}, {16569, 26040}, {17300, 21299}, {17314, 21101}, {17469, 26228}, {17724, 17775}, {17732, 25092}, {18067, 18135}, {18201, 21454}, {19725, 21015}, {20011, 21283}, {20430, 21333}, {20964, 27254}, {26099, 26101}, {26103, 26139}, {26107, 26133}


X(26099) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^4 + a^3 b + a b^3 - b^4 + a^3 c + b^3 c + a c^3 + b c^3 - c^4 : :

X(26099) lies on these lines: {1, 5074}, {2, 32}, {4, 26978}, {8, 4950}, {31, 17046}, {69, 27040}, {86, 17550}, {116, 5264}, {141, 5192}, {213, 21285}, {316, 16910}, {857, 940}, {1572, 26526}, {2478, 4648}, {2549, 18600}, {3701, 4851}, {3915, 17062}, {4056, 16600}, {4202, 7784}, {4766, 24549}, {4911, 26242}, {5051, 15668}, {5276, 17671}, {6327, 21240}, {7758, 26770}, {7768, 17007}, {7774, 27109}, {7791, 27162}, {7795, 11319}, {7832, 16909}, {7885, 16906}, {7901, 17003}, {7931, 16905}, {7939, 16991}, {17234, 17541}, {17300, 18135}, {18635, 27378}, {20553, 27299}, {26098, 26101}, {26108, 26124}


X(26100) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b + a b^3 + a^3 c + 2 a^2 b c + 2 a b^2 c + b^3 c + 2 a b c^2 - 2 b^2 c^2 + a c^3 + b c^3 : :

X(26100) lies on these lines: {2, 39}, {37, 20435}, {38, 17048}, {75, 27026}, {86, 17541}, {141, 5051}, {1015, 27146}, {1500, 27096}, {2478, 4648}, {3214, 3946}, {3616, 24654}, {3634, 24790}, {3701, 3739}, {3734, 11115}, {3954, 20247}, {4000, 9780}, {4657, 26115}, {5192, 15668}, {5254, 17672}, {5276, 17681}, {6376, 26965}, {6381, 16818}, {7800, 17676}, {16020, 16846}, {16910, 26079}, {16975, 26964}, {17234, 17550}, {17302, 26752}, {17382, 25107}, {17750, 20347}, {18139, 26601}, {20530, 24668}, {24254, 25253}, {26124, 26138}, {27008, 27302}


X(26101) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(41), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^4 - 2 a^2 b^2 + 2 a b^3 - b^4 - 2 a^2 b c - 2 a b^2 c + 2 b^3 c - 2 a^2 c^2 - 2 a b c^2 - 2 b^2 c^2 + 2 a c^3 + 2 b c^3 - c^4 : :

X(26101) lies on these lines: {2, 41}, {7, 21808}, {55, 21258}, {57, 14021}, {69, 3691}, {116, 498}, {142, 377}, {226, 4350}, {277, 3488}, {388, 1458}, {405, 3423}, {1086, 9598}, {1334, 6604}, {1475, 14548}, {1478, 17758}, {1479, 2140}, {1837, 6706}, {2478, 20335}, {3295, 4904}, {3434, 17050}, {3486, 9317}, {3616, 26140}, {3720, 7386}, {3785, 24602}, {4059, 4675}, {4258, 26007}, {4302, 14377}, {5554, 21232}, {5722, 24774}, {5738, 27626}, {7247, 27475}, {10200, 25532}, {17170, 17451}, {18639, 25907}, {20269, 24929}, {21240, 26034}, {26098, 26099}, {26102, 26118}


X(26102) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a (a b + a c + 3 b c) : :

X(26102) lies on these lines: {1, 2}, {6, 4038}, {7, 25421}, {9, 24512}, {31, 5284}, {33, 4212}, {34, 4213}, {35, 4191}, {36, 1011}, {37, 982}, {38, 22220}, {55, 16059}, {56, 16058}, {57, 846}, {81, 748}, {86, 87}, {100, 17124}, {142, 4335}, {171, 1001}, {192, 24165}, {210, 4883}, {226, 4334}, {238, 940}, {244, 2108}, {291, 3677}, {310, 3760}, {312, 24325}, {320, 4703}, {350, 10436}, {354, 984}, {388, 6822}, {405, 19715}, {497, 6821}, {672, 3731}, {740, 19804}, {750, 1621}, {756, 3873}, {851, 3612}, {894, 4011}, {968, 3306}, {986, 5439}, {988, 1009}, {991, 3817}, {1010, 19803}, {1044, 12047}, {1054, 5437}, {1197, 21001}, {1203, 16355}, {1215, 18743}, {1279, 4682}, {1376, 3750}, {1385, 19540}, {1449, 2238}, {1458, 5226}, {1464, 11375}, {1468, 5047}, {1478, 6818}, {1479, 6817}, {1575, 16777}, {1613, 23660}, {1695, 10441}, {1699, 1742}, {1716, 17306}, {1721, 10857}, {1724, 19714}, {1740, 15668}, {1745, 1985}, {1757, 3305}, {1962, 4850}, {2162, 23417}, {2275, 21838}, {2276, 3247}, {2293, 5274}, {2308, 14996}, {2309, 25528}, {2356, 8889}, {2667, 4751}, {2886, 17245}, {2887, 17234}, {2979, 20961}, {3094, 22200}, {3120, 27186}, {3136, 7741}, {3210, 3993}, {3295, 16409}, {3303, 16421}, {3510, 20530}, {3576, 4192}, {3601, 16056}, {3662, 4425}, {3666, 17063}, {3670, 27785}, {3683, 4650}, {3685, 3980}, {3696, 4891}, {3736, 25507}, {3743, 24046}, {3751, 7308}, {3752, 3848}, {3761, 18152}, {3795, 20182}, {3816, 17056}, {3819, 21746}, {3835, 24666}, {3846, 18134}, {3919, 17461}, {3931, 24174}, {3936, 25960}, {3944, 5249}, {3945, 25572}, {3971, 24349}, {3989, 4392}, {3995, 17155}, {4040, 4379}, {4104, 4684}, {4184, 7280}, {4199, 5436}, {4203, 5253}, {4204, 5429}, {4210, 5010}, {4322, 5261}, {4356, 24175}, {4364, 24691}, {4383, 4649}, {4389, 25422}, {4414, 27003}, {4415, 25557}, {4418, 26627}, {4430, 9330}, {4441, 25590}, {4465, 9359}, {4648, 20335}, {4653, 13588}, {4656, 24231}, {4670, 4713}, {4675, 24703}, {4676, 4697}, {4888, 20347}, {4966, 5743}, {4970, 17490}, {4972, 25961}, {5247, 11108}, {5259, 16343}, {5275, 16503}, {5276, 16779}, {5333, 10458}, {5563, 16373}, {6688, 23638}, {7226, 17449}, {7262, 15254}, {7322, 16496}, {8025, 18192}, {8543, 9316}, {9347, 17469}, {9776, 24248}, {10013, 17259}, {10439, 21363}, {10476, 13731}, {10589, 14547}, {11358, 25524}, {11451, 20962}, {15950, 24806}, {16478, 16846}, {16589, 21384}, {16678, 19341}, {16884, 21904}, {17149, 18140}, {17182, 17194}, {17263, 24736}, {17321, 25420}, {17394, 18194}, {17445, 24766}, {17793, 25531}, {18139, 25760}, {18173, 20984}, {18197, 25537}, {20284, 21827}, {20923, 25124}, {24406, 24495}, {26101, 26118}, {26109, 26139}, {26127, 26131}

X(26102) = {X(1),X(2)}-harmonic conjugate of X(43)


X(26103) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^2 b - a b^2 + a^2 c + 7 a b c - b^2 c - a c^2 - b c^2 : :

X(26103) lies on these lines: {1, 2}, {7, 24495}, {75, 3848}, {100, 16409}, {192, 17063}, {354, 27538}, {940, 25531}, {968, 27002}, {982, 22220}, {1100, 24753}, {1284, 5435}, {3161, 17754}, {3685, 5437}, {3742, 3967}, {3816, 17234}, {3846, 17232}, {3995, 9335}, {4645, 26105}, {4648, 20530}, {4704, 17591}, {4734, 16610}, {5080, 6822}, {5731, 19540}, {6384, 18135}, {6682, 27268}, {8167, 14829}, {12014, 17777}, {17261, 18193}, {17300, 26069}, {17317, 25311}, {26098, 26139}


X(26104) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(45), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    3 a^2 + 2 a b + 5 b^2 + 2 a c - 2 b c + 5 c^2 : :

X(26104) lies on these lines: {2, 45}, {7, 17384}, {8, 17382}, {10, 4000}, {69, 17383}, {141, 145}, {142, 3624}, {344, 17324}, {346, 17323}, {599, 17014}, {966, 16706}, {1266, 2345}, {1279, 3616}, {1633, 4423}, {1698, 17067}, {3008, 4748}, {3617, 4395}, {3618, 17236}, {3619, 17230}, {3620, 17380}, {3622, 17313}, {3632, 3946}, {3635, 17296}, {3636, 21255}, {3672, 3763}, {3739, 19877}, {4029, 17284}, {4361, 4678}, {4371, 4668}, {4373, 7227}, {4393, 21356}, {4402, 17239}, {4445, 20052}, {4452, 17293}, {4700, 17272}, {4747, 7238}, {4851, 20057}, {4852, 20053}, {4869, 17045}, {5084, 15434}, {5222, 17237}, {5232, 17366}, {5296, 17356}, {5550, 24723}, {5749, 17235}, {6361, 12610}, {15668, 16347}, {17227, 26626}, {17244, 17291}, {17249, 26685}, {17251, 24599}, {17257, 17370}, {17316, 17399}, {17318, 20582}, {17395, 21358}, {24248, 25539}


X(26105) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(55), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 - a^2 b + a b^2 - b^3 - a^2 c - 6 a b c + b^2 c + a c^2 + b c^2 - c^3 : :

X(26105) lies on these lines: {1, 2551}, {2, 11}, {3, 7956}, {4, 1125}, {7, 3742}, {8, 3740}, {9, 11019}, {10, 1058}, {12, 6919}, {20, 25524}, {21, 1470}, {35, 17567}, {36, 11111}, {37, 7736}, {40, 9843}, {56, 452}, {57, 5698}, {69, 26069}, {85, 2898}, {104, 6976}, {142, 1699}, {144, 17051}, {165, 6692}, {200, 5316}, {226, 4321}, {329, 354}, {344, 3705}, {377, 5225}, {388, 1319}, {392, 18391}, {405, 3086}, {442, 10591}, {443, 1479}, {474, 4294}, {496, 11108}, {499, 5259}, {515, 6939}, {516, 5437}, {518, 10580}, {527, 10980}, {551, 1056}, {631, 2077}, {748, 11269}, {908, 3475}, {936, 3189}, {938, 960}, {944, 6898}, {946, 6865}, {950, 8583}, {958, 5129}, {962, 3812}, {966, 3741}, {982, 4419}, {997, 2900}, {1000, 3898}, {1385, 6893}, {1478, 25055}, {1486, 19649}, {1697, 8582}, {1698, 5082}, {1706, 12575}, {1750, 10863}, {1788, 5250}, {1836, 9776}, {1997, 7081}, {2267, 25496}, {2975, 10586}, {3085, 4187}, {3090, 3825}, {3091, 7958}, {3158, 20103}, {3219, 15297}, {3243, 21060}, {3295, 17527}, {3303, 7080}, {3305, 26015}, {3306, 3474}, {3333, 12572}, {3436, 3622}, {3486, 19861}, {3487, 21616}, {3523, 6691}, {3545, 3822}, {3582, 17561}, {3663, 5573}, {3677, 4656}, {3683, 5744}, {3711, 20015}, {3720, 5712}, {3755, 23511}, {3772, 16020}, {3789, 10453}, {3814, 8164}, {3820, 6767}, {3838, 9779}, {3847, 5056}, {3848, 5880}, {3884, 12245}, {3890, 5554}, {3911, 4512}, {3967, 8055}, {3974, 4358}, {4000, 5272}, {4193, 10588}, {4293, 11113}, {4295, 5439}, {4305, 17614}, {4310, 4415}, {4314, 5438}, {4344, 4682}, {4388, 18141}, {4425, 4466}, {4640, 5435}, {4645, 26103}, {4648, 20335}, {4657, 26118}, {4662, 6764}, {4847, 7308}, {4860, 9965}, {4999, 17558}, {5046, 5229}, {5047, 10527}, {5121, 17594}, {5154, 10585}, {5177, 10896}, {5204, 17576}, {5249, 8544}, {5251, 10072}, {5253, 6872}, {5260, 10529}, {5265, 11106}, {5273, 15254}, {5328, 10578}, {5333, 14956}, {5603, 6947}, {5657, 10596}, {5687, 17575}, {5703, 25681}, {5704, 26066}, {5731, 6957}, {5748, 17718}, {5758, 13374}, {5804, 14110}, {5809, 17604}, {5811, 12675}, {5818, 10806}, {5836, 9785}, {5853, 8580}, {5886, 6827}, {6284, 6904}, {6326, 7967}, {6601, 6666}, {6668, 7486}, {6738, 15829}, {6744, 11523}, {6745, 10389}, {6762, 18250}, {6821, 25501}, {6826, 11230}, {6851, 9955}, {6856, 7741}, {6887, 26470}, {6892, 26492}, {6899, 12609}, {6902, 10532}, {6908, 7681}, {6916, 10165}, {6920, 10785}, {6926, 11496}, {6927, 10902}, {6929, 22799}, {6930, 10269}, {6937, 10598}, {6944, 10267}, {6964, 11500}, {6965, 12115}, {6975, 10786}, {6981, 26487}, {6983, 11491}, {6987, 22753}, {7179, 17321}, {7226, 24433}, {7292, 19785}, {7738, 16604}, {8165, 12607}, {8728, 9669}, {9709, 15172}, {9957, 17648}, {10177, 11018}, {10587, 11681}, {10590, 17556}, {10855, 17668}, {11934, 26695}, {12447, 12625}, {13411, 25522}, {15171, 16408}, {15296, 27065}, {15325, 16418}, {16842, 19855}, {16845, 26363}, {17063, 24248}, {17123, 24217}, {17183, 18165}, {17552, 19854}, {17582, 19862}, {17768, 21454}, {24954, 27383}, {26091, 26126}, {26093, 26117}


X(26106) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(69), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^4 b + a^3 b^2 + a^2 b^3 + a b^4 + a^4 c - 3 a^3 b c - 2 a^2 b^2 c + a b^3 c + b^4 c + a^3 c^2 - 2 a^2 b c^2 - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + a b c^3 + b^2 c^3 + a c^4 + b c^4 : :

X(26106) lies on these lines: {2, 6}, {37, 24652}, {75, 24663}, {304, 20227}, {322, 25975}, {941, 27162}, {1449, 27299}, {1463, 11375}, {2345, 24654}, {5749, 27097}, {5750, 27248}, {17303, 24656}, {17754, 27264}, {20255, 21785}, {21281, 21769}, {24549, 27332}, {25521, 26959}, {26091, 26108}, {26122, 26138}, {27343, 27487}


X(26107) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b^2 + a^2 b^3 - a^2 b^2 c + a^3 c^2 - a^2 b c^2 + a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26107) lies on these lines: {1, 21257}, {2, 37}, {6, 27262}, {8, 21238}, {9, 26959}, {76, 17053}, {330, 3770}, {384, 2178}, {583, 17350}, {672, 27158}, {966, 16525}, {1001, 19312}, {1108, 25994}, {1125, 5145}, {1213, 16515}, {1269, 24621}, {1463, 11375}, {1740, 24717}, {1964, 21299}, {2092, 20170}, {2260, 24514}, {2321, 27091}, {3247, 27020}, {3616, 26110}, {3763, 25534}, {4272, 4393}, {4277, 20168}, {4357, 25369}, {4361, 27111}, {4389, 26979}, {4648, 26113}, {4741, 17178}, {5257, 17030}, {5301, 7793}, {5749, 27019}, {10436, 25510}, {12263, 17065}, {16831, 25538}, {17144, 21857}, {17230, 27095}, {17236, 27145}, {17314, 26752}, {17373, 26756}, {17379, 27166}, {17719, 24653}, {20271, 23481}, {24520, 25688}, {24667, 25504}, {24672, 26135}, {25079, 27680}, {26094, 26108}, {26098, 26133}, {26119, 26132}, {26130, 26147}


X(26108) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^4 b^3 + a^3 b^4 - a^3 b^3 c + a^4 c^3 - a^3 b c^3 + a b^3 c^3 + b^4 c^3 + a^3 c^4 + b^3 c^4 : :

X(26108) lies on these lines: {2, 39}, {7, 26986}, {2478, 26138}, {21071, 27105}, {21384, 26974}, {26091, 26106}, {26094, 26107}, {26099, 26124}


X(26109) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 + 4 a^2 b + 2 a b^2 - b^3 + 4 a^2 c + 5 a b c + 2 b^2 c + 2 a c^2 + 2 b c^2 - c^3 : :

X(26109) lies on these lines: {1, 26051}, {2, 6}, {8, 27798}, {148, 15903}, {226, 6625}, {329, 27268}, {497, 2475}, {846, 23812}, {1125, 1330}, {1655, 5308}, {2893, 25525}, {2999, 27147}, {3151, 17134}, {3616, 4892}, {3666, 26806}, {3770, 18743}, {3772, 17394}, {3882, 5437}, {4208, 19783}, {4473, 26223}, {4654, 17247}, {4658, 25446}, {4798, 19827}, {5249, 17302}, {5253, 21321}, {5550, 26064}, {6542, 24656}, {6999, 10478}, {9791, 10180}, {11110, 20077}, {11679, 17391}, {16736, 24530}, {17032, 20533}, {17396, 23681}, {17397, 25527}, {19786, 24663}, {25526, 25650}, {25660, 27792}, {26102, 26139}, {26119, 26125}, {26136, 26147}


X(26110) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b^2 + a^2 b^3 + 3 a^3 b c + 3 a^2 b^2 c + a b^3 c + a^3 c^2 + 3 a^2 b c^2 + 3 a b^2 c^2 + b^3 c^2 + a^2 c^3 + a b c^3 + b^2 c^3 : :

X(26110) lies on these lines: {2, 6}, {9, 17499}, {10, 2663}, {37, 1655}, {71, 894}, {256, 25124}, {257, 2294}, {274, 2092}, {388, 1284}, {870, 17321}, {941, 1218}, {1030, 17693}, {1100, 26801}, {1449, 17030}, {1966, 2345}, {2305, 17103}, {2550, 26051}, {3616, 26107}, {3686, 16819}, {3758, 26082}, {3882, 10436}, {4254, 11321}, {4441, 20170}, {4645, 26115}, {4657, 26142}, {5484, 16684}, {5750, 27020}, {13588, 22369}, {16709, 24530}, {16752, 25470}, {17023, 25538}, {17303, 26752}, {17322, 24663}, {19581, 25054}, {24325, 24478}, {26068, 27382}, {26121, 26134}

X(26110) = anticomplement of X(27164)


X(26111) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b + 2 a^2 b^2 + a b^3 + a^3 c - 11 a^2 b c - 3 a b^2 c + b^3 c + 2 a^2 c^2 - 3 a b c^2 + 2 b^2 c^2 + a c^3 + b c^3 : :

X(26111) lies on these lines: {1, 2}, {346, 16604}, {388, 26139}, {1284, 5265}, {3304, 25531}, {3333, 17350}, {3976, 22220}, {4461, 27318}, {4719, 27343}, {11110, 17178}, {17480, 18743}, {20530, 24654}, {24669, 26143}


X(26112) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(200), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    3 a^3 - a^2 b + 5 a b^2 + b^3 - a^2 c - 14 a b c + 3 b^2 c + 5 a c^2 + 3 b c^2 + c^3 : :

X(26112) lies on these lines: {1, 2}, {346, 5573}, {461, 1878}, {982, 3161}, {3742, 5749}, {3967, 15590}, {4011, 4488}, {4310, 8055}, {5274, 17282}, {5296, 8167}, {5423, 17597}, {11037, 13741}, {18228, 25531}, {26132, 26139}


X(26113) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b^2 + a^2 b^3 - a^3 b c - 3 a^2 b^2 c + a b^3 c + a^3 c^2 - 3 a^2 b c^2 - a b^2 c^2 + b^3 c^2 + a^2 c^3 + a b c^3 + b^2 c^3 : :

X(26113) lies on these lines: {1, 2}, {335, 22220}, {2275, 18743}, {3619, 25535}, {3834, 26142}, {3975, 9263}, {4366, 11349}, {4473, 26975}, {4648, 26107}, {5749, 27291}, {17264, 26076}, {17390, 27111}, {26082, 27268}


X(26114) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(693), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (b - c) (a^4 b - a^2 b^3 + a^4 c - a^3 b c + a b^2 c^2 + b^3 c^2 - a^2 c^3 + b^2 c^3) : :

X(26114) lies on these lines: {2, 650}, {37, 21611}, {192, 21438}, {513, 24674}, {514, 27527}, {647, 21225}, {649, 17204}, {661, 27265}, {812, 27345}, {3261, 6589}, {3310, 24622}, {3716, 4017}, {3766, 7180}, {3837, 24533}, {4147, 25637}, {4449, 25128}, {7234, 21301}, {8640, 23818}, {16754, 17496}, {17379, 22383}, {17383, 25603}, {20293, 24718}, {20295, 26983}, {27013, 27167}


X(26115) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (b + c) (a^3 + 2 a^2 b + a b^2 + 2 a^2 c + a b c + b^2 c + a c^2 + b c^2) : :

X(26115) lies on these lines: {1, 2}, {12, 1284}, {21, 1220}, {35, 11115}, {37, 3701}, {55, 964}, {65, 22325}, {71, 5749}, {100, 1010}, {227, 1441}, {313, 17321}, {321, 3931}, {406, 7102}, {442, 4972}, {495, 13728}, {941, 2345}, {956, 19273}, {958, 16342}, {993, 16347}, {1001, 5192}, {1089, 3743}, {1215, 2292}, {1319, 26126}, {1376, 16454}, {1478, 17676}, {1621, 13740}, {1788, 17077}, {1826, 4194}, {1869, 4200}, {1909, 16705}, {2049, 5687}, {2269, 5750}, {2276, 26035}, {2901, 27804}, {2975, 19270}, {3295, 24552}, {3436, 13725}, {3666, 4968}, {3670, 17140}, {3698, 22313}, {3728, 3842}, {3868, 22275}, {3871, 5263}, {3877, 22299}, {3896, 5295}, {3897, 26092}, {3915, 25496}, {4160, 27114}, {4197, 4429}, {4202, 25466}, {4205, 17757}, {4358, 6051}, {4424, 17164}, {4645, 26110}, {4647, 4868}, {4649, 16738}, {4657, 26100}, {4658, 27163}, {4754, 25349}, {4761, 26983}, {5016, 5725}, {5080, 5143}, {5125, 17913}, {5217, 16393}, {5247, 10457}, {5248, 11319}, {5251, 17588}, {5260, 11110}, {5284, 13741}, {5686, 22312}, {5711, 19684}, {5793, 19765}, {7148, 27033}, {9709, 16458}, {9711, 15571}, {9782, 26806}, {12514, 26223}, {13407, 17184}, {16346, 27410}, {17175, 24170}, {17303, 21858}, {17529, 24988}, {17551, 25508}, {18600, 25599}, {19284, 25440}, {20005, 27918}, {20133, 27169}, {21077, 26580}, {21727, 26049}, {22279, 22281}, {22300, 26028}, {24325, 24443}, {25092, 26770}, {25107, 25498}

X(26115) = anticomplement of X(19863)


X(26116) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (a - b - c) (a^5 b + 2 a^4 b^2 - 2 a^2 b^4 - a b^5 + a^5 c - 3 a^4 b c - 2 a^3 b^2 c - 3 a b^4 c - b^5 c + 2 a^4 c^2 - 2 a^3 b c^2 + 4 a b^3 c^2 + 4 a b^2 c^3 + 2 b^3 c^3 - 2 a^2 c^4 - 3 a b c^4 - a c^5 - b c^5) : :

X(26116) lies on these lines: {2, 3}, {41, 27508}, {1458, 3616}, {1468, 14986}, {4512, 19853}, {11415, 17950}, {26093, 26129}


X(26117) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^4 - a^3 b - 2 a^2 b^2 - a b^3 - b^4 - a^3 c - 3 a^2 b c - 3 a b^2 c - b^3 c - 2 a^2 c^2 - 3 a b c^2 - a c^3 - b c^3 - c^4 : :

X(26117) lies on these lines: {1, 1330}, {2, 3}, {8, 192}, {10, 846}, {34, 17086}, {37, 7270}, {65, 17950}, {81, 20077}, {145, 2895}, {148, 1281}, {149, 12746}, {153, 13265}, {333, 1834}, {355, 9959}, {388, 1284}, {497, 8240}, {500, 18465}, {515, 8235}, {519, 11533}, {540, 4658}, {938, 9852}, {942, 26840}, {950, 2893}, {958, 27319}, {966, 27523}, {1043, 1211}, {1056, 11043}, {1104, 19786}, {1210, 24627}, {1220, 4026}, {1245, 17016}, {1283, 5248}, {1503, 25898}, {1697, 3882}, {1698, 26073}, {1837, 17611}, {2345, 9598}, {2550, 26045}, {2551, 18235}, {2650, 4683}, {2652, 5794}, {3421, 13097}, {3436, 11688}, {3454, 4653}, {3583, 19863}, {3616, 4892}, {3710, 17261}, {3757, 13161}, {3868, 6646}, {3890, 3909}, {3897, 26141}, {3914, 16824}, {3951, 17333}, {4255, 5233}, {4417, 19765}, {4418, 27714}, {4972, 5260}, {4981, 5178}, {5080, 5143}, {5208, 10381}, {5250, 6210}, {5262, 17302}, {5263, 6284}, {5296, 21811}, {5436, 25527}, {5691, 8245}, {5711, 20101}, {5716, 17321}, {5739, 20018}, {6625, 18757}, {9579, 10436}, {9780, 17601}, {9843, 27002}, {10025, 12527}, {10448, 25760}, {11518, 17274}, {12247, 12770}, {12567, 19853}, {12572, 27064}, {16817, 23537}, {16823, 23536}, {19785, 19851}, {22426, 26085}, {25531, 25914}, {26093, 26105}, {26094, 26127}, {27410, 27547}


X(26118) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^6 + a^4 b^2 - a^2 b^4 - b^6 - 2 a^4 b c + 2 a^3 b^2 c + 2 a^2 b^3 c - 2 a b^4 c + a^4 c^2 + 2 a^3 b c^2 - 2 a^2 b^2 c^2 + 2 a b^3 c^2 + b^4 c^2 + 2 a^2 b c^3 + 2 a b^2 c^3 - a^2 c^4 - 2 a b c^4 + b^2 c^4 - c^6 : :

X(26118) lies on these lines: {1, 8900}, {2, 3}, {7, 26929}, {69, 24523}, {81, 6776}, {355, 10327}, {388, 1455}, {497, 3666}, {511, 5739}, {515, 612}, {516, 3980}, {614, 946}, {940, 1503}, {944, 3920}, {952, 20020}, {980, 8721}, {1029, 7612}, {1038, 1891}, {1040, 1848}, {1211, 1350}, {1333, 7735}, {1479, 24239}, {1482, 19993}, {1486, 23304}, {1699, 1721}, {1714, 7683}, {2807, 17617}, {2886, 11677}, {3011, 26332}, {3421, 7172}, {3434, 3705}, {3436, 7081}, {4261, 7736}, {4383, 5480}, {4425, 24728}, {4657, 26105}, {5268, 5691}, {5273, 26939}, {5322, 5450}, {5603, 7191}, {5928, 10391}, {7179, 21279}, {10532, 26228}, {10595, 17024}, {12588, 20359}, {17810, 26005}, {20368, 26034}, {23291, 26540}, {24320, 27540}, {26101, 26102}


X(26119) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^7 b^2 + a^6 b^3 - 2 a^5 b^4 - 2 a^4 b^5 + a^3 b^6 + a^2 b^7 + a^7 b c - a^6 b^2 c - 3 a^5 b^3 c - 2 a^4 b^4 c - a^3 b^5 c + 3 a^2 b^6 c + 3 a b^7 c + a^7 c^2 - a^6 b c^2 - 3 a^5 b^2 c^2 - a^4 b^3 c^2 - a^3 b^4 c^2 + a^2 b^5 c^2 + 3 a b^6 c^2 + b^7 c^2 + a^6 c^3 - 3 a^5 b c^3 - a^4 b^2 c^3 + 2 a^3 b^3 c^3 - 5 a^2 b^4 c^3 - 3 a b^5 c^3 + b^6 c^3 - 2 a^5 c^4 - 2 a^4 b c^4 - a^3 b^2 c^4 - 5 a^2 b^3 c^4 - 6 a b^4 c^4 - 2 b^5 c^4 - 2 a^4 c^5 - a^3 b c^5 + a^2 b^2 c^5 - 3 a b^3 c^5 - 2 b^4 c^5 + a^3 c^6 + 3 a^2 b c^6 + 3 a b^2 c^6 + b^3 c^6 + a^2 c^7 + 3 a b c^7 + b^2 c^7 : :

X(26119) lies on these lines: {2, 3}, {92, 18667}, {286, 18592}, {1214, 18666}, {26107, 26132}, {26109, 26125}


X(26120) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^7 + 3 a^4 b^3 + a^3 b^4 - 2 a^2 b^5 - 2 a b^6 - b^7 + a^5 b c + 2 a^4 b^2 c + 2 a^3 b^3 c - 3 a b^5 c - 2 b^6 c + 2 a^4 b c^2 + 2 a^3 b^2 c^2 + 2 a^2 b^3 c^2 + 2 a b^4 c^2 + 3 a^4 c^3 + 2 a^3 b c^3 + 2 a^2 b^2 c^3 + 6 a b^3 c^3 + 3 b^4 c^3 + a^3 c^4 + 2 a b^2 c^4 + 3 b^3 c^4 - 2 a^2 c^5 - 3 a b c^5 - 2 a c^6 - 2 b c^6 - c^7 : :

X(26120) lies on these lines: {2, 3}, {73, 1442}, {78, 2893}, {908, 1330}, {975, 1745}, {1654, 3781}, {2303, 3330}, {2654, 5262}, {3616, 26130}, {5226, 26131}, {18228, 26064}


X(26121) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^8 b^2 + 2 a^7 b^3 - a^6 b^4 - 4 a^5 b^5 - a^4 b^6 + 2 a^3 b^7 + a^2 b^8 + 3 a^8 b c + a^7 b^2 c - 3 a^6 b^3 c - a^5 b^4 c - 3 a^4 b^5 c - a^3 b^6 c + 3 a^2 b^7 c + a b^8 c + a^8 c^2 + a^7 b c^2 - 3 a^6 b^2 c^2 - 3 a^5 b^3 c^2 - a^3 b^5 c^2 + a^2 b^6 c^2 + 3 a b^7 c^2 + b^8 c^2 + 2 a^7 c^3 - 3 a^6 b c^3 - 3 a^5 b^2 c^3 + 4 a^4 b^3 c^3 - 3 a^2 b^5 c^3 + a b^6 c^3 + 2 b^7 c^3 - a^6 c^4 - a^5 b c^4 - 4 a^2 b^4 c^4 - 5 a b^5 c^4 - b^6 c^4 - 4 a^5 c^5 - 3 a^4 b c^5 - a^3 b^2 c^5 - 3 a^2 b^3 c^5 - 5 a b^4 c^5 - 4 b^5 c^5 - a^4 c^6 - a^3 b c^6 + a^2 b^2 c^6 + a b^3 c^6 - b^4 c^6 + 2 a^3 c^7 + 3 a^2 b c^7 + 3 a b^2 c^7 + 2 b^3 c^7 + a^2 c^8 + a b c^8 + b^2 c^8 : :

X(26121) lies on these lines: {2, 3}, {17102, 18667}, {26110, 26134}


X(26122) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (a - b - c) (a^5 b + 2 a^4 b^2 - 2 a^2 b^4 - a b^5 + a^5 c - 5 a^4 b c - 4 a^3 b^2 c - 2 a^2 b^3 c - 5 a b^4 c - b^5 c + 2 a^4 c^2 - 4 a^3 b c^2 + 6 a b^3 c^2 - 2 a^2 b c^3 + 6 a b^2 c^3 + 2 b^3 c^3 - 2 a^2 c^4 - 5 a b c^4 - a c^5 - b c^5) : :

X(26122) lies on these lines: {2, 3}, {391, 644}, {3217, 5802}, {4512, 19870}, {26106, 26138}


X(26123) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^6 b + a^5 b^2 - 2 a^4 b^3 - 2 a^3 b^4 + a^2 b^5 + a b^6 + a^6 c - 3 a^5 b c - 3 a^4 b^2 c - 2 a^3 b^3 c - 3 a^2 b^4 c + a b^5 c + b^6 c + a^5 c^2 - 3 a^4 b c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 - 3 a b^4 c^2 + b^5 c^2 - 2 a^4 c^3 - 2 a^3 b c^3 - 2 a^2 b^2 c^3 - 6 a b^3 c^3 - 2 b^4 c^3 - 2 a^3 c^4 - 3 a^2 b c^4 - 3 a b^2 c^4 - 2 b^3 c^4 + a^2 c^5 + a b c^5 + b^2 c^5 + a c^6 + b c^6 : :

X(26123) lies on these lines: {2, 3}, {238, 10527}, {1463, 11375}, {1728, 27064}, {4652, 27305}, {10529, 16466}, {21616, 27184}, {26094, 26132}


X(26124) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^4 b^3 + a^3 b^4 + a^5 b c + a^4 b^2 c - a^3 b^3 c + a^2 b^4 c - a b^5 c + a^4 b c^2 + a b^4 c^2 + a^4 c^3 - a^3 b c^3 + a b^3 c^3 + b^4 c^3 + a^3 c^4 + a^2 b c^4 + a b^2 c^4 + b^3 c^4 - a b c^5 : :

X(26124) lies on these lines: {2, 3}, {148, 27312}, {2896, 27262}, {26099, 26108}, {26100, 26138}


X(26125) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(7), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (a + b - c) (a - b + c) (a^2 b - a b^2 + a^2 c - 3 a b c - b^2 c - a c^2 - b c^2) : :

X(26125) lies on these lines: {2, 7}, {6, 27142}, {12, 4429}, {37, 85}, {75, 3965}, {76, 346}, {77, 16826}, {86, 6180}, {150, 5816}, {192, 1441}, {198, 4209}, {239, 7190}, {241, 4687}, {269, 16831}, {284, 26802}, {347, 18666}, {388, 1284}, {391, 27304}, {573, 17753}, {604, 20146}, {651, 17379}, {664, 16777}, {941, 2481}, {948, 17086}, {954, 13727}, {966, 6604}, {1125, 4334}, {1418, 4698}, {1434, 25508}, {1446, 27250}, {1458, 3616}, {1463, 11375}, {1469, 3485}, {1901, 27021}, {2171, 3212}, {2263, 16830}, {2270, 27000}, {2345, 10030}, {3085, 24248}, {3247, 9312}, {3600, 13736}, {3622, 10571}, {3671, 19853}, {3674, 27248}, {3729, 27544}, {3986, 10481}, {4327, 16823}, {4328, 4384}, {4331, 9791}, {4335, 13405}, {4343, 10578}, {4355, 25512}, {4393, 7269}, {4454, 27514}, {4552, 4704}, {4747, 27161}, {5228, 17277}, {5723, 17380}, {6817, 21319}, {7011, 25908}, {7201, 16609}, {7274, 16832}, {7384, 21279}, {17247, 22464}, {20072, 27317}, {20262, 26531}, {21068, 27129}, {25242, 27396}, {26109, 26119}, {26976, 27252}


X(26126) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(12), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    ((b+c)*a^4+(b-c)^2*a^3-(b+c)*(b^2+b*c+c^2)*a^2-(b^2+c^2)*(b+c)^2*a-b*c*(b+c)^3)*(a+b-c)*(a-b+c) : :

X(26126) lies on these lines: {2, 12}, {10, 1450}, {201, 6682}, {226, 19864}, {474, 26031}, {498, 24222}, {499, 26098}, {603, 25496}, {964, 1470}, {1001, 27506}, {1125, 1457}, {1319, 26115}, {2122, 25490}, {3086, 5711}, {3616, 26092}, {3911, 19863}, {4202, 26481}, {4551, 20108}, {4647, 26740}, {4972, 10957}, {5252, 26030}, {7098, 24627}, {11375, 26094}, {11509, 24552}, {26091, 26105}


X(26127) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(35), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^4 - b^4 - 5 a^2 b c - 3 a b^2 c - 3 a b c^2 + 2 b^2 c^2 - c^4 : :

X(26127) lies on these lines: {2, 35}, {4, 5550}, {5, 5284}, {8, 392}, {11, 5047}, {21, 3816}, {57, 3648}, {100, 10386}, {149, 1698}, {377, 19832}, {388, 1319}, {404, 15338}, {452, 5265}, {496, 5260}, {497, 9780}, {499, 16865}, {551, 20060}, {632, 10738}, {748, 24883}, {962, 6947}, {1001, 4193}, {1125, 3585}, {1385, 6965}, {1621, 4187}, {1836, 9782}, {2475, 3624}, {2476, 4423}, {2551, 3241}, {2886, 17536}, {3421, 20057}, {3434, 17559}, {3523, 26333}, {3525, 10525}, {3576, 13729}, {3583, 19862}, {3634, 4857}, {3817, 6895}, {3826, 17546}, {3829, 17547}, {3847, 7504}, {3868, 4679}, {3874, 26792}, {3925, 17534}, {4189, 10200}, {4197, 8167}, {4202, 25531}, {4302, 17572}, {4999, 16858}, {5057, 5439}, {5071, 18517}, {5129, 10527}, {5154, 10198}, {5178, 18527}, {5253, 11113}, {5270, 15808}, {5731, 6893}, {5886, 6902}, {6224, 19861}, {6284, 17531}, {6691, 17549}, {6836, 9779}, {6840, 8227}, {6857, 10584}, {6865, 9812}, {6894, 7988}, {6903, 9955}, {6975, 10267}, {6979, 10902}, {6986, 7681}, {6989, 10598}, {7280, 15677}, {8165, 11239}, {9668, 16862}, {9669, 16842}, {10624, 25011}, {10916, 27065}, {11108, 11680}, {11114, 25524}, {11604, 15674}, {14450, 24703}, {15171, 17575}, {16859, 26363}, {16861, 24953}, {17484, 18398}, {17570, 19854}, {17676, 25492}, {17717, 24936}, {24955, 25463}, {26094, 26117}, {26102, 26131}


X(26128) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(38), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 + a b^2 + b^3 + a c^2 + c^3 : :

X(26128) lies on these lines: {1, 977}, {2, 38}, {7, 4697}, {10, 24789}, {31, 4655}, {43, 16706}, {55, 3821}, {56, 226}, {63, 6679}, {69, 3791}, {86, 17203}, {141, 4362}, {171, 3662}, {238, 4703}, {306, 19834}, {321, 24943}, {518, 25453}, {551, 4138}, {612, 3836}, {614, 3846}, {740, 19785}, {748, 26580}, {846, 4389}, {976, 4202}, {1001, 1626}, {1086, 3980}, {1211, 16825}, {1330, 16478}, {1376, 17290}, {1707, 17274}, {1909, 18067}, {1961, 7194}, {3008, 4104}, {3120, 24552}, {3616, 4892}, {3666, 3771}, {3705, 17598}, {3740, 17356}, {3741, 3772}, {3744, 4660}, {3769, 17227}, {3775, 5271}, {3782, 3923}, {3834, 4682}, {3840, 17720}, {3870, 4085}, {3874, 20083}, {3891, 15523}, {3920, 25957}, {3936, 17017}, {3938, 4972}, {3946, 4028}, {3961, 4429}, {3967, 17357}, {3971, 17279}, {4011, 4415}, {4071, 16777}, {4353, 20106}, {4357, 16992}, {4361, 21085}, {4364, 24333}, {4640, 17235}, {4645, 17716}, {4650, 26840}, {4657, 20335}, {4672, 5905}, {4683, 17127}, {4970, 17301}, {4974, 5739}, {5117, 7009}, {5249, 5329}, {5263, 17889}, {5268, 17282}, {5297, 25961}, {5311, 18139}, {6327, 17469}, {6646, 7262}, {6685, 17718}, {6703, 25557}, {7081, 16986}, {7191, 25760}, {7292, 25960}, {8616, 24723}, {10180, 17321}, {13161, 19768}, {16887, 25598}, {17024, 25958}, {17064, 21242}, {17302, 17592}, {17303, 21101}, {17304, 17594}, {18398, 25441}, {24694, 25345}, {26034, 26228}, {26037, 26724}, {26181, 26188}


X(26129) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(40), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (a - b - c) (a^3 - a^2 b - 5 a b^2 - 3 b^3 - a^2 c + 6 a b c + 3 b^2 c - 5 a c^2 + 3 b c^2 - 3 c^3) : :

X(26129) lies on these lines: {1, 5748}, {2, 40}, {4, 17614}, {8, 11}, {21, 4423}, {78, 5274}, {191, 499}, {226, 7091}, {329, 1728}, {377, 9779}, {388, 1319}, {390, 27385}, {392, 3090}, {404, 9812}, {443, 9955}, {452, 1125}, {497, 25681}, {515, 24558}, {908, 14986}, {944, 10711}, {960, 10589}, {997, 5175}, {1519, 6926}, {1699, 6904}, {1770, 3624}, {2094, 10199}, {2136, 7080}, {2476, 7958}, {2550, 24954}, {2551, 11376}, {3091, 19861}, {3189, 11238}, {3421, 11373}, {3474, 6691}, {3485, 3816}, {3487, 14022}, {3701, 6557}, {3817, 5177}, {3825, 18391}, {3869, 5704}, {3872, 8165}, {3877, 4731}, {3895, 27525}, {4187, 5603}, {4295, 10200}, {4310, 28018}, {4512, 19862}, {5046, 5731}, {5056, 24987}, {5082, 7743}, {5084, 5886}, {5129, 24541}, {5284, 11344}, {5433, 5698}, {5435, 7098}, {5552, 9785}, {5554, 5734}, {5811, 10785}, {5815, 10529}, {5818, 17533}, {5828, 12648}, {5880, 6910}, {6361, 13747}, {6700, 9614}, {6857, 11230}, {6921, 9778}, {7288, 24703}, {8582, 11522}, {9776, 12047}, {10165, 17576}, {10248, 17579}, {10527, 18228}, {10586, 11037}, {12245, 17619}, {12699, 17567}, {17527, 18493}, {18135, 20449}, {19843, 23708}, {25492, 27506}, {26091, 26094}, {26093, 26116}


X(26130) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(48), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^5 + a^4 b - 2 a^3 b^2 + a b^4 - b^5 + a^4 c - 2 a^2 b^2 c + b^4 c - 2 a^3 c^2 - 2 a^2 b c^2 - 2 a b^2 c^2 + a c^4 + b c^4 - c^5 : :

X(26130) lies on these lines: {1, 5800}, {2, 48}, {3, 16608}, {4, 15669}, {7, 2294}, {8, 21231}, {9, 9028}, {19, 18650}, {56, 18635}, {71, 14021}, {77, 5236}, {141, 958}, {142, 515}, {198, 25964}, {226, 4341}, {278, 25361}, {281, 24315}, {388, 1458}, {464, 24310}, {518, 3781}, {529, 17313}, {1001, 1503}, {1385, 17073}, {1953, 4329}, {2260, 5738}, {2293, 11677}, {2317, 26668}, {2345, 21091}, {3475, 5311}, {3486, 3924}, {3576, 18634}, {3616, 26120}, {3739, 5794}, {3912, 5227}, {5249, 5307}, {5786, 15668}, {10246, 17043}, {14547, 26052}, {16713, 21285}, {17052, 26363}, {17170, 17442}, {17306, 19869}, {18162, 27509}, {21280, 23407}, {21483, 26942}, {22054, 24580}, {24220, 26332}, {26107, 26147}, {26639, 27180}


X(26131) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(58), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^4 + 2 a^3 b + 2 a^2 b^2 - b^4 + 2 a^3 c + 5 a^2 b c + 3 a b^2 c + 2 a^2 c^2 + 3 a b c^2 + 2 b^2 c^2 - c^4 : :

X(26131) lies on these lines: {1, 149}, {2, 58}, {4, 500}, {6, 4197}, {7, 26054}, {8, 2650}, {10, 2895}, {12, 651}, {20, 5713}, {21, 17056}, {43, 26060}, {79, 3743}, {81, 442}, {86, 5051}, {162, 451}, {225, 1442}, {226, 4296}, {229, 2915}, {377, 5712}, {388, 1464}, {404, 5718}, {445, 8747}, {498, 6149}, {581, 6839}, {750, 27529}, {846, 3648}, {940, 2476}, {964, 18134}, {977, 5716}, {991, 6895}, {1010, 3936}, {1046, 21674}, {1211, 14005}, {1213, 17551}, {1654, 9780}, {1655, 6625}, {1834, 6175}, {1962, 24851}, {2292, 14450}, {2478, 4648}, {2893, 3945}, {3152, 5703}, {3178, 4418}, {3194, 25987}, {3448, 6126}, {3616, 4892}, {3651, 13408}, {3664, 6734}, {3670, 26842}, {3701, 3770}, {3836, 27320}, {3909, 5725}, {3920, 13407}, {3931, 20292}, {4205, 5333}, {4417, 16454}, {4645, 26110}, {4653, 15680}, {5057, 6051}, {5125, 5736}, {5192, 17234}, {5226, 26120}, {5249, 5262}, {5277, 5546}, {5287, 9612}, {5292, 14996}, {5297, 21077}, {5396, 6901}, {5492, 16116}, {5707, 6937}, {6675, 16948}, {9782, 24443}, {10198, 17126}, {11115, 25650}, {11374, 26738}, {12609, 17016}, {13740, 18139}, {15844, 17074}, {15988, 25984}, {16062, 19684}, {16704, 25446}, {17011, 23537}, {17245, 17536}, {17392, 17577}, {17550, 20131}, {17579, 19765}, {17750, 26074}, {18666, 25255}, {19784, 25959}, {19877, 26044}, {20653, 24342}, {24968, 24971}, {26102, 26127}


X(26132) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(63), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 - a^2 b + a b^2 + 3 b^3 - a^2 c - b^2 c + a c^2 - b c^2 + 3 c^3 : :

X(26132) lies on these lines: {1, 4138}, {2, 7}, {8, 2887}, {56, 25906}, {69, 3772}, {278, 297}, {344, 4415}, {345, 3782}, {948, 26561}, {1125, 13736}, {1215, 9780}, {1458, 24551}, {1763, 26998}, {3241, 4865}, {3454, 24159}, {3487, 16062}, {3488, 17677}, {3616, 4892}, {3620, 11679}, {3687, 23681}, {3705, 4310}, {3729, 20106}, {3771, 24248}, {3875, 4035}, {3936, 19785}, {4000, 4417}, {4201, 5703}, {4429, 25568}, {4470, 19827}, {4517, 25137}, {5550, 25496}, {5712, 19786}, {5714, 13740}, {5719, 11359}, {6327, 26228}, {6679, 24695}, {8165, 25965}, {9308, 18678}, {10327, 25959}, {14555, 24789}, {15934, 16052}, {17011, 19823}, {17056, 17321}, {17103, 25507}, {17170, 17211}, {17182, 18648}, {17316, 18134}, {17720, 18141}, {18135, 21590}, {20498, 26029}, {21062, 27127}, {21609, 26563}, {25681, 25912}, {25990, 27410}, {26093, 26116}, {26094, 26123}, {26107, 26119}, {26112, 26139}


X(26133) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(82), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^5 + a^4 b + 3 a^3 b^2 + a^2 b^3 + a b^4 - b^5 + a^4 c + a^2 b^2 c + b^4 c + 3 a^3 c^2 + a^2 b c^2 + 3 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 + a c^4 + b c^4 - c^5 : :

X(26133) lies on these lines: {2, 82}, {75, 5211}, {83, 17055}, {4645, 26094}, {26098, 26107}


X(26134) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(85), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (a + b - c) (a - b + c) (a^3 b^2 - a^2 b^3 - a^2 b^2 c + a^3 c^2 - a^2 b c^2 - a b^2 c^2 - b^3 c^2 - a^2 c^3 - b^2 c^3) : :

X(26134) lies on these lines: {2, 85}, {7, 27019}, {39, 6063}, {194, 349}, {226, 1424}, {269, 25538}, {1441, 26042}, {1463, 11375}, {4554, 5283}, {6516, 16915}, {6604, 26801}, {9312, 27020}, {9436, 17030}, {26110, 26121}


X(26135) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(87), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b^2 - a^2 b^3 - 2 a^3 b c - a^2 b^2 c + 2 a b^3 c + a^3 c^2 - a^2 b c^2 - 3 a b^2 c^2 - b^3 c^2 - a^2 c^3 + 2 a b c^3 - b^2 c^3 : :

X(26135) lies on these lines: {2, 87}, {7, 8}, {1278, 25284}, {1654, 26038}, {2345, 20532}, {3616, 24661}, {4648, 20530}, {4772, 25292}, {4851, 24717}, {5550, 25535}, {7155, 20917}, {9780, 25121}, {10453, 17375}, {17278, 24753}, {17300, 21299}, {17786, 24451}, {19877, 26045}, {24672, 26107}, {25570, 26752}


X(26136) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(88), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    3 a^3 - 4 a^2 b - 2 a b^2 + 5 b^3 - 4 a^2 c + 11 a b c - 6 b^2 c - 2 a c^2 - 6 b c^2 + 5 c^3 : :

X(26136) lies on these lines: {2, 45}, {11, 145}, {908, 20072}, {3616, 17719}, {3624, 11814}, {3699, 4678}, {4648, 26137}, {4928, 21222}, {5219, 9312}, {16732, 18743}, {19877, 24003}, {26109, 26147}


X(26137) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(89), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    13 a^2 b + 5 a b^2 - 8 b^3 + 13 a^2 c + 7 a b c + 9 b^2 c + 5 a c^2 + 9 b c^2 - 8 c^3 : :

X(26137) lies on these lines: {2, 44}, {3486, 10129}, {4080, 4704}, {4648, 26136}, {17379, 25529}


X(26138) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^4 b^3 + a^3 b^4 + a^5 b c - a^3 b^3 c - a b^5 c - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 + a^4 c^3 - a^3 b c^3 - 2 a^2 b^2 c^3 + 3 a b^3 c^3 + b^4 c^3 + a^3 c^4 + b^3 c^4 - a b c^5 : :

X(26138) lies on these lines: {2, 99}, {799, 16613}, {1015, 21220}, {2170, 24505}, {2478, 26108}, {20349, 27166}, {26100, 26124}, {26106, 26122}, {26140, 26142}


X(26139) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(100), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 + 2 a b^2 - b^3 - 7 a b c + 2 b^2 c + 2 a c^2 + 2 b c^2 - c^3 : :

X(26139) lies on these lines: {1, 11814}, {2, 11}, {8, 17460}, {145, 3699}, {190, 3756}, {214, 10774}, {244, 4440}, {388, 26111}, {1054, 25377}, {1058, 26029}, {1357, 4499}, {1647, 4473}, {2478, 26093}, {2899, 17480}, {3600, 8686}, {3616, 17719}, {3622, 4997}, {3624, 26051}, {3685, 5121}, {3837, 26142}, {3870, 27130}, {3873, 26791}, {4076, 5516}, {4152, 20014}, {4201, 25492}, {4358, 5211}, {4645, 4871}, {4679, 6646}, {4928, 26140}, {5231, 17338}, {6999, 25510}, {12053, 25965}, {14923, 25979}, {18149, 20345}, {26094, 26117}, {26098, 26103}, {26102, 26109}, {26112, 26132}, {26141, 26147}


X(26140) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(101), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^4 - 2 a^2 b^2 + 2 a b^3 - b^4 + a^2 b c - a b^2 c + 2 b^3 c - 2 a^2 c^2 - a b c^2 - 2 b^2 c^2 + 2 a c^3 + 2 b c^3 - c^4 : :

X(26140) lies on these lines: {1, 20344}, {2, 101}, {8, 21232}, {100, 4904}, {142, 6224}, {149, 17761}, {404, 21258}, {644, 16593}, {1385, 27006}, {1477, 3600}, {2140, 2475}, {3616, 26101}, {4107, 26141}, {4675, 7200}, {4928, 26139}, {5080, 20335}, {5086, 24774}, {5519, 6065}, {8299, 18343}, {9263, 17300}, {17234, 18047}, {26138, 26142}


X(26141) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(110), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^6 + a^5 b - a^4 b^2 - 2 a^3 b^3 + a^2 b^4 + a b^5 - b^6 + a^5 c + b^5 c - a^4 c^2 - a^2 b^2 c^2 + b^4 c^2 - 2 a^3 c^3 - 2 b^3 c^3 + a^2 c^4 + b^2 c^4 + a c^5 + b c^5 - c^6 : :

X(26141) lies on these lines: {1, 149}, {2, 98}, {11, 21221}, {662, 8286}, {1330, 8666}, {1469, 3873}, {2895, 3705}, {3897, 26117}, {4107, 26140}, {4188, 25650}, {4645, 5143}, {5347, 18134}, {17300, 24523}, {26139, 26147}


X(26142) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(190), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b^2 + a^2 b^3 - a^3 b c - a^2 b^2 c - 3 a b^3 c + a^3 c^2 - a^2 b c^2 + 3 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 3 a b c^3 + b^2 c^3 : :

X(26142) lies on these lines: {2, 45}, {334, 17321}, {1654, 27011}, {3662, 4466}, {3834, 26113}, {3837, 26139}, {4000, 20333}, {4499, 24485}, {4648, 26143}, {4657, 26110}, {6386, 18135}, {6542, 27106}, {17237, 26801}, {17249, 26082}, {17300, 20355}, {17301, 26752}, {17314, 20532}, {20072, 26982}, {26138, 26140}


X(26143) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c - 3 a^2 b^2 c - 2 a b^3 c + a^3 c^2 - 3 a^2 b c^2 + a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(26143) lies on these lines: {1, 25311}, {2, 37}, {7, 24509}, {8, 25121}, {1001, 20676}, {1125, 25528}, {3616, 24661}, {4021, 27091}, {4648, 26142}, {4941, 24451}, {7155, 24456}, {16709, 26852}, {16777, 20532}, {17236, 27166}, {17304, 25510}, {17343, 26821}, {17379, 20332}, {17397, 20146}, {18133, 21219}, {18194, 26069}, {24669, 26111}, {26093, 26150}


X(26144) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(900), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (b - c) (a^4 + a^3 b - a^2 b^2 - a b^3 + a^3 c - 5 a^2 b c + a b^2 c + b^3 c - a^2 c^2 + a b c^2 + 2 b^2 c^2 - a c^3 + b c^3) : :

X(26144) lies on these lines: {2, 900}, {522, 14429}, {966, 4435}, {1769, 3716}, {2345, 4526}, {2815, 5603}, {3738, 16173}, {3766, 17321}, {3837, 26139}, {5296, 22108}, {6615, 8062}, {7650, 23882}, {13266, 24542}, {17320, 21606}


X(26145) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(187), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    2 a^4 + a^3 b + a b^3 - 2 b^4 + a^3 c - 2 a^2 b c - 2 a b^2 c + b^3 c - 2 a b c^2 + 2 b^2 c^2 + a c^3 + b c^3 - 2 c^4 : :

X(26145) lies on these lines: {2, 187}, {148, 16711}, {663, 3835}, {754, 25683}, {1654, 24958}, {2478, 4648}, {3701, 17372}, {5046, 26978}, {5051, 6707}, {5192, 17327}, {6781, 24918}, {7778, 11346}, {7842, 17690}, {16705, 17685}, {17283, 17541}, {17375, 18135}, {17381, 17550}


X(26146) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(647), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (b - c) (a^5 - a b^4 + a^3 b c - a^2 b^2 c - a b^3 c + b^4 c - a^2 b c^2 - b^3 c^2 - a b c^3 - b^2 c^3 - a c^4 + b c^4) : :

X(26146) lies on these lines: {2, 647}, {278, 17094}, {650, 7212}, {663, 3835}, {693, 905}, {2517, 4885}, {2522, 17896}, {4000, 17069}, {4017, 4369}, {4077, 16612}, {4379, 20521}, {4467, 19785}, {6590, 14837}, {7658, 21186}, {8642, 26249}, {14296, 27527}, {18155, 19786}, {21173, 23803}


X(26147) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(662), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^5 + a^4 b - a^3 b^2 + a^2 b^3 + a b^4 - b^5 + a^4 c - 3 a^2 b^2 c + b^4 c - a^3 c^2 - 3 a^2 b c^2 - a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 + a c^4 + b c^4 - c^5 : :

X(26147) lies on these lines: {2, 662}, {8, 21254}, {86, 24957}, {99, 17058}, {145, 16597}, {148, 1086}, {1654, 17228}, {3836, 20558}, {3942, 24504}, {4675, 6625}, {4851, 20529}, {17300, 18133}, {17374, 20536}, {17387, 17778}, {21277, 27272}, {26107, 26130}, {26109, 26136}, {26138, 26140}, {26139, 26141}


X(26148) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(669), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (b - c) (-a^4 b - a^2 b^3 - a^4 c - a^3 b c - a b^2 c^2 + b^3 c^2 - a^2 c^3 + b^2 c^3) : :

X(26148) lies on these lines: {2, 669}, {320, 350}, {661, 3907}, {663, 3835}, {667, 27345}, {3005, 25258}, {3741, 18197}, {3837, 26097}, {4455, 27527}, {20979, 25128}, {20983, 25301}, {21191, 24666}, {24663, 24674}

X(26148) = anticomplement of X(24533)


X(26149) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(894), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    a^3 b^2 + a^2 b^3 + a^3 b c + a^2 b^2 c - a b^3 c + a^3 c^2 + a^2 b c^2 + 3 a b^2 c^2 + b^3 c^2 + a^2 c^3 - a b c^3 + b^2 c^3 : :

X(26149) lies on these lines: {2, 7}, {69, 26801}, {75, 21021}, {1125, 7184}, {3616, 24661}, {3663, 27020}, {3664, 26959}, {4648, 26107}, {4657, 26110}, {4675, 25505}, {4699, 26048}, {16924, 21279}, {17030, 17272}, {17250, 26045}, {17280, 26976}, {17300, 26971}, {17305, 27042}, {17398, 25534}, {25590, 27091}, {26756, 26812}


X(26150) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(984), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    2 a^3 + a^2 b + 3 a b^2 + 2 b^3 + a^2 c - a b c + b^2 c + 3 a c^2 + b c^2 + 2 c^3 : :

X(26150) lies on these lines: {1, 17232}, {2, 38}, {7, 5550}, {8, 3619}, {238, 17236}, {518, 17370}, {726, 17358}, {894, 3624}, {1001, 17305}, {1125, 3662}, {1279, 3616}, {1386, 17227}, {3210, 24943}, {3685, 17304}, {3742, 19812}, {3775, 16816}, {3790, 4353}, {4676, 17235}, {4741, 16468}, {4966, 17380}, {4974, 17343}, {5263, 17290}, {5749, 16814}, {7155, 15315}, {9780, 17278}, {15569, 17399}, {16475, 17288}, {16823, 17306}, {16825, 17238}, {16830, 17282}, {17368, 19862}, {17381, 25557}, {17480, 19879}, {19853, 27154}, {26093, 26143}, {26094, 26107}


X(26151) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(24), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (a - b - c) (a^9 + a^8 b - 2 a^5 b^4 - 2 a^4 b^5 + a b^8 + b^9 + a^8 c + 4 a^5 b^3 c - 4 a^3 b^5 c - b^8 c - 2 a^5 b^2 c^2 + 2 a^4 b^3 c^2 + 4 a^3 b^4 c^2 - 2 a b^6 c^2 - 2 b^7 c^2 + 4 a^5 b c^3 + 2 a^4 b^2 c^3 + 2 b^6 c^3 - 2 a^5 c^4 + 4 a^3 b^2 c^4 + 2 a b^4 c^4 - 2 a^4 c^5 - 4 a^3 b c^5 - 2 a b^2 c^6 + 2 b^3 c^6 - 2 b^2 c^7 + a c^8 - b c^8 + c^9) : :

X(26151) lies on these lines: {2, 3}


X(26152) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(26), WHERE A'B'C' = GEMINI TRIANGLE 40

Barycentrics    (a - b - c) (a^9 + a^8 b - 2 a^5 b^4 - 2 a^4 b^5 + a b^8 + b^9 + a^8 c + 4 a^5 b^3 c - 4 a^3 b^5 c - b^8 c - 4 a^5 b^2 c^2 + 2 a^3 b^4 c^2 - 2 a^2 b^5 c^2 - 2 a b^6 c^2 - 2 b^7 c^2 + 4 a^5 b c^3 + 2 a^2 b^4 c^3 + 2 b^6 c^3 - 2 a^5 c^4 + 2 a^3 b^2 c^4 + 2 a^2 b^3 c^4 + 2 a b^4 c^4 - 2 a^4 c^5 - 4 a^3 b c^5 - 2 a^2 b^2 c^5 - 2 a b^2 c^6 + 2 b^3 c^6 - 2 b^2 c^7 + a c^8 - b c^8 + c^9) : :

X(26152) lies on these lines: {2, 3}

leftri

Collineation mappings involving Gemini triangle 41: X(26153)-X(6180)

rightri

Following is a list of central triangles, by barycentric coordinates of A-vertex. The full names are Gemini triangle 41, Gemini triangle 42, Gemini triangle 43, etc. See the preamble just before X(24537) for the definitions of Gemini triangles 1-40. (Clark Kimberling, October 30, 2018)

Gemini 41      b^2 + c^2 : a^2 : a^2
Gemini 42      a^2 + b^2 + c^2 : a^2 : a^2

Gemini 43      a^2 : b^2 + c^2 : b^2 + c^2
Gemini 44      - a^2 : b^2 + c^2 : b^2 + c^2 (circum-medial triangle, TCCT 6.19

Gemini 45      (b - c)^2 : a^2 : a^2
Gemini 46      (b + c)^2 : a^2 : a^2

Gemini 47      a^2 : (b + c)^2 : (b + c)^2
Gemini 48      a^2 : (b - c)^2 : (b - c)^2

Gemini 49      (b + c)^2 : (b - c)^2 : (b - c)^2
Gemini 50      (b - c)^2 : (b + c)^2 : (b + c)^2

Gemini 51      (b - c)^2 : b^2 + c^2 : b^2 + c^2
Gemini 52      (b + c)^2 : b^2 + c^2 : b^2 + c^2

Gemini 53      b^2 + c^2 : (b - c)^2 : (b - c)^2
Gemini 54      b^2 + c^2 : (b + c)^2 : (b + c)^2

Gemini 55      a^2 : 2 b c : 2 b c
Gemini 56      - a^2 : 2 b c : 2 b c

Gemini 57      b^2 + c^2 : b c : b c
Gemini 58      b^2 + c^2 : - b c : - b c

Gemini 59      - b c + c a + a b : b c + c a + a b : b c + c a + a b
Gemini 60      b c + c a + a b : - b c + c a + a b : - b c + c a + a b

If T is a central triangle A'B'C' with A' of the form f(a,b,c) : g(a,b,c) : g(a,b,c), then the (A,B,C,X(2); A',B',C',X(2)) collineation image of the Euler line is the Euler line. Examples include Gemini triangles 30-60.

Let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 41, as in centers X(26153)-X(26180). Then

m(X) = (a^2 - b^2 + c^2) (a^2 + b^2 - c^2) (b^2 + c^2 ) x + (b^2 (b^2 + c^2 - a^2) ( axxx : : ,

and m(X) is on the Euler line if and only if X is on the Euler line.


X(26153) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 + a^5 c^2 + 2 a^2 b^3 c^2 + a b^4 c^2 - a^4 c^3 + 2 a^2 b^2 c^3 - b^4 c^3 + a b^2 c^4 - b^3 c^4 - a c^6 + c^7 : :

X(26153) lies on these lines: {1, 2}, {141, 1231}, {379, 5090}, {857, 1829}, {1861, 26961}, {5081, 26678}, {17184, 26161}, {18636, 20235}, {20911, 26165}, {23661, 26550}, {26156, 26163}, {26178, 26179}


X(26154) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 + a^8 c^2 - 4 a^6 b^2 c^2 + 4 a^4 b^4 c^2 - b^8 c^2 + 4 a^4 b^2 c^4 - 2 a^4 c^6 - b^2 c^8 + c^10 : :

X(26154) lies on these lines: {2, 3}, {141, 22416}, {185, 15595}, {287, 14516}, {1105, 6330}, {9289, 26156}, {16890, 26224}


X(26155) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 + a^8 c^2 - 6 a^6 b^2 c^2 + 8 a^4 b^4 c^2 - 2 a^2 b^6 c^2 - b^8 c^2 + 8 a^4 b^2 c^4 + 4 a^2 b^4 c^4 - 2 a^4 c^6 - 2 a^2 b^2 c^6 - b^2 c^8 + c^10 : :

X(26155) lies on these lines: {2, 3}, {1970, 3589}, {9729, 15595}, {23115, 27377}


X(26156) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^6 b^2 - a^4 b^4 - a^2 b^6 + b^8 + a^6 c^2 + 3 a^2 b^4 c^2 - a^4 c^4 + 3 a^2 b^2 c^4 - 2 b^4 c^4 - a^2 c^6 + c^8 : :

X(26156) lies on these lines: {2, 6}, {22, 15812}, {74, 18358}, {110, 26926}, {125, 14913}, {468, 19121}, {858, 1843}, {1352, 17928}, {1368, 12220}, {1503, 22467}, {1568, 21851}, {3564, 26879}, {5133, 9822}, {5866, 7789}, {5895, 10516}, {5972, 21637}, {6403, 11585}, {6656, 26162}, {6816, 10519}, {7391, 7716}, {7399, 11459}, {7762, 26212}, {8263, 12272}, {9289, 26154}, {10018, 19131}, {11188, 23300}, {13160, 24206}, {15059, 15128}, {16238, 19128}, {18639, 27180}, {18642, 21511}, {18911, 19459}, {19588, 26869}, {26153, 26163}, {26166, 26177}, {26175, 26179}


X(26157) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 + a^5 c^2 - 2 a^3 b^2 c^2 + a b^4 c^2 - a^4 c^3 - b^4 c^3 + a b^2 c^4 - b^3 c^4 - a c^6 + c^7 : :

X(26157) lies on these lines: {1, 2}, {141, 26165}, {318, 26528}, {321, 26171}, {1375, 12135}, {5090, 24584}, {7270, 26219}, {16607, 18669}, {17184, 26170}, {17233, 26215}, {17492, 18596}, {18657, 21063}, {23661, 26527}


X(26158) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 + a^5 c^2 - 4 a^3 b^2 c^2 - 2 a^2 b^3 c^2 + a b^4 c^2 - a^4 c^3 - 2 a^2 b^2 c^3 - b^4 c^3 + a b^2 c^4 - b^3 c^4 - a c^6 + c^7 : :

X(26158) lies on these lines: {1, 2}, {318, 26556}, {1441, 18639}, {1826, 18659}, {5090, 24605}, {7718, 24580}, {17184, 26174}, {17670, 26213}, {18671, 20305}, {26165, 26166}, {26168, 26177}


X(26159) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^10 b^2 + a^8 b^4 - 2 a^6 b^6 - 2 a^4 b^8 + a^2 b^10 + b^12 + a^10 c^2 - 2 a^6 b^4 c^2 + a^2 b^8 c^2 + a^8 c^4 - 2 a^6 b^2 c^4 + 4 a^4 b^4 c^4 - 2 a^2 b^6 c^4 - b^8 c^4 - 2 a^6 c^6 - 2 a^2 b^4 c^6 - 2 a^4 c^8 + a^2 b^2 c^8 - b^4 c^8 + a^2 c^10 + c^12 : :

X(26159) lies on these lines: {2, 3}


X(26160) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^10 b^2 + a^8 b^4 - 2 a^6 b^6 - 2 a^4 b^8 + a^2 b^10 + b^12 + a^10 c^2 - 2 a^6 b^4 c^2 + a^2 b^8 c^2 + a^8 c^4 - 2 a^6 b^2 c^4 + 8 a^4 b^4 c^4 - 2 a^2 b^6 c^4 - b^8 c^4 - 2 a^6 c^6 - 2 a^2 b^4 c^6 - 2 a^4 c^8 + a^2 b^2 c^8 - b^4 c^8 + a^2 c^10 + c^12 : :

X(26160) lies on these lines: {2, 3}


X(26161) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^7 b^2 - a^4 b^5 - a^3 b^6 + b^9 + a^7 c^2 + a^3 b^4 c^2 + 2 a^2 b^5 c^2 + a^3 b^2 c^4 - b^5 c^4 - a^4 c^5 + 2 a^2 b^2 c^5 - b^4 c^5 - a^3 c^6 + c^9 : :

X(26161) lies on these lines: {2, 31}, {17184, 26153}


X(26162) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 + a^8 c^2 + a^4 b^4 c^2 + 2 a^2 b^6 c^2 + a^4 b^2 c^4 - b^6 c^4 - 2 a^4 c^6 + 2 a^2 b^2 c^6 - b^4 c^6 + c^10 : :

X(26162) lies on these lines: {2, 32}, {141, 26214}, {6656, 26156}, {7879, 26206}, {26166, 26175}


X(26163) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    b c (a^5 b - a^4 b^2 - a b^5 + b^6 + a^5 c + 2 a^3 b^2 c + a b^4 c - a^4 c^2 + 2 a^3 b c^2 + 4 a^2 b^2 c^2 - b^4 c^2 + a b c^4 - b^2 c^4 - a c^5 + c^6) : :

X(26163) lies on these lines: {2, 37}, {226, 21406}, {3912, 18692}, {26153, 26156}, {26164, 26169}


X(26164) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    b^2 c^2 (2 a^6 + a^4 b^2 + b^6 + a^4 c^2 + 4 a^2 b^2 c^2 - b^4 c^2 - b^2 c^4 + c^6) : :

X(26164) lies on these lines: {2, 39}, {4, 11382}, {6, 26212}, {83, 1236}, {339, 7819}, {1235, 7770}, {3260, 7745}, {6656, 26156}, {7754, 26206}, {12203, 22467}, {26163, 26169}, {26175, 26177}


X(26165) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    b c (-a + b + c) (-a^4 b + b^5 - a^4 c - 2 a^3 b c - b^4 c - b c^4 + c^5) : :

X(26165) lies on these lines: {2, 37}, {29, 3100}, {92, 4329}, {141, 26157}, {142, 23581}, {318, 2478}, {390, 23528}, {968, 23556}, {1040, 27386}, {3262, 4150}, {4319, 17860}, {17858, 25935}, {17859, 26006}, {18589, 20883}, {20911, 26153}, {23978, 26601}, {23983, 26543}, {26158, 26166}


X(26166) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    b^2 c^2 (2 a^6 - 3 a^4 b^2 + b^6 - 3 a^4 c^2 - b^4 c^2 - b^2 c^4 + c^6) : :

X(26166) lies on these lines: {2, 39}, {3, 1235}, {20, 264}, {69, 5889}, {97, 276}, {99, 14118}, {140, 339}, {141, 22416}, {183, 17928}, {237, 12143}, {308, 26224}, {311, 1975}, {317, 7544}, {325, 13160}, {1078, 1236}, {1232, 1238}, {3096, 26170}, {3260, 7750}, {3933, 7399}, {26156, 26177}, {26158, 26165}, {26162, 26175}


X(26167) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^6 b^2 - a^4 b^4 - a^2 b^6 + b^8 + a^6 c^2 + 4 a^3 b^3 c^2 + 3 a^2 b^4 c^2 + 4 a^3 b^2 c^3 + 4 a^2 b^3 c^3 - a^4 c^4 + 3 a^2 b^2 c^4 - 2 b^4 c^4 - a^2 c^6 + c^8 : :

X(26167) lies on these lines: {2, 6}, {21, 18642}, {286, 26605}, {858, 17171}, {3868, 16608}, {20911, 26153}, {26168, 26169}, {26171, 26563}


X(26168) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^7 b^2 - a^4 b^5 - a^3 b^6 + b^9 + a^7 c^2 + a^3 b^4 c^2 + 2 a^2 b^5 c^2 - 4 a^3 b^3 c^3 + a^3 b^2 c^4 - b^5 c^4 - a^4 c^5 + 2 a^2 b^2 c^5 - b^4 c^5 - a^3 c^6 + c^9 : :

X(26168) lies on these lines: {2, 31}, {26153, 26156}, {26158, 26177}, {26167, 26169}


X(26169) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 + a^5 c^2 + 4 a^3 b^2 c^2 + 6 a^2 b^3 c^2 + a b^4 c^2 - a^4 c^3 + 6 a^2 b^2 c^3 - b^4 c^3 + a b^2 c^4 - b^3 c^4 - a c^6 + c^7 : :

X(26169) lies on these lines: {1, 2}, {26163, 26164}, {26167, 26168}


X(26170) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 + a^8 c^2 - 3 a^6 b^2 c^2 + 2 a^4 b^4 c^2 + a^2 b^6 c^2 - b^8 c^2 + 2 a^4 b^2 c^4 - 2 a^2 b^4 c^4 - 2 a^4 c^6 + a^2 b^2 c^6 - b^2 c^8 + c^10 : :

X(26170) lies on these lines: {2, 3}, {3096, 26166}, {4045, 26216}, {8743, 13219}, {12111, 15595}, {17184, 26157}


X(26171) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 + a^8 c^2 - 2 a^6 b^2 c^2 + 2 a^2 b^6 c^2 - b^8 c^2 - 4 a^4 b^3 c^3 - 4 a^3 b^4 c^3 - 4 a^3 b^3 c^4 - 4 a^2 b^4 c^4 - 2 a^4 c^6 + 2 a^2 b^2 c^6 - b^2 c^8 + c^10 : :

X(26171) lies on these lines: {2, 3}, {321, 26157}, {17184, 26153}, {26167, 26563}


X(26172) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^10 b^2 + a^8 b^4 - 2 a^6 b^6 - 2 a^4 b^8 + a^2 b^10 + b^12 + a^10 c^2 - 2 a^6 b^4 c^2 + a^2 b^8 c^2 + a^8 c^4 - 2 a^6 b^2 c^4 + 12 a^4 b^4 c^4 - 2 a^2 b^6 c^4 - b^8 c^4 - 2 a^6 c^6 - 2 a^2 b^4 c^6 - 2 a^4 c^8 + a^2 b^2 c^8 - b^4 c^8 + a^2 c^10 + c^12 : :

X(26172) lies on these lines: {2, 3}


X(26173) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    3 a^8 b^2 - 6 a^4 b^6 + 3 b^10 + 3 a^8 c^2 - 8 a^6 b^2 c^2 + 4 a^4 b^4 c^2 + 4 a^2 b^6 c^2 - 3 b^8 c^2 + 4 a^4 b^2 c^4 - 8 a^2 b^4 c^4 - 6 a^4 c^6 + 4 a^2 b^2 c^6 - 3 b^2 c^8 + 3 c^10 : :

X(26173) lies on these lines: {2, 3}


X(26174) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 + a^8 c^2 - 4 a^6 b^2 c^2 + 4 a^4 b^4 c^2 - b^8 c^2 + 4 a^4 b^3 c^3 + 4 a^3 b^4 c^3 + 4 a^4 b^2 c^4 + 4 a^3 b^3 c^4 - 2 a^4 c^6 - b^2 c^8 + c^10 : :

X(26174) lies on these lines: {2, 3}, {141, 26157}, {17184, 26158}


X(26175) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 + a^8 c^2 - 2 a^6 b^2 c^2 + 4 a^4 b^4 c^2 + 2 a^2 b^6 c^2 - b^8 c^2 + 4 a^4 b^2 c^4 - 2 a^4 c^6 + 2 a^2 b^2 c^6 - b^2 c^8 + c^10 : :

X(26175) lies on these lines: {2, 3}, {26156, 26179}, {26162, 26166}, {26164, 26177}


X(26176) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(48), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^3 b^2 + b^5 + a^3 c^2 + c^5 : :

X(26176) lies on these lines: {2, 48}, {6, 26589}, {31, 21275}, {80, 17291}, {141, 313}, {1964, 21235}, {2887, 21278}, {3662, 17861}, {6679, 21298}, {17046, 27145}, {21236, 26979}, {21244, 27095}, {26012, 26963}


X(26177) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(83), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    (b^2 + c^2) (a^8 - 2 a^4 b^4 + b^8 + 7 a^4 b^2 c^2 + 2 a^2 b^4 c^2 - b^6 c^2 - 2 a^4 c^4 + 2 a^2 b^2 c^4 - b^2 c^6 + c^8) : :

X(26177) lies on these lines: {2, 32}, {6815, 15062}, {26156, 26166}, {26158, 26168}, {26164, 26175}


X(26178) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    b c (a^5 b - a^4 b^2 - a b^5 + b^6 + a^5 c + a b^4 c - a^4 c^2 + 2 a^2 b^2 c^2 - b^4 c^2 + a b c^4 - b^2 c^4 - a c^5 + c^6) : :

X(26178) lies on these lines: {2, 37}, {16580, 20884}, {17481, 21582}, {26153, 26179}


X(26179) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(194), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    b^2 c^2 (2 a^6 - a^4 b^2 + b^6 - a^4 c^2 + 2 a^2 b^2 c^2 - b^4 c^2 - b^2 c^4 + c^6) : :

X(26179) lies on these lines: {2, 39}, {32, 1236}, {98, 22467}, {112, 384}, {264, 14035}, {311, 17128}, {339, 7807}, {1352, 12111}, {3260, 7823}, {6655, 17984}, {7791, 15075}, {7929, 8920}, {26153, 26178}, {26156, 26175}


X(26180) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(26), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^14 b^2 - a^12 b^4 - 3 a^10 b^6 + 3 a^8 b^8 + 3 a^6 b^10 - 3 a^4 b^12 - a^2 b^14 + b^16 + a^14 c^2 - 4 a^12 b^2 c^2 - 3 a^10 b^4 c^2 + 6 a^8 b^6 c^2 + 3 a^6 b^8 c^2 - a^2 b^12 c^2 - 2 b^14 c^2 - a^12 c^4 - 3 a^10 b^2 c^4 + 10 a^8 b^4 c^4 - 10 a^6 b^6 c^4 + 7 a^4 b^8 c^4 - 3 a^2 b^10 c^4 - 3 a^10 c^6 + 6 a^8 b^2 c^6 - 10 a^6 b^4 c^6 - 8 a^4 b^6 c^6 + 5 a^2 b^8 c^6 + 2 b^10 c^6 + 3 a^8 c^8 + 3 a^6 b^2 c^8 + 7 a^4 b^4 c^8 + 5 a^2 b^6 c^8 - 2 b^8 c^8 + 3 a^6 c^10 - 3 a^2 b^4 c^10 + 2 b^6 c^10 - 3 a^4 c^12 - a^2 b^2 c^12 - a^2 c^14 - 2 b^2 c^14 + c^16 : :

X(26180) lies on these lines: {2, 3}

leftri

Collineation mappings involving Gemini triangle 42: X(26181)-X(26199)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 42, as in centers X(26181)-X(26199). Then

m(X) = (a^2 + b^2) (a^2 + c^2) (a^2 + b^2 + c^2)x + b^2 (a^2 + b^2) (b^2 + c^2) y + c^2 (a^2 + c^2) (b^2 + c^2) z : :

A point X lies on the Euler line if and only if m(X) also lies on the Euler line. (Clark Kimberling, October 30, 2018)


X(26181) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^7 + 2 a^5 b^2 + a^3 b^4 + a^2 b^5 + b^7 + 2 a^5 c^2 + 3 a^3 b^2 c^2 + a^2 b^3 c^2 + a b^4 c^2 + b^5 c^2 + a^2 b^2 c^3 + a^3 c^4 + a b^2 c^4 + a^2 c^5 + b^2 c^5 + c^7 : :

X(26181) lies on these lines: {1, 2}, {26128, 26188}


X(26182) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^10 + a^8 b^2 - a^6 b^4 - 2 a^4 b^6 + b^10 + a^8 c^2 - a^6 b^2 c^2 - 4 a^4 b^4 c^2 - 2 a^2 b^6 c^2 - a^6 c^4 - 4 a^4 b^2 c^4 - 4 a^2 b^4 c^4 - b^6 c^4 - 2 a^4 c^6 - 2 a^2 b^2 c^6 - b^4 c^6 + c^10 : :

X(26182) lies on these lines: {2, 3}, {827, 3096}, {7834, 26185}, {26192, 26197}


X(26183) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^10 + 2 a^8 b^2 - a^6 b^4 - 3 a^4 b^6 + b^10 + 2 a^8 c^2 + 3 a^6 b^2 c^2 + 6 a^4 b^4 c^2 + a^2 b^6 c^2 - a^6 c^4 + 6 a^4 b^2 c^4 + 6 a^2 b^4 c^4 - b^6 c^4 - 3 a^4 c^6 + a^2 b^2 c^6 - b^4 c^6 + c^10 : :

X(26183) lies on these lines: {2, 3}, {26189, 26198}, {26190, 26192}


X(26184) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^2 (a^6 b^2 - a^2 b^6 + a^6 c^2 + 4 a^4 b^2 c^2 + 10 a^2 b^4 c^2 + 3 b^6 c^2 + 10 a^2 b^2 c^4 + 10 b^4 c^4 - a^2 c^6 + 3 b^2 c^6) : :

X(26184) lies on these lines: {2, 3}, {7834, 26198}


X(26185) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^8 + 2 a^6 b^2 + a^4 b^4 + a^2 b^6 + b^8 + 2 a^6 c^2 + 3 a^4 b^2 c^2 + 2 a^2 b^4 c^2 + b^6 c^2 + a^4 c^4 + 2 a^2 b^2 c^4 + a^2 c^6 + b^2 c^6 + c^8 : :

X(26185) lies on these lines: {2, 6}, {6680, 23322}, {7834, 26182}, {26195, 26199}


X(26186) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^12 + 2 a^10 b^2 - 3 a^6 b^6 - 2 a^4 b^8 + a^2 b^10 + b^12 + 2 a^10 c^2 + 3 a^8 b^2 c^2 - 2 a^6 b^4 c^2 - 4 a^4 b^6 c^2 + b^10 c^2 - 2 a^6 b^2 c^4 - 2 a^4 b^4 c^4 - 3 a^2 b^6 c^4 - b^8 c^4 - 3 a^6 c^6 - 4 a^4 b^2 c^6 - 3 a^2 b^4 c^6 - 2 b^6 c^6 - 2 a^4 c^8 - b^4 c^8 + a^2 c^10 + b^2 c^10 + c^12 : :

X(26186) lies on these lines: {2, 3}


X(26187) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^12 + 2 a^10 b^2 - 3 a^6 b^6 - 2 a^4 b^8 + a^2 b^10 + b^12 + 2 a^10 c^2 + 4 a^8 b^2 c^2 - 2 a^4 b^6 c^2 + a^2 b^8 c^2 + b^10 c^2 + 3 a^4 b^4 c^4 - a^2 b^6 c^4 - b^8 c^4 - 3 a^6 c^6 - 2 a^4 b^2 c^6 - a^2 b^4 c^6 - 2 b^6 c^6 - 2 a^4 c^8 + a^2 b^2 c^8 - b^4 c^8 + a^2 c^10 + b^2 c^10 + c^12 : :

X(26187) lies on these lines: {2, 3}


X(26188) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^9 + 2 a^7 b^2 + a^5 b^4 + a^2 b^7 + b^9 + 2 a^7 c^2 + 3 a^5 b^2 c^2 + a^3 b^4 c^2 + a^2 b^5 c^2 + b^7 c^2 + a^5 c^4 + a^3 b^2 c^4 + a^2 b^2 c^5 + a^2 c^7 + b^2 c^7 + c^9 : :

X(26188) lies on these lines: {2, 31}, {26128, 26181}


X(26189) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^10 + 2 a^8 b^2 + a^6 b^4 + a^2 b^8 + b^10 + 2 a^8 c^2 + 3 a^6 b^2 c^2 + a^4 b^4 c^2 + a^2 b^6 c^2 + b^8 c^2 + a^6 c^4 + a^4 b^2 c^4 + a^2 b^2 c^6 + a^2 c^8 + b^2 c^8 + c^10 : :

X(26189) lies on these lines: {2, 32}, {7834, 26182}, {26183, 26198}, {26192, 26195}, {26197, 26199}


X(26190) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(69), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^8 + a^6 b^2 - 2 a^4 b^4 - a^2 b^6 + b^8 + a^6 c^2 - 3 a^4 b^2 c^2 - 5 a^2 b^4 c^2 - b^6 c^2 - 2 a^4 c^4 - 5 a^2 b^2 c^4 - 4 b^4 c^4 - a^2 c^6 - b^2 c^6 + c^8 : :

X(26190) lies on these lines: {2, 6}, {1078, 6697}, {3313, 11056}, {26183, 26192}, {26191, 26196}, {26194, 26197}


X(26191) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    b c (a^6 + 2 a^4 b^2 + a^3 b^3 + a^2 b^4 + a b^5 + a^3 b^2 c + 2 a^4 c^2 + a^3 b c^2 + 3 a^2 b^2 c^2 + a b^3 c^2 + b^4 c^2 + a^3 c^3 + a b^2 c^3 + a^2 c^4 + b^2 c^4 + a c^5) : :

X(26191) lies on these lines: {2, 37}, {3112, 21249}, {26190, 26196}


X(26192) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    b^2 c^2 (a^6 + 4 a^4 b^2 + 2 a^2 b^4 + 4 a^4 c^2 + 5 a^2 b^2 c^2 + b^4 c^2 + 2 a^2 c^4 + b^2 c^4) : :

X(26192) lies on these lines: {2, 39}, {83, 10339}, {308, 6292}, {3096, 14970}, {26182, 26197}, {26183, 26190}, {26189, 26195}


X(26193) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    3 a^10 + 4 a^8 b^2 - 3 a^6 b^4 - 7 a^4 b^6 + 3 b^10 + 4 a^8 c^2 + a^6 b^2 c^2 - 2 a^4 b^4 c^2 - 3 a^2 b^6 c^2 - 3 a^6 c^4 - 2 a^4 b^2 c^4 - 2 a^2 b^4 c^4 - 3 b^6 c^4 - 7 a^4 c^6 - 3 a^2 b^2 c^6 - 3 b^4 c^6 + 3 c^10 : :

X(26193) lies on these lines: {2, 3}


X(26194) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    5 a^10 + 6 a^8 b^2 - 5 a^6 b^4 - 11 a^4 b^6 + 5 b^10 + 6 a^8 c^2 - a^6 b^2 c^2 - 10 a^4 b^4 c^2 - 7 a^2 b^6 c^2 - 5 a^6 c^4 - 10 a^4 b^2 c^4 - 10 a^2 b^4 c^4 - 5 b^6 c^4 - 11 a^4 c^6 - 7 a^2 b^2 c^6 - 5 b^4 c^6 + 5 c^10 : :

X(26194) lies on these lines: {2, 3}, {26190, 26197}


X(26195) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^10 + 2 a^8 b^2 + a^6 b^4 + a^2 b^8 + b^10 + 2 a^8 c^2 + 4 a^6 b^2 c^2 + 5 a^4 b^4 c^2 + 3 a^2 b^6 c^2 + b^8 c^2 + a^6 c^4 + 5 a^4 b^2 c^4 + 5 a^2 b^4 c^4 + b^6 c^4 + 3 a^2 b^2 c^6 + b^4 c^6 + a^2 c^8 + b^2 c^8 + c^10 : :

X(26195) lies on these lines: {2, 3}, {7834, 26197}, {26185, 26199}, {26189, 26192}


X(26196) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^10 + 2 a^8 b^2 - a^6 b^4 - 3 a^4 b^6 + b^10 + 2 a^8 b c + 2 a^7 b^2 c + 4 a^6 b^3 c + 4 a^5 b^4 c + 4 a^4 b^5 c + 4 a^3 b^6 c + 2 a^2 b^7 c + 2 a b^8 c + 2 a^8 c^2 + 2 a^7 b c^2 + 3 a^6 b^2 c^2 + 4 a^5 b^3 c^2 + 6 a^4 b^4 c^2 + 4 a^3 b^5 c^2 + a^2 b^6 c^2 + 2 a b^7 c^2 + 4 a^6 b c^3 + 4 a^5 b^2 c^3 + 10 a^4 b^3 c^3 + 10 a^3 b^4 c^3 + 4 a^2 b^5 c^3 + 4 a b^6 c^3 - a^6 c^4 + 4 a^5 b c^4 + 6 a^4 b^2 c^4 + 10 a^3 b^3 c^4 + 6 a^2 b^4 c^4 + 4 a b^5 c^4 - b^6 c^4 + 4 a^4 b c^5 + 4 a^3 b^2 c^5 + 4 a^2 b^3 c^5 + 4 a b^4 c^5 - 3 a^4 c^6 + 4 a^3 b c^6 + a^2 b^2 c^6 + 4 a b^3 c^6 - b^4 c^6 + 2 a^2 b c^7 + 2 a b^2 c^7 + 2 a b c^8 + c^10 : :

X(26196) lies on these lines: {2, 3}, {26190, 26191}


X(26197) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^10 + a^8 b^2 - a^6 b^4 - 2 a^4 b^6 + b^10 + a^8 c^2 - a^6 c^4 + a^2 b^4 c^4 - 2 a^4 c^6 + c^10 : :

X(26197) lies on these lines: {2, 99}, {7834, 26195}, {26182, 26192}, {26189, 26199}, {26190, 26194}


X(26198) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(115), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    (2 a^2 + b^2 + c^2) (a^4 b^4 + a^2 b^6 - 3 a^2 b^4 c^2 + b^6 c^2 + a^4 c^4 - 3 a^2 b^2 c^4 + a^2 c^6 + b^2 c^6) : :

X(26198) lies on these lines: {2, 99}, {141, 14990}, {7834, 26184}, {26183, 26189}


X(26199) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(194), WHERE A'B'C' = GEMINI TRIANGLE 41

Barycentrics    a^8 b^2 + 2 a^6 b^4 + 2 a^4 b^6 + a^2 b^8 + a^8 c^2 + 3 a^6 b^2 c^2 + a^4 b^4 c^2 + a^2 b^6 c^2 + b^8 c^2 + 2 a^6 c^4 + a^4 b^2 c^4 - a^2 b^4 c^4 + 2 a^4 c^6 + a^2 b^2 c^6 + a^2 c^8 + b^2 c^8 : :

X(26199) lies on these lines: {2, 39}, {827, 7787}, {5103, 16285}, {26185, 26195}, {26189, 26197}


X(26200) =  MIDPOINT OF X(4) AND X(10284)

Barycentrics    a (a^5 b-a^4 b^2-2 a^3 b^3+2 a^2 b^4+a b^5-b^6+a^5 c-4 a^4 b c+7 a^3 b^2 c+4 a^2 b^3 c-8 a b^4 c-a^4 c^2+7 a^3 b c^2-14 a^2 b^2 c^2+7 a b^3 c^2+b^4 c^2-2 a^3 c^3+4 a^2 b c^3+7 a b^2 c^3+2 a^2 c^4-8 a b c^4+b^2 c^4+a c^5-c^6) : :
X(26200) = X[4]+X[10284], X[546]-X[2802], X[550]-3*X[3898], 3*X[1482]+X[5693], X[2771]-X[7984], X[2800]-X[6583], X[5694]+X[7982], X[5885]-2*X[13464], X[5887]+X[11278], 2*X[5901]-X[13145], 5*X[11522]-X[25413]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28554.

X(26200) lies on these lines: {4,10284}, {5,10}, {65,16173}, {392,17531}, {546,2802}, {550,3898}, {962,6951}, {1385,6909}, {1482,5693}, {2771,7984}, {2800,6583}, {3057,3585}, {3579,6940}, {5441,5919}, {5603,6972}, {5694,7982}, {5697,10895}, {5885,13464}, {5887,11278}, {5901,13145}, {6284,9957}, {10058,24928}, {10738,12751}, {11009,17638}, {11522,25413}, {15558,18990}, {18393,25414}

X(26200) = midpoint of X(i) and X(j) for these {i,j}: {4,10284}, {3057,22793}, {5887,11278}, {10222,12672}, {18480,23340}
X(26200) = reflection of X(i) in X(j) for these {i,j}: {5885,13464}, {13145,5901}


X(26201) =  MIDPOINT OF X(550) AND X(3874)

Barycentrics    -a (a^5 b-a^4 b^2-2 a^3 b^3+2 a^2 b^4+a b^5-b^6+a^5 c+4 a^4 b c-a^3 b^2 c-4 a^2 b^3 c-a^4 c^2-a^3 b c^2+2 a^2 b^2 c^2-a b^3 c^2+b^4 c^2-2 a^3 c^3-4 a^2 b c^3-a b^2 c^3+2 a^2 c^4+b^2 c^4+a c^5-c^6) : :
X(26201) = 5*X[3]-X[5904], X[30]-X[6583], X[140]-X[2801], X[382]-5*X[18398], X[389]-2*X[15229], X[515]-X[5885], X[517]-X[550], X[518]-X[14810], 5*X[632]-3*X[15064], X[912]-X[12038], X[952]-X[13145], X[971]-X[9955], 2*X[3530]-X[3678], 3*X[3576]-X[5694], X[3579]-3*X[10167], 3*X[3656]+X[9961], X[6001]-X[15178], X[6102]+X[23156], 3*X[7967]-X[10284], 3*X[10202]+X[12680], 3*X[10246]+X[15071], 3*X[11220]+X[12699], 3*X[11231]-X[14872], 5*X[15016]-X[18525]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28554.

X(26201) lies on these lines: {3,5904}, {21,104}, {30,6583}, {35,17660}, {65,4325}, {72,5303}, {79,354}, {140,2801}, {382,18398}, {389,15229}, {515,5885}, {517,550}, {518,14810}, {632,15064}, {912,12038}, {942,7354}, {946,12267}, {952,13145}, {971,9955}, {1858,5126}, {3057,11571}, {3530,3678}, {3576,5694}, {3579,10167}, {3583,13751}, {3656,9961}, {5045,10391}, {5083,15171}, {5536,16117}, {5563,17637}, {6001,15178}, {6102,23156}, {6940,12738}, {7967,10284}, {8582,8728}, {10202,12680}, {10225,11491}, {10246,15071}, {10268,24645}, {11220,12699}, {11231,14872}, {15016,18525}, {15931,22937}, {16132,22765}

X(26201) = midpoint of X(i) and X(j) for these {i,j}: {550,3874}, {6102,23156}, {12675,13369}, {12680,18480}
X(26201) = reflection of X(i) in X(j) for these {i,j}: {389,15229}, {3678,3530}, {6583,12005}, {9955,13373}, {9956,9940}
X(26201) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {10202,12680,18480}


X(26202) =  MIDPOINT OF X(21) AND X(16138)

Barycentrics    a (2 a^6-a^5 b-5 a^4 b^2+2 a^3 b^3+4 a^2 b^4-a b^5-b^6-a^5 c+6 a^4 b c+a^3 b^2 c-2 a^2 b^3 c-4 b^5 c-5 a^4 c^2+a^3 b c^2+2 a^2 b^2 c^2+a b^3 c^2+b^4 c^2+2 a^3 c^3-2 a^2 b c^3+a b^2 c^3+8 b^3 c^3+4 a^2 c^4+b^2 c^4-a c^5-4 b c^5-c^6) : :
X(26202) = X[10]-X[30], 3*X[191]-X[12702], 3*X[381]-X[16118], X[517]-X[3652], X[758]-X[11278], 3*X[1699]-X[16150], 4*X[3634]-3*X[5499], X[3648]+X[12699], 3*X[5886]-X[16116], X[8148]+3*X[13465], 6*X[10021]-5*X[19862], 4*X[12104]-3*X[17502], 3*X[15677]-X[18481], 3*X[16159]-X[20084], 3*X[16160]-2*X[18483]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28556.

X(26202) lies on these lines: {1,399}, {3,5506}, {10,30}, {21,4881}, {79,3582}, {191,12702}, {355,13199}, {381,16118}, {517,3652}, {758,11278}, {942,16141}, {1012,5694}, {1699,16150}, {2475,7705}, {3634,5499}, {3648,12699}, {5428,15254}, {5659,16113}, {5885,6912}, {5886,16116}, {6841,7173}, {6888,16128}, {6906,22935}, {7743,16153}, {8148,13465}, {9780,18516}, {9957,16140}, {10021,19862}, {10225,19925}, {11230,12608}, {11263,12611}, {12104,17502}, {15677,18481}, {16117,18540}, {16159,20084}, {16160,18483}

X(26202) = midpoint of X(i) and X(j) for these {i,j}: {21,16138}, {7701,13743}
X(26202) = reflection of X(i) in X(j) for these {i,j}: {79,9955}, {3579,3647}, {18480,22798}, {22937,22936}
X(26202) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {3579,3647,22937}, {3579,22936,3647}

leftri

Collineation mappings involving Gemini triangle 43: X(26203)-X(26226)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 43, as in centers X(26203)-X(26226). Then

m(X) = a^2 (a^2 + b^2 - c^2) (a^2 - b^2 + c^2) x + (a^2 + c^2) (b^2 + c^2 - a^2) (a^2 + b^2 - c^2) y + (a^2 + b^2) (b^2 + c^2 - a^2) (a^2 - b^2 + c^2) z : :

A point X lies on the Euler line if and only if m(X) also lies on the Euler line. (Clark Kimberling, October 31, 2018)


X(26203) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^7 - a^6 b - a^3 b^4 + a^2 b^5 - a^6 c + a^4 b^2 c + a^2 b^4 c - b^6 c + a^4 b c^2 + 2 a^3 b^2 c^2 + b^5 c^2 - a^3 c^4 + a^2 b c^4 + a^2 c^5 + b^2 c^5 - b c^6 : :

X(26203) lies on these lines: {1, 2}, {6, 1231}, {33, 27022}, {34, 26961}, {318, 26678}, {379, 1829}, {607, 1441}, {857, 5090}, {1038, 27143}, {1040, 27093}, {1973, 26260}, {20811, 26206}, {23620, 24252}, {26211, 26219}


X(26204) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    3 a^10 - 3 a^8 b^2 - 2 a^6 b^4 + 2 a^4 b^6 - a^2 b^8 + b^10 - 3 a^8 c^2 + 4 a^6 b^2 c^2 + 2 a^4 b^4 c^2 - 4 a^2 b^6 c^2 + b^8 c^2 - 2 a^6 c^4 + 2 a^4 b^2 c^4 + 10 a^2 b^4 c^4 - 2 b^6 c^4 + 2 a^4 c^6 - 4 a^2 b^2 c^6 - 2 b^4 c^6 - a^2 c^8 + b^2 c^8 + c^10 : :

X(26204) lies on these lines: {2, 3}, {1968, 6389}, {3618, 26216}, {15595, 19467}


X(26205) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    2 a^10 - 3 a^8 b^2 + 2 a^4 b^6 - 2 a^2 b^8 + b^10 - 3 a^8 c^2 + 2 a^6 b^2 c^2 + 4 a^4 b^4 c^2 - 2 a^2 b^6 c^2 - b^8 c^2 + 4 a^4 b^2 c^4 + 8 a^2 b^4 c^4 + 2 a^4 c^6 - 2 a^2 b^2 c^6 - 2 a^2 c^8 - b^2 c^8 + c^10 : :

X(26205) lies on these lines: {2, 3}, {141, 1970}, {8721, 20792}, {10316, 27377}


X(26206) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^2 (a^6 - a^4 b^2 - a^2 b^4 + b^6 - a^4 c^2 + 4 a^2 b^2 c^2 + b^4 c^2 - a^2 c^4 + b^2 c^4 + c^6) : :

X(26206) lies on these lines: {2, 6}, {3, 19118}, {22, 1974}, {24, 9967}, {25, 12220}, {74, 12017}, {110, 19459}, {155, 6804}, {182, 185}, {206, 6800}, {511, 17928}, {607, 27059}, {608, 26998}, {1176, 19153}, {1350, 22467}, {1351, 3567}, {1599, 11513}, {1600, 11514}, {1843, 1995}, {2211, 7791}, {2916, 27085}, {3098, 15078}, {3313, 19136}, {3564, 18912}, {3796, 19132}, {3867, 7394}, {5012, 19122}, {5013, 5866}, {5020, 11416}, {5050, 7395}, {5063, 9723}, {5085, 8567}, {5093, 13363}, {5622, 12825}, {5651, 14913}, {5921, 17814}, {6090, 15531}, {6225, 19149}, {6403, 6642}, {6467, 9306}, {6644, 18438}, {6656, 8743}, {6776, 6816}, {6815, 14853}, {7399, 13142}, {7485, 19126}, {7509, 19131}, {7514, 19129}, {7716, 13595}, {7754, 26164}, {7770, 14965}, {7819, 22120}, {7879, 26162}, {8541, 9822}, {8745, 17907}, {9605, 22241}, {10602, 12272}, {11413, 12294}, {11442, 13562}, {11487, 19458}, {12215, 26221}, {13160, 14561}, {14001, 23115}, {15056, 19460}, {16072, 18440}, {17710, 20987}, {17847, 25321}, {18911, 26926}, {20811, 26203}, {26216, 26224}


X(26207) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(26), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    (a^16 - a^14 b^2 - 3 a^12 b^4 + 3 a^10 b^6 + 3 a^8 b^8 - 3 a^6 b^10 - a^4 b^12 + a^2 b^14 - a^14 c^2 - 4 a^12 b^2 c^2 + 3 a^10 b^4 c^2 + 2 a^8 b^6 c^2 + 5 a^6 b^8 c^2 - 7 a^2 b^12 c^2 + 2 b^14 c^2 - 3 a^12 c^4 + 3 a^10 b^2 c^4 + 2 a^8 b^4 c^4 - 6 a^6 b^6 c^4 + 5 a^4 b^8 c^4 + 3 a^2 b^10 c^4 - 4 b^12 c^4 + 3 a^10 c^6 + 2 a^8 b^2 c^6 - 6 a^6 b^4 c^6 - 8 a^4 b^6 c^6 + 3 a^2 b^8 c^6 - 2 b^10 c^6 + 3 a^8 c^8 + 5 a^6 b^2 c^8 + 5 a^4 b^4 c^8 + 3 a^2 b^6 c^8 + 8 b^8 c^8 - 3 a^6 c^10 + 3 a^2 b^4 c^10 - 2 b^6 c^10 - a^4 c^12 - 7 a^2 b^2 c^12 - 4 b^4 c^12 + a^2 c^14 + 2 b^2 c^14) : :

X(26207) lies on these lines: {2, 3}


X(26208) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    2 a^7 - a^5 b^2 - a^4 b^3 - 2 a^3 b^4 + a b^6 + b^7 - a^5 c^2 - 2 a^2 b^3 c^2 - a b^4 c^2 - a^4 c^3 - 2 a^2 b^2 c^3 - b^4 c^3 - 2 a^3 c^4 - a b^2 c^4 - b^3 c^4 + a c^6 + c^7 : :

X(26208) lies on these lines: {1, 2}, {26215, 26216}


X(26209) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^12 + a^10 b^2 - 2 a^8 b^4 - 2 a^6 b^6 + a^4 b^8 + a^2 b^10 + a^10 c^2 - 2 a^4 b^6 c^2 - a^2 b^8 c^2 + 2 b^10 c^2 - 2 a^8 c^4 + 2 a^4 b^4 c^4 - 2 a^6 c^6 - 2 a^4 b^2 c^6 - 4 b^6 c^6 + a^4 c^8 - a^2 b^2 c^8 + a^2 c^10 + 2 b^2 c^10 : :

X(26209) lies on these lines: {2, 3}, {8743, 18018}


X(26210) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^12 + a^10 b^2 - 2 a^8 b^4 - 2 a^6 b^6 + a^4 b^8 + a^2 b^10 + a^10 c^2 - a^8 b^2 c^2 + a^6 b^4 c^2 - a^4 b^6 c^2 - 2 a^2 b^8 c^2 + 2 b^10 c^2 - 2 a^8 c^4 + a^6 b^2 c^4 + 4 a^4 b^4 c^4 + a^2 b^6 c^4 - 2 a^6 c^6 - a^4 b^2 c^6 + a^2 b^4 c^6 - 4 b^6 c^6 + a^4 c^8 - 2 a^2 b^2 c^8 + a^2 c^10 + 2 b^2 c^10 : :

X(26210) lies on these lines: {2, 3}, {4580, 26225}


X(26211) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^9 - a^6 b^3 - a^5 b^4 + a^2 b^7 + 2 a^5 b^2 c^2 + a^4 b^3 c^2 + b^7 c^2 - a^6 c^3 + a^4 b^2 c^3 + a^2 b^4 c^3 - b^6 c^3 - a^5 c^4 + a^2 b^3 c^4 - b^3 c^6 + a^2 c^7 + b^2 c^7 : :

X(26211) lies on these lines: {2, 31}, {1395, 26990}, {2212, 27051}, {26203, 26219}


X(26212) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^10 - 2 a^6 b^4 + a^2 b^8 + 2 a^6 b^2 c^2 + a^4 b^4 c^2 + b^8 c^2 - 2 a^6 c^4 + a^4 b^2 c^4 + 2 a^2 b^4 c^4 - b^6 c^4 - b^4 c^6 + a^2 c^8 + b^2 c^8 : :

X(26212) lies on these lines: {2, 32}, {6, 26164}, {7762, 26156}, {7770, 14965}, {26216, 26221}


X(26213) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    b c (2 a^6 - a^5 b - a^4 b^2 - 2 a^2 b^4 + a b^5 + b^6 - a^5 c - 2 a^3 b^2 c - a b^4 c - a^4 c^2 - 2 a^3 b c^2 - b^4 c^2 - 2 a^2 c^4 - a b c^4 - b^2 c^4 + a c^5 + c^6) : :

X(26213) lies on these lines: {2, 37}, {1441, 27059}, {5745, 21406}, {17023, 18692}, {17670, 26158}, {20811, 26203}


X(26214) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    b^2 c^2 (-3 a^4 b^2 - 2 a^2 b^4 + b^6 - 3 a^4 c^2 - b^4 c^2 - 2 a^2 c^4 - b^2 c^4 + c^6) : :

X(26214) lies on these lines: {2, 39}, {4, 9967}, {141, 26162}, {311, 5254}, {324, 27376}, {339, 8362}, {384, 10313}, {1235, 5523}, {1236, 3096}, {3260, 7784}, {7467, 12143}, {7770, 14965}, {12203, 14118}, {26221, 26224}


X(26215) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a (a^6 b - a^4 b^3 - a^2 b^5 + b^7 + a^6 c - a^5 b c - a^2 b^4 c + a b^5 c - a^4 c^3 - 2 a b^3 c^3 - b^4 c^3 - a^2 b c^4 - b^3 c^4 - a^2 c^5 + a b c^5 + c^7) : :

X(26215) lies on these lines: {2, 37}, {3, 3100}, {1060, 4227}, {1214, 4329}, {6356, 17080}, {12610, 22464}, {17233, 26157}, {26208, 26216}


X(26216) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^2 (a^6 b^2 - a^4 b^4 - a^2 b^6 + b^8 + a^6 c^2 - a^4 b^2 c^2 - a^2 b^4 c^2 + b^6 c^2 - a^4 c^4 - a^2 b^2 c^4 - 4 b^4 c^4 - a^2 c^6 + b^2 c^6 + c^8) : :

X(26216) lies on these lines: {2, 39}, {3, 5481}, {4, 22240}, {5, 5523}, {6, 5889}, {20, 216}, {32, 14118}, {54, 23128}, {112, 7526}, {217, 12111}, {232, 3091}, {570, 6815}, {574, 22467}, {631, 14961}, {1625, 15058}, {1658, 10986}, {1968, 5158}, {2079, 5013}, {3172, 15851}, {3199, 3832}, {3269, 10574}, {3289, 11444}, {3331, 11439}, {3523, 22401}, {3618, 26204}, {4045, 26170}, {5133, 27376}, {5169, 27371}, {5254, 13160}, {6509, 11348}, {6816, 7736}, {7395, 9605}, {7399, 15048}, {7488, 10311}, {7509, 23115}, {7514, 22120}, {8743, 9818}, {9607, 13351}, {11174, 26226}, {11325, 23635}, {15078, 15815}, {26206, 26224}, {26208, 26215}, {26212, 26221}


X(26217) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(693), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a (b - c) (a^3 - a^2 b - a b^2 + b^3 - a^2 c - 2 a b c + b^2 c - a c^2 + b c^2 + c^3) (a^4 - b^4 - c^4) : :

X(26217) lies on these lines: {2, 650}, {2485, 16757}


X(26218) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    5 a^10 - 3 a^8 b^2 - 6 a^6 b^4 + 2 a^4 b^6 + a^2 b^8 + b^10 - 3 a^8 c^2 + 8 a^6 b^2 c^2 - 2 a^4 b^4 c^2 - 8 a^2 b^6 c^2 + 5 b^8 c^2 - 6 a^6 c^4 - 2 a^4 b^2 c^4 + 14 a^2 b^4 c^4 - 6 b^6 c^4 + 2 a^4 c^6 - 8 a^2 b^2 c^6 - 6 b^4 c^6 + a^2 c^8 + 5 b^2 c^8 + c^10 : :

X(26218) lies on these lines: {2, 3}


X(26219) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^10 - 2 a^6 b^4 + a^2 b^8 + a^8 b c + a^7 b^2 c - a^6 b^3 c - a^5 b^4 c - a^4 b^5 c - a^3 b^6 c + a^2 b^7 c + a b^8 c + a^7 b c^2 + 2 a^6 b^2 c^2 - a^5 b^3 c^2 - 2 a^4 b^4 c^2 - a^3 b^5 c^2 - 2 a^2 b^6 c^2 + a b^7 c^2 + 2 b^8 c^2 - a^6 b c^3 - a^5 b^2 c^3 - 2 a^4 b^3 c^3 - 2 a^3 b^4 c^3 - a^2 b^5 c^3 - a b^6 c^3 - 2 a^6 c^4 - a^5 b c^4 - 2 a^4 b^2 c^4 - 2 a^3 b^3 c^4 + 2 a^2 b^4 c^4 - a b^5 c^4 - 2 b^6 c^4 - a^4 b c^5 - a^3 b^2 c^5 - a^2 b^3 c^5 - a b^4 c^5 - a^3 b c^6 - 2 a^2 b^2 c^6 - a b^3 c^6 - 2 b^4 c^6 + a^2 b c^7 + a b^2 c^7 + a^2 c^8 + a b c^8 + 2 b^2 c^8 : :

X(26219) lies on these lines: {2, 3}, {7270, 26157}, {26203, 26211}


X(26220) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    7 a^10 - 3 a^8 b^2 - 10 a^6 b^4 + 2 a^4 b^6 + 3 a^2 b^8 + b^10 - 3 a^8 c^2 + 12 a^6 b^2 c^2 - 6 a^4 b^4 c^2 - 12 a^2 b^6 c^2 + 9 b^8 c^2 - 10 a^6 c^4 - 6 a^4 b^2 c^4 + 18 a^2 b^4 c^4 - 10 b^6 c^4 + 2 a^4 c^6 - 12 a^2 b^2 c^6 - 10 b^4 c^6 + 3 a^2 c^8 + 9 b^2 c^8 + c^10 : :

X(26220) lies on these lines: {2, 3}


X(26221) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^10 - a^8 b^2 - a^6 b^4 + a^4 b^6 - a^8 c^2 + 3 a^6 b^2 c^2 + 2 a^4 b^4 c^2 - a^2 b^6 c^2 + b^8 c^2 - a^6 c^4 + 2 a^4 b^2 c^4 + 6 a^2 b^4 c^4 - b^6 c^4 + a^4 c^6 - a^2 b^2 c^6 - b^4 c^6 + b^2 c^8 : :

X(26221) lies on these lines: {2, 3}, {5063, 17128}, {12215, 26206}, {26212, 26216}, {26214, 26224}


X(26222) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(48), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^5 + a^2 b^3 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26222) lies on these lines: {2, 48}, {6, 313}, {8, 238}, {31, 21278}, {41, 26772}, {71, 11320}, {80, 5150}, {81, 19806}, {141, 26634}, {312, 3187}, {560, 21238}, {604, 26963}, {894, 17861}, {1837, 2330}, {1914, 5278}, {1958, 27102}, {2273, 3948}, {2887, 21275}, {3778, 4112}, {7770, 20747}, {10791, 20964}, {18042, 25505}, {21221, 27320}, {25940, 27095}


X(26223) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(63), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^3 + a^2 b + a^2 c + b^2 c + b c^2 : :

X(26223) lies on these lines: {1, 3159}, {2, 7}, {6, 321}, {10, 6327}, {31, 1215}, {33, 14954}, {37, 19684}, {38, 25496}, {42, 3923}, {43, 4418}, {44, 5278}, {45, 19701}, {46, 26030}, {72, 964}, {78, 11115}, {81, 312}, {192, 17011}, {218, 19281}, {228, 11322}, {274, 27643}, {284, 17587}, {306, 17355}, {318, 3194}, {394, 26591}, {404, 23206}, {474, 23169}, {518, 24552}, {593, 27958}, {612, 3952}, {614, 17140}, {726, 17017}, {748, 24325}, {750, 4697}, {899, 3980}, {936, 19284}, {940, 4358}, {942, 5192}, {1009, 21319}, {1010, 3876}, {1100, 3175}, {1150, 4641}, {1185, 2235}, {1211, 17369}, {1220, 3869}, {1255, 17394}, {1386, 3891}, {1449, 19743}, {1621, 4676}, {1698, 17491}, {1743, 5271}, {1836, 4972}, {1877, 5554}, {1999, 4671}, {2049, 15650}, {2051, 21375}, {2295, 3765}, {2308, 4362}, {2321, 20017}, {2345, 5739}, {2887, 24725}, {2895, 3661}, {2999, 17495}, {3006, 26098}, {3120, 25453}, {3210, 17012}, {3247, 19741}, {3338, 26094}, {3487, 17526}, {3488, 4217}, {3586, 17537}, {3589, 3782}, {3601, 17539}, {3618, 19785}, {3666, 17351}, {3671, 25904}, {3677, 17154}, {3679, 6539}, {3681, 5263}, {3685, 17018}, {3701, 5711}, {3706, 4663}, {3710, 5717}, {3720, 4011}, {3729, 5256}, {3731, 19740}, {3745, 3967}, {3751, 17135}, {3757, 17127}, {3868, 13740}, {3886, 20011}, {3896, 5695}, {3940, 16394}, {3947, 25982}, {3948, 17750}, {3969, 17281}, {3971, 5311}, {4009, 4682}, {4082, 4349}, {4307, 10327}, {4344, 20020}, {4359, 4363}, {4361, 4980}, {4402, 19826}, {4414, 6685}, {4427, 17594}, {4429, 20292}, {4461, 20043}, {4473, 26109}, {4687, 5333}, {4696, 5710}, {4884, 17726}, {4968, 16466}, {4981, 5220}, {5044, 16454}, {5222, 19789}, {5287, 8025}, {5297, 27538}, {5440, 16393}, {5712, 17776}, {5928, 27052}, {6358, 21741}, {6651, 17032}, {7081, 17126}, {7191, 24349}, {7229, 19825}, {7283, 19767}, {10391, 27394}, {10601, 17862}, {10791, 24255}, {11263, 19846}, {11342, 16601}, {11679, 16704}, {12514, 26115}, {14555, 19822}, {14997, 17116}, {16050, 25082}, {16405, 20760}, {16475, 17150}, {16549, 21361}, {16666, 22034}, {16672, 19747}, {16674, 19745}, {16677, 19746}, {16777, 19722}, {16788, 22001}, {16884, 19739}, {16885, 19732}, {17019, 17379}, {17020, 17490}, {17124, 24003}, {17262, 20182}, {17279, 18139}, {17280, 17778}, {17352, 26724}, {17354, 18134}, {17479, 25245}, {17825, 20905}, {18206, 27163}, {18607, 25099}, {20444, 20896}, {21327, 23543}, {21362, 27070}, {24295, 24943}, {24342, 26037}, {24695, 26034}, {24892, 25385}, {26203, 26211}, {27318, 27646}


X(26224) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(83), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^2 (a^2 + b^2) (a^2 + c^2) (a^4 - 2 a^2 b^2 + b^4 - 2 a^2 c^2 + 6 b^2 c^2 + c^4) : :

X(26224) lies on these lines: {2, 32}, {64, 1176}, {112, 8362}, {308, 26166}, {6815, 17500}, {7395, 10547}, {7544, 10550}, {7770, 10313}, {10316, 16045}, {11380, 14096}, {16890, 26154}, {26206, 26216}, {26214, 26221}


X(26225) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(669), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    (b - c) (b + c) (a^10 + a^8 b^2 - a^6 b^4 - a^4 b^6 + a^8 c^2 - a^4 b^4 c^2 - a^6 c^4 - a^4 b^2 c^4 - 2 a^2 b^4 c^4 + 2 b^6 c^4 - a^4 c^6 + 2 b^4 c^6) : :

X(26225) lies on these lines: {2, 669}, {2501, 7770}, {4580, 26210}


X(26226) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(24), WHERE A'B'C' = GEMINI TRIANGLE 43

Barycentrics    a^10 - 2 a^6 b^4 + a^2 b^8 + 2 a^4 b^4 c^2 - 4 a^2 b^6 c^2 + 2 b^8 c^2 - 2 a^6 c^4 + 2 a^4 b^2 c^4 + 6 a^2 b^4 c^4 - 2 b^6 c^4 - 4 a^2 b^2 c^6 - 2 b^4 c^6 + a^2 c^8 + 2 b^2 c^8 : :

X(26226) lies on these lines: {2, 3}, {287, 11441}, {11174, 26216}

leftri

Collineation mappings involving Gemini triangle 44: X(26227)-X(26284)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 44, as in centers X(26227)-X(26284). Then

m(X) = a^2 x - (a^2 + c^2) y - (a^2 + b^2) z : :

A point X lies on the Euler line if and only if m(X) also lies on the Euler line. Also, X lies on the circumcircle if and only if m(X) lies on the circumcircle; specifically, the line XX(2) meets the circumcircle in X and m(X). Moreover, m(m(X)) = X for every point X. (Clark Kimberling, October 31, 2018)


X(26227) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^3 - a^2 b - a^2 c - b^2 c - b c^2 : :

X(26227) lies on these lines: {1, 2}, {3, 4968}, {9, 3952}, {12, 5016}, {21, 4385}, {22, 23843}, {31, 1215}, {40, 17164}, {55, 321}, {57, 17140}, {63, 17165}, {75, 100}, {81, 3769}, {86, 9347}, {92, 7466}, {98, 9070}, {105, 9059}, {110, 27958}, {141, 17724}, {183, 3262}, {210, 5278}, {226, 6327}, {251, 18099}, {312, 1621}, {333, 3681}, {341, 5260}, {355, 8229}, {385, 24345}, {405, 3701}, {442, 5300}, {516, 4054}, {518, 1150}, {536, 4689}, {726, 4414}, {740, 2177}, {748, 26688}, {750, 4434}, {752, 24725}, {850, 4477}, {894, 17002}, {902, 3923}, {908, 3883}, {958, 4696}, {964, 5266}, {968, 3995}, {993, 4692}, {1001, 4358}, {1004, 20880}, {1089, 5248}, {1230, 4199}, {1311, 9058}, {1376, 4359}, {1759, 22011}, {1792, 19799}, {1836, 4450}, {1842, 6995}, {1995, 26241}, {2223, 11322}, {2476, 5015}, {2886, 4030}, {3120, 4660}, {3158, 17163}, {3218, 24349}, {3243, 17145}, {3247, 27811}, {3263, 16992}, {3295, 3702}, {3416, 3936}, {3550, 4418}, {3666, 3891}, {3683, 3967}, {3685, 4671}, {3689, 3696}, {3699, 17277}, {3703, 6690}, {3729, 4427}, {3744, 24552}, {3745, 19684}, {3751, 16704}, {3772, 4972}, {3822, 4680}, {3873, 14829}, {3933, 25581}, {3966, 5741}, {3974, 17776}, {4009, 15254}, {4026, 17602}, {4220, 11491}, {4232, 8756}, {4239, 26232}, {4387, 4428}, {4392, 24627}, {4396, 24357}, {4413, 24589}, {4421, 4980}, {4426, 21021}, {4430, 5372}, {4514, 11680}, {4519, 4702}, {4613, 6187}, {4647, 8715}, {4659, 4781}, {4661, 5361}, {4723, 9708}, {4742, 6767}, {4756, 17336}, {4767, 17335}, {4860, 24593}, {4894, 25639}, {4981, 5737}, {5218, 17740}, {5250, 25253}, {5269, 5764}, {5282, 21101}, {5284, 18743}, {5336, 14624}, {5718, 5846}, {5739, 25568}, {5853, 21283}, {6679, 26061}, {7426, 16305}, {7495, 26231}, {8707, 9077}, {9056, 26703}, {9071, 9075}, {9083, 9104}, {9330, 17260}, {9335, 27002}, {13161, 17676}, {16998, 18900}, {17125, 24003}, {17127, 27064}, {17147, 17594}, {17155, 17596}, {17184, 26034}, {17278, 24988}, {17279, 24542}, {17469, 25496}, {17719, 25760}, {17765, 21242}, {17766, 25385}, {26242, 26244}, {26253, 26260}, {26271, 26274}, {27065, 27538}


X(26228) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    3 a^3 - a^2 b + a b^2 + b^3 - a^2 c - b^2 c + a c^2 - b c^2 + c^3 : :

X(26228) lies on these lines: {1, 2}, {6, 17724}, {7, 109}, {20, 1072}, {23, 11809}, {25, 1068}, {31, 5905}, {55, 7465}, {81, 3475}, {100, 4000}, {105, 1995}, {225, 6995}, {238, 17725}, {278, 7466}, {329, 17127}, {344, 24542}, {345, 3891}, {377, 5266}, {468, 13869}, {518, 24597}, {595, 11415}, {902, 24248}, {908, 7290}, {944, 8229}, {1001, 17602}, {1070, 7398}, {1104, 3436}, {1279, 17720}, {1311, 9088}, {1386, 17718}, {1707, 20078}, {2475, 4339}, {3052, 3782}, {3218, 4310}, {3246, 4679}, {3434, 3744}, {3598, 22464}, {3699, 17352}, {3701, 13742}, {3749, 3914}, {3952, 26685}, {4190, 23536}, {4220, 10267}, {4232, 23710}, {4239, 26241}, {4383, 12595}, {4385, 17526}, {4392, 5744}, {4428, 4854}, {4648, 9347}, {4689, 17301}, {4850, 5218}, {4906, 17728}, {5249, 5269}, {5264, 24159}, {5273, 7226}, {5304, 8557}, {5310, 14798}, {6327, 26132}, {6690, 17599}, {6872, 13161}, {7426, 16272}, {7485, 26357}, {7493, 8758}, {7735, 8609}, {8193, 19850}, {9330, 18230}, {9465, 26278}, {10532, 26118}, {10680, 16434}, {11249, 19649}, {16202, 19544}, {17002, 17257}, {17165, 26065}, {17469, 26098}, {26034, 26128}, {26040, 26724}, {26274, 26281}


X(26229) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(9), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^4 - a^2 b^2 + 2 a^2 b c + a b^2 c + b^3 c - a^2 c^2 + a b c^2 - 2 b^2 c^2 + b c^3 : :

X(26229) lies on these lines: {1, 21208}, {2, 7}, {41, 17048}, {56, 26563}, {75, 26263}, {78, 20247}, {85, 934}, {105, 9086}, {140, 25581}, {183, 3262}, {239, 17001}, {404, 3673}, {474, 20880}, {675, 9058}, {901, 9073}, {976, 24172}, {1055, 24249}, {1210, 21285}, {1329, 7198}, {2082, 26964}, {2280, 24685}, {3007, 7493}, {3665, 6691}, {3814, 7272}, {3825, 4056}, {4193, 4911}, {4239, 26236}, {4376, 20530}, {4386, 27918}, {5433, 27187}, {5804, 7390}, {5826, 17023}, {6745, 10520}, {7247, 11681}, {7264, 25440}, {7289, 27161}, {9310, 26653}, {16609, 26621}, {16862, 25585}, {17683, 24774}, {20930, 26232}, {24471, 24540}, {26241, 26246}, {26242, 26273}, {26247, 26274}


X(26230) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    2 a^3 + a b^2 + b^3 + a c^2 + c^3 : :

X(26230) lies on these lines: {1, 2}, {22, 23383}, {31, 4655}, {37, 24542}, {38, 6679}, {69, 16798}, {81, 16791}, {86, 110}, {100, 16706}, {105, 4239}, {238, 26580}, {321, 17061}, {385, 24348}, {902, 3821}, {940, 16790}, {1385, 8229}, {1386, 3936}, {1441, 15253}, {1621, 7465}, {2887, 17469}, {3007, 7493}, {3589, 17724}, {3618, 16799}, {3662, 17126}, {3663, 4427}, {3722, 4085}, {3744, 4972}, {3745, 18139}, {3772, 24552}, {3952, 17353}, {3953, 6693}, {3977, 4353}, {4202, 5266}, {4358, 17602}, {4689, 17382}, {4968, 17698}, {5294, 17165}, {6327, 25527}, {7466, 17923}, {8610, 9465}, {9059, 9109}, {9330, 17338}, {9347, 17234}, {10130, 26250}, {11115, 23536}, {11319, 13161}, {16793, 17379}, {16795, 24512}, {17002, 17248}, {17127, 27184}, {17356, 24988}, {17716, 25957}, {17770, 21747}, {19284, 24178}, {20905, 25968}, {26256, 26267}, {26259, 26268}


X(26231) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(11), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    2 a^5 - 2 a^4 b + a^3 b^2 - a^2 b^3 - a b^4 + b^5 - 2 a^4 c + 2 a^3 b c - a^2 b^2 c + 2 a b^3 c - b^4 c + a^3 c^2 - a^2 b c^2 - a^2 c^3 + 2 a b c^3 - a c^4 - b c^4 + c^5 : :

X(26231) lies on these lines: {2, 11}, {23, 5520}, {119, 7427}, {140, 16823}, {468, 5205}, {498, 19310}, {1329, 17522}, {1478, 19326}, {2862, 4998}, {2968, 6676}, {3011, 16586}, {3756, 7191}, {3757, 7499}, {3912, 11712}, {4223, 27529}, {4242, 20621}, {4579, 26932}, {7426, 26262}, {7493, 9058}, {7495, 26227}, {16020, 17566}, {16048, 26364}, {17004, 26274}


X(26232) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^5 - a^2 b^3 - b^3 c^2 - a^2 c^3 - b^2 c^3 : :

X(26232) lies on these lines: {2, 31}, {22, 23380}, {48, 21278}, {82, 25505}, {100, 312}, {105, 26238}, {183, 18613}, {251, 18093}, {313, 1631}, {560, 21238}, {561, 789}, {675, 9067}, {1078, 23407}, {1150, 3966}, {2177, 27804}, {3416, 19561}, {3570, 3681}, {3757, 26281}, {3765, 17798}, {3891, 4396}, {3920, 16997}, {4112, 8626}, {4239, 26227}, {7081, 17860}, {8709, 9073}, {9059, 9093}, {10327, 26258}, {17001, 17018}, {20305, 21275}, {20544, 24587}, {20930, 26229}, {26233, 26236}, {26242, 26270}


X(26233) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^6 - a^2 b^4 - b^4 c^2 - a^2 c^4 - b^2 c^4 : :

X(26233) lies on these lines: {2, 32}, {3, 3266}, {22, 1975}, {23, 76}, {25, 1235}, {39, 15822}, {69, 110}, {98, 9066}, {99, 5987}, {111, 2998}, {183, 1995}, {305, 6636}, {311, 26284}, {316, 5169}, {325, 7495}, {385, 9465}, {468, 7767}, {599, 9516}, {689, 1502}, {733, 9102}, {858, 7750}, {1180, 7839}, {1194, 7805}, {1495, 14994}, {2770, 9150}, {3098, 4576}, {3124, 8177}, {3291, 7780}, {4048, 8627}, {4232, 15589}, {5189, 7802}, {5354, 6179}, {5971, 7496}, {5986, 20023}, {6655, 19577}, {7426, 16335}, {7467, 14880}, {7519, 11185}, {7824, 15302}, {7840, 9829}, {7845, 10163}, {8667, 19221}, {8891, 16932}, {10989, 11057}, {12215, 15080}, {14907, 16063}, {15107, 18906}, {15574, 26283}, {26232, 26236}


X(26234) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    b c (2 a^2 + a b + b^2 + a c + c^2) : :

X(26234) lies on these lines: {1, 20911}, {2, 37}, {7, 4388}, {10, 4986}, {21, 99}, {22, 1602}, {38, 3778}, {65, 17152}, {69, 3873}, {72, 17141}, {76, 4968}, {85, 3598}, {86, 7191}, {141, 3726}, {142, 4071}, {183, 3262}, {239, 5276}, {304, 3616}, {322, 15589}, {354, 16739}, {551, 14210}, {612, 3875}, {614, 10436}, {672, 24631}, {675, 9070}, {742, 24512}, {870, 16998}, {942, 17137}, {1125, 1930}, {1228, 4205}, {1269, 8024}, {1290, 2862}, {1402, 1441}, {1909, 5484}, {1962, 18697}, {3230, 24254}, {3264, 26235}, {3622, 18156}, {3663, 4425}, {3670, 24166}, {3673, 13725}, {3701, 18140}, {3877, 24282}, {3896, 3920}, {3953, 16887}, {4021, 4970}, {4223, 16817}, {4361, 5275}, {4385, 18135}, {4514, 20553}, {4692, 6381}, {4696, 6376}, {4981, 5224}, {5268, 17151}, {5272, 25590}, {5297, 17160}, {7081, 20895}, {7264, 20888}, {7763, 25581}, {8682, 16971}, {9310, 16822}, {9318, 27916}, {16583, 26965}, {16600, 16818}, {16601, 27109}, {16604, 16720}, {16830, 17143}, {17007, 17275}, {17023, 21840}, {17024, 17394}, {17140, 20347}, {17754, 24629}, {20271, 26562}, {20955, 25303}, {21443, 23689}, {22232, 27846}, {25261, 26770}, {25263, 27148}, {26244, 26273}


X(26235) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    b^2 c^2 (4 a^2 + b^2 + c^2) : :

X(26235) lies on these lines: {2, 39}, {23, 1078}, {69, 5640}, {75, 24988}, {83, 5354}, {98, 9069}, {99, 7496}, {111, 308}, {141, 3124}, {183, 1995}, {264, 4232}, {311, 7495}, {316, 7533}, {338, 11168}, {350, 5297}, {373, 14994}, {468, 1235}, {524, 13410}, {850, 8371}, {1236, 9176}, {1239, 8770}, {1627, 16950}, {1799, 13595}, {1909, 7292}, {3231, 24256}, {3264, 26234}, {4576, 5650}, {5092, 10330}, {5741, 18052}, {7191, 25303}, {7492, 7771}, {7519, 14907}, {7998, 18906}, {9185, 14295}, {11185, 16063}, {15246, 16276}, {18067, 25960}, {21590, 27186}


X(26236) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(41), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^6 - a^5 b + a^3 b^3 - a^2 b^4 - a^5 c + a^2 b^3 c + a b^3 c^2 - b^4 c^2 + a^3 c^3 + a^2 b c^3 + a b^2 c^3 + 2 b^3 c^3 - a^2 c^4 - b^2 c^4 : :

X(26236) lies on these lines: {2, 41}, {22, 16681}, {75, 100}, {183, 26264}, {1233, 1626}, {3598, 26245}, {4228, 26238}, {4239, 26229}, {17002, 27624}, {20045, 20247}, {24596, 24789}, {26232, 26233}


X(26237) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^4 b - a^3 b^2 + a^4 c - a^2 b^2 c - a^3 c^2 - a^2 b c^2 - 2 a b^2 c^2 - b^3 c^2 - b^2 c^3 : :

X(26237) lies on these lines: {1, 2}, {22, 16681}, {71, 17142}, {76, 23407}, {99, 310}, {105, 26243}, {183, 18613}, {313, 16684}, {321, 8299}, {350, 1621}, {672, 17165}, {902, 24259}, {1009, 4968}, {1269, 8053}, {2223, 20913}, {2276, 3891}, {3219, 17794}, {3744, 21264}, {3747, 12263}, {3789, 5278}, {4115, 22013}, {4797, 24330}, {7453, 26261}, {7465, 19787}, {17002, 17127}, {26277, 27855}


X(26238) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^4 b - a^3 b^2 + a^4 c + a^3 b c - a^2 b^2 c + a b^3 c - a^3 c^2 - a^2 b c^2 - 2 a b^2 c^2 - b^3 c^2 + a b c^3 - b^2 c^3 : :

X(26238) lies on these lines: {1, 2}, {105, 26232}, {183, 18043}, {675, 932}, {748, 17793}, {902, 24260}, {1447, 7243}, {2108, 17155}, {3941, 18143}, {4228, 26236}, {6327, 20335}, {7465, 19803}, {16684, 18044}, {17140, 17754}, {21264, 24552}, {26241, 26250}


X(26239) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(44), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    2 a^4 - 2 a^2 b^2 + 2 a^2 b c + a b^2 c + b^3 c - 2 a^2 c^2 + a b c^2 - 4 b^2 c^2 + b c^3 : :

X(26239) lies on these lines: {2, 44}, {105, 9089}, {183, 3262}, {659, 693}, {1447, 3263}, {4766, 25342}, {9093, 20568}, {26247, 26273}


X(26240) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(45), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^4 - a^2 b^2 + 4 a^2 b c + 2 a b^2 c + 2 b^3 c - a^2 c^2 + 2 a b c^2 - 2 b^2 c^2 + 2 b c^3 : :

X(26240) lies on these lines: {2, 45}, {56, 85}, {75, 4413}, {183, 3262}, {320, 4860}, {350, 5695}, {2726, 20569}, {3304, 20955}, {4361, 16997}, {5211, 17378}, {8649, 24262}, {9318, 24629}, {17274, 18201}, {20172, 27918}


X(26241) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(55), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a (a^4 - a^3 b + a^2 b^2 - a b^3 - a^3 c + a b^2 c + a^2 c^2 + a b c^2 + 2 b^2 c^2 - a c^3) : :

X(26241) lies on these lines: {1, 19310}, {2, 11}, {3, 16823}, {8, 4223}, {10, 16048}, {22, 1602}, {25, 92}, {35, 19314}, {36, 19326}, {75, 1486}, {111, 9096}, {171, 614}, {183, 18613}, {274, 16876}, {333, 4228}, {379, 20556}, {385, 26274}, {404, 16020}, {612, 3750}, {675, 9086}, {894, 7083}, {927, 2862}, {940, 7191}, {958, 17522}, {999, 19322}, {1281, 20834}, {1311, 9057}, {1447, 1617}, {1958, 2293}, {1995, 26227}, {2175, 17049}, {2223, 11329}, {3290, 3744}, {3295, 16830}, {3303, 19318}, {3550, 5272}, {3684, 3870}, {3705, 25514}, {3746, 19316}, {3920, 5275}, {3996, 10327}, {4224, 5744}, {4239, 26228}, {4336, 17868}, {4339, 17518}, {4363, 16686}, {4436, 23855}, {4438, 25494}, {4459, 26659}, {5010, 19325}, {5015, 7535}, {5020, 7081}, {5205, 11284}, {5248, 19845}, {5276, 17018}, {6998, 10267}, {7295, 24325}, {7379, 11496}, {7385, 11500}, {7427, 22758}, {7453, 26243}, {7493, 26259}, {8193, 16817}, {8298, 17715}, {9059, 9095}, {9746, 15931}, {11248, 21554}, {12329, 17277}, {12410, 16824}, {16608, 21280}, {17000, 20992}, {17792, 26657}, {23865, 26277}, {24199, 24309}, {24320, 24349}, {25279, 25878}, {26229, 26246}, {26238, 26250}


X(26242) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a (a^2 b + b^3 + a^2 c - a b c + c^3) : :

X(26242) lies on these lines: {1, 41}, {2, 37}, {6, 3726}, {8, 16583}, {9, 38}, {22, 2178}, {31, 3509}, {39, 16614}, {43, 3930}, {45, 7292}, {58, 17736}, {63, 16970}, {81, 16972}, {111, 9070}, {172, 16974}, {183, 26247}, {213, 3868}, {238, 5282}, {241, 3598}, {244, 17754}, {304, 17489}, {319, 17007}, {335, 24514}, {386, 3970}, {451, 17916}, {595, 1759}, {612, 1962}, {644, 9620}, {672, 982}, {675, 9072}, {743, 9068}, {910, 3744}, {941, 6601}, {966, 4981}, {986, 1334}, {1100, 17024}, {1108, 5304}, {1194, 17053}, {1196, 21827}, {1201, 3061}, {1475, 3976}, {1627, 5301}, {1766, 19649}, {1841, 6995}, {2176, 3721}, {2238, 3681}, {2243, 21793}, {2275, 26690}, {2295, 20271}, {2298, 4224}, {2303, 4228}, {2329, 3924}, {2975, 16968}, {3116, 24513}, {3208, 4642}, {3230, 3735}, {3496, 3915}, {3501, 24443}, {3617, 16605}, {3670, 3730}, {3673, 26978}, {3679, 16611}, {3684, 3938}, {3705, 21796}, {3727, 3890}, {3731, 5272}, {3782, 17747}, {3876, 3954}, {3889, 20963}, {3896, 10327}, {3920, 5275}, {3950, 4970}, {3953, 4253}, {3959, 14923}, {3997, 5902}, {4071, 25957}, {4385, 27040}, {4868, 9331}, {4911, 26099}, {5015, 26085}, {5089, 6353}, {5262, 16048}, {5266, 17562}, {5268, 16673}, {5279, 25494}, {5283, 16823}, {5297, 16672}, {5749, 20227}, {5839, 19993}, {6998, 25090}, {7426, 16307}, {7735, 8609}, {8607, 22240}, {8610, 9465}, {9347, 20998}, {11115, 16716}, {14482, 16020}, {16549, 24046}, {17355, 24165}, {17750, 21802}, {18600, 25237}, {20875, 20990}, {20911, 27248}, {21073, 23537}, {21281, 26562}, {21813, 27184}, {22021, 22196}, {26227, 26244}, {26229, 26273}, {26232, 26270}, {26252, 26260}

X(26242) = complement of X(31130)
X(26242) = anticomplement of X(30748)


X(26243) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^5 + a^4 b - a^3 b^2 - a^2 b^3 + a^4 c - a^3 b c - a^2 b^2 c - a b^3 c - a^3 c^2 - a^2 b c^2 - 2 a b^2 c^2 - 2 b^3 c^2 - a^2 c^3 - a b c^3 - 2 b^2 c^3 : :

X(26243) lies on these lines: {2, 6}, {8, 6998}, {21, 3948}, {35, 4044}, {76, 21511}, {92, 4231}, {98, 100}, {105, 26237}, {111, 9067}, {187, 16046}, {226, 4987}, {274, 25946}, {329, 7413}, {980, 7751}, {1078, 21495}, {1230, 27174}, {1444, 3770}, {1447, 4359}, {1959, 17739}, {1975, 21508}, {2857, 9090}, {2975, 3765}, {3666, 4396}, {4239, 26227}, {4683, 5988}, {5249, 24602}, {5277, 26643}, {5337, 7780}, {7438, 26268}, {7449, 26264}, {7453, 26241}, {9070, 9093}, {11349, 20913}, {16050, 27040}, {16609, 25998}, {19649, 22712}, {26252, 26258}


X(26244) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^4 - a^3 b - a^2 b^2 - a b^3 - a^3 c - a^2 b c - a b^2 c - b^3 c - a^2 c^2 - a b c^2 - 2 b^2 c^2 - a c^3 - b c^3 : :

X(26244) lies on these lines: {2, 6}, {8, 21965}, {9, 1755}, {10, 98}, {21, 27040}, {32, 13740}, {37, 893}, {76, 16060}, {99, 21937}, {111, 9059}, {115, 17677}, {172, 1220}, {187, 4234}, {198, 1376}, {232, 2322}, {257, 27954}, {281, 4231}, {339, 22366}, {404, 26035}, {612, 3725}, {673, 21264}, {846, 3985}, {904, 27880}, {958, 20471}, {1010, 5277}, {1043, 18755}, {1078, 16061}, {1215, 3509}, {1222, 17962}, {1384, 11354}, {1434, 4754}, {1447, 3739}, {1975, 22267}, {2247, 25607}, {2271, 10449}, {2476, 26085}, {2759, 9136}, {3053, 4195}, {3207, 5793}, {3290, 3757}, {3684, 3741}, {3686, 24239}, {3705, 17275}, {3767, 16062}, {3769, 16972}, {3840, 16503}, {3934, 17681}, {4201, 5254}, {4239, 26258}, {4386, 5263}, {4643, 7179}, {4972, 17737}, {5283, 19270}, {5299, 19864}, {5750, 17122}, {5976, 6626}, {5980, 21898}, {5981, 21869}, {5988, 24697}, {5989, 9509}, {6175, 26079}, {7172, 17314}, {7380, 9753}, {7453, 15621}, {7793, 17688}, {10311, 11109}, {11110, 16589}, {11683, 27697}, {16605, 16824}, {16823, 17448}, {17206, 17499}, {17388, 20056}, {17763, 21840}, {19278, 27523}, {21554, 22712}, {26227, 26242}, {26234, 26273}, {26250, 26251}


X(26245) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    5 a^3 - 3 a^2 b + a b^2 + b^3 - 3 a^2 c - 3 b^2 c + a c^2 - 3 b c^2 + c^3 : :

X(26245) lies on these lines: {1, 2}, {69, 17724}, {105, 9104}, {144, 17002}, {675, 1293}, {902, 24280}, {3210, 5281}, {3475, 3769}, {3598, 26236}, {7426, 16304}, {7465, 19789}, {7474, 16704}, {10565, 20222}


X(26246) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(200), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^5 - 3 a^4 b + 3 a^3 b^2 - a^2 b^3 - 3 a^4 c - 2 a^3 b c - 2 a b^3 c - b^4 c + 3 a^3 c^2 + 4 a b^2 c^2 + b^3 c^2 - a^2 c^3 - 2 a b c^3 + b^2 c^3 - b c^4 : :

X(26246) lies on these lines: {1, 2}, {105, 9057}, {675, 934}, {902, 24283}, {3693, 3891}, {4184, 16750}, {7465, 19790}, {10025, 17127}, {26229, 26241}


X(26247) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^4 + a^3 b - a^2 b^2 + a b^3 + a^3 c - a^2 b c - a^2 c^2 - 2 b^2 c^2 + a c^3 : :

X(26247) lies on these lines: {1, 2}, {9, 17002}, {37, 4396}, {183, 26242}, {335, 675}, {902, 17738}, {1447, 4552}, {4434, 24602}, {4766, 17719}, {4968, 16061}, {5266, 17686}, {6590, 11068}, {7465, 19791}, {7754, 25082}, {9347, 20131}, {26229, 26274}, {26239, 26273}


X(26248) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(661), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    (b - c) (a^4 + a^3 b + a^3 c + b^3 c + b^2 c^2 + b c^3) : :

X(26248) lies on these lines: {2, 661}, {22, 23864}, {523, 21205}, {649, 4486}, {650, 16757}, {659, 693}, {675, 2752}, {798, 8060}, {850, 14296}, {1311, 2856}, {1447, 4077}, {3716, 20295}, {3733, 18160}, {4122, 4467}, {4761, 16830}, {4897, 18004}, {4913, 17161}, {5224, 9013}, {6133, 20906}, {8062, 17217}, {18155, 18158}, {27193, 27294}


X(26249) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(667), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a (b - c) (a^4 + a^2 b^2 + a^2 b c - a b^2 c + a^2 c^2 - a b c^2 + b^2 c^2) : :

X(26249) lies on these lines: {2, 667}, {23, 5990}, {25, 17924}, {81, 9010}, {105, 9081}, {513, 5040}, {612, 4063}, {649, 24462}, {650, 18108}, {669, 804}, {675, 9073}, {693, 21005}, {901, 1633}, {2517, 4057}, {3309, 4220}, {3835, 8635}, {3920, 4083}, {4782, 5297}, {5996, 8639}, {8642, 26146}, {8646, 20295}, {8654, 25537}, {9082, 9111}


X(26250) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^5 - a^2 b^3 + a^3 b c + a b^3 c - b^3 c^2 - a^2 c^3 + a b c^3 - b^2 c^3 : :

X(26250) lies on these lines: {2, 31}, {100, 350}, {183, 3262}, {321, 1376}, {334, 9075}, {901, 1311}, {1155, 20716}, {1281, 5205}, {1429, 20352}, {1631, 18044}, {2517, 4057}, {3006, 5137}, {3240, 17001}, {4495, 4613}, {5297, 16999}, {7081, 20237}, {8626, 24294}, {9059, 9081}, {10130, 26230}, {26238, 26241}, {26244, 26251}, {26264, 26271}


X(26251) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    2 a^2 b + a b^2 + b^3 + 2 a^2 c + 2 b^2 c + a c^2 + 2 b c^2 + c^3 : :

X(26251) lies on these lines: {1, 2}, {100, 9077}, {675, 1268}, {902, 24295}, {1213, 3124}, {1215, 17184}, {1995, 23854}, {2243, 17369}, {3264, 26234}, {3699, 17307}, {3701, 13728}, {3739, 24988}, {3775, 21805}, {3844, 3936}, {3952, 4357}, {4026, 4358}, {4239, 26262}, {4427, 17355}, {4689, 17359}, {4756, 17258}, {4970, 6535}, {7465, 19808}, {7485, 23361}, {8229, 9956}, {9330, 17248}, {9347, 17381}, {17126, 17368}, {17357, 24542}, {24695, 26034}, {25001, 25882}, {26244, 26250}


X(26252) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^8 + 3 a^7 b + a^6 b^2 - a^5 b^3 - a^4 b^4 - 3 a^3 b^5 - a^2 b^6 + a b^7 + 3 a^7 c + 3 a^6 b c - a^5 b^2 c - a^4 b^3 c - 3 a^3 b^4 c - 3 a^2 b^5 c + a b^6 c + b^7 c + a^6 c^2 - a^5 b c^2 + 2 a^3 b^3 c^2 - a^2 b^4 c^2 - a b^5 c^2 - a^5 c^3 - a^4 b c^3 + 2 a^3 b^2 c^3 + 2 a^2 b^3 c^3 - a b^4 c^3 - b^5 c^3 - a^4 c^4 - 3 a^3 b c^4 - a^2 b^2 c^4 - a b^3 c^4 - 3 a^3 c^5 - 3 a^2 b c^5 - a b^2 c^5 - b^3 c^5 - a^2 c^6 + a b c^6 + a c^7 + b c^7 : :

X(26252) lies on these lines: {2, 3}, {101, 306}, {111, 1305}, {1297, 9057}, {3430, 26006}, {26242, 26260}, {26243, 26258}


X(26253) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a (a^8 + a^7 b + a^6 b^2 + a^5 b^3 - a^4 b^4 - a^3 b^5 - a^2 b^6 - a b^7 + a^7 c + 3 a^6 b c + a^5 b^2 c - a^4 b^3 c - a^3 b^4 c - 3 a^2 b^5 c - a b^6 c + b^7 c + a^6 c^2 + a^5 b c^2 - a^2 b^4 c^2 - a b^5 c^2 + a^5 c^3 - a^4 b c^3 + 2 a^2 b^3 c^3 - a b^4 c^3 - b^5 c^3 - a^4 c^4 - a^3 b c^4 - a^2 b^2 c^4 - a b^3 c^4 - a^3 c^5 - 3 a^2 b c^5 - a b^2 c^5 - b^3 c^5 - a^2 c^6 - a b c^6 - a c^7 + b c^7) : :

X(26253) lies on these lines: {2, 3}, {100, 2373}, {111, 13397}, {1297, 9058}, {3101, 5297}, {9070, 26703}, {26227, 26260}, {26265, 26266}


X(26254) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^9 - 2 a^8 b - 2 a^7 b^2 + 2 a^6 b^3 + 2 a^4 b^5 + 2 a^3 b^6 - 2 a^2 b^7 - a b^8 - 2 a^8 c - 3 a^7 b c - a^6 b^2 c + a^5 b^3 c + 3 a^4 b^4 c + 3 a^3 b^5 c + a^2 b^6 c - a b^7 c - b^8 c - 2 a^7 c^2 - a^6 b c^2 + 2 a^5 b^2 c^2 - a^4 b^3 c^2 + 3 a^2 b^5 c^2 - b^7 c^2 + 2 a^6 c^3 + a^5 b c^3 - a^4 b^2 c^3 - 2 a^3 b^3 c^3 - 2 a^2 b^4 c^3 + a b^5 c^3 + b^6 c^3 + 3 a^4 b c^4 - 2 a^2 b^3 c^4 + 2 a b^4 c^4 + b^5 c^4 + 2 a^4 c^5 + 3 a^3 b c^5 + 3 a^2 b^2 c^5 + a b^3 c^5 + b^4 c^5 + 2 a^3 c^6 + a^2 b c^6 + b^3 c^6 - 2 a^2 c^7 - a b c^7 - b^2 c^7 - a c^8 - b c^8 : :

X(26254) lies on these lines: {2, 3}, {109, 307}, {1297, 9056}


X(26255) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    7 a^6 - a^4 b^2 - 7 a^2 b^4 + b^6 - a^4 c^2 + 18 a^2 b^2 c^2 - b^4 c^2 - 7 a^2 c^4 - b^2 c^4 + c^6 : :

X(26255) lies on these lines: {2, 3}, {6, 20192}, {69, 10546}, {110, 1992}, {111, 1302}, {476, 10102}, {597, 3066}, {1007, 7664}, {1285, 1383}, {1384, 16317}, {1495, 11179}, {2373, 9064}, {2393, 5640}, {2770, 9060}, {3580, 11180}, {3618, 10545}, {5642, 20423}, {7665, 7774}, {7737, 10418}, {8263, 11160}, {8585, 21843}, {8644, 21732}, {9058, 9061}, {9143, 20772}, {11002, 14984}, {11693, 13352}, {16279, 16319}, {18928, 26881}

X(26255) = anticomplement of X(32216)


X(26256) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    3*a^6-(b+c)^2*a^4-2*(b+c)*b*c*a^3-(3*b^2-4*b*c+3*c^2)*(b+c)^2*a^2-2*(b+c)*(b^2+c^2)*b*c*a+(b^4-c^4)*(b^2-c^2) : :

X(26256) lies on these lines: {2, 3}, {7735, 8609}, {26230, 26267}


X(26257) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^6 - a^4 b^2 - 2 a^2 b^4 - a^4 c^2 + a^2 b^2 c^2 - b^4 c^2 - 2 a^2 c^4 - b^2 c^4 : :

X(26257) lies on these lines: {2, 3}, {111, 308}, {115, 11056}, {141, 7665}, {305, 7781}, {385, 9465}, {574, 11059}, {1078, 3291}, {1194, 7760}, {1196, 1799}, {2373, 9229}, {3266, 7783}, {3329, 26276}, {5254, 19577}, {7664, 7931}, {7831, 10418}, {7842, 15820}, {7898, 9745}, {10163, 14061}, {24726, 25344}


X(26258) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(7), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    3 a^4 - 2 a^3 b - 2 a b^3 + b^4 - 2 a^3 c + 2 a^2 b c - 2 b^2 c^2 - 2 a c^3 + c^4 : :

X(26258) lies on these lines: {2, 7}, {8, 101}, {41, 12649}, {169, 10527}, {388, 27068}, {631, 25082}, {644, 5657}, {910, 3434}, {1055, 24247}, {1759, 11415}, {2082, 10529}, {2329, 5554}, {2975, 6554}, {3554, 5304}, {3872, 8074}, {4232, 8756}, {4239, 26244}, {4302, 21090}, {4936, 9588}, {5227, 27522}, {5552, 17742}, {5819, 11680}, {6910, 16601}, {6921, 25066}, {7195, 27006}, {7288, 26690}, {7735, 8609}, {10327, 26232}, {17001, 17316}, {17744, 26364}, {26243, 26252}


X(26259) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(12), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    2 a^6 - a^4 b^2 - 2 a^2 b^4 + b^6 + 2 a^4 b c - 2 a^3 b^2 c - a^4 c^2 - 2 a^3 b c^2 - 2 a^2 b^2 c^2 - 2 a b^3 c^2 - b^4 c^2 - 2 a b^2 c^3 - 2 a^2 c^4 - b^2 c^4 + c^6 : :

X(26259) lies on these lines: {2, 12}, {140, 5205}, {468, 16823}, {993, 16067}, {3757, 6676}, {7081, 7499}, {7426, 26261}, {7493, 26241}, {7495, 26227}, {26230, 26268}


X(26260) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(19), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^7 + a^6 b - a^3 b^4 - a^2 b^5 + a^6 c - a^4 b^2 c - a^2 b^4 c + b^6 c - a^4 b c^2 + 2 a^3 b^2 c^2 - b^5 c^2 - a^3 c^4 - a^2 b c^4 - a^2 c^5 - b^2 c^5 + b c^6 : :

X(26260) lies on these lines: {2, 19}, {22, 1602}, {25, 1441}, {105, 1305}, {183, 26268}, {304, 1310}, {347, 1447}, {1231, 3556}, {1370, 20291}, {1973, 26203}, {2373, 9070}, {3007, 7493}, {6360, 26274}, {7520, 16823}, {8193, 20235}, {9086, 26703}, {26227, 26253}, {26242, 26252}


X(26261) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(35), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a (a^5 - a b^4 - a^3 b c + a^2 b^2 c + a^2 b c^2 + 4 a b^2 c^2 + b^3 c^2 + b^2 c^3 - a c^4) : :

X(26261) lies on these lines: {2, 35}, {23, 16823}, {100, 17263}, {105, 4239}, {678, 5297}, {931, 9094}, {1302, 1311}, {1995, 26227}, {3006, 4223}, {3757, 13595}, {4359, 20988}, {5205, 16042}, {7295, 26627}, {7426, 26259}, {7453, 26237}, {20872, 24589}


X(26262) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(36), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a (a^5 - a b^4 + a^3 b c - a^2 b^2 c - a^2 b c^2 + 4 a b^2 c^2 - b^3 c^2 - b^2 c^3 - a c^4) : :

X(26262) lies on these lines: {2, 36}, {23, 5205}, {100, 17264}, {1995, 26227}, {2517, 4057}, {2726, 9059}, {2752, 9070}, {4239, 26251}, {4358, 20989}, {5329, 26688}, {7081, 13595}, {7426, 26231}, {7449, 26266}, {16042, 16823}, {20875, 23386}


X(26263) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(38), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^4 b - a^3 b^2 + a^4 c + 2 a^2 b^2 c + b^4 c - a^3 c^2 + 2 a^2 b c^2 + b c^4 : :

X(26263) lies on these lines: {2, 38}, {75, 26229}, {518, 5741}, {1311, 26711}, {3112, 9073}, {4239, 26227}, {5258, 16823}, {7081, 20237}


X(26264) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(56), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a (a^5 - a b^4 + 2 a^3 b c - 2 a^2 b^2 c - 2 a^2 b c^2 + 4 a b^2 c^2 - 2 b^3 c^2 - 2 b^2 c^3 - a c^4) : :

X(26264) lies on these lines: {2, 12}, {3, 5205}, {22, 1603}, {25, 318}, {45, 2243}, {63, 9364}, {100, 198}, {105, 9104}, {183, 26236}, {197, 312}, {612, 5250}, {1089, 19845}, {1311, 9059}, {1460, 27064}, {1698, 19844}, {1995, 26227}, {2223, 11345}, {3011, 16048}, {3596, 8707}, {3699, 12329}, {3701, 11337}, {3757, 5020}, {3890, 3920}, {4220, 26935}, {4239, 26244}, {4434, 7295}, {5121, 8666}, {5211, 12513}, {7085, 27538}, {7449, 26243}, {7493, 9058}, {11284, 16823}, {26250, 26271}


X(26265) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(57), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^5 + a^4 b - a^3 b^2 - a^2 b^3 + a^4 c - 2 a^3 b c + 2 a^2 b^2 c - 2 a b^3 c + b^4 c - a^3 c^2 + 2 a^2 b c^2 - b^3 c^2 - a^2 c^3 - 2 a b c^3 - b^2 c^3 + b c^4 : :

X(26265) lies on these lines: {2, 7}, {77, 20248}, {100, 312}, {198, 1229}, {220, 24633}, {1055, 24266}, {1696, 24547}, {1995, 26227}, {2324, 21273}, {5227, 27108}, {6078, 9073}, {9057, 26703}, {9095, 9104}, {9310, 26621}, {11683, 26669}, {16609, 26653}, {17134, 20927}, {20244, 24590}, {20262, 21286}, {26253, 26266}


X(26266) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(58), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^6 + a^5 b - a^3 b^3 - a^2 b^4 + a^5 c + a^4 b c - a^3 b^2 c - a^2 b^3 c - a^3 b c^2 - 2 a b^3 c^2 - b^4 c^2 - a^3 c^3 - a^2 b c^3 - 2 a b^2 c^3 - 2 b^3 c^3 - a^2 c^4 - b^2 c^4 : :

X(26266) lies on these lines: {2, 58}, {98, 9059}, {100, 4043}, {183, 1995}, {199, 1230}, {313, 835}, {1311, 9070}, {2373, 9057}, {3006, 6998}, {4239, 26227}, {7449, 26262}, {7453, 26237}, {26244, 26250}, {26253, 26265}


X(26267) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(63), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^5 + a^4 b - a^3 b^2 - a^2 b^3 + a^4 c + 2 a^2 b^2 c + b^4 c - a^3 c^2 + 2 a^2 b c^2 - b^3 c^2 - a^2 c^3 - b^2 c^3 + b c^4 : :

X(26267) lies on these lines: {2, 7}, {92, 108}, {100, 20173}, {105, 9057}, {198, 17863}, {321, 1376}, {612, 9746}, {614, 8054}, {919, 6654}, {1055, 24268}, {1696, 25001}, {1999, 17001}, {2178, 17134}, {3086, 5813}, {3187, 3684}, {3550, 24428}, {3673, 11349}, {3742, 19684}, {4232, 23710}, {4239, 26227}, {4414, 4656}, {5227, 27039}, {5739, 24477}, {7191, 20277}, {8557, 14543}, {9310, 16609}, {14557, 17626}, {16412, 20880}, {21270, 24005}, {26230, 26256}, {26242, 26252}


X(26268) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(65), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    2 a^5 b - 2 a^3 b^3 + 2 a^5 c - 2 a^4 b c + a^3 b^2 c - a^2 b^3 c - a b^4 c + b^5 c + a^3 b c^2 - a b^3 c^2 - 2 a^3 c^3 - a^2 b c^3 - a b^2 c^3 - 2 b^3 c^3 - a b c^4 + b c^5 : :

X(26268) lies on these lines: {2, 65}, {100, 1229}, {183, 26260}, {314, 931}, {1302, 26703}, {1311, 9070}, {1995, 26227}, {3757, 4223}, {4385, 19256}, {4968, 19245}, {7081, 23528}, {7438, 26243}, {7735, 8609}, {11688, 17862}, {26230, 26259}


X(26269) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(66), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    3 a^10 + a^8 b^2 - 2 a^6 b^4 - 2 a^4 b^6 - a^2 b^8 + b^10 + a^8 c^2 - b^8 c^2 - 2 a^6 c^4 + 2 a^2 b^4 c^4 - 2 a^4 c^6 - a^2 c^8 - b^2 c^8 + c^10 : :

X(26269) lies on these lines: {2, 66}, {98, 7505}, {232, 800}, {315, 827}, {1995, 7792}, {3090, 7852}, {3518, 9753}, {7556, 12253}


X(26270) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(82), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    (a^2 + b^2) (a^2 + c^2) (a^3 - b^3 - b^2 c - b c^2 - c^3) : :

X(26270) lies on these lines: {2, 82}, {251, 18082}, {321, 16277}, {831, 1930}, {1402, 1441}, {9070, 9076}, {10130, 26230}, {26232, 26242}


X(26271) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(87), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^5 b^2 - a^4 b^3 - 2 a^5 b c + a^4 b^2 c + 2 a^3 b^3 c + a^2 b^4 c + a^5 c^2 + a^4 b c^2 - a^3 b^2 c^2 - 2 a^2 b^3 c^2 - a^4 c^3 + 2 a^3 b c^3 - 2 a^2 b^2 c^3 + 4 a b^3 c^3 - b^4 c^3 + a^2 b c^4 - b^3 c^4 : :

X(26271) lies on these lines: {2, 87}, {183, 18043}, {932, 6376}, {9059, 9082}, {26227, 26274}, {26250, 26264}


X(26272) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(88), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^5 + a^4 b - a^3 b^2 - a^2 b^3 + a^4 c - 5 a^3 b c + 5 a^2 b^2 c - 5 a b^3 c + 2 b^4 c - a^3 c^2 + 5 a^2 b c^2 + 2 a b^2 c^2 - a^2 c^3 - 5 a b c^3 + 2 b c^4 : :

X(26272) lies on these lines: {2, 45}, {100, 2726}, {105, 9059}, {5260, 9369}, {8649, 24277}


X(26273) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(190), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^4-(b+c)*a^3-(b^2-3*b*c+c^2)*a^2-(b^2-c^2)*(b-c)*a+b*c*(b-c)^2 : :

X(26273) lies on these lines: {1, 24685}, {2, 45}, {19, 28023}, {100, 24403}, {101, 21208}, {105, 659}, {106, 514}, {111, 675}, {183, 26274}, {241, 292}, {244, 9318}, {335, 27912}, {385, 3226}, {524, 5211}, {527, 5121}, {536, 5205}, {544, 6788}, {614, 3248}, {664, 9259}, {673, 27918}, {743, 9073}, {1015, 3732}, {1054, 24398}, {1647, 24712}, {3125, 24203}, {3699, 9055}, {3756, 5845}, {4000, 26007}, {4360, 16997}, {4644, 4860}, {5272, 9359}, {5275, 16518}, {5304, 23972}, {8649, 24281}, {9083, 9109}, {9094, 9110}, {9095, 9097}, {17063, 24333}, {17321, 26629}, {17719, 25342}, {24358, 25531}, {24841, 27921}, {26229, 26242}, {26234, 26244}, {26239, 26247}


X(26274) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^3 b + a b^3 + a^3 c - 3 a^2 b c - a b^2 c - b^3 c - a b c^2 + a c^3 - b c^3 : :

X(26274) lies on these lines: {1, 21216}, {2, 37}, {38, 17257}, {69, 3726}, {105, 330}, {183, 26273}, {193, 3873}, {194, 16823}, {385, 26241}, {612, 17319}, {614, 894}, {3230, 24282}, {3241, 17497}, {3616, 17489}, {3729, 4011}, {3730, 24166}, {4223, 19851}, {4360, 5275}, {4393, 5276}, {4970, 5268}, {5211, 7774}, {5550, 25263}, {6360, 26260}, {7191, 17379}, {16020, 25242}, {17001, 20045}, {17004, 26231}, {17480, 21226}, {17760, 21214}, {20271, 21281}, {21840, 26626}, {24349, 24514}, {26227, 26271}, {26228, 26281}, {26229, 26247}


X(26275) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(900), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    (b - c) (4 a^3 - a^2 b - b^3 - a^2 c - 2 a b c + b^2 c + b c^2 - c^3) : :

X(26275) lies on these lines: {2, 900}, {105, 659}, {351, 523}, {513, 1638}, {522, 4763}, {551, 23888}, {665, 3290}, {918, 4448}, {1960, 10015}, {2786, 3716}, {2804, 11124}, {2826, 14419}, {3004, 26277}, {3776, 8689}, {4435, 5275}, {4555, 9089}, {6050, 21185}, {6366, 25569}, {6550, 14422}, {8638, 20875}, {11712, 24685}


X(26276) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(187), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    2 a^6 - 2 a^2 b^4 + 4 a^2 b^2 c^2 - b^4 c^2 - 2 a^2 c^4 - b^2 c^4 : :

X(26276) lies on these lines: {2, 187}, {23, 99}, {25, 8024}, {32, 16055}, {69, 10546}, {76, 14002}, {98, 9080}, {111, 385}, {126, 6781}, {183, 1995}, {325, 3233}, {328, 476}, {340, 4232}, {511, 5468}, {524, 2502}, {669, 804}, {754, 10418}, {1007, 7493}, {1078, 16042}, {1236, 13595}, {1302, 2857}, {2374, 2858}, {3329, 26257}, {3793, 16317}, {5104, 5108}, {5914, 22329}, {6082, 9084}, {6325, 18023}, {7492, 11059}, {7533, 11056}, {7665, 7779}, {7766, 9465}, {9146, 15107}, {9775, 11676}, {9855, 10717}, {10754, 13192}

X(26276) = isotomic conjugate of the isogonal conjugate of X(32217)


X(26277) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(649), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    (b - c) (a^4 + a^3 b + a^3 c - a^2 b c + b^2 c^2) : :

X(26277) lies on these lines: {2, 649}, {23, 5991}, {86, 9002}, {105, 9073}, {514, 5029}, {659, 693}, {661, 4817}, {667, 3766}, {669, 804}, {675, 2726}, {927, 9057}, {1311, 2862}, {1443, 1447}, {1978, 8709}, {3004, 26275}, {3261, 4057}, {4025, 13246}, {4106, 4782}, {4406, 4491}, {4885, 24623}, {6586, 10566}, {6590, 11068}, {9059, 9089}, {17072, 21303}, {20316, 21304}, {23865, 26241}, {26237, 27855}


X(26278) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(668), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a (a^3 b^2 + a b^4 - 3 a^3 b c + a^2 b^2 c - a b^3 c - b^4 c + a^3 c^2 + a^2 b c^2 - a b^2 c^2 + b^3 c^2 - a b c^3 + b^2 c^3 + a c^4 - b c^4) : :

X(26278) lies on these lines: {2, 668}, {98, 9079}, {105, 111}, {106, 14438}, {385, 17961}, {513, 739}, {675, 743}, {1180, 13006}, {1415, 1627}, {5304, 23980}, {9082, 9111}, {9465, 26228}


X(26279) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(894), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^4 - a^3 b - a^2 b^2 - a b^3 - a^3 c + a^2 b c - a^2 c^2 - 2 b^2 c^2 - a c^3 : :

X(26279) lies on these lines: {1, 17001}, {2, 7}, {105, 9096}, {183, 26242}, {257, 1311}, {385, 7191}, {614, 17002}, {1055, 24291}, {1201, 17739}, {2975, 25994}, {3705, 17007}, {3920, 16997}, {5297, 16999}, {7292, 16998}, {11285, 25082}, {26227, 26271}, {26234, 26244}, {26561, 27068}, {26959, 27010}, {26971, 26977}


X(26280) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(896), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    2 a^5 + a^4 b - a^3 b^2 - 2 a^2 b^3 + a^4 c + 2 a^2 b^2 c + b^4 c - a^3 c^2 + 2 a^2 b c^2 - 2 b^3 c^2 - 2 a^2 c^3 - 2 b^2 c^3 + b c^4 : :

X(26280) lies on these lines: {2, 896}, {659, 693}, {1281, 5205}, {1290, 1311}, {3248, 7292}, {4239, 26227}, {5563, 16823}


X(26281) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(984), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^4 b - a^3 b^2 + a^4 c + a^3 b c + 2 a^2 b^2 c + a b^3 c + b^4 c - a^3 c^2 + 2 a^2 b c^2 + a b c^3 + b c^4 : :

X(26281) lies on these lines: {2, 38}, {105, 9068}, {183, 3262}, {675, 9071}, {870, 9073}, {3757, 26232}, {3873, 4417}, {4359, 4413}, {8610, 9465}, {8666, 16823}, {26228, 26274}


X(26282) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1150), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^5 + 2 a^4 b + a b^4 + 2 a^4 c + a^2 b^2 c + b^4 c + a^2 b c^2 - b^3 c^2 - b^2 c^3 + a c^4 + b c^4 : :

X(26282) lies on these lines: {2, 6}, {31, 908}, {105, 1995}, {187, 24296}, {609, 24630}, {985, 17719}, {1447, 4850}, {1914, 17720}, {2298, 27254}, {3972, 11352}, {5988, 24725}, {6998, 19767}, {8229, 9753}, {16020, 19316}, {16412, 16752}


X(26283) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(24), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^2 (a^10 - a^8 b^2 - 2 a^6 b^4 + 2 a^4 b^6 + a^2 b^8 - b^10 - a^8 c^2 - 2 a^4 b^4 c^2 + 3 b^8 c^2 - 2 a^6 c^4 - 2 a^4 b^2 c^4 + 6 a^2 b^4 c^4 - 2 b^6 c^4 + 2 a^4 c^6 - 2 b^4 c^6 + a^2 c^8 + 3 b^2 c^8 - c^10) : :

X(26283) lies on these lines: {2, 3}, {74, 19376}, {110, 159}, {111, 13398}, {161, 394}, {925, 2373}, {1351, 15135}, {1993, 15073}, {2697, 16167}, {3100, 10833}, {4296, 18954}, {5640, 19121}, {9464, 22241}, {9465, 10313}, {9914, 12279}, {9919, 11820}, {9937, 11412}, {10316, 14580}, {11064, 15577}, {11416, 11422}, {11750, 19908}, {12289, 12301}, {12310, 15106}, {15574, 26233}, {19377, 19381}


X(26284) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(26), WHERE A'B'C' = GEMINI TRIANGLE 44

Barycentrics    a^2 (a^10 - a^8 b^2 - 2 a^6 b^4 + 2 a^4 b^6 + a^2 b^8 - b^10 - a^8 c^2 - 2 a^6 b^2 c^2 - 2 a^4 b^4 c^2 + 2 a^2 b^6 c^2 + 3 b^8 c^2 - 2 a^6 c^4 - 2 a^4 b^2 c^4 - 2 a^2 b^4 c^4 - 2 b^6 c^4 + 2 a^4 c^6 + 2 a^2 b^2 c^6 - 2 b^4 c^6 + a^2 c^8 + 3 b^2 c^8 - c^10) : :

X(26284) lies on these lines: {2, 3}, {110, 20987}, {161, 3060}, {311, 26233}, {1176, 5640}, {1288, 2373}, {19153, 27085}


X(26285) =  COMPLEMENT OF X(10525)

Barycentrics    a^2 (a^5-a^4 b-2 a^3 b^2+2 a^2 b^3+a b^4-b^5-a^4 c+2 a^3 b c+a^2 b^2 c-2 a b^3 c-2 a^3 c^2+a^2 b c^2+b^3 c^2+2 a^2 c^3-2 a b c^3+b^2 c^3+a c^4-c^5) : :
X(26285) = 3*X[2]-X[10525], X[20]+X[10526], X[30]-X[6796], X[511]-X[5495], X[528]-X[10943], X[550]-X[5841], X[952]-X[5450], X[1158]-X[2771], X[2829]-X[10942], X[3189]+3*X[5770], 3*X[4421]+X[12114], X[5844]-X[8666], X[14988]-X[22836]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28557.

X(26285) lies on these lines: {1,3}, {2,10525}, {5,3035}, {8,6950}, {10,6914}, {12,24466}, {20,10526}, {21,25005}, {24,1872}, {30,6796}, {78,5694}, {100,355}, {104,3871}, {140,3816}, {404,5886}, {405,11231}, {474,11230}, {496,6713}, {497,6961}, {498,6923}, {511,5495}, {528,10943}, {549,10199}, {550,5841}, {601,5396}, {603,5399}, {946,6924}, {952,5450}, {962,6942}, {993,5690}, {1012,11499}, {1030,1766}, {1158,2771}, {1376,3560}, {1479,6958}, {1483,25439}, {1490,12660}, {1538,3149}, {1621,6940}, {1698,7489}, {1837,10058}, {2550,6892}, {2829,10942}, {2932,4855}, {3085,6948}, {3189,5770}, {3434,6977}, {3474,5761}, {3526,5259}, {3583,6971}, {3651,5812}, {3654,17549}, {3656,13587}, {3811,12341}, {3885,12737}, {4188,5603}, {4189,5657}, {4276,15952}, {4294,6891}, {4302,6928}, {4421,12114}, {4640,14454}, {4848,17010}, {4996,14923}, {5218,6850}, {5225,6978}, {5250,19524}, {5267,11362}, {5310,16434}, {5432,6842}, {5440,5887}, {5552,6938}, {5587,13743}, {5687,22758}, {5691,18524}, {5777,11517}, {5844,8666}, {5881,12331}, {6265,17100}, {6284,6882}, {6831,18407}, {6847,18517}, {6876,9778}, {6905,12699}, {6909,11491}, {6911,9955}, {6921,10531}, {6952,13199}, {6966,12116}, {6972,20066}, {7491,15338}, {7701,13146}, {7741,10738}, {8553,21853}, {9817,13222}, {10090,11376}, {10785,20075}, {11929,12943}, {12528,12738}, {12611,12775}, {12645,18515}, {14988,22836}, {15171,15845}, {17662,18976}, {19525,19860}

Let A'B'C' be the medial triangle. Let LA be the reflection of line B'C' in the internal angle bisector of A, and define LB and LC cyclically. Let A" = LB∩LC, B" = LC∩LA, C" = LA∩LB. A"B"C" is the mid-triangle of the intangents and tangential triangles. A"B"C" is homothetic to the intangents, extangents, and tangential triangles at X(55), and to the Kosnita triangle at X(26285). (Randy Hutson, June 7, 2019)

X(26285) = midpoint of X(i) and X(j) for these {i,j}: {3,11248}, {3811,24467}, {5450,8715}
X(26285 ) = reflection of X(1482) in X(11567)
X(26285) = complement of X(10525)
X(26285) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {1,40,25413}, {3,55,1385}, {3,56,23961}, {3,1482,36}, {3,3295,10269}, {3,10267,13624}, {3,10306,11249}, {3,10310,3579}, {3,10679,56}, {3,10680,5204}, {3,11508,18857}, {3,11849,1}, {3,12702,11012}, {3,22765,7280}, {35,2077,3}, {40,5010,3}, {55,8071,9957}, {56,10679,10222}, {100,6906,355}, {1012,11499,18480}, {1376,3560,9956}, {1385,10222,25405}, {1385,10284,1}, {1470,11508,24928}, {3295,10269,15178}, {5217,10310,3}, {5432,11826,6842}, {5537,11012,12702}, {6909,11491,18481}, {6911,11496,9955}, {7280,7982,22765}, {8069,11509,942}, {10222,23961,56}, {11248,11249,10306}

X(26285) = X(10224)-of-excentral-triangle


X(26286) =  COMPLEMENT OF X(10526)

Barycentrics    a^2 (a^5-a^4 b-2 a^3 b^2+2 a^2 b^3+a b^4-b^5-a^4 c+2 a^3 b c-a^2 b^2 c-2 a b^3 c+2 b^4 c-2 a^3 c^2-a^2 b c^2+4 a b^2 c^2-b^3 c^2+2 a^2 c^3-2 a b c^3-b^2 c^3+a c^4+2 b c^4-c^5) : :
X(26286) = 3*X[2]-X[10526], X[20]+X[10525], X[30]-X[3829], X[529]-X[10942], X[952]-X[6796], X[2771]-X[6261], X[2818]-X[10282], X[5842]-X[10943], X[5844]-X[8715], X[6985]+X[12114], 3*X[11194]+X[11500]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28557.

X(26286) lies on these lines: {1,3}, {2,10526}, {5,993}, {8,6942}, {10,6924}, {11,7491}, {20,10525}, {21,5886}, {30,3829}, {48,5755}, {63,5694}, {78,22935}, {84,6597}, {104,411}, {140,25466}, {355,2975}, {378,1872}, {382,18515}, {388,6954}, {405,11230}, {474,11231}, {495,15865}, {499,6928}, {529,10942}, {548,12511}, {549,10197}, {550,1484}, {573,7113}, {946,5267}, {952,6796}, {956,11499}, {958,6911}, {962,6950}, {1006,5253}, {1012,22793}, {1193,5398}, {1437,3417}, {1468,5396}, {1478,6863}, {1656,5251}, {1699,13743}, {1766,5124}, {2551,6970}, {2771,6261}, {2818,10282}, {2915,8279}, {3086,6868}, {3149,18480}, {3218,21740}, {3436,6880}, {3560,9955}, {3583,15446}, {3585,6980}, {3616,6875}, {3632,12331}, {3653,21161}, {3654,13587}, {3656,17549}, {3869,4996}, {3916,5887}, {4188,5657}, {4189,5603}, {4278,15952}, {4293,6825}, {4299,6923}, {4973,5884}, {5080,6949}, {5248,5901}, {5250,19525}, {5258,5790}, {5260,6946}, {5265,6987}, {5288,12645}, {5303,6906}, {5322,19544}, {5428,11281}, {5433,6882}, {5690,25440}, {5731,6876}, {5842,10943}, {5844,8715}, {5881,18524}, {6326,6763}, {6713,6922}, {6827,7288}, {6842,7354}, {6848,18516}, {6881,24953}, {6883,25524}, {6885,19843}, {6910,10532}, {6934,10527}, {6960,20067}, {6962,12115}, {6985,12114}, {7489,8227}, {10058,12701}, {10090,12619}, {10786,20076}, {10913,18763}, {11194,11500}, {11483,11512}, {11928,12953}, {12053,17010}, {12515,18861}, {12556,12913}, {15326,15908}, {15844,18990}, {15888,21155}, {17734,19550}, {18761,19541}, {19524,19860}, {19861,21165}

X(26286) = midpoint of X(i) and X(j) for these {i,j}: {3,11249}, {20,10525}, {6261,24467}, {6796,8666}, {6985,12114}, {11248,22770}
X(26286) = complement of X(10526)
X(26286) = X(13406)-of-excentral-triangle
X(26286) = 2nd-isogonal-triangle-of-X(1)-to-ABC similarity image of X(3)
X(26286) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {3,56,1385}, {3,999,10267}, {3,1482,35}, {3,3428,3579}, {3,5204,23961}, {3,10246,10902}, {3,10269,13624}, {3,10679,5217}, {3,10680,55}, {3,11849,5010}, {3,12702,2077}, {3,22765,1}, {3,22770,11248}, {36,11012,3}, {40,7280,3}, {55,10680,10222}, {56,5204,7742}, {56,7742,5126}, {56,8071,942}, {104,411,18481}, {484,11014,25413}, {946,5267,6914}, {958,6911,9956}, {999,10267,15178}, {2975,6905,355}, {3149,22758,18480}, {3428,5204,3}, {3560,22753,9955}, {3579,23961,3}, {5010,7982,11849}, {5433,11827,6882}, {5563,10902,10246}, {5901,7508,5248}, {8069,10966,9957}, {11248,11249,22770}, {13373,13624,1385}


X(26287) =  X(1)X(3)∩X(5)X(214)

Barycentrics    -a (2 a^6-3 a^5 b-3 a^4 b^2+6 a^3 b^3-3 a b^5+b^6-3 a^5 c+8 a^4 b c-3 a^3 b^2 c-6 a^2 b^3 c+6 a b^4 c-2 b^5 c-3 a^4 c^2-3 a^3 b c^2+10 a^2 b^2 c^2-3 a b^3 c^2-b^4 c^2+6 a^3 c^3-6 a^2 b c^3-3 a b^2 c^3+4 b^3 c^3+6 a b c^4-b^2 c^4-3 a c^5-2 b c^5+c^6) : :
X(26287) = X[2771]-X[5450], X[5840]-X[5901]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28557.

X(26287) lies on these lines: {1,3}, {5,214}, {355,6224}, {631,2320}, {944,6972}, {1389,13587}, {1483,11715}, {2475,5886}, {2476,11230}, {2771,5450}, {3616,6951}, {3871,12737}, {4511,5694}, {5443,12119}, {5693,18515}, {5731,6903}, {5840,5901}, {6261,12524}, {6265,6906}, {6830,18480}, {6840,18481}, {10950,12619}, {11231,25005}, {18357,20400}

X(26287) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {1,35,25414}, {1,11849,10284}, {3,1482,484}, {3,5903,10225}, {1385,10222,1319}, {1385,24929,15178}, {6224,6952,355}, {10222,10225,5903}, {13624,15178,9940}


X(26288) =  REFLECTION OF X(4) IN X(591)

Barycentrics    5 a^4-4 a^2 b^2-b^4-4 a^2 c^2+2 b^2 c^2-c^4+4 (2 a^2-b^2-c^2) S : :
X(26288) =2 X[1991] - 3 X[3524], 7 X[488] - 4 X[6311], X[5871] - 4 X[9733].

See Tran Quang Hung, Antreas Hatzipolakis and Peter Moses, Hyacinthos 28564.

X(26288) lies on these lines: {2,372}, {3,5861}, {4,591}, {30,1160}, {148,22601}, {193,9541}, {194,13678}, {371,13712}, {376,524}, {490,1588}, {492,23249}, {754,8982}, {1270,6560}, {1271,6396}, {1991,3524}, {3593,6564}, {3594,7375}, {5591,6398}, {5871,9733}, {6231,9880}, {9770,13674}, {10783,12305}, {23269,23311}

X(26288) = reflection of X(i) in X(j) for these {i,j}: {4, 591}, {5861, 3}


X(26289) =  REFLECTION OF X(4) IN X(1991)

Barycentrics    5 a^4-4 a^2 b^2-b^4-4 a^2 c^2+2 b^2 c^2-c^4-4 (2 a^2-b^2-c^2) S : :
X(26289) =2 X[591] - 3 X[3524], 7 X[487] - 4 X[6315], X[5870] - 4 X[9732].

See Tran Quang Hung, Antreas Hatzipolakis and Peter Moses, Hyacinthos 28564.

X(26289) lies on these lines: {2,371}, {3,5860}, {4,1991}, {30,1161}, {69,9541}, {148,22630}, {194,13798}, {372,13835}, {376,524}, {489,1587}, {591,3524}, {1270,6200}, {1271,6561}, {3592,7376}, {3595,6565}, {5590,6221}, {5870,9732}, {6230,9880}, {9770,13794}, {10784,12306}, {23275,23312}

X(26289) = reflection of X(i) in X(j) for these {i,j}: {4, 1991}, {5860, 3}

leftri

Endo-homothetic centers: X(26290)-X(26525)

rightri

This preamble and centers X(26290)-X(26525) were contributed by César Eliud Lozada, October 31, 2018.

This section comprises the endo-homothetic centers of the family of triangles homothetic with the reference triangle ABC. This family is composed by the following 40 triangles:

ABC, ABC-X3 reflections, anti-Aquila, anti-Ara, 5th anti-Brocard, 2nd anti-circumperp-tangential, anti-Euler, anti-inner-Grebe, anti-outer-Grebe, anti-Mandart-incircle, anticomplementary, Aquila, Ara, 1st Auriga, 2nd Auriga, 5th Brocard, 2nd circumperp tangential, Ehrmann-mid, Euler, outer-Garcia, Gossard, inner-Grebe, outer-Grebe, Johnson, inner-Johnson, outer-Johnson, 1st Johnson-Yff, 2nd Johnson-Yff, Lucas homothetic, Lucas(-1) homothetic, Mandart-incircle, medial, 5th mixtilinear, 3rd tri-squares-central, 4th tri-squares-central, X3-ABC reflections, inner-Yff, outer-Yff, inner-Yff tangents, outer-Yff tangents.

For definitions and coordinates of these triangles, see the index of triangles referenced in ETC.


X(26290) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ABC-X3 REFLECTIONS AND 1st AURIGA

Barycentrics    a*(4*S^2*D+a*(a+b+c)*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b^2-c^2)*(b-c)*a^2+(b^4+6*b^2*c^2+c^4)*a-(b^2-c^2)*(b-c)^3)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26290) = (-D+4*R*S)*X(1)-4*(r+2*R)*S*X(3)

X(26290) lies on these lines: {1,3}, {2,26326}, {4,26359}, {20,26394}, {30,26383}, {182,26379}, {371,26385}, {372,26384}, {376,26381}, {515,26382}, {1593,26371}, {1657,18496}, {3098,26310}, {6284,26387}, {7354,26388}, {11414,26302}, {11825,26344}, {11826,26390}, {11827,26389}, {15908,26413}, {26292,26391}, {26293,26392}, {26294,26396}, {26295,26397}

X(26290) = reflection of X(11822) in X(3)
X(26290) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3428, 26291), (999, 14110, 26291)


X(26291) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ABC-X3 REFLECTIONS AND 2nd AURIGA

Barycentrics    a*(-4*S^2*D+a*(a+b+c)*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b^2-c^2)*(b-c)*a^2+(b^4+6*b^2*c^2+c^4)*a-(b^2-c^2)*(b-c)^3)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26291) = (D+4*R*S)*X(1)-4*(r+2*R)*S*X(3)

X(26291) lies on these lines: {1,3}, {2,26327}, {4,26360}, {20,26418}, {30,26407}, {182,26403}, {371,26409}, {372,26408}, {376,26405}, {515,26406}, {1593,26372}, {1657,18498}, {3098,26311}, {6284,26411}, {7354,26412}, {11414,26303}, {11824,26335}, {11825,26345}, {11826,26414}, {11827,26413}, {15908,26389}, {26292,26415}, {26293,26416}, {26294,26420}, {26295,26421}

X(26291) = reflection of X(11823) in X(3)
X(26291) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3428, 26290), (999, 14110, 26290)


X(26292) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ABC-X3 REFLECTIONS AND LUCAS HOMOTHETIC

Barycentrics    (SB+SC)*(-(2*S^2-(4*R^2-SA+2*SW)*SA)*S+(SA-SW)*S^2+SA*SW^2) : :

X(26292) lies on these lines: {2,26328}, {3,493}, {4,488}, {6,13011}, {20,26494}, {30,26447}, {55,26433}, {56,26353}, {165,26298}, {182,26427}, {371,26460}, {372,26454}, {376,26439}, {515,26442}, {517,26495}, {1160,12164}, {1306,11412}, {1593,26373}, {1657,18521}, {2077,26500}, {3098,26312}, {3428,26322}, {3576,26367}, {6284,26471}, {6464,26293}, {7354,26477}, {8950,13023}, {10310,26493}, {11012,26499}, {11249,26501}, {11414,26304}, {11824,26337}, {11825,26347}, {11826,26488}, {11827,26483}, {12305,13021}, {19443,19497}, {26290,26391}, {26291,26415}, {26294,26496}, {26295,26497}

X(26292) = reflection of X(11828) in X(3)
X(26292) = {X(3), X(11949)}-harmonic conjugate of X(11198)


X(26293) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ABC-X3 REFLECTIONS AND LUCAS(-1) HOMOTHETIC

Barycentrics    (SB+SC)*((2*S^2-(4*R^2-SA+2*SW)*SA)*S+(SA-SW)*S^2+SA*SW^2) : :

X(26293) lies on these lines: {2,26329}, {3,494}, {4,487}, {6,13012}, {20,26503}, {30,26448}, {55,26434}, {56,26354}, {165,26299}, {182,26428}, {371,26461}, {372,26455}, {376,26440}, {515,26443}, {517,26504}, {1161,12164}, {1307,11412}, {1593,26374}, {1657,18523}, {2077,26509}, {3098,26313}, {3428,26323}, {3576,26368}, {6284,26472}, {6464,26292}, {7354,26478}, {10310,26502}, {11012,26508}, {11248,26511}, {11249,26510}, {11414,26305}, {11825,26338}, {11826,26489}, {11827,26484}, {12306,13022}, {19442,19496}, {26290,26392}, {26291,26416}, {26294,26505}, {26295,26506}

X(26293) = reflection of X(11829) in X(3)


X(26294) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ABC-X3 REFLECTIONS AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    a^2*(a^4+2*(b^2+c^2)*a^2-3*b^4-2*b^2*c^2-3*c^4)+S*(7*a^4-6*(b^2+c^2)*a^2-(b^2-c^2)^2) : :

X(26294) lies on these lines: {2,26330}, {3,1587}, {4,641}, {20,492}, {30,26449}, {55,26435}, {56,26355}, {165,26300}, {182,26429}, {193,1350}, {230,6410}, {371,26462}, {372,26456}, {376,5860}, {490,6337}, {515,26444}, {517,26514}, {1152,7738}, {1160,9541}, {1593,26375}, {1657,18539}, {2077,26518}, {3069,9739}, {3098,26314}, {3127,13019}, {3428,26324}, {3528,11824}, {3576,26369}, {3593,14233}, {6284,26473}, {6459,9733}, {7354,26479}, {10304,12306}, {10310,26512}, {11012,26517}, {11248,26520}, {11249,26519}, {11414,26306}, {11826,26490}, {11827,26485}, {12314,19053}, {13666,15682}, {26290,26396}, {26291,26420}, {26292,26496}, {26293,26505}

X(26294) = reflection of X(9540) in X(3)
X(26294) = {X(1350), X(3522)}-harmonic conjugate of X(26295)


X(26295) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ABC-X3 REFLECTIONS AND 4th TRI-SQUARES-CENTRAL

Barycentrics    a^2*(a^4+2*(b^2+c^2)*a^2-3*b^4-2*b^2*c^2-3*c^4)-S*(7*a^4-6*(b^2+c^2)*a^2-(b^2-c^2)^2) : :

X(26295) lies on these lines: {2,26331}, {3,1588}, {4,642}, {20,491}, {30,26450}, {55,26436}, {56,26356}, {165,26301}, {182,26430}, {193,1350}, {230,6409}, {371,26463}, {372,26457}, {376,5861}, {489,6337}, {515,26445}, {517,26515}, {1151,7738}, {1593,26376}, {1657,26438}, {2077,26523}, {3068,9738}, {3098,26315}, {3128,13020}, {3428,26325}, {3528,11825}, {3576,26370}, {3595,14230}, {6284,26474}, {6460,9732}, {7354,26480}, {10304,12305}, {10310,26513}, {11012,26522}, {11248,26525}, {11249,26524}, {11414,26307}, {11826,26491}, {11827,26486}, {12313,19054}, {13786,15682}, {26290,26397}, {26291,26421}, {26292,26497}, {26293,26506}

X(26295) = reflection of X(13935) in X(3)
X(26295) = {X(1350), X(3522)}-harmonic conjugate of X(26294)


X(26296) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-AQUILA AND 1st AURIGA

Barycentrics    a*(2*D+a^3+(b+c)*a^2-(b^2+4*b*c+c^2)*a-(b^2-c^2)*(b-c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26296) = (-D+2*(R-r)*S)*X(1)+4*S*r*X(3)

X(26296) lies on these lines: {1,3}, {10,26394}, {515,26381}, {1698,26359}, {1699,26326}, {3099,26310}, {3679,26382}, {5587,26386}, {5588,26344}, {7713,26371}, {8185,26302}, {9578,26388}, {9581,26387}, {10789,26379}, {10826,26390}, {10827,26389}, {11852,26383}, {18480,18496}, {19003,26384}, {19004,26385}, {26298,26391}, {26299,26392}, {26300,26396}, {26301,26397}

X(26296) = reflection of X(1) in X(11366)
X(26296) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3338, 5902, 26297), (5597, 26395, 26365), (26365, 26395, 1)


X(26297) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-AQUILA AND 2nd AURIGA

Barycentrics    a*(-2*D+a^3+(b+c)*a^2-(b^2+4*b*c+c^2)*a-(b^2-c^2)*(b-c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26297) = (D+2*(R-r)*S)*X(1)+4*S*r*X(3)

X(26297) lies on these lines: {1,3}, {10,26418}, {515,26405}, {1698,26360}, {1699,26327}, {3099,26311}, {3679,26406}, {5587,26410}, {5588,26345}, {5589,26335}, {7713,26372}, {8185,26303}, {9578,26412}, {9581,26411}, {10789,26403}, {10826,26414}, {10827,26413}, {11852,26407}, {18480,18498}, {19003,26408}, {19004,26409}, {26298,26415}, {26299,26416}, {26300,26420}, {26301,26421}

X(26297) = reflection of X(1) in X(11367)
X(26297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 5119, 26296), (3338, 5902, 26296), (26366, 26419, 1)


X(26298) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-AQUILA AND LUCAS HOMOTHETIC

Barycentrics
a*(-(a^4+2*(b^2+c^2)*a^2+8*(b+c)*(b^2+c^2)*a+(b^2-c^2)^2-4*b^2*c^2)*S+a^6+2*(b+c)*a^5-3*(b^2+c^2)*a^4-4*(b+c)*(b^2+c^2)*a^3+(3*b^4-2*b^2*c^2+3*c^4)*a^2+2*((b^2-c^2)^2-4*b^2*c^2)*(b+c)*a-(b^4-c^4)*(b^2-c^2)) : :

X(26298) lies on these lines: {1,493}, {10,26494}, {35,26493}, {36,26322}, {165,26292}, {515,26439}, {1698,5490}, {1699,26328}, {3099,26312}, {3576,26498}, {3679,26442}, {5587,26466}, {5588,26347}, {5589,26337}, {6464,26299}, {7713,26373}, {8185,26304}, {9578,26477}, {9581,26471}, {10789,26427}, {10826,26488}, {10827,26483}, {11852,26447}, {18480,18521}, {19003,26454}, {19004,26460}, {26296,26391}, {26297,26415}, {26300,26496}, {26301,26497}

X(26298) = reflection of X(1) in X(11377)
X(26298) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (493, 26495, 26367), (26367, 26495, 1)


X(26299) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-AQUILA AND LUCAS(-1) HOMOTHETIC

Barycentrics
a*((a^4+2*(b^2+c^2)*a^2+8*(b+c)*(b^2+c^2)*a+(b^2-c^2)^2-4*b^2*c^2)*S+a^6+2*(b+c)*a^5-3*(b^2+c^2)*a^4-4*(b+c)*(b^2+c^2)*a^3+(3*b^4-2*b^2*c^2+3*c^4)*a^2+2*((b^2-c^2)^2-4*b^2*c^2)*(b+c)*a-(b^4-c^4)*(b^2-c^2)) : :

X(26299) lies on these lines: {1,494}, {10,26503}, {35,26502}, {36,26323}, {57,26434}, {165,26293}, {515,26440}, {1697,26354}, {1698,5491}, {1699,26329}, {3099,26313}, {3576,26507}, {3679,26443}, {5587,26467}, {5588,26338}, {6464,26298}, {7713,26374}, {8185,26305}, {9578,26478}, {9581,26472}, {10789,26428}, {10826,26489}, {10827,26484}, {11852,26448}, {18480,18523}, {19003,26455}, {19004,26461}, {26296,26392}, {26297,26416}, {26300,26505}, {26301,26506}

X(26299) = reflection of X(1) in X(11378)
X(26299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (494, 26504, 26368), (26368, 26504, 1)


X(26300) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-AQUILA AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    2*(-a+b+c)*S+a*(a^2+2*(b+c)*a-b^2-c^2) : :
X(26300) = 3*X(3679)-2*X(5688)

X(26300) lies on these lines: {1,1336}, {4,9907}, {8,193}, {10,492}, {35,26512}, {36,26324}, {57,26435}, {165,26294}, {230,7968}, {515,26441}, {1697,26355}, {1698,26361}, {1699,26330}, {3099,26314}, {3576,26516}, {3632,5589}, {3679,5588}, {5587,26468}, {7713,26375}, {8185,26306}, {8960,12269}, {9578,26479}, {9581,26473}, {10789,26429}, {10826,26490}, {10827,26485}, {11852,26449}, {13386,24210}, {13679,15682}, {18480,18539}, {19004,26462}, {26296,26396}, {26297,26420}, {26298,26496}, {26299,26505}

X(26300) = reflection of X(1) in X(13883)
X(26300) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3068, 26514, 26369), (26369, 26514, 1)


X(26301) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-AQUILA AND 4th TRI-SQUARES-CENTRAL

Barycentrics    -2*(-a+b+c)*S+a*(a^2+2*(b+c)*a-b^2-c^2) : :
X(26301) = 3*X(3679)-2*X(5689)

X(26301) lies on these lines: {1,1123}, {4,9906}, {8,193}, {10,491}, {35,26513}, {36,26325}, {57,26436}, {165,26295}, {230,7969}, {515,8982}, {1697,26356}, {1698,26362}, {1699,26331}, {3099,26315}, {3576,26521}, {3632,5588}, {3679,5589}, {4028,13461}, {5587,26469}, {7713,26376}, {8185,26307}, {9578,26480}, {9581,26474}, {10789,26430}, {10826,26491}, {10827,26486}, {11852,26450}, {13387,24210}, {13799,15682}, {18480,26438}, {19003,26457}, {19004,26463}, {26296,26397}, {26297,26421}, {26298,26497}, {26299,26506}

X(26301) = reflection of X(1) in X(13936)
X(26301) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3069, 26515, 26370), (26370, 26515, 1)


X(26302) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-ARA AND 1st AURIGA

Barycentrics    a^2*(-4*a*D*b^2*c^2+(a+b+c)*(a^7-(b+c)*a^6-(b^2+c^2)*a^5+(b^2-c^2)*(b-c)*a^4-(b^2+c^2)^2*a^3+(b+c)*(b^2+c^2)^2*a^2+(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26302) lies on these lines: {1,26303}, {3,18496}, {22,26394}, {24,26381}, {25,5597}, {197,26393}, {1598,26326}, {5594,26344}, {6642,26398}, {8185,26296}, {8192,26395}, {8193,26382}, {10790,26379}, {10828,26310}, {10829,26390}, {10830,26389}, {10831,26388}, {10832,26387}, {10833,26351}, {10834,26402}, {10835,26401}, {11365,26365}, {11414,26290}, {11853,26383}, {18954,26380}, {19005,26384}, {19006,26385}, {22654,26319}, {26304,26391}, {26305,26392}, {26306,26396}, {26307,26397}, {26308,26399}, {26309,26400}


X(26303) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-ARA AND 2nd AURIGA

Barycentrics    a^2*(4*a*D*b^2*c^2+(a+b+c)*(a^7-(b+c)*a^6-(b^2+c^2)*a^5+(b^2-c^2)*(b-c)*a^4-(b^2+c^2)^2*a^3+(b+c)*(b^2+c^2)^2*a^2+(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26303) lies on these lines: {1,26302}, {3,18498}, {22,26418}, {24,26405}, {25,5598}, {197,26417}, {1598,26327}, {5594,26345}, {5595,26335}, {6642,26422}, {8185,26297}, {8192,26419}, {8193,26406}, {10790,26403}, {10828,26311}, {10829,26414}, {10830,26413}, {10831,26412}, {10832,26411}, {10833,26352}, {10834,26426}, {10835,26425}, {11365,26366}, {11414,26291}, {11853,26407}, {18954,26404}, {19005,26408}, {19006,26409}, {22654,26320}, {26304,26415}, {26305,26416}, {26306,26420}, {26307,26421}, {26308,26423}, {26309,26424}


X(26304) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-ARA AND LUCAS HOMOTHETIC

Barycentrics    a^2*(-(a^2+b^2+c^2)*(c^2-a^2+b^2)*a^2+(a^2-b^2+c^2)*(a^2+b^2-c^2)*S)*(b^2+S)*(c^2+S) : :

X(26304) lies on these lines: {3,5490}, {22,26494}, {24,26439}, {25,371}, {197,26493}, {1598,26328}, {5594,26347}, {5595,26337}, {6289,19446}, {6464,26305}, {6642,26498}, {8185,26298}, {8192,26495}, {8193,26442}, {10790,26427}, {10828,26312}, {10829,26488}, {10830,26483}, {10831,26477}, {10832,26471}, {10833,26353}, {10835,26501}, {11365,26367}, {11414,26292}, {11853,26447}, {18954,26433}, {19005,26454}, {19006,26460}, {22654,26322}, {26302,26391}, {26303,26415}, {26306,26496}, {26307,26497}, {26308,26499}, {26309,26500}


X(26305) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-ARA AND LUCAS(-1) HOMOTHETIC

Barycentrics    a^2*(-(a^2+b^2+c^2)*(c^2-a^2+b^2)*a^2-(a^2-b^2+c^2)*(a^2+b^2-c^2)*S)*(b^2-S)*(c^2-S) : :

X(26305) lies on these lines: {3,5491}, {22,26503}, {24,26440}, {25,372}, {197,26502}, {1598,26329}, {5594,26338}, {6290,19447}, {6464,26304}, {6642,26507}, {8185,26299}, {8192,26504}, {8193,26443}, {10790,26428}, {10828,26313}, {10829,26489}, {10830,26484}, {10831,26478}, {10832,26472}, {10833,26354}, {10834,26511}, {10835,26510}, {11365,26368}, {11414,26293}, {11853,26448}, {18954,26434}, {19005,26455}, {19006,26461}, {22654,26323}, {26302,26392}, {26303,26416}, {26306,26505}, {26307,26506}, {26308,26508}, {26309,26509}


X(26306) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-ARA AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    a^2*(4*(a^4-b^4+b^2*c^2-c^4)*S+a^6+(b^2+c^2)*a^4-(b^2+c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(26306) lies on these lines: {3,18539}, {4,9922}, {22,492}, {23,159}, {24,26441}, {25,3068}, {197,26512}, {1598,26330}, {5594,5860}, {5595,20850}, {6642,26516}, {8185,26300}, {8192,26514}, {8193,26444}, {10790,26429}, {10828,26314}, {10829,26490}, {10830,26485}, {10831,26479}, {10832,26473}, {10833,26355}, {10834,26520}, {10835,26519}, {11365,26369}, {11414,26294}, {11853,26449}, {13680,15682}, {18954,26435}, {19005,26456}, {19006,26462}, {22654,26324}, {26302,26396}, {26303,26420}, {26304,26496}, {26305,26505}, {26308,26517}, {26309,26518}

X(26306) = {X(23), X(159)}-harmonic conjugate of X(26307)


X(26307) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-ARA AND 4th TRI-SQUARES-CENTRAL

Barycentrics    a^2*(-4*(a^4-b^4+b^2*c^2-c^4)*S+a^6+(b^2+c^2)*a^4-(b^2+c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(26307) lies on these lines: {3,26362}, {4,9921}, {22,491}, {23,159}, {24,8982}, {25,3069}, {197,26513}, {1598,26331}, {5594,20850}, {5595,5861}, {6642,26521}, {8185,26301}, {8192,26515}, {8193,26445}, {10790,26430}, {10828,26315}, {10829,26491}, {10830,26486}, {10831,26480}, {10832,26474}, {10833,26356}, {10834,26525}, {10835,26524}, {11365,26370}, {11414,26295}, {11853,26450}, {13800,15682}, {18954,26436}, {19005,26457}, {19006,26463}, {22654,26325}, {26302,26397}, {26303,26421}, {26304,26497}, {26305,26506}, {26308,26522}, {26309,26523}

X(26307) = {X(23), X(159)}-harmonic conjugate of X(26306)


X(26308) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-ARA AND INNER-YFF

Barycentrics    a^2*(a^8-2*(b^2+b*c+c^2)*a^6-2*b*c*(b+c)*a^5+2*(b^2+c^2)*(b^4+c^4+b*c*(b-c)^2)*a^2+2*(b^2-c^2)^2*(b+c)*b*c*a-(b^2-c^2)^4) : :

X(26308) lies on these lines: {1,25}, {3,2886}, {5,10830}, {22,10527}, {23,10529}, {24,12116}, {26,10829}, {197,6642}, {497,14017}, {1598,26332}, {1602,3651}, {2070,18543}, {3220,12704}, {3518,10806}, {3556,24474}, {5020,10198}, {5594,26349}, {5595,26342}, {5709,9911}, {6585,23843}, {6734,8193}, {7387,11249}, {7506,16202}, {7517,10680}, {9658,18967}, {9673,10966}, {10532,10594}, {10587,13595}, {10790,26431}, {10828,26317}, {10831,26481}, {10832,26475}, {10833,13730}, {11012,11414}, {11510,20989}, {11853,26452}, {12001,18378}, {12595,20987}, {18954,26437}, {19005,26458}, {19006,26464}, {26302,26399}, {26303,26423}, {26304,26499}, {26305,26508}, {26306,26517}, {26307,26522}

X(26308) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 8192, 10037), (25, 9798, 26309), (25, 10835, 1)


X(26309) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-ARA AND OUTER-YFF

Barycentrics    a^2*(a^8-2*(b^2-b*c+c^2)*a^6+2*b*c*(b+c)*a^5+2*(b^2+c^2)*(b^4+c^4-b*c*(b+c)^2)*a^2-2*(b^2-c^2)^2*(b+c)*b*c*a-(b^2-c^2)^4) : :

X(26309) lies on these lines: {1,25}, {3,119}, {5,10829}, {22,5552}, {23,10528}, {24,12115}, {26,10830}, {197,7387}, {1324,13730}, {1470,15654}, {1598,26333}, {1603,6906}, {2070,18545}, {2077,11414}, {3435,22758}, {3518,10805}, {5020,10200}, {5594,26350}, {5595,26343}, {6642,10269}, {6735,8193}, {7506,16203}, {7517,10679}, {9658,11509}, {9673,10965}, {9912,12751}, {10531,10594}, {10586,13595}, {10790,26432}, {10828,26318}, {10831,26482}, {10832,26476}, {10833,26358}, {11853,26453}, {12000,18378}, {12594,20987}, {13222,25438}, {19005,26459}, {19006,26465}, {26302,26400}, {26303,26424}, {26304,26500}, {26305,26509}, {26306,26518}, {26307,26523}

X(26309) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 8192, 10046), (25, 9798, 26308), (25, 10834, 1)


X(26310) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th ANTI-BROCARD AND 1st AURIGA

Barycentrics    a*((a^4+(b^2+c^2)*a^2+(b^2+c^2)^2-b^2*c^2)*D+a*(a+b+c)*(2*(b^2+c^2)*a^3-2*(b^3+c^3)*a^2+(b^4+b^2*c^2+c^4)*a-(b^3+c^3)*(b^2+b*c+c^2))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26310) lies on these lines: {1,26311}, {32,5597}, {2896,26394}, {3096,26359}, {3098,26290}, {3099,26296}, {9857,26382}, {9862,26381}, {9993,26326}, {9995,26344}, {9996,26386}, {9997,26395}, {10828,26302}, {10871,26390}, {10872,26389}, {10873,26388}, {10874,26387}, {10877,26351}, {10878,26402}, {10879,26401}, {11368,26365}, {11386,26371}, {11494,26393}, {11885,26383}, {18496,18503}, {18957,26380}, {19011,26384}, {19012,26385}, {22744,26319}, {26312,26391}, {26313,26392}, {26314,26396}, {26315,26397}, {26316,26398}, {26317,26399}, {26318,26400}


X(26311) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th ANTI-BROCARD AND 2nd AURIGA

Barycentrics    a*(-(a^4+(b^2+c^2)*a^2+(b^2+c^2)^2-b^2*c^2)*D+a*(a+b+c)*(2*(b^2+c^2)*a^3-2*(b^3+c^3)*a^2+(b^4+b^2*c^2+c^4)*a-(b^3+c^3)*(b^2+b*c+c^2))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26311) lies on these lines: {1,26310}, {32,5598}, {2896,26418}, {3096,26360}, {3098,26291}, {3099,26297}, {9857,26406}, {9862,26405}, {9993,26327}, {9994,26335}, {9995,26345}, {9996,26410}, {9997,26419}, {10828,26303}, {10871,26414}, {10872,26413}, {10873,26412}, {10874,26411}, {10877,26352}, {10878,26426}, {11368,26366}, {11386,26372}, {11494,26417}, {11885,26407}, {18498,18503}, {18957,26404}, {19011,26408}, {19012,26409}, {22744,26320}, {26312,26415}, {26313,26416}, {26314,26420}, {26315,26421}, {26316,26422}, {26317,26423}, {26318,26424}


X(26312) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th ANTI-BROCARD AND LUCAS HOMOTHETIC

Barycentrics    (SB+SC)*(((SA-3*SW)*S^2+2*(2*SA+SW)*SW^2)*S+(4*(SA-SW)*R^2+SA^2-2*SB*SC+4*SW^2)*S^2+3*SA^2*SW^2) : :

X(26312) lies on these lines: {32,493}, {2896,26494}, {3096,5490}, {3098,26292}, {3099,26298}, {6464,26313}, {9857,26442}, {9862,26439}, {9993,26328}, {9994,26337}, {9995,26347}, {9996,26466}, {9997,26495}, {10828,26304}, {10871,26488}, {10872,26483}, {10873,26477}, {10874,26471}, {10877,26353}, {10879,26501}, {11368,26367}, {11386,26373}, {11494,26493}, {11885,26447}, {18503,18521}, {18957,26433}, {19011,26454}, {19012,26460}, {22744,26322}, {26310,26391}, {26311,26415}, {26314,26496}, {26315,26497}, {26316,26498}, {26317,26499}, {26318,26500}


X(26313) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th ANTI-BROCARD AND LUCAS(-1) HOMOTHETIC

Barycentrics    (SB+SC)*(-((SA-3*SW)*S^2+2*(2*SA+SW)*SW^2)*S+(4*(SA-SW)*R^2+SA^2-2*SB*SC+4*SW^2)*S^2+3*SA^2*SW^2) : :

X(26313) lies on these lines: {32,494}, {2896,26503}, {3096,5491}, {3098,26293}, {3099,26299}


X(26314) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th ANTI-BROCARD AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (3*a^4-(b^2+c^2)*a^2+b^2*c^2-(b^2+c^2)^2)*S-((b^2+c^2)^2-b^2*c^2)*a^2 : :

X(26314) lies on these lines: {4,9987}, {32,638}, {193,3094}, {492,2896}, {3096,26361}, {3098,26294}, {3099,26300}, {5860,7811}, {9857,26444}, {9862,26441}, {9993,26330}, {9994,26339}, {9996,26468}, {9997,26514}, {10828,26306}, {10871,26490}, {10872,26485}, {10873,26479}, {10874,26473}, {10877,26355}, {10878,26520}, {10879,26519}, {11368,26369}, {11386,26375}, {11494,26512}, {11885,26449}, {13685,15682}, {18503,18539}, {18957,26435}, {19011,26456}, {19012,26462}, {22744,26324}, {26310,26396}, {26311,26420}, {26312,26496}, {26313,26505}, {26316,26516}, {26317,26517}, {26318,26518}


X(26315) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th ANTI-BROCARD AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (3*a^4-(b^2+c^2)*a^2+b^2*c^2-(b^2+c^2)^2)*S+((b^2+c^2)^2-b^2*c^2)*a^2 : :

X(26315) lies on these lines: {4,9986}, {32,637}, {193,3094}, {491,2896}, {3096,26362}, {3098,26295}, {3099,26301}, {5861,7811}, {8982,9862}, {9857,26445}, {9993,26331}, {9995,26340}, {9996,26469}, {9997,26515}, {10828,26307}, {10871,26491}, {10872,26486}, {10873,26480}, {10874,26474}, {10877,26356}, {10878,26525}, {10879,26524}, {11368,26370}, {11386,26376}, {11494,26513}, {11885,26450}, {13805,15682}, {18503,26438}, {18957,26436}, {19011,26457}, {19012,26463}, {22744,26325}, {26310,26397}, {26311,26421}, {26312,26497}, {26313,26506}, {26316,26521}, {26317,26522}, {26318,26523}


X(26316) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th ANTI-BROCARD AND X3-ABC REFLECTIONS

Barycentrics    a^2*(2*a^6-2*(b^2+c^2)*a^4+(b^4-3*b^2*c^2+c^4)*a^2-(b^4+b^2*c^2+c^4)*(b^2+c^2)) : :
X(26316) = 3*(S^2-SW^2)*X(3)-2*SW^2*X(6)

X(26316) lies on these lines: {2,5191}, {3,6}, {4,7932}, {5,7846}, {24,11386}, {30,3972}, {35,10877}, {36,18957}, {55,10047}, {56,10038}, {98,7697}, {125,12501}, {140,3096}, {237,15080}, {262,10348}, {325,549}, {353,9486}, {376,16989}, {381,7804}, {384,14880}, {498,10873}, {499,10874}, {517,11368}, {542,7820}, {631,2896}, {1385,9941}, {1495,11328}, {1511,13210}, {1656,10356}, {2782,8289}, {3099,3576}, {3357,12502}, {3523,10357}, {3524,7774}, {3526,7914}, {3579,12497}, {3734,12188}, {4550,19576}, {5026,8724}, {5054,7778}, {5690,12495}, {5939,11185}, {5999,10796}, {6642,10828}, {6771,9982}, {6774,9981}, {7583,13892}, {7584,13946}, {7622,9766}, {7709,8782}, {7787,14881}, {7819,18358}, {7824,10349}, {7919,10722}, {8546,9145}, {8570,8627}, {8703,19661}, {9155,11003}, {9744,15561}, {9857,26446}, {9923,12359}, {9984,12041}, {9985,10610}, {9997,10246}, {10267,11494}, {10269,22744}, {10346,10359}, {10871,26492}, {10872,26487}, {10878,16203}, {10879,16202}, {10991,24206}, {11885,26451}, {12176,14931}, {12498,12619}, {14355,14601}, {14650,15921}, {26310,26398}, {26311,26422}, {26312,26498}, {26313,26507}, {26314,26516}, {26315,26521}

X(26316) = midpoint of X(3) and X(11842)
X(26316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 9862, 9996), (8722, 17508, 3), (9821, 11171, 3094)


X(26317) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th ANTI-BROCARD AND INNER-YFF

Barycentrics    a^2*(a^6-2*(b^2+c^2)*a^4-2*b*c*(b+c)*a^3+(b^4+c^4+2*b*c*(b^2-b*c+c^2))*a^2+2*(b^4+b^2*c^2+c^4)*b*c) : :

X(26317) lies on these lines: {1,32}, {5,10872}, {2076,12595}, {2896,10527}, {3096,26363}, {3098,11012}, {5709,12497}, {6734,9857}, {7846,10198}, {9301,10680}, {9821,11249}, {9862,12116}, {9993,26332}, {9994,26342}, {9995,26349}, {9996,26470}, {10267,11494}, {10828,26308}, {10871,10943}, {10873,26481}, {10874,26475}, {10877,26357}, {11386,26377}, {11885,26452}, {18503,18544}, {18957,26437}, {19011,26458}, {19012,26464}, {26310,26399}, {26311,26423}, {26312,26499}, {26313,26508}, {26314,26517}, {26315,26522}

X(26317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (32, 9941, 26318), (32, 9997, 10038), (32, 10879, 1)


X(26318) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th ANTI-BROCARD AND OUTER-YFF

Barycentrics    a^2*(a^6-2*(b^2+c^2)*a^4+2*b*c*(b+c)*a^3+(b^4+c^4-2*(b^2+b*c+c^2)*b*c)*a^2-2*(b^4+b^2*c^2+c^4)*b*c) : :

X(26318) lies on these lines: {1,32}, {5,10871}, {119,9996}, {1470,18957}, {2076,12594}, {2077,3098}, {2896,5552}, {3096,26364}, {6256,9873}, {6735,9857}, {7846,10200}, {9301,10679}, {9821,11248}, {9862,12115}, {9993,26333}, {9994,26343}, {9995,26350}, {10269,22744}, {10828,26309}, {10872,10942}, {10873,26482}, {10874,26476}, {10877,26358}, {11386,26378}, {11885,26453}, {12498,12751}, {13235,25438}, {18503,18542}, {19011,26459}, {19012,26465}, {26310,26400}, {26311,26424}, {26312,26500}, {26313,26509}, {26314,26518}, {26315,26523}

X(26318) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (32, 9941, 26317), (32, 9997, 10047), (32, 10878, 1)


X(26319) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd ANTI-CIRCUMPERP-TANGENTIAL AND 1st AURIGA

Barycentrics    a^2*(-2*D*b*c+a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b^2-c^2)*(b-c)*a^2+(b^4+6*b^2*c^2+c^4)*a-(b^2-c^2)*(b-c)^3) : : , where D=4*S*sqrt(R*(4*R+r))
X(26319) = R*(D+4*S*r)*X(1)-4*S*r*(r+2*R)*X(3)

X(26319) lies on these lines: {1,3}, {104,26381}, {956,26382}, {958,26359}, {2975,26394}, {12114,26390}, {18496,26321}, {19013,26384}, {19014,26385}, {22479,26371}, {22520,26379}, {22654,26302}, {22744,26310}, {22753,26326}, {22755,26383}, {22757,26344}, {22758,26386}, {22759,26388}, {22760,26387}, {26322,26391}, {26323,26392}, {26324,26396}, {26325,26397}

X(26319) = {X(1), X(3428)}-harmonic conjugate of X(26320)


X(26320) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd ANTI-CIRCUMPERP-TANGENTIAL AND 2nd AURIGA

Barycentrics    a^2*(2*D*b*c+a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b^2-c^2)*(b-c)*a^2+(b^4+6*b^2*c^2+c^4)*a-(b^2-c^2)*(b-c)^3) : : , where D=4*S*sqrt(R*(4*R+r))
X(26320) = R*(D+4*S*r)*X(1)-4*S*r*(r+2*R)*X(3)

X(26320) lies on these lines: {1,3}, {104,26405}, {956,26406}, {958,26360}, {2975,26418}, {12114,26414}, {18498,26321}, {19013,26408}, {19014,26409}, {22479,26372}, {22520,26403}, {22654,26303}, {22744,26311}, {22753,26327}, {22755,26407}, {22756,26335}, {22757,26345}, {22758,26410}, {22759,26412}, {22760,26411}, {26322,26415}, {26323,26416}, {26324,26420}, {26325,26421}

X(26320) = {X(1), X(3428)}-harmonic conjugate of X(26319)


X(26321) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd ANTI-CIRCUMPERP-TANGENTIAL AND EHRMANN-MID

Barycentrics    a*(a^6-(b+c)*a^5-(2*b-c)*(b-2*c)*a^4+2*(b^2-c^2)*(b-c)*a^3+(b^4+c^4-3*b*c*(b-c)^2)*a^2-(b^2-c^2)*(b-c)^3*a-2*(b^2-c^2)^2*b*c) : :

X(26321) lies on these lines: {1,399}, {3,10}, {4,20067}, {5,104}, {30,2975}, {36,17606}, {55,18526}, {56,381}, {153,6952}, {382,11249}, {404,18357}, {474,7705}, {499,18516}, {517,5288}, {549,5260}, {944,6914}, {952,3871}, {956,12702}, {999,10404}, {1012,1482}, {1158,25413}, {1385,5259}, {1420,18540}, {1455,18447}, {1656,10269}, {1657,3428}, {2475,12248}, {2829,26470}, {3295,22759}, {3560,10246}, {3579,5258}, {3652,3878}, {3655,5248}, {3830,11194}, {3843,22753}, {3869,13465}, {3897,12919}, {4299,18517}, {4325,18406}, {5055,25524}, {5172,15446}, {5204,18491}, {5251,13624}, {5563,9955}, {5584,15696}, {5690,6909}, {5881,12331}, {5901,6912}, {6256,6980}, {6264,10284}, {6841,18990}, {6862,10585}, {6863,12667}, {6891,8165}, {6913,16203}, {6929,10785}, {6974,10805}, {7330,15829}, {7702,18541}, {7987,18528}, {8148,12513}, {8666,12699}, {9654,22766}, {9668,10966}, {9669,22767}, {10058,10944}, {10247,11496}, {10738,10943}, {11248,12645}, {12164,22659}, {12749,17662}, {12902,22586}, {18440,22769}, {18494,22479}, {18496,26319}, {18498,26320}, {18501,22520}, {18503,22744}, {18508,22755}, {18510,19013}, {18512,19014}, {18521,26322}, {18523,26323}, {18539,26324}, {18545,22768}, {21669,22791}, {22756,26336}, {22757,26346}, {26325,26438}

X(26321) = reflection of X(11849) in X(6906)
X(26321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 18519, 18525), (993, 18481, 3), (12773, 13743, 1)


X(26322) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd ANTI-CIRCUMPERP-TANGENTIAL AND LUCAS HOMOTHETIC

Barycentrics
a^2*((a^6-(7*b^2-2*b*c+7*c^2)*a^4+(7*b^4+7*c^4-2*b*c*(2*b^2-3*b*c+2*c^2))*a^2+8*b*c*(b+c)*(b^2+c^2)*a-((b^2-c^2)^2-4*b^2*c^2)*(b-c)^2)*S+(a-b-c)*(a^7+(b+c)*a^6-(b-c)^2*a^5-(b+c)*(b^2+c^2)*a^4-(b^4+10*b^2*c^2+c^4)*a^3-(b+c)*(b^4+c^4-2*b*c*(2*b-c)*(b-2*c))*a^2+(b^6+c^6-(2*b^4+2*c^4-b*c*(7*b^2-20*b*c+7*c^2))*b*c)*a+(b^4-c^4)*(b-c)^3)) : :

X(26322) lies on these lines: {3,26493}, {36,26298}, {56,493}, {104,26439}, {956,26442}, {958,5490}, {999,26367}, {2975,26494}, {3428,26292}, {6464,26323}, {10269,26498}, {11249,26499}, {12114,26488}, {18521,26321}, {19013,26454}, {19014,26460}, {22479,26373}, {22520,26427}, {22654,26304}, {22744,26312}, {22753,26328}, {22755,26447}, {22756,26337}, {22757,26347}, {22758,26466}, {22759,26477}, {22760,26471}, {26319,26391}, {26320,26415}, {26324,26496}, {26325,26497}


X(26323) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd ANTI-CIRCUMPERP-TANGENTIAL AND LUCAS(-1) HOMOTHETIC

Barycentrics
a^2*((a^6-(7*b^2-2*b*c+7*c^2)*a^4+(7*b^4+7*c^4-2*b*c*(2*b^2-3*b*c+2*c^2))*a^2+8*b*c*(b+c)*(b^2+c^2)*a-((b^2-c^2)^2-4*b^2*c^2)*(b-c)^2)*S-(a-b-c)*(a^7+(b+c)*a^6-(b-c)^2*a^5-(b+c)*(b^2+c^2)*a^4-(b^4+10*b^2*c^2+c^4)*a^3-(b+c)*(b^4+c^4-2*b*c*(2*b-c)*(b-2*c))*a^2+(b^6+c^6-(2*b^4+2*c^4-b*c*(7*b^2-20*b*c+7*c^2))*b*c)*a+(b^4-c^4)*(b-c)^3)) : :

X(26323) lies on these lines: {3,26502}, {36,26299}, {55,26504}, {56,494}, {104,26440}, {956,26443}, {958,5491}, {999,26368}, {2975,26503}, {3428,26293}, {6464,26322}, {10269,26507}, {10966,26354}, {11249,26508}, {12114,26489}, {18523,26321}, {19013,26455}, {19014,26461}, {22479,26374}, {22520,26428}, {22654,26305}, {22744,26313}, {22753,26329}, {22755,26448}, {22757,26338}, {22758,26467}, {22759,26478}, {22760,26472}, {22768,26511}, {26319,26392}, {26320,26416}, {26324,26505}, {26325,26506}


X(26324) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd ANTI-CIRCUMPERP-TANGENTIAL AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    a*((4*a^3-2*(2*b^2-3*b*c+2*c^2)*a-2*b*c*(b+c))*S+a*(a^4-2*b*c*(b+c)*a-(b^2+c^2)*(b-c)^2)) : :

X(26324) lies on these lines: {3,26512}, {4,22624}, {36,26300}, {55,26514}, {56,3068}, {104,26441}, {193,22769}, {492,2975}, {956,26444}, {958,26361}, {999,26369}, {3428,26294}, {5860,11194}, {10269,26516}, {10966,26355}, {11249,26517}, {12114,26490}, {15682,22783}, {18539,26321}, {19013,26456}, {19014,26462}, {22479,26375}, {22520,26429}, {22654,26306}, {22744,26314}, {22753,26330}, {22755,26449}, {22756,26339}, {22758,26468}, {22759,26479}, {22760,26473}, {22768,26520}, {26319,26396}, {26320,26420}, {26322,26496}, {26323,26505}


X(26325) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd ANTI-CIRCUMPERP-TANGENTIAL AND 4th TRI-SQUARES-CENTRAL

Barycentrics    a*((4*a^3-2*(2*b^2-3*b*c+2*c^2)*a-2*b*c*(b+c))*S-a*(a^4-2*b*c*(b+c)*a-(b^2+c^2)*(b-c)^2)) : :

X(26325) lies on these lines: {3,26513}, {4,22595}, {36,26301}, {55,26515}, {56,3069}, {104,8982}, {193,22769}, {491,2975}, {956,26445}, {958,26362}, {999,26370}, {3428,26295}, {5861,11194}, {10269,26521}, {10966,26356}, {11249,26522}, {12114,26491}, {15682,22784}, {19013,26457}, {19014,26463}, {22479,26376}, {22520,26430}, {22654,26307}, {22744,26315}, {22753,26331}, {22755,26450}, {22757,26340}, {22758,26469}, {22759,26480}, {22760,26474}, {22768,26525}, {26319,26397}, {26320,26421}, {26321,26438}, {26322,26497}, {26323,26506}


X(26326) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-EULER AND 1st AURIGA

Barycentrics    4*S^2*a*D+(a+b+c)*((b^2+c^2)*a^5-(b+c)^3*a^4-2*(b^2-c^2)^2*a^3+2*(b^2-c^2)^2*(b+c)*a^2+(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26326) lies on these lines: {1,6831}, {2,26290}, {4,5597}, {5,26359}, {11,26380}, {12,26351}, {30,26398}, {55,26412}, {98,26379}, {235,26371}, {381,26386}, {515,26365}, {517,26360}, {1587,26384}, {1588,26385}, {1598,26302}, {1699,26296}, {3091,26394}, {3843,18496}, {5587,26382}, {5603,26395}, {5842,8186}, {6201,26344}, {6833,26425}, {9993,26310}, {10531,26402}, {10532,26401}, {10679,26410}, {10893,26390}, {10894,26389}, {10895,26388}, {10896,26387}, {11496,26393}, {11897,26383}, {22753,26319}, {26328,26391}, {26329,26392}, {26330,26396}, {26331,26397}, {26332,26399}, {26333,26400}

X(26326) = midpoint of X(4) and X(11843)
X(26326) = {X(1), X(7680)}-harmonic conjugate of X(26327)


X(26327) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-EULER AND 2nd AURIGA

Barycentrics    -4*S^2*a*D+(a+b+c)*((b^2+c^2)*a^5-(b+c)^3*a^4-2*(b^2-c^2)^2*a^3+2*(b^2-c^2)^2*(b+c)*a^2+(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26327) lies on these lines: {1,6831}, {2,26291}, {4,5598}, {5,26360}, {11,26404}, {12,26352}, {30,26422}, {55,26388}, {98,26403}, {235,26372}, {381,26410}, {515,26366}, {517,26359}, {1587,26408}, {1588,26409}, {1598,26303}, {1699,26297}, {3091,26418}, {3843,18498}, {5587,26406}, {5603,26419}, {5842,8187}, {6201,26345}, {6202,26335}, {6833,26401}, {9993,26311}, {10531,26426}, {10532,26425}, {10679,26386}, {10893,26414}, {10894,26413}, {10895,26412}, {10896,26411}, {11496,26389}, {11897,26407}, {22753,26320}, {26328,26415}, {26329,26416}, {26330,26420}, {26331,26421}, {26332,26423}, {26333,26424}

X(26327) = midpoint of X(4) and X(11844)
X(26327) = {X(1), X(7680)}-harmonic conjugate of X(26326)


X(26328) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-EULER AND LUCAS HOMOTHETIC

Barycentrics    ((4*R^2-SA+SW)*S^2+2*(2*R^2+SW)*SB*SC)*S+(-SA^2+2*SB*SC+SW^2)*S^2+SB*SC*SW^2 : :

X(26328) lies on these lines: {2,26292}, {4,493}, {5,5490}, {11,26433}, {12,26353}, {30,26498}, {98,26427}, {235,26373}, {381,26466}, {515,26367}, {1093,24244}, {1587,26454}, {1588,26460}, {1598,26304}, {1699,26298}, {3089,8948}, {3091,26494}, {3843,18521}, {5587,26442}, {5603,26495}, {6201,26347}, {6202,26337}, {6464,26329}, {9993,26312}, {10532,26501}, {10893,26488}, {10894,26483}, {10895,26477}, {10896,26471}, {11496,26493}, {11897,26447}, {22753,26322}, {26326,26391}, {26327,26415}, {26330,26496}, {26331,26497}, {26332,26499}, {26333,26500}

X(26328) = midpoint of X(4) and X(11846)


X(26329) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-EULER AND LUCAS(-1) HOMOTHETIC

Barycentrics    ((4*R^2-SA+SW)*S^2+2*(2*R^2+SW)*SB*SC)*S+(SA^2-2*SB*SC-SW^2)*S^2-SB*SC*SW^2 : :

X(26329) lies on these lines: {2,26293}, {4,494}, {5,5491}, {11,26434}, {12,26354}, {30,26507}, {98,26428}, {235,26374}, {381,26467}, {515,26368}, {1093,24243}, {1587,26455}, {1588,26461}, {1598,26305}, {1699,26299}, {3089,8946}, {3091,26503}, {3843,18523}, {5587,26443}, {5603,26504}, {6201,26338}, {6464,26328}, {9993,26313}, {10531,26511}, {10532,26510}, {10893,26489}, {10894,26484}, {10895,26478}, {10896,26472}, {11496,26502}, {11897,26448}, {22753,26323}, {26326,26392}, {26327,26416}, {26330,26505}, {26331,26506}, {26332,26508}, {26333,26509}

X(26329) = midpoint of X(4) and X(11847)


X(26330) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-EULER AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    3*(b^2+c^2)*a^4-2*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)+S*(3*a^4+2*(b^2+c^2)*a^2-5*(b^2-c^2)^2) : :

X(26330) lies on these lines: {2,26294}, {4,371}, {5,26361}, {11,26435}, {12,26355}, {30,26516}, {98,26429}, {193,3832}, {230,7374}, {235,26375}, {381,5860}, {492,3091}, {515,26369}, {546,5875}, {1131,1503}, {1587,26456}, {1588,26462}, {1598,26306}, {1699,26300}, {3843,18539}, {5200,13019}, {5587,26444}, {5603,26514}, {5870,13665}, {6251,22484}, {6526,24244}, {7585,14233}, {9993,26314}, {10531,26520}, {10532,26519}, {10893,26490}, {10894,26485}, {10895,26479}, {10896,26473}, {11496,26512}, {11897,26449}, {13687,15682}, {22753,26324}, {26326,26396}, {26327,26420}, {26328,26496}, {26329,26505}, {26332,26517}, {26333,26518}

X(26330) = midpoint of X(4) and X(13886)
X(26330) = {X(3832), X(5480)}-harmonic conjugate of X(26331)


X(26331) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-EULER AND 4th TRI-SQUARES-CENTRAL

Barycentrics    3*(b^2+c^2)*a^4-2*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)-S*(3*a^4+2*(b^2+c^2)*a^2-5*(b^2-c^2)^2) : :

X(26331) lies on these lines: {2,26295}, {4,372}, {5,26362}, {11,26436}, {12,26356}, {30,26521}, {98,26430}, {193,3832}, {230,7000}, {235,26376}, {381,5861}, {491,3091}, {515,26370}, {546,5874}, {1132,1503}, {1587,26457}, {1588,26463}, {1598,26307}, {1699,26301}, {3843,26438}, {5587,26445}, {5603,26515}, {5871,13785}, {6250,22485}, {6526,24243}, {7586,14230}, {9993,26315}, {10531,26525}, {10532,26524}, {10893,26491}, {10894,26486}, {10895,26480}, {10896,26474}, {11496,26513}, {11897,26450}, {13807,15682}, {22753,26325}, {26326,26397}, {26327,26421}, {26328,26497}, {26329,26506}, {26332,26522}, {26333,26523}

X(26331) = midpoint of X(4) and X(13939)
X(26331) = {X(3832), X(5480)}-harmonic conjugate of X(26330)


X(26332) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-EULER AND INNER-YFF

Barycentrics    a^7-(b+c)*a^6-(b-c)^2*a^5+(b+c)*(b^2-4*b*c+c^2)*a^4-(b^2+4*b*c+c^2)*(b-c)^2*a^3+(b^2-c^2)*(b-c)*(b^2+4*b*c+c^2)*a^2+(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c) : :
X(26332) = X(944)-3*X(3475) = 3*X(1699)+X(9613) = X(3486)-3*X(5603) = R*X(1)+(R+r)*X(4)

X(26332) lies on these lines: {1,4}, {2,11012}, {3,6690}, {5,958}, {7,5884}, {8,2894}, {10,5709}, {11,26437}, {12,3149}, {20,10902}, {30,4428}, {35,6934}, {36,6833}, {40,377}, {56,6831}, {57,12616}, {98,26431}, {104,4317}, {117,5230}, {119,11929}, {149,5734}, {165,6897}, {219,5798}, {235,26377}, {329,20117}, {355,518}, {381,529}, {382,16202}, {405,11827}, {442,3428}, {443,6684}, {495,11500}, {498,6905}, {499,6830}, {516,6850}, {517,5794}, {535,12558}, {546,7956}, {908,10522}, {952,18517}, {960,5812}, {962,2475}, {993,6824}, {1012,7354}, {1125,6827}, {1158,4292}, {1329,6918}, {1482,13463}, {1503,13408}, {1512,10827}, {1532,10895}, {1537,13273}, {1587,26458}, {1588,26464}, {1598,26308}, {1698,6854}, {1836,12672}, {1837,18962}, {1853,13095}, {2077,4190}, {2478,8227}, {2550,5735}, {2551,5705}, {2800,4295}, {2829,9655}, {2886,22770}, {2975,6828}, {3070,19049}, {3071,19050}, {3085,6796}, {3086,6844}, {3091,5080}, {3146,10587}, {3295,5842}, {3333,12687}, {3434,7982}, {3436,5587}, {3576,6836}, {3577,5881}, {3616,6840}, {3624,6947}, {3814,6944}, {3817,6893}, {3822,6825}, {3832,10529}, {3839,11240}, {3843,10742}, {3855,8166}, {4293,5450}, {4297,6851}, {4298,6245}, {4299,6906}, {4308,11715}, {4430,6894}, {5198,10835}, {5248,6868}, {5251,6832}, {5253,6943}, {5259,6936}, {5260,6991}, {5267,6892}, {5536,5818}, {5563,10785}, {5657,6901}, {5693,5905}, {5707,5786}, {5720,21077}, {5722,13374}, {5731,6895}, {5761,22836}, {5768,12005}, {5787,12675}, {5806,18480}, {5886,6928}, {6201,26349}, {6202,26342}, {6253,15888}, {6361,6951}, {6459,13907}, {6460,13965}, {6829,19854}, {6834,7951}, {6841,22758}, {6843,19843}, {6848,10590}, {6849,7682}, {6865,10165}, {6866,8666}, {6867,25639}, {6870,20076}, {6882,10200}, {6885,25440}, {6896,7989}, {6898,7988}, {6899,7987}, {6911,26364}, {6915,11681}, {6916,10268}, {6922,25524}, {6923,12699}, {6927,10588}, {6929,9955}, {6938,10483}, {6942,14794}, {6956,7288}, {6962,10585}, {6977,7280}, {7330,12617}, {7497,9798}, {7548,11680}, {8727,12114}, {9579,12705}, {9654,18242}, {9779,13729}, {9993,26317}, {10056,11491}, {10310,11112}, {10525,22791}, {10896,18967}, {10942,18491}, {10953,11375}, {11510,12943}, {11897,26452}, {12000,18499}, {12019,12762}, {12190,14639}, {12382,14644}, {12433,20330}, {12688,16127}, {12702,15346}, {14054,14872}, {14647,15932}, {15908,17532}, {18481,24299}, {26326,26399}, {26327,26423}, {26328,26499}, {26329,26508}, {26330,26517}, {26331,26522}

X(26332) = midpoint of X(i) and X(j) for these {i,j}: {4, 388}, {9579, 12705}
X(26332) = reflection of X(i) in X(j) for these (i,j): (3, 25466), (958, 5), (6868, 5248), (7330, 12617)
X(26332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3583, 11522, 10531), (10532, 12116, 10597), (10597, 12116, 1)


X(26333) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-EULER AND OUTER-YFF

Barycentrics    a^7-(b+c)*a^6-(b-c)^2*a^5+(b+c)*(b^2+c^2)*a^4-(b^2+c^2)*(b-c)^2*a^3+(b^4-c^4)*(b-c)*a^2+(b^2-c^2)^2*(b^2-4*b*c+c^2)*a-(b^2-c^2)^3*(b-c) : :
X(26333) = R*X(1)+(R-r)*X(4)

X(26333) lies on these lines: {1,4}, {2,2077}, {3,3816}, {5,1376}, {7,15528}, {8,13729}, {10,6893}, {11,1012}, {12,26358}, {30,7956}, {35,6834}, {36,6938}, {40,2478}, {55,1532}, {79,5553}, {84,5555}, {98,26432}, {100,6945}, {104,10072}, {119,381}, {153,3241}, {165,6947}, {235,26378}, {355,3880}, {376,8166}, {377,8227}, {382,16203}, {405,15908}, {474,11826}, {496,12114}, {498,6941}, {499,6906}, {516,3359}, {517,6929}, {546,10894}, {913,5190}, {938,5884}, {952,18516}, {962,5046}, {971,18527}, {993,6930}, {999,2829}, {1001,6907}, {1125,6850}, {1158,1210}, {1329,10306}, {1352,9025}, {1387,12761}, {1512,5119}, {1537,2099}, {1538,24929}, {1587,26459}, {1588,26465}, {1598,26309}, {1621,6932}, {1698,6898}, {1836,18838}, {1837,12672}, {1853,13094}, {2095,17768}, {2550,6939}, {2551,11362}, {2800,18391}, {2886,6913}, {2950,10265}, {3070,19047}, {3071,19048}, {3073,5292}, {3086,5450}, {3091,5552}, {3146,10586}, {3149,6284}, {3256,6844}, {3295,18242}, {3428,11113}, {3434,5587}, {3436,7982}, {3560,26363}, {3576,6925}, {3624,6897}, {3746,10786}, {3814,6973}, {3817,6826}, {3822,6982}, {3825,6891}, {3832,10528}, {3838,5886}, {3839,11239}, {3841,6887}, {3843,12000}, {3899,12245}, {4187,10310}, {4293,5193}, {4294,6796}, {4295,5804}, {4302,6905}, {4309,11491}, {4512,5084}, {4863,18908}, {5010,6880}, {5045,22792}, {5198,10834}, {5218,6969}, {5248,6825}, {5251,6976}, {5252,10947}, {5259,6889}, {5440,17618}, {5657,6965}, {5693,12649}, {5722,6001}, {5734,20060}, {5805,10202}, {5806,22793}, {5836,12700}, {5840,6911}, {5842,9668}, {5924,10398}, {6201,26350}, {6202,26343}, {6259,12675}, {6361,6902}, {6459,13906}, {6460,13964}, {6824,25639}, {6830,12775}, {6831,10896}, {6833,7741}, {6836,10860}, {6838,10902}, {6839,9779}, {6840,9812}, {6842,10198}, {6847,10591}, {6849,12571}, {6854,7988}, {6865,10270}, {6866,12558}, {6872,11012}, {6895,15016}, {6899,16209}, {6912,11680}, {6916,10165}, {6917,9955}, {6920,19854}, {6928,7686}, {6934,14803}, {6935,10589}, {6944,25440}, {6966,10584}, {6968,7951}, {6992,7688}, {7330,10916}, {9581,12616}, {9993,26318}, {10247,10742}, {10248,10430}, {10526,22791}, {10724,17579}, {10895,10965}, {10915,19925}, {10943,18761}, {10953,12701}, {11372,12686}, {11376,18961}, {11500,15171}, {11729,22938}, {11897,26453}, {11928,26470}, {12189,14639}, {12381,14644}, {12676,18238}, {12953,22768}, {15254,26446}, {16371,24466}, {18481,24927}, {26326,26400}, {26327,26424}, {26328,26500}, {26329,26509}, {26330,26518}, {26331,26523}

X(26333) = midpoint of X(i) and X(j) for these {i,j}: {4, 497}, {9668, 19541}
X(26333) = reflection of X(i) in X(j) for these (i,j): (3, 3816), (1376, 5), (22753, 7956)
X(26333) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 12116, 5691), (1058, 12667, 5882), (1699, 3583, 4)


X(26334) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-INNER-GREBE AND 1st AURIGA

Barycentrics    a*((a^2+b^2+c^2-S)*D+(a+b+c)*a*((-a+b+c)*S+2*(b^2+c^2)*a-2*b^3-2*c^3)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26334) lies on these lines: {1,26335}, {6,5597}, {1271,26394}, {5589,26296}, {5591,26359}, {5595,26302}, {5605,26395}, {5689,26382}, {5861,26397}, {6202,26326}, {6215,26386}, {9994,26310}, {10783,26381}, {10792,26379}, {10919,26390}, {10921,26389}, {10923,26388}, {10925,26387}, {10927,26351}, {10929,26402}, {10931,26401}, {11370,26365}, {11388,26371}, {11497,26393}, {11824,26290}, {11901,26383}, {18496,26336}, {18959,26380}, {22756,26319}, {26337,26391}, {26339,26396}, {26341,26398}, {26342,26399}, {26343,26400}


X(26335) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-INNER-GREBE AND 2nd AURIGA

Barycentrics    a*((a^2+b^2+c^2-S)*D+(a+b+c)*a*(-(-a+b+c)*S-2*(b^2+c^2)*a+2*b^3+2*c^3)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26335) lies on these lines: {1,26334}, {6,5598}, {1271,26418}, {5589,26297}, {5591,26360}, {5595,26303}, {5605,26419}, {5689,26406}, {5861,26421}, {6202,26327}, {6215,26410}, {9994,26311}, {10783,26405}, {10792,26403}, {10919,26414}, {10921,26413}, {10923,26412}, {10925,26411}, {10929,26426}, {10931,26425}, {11370,26366}, {11388,26372}, {11497,26417}, {11824,26291}, {11901,26407}, {18498,26336}, {18959,26404}, {22756,26320}, {26337,26415}, {26339,26420}, {26341,26422}, {26342,26423}, {26343,26424}


X(26336) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-INNER-GREBE AND EHRMANN-MID

Barycentrics    (a^4+(b^2+c^2)*a^2-2*(b^2-c^2)^2)*S-3*a^6+2*(b^2+c^2)*a^4-(b^2+c^2)^2*a^2+2*(b^4-c^4)*(b^2-c^2) : :

X(26336) lies on these lines: {3,5591}, {4,5875}, {5,10783}, {6,13}, {30,1271}, {382,1161}, {550,10517}, {999,10925}, {1656,10514}, {1657,11824}, {3295,10923}, {3534,13810}, {3641,18525}, {3830,5861}, {3843,6202}, {5589,18480}, {5605,18526}, {5689,12702}, {7732,12902}, {8148,12627}, {9654,10040}, {9655,18959}, {9668,10927}, {9669,10048}, {9929,12164}, {9994,18503}, {10792,18501}, {10919,18519}, {10921,18518}, {10929,18545}, {10931,18543}, {11370,18493}, {11388,18494}, {11497,18524}, {11901,18508}, {13782,22807}, {14269,18539}, {18498,26335}, {18521,26337}, {18542,26343}, {18544,26342}, {22756,26321}

X(26336) = reflection of X(13782) in X(22807)
X(26336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 5875, 11916), (5871, 6215, 3)


X(26337) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-INNER-GREBE AND LUCAS HOMOTHETIC

Barycentrics    (SB+SC)*((2*S^2-SA^2+2*SB*SC-SW^2)*S+(4*R^2+SA-SW)*S^2-2*SA^2*SW) : :

X(26337) lies on these lines: {6,493}, {1271,26494}, {5490,5591}, {5589,26298}, {5595,26304}, {5605,26495}, {5689,26442}, {5861,26497}, {6202,26328}, {6215,26466}, {9994,26312}, {10783,26439}, {10792,26427}, {10919,26488}, {10921,26483}, {10923,26477}, {10925,26471}, {10927,26353}, {10931,26501}, {11370,26367}, {11388,26373}, {11497,26493}, {11824,26292}, {11901,26447}, {18521,26336}, {18959,26433}, {22756,26322}, {26335,26415}, {26339,26496}, {26341,26498}, {26342,26499}, {26343,26500}


X(26338) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-OUTER-GREBE AND LUCAS(-1) HOMOTHETIC

Barycentrics    (SB+SC)*(-(2*S^2-SA^2+2*SB*SC-SW^2)*S+(4*R^2+SA-SW)*S^2-2*SA^2*SW) : :

X(26338) lies on these lines: {6,494}, {1270,26503}, {5491,5590}, {5588,26299}, {5594,26305}, {5604,26504}, {5688,26443}, {5860,26505}, {6201,26329}, {6214,26467}, {6464,26347}, {10784,26440}, {10793,26428}, {10920,26489}, {10922,26484}, {10924,26478}, {10926,26472}, {10928,26354}, {10930,26511}, {10932,26510}, {11371,26368}, {11389,26374}, {11498,26502}, {11825,26293}, {11902,26448}, {18523,26346}, {18960,26434}, {22757,26323}, {26340,26506}, {26344,26392}, {26345,26416}, {26348,26507}, {26349,26508}, {26350,26509}


X(26339) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-INNER-GREBE AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    -b^2-c^2+S+4*a^2 : :
X(26339) = 3*(S-2*SW)*X(2)+10*SW*X(6)

X(26339) lies on these lines: {2,6}, {4,6279}, {382,5871}, {546,5875}, {550,1161}, {3244,3641}, {3528,11824}, {3529,10783}, {3530,26341}, {3544,10514}, {3632,5589}, {3636,11370}, {3851,6215}, {3855,6281}, {5102,7000}, {5595,20850}, {5605,20057}, {5689,26444}, {6154,13269}, {7732,24981}, {9994,26314}, {10301,11388}, {10792,26429}, {10919,26490}, {10921,26485}, {10923,26479}, {10925,26473}, {10927,26355}, {10929,26520}, {10931,26519}, {11497,26512}, {11901,26449}, {13690,15682}, {14269,18539}, {18959,26435}, {22756,26324}, {26335,26420}, {26337,26496}, {26342,26517}, {26343,26518}

X(26339) = reflection of X(5590) in X(7585)
X(26339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3629, 26340), (193, 3068, 5860), (3068, 5860, 26361)


X(26340) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-OUTER-GREBE AND 4th TRI-SQUARES-CENTRAL

Barycentrics    -b^2-c^2-S+4*a^2 : :
X(26340) = 3*(S+2*SW)*X(2)-10*SW*X(6)

X(26340) lies on these lines: {2,6}, {4,6280}, {382,5870}, {546,5874}, {550,1160}, {3244,3640}, {3528,11825}, {3529,8982}, {3530,26348}, {3544,10515}, {3632,5588}, {3636,11371}, {3851,6214}, {3855,6278}, {5102,7374}, {5594,20850}, {5604,20057}, {5688,26445}, {6154,13270}, {7733,24981}, {9995,26315}, {10301,11389}, {10793,26430}, {10920,26491}, {10922,26486}, {10924,26480}, {10926,26474}, {10928,26356}, {10930,26525}, {10932,26524}, {11498,26513}, {11902,26450}, {13811,15682}, {14269,26346}, {18960,26436}, {22757,26325}, {26338,26506}, {26344,26397}, {26345,26421}, {26347,26497}, {26349,26522}, {26350,26523}

X(26340) = reflection of X(5591) in X(7586)
X(26340) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3629, 26339), (6, 5860, 5590), (591, 7585, 26361)


X(26341) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-INNER-GREBE AND X3-ABC REFLECTIONS

Barycentrics    a^2*((-a^2+b^2+c^2)*S+2*a^4-2*(b^2+c^2)*a^2-4*b^2*c^2) : :
X(26341) = (S-2*SW)*X(3)-2*SW*X(6)

X(26341) lies on these lines: {2,6215}, {3,6}, {5,5871}, {24,11388}, {30,6202}, {35,10927}, {36,18959}, {55,10048}, {56,10040}, {125,12803}, {140,5591}, {498,10923}, {499,10925}, {517,11370}, {549,5861}, {631,1271}, {642,15834}, {1385,3641}, {1511,7732}, {1584,5012}, {1656,10514}, {3357,6267}, {3523,10517}, {3526,6281}, {3530,26339}, {3576,5589}, {3579,12697}, {5054,6279}, {5595,6642}, {5605,10246}, {5689,26446}, {5690,12627}, {6214,7375}, {6227,12042}, {6263,12619}, {6270,6771}, {6271,6774}, {6277,10610}, {7583,8974}, {7584,13949}, {7725,12041}, {8903,15805}, {9929,12359}, {10267,11497}, {10269,22756}, {10919,26492}, {10921,26487}, {10929,16203}, {10931,16202}, {11901,26451}, {19351,19360}, {26335,26422}, {26337,26498}

X(26341) = midpoint of X(3) and X(6418)
X(26341) = inverse of X(1161) in the Brocard circle
X(26341) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 10783, 6215), (6, 11824, 11916), (5092, 9733, 3)


X(26342) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-INNER-GREBE AND INNER-YFF

Barycentrics    a^2*(-2*S*b*c+a^4-2*(b^2+c^2)*a^2-2*b*c*(b+c)*a+b^4+c^4+2*b*c*(b^2-b*c+c^2)) : :

X(26342) lies on these lines: {1,6}, {5,10921}, {1161,11249}, {1271,10527}, {5591,26363}, {5595,26308}, {5689,6734}, {5709,12697}, {5861,26522}, {5875,10919}, {6202,26332}, {6215,26470}, {9994,26317}, {10267,11497}, {10680,11916}, {10783,12116}, {10792,26431}, {10923,26481}, {10925,26475}, {10927,26357}, {11012,11824}, {11388,26377}, {11901,26452}, {18544,26336}, {18959,26437}, {26335,26423}, {26337,26499}, {26339,26517}

X(26342) = reflection of X(26350) in X(3299)
X(26342) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 5605, 10040), (6, 10931, 1), (12595, 19050, 1)


X(26343) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-INNER-GREBE AND OUTER-YFF

Barycentrics    a^2*(2*S*b*c+a^4-2*(b^2+c^2)*a^2+2*b*c*(b+c)*a+b^4+c^4-2*b^3*c-2*b^2*c^2-2*b*c^3) : :
X(26343) = R*(S-2*SW)*X(1)+2*SW*(R-r)*X(6)

X(26343) lies on these lines: {1,6}, {5,10919}, {119,6215}, {1161,11248}, {1271,5552}, {1470,18959}, {2077,11824}, {5591,26364}, {5595,26309}, {5689,6735}, {5861,26523}, {5871,6256}, {5875,10921}, {6202,26333}, {6263,12751}, {9994,26318}, {10269,22756}, {10679,11916}, {10783,12115}, {10792,26432}, {10923,26482}, {10925,26476}, {10927,26358}, {11388,26378}, {11901,26453}, {13269,25438}, {18542,26336}, {26335,26424}, {26337,26500}, {26339,26518}

X(26343) = reflection of X(26349) in X(3301)
X(26343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 5605, 10048), (6, 10929, 1), (12594, 19048, 1)


X(26344) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-OUTER-GREBE AND 1st AURIGA

Barycentrics    a*((a^2+b^2+c^2+S)*D+(a+b+c)*a*((a-b-c)*S+2*(b^2+c^2)*a-2*b^3-2*c^3)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26344) lies on these lines: {1,26345}, {6,5597}, {1270,26394}, {5588,26296}, {5590,26359}, {5594,26302}, {5604,26395}, {5688,26382}, {5860,26396}, {6201,26326}, {6214,26386}, {9995,26310}, {10784,26381}, {10793,26379}, {10920,26390}, {10922,26389}, {10924,26388}, {10926,26387}, {10928,26351}, {10930,26402}, {10932,26401}, {11371,26365}, {11389,26371}, {11498,26393}, {11825,26290}, {11902,26383}, {18496,26346}, {18960,26380}, {22757,26319}, {26338,26392}, {26340,26397}, {26347,26391}, {26348,26398}, {26349,26399}, {26350,26400}


X(26345) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-OUTER-GREBE AND 2nd AURIGA

Barycentrics    a*(-(a^2+b^2+c^2+S)*D+(a+b+c)*a*((a-b-c)*S+2*(b^2+c^2)*a-2*b^3-2*c^3)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26345) lies on these lines: {1,26344}, {6,5598}, {1270,26418}, {5588,26297}, {5590,26360}, {5594,26303}, {5604,26419}, {5688,26406}, {5860,26420}, {6201,26327}, {6214,26410}, {9995,26311}, {10784,26405}, {10793,26403}, {10920,26414}, {10922,26413}, {10924,26412}, {10926,26411}, {10928,26352}, {10932,26425}, {11389,26372}, {11498,26417}, {11825,26291}, {11902,26407}, {18498,26346}, {18960,26404}, {22757,26320}, {26338,26416}, {26340,26421}, {26347,26415}, {26348,26422}, {26349,26423}, {26350,26424}


X(26346) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-OUTER-GREBE AND EHRMANN-MID

Barycentrics    (a^4+(b^2+c^2)*a^2-2*(b^2-c^2)^2)*S+3*a^6-2*(b^2+c^2)*a^4+(b^2+c^2)^2*a^2-2*(b^4-c^4)*(b^2-c^2) : :

X(26346) lies on these lines: {3,5590}, {4,5874}, {5,10784}, {6,13}, {30,1270}, {382,1160}, {550,10518}, {999,10926}, {1656,10515}, {1657,11825}, {3295,10924}, {3534,13691}, {3640,18525}, {3830,5860}, {3843,6201}, {5588,18480}, {5604,18526}, {5688,12702}, {7733,12902}, {8148,12628}, {9654,10041}, {9655,18960}, {9668,10928}, {9669,10049}, {9930,12164}, {9995,18503}, {10793,18501}, {10920,18519}, {10922,18518}, {10930,18545}, {10932,18543}, {11371,18493}, {11389,18494}, {11498,18524}, {11902,18508}, {13662,22806}, {14269,26340}, {18496,26344}, {18498,26345}, {18521,26347}, {18523,26338}, {18542,26350}, {18544,26349}, {22757,26321}

X(26346) = reflection of X(13662) in X(22806)
X(26346) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 5874, 11917), (5870, 6214, 3)


X(26347) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-OUTER-GREBE AND LUCAS HOMOTHETIC

Barycentrics    a^2*(b^2+c^2)*(a^4-2*(b^2+c^2)*a^2+(b^2-c^2)^2-4*b^2*c^2-4*S*(b^2+c^2)) : :

X(26347) lies on these lines: {6,493}, {76,5490}, {755,1306}, {1270,26494}, {2353,6457}, {5588,26298}, {5594,26304}, {5604,26495}, {5688,26442}, {5860,26496}, {6201,26328}, {6214,26466}, {6464,26338}, {9995,26312}, {10784,26439}, {10793,26427}, {10920,26488}, {10922,26483}, {10924,26477}, {10926,26471}, {10928,26353}, {11371,26367}, {11389,26373}, {11498,26493}, {11825,26292}, {11902,26447}, {18521,26346}, {18960,26433}, {22757,26322}, {26340,26497}, {26344,26391}, {26345,26415}, {26348,26498}, {26349,26499}, {26350,26500}


X(26348) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-OUTER-GREBE AND X3-ABC REFLECTIONS

Barycentrics    a^2*((a^2-b^2-c^2)*S+2*a^4-2*(b^2+c^2)*a^2-4*b^2*c^2) : :
X(26348) = (S+2*SW)*X(3)+2*SW*X(6)

X(26348) lies on these lines: {2,6214}, {3,6}, {5,5870}, {24,11389}, {30,6201}, {35,10928}, {36,18960}, {55,10049}, {56,10041}, {125,12804}, {140,5590}, {498,10924}, {499,10926}, {517,11371}, {549,5860}, {631,1270}, {641,15835}, {1385,3640}, {1511,7733}, {1583,5012}, {1656,10515}, {3357,6266}, {3523,10518}, {3526,6278}, {3530,26340}, {3576,5588}, {3579,12698}, {5054,6280}, {5594,6642}, {5604,10246}, {5688,26446}, {5690,12628}, {6215,7376}, {6226,12042}, {6262,12619}, {6268,6771}, {6269,6774}, {6276,10610}, {7583,8975}, {7584,13950}, {7726,12041}, {8904,15805}, {9930,12359}, {10267,11498}, {10269,22757}, {10920,26492}, {10922,26487}, {10930,16203}, {10932,16202}, {11902,26451}, {19352,19360}, {26338,26507}, {26344,26398}, {26345,26422}, {26347,26498}

X(26348) = midpoint of X(3) and X(6417)
X(26348) = inverse of X(1160) in the Brocard circle
X(26348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 10784, 6214), (574, 8406, 8400), (1151, 8406, 574)


X(26349) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-OUTER-GREBE AND INNER-YFF

Barycentrics    a^2*(2*S*b*c+a^4-2*(b^2+c^2)*a^2-2*b*c*(b+c)*a+b^4+c^4+2*b*c*(b^2-b*c+c^2)) : :
X(26349) = R*(2*SW+S)*X(1)-2*SW*(R+r)*X(6)

X(26349) lies on these lines: {1,6}, {5,10922}, {1160,11249}, {1270,10527}, {5590,26363}, {5594,26308}, {5688,6734}, {5709,12698}, {5860,26517}, {5874,10920}, {6201,26332}, {6214,26470}, {9995,26317}, {10267,11498}, {10680,11917}, {10784,12116}, {10793,26431}, {10924,26481}, {10926,26475}, {10928,26357}, {11012,11825}, {11389,26377}, {11902,26452}, {18544,26346}, {18960,26437}, {26338,26508}, {26340,26522}, {26344,26399}, {26345,26423}, {26347,26499}

X(26349) = reflection of X(26343) in X(3301)
X(26349) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3640, 26350), (6, 10932, 1), (12595, 19049, 1)


X(26350) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-OUTER-GREBE AND OUTER-YFF

Barycentrics    a^2*(-2*S*b*c+a^4-2*(b^2+c^2)*a^2+2*b*c*(b+c)*a+b^4+c^4-2*b*c*(b^2+b*c+c^2)) : :
X(26350) = R*(2*SW+S)*X(1)-2*SW*(R-r)*X(6)

X(26350) lies on these lines: {1,6}, {5,10920}, {119,6214}, {1160,11248}, {1270,5552}, {1470,18960}, {2077,11825}, {5590,26364}, {5594,26309}, {5688,6735}, {5860,26518}, {5870,6256}, {5874,10922}, {6201,26333}, {6262,12751}, {9995,26318}, {10269,22757}, {10679,11917}, {10784,12115}, {10793,26432}, {10924,26482}, {10926,26476}, {10928,26358}, {11389,26378}, {11902,26453}, {13270,25438}, {18542,26346}, {26338,26509}, {26340,26523}, {26344,26400}, {26345,26424}, {26347,26500}

X(26350) = reflection of X(26342) in X(3299)
X(26350) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3640, 26349), (6, 5604, 10049), (12594, 19047, 1)


X(26351) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-MANDART-INCIRCLE AND 1st AURIGA

Barycentrics    a*(-a+b+c)*((a+b-c)*(a-b+c)*D+2*a^2*b*c*(a+b+c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26351) = (8*R^2*s+D)*X(1)+4*R*S*X(3)

X(26351) lies on these lines: {1,3}, {4,26388}, {11,26359}, {12,26326}, {33,26371}, {78,8197}, {497,26387}, {997,5599}, {1479,26386}, {1837,26382}, {3434,26411}, {3811,12454}, {4294,26381}, {4511,5601}, {4861,5602}, {6261,9834}, {6264,12461}, {6326,12460}, {9668,18496}, {10799,26379}, {10833,26302}, {10877,26310}, {10927,26334}, {10928,26344}, {10947,26390}, {10953,26389}, {11843,21740}, {11909,26383}, {16121,16132}, {19037,26384}, {19038,26385}, {26353,26391}, {26354,26392}, {26355,26396}, {26356,26397}

X(26351) = reflection of X(26404) in X(1)
X(26351) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 55, 26352), (5597, 5598, 26393), (11881, 11884, 26417)


X(26352) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-MANDART-INCIRCLE AND 2nd AURIGA

Barycentrics    a*(-a+b+c)*(-(a+b-c)*(a-b+c)*D+2*a^2*b*c*(a+b+c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26352) = (8*R^2*s-D)*X(1)+4*R*S*X(3)

X(26352) lies on these lines: {1,3}, {4,26412}, {11,26360}, {12,26327}, {33,26372}, {78,8204}, {497,26411}, {997,5600}, {1479,26410}, {1837,26406}, {3434,26387}, {3811,12455}, {4294,26405}, {4511,5602}, {4861,5601}, {6261,9835}, {6264,12460}, {6326,12461}, {9668,18498}, {10799,26403}, {10833,26303}, {10877,26311}, {10928,26345}, {10947,26414}, {10953,26413}, {11844,21740}, {11909,26407}, {16122,16132}, {19037,26408}, {19038,26409}, {26354,26416}, {26355,26420}, {26356,26421}

X(26352) = reflection of X(26380) in X(1)
X(26352) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 55, 26351), (5597, 5598, 26417), (11882, 11883, 26393)


X(26353) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-MANDART-INCIRCLE AND LUCAS HOMOTHETIC

Barycentrics    a^2*((a^4-2*(b^2+c^2)*a^2-(3*b^2-2*b*c+c^2)*(b^2-2*b*c+3*c^2))*S+2*(b^2-b*c+c^2)*a^4-4*(b^2+c^2)*(b^2-b*c+c^2)*a^2+2*(b^4+c^4+b*c*(b-c)^2)*(b-c)^2)*(-a+b+c) : :

X(26353) lies on these lines: {1,26433}, {4,26477}, {11,5490}, {12,26328}, {33,26373}, {35,26498}, {55,493}, {56,26292}, {497,26471}, {1479,26466}, {1837,26442}, {2098,26495}, {2646,26367}, {4294,26439}, {6464,26354}, {9668,18521}, {10799,26427}, {10833,26304}, {10877,26312}, {10927,26337}, {10928,26347}, {10947,26488}, {10953,26483}, {11909,26447}, {19037,26454}, {19038,26460}, {26351,26391}, {26352,26415}, {26355,26496}, {26356,26497}, {26357,26499}, {26358,26500}


X(26354) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-MANDART-INCIRCLE AND LUCAS(-1) HOMOTHETIC

Barycentrics    a^2*(-(a^4-2*(b^2+c^2)*a^2-(3*b^2-2*b*c+c^2)*(b^2-2*b*c+3*c^2))*S+2*(b^2-b*c+c^2)*a^4-4*(b^2+c^2)*(b^2-b*c+c^2)*a^2+2*(b^4+c^4+b*c*(b-c)^2)*(b-c)^2)*(-a+b+c) : :

X(26354) lies on these lines: {1,26434}, {4,26478}, {11,5491}, {12,26329}, {33,26374}, {35,26507}, {55,494}, {56,26293}, {497,26472}, {1479,26467}, {1697,26299}, {2098,26504}, {2646,26368}, {4294,26440}, {6464,26353}, {9668,18523}, {10799,26428}, {10833,26305}, {10877,26313}, {10928,26338}, {10947,26489}, {10953,26484}, {10965,26511}, {10966,26323}, {11909,26448}, {19037,26455}, {19038,26461}, {26351,26392}, {26352,26416}, {26355,26505}, {26356,26506}, {26357,26508}, {26358,26509}


X(26355) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-MANDART-INCIRCLE AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    ((3*a^2+(b-c)^2)*S+2*a^2*(b^2-b*c+c^2))*(-a+b+c) : :

X(26355) lies on these lines: {1,26435}, {4,12949}, {11,26361}, {12,26330}, {20,6283}, {33,26375}, {35,26516}, {55,3068}, {56,26294}, {144,145}, {492,497}, {1007,26474}, {1479,26468}, {1837,26444}, {2098,26514}, {2646,26369}, {3058,5860}, {4294,26441}, {9668,18539}, {10799,26429}, {10833,26306}, {10947,26490}, {10953,26485}, {10965,26520}, {10966,26324}, {11909,26449}, {13699,15682}, {19037,26456}, {19038,26462}, {26351,26396}, {26352,26420}, {26353,26496}, {26354,26505}, {26357,26517}, {26358,26518}

X(26355) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (390, 3056, 26356), (492, 497, 26473)


X(26356) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-MANDART-INCIRCLE AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (-(3*a^2+(b-c)^2)*S+2*a^2*(b^2-b*c+c^2))*(-a+b+c) : :

X(26356) lies on these lines: {1,26436}, {4,12948}, {12,26331}, {20,6405}, {33,26376}, {35,26521}, {55,3069}, {56,26295}, {144,145}, {491,497}, {1007,26473}, {1479,26469}, {1697,26301}, {1837,26445}, {2098,26515}, {2646,26370}, {3058,5861}, {4294,8982}, {9668,26438}, {10799,26430}, {10833,26307}, {10877,26315}, {10928,26340}, {10947,26491}, {10953,26486}, {10965,26525}, {10966,26325}, {11909,26450}, {13819,15682}, {19037,26457}, {19038,26463}, {26351,26397}, {26352,26421}, {26353,26497}, {26354,26506}, {26357,26522}, {26358,26523}

X(26356) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (390, 3056, 26355), (491, 497, 26474)


X(26357) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-MANDART-INCIRCLE AND INNER-YFF

Barycentrics    a^2*(-a+b+c)*(a^4-2*(b^2+c^2)*a^2-2*b*c*(b+c)*a+(b^2+c^2)*(b-c)^2) : :
X(26357) = R^2*X(1)+r*(R+r)*X(3)

X(26357) lies on these lines: {1,3}, {4,26481}, {5,10953}, {6,22070}, {10,11502}, {11,405}, {12,3149}, {21,497}, {25,23361}, {31,22361}, {33,26377}, {48,836}, {63,1858}, {73,1496}, {104,4305}, {212,1193}, {221,13095}, {225,1593}, {255,1064}, {283,1036}, {378,1068}, {388,411}, {390,4189}, {404,5218}, {474,5432}, {498,6911}, {499,6883}, {515,22759}, {603,4300}, {859,11365}, {950,993}, {956,10950}, {958,1837}, {960,1259}, {997,11517}, {1001,5832}, {1006,3086}, {1011,11269}, {1012,6284}, {1056,6876}, {1058,6875}, {1069,3422}, {1070,21312}, {1072,7395}, {1106,22053}, {1253,22072}, {1376,24987}, {1455,15852}, {1468,14547}, {1478,6985}, {1479,3560}, {1486,16872}, {1682,6056}, {1898,7330}, {2066,19050}, {2071,16272}, {2260,2268}, {2323,4254}, {2360,4276}, {2361,16466}, {2478,26476}, {2654,10448}, {2975,3486}, {3011,7484}, {3058,10959}, {3085,6905}, {3145,8240}, {3516,23710}, {3556,22345}, {3651,4293}, {3895,8668}, {3916,12711}, {3925,19520}, {4188,5281}, {4255,7074}, {4265,10387}, {4294,6906}, {4304,5450}, {4309,10058}, {4314,5267}, {4995,16371}, {4996,9785}, {5047,10589}, {5132,16295}, {5225,6912}, {5231,13615}, {5248,12053}, {5251,9581}, {5252,11500}, {5258,5727}, {5274,16865}, {5292,16287}, {5326,16862}, {5414,19049}, {5687,19524}, {5705,16293}, {5713,7420}, {5715,17605}, {6796,11501}, {6825,10629}, {6863,10523}, {6872,10530}, {6907,18961}, {6913,10896}, {6914,10943}, {6915,10588}, {6920,10591}, {6942,10597}, {6950,10806}, {6954,10321}, {6986,7288}, {7071,11401}, {7354,7580}, {7489,9669}, {7508,15172}, {8053,10934}, {8192,23843}, {8614,23072}, {9668,13743}, {9673,20831}, {9798,11334}, {10039,11499}, {10385,11240}, {10393,14054}, {10572,22758}, {10786,26482}, {10799,26431}, {10827,18491}, {10833,13730}, {10877,26317}, {10895,19541}, {10927,26342}, {10928,26349}, {11238,16418}, {11375,22753}, {11496,12701}, {11809,18859}, {11909,26452}, {12739,22775}, {13738,21321}, {16344,19858}, {19037,26458}, {19038,26464}, {26353,26499}, {26354,26508}, {26355,26517}, {26356,26522}

X(26357) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3, 37579), (55, 56, 2646), (3, 10680, 6585), (3295, 10680, 1), (11012, 12704, 11249)


X(26358) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTI-MANDART-INCIRCLE AND OUTER-YFF

Barycentrics    a^2*(-a+b+c)*(a^4-2*(b^2+c^2)*a^2+2*b*c*(b+c)*a+(b^2+4*b*c+c^2)*(b-c)^2) : :
X(26358) = R*(R-2*r)*X(1)+r*(R-r)*X(3)

X(26358) lies on these lines: {1,3}, {4,26482}, {5,10947}, {8,4571}, {11,5687}, {12,26333}, {33,26378}, {78,8668}, {119,1479}, {221,13094}, {390,5046}, {497,3871}, {519,22760}, {944,12775}, {946,11501}, {950,10915}, {1001,24982}, {1012,10944}, {1259,3880}, {1260,12625}, {1376,11376}, {1519,11500}, {1621,5554}, {1837,3913}, {1858,3870}, {1898,5534}, {2057,3689}, {2066,19048}, {2346,5555}, {2348,7368}, {2950,17660}, {3058,10958}, {3085,6941}, {3486,12648}, {3560,12647}, {3583,18518}, {4294,12115}, {5218,17566}, {5252,11496}, {5281,10586}, {5414,19047}, {5432,10200}, {5440,17622}, {6256,6284}, {6913,17662}, {6949,10596}, {6958,10948}, {7071,11400}, {8068,11928}, {8192,23844}, {8715,11502}, {9668,18542}, {9669,12331}, {10385,11114}, {10387,12594}, {10624,12608}, {10799,26432}, {10833,26309}, {10877,26318}, {10927,26343}, {10928,26350}, {10942,10953}, {11909,26453}, {12332,20586}, {12740,13205}, {12743,12751}, {19037,26459}, {19038,26465}, {26353,26500}, {26354,26509}, {26355,26518}, {26356,26523}

X(26538) = complement of X(25245)


X(26359) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTICOMPLEMENTARY AND 1st AURIGA

Barycentrics    a*r*D+S*((b^2+c^2)*a-(b^2-c^2)*(b-c)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26359) lies on these lines: {1,442}, {2,5597}, {3,18496}, {4,26290}, {5,26326}, {8,26395}, {11,26351}, {12,26380}, {55,26387}, {56,26388}, {83,26379}, {140,26398}, {377,26425}, {427,26371}, {517,26327}, {528,8187}, {631,26381}, {958,26319}, {1004,11492}, {1125,26365}, {1376,26390}, {1650,26383}, {1698,26296}, {3068,26385}, {3069,26384}, {3096,26310}, {3434,5598}, {5490,26391}, {5491,26392}, {5552,26402}, {5590,26344}, {5591,26334}, {6690,8186}, {10527,26401}, {26361,26396}, {26362,26397}, {26363,26399}, {26364,26400}

X(26359) = complement of X(5601)
X(26359) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 2886, 26360), (3813, 24392, 26360)


X(26360) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTICOMPLEMENTARY AND 2nd AURIGA

Barycentrics    -a*r*D+S*((b^2+c^2)*a-(b^2-c^2)*(b-c)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26360) lies on these lines: {1,442}, {2,5598}, {3,18498}, {4,26291}, {5,26327}, {8,26419}, {11,26352}, {12,26404}, {55,26411}, {56,26412}, {83,26403}, {140,26422}, {377,26401}, {427,26372}, {517,26326}, {528,8186}, {631,26405}, {958,26320}, {1004,11493}, {1125,26366}, {1376,26414}, {1650,26407}, {1698,26297}, {3068,26409}, {3069,26408}, {3096,26311}, {3434,5597}, {5490,26415}, {5491,26416}, {5552,26426}, {5590,26345}, {5591,26335}, {6690,8187}, {10527,26425}, {26361,26420}, {26362,26421}, {26363,26423}, {26364,26424}

X(26360) = complement of X(5602)
X(26360) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 2886, 26359), (3813, 24392, 26359), (25466, 25525, 26359)


X(26361) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTICOMPLEMENTARY AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    3*S+b^2+c^2 : :
X(26361) = 3*(3*S+2*SW)*X(2)-2*SW*X(6)

X(26361) lies on these lines: {1,26444}, {2,6}, {3,18539}, {4,641}, {5,26330}, {8,26514}, {11,26355}, {12,26435}, {20,23311}, {55,26473}, {56,26479}, {83,26429}, {140,26516}, {427,26375}, {625,6460}, {631,639}, {640,5067}, {642,3533}, {958,26324}, {1125,26369}, {1376,26490}, {1586,24244}, {1588,11315}, {1650,26449}, {3096,26314}, {5420,7375}, {5490,7763}, {5491,26505}, {5552,26520}, {6118,13886}, {7376,10577}, {7486,23312}, {10194,18840}, {10527,26519}, {13701,15682}, {18819,21463}, {26359,26396}, {26360,26420}, {26363,26517}, {26364,26518}

X(26361) = complement of X(8972)
X(26361) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 1271, 8253), (591, 7585, 26340), (3068, 5860, 26339)


X(26362) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTICOMPLEMENTARY AND 4th TRI-SQUARES-CENTRAL

Barycentrics    3*S-b^2-c^2 : :
X(26362) = 3*(3*S-2*SW)*X(2)+2*SW*X(6)

X(26362) lies on these lines: {1,26445}, {2,6}, {3,26307}, {4,642}, {5,26331}, {8,26515}, {12,26436}, {20,23312}, {55,26474}, {56,26480}, {83,26430}, {140,26521}, {427,26376}, {625,6459}, {631,640}, {639,5067}, {641,3533}, {958,26325}, {1125,26370}, {1376,26491}, {1585,24243}, {1587,11316}, {1650,26450}, {1698,26301}, {3096,26315}, {5418,7376}, {5490,26497}, {5491,7763}, {5552,26525}, {6119,13939}, {7375,10576}, {7486,23311}, {9540,11314}, {10195,18840}, {10527,26524}, {13821,15682}, {18820,21464}, {26359,26397}, {26360,26421}, {26363,26522}, {26364,26523}

X(26362) = complement of X(13941)
X(26362) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 491, 3069), (2, 1271, 615), (491, 3069, 5861)


X(26363) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTICOMPLEMENTARY AND INNER-YFF

Barycentrics    a^4-2*(b^2+c^2)*a^2-2*b*c*(b+c)*a+(b^2-c^2)^2 : :
X(26363) = R*X(1)-3*(R+r)*X(2)

X(26363) lies on these lines: {1,2}, {3,2886}, {4,993}, {5,958}, {7,11263}, {9,6832}, {11,405}, {12,956}, {20,5267}, {21,1479}, {35,3434}, {36,377}, {37,5831}, {40,6833}, {55,7483}, {56,442}, {57,12609}, {63,12047}, {72,11375}, {75,7763}, {83,26431}, {104,6937}, {119,15843}, {140,1376}, {149,4309}, {165,6890}, {191,11415}, {197,19547}, {219,5742}, {225,475}, {238,25519}, {281,7537}, {283,17188}, {354,14054}, {355,6863}, {388,3822}, {392,11376}, {427,26377}, {443,3841}, {452,10591}, {474,3925}, {495,12513}, {496,1001}, {497,5248}, {515,6825}, {516,6847}, {517,6862}, {518,11374}, {529,9654}, {535,5229}, {590,1378}, {615,1377}, {631,2550}, {758,3485}, {944,6853}, {946,5709}, {952,26487}, {954,6067}, {960,5791}, {962,6888}, {966,2323}, {982,24159}, {988,17064}, {999,25466}, {1012,15908}, {1068,17917}, {1107,3767}, {1203,24597}, {1329,1656}, {1385,5794}, {1478,2476}, {1573,7746}, {1650,26452}, {1699,6837}, {1706,6967}, {1770,4652}, {1788,3754}, {1836,3916}, {1861,3541}, {1936,25490}, {2006,15065}, {2049,19720}, {2077,6977}, {2078,6681}, {2345,25078}, {2475,4299}, {2478,5251}, {2548,4426}, {2551,3090}, {2646,3419}, {2949,5758}, {3035,3526}, {3068,26464}, {3071,9678}, {3096,26317}, {3295,3813}, {3333,25525}, {3338,5249}, {3421,10588}, {3428,6831}, {3436,5258}, {3452,6887}, {3475,3881}, {3487,3874}, {3488,6598}, {3525,10806}, {3555,17718}, {3560,26333}, {3576,6889}, {3583,6872}, {3585,6871}, {3628,3820}, {3647,5698}, {3739,6389}, {3753,24914}, {3816,11108}, {3817,5715}, {3825,5084}, {3826,6691}, {3829,9669}, {3847,5713}, {3878,5603}, {3897,5086}, {3926,20888}, {3962,4870}, {4187,10966}, {4189,4302}, {4190,7280}, {4193,5260}, {4197,5253}, {4208,5265}, {4293,5177}, {4295,5744}, {4297,6908}, {4305,5175}, {4323,5775}, {4331,17077}, {4357,24179}, {4359,17869}, {4413,11510}, {4428,15172}, {4512,9614}, {4640,12699}, {4647,17740}, {5044,11230}, {5054,18543}, {5067,10597}, {5070,9711}, {5080,5141}, {5082,5218}, {5087,5302}, {5094,11401}, {5204,11112}, {5219,21077}, {5225,11111}, {5234,6886}, {5247,17717}, {5259,15175}, {5270,20076}, {5273,5536}, {5274,17558}, {5288,10585}, {5289,5901}, {5291,9596}, {5303,17579}, {5432,5687}, {5435,15932}, {5439,17728}, {5443,5692}, {5450,6850}, {5490,26499}, {5491,26508}, {5587,6834}, {5657,6952}, {5691,6838}, {5730,15950}, {5770,5884}, {5795,6944}, {5811,21635}, {5818,6949}, {5836,6958}, {5837,13464}, {5850,8232}, {5881,10786}, {5905,6763}, {6245,12520}, {6256,6842}, {6284,16370}, {6585,6911}, {6668,12607}, {6684,6891}, {6796,6954}, {6848,19925}, {6899,7688}, {6907,12114}, {6913,7681}, {6914,10525}, {6921,14798}, {6926,10164}, {6953,7989}, {6959,9956}, {6976,10598}, {6989,10165}, {7173,17556}, {7294,10949}, {7308,25522}, {7330,12608}, {7354,17532}, {7484,10835}, {7486,8165}, {7504,11681}, {7506,9713}, {7680,22770}, {7786,13110}, {7795,21264}, {7800,20541}, {7807,20172}, {7808,10804}, {7914,10879}, {8609,17303}, {8728,15325}, {9624,15829}, {9668,17571}, {9785,21630}, {9798,19544}, {9840,15654}, {9940,18251}, {9943,17646}, {9955,24703}, {10171,18250}, {10473,10974}, {10592,11236}, {10895,17530}, {10896,11113}, {11194,18990}, {11235,15171}, {11238,15670}, {11281,15934}, {11365,25514}, {11915,15184}, {12559,24391}, {13190,14061}, {13218,15059}, {15338,19535}, {16062,19794}, {16252,20306}, {16342,23518}, {16415,20470}, {17321,25598}, {17757,18967}, {18253,18493}, {18839,24954}, {19548,23850}, {19763,21321}, {19888,19941}, {19894,19930}, {21530,23304}, {22464,25590}, {26359,26399}, {26360,26423}

X(26363) = midpoint of X(4305) and X(5175)
X(26363) = reflection of X(10894) in X(5)
X(26363) = complement of X(3085)
X(26363) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 499, 10200), (499, 19854, 2), (3616, 12649, 1)


X(26364) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ANTICOMPLEMENTARY AND OUTER-YFF

Barycentrics    a^4-2*(b^2+c^2)*a^2+2*b*c*(b+c)*a+(b^2-c^2)^2 : :
X(26364) = R*X(1)-3*(R-r)*X(2)

X(26364) lies on these lines: {1,2}, {3,119}, {4,2077}, {5,1376}, {9,2252}, {11,5687}, {12,474}, {35,2478}, {36,3436}, {40,1519}, {46,908}, {55,4187}, {56,13747}, {57,21077}, {72,18838}, {83,26432}, {100,1479}, {140,958}, {165,6838}, {191,10940}, {214,944}, {281,25078}, {345,20320}, {355,5123}, {377,7951}, {388,17567}, {392,24954}, {404,1478}, {405,5432}, {427,26378}, {442,4413}, {443,3822}, {475,1877}, {484,11415}, {495,25524}, {496,3913}, {497,3825}, {515,6891}, {516,6848}, {517,6959}, {528,9669}, {590,1377}, {615,1378}, {631,993}, {758,1788}, {946,6944}, {952,26492}, {956,5433}, {960,6863}, {962,6979}, {999,6691}, {1001,17527}, {1058,25439}, {1145,2098}, {1213,5783}, {1259,10523}, {1324,13732}, {1387,10912}, {1482,8256}, {1532,10310}, {1574,7746}, {1575,3767}, {1650,26453}, {1656,2886}, {1697,25522}, {1699,6953}, {1706,6983}, {1837,5440}, {1861,3542}, {2049,19721}, {2548,4386}, {2550,3090}, {2950,21635}, {2975,17566}, {3036,12645}, {3068,26465}, {3069,26459}, {3071,9679}, {3096,26318}, {3256,3841}, {3295,3816}, {3306,13407}, {3336,5905}, {3359,3452}, {3419,17606}, {3421,5193}, {3434,6931}, {3485,3754}, {3487,5883}, {3523,5267}, {3525,10805}, {3526,4999}, {3555,17728}, {3576,6967}, {3579,24703}, {3583,5187}, {3585,4190}, {3614,17532}, {3740,5791}, {3753,11375}, {3763,12594}, {3812,11374}, {3813,6667}, {3817,6964}, {3826,6668}, {3836,23693}, {3874,25568}, {3878,5657}, {3880,11373}, {3911,21075}, {3922,4870}, {3926,6381}, {3947,12436}, {4188,4299}, {4197,9342}, {4294,6919}, {4295,5748}, {4297,6926}, {4302,5046}, {4308,5828}, {4310,24167}, {4317,20060}, {4358,17869}, {4421,15171}, {4423,17575}, {4855,10572}, {4857,20075}, {5010,6872}, {5044,5694}, {5054,18545}, {5067,10596}, {5070,9710}, {5082,10589}, {5084,5218}, {5086,7705}, {5087,12699}, {5094,11400}, {5217,11113}, {5219,12609}, {5226,11263}, {5251,6910}, {5252,17614}, {5277,9596}, {5289,5690}, {5326,10955}, {5328,6960}, {5438,5587}, {5439,17718}, {5445,5692}, {5450,6961}, {5490,26500}, {5491,26509}, {5590,26350}, {5591,26343}, {5660,15071}, {5691,6890}, {5693,18254}, {5720,12616}, {5745,6989}, {5770,15528}, {5794,6862}, {5795,10165}, {5818,6952}, {5836,5886}, {5850,8732}, {5881,10785}, {6174,6284}, {6376,7763}, {6554,24036}, {6690,11108}, {6692,21620}, {6796,6827}, {6824,10175}, {6837,7989}, {6847,19925}, {6853,10176}, {6880,11012}, {6882,11499}, {6887,10172}, {6904,10590}, {6908,10164}, {6911,26332}, {6918,7680}, {6922,11500}, {6924,10526}, {6941,12775}, {6947,10902}, {6963,11491}, {7354,16371}, {7483,22768}, {7484,10834}, {7506,9712}, {7629,8062}, {7681,10306}, {7786,13109}, {7808,10803}, {7914,10878}, {7952,24025}, {9654,16417}, {9655,17573}, {9656,17583}, {9798,16434}, {10591,17784}, {10593,11235}, {10895,11112}, {10914,11376}, {10965,24390}, {11236,17564}, {11358,19754}, {11502,11517}, {11849,15813}, {11914,15184}, {11928,23513}, {12513,15325}, {12679,17613}, {12700,22835}, {12749,21842}, {13189,14061}, {13217,15059}, {13465,18253}, {14561,17792}, {15326,19537}, {15654,19514}, {15842,26470}, {15844,16410}, {16062,19795}, {16252,20307}, {16408,25466}, {16593,17675}, {17719,24159}, {18250,21164}, {19550,23361}, {26359,26400}, {26360,26424}, {26361,26518}, {26362,26523}

X(26364) = midpoint of X(3086) and X(7080)
X(26364) = reflection of X(10893) in X(5)
X(26364) = complement of X(3086)
X(26364) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1125, 10915, 1), (3244, 10199, 14986), (3616, 12648, 1)


X(26365) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: AQUILA AND 1st AURIGA

Barycentrics    a*(D+2*a^3-(b+c)*a^2-2*(b^2+b*c+c^2)*a+(b^2-c^2)*(b-c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26365) = (-D+4*(r+2*R)*S)*X(1)+4*S*r*X(3)

X(26365) lies on these lines: {1,3}, {2,26382}, {515,26326}, {1125,26359}, {3616,26394}, {5603,26381}, {5886,26386}, {11363,26371}, {11364,26379}, {11365,26302}, {11368,26310}, {11370,26334}, {11371,26344}, {11373,26390}, {11374,26389}, {11375,26388}, {11376,26387}, {11831,26383}, {18493,18496}, {18991,26384}, {18992,26385}, {26367,26391}, {26368,26392}, {26369,26396}, {26370,26397}

X(26365) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26296, 26395), (999, 2646, 26366), (5597, 26395, 26296)


X(26366) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: AQUILA AND 2nd AURIGA

Barycentrics    a*(D-2*a^3+(b+c)*a^2+2*(b^2+b*c+c^2)*a-(b^2-c^2)*(b-c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26366) = (D+4*(r+2*R)*S)*X(1)+4*S*r*X(3)

X(26366) lies on these lines: {1,3}, {2,26406}, {515,26327}, {1125,26360}, {3616,26418}, {5603,26405}, {5886,26410}, {11363,26372}, {11364,26403}, {11365,26303}, {11368,26311}, {11370,26335}, {11373,26414}, {11374,26413}, {11375,26412}, {11376,26411}, {11831,26407}, {18493,18498}, {18991,26408}, {18992,26409}, {26367,26415}, {26368,26416}, {26369,26420}, {26370,26421}

X(26366) = midpoint of X(1) and X(8187)
X(26366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 24929, 26365), (1, 26297, 26419), (999, 2646, 26365)


X(26367) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: AQUILA AND LUCAS HOMOTHETIC

Barycentrics
a*((a^4-10*(b^2+c^2)*a^2-4*(b+c)*(b^2+c^2)*a+(b^2-c^2)^2-4*b^2*c^2)*S+2*a^6+(b+c)*a^5-3*(b^2+c^2)*a^4-2*(b^2+c^2)*(b+c)*a^3-16*b^2*c^2*a^2+((b^2-c^2)^2-4*b^2*c^2)*(b+c)*a+(b^4-c^4)*(b^2-c^2)) : :

X(26367) lies on these lines: {1,493}, {2,26442}, {515,26328}, {517,26498}, {999,26322}, {1125,5490}, {1319,26433}, {2646,26353}, {3295,26493}, {3576,26292}, {3616,26494}, {5603,26439}, {5886,26466}, {6464,26368}, {11363,26373}, {11364,26427}, {11365,26304}, {11368,26312}, {11370,26337}, {11371,26347}, {11373,26488}, {11374,26483}, {11375,26477}, {11376,26471}, {11831,26447}, {18493,18521}, {18991,26454}, {18992,26460}, {26365,26391}, {26366,26415}, {26369,26496}, {26370,26497}

X(26367) = midpoint of X(1) and X(8188)
X(26367) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26298, 26495), (493, 26495, 26298)


X(26368) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: AQUILA AND LUCAS(-1) HOMOTHETIC

Barycentrics
a*(-(a^4-10*(b^2+c^2)*a^2-4*(b+c)*(b^2+c^2)*a+(b^2-c^2)^2-4*b^2*c^2)*S+2*a^6+(b+c)*a^5-3*(b^2+c^2)*a^4-2*(b^2+c^2)*(b+c)*a^3-16*b^2*c^2*a^2+((b^2-c^2)^2-4*b^2*c^2)*(b+c)*a+(b^4-c^4)*(b^2-c^2)) : :

X(26368) lies on these lines: {1,494}, {2,26443}, {515,26329}, {517,26507}, {999,26323}, {1125,5491}, {1319,26434}, {2646,26354}, {3295,26502}, {3576,26293}, {3616,26503}, {5603,26440}, {5886,26467}, {6464,26367}, {11363,26374}, {11364,26428}, {11365,26305}, {11368,26313}, {11371,26338}, {11373,26489}, {11374,26484}, {11375,26478}, {11376,26472}, {11831,26448}, {18493,18523}, {18991,26455}, {18992,26461}, {26365,26392}, {26366,26416}, {26369,26505}, {26370,26506}

X(26368) = midpoint of X(1) and X(8189)
X(26368) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26299, 26504), (494, 26504, 26299)


X(26369) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: AQUILA AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (5*a+b+c)*S+a*(2*a^2+(b+c)*a+b^2+c^2) : :

X(26369) lies on these lines: {1,1336}, {2,26444}, {4,12269}, {193,1386}, {492,3616}, {515,26330}, {517,26516}, {999,26324}, {1125,26361}, {1319,26435}, {2646,26355}, {3295,26512}, {3576,26294}, {3636,11370}, {5603,26441}, {5886,26468}, {7981,8960}, {11363,26375}, {11364,26429}, {11365,26306}, {11368,26314}, {11373,26490}, {11374,26485}, {11375,26479}, {11376,26473}, {11831,26449}, {13667,15682}, {18493,18539}, {18991,26456}, {18992,26462}, {26365,26396}, {26366,26420}, {26367,26496}, {26368,26505}

X(26369) = midpoint of X(1) and X(13888)
X(26369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26300, 26514), (3068, 26514, 26300)


X(26370) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: AQUILA AND 4th TRI-SQUARES-CENTRAL

Barycentrics    -(5*a+b+c)*S+a*(2*a^2+(b+c)*a+b^2+c^2) : :

X(26370) lies on these lines: {1,1123}, {2,26445}, {4,12268}, {193,1386}, {491,3616}, {515,26331}, {517,26521}, {551,5861}, {999,26325}, {1125,26362}, {1319,26436}, {2646,26356}, {3295,26513}, {3576,26295}, {3636,11371}, {5603,8982}, {5886,26469}, {11363,26376}, {11364,26430}, {11365,26307}, {11368,26315}, {11373,26491}, {11374,26486}, {11375,26480}, {11376,26474}, {11831,26450}, {13787,15682}, {18493,26438}, {18991,26457}, {18992,26463}, {26365,26397}, {26366,26421}, {26367,26497}, {26368,26506}

X(26370) = midpoint of X(1) and X(13942)
X(26370) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26301, 26515), (3069, 26515, 26301)


X(26371) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ARA AND 1st AURIGA

Barycentrics    a*(-(-a^2+b^2+c^2)*D+2*a*b*c*(b+c)*(a+b+c))*(a^2-b^2+c^2)*(a^2+b^2-c^2) : : , where D=4*S*sqrt(R*(4*R+r))

X(26371) lies on these lines: {1,1824}, {4,26386}, {24,26398}, {25,5597}, {33,26351}, {34,26380}, {235,26326}, {427,26359}, {1593,26290}, {5090,26382}, {5410,26385}, {5411,26384}, {7487,26381}, {7713,26296}, {11363,26365}, {11380,26379}, {11383,26393}, {11386,26310}, {11388,26334}, {11389,26344}, {11390,26390}, {11391,26389}, {11392,26388}, {11393,26387}, {11396,26395}, {11400,26402}, {11401,26401}, {11832,26383}, {18494,18496}, {22479,26319}, {26373,26391}, {26374,26392}, {26375,26396}, {26376,26397}, {26377,26399}, {26378,26400}

X(26371) = {X(1), X(1824)}-harmonic conjugate of X(26372)


X(26372) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ARA AND 2nd AURIGA

Barycentrics    a*((-a^2+b^2+c^2)*D+2*a*b*c*(b+c)*(a+b+c))*(a^2-b^2+c^2)*(a^2+b^2-c^2) : : , where D=4*S*sqrt(R*(4*R+r))

X(26372) lies on these lines: {1,1824}, {4,26410}, {24,26422}, {25,5598}, {33,26352}, {34,26404}, {235,26327}, {427,26360}, {1593,26291}, {5090,26406}, {5410,26409}, {5411,26408}, {7487,26405}, {7713,26297}, {11363,26366}, {11380,26403}, {11383,26417}, {11386,26311}, {11388,26335}, {11389,26345}, {11390,26414}, {11391,26413}, {11392,26412}, {11393,26411}, {11396,26419}, {11400,26426}, {11401,26425}, {11832,26407}, {18494,18498}, {22479,26320}, {26373,26415}, {26374,26416}, {26375,26420}, {26376,26421}, {26377,26423}, {26378,26424}

X(26372) = {X(1), X(1824)}-harmonic conjugate of X(26371)


X(26373) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ARA AND LUCAS HOMOTHETIC

Barycentrics    a^2*((a^4-2*(b^2+c^2)*a^2-14*b^2*c^2-3*c^4-3*b^4)*S+2*(b^2+c^2)*(a^4-2*(b^2+c^2)*a^2-4*b^2*c^2+c^4+b^4))*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :

X(26373) lies on these lines: {4,26466}, {24,26498}, {25,371}, {33,26353}, {34,26433}, {69,24244}, {235,26328}, {427,5490}, {1593,26292}, {5090,26442}, {5410,26460}, {5411,26454}, {6464,26374}, {7487,26439}, {7713,26298}, {11363,26367}, {11380,26427}, {11383,26493}, {11386,26312}, {11388,26337}, {11389,26347}, {11390,26488}, {11391,26483}, {11392,26477}, {11393,26471}, {11396,26495}, {11401,26501}, {11832,26447}, {18494,18521}, {22479,26322}, {26371,26391}, {26372,26415}, {26375,26496}, {26376,26497}, {26377,26499}, {26378,26500}

X(26373) = {X(493), X(8948)}-harmonic conjugate of X(25)


X(26374) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ARA AND LUCAS(-1) HOMOTHETIC

Barycentrics    a^2*(-(a^4-2*(b^2+c^2)*a^2-14*b^2*c^2-3*c^4-3*b^4)*S+2*(b^2+c^2)*(a^4-2*(b^2+c^2)*a^2-4*b^2*c^2+c^4+b^4))*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :

X(26374) lies on these lines: {4,26467}, {24,26507}, {25,372}, {33,26354}, {34,26434}, {69,24243}, {235,26329}, {427,5491}, {1593,26293}, {5090,26443}, {5410,26461}, {5411,26455}, {6464,26373}, {7487,26440}, {7713,26299}, {11363,26368}, {11380,26428}, {11383,26502}, {11386,26313}, {11389,26338}, {11390,26489}, {11391,26484}, {11392,26478}, {11393,26472}, {11396,26504}, {11400,26511}, {11401,26510}, {11832,26448}, {18494,18523}, {22479,26323}, {26371,26392}, {26372,26416}, {26375,26505}, {26376,26506}, {26377,26508}, {26378,26509}

X(26374) = {X(494), X(8946)}-harmonic conjugate of X(25)


X(26375) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ARA AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    ((3*a^2+b^2+c^2)*S+2*(b^2+c^2)*a^2)*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :

X(26375) lies on these lines: {4,488}, {20,6291}, {24,26516}, {25,3068}, {33,26355}, {34,26435}, {193,1843}, {235,26330}, {393,5200}, {427,26361}, {428,5860}, {1593,26294}, {5090,26444}, {5410,26462}, {5411,26456}, {7487,26441}, {7713,26300}, {8408,11473}, {10301,11388}, {11363,26369}, {11380,26429}, {11383,26512}, {11386,26314}, {11390,26490}, {11391,26485}, {11392,26479}, {11393,26473}, {11396,26514}, {11400,26520}, {11401,26519}, {11832,26449}, {13668,15682}, {18494,18539}, {22479,26324}, {26371,26396}, {26372,26420}, {26373,26496}, {26374,26505}, {26377,26517}, {26378,26518}

X(26375) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1843, 6995, 26376), (8948, 12148, 4)


X(26376) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ARA AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (-(3*a^2+b^2+c^2)*S+2*(b^2+c^2)*a^2)*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :

X(26376) lies on these lines: {4,487}, {20,6406}, {24,26521}, {25,3069}, {33,26356}, {34,26436}, {193,1843}, {235,26331}, {393,5412}, {427,26362}, {428,5861}, {1163,5200}, {1593,26295}, {5090,26445}, {5410,26463}, {5411,26457}, {7487,8982}, {7713,26301}, {8420,11474}, {10301,11389}, {11363,26370}, {11380,26430}, {11383,26513}, {11386,26315}, {11390,26491}, {11391,26486}, {11392,26480}, {11393,26474}, {11396,26515}, {11400,26525}, {11401,26524}, {11832,26450}, {13788,15682}, {18494,26438}, {22479,26325}, {26371,26397}, {26372,26421}, {26373,26497}, {26374,26506}, {26377,26522}, {26378,26523}

X(26376) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1843, 6995, 26375), (8946, 12147, 4)


X(26377) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ARA AND INNER-YFF

Barycentrics    a^2*(a^4-2*(b^2+c^2)*a^2-2*b*c*(b+c)*a+b^4+c^4-2*b*c*(b^2+b*c+c^2))*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :

X(26377) lies on these lines: {1,25}, {3,1824}, {4,2975}, {5,11391}, {8,4231}, {19,1609}, {24,10267}, {28,1068}, {33,26357}, {34,26437}, {55,20832}, {56,225}, {232,607}, {235,26332}, {283,24320}, {427,26363}, {429,958}, {431,1478}, {444,5230}, {468,10198}, {956,5130}, {1593,1900}, {1598,1828}, {1825,11509}, {1871,6585}, {1878,5198}, {1902,5709}, {2333,9310}, {2905,11107}, {3089,10532}, {3515,10902}, {3517,16202}, {4186,10966}, {4232,10587}, {5090,6734}, {5410,26464}, {5411,26458}, {5412,19050}, {5413,19049}, {6198,14017}, {6756,10943}, {6995,10529}, {7466,7718}, {7487,12116}, {7714,11240}, {7716,12595}, {8946,26510}, {8948,26501}, {9645,13730}, {11380,26431}, {11386,26317}, {11388,26342}, {11389,26349}, {11392,26481}, {11393,26475}, {11832,26452}, {13095,15811}, {14018,19850}, {17523,23710}, {18494,18544}, {26371,26399}, {26372,26423}, {26373,26499}, {26374,26508}, {26375,26517}, {26376,26522}

X(26377) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 1829, 26378), (25, 11396, 11398), (25, 11401, 1)


X(26378) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ARA AND OUTER-YFF

Barycentrics    a^2*(a^4-2*(b^2+c^2)*a^2+2*b*c*(b+c)*a+b^4+c^4+2*b*c*(b^2-b*c+c^2))*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :

X(26378) lies on these lines: {1,25}, {3,1828}, {4,100}, {5,11390}, {24,10269}, {33,26358}, {34,1470}, {55,1842}, {56,1866}, {235,26333}, {427,26364}, {607,10311}, {1376,1883}, {1452,18838}, {1593,1878}, {1598,1824}, {1831,10965}, {1851,7412}, {1862,25438}, {1877,4185}, {1900,5198}, {3089,10531}, {3517,16203}, {3575,6256}, {4232,10586}, {5090,6735}, {5101,5687}, {5151,13205}, {5410,26465}, {5411,26459}, {5412,19048}, {5413,19047}, {6756,10942}, {6995,10528}, {7487,12115}, {7714,11239}, {7716,12594}, {7718,12648}, {8946,26511}, {11380,26432}, {11386,26318}, {11388,26343}, {11389,26350}, {11392,26482}, {11393,26476}, {11832,26453}, {12137,12751}, {13094,15811}, {18494,18542}, {20619,23404}, {20832,22768}, {26371,26400}, {26372,26424}, {26373,26500}, {26374,26509}, {26375,26518}, {26376,26523}

X(26378) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 1829, 26377), (25, 11396, 11399), (25, 11400, 1)


X(26379) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND 5th BROCARD

Barycentrics    a*(((b^2+c^2)*a^2+b^2*c^2)*D+a*(a+b+c)*(a^5-(b+c)*a^4-2*b*c*(b+c)*a^2+b^2*c^2*a-b^2*c^2*(b+c))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26379) lies on these lines: {1,26403}, {32,5597}, {83,26359}, {98,26326}, {182,26290}, {2080,26398}, {7787,26394}, {10788,26381}, {10789,26296}, {10790,26302}, {10791,26382}, {10792,26334}, {10793,26344}, {10794,26390}, {10795,26389}, {10796,26386}, {10797,26388}, {10798,26387}, {10799,26351}, {10800,26395}, {10803,26402}, {10804,26401}, {11364,26365}, {11380,26371}, {11490,26393}, {11839,26383}, {12835,26380}, {18496,18501}, {18994,26385}, {22520,26319}, {26391,26427}, {26392,26428}, {26396,26429}, {26397,26430}, {26399,26431}, {26400,26432}


X(26380) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND 2nd CIRCUMPERP TANGENTIAL

Barycentrics    a*(a+b-c)*(a-b+c)*((-a+b+c)*D+2*a*b*c*(a-2*b-2*c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26380) = (8*R*(R*s+S)-D)*X(1)-4*R*S*X(3)

X(26380) lies on these lines: {1,3}, {4,26387}, {11,26326}, {12,26359}, {34,26371}, {388,26388}, {1478,26386}, {3434,26412}, {4293,26381}, {5252,26382}, {9655,18496}, {12835,26379}, {18954,26302}, {18957,26310}, {18958,26383}, {18959,26334}, {18960,26344}, {18961,26390}, {18962,26389}, {18995,26384}, {18996,26385}, {26391,26433}, {26392,26434}, {26396,26435}, {26397,26436}

X(26380) = reflection of X(26352) in X(1)
X(26380) = inverse of X(5903) in the Moses-Longuet-Higgins circle
X(26380) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 2099, 26404), (65, 1319, 5598), (26402, 26425, 26393)


X(26381) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND EULER

Barycentrics
-2*a*(-a+b+c)*(a+b-c)*(a-b+c)*D+3*a^7-3*(b+c)*a^6-5*(b^2+c^2)*a^5+(b+c)*(5*b^2-2*b*c+5*c^2)*a^4+(b^2-c^2)^2*a^3-(b^2-c^2)^2*(b+c)*a^2+(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c) : : , where D=4*S*sqrt(R*(4*R+r))

X(26381) lies on these lines: {1,6934}, {2,26386}, {3,26394}, {4,5597}, {5,18496}, {24,26302}, {104,26319}, {376,26290}, {515,26296}, {631,26359}, {3085,26388}, {3086,26387}, {4293,26380}, {4294,26351}, {5603,26365}, {5657,26382}, {5842,11366}, {7487,26371}, {7581,26385}, {7582,26384}, {7967,26395}, {8982,26397}, {9862,26310}, {10783,26334}, {10784,26344}, {10785,26390}, {10786,26389}, {10788,26379}, {10805,26402}, {10806,26401}, {11491,26393}, {11845,26383}, {12115,26400}, {12116,26399}, {26391,26439}, {26392,26440}, {26396,26441}

X(26381) = reflection of X(4) in X(8196)


X(26382) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND OUTER-GARCIA

Barycentrics    a*D+a^4-(b+c)*a^3+(b^2+c^2)*(b+c)*a-(b^2-c^2)^2 : : , where D=4*S*sqrt(R*(4*R+r))

X(26382) lies on these lines: {1,442}, {2,26365}, {8,26394}, {10,5597}, {65,26388}, {72,26389}, {515,26290}, {517,26386}, {519,26395}, {956,26319}, {1837,26351}, {3057,26387}, {3679,26296}, {5090,26371}, {5252,26380}, {5587,26326}, {5657,26381}, {5687,26393}, {5688,26344}, {5689,26334}, {6734,26399}, {6735,26400}, {8193,26302}, {9857,26310}, {10791,26379}, {10914,26390}, {10915,26402}, {10916,26401}, {11900,26383}, {12702,18496}, {13883,26385}, {13936,26384}, {17647,26425}, {26391,26442}, {26392,26443}, {26396,26444}, {26397,26445}, {26398,26446}

X(26382) = reflection of X(8197) in X(10)
X(26382) = {X(1), X(3419)}-harmonic conjugate of X(26406)


X(26383) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND GOSSARD

Barycentrics
(a*(a^4+(b^2-2*c^2)*a^2-(b^2-c^2)*(2*b^2+c^2))*(a^4-(2*b^2-c^2)*a^2+(b^2-c^2)*(b^2+2*c^2))*D+(a+b+c)*((b^2+c^2)*a^9-(b^2-c^2)*(b-c)*a^8-2*(b^4+c^4)*a^7+2*(b^3-c^3)*(b^2-c^2)*a^6+b^2*c^2*(b^2+c^2)*a^5-(b^2-c^2)*(b-c)*b*c*(4*b^2+9*b*c+4*c^2)*a^4+2*(b^4-c^4)^2*a^3-2*(b^4-c^4)*(b^2-c^2)*(b+c)*(b^2-3*b*c+c^2)*a^2-(b^4-c^4)*(b^2-c^2)*(b^4+3*b^2*c^2+c^4)*a+(b^2-c^2)^3*(b-c)*(b^4+3*b^2*c^2+c^4)))*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2) : : , where D=4*S*sqrt(R*(4*R+r))

X(26383) lies on these lines: {1,26407}, {30,26290}, {402,5597}, {1650,26359}, {4240,26394}, {11831,26365}, {11832,26371}, {11839,26379}, {11845,26381}, {11848,26393}, {11852,26296}, {11853,26302}, {11885,26310}, {11897,26326}, {11900,26382}, {11901,26334}, {11902,26344}, {11903,26390}, {11904,26389}, {11905,26388}, {11906,26387}, {11909,26351}, {11910,26395}, {11914,26402}, {11915,26401}, {18496,18508}, {18958,26380}, {19017,26384}, {19018,26385}, {22755,26319}, {26396,26449}, {26398,26451}, {26399,26452}, {26400,26453}


X(26384) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND INNER-GREBE

Barycentrics    a*((a+b-c)*(-a+b+c)*(a-b+c)*D-a*((4*a^3-4*(b+c)*a^2-4*(b^2+c^2)*a+4*(b^2-c^2)*(b-c))*S+4*S^2*(-a+b+c))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26384) lies on these lines: {1,26408}, {6,5597}, {55,26409}, {372,26290}, {1587,26326}, {3069,26359}, {3311,26398}, {5411,26371}, {7582,26381}, {7584,26386}, {7586,26394}, {7968,26395}, {13936,26382}, {18496,18510}, {18991,26365}, {18995,26380}, {18999,26393}, {19003,26296}, {19005,26302}, {19011,26310}, {19013,26319}, {19017,26383}, {19023,26390}, {19025,26389}, {19027,26388}, {19029,26387}, {19037,26351}, {19047,26402}, {19049,26401}, {26391,26454}, {26392,26455}, {26396,26456}, {26397,26457}, {26399,26458}, {26400,26459}

X(26384) = {X(6), X(5597)}-harmonic conjugate of X(26385)


X(26385) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND OUTER-GREBE

Barycentrics    a*((a+b-c)*(-a+b+c)*(a-b+c)*D-a*(-(4*a^3-4*(b+c)*a^2-4*(b^2+c^2)*a+4*(b^2-c^2)*(b-c))*S+4*S^2*(-a+b+c))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26385) lies on these lines: {1,26409}, {6,5597}, {55,26408}, {371,26290}, {1588,26326}, {3068,26359}, {3312,26398}, {5410,26371}, {7581,26381}, {7583,26386}, {7585,26394}, {7969,26395}, {13883,26382}, {18496,18512}, {18992,26365}, {18996,26380}, {19004,26296}, {19006,26302}, {19012,26310}, {19014,26319}, {19018,26383}, {19026,26389}, {19028,26388}, {19030,26387}, {19038,26351}, {19048,26402}, {19050,26401}, {26391,26460}, {26392,26461}, {26396,26462}, {26399,26464}, {26400,26465}

X(26385) = {X(6), X(5597)}-harmonic conjugate of X(26384)


X(26386) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND JOHNSON

Barycentrics    -a*(-a+b+c)*(a-b+c)*(a+b-c)*D+a^7-(b+c)*a^6-(b^2+c^2)*a^5+(b^2+c^2)*(b+c)*a^4-(b^2+c^2)^2*a^3+(b^4-c^4)*(b-c)*a^2+(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c) : : , where D=4*S*sqrt(R*(4*R+r))

X(26386) lies on these lines: {1,6917}, {2,26381}, {3,18496}, {4,26371}, {5,5597}, {30,26290}, {119,26400}, {355,26389}, {381,26326}, {517,26382}, {952,26395}, {1478,26380}, {1479,26351}, {5587,26296}, {5886,26365}, {6214,26344}, {6215,26334}, {7583,26385}, {7584,26384}, {9996,26310}, {10679,26327}, {10796,26379}, {10942,26402}, {10943,26401}, {11499,26393}, {22758,26319}, {26391,26466}, {26392,26467}, {26396,26468}, {26397,26469}, {26399,26470}

X(26386) = reflection of X(8200) in X(5)
X(26386) = {X(26387), X(26388)}-harmonic conjugate of X(1)


X(26387) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND INNER-JOHNSON

Barycentrics    (-a+b+c)*(a*(a+b-c)*(a-b+c)*D+(a+b+c)*(a^5-(b+c)*a^4-(b^2+c^2)*(b-c)^2*a+(b^2-c^2)*(b-c)^3)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26387) lies on these lines: {1,6917}, {4,26380}, {11,5597}, {55,26359}, {497,26351}, {499,26398}, {999,18496}, {3057,26382}, {3086,26381}, {3434,26352}, {6284,26290}, {9581,26296}, {10798,26379}, {10832,26302}, {10874,26310}, {10896,26326}, {10925,26334}, {10926,26344}, {10950,26389}, {10958,26402}, {10959,26401}, {11376,26365}, {11393,26371}, {11502,26393}, {11906,26383}, {19029,26384}, {19030,26385}, {22760,26319}, {26396,26473}, {26397,26474}, {26399,26475}, {26400,26476}

X(26387) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26386, 26388), (497, 26394, 26351)


X(26388) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND OUTER-JOHNSON

Barycentrics    (a+b-c)*(a-b+c)*(-a*(-a+b+c)*D+a^5-(b+c)*a^4-(b^2+c^2)*(b+c)^2*a+(b^2-c^2)^2*(b+c)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26388) lies on these lines: {1,6917}, {4,26351}, {12,5597}, {55,26327}, {56,26359}, {65,26382}, {388,26380}, {498,26398}, {3085,26381}, {3295,18496}, {3434,26404}, {7354,26290}, {9578,26296}, {10797,26379}, {10831,26302}, {10873,26310}, {10895,26326}, {10923,26334}, {10924,26344}, {10944,26390}, {10956,26402}, {10957,26401}, {11375,26365}, {11392,26371}, {11501,26393}, {11905,26383}, {19027,26384}, {19028,26385}, {22759,26319}, {26396,26479}, {26397,26480}, {26399,26481}, {26400,26482}

X(26388) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26386, 26387), (388, 26394, 26380)


X(26389) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND 1st JOHNSON-YFF

Barycentrics    D*a+(a^2+b^2-c^2)*(a^2-b^2+c^2) : : , where D=4*S*sqrt(R*(4*R+r))
X(26389) = D*X(1)+4*S*r*X(4)

X(26389) lies on these lines: {1,4}, {5,26399}, {11,26401}, {12,5597}, {30,26423}, {72,26382}, {355,26386}, {958,26319}, {3085,8186}, {4294,8187}, {5598,6284}, {5842,11878}, {7354,26425}, {7680,11877}, {10525,26414}, {10786,26381}, {10795,26379}, {10827,26296}, {10830,26302}, {10872,26310}, {10894,26326}, {10895,11366}, {10921,26334}, {10922,26344}, {10942,26400}, {10950,26387}, {10953,26351}, {10955,26402}, {11367,12953}, {11374,26365}, {11391,26371}, {11496,26327}, {11500,26393}, {11827,26290}, {11879,18242}, {11904,26383}, {15908,26291}, {18496,18518}, {18962,26380}, {19025,26384}, {19026,26385}, {26391,26483}, {26392,26484}, {26396,26485}, {26397,26486}, {26398,26487}

X(26389) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 4, 26413), (388, 5290, 26413), (1478, 21620, 26413)


X(26390) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND 2nd JOHNSON-YFF

Barycentrics    a*(a^3-(b+c)*a^2-(b^2-4*b*c+c^2)*a+(b^2-c^2)*(b-c))*D-4*S^2*(a^3-(b+c)*a^2+(b^2+c^2)*a-(b^2-c^2)*(b-c)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26390) lies on these lines: {1,224}, {5,26400}, {11,5597}, {12,26402}, {355,26386}, {528,11880}, {1376,26359}, {2886,11879}, {10525,26413}, {10785,26381}, {10794,26379}, {10826,26296}, {10829,26302}, {10871,26310}, {10893,26326}, {10914,26382}, {10919,26334}, {10920,26344}, {10943,26399}, {10944,26388}, {10947,26351}, {10949,26401}, {11373,26365}, {11390,26371}, {11826,26290}, {11903,26383}, {12114,26319}, {18496,18519}, {18961,26380}, {19023,26384}, {19024,26385}, {26391,26488}, {26392,26489}, {26396,26490}, {26397,26491}, {26398,26492}


X(26391) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND LUCAS HOMOTHETIC

Barycentrics
a*(((4*a^6-4*(b^2+c^2)*a^4-4*(b^4+10*b^2*c^2+c^4)*a^2+4*(b^4-c^4)*(b^2-c^2))*S+4*S^2*(a^4-6*(b^2+c^2)*a^2+(b^2-c^2)^2-4*b^2*c^2))*D+(a+b+c)*a*((8*(b^2+c^2)*a^5-8*(b^3+c^3)*a^4-16*(b^2+c^2)^2*a^3+16*(b^3+c^3)*(b^2+c^2)*a^2+8*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)*a+(b^2-c^2)*(b-c)*(-8*b^4-8*c^4-8*b*c*(b-c)^2))*S+4*S^2*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b+c)*(b^2+c^2)*a^2-(3*b^4+14*b^2*c^2+3*c^4)*a+(b+c)*(3*b^2-2*b*c+c^2)*(b^2-2*b*c+3*c^2)))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26391) lies on these lines: {493,5597}, {5490,26359}, {18496,18521}, {26290,26292}, {26296,26298}, {26302,26304}, {26310,26312}, {26319,26322}, {26326,26328}, {26334,26337}, {26344,26347}, {26351,26353}, {26365,26367}, {26371,26373}, {26379,26427}, {26380,26433}, {26381,26439}, {26382,26442}, {26384,26454}, {26385,26460}, {26386,26466}, {26389,26483}, {26390,26488}, {26393,26493}, {26394,26494}, {26395,26495}, {26396,26496}, {26397,26497}, {26398,26498}, {26399,26499}


X(26392) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND LUCAS(-1) HOMOTHETIC

Barycentrics
a*((-(4*a^6-4*(b^2+c^2)*a^4-4*(b^4+10*b^2*c^2+c^4)*a^2+4*(b^4-c^4)*(b^2-c^2))*S+4*S^2*(a^4-6*(b^2+c^2)*a^2+(b^2-c^2)^2-4*b^2*c^2))*D+(a+b+c)*a*(-(8*(b^2+c^2)*a^5-8*(b^3+c^3)*a^4-16*(b^2+c^2)^2*a^3+16*(b^3+c^3)*(b^2+c^2)*a^2+8*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)*a+(b^2-c^2)*(b-c)*(-8*b^4-8*c^4-8*b*c*(b-c)^2))*S+4*S^2*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b+c)*(b^2+c^2)*a^2-(3*b^4+14*b^2*c^2+3*c^4)*a+(b+c)*(3*b^2-2*b*c+c^2)*(b^2-2*b*c+3*c^2)))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26392) lies on these lines: {494,5597}, {5491,26359}, {18496,18523}, {26290,26293}, {26296,26299}, {26302,26305}, {26310,26313}, {26319,26323}, {26326,26329}, {26338,26344}, {26351,26354}, {26365,26368}, {26371,26374}, {26379,26428}, {26380,26434}, {26381,26440}, {26382,26443}, {26384,26455}, {26385,26461}, {26386,26467}, {26389,26484}, {26393,26502}, {26394,26503}, {26395,26504}, {26396,26505}, {26397,26506}, {26398,26507}, {26401,26510}


X(26393) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND MANDART-INCIRCLE

Barycentrics    a^2*(a+b+c)*(2*D*b*c+4*S^2*(-a+b+c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26393) = (4*R*r*S+D*R)*X(1)+4*S*r^2*X(3)

X(26393) lies on these lines: {1,3}, {100,26394}, {197,26302}, {355,11869}, {1376,26359}, {1737,5599}, {1837,8200}, {1905,11384}, {3476,11844}, {3486,11843}, {5252,8207}, {5600,10039}, {5601,18391}, {5687,26382}, {5722,11871}, {8196,12047}, {8197,10573}, {8204,12647}, {9834,10572}, {11383,26371}, {11490,26379}, {11491,26381}, {11494,26310}, {11496,26326}, {11497,26334}, {11498,26344}, {11499,26386}, {11500,26389}, {11501,26388}, {11502,26387}, {11570,12462}, {11848,26383}, {12456,15071}, {12463,12758}, {18496,18524}, {18999,26384}, {19000,26385}, {26391,26493}, {26392,26502}, {26396,26512}, {26397,26513}

X(26393) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5597, 5598, 26351), (11882, 11883, 26352), (26402, 26425, 26380)


X(26394) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND MEDIAL

Barycentrics    -2*a*r*(a+b+c)*D+a*(a^3-(b+c)*a^2-(b^2+c^2)*a+(b^2-c^2)*(b-c))*S-r*(a+b+c)*(2*a^4-(b+c)*a^3-(b+c)^2*a^2+(b+c)*(b^2+c^2)*a-(b^2-c^2)^2) : : , where D=4*S*sqrt(R*(4*R+r))
Barycentrics    (a+b+c) (a^3-a^2 b+a b^2-b^3-a^2 c+b^2 c+a c^2+b c^2-c^3)+8 a Sqrt[R (r+4 R)] S : :      (Peter Moses, November 1 2018)

X(26394) lies on these lines: {1,224}, {2,5597}, {3,26381}, {4,26371}, {8,26382}, {10,26296}, {20,26290}, {22,26302}, {30,18496}, {100,26393}, {145,26395}, {388,26380}, {491,26397}, {492,26396}, {497,26351}, {528,11367}, {631,26398}, {1270,26344}, {1271,26334}, {2896,26310}, {2975,26319}, {3091,26326}, {4190,26425}, {4240,26383}, {5598,20075}, {7585,26385}, {7586,26384}, {7787,26379}, {10527,26399}, {10528,26402}, {10529,26401}, {26391,26494}, {26392,26503}

X(26394) = anticomplement of X(5599)
X(26394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3434, 26418), (5597, 26359, 2)


X(26395) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND 5th MIXTILINEAR

Barycentrics    a*(-r*(a+b+c)*(D+(b+c)*a^2-2*b*c*a-(b^2-c^2)*(b-c))+(a^3-(b+c)*a^2-(b^2+c^2)*a+(b^2-c^2)*(b-c))*S) : : , where D=4*S*sqrt(R*(4*R+r))
Barycentrics    a ((a-2 b-2 c) (a+b-c) (a-b+c)-4 Sqrt[R (r+4 R)] S) : :      (Peter Moses, November 1 2018)
X(26395) = (4*S*(R+2*r)+D)*X(1)-4*S*r*X(3)

X(26395) lies on these lines: {1,3}, {8,26359}, {145,26394}, {519,26382}, {952,26386}, {5603,26326}, {5604,26344}, {5605,26334}, {7967,26381}, {7968,26384}, {7969,26385}, {8192,26302}, {9997,26310}, {10800,26379}, {10944,26388}, {10950,26387}, {11396,26371}, {11910,26383}, {18496,18526}, {26391,26495}, {26392,26504}, {26396,26514}, {26397,26515}

X(26395) = reflection of X(5598) in X(1)
X(26395) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 5903, 26423), (1482, 5919, 26419), (8162, 11009, 26419)


X(26396) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    a*(a^2+b^2+c^2+4*S)*D+(a+b+c)*((3*a^3-3*(b+c)*a^2+(b^2+c^2)*a-(b^2-c^2)*(b-c))*S+2*a^2*((b^2+c^2)*a-b^3-c^3)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26396) lies on these lines: {1,26420}, {193,26397}, {492,26394}, {3068,5597}, {5860,26344}, {18496,18539}, {26290,26294}, {26296,26300}, {26302,26306}, {26310,26314}, {26319,26324}, {26326,26330}, {26334,26339}, {26351,26355}, {26359,26361}, {26365,26369}, {26371,26375}, {26379,26429}, {26380,26435}, {26381,26441}, {26382,26444}, {26383,26449}, {26384,26456}, {26385,26462}, {26386,26468}, {26387,26473}, {26388,26479}, {26389,26485}, {26390,26490}, {26391,26496}, {26392,26505}, {26393,26512}, {26395,26514}, {26398,26516}, {26399,26517}, {26400,26518}, {26401,26519}, {26402,26520}


X(26397) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND 4th TRI-SQUARES-CENTRAL

Barycentrics    a*(a^2+b^2+c^2-4*S)*D+(a+b+c)*(-(3*a^3-3*(b+c)*a^2+(b^2+c^2)*a-(b^2-c^2)*(b-c))*S+2*a^2*((b^2+c^2)*a-b^3-c^3)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26397) lies on these lines: {1,26421}, {193,26396}, {491,26394}, {3069,5597}, {5861,26334}, {8982,26381}, {18496,26438}, {26290,26295}, {26296,26301}, {26302,26307}, {26310,26315}, {26319,26325}, {26326,26331}, {26340,26344}, {26351,26356}, {26359,26362}, {26365,26370}, {26371,26376}, {26379,26430}, {26380,26436}, {26382,26445}, {26383,26450}, {26384,26457}, {26385,26463}, {26386,26469}, {26387,26474}, {26388,26480}, {26389,26486}, {26390,26491}, {26391,26497}, {26392,26506}, {26393,26513}, {26395,26515}, {26398,26521}, {26399,26522}, {26400,26523}, {26401,26524}, {26402,26525}


X(26398) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND X3-ABC REFLECTIONS

Barycentrics    a*(-(a-b+c)*(-a+b+c)*(a+b-c)*D+2*a*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+(b+c)*(2*b^2-b*c+2*c^2)*a^2+(b^4+c^4)*a-(b^2-c^2)*(b^3-c^3))) : : , where D=4*S*sqrt(R*(4*R+r))
X(26398) = (4*R*S-D)*X(1)+4*S*(R+2*r)*X(3)

X(26398) lies on these lines: {1,3}, {2,26381}, {24,26371}, {30,26326}, {140,26359}, {498,26388}, {499,26387}, {631,26394}, {1656,18496}, {2080,26379}, {3311,26384}, {3312,26385}, {6642,26302}, {26310,26316}, {26334,26341}, {26344,26348}, {26382,26446}, {26383,26451}, {26389,26487}, {26390,26492}, {26391,26498}, {26392,26507}, {26396,26516}, {26397,26521}

X(26398) = midpoint of X(3) and X(11875)


X(26399) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND INNER-YFF

Barycentrics    a*(-D+a*(-a^2+b^2+c^2)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26399) = D*X(1)-4*S*r*X(3)

X(26399) lies on these lines: {1,3}, {5,26389}, {30,26413}, {5601,16845}, {6734,26382}, {6846,8200}, {10527,26394}, {10943,26390}, {12116,26381}, {18496,18544}, {26302,26308}, {26310,26317}, {26326,26332}, {26334,26342}, {26344,26349}, {26359,26363}, {26371,26377}, {26379,26431}, {26383,26452}, {26384,26458}, {26385,26464}, {26386,26470}, {26387,26475}, {26388,26481}, {26396,26517}, {26397,26522}

X(26399) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 36, 26425), (1, 5903, 26419), (1, 11248, 26424)


X(26400) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND OUTER-YFF

Barycentrics
a*((a^3-(b+c)*a^2-(b^2-4*b*c+c^2)*a+(b^2-c^2)*(b-c))*D+a*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b+c)*(b^2+b*c+c^2)*a^2+((b^2-c^2)^2-4*b^2*c^2)*a-(b^2-c^2)*(b-c)*(b^2+4*b*c+c^2))) : : , where D=4*S*sqrt(R*(4*R+r))
X(26400) = (8*R*r*S+(R-r)*D)*X(1)-4*S*r*(R-r)*X(3)

X(26400) lies on these lines: {1,3}, {5,26390}, {119,26386}, {6735,26382}, {10942,26389}, {12115,26381}, {18496,18542}, {26302,26309}, {26310,26318}, {26326,26333}, {26334,26343}, {26344,26350}, {26359,26364}, {26371,26378}, {26379,26432}, {26383,26453}, {26384,26459}, {26385,26465}, {26387,26476}, {26388,26482}, {26396,26518}, {26397,26523}

X(26400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 10679, 26424), (1, 11248, 26423), (5597, 26402, 1)


X(26401) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND INNER-YFF TANGENTS

Barycentrics    a*(D+a*(a+b-c)*(a-b+c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26401) = (4*R*S+D)*X(1)-4*S*r*X(3)

X(26401) lies on these lines: {1,3}, {11,26389}, {377,26360}, {4190,26418}, {6833,26327}, {7354,26413}, {10527,26359}, {10529,26394}, {10532,26326}, {10804,26379}, {10806,26381}, {10835,26302}, {10879,26310}, {10916,26382}, {10931,26334}, {10932,26344}, {10943,26386}, {10949,26390}, {10957,26388}, {10959,26387}, {11401,26371}, {11915,26383}, {17647,26406}, {18496,18543}, {19049,26384}, {19050,26385}, {26396,26519}, {26397,26524}

X(26401) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 36, 26423), (1, 56, 26425), (2223, 19765, 26425)


X(26402) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st AURIGA AND OUTER-YFF TANGENTS

Barycentrics    a*((a^3-(b+c)*a^2-(b^2-4*b*c+c^2)*a+(b^2-c^2)*(b-c))*D+a*(a+b-c)*(a-b+c)*(a^3-(b+c)*a^2-(b^2+4*b*c+c^2)*a+(b^2+6*b*c+c^2)*(b+c))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26402) lies on these lines: {1,3}, {12,26390}, {5552,26359}, {10528,26394}, {10531,26326}, {10803,26379}, {10805,26381}, {10834,26302}, {10878,26310}, {10915,26382}, {10929,26334}, {10930,26344}, {10942,26386}, {10955,26389}, {10956,26388}, {10958,26387}, {11400,26371}, {11914,26383}, {18496,18545}, {19047,26384}, {19048,26385}, {26396,26520}, {26397,26525}

X(26402) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 10679, 5598), (5597, 26395, 26401), (26380, 26393, 26425)


X(26403) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND 5th BROCARD

Barycentrics    a*(-((b^2+c^2)*a^2+b^2*c^2)*D+a*(a+b+c)*(a^5-(b+c)*a^4-2*b*c*(b+c)*a^2+b^2*c^2*a-b^2*c^2*(b+c))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26403) lies on these lines: {1,26379}, {32,5598}, {83,26360}, {98,26327}, {182,26291}, {2080,26422}, {7787,26418}, {10788,26405}, {10789,26297}, {10790,26303}, {10791,26406}, {10792,26335}, {10793,26345}, {10794,26414}, {10795,26413}, {10796,26410}, {10797,26412}, {10798,26411}, {10799,26352}, {10800,26419}, {10803,26426}, {10804,26425}, {11364,26366}, {11380,26372}, {11839,26407}, {12835,26404}, {18498,18501}, {18993,26408}, {18994,26409}, {22520,26320}, {26415,26427}, {26416,26428}, {26420,26429}, {26421,26430}, {26423,26431}, {26424,26432}


X(26404) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND 2nd CIRCUMPERP TANGENTIAL

Barycentrics    a*(a+b-c)*(a-b+c)*(-(-a+b+c)*D+2*a*b*c*(a-2*b-2*c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26404) = (8*R*s*(R+2*r)+D)*X(1)-4*R*S*X(3)

X(26404) lies on these lines: {1,3}, {4,26411}, {11,26327}, {12,26360}, {34,26372}, {388,26412}, {1478,26410}, {3434,26388}, {4293,26405}, {5252,26406}, {9655,18498}, {12835,26403}, {18954,26303}, {18957,26311}, {18958,26407}, {18959,26335}, {18960,26345}, {18961,26414}, {18962,26413}, {18995,26408}, {18996,26409}, {26420,26435}, {26421,26436}

X(26404) = reflection of X(26351) in X(1)
X(26404) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 2099, 26380), (65, 1319, 5597), (26401, 26426, 26417)


X(26405) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND EULER

Barycentrics
2*a*(-a+b+c)*(a+b-c)*(a-b+c)*D+3*a^7-3*(b+c)*a^6-5*(b^2+c^2)*a^5+(b+c)*(5*b^2-2*b*c+5*c^2)*a^4+(b^2-c^2)^2*a^3-(b^2-c^2)^2*(b+c)*a^2+(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c) : : , where D=4*S*sqrt(R*(4*R+r))

X(26405) lies on these lines: {1,6934}, {2,26410}, {3,26418}, {4,5598}, {5,18498}, {24,26303}, {104,26320}, {376,26291}, {515,26297}, {631,26360}, {3085,26412}, {3086,26411}, {4293,26404}, {4294,26352}, {5603,26366}, {5657,26406}, {5842,11367}, {7487,26372}, {7581,26409}, {7582,26408}, {7967,26419}, {8982,26421}, {9862,26311}, {10783,26335}, {10784,26345}, {10785,26414}, {10786,26413}, {10788,26403}, {10805,26426}, {10806,26425}, {11491,26417}, {11845,26407}, {12116,26423}, {26416,26440}, {26420,26441}


X(26406) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND OUTER-GARCIA

Barycentrics    -a*D+a^4-(b+c)*a^3+(b^2+c^2)*(b+c)*a-(b^2-c^2)^2 : : , where D=4*S*sqrt(R*(4*R+r))

X(26406) lies on these lines: {1,442}, {2,26366}, {8,26418}, {10,5598}, {65,26412}, {72,26413}, {515,26291}, {517,26410}, {519,26419}, {956,26320}, {1837,26352}, {3057,26411}, {3679,26297}, {5090,26372}, {5252,26404}, {5587,26327}, {5657,26405}, {5687,26417}, {5688,26345}, {5689,26335}, {6734,26423}, {6735,26424}, {8193,26303}, {9857,26311}, {10791,26403}, {10914,26414}, {10915,26426}, {10916,26425}, {11900,26407}, {12702,18498}, {13883,26409}, {13936,26408}, {17647,26401}, {26415,26442}, {26416,26443}, {26420,26444}, {26421,26445}, {26422,26446}

X(26406) = reflection of X(8204) in X(10)
X(26406) = {X(1), X(3419)}-harmonic conjugate of X(26382)


X(26407) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND GOSSARD

Barycentrics
(-a*(a^4+(b^2-2*c^2)*a^2-(b^2-c^2)*(2*b^2+c^2))*(a^4-(2*b^2-c^2)*a^2+(b^2-c^2)*(b^2+2*c^2))*D+(a+b+c)*((b^2+c^2)*a^9-(b^2-c^2)*(b-c)*a^8-2*(b^4+c^4)*a^7+2*(b^3-c^3)*(b^2-c^2)*a^6+b^2*c^2*(b^2+c^2)*a^5-(b^2-c^2)*(b-c)*b*c*(4*b^2+9*b*c+4*c^2)*a^4+2*(b^4-c^4)^2*a^3-2*(b^4-c^4)*(b^2-c^2)*(b+c)*(b^2-3*b*c+c^2)*a^2-(b^4-c^4)*(b^2-c^2)*(b^4+3*b^2*c^2+c^4)*a+(b^2-c^2)^3*(b-c)*(b^4+3*b^2*c^2+c^4)))*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2) : : , where D=4*S*sqrt(R*(4*R+r))

X(26407) lies on these lines: {1,26383}, {30,26291}, {402,5598}, {1650,26360}, {4240,26418}, {11831,26366}, {11832,26372}, {11839,26403}, {11845,26405}, {11848,26417}, {11852,26297}, {11853,26303}, {11885,26311}, {11897,26327}, {11900,26406}, {11901,26335}, {11902,26345}, {11903,26414}, {11904,26413}, {11905,26412}, {11906,26411}, {11909,26352}, {11910,26419}, {11914,26426}, {11915,26425}, {18498,18508}, {18958,26404}, {19017,26408}, {19018,26409}, {22755,26320}, {26420,26449}, {26421,26450}, {26422,26451}, {26423,26452}, {26424,26453}


X(26408) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND INNER-GREBE

Barycentrics    a*(-(a+b-c)*(-a+b+c)*(a-b+c)*D-a*((4*a^3-4*(b+c)*a^2-4*(b^2+c^2)*a+4*(b^2-c^2)*(b-c))*S+4*S^2*(-a+b+c))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26408) lies on these lines: {1,26384}, {6,5598}, {55,26385}, {372,26291}, {1587,26327}, {3069,26360}, {3311,26422}, {5411,26372}, {7582,26405}, {7584,26410}, {7586,26418}, {7968,26419}, {13936,26406}, {18498,18510}, {18991,26366}, {18993,26403}, {18995,26404}, {18999,26417}, {19003,26297}, {19005,26303}, {19011,26311}, {19013,26320}, {19017,26407}, {19025,26413}, {19027,26412}, {19029,26411}, {19037,26352}, {19047,26426}, {19049,26425}, {26415,26454}, {26416,26455}, {26420,26456}, {26421,26457}, {26423,26458}, {26424,26459}

X(26408) = {X(6), X(5598)}-harmonic conjugate of X(26409)


X(26409) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND OUTER-GREBE

Barycentrics    a*(-(a+b-c)*(-a+b+c)*(a-b+c)*D-a*(-(4*a^3-4*(b+c)*a^2-4*(b^2+c^2)*a+4*(b^2-c^2)*(b-c))*S+4*S^2*(-a+b+c))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26409) lies on these lines: {1,26385}, {6,5598}, {55,26384}, {371,26291}, {1588,26327}, {3068,26360}, {3312,26422}, {5410,26372}, {7581,26405}, {7583,26410}, {7585,26418}, {7969,26419}, {13883,26406}, {18498,18512}, {18992,26366}, {18994,26403}, {18996,26404}, {19000,26417}, {19004,26297}, {19006,26303}, {19012,26311}, {19014,26320}, {19018,26407}, {19024,26414}, {19026,26413}, {19028,26412}, {19030,26411}, {19038,26352}, {19048,26426}, {19050,26425}, {26415,26460}, {26416,26461}, {26420,26462}, {26421,26463}, {26423,26464}, {26424,26465}

X(26409) = {X(6), X(5598)}-harmonic conjugate of X(26408)


X(26410) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND JOHNSON

Barycentrics    a*(-a+b+c)*(a-b+c)*(a+b-c)*D+a^7-(b+c)*a^6-(b^2+c^2)*a^5+(b^2+c^2)*(b+c)*a^4-(b^2+c^2)^2*a^3+(b^4-c^4)*(b-c)*a^2+(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c) : : , where D=4*S*sqrt(R*(4*R+r))

X(26410) lies on these lines: {1,6917}, {2,26405}, {3,18498}, {4,26372}, {5,5598}, {30,26291}, {119,26424}, {355,26413}, {381,26327}, {517,26406}, {952,26419}, {1478,26404}, {1479,26352}, {5587,26297}, {5886,26366}, {6214,26345}, {6215,26335}, {7583,26409}, {7584,26408}, {9996,26311}, {10679,26326}, {10796,26403}, {10942,26426}, {10943,26425}, {11499,26417}, {22758,26320}, {26415,26466}, {26416,26467}, {26420,26468}, {26421,26469}, {26423,26470}

X(26410) = reflection of X(8207) in X(5)
X(26410) = {X(26411), X(26412)}-harmonic conjugate of X(1)


X(26411) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND INNER-JOHNSON

Barycentrics    (-a+b+c)*(-a*(a+b-c)*(a-b+c)*D+(a+b+c)*(a^5-(b+c)*a^4-(b^2+c^2)*(b-c)^2*a+(b^2-c^2)*(b-c)^3)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26411) lies on these lines: {1,6917}, {4,26404}, {11,5598}, {55,26360}, {497,26352}, {499,26422}, {3057,26406}, {3086,26405}, {3434,26351}, {6284,26291}, {9581,26297}, {10798,26403}, {10832,26303}, {10874,26311}, {10896,26327}, {10926,26345}, {10950,26413}, {10958,26426}, {10959,26425}, {11376,26366}, {11393,26372}, {11502,26417}, {11906,26407}, {19029,26408}, {19030,26409}, {22760,26320}, {26420,26473}, {26421,26474}, {26423,26475}, {26424,26476}

X(26411) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26410, 26412), (497, 26418, 26352)


X(26412) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND OUTER-JOHNSON

Barycentrics    (a+b-c)*(a-b+c)*(a*(-a+b+c)*D+a^5-(b+c)*a^4-(b^2+c^2)*(b+c)^2*a+(b^2-c^2)^2*(b+c)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26412) lies on these lines: {1,6917}, {4,26352}, {12,5598}, {55,26326}, {56,26360}, {65,26406}, {388,26404}, {498,26422}, {3085,26405}, {3295,18498}, {3434,26380}, {7354,26291}, {9578,26297}, {10797,26403}, {10831,26303}, {10895,26327}, {10923,26335}, {10924,26345}, {10944,26414}, {10956,26426}, {10957,26425}, {11375,26366}, {11392,26372}, {11501,26417}, {11905,26407}, {19027,26408}, {19028,26409}, {22759,26320}, {26420,26479}, {26421,26480}, {26423,26481}, {26424,26482}

X(26412) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26410, 26411), (388, 26418, 26404)


X(26413) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND 1st JOHNSON-YFF

Barycentrics    -D*a+(a^2+b^2-c^2)*(a^2-b^2+c^2) : : , where D=4*S*sqrt(R*(4*R+r))
X(26413) = D*X(1)-4*S*r*X(4)

X(26413) lies on these lines: {1,4}, {5,26423}, {11,26425}, {12,5598}, {30,26399}, {72,26406}, {355,26410}, {958,26320}, {3085,8187}, {3436,26418}, {5597,6284}, {5842,11877}, {7354,26401}, {7680,11878}, {10786,26405}, {10795,26403}, {10827,26297}, {10830,26303}, {10872,26311}, {10894,26327}, {10895,11367}, {10921,26335}, {10922,26345}, {10942,26424}, {10950,26411}, {10953,26352}, {11366,12953}, {11374,26366}, {11391,26372}, {11496,26326}, {11500,26417}, {11827,26291}, {11880,18242}, {11904,26407}, {18498,18518}, {18962,26404}, {19025,26408}, {26415,26483}, {26416,26484}, {26420,26485}, {26421,26486}, {26422,26487}

X(26413) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 4, 26389), (388, 5290, 26389), (1478, 21620, 26389)


X(26414) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND 2nd JOHNSON-YFF

Barycentrics    -a*(a^3-(b+c)*a^2-(b^2+c^2-4*b*c)*a+(b^2-c^2)*(b-c))*D-4*S^2*(a^3-(b+c)*a^2+(b^2+c^2)*a-(b^2-c^2)*(b-c)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26414) lies on these lines: {1,224}, {5,26424}, {11,5598}, {12,26426}, {355,26410}, {528,11879}, {1376,26360}, {2886,11880}, {10525,26389}, {10785,26405}, {10794,26403}, {10826,26297}, {10829,26303}, {10871,26311}, {10893,26327}, {10914,26406}, {10919,26335}, {10920,26345}, {10943,26423}, {10944,26412}, {10947,26352}, {10949,26425}, {11373,26366}, {11390,26372}, {11826,26291}, {11903,26407}, {12114,26320}, {18498,18519}, {18961,26404}, {19024,26409}, {26415,26488}, {26420,26490}, {26421,26491}, {26422,26492}


X(26415) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND LUCAS HOMOTHETIC

Barycentrics
a*(-((4*a^6-4*(b^2+c^2)*a^4-4*(b^4+10*b^2*c^2+c^4)*a^2+4*(b^4-c^4)*(b^2-c^2))*S+4*S^2*(a^4-6*(b^2+c^2)*a^2+(b^2-c^2)^2-4*b^2*c^2))*D+(a+b+c)*a*((8*(b^2+c^2)*a^5-8*(b^3+c^3)*a^4-16*(b^2+c^2)^2*a^3+16*(b^3+c^3)*(b^2+c^2)*a^2+8*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)*a+(b^2-c^2)*(b-c)*(-8*b^4-8*c^4-8*b*c*(b-c)^2))*S+4*S^2*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b+c)*(b^2+c^2)*a^2-(3*b^4+14*b^2*c^2+3*c^4)*a+(b+c)*(3*b^2-2*b*c+c^2)*(b^2-2*b*c+3*c^2)))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26415) lies on these lines: {493,5598}, {5490,26360}, {26291,26292}, {26297,26298}, {26303,26304}, {26311,26312}, {26320,26322}, {26327,26328}, {26335,26337}, {26345,26347}, {26352,26353}, {26366,26367}, {26372,26373}, {26403,26427}, {26404,26433}, {26405,26439}, {26406,26442}, {26408,26454}, {26409,26460}, {26413,26483}, {26414,26488}, {26417,26493}, {26418,26494}, {26419,26495}, {26420,26496}, {26421,26497}, {26422,26498}, {26425,26501}


X(26416) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND LUCAS(-1) HOMOTHETIC

Barycentrics
a*(-(-(4*a^6-4*(b^2+c^2)*a^4-4*(b^4+10*b^2*c^2+c^4)*a^2+4*(b^4-c^4)*(b^2-c^2))*S+4*S^2*(a^4-6*(b^2+c^2)*a^2+(b^2-c^2)^2-4*b^2*c^2))*D+(a+b+c)*a*(-(8*(b^2+c^2)*a^5-8*(b^3+c^3)*a^4-16*(b^2+c^2)^2*a^3+16*(b^3+c^3)*(b^2+c^2)*a^2+8*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)*a+(b^2-c^2)*(b-c)*(-8*b^4-8*c^4-8*b*c*(b-c)^2))*S+4*S^2*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b+c)*(b^2+c^2)*a^2-(3*b^4+14*b^2*c^2+3*c^4)*a+(b+c)*(3*b^2-2*b*c+c^2)*(b^2-2*b*c+3*c^2)))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26416) lies on these lines: {494,5598}, {5491,26360}, {18498,18523}, {26291,26293}, {26297,26299}, {26303,26305}, {26311,26313}, {26320,26323}, {26327,26329}, {26338,26345}, {26352,26354}, {26366,26368}, {26372,26374}, {26403,26428}, {26404,26434}, {26405,26440}, {26406,26443}, {26408,26455}, {26409,26461}, {26410,26467}, {26413,26484}, {26414,26489}, {26417,26502}, {26418,26503}, {26419,26504}, {26420,26505}, {26421,26506}, {26422,26507}


X(26417) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND MANDART-INCIRCLE

Barycentrics    a^2*(a+b+c)*(-2*D*b*c+4*S^2*(-a+b+c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26417) = R*(D-4*r*S)*X(1)-4*S*r^2*X(3)

X(26417) lies on these lines: {1,3}, {100,26418}, {197,26303}, {355,11870}, {1376,26360}, {1737,5600}, {1837,8207}, {1905,11385}, {3476,11843}, {3486,11844}, {5252,8200}, {5599,10039}, {5602,18391}, {5687,26406}, {5722,11872}, {8197,12647}, {8203,12047}, {8204,10573}, {9835,10572}, {11383,26372}, {11491,26405}, {11494,26311}, {11496,26327}, {11497,26335}, {11498,26345}, {11499,26410}, {11500,26413}, {11501,26412}, {11502,26411}, {11570,12463}, {11848,26407}, {12457,15071}, {12462,12758}, {18498,18524}, {18999,26408}, {19000,26409}, {26415,26493}, {26416,26502}, {26420,26512}, {26421,26513}

X(26417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5597, 5598, 26352), (11881, 11884, 26351), (26401, 26426, 26404)


X(26418) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND MEDIAL

Barycentrics    2*a*r*(a+b+c)*D+a*(a^3-(b+c)*a^2-(b^2+c^2)*a+(b^2-c^2)*(b-c))*S-r*(a+b+c)*(2*a^4-(b+c)*a^3-(b+c)^2*a^2+(b+c)*(b^2+c^2)*a-(b^2-c^2)^2) : : , where D=4*S*sqrt(R*(4*R+r))
Barycentrics    (a+b+c) (a^3-a^2 b+a b^2-b^3-a^2 c+b^2 c+a c^2+b c^2-c^3)-8 a Sqrt[R (r+4 R)] S : :      (Peter Moses, November 1 2018)

X(26418) lies on these lines: {1,224}, {2,5598}, {3,26405}, {4,26372}, {8,26406}, {10,26297}, {20,26291}, {22,26303}, {30,18498}, {100,26417}, {145,26419}, {388,26404}, {491,26421}, {492,26420}, {497,26352}, {528,11366}, {631,26422}, {1270,26345}, {1271,26335}, {2886,11367}, {2896,26311}, {2975,26320}, {3091,26327}, {3436,26413}, {3616,26366}, {4190,26401}, {4240,26407}, {5552,26424}, {5597,20075}, {7585,26409}, {7586,26408}, {7787,26403}, {10527,26423}, {10528,26426}, {10529,26425}, {26415,26494}, {26416,26503}

X(26418) = anticomplement of X(5600)
X(26418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3434, 26394), (5598, 26360, 2)


X(26419) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND 5th MIXTILINEAR

Barycentrics    a*(-r*(a+b+c)*(-D+(b+c)*a^2-2*b*c*a-(b^2-c^2)*(b-c))+(a^3-(b+c)*a^2-(b^2+c^2)*a+(b^2-c^2)*(b-c))*S) : : , where D=4*S*sqrt(R*(4*R+r))
Barycentrics    (a+b+c) (a^3-a^2 b+a b^2-b^3-a^2 c+b^2 c+a c^2+b c^2-c^3)-8 a Sqrt[R (r+4 R)] S : :      (Peter Moses, November 1 2018)
Barycentrics    a ((a-2 b-2 c) (a+b-c) (a-b+c)+4 Sqrt[R (r+4 R)] S) : :      (Peter Moses, November 1 2018)
X(26419) = (4*S*(R+2*r)-D)*X(1)-4*S*r*X(3)

X(26419) lies on these lines: {1,3}, {8,26360}, {145,26418}, {519,26406}, {952,26410}, {5603,26327}, {5604,26345}, {5605,26335}, {7967,26405}, {7968,26408}, {7969,26409}, {8192,26303}, {9997,26311}, {10800,26403}, {10944,26412}, {10950,26411}, {11396,26372}, {11910,26407}, {18498,18526}, {26415,26495}, {26416,26504}, {26420,26514}, {26421,26515}

X(26419) = reflection of X(5597) in X(1)
X(26419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 5903, 26399), (1482, 5919, 26395), (8162, 11009, 26395)


X(26420) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    -a*(a^2+b^2+c^2+4*S)*D+(a+b+c)*((3*a^3-3*(b+c)*a^2+(b^2+c^2)*a-(b^2-c^2)*(b-c))*S+2*a^2*((b^2+c^2)*a-b^3-c^3)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26420) lies on these lines: {1,26396}, {193,26421}, {492,26418}, {3068,5598}, {5860,26345}, {18498,18539}, {26291,26294}, {26297,26300}, {26303,26306}, {26311,26314}, {26320,26324}, {26327,26330}, {26335,26339}, {26352,26355}, {26360,26361}, {26366,26369}, {26372,26375}, {26403,26429}, {26404,26435}, {26405,26441}, {26406,26444}, {26407,26449}, {26408,26456}, {26409,26462}, {26410,26468}, {26411,26473}, {26412,26479}, {26413,26485}, {26414,26490}, {26415,26496}, {26416,26505}, {26417,26512}, {26419,26514}, {26422,26516}, {26423,26517}, {26424,26518}, {26425,26519}, {26426,26520}


X(26421) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND 4th TRI-SQUARES-CENTRAL

Barycentrics    -a*(a^2+b^2+c^2-4*S)*D+(a+b+c)*(-(3*a^3-3*(b+c)*a^2+(b^2+c^2)*a-(b^2-c^2)*(b-c))*S+2*a^2*((b^2+c^2)*a-b^3-c^3)) : : , where D=4*S*sqrt(R*(4*R+r))

X(26421) lies on these lines: {1,26397}, {193,26420}, {491,26418}, {3069,5598}, {5861,26335}, {8982,26405}, {18498,26438}, {26291,26295}, {26297,26301}, {26303,26307}, {26311,26315}, {26320,26325}, {26327,26331}, {26340,26345}, {26352,26356}, {26360,26362}, {26366,26370}, {26372,26376}, {26403,26430}, {26404,26436}, {26406,26445}, {26407,26450}, {26408,26457}, {26409,26463}, {26410,26469}, {26411,26474}, {26412,26480}, {26413,26486}, {26414,26491}, {26415,26497}, {26416,26506}, {26417,26513}, {26419,26515}, {26422,26521}, {26423,26522}, {26424,26523}, {26425,26524}, {26426,26525}


X(26422) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND X3-ABC REFLECTIONS

Barycentrics    a*((a-b+c)*(-a+b+c)*(a+b-c)*D+2*a*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+(b+c)*(2*b^2-b*c+2*c^2)*a^2+(b^4+c^4)*a-(b^2-c^2)*(b^3-c^3))) : : , where D=4*S*sqrt(R*(4*R+r))
X(26422) = (4*R*S+D)*X(1)+4*S*(R+2*r)*X(3)

X(26422) lies on these lines: {1,3}, {2,26405}, {24,26372}, {30,26327}, {140,26360}, {498,26412}, {499,26411}, {631,26418}, {1656,18498}, {2080,26403}, {3311,26408}, {3312,26409}, {6642,26303}, {26311,26316}, {26335,26341}, {26345,26348}, {26406,26446}, {26407,26451}, {26413,26487}, {26414,26492}, {26415,26498}, {26416,26507}, {26420,26516}, {26421,26521}

X(26422) = midpoint of X(3) and X(11876)


X(26423) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND INNER-YFF

Barycentrics    a*(D+a*(-a^2+b^2+c^2)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26423) = D*X(1)+4*S*r*X(3)

X(26423) lies on these lines: {1,3}, {5,26413}, {30,26389}, {5602,16845}, {6734,26406}, {6846,8207}, {10527,26418}, {10943,26414}, {12116,26405}, {18498,18544}, {26303,26308}, {26311,26317}, {26327,26332}, {26335,26342}, {26345,26349}, {26360,26363}, {26372,26377}, {26403,26431}, {26407,26452}, {26408,26458}, {26409,26464}, {26410,26470}, {26411,26475}, {26412,26481}, {26415,26499}, {26416,26508}, {26420,26517}, {26421,26522}

X(26423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 36, 26401), (1, 5903, 26395), (1, 11248, 26400)


X(26424) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND OUTER-YFF

Barycentrics
a*(-(a^3-(b+c)*a^2-(-4*b*c+b^2+c^2)*a+(b^2-c^2)*(b-c))*D+a*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b+c)*(b^2+b*c+c^2)*a^2+((b^2-c^2)^2-4*b^2*c^2)*a-(b^2-c^2)*(b-c)*(b^2+4*b*c+c^2))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26424) lies on these lines: {1,3}, {5,26414}, {119,26410}, {5552,26418}, {6735,26406}, {10942,26413}, {12115,26405}, {18498,18542}, {26303,26309}, {26311,26318}, {26327,26333}, {26335,26343}, {26345,26350}, {26360,26364}, {26372,26378}, {26403,26432}, {26407,26453}, {26408,26459}, {26409,26465}, {26411,26476}, {26412,26482}, {26420,26518}, {26421,26523}

X(26424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 10679, 26400), (1, 11248, 26399), (5598, 26426, 1)


X(26425) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND INNER-YFF TANGENTS

Barycentrics    a*(-D+a*(a+b-c)*(a-b+c)) : : , where D=4*S*sqrt(R*(4*R+r))
X(26425) = (4*R*S-D)*X(1)-4*S*r*X(3)

X(26425) lies on these lines: {1,3}, {11,26413}, {377,26359}, {4190,26394}, {6833,26326}, {7354,26389}, {10527,26360}, {10529,26418}, {10532,26327}, {10804,26403}, {10806,26405}, {10835,26303}, {10879,26311}, {10916,26406}, {10931,26335}, {10932,26345}, {10943,26410}, {10949,26414}, {10957,26412}, {10959,26411}, {11401,26372}, {11915,26407}, {17647,26382}, {18498,18543}, {19049,26408}, {19050,26409}, {26415,26501}, {26416,26510}, {26420,26519}, {26421,26524}

X(26425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 36, 26399), (2223, 19765, 26401), (26380, 26393, 26402)


X(26426) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd AURIGA AND OUTER-YFF TANGENTS

Barycentrics    a*(-(a^3-(b+c)*a^2-(-4*b*c+b^2+c^2)*a+(b^2-c^2)*(b-c))*D+a*(a+b-c)*(a-b+c)*(a^3-(b+c)*a^2-(b^2+4*b*c+c^2)*a+(6*b*c+c^2+b^2)*(b+c))) : : , where D=4*S*sqrt(R*(4*R+r))

X(26426) lies on these lines: {1,3}, {12,26414}, {5552,26360}, {10528,26418}, {10531,26327}, {10803,26403}, {10805,26405}, {10834,26303}, {10878,26311}, {10915,26406}, {10929,26335}, {10930,26345}, {10942,26410}, {10955,26413}, {10956,26412}, {10958,26411}, {11400,26372}, {11914,26407}, {18498,18545}, {19047,26408}, {19048,26409}, {26416,26511}, {26420,26520}, {26421,26525}

X(26426) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 10679, 5597), (1, 11509, 26401), (26404, 26417, 26401)


X(26427) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th BROCARD AND LUCAS HOMOTHETIC

Barycentrics
a^2*((a^6-6*(b^2+c^2)*a^4-(3*b^4+14*b^2*c^2+3*c^4)*a^2-4*b^2*c^2*(b^2+c^2))*S+a^8-(3*b^4+13*b^2*c^2+3*c^4)*a^4+2*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)*a^2+((b^2-c^2)^2-4*b^2*c^2)*b^2*c^2) : :

X(26427) lies on these lines: {32,493}, {83,3069}, {98,26328}, {182,26292}, {2080,26498}, {6464,26428}, {7787,26494}, {10788,26439}, {10789,26298}, {10790,26304}, {10791,26442}, {10792,26337}, {10793,26347}, {10794,26488}, {10795,26483}, {10796,26466}, {10797,26477}, {10798,26471}, {10799,26353}, {10800,26495}, {10804,26501}, {11364,26367}, {11380,26373}, {11490,26493}, {11839,26447}, {12835,26433}, {18501,18521}, {18994,26460}, {22520,26322}, {26379,26391}, {26403,26415}, {26429,26496}, {26430,26497}, {26431,26499}, {26432,26500}


X(26428) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th BROCARD AND LUCAS(-1) HOMOTHETIC

Barycentrics
a^2*(-(a^6-6*(b^2+c^2)*a^4-(3*b^4+14*b^2*c^2+3*c^4)*a^2-4*b^2*c^2*(b^2+c^2))*S+a^8-(3*b^4+13*b^2*c^2+3*c^4)*a^4+2*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)*a^2+((b^2-c^2)^2-4*b^2*c^2)*b^2*c^2) : :

X(26428) lies on these lines: {32,494}, {83,3068}, {98,26329}, {182,26293}, {2080,26507}, {6464,26427}, {7787,26503}, {10788,26440}, {10789,26299}, {10790,26305}, {10791,26443}, {10793,26338}, {10794,26489}, {10795,26484}, {10796,26467}, {10797,26478}, {10798,26472}, {10799,26354}, {10800,26504}, {10803,26511}, {10804,26510}, {11364,26368}, {11380,26374}, {11490,26502}, {11839,26448}, {12835,26434}, {18501,18523}, {18993,26455}, {22520,26323}, {26379,26392}, {26403,26416}, {26429,26505}, {26430,26506}, {26431,26508}, {26432,26509}


X(26429) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th BROCARD AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (4*a^4+(b^2+c^2)*a^2+b^2*c^2)*S+a^2*(a^4+2*(b^2+c^2)*a^2+b^2*c^2) : :

X(26429) lies on these lines: {4,12211}, {32,638}, {83,26361}, {98,26330}, {182,26294}, {193,12212}, {492,7787}, {2080,26516}, {5860,10793}, {10788,26441}, {10789,26300}, {10790,26306}, {10791,26444}, {10792,26339}, {10794,26490}, {10795,26485}, {10796,26468}, {10797,26479}, {10798,26473}, {10799,26355}, {10800,26514}, {10803,26520}, {10804,26519}, {11364,26369}, {11380,26375}, {11490,26512}, {11839,26449}, {12835,26435}, {13672,15682}, {18501,18539}, {18993,26456}, {18994,26462}, {22520,26324}, {26379,26396}, {26403,26420}, {26427,26496}, {26428,26505}, {26431,26517}, {26432,26518}


X(26430) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th BROCARD AND 4th TRI-SQUARES-CENTRAL

Barycentrics    -(4*a^4+(b^2+c^2)*a^2+b^2*c^2)*S+a^2*(a^4+2*(b^2+c^2)*a^2+b^2*c^2) : :

X(26430) lies on these lines: {4,12210}, {32,637}, {83,26362}, {98,26331}, {182,26295}, {193,12212}, {491,7787}, {2080,26521}, {5861,10792}, {8982,10788}, {10789,26301}, {10790,26307}, {10791,26445}, {10793,26340}, {10794,26491}, {10795,26486}, {10796,26469}, {10797,26480}, {10798,26474}, {10799,26356}, {10800,26515}, {10803,26525}, {10804,26524}, {11364,26370}, {11380,26376}, {11490,26513}, {11839,26450}, {12835,26436}, {13792,15682}, {18501,26438}, {18993,26457}, {18994,26463}, {22520,26325}, {26379,26397}, {26403,26421}, {26427,26497}, {26428,26506}, {26431,26522}, {26432,26523}


X(26431) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th BROCARD AND INNER-YFF

Barycentrics    a^2*(a^6-2*(b^2+b*c+c^2)*a^4-2*b*c*(b+c)*a^3+(b^4+c^4-2*(b^2+b*c+c^2)*b*c)*a^2-2*b^3*c^3) : :

X(26431) lies on these lines: {1,32}, {5,10795}, {83,26363}, {98,26332}, {182,11012}, {1078,10198}, {2080,10267}, {3398,11249}, {3972,13110}, {5171,10902}, {5709,12197}, {6734,10791}, {7787,10527}, {10680,11842}, {10788,12116}, {10790,26308}, {10792,26342}, {10793,26349}, {10794,10943}, {10796,26470}, {10797,26481}, {10798,26475}, {10799,26357}, {11380,26377}, {11839,26452}, {12835,26437}, {18501,18544}, {18993,26458}, {18994,26464}, {26379,26399}, {26403,26423}, {26427,26499}, {26428,26508}, {26429,26517}, {26430,26522}

X(26431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (32, 10800, 10801), (32, 10804, 1), (32, 12194, 26432)


X(26432) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th BROCARD AND OUTER-YFF

Barycentrics    a^2*(a^6-2*(b^2-b*c+c^2)*a^4+2*b*c*(b+c)*a^3+(b^4+c^4+2*(b^2-b*c+c^2)*b*c)*a^2+2*b^3*c^3) : :

X(26432) lies on these lines: {1,32}, {5,10794}, {83,26364}, {98,26333}, {119,10796}, {182,2077}, {1078,10200}, {1470,12835}, {2080,10269}, {3398,11248}, {3972,13109}, {5552,7787}, {6256,12110}, {6735,10791}, {10679,11842}, {10788,12115}, {10790,26309}, {10793,26350}, {10795,10942}, {10797,26482}, {10798,26476}, {10799,26358}, {11380,26378}, {11839,26453}, {12198,12751}, {13194,25438}, {18501,18542}, {18993,26459}, {18994,26465}, {26379,26400}, {26403,26424}, {26427,26500}, {26428,26509}, {26429,26518}, {26430,26523}

X(26432) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (32, 10800, 10802), (32, 10803, 1), (32, 12194, 26431)


X(26433) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CIRCUMPERP TANGENTIAL AND LUCAS HOMOTHETIC

Barycentrics
a^2*((8*a^6+8*(b+c)*a^5+16*(b+c)^2*a^4-16*(b+c)*(b^2+c^2)*a^3-8*(11*b^4+11*c^4+2*b*c*(8*b^2+15*b*c+8*c^2))*a^2-8*(b+c)*(3*b^2+2*b*c+c^2)*(b^2+2*b*c+3*c^2)*a-16*(4*b^4+4*c^4+b*c*(17*b^2+24*b*c+17*c^2))*b*c)*S-3*a^8+4*(7*b^2+4*b*c+7*c^2)*a^6+16*(b+c)*(b^2+b*c+c^2)*a^5-2*(11*b^4+11*c^4-4*b*c*(3*b^2+b*c+3*c^2))*a^4-32*(b+c)*(b^2+c^2)*(b^2+b*c+c^2)*a^3-4*(7*b^6+7*c^6+(24*b^4+24*c^4+b*c*(71*b^2+80*b*c+71*c^2))*b*c)*a^2+16*(b^4+c^4-b*c*(b+c)^2)*(b+c)^3*a+(25*b^6+25*c^6+(6*b^4+6*c^4-b*c*(29*b^2+100*b*c+29*c^2))*b*c)*(b+c)^2)*(a+b-c)*(a-b+c) : :

X(26433) lies on these lines: {1,26353}, {4,26471}, {11,26328}, {12,5490}, {34,26373}, {36,26498}, {55,26292}, {56,493}, {388,26477}, {1319,26367}, {1470,26500}, {1478,26466}, {4293,26439}, {5252,26442}, {6464,26434}, {9655,18521}, {12835,26427}, {18954,26304}, {18957,26312}, {18958,26447}, {18959,26337}, {18960,26347}, {18961,26488}, {18962,26483}, {18967,26501}, {18995,26454}, {18996,26460}, {26380,26391}, {26404,26415}, {26435,26496}, {26436,26497}, {26437,26499}


X(26434) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CIRCUMPERP TANGENTIAL AND LUCAS(-1) HOMOTHETIC

Barycentrics
a^2*(-(8*a^6+8*(b+c)*a^5+16*(b+c)^2*a^4-16*(b+c)*(b^2+c^2)*a^3-8*(11*b^4+11*c^4+2*b*c*(8*b^2+15*b*c+8*c^2))*a^2-8*(b+c)*(3*b^2+2*b*c+c^2)*(b^2+2*b*c+3*c^2)*a-16*(4*b^4+4*c^4+b*c*(17*b^2+24*b*c+17*c^2))*b*c)*S-3*a^8+4*(7*b^2+4*b*c+7*c^2)*a^6+16*(b+c)*(b^2+b*c+c^2)*a^5-2*(11*b^4+11*c^4-4*b*c*(3*b^2+b*c+3*c^2))*a^4-32*(b+c)*(b^2+c^2)*(b^2+b*c+c^2)*a^3-4*(7*b^6+7*c^6+(24*b^4+24*c^4+b*c*(71*b^2+80*b*c+71*c^2))*b*c)*a^2+16*(b^4+c^4-b*c*(b+c)^2)*(b+c)^3*a+(25*b^6+25*c^6+(6*b^4+6*c^4-b*c*(29*b^2+100*b*c+29*c^2))*b*c)*(b+c)^2)*(a+b-c)*(a-b+c) : :

X(26434) lies on these lines: {1,26354}, {4,26472}, {11,26329}, {12,5491}, {34,26374}, {36,26507}, {55,26293}, {56,494}, {57,26299}, {388,26478}, {1319,26368}, {1470,26509}, {1478,26467}, {2099,26504}, {4293,26440}, {5252,26443}, {6464,26433}, {9655,18523}, {11509,26502}, {12835,26428}, {18954,26305}, {18957,26313}, {18958,26448}, {18960,26338}, {18961,26489}, {18962,26484}, {18967,26510}, {18995,26455}, {18996,26461}, {26380,26392}, {26404,26416}, {26435,26505}, {26436,26506}, {26437,26508}


X(26435) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CIRCUMPERP TANGENTIAL AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    ((3*a^2+(b+c)^2)*S+2*a^2*(b^2+b*c+c^2))*(a+b-c)*(a-b+c) : :

X(26435) lies on these lines: {1,26355}, {4,12959}, {11,26330}, {12,26361}, {20,7362}, {36,26516}, {55,26294}, {56,3068}, {57,26300}, {193,330}, {388,492}, {1007,26480}, {1319,26369}, {1470,26518}, {1478,26468}, {2099,26514}, {4293,26441}, {5434,5860}, {9655,18539}, {11509,26512}, {12835,26429}, {15682,18986}, {18954,26306}, {18957,26314}, {18959,26339}, {18961,26490}, {18962,26485}, {18967,26519}, {18995,26456}, {18996,26462}, {26380,26396}, {26404,26420}, {26433,26496}, {26434,26505}, {26437,26517}

X(26435) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (388, 492, 26479), (1469, 3600, 26436)


X(26436) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CIRCUMPERP TANGENTIAL AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (-(3*a^2+(b+c)^2)*S+2*a^2*(b^2+b*c+c^2))*(a+b-c)*(a-b+c) : :

X(26436) lies on these lines: {1,26356}, {4,12958}, {11,26331}, {12,26362}, {20,7353}, {34,26376}, {36,26521}, {55,26295}, {56,3069}, {57,26301}, {193,330}, {388,491}, {1007,26479}, {1319,26370}, {1470,26523}, {1478,26469}, {2099,26515}, {4293,8982}, {5252,26445}, {5434,5861}, {9655,26438}, {11509,26513}, {12835,26430}, {15682,18987}, {18954,26307}, {18957,26315}, {18958,26450}, {18960,26340}, {18961,26491}, {18962,26486}, {18967,26524}, {18995,26457}, {18996,26463}, {26380,26397}, {26404,26421}, {26433,26497}, {26434,26506}, {26437,26522}

X(26436) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (388, 491, 26480), (1469, 3600, 26435)


X(26437) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CIRCUMPERP TANGENTIAL AND INNER-YFF

Barycentrics    a^2*(a^3-(b+c)*a^2-(b-c)^2*a+(b+c)*(b^2-4*b*c+c^2))*(a+b-c)*(a-b+c) : :
X(26437) = R*(R+2*r)*X(1)-r*(R+r)*X(3)

X(26437) lies on these lines: {1,3}, {4,26475}, {5,18962}, {11,26332}, {12,956}, {25,1866}, {34,26377}, {104,4295}, {225,1398}, {226,8666}, {388,2476}, {405,15950}, {519,11501}, {908,958}, {946,22760}, {953,3567}, {959,2990}, {1056,6853}, {1201,1451}, {1405,22356}, {1457,1468}, {1478,26470}, {1593,1830}, {1616,15306}, {1788,5253}, {1836,12114}, {1837,22753}, {1875,11399}, {1898,12687}, {2067,19050}, {2192,13095}, {2285,8609}, {2475,3600}, {2975,3485}, {3086,6830}, {3149,10950}, {3476,12649}, {3585,18519}, {3877,7098}, {4293,12116}, {4308,6224}, {4317,10074}, {4559,5021}, {5219,5258}, {5252,6734}, {5265,10587}, {5288,9578}, {5433,10198}, {5434,10957}, {6502,19049}, {6840,14986}, {6863,10954}, {6911,10573}, {6952,10597}, {7354,10959}, {8068,11929}, {9655,12773}, {10106,10916}, {10943,18961}, {12047,22758}, {12247,12776}, {12739,22560}, {12835,26431}, {18954,26308}, {18957,26317}, {18958,26452}, {18959,26342}, {18960,26349}, {18995,26458}, {18996,26464}, {24914,24987}, {26433,26499}, {26434,26508}, {26435,26517}, {26436,26522}

X(26437) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (36, 3340, 11509), (999, 10680, 1), (1482, 8069, 26358)


X(26438) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: EHRMANN-MID AND 4th TRI-SQUARES-CENTRAL

Barycentrics    3*a^6-2*(b^2+c^2)*a^4+(b^2+c^2)^2*a^2-2*(b^4-c^4)*(b^2-c^2)-6*S*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :

X(26438) lies on these lines: {3,26307}, {4,193}, {5,8982}, {30,491}, {141,14230}, {230,6564}, {372,22596}, {381,3069}, {999,26474}, {1656,26521}, {1657,26295}, {3070,19130}, {3071,22820}, {3295,26480}, {3830,5861}, {3843,26331}, {9655,26436}, {9668,26356}, {12702,26445}, {13665,18907}, {14269,26340}, {18480,26301}, {18493,26370}, {18494,26376}, {18496,26397}, {18498,26421}, {18501,26430}, {18503,26315}, {18508,26450}, {18510,26457}, {18512,26463}, {18518,26486}, {18519,26491}, {18521,26497}, {18523,26506}, {18524,26513}, {18526,26515}, {18542,26523}, {18543,26524}, {18544,26522}, {18545,26525}, {26321,26325}

X(26438) = {X(4), X(18440)}-harmonic conjugate of X(18539)


X(26439) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: EULER AND LUCAS HOMOTHETIC

Barycentrics    2*((4*R^2-SA+SW)*S^2-(2*R^2+SW)*SB*SC)*S-2*(SA^2+SB*SC-SW^2)*S^2-SB*SC*SW^2 : :

X(26439) lies on these lines: {2,26466}, {3,26494}, {4,493}, {5,18521}, {24,26304}, {104,26322}, {376,26292}, {515,26298}, {631,5490}, {3085,26477}, {3086,26471}, {4293,26433}, {4294,26353}, {5603,26367}, {5657,26442}, {6464,26440}, {7487,26373}, {7581,26460}, {7582,26454}, {7967,26495}, {8982,26497}, {9862,26312}, {10783,26337}, {10784,26347}, {10785,26488}, {10786,26483}, {10788,26427}, {10806,26501}, {11491,26493}, {11845,26447}, {12116,26499}, {26381,26391}, {26405,26415}, {26441,26496}

X(26439) = reflection of X(4) in X(8212)
X(26439) = {X(26466), X(26498)}-harmonic conjugate of X(2)


X(26440) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: EULER AND LUCAS(-1) HOMOTHETIC

Barycentrics    -2*((4*R^2-SA+SW)*S^2-(2*R^2+SW)*SB*SC)*S-2*(SA^2+SB*SC-SW^2)*S^2-SB*SC*SW^2 : :

X(26440) lies on these lines: {2,26467}, {3,26503}, {4,494}, {5,18523}, {24,26305}, {104,26323}, {376,26293}, {515,26299}, {631,5491}, {3085,26478}, {3086,26472}, {4293,26434}, {4294,26354}, {5603,26368}, {5657,26443}, {6464,26439}, {7487,26374}, {7581,26461}, {7582,26455}, {7967,26504}, {8982,26506}, {10784,26338}, {10785,26489}, {10786,26484}, {10788,26428}, {10805,26511}, {10806,26510}, {11491,26502}, {11845,26448}, {12115,26509}, {12116,26508}, {26381,26392}, {26405,26416}, {26441,26505}

X(26440) = reflection of X(4) in X(8213)
X(26440) = {X(26467), X(26507)}-harmonic conjugate of X(2)


X(26441) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: EULER AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (-a^2+b^2+c^2)*(3*a^4+(b^2-c^2)^2)-2*S*(3*a^4-2*(b^2+c^2)*a^2-(b^2-c^2)^2) : :

X(26441) lies on these lines: {2,14234}, {3,489}, {4,371}, {5,18539}, {20,185}, {24,26306}, {32,1588}, {99,488}, {104,26324}, {182,11293}, {230,3071}, {315,487}, {376,5860}, {490,3564}, {515,26300}, {590,14233}, {631,639}, {671,12296}, {1131,14240}, {1132,7607}, {1151,6811}, {1352,11294}, {1504,1587}, {1585,10132}, {2351,13428}, {2794,5871}, {3070,12962}, {3085,26479}, {3086,26473}, {3524,13794}, {3529,10783}, {4293,26435}, {4294,26355}, {5603,26369}, {5657,26444}, {5870,8721}, {6460,14912}, {7000,9753}, {7487,26375}, {7581,26462}, {7582,26456}, {7967,26514}, {8884,24244}, {9675,23259}, {9738,9744}, {9766,12306}, {9862,26314}, {10785,26490}, {10786,26485}, {10788,26429}, {10805,26520}, {10806,26519}, {10845,12601}, {11491,26512}, {11845,26449}, {12115,26518}, {12116,26517}, {13674,15682}, {26381,26396}, {26405,26420}, {26439,26496}, {26440,26505}

X(26441) = reflection of X(i) in X(j) for these (i,j): (4, 371), (637, 3)
X(26441) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (20, 6776, 8982), (26468, 26516, 2)


X(26442) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GARCIA AND LUCAS HOMOTHETIC

Barycentrics
a^7-2*(b^2+c^2)*a^5-(b+c)*(b^2+c^2)*a^4+(-4*b^2*c^2+(b^2-c^2)^2)*a^3+2*(b+c)*(b^2+c^2)^2*a^2-((b+c)*a^4+4*(b^2+c^2)*a^3-2*(b^2+c^2)*(b+c)*a^2+(-4*b^2*c^2+(b^2-c^2)^2)*(b+c))*S-(b^4-c^4)*(b^2-c^2)*(b+c) : :

X(26442) lies on these lines: {1,5490}, {2,26367}, {8,26494}, {10,493}, {65,26477}, {72,26483}, {515,26292}, {517,26466}, {519,26495}, {956,26322}, {1837,26353}, {3057,26471}, {3679,26298}, {5090,26373}, {5252,26433}, {5587,26328}, {5657,26439}, {5687,26493}, {5688,26347}, {5689,26337}, {6464,26443}, {6734,26499}, {6735,26500}, {8193,26304}, {9857,26312}, {10791,26427}, {10914,26488}, {10916,26501}, {11900,26447}, {12702,18521}, {13883,26460}, {13936,26454}, {26382,26391}, {26406,26415}, {26444,26496}, {26445,26497}, {26446,26498}

X(26442) = reflection of X(8214) in X(10)


X(26443) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GARCIA AND LUCAS(-1) HOMOTHETIC

Barycentrics
a^7-2*(b^2+c^2)*a^5-(b+c)*(b^2+c^2)*a^4+(-4*b^2*c^2+(b^2-c^2)^2)*a^3+2*(b+c)*(b^2+c^2)^2*a^2+((b+c)*a^4+4*(b^2+c^2)*a^3-2*(b^2+c^2)*(b+c)*a^2+(-4*b^2*c^2+(b^2-c^2)^2)*(b+c))*S-(b^4-c^4)*(b^2-c^2)*(b+c) : :

X(26443) lies on these lines: {1,5491}, {2,26368}, {8,26503}, {10,494}, {65,26478}, {72,26484}, {515,26293}, {517,26467}, {519,26504}, {956,26323}, {1837,26354}, {3057,26472}, {3679,26299}, {5090,26374}, {5252,26434}, {5587,26329}, {5657,26440}, {5687,26502}, {5688,26338}, {6464,26442}, {6734,26508}, {6735,26509}, {8193,26305}, {9857,26313}, {10791,26428}, {10914,26489}, {10915,26511}, {10916,26510}, {11900,26448}, {12702,18523}, {13883,26461}, {13936,26455}, {26382,26392}, {26406,26416}, {26444,26505}, {26445,26506}, {26446,26507}

X(26443) = reflection of X(8215) in X(10)


X(26444) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GARCIA AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (a-3*b-3*c)*S+a^3-(b+c)*(b^2+c^2) : :

X(26444) lies on these lines: {1,26361}, {2,26369}, {4,12788}, {8,492}, {10,3068}, {65,26479}, {72,26485}, {193,3416}, {515,26294}, {517,26468}, {519,26514}, {956,26324}, {1837,26355}, {3057,26473}, {3679,5588}, {5090,26375}, {5252,26435}, {5587,26330}, {5657,26441}, {5687,26512}, {5689,26339}, {6735,26518}, {8193,26306}, {9857,26314}, {10791,26429}, {10914,26490}, {10915,26520}, {10916,26519}, {11900,26449}, {12702,18539}, {13688,15682}, {13883,26462}, {13936,26456}, {26382,26396}, {26406,26420}, {26442,26496}, {26443,26505}, {26446,26516}

X(26444) = reflection of X(13893) in X(10)
X(26444) = {X(3416), X(3617)}-harmonic conjugate of X(26445)


X(26445) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GARCIA AND 4th TRI-SQUARES-CENTRAL

Barycentrics    -(a-3*b-3*c)*S+a^3-(b+c)*(b^2+c^2) : :

X(26445) lies on these lines: {1,26362}, {2,26370}, {4,12787}, {8,491}, {10,3069}, {65,26480}, {72,26486}, {193,3416}, {515,26295}, {517,26469}, {519,26515}, {956,26325}, {1837,26356}, {3057,26474}, {3679,5589}, {5090,26376}, {5252,26436}, {5587,26331}, {5657,8982}, {5687,26513}, {5688,26340}, {6734,26522}, {6735,26523}, {8193,26307}, {9857,26315}, {10791,26430}, {10914,26491}, {10915,26525}, {10916,26524}, {11900,26450}, {12702,26438}, {13808,15682}, {13883,26463}, {13936,26457}, {26382,26397}, {26406,26421}, {26442,26497}, {26443,26506}, {26446,26521}

X(26445) = reflection of X(13947) in X(10)
X(26445) = {X(3416), X(3617)}-harmonic conjugate of X(26444)


X(26446) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GARCIA AND X3-ABC REFLECTIONS

Barycentrics    a^4+(b+c)*a^3-2*(b^2+b*c+c^2)*a^2-(b^2-c^2)*(b-c)*a+(b^2-c^2)^2 : :

X(26446) lies on these lines: {1,140}, {2,392}, {3,10}, {4,2355}, {5,40}, {7,8164}, {8,631}, {9,119}, {11,5119}, {12,46}, {20,5818}, {21,25005}, {24,5090}, {30,165}, {35,1837}, {36,5252}, {43,5396}, {48,21012}, {55,1737}, {56,10039}, {57,495}, {63,17757}, {65,498}, {72,5552}, {80,5010}, {100,1006}, {125,12778}, {142,2095}, {145,10303}, {171,5398}, {182,3416}, {191,5499}, {200,18443}, {210,912}, {214,19914}, {230,9620}, {354,10056}, {371,13973}, {372,13911}, {377,10526}, {381,516}, {382,19925}, {390,18527}, {405,11248}, {406,1872}, {442,5812}, {474,11249}, {484,1836}, {496,1697}, {499,3057}, {500,6048}, {518,10202}, {519,3653}, {546,7989}, {547,7988}, {548,16192}, {549,952}, {550,5691}, {551,10247}, {572,17275}, {573,17303}, {582,3072}, {632,3624}, {730,11171}, {899,1064}, {942,1788}, {944,3523}, {946,1656}, {956,6735}, {960,6863}, {962,3090}, {971,14647}, {997,3035}, {999,3911}, {1001,10679}, {1012,1512}, {1056,5435}, {1058,5704}, {1125,1482}, {1155,1478}, {1158,3652}, {1210,3295}, {1213,1766}, {1319,12647}, {1329,6842}, {1352,3844}, {1387,7962}, {1479,17606}, {1483,3632}, {1484,5541}, {1511,13211}, {1532,3305}, {1538,6969}, {1571,5254}, {1572,3815}, {1595,7713}, {1657,12512}, {1702,7584}, {1703,7583}, {1706,5705}, {1739,24789}, {1768,11698}, {1770,10895}, {1829,3541}, {1902,3542}, {2077,5251}, {2080,10791}, {2093,5219}, {2362,9646}, {2475,22937}, {2478,10525}, {2550,6827}, {2551,6850}, {2646,10573}, {2783,17281}, {2800,10176}, {2801,3956}, {2807,5891}, {2886,6882}, {2948,10264}, {2951,18529}, {2975,6940}, {3086,9957}, {3091,6361}, {3147,11363}, {3241,15702}, {3245,18393}, {3309,4448}, {3311,13912}, {3312,13883}, {3336,10404}, {3338,15888}, {3339,6147}, {3357,12779}, {3421,5744}, {3428,4413}, {3434,6947}, {3436,3916}, {3474,10590}, {3476,5126}, {3488,5281}, {3524,5731}, {3525,3616}, {3530,5881}, {3533,5550}, {3545,9812}, {3555,10528}, {3560,10310}, {3573,6998}, {3584,5902}, {3586,10993}, {3587,8727}, {3612,10950}, {3625,13607}, {3626,5882}, {3627,18492}, {3628,7991}, {3678,5884}, {3683,6929}, {3687,5774}, {3698,6862}, {3740,6001}, {3772,17734}, {3773,24257}, {3812,10198}, {3814,6980}, {3817,5055}, {3822,5880}, {3826,5805}, {3842,20430}, {3851,5493}, {3868,5885}, {3869,6853}, {3876,5694}, {3878,25413}, {3890,10284}, {3898,10199}, {3913,10916}, {3921,10167}, {3927,21075}, {3940,6745}, {3983,13369}, {4002,6833}, {4187,5250}, {4221,5235}, {4292,9654}, {4293,5122}, {4295,10588}, {4301,5070}, {4390,21013}, {4424,17720}, {4640,5123}, {4643,24324}, {4646,5292}, {4662,12675}, {4668,12108}, {4669,15701}, {4677,11812}, {4691,18526}, {4695,24892}, {4745,15693}, {4769,13335}, {4848,13411}, {4857,15079}, {4866,24645}, {4999,8256}, {5044,5887}, {5046,7705}, {5050,5847}, {5071,9779}, {5072,12571}, {5080,6951}, {5086,6875}, {5128,9612}, {5142,6197}, {5174,7531}, {5176,23961}, {5183,17605}, {5217,10572}, {5218,18391}, {5221,13407}, {5234,10270}, {5248,11849}, {5260,6906}, {5273,6916}, {5290,24470}, {5302,6256}, {5305,9593}, {5326,15950}, {5418,7969}, {5420,7968}, {5441,12104}, {5530,5711}, {5534,8726}, {5554,6910}, {5584,6985}, {5658,5777}, {5686,21151}, {5687,6734}, {5688,26348}, {5689,26341}, {5692,14988}, {5697,11376}, {5698,6982}, {5708,21620}, {5709,8728}, {5719,11529}, {5720,8580}, {5727,11545}, {5732,18528}, {5747,21866}, {5754,9568}, {5758,11024}, {5759,6843}, {5770,11227}, {5804,17552}, {5806,6887}, {5836,6958}, {5837,6700}, {5840,11113}, {5883,10197}, {5903,11375}, {5904,15016}, {5919,10072}, {6244,6913}, {6284,10826}, {6347,16433}, {6348,16432}, {6642,8193}, {6644,15177}, {6666,7682}, {6685,9567}, {6702,10738}, {6767,11019}, {6771,12781}, {6774,12780}, {6824,19855}, {6834,12672}, {6836,18517}, {6848,9856}, {6861,7686}, {6891,19843}, {6921,17614}, {6924,11012}, {6925,17613}, {6937,11681}, {6939,18230}, {6946,9342}, {6963,11680}, {6967,10527}, {6971,25639}, {6986,11491}, {7026,11752}, {7043,11789}, {7080,9940}, {7288,24928}, {7354,10827}, {7483,19860}, {7502,9590}, {7525,9626}, {7529,9911}, {7580,18491}, {7741,11010}, {7742,11501}, {7743,10589}, {8148,13464}, {8158,16863}, {8251,21530}, {8582,10306}, {8981,18991}, {9458,14026}, {9540,19065}, {9548,15973}, {9574,15048}, {9578,15803}, {9581,15171}, {9614,10593}, {9624,11531}, {9625,12106}, {9669,10624}, {9857,26316}, {9864,12042}, {9905,21230}, {9928,12359}, {10087,20118}, {10104,12197}, {10124,11224}, {10156,24477}, {10200,23340}, {10265,12331}, {10283,11539}, {10610,12785}, {10680,25524}, {10744,14664}, {10747,14690}, {10860,18540}, {10915,12513}, {10942,21031}, {10954,17700}, {11260,24927}, {11277,16132}, {11343,25007}, {11471,15763}, {11522,19872}, {11900,26451}, {12041,12368}, {12247,22935}, {12261,15059}, {12610,17327}, {12738,18446}, {13405,15934}, {13634,24808}, {13747,19861}, {13935,19066}, {13966,18992}, {14839,15819}, {15228,18513}, {15254,26333}, {15310,24482}, {15489,19858}, {15556,15865}, {15644,23841}, {16266,16473}, {16408,22770}, {16832,19512}, {16842,25011}, {16862,24564}, {17073,21231}, {20195,20330}, {24833,25351}, {26382,26398}, {26406,26422}, {26442,26498}, {26443,26507}, {26444,26516}, {26445,26521}

X(26446) = midpoint of X(i) and X(j) for these {i,j}: {2, 5657}, {3, 5790}, {4, 9778}, {8, 7967}, {10, 10164}, {40, 1699}, {165, 5587}, {3576, 3679}, {3654, 5886}, {5686, 21151}, {10167, 18908}
X(26446) = reflection of X(i) in X(j) for these (i,j): (2, 11231), (3, 10164), (355, 5790), (381, 10175), (946, 10171), (1699, 5), (3576, 549), (3653, 5054), (3654, 5657), (3655, 3576), (3656, 5886), (3817, 10172), (5603, 11230), (5731, 17502), (5790, 10), (5886, 2), (7967, 1385), (9778, 3579), (10164, 6684), (10171, 3634), (10175, 3828), (10246, 10165), (10247, 551), (12699, 1699), (16200, 10283), (25055, 11539)
X(26446) = anticomplement of X(11230)
X(26446) = complement of X(5603)
X(26446) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 5445, 24914), (140, 5690, 1)


X(26447) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: GOSSARD AND LUCAS HOMOTHETIC

Barycentrics
(S^2-3*SB*SC)*((-2*(10*R^2+SA-3*SW)*S^2+(8*R^2-2*SW)*(2*(SW+3*SA)*R^2-6*SA^2+SB*SC+SW^2))*S+4*S^4+(144*R^4-8*(3*SA+8*SW)*R^2+4*SA^2-2*SB*SC+7*SW^2)*S^2-(-4*(SW^2+3*SW*SA-9*SA^2)*R^2-SW*(4*SA+SW)*(2*SA-SW))*SW) : :

X(26447) lies on these lines: {30,26292}, {402,493}, {1650,5490}, {4240,26494}, {6464,26448}, {11831,26367}, {11832,26373}, {11839,26427}, {11845,26439}, {11848,26493}, {11852,26298}, {11853,26304}, {11885,26312}, {11897,26328}, {11900,26442}, {11901,26337}, {11902,26347}, {11903,26488}, {11904,26483}, {11905,26477}, {11906,26471}, {11909,26353}, {11910,26495}, {11915,26501}, {18508,18521}, {18958,26433}, {19017,26454}, {19018,26460}, {22755,26322}, {26449,26496}, {26450,26497}, {26451,26498}, {26452,26499}, {26453,26500}


X(26448) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: GOSSARD AND LUCAS(-1) HOMOTHETIC

Barycentrics
(S^2-3*SB*SC)*(-(-2*(10*R^2+SA-3*SW)*S^2+(8*R^2-2*SW)*(2*(SW+3*SA)*R^2-6*SA^2+SB*SC+SW^2))*S+4*S^4+(144*R^4-8*(3*SA+8*SW)*R^2+4*SA^2-2*SB*SC+7*SW^2)*S^2-(-4*(SW^2+3*SW*SA-9*SA^2)*R^2-SW*(4*SA+SW)*(2*SA-SW))*SW) : :

X(26448) lies on these lines: {30,26293}, {402,494}, {1650,5491}, {4240,26503}, {6464,26447}, {11831,26368}, {11832,26374}, {11839,26428}, {11845,26440}, {11848,26502}, {11852,26299}, {11853,26305}, {11885,26313}, {11897,26329}, {11900,26443}, {11902,26338}, {11903,26489}, {11904,26484}, {11905,26478}, {11906,26472}, {11909,26354}, {11910,26504}, {11914,26511}, {11915,26510}, {18508,18523}, {18958,26434}, {19017,26455}, {19018,26461}, {22755,26323}, {26449,26505}, {26450,26506}, {26451,26507}, {26452,26508}, {26453,26509}


X(26449) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: GOSSARD AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (S^2-3*SB*SC)*((-13*S^2+4*(15*SA-4*SW)*R^2-15*SA^2+10*SB*SC+4*SW^2)*S+2*(6*R^2+SA-2*SW)*S^2+4*(3*SA+2*SW)*(3*SA-SW)*R^2-2*(5*SA^2+SA*SW-SW^2)*SW) : :

X(26449) lies on these lines: {4,12800}, {30,26294}, {193,12583}, {402,3068}, {492,4240}, {1650,26361}, {1651,5860}, {11831,26369}, {11832,26375}, {11839,26429}, {11845,26441}, {11848,26512}, {11852,26300}, {11853,26306}, {11885,26314}, {11897,26330}, {11900,26444}, {11901,26339}, {11903,26490}, {11905,26479}, {11906,26473}, {11909,26355}, {11910,26514}, {11914,26520}, {11915,26519}, {13689,15682}, {18508,18539}, {19017,26456}, {19018,26462}, {22755,26324}, {26383,26396}, {26407,26420}, {26447,26496}, {26448,26505}, {26451,26516}, {26452,26517}, {26453,26518}

X(26449) = reflection of X(13894) in X(402)


X(26450) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: GOSSARD AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (S^2-3*SB*SC)*(-(-13*S^2+4*(15*SA-4*SW)*R^2-15*SA^2+10*SB*SC+4*SW^2)*S+2*(6*R^2+SA-2*SW)*S^2+4*(3*SA+2*SW)*(3*SA-SW)*R^2-2*(5*SA^2+SA*SW-SW^2)*SW) : :

X(26450) lies on these lines: {4,12799}, {30,26295}, {193,12583}, {402,3069}, {491,4240}, {1650,26362}, {1651,5861}, {8982,11845}, {11831,26370}, {11832,26376}, {11839,26430}, {11848,26513}, {11852,26301}, {11853,26307}, {11885,26315}, {11897,26331}, {11900,26445}, {11902,26340}, {11903,26491}, {11904,26486}, {11905,26480}, {11906,26474}, {11909,26356}, {11910,26515}, {11914,26525}, {11915,26524}, {13809,15682}, {18508,26438}, {18958,26436}, {19017,26457}, {19018,26463}, {22755,26325}, {26383,26397}, {26407,26421}, {26447,26497}, {26448,26506}, {26451,26521}, {26452,26522}, {26453,26523}

X(26450) = reflection of X(13948) in X(402)


X(26451) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: GOSSARD AND X3-ABC REFLECTIONS

Barycentrics    (S^2-3*SB*SC)*(7*S^2-2*R^2*(36*R^2+18*SA-17*SW)+9*SA^2-6*SB*SC-4*SW^2) : :

X(26451) lies on these lines: {2,3}, {35,11909}, {36,18958}, {55,11913}, {56,11912}, {125,12790}, {182,12583}, {498,11905}, {499,11906}, {517,11831}, {952,16210}, {1385,12438}, {2080,11839}, {3311,19017}, {3312,19018}, {3357,12791}, {3576,11852}, {3579,12696}, {5657,16212}, {5690,12626}, {5844,16211}, {6771,12793}, {6774,12792}, {7583,13894}, {7584,13948}, {10246,11910}, {10267,11848}, {10269,22755}, {10610,12797}, {11885,26316}, {11900,26446}, {11901,26341}, {11902,26348}, {11903,26492}, {11904,26487}, {11914,16203}, {11915,16202}, {12041,12369}, {12042,12181}, {12359,12418}, {12619,12729}, {14643,23239}, {26383,26398}, {26407,26422}, {26447,26498}, {26448,26507}, {26449,26516}, {26450,26521}

X(26451) = midpoint of X(i) and X(j) for these {i,j}: {2, 11845}, {3, 11911}, {3576, 11852}, {5657, 16212}, {11897, 16190}
X(26451) = reflection of X(i) in X(j) for these (i,j): (11251, 11911), (11911, 402)
X(26451) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 402, 11251), (5, 12113, 18507), (12113, 15183, 5)


X(26452) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: GOSSARD AND INNER-YFF

Barycentrics
(a^12-3*(b^2+c^2)*a^10-2*(b+c)*b*c*a^9+(b^4+7*b^2*c^2+c^4)*a^8+2*(b+c)*(b^2+c^2)*b*c*a^7+2*(3*b^6+3*c^6-(b^4+c^4+2*b*c*(2*b^2-b*c+2*c^2))*b*c)*a^6+2*(b+c)*(b^2-2*c^2)*(2*b^2-c^2)*b*c*a^5-(b^2-c^2)^2*(9*b^4+9*c^4-2*b*c*(2*b-c)*(b-2*c))*a^4-6*(b^4-c^4)*(b^2-c^2)*b*c*(b+c)*a^3+(b^4-c^4)*(b^2-c^2)*(5*b^4+5*c^4-2*b*c*(b^2+c^2))*a^2+2*(b^2-c^2)^2*(b+c)*b*c*(b^4+3*b^2*c^2+c^4)*a-(b^2-c^2)^4*(b^4+3*b^2*c^2+c^4))*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2) : :

X(26452) lies on these lines: {1,402}, {5,11904}, {30,11012}, {1650,26363}, {4240,10527}, {5709,12696}, {6734,11900}, {10198,15183}, {10267,11848}, {10680,11911}, {10943,11903}, {11249,11251}, {11832,26377}, {11839,26431}, {11845,12116}, {11853,26308}, {11885,26317}, {11897,26332}, {11901,26342}, {11902,26349}, {11905,26481}, {11906,26475}, {11909,26357}, {12649,16212}, {18508,18544}, {18958,26437}, {19017,26458}, {19018,26464}, {26383,26399}, {26407,26423}, {26447,26499}, {26448,26508}, {26449,26517}, {26450,26522}

X(26452) = reflection of X(11912) in X(402)
X(26452) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (402, 11915, 1), (402, 12438, 26453)


X(26453) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: GOSSARD AND OUTER-YFF

Barycentrics
(a^12-3*(b^2+c^2)*a^10+2*(b+c)*b*c*a^9+(b^4+7*b^2*c^2+c^4)*a^8-2*(b+c)*(b^2+c^2)*b*c*a^7+2*(3*b^6+3*c^6+(b^4+c^4-2*b*c*(2*b^2+b*c+2*c^2))*b*c)*a^6-2*(b+c)*(b^2-2*c^2)*(2*b^2-c^2)*b*c*a^5-(b^2-c^2)^2*(9*b^4+9*c^4+2*b*c*(b+2*c)*(2*b+c))*a^4+6*(b^4-c^4)*(b^2-c^2)*b*c*(b+c)*a^3+(b^4-c^4)*(b^2-c^2)*(5*b^4+5*c^4+2*b*c*(b^2+c^2))*a^2-2*(b^2-c^2)^2*(b+c)*b*c*(b^4+3*b^2*c^2+c^4)*a-(b^2-c^2)^4*(b^4+3*b^2*c^2+c^4))*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2) : :

X(26453) lies on these lines: {1,402}, {5,11903}, {30,119}, {1470,18958}, {1650,26364}, {4240,5552}, {6256,12113}, {6735,11900}, {10200,15183}, {10269,22755}, {10679,11911}, {10942,11904}, {11248,11251}, {11832,26378}, {11839,26432}, {11845,12115}, {11853,26309}, {11885,26318}, {11897,26333}, {11901,26343}, {11902,26350}, {11905,26482}, {11906,26476}, {11909,26358}, {12648,16212}, {12729,12751}, {13268,25438}, {18508,18542}, {19017,26459}, {19018,26465}, {26383,26400}, {26407,26424}, {26447,26500}, {26448,26509}, {26449,26518}, {26450,26523}

X(26453) = reflection of X(11913) in X(402)
X(26453) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (402, 11914, 1), (402, 12438, 26452)


X(26454) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-GREBE AND LUCAS HOMOTHETIC

Barycentrics    a^4*((a^4+2*(b^2+c^2)*a^2+5*b^4+2*b^2*c^2+5*c^4)*S-a^6+2*(b^2+c^2)*a^4-((b^2-c^2)^2-4*b^2*c^2)*a^2+4*b^2*c^2*(b^2+c^2)) : :

X(26454) lies on these lines: {6,493}, {32,8911}, {83,3069}, {213,606}, {372,26292}, {729,1306}, {1587,26328}, {2207,5413}, {3051,10318}, {3311,26498}, {5062,6414}, {5411,26373}, {6464,26455}, {7582,26439}, {7584,26466}, {7586,26494}, {7968,26495}, {13936,26442}, {18510,18521}, {18991,26367}, {18995,26433}, {18999,26493}, {19003,26298}, {19005,26304}, {19011,26312}, {19013,26322}, {19017,26447}, {19023,26488}, {19025,26483}, {19027,26477}, {19029,26471}, {19037,26353}, {19049,26501}, {26384,26391}, {26408,26415}, {26456,26496}, {26457,26497}, {26458,26499}, {26459,26500}

X(26454) = isogonal conjugate of the isotomic conjugate of X(493)
X(26454) = isogonal conjugate of the polar conjugate of X(8948)
X(26454) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 493, 26460), (6, 8939, 19032)


X(26455) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-GREBE AND LUCAS(-1) HOMOTHETIC

Barycentrics
a^2*((6*a^6-12*(b^2+c^2)*a^4-6*(3*b^4+14*b^2*c^2+3*c^4)*a^2+8*(b^2+c^2)*(b^4-4*b^2*c^2+c^4))*S-a^8-8*(b^2+c^2)*a^6+4*(4*b^4+9*b^2*c^2+4*c^4)*a^4-4*(b^2+c^2)*(b^2-4*b*c+c^2)*(b^2+4*b*c+c^2)*a^2-(3*b^4+14*b^2*c^2+3*c^4)*(b^2-c^2)^2) : :

X(26455) lies on these lines: {6,494}, {372,26293}, {1505,6414}, {1587,26329}, {3069,5491}, {3311,26507}, {5411,26374}, {5413,8946}, {6464,26454}, {7582,26440}, {7584,26467}, {7586,26503}, {7968,26504}, {8576,19359}, {10318,26460}, {13936,26443}, {18510,18523}, {18991,26368}, {18993,26428}, {18995,26434}, {18999,26502}, {19003,26299}, {19005,26305}, {19011,26313}, {19013,26323}, {19017,26448}, {19023,26489}, {19025,26484}, {19027,26478}, {19029,26472}, {19037,26354}, {19047,26511}, {19049,26510}, {26384,26392}, {26408,26416}, {26456,26505}, {26457,26506}, {26458,26508}, {26459,26509}

X(26455) = {X(6), X(494)}-harmonic conjugate of X(26461)


X(26456) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-GREBE AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (7*a^4+10*(b^2+c^2)*a^2-(b^2-c^2)^2)*S+8*a^6+(b^2+c^2)*a^4+2*(3*b^4-2*b^2*c^2+3*c^4)*a^2+(b^4-c^4)*(b^2-c^2) : :

X(26456) lies on these lines: {2,6}, {4,19102}, {372,26294}, {1249,8037}, {1504,21843}, {1587,26330}, {1588,18907}, {2549,5062}, {3311,26516}, {5411,26375}, {6423,6459}, {7582,26441}, {7584,26468}, {13886,19103}, {14241,22541}, {15682,19099}, {18510,18539}, {18993,26429}, {18995,26435}, {18999,26512}, {19005,26306}, {19011,26314}, {19013,26324}, {19017,26449}, {19023,26490}, {19025,26485}, {19027,26479}, {19029,26473}, {19037,26355}, {19047,26520}, {19049,26519}, {26384,26396}, {26408,26420}, {26454,26496}, {26455,26505}, {26458,26517}, {26459,26518}

X(26456) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3068, 26462), (3589, 15835, 2), (3618, 7586, 3069)


X(26457) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-GREBE AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (23*a^4+26*(b^2+c^2)*a^2-(b^2-c^2)^2)*S+2*a^6-19*(b^2+c^2)*a^4-24*b^2*c^2*a^2+(b^4-c^4)*(b^2-c^2) : :
X(26457) = 3*S^2*X(2)-2*SW*(5*S-2*SW)*X(6)

X(26457) lies on these lines: {2,6}, {4,19104}, {372,26295}, {1505,6459}, {1587,26331}, {3311,26521}, {5411,26376}, {7582,8982}, {7584,26469}, {7968,26515}, {13936,26445}, {13939,19105}, {14226,19100}, {15682,19101}, {18510,26438}, {18991,26370}, {18993,26430}, {18995,26436}, {18999,26513}, {19003,26301}, {19005,26307}, {19011,26315}, {19013,26325}, {19017,26450}, {19023,26491}, {19025,26486}, {19027,26480}, {19029,26474}, {19037,26356}, {19047,26525}, {19049,26524}, {26384,26397}, {26408,26421}, {26454,26497}, {26455,26506}, {26458,26522}, {26459,26523}

X(26457) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3069, 26463), (491, 7586, 3069)


X(26458) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-GREBE AND INNER-YFF

Barycentrics    a^2*(2*b*c*S+(a+b+c)*(a^3-(b+c)*a^2-(b^2+c^2)*a+(b^2-c^2)*(b-c))) : :
X(26458) = R*S*X(1)-2*SW*(R+r)*X(6)

X(26458) lies on these lines: {1,6}, {5,19025}, {371,5416}, {372,11012}, {495,19026}, {1377,5705}, {1587,26332}, {3068,10198}, {3311,10267}, {3312,11249}, {5411,26377}, {6417,16202}, {6418,10680}, {6501,12001}, {7581,10532}, {7582,12116}, {7584,26470}, {9616,10268}, {10943,19023}, {18510,18544}, {18993,26431}, {18995,26437}, {19005,26308}, {19011,26317}, {19017,26452}, {19027,26481}, {19029,26475}, {19037,26357}, {26384,26399}, {26408,26423}, {26454,26499}, {26455,26508}

X(26458) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 6, 26464), (6, 1335, 18991), (6, 19048, 19004)


X(26459) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-GREBE AND OUTER-YFF

Barycentrics    a^2*(2*b*c*S-(a+b+c)*(a^3-(b+c)*a^2-(b^2-4*b*c+c^2)*a+(b^2-c^2)*(b-c))) : :
X(26459) = R*S*X(1)-2*SW*(R-r)*X(6)

X(26459) lies on these lines: {1,6}, {5,19023}, {119,7584}, {372,2077}, {496,19024}, {1378,13947}, {1470,18995}, {1587,26333}, {1588,6256}, {1702,3359}, {2067,5193}, {3068,10200}, {3311,10269}, {3312,11248}, {5411,26378}, {5416,6420}, {6417,16203}, {6418,10679}, {6501,12000}, {7581,10531}, {7582,12115}, {9616,10270}, {10942,19025}, {12751,19077}, {18510,18542}, {18993,26432}, {19005,26309}, {19011,26318}, {19017,26453}, {19027,26482}, {19029,26476}, {19037,26358}, {19112,25438}, {26384,26400}, {26408,26424}, {26454,26500}, {26455,26509}

X(26459) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 6, 26465), (6, 1124, 18991), (6, 3299, 26464)


X(26460) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GREBE AND LUCAS HOMOTHETIC

Barycentrics
a^2*(2*(3*a^6-6*(b^2+c^2)*a^4-3*(3*b^4+14*b^2*c^2+3*c^4)*a^2+4*(b^2+c^2)*(b^4-4*b^2*c^2+c^4))*S+a^8+8*(b^2+c^2)*a^6-4*(4*b^4+9*b^2*c^2+4*c^4)*a^4+4*(b^2+c^2)*(b^2-4*b*c+c^2)*(b^2+4*b*c+c^2)*a^2+(3*b^4+14*b^2*c^2+3*c^4)*(b^2-c^2)^2) : :

X(26460) lies on these lines: {6,493}, {371,26292}, {1504,6413}, {1588,26328}, {3068,5490}, {3312,26498}, {5410,26373}, {5412,8948}, {6464,26461}, {7581,26439}, {7583,26466}, {7585,26494}, {8577,19358}, {10318,26455}, {13883,26442}, {18512,18521}, {18992,26367}, {18996,26433}, {19000,26493}, {19004,26298}, {19006,26304}, {19012,26312}, {19014,26322}, {19018,26447}, {19026,26483}, {19028,26477}, {19030,26471}, {19038,26353}, {19050,26501}, {26385,26391}, {26409,26415}, {26462,26496}, {26463,26497}, {26464,26499}, {26465,26500}

X(26460) = {X(6), X(493)}-harmonic conjugate of X(26454)


X(26461) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GREBE AND LUCAS(-1) HOMOTHETIC

Barycentrics    a^4*((a^4+2*(b^2+c^2)*a^2+5*b^4+2*b^2*c^2+5*c^4)*S+a^6-2*(b^2+c^2)*a^4+((b^2-c^2)^2-4*b^2*c^2)*a^2-4*b^2*c^2*(b^2+c^2)) : :

X(26461) lies on these lines: {6,494}, {83,3068}, {213,605}, {371,26293}, {729,1307}, {1588,26329}, {2207,5412}, {3051,10318}, {3312,26507}, {5058,6413}, {5410,26374}, {6464,26460}, {6531,24243}, {7581,26440}, {7583,26467}, {7585,26503}, {7969,26504}, {13883,26443}, {18512,18523}, {18992,26368}, {18996,26434}, {19000,26502}, {19004,26299}, {19006,26305}, {19012,26313}, {19014,26323}, {19018,26448}, {19024,26489}, {19026,26484}, {19028,26478}, {19030,26472}, {19038,26354}, {19048,26511}, {19050,26510}, {26385,26392}, {26409,26416}, {26462,26505}, {26463,26506}, {26464,26508}, {26465,26509}

X(26461) = isogonal conjugate of the isotomic conjugate of X(494)
X(26461) = isogonal conjugate of the polar conjugate of X(8946)
X(26461) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 494, 26455), (6, 8943, 19033)


X(26462) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GREBE AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (23*a^4+26*(b^2+c^2)*a^2-(b^2-c^2)^2)*S-2*a^6+19*(b^2+c^2)*a^4+24*b^2*c^2*a^2-(b^4-c^4)*(b^2-c^2) : :
X(26462) = 3*S^2*X(2)+2*SW*(5*S+2*SW)*X(6)

X(26462) lies on these lines: {2,6}, {4,19103}, {371,26294}, {1504,6460}, {1588,26330}, {3312,26516}, {5410,26375}, {7581,26441}, {7583,26468}, {7969,26514}, {13883,26444}, {13886,19102}, {14241,19099}, {15682,22541}, {18512,18539}, {18994,26429}, {18996,26435}, {19000,26512}, {19006,26306}, {19012,26314}, {19014,26324}, {19018,26449}, {19024,26490}, {19026,26485}, {19028,26479}, {19030,26473}, {19038,26355}, {19048,26520}, {19050,26519}, {26385,26396}, {26409,26420}, {26460,26496}, {26461,26505}, {26464,26517}, {26465,26518}

X(26462) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3068, 26456), (492, 7585, 3068)


X(26463) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GREBE AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (7*a^4+10*(b^2+c^2)*a^2-(b^2-c^2)^2)*S-8*a^6-(b^2+c^2)*a^4-2*(3*b^4-2*b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2) : :
X(26463) = 3*S^2*X(2)+2*SW*(3*S-2*SW)*X(6)

X(26463) lies on these lines: {2,6}, {4,19105}, {371,26295}, {1505,21843}, {1587,18907}, {1588,26331}, {2549,5058}, {3312,26521}, {5410,26376}, {6424,6460}, {7581,8982}, {7583,26469}, {7969,26515}, {13883,26445}, {13939,19104}, {14226,19101}, {15682,19100}, {18512,26438}, {18992,26370}, {18994,26430}, {18996,26436}, {19000,26513}, {19004,26301}, {19006,26307}, {19014,26325}, {19018,26450}, {19024,26491}, {19026,26486}, {19028,26480}, {19030,26474}, {19038,26356}, {19048,26525}, {19050,26524}, {26385,26397}, {26409,26421}, {26460,26497}, {26461,26506}, {26464,26522}, {26465,26523}

X(26463) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3068, 3069, 26362), (3589, 15834, 2), (3618, 7585, 3068)


X(26464) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GREBE AND INNER-YFF

Barycentrics    a^2*(2*b*c*S-(a+b+c)*(a^3-(b+c)*a^2-(b^2+c^2)*a+(b^2-c^2)*(b-c))) : :
X(26464) = R*S*X(1)+2*SW*(R+r)*X(6)

X(26464) lies on these lines: {1,6}, {5,19026}, {371,11012}, {372,5415}, {495,19025}, {1378,5705}, {1588,26332}, {1702,5709}, {3311,11249}, {3312,10267}, {26461,26508}

X(26464) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 6, 26458), (6, 1124, 18992), (6, 3299, 26459)


X(26465) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-GREBE AND OUTER-YFF

Barycentrics    a^2*(2*b*c*S+(a+b+c)*(a^3-(b+c)*a^2-(b^2-4*b*c+c^2)*a+(b^2-c^2)*(b-c))) : :
X(26465) = R*S*X(1)+2*SW*(R-r)*X(6)

X(26465) lies on these lines: {1,6}, {5,19024}, {119,7583}, {371,2077}, {496,19023}, {1377,13893}, {1470,18996}, {1587,6256}, {1588,26333}, {1703,3359}, {3311,11248}, {3312,10269}, {5193,6502}, {5410,26378}, {5415,6419}, {6417,10679}, {6418,16203}, {6500,12000}, {7581,12115}, {7582,10531}, {10942,19026}, {12751,19078}, {18512,18542}, {18994,26432}, {19006,26309}, {19012,26318}, {19018,26453}, {19028,26482}, {19030,26476}, {19038,26358}, {19113,25438}, {26385,26400}, {26409,26424}, {26460,26500}, {26461,26509}

X(26465) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 6, 26459), (6, 1335, 18992), (6, 19048, 1)


X(26466) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: JOHNSON AND LUCAS HOMOTHETIC

Barycentrics    2*((SA-2*R^2)*S^2+(2*R^2+SW)*SB*SC)*S+4*S^4+(4*SA^2-2*SA*SW-SW^2)*S^2+SB*SC*SW^2 : :

X(26466) lies on these lines: {1,26471}, {2,26439}, {3,5490}, {4,26373}, {5,493}, {30,26292}, {119,26500}, {355,26483}, {381,26328}, {517,26442}, {952,26495}, {1478,26433}, {1479,26353}, {5587,26298}, {5886,26367}, {6193,24244}, {6214,26347}, {6215,26337}, {6464,26467}, {6756,8948}, {7583,26460}, {7584,26454}, {9996,26312}, {10796,26427}, {10943,26501}, {11499,26493}, {22758,26322}, {26386,26391}, {26468,26496}, {26469,26497}, {26470,26499}

X(26466) = reflection of X(8220) in X(5)
X(26466) = {X(2), X(26439)}-harmonic conjugate of X(26498)


X(26467) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: JOHNSON AND LUCAS(-1) HOMOTHETIC

Barycentrics    -2*((SA-2*R^2)*S^2+(2*R^2+SW)*SB*SC)*S+4*S^4+(4*SA^2-2*SA*SW-SW^2)*S^2+SB*SC*SW^2 : :

X(26467) lies on these lines: {1,26472}, {2,26440}, {3,5491}, {4,26374}, {5,494}, {30,26293}, {119,26509}, {355,26484}, {381,26329}, {517,26443}, {952,26504}, {1478,26434}, {1479,26354}, {5587,26299}, {5886,26368}, {6193,24243}, {6214,26338}, {6464,26466}, {6756,8946}, {7583,26461}, {7584,26455}, {9996,26313}, {10796,26428}, {10942,26511}, {10943,26510}, {11499,26502}, {22758,26323}, {26386,26392}, {26410,26416}, {26468,26505}, {26469,26506}, {26470,26508}

X(26467) = reflection of X(8221) in X(5)
X(26467) = {X(2), X(26440)}-harmonic conjugate of X(26507)


X(26468) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: JOHNSON AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (a^4+2*(b^2+c^2)*a^2-3*(b^2-c^2)^2)*S+a^6-(b^2+c^2)*a^4+(b^2+c^2)^2*a^2-(b^4-c^4)*(b^2-c^2) : :

X(26468) lies on these lines: {1,26473}, {2,14234}, {3,18539}, {4,488}, {5,1588}, {20,7690}, {30,26294}, {119,26518}, {193,576}, {355,26485}, {381,5860}, {517,26444}, {952,26514}, {1007,6811}, {1478,26435}, {1479,26355}, {3545,6290}, {3593,9739}, {3851,6215}, {5587,26300}, {5874,13665}, {5886,26369}, {6251,7620}, {6278,6564}, {6565,10515}, {7583,26462}, {7584,26456}, {9996,26314}, {10796,26429}, {10942,26520}, {10943,26519}, {11293,26521}, {11499,26512}, {13692,15682}, {13748,23311}, {18762,21309}, {22758,26324}, {26386,26396}, {26410,26420}, {26466,26496}, {26467,26505}, {26470,26517}

X(26468) = reflection of X(8976) in X(5)
X(26468) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26441, 26516), (26473, 26479, 1)


X(26469) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: JOHNSON AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (a^4+2*(b^2+c^2)*a^2-3*(b^2-c^2)^2)*S-a^6+(b^2+c^2)*a^4-(b^2+c^2)^2*a^2+(b^4-c^4)*(b^2-c^2) : :

X(26469) lies on these lines: {1,26474}, {2,8982}, {3,26307}, {4,487}, {5,1587}, {20,7692}, {30,26295}, {119,26523}, {193,576}, {355,26486}, {381,5861}, {517,26445}, {640,21737}, {952,26515}, {1007,6813}, {1478,26436}, {1479,26356}, {3545,6289}, {3595,9738}, {3851,6214}, {5587,26301}, {5875,13785}, {5886,26370}, {6250,7620}, {6281,6565}, {6564,10514}, {7583,26463}, {7584,26457}, {9996,26315}, {10796,26430}, {10942,26525}, {10943,26524}, {11294,26516}, {11499,26513}, {13749,23312}, {13812,15682}, {18538,21309}, {22758,26325}, {26386,26397}, {26410,26421}, {26466,26497}, {26467,26506}, {26470,26522}

X(26469) = reflection of X(13951) in X(5)
X(26469) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 8982, 26521), (26474, 26480, 1)


X(26470) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: JOHNSON AND INNER-YFF

Barycentrics    (b-c)^2*a^5-(b^2-c^2)*(b-c)*a^4-2*(b^2+c^2)*(b^2-b*c+c^2)*a^3+2*(b^4-c^4)*(b-c)*a^2+(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c) : :
X(26470) = R*X(1)-2*(R+r)*X(5)

X(26470) lies on these lines: {1,5}, {2,10267}, {3,2886}, {4,2975}, {8,6830}, {10,6882}, {30,11012}, {55,6862}, {56,6917}, {100,6952}, {104,2475}, {140,3925}, {149,6888}, {262,13110}, {377,10269}, {381,529}, {388,6867}, {404,6713}, {442,1385}, {474,26492}, {485,19050}, {486,19049}, {497,6824}, {499,6911}, {515,6842}, {517,6734}, {528,11849}, {602,24892}, {758,946}, {912,12047}, {944,2476}, {956,10526}, {958,6928}, {962,6845}, {993,7491}, {1001,6861}, {1012,10525}, {1058,6855}, {1125,6881}, {1329,5790}, {1352,5849}, {1376,6958}, {1478,26437}, {1479,3560}, {1482,3813}, {1532,18480}, {1621,6852}, {1656,3816}, {1699,6763}, {1706,5705}, {1836,24467}, {2550,6891}, {2829,26321}, {3085,6859}, {3086,6826}, {3090,10806}, {3091,10529}, {3149,6585}, {3193,14008}, {3434,6833}, {3526,3826}, {3545,10597}, {3574,5777}, {3616,6829}, {3649,24475}, {3652,5536}, {3754,10265}, {3822,5882}, {3825,10175}, {3838,12675}, {3841,10165}, {3851,12001}, {4187,9956}, {4193,5818}, {4294,6892}, {4295,5770}, {4857,16617}, {4996,5840}, {5056,10587}, {5082,6956}, {5225,6930}, {5231,5709}, {5249,13373}, {5253,6901}, {5260,6902}, {5274,6846}, {5433,6924}, {5552,6879}, {5603,6828}, {5654,12431}, {5657,6943}, {5693,18393}, {5707,11269}, {5715,7956}, {5731,6937}, {5762,6067}, {5771,16139}, {5779,5852}, {5805,5857}, {5811,9779}, {5817,7678}, {6214,26349}, {6215,26342}, {6256,18519}, {6284,6914}, {6597,16159}, {6827,19843}, {6834,18491}, {6837,10530}, {6843,14986}, {6863,11500}, {6871,12115}, {6873,10595}, {6874,7967}, {6883,19854}, {6885,7288}, {6893,10591}, {6907,18481}, {6913,9669}, {6923,12114}, {6929,10896}, {6933,10786}, {6944,10589}, {6957,10598}, {6959,11510}, {6963,9780}, {6980,18242}, {6982,12667}, {6983,10584}, {6993,10586}, {7395,10835}, {7403,17111}, {7507,11401}, {7583,26464}, {7584,26458}, {9996,26317}, {10202,12609}, {10246,25466}, {10320,11501}, {10356,10879}, {10358,10804}, {10514,10931}, {10515,10932}, {10516,12595}, {10738,13743}, {10796,26431}, {10894,12513}, {10895,18967}, {11235,11496}, {11263,12005}, {11585,23304}, {11813,20117}, {11928,26333}, {12357,23234}, {12607,12645}, {12906,14643}, {13190,14639}, {13218,14644}, {13243,16116}, {13279,13729}, {14794,15338}, {14872,17605}, {15842,26364}, {26386,26399}, {26410,26423}, {26466,26499}, {26467,26508}, {26468,26517}, {26469,26522}

X(26470) = midpoint of X(i) and X(j) for these {i,j}: {4, 2975}, {6831, 24390}
X(26470) = reflection of X(i) in X(j) for these (i,j): (3, 4999), (12, 5), (6842, 25639)
X(26470) = complement of X(11491)
X(26470) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5, 7741, 23513), (5, 10942, 7951), (5587, 7741, 5)


X(26471) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-JOHNSON AND LUCAS HOMOTHETIC

Barycentrics
-(a^8-2*(b^2+c^2)*a^6+2*(b^4+c^4-(b+c)^2*b*c)*a^4-2*(b-c)^2*(b^2+c^2)^2*a^2-((3*b^2+2*b*c+3*c^2)*a^4+2*(b^2+c^2)*(b-c)^2*a^2-(-4*b^2*c^2+(b^2-c^2)^2)*(b-c)^2)*S+(b^4-c^4)*(b^2-c^2)*(b-c)^2)*(-a+b+c) : :

X(26471) lies on these lines: {1,26466}, {4,26433}, {11,493}, {55,5490}, {497,26353}, {499,26498}, {999,18521}, {3057,26442}, {3086,26439}, {6284,26292}, {6464,26472}, {9581,26298}, {10798,26427}, {10832,26304}, {10874,26312}, {10896,26328}, {10926,26347}, {10950,26483}, {10959,26501}, {11376,26367}, {11393,26373}, {11502,26493}, {11906,26447}, {19029,26454}, {19030,26460}, {22760,26322}, {26473,26496}, {26474,26497}, {26475,26499}, {26476,26500}


X(26472) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-JOHNSON AND LUCAS(-1) HOMOTHETIC

Barycentrics
-(a^8-2*(b^2+c^2)*a^6+2*(b^4+c^4-(b+c)^2*b*c)*a^4-2*(b-c)^2*(b^2+c^2)^2*a^2+((3*b^2+2*b*c+3*c^2)*a^4+2*(b^2+c^2)*(b-c)^2*a^2-(-4*b^2*c^2+(b^2-c^2)^2)*(b-c)^2)*S+(b^4-c^4)*(b^2-c^2)*(b-c)^2)*(-a+b+c) : :

X(26472) lies on these lines: {1,26467}, {4,26434}, {11,494}, {55,5491}, {497,26354}, {499,26507}, {999,18523}, {3057,26443}, {3086,26440}, {6284,26293}, {6464,26471}, {9581,26299}, {10798,26428}, {10832,26305}, {10874,26313}, {10896,26329}, {10926,26338}, {10950,26484}, {10958,26511}, {10959,26510}, {11376,26368}, {11393,26374}, {11502,26502}, {11906,26448}, {19029,26455}, {19030,26461}, {22760,26323}, {26473,26505}, {26474,26506}, {26475,26508}, {26476,26509}


X(26473) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-JOHNSON AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    ((a^2+3*(b-c)^2)*S+a^4+(b^2+c^2)*(b-c)^2)*(-a+b+c) : :

X(26473) lies on these lines: {1,26468}, {4,12959}, {55,26361}, {193,5274}, {492,497}, {499,26516}, {999,18539}, {1007,26356}, {3057,26444}, {3086,26441}, {5860,10926}, {6284,26294}, {9581,26300}, {10798,26429}, {10832,26306}, {10874,26314}, {10896,26330}, {10925,26339}, {10950,26485}, {10958,26520}, {10959,26519}, {11376,26369}, {11393,26375}, {11502,26512}, {11906,26449}, {13696,15682}, {19029,26456}, {19030,26462}, {22760,26324}, {26387,26396}, {26411,26420}, {26471,26496}, {26472,26505}, {26475,26517}, {26476,26518}

X(26473) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26468, 26479), (5274, 12589, 26474)


X(26474) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-JOHNSON AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (-(a^2+3*(b-c)^2)*S+a^4+(b^2+c^2)*(b-c)^2)*(-a+b+c) : :

X(26474) lies on these lines: {1,26469}, {4,12958}, {11,3069}, {55,26362}, {193,5274}, {491,497}, {499,26521}, {999,26438}, {1007,26355}, {3057,26445}, {3086,8982}, {5861,10925}, {6284,26295}, {9581,26301}, {10798,26430}, {10832,26307}, {10874,26315}, {10896,26331}, {10926,26340}, {10950,26486}, {10958,26525}, {10959,26524}, {11376,26370}, {11393,26376}, {11502,26513}, {11906,26450}, {13816,15682}, {19029,26457}, {19030,26463}, {22760,26325}, {26387,26397}, {26411,26421}, {26471,26497}, {26472,26506}, {26475,26522}, {26476,26523}

X(26474) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26469, 26480), (5274, 12589, 26473)


X(26475) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-JOHNSON AND INNER-YFF

Barycentrics    (-a+b+c)*((b^2-4*b*c+c^2)*a^4-2*(b^2+c^2)*(b-c)^2*a^2-2*(b^2-c^2)*(b-c)*b*c*a+(b^2-c^2)^2*(b-c)^2) : :
X(26475) = R*(R+2*r)*X(1)-2*r*(R+r)*X(5)

X(26475) lies on these lines: {1,5}, {4,26437}, {21,497}, {55,7483}, {84,1836}, {388,7548}, {499,10267}, {946,1858}, {950,24387}, {956,10953}, {999,18544}, {1058,6852}, {1389,18391}, {1470,10785}, {1479,7491}, {1519,1898}, {1749,16155}, {2099,6831}, {2646,2886}, {3057,3813}, {3086,6905}, {3486,11680}, {3582,14798}, {3816,17606}, {3878,10916}, {3925,5438}, {5046,5274}, {5254,11998}, {5433,10902}, {5709,12701}, {6284,11012}, {6839,14986}, {6882,10573}, {6949,10806}, {7504,10589}, {7508,15171}, {7680,11011}, {8256,17636}, {9614,12704}, {9669,10680}, {10532,10591}, {10798,26431}, {10832,26308}, {10874,26317}, {10896,18967}, {10925,26342}, {10926,26349}, {10947,19525}, {10966,11113}, {11393,26377}, {11813,14054}, {11906,26452}, {13463,25414}, {15842,24982}, {19029,26458}, {19030,26464}, {26387,26399}, {26411,26423}, {26471,26499}, {26472,26508}, {26473,26517}, {26474,26522}

X(26475) = reflection of X(26482) in X(10523)
X(26475) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (11, 1837, 26476), (496, 1484, 10948), (5727, 7741, 10958)


X(26476) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-JOHNSON AND OUTER-YFF

Barycentrics    (-a+b+c)*((b^2+c^2)*a^4-2*(b^2+c^2)*(b-c)^2*a^2+2*(b^2-c^2)*(b-c)*b*c*a+(b^2-c^2)^2*(b-c)^2) : :
X(26476) = R^2*X(1)-2*r*(R-r)*X(5)

X(26476) lies on these lines: {1,5}, {4,1470}, {55,4187}, {56,1532}, {65,1519}, {235,1877}, {388,6945}, {442,10200}, {497,3871}, {499,6842}, {950,3825}, {999,18542}, {1210,1858}, {1319,18242}, {1329,3057}, {1479,6882}, {1836,12686}, {2077,6284}, {2082,6506}, {2098,17757}, {2476,10589}, {2478,26357}, {2646,3816}, {2886,3698}, {3085,6975}, {3086,6941}, {3359,15908}, {3814,10915}, {4294,6963}, {5048,12607}, {5141,10586}, {5154,5274}, {5187,10530}, {5225,6943}, {5259,5432}, {5433,6907}, {5554,11680}, {5687,10947}, {6830,10531}, {6831,10896}, {6929,8071}, {6932,7288}, {6959,8069}, {6971,9669}, {6973,10629}, {6980,16203}, {6981,10321}, {8256,25414}, {9614,12703}, {10798,26432}, {10832,26309}, {10874,26318}, {10925,26343}, {10926,26350}, {10953,17556}, {10965,11238}, {11393,26378}, {11681,12648}, {11906,26453}, {12709,17618}, {13274,25438}, {13463,17636}, {15829,21031}, {15844,17605}, {18839,21077}, {19029,26459}, {19030,26465}, {26387,26400}, {26411,26424}, {26471,26500}, {26472,26509}, {26473,26518}, {26474,26523}

X(26476) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (496, 10942, 1), (7741, 8070, 5), (7741, 9581, 11)


X(26477) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-JOHNSON AND LUCAS HOMOTHETIC

Barycentrics
(a^8-2*(b^2+c^2)*a^6+2*(b^4+c^4+(b-c)^2*b*c)*a^4-2*(b+c)^2*(b^2+c^2)^2*a^2-((3*b^2-2*b*c+3*c^2)*a^4+2*(b^2+c^2)*(b+c)^2*a^2-(-4*b^2*c^2+(b^2-c^2)^2)*(b+c)^2)*S+(b^4-c^4)*(b^2-c^2)*(b+c)^2)*(a+b-c)*(a-b+c) : :

X(26477) lies on these lines: {1,26466}, {4,26353}, {12,493}, {56,5490}, {65,26442}, {388,26433}, {498,26498}, {3085,26439}, {3295,18521}, {6464,26478}, {7354,26292}, {9578,26298}, {10797,26427}, {10831,26304}, {10873,26312}, {10895,26328}, {10923,26337}, {10924,26347}, {10957,26501}, {11375,26367}, {11392,26373}, {11501,26493}, {11905,26447}, {19027,26454}, {19028,26460}, {22759,26322}, {26479,26496}, {26480,26497}, {26481,26499}, {26482,26500}


X(26478) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-JOHNSON AND LUCAS(-1) HOMOTHETIC

Barycentrics
(a^8-2*(b^2+c^2)*a^6+2*(b^4+c^4+(b-c)^2*b*c)*a^4-2*(b+c)^2*(b^2+c^2)^2*a^2+((3*b^2-2*b*c+3*c^2)*a^4+2*(b^2+c^2)*(b+c)^2*a^2-(-4*b^2*c^2+(b^2-c^2)^2)*(b+c)^2)*S+(b^4-c^4)*(b^2-c^2)*(b+c)^2)*(a+b-c)*(a-b+c) : :

X(26478) lies on these lines: {1,26467}, {4,26354}, {12,494}, {56,5491}, {65,26443}, {388,26434}, {498,26507}, {3085,26440}, {3295,18523}, {6464,26477}, {7354,26293}, {9578,26299}, {10797,26428}, {10831,26305}, {10873,26313}, {10895,26329}, {10924,26338}, {10944,26489}, {10956,26511}, {10957,26510}, {11375,26368}, {11392,26374}, {11501,26502}, {11905,26448}, {19027,26455}, {19028,26461}, {22759,26323}, {26479,26505}, {26480,26506}, {26481,26508}, {26482,26509}


X(26479) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-JOHNSON AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    ((a^2+3*c^2+6*b*c+3*b^2)*S+a^4+2*b*c^3+2*b^3*c+b^4+c^4+2*b^2*c^2)*(a+b-c)*(a-b+c) : :

X(26479) lies on these lines: {1,26468}, {4,12949}, {12,3068}, {56,26361}, {65,26444}, {193,5261}, {388,492}, {498,26516}, {1007,26436}, {3085,26441}, {3295,18539}, {5860,10924}, {7354,26294}, {9578,26300}, {10797,26429}, {10831,26306}, {10873,26314}, {10895,26330}, {10923,26339}, {10944,26490}, {10956,26520}, {11392,26375}, {11501,26512}, {11905,26449}, {13695,15682}, {19027,26456}, {19028,26462}, {22759,26324}, {26388,26396}, {26412,26420}, {26477,26496}, {26478,26505}, {26481,26517}, {26482,26518}

X(26479) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26468, 26473), (5261, 12588, 26480)


X(26480) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-JOHNSON AND 4th TRI-SQUARES-CENTRAL

Barycentrics    ((a^2+3*c^2+6*b*c+3*b^2)*S-a^4-2*b*c^3-2*b^3*c-b^4-c^4-2*b^2*c^2)*(a+b-c)*(a-b+c) : :

X(26480) lies on these lines: {1,26469}, {4,12948}, {12,3069}, {56,26362}, {65,26445}, {193,5261}, {388,491}, {498,26521}, {1007,26435}, {3085,8982}, {3295,26438}, {5861,10923}, {7354,26295}, {9578,26301}, {10797,26430}, {10831,26307}, {10873,26315}, {10895,26331}, {10924,26340}, {10944,26491}, {10956,26525}, {10957,26524}, {11375,26370}, {11392,26376}, {11501,26513}, {11905,26450}, {13815,15682}, {19027,26457}, {19028,26463}, {22759,26325}, {26388,26397}, {26412,26421}, {26477,26497}, {26478,26506}, {26481,26522}, {26482,26523}

X(26480) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26469, 26474), (5261, 12588, 26479)


X(26481) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-JOHNSON AND INNER-YFF

Barycentrics    ((b^2+c^2)*a^3-(b^2+c^2)*(b+c)*a^2-(b^2+c^2)*(b+c)^2*a+(b^2-c^2)^2*(b+c))*(a+b-c)*(a-b+c) : :
X(26481) = R^2*X(1)+2*r*(R+r)*X(5)

X(26481) lies on these lines: {1,5}, {4,26357}, {55,6831}, {56,442}, {65,2886}, {225,427}, {377,1470}, {388,2476}, {497,6828}, {498,6882}, {499,6881}, {550,14794}, {956,18962}, {1056,6874}, {1058,6873}, {1068,1594}, {1070,8758}, {1319,24541}, {1329,24987}, {1451,24892}, {1478,6842}, {1479,6841}, {1532,10895}, {1836,5709}, {1894,23361}, {2072,16272}, {2078,17527}, {2099,24390}, {3057,7680}, {3085,6830}, {3086,6829}, {3136,10372}, {3142,23304}, {3295,18544}, {3485,11680}, {3660,3824}, {3813,11011}, {3822,10106}, {3829,4870}, {3841,3911}, {3925,5705}, {4187,4423}, {4193,10588}, {4197,7288}, {4293,6937}, {4294,6845}, {4331,23305}, {5141,5261}, {5154,10587}, {5172,7483}, {5218,6943}, {5225,10883}, {5229,6932}, {5231,10404}, {5432,6922}, {5433,8728}, {6284,8727}, {6585,6863}, {6859,10321}, {6862,8069}, {6867,10629}, {6871,10530}, {6907,7354}, {6917,8071}, {6941,10532}, {6971,16202}, {6980,9654}, {6990,10591}, {6991,10589}, {7681,17605}, {8164,10806}, {8226,10896}, {9612,12704}, {10797,26431}, {10831,26308}, {10873,26317}, {10923,26342}, {11237,17530}, {11392,26377}, {11905,26452}, {12047,24474}, {12609,18838}, {13751,25557}, {17532,18961}, {19027,26458}, {19028,26464}, {26388,26399}, {26412,26423}, {26477,26499}, {26478,26508}, {26479,26517}, {26480,26522}

X(26481) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (11, 12, 11375), (11, 3614, 7958), (10959, 15888, 1)


X(26482) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-JOHNSON AND OUTER-YFF

Barycentrics    ((b^2+4*b*c+c^2)*a^3-(b^2+4*b*c+c^2)*(b+c)*a^2-(b^2-4*b*c+c^2)*(b+c)^2*a+(b^2-c^2)^2*(b+c))*(a+b-c)*(a-b+c) : :
X(26482) = R*(R-2*r)*X(1)+2*r*(R-r)*X(5)

X(26482) lies on these lines: {1,5}, {4,26358}, {10,18838}, {55,6256}, {65,6735}, {226,10915}, {388,404}, {498,10269}, {1319,1329}, {1388,4187}, {1478,11248}, {1519,3057}, {1532,2098}, {2077,7354}, {2475,5261}, {3085,6906}, {3295,18542}, {3476,11681}, {3485,12648}, {3584,14803}, {3820,5193}, {5048,7681}, {5254,21859}, {5434,17564}, {5687,18961}, {6842,12647}, {6952,8164}, {9612,12703}, {9654,10679}, {10531,10590}, {10786,26357}, {10797,26432}, {10831,26309}, {10873,26318}, {10895,10965}, {10923,26343}, {10924,26350}, {11112,11237}, {11239,17577}, {11392,26378}, {12047,23340}, {12832,25005}, {13273,25438}, {13743,18545}, {15843,24987}, {17625,17665}, {19027,26459}, {19028,26465}, {21031,24914}, {24982,25466}, {26388,26400}, {26412,26424}, {26477,26500}, {26478,26509}, {26479,26518}, {26480,26523}

X(26482) = reflection of X(26475) in X(10523)
X(26482) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 119, 26476), (495, 10942, 1), (10958, 15888, 1)


X(26483) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st JOHNSON-YFF AND LUCAS HOMOTHETIC

Barycentrics
((3*b^2-2*b*c+3*c^2)*a^6-(b-c)^4*a^4-8*(b+c)*(b^2+c^2)*b*c*a^3-(3*b^4+3*c^4-2*b*c*(2*b^2+b*c+2*c^2))*(b+c)^2*a^2+((b^2-c^2)^2-4*b^2*c^2)*(b^2-c^2)^2)*S+(-a+b+c)*(a^9+(b+c)*a^8-2*(b^2-b*c+c^2)*a^7-2*(b+c)*(b^2+c^2)*a^6+2*(b^4+c^4-b*c*(b+c)^2)*a^5+2*(b+c)*(b^4+c^4+b*c*(b-c)^2)*a^4-2*(b^6+c^6-(b^4+c^4+b*c*(b^2-6*b*c+c^2))*b*c)*a^3-2*(b^4-c^4)*(b^2-c^2)*(b+c)*a^2+(b^4-c^4)*(b^2-c^2)*(b-c)^2*a+(b^4-c^4)*(b^2-c^2)^2*(b-c)) : :

X(26483) lies on these lines: {5,26499}, {11,26501}, {12,493}, {72,26442}, {355,26466}, {958,5490}, {3436,26494}, {6464,26484}, {10786,26439}, {10795,26427}, {10827,26298}, {10830,26304}, {10872,26312}, {10894,26328}, {10921,26337}, {10922,26347}, {10942,26500}, {10950,26471}, {10953,26353}, {11374,26367}, {11391,26373}, {11500,26493}, {11827,26292}, {11904,26447}, {18518,18521}, {18962,26433}, {19025,26454}, {19026,26460}, {26389,26391}, {26413,26415}, {26485,26496}, {26486,26497}, {26487,26498}


X(26484) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st JOHNSON-YFF AND LUCAS(-1) HOMOTHETIC

Barycentrics
((3*b^2-2*b*c+3*c^2)*a^6-(b-c)^4*a^4-8*(b+c)*(b^2+c^2)*b*c*a^3-(3*b^4+3*c^4-2*b*c*(2*b^2+b*c+2*c^2))*(b+c)^2*a^2+((b^2-c^2)^2-4*b^2*c^2)*(b^2-c^2)^2)*S-(-a+b+c)*(a^9+(b+c)*a^8-2*(b^2-b*c+c^2)*a^7-2*(b+c)*(b^2+c^2)*a^6+2*(b^4+c^4-b*c*(b+c)^2)*a^5+2*(b+c)*(b^4+c^4+b*c*(b-c)^2)*a^4-2*(b^6+c^6-(b^4+c^4+b*c*(b^2-6*b*c+c^2))*b*c)*a^3-2*(b^4-c^4)*(b^2-c^2)*(b+c)*a^2+(b^4-c^4)*(b^2-c^2)*(b-c)^2*a+(b^4-c^4)*(b^2-c^2)^2*(b-c)) : :

X(26484) lies on these lines: {5,26508}, {11,26510}, {12,494}, {72,26443}, {355,26467}, {958,5491}, {3436,26503}, {6464,26483}, {10786,26440}, {10795,26428}, {10827,26299}, {10830,26305}, {10872,26313}, {10894,26329}, {10922,26338}, {10942,26509}, {10950,26472}, {10953,26354}, {10955,26511}, {11374,26368}, {11391,26374}, {11500,26502}, {11827,26293}, {11904,26448}, {18518,18523}, {18962,26434}, {19025,26455}, {19026,26461}, {26389,26392}, {26485,26505}, {26486,26506}, {26487,26507}


X(26485) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st JOHNSON-YFF AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (a^4+2*(b^2+3*b*c+c^2)*a^2-2*(b+c)*b*c*a-3*(b^2-c^2)^2)*S+a^6-(b^2+c^2)*a^4-2*(b+c)*b*c*a^3+(b^2+c^2)*(b+c)^2*a^2-(b^4-c^4)*(b^2-c^2) : :

X(26485) lies on these lines: {4,12939}, {5,26517}, {11,26519}, {12,3068}, {72,26444}, {193,12587}, {355,26468}, {492,3436}, {958,26324}, {5860,10922}, {10786,26441}, {10795,26429}, {10827,26300}, {10830,26306}, {10872,26314}, {10894,26330}, {10921,26339}, {10942,26518}, {10950,26473}, {10953,26355}, {10955,26520}, {11374,26369}, {11391,26375}, {11500,26512}, {11827,26294}, {11904,26449}, {13694,15682}, {18518,18539}, {18962,26435}, {19025,26456}, {19026,26462}, {26389,26396}, {26413,26420}, {26483,26496}, {26484,26505}, {26487,26516}


X(26486) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st JOHNSON-YFF AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (a^4+2*(b^2+3*b*c+c^2)*a^2-2*(b+c)*b*c*a-3*(b^2-c^2)^2)*S-a^6+(b^2+c^2)*a^4+2*(b+c)*b*c*a^3-(b^2+c^2)*(b+c)^2*a^2+(b^4-c^4)*(b^2-c^2) : :

X(26486) lies on these lines: {4,12938}, {5,26522}, {11,26524}, {12,3069}, {72,26445}, {193,12587}, {355,26469}, {491,3436}, {958,26325}, {5861,10921}, {8982,10786}, {10795,26430}, {10827,26301}, {10830,26307}, {10872,26315}, {10894,26331}, {10922,26340}, {10942,26523}, {10950,26474}, {10953,26356}, {10955,26525}, {11374,26370}, {11391,26376}, {11500,26513}, {11827,26295}, {11904,26450}, {13814,15682}, {18518,26438}, {18962,26436}, {19025,26457}, {19026,26463}, {26389,26397}, {26413,26421}, {26483,26497}, {26484,26506}, {26487,26521}


X(26487) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st JOHNSON-YFF AND X3-ABC REFLECTIONS

Barycentrics
a^7-(b+c)*a^6-(3*b^2+2*b*c+3*c^2)*a^5+3*(b^2+c^2)*(b+c)*a^4+(3*b^4-2*b^2*c^2+3*c^4)*a^3-(b^2-c^2)*(b-c)*(3*b^2+4*b*c+3*c^2)*a^2-(b^2-c^2)^2*(b-c)^2*a+(b^2-c^2)^3*(b-c) : :

X(26487) lies on these lines: {1,6863}, {2,355}, {3,12}, {4,10585}, {5,1001}, {8,6853}, {11,16202}, {20,10599}, {24,11391}, {30,10894}, {35,6923}, {36,18962}, {40,3584}, {55,6842}, {56,10954}, {72,5552}, {100,6937}, {119,405}, {125,12890}, {140,958}, {182,12587}, {226,15865}, {381,6253}, {388,6954}, {442,11499}, {495,11249}, {499,10246}, {515,6862}, {517,3085}, {527,6684}, {549,11236}, {581,17734}, {631,3436}, {946,10197}, {952,26363}, {1006,11681}, {1125,6959}, {1317,15868}, {1329,6883}, {1479,6980}, {1482,10056}, {1511,13214}, {1621,6941}, {1656,18518}, {1698,17857}, {1788,5885}, {1837,24299}, {2080,10795}, {2476,11491}, {2646,10320}, {3035,15843}, {3058,11928}, {3086,15178}, {3311,19025}, {3312,19026}, {3357,12930}, {3475,6583}, {3523,20067}, {3526,6713}, {3541,5130}, {3560,6690}, {3576,6958}, {3579,5714}, {3616,6949}, {3822,6796}, {4294,6982}, {4309,10738}, {4428,10893}, {4995,11826}, {5080,6875}, {5218,6850}, {5230,5396}, {5248,6929}, {5284,6975}, {5433,10955}, {5445,15016}, {5534,5705}, {5587,6861}, {5603,6960}, {5690,12635}, {5709,15298}, {5731,6952}, {5770,5791}, {5790,19854}, {5886,6834}, {6256,6914}, {6642,10830}, {6771,12932}, {6774,12931}, {6824,18480}, {6827,10588}, {6833,18481}, {6838,12699}, {6848,9955}, {6868,10590}, {6891,13624}, {6892,12667}, {6897,10522}, {6907,11248}, {6910,12115}, {6911,25466}, {6926,17502}, {6928,7951}, {6933,12116}, {6944,11230}, {6962,10532}, {6967,18857}, {6985,7680}, {6988,8164}, {7483,22758}, {7491,10895}, {7583,13896}, {7584,13953}, {9780,9803}, {10202,24914}, {10321,24929}, {10610,12936}, {10679,15908}, {10680,15888}, {10872,26316}, {10921,26341}, {10922,26348}, {11904,26451}, {12041,12372}, {12042,12183}, {12359,12423}, {14450,16139}, {17615,18856}, {17718,24474}, {26389,26398}, {26413,26422}, {26483,26498}, {26484,26507}, {26485,26516}, {26486,26521}

X(26487) = midpoint of X(i) and X(j) for these {i,j}: {3, 9654}, {3085, 6825}
X(26487) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 1385, 26492), (2, 10786, 355)


X(26488) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd JOHNSON-YFF AND LUCAS HOMOTHETIC

Barycentrics
((3*b^2+2*b*c+3*c^2)*a^5-(b+c)*(3*b^2+2*b*c+3*c^2)*a^4+2*(b^2+c^2)*(b+c)^2*a^3-2*(b^4-c^4)*(b-c)*a^2-((b^2-c^2)^2-4*b^2*c^2)*(b-c)^2*a+(b^2-c^2)*(b-c)*((b^2-c^2)^2-4*b^2*c^2))*S-a^9+(b+c)*a^8+2*(b^2-b*c+c^2)*a^7-2*(b+c)*(b^2+c^2)*a^6-2*(b^2+b*c+c^2)*(b^2-4*b*c+c^2)*a^5+2*(b+c)*(b^4+c^4-b*c*(b+c)^2)*a^4+2*(b^6+c^6-(3*b^4+3*c^4-b*c*(3*b^2+2*b*c+3*c^2))*b*c)*a^3-2*(b^4-c^4)*(b^2+c^2)*(b-c)*a^2-(b^4-c^4)*(b^2-c^2)*(b-c)^2*a+(b^4-c^4)*(b^2-c^2)^2*(b-c) : :

X(26488) lies on these lines: {5,26500}, {11,493}, {355,26466}, {1376,5490}, {3434,26494}, {6464,26489}, {10785,26439}, {10794,26427}, {10826,26298}, {10829,26304}, {10871,26312}, {10893,26328}, {10914,26442}, {10919,26337}, {10920,26347}, {10943,26499}, {10944,26477}, {10947,26353}, {10949,26501}, {11373,26367}, {11390,26373}, {11826,26292}, {11903,26447}, {12114,26322}, {18519,18521}, {18961,26433}, {19023,26454}, {19024,26460}, {26490,26496}, {26491,26497}, {26492,26498}


X(26489) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd JOHNSON-YFF AND LUCAS(-1) HOMOTHETIC

Barycentrics
((3*b^2+2*b*c+3*c^2)*a^5-(b+c)*(3*b^2+2*b*c+3*c^2)*a^4+2*(b^2+c^2)*(b+c)^2*a^3-2*(b^4-c^4)*(b-c)*a^2-((b^2-c^2)^2-4*b^2*c^2)*(b-c)^2*a+(b^2-c^2)*(b-c)*((b^2-c^2)^2-4*b^2*c^2))*S+a^9-(b+c)*a^8-2*(b^2-b*c+c^2)*a^7+2*(b+c)*(b^2+c^2)*a^6+2*(b^2+b*c+c^2)*(b^2-4*b*c+c^2)*a^5-2*(b+c)*(b^4+c^4-b*c*(b+c)^2)*a^4-2*(b^6+c^6-(3*b^4+3*c^4-b*c*(3*b^2+2*b*c+3*c^2))*b*c)*a^3+2*(b^4-c^4)*(b^2+c^2)*(b-c)*a^2+(b^4-c^4)*(b^2-c^2)*(b-c)^2*a-(b^4-c^4)*(b^2-c^2)^2*(b-c) : :

X(26489) lies on these lines: {5,26509}, {11,494}, {12,26511}, {355,26467}, {1376,5491}, {3434,26503}, {6464,26488}, {10785,26440}, {10794,26428}, {10826,26299}, {10829,26305}, {10871,26313}, {10893,26329}, {10914,26443}, {10920,26338}, {10943,26508}, {10944,26478}, {10947,26354}, {10949,26510}, {11373,26368}, {11390,26374}, {11826,26293}, {11903,26448}, {12114,26323}, {18519,18523}, {18961,26434}, {19023,26455}, {19024,26461}, {26490,26505}, {26491,26506}, {26492,26507}


X(26490) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd JOHNSON-YFF AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    a^5-(b+c)*a^4+2*b*c*a^3+(b^2+c^2)*(b-c)^2*a-(b^4-c^4)*(b-c)+S*(a^3-(b+c)*a^2+(3*b^2-4*b*c+3*c^2)*a-3*(b^2-c^2)*(b-c)) : :

X(26490) lies on these lines: {4,12929}, {5,26518}, {11,3068}, {12,26520}, {193,12586}, {355,26468}, {492,3434}, {1376,26361}, {5860,10920}, {10785,26441}, {10794,26429}, {10826,26300}, {10829,26306}, {10871,26314}, {10893,26330}, {10914,26444}, {10919,26339}, {10943,26517}, {10944,26479}, {10947,26355}, {10949,26519}, {11373,26369}, {11390,26375}, {11826,26294}, {11903,26449}, {12114,26324}, {13693,15682}, {18519,18539}, {18961,26435}, {19023,26456}, {19024,26462}, {26390,26396}, {26414,26420}, {26488,26496}, {26489,26505}, {26492,26516}


X(26491) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd JOHNSON-YFF AND 4th TRI-SQUARES-CENTRAL

Barycentrics    a^5-(b+c)*a^4+2*b*c*a^3+(b^2+c^2)*(b-c)^2*a-(b^4-c^4)*(b-c)-S*(a^3-(b+c)*a^2+(3*b^2-4*b*c+3*c^2)*a-3*(b^2-c^2)*(b-c)) : :

X(26491) lies on these lines: {4,12928}, {5,26523}, {11,3069}, {12,26525}, {193,12586}, {355,26469}, {491,3434}, {1376,26362}, {5861,10919}, {8982,10785}, {10794,26430}, {10826,26301}, {10829,26307}, {10871,26315}, {10893,26331}, {10914,26445}, {10920,26340}, {10943,26522}, {10944,26480}, {10947,26356}, {10949,26524}, {11373,26370}, {11390,26376}, {11826,26295}, {11903,26450}, {12114,26325}, {13813,15682}, {18519,26438}, {18961,26436}, {19023,26457}, {19024,26463}, {26390,26397}, {26414,26421}, {26488,26497}, {26489,26506}, {26492,26521}


X(26492) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd JOHNSON-YFF AND X3-ABC REFLECTIONS

Barycentrics    a^7-(b+c)*a^6-3*(b-c)^2*a^5+(b+c)*(3*b^2-4*b*c+3*c^2)*a^4+(b^2+c^2)*(3*b^2-8*b*c+3*c^2)*a^3-3*(b^4-c^4)*(b-c)*a^2-(b^2-c^2)^2*(b-c)^2*a+(b^2-c^2)^3*(b-c) : :
X(26492) = (R-r)*X(3)+(R-2*r)*X(11)

X(26492) lies on these lines: {1,6958}, {2,355}, {3,11}, {4,10584}, {5,6256}, {8,12619}, {12,16203}, {20,10598}, {24,11390}, {30,10893}, {35,10947}, {36,6928}, {40,3582}, {55,10948}, {56,6882}, {104,4193}, {125,12889}, {140,1376}, {182,12586}, {388,6978}, {474,26470}, {496,11248}, {497,6961}, {498,10246}, {515,6959}, {517,1788}, {549,11235}, {631,3434}, {912,25681}, {946,10199}, {952,26364}, {1125,6862}, {1319,10320}, {1329,20418}, {1478,6971}, {1482,10072}, {1484,13205}, {1511,13213}, {1656,18519}, {1709,8227}, {2080,10794}, {2975,6963}, {3085,15178}, {3311,19023}, {3312,19024}, {3357,12920}, {3485,5885}, {3523,20066}, {3526,19854}, {3541,5101}, {3560,3816}, {3576,6863}, {3579,6926}, {3616,6952}, {3624,6861}, {3825,5450}, {4187,22758}, {4999,6883}, {5204,7491}, {5252,24927}, {5253,6830}, {5298,11827}, {5432,10949}, {5434,11929}, {5439,5886}, {5443,15016}, {5550,6852}, {5554,17665}, {5603,6972}, {5657,17652}, {5690,10912}, {5693,11219}, {5694,5770}, {5731,6949}, {5761,6583}, {5927,6832}, {6361,10225}, {6642,10829}, {6667,18242}, {6681,6796}, {6691,6911}, {6771,12922}, {6774,12921}, {6824,9940}, {6825,13624}, {6827,7288}, {6834,18481}, {6837,17618}, {6847,9955}, {6850,10589}, {6890,12699}, {6908,17502}, {6921,12116}, {6922,11249}, {6923,7741}, {6931,12115}, {6940,11680}, {6944,18480}, {6947,10522}, {6948,10591}, {6966,10531}, {6967,10527}, {6981,12667}, {7330,25522}, {7583,13895}, {7584,13952}, {10057,21842}, {10165,17647}, {10202,11375}, {10321,24928}, {10610,12926}, {10871,26316}, {10919,26341}, {10920,26348}, {11041,14986}, {11231,19843}, {11374,13373}, {11491,17566}, {11499,13747}, {11903,26451}, {12041,12371}, {12042,12182}, {12053,15866}, {12359,12422}, {17728,24474}, {21616,24467}, {26390,26398}, {26414,26422}, {26488,26498}, {26489,26507}, {26490,26516}, {26491,26521}

X(26492) = midpoint of X(i) and X(j) for these {i,j}: {3, 9669}, {3086, 6891}
X(26492) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 1385, 26487), (2, 10785, 355)


X(26493) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS HOMOTHETIC AND MANDART-INCIRCLE

Barycentrics
a^2*(-a^7+(b+c)*a^6+(b-c)^2*a^5-(b+c)*(b^2+c^2)*a^4+(b^4+c^4+2*(b+2*c)*(2*b+c)*b*c)*a^3-(b+c)*(b^4+10*b^2*c^2+c^4)*a^2-(b^6+c^6+(2*b^4+2*c^4-(b^2+12*b*c+c^2)*b*c)*b*c)*a-(a^5-(b+c)*a^4-6*(b^2+c^2)*a^3+6*(b+c)*(b^2+c^2)*a^2+(b^4+c^4-2*(4*b^2+3*b*c+4*c^2)*b*c)*a-(-4*b^2*c^2+(b^2-c^2)^2)*(b+c))*S+(b^4-c^4)*(b^2-c^2)*(b+c)) : :

X(26493) lies on these lines: {3,26322}, {35,26298}, {55,493}, {100,26494}, {197,26304}, {1376,5490}, {3295,26367}, {5687,26442}, {6464,26502}, {10267,26498}, {10310,26292}, {11248,26500}, {11383,26373}, {11490,26427}, {11491,26439}, {11494,26312}, {11496,26328}, {11497,26337}, {11498,26347}, {11499,26466}, {11500,26483}, {11501,26477}, {11502,26471}, {11509,26433}, {11510,26501}, {11848,26447}, {18521,18524}, {18999,26454}, {19000,26460}, {26496,26512}, {26497,26513}


X(26494) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS HOMOTHETIC AND MEDIAL

Barycentrics    -(a^4+2*(b^2+c^2)*a^2+(b^2-c^2)^2-4*b^2*c^2)*S+a^6-3*(b^2+c^2)*a^4+(3*b^4-2*b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2) : :

X(26494) lies on these lines: {2,493}, {3,26439}, {4,26373}, {8,26442}, {10,26298}, {20,26292}, {22,26304}, {30,18521}, {100,26493}, {145,26495}, {193,13428}, {388,26433}, {491,26497}, {492,19420}, {497,26353}, {631,26498}, {1270,26347}, {1271,26337}, {2896,26312}, {2975,26322}, {2996,13439}, {3091,26328}, {3434,26488}, {3436,26483}, {3616,26367}, {4240,26447}, {5552,26500}, {5905,19218}, {6392,6464}, {6995,8948}, {7585,26460}, {7586,26454}, {7787,26427}, {10527,26499}, {10529,26501}

X(26494) = isotomic conjugate of X(26503)
X(26494) = anticomplement of X(8222)
X(26494) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (493, 5490, 2), (6392, 6515, 26503)


X(26495) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS HOMOTHETIC AND 5th MIXTILINEAR

Barycentrics    a*(-2*(a^4-4*(b^2+c^2)*a^2+2*(b^2+c^2)*(b+c)*a+(b^2-c^2)^2-4*b^2*c^2)*S+(-a+b+c)*(a^5+2*(b^2+c^2)*(b+c)*a^2-(b^4+c^4-2*b*c*(2*b-c)*(b-2*c))*a-2*(b^4-c^4)*(b-c))) : :

X(26495) lies on these lines: {1,493}, {8,5490}, {55,26322}, {56,26493}, {145,26494}, {517,26292}, {519,26442}, {952,26466}, {1829,8948}, {2098,26353}, {2099,26433}, {5603,26328}, {5604,26347}, {5605,26337}, {6464,26504}, {7967,26439}, {7968,26454}, {7969,26460}, {8192,26304}, {9997,26312}, {10246,26498}, {10800,26427}, {10944,26477}, {10950,26471}, {11396,26373}, {11910,26447}, {18521,18526}, {26496,26514}, {26497,26515}

X(26495) = reflection of X(8210) in X(1)
X(26495) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26298, 26367), (26298, 26367, 493)


X(26496) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS HOMOTHETIC AND 3rd TRI-SQUARES-CENTRAL

Barycentrics
a^8+8*(b^2+c^2)*a^6-6*(3*b^4+8*b^2*c^2+3*c^4)*a^4+8*(b^4-3*b^2*c^2+c^4)*(b^2+c^2)*a^2+((b^2-c^2)^2-4*b^2*c^2)*(b^2-c^2)^2+4*S*(2*a^6-5*(b^2+c^2)*a^4-16*b^2*c^2*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(26496) lies on these lines: {193,26497}, {393,493}, {492,19420}, {5490,7763}, {5860,26347}, {6459,8948}, {6464,26505}, {18521,18539}, {26292,26294}, {26298,26300}, {26304,26306}, {26312,26314}, {26322,26324}, {26328,26330}, {26337,26339}, {26353,26355}, {26367,26369}, {26373,26375}, {26427,26429}, {26433,26435}, {26439,26441}, {26442,26444}, {26447,26449}, {26454,26456}, {26460,26462}, {26466,26468}, {26471,26473}, {26477,26479}, {26483,26485}, {26488,26490}, {26493,26512}, {26495,26514}, {26498,26516}, {26499,26517}, {26501,26519}

X(26496) = {X(493), X(24244)}-harmonic conjugate of X(3068)


X(26497) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS HOMOTHETIC AND 4th TRI-SQUARES-CENTRAL

Barycentrics
a^8+8*(b^2+c^2)*a^6-6*(3*b^4+8*b^2*c^2+3*c^4)*a^4+8*(b^4+b^2*c^2+c^4)*(b^2+c^2)*a^2+((b^2-c^2)^2-4*b^2*c^2)*(b^2-c^2)^2+4*S*(4*a^6-9*(b^2+c^2)*a^4+2*(5*b^4-6*b^2*c^2+5*c^4)*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(26497) lies on these lines: {193,26496}, {491,26494}, {493,3069}, {5490,26362}, {5861,26337}, {6464,26506}, {8982,26439}, {18521,26438}, {26292,26295}, {26298,26301}, {26304,26307}, {26312,26315}, {26322,26325}, {26328,26331}, {26340,26347}, {26353,26356}, {26367,26370}, {26373,26376}, {26427,26430}, {26433,26436}, {26442,26445}, {26447,26450}, {26454,26457}, {26460,26463}, {26466,26469}, {26471,26474}, {26477,26480}, {26483,26486}, {26488,26491}, {26493,26513}, {26495,26515}, {26498,26521}, {26499,26522}, {26500,26523}, {26501,26524}


X(26498) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS HOMOTHETIC AND X3-ABC REFLECTIONS

Barycentrics
a^2*((a^6-11*(b^2+c^2)*a^4+(15*b^4+22*b^2*c^2+15*c^4)*a^2-(b^2+c^2)*(5*b^4-14*b^2*c^2+5*c^4))*S+2*a^8-6*(b^2+c^2)*a^6+2*(3*b^4-4*b^2*c^2+3*c^4)*a^4-2*(b^2+c^2)*(b^4-12*b^2*c^2+c^4)*a^2-8*(b^2-c^2)^2*b^2*c^2) : :

X(26498) lies on these lines: {2,26439}, {3,493}, {24,26373}, {30,26328}, {35,26353}, {36,26433}, {140,5490}, {498,26477}, {499,26471}, {517,26367}, {631,26494}, {1151,12978}, {1656,18521}, {2080,26427}, {3311,26454}, {3312,26460}, {3517,8948}, {3576,26298}, {6464,26507}, {6642,26304}, {10246,26495}, {10267,26493}, {10269,26322}, {26312,26316}, {26337,26341}, {26347,26348}, {26415,26422}, {26442,26446}, {26447,26451}, {26483,26487}, {26488,26492}, {26496,26516}, {26497,26521}

X(26498) = midpoint of X(3) and X(11949)
X(26498) = {X(2), X(26439)}-harmonic conjugate of X(26466)


X(26499) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS HOMOTHETIC AND INNER-YFF

Barycentrics
a^2*(-a^8+2*(b+c)*b*c*a^5+4*(b^2+c^2)*a^6-4*(b^2+c^2)*(b+c)*b*c*a^3-2*(3*b^4+3*c^4+(b^2+c^2)*b*c)*a^4+2*(-4*b^2*c^2+(b^2-c^2)^2)*(b+c)*b*c*a+4*(b^2+c^2)*(b^2+3*b*c+c^2)*(b-c)^2*a^2+2*((2*b^2-b*c+2*c^2)*a^4-2*(b^2+c^2)*(2*b^2-b*c+2*c^2)*a^2-4*(b^2+c^2)*(b+c)*b*c*a+(2*b^3-b^2*c+c^3)*(b^3-b*c^2+2*c^3))*S-(b^2-c^2)^2*(b-c)^2*(b^2+4*b*c+c^2)) : :

X(26499) lies on these lines: {1,493}, {5,26483}, {5490,26363}, {6464,26508}, {6734,26442}, {10267,26493}, {10527,26494}, {10943,26488}, {11012,26292}, {11249,26322}, {12116,26439}, {18521,18544}, {26304,26308}, {26312,26317}, {26328,26332}, {26337,26342}, {26347,26349}, {26353,26357}, {26373,26377}, {26427,26431}, {26433,26437}, {26447,26452}, {26454,26458}, {26460,26464}, {26466,26470}, {26471,26475}, {26477,26481}, {26496,26517}, {26497,26522}


X(26500) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS HOMOTHETIC AND OUTER-YFF

Barycentrics
a^2*(a^8+2*(b+c)*b*c*a^5-4*(b^2+c^2)*a^6-4*(b^2+c^2)*(b+c)*b*c*a^3+2*(3*b^4+3*c^4-(b^2+c^2)*b*c)*a^4+2*(-4*b^2*c^2+(b^2-c^2)^2)*(b+c)*b*c*a-4*(b^2+c^2)*(b^2-3*b*c+c^2)*(b+c)^2*a^2-2*((2*b^2+b*c+2*c^2)*a^4-2*(b^2+c^2)*(2*b^2+b*c+2*c^2)*a^2+4*(b^2+c^2)*(b+c)*b*c*a+(b^3-b*c^2-2*c^3)*(2*b^3+b^2*c-c^3))*S+(b^2-c^2)^2*(b+c)^2*(b^2-4*b*c+c^2)) : :

X(26500) lies on these lines: {1,493}, {5,26488}, {119,26466}, {1470,26433}, {2077,26292}, {5490,26364}, {5552,26494}, {6464,26509}, {6735,26442}, {10269,26322}, {10942,26483}, {11248,26493}, {12115,26439}, {18521,18542}, {26304,26309}, {26312,26318}, {26328,26333}, {26337,26343}, {26347,26350}, {26353,26358}, {26373,26378}, {26427,26432}, {26447,26453}, {26454,26459}, {26460,26465}, {26471,26476}, {26477,26482}, {26497,26523}


X(26501) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS HOMOTHETIC AND INNER-YFF TANGENTS

Barycentrics
a^2*(4*((b^2-b*c+c^2)*a^4-2*(b^2+c^2)*(b-c)^2*a^2-2*(b^2+c^2)*(b+c)*b*c*a+c^6+b^6-(b^4+c^4+(b^2-6*b*c+c^2)*b*c)*b*c)*S+(-a+b+c)*(a^7+(b+c)*a^6-(3*b^2-4*b*c+3*c^2)*a^5-(b+c)*(3*b^2-2*b*c+3*c^2)*a^4+(3*b^4+3*c^4-2*(2*b^2+b*c+2*c^2)*b*c)*a^3+(3*b^4-2*b^2*c^2+3*c^4)*(b+c)*a^2-(b^6+c^6-(13*b^2-32*b*c+13*c^2)*b^2*c^2)*a+(b^2-c^2)*(b-c)*(-b^4-c^4-2*(2*b^2-3*b*c+2*c^2)*b*c))) : :

X(26501) lies on these lines: {1,493}, {11,26483}, {5490,10527}, {6464,26510}, {8948,26377}, {10529,26494}, {10532,26328}, {10804,26427}, {10806,26439}, {10835,26304}, {10879,26312}, {10916,26442}, {10931,26337}, {10932,26347}, {10943,26466}, {10949,26488}, {10957,26477}, {10959,26471}, {11249,26292}, {11401,26373}, {11510,26493}, {11915,26447}, {16202,26498}, {18521,18543}, {18967,26433}, {19049,26454}, {19050,26460}, {24244,26517}, {26496,26519}, {26497,26524}


X(26502) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS(-1) HOMOTHETIC AND MANDART-INCIRCLE

Barycentrics
a^2*(-a^7+(b+c)*a^6+(b-c)^2*a^5-(b+c)*(b^2+c^2)*a^4+(b^4+c^4+2*(b+2*c)*(2*b+c)*b*c)*a^3-(b+c)*(b^4+10*b^2*c^2+c^4)*a^2-(b^6+c^6+(2*b^4+2*c^4-(b^2+12*b*c+c^2)*b*c)*b*c)*a+(a^5-(b+c)*a^4-6*(b^2+c^2)*a^3+6*(b+c)*(b^2+c^2)*a^2+(b^4+c^4-2*(4*b^2+3*b*c+4*c^2)*b*c)*a-(-4*b^2*c^2+(b^2-c^2)^2)*(b+c))*S+(b^4-c^4)*(b^2-c^2)*(b+c)) : :

X(26502) lies on these lines: {3,26323}, {35,26299}, {55,494}, {56,26504}, {100,26503}, {197,26305}, {1376,5491}, {3295,26368}, {5687,26443}, {6464,26493}, {10267,26507}, {10310,26293}, {11248,26509}, {11383,26374}, {11490,26428}, {11491,26440}, {11494,26313}, {11496,26329}, {11498,26338}, {11499,26467}, {11500,26484}, {11501,26478}, {11502,26472}, {11509,26434}, {11510,26510}, {11848,26448}, {18523,18524}, {18999,26455}, {19000,26461}, {26505,26512}, {26506,26513}


X(26503) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS(-1) HOMOTHETIC AND MEDIAL

Barycentrics    (a^4+2*(b^2+c^2)*a^2+(b^2-c^2)^2-4*b^2*c^2)*S+a^6-3*(b^2+c^2)*a^4+(3*b^4-2*b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2) : :

X(26503) lies on these lines: {2,494}, {3,26440}, {4,26374}, {8,26443}, {10,26299}, {20,26293}, {22,26305}, {30,18523}, {100,26502}, {145,26504}, {193,13439}, {388,26434}, {491,19421}, {492,26505}, {497,26354}, {631,26507}, {1270,26338}, {2896,26313}, {2975,26323}, {2996,13428}, {3091,26329}, {3434,26489}, {3436,26484}, {3616,26368}, {4240,26448}, {5552,26509}, {5905,19217}, {6392,6464}, {6995,8946}, {7585,26461}, {7586,26455}, {7787,26428}, {10527,26508}, {10528,26511}, {10529,26510}, {26392,26394}, {26416,26418}

X(26503) = isotomic conjugate of X(26494)
X(26503) = anticomplement of X(8223)
X(26503) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (494, 5491, 2), (6392, 6515, 26494)


X(26504) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS(-1) HOMOTHETIC AND 5th MIXTILINEAR

Barycentrics    a*(2*(a^4-4*(b^2+c^2)*a^2+2*(b^2+c^2)*(b+c)*a+(b^2-c^2)^2-4*b^2*c^2)*S+(-a+b+c)*(a^5+2*(b^2+c^2)*(b+c)*a^2-(b^4+c^4-2*b*c*(2*b-c)*(b-2*c))*a-2*(b^4-c^4)*(b-c))) : :

X(26504) lies on these lines: {1,494}, {8,5491}, {55,26323}, {56,26502}, {145,26503}, {517,26293}, {519,26443}, {952,26467}, {1829,8946}, {2098,26354}, {2099,26434}, {5603,26329}, {5604,26338}, {6464,26495}, {7967,26440}, {7968,26455}, {7969,26461}, {8192,26305}, {9997,26313}, {10246,26507}, {10800,26428}, {10944,26478}, {10950,26472}, {11396,26374}, {11910,26448}, {18523,18526}, {26392,26395}, {26416,26419}, {26505,26514}, {26506,26515}

X(26504) = reflection of X(8211) in X(1)
X(26504) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26299, 26368), (26299, 26368, 494)


X(26505) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS(-1) HOMOTHETIC AND 3rd TRI-SQUARES-CENTRAL

Barycentrics
a^8+8*(b^2+c^2)*a^6-6*(3*b^4+8*b^2*c^2+3*c^4)*a^4+8*(b^4+b^2*c^2+c^4)*(b^2+c^2)*a^2+((b^2-c^2)^2-4*b^2*c^2)*(b^2-c^2)^2-4*S*(4*a^6-9*(b^2+c^2)*a^4+2*(5*b^4-6*b^2*c^2+5*c^4)*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(26505) lies on these lines: {193,26506}, {492,26503}, {494,3068}, {5491,26361}, {5860,26338}, {6464,26496}, {18523,18539}, {26293,26294}, {26299,26300}, {26305,26306}, {26313,26314}, {26323,26324}, {26329,26330}, {26354,26355}, {26368,26369}, {26374,26375}, {26428,26429}, {26434,26435}, {26440,26441}, {26443,26444}, {26448,26449}, {26455,26456}, {26461,26462}, {26467,26468}, {26472,26473}, {26478,26479}, {26484,26485}, {26489,26490}, {26502,26512}, {26504,26514}, {26507,26516}, {26508,26517}, {26509,26518}, {26510,26519}, {26511,26520}


X(26506) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS(-1) HOMOTHETIC AND 4th TRI-SQUARES-CENTRAL

Barycentrics
a^8+8*(b^2+c^2)*a^6-6*(3*b^4+8*b^2*c^2+3*c^4)*a^4+8*(b^4-3*b^2*c^2+c^4)*(b^2+c^2)*a^2+((b^2-c^2)^2-4*b^2*c^2)*(b^2-c^2)^2-4*S*(2*a^6-5*(b^2+c^2)*a^4-16*b^2*c^2*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(26506) lies on these lines: {193,26505}, {393,494}, {491,19421}, {5491,7763}, {6460,8946}, {6464,26497}, {8982,26440}, {18523,26438}, {26293,26295}, {26299,26301}, {26305,26307}, {26313,26315}, {26323,26325}, {26329,26331}, {26338,26340}, {26354,26356}, {26368,26370}, {26374,26376}, {26428,26430}, {26434,26436}, {26443,26445}, {26448,26450}, {26455,26457}, {26461,26463}, {26467,26469}, {26472,26474}, {26478,26480}, {26484,26486}, {26489,26491}, {26502,26513}, {26504,26515}, {26507,26521}, {26508,26522}, {26509,26523}, {26510,26524}, {26511,26525}

X(26506) = {X(494), X(24243)}-harmonic conjugate of X(3069)


X(26507) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS(-1) HOMOTHETIC AND X3-ABC REFLECTIONS

Barycentrics
a^2*(-(a^6-11*(b^2+c^2)*a^4+(22*b^2*c^2+15*c^4+15*b^4)*a^2-(b^2+c^2)*(5*b^4-14*b^2*c^2+5*c^4))*S+2*a^8-6*(b^2+c^2)*a^6+2*(3*b^4-4*b^2*c^2+3*c^4)*a^4-2*(b^2+c^2)*(b^4-12*b^2*c^2+c^4)*a^2-8*(b^2-c^2)^2*b^2*c^2) : :

X(26507) lies on these lines: {2,26440}, {3,494}, {24,26374}, {30,26329}, {35,26354}, {36,26434}, {140,5491}, {498,26478}, {499,26472}, {517,26368}, {631,26503}, {1152,12979}, {1656,18523}, {2080,26428}, {3311,26455}, {3312,26461}, {3517,8946}, {3576,26299}, {6464,26498}, {6642,26305}, {10246,26504}, {10267,26502}, {10269,26323}, {16202,26510}, {16203,26511}, {26313,26316}, {26338,26348}, {26392,26398}, {26416,26422}, {26443,26446}, {26448,26451}, {26484,26487}, {26489,26492}, {26505,26516}, {26506,26521}

X(26507) = midpoint of X(3) and X(11950)
X(26507) = {X(2), X(26440)}-harmonic conjugate of X(26467)


X(26508) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS(-1) HOMOTHETIC AND INNER-YFF

Barycentrics
a^2*(-a^8+2*(b+c)*b*c*a^5+4*(b^2+c^2)*a^6-4*(b^2+c^2)*(b+c)*b*c*a^3-2*(3*b^4+3*c^4+(b^2+c^2)*b*c)*a^4+2*(-4*b^2*c^2+(b^2-c^2)^2)*(b+c)*b*c*a+4*(b^2+c^2)*(b^2+3*b*c+c^2)*(b-c)^2*a^2-2*((2*b^2-b*c+2*c^2)*a^4-2*(b^2+c^2)*(2*b^2-b*c+2*c^2)*a^2-4*(b^2+c^2)*(b+c)*b*c*a+(2*b^3-b^2*c+c^3)*(b^3-b*c^2+2*c^3))*S-(b^2-c^2)^2*(b-c)^2*(b^2+4*b*c+c^2)) : :

X(26508) lies on these lines: {1,494}, {5,26484}, {5491,26363}, {6464,26499}, {6734,26443}, {10267,26502}, {10527,26503}, {10943,26489}, {11012,26293}, {11249,26323}, {12116,26440}, {18523,18544}, {26305,26308}, {26313,26317}, {26329,26332}, {26338,26349}, {26354,26357}, {26374,26377}, {26428,26431}, {26434,26437}, {26448,26452}, {26455,26458}, {26461,26464}, {26467,26470}, {26472,26475}, {26478,26481}, {26505,26517}, {26506,26522}


X(26509) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS(-1) HOMOTHETIC AND OUTER-YFF

Barycentrics
a^2*(a^8+2*(b+c)*b*c*a^5-4*(b^2+c^2)*a^6-4*(b^2+c^2)*(b+c)*b*c*a^3+2*(3*b^4+3*c^4-(b^2+c^2)*b*c)*a^4+2*(-4*b^2*c^2+(b^2-c^2)^2)*(b+c)*b*c*a-4*(b^2+c^2)*(b^2-3*b*c+c^2)*(b+c)^2*a^2+2*((2*b^2+b*c+2*c^2)*a^4-2*(b^2+c^2)*(2*b^2+b*c+2*c^2)*a^2+4*(b^2+c^2)*(b+c)*b*c*a+(b^3-b*c^2-2*c^3)*(2*b^3+b^2*c-c^3))*S+(b^2-c^2)^2*(b+c)^2*(b^2-4*b*c+c^2)) : :

X(26509) lies on these lines: {1,494}, {5,26489}, {119,26467}, {1470,26434}, {2077,26293}, {5491,26364}, {5552,26503}, {6464,26500}, {6735,26443}, {10269,26323}, {10942,26484}, {11248,26502}, {12115,26440}, {18523,18542}, {26305,26309}, {26313,26318}, {26329,26333}, {26338,26350}, {26354,26358}, {26374,26378}, {26428,26432}, {26448,26453}, {26455,26459}, {26461,26465}, {26472,26476}, {26478,26482}, {26505,26518}, {26506,26523}


X(26510) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS(-1) HOMOTHETIC AND INNER-YFF TANGENTS

Barycentrics
a^2*(4*((b^2-b*c+c^2)*a^4-2*(b^2+c^2)*(b-c)^2*a^2-2*(b^2+c^2)*(b+c)*b*c*a+c^6+b^6-(b^4+c^4+(b^2-6*b*c+c^2)*b*c)*b*c)*S-(-a+b+c)*(a^7+(b+c)*a^6-(3*b^2-4*b*c+3*c^2)*a^5-(b+c)*(3*b^2-2*b*c+3*c^2)*a^4+(3*b^4+3*c^4-2*(2*b^2+b*c+2*c^2)*b*c)*a^3+(3*b^4-2*b^2*c^2+3*c^4)*(b+c)*a^2-(b^6+c^6-(13*b^2-32*b*c+13*c^2)*b^2*c^2)*a+(b^2-c^2)*(b-c)*(-b^4-c^4-2*(2*b^2-3*b*c+2*c^2)*b*c))) : :

X(26510) lies on these lines: {1,494}, {11,26484}, {5491,10527}, {6464,26501}, {8946,26377}, {10529,26503}, {10532,26329}, {10804,26428}, {10806,26440}, {10835,26305}, {10879,26313}, {10916,26443}, {10932,26338}, {10943,26467}, {10949,26489}, {10957,26478}, {10959,26472}, {10966,26323}, {11249,26293}, {11401,26374}, {11510,26502}, {11915,26448}, {16202,26507}, {18523,18543}, {18967,26434}, {19049,26455}, {19050,26461}, {24243,26522}, {26505,26519}, {26506,26524}


X(26511) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: LUCAS(-1) HOMOTHETIC AND OUTER-YFF TANGENTS

Barycentrics
a^2*(4*((b^2+b*c+c^2)*a^4-2*(b^2+c^2)*(b+c)^2*a^2+2*(b^2+c^2)*(b+c)*b*c*a+c^6+b^6+(b^4+c^4-(b^2+6*b*c+c^2)*b*c)*b*c)*S+(a-b-c)*(a^7+(b+c)*a^6-3*(b^2+c^2)*a^5-(b+c)*(3*b^2-2*b*c+3*c^2)*a^4+(3*b^4+3*c^4-2*(2*b^2+b*c+2*c^2)*b*c)*a^3+(b+c)*(3*b^4+3*c^4-2*(4*b^2+b*c+4*c^2)*b*c)*a^2-(b^2-4*b*c+c^2)*(b^2+c^2)^2*a+(b^2-c^2)*(b-c)*(-b^4-c^4+2*(2*b^2+3*b*c+2*c^2)*b*c))) : :

X(26511) lies on these lines: {1,494}, {12,26489}, {5491,5552}, {8946,26378}, {10528,26503}, {10531,26329}, {10803,26428}, {10805,26440}, {10834,26305}, {10878,26313}, {10915,26443}, {10930,26338}, {10942,26467}, {10955,26484}, {10956,26478}, {10958,26472}, {10965,26354}, {11248,26293}, {11400,26374}, {11509,26434}, {11914,26448}, {16203,26507}, {18523,18545}, {19047,26455}, {19048,26461}, {22768,26323}, {24243,26523}, {26505,26520}, {26506,26525}


X(26512) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: MANDART-INCIRCLE AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    a*((4*a^2-4*(b+c)*a+2*b*c)*S+a*(a^3-(b+c)*a^2+(b+c)^2*a-(b+c)*(b^2+c^2))) : :

X(26512) lies on these lines: {3,26324}, {4,12344}, {35,26300}, {55,3068}, {56,26514}, {100,492}, {193,12329}, {197,26306}, {1376,26361}, {3295,26369}, {4421,5860}, {5687,26444}, {10267,26516}, {10310,26294}, {11248,26518}, {11383,26375}, {11490,26429}, {11491,26441}, {11494,26314}, {11496,26330}, {11497,26339}, {11499,26468}, {11500,26485}, {11501,26479}, {11502,26473}, {11509,26435}, {11510,26519}, {11848,26449}, {13675,15682}, {18524,18539}, {18999,26456}, {19000,26462}, {26393,26396}, {26417,26420}, {26493,26496}, {26502,26505}


X(26513) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: MANDART-INCIRCLE AND 4th TRI-SQUARES-CENTRAL

Barycentrics    a*(-(4*a^2-4*(b+c)*a+2*b*c)*S+a*(a^3-(b+c)*a^2+(b+c)^2*a-(b+c)*(b^2+c^2))) : :

X(26513) lies on these lines: {3,26325}, {4,12343}, {35,26301}, {55,3069}, {56,26515}, {100,491}, {193,12329}, {197,26307}, {1376,26362}, {3295,26370}, {4421,5861}, {5687,26445}, {8982,11491}, {10267,26521}, {10310,26295}, {11248,26523}, {11383,26376}, {11490,26430}, {11494,26315}, {11496,26331}, {11498,26340}, {11499,26469}, {11500,26486}, {11501,26480}, {11502,26474}, {11509,26436}, {11510,26524}, {11848,26450}, {13795,15682}, {18524,26438}, {18999,26457}, {19000,26463}, {26393,26397}, {26417,26421}, {26493,26497}, {26502,26506}


X(26514) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th MIXTILINEAR AND 3rd TRI-SQUARES-CENTRAL

Barycentrics    (7*a-b-c)*S+a*(a^2-(b+c)*a+2*b^2+2*c^2) : :

X(26514) lies on these lines: {1,1336}, {4,7981}, {8,26361}, {55,26324}, {56,26512}, {145,492}, {193,3242}, {517,26294}, {519,26444}, {952,26468}, {2098,26355}, {2099,26435}, {3241,5604}, {5603,26330}, {5605,20057}, {7967,26441}, {7968,26456}, {7969,26462}, {8192,26306}, {9997,26314}, {10246,26516}, {10800,26429}, {10944,26479}, {10950,26473}, {11396,26375}, {11910,26449}, {13702,15682}, {18526,18539}, {26395,26396}, {26419,26420}, {26495,26496}, {26504,26505}

X(26514) = reflection of X(13902) in X(1)
X(26514) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26300, 26369), (26300, 26369, 3068), (26519, 26520, 3068)


X(26515) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 5th MIXTILINEAR AND 4th TRI-SQUARES-CENTRAL

Barycentrics    (7*a-b-c)*S-a*(a^2-(b+c)*a+2*b^2+2*c^2) : :

X(26515) lies on these lines: {1,1123}, {4,7980}, {8,26362}, {55,26325}, {56,26513}, {145,491}, {193,3242}, {517,26295}, {519,26445}, {952,26469}, {2098,26356}, {2099,26436}, {3241,5605}, {5603,26331}, {5604,20057}, {7967,8982}, {7968,26457}, {7969,26463}, {8192,26307}, {9997,26315}, {10246,26521}, {10800,26430}, {10944,26480}, {10950,26474}, {11396,26376}, {11910,26450}, {13822,15682}, {18526,26438}, {26395,26397}, {26419,26421}, {26495,26497}, {26504,26506}

X(26515) = reflection of X(13959) in X(1)
X(26515) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26301, 26370), (26301, 26370, 3069), (26524, 26525, 3069)


X(26516) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd TRI-SQUARES-CENTRAL AND X3-ABC REFLECTIONS

Barycentrics    (5*a^4-6*(b^2+c^2)*a^2+(b^2-c^2)^2)*S+2*a^2*(a^4-(b^2+c^2)*a^2-2*b^2*c^2) : :

X(26516) lies on these lines: {2,14234}, {3,1587}, {20,12974}, {24,26375}, {30,26330}, {35,26355}, {36,26435}, {140,26361}, {182,193}, {230,1151}, {371,19102}, {487,492}, {488,21445}, {498,26479}, {499,26473}, {517,26369}, {549,5860}, {1656,18539}, {2080,26429}, {3311,26456}, {3312,26462}, {3530,26339}, {3576,26300}, {3767,15885}, {5305,8407}, {6200,12123}, {6459,12601}, {6642,26306}, {7585,9739}, {7735,15883}, {8960,12124}, {9680,11824}, {10246,26514}, {10267,26512}, {10269,26324}, {11294,26469}, {12314,19054}, {12975,15692}, {16202,26519}, {16203,26520}, {26314,26316}, {26396,26398}, {26420,26422}, {26444,26446}, {26449,26451}, {26485,26487}, {26490,26492}, {26496,26498}, {26505,26507}

X(26516) = midpoint of X(3) and X(13903)
X(26516) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26441, 26468), (182, 3523, 26521)


X(26517) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd TRI-SQUARES-CENTRAL AND INNER-YFF

Barycentrics    (a^4-2*(b^2-3*b*c+c^2)*a^2-2*(b+c)*b*c*a+(b^2-c^2)^2)*S+a^2*(a^4-2*(b^2+c^2)*a^2-2*(b+c)*b*c*a+b^4+c^4+2*b*c*(b^2-b*c+c^2)) : :

X(26517) lies on these lines: {1,1336}, {5,26485}, {193,10529}, {371,13135}, {492,10527}, {5860,26349}, {6734,26444}, {10267,26512}, {10943,26490}, {11012,26294}, {11249,26324}, {12116,26441}, {18539,18544}, {24244,26501}, {26306,26308}, {26314,26317}, {26330,26332}, {26339,26342}, {26355,26357}, {26361,26363}, {26375,26377}, {26396,26399}, {26420,26423}, {26429,26431}, {26435,26437}, {26449,26452}, {26456,26458}, {26462,26464}, {26468,26470}, {26473,26475}, {26479,26481}, {26496,26499}, {26505,26508}

X(26517) = {X(3068), X(26519)}-harmonic conjugate of X(1)


X(26518) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd TRI-SQUARES-CENTRAL AND OUTER-YFF

Barycentrics    (a^4-2*(b^2+3*b*c+c^2)*a^2+2*(b+c)*b*c*a+(b^2-c^2)^2)*S+a^2*(a^4-2*(b^2+c^2)*a^2+2*(b+c)*b*c*a+b^4+c^4-2*b*c*(b^2+b*c+c^2)) : :

X(26518) lies on these lines: {1,1336}, {5,26490}, {119,26468}, {193,10528}, {371,13134}, {492,5552}, {1470,26435}, {2077,26294}, {5860,26350}, {6735,26444}, {10269,26324}, {10942,26485}, {11248,26512}, {12115,26441}, {18539,18542}, {26306,26309}, {26314,26318}, {26330,26333}, {26339,26343}, {26355,26358}, {26361,26364}, {26375,26378}, {26396,26400}, {26420,26424}, {26429,26432}, {26449,26453}, {26456,26459}, {26462,26465}, {26473,26476}, {26479,26482}, {26505,26509}

X(26518) = {X(3068), X(26520)}-harmonic conjugate of X(1)


X(26519) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd TRI-SQUARES-CENTRAL AND INNER-YFF TANGENTS

Barycentrics    (a^4-2*(b^2-7*b*c+c^2)*a^2-2*(b+c)*b*c*a+(b^2-c^2)^2)*S+a^2*(a^4-2*(b^2-b*c+c^2)*a^2-2*(b+c)*b*c*a+b^4+c^4+2*b*c*(2*b^2-b*c+2*c^2)) : :

X(26519) lies on these lines: {1,1336}, {4,13135}, {11,26485}, {193,12595}, {492,10529}, {5860,10932}, {10527,26361}, {10532,26330}, {10804,26429}, {10806,26441}, {10835,26306}, {10879,26314}, {10916,26444}, {10931,26339}, {10943,26468}, {10949,26490}, {10957,26479}, {10959,26473}, {10966,26324}, {11249,26294}, {11401,26375}, {11510,26512}, {11915,26449}, {13717,15682}, {16202,26516}, {18539,18543}, {18967,26435}, {19049,26456}, {19050,26462}, {26396,26401}, {26420,26425}, {26496,26501}, {26505,26510}

X(26519) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26517, 3068), (3068, 26514, 26520)


X(26520) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd TRI-SQUARES-CENTRAL AND OUTER-YFF TANGENTS

Barycentrics    (a^4-2*(b^2+7*b*c+c^2)*a^2+2*(b+c)*b*c*a+(b^2-c^2)^2)*S+a^2*(a^4-2*(b^2+b*c+c^2)*a^2+2*(b+c)*b*c*a+b^4+c^4-2*b*c*(2*b^2+b*c+2*c^2)) : :

X(26520) lies on these lines: {1,1336}, {4,13134}, {12,26490}, {193,12594}, {492,10528}, {5552,26361}, {5860,10930}, {10531,26330}, {10803,26429}, {10805,26441}, {10834,26306}, {10878,26314}, {10915,26444}, {10929,26339}, {10942,26468}, {10955,26485}, {10956,26479}, {10958,26473}, {10965,26355}, {11248,26294}, {11400,26375}, {11509,26435}, {11914,26449}, {13716,15682}, {16203,26516}, {18539,18545}, {19047,26456}, {19048,26462}, {22768,26324}, {26396,26402}, {26420,26426}, {26505,26511}

X(26520) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26518, 3068), (3068, 26514, 26519)


X(26521) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 4th TRI-SQUARES-CENTRAL AND X3-ABC REFLECTIONS

Barycentrics    -(5*a^4-6*(b^2+c^2)*a^2+(b^2-c^2)^2)*S+2*a^2*(a^4-(b^2+c^2)*a^2-2*b^2*c^2) : :

X(26521) lies on these lines: {2,8982}, {3,1588}, {20,12975}, {24,26376}, {30,26331}, {35,26356}, {36,26436}, {140,26362}, {182,193}, {230,1152}, {372,19105}, {487,21445}, {488,491}, {498,26480}, {499,26474}, {517,26370}, {549,5861}, {1656,26438}, {2080,26430}, {3311,26457}, {3312,26463}, {3530,26340}, {3576,26301}, {3767,15886}, {5305,8400}, {5420,21737}, {6396,12124}, {6460,12602}, {6642,26307}, {7586,9738}, {7735,15884}, {10246,26515}, {10267,26513}, {10269,26325}, {11293,26468}, {12313,19053}, {12974,15692}, {16202,26524}, {16203,26525}, {26315,26316}, {26397,26398}, {26421,26422}, {26445,26446}, {26450,26451}, {26486,26487}, {26491,26492}, {26497,26498}, {26506,26507}

X(26521) = midpoint of X(3) and X(13961)
X(26521) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 8982, 26469), (182, 3523, 26516)


X(26522) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 4th TRI-SQUARES-CENTRAL AND INNER-YFF

Barycentrics    -(a^4-2*(b^2-3*b*c+c^2)*a^2-2*(b+c)*b*c*a+(b^2-c^2)^2)*S+a^2*(a^4-2*(b^2+c^2)*a^2-2*(b+c)*b*c*a+b^4+c^4+2*b*c*(b^2-b*c+c^2)) : :

X(26522) lies on these lines: {1,1123}, {5,26486}, {193,10529}, {372,13133}, {491,10527}, {5861,26342}, {6734,26445}, {8982,12116}, {10267,26513}, {10943,26491}, {11012,26295}, {11249,26325}, {18544,26438}, {24243,26510}, {26307,26308}, {26315,26317}, {26331,26332}, {26340,26349}, {26356,26357}, {26362,26363}, {26376,26377}, {26397,26399}, {26421,26423}, {26430,26431}, {26436,26437}, {26450,26452}, {26457,26458}, {26463,26464}, {26469,26470}, {26474,26475}, {26480,26481}, {26497,26499}, {26506,26508}

X(26522) = {X(3069), X(26524)}-harmonic conjugate of X(1)


X(26523) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 4th TRI-SQUARES-CENTRAL AND OUTER-YFF

Barycentrics    -(a^4-2*(b^2+3*b*c+c^2)*a^2+2*(b+c)*b*c*a+(b^2-c^2)^2)*S+a^2*(a^4-2*(b^2+c^2)*a^2+2*(b+c)*b*c*a+b^4+c^4-2*b*c*(b^2+b*c+c^2)) : :

X(26523) lies on these lines: {1,1123}, {5,26491}, {119,26469}, {193,10528}, {372,13132}, {491,5552}, {1470,26436}, {2077,26295}, {5861,26343}, {6735,26445}, {8982,12115}, {10269,26325}, {10942,26486}, {11248,26513}, {18542,26438}, {24243,26511}, {26307,26309}, {26315,26318}, {26331,26333}, {26340,26350}, {26356,26358}, {26362,26364}, {26376,26378}, {26397,26400}, {26421,26424}, {26430,26432}, {26450,26453}, {26457,26459}, {26463,26465}, {26474,26476}, {26480,26482}, {26497,26500}, {26506,26509}

X(26523) = {X(3069), X(26525)}-harmonic conjugate of X(1)


X(26524) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 4th TRI-SQUARES-CENTRAL AND INNER-YFF TANGENTS

Barycentrics    -(a^4-2*(b^2-7*b*c+c^2)*a^2-2*(b+c)*b*c*a+(b^2-c^2)^2)*S+a^2*(a^4-2*(b^2-b*c+c^2)*a^2-2*(b+c)*b*c*a+b^4+c^4+2*b*c*(2*b^2-b*c+2*c^2)) : :

X(26524) lies on these lines: {1,1123}, {4,13133}, {11,26486}, {193,12595}, {491,10529}, {5861,10931}, {8982,10806}, {10527,26362}, {10532,26331}, {10804,26430}, {10835,26307}, {10879,26315}, {10916,26445}, {10932,26340}, {10943,26469}, {10949,26491}, {10957,26480}, {10959,26474}, {10966,26325}, {11249,26295}, {11401,26376}, {11510,26513}, {11915,26450}, {13840,15682}, {16202,26521}, {18543,26438}, {18967,26436}, {19049,26457}, {19050,26463}, {26397,26401}, {26421,26425}, {26497,26501}, {26506,26510}

X(26524) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26522, 3069), (3069, 26515, 26525)


X(26525) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 4th TRI-SQUARES-CENTRAL AND OUTER-YFF TANGENTS

Barycentrics    -(a^4-2*(b^2+7*b*c+c^2)*a^2+2*(b+c)*b*c*a+(b^2-c^2)^2)*S+a^2*(a^4-2*(b^2+b*c+c^2)*a^2+2*(b+c)*b*c*a+b^4+c^4-2*b*c*(2*b^2+b*c+2*c^2)) : :

X(26525) lies on these lines: {1,1123}, {4,13132}, {12,26491}, {193,12594}, {491,10528}, {5552,26362}, {5861,10929}, {8982,10805}, {10531,26331}, {10803,26430}, {10834,26307}, {10878,26315}, {10915,26445}, {10930,26340}, {10942,26469}, {10955,26486}, {10956,26480}, {10958,26474}, {10965,26356}, {11248,26295}, {11400,26376}, {11509,26436}, {11914,26450}, {13839,15682}, {16203,26521}, {18545,26438}, {19047,26457}, {19048,26463}, {22768,26325}, {26397,26402}, {26421,26426}, {26506,26511}

X(26525) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26523, 3069), (3069, 26515, 26524)

leftri

Collineation mappings involving Gemini triangle 45: X(26526)-X(26574)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 45, as in centers X(26526)-X(26574). Then

m(X) = (b + c - a)(b - c)^2 x + b^2 (a - b + c) y + c^2 (a + b - c) z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 1, 2018)


X(26526) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^2 b^2 - 2 a b^3 + b^4 - 2 a^2 b c + a b^2 c - b^3 c + a^2 c^2 + a b c^2 - 2 a c^3 - b c^3 + c^4 : :

X(26526) lies on these lines: {1, 2}, {21, 24619}, {220, 27132}, {664, 27006}, {673, 5086}, {1146, 26563}, {1572, 26099}, {2082, 21285}, {2170, 17046}, {2241, 25886}, {2475, 27000}, {3662, 26549}, {3753, 17672}, {3877, 17671}, {4904, 20880}, {4967, 25966}, {5141, 27183}, {5794, 24596}, {10025, 26793}, {17062, 17451}, {17184, 26528}, {17270, 25880}, {20257, 21029}, {20905, 26543}, {21240, 24548}, {24547, 25964}, {24986, 25887}, {26527, 26561}, {26529, 26533}, {26530, 26538}, {26536, 26542}, {26567, 26569}


X(26527) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 - 2 a^5 b c + a^4 b^2 c + 2 a^3 b^3 c - b^6 c + a^5 c^2 + a^4 b c^2 - 2 a^3 b^2 c^2 + a b^4 c^2 - b^5 c^2 - a^4 c^3 + 2 a^3 b c^3 + b^4 c^3 + a b^2 c^4 + b^3 c^4 - b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26527) lies on these lines: {2, 3}, {7761, 25886}, {23661, 26157}, {26526, 26561}, {26530, 26537}, {26531, 26565}, {26541, 26564}, {26582, 26653}


X(26528) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 - a^5 b c + a^4 b^2 c + a b^5 c - b^6 c + a^5 c^2 + a^4 b c^2 - 2 a^3 b^2 c^2 + a b^4 c^2 - b^5 c^2 - a^4 c^3 - 2 a b^3 c^3 + b^4 c^3 + a b^2 c^4 + b^3 c^4 + a b c^5 - b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26528) lies on these lines: {2, 3}, {318, 26157}, {8735, 18639}, {17184, 26526}, {26533, 26561}, {26540, 26541}


X(26529) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 + a^4 b^2 c - 2 a^3 b^3 c + 2 a b^5 c - b^6 c + a^5 c^2 + a^4 b c^2 - 2 a^3 b^2 c^2 + a b^4 c^2 - b^5 c^2 - a^4 c^3 - 2 a^3 b c^3 - 4 a b^3 c^3 + b^4 c^3 + a b^2 c^4 + b^3 c^4 + 2 a b c^5 - b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26529) lies on these lines: {2, 3}, {26526, 26533}, {26590, 26653}


X(26530) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^3 b^2 - a^2 b^3 - a b^4 + b^5 - 2 a^3 b c + a^2 b^2 c - b^4 c + a^3 c^2 + a^2 b c^2 - a^2 c^3 - a c^4 - b c^4 + c^5 : :

X(26530) lies on these lines: {2, 6}, {120, 25279}, {125, 16067}, {894, 16608}, {1086, 26567}, {1330, 25990}, {1352, 16048}, {1368, 3794}, {1503, 17522}, {1853, 26096}, {1899, 25494}, {3271, 17047}, {3662, 26932}, {7083, 21280}, {17236, 27288}, {20905, 26570}, {21258, 26806}, {25007, 25966}, {26526, 26538}, {26527, 26537}, {26536, 26559}, {26557, 26569}


X(26531) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^2 b^2 - 2 a b^3 + b^4 - a^2 b c + 2 a b^2 c - b^3 c + a^2 c^2 + 2 a b c^2 - 2 a c^3 - b c^3 + c^4 : :

X(26531) lies on these lines: {1, 2}, {4, 27000}, {5, 27183}, {75, 25002}, {85, 1146}, {116, 17181}, {150, 169}, {192, 25019}, {319, 25878}, {355, 17682}, {404, 25954}, {515, 4209}, {517, 17671}, {673, 1837}, {1107, 24555}, {1482, 17675}, {1699, 26839}, {3177, 9436}, {3662, 17435}, {3673, 4904}, {4534, 9311}, {5086, 24596}, {5179, 17753}, {6554, 6604}, {6999, 24590}, {7179, 17451}, {7190, 27547}, {7991, 26790}, {8256, 16593}, {10481, 20089}, {10950, 26007}, {11101, 24619}, {11109, 14621}, {13567, 26558}, {15888, 27475}, {17086, 18634}, {17121, 26668}, {17194, 26804}, {17233, 25067}, {17242, 26669}, {17247, 25238}, {17248, 24554}, {17364, 26651}, {18928, 27064}, {19786, 26958}, {20262, 26125}, {23893, 26985}, {26527, 26565}, {26533, 26611}, {26541, 26572}, {26567, 26574}


X(26532) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^2 b^2 - 2 a b^3 + b^4 + 3 a b^2 c - b^3 c + a^2 c^2 + 3 a b c^2 - 2 a c^3 - b c^3 + c^4 : :

X(26532) lies on these lines: {1, 2}, {355, 17683}, {409, 24619}, {894, 26793}, {1837, 24596}, {2646, 24582}, {5046, 27000}, {5154, 27183}, {17050, 21044}, {17062, 21921}, {17184, 25977}, {17862, 26592}, {20905, 26541}, {21258, 26563}, {24993, 25964}, {26533, 26587}, {26550, 26565}


X(26533) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(11), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    (a^2 + b^2 - 2 b c + c^2) (a^2 b^2 - 2 a b^3 + b^4 + a^2 c^2 - 2 a c^3 + c^4) : :

X(26533) lies on these lines: {2, 11}, {1146, 20940}, {26526, 26529}, {26528, 26561}, {26531, 26611}, {26532, 26587}


X(26534) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^7 b^2 - a^6 b^3 + a^5 b^4 - a^4 b^5 - a^3 b^6 + a^2 b^7 - a b^8 + b^9 - 2 a^7 b c + a^6 b^2 c + a^4 b^4 c + 2 a^3 b^5 c - a^2 b^6 c - b^8 c + a^7 c^2 + a^6 b c^2 - a^3 b^4 c^2 - a^2 b^5 c^2 - a^6 c^3 + a^2 b^4 c^3 + a^5 c^4 + a^4 b c^4 - a^3 b^2 c^4 + a^2 b^3 c^4 + 2 a b^4 c^4 - a^4 c^5 + 2 a^3 b c^5 - a^2 b^2 c^5 - a^3 c^6 - a^2 b c^6 + a^2 c^7 - a c^8 - b c^8 + c^9 : :

X(26534) lies on these lines: {2, 3}


X(26535) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^7 b^2 - a^6 b^3 + a^5 b^4 - a^4 b^5 - a^3 b^6 + a^2 b^7 - a b^8 + b^9 - 2 a^7 b c + a^6 b^2 c + a^4 b^4 c + 2 a^3 b^5 c - a^2 b^6 c - b^8 c + a^7 c^2 + a^6 b c^2 - a^3 b^4 c^2 - a^2 b^5 c^2 - a^6 c^3 - 2 a^3 b^3 c^3 + a^2 b^4 c^3 + a^5 c^4 + a^4 b c^4 - a^3 b^2 c^4 + a^2 b^3 c^4 + 2 a b^4 c^4 - a^4 c^5 + 2 a^3 b c^5 - a^2 b^2 c^5 - a^3 c^6 - a^2 b c^6 + a^2 c^7 - a c^8 - b c^8 + c^9 : :

X(26535) lies on these lines: {2, 3}


X(26536) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^4 b^2 - a^3 b^3 - a b^5 + b^6 - 2 a^4 b c + a^3 b^2 c - b^5 c + a^4 c^2 + a^3 b c^2 - a^3 c^3 - a c^5 - b c^5 + c^6 : :

X(26536) lies on these lines: {2, 31}, {21912, 27149}, {26526, 26542}, {26530, 26559}, {26560, 26565}


X(26537) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 - 2 a^5 b c + a^4 b^2 c - b^6 c + a^5 c^2 + a^4 b c^2 - a^4 c^3 - a c^6 - b c^6 + c^7 : :

X(26537) lies on these lines: {2, 32}, {26527, 26530}, {26541, 26557}, {26542, 26633}, {26564, 26569}


X(26538) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    b c (-a^2 b - 2 a b^2 + b^3 - a^2 c + 2 a b c - b^2 c - 2 a c^2 - b c^2 + c^3) : :

X(26538) lies on these lines: {2, 37}, {10, 20633}, {86, 26639}, {141, 3262}, {239, 15988}, {322, 3620}, {594, 26594}, {693, 24098}, {726, 25024}, {1086, 18179}, {1125, 1733}, {1441, 3662}, {1738, 4642}, {2550, 14923}, {3218, 11683}, {3616, 4008}, {3661, 20895}, {3663, 20236}, {3821, 23690}, {4357, 4858}, {4419, 20927}, {4872, 26837}, {4967, 25007}, {5294, 20879}, {10030, 26806}, {16725, 16738}, {16732, 17235}, {16817, 25906}, {17236, 26563}, {17258, 18151}, {17277, 26699}, {17304, 17861}, {17355, 20881}, {18252, 20556}, {18698, 24199}, {20172, 26621}, {20432, 25997}, {20911, 21442}, {21020, 24997}, {24342, 24563}, {25023, 26001}, {25082, 25601}, {25964, 26570}, {26526, 26530}, {26539, 26548}, {26581, 26582}

X(26358) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 11248, 1470), (1482, 8069, 26437), (3295, 10679, 1)


X(26539) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    b c (-2 a^3 b^2 + 2 a^3 b c - a b^3 c + b^4 c - 2 a^3 c^2 - b^3 c^2 - a b c^3 - b^2 c^3 + b c^4) : :

X(26539) lies on these lines: {2, 39}, {7187, 23989}, {26527, 26530}, {26538, 26548}, {26557, 26564}


X(26540) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(69), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^3 b^2 - a^2 b^3 - a b^4 + b^5 - a^3 b c + a^2 b^2 c + a b^3 c - b^4 c + a^3 c^2 + a^2 b c^2 - a^2 c^3 + a b c^3 - a c^4 - b c^4 + c^5 : :

X(26540) lies on these lines: {2, 6}, {7, 281}, {10, 18412}, {77, 18634}, {105, 12589}, {142, 26001}, {189, 6355}, {307, 24635}, {314, 26607}, {315, 26678}, {320, 26651}, {451, 5707}, {857, 10446}, {948, 5942}, {1352, 4223}, {1442, 17073}, {1486, 21293}, {1861, 10394}, {1899, 4224}, {3240, 25882}, {3661, 25001}, {3662, 17435}, {3823, 25005}, {3879, 26006}, {3912, 25019}, {4228, 11442}, {4357, 24554}, {4466, 18161}, {5142, 18180}, {5273, 26942}, {6740, 17579}, {6824, 12359}, {6833, 26879}, {7671, 24388}, {10449, 25017}, {15466, 17862}, {16696, 26636}, {16948, 24538}, {17074, 20266}, {17126, 25968}, {17139, 18747}, {17170, 18636}, {17231, 25067}, {17233, 25243}, {17287, 25584}, {17296, 25930}, {20262, 21617}, {21911, 24430}, {21931, 24341}, {23291, 26118}, {26528, 26541}, {26555, 26564}


X(26541) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    b^2 c^2 (2 a^3 - a b^2 + b^3 + 2 a b c - b^2 c - a c^2 - b c^2 + c^3) : :

X(26541) lies on these lines: {2, 39}, {75, 24999}, {85, 18359}, {86, 311}, {264, 3945}, {313, 24993}, {321, 26581}, {338, 17392}, {343, 1231}, {1226, 17863}, {1232, 5224}, {1235, 11109}, {1269, 24547}, {2995, 10401}, {3006, 20436}, {3260, 17378}, {3673, 24984}, {3760, 19861}, {3761, 19860}, {3936, 21596}, {5741, 21581}, {6376, 25005}, {6381, 24982}, {18133, 24986}, {18147, 24540}, {20888, 24987}, {20905, 26532}, {22028, 26595}, {26527, 26564}, {26528, 26540}, {26531, 26572}, {26537, 26557}


X(26542) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^4 b^2 - 2 a^2 b^4 + b^6 - 2 a^4 b c - 2 a b^4 c + a^4 c^2 - b^4 c^2 - 2 a^2 c^4 - 2 a b c^4 - b^2 c^4 + c^6 : :

X(26542) lies on these lines: {2, 6}, {858, 3794}, {1086, 20886}, {3662, 26552}, {11442, 25494}, {16067, 23293}, {17184, 26932}, {26526, 26536}, {26537, 26633}, {26559, 26565}


X(26543) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^3 b^2 - a^2 b^3 - a b^4 + b^5 - 2 a^3 b c - a^2 b^2 c - b^4 c + a^3 c^2 - a^2 b c^2 - 2 a b^2 c^2 - a^2 c^3 - a c^4 - b c^4 + c^5 : :

X(26543) lies on these lines: {2, 6}, {7, 11683}, {21, 1503}, {85, 257}, {142, 16609}, {182, 7483}, {189, 18632}, {274, 6393}, {286, 297}, {287, 25536}, {377, 1350}, {405, 1352}, {440, 17185}, {441, 2193}, {442, 511}, {443, 10519}, {518, 8261}, {542, 15670}, {594, 26665}, {611, 10198}, {613, 26363}, {857, 17183}, {958, 12588}, {1001, 12589}, {1086, 18179}, {1386, 24541}, {1428, 4999}, {1469, 25466}, {1723, 17272}, {1762, 7289}, {1843, 25985}, {1901, 17139}, {2330, 6690}, {2476, 5480}, {2478, 10516}, {2781, 12826}, {2886, 3056}, {3002, 16887}, {3098, 11112}, {3416, 19860}, {3434, 10387}, {3564, 6675}, {3818, 11113}, {3844, 24982}, {3912, 25099}, {3925, 17792}, {3932, 25024}, {3943, 25245}, {4187, 24206}, {4188, 21167}, {4357, 15595}, {4437, 25001}, {4904, 24199}, {5085, 6910}, {5249, 24471}, {5398, 17698}, {5721, 16062}, {5723, 17291}, {5724, 7270}, {5798, 10446}, {5830, 17289}, {5831, 17308}, {5921, 17558}, {6776, 6857}, {6856, 14853}, {9015, 26641}, {10436, 16608}, {11180, 17561}, {11645, 17525}, {14927, 17576}, {15812, 25907}, {16418, 18440}, {16603, 20258}, {17045, 26639}, {17052, 17197}, {17202, 26601}, {17237, 25887}, {17239, 25007}, {17298, 17739}, {17322, 24559}, {17332, 26699}, {17530, 19130}, {18750, 27184}, {20905, 26526}, {23983, 26165}, {26547, 26548}, {26554, 26563}


X(26544) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    2 a^2 b^2 - 4 a b^3 + 2 b^4 - 3 a^2 b c + 3 a b^2 c - 2 b^3 c + 2 a^2 c^2 + 3 a b c^2 - 4 a c^3 - 2 b c^3 + 2 c^4 : :

X(26544) lies on these lines: {1, 2}, {76, 26572}, {5330, 17675}, {6604, 26793}, {26561, 26565}


X(26545) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(661), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    (b - c) (a^3 b^2 - a b^4 + a^3 b c - a^2 b^2 c + a^3 c^2 - a^2 b c^2 + a b^2 c^2 + b^3 c^2 + b^2 c^3 - a c^4) : :

X(26545) lies on these lines: {2, 661}, {297, 525}, {513, 25981}, {693, 26596}, {4077, 27184}, {9013, 25898}, {17420, 17494}, {18199, 26625}, {25009, 26571}


X(26546) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(693), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    b c (b - c) (a^3 - a^2 b + a b^2 - b^3 - a^2 c + b^2 c + a c^2 + b c^2 - c^3) : :

X(26546) lies on these lines: {2, 650}, {297, 525}, {377, 8760}, {812, 26017}, {1577, 25007}, {1738, 23793}, {2517, 24990}, {2788, 8642}, {3434, 11934}, {4077, 4468}, {4379, 25955}, {4382, 25924}, {23989, 26565}


X(26547) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^4 b^2 - a^3 b^3 - a b^5 + b^6 - 2 a^4 b c + a^3 b^2 c - b^5 c + a^4 c^2 + a^3 b c^2 + 2 a^2 b^2 c^2 - a^3 c^3 - a c^5 - b c^5 + c^6 : :

X(26547) lies on these lines: {2, 31}, {24993, 25964}, {26526, 26530}, {26543, 26548}


X(26548) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^2 b^2 - 2 a b^3 + b^4 - 4 a^2 b c - a b^2 c - b^3 c + a^2 c^2 - a b c^2 - 2 a c^3 - b c^3 + c^4 : :

X(26548) lies on these lines: {1, 2}, {517, 17672}, {1573, 25888}, {16912, 24809}, {17184, 26561}, {17236, 20089}, {24547, 26574}, {26538, 26539}, {26543, 26547}


X(26549) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    2 a^5 b^2 - 2 a^4 b^3 - 2 a b^6 + 2 b^7 - 3 a^5 b c + 2 a^4 b^2 c + 2 a^3 b^3 c + a b^5 c - 2 b^6 c + 2 a^5 c^2 + 2 a^4 b c^2 - 4 a^3 b^2 c^2 + 2 a b^4 c^2 - 2 b^5 c^2 - 2 a^4 c^3 + 2 a^3 b c^3 - 2 a b^3 c^3 + 2 b^4 c^3 + 2 a b^2 c^4 + 2 b^3 c^4 + a b c^5 - 2 b^2 c^5 - 2 a c^6 - 2 b c^6 + 2 c^7 : :

X(26549) lies on these lines: {2, 3}, {3662, 26526}


X(26550) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 - 2 a^5 b c + a^4 b^2 c + 2 a^3 b^3 c - b^6 c + a^5 c^2 + a^4 b c^2 + 2 a^2 b^3 c^2 + a b^4 c^2 - b^5 c^2 - a^4 c^3 + 2 a^3 b c^3 + 2 a^2 b^2 c^3 + b^4 c^3 + a b^2 c^4 + b^3 c^4 - b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26550) lies on these lines: {2, 3}, {85, 257}, {23536, 25935}, {23661, 26153}, {25000, 26035}, {26526, 26536}, {26532, 26565}


X(26551) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^7 b^2-a^6 b^3+a^5 b^4-a^4 b^5-a^3 b^6+a^2 b^7-a b^8+b^9-2 a^7 b c+a^6 b^2 c+a^4 b^4 c+2 a^3 b^5 c-a^2 b^6 c-b^8 c+a^7 c^2+a^6 b c^2-a^3 b^4 c^2-a^2 b^5 c^2-a^6 c^3-4 a^3 b^3 c^3+a^2 b^4 c^3+a^5 c^4+a^4 b c^4-a^3 b^2 c^4+a^2 b^3 c^4+2 a b^4 c^4-a^4 c^5+2 a^3 b c^5-a^2 b^2 c^5-a^3 c^6-a^2 b c^6+a^2 c^7-a c^8-b c^8+c^9 : :

X(26551) lies on these lines: {2, 3}


X(26552) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^7 b^2 + a^6 b^3 - a^5 b^4 - a^4 b^5 - a^3 b^6 - a^2 b^7 + a b^8 + b^9 - 2 a^7 b c + a^6 b^2 c + 2 a^5 b^3 c - a^4 b^4 c + 2 a^3 b^5 c - a^2 b^6 c - 2 a b^7 c + b^8 c + a^7 c^2 + a^6 b c^2 + 2 a^5 b^2 c^2 - 2 a^4 b^3 c^2 - a^3 b^4 c^2 + 3 a^2 b^5 c^2 - 2 a b^6 c^2 - 2 b^7 c^2 + a^6 c^3 + 2 a^5 b c^3 - 2 a^4 b^2 c^3 - 8 a^3 b^3 c^3 - a^2 b^4 c^3 + 2 a b^5 c^3 - 2 b^6 c^3 - a^5 c^4 - a^4 b c^4 - a^3 b^2 c^4 - a^2 b^3 c^4 + 2 a b^4 c^4 + 2 b^5 c^4 - a^4 c^5 + 2 a^3 b c^5 + 3 a^2 b^2 c^5 + 2 a b^3 c^5 + 2 b^4 c^5 - a^3 c^6 - a^2 b c^6 - 2 a b^2 c^6 - 2 b^3 c^6 - a^2 c^7 - 2 a b c^7 - 2 b^2 c^7 + a c^8 + b c^8 + c^9 : :

X(26552) lies on these lines: {2, 3}, {3662, 26542}


X(26553) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 - 2 a^8 b c + 2 a^6 b^3 c + 2 a^4 b^5 c - 2 a^2 b^7 c + a^8 c^2 + 2 a^5 b^3 c^2 - 2 a b^7 c^2 - b^8 c^2 + 2 a^6 b c^3 + 2 a^5 b^2 c^3 - 8 a^4 b^3 c^3 - 4 a^3 b^4 c^3 + 2 a^2 b^5 c^3 - 2 a b^6 c^3 - 4 a^3 b^3 c^4 + 4 a b^5 c^4 + 2 a^4 b c^5 + 2 a^2 b^3 c^5 + 4 a b^4 c^5 - 2 a^4 c^6 - 2 a b^3 c^6 - 2 a^2 b c^7 - 2 a b^2 c^7 - b^2 c^8 + c^10 : :

X(26553) lies on these lines: {2, 3}


X(26554) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^8 b^2 - 2 a^7 b^3 + 2 a^5 b^5 - 2 a^4 b^6 + 2 a^3 b^7 - 2 a b^9 + b^10 - 2 a^8 b c + 4 a^4 b^5 c - 2 b^9 c + a^8 c^2 - 4 a^6 b^2 c^2 + 2 a^5 b^3 c^2 + 4 a^4 b^4 c^2 - 4 a^3 b^5 c^2 + 2 a b^7 c^2 - b^8 c^2 - 2 a^7 c^3 + 2 a^5 b^2 c^3 - 4 a^4 b^3 c^3 + 2 a^3 b^4 c^3 - 2 a b^6 c^3 + 4 b^7 c^3 + 4 a^4 b^2 c^4 + 2 a^3 b^3 c^4 + 2 a b^5 c^4 + 2 a^5 c^5 + 4 a^4 b c^5 - 4 a^3 b^2 c^5 + 2 a b^4 c^5 - 4 b^5 c^5 - 2 a^4 c^6 - 2 a b^3 c^6 + 2 a^3 c^7 + 2 a b^2 c^7 + 4 b^3 c^7 - b^2 c^8 - 2 a c^9 - 2 b c^9 + c^10 : :

X(26554) lies on these lines: {2, 3}, {26543, 26563}


X(26555) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    3 a^5 b^2 - 3 a^4 b^3 - 3 a b^6 + 3 b^7 - 5 a^5 b c + 3 a^4 b^2 c + 4 a^3 b^3 c + a b^5 c - 3 b^6 c + 3 a^5 c^2 + 3 a^4 b c^2 - 6 a^3 b^2 c^2 + 3 a b^4 c^2 - 3 b^5 c^2 - 3 a^4 c^3 + 4 a^3 b c^3 - 2 a b^3 c^3 + 3 b^4 c^3 + 3 a b^2 c^4 + 3 b^3 c^4 + a b c^5 - 3 b^2 c^5 - 3 a c^6 - 3 b c^6 + 3 c^7 : :

X(26555) lies on these lines: {2, 3}, {26540, 26564}


X(26556) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 - a^5 b c + a^4 b^2 c + a b^5 c - b^6 c + a^5 c^2 + a^4 b c^2 - 4 a^3 b^2 c^2 - 2 a^2 b^3 c^2 + a b^4 c^2 - b^5 c^2 - a^4 c^3 - 2 a^2 b^2 c^3 - 2 a b^3 c^3 + b^4 c^3 + a b^2 c^4 + b^3 c^4 + a b c^5 - b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26556) lies on these lines: {2, 3}, {318, 26158}, {3662, 17435}, {26590, 26658}


X(26557) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^5 b^2 - a^4 b^3 - a b^6 + b^7 - 2 a^5 b c + a^4 b^2 c - b^6 c + a^5 c^2 + a^4 b c^2 - 2 a^3 b^2 c^2 + a b^4 c^2 - b^5 c^2 - a^4 c^3 - 2 a b^3 c^3 + b^4 c^3 + a b^2 c^4 + b^3 c^4 - b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26557) lies on these lines: {2, 3}, {26530, 26569}, {26537, 26541}, {26539, 26564}


X(26558) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(12), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^2 b^2 + b^4 + 2 a b^2 c + a^2 c^2 + 2 a b c^2 + c^4 : :

X(26558) lies on these lines: {2, 12}, {4, 20172}, {5, 17030}, {8, 17550}, {10, 6656}, {11, 17669}, {21, 26629}, {36, 17694}, {75, 5254}, {116, 16887}, {141, 6376}, {239, 1834}, {257, 1146}, {325, 1107}, {341, 3661}, {442, 16819}, {495, 27255}, {626, 1573}, {993, 7807}, {1211, 3975}, {1376, 7791}, {1478, 11321}, {1574, 4045}, {1698, 17670}, {2886, 5025}, {3035, 7824}, {3662, 21258}, {3691, 24995}, {3704, 3797}, {3820, 8362}, {4187, 26959}, {4357, 17062}, {4366, 17685}, {4386, 7750}, {4426, 7792}, {4766, 10459}, {5051, 26965}, {5080, 17686}, {5432, 17684}, {6292, 27076}, {6554, 17257}, {7354, 16915}, {7745, 20179}, {7866, 9708}, {7876, 9711}, {7887, 26363}, {7933, 9710}, {8356, 25440}, {9709, 11287}, {11285, 26364}, {13567, 26531}, {14064, 19843}, {15326, 17693}, {16062, 27299}, {16829, 24390}, {16910, 24596}, {17045, 23905}, {17184, 25977}, {17671, 27248}, {17672, 27026}, {17757, 27020}, {21031, 26752}, {21485, 22654}, {21935, 24592}, {26526, 26529}, {26576, 26621}, {26804, 27149}


X(26559) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^3 b^3 - 2 a^2 b^4 + a b^5 - a^3 b^2 c - 2 a b^4 c + b^5 c - a^3 b c^2 + 2 a^2 b^2 c^2 - b^4 c^2 + a^3 c^3 - 2 a^2 c^4 - 2 a b c^4 - b^2 c^4 + a c^5 + b c^5 : :

X(26559) lies on these lines: {1, 2}, {26530, 26536}, {26542, 26565}


X(26560) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^3 b^3 - 2 a^2 b^4 + a b^5 - a^3 b^2 c - 2 a b^4 c + b^5 c - a^3 b c^2 + 4 a^2 b^2 c^2 - b^4 c^2 + a^3 c^3 - 2 a^2 c^4 - 2 a b c^4 - b^2 c^4 + a c^5 + b c^5 : :

X(26560) lies on these lines: {1, 2}, {17046, 22173}, {26536, 26565}


X(26561) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(56), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^2 b^2 + b^4 - 2 a^2 b c + a^2 c^2 + c^4 : :

X(26561) lies on these lines: {1, 6656}, {2, 12}, {3, 26629}, {5, 26959}, {8, 26582}, {10, 17670}, {11, 5025}, {34, 297}, {35, 8356}, {36, 7807}, {55, 7791}, {85, 257}, {141, 1909}, {172, 7792}, {192, 7864}, {239, 7270}, {315, 16502}, {325, 2275}, {330, 3314}, {334, 20255}, {350, 5254}, {377, 20172}, {384, 7354}, {442, 17030}, {458, 11392}, {495, 8362}, {498, 11285}, {499, 7887}, {626, 1015}, {673, 17680}, {894, 7247}, {948, 26132}, {999, 7866}, {1003, 4299}, {1201, 4766}, {1475, 24995}, {1478, 7770}, {1479, 7841}, {1500, 4045}, {1834, 17027}, {1914, 7750}, {1975, 9597}, {2241, 7761}, {2242, 7834}, {2886, 26801}, {3058, 7924}, {3085, 16043}, {3086, 14064}, {3295, 11287}, {3552, 15326}, {3585, 8370}, {3614, 16921}, {3616, 17550}, {3665, 7187}, {3734, 9651}, {3782, 17789}, {3816, 17669}, {4202, 26965}, {4293, 14001}, {4324, 8353}, {4366, 6284}, {4904, 24190}, {5080, 17541}, {5204, 16925}, {5299, 7762}, {5432, 7824}, {5563, 8363}, {5716, 26626}, {6690, 17684}, {7179, 25918}, {7773, 9599}, {7784, 16781}, {7808, 9650}, {7819, 18990}, {7825, 9665}, {7833, 15338}, {7872, 9664}, {7876, 15888}, {8352, 18514}, {8357, 15171}, {8361, 15325}, {8728, 16819}, {9596, 11174}, {9655, 11286}, {9657, 16898}, {10350, 12835}, {10352, 12184}, {10483, 19687}, {10591, 16041}, {10895, 16924}, {10896, 14063}, {12607, 26752}, {12943, 14035}, {15048, 25264}, {17144, 21956}, {17184, 26548}, {17366, 24366}, {17397, 26601}, {17448, 20541}, {17757, 27091}, {17798, 21993}, {26279, 27068}, {26526, 26527}, {26528, 26533}, {26544, 26565}, {26578, 26621}, {26802, 26977}


X(26562) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(65), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    2 a b^3 - a b^2 c + b^3 c - a b c^2 + 2 a c^3 + b c^3 : :

X(26562) lies on these lines: {1, 24602}, {2, 65}, {116, 17211}, {141, 21951}, {321, 22202}, {335, 4696}, {517, 27097}, {942, 26965}, {1837, 16910}, {3125, 20911}, {3263, 3721}, {3290, 17152}, {3662, 17435}, {3701, 24080}, {3742, 26807}, {3868, 27299}, {3912, 4642}, {3924, 24586}, {4357, 21921}, {5086, 17680}, {5836, 26759}, {5883, 16818}, {16583, 17137}, {16720, 21331}, {17184, 25977}, {18180, 27185}, {18191, 26841}, {20271, 26234}, {20347, 25994}, {20880, 24190}, {21281, 26242}, {26526, 26527}


X(26563) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(85), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    b c (a b + b^2 + a c - 2 b c + c^2) : :

X(26563) lies on these lines: {2, 85}, {7, 3436}, {8, 3673}, {10, 1111}, {37, 20448}, {38, 20436}, {41, 24249}, {56, 26229}, {57, 24612}, {65, 20347}, {69, 5016}, {75, 3617}, {76, 321}, {77, 24540}, {88, 274}, {141, 1229}, {142, 21921}, {145, 16284}, {220, 26653}, {244, 24215}, {257, 18031}, {304, 4358}, {307, 24986}, {322, 3672}, {333, 16749}, {343, 1231}, {349, 23989}, {350, 20955}, {354, 21967}, {404, 5088}, {498, 25581}, {518, 20247}, {519, 7264}, {529, 7198}, {551, 7278}, {693, 21132}, {908, 3674}, {984, 20435}, {986, 21422}, {1086, 21951}, {1146, 26526}, {1211, 1233}, {1329, 3665}, {1334, 21232}, {1434, 27003}, {1441, 4357}, {1447, 2975}, {1475, 17048}, {1565, 4187}, {1828, 17183}, {1837, 21285}, {1909, 5484}, {1921, 20892}, {1930, 3701}, {2329, 9318}, {2478, 17170}, {2551, 7195}, {3057, 21272}, {3212, 3869}, {3262, 4389}, {3263, 6376}, {3452, 24994}, {3619, 20927}, {3620, 20171}, {3621, 17158}, {3634, 25585}, {3662, 17435}, {3663, 4642}, {3666, 21596}, {3693, 25237}, {3702, 3760}, {3721, 21138}, {3732, 17681}, {3739, 27170}, {3752, 18600}, {3761, 4968}, {3765, 4359}, {3812, 4059}, {3953, 21208}, {4193, 17181}, {4202, 20235}, {4352, 4850}, {4391, 17192}, {4487, 25278}, {4513, 24352}, {4515, 26757}, {4721, 24254}, {4861, 24203}, {4872, 5046}, {4911, 5080}, {5253, 7176}, {5439, 17169}, {5554, 6604}, {5836, 20244}, {6646, 10030}, {6691, 7181}, {7112, 17291}, {7179, 11681}, {7200, 16604}, {7223, 25524}, {7247, 20060}, {8582, 10481}, {9312, 19861}, {9436, 24982}, {10521, 12527}, {10587, 17321}, {14552, 19788}, {16583, 26978}, {16609, 24633}, {16611, 24790}, {16732, 17237}, {17044, 26660}, {17046, 21044}, {17233, 22040}, {17236, 26538}, {17257, 25001}, {17266, 18140}, {17272, 17861}, {17320, 17791}, {17448, 27918}, {17451, 20335}, {18133, 20336}, {18743, 21605}, {20245, 24471}, {20891, 21615}, {21258, 26532}, {21609, 26132}, {24214, 24443}, {24268, 25940}, {24326, 25102}, {25244, 27025}, {26167, 26171}, {26543, 26554}, {26669, 27282}, {27813, 27814}


X(26564) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    (b - c)^2 (a^5 - a^4 b - a b^4 + b^5 - a^4 c + 2 a^3 b c - 2 a b^3 c + b^4 c - a b^2 c^2 - b^3 c^2 - 2 a b c^3 - b^2 c^3 - a c^4 + b c^4 + c^5) : :

X(26564) lies on these lines: {2, 99}, {1086, 26566}, {26527, 26541}, {26537, 26569}, {26539, 26557}, {26540, 26555}, {26565, 26572}


X(26565) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(100), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    (b - c)^2 (a^4 - 2 a^3 b + 2 a^2 b^2 - 2 a b^3 + b^4 - 2 a^3 c + 4 a^2 b c - 2 a b^2 c + 2 a^2 c^2 - 2 a b c^2 - 2 a c^3 + c^4) : :

X(26565) lies on these lines: {2, 11}, {1086, 26568}, {4904, 26566}, {14936, 26641}, {23989, 26546}, {26527, 26531}, {26532, 26550}, {26536, 26560}, {26542, 26559}, {26544, 26561}, {26564, 26572}


X(26566) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(101), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    (b - c)^2 (a^5 - 2 a^4 b + a^3 b^2 + a^2 b^3 - 2 a b^4 + b^5 - 2 a^4 c + 3 a^3 b c - a b^3 c + a^3 c^2 - a b^2 c^2 + a^2 c^3 - a b c^3 - 2 a c^4 + c^5) : :

X(26566) lies on these lines: {2, 101}, {1086, 26564}, {4904, 26565}


X(26567) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    b c (-2 a b^2 + b^3 + 3 a b c - b^2 c - 2 a c^2 - b c^2 + c^3) : :

X(26567) lies on these lines: {2, 37}, {1086, 26530}, {3262, 17232}, {3662, 4858}, {4361, 26657}, {4440, 20927}, {7336, 17047}, {17230, 20895}, {17276, 18151}, {17339, 20881}, {26526, 26569}, {26531, 26574}


X(26568) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(900), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    (b - c) (a^3 b - 5 a^2 b^2 + 5 a b^3 - b^4 + a^3 c + 2 a^2 b c - a b^2 c - 2 b^3 c - 5 a^2 c^2 - a b c^2 + 4 b^2 c^2 + 5 a c^3 - 2 b c^3 - c^4) : :

X(26568) lies on these lines: {2, 900}, {1086, 26565}, {4435, 26657}


X(26569) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(194), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    b c (-a^3 b^2 + 2 a^3 b c - a b^3 c + b^4 c - a^3 c^2 + a b^2 c^2 - b^3 c^2 - a b c^3 - b^2 c^3 + b c^4) : :

X(26569) lies on these lines: {2, 39}, {26526, 26567}, {26530, 26557}, {26537, 26564}


X(26570) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^3 b^2 - a^2 b^3 - a b^4 + b^5 - 2 a^3 b c + 2 a^2 b^2 c - 2 a b^3 c + a^3 c^2 + 2 a^2 b c^2 + 4 a b^2 c^2 - b^3 c^2 - a^2 c^3 - 2 a b c^3 - b^2 c^3 - a c^4 + c^5 : :

X(26570) lies on these lines: {1, 2}, {524, 26674}, {3762, 26571}, {20905, 26530}, {25964, 26538}


X(26571) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(649), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    (b - c) (a^3 b^2 - a b^4 - 2 a^3 b c + 2 a^2 b^2 c - a b^3 c + b^4 c + a^3 c^2 + 2 a^2 b c^2 - a b^2 c^2 - a b c^3 - a c^4 + b c^4) : :

X(26571) lies on these lines: {2, 649}, {3662, 4468}, {3762, 26570}, {4521, 27184}, {25009, 26545}


X(26572) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(668), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    b c (b - c)^2 (2 a^3 - 4 a^2 b + 2 a b^2 - 4 a^2 c + 3 a b c - b^2 c + 2 a c^2 - b c^2) : :

X(26572) lies on these lines: {2, 668}, {6, 26693}, {76, 26544}, {693, 4534}, {1146, 23989}, {1358, 4462}, {4366, 26691}, {4391, 4904}, {26531, 26541}, {26564, 26565}


X(26573) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(894), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^3 b^2 - a^2 b^3 - a b^4 + b^5 - 2 a^3 b c + 2 a b^3 c - 2 b^4 c + a^3 c^2 - 4 a b^2 c^2 + b^3 c^2 - a^2 c^3 + 2 a b c^3 + b^2 c^3 - a c^4 - 2 b c^4 + c^5 : :

X(26573) lies on these lines: {2, 7}, {141, 26594}, {320, 15988}, {335, 26581}, {1086, 18179}, {3663, 25241}, {3834, 25099}, {3836, 25024}, {3912, 25245}, {4201, 18444}, {14621, 26628}, {17273, 26671}, {17302, 26639}, {17324, 24559}, {20905, 26530}, {24231, 24987}, {26526, 26567}


X(26574) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(984), WHERE A'B'C' = GEMINI TRIANGLE 45

Barycentrics    a^3 b^3 - 2 a^2 b^4 + a b^5 + 3 a^2 b^3 c - a b^4 c + a b^3 c^2 - b^4 c^2 + a^3 c^3 + 3 a^2 b c^3 + a b^2 c^3 + 2 b^3 c^3 - 2 a^2 c^4 - a b c^4 - b^2 c^4 + a c^5 : :

X(26574) lies on these lines: {2, 38}, {20905, 26532}, {24547, 26548}, {26526, 26530}, {26531, 26567}

leftri

Collineation mappings involving Gemini triangle 46: X(26575)-X(26612)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 46, as in centers X(26575)-X(26612). Then

m(X) = (a + b - c) (a - b + c) (b + c)^2 x + b^2 (b + c - a) (a + b - c) y + c^2 (b + c - a) (a - b + c) z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 1, 2018)


X(26575) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^3 b^2 - a^2 b^3 - a b^4 + b^5 + 2 a^3 b c + 2 a b^3 c + a^3 c^2 + 2 a b^2 c^2 - b^3 c^2 - a^2 c^3 + 2 a b c^3 - b^2 c^3 - a c^4 + c^5 : :

X(26575) lies on these lines: {1, 2}, {37, 24986}, {141, 24993}, {594, 24547}, {1229, 21933}, {2171, 21244}, {2285, 21286}, {3553, 27507}, {4364, 24998}, {4437, 20905}, {4851, 24540}, {17237, 24999}, {20262, 27058}, {25000, 25099}, {25023, 25243}, {26576, 26590}, {26578, 26582}, {26579, 26580}, {26585, 26601}, {26793, 27064}


X(26576) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^6 b^2-a^4 b^4-a^2 b^6+b^8+2 a^6 b c-2 a^4 b^3 c-2 a^3 b^4 c+2 a b^6 c+a^6 c^2+a^2 b^4 c^2-2 b^6 c^2-2 a^4 b c^3-2 a b^4 c^3-a^4 c^4-2 a^3 b c^4+a^2 b^2 c^4-2 a b^3 c^4+2 b^4 c^4-a^2 c^6+2 a b c^6-2 b^2 c^6+c^8 : :

X(26576) lies on these lines: {2, 3}, {26558, 26621}, {26575, 26590}, {26579, 26586}


X(26577) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^6 b^2 - a^4 b^4 - a^2 b^6 + b^8 + a^6 b c - a^5 b^2 c - a^2 b^5 c + a b^6 c + a^6 c^2 - a^5 b c^2 + 2 a^3 b^3 c^2 + a^2 b^4 c^2 - a b^5 c^2 - 2 b^6 c^2 + 2 a^3 b^2 c^3 + 2 a^2 b^3 c^3 - a^4 c^4 + a^2 b^2 c^4 + 2 b^4 c^4 - a^2 b c^5 - a b^2 c^5 - a^2 c^6 + a b c^6 - 2 b^2 c^6 + c^8 : :

X(26577) lies on these lines: {2, 3}, {26580, 26581}


X(26578) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^6 b^2 - a^4 b^4 - a^2 b^6 + b^8 - 2 a^5 b^2 c + 2 a^4 b^3 c + 2 a^3 b^4 c - 2 a^2 b^5 c + a^6 c^2 - 2 a^5 b c^2 + 4 a^3 b^3 c^2 + a^2 b^4 c^2 - 2 a b^5 c^2 - 2 b^6 c^2 + 2 a^4 b c^3 + 4 a^3 b^2 c^3 + 4 a^2 b^3 c^3 + 2 a b^4 c^3 - a^4 c^4 + 2 a^3 b c^4 + a^2 b^2 c^4 + 2 a b^3 c^4 + 2 b^4 c^4 - 2 a^2 b c^5 - 2 a b^2 c^5 - a^2 c^6 - 2 b^2 c^6 + c^8 : :

X(26578) lies on these lines: {2, 3}, {17184, 26581}, {26561, 26621}, {26575, 26582}


X(26579) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^4 b^2 - 2 a^2 b^4 + b^6 + 2 a^4 b c + 2 a b^4 c + a^4 c^2 + 2 a^2 b^2 c^2 - b^4 c^2 - 2 a^2 c^4 + 2 a b c^4 - b^2 c^4 + c^6 : :

X(26579) lies on these lines: {2, 6}, {12, 25005}, {42, 24991}, {511, 16067}, {908, 21244}, {1853, 26032}, {2887, 24996}, {4671, 26610}, {26575, 26580}, {26576, 26586}, {26585, 26590}, {26591, 26594}, {26611, 26612}, {26942, 27184}


X(26580) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(9), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    (b + c) (a b + b^2 + a c - b c + c^2) : :

X(26580) lies on these lines: {2, 7}, {10, 3120}, {31, 4703}, {37, 3936}, {38, 3846}, {42, 4425}, {72, 5051}, {73, 5484}, {78, 17676}, {100, 24723}, {141, 4358}, {145, 4101}, {171, 4683}, {210, 4972}, {238, 26230}, {257, 18359}, {306, 3950}, {312, 17228}, {313, 321}, {349, 23989}, {612, 6327}, {651, 26637}, {748, 26128}, {750, 4655}, {756, 2887}, {899, 3821}, {982, 25960}, {984, 3006}, {1086, 5241}, {1125, 19740}, {1150, 4396}, {1999, 2895}, {2886, 4981}, {3124, 3721}, {3175, 3969}, {3187, 5739}, {3622, 16485}, {3661, 4044}, {3663, 17495}, {3666, 5741}, {3687, 17147}, {3696, 4442}, {3705, 7226}, {3755, 19998}, {3772, 5278}, {3773, 3994}, {3782, 4359}, {3842, 4892}, {3844, 4009}, {3876, 16062}, {3883, 20045}, {3891, 3966}, {3896, 4819}, {3914, 4104}, {3920, 4388}, {3971, 15523}, {3993, 4062}, {4011, 24943}, {4028, 27804}, {4052, 6539}, {4085, 21805}, {4135, 6535}, {4199, 21319}, {4202, 5044}, {4292, 19284}, {4364, 5718}, {4365, 21085}, {4389, 4850}, {4402, 19824}, {4407, 21242}, {4416, 16704}, {4419, 17740}, {4424, 21042}, {4645, 5297}, {4667, 26860}, {5057, 5263}, {5222, 19823}, {5235, 17256}, {5269, 20064}, {5719, 13745}, {8620, 9284}, {9330, 25959}, {11263, 16828}, {11319, 12572}, {11374, 16342}, {12609, 19874}, {13411, 16347}, {14554, 26844}, {14555, 19785}, {14996, 17364}, {14997, 17367}, {15254, 24542}, {16610, 17235}, {16738, 17174}, {16887, 17198}, {17012, 17302}, {17013, 17396}, {17019, 17778}, {17021, 17300}, {17135, 24210}, {17182, 27163}, {17230, 21071}, {17255, 17595}, {17719, 24697}, {17889, 26037}, {18249, 25982}, {18250, 25904}, {18541, 19290}, {20234, 21810}, {20905, 26005}, {21077, 26115}, {22020, 27041}, {24217, 25378}, {24441, 27739}, {24552, 24703}, {25000, 26011}, {26526, 26529}, {26575, 26579}, {26577, 26581}, {26589, 26601}, {26590, 26593}, {26594, 26612}, {26609, 26942}, {27493, 27495}


X(26581) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^3 b^2 - a^2 b^3 - a b^4 + b^5 - 4 a^2 b^2 c + a^3 c^2 - 4 a^2 b c^2 - 2 a b^2 c^2 - b^3 c^2 - a^2 c^3 - b^2 c^3 - a c^4 + c^5 : :

X(26581) lies on these lines: {1, 2}, {9, 21286}, {141, 24547}, {321, 26541}, {335, 26573}, {536, 24999}, {594, 24993}, {1319, 24583}, {1332, 17289}, {3877, 7377}, {4357, 4552}, {4437, 25001}, {5252, 24612}, {17184, 26578}, {17239, 24986}, {17303, 24540}, {26538, 26582}, {26577, 26580}, {26591, 26592}


X(26582) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(11), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^2 b^2 + b^4 - 2 a b^2 c + a^2 c^2 - 2 a b c^2 + c^4 : :

X(26582) lies on these lines: {1, 17670}, {2, 11}, {4, 26687}, {5, 27091}, {8, 26561}, {10, 6656}, {12, 26752}, {37, 25357}, {75, 141}, {115, 27076}, {157, 11329}, {190, 2345}, {239, 5846}, {297, 1861}, {325, 1575}, {350, 21956}, {404, 26686}, {442, 27020}, {537, 3775}, {545, 17254}, {626, 1574}, {740, 1738}, {812, 21261}, {857, 27047}, {894, 5845}, {899, 4766}, {900, 19964}, {958, 7791}, {993, 8356}, {1111, 20431}, {1211, 18037}, {1213, 4422}, {1329, 5025}, {1573, 4045}, {3008, 17766}, {3136, 27035}, {3589, 20179}, {3763, 20181}, {3797, 3932}, {4000, 4360}, {4085, 17023}, {4386, 7792}, {4426, 7750}, {4440, 17238}, {4966, 6542}, {4971, 17310}, {4999, 7824}, {5051, 27026}, {5254, 6376}, {5819, 26685}, {6284, 16916}, {6645, 17565}, {7807, 25440}, {7866, 9709}, {7876, 9710}, {7887, 26364}, {7933, 9711}, {8362, 17030}, {8728, 27255}, {9708, 11287}, {9780, 17550}, {11285, 26363}, {11349, 27323}, {15338, 17692}, {16043, 19843}, {16706, 16826}, {17303, 24358}, {17308, 17738}, {17446, 21035}, {17672, 26965}, {17674, 27097}, {17684, 24953}, {18082, 18095}, {20356, 25748}, {23891, 24222}, {24390, 26959}, {26527, 26653}, {26538, 26581}, {26575, 26578}, {26605, 27059}, {26772, 27058}

X(26582) = complement of X(4366)


X(26583) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 + 2 a^8 b c - 2 a^5 b^4 c - 2 a^4 b^5 c + 2 a b^8 c + a^8 c^2 + 2 a^6 b^2 c^2 - 2 a^2 b^6 c^2 - b^8 c^2 - 2 a^5 b c^4 + 4 a^2 b^4 c^4 - 2 a b^5 c^4 - 2 a^4 b c^5 - 2 a b^4 c^5 - 2 a^4 c^6 - 2 a^2 b^2 c^6 + 2 a b c^8 - b^2 c^8 + c^10 : :

X(26583) lies on these lines: {2, 3}


X(26584) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 + 2 a^8 b c - 2 a^5 b^4 c - 2 a^4 b^5 c + 2 a b^8 c + a^8 c^2 + 2 a^6 b^2 c^2 - 2 a^2 b^6 c^2 - b^8 c^2 + 2 a^4 b^3 c^3 + 2 a^3 b^4 c^3 - 2 a^5 b c^4 + 2 a^3 b^3 c^4 + 4 a^2 b^4 c^4 - 2 a b^5 c^4 - 2 a^4 b c^5 - 2 a b^4 c^5 - 2 a^4 c^6 - 2 a^2 b^2 c^6 + 2 a b c^8 - b^2 c^8 + c^10 : :

X(26584) lies on these lines: {2, 3}


X(26585) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^5 b^2 - a^3 b^4 - a^2 b^5 + b^7 + 2 a^5 b c + 2 a b^5 c + a^5 c^2 + 2 a^3 b^2 c^2 - b^5 c^2 - a^3 c^4 - a^2 c^5 + 2 a b c^5 - b^2 c^5 + c^7 : :

X(26585) lies on these lines: {2, 31}, {213, 24992}, {5025, 25005}, {17555, 26653}, {26575, 26601}, {26579, 26590}, {26586, 26589}


X(26586) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^6 b^2 - a^4 b^4 - a^2 b^6 + b^8 + 2 a^6 b c + 2 a b^6 c + a^6 c^2 + 2 a^4 b^2 c^2 - b^6 c^2 - a^4 c^4 - a^2 c^6 + 2 a b c^6 - b^2 c^6 + c^8 : :

X(26586) lies on these lines: {2, 32}, {26576, 26579}, {26585, 26589}, {26592, 26608}


X(26587) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    b c (3 a^3 b + a^2 b^2 - a b^3 + b^4 + 3 a^3 c + 3 a b^2 c + a^2 c^2 + 3 a b c^2 - 2 b^2 c^2 - a c^3 + c^4) : :

X(26587) lies on these lines: {2, 37}, {329, 5933}, {756, 24996}, {908, 2171}, {1220, 1411}, {2292, 24982}, {2551, 3869}, {3124, 26611}, {3262, 5718}, {3816, 21333}, {4415, 18179}, {4425, 24991}, {5311, 24545}, {5712, 20928}, {23690, 25385}, {25024, 26013}, {26532, 26533}, {26575, 26579}, {26588, 26599}, {26590, 26602}


X(26588) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    b c (2 a^4 b^2 + 2 a^3 b^3 + 2 a^4 b c - a^2 b^3 c + b^5 c + 2 a^4 c^2 + 2 a b^3 c^2 + 2 a^3 c^3 - a^2 b c^3 + 2 a b^2 c^3 - 2 b^3 c^3 + b c^5) : :

X(26588) lies on these lines: {2, 39}, {1232, 26979}, {26576, 26579}, {26587, 26599}


X(26589) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(41), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    (b + c) (a^3 b + b^4 + a^3 c - b^3 c + b^2 c^2 - b c^3 + c^4) : :

X(26589) lies on these lines: {2, 41}, {6, 26176}, {872, 21235}, {1211, 21025}, {4805, 24587}, {17671, 26688}, {20305, 26772}, {21244, 26756}, {26580, 26601}, {26585, 26586}, {26595, 26602}


X(26590) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(55), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^2 b^2 + b^4 + 2 a^2 b c + a^2 c^2 + c^4 : :

X(26590) lies on these lines: {1, 6656}, {2, 11}, {3, 26686}, {5, 27020}, {8, 17550}, {12, 5025}, {33, 297}, {35, 7807}, {36, 8356}, {37, 20541}, {42, 4766}, {56, 7791}, {75, 21956}, {141, 350}, {172, 7750}, {192, 3314}, {239, 4514}, {257, 312}, {321, 8024}, {325, 2276}, {330, 7864}, {335, 3782}, {384, 6284}, {442, 27255}, {458, 11393}, {496, 8362}, {498, 7887}, {499, 11285}, {626, 1500}, {894, 4872}, {999, 11287}, {1003, 4302}, {1015, 4045}, {1125, 17670}, {1329, 17669}, {1334, 24995}, {1478, 7841}, {1479, 7770}, {1834, 17033}, {1909, 5254}, {1914, 7792}, {1975, 9598}, {2241, 7834}, {2242, 7761}, {2478, 26687}, {2887, 3912}, {3085, 14064}, {3086, 16043}, {3295, 7866}, {3552, 15338}, {3583, 8370}, {3703, 3797}, {3734, 9664}, {3746, 8363}, {3813, 26801}, {3933, 25264}, {3970, 17211}, {4187, 27091}, {4202, 27097}, {4294, 14001}, {4316, 8353}, {4415, 4437}, {4660, 24586}, {4999, 17684}, {5217, 16925}, {5276, 20553}, {5280, 7762}, {5433, 7824}, {5434, 7924}, {6645, 6655}, {7173, 16921}, {7264, 17192}, {7773, 9596}, {7803, 16502}, {7808, 9665}, {7819, 15171}, {7825, 9650}, {7833, 15326}, {7872, 9651}, {7933, 15888}, {8352, 18513}, {8357, 18990}, {8359, 15325}, {8364, 15172}, {9599, 11174}, {9668, 11286}, {9670, 16898}, {10350, 10799}, {10352, 12185}, {10483, 19695}, {10590, 16041}, {10895, 14063}, {10896, 16924}, {11343, 27309}, {12953, 14035}, {13728, 27274}, {16062, 27248}, {16826, 19786}, {17030, 24390}, {17032, 17056}, {17316, 18134}, {17671, 27299}, {17694, 25440}, {17747, 24514}, {20173, 27184}, {22370, 25978}, {24424, 25364}, {26529, 26653}, {26556, 26658}, {26575, 26576}, {26579, 26585}, {26580, 26593}, {26587, 26602}, {26597, 26598}


X(26591) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    b c (a^3 b - a^2 b^2 - a b^3 + b^4 + a^3 c - 6 a^2 b c + a b^2 c - a^2 c^2 + a b c^2 - 2 b^2 c^2 - a c^3 + c^4) : :

X(26591) lies on these lines: {2, 37}, {10, 23528}, {92, 18228}, {349, 23989}, {394, 26223}, {594, 26005}, {908, 1441}, {936, 23661}, {1211, 26603}, {1215, 25941}, {1265, 4696}, {1698, 17869}, {3187, 10601}, {3262, 5233}, {3452, 6358}, {3661, 26607}, {3701, 24987}, {3702, 19860}, {3980, 25938}, {4011, 25885}, {4054, 20880}, {4363, 25934}, {4647, 8582}, {4656, 24213}, {4858, 5316}, {4968, 19861}, {8580, 17860}, {14555, 20928}, {19875, 23580}, {21438, 26695}, {26579, 26594}, {26581, 26592}


X(26592) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    b^2 c^2 (2 a^4 - 2 a^3 b - a^2 b^2 + b^4 - 2 a^3 c - 2 a^2 b c - a^2 c^2 - 2 b^2 c^2 + c^4) : :

X(26592) lies on these lines: {2, 39}, {75, 23978}, {264, 391}, {311, 17277}, {313, 25001}, {321, 13567}, {338, 17330}, {1232, 17234}, {1235, 26003}, {1269, 20905}, {3260, 17346}, {3761, 25930}, {3963, 25243}, {4044, 25935}, {4385, 25017}, {17862, 26532}, {20888, 26001}, {26581, 26591}, {26586, 26608}


X(26593) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(200), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^2 b^2 - 2 a b^3 + b^4 + 2 a^2 b c - 3 a b^2 c - b^3 c + a^2 c^2 - 3 a b c^2 - 2 a c^3 - b c^3 + c^4 : :

X(26593) lies on these lines: {1, 2}, {321, 1233}, {3219, 20533}, {3555, 17672}, {3693, 17229}, {3773, 4712}, {10025, 17287}, {14828, 17295}, {17231, 20483}, {21096, 25261}, {26580, 26590}


X(26594) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^3 b^2 - a^2 b^3 - a b^4 + b^5 + 2 a^3 b c - 2 a^2 b^2 c + 2 a b^3 c + a^3 c^2 - 2 a^2 b c^2 - b^3 c^2 - a^2 c^3 + 2 a b c^3 - b^2 c^3 - a c^4 + c^5 : :

X(26594) lies on these lines: {1, 2}, {104, 21495}, {141, 26573}, {594, 26538}, {740, 25010}, {1577, 26596}, {3775, 25024}, {4357, 25245}, {15988, 17289}, {17239, 25099}, {17280, 26699}, {17285, 26671}, {26579, 26591}, {26580, 26612}


X(26595) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^4 b^3 - a^3 b^4 - a^2 b^5 + a b^6 + 3 a^4 b^2 c + b^6 c + 3 a^4 b c^2 + 2 a^2 b^3 c^2 + a b^4 c^2 + a^4 c^3 + 2 a^2 b^2 c^3 - b^4 c^3 - a^3 c^4 + a b^2 c^4 - b^3 c^4 - a^2 c^5 + a c^6 + b c^6 : :

X(26595) lies on these lines: {1, 2}, {22028, 26541}, {26579, 26585}, {26589, 26602}


X(26596) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(649), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    (b - c) (a^3 b^2 - a b^4 + 2 a^3 b c - 2 a^2 b^2 c - a b^3 c + b^4 c + a^3 c^2 - 2 a^2 b c^2 + 3 a b^2 c^2 - a b c^3 - a c^4 + b c^4) : :

X(26596) lies on these lines: {2, 649}, {513, 26640}, {693, 26545}, {1577, 26594}, {3676, 27184}, {4106, 25981}, {4728, 25008}, {4776, 25902}


X(26597) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^4 b^3 - a^3 b^4 - a^2 b^5 + a b^6 + 3 a^4 b^2 c + b^6 c + 3 a^4 b c^2 - 2 a^3 b^2 c^2 + a b^4 c^2 + a^4 c^3 - b^4 c^3 - a^3 c^4 + a b^2 c^4 - b^3 c^4 - a^2 c^5 + a c^6 + b c^6 : :

X(26597) lies on these lines: {1, 2}, {26590, 26598}


X(26598) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^5 b^2 - a^3 b^4 - a^2 b^5 + b^7 + 2 a^5 b c + 2 a b^5 c + a^5 c^2 - 2 a^2 b^3 c^2 - b^5 c^2 - 2 a^2 b^2 c^3 - a^3 c^4 - a^2 c^5 + 2 a b c^5 - b^2 c^5 + c^7 : :

X(26598) lies on these lines: {2, 31}, {26575, 26579}, {26590, 26597}


X(26599) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^3 b^2 - a^2 b^3 - a b^4 + b^5 + 4 a^3 b c + 4 a^2 b^2 c + 4 a b^3 c + a^3 c^2 + 4 a^2 b c^2 + 6 a b^2 c^2 - b^3 c^2 - a^2 c^3 + 4 a b c^3 - b^2 c^3 - a c^4 + c^5 : :

X(26599) lies on these lines: {1, 2}, {1086, 24993}, {4665, 24547}, {4708, 24986}, {25004, 25099}, {26587, 26588}


X(26600) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    2 a^6 b^2 - 2 a^4 b^4 - 2 a^2 b^6 + 2 b^8 + 3 a^6 b c - a^5 b^2 c - 2 a^4 b^3 c - 2 a^3 b^4 c - a^2 b^5 c + 3 a b^6 c + 2 a^6 c^2 - a^5 b c^2 + 2 a^3 b^3 c^2 + 2 a^2 b^4 c^2 - a b^5 c^2 - 4 b^6 c^2 - 2 a^4 b c^3 + 2 a^3 b^2 c^3 + 2 a^2 b^3 c^3 - 2 a b^4 c^3 - 2 a^4 c^4 - 2 a^3 b c^4 + 2 a^2 b^2 c^4 - 2 a b^3 c^4 + 4 b^4 c^4 - a^2 b c^5 - a b^2 c^5 - 2 a^2 c^6 + 3 a b c^6 - 4 b^2 c^6 + 2 c^8 : :

X(26600) lies on these lines: {2, 3}


X(26601) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    (b + c) (a^3 b + a^2 b^2 + a b^3 + b^4 + a^3 c + 2 a^2 b c + a b^2 c + a^2 c^2 + a b c^2 + a c^3 + c^4) : :

X(26601) lies on these lines: {2, 3}, {37, 4150}, {115, 5977}, {141, 18147}, {239, 1834}, {257, 312}, {321, 1228}, {894, 1901}, {1213, 4422}, {1441, 8736}, {2303, 21287}, {3454, 3912}, {3662, 18635}, {3936, 17316}, {4357, 17052}, {16826, 17056}, {17202, 26543}, {17397, 26561}, {18091, 18703}, {18096, 27067}, {18139, 26100}, {23978, 26165}, {26575, 26585}, {26580, 26589}, {27042, 27254}


X(26602) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^8 b^2 - 2 a^4 b^6 + b^10 + 2 a^8 b c - 2 a^5 b^4 c - 2 a^4 b^5 c + 2 a b^8 c + a^8 c^2 + 2 a^6 b^2 c^2 - 2 a^2 b^6 c^2 - b^8 c^2 + 4 a^4 b^3 c^3 + 4 a^3 b^4 c^3 - 2 a^5 b c^4 + 4 a^3 b^3 c^4 + 4 a^2 b^4 c^4 - 2 a b^5 c^4 - 2 a^4 b c^5 - 2 a b^4 c^5 - 2 a^4 c^6 - 2 a^2 b^2 c^6 + 2 a b c^8 - b^2 c^8 + c^10 : :

X(26602) lies on these lines: {2, 3}, {26587, 26590}, {26589, 26595}


X(26603) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    (b + c) (a^7 b + a^6 b^2 - a^5 b^3 - a^4 b^4 - a^3 b^5 - a^2 b^6 + a b^7 + b^8 + a^7 c - a^5 b^2 c - a^3 b^4 c + a b^6 c + a^6 c^2 - a^5 b c^2 + 2 a^4 b^2 c^2 + 4 a^3 b^3 c^2 - a^2 b^4 c^2 - 3 a b^5 c^2 - 2 b^6 c^2 - a^5 c^3 + 4 a^3 b^2 c^3 + 4 a^2 b^3 c^3 + a b^4 c^3 - a^4 c^4 - a^3 b c^4 - a^2 b^2 c^4 + a b^3 c^4 + 2 b^4 c^4 - a^3 c^5 - 3 a b^2 c^5 - a^2 c^6 + a b c^6 - 2 b^2 c^6 + a c^7 + c^8) : :

X(26603) lies on these lines: {2, 3}, {1211, 26591}, {21245, 25091}


X(26604) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    (b + c) (a^9 b + a^8 b^2 - 2 a^5 b^5 - 2 a^4 b^6 + a b^9 + b^10 + a^9 c + 2 a^8 b c + 2 a^7 b^2 c - 2 a^6 b^3 c - 4 a^5 b^4 c - 2 a^4 b^5 c - 2 a^3 b^6 c + 2 a^2 b^7 c + 3 a b^8 c + a^8 c^2 + 2 a^7 b c^2 + 2 a^6 b^2 c^2 + 2 a^5 b^3 c^2 - 2 a^3 b^5 c^2 - 2 a^2 b^6 c^2 - 2 a b^7 c^2 - b^8 c^2 - 2 a^6 b c^3 + 2 a^5 b^2 c^3 + 12 a^4 b^3 c^3 + 8 a^3 b^4 c^3 - 2 a^2 b^5 c^3 - 2 a b^6 c^3 - 4 a^5 b c^4 + 8 a^3 b^3 c^4 + 4 a^2 b^4 c^4 - 2 a^5 c^5 - 2 a^4 b c^5 - 2 a^3 b^2 c^5 - 2 a^2 b^3 c^5 - 2 a^4 c^6 - 2 a^3 b c^6 - 2 a^2 b^2 c^6 - 2 a b^3 c^6 + 2 a^2 b c^7 - 2 a b^2 c^7 + 3 a b c^8 - b^2 c^8 + a c^9 + c^10) : :

X(26604) lies on these lines: {2, 3}


X(26605) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    (b + c) (a^6 b - a^4 b^3 - a^2 b^5 + b^7 + a^6 c + 2 a^5 b c + a^4 b^2 c - a^2 b^4 c - 2 a b^5 c - b^6 c + a^4 b c^2 + 4 a^3 b^2 c^2 + 4 a^2 b^3 c^2 - b^5 c^2 - a^4 c^3 + 4 a^2 b^2 c^3 + 4 a b^3 c^3 + b^4 c^3 - a^2 b c^4 + b^3 c^4 - a^2 c^5 - 2 a b c^5 - b^2 c^5 - b c^6 + c^7) : :

X(26605) lies on these lines: {2, 3}, {286, 26167}, {307, 17052}, {321, 349}, {948, 3936}, {1086, 17863}, {1441, 18642}, {1726, 16549}, {2287, 21287}, {2997, 16608}, {26582, 27059}


X(26606) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    3 a^6 b^2 - 3 a^4 b^4 - 3 a^2 b^6 + 3 b^8 + 5 a^6 b c - a^5 b^2 c - 4 a^4 b^3 c - 4 a^3 b^4 c - a^2 b^5 c + 5 a b^6 c + 3 a^6 c^2 - a^5 b c^2 + 2 a^3 b^3 c^2 + 3 a^2 b^4 c^2 - a b^5 c^2 - 6 b^6 c^2 - 4 a^4 b c^3 + 2 a^3 b^2 c^3 + 2 a^2 b^3 c^3 - 4 a b^4 c^3 - 3 a^4 c^4 - 4 a^3 b c^4 + 3 a^2 b^2 c^4 - 4 a b^3 c^4 + 6 b^4 c^4 - a^2 b c^5 - a b^2 c^5 - 3 a^2 c^6 + 5 a b c^6 - 6 b^2 c^6 + 3 c^8 : :

X(26606) lies on these lines: {2, 3}


X(26607) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^6 b^2 - a^4 b^4 - a^2 b^6 + b^8 + a^6 b c - a^5 b^2 c - a^2 b^5 c + a b^6 c + a^6 c^2 - a^5 b c^2 + 2 a^4 b^2 c^2 + 6 a^3 b^3 c^2 + 3 a^2 b^4 c^2 - a b^5 c^2 - 2 b^6 c^2 + 6 a^3 b^2 c^3 + 6 a^2 b^3 c^3 - a^4 c^4 + 3 a^2 b^2 c^4 + 2 b^4 c^4 - a^2 b c^5 - a b^2 c^5 - a^2 c^6 + a b c^6 - 2 b^2 c^6 + c^8 : :

X(26607) lies on these lines: {2, 3}, {314, 26540}, {1446, 27184}, {3661, 26591}, {4766, 25930}, {24210, 25935}


X(26608) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    a^6 b^2 - a^4 b^4 - a^2 b^6 + b^8 + 2 a^6 b c + 2 a b^6 c + a^6 c^2 + 2 a^3 b^3 c^2 + a^2 b^4 c^2 - 2 b^6 c^2 + 2 a^3 b^2 c^3 + 2 a^2 b^3 c^3 - a^4 c^4 + a^2 b^2 c^4 + 2 b^4 c^4 - a^2 c^6 + 2 a b c^6 - 2 b^2 c^6 + c^8 : :

X(26608) lies on these lines: {2, 3}, {26586, 26592}


X(26609) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    (b + c) (a^4 b - 2 a^2 b^3 + b^5 + a^4 c + 2 a^2 b^2 c + 2 a b^3 c - b^4 c + 2 a^2 b c^2 - 2 a b^2 c^2 - 2 a^2 c^3 + 2 a b c^3 - b c^4 + c^5) : :

X(26609) lies on these lines: {2, 6}, {442, 25005}, {3060, 16067}, {3454, 24982}, {5051, 5554}, {26575, 26585}, {26580, 26942}


X(26610) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    2 a^3 b^2 - 2 a^2 b^3 - 2 a b^4 + 2 b^5 + 3 a^3 b c - 2 a^2 b^2 c + 3 a b^3 c + 2 a^3 c^2 - 2 a^2 b c^2 + 2 a b^2 c^2 - 2 b^3 c^2 - 2 a^2 c^3 + 3 a b c^3 - 2 b^2 c^3 - 2 a c^4 + 2 c^5 : :

X(26610) lies on these lines: {1, 2}, {4664, 24998}, {4671, 26579}, {17228, 24993}, {17233, 24986}, {17295, 24540}


X(26611) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(190), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    (a^2 b - b^3 + a^2 c - 2 a b c + b^2 c + b c^2 - c^3)^2 : :

X(26611) lies on these lines: {2, 45}, {6, 2990}, {9, 2006}, {11, 24433}, {220, 5723}, {226, 16578}, {312, 343}, {321, 23978}, {329, 394}, {338, 1211}, {349, 23989}, {726, 26010}, {867, 24828}, {908, 1465}, {1146, 18359}, {1331, 15252}, {1407, 5905}, {3124, 26587}, {3326, 15632}, {3952, 23541}, {4671, 23970}, {26531, 26533}, {26579, 26612}


X(26612) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 46

Barycentrics    b c (2 a^3 b - a b^3 + b^4 + 2 a^3 c - 3 a^2 b c + 2 a b^2 c + 2 a b c^2 - 2 b^2 c^2 - a c^3 + c^4) : :

X(26612) lies on these lines: {2, 37}, {149, 1837}, {3971, 24997}, {4642, 25005}, {17743, 18359}, {17869, 26029}, {25934, 26659}, {26579, 26611}, {26580, 26594}


X(26613) =  MIDPOINT OF X(187) AND X(5215)

Barycentrics    7 a^4-4 a^2 b^2+b^4-4 a^2 c^2-b^2 c^2+c^4 : :
X(26613) = X[2] + 2 X[187], 4 X[2] - X[316], 8 X[187] + X[316], 7 X[316] - 16 X[625], 7 X[2] - 4 X[625], 7 X[187] + 2 X[625], 4 X[230] - X[671], X[1992] - 4 X[2030], 2 X[549] + X[2080], X[385] + 2 X[2482], 2 X[597] + X[5104], 2 X[551] + X[5184], X[316] - 8 X[5215], 2 X[625] - 7 X[5215], 2 X[5461] + X[6781], X[691] + 2 X[7426], 4 X[2021] - X[7757], 4 X[620] - X[7840], 2 X[395] + X[8594], 2 X[396] + X[8595], 4 X[5461] - X[8597], 2 X[6781] + X[8597], 2 X[230] + X[8598], X[671] + 2 X[8598], X[843] + 2 X[9127], 2 X[115] + X[9855], 2 X[8997] + X[9893], 5 X[316] - 16 X[10150], 5 X[625] - 7 X[10150], 5 X[2] - 4 X[10150], 5 X[5215] - 2 X[10150], 5 X[187] + 2 X[10150], 2 X[99] + X[11054], 2 X[3111] + X[11673], 2 X[6055] + X[11676], 5 X[5071] - 2 X[13449], X[13677] + 2 X[13908], X[9891] + 2 X[13989], 2 X[8352] - 5 X[14061], 5 X[2482] - 2 X[14148], 5 X[385] + 4 X[14148], 2 X[13586] + X[14568], X[381] - 4 X[14693], 10 X[187] - X[14712], 5 X[2] + X[14712], 10 X[5215] + X[14712], 4 X[10150] + X[14712], 5 X[316] + 4 X[14712], 2 X[9181] + X[15360], X[9301] + 5 X[15693], X[8593] + 2 X[15993], X[842] - 4 X[18579], 5 X[15692] - 2 X[18860], 5 X[7925] - 8 X[22247], X[11054] - 4 X[22329], X[99] + 2 X[22329], 2 X[39] + X[22564]

See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28568.

Let AB, AC, BC, BA, CA, CB be the points on the Dao 6-point circle as defined at X(5569). Triangles BACBAC and CAABBC are perspective at X(2), and X(26613) lies on their perspectrix, with X(8704). (Randy Hutson, August 11, 2020)

The trilinear polar of X(26613) passes through X(9123).

X(26613) lies on these lines: {2,187}, {3,7827}, {30,9166}, {32,7622}, {39,22564}, {99,9136}, {115,9855}, {230,671}, {249,524}, {381,14693}, {385,2482}, {395,8594}, {396,8595}, {511,3524}, {512,15724}, {530,16267}, {531,16268}, {542,21445}, {543,5152}, {549,2080}, {551,5184}, {597,5104}, {599,7835}, {620,7840}, {691,7426}, {754,9167}, {842,18579}, {843,9127}, {1003,7610}, {1078,8369}, {1384,11163}, {1692,5032}, {1992,2030}, {2021,7618}, {3053,7769}, {3096,8366}, {3111,11673}, {3523,7878}, {3788,9939}, {5023,7841}, {5071,13449}, {5077,15655}, {5206,7828}, {5210,7790}, {5461,6781}, {6055,11676}, {7617,11361}, {7619,7753}, {7768,7870}, {7775,7907}, {7793,7801}, {7802,11318}, {7806,8588}, {7807,7883}, {7810,7832}, {7811,11288}, {7817,7847}, {7859,8359}, {7925,22247}, {7944,8365}, {8352,14061}, {8370,15597}, {8553,21395}, {8593,15993}, {8860,11159}, {8997,9893}, {9181,15360}, {9301,15693}, {9741,11055}, {9761,19781}, {9763,19780}, {9891,13989}, {11165,14614}, {11185,23055}, {13677,13908}, {14041,14971}, {15692,18860}

X(26613) = midpoint of X(i) and X(j) for these {i,j}: {187, 5215}, {8859, 13586}
X(26613) = reflection of X(i) in X(j) for these {i,j}: {2, 5215}, {5032, 1692}, {14041, 14971}, {14568, 8859}
X(26613) = X(661)-isoconjugate of X(9124)
X(26613) = crossdifference of every pair of points on line {17414, 22260}
X(26613) = centroid of X(2)X(15)X(16)
X(26613) = centroid of X(2)PU(2)
X(26613) = Dao-6-point-circle-inverse of X(2)
X(26613) = barycentric product X(99)X(9123)
X(26613) = barycentric quotient X(i)/X(j) for these {i,j}: {110, 9124}, {9123, 523}
X(26613) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (99, 22329, 11054), (230, 8598, 671), (5461, 6781, 8597)


X(26614) =  MIDPOINT OF X(3) AND X(9166)

Barycentrics    10 a^8-21 a^6 b^2+25 a^4 b^4-18 a^2 b^6+4 b^8-21 a^6 c^2+4 a^4 b^2 c^2+7 a^2 b^4 c^2-15 b^6 c^2+25 a^4 c^4+7 a^2 b^2 c^4+22 b^4 c^4-18 a^2 c^6-15 b^2 c^6+4 c^8 : :
X(26614) =7 X[2] - X[6033], X[549] + 2 X[6036], 7 X[3526] - X[6054], 2 X[140] + X[6055], X[3845] - 4 X[6722], 2 X[5461] + X[8703], 11 X[2] + X[9862], 11 X[6033] + 7 X[9862], X[114] - 4 X[10124], 11 X[3525] + X[11177], 5 X[631] + X[11632], X[2482] - 4 X[11812], X[11161] + 5 X[12017], 2 X[9862] - 11 X[12042], 2 X[2] + X[12042], 2 X[6033] + 7 X[12042], X[115] + 2 X[12100], X[3534] + 5 X[14061], X[10723] + 5 X[14093], 5 X[9862] - 11 X[14830], 5 X[12042] - 2 X[14830], 5 X[2] + X[14830], 5 X[6033] + 7 X[14830], 2 X[11623] + 7 X[14869], 10 X[140] - X[14981], 5 X[9167] - X[14981], 5 X[6055] + X[14981], X[3830] - 4 X[15092], X[6321] + 5 X[15692], X[671] + 5 X[15693], X[98] + 5 X[15694], X[12117] - 7 X[15700], X[99] - 7 X[15701], X[8724] - 7 X[15702], X[14651] + 3 X[15708], X[15561] - 3 X[15709], 2 X[620] - 5 X[15713], X[12355] + 11 X[15718], X[148] + 11 X[15719], X[12243] + 11 X[15721], X[10991] + 8 X[16239], 5 X[15712] + 4 X[20398], 3 X[15707] - X[21166], 4 X[547] - X[22505], 4 X[5461] - X[22515], 2 X[8703] + X[22515], 4 X[6033] - 7 X[22566], 4 X[2] - X[22566], 2 X[12042] + X[22566], 4 X[14830] + 5 X[22566], 4 X[9862] + 11 X[22566], 5 X[14971] - 3 X[23514].

See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28568.

X(26614) lies on these lines: {2,5191}, {3,9166}, {30,5215}, {98,15694}, {99,15701}, {114,10124}, {115,12100}, {140,6055}, {148,15719}, {542,11539}, {543,549}, {547,22505}, {620,15713}, {631,11632}, {671,15693}, {2482,11812}, {2782,5054}, {2794,15699}, {3525,11177}, {3526,6054}, {3534,14061}, {3830,15092}, {3845,6722}, {5461,8703}, {6321,15692}, {7610,13085}, {8724,15702}, {10723,14093}, {10991,16239}, {11161,12017}, {11623,14869}, {12117,15700}, {12243,15721}, {12355,15718}, {14639,15688}, {14651,15708}, {15561,15709}, {15707,21166}, {15712,20398}, {17504,23698}

X(26614) = midpoint of X(i) and X(j) for these {i,j}: {3, 9166}, {6055, 9167}, {14639, 15688}
X(26614) = reflection of X(9167) in X(140)
X(26614) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 12042, 22566), (5461, 8703, 22515)


X(26615) =  EULER LINE INTERCEPT OF X(1285)X(19054)

Barycentrics    (41*a^4-44*(b^2+c^2)*a^2-13*b^4+10*b^2*c^2-13*c^4)*S+18*(c^2+a^2+b^2)*(a^2-b^2-c^2)*a^2 : :
Barycentrics    6*S^2+2*SW*S-9*SB*SC : :

X(26615) = 4*(SW+3*S)*X(3)+(2*SW-3*S)*X(4)

As a point on the Euler line, X(26615) has Shinagawa coefficients (E+F+3*S, -9*S/2).

See César Lozada, ADGEOM 5001

X(26615) lies on these lines: {2, 3}, {524, 9541}, {1285, 19054}, {3068, 13662}, {3595, 6451}, {5860, 9741}, {6221, 13639}, {12158, 12256}, {13663, 23249}, {13757, 23273}

X(26615) = reflection of X(i) in X(j) for these (i,j): (13639, 6221), (23249, 13663)


X(26616) =  EULER LINE INTERCEPT OF X(1285)X(19053)

Barycentrics    -(41*a^4-44*(b^2+c^2)*a^2-13*b^4+10*b^2*c^2-13*c^4)*S+18*(c^2+a^2+b^2)*(a^2-b^2-c^2)*a^2 : :
Barycentrics    6*S^2-2*SW*S-9*SB*SC : :

X(26616) = 4*(SW-3*S)*X(3)+(2*SW+3*S)*X(4)

As a point on the Euler line, X(26616) has Shinagawa coefficients (E+F-3*S, 9*S/2).

See César Lozada, ADGEOM 5001

X(26616) lies on these lines: {2, 3}, {597, 9541}, {1285, 19053}, {3069, 13782}, {3593, 6452}, {5861, 9741}, {6398, 13759}, {12159, 12257}, {13637, 23267}, {13783, 23259}

X(26616) = reflection of X(i) in X(j) for these (i,j): (13759, 6398), (23259, 13783)


X(26617) =  EULER LINE INTERCEPT OF X(99)X(1270)

Barycentrics    -(a^2+b^2+c^2)*S+5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2 : :
X(26617) = 2*(SW+4*S)*X(3)+(SW-2*S)*X(4) = 4*X(1151)-X(12222) = 2*X(12313)+X(12510)

As a point on the Euler line, X(26617) has Shinagawa coefficients (E+F+4*S, -6*S).

See César Lozada, ADGEOM 5001

X(26617) lies on these lines: {2, 3}, {99, 1270}, {193, 9541}, {488, 13712}, {490, 5861}, {591, 12221}, {1151, 12222}, {1271, 14907}, {5860, 8716}, {6409, 12323}, {6462, 13678}, {6567, 13639}, {7585, 9675}, {12313, 12510}

X(26617) = reflection of X(488) in X(13712)


X(26618) =  EULER LINE INTERCEPT OF X(99)X(1271)

Barycentrics    (a^2+b^2+c^2)*S+5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2 : :
X(26618) = 2*(SW+4*S)*X(3)+(SW-2*S)*X(4) = 4*X(1151)-X(12222) = 2*X(12313)+X(12510)

As a point on the Euler line, X(26618) has Shinagawa coefficients (E+F-4*S, 6*S).

See César Lozada, ADGEOM 5001

X(26618) lies on these lines: {2, 3}, {99, 1271}, {487, 13835}, {489, 5860}, {1152, 12221}, {1270, 14907}, {1991, 12222}, {5861, 8716}, {6410, 12322}, {6463, 13798}, {6566, 13759}, {12314, 12509}

X(26618) = reflection of X(487) in X(13835)


X(26619) =  EULER LINE INTERCEPT OF X(488)X(7582)

Barycentrics    5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2-4*(a^2+b^2+c^2)*S : :
X(26619) = 4*(SW+S)*X(3)+(2*SW-S)*X(4)

As a point on the Euler line, X(26619) has Shinagawa coefficients (E+F+S, -3*S/2).

See César Lozada, ADGEOM 5001

X(26619) lies on these lines: {2, 3}, {141, 9541}, {371, 5861}, {372, 13712}, {488, 7582}, {490, 7581}, {492, 23273}, {591, 1588}, {1271, 6221}, {1285, 3068}, {1384, 8974}, {3593, 13785}, {5490, 14226}, {5590, 6561}, {5591, 6200}, {6202, 12305}, {7586, 14482}, {9738, 10517}, {12323, 13886}, {13789, 13794}, {13950, 15048}, {19054, 19103}, {23263, 23311}

X(26619) = {X(11292), X(11294)}-harmonic conjugate of X(4)


X(26620) =  EULER LINE INTERCEPT OF X(488)X(7581)

Barycentrics    5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2+4*(a^2+b^2+c^2)*S : :
X(26620) = 4*(SW-S)*X(3)+(2*SW+S)*X(4)

As a point on the Euler line, X(26612) has Shinagawa coefficients (E+F-S, 3*S/2).

See César Lozada, ADGEOM 5001

X(26620) lies on these lines: {2, 3}, {371, 13835}, {372, 5860}, {487, 7581}, {489, 7582}, {491, 23267}, {1270, 6398}, {1285, 3069}, {1384, 13950}, {1587, 1991}, {3589, 9541}, {3595, 13665}, {5491, 14241}, {5590, 6396}, {5591, 6560}, {6201, 12306}, {7585, 14482}, {8974, 15048}, {9739, 10518}, {12322, 13939}, {13669, 13674}, {19053, 19104}, {23253, 23312}

X(26620) = {X(11291), X(11293)}-harmonic conjugate of X(4)

leftri

Collineation mappings involving Gemini triangle 47: X(26621)-X(26652)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 47, as in centers X(26621)-X(26652). Then

m(X) = a^2 (a - b + c) (a + b - c) x + (b + c - a) (a + b - c) (a + c)^2 y + (b + c - a) (a - b + c) (a + b)^2 z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 2, 2018)


X(26621) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a^5 - a^4 b - a^3 b^2 + a^2 b^3 - a^4 c + 2 a^3 b c + 2 a^2 b^2 c + 2 a b^3 c - b^4 c - a^3 c^2 + 2 a^2 b c^2 + b^3 c^2 + a^2 c^3 + 2 a b c^3 + b^2 c^3 - b c^4 : :

X(26621) lies on these lines: {1, 2}, {6, 24547}, {56, 24633}, {77, 27170}, {269, 26836}, {604, 21233}, {960, 24612}, {1229, 2256}, {1334, 24266}, {2285, 21273}, {2324, 27058}, {3554, 16713}, {3739, 24540}, {3877, 6996}, {4361, 24993}, {5783, 20895}, {9310, 26265}, {16609, 26229}, {17251, 24998}, {17275, 24986}, {17301, 24999}, {20172, 26538}, {24583, 26066}, {25060, 26635}, {26558, 26576}, {26561, 26578}, {26624, 26629}, {26625, 26627}, {26637, 26643}


X(26622) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a^8 - a^6 b^2 - a^4 b^4 + a^2 b^6 + 2 a^6 b c - 2 a^4 b^3 c - 2 a^3 b^4 c + 2 a b^6 c - a^6 c^2 - a^2 b^4 c^2 + 2 b^6 c^2 - 2 a^4 b c^3 - 2 a b^4 c^3 - a^4 c^4 - 2 a^3 b c^4 - a^2 b^2 c^4 - 2 a b^3 c^4 - 4 b^4 c^4 + a^2 c^6 + 2 a b c^6 + 2 b^2 c^6 : :

X(26622) lies on these lines: {2, 3}, {239, 1993}, {20172, 26538}, {26625, 26633}


X(26623) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    3 a^8 - 6 a^6 b^2 + 4 a^4 b^4 - 2 a^2 b^6 + b^8 + 2 a^6 b c - 2 a^5 b^2 c - 2 a^2 b^5 c + 2 a b^6 c - 6 a^6 c^2 - 2 a^5 b c^2 + 4 a^4 b^2 c^2 + 4 a^3 b^3 c^2 + 2 a^2 b^4 c^2 - 2 a b^5 c^2 + 4 a^3 b^2 c^3 + 4 a^2 b^3 c^3 + 4 a^4 c^4 + 2 a^2 b^2 c^4 - 2 b^4 c^4 - 2 a^2 b c^5 - 2 a b^2 c^5 - 2 a^2 c^6 + 2 a b c^6 + c^8 : :

X(26623) lies on these lines: {2, 3}, {25060, 26636}, {26627, 26628}


X(26624) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    2 a^8 - 5 a^6 b^2 + 5 a^4 b^4 - 3 a^2 b^6 + b^8 - 2 a^5 b^2 c + 2 a^4 b^3 c + 2 a^3 b^4 c - 2 a^2 b^5 c - 5 a^6 c^2 - 2 a^5 b c^2 + 4 a^4 b^2 c^2 + 4 a^3 b^3 c^2 + 3 a^2 b^4 c^2 - 2 a b^5 c^2 - 2 b^6 c^2 + 2 a^4 b c^3 + 4 a^3 b^2 c^3 + 4 a^2 b^3 c^3 + 2 a b^4 c^3 + 5 a^4 c^4 + 2 a^3 b c^4 + 3 a^2 b^2 c^4 + 2 a b^3 c^4 + 2 b^4 c^4 - 2 a^2 b c^5 - 2 a b^2 c^5 - 3 a^2 c^6 - 2 b^2 c^6 + c^8 : :

X(26624) lies on these lines: {2, 3}, {26621, 26629}


X(26625) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a (a^5-2 a^3 b^2+a b^4+2 a^3 b c+2 b^4 c-2 a^3 c^2+4 a b^2 c^2+a c^4+2 b c^4) : :

X(26625) lies on these lines: {2, 6}, {3, 18465}, {25, 3794}, {31, 24550}, {56, 3218}, {222, 27184}, {474, 9567}, {608, 3662}, {959, 5253}, {1010, 5707}, {1352, 16067}, {1407, 26840}, {3741, 24545}, {5651, 16048}, {5788, 14011}, {6646, 22129}, {7252, 26640}, {9306, 25494}, {13478, 17182}, {18199, 26545}, {26621, 26627}, {26622, 26633}, {26635, 26639}


X(26626) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    3 a^2 + 2 a b + b^2 + 2 a c + c^2 : :

X(26626) lies on these lines: {1, 2}, {6, 4364}, {7, 604}, {35, 21537}, {36, 21508}, {37, 3618}, {45, 597}, {55, 21495}, {56, 21511}, {57, 17081}, {63, 1475}, {69, 1100}, {75, 4470}, {81, 2221}, {86, 4000}, {141, 16884}, {144, 17120}, {192, 5749}, {193, 1449}, {226, 5395}, {278, 11341}, {304, 4359}, {319, 17400}, {320, 17399}, {344, 3589}, {345, 20182}, {346, 17319}, {348, 5228}, {377, 19834}, {379, 19719}, {391, 17121}, {458, 7952}, {469, 7718}, {524, 17325}, {673, 20131}, {894, 3672}, {940, 16781}, {942, 24609}, {944, 7377}, {946, 7406}, {966, 3759}, {980, 1015}, {999, 11343}, {1278, 7229}, {1438, 27950}, {1453, 13736}, {1580, 9791}, {1621, 16367}, {1790, 8025}, {1959, 5744}, {1992, 4643}, {2238, 16523}, {2241, 5337}, {2275, 3666}, {2280, 20769}, {2329, 18228}, {2345, 4360}, {3061, 5273}, {3161, 4704}, {3207, 5834}, {3247, 17353}, {3295, 21477}, {3303, 21540}, {3304, 21516}, {3619, 4851}, {3620, 3879}, {3629, 17253}, {3662, 3945}, {3664, 17304}, {3674, 21454}, {3723, 17279}, {3729, 4021}, {3758, 4419}, {3763, 17390}, {3765, 18135}, {3782, 11352}, {3875, 5750}, {3946, 4758}, {4007, 4464}, {4038, 24586}, {4339, 7791}, {4346, 4747}, {4361, 17398}, {4363, 17395}, {4389, 4644}, {4398, 7222}, {4402, 4699}, {4416, 16667}, {4422, 16672}, {4452, 17116}, {4472, 17119}, {4648, 16706}, {4658, 24632}, {4667, 17274}, {4670, 17301}, {4675, 17382}, {4688, 4798}, {4748, 17346}, {4852, 17303}, {4869, 17291}, {4909, 21255}, {4916, 17295}, {4969, 17251}, {5224, 5839}, {5232, 17326}, {5253, 11329}, {5263, 20162}, {5266, 16043}, {5296, 17349}, {5435, 7146}, {5603, 6996}, {5712, 19786}, {5716, 26561}, {5731, 6999}, {5905, 16783}, {6329, 16885}, {6646, 16779}, {6654, 14267}, {6703, 24384}, {6767, 21526}, {7277, 17255}, {7373, 21514}, {7397, 10595}, {7402, 7967}, {8236, 20533}, {8772, 25378}, {9345, 24602}, {9441, 10186}, {9708, 21986}, {10283, 19512}, {11008, 17344}, {11037, 17691}, {14996, 16784}, {14997, 16785}, {15668, 17366}, {16524, 24512}, {16673, 25101}, {16780, 27184}, {16786, 20072}, {16787, 17778}, {17141, 26065}, {17147, 25244}, {17227, 26104}, {17236, 20090}, {17272, 20080}, {17275, 25498}, {17289, 17314}, {17290, 17392}, {17293, 17388}, {17299, 17385}, {17300, 17383}, {17305, 17378}, {17307, 17377}, {17315, 17371}, {17317, 17370}, {17318, 17369}, {17323, 17365}, {17324, 17364}, {17327, 17362}, {17374, 21356}, {17592, 24631}, {17742, 27065}, {17776, 27109}, {17917, 26023}, {18156, 19804}, {18230, 27268}, {19281, 19684}, {20905, 24553}, {20917, 25303}, {21840, 26274}, {24554, 26668}, {24604, 27000}, {25524, 25946}, {26635, 26649}, {26818, 27170}

X(26626) = anticomplement of X(17308)


X(26627) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(9), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a^3 + a^2 b + a^2 c + 4 a b c + b^2 c + b c^2 : :

X(26627) lies on these lines: {1, 17495}, {2, 7}, {6, 24589}, {81, 3759}, {86, 4850}, {89, 16815}, {192, 17021}, {239, 14996}, {321, 17118}, {612, 17140}, {740, 9345}, {748, 4697}, {750, 4434}, {902, 24331}, {940, 3187}, {942, 16454}, {964, 5439}, {1125, 4414}, {1150, 3739}, {1215, 17124}, {1449, 26860}, {1961, 17155}, {2226, 27922}, {2999, 19717}, {3210, 17019}, {3337, 19858}, {3720, 3980}, {3742, 24552}, {3752, 19684}, {3891, 4682}, {3936, 4675}, {3995, 17022}, {4358, 4363}, {4384, 16704}, {4392, 16830}, {4418, 26102}, {4648, 17740}, {4652, 17588}, {4670, 16610}, {4671, 17116}, {4672, 17125}, {4751, 5235}, {5241, 17365}, {5256, 8025}, {5268, 17165}, {5287, 17147}, {5297, 24349}, {5311, 24165}, {5436, 17539}, {5708, 16458}, {7174, 17154}, {7295, 26261}, {11518, 19337}, {14997, 17120}, {15668, 17595}, {15803, 16347}, {15934, 19290}, {16496, 17146}, {16823, 17126}, {17011, 17490}, {17012, 17379}, {17272, 27081}, {18141, 19822}, {19309, 26866}, {19336, 24929}, {24046, 25526}, {25001, 25934}, {26621, 26625}, {26623, 26628}, {26634, 26643}


X(26628) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    2 a^5 - 3 a^3 b^2 - a^2 b^3 + a b^4 + b^5 - 4 a^2 b^2 c - 3 a^3 c^2 - 4 a^2 b c^2 - 6 a b^2 c^2 - b^3 c^2 - a^2 c^3 - b^2 c^3 + a c^4 + c^5 : :

X(26628) lies on these lines: {1, 2}, {65, 24583}, {3897, 7377}, {4670, 24999}, {4999, 24633}, {5228, 27187}, {11375, 24612}, {14621, 26573}, {14953, 17173}, {17045, 24547}, {17398, 24993}, {24986, 25498}, {26623, 26627}, {26635, 26636}


X(26629) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(11), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    2 a^4-a^2 b^2+b^4-2 a^2 b c-a^2 c^2+c^4 : :

X(26629) lies on these lines: {1, 7807}, {2, 11}, {3, 26561}, {12, 384}, {21, 26558}, {35, 6656}, {56, 16925}, {140, 26959}, {192, 7806}, {230, 350}, {287, 26956}, {325, 1914}, {330, 7891}, {335, 17724}, {495, 8369}, {498, 7770}, {620, 1015}, {902, 4766}, {999, 11288}, {1003, 1478}, {1125, 17694}, {1329, 16916}, {1479, 7887}, {1500, 6680}, {1909, 7789}, {2241, 3788}, {2276, 7792}, {3085, 14001}, {3552, 7354}, {3584, 6661}, {3585, 19687}, {3614, 16044}, {3666, 5976}, {3712, 3797}, {3771, 24586}, {3912, 4434}, {4294, 14064}, {4302, 7841}, {4316, 8598}, {4324, 19695}, {4357, 24685}, {4396, 22329}, {4999, 26801}, {5010, 8356}, {5025, 6284}, {5217, 7791}, {5305, 25264}, {5433, 7907}, {5552, 26687}, {5718, 14621}, {6645, 15888}, {6655, 15338}, {6675, 16819}, {7031, 7762}, {7294, 16923}, {7483, 17030}, {7763, 16502}, {7819, 27020}, {7844, 9664}, {7851, 9598}, {7862, 9665}, {7951, 8370}, {8164, 14039}, {8361, 15171}, {9668, 11318}, {10198, 11321}, {10349, 10801}, {10352, 12835}, {10590, 14033}, {10895, 14035}, {11269, 20162}, {11681, 16920}, {12953, 14063}, {13586, 15326}, {16915, 25466}, {17321, 26273}, {17540, 27091}, {17541, 27529}, {17670, 25440}, {17719, 17738}, {26621, 26624}


X(26630) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a^10 - 2 a^6 b^4 + a^2 b^8 + 2 a^8 b c - 2 a^5 b^4 c - 2 a^4 b^5 c + 2 a b^8 c - 4 a^6 b^2 c^2 + 2 a^4 b^4 c^2 + 2 b^8 c^2 - 2 a^6 c^4 - 2 a^5 b c^4 + 2 a^4 b^2 c^4 - 2 a^2 b^4 c^4 - 2 a b^5 c^4 - 2 b^6 c^4 - 2 a^4 b c^5 - 2 a b^4 c^5 - 2 b^4 c^6 + a^2 c^8 + 2 a b c^8 + 2 b^2 c^8 : :

X(26630) lies on these lines: {2, 3}


X(26631) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a^10 - 2 a^6 b^4 + a^2 b^8 + 2 a^8 b c - 2 a^5 b^4 c - 2 a^4 b^5 c + 2 a b^8 c - 5 a^6 b^2 c^2 + 4 a^4 b^4 c^2 - a^2 b^6 c^2 + 2 b^8 c^2 + 2 a^4 b^3 c^3 + 2 a^3 b^4 c^3 - 2 a^6 c^4 - 2 a^5 b c^4 + 4 a^4 b^2 c^4 + 2 a^3 b^3 c^4 - 2 a b^5 c^4 - 2 b^6 c^4 - 2 a^4 b c^5 - 2 a b^4 c^5 - a^2 b^2 c^6 - 2 b^4 c^6 + a^2 c^8 + 2 a b c^8 + 2 b^2 c^8 : :

X(26631) lies on these lines: {2, 3}


X(26632) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    b c (2 a^4-3 a^3 b-5 a^2 b^2+a b^3+b^4-3 a^3 c-3 a b^2 c-5 a^2 c^2-3 a b c^2-2 b^2 c^2+a c^3+c^4) : :

X(26632) lies on these lines: {2, 37}, {1441, 24627}, {3218, 24633}, {5933, 9776}, {20172, 26644}, {24178, 24443}, {26621, 26625}


X(26633) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    b c (-2 a^4 b^2 - 2 a^3 b^3 - 3 a^2 b^3 c + b^5 c - 2 a^4 c^2 - 2 a b^3 c^2 - 2 a^3 c^3 - 3 a^2 b c^3 - 2 a b^2 c^3 - 2 b^3 c^3 + b c^5) : :

X(26633) lies on these lines: {2, 39}, {311, 26979}, {26526, 26527}, {26537, 26542}, {26622, 26625}


X(26634) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(41), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a^5 + a^2 b^3 + 2 a b^3 c + b^3 c^2 + a^2 c^3 + 2 a b c^3 + b^2 c^3 : :

X(26634) lies on these lines: {2, 41}, {21, 23206}, {48, 27145}, {141, 26222}, {604, 17178}, {942, 19271}, {1468, 17751}, {1958, 27017}, {16915, 27003}, {21240, 24587}, {26627, 26643}


X(26635) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a*((b+c)*a^4-b*c*a^3-(b+c)*(2*b^2-b*c+2*c^2)*a^2+(b^2-6*b*c+c^2)*b*c*a+(b^2-c^2)*(b^3-c^3)) : :

X(26635) lies on these lines: {2, 37}, {57, 16579}, {81, 3554}, {86, 26645}, {394, 17011}, {990, 1005}, {1040, 1621}, {1214, 9776}, {1961, 25938}, {3218, 5228}, {3219, 10601}, {3616, 17102}, {3743, 8583}, {3977, 25082}, {4364, 26005}, {5249, 17080}, {5437, 16577}, {6173, 18593}, {8025, 18603}, {16699, 16704}, {16777, 25934}, {17592, 25941}, {17811, 20182}, {18607, 21454}, {20276, 21321}, {24181, 25094}, {25009, 25098}, {25060, 26621}, {26625, 26639}, {26626, 26649}, {26628, 26636}


X(26636) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a^2 (a^4 b^2 - 2 a^2 b^4 + b^6 + a^4 c^2 - 3 a^2 b^2 c^2 - 2 a b^3 c^2 - 2 a b^2 c^3 - 2 b^3 c^3 - 2 a^2 c^4 + c^6) : :

X(26636) lies on these lines: {2, 39}, {216, 3945}, {394, 4255}, {566, 17392}, {570, 4648}, {1993, 2271}, {3060, 17209}, {5308, 13006}, {13351, 17245}, {16696, 26540}, {25060, 26623}, {26628, 26635}


X(26637) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a (a + b) (a + c) (a^3 - a^2 b - a b^2 + b^3 - a^2 c + 2 a b c + b^2 c - a c^2 + b c^2 + c^3) : :

X(26637) lies on these lines: {2, 6}, {21, 104}, {58, 19861}, {63, 1412}, {274, 2990}, {404, 7998}, {405, 6090}, {511, 4239}, {651, 26580}, {960, 1408}, {1010, 3193}, {1014, 3218}, {1172, 26651}, {1396, 17184}, {1790, 17185}, {2341, 17195}, {3794, 4228}, {3869, 5323}, {3877, 4221}, {4188, 21766}, {4189, 6800}, {4234, 6580}, {4357, 22128}, {4658, 19860}, {15080, 17549}, {16370, 26864}, {16726, 25939}, {17187, 25941}, {17588, 24558}, {24987, 25526}, {26621, 26643}


X(26638) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    (a + b) (a + c) (a^4 - 2 a^3 b + 2 a b^3 - b^4 - 2 a^3 c + 4 a^2 b c + 2 a b^2 c + 2 a b c^2 + 2 b^2 c^2 + 2 a c^3 - c^4) : :

X(26638) lies on these lines: {2, 6}, {21, 3427}, {27, 10444}, {283, 1010}, {1014, 5744}, {1412, 5745}, {1434, 3218}, {4357, 17923}, {7054, 26645}, {8822, 24547}, {10458, 25941}, {11110, 18465}, {16054, 24590}, {16696, 25939}, {25060, 26621}


X(26639) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a (a^4 - 2 a^2 b^2 + b^4 + a^2 b c + b^3 c - 2 a^2 c^2 - 2 b^2 c^2 + b c^3 + c^4) : :

X(26639) lies on these lines: {1, 2}, {6, 26699}, {40, 21537}, {48, 26998}, {86, 26538}, {193, 3554}, {238, 8772}, {297, 1870}, {323, 16784}, {394, 16781}, {401, 3100}, {441, 18455}, {458, 6198}, {517, 21495}, {740, 24563}, {894, 7269}, {1100, 15988}, {1385, 21511}, {1429, 1959}, {1442, 3662}, {1482, 21477}, {1953, 27059}, {1993, 16502}, {1994, 5299}, {2170, 20769}, {2329, 27065}, {3061, 3219}, {3576, 21508}, {3674, 26842}, {3723, 25099}, {3875, 18261}, {3877, 16367}, {4360, 26665}, {4560, 26652}, {4881, 19308}, {4904, 25593}, {7146, 27003}, {7291, 27950}, {8148, 21539}, {10222, 21540}, {10246, 11343}, {10247, 21526}, {12702, 16431}, {15018, 16785}, {15178, 21516}, {17045, 26543}, {17302, 26573}, {17319, 25245}, {17614, 25946}, {18465, 26643}, {18650, 26837}, {19512, 19907}, {20236, 24202}, {26130, 27180}, {26625, 26635}


X(26640) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(661), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    (b - c) (a^5 - a^3 b^2 + 2 a^3 b c - 2 a^2 b^2 c - a b^3 c + b^4 c - a^3 c^2 - 2 a^2 b c^2 + a b^2 c^2 - a b c^3 + b c^4) : :

X(26640) lies on these lines: {2, 661}, {513, 26596}, {693, 26652}, {905, 3904}, {1993, 23092}, {7252, 26625}, {26674, 26694}


X(26641) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(693), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a (b - c) (a^4 - 2 a^3 b + 2 a b^3 - b^4 - 2 a^3 c + 2 a^2 b c + 2 a c^3 - c^4) : :

X(26641) lies on these lines: {2, 650}, {21, 8760}, {647, 2799}, {905, 3904}, {1621, 11934}, {1635, 25900}, {1993, 22383}, {4705, 25901}, {4893, 25924}, {6589, 16757}, {9001, 15988}, {9015, 26543}, {14936, 26565}, {15313, 16158}


X(26642) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    5 a^8 - 8 a^6 b^2 + 2 a^4 b^4 + b^8 + 6 a^6 b c - 2 a^5 b^2 c - 4 a^4 b^3 c - 4 a^3 b^4 c - 2 a^2 b^5 c + 6 a b^6 c - 8 a^6 c^2 - 2 a^5 b c^2 + 4 a^4 b^2 c^2 + 4 a^3 b^3 c^2 - 2 a b^5 c^2 + 4 b^6 c^2 - 4 a^4 b c^3 + 4 a^3 b^2 c^3 + 4 a^2 b^3 c^3 - 4 a b^4 c^3 + 2 a^4 c^4 - 4 a^3 b c^4 - 4 a b^3 c^4 - 10 b^4 c^4 - 2 a^2 b c^5 - 2 a b^2 c^5 + 6 a b c^6 + 4 b^2 c^6 + c^8 : :

X(26642) lies on these lines: {2, 3}


X(26643) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    (a + b) (a + c) (a^3 + a b^2 + 2 a b c + 2 b^2 c + a c^2 + 2 b c^2) : :

X(26643) lies on these lines: {2, 3}, {10, 24632}, {58, 4384}, {75, 2303}, {81, 239}, {86, 4000}, {284, 1958}, {333, 17103}, {894, 2287}, {1014, 16738}, {1043, 17316}, {1333, 3739}, {1444, 27164}, {1468, 5271}, {1580, 24342}, {1778, 17277}, {1931, 5235}, {3666, 16716}, {4273, 4670}, {4653, 16831}, {4658, 16834}, {4720, 6542}, {5277, 26243}, {5333, 17397}, {6703, 24366}, {8025, 17014}, {8822, 17257}, {14621, 27644}, {16589, 24271}, {16756, 25060}, {16815, 16948}, {16818, 24588}, {17023, 25526}, {17189, 24199}, {18465, 26639}, {19719, 19767}, {19791, 19848}, {26621, 26637}, {26627, 26634}


X(26644) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a^10 - 2 a^6 b^4 + a^2 b^8 + 2 a^8 b c - 2 a^5 b^4 c - 2 a^4 b^5 c + 2 a b^8 c - 6 a^6 b^2 c^2 + 6 a^4 b^4 c^2 - 2 a^2 b^6 c^2 + 2 b^8 c^2 + 4 a^4 b^3 c^3 + 4 a^3 b^4 c^3 - 2 a^6 c^4 - 2 a^5 b c^4 + 6 a^4 b^2 c^4 + 4 a^3 b^3 c^4 + 2 a^2 b^4 c^4 - 2 a b^5 c^4 - 2 b^6 c^4 - 2 a^4 b c^5 - 2 a b^4 c^5 - 2 a^2 b^2 c^6 - 2 b^4 c^6 + a^2 c^8 + 2 a b c^8 + 2 b^2 c^8 : :

X(26644) lies on these lines: {2, 3}, {20172, 26632}


X(26645) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    (a + b) (a + c) (a^7 + a^6 b - 3 a^5 b^2 - a^4 b^3 + 3 a^3 b^4 - a^2 b^5 - a b^6 + b^7 + a^6 c - 2 a^5 b c + a^4 b^2 c + 2 a^3 b^3 c - 3 a^2 b^4 c + b^6 c - 3 a^5 c^2 + a^4 b c^2 - 2 a^3 b^2 c^2 + 4 a^2 b^3 c^2 + a b^4 c^2 - b^5 c^2 - a^4 c^3 + 2 a^3 b c^3 + 4 a^2 b^2 c^3 - b^4 c^3 + 3 a^3 c^4 - 3 a^2 b c^4 + a b^2 c^4 - b^3 c^4 - a^2 c^5 - b^2 c^5 - a c^6 + b c^6 + c^7) : :

X(26645) lies on these lines: {2, 3}, {86, 26635}, {333, 2988}, {7054, 26638}


X(26646) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    (a + b) (a + c) (a^9 - 2 a^5 b^4 + a b^8 + 4 a^7 b c - 2 a^6 b^2 c - 4 a^5 b^3 c + 2 a^4 b^4 c - 2 a^2 b^6 c + 2 b^8 c - 2 a^6 b c^2 - 4 a^5 b^2 c^2 + 2 a^4 b^3 c^2 + 4 a^3 b^4 c^2 - 2 a^2 b^5 c^2 + 2 b^7 c^2 - 4 a^5 b c^3 + 2 a^4 b^2 c^3 + 8 a^3 b^3 c^3 + 4 a^2 b^4 c^3 - 2 b^6 c^3 - 2 a^5 c^4 + 2 a^4 b c^4 + 4 a^3 b^2 c^4 + 4 a^2 b^3 c^4 - 2 a b^4 c^4 - 2 b^5 c^4 - 2 a^2 b^2 c^5 - 2 b^4 c^5 - 2 a^2 b c^6 - 2 b^3 c^6 + 2 b^2 c^7 + a c^8 + 2 b c^8) : :

X(26646) lies on these lines: {2, 3}


X(26647) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    (a + b) (a + c) (a^6 - 2 a^5 b - a^4 b^2 + 2 a^3 b^3 + a^2 b^4 - b^6 - 2 a^5 c - 2 a^4 b c + 2 a^3 b^2 c + 2 a^2 b^3 c - a^4 c^2 + 2 a^3 b c^2 + 2 a^2 b^2 c^2 + b^4 c^2 + 2 a^3 c^3 + 2 a^2 b c^3 + a^2 c^4 + b^2 c^4 - c^6) : :

X(26647) lies on these lines: {2, 3}, {78, 24632}, {81, 348}, {86, 7054}, {284, 307}, {333, 24635}, {1790, 16887}, {2328, 26006}, {4288, 17171}


X(26648) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    7 a^8 - 10 a^6 b^2 + 2 a^2 b^6 + b^8 + 10 a^6 b c - 2 a^5 b^2 c - 8 a^4 b^3 c - 8 a^3 b^4 c - 2 a^2 b^5 c + 10 a b^6 c - 10 a^6 c^2 - 2 a^5 b c^2 + 4 a^4 b^2 c^2 + 4 a^3 b^3 c^2 - 2 a^2 b^4 c^2 - 2 a b^5 c^2 + 8 b^6 c^2 - 8 a^4 b c^3 + 4 a^3 b^2 c^3 + 4 a^2 b^3 c^3 - 8 a b^4 c^3 - 8 a^3 b c^4 - 2 a^2 b^2 c^4 - 8 a b^3 c^4 - 18 b^4 c^4 - 2 a^2 b c^5 - 2 a b^2 c^5 + 2 a^2 c^6 + 10 a b c^6 + 8 b^2 c^6 + c^8 : :

X(26648) lies on these lines: {2, 3}


X(26649) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    3 a^8 - 6 a^6 b^2 + 4 a^4 b^4 - 2 a^2 b^6 + b^8 - 4 a^5 b^2 c + 4 a^4 b^3 c + 4 a^3 b^4 c - 4 a^2 b^5 c - 6 a^6 c^2 - 4 a^5 b c^2 + 8 a^4 b^2 c^2 + 16 a^3 b^3 c^2 + 6 a^2 b^4 c^2 - 4 a b^5 c^2 + 4 a^4 b c^3 + 16 a^3 b^2 c^3 + 16 a^2 b^3 c^3 + 4 a b^4 c^3 + 4 a^4 c^4 + 4 a^3 b c^4 + 6 a^2 b^2 c^4 + 4 a b^3 c^4 - 2 b^4 c^4 - 4 a^2 b c^5 - 4 a b^2 c^5 - 2 a^2 c^6 + c^8 : :

X(26649) lies on these lines: {2, 3}, {941, 26668}, {968, 26006}, {24555, 25058}, {26626, 26635}


X(26650) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a^8 - 2 a^6 b^2 + a^4 b^4 + 2 a^6 b c + 2 a b^6 c - 2 a^6 c^2 + 3 a^4 b^2 c^2 + 2 a^3 b^3 c^2 + 2 a^2 b^4 c^2 + b^6 c^2 + 2 a^3 b^2 c^3 + 2 a^2 b^3 c^3 + a^4 c^4 + 2 a^2 b^2 c^4 - 2 b^4 c^4 + 2 a b c^6 + b^2 c^6 : :

X(26650) lies on these lines: {2, 3}


X(26651) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(57), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    a^5 - a^4 b - a^3 b^2 + a^2 b^3 - a^4 c + 2 a^3 b c - 2 a b^3 c + b^4 c - a^3 c^2 + 4 a b^2 c^2 - b^3 c^2 + a^2 c^3 - 2 a b c^3 - b^2 c^3 + b c^4 : :

X(26651) lies on these lines: {2, 7}, {6, 20905}, {75, 1332}, {86, 16743}, {190, 26669}, {320, 26540}, {321, 17811}, {394, 3187}, {990, 11115}, {1150, 26011}, {1172, 26637}, {2257, 26818}, {2284, 26653}, {3100, 24307}, {3551, 24428}, {3663, 26006}, {3664, 25935}, {3673, 26678}, {3729, 25243}, {4000, 26668}, {4358, 25934}, {4363, 25001}, {4416, 26001}, {4643, 25000}, {5757, 16454}, {6505, 18662}, {7289, 14543}, {10444, 14953}, {10861, 13727}, {14942, 25722}, {16551, 24237}, {17321, 24553}, {17351, 25067}, {17364, 26531}, {17365, 25964}, {20172, 26538}, {26655, 26660}


X(26652) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(649), WHERE A'B'C' = GEMINI TRIANGLE 47

Barycentrics    (b - c) (a^5 - a^3 b^2 + a^3 b c - a^2 b^2 c - a^3 c^2 - a^2 b c^2 - a b^2 c^2 + b^3 c^2 + b^2 c^3) : :

X(26652) lies on these lines: {2, 649}, {512, 24561}, {513, 25981}, {652, 26049}, {693, 26640}, {812, 24560}, {894, 4468}, {4380, 25902}, {4521, 27064}, {4560, 26639}, {4979, 25008}, {9002, 25898}, {17215, 26854}, {17418, 17494}

leftri

Collineation mappings involving Gemini triangle 48: X(26653)-X(26699)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 48, as in centers X(26653)-X(26699). Then

m(X) = a^2 (b + c - a) x + (a - b + c) (a - c)^2 y + (a + b - c) (a - b)^2 z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 2, 2018)


X(26653) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    {1, 2}, {9, 20248}, {41, 21232}, {220, 26563}, {644, 3673}, {664, 26690}, {673, 14923}, {1146, 27132}, {1334, 24249}, {2082, 21272}, {2284, 26651}, {3501, 9317}, {3753, 17683}, {3875, 25880}, {3877, 17681}, {3879, 25966}, {3995, 25894}, {4566, 7131}, {5046, 27129}, {5836, 24596}, {8256, 26007}, {9310, 26229}, {9593, 18600}, {9620, 26978}, {10950, 16593}, {16609, 26265}, {17181, 26074}, {17350, 20089}, {17353, 25719}, {17555, 26585}, {24540, 25971}, {24993, 25878}, {26527, 26582}, {26529, 26590}, {26654, 26667}, {26656, 26686}, {26663, 26670}, {26669, 26671}, {26677, 26685} : :

X(26653) lies on these lines:


X(26654) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^7 - a^6 b - a^3 b^4 + a^2 b^5 - a^6 c + 2 a^3 b^3 c + a^2 b^4 c - 2 a b^5 c - 2 a^2 b^3 c^2 + 2 b^5 c^2 + 2 a^3 b c^3 - 2 a^2 b^2 c^3 + 4 a b^3 c^3 - 2 b^4 c^3 - a^3 c^4 + a^2 b c^4 - 2 b^3 c^4 + a^2 c^5 - 2 a b c^5 + 2 b^2 c^5 : :

X(26654) lies on these lines: {2, 3}, {3934, 25886}, {26653, 26667}, {26657, 26664}, {26658, 26692}


X(26655) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    3 a^7 - 3 a^6 b - 3 a^5 b^2 + 3 a^4 b^3 + a^3 b^4 - a^2 b^5 - a b^6 + b^7 - 3 a^6 c + 4 a^5 b c + a^4 b^2 c - 4 a^3 b^3 c + 3 a^2 b^4 c - b^6 c - 3 a^5 c^2 + a^4 b c^2 + 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 + a b^4 c^2 + b^5 c^2 + 3 a^4 c^3 - 4 a^3 b c^3 - 2 a^2 b^2 c^3 - b^4 c^3 + a^3 c^4 + 3 a^2 b c^4 + a b^2 c^4 - b^3 c^4 - a^2 c^5 + b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26655) lies on these lines: {2, 3}, {26651, 26660}, {26667, 26686}


X(26656) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    2 a^7 - 2 a^6 b - 3 a^5 b^2 + 3 a^4 b^3 + 2 a^3 b^4 - 2 a^2 b^5 - a b^6 + b^7 - 2 a^6 c + 4 a^5 b c + a^4 b^2 c - 6 a^3 b^3 c + 2 a^2 b^4 c + 2 a b^5 c - b^6 c - 3 a^5 c^2 + a^4 b c^2 + 2 a^3 b^2 c^2 + a b^4 c^2 - b^5 c^2 + 3 a^4 c^3 - 6 a^3 b c^3 - 4 a b^3 c^3 + b^4 c^3 + 2 a^3 c^4 + 2 a^2 b c^4 + a b^2 c^4 + b^3 c^4 - 2 a^2 c^5 + 2 a b c^5 - b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26656) lies on these lines: {2, 3}, {26653, 26686}


X(26657) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a (a^4 - a^3 b - a^2 b^2 + a b^3 - a^3 c + a b^2 c - 2 b^3 c - a^2 c^2 + a b c^2 + 2 b^2 c^2 + a c^3 - 2 b c^3) : :

X(26657) lies on these lines: {1, 25903}, {2, 6}, {55, 25279}, {56, 27678}, {105, 25304}, {218, 17364}, {219, 3662}, {220, 6646}, {320, 2911}, {511, 16048}, {651, 26685}, {1100, 25891}, {1278, 4513}, {1332, 4000}, {1350, 17522}, {2256, 17302}, {2284, 26651}, {2323, 17282}, {3564, 14019}, {3713, 17230}, {3888, 7083}, {3917, 25494}, {4361, 26567}, {4435, 26568}, {5782, 17358}, {5783, 17292}, {6180, 17350}, {7232, 17796}, {10449, 25990}, {17288, 23151}, {17792, 26241}, {20818, 27950}, {26654, 26664}, {26663, 26667}, {26669, 26672}


X(26658) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    3 a^4 - 4 a^3 b + b^4 - 4 a^3 c + 6 a^2 b c - 2 b^3 c + 2 b^2 c^2 - 2 b c^3 + c^4 : :

X(26658) lies on these lines: {1, 2}, {7, 9310}, {20, 27129}, {101, 17170}, {193, 25019}, {220, 348}, {277, 24203}, {279, 10025}, {347, 27420}, {664, 6554}, {672, 17081}, {883, 26668}, {944, 17671}, {952, 17675}, {962, 4209}, {2098, 26007}, {3160, 3177}, {3618, 25067}, {5603, 17682}, {5687, 25954}, {6603, 6604}, {9436, 20111}, {9778, 26790}, {17321, 25878}, {23058, 25719}, {24553, 25001}, {25091, 26065}, {25239, 25243}, {26556, 26590}, {26654, 26692}, {26667, 26678}


X(26659) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(45), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^5 - a^4 b - a^3 b^2 + a^2 b^3 - a^4 c + 4 a^3 b c - a^2 b^2 c - 2 a b^3 c + 2 b^4 c - a^3 c^2 - a^2 b c^2 + 6 a b^2 c^2 - 2 b^3 c^2 + a^2 c^3 - 2 a b c^3 - 2 b^2 c^3 + 2 b c^4 : :

X(26659) lies on these lines: {2, 45}, {2284, 26651}, {4459, 26241}, {5220, 25005}, {25934, 26612}


X(26660) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    2 a^4 - 2 a^3 b - a^2 b^2 + b^4 - 2 a^3 c + 4 a^2 b c + a b^2 c - b^3 c - a^2 c^2 + a b c^2 - b c^3 + c^4 : :

X(26660) lies on these lines: {1, 2}, {3057, 24582}, {4188, 27129}, {5886, 17683}, {11376, 24596}, {17044, 26563}, {26651, 26655}, {26678, 26692}, {26686, 26689}


X(26661) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^9 - a^8 b + a^7 b^2 - a^6 b^3 - a^5 b^4 + a^4 b^5 - a^3 b^6 + a^2 b^7 - a^8 c - a^6 b^2 c + 2 a^5 b^3 c + a^4 b^4 c + a^2 b^6 c - 2 a b^7 c + a^7 c^2 - a^6 b c^2 - 2 a^5 b^2 c^2 + a^3 b^4 c^2 - a^2 b^5 c^2 + 2 b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 - a^2 b^4 c^3 + 2 a b^5 c^3 - 2 b^6 c^3 - a^5 c^4 + a^4 b c^4 + a^3 b^2 c^4 - a^2 b^3 c^4 + a^4 c^5 - a^2 b^2 c^5 + 2 a b^3 c^5 - a^3 c^6 + a^2 b c^6 - 2 b^3 c^6 + a^2 c^7 - 2 a b c^7 + 2 b^2 c^7 : :

X(26661) lies on these lines: {2, 3}


X(26662) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^9 - a^8 b + a^7 b^2 - a^6 b^3 - a^5 b^4 + a^4 b^5 - a^3 b^6 + a^2 b^7 - a^8 c - a^6 b^2 c + 2 a^5 b^3 c + a^4 b^4 c + a^2 b^6 c - 2 a b^7 c + a^7 c^2 - a^6 b c^2 - 3 a^5 b^2 c^2 + a^4 b^3 c^2 + 2 a^3 b^4 c^2 - 2 a^2 b^5 c^2 + 2 b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 + a^4 b^2 c^3 - 4 a^3 b^3 c^3 + 2 a b^5 c^3 - 2 b^6 c^3 - a^5 c^4 + a^4 b c^4 + 2 a^3 b^2 c^4 + a^4 c^5 - 2 a^2 b^2 c^5 + 2 a b^3 c^5 - a^3 c^6 + a^2 b c^6 - 2 b^3 c^6 + a^2 c^7 - 2 a b c^7 + 2 b^2 c^7 : :

X(26662) lies on these lines: {2, 3}


X(26663) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^6 - a^5 b - a^3 b^3 + a^2 b^4 - a^5 c + a^2 b^3 c - 2 a b^4 c + a b^3 c^2 + b^4 c^2 - a^3 c^3 + a^2 b c^3 + a b^2 c^3 - 2 b^3 c^3 + a^2 c^4 - 2 a b c^4 + b^2 c^4 : :

X(26663) lies on these lines: {2, 31}, {26653, 26670}, {26657, 26667}


X(26664) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^7 - a^6 b - a^3 b^4 + a^2 b^5 - a^6 c + a^2 b^4 c - 2 a b^5 c + a b^4 c^2 + b^5 c^2 - b^4 c^3 - a^3 c^4 + a^2 b c^4 + a b^2 c^4 - b^3 c^4 + a^2 c^5 - 2 a b c^5 + b^2 c^5 : :

X(26664) lies on these lines: {2, 32}, {26654, 26657}


X(26665) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    b c (2 a^3 - a^2 b + b^3 - a^2 c + 2 a b c - b^2 c - b c^2 + c^3) : :

X(26665) lies on these lines: {1, 24563}, {2, 37}, {6, 3262}, {8, 4008}, {10, 1733}, {19, 21368}, {38, 24997}, {86, 16740}, {92, 26065}, {141, 26573}, {190, 26671}, {193, 322}, {239, 20895}, {287, 651}, {313, 25978}, {594, 26543}, {726, 23689}, {1738, 21935}, {1958, 24334}, {1959, 20258}, {2174, 24324}, {2284, 26651}, {2550, 5086}, {3212, 20348}, {3219, 11683}, {3403, 20911}, {3663, 20881}, {3729, 17861}, {3821, 25010}, {3923, 23690}, {4357, 25007}, {4360, 26639}, {4429, 24433}, {4459, 17792}, {4644, 20930}, {4858, 17353}, {4872, 26789}, {5294, 14213}, {6646, 10030}, {7283, 25906}, {12723, 20556}, {16284, 20080}, {16732, 17351}, {17033, 21422}, {17080, 27338}, {17116, 17741}, {17132, 24208}, {17139, 21853}, {17319, 24559}, {17355, 20236}, {17752, 20436}, {17872, 24996}, {20235, 26678}, {21033, 27492}, {22019, 24224}, {25081, 25589}, {25083, 25241}, {26575, 26578}, {26666, 26676}, {26667, 26679}


X(26666) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    b c (2 a^3 b^2 - 2 a^2 b^2 c - a b^3 c + b^4 c + 2 a^3 c^2 - 2 a^2 b c^2 + 4 a b^2 c^2 - b^3 c^2 - a b c^3 - b^2 c^3 + b c^4) : :

X(26666) lies on these lines: {2, 39}, {26654, 26657}, {26665, 26676}, {26684, 26691}


X(26667) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(55), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    (a^2+b^2-2 b c+c^2) (a^4-2 a^3 b+a^2 b^2-2 a^3 c+4 a^2 b c-2 a b^2 c+a^2 c^2-2 a b c^2+2 b^2 c^2) : :

X(26667) lies on these lines: {2, 11}, {4554, 7123}, {26653, 26654}, {26655, 26686}, {26657, 26663}, {26658, 26678}, {26665, 26679}


X(26668) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(69), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    3 a^5 - 3 a^4 b - 2 a^3 b^2 + 2 a^2 b^3 - a b^4 + b^5 - 3 a^4 c + 4 a^3 b c - b^4 c - 2 a^3 c^2 + 2 a b^2 c^2 + 2 a^2 c^3 - a c^4 - b c^4 + c^5 : :

X(26668) lies on these lines: {2, 6}, {9, 26006}, {184, 26052}, {273, 27382}, {329, 17923}, {572, 14021}, {573, 24580}, {651, 27509}, {692, 11677}, {883, 26658}, {941, 26649}, {1439, 5744}, {1449, 25935}, {1743, 25019}, {1876, 3869}, {2182, 4329}, {2261, 18589}, {2297, 5294}, {2317, 26130}, {2398, 4012}, {3616, 5728}, {4000, 26651}, {4223, 14853}, {5222, 20905}, {5286, 26678}, {5435, 14524}, {5749, 25001}, {5751, 6857}, {5752, 7521}, {5803, 6856}, {13742, 18465}, {17121, 26531}, {17353, 25930}, {19767, 24570}, {24554, 26626}, {26682, 26691}


X(26669) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a (a^3 b - a^2 b^2 - a b^3 + b^4 + a^3 c - 3 a^2 b c + 3 a b^2 c - b^3 c - a^2 c^2 + 3 a b c^2 - a c^3 - b c^3 + c^4) : :

X(26669) lies on these lines: {2, 37}, {9, 77}, {45, 25878}, {100, 4319}, {144, 241}, {190, 26651}, {227, 8165}, {322, 27108}, {404, 990}, {527, 17092}, {883, 26658}, {908, 3668}, {1214, 18228}, {1418, 20059}, {1445, 2324}, {1465, 5328}, {1766, 11349}, {1818, 10394}, {2092, 25004}, {2310, 25722}, {2321, 26001}, {2400, 4130}, {3161, 25083}, {3218, 25934}, {3219, 17811}, {3306, 4328}, {3452, 17080}, {3661, 25000}, {3663, 25076}, {3681, 25941}, {3731, 25065}, {3755, 24982}, {3869, 21371}, {3870, 18216}, {3873, 21346}, {3912, 25019}, {4327, 5253}, {4356, 8582}, {5749, 24553}, {7174, 15839}, {7191, 25893}, {7308, 16577}, {9352, 25938}, {11683, 26265}, {17011, 17825}, {17242, 26531}, {17243, 25964}, {17353, 26006}, {18601, 24556}, {20275, 21320}, {21955, 25973}, {25078, 25097}, {25082, 25101}, {26563, 27282}, {26653, 26671}, {26657, 26672}


X(26670) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a (a^5 - 2 a^3 b^2 + a b^4 - 3 a^3 b c + a^2 b^2 c + a b^3 c - 3 b^4 c - 2 a^3 c^2 + a^2 b c^2 + b^3 c^2 + a b c^3 + b^2 c^3 + a c^4 - 3 b c^4) : :

X(26670) lies on these lines: {2, 6}, {3909, 5324}, {26653, 26663}, {26673, 26692}, {26680, 26685}


X(26671) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^5 - 2 a^4 b + 2 a^2 b^3 - a b^4 - 2 a^4 c + a^3 b c - a^2 b^2 c - a b^3 c - b^4 c - a^2 b c^2 + b^3 c^2 + 2 a^2 c^3 - a b c^3 + b^2 c^3 - a c^4 - b c^4 : :

X(26671) lies on these lines: {2, 6}, {9, 11683}, {44, 25971}, {55, 24752}, {190, 26665}, {220, 27282}, {239, 3965}, {257, 17260}, {322, 8557}, {1043, 25906}, {1100, 24559}, {1376, 25631}, {2245, 8822}, {3692, 20173}, {6180, 27334}, {6554, 26678}, {17273, 26573}, {17285, 26594}, {17289, 25007}, {17348, 25887}, {17353, 20262}, {21677, 23904}, {23693, 24982}, {24612, 27624}, {24757, 25531}, {26653, 26669}, {26675, 26676}


X(26672) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a (a^4 - 2 a^2 b^2 + b^4 - 3 a^2 b c + 4 a b^2 c - 3 b^3 c - 2 a^2 c^2 + 4 a b c^2 + 2 b^2 c^2 - 3 b c^3 + c^4) : :

X(26672) lies on these lines: {1, 2}, {190, 26674}, {1442, 17338}, {9310, 27003}, {15988, 25067}, {21222, 26694}, {26657, 26669}


X(26673) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^5 b - 2 a^4 b^2 + a^3 b^3 + a^5 c - 2 a^4 b c - a^2 b^3 c - 2 a^4 c^2 + 4 a^2 b^2 c^2 - a b^3 c^2 - b^4 c^2 + a^3 c^3 - a^2 b c^3 - a b^2 c^3 + 2 b^3 c^3 - b^2 c^4 : :

X(26673) lies on these lines: {1, 2}, {26657, 26663}, {26670, 26692}


X(26674) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(44), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    2 a^5 - 2 a^4 b - 2 a^3 b^2 + 2 a^2 b^3 - 2 a^4 c + 2 a^3 b c + a^2 b^2 c - 4 a b^3 c + b^4 c - 2 a^3 c^2 + a^2 b c^2 + 6 a b^2 c^2 - b^3 c^2 + 2 a^2 c^3 - 4 a b c^3 - b^2 c^3 + b c^4 : :

X(26674) lies on these lines: {2, 44}, {190, 26672}, {524, 26570}, {2284, 26651}, {6646, 27006}, {26640, 26694}


X(26675) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^6 - a^5 b - a^3 b^3 + a^2 b^4 - a^5 c + a^4 b c - a^3 b^2 c - a b^4 c - a^3 b c^2 + 4 a^2 b^2 c^2 + b^4 c^2 - a^3 c^3 - 2 b^3 c^3 + a^2 c^4 - a b c^4 + b^2 c^4 : :

X(26675) lies on these lines: {2, 31}, {2284, 26651}, {24547, 25878}, {26671, 26676}


X(26676) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    2 a^3 b - 3 a^2 b^2 + b^4 + 2 a^3 c + 3 a b^2 c + b^3 c - 3 a^2 c^2 + 3 a b c^2 - 4 b^2 c^2 + b c^3 + c^4 : :

X(26676) lies on these lines: {1, 2}, {1574, 25888}, {9956, 17672}, {24986, 25971}, {26665, 26666}, {26671, 26675}


X(26677) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    5 a^7 - 5 a^6 b - 3 a^5 b^2 + 3 a^4 b^3 - a^3 b^4 + a^2 b^5 - a b^6 + b^7 - 5 a^6 c + 4 a^5 b c + a^4 b^2 c + 5 a^2 b^4 c - 4 a b^5 c - b^6 c - 3 a^5 c^2 + a^4 b c^2 + 2 a^3 b^2 c^2 - 6 a^2 b^3 c^2 + a b^4 c^2 + 5 b^5 c^2 + 3 a^4 c^3 - 6 a^2 b^2 c^3 + 8 a b^3 c^3 - 5 b^4 c^3 - a^3 c^4 + 5 a^2 b c^4 + a b^2 c^4 - 5 b^3 c^4 + a^2 c^5 - 4 a b c^5 + 5 b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26677) lies on these lines: {2, 3}, {26653, 26685}


X(26678) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^7 - a^6 b - a^3 b^4 + a^2 b^5 - a^6 c + a^5 b c + a^2 b^4 c - a b^5 c + 2 a^3 b^2 c^2 + 2 b^5 c^2 + 2 a b^3 c^3 - 2 b^4 c^3 - a^3 c^4 + a^2 b c^4 - 2 b^3 c^4 + a^2 c^5 - a b c^5 + 2 b^2 c^5 : :

X(26678) lies on these lines: {2, 3}, {169, 16564}, {294, 18299}, {315, 26540}, {318, 26203}, {894, 1446}, {3673, 26651}, {5081, 26153}, {5286, 26668}, {6554, 26671}, {7745, 25964}, {13161, 26006}, {15988, 17499}, {20235, 26665}, {26653, 26663}, {26658, 26667}, {26660, 26692}


X(26679) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^9 - a^8 b + a^7 b^2 - a^6 b^3 - a^5 b^4 + a^4 b^5 - a^3 b^6 + a^2 b^7 - a^8 c - a^6 b^2 c + 2 a^5 b^3 c + a^4 b^4 c + a^2 b^6 c - 2 a b^7 c + a^7 c^2 - a^6 b c^2 - 4 a^5 b^2 c^2 + 2 a^4 b^3 c^2 + 3 a^3 b^4 c^2 - 3 a^2 b^5 c^2 + 2 b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 + 2 a^4 b^2 c^3 - 8 a^3 b^3 c^3 + a^2 b^4 c^3 + 2 a b^5 c^3 - 2 b^6 c^3 - a^5 c^4 + a^4 b c^4 + 3 a^3 b^2 c^4 + a^2 b^3 c^4 + a^4 c^5 - 3 a^2 b^2 c^5 + 2 a b^3 c^5 - a^3 c^6 + a^2 b c^6 - 2 b^3 c^6 + a^2 c^7 - 2 a b c^7 + 2 b^2 c^7 : :

X(26679) lies on these lines: {2, 3}, {26665, 26667}


X(26680) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^9 + 2 a^8 b - 2 a^7 b^2 - 4 a^6 b^3 + 2 a^5 b^4 + 2 a^4 b^5 - 2 a^3 b^6 + a b^8 + 2 a^8 c - 3 a^7 b c - 3 a^6 b^2 c + 3 a^5 b^3 c + a^4 b^4 c + 3 a^3 b^5 c - a^2 b^6 c - 3 a b^7 c + b^8 c - 2 a^7 c^2 - 3 a^6 b c^2 + 2 a^5 b^2 c^2 + a^4 b^3 c^2 + a^2 b^5 c^2 + b^7 c^2 - 4 a^6 c^3 + 3 a^5 b c^3 + a^4 b^2 c^3 - 10 a^3 b^3 c^3 + 3 a b^5 c^3 - b^6 c^3 + 2 a^5 c^4 + a^4 b c^4 - 2 a b^4 c^4 - b^5 c^4 + 2 a^4 c^5 + 3 a^3 b c^5 + a^2 b^2 c^5 + 3 a b^3 c^5 - b^4 c^5 - 2 a^3 c^6 - a^2 b c^6 - b^3 c^6 - 3 a b c^7 + b^2 c^7 + a c^8 + b c^8 : :

X(26680) lies on these lines: {2, 3}, {26670, 26685}


X(26681) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^10 - 2 a^6 b^4 + a^2 b^8 + a^8 b c - 3 a^7 b^2 c - 3 a^6 b^3 c + 5 a^5 b^4 c + 3 a^4 b^5 c - a^3 b^6 c - a^2 b^7 c - a b^8 c - 3 a^7 b c^2 - 2 a^6 b^2 c^2 + a^5 b^3 c^2 + 2 a^4 b^4 c^2 + 3 a^3 b^5 c^2 - 2 a^2 b^6 c^2 - a b^7 c^2 + 2 b^8 c^2 - 3 a^6 b c^3 + a^5 b^2 c^3 - 2 a^4 b^3 c^3 - 6 a^3 b^4 c^3 + a^2 b^5 c^3 + a b^6 c^3 - 2 a^6 c^4 + 5 a^5 b c^4 + 2 a^4 b^2 c^4 - 6 a^3 b^3 c^4 + 2 a^2 b^4 c^4 + a b^5 c^4 - 2 b^6 c^4 + 3 a^4 b c^5 + 3 a^3 b^2 c^5 + a^2 b^3 c^5 + a b^4 c^5 - a^3 b c^6 - 2 a^2 b^2 c^6 + a b^3 c^6 - 2 b^4 c^6 - a^2 b c^7 - a b^2 c^7 + a^2 c^8 - a b c^8 + 2 b^2 c^8 : :

X(26681) lies on these lines: {2, 3}


X(26682) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    7 a^7 - 7 a^6 b - 3 a^5 b^2 + 3 a^4 b^3 - 3 a^3 b^4 + 3 a^2 b^5 - a b^6 + b^7 - 7 a^6 c + 4 a^5 b c + a^4 b^2 c + 4 a^3 b^3 c + 7 a^2 b^4 c - 8 a b^5 c - b^6 c - 3 a^5 c^2 + a^4 b c^2 + 2 a^3 b^2 c^2 - 10 a^2 b^3 c^2 + a b^4 c^2 + 9 b^5 c^2 + 3 a^4 c^3 + 4 a^3 b c^3 - 10 a^2 b^2 c^3 + 16 a b^3 c^3 - 9 b^4 c^3 - 3 a^3 c^4 + 7 a^2 b c^4 + a b^2 c^4 - 9 b^3 c^4 + 3 a^2 c^5 - 8 a b c^5 + 9 b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26682) lies on these lines: {2, 3}, {26668, 26691}


X(26683) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    3 a^7 - 3 a^6 b - 3 a^5 b^2 + 3 a^4 b^3 + a^3 b^4 - a^2 b^5 - a b^6 + b^7 - 3 a^6 c + 2 a^5 b c + a^4 b^2 c + 3 a^2 b^4 c - 2 a b^5 c - b^6 c - 3 a^5 c^2 + a^4 b c^2 - 2 a^3 b^2 c^2 - 6 a^2 b^3 c^2 + a b^4 c^2 + b^5 c^2 + 3 a^4 c^3 - 6 a^2 b^2 c^3 + 4 a b^3 c^3 - b^4 c^3 + a^3 c^4 + 3 a^2 b c^4 + a b^2 c^4 - b^3 c^4 - a^2 c^5 - 2 a b c^5 + b^2 c^5 - a c^6 - b c^6 + c^7 : :

X(26683) lies on these lines: {2, 3}, {883, 26658}


X(26684) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^7 - a^6 b - a^5 b^2 + a^4 b^3 - a^6 c + a^4 b^2 c - 2 a^3 b^3 c + 2 a^2 b^4 c - 2 a b^5 c - a^5 c^2 + a^4 b c^2 + a^3 b^2 c^2 - a^2 b^3 c^2 + a b^4 c^2 + b^5 c^2 + a^4 c^3 - 2 a^3 b c^3 - a^2 b^2 c^3 - b^4 c^3 + 2 a^2 b c^4 + a b^2 c^4 - b^3 c^4 - 2 a b c^5 + b^2 c^5 : :

X(26684) lies on these lines: {2, 3}, {26666, 26691}


X(26685) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(7), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    3 a^2 - 2 a b + b^2 - 2 a c + c^2 : :

X(26685) lies on these lines: {1, 4899}, {2, 7}, {6, 344}, {8, 238}, {10, 5395}, {37, 3618}, {41, 17696}, {44, 69}, {45, 3589}, {56, 25879}, {72, 13742}, {100, 7083}, {141, 16885}, {145, 3717}, {169, 27059}, {190, 4000}, {192, 3161}, {193, 1743}, {198, 21495}, {239, 346}, {281, 458}, {319, 17342}, {320, 17341}, {345, 4383}, {391, 3661}, {404, 24320}, {524, 17267}, {597, 16777}, {651, 26657}, {883, 26658}, {899, 1716}, {962, 6211}, {966, 17289}, {984, 3616}, {1104, 1265}, {1212, 25099}, {1278, 4402}, {1405, 5933}, {1453, 20009}, {1654, 17358}, {1738, 24280}, {1766, 26998}, {1992, 4851}, {2183, 26041}, {2287, 16050}, {2325, 3875}, {2345, 17277}, {2347, 22370}, {2478, 26939}, {2550, 4676}, {2899, 5230}, {3008, 3729}, {3217, 20769}, {3220, 4188}, {3271, 25304}, {3617, 3883}, {3619, 4643}, {3620, 3973}, {3621, 4901}, {3622, 7174}, {3629, 17311}, {3663, 20073}, {3672, 17261}, {3686, 17286}, {3707, 17270}, {3718, 4358}, {3730, 27299}, {3731, 17023}, {3758, 4648}, {3759, 17264}, {3763, 17332}, {3836, 24695}, {3876, 17526}, {3879, 16670}, {3888, 9309}, {3945, 17120}, {3950, 16834}, {3952, 26228}, {4078, 16475}, {4339, 7787}, {4361, 17340}, {4363, 17337}, {4370, 17262}, {4384, 17355}, {4419, 16706}, {4429, 5698}, {4431, 16833}, {4440, 4488}, {4461, 17117}, {4470, 4751}, {4480, 4862}, {4641, 18141}, {4644, 17234}, {4657, 16814}, {4660, 4759}, {4699, 7229}, {4748, 17307}, {4869, 17266}, {4969, 17309}, {5232, 17292}, {5308, 17379}, {5817, 13727}, {5819, 26582}, {5838, 20533}, {5839, 17233}, {6210, 26029}, {6329, 16884}, {6554, 26671}, {6687, 17278}, {7277, 17313}, {7406, 10445}, {9441, 9801}, {9778, 26047}, {9780, 25611}, {10327, 17127}, {11008, 17374}, {14001, 25066}, {15828, 17304}, {16020, 24349}, {16517, 16826}, {16552, 27248}, {16675, 17045}, {16831, 25072}, {16989, 27538}, {17014, 17319}, {17033, 27523}, {17232, 20072}, {17249, 26104}, {17256, 17371}, {17258, 17370}, {17259, 17369}, {17265, 17365}, {17268, 17363}, {17269, 17362}, {17275, 17359}, {17276, 17356}, {17281, 17348}, {17283, 17347}, {17285, 17346}, {17290, 17334}, {17293, 17330}, {17296, 20080}, {17344, 21356}, {20262, 25007}, {21390, 23828}, {24509, 26752}, {24890, 25659}, {26364, 27528}, {26653, 26677}, {26670, 26680}, {26772, 27021}, {27060, 27063}

X(26685) = anticomplement of X(17282)


X(26686) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(12), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    2 a^4 - a^2 b^2 + b^4 + 2 a^2 b c - a^2 c^2 + c^4 : :

X(26686) lies on these lines: {1, 7807}, {2, 12}, {3, 26590}, {10, 17694}, {11, 384}, {36, 6656}, {55, 16925}, {140, 27020}, {172, 325}, {192, 7891}, {230, 1909}, {287, 26955}, {330, 7806}, {350, 7789}, {404, 26582}, {496, 8369}, {499, 7770}, {594, 24384}, {609, 7762}, {620, 1500}, {754, 9341}, {894, 17095}, {1003, 1479}, {1015, 6680}, {1055, 24995}, {1478, 7887}, {2242, 3788}, {2275, 7792}, {2886, 16915}, {3035, 26752}, {3086, 14001}, {3295, 11288}, {3552, 6284}, {3582, 6661}, {3583, 19687}, {3816, 16916}, {3925, 16917}, {4293, 14064}, {4299, 7841}, {4316, 19695}, {4324, 8598}, {4400, 22329}, {5025, 7354}, {5204, 7791}, {5326, 16923}, {5432, 7907}, {6390, 25264}, {6655, 15326}, {7173, 16044}, {7181, 7187}, {7267, 16886}, {7280, 8356}, {7483, 27255}, {7741, 8370}, {7819, 15325}, {7844, 9651}, {7851, 9597}, {7862, 9650}, {8361, 18990}, {9655, 11318}, {10349, 10802}, {10352, 10799}, {10527, 20172}, {10591, 14033}, {10896, 14035}, {11321, 26363}, {11680, 16919}, {12943, 14063}, {13586, 15338}, {13747, 27091}, {26653, 26656}, {26655, 26667}, {26660, 26689}, {26755, 27027}


X(26687) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(56), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^4 + a^2 b^2 - 2 a b^2 c + a^2 c^2 - 2 a b c^2 + 2 b^2 c^2 : :

X(26687) lies on these lines: {2, 12}, {3, 27091}, {4, 26582}, {6, 6376}, {8, 17541}, {9, 3503}, {10, 7770}, {32, 27076}, {55, 16916}, {100, 16920}, {183, 4426}, {220, 17743}, {239, 341}, {335, 17054}, {384, 1376}, {405, 27020}, {458, 25007}, {668, 16502}, {899, 11339}, {956, 26959}, {964, 27026}, {993, 11285}, {1001, 16918}, {1003, 25440}, {1011, 27035}, {1107, 11174}, {1191, 17752}, {1478, 17670}, {1573, 7808}, {1574, 3734}, {1575, 1975}, {1616, 10027}, {1698, 11321}, {2478, 26590}, {2886, 16924}, {3035, 16925}, {3814, 7887}, {3820, 7819}, {3912, 11353}, {3913, 4366}, {3975, 4383}, {4386, 25107}, {4413, 16915}, {4462, 26697}, {5217, 17692}, {5552, 26629}, {6381, 7754}, {6554, 26671}, {7773, 20541}, {7807, 26364}, {9708, 17030}, {9709, 11286}, {9711, 16898}, {9780, 17686}, {11108, 27255}, {11319, 27025}, {11320, 27044}, {13741, 27248}, {16781, 24524}, {17540, 17757}, {17681, 27299}, {17691, 26029}, {17738, 24440}, {26653, 26654}


X(26688) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(57), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a^3 + a^2 b + a^2 c - 4 a b c + b^2 c + b c^2 : :

X(26688) lies on these lines: {2, 7}, {31, 24003}, {192, 17020}, {321, 17119}, {614, 3952}, {748, 26227}, {899, 4011}, {936, 11319}, {1215, 17125}, {1332, 18743}, {1722, 25253}, {1836, 24988}, {1997, 24597}, {1999, 14997}, {2999, 3995}, {3187, 4358}, {3550, 9458}, {3740, 24552}, {3749, 17780}, {3873, 25531}, {3876, 13741}, {3891, 4009}, {4080, 23681}, {4414, 6686}, {4672, 17124}, {4679, 4972}, {4723, 16483}, {5044, 5192}, {5205, 17127}, {5272, 17165}, {5329, 26262}, {5423, 19993}, {5438, 17539}, {5440, 11346}, {5573, 17154}, {5741, 17279}, {7191, 27538}, {12527, 25881}, {17022, 19717}, {17147, 25268}, {17495, 23511}, {17671, 26589}, {20076, 25879}, {26653, 26654}


X(26689) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(65), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    2 a^3 b + 2 a^3 c - 2 a^2 b c - a b^2 c + b^3 c - a b c^2 + b c^3 : :

X(26689) lies on these lines: {2, 65}, {72, 27097}, {210, 26759}, {321, 16827}, {392, 26965}, {748, 16822}, {883, 26658}, {894, 24557}, {1201, 17755}, {2176, 3263}, {3752, 25248}, {3876, 27248}, {3877, 27299}, {4358, 17033}, {4676, 16919}, {5057, 17680}, {15254, 16931}, {16910, 24703}, {25895, 27624}, {26653, 26654}, {26660, 26686}


X(26690) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(85), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a (a^2 b - 2 a b^2 + b^3 + a^2 c + a b c - 2 a c^2 + c^3) : :

X(26690) lies on these lines: {1, 644}, {2, 85}, {6, 27396}, {8, 25066}, {9, 604}, {37, 3622}, {39, 4850}, {75, 25244}, {78, 16572}, {100, 2082}, {145, 3693}, {169, 404}, {218, 4511}, {269, 25880}, {304, 27109}, {312, 26770}, {346, 1108}, {355, 26074}, {664, 26653}, {672, 3061}, {883, 26658}, {894, 24554}, {910, 4188}, {934, 7131}, {982, 23649}, {1018, 3885}, {1146, 25005}, {1334, 3890}, {1475, 3873}, {1743, 25078}, {1759, 5030}, {2170, 3501}, {2275, 26242}, {3039, 6691}, {3207, 4881}, {3208, 14439}, {3218, 5022}, {3241, 3991}, {3616, 16601}, {3617, 4875}, {3621, 4515}, {3668, 25966}, {3681, 21384}, {3730, 3877}, {3868, 4253}, {3876, 16552}, {3889, 3970}, {3897, 16788}, {3959, 20331}, {4073, 20978}, {4190, 5819}, {4193, 5179}, {4358, 27523}, {4534, 8256}, {4676, 5701}, {4687, 27058}, {5086, 24247}, {5120, 5279}, {5222, 25083}, {5262, 9605}, {5283, 11342}, {5540, 25440}, {7123, 16502}, {7288, 26258}, {7291, 21477}, {8568, 24982}, {8666, 17744}, {9311, 21272}, {9780, 25068}, {11115, 16699}, {16284, 27096}, {16728, 18600}, {17092, 17282}, {17141, 26065}, {17451, 17754}, {17745, 22836}, {20905, 27334}, {24540, 27420}, {24547, 26059}, {25237, 26964}, {25261, 27146}


X(26691) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    (a - b) (a - c) (a^5 - a^3 b^2 - a^3 b c - a^2 b^2 c + 2 b^4 c - a^3 c^2 - a^2 b c^2 - 2 b^3 c^2 - 2 b^2 c^3 + 2 b c^4) : :

X(26691) lies on these lines: {2, 99}, {190, 26693}, {1577, 5546}, {4366, 26572}, {4558, 15455}, {26666, 26684}, {26668, 26682}, {26692, 26698}


X(26692) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(100), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    (a - b) (a - c) (a^4 - a^3 b + a^2 b^2 - a b^3 - a^3 c - 2 a^2 b c + a b^2 c + 2 b^3 c + a^2 c^2 + a b c^2 - 4 b^2 c^2 - a c^3 + 2 b c^3) : :

X(26692) lies on these lines: {2, 11}, {644, 26693}, {1332, 26696}, {26654, 26658}, {26660, 26678}, {26670, 26673}, {26691, 26698}


X(26693) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(101), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    (a - b) (a - c) (a^5 - a^4 b + a^2 b^3 - a b^4 - a^4 c - a^2 b^2 c + a b^3 c + b^4 c - a^2 b c^2 - b^3 c^2 + a^2 c^3 + a b c^3 - b^2 c^3 - a c^4 + b c^4) : :

X(26693) lies on these lines: {2, 101}, {6, 26572}, {190, 26691}, {644, 26692}, {18047, 26698}, {21859, 24562}


X(26694) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(649), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    (b - c) (a^5 - a^3 b^2 - 3 a^3 b c + 3 a^2 b^2 c - a^3 c^2 + 3 a^2 b c^2 - 5 a b^2 c^2 + b^3 c^2 + b^2 c^3) : :

X(26694) lies on these lines: {2, 649}, {652, 27139}, {3676, 27064}, {21222, 26672}, {26640, 26674}


X(26695) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(650), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    b c (b - c) (5 a^3 - 5 a^2 b - a b^2 + b^3 - 5 a^2 c + 6 a b c - b^2 c - a c^2 - b c^2 + c^3) : :

X(26695) lies on these lines: {2, 650}, {812, 25955}, {3126, 15283}, {3835, 25900}, {4369, 25924}, {4379, 26017}, {4397, 20315}, {4811, 8062}, {4874, 25926}, {5084, 8760}, {7658, 17896}, {11934, 26105}, {20905, 23757}, {21438, 26591}, {26640, 26674}


X(26696) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(662), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    (a - b) (a - c) (a^6 - a^4 b^2 + a^3 b^3 - a b^5 - a^4 b c - 2 a^3 b^2 c + 2 a b^4 c + b^5 c - a^4 c^2 - 2 a^3 b c^2 - a b^3 c^2 + a^3 c^3 - a b^2 c^3 - 2 b^3 c^3 + 2 a b c^4 - a c^5 + b c^5) : :

X(26696) lies on these lines: {2, 662}, {190, 26691}, {1332, 26692}


X(26697) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(667), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    (b - c) (a^6 - a^5 b + a^4 b^2 - a^3 b^3 - a^5 c + a^4 b c - 3 a^3 b^2 c + 3 a^2 b^3 c + a^4 c^2 - 3 a^3 b c^2 + 3 a^2 b^2 c^2 - 3 a b^3 c^2 - a^3 c^3 + 3 a^2 b c^3 - 3 a b^2 c^3 + 2 b^3 c^3) : :

X(26697) lies on these lines: {2, 667}, {3309, 17541}, {4462, 26687}


X(26698) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(668), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a (a - b) (a - c) (a^2 b^2 - b^4 - 3 a^2 b c + a b^2 c + 2 b^3 c + a^2 c^2 + a b c^2 - 2 b^2 c^2 + 2 b c^3 - c^4) : :

X(26698) lies on these lines: {2, 668}, {106, 25920}, {644, 905}, {1252, 6516}, {4767, 25925}, {8671, 14419}, {18047, 26693}, {26691, 26692}


X(26699) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(894), WHERE A'B'C' = GEMINI TRIANGLE 48

Barycentrics    a (a^4 - 2 a^3 b + 2 a b^3 - b^4 - 2 a^3 c + 3 a^2 b c - 2 a b^2 c - b^3 c - 2 a b c^2 + 2 b^2 c^2 + 2 a c^3 - b c^3 - c^4) : :

X(26699) lies on these lines: {2, 7}, {6, 26639}, {37, 1332}, {72, 25906}, {190, 26665}, {193, 8557}, {1994, 16470}, {2183, 26998}, {3729, 24209}, {3935, 4073}, {4672, 24563}, {5554, 27549}, {15492, 25887}, {16062, 26878}, {16814, 25099}, {17120, 24559}, {17261, 25245}, {17277, 26538}, {17280, 26594}, {17332, 26543}, {17355, 25007}, {20360, 25024}, {21061, 24090}, {26657, 26669}

leftri

Circumcirle-X-antipodes: X(26700)-X(26717)

rightri

Let C(P) be the circumconic with perspector P = p : q : r (barycentrics), and let U = u : v : w and F = f : g : h be distinct points, with U on C(P). Let U* be the point, other than U, that lies on C(P) and on the line FU. Then

U* = u^2 q r (h v p + f w q + f v r) (g w p + f w q + f v r) : :

If P = X(6), then C(P) is the circumcircle; in this case, the point U* is here named the circumcircle-F-antipode of U, given by

U* = b^2 c^2 u^2 (a^2 h v + f w b^2 + v c^2)(a^2 g w + f w b^2 + v c^2) : :

Note that the circumcircle-X(3)-antipode of U is the ordinary antipode of U.

Circumcircle-X(1)-antipodes:

{74, 26700}, {99, 741}, {100, 106}, {101, 105}, {102, 108}, {103, 934}, {104, 109}, {107, 26701}{110, 759}, {111, 8691}, {112, 26702}, {689, 719}, {705, 9065}, {727, 932}, {731, 789}, {753, 13396}, {761, 825}, {813, 14665}, {840, 1308}, {898, 2382}, {901, 2718}, {919, 2725}, {927, 12032}, {953, 2222}, {1292, 1477}, {1293, 8686}, {1295, 8059}, {1381, 1382}, {2291, 14074}, {2716, 2720}, {2717, 14733}, {2748, 9097}, {6079, 12029}, {7597, 13444}

Circumcircle-X(2)-antipodes:

{74, 1302}, {98, 110}, {99, 111}, {100, 105}, {101, 675}, {102, 9056}, {103, 9057}, {104, 9058}, {106, 9059}, {107, 1297}, {108, 26703}, {109, 1311}, {112, 2373}, {476, 842}, {477, 9060}, {689, 733}, {691, 2770}, {699, 3222}, {703, 9062}, {707, 9063}, {721, 9065}, {729, 9066}, {739, 9067}, {743, 789}, {753, 9068}, {755, 9069}, {759, 9070}, {761, 9071}, {767, 9072}, {813, 9073}, {815, 9074}, {825, 9075}, {827, 9076}, {831, 9077}, {833, 9078}, {839, 9079}, {843, 9080}, {898, 9081}, {901, 2726}, {919, 2862}, {925, 3563}, {930, 5966}, {932, 9082}, {1113, 1114}, {1290, 2752}, {1292, 9061}, {1293, 9083}, {1294, 9064}, {1295, 9107}, {1296, 9084}, {1304, 2697}, {1305, 9085}, {2291, 9086}, {2367, 9087}, {2370, 9088}, {2374, 3565}, {2384, 9089}, {2696, 10102}, {2715, 2857}, {2856, 9090}, {2858, 14659}, {2868, 9091}, {3067, 9092}, {4588, 9093}, {5970, 9150}, {6013, 9094}, {6014, 9095}, {6015, 9096}, {6079, 9097}, {6082, 9136}, {6135, 9098}, {6136, 9099}, {6323, 9100}, {6325, 11636}, {6572, 9101}, {6579, 9102}, {8652, 9103}, {8686, 9104}, {8694, 9105}, {8698, 9106}, {8701, 9108}, {8706, 9109}, {8708, 9110}, {8709, 9111}, {13397, 15344}

Circumcircle-X(3)-antipodes:

{74, 110}, {98, 99}, {100, 104}, {101, 103}, {102, 109}, {105, 1292}, {106, 1293}, {107, 1294}, {108, 1295}, {111, 1296}, {112, 1297}, {476, 477}, {691, 842}, {741, 6010}, {759, 6011}, {805, 2698}, {813, 12032}, {840, 2742}, {841, 9060}, {843, 2709}, {901, 953}, {915, 13397}, {917, 1305}, {925, 1300}, {927, 2724}, {929, 2723}, {930, 1141}, {932, 15323}, {933, 18401}, {934, 972}, {935, 2697}, {1113, 1114}, {1290, 2687}, {1291, 14979}, {1298, 1303}, {1299, 13398}, {1301, 5897}, {1304, 2693}, {1308, 2717}, {1309, 2734}, {1379, 1380}, {1381, 1382}, {2222, 2716}, {2374, 20187}, {2378, 9202}, {2379, 9203}, {2383, 20185}, {2688, 2690}, {2689, 2695}, {2691, 2752}, {2692, 2758}, {2694, 2766}, {2696, 2770}, {2699, 2703}, {2700, 2702}, {2701, 2708}, {2704, 2711}, {2705, 2712}, {2706, 2713}, {2707, 2714}, {2710, 2715}, {2718, 2743}, {2719, 2744}, {2720, 2745}, {2721, 2746}, {2722, 2747}, {2725, 2736}, {2726, 2737}, {2727, 2738}, {2728, 2739}, {2729, 2740}, {2730, 2751}, {2731, 2757}, {2732, 2762}, {2733, 2765}, {2735, 2768}, {3563, 3565}, {3659, 7597}, {5606, 5951}, {6082, 6093}, {6233, 6323}, {6236, 6325}, {9160, 9161}, {9831, 13241}, {10425, 23700}, {11636, 14388}, {12092, 22751}, {12507, 13238}, {13593, 13594}, {13597, 20189}, {14074, 15731}, {14719, 14720}, {16169, 16170}

Circumcircle-X(4)-antipodes:

{74, 107}, {98, 112}, {99, 3563}, {100, 915}, {101, 917}, {102, 26704}, {103, 26705}, {104, 108}, {105, 26706}, {110, 1300}, {477, 1304}, {842, 935}, {925, 1299}, {930, 2383}, {933, 1141}, {953, 1309}, {1113, 1114}, {1289, 1297}, {1292, 15344}, {1294, 1301}, {1296, 2374}, {2687, 2766}, {2693, 22239}, {2697, 10423}, {2698, 22456}, {2752, 10101}, {2770, 10098}, {18401, 20626}

Circumcircle-X(5)-antipodes:

{98, 827}, {99, 5966}, {100, 26797}, {101,26708}, {102,26709}, {103, 26710}, {104, 26711}, {105, 26712}, {106, 26713}, {107, 18401}, {110, 1141}, {476, 14979}, {477, 16166}, {842, 1287}, {925, 2383}, {1113, 1114}

Circumcircle-X(6)-antipodes:

{74, 112}, {98, 26714}, {99, 729}, {100, 739}, {101, 106}, {102, 26715}, {103, 26716}, {105, 8693}, {107, 26717}, {109, 2291}, {110, 111}, {689, 703}, {691, 843}, {699, 25424}, {717, 789}, {753, 825}, {755, 827}, {805, 5970}, {813, 2382}, {840, 919}, {842, 2715}, {901, 2384}, {1293, 17222}, {1379, 1380}, {2378, 5995}, {2379, 5994}, {2380, 16806}, {2381, 16807}, {2702, 2712}, {2709, 9136}, {3222, 6380}, {6078, 9097}, {6323, 11636}, {8694, 17223}, {8696, 8697}, {8700, 8701}, {10425, 14659}, {11651, 11652}

Circumcircle-X(7)-antipodes:

{100, 15728}, {101, 2369}, {104, 934}, {105, 6183}, {109, 675}, {840, 927}, {2720, 2861}, {2723, 24016}

Circumcircle-X(8)-antipodes: {100, 104}, {101, 1311}, {109, 2370}, {901, 2757}, {1309, 2745}
Circumcircle-X(9)-antipodes: {100, 2291}, {101, 104}, {813, 2726}, {919, 2751}, {934, 2371}
Circumcircle-X(10)-antipodes: {98, 101}, {100, 759}, {106, 8706}, {110, 2372}, {901, 2758}, {929, 2708}
Circumcircle-X(11)-antipodes: {100, 105}, {104, 108}, {110, 19628}
Circumcircle-X(12)-antipodes: {109, 2372}, {2222, 12030}
Circumcircle-X(13)-antipodes: {74, 5618}, {98, 5995}, {99, 2381}, {476, 2379}, {1141, 16806}
Circumcircle-X(14)-antipodes: {74, 5619}, {98, 5994}, {99, 2380}, {476, 2378}, {1141, 16807}
Circumcircle-X(15)-antipodes: {74, 5995}, {110, 2378}, {111, 9202}, {691, 2379}, {842, 5994}, {843, 9203}, {1379, 1380}, {2380, 10409}
Circumcircle-X(16)-antipodes: {74, 5994}, {110, 2379}, {111, 9203}, {691, 2378}, {842, 5995}, {843, 9202}, {1379, 1380}, {2381, 10410}
Circumcircle-X(17)-antipodes: {98, 16806}, {930, 2381}
Circumcircle-X(18)-antipodes: {98, 16807}, {930, 2380}
Circumcircle-X(19)-antipodes: {100, 9085}, {101, 915}, {107, 2249}, {108, 2291}, {109, 20624}, {112, 759}

Circumcircle-X(20)-antipodes: {20, {{74, 925}, {98, 3565}, {99, 1297}, {100, 1295}, {103, 1305}, {104, 13397}, {107, 5897}, {110, 1294}, {111, 20187}, {476, 2693}, {477, 10420}, {691, 2697}, {841, 16167}, {901, 2734}, {930, 18401}, {1113, 1114}, {1141, 20185}, {1290, 2694}, {1293, 2370}, {1296, 2373}, {1300, 13398}

Circumcircle-X(21)-antipodes: {99, 105}, {100, 759}, {104, 110}, {107, 1295}, {476, 2687}, {691, 2752}, {741, 932}, {915, 925}, {1113, 1114}, {1290, 12030}, {1296, 9061}, {1304, 2694}, {3565, 15344}, {8686, 8690}

Circumcircle-X(22)-antipodes: {98, 925}, {99, 2373}, {105, 13397}, {110, 1297}, {111, 3565}, {476, 2697}, {477, 16167}, {675, 1305}, {842, 10420}, {1113, 1114}, {1294, 1302}, {1295, 9058}, {2370, 9059}, {2693, 9060}, {3563, 13398}, {5897, 9064}, {5966, 20185}, {9084, 20187}

Circumcircle-X(23)-antipodes: {74, 9060}, {98, 476}, {99, 2770}, {100, 2752}, {105, 1290}, {107, 2697}, {110, 842}, {111, 691}, {477, 1302}, {675, 2690}, {935, 2373}, {1113, 1114}, {1287, 9076}, {1291, 5966}, {1296, 10102}, {1297, 1304}, {1300, 16167}, {1311, 2689}, {2687, 9058}, {2688, 9057}, {2691, 9061}, {2692, 9083}, {2693, 9064}, {2694, 9107}, {2695, 9056}, {2696, 9084}, {2758, 9059}, {3563, 10420}, {9070, 12030}, {20185, 23096}

Circumcircle-X(24)-antipodes: {74, 1301}, {98, 1289}, {107, 1300}, {108, 915}, {110, 1299}, {112, 3563}, {477, 22239}, {842, 10423}, {933, 2383}, {1113, 1114}, {1141, 20626}

Circumcircle-X(25)-antipodes: {74, 9064}, {98, 107}, {99, 2374}, {100, 15344}, {101, 9085}, {104, 9107}, {105, 108}, {106, 9088}, {110, 3563}, {111, 112}, {842, 1304}, {915, 9058}, {917, 9057}, {933, 5966}, {935, 2770}, {1113, 1114}, {1289, 2373}, {1291, 23096}, {1297, 1301}, {1300, 1302}, {1309, 2726}, {2697, 22239}, {2752, 2766}, {10098, 10102}

Circumcircle-X(26)-antipodes: {98, 1286}, {1113, 1114}

Circumcircle-X(27)-antipodes: {99, 9085}, {103, 107}, {110, 917}, {112, 675}, {1113, 1114}, {1304, 2688}

Circumcircle-X(28)-antipodes: {99, 15344}, {104, 107}, {105, 112}, {108, 759}, {110, 915}, {935, 2752}, {1113, 1114}, {1295, 1301}, {1304, 2687}, {2694, 22239}, {2766, 12030}

Circumcircle-X(29)-antipodes: {102, 107}, {112, 1311}, {1113, 1114}, {1304, 2695}

This preamble was contributed by Clark Kimberling (definitions and presentation) and Peter Moses (formulas and centers), November 2, 2018.


X(26700) =  CIRCUMCIRCLE-(X(1))-ANTIPODE OF X(74)

Barycentrics    a*(a - b)*(a - c)*(a + b - c)*(a - b + c)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + a*c + c^2) : :

X(26700) lies on these lines: {1, 74}, {35, 5951}, {36, 2687}, {56, 759}, {57, 2611}, {79, 104}, {100, 4458}, {102, 1385}, {103, 354}, {105, 5322}, {110, 9811}, {162, 1304}, {226, 14844}, {265, 12773}, {554, 11705}, {651, 8652}, {739, 16488}, {842, 18593}, {972, 8606}, {1020, 15439}, {1081, 11706}, {1108, 2160}, {1295, 11012}, {1414, 6578}, {1429, 2711}, {1464, 14158}, {2716, 22765}, {4551, 8701}, {5427, 12030}, {8707, 15455}, {20219, 23890}

X(26700) = isogonal conjugate of X(35057)
X(26700) = cevapoint of X(i) and X(j) for these {i,j}: {56, 4017}, {513, 32636}, {523, 27555}
X(26700) = crosssum of X(1) and X(9904)
X(26700) = trilinear pole of line X(6)X(1406)
X(26700) = Ψ(X(6), X(1406))
X(26700) = Λ(X(1), X(656))
X(26700) = Ψ(X(1), X(30))
X(26700) = Ψ(X(4), X(79))
X(26700) = X(14656)-of-intouch-triangle


X(26701) =  CIRCUMCIRCLE-(X(1))-ANTIPODE OF X(107)

Barycentrics    a^2*(a + b)*(a + c)*(-(a^4*b^2) + 2*a^2*b^4 - b^6 + a^5*c + 2*a^3*b^2*c - 3*a*b^4*c - 2*a^2*b^2*c^2 + 2*b^4*c^2 - 2*a^3*c^3 + 2*a*b^2*c^3 - b^2*c^4 + a*c^5)*(a^5*b - 2*a^3*b^3 + a*b^5 - a^4*c^2 + 2*a^3*b*c^2 - 2*a^2*b^2*c^2 + 2*a*b^3*c^2 - b^4*c^2 + 2*a^2*c^4 - 3*a*b*c^4 + 2*b^2*c^4 - c^6) : :
Trilinears    1/(b (tan A - tan B) + c (tan A - tan C)) : :
Trilinears    1/((b + c) tan A - b tan B - c tan C)) : :

X(26701) lies on these lines: {1, 107}, {36, 2719}, {48, 112}, {56, 1363}, {58, 8059}, {73, 108}, {99, 326}, {100, 1816}, {101, 3990}, {109, 2360}, {110, 255}, {336, 22456}, {933, 2169}, {1113, 2585}, {1114, 2584}, {1301, 19614}, {1309, 3465}, {2734, 3737}, {2762, 10535}

X(26701) = Ψ(X(1), X(520))
X(26701) = Λ(X(1), X(29))
X(26701) = trilinear product of circumcircle intercepts of line X(1)X(520)


X(26702) =  CIRCUMCIRCLE-(X(1))-ANTIPODE OF X(112)

Barycentrics    a*(a + b)*(a + c)*(a^4 - a^3*b - a*b^3 + b^4 + a*b*c^2 - c^4)*(a^4 - b^4 - a^3*c + a*b^2*c - a*c^3 + c^4) : :
Trilinears    1/(b (tan A - tan B) + c (tan A - tan C)) : :
Trilinears    1/((b + c) tan A - b tan B - c tan C)) : :
X(26702) lies on these lines: {1, 112}, {21, 934}, {36, 2722}, {56, 1367}, {63, 110}, {72, 101}, {92, 107}, {99, 304}, {100, 306}, {105, 4458}, {108, 226}, {109, 1214}, {293, 2715}, {859, 2728}, {919, 3509}, {933, 2167}, {1113, 2583}, {1114, 2582}, {1290, 5057}, {1301, 2184}, {1304, 2349}, {1412, 8059}, {1444, 6183}, {2751, 3733}, {6011, 7580}

X(26702) = trilinear pole of line X(6)X(656)
X(26702) = Λ(X(65), X(1439))
X(26702) = Ψ(X(1), X(525))
X(26702) = Ψ(X(6), X(656))
X(26702) = trilinear product of circumcircle intercepts of line X(1)X(525)
X(26702) = the point of intersection, other than A, B, and C, of the circumcircle and hyperbola {{A,B,C,X(1),X(63)}}


X(26703) =  CIRCUMCIRCLE-(X(2))-ANTIPODE OF X(108)

Barycentrics    a*(a^5 - a^4*b - a*b^4 + b^5 + 2*a*b*c^3 - a*c^4 - b*c^4)*(a^5 - a*b^4 - a^4*c + 2*a*b^3*c - b^4*c - a*c^4 + c^5) : :
Barycentrics    1/(b^2 (sec A - sec B) + c^2 (sec A - sec C)) : :

X(26703) lies on these lines: {2, 108}, {20, 1292}, {21, 112}, {22, 100}, {23, 2766}, {25, 2968}, {28, 1289}, {30, 10101}, {63, 109}, {78, 101}, {99, 16049}, {107, 4228}, {110, 1812}, {348, 934}, {858, 1290}, {915, 7427}, {917, 7445}, {919, 3100}, {927, 7112}, {929, 10538}, {935, 1325}, {1295, 2417}, {1300, 7425}, {1301, 4233}, {1302, 26268}, {1304, 7469}, {1370, 13397}, {1791, 8687}, {1995, 9107}, {2071, 2691}, {2074, 10423}, {2374, 7458}, {2731, 5205}, {2856, 6563}, {3563, 7423}, {7219, 22654}, {7493, 9058}, {9056, 26227}, {9057, 26265}, {9070, 26253}, {9086, 26260}, {13577, 22769}

X(26703) = isogonal conjugate of X(3827)
X(26703) = anticomplement of X(20621)
X(26703) = trilinear pole of line X(6)X(521)
X(26703) = Ψ(X(6), X(521))
X(26703) = inverse-in-orthoptic-circle-of-Steiner-inellipse of X(123)
X(26703) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(34188)
X(26703) = de-Longchamps-circle-inverse of X(20344)


X(26704) =  CIRCUMCIRCLE-(X(4))-ANTIPODE OF X(102)

Barycentrics    (a - b)*(a - c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^3 + b^3 + a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 + a*b*c - b^2*c + c^3) : :
Trilinears    (sin A)(tan A)/((csc^2 B) (cos C - cos A) + (csc^2 C) (cos A - cos B)) : :

X(26704) lies on these lines: {4, 102}, {25, 1311}, {74, 15232}, {99, 7463}, {100, 7461}, {103, 13478}, {104, 2217}, {106, 1068}, {109, 23987}, {110, 1897}, {186, 2695}, {242, 2717}, {925, 7450}, {1294, 7421}, {1295, 6906}, {1297, 7413}, {1305, 7460}, {1824, 19607}, {2365, 7046}, {2370, 7428}, {2373, 7449}, {2708, 17927}, {2995, 20901}, {3565, 7462}, {7451, 13397}

X(26704) = anticomplement of X(38977)
X(26704) = Ψ(X(3), X(10))
X(26704) = Ψ(X(6), X(1826))
X(26704) = trilinear pole of line X(6)X(1826)
X(26704) = inverse-in-polar-circle of X(124)
X(26704) = X(63)-isoconjugate of X(6589)
X(26704) = perspector, wrt 2nd circumperp triangle, of polar circle


X(26705) =  CIRCUMCIRCLE-(X(4))-ANTIPODE OF X(103)

Barycentrics    (a - b)*(a - c)*(a^2 + a*b + b^2 - a*c - b*c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2 - a*b + a*c - b*c + c^2) : :

X(26705) lies on these lines: {3, 21665}, {4, 103}, {24, 917}, {25, 675}, {74, 15320}, {99, 4249}, {100, 4250}, {102, 5603}, {110, 3732}, {186, 2688}, {242, 2725}, {925, 4243}, {1006, 1295}, {1294, 7430}, {1297, 6998}, {1783, 8693}, {1897, 8701}, {2370, 4245}, {2373, 7453}, {3565, 4237}, {6353, 9085}, {6577, 8750}, {7437, 13397}, {7479, 10420}

X(26705) = polar conjugate of X(25259)
X(26705) = trilinear pole of line X(6)X(1836)
X(26705) = Ψ(X(6), X(1836))
X(26705) = inverse-in-polar-circle of X(116)
X(26705) = reflection of X(4) in X(20622)
X(26705) = X(63)-isoconjugate of X(6586)


X(26706) =  CIRCUMCIRCLE-(X(4))-ANTIPODE OF X(105)

Barycentrics    a*(a - b)*(a - c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - b^2*c + a*c^2 + b*c^2 - c^3)*(a^3 - a^2*b + a*b^2 - b^3 - a^2*c + b^2*c - a*c^2 - b*c^2 + c^3) : :

X(26706) lies on these lines: {4, 105}, {24, 15344}, {25, 9061}, {98, 7414}, {102, 18446}, {104, 378}, {107, 4244}, {110, 4238}, {111, 4231}, {186, 2752}, {376, 1295}, {476, 7476}, {523, 10101}, {675, 4219}, {759, 4227}, {915, 18533}, {919, 1783}, {925, 4236}, {927, 18026}, {972, 11491}, {1068, 2376}, {1297, 3651}, {1302, 4246}, {1311, 7412}, {1565, 7071}, {1897, 13397}, {2373, 4220}, {2687, 10295}, {2694, 7464}, {4222, 9083}, {4242, 9058}, {4250, 9057}, {7435, 9064}, {7438, 9084}, {7461, 9056}, {7475, 10420}, {7477, 16167}


X(26707) =  CIRCUMCIRCLE-(X(5))-ANTIPODE OF X(100)

Barycentrics    a*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^5*c + a^3*b^2*c + a^2*b^3*c - b^5*c - 2*a^4*c^2 - 2*a^2*b^2*c^2 - 2*b^4*c^2 + 2*a^3*c^3 + a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 + a^2*c^4 + b^2*c^4 - a*c^5 - b*c^5)*(a^6 - a^5*b - 2*a^4*b^2 + 2*a^3*b^3 + a^2*b^4 - a*b^5 + a^2*b^3*c - b^5*c - a^4*c^2 + a^3*b*c^2 - 2*a^2*b^2*c^2 + a*b^3*c^2 + b^4*c^2 + a^2*b*c^3 + 2*b^3*c^3 - a^2*c^4 - 2*b^2*c^4 - b*c^5 + c^6) : :

X(26707) lies on these lines: {5, 100}, {21, 930}, {28, 933}, {101, 1953}, {108, 3518}, {109, 1393}, {110, 6583}, {901, 10225}, {1290, 2070}, {1291, 1325}, {7423, 9076}, {7488, 13397}, {9058, 13595}, {16049, 20185}


X(26708) =  CIRCUMCIRCLE-(X(5))-ANTIPODE OF X(101)

Barycentrics    (-a^7 + a^5*b^2 + a^2*b^5 - b^7 + a^6*c - a^4*b^2*c - a^2*b^4*c + b^6*c + 2*a^5*c^2 + a^3*b^2*c^2 + a^2*b^3*c^2 + 2*b^5*c^2 - 2*a^4*c^3 - 2*a^2*b^2*c^3 - 2*b^4*c^3 - a^3*c^4 - b^3*c^4 + a^2*c^5 + b^2*c^5)*(a^7 - a^6*b - 2*a^5*b^2 + 2*a^4*b^3 + a^3*b^4 - a^2*b^5 - a^5*c^2 + a^4*b*c^2 - a^3*b^2*c^2 + 2*a^2*b^3*c^2 - b^5*c^2 - a^2*b^2*c^3 + b^4*c^3 + a^2*b*c^4 + 2*b^3*c^4 - a^2*c^5 - 2*b^2*c^5 - b*c^6 + c^7) : :

X(26708) lies on these lines: {5, 101}, {27, 933}, {100, 14213}, {109, 11246}, {110, 17167}, {930, 4184}, {1291, 5196}, {1305, 7488}, {2070, 2690}, {7432, 9076}, {9057, 13595}


X(26709) =  CIRCUMCIRCLE-(X(5))-ANTIPODE OF X(102)

Barycentrics    (a - b)*(a - c)*(a^5 + 2*a^3*b^2 + 2*a^2*b^3 + b^5 + a^3*b*c - a^2*b^2*c + a*b^3*c - 2*a^3*c^2 - a^2*b*c^2 - a*b^2*c^2 - 2*b^3*c^2 - a*b*c^3 + a*c^4 + b*c^4)*(a^5 - 2*a^3*b^2 + a*b^4 + a^3*b*c - a^2*b^2*c - a*b^3*c + b^4*c + 2*a^3*c^2 - a^2*b*c^2 - a*b^2*c^2 + 2*a^2*c^3 + a*b*c^3 - 2*b^2*c^3 + c^5) : :

X(26709) lies on these lines: {5, 102}, {930, 7450}, {933, 7452}, {1311, 13595}, {2070, 2695}, {7449, 9076}


X(26710) =  CIRCUMCIRCLE-(X(5))-ANTIPODE OF X(103)

Barycentrics    (a - b)*(a - c)*(a^4 + a^3*b + 3*a^2*b^2 + a*b^3 + b^4 - a^3*c - a^2*b*c - a*b^2*c - b^3*c - a^2*c^2 - a*b*c^2 - b^2*c^2 + a*c^3 + b*c^3)*(a^4 - a^3*b - a^2*b^2 + a*b^3 + a^3*c - a^2*b*c - a*b^2*c + b^3*c + 3*a^2*c^2 - a*b*c^2 - b^2*c^2 + a*c^3 - b*c^3 + c^4) : :

X(26710) lies on these lines: {5, 103}, {675, 13595}, {917, 3518}, {930, 4243}, {933, 4241}, {1291, 7479}, {2070, 2688}, {7453, 9076}


X(26711) =  CIRCUMCIRCLE-(X(5))-ANTIPODE OF X(104)

Barycentrics    a*(a - b)*(a - c)*(a^3 + a^2*b + a*b^2 + b^3 - a^2*c + a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c + a*b*c - b^2*c + a*c^2 - b*c^2 + c^3) : :

X(26711) lies on these lines: {5, 104}, {74, 13145}, {102, 11014}, {105, 13595}, {915, 3518}, {930, 3658}, {933, 4246}, {1291, 7477}, {1295, 7488}, {1311, 26263}, {1633, 8697}, {1897, 2766}, {2070, 2687}, {2694, 3153}, {4239, 9076}, {7435, 20626}


X(26712) =  CIRCUMCIRCLE-(X(5))-ANTIPODE OF X(105)

Barycentrics    a*(a - b)*(a - c)*(a^5 - a^4*b - a*b^4 + b^5 - a^4*c + a^3*b*c - 2*a^2*b^2*c + a*b^3*c - b^4*c + a*b*c^3 - a*c^4 - b*c^4 + c^5)*(a^5 - a^4*b - a*b^4 + b^5 - a^4*c + a^3*b*c + a*b^3*c - b^4*c - 2*a^2*b*c^2 + a*b*c^3 - a*c^4 - b*c^4 + c^5) : :

X(26712) lies on these lines: {5, 105}, {915, 7576}, {930, 4236}, {933, 4238}, {1291, 7475}, {2070, 2752}, {3518, 15344}, {4220, 9076}, {4244, 20626}, {9061, 13595}


X(26713) =  CIRCUMCIRCLE-(X(5))-ANTIPODE OF X(106)

Barycentrics    (a - b)*(a - c)*(a^5 - 2*a^4*b - 2*a*b^4 + b^5 + 3*a^3*b*c - 3*a^2*b^2*c + 3*a*b^3*c - 2*a^3*c^2 + a^2*b*c^2 + a*b^2*c^2 - 2*b^3*c^2 - 3*a*b*c^3 + a*c^4 + b*c^4)*(a^5 - 2*a^3*b^2 + a*b^4 - 2*a^4*c + 3*a^3*b*c + a^2*b^2*c - 3*a*b^3*c + b^4*c - 3*a^2*b*c^2 + a*b^2*c^2 + 3*a*b*c^3 - 2*b^2*c^3 - 2*a*c^4 + c^5) : :

X(26713) lies on these lines: {5, 106}, {2070, 2758}, {2370, 7488}, {9083, 13595}


X(26714) =  CIRCUMCIRCLE-(X(6))-ANTIPODE OF X(98)

Barycentrics    a^2*(a - b)*(a + b)*(a - c)*(a + c)*(a^2*b^2 - b^4 + 2*a^2*c^2 + b^2*c^2)*(2*a^2*b^2 + a^2*c^2 + b^2*c^2 - c^4) : :
Barycentrics    a^2/((b^2 - c^2) sin 2A + b^2 sin 2C - c^2 sin 2B) : :

X(26714) lies on these lines: {3, 14252}, {6, 98}, {74, 574}, {99, 1625}, {110, 14966}, {111, 263}, {163, 8685}, {187, 2698}, {323, 2857}, {327, 2367}, {352, 2770}, {353, 11593}, {648, 22456}, {689, 4563}, {729, 1384}, {733, 17970}, {741, 3402}, {759, 2186}, {842, 5104}, {1141, 11060}, {1296, 5118}, {1297, 3098}, {1576, 2715}, {2030, 5970}, {2373, 15066}, {2420, 11636}, {3288, 6037}, {5467, 6233}, {5468, 9066}, {9181, 13241}

X(26714) = Ψ(X(i), X(j)) for these (i,j): (2, 51), (4, 39), (6, 160), (76, 5)
X(26714) = trilinear pole of line X(6)X(160)
X(26714) = trilinear pole, wrt circumsymmedial triangle, of line X(6)X(523)
X(26714) = circumcircle intercept, other than X(98), of circle {{X(15),X(16),X(98)}} (or V(X(98))
X(26714) = X(182)-isoconjugate of X(1577)
X(26714) = isogonal conjugate of X(23878)
X(26714) = barycentric product X(110)*X(262)
X(26714) = barycentric quotient X(262)/X(850)
X(26714) = trilinear pole, wrt circumsymmedial triangle, of line X(6)X(523)
X(26714) = barycentric product of circumcircle intercepts of line X(2)X(51)


X(26715) =  CIRCUMCIRCLE-(X(6))-ANTIPODE OF X(102)

Barycentrics    a^2*(a - b)*(a - c)*(3*a^3 + a^2*b + a*b^2 + 3*b^3 - a^2*c + 2*a*b*c - b^2*c - 3*a*c^2 - 3*b*c^2 + c^3)*(3*a^3 - a^2*b - 3*a*b^2 + b^3 + a^2*c + 2*a*b*c - 3*b^2*c + a*c^2 - b*c^2 + 3*c^3) : :

X(26715) lies on these lines: {6, 102}, {103, 4257}, {105, 16485}, {109, 2425}, {187, 2708}, {1293, 1983}, {1384, 2291}, {2750, 5526}

X(26715) = trilinear pole, wrt circumsymmedial triangle, of line X(6)X(652)
X(26715) = circumcircle intercept, other than X(102), of circle {{X(15),X(16),X(102)}} (or V(X(102))


X(26716) =  CIRCUMCIRCLE-(X(6))-ANTIPODE OF X(103)

Barycentrics    a^2*(a - b)*(a - c)*(3*a^2 + 2*a*b + 3*b^2 - 2*a*c - 2*b*c - c^2)*(3*a^2 - 2*a*b - b^2 + 2*a*c - 2*b*c + 3*c^2) : :

X(26716) lies on these lines: {6, 103}, {101, 2426}, {102, 4262}, {105, 16487}, {106, 1384}, {163, 5545}, {187, 2700}, {906, 6575}, {1461, 24016}, {2030, 2712}

X(26716) = trilinear pole, wrt circumsymmedial triangle, of line X(6)X(657)
X(26716) = circumcircle intercept, other than X(103), of circle {{X(15),X(16),X(103)}} (or V(X(103))


X(26717) =  CIRCUMCIRCLE-(X(6))-ANTIPODE OF X(107)

Barycentrics    a^2*(2*a^6*b^2 - 4*a^4*b^4 + 2*a^2*b^6 - a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 - b^6*c^2 + 2*a^4*c^4 - 2*a^2*b^2*c^4 + 2*b^4*c^4 - a^2*c^6 - b^2*c^6)*(a^6*b^2 - 2*a^4*b^4 + a^2*b^6 - 2*a^6*c^2 - a^4*b^2*c^2 + 2*a^2*b^4*c^2 + b^6*c^2 + 4*a^4*c^4 - a^2*b^2*c^4 - 2*b^4*c^4 - 2*a^2*c^6 + b^2*c^6) : :
Trilinears    a^2/((csc B cos C) (sin 2A - sin 2B) - (csc C cos B) (sin 2C - sin 2A)) : :
Trilinears    (sin 2A)/(sec C sin 2B sin(C - A) + sec B sin 2C sin(B - A)) : :
Trilinears    (sin A)/((sin 2C) (sin 2A - sin 2B) - (sin 2B) (sin 2C - sin 2A)) : :

X(26717) lies on these lines: {6, 107}, {99, 394}, {100, 3990}, {101, 4055}, {108, 1409}, {110, 577}, {112, 184}, {187, 2713}, {287, 22456}, {353, 12507}, {933, 14533}, {935, 13509}, {1294, 2430}, {1301, 14642}, {1304, 1971}, {1629, 1988}, {9064, 10311}, {15032, 23232}

X(26717) = Λ(X(2), X(216))
X(26717) = circumcircle intercept, other than X(107), of circle {{X(15),X(16),X(107)}} (or V(X(107))

leftri

Centers associated with the Gemini triangles 1-10: X(26718)-X(26751)

rightri

These centers were contributed by Randy Hutson, November 2, 2018. The Gemini triangles are introduced in the preamble just before X(24537).


X(26718) = CENTROID OF GEMINI TRIANGLE 7

Barycentrics    a^3 - 2 a^2 (b + c) - a (3 b - 5 c) (5 b - 3 c) + 4 (b - c)^2 (b + c) : :

X(26718) lies on these lines: {1, 6692}, {1125, 8834}, {1698, 6552}, {1699, 26719}

X(26718) = reflection of X(1699) in X(26719)


X(26719) = CENTROID OF MID-TRIANGLE OF GEMINI TRIANGLES 7 AND 8

Barycentrics    a^6 - 2 a^5 (b + c) + a^4 (5 b^2 - 6 b c + 5 c^2) - 16 a^3 (b - c)^2 (b + c) - a^2 (b - c)^2 (b^2 - 54 b c + c^2) + 6 a (b - 3 c) (3 b - c) (b - c)^2 (b + c) - (b^2 - c^2)^2 (5 b^2 - 14 b c + 5 c^2) : :

X(26719) lies on these lines: {5, 6552}, {1699, 26718}, {3091, 6553}

X(26719) = midpoint of X(1699) and X(26718)


X(26720) =  CENTROID OF SIDE-TRIANGLE OF GEMINI TRIANGLES 7 AND 8

Barycentrics    2 a^4 (b^2 + c^2) - 2 a^3 (b^3 + c^3) - a^2 (2 b^4 - 17 b^3 c + 22 b^2 c^2 - 17 b c^3 + 2 c^4) + 2 a (b - c)^4 (b + c) + b c (b^2 - c^2)^2 : :

X(26720) lies on this line: {1210, 3953}


X(26721) = PERSPECTOR OF THE {GEMINI 7, GEMINI 8}-CIRCUMCONIC

Barycentrics    (b - c)/(a^3 - a^2 (b + c) + a (b^2 + c^2) - (b - c)^2 (b + c)) : :

X(26721) lies on these lines: {514, 2082}, {905, 918}, {1734, 4025}, {3309, 4897}


X(26722) = EIGENCENTER OF GEMINI TRIANGLE 8

Barycentrics    a (a - b - c)/(a^2 (b^2 + c^2) - a (2 b^3 - b^2 c - b c^2 + 2 c^3) + (b - c)^2 (b^2 + b c + c^2)) : :
Trilinears    (a - b - c)/(a^2 (b^2 + c^2) - a (2 b^3 - b^2 c - b c^2 + 2 c^3) + (b - c)^2 (b^2 + b c + c^2)) : :

X(26722) lies on these lines: {7, 101}, {314, 7259}, {5526, 9442}


X(26723) = PERSPECTOR OF GEMINI TRIANGLE 2 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 2 AND 7

Barycentrics    2 a^3 - 2 a b c + a^2 (b + c) + (b - c)^2 (b + c) : :

X(26723) lies on these lines: {1, 2}, {6, 5249}, {27, 162}, {31, 1738}, {44, 3782}, {57, 15474}, {63, 4000}, {75, 5294}, {81, 142}, {238, 3914}, {278, 1445}, {377, 1453}, {908, 2911}, {1086, 4641}, {1194, 16583}, {1203, 12609}, {1211, 17348}, {1386, 3925}, {1427, 5723}, {1621, 3755}, {1708, 22464}, {1724, 23537}, {1743, 5905}, {1746, 12610} et al


X(26724) = PERSPECTOR OF GEMINI TRIANGLE 7 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 2 AND 7

Barycentrics    a^3 - 3 a b c + (b - c)^2 (b + c) : :

X(26724) lies on these lines: {2, 37}, {44, 17483}, {63, 4859}, {81, 142}, {277, 15474}, {404, 1612}, {748, 5057}, {1086, 3219}, {1621, 1738} et al


X(26725) = PERSPECTOR OF GEMINI TRIANGLE 3 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 3 AND 7

Barycentrics    a^4 - a^3 (b + c) - a^2 (2 b^2 + 3 b c + 2 c^2) + a (b + c) (b^2 - 4 b c + c^2) + (b^2 - c^2)^2 : :

X(26725) lies on these lines: {1, 442}, {2, 758}, {10, 5425}, {21, 36}, {30, 1699}, {35, 12609}, {57, 191}, {80, 3822}, {140, 5535}, {142, 10090}, {214, 5424}, {226, 5251}, {451, 1835}, {484, 6690}, {517, 11218}, {551, 6175}, {946, 3651}, {1001, 16581}, {1479, 2475}, {1698, 11374}, {1790, 2126}, {2646, 3824} et al


X(26726) = PERSPECTOR OF GEMINI TRIANGLE 6 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 6 AND 7

Barycentrics    3 a^4 - 5 a^3 (b + c) - a^2 (2 b^2 - 15 b c + 2 c^2) + a (b + c) (5 b^2 - 12 b c + 5 c^2) - (b^2 - c^2)^2 : :

X(26726) lies on these lines: {1, 1145}, {8, 6702}, {11, 3632}, {35, 13278}, {36, 25438}, {57, 1317}, {80, 519}, {100, 3244}, {104, 5537}, {119, 16200}, {145, 2802}, {149, 20050}, {214, 3241}, {952, 3627}, {1387, 3679}, {1482, 12611}, {1537, 11224} et al


X(26727) = PERSPECTOR OF GEMINI TRIANGLE 7 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 6 AND 7

Barycentrics    a^4 - 2 a^3 (b + c) + a^2 (b^2 + 3 b c + c^2) + a (b + c) (3 b^2 - 7 b c + 3 c^2) - (b^2 - c^2)^2 : :

X(26727) lies on these lines: {1, 1145}, {8, 244}, {10, 3699}, {80, 900}, {88, 2581}, {106, 519}, {109, 4848}, {141, 3679}, {291, 2401}, {644, 21950}, {905, 9260}, {952, 1054}, {986, 5554}, {1046, 14985}, {1086, 3036}, {1320, 1647}, {1421, 1722}, {1772, 10573} et al


X(26728) = PERSPECTOR OF GEMINI TRIANGLE 1 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 1 AND 8

Barycentrics    2 a^4 - a^3 (b + c) - a^2 (b^2 + 4 b c + c^2) + 3 a (b - c)^2 (b + c) + (b^2 - c^2)^2 : :

X(26728) lies on these lines: {1, 224}, {31, 11551}, {86, 99}, {553, 4257}, {595, 3671}, {982, 1125}, {990, 5603}, {1086, 24929}, {1104, 6147} et al


X(26729) = PERSPECTOR OF GEMINI TRIANGLE 8 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 1 AND 8

Barycentrics    a^4 - a^3 (b + c) - 3 a^2 b c + a (3 b^3 - 2 b^2 c - 2 b c^2 + 3 c^3) + (b^2 - c^2)^2 : :

X(26729) lies on these lines: {1, 11015}, {946, 3315}, {1104, 17483}, {1714, 3868}, {3487, 4850}, {3649, 7191}, {3984, 4859} et al


X(26730) = PERSPECTOR OF GEMINI TRIANGLE 4 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 4 AND 8

Barycentrics    a^5 - 2 a^4 (b + c) - a^3 (b^2 + 3 b c + c^2) + a^2 (b + c) (b^2 + b c + c^2) + 2 a b c (b^2 + b c + c^2) - (b - c)^2 (b + c) (b^2 + c^2) : :

X(26730) lies on these lines: {79, 1757}, {3914, 4416}, {5223, 24851} et al


X(26731) = PERSPECTOR OF GEMINI TRIANGLE 8 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 4 AND 8

Barycentrics    a^5 - a^4 (b + c) - a^3 (b^2 + 3 b c + c^2) + a b c (b^2 + c^2) - (b - c)^2 (b + c) (b^2 + c^2) : :

X(26731) lies on these lines: {69, 4683}, {79, 3751}, {193, 17491}, {518, 24851}, {1756, 7289} et al


X(26732) = X(30)X(511)∩X(3700)X(4560)

Barycentrics    (a - b - c) (b - c) (2 a^2 + b^2 + c^2 + 3 a b + 3 a c + 4 b c) : :

X(26732) is the infinite point of the perspectrix of Gemini triangles 2 and 7.

X(26732) lies on these lines: {30, 511}, {3700, 4560}, {4391, 4976} et al


X(26733) = ISOGONAL CONJUGATE OF X(26732)

Barycentrics    a^2/((a - b - c) (b - c) (2 a^2 + b^2 + c^2 + 3 a b + 3 a c + 4 b c)) : :

X(26733) lies on the circumcircle and these lines: {1415, 8652}, {2291, 10460}, {4559, 8701}, {4565, 6578}


X(26734) = TRILINEAR POLE OF PERSPECTRIX OF GEMINI TRIANGLES 2 AND 7

Barycentrics    b c/(a^3 + 2 a^2 (b + c) - a (b^2 + b c + c^2) - (b + c) (2 b^2 - b c + 2 c^2)) : :

X(26734) lies on these lines: {313, 3260}, {321, 3578}

X(26734) = trilinear pole of line X(1577)X(26732)


X(26735) = TRILINEAR POLE OF PERSPECTRIX OF GEMINI TRIANGLES 3 AND 7

Barycentrics    b c/(a^3 (b + c) + a^2 (b - c)^2 - a (b - c)^2 (b + c) - (b^2 + c^2)^2) : :

X(26735) lies on these lines: {40, 3729}, {223, 9312}

X(26735) = trilinear pole of line X(2517)X(4885)


X(26736) = TRILINEAR POLE OF PERSPECTRIX OF GEMINI TRIANGLES 6 AND 7

Barycentrics    b c/(a^3 (b + c) + a^2 (b^2 - 8 b c + c^2) - a (b^3 - 5 b^2 c - 5 b c^2 + c^3) - b^4 + 2 b^3 c - 6 b^2 c^2 + 2 b c^3 - c^4) : :

X(26736) lies on this line: {3729, 3732}

X(26736) = trilinear pole of line X(4000)X(4885)


X(26737) = TRILINEAR POLE OF PERSPECTRIX OF GEMINI TRIANGLES 1 AND 8

Barycentrics    b c/((a - b - c) (a^6 - a^5 (b + c) + a^4 b c + 2 a^3 (b + c) (b^2 + b c + c^2) - 3 a^2 (b^2 - c^2)^2 - a (b^5 + 3 b^4 c + 3 b c^4 + c^5) + (b^2 - c^2)^2 (2 b^2 - b c + 2 c^2))) : :

X(26737) lies on these lines: (pending)


X(26738) = CENTROID OF GEMINI TRIANGLE 9

Barycentrics    3 a^2 (b + c) + a (b^2 + b c + c^2) - 2 (b - c)^2 (b + c) : :

X(26738) lies on these lines: {1, 10031}, {2, 44}, {88, 6173}, {226, 22464}, {651, 5219}, {1086, 4850} et al


X(26739) = CENTROID OF GEMINI TRIANGLE 10

Barycentrics    16 a^3 - 13 a^2 (b + c) - a (19 b^2 - 47 b c + 19 c^2) + 10 (b - c)^2 (b + c) : :

X(26739) lies on this line: {2, 4912}


X(26740) = PERSPECTOR OF GEMINI TRIANGLE 9 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 9 AND 10

Barycentrics    a (a^2 b + a^2 c - 4 a b c - b^3 - c^3)/(a - b - c) : :
Trilinears    (a^2 b + a^2 c - 4 a b c - b^3 - c^3)/(a - b - c) : :

X(26740) lies on these lines: {1, 6940}, {2, 26741}, {42, 5083}, {57, 77}, {226, 1086}, {241, 9328}, {354, 24025}, {553, 1465}, {1319, 4868}, {1427, 4031}, {1450, 4424} et al

X(27040) = complement of X(18600)
X(26740) = {X(2),X(26742)}-harmonic conjugate of X(26741)


X(26741) = PERSPECTOR OF GEMINI TRIANGLE 10 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 9 AND 10

Barycentrics    a (a^2 b + a^2 c - 6 a b c - b^3 + 2 b^2 c + 2 b c^2 - c^3)/(a - b - c) : :
Trilinears    (a^2 b + a^2 c - 6 a b c - b^3 + 2 b^2 c + 2 b c^2 - c^3)/(a - b - c) : :

X(26741) lies on these lines: {2, 26740}, {43,5083}, {57,88}, {216,1108}, {1450,1739} et al

X(26741) = {X(2),X(26742)}-harmonic conjugate of X(26740)


X(26742) = {X(26740),X(26741)}-HARMONIC CONJUGATE OF X(2)

Barycentrics    a (a^2 b + a^2 c - 5 a b c - b^3 + b^2 c + b c^2 - c^3)/(a - b - c) : :
Trilinears    (a^2 b + a^2 c - 5 a b c - b^3 + b^2 c + b c^2 - c^3)/(a - b - c) : :

X(26742) lies on these lines: {2, 26740}, {6, 57}, {484, 1480}, {614, 3256}, {2006, 4000} et al

X(26742) = {X(26740),X(26741)}-harmonic conjugate of X(2)


X(26743) = TRILINEAR POLE OF PERSPECTRIX OF GEMINI TRIANGLES 9 AND 10

Barycentrics    1/((a - b - c) (a^2 - b^2 - c^2 + b c) (a^3 - b^3 - c^3 + a^2 b + a^2 c - a b^2 - a c^2 - a b c + b^2 c + b c^2)) : :

X(26743) lies on these lines: {30, 80}, {2006, 6357}, {14206, 17484}

X(26743) = isogonal conjugate of X(26744)


X(26744) = PERSPECTOR OF UNARY COFACTOR TRIANGLES OF GEMINI TRIANGLES 9 AND 10

Barycentrics    a^2 (a - b - c) (a^2 - b^2 - c^2 + b c) (a^3 - b^3 - c^3 + a^2 b + a^2 c - a b^2 - a c^2 - a b c + b^2 c + b c^2) : :
Trilinears    a (a - b - c) (a^2 - b^2 - c^2 + b c) (a^3 - b^3 - c^3 + a^2 b + a^2 c - a b^2 - a c^2 - a b c + b^2 c + b c^2) : :

X(26744) lies on these lines: {3, 16554}, {9, 1030}, {35, 2161}, {36, 2245}, {37, 14579}, {44, 11063}, {55, 4516}, {71, 74}, {198, 16553}, {284, 2316}, {484, 19297}, {2077, 2173} et al

X(26744) = isogonal conjugate of X(26743)


X(26745) = ISOGONAL CONJUGATE OF X(16885)

Barycentrics    a/(2 b + 2 c - 3 a) : :
Trilinears    1/(2 b + 2 c - 3 a) : :

Let A10B10C10 be the Gemini triangle 10. Let LA be the line through A10 parallel to BC, and define LB, LC cyclically. Let A'10 = LBC, and define B'10, C'10 cyclically. Triangle A'10B'10C'10 is homothetic to ABC at X(26745).

X(26745) lies on these lines: {1, 1392}, {2, 4912}, {88, 4383}, {89, 3752}, {105, 8697}, {1022, 4498}, {1054, 4430}, {1219, 4678}, {1224, 19877} et al

X(26745) = isogonal conjugate of X(16885)


X(26746) = PERSPECTOR OF GEMINI TRIANGLE 2 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 2 AND 10

Barycentrics    a (a^3 (b^2 + c^2) + 2 a^2 (b^3 + c^3) + a (b^4 - b^2 c^2 + c^4) - b^2 c^2 (b + c)) : :
Trilinears    a^3 (b^2 + c^2) + 2 a^2 (b^3 + c^3) + a (b^4 - b^2 c^2 + c^4) - b^2 c^2 (b + c) : :

X(26746) lies on these lines: {2, 313}, {333, 2275}, {4850, 6703}


X(26747) = PERSPECTOR OF GEMINI TRIANGLE 10 AND CROSS-TRIANGLE OF GEMINI TRIANGLES 2 AND 10

Barycentrics    a (a^3 (b^2 + c^2) + 2 a^2 (b^3 + c^3) + a (b^2 - c^2)^2 - b^2 c^2 (b + c)) : :
Trilinears    a^3 (b^2 + c^2) + 2 a^2 (b^3 + c^3) + a (b^2 - c^2)^2 - b^2 c^2 (b + c) : :

X(26747) lies on these lines: {2,313}, {81,1193}, {1575,3969}, {2275,5278}, {2277,19684} et al


X(26748) = TRILINEAR POLE OF PERSPECTRIX OF GEMINI TRIANGLES 1 AND 9

Barycentrics    1/(a^6 - 3 a^4 (b^2 - b c + c^2) + 5 a^3 b c (b + c) + a^2 (b - 3 c) (3 b - c) (b + c)^2 - a b c (b + c) (5 b^2 - 14 b c + 5 c^2) - (b^2 - c^2)^2 (b^2 - b c + c^2)) : :

X(26748) lies on these lines: (pending)


X(26749) = TRILINEAR POLE OF PERSPECTRIX OF GEMINI TRIANGLES 2 AND 9

Barycentrics    1/(a^4 - 4 a^3 (b + c) + 9 a^2 b c + a (b + c) (4 b^2 - 7 b c + 4 c^2) - (b + c)^2 (b^2 - b c + c^2)) : :

X(26749) lies on this line: {545, 3218}

X(26749) = trilinear pole of line X(3960)X(14475)


X(26750) = TRILINEAR POLE OF PERSPECTRIX OF GEMINI TRIANGLES 1 AND 10

Barycentrics    1/(a^6 - a^4 (3 b^2 + 5 b c + 3 c^2) - a^3 b c (b + c) + a^2 (b + c)^2 (3 b^2 - 2 b c + 3 c^2) + a b c (b + c)^3 - (b^2 - c^2)^2 (b^2 - b c + c^2)) : :

X(26750) lies on these lines: (pending)


X(26751) = TRILINEAR POLE OF PERSPECTRIX OF GEMINI TRIANGLES 2 AND 10

Barycentrics    1/(a^4 - b^4 - c^4 + a^2 b c - a b^2 c - a b c^2 - b^3 c - b c^3) : :

The perspectrix of Gemini triangles 2 and 10 passes through X(14838).

X(26751) lies on these lines: {1211, 3219}, {4357, 5267}

X(26751) = isotomic conjugate of X(36974)

leftri

Collineation mappings involving Gemini triangle 49: X(26752)-X(26802)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 49, as in centers X(26752)-X(26802). Then

m(X) = a (b + c)^2 x + b (a - c)^2 y + c (a - b)^2 z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 3, 2018)


X(26752) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^2 b^2 + a^2 b c - a b^2 c + a^2 c^2 - a b c^2 + b^2 c^2 : :

X(26752) lies on these lines: {1, 2}, {12, 26582}, {35, 17692}, {37, 25107}, {39, 668}, {41, 17743}, {55, 16916}, {69, 26042}, {75, 21021}, {76, 17759}, {100, 384}, {192, 1921}, {194, 17756}, {274, 1574}, {335, 24443}, {350, 20691}, {404, 6645}, {495, 17670}, {874, 17280}, {891, 27140}, {956, 11285}, {958, 17684}, {1018, 26765}, {1078, 5291}, {1107, 25280}, {1278, 21443}, {1329, 17669}, {1376, 16915}, {1500, 18140}, {1575, 1909}, {1621, 16918}, {1654, 26082}, {1655, 2276}, {2238, 27033}, {2275, 9263}, {2277, 17786}, {2975, 7824}, {3035, 26686}, {3249, 27013}, {3421, 16043}, {3434, 16924}, {3436, 7791}, {3501, 24514}, {3693, 25994}, {3701, 3797}, {3758, 26076}, {3871, 4366}, {3934, 17143}, {3952, 25248}, {3959, 18055}, {4429, 16906}, {4557, 18099}, {4595, 27103}, {4645, 26058}, {4967, 25538}, {4986, 24786}, {5025, 11681}, {5080, 6655}, {5263, 20148}, {5687, 7770}, {6381, 25264}, {6625, 26072}, {6646, 26756}, {6653, 16044}, {6656, 17757}, {7785, 20553}, {7786, 16975}, {9709, 11321}, {11680, 16921}, {12607, 26561}, {12782, 17794}, {16284, 25918}, {16549, 17499}, {16604, 25303}, {16720, 20955}, {17243, 27111}, {17279, 25610}, {17295, 26979}, {17299, 25505}, {17300, 20561}, {17301, 26142}, {17302, 26100}, {17303, 26110}, {17314, 26107}, {17395, 25534}, {17693, 25440}, {18040, 24530}, {18047, 21008}, {21031, 26558}, {21264, 21868}, {23632, 25286}, {24491, 27073}, {24502, 27136}, {24509, 26685}, {25570, 26135}, {26753, 26790}, {26762, 26771}, {26784, 26789}, {26797, 26799}, {27039, 27296}

X(26752) = anticomplement of X(26959)


X(26753) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^5 b^2 - a^4 b^3 - a^3 b^4 + a^2 b^5 + 2 a^5 b c - 2 a b^5 c + a^5 c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 + b^5 c^2 - a^4 c^3 - 2 a^2 b^2 c^3 + 4 a b^3 c^3 - b^4 c^3 - a^3 c^4 - b^3 c^4 + a^2 c^5 - 2 a b c^5 + b^2 c^5 : :

X(26753) lies on these lines: {2, 3}, {315, 27515}, {3177, 18738}, {26752, 26790}, {26756, 26763}, {26757, 26758}, {26770, 26794}


X(26754) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^6 b - a^5 b^2 - a^2 b^5 + a b^6 + a^6 c - 6 a^5 b c - a^4 b^2 c + 4 a^3 b^3 c - a^2 b^4 c + 2 a b^5 c + b^6 c - a^5 c^2 - a^4 b c^2 - a b^4 c^2 - b^5 c^2 + 4 a^3 b c^3 - 4 a b^3 c^3 - a^2 b c^4 - a b^2 c^4 - a^2 c^5 + 2 a b c^5 - b^2 c^5 + a c^6 + b c^6 : :

X(26754) lies on these lines: {2, 3}, {69, 4513}, {6646, 26759}


X(26755) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^6 b - a^4 b^3 - a^3 b^4 + a b^6 + a^6 c - 4 a^5 b c - a^4 b^2 c + 4 a^3 b^3 c - a^2 b^4 c + b^6 c - a^4 b c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 - a b^4 c^2 - a^4 c^3 + 4 a^3 b c^3 - 2 a^2 b^2 c^3 - b^4 c^3 - a^3 c^4 - a^2 b c^4 - a b^2 c^4 - b^3 c^4 + a c^6 + b c^6 : :

X(26755) lies on these lines: {2, 3}, {26686, 27027}


X(26756) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b^2 + a^2 b^3 + 2 a^3 b c - 2 a b^3 c + a^3 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(26756) lies on these lines: {1, 25292}, {2, 6}, {9, 27073}, {76, 1278}, {190, 26797}, {192, 4033}, {239, 27011}, {319, 26971}, {320, 27102}, {330, 27671}, {594, 26976}, {894, 27044}, {3009, 25284}, {3879, 27166}, {4361, 26850}, {4446, 17154}, {4699, 26817}, {4741, 26042}, {6646, 26752}, {7232, 27107}, {16706, 27106}, {16816, 27192}, {17121, 26982}, {17227, 27311}, {17228, 27261}, {17252, 27020}, {17256, 27032}, {17263, 27036}, {17280, 26774}, {17288, 27017}, {17292, 27078}, {17350, 21362}, {17353, 27113}, {17360, 25505}, {17364, 27091}, {17373, 26107}, {17495, 21857}, {21244, 26589}, {26048, 26806}, {26149, 26812}, {26753, 26763}, {26762, 26766}


X(26757) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b - 2 a^2 b^2 + a b^3 + a^3 c - 4 a^2 b c + 4 a b^2 c + b^3 c - 2 a^2 c^2 + 4 a b c^2 - 2 b^2 c^2 + a c^3 + b c^3 : :

X(26757) lies on these lines: {1, 2}, {668, 26770}, {3620, 26836}, {3991, 25261}, {4023, 27256}, {4445, 16713}, {4515, 26563}, {4595, 17152}, {17233, 27039}, {17280, 26787}, {17286, 27058}, {17373, 26818}, {26753, 26758}, {26780, 26790}, {26797, 26800}


X(26758) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1150), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    -3 a^2 b + a b^2 + 4 b^3 - 3 a^2 c + 6 a b c + b^2 c + a c^2 + b c^2 + 4 c^3 : :

X(26758) lies on these lines: {2, 6}, {2476, 4678}, {4033, 4671}, {4651, 21241}, {19998, 25760}, {26753, 26757}


X(26759) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b + a b^3 + a^3 c - 2 a^2 b c + 2 a b^2 c + b^3 c + 2 a b c^2 + a c^3 + b c^3 : :

X(26759) lies on these lines: {1, 2}, {38, 25248}, {69, 20109}, {141, 17152}, {210, 26689}, {257, 21272}, {335, 17164}, {668, 27040}, {1018, 16887}, {1500, 16705}, {1621, 16931}, {3434, 16910}, {3662, 20244}, {3775, 27047}, {3871, 16060}, {4390, 24549}, {5263, 16930}, {5484, 20533}, {5836, 26562}, {6645, 11115}, {6646, 26754}, {7187, 25244}, {8682, 21802}, {12135, 15149}, {14210, 25263}, {16600, 17497}, {16920, 20139}, {16975, 27109}, {17141, 24254}, {17143, 26978}, {17280, 21226}, {17289, 25303}, {17759, 18600}, {18047, 26843}, {26781, 26795}, {26787, 26792}


X(26760) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 + 2 a^7 b c + 2 a^5 b^3 c - 2 a^3 b^5 c - 2 a b^7 c + a^7 c^2 - a^4 b^3 c^2 - a^3 b^4 c^2 + b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 - a^4 b^2 c^3 - a^2 b^4 c^3 + 2 a b^5 c^3 - b^6 c^3 - a^3 b^2 c^4 - a^2 b^3 c^4 - 2 a^3 b c^5 + 2 a b^3 c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 - 2 a b c^7 + b^2 c^7 : :

X(26760) lies on these lines: {2, 3}


X(26761) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 + 2 a^7 b c + 2 a^5 b^3 c - 2 a^3 b^5 c - 2 a b^7 c + a^7 c^2 + b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 - 2 a^3 b^3 c^3 + 2 a b^5 c^3 - b^6 c^3 - 2 a^3 b c^5 + 2 a b^3 c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 - 2 a b c^7 + b^2 c^7 : :

X(26761) lies on these lines: {2, 3}


X(26762) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^4 b^2 + a^2 b^4 + 2 a^4 b c - 2 a b^4 c + a^4 c^2 + b^4 c^2 + a^2 c^4 - 2 a b c^4 + b^2 c^4 : :

X(26762) lies on these lines: {2, 31}, {26752, 26771}, {26756, 26766}, {26767, 26795}


X(26763) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^5 b^2 + a^2 b^5 + 2 a^5 b c - 2 a b^5 c + a^5 c^2 + b^5 c^2 + a^2 c^5 - 2 a b c^5 + b^2 c^5 : :

X(26763) lies on these lines: {2, 32}, {26753, 26756}, {26770, 26788}


X(26764) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b^2 + a^2 b^3 + 2 a^2 b^2 c + a^3 c^2 + 2 a^2 b c^2 - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26764) lies on these lines: {2, 37}, {8, 5145}, {141, 26774}, {190, 26772}, {291, 25295}, {573, 17350}, {594, 16738}, {894, 3882}, {1100, 26975}, {1964, 20044}, {2309, 20352}, {3912, 27017}, {3943, 26979}, {3946, 26982}, {4033, 16696}, {4357, 27044}, {4360, 26821}, {4389, 27095}, {4393, 5105}, {4436, 18082}, {6542, 17178}, {6646, 26752}, {7184, 25284}, {7227, 27042}, {16814, 27036}, {17116, 27020}, {17142, 24327}, {17233, 27145}, {17234, 27107}, {17235, 27106}, {17247, 27091}, {17291, 27113}, {17300, 26816}, {17319, 27166}, {17355, 27078}, {21278, 24696}, {26765, 26779}, {26782, 26789}


X(26765) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^4 b^3 + a^3 b^4 + 2 a^3 b^2 c^2 + 2 a^2 b^3 c^2 + a^4 c^3 + 2 a^2 b^2 c^3 - 4 a b^3 c^3 + b^4 c^3 + a^3 c^4 + b^3 c^4 : :

X(26765) lies on these lines: {2, 39}, {1018, 26752}, {26753, 26756}, {26764, 26779}, {26788, 26794}


X(26766) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    2 a^3 b^3 + 3 a^3 b^2 c - a^2 b^3 c + 3 a^3 b c^2 - a b^3 c^2 + 2 a^3 c^3 - a^2 b c^3 - a b^2 c^3 + 2 b^3 c^3 : :

X(26766) lies on these lines: {1, 2}, {26756, 26762}, {26771, 26795}


X(26767) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b^3 + a^3 b^2 c - a^2 b^3 c + a^3 b c^2 + a^2 b^2 c^2 - a b^3 c^2 + a^3 c^3 - a^2 b c^3 - a b^2 c^3 + b^3 c^3 : :

X(26767) lies on these lines: {1, 2}, {20284, 21224}, {26762, 26795}


X(26768) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(44), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b^2 + a^2 b^3 + 4 a^3 b c - 2 a^2 b^2 c - 4 a b^3 c + a^3 c^2 - 2 a^2 b c^2 + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 4 a b c^3 + b^2 c^3 : :

X(26768) lies on these lines: {2, 44}, {141, 26799}, {144, 27136}, {190, 26774}, {391, 27192}, {524, 26821}, {527, 27044}, {1654, 26812}, {3768, 17217}, {6646, 26752}, {16819, 17252}, {17271, 26976}, {17273, 26772}, {17343, 20561}, {17344, 26971}, {17345, 27102}, {17347, 27095}


X(26769) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(45), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c + 4 a^2 b^2 c + 2 a b^3 c + a^3 c^2 + 4 a^2 b c^2 - 4 a b^2 c^2 + b^3 c^2 + a^2 c^3 + 2 a b c^3 + b^2 c^3 : :

X(26769) lies on these lines: {2, 45}, {141, 26797}, {192, 16696}, {194, 1278}, {3662, 27073}, {3663, 27011}, {4398, 26850}, {6646, 26752}, {7226, 24451}, {7321, 27032}, {16819, 17116}, {17236, 27136}, {17246, 26963}, {17254, 27044}, {17255, 27095}, {17258, 27102}, {17261, 27017}, {17262, 27145}, {17280, 26857}, {17320, 26975}, {17334, 26772}, {17336, 27311}, {20068, 24351}, {26082, 26812}


X(26770) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b - 2 a^2 b^2 + a b^3 + a^3 c + b^3 c - 2 a^2 c^2 + 2 b^2 c^2 + a c^3 + b c^3 : :

X(26770) lies on these lines: {2, 39}, {6, 145}, {8, 1018}, {32, 17539}, {75, 25237}, {190, 17152}, {213, 20040}, {257, 25248}, {312, 26690}, {321, 1212}, {350, 26964}, {391, 4271}, {668, 26757}, {672, 17751}, {966, 17676}, {1011, 7172}, {1089, 24036}, {1475, 21071}, {2549, 26085}, {3061, 25253}, {3263, 25244}, {3496, 4427}, {3691, 4651}, {3693, 4696}, {3701, 25066}, {3729, 20244}, {3780, 20051}, {3840, 23649}, {4095, 14439}, {4202, 15048}, {4385, 25082}, {4968, 16601}, {5192, 9605}, {5275, 19284}, {5276, 11115}, {6376, 27025}, {6554, 17740}, {7745, 17537}, {7758, 26099}, {7791, 17007}, {7798, 25497}, {7864, 16991}, {7920, 16905}, {10459, 17355}, {11320, 19742}, {16583, 17495}, {16909, 16989}, {16920, 17349}, {17002, 17696}, {17135, 21384}, {17140, 21808}, {17164, 17451}, {17264, 25303}, {17280, 21226}, {17350, 20109}, {20331, 21025}, {25092, 26115}, {25242, 26961}, {25261, 26234}, {25264, 26965}, {26753, 26794}, {26763, 26788}


X(26771) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (b + c) (a^4 b + 2 a^3 b^2 + a^2 b^3 + a^4 c + 2 a^3 b c - a^2 b^2 c - 2 a b^3 c + 2 a^3 c^2 - a^2 b c^2 + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3) : :

X(26771) lies on these lines: {2, 6}, {3995, 4033}, {17163, 21684}, {17490, 27794}, {17495, 27792}, {20068, 20966}, {26752, 26762}, {26766, 26795}, {26774, 27040}, {27021, 27043}


X(26772) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (b + c) (a^3 b + a^2 b^2 + a^3 c - a^2 b c + a^2 c^2 + b^2 c^2) : :

X(26772) lies on these lines: {2, 6}, {7, 27107}, {10, 21803}, {37, 4033}, {41, 26222}, {42, 21257}, {75, 26976}, {190, 26764}, {192, 2092}, {239, 26971}, {320, 27017}, {321, 21857}, {386, 27262}, {442, 26029}, {661, 24130}, {869, 21278}, {872, 21238}, {874, 17280}, {894, 21362}, {1100, 27166}, {1230, 3210}, {1269, 17495}, {2245, 17350}, {2277, 3765}, {3122, 25295}, {3661, 27261}, {3662, 27311}, {3752, 27792}, {3759, 25505}, {3770, 24530}, {3952, 21035}, {3963, 21796}, {4026, 21031}, {4043, 21858}, {4272, 4393}, {4277, 18147}, {4395, 26850}, {4422, 27073}, {4429, 11681}, {4443, 25277}, {4446, 17165}, {4557, 18082}, {5051, 27282}, {16589, 27268}, {16815, 25538}, {17120, 26975}, {17121, 26959}, {17142, 24478}, {17260, 20372}, {17273, 26768}, {17285, 26774}, {17289, 27044}, {17291, 27106}, {17334, 26769}, {17340, 26797}, {17354, 27136}, {17357, 27113}, {17366, 27011}, {17368, 27091}, {20305, 26589}, {20691, 22016}, {22174, 25124}, {26582, 27058}, {26685, 27021}, {26778, 26779}, {26785, 26793}, {27030, 27034}, {27035, 27069}


X(26773) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b - 6 a^2 b^2 + a b^3 + a^3 c - 8 a^2 b c + 8 a b^2 c + b^3 c - 6 a^2 c^2 + 8 a b c^2 - 6 b^2 c^2 + a c^3 + b c^3 : :

X(26773) lies on these lines: {1, 2}


X(26774) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b^2 + a^2 b^3 + 2 a^2 b^2 c - 4 a b^3 c + a^3 c^2 + 2 a^2 b c^2 - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 4 a b c^3 + b^2 c^3 : :

X(26774) lies on these lines: {1, 2}, {69, 27136}, {141, 26764}, {190, 26768}, {536, 18073}, {594, 26812}, {1654, 27073}, {4129, 21385}, {6646, 26797}, {17229, 26971}, {17231, 27102}, {17233, 27095}, {17239, 27032}, {17280, 26756}, {17285, 26772}, {17295, 26963}, {17297, 26816}, {17374, 26975}, {26771, 27040}


X(26775) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(661), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (a + b) (b - c) (a + c) (a^2 b - a b^2 + a^2 c - 4 a b c + b^2 c - a c^2 + b c^2) : :

X(26775) lies on these lines: {2, 661}, {1019, 27013}, {3762, 4560}, {3768, 17217}, {4833, 16738}, {7199, 26985}, {7252, 16704}, {8025, 18199}, {16751, 27115}, {17494, 18155}, {18197, 20295}


X(26776) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(667), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (b - c) (-a b - a c + b c) (-a^3 b + a^2 b^2 - a^3 c - a^2 b c - 2 a b^2 c + a^2 c^2 - 2 a b c^2 + b^2 c^2) : :

X(26776) lies on these lines: {2, 667}, {4129, 26778}


X(26777) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(693), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (b - c) (-3 a^2 + 3 a b + 3 a c + b c) : :

X(26777) lies on these lines: {2, 650}, {514, 27013}, {661, 26853}, {812, 26798}, {1635, 7192}, {2490, 4789}, {3522, 8760}, {3620, 9015}, {3623, 14077}, {3762, 4560}, {4024, 10196}, {4382, 27138}, {4468, 27486}, {4704, 4777}, {4765, 25259}, {4893, 20295}, {6546, 21196}, {14936, 26846}, {19998, 21727}, {21297, 25666}, {23791, 26037}


X(26778) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^4 b^2 + a^2 b^4 + 2 a^4 b c - a^3 b^2 c - a^2 b^3 c - 2 a b^4 c + a^4 c^2 - a^3 b c^2 + 2 a^2 b^2 c^2 - a b^3 c^2 + b^4 c^2 - a^2 b c^3 - a b^2 c^3 + a^2 c^4 - 2 a b c^4 + b^2 c^4 : :

X(26778) lies on these lines: {2, 31}, {141, 17152}, {4026, 26807}, {4129, 26776}, {6646, 26752}, {16549, 17350}, {24697, 27080}, {26772, 26779}


X(26779) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b + 4 a^2 b^2 + a b^3 + a^3 c + 2 a^2 b c - 2 a b^2 c + b^3 c + 4 a^2 c^2 - 2 a b c^2 + 4 b^2 c^2 + a c^3 + b c^3 : :

X(26779) lies on these lines: {1, 2}, {16705, 27076}, {20148, 26825}, {26764, 26765}, {26772, 26778}


X(26780) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^6 b - 3 a^5 b^2 + 2 a^4 b^3 + 2 a^3 b^4 - 3 a^2 b^5 + a b^6 + a^6 c - 10 a^5 b c - a^4 b^2 c + 4 a^3 b^3 c - a^2 b^4 c + 6 a b^5 c + b^6 c - 3 a^5 c^2 - a^4 b c^2 + 4 a^3 b^2 c^2 + 4 a^2 b^3 c^2 - a b^4 c^2 - 3 b^5 c^2 + 2 a^4 c^3 + 4 a^3 b c^3 + 4 a^2 b^2 c^3 - 12 a b^3 c^3 + 2 b^4 c^3 + 2 a^3 c^4 - a^2 b c^4 - a b^2 c^4 + 2 b^3 c^4 - 3 a^2 c^5 + 6 a b c^5 - 3 b^2 c^5 + a c^6 + b c^6 : :

X(26780) lies on these lines: {2, 3}, {26757, 26790}


X(26781) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (b + c) (a^5 b - a^4 b^2 - a^3 b^3 + a^2 b^4 + a^5 c - a^3 b^2 c - 2 a^2 b^3 c - 2 a b^4 c - a^4 c^2 - a^3 b c^2 + a b^3 c^2 + b^4 c^2 - a^3 c^3 - 2 a^2 b c^3 + a b^2 c^3 - 2 b^3 c^3 + a^2 c^4 - 2 a b c^4 + b^2 c^4) : :

X(26781) lies on these lines: {2, 3}, {3454, 27096}, {17052, 27170}, {21245, 27514}, {26752, 26762}, {26759, 26795}, {26794, 27040}


X(26782) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 + 2 a^7 b c + 2 a^5 b^3 c - 2 a^3 b^5 c - 2 a b^7 c + a^7 c^2 + a^4 b^3 c^2 + a^3 b^4 c^2 + b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 + a^4 b^2 c^3 - 4 a^3 b^3 c^3 + a^2 b^4 c^3 + 2 a b^5 c^3 - b^6 c^3 + a^3 b^2 c^4 + a^2 b^3 c^4 - 2 a^3 b c^5 + 2 a b^3 c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 - 2 a b c^7 + b^2 c^7 : :

X(26782) lies on these lines: {2, 3}, {26764, 26789}


X(26783) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (b + c) (-3 a^5 - 2 a^4 b + 2 a^3 b^2 + a b^4 + 2 b^5 - 2 a^4 c - a^3 b c + a^2 b^2 c - a b^3 c - b^4 c + 2 a^3 c^2 + a^2 b c^2 - 2 a b^2 c^2 - b^3 c^2 - a b c^3 - b^2 c^3 + a c^4 - b c^4 + 2 c^5) : :

X(26783) lies on these lines: {2, 3}, {306, 7206}, {17280, 17482}


X(26784) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (b + c) (a^8 b - a^6 b^3 - a^4 b^5 + a^2 b^7 + a^8 c + 2 a^7 b c + 3 a^6 b^2 c + 2 a^5 b^3 c - a^4 b^4 c - 2 a^3 b^5 c - 3 a^2 b^6 c - 2 a b^7 c + 3 a^6 b c^2 + 2 a^5 b^2 c^2 - a^4 b^3 c^2 + 2 a^3 b^4 c^2 + a^2 b^5 c^2 + b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 - a^4 b^2 c^3 - 4 a^3 b^3 c^3 + 3 a^2 b^4 c^3 + 2 a b^5 c^3 - b^6 c^3 - a^4 b c^4 + 2 a^3 b^2 c^4 + 3 a^2 b^3 c^4 - a^4 c^5 - 2 a^3 b c^5 + a^2 b^2 c^5 + 2 a b^3 c^5 - 3 a^2 b c^6 - b^3 c^6 + a^2 c^7 - 2 a b c^7 + b^2 c^7) : :

X(26784) lies on these lines: {2, 3}, {26752, 26789}


X(26785) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (b + c) (a^8 b - a^6 b^3 - a^4 b^5 + a^2 b^7 + a^8 c - a^7 b c - 2 a^6 b^2 c + 2 a^5 b^3 c + a^4 b^4 c - a^3 b^5 c - 2 a^6 b c^2 - 3 a^5 b^2 c^2 + a^4 b^3 c^2 + 2 a^3 b^4 c^2 + a b^6 c^2 + b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 + a^4 b^2 c^3 - 4 a^3 b^3 c^3 - a^2 b^4 c^3 - b^6 c^3 + a^4 b c^4 + 2 a^3 b^2 c^4 - a^2 b^3 c^4 - 2 a b^4 c^4 - a^4 c^5 - a^3 b c^5 + a b^2 c^6 - b^3 c^6 + a^2 c^7 + b^2 c^7) : :

X(26785) lies on these lines: {2, 3}, {26772, 26793}


X(26786) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^6 b - 5 a^5 b^2 + 4 a^4 b^3 + 4 a^3 b^4 - 5 a^2 b^5 + a b^6 + a^6 c - 14 a^5 b c - a^4 b^2 c + 4 a^3 b^3 c - a^2 b^4 c + 10 a b^5 c + b^6 c - 5 a^5 c^2 - a^4 b c^2 + 8 a^3 b^2 c^2 + 8 a^2 b^3 c^2 - a b^4 c^2 - 5 b^5 c^2 + 4 a^4 c^3 + 4 a^3 b c^3 + 8 a^2 b^2 c^3 - 20 a b^3 c^3 + 4 b^4 c^3 + 4 a^3 c^4 - a^2 b c^4 - a b^2 c^4 + 4 b^3 c^4 - 5 a^2 c^5 + 10 a b c^5 - 5 b^2 c^5 + a c^6 + b c^6 : :

X(26786) lies on these lines: {2, 3}


X(26787) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^6 b - a^5 b^2 - a^2 b^5 + a b^6 + a^6 c - 6 a^5 b c - 3 a^4 b^2 c - 3 a^2 b^4 c + 2 a b^5 c + b^6 c - a^5 c^2 - 3 a^4 b c^2 - 3 a b^4 c^2 - b^5 c^2 - 8 a b^3 c^3 - 3 a^2 b c^4 - 3 a b^2 c^4 - a^2 c^5 + 2 a b c^5 - b^2 c^5 + a c^6 + b c^6 : :

X(26787) lies on these lines: {2, 3}, {17280, 26757}, {26759, 26792}


X(26788) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^5 b^2 + a^2 b^5 + 2 a^5 b c + a^4 b^2 c - 2 a^3 b^3 c + a^2 b^4 c - 2 a b^5 c + a^5 c^2 + a^4 b c^2 + a b^4 c^2 + b^5 c^2 - 2 a^3 b c^3 + 2 a b^3 c^3 + a^2 b c^4 + a b^2 c^4 + a^2 c^5 - 2 a b c^5 + b^2 c^5 : :

X(26788) lies on these lines: {2, 3}, {26763, 26770}, {26765, 26794}


X(26789) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(19), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^5 + a^4 b - a b^4 - b^5 + a^4 c + a^3 b c - 2 a^2 b^2 c + a b^3 c + b^4 c - 2 a^2 b c^2 + 2 a b^2 c^2 + a b c^3 - a c^4 + b c^4 - c^5 : :

X(26789) lies on these lines: {2, 19}, {7, 17319}, {192, 17483}, {346, 17481}, {3672, 26842}, {4872, 26665}, {6646, 26754}, {11997, 20292}, {17280, 17482}, {26752, 26784}, {26764, 26782}


X(26790) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(40), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^4 + 3 a^3 b - 2 a^2 b^2 - a b^3 - b^4 + 3 a^3 c - 5 a^2 b c + a b^2 c + b^3 c - 2 a^2 c^2 + a b c^2 - a c^3 + b c^3 - c^4 : :

X(26790) lies on these lines: {2, 40}, {3730, 5195}, {3869, 20533}, {4209, 6361}, {4295, 27253}, {4872, 21872}, {6542, 25270}, {6646, 26754}, {7991, 26531}, {9778, 26658}, {12702, 17671}, {26752, 26753}, {26757, 26780}


X(26791) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(57), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 + 2 a^2 b - b^3 + 2 a^2 c - 5 a b c + 2 b^2 c + 2 b c^2 - c^3 : :

X(26791) lies on these lines: {2, 7}, {43, 17777}, {65, 25979}, {145, 2899}, {181, 3038}, {312, 17299}, {1252, 6634}, {1572, 27546}, {1836, 26073}, {1999, 4856}, {3873, 26139}, {4096, 17722}, {5205, 20101}, {5741, 17280}, {11415, 26029}, {17387, 17778}, {26752, 26753}, {26793, 27040}


X(26792) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(63), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 + a^2 b - a b^2 - b^3 + a^2 c - 3 a b c + b^2 c - a c^2 + b c^2 - c^3 : :

X(26792) lies on these lines: {2, 7}, {8, 3583}, {72, 5046}, {78, 15680}, {79, 26060}, {149, 3681}, {165, 9809}, {190, 5741}, {191, 27529}, {200, 20095}, {210, 5057}, {312, 2895}, {321, 4886}, {346, 26837}, {497, 4661}, {960, 20060}, {962, 4678}, {997, 20067}, {1329, 11684}, {1698, 14450}, {2475, 3876}, {2476, 15650}, {3083, 17806}, {3084, 17803}, {3146, 5811}, {3487, 16859}, {3616, 17544}, {3617, 11415}, {3621, 5815}, {3648, 25440}, {3663, 17020}, {3679, 5180}, {3699, 4450}, {3703, 4756}, {3740, 20292}, {3828, 11552}, {3832, 5758}, {3873, 4679}, {3874, 26127}, {3878, 5559}, {3927, 4193}, {3935, 21060}, {3940, 11114}, {3952, 4388}, {3995, 4053}, {4005, 5178}, {4420, 20066}, {4533, 22793}, {4656, 17011}, {4671, 5739}, {4677, 9802}, {4909, 17019}, {5080, 5692}, {5211, 20068}, {5220, 11680}, {5719, 16858}, {5777, 6895}, {5812, 6894}, {6147, 17536}, {6327, 27538}, {6546, 20295}, {6960, 26921}, {7411, 13257}, {8818, 27081}, {9342, 11246}, {9785, 20014}, {11374, 15674}, {12526, 25005}, {14555, 20886}, {14997, 19785}, {15481, 17605}, {17135, 17777}, {17280, 17482}, {17535, 24470}, {17548, 27383}, {22022, 24048}, {26752, 26762}, {26757, 26780}, {26759, 26787}


X(26793) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(85), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^4 - 2 a^3 b + 2 a^2 b^2 - 2 a b^3 + b^4 - 2 a^3 c - a^2 b c + a b^2 c + 2 a^2 c^2 + a b c^2 - 2 b^2 c^2 - 2 a c^3 + c^4 : :

X(26793) lies on these lines: {2, 85}, {8, 5526}, {9, 21066}, {12, 3039}, {149, 2082}, {169, 2475}, {894, 26532}, {1252, 11607}, {2345, 15492}, {2348, 5086}, {5046, 5179}, {5199, 24982}, {6604, 26544}, {10025, 26526}, {17280, 26757}, {23058, 25005}, {24036, 27529}, {26575, 27064}, {26772, 26785}, {26791, 27040}


X(26794) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (a - b) (a - c) (b + c) (a^3 b - a b^3 + a^3 c + 4 a^2 b c + 2 a b^2 c + b^3 c + 2 a b c^2 - 2 b^2 c^2 - a c^3 + b c^3) : :

X(26794) lies on these lines: {2, 99}, {190, 26796}, {661, 21272}, {668, 26795}, {1018, 4129}, {4781, 27045}, {23903, 26964}, {26753, 26770}, {26765, 26788}, {26781, 27040}


X(26795) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(100), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (a - b) (a - c) (a^2 b^2 - a b^3 + 2 a^2 b c + a b^2 c + b^3 c + a^2 c^2 + a b c^2 - 2 b^2 c^2 - a c^3 + b c^3) : :

X(26795) lies on these lines: {2, 11}, {668, 26794}, {1018, 26796}, {26753, 26757}, {26759, 26781}, {26762, 26767}, {26766, 26771}


X(26796) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(101), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (a - b) (a - c) (a^3 b^2 - a b^4 + 2 a^3 b c + a b^3 c + b^4 c + a^3 c^2 - b^3 c^2 + a b c^3 - b^2 c^3 - a c^4 + b c^4) : :

X(26796) lies on these lines: {2, 101}, {190, 26794}, {644, 27134}, {693, 21859}, {1018, 26795}, {3314, 27096}


X(26797) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c + 4 a^2 b^2 c - 2 a b^3 c + a^3 c^2 + 4 a^2 b c^2 - 4 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(26797) lies on these lines: {2, 37}, {141, 26769}, {190, 26756}, {3663, 27113}, {3882, 17350}, {3943, 26963}, {3950, 27166}, {6646, 26774}, {17118, 26817}, {17178, 17233}, {17261, 27044}, {17262, 27095}, {17267, 27107}, {17268, 27017}, {17269, 27145}, {17315, 26975}, {17340, 26772}, {26752, 26799}, {26757, 26800}


X(26798) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(649), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    (b - c) (-a^2 - 3 a b - 3 a c + 3 b c) : :

X(26798) lies on these lines: {2, 649}, {513, 26985}, {661, 21297}, {693, 4940}, {812, 26777}, {2516, 4380}, {3620, 9002}, {3768, 17217}, {4106, 4776}, {4129, 21385}, {4671, 20952}, {4728, 7192}, {4772, 27485}, {4775, 21301}, {4928, 4979}, {4992, 21343}, {17300, 23345}


X(26799) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(894), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^3 b^2 + a^2 b^3 + 4 a^3 b c - 2 a^2 b^2 c + a^3 c^2 - 2 a^2 b c^2 + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26799) lies on these lines: {2, 7}, {6, 26821}, {44, 26971}, {141, 26768}, {190, 26764}, {192, 4277}, {256, 3952}, {3739, 27036}, {4473, 27073}, {4643, 27261}, {16738, 17332}, {16814, 27032}, {17120, 27166}, {17178, 20072}, {17276, 27311}, {17277, 26812}, {17280, 26756}, {17347, 27145}, {17351, 27102}, {17354, 27095}, {17355, 27044}, {17357, 27106}, {17365, 26816}, {17375, 27291}, {17789, 27727}, {18082, 23343}, {22279, 24517}, {26752, 26797}


X(26800) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(984), WHERE A'B'C' = GEMINI TRIANGLE 49

Barycentrics    a^4 b^2 + a^2 b^4 - a^3 b^2 c + 3 a^2 b^3 c + a^4 c^2 - a^3 b c^2 + 4 a^2 b^2 c^2 - a b^3 c^2 + b^4 c^2 + 3 a^2 b c^3 - a b^2 c^3 + a^2 c^4 + b^2 c^4 : :

X(26800) lies on these lines: {2, 38}, {2345, 3770}, {3730, 17350}, {6646, 26752}, {17280, 21226}, {26757, 26797}

leftri

Collineation mappings involving Gemini triangle 50: X(26801)-X(26862)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 50, as in centers X(26801)-X(26862). Then

m(X) = a (b - c)^2 x + b (a + c)^2 y + c (a + b)^2 z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 3, 2018)


X(26801) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^2 b^2 - a^2 b c + a b^2 c + a^2 c^2 + a b c^2 + b^2 c^2 : :

X(26801) lies on these lines: {1, 2}, {7, 1424}, {11, 17669}, {21, 4366}, {36, 17693}, {39, 17143}, {55, 17684}, {56, 16915}, {69, 26149}, {75, 2275}, {76, 16975}, {83, 5291}, {100, 7824}, {141, 27155}, {172, 20179}, {192, 26082}, {194, 4441}, {238, 18756}, {257, 2170}, {274, 1015}, {350, 1107}, {384, 2975}, {668, 3934}, {891, 27015}, {894, 1475}, {941, 20168}, {956, 7770}, {958, 16916}, {966, 16525}, {993, 17692}, {999, 11321}, {1100, 26110}, {1468, 14621}, {1573, 18140}, {1654, 20561}, {1909, 9263}, {1960, 27075}, {2276, 17144}, {2345, 24737}, {2886, 26561}, {2896, 20553}, {3434, 7791}, {3436, 16924}, {3702, 3797}, {3813, 26590}, {3879, 25538}, {3954, 18061}, {4390, 17743}, {4645, 27019}, {4875, 25994}, {4999, 26629}, {5025, 11680}, {5080, 16044}, {5082, 16043}, {5253, 16917}, {5260, 16918}, {5284, 16912}, {5303, 13586}, {5687, 11285}, {6604, 26134}, {6645, 17686}, {6650, 26835}, {6656, 24390}, {7187, 20880}, {7797, 17737}, {11681, 16921}, {12263, 17794}, {15325, 17694}, {16502, 16998}, {16705, 16738}, {16781, 16992}, {16887, 17761}, {17045, 27164}, {17169, 17178}, {17209, 26802}, {17237, 26142}, {17257, 23640}, {17275, 25505}, {17277, 21788}, {17278, 24652}, {17280, 27109}, {17322, 26045}, {17688, 24552}, {18230, 27291}, {19765, 20162}, {20072, 26976}, {21024, 27033}, {21384, 24514}, {26810, 26819}, {26827, 26836}, {26831, 26837}, {26844, 26846}, {26850, 26852}

X(26801) = anticomplement of X(27020)


X(26802) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^3 b^2 - 2 a^2 b^3 + a b^4 - 2 a^3 b c + a^2 b^2 c + b^4 c + a^3 c^2 + a^2 b c^2 - 2 a b^2 c^2 - b^3 c^2 - 2 a^2 c^3 - b^2 c^3 + a c^4 + b c^4) : :

X(26802) lies on these lines: {2, 3}, {284, 26125}, {3177, 16699}, {4653, 27253}, {11185, 27515}, {14621, 26964}, {14964, 17753}, {17178, 26811}, {17209, 26801}, {18600, 26845}, {19591, 20244}, {26561, 26977}, {26805, 26846}


X(26803) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^4 b - 2 a^3 b^2 + 2 a^2 b^3 - 2 a b^4 + b^5 + a^4 c + 4 a^3 b c - 4 a^2 b^2 c - b^4 c - 2 a^3 c^2 - 4 a^2 b c^2 + 4 a b^2 c^2 + 2 a^2 c^3 - 2 a c^4 - b c^4 + c^5) : :

X(26803) lies on these lines: {2, 3}, {18600, 26818}, {26806, 26807}, {26811, 26849}


X(26804) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^4 b - a^3 b^2 - a b^4 + b^5 + a^4 c + 2 a^3 b c - 3 a^2 b^2 c - a^3 c^2 - 3 a^2 b c^2 + 2 a b^2 c^2 - b^3 c^2 - b^2 c^3 - a c^4 + c^5) : :

X(26804) lies on these lines: {2, 3}, {17167, 26839}, {17194, 26531}, {24632, 27526}, {26558, 27149}, {26813, 26849}


X(26805) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b - 2 a^2 b^2 + a b^3 + a^3 c + 8 a^2 b c + b^3 c - 2 a^2 c^2 - 2 b^2 c^2 + a c^3 + b c^3 : :

X(26805) lies on these lines: {1, 2}, {1015, 18600}, {1509, 26845}, {4366, 17539}, {8025, 26828}, {16713, 17045}, {17048, 21272}, {17169, 17761}, {17302, 26818}, {17474, 20347}, {26802, 26846}, {26827, 26839}, {26850, 26859}


X(26806) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(9), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^2 + a b - b^2 + a c + 3 b c - c^2 : :

X(26806) lies on these lines: {2, 7}, {8, 4772}, {10, 17288}, {37, 4440}, {69, 4699}, {75, 4675}, {86, 1086}, {190, 17245}, {192, 4648}, {193, 16816}, {239, 3664}, {244, 256}, {319, 4688}, {320, 1654}, {330, 27454}, {344, 7222}, {536, 17317}, {594, 17297}, {673, 20147}, {903, 17246}, {942, 26051}, {966, 4741}, {1125, 9791}, {1213, 7238}, {1266, 17319}, {1278, 17316}, {1284, 5253}, {1463, 3812}, {1909, 20892}, {2321, 17312}, {2345, 17232}, {3008, 17120}, {3589, 27191}, {3616, 24248}, {3619, 4470}, {3661, 17298}, {3663, 16826}, {3666, 26109}, {3729, 17244}, {3758, 17278}, {3834, 17289}, {3875, 17391}, {3879, 17117}, {3888, 17049}, {3912, 17116}, {3945, 4393}, {4000, 17379}, {4334, 19860}, {4335, 4666}, {4340, 19851}, {4359, 17778}, {4360, 7263}, {4361, 17378}, {4363, 17234}, {4384, 4888}, {4389, 15668}, {4398, 16777}, {4416, 4896}, {4419, 27268}, {4431, 17310}, {4454, 25269}, {4472, 17307}, {4473, 17263}, {4480, 25072}, {4643, 4751}, {4644, 17349}, {4645, 17153}, {4659, 17242}, {4665, 17295}, {4667, 17121}, {4670, 16706}, {4686, 17315}, {4687, 17276}, {4698, 17258}, {4704, 5308}, {4739, 5564}, {4740, 17314}, {4796, 16671}, {4798, 17400}, {4859, 17367}, {4862, 16831}, {4869, 17230}, {4967, 17287}, {5224, 7232}, {5263, 25557}, {5712, 17490}, {6356, 21940}, {7184, 21352}, {7227, 17285}, {7240, 22343}, {9782, 26115}, {10030, 26538}, {11110, 24470}, {16817, 20077}, {16830, 24231}, {16832, 17331}, {17118, 17233}, {17119, 17377}, {17151, 17389}, {17160, 17390}, {17169, 17178}, {17175, 17202}, {17180, 17761}, {17227, 17303}, {17235, 17322}, {17241, 17281}, {17252, 24603}, {17256, 17345}, {17259, 17347}, {17265, 17354}, {17266, 17355}, {17275, 17361}, {17277, 17365}, {17283, 17369}, {17290, 17381}, {17292, 21255}, {17301, 17394}, {17304, 17397}, {17305, 17398}, {17343, 21296}, {17695, 25500}, {17777, 25421}, {17790, 18143}, {17951, 27827}, {20295, 21211}, {20337, 27707}, {20924, 21442}, {21258, 26530}, {21330, 24463}, {26048, 26756}, {26803, 26807}, {26821, 26850}

X(26806) = anticomplement of X(17260)


X(26807) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b + a b^3 + a^3 c + 6 a^2 b c + 2 a b^2 c + b^3 c + 2 a b c^2 + a c^3 + b c^3 : :

X(26807) lies on these lines: {1, 2}, {86, 26825}, {1015, 16705}, {2975, 16931}, {3742, 26562}, {4026, 26778}, {4357, 17474}, {4366, 11115}, {4986, 25089}, {8025, 26841}, {16710, 17302}, {17152, 24512}, {17175, 17761}, {24631, 25248}, {26803, 26806}, {26828, 26846}, {26834, 26842}


X(26808) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^5 b^2 - 2 a^4 b^3 + 2 a^3 b^4 - 2 a^2 b^5 + a b^6 - 2 a^5 b c + a^4 b^2 c - 2 a^3 b^3 c + 2 a^2 b^4 c + b^6 c + a^5 c^2 + a^4 b c^2 - a b^4 c^2 - b^5 c^2 - 2 a^4 c^3 - 2 a^3 b c^3 + 2 a^3 c^4 + 2 a^2 b c^4 - a b^2 c^4 - 2 a^2 c^5 - b^2 c^5 + a c^6 + b c^6) : :

X(26808) lies on these lines: {2, 3}


X(26809) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^5 b^2 - 2 a^4 b^3 + 2 a^3 b^4 - 2 a^2 b^5 + a b^6 - 2 a^5 b c + a^4 b^2 c - 2 a^3 b^3 c + 2 a^2 b^4 c + b^6 c + a^5 c^2 + a^4 b c^2 + a^2 b^3 c^2 - a b^4 c^2 - b^5 c^2 - 2 a^4 c^3 - 2 a^3 b c^3 + a^2 b^2 c^3 + 2 a^3 c^4 + 2 a^2 b c^4 - a b^2 c^4 - 2 a^2 c^5 - b^2 c^5 + a c^6 + b c^6) : :

X(26809) lies on these lines: {2, 3}


X(26810) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^4 b^2 + a^2 b^4 - 2 a^4 b c + 2 a b^4 c + a^4 c^2 + b^4 c^2 + a^2 c^4 + 2 a b c^4 + b^2 c^4 : :

X(26810) lies on these lines: {2, 31}, {17178, 26814}, {26801, 26819}, {26815, 26846}


X(26811) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^3 b^2 - a^2 b^3 + a b^4 - 2 a^3 b c + a^2 b^2 c - a b^3 c + b^4 c + a^3 c^2 + a^2 b c^2 - a^2 c^3 - a b c^3 + a c^4 + b c^4) : :

X(26811) lies on these lines: {2, 32}, {17178, 26802}, {18600, 26835}, {26803, 26849}, {26845, 26852}


X(26812) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b^2 + a^2 b^3 + 2 a^2 b^2 c + a^3 c^2 + 2 a^2 b c^2 + 6 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26812) lies on these lines: {2, 37}, {86, 26821}, {594, 26774}, {1086, 16738}, {1268, 25534}, {1654, 26768}, {3008, 27078}, {4395, 27042}, {4967, 27044}, {5750, 26982}, {16819, 17324}, {16829, 17288}, {17117, 25538}, {17140, 24575}, {17169, 17178}, {17202, 17761}, {17239, 27106}, {17277, 26799}, {17445, 20044}, {24199, 27017}, {26082, 26769}, {26149, 26756}, {26813, 26826}, {26829, 26837}


X(26813) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^2 b^3 - a b^3 c + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 - a b c^3 + b^2 c^3) : :

X(26813) lies on these lines: {2, 39}, {1909, 16742}, {7187, 16727}, {16887, 17761}, {17178, 26802}, {17205, 26959}, {26804, 26849}, {26812, 26826}, {26835, 26843}, {26964, 27011}


X(26814) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    2 a^3 b^3 - a^3 b^2 c + 3 a^2 b^3 c - a^3 b c^2 + 3 a b^3 c^2 + 2 a^3 c^3 + 3 a^2 b c^3 + 3 a b^2 c^3 + 2 b^3 c^3 : :

X(26814) lies on these lines: {1, 2}, {1015, 16748}, {17178, 26810}, {17208, 17761}, {26819, 26846}


X(26815) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b^3 - a^3 b^2 c + a^2 b^3 c - a^3 b c^2 - a^2 b^2 c^2 + a b^3 c^2 + a^3 c^3 + a^2 b c^3 + a b^2 c^3 + b^3 c^3 : :

X(26815) lies on these lines: {1, 2}, {56, 16954}, {310, 1015}, {350, 23632}, {4184, 4366}, {17759, 26963}, {18152, 22199}, {21224, 21345}, {26810, 26846}


X(26816) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(44), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b^2 + a^2 b^3 - 4 a^3 b c - 2 a^2 b^2 c + 4 a b^3 c + a^3 c^2 - 2 a^2 b c^2 - 6 a b^2 c^2 + b^3 c^2 + a^2 c^3 + 4 a b c^3 + b^2 c^3 : :

X(26816) lies on these lines: {2, 44}, {86, 26857}, {1086, 26821}, {3664, 27017}, {4869, 27136}, {17139, 26844}, {17169, 17178}, {17217, 26822}, {17297, 26774}, {17300, 26764}, {17365, 26799}, {17375, 20561}, {17376, 27102}, {17378, 27107}


X(26817) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(45), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b^2 + a^2 b^3 + 2 a^3 b c + 4 a^2 b^2 c - 2 a b^3 c + a^3 c^2 + 4 a^2 b c^2 + 12 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(26817) lies on these lines: {2, 45}, {86, 26850}, {4699, 26756}, {7321, 27154}, {10436, 27011}, {17116, 27073}, {17118, 26797}, {17169, 17178}, {17236, 24190}


X(26818) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(69), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^2 b - 2 a b^2 + b^3 + a^2 c + 4 a b c - b^2 c - 2 a c^2 - b c^2 + c^3) : :

X(26818) lies on these lines: {2, 6}, {7, 17197}, {58, 14986}, {144, 17183}, {145, 27334}, {192, 16728}, {284, 8732}, {314, 4461}, {390, 3286}, {757, 26856}, {1014, 14953}, {1024, 17212}, {1434, 26827}, {1449, 17077}, {2257, 26651}, {3662, 26964}, {3663, 18186}, {3672, 16696}, {4000, 16726}, {4267, 5265}, {4346, 18198}, {4352, 18171}, {4772, 16740}, {5281, 18185}, {5435, 18163}, {10580, 17194}, {11019, 20978}, {17120, 27058}, {17139, 20059}, {17169, 17207}, {17175, 27304}, {17287, 27025}, {17302, 26805}, {17367, 26997}, {17373, 26757}, {18600, 26803}, {18601, 18603}, {26626, 27170}, {26833, 26845}


X(26819) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^2 b^2 + a b^3 - 2 a^2 b c + a b^2 c + b^3 c + a^2 c^2 + a b c^2 + 2 b^2 c^2 + a c^3 + b c^3) : :

X(26819) lies on these lines: {2, 6}, {3736, 20011}, {4359, 16726}, {4651, 18792}, {16696, 17147}, {16705, 26821}, {17135, 17187}, {17143, 18171}, {17184, 17197}, {17495, 18601}, {26801, 26810}, {26814, 26846}, {26830, 26836}, {26844, 26856}


X(26820) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b - 6 a^2 b^2 + a b^3 + a^3 c + 12 a^2 b c - 4 a b^2 c + b^3 c - 6 a^2 c^2 - 4 a b c^2 - 6 b^2 c^2 + a c^3 + b c^3 : :

X(26820) lies on these lines: {1, 2}


X(26821) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b^2 + a^2 b^3 - 4 a^3 b c - 2 a^2 b^2 c + a^3 c^2 - 2 a^2 b c^2 + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26821) lies on these lines: {1, 2}, {6, 26799}, {86, 26812}, {192, 5069}, {524, 26768}, {536, 26975}, {1019, 26853}, {1086, 26816}, {1100, 26971}, {2275, 17147}, {3286, 4366}, {3723, 27032}, {3946, 27017}, {4360, 26764}, {4648, 27192}, {4852, 27102}, {16705, 26819}, {16738, 17045}, {17178, 17302}, {17300, 27011}, {17314, 27136}, {17343, 26143}, {17374, 27106}, {17377, 27095}, {17380, 27145}, {17776, 24737}, {20530, 25298}, {26806, 26850}, {26842, 26852}


X(26822) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(661), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (b - c) (a + c) (a^2 b - a b^2 + a^2 c + b^2 c - a c^2 + b c^2) : :

X(26822) lies on these lines: {2, 661}, {1019, 17174}, {3733, 18108}, {3960, 4560}, {7199, 16751}, {7252, 8025}, {16704, 18199}, {17096, 17498}, {17217, 26816}, {18155, 26985}, {18197, 27013}, {23829, 25259}


X(26823) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(667), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (b - c) (a^4 b^2 - a^3 b^3 - 2 a^4 b c - a^3 b^2 c - a^2 b^3 c + a^4 c^2 - a^3 b c^2 - a^2 b^2 c^2 + a b^3 c^2 - a^3 c^3 - a^2 b c^3 + a b^2 c^3 + b^3 c^3) : :

X(26823) lies on these lines: {2, 667}, {1019, 26825}, {23470, 26846}


X(26824) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(693), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (b - c) (-a^2 + a b + a c + 3 b c) : :

X(26824) lies on these lines: {2, 650}, {193, 9015}, {514, 4024}, {523, 2528}, {649, 17029}, {661, 21297}, {812, 4979}, {1278, 4777}, {3146, 8760}, {3621, 14077}, {3676, 27486}, {3960, 4560}, {4379, 27013}, {4411, 4772}, {4453, 4976}, {4467, 21104}, {4498, 27673}, {4671, 21611}, {4699, 4828}, {4765, 21183}, {4776, 23813}, {4801, 17496}, {4802, 24719}, {4810, 4977}, {4814, 21302}, {4893, 27138}, {6545, 21196}, {6548, 21212}, {6646, 23838}, {9001, 20080}, {23989, 26846}

X(26824) = anticomplement of X(17494)


X(26825) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^4 b^2 + a^2 b^4 - 2 a^4 b c - a^3 b^2 c - a^2 b^3 c + 2 a b^4 c + a^4 c^2 - a^3 b c^2 - 2 a^2 b^2 c^2 - a b^3 c^2 + b^4 c^2 - a^2 b c^3 - a b^2 c^3 + a^2 c^4 + 2 a b c^4 + b^2 c^4 : :

X(26825) lies on these lines: {2, 31}, {86, 26807}, {1019, 26823}, {2140, 27011}, {4366, 14953}, {5263, 16930}, {16738, 26826}, {17169, 17178}, {20148, 26779}


X(26826) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b + 4 a^2 b^2 + a b^3 + a^3 c + 2 a^2 b c + 6 a b^2 c + b^3 c + 4 a^2 c^2 + 6 a b c^2 + 4 b^2 c^2 + a c^3 + b c^3 : :

X(26826) lies on these lines: {1, 2}, {2975, 16930}, {4366, 17588}, {16738, 26825}, {17210, 17761}, {26812, 26813}


X(26827) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^4 b - 4 a^3 b^2 + 6 a^2 b^3 - 4 a b^4 + b^5 + a^4 c + 8 a^3 b c - 6 a^2 b^2 c - 3 b^4 c - 4 a^3 c^2 - 6 a^2 b c^2 + 8 a b^2 c^2 + 2 b^3 c^2 + 6 a^2 c^3 + 2 b^2 c^3 - 4 a c^4 - 3 b c^4 + c^5) : :

X(26827) lies on these lines: {2, 3}, {1434, 26818}, {26801, 26836}, {26805, 26839}


X(26828) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^3 b^2 - 2 a^2 b^3 + a b^4 - 2 a^3 b c - a b^3 c + b^4 c + a^3 c^2 - 4 a b^2 c^2 - b^3 c^2 - 2 a^2 c^3 - a b c^3 - b^2 c^3 + a c^4 + b c^4) : :

X(26828) lies on these lines: {2, 3}, {8025, 26805}, {16705, 26845}, {16738, 26836}, {25526, 27146}, {26801, 26810}, {26807, 26846}


X(26829) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^5 b^2 - 2 a^4 b^3 + 2 a^3 b^4 - 2 a^2 b^5 + a b^6 - 2 a^5 b c + a^4 b^2 c - 2 a^3 b^3 c + 2 a^2 b^4 c + b^6 c + a^5 c^2 + a^4 b c^2 + 2 a^2 b^3 c^2 - a b^4 c^2 - b^5 c^2 - 2 a^4 c^3 - 2 a^3 b c^3 + 2 a^2 b^2 c^3 + 2 a^3 c^4 + 2 a^2 b c^4 - a b^2 c^4 - 2 a^2 c^5 - b^2 c^5 + a c^6 + b c^6) : :

X(26829) lies on these lines: {2, 3}, {26812, 26837}


X(26830) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (2 a^4 + a^3 b - a^2 b^2 - a b^3 - b^4 + a^3 c - 2 a^2 b c - a b^2 c - a^2 c^2 - a b c^2 + 2 b^2 c^2 - a c^3 - c^4) : :

X(26830) lies on these lines: {2, 3}, {284, 5905}, {1333, 19785}, {2185, 8025}, {2206, 24248}, {3189, 20017}, {3210, 16704}, {3285, 3782}, {8822, 20078}, {17173, 17190}, {17185, 18653}, {21376, 25254}, {26819, 26836}


X(26831) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^6 b^2 - a^5 b^3 - a^2 b^6 + a b^7 - 2 a^6 b c - a^5 b^2 c - a^4 b^3 c + 2 a^2 b^5 c + a b^6 c + b^7 c + a^6 c^2 - a^5 b c^2 - 2 a^4 b^2 c^2 + 4 a^3 b^3 c^2 + 3 a^2 b^4 c^2 - a b^5 c^2 - a^5 c^3 - a^4 b c^3 + 4 a^3 b^2 c^3 - a b^4 c^3 - b^5 c^3 + 3 a^2 b^2 c^4 - a b^3 c^4 + 2 a^2 b c^5 - a b^2 c^5 - b^3 c^5 - a^2 c^6 + a b c^6 + a c^7 + b c^7) : :

X(26831) lies on these lines: {2, 3}, {26801, 26837}, {26840, 26841}


X(26832) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^6 b^2 - a^5 b^3 - a^2 b^6 + a b^7 + 2 a^5 b^2 c - a^4 b^3 c - 2 a^3 b^4 c + b^7 c + a^6 c^2 + 2 a^5 b c^2 - 2 a^4 b^2 c^2 + a^2 b^4 c^2 - 2 a b^5 c^2 - a^5 c^3 - a^4 b c^3 + a b^4 c^3 - b^5 c^3 - 2 a^3 b c^4 + a^2 b^2 c^4 + a b^3 c^4 - 2 a b^2 c^5 - b^3 c^5 - a^2 c^6 + a c^7 + b c^7) : :

X(26832) lies on these lines: {2, 3}


X(26833) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^4 b - 6 a^3 b^2 + 10 a^2 b^3 - 6 a b^4 + b^5 + a^4 c + 12 a^3 b c - 8 a^2 b^2 c - 5 b^4 c - 6 a^3 c^2 - 8 a^2 b c^2 + 12 a b^2 c^2 + 4 b^3 c^2 + 10 a^2 c^3 + 4 b^2 c^3 - 6 a c^4 - 5 b c^4 + c^5) : :

X(26833) lies on these lines: {2, 3}, {26818, 26845}


X(26834) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^4 b - 2 a^3 b^2 + 2 a^2 b^3 - 2 a b^4 + b^5 + a^4 c + 4 a^3 b c - 6 a^2 b^2 c - 2 a b^3 c - b^4 c - 2 a^3 c^2 - 6 a^2 b c^2 + 2 a^2 c^3 - 2 a b c^3 - 2 a c^4 - b c^4 + c^5) : :

X(26834) lies on these lines: {2, 3}, {17302, 26805}, {26807, 26842}


X(26835) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^3 b^2 - a^2 b^3 + a b^4 - 2 a^3 b c + 2 a^2 b^2 c + b^4 c + a^3 c^2 + 2 a^2 b c^2 - 2 a b^2 c^2 - a^2 c^3 + a c^4 + b c^4) : :

X(26835) lies on these lines: {2, 3}, {6650, 26801}, {17178, 26852}, {18600, 26811}, {26813, 26843}


X(26836) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(7), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^4 b - a^3 b^2 - a^2 b^3 + a b^4 + a^4 c + 2 a^3 b c - 2 a^2 b^2 c - 6 a b^3 c + b^4 c - a^3 c^2 - 2 a^2 b c^2 + 6 a b^2 c^2 - b^3 c^2 - a^2 c^3 - 6 a b c^3 - b^2 c^3 + a c^4 + b c^4 : :

X(26836) lies on these lines: {2, 7}, {269, 26621}, {1086, 16713}, {1122, 24633}, {1418, 24547}, {3620, 26757}, {4366, 17178}, {16738, 26828}, {17183, 24237}, {17273, 27039}, {17302, 26805}, {17304, 26964}, {23830, 27043}, {26801, 26827}, {26819, 26830}


X(26837) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(19), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^5 + a^4 b - a b^4 - b^5 + a^4 c - a^3 b c - 2 a^2 b^2 c - a b^3 c + b^4 c - 2 a^2 b c^2 + 2 a b^2 c^2 - a b c^3 - a c^4 + b c^4 - c^5 : :

X(26837) lies on these lines: {2, 19}, {7, 17396}, {192, 17484}, {346, 26792}, {2185, 8025}, {3100, 15680}, {3672, 17481}, {4295, 19783}, {4872, 26538}, {5057, 11997}, {18650, 26639}, {26801, 26831}, {26803, 26806}, {26812, 26829}


X(26838) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(38), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^4 b^2 + a^2 b^4 + 2 a^3 b^2 c - 2 a^2 b^3 c + a^4 c^2 + 2 a^3 b c^2 + 6 a^2 b^2 c^2 + 2 a b^3 c^2 + b^4 c^2 - 2 a^2 b c^3 + 2 a b^2 c^3 + a^2 c^4 + b^2 c^4 : :

X(26838) lies on these lines: {2, 38}, {26801, 26810}


X(26839) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(40), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^4 + a^3 b + 2 a^2 b^2 - 3 a b^3 - b^4 + a^3 c - 3 a^2 b c + 3 a b^2 c - b^3 c + 2 a^2 c^2 + 3 a b c^2 + 4 b^2 c^2 - 3 a c^3 - b c^3 - c^4 : :

X(26839) lies on these lines: {2, 40}, {7, 17474}, {1699, 26531}, {2140, 5195}, {4209, 5603}, {11415, 27304}, {17167, 26804}, {17209, 26801}, {17682, 22791}, {26803, 26806}, {26805, 26827}


X(26840) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(57), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 - 2 a b^2 - b^3 + a b c - 2 a c^2 - c^3 : :

X(26840) lies on these lines: {1, 20101}, {2, 7}, {8, 17155}, {38, 4645}, {65, 5484}, {69, 3210}, {81, 17302}, {210, 26073}, {222, 17086}, {239, 4001}, {244, 4683}, {306, 17288}, {310, 6650}, {312, 17276}, {320, 3666}, {321, 4440}, {333, 1086}, {354, 24723}, {593, 763}, {752, 17598}, {940, 4389}, {942, 26117}, {960, 24803}, {982, 4388}, {1010, 24470}, {1111, 20882}, {1211, 17273}, {1330, 3670}, {1407, 26625}, {1654, 4359}, {1757, 24169}, {1790, 27950}, {1999, 3663}, {2551, 25979}, {2895, 17495}, {2896, 6542}, {3487, 19278}, {3720, 9791}, {3739, 26044}, {3752, 17345}, {3757, 24231}, {3782, 14829}, {3794, 3937}, {3840, 17777}, {3846, 18201}, {3868, 4201}, {4030, 24841}, {4352, 4393}, {4383, 17347}, {4392, 6327}, {4416, 24177}, {4417, 17595}, {4419, 18141}, {4514, 21342}, {4641, 16706}, {4643, 19804}, {4650, 26128}, {4703, 17063}, {4741, 5739}, {4862, 11679}, {4886, 17344}, {4902, 18229}, {5256, 17364}, {5262, 20077}, {5263, 11246}, {5287, 17247}, {6147, 19270}, {7232, 18134}, {7238, 17056}, {9782, 19874}, {10453, 24248}, {14555, 24620}, {17011, 20090}, {17024, 20064}, {17182, 24237}, {17209, 26801}, {17232, 17776}, {17235, 19786}, {17237, 19808}, {17238, 19822}, {17239, 19797}, {17339, 25734}, {17378, 20182}, {17790, 18136}, {18144, 19807}, {20043, 20080}, {24349, 26034}, {26831, 26841}


X(26841) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(58), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^3 b^2 + a b^4 - 2 a^3 b c + a b^3 c + b^4 c + a^3 c^2 + b^3 c^2 + a b c^3 + b^2 c^3 + a c^4 + b c^4) : :

X(26841) lies on these lines: {2, 58}, {6645, 11115}, {8025, 26807}, {16738, 26825}, {17178, 26802}, {18191, 26562}, {26801, 26810}, {26831, 26840}


X(26842) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(63), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    {1, 20066}, {2, 7}, {8, 3894}, {10, 9782}, {21, 24470}, {81, 1086}, {145, 10044}, {149, 354}, {239, 20086}, {320, 2895}, {321, 7321}, {388, 18419}, {404, 6147}, {551, 5180}, {942, 2475}, {1071, 6894}, {1125, 14450}, {1211, 7238}, {1255, 17246}, {1373, 3084}, {1374, 3083}, {1621, 11246}, {1993, 5228}, {2185, 8025}, {2476, 5708}, {2550, 4430}, {3337, 11263}, {3487, 4188}, {3616, 5267}, {3620, 19825}, {3622, 4295}, {3623, 11037}, {3648, 5259}, {3649, 5253}, {3663, 17019}, {3664, 17011}, {3670, 26131}, {3672, 26789}, {3674, 26639}, {3742, 5057}, {3817, 9809}, {3873, 4863}, {3881, 5557}, {3916, 15674}, {3920, 24231}, {3957, 5542}, {3969, 17297}, {3995, 4440}, {4001, 24199}, {4190, 11036}, {4292, 15680}, {4307, 17024}, {4312, 4666}, {4355, 19860}, {4511, 11551}, {4641, 26724}, {4645, 17140}, {4671, 18141}, {4858, 21739}, {4860, 11680}, {4862, 5287}, {4887, 17021}, {4888, 5256}, {4896, 17012}, {4902, 17022}, {4973, 26725}, {5080, 5883}, {5154, 5714}, {5284, 17768}, {5290, 25005}, {5303, 11281}, {5422, 6180}, {5425, 6224}, {5719, 13587}, {5758, 15717}, {5805, 11220}, {5811, 15022}, {5904, 26060}, {6840, 10202}, {6884, 24467}, {6888, 26877}, {6901, 24475}, {8226, 13243}, {9352, 17718}, {9955, 16116}, {10129, 17728}, {10404, 20060}, {10940, 12874}, {11038, 20075}, {11114, 18541}, {12690, 15679}, {14996, 19785}, {15934, 17579}, {17063, 24725}, {17147, 17300}, {17167, 24237}, {17169, 17190}, {17375, 20017}, {17495, 17778}, {18653, 26860}, {20295, 21204}, {26801, 26810}, {26805, 26827}, {26807, 26834}, {26821, 26852} : :

X(26842) lies on these lines:


X(26843) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(83), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^3 b^2 + a b^4 - 2 a^3 b c + 2 a^2 b^2 c - a b^3 c + b^4 c + a^3 c^2 + 2 a^2 b c^2 + b^3 c^2 - a b c^3 + b^2 c^3 + a c^4 + b c^4) : :

X(26843) lies on these lines: {2, 32}, {86, 26807}, {1019, 16887}, {2975, 3286}, {17143, 18171}, {17178, 18600}, {17200, 26965}, {18047, 26759}, {26813, 26835}


X(26844) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(88), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a^2 b + a b^2 + a^2 c - 2 a b c - b^2 c + a c^2 - b c^2)^2 : :

X(26844) lies on these lines: {2, 45}, {1977, 26860}, {3952, 24399}, {4033, 17147}, {14554, 26580}, {17139, 26816}, {26801, 26846}, {26819, 26856}


X(26845) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (b - c)^2 (a + c) (a^3 - 2 a^2 b + a b^2 - 2 a^2 c + 3 a b c + b^2 c + a c^2 + b c^2) : :

X(26845) lies on these lines: {2, 99}, {1015, 26846}, {1019, 17761}, {1086, 26847}, {1111, 4560}, {1509, 26805}, {2170, 7192}, {16705, 26828}, {17103, 26964}, {18600, 26802}, {26811, 26852}, {26813, 26835}, {26818, 26833}


X(26846) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(100), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (b - c)^2 (-a^2 + a b + a c + b c)^2 : :

X(26846) lies on these lines: {2, 11}, {1015, 26845}, {1086, 26851}, {14936, 26777}, {17761, 26847}, {23470, 26823}, {23989, 26824}, {26801, 26844}, {26802, 26805}, {26807, 26828}, {26810, 26815}, {26814, 26819}, {26848, 26856}


X(26847) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(101), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (b - c)^2 (-a^2 + a b + a c + b c) (-a^3 + a b^2 - a b c + b^2 c + a c^2 + b c^2) : :

X(26847) lies on these lines: {2, 101}, {1086, 26845}, {4904, 27009}, {11998, 17496}, {17761, 26846}


X(26848) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(110), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (b - c)^2 (a + c) (a^5 - a^4 b - a^2 b^3 + a b^4 - a^4 c + a^3 b c - 2 a^2 b^2 c + a b^3 c + b^4 c - 2 a^2 b c^2 + 2 b^3 c^2 - a^2 c^3 + a b c^3 + 2 b^2 c^3 + a c^4 + b c^4) : :

X(26848) lies on these lines: {2, 98}, {26846, 26856}


X(26849) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(115), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^4 b - a^3 b^2 + a^2 b^3 - a b^4 + b^5 + a^4 c + 2 a^3 b c - 3 a^2 b^2 c - a b^3 c - a^3 c^2 - 3 a^2 b c^2 + 4 a b^2 c^2 + a^2 c^3 - a b c^3 - a c^4 + c^5) : :

X(26849) lies on these lines: {2, 99}, {26803, 26811}, {26804, 26813}


X(26850) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c - 2 a b^3 c + a^3 c^2 + 8 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(26850) lies on these lines: {2, 37}, {86, 26817}, {1086, 17178}, {4361, 26756}, {4395, 26772}, {4398, 26769}, {4431, 27113}, {5564, 27106}, {7263, 26963}, {17116, 26982}, {17119, 27095}, {17154, 24575}, {17366, 26976}, {24199, 27166}, {26801, 26852}, {26805, 26859}, {26806, 26821}


X(26851) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(900), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (b - c) (a^4 - 2 a^3 b + 2 a^2 b^2 - a b^3 - 2 a^3 c - 6 a^2 b c + 3 a b^2 c + b^3 c + 2 a^2 c^2 + 3 a b c^2 - b^2 c^2 - a c^3 + b c^3) : :

X(26851) lies on these lines: {2, 900}, {1086, 26846}, {4435, 20090}


X(26852) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(194), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b) (a + c) (a^2 b^3 - a^2 b^2 c - 2 a b^3 c - a^2 b c^2 + 4 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3) : :

X(26852) lies on these lines: {2, 39}, {330, 16742}, {2275, 27011}, {16709, 26143}, {16710, 16744}, {16722, 21219}, {17178, 26835}, {26801, 26850}, {26811, 26845}, {26821, 26842}


X(26853) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(649), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (b - c) (-3 a^2 - a b - a c + b c) : :

X(26853) lies on these lines: {2, 649}, {144, 4468}, {193, 9002}, {512, 14712}, {513, 4380}, {514, 14779}, {661, 26777}, {693, 4790}, {788, 20011}, {812, 4979}, {1019, 26821}, {3667, 25259}, {3676, 21454}, {4106, 26985}, {4369, 21297}, {4382, 4932}, {4394, 4776}, {4453, 23729}, {4834, 21301}, {4984, 21196}, {8663, 9147}, {9313, 20064}, {9433, 20041}, {16874, 18108}, {17217, 26816}, {17410, 24562}, {18200, 26860}, {20090, 21143}


X(26854) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(650), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (b - c) (a^4 b - a^2 b^3 + a^4 c - a^3 b c + 3 a b^2 c^2 + b^3 c^2 - a^2 c^3 + b^2 c^3) : :

X(26854) lies on these lines: {1, 23791}, {2, 650}, {514, 27272}, {3837, 25299}, {4382, 27345}, {4449, 25301}, {8640, 23815}, {17215, 26652}, {17217, 26816}, {21297, 26983}, {27258, 27294}


X(26855) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(659), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (b - c) (a^4 b^2 - a^3 b^3 - a^4 b c - a^3 b^2 c - 2 a^2 b^3 c + a^4 c^2 - a^3 b c^2 + 2 a^2 b^2 c^2 + 2 a b^3 c^2 - a^3 c^3 - 2 a^2 b c^3 + 2 a b^2 c^3 + b^3 c^3) : :

X(26855) lies on these lines: {2, 659}, {1086, 26846}, {17217, 26816}


X(26856) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(662), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a + b)^2 (a - b - c)^2 (b - c)^2 (a + c)^2 : :

X(26856) lies on these lines: {2, 662}, {261, 4612}, {346, 7258}, {757, 26818}, {849, 3086}, {1019, 24237}, {1086, 26845}, {2310, 7253}, {3942, 7192}, {4366, 16738}, {4560, 4858}, {14570, 14616}, {16726, 16727}, {17058, 27008}, {17197, 17219}, {26819, 26844}, {26846, 26848}


X(26857) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(894), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^3 b^2 + a^2 b^3 + 2 a^2 b^2 c + 4 a b^3 c + a^3 c^2 + 2 a^2 b c^2 - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + 4 a b c^3 + b^2 c^3 : :

X(26857) lies on these lines: {2, 7}, {86, 26816}, {141, 26764}, {1086, 16738}, {3619, 27136}, {3834, 27032}, {4389, 27145}, {4643, 27311}, {4698, 27159}, {5224, 27107}, {7238, 27042}, {17178, 17302}, {17202, 24237}, {17235, 26971}, {17237, 27102}, {17273, 26768}, {17276, 27261}, {17280, 26769}, {17305, 26963}, {17324, 27166}, {17384, 26975}, {26801, 26850}


X(26858) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(896), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^4 b^2 + a^2 b^4 - 4 a^4 b c - 2 a^3 b^2 c + 2 a^2 b^3 c + 4 a b^4 c + a^4 c^2 - 2 a^3 b c^2 - 6 a^2 b^2 c^2 - 2 a b^3 c^2 + b^4 c^2 + 2 a^2 b c^3 - 2 a b^2 c^3 + a^2 c^4 + 4 a b c^4 + b^2 c^4 : :

X(26858) lies on these lines: {2, 896}, {17217, 26816}, {26801, 26810}


X(26859) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(984), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    a^4 b^2 + a^2 b^4 + 3 a^3 b^2 c - a^2 b^3 c + a^4 c^2 + 3 a^3 b c^2 + 8 a^2 b^2 c^2 + 3 a b^3 c^2 + b^4 c^2 - a^2 b c^3 + 3 a b^2 c^3 + a^2 c^4 + b^2 c^4 : :

X(26859) lies on these lines: {2, 38}, {16710, 17302}, {17169, 17178}, {26805, 26850}


X(26860) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1150), WHERE A'B'C' = GEMINI TRIANGLE 50

Barycentrics    (a+b) (a+c) (4 a+b+c) : :

X(26860) lies on these lines: {1, 4427}, {2, 6}, {21, 7373}, {58, 3622}, {145, 4658}, {551, 21747}, {896, 5625}, {1010, 3621}, {1100, 16710}, {1412, 21454}, {1449, 26627}, {1509, 4610}, {1977, 26844}, {3187, 25590}, {3210, 25417}, {3218, 18164}, {3240, 18792}, {3617, 25526}, {3623, 11115}, {3720, 18192}, {3977, 4909}, {3995, 17351}, {4649, 19998}, {4667, 26580}, {4678, 17589}, {4697, 27804}, {4720, 20049}, {4781, 21806}, {4850, 16726}, {16666, 24589}, {16723, 27754}, {16816, 17175}, {17018, 17187}, {17019, 17261}, {17021, 17120}, {17103, 20092}, {17147, 17393}, {17162, 24342}, {17169, 17191}, {17183, 17484}, {17450, 18174}, {18163, 27003}, {18200, 26853}, {18653, 26842}, {19825, 20046}, {26802, 26805}


X(26861) =  X(4)X(11017)∩X(6)X(15720)

Barycentrics    (-a^2+b^2+c^2)*((a^2-b^2+c^2)^2-9*a^2*c^2)*((a^2+b^2-c^2)^2-9*a^2*b^2) : :
Trilinears    (4*cos(C)^2-9)*(4*cos(B)^2-9)*cos(A) : :

See Antreas Hatzipolakis and César Lozada, Hyacinthos 28573.

X(26861) lies on the Jerabek hyperbola and these lines: {4, 11017}, {6, 15720}, {54, 15712}, {65, 5557}, {140, 1173}, {265, 5447}, {550, 16835}, {1216, 14861}, {1657, 22334}, {2889, 11592}, {3521, 3917}, {3522, 13452}, {3523, 13472}, {5562, 13623}, {7386, 14843}, {15321, 18553}, {15740, 23039}, {18296, 18531}

X(26861) = isogonal conjugate of X(26863)


X(26862) =  X(140)X(1173)∩X(3850)X(11703)

Barycentrics    (3*S^2-SA*SC)*(9*S^2+5*SB^2)*(3*S^2-SA*SB)*(9*S^2+5*SC^2) : :

See Antreas Hatzipolakis and César Lozada, Hyacinthos 28573.

X(26862) lies these lines: {140, 1173}, {3850, 11703}


X(26863) =  EULER LINE INTERCEPT OF X(113)X(25714)

Barycentrics    a^2*((-a^2+b^2+c^2)^2-9*b^2*c^2)*(a^2-b^2+c^2)*(a^2+b^2-c^2) : :
Trilinears    (4*cos(A)^2-9)*cos(B)*cos(C) : :
X(26863) = 2*(4*R^2-SW)*X(3)+9*R^2*X(4)

As a point on the Euler line, X(26863) has Shinagawa coefficients (-4*F, 9*E+4*F).

See Antreas Hatzipolakis and César Lozada, Hyacinthos 28573.

X(26863) lies on these lines: {2, 3}, {113, 25714}, {389, 12112}, {1173, 1199}, {1493, 10540}, {2914, 5609}, {3060, 15083}, {5007, 8744}, {5446, 15801}, {5943, 8718}, {6152, 16982}, {6243, 15052}, {6759, 11423}, {9781, 15032}, {12254, 16657}, {13353, 23060}, {13452, 22334}, {13474, 16835}, {14094, 16625}, {14853, 15581}, {15873, 16659}, {18296, 18532}

X(26863) = isogonal conjugate of X(26861)
X(26863) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3091, 3146, 18531), (3091, 3547, 3090), (3518, 14865, 186)

leftri

Endo-homothetic centers: X(26864)-X(26958)

rightri

This preamble and centers X(26864)-X(26958) were contributed by César Eliud Lozada, November 3, 2018.

This section comprises the endo-homothetic centers of the family of triangles homothetic with the excentral triangle of a reference triangle ABC. This family is composed by the following 31 triangles:

Ascella, Atik, 1st circumperp, 2nd circumperp, inner-Conway, Conway, 2nd Conway, 3rd Conway, 3rd Euler, 4th Euler, excenters-reflections, excentral, 2nd extouch, hexyl, Honsberger, inner-Hutson, Hutson intouch, outer-Hutson, incircle-circles, intouch, inverse-in-incircle, 6th mixtilinear, 2nd Pamfilos-Zhou, 1st Sharygin, tangential-midarc, 2nd tangential-midarc, Ursa major, Ursa minor, Wasat, Yff central, 2nd Zaniah.

For definitions and coordinates of these triangles, see the index of triangles referenced in ETC.


X(26864) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ASCELLA AND INNER-CONWAY

Barycentrics    a^2*(5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2) : :
X(26864) = 4*X(6)-3*X(11405)

The homothetic center of these triangles is X(5744)

X(26864) lies on these lines: {2,8780}, {3,74}, {4,14530}, {6,25}, {22,323}, {23,1351}, {24,15032}, {26,12160}, {49,7387}, {54,1598}, {55,23201}, {155,9715}, {182,11284}, {185,15750}, {198,23202}, {215,10833}, {235,18925}, {237,1384}, {352,15655}, {353,3148}, {378,3426}, {381,14389}, {394,3098}, {427,11206}, {428,11427}, {462,5334}, {463,5335}, {468,6776}, {511,11181}, {575,3066}, {578,5198}, {902,2187}, {1112,15073}, {1147,11414}, {1181,3515}, {1350,3292}, {1352,13394}, {1398,26888}, {1498,3516}, {1503,5094}, {1593,6759}, {1597,14157}, {1899,10192}, {1976,2502}, {1993,9909}, {1995,5050}, {2477,18954}, {3043,9919}, {3044,13175}, {3045,13222}, {3047,12310}, {3060,20850}, {3129,11485}, {3130,11486}, {3147,18914}, {3155,6221}, {3156,6398}, {3172,9408}, {3203,10790}, {3231,20885}, {3233,6795}, {3295,9638}, {3517,7592}, {3518,11432}, {3520,12315}, {3526,11457}, {3564,7493}, {3581,14070}, {3619,7499}, {3620,7494}, {3796,5092}, {3843,12289}, {4224,14996}, {4232,14912}, {4550,18451}, {5012,5020}, {5055,25739}, {5064,23292}, {5085,5651}, {5093,11422}, {5200,23267}, {5210,15504}, {5422,10545}, {5502,14685}, {5544,16042}, {5640,12283}, {5642,14982}, {5889,16195}, {6000,11410}, {6200,10132}, {6353,11245}, {6396,10133}, {6417,11463}, {6418,11462}, {6445,21097}, {6515,10154}, {6593,8547}, {6618,14569}, {7071,10535}, {7393,18350}, {7395,10539}, {7426,21970}, {7464,11820}, {7488,12164}, {7503,15052}, {7506,15037}, {7507,9833}, {7517,9704}, {7529,18874}, {7687,18396}, {8185,9587}, {8276,9677}, {8550,15448}, {8778,9412}, {8908,26953}, {9652,10831}, {9667,10832}, {9703,12083}, {9714,12161}, {9818,10540}, {10018,26944}, {10301,14853}, {10536,11406}, {10541,22112}, {10564,21312}, {10565,20080}, {10594,11426}, {10605,11202}, {10979,26898}, {11002,11482}, {11403,11425}, {12165,13289}, {13884,18924}, {13937,18923}, {14490,14528}, {15033,18535}, {15069,24981}, {15577,21284}, {15647,19504}, {16030,26887}, {16187,20190}, {16252,19467}, {17811,22352}, {18386,18400}, {19121,19588}, {19456,20773}, {22052,26865}, {26866,26884}, {26867,26885}, {26868,26886}

X(26864) = isogonal conjugate of X(36889)
X(26864) = crosssum of X(2) and X(3543)
X(26864) = crossdifference of every pair of points on line X(525)X(1637)
X(26864) = isogonal conjugate of the isotomic conjugate of X(376)
X(26864) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6800, 15066, 15080), (9707, 11456, 11464), (11456, 11464, 3)


X(26865) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ASCELLA AND 3rd CONWAY

Barycentrics    a^2*(a^8-8*(b^2+c^2)*a^6+2*(7*b^4+2*b^2*c^2+7*c^4)*a^4-8*(b^4-c^4)*(b^2-c^2)*a^2+(b^2-c^2)^4)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(10856)

X(26865) lies on these lines: {2,3}, {6,26907}, {97,3167}, {184,26909}, {216,9777}, {577,11402}, {1398,26903}, {1993,26895}, {7071,26904}, {7592,26896}, {11245,26870}, {11406,26908}, {16030,26902}, {19118,26899}, {19459,23195}, {22052,26864}, {26866,26900}, {26867,26901}, {26869,26905}

X(26865) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 418, 25), (3155, 3156, 3517)


X(26866) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ASCELLA AND INNER-HUTSON

Barycentrics    a^2*(a^4-4*b*c*a^2-(b-c)^4) : :

The homothetic center of these triangles is X(11854)

X(26866) lies on these lines: {3,3218}, {4,26928}, {6,3937}, {22,23958}, {25,57}, {46,8192}, {55,4864}, {56,15854}, {63,7484}, {84,11403}, {182,22129}, {184,1407}, {220,5650}, {222,11402}, {418,7011}, {427,26929}, {603,1398}, {999,17126}, {1155,22769}, {1210,17516}, {1357,2175}, {1486,4860}, {1993,26910}, {2969,4000}, {3219,16419}, {3295,4392}, {3306,11284}, {3336,9798}, {3337,11365}, {3516,26927}, {3928,7085}, {4214,4292}, {4224,21454}, {4617,7053}, {5091,15635}, {5094,26933}, {5221,22654}, {5708,13730}, {5905,16434}, {6090,7193}, {7004,7071}, {7295,18201}, {7395,24467}, {7592,26914}, {9777,26892}, {9965,19649}, {11245,26871}, {11406,26934}, {16030,26931}, {19118,26923}, {26864,26884}, {26865,26900}, {26868,26930}, {26869,26932}

X(26866) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (57, 1473, 25), (63, 7484, 26867)


X(26867) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ASCELLA AND OUTER-HUTSON

Barycentrics    a^2*(a^4+4*b*c*a^2-(b+c)^4) : :

The homothetic center of these triangles is X(11855)

X(26867) lies on these lines: {3,3219}, {4,26938}, {6,3690}, {9,25}, {10,4214}, {40,11403}, {44,55}, {63,7484}, {71,11406}, {184,220}, {197,3715}, {201,1398}, {212,7071}, {219,11402}, {268,418}, {427,26939}, {756,1460}, {894,16353}, {999,7226}, {1011,1260}, {1397,7064}, {1407,5650}, {1473,3929}, {1993,26911}, {2267,2318}, {2345,7140}, {3218,16419}, {3295,17127}, {3305,11284}, {3516,26935}, {3683,12329}, {3819,22129}, {3955,6090}, {4219,21168}, {5094,21015}, {5314,24320}, {7395,26921}, {7592,26915}, {9777,26893}, {11245,26872}, {12414,18259}, {12572,17516}, {16030,26941}, {19118,26924}, {21319,21483}, {26864,26885}, {26865,26901}, {26868,26940}, {26869,26942}

X(26867) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (9, 7085, 25), (63, 7484, 26866)


X(26868) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ASCELLA AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*((-a^2+b^2+c^2)^2*a^2+4*S^3) : :

The homothetic center of these triangles is X(10858)

X(26868) lies on these lines: {2,13960}, {3,6}, {25,8911}, {53,6561}, {154,8908}, {184,26953}, {233,8253}, {393,6459}, {427,26945}, {485,6748}, {493,8882}, {1398,26948}, {1586,3068}, {1588,6810}, {1593,6457}, {1993,26912}, {3155,19356}, {3516,26936}, {3815,18289}, {5094,26951}, {5407,8963}, {5410,6413}, {5412,10132}, {7071,26949}, {7395,26922}, {7592,26916}, {8576,19005}, {9777,26894}, {10311,15199}, {11245,26873}, {11402,26891}, {11403,26918}, {11406,26952}, {16030,26947}, {18924,21736}, {19118,26925}, {26864,26886}, {26866,26930}, {26867,26940}, {26869,26950}

X(26868) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 1151, 216), (3311, 15905, 6), (5058, 5065, 6)


X(26869) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ASCELLA AND URSA MAJOR

Barycentrics    a^6-2*(b^2+c^2)*a^4+3*(b^2-c^2)^2*a^2-2*(b^4-c^4)*(b^2-c^2) : :
X(26869) = 2*X(5)+X(18917) = X(25)+2*X(1899) = X(25)-4*X(13567) = 4*X(125)-X(15106) = 2*X(1368)+X(6515) = 5*X(1656)-2*X(15068) = X(1899)+2*X(13567) = X(10605)+2*X(18390) = 2*X(11438)+X(18396)

The homothetic center of these triangles is X(17612)

X(26869) lies on these lines: {2,3167}, {3,3580}, {4,3426}, {5,18916}, {6,67}, {23,21970}, {25,1503}, {51,1853}, {54,3526}, {184,26958}, {193,16051}, {235,5656}, {343,7484}, {373,10516}, {381,5640}, {389,7507}, {394,5965}, {427,9777}, {468,6776}, {599,5650}, {858,1351}, {1147,11232}, {1192,21659}, {1209,15805}, {1316,12079}, {1352,11284}, {1353,5159}, {1368,6515}, {1398,26955}, {1593,16657}, {1594,11432}, {1598,11457}, {1656,7592}, {1657,15107}, {1885,18913}, {1906,12324}, {1993,26913}, {1995,3448}, {2452,3154}, {2453,6070}, {2777,10605}, {3066,3818}, {3515,6146}, {3516,12241}, {3527,15559}, {3534,15360}, {3542,18914}, {3548,13292}, {3763,22112}, {5020,11442}, {5079,5643}, {5198,14216}, {5422,23293}, {5651,15069}, {6247,11403}, {6642,25738}, {7071,26956}, {7395,12359}, {7495,12017}, {7505,19347}, {7539,10601}, {7703,15019}, {8262,8547}, {8901,19166}, {9730,14852}, {9786,12173}, {10182,19357}, {10982,20299}, {10989,16981}, {11179,13394}, {11406,26957}, {11422,15059}, {11438,18396}, {11472,16003}, {11550,17810}, {11585,12160}, {11898,15066}, {12024,15750}, {12429,17928}, {12827,14643}, {13154,21230}, {13754,16072}, {13857,15534}, {13884,18923}, {13937,18924}, {14361,14569}, {16030,26954}, {16352,25977}, {18494,25739}, {19118,26926}, {19161,23049}, {19588,26156}, {26865,26905}, {26866,26932}, {26867,26942}, {26868,26950}

X(26869) = reflection of X(6090) in X(2)
X(26869) = inverse of X(12099) in the orthocentroidal circle
X(26869) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 11245, 11402), (2, 18950, 11245)
X(26869) = X(25)-of-orthocentroidal-triangle


X(26870) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ATIK AND 3rd CONWAY

Barycentrics    (a^10+5*(b^2+c^2)*a^8-2*(7*b^4+2*b^2*c^2+7*c^4)*a^6+10*(b^4-c^4)*(b^2-c^2)*a^4-3*(b^2-c^2)^4*a^2+(b^4-c^4)*(b^2-c^2)^3)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(10862)

X(26870) lies on these lines: {2,26898}, {3,69}, {4,216}, {98,7494}, {418,11433}, {577,14912}, {631,6389}, {1899,26907}, {3524,12096}, {6353,26880}, {6515,26874}, {6638,18928}, {6641,11206}, {7386,9744}, {10996,11257}, {11245,26865}, {12324,26897}, {13567,26909}, {18911,26895}, {18912,26896}, {18915,26903}, {18916,26876}, {18921,26908}, {18922,26904}, {19119,26899}, {19166,26902}, {23291,26906}, {26871,26900}, {26872,26901}

X(26870) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (12256, 12257, 18925), (26898, 26905, 2)


X(26871) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ATIK AND INNER-HUTSON

Barycentrics    (a^4-2*(b-c)^2*a^2+(b^2-c^2)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11856)

X(26871) lies on these lines: {2,222}, {4,26892}, {7,92}, {57,11433}, {63,69}, {73,25876}, {77,6349}, {81,8048}, {84,12324}, {320,18750}, {329,4358}, {343,22129}, {348,6513}, {497,1364}, {603,18915}, {631,26890}, {908,1997}, {966,14597}, {1407,13567}, {1433,14986}, {1439,9776}, {1473,6776}, {1748,7291}, {1899,3937}, {1948,6820}, {1959,18730}, {2003,11427}, {2096,10538}, {2975,19262}, {3218,6515}, {3220,11206}, {3306,18928}, {3784,7386}, {3869,18732}, {3917,26939}, {3942,6508}, {3955,7494}, {4295,20220}, {5081,5768}, {5174,9799}, {5739,5744}, {5906,6836}, {6353,26884}, {6507,20769}, {6604,20223}, {7004,18922}, {7017,18816}, {7085,10519}, {7288,7335}, {7293,25406}, {7515,23072}, {11245,26866}, {11411,24467}, {14826,24320}, {14912,26889}, {17923,18623}, {18911,26910}, {18912,26914}, {18913,26927}, {18914,26928}, {18916,26877}, {19119,26923}, {19166,26931}, {23291,26933}, {26870,26900}, {26873,26930}

X(26871) = anticomplement of X(34048)
X(26871) = isotomic conjugate of the polar conjugate of X(3086)
X(26871) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (7, 189, 92), (222, 26932, 2)


X(26872) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ATIK AND OUTER-HUTSON

Barycentrics    (a^4-2*(b+c)^2*a^2+(b^2-c^2)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11857)

X(26872) lies on these lines: {2,219}, {4,8}, {9,11433}, {40,12324}, {63,69}, {81,22132}, {144,2895}, {200,2947}, {201,18915}, {209,5800}, {212,18922}, {220,13567}, {307,6349}, {319,18750}, {348,6505}, {388,7066}, {518,11435}, {534,17781}, {631,26889}, {908,5271}, {1264,19799}, {1441,5905}, {1473,10519}, {1748,5279}, {1899,3690}, {1947,6820}, {2323,11427}, {2975,13726}, {3219,6515}, {3305,18928}, {3781,7386}, {3870,14547}, {3917,26929}, {3949,6508}, {3990,5712}, {4886,20921}, {5218,6056}, {5249,6604}, {5285,11206}, {5314,25406}, {5596,12329}, {5816,22000}, {5928,21871}, {6353,26885}, {6776,7085}, {7193,7494}, {7536,20818}, {11245,26867}, {11411,26921}, {12587,22276}, {14912,26890}, {18911,26911}, {18912,26915}, {18913,26935}, {18914,26938}, {18916,26878}, {19119,26924}, {19166,26941}, {21015,23291}, {26870,26901}, {26873,26940}

X(26872) = anticomplement of X(37543)
X(26872) = anticomplementary conjugate of the anticomplement of X(2335)
X(26872) = isotomic conjugate of the polar conjugate of X(3085)
X(26872) = anticomplement of the isogonal conjugate of X(2335)
X(26872) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8, 329, 92), (219, 26942, 2), (13386, 13387, 72)


X(26873) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: ATIK AND 2nd PAMFILOS-ZHOU

Barycentrics    (-a^2+b^2+c^2)*(a^8-2*(b^2+c^2)*a^6+2*(b^2-c^2)^2*a^4-2*(b^2-c^2)^2*(b^2+c^2)*a^2+(b^2-c^2)^4+4*(-a^2+b^2+c^2)*a^4*S) : :

The homothetic center of these triangles is X(10867)

X(26873) lies on these lines: {2,26920}, {4,372}, {69,1589}, {159,3156}, {371,18916}, {577,1899}, {615,10133}, {1152,17845}, {6353,26886}, {6457,18909}, {6515,26875}, {6776,8911}, {8961,19061}, {11245,26868}, {11411,26922}, {11433,26919}, {12324,26918}, {13567,26953}, {14912,26891}, {18911,26912}, {18912,26916}, {18913,26936}, {18915,26948}, {18921,26952}, {18922,26949}, {19119,26925}, {19166,26947}, {23291,26951}, {26871,26930}, {26872,26940}

X(26873) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3069, 12256, 6414), (26920, 26950, 2)


X(26874) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st CIRCUMPERP AND 3rd CONWAY

Barycentrics    a^2*(2*(b^2+c^2)*a^6-(4*b^4+b^2*c^2+4*c^4)*a^4+2*(b^4-c^4)*(b^2-c^2)*a^2+(b^2-c^2)^2*b^2*c^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(10434)

X(26874) lies on these lines: {2,3}, {95,1629}, {97,184}, {110,26880}, {160,11206}, {216,3060}, {394,26909}, {511,26907}, {577,5012}, {1993,26898}, {2979,26895}, {3100,26904}, {3101,26908}, {3218,26900}, {3219,26901}, {3289,3796}, {3410,18437}, {3580,26905}, {4296,26903}, {6509,7998}, {6515,26870}, {6776,23195}, {10979,15107}, {11003,23606}, {11412,26896}, {15080,22052}, {19121,26899}

X(26874) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 417, 15717), (3, 418, 2), (3, 426, 15246)


X(26875) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st CIRCUMPERP AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*(2*S*((b^2+c^2)*a^2-b^4-c^4)+a^2*(-a^2+b^2+c^2)^2) : :

The homothetic center of these triangles is X(8224)

X(26875) lies on these lines: {2,26919}, {3,6}, {4,26922}, {20,6457}, {22,8911}, {97,26947}, {110,26886}, {317,491}, {394,26953}, {858,26951}, {1370,26945}, {1993,26920}, {2979,26912}, {3060,26894}, {3069,8576}, {3100,26949}, {3101,26952}, {3146,26918}, {3155,10962}, {3218,26930}, {3219,26940}, {3580,26950}, {4296,26948}, {5012,26891}, {5889,6458}, {6290,12960}, {6413,11417}, {6515,26873}, {8855,13960}, {11412,26916}, {11413,26936}, {19121,26925}

X(26875) = {X(5409), X(5412)}-harmonic conjugate of X(10960)


X(26876) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CIRCUMPERP AND 3rd CONWAY

Barycentrics
-a^2*(2*(b^2+c^2)*a^10-(8*b^4+7*b^2*c^2+8*c^4)*a^8+4*(b^2+c^2)*(3*b^4-2*b^2*c^2+3*c^4)*a^6-2*(b^2-c^2)^2*(4*b^4+5*b^2*c^2+4*c^4)*a^4+2*(b^4-c^4)*(b^2-c^2)^3*a^2+(b^2-c^2)^4*b^2*c^2)*(a^2-b^2-c^2) : :

The homothetic center of these triangles is X(10882)

X(26876) lies on these lines: {2,3}, {54,577}, {97,1147}, {216,3567}, {389,26907}, {1181,26909}, {1614,26880}, {1870,26903}, {5889,26895}, {5890,26896}, {6197,26908}, {6198,26904}, {6509,7999}, {7592,26898}, {9545,19210}, {11464,22052}, {15653,18925}, {18916,26870}, {26877,26900}, {26878,26901}, {26879,26905}

X(26876) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 417, 3524), (3, 418, 4)


X(26877) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CIRCUMPERP AND INNER-HUTSON

Barycentrics    a*(a^6-3*(b^2-b*c+c^2)*a^4+(3*b^2+2*b*c+3*c^2)*(b-c)^2*a^2-(b^2-c^2)*(b-c)*(b^3+c^3)) : :

The homothetic center of these triangles is X(8109)

X(26877) lies on these lines: {1,6950}, {2,24467}, {3,3218}, {4,57}, {7,6833}, {8,6955}, {9,3525}, {20,23958}, {21,10202}, {24,1473}, {25,26928}, {35,12005}, {36,5884}, {40,3244}, {46,944}, {54,26889}, {63,631}, {65,104}, {72,6940}, {79,11219}, {140,3219}, {191,10165}, {222,7592}, {226,6952}, {244,3073}, {329,6967}, {371,26930}, {376,5709}, {377,5770}, {378,26927}, {388,17700}, {389,3937}, {404,912}, {411,13369}, {474,5780}, {484,5882}, {497,17437}, {499,1776}, {515,3336}, {553,6705}, {601,982}, {602,4650}, {603,1870}, {920,7288}, {938,6938}, {942,6906}, {943,17603}, {946,1768}, {993,15016}, {1006,3916}, {1012,5708}, {1155,11491}, {1158,3338}, {1181,1407}, {1199,2003}, {1385,5303}, {1445,6927}, {1454,4293}, {1476,12776}, {1594,26933}, {1614,26884}, {1621,13373}, {1708,6880}, {1788,12115}, {2077,3874}, {2094,5758}, {2800,5563}, {3075,6198}, {3090,3306}, {3220,3518}, {3305,3533}, {3333,10595}, {3359,12245}, {3474,12116}, {3487,6977}, {3523,26921}, {3524,3928}, {3529,7171}, {3567,26892}, {3585,10265}, {3587,21735}, {3651,10167}, {3652,11230}, {3784,11412}, {3817,7701}, {3855,18540}, {3869,10269}, {3873,11248}, {3877,16203}, {3889,10679}, {3911,6949}, {3929,15702}, {3957,11849}, {4295,10785}, {4297,5535}, {4652,6875}, {4857,16767}, {4860,11496}, {4973,11012}, {5067,5437}, {5218,7162}, {5221,12114}, {5249,6852}, {5253,5887}, {5270,16763}, {5330,24927}, {5435,6834}, {5439,6920}, {5450,5902}, {5557,11218}, {5657,10805}, {5704,6968}, {5714,6879}, {5744,6889}, {5761,6966}, {5768,6934}, {5777,6946}, {5811,6983}, {5889,26910}, {5890,26914}, {5905,6891}, {6197,26934}, {6361,10806}, {6684,6763}, {6734,6951}, {6831,13226}, {6832,9776}, {6847,21454}, {6876,10884}, {6909,24474}, {6911,12528}, {6915,13243}, {6926,9965}, {6942,15803}, {6948,12649}, {6972,17483}, {6985,11220}, {7289,14912}, {7293,7512}, {7505,20266}, {8726,21165}, {9352,11499}, {9841,17538}, {10246,19535}, {10532,14647}, {10698,24928}, {11009,11715}, {11010,13607}, {11570,18861}, {12512,24468}, {12515,24680}, {12608,16116}, {14988,19525}, {16139,17502}, {17549,24299}, {18916,26871}, {19128,26923}, {20292,26470}, {26876,26900}, {26879,26932}

X(26877) = reflection of X(5330) in X(24927)
X(26877) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (36, 5884, 21740), (63, 631, 26878)


X(26878) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CIRCUMPERP AND OUTER-HUTSON

Barycentrics    a*(a^6-3*(b^2+b*c+c^2)*a^4+(3*b^2-2*b*c+3*c^2)*(b+c)^2*a^2-(b+c)*(b^2-c^2)*(b^3-c^3)) : :

The homothetic center of these triangles is X(8110)

X(26878) lies on these lines: {2,26921}, {3,3219}, {4,9}, {8,6936}, {24,7085}, {25,26938}, {35,1776}, {45,5706}, {46,5714}, {54,72}, {57,3525}, {63,631}, {78,6875}, {84,3528}, {140,3218}, {191,6684}, {201,1870}, {210,11491}, {212,6198}, {219,7592}, {220,1181}, {226,3336}, {329,6889}, {371,26940}, {376,7330}, {378,26935}, {389,3690}, {405,1482}, {498,7098}, {517,5260}, {601,7262}, {602,984}, {756,3072}, {908,6853}, {912,6986}, {920,5218}, {936,6942}, {943,11428}, {954,11025}, {1158,5658}, {1199,2323}, {1490,16192}, {1594,21015}, {1614,26885}, {1708,3338}, {1728,3488}, {1782,21361}, {2077,3647}, {2095,16842}, {2949,5506}, {3090,3305}, {3295,5729}, {3306,3533}, {3452,6949}, {3467,4330}, {3518,5285}, {3523,24467}, {3524,3929}, {3529,3587}, {3567,26893}, {3579,5927}, {3634,5535}, {3651,3652}, {3678,10902}, {3681,10267}, {3715,11500}, {3781,11412}, {3817,24468}, {3868,6883}, {3916,6940}, {3928,15702}, {3951,18443}, {4187,5771}, {4294,7082}, {5044,6905}, {5047,24474}, {5067,7308}, {5227,14912}, {5250,12245}, {5273,6833}, {5302,14110}, {5314,7512}, {5690,11113}, {5692,21740}, {5720,6876}, {5744,6967}, {5745,6952}, {5758,6832}, {5791,6830}, {5812,6829}, {5889,26911}, {5890,26915}, {5905,6989}, {6734,6902}, {6763,10165}, {6834,18228}, {6937,11681}, {6984,9780}, {7171,21735}, {7701,12512}, {7987,18446}, {9841,19708}, {9956,16139}, {10176,11012}, {10323,24320}, {10806,20588}, {12710,15837}, {14872,15481}, {15492,15852}, {16845,24541}, {18916,26872}, {19128,26924}, {20104,25525}, {26876,26901}, {26879,26942}

X(26878) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5817, 6361, 4), (6191, 6192, 71)


X(26879) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CIRCUMPERP AND URSA MAJOR

Barycentrics    (b^2+c^2)*a^8-2*(2*b^4-b^2*c^2+2*c^4)*a^6+6*(b^4-c^4)*(b^2-c^2)*a^4-2*(b^2-c^2)^2*(2*b^4+b^2*c^2+2*c^4)*a^2+(b^4-c^4)*(b^2-c^2)^3 : :

The homothetic center of these triangles is X(17614)

X(26879) lies on these lines: {2,155}, {3,3580}, {4,64}, {5,5890}, {24,1899}, {25,11457}, {51,15559}, {52,858}, {54,140}, {68,17928}, {74,1885}, {110,16238}, {125,389}, {141,3525}, {184,10018}, {185,403}, {186,2917}, {235,6241}, {343,631}, {371,26950}, {372,26951}, {378,26937}, {427,3567}, {468,1614}, {546,7728}, {568,13371}, {632,11423}, {1181,7505}, {1192,18396}, {1199,6143}, {1204,18390}, {1209,5892}, {1368,11412}, {1503,3518}, {1511,11264}, {1595,9781}, {1596,12290}, {1870,26955}, {1906,11455}, {1993,3548}, {2072,6102}, {2935,6696}, {3060,23335}, {3147,6776}, {3448,12134}, {3520,12241}, {3526,11402}, {3541,11433}, {3542,11456}, {3546,6515}, {3564,26156}, {3575,25739}, {5012,7542}, {5094,11432}, {5133,5462}, {5449,9730}, {5576,5946}, {5640,7403}, {5889,11585}, {6197,26957}, {6198,26956}, {6240,11438}, {6640,12161}, {6642,11442}, {6644,14516}, {6833,26540}, {6949,26005}, {7399,15045}, {7405,15028}, {7495,13336}, {7576,18381}, {7577,12233}, {8901,19168}, {10024,13630}, {10095,12099}, {10114,17701}, {10257,13292}, {10295,21659}, {10545,23411}, {10574,15760}, {10594,14216}, {11424,23329}, {11441,18917}, {11462,13884}, {11463,13937}, {11799,13491}, {12006,13565}, {12079,14894}, {12118,15078}, {13399,13474}, {13403,21663}, {14157,21841}, {14788,21243}, {14940,15032}, {15061,23336}, {19128,26926}, {26876,26905}, {26877,26932}, {26878,26942}

X(26879) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18916, 7592), (3, 18912, 12022), (3, 26869, 18912)


X(26880) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-CONWAY AND 3rd CONWAY

Barycentrics    a^4*(a^4+2*(b^2+c^2)*a^2-3*(b^2-c^2)^2)*(-a^2+b^2+c^2)^2 : :

The homothetic center of these triangles is X(10882)

X(26880) lies on these lines: {2,1629}, {3,64}, {25,216}, {51,5158}, {97,9544}, {110,26874}, {122,7386}, {160,1660}, {182,6638}, {184,418}, {206,26899}, {426,22352}, {468,26905}, {1495,6641}, {1503,26906}, {1614,26876}, {2187,23207}, {3091,19169}, {3284,11402}, {3549,10600}, {5085,6617}, {6353,26870}, {6389,7494}, {10304,23608}, {10535,26904}, {10536,26908}, {15905,17809}, {18437,21243}, {22052,26864}, {26881,26895}, {26882,26896}, {26883,26897}, {26884,26900}, {26885,26901}, {26887,26902}, {26888,26903}

X(26880) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 26898, 216), (154, 26909, 3)


X(26881) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-CONWAY AND 3rd EULER

Barycentrics    a^2*(2*a^4-(b^2+c^2)*a^2-b^4+b^2*c^2-c^4) : :

The homothetic center of these triangles is X(11680)

X(26881) lies on these lines: {2,1495}, {3,6030}, {4,18475}, {20,10282}, {22,110}, {23,184}, {24,10574}, {25,5012}, {26,1614}, {30,11464}, {49,17714}, {51,11003}, {54,7517}, {74,18324}, {143,11423}, {156,2937}, {159,12272}, {182,11451}, {186,15072}, {206,12220}, {305,10330}, {382,5944}, {428,14389}, {468,26913}, {511,9544}, {669,11450}, {858,10192}, {1147,12088}, {1176,20987}, {1180,1915}, {1498,11440}, {1501,9465}, {1503,23293}, {1511,3534}, {1539,18561}, {1613,8627}, {1658,6241}, {1971,22240}, {1993,9909}, {1995,3796}, {2070,5890}, {2071,11202}, {2393,11443}, {2502,21001}, {3131,14170}, {3132,14169}, {3146,13367}, {3167,23061}, {3431,15682}, {3518,15043}, {3529,12038}, {3543,11430}, {3580,10154}, {3843,10610}, {3845,14805}, {3917,7492}, {3981,14567}, {4240,15466}, {5133,13394}, {5651,15246}, {5943,14002}, {6000,10298}, {6353,18911}, {6515,15360}, {6636,7998}, {6644,20791}, {6759,7488}, {7387,9707}, {7426,13567}, {7493,11206}, {7502,10540}, {7506,15028}, {7512,10539}, {7525,7999}, {7530,15033}, {7542,16659}, {7552,18474}, {7555,23039}, {7556,13754}, {7592,9714}, {7691,9715}, {8780,15066}, {9703,13391}, {9704,10263}, {9705,16266}, {9781,18378}, {10020,23294}, {10201,25739}, {10244,12160}, {10533,11418}, {10534,11417}, {10535,11446}, {10536,11445}, {10545,10601}, {10564,11001}, {10575,21844}, {10594,13434}, {11002,13366}, {11004,21969}, {11188,19127}, {11265,11463}, {11266,11462}, {11267,11467}, {11268,11466}, {11402,20850}, {11413,17821}, {11416,19153}, {11420,11453}, {11421,11452}, {11439,26883}, {11455,18570}, {11456,14070}, {11468,15331}, {11750,16868}, {12087,13346}, {12106,15045}, {12225,16252}, {12270,13289}, {12283,19154}, {12289,15761}, {13406,18394}, {15019,17810}, {15024,15038}, {15051,20771}, {18392,18400}, {18404,18504}, {18928,26255}, {19167,26887}, {19367,26888}, {26880,26895}, {26884,26910}, {26885,26911}, {26886,26912}

X(26881) = reflection of X(11454) in X(10298)
X(26881) = gibert circumtangential conjugate of X(3357)
X(26881) = isogonal conjugate of the isotomic conjugate of X(7802)
X(26881) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 11550, 7703), (1495, 7712, 15080), (1495, 15080, 10546)


X(26882) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-CONWAY AND 4th EULER

Barycentrics    a^2*(2*a^8-5*(b^2+c^2)*a^6+3*(b^4+b^2*c^2+c^4)*a^4+(b^4-c^4)*(b^2-c^2)*a^2-(b^4-b^2*c^2+c^4)*(b^2-c^2)^2) : :

The homothetic center of these triangles is X(11681)

X(26882) lies on these lines: {3,6030}, {4,1495}, {23,1147}, {24,154}, {25,54}, {26,110}, {30,11449}, {49,3060}, {52,9544}, {74,1498}, {140,15080}, {143,9704}, {156,2070}, {159,12283}, {182,11465}, {184,1199}, {186,1204}, {195,12380}, {206,6403}, {217,10986}, {378,15811}, {381,5944}, {403,12289}, {468,26917}, {569,13595}, {1092,12088}, {1173,17810}, {1503,10018}, {1511,1657}, {1594,10192}, {1656,10546}, {1658,10540}, {1993,9705}, {2393,11458}, {2883,10295}, {2937,2979}, {3091,18475}, {3146,12038}, {3147,11206}, {3357,12112}, {3515,11456}, {3517,7592}, {3520,11202}, {3523,7712}, {3525,22352}, {3533,5092}, {3542,18945}, {3850,14805}, {3851,10610}, {5012,7506}, {5059,10564}, {5446,9545}, {5447,7492}, {5462,11003}, {5562,7556}, {5622,15581}, {6000,11468}, {6143,11550}, {6146,15448}, {6240,16252}, {6353,18912}, {6642,6800}, {7488,10539}, {7502,11444}, {7505,9833}, {7512,7999}, {7525,7998}, {7526,16261}, {7691,15068}, {7730,12234}, {7746,15340}, {8537,19153}, {8780,9715}, {9703,10263}, {10020,23293}, {10274,13423}, {10298,12162}, {10533,10881}, {10534,10880}, {10535,11461}, {10536,11460}, {10594,15033}, {10632,11467}, {10633,11466}, {11265,11448}, {11266,11447}, {11267,11453}, {11268,11452}, {11413,15035}, {11439,18570}, {11440,18324}, {11441,14070}, {11451,13353}, {11454,15331}, {12022,21841}, {12082,15034}, {12106,15043}, {12107,18436}, {12163,14094}, {12244,17701}, {12254,18390}, {12272,19154}, {12278,15761}, {12281,13289}, {13383,14516}, {13394,14788}, {13406,18392}, {13434,13861}, {13619,22802}, {14487,14528}, {14575,25044}, {14940,18381}, {15073,15582}, {15107,16266}, {16868,18394}, {17714,22115}, {18403,18504}, {19168,26887}, {19368,26888}, {22658,22750}, {26880,26896}, {26884,26914}, {26885,26915}, {26886,26916}

X(26882) = reflection of X(i) in X(j) for these (i,j): (11468, 21844), (18394, 16868), (23294, 10018)
X(26882) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 14157, 12290), (4, 10282, 11464), (1495, 10282, 4)


X(26883) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-CONWAY AND EXCENTERS-REFLECTIONS

Barycentrics    a^2*(a^8-3*(b^2+c^2)*a^6+(3*b^4-2*b^2*c^2+3*c^4)*a^4-(b^4-c^4)*(b^2-c^2)*a^2+4*(b^2-c^2)^2*b^2*c^2) : :

The homothetic center of these triangles is X(11682)

X(26883) lies on these lines: {2,13347}, {3,1495}, {4,54}, {5,10984}, {6,5198}, {20,9306}, {22,5907}, {23,12111}, {24,1204}, {25,185}, {26,12162}, {30,1092}, {32,3331}, {33,26888}, {34,10535}, {40,26885}, {49,3830}, {51,1181}, {52,7530}, {64,1620}, {74,13452}, {84,26884}, {110,3146}, {113,18569}, {125,3542}, {154,1593}, {155,18534}, {156,1514}, {159,12294}, {182,3091}, {186,3357}, {206,7507}, {235,1503}, {378,10282}, {381,11572}, {382,1147}, {389,10594}, {399,6243}, {403,16659}, {427,15152}, {428,12233}, {468,6247}, {511,11441}, {546,569}, {576,15531}, {631,8718}, {1216,12083}, {1425,11399}, {1568,14790}, {1594,16658}, {1595,16654}, {1596,6146}, {1597,14530}, {1657,18350}, {1660,17845}, {1843,19149}, {1899,3089}, {1906,12241}, {1907,16656}, {1968,1971}, {1993,13598}, {1995,9729}, {2070,7689}, {2207,8779}, {2393,11470}, {2807,8185}, {2883,3575}, {2935,17701}, {2937,18435}, {2979,12087}, {3090,22112}, {3092,21640}, {3093,21641}, {3098,11444}, {3270,11398}, {3516,17821}, {3517,10605}, {3518,6241}, {3520,11202}, {3796,11479}, {3818,13160}, {3832,5012}, {3839,13434}, {3917,11414}, {4232,18913}, {5073,22115}, {5079,13339}, {5320,5706}, {5412,12970}, {5413,12964}, {5446,18445}, {5562,7387}, {5609,16105}, {5656,7487}, {5876,17714}, {5878,18533}, {5895,15139}, {5899,18436}, {6001,11363}, {6193,24981}, {6225,22750}, {6240,22802}, {6293,22972}, {6353,12324}, {6636,15056}, {6644,10575}, {6696,15448}, {6912,13323}, {7395,22352}, {7488,15305}, {7505,20299}, {7512,15058}, {7517,13754}, {7525,15060}, {7526,16194}, {7553,22660}, {7592,10110}, {7998,16661}, {8976,9687}, {9544,17578}, {9707,11430}, {9714,12163}, {9730,13861}, {9781,15032}, {9927,11799}, {9970,11663}, {9973,12175}, {10018,23329}, {10019,23324}, {10117,21650}, {10298,15062}, {10301,11745}, {10303,16187}, {10323,11793}, {10533,11473}, {10534,11474}, {10536,11471}, {10574,13595}, {10606,15750}, {10625,15068}, {10641,10676}, {10642,10675}, {10982,13366}, {10990,12250}, {11204,21844}, {11245,15873}, {11403,11425}, {11439,26881}, {11449,12086}, {11459,12088}, {11464,14865}, {12082,15644}, {12106,13491}, {12133,15647}, {12160,21969}, {12164,14531}, {12279,22467}, {12292,13289}, {12688,14529}, {13348,15066}, {13472,14487}, {13851,15125}, {14094,14448}, {15761,18474}, {15887,17810}, {16835,20421}, {16868,23325}, {17703,22261}, {19137,25406}, {21451,26913}, {26880,26897}, {26886,26918}

X(26883) = reflection of X(i) in X(j) for these (i,j): (1092, 10539), (1204, 24)
X(26883) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 184, 11424), (4, 9833, 21659), (1495, 11381, 3)


X(26884) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-CONWAY AND INNER-HUTSON

Barycentrics    a^2*(a^4-(b^2-b*c+c^2)*a^2-(b-c)^2*b*c) : :

The homothetic center of these triangles is X(11685)

X(26884) lies on these lines: {1,5197}, {2,3955}, {7,17985}, {9,5651}, {22,3784}, {25,222}, {28,60}, {31,56}, {34,7335}, {48,8763}, {51,2003}, {57,184}, {63,9306}, {84,26883}, {105,2720}, {110,2651}, {141,26924}, {182,3306}, {199,22097}, {206,26923}, {212,4191}, {219,6090}, {243,23353}, {244,1428}, {255,13738}, {354,20986}, {394,26893}, {450,1948}, {468,26932}, {511,22128}, {614,1397}, {649,834}, {692,1155}, {750,2330}, {851,1936}, {953,4588}, {1086,5137}, {1092,5709}, {1104,1408}, {1385,1621}, {1393,19365}, {1401,5322}, {1458,20999}, {1474,14597}, {1495,3220}, {1498,26927}, {1503,26933}, {1614,26877}, {1709,15503}, {1851,18623}, {1899,20266}, {1935,13724}, {1974,7289}, {2187,9316}, {2249,2727}, {2267,16373}, {2323,3292}, {2328,22060}, {2360,22345}, {2361,20470}, {2915,11573}, {2969,6357}, {3011,5061}, {3145,4303}, {3781,15066}, {3819,5314}, {3912,17977}, {3917,5285}, {4224,17074}, {4579,5205}, {4871,5150}, {6353,26871}, {7004,10535}, {7085,17811}, {8679,20989}, {9225,16514}, {9544,23958}, {10536,26934}, {10539,24467}, {11206,26929}, {13329,23202}, {13737,23072}, {14530,26928}, {16064,22053}, {18360,23844}, {20744,20857}, {22129,24320}, {26864,26866}, {26880,26900}, {26881,26910}, {26882,26914}, {26886,26930}, {26887,26931}

X(26884) = isogonal conjugate of the isotomic conjugate of X(5088)
X(26884) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3955, 26890), (25, 222, 26892)


X(26885) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-CONWAY AND OUTER-HUTSON

Barycentrics    a^2*(a^4-(b^2+b*c+c^2)*a^2+(b+c)^2*b*c) : :

The homothetic center of these triangles is X(11686)

X(26885) lies on these lines: {1,5320}, {9,184}, {22,3781}, {25,219}, {31,172}, {33,6056}, {37,2194}, {40,26883}, {48,1011}, {51,2323}, {55,2164}, {57,5651}, {63,9306}, {71,199}, {72,2203}, {101,228}, {110,3219}, {141,26923}, {154,205}, {182,3305}, {198,10537}, {201,26888}, {206,26924}, {209,17796}, {210,692}, {212,8761}, {222,6090}, {394,24320}, {450,1947}, {468,26942}, {517,2355}, {572,23201}, {612,2175}, {674,20988}, {748,1428}, {756,2330}, {1092,7330}, {1473,17811}, {1495,3690}, {1498,26935}, {1503,21015}, {1614,26878}, {1762,21318}, {1818,16064}, {1914,16520}, {1915,16514}, {1974,5227}, {2003,3292}, {2200,16372}, {2280,16516}, {2299,3990}, {3145,3682}, {3220,3917}, {3683,20986}, {3688,5310}, {3784,15066}, {3819,7293}, {5138,5287}, {5279,6061}, {5311,19133}, {6353,26872}, {7069,11429}, {7076,7120}, {7140,7359}, {7186,24436}, {10539,26921}, {11206,26939}, {13615,20818}, {14530,26938}, {14547,22356}, {16058,23095}, {17976,20834}, {20989,22276}, {20999,25941}, {26864,26867}, {26880,26901}, {26881,26911}, {26882,26915}, {26886,26940}, {26887,26941}

X(26885) = isogonal conjugate of the isotomic conjugate of X(7283)
X(26885) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (9, 184, 26890), (25, 219, 26893)


X(26886) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-CONWAY AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*((-a^2+b^2+c^2)^2*a^2+(4*a^4-2*(b^2+c^2)*a^2-2*(b^2-c^2)^2)*S) : :

The homothetic center of these triangles is X(11687)

X(26886) lies on these lines: {24,6458}, {25,26894}, {110,26875}, {154,8911}, {184,26891}, {206,26925}, {371,1614}, {372,3518}, {468,26950}, {577,1495}, {1498,26936}, {1503,26951}, {3155,6413}, {5412,6414}, {6200,12112}, {6353,26873}, {6457,6759}, {10535,26949}, {10536,26952}, {10539,26922}, {10962,11417}, {11206,26945}, {26864,26868}, {26881,26912}, {26882,26916}, {26883,26918}, {26884,26930}, {26885,26940}, {26887,26947}, {26888,26948}

X(26886) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 26920, 26894), (154, 26953, 8911)


X(26887) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-CONWAY AND 1st SHARYGIN

Barycentrics    a^2*((b^2+c^2)*a^6-(2*b^4-b^2*c^2+2*c^4)*a^4+(b^4-c^4)*(b^2-c^2)*a^2-(b^2-c^2)^2*b^2*c^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2) : :

The homothetic center of these triangles is X(11688)

X(26887) lies on these lines: {3,19206}, {4,54}, {25,9792}, {26,19194}, {49,13322}, {95,9306}, {97,110}, {154,19180}, {156,19210}, {159,19197}, {182,19188}, {206,19171}, {436,8795}, {468,26954}, {1495,21638}, {1498,19172}, {1503,23295}, {1971,8882}, {1988,14533}, {2393,19178}, {4993,5012}, {6000,19192}, {6353,19166}, {10282,19185}, {10533,19183}, {10534,19184}, {10535,19182}, {10536,19181}, {10539,19179}, {10540,19176}, {13289,19195}, {14530,19173}, {16030,26864}, {19167,26881}, {19168,26882}, {19175,26888}, {26880,26902}, {26884,26931}, {26885,26941}, {26886,26947}

X(26887) = barycentric product X(54)*X(3164)
X(26887) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 19170, 9792), (184, 275, 54)


X(26888) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-CONWAY AND TANGENTIAL-MIDARC

Barycentrics    a^2*(a^6-(2*b^2+3*b*c+2*c^2)*a^4+(b^2+c^2)*(b+c)^2*a^2+(b^2-c^2)^2*b*c)*(a+b-c)*(a-b+c) : :

The homothetic center of these triangles is X(11690)

X(26888) lies on these lines: {1,6759}, {3,7355}, {4,11429}, {11,16252}, {12,1503}, {20,12940}, {25,19349}, {26,7352}, {28,65}, {31,56}, {33,26883}, {34,184}, {35,6000}, {36,10282}, {40,6056}, {48,1950}, {55,1498}, {64,5217}, {73,3145}, {109,2360}, {110,4296}, {159,1469}, {161,9658}, {172,1971}, {182,19372}, {201,26885}, {206,1428}, {222,13730}, {227,692}, {388,11206}, {468,26955}, {498,14216}, {999,14530}, {1038,9306}, {1060,10539}, {1181,11398}, {1250,10675}, {1319,1612}, {1393,26889}, {1394,7335}, {1398,26864}, {1409,1474}, {1425,1495}, {1478,9833}, {1614,1870}, {1619,10831}, {1887,2182}, {1935,3955}, {2066,12970}, {2067,10533}, {2099,10537}, {2192,3303}, {2307,11243}, {2393,19369}, {2646,6001}, {2777,4324}, {2818,11012}, {2883,6284}, {3028,15647}, {3056,19149}, {3146,9637}, {3157,7387}, {3215,13738}, {3295,11189}, {3357,5010}, {3576,14925}, {3585,18400}, {4294,5656}, {4295,7554}, {4302,5878}, {4354,9934}, {4857,14862}, {5204,17821}, {5218,12324}, {5285,7066}, {5414,12964}, {5432,6247}, {5433,10192}, {5596,12588}, {5706,11428}, {6198,14157}, {6353,18915}, {6502,10534}, {7280,11202}, {7951,18381}, {10060,12315}, {10540,18447}, {10638,10676}, {11510,18621}, {12943,17845}, {13289,19470}, {15311,15338}, {17819,18996}, {17820,18995}, {17975,20836}, {19175,26887}, {19367,26881}, {19368,26882}, {20122,20831}, {20306,24953}, {26880,26903}, {26886,26948}

X(26888) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 6759, 10535), (25, 19349, 19366)
X(26888) = homothetic center of anti-tangential midarc triangle and X(3)-Ehrmann triangle


X(26889) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: CONWAY AND INNER-HUTSON

Barycentrics    a^2*(a^4-(b^2+b*c+c^2)*a^2+(b-c)^2*b*c) : :

The homothetic center of these triangles is X(11886)

X(26889) lies on these lines: {2,7193}, {3,26893}, {6,1473}, {31,1403}, {38,2330}, {42,20999}, {48,4191}, {51,3220}, {54,26877}, {55,12595}, {57,184}, {58,22344}, {63,182}, {84,11424}, {181,5322}, {199,22390}, {209,5096}, {219,7484}, {222,11402}, {228,13329}, {354,692}, {511,7293}, {569,24467}, {572,22060}, {577,26900}, {580,22345}, {603,19365}, {614,2175}, {631,26872}, {1155,20986}, {1393,26888}, {1407,17809}, {1471,2187}, {1851,5222}, {1993,3784}, {2003,3937}, {2194,3752}, {2317,22053}, {2323,3917}, {2999,5320}, {3218,3955}, {3306,9306}, {3666,5135}, {3741,24253}, {3781,7485}, {3914,5091}, {4652,13323}, {5085,7085}, {5092,5314}, {5138,5256}, {5157,26924}, {5221,14529}, {5285,22352}, {5398,23206}, {5437,5651}, {5709,10984}, {7004,11429}, {7308,22112}, {7499,26942}, {10601,24320}, {11003,23958}, {11245,26932}, {11422,26910}, {11423,26914}, {11425,26927}, {11426,26928}, {11427,26929}, {11428,26934}, {13336,26921}, {14547,16064}, {14912,26871}, {15299,15503}, {16059,23095}, {16560,21318}, {17017,19133}, {17188,24618}, {18162,21319}, {22394,23621}, {23292,26933}, {26891,26930}

X(26889) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 7193, 26885), (6, 1473, 26892)


X(26890) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: CONWAY AND OUTER-HUTSON

Barycentrics    a^2*(a^4-(b^2-b*c+c^2)*a^2-(b+c)^2*b*c) : :

The homothetic center of these triangles is X(11887)

X(26890) lies on these lines: {2,3955}, {3,26892}, {6,31}, {9,184}, {38,1428}, {40,11424}, {44,2194}, {51,5285}, {54,72}, {63,182}, {78,13323}, {101,23201}, {199,2183}, {201,19365}, {210,20986}, {219,11402}, {220,17809}, {222,7484}, {228,572}, {375,20989}, {511,5314}, {569,26921}, {577,26901}, {612,1397}, {631,26871}, {692,3683}, {1211,3035}, {1437,5044}, {1473,5085}, {1743,5320}, {1829,6197}, {1993,3781}, {2003,3917}, {2203,4183}, {2317,2318}, {2323,3690}, {2328,23202}, {2352,4268}, {3219,5012}, {3220,22352}, {3271,5310}, {3305,9306}, {3687,17977}, {3741,5150}, {3757,4579}, {3784,7485}, {3796,24320}, {3819,22128}, {4415,5137}, {4641,5135}, {5092,7293}, {5130,5136}, {5157,26923}, {5197,16569}, {5437,22112}, {5651,7308}, {5749,7102}, {5752,26285}, {7069,10535}, {7330,10984}, {7499,26932}, {9957,17015}, {11245,26942}, {11422,26911}, {11423,26915}, {11425,26935}, {11426,26938}, {11427,26939}, {13329,22060}, {13336,24467}, {14153,16514}, {14912,26872}, {20683,20959}, {21015,23292}, {21319,23693}, {26891,26940}

X(26890) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3955, 26884), (6, 7085, 26893), (212, 2267, 1011)


X(26891) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: CONWAY AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*((-a^2+b^2+c^2)^2*a^2-2*(2*a^4-3*(b^2+c^2)*a^2+(b^2-c^2)^2)*S) : :

The homothetic center of these triangles is X(10885)

X(26891) lies on these lines: {6,3156}, {54,371}, {184,26886}, {372,1199}, {569,26922}, {577,13366}, {578,6457}, {3311,19356}, {3518,5413}, {5012,26875}, {6431,17820}, {6458,7592}, {11245,26950}, {11402,26868}, {11422,26912}, {11423,26916}, {11424,26918}, {11425,26936}, {11427,26945}, {11428,26952}, {11429,26949}, {14912,26873}, {17809,26953}, {19365,26948}, {23292,26951}, {26889,26930}, {26890,26940}

X(26891) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 8911, 26894), (184, 26919, 26886)


X(26892) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CONWAY AND INNER-HUTSON

Barycentrics    a^2*((b^2-b*c+c^2)*a^2-(b-c)^2*(b^2+b*c+c^2)) : :

The homothetic center of these triangles is X(9783)

X(26892) lies on these lines: {1,855}, {2,3784}, {3,26890}, {4,26871}, {6,1473}, {7,1851}, {9,3917}, {22,3955}, {25,222}, {27,2659}, {31,1469}, {33,1364}, {38,3056}, {40,16980}, {47,23850}, {51,57}, {52,24467}, {55,8679}, {63,511}, {84,185}, {182,7293}, {184,2003}, {189,7102}, {212,16064}, {216,26900}, {228,991}, {244,7248}, {255,3145}, {373,5437}, {375,4413}, {386,22344}, {394,24320}, {405,11573}, {427,26932}, {513,1836}, {517,6938}, {573,22060}, {581,22345}, {603,19366}, {614,1401}, {651,4224}, {942,1828}, {966,22412}, {970,4652}, {971,1824}, {984,7186}, {993,2392}, {1011,22097}, {1350,7085}, {1394,1425}, {1397,5322}, {1399,23843}, {1407,17810}, {1423,23440}, {1621,23155}, {1626,2361}, {1709,2807}, {1843,7289}, {1935,13733}, {1993,7193}, {2082,23630}, {2099,2390}, {2183,4191}, {2270,22440}, {2277,17187}, {2310,21328}, {2810,3870}, {2841,25415}, {2979,3219}, {3060,3218}, {3098,5314}, {3157,13730}, {3305,3819}, {3306,5943}, {3434,15310}, {3567,26877}, {3690,3929}, {3772,18191}, {3792,7262}, {3868,20077}, {3916,5752}, {3928,21969}, {4001,10477}, {4259,4641}, {4303,13738}, {4459,17871}, {4640,9037}, {4884,9024}, {5208,17364}, {5248,23156}, {5360,24635}, {5396,23206}, {5562,7330}, {5640,26910}, {5650,7308}, {6090,23140}, {7004,11436}, {7363,15508}, {8614,14529}, {9306,22128}, {9777,26866}, {9781,26914}, {9786,26927}, {9792,26931}, {10167,14557}, {10391,17441}, {10625,26921}, {11002,23958}, {11432,26928}, {11433,26929}, {11435,26934}, {13567,26933}, {14963,22420}, {15030,18540}, {18161,21318}, {20665,23636}, {20831,23070}, {20834,22161}, {20852,23131}, {22069,23619}, {26894,26930}

X(26892) = reflection of X(i) in X(j) for these (i,j): (17441, 10391), (26893, 63)
X(26892) = isogonal conjugate of the isotomic conjugate of X(17181)
X(26892) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 1473, 26889), (25, 222, 26884)


X(26893) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CONWAY AND OUTER-HUTSON

Barycentrics    a^2*((b^2+b*c+c^2)*a^2-(b+c)^2*(b^2-b*c+c^2)) : :

The homothetic center of these triangles is X(9787)

X(26893) lies on these lines: {1,10974}, {2,3781}, {3,26889}, {4,8}, {6,31}, {9,51}, {22,7193}, {25,219}, {34,7066}, {38,1469}, {40,185}, {48,199}, {52,26921}, {57,3917}, {63,511}, {78,970}, {181,612}, {182,5314}, {184,2323}, {201,19366}, {210,2262}, {216,26901}, {220,17810}, {228,573}, {306,10477}, {373,7308}, {375,3715}, {394,26884}, {427,26942}, {464,16465}, {518,17441}, {756,4517}, {851,24310}, {916,7580}, {941,2335}, {968,21746}, {982,3792}, {991,22060}, {1211,2886}, {1282,1763}, {1350,1473}, {1818,4191}, {1836,20718}, {1837,22299}, {1843,5227}, {1864,21871}, {1993,3955}, {2082,20683}, {2099,10459}, {2175,5310}, {2183,2318}, {2245,2352}, {2277,20966}, {2900,3169}, {2979,3218}, {3060,3219}, {3098,7293}, {3151,20243}, {3270,7070}, {3305,5943}, {3306,3819}, {3416,22275}, {3567,26878}, {3666,4259}, {3682,13738}, {3725,3764}, {3868,17778}, {3870,9052}, {3928,3937}, {3929,21969}, {3981,16514}, {4215,4269}, {4260,5256}, {4640,9047}, {4645,25308}, {4650,7186}, {4855,15489}, {5231,10439}, {5364,20684}, {5437,5650}, {5562,5709}, {5640,26911}, {5791,18180}, {6506,15508}, {6734,10441}, {6745,10440}, {7069,21801}, {7235,17871}, {9777,26867}, {9781,26915}, {9786,26935}, {9792,26941}, {10625,24467}, {11269,21334}, {11432,26938}, {11433,26939}, {13567,21015}, {13726,19767}, {17792,26034}, {20012,20075}, {20539,22321}, {20857,22126}, {26894,26940}

X(26893) = reflection of X(i) in X(j) for these (i,j): (55, 22276), (26892, 63)
X(26893) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 7085, 26890), (6, 12329, 26924), (3869, 25306, 4388)


X(26894) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd CONWAY AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*((-a^2+b^2+c^2)^2*a^2-2*((b^2+c^2)*a^2-(b^2-c^2)^2)*S) : :

The homothetic center of these triangles is X(9789)

X(26894) lies on these lines: {4,372}, {6,3156}, {25,26886}, {51,577}, {52,26922}, {185,26918}, {371,3567}, {389,6457}, {427,26950}, {571,8576}, {1589,3618}, {3060,26875}, {3312,19347}, {3594,12964}, {5408,10963}, {5640,26912}, {6420,11423}, {6423,19005}, {8908,13366}, {9777,26868}, {9781,26916}, {9786,26936}, {9792,26947}, {11242,17849}, {11433,26945}, {11435,26952}, {11436,26949}, {13567,26951}, {17810,26953}, {19366,26948}, {26892,26930}, {26893,26940}

X(26894) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 372, 6458), (372, 5413, 6414)


X(26895) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND 3rd EULER

Barycentrics    a^2*(3*(b^2+c^2)*a^6-(7*b^4+b^2*c^2+7*c^4)*a^4+5*(b^4-c^4)*(b^2-c^2)*a^2-(b^4-b^2*c^2+c^4)*(b^2-c^2)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(10886)

X(26895) lies on these lines: {2,26907}, {3,74}, {22,26909}, {216,5640}, {418,3060}, {577,11422}, {1993,26865}, {2979,26874}, {5012,26898}, {5889,26876}, {6638,11451}, {10546,10979}, {11439,26897}, {11445,26908}, {11446,26904}, {11746,18573}, {18911,26870}, {19122,26899}, {19167,26902}, {19367,26903}, {23293,26906}, {26880,26881}, {26900,26910}, {26901,26911}, {26905,26913}


X(26896) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND 4th EULER

Barycentrics
a^2*(-a^2+b^2+c^2)*(3*(b^2+c^2)*a^10-(13*b^4+15*b^2*c^2+13*c^4)*a^8+2*(b^2+c^2)*(11*b^4-6*b^2*c^2+11*c^4)*a^6-18*(b^6-c^6)*(b^2-c^2)*a^4+7*(b^4-c^4)*(b^2-c^2)^3*a^2-(b^4-b^2*c^2+c^4)*(b^2-c^2)^4) : :

The homothetic center of these triangles is X(10887)

X(26896) lies on these lines: {3,74}, {4,26907}, {24,26909}, {54,26898}, {216,9781}, {418,3567}, {577,11423}, {5890,26876}, {6638,11465}, {7592,26865}, {11412,26874}, {11455,26897}, {11460,26908}, {11461,26904}, {18912,26870}, {19123,26899}, {19168,26902}, {19368,26903}, {23294,26906}, {26880,26882}, {26900,26914}, {26901,26915}, {26905,26917}


X(26897) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND EXCENTERS-REFLECTIONS

Barycentrics
a^2*((b^2+c^2)*a^10-2*(2*b^4+b^2*c^2+2*c^4)*a^8+2*(b^2+c^2)*(3*b^4-2*b^2*c^2+3*c^4)*a^6-4*(b^4-c^4)^2*a^4+(b^4-c^4)*(b^2-c^2)^3*a^2+2*(b^2-c^2)^4*b^2*c^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11521)

X(26897) lies on these lines: {2,3}, {33,26903}, {34,26904}, {40,26901}, {54,14152}, {84,26900}, {95,1105}, {160,17845}, {185,216}, {577,11424}, {578,23606}, {1498,26898}, {2055,15033}, {2972,11793}, {5562,13409}, {6000,23719}, {6247,26905}, {11381,26907}, {11439,26895}, {11455,26896}, {11471,26908}, {12324,26870}, {15811,26909}, {19124,26899}, {19169,26902}, {19467,20775}, {21659,23195}, {26880,26883}

X(26897) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 4, 418), (3, 6905, 408), (3, 7395, 426)


X(26898) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND 2nd EXTOUCH

Barycentrics    a^2*(a^8+2*(b^2+c^2)*a^6-8*(b^4+c^4)*a^4+6*(b^4-c^4)*(b^2-c^2)*a^2-(b^2-c^2)^4)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(10888)

X(26898) lies on these lines: {2,26870}, {3,49}, {6,418}, {25,216}, {54,26896}, {154,157}, {183,7494}, {219,26901}, {222,26900}, {426,5085}, {577,11402}, {852,17825}, {1073,5650}, {1350,13409}, {1498,26897}, {1899,26906}, {1993,26874}, {5012,26895}, {5158,9777}, {6389,7499}, {6509,7484}, {6638,10601}, {7503,19172}, {7592,26876}, {10979,26864}, {13366,15905}, {15004,15851}, {17809,23606}, {19125,26899}, {19170,26902}, {19349,26903}, {19350,26908}, {19354,26904}

X(26898) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26870, 26905), (184, 26907, 3), (10132, 10133, 19357)


X(26899) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND HONSBERGER

Barycentrics    a^4*(a^8-2*(b^2+c^2)*a^6+2*(b^2+c^2)^3*a^2-(b^4+6*b^2*c^2+c^4)*(b^2-c^2)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(10889)

X(26899) lies on these lines: {3,6}, {53,12362}, {97,193}, {206,26880}, {233,3549}, {418,1974}, {1352,10600}, {1428,26903}, {1843,6641}, {2330,26904}, {2351,6467}, {3087,7400}, {3589,26906}, {5907,17849}, {6638,19137}, {6676,10314}, {6748,6823}, {7494,10311}, {14576,15818}, {19118,26865}, {19119,26870}, {19121,26874}, {19122,26895}, {19123,26896}, {19124,26897}, {19125,26898}, {19128,26876}, {19132,26909}, {19133,26908}, {19171,26902}, {21637,26907}, {26900,26923}, {26901,26924}, {26905,26926}

X(26899) = midpoint of X(11513) and X(11514)
X(26899) = isogonal conjugate of the polar conjugate of X(7395)
X(26899) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (10979, 22052, 8588), (11515, 11516, 3098), (11574, 19126, 13355)


X(26900) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND INNER-HUTSON

Barycentrics    a^2*((2*b^2-b*c+2*c^2)*a^6-(4*b^4+4*c^4-(b-c)^2*b*c)*a^4+(b^2-c^2)^2*(2*b^2+b*c+2*c^2)*a^2-(b^2-c^2)^2*(b-c)^2*b*c)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11892)

X(26900) lies on these lines: {3,63}, {57,418}, {84,26897}, {216,26892}, {222,26898}, {577,26889}, {603,26903}, {852,5437}, {1407,26909}, {3218,26874}, {3220,6641}, {3306,6638}, {3937,26907}, {7004,26904}, {26865,26866}, {26870,26871}, {26876,26877}, {26880,26884}, {26895,26910}, {26896,26914}, {26899,26923}, {26902,26931}, {26905,26932}, {26906,26933}, {26908,26934}

X(26900) = {X(3), X(63)}-harmonic conjugate of X(26901)


X(26901) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND OUTER-HUTSON

Barycentrics    a^2*((2*b^2+b*c+2*c^2)*a^6-(4*b^4+4*c^4+(b+c)^2*b*c)*a^4+(b^2-c^2)^2*(2*b^2-b*c+2*c^2)*a^2+(b^2-c^2)^2*(b+c)^2*b*c)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11893)

X(26901) lies on these lines: {3,63}, {9,418}, {40,26897}, {71,26908}, {201,26903}, {212,26904}, {216,26893}, {219,26898}, {220,26909}, {408,5438}, {577,26890}, {852,7308}, {3219,26874}, {3305,6638}, {3690,26907}, {5285,6641}, {21015,26906}, {26865,26867}, {26870,26872}, {26876,26878}, {26880,26885}, {26895,26911}, {26896,26915}, {26899,26924}, {26902,26941}, {26905,26942}

X(26901) = {X(3), X(63)}-harmonic conjugate of X(26900)


X(26902) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND 1st SHARYGIN

Barycentrics
a^2*((2*b^4+3*b^2*c^2+2*c^4)*a^8-2*(b^2+c^2)*(3*b^4-2*b^2*c^2+3*c^4)*a^6+6*(b^6-c^6)*(b^2-c^2)*a^4-2*(b^4-c^4)*(b^2-c^2)^3*a^2-(b^2-c^2)^4*b^2*c^2)*(-a^2+b^2+c^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2) : :

The homothetic center of these triangles is X(10892)

X(26902) lies on these lines: {3,95}, {54,577}, {97,184}, {216,9792}, {275,418}, {6638,19188}, {16030,26865}, {19166,26870}, {19167,26895}, {19168,26896}, {19169,26897}, {19170,26898}, {19171,26899}, {19175,26903}, {19180,26909}, {19181,26908}, {19182,26904}, {21638,26907}, {23295,26906}, {26880,26887}, {26900,26931}, {26901,26941}, {26905,26954}


X(26903) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND TANGENTIAL-MIDARC

Barycentrics
a^2*(-a^2+b^2+c^2)*((2*b^2+b*c+2*c^2)*a^8-2*(3*b^4+3*c^4+2*(b^2+b*c+c^2)*b*c)*a^6+2*(3*b^4+3*c^4-(3*b^2-4*b*c+3*c^2)*b*c)*(b+c)^2*a^4-2*(b^4-c^4)*(b^2-c^2)*(b+c)^2*a^2+(b^2-c^2)^4*b*c)*(a+b-c)*(a-b+c) : :

The homothetic center of these triangles is X(11894)

X(26903) lies on these lines: {1,3}, {12,26906}, {33,26897}, {34,418}, {201,26901}, {216,19366}, {221,26909}, {577,19365}, {603,26900}, {1398,26865}, {1425,26907}, {1428,26899}, {1870,26876}, {4296,26874}, {6638,19372}, {18915,26870}, {19175,26902}, {19349,26898}, {19367,26895}, {19368,26896}, {26880,26888}, {26905,26955}

X(26903) = {X(1), X(3)}-harmonic conjugate of X(26904)


X(26904) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND 2nd TANGENTIAL-MIDARC

Barycentrics
a^2*((2*b^2-b*c+2*c^2)*a^8-2*(3*b^4+3*c^4-2*(b^2-b*c+c^2)*b*c)*a^6+2*(3*b^4+3*c^4+(3*b^2+4*b*c+3*c^2)*b*c)*(b-c)^2*a^4-2*(b^4-c^4)*(b^2-c^2)*(b-c)^2*a^2-(b^2-c^2)^4*b*c)*(-a^2+b^2+c^2)*(-a+b+c) : :

The homothetic center of these triangles is X(11895)

X(26904) lies on these lines: {1,3}, {11,26906}, {33,418}, {34,26897}, {97,9637}, {212,26901}, {216,11436}, {577,11429}, {2192,26909}, {2330,26899}, {3100,26874}, {3270,26907}, {6198,26876}, {6638,9817}, {7004,26900}, {7071,26865}, {10535,26880}, {11446,26895}, {11461,26896}, {18922,26870}, {19182,26902}, {19354,26898}, {26905,26956}

X(26904) = {X(1), X(3)}-harmonic conjugate of X(26903)


X(26905) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND URSA MAJOR

Barycentrics    (3*(b^2+c^2)*a^8-2*(3*b^4+2*b^2*c^2+3*c^4)*a^6+4*(b^4-c^4)*(b^2-c^2)*a^4-2*(b^2-c^2)^4*a^2+(b^4-c^4)*(b^2-c^2)^3)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(17617)

X(26905) lies on these lines: {2,26870}, {3,68}, {125,26906}, {216,427}, {325,7386}, {418,13567}, {468,26880}, {577,11245}, {1503,6641}, {3001,13409}, {3580,26874}, {6247,26897}, {6389,7484}, {7399,10600}, {8550,23606}, {26865,26869}, {26876,26879}, {26895,26913}, {26896,26917}, {26899,26926}, {26900,26932}, {26901,26942}, {26902,26954}, {26903,26955}, {26904,26956}, {26908,26957}, {26909,26958}

X(26905) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26870, 26898), (125, 26907, 26906)


X(26906) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND URSA MINOR

Barycentrics    (3*(b^2+c^2)*a^8-8*(b^4+c^4)*a^6+6*(b^4-c^4)*(b^2-c^2)*a^4-(b^4-c^4)*(b^2-c^2)^3)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(10473)

X(26906) lies on these lines: {2,3}, {11,26904}, {12,26903}, {125,26905}, {141,6509}, {216,13567}, {577,23292}, {1503,26880}, {1853,26909}, {1899,26898}, {3589,26899}, {3925,26908}, {11427,15905}, {21015,26901}, {23291,26870}, {23293,26895}, {23294,26896}, {23295,26902}, {26900,26933}

X(26906) = isotomic conjugate of the polar conjugate of X(12233)
X(26906) = complement of the polar conjugate of X(13599)
X(26906) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (465, 466, 549), (1589, 1590, 3523)


X(26907) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND WASAT

Barycentrics    a^2*(3*a^4-4*(b^2+c^2)*a^2+(b^2-c^2)^2)*(-a^2+b^2+c^2)*((b^2+c^2)*a^2-(b^2-c^2)^2) : :

The homothetic center of these triangles is X(10478)

X(26907) lies on these lines: {2,26895}, {3,49}, {4,26896}, {5,12012}, {6,26865}, {25,26909}, {51,216}, {125,26905}, {311,7494}, {373,6638}, {389,26876}, {511,26874}, {577,13366}, {1425,26903}, {1495,6641}, {1843,3135}, {1899,26870}, {3270,26904}, {3611,26908}, {3690,26901}, {3937,26900}, {5650,6509}, {6467,23195}, {6617,22112}, {10282,23719}, {11381,26897}, {21637,26899}, {21638,26902}, {22052,23606}

X(26907) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 26898, 184), (216, 418, 51)


X(26908) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND YFF CENTRAL

Barycentrics
a^2*((2*b^2+b*c+2*c^2)*a^8+2*(b+c)*b*c*a^7-2*(3*b^4+3*c^4+(b^2+c^2)*b*c)*a^6-2*(b+c)*(3*b^2-2*b*c+3*c^2)*b*c*a^5+6*(b^4-c^4)*(b^2-c^2)*a^4+2*(b^2-c^2)*(b-c)*(3*b^2+2*b*c+3*c^2)*b*c*a^3-2*(b^2-c^2)^2*(b-c)*(b^3-c^3)*a^2-2*(b^2-c^2)^3*(b-c)*b*c*a-(b^2-c^2)^4*b*c)*(-a^2+b^2+c^2)*(-a+b+c) : :

The homothetic center of these triangles is X(11896)

X(26908) lies on these lines: {1,3}, {19,418}, {71,26901}, {216,11435}, {577,11428}, {3101,26874}, {3197,26909}, {3611,26907}, {3925,26906}, {6197,26876}, {6638,9816}, {10536,26880}, {11406,26865}, {11436,18591}, {11445,26895}, {11460,26896}, {11471,26897}, {18921,26870}, {19133,26899}, {19181,26902}, {19350,26898}, {26900,26934}, {26905,26957}


X(26909) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd CONWAY AND 2nd ZANIAH

Barycentrics    a^2*(a^8+6*(b^2+c^2)*a^6-16*(b^4+c^4)*a^4+10*(b^4-c^4)*(b^2-c^2)*a^2-(b^2-c^2)^4)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(18229)

X(26909) lies on these lines: {3,64}, {6,418}, {22,26895}, {24,26896}, {25,26907}, {184,26865}, {216,17810}, {220,26901}, {221,26903}, {394,26874}, {577,17809}, {1181,26876}, {1407,26900}, {1853,26906}, {2192,26904}, {3197,26908}, {6638,17825}, {7494,15271}, {13567,26870}, {15811,26897}, {19132,26899}, {19180,26902}, {26905,26958}

X(26909) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 26880, 154), (418, 26898, 6)


X(26910) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd EULER AND INNER-HUTSON

Barycentrics    a^2*((b-c)*a-b^2+b*c-c^2)*((b-c)*a+b^2-b*c+c^2) : :

The homothetic center of these triangles is X(8377)

X(26910) lies on these lines: {2,3937}, {3,26914}, {22,1407}, {55,840}, {57,3060}, {63,7998}, {84,11439}, {108,17074}, {110,1473}, {222,5012}, {511,23958}, {603,19367}, {1155,23155}, {1401,17126}, {1993,26866}, {2979,3218}, {3271,9335}, {3306,11451}, {4188,23154}, {5640,26892}, {5889,26877}, {7004,11446}, {7293,15080}, {7485,22129}, {8679,9352}, {11422,26889}, {11440,26927}, {11441,26928}, {11442,26929}, {11444,24467}, {11445,26934}, {17375,22413}, {18911,26871}, {19122,26923}, {19167,26931}, {26881,26884}, {26895,26900}, {26912,26930}, {26913,26932}

X(26910) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63, 7998, 26911), (3218, 3784, 2979)


X(26911) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd EULER AND OUTER-HUTSON

Barycentrics    a^2*((b+c)*a+b^2+b*c+c^2)*((b+c)*a-b^2-b*c-c^2) : :

The homothetic center of these triangles is X(8378)

X(26911) lies on these lines: {2,3690}, {3,26915}, {9,3060}, {22,220}, {40,11439}, {56,7144}, {63,7998}, {71,11445}, {110,7085}, {181,9330}, {201,19367}, {212,11446}, {219,5012}, {469,3876}, {1180,16514}, {1993,26867}, {2979,3219}, {3305,11451}, {3681,17233}, {3688,17127}, {3730,4184}, {3920,4517}, {5314,15080}, {5640,26893}, {5650,23958}, {5692,15523}, {5889,26878}, {11422,26890}, {11440,26935}, {11441,26938}, {11442,26939}, {11444,26921}, {12109,17570}, {17018,20683}, {18911,26872}, {19122,26924}, {19167,26941}, {21015,23293}, {26881,26885}, {26895,26901}, {26912,26940}, {26913,26942}

X(26911) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63, 7998, 26910), (3219, 3781, 2979)


X(26912) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd EULER AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*(2*S*b^2*c^2+(-a^2+b^2+c^2)^2*a^2) : :

The homothetic center of these triangles is X(8228)

X(26912) lies on these lines: {2,95}, {3,5410}, {6,588}, {22,26953}, {32,7585}, {50,590}, {110,8911}, {371,5889}, {372,15043}, {492,4558}, {571,3068}, {1583,15905}, {1993,26868}, {2193,16441}, {2979,26875}, {3060,26919}, {3069,5063}, {3155,11418}, {5012,26920}, {5065,7586}, {5640,26894}, {6413,11447}, {6457,12111}, {6458,10574}, {6748,15234}, {8908,9544}, {8963,22052}, {10316,11292}, {10962,11448}, {11422,26891}, {11439,26918}, {11440,26936}, {11442,26945}, {11444,26922}, {11445,26952}, {11446,26949}, {11514,12220}, {13345,19054}, {18911,26873}, {19122,26925}, {19167,26947}, {19367,26948}, {23293,26951}, {26881,26886}, {26910,26930}, {26911,26940}, {26913,26950}


X(26913) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd EULER AND URSA MAJOR

Barycentrics    (b^4-3*b^2*c^2+c^4)*a^2-(b^2+c^2)*(b^2-c^2)^2 : :

The homothetic center of these triangles is X(17618)

X(26913) lies on these lines: {2,98}, {3,26917}, {4,13445}, {5,6241}, {22,26958}, {54,6640}, {235,12279}, {343,7998}, {403,15072}, {427,5640}, {468,26881}, {569,6143}, {631,5449}, {858,3060}, {1209,3525}, {1368,2979}, {1370,15107}, {1594,15043}, {1648,3981}, {1656,13561}, {1853,1995}, {1993,26869}, {2071,18390}, {2072,5890}, {3091,5878}, {3153,11438}, {3548,18912}, {3567,13371}, {3618,6697}, {3855,18488}, {5094,5422}, {5133,7703}, {5159,11245}, {5169,5943}, {5576,15024}, {5643,18928}, {5889,11585}, {6030,7493}, {6146,11449}, {6247,11439}, {6515,8538}, {6643,7691}, {6644,25739}, {6677,10546}, {7394,10545}, {7509,9932}, {7527,23329}, {7569,15805}, {7577,9730}, {8263,12272}, {8889,12834}, {10024,11704}, {10254,20304}, {10255,13630}, {10257,12022}, {10264,18435}, {10413,11648}, {11004,11225}, {11440,26937}, {11441,26944}, {11444,12359}, {11445,26957}, {11446,26956}, {11550,13595}, {12278,22467}, {15033,18281}, {15060,20379}, {15061,18570}, {15078,18396}, {15760,20791}, {15801,18951}, {19122,26926}, {19167,26954}, {19367,26955}, {21451,26883}, {26895,26905}, {26910,26932}, {26911,26942}, {26912,26950}

X(26913) = inverse of X(3047) in the Brocard circle
X(26913) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3410, 5651), (2, 9544, 5972), (13414, 13415, 3047)


X(26914) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 4th EULER AND INNER-HUTSON

Barycentrics    a^2*((b-c)^2*a^6-(3*b^4+3*c^4-(6*b^2-5*b*c+6*c^2)*b*c)*a^4+(3*b^4+2*b^2*c^2+3*c^4)*(b-c)^2*a^2-(b^2-c^2)^2*(b^2-b*c+c^2)^2) : :

The homothetic center of these triangles is X(8380)

X(26914) lies on these lines: {3,26910}, {4,3937}, {24,1407}, {54,222}, {56,953}, {57,3567}, {63,7999}, {74,26927}, {84,11455}, {603,19368}, {1473,1614}, {3218,11412}, {3306,11465}, {5890,26877}, {6942,23154}, {7004,11461}, {7509,22129}, {7592,26866}, {9781,26892}, {11423,26889}, {11456,26928}, {11457,26929}, {11459,24467}, {11460,26934}, {18912,26871}, {19123,26923}, {19168,26931}, {23294,26933}, {26882,26884}, {26896,26900}, {26916,26930}, {26917,26932}

X(26914) = {X(63), X(7999)}-harmonic conjugate of X(26915)


X(26915) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 4th EULER AND OUTER-HUTSON

Barycentrics    a^2*((b+c)^2*a^6-(3*b^4+3*c^4+(6*b^2+5*b*c+6*c^2)*b*c)*a^4+(3*b^4+2*b^2*c^2+3*c^4)*(b+c)^2*a^2-(b^2-c^2)^2*(b^2+b*c+c^2)^2) : :

The homothetic center of these triangles is X(8381)

X(26915) lies on these lines: {3,26911}, {4,3690}, {9,3567}, {24,220}, {40,11455}, {54,219}, {55,7144}, {63,7999}, {71,11460}, {74,26935}, {201,19368}, {212,11461}, {1614,7085}, {3219,11412}, {3305,11465}, {5890,26878}, {7592,26867}, {9781,26893}, {11423,26890}, {11456,26938}, {11457,26939}, {11459,26921}, {18912,26872}, {19123,26924}, {19168,26941}, {21015,23294}, {26882,26885}, {26896,26901}, {26916,26940}, {26917,26942}

X(26915) = {X(63), X(7999)}-harmonic conjugate of X(26914)


X(26916) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 4th EULER AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*(2*a^2*(-a^2+b^2+c^2)^2*S+b^2*c^2*(a^2-c^2+b^2)*(a^2+c^2-b^2)) : :

The homothetic center of these triangles is X(8230)

X(26916) lies on these lines: {3,5410}, {4,577}, {24,26953}, {32,7581}, {50,3070}, {54,26920}, {74,26936}, {97,1586}, {371,5890}, {372,3567}, {571,1587}, {637,4558}, {1588,5063}, {1614,8911}, {3155,10881}, {5065,7582}, {6241,6457}, {6413,11462}, {6811,10313}, {7592,26868}, {9781,26894}, {10316,21736}, {11412,26875}, {11423,26891}, {11455,26918}, {11457,26945}, {11459,26922}, {11460,26952}, {11461,26949}, {18912,26873}, {19123,26925}, {19168,26947}, {19368,26948}, {23294,26951}, {26882,26886}, {26914,26930}, {26915,26940}, {26917,26950}

X(26916) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (371, 6458, 5890), (372, 26919, 3567)


X(26917) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 4th EULER AND URSA MAJOR

Barycentrics    (b^4-b^2*c^2+c^4)*a^6-3*(b^4-c^4)*(b^2-c^2)*a^4+(b^2-c^2)^2*(3*b^4+b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3 : :

The homothetic center of these triangles is X(17619)

X(26917) lies on these lines: {2,54}, {3,26913}, {4,74}, {5,5890}, {24,25739}, {110,25738}, {140,12022}, {143,12099}, {184,14940}, {185,16868}, {186,12289}, {235,12290}, {265,12278}, {343,7999}, {381,13561}, {389,7577}, {403,2883}, {427,9781}, {468,26882}, {568,10224}, {578,6143}, {1594,3567}, {1614,1899}, {1656,7592}, {1853,10594}, {2072,5889}, {2929,16013}, {3060,13371}, {3090,18916}, {3448,10539}, {3518,18381}, {3520,18390}, {3542,11457}, {3549,18911}, {3580,11412}, {3628,11245}, {3839,18488}, {5012,6639}, {5067,18950}, {5070,11402}, {5448,23515}, {5576,5640}, {6102,7723}, {6146,10018}, {6240,18394}, {6247,11455}, {6640,15059}, {6697,14853}, {6723,10112}, {6794,10413}, {7547,9786}, {7552,10984}, {7569,10601}, {7699,12233}, {9544,10116}, {9703,11264}, {9927,22467}, {9938,14852}, {10024,10574}, {10113,18565}, {10182,10619}, {10254,13630}, {10264,18439}, {11202,12254}, {11250,15061}, {11456,26944}, {11459,12359}, {11460,26957}, {11461,26956}, {11465,14788}, {11468,18560}, {11695,14789}, {11799,12279}, {12106,15027}, {12118,15035}, {12161,24572}, {12293,15078}, {12824,15114}, {12897,20397}, {13160,15045}, {14516,16238}, {14865,23329}, {14912,24206}, {15072,15761}, {15559,23332}, {16659,21841}, {18350,18356}, {18383,18559}, {19123,26926}, {19168,26954}, {19368,26955}, {21659,21844}, {26896,26905}, {26914,26932}, {26915,26942}, {26916,26950}

X(26917) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18912, 54), (4, 125, 23294), (4, 26937, 74)


X(26918) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: EXCENTERS-REFLECTIONS AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*(-2*S*(-a^2+b^2+c^2)^2*a^2+(b^2+c^2)*a^6-3*(b^2-c^2)^2*a^4+3*(b^4-c^4)*(b^2-c^2)*a^2-(b^4+6*b^2*c^2+c^4)*(b^2-c^2)^2) : :

The homothetic center of these triangles is X(11532)

X(26918) lies on these lines: {4,371}, {25,26936}, {30,26922}, {33,26948}, {34,26949}, {40,26940}, {64,1152}, {84,26930}, {185,26894}, {235,26951}, {372,6241}, {577,11381}, {1498,26920}, {1593,8911}, {3146,26875}, {3155,6409}, {6000,6458}, {6247,26950}, {8576,23261}, {11403,26868}, {11424,26891}, {11439,26912}, {11455,26916}, {11471,26952}, {11513,14927}, {12324,26873}, {15811,26953}, {19124,26925}, {19169,26947}, {26883,26886}

X(26918) = {X(4), X(6457)}-harmonic conjugate of X(26919)


X(26919) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: EXCENTRAL AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*((-a^2+b^2+c^2)^2*a^2+2*((b^2+c^2)*a^2-(b^2-c^2)^2)*S) : :

The homothetic center of these triangles is X(8231)

X(26919) lies on these lines: {2,26875}, {4,371}, {5,26922}, {6,3155}, {9,26940}, {19,26952}, {25,8911}, {33,26949}, {34,26948}, {51,577}, {57,26930}, {184,26886}, {275,26947}, {372,3567}, {389,6458}, {427,26951}, {571,8577}, {1495,8908}, {1590,3618}, {1593,26936}, {1974,26925}, {3060,26912}, {3311,19347}, {3592,12970}, {5409,10961}, {6419,11423}, {8963,9738}, {11241,17849}, {11433,26873}

X(26919) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 371, 6457), (4, 6457, 26918), (371, 5412, 6413)


X(26920) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd EXTOUCH AND 2nd PAMFILOS-ZHOU

Barycentrics    a^4*(-a^2+b^2+c^2)*(a^2-b^2-c^2+2*S) : :

The homothetic center of these triangles is X(8233)

X(26920) lies on these lines: {2,26873}, {3,6413}, {6,3155}, {24,372}, {25,26886}, {32,26461}, {48,606}, {54,26916}, {96,485}, {155,26922}, {184,418}, {185,26936}, {216,21640}, {219,26940}, {222,26930}, {371,7592}, {1152,17819}, {1181,6457}, {1300,6560}, {1498,26918}, {1590,18923}, {1600,10960}, {1899,26951}, {1993,26875}, {3068,12256}, {3070,22261}, {3156,10533}, {3284,21641}, {3365,8837}, {3390,8839}, {5012,26912}, {5408,11513}, {5409,9723}, {6423,19006}, {6776,26945}, {11402,26868}, {15905,19356}, {19125,26925}, {19170,26947}, {19349,26948}, {19350,26952}, {19354,26949}

X(26920) = isogonal conjugate of the isotomic conjugate of X(5409)
X(26920) = isogonal conjugate of the polar conjugate of X(372)
X(26920) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26873, 26950), (3, 19355, 6413)


X(26921) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: HEXYL AND OUTER-HUTSON

Barycentrics    a*(a^4-2*(b^2+b*c+c^2)*a^2+(b^2-c^2)^2)*(-a^2+b^2+c^2) : :
X(26921) = X(40)+3*X(3929) = X(946)-3*X(5325) = X(1482)-3*X(16418) = 2*X(3824)-3*X(11231) = 3*X(3929)-X(7330) = 3*X(5657)-X(6850) = 5*X(10595)-9*X(17561) = 3*X(11111)+X(12245)

The homothetic center of these triangles is X(8112)

X(26921) lies on these lines: {1,2361}, {2,26878}, {3,63}, {4,3219}, {5,9}, {7,6989}, {8,6868}, {10,6917}, {12,46}, {19,7534}, {26,5285}, {30,40}, {37,5707}, {38,602}, {52,26893}, {55,920}, {57,140}, {68,71}, {77,23070}, {84,550}, {90,6284}, {144,6908}, {155,219}, {165,17857}, {201,255}, {210,11499}, {212,1062}, {329,6825}, {392,10680}, {405,24474}, {484,9579}, {498,1454}, {516,18517}, {517,958}, {518,10267}, {527,6684}, {548,7171}, {549,3928}, {569,26890}, {573,5810}, {601,896}, {631,3218}, {632,5437}, {908,6863}, {936,6924}, {942,1708}, {946,5325}, {960,11249}, {971,1158}, {984,3072}, {997,26286}, {1006,3868}, {1147,3955}, {1214,3157}, {1216,3781}, {1385,11194}, {1445,5708}, {1479,7082}, {1482,5250}, {1483,6762}, {1656,3305}, {1697,5844}, {1698,5535}, {1699,24468}, {1728,5722}, {1737,10953}, {1766,5788}, {1768,12738}, {1776,4294}, {2003,16266}, {2095,11108}, {2323,12161}, {2771,12520}, {3073,7262}, {3085,7098}, {3306,3526}, {3336,4654}, {3338,5298}, {3359,10942}, {3419,7491}, {3428,5887}, {3436,5657}, {3452,6959}, {3523,26877}, {3555,16202}, {3564,5227}, {3576,6763}, {3601,7508}, {3627,18540}, {3628,7308}, {3651,12528}, {3678,6796}, {3681,11491}, {3690,5562}, {3695,3719}, {3730,8558}, {3784,5447}, {3811,22937}, {3824,11231}, {3876,6905}, {3899,11014}, {4640,11248}, {4880,15016}, {5010,16767}, {5044,6911}, {5119,10950}, {5130,7511}, {5223,5534}, {5273,5758}, {5302,7686}, {5428,11523}, {5432,17700}, {5433,17437}, {5536,8227}, {5692,11012}, {5694,6261}, {5744,6891}, {5745,6862}, {5759,6851}, {5761,6857}, {5769,21061}, {5770,6865}, {5777,6985}, {5811,6172}, {5886,12704}, {5904,10902}, {5905,6889}, {6643,26939}, {6734,6928}, {6929,12572}, {6936,12649}, {6944,18228}, {7066,7352}, {7070,8144}, {7162,17699}, {7387,24320}, {7395,26867}, {7680,18253}, {7688,15071}, {7965,12699}, {8545,11662}, {8703,9841}, {9780,10599}, {9956,10894}, {10039,18962}, {10198,15296}, {10303,23958}, {10523,24914}, {10525,18232}, {10539,26885}, {10595,17561}, {10625,26892}, {11111,12245}, {11411,26872}, {11444,26911}, {11459,26915}, {11585,21015}, {11929,17528}, {12359,26942}, {12526,14988}, {12619,13272}, {13336,26889}, {13374,15254}, {14110,22758}, {15481,18491}, {18443,24475}, {18518,18908}, {19131,26924}, {19179,26941}, {19861,22765}, {26922,26940}

X(26921) = midpoint of X(i) and X(j) for these {i,j}: {3, 3927}, {8, 6868}, {40, 7330}
X(26921) = reflection of X(i) in X(j) for these (i,j): (6147, 140), (6917, 10)
X(26921) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 63, 24467), (78, 21165, 3)
X(26921) = 2nd-extouch-to-excentral similarity image of X(5)


X(26922) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: HEXYL AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*(2*S*a^2-(b^2+c^2)*a^2+(b^2-c^2)^2)*(-a^2+b^2+c^2)^2 : :

The homothetic center of these triangles is X(8234)

X(26922) lies on these lines: {2,371}, {3,6414}, {4,26875}, {5,26919}, {6,19493}, {30,26918}, {52,26894}, {68,6413}, {97,5408}, {155,26920}, {372,5889}, {569,26891}, {577,5562}, {1060,26948}, {1062,26949}, {1151,19409}, {1217,11473}, {1297,11824}, {1322,5412}, {3071,13046}, {3092,9732}, {6458,13754}, {6643,26945}, {6776,11513}, {7395,26868}, {8251,26952}, {10539,26886}, {10880,10960}, {11411,26873}, {11444,26912}, {11459,26916}, {11585,26951}, {12313,14489}, {12359,26950}, {17814,26953}, {19131,26925}, {19179,26947}, {24467,26930}, {26921,26940}

X(26922) = isogonal conjugate of the polar conjugate of X(11091)
X(26922) = isotomic conjugate of the polar conjugate of X(6414)
X(26922) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 10666, 6414), (371, 486, 8576)


X(26923) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: HONSBERGER AND INNER-HUTSON

Barycentrics    a^2*(a^4+(b^2-b*c+c^2)*a^2-(b-c)^2*b*c)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(8385)

X(26923) lies on these lines: {6,1473}, {48,20731}, {57,1974}, {63,19126}, {69,7193}, {84,19124}, {141,26885}, {184,7289}, {206,26884}, {222,19125}, {603,1428}, {1176,3955}, {1407,19132}, {1843,3220}, {2330,7004}, {3218,19121}, {3306,19137}, {3589,26933}, {3618,26929}, {3784,20806}, {3937,21637}, {5050,26928}, {5085,26927}, {5157,26890}, {7293,11574}, {19118,26866}, {19119,26871}, {19122,26910}, {19123,26914}, {19128,26877}, {19131,24467}, {19133,26934}, {19171,26931}, {26899,26900}, {26925,26930}, {26926,26932}

X(26923) = {X(63), X(19126)}-harmonic conjugate of X(26924)


X(26924) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: HONSBERGER AND OUTER-HUTSON

Barycentrics    a^2*(a^4+(b^2+b*c+c^2)*a^2+(b+c)^2*b*c)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(8386)

X(26924) lies on these lines: {6,31}, {9,1974}, {40,19124}, {63,19126}, {69,3955}, {72,1176}, {141,26884}, {184,5227}, {201,1428}, {206,26885}, {219,19125}, {220,19132}, {1843,5285}, {3219,19121}, {3305,19137}, {3589,21015}, {3618,26939}, {3690,21637}, {3781,20806}, {5050,26938}, {5085,26935}, {5157,26889}, {5314,11574}, {19118,26867}, {19119,26872}, {19122,26911}, {19123,26915}, {19128,26878}, {19131,26921}, {19171,26941}, {26899,26901}, {26925,26940}, {26926,26942}

X(26924) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 12329, 26893), (63, 19126, 26923)


X(26925) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: HONSBERGER AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*(-a^2+b^2+c^2)*(2*(2*a^4+(b^2+c^2)*a^2-(b^2-c^2)^2)*S-a^2*(a^2+b^2+c^2)*(a^2-b^2-c^2)) : :

The homothetic center of these triangles is X(8237)

X(26925) lies on these lines: {6,3156}, {182,6457}, {206,26886}, {371,19128}, {577,21637}, {1176,6414}, {1428,26948}, {1974,26919}, {2330,26949}, {3589,26951}, {3618,26945}, {5085,26936}, {6467,8908}, {11514,22151}, {19118,26868}, {19119,26873}, {19121,26875}, {19122,26912}, {19123,26916}, {19124,26918}, {19125,26920}, {19131,26922}, {19132,26953}, {19133,26952}, {19171,26947}, {26923,26930}, {26924,26940}, {26926,26950}


X(26926) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: HONSBERGER AND URSA MAJOR

Barycentrics    (2*a^6+(b^2+c^2)*a^4+(b^4-c^4)*(b^2-c^2))*(-a^2+b^2+c^2) : :
X(26926) = 2*X(6)-3*X(11245) = 3*X(428)-4*X(9969) = 2*X(3313)-3*X(7667)

The homothetic center of these triangles is X(17620)

X(26926) lies on these lines: {2,13562}, {3,69}, {4,20079}, {6,66}, {25,5596}, {30,10938}, {67,13198}, {110,26156}, {125,3589}, {141,184}, {159,21213}, {185,1503}, {193,1370}, {206,468}, {235,19149}, {287,14601}, {343,19126}, {394,15812}, {399,18358}, {428,9969}, {441,14575}, {511,6146}, {524,3313}, {542,974}, {1176,6676}, {1181,1352}, {1350,19467}, {1351,13292}, {1353,23335}, {1368,20806}, {1428,26955}, {1974,13567}, {2330,26956}, {2892,19504}, {3269,23642}, {3541,14912}, {3580,19121}, {3618,23291}, {3629,15826}, {3867,11550}, {5050,26944}, {5085,26937}, {5576,18583}, {5622,10264}, {5848,17660}, {5921,6815}, {5965,11577}, {6247,19124}, {8541,15583}, {9924,17818}, {10111,14984}, {10116,12421}, {10937,11188}, {11585,19139}, {12241,12294}, {12359,19131}, {12588,19349}, {12589,19354}, {13142,18945}, {16310,23333}, {18400,21851}, {18420,18440}, {18911,26206}, {18923,19022}, {18924,19021}, {19118,26869}, {19122,26913}, {19123,26917}, {19128,26879}, {19132,26958}, {19133,26957}, {19171,26954}, {26899,26905}, {26923,26932}, {26924,26942}, {26925,26950}

X(26926) = reflection of X(i) in X(j) for these (i,j): (1351, 13292), (3575, 19161), (6776, 18914), (12294, 12241)
X(26926) = anticomplement of X(13562)
X(26926) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 19119, 19125), (69, 6776, 19459), (6776, 18913, 25406)


X(26927) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-HUTSON AND HUTSON INTOUCH

Barycentrics    a^2*(a^6-(b-c)^2*a^4-(b^2+6*b*c+c^2)*(b-c)^2*a^2+(b^2-c^2)^2*(b+c)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(8390)

X(26927) lies on these lines: {3,63}, {4,26933}, {20,26929}, {25,84}, {31,1208}, {55,603}, {56,774}, {57,1593}, {64,1407}, {74,26914}, {185,222}, {197,12680}, {235,20266}, {378,26877}, {474,25019}, {1204,3937}, {1433,3270}, {1436,2155}, {1498,26884}, {1622,12330}, {1709,11365}, {1768,9912}, {1795,11508}, {2096,7412}, {3218,11413}, {3220,3515}, {3306,11479}, {3516,26866}, {4185,6245}, {4222,12246}, {5085,26923}, {5285,9841}, {5584,26934}, {5709,21312}, {7171,11414}, {7335,19354}, {7523,21151}, {9026,12329}, {9786,26892}, {9798,10085}, {11220,11337}, {11248,15626}, {11425,26889}, {11440,26910}, {11509,15622}, {12086,23958}, {12164,22128}, {17928,24320}, {18913,26871}, {19172,26931}, {26930,26936}, {26932,26937}

X(26927) = {X(3), X(63)}-harmonic conjugate of X(26935)


X(26928) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-HUTSON AND INCIRCLE-CIRCLES

Barycentrics    a^2*(a^6-(b^2+4*b*c+c^2)*a^4-(b^2-6*b*c+c^2)*(b-c)^2*a^2+(b^2-4*b*c+c^2)*(b^2-c^2)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11039)

X(26928) lies on these lines: {3,63}, {4,26866}, {5,26929}, {25,26877}, {57,1598}, {84,1597}, {222,19347}, {603,999}, {1181,3937}, {1407,6759}, {1656,26933}, {3218,11414}, {3220,3517}, {3295,7004}, {3306,11484}, {5050,26923}, {10306,26934}, {10984,22129}, {11426,26889}, {11432,26892}, {11441,26910}, {11456,26914}, {14530,26884}, {18914,26871}, {19173,26931}, {26932,26944}

X(26928) = {X(3), X(63)}-harmonic conjugate of X(26938)


X(26929) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-HUTSON AND INVERSE-IN-INCIRCLE

Barycentrics    (a^4+2*(b-c)^2*a^2+(b^2-c^2)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11026)

X(26929) lies on these lines: {2,1473}, {4,57}, {5,26928}, {7,26118}, {20,26927}, {63,7386}, {69,3784}, {150,8817}, {171,388}, {222,6776}, {376,5285}, {427,26866}, {464,22060}, {497,982}, {944,8270}, {990,21621}, {1056,5269}, {1058,3677}, {1364,18922}, {1370,3218}, {1407,1503}, {1460,4293}, {1479,18193}, {1899,3937}, {2003,14912}, {2550,3980}, {3220,6353}, {3306,7392}, {3487,10383}, {3618,26923}, {3917,26872}, {3955,25406}, {4425,4466}, {5225,18201}, {5744,26052}, {6643,24467}, {6804,7330}, {6821,17754}, {7009,7365}, {7182,17170}, {7248,12589}, {7289,18935}, {7293,7494}, {7391,23958}, {9364,12667}, {9436,10444}, {10519,26942}, {11206,26884}, {11427,26889}, {11433,26892}, {11442,26910}, {11457,26914}, {11677,24477}, {19174,26931}, {22344,25876}, {23291,26932}, {26930,26945}

X(26929) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63, 7386, 26939), (1473, 26933, 2)


X(26930) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-HUTSON AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*((-a^2+b^2+c^2)*a^2-2*(b-c)^2*S)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11922)

X(26930) lies on these lines: {57,26919}, {63,26940}, {84,26918}, {222,26920}, {371,26877}, {577,3937}, {603,26948}, {1407,26953}, {1473,8911}, {3218,26875}, {7004,26949}, {24467,26922}, {26866,26868}, {26871,26873}, {26884,26886}, {26889,26891}, {26892,26894}, {26910,26912}, {26914,26916}, {26923,26925}, {26927,26936}, {26929,26945}, {26931,26947}, {26932,26950}, {26933,26951}, {26934,26952}


X(26931) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-HUTSON AND 1st SHARYGIN

Barycentrics    a*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*((b^2-b*c+c^2)*a^4-2*(b^3-c^3)*(b-c)*a^2+(b^2-c^2)*(b-c)*(b^3+c^3))*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

The homothetic center of these triangles is X(8391)

X(26931) lies on these lines: {54,26877}, {57,275}, {63,95}, {84,19169}, {97,1214}, {222,19170}, {603,19175}, {1407,19180}, {1473,19189}, {3306,19188}, {3937,21638}, {7004,19182}, {9792,26892}, {16030,26866}, {19166,26871}, {19167,26910}, {19168,26914}, {19171,26923}, {19172,26927}, {19173,26928}, {19174,26929}, {19179,24467}, {19181,26934}, {23295,26933}, {26884,26887}, {26900,26902}, {26930,26947}, {26932,26954}

X(26931) = {X(63), X(95)}-harmonic conjugate of X(26941)


X(26932) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-HUTSON AND URSA MAJOR

Barycentrics    (b-c)^2*(-a+b+c)*(-a^2+b^2+c^2) : :
Barycentrics    (cos A) (1 - cos(B - C)) : :
Barycentrics    cos A csc^2(B/2 - C/2) : :

The homothetic center of these triangles is X(17621)

X(26932) lies on these lines: {1,20306}, {2,222}, {3,23161}, {7,281}, {9,141}, {11,124}, {57,13567}, {63,343}, {69,219}, {77,17073}, {84,6247}, {85,1952}, {109,25968}, {116,5514}, {120,3041}, {123,125}, {142,1439}, {189,278}, {220,599}, {226,20205}, {255,7515}, {268,20208}, {269,282}, {297,1948}, {320,1944}, {427,26892}, {440,22097}, {468,26884}, {513,21252}, {521,3270}, {522,4081}, {523,21340}, {524,2323}, {525,20902}, {603,26955}, {608,8048}, {656,22084}, {692,5848}, {918,1086}, {960,2836}, {971,1861}, {1211,5745}, {1212,17237}, {1352,24320}, {1358,1367}, {1368,3784}, {1407,20266}, {1433,3086}, {1437,4999}, {1442,17043}, {1443,18644}, {1473,1899}, {1486,12586}, {1503,3220}, {1565,3942}, {1633,21293}, {2003,23292}, {2097,18636}, {2262,12610}, {2324,17296}, {2995,8736}, {3061,18730}, {3218,3580}, {3452,16594}, {3554,20270}, {3564,7193}, {3662,26530}, {3664,18635}, {3911,26005}, {3917,21015}, {3955,6676}, {4303,18641}, {4357,15595}, {4383,23122}, {4391,23978}, {4503,17056}, {4551,25882}, {4579,26231}, {5249,6708}, {5433,7335}, {5662,23585}, {5743,16554}, {5928,21370}, {6173,21258}, {6335,18816}, {6357,17923}, {6388,16592}, {6506,8287}, {6510,26006}, {6518,20769}, {6603,17374}, {6831,14058}, {7083,12589}, {7117,16731}, {7354,10570}, {7499,26890}, {9119,24471}, {10519,26939}, {11064,22128}, {11245,26889}, {11573,21530}, {12359,24467}, {14100,24388}, {15526,16595}, {15849,21239}, {15985,19557}, {15993,16514}, {17077,25000}, {17170,18639}, {17184,26542}, {17238,26059}, {17421,18210}, {17880,23983}, {17917,18623}, {18642,18650}, {20122,25985}, {20258,20341}, {21739,24145}, {21912,22053}, {23291,26929}, {26866,26869}, {26877,26879}, {26900,26905}, {26910,26913}, {26914,26917}, {26923,26926}, {26927,26937}, {26928,26944}, {26930,26950}, {26931,26954}, {26934,26957}

X(26932) = midpoint of X(i) and X(j) for these {i,j}: {69, 1814}, {1633, 21293}
X(26932) = anticomplement of X(36949)
X(26932) = complementary conjugate of X(4885)
X(26932) = isogonal conjugate of X(7115)
X(26932) = isotomic conjugate of the isogonal conjugate of X(7117)
X(26932) = isotomic conjugate of the polar conjugate of X(11)
X(26932) = polar conjugate of the isogonal conjugate of X(1364)
X(26932) = complement of X(651)
X(26932) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26871, 222), (3, 23161, 23198)
X(26932) = center of hyperbola {{A,B,C,X(7),X(63)}}
X(26932) = X(19)-isoconjugate of X(59)
X(26932) = trilinear pole, wrt medial triangle, of line X(5)X(10)
X(26932) = X(2)-Ceva conjugate of X(905)
X(26932) = barycentric product X(63)*X(4564)
X(26932) = barycentric product X(1)*X(17880)
X(26932) = crosssum of circumcircle-intercepts of Stevanovic circle


X(26933) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-HUTSON AND URSA MINOR

Barycentrics    (b-c)^2*(-a^2+b^2+c^2)*(a^2+(b+c)^2) : :

The homothetic center of these triangles is X(17607)

X(26933) lies on these lines: {2,1473}, {4,26927}, {5,3306}, {11,244}, {12,603}, {25,20266}, {57,427}, {63,1368}, {84,235}, {116,5521}, {123,125}, {222,1899}, {343,3784}, {429,4292}, {440,22060}, {468,3220}, {858,3218}, {1210,1883}, {1364,26956}, {1407,1853}, {1448,5130}, {1503,26884}, {1565,2968}, {1594,26877}, {1656,26928}, {1824,21621}, {1836,23304}, {1904,9579}, {1985,21239}, {2003,11245}, {2611,17876}, {2969,4858}, {3138,6506}, {3564,22128}, {3589,26923}, {3662,16067}, {3916,21530}, {3917,26942}, {3925,26934}, {5094,26866}, {5285,7667}, {5314,10691}, {5515,5517}, {5518,5993}, {6676,7293}, {7085,7386}, {7102,7365}, {7193,11064}, {11585,24467}, {13567,26892}, {17111,17728}, {18641,22345}, {18671,21915}, {20999,25968}, {23291,26871}, {23292,26889}, {23293,26910}, {23294,26914}, {23295,26931}, {24611,24701}, {26900,26906}, {26930,26951}

X(26933) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26929, 1473), (63, 1368, 21015)


X(26934) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INNER-HUTSON AND YFF CENTRAL

Barycentrics    a*(-a^2+b^2+c^2)*(a^3+(b^2-c^2)*(b-c)) : :

The homothetic center of these triangles is X(11923)

X(26934) lies on these lines: {1,1782}, {2,1762}, {3,18673}, {6,2312}, {9,20106}, {19,57}, {31,3827}, {38,55}, {40,376}, {48,1214}, {58,14015}, {63,69}, {65,603}, {81,18161}, {84,11471}, {184,18210}, {209,8679}, {212,17441}, {222,3942}, {223,2261}, {226,1726}, {255,18732}, {527,21375}, {579,18598}, {649,23726}, {774,3556}, {940,2294}, {1040,20780}, {1150,20896}, {1155,3198}, {1210,1842}, {1407,3197}, {1427,2182}, {1451,1829}, {1708,1763}, {1869,4292}, {2083,23620}, {2173,11347}, {2187,8758}, {2264,3752}, {2385,3914}, {2504,6084}, {2550,3980}, {3101,3164}, {3188,3212}, {3306,9816}, {3611,3937}, {3925,26933}, {4376,5845}, {5584,26927}, {5745,16551}, {5905,21368}, {6197,26877}, {6211,25568}, {7066,23154}, {7193,20254}, {8251,24467}, {8680,19645}, {9536,23958}, {10306,26928}, {10536,26884}, {11406,26866}, {11428,26889}, {11435,26892}, {11445,26910}, {11460,26914}, {11683,14829}, {12587,15523}, {17889,21381}, {19133,26923}, {19181,26931}, {20256,24332}, {26900,26908}, {26930,26952}, {26932,26957}

X(26934) = isogonal conjugate of the polar conjugate of X(17861)
X(26934) = isotomic conjugate of the polar conjugate of X(3924)
X(26934) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63, 8897, 3719), (63, 10319, 71)


X(26935) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: HUTSON INTOUCH AND OUTER-HUTSON

Barycentrics    a^2*(a^6-(b+c)^2*a^4-(b^2-6*b*c+c^2)*(b+c)^2*a^2+(b^2-c^2)^2*(b-c)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(8392)

X(26935) lies on these lines: {3,63}, {4,21015}, {9,1593}, {20,24320}, {25,40}, {28,5759}, {41,4300}, {55,201}, {56,212}, {64,71}, {74,26915}, {165,16389}, {185,219}, {378,26878}, {405,25019}, {573,2983}, {958,13734}, {962,4223}, {1204,3690}, {1425,7078}, {1486,7957}, {1498,26885}, {3145,10310}, {3219,11413}, {3305,11479}, {3428,13738}, {3515,5285}, {3516,26867}, {3587,11414}, {4220,26264}, {5085,26924}, {5657,7412}, {6056,19349}, {7330,21312}, {8273,22769}, {9786,26893}, {10373,13737}, {11425,26890}, {11440,26911}, {18913,26872}, {19172,26941}, {26936,26940}, {26937,26942}

X(26935) = {X(3), X(63)}-harmonic conjugate of X(26927)


X(26936) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: HUTSON INTOUCH AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*(-a^2+b^2+c^2)*(2*S*(-a^2+b^2+c^2)*a^2+a^6-3*(b^2-c^2)^2*a^2+2*(b^4-c^4)*(b^2-c^2)) : :

The homothetic center of these triangles is X(8239)

X(26936) lies on these lines: {3,6414}, {4,26951}, {20,26945}, {25,26918}, {55,26948}, {56,26949}, {64,1151}, {74,26916}, {185,26920}, {371,378}, {577,1204}, {1322,6561}, {1498,26886}, {1593,26919}, {2063,5409}, {3516,26868}, {5085,26925}, {5584,26952}, {6200,11456}, {6409,10132}, {6458,10605}, {9786,26894}, {9862,9987}, {11413,26875}, {11425,26891}, {11440,26912}, {18913,26873}, {19172,26947}, {26927,26930}, {26935,26940}, {26937,26950}

X(26936) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 6457, 8911), (64, 1151, 26953)


X(26937) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: HUTSON INTOUCH AND URSA MAJOR

Barycentrics    (a^8-4*(b^2-c^2)^2*a^4+4*(b^4-c^4)*(b^2-c^2)*a^2-(b^2-c^2)^4)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(17622)

X(26937) lies on these lines: {2,185}, {3,68}, {4,74}, {5,10605}, {20,21663}, {24,14216}, {25,6247}, {51,3088}, {55,26955}, {56,26956}, {64,235}, {69,18936}, {140,1181}, {155,10257}, {184,631}, {186,9833}, {287,16925}, {376,21659}, {378,26879}, {389,3541}, {394,16196}, {403,5878}, {417,6389}, {427,9786}, {468,1498}, {549,18914}, {550,18396}, {578,18916}, {974,5654}, {1092,11411}, {1147,6699}, {1192,1853}, {1352,17928}, {1425,3085}, {1503,3515}, {1593,6696}, {1620,17845}, {1885,10606}, {1907,17810}, {2781,15128}, {2929,5621}, {3086,3270}, {3089,11381}, {3146,13851}, {3147,6759}, {3183,6619}, {3269,3767}, {3516,12241}, {3517,16655}, {3520,18912}, {3522,18945}, {3523,3620}, {3524,18925}, {3529,18918}, {3542,6000}, {3546,5562}, {3548,13754}, {3574,8889}, {3580,11413}, {4846,10024}, {5054,19347}, {5064,11745}, {5085,26926}, {5094,12233}, {5133,9815}, {5218,18915}, {5432,19349}, {5433,19354}, {5448,20397}, {5584,26957}, {5622,15057}, {5703,10360}, {5892,14786}, {5895,10151}, {6102,16270}, {6225,6622}, {6241,7505}, {6353,12324}, {6467,10519}, {6515,13346}, {6623,12250}, {6746,23327}, {6815,21243}, {7288,18922}, {7383,16836}, {7487,11550}, {7507,13568}, {7544,15053}, {7689,18531}, {7691,16063}, {9140,12278}, {9540,21640}, {9936,22115}, {10018,11456}, {10201,13491}, {10299,10619}, {10539,16003}, {11064,12164}, {11204,13403}, {11245,11425}, {11250,19353}, {11403,15873}, {11424,11433}, {11440,26913}, {11442,22467}, {11585,12163}, {12161,23336}, {12174,16252}, {13148,15131}, {13352,18951}, {13935,21641}, {14156,15083}, {14379,15526}, {14516,15078}, {14561,15043}, {14585,21843}, {14683,17701}, {15122,16266}, {15738,18439}, {16238,18451}, {18381,18533}, {18570,18952}, {19172,26954}, {19348,19361}, {22533,22978}, {26927,26932}, {26935,26942}, {26936,26950}

X(26937) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18913, 185), (3, 26944, 6146), (9938, 12359, 68)


X(26938) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-HUTSON AND INCIRCLE-CIRCLES

Barycentrics    a^2*(a^6-(b^2-4*b*c+c^2)*a^4-(b^2+6*b*c+c^2)*(b+c)^2*a^2+(b^2+4*b*c+c^2)*(b^2-c^2)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11040)

X(26938) lies on these lines: {3,63}, {4,26867}, {5,26939}, {9,1598}, {25,26878}, {40,1597}, {71,3527}, {201,999}, {212,1497}, {219,19347}, {220,6759}, {1181,3690}, {1656,21015}, {3219,11414}, {3305,11484}, {3517,5285}, {5050,26924}, {7412,21168}, {11426,26890}, {11432,26893}, {11441,26911}, {11456,26915}, {14530,26885}, {18914,26872}, {19173,26941}, {26942,26944}

X(26938) = {X(3), X(63)}-harmonic conjugate of X(26928)


X(26939) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-HUTSON AND INVERSE-IN-INCIRCLE

Barycentrics    (a^4+2*(b+c)^2*a^2+(b^2-c^2)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11027)

X(26939) lies on these lines: {2,7085}, {4,9}, {5,26938}, {20,24320}, {37,5800}, {63,7386}, {69,72}, {201,388}, {210,5928}, {212,238}, {219,6776}, {220,1503}, {226,5268}, {228,464}, {329,4645}, {376,3220}, {377,17257}, {405,12410}, {427,26867}, {440,1260}, {443,4357}, {975,3487}, {1056,7174}, {1058,7290}, {1370,3219}, {1818,18446}, {1899,3690}, {2323,14912}, {3305,7392}, {3421,3717}, {3434,5278}, {3618,26924}, {3651,16119}, {3883,5082}, {3917,26871}, {4294,7083}, {4307,5276}, {4517,12588}, {5084,17353}, {5227,18935}, {5273,26118}, {5285,6353}, {5314,7494}, {5709,6804}, {6356,23603}, {6643,26921}, {7066,18915}, {7193,25406}, {7379,26059}, {10519,26932}, {11206,26885}, {11427,26890}, {11433,26893}, {11442,26911}, {11457,26915}, {17306,17582}, {19174,26941}, {21912,26040}, {23291,26942}, {26940,26945}

X(26939) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63, 7386, 26929), (7085, 21015, 2)


X(26940) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-HUTSON AND 2nd PAMFILOS-ZHOU

Barycentrics    a^2*((-a^2+b^2+c^2)*a^2-2*(b+c)^2*S)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11925)

X(26940) lies on these lines: {9,26919}, {40,26918}, {63,26930}, {71,6414}, {72,6413}, {201,26948}, {212,26949}, {219,26920}, {220,26953}, {371,26878}, {577,3690}, {3219,26875}, {5415,7968}, {7085,8911}, {21015,26951}, {26867,26868}, {26872,26873}, {26885,26886}, {26890,26891}, {26893,26894}, {26911,26912}, {26915,26916}, {26921,26922}, {26924,26925}, {26935,26936}, {26939,26945}, {26941,26947}, {26942,26950}


X(26941) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-HUTSON AND 1st SHARYGIN

Barycentrics    a*((b^2+b*c+c^2)*a^4-2*(b^3+c^3)*(b+c)*a^2+(b+c)*(b^2-c^2)*(b^3-c^3))*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2) : :

The homothetic center of these triangles is X(11926)

X(26941) lies on these lines: {9,275}, {40,19169}, {54,72}, {63,95}, {71,8795}, {97,3219}, {201,19175}, {212,19182}, {219,19170}, {220,19180}, {3305,19188}, {3690,21638}, {7085,19189}, {9792,26893}, {16030,26867}, {19166,26872}, {19167,26911}, {19168,26915}, {19171,26924}, {19172,26935}, {19173,26938}, {19174,26939}, {19179,26921}, {21015,23295}, {26885,26887}, {26901,26902}, {26940,26947}, {26942,26954}

X(26941) = {X(63), X(95)}-harmonic conjugate of X(26931)


X(26942) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: OUTER-HUTSON AND URSA MAJOR

Barycentrics    (b+c)^2*(-a^2+b^2+c^2)*(a+b-c)*(a-b+c) : :
Barycentrics    (cos A) (1 + cos(B - C)) : :
Barycentrics    cos A cos^2(B/2 - C/2) : :

The homothetic center of these triangles is X(17623)

X(26942) lies on these lines: {2,219}, {3,23162}, {7,19822}, {8,278}, {9,13567}, {10,12}, {34,5814}, {40,6247}, {48,7536}, {57,141}, {63,343}, {66,12329}, {69,222}, {71,440}, {81,22123}, {125,3690}, {197,12587}, {200,223}, {201,3695}, {212,26956}, {220,26958}, {225,5295}, {281,329}, {297,1947}, {306,307}, {312,1952}, {319,1943}, {321,8736}, {355,5307}, {427,26893}, {468,26885}, {517,1848}, {524,2003}, {594,6354}, {599,1407}, {608,5739}, {651,2895}, {756,21717}, {908,6708}, {914,18607}, {940,22132}, {1254,20653}, {1368,3781}, {1451,17698}, {1460,11358}, {1465,3687}, {1471,24943}, {1503,5285}, {1766,5928}, {1783,18687}, {1864,12618}, {1899,7085}, {2318,21912}, {2323,23292}, {2594,3811}, {3085,5711}, {3219,3580}, {3452,26005}, {3564,3955}, {3682,18641}, {3745,13405}, {3782,17861}, {3911,20106}, {3917,26933}, {3949,6356}, {3969,4552}, {3990,17056}, {4016,4415}, {4383,22131}, {4904,24789}, {5219,5743}, {5273,26540}, {5432,6056}, {5718,22134}, {5849,20986}, {6057,7068}, {6510,18652}, {6676,7193}, {7011,20208}, {7080,26027}, {7140,21028}, {7499,26889}, {7522,26063}, {7680,10478}, {10198,19701}, {10371,21147}, {10479,15844}, {10519,26929}, {11245,26890}, {12359,26921}, {12526,20306}, {17077,18139}, {17484,24146}, {17811,20266}, {19542,24310}, {19645,21270}, {21062,21871}, {21072,22001}, {21231,25361}, {21483,26130}, {23291,26939}, {26580,26609}, {26867,26869}, {26878,26879}, {26901,26905}, {26911,26913}, {26915,26917}, {26924,26926}, {26935,26937}, {26938,26944}, {26940,26950}, {26941,26954}

X(26942) = isogonal conjugate of X(2189)
X(26942) = isotomic conjugate of the isogonal conjugate of X(2197)
X(26942) = isotomic conjugate of the polar conjugate of X(12)
X(26942) = polar conjugate of the isogonal conjugate of X(7066)
X(26942) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26872, 219), (3, 23162, 23199)


X(26943) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INCIRCLE-CIRCLES AND 2nd PAMFILOS-ZHOU

Barycentrics    a^3*(-4*a^2*(-a^2+b^2+c^2)*S+a^6-3*(b^2+c^2)*a^4+3*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2))*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11042)

X(26943) lies on the line {48,26946}


X(26944) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INCIRCLE-CIRCLES AND URSA MAJOR

Barycentrics    (a^8-3*(b^2+c^2)*a^6+5*(b^2-c^2)^2*a^4-5*(b^4-c^4)*(b^2-c^2)*a^2+2*(b^2-c^2)^4)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(17624)

X(26944) lies on these lines: {2,18914}, {3,68}, {4,3426}, {5,18909}, {6,19361}, {25,11457}, {30,18913}, {64,18390}, {125,399}, {140,3619}, {184,3526}, {185,381}, {235,12315}, {382,10605}, {389,1853}, {403,12174}, {427,11432}, {468,14530}, {495,18915}, {496,18922}, {549,18925}, {550,18931}, {858,12160}, {999,26955}, {1192,18400}, {1204,1657}, {1351,18951}, {1368,11411}, {1503,3517}, {1593,18912}, {1595,3527}, {1596,12324}, {1597,6247}, {1598,13567}, {3088,18950}, {3167,3548}, {3295,26956}, {3448,17928}, {3516,12022}, {3534,17712}, {3541,11245}, {3546,3564}, {3567,5064}, {3580,11414}, {3627,18918}, {5050,26926}, {5054,19357}, {5076,13851}, {5094,7592}, {5447,6467}, {5622,15132}, {5890,7507}, {6147,10360}, {6193,16196}, {6391,18934}, {6642,18440}, {6759,26958}, {7395,18911}, {7517,21970}, {7526,10264}, {8567,20417}, {8780,16238}, {8981,18923}, {9140,10574}, {9704,13198}, {9777,15559}, {9786,18381}, {9818,18952}, {10018,26864}, {10306,26957}, {10516,11695}, {10606,13403}, {10627,15073}, {10938,14852}, {11425,23329}, {11441,26913}, {11456,26917}, {11585,12164}, {12111,16072}, {12163,22808}, {12173,25739}, {13367,15720}, {13382,23325}, {13903,21640}, {13961,21641}, {13966,18924}, {14912,16774}, {15696,21663}, {16003,17818}, {17836,22834}, {19173,26954}, {19360,19362}, {26928,26932}, {26938,26942}

X(26944) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18914, 19347), (3, 25738, 12429), (1899, 26937, 6146)


X(26945) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: INVERSE-IN-INCIRCLE AND 2nd PAMFILOS-ZHOU

Barycentrics    (-4*(-a^2+b^2+c^2)*S*a^4-4*S^2*(a^4+(b^2-c^2+2)*(b^2-c^2-2)+4))*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11030)

X(26945) lies on these lines: {2,8911}, {4,371}, {20,26936}, {69,1590}, {159,3155}, {372,18916}, {388,26948}, {427,26868}, {497,26949}, {577,1899}, {590,10132}, {1151,17845}, {1370,26875}, {1503,26953}, {2550,26952}, {3618,26925}, {6458,18909}, {6643,26922}, {6776,26920}, {11206,26886}, {11427,26891}, {11433,26894}, {11442,26912}, {11457,26916}, {19174,26947}, {23291,26950}, {26929,26930}, {26939,26940}

X(26945) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3068, 12257, 6413), (8911, 26951, 2)


X(26946) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 6th MIXTILINEAR AND 2nd PAMFILOS-ZHOU

Barycentrics    a^3*(-a^2+b^2+c^2)*((2*b^2+2*c^2)*S-a^2*(-a^2+b^2+c^2)) : :

The homothetic center of these triangles is X(8244)

X(26946) lies on the line {48,26943}


X(26947) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd PAMFILOS-ZHOU AND 1st SHARYGIN

Barycentrics
a^2*((2*(b^4+c^4)*a^4-4*(b^4-c^4)*(b^2-c^2)*a^2+2*(b^4+c^4)*(b^2-c^2)^2)*S+a^2*((b^2+c^2)*a^2-b^4+2*b^2*c^2-c^4)*(-a^2+b^2+c^2)^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2) : :

The homothetic center of these triangles is X(8246)

X(26947) lies on these lines: {54,371}, {97,26875}, {275,26919}, {577,21638}, {6413,8795}, {6457,8884}, {8911,19189}, {9792,26894}, {16030,26868}, {19166,26873}, {19167,26912}, {19168,26916}, {19169,26918}, {19170,26920}, {19171,26925}, {19172,26936}, {19174,26945}, {19175,26948}, {19179,26922}, {19180,26953}, {19181,26952}, {19182,26949}, {23295,26951}, {26886,26887}, {26930,26931}, {26940,26941}, {26950,26954}


X(26948) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd PAMFILOS-ZHOU AND TANGENTIAL-MIDARC

Barycentrics
a^2*(2*(a^10-(3*b^2+2*b*c+3*c^2)*a^8+4*(b^4+c^4+(b^2+b*c+c^2)*b*c)*a^6-4*(b^4-c^4)*(b^2-c^2)*a^4+(b^2-c^2)^2*(3*b^4+3*c^4-2*(2*b^2+b*c+2*c^2)*b*c)*a^2-(b^2-c^2)^4*(b-c)^2)*S+(-a^2+b^2+c^2)*(a^6-(b+c)^2*a^4+(b+c)^4*a^2-(b^2-c^2)^2*(b+c)^2)*(a+b-c)^2*(a-b+c)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(8247)

X(26948) lies on these lines: {1,6457}, {12,26951}, {33,26918}, {34,26919}, {55,26936}, {56,8911}, {65,2067}, {73,6414}, {201,26940}, {221,26953}, {371,1870}, {388,26945}, {577,1425}, {603,26930}, {1060,26922}, {1398,26868}, {1428,26925}, {4296,26875}, {18915,26873}, {19175,26947}, {19349,26920}, {19365,26891}, {19366,26894}, {19367,26912}, {19368,26916}, {26886,26888}, {26950,26955}

X(26948) = {X(1), X(6457)}-harmonic conjugate of X(26949)


X(26949) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd PAMFILOS-ZHOU AND 2nd TANGENTIAL-MIDARC

Barycentrics
a^2*(2*(a^10-(3*b^2-2*b*c+3*c^2)*a^8+4*(b^4+c^4-(b^2-b*c+c^2)*b*c)*a^6-4*(b^4-c^4)*(b^2-c^2)*a^4+(b^2-c^2)^2*(3*b^4+3*c^4+2*(2*b^2-b*c+2*c^2)*b*c)*a^2-(b^2-c^2)^4*(b+c)^2)*S+(-a^2+b^2+c^2)*(a^6-(b-c)^2*a^4+(b-c)^4*a^2-(b^2-c^2)^2*(b-c)^2)*(-a+b+c)^2*(a+b+c)^2)*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(8248)

X(26949) lies on these lines: {1,6457}, {33,26919}, {34,26918}, {55,8911}, {56,26936}, {212,26940}, {371,6198}, {497,26945}, {577,3270}, {1062,26922}, {2066,6413}, {2192,26953}, {2330,26925}, {3100,26875}, {7004,26930}, {7071,26868}, {10535,26886}, {11429,26891}, {11436,26894}, {11446,26912}, {11461,26916}, {18922,26873}, {19182,26947}, {19354,26920}, {26950,26956}

X(26949) = {X(1), X(6457)}-harmonic conjugate of X(26948)


X(26950) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd PAMFILOS-ZHOU AND URSA MAJOR

Barycentrics    (-a^2+b^2+c^2)*(2*(b^2-c^2)^2*S-a^4*(-a^2+b^2+c^2)) : :

The homothetic center of these triangles is X(17627)

X(26950) lies on these lines: {2,26873}, {5,6458}, {125,577}, {371,26879}, {372,1594}, {427,26894}, {468,26886}, {615,6414}, {1899,8911}, {3580,26875}, {6247,26918}, {8252,10133}, {8961,13970}, {11090,20563}, {11245,26891}, {12359,26922}, {13567,26919}, {23291,26945}, {26868,26869}, {26912,26913}, {26916,26917}, {26925,26926}, {26930,26932}, {26936,26937}, {26940,26942}, {26947,26954}, {26948,26955}, {26949,26956}, {26952,26957}, {26953,26958}

X(26950) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26873, 26920), (125, 577, 26951)


X(26951) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd PAMFILOS-ZHOU AND URSA MINOR

Barycentrics    (-a^2+b^2+c^2)*(2*(b^2-c^2)^2*S+a^4*(-a^2+b^2+c^2)) : :

The homothetic center of these triangles is X(17610)

X(26951) lies on these lines: {2,8911}, {4,26936}, {5,6457}, {12,26948}, {125,577}, {235,26918}, {371,1594}, {372,26879}, {427,26919}, {590,6413}, {858,26875}, {1503,26886}, {1853,26953}, {1899,26920}, {3589,26925}, {3925,26952}, {5094,26868}, {8253,10132}, {11091,20563}, {11585,26922}, {13567,26894}, {21015,26940}, {23291,26873}, {23292,26891}, {23293,26912}, {23294,26916}, {23295,26947}, {26930,26933}

X(26951) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26945, 8911), (125, 577, 26950)


X(26952) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd PAMFILOS-ZHOU AND YFF CENTRAL

Barycentrics
a^2*((2*a^7-2*(b+c)*a^6-2*(b^2+c^2)*a^5+2*(b+c)*(3*b^2+4*b*c+3*c^2)*a^4-2*(b^2-8*b*c+c^2)*(b+c)^2*a^3-2*(b^2-c^2)*(b-c)*(3*b^2+4*b*c+3*c^2)*a^2+2*(b^2-c^2)^2*(b+c)^2*a+2*(b^2-c^2)^2*(b+c)^3)*S+(a+c+b)*(a^8-2*(2*b^2+3*b*c+2*c^2)*a^6+2*(b^2-c^2)*(b-c)*a^5+4*(b^3+c^3)*(b+c)*a^4-4*(b+c)*(b^4+c^4-2*(b^2+c^2)*b*c)*a^3+2*(b^2-c^2)^2*b*c*a^2+2*(b^2-c^2)^3*(b-c)*a-(b^2-c^2)^4))*(-a^2+b^2+c^2) : :

The homothetic center of these triangles is X(11996)

X(26952) lies on these lines: {19,26919}, {40,6457}, {55,8911}, {65,2067}, {71,6414}, {371,6197}, {577,3611}, {2550,26945}, {3101,26875}, {3197,26953}, {3925,26951}, {5584,26936}, {8251,26922}, {10536,26886}, {11406,26868}, {11428,26891}, {11435,26894}, {11445,26912}, {11460,26916}, {11471,26918}, {18921,26873}, {19133,26925}, {19181,26947}, {19350,26920}, {26930,26934}, {26950,26957}


X(26953) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd PAMFILOS-ZHOU AND 2nd ZANIAH

Barycentrics    a^2*((a^2+c^2-b^2)*(a^2+b^2-c^2)*S+a^2*(-a^2+b^2+c^2)^2) : :

The homothetic center of these triangles is X(18234)

X(26953) lies on these lines: {3,3093}, {5,1322}, {6,3155}, {22,26912}, {24,26916}, {25,577}, {32,19006}, {64,1151}, {97,15187}, {154,8911}, {184,26868}, {216,5410}, {220,26940}, {221,26948}, {371,1181}, {394,26875}, {1407,26930}, {1498,6457}, {1503,26945}, {1583,11513}, {1584,10961}, {1599,11417}, {1853,26951}, {2192,26949}, {3068,21736}, {3092,14152}, {3197,26952}, {3284,5411}, {5065,19005}, {5407,10960}, {5413,15905}, {6458,9786}, {8908,26864}, {10132,10533}, {13567,26873}, {15811,26918}, {17809,26891}, {17810,26894}, {17814,26922}, {19132,26925}, {19180,26947}, {26950,26958}

X(26953) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (64, 1151, 26936), (1151, 17819, 6413), (26919, 26920, 6)


X(26954) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 1st SHARYGIN AND URSA MAJOR

Barycentrics    ((b^4+c^4)*a^6-3*(b^4-c^4)*(b^2-c^2)*a^4+3*(b^2-c^2)^2*(b^4+c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2) : :

The homothetic center of these triangles is X(17628)

X(26954) lies on these lines: {2,19166}, {54,140}, {95,343}, {97,3580}, {125,21638}, {235,19206}, {275,6749}, {427,9792}, {468,26887}, {1899,19189}, {6146,19185}, {6247,19169}, {8612,8795}, {8901,19209}, {11585,19194}, {12359,19179}, {16030,26869}, {19167,26913}, {19168,26917}, {19171,26926}, {19172,26937}, {19173,26944}, {19174,23291}, {19175,26955}, {19180,26958}, {19181,26957}, {19182,26956}, {26902,26905}, {26931,26932}, {26941,26942}, {26947,26950}

X(26954) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 19166, 19170), (125, 21638, 23295)


X(26955) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: TANGENTIAL-MIDARC AND URSA MAJOR

Barycentrics    (a^4-2*(b-c)^2*a^2+(b^2-c^2)^2)*(-a^2+b^2+c^2)*(b+c)^2*(a+b-c)*(a-b+c) : :

The homothetic center of these triangles is X(17629)

X(26955) lies on these lines: {1,26956}, {2,18915}, {3,10071}, {4,10076}, {11,185}, {12,125}, {33,6247}, {34,10361}, {36,6146}, {55,26937}, {56,1899}, {65,429}, {73,18641}, {184,5433}, {201,3695}, {221,26958}, {235,7355}, {343,1038}, {388,23291}, {427,19366}, {468,26888}, {497,18913}, {499,1181}, {603,26932}, {999,26944}, {1060,12359}, {1069,18917}, {1204,6284}, {1213,1409}, {1398,26869}, {1428,26926}, {1479,10605}, {1853,11392}, {1870,26879}, {2477,13198}, {3086,18909}, {3157,3548}, {3215,7515}, {3485,10360}, {3580,4296}, {4294,18931}, {4299,18396}, {5204,19467}, {6776,7288}, {7066,21015}, {7352,11585}, {9786,11393}, {11245,19365}, {11399,14216}, {14986,18922}, {15325,18914}, {15326,21659}, {15338,21663}, {18965,21640}, {18966,21641}, {18970,25738}, {19175,26954}, {19367,26913}, {19368,26917}, {26903,26905}, {26948,26950}

X(26955) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18915, 19349), (125, 1425, 12)


X(26956) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd TANGENTIAL-MIDARC AND URSA MAJOR

Barycentrics    (b-c)^2*(-a+b+c)*(-a^2+b^2+c^2)*(a^4-2*(b+c)^2*a^2+(b^2-c^2)^2) : :

The homothetic center of these triangles is X(17630)

X(26956) lies on these lines: {1,26955}, {2,18922}, {3,10055}, {4,10060}, {11,125}, {12,185}, {33,13567}, {34,6247}, {35,6146}, {55,1899}, {56,26937}, {184,5432}, {212,26942}, {215,13198}, {235,6285}, {343,1040}, {388,18913}, {427,11436}, {468,10535}, {497,23291}, {498,1181}, {1062,12359}, {1069,3548}, {1146,8735}, {1204,7354}, {1364,26933}, {1425,15888}, {1478,10605}, {1853,11393}, {2192,26958}, {2330,26926}, {2342,25968}, {2968,7004}, {3085,18909}, {3100,3580}, {3157,18917}, {3295,26944}, {9638,10018}, {11398,14216}, {15526,17421}, {19182,26954}

X(26956) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18922, 19354), (125, 3270, 11)


X(26957) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: URSA MAJOR AND YFF CENTRAL

Barycentrics    ((b+c)*a^5-(b-c)^2*a^4-2*(b^2-c^2)*(b-c)*a^3+2*(b^2-c^2)^2*a^2+(b^2-c^2)^2*(b+c)*a-(b^2-c^2)^2*(b-c)^2)*(-a^2+b^2+c^2)*(b+c) : :

The homothetic center of these triangles is X(17631)

X(26957) lies on these lines: {2,18921}, {19,5928}, {55,1899}, {65,429}, {71,440}, {125,3611}, {235,6254}, {343,10319}, {427,11435}, {468,10536}, {1409,17056}, {2550,23291}, {3101,3580}, {3197,26958}, {5584,26937}, {6146,10902}, {6197,26879}, {6237,11585}, {6247,11471}, {8251,12359}, {8896,18589}, {10306,26944}, {11245,11428}, {11406,26869}, {11445,26913}, {11460,26917}, {19133,26926}, {19181,26954}, {26905,26908}, {26932,26934}, {26950,26952}

X(26957) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18921, 19350), (125, 3611, 3925)


X(26958) = ENDO-HOMOTHETIC CENTER OF THESE TRIANGLES: URSA MAJOR AND 2nd ZANIAH

Barycentrics    a^6-3*(b^2-c^2)^2*a^2+2*(b^4-c^4)*(b^2-c^2) : :

The homothetic center of these triangles is X(18236)

X(26958) lies on these lines: {2,6}, {3,2929}, {4,1192}, {5,9786}, {20,1620}, {22,26913}, {24,25739}, {25,125}, {51,5094}, {55,21912}, {64,235}, {68,16238}, {140,11425}, {154,468}, {184,26869}, {186,18396}, {220,26942}, {221,26955}, {278,1146}, {281,6354}, {338,2052}, {373,7539}, {381,11438}, {389,1656}, {393,459}, {402,5877}, {403,10605}, {427,17810}, {441,3053}, {451,5706}, {465,11480}, {466,11481}, {470,5340}, {471,5339}, {542,8780}, {578,3526}, {631,12241}, {800,20208}, {1030,21482}, {1073,15526}, {1181,7505}, {1204,5895}, {1350,1368}, {1351,6723}, {1352,6677}, {1407,20266}, {1427,18634}, {1498,3542}, {1503,6353}, {1585,23251}, {1586,23261}, {1589,6409}, {1590,6410}, {1597,23329}, {1598,20299}, {1609,6617}, {1885,8567}, {1990,14361}, {1995,23293}, {2192,26956}, {2883,6622}, {3003,6509}, {3052,25968}, {3060,11746}, {3066,5133}, {3070,3535}, {3071,3536}, {3088,15873}, {3089,6247}, {3090,12233}, {3091,13568}, {3119,7147}, {3144,5786}, {3147,6146}, {3167,5972}, {3168,15274}, {3197,26957}, {3515,17845}, {3517,18381}, {3767,20207}, {3772,24005}, {3796,18911}, {3830,7687}, {4265,25907}, {5020,10516}, {5054,11430}, {5055,18388}, {5070,11432}, {5085,6676}, {5096,25947}, {5159,11477}, {5449,6642}, {5480,8889}, {5644,25555}, {5816,6678}, {5943,19161}, {6525,6619}, {6623,15311}, {6644,14852}, {6759,26944}, {6776,10192}, {7547,11704}, {7569,15024}, {7592,14940}, {7716,23300}, {8550,18950}, {9119,25525}, {9306,15069}, {9820,18951}, {10018,18912}, {10594,23294}, {11206,15448}, {11216,15118}, {11245,17809}, {11585,17834}, {12359,17814}, {12828,15131}, {13561,13861}, {14216,21841}, {15081,18559}, {15585,18935}, {15750,21659}, {15752,17578}, {16252,18909}, {18405,18533}, {18494,23325}, {19132,26926}, {19180,26954}, {19786,26531}, {24789,26001}, {26905,26909}, {26950,26953}

X(26958) = midpoint of X(i) and X(j) for these {i,j}: {6353, 23291}, {6623, 18931}
X(26958) = polar conjugate of X(18848)
X(26958) = complement of the isotomic conjugate of X(459)
X(26958) = complement of the polar conjugate of X(6526)
X(26958) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (343, 17811, 599), (11433, 23292, 6), (13567, 23292, 11433)

leftri

Collineation mappings involving Gemini triangle 51: X(26959)-X(27019)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 51, as in centers X(26595)-X(27019). Then

m(X) = a (b - c)^2 x + b (a^2 + c^2) y + c (a^2 + b^2) z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 4, 2018)


X(26959) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^2 b^2 - a^2 b c + a^2 c^2 + b^2 c^2 : :

X(26959) lies on these lines: {1, 2}, {5, 26561}, {6, 25505}, {9, 26107}, {11, 6656}, {35, 4366}, {36, 384}, {39, 350}, {55, 11285}, {56, 7770}, {76, 2275}, {83, 172}, {86, 23660}, {140, 26629}, {183, 16502}, {192, 27351}, {194, 3760}, {238, 1923}, {274, 4602}, {291, 12263}, {314, 27633}, {315, 9599}, {330, 3761}, {335, 3953}, {385, 5299}, {458, 11399}, {474, 20172}, {496, 8362}, {497, 16043}, {609, 7787}, {667, 18102}, {668, 17448}, {894, 20372}, {946, 8924}, {956, 26687}, {993, 16916}, {1003, 5204}, {1015, 1909}, {1078, 1914}, {1107, 18140}, {1111, 7187}, {1475, 17499}, {1478, 16924}, {1479, 7791}, {1500, 6683}, {1575, 17143}, {1920, 18833}, {1966, 16706}, {2241, 7815}, {2242, 7808}, {2276, 7786}, {2886, 17670}, {2975, 17541}, {3329, 5280}, {3403, 4000}, {3405, 27004}, {3503, 3911}, {3508, 17353}, {3552, 7280}, {3583, 6655}, {3585, 16044}, {3662, 17181}, {3664, 26149}, {3673, 25918}, {3721, 18061}, {3739, 20363}, {3825, 17669}, {3873, 27285}, {3875, 26042}, {4063, 26984}, {4187, 26558}, {4253, 24514}, {4299, 14035}, {4316, 6658}, {4396, 7760}, {4649, 20148}, {5025, 7741}, {5248, 17684}, {5251, 16918}, {5253, 17686}, {5267, 17692}, {5277, 20179}, {5298, 6661}, {5322, 16950}, {5332, 6179}, {5433, 7807}, {5563, 6645}, {6284, 8356}, {6376, 16975}, {6381, 21226}, {6626, 25530}, {6691, 17694}, {7031, 7793}, {7288, 14001}, {7296, 7878}, {7354, 8370}, {7761, 9665}, {7819, 15325}, {7841, 10896}, {7951, 16921}, {8359, 15171}, {9597, 11185}, {9669, 11287}, {10069, 10352}, {10483, 11361}, {10589, 14064}, {11321, 25524}, {14210, 24786}, {15271, 16781}, {15326, 19687}, {16061, 18758}, {16552, 27262}, {16564, 26992}, {16720, 27918}, {16738, 17210}, {16887, 19579}, {16912, 25542}, {17117, 27102}, {17121, 26772}, {17178, 17288}, {17205, 26813}, {17237, 25534}, {17265, 24679}, {17277, 21760}, {17287, 27095}, {17291, 27145}, {17302, 25599}, {17348, 27111}, {17755, 25079}, {17758, 27155}, {17760, 24172}, {17761, 24170}, {18152, 23632}, {18170, 21238}, {19565, 21443}, {19792, 26746}, {21327, 21412}, {21431, 27698}, {24390, 26582}, {24945, 25660}, {25280, 27076}, {25498, 27164}, {25521, 26106}, {26279, 27010}, {26960, 26977}, {26962, 26966}, {26969, 26989}, {26988, 26997}, {27007, 27011}, {27185, 27190}

X(26959) = complement of X(26752)


X(26960) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^5 b^2 - a^4 b^3 - a^3 b^4 + a^2 b^5 - 2 a^5 b c + 2 a^3 b^3 c + a^5 c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 + b^5 c^2 - a^4 c^3 + 2 a^3 b c^3 - 2 a^2 b^2 c^3 - b^4 c^3 - a^3 c^4 - b^3 c^4 + a^2 c^5 + b^2 c^5 : :

X(26960) lies on these lines: {2, 3}, {1975, 27515}, {26959, 26977}, {26963, 26970}, {26964, 27009}, {26965, 27335}, {26978, 27008}


X(26961) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^6 b - a^5 b^2 - a^2 b^5 + a b^6 + a^6 c + 2 a^5 b c - a^4 b^2 c - a^2 b^4 c - 2 a b^5 c + b^6 c - a^5 c^2 - a^4 b c^2 - a b^4 c^2 - b^5 c^2 + 4 a b^3 c^3 - a^2 b c^4 - a b^2 c^4 - a^2 c^5 - 2 a b c^5 - b^2 c^5 + a c^6 + b c^6 : :

X(26961) lies on these lines: {2, 3}, {6, 6604}, {34, 26203}, {894, 20605}, {1730, 26065}, {1861, 26153}, {25242, 26770}, {26035, 26059}, {26085, 27039}


X(26962) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^6 b - a^4 b^3 - a^3 b^4 + a b^6 + a^6 c - a^4 b^2 c + 2 a^3 b^3 c - a^2 b^4 c - 2 a b^5 c + b^6 c - a^4 b c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 - a b^4 c^2 - a^4 c^3 + 2 a^3 b c^3 - 2 a^2 b^2 c^3 + 4 a b^3 c^3 - b^4 c^3 - a^3 c^4 - a^2 b c^4 - a b^2 c^4 - b^3 c^4 - 2 a b c^5 + a c^6 + b c^6 : :

X(26962) lies on these lines: {2, 3}, {26959, 26966}, {27000, 27324}


X(26963) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c + a^3 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26963) lies on these lines: {2, 6}, {37, 27166}, {39, 192}, {75, 27809}, {239, 27102}, {291, 17142}, {319, 27044}, {583, 17350}, {604, 26222}, {894, 20372}, {1015, 3963}, {1086, 27011}, {2275, 17148}, {2350, 24514}, {3248, 21238}, {3662, 24237}, {3758, 25505}, {3943, 26797}, {4000, 27107}, {4253, 27262}, {4360, 26764}, {4393, 5153}, {4687, 27037}, {5069, 18147}, {7032, 21278}, {7263, 26850}, {16679, 18082}, {16696, 18046}, {16706, 26982}, {16710, 20913}, {16726, 18143}, {16826, 27032}, {17169, 27155}, {17231, 27113}, {17233, 27136}, {17243, 27073}, {17246, 26769}, {17260, 25510}, {17273, 25534}, {17288, 27106}, {17295, 26774}, {17305, 26857}, {17363, 27091}, {17367, 27311}, {17368, 27261}, {17759, 26815}, {18170, 20352}, {20868, 23488}, {21257, 22343}, {24327, 25295}, {26012, 26176}, {26960, 26970}, {26969, 26973}, {26974, 27007}, {26978, 27005}


X(26964) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b - 2 a^2 b^2 + a b^3 + a^3 c + 4 a^2 b c + b^3 c - 2 a^2 c^2 - 2 b^2 c^2 + a c^3 + b c^3 : :

X(26964) lies on these lines: {1, 2}, {86, 27172}, {350, 26770}, {673, 5253}, {1015, 26978}, {1212, 25261}, {1475, 20347}, {1509, 27189}, {1655, 27348}, {2082, 26229}, {2140, 17169}, {2170, 17048}, {2275, 16742}, {3061, 20247}, {3618, 27058}, {3662, 26818}, {3663, 23649}, {3759, 27039}, {4000, 27161}, {4657, 16713}, {5701, 17302}, {6691, 24582}, {14621, 26802}, {16706, 26995}, {16975, 26100}, {17103, 26845}, {17141, 18061}, {17164, 24631}, {17304, 26836}, {17474, 20335}, {17672, 24390}, {17754, 20244}, {19284, 20172}, {19717, 27142}, {19743, 27181}, {23903, 26794}, {24596, 25524}, {25237, 26690}, {26813, 27011}, {26960, 27009}, {26977, 26989}, {26988, 27000}


X(26965) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b + a b^3 + a^3 c + 2 a^2 b c + b^3 c + a c^3 + b c^3 : :

X(26965) lies on these lines: {1, 2}, {6, 17137}, {75, 17489}, {81, 27185}, {86, 27169}, {100, 16061}, {141, 3780}, {213, 17152}, {350, 27040}, {392, 26689}, {607, 17913}, {673, 1220}, {894, 20605}, {942, 26562}, {964, 20172}, {1086, 4754}, {1107, 16705}, {1334, 17353}, {1468, 24586}, {1478, 16910}, {1573, 25499}, {1655, 17302}, {1829, 15149}, {1909, 16706}, {2082, 10436}, {2241, 25497}, {2275, 27162}, {2276, 27109}, {2280, 24549}, {2292, 17755}, {2295, 3589}, {2345, 20174}, {2975, 16060}, {3212, 17077}, {3263, 25263}, {3618, 21281}, {3672, 27523}, {3691, 4357}, {3721, 17141}, {3739, 17497}, {3975, 19786}, {4026, 27047}, {4202, 26561}, {4424, 25248}, {4657, 24735}, {4699, 21216}, {4972, 6656}, {5051, 26558}, {5251, 16931}, {5303, 21937}, {5826, 27300}, {6376, 26100}, {8192, 16412}, {11321, 24596}, {16583, 26234}, {16707, 16735}, {17062, 24995}, {17200, 26843}, {17356, 24656}, {17370, 24524}, {17499, 20347}, {17672, 26582}, {17694, 24582}, {17741, 27078}, {18107, 21301}, {19717, 27152}, {20255, 24512}, {20963, 21240}, {24174, 24629}, {24443, 24631}, {25264, 26770}, {26960, 27335}, {26989, 27009}, {26995, 27003}


X(26966) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(11), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^5 b - a^4 b^2 - a^2 b^4 + a b^5 + a^5 c - 2 a^4 b c + 2 a^3 b^2 c + 4 a^2 b^3 c - 4 a b^4 c + b^5 c - a^4 c^2 + 2 a^3 b c^2 - 10 a^2 b^2 c^2 + 4 a b^3 c^2 - b^4 c^2 + 4 a^2 b c^3 + 4 a b^2 c^3 - a^2 c^4 - 4 a b c^4 - b^2 c^4 + a c^5 + b c^5 : :

X(26966) lies on these lines: {2, 11}, {26959, 26962}


X(26967) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 - 2 a^7 b c + 2 a^3 b^5 c + a^7 c^2 - a^4 b^3 c^2 - a^3 b^4 c^2 + b^7 c^2 - a^6 c^3 - a^4 b^2 c^3 - a^2 b^4 c^3 - b^6 c^3 - a^3 b^2 c^4 - a^2 b^3 c^4 + 2 a^3 b c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 + b^2 c^7 : :

X(26967) lies on these lines: {2, 3}


X(26968) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 - 2 a^7 b c + 2 a^3 b^5 c + a^7 c^2 + b^7 c^2 - a^6 c^3 - 2 a^3 b^3 c^3 - b^6 c^3 + 2 a^3 b c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 + b^2 c^7 : :

X(26968) lies on these lines: {2, 3}, {10566, 27015}


X(26969) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 b^2 + a^2 b^4 - 2 a^4 b c + a^4 c^2 + b^4 c^2 + a^2 c^4 + b^2 c^4 : :

X(26969) lies on these lines: {2, 31}, {5205, 27128}, {5297, 27061}, {5329, 16949}, {16706, 27004}, {26959, 26989}, {26963, 26973}, {26974, 27009}


X(26970) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^5 b^2 + a^2 b^5 - 2 a^5 b c + a^5 c^2 + b^5 c^2 + a^2 c^5 + b^2 c^5 : :

X(26970) lies on these lines: {2, 32}, {26960, 26963}, {26978, 26996}


X(26971) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b^2 + a^2 b^3 + a^3 c^2 + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26971) lies on these lines: {1, 21278}, {2, 37}, {44, 26799}, {76, 17148}, {86, 27166}, {141, 27106}, {142, 27159}, {239, 26772}, {319, 26756}, {320, 17178}, {594, 27044}, {894, 20372}, {1086, 26979}, {1100, 26821}, {1125, 2309}, {1213, 17475}, {1654, 20561}, {1964, 24688}, {3056, 11376}, {3589, 26982}, {3616, 21299}, {3661, 27095}, {3662, 24220}, {3728, 17793}, {3778, 12263}, {3934, 3963}, {4272, 27041}, {4357, 16738}, {7155, 15315}, {16826, 25538}, {17030, 17248}, {17045, 27042}, {17053, 20913}, {17174, 17184}, {17229, 26774}, {17235, 26857}, {17277, 27036}, {17285, 27113}, {17300, 26149}, {17307, 25534}, {17319, 27020}, {17344, 26768}, {17379, 23660}, {17445, 20352}, {21035, 25347}, {21257, 21352}, {25591, 27680}, {26279, 26977}, {26972, 26987}, {27097, 27155}


X(26972) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 b^3 + a^3 b^4 - 2 a^3 b^3 c + 2 a^3 b^2 c^2 + 2 a^2 b^3 c^2 + a^4 c^3 - 2 a^3 b c^3 + 2 a^2 b^2 c^3 + b^4 c^3 + a^3 c^4 + b^3 c^4 : :

X(26972) lies on these lines: {2, 39}, {17761, 24170}, {26960, 26963}, {26971, 26987}, {26996, 27005}


X(26973) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    2 a^3 b^3 - a^3 b^2 c + a^2 b^3 c - a^3 b c^2 + a b^3 c^2 + 2 a^3 c^3 + a^2 b c^3 + a b^2 c^3 + 2 b^3 c^3 : :

X(26973) lies on these lines: {1, 2}, {16742, 16748}, {26963, 26969}


X(26974) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b^3 - a^3 b^2 c - a^3 b c^2 + a^2 b^2 c^2 + a^3 c^3 + b^3 c^3 : :

X(26974) lies on these lines: {1, 2}, {75, 22218}, {310, 16606}, {1920, 3121}, {1978, 21345}, {21384, 26108}, {26963, 27007}, {26969, 27009}, {26977, 26986}


X(26975) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(44), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b^2 + a^2 b^3 - 4 a^3 b c + a^3 c^2 - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26975) lies on these lines: {2, 44}, {6, 27102}, {86, 27032}, {87, 21278}, {190, 27166}, {192, 2275}, {524, 27044}, {536, 26821}, {798, 26983}, {894, 20372}, {1086, 26982}, {1100, 26764}, {3248, 20352}, {3589, 27017}, {3618, 27311}, {4473, 26113}, {4851, 27136}, {5749, 27261}, {5750, 16738}, {6542, 26076}, {7321, 27011}, {10436, 27154}, {17120, 26772}, {17178, 17289}, {17297, 27113}, {17315, 26797}, {17317, 27073}, {17320, 26769}, {17364, 27095}, {17367, 27107}, {17368, 27145}, {17374, 26774}, {17379, 17750}, {17384, 26857}, {26979, 27078}


X(26976) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(45), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b^2 + a^2 b^3 + 2 a^3 b c + a^3 c^2 + 4 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(26976) lies on these lines: {2, 45}, {7, 27145}, {37, 18143}, {75, 26772}, {76, 192}, {256, 17142}, {594, 26756}, {894, 20372}, {1215, 3123}, {1654, 17152}, {2345, 27095}, {3122, 17140}, {3589, 27011}, {3662, 27261}, {4443, 17165}, {4670, 27166}, {6646, 16738}, {7321, 27017}, {16706, 27078}, {16710, 17053}, {16815, 27036}, {17030, 17333}, {17116, 27102}, {17178, 17365}, {17246, 27042}, {17257, 27142}, {17260, 27154}, {17261, 25538}, {17271, 26768}, {17277, 26799}, {17280, 26149}, {17292, 27106}, {17340, 27073}, {17352, 27192}, {17359, 27113}, {17366, 26850}, {20072, 26801}, {24325, 24399}, {26125, 27252}


X(26977) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(55), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 b^2 - 2 a^3 b^3 + a^2 b^4 - 2 a^4 b c + a^3 b^2 c - a^2 b^3 c + a^4 c^2 + a^3 b c^2 - a b^3 c^2 + b^4 c^2 - 2 a^3 c^3 - a^2 b c^3 - a b^2 c^3 - 2 b^3 c^3 + a^2 c^4 + b^2 c^4 : :

X(26977) lies on these lines: {2, 11}, {894, 26981}, {26279, 26971}, {26561, 26802}, {26959, 26960}, {26963, 26969}, {26964, 26989}, {26974, 26986}


X(26978) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b + a b^3 + a^3 c + b^3 c - 2 b^2 c^2 + a c^3 + b c^3 : :

X(26978) lies on these lines: {1, 2140}, {2, 39}, {4, 26099}, {8, 141}, {10, 24790}, {37, 20880}, {69, 26085}, {86, 17686}, {142, 23536}, {213, 20347}, {244, 17048}, {277, 1390}, {315, 16910}, {335, 17141}, {350, 27097}, {377, 4648}, {379, 940}, {672, 24214}, {964, 15668}, {1015, 26964}, {1086, 2295}, {1111, 16600}, {1193, 20335}, {1334, 3663}, {1475, 24215}, {1574, 27025}, {1909, 16706}, {3008, 3691}, {3314, 16906}, {3589, 4754}, {3662, 17033}, {3666, 6706}, {3672, 27253}, {3673, 26242}, {3720, 23682}, {3734, 11319}, {3739, 4968}, {3752, 20436}, {3780, 17366}, {3924, 24249}, {3975, 18136}, {3995, 20432}, {4039, 24169}, {4260, 4310}, {4441, 27248}, {4447, 17061}, {4642, 21232}, {4851, 5300}, {5046, 26145}, {5264, 14377}, {5275, 17683}, {5276, 17682}, {5337, 14953}, {7191, 20556}, {7264, 24403}, {7816, 17539}, {7892, 17003}, {9620, 26653}, {10448, 25500}, {10459, 17050}, {15971, 24220}, {16020, 16850}, {16583, 26563}, {16927, 16994}, {17046, 21935}, {17143, 26759}, {17149, 27313}, {17164, 24254}, {17169, 24512}, {17245, 17672}, {17300, 17680}, {17313, 17679}, {17316, 18139}, {17382, 24656}, {17497, 20955}, {17751, 21240}, {18150, 24524}, {26960, 27008}, {26963, 27005}, {26970, 26996}


X(26979) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b^2 + a^2 b^3 + a b^3 c + a^3 c^2 + b^3 c^2 + a^2 c^3 + a b c^3 + b^2 c^3 : :

X(26979) lies on these lines: {2, 6}, {10, 24659}, {39, 18137}, {75, 17053}, {311, 26633}, {314, 24530}, {594, 27102}, {980, 18147}, {1086, 26971}, {1230, 18601}, {1232, 26588}, {1284, 5433}, {1966, 16706}, {3634, 25113}, {3662, 25505}, {3934, 18143}, {3943, 26764}, {3948, 16696}, {4357, 24237}, {4369, 21143}, {4389, 26107}, {4447, 18082}, {4751, 17030}, {6675, 25492}, {7263, 27107}, {10471, 24897}, {17045, 27166}, {17228, 27091}, {17233, 26042}, {17295, 26752}, {17317, 27020}, {17322, 25510}, {17366, 27311}, {17369, 27261}, {20927, 25918}, {21236, 26176}, {21330, 24327}, {26975, 27078}, {26986, 26987}, {26989, 26997}, {26993, 27006}


X(26980) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b - 6 a^2 b^2 + a b^3 + a^3 c + 8 a^2 b c + b^3 c - 6 a^2 c^2 - 6 b^2 c^2 + a c^3 + b c^3 : :

X(26980) lies on these lines: {1, 2}


X(26981) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(200), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 b^2 - 2 a^3 b^3 + a^2 b^4 - a^4 b c + 2 a^3 b^2 c - a^2 b^3 c + a^4 c^2 + 2 a^3 b c^2 + a^2 b^2 c^2 + b^4 c^2 - 2 a^3 c^3 - a^2 b c^3 - 2 b^3 c^3 + a^2 c^4 + b^2 c^4 : :

X(26981) lies on these lines: {1, 2}, {894, 26977}, {16742, 16750}, {27003, 27009}


X(26982) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b^2 + a^2 b^3 - 4 a^3 b c - 2 a b^3 c + a^3 c^2 + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(26982) lies on these lines: {1, 2}, {524, 27106}, {894, 27011}, {1086, 26975}, {3589, 26971}, {3759, 27095}, {3875, 27136}, {3946, 26764}, {4063, 27013}, {5750, 26812}, {10436, 27192}, {16706, 26963}, {16738, 17384}, {17045, 27032}, {17116, 26850}, {17121, 26756}, {17178, 17291}, {17319, 27073}, {17366, 27102}, {17370, 27145}, {17398, 27154}, {18106, 18107}, {20072, 26142}


X(26983) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(661), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (b^2 - c^2) (a^4 - a^2 b^2 + 2 a^2 b c - a^2 c^2 + b^2 c^2) : :

X(26983) lies on these lines: {2, 661}, {649, 23803}, {798, 26975}, {810, 21302}, {850, 7180}, {1150, 18199}, {1577, 3960}, {2978, 24674}, {4761, 26115}, {4776, 25511}, {4885, 21894}, {7199, 24900}, {7252, 19684}, {11322, 23864}, {16751, 25667}, {17494, 27345}, {20295, 26114}, {21297, 26854}, {27138, 27193}


X(26984) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(667), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (b - c) (a^4 b^2 - a^3 b^3 - 2 a^4 b c - a^3 b^2 c + a^2 b^3 c + a^4 c^2 - a^3 b c^2 + a^2 b^2 c^2 - a b^3 c^2 - a^3 c^3 + a^2 b c^3 - a b^2 c^3 + b^3 c^3) : :

X(26984) lies on these lines: {2, 667}, {4063, 26959}, {23807, 27318}, {27013, 27016}


X(26985) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(693), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (b - c) (a^2 - a b - a c + 3 b c) : :

X(26985) lies on these lines: {2, 650}, {37, 4828}, {192, 4411}, {513, 26798}, {514, 17266}, {523, 7925}, {649, 21297}, {661, 4928}, {812, 24924}, {885, 15283}, {1577, 3960}, {1638, 4467}, {3004, 4789}, {3091, 8760}, {3239, 21183}, {3617, 14077}, {3618, 9015}, {3620, 9001}, {3662, 23838}, {3676, 25259}, {3700, 4453}, {3776, 6548}, {3835, 4379}, {3840, 23791}, {3995, 25271}, {4024, 14475}, {4106, 26853}, {4358, 21611}, {4369, 4728}, {4374, 4526}, {4380, 23813}, {4500, 17161}, {4554, 27134}, {4560, 4823}, {4671, 21438}, {4699, 4777}, {4791, 21222}, {4804, 25380}, {4814, 17072}, {4895, 21302}, {5274, 11934}, {7199, 26775}, {7658, 27486}, {8047, 17036}, {8142, 21734}, {14996, 22383}, {16892, 21204}, {17166, 21260}, {17291, 23810}, {18155, 26822}, {23100, 25244}, {23806, 27186}, {23893, 26531}, {27114, 27293}, {27167, 27345}

X(26985) = complement of X(26777)
X(26985) = anticomplement of X(31209)


X(26986) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 b^2 + a^2 b^4 - 2 a^4 b c - a^3 b^2 c - a^2 b^3 c + a^4 c^2 - a^3 b c^2 + 2 a^2 b^2 c^2 - a b^3 c^2 + b^4 c^2 - a^2 b c^3 - a b^2 c^3 + a^2 c^4 + b^2 c^4 : :

X(26986) lies on these lines: {2, 31}, {6, 20561}, {7, 26108}, {335, 27166}, {894, 20372}, {2295, 3589}, {3662, 24491}, {12263, 24349}, {16830, 27080}, {17030, 17368}, {17232, 27341}, {17291, 27159}, {17398, 27148}, {18103, 20556}, {18111, 18705}, {20549, 20669}, {26974, 26977}, {26979, 26987}


X(26987) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b + 4 a^2 b^2 + a b^3 + a^3 c - 2 a^2 b c + b^3 c + 4 a^2 c^2 + 4 b^2 c^2 + a c^3 + b c^3 : :

X(26987) lies on these lines: {1, 2}, {16705, 20530}, {26971, 26972}, {26979, 26986}


X(26988) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^6 b - 3 a^5 b^2 + 2 a^4 b^3 + 2 a^3 b^4 - 3 a^2 b^5 + a b^6 + a^6 c + 6 a^5 b c - a^4 b^2 c - 4 a^3 b^3 c - a^2 b^4 c - 2 a b^5 c + b^6 c - 3 a^5 c^2 - a^4 b c^2 + 4 a^3 b^2 c^2 + 4 a^2 b^3 c^2 - a b^4 c^2 - 3 b^5 c^2 + 2 a^4 c^3 - 4 a^3 b c^3 + 4 a^2 b^2 c^3 + 4 a b^3 c^3 + 2 b^4 c^3 + 2 a^3 c^4 - a^2 b c^4 - a b^2 c^4 + 2 b^3 c^4 - 3 a^2 c^5 - 2 a b c^5 - 3 b^2 c^5 + a c^6 + b c^6 : :

X(26988) lies on these lines: {2, 3}, {26959, 26997}, {26964, 27000}


X(26989) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^5 b^2 - a^4 b^3 - a^3 b^4 + a^2 b^5 - 2 a^5 b c - a^4 b^2 c - a^2 b^4 c + a^5 c^2 - a^4 b c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 - a b^4 c^2 + b^5 c^2 - a^4 c^3 - 2 a^2 b^2 c^3 - 2 a b^3 c^3 - b^4 c^3 - a^3 c^4 - a^2 b c^4 - a b^2 c^4 - b^3 c^4 + a^2 c^5 + b^2 c^5 : :

X(26989) lies on these lines: {2, 3}, {6703, 27146}, {26959, 26969}, {26964, 26977}, {26965, 27009}, {26979, 26997}


X(26990) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 - 2 a^7 b c + 2 a^3 b^5 c + a^7 c^2 + a^4 b^3 c^2 + a^3 b^4 c^2 + b^7 c^2 - a^6 c^3 + a^4 b^2 c^3 - 4 a^3 b^3 c^3 + a^2 b^4 c^3 - b^6 c^3 + a^3 b^2 c^4 + a^2 b^3 c^4 + 2 a^3 b c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 + b^2 c^7 : :

X(26990) lies on these lines: {2, 3}, {1395, 26211}, {26279, 26971}


X(26991) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    2 a^6 + a^5 b - a^4 b^2 - 2 a^2 b^4 - a b^5 + b^6 + a^5 c - a^3 b^2 c - a^2 b^3 c - 2 a b^4 c - b^5 c - a^4 c^2 - a^3 b c^2 + 2 a^2 b^2 c^2 + a b^3 c^2 - b^4 c^2 - a^2 b c^3 + a b^2 c^3 + 2 b^3 c^3 - 2 a^2 c^4 - 2 a b c^4 - b^2 c^4 - a c^5 - b c^5 + c^6 : :

X(26991) lies on these lines: {2, 3}, {16568, 16706}


X(26992) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^8 b^2 - a^6 b^4 - a^4 b^6 + a^2 b^8 - 2 a^8 b c - 2 a^7 b^2 c + 2 a^4 b^5 c + 2 a^3 b^6 c + a^8 c^2 - 2 a^7 b c^2 - 2 a^6 b^2 c^2 + 2 a^5 b^3 c^2 + 2 a^4 b^4 c^2 + 4 a^3 b^5 c^2 + 2 a^2 b^6 c^2 + b^8 c^2 + 2 a^5 b^2 c^3 - 2 a^4 b^3 c^3 - 2 a^3 b^4 c^3 + 2 a^2 b^5 c^3 - a^6 c^4 + 2 a^4 b^2 c^4 - 2 a^3 b^3 c^4 - 2 a^2 b^4 c^4 - b^6 c^4 + 2 a^4 b c^5 + 4 a^3 b^2 c^5 + 2 a^2 b^3 c^5 - a^4 c^6 + 2 a^3 b c^6 + 2 a^2 b^2 c^6 - b^4 c^6 + a^2 c^8 + b^2 c^8 : :

X(26992) lies on these lines: {2, 3}, {16564, 26959}


X(26993) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^8 b^2 - a^6 b^4 - a^4 b^6 + a^2 b^8 + a^7 b^2 c - a^5 b^4 c - a^3 b^6 c + a b^8 c + a^8 c^2 + a^7 b c^2 - a^3 b^5 c^2 - 2 a^2 b^6 c^2 + b^8 c^2 - 2 a^4 b^3 c^3 - 2 a b^6 c^3 - a^6 c^4 - a^5 b c^4 + 2 a^2 b^4 c^4 + a b^5 c^4 - b^6 c^4 - a^3 b^2 c^5 + a b^4 c^5 - a^4 c^6 - a^3 b c^6 - 2 a^2 b^2 c^6 - 2 a b^3 c^6 - b^4 c^6 + a^2 c^8 + a b c^8 + b^2 c^8 : :

X(26993) lies on these lines: {2, 3}, {26979, 27006}


X(26994) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^6 b - 5 a^5 b^2 + 4 a^4 b^3 + 4 a^3 b^4 - 5 a^2 b^5 + a b^6 + a^6 c + 10 a^5 b c - a^4 b^2 c - 8 a^3 b^3 c - a^2 b^4 c - 2 a b^5 c + b^6 c - 5 a^5 c^2 - a^4 b c^2 + 8 a^3 b^2 c^2 + 8 a^2 b^3 c^2 - a b^4 c^2 - 5 b^5 c^2 + 4 a^4 c^3 - 8 a^3 b c^3 + 8 a^2 b^2 c^3 + 4 a b^3 c^3 + 4 b^4 c^3 + 4 a^3 c^4 - a^2 b c^4 - a b^2 c^4 + 4 b^3 c^4 - 5 a^2 c^5 - 2 a b c^5 - 5 b^2 c^5 + a c^6 + b c^6 : :

X(26994) lies on these lines: {2, 3}


X(26995) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^6 b - a^5 b^2 - a^2 b^5 + a b^6 + a^6 c + 2 a^5 b c - 3 a^4 b^2 c - 4 a^3 b^3 c - 3 a^2 b^4 c - 2 a b^5 c + b^6 c - a^5 c^2 - 3 a^4 b c^2 - 3 a b^4 c^2 - b^5 c^2 - 4 a^3 b c^3 - 3 a^2 b c^4 - 3 a b^2 c^4 - a^2 c^5 - 2 a b c^5 - b^2 c^5 + a c^6 + b c^6 : :

X(26995) lies on these lines: {2, 3}, {16706, 26964}, {26965, 27003}


X(26996) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^5 b^2 + a^2 b^5 - 2 a^5 b c + a^4 b^2 c + a^2 b^4 c + a^5 c^2 + a^4 b c^2 + a b^4 c^2 + b^5 c^2 - 2 a b^3 c^3 + a^2 b c^4 + a b^2 c^4 + a^2 c^5 + b^2 c^5 : :

X(26996) lies on these lines: {2, 3}, {26970, 26978}, {26972, 27005}


X(26997) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(7), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 b - a^3 b^2 - a^2 b^3 + a b^4 + a^4 c - 2 a^3 b c + 2 a^2 b^2 c - 6 a b^3 c + b^4 c - a^3 c^2 + 2 a^2 b c^2 + 6 a b^2 c^2 - b^3 c^2 - a^2 c^3 - 6 a b c^3 - b^2 c^3 + a c^4 + b c^4 : :

X(26997) lies on these lines: {2, 7}, {3619, 27025}, {4188, 20470}, {15717, 26093}, {16706, 26964}, {16713, 16726}, {17227, 27039}, {17367, 26818}, {20172, 27145}, {20946, 25237}, {21255, 24778}, {26959, 26988}, {26979, 26989}


X(26998) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(19), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a (a^4 - b^4 - a^2 b c - b^3 c + 2 b^2 c^2 - b c^3 - c^4) : :

X(26998) lies on these lines: {2, 19}, {9, 4967}, {48, 26639}, {75, 3219}, {141, 7297}, {169, 17257}, {193, 2082}, {238, 17872}, {239, 5279}, {524, 7300}, {597, 5356}, {608, 26206}, {673, 11683}, {894, 20605}, {1731, 16574}, {1760, 3218}, {1763, 26132}, {1766, 26685}, {1781, 17023}, {1861, 5046}, {1890, 2475}, {1958, 3061}, {2183, 26699}, {2262, 15988}, {2329, 17868}, {2345, 27065}, {3008, 16566}, {3100, 17522}, {3589, 5341}, {3662, 7291}, {3663, 20602}, {4357, 16547}, {4416, 5540}, {4431, 17744}, {7083, 12530}, {7191, 17446}, {16548, 17353}, {16564, 26959}, {16568, 16706}, {17787, 23978}, {18698, 24588}, {21376, 26723}, {26279, 26971}


X(26999) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(38), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 b^2 + a^2 b^4 - 2 a^2 b^3 c + a^4 c^2 + 6 a^2 b^2 c^2 + b^4 c^2 - 2 a^2 b c^3 + a^2 c^4 + b^2 c^4 : :

X(26999) lies on these lines: {2, 38}, {7292, 27030}, {17123, 27079}, {26959, 26969}


X(27000) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(40), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 + a^2 b^2 - 2 a b^3 - a^2 b c + 2 a b^2 c - b^3 c + a^2 c^2 + 2 a b c^2 + 2 b^2 c^2 - 2 a c^3 - b c^3 : :

X(27000) lies on these lines: {1, 4209}, {2, 40}, {4, 26531}, {7, 2082}, {63, 27304}, {65, 673}, {169, 10025}, {239, 379}, {517, 17682}, {894, 20605}, {1697, 27253}, {1730, 16819}, {2140, 5011}, {2170, 7176}, {2270, 26125}, {2475, 26526}, {3218, 27171}, {3303, 27475}, {3339, 24600}, {3496, 17050}, {3509, 20257}, {3753, 17681}, {3869, 24596}, {3877, 17683}, {4185, 14621}, {4384, 12526}, {4872, 21258}, {4904, 4911}, {5046, 26532}, {5088, 14377}, {5819, 6604}, {6915, 25954}, {6999, 25935}, {7223, 9311}, {7384, 26001}, {7406, 9800}, {11329, 24559}, {11349, 16826}, {12699, 17671}, {17030, 24627}, {17220, 27420}, {17397, 24580}, {17541, 25965}, {17691, 19860}, {24604, 26626}, {26959, 26960}, {26962, 27324}, {26964, 26988}, {27064, 27299}


X(27001) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(48), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^6 b^2 - 2 a^4 b^4 + a^2 b^6 - 2 a^6 b c + 2 a^4 b^3 c + a^6 c^2 - 2 a^4 b^2 c^2 - 2 a^2 b^4 c^2 + b^6 c^2 + 2 a^4 b c^3 - 2 a^4 c^4 - 2 a^2 b^2 c^4 - 2 b^4 c^4 + a^2 c^6 + b^2 c^6 : :

X(27001) lies on these lines: {2, 48}, {894, 27010}, {16564, 26959}


X(27002) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(57), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 - a^2 b - 2 a b^2 - a^2 c + 5 a b c - b^2 c - 2 a c^2 - b c^2 : :

X(27002) lies on these lines: {2, 7}, {8, 11512}, {21, 22376}, {40, 26093}, {46, 25492}, {88, 321}, {244, 7081}, {333, 16602}, {968, 26103}, {982, 5205}, {1054, 3840}, {1999, 3752}, {2975, 25965}, {3336, 19847}, {3699, 21342}, {3756, 4514}, {3757, 17063}, {4388, 5121}, {4429, 17728}, {4640, 25531}, {4847, 26073}, {4871, 17596}, {5122, 13735}, {5484, 8582}, {5741, 17288}, {5795, 25979}, {8056, 11679}, {9335, 26227}, {9843, 26117}, {14829, 16610}, {15803, 17697}, {16830, 17124}, {17020, 17121}, {17595, 18743}, {19242, 23169}, {20237, 25580}, {24183, 26724}, {26959, 26960}


X(27003) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(63), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a (a^2 - b^2 + 3 b c - c^2) : :

X(27003) lies on these lines: {1, 1392}, {2, 7}, {5, 26877}, {6, 17020}, {8, 3338}, {10, 3337}, {11, 20292}, {20, 5804}, {21, 5439}, {23, 7293}, {31, 7292}, {36, 5883}, {38, 5297}, {40, 3622}, {42, 1054}, {46, 3616}, {55, 9352}, {65, 5253}, {72, 17531}, {78, 17572}, {79, 3825}, {81, 88}, {84, 3832}, {89, 8056}, {100, 354}, {110, 26889}, {145, 3333}, {149, 11019}, {165, 4666}, {171, 244}, {191, 19862}, {200, 4430}, {210, 9342}, {214, 5425}, {222, 5422}, {320, 5741}, {333, 24589}, {388, 25005}, {404, 942}, {411, 9940}, {474, 3868}, {484, 551}, {612, 4392}, {614, 9335}, {631, 5761}, {649, 21204}, {678, 9337}, {748, 4650}, {750, 982}, {896, 17123}, {912, 6946}, {938, 4190}, {940, 4850}, {962, 10586}, {984, 17124}, {1004, 11020}, {1005, 11575}, {1019, 4049}, {1046, 27627}, {1071, 6915}, {1125, 3336}, {1150, 19804}, {1155, 1621}, {1210, 2475}, {1376, 3873}, {1385, 1389}, {1393, 4296}, {1407, 10601}, {1434, 26563}, {1454, 7288}, {1465, 17074}, {1468, 24174}, {1473, 1995}, {1706, 3621}, {1709, 9779}, {1730, 19717}, {1748, 17917}, {1749, 11263}, {1768, 3817}, {1776, 10129}, {1943, 24148}, {1962, 17593}, {1993, 23140}, {1994, 22128}, {1999, 17495}, {2096, 6957}, {2975, 3812}, {3007, 3101}, {3058, 17051}, {3060, 3784}, {3085, 17437}, {3086, 17700}, {3090, 24467}, {3091, 18540}, {3187, 17490}, {3220, 13595}, {3245, 3898}, {3262, 4359}, {3304, 14923}, {3315, 3744}, {3339, 19861}, {3361, 19860}, {3487, 6921}, {3523, 5709}, {3525, 26921}, {3526, 26878}, {3543, 7171}, {3582, 16763}, {3587, 15692}, {3600, 5554}, {3634, 6763}, {3636, 11010}, {3647, 25542}, {3649, 6691}, {3666, 3723}, {3681, 4413}, {3683, 3848}, {3720, 17596}, {3750, 17450}, {3754, 4861}, {3816, 5057}, {3833, 4973}, {3840, 4418}, {3869, 5221}, {3870, 10980}, {3871, 5045}, {3874, 4420}, {3876, 16408}, {3885, 7373}, {3889, 5687}, {3916, 5047}, {3918, 5288}, {3922, 11260}, {3927, 16862}, {3937, 5943}, {3961, 17449}, {3995, 22003}, {4000, 27059}, {4003, 4682}, {4004, 24928}, {4090, 9458}, {4187, 24470}, {4189, 15803}, {4253, 21373}, {4292, 5046}, {4298, 20060}, {4384, 5361}, {4414, 26102}, {4438, 25961}, {4440, 16561}, {4511, 5902}, {4640, 5284}, {4641, 16602}, {4652, 16865}, {4655, 25960}, {4678, 6762}, {4855, 11518}, {4880, 10176}, {4921, 17348}, {4993, 26931}, {5012, 26884}, {5020, 26866}, {5044, 17535}, {5056, 7330}, {5059, 9841}, {5122, 17549}, {5133, 26933}, {5154, 9612}, {5176, 5434}, {5183, 10179}, {5205, 17165}, {5256, 14996}, {5262, 24046}, {5268, 7226}, {5269, 17024}, {5271, 5372}, {5272, 17127}, {5278, 24594}, {5285, 15246}, {5311, 17591}, {5314, 7496}, {5432, 25557}, {5433, 7098}, {5438, 11520}, {5535, 10165}, {5536, 10164}, {5550, 12514}, {5603, 6966}, {5640, 26892}, {5704, 6871}, {5714, 6931}, {5722, 17579}, {5770, 6854}, {5826, 7291}, {5880, 11680}, {5885, 21740}, {5927, 13243}, {6147, 13747}, {6245, 6894}, {6734, 12436}, {6904, 12649}, {6905, 10202}, {6918, 12528}, {6940, 24474}, {6997, 26929}, {7081, 17140}, {7146, 26639}, {7196, 23989}, {7262, 17125}, {7411, 11227}, {7419, 22344}, {7705, 9654}, {7998, 26893}, {8025, 17168}, {8226, 13226}, {9310, 26672}, {9345, 17592}, {9347, 17599}, {9782, 12609}, {10107, 20323}, {10199, 18393}, {10273, 10698}, {10404, 11681}, {10461, 17589}, {10528, 11037}, {10566, 18087}, {10580, 20075}, {10587, 12704}, {10914, 15179}, {11015, 12433}, {11220, 19541}, {11374, 17566}, {11491, 13373}, {11552, 11813}, {11684, 25917}, {12527, 25011}, {13407, 27529}, {13587, 24929}, {14450, 21616}, {14997, 23511}, {15024, 26914}, {15650, 16863}, {15932, 24541}, {15934, 16371}, {16297, 22458}, {16421, 22149}, {16465, 17612}, {16549, 17266}, {16568, 16706}, {16586, 26740}, {16610, 16671}, {16672, 17021}, {16815, 18206}, {16826, 20367}, {16915, 26634}, {17016, 24443}, {17121, 18164}, {17556, 18541}, {17740, 18141}, {17763, 24165}, {17825, 22129}, {17862, 18359}, {18134, 27757}, {18163, 26860}, {18398, 25440}, {19241, 23169}, {19245, 23206}, {21540, 25083}, {24175, 26723}, {24586, 24629}, {24602, 24631}, {26959, 26969}, {26964, 26988}, {26965, 26995}, {26981, 27009}


X(27004) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(82), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (a^2 + b^2) (a^2 + c^2) (a^2 b^2 + b^4 - 2 a^2 b c + a^2 c^2 + 2 b^2 c^2 + c^4) : :

X(27004) lies on these lines: {2, 82}, {2295, 3589}, {2345, 3112}, {3405, 26959}, {16706, 26969}, {16890, 18101}, {18095, 18102}


X(27005) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(83), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (a^2 + b^2) (a^2 + c^2) (a b^2 + b^3 - 2 a b c + b^2 c + a c^2 + b c^2 + c^3) : :

X(27005) lies on these lines: {2, 32}, {377, 17500}, {2295, 3589}, {16889, 18101}, {17686, 18092}, {18082, 19874}, {26963, 26978}, {26972, 26996}


X(27006) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(85), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 - a^3 b - a b^3 + b^4 - a^3 c + a^2 b c - 2 b^3 c + 2 b^2 c^2 - a c^3 - 2 b c^3 + c^4 : :

X(27006) lies on these lines: {2, 85}, {8, 20269}, {142, 5253}, {277, 10527}, {664, 26526}, {1385, 26140}, {3661, 25593}, {4000, 10529}, {4861, 4904}, {5086, 9317}, {5337, 17397}, {6646, 26674}, {7195, 26258}, {7483, 20328}, {16706, 26964}, {17073, 25876}, {17298, 25582}, {20935, 27337}, {21255, 24780}, {24784, 27529}, {26979, 26993}


X(27007) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(87), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 b^4 - 2 a^4 b^3 c - a^3 b^4 c + 2 a^4 b^2 c^2 - 2 a^4 b c^3 + a^2 b^3 c^3 - a b^4 c^3 + a^4 c^4 - a^3 b c^4 - a b^3 c^4 + b^4 c^4 : :

X(27007) lies on these lines: {2, 87}, {26959, 27011}, {26963, 26974}


X(27008) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (b - c)^2 (a^5 - a^4 b - a^3 b^2 + a^2 b^3 - a^4 c + 3 a^2 b^2 c - a^3 c^2 + 3 a^2 b c^2 + a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3) : :

X(27008) lies on these lines: {2, 99}, {1015, 27009}, {1086, 27010}, {1111, 14838}, {2170, 4369}, {7192, 20982}, {17058, 26856}, {26100, 27302}, {26960, 26978}, {26972, 26996}


X(27009) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(100), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (b - c)^2 (a^4 - 2 a^3 b + a^2 b^2 - 2 a^3 c + 2 a^2 b c + a^2 c^2 + b^2 c^2) : :

X(27009) lies on these lines: {2, 11}, {767, 3767}, {1015, 27008}, {1086, 27012}, {4904, 26847}, {7192, 20974}, {14936, 17494}, {17761, 27010}, {26960, 26964}, {26965, 26989}, {26969, 26974}, {26981, 27003}, {27146, 27302}


X(27010) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(101), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (a - b - c) (b - c)^2 (a^4 - a^2 b^2 - a^2 c^2 - b^2 c^2) : :

X(27010) lies on these lines: {2, 101}, {11, 18101}, {894, 27001}, {1086, 27008}, {1311, 3086}, {4391, 11998}, {4560, 7117}, {17761, 27009}, {26279, 26959}


X(27011) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c - 2 a b^3 c + a^3 c^2 + 4 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(27011) lies on these lines: {2, 37}, {142, 27166}, {239, 26756}, {319, 27106}, {894, 26982}, {1086, 26963}, {1654, 26142}, {2140, 26825}, {2275, 26852}, {2321, 27113}, {3589, 26976}, {3662, 17178}, {3663, 26769}, {4361, 27095}, {7321, 26975}, {10436, 26817}, {16738, 17305}, {17117, 27044}, {17290, 27145}, {17300, 26821}, {17366, 26772}, {25253, 27680}, {26813, 26964}, {26959, 27007}


X(27012) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(900), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (b - c) (a^4 - 2 a^3 b + 2 a^2 b^2 - a b^3 - 2 a^3 c - 2 a^2 b c + a b^2 c + b^3 c + 2 a^2 c^2 + a b c^2 - b^2 c^2 - a c^3 + b c^3) : :

X(27012) lies on these lines: {2, 900}, {665, 17302}, {1086, 27009}, {4435, 17300}, {6646, 22108}, {27190, 27191}


X(27013) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(649), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (b - c) (3 a^2 - a b - a c + b c) : :

X(27013) lies on these lines: {2, 649}, {100, 23865}, {514, 26777}, {650, 7192}, {661, 4763}, {667, 21302}, {693, 4394}, {798, 26975}, {812, 24924}, {890, 25537}, {1019, 26775}, {1635, 4369}, {2487, 4453}, {2490, 4897}, {2527, 3004}, {3239, 4786}, {3240, 23655}, {3249, 26752}, {3618, 9002}, {3676, 5435}, {3733, 20293}, {3798, 25259}, {4063, 26982}, {4359, 20952}, {4379, 26824}, {4380, 4885}, {4468, 5744}, {4521, 5273}, {4598, 8050}, {4651, 7234}, {4776, 4790}, {4789, 4976}, {4893, 4932}, {4979, 25666}, {6006, 18230}, {6586, 17159}, {6590, 17161}, {8653, 15724}, {8663, 11176}, {9463, 23575}, {16704, 18200}, {18197, 26822}, {25577, 27134}, {26049, 27114}, {26114, 27167}, {26984, 27016}


X(27014) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(650), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (b - c) (a^4 b - a^2 b^3 + a^4 c - 3 a^3 b c + 2 a^2 b^2 c + 2 a^2 b c^2 - a b^2 c^2 + b^3 c^2 - a^2 c^3 + b^2 c^3) : :

X(27014) lies on these lines: {2, 650}, {661, 23466}, {798, 26975}, {1635, 27345}, {3210, 21438}, {3666, 21611}, {4893, 27527}, {6589, 25258}, {17215, 25955}, {25666, 27293}


X(27015) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(659), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (b - c) (a^4 b^2 - a^3 b^3 - a^4 b c - a^3 b^2 c + a^4 c^2 - a^3 b c^2 + 2 a^2 b^2 c^2 - a^3 c^3 + b^3 c^3) : :

X(27015) lies on these lines: {2, 659}, {798, 26975}, {891, 26801}, {1086, 27009}, {10566, 26968}, {17030, 21385}


X(27016) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(669), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    (b - c) (a^5 b^3 - a^4 b^4 - a^5 b^2 c - a^4 b^3 c - a^5 b c^2 - a^4 b^2 c^2 + a^5 c^3 - a^4 b c^3 - a^4 c^4 + b^4 c^4) : :

X(27016) lies on these lines: {2, 669}, {10566, 26968}, {26984, 27013}


X(27017) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(894), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^3 b^2 + a^2 b^3 + 2 a b^3 c + a^3 c^2 - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + 2 a b c^3 + b^2 c^3 : :

X(27017) lies on these lines: {2, 7}, {6, 27311}, {75, 27107}, {141, 27044}, {239, 17178}, {314, 17495}, {320, 26772}, {1086, 26971}, {1958, 26634}, {3589, 26975}, {3664, 26816}, {3739, 16709}, {3912, 26764}, {3923, 26094}, {3946, 26821}, {4359, 16753}, {4363, 27261}, {4859, 27192}, {7321, 26976}, {10566, 18094}, {16706, 26963}, {16816, 27343}, {17227, 27095}, {17232, 26042}, {17245, 27032}, {17261, 26769}, {17266, 27073}, {17268, 26797}, {17273, 27111}, {17284, 27136}, {17288, 26756}, {17302, 27166}, {17324, 25510}, {17332, 27036}, {24199, 26812}, {25269, 27291}, {26959, 27007}


X(27018) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(896), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 b^2 + a^2 b^4 - 4 a^4 b c + 2 a^2 b^3 c + a^4 c^2 - 6 a^2 b^2 c^2 + b^4 c^2 + 2 a^2 b c^3 + a^2 c^4 + b^2 c^4 : :

X(27018) lies on these lines: {2, 896}, {798, 26975}, {17122, 27061}, {26959, 26969}


X(27019) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(984), WHERE A'B'C' = GEMINI TRIANGLE 51

Barycentrics    a^4 b^2 + a^2 b^4 + a^3 b^2 c - a^2 b^3 c + a^4 c^2 + a^3 b c^2 + 4 a^2 b^2 c^2 + a b^3 c^2 + b^4 c^2 - a^2 b c^3 + a b^2 c^3 + a^2 c^4 + b^2 c^4 : :

X(27019) lies on these lines: {2, 38}, {7, 26134}, {10, 27116}, {142, 27169}, {330, 17383}, {894, 20372}, {1909, 16706}, {2140, 3662}, {2275, 4657}, {4357, 20459}, {4645, 26801}, {5749, 26107}, {16819, 17291}, {16823, 27047}, {17278, 25610}, {17302, 19565}, {17322, 27148}, {24789, 27313}, {26813, 26964}

leftri

Collineation mappings involving Gemini triangle 52: X(27020)-X(27081)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 52, as in centers X(27020)-X(27081). Then

m(X) = a (b + c)^2 x + b (a^2 + c^2) y + c (a^2 + b^2) z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 4, 2018)


X(27020) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^2 b^2 + a^2 b c + a^2 c^2 + b^2 c^2 : :

X(27020) lies on these lines: {1, 2}, {5, 26590}, {9, 26068}, {12, 6656}, {35, 384}, {36, 6645}, {37, 308}, {39, 1909}, {55, 7770}, {56, 11285}, {75, 3774}, {76, 2276}, {83, 1914}, {86, 21760}, {100, 17686}, {140, 26686}, {171, 1923}, {172, 1078}, {190, 4721}, {192, 3760}, {194, 3761}, {226, 3503}, {238, 20148}, {274, 1575}, {315, 9596}, {335, 3670}, {350, 1500}, {385, 5280}, {388, 16043}, {405, 26687}, {442, 26582}, {458, 11398}, {495, 8362}, {609, 7793}, {668, 1107}, {672, 17499}, {894, 16549}, {980, 20917}, {993, 17684}, {1003, 5217}, {1015, 6683}, {1089, 3797}, {1220, 16061}, {1376, 11321}, {1478, 7791}, {1479, 16924}, {1573, 25280}, {1621, 17541}, {1655, 6381}, {1966, 17289}, {2241, 7808}, {2242, 7815}, {2275, 7786}, {2345, 3403}, {3035, 17694}, {3247, 26107}, {3329, 5299}, {3405, 27066}, {3508, 4357}, {3552, 5010}, {3583, 16044}, {3585, 6655}, {3663, 26149}, {3727, 18061}, {3730, 24514}, {3735, 18055}, {3739, 21897}, {3746, 4366}, {3814, 17669}, {4063, 27046}, {4302, 14035}, {4324, 6658}, {4400, 7760}, {4416, 26082}, {4698, 20363}, {4754, 20331}, {4995, 6661}, {5025, 7951}, {5218, 14001}, {5248, 16916}, {5259, 16918}, {5264, 14621}, {5283, 6376}, {5310, 16950}, {5332, 7878}, {5432, 7807}, {5687, 20172}, {5750, 26110}, {6179, 7296}, {6284, 8370}, {6651, 27057}, {6684, 8924}, {7031, 7787}, {7242, 14620}, {7354, 8356}, {7741, 16921}, {7761, 9650}, {7819, 26629}, {7833, 10483}, {7841, 10895}, {8359, 18990}, {8367, 15172}, {9312, 26134}, {9598, 11185}, {9654, 11287}, {10053, 10352}, {10436, 26042}, {10588, 14064}, {11174, 16502}, {11681, 17550}, {15338, 19687}, {16060, 18758}, {16564, 27053}, {16589, 27076}, {16601, 25994}, {16604, 24656}, {16720, 20924}, {16738, 17287}, {16777, 25505}, {16788, 17743}, {16915, 25440}, {16975, 24524}, {17116, 26764}, {17143, 20691}, {17239, 27164}, {17252, 26756}, {17260, 20372}, {17268, 27261}, {17277, 23660}, {17291, 27116}, {17312, 27145}, {17317, 26979}, {17319, 26971}, {17326, 27095}, {17357, 25629}, {17670, 25466}, {17755, 25073}, {17757, 26558}, {17758, 24170}, {17759, 20888}, {18040, 18148}, {19579, 27033}, {20174, 21858}, {24530, 25458}, {27021, 27038}, {27023, 27027}, {27030, 27041}, {27049, 27058}, {27069, 27073}, {27070, 27072}

X(27020) = complement of X(26801)


X(27021) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^5 b - a^4 b^2 - a^3 b^3 + a^2 b^4 + a^5 c + a^4 b c - a^3 b^2 c - a^2 b^3 c - a^4 c^2 - a^3 b c^2 - a^2 b^2 c^2 + b^4 c^2 - a^3 c^3 - a^2 b c^3 - 2 b^3 c^3 + a^2 c^4 + b^2 c^4) : :

X(27021) lies on these lines: {2, 3}, {183, 27515}, {1901, 26125}, {17056, 27253}, {18299, 21838}, {26685, 26772}, {26771, 27043}, {27020, 27038}, {27025, 27072}, {27040, 27071}, {27097, 27256}, {27129, 27255}


X(27022) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^6 - a^5 b - a^2 b^4 + a b^5 - a^5 c - a^4 b c + a b^4 c + b^5 c - 2 a b^3 c^2 - 2 b^4 c^2 - 2 a b^2 c^3 + 2 b^3 c^3 - a^2 c^4 + a b c^4 - 2 b^2 c^4 + a c^5 + b c^5) : :

X(27022) lies on these lines: {2, 3}, {33, 26203}, {346, 1228}, {17052, 27509}, {17260, 20605}, {27031, 27062}, {27039, 27040}


X(27023) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^6 - a^4 b^2 - a^3 b^3 + a b^5 - a^3 b^2 c - a^2 b^3 c + a b^4 c + b^5 c - a^4 c^2 - a^3 b c^2 - a^2 b^2 c^2 - 2 a b^3 c^2 - b^4 c^2 - a^3 c^3 - a^2 b c^3 - 2 a b^2 c^3 + a b c^4 - b^2 c^4 + a c^5 + b c^5) : :

X(27023) lies on these lines: {2, 3}, {257, 27261}, {27020, 27027}, {27033, 27062}


X(27024) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(200), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b^2 - 2 a^3 b^3 + a^2 b^4 + a^4 b c - 2 a^3 b^2 c + a^2 b^3 c + a^4 c^2 - 2 a^3 b c^2 + 5 a^2 b^2 c^2 + b^4 c^2 - 2 a^3 c^3 + a^2 b c^3 - 2 b^3 c^3 + a^2 c^4 + b^2 c^4 : :

X(27024) lies on these lines: {1, 2}, {1575, 16750}, {17260, 27038}, {27065, 27072}


X(27025) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 b - 2 a^2 b^2 + a b^3 + a^3 c + 4 a b^2 c + b^3 c - 2 a^2 c^2 + 4 a b c^2 - 2 b^2 c^2 + a c^3 + b c^3 : :

X(27025) lies on these lines: {1, 2}, {1574, 26978}, {1575, 18600}, {3619, 26997}, {3693, 25261}, {5241, 27256}, {6376, 26770}, {6537, 27071}, {11319, 26687}, {16713, 17239}, {17287, 26818}, {17289, 27039}, {17672, 17757}, {25244, 26563}, {27021, 27072}, {27038, 27050}, {27040, 27076}, {27049, 27065}, {27073, 27080}


X(27026) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 b + a b^3 + a^3 c + 2 a^2 b c + 4 a b^2 c + b^3 c + 4 a b c^2 + a c^3 + b c^3 : :

X(27026) lies on these lines: {1, 2}, {35, 16931}, {75, 26100}, {964, 26687}, {1213, 27047}, {1574, 25499}, {1575, 16705}, {2345, 18135}, {3739, 21021}, {5051, 26582}, {5260, 16061}, {5263, 17541}, {6376, 26035}, {14005, 27185}, {14210, 25089}, {17260, 20605}, {17289, 27040}, {17307, 27116}, {17385, 25107}, {17672, 26558}, {17680, 26060}, {18136, 19808}, {20911, 25263}, {27050, 27072}, {27056, 27065}


X(27027) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(11), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^5 b - a^4 b^2 - a^2 b^4 + a b^5 + a^5 c - 2 a^4 b c + 2 a^3 b^2 c + b^5 c - a^4 c^2 + 2 a^3 b c^2 - 2 a^2 b^2 c^2 - b^4 c^2 - a^2 c^4 - b^2 c^4 + a c^5 + b c^5 : :

X(27027) lies on these lines: {2, 11}, {26686, 26755}, {27020, 27023}, {27074, 27294}


X(27028) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^7 b - a^6 b^2 - a^3 b^5 + a^2 b^6 + a^7 c + a^6 b c - a^3 b^4 c - a^2 b^5 c - a^6 c^2 - a^4 b^2 c^2 + a^2 b^4 c^2 + b^6 c^2 - 2 a^2 b^3 c^3 - 2 b^5 c^3 - a^3 b c^4 + a^2 b^2 c^4 + 2 b^4 c^4 - a^3 c^5 - a^2 b c^5 - 2 b^3 c^5 + a^2 c^6 + b^2 c^6) : :

X(27028) lies on these lines: {2, 3}


X(27029) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^7 b - a^6 b^2 - a^3 b^5 + a^2 b^6 + a^7 c + a^6 b c - a^3 b^4 c - a^2 b^5 c - a^6 c^2 + a^3 b^3 c^2 + a^2 b^4 c^2 + b^6 c^2 + a^3 b^2 c^3 - a^2 b^3 c^3 - 2 b^5 c^3 - a^3 b c^4 + a^2 b^2 c^4 + 2 b^4 c^4 - a^3 c^5 - a^2 b c^5 - 2 b^3 c^5 + a^2 c^6 + b^2 c^6) : :

X(27029) lies on these lines: {2, 3}, {10566, 27075}


X(27030) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b^2 + a^2 b^4 + 2 a^4 b c + a^4 c^2 + b^4 c^2 + a^2 c^4 + b^2 c^4 : :

X(27030) lies on these lines: {2, 31}, {7292, 26999}, {7295, 16949}, {16823, 27182}, {17289, 27066}, {26772, 27034}, {27020, 27041}, {27035, 27072}


X(27031) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^5 b + a^2 b^4 + a^5 c - a^2 b^3 c + a^2 b^2 c^2 + b^4 c^2 - a^2 b c^3 - b^3 c^3 + a^2 c^4 + b^2 c^4) : :

X(27031) lies on these lines: {2, 32}, {26685, 26772}, {27022, 27062}, {27040, 27057}


X(27032) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 b^2 + a^2 b^3 + 4 a^2 b^2 c + a^3 c^2 + 4 a^2 b c^2 + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(27032) lies on these lines: {2, 37}, {86, 26975}, {1125, 21803}, {1213, 27044}, {3723, 26821}, {3834, 26857}, {3912, 16738}, {4357, 27106}, {4422, 27042}, {7321, 26769}, {16814, 26799}, {16826, 26963}, {17030, 17242}, {17045, 26982}, {17178, 17317}, {17239, 26774}, {17244, 27145}, {17245, 27017}, {17248, 27095}, {17256, 26756}, {17260, 20372}, {17261, 25538}, {17285, 27164}, {17300, 26082}, {17307, 27113}, {17349, 23660}, {17368, 27255}, {25611, 26030}, {27033, 27048}, {27038, 27051}, {27107, 27147}


X(27033) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^4 b^2 + a^3 b^3 - a^4 b c + a^3 b^2 c + a^4 c^2 + a^3 b c^2 + 2 a^2 b^2 c^2 + a^3 c^3 + b^3 c^3) : :

X(27033) lies on these lines: {2, 39}, {256, 26030}, {2238, 26752}, {7148, 26115}, {9263, 23447}, {19579, 27020}, {21024, 26801}, {26685, 26772}, {27023, 27062}, {27032, 27048}, {27057, 27067}


X(27034) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    2 a^3 b^3 + 3 a^3 b^2 c + a^2 b^3 c + 3 a^3 b c^2 + a b^3 c^2 + 2 a^3 c^3 + a^2 b c^3 + a b^2 c^3 + 2 b^3 c^3 : :

X(27034) lies on these lines: {1, 2}, {1575, 16748}, {4430, 27351}, {8299, 18103}, {17147, 27285}, {23632, 25102}, {26772, 27030}, {27041, 27072}


X(27035) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 b^3 + a^3 b^2 c + a^3 b c^2 - a^2 b^2 c^2 + a^3 c^3 + b^3 c^3 : :

X(27035) lies on these lines: {1, 2}, {75, 27285}, {310, 1575}, {668, 23632}, {1011, 26687}, {1921, 21814}, {3136, 26582}, {16954, 25440}, {18152, 21877}, {21838, 27076}, {22199, 25286}, {26772, 27069}, {27030, 27072}, {27038, 27047}


X(27036) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(44), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 b^2 + a^2 b^3 + 4 a^3 b c - 4 a^2 b^2 c + a^3 c^2 - 4 a^2 b c^2 - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(27036) lies on these lines: {2, 44}, {9, 27102}, {798, 20295}, {966, 27261}, {1213, 27078}, {2245, 27070}, {3739, 26799}, {4422, 27044}, {4473, 26048}, {16814, 26764}, {16815, 26976}, {17257, 27311}, {17259, 27154}, {17260, 20372}, {17263, 26756}, {17277, 26971}, {17331, 27145}, {17332, 27017}, {17333, 27107}, {17338, 27095}, {17349, 21760}, {17368, 27116}, {20363, 27268}, {27290, 27321}


X(27037) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(45), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c + 8 a^2 b^2 c + a^3 c^2 + 8 a^2 b c^2 + 4 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(27037) lies on these lines: {2, 45}, {1213, 27073}, {3780, 17349}, {4687, 26963}, {4708, 27113}, {4755, 27166}, {5296, 27095}, {17260, 20372}, {17261, 27154}


X(27038) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(55), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b^2 - 2 a^3 b^3 + a^2 b^4 + 2 a^4 b c - 3 a^3 b^2 c - a^2 b^3 c + a^4 c^2 - 3 a^3 b c^2 - a b^3 c^2 + b^4 c^2 - 2 a^3 c^3 - a^2 b c^3 - a b^2 c^3 - 2 b^3 c^3 + a^2 c^4 + b^2 c^4 : :

X(27038) lies on these lines: {2, 11}, {1233, 25249}, {17260, 27024}, {26772, 27030}, {27020, 27021}, {27025, 27050}, {27032, 27051}, {27035, 27047}, {27096, 27283}


X(27039) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(69), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^4 - a^3 b - a^2 b^2 + a b^3 - a^3 c + 3 a^2 b c + a b^2 c + b^3 c - a^2 c^2 + a b c^2 - 2 b^2 c^2 + a c^3 + b c^3) : :

X(27039) lies on these lines: {2, 6}, {9, 14543}, {10, 21931}, {144, 2245}, {344, 27096}, {346, 3948}, {442, 7679}, {2092, 3672}, {3759, 26964}, {3882, 17183}, {3965, 17863}, {4199, 5281}, {4272, 17014}, {4466, 27689}, {4515, 22040}, {5051, 7080}, {5227, 26267}, {16609, 21033}, {17077, 17272}, {17227, 26997}, {17233, 26757}, {17257, 25601}, {17273, 26836}, {17289, 27025}, {18600, 24530}, {26085, 26961}, {26752, 27296}, {27022, 27040}, {27055, 27071}


X(27040) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^3 + a b^2 - a b c + b^2 c + a c^2 + b c^2) : :

X(27040) lies on these lines: {2, 39}, {4, 26085}, {6, 5192}, {8, 2176}, {10, 1018}, {21, 26244}, {32, 11319}, {37, 3701}, {42, 21071}, {45, 1213}, {69, 26099}, {115, 5992}, {145, 20970}, {187, 17539}, {213, 17751}, {281, 429}, {315, 17007}, {321, 16583}, {344, 27042}, {346, 2092}, {350, 26965}, {668, 26759}, {672, 3831}, {857, 1211}, {862, 17920}, {874, 17280}, {964, 5275}, {965, 27378}, {966, 2478}, {1089, 16600}, {1215, 21808}, {1475, 3840}, {1654, 24958}, {1909, 27097}, {2275, 26094}, {2276, 26030}, {2292, 3985}, {2295, 21025}, {2321, 3214}, {2475, 26079}, {3061, 25591}, {3125, 17164}, {3290, 4968}, {3293, 21070}, {3691, 3741}, {3735, 25253}, {3952, 3954}, {4065, 24049}, {4099, 4868}, {4109, 15523}, {4202, 5254}, {4272, 17314}, {4385, 26242}, {4441, 27299}, {4647, 16611}, {4721, 20347}, {4754, 17169}, {5025, 16991}, {5224, 17550}, {5276, 13740}, {5277, 11115}, {6155, 27804}, {6537, 6627}, {7735, 17526}, {7747, 17537}, {7751, 25497}, {7806, 16905}, {10453, 21753}, {11185, 16910}, {14953, 24271}, {15985, 17183}, {16050, 26243}, {16926, 16993}, {16997, 17688}, {17137, 24514}, {17277, 17541}, {17281, 25610}, {17289, 27026}, {17359, 25107}, {17497, 17762}, {20255, 24330}, {20911, 25994}, {20947, 25263}, {25255, 27697}, {25264, 27324}, {26771, 26774}, {26781, 26794}, {26791, 26793}, {27021, 27071}, {27022, 27039}, {27025, 27076}, {27031, 27057}


X(27041) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^4 b + 2 a^3 b^2 + a^2 b^3 + a^4 c + 2 a^3 b c + a^2 b^2 c + 2 a^3 c^2 + a^2 b c^2 + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3) : :

X(27041) lies on these lines: {2, 6}, {321, 21858}, {740, 21684}, {1230, 2092}, {1500, 3948}, {3454, 26030}, {3752, 27793}, {4272, 26971}, {4850, 27792}, {5051, 17757}, {16549, 21361}, {17165, 20966}, {22020, 26580}, {27020, 27030}, {27034, 27072}, {27052, 27058}


X(27042) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^3 b + a^2 b^2 + a^3 c + a^2 b c + a b^2 c + a^2 c^2 + a b c^2 + b^2 c^2) : :

X(27042) lies on these lines: {2, 6}, {10, 872}, {12, 1284}, {37, 313}, {75, 2092}, {239, 4272}, {257, 18714}, {274, 24530}, {344, 27040}, {442, 4429}, {495, 4205}, {661, 24103}, {740, 21730}, {860, 17913}, {894, 2245}, {1084, 19581}, {1215, 21035}, {1268, 26048}, {1269, 3666}, {1500, 4043}, {1966, 17289}, {2511, 3766}, {3122, 25124}, {3759, 17030}, {3775, 19863}, {3826, 26030}, {3882, 10455}, {3934, 18046}, {4395, 26812}, {4422, 27032}, {4443, 23444}, {4446, 20966}, {4472, 27102}, {4687, 6376}, {7227, 26764}, {7238, 26857}, {16706, 25538}, {17045, 26971}, {17233, 21024}, {17243, 27261}, {17246, 26976}, {17305, 26149}, {17397, 25505}, {17719, 17954}, {26601, 27254}, {27047, 27048}, {27050, 27058}, {27054, 27068}


X(27043) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 b - 6 a^2 b^2 + a b^3 + a^3 c - 4 a^2 b c + 4 a b^2 c + b^3 c - 6 a^2 c^2 + 4 a b c^2 - 6 b^2 c^2 + a c^3 + b c^3 : :

X(27043) lies on these lines: {1, 2}, {23830, 26836}, {26771, 27021}


X(27044) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (a^2 + a b + a c - b c) (a b^2 - b^2 c + a c^2 - b c^2) : :

X(27044) lies on these lines: {1, 2}, {9, 27136}, {75, 27095}, {141, 27017}, {319, 26963}, {335, 27116}, {524, 26975}, {527, 26768}, {594, 26971}, {894, 26756}, {1086, 27106}, {1213, 27032}, {1278, 4494}, {1574, 20913}, {2309, 25121}, {3763, 27311}, {3948, 27076}, {3995, 18140}, {4063, 4129}, {4357, 26764}, {4359, 21021}, {4422, 27036}, {4967, 26812}, {7032, 25292}, {11320, 26687}, {16738, 17239}, {17117, 27011}, {17160, 25534}, {17178, 17287}, {17227, 27107}, {17228, 27145}, {17238, 26042}, {17254, 26769}, {17260, 27073}, {17261, 26797}, {17285, 27111}, {17289, 26772}, {17293, 27261}, {17355, 26799}, {17786, 27641}, {18046, 21858}, {18091, 18093}, {19308, 21005}, {20072, 26076}, {20349, 26072}


X(27045) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(661), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b^2 - c^2) (a^4 - a^2 b^2 - 2 a^2 b c - a^2 c^2 + b^2 c^2) : :

X(27045) lies on these lines: {2, 661}, {649, 4129}, {669, 21051}, {798, 20295}, {810, 25301}, {850, 3709}, {1577, 17494}, {2978, 25636}, {4391, 27648}, {4761, 19874}, {4781, 26794}, {5278, 7252}, {18155, 24948}, {20910, 25271}, {21383, 27134}, {21960, 27588}, {24459, 27712}, {27138, 27346}


X(27046) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(667), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b - c) (a^4 b^2 - a^3 b^3 + 2 a^4 b c - a^3 b^2 c + a^2 b^3 c + a^4 c^2 - a^3 b c^2 + a^2 b^2 c^2 - a b^3 c^2 - a^3 c^3 + a^2 b c^3 - a b^2 c^3 + b^3 c^3) : :

X(27046) lies on these lines: {2, 667}, {4063, 27020}, {4129, 27047}, {16158, 18110}, {20295, 27077}, {21261, 27345}


X(27047) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b^2 + a^2 b^4 + 2 a^4 b c - a^3 b^2 c - a^2 b^3 c + a^4 c^2 - a^3 b c^2 - 2 a^2 b^2 c^2 - a b^3 c^2 + b^4 c^2 - a^2 b c^3 - a b^2 c^3 + a^2 c^4 + b^2 c^4 : :

X(27047) lies on these lines: {2, 31}, {141, 27097}, {857, 26582}, {1213, 27026}, {3230, 20549}, {3775, 26759}, {4026, 26965}, {4129, 27046}, {4429, 17550}, {16823, 27019}, {17238, 27248}, {17248, 27255}, {17260, 20372}, {17326, 27106}, {17338, 24491}, {20561, 21788}, {26041, 27280}, {27035, 27038}, {27042, 27048}


X(27048) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 b + 4 a^2 b^2 + a b^3 + a^3 c + 6 a^2 b c + 4 a b^2 c + b^3 c + 4 a^2 c^2 + 4 a b c^2 + 4 b^2 c^2 + a c^3 + b c^3 : :

X(27048) lies on these lines: {1, 2}, {35, 16930}, {27032, 27033}, {27042, 27047}, {27050, 27060}


X(27049) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^6 - 3 a^5 b + 2 a^4 b^2 + 2 a^3 b^3 - 3 a^2 b^4 + a b^5 - 3 a^5 c - 3 a^4 b c + 2 a^3 b^2 c + 2 a^2 b^3 c + a b^4 c + b^5 c + 2 a^4 c^2 + 2 a^3 b c^2 + 2 a^2 b^2 c^2 - 2 a b^3 c^2 - 4 b^4 c^2 + 2 a^3 c^3 + 2 a^2 b c^3 - 2 a b^2 c^3 + 6 b^3 c^3 - 3 a^2 c^4 + a b c^4 - 4 b^2 c^4 + a c^5 + b c^5) : :

X(27049) lies on these lines: {2, 3}, {27020, 27058}, {27025, 27065}


X(27050) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^5 b - a^4 b^2 - a^3 b^3 + a^2 b^4 + a^5 c - 3 a^3 b^2 c - 2 a^2 b^3 c - a^4 c^2 - 3 a^3 b c^2 - 4 a^2 b^2 c^2 - a b^3 c^2 + b^4 c^2 - a^3 c^3 - 2 a^2 b c^3 - a b^2 c^3 - 2 b^3 c^3 + a^2 c^4 + b^2 c^4) : :

X(27050) lies on these lines: {2, 3}, {1211, 27096}, {3936, 27283}, {18635, 27170}, {27020, 27030}, {27025, 27038}, {27026, 27072}, {27042, 27058}, {27048, 27060}


X(27051) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^7 b - a^6 b^2 - a^3 b^5 + a^2 b^6 + a^7 c + a^6 b c - a^3 b^4 c - a^2 b^5 c - a^6 c^2 + a^4 b^2 c^2 + 2 a^3 b^3 c^2 + a^2 b^4 c^2 + b^6 c^2 + 2 a^3 b^2 c^3 - 2 b^5 c^3 - a^3 b c^4 + a^2 b^2 c^4 + 2 b^4 c^4 - a^3 c^5 - a^2 b c^5 - 2 b^3 c^5 + a^2 c^6 + b^2 c^6) : :

X(27051) lies on these lines: {2, 3}, {2212, 26211}, {27032, 27038}


X(27052) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (-a^5 - a^4 b + a b^4 + b^5 - a^4 c - a^3 b c - a^2 b^2 c - a b^3 c - a^2 b c^2 - 2 a b^2 c^2 - b^3 c^2 - a b c^3 - b^2 c^3 + a c^4 + c^5) : :

X(27052) lies on these lines: {2, 3}, {63, 17052}, {210, 4463}, {226, 21065}, {306, 1089}, {312, 1230}, {321, 4150}, {1211, 17293}, {1441, 18588}, {1901, 5905}, {5928, 26223}, {16568, 17289}, {18082, 18083}, {18139, 18147}, {18744, 19792}, {27041, 27058}


X(27053) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^8 b - a^6 b^3 - a^4 b^5 + a^2 b^7 + a^8 c + 2 a^7 b c + a^6 b^2 c - a^4 b^4 c - 2 a^3 b^5 c - a^2 b^6 c + a^6 b c^2 + 2 a^5 b^2 c^2 + 3 a^4 b^3 c^2 + 2 a^3 b^4 c^2 - a^2 b^5 c^2 + b^7 c^2 - a^6 c^3 + 3 a^4 b^2 c^3 + 4 a^3 b^3 c^3 + 3 a^2 b^4 c^3 - b^6 c^3 - a^4 b c^4 + 2 a^3 b^2 c^4 + 3 a^2 b^3 c^4 - a^4 c^5 - 2 a^3 b c^5 - a^2 b^2 c^5 - a^2 b c^6 - b^3 c^6 + a^2 c^7 + b^2 c^7) : :

X(27053) lies on these lines: {2, 3}, {16564, 27020}


X(27054) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^8 b - a^6 b^3 - a^4 b^5 + a^2 b^7 + a^8 c + a^7 b c - a^6 b^2 c - a^5 b^3 c - a^4 b^4 c - a^3 b^5 c + a^2 b^6 c + a b^7 c - a^6 b c^2 - a^5 b^2 c^2 + a^4 b^3 c^2 - a^2 b^5 c^2 + a b^6 c^2 + b^7 c^2 - a^6 c^3 - a^5 b c^3 + a^4 b^2 c^3 - a^2 b^4 c^3 - a b^5 c^3 - b^6 c^3 - a^4 b c^4 - a^2 b^3 c^4 - 2 a b^4 c^4 - a^4 c^5 - a^3 b c^5 - a^2 b^2 c^5 - a b^3 c^5 + a^2 b c^6 + a b^2 c^6 - b^3 c^6 + a^2 c^7 + a b c^7 + b^2 c^7) : :

X(27054) lies on these lines: {2, 3}, {27042, 27068}


X(27055) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^6 - 5 a^5 b + 4 a^4 b^2 + 4 a^3 b^3 - 5 a^2 b^4 + a b^5 - 5 a^5 c - 5 a^4 b c + 4 a^3 b^2 c + 4 a^2 b^3 c + a b^4 c + b^5 c + 4 a^4 c^2 + 4 a^3 b c^2 + 4 a^2 b^2 c^2 - 2 a b^3 c^2 - 6 b^4 c^2 + 4 a^3 c^3 + 4 a^2 b c^3 - 2 a b^2 c^3 + 10 b^3 c^3 - 5 a^2 c^4 + a b c^4 - 6 b^2 c^4 + a c^5 + b c^5) : :

X(27055) lies on these lines: {2, 3}, {27039, 27071}


X(27056) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^6 - a^5 b - a^2 b^4 + a b^5 - a^5 c - 3 a^4 b c - 4 a^3 b^2 c - 2 a^2 b^3 c + a b^4 c + b^5 c - 4 a^3 b c^2 - 6 a^2 b^2 c^2 - 4 a b^3 c^2 - 2 b^4 c^2 - 2 a^2 b c^3 - 4 a b^2 c^3 + 2 b^3 c^3 - a^2 c^4 + a b c^4 - 2 b^2 c^4 + a c^5 + b c^5) : :

X(27056) lies on these lines: {2, 3}, {17289, 27025}, {27026, 27065}


X(27057) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^5 b + a^2 b^4 + a^5 c + a^4 b c + a b^3 c^2 + b^4 c^2 + a b^2 c^3 - b^3 c^3 + a^2 c^4 + b^2 c^4) : :

X(27057) lies on these lines: {2, 3}, {6651, 27020}, {27031, 27040}, {27033, 27067}


X(27058) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(7), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b - a^3 b^2 - a^2 b^3 + a b^4 + a^4 c - 6 a^3 b c + 2 a^2 b^2 c - 2 a b^3 c + b^4 c - a^3 c^2 + 2 a^2 b c^2 - 2 a b^2 c^2 - b^3 c^2 - a^2 c^3 - 2 a b c^3 - b^2 c^3 + a c^4 + b c^4 : :

X(27058) lies on these lines: {2, 7}, {44, 16713}, {86, 23617}, {344, 18040}, {2324, 26621}, {2345, 27108}, {3618, 26964}, {4687, 26690}, {5046, 17500}, {5782, 27381}, {7146, 20248}, {17120, 26818}, {17152, 17277}, {17263, 18150}, {17286, 26757}, {17289, 27025}, {20262, 26575}, {26582, 26772}, {27020, 27049}, {27041, 27052}, {27042, 27050}


X(27059) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(19), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a (a^4 - b^4 + a^2 b c + b^3 c + 2 b^2 c^2 + b c^3 - c^4) : :

X(27059) lies on these lines: {2, 19}, {10, 16566}, {75, 1150}, {141, 5341}, {169, 26685}, {171, 17872}, {193, 2285}, {524, 5356}, {597, 7300}, {607, 26206}, {894, 7291}, {910, 25099}, {1429, 17868}, {1441, 26213}, {1738, 24883}, {1760, 2345}, {1766, 17257}, {1781, 3912}, {1861, 2475}, {1890, 5046}, {1953, 26639}, {1958, 7146}, {2171, 20769}, {2182, 15988}, {3589, 7297}, {3661, 5279}, {3920, 17446}, {4000, 27003}, {4357, 16548}, {7269, 27950}, {16547, 17353}, {16564, 27020}, {16568, 17289}, {17260, 20605}, {17355, 20602}, {26582, 26605}, {27032, 27038}


X(27060) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(36), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^5 b^2 - a^4 b^3 - a^3 b^4 + a^2 b^5 + 2 a^5 b c + a^5 c^2 - 2 a^2 b^3 c^2 + b^5 c^2 - a^4 c^3 - 2 a^2 b^2 c^3 + 2 a b^3 c^3 - b^4 c^3 - a^3 c^4 - b^3 c^4 + a^2 c^5 + b^2 c^5 : :

X(27060) lies on these lines: {2, 36}, {4129, 27046}, {26685, 27063}, {27020, 27021}, {27048, 27050}, {27251, 27255}, {27274, 27283}


X(27061) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(38), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b^2 + a^2 b^4 + 2 a^2 b^3 c + a^4 c^2 + 6 a^2 b^2 c^2 + b^4 c^2 + 2 a^2 b c^3 + a^2 c^4 + b^2 c^4 : :

X(27061) lies on these lines: {2, 38}, {5297, 26969}, {17122, 27018}, {27020, 27030}


X(27062) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(115), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^6 + a b^5 - a^4 b c - a^2 b^3 c + a b^4 c + b^5 c + a^2 b^2 c^2 - 2 a b^3 c^2 - b^4 c^2 - a^2 b c^3 - 2 a b^2 c^3 + b^3 c^3 + a b c^4 - b^2 c^4 + a c^5 + b c^5) : :

X(27062) lies on these lines: {2, 99}, {27022, 27031}, {27023, 27033}


X(27063) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(48), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^6 b^2 - 2 a^4 b^4 + a^2 b^6 + 2 a^6 b c - 2 a^4 b^3 c + a^6 c^2 - 2 a^4 b^2 c^2 - 2 a^2 b^4 c^2 + b^6 c^2 - 2 a^4 b c^3 - 2 a^4 c^4 - 2 a^2 b^2 c^4 - 2 b^4 c^4 + a^2 c^6 + b^2 c^6 : :

X(27063) lies on these lines: {2, 48}, {16564, 27020}, {26685, 27060}


X(27064) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(57), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 + a^2 b + a^2 c - a b c + b^2 c + b c^2 : :

X(27064) lies on these lines: {1, 979}, {2, 7}, {6, 312}, {8, 989}, {10, 4388}, {31, 7081}, {42, 3685}, {43, 3923}, {44, 333}, {55, 4676}, {72, 13740}, {75, 4383}, {78, 4195}, {81, 4358}, {83, 213}, {92, 458}, {100, 20967}, {171, 4672}, {190, 3666}, {192, 5256}, {210, 5263}, {228, 4203}, {238, 1215}, {306, 17280}, {318, 3195}, {341, 5710}, {344, 5712}, {386, 7283}, {404, 22344}, {474, 23085}, {537, 17598}, {594, 4886}, {612, 27538}, {614, 24349}, {645, 14534}, {748, 16823}, {756, 16830}, {846, 6685}, {899, 4418}, {940, 3758}, {942, 13741}, {960, 1220}, {964, 3876}, {984, 25496}, {1010, 5044}, {1046, 3831}, {1054, 6686}, {1089, 1203}, {1211, 17289}, {1255, 3227}, {1265, 5716}, {1386, 3967}, {1460, 26264}, {1468, 25591}, {1696, 25895}, {1728, 26123}, {1743, 11679}, {1757, 3741}, {1766, 9535}, {1836, 4429}, {2235, 21779}, {2258, 3240}, {2295, 3975}, {2308, 17763}, {2345, 14555}, {2895, 17287}, {2999, 3210}, {3175, 4360}, {3187, 4671}, {3333, 26093}, {3337, 19847}, {3338, 25492}, {3487, 13742}, {3589, 4415}, {3649, 25992}, {3661, 5739}, {3676, 26694}, {3681, 24552}, {3687, 17355}, {3720, 17794}, {3742, 25531}, {3745, 4009}, {3750, 4432}, {3751, 10453}, {3752, 17351}, {3765, 17752}, {3782, 16706}, {3791, 16477}, {3868, 5192}, {3886, 20012}, {3912, 17499}, {3920, 3952}, {3940, 11354}, {3944, 25453}, {3961, 4090}, {3973, 18229}, {3980, 16569}, {3995, 17011}, {3996, 4849}, {4001, 20072}, {4044, 17034}, {4054, 26723}, {4063, 23825}, {4234, 5440}, {4344, 5423}, {4359, 17116}, {4362, 16468}, {4363, 19804}, {4385, 16466}, {4395, 19820}, {4417, 17354}, {4422, 17056}, {4438, 17717}, {4521, 26652}, {4641, 14829}, {4644, 18141}, {4656, 17023}, {4664, 20182}, {4687, 19701}, {4692, 5315}, {4697, 17122}, {4698, 25507}, {4852, 22034}, {4972, 5057}, {4975, 16474}, {5271, 17349}, {5283, 11342}, {5287, 17379}, {5484, 12527}, {5506, 25512}, {5737, 16885}, {5743, 17369}, {5927, 13727}, {6537, 27068}, {6651, 19579}, {6679, 17719}, {6763, 19864}, {7123, 14621}, {7191, 17165}, {7227, 19797}, {7292, 17140}, {8025, 17021}, {10394, 27394}, {12572, 26117}, {13425, 19065}, {13458, 19066}, {13735, 24929}, {14997, 17117}, {17012, 17147}, {17016, 25253}, {17019, 19717}, {17020, 17495}, {17123, 24325}, {17127, 26227}, {17266, 18139}, {17279, 18134}, {17316, 27523}, {17335, 19732}, {17339, 17776}, {17352, 24789}, {17366, 19796}, {17367, 19785}, {17394, 19722}, {17777, 24210}, {18662, 25245}, {18928, 26531}, {23511, 24620}, {24725, 25957}, {25066, 27399}, {25760, 26061}, {25930, 27340}, {26575, 26793}, {27000, 27299}, {27020, 27021}


X(27065) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(63), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a (a^2 - b^2 - 3 b c - c^2) : :

X(27065) lies on these lines: {1, 4134}, {2, 7}, {5, 26878}, {6, 17019}, {8, 7162}, {10, 3583}, {20, 18540}, {21, 5044}, {23, 5314}, {31, 5297}, {37, 17011}, {38, 7292}, {39, 27646}, {40, 3832}, {44, 81}, {45, 4383}, {46, 19877}, {72, 5047}, {78, 16865}, {84, 15717}, {100, 3683}, {110, 26890}, {149, 25006}, {190, 4359}, {191, 3634}, {210, 1621}, {219, 5422}, {220, 10601}, {238, 756}, {239, 3294}, {306, 25101}, {312, 5278}, {321, 17277}, {333, 4358}, {344, 5739}, {354, 15481}, {405, 3876}, {484, 3828}, {518, 5284}, {612, 9330}, {614, 7226}, {662, 17190}, {748, 984}, {750, 7262}, {846, 899}, {896, 17122}, {936, 4189}, {940, 16885}, {942, 17536}, {958, 1388}, {960, 5260}, {968, 3240}, {982, 17125}, {988, 27625}, {993, 4881}, {1001, 3681}, {1018, 6539}, {1100, 1255}, {1125, 5506}, {1150, 18743}, {1155, 9342}, {1171, 1963}, {1211, 2503}, {1212, 15889}, {1697, 4678}, {1698, 4338}, {1728, 5703}, {1743, 5287}, {1749, 14526}, {1757, 3720}, {1770, 26060}, {1776, 5432}, {1961, 2308}, {1995, 7085}, {1999, 19742}, {2183, 26044}, {2329, 26639}, {2345, 26998}, {2475, 12572}, {2895, 3912}, {2975, 5302}, {3060, 3781}, {3090, 26921}, {3100, 7069}, {3175, 17348}, {3187, 17349}, {3220, 15246}, {3245, 3968}, {3337, 19878}, {3523, 7330}, {3525, 24467}, {3526, 26877}, {3543, 3587}, {3617, 5250}, {3661, 21373}, {3666, 16814}, {3678, 5259}, {3685, 4651}, {3690, 5943}, {3691, 6542}, {3697, 3871}, {3711, 4428}, {3731, 5256}, {3746, 4015}, {3750, 21805}, {3757, 3952}, {3782, 17337}, {3812, 11684}, {3826, 20292}, {3833, 4880}, {3836, 4683}, {3868, 11108}, {3873, 4423}, {3874, 25542}, {3877, 9708}, {3916, 17531}, {3923, 26037}, {3925, 5057}, {3927, 16842}, {3938, 15485}, {3969, 4886}, {3973, 14996}, {3984, 5436}, {4038, 4722}, {4113, 4702}, {4193, 5791}, {4392, 5272}, {4414, 16569}, {4420, 5248}, {4430, 4666}, {4438, 25960}, {4473, 16561}, {4511, 5251}, {4641, 15492}, {4650, 17124}, {4652, 17572}, {4655, 25961}, {4656, 26723}, {4671, 5271}, {4679, 11680}, {4687, 19684}, {4698, 5333}, {4703, 25957}, {4745, 5541}, {4993, 26941}, {5012, 26885}, {5020, 26867}, {5056, 5709}, {5129, 12649}, {5133, 21015}, {5154, 5705}, {5218, 7082}, {5234, 19861}, {5268, 17126}, {5285, 13595}, {5311, 16468}, {5438, 17548}, {5439, 17534}, {5535, 10172}, {5536, 10171}, {5640, 26893}, {5657, 6957}, {5708, 16854}, {5729, 11020}, {5741, 27757}, {5758, 6886}, {5777, 6986}, {5779, 11220}, {5812, 6991}, {5815, 10587}, {5817, 10431}, {5927, 7411}, {6147, 17590}, {6197, 7563}, {6763, 19862}, {6871, 9780}, {6883, 18444}, {6932, 26446}, {6997, 26939}, {7171, 15692}, {7174, 17024}, {7291, 17292}, {7293, 7496}, {7322, 15601}, {7485, 24320}, {7548, 9956}, {7998, 26892}, {8025, 17120}, {9350, 17601}, {9945, 17525}, {10578, 15299}, {10580, 15298}, {10916, 26127}, {11227, 13243}, {11415, 19855}, {12527, 24564}, {13411, 15674}, {14555, 17776}, {15024, 26915}, {15064, 15931}, {15066, 23140}, {15296, 26105}, {15934, 17542}, {16296, 22458}, {16373, 20760}, {16514, 20965}, {16552, 16826}, {16568, 17289}, {16578, 16585}, {16667, 25417}, {16670, 25430}, {16675, 20182}, {16676, 17013}, {16823, 17165}, {16824, 25253}, {16858, 24929}, {17023, 17744}, {17147, 17261}, {17242, 20017}, {17263, 18139}, {17336, 19804}, {17394, 19738}, {17479, 25243}, {17742, 26626}, {17825, 24554}, {18151, 20886}, {18249, 24982}, {18250, 24987}, {18607, 25067}, {19249, 23169}, {19292, 23206}, {21511, 25066}, {21516, 25083}, {25068, 25946}, {26227, 27538}, {27020, 27030}, {27024, 27072}, {27025, 27049}, {27026, 27056}


X(27066) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(82), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (a^2 + b^2) (a^2 + c^2) (a^2 b^2 + b^4 + 2 a^2 b c + a^2 c^2 + 2 b^2 c^2 + c^4) : :

X(27066) lies on these lines: {2, 82}, {1213, 27026}, {3112, 4000}, {3405, 27020}, {17289, 27030}, {18082, 18095}, {18092, 18101}


X(27067) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(83), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (a^2 + b^2) (b + c) (a^2 + c^2) (a b + b^2 + a c + c^2) : :

X(27067) lies on these lines: {2, 32}, {10, 22025}, {12, 1284}, {308, 941}, {857, 18086}, {874, 17280}, {1176, 20029}, {1213, 27026}, {1228, 2092}, {1500, 3948}, {2478, 17500}, {4129, 4375}, {8299, 18091}, {16890, 17550}, {17541, 18092}, {18096, 26601}, {27033, 27057}


X(27068) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(85), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 - a^3 b - a b^3 + b^4 - a^3 c - a^2 b c - 2 b^2 c^2 - a c^3 + c^4 : :

X(27068) lies on these lines: {2, 85}, {9, 7679}, {10, 5526}, {21, 5179}, {41, 5086}, {169, 2476}, {388, 26258}, {498, 25082}, {644, 10039}, {894, 25000}, {910, 2475}, {1220, 1311}, {2082, 11680}, {2329, 5176}, {2345, 27522}, {3039, 6668}, {3496, 5057}, {3684, 5178}, {3746, 21090}, {3871, 21073}, {4262, 11015}, {4766, 17739}, {4850, 5286}, {5262, 5305}, {5540, 25639}, {5750, 7110}, {5819, 6871}, {6537, 27064}, {9318, 17062}, {9956, 26074}, {15492, 17303}, {16589, 23988}, {17289, 27025}, {19860, 23058}, {24547, 27547}, {25066, 27529}, {26279, 26561}, {27042, 27054}


X(27069) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(87), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b^4 - a^3 b^4 c - 2 a^4 b^2 c^2 - a^2 b^3 c^3 - a b^4 c^3 + a^4 c^4 - a^3 b c^4 - a b^3 c^4 + b^4 c^4 : :

X(27069) lies on these lines: {2, 87}, {26772, 27035}, {27020, 27073}


X(27070) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(88), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b^2 + 2 a^3 b^3 + a^2 b^4 - 2 a^4 b c - 2 a^3 b^2 c + a^4 c^2 - 2 a^3 b c^2 + 2 a^2 b^2 c^2 - 4 a b^3 c^2 + b^4 c^2 + 2 a^3 c^3 - 4 a b^2 c^3 + 2 b^3 c^3 + a^2 c^4 + b^2 c^4 : :

X(27070) lies on these lines: {2, 45}, {2245, 27036}, {21362, 26223}, {27020, 27072}


X(27071) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^5 b - a^4 b^2 - a^3 b^3 + a^2 b^4 + a^5 c + 2 a^4 b c - a^3 b^2 c - a^4 c^2 - a^3 b c^2 - 2 a^2 b^2 c^2 + a b^3 c^2 + b^4 c^2 - a^3 c^3 + a b^2 c^3 - 2 b^3 c^3 + a^2 c^4 + b^2 c^4) : :

X(27071) lies on these lines: {2, 99}, {661, 21232}, {1577, 24036}, {6537, 27025}, {16592, 27256}, {20982, 21272}, {26035, 27251}, {27021, 27040}, {27033, 27057}, {27039, 27055}, {27072, 27076}


X(27072) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(100), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b^2 - 2 a^3 b^3 + a^2 b^4 + 2 a^4 b c - 2 a^3 b^2 c + a^4 c^2 - 2 a^3 b c^2 + 2 a^2 b^2 c^2 + b^4 c^2 - 2 a^3 c^3 - 2 b^3 c^3 + a^2 c^4 + b^2 c^4 : :

X(27072) lies on these lines: {2, 11}, {767, 7795}, {4422, 27074}, {6184, 23989}, {17494, 23988}, {27020, 27070}, {27021, 27025}, {27024, 27065}, {27026, 27050}, {27030, 27035}, {27034, 27041}, {27071, 27076}


X(27073) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c + 4 a^2 b^2 c - 2 a b^3 c + a^3 c^2 + 4 a^2 b c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(27073) lies on these lines: {2, 37}, {9, 26756}, {45, 27095}, {1213, 27037}, {1654, 26774}, {3662, 26769}, {3912, 17178}, {4357, 27113}, {4422, 26772}, {4473, 26799}, {16738, 17285}, {17116, 26817}, {17243, 26963}, {17258, 27106}, {17260, 27044}, {17265, 27107}, {17266, 27017}, {17267, 27145}, {17317, 26975}, {17319, 26982}, {17340, 26976}, {22343, 25284}, {24491, 26752}, {27020, 27069}, {27025, 27080}


X(27074) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(900), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b - c) (a^4 - 2 a^3 b + 2 a^2 b^2 - a b^3 - 2 a^3 c + 6 a^2 b c - 3 a b^2 c + b^3 c + 2 a^2 c^2 - 3 a b c^2 - b^2 c^2 - a c^3 + b c^3) : :

X(27074) lies on these lines: {2, 900}, {190, 27134}, {3766, 17280}, {4422, 27072}, {4526, 17302}, {17281, 21606}, {27027, 27294}


X(27075) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(659), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b - c) (a^4 b^2 - a^3 b^3 + 3 a^4 b c - a^3 b^2 c + a^4 c^2 - a^3 b c^2 - 2 a^2 b^2 c^2 - a^3 c^3 + b^3 c^3) : :

X(27075) lies on these lines: {2, 659}, {798, 20295}, {1960, 26801}, {4422, 27072}, {10566, 27029}, {20979, 24356}, {21385, 27255}


X(27076) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(668), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^2 b^2 - 2 a b^2 c + a^2 c^2 - 2 a b c^2 + 2 b^2 c^2 : :

X(27076) lies on these lines: {2, 668}, {10, 3934}, {32, 26687}, {39, 6376}, {75, 9466}, {76, 1574}, {115, 26582}, {116, 121}, {192, 18146}, {291, 1698}, {519, 20530}, {537, 3739}, {538, 1575}, {620, 2787}, {625, 3814}, {626, 1329}, {812, 4422}, {891, 4928}, {958, 7815}, {1018, 4465}, {1107, 6683}, {1125, 25102}, {1376, 3734}, {1500, 18140}, {1921, 21830}, {2551, 7800}, {2885, 21258}, {3008, 25125}, {3039, 20317}, {3634, 25109}, {3788, 26364}, {3948, 27044}, {4103, 9055}, {4386, 7804}, {4403, 18159}, {4426, 7780}, {4482, 9259}, {4561, 24281}, {4568, 21138}, {4986, 27918}, {6292, 26558}, {6685, 25115}, {6686, 25116}, {6702, 17239}, {7257, 25530}, {7816, 25440}, {8649, 18047}, {9317, 9458}, {9708, 15271}, {9780, 17794}, {16589, 27020}, {16705, 26779}, {17759, 18145}, {19862, 24656}, {19878, 25130}, {21838, 27035}, {24988, 25468}, {25280, 26959}, {25499, 26030}, {27025, 27040}, {27071, 27072}


X(27077) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(669), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b - c) (a^5 b^3 - a^4 b^4 + 3 a^5 b^2 c - a^4 b^3 c + 3 a^5 b c^2 - a^4 b^2 c^2 + a^5 c^3 - a^4 b c^3 - a^4 c^4 + b^4 c^4) : :

X(27077) lies on these lines: {2, 669}, {10566, 27029}, {20295, 27046}


X(27078) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(894), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^3 b^2 + a^2 b^3 + 4 a^3 b c + 2 a b^3 c + a^3 c^2 + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + 2 a b c^3 + b^2 c^3 : :

X(27078) lies on these lines: {2, 7}, {6, 27261}, {44, 16738}, {1213, 27036}, {3008, 26812}, {3589, 26971}, {3758, 27145}, {3923, 26030}, {4363, 27311}, {4422, 27032}, {4698, 16726}, {16706, 26976}, {17120, 17178}, {17289, 26772}, {17292, 26756}, {17337, 27154}, {17355, 26764}, {17369, 27102}, {17371, 27095}, {17741, 26965}, {20352, 21803}, {26975, 26979}, {27020, 27069}


X(27079) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(896), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b^2 + a^2 b^4 + 4 a^4 b c - 2 a^2 b^3 c + a^4 c^2 - 6 a^2 b^2 c^2 + b^4 c^2 - 2 a^2 b c^3 + a^2 c^4 + b^2 c^4 : :

X(27079) lies on these lines: {2, 896}, {798, 20295}, {17123, 26999}, {27020, 27030}


X(27080) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(984), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    a^4 b^2 + a^2 b^4 + a^3 b^2 c + 3 a^2 b^3 c + a^4 c^2 + a^3 b c^2 + 8 a^2 b^2 c^2 + a b^3 c^2 + b^4 c^2 + 3 a^2 b c^3 + a b^2 c^3 + a^2 c^4 + b^2 c^4 : :

X(27080) lies on these lines: {2, 38}, {4357, 27116}, {16830, 26986}, {17248, 27091}, {17260, 20372}, {17263, 27097}, {17289, 27026}, {17326, 27102}, {17338, 27255}, {24697, 26778}, {27025, 27073}


X(27081) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1150), WHERE A'B'C' = GEMINI TRIANGLE 52

Barycentrics    (b + c) (a^2 + 3 a b + 2 b^2 + 3 a c + b c + 2 c^2) : :

X(27081) lies on these lines: {2, 6}, {10, 3120}, {145, 4205}, {306, 3986}, {321, 6539}, {1086, 27791}, {1230, 3596}, {1330, 17589}, {1834, 4678}, {2321, 3995}, {3187, 4034}, {3218, 17252}, {3454, 9780}, {3617, 5051}, {3661, 17497}, {3948, 4671}, {4026, 19998}, {4062, 25354}, {4085, 4651}, {4272, 17013}, {4357, 17495}, {4358, 17239}, {4359, 17235}, {4425, 8013}, {4427, 24697}, {4442, 4733}, {4748, 17740}, {4850, 17250}, {4938, 5625}, {6536, 21085}, {6537, 6627}, {7226, 20966}, {8818, 26792}, {11115, 26064}, {16589, 17230}, {17012, 17326}, {17021, 17287}, {17147, 17247}, {17184, 24199}, {17236, 27794}, {17237, 24589}, {17272, 26627}, {17292, 21383}, {17491, 24342}, {19804, 27793}, {27021, 27025}


X(27082) =  X(3)X(15077)∩X(4)X(5972)

Barycentrics    (a^2-b^2-c^2) (5 a^4-2 a^2 b^2-3 b^4-2 a^2 c^2+6 b^2 c^2-3 c^4) (3 a^4-2 a^2 b^2-b^4-2 a^2 c^2+2 b^2 c^2-c^4) : :
Barycentrics    S^2 (24 R^2-SB-SC-5 SW)+SB SC (-32 R^2+8 SW) : :
X(27082) = 4*X[3]-X[15077]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.

X(27082) lies on the cubics K041 and K934 and these lines: {3,15077}, {4,5972}, {20,154}, { 69,3522}, {159,11413}, {343, 21734}, {376,5562}, {394,16936}, {511,16879}, {631,11704}, {1092, 8718}, {2071,8907}, {3146,15748}, {3528,12254}, {3619,14118}, { 5059,11064}, {5921,8567}, {6225,16386}, {6467,25406}, {10167, 18732}, {11206,12279}, {12118, 18931}, {19467,22647}


X(27083) =  X(21)X(60)∩X(1175)X(18123)

Barycentrics    a^2 (a+b)^2 (a-b-c) (a+c)^2 (a^6-2 a^5 b-a^4 b^2+4 a^3 b^3-a^2 b^4-2 a b^5+b^6-2 a^5 c+a^4 b c+3 a^3 b^2 c-a^2 b^3 c-a b^4 c-a^4 c^2+3 a^3 b c^2+2 a^2 b^2 c^2+a b^3 c^2-b^4 c^2+4 a^3 c^3-a^2 b c^3+a b^2 c^3-a^2 c^4-a b c^4-b^2 c^4-2 a c^5+c^6) : :

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.

X(27083) lies on the cubic K934 and these lines: {21,60}, {1175,18123}


X(27084) =  X(4)X(15462)∩X(22)X(206)

Barycentrics    a^4 (a^2-b^2-c^2) (a^4-b^4-c^4) (a^10-a^8 b^2-2 a^6 b^4+2 a^4 b^6+a^2 b^8-b^10-a^8 c^2-2 a^6 b^2 c^2-2 a^4 b^4 c^2+2 a^2 b^6 c^2+3 b^8 c^2-2 a^6 c^4-2 a^4 b^2 c^4-2 a^2 b^4 c^4-2 b^6 c^4+2 a^4 c^6+2 a^2 b^2 c^6-2 b^4 c^6+a^2 c^8+3 b^2 c^8-c^10) : :

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.

X(27084) lies on the cubic K934 and these lines: {4,15462}, {22,206}, {343,19127}, {1176,1899}


X(27085) =  X(3)X(15077)∩X(4)X(5972)

Barycentrics    a^4 (a^4-b^4+b^2 c^2-c^4) (a^6-a^4 b^2-a^2 b^4+b^6-a^4 c^2-a^2 b^2 c^2-2 b^4 c^2-a^2 c^4-2 b^2 c^4+c^6) : :

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.

X(27085) lies on the cubic K934 and these lines: {4,83}, {23,6593}, {1177,9140}, { 2070,19381}, {3047,12367}, { 5169,19127}, {9979,13315}, {15019,19136}


X(27086) =  EULER LINE INTERCEPT OF X(35)X(3754)

Barycentrics    a^2 (a^2-b^2+b c-c^2) (a^3-a^2 b-a b^2+b^3-a^2 c-a b c-a c^2+c^3) : :

As a point on the Euler line, X(27086) has Shinagawa coefficients {2 r^2 + 2 r R - R^2, -2 r (r + R)}.

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.

X(27086) lies on these lines: {2,3}, {35,3754}, {36,214}, {100, 5172}, {191,997}, {515,17009}, { 1125,14794}, {1470,21454}, {1708,4855}, {1737,17010}, {1994, 5398}, {2206,4257}, {2646,8261}, {2771,18861}, {2975,21677}, {3002,5546}, {4256,20966}, {4861,14798}, {5010,5426}, {5204,11684}, {5253,11281}, {5303,18253}, {5445,25440}, {6796,25005}, {10090,11604}, {11263,14792}, {17653,22936}

X(27086)= {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {3,4216,6636}, {3,4218,15246}, { 3,19525,17549}, {21,404,442}, { 21,3651,15680}, {404,1006,2}, { 442,5428,21}, {1006,6905,6882}, {1006,21161,5428}, {4188,4189,4190}, {4189,15674,21}, {6827,6921,2}, {6830,17566,2}, {11334,19245,13595}


X(27087) =  EULER LINE INTERCEPT OF X(131)X(12095)

Barycentrics    (a^2-b^2-c^2) (a^6-3 a^4 b^2+3 a^2 b^4-b^6-3 a^4 c^2-2 a^2 b^2 c^2+b^4 c^2+3 a^2 c^4+b^2 c^4-c^6) (2 a^8-3 a^6 b^2+a^4 b^4-a^2 b^6+b^8-3 a^6 c^2+2 a^4 b^2 c^2+a^2 b^4 c^2-4 b^6 c^2+a^4 c^4+a^2 b^2 c^4+6 b^4 c^4-a^2 c^6-4 b^2 c^6+c^8) : :
Barycentrics    S^4 + (-20 R^4-SB SC+12 R^2 SW-2 SW^2)S^2 + SB SC (-12 R^4+4 R^2 SW) : :

As a point on the Euler line, X(27087) has Shinagawa coefficients {20 R^4 - S^2 - 12 R^2 SW + 2 SW^2, 12 R^4 + S^2 - 4 R^2 SW}.

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.

X(27087) lies on these lines: {2,3}, {131,12095}, {3564,13557}

X(27087)= midpoint of X(131) and X(12095)


X(27088) =  EULER LINE INTERCEPT OF X(6)X(7618)

Barycentrics    (2 a^2-b^2-c^2) (5 a^2-b^2-c^2) : :
Barycentrics    9 S^2 - 9 SB SC - 2 SW^2 : :
X(27088) = X[115]-3*X[5215], X[625]-2*X[22247], X[6781]+3*X[9167], 3*X[8290]+X[9889], X[8591]+3*X[8859], 2*X[14148]+X[15480]

As a point on the Euler line, X(27088) has Shinagawa coefficients {2 SW^2 - 9 S^2, 9 S^2}.

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.

X(27088) lies on these lines: {2,3}, {6,7618}, {32,8584}, {69,15655}, {99,9136}, {110,6093}, {115,5215}, {141,8588}, {187,524}, {230,543}, {574,597}, {598,11149}, {599,5210}, {620,3849}, {625,22247}, {671,10153}, {1384,1992}, {1499,4786}, {2021,5969}, {2080,5182}, {3053,15534}, {3054,7617}, {3055,7619}, {3564,8593}, {3589,8589}, {3734,5569}, {3815,7622}, {3933,5023}, {5008,20583}, {5032,21309}, {5104,15483}, {5206,7767}, {5305,7782}, {5475,9771}, {5476,9734}, {5585,21358}, {6781,9167}, {7610,21843}, {7737,11184}, {7750,7870}, {7789,7810}, {7820,15810}, {7891,9939}, {8030,14567}, {8290,9889}, {8591,8859}, {8860,11164}, {9486,16317}, {9489,25423}, {9741,22253}, {11151,11171}, {11161,14830}, {11162,14666}, {11163,12040}, {11645,19662}, {14148,15480}, {15993,19911}

X(27088) = midpoint of X(i) and X(j) for these {i,j}: {2,8598}, {99,22329}, {187,2482}, {376,1513}, {1551,10295}, {6661,10997}, {7426,7472}, {8352,9855}, {35303,35304}
X(27088) = reflection of X(i) in X(j) for these {i,j}: {381,10011}, {625,22247}, {6390,2482}, {8352,8355}, {22110,620}
X(27088) = complement of X(8352)
X(27088) = anticomplement of X(8355)

X(27088) = X(230)-of-anti-Artzt-triangle
X(27088) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {2,376,5077}, {2,8352,8355}, {2,8703,8354}, {2,9855,8352}, {2,11159,3363}, {2,11317,5}, {2,13586,8598}, {3,8369,8359}, {187,6390,3793}, {548,7807,8357}, {548,8360,7833}, {550,16925,8361}, {599,5210,8182}, {1384,11165,1992}, {3734,5569,11168}, {5077,11288,2}, {7807,7833,8360}, {7820,15810,20582}, {7833,8360,8357}, {8352,8598,9855}, {8359,8369,7819}, {8860,11164,11185}, {8860,11185,16509}, {12040,18907,11163}, {16431,16436,11350}


X(27089) =  EULER LINE INTERCEPT OF X(1503)X(11589)

Barycentrics    (a^2-b^2-c^2) (3 a^4-2 a^2 b^2-b^4-2 a^2 c^2+2 b^2 c^2-c^4) (2 a^10-a^8 b^2-8 a^6 b^4+10 a^4 b^6-2 a^2 b^8-b^10-a^8 c^2+16 a^6 b^2 c^2-10 a^4 b^4 c^2-8 a^2 b^6 c^2+3 b^8 c^2-8 a^6 c^4-10 a^4 b^2 c^4+20 a^2 b^4 c^4-2 b^6 c^4+10 a^4 c^6-8 a^2 b^2 c^6-2 b^4 c^6-2 a^2 c^8+3 b^2 c^8-c^10) : :
Barycentrics    S^4 + (160 R^4 - SB SC - 64 R^2 SW + 6 SW^2)S^2 + (-192 R^4 + 80 R^2 SW - 8 SW^2)SB SC : :

As a point on the Euler line, X(27089) has Shinagawa coefficients {160 R^4+S^2-64 R^2 SW+6 SW^2,-192 R^4-S^2+80 R^2 SW-8 SW^2}.

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.

X(27089) lies on these lines: {2,3}, {1503,11589}, {3184,12096}, {5894,14379}, {8057,15427}

X(27089) = midpoint of X(i) and X(j) for these {i,j}: {20,1559}, {3184,12096}
X(27089) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {20,2060,6616}, {376,3079,20}, {550,13155,20}


X(27090) =  EULER LINE INTERCEPT OF X(6150)X(6592)

Barycentrics    (3 a^6-7 a^4 b^2+5 a^2 b^4-b^6-7 a^4 c^2-3 a^2 b^2 c^2+b^4 c^2+5 a^2 c^4+b^2 c^4-c^6) (2 a^10-7 a^8 b^2+10 a^6 b^4-8 a^4 b^6+4 a^2 b^8-b^10-7 a^8 c^2+10 a^6 b^2 c^2-a^4 b^4 c^2-5 a^2 b^6 c^2+3 b^8 c^2+10 a^6 c^4-a^4 b^2 c^4+2 a^2 b^4 c^4-2 b^6 c^4-8 a^4 c^6-5 a^2 b^2 c^6-2 b^4 c^6+4 a^2 c^8+3 b^2 c^8-c^10) : :
Barycentrics    16 S^4 + (-47 R^4-16 SB SC+44 R^2 SW-12 SW^2)S^2 + (-3 R^4-4 R^2 SW+4 SW^2)SB SC : :

As a point on the Euler line, X(27090) has Shinagawa coefficients {47 R^4-16 S^2-44 R^2 SW+12 SW^2,3 R^4+16 S^2+4 R^2 SW-4 SW^2}.

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.

X(27090) lies on these lines: {2,3}, {930,24385}, {6150,6592}

X(27090) = midpoint of X(i) and X(j) for these {i,j}:{930,24385}, {6150,6592}
X(27090) = complement of X(24306)
X(27090) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {3,140,15334}, {140,5501,3628}

leftri

Collineation mappings involving Gemini triangle 53: X(27091)-X(27141)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 53, as in centers X(27091)-X(27141). Then

m(X) = a (b^2 + c^2) x + b (a - c)^2 y + c (a - b)^2 z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 5, 2018)


X(27091) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^2 b^2 - a b^2 c + a^2 c^2 - a b c^2 + b^2 c^2 : :

X(27091) lies on these lines: {1, 2}, {3, 26687}, {5, 26582}, {12, 17670}, {35, 16916}, {37, 10009}, {39, 6376}, {75, 1574}, {76, 1575}, {83, 4386}, {100, 17541}, {101, 17743}, {194, 6381}, {312, 21412}, {335, 24046}, {384, 25440}, {538, 20943}, {594, 25505}, {668, 2275}, {672, 26043}, {726, 24080}, {874, 17279}, {958, 11285}, {993, 7824}, {1015, 24524}, {1018, 27103}, {1078, 4426}, {1107, 7786}, {1329, 6656}, {1376, 7770}, {1500, 30963}, {1573, 6683}, {1837, 28798}, {1921, 32453}, {1964, 31337}, {2276, 18140}, {2321, 26107}, {2550, 32968}, {2551, 16043}, {2886, 32992}, {3035, 7807}, {3125, 18055}, {3249, 31286}, {3596, 27633}, {3662, 24170}, {3760, 17759}, {3814, 5025}, {3820, 8362}, {3826, 33033}, {3841, 33045}, {3959, 18061}, {3963, 27641}, {4021, 26143}, {4075, 27481}, {4187, 26590}, {4357, 26042}, {4358, 21435}, {4359, 27285}, {4366, 8715}, {4413, 11321}, {4699, 27298}, {5010, 17692}, {5248, 16918}, {5251, 17684}, {5267, 33004}, {5280, 16997}, {7752, 20541}, {7808, 20179}, {8165, 33202}, {9709, 20172}, {12782, 17793}, {13747, 26686}, {15482, 31456}, {16549, 24514}, {16604, 25102}, {16606, 25115}, {16921, 25639}, {16975, 25280}, {17053, 17786}, {17228, 26979}, {17234, 20549}, {17242, 20501}, {17243, 20491}, {17247, 26764}, {17248, 27080}, {17301, 25534}, {17338, 24491}, {17339, 27136}, {17353, 24502}, {17363, 26963}, {17364, 26756}, {17368, 26772}, {17499, 17754}, {17540, 26629}, {17756, 18135}, {17757, 26561}, {18044, 24530}, {20335, 24190}, {20530, 20691}, {20888, 31276}, {21067, 24166}, {21385, 27140}, {22199, 25287}, {24914, 28771}, {25066, 25994}, {25092, 27269}, {25590, 26149}, {26689, 28737}, {27092, 27129}, {27100, 27110}, {27122, 27127}, {30478, 32978}, {31418, 32987}


X(27092) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^5 b^2 - a^4 b^3 - a^3 b^4 + a^2 b^5 + 2 a^3 b^3 c - 2 a b^5 c + a^5 c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 + b^5 c^2 - a^4 c^3 + 2 a^3 b c^3 - 2 a^2 b^2 c^3 + 4 a b^3 c^3 - b^4 c^3 - a^3 c^4 - b^3 c^4 + a^2 c^5 - 2 a b c^5 + b^2 c^5 : :

X(27092) lies on these lines: {2, 3}, {325, 27515}, {27091, 27129}, {27095, 27101}, {27096, 27134}, {27109, 27133}


X(27093) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^6 b - a^5 b^2 - a^2 b^5 + a b^6 + a^6 c - 4 a^5 b c - a^4 b^2 c + 4 a^3 b^3 c - a^2 b^4 c + b^6 c - a^5 c^2 - a^4 b c^2 - a b^4 c^2 - b^5 c^2 + 4 a^3 b c^3 - a^2 b c^4 - a b^2 c^4 - a^2 c^5 - b^2 c^5 + a c^6 + b c^6 : :

X(27093) lies on these lines: {2, 3}, {36, 28410}, {1040, 26203}, {3662, 27097}, {27108, 27109}


X(27094) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^6 b - a^4 b^3 - a^3 b^4 + a b^6 + a^6 c - 4 a^5 b c - a^4 b^2 c + 6 a^3 b^3 c - a^2 b^4 c - 2 a b^5 c + b^6 c - a^4 b c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 - a b^4 c^2 - a^4 c^3 + 6 a^3 b c^3 - 2 a^2 b^2 c^3 + 4 a b^3 c^3 - b^4 c^3 - a^3 c^4 - a^2 b c^4 - a b^2 c^4 - b^3 c^4 - 2 a b c^5 + a c^6 + b c^6 : :

X(27094) lies on this line: {2, 3}


X(27095) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a b^3 c + a^3 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(27095) lies on these lines: {2, 6}, {45, 27073}, {75, 27044}, {190, 27136}, {192, 646}, {2345, 26976}, {3009, 25140}, {3661, 26971}, {3662, 24170}, {3759, 26982}, {4360, 25534}, {4361, 27011}, {4389, 26764}, {4751, 27160}, {4851, 27166}, {5296, 27037}, {17119, 26850}, {17148, 27633}, {17227, 27017}, {17228, 25505}, {17230, 26107}, {17233, 26774}, {17236, 26042}, {17248, 27032}, {17255, 26769}, {17262, 26797}, {17279, 27113}, {17287, 26959}, {17291, 27311}, {17292, 27261}, {17302, 26100}, {17312, 25510}, {17326, 27020}, {17338, 27036}, {17347, 26768}, {17354, 26799}, {17364, 26975}, {17371, 27078}, {17377, 26821}, {17786, 28395}, {18133, 31036}, {18170, 25292}, {20352, 31337}, {20917, 27641}, {21244, 26176}, {21352, 25121}, {21858, 29764}, {25535, 29570}, {25538, 29610}, {25940, 26222}, {26076, 31300}, {26149, 28604}, {27035, 31004}, {27092, 27101}, {27100, 27104}, {27126, 27137}, {27154, 29576}


X(27096) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b - 2 a^2 b^2 + a b^3 + a^3 c - 2 a^2 b c + 2 a b^2 c + b^3 c - 2 a^2 c^2 + 2 a b c^2 - 2 b^2 c^2 + a c^3 + b c^3 : :

X(27096) lies on these lines: {1, 2}, {3, 31020}, {5, 31031}, {85, 25244}, {141, 27170}, {344, 27039}, {345, 18136}, {495, 17672}, {668, 27109}, {857, 31032}, {1211, 27050}, {1500, 26100}, {3061, 21272}, {3314, 26796}, {3454, 26781}, {3501, 20347}, {3693, 25237}, {3871, 17681}, {3930, 20247}, {4193, 31058}, {4851, 27161}, {5046, 20533}, {5233, 27256}, {9709, 17683}, {16284, 26690}, {16593, 21031}, {17170, 31080}, {17279, 27108}, {17756, 18600}, {20244, 20335}, {21232, 33299}, {25066, 30806}, {27021, 31037}, {27038, 27283}, {27049, 31018}, {27072, 31017}, {27092, 27134}, {27118, 27129}, {27119, 30831}, {28772, 33160}


X(27097) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b + a b^3 + a^3 c - 2 a^2 b c + b^3 c + a c^3 + b c^3 : :

X(27097) lies on these lines: {1, 2}, {21, 27185}, {37, 16705}, {56, 28777}, {72, 26689}, {141, 27047}, {213, 30941}, {304, 17489}, {321, 16752}, {350, 26978}, {517, 26562}, {595, 29473}, {894, 17169}, {1018, 24170}, {1475, 17353}, {1479, 16910}, {1621, 16060}, {1909, 27040}, {2176, 17137}, {2242, 25497}, {2275, 17279}, {2276, 27162}, {2345, 25504}, {3230, 17152}, {3263, 28598}, {3290, 20911}, {3294, 16887}, {3662, 27093}, {3670, 25248}, {3726, 17141}, {3915, 24586}, {4202, 26590}, {5074, 17211}, {5253, 16061}, {5255, 24602}, {5259, 16931}, {5263, 27169}, {5749, 26106}, {9310, 24549}, {11321, 24552}, {11363, 15149}, {14210, 16600}, {16583, 17497}, {16712, 32026}, {16738, 17201}, {17053, 27634}, {17081, 28739}, {17084, 27273}, {17263, 27080}, {17283, 27116}, {17674, 26582}, {17683, 20172}, {17686, 32942}, {18600, 25264}, {20244, 24190}, {25082, 25918}, {25994, 30806}, {26035, 31997}, {26041, 32099}, {26100, 30963}, {26971, 27155}, {27021, 27256}, {27119, 27134}, {27125, 27131}, {27249, 27259}


X(27098) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 + 2 a^5 b^3 c - 2 a b^7 c + a^7 c^2 - a^4 b^3 c^2 - a^3 b^4 c^2 + b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 - a^4 b^2 c^3 - a^2 b^4 c^3 + 2 a b^5 c^3 - b^6 c^3 - a^3 b^2 c^4 - a^2 b^3 c^4 + 2 a b^3 c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 - 2 a b c^7 + b^2 c^7 : :

X(27098) lies on these lines: {2, 3}


X(27099) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 + 2 a^5 b^3 c - 2 a b^7 c + a^7 c^2 + b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 - 4 a^3 b^3 c^3 + 2 a b^5 c^3 - b^6 c^3 + 2 a b^3 c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 - 2 a b c^7 + b^2 c^7 : :

X(27099) lies on these lines: {2, 3}


X(27100) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^4 b^2 + a^2 b^4 - 2 a b^4 c + a^4 c^2 + b^4 c^2 + a^2 c^4 - 2 a b c^4 + b^2 c^4 : :

X(27100) lies on these lines: {2, 31}, {20965, 21250}, {27091, 27110}, {27095, 27104}, {27105, 27134}


X(27101) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^5 b^2 + a^2 b^5 - 2 a b^5 c + a^5 c^2 + b^5 c^2 + a^2 c^5 - 2 a b c^5 + b^2 c^5 : :

X(27101) lies on these lines: {2, 32}, {27092, 27095}, {27109, 27126}, {27119, 27312}, {27133, 27137}


X(27102) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b^2 + a^2 b^3 + a^3 c^2 - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(27102) lies on these lines: {2, 37}, {6, 26975}, {9, 27036}, {10, 16738}, {38, 25120}, {141, 27017}, {190, 27111}, {239, 26963}, {319, 17178}, {320, 26756}, {594, 26979}, {894, 21362}, {1268, 27164}, {1269, 31026}, {1654, 26048}, {1740, 21278}, {1909, 16710}, {1958, 26222}, {1964, 20352}, {2234, 21238}, {2309, 20340}, {3009, 28597}, {3596, 17148}, {3661, 27145}, {3662, 24170}, {4360, 27166}, {4438, 25611}, {4472, 27042}, {4852, 26821}, {17077, 27315}, {17116, 26976}, {17117, 26959}, {17231, 26774}, {17234, 27159}, {17237, 26857}, {17258, 26769}, {17283, 27113}, {17300, 20561}, {17319, 25510}, {17326, 27080}, {17345, 26768}, {17351, 26799}, {17366, 26982}, {17369, 27078}, {17376, 26816}, {17872, 30801}, {20255, 29964}, {21858, 30939}, {22012, 24195}, {24746, 33115}, {26029, 27334}, {27103, 27117}, {27120, 27127}


X(27103) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^4 b^3 + a^3 b^4 - 2 a^3 b^3 c + 2 a^3 b^2 c^2 + 2 a^2 b^3 c^2 + a^4 c^3 - 2 a^3 b c^3 + 2 a^2 b^2 c^3 - 4 a b^3 c^3 + b^4 c^3 + a^3 c^4 + b^3 c^4 : :

X(27103) lies on these lines: {2, 39}, {1018, 27091}, {4595, 26752}, {27092, 27095}, {27102, 27117}, {27126, 27133}


X(27104) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    2 a^3 b^3 + a^3 b^2 c - a^2 b^3 c + a^3 b c^2 - a b^3 c^2 + 2 a^3 c^3 - a^2 b c^3 - a b^2 c^3 + 2 b^3 c^3 : :

X(27104) lies on these lines: {1, 2}, {27095, 27100}, {27110, 27134}


X(27105) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b^3 - a^2 b^3 c + 2 a^2 b^2 c^2 - a b^3 c^2 + a^3 c^3 - a^2 b c^3 - a b^2 c^3 + b^3 c^3 : :

X(27105) lies on these lines: {1, 2}, {1978, 20284}, {2229, 6384}, {2309, 27188}, {21071, 26108}, {27100, 27134}, {27285, 30818}


X(27106) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(44), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b^2 + a^2 b^3 - 4 a b^3 c + a^3 c^2 + 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 4 a b c^3 + b^2 c^3 : :

X(27106) lies on these lines: {2, 44}, {141, 26971}, {190, 27113}, {319, 27011}, {524, 26982}, {536, 18073}, {1086, 27044}, {3619, 27261}, {3662, 24170}, {3768, 27114}, {4357, 27032}, {5224, 27154}, {5564, 26850}, {6542, 26142}, {16706, 26756}, {17235, 26764}, {17238, 20549}, {17239, 26812}, {17258, 27073}, {17275, 27192}, {17276, 27136}, {17288, 26963}, {17291, 26772}, {17292, 26976}, {17297, 25534}, {17326, 27047}, {17357, 26799}, {17374, 26821}, {25140, 28597}


X(27107) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(45), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b^2 + a^2 b^3 + 2 a b^3 c + a^3 c^2 - 4 a b^2 c^2 + b^3 c^2 + a^2 c^3 + 2 a b c^3 + b^2 c^3 : :

X(27107) lies on these lines: {2, 45}, {7, 26772}, {75, 27017}, {274, 330}, {894, 27311}, {3662, 24170}, {4000, 26963}, {4361, 17178}, {5224, 26857}, {7232, 26756}, {7263, 26979}, {17116, 27261}, {17148, 20892}, {17227, 27044}, {17234, 26764}, {17244, 27159}, {17265, 27073}, {17267, 26797}, {17283, 27136}, {17301, 27166}, {17302, 27162}, {17333, 27036}, {17349, 27343}, {17367, 26975}, {17378, 26816}, {27032, 27147}


X(27108) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(69), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    (a - b - c) (a^3 b - a b^3 + a^3 c - 2 a^2 b c - b^3 c + 2 b^2 c^2 - a c^3 - b c^3) : :

X(27108) lies on these lines: {2, 6}, {9, 27514}, {198, 24612}, {319, 28748}, {322, 26669}, {346, 646}, {390, 2478}, {908, 17220}, {1229, 3965}, {2183, 20245}, {2269, 3452}, {2293, 6745}, {2345, 27058}, {2347, 21246}, {3262, 25243}, {3672, 27282}, {3686, 28797}, {4266, 17183}, {4384, 7190}, {4416, 17077}, {4643, 27170}, {4698, 4875}, {5227, 26265}, {6666, 28742}, {17279, 27096}, {27093, 27109}, {27124, 27133}, {27396, 30854}, {28778, 29616}


X(27109) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b - 2 a^2 b^2 + a b^3 + a^3 c + b^3 c - 2 a^2 c^2 + a c^3 + b c^3 : :

X(27109) lies on these lines: {2, 39}, {8, 4595}, {21, 5132}, {75, 25082}, {83, 11319}, {304, 26690}, {344, 3616}, {345, 5222}, {668, 27096}, {672, 17137}, {1193, 17353}, {1212, 20911}, {1280, 30701}, {1334, 30038}, {1475, 3912}, {1909, 28742}, {1930, 24036}, {2275, 17279}, {2276, 26965}, {2549, 16910}, {3263, 25066}, {3501, 30036}, {3618, 17526}, {3730, 17152}, {3735, 25248}, {3972, 17539}, {4253, 30941}, {4651, 23407}, {5030, 29473}, {5192, 11174}, {5276, 16061}, {5278, 16367}, {7772, 25497}, {7774, 26099}, {7791, 26085}, {7800, 17007}, {7864, 16906}, {7875, 16905}, {7876, 16991}, {7920, 17003}, {14021, 14555}, {16050, 32911}, {16549, 30109}, {16601, 26234}, {16818, 25092}, {16975, 26759}, {17169, 17234}, {17280, 26801}, {17303, 27156}, {17349, 17696}, {17754, 29966}, {17755, 33299}, {17756, 27299}, {17776, 26626}, {18061, 25253}, {20255, 20331}, {21070, 29742}, {21808, 24631}, {21877, 27313}, {23632, 27263}, {23649, 30821}, {27092, 27133}, {27093, 27108}, {27101, 27126}, {29590, 33168}


X(27110) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^4 b^2 + 2 a^3 b^3 + a^2 b^4 + 2 a^3 b^2 c - 2 a b^4 c + a^4 c^2 + 2 a^3 b c^2 - 4 a^2 b^2 c^2 + b^4 c^2 + 2 a^3 c^3 + 2 b^3 c^3 + a^2 c^4 - 2 a b c^4 + b^2 c^4 : :

X(27110) lies on these lines: {2, 6}, {646, 3995}, {27091, 27100}, {27104, 27134}


X(27111) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b^2 + a^2 b^3 + a^3 b c - a^2 b^2 c + a^3 c^2 - a^2 b c^2 - a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(27111) lies on these lines: {2, 6}, {37, 646}, {45, 26042}, {190, 27102}, {594, 26048}, {874, 17279}, {1100, 25510}, {2092, 25660}, {2664, 21238}, {3863, 27805}, {3948, 24530}, {4261, 30830}, {4361, 26107}, {4384, 25505}, {4698, 20363}, {16706, 25534}, {17243, 26752}, {17269, 27291}, {17273, 27017}, {17285, 27044}, {17305, 27311}, {17348, 26959}, {17390, 26113}, {17790, 21796}, {23345, 28758}, {25538, 31238}, {27073, 31333}, {27116, 27117}, {27123, 27132}


X(27112) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b - 6 a^2 b^2 + a b^3 + a^3 c - 2 a^2 b c + 6 a b^2 c + b^3 c - 6 a^2 c^2 + 6 a b c^2 - 6 b^2 c^2 + a c^3 + b c^3 : :

X(27112) lies on these lines: {1, 2}, {26687, 31020}


X(27113) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c + 2 a^2 b^2 c - 4 a b^3 c + a^3 c^2 + 2 a^2 b c^2 + b^3 c^2 + a^2 c^3 - 4 a b c^3 + b^2 c^3 : :

X(27113) lies on these lines: {1, 2}, {190, 27106}, {2321, 27011}, {3662, 27136}, {3663, 26797}, {4357, 27073}, {4431, 26850}, {4708, 27037}, {17231, 26963}, {17279, 27095}, {17283, 27102}, {17285, 26971}, {17291, 26764}, {17297, 26975}, {17307, 27032}, {17353, 26756}, {17357, 26772}, {17359, 26976}, {21385, 27138}, {27070, 31029}, {27131, 27137}


X(27114) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(661), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    (b - c) (a^4 b - a^2 b^3 + a^4 c - 2 a^3 b c - a^2 b^2 c - a^2 b c^2 - 2 a b^2 c^2 + b^3 c^2 - a^2 c^3 + b^2 c^3) : :

X(27114) lies on these lines: {2, 661}, {1150, 7252}, {2978, 24755}, {3762, 14838}, {3768, 27106}, {3952, 30584}, {4160, 26115}, {18155, 24900}, {18199, 19684}, {20295, 27346}, {21259, 21302}, {26049, 27013}, {26985, 27293}


X(27115) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(693), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    (b - c) (3 a^2 - 3 a b - 3 a c + b c) : :

X(27115) lies on these lines: {2, 650}, {149, 10006}, {514, 29607}, {661, 4763}, {812, 27138}, {1635, 20295}, {1639, 4467}, {1643, 29569}, {2516, 4380}, {3004, 14425}, {3239, 27486}, {3523, 8760}, {3619, 9015}, {3622, 14077}, {3762, 14838}, {4359, 21611}, {4394, 4776}, {4406, 27344}, {4521, 25259}, {4560, 4791}, {4777, 27268}, {4828, 31238}, {4893, 7192}, {5059, 8142}, {5281, 11934}, {6050, 31291}, {6546, 21212}, {9780, 29066}, {10196, 16892}, {16751, 26775}, {17069, 30565}, {17166, 31288}, {17260, 23808}, {17495, 25271}, {21297, 30835}, {21727, 29822}, {23806, 31053}


X(27116) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^4 b^2 + a^2 b^4 - a^3 b^2 c - a^2 b^3 c - 2 a b^4 c + a^4 c^2 - a^3 b c^2 + 4 a^2 b^2 c^2 - a b^3 c^2 + b^4 c^2 - a^2 b c^3 - a b^2 c^3 + a^2 c^4 - 2 a b c^4 + b^2 c^4 : :

X(27116) lies on these lines: {2, 31}, {10, 27019}, {141, 20561}, {335, 27044}, {3662, 24170}, {4357, 27080}, {17283, 27097}, {17291, 27020}, {17307, 27026}, {17368, 27036}, {21003, 21301}, {27111, 27117}


X(27117) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b + 4 a^2 b^2 + a b^3 + a^3 c - 2 a^2 b c - 4 a b^2 c + b^3 c + 4 a^2 c^2 - 4 a b c^2 + 4 b^2 c^2 + a c^3 + b c^3 : :

X(27117) lies on these lines: {1, 2}, {24988, 32992}, {27102, 27103}, {27111, 27116}


X(27118) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^6 b - 3 a^5 b^2 + 2 a^4 b^3 + 2 a^3 b^4 - 3 a^2 b^5 + a b^6 + a^6 c - 4 a^5 b c - a^4 b^2 c - a^2 b^4 c + 4 a b^5 c + b^6 c - 3 a^5 c^2 - a^4 b c^2 + 4 a^3 b^2 c^2 + 4 a^2 b^3 c^2 - a b^4 c^2 - 3 b^5 c^2 + 2 a^4 c^3 + 4 a^2 b^2 c^3 - 8 a b^3 c^3 + 2 b^4 c^3 + 2 a^3 c^4 - a^2 b c^4 - a b^2 c^4 + 2 b^3 c^4 - 3 a^2 c^5 + 4 a b c^5 - 3 b^2 c^5 + a c^6 + b c^6 : :

X(27118) lies on these lines: {2, 3}, {346, 21579}, {4461, 21403}, {27096, 27129}


X(27119) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^5 b^2 - a^4 b^3 - a^3 b^4 + a^2 b^5 - a^4 b^2 c - a^2 b^4 c - 2 a b^5 c + a^5 c^2 - a^4 b c^2 - a b^4 c^2 + b^5 c^2 - a^4 c^3 + 2 a b^3 c^3 - b^4 c^3 - a^3 c^4 - a^2 b c^4 - a b^2 c^4 - b^3 c^4 + a^2 c^5 - 2 a b c^5 + b^2 c^5 : :

X(27119) lies on these lines: {2, 3}, {7790, 28749}, {24170, 27135}, {27025, 30832}, {27091, 27100}, {27096, 30831}, {27097, 27134}, {27101, 27312}


X(27120) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 + 2 a^5 b^3 c - 2 a b^7 c + a^7 c^2 + a^4 b^3 c^2 + a^3 b^4 c^2 + b^7 c^2 - a^6 c^3 + 2 a^5 b c^3 + a^4 b^2 c^3 - 8 a^3 b^3 c^3 + a^2 b^4 c^3 + 2 a b^5 c^3 - b^6 c^3 + a^3 b^2 c^4 + a^2 b^3 c^4 + 2 a b^3 c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 - 2 a b c^7 + b^2 c^7 : :

X(27120) lies on these lines: {2, 3}, {27102, 27127}


X(27121) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^6 - 2 a^5 b - 2 a^4 b^2 + 2 a^3 b^3 - a^2 b^4 + 2 b^6 - 2 a^5 c - 3 a^4 b c + a^3 b^2 c + a^2 b^3 c - a b^4 c - 2 a^4 c^2 + a^3 b c^2 + 4 a^2 b^2 c^2 - a b^3 c^2 - 2 b^4 c^2 + 2 a^3 c^3 + a^2 b c^3 - a b^2 c^3 - a^2 c^4 - a b c^4 - 2 b^2 c^4 + 2 c^6 : :

X(27121) lies on these lines: {2, 3}, {16581, 17279}


X(27122) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^8 b^2 - a^6 b^4 - a^4 b^6 + a^2 b^8 + 2 a^6 b^3 c + 2 a^5 b^4 c - 2 a^2 b^7 c - 2 a b^8 c + a^8 c^2 + 4 a^6 b^2 c^2 + 4 a^5 b^3 c^2 - 2 a^4 b^4 c^2 + 2 a^3 b^5 c^2 - 2 a b^7 c^2 + b^8 c^2 + 2 a^6 b c^3 + 4 a^5 b^2 c^3 - 6 a^4 b^3 c^3 - 6 a^3 b^4 c^3 + 4 a^2 b^5 c^3 + 2 a b^6 c^3 - a^6 c^4 + 2 a^5 b c^4 - 2 a^4 b^2 c^4 - 6 a^3 b^3 c^4 + 2 a^2 b^4 c^4 + 2 a b^5 c^4 - b^6 c^4 + 2 a^3 b^2 c^5 + 4 a^2 b^3 c^5 + 2 a b^4 c^5 - a^4 c^6 + 2 a b^3 c^6 - b^4 c^6 - 2 a^2 b c^7 - 2 a b^2 c^7 + a^2 c^8 - 2 a b c^8 + b^2 c^8 : :

X(27122) lies on these lines: {2, 3}, {27091, 27127}


X(27123) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^8 b^2 - a^6 b^4 - a^4 b^6 + a^2 b^8 + a^8 b c - a^7 b^2 c - 2 a^6 b^3 c + 2 a^5 b^4 c + a^4 b^5 c - a^3 b^6 c + a^8 c^2 - a^7 b c^2 - 3 a^6 b^2 c^2 + 2 a^4 b^4 c^2 + a^3 b^5 c^2 - a^2 b^6 c^2 + b^8 c^2 - 2 a^6 b c^3 - 2 a^3 b^4 c^3 - a^6 c^4 + 2 a^5 b c^4 + 2 a^4 b^2 c^4 - 2 a^3 b^3 c^4 - b^6 c^4 + a^4 b c^5 + a^3 b^2 c^5 - a^4 c^6 - a^3 b c^6 - a^2 b^2 c^6 - b^4 c^6 + a^2 c^8 + b^2 c^8 : :

X(27123) lies on these lines: {2, 3}, {27111, 27132}


X(27124) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^6 b - 5 a^5 b^2 + 4 a^4 b^3 + 4 a^3 b^4 - 5 a^2 b^5 + a b^6 + a^6 c - 4 a^5 b c - a^4 b^2 c - 4 a^3 b^3 c - a^2 b^4 c + 8 a b^5 c + b^6 c - 5 a^5 c^2 - a^4 b c^2 + 8 a^3 b^2 c^2 + 8 a^2 b^3 c^2 - a b^4 c^2 - 5 b^5 c^2 + 4 a^4 c^3 - 4 a^3 b c^3 + 8 a^2 b^2 c^3 - 16 a b^3 c^3 + 4 b^4 c^3 + 4 a^3 c^4 - a^2 b c^4 - a b^2 c^4 + 4 b^3 c^4 - 5 a^2 c^5 + 8 a b c^5 - 5 b^2 c^5 + a c^6 + b c^6 : :

X(27124) lies on these lines: {2, 3}, {27108, 27133}


X(27125) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^6 b - a^5 b^2 - a^2 b^5 + a b^6 + a^6 c - 4 a^5 b c - 3 a^4 b^2 c - 3 a^2 b^4 c + b^6 c - a^5 c^2 - 3 a^4 b c^2 + 4 a^3 b^2 c^2 + 4 a^2 b^3 c^2 - 3 a b^4 c^2 - b^5 c^2 + 4 a^2 b^2 c^3 - 4 a b^3 c^3 - 3 a^2 b c^4 - 3 a b^2 c^4 - a^2 c^5 - b^2 c^5 + a c^6 + b c^6 : :

X(27125) lies on these lines: {2, 3}, {17279, 27096}, {27097, 27131}


X(27126) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^5 b^2 + a^2 b^5 + a^4 b^2 c - 2 a^3 b^3 c + a^2 b^4 c - 2 a b^5 c + a^5 c^2 + a^4 b c^2 + a b^4 c^2 + b^5 c^2 - 2 a^3 b c^3 + a^2 b c^4 + a b^2 c^4 + a^2 c^5 - 2 a b c^5 + b^2 c^5 : :

X(27126) lies on these lines: {2, 3}, {27095, 27137}, {27101, 27109}, {27103, 27133}


X(27127) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(19), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^4 b - b^5 + a^4 c + a^3 b c - 2 a^2 b^2 c + a b^3 c + b^4 c - 2 a^2 b c^2 + a b c^3 + b c^4 - c^5 : :

X(27127) lies on these lines: {2, 19}, {35, 25582}, {37, 31019}, {344, 16580}, {3218, 28420}, {3662, 27093}, {16581, 17279}, {17073, 21495}, {17321, 27186}, {18651, 26065}, {20336, 32858}, {21062, 26132}, {27091, 27122}, {27102, 27120}


X(27128) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(38), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^4 b^2 + a^2 b^4 - 2 a^3 b^2 c + a^4 c^2 - 2 a^3 b c^2 + 6 a^2 b^2 c^2 - 2 a b^3 c^2 + b^4 c^2 - 2 a b^2 c^3 + a^2 c^4 + b^2 c^4 : :

X(27128) lies on these lines: {2, 38}, {5205, 26969}, {27091, 27100}


X(27129) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(40), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    2 a^3 b - a^2 b^2 - b^4 + 2 a^3 c - 3 a^2 b c + b^3 c - a^2 c^2 + b c^3 - c^4 : :

X(27129) lies on these lines: {2, 40}, {20, 26658}, {78, 20533}, {85, 17747}, {169, 5195}, {220, 4872}, {226, 27253}, {516, 4209}, {517, 17671}, {673, 12701}, {857, 3661}, {1334, 7179}, {3649, 27475}, {3662, 27093}, {3730, 5074}, {3868, 31038}, {3912, 19582}, {4101, 29616}, {4188, 26660}, {4329, 27420}, {5046, 26653}, {5080, 28961}, {5088, 17732}, {6999, 25930}, {10025, 17170}, {11415, 28740}, {12699, 17682}, {12702, 17675}, {14021, 16826}, {21062, 27184}, {21068, 26125}, {21872, 33298}, {27021, 27255}, {27049, 31053}, {27091, 27092}, {27096, 27118}, {31045, 32858}


X(27130) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(57), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    2 a^2 b + a b^2 - b^3 + 2 a^2 c - 7 a b c + 2 b^2 c + a c^2 + 2 b c^2 - c^3 : :

X(27130) lies on these lines: {2, 7}, {43, 11814}, {306, 30861}, {1401, 3038}, {1699, 26073}, {1997, 1999}, {3340, 25979}, {3699, 4952}, {3772, 4997}, {3782, 31233}, {3870, 26139}, {4033, 16594}, {5121, 32937}, {6557, 30699}, {6700, 17697}, {13466, 29582}, {21075, 26093}, {24003, 29641}, {27091, 27092}, {27132, 29629}, {30855, 32911}


X(27131) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(63), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    -a^2 b + b^3 - a^2 c + 3 a b c - b^2 c - b c^2 + c^3 : :

X(27131) lies on these lines: {1, 26127}, {2, 7}, {5, 3876}, {8, 5187}, {10, 3899}, {11, 3681}, {43, 33134}, {72, 4193}, {78, 3586}, {100, 24703}, {145, 21075}, {149, 200}, {165, 21635}, {210, 5087}, {238, 29665}, {244, 33101}, {312, 3969}, {321, 5233}, {333, 17174}, {344, 27180}, {474, 18541}, {497, 3935}, {517, 6945}, {612, 33107}, {614, 33153}, {748, 17719}, {750, 33096}, {756, 17717}, {899, 3944}, {912, 6963}, {936, 2475}, {946, 3617}, {960, 11681}, {984, 29680}, {993, 5444}, {997, 5080}, {1054, 33098}, {1125, 17570}, {1215, 25960}, {1329, 3869}, {1376, 5057}, {1479, 4420}, {1621, 4679}, {1656, 15650}, {1699, 33110}, {1757, 29662}, {2051, 6539}, {2476, 5044}, {2478, 3488}, {2975, 25681}, {2994, 6557}, {2999, 33155}, {3006, 27538}, {3120, 16569}, {3240, 24210}, {3266, 21590}, {3436, 3476}, {3522, 6260}, {3616, 21077}, {3621, 12053}, {3654, 12611}, {3661, 31014}, {3671, 25011}, {3678, 7741}, {3679, 11813}, {3687, 4671}, {3697, 9955}, {3699, 5014}, {3705, 3952}, {3711, 11235}, {3740, 17605}, {3752, 33151}, {3786, 14008}, {3814, 5692}, {3816, 3873}, {3817, 25006}, {3825, 5904}, {3835, 6546}, {3840, 33065}, {3846, 29667}, {3868, 4187}, {3877, 17757}, {3890, 12607}, {3916, 17566}, {3925, 10129}, {3936, 18743}, {3940, 17556}, {3947, 24564}, {3957, 25568}, {3967, 33089}, {3971, 29849}, {3984, 9581}, {3994, 32855}, {3995, 22020}, {4009, 32862}, {4011, 29846}, {4090, 33120}, {4188, 6700}, {4189, 12572}, {4292, 17572}, {4358, 4417}, {4383, 17796}, {4413, 20292}, {4415, 4850}, {4416, 5372}, {4430, 11019}, {4661, 21060}, {4677, 21630}, {4703, 32918}, {4767, 30615}, {4855, 15680}, {4863, 10707}, {4871, 33069}, {4892, 25961}, {4997, 14829}, {5047, 11374}, {5123, 31165}, {5154, 6734}, {5176, 5289}, {5178, 10896}, {5205, 6327}, {5235, 17173}, {5253, 24954}, {5260, 11375}, {5268, 33112}, {5272, 33148}, {5284, 17718}, {5297, 26098}, {5423, 31091}, {5440, 11114}, {5550, 13407}, {5554, 8165}, {5709, 6979}, {5712, 17021}, {5720, 6840}, {5737, 30824}, {5739, 28808}, {5758, 6953}, {5761, 6898}, {5777, 6943}, {5791, 7504}, {5811, 6890}, {5812, 6915}, {5815, 10529}, {5880, 9342}, {6147, 17575}, {6384, 27461}, {6536, 29825}, {6686, 33125}, {6863, 26878}, {6872, 27383}, {6919, 12649}, {6922, 12528}, {6941, 31837}, {6947, 18444}, {6949, 26921}, {6971, 31835}, {6972, 7330}, {6975, 24474}, {7226, 24239}, {7292, 33144}, {7951, 10176}, {9335, 24231}, {9350, 24715}, {9352, 17768}, {9580, 20095}, {9780, 12047}, {10157, 10883}, {10584, 24477}, {11220, 13257}, {11684, 24914}, {11814, 30957}, {12514, 27529}, {12609, 19877}, {13411, 16865}, {14923, 21031}, {15228, 25440}, {15677, 30282}, {16468, 29683}, {16581, 17279}, {16610, 33146}, {16704, 17182}, {17020, 19785}, {17063, 32856}, {17122, 24725}, {17123, 33127}, {17124, 33097}, {17125, 33130}, {17155, 21093}, {17245, 17775}, {17331, 24220}, {17339, 27141}, {17521, 27412}, {17720, 32911}, {17776, 27757}, {17777, 32929}, {18139, 30829}, {18250, 24541}, {19861, 20060}, {20052, 21627}, {21805, 33141}, {22000, 31025}, {23536, 27625}, {24003, 25957}, {25385, 26037}, {25760, 28595}, {26105, 29817}, {27091, 27100}, {27096, 27118}, {27097, 27125}, {27113, 27137}, {27489, 27493}, {29612, 31039}, {29648, 32944}, {29649, 32843}, {29666, 32775}, {30567, 32863}, {30568, 32849}, {30578, 33168}, {30818, 32782}


X(27132) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(85), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^4 - 2 a^3 b + 2 a^2 b^2 - 2 a b^3 + b^4 - 2 a^3 c + a b^2 c - b^3 c + 2 a^2 c^2 + a b c^2 - 2 a c^3 - b c^3 + c^4 : :

X(27132) lies on these lines: {2, 85}, {220, 26526}, {344, 10528}, {1146, 26653}, {2348, 21285}, {3039, 3665}, {17279, 27096}, {17353, 24982}, {21856, 27337}, {25005, 31640}, {27111, 27123}, {27130, 29629}


X(27133) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    (a - b) (a - c) (a^3 b^2 - a b^4 + 2 a^2 b^2 c + a b^3 c + b^4 c + a^3 c^2 + 2 a^2 b c^2 + 2 a b^2 c^2 - b^3 c^2 + a b c^3 - b^2 c^3 - a c^4 + b c^4) : :

X(27133) lies on these lines: {2, 99}, {190, 27135}, {668, 27134}, {27092, 27109}, {27101, 27137}, {27103, 27126}, {27108, 27124}, {28736, 28747}, {28737, 28749}


X(27134) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(100), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    (a - b) (a - c) (a^2 b^2 - a b^3 + a b^2 c + b^3 c + a^2 c^2 + a b c^2 - 2 b^2 c^2 - a c^3 + b c^3) : :

X(27134) lies on these lines: {2, 11}, {190, 27074}, {644, 26796}, {668, 27133}, {1018, 27135}, {4554, 26985}, {21383, 27045}, {25577, 27013}, {27092, 27096}, {27097, 27119}, {27100, 27105}, {27104, 27110}


X(27135) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(101), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    (a - b) (a - c) (a^3 b^2 - a b^4 + a b^3 c + b^4 c + a^3 c^2 - b^3 c^2 + a b c^3 - b^2 c^3 - a c^4 + b c^4) : :

X(27135) lies on these lines: {2, 101}, {190, 27133}, {644, 28743}, {1018, 27134}, {4885, 21859}, {24170, 27119}, {28737, 33298}


X(27136) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c + 2 a^2 b^2 c - 2 a b^3 c + a^3 c^2 + 2 a^2 b c^2 - 2 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(27136) lies on these lines: {2, 37}, {9, 27044}, {69, 26774}, {87, 25284}, {144, 26768}, {190, 27095}, {3619, 26857}, {3662, 27113}, {3875, 26982}, {4851, 26975}, {4869, 26816}, {7032, 23354}, {16738, 17293}, {17178, 17230}, {17233, 26963}, {17236, 26769}, {17242, 27166}, {17276, 27106}, {17283, 27107}, {17284, 27017}, {17285, 27145}, {17300, 26076}, {17314, 26821}, {17339, 27091}, {17350, 21362}, {17354, 26772}, {22343, 25292}, {24502, 26752}, {26082, 29591}


X(27137) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(194), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    (a b + a c - b c) (a^3 b^2 + a^2 b^3 - 2 a^3 b c + a^3 c^2 + 2 a b^2 c^2 - b^3 c^2 + a^2 c^3 - b^2 c^3) : :

X(27137) lies on these lines: {2, 39}, {2176, 4595}, {17339, 27091}, {27095, 27126}, {27101, 27133}, {27113, 27131}


X(27138) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(649), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    (b - c) (a^2 - 3 a b - 3 a c + 3 b c) : :

X(27138) lies on these lines: {2, 649}, {192, 27485}, {650, 21297}, {661, 4928}, {812, 27115}, {1960, 21301}, {2516, 4106}, {3240, 24749}, {3619, 9002}, {3676, 5226}, {3768, 27106}, {4120, 21212}, {4358, 20952}, {4379, 31290}, {4380, 31287}, {4382, 26777}, {4453, 14321}, {4468, 5748}, {4521, 5328}, {4671, 20909}, {4728, 17494}, {4775, 21260}, {4776, 4885}, {4806, 30795}, {4893, 26824}, {4940, 31250}, {5284, 23865}, {8656, 31291}, {8657, 24601}, {9404, 28834}, {9780, 29350}, {9812, 15599}, {14433, 29587}, {17234, 23345}, {20293, 31946}, {21051, 21343}, {21385, 27113}, {23655, 29814}, {23813, 31150}, {25301, 29824}, {26983, 27193}, {27045, 27346}


X(27139) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(650), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    (b - c) (a^4 b - a^2 b^3 + a^4 c - 3 a^3 b c + 2 a^2 b^2 c + 2 a^2 b c^2 - 5 a b^2 c^2 + b^3 c^2 - a^2 c^3 + b^2 c^3) : :

X(27139) lies on these lines: {2, 650}, {312, 25271}, {652, 26694}, {3768, 27106}, {4379, 28758}, {4928, 27293}, {21611, 30818}, {24924, 27345}, {27527, 30835}


X(27140) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(659), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    (b - c) (a^4 b^2 - a^3 b^3 + a^4 b c - a^3 b^2 c + 2 a^2 b^3 c + a^4 c^2 - a^3 b c^2 - 2 a b^3 c^2 - a^3 c^3 + 2 a^2 b c^3 - 2 a b^2 c^3 + b^3 c^3) : :

X(27140) lies on these lines: {2, 659}, {190, 27074}, {891, 26752}, {3768, 27106}, {21385, 27091}


X(27141) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1150), WHERE A'B'C' = GEMINI TRIANGLE 53

Barycentrics    2 a^3 - 3 a^2 b - a b^2 + 4 b^3 - 3 a^2 c + 6 a b c - b^2 c - a c^2 - b c^2 + 4 c^3 : :

X(27141) lies on these lines: {2, 6}, {646, 4671}, {3306, 31029}, {4080, 17740}, {5219, 31025}, {17286, 30852}, {17339, 27131}, {24589, 30823}, {27092, 27096}, {27757, 30867}

leftri

Collineation mappings involving Gemini triangle 54: X(27142)-X(27195)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 54, as in centers X(27142)-X(27195). Then

m(X) = a (b^2 + c^2) x + b (a + c)^2 y + c (a + b)^2 z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 5, 2018)


X(27142) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^5 b^2 - a^4 b^3 - a^3 b^4 + a^2 b^5 - 2 a^3 b^3 c + 2 a b^5 c + a^5 c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 + b^5 c^2 - a^4 c^3 - 2 a^3 b c^3 - 2 a^2 b^2 c^3 - 4 a b^3 c^3 - b^4 c^3 - a^3 c^4 - b^3 c^4 + a^2 c^5 + 2 a b c^5 + b^2 c^5 : :

X(27142) lies on these lines: {2, 3}, {6, 26125}, {1730, 16819}, {2481, 5283}, {5278, 27304}, {10025, 16552}, {17030, 27181}, {17257, 26976}, {19717, 26964}, {19740, 27146}, {27145, 27153}, {27162, 27189}


X(27143) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^6 b - a^5 b^2 - a^2 b^5 + a b^6 + a^6 c + 4 a^5 b c - a^4 b^2 c - 4 a^3 b^3 c - a^2 b^4 c + b^6 c - a^5 c^2 - a^4 b c^2 - a b^4 c^2 - b^5 c^2 - 4 a^3 b c^3 - a^2 b c^4 - a b^2 c^4 - a^2 c^5 - b^2 c^5 + a c^6 + b c^6 : :

X(27143) lies on these lines: {2, 3}, {35, 28410}, {1038, 26203}, {27147, 27148}, {27161, 27162}


X(27144) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^6 b - a^4 b^3 - a^3 b^4 + a b^6 + a^6 c + 4 a^5 b c - a^4 b^2 c - 6 a^3 b^3 c - a^2 b^4 c + 2 a b^5 c + b^6 c - a^4 b c^2 - 2 a^3 b^2 c^2 - 2 a^2 b^3 c^2 - a b^4 c^2 - a^4 c^3 - 6 a^3 b c^3 - 2 a^2 b^2 c^3 - 4 a b^3 c^3 - b^4 c^3 - a^3 c^4 - a^2 b c^4 - a b^2 c^4 - b^3 c^4 + 2 a b c^5 + a c^6 + b c^6 : :

X(27144) lies on these lines: {2, 3}, {17030, 27149}


X(27145) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b^2 + a^2 b^3 + 2 a b^3 c + a^3 c^2 + b^3 c^2 + a^2 c^3 + 2 a b c^3 + b^2 c^3 : :

X(27145) lies on these lines: {2, 6}, {7, 26976}, {48, 26634}, {75, 27017}, {192, 980}, {238, 26094}, {239, 27311}, {894, 27261}, {982, 17142}, {1001, 16347}, {1107, 29982}, {1429, 17077}, {1740, 30942}, {2274, 17751}, {2309, 3840}, {3009, 24659}, {3286, 11319}, {3661, 27102}, {3662, 24220}, {3758, 27078}, {4389, 26857}, {4649, 26030}, {4657, 27166}, {4699, 10472}, {5253, 5263}, {16342, 26093}, {16696, 18137}, {16887, 27262}, {17030, 27147}, {17046, 26176}, {17148, 20891}, {17227, 25505}, {17228, 27044}, {17230, 26042}, {17233, 26764}, {17236, 26107}, {17244, 27032}, {17262, 26769}, {17267, 27073}, {17269, 26797}, {17285, 27136}, {17290, 27011}, {17291, 26959}, {17312, 27020}, {17326, 25510}, {17331, 27036}, {17347, 26799}, {17368, 26975}, {17370, 26982}, {17380, 26821}, {18144, 31026}, {18792, 27312}, {20172, 26997}, {24437, 25277}, {25528, 29827}, {27142, 27153}, {27152, 27157}, {27158, 27188}, {27162, 30940}, {27191, 27192}


X(27146) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(8), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b - 2 a^2 b^2 + a b^3 + a^3 c + 6 a^2 b c + 2 a b^2 c + b^3 c - 2 a^2 c^2 + 2 a b c^2 - 2 b^2 c^2 + a c^3 + b c^3 : :

X(27146) lies on these lines: {1, 2}, {496, 17672}, {1015, 26100}, {3295, 31020}, {4657, 27161}, {5333, 27172}, {6703, 26989}, {16744, 18600}, {17045, 27514}, {17164, 24629}, {17302, 24486}, {19740, 27142}, {24631, 25253}, {25261, 26690}, {25526, 26828}, {27009, 27302}, {27162, 27195}, {27171, 27183}


X(27147) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(9), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    2 a b - b^2 + 2 a c + 3 b c - c^2 : :

X(27147) lies on these lines: {2, 7}, {6, 29628}, {8, 17312}, {10, 17232}, {37, 4398}, {45, 7321}, {69, 16815}, {75, 3943}, {76, 29982}, {86, 4273}, {141, 4751}, {192, 4098}, {239, 4648}, {319, 17313}, {320, 17259}, {344, 17116}, {594, 17241}, {966, 17288}, {1086, 4687}, {1125, 17383}, {1213, 17227}, {1266, 4704}, {1278, 29599}, {1449, 29590}, {1654, 16832}, {1738, 3616}, {2321, 4772}, {2345, 17266}, {2999, 26109}, {3008, 17379}, {3596, 30044}, {3617, 4684}, {3618, 29607}, {3619, 29610}, {3622, 3755}, {3624, 3821}, {3661, 3739}, {3663, 27268}, {3664, 17349}, {3686, 17375}, {3731, 4440}, {3758, 17337}, {3759, 17392}, {3763, 28653}, {3778, 17063}, {3834, 5224}, {3875, 29569}, {3879, 16816}, {3912, 4058}, {3925, 29843}, {3945, 17121}, {3946, 29570}, {3950, 4740}, {3963, 30090}, {4000, 16826}, {4029, 4788}, {4270, 17020}, {4361, 17317}, {4363, 17263}, {4384, 17300}, {4389, 4698}, {4395, 17393}, {4399, 17386}, {4402, 29585}, {4416, 31211}, {4430, 22312}, {4431, 29600}, {4472, 17371}, {4657, 27191}, {4664, 7263}, {4665, 17240}, {4670, 17352}, {4675, 17277}, {4688, 17233}, {4798, 25357}, {4851, 29617}, {4859, 16831}, {4869, 17287}, {4888, 20072}, {4967, 17230}, {5308, 17319}, {5564, 17311}, {6707, 17400}, {7227, 17342}, {7232, 17256}, {7238, 17329}, {15668, 16706}, {16484, 24693}, {16777, 29622}, {16911, 24549}, {16917, 25500}, {16994, 24586}, {17030, 27145}, {17049, 25279}, {17067, 29595}, {17073, 21940}, {17117, 17316}, {17118, 17264}, {17119, 17315}, {17202, 25508}, {17238, 21255}, {17262, 31139}, {17265, 17289}, {17268, 29627}, {17275, 17297}, {17280, 25590}, {17283, 17303}, {17284, 28604}, {17290, 17322}, {17295, 28634}, {17299, 29618}, {17314, 29575}, {17321, 29578}, {17330, 17361}, {17334, 31285}, {17335, 17365}, {17341, 17369}, {17346, 17376}, {17348, 17378}, {17356, 17381}, {17362, 17387}, {17366, 17394}, {17370, 17398}, {17380, 28639}, {17385, 31243}, {17743, 32015}, {17889, 25501}, {20913, 20923}, {24058, 27586}, {24077, 27565}, {24325, 33165}, {24661, 27846}, {24789, 29841}, {27032, 27107}, {27143, 27148}, {27166, 27192}, {27641, 31198}, {29583, 32087}, {29603, 31312}


X(27148) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(10), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b + a b^3 + a^3 c + 6 a^2 b c + 4 a b^2 c + b^3 c + 4 a b c^2 + a c^3 + b c^3 : :

X(27148) lies on these lines: {1, 2}, {36, 16931}, {4657, 27162}, {5284, 16061}, {5333, 27185}, {16604, 16705}, {17169, 31004}, {17322, 27019}, {17398, 26986}, {24739, 25498}, {25263, 26234}, {26035, 30963}, {26100, 31997}, {27143, 27147}, {27172, 27190}, {27178, 27186}


X(27149) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(11), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^5 b - a^4 b^2 - a^2 b^4 + a b^5 + a^5 c + 2 a^4 b c - 2 a^3 b^2 c + b^5 c - a^4 c^2 - 2 a^3 b c^2 + 2 a^2 b^2 c^2 - b^4 c^2 - a^2 c^4 - b^2 c^4 + a c^5 + b c^5 : :

X(27149) lies on these lines: {2, 11}, {17030, 27144}, {21912, 26536}, {26558, 26804}


X(27150) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 - 2 a^5 b^3 c + 2 a b^7 c + a^7 c^2 - a^4 b^3 c^2 - a^3 b^4 c^2 + b^7 c^2 - a^6 c^3 - 2 a^5 b c^3 - a^4 b^2 c^3 - a^2 b^4 c^3 - 2 a b^5 c^3 - b^6 c^3 - a^3 b^2 c^4 - a^2 b^3 c^4 - 2 a b^3 c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 + 2 a b c^7 + b^2 c^7 : :

X(27150) lies on these lines: {2, 3}


X(27151) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 - 2 a^5 b^3 c + 2 a b^7 c + a^7 c^2 + b^7 c^2 - a^6 c^3 - 2 a^5 b c^3 + 4 a^3 b^3 c^3 - 2 a b^5 c^3 - b^6 c^3 - 2 a b^3 c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 + 2 a b c^7 + b^2 c^7 : :

X(27151) lies on these lines: {2, 3}


X(27152) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(31), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^4 b^2 + a^2 b^4 + 2 a b^4 c + a^4 c^2 + b^4 c^2 + a^2 c^4 + 2 a b c^4 + b^2 c^4 : :

X(27152) lies on these lines: {2, 31}, {2140, 17176}, {5372, 27314}, {8267, 21415}, {16704, 27313}, {17030, 27163}, {18067, 31078}, {19717, 26965}, {20255, 20965}, {27145, 27157}, {27158, 27190}


X(27153) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(32), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^5 b^2 + a^2 b^5 + 2 a b^5 c + a^5 c^2 + b^5 c^2 + a^2 c^5 + 2 a b c^5 + b^2 c^5 : :

X(27153) lies on these lines: {2, 32}, {27142, 27145}, {27162, 27179}


X(27154) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(37), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b^2 + a^2 b^3 + 4 a^2 b^2 c + a^3 c^2 + 4 a^2 b c^2 + 6 a b^2 c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(27154) lies on these lines: {2, 37}, {142, 16738}, {5224, 27106}, {7321, 26817}, {10436, 26975}, {16815, 25538}, {16819, 17291}, {16829, 17312}, {17030, 27145}, {17259, 27036}, {17260, 26976}, {17261, 27037}, {17337, 27078}, {17398, 26982}, {19853, 26150}, {25534, 31248}, {26110, 29590}, {26821, 28639}, {27095, 29576}, {27155, 27156}, {27164, 27191}, {27173, 27180}


X(27155) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(39), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^4 b^3 + a^3 b^4 + 2 a^3 b^3 c + 2 a^3 b^2 c^2 + 2 a^2 b^3 c^2 + a^4 c^3 + 2 a^3 b c^3 + 2 a^2 b^2 c^3 + 4 a b^3 c^3 + b^4 c^3 + a^3 c^4 + b^3 c^4 : :

X(27155) lies on these lines: {2, 39}, {141, 26801}, {2275, 18143}, {17169, 26963}, {17758, 26959}, {26971, 27097}, {27142, 27145}, {27154, 27156}, {27179, 27189}


X(27156) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1125), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b + 4 a^2 b^2 + a b^3 + a^3 c + 6 a^2 b c + 8 a b^2 c + b^3 c + 4 a^2 c^2 + 8 a b c^2 + 4 b^2 c^2 + a c^3 + b c^3 : :

X(27156) lies on these lines: {1, 2}, {3739, 16705}, {3876, 31322}, {5251, 16930}, {17303, 27109}, {27154, 27155}, {27164, 27169}, {27172, 27181}


X(27157) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(42), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    2 a^3 b^3 + a^3 b^2 c + 3 a^2 b^3 c + a^3 b c^2 + 3 a b^3 c^2 + 2 a^3 c^3 + 3 a^2 b c^3 + 3 a b^2 c^3 + 2 b^3 c^3 : :

X(27157) lies on these lines: {1, 2}, {4430, 27298}, {16748, 21264}, {27145, 27152}, {27163, 27190}, {27351, 28605}


X(27158) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(43), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b^3 + a^2 b^3 c - 2 a^2 b^2 c^2 + a b^3 c^2 + a^3 c^3 + a^2 b c^3 + a b^2 c^3 + b^3 c^3 : :

X(27158) lies on these lines: {1, 2}, {36, 16955}, {354, 27285}, {672, 26107}, {2275, 18152}, {2350, 24514}, {6384, 30955}, {21330, 30004}, {24512, 25505}, {27145, 27188}, {27152, 27190}


X(27159) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(44), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b^2 + a^2 b^3 - 4 a^2 b^2 c + 4 a b^3 c + a^3 c^2 - 4 a^2 b c^2 - 6 a b^2 c^2 + b^3 c^2 + a^2 c^3 + 4 a b c^3 + b^2 c^3 : :

X(27159) lies on these lines: {2, 44}, {142, 26971}, {4648, 27311}, {4698, 26857}, {17030, 27145}, {17232, 20549}, {17234, 27102}, {17244, 27107}, {17245, 27017}, {17291, 26986}, {20295, 27167}, {27166, 27191}, {27272, 27342}


X(27160) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(45), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b^2 + a^2 b^3 + 8 a^2 b^2 c - 2 a b^3 c + a^3 c^2 + 8 a^2 b c^2 + 12 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(27160) lies on these lines: {2, 45}, {4751, 27095}, {17030, 27145}


X(27161) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(69), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^4 b - a^3 b^2 - a^2 b^3 + a b^4 + a^4 c + 4 a^3 b c + 2 a^2 b^2 c + b^4 c - a^3 c^2 + 2 a^2 b c^2 + 2 a b^2 c^2 - b^3 c^2 - a^2 c^3 - b^2 c^3 + a c^4 + b c^4 : :

X(27161) lies on these lines: {2, 6}, {579, 17183}, {1108, 24993}, {1475, 21246}, {2260, 20245}, {3672, 27334}, {4000, 26964}, {4657, 27146}, {4747, 26125}, {4851, 27096}, {5750, 28797}, {7289, 26229}, {8732, 24609}, {10200, 27519}, {10586, 27520}, {17023, 17077}, {27143, 27162}, {27177, 27189}


X(27162) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(76), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b + 2 a^2 b^2 + a b^3 + a^3 c + b^3 c + 2 a^2 c^2 + a c^3 + b c^3 : :

X(27162) lies on these lines: {1, 24170}, {2, 39}, {86, 404}, {99, 11319}, {304, 4850}, {325, 4202}, {348, 5435}, {350, 26094}, {386, 30941}, {536, 24668}, {574, 25497}, {941, 26106}, {982, 17141}, {995, 17152}, {1125, 25599}, {1193, 17137}, {1509, 19717}, {1909, 26030}, {1921, 27311}, {1975, 5192}, {2275, 26965}, {2276, 27097}, {2295, 25350}, {2548, 16910}, {3216, 16887}, {3616, 8299}, {3672, 26093}, {3752, 20911}, {4357, 27627}, {4398, 5550}, {4657, 27148}, {5701, 10030}, {6337, 17526}, {7758, 17007}, {7774, 26085}, {7777, 16906}, {7782, 17539}, {7791, 26099}, {7891, 16905}, {7906, 16991}, {7907, 17003}, {11329, 19684}, {11337, 19769}, {16549, 30106}, {16720, 17489}, {17205, 20108}, {17206, 32911}, {17302, 27107}, {17382, 24739}, {17756, 27248}, {19767, 30962}, {19864, 20888}, {24190, 30112}, {26115, 31997}, {27142, 27189}, {27143, 27161}, {27145, 30940}, {27146, 27195}, {27153, 27179}


X(27163) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(81), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (a + b) (a + c) (a^2 b^2 + a b^3 + a b^2 c + b^3 c + a^2 c^2 + a b c^2 + 2 b^2 c^2 + a c^3 + b c^3) : :

X(27163) lies on these lines: {2, 6}, {75, 18601}, {314, 17147}, {321, 16696}, {1444, 17587}, {3286, 24552}, {3662, 17173}, {3736, 17135}, {3741, 17187}, {3995, 32026}, {4359, 16700}, {4658, 26115}, {10458, 29824}, {10471, 28605}, {16050, 31039}, {16726, 31993}, {16736, 24589}, {16753, 19804}, {16887, 16891}, {17030, 27152}, {17174, 27184}, {17182, 26580}, {18169, 30942}, {18192, 29827}, {18206, 26223}, {18600, 19789}, {18792, 31330}, {26801, 33150}, {27157, 27190}, {27170, 27174}, {28606, 30939}, {30599, 30710}


X(27164) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(86), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (a + b) (a + c) (a b^2 + a b c + b^2 c + a c^2 + b c^2) : :

X(27164) lies on these lines: {2, 6}, {9, 10455}, {10, 3736}, {21, 5263}, {37, 314}, {58, 19858}, {142, 16887}, {238, 19863}, {261, 1333}, {274, 1107}, {286, 1841}, {334, 28653}, {958, 1010}, {1001, 4267}, {1014, 17077}, {1125, 4281}, {1220, 14005}, {1268, 27102}, {1444, 26643}, {1698, 18792}, {1740, 18169}, {1918, 32917}, {2274, 31339}, {2309, 30970}, {3616, 5331}, {3666, 20174}, {3863, 32010}, {4000, 16705}, {4269, 4357}, {4361, 33296}, {4483, 4653}, {4657, 17030}, {4687, 30939}, {4751, 16709}, {4833, 27527}, {4851, 27255}, {4852, 16829}, {5132, 19270}, {5247, 16828}, {5257, 17197}, {5283, 10471}, {5296, 17183}, {5327, 27509}, {10436, 18206}, {10458, 31330}, {15320, 24723}, {16589, 25660}, {16724, 17382}, {16726, 31238}, {17045, 26801}, {17139, 17257}, {17175, 18164}, {17185, 25515}, {17202, 17248}, {17210, 17306}, {17237, 25538}, {17239, 27020}, {17285, 27032}, {17326, 25534}, {17369, 26082}, {18192, 25528}, {18196, 21191}, {21264, 31008}, {24437, 25124}, {25498, 26959}, {25512, 28619}, {27037, 31333}, {27154, 27191}, {27156, 27169}, { 27170, 27172}, {27176, 27187}, {28639, 31996}

X(27164) = complement of X(26110)


X(27165) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(145), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b-6 a^2 b^2+a b^3+a^3 c+6 a^2 b c-2 a b^2 c+b^3 c-6 a^2 c^2-2 a b c^2-6 b^2 c^2+a c^3+b c^3 : :

X(27165) lies on these lines: {1, 2}


X(27166) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(239), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c - 2 a^2 b^2 c + a^3 c^2 - 2 a^2 b c^2 + b^3 c^2 + a^2 c^3 + b^2 c^3 : :

X(27166) lies on these lines: {1, 2}, {37, 26963}, {39, 3995}, {56, 11320}, {86, 26971}, {142, 27011}, {190, 26975}, {321, 16604}, {330, 31060}, {335, 26986}, {1015, 3948}, {1019, 17174}, {1100, 26772}, {1269, 16710}, {1909, 31026}, {2260, 17350}, {2275, 31036}, {3210, 26747}, {3879, 26756}, {3950, 26797}, {3952, 20456}, {4357, 17178}, {4360, 27102}, {4366, 19308}, {4657, 27145}, {4670, 26976}, {4755, 27037}, {4851, 27095}, {12263, 17140}, {16685, 29453}, {16736, 19821}, {16738, 17322}, {17045, 26979}, {17120, 26799}, {17147, 24598}, {17148, 18147}, {17236, 26143}, {17238, 25535}, {17242, 27136}, {17297, 25534}, {17301, 27107}, {17302, 27017}, {17319, 26764}, {17324, 26857}, {17379, 26107}, {17380, 27311}, {17381, 27261}, {17394, 25505}, {19717, 27262}, {20349, 26138}, {20363, 20868}, {20530, 31061}, {24199, 26850}, {27147, 27192}, {27159, 27191}, {27318, 28605}, {28654, 29974}


X(27167) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(661), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (b - c) (a^4 b - a^2 b^3 + a^4 c + 2 a^3 b c - a^2 b^2 c - a^2 b c^2 + 2 a b^2 c^2 + b^3 c^2 - a^2 c^3 + b^2 c^3) : :

X(27167) lies on these lines: {2, 661}, {850, 17066}, {4077, 17077}, {4160, 19874}, {4978, 14838}, {5278, 18199}, {7199, 24948}, {16751, 18154}, {20295, 27159}, {21191, 27673}, {21259, 25301}, {26114, 27013}, {26985, 27345}


X(27168) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(667), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (b - c) (-a^2 + a b + a c + b c) (-a^2 b^2 - a^2 c^2 + b^2 c^2) : :

X(27168) lies on these lines: {2, 667}, {194, 23807}, {1019, 27169}, {4063, 16819}, {8630, 25299}, {8632, 27293}, {9010, 20139}, {9491, 23301}, {21191, 23572}


X(27169) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(238), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^4 b^2 + a^2 b^4 - a^3 b^2 c - a^2 b^3 c + 2 a b^4 c + a^4 c^2 - a^3 b c^2 - 4 a^2 b^2 c^2 - a b^3 c^2 + b^4 c^2 - a^2 b c^3 - a b^2 c^3 + a^2 c^4 + 2 a b c^4 + b^2 c^4 : :

X(27169) lies on these lines: {2, 31}, {86, 26965}, {142, 27019}, {940, 27313}, {1019, 27168}, {1740, 29966}, {2309, 29968}, {3701, 20167}, {5263, 27097}, {9780, 20139}, {16738, 16819}, {17030, 27145}, {17379, 27299}, {18792, 30109}, {20133, 26115}, {20140, 26030}, {27156, 27164}


X(27170) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(7), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^4 b - a^3 b^2 - a^2 b^3 + a b^4 + a^4 c - 2 a^2 b^2 c - 4 a b^3 c + b^4 c - a^3 c^2 - 2 a^2 b c^2 + 2 a b^2 c^2 - b^3 c^2 - a^2 c^3 - 4 a b c^3 - b^2 c^3 + a c^4 + b c^4 : :

X(27170) lies on these lines: {2, 7}, {77, 26621}, {141, 27096}, {160, 4189}, {241, 24547}, {1229, 25237}, {3522, 10882}, {3663, 28797}, {3739, 26563}, {4000, 16696}, {4643, 27108}, {4657, 27146}, {7146, 21273}, {7613, 19843}, {14953, 16738}, {17030, 27171}, {17052, 26781}, {17258, 28748}, {18635, 27050}, {21255, 28742}, {24471, 24633}, {25601, 29579}, {26626, 26818}, {27163, 27174}, {27164, 27172}, {27283, 33298}


X(27171) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(20), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^6 b - 3 a^5 b^2 + 2 a^4 b^3 + 2 a^3 b^4 - 3 a^2 b^5 + a b^6 + a^6 c + 4 a^5 b c - a^4 b^2 c - a^2 b^4 c - 4 a b^5 c + b^6 c - 3 a^5 c^2 - a^4 b c^2 + 4 a^3 b^2 c^2 + 4 a^2 b^3 c^2 - a b^4 c^2 - 3 b^5 c^2 + 2 a^4 c^3 + 4 a^2 b^2 c^3 + 8 a b^3 c^3 + 2 b^4 c^3 + 2 a^3 c^4 - a^2 b c^4 - a b^2 c^4 + 2 b^3 c^4 - 3 a^2 c^5 - 4 a b c^5 - 3 b^2 c^5 + a c^6 + b c^6 : :

X(27171) lies on these lines: {2, 3}, {3218, 27000}, {17030, 27170}, {20367, 27304}, {27146, 27183}


X(27172) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(21), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (a + b) (a + c) (a^3 b^2 - 2 a^2 b^3 + a b^4 - 2 a^2 b^2 c - a b^3 c + b^4 c + a^3 c^2 - 2 a^2 b c^2 - 4 a b^2 c^2 - b^3 c^2 - 2 a^2 c^3 - a b c^3 - b^2 c^3 + a c^4 + b c^4) : :

X(27172) lies on these lines: {2, 3}, {86, 26964}, {3218, 16819}, {4267, 24596}, {5333, 27146}, {16704, 27304}, {17030, 27152}, {17174, 27183}, {27148, 27190}, {27156, 27181}, {27164, 27170}


X(27173) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(25), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^7 b^2 - a^6 b^3 - a^3 b^6 + a^2 b^7 - 2 a^5 b^3 c + 2 a b^7 c + a^7 c^2 + a^4 b^3 c^2 + a^3 b^4 c^2 + b^7 c^2 - a^6 c^3 - 2 a^5 b c^3 + a^4 b^2 c^3 + 8 a^3 b^3 c^3 + a^2 b^4 c^3 - 2 a b^5 c^3 - b^6 c^3 + a^3 b^2 c^4 + a^2 b^3 c^4 - 2 a b^3 c^5 - a^3 c^6 - b^3 c^6 + a^2 c^7 + 2 a b c^7 + b^2 c^7 : :

X(27173) lies on these lines: {2, 3}, {27154, 27180}


X(27174) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(27), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a (a + b) (a + c) (a^3 + a^2 b - a b^2 - b^3 + a^2 c - 2 a b c - b^2 c - a c^2 - b c^2 - c^3) : :

X(27174) lies on these lines: {2, 3}, {35, 306}, {58, 4652}, {63, 284}, {81, 593}, {333, 2164}, {993, 5271}, {1014, 8025}, {1030, 1211}, {1172, 1748}, {1214, 1950}, {1230, 26243}, {1396, 17080}, {1621, 2352}, {1778, 4261}, {1790, 17185}, {1792, 33077}, {1801, 2328}, {1993, 23602}, {2194, 4640}, {2206, 4414}, {2287, 3219}, {2303, 28606}, {2360, 5250}, {2975, 3187}, {3305, 4877}, {3687, 4276}, {3871, 20017}, {4273, 4641}, {4278, 17023}, {4288, 24611}, {4384, 5358}, {4653, 5287}, {4657, 5333}, {5303, 29833}, {5905, 8822}, {11683, 25254}, {12572, 27412}, {12610, 17167}, {15817, 27540}, {16704, 20043}, {16948, 17012}, {21376, 25080}, {27163, 27170}, {27398, 31018}


X(27175) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(28), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (a + b) (a + c) (a^6 b^2 - a^5 b^3 - a^2 b^6 + a b^7 - a^5 b^2 c - a^4 b^3 c + a b^6 c + b^7 c + a^6 c^2 - a^5 b c^2 - 2 a^4 b^2 c^2 + 4 a^3 b^3 c^2 + 3 a^2 b^4 c^2 - a b^5 c^2 - a^5 c^3 - a^4 b c^3 + 4 a^3 b^2 c^3 + 4 a^2 b^3 c^3 - a b^4 c^3 - b^5 c^3 + 3 a^2 b^2 c^4 - a b^3 c^4 - a b^2 c^5 - b^3 c^5 - a^2 c^6 + a b c^6 + a c^7 + b c^7) : :

X(27175) lies on these lines: {2, 3}, {16887, 18648}, {17030, 27180}, {27184, 27185}


X(27176) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(29), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (a + b) (a + c) (a^6 b^2 - a^5 b^3 - a^2 b^6 + a b^7 + a^6 b c + a^5 b^2 c - a^4 b^3 c - 2 a^3 b^4 c - a^2 b^5 c + a b^6 c + b^7 c + a^6 c^2 + a^5 b c^2 - 2 a^4 b^2 c^2 + a^2 b^4 c^2 - a b^5 c^2 - a^5 c^3 - a^4 b c^3 + 2 a^2 b^3 c^3 - a b^4 c^3 - b^5 c^3 - 2 a^3 b c^4 + a^2 b^2 c^4 - a b^3 c^4 - a^2 b c^5 - a b^2 c^5 - b^3 c^5 - a^2 c^6 + a b c^6 + a c^7 + b c^7) : :

X(27176) lies on these lines: {2, 3}, {7054, 25508}, {27164, 27187}


X(27177) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(376), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^6 b - 5 a^5 b^2 + 4 a^4 b^3 + 4 a^3 b^4 - 5 a^2 b^5 + a b^6 + a^6 c + 4 a^5 b c - a^4 b^2 c + 4 a^3 b^3 c - a^2 b^4 c - 8 a b^5 c + b^6 c - 5 a^5 c^2 - a^4 b c^2 + 8 a^3 b^2 c^2 + 8 a^2 b^3 c^2 - a b^4 c^2 - 5 b^5 c^2 + 4 a^4 c^3 + 4 a^3 b c^3 + 8 a^2 b^2 c^3 + 16 a b^3 c^3 + 4 b^4 c^3 + 4 a^3 c^4 - a^2 b c^4 - a b^2 c^4 + 4 b^3 c^4 - 5 a^2 c^5 - 8 a b c^5 - 5 b^2 c^5 + a c^6 + b c^6 : :

X(27177) lies on these lines: {2, 3}, {27161, 27189}


X(27178) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(377), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^6 b - a^5 b^2 - a^2 b^5 + a b^6 + a^6 c + 4 a^5 b c - 3 a^4 b^2 c - 8 a^3 b^3 c - 3 a^2 b^4 c + b^6 c - a^5 c^2 - 3 a^4 b c^2 - 12 a^3 b^2 c^2 - 12 a^2 b^3 c^2 - 3 a b^4 c^2 - b^5 c^2 - 8 a^3 b c^3 - 12 a^2 b^2 c^3 - 4 a b^3 c^3 - 3 a^2 b c^4 - 3 a b^2 c^4 - a^2 c^5 - b^2 c^5 + a c^6 + b c^6 : :

X(27178) lies on these lines: {2, 3}, {4657, 27146}, {27148, 27186}


X(27179) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(384), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^5 b^2 + a^2 b^5 + a^4 b^2 c + 2 a^3 b^3 c + a^2 b^4 c + 2 a b^5 c + a^5 c^2 + a^4 b c^2 + a b^4 c^2 + b^5 c^2 + 2 a^3 b c^3 + a^2 b c^4 + a b^2 c^4 + a^2 c^5 + 2 a b c^5 + b^2 c^5 : :

X(27179) lies on these lines: {2, 3}, {27153, 27162}, {27155, 27189}


X(27180) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(19), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^4 b - b^5 + a^4 c - a^3 b c - 2 a^2 b^2 c - a b^3 c + b^4 c - 2 a^2 b c^2 - a b c^3 + b c^4 - c^5 : :

X(27180) lies on these lines: {2, 19}, {21, 16114}, {37, 31053}, {344, 27131}, {1001, 20846}, {3219, 28420}, {3662, 17183}, {4657, 5333}, {16580, 17321}, {17030, 27175}, {17073, 21511}, {18639, 26156}, {20254, 23635}, {20336, 33077}, {26130, 26639}, {27143, 27147}, {27154, 27173}, {28022, 33146}


X(27181) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(36), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^5 b^2 - a^4 b^3 - a^3 b^4 + a^2 b^5 + 2 a b^5 c + a^5 c^2 - 2 a^3 b^2 c^2 + b^5 c^2 - a^4 c^3 - 2 a b^3 c^3 - b^4 c^3 - a^3 c^4 - b^3 c^4 + a^2 c^5 + 2 a b c^5 + b^2 c^5 : :

X(27181) lies on these lines: {2, 36}, {1019, 27168}, {16819, 20367}, {17030, 27142}, {19743, 26964}, {24296, 28803}, {27156, 27172}


X(27182) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(38), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^4 b^2 + a^2 b^4 + 2 a^3 b^2 c + a^4 c^2 + 2 a^3 b c^2 + 6 a^2 b^2 c^2 + 2 a b^3 c^2 + b^4 c^2 + 2 a b^2 c^3 + a^2 c^4 + b^2 c^4 : :

X(27182) lies on these lines: {2, 38}, {2140, 16891}, {16823, 27030}, {17030, 27152}


X(27183) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(40), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    -3 a^2 b^2 + 2 a b^3 + b^4 + a^2 b c - 2 a b^2 c + b^3 c - 3 a^2 c^2 - 2 a b c^2 - 4 b^2 c^2 + 2 a c^3 + b c^3 + c^4 : :

X(27183) lies on these lines: {2, 40}, {5, 26531}, {379, 17397}, {673, 11375}, {908, 27304}, {1125, 4209}, {2140, 17181}, {5141, 26526}, {5154, 26532}, {5886, 17682}, {9779, 11201}, {9955, 17671}, {11349, 29612}, {12053, 27253}, {17030, 27142}, {17174, 27172}, {17691, 24541}, {17747, 31269}, {24580, 29609}, {26964, 31019}, {27143, 27147}, {27146, 27171}


X(27184) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(57), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a b^2 + b^3 + a b c + a c^2 + c^3 : :

X(27184) lies on these lines: {1, 1330}, {2, 7}, {6, 19786}, {8, 3914}, {10, 17889}, {31, 4683}, {37, 18134}, {38, 3705}, {42, 32776}, {43, 3821}, {55, 24723}, {69, 1999}, {72, 16062}, {75, 1211}, {76, 321}, {78, 4201}, {81, 17202}, {85, 6354}, {92, 257}, {100, 32950}, {141, 312}, {171, 4655}, {190, 32777}, {192, 306}, {210, 4429}, {222, 26625}, {223, 17086}, {238, 4703}, {239, 5739}, {244, 25960}, {320, 940}, {333, 3772}, {345, 4419}, {518, 32773}, {537, 33169}, {612, 4645}, {726, 32778}, {740, 33084}, {748, 33123}, {750, 33067}, {752, 17716}, {756, 25957}, {846, 3771}, {899, 33125}, {902, 29848}, {968, 9791}, {982, 3846}, {984, 2887}, {1001, 33124}, {1086, 5743}, {1150, 33133}, {1215, 32784}, {1376, 33068}, {1426, 17555}, {1446, 26607}, {1458, 24550}, {1621, 33122}, {1654, 5271}, {1738, 4104}, {1757, 25453}, {1836, 5263}, {1931, 5333}, {2308, 29636}, {2895, 3187}, {2975, 25906}, {2999, 17304}, {3006, 7226}, {3061, 23636}, {3120, 17794}, {3175, 17233}, {3210, 3663}, {3242, 4514}, {3416, 32926}, {3419, 17677}, {3487, 13725}, {3616, 13736}, {3620, 34255}, {3666, 4389}, {3673, 21405}, {3676, 26596}, {3677, 5211}, {3681, 4972}, {3685, 33171}, {3688, 25308}, {3720, 33069}, {3721, 3981}, {3741, 3944}, {3752, 5233}, {3755, 20012}, {3757, 33144}, {3758, 19812}, {3769, 17602}, {3790, 15523}, {3794, 26892}, {3844, 3967}, {3868, 5051}, {3873, 29843}, {3876, 4202}, {3891, 33075}, {3912, 4656}, {3920, 6327}, {3923, 32783}, {3936, 17247}, {3938, 32947}, {3940, 11359}, {3952, 29679}, {3961, 4660}, {3966, 32922}, {3971, 29674}, {3980, 32857}, {3989, 29643}, {3995, 17242}, {4000, 14555}, {4001, 4741}, {4011, 29637}, {4052, 27835}, {4054, 17238}, {4077, 26545}, {4101, 20018}, {4205, 6147}, {4320, 19861}, {4358, 33172}, {4359, 33146}, {4361, 4886}, {4362, 33082}, {4363, 19808}, {4364, 17056}, {4383, 16706}, {4384, 23681}, {4414, 29846}, {4418, 33098}, {4430, 29835}, {4521, 26571}, {4641, 17347}, {4651, 33131}, {4850, 5741}, {4892, 33111}, {4981, 33108}, {5057, 24552}, {5220, 33118}, {5224, 31993}, {5256, 17302}, {5269, 20101}, {5278, 17331}, {5287, 17300}, {5311, 32949}, {5712, 17321}, {5718, 17249}, {5737, 17253}, {6376, 30631}, {6679, 7262}, {6682, 17717}, {6703, 17365}, {7018, 17149}, {7081, 26034}, {8580, 26073}, {8616, 29656}, {9284, 20284}, {9534, 23537}, {9535, 12610}, {10453, 24210}, {10468, 10478}, {11263, 19858}, {11374, 19270}, {11679, 17272}, {11814, 31242}, {12572, 17697}, {12609, 19853}, {13411, 19278}, {13567, 26531}, {14829, 17273}, {15485, 29672}, {16468, 29654}, {16569, 24169}, {16608, 25977}, {16738, 17167}, {16780, 26626}, {16817, 24159}, {16825, 33147}, {16887, 17177}, {17011, 17396}, {17017, 32843}, {17019, 17391}, {17022, 17298}, {17030, 27142}, {17073, 25908}, {17116, 19822}, {17117, 19789}, {17118, 19797}, {17119, 19820}, {17121, 19823}, {17127, 26230}, {17135, 33134}, {17147, 31037}, {17165, 29667}, {17174, 27163}, {17192, 17284}, {17227, 18743}, {17229, 22034}, {17244, 18139}, {17255, 32851}, {17256, 19732}, {17258, 30811}, {17261, 17776}, {17276, 30832}, {17277, 24789}, {17320, 20182}, {17322, 19701}, {17339, 33157}, {17349, 26723}, {17367, 32774}, {17397, 19684}, {17599, 33071}, {17719, 32916}, {17763, 33080}, {17770, 29645}, {18056, 30660}, {18541, 19276}, {18750, 26543}, {20173, 26590}, {20256, 30546}, {21062, 27129}, {21240, 30830}, {21616, 26123}, {21813, 26242}, {23806, 26049}, {24177, 24620}, {24190, 24603}, {24214, 24621}, {24248, 32932}, {24320, 25494}, {24325, 33103}, {24697, 33130}, {24703, 32942}, {24725, 32772}, {24943, 32930}, {25466, 31359}, {25496, 33096}, {25935, 27288}, {26061, 32938}, {26227, 33083}, {26579, 26942}, {26724, 29628}, {27175, 27185}, {27476, 27481}, {27479, 27495}, {28595, 33165}, {29617, 31143}, {29631, 32912}, {29635, 32913}, {29649, 33085}, {29652, 33106}, {30473, 30713}, {30831, 33113}, {30965, 31008}, {31134, 33072}, {31237, 33115}, {32771, 32856}, {32779, 32933}, {32780, 32935}, {32781, 32931}, {32852, 32928}, {32853, 33135}, {32860, 33145}, {32861, 32921}, {32864, 33128}, {32914, 33143}, {32915, 33081}, {32917, 33127}, {32920, 33076}, {32927, 33074}, {32929, 33100}, {32934, 33160}, {32936, 33156}, {32941, 33095}, {32945, 33094}

X(27184) = anticomplement of isotomic conjugate of polar conjugate of X(1891)


X(27185) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(58), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (a + b) (a + c) (a^3 b^2 + a b^4 + a b^3 c + b^4 c + a^3 c^2 + b^3 c^2 + a b c^3 + b^2 c^3 + a c^4 + b c^4) : :

X(27185) lies on these lines: {2, 58}, {21, 27097}, {81, 26965}, {4184, 27263}, {5333, 27148}, {11115, 27248}, {14005, 27026}, {16703, 16735}, {16704, 27299}, {16716, 20911}, {16738, 17169}, {17030, 27152}, {17187, 29960}, {18169, 29966}, {18180, 26562}, {26807, 28619}, {26959, 27190}, {26969, 30176}, {27142, 27145}, {27156, 27164}, {27175, 27184}


X(27186) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(63), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^2 b - b^3 + a^2 c + 3 a b c + b^2 c + b c^2 - c^3 : :

X(27186) lies on these lines: {2, 7}, {6, 26724}, {10, 3894}, {37, 33146}, {46, 9782}, {75, 3969}, {81, 4675}, {85, 30690}, {86, 17173}, {90, 10266}, {149, 4666}, {171, 29681}, {244, 29680}, {273, 445}, {306, 24199}, {320, 5278}, {321, 17234}, {343, 21258}, {354, 33108}, {377, 3488}, {404, 943}, {405, 18541}, {474, 25593}, {612, 33148}, {614, 33112}, {726, 29854}, {748, 33097}, {750, 29665}, {756, 33103}, {940, 33129}, {942, 4197}, {946, 3522}, {968, 33102}, {982, 29664}, {1001, 20292}, {1054, 29678}, {1071, 6991}, {1086, 28606}, {1125, 1770}, {1215, 25961}, {1230, 20923}, {1621, 5880}, {1738, 17018}, {1836, 5284}, {1961, 33143}, {1962, 33149}, {2140, 14953}, {2475, 3586}, {2476, 3824}, {2550, 3957}, {2895, 4384}, {3120, 26102}, {3187, 17300}, {3434, 29817}, {3475, 3935}, {3476, 28629}, {3550, 29689}, {3578, 17361}, {3612, 3616}, {3617, 21620}, {3624, 3648}, {3661, 6539}, {3664, 26723}, {3671, 24564}, {3681, 3826}, {3720, 17889}, {3739, 32782}, {3742, 11680}, {3782, 17245}, {3811, 26060}, {3812, 25005}, {3816, 10129}, {3833, 7951}, {3834, 31993}, {3836, 29679}, {3841, 18398}, {3848, 17605}, {3868, 8728}, {3873, 3925}, {3876, 6147}, {3889, 31419}, {3912, 28605}, {3914, 29814}, {3923, 29851}, {3936, 19804}, {3944, 30950}, {3947, 25011}, {3980, 29632}, {3995, 17244}, {4000, 17011}, {4038, 33128}, {4188, 12436}, {4208, 12649}, {4292, 16865}, {4359, 18134}, {4363, 33157}, {4393, 17050}, {4417, 24589}, {4418, 29642}, {4423, 5057}, {4430, 5542}, {4648, 17019}, {4657, 5333}, {4850, 17056}, {4859, 5256}, {4883, 21949}, {4892, 25960}, {4980, 17233}, {5068, 6260}, {5133, 25365}, {5154, 9843}, {5248, 15228}, {5253, 28628}, {5260, 10404}, {5268, 33153}, {5271, 17298}, {5272, 33107}, {5287, 23681}, {5297, 33144}, {5311, 33147}, {5436, 15680}, {5444, 26725}, {5550, 12047}, {5712, 17012}, {5722, 6175}, {5768, 6993}, {5770, 6877}, {5805, 7411}, {5886, 6909}, {6327, 16823}, {6384, 27446}, {6690, 9352}, {6701, 7741}, {6826, 18444}, {6828, 9940}, {6829, 10202}, {6839, 18443}, {6861, 26877}, {6894, 10884}, {6895, 8726}, {6990, 13369}, {7226, 24231}, {7232, 19732}, {7292, 26098}, {7321, 32933}, {7560, 20291}, {8226, 11220}, {9335, 24239}, {9345, 33135}, {9347, 17061}, {9780, 13407}, {10167, 10883}, {10389, 20095}, {10431, 21151}, {10528, 11024}, {11374, 17531}, {12572, 17570}, {13411, 17572}, {16484, 33094}, {16706, 19684}, {16708, 18045}, {16753, 26746}, {16825, 32949}, {16891, 17175}, {17013, 17067}, {17014, 24181}, {17030, 27152}, {17063, 33105}, {17117, 20017}, {17122, 33127}, {17123, 24725}, {17124, 17719}, {17125, 33096}, {17140, 29641}, {17155, 29653}, {17277, 32859}, {17278, 32911}, {17290, 19701}, {17305, 25507}, {17314, 19819}, {17315, 19820}, {17316, 19789}, {17317, 19796}, {17321, 27127}, {17364, 19742}, {17367, 19717}, {17450, 33141}, {17521, 25526}, {17591, 29682}, {17596, 29661}, {17761, 30562}, {19877, 21077}, {20269, 25946}, {20271, 20859}, {20917, 28654}, {20966, 24046}, {21020, 33087}, {21026, 33169}, {21195, 27486}, {21566, 31540}, {21567, 31541}, {21590, 26235}, {23806, 26985}, {24165, 29643}, {24325, 25957}, {24331, 32947}, {24342, 24943}, {24693, 32945}, {25385, 30957}, {25495, 25496}, {26037, 33064}, {27146, 27171}, {27148, 27178}, {29648, 33123}, {29651, 32948}, {29666, 32772}, {29820, 33104}, {29830, 32932}, {29968, 31060}, {31151, 33074}, {31178, 33162}


X(27187) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(85), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^4 - 2 a^2 b^2 + b^4 - a b^2 c - b^3 c - 2 a^2 c^2 - a b c^2 - b c^3 + c^4 : :

X(27187) lies on these lines: {1, 25581}, {2, 85}, {8, 32818}, {21, 17181}, {57, 24583}, {150, 3897}, {304, 33113}, {321, 3926}, {325, 5016}, {498, 30806}, {1358, 31260}, {1434, 31019}, {1565, 7483}, {1931, 5333}, {2476, 5088}, {2646, 21285}, {2975, 7179}, {3665, 4999}, {3772, 18600}, {3869, 17084}, {4056, 5267}, {4189, 4872}, {4352, 33133}, {4357, 24540}, {4657, 27146}, {5228, 26628}, {5433, 26229}, {5794, 17136}, {6910, 17170}, {7181, 25466}, {7278, 10197}, {7763, 20911}, {9310, 25353}, {9436, 24541}, {10448, 24241}, {10586, 17321}, {11375, 20347}, {16601, 28734}, {17206, 32859}, {17248, 24557}, {17257, 24553}, {17740, 32831}, {20880, 26363}, {24215, 33127}, {24627, 29614}, {27164, 27176}, {31039, 31121}


X(27188) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(87), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^4 b^4 - a^4 b^3 c - a^3 b^3 c^2 - 2 a^2 b^4 c^2 - a^4 b c^3 - a^3 b^2 c^3 + a^4 c^4 - 2 a^2 b^2 c^4 + b^4 c^4 : :

X(27188) lies on these lines: {2, 87}, {2309, 27105}, {15668, 23538}, {17030, 27192}, {27145, 27158}


X(27189) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(99), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (a + b) (a + c) (a^3 b^2 - 2 a^2 b^3 + a b^4 + a b^3 c + b^4 c + a^3 c^2 - 2 a b^2 c^2 - b^3 c^2 - 2 a^2 c^3 + a b c^3 - b^2 c^3 + a c^4 + b c^4) : :

X(27189) lies on these lines: {2, 99}, {1509, 26964}, {4576, 18061}, {27142, 27162}, {27155, 27179}, {27161, 27177}, {27190, 27195}


X(27190) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(100), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^4 b^2 - 2 a^3 b^3 + a^2 b^4 - 2 a^2 b^3 c + 2 a b^4 c + a^4 c^2 + 4 a^2 b^2 c^2 - 2 a b^3 c^2 + b^4 c^2 - 2 a^3 c^3 - 2 a^2 b c^3 - 2 a b^2 c^3 - 2 b^3 c^3 + a^2 c^4 + 2 a b c^4 + b^2 c^4 : :

X(27190) lies on these lines: {2, 11}, {19740, 27142}, {26959, 27185}, {27012, 27191}, {27148, 27172}, {27152, 27158}, {27157, 27163}, {27189, 27195}


X(27191) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(190), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^2 - a b + 2 b^2 - a c - 3 b c + 2 c^2 : :

X(27191) lies on these lines: {1, 25351}, {2, 45}, {3, 24827}, {5, 24813}, {7, 17352}, {10, 24841}, {37, 29626}, {44, 29607}, {69, 24599}, {75, 646}, {86, 142}, {140, 24833}, {141, 32025}, {192, 17265}, {238, 24692}, {239, 3834}, {314, 29756}, {319, 21255}, {320, 3008}, {333, 26724}, {335, 1268}, {344, 4398}, {524, 29590}, {528, 3616}, {536, 17266}, {537, 1698}, {590, 24819}, {599, 16816}, {615, 24818}, {631, 29243}, {668, 18150}, {726, 31252}, {812, 27195}, {894, 17356}, {900, 30795}, {918, 31640}, {1100, 32096}, {1111, 18151}, {1125, 24715}, {1222, 23675}, {1227, 25527}, {1266, 17264}, {1278, 17267}, {2224, 17682}, {2486, 30993}, {2786, 14061}, {2796, 19862}, {3090, 24828}, {3120, 24709}, {3306, 16560}, {3315, 20042}, {3525, 24817}, {3589, 26806}, {3617, 9041}, {3618, 4747}, {3619, 4437}, {3624, 4432}, {3662, 4643}, {3663, 17263}, {3699, 24988}, {3729, 17341}, {3758, 6173}, {3759, 17298}, {3763, 4699}, {3836, 17769}, {3875, 17241}, {3912, 17067}, {3946, 17317}, {4000, 4360}, {4014, 24482}, {4033, 30866}, {4357, 31211}, {4361, 17232}, {4366, 15668}, {4384, 17227}, {4393, 17313}, {4395, 6542}, {4413, 24820}, {4479, 30822}, {4499, 16482}, {4648, 17380}, {4657, 27147}, {4659, 17342}, {4665, 29587}, {4670, 29630}, {4675, 17367}, {4686, 17268}, {4687, 17304}, {4688, 17292}, {4698, 17324}, {4740, 17269}, {4751, 17306}, {4772, 17293}, {4792, 25031}, {4796, 17120}, {4852, 17312}, {4862, 17336}, {4869, 17377}, {4885, 32016}, {5043, 23958}, {5070, 24844}, {5094, 24814}, {5219, 31233}, {5222, 17378}, {5263, 24693}, {5432, 24837}, {5433, 24836}, {6547, 6631}, {6646, 17337}, {6650, 6707}, {6651, 25498}, {6653, 17045}, {6666, 17258}, {6678, 16099}, {7232, 17349}, {7238, 20072}, {7263, 17280}, {7321, 17353}, {7484, 24822}, {7808, 24815}, {7914, 24825}, {10436, 17370}, {14475, 24129}, {14829, 24789}, {15184, 24830}, {16593, 17321}, {16610, 30823}, {16672, 29599}, {16726, 24625}, {16815, 17237}, {16826, 17382}, {16831, 17399}, {16832, 17250}, {16833, 17360}, {16834, 17387}, {17116, 17357}, {17117, 17231}, {17118, 17358}, {17119, 17230}, {17121, 17376}, {17151, 17240}, {17235, 17260}, {17236, 17259}, {17244, 17301}, {17245, 17302}, {17261, 31333}, {17274, 17335}, {17276, 17338}, {17281, 29629}, {17287, 32108}, {17288, 17348}, {17289, 24199}, {17300, 17366}, {17318, 29572}, {17320, 29571}, {17323, 27268}, {17326, 31238}, {17371, 25590}, {17384, 24358}, {17395, 29569}, {17400, 17738}, {17719, 24188}, {17724, 26073}, {18044, 30090}, {18743, 23681}, {20582, 29591}, {21358, 29593}, {24177, 33116}, {24589, 30832}, {24617, 25536}, {24620, 30811}, {24627, 31205}, {24790, 33296}, {24835, 24953}, {24842, 32785}, {24843, 32786}, {24847, 26364}, {24848, 26363}, {25961, 32926}, {27012, 27190}, {27145, 27192}, {27154, 27164}, {27159, 27166}, {30598, 31312}, {30867, 31197}, {31289, 32857}, {31647, 32028}

X(27191) = isotomic conjugate of X(36954)
X(27191) = complement of X(4473)


X(27192) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(192), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    a^3 b^2 + a^2 b^3 - 2 a^3 b c + 2 a^2 b^2 c - 2 a b^3 c + a^3 c^2 + 2 a^2 b c^2 + 6 a b^2 c^2 + b^3 c^2 + a^2 c^3 - 2 a b c^3 + b^2 c^3 : :

X(27192) lies on these lines: {2, 37}, {391, 26768}, {4648, 26821}, {4859, 27017}, {10436, 26982}, {16738, 17290}, {16816, 26756}, {17030, 27188}, {17164, 27680}, {17275, 27106}, {17352, 26976}, {25277, 30982}, {25295, 31005}, {26149, 29590}, {27145, 27191}, {27147, 27166}


X(27193) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(650), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (b - c) (a^4 b - a^2 b^3 + a^4 c + a^3 b c - 2 a^2 b^2 c - 2 a^2 b c^2 + 3 a b^2 c^2 + b^3 c^2 - a^2 c^3 + b^2 c^3) : :

X(27193) lies on these lines: {2, 650}, {37, 25271}, {1019, 3835}, {3261, 25258}, {3837, 4057}, {4369, 27293}, {4379, 27527}, {4449, 25627}, {4728, 27345}, {17215, 25924}, {17217, 27673}, {19874, 21727}, {20295, 27159}, {21191, 28398}, {23301, 30795}, {23791, 25501}, {23803, 29426}, {26248, 27294}, {26983, 27138}, {28758, 30835}


X(27194) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(659), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    (b - c) (a^4 b^2 - a^3 b^3 + a^4 b c - a^3 b^2 c - 2 a^2 b^3 c + a^4 c^2 - a^3 b c^2 + 2 a b^3 c^2 - a^3 c^3 - 2 a^2 b c^3 + 2 a b^2 c^3 + b^3 c^3) : :

X(27194) lies on these lines: {2, 659}, {20295, 27159}, {27012, 27190}


X(27195) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(668), WHERE A'B'C' = GEMINI TRIANGLE 54

Barycentrics    2 a^2 b^2 - 3 a^2 b c - a b^2 c + 2 a^2 c^2 - a b c^2 + b^2 c^2 : :

X(27195) lies on these lines: {1, 4595}, {2, 668}, {39, 32026}, {83, 5253}, {86, 25532}, {106, 18047}, {244, 18061}, {274, 4602}, {291, 1125}, {537, 4687}, {812, 27191}, {1086, 24508}, {1621, 8671}, {2275, 18140}, {2787, 14061}, {2810, 3618}, {3616, 7786}, {3624, 17793}, {4389, 24497}, {5222, 31234}, {5550, 17794}, {6703, 17946}, {7200, 20568}, {7208, 18159}, {9336, 24524}, {14759, 31233}, {16723, 25498}, {16726, 25534}, {17205, 30997}, {18145, 20530}, {27146, 27162}, {27189, 27190}, {29750, 33296}, {31286, 32016}

X(27195) = isotomic conjugate of X(36957)


X(27196) =  MIDPOINT OF X(54) AND X(1141)

Barycentrics    (a^4-2 a^2 b^2+b^4-a^2 c^2-b^2 c^2) (a^4-a^2 b^2-2 a^2 c^2-b^2 c^2+c^4) (2 a^14-6 a^12 b^2+7 a^10 b^4-7 a^8 b^6+8 a^6 b^8-4 a^4 b^10-a^2 b^12+b^14-6 a^12 c^2+10 a^10 b^2 c^2-3 a^8 b^4 c^2-9 a^6 b^6 c^2+12 a^4 b^8 c^2+a^2 b^10 c^2-5 b^12 c^2+7 a^10 c^4-3 a^8 b^2 c^4+8 a^6 b^4 c^4-8 a^4 b^6 c^4+5 a^2 b^8 c^4+9 b^10 c^4-7 a^8 c^6-9 a^6 b^2 c^6-8 a^4 b^4 c^6-10 a^2 b^6 c^6-5 b^8 c^6+8 a^6 c^8+12 a^4 b^2 c^8+5 a^2 b^4 c^8-5 b^6 c^8-4 a^4 c^10+a^2 b^2 c^10+9 b^4 c^10-a^2 c^12-5 b^2 c^12+c^14) :
X(27196) = X[128]-2*X[6689]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28578.

X(27196) lies on these lines: {5,49}, {128,6689}, {137,18400}, {1154,24147}, {6592,25042}, {10610,25150}, {18370,24144}, {20424,25044}

X(27196) = midpoint of X(54) and X(1141)
X(27196) = reflection of X(128) in X(6689)


X(27197) =  MIDPOINT OF X(79) AND X(3336)

Barycentrics    a^5 b^2-a^4 b^3-2 a^3 b^4+2 a^2 b^5+a b^6-b^7+6 a^5 b c+5 a^4 b^2 c-a^3 b^3 c-6 a^2 b^4 c-5 a b^5 c+b^6 c+a^5 c^2+5 a^4 b c^2+6 a^3 b^2 c^2+4 a^2 b^3 c^2-a b^4 c^2+3 b^5 c^2-a^4 c^3-a^3 b c^3+4 a^2 b^2 c^3+10 a b^3 c^3-3 b^4 c^3-2 a^3 c^4-6 a^2 b c^4-a b^2 c^4-3 b^3 c^4+2 a^2 c^5-5 a b c^5+3 b^2 c^5+a c^6+b c^6-c^7 : :
X(27197) = X[10543]-2*X[20323]

See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28578.

X(27197)lies on these lines: {5,79}, {11,1354}, {12,11544}, {30,4325}, {392,11263}, {442,3828}, {517,3649}, {2475,9657}, {3647,17575}, {3654,5499}, {3813,15679}, {4309,16117}, {4317,10525}, {4338,16159}, {5221,16116}, {6175,9710}, {6701,17529}, {9711,11684}, {10543,20323}

X(27197) = midpoint of X(79) and X(3336)
X(27197) = reflection of X(10543) in X(20323)

leftri

Collineation mappings involving Gemini triangle 55: X(27198)-X(27208)

rightri

Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 55, as in centers X(27198)-X(27208). Then

m(X) = a^2 (b^2 - 2 a c) (c^2 - 2 a b) x + 2 a c (a^2 - 2 b c) (c^2 - 2 a b) y + 2 a b (a^2 - 2 b c) (b^2 - 2 a c) z : : ,

and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 6, 2018)


X(27198) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(1), WHERE A'B'C' = GEMINI TRIANGLE 55

Barycentrics    a (-2 a^3 b^3 + 4 a^4 b c - 4 a^3 b^2 c + 2 a^2 b^3 c - 4 a^3 b c^2 + a^2 b^2 c^2 + 8 a b^3 c^2 - 4 b^4 c^2 - 2 a^3 c^3 + 2 a^2 b c^3 + 8 a b^2 c^3 - 4 b^2 c^4) : :

X(27198) lies on these lines: {1, 2}


X(27199) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(3), WHERE A'B'C' = GEMINI TRIANGLE 55

Barycentrics    a (-2 a^6 b^3 + 2 a^4 b^5 + 4 a^7 b c - 4 a^3 b^5 c + a^5 b^2 c^2 - 9 a^3 b^4 c^2 - 2 a^2 b^5 c^2 + 8 a b^6 c^2 - 2 a^6 c^3 + 8 a^3 b^3 c^3 + 6 a^2 b^4 c^3 + 4 b^6 c^3 - 9 a^3 b^2 c^4 + 6 a^2 b^3 c^4 - 16 a b^4 c^4 - 4 b^5 c^4 + 2 a^4 c^5 - 4 a^3 b c^5 - 2 a^2 b^2 c^5 - 4 b^4 c^5 + 8 a b^2 c^6 + 4 b^3 c^6) : :

X(27199) lies on these lines:


X(27200) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(4), WHERE A'B'C' = GEMINI TRIANGLE 55

Barycentrics    a (-4 a^6 b^3 + 4 a^4 b^5 + 12 a^7 b c - 8 a^5 b^3 c + 4 a^4 b^4 c - 4 a^3 b^5 c - 8 a^2 b^6 c + 4 b^8 c - 15 a^5 b^2 c^2 + 16 a^3 b^4 c^2 - 4 a^2 b^5 c^2 - a b^6 c^2 - 4 a^6 c^3 - 8 a^5 b c^3 + 8 a^3 b^3 c^3 + 4 a^2 b^4 c^3 + 4 a^4 b c^4 + 16 a^3 b^2 c^4 + 4 a^2 b^3 c^4 + 2 a b^4 c^4 - 4 b^5 c^4 + 4 a^4 c^5 - 4 a^3 b c^5 - 4 a^2 b^2 c^5 - 4 b^4 c^5 - 8 a^2 b c^6 - a b^2 c^6 + 4 b c^8) : :

X(27200) lies on these lines:


X(27201) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(5), WHERE A'B'C' = GEMINI TRIANGLE 55

Barycentrics    a (-2 a^6 b^3 + 2 a^4 b^5 + 8 a^7 b c - 8 a^5 b^3 c + 4 a^4 b^4 c - 8 a^2 b^6 c + 4 b^8 c - 16 a^5 b^2 c^2 + 25 a^3 b^4 c^2 - 2 a^2 b^5 c^2 - 9 a b^6 c^2 - 2 a^6 c^3 - 8 a^5 b c^3 - 2 a^2 b^4 c^3 - 4 b^6 c^3 + 4 a^4 b c^4 + 25 a^3 b^2 c^4 - 2 a^2 b^3 c^4 + 18 a b^4 c^4 + 2 a^4 c^5 - 2 a^2 b^2 c^5 - 8 a^2 b c^6 - 9 a b^2 c^6 - 4 b^3 c^6 + 4 b c^8) : :

X(27201) lies on these lines:


X(27202) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(6), WHERE A'B'C' = GEMINI TRIANGLE 55

Barycentrics    a (-2 a^4 b^3 + 4 a^5 b c - 4 a^3 b^3 c + a^3 b^2 c^2 + 2 a^2 b^3 c^2 + 8 a b^4 c^2 - 2 a^4 c^3 - 4 a^3 b c^3 + 2 a^2 b^2 c^3 - 4 b^4 c^3 + 8 a b^2 c^4 - 4 b^3 c^4) : :

X(27202) lies on these lines: {2, 6}, {16777, 27205}


X(27203) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(22), WHERE A'B'C' = GEMINI TRIANGLE 55

Barycentrics    a (-2 a^8 b^3 + 2 a^4 b^7 + 4 a^9 b c + 4 a^7 b^3 c - 4 a^5 b^5 c - 4 a^3 b^7 c + a^7 b^2 c^2 - 2 a^6 b^3 c^2 - 8 a^5 b^4 c^2 - a^3 b^6 c^2 - 2 a^2 b^7 c^2 + 8 a b^8 c^2 - 2 a^8 c^3 + 4 a^7 b c^3 - 2 a^6 b^2 c^3 + 6 a^4 b^4 c^3 + 4 a^3 b^5 c^3 + 2 a^2 b^6 c^3 + 4 b^8 c^3 - 8 a^5 b^2 c^4 + 6 a^4 b^3 c^4 - 8 a b^6 c^4 - 4 b^7 c^4 - 4 a^5 b c^5 + 4 a^3 b^3 c^5 - a^3 b^2 c^6 + 2 a^2 b^3 c^6 - 8 a b^4 c^6 + 2 a^4 c^7 - 4 a^3 b c^7 - 2 a^2 b^2 c^7 - 4 b^4 c^7 + 8 a b^2 c^8 + 4 b^3 c^8) : :

X(27203) lies on these lines:


X(27204) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(23), WHERE A'B'C' = GEMINI TRIANGLE 55

Barycentrics    a (-2 a^8 b^3 + 2 a^4 b^7 + 4 a^9 b c + 4 a^7 b^3 c - 4 a^5 b^5 c - 4 a^3 b^7 c + a^7 b^2 c^2 - 2 a^6 b^3 c^2 - 8 a^5 b^4 c^2 - a^3 b^6 c^2 - 2 a^2 b^7 c^2 + 8 a b^8 c^2 - 2 a^8 c^3 + 4 a^7 b c^3 - 2 a^6 b^2 c^3 - 4 a^5 b^3 c^3 + 6 a^4 b^4 c^3 + 4 a^3 b^5 c^3 - 2 a^2 b^6 c^3 + 4 b^8 c^3 - 8 a^5 b^2 c^4 + 6 a^4 b^3 c^4 + 17 a^3 b^4 c^4 - 8 a b^6 c^4 - 4 b^7 c^4 - 4 a^5 b c^5 + 4 a^3 b^3 c^5 - a^3 b^2 c^6 - 2 a^2 b^3 c^6 - 8 a b^4 c^6 + 2 a^4 c^7 - 4 a^3 b c^7 - 2 a^2 b^2 c^7 - 4 b^4 c^7 + 8 a b^2 c^8 + 4 b^3 c^8) : :

X(27204) lies on these lines:


X(27205) =  (A,B,C,X(2); A',B',C',X(2)) COLLINEATION IMAGE OF X(75), WHERE A'B'C' = GEMINI TRIANGLE 55

Barycentrics    a^2 (-2 a^2 b^4 + 4 a^3 b