PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |
Collineation mappings involving Gemini triangle 38: X(26001)-X(26026)
Extending the preamble just before X(24537), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 38, as in centers X(26001)-X(26026). Then
m(X) = 2 b c (a - b + c) (a + b - c) x + (a - b - c) (a^2 + b^2 - c^2) y + (a - b - c) (a^2 - b^2 + c^2) z : :
A point X lies on the Euler line if and only if m(X) also lies on the Euler line. (Clark Kimberling, October 29, 2018)
X(26001) lies on these lines: {1, 2}, {4, 24590}, {7, 20262}, {11, 26002}, {56, 25931}, {57, 23058}, {63, 6554}, {75, 25019}, {142, 26540}, {241, 1146}, {269, 5942}, {281, 1445}, {515, 11349}, {594, 25067}, {673, 1861}, {908, 26005}, {1449, 24553}, {2262, 21239}, {2270, 21279}, {2321, 26669}, {3218, 5199}, {3666, 21049}, {3739, 25964}, {4000, 24005}, {4025, 4391}, {4357, 20905}, {4359, 25002}, {4416, 26651}, {4431, 25243}, {4858, 22464}, {4967, 25001}, {5179, 20367}, {5249, 13567}, {5257, 24554}, {5435, 20205}, {5787, 11347}, {6245, 24604}, {7291, 8074}, {7384, 27000}, {8756, 16560}, {16608, 21617}, {17275, 25878}, {20888, 26592}, {21495, 25954}, {24789, 26958}, {25023, 26538}, {26004, 26007}, {26010, 26019}
X(26002) lies on these lines: {2, 3}, {11, 26001}, {77, 15849}, {241, 6506}, {1329, 25930}, {7681, 24590}
X(26003) lies on these lines: {2, 3}, {9, 273}, {34, 25930}, {53, 17337}, {63, 1847}, {92, 3305}, {142, 7282}, {144, 1119}, {239, 1897}, {264, 2322}, {275, 17758}, {278, 18228}, {281, 18230}, {317, 17234}, {318, 4384}, {333, 18736}, {340, 17297}, {342, 1445}, {673, 1861}, {908, 4564}, {1021, 1577}, {1235, 26592}, {1753, 24590}, {1785, 3008}, {1839, 25993}, {1841, 25067}, {3087, 4648}, {3912, 5081}, {5174, 25935}, {5222, 7952}, {5226, 17917}, {6748, 17245}, {6749, 17392}, {9308, 17349}, {17300, 27377}, {17352, 17907}
X(26003) = orthocentroidal-circle-inverse of X(37448)
X(26003) = {X(2),X(4)}-harmonic conjugate of X(37448)
X(26004) lies on these lines: {2, 3}, {14838, 26017}, {26001, 26007}
X(26005) lies on these lines: {2, 6}, {11, 26010}, {238, 25968}, {440, 21363}, {594, 26591}, {899, 25882}, {908, 26001}, {1736, 2968}, {1788, 20306}, {1834, 24983}, {2887, 25973}, {3452, 26942}, {3687, 25091}, {3911, 26932}, {4364, 26635}, {4415, 17862}, {5219, 16608}, {5723, 17923}, {6247, 6848}, {6847, 15873}, {6949, 26879}, {6959, 12359}, {14557, 21621}, {17810, 26118}, {20905, 26580}, {25019, 25939}, {26014, 26016}
X(26006) lies on these lines: {1, 2}, {6, 25019}, {9, 26668}, {40, 24580}, {48, 18589}, {63, 348}, {77, 27509}, {86, 2327}, {110, 2741}, {125, 20754}, {142, 2289}, {205, 21062}, {219, 307}, {223, 27540}, {226, 9310}, {241, 17044}, {278, 27413}, {347, 27382}, {379, 946}, {394, 4001}, {441, 525}, {515, 857}, {516, 14953}, {517, 1375}, {534, 2173}, {610, 4329}, {908, 4564}, {962, 24604}, {968, 26649}, {1100, 25964}, {1214, 22070}, {1813, 6518}, {1819, 16054}, {1944, 22464}, {2187, 24605}, {2328, 26647}, {2360, 24606}, {3007, 14543}, {3430, 26252}, {3576, 14021}, {3589, 25067}, {3663, 26651}, {3686, 25000}, {3879, 26540}, {3946, 20905}, {4466, 9028}, {4657, 25878}, {4855, 25932}, {5227, 25915}, {5250, 24609}, {5294, 23292}, {5717, 25017}, {5750, 25001}, {5930, 27410}, {6510, 26932}, {6684, 24581}, {8804, 17134}, {10436, 24553}, {13161, 26678}, {15988, 25023}, {17086, 27420}, {17353, 26669}, {17355, 25243}, {17859, 26165}, {18594, 20061}, {24179, 24779}, {24203, 24781}, {25082, 25087}
X(26006) = isogonal conjugate of polar conjugate of X(35517)
X(26006) = isotomic conjugate of polar conjugate of X(516)
X(26006) = complement of polar conjugate of X(917)
X(26006) = crossdifference of every pair of points on line X(25)X(649)
X(26006) = X(19)-isoconjugate of X(103)
X(26007) lies on these lines: {2, 11}, {12, 17682}, {41, 21258}, {101, 4904}, {142, 24685}, {169, 3665}, {241, 514}, {479, 658}, {664, 4534}, {1086, 9318}, {1146, 9317}, {1194, 3752}, {1358, 3732}, {1438, 17060}, {1479, 17675}, {1565, 5540}, {2098, 26658}, {2170, 17044}, {2246, 5845}, {2348, 9436}, {3666, 25070}, {3689, 3912}, {4000, 26273}, {4209, 7354}, {4258, 26101}, {4422, 14439}, {5305, 24790}, {6284, 17671}, {6547, 8649}, {6710, 17761}, {7819, 25992}, {8256, 26653}, {10950, 26531}, {11349, 20989}, {17056, 21341}, {17683, 25466}, {17728, 24600}, {26001, 26004}
X(26008) lies on these lines: {2, 3}
X(26009) lies on these lines: {2, 3}
X(26010) lies on these lines: {2, 31}, {11, 26005}, {124, 3911}, {343, 3840}, {726, 26611}, {899, 23541}, {978, 17555}, {1193, 24983}, {3816, 13567}, {5087, 26011}, {5741, 25941}, {24984, 27627}, {26001, 26019}
X(26011) lies on these lines: {2, 37}, {11, 1861}, {92, 1427}, {226, 6708}, {518, 26013}, {525, 3239}, {908, 26001}, {1104, 11109}, {1150, 26651}, {1465, 4858}, {1738, 25882}, {3011, 25968}, {3706, 25941}, {3713, 25934}, {4054, 25019}, {5087, 26010}, {7270, 25983}, {9371, 26095}, {11679, 17811}, {12618, 14022}, {15852, 26027}, {17102, 20320}, {25000, 26580}
X(26012) lies on these lines: {1, 7380}, {2, 41}, {5, 226}, {6, 20305}, {11, 20358}, {37, 24317}, {44, 8287}, {57, 4911}, {69, 21244}, {116, 3008}, {150, 1429}, {325, 3912}, {524, 21237}, {604, 21270}, {672, 857}, {908, 26019}, {1211, 3831}, {1400, 5740}, {1737, 16609}, {1825, 1848}, {1837, 24268}, {2347, 25000}, {3589, 21236}, {3666, 24211}, {3782, 24172}, {4357, 25371}, {5249, 17048}, {5712, 10588}, {5750, 17052}, {7146, 17181}, {7291, 24712}, {8609, 21091}, {16888, 17861}, {17023, 17062}, {17303, 25363}, {21069, 25078}, {21232, 25007}, {24318, 25083}, {26013, 26020}, {26176, 26963}
X(26013) lies on these lines: {1, 2}, {11, 26005}, {38, 17862}, {46, 14058}, {243, 1861}, {291, 16082}, {343, 2887}, {515, 851}, {516, 14956}, {518, 26011}, {774, 23528}, {850, 4025}, {946, 1985}, {1468, 24537}, {1725, 23580}, {1736, 24026}, {1776, 24410}, {1818, 26031}, {2886, 13567}, {3580, 21241}, {3696, 25939}, {3706, 25091}, {3925, 25970}, {4191, 6796}, {5173, 6708}, {5247, 11109}, {5278, 25885}, {10601, 25496}, {11433, 26098}, {11499, 16059}, {17871, 24218}, {25024, 26587}, {26012, 26020}
X(26014) lies on these lines: {2, 37}, {239, 26025}, {6063, 20310}, {26005, 26016}
X(26015) lies on these lines: {1, 2}, {5, 3555}, {6, 17721}, {7, 24389}, {11, 518}, {36, 12750}, {38, 24210}, {56, 1004}, {57, 3434}, {63, 497}, {65, 3813}, {72, 496}, {84, 10431}, {100, 2078}, {142, 11025}, {149, 516}, {165, 20075}, {210, 3816}, {226, 3873}, {238, 1331}, {244, 1738}, {283, 1067}, {329, 5274}, {354, 2886}, {377, 3333}, {390, 5744}, {442, 5045}, {515, 13279}, {517, 6075}, {522, 693}, {527, 1156}, {528, 1155}, {553, 20292}, {740, 12080}, {912, 1519}, {942, 20612}, {946, 3868}, {950, 1005}, {952, 1512}, {956, 5722}, {962, 6245}, {982, 3914}, {984, 24217}, {999, 3419}, {1058, 5250}, {1086, 3999}, {1100, 17726}, {1150, 3883}, {1280, 2006}, {1320, 10265}, {1376, 4863}, {1420, 12625}, {1445, 6601}, {1476, 6598}, {1538, 13257}, {1621, 5745}, {1699, 5905}, {1836, 11235}, {1837, 12513}, {1861, 1897}, {1864, 15845}, {1936, 2342}, {1996, 6604}, {2321, 8568}, {2323, 4700}, {2475, 4298}, {2476, 3889}, {2550, 3306}, {2784, 5990}, {3035, 3689}, {3058, 4640}, {3120, 17449}, {3175, 4884}, {3189, 4855}, {3242, 17720}, {3243, 5219}, {3303, 26066}, {3304, 5794}, {3305, 26105}, {3361, 4190}, {3436, 6762}, {3452, 3681}, {3485, 11520}, {3574, 5777}, {3600, 5175}, {3649, 10957}, {3660, 10427}, {3663, 4392}, {3674, 20247}, {3677, 19785}, {3685, 3977}, {3693, 3943}, {3697, 17527}, {3712, 4702}, {3717, 4358}, {3742, 3925}, {3748, 6690}, {3755, 4850}, {3756, 16610}, {3772, 17597}, {3782, 21342}, {3817, 4430}, {3822, 3892}, {3826, 17051}, {3829, 17605}, {3834, 20541}, {3869, 12053}, {3871, 6684}, {3874, 12047}, {3875, 24388}, {3880, 13996}, {3881, 13407}, {3885, 11362}, {3886, 17740}, {3890, 5837}, {3893, 8256}, {3894, 18393}, {3895, 5657}, {3913, 24914}, {3916, 15171}, {3928, 9580}, {3936, 4684}, {3937, 15310}, {3947, 5141}, {3952, 4899}, {3953, 23537}, {3962, 26475}, {3976, 23536}, {3994, 4712}, {4001, 4388}, {4018, 8727}, {4054, 24349}, {4104, 25960}, {4189, 4314}, {4193, 21075}, {4253, 21073}, {4294, 4652}, {4349, 14996}, {4434, 17765}, {4514, 14829}, {4649, 17722}, {4656, 7226}, {4661, 21060}, {4679, 5220}, {4706, 8758}, {4848, 14923}, {4857, 6763}, {4860, 5880}, {4864, 17724}, {4867, 16173}, {4875, 21049}, {4883, 17056}, {4956, 17132}, {4996, 17010}, {5046, 12527}, {5048, 5855}, {5086, 10106}, {5126, 10609}, {5177, 11037}, {5178, 5253}, {5208, 17167}, {5290, 6871}, {5316, 24393}, {5435, 17784}, {5440, 15325}, {5442, 14798}, {5534, 6834}, {5537, 11219}, {5563, 17647}, {5572, 6067}, {5586, 10941}, {5691, 20076}, {5709, 6361}, {5730, 11373}, {5735, 9812}, {5815, 6919}, {5839, 24005}, {5850, 17484}, {5854, 20118}, {5904, 21616}, {5927, 7956}, {6769, 6890}, {7290, 24597}, {7330, 10531}, {7411, 11012}, {7580, 11249}, {7681, 14872}, {7741, 21077}, {7982, 12616}, {8666, 10572}, {9284, 17448}, {9335, 24175}, {9614, 11415}, {10025, 17036}, {10395, 11523}, {10589, 25568}, {10680, 18525}, {10950, 11260}, {11113, 18527}, {11238, 17781}, {11376, 12635}, {11522, 12617}, {12512, 20066}, {12607, 17606}, {12609, 18398}, {12619, 25416}, {12675, 15908}, {13138, 15499}, {13226, 17613}, {14956, 18206}, {15185, 21617}, {16418, 18530}, {17474, 21029}, {17491, 23821}, {17609, 25466}, {17774, 18134}, {18201, 24715}, {18239, 18243}, {18492, 26332}, {18653, 19642}, {19925, 20060}, {20835, 26357}, {21096, 25082}, {21242, 24325}, {21255, 25959}, {21296, 24213}
X(26015) = complement of X(3935)
X(26015) = anticomplement of X(6745)
X(26015) = inverse-in-inellipse-centered-at-X(10) of X(2)
X(26016) lies on these lines: {1, 2}, {7291, 21382}, {20911, 25002}, {26005, 26014}
X(26017) lies on these lines: {2, 661}, {9, 4077}, {514, 24562}, {649, 25009}, {657, 693}, {812, 26546}, {850, 4529}, {1021, 1577}, {2522, 14837}, {4379, 26695}, {4885, 14298}, {8062, 24718}, {14838, 26004}, {17072, 18344}, {17811, 18199}, {21146, 25926}
X(26018) lies on these lines: {2, 3}
X(26019) lies on these lines: {2, 3}, {11, 239}, {12, 16826}, {325, 3948}, {496, 4393}, {908, 26012}, {1329, 3661}, {1778, 24895}, {1959, 21044}, {2893, 25679}, {3580, 17174}, {3662, 21239}, {3814, 3912}, {3816, 17397}, {3825, 17023}, {3847, 17367}, {4384, 7741}, {5254, 24598}, {5949, 6707}, {6542, 17757}, {7173, 16815}, {7951, 16831}, {9722, 18747}, {10593, 16816}, {11681, 17316}, {12607, 17389}, {17167, 25977}, {19719, 19754}, {19791, 19839}, {20486, 20531}, {21926, 27483}, {24603, 25639}, {26001, 26010}
X(26020) lies on these lines: {2, 3}, {11, 1861}, {33, 3816}, {34, 1329}, {120, 13999}, {123, 1465}, {908, 1876}, {1376, 11393}, {1395, 25938}, {1398, 3436}, {1753, 7681}, {1785, 5121}, {1829, 24982}, {1870, 17757}, {1892, 3306}, {1897, 5211}, {5081, 5205}, {5090, 19861}, {5554, 11396}, {10200, 11399}, {11392, 25524}, {11398, 26364}, {16082, 17987}, {16997, 27377}, {17721, 23050}, {26012, 26013}
X(26021) lies on these lines: {2, 3}
X(26022) lies on these lines:
X(26023) lies on these lines: {2, 3}, {239, 17923}, {273, 27483}, {286, 1213}, {1838, 24603}, {5081, 27399}, {5174, 16826}, {17917, 26626}, {17924, 27486}
X(26024) lies on these lines: {2, 3}
X(26025) lies on these lines: {2, 3}, {239, 26014}
X(26026) lies on these lines: {2, 3}
Collineation mappings involving Gemini triangle 39: X(26027)-X(26084)
Extending the preamble just before X(24537), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 39, as in centers X(26027)-X(26084). Then
m(X) = 2 b c (a - b - c) x - a c(a + b + c) y - a b (a + b + c) z : :
A point X lies on the Euler line if and only if m(X) also lies on the Euler line. (Clark Kimberling, October 29, 2018)
X(26027) lies on these lines: {2, 3}, {8, 73}, {10, 1745}, {318, 1214}, {966, 3330}, {1788, 19366}, {2183, 5749}, {2551, 26031}, {2635, 9780}, {2654, 3616}, {4645, 5552}, {5342, 6708}, {6349, 7952}, {6734, 27339}, {7080, 26942}, {9612, 27287}, {15852, 26011}, {17080, 23661}, {26041, 26043}
X(26028) lies on these lines: {2, 3}, {8, 2594}, {4417, 5552}, {4645, 27529}, {9780, 26031}, {17095, 18738}, {22300, 26115}, {26034, 26364}
X(26029) lies on these lines: {1, 2}, {46, 17350}, {100, 17697}, {341, 3752}, {346, 21796}, {377, 26073}, {442, 26772}, {740, 27291}, {986, 27538}, {1058, 26139}, {1089, 1278}, {1220, 4413}, {1329, 4429}, {1376, 4195}, {1575, 25610}, {2345, 21892}, {2551, 4201}, {3210, 3701}, {3303, 25531}, {3662, 21075}, {3672, 18140}, {3697, 27311}, {3760, 4452}, {3820, 16062}, {4188, 15654}, {4352, 6376}, {4385, 17490}, {4454, 4721}, {4642, 19582}, {4646, 18743}, {4657, 25109}, {4673, 21896}, {4695, 25591}, {4737, 17480}, {4968, 24620}, {5260, 19278}, {5687, 13741}, {6210, 26685}, {9709, 13740}, {11415, 26791}, {17303, 25629}, {17691, 26687}, {17756, 27523}, {17869, 26612}, {20498, 26132}, {24174, 24349}, {25242, 25994}, {26040, 26051}, {26041, 26042}, {26050, 26062}, {26077, 26083}, {27102, 27334}
X(26030) lies on these lines: {1, 2}, {5, 4972}, {12, 4202}, {35, 11319}, {46, 26223}, {55, 5192}, {100, 13740}, {256, 27033}, {404, 1220}, {740, 27261}, {964, 1376}, {1089, 17147}, {1215, 24443}, {1329, 5051}, {1469, 17077}, {1575, 25629}, {1621, 13741}, {1706, 14554}, {1909, 27162}, {2183, 5749}, {2228, 26042}, {2276, 27040}, {2277, 14624}, {2347, 5750}, {2476, 4429}, {3264, 17321}, {3454, 27041}, {3666, 3701}, {3670, 17165}, {3697, 4981}, {3702, 4646}, {3752, 4968}, {3761, 18600}, {3820, 13728}, {3826, 27042}, {3923, 27078}, {3931, 4358}, {4201, 5080}, {4385, 4850}, {4413, 16454}, {4424, 25253}, {4645, 26067}, {4649, 27145}, {4698, 24751}, {4754, 25350}, {5010, 17539}, {5218, 17526}, {5251, 16347}, {5252, 26126}, {5260, 19270}, {5294, 6684}, {5432, 8240}, {5482, 11231}, {5687, 24552}, {6376, 16705}, {6381, 25599}, {6690, 25992}, {8728, 24988}, {9596, 26085}, {11115, 25440}, {11681, 16062}, {15888, 25914}, {17140, 24046}, {17184, 21077}, {17674, 25466}, {20140, 27169}, {24325, 27311}, {25017, 25882}, {25499, 27076}, {25611, 27032}, {26051, 26060}, {26057, 26065}
X(26031) lies on these lines: {2, 11}, {10, 73}, {474, 26126}, {1362, 27339}, {1698, 5400}, {1788, 10822}, {1818, 26013}, {2254, 26078}, {2551, 26027}, {2887, 21912}, {3120, 21914}, {3698, 22313}, {4425, 21913}, {5229, 26050}, {9780, 26028}, {16578, 24026}, {18134, 27517}, {18141, 27518}
X(26032) lies on these lines: {2, 3}, {144, 17007}, {1853, 26579}, {3219, 26034}, {4123, 16580}, {4463, 17481}, {4645, 5905}, {5800, 17778}, {12588, 25308}
X(26033) lies on these lines: {2, 3}, {659, 25299}, {3952, 4645}
X(26034) lies on these lines: {2, 31}, {8, 38}, {9, 15487}, {10, 46}, {42, 69}, {43, 5739}, {55, 141}, {58, 19784}, {200, 17272}, {210, 4643}, {306, 17594}, {312, 24723}, {321, 24248}, {329, 4683}, {333, 4429}, {345, 4414}, {474, 27657}, {498, 3454}, {595, 19836}, {612, 4357}, {614, 3883}, {672, 966}, {756, 4019}, {846, 17776}, {851, 1211}, {896, 9780}, {899, 14555}, {902, 3619}, {940, 4026}, {958, 1473}, {968, 3912}, {984, 10327}, {993, 7293}, {1036, 19527}, {1150, 4972}, {1215, 4655}, {1403, 12588}, {1654, 2227}, {1698, 1707}, {1709, 12618}, {1738, 5271}, {1755, 26063}, {1761, 2345}, {1824, 18252}, {1962, 17316}, {2177, 3620}, {2187, 14826}, {2221, 5711}, {2223, 7800}, {2225, 26036}, {2232, 26043}, {2236, 26042}, {2308, 3618}, {2478, 3831}, {2550, 6817}, {2895, 3240}, {3011, 25527}, {3052, 3763}, {3219, 26032}, {3242, 4030}, {3416, 3666}, {3434, 3741}, {3616, 17469}, {3662, 3757}, {3683, 17279}, {3705, 24627}, {3715, 17332}, {3720, 18141}, {3745, 4657}, {3747, 27248}, {3751, 4001}, {3752, 3966}, {3755, 17156}, {3769, 19786}, {3821, 4362}, {3826, 19732}, {3844, 4640}, {3914, 11679}, {3925, 5737}, {3974, 4419}, {4003, 4914}, {4046, 4445}, {4259, 22275}, {4363, 11246}, {4384, 23682}, {4413, 5743}, {4450, 24552}, {4512, 17284}, {4646, 10371}, {4849, 17344}, {4865, 6682}, {5230, 16062}, {5256, 5847}, {5269, 17306}, {5311, 17321}, {5314, 25440}, {5552, 26057}, {5774, 11359}, {5793, 7354}, {5846, 17599}, {6057, 17262}, {6999, 9778}, {7081, 27184}, {9598, 21024}, {11031, 18391}, {11269, 14829}, {12586, 15621}, {16570, 19875}, {16825, 24169}, {17184, 26227}, {17596, 17740}, {17598, 19993}, {17676, 17751}, {17792, 26893}, {20368, 26118}, {21000, 21358}, {21240, 26101}, {24349, 26840}, {24597, 25453}, {24693, 27798}, {24695, 26223}, {26028, 26364}, {26038, 26073}, {26128, 26228}
X(26035) lies on these lines: {1, 21070}, {2, 39}, {6, 8}, {10, 672}, {32, 11115}, {37, 4968}, {75, 17489}, {105, 405}, {141, 4754}, {281, 4185}, {377, 966}, {379, 5273}, {391, 4274}, {404, 26244}, {573, 15971}, {894, 17137}, {1010, 5276}, {1150, 5021}, {1213, 4202}, {1334, 17355}, {1475, 3741}, {1575, 25629}, {1851, 17920}, {1909, 17289}, {2276, 26115}, {2549, 17676}, {3053, 16393}, {3496, 4418}, {3720, 21071}, {3735, 17164}, {3739, 20880}, {3954, 17165}, {3975, 19808}, {4253, 10479}, {4359, 16583}, {5051, 5254}, {5206, 16397}, {5257, 23536}, {5275, 16454}, {5277, 19284}, {5278, 19281}, {5300, 17275}, {5308, 19701}, {6376, 27026}, {6542, 19717}, {9780, 20331}, {10472, 16713}, {11319, 24275}, {13728, 15048}, {16502, 24552}, {16604, 26094}, {16818, 20888}, {16998, 17688}, {17033, 17368}, {17135, 20963}, {17277, 17686}, {17303, 19874}, {17316, 19684}, {17359, 24656}, {17750, 17751}, {19743, 20055}, {21024, 24512}, {21808, 24325}, {24989, 27376}, {25000, 26550}, {26058, 26072}, {26059, 26961}, {27071, 27251}
X(26036) lies on these lines: {2, 41}, {4, 9}, {6, 25466}, {8, 3930}, {101, 26363}, {198, 5742}, {213, 26098}, {218, 442}, {220, 2886}, {226, 4384}, {377, 672}, {388, 21384}, {391, 1405}, {405, 8299}, {443, 17754}, {607, 25985}, {910, 26066}, {978, 7736}, {1212, 5794}, {1334, 3434}, {1478, 16552}, {1479, 3294}, {1714, 5280}, {1738, 9593}, {2082, 24987}, {2225, 26034}, {2246, 9780}, {2329, 19843}, {2893, 26045}, {3008, 25525}, {3085, 3684}, {3207, 4999}, {3208, 5082}, {3419, 16601}, {3436, 3691}, {3487, 16825}, {3679, 7323}, {4251, 10198}, {4258, 6690}, {4520, 12701}, {4662, 17275}, {4875, 5252}, {5230, 5276}, {5273, 6999}, {5436, 19868}, {5749, 26051}, {5783, 15973}, {7384, 18228}, {7774, 16827}, {9310, 10527}, {11236, 17330}, {12649, 21808}, {13161, 16517}, {16788, 19854}, {17170, 24694}, {22127, 24512}, {24318, 25583}, {26037, 26052}
X(26037) lies on these lines: {1, 2}, {9, 4418}, {31, 17277}, {38, 19804}, {55, 17259}, {75, 756}, {141, 25961}, {171, 5278}, {210, 3739}, {291, 24988}, {310, 6376}, {312, 21020}, {333, 750}, {649, 25627}, {672, 966}, {748, 5263}, {749, 16709}, {851, 26066}, {958, 4191}, {982, 4981}, {984, 4359}, {993, 4210}, {1011, 1376}, {1150, 17122}, {1211, 3826}, {1213, 2276}, {1268, 2296}, {1329, 3136}, {1574, 21838}, {1575, 25624}, {1861, 4207}, {1962, 4687}, {2238, 17303}, {2239, 19808}, {2308, 17349}, {2345, 25623}, {2350, 21384}, {2550, 6818}, {2551, 6817}, {2886, 5241}, {3210, 3989}, {3219, 3980}, {3681, 24325}, {3715, 4363}, {3745, 17348}, {3761, 16748}, {3791, 9347}, {3923, 27065}, {3925, 5743}, {3971, 9330}, {4023, 17056}, {4046, 17243}, {4104, 5249}, {4147, 4379}, {4184, 25440}, {4192, 26446}, {4199, 5955}, {4413, 5737}, {4441, 4967}, {4665, 6057}, {4683, 5880}, {4703, 20292}, {4751, 21805}, {4893, 17072}, {5235, 13588}, {5247, 16454}, {5791, 16056}, {7226, 24165}, {7308, 13576}, {9568, 12435}, {9708, 16059}, {9709, 16058}, {10440, 10478}, {11246, 17332}, {14829, 17124}, {17123, 24552}, {17248, 17759}, {17251, 24690}, {17275, 24512}, {17289, 25611}, {17750, 21753}, {17889, 26580}, {18154, 21727}, {20347, 25590}, {21223, 27318}, {23791, 26777}, {24342, 26223}, {25385, 27131}, {26036, 26052}, {26044, 26073}, {26060, 26064}, {26128, 26724}
X(26038) lies on these lines: {1, 2}, {37, 4734}, {38, 24620}, {69, 25144}, {75, 3740}, {100, 16058}, {171, 17349}, {210, 19804}, {321, 4903}, {333, 4413}, {391, 17754}, {756, 3210}, {956, 16409}, {966, 1575}, {984, 17490}, {1150, 9342}, {1215, 4699}, {1278, 3971}, {1376, 4203}, {1654, 26135}, {2238, 5749}, {2239, 26065}, {2276, 5296}, {2550, 25135}, {2975, 16059}, {3061, 22173}, {3434, 6822}, {3436, 6821}, {3662, 4104}, {3681, 24589}, {3685, 7308}, {3696, 18743}, {3759, 4682}, {3769, 17348}, {3826, 4417}, {3921, 4737}, {3925, 5233}, {3980, 17350}, {3996, 4423}, {4023, 18134}, {4210, 15654}, {4429, 5743}, {4640, 17335}, {4645, 14555}, {4704, 4970}, {4748, 25349}, {5080, 6817}, {5278, 11358}, {5328, 20545}, {5657, 19540}, {5744, 16056}, {6210, 9778}, {6384, 25280}, {7155, 27439}, {7229, 24514}, {9330, 17147}, {10440, 10446}, {16604, 24528}, {17236, 24169}, {17251, 25350}, {17260, 17594}, {17275, 25311}, {17280, 25623}, {17358, 25611}, {17592, 27268}, {17756, 21838}, {19808, 26083}, {21060, 24199}, {21264, 25116}, {24749, 27345}, {26034, 26073}
X(26039) lies on these lines: {1, 2321}, {2, 45}, {6, 3617}, {7, 17385}, {8, 16666}, {9, 3634}, {10, 16670}, {37, 5550}, {44, 966}, {144, 17327}, {346, 16672}, {551, 4873}, {594, 3621}, {599, 4747}, {1100, 20050}, {1449, 3625}, {1698, 24695}, {2246, 26040}, {2325, 3624}, {3247, 15808}, {3616, 17281}, {3618, 16816}, {3622, 3943}, {3626, 5839}, {3672, 7227}, {3707, 19875}, {3945, 17293}, {4029, 25055}, {4461, 17045}, {4644, 17308}, {4648, 17241}, {4657, 7229}, {4665, 17014}, {4677, 4982}, {4678, 4969}, {4708, 6172}, {4727, 20057}, {4798, 5308}, {4887, 7222}, {5257, 19872}, {5746, 15650}, {5936, 17348}, {16676, 17355}, {16815, 17368}, {17012, 19822}, {17067, 25590}, {17160, 17381}, {17572, 19297}
X(26040) lies on these lines: {1, 12521}, {2, 11}, {3, 19855}, {4, 165}, {5, 6244}, {7, 210}, {8, 354}, {9, 3474}, {10, 57}, {12, 4208}, {33, 25993}, {35, 16845}, {40, 6864}, {42, 4648}, {43, 5712}, {56, 17580}, {65, 11024}, {75, 3974}, {142, 200}, {144, 3715}, {226, 8580}, {329, 3740}, {355, 11227}, {376, 5251}, {377, 1155}, {442, 10588}, {474, 1617}, {496, 16863}, {515, 10857}, {516, 7308}, {518, 9776}, {553, 5223}, {612, 4000}, {631, 6796}, {672, 966}, {756, 4419}, {899, 10460}, {910, 17303}, {936, 3485}, {946, 7994}, {958, 6904}, {962, 25917}, {1002, 4651}, {1010, 5324}, {1056, 3679}, {1058, 3624}, {1125, 5082}, {1329, 5177}, {1478, 19875}, {1479, 17559}, {1699, 5316}, {1709, 5817}, {1722, 5716}, {1738, 5268}, {1836, 18228}, {1864, 15587}, {2078, 6681}, {2246, 26039}, {2272, 26063}, {2348, 5749}, {2478, 19877}, {3008, 5269}, {3052, 17337}, {3085, 8728}, {3086, 16408}, {3090, 5537}, {3091, 7965}, {3158, 6601}, {3256, 3841}, {3305, 5698}, {3306, 24477}, {3340, 12447}, {3476, 9623}, {3486, 10383}, {3523, 24953}, {3525, 12116}, {3579, 6849}, {3583, 19876}, {3616, 3748}, {3617, 4860}, {3632, 17706}, {3634, 5084}, {3646, 10624}, {3660, 4002}, {3663, 7322}, {3677, 24175}, {3683, 9778}, {3689, 10578}, {3744, 16020}, {3745, 5222}, {3753, 5173}, {3755, 17022}, {3782, 7613}, {3817, 20196}, {3820, 10590}, {3838, 5748}, {3844, 5800}, {3983, 5815}, {4061, 17296}, {4082, 4659}, {4190, 5260}, {4197, 5552}, {4293, 9708}, {4294, 11108}, {4295, 5044}, {4307, 4383}, {4309, 25542}, {4355, 4866}, {4356, 25430}, {4359, 10327}, {4433, 27253}, {4461, 6057}, {4470, 24315}, {4512, 6666}, {4645, 14555}, {4654, 21060}, {4675, 4849}, {4679, 9812}, {4699, 16990}, {4731, 5252}, {4847, 5437}, {4863, 10580}, {5067, 10531}, {5128, 18249}, {5129, 6284}, {5217, 17558}, {5219, 20103}, {5220, 9965}, {5231, 6692}, {5248, 17552}, {5249, 25568}, {5261, 21031}, {5297, 19785}, {5328, 17605}, {5536, 10532}, {5587, 6916}, {5657, 6854}, {5686, 21454}, {5687, 17529}, {5739, 20290}, {5794, 17603}, {5818, 6897}, {5836, 17642}, {5853, 10582}, {6361, 6896}, {6743, 11518}, {6745, 25525}, {6764, 17609}, {6826, 26446}, {6827, 11231}, {6835, 7964}, {6846, 10310}, {6850, 9956}, {6857, 25440}, {6887, 11248}, {6951, 17057}, {6964, 15908}, {6989, 11499}, {7069, 24341}, {7074, 25878}, {7080, 25466}, {7174, 24177}, {7392, 11677}, {7967, 7993}, {8165, 10895}, {8171, 15325}, {8583, 10388}, {9535, 10824}, {9579, 18250}, {9589, 11379}, {9710, 25524}, {10172, 26333}, {10178, 10430}, {10527, 17531}, {10591, 17527}, {10855, 17625}, {11018, 18391}, {11106, 15338}, {11221, 18698}, {11269, 17124}, {15171, 16853}, {16043, 16819}, {16569, 26098}, {16862, 24390}, {17570, 20066}, {21010, 27304}, {21912, 26939}, {23207, 25932}, {26029, 26051}, {26228, 26724}
X(26041) lies on these lines: {2, 6}, {10, 1716}, {75, 16605}, {264, 25021}, {345, 21857}, {1108, 25895}, {2183, 26685}, {2551, 4429}, {3718, 16583}, {3975, 4000}, {4352, 25470}, {4357, 27299}, {17270, 27248}, {20336, 21216}, {21035, 27549}, {26027, 26043}, {26029, 26042}, {26056, 26072}, {27047, 27280}
X(26042) lies on these lines: {2, 37}, {8, 1964}, {10, 1740}, {39, 3596}, {45, 27111}, {69, 26752}, {194, 313}, {322, 25918}, {894, 24315}, {966, 2235}, {984, 25120}, {1441, 26134}, {1698, 16571}, {1755, 26053}, {2227, 26061}, {2228, 26030}, {2234, 9780}, {2236, 26034}, {2237, 26085}, {2245, 17350}, {3097, 21080}, {3247, 25510}, {3616, 17445}, {3764, 7155}, {3778, 24351}, {3875, 26959}, {3963, 24598}, {4357, 27091}, {4393, 5153}, {4446, 24327}, {4741, 26756}, {4967, 17030}, {5294, 19591}, {5749, 26076}, {7187, 20930}, {9596, 26058}, {10436, 27020}, {17178, 17373}, {17230, 27145}, {17232, 27017}, {17233, 26979}, {17236, 27095}, {17238, 27044}, {17323, 25534}, {21238, 21299}, {25504, 27272}, {25538, 25590}, {25635, 26069}, {26029, 26041}, {26063, 26081}
X(26043) lies on these lines: {2, 39}, {377, 26072}, {672, 27091}, {966, 2231}, {2228, 26030}, {2230, 9780}, {2232, 26034}, {2233, 26058}, {17486, 27801}, {26027, 26041}
X(26044) lies on these lines: {2, 6}, {8, 1962}, {10, 846}, {896, 9780}, {1330, 1698}, {1655, 3210}, {1761, 3219}, {1999, 5257}, {2183, 27065}, {2475, 2551}, {3151, 26063}, {3617, 3704}, {3739, 26840}, {3770, 19804}, {3882, 7308}, {3975, 4359}, {4708, 19786}, {5249, 17252}, {5271, 17248}, {9791, 21020}, {14005, 20077}, {16589, 25058}, {17250, 24789}, {17326, 26723}, {17499, 24603}, {19877, 26131}, {20929, 27705}, {24697, 27798}, {26037, 26073}, {26053, 26059}, {26070, 26081}
X(26045) lies on these lines: {2, 6}, {8, 2667}, {10, 1045}, {21, 22369}, {75, 1655}, {261, 5277}, {314, 16589}, {1444, 16917}, {2183, 17260}, {2234, 9780}, {2550, 26117}, {2551, 26051}, {2893, 26036}, {3739, 3770}, {4357, 16819}, {4645, 19874}, {5257, 25427}, {5839, 25426}, {10436, 17499}, {16696, 25457}, {16705, 25470}, {17250, 26149}, {17270, 27255}, {17303, 26076}, {17321, 18904}, {17322, 26801}, {17762, 27565}, {19877, 26135}, {26055, 26068}
X(26046) lies on these lines: {1, 2}, {341, 24620}, {1574, 27523}, {1575, 25612}, {2551, 26073}, {9709, 17697}, {25631, 26077}
X(26047) lies on these lines: {1, 2}, {461, 5101}, {2348, 5749}, {3677, 10005}, {3914, 8055}, {3974, 4402}, {4000, 5423}, {4082, 4452}, {4429, 18228}, {5772, 19804}, {9776, 24988}, {9778, 26685}, {26065, 26073}
X(26048) lies on these lines: {1, 2}, {44, 26076}, {594, 27111}, {649, 22224}, {966, 2235}, {1268, 27042}, {1575, 3975}, {1654, 27102}, {2238, 18278}, {3210, 18135}, {3752, 25107}, {3948, 17759}, {3965, 25975}, {4395, 25534}, {4473, 27036}, {4699, 26149}, {5687, 11353}, {5749, 26077}, {6645, 25946}, {9263, 25298}, {17787, 21892}, {21226, 24598}, {21858, 25660}, {24478, 25120}, {26756, 26806}
X(26049) lies on these lines: {2, 650}, {75, 25271}, {513, 25636}, {649, 27527}, {652, 26652}, {659, 23301}, {661, 27345}, {798, 20295}, {812, 27293}, {850, 21225}, {1491, 6133}, {3210, 25098}, {3835, 4063}, {4147, 23655}, {4416, 23725}, {6586, 25258}, {16751, 17496}, {21127, 25008}, {21727, 26115}, {23806, 27184}, {27013, 27114}
X(26050) lies on these lines: {2, 3}, {8, 1042}, {10, 1044}, {145, 1066}, {1448, 7360}, {3000, 9780}, {3701, 25242}, {4645, 5906}, {5229, 26031}, {26029, 26062}
X(26051) lies on these lines: {2, 3}, {8, 2650}, {10, 894}, {58, 25446}, {86, 1834}, {148, 5988}, {239, 5717}, {333, 20077}, {341, 3770}, {387, 17379}, {896, 9780}, {942, 26806}, {1043, 17056}, {1220, 3925}, {1478, 19853}, {1655, 25242}, {1706, 3882}, {2550, 26110}, {2551, 26045}, {2893, 10436}, {2895, 3617}, {3583, 25512}, {3585, 16828}, {3616, 24161}, {3624, 26139}, {3786, 10381}, {4418, 21674}, {5080, 19874}, {5263, 25466}, {5295, 6542}, {5712, 20018}, {5716, 19851}, {5749, 26036}, {9791, 24851}, {10449, 17300}, {12572, 17260}, {13161, 16830}, {17248, 19859}, {17302, 23537}, {20533, 27255}, {24440, 24693}, {26029, 26040}, {26030, 26060}
X(26052) lies on these lines: {2, 3}, {8, 17441}, {9, 15487}, {10, 1763}, {33, 18589}, {55, 11677}, {69, 18138}, {72, 10327}, {184, 26668}, {197, 23305}, {226, 612}, {329, 4645}, {388, 1427}, {497, 1279}, {614, 950}, {910, 17303}, {1211, 1853}, {1441, 7102}, {1824, 4329}, {1861, 10319}, {1890, 9816}, {1899, 5739}, {1901, 5275}, {2000, 18651}, {2550, 3198}, {3434, 3757}, {3487, 3920}, {3488, 7191}, {3586, 5272}, {3917, 10477}, {5268, 9612}, {5276, 5746}, {5297, 5714}, {5712, 5800}, {5744, 26929}, {7172, 20344}, {14547, 26130}, {17810, 25964}, {21015, 27540}, {26036, 26037}
X(26053) lies on these lines: {2, 3}, {92, 18666}, {1214, 1947}, {1755, 26042}, {2893, 27339}, {26044, 26059}
X(26054) lies on these lines: {2, 3}, {7, 26131}, {8, 18673}, {10, 2939}, {63, 1330}, {71, 1761}, {846, 1770}, {2173, 9780}, {2292, 4295}, {2893, 6734}, {2947, 12520}, {3868, 17778}, {5262, 14547}, {5273, 26064}
X(26055) lies on these lines: {2, 3}, {8, 2658}, {10, 1047}, {318, 18667}, {26045, 26068}
X(26056) lies on these lines: {2, 3}, {26041, 26072}
X(26057) lies on these lines: {2, 3}, {46, 894}, {1210, 27305}, {1714, 5145}, {3085, 4645}, {3550, 10198}, {5552, 26034}, {9612, 27254}, {26029, 26041}, {26030, 26065}
X(26058) lies on these lines: {2, 3}, {148, 27262}, {2233, 26043}, {2896, 27312}, {4645, 26752}, {9596, 26042}, {26035, 26072}
X(26059) lies on these lines: {2, 7}, {8, 2293}, {10, 1742}, {75, 1212}, {86, 220}, {192, 27317}, {219, 17379}, {239, 25601}, {314, 346}, {333, 3713}, {391, 27514}, {958, 4195}, {1441, 3177}, {1757, 3085}, {2324, 16826}, {2551, 26045}, {3000, 9780}, {3730, 10446}, {3923, 19843}, {3945, 27253}, {4772, 4858}, {5234, 19853}, {6603, 17394}, {7379, 26939}, {10456, 17355}, {10460, 10578}, {15817, 19308}, {16050, 16738}, {17238, 26932}, {19855, 24342}, {20072, 27267}, {24456, 24744}, {24547, 26690}, {24635, 25001}, {26029, 26041}, {26035, 26961}, {26044, 26053}
X(26060) lies on these lines: {2, 35}, {4, 11231}, {5, 9342}, {8, 443}, {9, 3648}, {10, 3218}, {11, 17535}, {21, 3826}, {43, 26131}, {79, 26792}, {100, 8728}, {149, 3624}, {165, 6894}, {377, 1155}, {404, 3925}, {442, 27529}, {750, 24883}, {962, 6854}, {1329, 6175}, {1376, 4197}, {1621, 17529}, {1698, 2475}, {1770, 27065}, {2077, 6884}, {2476, 4413}, {2550, 3616}, {2886, 17531}, {3434, 5550}, {3524, 18517}, {3579, 6900}, {3585, 3828}, {3634, 5046}, {3678, 17483}, {3811, 27186}, {3868, 9782}, {3876, 5880}, {4002, 5176}, {4188, 19854}, {4190, 19855}, {4201, 19874}, {4208, 5552}, {4302, 16859}, {4420, 5249}, {4429, 16454}, {4857, 19878}, {4872, 25585}, {5010, 15674}, {5015, 24589}, {5044, 20292}, {5067, 10525}, {5178, 5439}, {5260, 11112}, {5263, 17674}, {5266, 26724}, {5297, 23537}, {5300, 19804}, {5303, 17563}, {5791, 9352}, {5904, 26842}, {6224, 19860}, {6284, 17536}, {6684, 6839}, {6835, 9778}, {6864, 9812}, {6895, 10164}, {6901, 26446}, {6951, 9956}, {6991, 10310}, {7486, 26333}, {9668, 16854}, {9669, 16864}, {10527, 17580}, {11680, 16408}, {11681, 17528}, {12436, 25006}, {13587, 24953}, {13740, 24988}, {15338, 16858}, {15586, 17303}, {17572, 26363}, {17680, 27026}, {26030, 26051}, {26037, 26064}\
X(26060) = anticomplement of X(25542)
X(26061) lies on these lines: {2, 38}, {6, 15523}, {8, 16478}, {10, 31}, {45, 6536}, {63, 1698}, {69, 4722}, {321, 25453}, {354, 17357}, {498, 11031}, {518, 24943}, {672, 17303}, {748, 17353}, {894, 16991}, {896, 9780}, {976, 17698}, {993, 19867}, {1089, 20083}, {1213, 5282}, {1473, 4413}, {1707, 19875}, {1962, 17776}, {2225, 25616}, {2227, 26042}, {2239, 19808}, {2292, 19784}, {2308, 3416}, {2312, 26063}, {2345, 21020}, {2887, 24725}, {3006, 25496}, {3187, 3773}, {3589, 3703}, {3706, 17359}, {3720, 17279}, {3844, 4641}, {3869, 19879}, {3914, 17355}, {3923, 4972}, {3925, 17369}, {3932, 5311}, {3989, 4657}, {4042, 17293}, {4365, 17281}, {4418, 4429}, {4672, 6327}, {4683, 17350}, {4854, 17340}, {5251, 5314}, {5749, 21026}, {6679, 26227}, {7085, 21671}, {10453, 17358}, {12526, 19880}, {16706, 17155}, {17156, 17286}, {17275, 21764}, {24295, 24552}, {25760, 27064}
X(26062) lies on these lines: {2, 40}, {4, 17613}, {7, 5552}, {8, 56}, {10, 4293}, {20, 10270}, {46, 329}, {57, 7080}, {65, 27383}, {100, 938}, {165, 452}, {377, 1155}, {443, 26446}, {474, 5657}, {516, 6919}, {517, 17567}, {631, 3753}, {944, 16371}, {952, 17573}, {1004, 9799}, {1167, 1771}, {1210, 17784}, {1329, 3474}, {1482, 17564}, {1697, 6692}, {1698, 1770}, {1706, 3911}, {1737, 5175}, {2093, 6700}, {2094, 3336}, {2183, 5749}, {2476, 3826}, {2478, 9778}, {2550, 24914}, {3035, 3485}, {3057, 3616}, {3085, 9776}, {3218, 5815}, {3241, 20323}, {3339, 6745}, {3359, 6848}, {3361, 6736}, {3434, 5704}, {3436, 9352}, {3452, 5128}, {3523, 19860}, {3579, 5084}, {3600, 6735}, {3623, 17706}, {3871, 10580}, {3872, 5265}, {4187, 6361}, {4188, 5554}, {4190, 12616}, {4193, 9812}, {4295, 5748}, {4679, 6933}, {4848, 5438}, {5129, 25011}, {5183, 24954}, {5221, 25568}, {5226, 27529}, {5328, 11415}, {5550, 6690}, {5603, 13747}, {5690, 16417}, {5768, 11499}, {5790, 17563}, {5804, 11248}, {5818, 11112}, {5825, 17668}, {5828, 20060}, {5836, 7288}, {5880, 10588}, {6856, 11231}, {6931, 9779}, {7982, 24558}, {9800, 19541}, {9965, 21075}, {10303, 24541}, {10528, 11037}, {11240, 12541}, {12245, 17614}, {12526, 20103}, {13996, 20057}, {17580, 24987}, {18391, 25440}, {21454, 27525}, {25019, 27530}, {26029, 26050}
X(26063) lies on these lines: {2, 48}, {4, 9}, {5, 219}, {6, 12}, {8, 1953}, {11, 2256}, {37, 1837}, {80, 2335}, {119, 5778}, {150, 25521}, {197, 1011}, {198, 1213}, {210, 2262}, {284, 498}, {318, 6520}, {329, 3958}, {377, 2252}, {388, 2260}, {442, 19350}, {579, 1478}, {610, 1698}, {612, 14547}, {631, 22054}, {908, 5271}, {958, 5742}, {965, 1329}, {1100, 17718}, {1108, 5252}, {1436, 4413}, {1441, 24316}, {1630, 19854}, {1656, 20818}, {1714, 5747}, {1723, 10827}, {1751, 2259}, {1755, 26034}, {1765, 6256}, {1781, 18395}, {1802, 6846}, {1836, 21866}, {1853, 3197}, {1857, 7069}, {1901, 10895}, {2173, 9780}, {2182, 17303}, {2238, 2911}, {2257, 9578}, {2261, 5750}, {2265, 5749}, {2272, 26040}, {2273, 3767}, {2287, 11681}, {2289, 6824}, {2294, 18391}, {2300, 2548}, {2302, 10198}, {2312, 26061}, {3085, 5802}, {3090, 22356}, {3151, 26044}, {3211, 6881}, {3419, 3694}, {3525, 22357}, {3616, 17438}, {3628, 23073}, {3686, 21075}, {3826, 5781}, {3975, 20927}, {4329, 21231}, {4362, 5839}, {5055, 22147}, {5086, 27396}, {5220, 5829}, {5227, 6734}, {5251, 13726}, {5282, 21014}, {5433, 37519}, {5746, 10590}, {5755, 10526}, {5776, 18242}, {5792, 17327}, {5798, 10894}, {7522, 26942}, {9599, 21769}, {9958, 18491}, {10327, 21278}, {16713, 21286}, {16788, 19784}, {17582, 22088}, {18594, 19875}, {21239, 25878}, {26042, 26081}
X(26064) lies on these lines: {1, 2895}, {2, 58}, {8, 192}, {10, 191}, {21, 1211}, {81, 4205}, {141, 5047}, {238, 27270}, {333, 5051}, {377, 966}, {404, 5743}, {442, 5235}, {452, 2893}, {846, 20653}, {896, 9780}, {964, 5224}, {1046, 27714}, {1213, 1778}, {2476, 5737}, {3616, 16478}, {3770, 4968}, {3868, 4643}, {3882, 5250}, {3936, 11110}, {4104, 4420}, {4197, 19732}, {4202, 17277}, {4357, 5262}, {4417, 16342}, {4425, 27368}, {4645, 19874}, {4658, 20086}, {4683, 14450}, {4748, 5716}, {4981, 5015}, {5046, 10479}, {5241, 17531}, {5273, 26054}, {5277, 6537}, {5278, 16062}, {5292, 5361}, {5333, 17514}, {5550, 26109}, {5739, 13725}, {5741, 19270}, {5810, 19262}, {6327, 19853}, {7270, 17256}, {9534, 17676}, {11114, 17251}, {11115, 27081}, {12579, 21085}, {14020, 17271}, {15674, 25645}, {15676, 24946}, {16817, 17184}, {17056, 17557}, {17238, 17697}, {17588, 25650}, {18228, 26120}, {19854, 25958}, {21020, 24851}, {26037, 26060}
X(26064) = anticomplement of X(25526)
X(26065) lies on these lines: {2, 7}, {6, 345}, {8, 31}, {10, 1707}, {21, 7085}, {38, 3616}, {44, 14555}, {45, 6703}, {69, 4641}, {81, 7123}, {92, 26665}, {189, 17743}, {191, 19784}, {193, 306}, {321, 24597}, {333, 1778}, {344, 940}, {346, 1999}, {387, 7283}, {404, 1473}, {497, 4676}, {612, 27549}, {896, 9780}, {938, 17697}, {942, 13742}, {966, 19808}, {1009, 20760}, {1264, 2273}, {1698, 16570}, {1730, 26961}, {1743, 3687}, {1755, 26042}, {1812, 2911}, {2221, 17740}, {2239, 26038}, {2247, 26081}, {2887, 24695}, {2899, 8258}, {3210, 5222}, {3241, 17469}, {3474, 4429}, {3488, 13735}, {3618, 3666}, {3620, 4001}, {3661, 14552}, {3710, 20009}, {3717, 5269}, {3730, 17185}, {3758, 5712}, {3769, 3974}, {3772, 17351}, {3868, 17526}, {3870, 10460}, {3914, 24280}, {3927, 17698}, {3977, 5256}, {4188, 7293}, {4189, 5314}, {4332, 19860}, {4419, 19786}, {4438, 4672}, {4472, 19744}, {4644, 18134}, {4656, 25728}, {4712, 10578}, {5221, 25992}, {5253, 25879}, {5278, 19281}, {5320, 17977}, {5703, 11031}, {5737, 17369}, {5743, 16885}, {6350, 15988}, {6763, 19836}, {7102, 14006}, {10327, 17126}, {11319, 12649}, {11342, 19716}, {11679, 17355}, {11681, 25984}, {13461, 19066}, {14001, 25083}, {14829, 17354}, {16061, 23151}, {16298, 22458}, {17022, 25101}, {17121, 20043}, {17141, 26626}, {17165, 26228}, {17256, 19827}, {17258, 19812}, {17279, 18141}, {18206, 27248}, {18651, 27127}, {20073, 25734}, {21526, 23089}, {24248, 25453}, {25091, 26658}, {26029, 26050}, {26030, 26057}, {26047, 26073}
X(26066) lies on these lines: {1, 4999}, {2, 65}, {3, 10}, {4, 4640}, {5, 12514}, {6, 5530}, {8, 2320}, {9, 46}, {11, 5250}, {12, 63}, {19, 5742}, {21, 1837}, {35, 3419}, {40, 2886}, {55, 6734}, {56, 24987}, {57, 25466}, {58, 5725}, {72, 498}, {78, 5432}, {140, 997}, {210, 5552}, {281, 14018}, {283, 5348}, {329, 10588}, {345, 3714}, {377, 1155}, {388, 5744}, {392, 499}, {405, 1737}, {517, 6862}, {518, 3085}, {527, 3947}, {529, 9578}, {551, 17706}, {573, 5831}, {750, 21674}, {758, 11374}, {851, 26037}, {910, 26036}, {912, 26487}, {936, 3035}, {942, 10198}, {956, 10039}, {962, 6860}, {965, 19350}, {966, 2182}, {986, 3772}, {1001, 1210}, {1125, 5289}, {1150, 10371}, {1158, 6907}, {1159, 19862}, {1191, 24239}, {1212, 1575}, {1452, 25985}, {1478, 3916}, {1656, 21616}, {1697, 3813}, {1706, 9588}, {1714, 4261}, {1770, 17532}, {1834, 17594}, {1836, 2476}, {1940, 17555}, {2099, 24541}, {2268, 21014}, {2278, 17275}, {2292, 17720}, {2478, 3683}, {2550, 6836}, {2975, 5252}, {3036, 9897}, {3057, 10527}, {3090, 5087}, {3091, 5698}, {3178, 4851}, {3185, 13731}, {3189, 5281}, {3218, 10404}, {3219, 11681}, {3295, 10916}, {3303, 26015}, {3305, 25973}, {3339, 25525}, {3416, 5135}, {3452, 3634}, {3474, 5177}, {3555, 10056}, {3556, 19544}, {3579, 18407}, {3584, 5904}, {3585, 17057}, {3612, 3679}, {3616, 17728}, {3624, 15829}, {3666, 5230}, {3701, 19807}, {3704, 11679}, {3740, 6889}, {3753, 19854}, {3781, 24655}, {3828, 5325}, {3829, 9614}, {3831, 17279}, {3838, 4295}, {3868, 17718}, {3871, 4863}, {3874, 10197}, {3876, 27529}, {3877, 11376}, {3878, 5886}, {3884, 11373}, {3899, 5443}, {3911, 25524}, {3913, 4847}, {3915, 17721}, {3927, 21077}, {3928, 5290}, {3931, 5292}, {4047, 5747}, {4185, 5155}, {4189, 5086}, {4193, 4679}, {4414, 21935}, {4512, 9581}, {4642, 24892}, {4643, 24315}, {4645, 25613}, {4652, 7354}, {4657, 17048}, {4662, 7080}, {5044, 5694}, {5057, 5141}, {5084, 15254}, {5090, 20832}, {5119, 24390}, {5219, 6668}, {5220, 21075}, {5221, 5249}, {5234, 11112}, {5235, 16049}, {5248, 5722}, {5251, 18395}, {5260, 25005}, {5433, 19861}, {5657, 5836}, {5686, 27525}, {5703, 5775}, {5704, 26105}, {5709, 7680}, {5719, 12559}, {5743, 20306}, {5770, 12675}, {5784, 12669}, {5818, 6934}, {5887, 6863}, {5905, 10585}, {5919, 10529}, {6001, 6825}, {6667, 25522}, {6691, 8583}, {6735, 22768}, {6824, 7686}, {6838, 12688}, {6857, 18391}, {6908, 9943}, {6917, 9956}, {6932, 12679}, {6933, 11415}, {6980, 18233}, {6991, 24329}, {7082, 10958}, {7330, 18242}, {8167, 9843}, {8256, 9623}, {9564, 10974}, {10106, 11194}, {10175, 12572}, {10179, 14986}, {10395, 13615}, {10441, 22276}, {10479, 16455}, {10572, 16370}, {10587, 17609}, {10624, 11235}, {10786, 14872}, {10826, 11113}, {11236, 12527}, {11281, 11529}, {11344, 11502}, {11509, 24982}, {11680, 12701}, {11682, 15950}, {11827, 21165}, {12575, 24386}, {12617, 19541}, {12635, 13411}, {12699, 25639}, {13405, 24391}, {15843, 17700}, {15865, 18389}, {16968, 21965}, {17278, 24174}, {17595, 23536}, {17597, 28027}, {18228, 19877}, {19860, 24953}, {21231, 25104}, {24443, 24789}, {24583, 26621}, {26029, 26041}
X(26067) lies on these lines: {2, 82}, {8, 17457}, {10, 16556}, {2236, 26034}, {2244, 9780}, {2896, 18082}, {4645, 26030}
X(26068) lies on these lines: {2, 85}, {9, 27020}, {76, 16588}, {349, 21218}, {958, 19312}, {7770, 15288}, {16819, 23058}, {24505, 27326}, {26029, 26041}, {26045, 26055}, {26110, 27382}
X(26069) lies on these lines: {2, 87}, {8, 192}, {9, 20667}, {37, 25311}, {69, 26105}, {966, 1575}, {2551, 4645}, {3226, 17321}, {3248, 25535}, {4704, 25292}, {6376, 7155}, {9780, 25624}, {10453, 17343}, {16706, 24753}, {17275, 24717}, {17300, 26103}, {17792, 27538}, {18194, 26143}, {25635, 26042}
X(26070) lies on these lines: {1, 8258}, {2, 45}, {8, 678}, {10, 9324}, {89, 17300}, {100, 958}, {244, 5550}, {966, 26071}, {1054, 3634}, {2246, 5273}, {3246, 5211}, {3722, 20050}, {4201, 9780}, {4438, 17601}, {16816, 17740}, {20072, 27757}, {24620, 25242}, {26044, 26081}
X(26071) lies on these lines: {2, 44}, {333, 16672}, {966, 26070}, {3617, 23937}, {5302, 18231}
X(26072) lies on these lines: {2, 99}, {8, 4128}, {10, 5539}, {377, 26043}, {668, 21220}, {6625, 26752}, {7257, 16592}, {20349, 27044}, {26035, 26058}, {26041, 26056}, {26074, 26076}
X(26073) lies on these lines: {2, 11}, {8, 244}, {10, 1054}, {43, 17778}, {88, 1219}, {145, 3315}, {210, 26840}, {377, 26029}, {404, 20999}, {659, 26076}, {678, 5550}, {899, 4645}, {966, 20331}, {1086, 3699}, {1283, 25440}, {1635, 26074}, {1654, 21220}, {1698, 26117}, {1699, 27130}, {1738, 5205}, {1739, 16086}, {1836, 26791}, {1837, 25979}, {2246, 5749}, {2551, 26046}, {3120, 9458}, {3240, 17300}, {3616, 3722}, {3634, 9324}, {3820, 17678}, {3952, 4440}, {4188, 23843}, {4201, 9780}, {4383, 20101}, {4388, 16569}, {4427, 4473}, {4514, 16602}, {4689, 17263}, {4847, 27002}, {5082, 26093}, {5211, 16610}, {5296, 14439}, {5297, 17302}, {6702, 10774}, {8580, 27184}, {9350, 25957}, {9508, 26075}, {10327, 17490}, {17531, 23858}, {17719, 25351}, {17724, 27191}, {17777, 24003}, {17780, 24188}, {18141, 20012}, {19278, 19855}, {23833, 24193}, {26030, 26051}, {26034, 26038}, {26037, 26044}, {26047, 26065}
X(26073) = anticomplement of X(25531)
X(26074) lies on these lines: {2, 101}, {8, 2170}, {9, 11604}, {10, 5540}, {11, 644}, {41, 27529}, {80, 24036}, {149, 1018}, {169, 25005}, {218, 11681}, {220, 4193}, {355, 26690}, {391, 2316}, {672, 5080}, {1213, 3196}, {1635, 26073}, {1837, 25082}, {2161, 2345}, {2246, 9780}, {2265, 5749}, {2348, 5123}, {2475, 16549}, {3036, 4534}, {3207, 17566}, {3616, 17439}, {3730, 5046}, {3814, 5526}, {4253, 20060}, {5030, 20067}, {5086, 25066}, {5701, 21859}, {5750, 16554}, {5816, 12034}, {7291, 25007}, {9317, 24318}, {9956, 27068}, {15680, 24047}, {17181, 26653}, {17750, 26131}, {21053, 26075}, {21232, 24712}, {26072, 26076}
X(26074) = anticomplement of X(25532)
X(26075) lies on these lines: {2, 98}, {8, 2611}, {10, 21381}, {100, 21221}, {643, 8287}, {966, 2503}, {1158, 2475}, {1654, 3909}, {1793, 4189}, {9508, 26073}, {21053, 26074}
X(26075) = anticomplement of X(25533)
X(26076) lies on these lines: {2, 45}, {8, 3248}, {10, 9359}, {44, 26048}, {292, 2345}, {646, 1015}, {659, 26073}, {966, 26077}, {1654, 20355}, {2325, 25510}, {3271, 24485}, {3758, 26752}, {4033, 9263}, {5749, 26042}, {5750, 24578}, {6542, 26975}, {7240, 25140}, {17264, 26113}, {17300, 27136}, {17303, 26045}, {19951, 23774}, {20072, 27044}, {24487, 25048}, {26072, 26074}
X(26077) lies on these lines: {2, 37}, {10, 87}, {966, 26076}, {3617, 25293}, {3963, 27318}, {4110, 16604}, {5749, 26048}, {9780, 25624}, {17238, 20343}, {25631, 26046}, {26029, 26083}
X(26078) lies on these lines: {2, 900}, {522, 3582}, {659, 26073}, {665, 2345}, {1769, 25380}, {2254, 26031}, {2517, 23880}, {2815, 5657}, {3960, 4768}, {5749, 22108}, {13266, 24988}, {14315, 27342}
X(26079) lies on these lines: {2, 187}, {6, 17679}, {39, 17690}, {377, 966}, {649, 17072}, {754, 25468}, {1055, 21241}, {2475, 27040}, {3230, 21282}, {3285, 4202}, {5276, 17678}, {5300, 17299}, {6175, 26244}, {6781, 24956}, {7267, 25383}, {7745, 17674}, {7779, 16711}, {7784, 17683}, {16910, 26100}, {17300, 17680}, {17307, 17686}, {17345, 20880}, {17491, 21839}
X(26080) lies on these lines: {2, 647}, {8, 21719}, {10, 1021}, {649, 17072}, {650, 2517}, {652, 20316}, {661, 4581}, {966, 9404}, {2345, 3700}, {2522, 4391}, {2523, 17496}, {3239, 21186}, {4086, 16612}, {4397, 6591}, {4467, 19822}, {7252, 21721}, {8062, 8611}, {17924, 25009}, {18155, 19808}, {20293, 22383}
X(26081) lies on these lines: {2, 662}, {8, 2643}, {10, 2640}, {75, 1654}, {115, 645}, {148, 190}, {238, 20558}, {897, 3617}, {1213, 9509}, {2247, 26065}, {2652, 5794}, {3616, 17467}, {3758, 6625}, {3772, 17778}, {5207, 15994}, {9508, 26073}, {20072, 20349}, {21254, 24711}, {21277, 27321}, {26042, 26063}, {26044, 26070}, {26072, 26074}
X(26081) = anticomplement of X(25536)
X(26082) lies on these lines: {2, 7}, {8, 2309}, {192, 26801}, {966, 2235}, {1107, 17787}, {1654, 26752}, {3729, 17030}, {3758, 26110}, {3963, 21226}, {3986, 25510}, {4416, 27020}, {4431, 16829}, {4473, 27261}, {9780, 25624}, {16738, 17280}, {17249, 26142}, {17300, 27032}, {17303, 26045}, {17369, 27164}, {26113, 27268}, {26769, 26812}
X(26082) = anticomplement of X(25538)
X(26083) lies on these lines: {1, 17268}, {2, 38}, {7, 10588}, {8, 1386}, {10, 16468}, {44, 966}, {518, 17371}, {726, 17383}, {894, 1698}, {1757, 17238}, {2228, 26030}, {3616, 5772}, {3634, 3662}, {3740, 19827}, {3751, 17292}, {3758, 3844}, {3773, 4393}, {3790, 17023}, {3932, 17381}, {3967, 19812}, {4026, 17354}, {4078, 17397}, {4429, 17369}, {4649, 17230}, {4663, 17228}, {5220, 17307}, {5550, 17263}, {15569, 17342}, {19808, 26038}, {26029, 26077}
X(26083) = anticomplement of X(25539)
X(26084) lies on these lines: {2, 3}
X(26085) lies on these lines: {2, 32}, {4, 27040}, {6, 4202}, {8, 3721}, {10, 1759}, {37, 5300}, {41, 2887}, {69, 26978}, {76, 16910}, {213, 6327}, {377, 966}, {379, 1211}, {384, 16991}, {385, 16906}, {964, 1213}, {1334, 4660}, {1654, 17680}, {2225, 26034}, {2233, 26043}, {2237, 26042}, {2243, 9780}, {2271, 3936}, {2345, 5341}, {2476, 26244}, {2549, 26770}, {3686, 23536}, {3972, 16909}, {4201, 22380}, {4262, 25645}, {4372, 25345}, {4450, 14974}, {4643, 20880}, {4680, 16600}, {4805, 21240}, {4968, 17275}, {5015, 26242}, {5016, 16583}, {5051, 5275}, {5192, 7745}, {5224, 17686}, {5276, 16062}, {5283, 17676}, {5816, 15971}, {7737, 11319}, {7758, 18600}, {7774, 27162}, {7791, 27109}, {9596, 26030}, {9599, 26094}, {16589, 22430}, {16908, 17003}, {16998, 17673}, {17259, 17672}, {17330, 17679}, {20553, 27248}, {22426, 26117}, {24586, 24995}, {26961, 27039}
X(26085) = anticomplement of X(25497)
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28545.
X(26086) lies on these lines: {1,3}, {5,24042}, {21,11231}, {140,3825}, {186,1872}, {355,6950}, {376,10526}, {404,11230}, {548,5841}, {631,10525}, {4188,5886}, {4302,6958}, {4996,10914}, {5267,5690}, {5428,10164}, {5440,5694}, {5657,17548}, {5881,18515}, {5887,17100}, {6684,7508}, {6713,15171}, {6833,18407}, {6842,24466}, {6882,15338}, {6905,22793}, {6906,18480}, {6914,9956}, {6924,9955}, {6935,18517}, {6942,12699}, {10572,12619}, {10993,24390}, {12515,21740}
X(26086) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {1,3,23961}, {3,35,1385}, {3,1482,7280}, {3,2077,3579}, {3,10679,5204}, {3,10902,17502}, {3,11849,36}, {35,14792,3057}, {36,11849,10222}, {6914,25440,9956}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28548.
X(26087) lies on these lines: {1,3}, {10,19907}, {952,24387}, {1317,6842}, {3825,5901}, {4861,6265}, {5154,5886}, {5882,21630}, {7967,10525}, {10526,10595}, {10914,22935}, {11230,17619}, {12737,21740}
X(26087) = reflection of X(11567) in X(1)
X(26087) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {1385,10222,3057}, {13145,15178,1385}, {21842,25413,23961}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28549.
X(26088) lies on these lines: {1,22461}, {5,10}, {149,18480}, {1385,5918}, {1621,13624}, {1699,10284}, {2771,3881}, {3585,9957}, {3656,3868}, {3890,12699}, {5180,12600}, {5439,13145}, { 5603,5885}, {6264,10222}, {6583, 12672}, {15178,18444}, {16160, 21630}
X(26088) = midpoint X(6583) and X(12672)
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28549.
X(26089) lies on these lines: {1,22461}, {517,550}, {944,5885}, {1385,5251}, {2771,3884}, { 2975,4420}, {3655,3869}, {3889,18481}, {4540,11812}, {4857, 5049}, {5045,5434}, {6224,10914}, {6912,15178}
X(26089) = midpoint X(944) and X(5885)
X(26090) lies on these lines: {2, 3}
Collineation mappings involving Gemini triangle 40: X(26091)-X(26152)
Extending the preamble just before X(24537), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 40, as in centers X(26091)-X(26152). Then
m(X) = b c (a + b + c) x + a c (a - b + c) y + a b (a + b - c) z : :
A point X lies on the Euler line if and only if m(X) also lies on the Euler line. (Clark Kimberling, October 29, 2018)
X(26091) lies on these lines: {1, 14058}, {2, 3}, {31, 3075}, {92, 17102}, {388, 26095}, {1457, 3616}, {1465, 5342}, {1936, 10527}, {3085, 10448}, {4512, 19863}, {4652, 27339}, {5433, 20992}, {13411, 27287}, {14986, 15501}, {20256, 23085}, {26094, 26129}, {26105, 26126}, {26106, 26108}
X(26092) lies on these lines: {2, 3}, {499, 595}, {3193, 14829}, {3616, 26095}, {3897, 26115}
X(26093) lies on these lines: {1, 2}, {40, 27002}, {56, 17697}, {346, 17053}, {740, 27343}, {958, 25531}, {982, 19582}, {999, 13741}, {1001, 19278}, {1284, 7288}, {1463, 11375}, {2275, 27523}, {2478, 26139}, {3333, 27064}, {3672, 27162}, {3701, 17480}, {3702, 17490}, {3976, 25079}, {4195, 5253}, {4657, 24668}, {4673, 16610}, {5082, 26073}, {5084, 5484}, {9335, 17164}, {9669, 17678}, {11319, 19769}, {15717, 26997}, {16342, 27145}, {16738, 17557}, {17279, 24739}, {20530, 24652}, {21075, 27130}, {22220, 24349}, {26105, 26117}, {26116, 26129}, {26143, 26150}
X(26094) lies on these lines: {1, 2}, {11, 4202}, {36, 11319}, {38, 25079}, {56, 5192}, {238, 27145}, {350, 27162}, {404, 23383}, {474, 24552}, {496, 4972}, {740, 27311}, {964, 25524}, {982, 25591}, {1284, 5433}, {2275, 27040}, {2345, 8610}, {2886, 17674}, {2975, 13741}, {3338, 26223}, {3670, 25253}, {3702, 3752}, {3760, 18600}, {3777, 4874}, {3816, 5051}, {3923, 27017}, {3953, 17165}, {4054, 24171}, {4423, 16342}, {4645, 26133}, {4646, 4742}, {5047, 25531}, {5253, 13740}, {5259, 16347}, {5263, 17531}, {5284, 19270}, {5300, 17721}, {5303, 13735}, {5482, 11230}, {7280, 17539}, {7288, 17526}, {7483, 24542}, {9599, 26085}, {10483, 17537}, {11375, 26126}, {16468, 17178}, {16604, 26035}, {17164, 24046}, {17184, 21616}, {20244, 24170}, {20530, 24668}, {22220, 24325}, {23541, 25877}, {26091, 26129}, {26107, 26108}, {26117, 26127}, {26123, 26132}
X(26095) lies on these lines: {2, 11}, {4, 15666}, {56, 27506}, {86, 6649}, {388, 26091}, {406, 10321}, {1066, 14058}, {1361, 3485}, {1769, 3716}, {1846, 4194}, {2551, 25513}, {3041, 25568}, {3085, 25490}, {3086, 16483}, {3616, 26092}, {3952, 24433}, {4858, 24025}, {5136, 8069}, {6712, 20266}, {9371, 26011}, {10523, 11105}
X(26096) lies on these lines: {2, 3}, {192, 497}, {614, 3944}, {1352, 3794}, {1479, 3705}, {1853, 26530}, {3421, 20056}, {4388, 7155}, {7295, 27512}
X(26096) = anticomplement of X(37099)
X(26097) lies on these lines: {2, 3}, {3120, 7292}, {3837, 26148}, {4459, 5057}, {5211, 5992}, {24436, 27548}
X(26098) lies on these lines: {1, 4}, {2, 31}, {3, 21321}, {5, 5711}, {6, 2886}, {7, 256}, {8, 1215}, {10, 14555}, {11, 940}, {12, 5710}, {36, 19262}, {37, 24703}, {38, 5905}, {40, 5530}, {42, 3434}, {43, 2550}, {55, 4192}, {56, 9840}, {57, 6210}, {58, 26363}, {63, 24695}, {69, 3741}, {81, 11269}, {142, 1716}, {149, 17018}, {193, 21242}, {213, 26036}, {221, 15844}, {329, 984}, {330, 6625}, {344, 4011}, {345, 3923}, {354, 1463}, {377, 1193}, {390, 3750}, {442, 16466}, {443, 978}, {498, 5264}, {499, 26126}, {511, 10473}, {516, 17594}, {517, 5725}, {553, 18193}, {595, 10198}, {601, 6833}, {602, 6889}, {612, 908}, {614, 5249}, {846, 5698}, {870, 7018}, {894, 3705}, {975, 21616}, {986, 4295}, {988, 4292}, {1001, 4199}, {1008, 18134}, {1036, 4185}, {1125, 4138}, {1191, 25466}, {1203, 1714}, {1245, 12609}, {1386, 3772}, {1460, 19544}, {1468, 10527}, {1582, 4212}, {1707, 5745}, {1724, 19854}, {1738, 2999}, {1836, 3666}, {1909, 21590}, {1985, 19734}, {2099, 5724}, {2177, 20075}, {2292, 11415}, {2295, 9596}, {2308, 24597}, {2345, 4071}, {2476, 5230}, {2548, 17750}, {2650, 12649}, {3006, 26223}, {3052, 6690}, {3072, 6825}, {3073, 6824}, {3085, 5255}, {3086, 4340}, {3120, 17017}, {3195, 25985}, {3333, 28039}, {3421, 20498}, {3436, 10459}, {3452, 5268}, {3474, 17596}, {3550, 5218}, {3616, 4892}, {3618, 21241}, {3664, 11019}, {3672, 17600}, {3677, 4654}, {3742, 4675}, {3744, 17718}, {3745, 17605}, {3749, 13405}, {3751, 4847}, {3752, 5880}, {3782, 17599}, {3817, 4349}, {3840, 18141}, {3886, 4028}, {3914, 5256}, {3925, 4383}, {3931, 12699}, {3936, 24552}, {3945, 4038}, {3961, 25568}, {4000, 17889}, {4220, 5329}, {4224, 7295}, {4252, 4999}, {4300, 6836}, {4310, 17598}, {4331, 17080}, {4339, 5703}, {4344, 5226}, {4362, 25385}, {4392, 17483}, {4417, 5263}, {4418, 17740}, {4423, 16850}, {4425, 17321}, {4438, 4672}, {4644, 24333}, {4648, 20335}, {4650, 5744}, {4655, 6682}, {4660, 6685}, {4667, 24386}, {4682, 5087}, {4703, 17257}, {4716, 20043}, {4850, 20292}, {4854, 20182}, {4888, 10980}, {5018, 7365}, {5121, 5437}, {5219, 5269}, {5247, 19843}, {5266, 11374}, {5273, 7262}, {5292, 25639}, {5297, 27131}, {5573, 6173}, {5706, 15908}, {5847, 11679}, {6284, 19765}, {6871, 21935}, {6872, 10448}, {7083, 25514}, {7226, 17484}, {7290, 25525}, {7292, 27186}, {7736, 17754}, {8167, 17245}, {8731, 20992}, {9599, 24512}, {9776, 17063}, {9778, 17601}, {9812, 17592}, {10453, 17778}, {10458, 14956}, {10480, 15488}, {10578, 17715}, {11246, 17595}, {11263, 24159}, {11433, 26013}, {11512, 12436}, {16475, 17064}, {16478, 24161}, {16569, 26040}, {17300, 21299}, {17314, 21101}, {17469, 26228}, {17724, 17775}, {17732, 25092}, {18067, 18135}, {18201, 21454}, {19725, 21015}, {20011, 21283}, {20430, 21333}, {20964, 27254}, {26099, 26101}, {26103, 26139}, {26107, 26133}
X(26099) lies on these lines: {1, 5074}, {2, 32}, {4, 26978}, {8, 4950}, {31, 17046}, {69, 27040}, {86, 17550}, {116, 5264}, {141, 5192}, {213, 21285}, {316, 16910}, {857, 940}, {1572, 26526}, {2478, 4648}, {2549, 18600}, {3701, 4851}, {3915, 17062}, {4056, 16600}, {4202, 7784}, {4766, 24549}, {4911, 26242}, {5051, 15668}, {5276, 17671}, {6327, 21240}, {7758, 26770}, {7768, 17007}, {7774, 27109}, {7791, 27162}, {7795, 11319}, {7832, 16909}, {7885, 16906}, {7901, 17003}, {7931, 16905}, {7939, 16991}, {17234, 17541}, {17300, 18135}, {18635, 27378}, {20553, 27299}, {26098, 26101}, {26108, 26124}
X(26100) lies on these lines: {2, 39}, {37, 20435}, {38, 17048}, {75, 27026}, {86, 17541}, {141, 5051}, {1015, 27146}, {1500, 27096}, {2478, 4648}, {3214, 3946}, {3616, 24654}, {3634, 24790}, {3701, 3739}, {3734, 11115}, {3954, 20247}, {4000, 9780}, {4657, 26115}, {5192, 15668}, {5254, 17672}, {5276, 17681}, {6376, 26965}, {6381, 16818}, {7800, 17676}, {16020, 16846}, {16910, 26079}, {16975, 26964}, {17234, 17550}, {17302, 26752}, {17382, 25107}, {17750, 20347}, {18139, 26601}, {20530, 24668}, {24254, 25253}, {26124, 26138}, {27008, 27302}
X(26101) lies on these lines: {2, 41}, {7, 21808}, {55, 21258}, {57, 14021}, {69, 3691}, {116, 498}, {142, 377}, {226, 4350}, {277, 3488}, {388, 1458}, {405, 3423}, {1086, 9598}, {1334, 6604}, {1475, 14548}, {1478, 17758}, {1479, 2140}, {1837, 6706}, {2478, 20335}, {3295, 4904}, {3434, 17050}, {3486, 9317}, {3616, 26140}, {3720, 7386}, {3785, 24602}, {4059, 4675}, {4258, 26007}, {4302, 14377}, {5554, 21232}, {5722, 24774}, {5738, 27626}, {7247, 27475}, {10200, 25532}, {17170, 17451}, {18639, 25907}, {20269, 24929}, {21240, 26034}, {26098, 26099}, {26102, 26118}
X(26102) lies on these lines: {1, 2}, {6, 4038}, {7, 25421}, {9, 24512}, {31, 5284}, {33, 4212}, {34, 4213}, {35, 4191}, {36, 1011}, {37, 982}, {38, 22220}, {55, 16059}, {56, 16058}, {57, 846}, {81, 748}, {86, 87}, {100, 17124}, {142, 4335}, {171, 1001}, {192, 24165}, {210, 4883}, {226, 4334}, {238, 940}, {244, 2108}, {291, 3677}, {310, 3760}, {312, 24325}, {320, 4703}, {350, 10436}, {354, 984}, {388, 6822}, {405, 19715}, {497, 6821}, {672, 3731}, {740, 19804}, {750, 1621}, {756, 3873}, {851, 3612}, {894, 4011}, {968, 3306}, {986, 5439}, {988, 1009}, {991, 3817}, {1010, 19803}, {1044, 12047}, {1054, 5437}, {1197, 21001}, {1203, 16355}, {1215, 18743}, {1279, 4682}, {1376, 3750}, {1385, 19540}, {1449, 2238}, {1458, 5226}, {1464, 11375}, {1468, 5047}, {1478, 6818}, {1479, 6817}, {1575, 16777}, {1613, 23660}, {1695, 10441}, {1699, 1742}, {1716, 17306}, {1721, 10857}, {1724, 19714}, {1740, 15668}, {1745, 1985}, {1757, 3305}, {1962, 4850}, {2162, 23417}, {2275, 21838}, {2276, 3247}, {2293, 5274}, {2308, 14996}, {2309, 25528}, {2356, 8889}, {2667, 4751}, {2886, 17245}, {2887, 17234}, {2979, 20961}, {3094, 22200}, {3120, 27186}, {3136, 7741}, {3210, 3993}, {3295, 16409}, {3303, 16421}, {3510, 20530}, {3576, 4192}, {3601, 16056}, {3662, 4425}, {3666, 17063}, {3670, 27785}, {3683, 4650}, {3685, 3980}, {3696, 4891}, {3736, 25507}, {3743, 24046}, {3751, 7308}, {3752, 3848}, {3761, 18152}, {3795, 20182}, {3816, 17056}, {3819, 21746}, {3835, 24666}, {3846, 18134}, {3919, 17461}, {3931, 24174}, {3936, 25960}, {3944, 5249}, {3945, 25572}, {3971, 24349}, {3989, 4392}, {3995, 17155}, {4040, 4379}, {4104, 4684}, {4184, 7280}, {4199, 5436}, {4203, 5253}, {4204, 5429}, {4210, 5010}, {4322, 5261}, {4356, 24175}, {4364, 24691}, {4383, 4649}, {4389, 25422}, {4414, 27003}, {4415, 25557}, {4418, 26627}, {4430, 9330}, {4441, 25590}, {4465, 9359}, {4648, 20335}, {4653, 13588}, {4656, 24231}, {4670, 4713}, {4675, 24703}, {4676, 4697}, {4888, 20347}, {4966, 5743}, {4970, 17490}, {4972, 25961}, {5247, 11108}, {5259, 16343}, {5275, 16503}, {5276, 16779}, {5333, 10458}, {5563, 16373}, {6688, 23638}, {7226, 17449}, {7262, 15254}, {7322, 16496}, {8025, 18192}, {8543, 9316}, {9347, 17469}, {9776, 24248}, {10013, 17259}, {10439, 21363}, {10476, 13731}, {10589, 14547}, {11358, 25524}, {11451, 20962}, {15950, 24806}, {16478, 16846}, {16589, 21384}, {16678, 19341}, {16884, 21904}, {17149, 18140}, {17182, 17194}, {17263, 24736}, {17321, 25420}, {17394, 18194}, {17445, 24766}, {17793, 25531}, {18139, 25760}, {18173, 20984}, {18197, 25537}, {20284, 21827}, {20923, 25124}, {24406, 24495}, {26101, 26118}, {26109, 26139}, {26127, 26131}
X(26102) = {X(1),X(2)}-harmonic conjugate of X(43)
X(26103) lies on these lines: {1, 2}, {7, 24495}, {75, 3848}, {100, 16409}, {192, 17063}, {354, 27538}, {940, 25531}, {968, 27002}, {982, 22220}, {1100, 24753}, {1284, 5435}, {3161, 17754}, {3685, 5437}, {3742, 3967}, {3816, 17234}, {3846, 17232}, {3995, 9335}, {4645, 26105}, {4648, 20530}, {4704, 17591}, {4734, 16610}, {5080, 6822}, {5731, 19540}, {6384, 18135}, {6682, 27268}, {8167, 14829}, {12014, 17777}, {17261, 18193}, {17300, 26069}, {17317, 25311}, {26098, 26139}
X(26104) lies on these lines: {2, 45}, {7, 17384}, {8, 17382}, {10, 4000}, {69, 17383}, {141, 145}, {142, 3624}, {344, 17324}, {346, 17323}, {599, 17014}, {966, 16706}, {1266, 2345}, {1279, 3616}, {1633, 4423}, {1698, 17067}, {3008, 4748}, {3617, 4395}, {3618, 17236}, {3619, 17230}, {3620, 17380}, {3622, 17313}, {3632, 3946}, {3635, 17296}, {3636, 21255}, {3672, 3763}, {3739, 19877}, {4029, 17284}, {4361, 4678}, {4371, 4668}, {4373, 7227}, {4393, 21356}, {4402, 17239}, {4445, 20052}, {4452, 17293}, {4700, 17272}, {4747, 7238}, {4851, 20057}, {4852, 20053}, {4869, 17045}, {5084, 15434}, {5222, 17237}, {5232, 17366}, {5296, 17356}, {5550, 24723}, {5749, 17235}, {6361, 12610}, {15668, 16347}, {17227, 26626}, {17244, 17291}, {17249, 26685}, {17251, 24599}, {17257, 17370}, {17316, 17399}, {17318, 20582}, {17395, 21358}, {24248, 25539}
X(26105) lies on these lines: {1, 2551}, {2, 11}, {3, 7956}, {4, 1125}, {7, 3742}, {8, 3740}, {9, 11019}, {10, 1058}, {12, 6919}, {20, 25524}, {21, 1470}, {35, 17567}, {36, 11111}, {37, 7736}, {40, 9843}, {56, 452}, {57, 5698}, {69, 26069}, {85, 2898}, {104, 6976}, {142, 1699}, {144, 17051}, {165, 6692}, {200, 5316}, {226, 4321}, {329, 354}, {344, 3705}, {377, 5225}, {388, 1319}, {392, 18391}, {405, 3086}, {442, 10591}, {443, 1479}, {474, 4294}, {496, 11108}, {499, 5259}, {515, 6939}, {516, 5437}, {518, 10580}, {527, 10980}, {551, 1056}, {631, 2077}, {748, 11269}, {908, 3475}, {936, 3189}, {938, 960}, {944, 6898}, {946, 6865}, {950, 8583}, {958, 5129}, {962, 3812}, {966, 3741}, {982, 4419}, {997, 2900}, {1000, 3898}, {1385, 6893}, {1478, 25055}, {1486, 19649}, {1697, 8582}, {1698, 5082}, {1706, 12575}, {1750, 10863}, {1788, 5250}, {1836, 9776}, {1997, 7081}, {2267, 25496}, {2975, 10586}, {3085, 4187}, {3090, 3825}, {3091, 7958}, {3158, 20103}, {3219, 15297}, {3243, 21060}, {3295, 17527}, {3303, 7080}, {3305, 26015}, {3306, 3474}, {3333, 12572}, {3436, 3622}, {3486, 19861}, {3487, 21616}, {3523, 6691}, {3545, 3822}, {3582, 17561}, {3663, 5573}, {3677, 4656}, {3683, 5744}, {3711, 20015}, {3720, 5712}, {3755, 23511}, {3772, 16020}, {3789, 10453}, {3814, 8164}, {3820, 6767}, {3838, 9779}, {3847, 5056}, {3848, 5880}, {3884, 12245}, {3890, 5554}, {3911, 4512}, {3967, 8055}, {3974, 4358}, {4000, 5272}, {4193, 10588}, {4293, 11113}, {4295, 5439}, {4305, 17614}, {4310, 4415}, {4314, 5438}, {4344, 4682}, {4388, 18141}, {4425, 4466}, {4640, 5435}, {4645, 26103}, {4648, 20335}, {4657, 26118}, {4662, 6764}, {4847, 7308}, {4860, 9965}, {4999, 17558}, {5046, 5229}, {5047, 10527}, {5121, 17594}, {5154, 10585}, {5177, 10896}, {5204, 17576}, {5249, 8544}, {5251, 10072}, {5253, 6872}, {5260, 10529}, {5265, 11106}, {5273, 15254}, {5328, 10578}, {5333, 14956}, {5603, 6947}, {5657, 10596}, {5687, 17575}, {5703, 25681}, {5704, 26066}, {5731, 6957}, {5748, 17718}, {5758, 13374}, {5804, 14110}, {5809, 17604}, {5811, 12675}, {5818, 10806}, {5836, 9785}, {5853, 8580}, {5886, 6827}, {6284, 6904}, {6326, 7967}, {6601, 6666}, {6668, 7486}, {6738, 15829}, {6744, 11523}, {6745, 10389}, {6762, 18250}, {6821, 25501}, {6826, 11230}, {6851, 9955}, {6856, 7741}, {6887, 26470}, {6892, 26492}, {6899, 12609}, {6902, 10532}, {6908, 7681}, {6916, 10165}, {6920, 10785}, {6926, 11496}, {6927, 10902}, {6929, 22799}, {6930, 10269}, {6937, 10598}, {6944, 10267}, {6964, 11500}, {6965, 12115}, {6975, 10786}, {6981, 26487}, {6983, 11491}, {6987, 22753}, {7179, 17321}, {7226, 24433}, {7292, 19785}, {7738, 16604}, {8165, 12607}, {8728, 9669}, {9709, 15172}, {9957, 17648}, {10177, 11018}, {10587, 11681}, {10590, 17556}, {10855, 17668}, {11934, 26695}, {12447, 12625}, {13411, 25522}, {15171, 16408}, {15296, 27065}, {15325, 16418}, {16842, 19855}, {16845, 26363}, {17063, 24248}, {17123, 24217}, {17183, 18165}, {17552, 19854}, {17582, 19862}, {17768, 21454}, {24954, 27383}, {26091, 26126}, {26093, 26117}
X(26106) lies on these lines: {2, 6}, {37, 24652}, {75, 24663}, {304, 20227}, {322, 25975}, {941, 27162}, {1449, 27299}, {1463, 11375}, {2345, 24654}, {5749, 27097}, {5750, 27248}, {17303, 24656}, {17754, 27264}, {20255, 21785}, {21281, 21769}, {24549, 27332}, {25521, 26959}, {26091, 26108}, {26122, 26138}, {27343, 27487}
X(26107) lies on these lines: {1, 21257}, {2, 37}, {6, 27262}, {8, 21238}, {9, 26959}, {76, 17053}, {330, 3770}, {384, 2178}, {583, 17350}, {672, 27158}, {966, 16525}, {1001, 19312}, {1108, 25994}, {1125, 5145}, {1213, 16515}, {1269, 24621}, {1463, 11375}, {1740, 24717}, {1964, 21299}, {2092, 20170}, {2260, 24514}, {2321, 27091}, {3247, 27020}, {3616, 26110}, {3763, 25534}, {4272, 4393}, {4277, 20168}, {4357, 25369}, {4361, 27111}, {4389, 26979}, {4648, 26113}, {4741, 17178}, {5257, 17030}, {5301, 7793}, {5749, 27019}, {10436, 25510}, {12263, 17065}, {16831, 25538}, {17144, 21857}, {17230, 27095}, {17236, 27145}, {17314, 26752}, {17373, 26756}, {17379, 27166}, {17719, 24653}, {20271, 23481}, {24520, 25688}, {24667, 25504}, {24672, 26135}, {25079, 27680}, {26094, 26108}, {26098, 26133}, {26119, 26132}, {26130, 26147}
X(26108) lies on these lines: {2, 39}, {7, 26986}, {2478, 26138}, {21071, 27105}, {21384, 26974}, {26091, 26106}, {26094, 26107}, {26099, 26124}
X(26109) lies on these lines: {1, 26051}, {2, 6}, {8, 27798}, {148, 15903}, {226, 6625}, {329, 27268}, {497, 2475}, {846, 23812}, {1125, 1330}, {1655, 5308}, {2893, 25525}, {2999, 27147}, {3151, 17134}, {3616, 4892}, {3666, 26806}, {3770, 18743}, {3772, 17394}, {3882, 5437}, {4208, 19783}, {4473, 26223}, {4654, 17247}, {4658, 25446}, {4798, 19827}, {5249, 17302}, {5253, 21321}, {5550, 26064}, {6542, 24656}, {6999, 10478}, {9791, 10180}, {11110, 20077}, {11679, 17391}, {16736, 24530}, {17032, 20533}, {17396, 23681}, {17397, 25527}, {19786, 24663}, {25526, 25650}, {25660, 27792}, {26102, 26139}, {26119, 26125}, {26136, 26147}
X(26110) lies on these lines: {2, 6}, {9, 17499}, {10, 2663}, {37, 1655}, {71, 894}, {256, 25124}, {257, 2294}, {274, 2092}, {388, 1284}, {870, 17321}, {941, 1218}, {1030, 17693}, {1100, 26801}, {1449, 17030}, {1966, 2345}, {2305, 17103}, {2550, 26051}, {3616, 26107}, {3686, 16819}, {3758, 26082}, {3882, 10436}, {4254, 11321}, {4441, 20170}, {4645, 26115}, {4657, 26142}, {5484, 16684}, {5750, 27020}, {13588, 22369}, {16709, 24530}, {16752, 25470}, {17023, 25538}, {17303, 26752}, {17322, 24663}, {19581, 25054}, {24325, 24478}, {26068, 27382}, {26121, 26134}
X(26110) = anticomplement of X(27164)
X(26111) lies on these lines: {1, 2}, {346, 16604}, {388, 26139}, {1284, 5265}, {3304, 25531}, {3333, 17350}, {3976, 22220}, {4461, 27318}, {4719, 27343}, {11110, 17178}, {17480, 18743}, {20530, 24654}, {24669, 26143}
X(26112) lies on these lines: {1, 2}, {346, 5573}, {461, 1878}, {982, 3161}, {3742, 5749}, {3967, 15590}, {4011, 4488}, {4310, 8055}, {5274, 17282}, {5296, 8167}, {5423, 17597}, {11037, 13741}, {18228, 25531}, {26132, 26139}
X(26113) lies on these lines: {1, 2}, {335, 22220}, {2275, 18743}, {3619, 25535}, {3834, 26142}, {3975, 9263}, {4366, 11349}, {4473, 26975}, {4648, 26107}, {5749, 27291}, {17264, 26076}, {17390, 27111}, {26082, 27268}
X(26114) lies on these lines: {2, 650}, {37, 21611}, {192, 21438}, {513, 24674}, {514, 27527}, {647, 21225}, {649, 17204}, {661, 27265}, {812, 27345}, {3261, 6589}, {3310, 24622}, {3716, 4017}, {3766, 7180}, {3837, 24533}, {4147, 25637}, {4449, 25128}, {7234, 21301}, {8640, 23818}, {16754, 17496}, {17379, 22383}, {17383, 25603}, {20293, 24718}, {20295, 26983}, {27013, 27167}
X(26115) lies on these lines: {1, 2}, {12, 1284}, {21, 1220}, {35, 11115}, {37, 3701}, {55, 964}, {65, 22325}, {71, 5749}, {100, 1010}, {227, 1441}, {313, 17321}, {321, 3931}, {406, 7102}, {442, 4972}, {495, 13728}, {941, 2345}, {956, 19273}, {958, 16342}, {993, 16347}, {1001, 5192}, {1089, 3743}, {1215, 2292}, {1319, 26126}, {1376, 16454}, {1478, 17676}, {1621, 13740}, {1788, 17077}, {1826, 4194}, {1869, 4200}, {1909, 16705}, {2049, 5687}, {2269, 5750}, {2276, 26035}, {2901, 27804}, {2975, 19270}, {3295, 24552}, {3436, 13725}, {3666, 4968}, {3670, 17140}, {3698, 22313}, {3728, 3842}, {3868, 22275}, {3871, 5263}, {3877, 22299}, {3896, 5295}, {3897, 26092}, {3915, 25496}, {4160, 27114}, {4197, 4429}, {4202, 25466}, {4205, 17757}, {4358, 6051}, {4424, 17164}, {4645, 26110}, {4647, 4868}, {4649, 16738}, {4657, 26100}, {4658, 27163}, {4754, 25349}, {4761, 26983}, {5016, 5725}, {5080, 5143}, {5125, 17913}, {5217, 16393}, {5247, 10457}, {5248, 11319}, {5251, 17588}, {5260, 11110}, {5284, 13741}, {5686, 22312}, {5711, 19684}, {5793, 19765}, {7148, 27033}, {9709, 16458}, {9711, 15571}, {9782, 26806}, {12514, 26223}, {13407, 17184}, {16346, 27410}, {17175, 24170}, {17303, 21858}, {17529, 24988}, {17551, 25508}, {18600, 25599}, {19284, 25440}, {20005, 27918}, {20133, 27169}, {21077, 26580}, {21727, 26049}, {22279, 22281}, {22300, 26028}, {24325, 24443}, {25092, 26770}, {25107, 25498}
X(26115) = anticomplement of X(19863)
X(26116) lies on these lines: {2, 3}, {41, 27508}, {1458, 3616}, {1468, 14986}, {4512, 19853}, {11415, 17950}, {26093, 26129}
X(26117) lies on these lines: {1, 1330}, {2, 3}, {8, 192}, {10, 846}, {34, 17086}, {37, 7270}, {65, 17950}, {81, 20077}, {145, 2895}, {148, 1281}, {149, 12746}, {153, 13265}, {333, 1834}, {355, 9959}, {388, 1284}, {497, 8240}, {500, 18465}, {515, 8235}, {519, 11533}, {540, 4658}, {938, 9852}, {942, 26840}, {950, 2893}, {958, 27319}, {966, 27523}, {1043, 1211}, {1056, 11043}, {1104, 19786}, {1210, 24627}, {1220, 4026}, {1245, 17016}, {1283, 5248}, {1503, 25898}, {1697, 3882}, {1698, 26073}, {1837, 17611}, {2345, 9598}, {2550, 26045}, {2551, 18235}, {2650, 4683}, {2652, 5794}, {3421, 13097}, {3436, 11688}, {3454, 4653}, {3583, 19863}, {3616, 4892}, {3710, 17261}, {3757, 13161}, {3868, 6646}, {3890, 3909}, {3897, 26141}, {3914, 16824}, {3951, 17333}, {4255, 5233}, {4417, 19765}, {4418, 27714}, {4972, 5260}, {4981, 5178}, {5080, 5143}, {5208, 10381}, {5250, 6210}, {5262, 17302}, {5263, 6284}, {5296, 21811}, {5436, 25527}, {5691, 8245}, {5711, 20101}, {5716, 17321}, {5739, 20018}, {6625, 18757}, {9579, 10436}, {9780, 17601}, {9843, 27002}, {10025, 12527}, {10448, 25760}, {11518, 17274}, {12247, 12770}, {12567, 19853}, {12572, 27064}, {16817, 23537}, {16823, 23536}, {19785, 19851}, {22426, 26085}, {25531, 25914}, {26093, 26105}, {26094, 26127}, {27410, 27547}
X(26118) lies on these lines: {1, 8900}, {2, 3}, {7, 26929}, {69, 24523}, {81, 6776}, {355, 10327}, {388, 1455}, {497, 3666}, {511, 5739}, {515, 612}, {516, 3980}, {614, 946}, {940, 1503}, {944, 3920}, {952, 20020}, {980, 8721}, {1029, 7612}, {1038, 1891}, {1040, 1848}, {1211, 1350}, {1333, 7735}, {1479, 24239}, {1482, 19993}, {1486, 23304}, {1699, 1721}, {1714, 7683}, {2807, 17617}, {2886, 11677}, {3011, 26332}, {3421, 7172}, {3434, 3705}, {3436, 7081}, {4261, 7736}, {4383, 5480}, {4425, 24728}, {4657, 26105}, {5268, 5691}, {5273, 26939}, {5322, 5450}, {5603, 7191}, {5928, 10391}, {7179, 21279}, {10532, 26228}, {10595, 17024}, {12588, 20359}, {17810, 26005}, {20368, 26034}, {23291, 26540}, {24320, 27540}, {26101, 26102}
X(26119) lies on these lines: {2, 3}, {92, 18667}, {286, 18592}, {1214, 18666}, {26107, 26132}, {26109, 26125}
X(26120) lies on these lines: {2, 3}, {73, 1442}, {78, 2893}, {908, 1330}, {975, 1745}, {1654, 3781}, {2303, 3330}, {2654, 5262}, {3616, 26130}, {5226, 26131}, {18228, 26064}
X(26121) lies on these lines: {2, 3}, {17102, 18667}, {26110, 26134}
X(26122) lies on these lines: {2, 3}, {391, 644}, {3217, 5802}, {4512, 19870}, {26106, 26138}
X(26123) lies on these lines: {2, 3}, {238, 10527}, {1463, 11375}, {1728, 27064}, {4652, 27305}, {10529, 16466}, {21616, 27184}, {26094, 26132}
X(26124) lies on these lines: {2, 3}, {148, 27312}, {2896, 27262}, {26099, 26108}, {26100, 26138}
X(26125) lies on these lines: {2, 7}, {6, 27142}, {12, 4429}, {37, 85}, {75, 3965}, {76, 346}, {77, 16826}, {86, 6180}, {150, 5816}, {192, 1441}, {198, 4209}, {239, 7190}, {241, 4687}, {269, 16831}, {284, 26802}, {347, 18666}, {388, 1284}, {391, 27304}, {573, 17753}, {604, 20146}, {651, 17379}, {664, 16777}, {941, 2481}, {948, 17086}, {954, 13727}, {966, 6604}, {1125, 4334}, {1418, 4698}, {1434, 25508}, {1446, 27250}, {1458, 3616}, {1463, 11375}, {1469, 3485}, {1901, 27021}, {2171, 3212}, {2263, 16830}, {2270, 27000}, {2345, 10030}, {3085, 24248}, {3247, 9312}, {3600, 13736}, {3622, 10571}, {3671, 19853}, {3674, 27248}, {3729, 27544}, {3986, 10481}, {4327, 16823}, {4328, 4384}, {4331, 9791}, {4335, 13405}, {4343, 10578}, {4355, 25512}, {4393, 7269}, {4454, 27514}, {4552, 4704}, {4747, 27161}, {5228, 17277}, {5723, 17380}, {6817, 21319}, {7011, 25908}, {7201, 16609}, {7274, 16832}, {7384, 21279}, {17247, 22464}, {20072, 27317}, {20262, 26531}, {21068, 27129}, {25242, 27396}, {26109, 26119}, {26976, 27252}
X(26126) lies on these lines: {2, 12}, {10, 1450}, {201, 6682}, {226, 19864}, {474, 26031}, {498, 24222}, {499, 26098}, {603, 25496}, {964, 1470}, {1001, 27506}, {1125, 1457}, {1319, 26115}, {2122, 25490}, {3086, 5711}, {3616, 26092}, {3911, 19863}, {4202, 26481}, {4551, 20108}, {4647, 26740}, {4972, 10957}, {5252, 26030}, {7098, 24627}, {11375, 26094}, {11509, 24552}, {26091, 26105}
X(26127) lies on these lines: {2, 35}, {4, 5550}, {5, 5284}, {8, 392}, {11, 5047}, {21, 3816}, {57, 3648}, {100, 10386}, {149, 1698}, {377, 19832}, {388, 1319}, {404, 15338}, {452, 5265}, {496, 5260}, {497, 9780}, {499, 16865}, {551, 20060}, {632, 10738}, {748, 24883}, {962, 6947}, {1001, 4193}, {1125, 3585}, {1385, 6965}, {1621, 4187}, {1836, 9782}, {2475, 3624}, {2476, 4423}, {2551, 3241}, {2886, 17536}, {3421, 20057}, {3434, 17559}, {3523, 26333}, {3525, 10525}, {3576, 13729}, {3583, 19862}, {3634, 4857}, {3817, 6895}, {3826, 17546}, {3829, 17547}, {3847, 7504}, {3868, 4679}, {3874, 26792}, {3925, 17534}, {4189, 10200}, {4197, 8167}, {4202, 25531}, {4302, 17572}, {4999, 16858}, {5057, 5439}, {5071, 18517}, {5129, 10527}, {5154, 10198}, {5178, 18527}, {5253, 11113}, {5270, 15808}, {5731, 6893}, {5886, 6902}, {6224, 19861}, {6284, 17531}, {6691, 17549}, {6836, 9779}, {6840, 8227}, {6857, 10584}, {6865, 9812}, {6894, 7988}, {6903, 9955}, {6975, 10267}, {6979, 10902}, {6986, 7681}, {6989, 10598}, {7280, 15677}, {8165, 11239}, {9668, 16862}, {9669, 16842}, {10624, 25011}, {10916, 27065}, {11108, 11680}, {11114, 25524}, {11604, 15674}, {14450, 24703}, {15171, 17575}, {16859, 26363}, {16861, 24953}, {17484, 18398}, {17570, 19854}, {17676, 25492}, {17717, 24936}, {24955, 25463}, {26094, 26117}, {26102, 26131}
X(26128) lies on these lines: {1, 977}, {2, 38}, {7, 4697}, {10, 24789}, {31, 4655}, {43, 16706}, {55, 3821}, {56, 226}, {63, 6679}, {69, 3791}, {86, 17203}, {141, 4362}, {171, 3662}, {238, 4703}, {306, 19834}, {321, 24943}, {518, 25453}, {551, 4138}, {612, 3836}, {614, 3846}, {740, 19785}, {748, 26580}, {846, 4389}, {976, 4202}, {1001, 1626}, {1086, 3980}, {1211, 16825}, {1330, 16478}, {1376, 17290}, {1707, 17274}, {1909, 18067}, {1961, 7194}, {3008, 4104}, {3120, 24552}, {3616, 4892}, {3666, 3771}, {3705, 17598}, {3740, 17356}, {3741, 3772}, {3744, 4660}, {3769, 17227}, {3775, 5271}, {3782, 3923}, {3834, 4682}, {3840, 17720}, {3870, 4085}, {3874, 20083}, {3891, 15523}, {3920, 25957}, {3936, 17017}, {3938, 4972}, {3946, 4028}, {3961, 4429}, {3967, 17357}, {3971, 17279}, {4011, 4415}, {4071, 16777}, {4353, 20106}, {4357, 16992}, {4361, 21085}, {4364, 24333}, {4640, 17235}, {4645, 17716}, {4650, 26840}, {4657, 20335}, {4672, 5905}, {4683, 17127}, {4970, 17301}, {4974, 5739}, {5117, 7009}, {5249, 5329}, {5263, 17889}, {5268, 17282}, {5297, 25961}, {5311, 18139}, {6327, 17469}, {6646, 7262}, {6685, 17718}, {6703, 25557}, {7081, 16986}, {7191, 25760}, {7292, 25960}, {8616, 24723}, {10180, 17321}, {13161, 19768}, {16887, 25598}, {17024, 25958}, {17064, 21242}, {17302, 17592}, {17303, 21101}, {17304, 17594}, {18398, 25441}, {24694, 25345}, {26034, 26228}, {26037, 26724}, {26181, 26188}
X(26129) lies on these lines: {1, 5748}, {2, 40}, {4, 17614}, {8, 11}, {21, 4423}, {78, 5274}, {191, 499}, {226, 7091}, {329, 1728}, {377, 9779}, {388, 1319}, {390, 27385}, {392, 3090}, {404, 9812}, {443, 9955}, {452, 1125}, {497, 25681}, {515, 24558}, {908, 14986}, {944, 10711}, {960, 10589}, {997, 5175}, {1519, 6926}, {1699, 6904}, {1770, 3624}, {2094, 10199}, {2136, 7080}, {2476, 7958}, {2550, 24954}, {2551, 11376}, {3091, 19861}, {3189, 11238}, {3421, 11373}, {3474, 6691}, {3485, 3816}, {3487, 14022}, {3701, 6557}, {3817, 5177}, {3825, 18391}, {3869, 5704}, {3872, 8165}, {3877, 4731}, {3895, 27525}, {4187, 5603}, {4295, 10200}, {4310, 28018}, {4512, 19862}, {5046, 5731}, {5056, 24987}, {5082, 7743}, {5084, 5886}, {5129, 24541}, {5284, 11344}, {5433, 5698}, {5435, 7098}, {5552, 9785}, {5554, 5734}, {5811, 10785}, {5815, 10529}, {5818, 17533}, {5828, 12648}, {5880, 6910}, {6361, 13747}, {6700, 9614}, {6857, 11230}, {6921, 9778}, {7288, 24703}, {8582, 11522}, {9776, 12047}, {10165, 17576}, {10248, 17579}, {10527, 18228}, {10586, 11037}, {12245, 17619}, {12699, 17567}, {17527, 18493}, {18135, 20449}, {19843, 23708}, {25492, 27506}, {26091, 26094}, {26093, 26116}
X(26130) lies on these lines: {1, 5800}, {2, 48}, {3, 16608}, {4, 15669}, {7, 2294}, {8, 21231}, {9, 9028}, {19, 18650}, {56, 18635}, {71, 14021}, {77, 5236}, {141, 958}, {142, 515}, {198, 25964}, {226, 4341}, {278, 25361}, {281, 24315}, {388, 1458}, {464, 24310}, {518, 3781}, {529, 17313}, {1001, 1503}, {1385, 17073}, {1953, 4329}, {2260, 5738}, {2293, 11677}, {2317, 26668}, {2345, 21091}, {3475, 5311}, {3486, 3924}, {3576, 18634}, {3616, 26120}, {3739, 5794}, {3912, 5227}, {5249, 5307}, {5786, 15668}, {10246, 17043}, {14547, 26052}, {16713, 21285}, {17052, 26363}, {17170, 17442}, {17306, 19869}, {18162, 27509}, {21280, 23407}, {21483, 26942}, {22054, 24580}, {24220, 26332}, {26107, 26147}, {26639, 27180}
X(26131) lies on these lines: {1, 149}, {2, 58}, {4, 500}, {6, 4197}, {7, 26054}, {8, 2650}, {10, 2895}, {12, 651}, {20, 5713}, {21, 17056}, {43, 26060}, {79, 3743}, {81, 442}, {86, 5051}, {162, 451}, {225, 1442}, {226, 4296}, {229, 2915}, {377, 5712}, {388, 1464}, {404, 5718}, {445, 8747}, {498, 6149}, {581, 6839}, {750, 27529}, {846, 3648}, {940, 2476}, {964, 18134}, {977, 5716}, {991, 6895}, {1010, 3936}, {1046, 21674}, {1211, 14005}, {1213, 17551}, {1654, 9780}, {1655, 6625}, {1834, 6175}, {1962, 24851}, {2292, 14450}, {2478, 4648}, {2893, 3945}, {3152, 5703}, {3178, 4418}, {3194, 25987}, {3448, 6126}, {3616, 4892}, {3651, 13408}, {3664, 6734}, {3670, 26842}, {3701, 3770}, {3836, 27320}, {3909, 5725}, {3920, 13407}, {3931, 20292}, {4205, 5333}, {4417, 16454}, {4645, 26110}, {4653, 15680}, {5057, 6051}, {5125, 5736}, {5192, 17234}, {5226, 26120}, {5249, 5262}, {5277, 5546}, {5287, 9612}, {5292, 14996}, {5297, 21077}, {5396, 6901}, {5492, 16116}, {5707, 6937}, {6675, 16948}, {9782, 24443}, {10198, 17126}, {11115, 25650}, {11374, 26738}, {12609, 17016}, {13740, 18139}, {15844, 17074}, {15988, 25984}, {16062, 19684}, {16704, 25446}, {17011, 23537}, {17245, 17536}, {17392, 17577}, {17550, 20131}, {17579, 19765}, {17750, 26074}, {18666, 25255}, {19784, 25959}, {19877, 26044}, {20653, 24342}, {24968, 24971}, {26102, 26127}
X(26132) lies on these lines: {1, 4138}, {2, 7}, {8, 2887}, {56, 25906}, {69, 3772}, {278, 297}, {344, 4415}, {345, 3782}, {948, 26561}, {1125, 13736}, {1215, 9780}, {1458, 24551}, {1763, 26998}, {3241, 4865}, {3454, 24159}, {3487, 16062}, {3488, 17677}, {3616, 4892}, {3620, 11679}, {3687, 23681}, {3705, 4310}, {3729, 20106}, {3771, 24248}, {3875, 4035}, {3936, 19785}, {4000, 4417}, {4201, 5703}, {4429, 25568}, {4470, 19827}, {4517, 25137}, {5550, 25496}, {5712, 19786}, {5714, 13740}, {5719, 11359}, {6327, 26228}, {6679, 24695}, {8165, 25965}, {9308, 18678}, {10327, 25959}, {14555, 24789}, {15934, 16052}, {17011, 19823}, {17056, 17321}, {17103, 25507}, {17170, 17211}, {17182, 18648}, {17316, 18134}, {17720, 18141}, {18135, 21590}, {20498, 26029}, {21062, 27127}, {21609, 26563}, {25681, 25912}, {25990, 27410}, {26093, 26116}, {26094, 26123}, {26107, 26119}, {26112, 26139}
X(26133) lies on these lines: {2, 82}, {75, 5211}, {83, 17055}, {4645, 26094}, {26098, 26107}
X(26134) lies on these lines: {2, 85}, {7, 27019}, {39, 6063}, {194, 349}, {226, 1424}, {269, 25538}, {1441, 26042}, {1463, 11375}, {4554, 5283}, {6516, 16915}, {6604, 26801}, {9312, 27020}, {9436, 17030}, {26110, 26121}
X(26135) lies on these lines: {2, 87}, {7, 8}, {1278, 25284}, {1654, 26038}, {2345, 20532}, {3616, 24661}, {4648, 20530}, {4772, 25292}, {4851, 24717}, {5550, 25535}, {7155, 20917}, {9780, 25121}, {10453, 17375}, {17278, 24753}, {17300, 21299}, {17786, 24451}, {19877, 26045}, {24672, 26107}, {25570, 26752}
X(26136) lies on these lines: {2, 45}, {11, 145}, {908, 20072}, {3616, 17719}, {3624, 11814}, {3699, 4678}, {4648, 26137}, {4928, 21222}, {5219, 9312}, {16732, 18743}, {19877, 24003}, {26109, 26147}
X(26137) lies on these lines: {2, 44}, {3486, 10129}, {4080, 4704}, {4648, 26136}, {17379, 25529}
X(26138) lies on these lines: {2, 99}, {799, 16613}, {1015, 21220}, {2170, 24505}, {2478, 26108}, {20349, 27166}, {26100, 26124}, {26106, 26122}, {26140, 26142}
X(26139) lies on these lines: {1, 11814}, {2, 11}, {8, 17460}, {145, 3699}, {190, 3756}, {214, 10774}, {244, 4440}, {388, 26111}, {1054, 25377}, {1058, 26029}, {1357, 4499}, {1647, 4473}, {2478, 26093}, {2899, 17480}, {3600, 8686}, {3616, 17719}, {3622, 4997}, {3624, 26051}, {3685, 5121}, {3837, 26142}, {3870, 27130}, {3873, 26791}, {4076, 5516}, {4152, 20014}, {4201, 25492}, {4358, 5211}, {4645, 4871}, {4679, 6646}, {4928, 26140}, {5231, 17338}, {6999, 25510}, {12053, 25965}, {14923, 25979}, {18149, 20345}, {26094, 26117}, {26098, 26103}, {26102, 26109}, {26112, 26132}, {26141, 26147}
X(26140) lies on these lines: {1, 20344}, {2, 101}, {8, 21232}, {100, 4904}, {142, 6224}, {149, 17761}, {404, 21258}, {644, 16593}, {1385, 27006}, {1477, 3600}, {2140, 2475}, {3616, 26101}, {4107, 26141}, {4675, 7200}, {4928, 26139}, {5080, 20335}, {5086, 24774}, {5519, 6065}, {8299, 18343}, {9263, 17300}, {17234, 18047}, {26138, 26142}
X(26141) lies on these lines: {1, 149}, {2, 98}, {11, 21221}, {662, 8286}, {1330, 8666}, {1469, 3873}, {2895, 3705}, {3897, 26117}, {4107, 26140}, {4188, 25650}, {4645, 5143}, {5347, 18134}, {17300, 24523}, {26139, 26147}
X(26142) lies on these lines: {2, 45}, {334, 17321}, {1654, 27011}, {3662, 4466}, {3834, 26113}, {3837, 26139}, {4000, 20333}, {4499, 24485}, {4648, 26143}, {4657, 26110}, {6386, 18135}, {6542, 27106}, {17237, 26801}, {17249, 26082}, {17300, 20355}, {17301, 26752}, {17314, 20532}, {20072, 26982}, {26138, 26140}
X(26143) lies on these lines: {1, 25311}, {2, 37}, {7, 24509}, {8, 25121}, {1001, 20676}, {1125, 25528}, {3616, 24661}, {4021, 27091}, {4648, 26142}, {4941, 24451}, {7155, 24456}, {16709, 26852}, {16777, 20532}, {17236, 27166}, {17304, 25510}, {17343, 26821}, {17379, 20332}, {17397, 20146}, {18133, 21219}, {18194, 26069}, {24669, 26111}, {26093, 26150}
X(26144) lies on these lines: {2, 900}, {522, 14429}, {966, 4435}, {1769, 3716}, {2345, 4526}, {2815, 5603}, {3738, 16173}, {3766, 17321}, {3837, 26139}, {5296, 22108}, {6615, 8062}, {7650, 23882}, {13266, 24542}, {17320, 21606}
X(26145) lies on these lines: {2, 187}, {148, 16711}, {663, 3835}, {754, 25683}, {1654, 24958}, {2478, 4648}, {3701, 17372}, {5046, 26978}, {5051, 6707}, {5192, 17327}, {6781, 24918}, {7778, 11346}, {7842, 17690}, {16705, 17685}, {17283, 17541}, {17375, 18135}, {17381, 17550}
X(26146) lies on these lines: {2, 647}, {278, 17094}, {650, 7212}, {663, 3835}, {693, 905}, {2517, 4885}, {2522, 17896}, {4000, 17069}, {4017, 4369}, {4077, 16612}, {4379, 20521}, {4467, 19785}, {6590, 14837}, {7658, 21186}, {8642, 26249}, {14296, 27527}, {18155, 19786}, {21173, 23803}
X(26147) lies on these lines: {2, 662}, {8, 21254}, {86, 24957}, {99, 17058}, {145, 16597}, {148, 1086}, {1654, 17228}, {3836, 20558}, {3942, 24504}, {4675, 6625}, {4851, 20529}, {17300, 18133}, {17374, 20536}, {17387, 17778}, {21277, 27272}, {26107, 26130}, {26109, 26136}, {26138, 26140}, {26139, 26141}
X(26148) lies on these lines: {2, 669}, {320, 350}, {661, 3907}, {663, 3835}, {667, 27345}, {3005, 25258}, {3741, 18197}, {3837, 26097}, {4455, 27527}, {20979, 25128}, {20983, 25301}, {21191, 24666}, {24663, 24674}
X(26148) = anticomplement of X(24533)
X(26149) lies on these lines: {2, 7}, {69, 26801}, {75, 21021}, {1125, 7184}, {3616, 24661}, {3663, 27020}, {3664, 26959}, {4648, 26107}, {4657, 26110}, {4675, 25505}, {4699, 26048}, {16924, 21279}, {17030, 17272}, {17250, 26045}, {17280, 26976}, {17300, 26971}, {17305, 27042}, {17398, 25534}, {25590, 27091}, {26756, 26812}
X(26150) lies on these lines: {1, 17232}, {2, 38}, {7, 5550}, {8, 3619}, {238, 17236}, {518, 17370}, {726, 17358}, {894, 3624}, {1001, 17305}, {1125, 3662}, {1279, 3616}, {1386, 17227}, {3210, 24943}, {3685, 17304}, {3742, 19812}, {3775, 16816}, {3790, 4353}, {4676, 17235}, {4741, 16468}, {4966, 17380}, {4974, 17343}, {5263, 17290}, {5749, 16814}, {7155, 15315}, {9780, 17278}, {15569, 17399}, {16475, 17288}, {16823, 17306}, {16825, 17238}, {16830, 17282}, {17368, 19862}, {17381, 25557}, {17480, 19879}, {19853, 27154}, {26093, 26143}, {26094, 26107}
X(26151) lies on these lines: {2, 3}
X(26152) lies on these lines: {2, 3}
Collineation mappings involving Gemini triangle 41: X(26153)-X(6180)
Following is a list of central triangles, by barycentric coordinates of A-vertex. The full names are Gemini triangle 41, Gemini triangle 42, Gemini triangle 43, etc. See the preamble just before X(24537) for the definitions of Gemini triangles 1-40. (Clark Kimberling, October 30, 2018)
Gemini 41 b^2 + c^2 : a^2 : a^2
Gemini 42 a^2 + b^2 + c^2 : a^2 : a^2
Gemini 43 a^2 : b^2 + c^2 : b^2 + c^2
Gemini 44 - a^2 : b^2 + c^2 : b^2 + c^2 (circum-medial triangle, TCCT 6.19
Gemini 45 (b - c)^2 : a^2 : a^2
Gemini 46 (b + c)^2 : a^2 : a^2
Gemini 47 a^2 : (b + c)^2 : (b + c)^2
Gemini 48 a^2 : (b - c)^2 : (b - c)^2
Gemini 49 (b + c)^2 : (b - c)^2 : (b - c)^2
Gemini 50 (b - c)^2 : (b + c)^2 : (b + c)^2
Gemini 51 (b - c)^2 : b^2 + c^2 : b^2 + c^2
Gemini 52 (b + c)^2 : b^2 + c^2 : b^2 + c^2
Gemini 53 b^2 + c^2 : (b - c)^2 : (b - c)^2
Gemini 54 b^2 + c^2 : (b + c)^2 : (b + c)^2
Gemini 55 a^2 : 2 b c : 2 b c
Gemini 56 - a^2 : 2 b c : 2 b c
Gemini 57 b^2 + c^2 : b c : b c
Gemini 58 b^2 + c^2 : - b c : - b c
Gemini 59 - b c + c a + a b : b c + c a + a b : b c + c a + a b
Gemini 60 b c + c a + a b : - b c + c a + a b : - b c + c a + a b
If T is a central triangle A'B'C' with A' of the form f(a,b,c) : g(a,b,c) : g(a,b,c), then the (A,B,C,X(2); A',B',C',X(2)) collineation image of the Euler line is the Euler line. Examples include Gemini triangles 30-60.
Let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 41, as in centers X(26153)-X(26180). Then
m(X) = (a^2 - b^2 + c^2) (a^2 + b^2 - c^2) (b^2 + c^2 ) x + (b^2 (b^2 + c^2 - a^2) ( axxx : : ,
and m(X) is on the Euler line if and only if X is on the Euler line.
X(26153) lies on these lines: {1, 2}, {141, 1231}, {379, 5090}, {857, 1829}, {1861, 26961}, {5081, 26678}, {17184, 26161}, {18636, 20235}, {20911, 26165}, {23661, 26550}, {26156, 26163}, {26178, 26179}
X(26154) lies on these lines: {2, 3}, {141, 22416}, {185, 15595}, {287, 14516}, {1105, 6330}, {9289, 26156}, {16890, 26224}
X(26155) lies on these lines: {2, 3}, {1970, 3589}, {9729, 15595}, {23115, 27377}
X(26156) lies on these lines: {2, 6}, {22, 15812}, {74, 18358}, {110, 26926}, {125, 14913}, {468, 19121}, {858, 1843}, {1352, 17928}, {1368, 12220}, {1503, 22467}, {1568, 21851}, {3564, 26879}, {5133, 9822}, {5866, 7789}, {5895, 10516}, {5972, 21637}, {6403, 11585}, {6656, 26162}, {6816, 10519}, {7391, 7716}, {7399, 11459}, {7762, 26212}, {8263, 12272}, {9289, 26154}, {10018, 19131}, {11188, 23300}, {13160, 24206}, {15059, 15128}, {16238, 19128}, {18639, 27180}, {18642, 21511}, {18911, 19459}, {19588, 26869}, {26153, 26163}, {26166, 26177}, {26175, 26179}
X(26157) lies on these lines: {1, 2}, {141, 26165}, {318, 26528}, {321, 26171}, {1375, 12135}, {5090, 24584}, {7270, 26219}, {16607, 18669}, {17184, 26170}, {17233, 26215}, {17492, 18596}, {18657, 21063}, {23661, 26527}
X(26158) lies on these lines: {1, 2}, {318, 26556}, {1441, 18639}, {1826, 18659}, {5090, 24605}, {7718, 24580}, {17184, 26174}, {17670, 26213}, {18671, 20305}, {26165, 26166}, {26168, 26177}
X(26159) lies on these lines: {2, 3}
X(26160) lies on these lines: {2, 3}
X(26161) lies on these lines: {2, 31}, {17184, 26153}
X(26162) lies on these lines: {2, 32}, {141, 26214}, {6656, 26156}, {7879, 26206}, {26166, 26175}
X(26163) lies on these lines: {2, 37}, {226, 21406}, {3912, 18692}, {26153, 26156}, {26164, 26169}
X(26164) lies on these lines: {2, 39}, {4, 11382}, {6, 26212}, {83, 1236}, {339, 7819}, {1235, 7770}, {3260, 7745}, {6656, 26156}, {7754, 26206}, {12203, 22467}, {26163, 26169}, {26175, 26177}
X(26165) lies on these lines: {2, 37}, {29, 3100}, {92, 4329}, {141, 26157}, {142, 23581}, {318, 2478}, {390, 23528}, {968, 23556}, {1040, 27386}, {3262, 4150}, {4319, 17860}, {17858, 25935}, {17859, 26006}, {18589, 20883}, {20911, 26153}, {23978, 26601}, {23983, 26543}, {26158, 26166}
X(26166) lies on these lines: {2, 39}, {3, 1235}, {20, 264}, {69, 5889}, {97, 276}, {99, 14118}, {140, 339}, {141, 22416}, {183, 17928}, {237, 12143}, {308, 26224}, {311, 1975}, {317, 7544}, {325, 13160}, {1078, 1236}, {1232, 1238}, {3096, 26170}, {3260, 7750}, {3933, 7399}, {26156, 26177}, {26158, 26165}, {26162, 26175}
X(26167) lies on these lines: {2, 6}, {21, 18642}, {286, 26605}, {858, 17171}, {3868, 16608}, {20911, 26153}, {26168, 26169}, {26171, 26563}
X(26168) lies on these lines: {2, 31}, {26153, 26156}, {26158, 26177}, {26167, 26169}
X(26169) lies on these lines: {1, 2}, {26163, 26164}, {26167, 26168}
X(26170) lies on these lines: {2, 3}, {3096, 26166}, {4045, 26216}, {8743, 13219}, {12111, 15595}, {17184, 26157}
X(26171) lies on these lines: {2, 3}, {321, 26157}, {17184, 26153}, {26167, 26563}
X(26172) lies on these lines: {2, 3}
X(26173) lies on these lines: {2, 3}
X(26174) lies on these lines: {2, 3}, {141, 26157}, {17184, 26158}
X(26175) lies on these lines: {2, 3}, {26156, 26179}, {26162, 26166}, {26164, 26177}
X(26176) lies on these lines: {2, 48}, {6, 26589}, {31, 21275}, {80, 17291}, {141, 313}, {1964, 21235}, {2887, 21278}, {3662, 17861}, {6679, 21298}, {17046, 27145}, {21236, 26979}, {21244, 27095}, {26012, 26963}
X(26177) lies on these lines: {2, 32}, {6815, 15062}, {26156, 26166}, {26158, 26168}, {26164, 26175}
X(26178) lies on these lines: {2, 37}, {16580, 20884}, {17481, 21582}, {26153, 26179}
X(26179) lies on these lines: {2, 39}, {32, 1236}, {98, 22467}, {112, 384}, {264, 14035}, {311, 17128}, {339, 7807}, {1352, 12111}, {3260, 7823}, {6655, 17984}, {7791, 15075}, {7929, 8920}, {26153, 26178}, {26156, 26175}
X(26180) lies on these lines: {2, 3}
Collineation mappings involving Gemini triangle 42: X(26181)-X(26199)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 42, as in centers X(26181)-X(26199). Then
m(X) = (a^2 + b^2) (a^2 + c^2) (a^2 + b^2 + c^2)x + b^2 (a^2 + b^2) (b^2 + c^2) y + c^2 (a^2 + c^2) (b^2 + c^2) z : :
A point X lies on the Euler line if and only if m(X) also lies on the Euler line. (Clark Kimberling, October 30, 2018)
X(26181) lies on these lines: {1, 2}, {26128, 26188}
X(26182) lies on these lines: {2, 3}, {827, 3096}, {7834, 26185}, {26192, 26197}
X(26183) lies on these lines: {2, 3}, {26189, 26198}, {26190, 26192}
X(26184) lies on these lines: {2, 3}, {7834, 26198}
X(26185) lies on these lines: {2, 6}, {6680, 23322}, {7834, 26182}, {26195, 26199}
X(26186) lies on these lines: {2, 3}
X(26187) lies on these lines: {2, 3}
X(26188) lies on these lines: {2, 31}, {26128, 26181}
X(26189) lies on these lines: {2, 32}, {7834, 26182}, {26183, 26198}, {26192, 26195}, {26197, 26199}
X(26190) lies on these lines: {2, 6}, {1078, 6697}, {3313, 11056}, {26183, 26192}, {26191, 26196}, {26194, 26197}
X(26191) lies on these lines: {2, 37}, {3112, 21249}, {26190, 26196}
X(26192) lies on these lines: {2, 39}, {83, 10339}, {308, 6292}, {3096, 14970}, {26182, 26197}, {26183, 26190}, {26189, 26195}
X(26193) lies on these lines: {2, 3}
X(26194) lies on these lines: {2, 3}, {26190, 26197}
X(26195) lies on these lines: {2, 3}, {7834, 26197}, {26185, 26199}, {26189, 26192}
X(26196) lies on these lines: {2, 3}, {26190, 26191}
X(26197) lies on these lines: {2, 99}, {7834, 26195}, {26182, 26192}, {26189, 26199}, {26190, 26194}
X(26198) lies on these lines: {2, 99}, {141, 14990}, {7834, 26184}, {26183, 26189}
X(26199) lies on these lines: {2, 39}, {827, 7787}, {5103, 16285}, {26185, 26195}, {26189, 26197}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28554.
X(26200) lies on these lines: {4,10284}, {5,10}, {65,16173}, {392,17531}, {546,2802}, {550,3898}, {962,6951}, {1385,6909}, {1482,5693}, {2771,7984}, {2800,6583}, {3057,3585}, {3579,6940}, {5441,5919}, {5603,6972}, {5694,7982}, {5697,10895}, {5885,13464}, {5887,11278}, {5901,13145}, {6284,9957}, {10058,24928}, {10738,12751}, {11009,17638}, {11522,25413}, {15558,18990}, {18393,25414}
X(26200) = midpoint of X(i) and X(j) for these {i,j}: {4,10284}, {3057,22793}, {5887,11278}, {10222,12672}, {18480,23340}
X(26200) = reflection of X(i) in X(j) for these {i,j}: {5885,13464}, {13145,5901}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28554.
X(26201) lies on these lines: {3,5904}, {21,104}, {30,6583}, {35,17660}, {65,4325}, {72,5303}, {79,354}, {140,2801}, {382,18398}, {389,15229}, {515,5885}, {517,550}, {518,14810}, {632,15064}, {912,12038}, {942,7354}, {946,12267}, {952,13145}, {971,9955}, {1858,5126}, {3057,11571}, {3530,3678}, {3576,5694}, {3579,10167}, {3583,13751}, {3656,9961}, {5045,10391}, {5083,15171}, {5536,16117}, {5563,17637}, {6001,15178}, {6102,23156}, {6940,12738}, {7967,10284}, {8582,8728}, {10202,12680}, {10225,11491}, {10246,15071}, {10268,24645}, {11220,12699}, {11231,14872}, {15016,18525}, {15931,22937}, {16132,22765}
X(26201) = midpoint of X(i) and X(j) for these {i,j}: {550,3874}, {6102,23156}, {12675,13369}, {12680,18480}
X(26201) = reflection of X(i) in X(j) for these {i,j}: {389,15229}, {3678,3530}, {6583,12005}, {9955,13373}, {9956,9940}
X(26201) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {10202,12680,18480}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28556.
X(26202) lies on these lines: {1,399}, {3,5506}, {10,30}, {21,4881}, {79,3582}, {191,12702}, {355,13199}, {381,16118}, {517,3652}, {758,11278}, {942,16141}, {1012,5694}, {1699,16150}, {2475,7705}, {3634,5499}, {3648,12699}, {5428,15254}, {5659,16113}, {5885,6912}, {5886,16116}, {6841,7173}, {6888,16128}, {6906,22935}, {7743,16153}, {8148,13465}, {9780,18516}, {9957,16140}, {10021,19862}, {10225,19925}, {11230,12608}, {11263,12611}, {12104,17502}, {15677,18481}, {16117,18540}, {16159,20084}, {16160,18483}
X(26202) = midpoint of X(i) and X(j) for these {i,j}: {21,16138}, {7701,13743}
X(26202) = reflection of X(i) in X(j) for these {i,j}: {79,9955}, {3579,3647}, {18480,22798}, {22937,22936}
X(26202) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {3579,3647,22937}, {3579,22936,3647}
Collineation mappings involving Gemini triangle 43: X(26203)-X(26226)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 43, as in centers X(26203)-X(26226). Then
m(X) = a^2 (a^2 + b^2 - c^2) (a^2 - b^2 + c^2) x + (a^2 + c^2) (b^2 + c^2 - a^2) (a^2 + b^2 - c^2) y + (a^2 + b^2) (b^2 + c^2 - a^2) (a^2 - b^2 + c^2) z : :
A point X lies on the Euler line if and only if m(X) also lies on the Euler line. (Clark Kimberling, October 31, 2018)
X(26203) lies on these lines: {1, 2}, {6, 1231}, {33, 27022}, {34, 26961}, {318, 26678}, {379, 1829}, {607, 1441}, {857, 5090}, {1038, 27143}, {1040, 27093}, {1973, 26260}, {20811, 26206}, {23620, 24252}, {26211, 26219}
X(26204) lies on these lines: {2, 3}, {1968, 6389}, {3618, 26216}, {15595, 19467}
X(26205) lies on these lines: {2, 3}, {141, 1970}, {8721, 20792}, {10316, 27377}
X(26206) lies on these lines: {2, 6}, {3, 19118}, {22, 1974}, {24, 9967}, {25, 12220}, {74, 12017}, {110, 19459}, {155, 6804}, {182, 185}, {206, 6800}, {511, 17928}, {607, 27059}, {608, 26998}, {1176, 19153}, {1350, 22467}, {1351, 3567}, {1599, 11513}, {1600, 11514}, {1843, 1995}, {2211, 7791}, {2916, 27085}, {3098, 15078}, {3313, 19136}, {3564, 18912}, {3796, 19132}, {3867, 7394}, {5012, 19122}, {5013, 5866}, {5020, 11416}, {5050, 7395}, {5063, 9723}, {5085, 8567}, {5093, 13363}, {5622, 12825}, {5651, 14913}, {5921, 17814}, {6090, 15531}, {6225, 19149}, {6403, 6642}, {6467, 9306}, {6644, 18438}, {6656, 8743}, {6776, 6816}, {6815, 14853}, {7399, 13142}, {7485, 19126}, {7509, 19131}, {7514, 19129}, {7716, 13595}, {7754, 26164}, {7770, 14965}, {7819, 22120}, {7879, 26162}, {8541, 9822}, {8745, 17907}, {9605, 22241}, {10602, 12272}, {11413, 12294}, {11442, 13562}, {11487, 19458}, {12215, 26221}, {13160, 14561}, {14001, 23115}, {15056, 19460}, {16072, 18440}, {17710, 20987}, {17847, 25321}, {18911, 26926}, {20811, 26203}, {26216, 26224}
X(26207) lies on these lines: {2, 3}
X(26208) lies on these lines: {1, 2}, {26215, 26216}
X(26209) lies on these lines: {2, 3}, {8743, 18018}
X(26210) lies on these lines: {2, 3}, {4580, 26225}
X(26211) lies on these lines: {2, 31}, {1395, 26990}, {2212, 27051}, {26203, 26219}
X(26212) lies on these lines: {2, 32}, {6, 26164}, {7762, 26156}, {7770, 14965}, {26216, 26221}
X(26213) lies on these lines: {2, 37}, {1441, 27059}, {5745, 21406}, {17023, 18692}, {17670, 26158}, {20811, 26203}
X(26214) lies on these lines: {2, 39}, {4, 9967}, {141, 26162}, {311, 5254}, {324, 27376}, {339, 8362}, {384, 10313}, {1235, 5523}, {1236, 3096}, {3260, 7784}, {7467, 12143}, {7770, 14965}, {12203, 14118}, {26221, 26224}
X(26215) lies on these lines: {2, 37}, {3, 3100}, {1060, 4227}, {1214, 4329}, {6356, 17080}, {12610, 22464}, {17233, 26157}, {26208, 26216}
X(26216) lies on these lines: {2, 39}, {3, 5481}, {4, 22240}, {5, 5523}, {6, 5889}, {20, 216}, {32, 14118}, {54, 23128}, {112, 7526}, {217, 12111}, {232, 3091}, {570, 6815}, {574, 22467}, {631, 14961}, {1625, 15058}, {1658, 10986}, {1968, 5158}, {2079, 5013}, {3172, 15851}, {3199, 3832}, {3269, 10574}, {3289, 11444}, {3331, 11439}, {3523, 22401}, {3618, 26204}, {4045, 26170}, {5133, 27376}, {5169, 27371}, {5254, 13160}, {6509, 11348}, {6816, 7736}, {7395, 9605}, {7399, 15048}, {7488, 10311}, {7509, 23115}, {7514, 22120}, {8743, 9818}, {9607, 13351}, {11174, 26226}, {11325, 23635}, {15078, 15815}, {26206, 26224}, {26208, 26215}, {26212, 26221}
X(26217) lies on these lines: {2, 650}, {2485, 16757}
X(26218) lies on these lines: {2, 3}
X(26219) lies on these lines: {2, 3}, {7270, 26157}, {26203, 26211}
X(26220) lies on these lines: {2, 3}
X(26221) lies on these lines: {2, 3}, {5063, 17128}, {12215, 26206}, {26212, 26216}, {26214, 26224}
X(26222) lies on these lines: {2, 48}, {6, 313}, {8, 238}, {31, 21278}, {41, 26772}, {71, 11320}, {80, 5150}, {81, 19806}, {141, 26634}, {312, 3187}, {560, 21238}, {604, 26963}, {894, 17861}, {1837, 2330}, {1914, 5278}, {1958, 27102}, {2273, 3948}, {2887, 21275}, {3778, 4112}, {7770, 20747}, {10791, 20964}, {18042, 25505}, {21221, 27320}, {25940, 27095}
X(26223) lies on these lines: {1, 3159}, {2, 7}, {6, 321}, {10, 6327}, {31, 1215}, {33, 14954}, {37, 19684}, {38, 25496}, {42, 3923}, {43, 4418}, {44, 5278}, {45, 19701}, {46, 26030}, {72, 964}, {78, 11115}, {81, 312}, {192, 17011}, {218, 19281}, {228, 11322}, {274, 27643}, {284, 17587}, {306, 17355}, {318, 3194}, {394, 26591}, {404, 23206}, {474, 23169}, {518, 24552}, {593, 27958}, {612, 3952}, {614, 17140}, {726, 17017}, {748, 24325}, {750, 4697}, {899, 3980}, {936, 19284}, {940, 4358}, {942, 5192}, {1009, 21319}, {1010, 3876}, {1100, 3175}, {1150, 4641}, {1185, 2235}, {1211, 17369}, {1220, 3869}, {1255, 17394}, {1386, 3891}, {1449, 19743}, {1621, 4676}, {1698, 17491}, {1743, 5271}, {1836, 4972}, {1877, 5554}, {1999, 4671}, {2049, 15650}, {2051, 21375}, {2295, 3765}, {2308, 4362}, {2321, 20017}, {2345, 5739}, {2887, 24725}, {2895, 3661}, {2999, 17495}, {3006, 26098}, {3120, 25453}, {3210, 17012}, {3247, 19741}, {3338, 26094}, {3487, 17526}, {3488, 4217}, {3586, 17537}, {3589, 3782}, {3601, 17539}, {3618, 19785}, {3666, 17351}, {3671, 25904}, {3677, 17154}, {3679, 6539}, {3681, 5263}, {3685, 17018}, {3701, 5711}, {3706, 4663}, {3710, 5717}, {3720, 4011}, {3729, 5256}, {3731, 19740}, {3745, 3967}, {3751, 17135}, {3757, 17127}, {3868, 13740}, {3886, 20011}, {3896, 5695}, {3940, 16394}, {3947, 25982}, {3948, 17750}, {3969, 17281}, {3971, 5311}, {4009, 4682}, {4082, 4349}, {4307, 10327}, {4344, 20020}, {4359, 4363}, {4361, 4980}, {4402, 19826}, {4414, 6685}, {4427, 17594}, {4429, 20292}, {4461, 20043}, {4473, 26109}, {4687, 5333}, {4696, 5710}, {4884, 17726}, {4968, 16466}, {4981, 5220}, {5044, 16454}, {5222, 19789}, {5287, 8025}, {5297, 27538}, {5440, 16393}, {5712, 17776}, {5928, 27052}, {6358, 21741}, {6651, 17032}, {7081, 17126}, {7191, 24349}, {7229, 19825}, {7283, 19767}, {10391, 27394}, {10601, 17862}, {10791, 24255}, {11263, 19846}, {11342, 16601}, {11679, 16704}, {12514, 26115}, {14555, 19822}, {14997, 17116}, {16050, 25082}, {16405, 20760}, {16475, 17150}, {16549, 21361}, {16666, 22034}, {16672, 19747}, {16674, 19745}, {16677, 19746}, {16777, 19722}, {16788, 22001}, {16884, 19739}, {16885, 19732}, {17019, 17379}, {17020, 17490}, {17124, 24003}, {17262, 20182}, {17279, 18139}, {17280, 17778}, {17352, 26724}, {17354, 18134}, {17479, 25245}, {17825, 20905}, {18206, 27163}, {18607, 25099}, {20444, 20896}, {21327, 23543}, {21362, 27070}, {24295, 24943}, {24342, 26037}, {24695, 26034}, {24892, 25385}, {26203, 26211}, {27318, 27646}
X(26224) lies on these lines: {2, 32}, {64, 1176}, {112, 8362}, {308, 26166}, {6815, 17500}, {7395, 10547}, {7544, 10550}, {7770, 10313}, {10316, 16045}, {11380, 14096}, {16890, 26154}, {26206, 26216}, {26214, 26221}
X(26225) lies on these lines: {2, 669}, {2501, 7770}, {4580, 26210}
X(26226) lies on these lines: {2, 3}, {287, 11441}, {11174, 26216}
Collineation mappings involving Gemini triangle 44: X(26227)-X(26284)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 44, as in centers X(26227)-X(26284). Then
m(X) = a^2 x - (a^2 + c^2) y - (a^2 + b^2) z : :
A point X lies on the Euler line if and only if m(X) also lies on the Euler line. Also, X lies on the circumcircle if and only if m(X) lies on the circumcircle; specifically, the line XX(2) meets the circumcircle in X and m(X). Moreover, m(m(X)) = X for every point X. (Clark Kimberling, October 31, 2018)
X(26227) lies on these lines: {1, 2}, {3, 4968}, {9, 3952}, {12, 5016}, {21, 4385}, {22, 23843}, {31, 1215}, {40, 17164}, {55, 321}, {57, 17140}, {63, 17165}, {75, 100}, {81, 3769}, {86, 9347}, {92, 7466}, {98, 9070}, {105, 9059}, {110, 27958}, {141, 17724}, {183, 3262}, {210, 5278}, {226, 6327}, {251, 18099}, {312, 1621}, {333, 3681}, {341, 5260}, {355, 8229}, {385, 24345}, {405, 3701}, {442, 5300}, {516, 4054}, {518, 1150}, {536, 4689}, {726, 4414}, {740, 2177}, {748, 26688}, {750, 4434}, {752, 24725}, {850, 4477}, {894, 17002}, {902, 3923}, {908, 3883}, {958, 4696}, {964, 5266}, {968, 3995}, {993, 4692}, {1001, 4358}, {1004, 20880}, {1089, 5248}, {1230, 4199}, {1311, 9058}, {1376, 4359}, {1759, 22011}, {1792, 19799}, {1836, 4450}, {1842, 6995}, {1995, 26241}, {2223, 11322}, {2476, 5015}, {2886, 4030}, {3120, 4660}, {3158, 17163}, {3218, 24349}, {3243, 17145}, {3247, 27811}, {3263, 16992}, {3295, 3702}, {3416, 3936}, {3550, 4418}, {3666, 3891}, {3683, 3967}, {3685, 4671}, {3689, 3696}, {3699, 17277}, {3703, 6690}, {3729, 4427}, {3744, 24552}, {3745, 19684}, {3751, 16704}, {3772, 4972}, {3822, 4680}, {3873, 14829}, {3933, 25581}, {3966, 5741}, {3974, 17776}, {4009, 15254}, {4026, 17602}, {4220, 11491}, {4232, 8756}, {4239, 26232}, {4387, 4428}, {4392, 24627}, {4396, 24357}, {4413, 24589}, {4421, 4980}, {4426, 21021}, {4430, 5372}, {4514, 11680}, {4519, 4702}, {4613, 6187}, {4647, 8715}, {4659, 4781}, {4661, 5361}, {4723, 9708}, {4742, 6767}, {4756, 17336}, {4767, 17335}, {4860, 24593}, {4894, 25639}, {4981, 5737}, {5218, 17740}, {5250, 25253}, {5269, 5764}, {5282, 21101}, {5284, 18743}, {5336, 14624}, {5718, 5846}, {5739, 25568}, {5853, 21283}, {6679, 26061}, {7426, 16305}, {7495, 26231}, {8707, 9077}, {9056, 26703}, {9071, 9075}, {9083, 9104}, {9330, 17260}, {9335, 27002}, {13161, 17676}, {16998, 18900}, {17125, 24003}, {17127, 27064}, {17147, 17594}, {17155, 17596}, {17184, 26034}, {17278, 24988}, {17279, 24542}, {17469, 25496}, {17719, 25760}, {17765, 21242}, {17766, 25385}, {26242, 26244}, {26253, 26260}, {26271, 26274}, {27065, 27538}
X(26228) lies on these lines: {1, 2}, {6, 17724}, {7, 109}, {20, 1072}, {23, 11809}, {25, 1068}, {31, 5905}, {55, 7465}, {81, 3475}, {100, 4000}, {105, 1995}, {225, 6995}, {238, 17725}, {278, 7466}, {329, 17127}, {344, 24542}, {345, 3891}, {377, 5266}, {468, 13869}, {518, 24597}, {595, 11415}, {902, 24248}, {908, 7290}, {944, 8229}, {1001, 17602}, {1070, 7398}, {1104, 3436}, {1279, 17720}, {1311, 9088}, {1386, 17718}, {1707, 20078}, {2475, 4339}, {3052, 3782}, {3218, 4310}, {3246, 4679}, {3434, 3744}, {3598, 22464}, {3699, 17352}, {3701, 13742}, {3749, 3914}, {3952, 26685}, {4190, 23536}, {4220, 10267}, {4232, 23710}, {4239, 26241}, {4383, 12595}, {4385, 17526}, {4392, 5744}, {4428, 4854}, {4648, 9347}, {4689, 17301}, {4850, 5218}, {4906, 17728}, {5249, 5269}, {5264, 24159}, {5273, 7226}, {5304, 8557}, {5310, 14798}, {6327, 26132}, {6690, 17599}, {6872, 13161}, {7426, 16272}, {7485, 26357}, {7493, 8758}, {7735, 8609}, {8193, 19850}, {9330, 18230}, {9465, 26278}, {10532, 26118}, {10680, 16434}, {11249, 19649}, {16202, 19544}, {17002, 17257}, {17165, 26065}, {17469, 26098}, {26034, 26128}, {26040, 26724}, {26274, 26281}
X(26229) lies on these lines: {1, 21208}, {2, 7}, {41, 17048}, {56, 26563}, {75, 26263}, {78, 20247}, {85, 934}, {105, 9086}, {140, 25581}, {183, 3262}, {239, 17001}, {404, 3673}, {474, 20880}, {675, 9058}, {901, 9073}, {976, 24172}, {1055, 24249}, {1210, 21285}, {1329, 7198}, {2082, 26964}, {2280, 24685}, {3007, 7493}, {3665, 6691}, {3814, 7272}, {3825, 4056}, {4193, 4911}, {4239, 26236}, {4376, 20530}, {4386, 27918}, {5433, 27187}, {5804, 7390}, {5826, 17023}, {6745, 10520}, {7247, 11681}, {7264, 25440}, {7289, 27161}, {9310, 26653}, {16609, 26621}, {16862, 25585}, {17683, 24774}, {20930, 26232}, {24471, 24540}, {26241, 26246}, {26242, 26273}, {26247, 26274}
X(26230) lies on these lines: {1, 2}, {22, 23383}, {31, 4655}, {37, 24542}, {38, 6679}, {69, 16798}, {81, 16791}, {86, 110}, {100, 16706}, {105, 4239}, {238, 26580}, {321, 17061}, {385, 24348}, {902, 3821}, {940, 16790}, {1385, 8229}, {1386, 3936}, {1441, 15253}, {1621, 7465}, {2887, 17469}, {3007, 7493}, {3589, 17724}, {3618, 16799}, {3662, 17126}, {3663, 4427}, {3722, 4085}, {3744, 4972}, {3745, 18139}, {3772, 24552}, {3952, 17353}, {3953, 6693}, {3977, 4353}, {4202, 5266}, {4358, 17602}, {4689, 17382}, {4968, 17698}, {5294, 17165}, {6327, 25527}, {7466, 17923}, {8610, 9465}, {9059, 9109}, {9330, 17338}, {9347, 17234}, {10130, 26250}, {11115, 23536}, {11319, 13161}, {16793, 17379}, {16795, 24512}, {17002, 17248}, {17127, 27184}, {17356, 24988}, {17716, 25957}, {17770, 21747}, {19284, 24178}, {20905, 25968}, {26256, 26267}, {26259, 26268}
X(26231) lies on these lines: {2, 11}, {23, 5520}, {119, 7427}, {140, 16823}, {468, 5205}, {498, 19310}, {1329, 17522}, {1478, 19326}, {2862, 4998}, {2968, 6676}, {3011, 16586}, {3756, 7191}, {3757, 7499}, {3912, 11712}, {4223, 27529}, {4242, 20621}, {4579, 26932}, {7426, 26262}, {7493, 9058}, {7495, 26227}, {16020, 17566}, {16048, 26364}, {17004, 26274}
X(26232) lies on these lines: {2, 31}, {22, 23380}, {48, 21278}, {82, 25505}, {100, 312}, {105, 26238}, {183, 18613}, {251, 18093}, {313, 1631}, {560, 21238}, {561, 789}, {675, 9067}, {1078, 23407}, {1150, 3966}, {2177, 27804}, {3416, 19561}, {3570, 3681}, {3757, 26281}, {3765, 17798}, {3891, 4396}, {3920, 16997}, {4112, 8626}, {4239, 26227}, {7081, 17860}, {8709, 9073}, {9059, 9093}, {10327, 26258}, {17001, 17018}, {20305, 21275}, {20544, 24587}, {20930, 26229}, {26233, 26236}, {26242, 26270}
X(26233) lies on these lines: {2, 32}, {3, 3266}, {22, 1975}, {23, 76}, {25, 1235}, {39, 15822}, {69, 110}, {98, 9066}, {99, 5987}, {111, 2998}, {183, 1995}, {305, 6636}, {311, 26284}, {316, 5169}, {325, 7495}, {385, 9465}, {468, 7767}, {599, 9516}, {689, 1502}, {733, 9102}, {858, 7750}, {1180, 7839}, {1194, 7805}, {1495, 14994}, {2770, 9150}, {3098, 4576}, {3124, 8177}, {3291, 7780}, {4048, 8627}, {4232, 15589}, {5189, 7802}, {5354, 6179}, {5971, 7496}, {5986, 20023}, {6655, 19577}, {7426, 16335}, {7467, 14880}, {7519, 11185}, {7824, 15302}, {7840, 9829}, {7845, 10163}, {8667, 19221}, {8891, 16932}, {10989, 11057}, {12215, 15080}, {14907, 16063}, {15107, 18906}, {15574, 26283}, {26232, 26236}
X(26234) lies on these lines: {1, 20911}, {2, 37}, {7, 4388}, {10, 4986}, {21, 99}, {22, 1602}, {38, 3778}, {65, 17152}, {69, 3873}, {72, 17141}, {76, 4968}, {85, 3598}, {86, 7191}, {141, 3726}, {142, 4071}, {183, 3262}, {239, 5276}, {304, 3616}, {322, 15589}, {354, 16739}, {551, 14210}, {612, 3875}, {614, 10436}, {672, 24631}, {675, 9070}, {742, 24512}, {870, 16998}, {942, 17137}, {1125, 1930}, {1228, 4205}, {1269, 8024}, {1290, 2862}, {1402, 1441}, {1909, 5484}, {1962, 18697}, {3230, 24254}, {3264, 26235}, {3622, 18156}, {3663, 4425}, {3670, 24166}, {3673, 13725}, {3701, 18140}, {3877, 24282}, {3896, 3920}, {3953, 16887}, {4021, 4970}, {4223, 16817}, {4361, 5275}, {4385, 18135}, {4514, 20553}, {4692, 6381}, {4696, 6376}, {4981, 5224}, {5268, 17151}, {5272, 25590}, {5297, 17160}, {7081, 20895}, {7264, 20888}, {7763, 25581}, {8682, 16971}, {9310, 16822}, {9318, 27916}, {16583, 26965}, {16600, 16818}, {16601, 27109}, {16604, 16720}, {16830, 17143}, {17007, 17275}, {17023, 21840}, {17024, 17394}, {17140, 20347}, {17754, 24629}, {20271, 26562}, {20955, 25303}, {21443, 23689}, {22232, 27846}, {25261, 26770}, {25263, 27148}, {26244, 26273}
X(26235) lies on these lines: {2, 39}, {23, 1078}, {69, 5640}, {75, 24988}, {83, 5354}, {98, 9069}, {99, 7496}, {111, 308}, {141, 3124}, {183, 1995}, {264, 4232}, {311, 7495}, {316, 7533}, {338, 11168}, {350, 5297}, {373, 14994}, {468, 1235}, {524, 13410}, {850, 8371}, {1236, 9176}, {1239, 8770}, {1627, 16950}, {1799, 13595}, {1909, 7292}, {3231, 24256}, {3264, 26234}, {4576, 5650}, {5092, 10330}, {5741, 18052}, {7191, 25303}, {7492, 7771}, {7519, 14907}, {7998, 18906}, {9185, 14295}, {11185, 16063}, {15246, 16276}, {18067, 25960}, {21590, 27186}
X(26236) lies on these lines: {2, 41}, {22, 16681}, {75, 100}, {183, 26264}, {1233, 1626}, {3598, 26245}, {4228, 26238}, {4239, 26229}, {17002, 27624}, {20045, 20247}, {24596, 24789}, {26232, 26233}
X(26237) lies on these lines: {1, 2}, {22, 16681}, {71, 17142}, {76, 23407}, {99, 310}, {105, 26243}, {183, 18613}, {313, 16684}, {321, 8299}, {350, 1621}, {672, 17165}, {902, 24259}, {1009, 4968}, {1269, 8053}, {2223, 20913}, {2276, 3891}, {3219, 17794}, {3744, 21264}, {3747, 12263}, {3789, 5278}, {4115, 22013}, {4797, 24330}, {7453, 26261}, {7465, 19787}, {17002, 17127}, {26277, 27855}
X(26238) lies on these lines: {1, 2}, {105, 26232}, {183, 18043}, {675, 932}, {748, 17793}, {902, 24260}, {1447, 7243}, {2108, 17155}, {3941, 18143}, {4228, 26236}, {6327, 20335}, {7465, 19803}, {16684, 18044}, {17140, 17754}, {21264, 24552}, {26241, 26250}
X(26239) lies on these lines: {2, 44}, {105, 9089}, {183, 3262}, {659, 693}, {1447, 3263}, {4766, 25342}, {9093, 20568}, {26247, 26273}
X(26240) lies on these lines: {2, 45}, {56, 85}, {75, 4413}, {183, 3262}, {320, 4860}, {350, 5695}, {2726, 20569}, {3304, 20955}, {4361, 16997}, {5211, 17378}, {8649, 24262}, {9318, 24629}, {17274, 18201}, {20172, 27918}
X(26241) lies on these lines: {1, 19310}, {2, 11}, {3, 16823}, {8, 4223}, {10, 16048}, {22, 1602}, {25, 92}, {35, 19314}, {36, 19326}, {75, 1486}, {111, 9096}, {171, 614}, {183, 18613}, {274, 16876}, {333, 4228}, {379, 20556}, {385, 26274}, {404, 16020}, {612, 3750}, {675, 9086}, {894, 7083}, {927, 2862}, {940, 7191}, {958, 17522}, {999, 19322}, {1281, 20834}, {1311, 9057}, {1447, 1617}, {1958, 2293}, {1995, 26227}, {2175, 17049}, {2223, 11329}, {3290, 3744}, {3295, 16830}, {3303, 19318}, {3550, 5272}, {3684, 3870}, {3705, 25514}, {3746, 19316}, {3920, 5275}, {3996, 10327}, {4224, 5744}, {4239, 26228}, {4336, 17868}, {4339, 17518}, {4363, 16686}, {4436, 23855}, {4438, 25494}, {4459, 26659}, {5010, 19325}, {5015, 7535}, {5020, 7081}, {5205, 11284}, {5248, 19845}, {5276, 17018}, {6998, 10267}, {7295, 24325}, {7379, 11496}, {7385, 11500}, {7427, 22758}, {7453, 26243}, {7493, 26259}, {8193, 16817}, {8298, 17715}, {9059, 9095}, {9746, 15931}, {11248, 21554}, {12329, 17277}, {12410, 16824}, {16608, 21280}, {17000, 20992}, {17792, 26657}, {23865, 26277}, {24199, 24309}, {24320, 24349}, {25279, 25878}, {26229, 26246}, {26238, 26250}
X(26242) lies on these lines: {1, 41}, {2, 37}, {6, 3726}, {8, 16583}, {9, 38}, {22, 2178}, {31, 3509}, {39, 16614}, {43, 3930}, {45, 7292}, {58, 17736}, {63, 16970}, {81, 16972}, {111, 9070}, {172, 16974}, {183, 26247}, {213, 3868}, {238, 5282}, {241, 3598}, {244, 17754}, {304, 17489}, {319, 17007}, {335, 24514}, {386, 3970}, {451, 17916}, {595, 1759}, {612, 1962}, {644, 9620}, {672, 982}, {675, 9072}, {743, 9068}, {910, 3744}, {941, 6601}, {966, 4981}, {986, 1334}, {1100, 17024}, {1108, 5304}, {1194, 17053}, {1196, 21827}, {1201, 3061}, {1475, 3976}, {1627, 5301}, {1766, 19649}, {1841, 6995}, {2176, 3721}, {2238, 3681}, {2243, 21793}, {2275, 26690}, {2295, 20271}, {2298, 4224}, {2303, 4228}, {2329, 3924}, {2975, 16968}, {3116, 24513}, {3208, 4642}, {3230, 3735}, {3496, 3915}, {3501, 24443}, {3617, 16605}, {3670, 3730}, {3673, 26978}, {3679, 16611}, {3684, 3938}, {3705, 21796}, {3727, 3890}, {3731, 5272}, {3782, 17747}, {3876, 3954}, {3889, 20963}, {3896, 10327}, {3920, 5275}, {3950, 4970}, {3953, 4253}, {3959, 14923}, {3997, 5902}, {4071, 25957}, {4385, 27040}, {4868, 9331}, {4911, 26099}, {5015, 26085}, {5089, 6353}, {5262, 16048}, {5266, 17562}, {5268, 16673}, {5279, 25494}, {5283, 16823}, {5297, 16672}, {5749, 20227}, {5839, 19993}, {6998, 25090}, {7426, 16307}, {7735, 8609}, {8607, 22240}, {8610, 9465}, {9347, 20998}, {11115, 16716}, {14482, 16020}, {16549, 24046}, {17355, 24165}, {17750, 21802}, {18600, 25237}, {20875, 20990}, {20911, 27248}, {21073, 23537}, {21281, 26562}, {21813, 27184}, {22021, 22196}, {26227, 26244}, {26229, 26273}, {26232, 26270}, {26252, 26260}
X(26242) = complement of X(31130)
X(26242) = anticomplement of X(30748)
X(26243) lies on these lines: {2, 6}, {8, 6998}, {21, 3948}, {35, 4044}, {76, 21511}, {92, 4231}, {98, 100}, {105, 26237}, {111, 9067}, {187, 16046}, {226, 4987}, {274, 25946}, {329, 7413}, {980, 7751}, {1078, 21495}, {1230, 27174}, {1444, 3770}, {1447, 4359}, {1959, 17739}, {1975, 21508}, {2857, 9090}, {2975, 3765}, {3666, 4396}, {4239, 26227}, {4683, 5988}, {5249, 24602}, {5277, 26643}, {5337, 7780}, {7438, 26268}, {7449, 26264}, {7453, 26241}, {9070, 9093}, {11349, 20913}, {16050, 27040}, {16609, 25998}, {19649, 22712}, {26252, 26258}
X(26244) lies on these lines: {2, 6}, {8, 21965}, {9, 1755}, {10, 98}, {21, 27040}, {32, 13740}, {37, 893}, {76, 16060}, {99, 21937}, {111, 9059}, {115, 17677}, {172, 1220}, {187, 4234}, {198, 1376}, {232, 2322}, {257, 27954}, {281, 4231}, {339, 22366}, {404, 26035}, {612, 3725}, {673, 21264}, {846, 3985}, {904, 27880}, {958, 20471}, {1010, 5277}, {1043, 18755}, {1078, 16061}, {1215, 3509}, {1222, 17962}, {1384, 11354}, {1434, 4754}, {1447, 3739}, {1975, 22267}, {2247, 25607}, {2271, 10449}, {2476, 26085}, {2759, 9136}, {3053, 4195}, {3207, 5793}, {3290, 3757}, {3684, 3741}, {3686, 24239}, {3705, 17275}, {3767, 16062}, {3769, 16972}, {3840, 16503}, {3934, 17681}, {4201, 5254}, {4239, 26258}, {4386, 5263}, {4643, 7179}, {4972, 17737}, {5283, 19270}, {5299, 19864}, {5750, 17122}, {5976, 6626}, {5980, 21898}, {5981, 21869}, {5988, 24697}, {5989, 9509}, {6175, 26079}, {7172, 17314}, {7380, 9753}, {7453, 15621}, {7793, 17688}, {10311, 11109}, {11110, 16589}, {11683, 27697}, {16605, 16824}, {16823, 17448}, {17206, 17499}, {17388, 20056}, {17763, 21840}, {19278, 27523}, {21554, 22712}, {26227, 26242}, {26234, 26273}, {26250, 26251}
X(26245) lies on these lines: {1, 2}, {69, 17724}, {105, 9104}, {144, 17002}, {675, 1293}, {902, 24280}, {3210, 5281}, {3475, 3769}, {3598, 26236}, {7426, 16304}, {7465, 19789}, {7474, 16704}, {10565, 20222}
X(26246) lies on these lines: {1, 2}, {105, 9057}, {675, 934}, {902, 24283}, {3693, 3891}, {4184, 16750}, {7465, 19790}, {10025, 17127}, {26229, 26241}
X(26247) lies on these lines: {1, 2}, {9, 17002}, {37, 4396}, {183, 26242}, {335, 675}, {902, 17738}, {1447, 4552}, {4434, 24602}, {4766, 17719}, {4968, 16061}, {5266, 17686}, {6590, 11068}, {7465, 19791}, {7754, 25082}, {9347, 20131}, {26229, 26274}, {26239, 26273}
X(26248) lies on these lines: {2, 661}, {22, 23864}, {523, 21205}, {649, 4486}, {650, 16757}, {659, 693}, {675, 2752}, {798, 8060}, {850, 14296}, {1311, 2856}, {1447, 4077}, {3716, 20295}, {3733, 18160}, {4122, 4467}, {4761, 16830}, {4897, 18004}, {4913, 17161}, {5224, 9013}, {6133, 20906}, {8062, 17217}, {18155, 18158}, {27193, 27294}
X(26249) lies on these lines: {2, 667}, {23, 5990}, {25, 17924}, {81, 9010}, {105, 9081}, {513, 5040}, {612, 4063}, {649, 24462}, {650, 18108}, {669, 804}, {675, 9073}, {693, 21005}, {901, 1633}, {2517, 4057}, {3309, 4220}, {3835, 8635}, {3920, 4083}, {4782, 5297}, {5996, 8639}, {8642, 26146}, {8646, 20295}, {8654, 25537}, {9082, 9111}
X(26250) lies on these lines: {2, 31}, {100, 350}, {183, 3262}, {321, 1376}, {334, 9075}, {901, 1311}, {1155, 20716}, {1281, 5205}, {1429, 20352}, {1631, 18044}, {2517, 4057}, {3006, 5137}, {3240, 17001}, {4495, 4613}, {5297, 16999}, {7081, 20237}, {8626, 24294}, {9059, 9081}, {10130, 26230}, {26238, 26241}, {26244, 26251}, {26264, 26271}
X(26251) lies on these lines: {1, 2}, {100, 9077}, {675, 1268}, {902, 24295}, {1213, 3124}, {1215, 17184}, {1995, 23854}, {2243, 17369}, {3264, 26234}, {3699, 17307}, {3701, 13728}, {3739, 24988}, {3775, 21805}, {3844, 3936}, {3952, 4357}, {4026, 4358}, {4239, 26262}, {4427, 17355}, {4689, 17359}, {4756, 17258}, {4970, 6535}, {7465, 19808}, {7485, 23361}, {8229, 9956}, {9330, 17248}, {9347, 17381}, {17126, 17368}, {17357, 24542}, {24695, 26034}, {25001, 25882}, {26244, 26250}
X(26252) lies on these lines: {2, 3}, {101, 306}, {111, 1305}, {1297, 9057}, {3430, 26006}, {26242, 26260}, {26243, 26258}
X(26253) lies on these lines: {2, 3}, {100, 2373}, {111, 13397}, {1297, 9058}, {3101, 5297}, {9070, 26703}, {26227, 26260}, {26265, 26266}
X(26254) lies on these lines: {2, 3}, {109, 307}, {1297, 9056}
X(26255) lies on these lines: {2, 3}, {6, 20192}, {69, 10546}, {110, 1992}, {111, 1302}, {476, 10102}, {597, 3066}, {1007, 7664}, {1285, 1383}, {1384, 16317}, {1495, 11179}, {2373, 9064}, {2393, 5640}, {2770, 9060}, {3580, 11180}, {3618, 10545}, {5642, 20423}, {7665, 7774}, {7737, 10418}, {8263, 11160}, {8585, 21843}, {8644, 21732}, {9058, 9061}, {9143, 20772}, {11002, 14984}, {11693, 13352}, {16279, 16319}, {18928, 26881}
X(26255) = anticomplement of X(32216)
X(26256) lies on these lines: {2, 3}, {7735, 8609}, {26230, 26267}
X(26257) lies on these lines: {2, 3}, {111, 308}, {115, 11056}, {141, 7665}, {305, 7781}, {385, 9465}, {574, 11059}, {1078, 3291}, {1194, 7760}, {1196, 1799}, {2373, 9229}, {3266, 7783}, {3329, 26276}, {5254, 19577}, {7664, 7931}, {7831, 10418}, {7842, 15820}, {7898, 9745}, {10163, 14061}, {24726, 25344}
X(26258) lies on these lines: {2, 7}, {8, 101}, {41, 12649}, {169, 10527}, {388, 27068}, {631, 25082}, {644, 5657}, {910, 3434}, {1055, 24247}, {1759, 11415}, {2082, 10529}, {2329, 5554}, {2975, 6554}, {3554, 5304}, {3872, 8074}, {4232, 8756}, {4239, 26244}, {4302, 21090}, {4936, 9588}, {5227, 27522}, {5552, 17742}, {5819, 11680}, {6910, 16601}, {6921, 25066}, {7195, 27006}, {7288, 26690}, {7735, 8609}, {10327, 26232}, {17001, 17316}, {17744, 26364}, {26243, 26252}
X(26259) lies on these lines: {2, 12}, {140, 5205}, {468, 16823}, {993, 16067}, {3757, 6676}, {7081, 7499}, {7426, 26261}, {7493, 26241}, {7495, 26227}, {26230, 26268}
X(26260) lies on these lines: {2, 19}, {22, 1602}, {25, 1441}, {105, 1305}, {183, 26268}, {304, 1310}, {347, 1447}, {1231, 3556}, {1370, 20291}, {1973, 26203}, {2373, 9070}, {3007, 7493}, {6360, 26274}, {7520, 16823}, {8193, 20235}, {9086, 26703}, {26227, 26253}, {26242, 26252}
X(26261) lies on these lines: {2, 35}, {23, 16823}, {100, 17263}, {105, 4239}, {678, 5297}, {931, 9094}, {1302, 1311}, {1995, 26227}, {3006, 4223}, {3757, 13595}, {4359, 20988}, {5205, 16042}, {7295, 26627}, {7426, 26259}, {7453, 26237}, {20872, 24589}
X(26262) lies on these lines: {2, 36}, {23, 5205}, {100, 17264}, {1995, 26227}, {2517, 4057}, {2726, 9059}, {2752, 9070}, {4239, 26251}, {4358, 20989}, {5329, 26688}, {7081, 13595}, {7426, 26231}, {7449, 26266}, {16042, 16823}, {20875, 23386}
X(26263) lies on these lines: {2, 38}, {75, 26229}, {518, 5741}, {1311, 26711}, {3112, 9073}, {4239, 26227}, {5258, 16823}, {7081, 20237}
X(26264) lies on these lines: {2, 12}, {3, 5205}, {22, 1603}, {25, 318}, {45, 2243}, {63, 9364}, {100, 198}, {105, 9104}, {183, 26236}, {197, 312}, {612, 5250}, {1089, 19845}, {1311, 9059}, {1460, 27064}, {1698, 19844}, {1995, 26227}, {2223, 11345}, {3011, 16048}, {3596, 8707}, {3699, 12329}, {3701, 11337}, {3757, 5020}, {3890, 3920}, {4220, 26935}, {4239, 26244}, {4434, 7295}, {5121, 8666}, {5211, 12513}, {7085, 27538}, {7449, 26243}, {7493, 9058}, {11284, 16823}, {26250, 26271}
X(26265) lies on these lines: {2, 7}, {77, 20248}, {100, 312}, {198, 1229}, {220, 24633}, {1055, 24266}, {1696, 24547}, {1995, 26227}, {2324, 21273}, {5227, 27108}, {6078, 9073}, {9057, 26703}, {9095, 9104}, {9310, 26621}, {11683, 26669}, {16609, 26653}, {17134, 20927}, {20244, 24590}, {20262, 21286}, {26253, 26266}
X(26266) lies on these lines: {2, 58}, {98, 9059}, {100, 4043}, {183, 1995}, {199, 1230}, {313, 835}, {1311, 9070}, {2373, 9057}, {3006, 6998}, {4239, 26227}, {7449, 26262}, {7453, 26237}, {26244, 26250}, {26253, 26265}
X(26267) lies on these lines: {2, 7}, {92, 108}, {100, 20173}, {105, 9057}, {198, 17863}, {321, 1376}, {612, 9746}, {614, 8054}, {919, 6654}, {1055, 24268}, {1696, 25001}, {1999, 17001}, {2178, 17134}, {3086, 5813}, {3187, 3684}, {3550, 24428}, {3673, 11349}, {3742, 19684}, {4232, 23710}, {4239, 26227}, {4414, 4656}, {5227, 27039}, {5739, 24477}, {7191, 20277}, {8557, 14543}, {9310, 16609}, {14557, 17626}, {16412, 20880}, {21270, 24005}, {26230, 26256}, {26242, 26252}
X(26268) lies on these lines: {2, 65}, {100, 1229}, {183, 26260}, {314, 931}, {1302, 26703}, {1311, 9070}, {1995, 26227}, {3757, 4223}, {4385, 19256}, {4968, 19245}, {7081, 23528}, {7438, 26243}, {7735, 8609}, {11688, 17862}, {26230, 26259}
X(26269) lies on these lines: {2, 66}, {98, 7505}, {232, 800}, {315, 827}, {1995, 7792}, {3090, 7852}, {3518, 9753}, {7556, 12253}
X(26270) lies on these lines: {2, 82}, {251, 18082}, {321, 16277}, {831, 1930}, {1402, 1441}, {9070, 9076}, {10130, 26230}, {26232, 26242}
X(26271) lies on these lines: {2, 87}, {183, 18043}, {932, 6376}, {9059, 9082}, {26227, 26274}, {26250, 26264}
X(26272) lies on these lines: {2, 45}, {100, 2726}, {105, 9059}, {5260, 9369}, {8649, 24277}
X(26273) lies on these lines: {1, 24685}, {2, 45}, {19, 28023}, {100, 24403}, {101, 21208}, {105, 659}, {106, 514}, {111, 675}, {183, 26274}, {241, 292}, {244, 9318}, {335, 27912}, {385, 3226}, {524, 5211}, {527, 5121}, {536, 5205}, {544, 6788}, {614, 3248}, {664, 9259}, {673, 27918}, {743, 9073}, {1015, 3732}, {1054, 24398}, {1647, 24712}, {3125, 24203}, {3699, 9055}, {3756, 5845}, {4000, 26007}, {4360, 16997}, {4644, 4860}, {5272, 9359}, {5275, 16518}, {5304, 23972}, {8649, 24281}, {9083, 9109}, {9094, 9110}, {9095, 9097}, {17063, 24333}, {17321, 26629}, {17719, 25342}, {24358, 25531}, {24841, 27921}, {26229, 26242}, {26234, 26244}, {26239, 26247}
X(26274) lies on these lines: {1, 21216}, {2, 37}, {38, 17257}, {69, 3726}, {105, 330}, {183, 26273}, {193, 3873}, {194, 16823}, {385, 26241}, {612, 17319}, {614, 894}, {3230, 24282}, {3241, 17497}, {3616, 17489}, {3729, 4011}, {3730, 24166}, {4223, 19851}, {4360, 5275}, {4393, 5276}, {4970, 5268}, {5211, 7774}, {5550, 25263}, {6360, 26260}, {7191, 17379}, {16020, 25242}, {17001, 20045}, {17004, 26231}, {17480, 21226}, {17760, 21214}, {20271, 21281}, {21840, 26626}, {24349, 24514}, {26227, 26271}, {26228, 26281}, {26229, 26247}
X(26275) lies on these lines: {2, 900}, {105, 659}, {351, 523}, {513, 1638}, {522, 4763}, {551, 23888}, {665, 3290}, {918, 4448}, {1960, 10015}, {2786, 3716}, {2804, 11124}, {2826, 14419}, {3004, 26277}, {3776, 8689}, {4435, 5275}, {4555, 9089}, {6050, 21185}, {6366, 25569}, {6550, 14422}, {8638, 20875}, {11712, 24685}
X(26276) lies on these lines: {2, 187}, {23, 99}, {25, 8024}, {32, 16055}, {69, 10546}, {76, 14002}, {98, 9080}, {111, 385}, {126, 6781}, {183, 1995}, {325, 3233}, {328, 476}, {340, 4232}, {511, 5468}, {524, 2502}, {669, 804}, {754, 10418}, {1007, 7493}, {1078, 16042}, {1236, 13595}, {1302, 2857}, {2374, 2858}, {3329, 26257}, {3793, 16317}, {5104, 5108}, {5914, 22329}, {6082, 9084}, {6325, 18023}, {7492, 11059}, {7533, 11056}, {7665, 7779}, {7766, 9465}, {9146, 15107}, {9775, 11676}, {9855, 10717}, {10754, 13192}
X(26276) = isotomic conjugate of the isogonal conjugate of X(32217)
X(26277) lies on these lines: {2, 649}, {23, 5991}, {86, 9002}, {105, 9073}, {514, 5029}, {659, 693}, {661, 4817}, {667, 3766}, {669, 804}, {675, 2726}, {927, 9057}, {1311, 2862}, {1443, 1447}, {1978, 8709}, {3004, 26275}, {3261, 4057}, {4025, 13246}, {4106, 4782}, {4406, 4491}, {4885, 24623}, {6586, 10566}, {6590, 11068}, {9059, 9089}, {17072, 21303}, {20316, 21304}, {23865, 26241}, {26237, 27855}
X(26278) lies on these lines: {2, 668}, {98, 9079}, {105, 111}, {106, 14438}, {385, 17961}, {513, 739}, {675, 743}, {1180, 13006}, {1415, 1627}, {5304, 23980}, {9082, 9111}, {9465, 26228}
X(26279) lies on these lines: {1, 17001}, {2, 7}, {105, 9096}, {183, 26242}, {257, 1311}, {385, 7191}, {614, 17002}, {1055, 24291}, {1201, 17739}, {2975, 25994}, {3705, 17007}, {3920, 16997}, {5297, 16999}, {7292, 16998}, {11285, 25082}, {26227, 26271}, {26234, 26244}, {26561, 27068}, {26959, 27010}, {26971, 26977}
X(26280) lies on these lines: {2, 896}, {659, 693}, {1281, 5205}, {1290, 1311}, {3248, 7292}, {4239, 26227}, {5563, 16823}
X(26281) lies on these lines: {2, 38}, {105, 9068}, {183, 3262}, {675, 9071}, {870, 9073}, {3757, 26232}, {3873, 4417}, {4359, 4413}, {8610, 9465}, {8666, 16823}, {26228, 26274}
X(26282) lies on these lines: {2, 6}, {31, 908}, {105, 1995}, {187, 24296}, {609, 24630}, {985, 17719}, {1447, 4850}, {1914, 17720}, {2298, 27254}, {3972, 11352}, {5988, 24725}, {6998, 19767}, {8229, 9753}, {16020, 19316}, {16412, 16752}
X(26283) lies on these lines: {2, 3}, {74, 19376}, {110, 159}, {111, 13398}, {161, 394}, {925, 2373}, {1351, 15135}, {1993, 15073}, {2697, 16167}, {3100, 10833}, {4296, 18954}, {5640, 19121}, {9464, 22241}, {9465, 10313}, {9914, 12279}, {9919, 11820}, {9937, 11412}, {10316, 14580}, {11064, 15577}, {11416, 11422}, {11750, 19908}, {12289, 12301}, {12310, 15106}, {15574, 26233}, {19377, 19381}
X(26284) lies on these lines: {2, 3}, {110, 20987}, {161, 3060}, {311, 26233}, {1176, 5640}, {1288, 2373}, {19153, 27085}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28557.
X(26285) lies on these lines: {1,3}, {2,10525}, {5,3035}, {8,6950}, {10,6914}, {12,24466}, {20,10526}, {21,25005}, {24,1872}, {30,6796}, {78,5694}, {100,355}, {104,3871}, {140,3816}, {404,5886}, {405,11231}, {474,11230}, {496,6713}, {497,6961}, {498,6923}, {511,5495}, {528,10943}, {549,10199}, {550,5841}, {601,5396}, {603,5399}, {946,6924}, {952,5450}, {962,6942}, {993,5690}, {1012,11499}, {1030,1766}, {1158,2771}, {1376,3560}, {1479,6958}, {1483,25439}, {1490,12660}, {1538,3149}, {1621,6940}, {1698,7489}, {1837,10058}, {2550,6892}, {2829,10942}, {2932,4855}, {3085,6948}, {3189,5770}, {3434,6977}, {3474,5761}, {3526,5259}, {3583,6971}, {3651,5812}, {3654,17549}, {3656,13587}, {3811,12341}, {3885,12737}, {4188,5603}, {4189,5657}, {4276,15952}, {4294,6891}, {4302,6928}, {4421,12114}, {4640,14454}, {4848,17010}, {4996,14923}, {5218,6850}, {5225,6978}, {5250,19524}, {5267,11362}, {5310,16434}, {5432,6842}, {5440,5887}, {5552,6938}, {5587,13743}, {5687,22758}, {5691,18524}, {5777,11517}, {5844,8666}, {5881,12331}, {6265,17100}, {6284,6882}, {6831,18407}, {6847,18517}, {6876,9778}, {6905,12699}, {6909,11491}, {6911,9955}, {6921,10531}, {6952,13199}, {6966,12116}, {6972,20066}, {7491,15338}, {7701,13146}, {7741,10738}, {8553,21853}, {9817,13222}, {10090,11376}, {10785,20075}, {11929,12943}, {12528,12738}, {12611,12775}, {12645,18515}, {14988,22836}, {15171,15845}, {17662,18976}, {19525,19860}
Let A'B'C' be the medial triangle. Let LA be the reflection of line B'C' in the internal angle bisector of A, and define LB and LC cyclically. Let A" = LB∩LC, B" = LC∩LA, C" = LA∩LB. A"B"C" is the mid-triangle of the intangents and tangential triangles. A"B"C" is homothetic to the intangents, extangents, and tangential triangles at X(55), and to the Kosnita triangle at X(26285). (Randy Hutson, June 7, 2019)
X(26285) = midpoint of X(i) and X(j) for these {i,j}: {3,11248}, {3811,24467}, {5450,8715}
X(26285 ) = reflection of X(1482) in X(11567)
X(26285) = complement of X(10525)
X(26285) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {1,40,25413}, {3,55,1385}, {3,56,23961}, {3,1482,36}, {3,3295,10269}, {3,10267,13624}, {3,10306,11249}, {3,10310,3579}, {3,10679,56}, {3,10680,5204}, {3,11508,18857}, {3,11849,1}, {3,12702,11012}, {3,22765,7280}, {35,2077,3}, {40,5010,3}, {55,8071,9957}, {56,10679,10222}, {100,6906,355}, {1012,11499,18480}, {1376,3560,9956}, {1385,10222,25405}, {1385,10284,1}, {1470,11508,24928}, {3295,10269,15178}, {5217,10310,3}, {5432,11826,6842}, {5537,11012,12702}, {6909,11491,18481}, {6911,11496,9955}, {7280,7982,22765}, {8069,11509,942}, {10222,23961,56}, {11248,11249,10306}
X(26285) = X(10224)-of-excentral-triangle
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28557.
X(26286) lies on these lines: {1,3}, {2,10526}, {5,993}, {8,6942}, {10,6924}, {11,7491}, {20,10525}, {21,5886}, {30,3829}, {48,5755}, {63,5694}, {78,22935}, {84,6597}, {104,411}, {140,25466}, {355,2975}, {378,1872}, {382,18515}, {388,6954}, {405,11230}, {474,11231}, {495,15865}, {499,6928}, {529,10942}, {548,12511}, {549,10197}, {550,1484}, {573,7113}, {946,5267}, {952,6796}, {956,11499}, {958,6911}, {962,6950}, {1006,5253}, {1012,22793}, {1193,5398}, {1437,3417}, {1468,5396}, {1478,6863}, {1656,5251}, {1699,13743}, {1766,5124}, {2551,6970}, {2771,6261}, {2818,10282}, {2915,8279}, {3086,6868}, {3149,18480}, {3218,21740}, {3436,6880}, {3560,9955}, {3583,15446}, {3585,6980}, {3616,6875}, {3632,12331}, {3653,21161}, {3654,13587}, {3656,17549}, {3869,4996}, {3916,5887}, {4188,5657}, {4189,5603}, {4278,15952}, {4293,6825}, {4299,6923}, {4973,5884}, {5080,6949}, {5248,5901}, {5250,19525}, {5258,5790}, {5260,6946}, {5265,6987}, {5288,12645}, {5303,6906}, {5322,19544}, {5428,11281}, {5433,6882}, {5690,25440}, {5731,6876}, {5842,10943}, {5844,8715}, {5881,18524}, {6326,6763}, {6713,6922}, {6827,7288}, {6842,7354}, {6848,18516}, {6881,24953}, {6883,25524}, {6885,19843}, {6910,10532}, {6934,10527}, {6960,20067}, {6962,12115}, {6985,12114}, {7489,8227}, {10058,12701}, {10090,12619}, {10786,20076}, {10913,18763}, {11194,11500}, {11483,11512}, {11928,12953}, {12053,17010}, {12515,18861}, {12556,12913}, {15326,15908}, {15844,18990}, {15888,21155}, {17734,19550}, {18761,19541}, {19524,19860}, {19861,21165}
X(26286) = midpoint of X(i) and X(j) for these {i,j}: {3,11249}, {20,10525}, {6261,24467}, {6796,8666}, {6985,12114}, {11248,22770}
X(26286) = complement of X(10526)
X(26286) = X(13406)-of-excentral-triangle
X(26286) = 2nd-isogonal-triangle-of-X(1)-to-ABC similarity image of X(3)
X(26286) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {3,56,1385}, {3,999,10267}, {3,1482,35}, {3,3428,3579}, {3,5204,23961}, {3,10246,10902}, {3,10269,13624}, {3,10679,5217}, {3,10680,55}, {3,11849,5010}, {3,12702,2077}, {3,22765,1}, {3,22770,11248}, {36,11012,3}, {40,7280,3}, {55,10680,10222}, {56,5204,7742}, {56,7742,5126}, {56,8071,942}, {104,411,18481}, {484,11014,25413}, {946,5267,6914}, {958,6911,9956}, {999,10267,15178}, {2975,6905,355}, {3149,22758,18480}, {3428,5204,3}, {3560,22753,9955}, {3579,23961,3}, {5010,7982,11849}, {5433,11827,6882}, {5563,10902,10246}, {5901,7508,5248}, {8069,10966,9957}, {11248,11249,22770}, {13373,13624,1385}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28557.
X(26287) lies on these lines: {1,3}, {5,214}, {355,6224}, {631,2320}, {944,6972}, {1389,13587}, {1483,11715}, {2475,5886}, {2476,11230}, {2771,5450}, {3616,6951}, {3871,12737}, {4511,5694}, {5443,12119}, {5693,18515}, {5731,6903}, {5840,5901}, {6261,12524}, {6265,6906}, {6830,18480}, {6840,18481}, {10950,12619}, {11231,25005}, {18357,20400}
X(26287) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {1,35,25414}, {1,11849,10284}, {3,1482,484}, {3,5903,10225}, {1385,10222,1319}, {1385,24929,15178}, {6224,6952,355}, {10222,10225,5903}, {13624,15178,9940}
See Tran Quang Hung, Antreas Hatzipolakis and Peter Moses, Hyacinthos 28564.
X(26288) lies on these lines: {2,372}, {3,5861}, {4,591}, {30,1160}, {148,22601}, {193,9541}, {194,13678}, {371,13712}, {376,524}, {490,1588}, {492,23249}, {754,8982}, {1270,6560}, {1271,6396}, {1991,3524}, {3593,6564}, {3594,7375}, {5591,6398}, {5871,9733}, {6231,9880}, {9770,13674}, {10783,12305}, {23269,23311}
X(26288) = reflection of X(i) in X(j) for these {i,j}: {4, 591}, {5861, 3}
See Tran Quang Hung, Antreas Hatzipolakis and Peter Moses, Hyacinthos 28564.
X(26289) lies on these lines: {2,371}, {3,5860}, {4,1991}, {30,1161}, {69,9541}, {148,22630}, {194,13798}, {372,13835}, {376,524}, {489,1587}, {591,3524}, {1270,6200}, {1271,6561}, {3592,7376}, {3595,6565}, {5590,6221}, {5870,9732}, {6230,9880}, {9770,13794}, {10784,12306}, {23275,23312}
X(26289) = reflection of X(i) in X(j) for these {i,j}: {4, 1991}, {5860, 3}
Endo-homothetic centers: X(26290)-X(26525)
This preamble and centers X(26290)-X(26525) were contributed by César Eliud Lozada, October 31, 2018.
This section comprises the endo-homothetic centers of the family of triangles homothetic with the reference triangle ABC. This family is composed by the following 40 triangles:
ABC, ABC-X3 reflections, anti-Aquila, anti-Ara, 5th anti-Brocard, 2nd anti-circumperp-tangential, anti-Euler, anti-inner-Grebe, anti-outer-Grebe, anti-Mandart-incircle, anticomplementary, Aquila, Ara, 1st Auriga, 2nd Auriga, 5th Brocard, 2nd circumperp tangential, Ehrmann-mid, Euler, outer-Garcia, Gossard, inner-Grebe, outer-Grebe, Johnson, inner-Johnson, outer-Johnson, 1st Johnson-Yff, 2nd Johnson-Yff, Lucas homothetic, Lucas(-1) homothetic, Mandart-incircle, medial, 5th mixtilinear, 3rd tri-squares-central, 4th tri-squares-central, X3-ABC reflections, inner-Yff, outer-Yff, inner-Yff tangents, outer-Yff tangents.
For definitions and coordinates of these triangles, see the index of triangles referenced in ETC.
X(26290) lies on these lines: {1,3}, {2,26326}, {4,26359}, {20,26394}, {30,26383}, {182,26379}, {371,26385}, {372,26384}, {376,26381}, {515,26382}, {1593,26371}, {1657,18496}, {3098,26310}, {6284,26387}, {7354,26388}, {11414,26302}, {11825,26344}, {11826,26390}, {11827,26389}, {15908,26413}, {26292,26391}, {26293,26392}, {26294,26396}, {26295,26397}
X(26290) = reflection of X(11822) in X(3)
X(26290) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3428, 26291), (999, 14110, 26291)
X(26291) lies on these lines: {1,3}, {2,26327}, {4,26360}, {20,26418}, {30,26407}, {182,26403}, {371,26409}, {372,26408}, {376,26405}, {515,26406}, {1593,26372}, {1657,18498}, {3098,26311}, {6284,26411}, {7354,26412}, {11414,26303}, {11824,26335}, {11825,26345}, {11826,26414}, {11827,26413}, {15908,26389}, {26292,26415}, {26293,26416}, {26294,26420}, {26295,26421}
X(26291) = reflection of X(11823) in X(3)
X(26291) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3428, 26290), (999, 14110, 26290)
X(26292) lies on these lines: {2,26328}, {3,493}, {4,488}, {6,13011}, {20,26494}, {30,26447}, {55,26433}, {56,26353}, {165,26298}, {182,26427}, {371,26460}, {372,26454}, {376,26439}, {515,26442}, {517,26495}, {1160,12164}, {1306,11412}, {1593,26373}, {1657,18521}, {2077,26500}, {3098,26312}, {3428,26322}, {3576,26367}, {6284,26471}, {6464,26293}, {7354,26477}, {8950,13023}, {10310,26493}, {11012,26499}, {11249,26501}, {11414,26304}, {11824,26337}, {11825,26347}, {11826,26488}, {11827,26483}, {12305,13021}, {19443,19497}, {26290,26391}, {26291,26415}, {26294,26496}, {26295,26497}
X(26292) = reflection of X(11828) in X(3)
X(26292) = {X(3), X(11949)}-harmonic conjugate of X(11198)
X(26293) lies on these lines: {2,26329}, {3,494}, {4,487}, {6,13012}, {20,26503}, {30,26448}, {55,26434}, {56,26354}, {165,26299}, {182,26428}, {371,26461}, {372,26455}, {376,26440}, {515,26443}, {517,26504}, {1161,12164}, {1307,11412}, {1593,26374}, {1657,18523}, {2077,26509}, {3098,26313}, {3428,26323}, {3576,26368}, {6284,26472}, {6464,26292}, {7354,26478}, {10310,26502}, {11012,26508}, {11248,26511}, {11249,26510}, {11414,26305}, {11825,26338}, {11826,26489}, {11827,26484}, {12306,13022}, {19442,19496}, {26290,26392}, {26291,26416}, {26294,26505}, {26295,26506}
X(26293) = reflection of X(11829) in X(3)
X(26294) lies on these lines: {2,26330}, {3,1587}, {4,641}, {20,492}, {30,26449}, {55,26435}, {56,26355}, {165,26300}, {182,26429}, {193,1350}, {230,6410}, {371,26462}, {372,26456}, {376,5860}, {490,6337}, {515,26444}, {517,26514}, {1152,7738}, {1160,9541}, {1593,26375}, {1657,18539}, {2077,26518}, {3069,9739}, {3098,26314}, {3127,13019}, {3428,26324}, {3528,11824}, {3576,26369}, {3593,14233}, {6284,26473}, {6459,9733}, {7354,26479}, {10304,12306}, {10310,26512}, {11012,26517}, {11248,26520}, {11249,26519}, {11414,26306}, {11826,26490}, {11827,26485}, {12314,19053}, {13666,15682}, {26290,26396}, {26291,26420}, {26292,26496}, {26293,26505}
X(26294) = reflection of X(9540) in X(3)
X(26294) = {X(1350), X(3522)}-harmonic conjugate of X(26295)
X(26295) lies on these lines: {2,26331}, {3,1588}, {4,642}, {20,491}, {30,26450}, {55,26436}, {56,26356}, {165,26301}, {182,26430}, {193,1350}, {230,6409}, {371,26463}, {372,26457}, {376,5861}, {489,6337}, {515,26445}, {517,26515}, {1151,7738}, {1593,26376}, {1657,26438}, {2077,26523}, {3068,9738}, {3098,26315}, {3128,13020}, {3428,26325}, {3528,11825}, {3576,26370}, {3595,14230}, {6284,26474}, {6460,9732}, {7354,26480}, {10304,12305}, {10310,26513}, {11012,26522}, {11248,26525}, {11249,26524}, {11414,26307}, {11826,26491}, {11827,26486}, {12313,19054}, {13786,15682}, {26290,26397}, {26291,26421}, {26292,26497}, {26293,26506}
X(26295) = reflection of X(13935) in X(3)
X(26295) = {X(1350), X(3522)}-harmonic conjugate of X(26294)
X(26296) lies on these lines: {1,3}, {10,26394}, {515,26381}, {1698,26359}, {1699,26326}, {3099,26310}, {3679,26382}, {5587,26386}, {5588,26344}, {7713,26371}, {8185,26302}, {9578,26388}, {9581,26387}, {10789,26379}, {10826,26390}, {10827,26389}, {11852,26383}, {18480,18496}, {19003,26384}, {19004,26385}, {26298,26391}, {26299,26392}, {26300,26396}, {26301,26397}
X(26296) = reflection of X(1) in X(11366)
X(26296) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3338, 5902, 26297), (5597, 26395, 26365), (26365, 26395, 1)
X(26297) lies on these lines: {1,3}, {10,26418}, {515,26405}, {1698,26360}, {1699,26327}, {3099,26311}, {3679,26406}, {5587,26410}, {5588,26345}, {5589,26335}, {7713,26372}, {8185,26303}, {9578,26412}, {9581,26411}, {10789,26403}, {10826,26414}, {10827,26413}, {11852,26407}, {18480,18498}, {19003,26408}, {19004,26409}, {26298,26415}, {26299,26416}, {26300,26420}, {26301,26421}
X(26297) = reflection of X(1) in X(11367)
X(26297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 5119, 26296), (3338, 5902, 26296), (26366, 26419, 1)
X(26298) lies on these lines: {1,493}, {10,26494}, {35,26493}, {36,26322}, {165,26292}, {515,26439}, {1698,5490}, {1699,26328}, {3099,26312}, {3576,26498}, {3679,26442}, {5587,26466}, {5588,26347}, {5589,26337}, {6464,26299}, {7713,26373}, {8185,26304}, {9578,26477}, {9581,26471}, {10789,26427}, {10826,26488}, {10827,26483}, {11852,26447}, {18480,18521}, {19003,26454}, {19004,26460}, {26296,26391}, {26297,26415}, {26300,26496}, {26301,26497}
X(26298) = reflection of X(1) in X(11377)
X(26298) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (493, 26495, 26367), (26367, 26495, 1)
X(26299) lies on these lines: {1,494}, {10,26503}, {35,26502}, {36,26323}, {57,26434}, {165,26293}, {515,26440}, {1697,26354}, {1698,5491}, {1699,26329}, {3099,26313}, {3576,26507}, {3679,26443}, {5587,26467}, {5588,26338}, {6464,26298}, {7713,26374}, {8185,26305}, {9578,26478}, {9581,26472}, {10789,26428}, {10826,26489}, {10827,26484}, {11852,26448}, {18480,18523}, {19003,26455}, {19004,26461}, {26296,26392}, {26297,26416}, {26300,26505}, {26301,26506}
X(26299) = reflection of X(1) in X(11378)
X(26299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (494, 26504, 26368), (26368, 26504, 1)
X(26300) lies on these lines: {1,1336}, {4,9907}, {8,193}, {10,492}, {35,26512}, {36,26324}, {57,26435}, {165,26294}, {230,7968}, {515,26441}, {1697,26355}, {1698,26361}, {1699,26330}, {3099,26314}, {3576,26516}, {3632,5589}, {3679,5588}, {5587,26468}, {7713,26375}, {8185,26306}, {8960,12269}, {9578,26479}, {9581,26473}, {10789,26429}, {10826,26490}, {10827,26485}, {11852,26449}, {13386,24210}, {13679,15682}, {18480,18539}, {19004,26462}, {26296,26396}, {26297,26420}, {26298,26496}, {26299,26505}
X(26300) = reflection of X(1) in X(13883)
X(26300) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3068, 26514, 26369), (26369, 26514, 1)
X(26301) lies on these lines: {1,1123}, {4,9906}, {8,193}, {10,491}, {35,26513}, {36,26325}, {57,26436}, {165,26295}, {230,7969}, {515,8982}, {1697,26356}, {1698,26362}, {1699,26331}, {3099,26315}, {3576,26521}, {3632,5588}, {3679,5589}, {4028,13461}, {5587,26469}, {7713,26376}, {8185,26307}, {9578,26480}, {9581,26474}, {10789,26430}, {10826,26491}, {10827,26486}, {11852,26450}, {13387,24210}, {13799,15682}, {18480,26438}, {19003,26457}, {19004,26463}, {26296,26397}, {26297,26421}, {26298,26497}, {26299,26506}
X(26301) = reflection of X(1) in X(13936)
X(26301) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3069, 26515, 26370), (26370, 26515, 1)
X(26302) lies on these lines: {1,26303}, {3,18496}, {22,26394}, {24,26381}, {25,5597}, {197,26393}, {1598,26326}, {5594,26344}, {6642,26398}, {8185,26296}, {8192,26395}, {8193,26382}, {10790,26379}, {10828,26310}, {10829,26390}, {10830,26389}, {10831,26388}, {10832,26387}, {10833,26351}, {10834,26402}, {10835,26401}, {11365,26365}, {11414,26290}, {11853,26383}, {18954,26380}, {19005,26384}, {19006,26385}, {22654,26319}, {26304,26391}, {26305,26392}, {26306,26396}, {26307,26397}, {26308,26399}, {26309,26400}
X(26303) lies on these lines: {1,26302}, {3,18498}, {22,26418}, {24,26405}, {25,5598}, {197,26417}, {1598,26327}, {5594,26345}, {5595,26335}, {6642,26422}, {8185,26297}, {8192,26419}, {8193,26406}, {10790,26403}, {10828,26311}, {10829,26414}, {10830,26413}, {10831,26412}, {10832,26411}, {10833,26352}, {10834,26426}, {10835,26425}, {11365,26366}, {11414,26291}, {11853,26407}, {18954,26404}, {19005,26408}, {19006,26409}, {22654,26320}, {26304,26415}, {26305,26416}, {26306,26420}, {26307,26421}, {26308,26423}, {26309,26424}
X(26304) lies on these lines: {3,5490}, {22,26494}, {24,26439}, {25,371}, {197,26493}, {1598,26328}, {5594,26347}, {5595,26337}, {6289,19446}, {6464,26305}, {6642,26498}, {8185,26298}, {8192,26495}, {8193,26442}, {10790,26427}, {10828,26312}, {10829,26488}, {10830,26483}, {10831,26477}, {10832,26471}, {10833,26353}, {10835,26501}, {11365,26367}, {11414,26292}, {11853,26447}, {18954,26433}, {19005,26454}, {19006,26460}, {22654,26322}, {26302,26391}, {26303,26415}, {26306,26496}, {26307,26497}, {26308,26499}, {26309,26500}
X(26305) lies on these lines: {3,5491}, {22,26503}, {24,26440}, {25,372}, {197,26502}, {1598,26329}, {5594,26338}, {6290,19447}, {6464,26304}, {6642,26507}, {8185,26299}, {8192,26504}, {8193,26443}, {10790,26428}, {10828,26313}, {10829,26489}, {10830,26484}, {10831,26478}, {10832,26472}, {10833,26354}, {10834,26511}, {10835,26510}, {11365,26368}, {11414,26293}, {11853,26448}, {18954,26434}, {19005,26455}, {19006,26461}, {22654,26323}, {26302,26392}, {26303,26416}, {26306,26505}, {26307,26506}, {26308,26508}, {26309,26509}
X(26306) lies on these lines: {3,18539}, {4,9922}, {22,492}, {23,159}, {24,26441}, {25,3068}, {197,26512}, {1598,26330}, {5594,5860}, {5595,20850}, {6642,26516}, {8185,26300}, {8192,26514}, {8193,26444}, {10790,26429}, {10828,26314}, {10829,26490}, {10830,26485}, {10831,26479}, {10832,26473}, {10833,26355}, {10834,26520}, {10835,26519}, {11365,26369}, {11414,26294}, {11853,26449}, {13680,15682}, {18954,26435}, {19005,26456}, {19006,26462}, {22654,26324}, {26302,26396}, {26303,26420}, {26304,26496}, {26305,26505}, {26308,26517}, {26309,26518}
X(26306) = {X(23), X(159)}-harmonic conjugate of X(26307)
X(26307) lies on these lines: {3,26362}, {4,9921}, {22,491}, {23,159}, {24,8982}, {25,3069}, {197,26513}, {1598,26331}, {5594,20850}, {5595,5861}, {6642,26521}, {8185,26301}, {8192,26515}, {8193,26445}, {10790,26430}, {10828,26315}, {10829,26491}, {10830,26486}, {10831,26480}, {10832,26474}, {10833,26356}, {10834,26525}, {10835,26524}, {11365,26370}, {11414,26295}, {11853,26450}, {13800,15682}, {18954,26436}, {19005,26457}, {19006,26463}, {22654,26325}, {26302,26397}, {26303,26421}, {26304,26497}, {26305,26506}, {26308,26522}, {26309,26523}
X(26307) = {X(23), X(159)}-harmonic conjugate of X(26306)
X(26308) lies on these lines: {1,25}, {3,2886}, {5,10830}, {22,10527}, {23,10529}, {24,12116}, {26,10829}, {197,6642}, {497,14017}, {1598,26332}, {1602,3651}, {2070,18543}, {3220,12704}, {3518,10806}, {3556,24474}, {5020,10198}, {5594,26349}, {5595,26342}, {5709,9911}, {6585,23843}, {6734,8193}, {7387,11249}, {7506,16202}, {7517,10680}, {9658,18967}, {9673,10966}, {10532,10594}, {10587,13595}, {10790,26431}, {10828,26317}, {10831,26481}, {10832,26475}, {10833,13730}, {11012,11414}, {11510,20989}, {11853,26452}, {12001,18378}, {12595,20987}, {18954,26437}, {19005,26458}, {19006,26464}, {26302,26399}, {26303,26423}, {26304,26499}, {26305,26508}, {26306,26517}, {26307,26522}
X(26308) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 8192, 10037), (25, 9798, 26309), (25, 10835, 1)
X(26309) lies on these lines: {1,25}, {3,119}, {5,10829}, {22,5552}, {23,10528}, {24,12115}, {26,10830}, {197,7387}, {1324,13730}, {1470,15654}, {1598,26333}, {1603,6906}, {2070,18545}, {2077,11414}, {3435,22758}, {3518,10805}, {5020,10200}, {5594,26350}, {5595,26343}, {6642,10269}, {6735,8193}, {7506,16203}, {7517,10679}, {9658,11509}, {9673,10965}, {9912,12751}, {10531,10594}, {10586,13595}, {10790,26432}, {10828,26318}, {10831,26482}, {10832,26476}, {10833,26358}, {11853,26453}, {12000,18378}, {12594,20987}, {13222,25438}, {19005,26459}, {19006,26465}, {26302,26400}, {26303,26424}, {26304,26500}, {26305,26509}, {26306,26518}, {26307,26523}
X(26309) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 8192, 10046), (25, 9798, 26308), (25, 10834, 1)
X(26310) lies on these lines: {1,26311}, {32,5597}, {2896,26394}, {3096,26359}, {3098,26290}, {3099,26296}, {9857,26382}, {9862,26381}, {9993,26326}, {9995,26344}, {9996,26386}, {9997,26395}, {10828,26302}, {10871,26390}, {10872,26389}, {10873,26388}, {10874,26387}, {10877,26351}, {10878,26402}, {10879,26401}, {11368,26365}, {11386,26371}, {11494,26393}, {11885,26383}, {18496,18503}, {18957,26380}, {19011,26384}, {19012,26385}, {22744,26319}, {26312,26391}, {26313,26392}, {26314,26396}, {26315,26397}, {26316,26398}, {26317,26399}, {26318,26400}
X(26311) lies on these lines: {1,26310}, {32,5598}, {2896,26418}, {3096,26360}, {3098,26291}, {3099,26297}, {9857,26406}, {9862,26405}, {9993,26327}, {9994,26335}, {9995,26345}, {9996,26410}, {9997,26419}, {10828,26303}, {10871,26414}, {10872,26413}, {10873,26412}, {10874,26411}, {10877,26352}, {10878,26426}, {11368,26366}, {11386,26372}, {11494,26417}, {11885,26407}, {18498,18503}, {18957,26404}, {19011,26408}, {19012,26409}, {22744,26320}, {26312,26415}, {26313,26416}, {26314,26420}, {26315,26421}, {26316,26422}, {26317,26423}, {26318,26424}
X(26312) lies on these lines: {32,493}, {2896,26494}, {3096,5490}, {3098,26292}, {3099,26298}, {6464,26313}, {9857,26442}, {9862,26439}, {9993,26328}, {9994,26337}, {9995,26347}, {9996,26466}, {9997,26495}, {10828,26304}, {10871,26488}, {10872,26483}, {10873,26477}, {10874,26471}, {10877,26353}, {10879,26501}, {11368,26367}, {11386,26373}, {11494,26493}, {11885,26447}, {18503,18521}, {18957,26433}, {19011,26454}, {19012,26460}, {22744,26322}, {26310,26391}, {26311,26415}, {26314,26496}, {26315,26497}, {26316,26498}, {26317,26499}, {26318,26500}
X(26313) lies on these lines: {32,494}, {2896,26503}, {3096,5491}, {3098,26293}, {3099,26299}
X(26314) lies on these lines: {4,9987}, {32,638}, {193,3094}, {492,2896}, {3096,26361}, {3098,26294}, {3099,26300}, {5860,7811}, {9857,26444}, {9862,26441}, {9993,26330}, {9994,26339}, {9996,26468}, {9997,26514}, {10828,26306}, {10871,26490}, {10872,26485}, {10873,26479}, {10874,26473}, {10877,26355}, {10878,26520}, {10879,26519}, {11368,26369}, {11386,26375}, {11494,26512}, {11885,26449}, {13685,15682}, {18503,18539}, {18957,26435}, {19011,26456}, {19012,26462}, {22744,26324}, {26310,26396}, {26311,26420}, {26312,26496}, {26313,26505}, {26316,26516}, {26317,26517}, {26318,26518}
X(26315) lies on these lines: {4,9986}, {32,637}, {193,3094}, {491,2896}, {3096,26362}, {3098,26295}, {3099,26301}, {5861,7811}, {8982,9862}, {9857,26445}, {9993,26331}, {9995,26340}, {9996,26469}, {9997,26515}, {10828,26307}, {10871,26491}, {10872,26486}, {10873,26480}, {10874,26474}, {10877,26356}, {10878,26525}, {10879,26524}, {11368,26370}, {11386,26376}, {11494,26513}, {11885,26450}, {13805,15682}, {18503,26438}, {18957,26436}, {19011,26457}, {19012,26463}, {22744,26325}, {26310,26397}, {26311,26421}, {26312,26497}, {26313,26506}, {26316,26521}, {26317,26522}, {26318,26523}
X(26316) lies on these lines: {2,5191}, {3,6}, {4,7932}, {5,7846}, {24,11386}, {30,3972}, {35,10877}, {36,18957}, {55,10047}, {56,10038}, {98,7697}, {125,12501}, {140,3096}, {237,15080}, {262,10348}, {325,549}, {353,9486}, {376,16989}, {381,7804}, {384,14880}, {498,10873}, {499,10874}, {517,11368}, {542,7820}, {631,2896}, {1385,9941}, {1495,11328}, {1511,13210}, {1656,10356}, {2782,8289}, {3099,3576}, {3357,12502}, {3523,10357}, {3524,7774}, {3526,7914}, {3579,12497}, {3734,12188}, {4550,19576}, {5026,8724}, {5054,7778}, {5690,12495}, {5939,11185}, {5999,10796}, {6642,10828}, {6771,9982}, {6774,9981}, {7583,13892}, {7584,13946}, {7622,9766}, {7709,8782}, {7787,14881}, {7819,18358}, {7824,10349}, {7919,10722}, {8546,9145}, {8570,8627}, {8703,19661}, {9155,11003}, {9744,15561}, {9857,26446}, {9923,12359}, {9984,12041}, {9985,10610}, {9997,10246}, {10267,11494}, {10269,22744}, {10346,10359}, {10871,26492}, {10872,26487}, {10878,16203}, {10879,16202}, {10991,24206}, {11885,26451}, {12176,14931}, {12498,12619}, {14355,14601}, {14650,15921}, {26310,26398}, {26311,26422}, {26312,26498}, {26313,26507}, {26314,26516}, {26315,26521}
X(26316) = midpoint of X(3) and X(11842)
X(26316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 9862, 9996), (8722, 17508, 3), (9821, 11171, 3094)
X(26317) lies on these lines: {1,32}, {5,10872}, {2076,12595}, {2896,10527}, {3096,26363}, {3098,11012}, {5709,12497}, {6734,9857}, {7846,10198}, {9301,10680}, {9821,11249}, {9862,12116}, {9993,26332}, {9994,26342}, {9995,26349}, {9996,26470}, {10267,11494}, {10828,26308}, {10871,10943}, {10873,26481}, {10874,26475}, {10877,26357}, {11386,26377}, {11885,26452}, {18503,18544}, {18957,26437}, {19011,26458}, {19012,26464}, {26310,26399}, {26311,26423}, {26312,26499}, {26313,26508}, {26314,26517}, {26315,26522}
X(26317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (32, 9941, 26318), (32, 9997, 10038), (32, 10879, 1)
X(26318) lies on these lines: {1,32}, {5,10871}, {119,9996}, {1470,18957}, {2076,12594}, {2077,3098}, {2896,5552}, {3096,26364}, {6256,9873}, {6735,9857}, {7846,10200}, {9301,10679}, {9821,11248}, {9862,12115}, {9993,26333}, {9994,26343}, {9995,26350}, {10269,22744}, {10828,26309}, {10872,10942}, {10873,26482}, {10874,26476}, {10877,26358}, {11386,26378}, {11885,26453}, {12498,12751}, {13235,25438}, {18503,18542}, {19011,26459}, {19012,26465}, {26310,26400}, {26311,26424}, {26312,26500}, {26313,26509}, {26314,26518}, {26315,26523}
X(26318) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (32, 9941, 26317), (32, 9997, 10047), (32, 10878, 1)
X(26319) lies on these lines: {1,3}, {104,26381}, {956,26382}, {958,26359}, {2975,26394}, {12114,26390}, {18496,26321}, {19013,26384}, {19014,26385}, {22479,26371}, {22520,26379}, {22654,26302}, {22744,26310}, {22753,26326}, {22755,26383}, {22757,26344}, {22758,26386}, {22759,26388}, {22760,26387}, {26322,26391}, {26323,26392}, {26324,26396}, {26325,26397}
X(26319) = {X(1), X(3428)}-harmonic conjugate of X(26320)
X(26320) lies on these lines: {1,3}, {104,26405}, {956,26406}, {958,26360}, {2975,26418}, {12114,26414}, {18498,26321}, {19013,26408}, {19014,26409}, {22479,26372}, {22520,26403}, {22654,26303}, {22744,26311}, {22753,26327}, {22755,26407}, {22756,26335}, {22757,26345}, {22758,26410}, {22759,26412}, {22760,26411}, {26322,26415}, {26323,26416}, {26324,26420}, {26325,26421}
X(26320) = {X(1), X(3428)}-harmonic conjugate of X(26319)
X(26321) lies on these lines: {1,399}, {3,10}, {4,20067}, {5,104}, {30,2975}, {36,17606}, {55,18526}, {56,381}, {153,6952}, {382,11249}, {404,18357}, {474,7705}, {499,18516}, {517,5288}, {549,5260}, {944,6914}, {952,3871}, {956,12702}, {999,10404}, {1012,1482}, {1158,25413}, {1385,5259}, {1420,18540}, {1455,18447}, {1656,10269}, {1657,3428}, {2475,12248}, {2829,26470}, {3295,22759}, {3560,10246}, {3579,5258}, {3652,3878}, {3655,5248}, {3830,11194}, {3843,22753}, {3869,13465}, {3897,12919}, {4299,18517}, {4325,18406}, {5055,25524}, {5172,15446}, {5204,18491}, {5251,13624}, {5563,9955}, {5584,15696}, {5690,6909}, {5881,12331}, {5901,6912}, {6256,6980}, {6264,10284}, {6841,18990}, {6862,10585}, {6863,12667}, {6891,8165}, {6913,16203}, {6929,10785}, {6974,10805}, {7330,15829}, {7702,18541}, {7987,18528}, {8148,12513}, {8666,12699}, {9654,22766}, {9668,10966}, {9669,22767}, {10058,10944}, {10247,11496}, {10738,10943}, {11248,12645}, {12164,22659}, {12749,17662}, {12902,22586}, {18440,22769}, {18494,22479}, {18496,26319}, {18498,26320}, {18501,22520}, {18503,22744}, {18508,22755}, {18510,19013}, {18512,19014}, {18521,26322}, {18523,26323}, {18539,26324}, {18545,22768}, {21669,22791}, {22756,26336}, {22757,26346}, {26325,26438}
X(26321) = reflection of X(11849) in X(6906)
X(26321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 18519, 18525), (993, 18481, 3), (12773, 13743, 1)
X(26322) lies on these lines: {3,26493}, {36,26298}, {56,493}, {104,26439}, {956,26442}, {958,5490}, {999,26367}, {2975,26494}, {3428,26292}, {6464,26323}, {10269,26498}, {11249,26499}, {12114,26488}, {18521,26321}, {19013,26454}, {19014,26460}, {22479,26373}, {22520,26427}, {22654,26304}, {22744,26312}, {22753,26328}, {22755,26447}, {22756,26337}, {22757,26347}, {22758,26466}, {22759,26477}, {22760,26471}, {26319,26391}, {26320,26415}, {26324,26496}, {26325,26497}
X(26323) lies on these lines: {3,26502}, {36,26299}, {55,26504}, {56,494}, {104,26440}, {956,26443}, {958,5491}, {999,26368}, {2975,26503}, {3428,26293}, {6464,26322}, {10269,26507}, {10966,26354}, {11249,26508}, {12114,26489}, {18523,26321}, {19013,26455}, {19014,26461}, {22479,26374}, {22520,26428}, {22654,26305}, {22744,26313}, {22753,26329}, {22755,26448}, {22757,26338}, {22758,26467}, {22759,26478}, {22760,26472}, {22768,26511}, {26319,26392}, {26320,26416}, {26324,26505}, {26325,26506}
X(26324) lies on these lines: {3,26512}, {4,22624}, {36,26300}, {55,26514}, {56,3068}, {104,26441}, {193,22769}, {492,2975}, {956,26444}, {958,26361}, {999,26369}, {3428,26294}, {5860,11194}, {10269,26516}, {10966,26355}, {11249,26517}, {12114,26490}, {15682,22783}, {18539,26321}, {19013,26456}, {19014,26462}, {22479,26375}, {22520,26429}, {22654,26306}, {22744,26314}, {22753,26330}, {22755,26449}, {22756,26339}, {22758,26468}, {22759,26479}, {22760,26473}, {22768,26520}, {26319,26396}, {26320,26420}, {26322,26496}, {26323,26505}
X(26325) lies on these lines: {3,26513}, {4,22595}, {36,26301}, {55,26515}, {56,3069}, {104,8982}, {193,22769}, {491,2975}, {956,26445}, {958,26362}, {999,26370}, {3428,26295}, {5861,11194}, {10269,26521}, {10966,26356}, {11249,26522}, {12114,26491}, {15682,22784}, {19013,26457}, {19014,26463}, {22479,26376}, {22520,26430}, {22654,26307}, {22744,26315}, {22753,26331}, {22755,26450}, {22757,26340}, {22758,26469}, {22759,26480}, {22760,26474}, {22768,26525}, {26319,26397}, {26320,26421}, {26321,26438}, {26322,26497}, {26323,26506}
X(26326) lies on these lines: {1,6831}, {2,26290}, {4,5597}, {5,26359}, {11,26380}, {12,26351}, {30,26398}, {55,26412}, {98,26379}, {235,26371}, {381,26386}, {515,26365}, {517,26360}, {1587,26384}, {1588,26385}, {1598,26302}, {1699,26296}, {3091,26394}, {3843,18496}, {5587,26382}, {5603,26395}, {5842,8186}, {6201,26344}, {6833,26425}, {9993,26310}, {10531,26402}, {10532,26401}, {10679,26410}, {10893,26390}, {10894,26389}, {10895,26388}, {10896,26387}, {11496,26393}, {11897,26383}, {22753,26319}, {26328,26391}, {26329,26392}, {26330,26396}, {26331,26397}, {26332,26399}, {26333,26400}
X(26326) = midpoint of X(4) and X(11843)
X(26326) = {X(1), X(7680)}-harmonic conjugate of X(26327)
X(26327) lies on these lines: {1,6831}, {2,26291}, {4,5598}, {5,26360}, {11,26404}, {12,26352}, {30,26422}, {55,26388}, {98,26403}, {235,26372}, {381,26410}, {515,26366}, {517,26359}, {1587,26408}, {1588,26409}, {1598,26303}, {1699,26297}, {3091,26418}, {3843,18498}, {5587,26406}, {5603,26419}, {5842,8187}, {6201,26345}, {6202,26335}, {6833,26401}, {9993,26311}, {10531,26426}, {10532,26425}, {10679,26386}, {10893,26414}, {10894,26413}, {10895,26412}, {10896,26411}, {11496,26389}, {11897,26407}, {22753,26320}, {26328,26415}, {26329,26416}, {26330,26420}, {26331,26421}, {26332,26423}, {26333,26424}
X(26327) = midpoint of X(4) and X(11844)
X(26327) = {X(1), X(7680)}-harmonic conjugate of X(26326)
X(26328) lies on these lines: {2,26292}, {4,493}, {5,5490}, {11,26433}, {12,26353}, {30,26498}, {98,26427}, {235,26373}, {381,26466}, {515,26367}, {1093,24244}, {1587,26454}, {1588,26460}, {1598,26304}, {1699,26298}, {3089,8948}, {3091,26494}, {3843,18521}, {5587,26442}, {5603,26495}, {6201,26347}, {6202,26337}, {6464,26329}, {9993,26312}, {10532,26501}, {10893,26488}, {10894,26483}, {10895,26477}, {10896,26471}, {11496,26493}, {11897,26447}, {22753,26322}, {26326,26391}, {26327,26415}, {26330,26496}, {26331,26497}, {26332,26499}, {26333,26500}
X(26328) = midpoint of X(4) and X(11846)
X(26329) lies on these lines: {2,26293}, {4,494}, {5,5491}, {11,26434}, {12,26354}, {30,26507}, {98,26428}, {235,26374}, {381,26467}, {515,26368}, {1093,24243}, {1587,26455}, {1588,26461}, {1598,26305}, {1699,26299}, {3089,8946}, {3091,26503}, {3843,18523}, {5587,26443}, {5603,26504}, {6201,26338}, {6464,26328}, {9993,26313}, {10531,26511}, {10532,26510}, {10893,26489}, {10894,26484}, {10895,26478}, {10896,26472}, {11496,26502}, {11897,26448}, {22753,26323}, {26326,26392}, {26327,26416}, {26330,26505}, {26331,26506}, {26332,26508}, {26333,26509}
X(26329) = midpoint of X(4) and X(11847)
X(26330) lies on these lines: {2,26294}, {4,371}, {5,26361}, {11,26435}, {12,26355}, {30,26516}, {98,26429}, {193,3832}, {230,7374}, {235,26375}, {381,5860}, {492,3091}, {515,26369}, {546,5875}, {1131,1503}, {1587,26456}, {1588,26462}, {1598,26306}, {1699,26300}, {3843,18539}, {5200,13019}, {5587,26444}, {5603,26514}, {5870,13665}, {6251,22484}, {6526,24244}, {7585,14233}, {9993,26314}, {10531,26520}, {10532,26519}, {10893,26490}, {10894,26485}, {10895,26479}, {10896,26473}, {11496,26512}, {11897,26449}, {13687,15682}, {22753,26324}, {26326,26396}, {26327,26420}, {26328,26496}, {26329,26505}, {26332,26517}, {26333,26518}
X(26330) = midpoint of X(4) and X(13886)
X(26330) = {X(3832), X(5480)}-harmonic conjugate of X(26331)
X(26331) lies on these lines: {2,26295}, {4,372}, {5,26362}, {11,26436}, {12,26356}, {30,26521}, {98,26430}, {193,3832}, {230,7000}, {235,26376}, {381,5861}, {491,3091}, {515,26370}, {546,5874}, {1132,1503}, {1587,26457}, {1588,26463}, {1598,26307}, {1699,26301}, {3843,26438}, {5587,26445}, {5603,26515}, {5871,13785}, {6250,22485}, {6526,24243}, {7586,14230}, {9993,26315}, {10531,26525}, {10532,26524}, {10893,26491}, {10894,26486}, {10895,26480}, {10896,26474}, {11496,26513}, {11897,26450}, {13807,15682}, {22753,26325}, {26326,26397}, {26327,26421}, {26328,26497}, {26329,26506}, {26332,26522}, {26333,26523}
X(26331) = midpoint of X(4) and X(13939)
X(26331) = {X(3832), X(5480)}-harmonic conjugate of X(26330)
X(26332) lies on these lines: {1,4}, {2,11012}, {3,6690}, {5,958}, {7,5884}, {8,2894}, {10,5709}, {11,26437}, {12,3149}, {20,10902}, {30,4428}, {35,6934}, {36,6833}, {40,377}, {56,6831}, {57,12616}, {98,26431}, {104,4317}, {117,5230}, {119,11929}, {149,5734}, {165,6897}, {219,5798}, {235,26377}, {329,20117}, {355,518}, {381,529}, {382,16202}, {405,11827}, {442,3428}, {443,6684}, {495,11500}, {498,6905}, {499,6830}, {516,6850}, {517,5794}, {535,12558}, {546,7956}, {908,10522}, {952,18517}, {960,5812}, {962,2475}, {993,6824}, {1012,7354}, {1125,6827}, {1158,4292}, {1329,6918}, {1482,13463}, {1503,13408}, {1512,10827}, {1532,10895}, {1537,13273}, {1587,26458}, {1588,26464}, {1598,26308}, {1698,6854}, {1836,12672}, {1837,18962}, {1853,13095}, {2077,4190}, {2478,8227}, {2550,5735}, {2551,5705}, {2800,4295}, {2829,9655}, {2886,22770}, {2975,6828}, {3070,19049}, {3071,19050}, {3085,6796}, {3086,6844}, {3091,5080}, {3146,10587}, {3295,5842}, {3333,12687}, {3434,7982}, {3436,5587}, {3576,6836}, {3577,5881}, {3616,6840}, {3624,6947}, {3814,6944}, {3817,6893}, {3822,6825}, {3832,10529}, {3839,11240}, {3843,10742}, {3855,8166}, {4293,5450}, {4297,6851}, {4298,6245}, {4299,6906}, {4308,11715}, {4430,6894}, {5198,10835}, {5248,6868}, {5251,6832}, {5253,6943}, {5259,6936}, {5260,6991}, {5267,6892}, {5536,5818}, {5563,10785}, {5657,6901}, {5693,5905}, {5707,5786}, {5720,21077}, {5722,13374}, {5731,6895}, {5761,22836}, {5768,12005}, {5787,12675}, {5806,18480}, {5886,6928}, {6201,26349}, {6202,26342}, {6253,15888}, {6361,6951}, {6459,13907}, {6460,13965}, {6829,19854}, {6834,7951}, {6841,22758}, {6843,19843}, {6848,10590}, {6849,7682}, {6865,10165}, {6866,8666}, {6867,25639}, {6870,20076}, {6882,10200}, {6885,25440}, {6896,7989}, {6898,7988}, {6899,7987}, {6911,26364}, {6915,11681}, {6916,10268}, {6922,25524}, {6923,12699}, {6927,10588}, {6929,9955}, {6938,10483}, {6942,14794}, {6956,7288}, {6962,10585}, {6977,7280}, {7330,12617}, {7497,9798}, {7548,11680}, {8727,12114}, {9579,12705}, {9654,18242}, {9779,13729}, {9993,26317}, {10056,11491}, {10310,11112}, {10525,22791}, {10896,18967}, {10942,18491}, {10953,11375}, {11510,12943}, {11897,26452}, {12000,18499}, {12019,12762}, {12190,14639}, {12382,14644}, {12433,20330}, {12688,16127}, {12702,15346}, {14054,14872}, {14647,15932}, {15908,17532}, {18481,24299}, {26326,26399}, {26327,26423}, {26328,26499}, {26329,26508}, {26330,26517}, {26331,26522}
X(26332) = midpoint of X(i) and X(j) for these {i,j}: {4, 388}, {9579, 12705}
X(26332) = reflection of X(i) in X(j) for these (i,j): (3, 25466), (958, 5), (6868, 5248), (7330, 12617)
X(26332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3583, 11522, 10531), (10532, 12116, 10597), (10597, 12116, 1)
X(26333) lies on these lines: {1,4}, {2,2077}, {3,3816}, {5,1376}, {7,15528}, {8,13729}, {10,6893}, {11,1012}, {12,26358}, {30,7956}, {35,6834}, {36,6938}, {40,2478}, {55,1532}, {79,5553}, {84,5555}, {98,26432}, {100,6945}, {104,10072}, {119,381}, {153,3241}, {165,6947}, {235,26378}, {355,3880}, {376,8166}, {377,8227}, {382,16203}, {405,15908}, {474,11826}, {496,12114}, {498,6941}, {499,6906}, {516,3359}, {517,6929}, {546,10894}, {913,5190}, {938,5884}, {952,18516}, {962,5046}, {971,18527}, {993,6930}, {999,2829}, {1001,6907}, {1125,6850}, {1158,1210}, {1329,10306}, {1352,9025}, {1387,12761}, {1512,5119}, {1537,2099}, {1538,24929}, {1587,26459}, {1588,26465}, {1598,26309}, {1621,6932}, {1698,6898}, {1836,18838}, {1837,12672}, {1853,13094}, {2095,17768}, {2550,6939}, {2551,11362}, {2800,18391}, {2886,6913}, {2950,10265}, {3070,19047}, {3071,19048}, {3073,5292}, {3086,5450}, {3091,5552}, {3146,10586}, {3149,6284}, {3256,6844}, {3295,18242}, {3428,11113}, {3434,5587}, {3436,7982}, {3560,26363}, {3576,6925}, {3624,6897}, {3746,10786}, {3814,6973}, {3817,6826}, {3822,6982}, {3825,6891}, {3832,10528}, {3838,5886}, {3839,11239}, {3841,6887}, {3843,12000}, {3899,12245}, {4187,10310}, {4293,5193}, {4294,6796}, {4295,5804}, {4302,6905}, {4309,11491}, {4512,5084}, {4863,18908}, {5010,6880}, {5045,22792}, {5198,10834}, {5218,6969}, {5248,6825}, {5251,6976}, {5252,10947}, {5259,6889}, {5440,17618}, {5657,6965}, {5693,12649}, {5722,6001}, {5734,20060}, {5805,10202}, {5806,22793}, {5836,12700}, {5840,6911}, {5842,9668}, {5924,10398}, {6201,26350}, {6202,26343}, {6259,12675}, {6361,6902}, {6459,13906}, {6460,13964}, {6824,25639}, {6830,12775}, {6831,10896}, {6833,7741}, {6836,10860}, {6838,10902}, {6839,9779}, {6840,9812}, {6842,10198}, {6847,10591}, {6849,12571}, {6854,7988}, {6865,10270}, {6866,12558}, {6872,11012}, {6895,15016}, {6899,16209}, {6912,11680}, {6916,10165}, {6917,9955}, {6920,19854}, {6928,7686}, {6934,14803}, {6935,10589}, {6944,25440}, {6966,10584}, {6968,7951}, {6992,7688}, {7330,10916}, {9581,12616}, {9993,26318}, {10247,10742}, {10248,10430}, {10526,22791}, {10724,17579}, {10895,10965}, {10915,19925}, {10943,18761}, {10953,12701}, {11372,12686}, {11376,18961}, {11500,15171}, {11729,22938}, {11897,26453}, {11928,26470}, {12189,14639}, {12381,14644}, {12676,18238}, {12953,22768}, {15254,26446}, {16371,24466}, {18481,24927}, {26326,26400}, {26327,26424}, {26328,26500}, {26329,26509}, {26330,26518}, {26331,26523}
X(26333) = midpoint of X(i) and X(j) for these {i,j}: {4, 497}, {9668, 19541}
X(26333) = reflection of X(i) in X(j) for these (i,j): (3, 3816), (1376, 5), (22753, 7956)
X(26333) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 12116, 5691), (1058, 12667, 5882), (1699, 3583, 4)
X(26334) lies on these lines: {1,26335}, {6,5597}, {1271,26394}, {5589,26296}, {5591,26359}, {5595,26302}, {5605,26395}, {5689,26382}, {5861,26397}, {6202,26326}, {6215,26386}, {9994,26310}, {10783,26381}, {10792,26379}, {10919,26390}, {10921,26389}, {10923,26388}, {10925,26387}, {10927,26351}, {10929,26402}, {10931,26401}, {11370,26365}, {11388,26371}, {11497,26393}, {11824,26290}, {11901,26383}, {18496,26336}, {18959,26380}, {22756,26319}, {26337,26391}, {26339,26396}, {26341,26398}, {26342,26399}, {26343,26400}
X(26335) lies on these lines: {1,26334}, {6,5598}, {1271,26418}, {5589,26297}, {5591,26360}, {5595,26303}, {5605,26419}, {5689,26406}, {5861,26421}, {6202,26327}, {6215,26410}, {9994,26311}, {10783,26405}, {10792,26403}, {10919,26414}, {10921,26413}, {10923,26412}, {10925,26411}, {10929,26426}, {10931,26425}, {11370,26366}, {11388,26372}, {11497,26417}, {11824,26291}, {11901,26407}, {18498,26336}, {18959,26404}, {22756,26320}, {26337,26415}, {26339,26420}, {26341,26422}, {26342,26423}, {26343,26424}
X(26336) lies on these lines: {3,5591}, {4,5875}, {5,10783}, {6,13}, {30,1271}, {382,1161}, {550,10517}, {999,10925}, {1656,10514}, {1657,11824}, {3295,10923}, {3534,13810}, {3641,18525}, {3830,5861}, {3843,6202}, {5589,18480}, {5605,18526}, {5689,12702}, {7732,12902}, {8148,12627}, {9654,10040}, {9655,18959}, {9668,10927}, {9669,10048}, {9929,12164}, {9994,18503}, {10792,18501}, {10919,18519}, {10921,18518}, {10929,18545}, {10931,18543}, {11370,18493}, {11388,18494}, {11497,18524}, {11901,18508}, {13782,22807}, {14269,18539}, {18498,26335}, {18521,26337}, {18542,26343}, {18544,26342}, {22756,26321}
X(26336) = reflection of X(13782) in X(22807)
X(26336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 5875, 11916), (5871, 6215, 3)
X(26337) lies on these lines: {6,493}, {1271,26494}, {5490,5591}, {5589,26298}, {5595,26304}, {5605,26495}, {5689,26442}, {5861,26497}, {6202,26328}, {6215,26466}, {9994,26312}, {10783,26439}, {10792,26427}, {10919,26488}, {10921,26483}, {10923,26477}, {10925,26471}, {10927,26353}, {10931,26501}, {11370,26367}, {11388,26373}, {11497,26493}, {11824,26292}, {11901,26447}, {18521,26336}, {18959,26433}, {22756,26322}, {26335,26415}, {26339,26496}, {26341,26498}, {26342,26499}, {26343,26500}
X(26338) lies on these lines: {6,494}, {1270,26503}, {5491,5590}, {5588,26299}, {5594,26305}, {5604,26504}, {5688,26443}, {5860,26505}, {6201,26329}, {6214,26467}, {6464,26347}, {10784,26440}, {10793,26428}, {10920,26489}, {10922,26484}, {10924,26478}, {10926,26472}, {10928,26354}, {10930,26511}, {10932,26510}, {11371,26368}, {11389,26374}, {11498,26502}, {11825,26293}, {11902,26448}, {18523,26346}, {18960,26434}, {22757,26323}, {26340,26506}, {26344,26392}, {26345,26416}, {26348,26507}, {26349,26508}, {26350,26509}
X(26339) lies on these lines: {2,6}, {4,6279}, {382,5871}, {546,5875}, {550,1161}, {3244,3641}, {3528,11824}, {3529,10783}, {3530,26341}, {3544,10514}, {3632,5589}, {3636,11370}, {3851,6215}, {3855,6281}, {5102,7000}, {5595,20850}, {5605,20057}, {5689,26444}, {6154,13269}, {7732,24981}, {9994,26314}, {10301,11388}, {10792,26429}, {10919,26490}, {10921,26485}, {10923,26479}, {10925,26473}, {10927,26355}, {10929,26520}, {10931,26519}, {11497,26512}, {11901,26449}, {13690,15682}, {14269,18539}, {18959,26435}, {22756,26324}, {26335,26420}, {26337,26496}, {26342,26517}, {26343,26518}
X(26339) = reflection of X(5590) in X(7585)
X(26339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3629, 26340), (193, 3068, 5860), (3068, 5860, 26361)
X(26340) lies on these lines: {2,6}, {4,6280}, {382,5870}, {546,5874}, {550,1160}, {3244,3640}, {3528,11825}, {3529,8982}, {3530,26348}, {3544,10515}, {3632,5588}, {3636,11371}, {3851,6214}, {3855,6278}, {5102,7374}, {5594,20850}, {5604,20057}, {5688,26445}, {6154,13270}, {7733,24981}, {9995,26315}, {10301,11389}, {10793,26430}, {10920,26491}, {10922,26486}, {10924,26480}, {10926,26474}, {10928,26356}, {10930,26525}, {10932,26524}, {11498,26513}, {11902,26450}, {13811,15682}, {14269,26346}, {18960,26436}, {22757,26325}, {26338,26506}, {26344,26397}, {26345,26421}, {26347,26497}, {26349,26522}, {26350,26523}
X(26340) = reflection of X(5591) in X(7586)
X(26340) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3629, 26339), (6, 5860, 5590), (591, 7585, 26361)
X(26341) lies on these lines: {2,6215}, {3,6}, {5,5871}, {24,11388}, {30,6202}, {35,10927}, {36,18959}, {55,10048}, {56,10040}, {125,12803}, {140,5591}, {498,10923}, {499,10925}, {517,11370}, {549,5861}, {631,1271}, {642,15834}, {1385,3641}, {1511,7732}, {1584,5012}, {1656,10514}, {3357,6267}, {3523,10517}, {3526,6281}, {3530,26339}, {3576,5589}, {3579,12697}, {5054,6279}, {5595,6642}, {5605,10246}, {5689,26446}, {5690,12627}, {6214,7375}, {6227,12042}, {6263,12619}, {6270,6771}, {6271,6774}, {6277,10610}, {7583,8974}, {7584,13949}, {7725,12041}, {8903,15805}, {9929,12359}, {10267,11497}, {10269,22756}, {10919,26492}, {10921,26487}, {10929,16203}, {10931,16202}, {11901,26451}, {19351,19360}, {26335,26422}, {26337,26498}
X(26341) = midpoint of X(3) and X(6418)
X(26341) = inverse of X(1161) in the Brocard circle
X(26341) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 10783, 6215), (6, 11824, 11916), (5092, 9733, 3)
X(26342) lies on these lines: {1,6}, {5,10921}, {1161,11249}, {1271,10527}, {5591,26363}, {5595,26308}, {5689,6734}, {5709,12697}, {5861,26522}, {5875,10919}, {6202,26332}, {6215,26470}, {9994,26317}, {10267,11497}, {10680,11916}, {10783,12116}, {10792,26431}, {10923,26481}, {10925,26475}, {10927,26357}, {11012,11824}, {11388,26377}, {11901,26452}, {18544,26336}, {18959,26437}, {26335,26423}, {26337,26499}, {26339,26517}
X(26342) = reflection of X(26350) in X(3299)
X(26342) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 5605, 10040), (6, 10931, 1), (12595, 19050, 1)
X(26343) lies on these lines: {1,6}, {5,10919}, {119,6215}, {1161,11248}, {1271,5552}, {1470,18959}, {2077,11824}, {5591,26364}, {5595,26309}, {5689,6735}, {5861,26523}, {5871,6256}, {5875,10921}, {6202,26333}, {6263,12751}, {9994,26318}, {10269,22756}, {10679,11916}, {10783,12115}, {10792,26432}, {10923,26482}, {10925,26476}, {10927,26358}, {11388,26378}, {11901,26453}, {13269,25438}, {18542,26336}, {26335,26424}, {26337,26500}, {26339,26518}
X(26343) = reflection of X(26349) in X(3301)
X(26343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 5605, 10048), (6, 10929, 1), (12594, 19048, 1)
X(26344) lies on these lines: {1,26345}, {6,5597}, {1270,26394}, {5588,26296}, {5590,26359}, {5594,26302}, {5604,26395}, {5688,26382}, {5860,26396}, {6201,26326}, {6214,26386}, {9995,26310}, {10784,26381}, {10793,26379}, {10920,26390}, {10922,26389}, {10924,26388}, {10926,26387}, {10928,26351}, {10930,26402}, {10932,26401}, {11371,26365}, {11389,26371}, {11498,26393}, {11825,26290}, {11902,26383}, {18496,26346}, {18960,26380}, {22757,26319}, {26338,26392}, {26340,26397}, {26347,26391}, {26348,26398}, {26349,26399}, {26350,26400}
X(26345) lies on these lines: {1,26344}, {6,5598}, {1270,26418}, {5588,26297}, {5590,26360}, {5594,26303}, {5604,26419}, {5688,26406}, {5860,26420}, {6201,26327}, {6214,26410}, {9995,26311}, {10784,26405}, {10793,26403}, {10920,26414}, {10922,26413}, {10924,26412}, {10926,26411}, {10928,26352}, {10932,26425}, {11389,26372}, {11498,26417}, {11825,26291}, {11902,26407}, {18498,26346}, {18960,26404}, {22757,26320}, {26338,26416}, {26340,26421}, {26347,26415}, {26348,26422}, {26349,26423}, {26350,26424}
X(26346) lies on these lines: {3,5590}, {4,5874}, {5,10784}, {6,13}, {30,1270}, {382,1160}, {550,10518}, {999,10926}, {1656,10515}, {1657,11825}, {3295,10924}, {3534,13691}, {3640,18525}, {3830,5860}, {3843,6201}, {5588,18480}, {5604,18526}, {5688,12702}, {7733,12902}, {8148,12628}, {9654,10041}, {9655,18960}, {9668,10928}, {9669,10049}, {9930,12164}, {9995,18503}, {10793,18501}, {10920,18519}, {10922,18518}, {10930,18545}, {10932,18543}, {11371,18493}, {11389,18494}, {11498,18524}, {11902,18508}, {13662,22806}, {14269,26340}, {18496,26344}, {18498,26345}, {18521,26347}, {18523,26338}, {18542,26350}, {18544,26349}, {22757,26321}
X(26346) = reflection of X(13662) in X(22806)
X(26346) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 5874, 11917), (5870, 6214, 3)
X(26347) lies on these lines: {6,493}, {76,5490}, {755,1306}, {1270,26494}, {2353,6457}, {5588,26298}, {5594,26304}, {5604,26495}, {5688,26442}, {5860,26496}, {6201,26328}, {6214,26466}, {6464,26338}, {9995,26312}, {10784,26439}, {10793,26427}, {10920,26488}, {10922,26483}, {10924,26477}, {10926,26471}, {10928,26353}, {11371,26367}, {11389,26373}, {11498,26493}, {11825,26292}, {11902,26447}, {18521,26346}, {18960,26433}, {22757,26322}, {26340,26497}, {26344,26391}, {26345,26415}, {26348,26498}, {26349,26499}, {26350,26500}
X(26348) lies on these lines: {2,6214}, {3,6}, {5,5870}, {24,11389}, {30,6201}, {35,10928}, {36,18960}, {55,10049}, {56,10041}, {125,12804}, {140,5590}, {498,10924}, {499,10926}, {517,11371}, {549,5860}, {631,1270}, {641,15835}, {1385,3640}, {1511,7733}, {1583,5012}, {1656,10515}, {3357,6266}, {3523,10518}, {3526,6278}, {3530,26340}, {3576,5588}, {3579,12698}, {5054,6280}, {5594,6642}, {5604,10246}, {5688,26446}, {5690,12628}, {6215,7376}, {6226,12042}, {6262,12619}, {6268,6771}, {6269,6774}, {6276,10610}, {7583,8975}, {7584,13950}, {7726,12041}, {8904,15805}, {9930,12359}, {10267,11498}, {10269,22757}, {10920,26492}, {10922,26487}, {10930,16203}, {10932,16202}, {11902,26451}, {19352,19360}, {26338,26507}, {26344,26398}, {26345,26422}, {26347,26498}
X(26348) = midpoint of X(3) and X(6417)
X(26348) = inverse of X(1160) in the Brocard circle
X(26348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 10784, 6214), (574, 8406, 8400), (1151, 8406, 574)
X(26349) lies on these lines: {1,6}, {5,10922}, {1160,11249}, {1270,10527}, {5590,26363}, {5594,26308}, {5688,6734}, {5709,12698}, {5860,26517}, {5874,10920}, {6201,26332}, {6214,26470}, {9995,26317}, {10267,11498}, {10680,11917}, {10784,12116}, {10793,26431}, {10924,26481}, {10926,26475}, {10928,26357}, {11012,11825}, {11389,26377}, {11902,26452}, {18544,26346}, {18960,26437}, {26338,26508}, {26340,26522}, {26344,26399}, {26345,26423}, {26347,26499}
X(26349) = reflection of X(26343) in X(3301)
X(26349) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3640, 26350), (6, 10932, 1), (12595, 19049, 1)
X(26350) lies on these lines: {1,6}, {5,10920}, {119,6214}, {1160,11248}, {1270,5552}, {1470,18960}, {2077,11825}, {5590,26364}, {5594,26309}, {5688,6735}, {5860,26518}, {5870,6256}, {5874,10922}, {6201,26333}, {6262,12751}, {9995,26318}, {10269,22757}, {10679,11917}, {10784,12115}, {10793,26432}, {10924,26482}, {10926,26476}, {10928,26358}, {11389,26378}, {11902,26453}, {13270,25438}, {18542,26346}, {26338,26509}, {26340,26523}, {26344,26400}, {26345,26424}, {26347,26500}
X(26350) = reflection of X(26342) in X(3299)
X(26350) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3640, 26349), (6, 5604, 10049), (12594, 19047, 1)
X(26351) lies on these lines: {1,3}, {4,26388}, {11,26359}, {12,26326}, {33,26371}, {78,8197}, {497,26387}, {997,5599}, {1479,26386}, {1837,26382}, {3434,26411}, {3811,12454}, {4294,26381}, {4511,5601}, {4861,5602}, {6261,9834}, {6264,12461}, {6326,12460}, {9668,18496}, {10799,26379}, {10833,26302}, {10877,26310}, {10927,26334}, {10928,26344}, {10947,26390}, {10953,26389}, {11843,21740}, {11909,26383}, {16121,16132}, {19037,26384}, {19038,26385}, {26353,26391}, {26354,26392}, {26355,26396}, {26356,26397}
X(26351) = reflection of X(26404) in X(1)
X(26351) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 55, 26352), (5597, 5598, 26393), (11881, 11884, 26417)
X(26352) lies on these lines: {1,3}, {4,26412}, {11,26360}, {12,26327}, {33,26372}, {78,8204}, {497,26411}, {997,5600}, {1479,26410}, {1837,26406}, {3434,26387}, {3811,12455}, {4294,26405}, {4511,5602}, {4861,5601}, {6261,9835}, {6264,12460}, {6326,12461}, {9668,18498}, {10799,26403}, {10833,26303}, {10877,26311}, {10928,26345}, {10947,26414}, {10953,26413}, {11844,21740}, {11909,26407}, {16122,16132}, {19037,26408}, {19038,26409}, {26354,26416}, {26355,26420}, {26356,26421}
X(26352) = reflection of X(26380) in X(1)
X(26352) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 55, 26351), (5597, 5598, 26417), (11882, 11883, 26393)
X(26353) lies on these lines: {1,26433}, {4,26477}, {11,5490}, {12,26328}, {33,26373}, {35,26498}, {55,493}, {56,26292}, {497,26471}, {1479,26466}, {1837,26442}, {2098,26495}, {2646,26367}, {4294,26439}, {6464,26354}, {9668,18521}, {10799,26427}, {10833,26304}, {10877,26312}, {10927,26337}, {10928,26347}, {10947,26488}, {10953,26483}, {11909,26447}, {19037,26454}, {19038,26460}, {26351,26391}, {26352,26415}, {26355,26496}, {26356,26497}, {26357,26499}, {26358,26500}
X(26354) lies on these lines: {1,26434}, {4,26478}, {11,5491}, {12,26329}, {33,26374}, {35,26507}, {55,494}, {56,26293}, {497,26472}, {1479,26467}, {1697,26299}, {2098,26504}, {2646,26368}, {4294,26440}, {6464,26353}, {9668,18523}, {10799,26428}, {10833,26305}, {10877,26313}, {10928,26338}, {10947,26489}, {10953,26484}, {10965,26511}, {10966,26323}, {11909,26448}, {19037,26455}, {19038,26461}, {26351,26392}, {26352,26416}, {26355,26505}, {26356,26506}, {26357,26508}, {26358,26509}
X(26355) lies on these lines: {1,26435}, {4,12949}, {11,26361}, {12,26330}, {20,6283}, {33,26375}, {35,26516}, {55,3068}, {56,26294}, {144,145}, {492,497}, {1007,26474}, {1479,26468}, {1837,26444}, {2098,26514}, {2646,26369}, {3058,5860}, {4294,26441}, {9668,18539}, {10799,26429}, {10833,26306}, {10947,26490}, {10953,26485}, {10965,26520}, {10966,26324}, {11909,26449}, {13699,15682}, {19037,26456}, {19038,26462}, {26351,26396}, {26352,26420}, {26353,26496}, {26354,26505}, {26357,26517}, {26358,26518}
X(26355) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (390, 3056, 26356), (492, 497, 26473)
X(26356) lies on these lines: {1,26436}, {4,12948}, {12,26331}, {20,6405}, {33,26376}, {35,26521}, {55,3069}, {56,26295}, {144,145}, {491,497}, {1007,26473}, {1479,26469}, {1697,26301}, {1837,26445}, {2098,26515}, {2646,26370}, {3058,5861}, {4294,8982}, {9668,26438}, {10799,26430}, {10833,26307}, {10877,26315}, {10928,26340}, {10947,26491}, {10953,26486}, {10965,26525}, {10966,26325}, {11909,26450}, {13819,15682}, {19037,26457}, {19038,26463}, {26351,26397}, {26352,26421}, {26353,26497}, {26354,26506}, {26357,26522}, {26358,26523}
X(26356) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (390, 3056, 26355), (491, 497, 26474)
X(26357) lies on these lines: {1,3}, {4,26481}, {5,10953}, {6,22070}, {10,11502}, {11,405}, {12,3149}, {21,497}, {25,23361}, {31,22361}, {33,26377}, {48,836}, {63,1858}, {73,1496}, {104,4305}, {212,1193}, {221,13095}, {225,1593}, {255,1064}, {283,1036}, {378,1068}, {388,411}, {390,4189}, {404,5218}, {474,5432}, {498,6911}, {499,6883}, {515,22759}, {603,4300}, {859,11365}, {950,993}, {956,10950}, {958,1837}, {960,1259}, {997,11517}, {1001,5832}, {1006,3086}, {1011,11269}, {1012,6284}, {1056,6876}, {1058,6875}, {1069,3422}, {1070,21312}, {1072,7395}, {1106,22053}, {1253,22072}, {1376,24987}, {1455,15852}, {1468,14547}, {1478,6985}, {1479,3560}, {1486,16872}, {1682,6056}, {1898,7330}, {2066,19050}, {2071,16272}, {2260,2268}, {2323,4254}, {2360,4276}, {2361,16466}, {2478,26476}, {2654,10448}, {2975,3486}, {3011,7484}, {3058,10959}, {3085,6905}, {3145,8240}, {3516,23710}, {3556,22345}, {3651,4293}, {3895,8668}, {3916,12711}, {3925,19520}, {4188,5281}, {4255,7074}, {4265,10387}, {4294,6906}, {4304,5450}, {4309,10058}, {4314,5267}, {4995,16371}, {4996,9785}, {5047,10589}, {5132,16295}, {5225,6912}, {5231,13615}, {5248,12053}, {5251,9581}, {5252,11500}, {5258,5727}, {5274,16865}, {5292,16287}, {5326,16862}, {5414,19049}, {5687,19524}, {5705,16293}, {5713,7420}, {5715,17605}, {6796,11501}, {6825,10629}, {6863,10523}, {6872,10530}, {6907,18961}, {6913,10896}, {6914,10943}, {6915,10588}, {6920,10591}, {6942,10597}, {6950,10806}, {6954,10321}, {6986,7288}, {7071,11401}, {7354,7580}, {7489,9669}, {7508,15172}, {8053,10934}, {8192,23843}, {8614,23072}, {9668,13743}, {9673,20831}, {9798,11334}, {10039,11499}, {10385,11240}, {10393,14054}, {10572,22758}, {10786,26482}, {10799,26431}, {10827,18491}, {10833,13730}, {10877,26317}, {10895,19541}, {10927,26342}, {10928,26349}, {11238,16418}, {11375,22753}, {11496,12701}, {11809,18859}, {11909,26452}, {12739,22775}, {13738,21321}, {16344,19858}, {19037,26458}, {19038,26464}, {26353,26499}, {26354,26508}, {26355,26517}, {26356,26522}
X(26357) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3, 37579), (55, 56, 2646), (3, 10680, 6585), (3295, 10680, 1), (11012, 12704, 11249)
X(26358) lies on these lines: {1,3}, {4,26482}, {5,10947}, {8,4571}, {11,5687}, {12,26333}, {33,26378}, {78,8668}, {119,1479}, {221,13094}, {390,5046}, {497,3871}, {519,22760}, {944,12775}, {946,11501}, {950,10915}, {1001,24982}, {1012,10944}, {1259,3880}, {1260,12625}, {1376,11376}, {1519,11500}, {1621,5554}, {1837,3913}, {1858,3870}, {1898,5534}, {2057,3689}, {2066,19048}, {2346,5555}, {2348,7368}, {2950,17660}, {3058,10958}, {3085,6941}, {3486,12648}, {3560,12647}, {3583,18518}, {4294,12115}, {5218,17566}, {5252,11496}, {5281,10586}, {5414,19047}, {5432,10200}, {5440,17622}, {6256,6284}, {6913,17662}, {6949,10596}, {6958,10948}, {7071,11400}, {8068,11928}, {8192,23844}, {8715,11502}, {9668,18542}, {9669,12331}, {10385,11114}, {10387,12594}, {10624,12608}, {10799,26432}, {10833,26309}, {10877,26318}, {10927,26343}, {10928,26350}, {10942,10953}, {11909,26453}, {12332,20586}, {12740,13205}, {12743,12751}, {19037,26459}, {19038,26465}, {26353,26500}, {26354,26509}, {26355,26518}, {26356,26523}
X(26538) = complement of X(25245)
X(26359) lies on these lines: {1,442}, {2,5597}, {3,18496}, {4,26290}, {5,26326}, {8,26395}, {11,26351}, {12,26380}, {55,26387}, {56,26388}, {83,26379}, {140,26398}, {377,26425}, {427,26371}, {517,26327}, {528,8187}, {631,26381}, {958,26319}, {1004,11492}, {1125,26365}, {1376,26390}, {1650,26383}, {1698,26296}, {3068,26385}, {3069,26384}, {3096,26310}, {3434,5598}, {5490,26391}, {5491,26392}, {5552,26402}, {5590,26344}, {5591,26334}, {6690,8186}, {10527,26401}, {26361,26396}, {26362,26397}, {26363,26399}, {26364,26400}
X(26359) = complement of X(5601)
X(26359) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 2886, 26360), (3813, 24392, 26360)
X(26360) lies on these lines: {1,442}, {2,5598}, {3,18498}, {4,26291}, {5,26327}, {8,26419}, {11,26352}, {12,26404}, {55,26411}, {56,26412}, {83,26403}, {140,26422}, {377,26401}, {427,26372}, {517,26326}, {528,8186}, {631,26405}, {958,26320}, {1004,11493}, {1125,26366}, {1376,26414}, {1650,26407}, {1698,26297}, {3068,26409}, {3069,26408}, {3096,26311}, {3434,5597}, {5490,26415}, {5491,26416}, {5552,26426}, {5590,26345}, {5591,26335}, {6690,8187}, {10527,26425}, {26361,26420}, {26362,26421}, {26363,26423}, {26364,26424}
X(26360) = complement of X(5602)
X(26360) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 2886, 26359), (3813, 24392, 26359), (25466, 25525, 26359)
X(26361) lies on these lines: {1,26444}, {2,6}, {3,18539}, {4,641}, {5,26330}, {8,26514}, {11,26355}, {12,26435}, {20,23311}, {55,26473}, {56,26479}, {83,26429}, {140,26516}, {427,26375}, {625,6460}, {631,639}, {640,5067}, {642,3533}, {958,26324}, {1125,26369}, {1376,26490}, {1586,24244}, {1588,11315}, {1650,26449}, {3096,26314}, {5420,7375}, {5490,7763}, {5491,26505}, {5552,26520}, {6118,13886}, {7376,10577}, {7486,23312}, {10194,18840}, {10527,26519}, {13701,15682}, {18819,21463}, {26359,26396}, {26360,26420}, {26363,26517}, {26364,26518}
X(26361) = complement of X(8972)
X(26361) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 1271, 8253), (591, 7585, 26340), (3068, 5860, 26339)
X(26362) lies on these lines: {1,26445}, {2,6}, {3,26307}, {4,642}, {5,26331}, {8,26515}, {12,26436}, {20,23312}, {55,26474}, {56,26480}, {83,26430}, {140,26521}, {427,26376}, {625,6459}, {631,640}, {639,5067}, {641,3533}, {958,26325}, {1125,26370}, {1376,26491}, {1585,24243}, {1587,11316}, {1650,26450}, {1698,26301}, {3096,26315}, {5418,7376}, {5490,26497}, {5491,7763}, {5552,26525}, {6119,13939}, {7375,10576}, {7486,23311}, {9540,11314}, {10195,18840}, {10527,26524}, {13821,15682}, {18820,21464}, {26359,26397}, {26360,26421}, {26363,26522}, {26364,26523}
X(26362) = complement of X(13941)
X(26362) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 491, 3069), (2, 1271, 615), (491, 3069, 5861)
X(26363) lies on these lines: {1,2}, {3,2886}, {4,993}, {5,958}, {7,11263}, {9,6832}, {11,405}, {12,956}, {20,5267}, {21,1479}, {35,3434}, {36,377}, {37,5831}, {40,6833}, {55,7483}, {56,442}, {57,12609}, {63,12047}, {72,11375}, {75,7763}, {83,26431}, {104,6937}, {119,15843}, {140,1376}, {149,4309}, {165,6890}, {191,11415}, {197,19547}, {219,5742}, {225,475}, {238,25519}, {281,7537}, {283,17188}, {354,14054}, {355,6863}, {388,3822}, {392,11376}, {427,26377}, {443,3841}, {452,10591}, {474,3925}, {495,12513}, {496,1001}, {497,5248}, {515,6825}, {516,6847}, {517,6862}, {518,11374}, {529,9654}, {535,5229}, {590,1378}, {615,1377}, {631,2550}, {758,3485}, {944,6853}, {946,5709}, {952,26487}, {954,6067}, {960,5791}, {962,6888}, {966,2323}, {982,24159}, {988,17064}, {999,25466}, {1012,15908}, {1068,17917}, {1107,3767}, {1203,24597}, {1329,1656}, {1385,5794}, {1478,2476}, {1573,7746}, {1650,26452}, {1699,6837}, {1706,6967}, {1770,4652}, {1788,3754}, {1836,3916}, {1861,3541}, {1936,25490}, {2006,15065}, {2049,19720}, {2077,6977}, {2078,6681}, {2345,25078}, {2475,4299}, {2478,5251}, {2548,4426}, {2551,3090}, {2646,3419}, {2949,5758}, {3035,3526}, {3068,26464}, {3071,9678}, {3096,26317}, {3295,3813}, {3333,25525}, {3338,5249}, {3421,10588}, {3428,6831}, {3436,5258}, {3452,6887}, {3475,3881}, {3487,3874}, {3488,6598}, {3525,10806}, {3555,17718}, {3560,26333}, {3576,6889}, {3583,6872}, {3585,6871}, {3628,3820}, {3647,5698}, {3739,6389}, {3753,24914}, {3816,11108}, {3817,5715}, {3825,5084}, {3826,6691}, {3829,9669}, {3847,5713}, {3878,5603}, {3897,5086}, {3926,20888}, {3962,4870}, {4187,10966}, {4189,4302}, {4190,7280}, {4193,5260}, {4197,5253}, {4208,5265}, {4293,5177}, {4295,5744}, {4297,6908}, {4305,5175}, {4323,5775}, {4331,17077}, {4357,24179}, {4359,17869}, {4413,11510}, {4428,15172}, {4512,9614}, {4640,12699}, {4647,17740}, {5044,11230}, {5054,18543}, {5067,10597}, {5070,9711}, {5080,5141}, {5082,5218}, {5087,5302}, {5094,11401}, {5204,11112}, {5219,21077}, {5225,11111}, {5234,6886}, {5247,17717}, {5259,15175}, {5270,20076}, {5273,5536}, {5274,17558}, {5288,10585}, {5289,5901}, {5291,9596}, {5303,17579}, {5432,5687}, {5435,15932}, {5439,17728}, {5443,5692}, {5450,6850}, {5490,26499}, {5491,26508}, {5587,6834}, {5657,6952}, {5691,6838}, {5730,15950}, {5770,5884}, {5795,6944}, {5811,21635}, {5818,6949}, {5836,6958}, {5837,13464}, {5850,8232}, {5881,10786}, {5905,6763}, {6245,12520}, {6256,6842}, {6284,16370}, {6585,6911}, {6668,12607}, {6684,6891}, {6796,6954}, {6848,19925}, {6899,7688}, {6907,12114}, {6913,7681}, {6914,10525}, {6921,14798}, {6926,10164}, {6953,7989}, {6959,9956}, {6976,10598}, {6989,10165}, {7173,17556}, {7294,10949}, {7308,25522}, {7330,12608}, {7354,17532}, {7484,10835}, {7486,8165}, {7504,11681}, {7506,9713}, {7680,22770}, {7786,13110}, {7795,21264}, {7800,20541}, {7807,20172}, {7808,10804}, {7914,10879}, {8609,17303}, {8728,15325}, {9624,15829}, {9668,17571}, {9785,21630}, {9798,19544}, {9840,15654}, {9940,18251}, {9943,17646}, {9955,24703}, {10171,18250}, {10473,10974}, {10592,11236}, {10895,17530}, {10896,11113}, {11194,18990}, {11235,15171}, {11238,15670}, {11281,15934}, {11365,25514}, {11915,15184}, {12559,24391}, {13190,14061}, {13218,15059}, {15338,19535}, {16062,19794}, {16252,20306}, {16342,23518}, {16415,20470}, {17321,25598}, {17757,18967}, {18253,18493}, {18839,24954}, {19548,23850}, {19763,21321}, {19888,19941}, {19894,19930}, {21530,23304}, {22464,25590}, {26359,26399}, {26360,26423}
X(26363) = midpoint of X(4305) and X(5175)
X(26363) = reflection of X(10894) in X(5)
X(26363) = complement of X(3085)
X(26363) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 499, 10200), (499, 19854, 2), (3616, 12649, 1)
X(26364) lies on these lines: {1,2}, {3,119}, {4,2077}, {5,1376}, {9,2252}, {11,5687}, {12,474}, {35,2478}, {36,3436}, {40,1519}, {46,908}, {55,4187}, {56,13747}, {57,21077}, {72,18838}, {83,26432}, {100,1479}, {140,958}, {165,6838}, {191,10940}, {214,944}, {281,25078}, {345,20320}, {355,5123}, {377,7951}, {388,17567}, {392,24954}, {404,1478}, {405,5432}, {427,26378}, {442,4413}, {443,3822}, {475,1877}, {484,11415}, {495,25524}, {496,3913}, {497,3825}, {515,6891}, {516,6848}, {517,6959}, {528,9669}, {590,1377}, {615,1378}, {631,993}, {758,1788}, {946,6944}, {952,26492}, {956,5433}, {960,6863}, {962,6979}, {999,6691}, {1001,17527}, {1058,25439}, {1145,2098}, {1213,5783}, {1259,10523}, {1324,13732}, {1387,10912}, {1482,8256}, {1532,10310}, {1574,7746}, {1575,3767}, {1650,26453}, {1656,2886}, {1697,25522}, {1699,6953}, {1706,6983}, {1837,5440}, {1861,3542}, {2049,19721}, {2548,4386}, {2550,3090}, {2950,21635}, {2975,17566}, {3036,12645}, {3068,26465}, {3069,26459}, {3071,9679}, {3096,26318}, {3256,3841}, {3295,3816}, {3306,13407}, {3336,5905}, {3359,3452}, {3419,17606}, {3421,5193}, {3434,6931}, {3485,3754}, {3487,5883}, {3523,5267}, {3525,10805}, {3526,4999}, {3555,17728}, {3576,6967}, {3579,24703}, {3583,5187}, {3585,4190}, {3614,17532}, {3740,5791}, {3753,11375}, {3763,12594}, {3812,11374}, {3813,6667}, {3817,6964}, {3826,6668}, {3836,23693}, {3874,25568}, {3878,5657}, {3880,11373}, {3911,21075}, {3922,4870}, {3926,6381}, {3947,12436}, {4188,4299}, {4197,9342}, {4294,6919}, {4295,5748}, {4297,6926}, {4302,5046}, {4308,5828}, {4310,24167}, {4317,20060}, {4358,17869}, {4421,15171}, {4423,17575}, {4855,10572}, {4857,20075}, {5010,6872}, {5044,5694}, {5054,18545}, {5067,10596}, {5070,9710}, {5082,10589}, {5084,5218}, {5086,7705}, {5087,12699}, {5094,11400}, {5217,11113}, {5219,12609}, {5226,11263}, {5251,6910}, {5252,17614}, {5277,9596}, {5289,5690}, {5326,10955}, {5328,6960}, {5438,5587}, {5439,17718}, {5445,5692}, {5450,6961}, {5490,26500}, {5491,26509}, {5590,26350}, {5591,26343}, {5660,15071}, {5691,6890}, {5693,18254}, {5720,12616}, {5745,6989}, {5770,15528}, {5794,6862}, {5795,10165}, {5818,6952}, {5836,5886}, {5850,8732}, {5881,10785}, {6174,6284}, {6376,7763}, {6554,24036}, {6690,11108}, {6692,21620}, {6796,6827}, {6824,10175}, {6837,7989}, {6847,19925}, {6853,10176}, {6880,11012}, {6882,11499}, {6887,10172}, {6904,10590}, {6908,10164}, {6911,26332}, {6918,7680}, {6922,11500}, {6924,10526}, {6941,12775}, {6947,10902}, {6963,11491}, {7354,16371}, {7483,22768}, {7484,10834}, {7506,9712}, {7629,8062}, {7681,10306}, {7786,13109}, {7808,10803}, {7914,10878}, {7952,24025}, {9654,16417}, {9655,17573}, {9656,17583}, {9798,16434}, {10591,17784}, {10593,11235}, {10895,11112}, {10914,11376}, {10965,24390}, {11236,17564}, {11358,19754}, {11502,11517}, {11849,15813}, {11914,15184}, {11928,23513}, {12513,15325}, {12679,17613}, {12700,22835}, {12749,21842}, {13189,14061}, {13217,15059}, {13465,18253}, {14561,17792}, {15326,19537}, {15654,19514}, {15842,26470}, {15844,16410}, {16062,19795}, {16252,20307}, {16408,25466}, {16593,17675}, {17719,24159}, {18250,21164}, {19550,23361}, {26359,26400}, {26360,26424}, {26361,26518}, {26362,26523}
X(26364) = midpoint of X(3086) and X(7080)
X(26364) = reflection of X(10893) in X(5)
X(26364) = complement of X(3086)
X(26364) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1125, 10915, 1), (3244, 10199, 14986), (3616, 12648, 1)
X(26365) lies on these lines: {1,3}, {2,26382}, {515,26326}, {1125,26359}, {3616,26394}, {5603,26381}, {5886,26386}, {11363,26371}, {11364,26379}, {11365,26302}, {11368,26310}, {11370,26334}, {11371,26344}, {11373,26390}, {11374,26389}, {11375,26388}, {11376,26387}, {11831,26383}, {18493,18496}, {18991,26384}, {18992,26385}, {26367,26391}, {26368,26392}, {26369,26396}, {26370,26397}
X(26365) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26296, 26395), (999, 2646, 26366), (5597, 26395, 26296)
X(26366) lies on these lines: {1,3}, {2,26406}, {515,26327}, {1125,26360}, {3616,26418}, {5603,26405}, {5886,26410}, {11363,26372}, {11364,26403}, {11365,26303}, {11368,26311}, {11370,26335}, {11373,26414}, {11374,26413}, {11375,26412}, {11376,26411}, {11831,26407}, {18493,18498}, {18991,26408}, {18992,26409}, {26367,26415}, {26368,26416}, {26369,26420}, {26370,26421}
X(26366) = midpoint of X(1) and X(8187)
X(26366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 24929, 26365), (1, 26297, 26419), (999, 2646, 26365)
X(26367) lies on these lines: {1,493}, {2,26442}, {515,26328}, {517,26498}, {999,26322}, {1125,5490}, {1319,26433}, {2646,26353}, {3295,26493}, {3576,26292}, {3616,26494}, {5603,26439}, {5886,26466}, {6464,26368}, {11363,26373}, {11364,26427}, {11365,26304}, {11368,26312}, {11370,26337}, {11371,26347}, {11373,26488}, {11374,26483}, {11375,26477}, {11376,26471}, {11831,26447}, {18493,18521}, {18991,26454}, {18992,26460}, {26365,26391}, {26366,26415}, {26369,26496}, {26370,26497}
X(26367) = midpoint of X(1) and X(8188)
X(26367) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26298, 26495), (493, 26495, 26298)
X(26368) lies on these lines: {1,494}, {2,26443}, {515,26329}, {517,26507}, {999,26323}, {1125,5491}, {1319,26434}, {2646,26354}, {3295,26502}, {3576,26293}, {3616,26503}, {5603,26440}, {5886,26467}, {6464,26367}, {11363,26374}, {11364,26428}, {11365,26305}, {11368,26313}, {11371,26338}, {11373,26489}, {11374,26484}, {11375,26478}, {11376,26472}, {11831,26448}, {18493,18523}, {18991,26455}, {18992,26461}, {26365,26392}, {26366,26416}, {26369,26505}, {26370,26506}
X(26368) = midpoint of X(1) and X(8189)
X(26368) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26299, 26504), (494, 26504, 26299)
X(26369) lies on these lines: {1,1336}, {2,26444}, {4,12269}, {193,1386}, {492,3616}, {515,26330}, {517,26516}, {999,26324}, {1125,26361}, {1319,26435}, {2646,26355}, {3295,26512}, {3576,26294}, {3636,11370}, {5603,26441}, {5886,26468}, {7981,8960}, {11363,26375}, {11364,26429}, {11365,26306}, {11368,26314}, {11373,26490}, {11374,26485}, {11375,26479}, {11376,26473}, {11831,26449}, {13667,15682}, {18493,18539}, {18991,26456}, {18992,26462}, {26365,26396}, {26366,26420}, {26367,26496}, {26368,26505}
X(26369) = midpoint of X(1) and X(13888)
X(26369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26300, 26514), (3068, 26514, 26300)
X(26370) lies on these lines: {1,1123}, {2,26445}, {4,12268}, {193,1386}, {491,3616}, {515,26331}, {517,26521}, {551,5861}, {999,26325}, {1125,26362}, {1319,26436}, {2646,26356}, {3295,26513}, {3576,26295}, {3636,11371}, {5603,8982}, {5886,26469}, {11363,26376}, {11364,26430}, {11365,26307}, {11368,26315}, {11373,26491}, {11374,26486}, {11375,26480}, {11376,26474}, {11831,26450}, {13787,15682}, {18493,26438}, {18991,26457}, {18992,26463}, {26365,26397}, {26366,26421}, {26367,26497}, {26368,26506}
X(26370) = midpoint of X(1) and X(13942)
X(26370) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26301, 26515), (3069, 26515, 26301)
X(26371) lies on these lines: {1,1824}, {4,26386}, {24,26398}, {25,5597}, {33,26351}, {34,26380}, {235,26326}, {427,26359}, {1593,26290}, {5090,26382}, {5410,26385}, {5411,26384}, {7487,26381}, {7713,26296}, {11363,26365}, {11380,26379}, {11383,26393}, {11386,26310}, {11388,26334}, {11389,26344}, {11390,26390}, {11391,26389}, {11392,26388}, {11393,26387}, {11396,26395}, {11400,26402}, {11401,26401}, {11832,26383}, {18494,18496}, {22479,26319}, {26373,26391}, {26374,26392}, {26375,26396}, {26376,26397}, {26377,26399}, {26378,26400}
X(26371) = {X(1), X(1824)}-harmonic conjugate of X(26372)
X(26372) lies on these lines: {1,1824}, {4,26410}, {24,26422}, {25,5598}, {33,26352}, {34,26404}, {235,26327}, {427,26360}, {1593,26291}, {5090,26406}, {5410,26409}, {5411,26408}, {7487,26405}, {7713,26297}, {11363,26366}, {11380,26403}, {11383,26417}, {11386,26311}, {11388,26335}, {11389,26345}, {11390,26414}, {11391,26413}, {11392,26412}, {11393,26411}, {11396,26419}, {11400,26426}, {11401,26425}, {11832,26407}, {18494,18498}, {22479,26320}, {26373,26415}, {26374,26416}, {26375,26420}, {26376,26421}, {26377,26423}, {26378,26424}
X(26372) = {X(1), X(1824)}-harmonic conjugate of X(26371)
X(26373) lies on these lines: {4,26466}, {24,26498}, {25,371}, {33,26353}, {34,26433}, {69,24244}, {235,26328}, {427,5490}, {1593,26292}, {5090,26442}, {5410,26460}, {5411,26454}, {6464,26374}, {7487,26439}, {7713,26298}, {11363,26367}, {11380,26427}, {11383,26493}, {11386,26312}, {11388,26337}, {11389,26347}, {11390,26488}, {11391,26483}, {11392,26477}, {11393,26471}, {11396,26495}, {11401,26501}, {11832,26447}, {18494,18521}, {22479,26322}, {26371,26391}, {26372,26415}, {26375,26496}, {26376,26497}, {26377,26499}, {26378,26500}
X(26373) = {X(493), X(8948)}-harmonic conjugate of X(25)
X(26374) lies on these lines: {4,26467}, {24,26507}, {25,372}, {33,26354}, {34,26434}, {69,24243}, {235,26329}, {427,5491}, {1593,26293}, {5090,26443}, {5410,26461}, {5411,26455}, {6464,26373}, {7487,26440}, {7713,26299}, {11363,26368}, {11380,26428}, {11383,26502}, {11386,26313}, {11389,26338}, {11390,26489}, {11391,26484}, {11392,26478}, {11393,26472}, {11396,26504}, {11400,26511}, {11401,26510}, {11832,26448}, {18494,18523}, {22479,26323}, {26371,26392}, {26372,26416}, {26375,26505}, {26376,26506}, {26377,26508}, {26378,26509}
X(26374) = {X(494), X(8946)}-harmonic conjugate of X(25)
X(26375) lies on these lines: {4,488}, {20,6291}, {24,26516}, {25,3068}, {33,26355}, {34,26435}, {193,1843}, {235,26330}, {393,5200}, {427,26361}, {428,5860}, {1593,26294}, {5090,26444}, {5410,26462}, {5411,26456}, {7487,26441}, {7713,26300}, {8408,11473}, {10301,11388}, {11363,26369}, {11380,26429}, {11383,26512}, {11386,26314}, {11390,26490}, {11391,26485}, {11392,26479}, {11393,26473}, {11396,26514}, {11400,26520}, {11401,26519}, {11832,26449}, {13668,15682}, {18494,18539}, {22479,26324}, {26371,26396}, {26372,26420}, {26373,26496}, {26374,26505}, {26377,26517}, {26378,26518}
X(26375) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1843, 6995, 26376), (8948, 12148, 4)
X(26376) lies on these lines: {4,487}, {20,6406}, {24,26521}, {25,3069}, {33,26356}, {34,26436}, {193,1843}, {235,26331}, {393,5412}, {427,26362}, {428,5861}, {1163,5200}, {1593,26295}, {5090,26445}, {5410,26463}, {5411,26457}, {7487,8982}, {7713,26301}, {8420,11474}, {10301,11389}, {11363,26370}, {11380,26430}, {11383,26513}, {11386,26315}, {11390,26491}, {11391,26486}, {11392,26480}, {11393,26474}, {11396,26515}, {11400,26525}, {11401,26524}, {11832,26450}, {13788,15682}, {18494,26438}, {22479,26325}, {26371,26397}, {26372,26421}, {26373,26497}, {26374,26506}, {26377,26522}, {26378,26523}
X(26376) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1843, 6995, 26375), (8946, 12147, 4)
X(26377) lies on these lines: {1,25}, {3,1824}, {4,2975}, {5,11391}, {8,4231}, {19,1609}, {24,10267}, {28,1068}, {33,26357}, {34,26437}, {55,20832}, {56,225}, {232,607}, {235,26332}, {283,24320}, {427,26363}, {429,958}, {431,1478}, {444,5230}, {468,10198}, {956,5130}, {1593,1900}, {1598,1828}, {1825,11509}, {1871,6585}, {1878,5198}, {1902,5709}, {2333,9310}, {2905,11107}, {3089,10532}, {3515,10902}, {3517,16202}, {4186,10966}, {4232,10587}, {5090,6734}, {5410,26464}, {5411,26458}, {5412,19050}, {5413,19049}, {6198,14017}, {6756,10943}, {6995,10529}, {7466,7718}, {7487,12116}, {7714,11240}, {7716,12595}, {8946,26510}, {8948,26501}, {9645,13730}, {11380,26431}, {11386,26317}, {11388,26342}, {11389,26349}, {11392,26481}, {11393,26475}, {11832,26452}, {13095,15811}, {14018,19850}, {17523,23710}, {18494,18544}, {26371,26399}, {26372,26423}, {26373,26499}, {26374,26508}, {26375,26517}, {26376,26522}
X(26377) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 1829, 26378), (25, 11396, 11398), (25, 11401, 1)
X(26378) lies on these lines: {1,25}, {3,1828}, {4,100}, {5,11390}, {24,10269}, {33,26358}, {34,1470}, {55,1842}, {56,1866}, {235,26333}, {427,26364}, {607,10311}, {1376,1883}, {1452,18838}, {1593,1878}, {1598,1824}, {1831,10965}, {1851,7412}, {1862,25438}, {1877,4185}, {1900,5198}, {3089,10531}, {3517,16203}, {3575,6256}, {4232,10586}, {5090,6735}, {5101,5687}, {5151,13205}, {5410,26465}, {5411,26459}, {5412,19048}, {5413,19047}, {6756,10942}, {6995,10528}, {7487,12115}, {7714,11239}, {7716,12594}, {7718,12648}, {8946,26511}, {11380,26432}, {11386,26318}, {11388,26343}, {11389,26350}, {11392,26482}, {11393,26476}, {11832,26453}, {12137,12751}, {13094,15811}, {18494,18542}, {20619,23404}, {20832,22768}, {26371,26400}, {26372,26424}, {26373,26500}, {26374,26509}, {26375,26518}, {26376,26523}
X(26378) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 1829, 26377), (25, 11396, 11399), (25, 11400, 1)
X(26379) lies on these lines: {1,26403}, {32,5597}, {83,26359}, {98,26326}, {182,26290}, {2080,26398}, {7787,26394}, {10788,26381}, {10789,26296}, {10790,26302}, {10791,26382}, {10792,26334}, {10793,26344}, {10794,26390}, {10795,26389}, {10796,26386}, {10797,26388}, {10798,26387}, {10799,26351}, {10800,26395}, {10803,26402}, {10804,26401}, {11364,26365}, {11380,26371}, {11490,26393}, {11839,26383}, {12835,26380}, {18496,18501}, {18994,26385}, {22520,26319}, {26391,26427}, {26392,26428}, {26396,26429}, {26397,26430}, {26399,26431}, {26400,26432}
X(26380) lies on these lines: {1,3}, {4,26387}, {11,26326}, {12,26359}, {34,26371}, {388,26388}, {1478,26386}, {3434,26412}, {4293,26381}, {5252,26382}, {9655,18496}, {12835,26379}, {18954,26302}, {18957,26310}, {18958,26383}, {18959,26334}, {18960,26344}, {18961,26390}, {18962,26389}, {18995,26384}, {18996,26385}, {26391,26433}, {26392,26434}, {26396,26435}, {26397,26436}
X(26380) = reflection of X(26352) in X(1)
X(26380) = inverse of X(5903) in the Moses-Longuet-Higgins circle
X(26380) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 2099, 26404), (65, 1319, 5598), (26402, 26425, 26393)
X(26381) lies on these lines: {1,6934}, {2,26386}, {3,26394}, {4,5597}, {5,18496}, {24,26302}, {104,26319}, {376,26290}, {515,26296}, {631,26359}, {3085,26388}, {3086,26387}, {4293,26380}, {4294,26351}, {5603,26365}, {5657,26382}, {5842,11366}, {7487,26371}, {7581,26385}, {7582,26384}, {7967,26395}, {8982,26397}, {9862,26310}, {10783,26334}, {10784,26344}, {10785,26390}, {10786,26389}, {10788,26379}, {10805,26402}, {10806,26401}, {11491,26393}, {11845,26383}, {12115,26400}, {12116,26399}, {26391,26439}, {26392,26440}, {26396,26441}
X(26381) = reflection of X(4) in X(8196)
X(26382) lies on these lines: {1,442}, {2,26365}, {8,26394}, {10,5597}, {65,26388}, {72,26389}, {515,26290}, {517,26386}, {519,26395}, {956,26319}, {1837,26351}, {3057,26387}, {3679,26296}, {5090,26371}, {5252,26380}, {5587,26326}, {5657,26381}, {5687,26393}, {5688,26344}, {5689,26334}, {6734,26399}, {6735,26400}, {8193,26302}, {9857,26310}, {10791,26379}, {10914,26390}, {10915,26402}, {10916,26401}, {11900,26383}, {12702,18496}, {13883,26385}, {13936,26384}, {17647,26425}, {26391,26442}, {26392,26443}, {26396,26444}, {26397,26445}, {26398,26446}
X(26382) = reflection of X(8197) in X(10)
X(26382) = {X(1), X(3419)}-harmonic conjugate of X(26406)
X(26383) lies on these lines: {1,26407}, {30,26290}, {402,5597}, {1650,26359}, {4240,26394}, {11831,26365}, {11832,26371}, {11839,26379}, {11845,26381}, {11848,26393}, {11852,26296}, {11853,26302}, {11885,26310}, {11897,26326}, {11900,26382}, {11901,26334}, {11902,26344}, {11903,26390}, {11904,26389}, {11905,26388}, {11906,26387}, {11909,26351}, {11910,26395}, {11914,26402}, {11915,26401}, {18496,18508}, {18958,26380}, {19017,26384}, {19018,26385}, {22755,26319}, {26396,26449}, {26398,26451}, {26399,26452}, {26400,26453}
X(26384) lies on these lines: {1,26408}, {6,5597}, {55,26409}, {372,26290}, {1587,26326}, {3069,26359}, {3311,26398}, {5411,26371}, {7582,26381}, {7584,26386}, {7586,26394}, {7968,26395}, {13936,26382}, {18496,18510}, {18991,26365}, {18995,26380}, {18999,26393}, {19003,26296}, {19005,26302}, {19011,26310}, {19013,26319}, {19017,26383}, {19023,26390}, {19025,26389}, {19027,26388}, {19029,26387}, {19037,26351}, {19047,26402}, {19049,26401}, {26391,26454}, {26392,26455}, {26396,26456}, {26397,26457}, {26399,26458}, {26400,26459}
X(26384) = {X(6), X(5597)}-harmonic conjugate of X(26385)
X(26385) lies on these lines: {1,26409}, {6,5597}, {55,26408}, {371,26290}, {1588,26326}, {3068,26359}, {3312,26398}, {5410,26371}, {7581,26381}, {7583,26386}, {7585,26394}, {7969,26395}, {13883,26382}, {18496,18512}, {18992,26365}, {18996,26380}, {19004,26296}, {19006,26302}, {19012,26310}, {19014,26319}, {19018,26383}, {19026,26389}, {19028,26388}, {19030,26387}, {19038,26351}, {19048,26402}, {19050,26401}, {26391,26460}, {26392,26461}, {26396,26462}, {26399,26464}, {26400,26465}
X(26385) = {X(6), X(5597)}-harmonic conjugate of X(26384)
X(26386) lies on these lines: {1,6917}, {2,26381}, {3,18496}, {4,26371}, {5,5597}, {30,26290}, {119,26400}, {355,26389}, {381,26326}, {517,26382}, {952,26395}, {1478,26380}, {1479,26351}, {5587,26296}, {5886,26365}, {6214,26344}, {6215,26334}, {7583,26385}, {7584,26384}, {9996,26310}, {10679,26327}, {10796,26379}, {10942,26402}, {10943,26401}, {11499,26393}, {22758,26319}, {26391,26466}, {26392,26467}, {26396,26468}, {26397,26469}, {26399,26470}
X(26386) = reflection of X(8200) in X(5)
X(26386) = {X(26387), X(26388)}-harmonic conjugate of X(1)
X(26387) lies on these lines: {1,6917}, {4,26380}, {11,5597}, {55,26359}, {497,26351}, {499,26398}, {999,18496}, {3057,26382}, {3086,26381}, {3434,26352}, {6284,26290}, {9581,26296}, {10798,26379}, {10832,26302}, {10874,26310}, {10896,26326}, {10925,26334}, {10926,26344}, {10950,26389}, {10958,26402}, {10959,26401}, {11376,26365}, {11393,26371}, {11502,26393}, {11906,26383}, {19029,26384}, {19030,26385}, {22760,26319}, {26396,26473}, {26397,26474}, {26399,26475}, {26400,26476}
X(26387) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26386, 26388), (497, 26394, 26351)
X(26388) lies on these lines: {1,6917}, {4,26351}, {12,5597}, {55,26327}, {56,26359}, {65,26382}, {388,26380}, {498,26398}, {3085,26381}, {3295,18496}, {3434,26404}, {7354,26290}, {9578,26296}, {10797,26379}, {10831,26302}, {10873,26310}, {10895,26326}, {10923,26334}, {10924,26344}, {10944,26390}, {10956,26402}, {10957,26401}, {11375,26365}, {11392,26371}, {11501,26393}, {11905,26383}, {19027,26384}, {19028,26385}, {22759,26319}, {26396,26479}, {26397,26480}, {26399,26481}, {26400,26482}
X(26388) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26386, 26387), (388, 26394, 26380)
X(26389) lies on these lines: {1,4}, {5,26399}, {11,26401}, {12,5597}, {30,26423}, {72,26382}, {355,26386}, {958,26319}, {3085,8186}, {4294,8187}, {5598,6284}, {5842,11878}, {7354,26425}, {7680,11877}, {10525,26414}, {10786,26381}, {10795,26379}, {10827,26296}, {10830,26302}, {10872,26310}, {10894,26326}, {10895,11366}, {10921,26334}, {10922,26344}, {10942,26400}, {10950,26387}, {10953,26351}, {10955,26402}, {11367,12953}, {11374,26365}, {11391,26371}, {11496,26327}, {11500,26393}, {11827,26290}, {11879,18242}, {11904,26383}, {15908,26291}, {18496,18518}, {18962,26380}, {19025,26384}, {19026,26385}, {26391,26483}, {26392,26484}, {26396,26485}, {26397,26486}, {26398,26487}
X(26389) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 4, 26413), (388, 5290, 26413), (1478, 21620, 26413)
X(26390) lies on these lines: {1,224}, {5,26400}, {11,5597}, {12,26402}, {355,26386}, {528,11880}, {1376,26359}, {2886,11879}, {10525,26413}, {10785,26381}, {10794,26379}, {10826,26296}, {10829,26302}, {10871,26310}, {10893,26326}, {10914,26382}, {10919,26334}, {10920,26344}, {10943,26399}, {10944,26388}, {10947,26351}, {10949,26401}, {11373,26365}, {11390,26371}, {11826,26290}, {11903,26383}, {12114,26319}, {18496,18519}, {18961,26380}, {19023,26384}, {19024,26385}, {26391,26488}, {26392,26489}, {26396,26490}, {26397,26491}, {26398,26492}
X(26391) lies on these lines: {493,5597}, {5490,26359}, {18496,18521}, {26290,26292}, {26296,26298}, {26302,26304}, {26310,26312}, {26319,26322}, {26326,26328}, {26334,26337}, {26344,26347}, {26351,26353}, {26365,26367}, {26371,26373}, {26379,26427}, {26380,26433}, {26381,26439}, {26382,26442}, {26384,26454}, {26385,26460}, {26386,26466}, {26389,26483}, {26390,26488}, {26393,26493}, {26394,26494}, {26395,26495}, {26396,26496}, {26397,26497}, {26398,26498}, {26399,26499}
X(26392) lies on these lines: {494,5597}, {5491,26359}, {18496,18523}, {26290,26293}, {26296,26299}, {26302,26305}, {26310,26313}, {26319,26323}, {26326,26329}, {26338,26344}, {26351,26354}, {26365,26368}, {26371,26374}, {26379,26428}, {26380,26434}, {26381,26440}, {26382,26443}, {26384,26455}, {26385,26461}, {26386,26467}, {26389,26484}, {26393,26502}, {26394,26503}, {26395,26504}, {26396,26505}, {26397,26506}, {26398,26507}, {26401,26510}
X(26393) lies on these lines: {1,3}, {100,26394}, {197,26302}, {355,11869}, {1376,26359}, {1737,5599}, {1837,8200}, {1905,11384}, {3476,11844}, {3486,11843}, {5252,8207}, {5600,10039}, {5601,18391}, {5687,26382}, {5722,11871}, {8196,12047}, {8197,10573}, {8204,12647}, {9834,10572}, {11383,26371}, {11490,26379}, {11491,26381}, {11494,26310}, {11496,26326}, {11497,26334}, {11498,26344}, {11499,26386}, {11500,26389}, {11501,26388}, {11502,26387}, {11570,12462}, {11848,26383}, {12456,15071}, {12463,12758}, {18496,18524}, {18999,26384}, {19000,26385}, {26391,26493}, {26392,26502}, {26396,26512}, {26397,26513}
X(26393) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5597, 5598, 26351), (11882, 11883, 26352), (26402, 26425, 26380)
X(26394) lies on these lines: {1,224}, {2,5597}, {3,26381}, {4,26371}, {8,26382}, {10,26296}, {20,26290}, {22,26302}, {30,18496}, {100,26393}, {145,26395}, {388,26380}, {491,26397}, {492,26396}, {497,26351}, {528,11367}, {631,26398}, {1270,26344}, {1271,26334}, {2896,26310}, {2975,26319}, {3091,26326}, {4190,26425}, {4240,26383}, {5598,20075}, {7585,26385}, {7586,26384}, {7787,26379}, {10527,26399}, {10528,26402}, {10529,26401}, {26391,26494}, {26392,26503}
X(26394) = anticomplement of X(5599)
X(26394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3434, 26418), (5597, 26359, 2)
X(26395) lies on these lines: {1,3}, {8,26359}, {145,26394}, {519,26382}, {952,26386}, {5603,26326}, {5604,26344}, {5605,26334}, {7967,26381}, {7968,26384}, {7969,26385}, {8192,26302}, {9997,26310}, {10800,26379}, {10944,26388}, {10950,26387}, {11396,26371}, {11910,26383}, {18496,18526}, {26391,26495}, {26392,26504}, {26396,26514}, {26397,26515}
X(26395) = reflection of X(5598) in X(1)
X(26395) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 5903, 26423), (1482, 5919, 26419), (8162, 11009, 26419)
X(26396) lies on these lines: {1,26420}, {193,26397}, {492,26394}, {3068,5597}, {5860,26344}, {18496,18539}, {26290,26294}, {26296,26300}, {26302,26306}, {26310,26314}, {26319,26324}, {26326,26330}, {26334,26339}, {26351,26355}, {26359,26361}, {26365,26369}, {26371,26375}, {26379,26429}, {26380,26435}, {26381,26441}, {26382,26444}, {26383,26449}, {26384,26456}, {26385,26462}, {26386,26468}, {26387,26473}, {26388,26479}, {26389,26485}, {26390,26490}, {26391,26496}, {26392,26505}, {26393,26512}, {26395,26514}, {26398,26516}, {26399,26517}, {26400,26518}, {26401,26519}, {26402,26520}
X(26397) lies on these lines: {1,26421}, {193,26396}, {491,26394}, {3069,5597}, {5861,26334}, {8982,26381}, {18496,26438}, {26290,26295}, {26296,26301}, {26302,26307}, {26310,26315}, {26319,26325}, {26326,26331}, {26340,26344}, {26351,26356}, {26359,26362}, {26365,26370}, {26371,26376}, {26379,26430}, {26380,26436}, {26382,26445}, {26383,26450}, {26384,26457}, {26385,26463}, {26386,26469}, {26387,26474}, {26388,26480}, {26389,26486}, {26390,26491}, {26391,26497}, {26392,26506}, {26393,26513}, {26395,26515}, {26398,26521}, {26399,26522}, {26400,26523}, {26401,26524}, {26402,26525}
X(26398) lies on these lines: {1,3}, {2,26381}, {24,26371}, {30,26326}, {140,26359}, {498,26388}, {499,26387}, {631,26394}, {1656,18496}, {2080,26379}, {3311,26384}, {3312,26385}, {6642,26302}, {26310,26316}, {26334,26341}, {26344,26348}, {26382,26446}, {26383,26451}, {26389,26487}, {26390,26492}, {26391,26498}, {26392,26507}, {26396,26516}, {26397,26521}
X(26398) = midpoint of X(3) and X(11875)
X(26399) lies on these lines: {1,3}, {5,26389}, {30,26413}, {5601,16845}, {6734,26382}, {6846,8200}, {10527,26394}, {10943,26390}, {12116,26381}, {18496,18544}, {26302,26308}, {26310,26317}, {26326,26332}, {26334,26342}, {26344,26349}, {26359,26363}, {26371,26377}, {26379,26431}, {26383,26452}, {26384,26458}, {26385,26464}, {26386,26470}, {26387,26475}, {26388,26481}, {26396,26517}, {26397,26522}
X(26399) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 36, 26425), (1, 5903, 26419), (1, 11248, 26424)
X(26400) lies on these lines: {1,3}, {5,26390}, {119,26386}, {6735,26382}, {10942,26389}, {12115,26381}, {18496,18542}, {26302,26309}, {26310,26318}, {26326,26333}, {26334,26343}, {26344,26350}, {26359,26364}, {26371,26378}, {26379,26432}, {26383,26453}, {26384,26459}, {26385,26465}, {26387,26476}, {26388,26482}, {26396,26518}, {26397,26523}
X(26400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 10679, 26424), (1, 11248, 26423), (5597, 26402, 1)
X(26401) lies on these lines: {1,3}, {11,26389}, {377,26360}, {4190,26418}, {6833,26327}, {7354,26413}, {10527,26359}, {10529,26394}, {10532,26326}, {10804,26379}, {10806,26381}, {10835,26302}, {10879,26310}, {10916,26382}, {10931,26334}, {10932,26344}, {10943,26386}, {10949,26390}, {10957,26388}, {10959,26387}, {11401,26371}, {11915,26383}, {17647,26406}, {18496,18543}, {19049,26384}, {19050,26385}, {26396,26519}, {26397,26524}
X(26401) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 36, 26423), (1, 56, 26425), (2223, 19765, 26425)
X(26402) lies on these lines: {1,3}, {12,26390}, {5552,26359}, {10528,26394}, {10531,26326}, {10803,26379}, {10805,26381}, {10834,26302}, {10878,26310}, {10915,26382}, {10929,26334}, {10930,26344}, {10942,26386}, {10955,26389}, {10956,26388}, {10958,26387}, {11400,26371}, {11914,26383}, {18496,18545}, {19047,26384}, {19048,26385}, {26396,26520}, {26397,26525}
X(26402) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 10679, 5598), (5597, 26395, 26401), (26380, 26393, 26425)
X(26403) lies on these lines: {1,26379}, {32,5598}, {83,26360}, {98,26327}, {182,26291}, {2080,26422}, {7787,26418}, {10788,26405}, {10789,26297}, {10790,26303}, {10791,26406}, {10792,26335}, {10793,26345}, {10794,26414}, {10795,26413}, {10796,26410}, {10797,26412}, {10798,26411}, {10799,26352}, {10800,26419}, {10803,26426}, {10804,26425}, {11364,26366}, {11380,26372}, {11839,26407}, {12835,26404}, {18498,18501}, {18993,26408}, {18994,26409}, {22520,26320}, {26415,26427}, {26416,26428}, {26420,26429}, {26421,26430}, {26423,26431}, {26424,26432}
X(26404) lies on these lines: {1,3}, {4,26411}, {11,26327}, {12,26360}, {34,26372}, {388,26412}, {1478,26410}, {3434,26388}, {4293,26405}, {5252,26406}, {9655,18498}, {12835,26403}, {18954,26303}, {18957,26311}, {18958,26407}, {18959,26335}, {18960,26345}, {18961,26414}, {18962,26413}, {18995,26408}, {18996,26409}, {26420,26435}, {26421,26436}
X(26404) = reflection of X(26351) in X(1)
X(26404) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 2099, 26380), (65, 1319, 5597), (26401, 26426, 26417)
X(26405) lies on these lines: {1,6934}, {2,26410}, {3,26418}, {4,5598}, {5,18498}, {24,26303}, {104,26320}, {376,26291}, {515,26297}, {631,26360}, {3085,26412}, {3086,26411}, {4293,26404}, {4294,26352}, {5603,26366}, {5657,26406}, {5842,11367}, {7487,26372}, {7581,26409}, {7582,26408}, {7967,26419}, {8982,26421}, {9862,26311}, {10783,26335}, {10784,26345}, {10785,26414}, {10786,26413}, {10788,26403}, {10805,26426}, {10806,26425}, {11491,26417}, {11845,26407}, {12116,26423}, {26416,26440}, {26420,26441}
X(26406) lies on these lines: {1,442}, {2,26366}, {8,26418}, {10,5598}, {65,26412}, {72,26413}, {515,26291}, {517,26410}, {519,26419}, {956,26320}, {1837,26352}, {3057,26411}, {3679,26297}, {5090,26372}, {5252,26404}, {5587,26327}, {5657,26405}, {5687,26417}, {5688,26345}, {5689,26335}, {6734,26423}, {6735,26424}, {8193,26303}, {9857,26311}, {10791,26403}, {10914,26414}, {10915,26426}, {10916,26425}, {11900,26407}, {12702,18498}, {13883,26409}, {13936,26408}, {17647,26401}, {26415,26442}, {26416,26443}, {26420,26444}, {26421,26445}, {26422,26446}
X(26406) = reflection of X(8204) in X(10)
X(26406) = {X(1), X(3419)}-harmonic conjugate of X(26382)
X(26407) lies on these lines: {1,26383}, {30,26291}, {402,5598}, {1650,26360}, {4240,26418}, {11831,26366}, {11832,26372}, {11839,26403}, {11845,26405}, {11848,26417}, {11852,26297}, {11853,26303}, {11885,26311}, {11897,26327}, {11900,26406}, {11901,26335}, {11902,26345}, {11903,26414}, {11904,26413}, {11905,26412}, {11906,26411}, {11909,26352}, {11910,26419}, {11914,26426}, {11915,26425}, {18498,18508}, {18958,26404}, {19017,26408}, {19018,26409}, {22755,26320}, {26420,26449}, {26421,26450}, {26422,26451}, {26423,26452}, {26424,26453}
X(26408) lies on these lines: {1,26384}, {6,5598}, {55,26385}, {372,26291}, {1587,26327}, {3069,26360}, {3311,26422}, {5411,26372}, {7582,26405}, {7584,26410}, {7586,26418}, {7968,26419}, {13936,26406}, {18498,18510}, {18991,26366}, {18993,26403}, {18995,26404}, {18999,26417}, {19003,26297}, {19005,26303}, {19011,26311}, {19013,26320}, {19017,26407}, {19025,26413}, {19027,26412}, {19029,26411}, {19037,26352}, {19047,26426}, {19049,26425}, {26415,26454}, {26416,26455}, {26420,26456}, {26421,26457}, {26423,26458}, {26424,26459}
X(26408) = {X(6), X(5598)}-harmonic conjugate of X(26409)
X(26409) lies on these lines: {1,26385}, {6,5598}, {55,26384}, {371,26291}, {1588,26327}, {3068,26360}, {3312,26422}, {5410,26372}, {7581,26405}, {7583,26410}, {7585,26418}, {7969,26419}, {13883,26406}, {18498,18512}, {18992,26366}, {18994,26403}, {18996,26404}, {19000,26417}, {19004,26297}, {19006,26303}, {19012,26311}, {19014,26320}, {19018,26407}, {19024,26414}, {19026,26413}, {19028,26412}, {19030,26411}, {19038,26352}, {19048,26426}, {19050,26425}, {26415,26460}, {26416,26461}, {26420,26462}, {26421,26463}, {26423,26464}, {26424,26465}
X(26409) = {X(6), X(5598)}-harmonic conjugate of X(26408)
X(26410) lies on these lines: {1,6917}, {2,26405}, {3,18498}, {4,26372}, {5,5598}, {30,26291}, {119,26424}, {355,26413}, {381,26327}, {517,26406}, {952,26419}, {1478,26404}, {1479,26352}, {5587,26297}, {5886,26366}, {6214,26345}, {6215,26335}, {7583,26409}, {7584,26408}, {9996,26311}, {10679,26326}, {10796,26403}, {10942,26426}, {10943,26425}, {11499,26417}, {22758,26320}, {26415,26466}, {26416,26467}, {26420,26468}, {26421,26469}, {26423,26470}
X(26410) = reflection of X(8207) in X(5)
X(26410) = {X(26411), X(26412)}-harmonic conjugate of X(1)
X(26411) lies on these lines: {1,6917}, {4,26404}, {11,5598}, {55,26360}, {497,26352}, {499,26422}, {3057,26406}, {3086,26405}, {3434,26351}, {6284,26291}, {9581,26297}, {10798,26403}, {10832,26303}, {10874,26311}, {10896,26327}, {10926,26345}, {10950,26413}, {10958,26426}, {10959,26425}, {11376,26366}, {11393,26372}, {11502,26417}, {11906,26407}, {19029,26408}, {19030,26409}, {22760,26320}, {26420,26473}, {26421,26474}, {26423,26475}, {26424,26476}
X(26411) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26410, 26412), (497, 26418, 26352)
X(26412) lies on these lines: {1,6917}, {4,26352}, {12,5598}, {55,26326}, {56,26360}, {65,26406}, {388,26404}, {498,26422}, {3085,26405}, {3295,18498}, {3434,26380}, {7354,26291}, {9578,26297}, {10797,26403}, {10831,26303}, {10895,26327}, {10923,26335}, {10924,26345}, {10944,26414}, {10956,26426}, {10957,26425}, {11375,26366}, {11392,26372}, {11501,26417}, {11905,26407}, {19027,26408}, {19028,26409}, {22759,26320}, {26420,26479}, {26421,26480}, {26423,26481}, {26424,26482}
X(26412) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26410, 26411), (388, 26418, 26404)
X(26413) lies on these lines: {1,4}, {5,26423}, {11,26425}, {12,5598}, {30,26399}, {72,26406}, {355,26410}, {958,26320}, {3085,8187}, {3436,26418}, {5597,6284}, {5842,11877}, {7354,26401}, {7680,11878}, {10786,26405}, {10795,26403}, {10827,26297}, {10830,26303}, {10872,26311}, {10894,26327}, {10895,11367}, {10921,26335}, {10922,26345}, {10942,26424}, {10950,26411}, {10953,26352}, {11366,12953}, {11374,26366}, {11391,26372}, {11496,26326}, {11500,26417}, {11827,26291}, {11880,18242}, {11904,26407}, {18498,18518}, {18962,26404}, {19025,26408}, {26415,26483}, {26416,26484}, {26420,26485}, {26421,26486}, {26422,26487}
X(26413) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 4, 26389), (388, 5290, 26389), (1478, 21620, 26389)
X(26414) lies on these lines: {1,224}, {5,26424}, {11,5598}, {12,26426}, {355,26410}, {528,11879}, {1376,26360}, {2886,11880}, {10525,26389}, {10785,26405}, {10794,26403}, {10826,26297}, {10829,26303}, {10871,26311}, {10893,26327}, {10914,26406}, {10919,26335}, {10920,26345}, {10943,26423}, {10944,26412}, {10947,26352}, {10949,26425}, {11373,26366}, {11390,26372}, {11826,26291}, {11903,26407}, {12114,26320}, {18498,18519}, {18961,26404}, {19024,26409}, {26415,26488}, {26420,26490}, {26421,26491}, {26422,26492}
X(26415) lies on these lines: {493,5598}, {5490,26360}, {26291,26292}, {26297,26298}, {26303,26304}, {26311,26312}, {26320,26322}, {26327,26328}, {26335,26337}, {26345,26347}, {26352,26353}, {26366,26367}, {26372,26373}, {26403,26427}, {26404,26433}, {26405,26439}, {26406,26442}, {26408,26454}, {26409,26460}, {26413,26483}, {26414,26488}, {26417,26493}, {26418,26494}, {26419,26495}, {26420,26496}, {26421,26497}, {26422,26498}, {26425,26501}
X(26416) lies on these lines: {494,5598}, {5491,26360}, {18498,18523}, {26291,26293}, {26297,26299}, {26303,26305}, {26311,26313}, {26320,26323}, {26327,26329}, {26338,26345}, {26352,26354}, {26366,26368}, {26372,26374}, {26403,26428}, {26404,26434}, {26405,26440}, {26406,26443}, {26408,26455}, {26409,26461}, {26410,26467}, {26413,26484}, {26414,26489}, {26417,26502}, {26418,26503}, {26419,26504}, {26420,26505}, {26421,26506}, {26422,26507}
X(26417) lies on these lines: {1,3}, {100,26418}, {197,26303}, {355,11870}, {1376,26360}, {1737,5600}, {1837,8207}, {1905,11385}, {3476,11843}, {3486,11844}, {5252,8200}, {5599,10039}, {5602,18391}, {5687,26406}, {5722,11872}, {8197,12647}, {8203,12047}, {8204,10573}, {9835,10572}, {11383,26372}, {11491,26405}, {11494,26311}, {11496,26327}, {11497,26335}, {11498,26345}, {11499,26410}, {11500,26413}, {11501,26412}, {11502,26411}, {11570,12463}, {11848,26407}, {12457,15071}, {12462,12758}, {18498,18524}, {18999,26408}, {19000,26409}, {26415,26493}, {26416,26502}, {26420,26512}, {26421,26513}
X(26417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5597, 5598, 26352), (11881, 11884, 26351), (26401, 26426, 26404)
X(26418) lies on these lines: {1,224}, {2,5598}, {3,26405}, {4,26372}, {8,26406}, {10,26297}, {20,26291}, {22,26303}, {30,18498}, {100,26417}, {145,26419}, {388,26404}, {491,26421}, {492,26420}, {497,26352}, {528,11366}, {631,26422}, {1270,26345}, {1271,26335}, {2886,11367}, {2896,26311}, {2975,26320}, {3091,26327}, {3436,26413}, {3616,26366}, {4190,26401}, {4240,26407}, {5552,26424}, {5597,20075}, {7585,26409}, {7586,26408}, {7787,26403}, {10527,26423}, {10528,26426}, {10529,26425}, {26415,26494}, {26416,26503}
X(26418) = anticomplement of X(5600)
X(26418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 3434, 26394), (5598, 26360, 2)
X(26419) lies on these lines: {1,3}, {8,26360}, {145,26418}, {519,26406}, {952,26410}, {5603,26327}, {5604,26345}, {5605,26335}, {7967,26405}, {7968,26408}, {7969,26409}, {8192,26303}, {9997,26311}, {10800,26403}, {10944,26412}, {10950,26411}, {11396,26372}, {11910,26407}, {18498,18526}, {26415,26495}, {26416,26504}, {26420,26514}, {26421,26515}
X(26419) = reflection of X(5597) in X(1)
X(26419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 5903, 26399), (1482, 5919, 26395), (8162, 11009, 26395)
X(26420) lies on these lines: {1,26396}, {193,26421}, {492,26418}, {3068,5598}, {5860,26345}, {18498,18539}, {26291,26294}, {26297,26300}, {26303,26306}, {26311,26314}, {26320,26324}, {26327,26330}, {26335,26339}, {26352,26355}, {26360,26361}, {26366,26369}, {26372,26375}, {26403,26429}, {26404,26435}, {26405,26441}, {26406,26444}, {26407,26449}, {26408,26456}, {26409,26462}, {26410,26468}, {26411,26473}, {26412,26479}, {26413,26485}, {26414,26490}, {26415,26496}, {26416,26505}, {26417,26512}, {26419,26514}, {26422,26516}, {26423,26517}, {26424,26518}, {26425,26519}, {26426,26520}
X(26421) lies on these lines: {1,26397}, {193,26420}, {491,26418}, {3069,5598}, {5861,26335}, {8982,26405}, {18498,26438}, {26291,26295}, {26297,26301}, {26303,26307}, {26311,26315}, {26320,26325}, {26327,26331}, {26340,26345}, {26352,26356}, {26360,26362}, {26366,26370}, {26372,26376}, {26403,26430}, {26404,26436}, {26406,26445}, {26407,26450}, {26408,26457}, {26409,26463}, {26410,26469}, {26411,26474}, {26412,26480}, {26413,26486}, {26414,26491}, {26415,26497}, {26416,26506}, {26417,26513}, {26419,26515}, {26422,26521}, {26423,26522}, {26424,26523}, {26425,26524}, {26426,26525}
X(26422) lies on these lines: {1,3}, {2,26405}, {24,26372}, {30,26327}, {140,26360}, {498,26412}, {499,26411}, {631,26418}, {1656,18498}, {2080,26403}, {3311,26408}, {3312,26409}, {6642,26303}, {26311,26316}, {26335,26341}, {26345,26348}, {26406,26446}, {26407,26451}, {26413,26487}, {26414,26492}, {26415,26498}, {26416,26507}, {26420,26516}, {26421,26521}
X(26422) = midpoint of X(3) and X(11876)
X(26423) lies on these lines: {1,3}, {5,26413}, {30,26389}, {5602,16845}, {6734,26406}, {6846,8207}, {10527,26418}, {10943,26414}, {12116,26405}, {18498,18544}, {26303,26308}, {26311,26317}, {26327,26332}, {26335,26342}, {26345,26349}, {26360,26363}, {26372,26377}, {26403,26431}, {26407,26452}, {26408,26458}, {26409,26464}, {26410,26470}, {26411,26475}, {26412,26481}, {26415,26499}, {26416,26508}, {26420,26517}, {26421,26522}
X(26423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 36, 26401), (1, 5903, 26395), (1, 11248, 26400)
X(26424) lies on these lines: {1,3}, {5,26414}, {119,26410}, {5552,26418}, {6735,26406}, {10942,26413}, {12115,26405}, {18498,18542}, {26303,26309}, {26311,26318}, {26327,26333}, {26335,26343}, {26345,26350}, {26360,26364}, {26372,26378}, {26403,26432}, {26407,26453}, {26408,26459}, {26409,26465}, {26411,26476}, {26412,26482}, {26420,26518}, {26421,26523}
X(26424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 10679, 26400), (1, 11248, 26399), (5598, 26426, 1)
X(26425) lies on these lines: {1,3}, {11,26413}, {377,26359}, {4190,26394}, {6833,26326}, {7354,26389}, {10527,26360}, {10529,26418}, {10532,26327}, {10804,26403}, {10806,26405}, {10835,26303}, {10879,26311}, {10916,26406}, {10931,26335}, {10932,26345}, {10943,26410}, {10949,26414}, {10957,26412}, {10959,26411}, {11401,26372}, {11915,26407}, {17647,26382}, {18498,18543}, {19049,26408}, {19050,26409}, {26415,26501}, {26416,26510}, {26420,26519}, {26421,26524}
X(26425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 36, 26399), (2223, 19765, 26401), (26380, 26393, 26402)
X(26426) lies on these lines: {1,3}, {12,26414}, {5552,26360}, {10528,26418}, {10531,26327}, {10803,26403}, {10805,26405}, {10834,26303}, {10878,26311}, {10915,26406}, {10929,26335}, {10930,26345}, {10942,26410}, {10955,26413}, {10956,26412}, {10958,26411}, {11400,26372}, {11914,26407}, {18498,18545}, {19047,26408}, {19048,26409}, {26416,26511}, {26420,26520}, {26421,26525}
X(26426) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 10679, 5597), (1, 11509, 26401), (26404, 26417, 26401)
X(26427) lies on these lines: {32,493}, {83,3069}, {98,26328}, {182,26292}, {2080,26498}, {6464,26428}, {7787,26494}, {10788,26439}, {10789,26298}, {10790,26304}, {10791,26442}, {10792,26337}, {10793,26347}, {10794,26488}, {10795,26483}, {10796,26466}, {10797,26477}, {10798,26471}, {10799,26353}, {10800,26495}, {10804,26501}, {11364,26367}, {11380,26373}, {11490,26493}, {11839,26447}, {12835,26433}, {18501,18521}, {18994,26460}, {22520,26322}, {26379,26391}, {26403,26415}, {26429,26496}, {26430,26497}, {26431,26499}, {26432,26500}
X(26428) lies on these lines: {32,494}, {83,3068}, {98,26329}, {182,26293}, {2080,26507}, {6464,26427}, {7787,26503}, {10788,26440}, {10789,26299}, {10790,26305}, {10791,26443}, {10793,26338}, {10794,26489}, {10795,26484}, {10796,26467}, {10797,26478}, {10798,26472}, {10799,26354}, {10800,26504}, {10803,26511}, {10804,26510}, {11364,26368}, {11380,26374}, {11490,26502}, {11839,26448}, {12835,26434}, {18501,18523}, {18993,26455}, {22520,26323}, {26379,26392}, {26403,26416}, {26429,26505}, {26430,26506}, {26431,26508}, {26432,26509}
X(26429) lies on these lines: {4,12211}, {32,638}, {83,26361}, {98,26330}, {182,26294}, {193,12212}, {492,7787}, {2080,26516}, {5860,10793}, {10788,26441}, {10789,26300}, {10790,26306}, {10791,26444}, {10792,26339}, {10794,26490}, {10795,26485}, {10796,26468}, {10797,26479}, {10798,26473}, {10799,26355}, {10800,26514}, {10803,26520}, {10804,26519}, {11364,26369}, {11380,26375}, {11490,26512}, {11839,26449}, {12835,26435}, {13672,15682}, {18501,18539}, {18993,26456}, {18994,26462}, {22520,26324}, {26379,26396}, {26403,26420}, {26427,26496}, {26428,26505}, {26431,26517}, {26432,26518}
X(26430) lies on these lines: {4,12210}, {32,637}, {83,26362}, {98,26331}, {182,26295}, {193,12212}, {491,7787}, {2080,26521}, {5861,10792}, {8982,10788}, {10789,26301}, {10790,26307}, {10791,26445}, {10793,26340}, {10794,26491}, {10795,26486}, {10796,26469}, {10797,26480}, {10798,26474}, {10799,26356}, {10800,26515}, {10803,26525}, {10804,26524}, {11364,26370}, {11380,26376}, {11490,26513}, {11839,26450}, {12835,26436}, {13792,15682}, {18501,26438}, {18993,26457}, {18994,26463}, {22520,26325}, {26379,26397}, {26403,26421}, {26427,26497}, {26428,26506}, {26431,26522}, {26432,26523}
X(26431) lies on these lines: {1,32}, {5,10795}, {83,26363}, {98,26332}, {182,11012}, {1078,10198}, {2080,10267}, {3398,11249}, {3972,13110}, {5171,10902}, {5709,12197}, {6734,10791}, {7787,10527}, {10680,11842}, {10788,12116}, {10790,26308}, {10792,26342}, {10793,26349}, {10794,10943}, {10796,26470}, {10797,26481}, {10798,26475}, {10799,26357}, {11380,26377}, {11839,26452}, {12835,26437}, {18501,18544}, {18993,26458}, {18994,26464}, {26379,26399}, {26403,26423}, {26427,26499}, {26428,26508}, {26429,26517}, {26430,26522}
X(26431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (32, 10800, 10801), (32, 10804, 1), (32, 12194, 26432)
X(26432) lies on these lines: {1,32}, {5,10794}, {83,26364}, {98,26333}, {119,10796}, {182,2077}, {1078,10200}, {1470,12835}, {2080,10269}, {3398,11248}, {3972,13109}, {5552,7787}, {6256,12110}, {6735,10791}, {10679,11842}, {10788,12115}, {10790,26309}, {10793,26350}, {10795,10942}, {10797,26482}, {10798,26476}, {10799,26358}, {11380,26378}, {11839,26453}, {12198,12751}, {13194,25438}, {18501,18542}, {18993,26459}, {18994,26465}, {26379,26400}, {26403,26424}, {26427,26500}, {26428,26509}, {26429,26518}, {26430,26523}
X(26432) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (32, 10800, 10802), (32, 10803, 1), (32, 12194, 26431)
X(26433) lies on these lines: {1,26353}, {4,26471}, {11,26328}, {12,5490}, {34,26373}, {36,26498}, {55,26292}, {56,493}, {388,26477}, {1319,26367}, {1470,26500}, {1478,26466}, {4293,26439}, {5252,26442}, {6464,26434}, {9655,18521}, {12835,26427}, {18954,26304}, {18957,26312}, {18958,26447}, {18959,26337}, {18960,26347}, {18961,26488}, {18962,26483}, {18967,26501}, {18995,26454}, {18996,26460}, {26380,26391}, {26404,26415}, {26435,26496}, {26436,26497}, {26437,26499}
X(26434) lies on these lines: {1,26354}, {4,26472}, {11,26329}, {12,5491}, {34,26374}, {36,26507}, {55,26293}, {56,494}, {57,26299}, {388,26478}, {1319,26368}, {1470,26509}, {1478,26467}, {2099,26504}, {4293,26440}, {5252,26443}, {6464,26433}, {9655,18523}, {11509,26502}, {12835,26428}, {18954,26305}, {18957,26313}, {18958,26448}, {18960,26338}, {18961,26489}, {18962,26484}, {18967,26510}, {18995,26455}, {18996,26461}, {26380,26392}, {26404,26416}, {26435,26505}, {26436,26506}, {26437,26508}
X(26435) lies on these lines: {1,26355}, {4,12959}, {11,26330}, {12,26361}, {20,7362}, {36,26516}, {55,26294}, {56,3068}, {57,26300}, {193,330}, {388,492}, {1007,26480}, {1319,26369}, {1470,26518}, {1478,26468}, {2099,26514}, {4293,26441}, {5434,5860}, {9655,18539}, {11509,26512}, {12835,26429}, {15682,18986}, {18954,26306}, {18957,26314}, {18959,26339}, {18961,26490}, {18962,26485}, {18967,26519}, {18995,26456}, {18996,26462}, {26380,26396}, {26404,26420}, {26433,26496}, {26434,26505}, {26437,26517}
X(26435) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (388, 492, 26479), (1469, 3600, 26436)
X(26436) lies on these lines: {1,26356}, {4,12958}, {11,26331}, {12,26362}, {20,7353}, {34,26376}, {36,26521}, {55,26295}, {56,3069}, {57,26301}, {193,330}, {388,491}, {1007,26479}, {1319,26370}, {1470,26523}, {1478,26469}, {2099,26515}, {4293,8982}, {5252,26445}, {5434,5861}, {9655,26438}, {11509,26513}, {12835,26430}, {15682,18987}, {18954,26307}, {18957,26315}, {18958,26450}, {18960,26340}, {18961,26491}, {18962,26486}, {18967,26524}, {18995,26457}, {18996,26463}, {26380,26397}, {26404,26421}, {26433,26497}, {26434,26506}, {26437,26522}
X(26436) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (388, 491, 26480), (1469, 3600, 26435)
X(26437) lies on these lines: {1,3}, {4,26475}, {5,18962}, {11,26332}, {12,956}, {25,1866}, {34,26377}, {104,4295}, {225,1398}, {226,8666}, {388,2476}, {405,15950}, {519,11501}, {908,958}, {946,22760}, {953,3567}, {959,2990}, {1056,6853}, {1201,1451}, {1405,22356}, {1457,1468}, {1478,26470}, {1593,1830}, {1616,15306}, {1788,5253}, {1836,12114}, {1837,22753}, {1875,11399}, {1898,12687}, {2067,19050}, {2192,13095}, {2285,8609}, {2475,3600}, {2975,3485}, {3086,6830}, {3149,10950}, {3476,12649}, {3585,18519}, {3877,7098}, {4293,12116}, {4308,6224}, {4317,10074}, {4559,5021}, {5219,5258}, {5252,6734}, {5265,10587}, {5288,9578}, {5433,10198}, {5434,10957}, {6502,19049}, {6840,14986}, {6863,10954}, {6911,10573}, {6952,10597}, {7354,10959}, {8068,11929}, {9655,12773}, {10106,10916}, {10943,18961}, {12047,22758}, {12247,12776}, {12739,22560}, {12835,26431}, {18954,26308}, {18957,26317}, {18958,26452}, {18959,26342}, {18960,26349}, {18995,26458}, {18996,26464}, {24914,24987}, {26433,26499}, {26434,26508}, {26435,26517}, {26436,26522}
X(26437) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (36, 3340, 11509), (999, 10680, 1), (1482, 8069, 26358)
X(26438) lies on these lines: {3,26307}, {4,193}, {5,8982}, {30,491}, {141,14230}, {230,6564}, {372,22596}, {381,3069}, {999,26474}, {1656,26521}, {1657,26295}, {3070,19130}, {3071,22820}, {3295,26480}, {3830,5861}, {3843,26331}, {9655,26436}, {9668,26356}, {12702,26445}, {13665,18907}, {14269,26340}, {18480,26301}, {18493,26370}, {18494,26376}, {18496,26397}, {18498,26421}, {18501,26430}, {18503,26315}, {18508,26450}, {18510,26457}, {18512,26463}, {18518,26486}, {18519,26491}, {18521,26497}, {18523,26506}, {18524,26513}, {18526,26515}, {18542,26523}, {18543,26524}, {18544,26522}, {18545,26525}, {26321,26325}
X(26438) = {X(4), X(18440)}-harmonic conjugate of X(18539)
X(26439) lies on these lines: {2,26466}, {3,26494}, {4,493}, {5,18521}, {24,26304}, {104,26322}, {376,26292}, {515,26298}, {631,5490}, {3085,26477}, {3086,26471}, {4293,26433}, {4294,26353}, {5603,26367}, {5657,26442}, {6464,26440}, {7487,26373}, {7581,26460}, {7582,26454}, {7967,26495}, {8982,26497}, {9862,26312}, {10783,26337}, {10784,26347}, {10785,26488}, {10786,26483}, {10788,26427}, {10806,26501}, {11491,26493}, {11845,26447}, {12116,26499}, {26381,26391}, {26405,26415}, {26441,26496}
X(26439) = reflection of X(4) in X(8212)
X(26439) = {X(26466), X(26498)}-harmonic conjugate of X(2)
X(26440) lies on these lines: {2,26467}, {3,26503}, {4,494}, {5,18523}, {24,26305}, {104,26323}, {376,26293}, {515,26299}, {631,5491}, {3085,26478}, {3086,26472}, {4293,26434}, {4294,26354}, {5603,26368}, {5657,26443}, {6464,26439}, {7487,26374}, {7581,26461}, {7582,26455}, {7967,26504}, {8982,26506}, {10784,26338}, {10785,26489}, {10786,26484}, {10788,26428}, {10805,26511}, {10806,26510}, {11491,26502}, {11845,26448}, {12115,26509}, {12116,26508}, {26381,26392}, {26405,26416}, {26441,26505}
X(26440) = reflection of X(4) in X(8213)
X(26440) = {X(26467), X(26507)}-harmonic conjugate of X(2)
X(26441) lies on these lines: {2,14234}, {3,489}, {4,371}, {5,18539}, {20,185}, {24,26306}, {32,1588}, {99,488}, {104,26324}, {182,11293}, {230,3071}, {315,487}, {376,5860}, {490,3564}, {515,26300}, {590,14233}, {631,639}, {671,12296}, {1131,14240}, {1132,7607}, {1151,6811}, {1352,11294}, {1504,1587}, {1585,10132}, {2351,13428}, {2794,5871}, {3070,12962}, {3085,26479}, {3086,26473}, {3524,13794}, {3529,10783}, {4293,26435}, {4294,26355}, {5603,26369}, {5657,26444}, {5870,8721}, {6460,14912}, {7000,9753}, {7487,26375}, {7581,26462}, {7582,26456}, {7967,26514}, {8884,24244}, {9675,23259}, {9738,9744}, {9766,12306}, {9862,26314}, {10785,26490}, {10786,26485}, {10788,26429}, {10805,26520}, {10806,26519}, {10845,12601}, {11491,26512}, {11845,26449}, {12115,26518}, {12116,26517}, {13674,15682}, {26381,26396}, {26405,26420}, {26439,26496}, {26440,26505}
X(26441) = reflection of X(i) in X(j) for these (i,j): (4, 371), (637, 3)
X(26441) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (20, 6776, 8982), (26468, 26516, 2)
X(26442) lies on these lines: {1,5490}, {2,26367}, {8,26494}, {10,493}, {65,26477}, {72,26483}, {515,26292}, {517,26466}, {519,26495}, {956,26322}, {1837,26353}, {3057,26471}, {3679,26298}, {5090,26373}, {5252,26433}, {5587,26328}, {5657,26439}, {5687,26493}, {5688,26347}, {5689,26337}, {6464,26443}, {6734,26499}, {6735,26500}, {8193,26304}, {9857,26312}, {10791,26427}, {10914,26488}, {10916,26501}, {11900,26447}, {12702,18521}, {13883,26460}, {13936,26454}, {26382,26391}, {26406,26415}, {26444,26496}, {26445,26497}, {26446,26498}
X(26442) = reflection of X(8214) in X(10)
X(26443) lies on these lines: {1,5491}, {2,26368}, {8,26503}, {10,494}, {65,26478}, {72,26484}, {515,26293}, {517,26467}, {519,26504}, {956,26323}, {1837,26354}, {3057,26472}, {3679,26299}, {5090,26374}, {5252,26434}, {5587,26329}, {5657,26440}, {5687,26502}, {5688,26338}, {6464,26442}, {6734,26508}, {6735,26509}, {8193,26305}, {9857,26313}, {10791,26428}, {10914,26489}, {10915,26511}, {10916,26510}, {11900,26448}, {12702,18523}, {13883,26461}, {13936,26455}, {26382,26392}, {26406,26416}, {26444,26505}, {26445,26506}, {26446,26507}
X(26443) = reflection of X(8215) in X(10)
X(26444) lies on these lines: {1,26361}, {2,26369}, {4,12788}, {8,492}, {10,3068}, {65,26479}, {72,26485}, {193,3416}, {515,26294}, {517,26468}, {519,26514}, {956,26324}, {1837,26355}, {3057,26473}, {3679,5588}, {5090,26375}, {5252,26435}, {5587,26330}, {5657,26441}, {5687,26512}, {5689,26339}, {6735,26518}, {8193,26306}, {9857,26314}, {10791,26429}, {10914,26490}, {10915,26520}, {10916,26519}, {11900,26449}, {12702,18539}, {13688,15682}, {13883,26462}, {13936,26456}, {26382,26396}, {26406,26420}, {26442,26496}, {26443,26505}, {26446,26516}
X(26444) = reflection of X(13893) in X(10)
X(26444) = {X(3416), X(3617)}-harmonic conjugate of X(26445)
X(26445) lies on these lines: {1,26362}, {2,26370}, {4,12787}, {8,491}, {10,3069}, {65,26480}, {72,26486}, {193,3416}, {515,26295}, {517,26469}, {519,26515}, {956,26325}, {1837,26356}, {3057,26474}, {3679,5589}, {5090,26376}, {5252,26436}, {5587,26331}, {5657,8982}, {5687,26513}, {5688,26340}, {6734,26522}, {6735,26523}, {8193,26307}, {9857,26315}, {10791,26430}, {10914,26491}, {10915,26525}, {10916,26524}, {11900,26450}, {12702,26438}, {13808,15682}, {13883,26463}, {13936,26457}, {26382,26397}, {26406,26421}, {26442,26497}, {26443,26506}, {26446,26521}
X(26445) = reflection of X(13947) in X(10)
X(26445) = {X(3416), X(3617)}-harmonic conjugate of X(26444)
In the plane of a triangle ABC, let
D = point on line AC with angle BAD = π - angle BAC, such that |AD| = |AB|
E = point on line AB with angle CAE = π - angle BAC, such that |AE|=|AC|
F = point on line BC with angle FCA = π - angle ACB, such that |CF| = |AC|
G = point on line AC with angle GCB = π - angle ACB, such that |CG| = |CB|
H = point on line AB with angle HBC = π- angle ABC, such that |HB| = |BC|
J = point on line BC with angle JBA = π - angle ABC, such that |JB| = |AB|
The centroids of ABC, AFJ, BDG, and CEH are concyclic about X(26446). (Benjamin Warren, November 13, 2024)
X(26446) lies on these lines: {1,140}, {2,392}, {3,10}, {4,2355}, {5,40}, {7,8164}, {8,631}, {9,119}, {11,5119}, {12,46}, {20,5818}, {21,25005}, {24,5090}, {30,165}, {35,1837}, {36,5252}, {43,5396}, {48,21012}, {55,1737}, {56,10039}, {57,495}, {63,17757}, {65,498}, {72,5552}, {80,5010}, {100,1006}, {125,12778}, {142,2095}, {145,10303}, {171,5398}, {182,3416}, {191,5499}, {200,18443}, {210,912}, {214,19914}, {230,9620}, {354,10056}, {371,13973}, {372,13911}, {377,10526}, {381,516}, {382,19925}, {390,18527}, {405,11248}, {406,1872}, {442,5812}, {474,11249}, {484,1836}, {496,1697}, {499,3057}, {500,6048}, {518,10202}, {519,3653}, {546,7989}, {547,7988}, {548,16192}, {549,952}, {550,5691}, {551,10247}, {572,17275}, {573,17303}, {582,3072}, {632,3624}, {730,11171}, {899,1064}, {942,1788}, {944,3523}, {946,1656}, {956,6735}, {960,6863}, {962,3090}, {971,14647}, {997,3035}, {999,3911}, {1001,10679}, {1012,1512}, {1056,5435}, {1058,5704}, {1125,1482}, {1155,1478}, {1158,3652}, {1210,3295}, {1213,1766}, {1319,12647}, {1329,6842}, {1352,3844}, {1387,7962}, {1479,17606}, {1483,3632}, {1484,5541}, {1511,13211}, {1532,3305}, {1538,6969}, {1571,5254}, {1572,3815}, {1595,7713}, {1657,12512}, {1702,7584}, {1703,7583}, {1706,5705}, {1739,24789}, {1768,11698}, {1770,10895}, {1829,3541}, {1902,3542}, {2077,5251}, {2080,10791}, {2093,5219}, {2362,9646}, {2475,22937}, {2478,10525}, {2550,6827}, {2551,6850}, {2646,10573}, {2783,17281}, {2800,10176}, {2801,3956}, {2807,5891}, {2886,6882}, {2948,10264}, {2951,18529}, {2975,6940}, {3086,9957}, {3091,6361}, {3147,11363}, {3241,15702}, {3245,18393}, {3309,4448}, {3311,13912}, {3312,13883}, {3336,10404}, {3338,15888}, {3339,6147}, {3357,12779}, {3421,5744}, {3428,4413}, {3434,6947}, {3436,3916}, {3474,10590}, {3476,5126}, {3488,5281}, {3524,5731}, {3525,3616}, {3530,5881}, {3533,5550}, {3545,9812}, {3555,10528}, {3560,10310}, {3573,6998}, {3584,5902}, {3586,10993}, {3587,8727}, {3612,10950}, {3625,13607}, {3626,5882}, {3627,18492}, {3628,7991}, {3678,5884}, {3683,6929}, {3687,5774}, {3698,6862}, {3740,6001}, {3772,17734}, {3773,24257}, {3812,10198}, {3814,6980}, {3817,5055}, {3822,5880}, {3826,5805}, {3842,20430}, {3851,5493}, {3868,5885}, {3869,6853}, {3876,5694}, {3878,25413}, {3890,10284}, {3898,10199}, {3913,10916}, {3921,10167}, {3927,21075}, {3940,6745}, {3983,13369}, {4002,6833}, {4187,5250}, {4221,5235}, {4292,9654}, {4293,5122}, {4295,10588}, {4301,5070}, {4390,21013}, {4424,17720}, {4640,5123}, {4643,24324}, {4646,5292}, {4662,12675}, {4668,12108}, {4669,15701}, {4677,11812}, {4691,18526}, {4695,24892}, {4745,15693}, {4769,13335}, {4848,13411}, {4857,15079}, {4866,24645}, {4999,8256}, {5044,5887}, {5046,7705}, {5050,5847}, {5071,9779}, {5072,12571}, {5080,6951}, {5086,6875}, {5128,9612}, {5142,6197}, {5174,7531}, {5176,23961}, {5183,17605}, {5217,10572}, {5218,18391}, {5221,13407}, {5234,10270}, {5248,11849}, {5260,6906}, {5273,6916}, {5290,24470}, {5302,6256}, {5305,9593}, {5326,15950}, {5418,7969}, {5420,7968}, {5441,12104}, {5530,5711}, {5534,8726}, {5554,6910}, {5584,6985}, {5658,5777}, {5686,21151}, {5687,6734}, {5688,26348}, {5689,26341}, {5692,14988}, {5697,11376}, {5698,6982}, {5708,21620}, {5709,8728}, {5719,11529}, {5720,8580}, {5727,11545}, {5732,18528}, {5747,21866}, {5754,9568}, {5758,11024}, {5759,6843}, {5770,11227}, {5804,17552}, {5806,6887}, {5836,6958}, {5837,6700}, {5840,11113}, {5883,10197}, {5903,11375}, {5904,15016}, {5919,10072}, {6244,6913}, {6284,10826}, {6347,16433}, {6348,16432}, {6642,8193}, {6644,15177}, {6666,7682}, {6685,9567}, {6702,10738}, {6767,11019}, {6771,12781}, {6774,12780}, {6824,19855}, {6834,12672}, {6836,18517}, {6848,9856}, {6861,7686}, {6891,19843}, {6921,17614}, {6924,11012}, {6925,17613}, {6937,11681}, {6939,18230}, {6946,9342}, {6963,11680}, {6967,10527}, {6971,25639}, {6986,11491}, {7026,11752}, {7043,11789}, {7080,9940}, {7288,24928}, {7354,10827}, {7483,19860}, {7502,9590}, {7525,9626}, {7529,9911}, {7580,18491}, {7741,11010}, {7742,11501}, {7743,10589}, {8148,13464}, {8158,16863}, {8251,21530}, {8582,10306}, {8981,18991}, {9458,14026}, {9540,19065}, {9548,15973}, {9574,15048}, {9578,15803}, {9581,15171}, {9614,10593}, {9624,11531}, {9625,12106}, {9669,10624}, {9857,26316}, {9864,12042}, {9905,21230}, {9928,12359}, {10087,20118}, {10104,12197}, {10124,11224}, {10156,24477}, {10200,23340}, {10265,12331}, {10283,11539}, {10610,12785}, {10680,25524}, {10744,14664}, {10747,14690}, {10860,18540}, {10915,12513}, {10942,21031}, {10954,17700}, {11260,24927}, {11277,16132}, {11343,25007}, {11471,15763}, {11522,19872}, {11900,26451}, {12041,12368}, {12247,22935}, {12261,15059}, {12610,17327}, {12738,18446}, {13405,15934}, {13634,24808}, {13747,19861}, {13935,19066}, {13966,18992}, {14839,15819}, {15228,18513}, {15254,26333}, {15310,24482}, {15489,19858}, {15556,15865}, {15644,23841}, {16266,16473}, {16408,22770}, {16832,19512}, {16842,25011}, {16862,24564}, {17073,21231}, {20195,20330}, {24833,25351}, {26382,26398}, {26406,26422}, {26442,26498}, {26443,26507}, {26444,26516}, {26445,26521}
X(26446) = midpoint of X(i) and X(j) for these {i,j}: {2, 5657}, {3, 5790}, {4, 9778}, {8, 7967}, {10, 10164}, {40, 1699}, {165, 5587}, {3576, 3679}, {3654, 5886}, {5686, 21151}, {10167, 18908}
X(26446) = reflection of X(i) in X(j) for these (i,j): (2, 11231), (3, 10164), (355, 5790), (381, 10175), (946, 10171), (1699, 5), (3576, 549), (3653, 5054), (3654, 5657), (3655, 3576), (3656, 5886), (3817, 10172), (5603, 11230), (5731, 17502), (5790, 10), (5886, 2), (7967, 1385), (9778, 3579), (10164, 6684), (10171, 3634), (10175, 3828), (10246, 10165), (10247, 551), (12699, 1699), (16200, 10283), (25055, 11539)
X(26446) = anticomplement of X(11230)
X(26446) = complement of X(5603)
X(26446) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 5445, 24914), (140, 5690, 1)
X(26447) lies on these lines: {30,26292}, {402,493}, {1650,5490}, {4240,26494}, {6464,26448}, {11831,26367}, {11832,26373}, {11839,26427}, {11845,26439}, {11848,26493}, {11852,26298}, {11853,26304}, {11885,26312}, {11897,26328}, {11900,26442}, {11901,26337}, {11902,26347}, {11903,26488}, {11904,26483}, {11905,26477}, {11906,26471}, {11909,26353}, {11910,26495}, {11915,26501}, {18508,18521}, {18958,26433}, {19017,26454}, {19018,26460}, {22755,26322}, {26449,26496}, {26450,26497}, {26451,26498}, {26452,26499}, {26453,26500}
X(26448) lies on these lines: {30,26293}, {402,494}, {1650,5491}, {4240,26503}, {6464,26447}, {11831,26368}, {11832,26374}, {11839,26428}, {11845,26440}, {11848,26502}, {11852,26299}, {11853,26305}, {11885,26313}, {11897,26329}, {11900,26443}, {11902,26338}, {11903,26489}, {11904,26484}, {11905,26478}, {11906,26472}, {11909,26354}, {11910,26504}, {11914,26511}, {11915,26510}, {18508,18523}, {18958,26434}, {19017,26455}, {19018,26461}, {22755,26323}, {26449,26505}, {26450,26506}, {26451,26507}, {26452,26508}, {26453,26509}
X(26449) lies on these lines: {4,12800}, {30,26294}, {193,12583}, {402,3068}, {492,4240}, {1650,26361}, {1651,5860}, {11831,26369}, {11832,26375}, {11839,26429}, {11845,26441}, {11848,26512}, {11852,26300}, {11853,26306}, {11885,26314}, {11897,26330}, {11900,26444}, {11901,26339}, {11903,26490}, {11905,26479}, {11906,26473}, {11909,26355}, {11910,26514}, {11914,26520}, {11915,26519}, {13689,15682}, {18508,18539}, {19017,26456}, {19018,26462}, {22755,26324}, {26383,26396}, {26407,26420}, {26447,26496}, {26448,26505}, {26451,26516}, {26452,26517}, {26453,26518}
X(26449) = reflection of X(13894) in X(402)
X(26450) lies on these lines: {4,12799}, {30,26295}, {193,12583}, {402,3069}, {491,4240}, {1650,26362}, {1651,5861}, {8982,11845}, {11831,26370}, {11832,26376}, {11839,26430}, {11848,26513}, {11852,26301}, {11853,26307}, {11885,26315}, {11897,26331}, {11900,26445}, {11902,26340}, {11903,26491}, {11904,26486}, {11905,26480}, {11906,26474}, {11909,26356}, {11910,26515}, {11914,26525}, {11915,26524}, {13809,15682}, {18508,26438}, {18958,26436}, {19017,26457}, {19018,26463}, {22755,26325}, {26383,26397}, {26407,26421}, {26447,26497}, {26448,26506}, {26451,26521}, {26452,26522}, {26453,26523}
X(26450) = reflection of X(13948) in X(402)
X(26451) lies on these lines: {2,3}, {35,11909}, {36,18958}, {55,11913}, {56,11912}, {125,12790}, {182,12583}, {498,11905}, {499,11906}, {517,11831}, {952,16210}, {1385,12438}, {2080,11839}, {3311,19017}, {3312,19018}, {3357,12791}, {3576,11852}, {3579,12696}, {5657,16212}, {5690,12626}, {5844,16211}, {6771,12793}, {6774,12792}, {7583,13894}, {7584,13948}, {10246,11910}, {10267,11848}, {10269,22755}, {10610,12797}, {11885,26316}, {11900,26446}, {11901,26341}, {11902,26348}, {11903,26492}, {11904,26487}, {11914,16203}, {11915,16202}, {12041,12369}, {12042,12181}, {12359,12418}, {12619,12729}, {14643,23239}, {26383,26398}, {26407,26422}, {26447,26498}, {26448,26507}, {26449,26516}, {26450,26521}
X(26451) = midpoint of X(i) and X(j) for these {i,j}: {2, 11845}, {3, 11911}, {3576, 11852}, {5657, 16212}, {11897, 16190}
X(26451) = reflection of X(i) in X(j) for these (i,j): (11251, 11911), (11911, 402)
X(26451) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 402, 11251), (5, 12113, 18507), (12113, 15183, 5)
X(26452) lies on these lines: {1,402}, {5,11904}, {30,11012}, {1650,26363}, {4240,10527}, {5709,12696}, {6734,11900}, {10198,15183}, {10267,11848}, {10680,11911}, {10943,11903}, {11249,11251}, {11832,26377}, {11839,26431}, {11845,12116}, {11853,26308}, {11885,26317}, {11897,26332}, {11901,26342}, {11902,26349}, {11905,26481}, {11906,26475}, {11909,26357}, {12649,16212}, {18508,18544}, {18958,26437}, {19017,26458}, {19018,26464}, {26383,26399}, {26407,26423}, {26447,26499}, {26448,26508}, {26449,26517}, {26450,26522}
X(26452) = reflection of X(11912) in X(402)
X(26452) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (402, 11915, 1), (402, 12438, 26453)
X(26453) lies on these lines: {1,402}, {5,11903}, {30,119}, {1470,18958}, {1650,26364}, {4240,5552}, {6256,12113}, {6735,11900}, {10200,15183}, {10269,22755}, {10679,11911}, {10942,11904}, {11248,11251}, {11832,26378}, {11839,26432}, {11845,12115}, {11853,26309}, {11885,26318}, {11897,26333}, {11901,26343}, {11902,26350}, {11905,26482}, {11906,26476}, {11909,26358}, {12648,16212}, {12729,12751}, {13268,25438}, {18508,18542}, {19017,26459}, {19018,26465}, {26383,26400}, {26407,26424}, {26447,26500}, {26448,26509}, {26449,26518}, {26450,26523}
X(26453) = reflection of X(11913) in X(402)
X(26453) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (402, 11914, 1), (402, 12438, 26452)
X(26454) lies on these lines: {6,493}, {32,8911}, {83,3069}, {213,606}, {372,26292}, {729,1306}, {1587,26328}, {2207,5413}, {3051,10318}, {3311,26498}, {5062,6414}, {5411,26373}, {6464,26455}, {7582,26439}, {7584,26466}, {7586,26494}, {7968,26495}, {13936,26442}, {18510,18521}, {18991,26367}, {18995,26433}, {18999,26493}, {19003,26298}, {19005,26304}, {19011,26312}, {19013,26322}, {19017,26447}, {19023,26488}, {19025,26483}, {19027,26477}, {19029,26471}, {19037,26353}, {19049,26501}, {26384,26391}, {26408,26415}, {26456,26496}, {26457,26497}, {26458,26499}, {26459,26500}
X(26454) = isogonal conjugate of the isotomic conjugate of X(493)
X(26454) = isogonal conjugate of the polar conjugate of X(8948)
X(26454) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 493, 26460), (6, 8939, 19032)
X(26455) lies on these lines: {6,494}, {372,26293}, {1505,6414}, {1587,26329}, {3069,5491}, {3311,26507}, {5411,26374}, {5413,8946}, {6464,26454}, {7582,26440}, {7584,26467}, {7586,26503}, {7968,26504}, {8576,19359}, {10318,26460}, {13936,26443}, {18510,18523}, {18991,26368}, {18993,26428}, {18995,26434}, {18999,26502}, {19003,26299}, {19005,26305}, {19011,26313}, {19013,26323}, {19017,26448}, {19023,26489}, {19025,26484}, {19027,26478}, {19029,26472}, {19037,26354}, {19047,26511}, {19049,26510}, {26384,26392}, {26408,26416}, {26456,26505}, {26457,26506}, {26458,26508}, {26459,26509}
X(26455) = {X(6), X(494)}-harmonic conjugate of X(26461)
X(26456) lies on these lines: {2,6}, {4,19102}, {372,26294}, {1249,8037}, {1504,21843}, {1587,26330}, {1588,18907}, {2549,5062}, {3311,26516}, {5411,26375}, {6423,6459}, {7582,26441}, {7584,26468}, {13886,19103}, {14241,22541}, {15682,19099}, {18510,18539}, {18993,26429}, {18995,26435}, {18999,26512}, {19005,26306}, {19011,26314}, {19013,26324}, {19017,26449}, {19023,26490}, {19025,26485}, {19027,26479}, {19029,26473}, {19037,26355}, {19047,26520}, {19049,26519}, {26384,26396}, {26408,26420}, {26454,26496}, {26455,26505}, {26458,26517}, {26459,26518}
X(26456) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3068, 26462), (3589, 15835, 2), (3618, 7586, 3069)
X(26457) lies on these lines: {2,6}, {4,19104}, {372,26295}, {1505,6459}, {1587,26331}, {3311,26521}, {5411,26376}, {7582,8982}, {7584,26469}, {7968,26515}, {13936,26445}, {13939,19105}, {14226,19100}, {15682,19101}, {18510,26438}, {18991,26370}, {18993,26430}, {18995,26436}, {18999,26513}, {19003,26301}, {19005,26307}, {19011,26315}, {19013,26325}, {19017,26450}, {19023,26491}, {19025,26486}, {19027,26480}, {19029,26474}, {19037,26356}, {19047,26525}, {19049,26524}, {26384,26397}, {26408,26421}, {26454,26497}, {26455,26506}, {26458,26522}, {26459,26523}
X(26457) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3069, 26463), (491, 7586, 3069)
X(26458) lies on these lines: {1,6}, {5,19025}, {371,5416}, {372,11012}, {495,19026}, {1377,5705}, {1587,26332}, {3068,10198}, {3311,10267}, {3312,11249}, {5411,26377}, {6417,16202}, {6418,10680}, {6501,12001}, {7581,10532}, {7582,12116}, {7584,26470}, {9616,10268}, {10943,19023}, {18510,18544}, {18993,26431}, {18995,26437}, {19005,26308}, {19011,26317}, {19017,26452}, {19027,26481}, {19029,26475}, {19037,26357}, {26384,26399}, {26408,26423}, {26454,26499}, {26455,26508}
X(26458) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 6, 26464), (6, 1335, 18991), (6, 19048, 19004)
X(26459) lies on these lines: {1,6}, {5,19023}, {119,7584}, {372,2077}, {496,19024}, {1378,13947}, {1470,18995}, {1587,26333}, {1588,6256}, {1702,3359}, {2067,5193}, {3068,10200}, {3311,10269}, {3312,11248}, {5411,26378}, {5416,6420}, {6417,16203}, {6418,10679}, {6501,12000}, {7581,10531}, {7582,12115}, {9616,10270}, {10942,19025}, {12751,19077}, {18510,18542}, {18993,26432}, {19005,26309}, {19011,26318}, {19017,26453}, {19027,26482}, {19029,26476}, {19037,26358}, {19112,25438}, {26384,26400}, {26408,26424}, {26454,26500}, {26455,26509}
X(26459) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 6, 26465), (6, 1124, 18991), (6, 3299, 26464)
X(26460) lies on these lines: {6,493}, {371,26292}, {1504,6413}, {1588,26328}, {3068,5490}, {3312,26498}, {5410,26373}, {5412,8948}, {6464,26461}, {7581,26439}, {7583,26466}, {7585,26494}, {8577,19358}, {10318,26455}, {13883,26442}, {18512,18521}, {18992,26367}, {18996,26433}, {19000,26493}, {19004,26298}, {19006,26304}, {19012,26312}, {19014,26322}, {19018,26447}, {19026,26483}, {19028,26477}, {19030,26471}, {19038,26353}, {19050,26501}, {26385,26391}, {26409,26415}, {26462,26496}, {26463,26497}, {26464,26499}, {26465,26500}
X(26460) = {X(6), X(493)}-harmonic conjugate of X(26454)
X(26461) lies on these lines: {6,494}, {83,3068}, {213,605}, {371,26293}, {729,1307}, {1588,26329}, {2207,5412}, {3051,10318}, {3312,26507}, {5058,6413}, {5410,26374}, {6464,26460}, {6531,24243}, {7581,26440}, {7583,26467}, {7585,26503}, {7969,26504}, {13883,26443}, {18512,18523}, {18992,26368}, {18996,26434}, {19000,26502}, {19004,26299}, {19006,26305}, {19012,26313}, {19014,26323}, {19018,26448}, {19024,26489}, {19026,26484}, {19028,26478}, {19030,26472}, {19038,26354}, {19048,26511}, {19050,26510}, {26385,26392}, {26409,26416}, {26462,26505}, {26463,26506}, {26464,26508}, {26465,26509}
X(26461) = isogonal conjugate of the isotomic conjugate of X(494)
X(26461) = isogonal conjugate of the polar conjugate of X(8946)
X(26461) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 494, 26455), (6, 8943, 19033)
X(26462) lies on these lines: {2,6}, {4,19103}, {371,26294}, {1504,6460}, {1588,26330}, {3312,26516}, {5410,26375}, {7581,26441}, {7583,26468}, {7969,26514}, {13883,26444}, {13886,19102}, {14241,19099}, {15682,22541}, {18512,18539}, {18994,26429}, {18996,26435}, {19000,26512}, {19006,26306}, {19012,26314}, {19014,26324}, {19018,26449}, {19024,26490}, {19026,26485}, {19028,26479}, {19030,26473}, {19038,26355}, {19048,26520}, {19050,26519}, {26385,26396}, {26409,26420}, {26460,26496}, {26461,26505}, {26464,26517}, {26465,26518}
X(26462) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 3068, 26456), (492, 7585, 3068)
X(26463) lies on these lines: {2,6}, {4,19105}, {371,26295}, {1505,21843}, {1587,18907}, {1588,26331}, {2549,5058}, {3312,26521}, {5410,26376}, {6424,6460}, {7581,8982}, {7583,26469}, {7969,26515}, {13883,26445}, {13939,19104}, {14226,19101}, {15682,19100}, {18512,26438}, {18992,26370}, {18994,26430}, {18996,26436}, {19000,26513}, {19004,26301}, {19006,26307}, {19014,26325}, {19018,26450}, {19024,26491}, {19026,26486}, {19028,26480}, {19030,26474}, {19038,26356}, {19048,26525}, {19050,26524}, {26385,26397}, {26409,26421}, {26460,26497}, {26461,26506}, {26464,26522}, {26465,26523}
X(26463) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3068, 3069, 26362), (3589, 15834, 2), (3618, 7585, 3068)
X(26464) lies on these lines: {1,6}, {5,19026}, {371,11012}, {372,5415}, {495,19025}, {1378,5705}, {1588,26332}, {1702,5709}, {3311,11249}, {3312,10267}, {26461,26508}
X(26464) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 6, 26458), (6, 1124, 18992), (6, 3299, 26459)
X(26465) lies on these lines: {1,6}, {5,19024}, {119,7583}, {371,2077}, {496,19023}, {1377,13893}, {1470,18996}, {1587,6256}, {1588,26333}, {1703,3359}, {3311,11248}, {3312,10269}, {5193,6502}, {5410,26378}, {5415,6419}, {6417,10679}, {6418,16203}, {6500,12000}, {7581,12115}, {7582,10531}, {10942,19026}, {12751,19078}, {18512,18542}, {18994,26432}, {19006,26309}, {19012,26318}, {19018,26453}, {19028,26482}, {19030,26476}, {19038,26358}, {19113,25438}, {26385,26400}, {26409,26424}, {26460,26500}, {26461,26509}
X(26465) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 6, 26459), (6, 1335, 18992), (6, 19048, 1)
X(26466) lies on these lines: {1,26471}, {2,26439}, {3,5490}, {4,26373}, {5,493}, {30,26292}, {119,26500}, {355,26483}, {381,26328}, {517,26442}, {952,26495}, {1478,26433}, {1479,26353}, {5587,26298}, {5886,26367}, {6193,24244}, {6214,26347}, {6215,26337}, {6464,26467}, {6756,8948}, {7583,26460}, {7584,26454}, {9996,26312}, {10796,26427}, {10943,26501}, {11499,26493}, {22758,26322}, {26386,26391}, {26468,26496}, {26469,26497}, {26470,26499}
X(26466) = reflection of X(8220) in X(5)
X(26466) = {X(2), X(26439)}-harmonic conjugate of X(26498)
X(26467) lies on these lines: {1,26472}, {2,26440}, {3,5491}, {4,26374}, {5,494}, {30,26293}, {119,26509}, {355,26484}, {381,26329}, {517,26443}, {952,26504}, {1478,26434}, {1479,26354}, {5587,26299}, {5886,26368}, {6193,24243}, {6214,26338}, {6464,26466}, {6756,8946}, {7583,26461}, {7584,26455}, {9996,26313}, {10796,26428}, {10942,26511}, {10943,26510}, {11499,26502}, {22758,26323}, {26386,26392}, {26410,26416}, {26468,26505}, {26469,26506}, {26470,26508}
X(26467) = reflection of X(8221) in X(5)
X(26467) = {X(2), X(26440)}-harmonic conjugate of X(26507)
X(26468) lies on these lines: {1,26473}, {2,14234}, {3,18539}, {4,488}, {5,1588}, {20,7690}, {30,26294}, {119,26518}, {193,576}, {355,26485}, {381,5860}, {517,26444}, {952,26514}, {1007,6811}, {1478,26435}, {1479,26355}, {3545,6290}, {3593,9739}, {3851,6215}, {5587,26300}, {5874,13665}, {5886,26369}, {6251,7620}, {6278,6564}, {6565,10515}, {7583,26462}, {7584,26456}, {9996,26314}, {10796,26429}, {10942,26520}, {10943,26519}, {11293,26521}, {11499,26512}, {13692,15682}, {13748,23311}, {18762,21309}, {22758,26324}, {26386,26396}, {26410,26420}, {26466,26496}, {26467,26505}, {26470,26517}
X(26468) = reflection of X(8976) in X(5)
X(26468) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26441, 26516), (26473, 26479, 1)
X(26469) lies on these lines: {1,26474}, {2,8982}, {3,26307}, {4,487}, {5,1587}, {20,7692}, {30,26295}, {119,26523}, {193,576}, {355,26486}, {381,5861}, {517,26445}, {640,21737}, {952,26515}, {1007,6813}, {1478,26436}, {1479,26356}, {3545,6289}, {3595,9738}, {3851,6214}, {5587,26301}, {5875,13785}, {5886,26370}, {6250,7620}, {6281,6565}, {6564,10514}, {7583,26463}, {7584,26457}, {9996,26315}, {10796,26430}, {10942,26525}, {10943,26524}, {11294,26516}, {11499,26513}, {13749,23312}, {13812,15682}, {18538,21309}, {22758,26325}, {26386,26397}, {26410,26421}, {26466,26497}, {26467,26506}, {26470,26522}
X(26469) = reflection of X(13951) in X(5)
X(26469) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 8982, 26521), (26474, 26480, 1)
X(26470) lies on these lines: {1,5}, {2,10267}, {3,2886}, {4,2975}, {8,6830}, {10,6882}, {30,11012}, {55,6862}, {56,6917}, {100,6952}, {104,2475}, {140,3925}, {149,6888}, {262,13110}, {377,10269}, {381,529}, {388,6867}, {404,6713}, {442,1385}, {474,26492}, {485,19050}, {486,19049}, {497,6824}, {499,6911}, {515,6842}, {517,6734}, {528,11849}, {602,24892}, {758,946}, {912,12047}, {944,2476}, {956,10526}, {958,6928}, {962,6845}, {993,7491}, {1001,6861}, {1012,10525}, {1058,6855}, {1125,6881}, {1329,5790}, {1352,5849}, {1376,6958}, {1478,26437}, {1479,3560}, {1482,3813}, {1532,18480}, {1621,6852}, {1656,3816}, {1699,6763}, {1706,5705}, {1836,24467}, {2550,6891}, {2829,26321}, {3085,6859}, {3086,6826}, {3090,10806}, {3091,10529}, {3149,6585}, {3193,14008}, {3434,6833}, {3526,3826}, {3545,10597}, {3574,5777}, {3616,6829}, {3649,24475}, {3652,5536}, {3754,10265}, {3822,5882}, {3825,10175}, {3838,12675}, {3841,10165}, {3851,12001}, {4187,9956}, {4193,5818}, {4294,6892}, {4295,5770}, {4857,16617}, {4996,5840}, {5056,10587}, {5082,6956}, {5225,6930}, {5231,5709}, {5249,13373}, {5253,6901}, {5260,6902}, {5274,6846}, {5433,6924}, {5552,6879}, {5603,6828}, {5654,12431}, {5657,6943}, {5693,18393}, {5707,11269}, {5715,7956}, {5731,6937}, {5762,6067}, {5771,16139}, {5779,5852}, {5805,5857}, {5811,9779}, {5817,7678}, {6214,26349}, {6215,26342}, {6256,18519}, {6284,6914}, {6597,16159}, {6827,19843}, {6834,18491}, {6837,10530}, {6843,14986}, {6863,11500}, {6871,12115}, {6873,10595}, {6874,7967}, {6883,19854}, {6885,7288}, {6893,10591}, {6907,18481}, {6913,9669}, {6923,12114}, {6929,10896}, {6933,10786}, {6944,10589}, {6957,10598}, {6959,11510}, {6963,9780}, {6980,18242}, {6982,12667}, {6983,10584}, {6993,10586}, {7395,10835}, {7403,17111}, {7507,11401}, {7583,26464}, {7584,26458}, {9996,26317}, {10202,12609}, {10246,25466}, {10320,11501}, {10356,10879}, {10358,10804}, {10514,10931}, {10515,10932}, {10516,12595}, {10738,13743}, {10796,26431}, {10894,12513}, {10895,18967}, {11235,11496}, {11263,12005}, {11585,23304}, {11813,20117}, {11928,26333}, {12357,23234}, {12607,12645}, {12906,14643}, {13190,14639}, {13218,14644}, {13243,16116}, {13279,13729}, {14794,15338}, {14872,17605}, {15842,26364}, {26386,26399}, {26410,26423}, {26466,26499}, {26467,26508}, {26468,26517}, {26469,26522}
X(26470) = midpoint of X(i) and X(j) for these {i,j}: {4, 2975}, {6831, 24390}
X(26470) = reflection of X(i) in X(j) for these (i,j): (3, 4999), (12, 5), (6842, 25639)
X(26470) = complement of X(11491)
X(26470) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5, 7741, 23513), (5, 10942, 7951), (5587, 7741, 5)
X(26471) lies on these lines: {1,26466}, {4,26433}, {11,493}, {55,5490}, {497,26353}, {499,26498}, {999,18521}, {3057,26442}, {3086,26439}, {6284,26292}, {6464,26472}, {9581,26298}, {10798,26427}, {10832,26304}, {10874,26312}, {10896,26328}, {10926,26347}, {10950,26483}, {10959,26501}, {11376,26367}, {11393,26373}, {11502,26493}, {11906,26447}, {19029,26454}, {19030,26460}, {22760,26322}, {26473,26496}, {26474,26497}, {26475,26499}, {26476,26500}
X(26472) lies on these lines: {1,26467}, {4,26434}, {11,494}, {55,5491}, {497,26354}, {499,26507}, {999,18523}, {3057,26443}, {3086,26440}, {6284,26293}, {6464,26471}, {9581,26299}, {10798,26428}, {10832,26305}, {10874,26313}, {10896,26329}, {10926,26338}, {10950,26484}, {10958,26511}, {10959,26510}, {11376,26368}, {11393,26374}, {11502,26502}, {11906,26448}, {19029,26455}, {19030,26461}, {22760,26323}, {26473,26505}, {26474,26506}, {26475,26508}, {26476,26509}
X(26473) lies on these lines: {1,26468}, {4,12959}, {55,26361}, {193,5274}, {492,497}, {499,26516}, {999,18539}, {1007,26356}, {3057,26444}, {3086,26441}, {5860,10926}, {6284,26294}, {9581,26300}, {10798,26429}, {10832,26306}, {10874,26314}, {10896,26330}, {10925,26339}, {10950,26485}, {10958,26520}, {10959,26519}, {11376,26369}, {11393,26375}, {11502,26512}, {11906,26449}, {13696,15682}, {19029,26456}, {19030,26462}, {22760,26324}, {26387,26396}, {26411,26420}, {26471,26496}, {26472,26505}, {26475,26517}, {26476,26518}
X(26473) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26468, 26479), (5274, 12589, 26474)
X(26474) lies on these lines: {1,26469}, {4,12958}, {11,3069}, {55,26362}, {193,5274}, {491,497}, {499,26521}, {999,26438}, {1007,26355}, {3057,26445}, {3086,8982}, {5861,10925}, {6284,26295}, {9581,26301}, {10798,26430}, {10832,26307}, {10874,26315}, {10896,26331}, {10926,26340}, {10950,26486}, {10958,26525}, {10959,26524}, {11376,26370}, {11393,26376}, {11502,26513}, {11906,26450}, {13816,15682}, {19029,26457}, {19030,26463}, {22760,26325}, {26387,26397}, {26411,26421}, {26471,26497}, {26472,26506}, {26475,26522}, {26476,26523}
X(26474) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26469, 26480), (5274, 12589, 26473)
X(26475) lies on these lines: {1,5}, {4,26437}, {21,497}, {55,7483}, {84,1836}, {388,7548}, {499,10267}, {946,1858}, {950,24387}, {956,10953}, {999,18544}, {1058,6852}, {1389,18391}, {1470,10785}, {1479,7491}, {1519,1898}, {1749,16155}, {2099,6831}, {2646,2886}, {3057,3813}, {3086,6905}, {3486,11680}, {3582,14798}, {3816,17606}, {3878,10916}, {3925,5438}, {5046,5274}, {5254,11998}, {5433,10902}, {5709,12701}, {6284,11012}, {6839,14986}, {6882,10573}, {6949,10806}, {7504,10589}, {7508,15171}, {7680,11011}, {8256,17636}, {9614,12704}, {9669,10680}, {10532,10591}, {10798,26431}, {10832,26308}, {10874,26317}, {10896,18967}, {10925,26342}, {10926,26349}, {10947,19525}, {10966,11113}, {11393,26377}, {11813,14054}, {11906,26452}, {13463,25414}, {15842,24982}, {19029,26458}, {19030,26464}, {26387,26399}, {26411,26423}, {26471,26499}, {26472,26508}, {26473,26517}, {26474,26522}
X(26475) = reflection of X(26482) in X(10523)
X(26475) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (11, 1837, 26476), (496, 1484, 10948), (5727, 7741, 10958)
X(26476) lies on these lines: {1,5}, {4,1470}, {55,4187}, {56,1532}, {65,1519}, {235,1877}, {388,6945}, {442,10200}, {497,3871}, {499,6842}, {950,3825}, {999,18542}, {1210,1858}, {1319,18242}, {1329,3057}, {1479,6882}, {1836,12686}, {2077,6284}, {2082,6506}, {2098,17757}, {2476,10589}, {2478,26357}, {2646,3816}, {2886,3698}, {3085,6975}, {3086,6941}, {3359,15908}, {3814,10915}, {4294,6963}, {5048,12607}, {5141,10586}, {5154,5274}, {5187,10530}, {5225,6943}, {5259,5432}, {5433,6907}, {5554,11680}, {5687,10947}, {6830,10531}, {6831,10896}, {6929,8071}, {6932,7288}, {6959,8069}, {6971,9669}, {6973,10629}, {6980,16203}, {6981,10321}, {8256,25414}, {9614,12703}, {10798,26432}, {10832,26309}, {10874,26318}, {10925,26343}, {10926,26350}, {10953,17556}, {10965,11238}, {11393,26378}, {11681,12648}, {11906,26453}, {12709,17618}, {13274,25438}, {13463,17636}, {15829,21031}, {15844,17605}, {18839,21077}, {19029,26459}, {19030,26465}, {26387,26400}, {26411,26424}, {26471,26500}, {26472,26509}, {26473,26518}, {26474,26523}
X(26476) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (496, 10942, 1), (7741, 8070, 5), (7741, 9581, 11)
X(26477) lies on these lines: {1,26466}, {4,26353}, {12,493}, {56,5490}, {65,26442}, {388,26433}, {498,26498}, {3085,26439}, {3295,18521}, {6464,26478}, {7354,26292}, {9578,26298}, {10797,26427}, {10831,26304}, {10873,26312}, {10895,26328}, {10923,26337}, {10924,26347}, {10957,26501}, {11375,26367}, {11392,26373}, {11501,26493}, {11905,26447}, {19027,26454}, {19028,26460}, {22759,26322}, {26479,26496}, {26480,26497}, {26481,26499}, {26482,26500}
X(26478) lies on these lines: {1,26467}, {4,26354}, {12,494}, {56,5491}, {65,26443}, {388,26434}, {498,26507}, {3085,26440}, {3295,18523}, {6464,26477}, {7354,26293}, {9578,26299}, {10797,26428}, {10831,26305}, {10873,26313}, {10895,26329}, {10924,26338}, {10944,26489}, {10956,26511}, {10957,26510}, {11375,26368}, {11392,26374}, {11501,26502}, {11905,26448}, {19027,26455}, {19028,26461}, {22759,26323}, {26479,26505}, {26480,26506}, {26481,26508}, {26482,26509}
X(26479) lies on these lines: {1,26468}, {4,12949}, {12,3068}, {56,26361}, {65,26444}, {193,5261}, {388,492}, {498,26516}, {1007,26436}, {3085,26441}, {3295,18539}, {5860,10924}, {7354,26294}, {9578,26300}, {10797,26429}, {10831,26306}, {10873,26314}, {10895,26330}, {10923,26339}, {10944,26490}, {10956,26520}, {11392,26375}, {11501,26512}, {11905,26449}, {13695,15682}, {19027,26456}, {19028,26462}, {22759,26324}, {26388,26396}, {26412,26420}, {26477,26496}, {26478,26505}, {26481,26517}, {26482,26518}
X(26479) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26468, 26473), (5261, 12588, 26480)
X(26480) lies on these lines: {1,26469}, {4,12948}, {12,3069}, {56,26362}, {65,26445}, {193,5261}, {388,491}, {498,26521}, {1007,26435}, {3085,8982}, {3295,26438}, {5861,10923}, {7354,26295}, {9578,26301}, {10797,26430}, {10831,26307}, {10873,26315}, {10895,26331}, {10924,26340}, {10944,26491}, {10956,26525}, {10957,26524}, {11375,26370}, {11392,26376}, {11501,26513}, {11905,26450}, {13815,15682}, {19027,26457}, {19028,26463}, {22759,26325}, {26388,26397}, {26412,26421}, {26477,26497}, {26478,26506}, {26481,26522}, {26482,26523}
X(26480) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26469, 26474), (5261, 12588, 26479)
X(26481) lies on these lines: {1,5}, {4,26357}, {55,6831}, {56,442}, {65,2886}, {225,427}, {377,1470}, {388,2476}, {497,6828}, {498,6882}, {499,6881}, {550,14794}, {956,18962}, {1056,6874}, {1058,6873}, {1068,1594}, {1070,8758}, {1319,24541}, {1329,24987}, {1451,24892}, {1478,6842}, {1479,6841}, {1532,10895}, {1836,5709}, {1894,23361}, {2072,16272}, {2078,17527}, {2099,24390}, {3057,7680}, {3085,6830}, {3086,6829}, {3136,10372}, {3142,23304}, {3295,18544}, {3485,11680}, {3660,3824}, {3813,11011}, {3822,10106}, {3829,4870}, {3841,3911}, {3925,5705}, {4187,4423}, {4193,10588}, {4197,7288}, {4293,6937}, {4294,6845}, {4331,23305}, {5141,5261}, {5154,10587}, {5172,7483}, {5218,6943}, {5225,10883}, {5229,6932}, {5231,10404}, {5432,6922}, {5433,8728}, {6284,8727}, {6585,6863}, {6859,10321}, {6862,8069}, {6867,10629}, {6871,10530}, {6907,7354}, {6917,8071}, {6941,10532}, {6971,16202}, {6980,9654}, {6990,10591}, {6991,10589}, {7681,17605}, {8164,10806}, {8226,10896}, {9612,12704}, {10797,26431}, {10831,26308}, {10873,26317}, {10923,26342}, {11237,17530}, {11392,26377}, {11905,26452}, {12047,24474}, {12609,18838}, {13751,25557}, {17532,18961}, {19027,26458}, {19028,26464}, {26388,26399}, {26412,26423}, {26477,26499}, {26478,26508}, {26479,26517}, {26480,26522}
X(26481) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (11, 12, 11375), (11, 3614, 7958), (10959, 15888, 1)
X(26482) lies on these lines: {1,5}, {4,26358}, {10,18838}, {55,6256}, {65,6735}, {226,10915}, {388,404}, {498,10269}, {1319,1329}, {1388,4187}, {1478,11248}, {1519,3057}, {1532,2098}, {2077,7354}, {2475,5261}, {3085,6906}, {3295,18542}, {3476,11681}, {3485,12648}, {3584,14803}, {3820,5193}, {5048,7681}, {5254,21859}, {5434,17564}, {5687,18961}, {6842,12647}, {6952,8164}, {9612,12703}, {9654,10679}, {10531,10590}, {10786,26357}, {10797,26432}, {10831,26309}, {10873,26318}, {10895,10965}, {10923,26343}, {10924,26350}, {11112,11237}, {11239,17577}, {11392,26378}, {12047,23340}, {12832,25005}, {13273,25438}, {13743,18545}, {15843,24987}, {17625,17665}, {19027,26459}, {19028,26465}, {21031,24914}, {24982,25466}, {26388,26400}, {26412,26424}, {26477,26500}, {26478,26509}, {26479,26518}, {26480,26523}
X(26482) = reflection of X(26475) in X(10523)
X(26482) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 119, 26476), (495, 10942, 1), (10958, 15888, 1)
X(26483) lies on these lines: {5,26499}, {11,26501}, {12,493}, {72,26442}, {355,26466}, {958,5490}, {3436,26494}, {6464,26484}, {10786,26439}, {10795,26427}, {10827,26298}, {10830,26304}, {10872,26312}, {10894,26328}, {10921,26337}, {10922,26347}, {10942,26500}, {10950,26471}, {10953,26353}, {11374,26367}, {11391,26373}, {11500,26493}, {11827,26292}, {11904,26447}, {18518,18521}, {18962,26433}, {19025,26454}, {19026,26460}, {26389,26391}, {26413,26415}, {26485,26496}, {26486,26497}, {26487,26498}
X(26484) lies on these lines: {5,26508}, {11,26510}, {12,494}, {72,26443}, {355,26467}, {958,5491}, {3436,26503}, {6464,26483}, {10786,26440}, {10795,26428}, {10827,26299}, {10830,26305}, {10872,26313}, {10894,26329}, {10922,26338}, {10942,26509}, {10950,26472}, {10953,26354}, {10955,26511}, {11374,26368}, {11391,26374}, {11500,26502}, {11827,26293}, {11904,26448}, {18518,18523}, {18962,26434}, {19025,26455}, {19026,26461}, {26389,26392}, {26485,26505}, {26486,26506}, {26487,26507}
X(26485) lies on these lines: {4,12939}, {5,26517}, {11,26519}, {12,3068}, {72,26444}, {193,12587}, {355,26468}, {492,3436}, {958,26324}, {5860,10922}, {10786,26441}, {10795,26429}, {10827,26300}, {10830,26306}, {10872,26314}, {10894,26330}, {10921,26339}, {10942,26518}, {10950,26473}, {10953,26355}, {10955,26520}, {11374,26369}, {11391,26375}, {11500,26512}, {11827,26294}, {11904,26449}, {13694,15682}, {18518,18539}, {18962,26435}, {19025,26456}, {19026,26462}, {26389,26396}, {26413,26420}, {26483,26496}, {26484,26505}, {26487,26516}
X(26486) lies on these lines: {4,12938}, {5,26522}, {11,26524}, {12,3069}, {72,26445}, {193,12587}, {355,26469}, {491,3436}, {958,26325}, {5861,10921}, {8982,10786}, {10795,26430}, {10827,26301}, {10830,26307}, {10872,26315}, {10894,26331}, {10922,26340}, {10942,26523}, {10950,26474}, {10953,26356}, {10955,26525}, {11374,26370}, {11391,26376}, {11500,26513}, {11827,26295}, {11904,26450}, {13814,15682}, {18518,26438}, {18962,26436}, {19025,26457}, {19026,26463}, {26389,26397}, {26413,26421}, {26483,26497}, {26484,26506}, {26487,26521}
X(26487) lies on these lines: {1,6863}, {2,355}, {3,12}, {4,10585}, {5,1001}, {8,6853}, {11,16202}, {20,10599}, {24,11391}, {30,10894}, {35,6923}, {36,18962}, {40,3584}, {55,6842}, {56,10954}, {72,5552}, {100,6937}, {119,405}, {125,12890}, {140,958}, {182,12587}, {226,15865}, {381,6253}, {388,6954}, {442,11499}, {495,11249}, {499,10246}, {515,6862}, {517,3085}, {527,6684}, {549,11236}, {581,17734}, {631,3436}, {946,10197}, {952,26363}, {1006,11681}, {1125,6959}, {1317,15868}, {1329,6883}, {1479,6980}, {1482,10056}, {1511,13214}, {1621,6941}, {1656,18518}, {1698,17857}, {1788,5885}, {1837,24299}, {2080,10795}, {2476,11491}, {2646,10320}, {3035,15843}, {3058,11928}, {3086,15178}, {3311,19025}, {3312,19026}, {3357,12930}, {3475,6583}, {3523,20067}, {3526,6713}, {3541,5130}, {3560,6690}, {3576,6958}, {3579,5714}, {3616,6949}, {3822,6796}, {4294,6982}, {4309,10738}, {4428,10893}, {4995,11826}, {5080,6875}, {5218,6850}, {5230,5396}, {5248,6929}, {5284,6975}, {5433,10955}, {5445,15016}, {5534,5705}, {5587,6861}, {5603,6960}, {5690,12635}, {5709,15298}, {5731,6952}, {5770,5791}, {5790,19854}, {5886,6834}, {6256,6914}, {6642,10830}, {6771,12932}, {6774,12931}, {6824,18480}, {6827,10588}, {6833,18481}, {6838,12699}, {6848,9955}, {6868,10590}, {6891,13624}, {6892,12667}, {6897,10522}, {6907,11248}, {6910,12115}, {6911,25466}, {6926,17502}, {6928,7951}, {6933,12116}, {6944,11230}, {6962,10532}, {6967,18857}, {6985,7680}, {6988,8164}, {7483,22758}, {7491,10895}, {7583,13896}, {7584,13953}, {9780,9803}, {10202,24914}, {10321,24929}, {10610,12936}, {10679,15908}, {10680,15888}, {10872,26316}, {10921,26341}, {10922,26348}, {11904,26451}, {12041,12372}, {12042,12183}, {12359,12423}, {14450,16139}, {17615,18856}, {17718,24474}, {26389,26398}, {26413,26422}, {26483,26498}, {26484,26507}, {26485,26516}, {26486,26521}
X(26487) = midpoint of X(i) and X(j) for these {i,j}: {3, 9654}, {3085, 6825}
X(26487) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 1385, 26492), (2, 10786, 355)
X(26488) lies on these lines: {5,26500}, {11,493}, {355,26466}, {1376,5490}, {3434,26494}, {6464,26489}, {10785,26439}, {10794,26427}, {10826,26298}, {10829,26304}, {10871,26312}, {10893,26328}, {10914,26442}, {10919,26337}, {10920,26347}, {10943,26499}, {10944,26477}, {10947,26353}, {10949,26501}, {11373,26367}, {11390,26373}, {11826,26292}, {11903,26447}, {12114,26322}, {18519,18521}, {18961,26433}, {19023,26454}, {19024,26460}, {26490,26496}, {26491,26497}, {26492,26498}
X(26489) lies on these lines: {5,26509}, {11,494}, {12,26511}, {355,26467}, {1376,5491}, {3434,26503}, {6464,26488}, {10785,26440}, {10794,26428}, {10826,26299}, {10829,26305}, {10871,26313}, {10893,26329}, {10914,26443}, {10920,26338}, {10943,26508}, {10944,26478}, {10947,26354}, {10949,26510}, {11373,26368}, {11390,26374}, {11826,26293}, {11903,26448}, {12114,26323}, {18519,18523}, {18961,26434}, {19023,26455}, {19024,26461}, {26490,26505}, {26491,26506}, {26492,26507}
X(26490) lies on these lines: {4,12929}, {5,26518}, {11,3068}, {12,26520}, {193,12586}, {355,26468}, {492,3434}, {1376,26361}, {5860,10920}, {10785,26441}, {10794,26429}, {10826,26300}, {10829,26306}, {10871,26314}, {10893,26330}, {10914,26444}, {10919,26339}, {10943,26517}, {10944,26479}, {10947,26355}, {10949,26519}, {11373,26369}, {11390,26375}, {11826,26294}, {11903,26449}, {12114,26324}, {13693,15682}, {18519,18539}, {18961,26435}, {19023,26456}, {19024,26462}, {26390,26396}, {26414,26420}, {26488,26496}, {26489,26505}, {26492,26516}
X(26491) lies on these lines: {4,12928}, {5,26523}, {11,3069}, {12,26525}, {193,12586}, {355,26469}, {491,3434}, {1376,26362}, {5861,10919}, {8982,10785}, {10794,26430}, {10826,26301}, {10829,26307}, {10871,26315}, {10893,26331}, {10914,26445}, {10920,26340}, {10943,26522}, {10944,26480}, {10947,26356}, {10949,26524}, {11373,26370}, {11390,26376}, {11826,26295}, {11903,26450}, {12114,26325}, {13813,15682}, {18519,26438}, {18961,26436}, {19023,26457}, {19024,26463}, {26390,26397}, {26414,26421}, {26488,26497}, {26489,26506}, {26492,26521}
X(26492) lies on these lines: {1,6958}, {2,355}, {3,11}, {4,10584}, {5,6256}, {8,12619}, {12,16203}, {20,10598}, {24,11390}, {30,10893}, {35,10947}, {36,6928}, {40,3582}, {55,10948}, {56,6882}, {104,4193}, {125,12889}, {140,1376}, {182,12586}, {388,6978}, {474,26470}, {496,11248}, {497,6961}, {498,10246}, {515,6959}, {517,1788}, {549,11235}, {631,3434}, {912,25681}, {946,10199}, {952,26364}, {1125,6862}, {1319,10320}, {1329,20418}, {1478,6971}, {1482,10072}, {1484,13205}, {1511,13213}, {1656,18519}, {1709,8227}, {2080,10794}, {2975,6963}, {3085,15178}, {3311,19023}, {3312,19024}, {3357,12920}, {3485,5885}, {3523,20066}, {3526,19854}, {3541,5101}, {3560,3816}, {3576,6863}, {3579,6926}, {3616,6952}, {3624,6861}, {3825,5450}, {4187,22758}, {4999,6883}, {5204,7491}, {5252,24927}, {5253,6830}, {5298,11827}, {5432,10949}, {5434,11929}, {5439,5886}, {5443,15016}, {5550,6852}, {5554,17665}, {5603,6972}, {5657,17652}, {5690,10912}, {5693,11219}, {5694,5770}, {5731,6949}, {5761,6583}, {5927,6832}, {6361,10225}, {6642,10829}, {6667,18242}, {6681,6796}, {6691,6911}, {6771,12922}, {6774,12921}, {6824,9940}, {6825,13624}, {6827,7288}, {6834,18481}, {6837,17618}, {6847,9955}, {6850,10589}, {6890,12699}, {6908,17502}, {6921,12116}, {6922,11249}, {6923,7741}, {6931,12115}, {6940,11680}, {6944,18480}, {6947,10522}, {6948,10591}, {6966,10531}, {6967,10527}, {6981,12667}, {7330,25522}, {7583,13895}, {7584,13952}, {10057,21842}, {10165,17647}, {10202,11375}, {10321,24928}, {10610,12926}, {10871,26316}, {10919,26341}, {10920,26348}, {11041,14986}, {11231,19843}, {11374,13373}, {11491,17566}, {11499,13747}, {11903,26451}, {12041,12371}, {12042,12182}, {12053,15866}, {12359,12422}, {17728,24474}, {21616,24467}, {26390,26398}, {26414,26422}, {26488,26498}, {26489,26507}, {26490,26516}, {26491,26521}
X(26492) = midpoint of X(i) and X(j) for these {i,j}: {3, 9669}, {3086, 6891}
X(26492) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 1385, 26487), (2, 10785, 355)
X(26493) lies on these lines: {3,26322}, {35,26298}, {55,493}, {100,26494}, {197,26304}, {1376,5490}, {3295,26367}, {5687,26442}, {6464,26502}, {10267,26498}, {10310,26292}, {11248,26500}, {11383,26373}, {11490,26427}, {11491,26439}, {11494,26312}, {11496,26328}, {11497,26337}, {11498,26347}, {11499,26466}, {11500,26483}, {11501,26477}, {11502,26471}, {11509,26433}, {11510,26501}, {11848,26447}, {18521,18524}, {18999,26454}, {19000,26460}, {26496,26512}, {26497,26513}
X(26494) lies on these lines: {2,493}, {3,26439}, {4,26373}, {8,26442}, {10,26298}, {20,26292}, {22,26304}, {30,18521}, {100,26493}, {145,26495}, {193,13428}, {388,26433}, {491,26497}, {492,19420}, {497,26353}, {631,26498}, {1270,26347}, {1271,26337}, {2896,26312}, {2975,26322}, {2996,13439}, {3091,26328}, {3434,26488}, {3436,26483}, {3616,26367}, {4240,26447}, {5552,26500}, {5905,19218}, {6392,6464}, {6995,8948}, {7585,26460}, {7586,26454}, {7787,26427}, {10527,26499}, {10529,26501}
X(26494) = isotomic conjugate of X(26503)
X(26494) = anticomplement of X(8222)
X(26494) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (493, 5490, 2), (6392, 6515, 26503)
X(26495) lies on these lines: {1,493}, {8,5490}, {55,26322}, {56,26493}, {145,26494}, {517,26292}, {519,26442}, {952,26466}, {1829,8948}, {2098,26353}, {2099,26433}, {5603,26328}, {5604,26347}, {5605,26337}, {6464,26504}, {7967,26439}, {7968,26454}, {7969,26460}, {8192,26304}, {9997,26312}, {10246,26498}, {10800,26427}, {10944,26477}, {10950,26471}, {11396,26373}, {11910,26447}, {18521,18526}, {26496,26514}, {26497,26515}
X(26495) = reflection of X(8210) in X(1)
X(26495) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26298, 26367), (26298, 26367, 493)
X(26496) lies on these lines: {193,26497}, {393,493}, {492,19420}, {5490,7763}, {5860,26347}, {6459,8948}, {6464,26505}, {18521,18539}, {26292,26294}, {26298,26300}, {26304,26306}, {26312,26314}, {26322,26324}, {26328,26330}, {26337,26339}, {26353,26355}, {26367,26369}, {26373,26375}, {26427,26429}, {26433,26435}, {26439,26441}, {26442,26444}, {26447,26449}, {26454,26456}, {26460,26462}, {26466,26468}, {26471,26473}, {26477,26479}, {26483,26485}, {26488,26490}, {26493,26512}, {26495,26514}, {26498,26516}, {26499,26517}, {26501,26519}
X(26496) = {X(493), X(24244)}-harmonic conjugate of X(3068)
X(26497) lies on these lines: {193,26496}, {491,26494}, {493,3069}, {5490,26362}, {5861,26337}, {6464,26506}, {8982,26439}, {18521,26438}, {26292,26295}, {26298,26301}, {26304,26307}, {26312,26315}, {26322,26325}, {26328,26331}, {26340,26347}, {26353,26356}, {26367,26370}, {26373,26376}, {26427,26430}, {26433,26436}, {26442,26445}, {26447,26450}, {26454,26457}, {26460,26463}, {26466,26469}, {26471,26474}, {26477,26480}, {26483,26486}, {26488,26491}, {26493,26513}, {26495,26515}, {26498,26521}, {26499,26522}, {26500,26523}, {26501,26524}
X(26498) lies on these lines: {2,26439}, {3,493}, {24,26373}, {30,26328}, {35,26353}, {36,26433}, {140,5490}, {498,26477}, {499,26471}, {517,26367}, {631,26494}, {1151,12978}, {1656,18521}, {2080,26427}, {3311,26454}, {3312,26460}, {3517,8948}, {3576,26298}, {6464,26507}, {6642,26304}, {10246,26495}, {10267,26493}, {10269,26322}, {26312,26316}, {26337,26341}, {26347,26348}, {26415,26422}, {26442,26446}, {26447,26451}, {26483,26487}, {26488,26492}, {26496,26516}, {26497,26521}
X(26498) = midpoint of X(3) and X(11949)
X(26498) = {X(2), X(26439)}-harmonic conjugate of X(26466)
X(26499) lies on these lines: {1,493}, {5,26483}, {5490,26363}, {6464,26508}, {6734,26442}, {10267,26493}, {10527,26494}, {10943,26488}, {11012,26292}, {11249,26322}, {12116,26439}, {18521,18544}, {26304,26308}, {26312,26317}, {26328,26332}, {26337,26342}, {26347,26349}, {26353,26357}, {26373,26377}, {26427,26431}, {26433,26437}, {26447,26452}, {26454,26458}, {26460,26464}, {26466,26470}, {26471,26475}, {26477,26481}, {26496,26517}, {26497,26522}
X(26500) lies on these lines: {1,493}, {5,26488}, {119,26466}, {1470,26433}, {2077,26292}, {5490,26364}, {5552,26494}, {6464,26509}, {6735,26442}, {10269,26322}, {10942,26483}, {11248,26493}, {12115,26439}, {18521,18542}, {26304,26309}, {26312,26318}, {26328,26333}, {26337,26343}, {26347,26350}, {26353,26358}, {26373,26378}, {26427,26432}, {26447,26453}, {26454,26459}, {26460,26465}, {26471,26476}, {26477,26482}, {26497,26523}
X(26501) lies on these lines: {1,493}, {11,26483}, {5490,10527}, {6464,26510}, {8948,26377}, {10529,26494}, {10532,26328}, {10804,26427}, {10806,26439}, {10835,26304}, {10879,26312}, {10916,26442}, {10931,26337}, {10932,26347}, {10943,26466}, {10949,26488}, {10957,26477}, {10959,26471}, {11249,26292}, {11401,26373}, {11510,26493}, {11915,26447}, {16202,26498}, {18521,18543}, {18967,26433}, {19049,26454}, {19050,26460}, {24244,26517}, {26496,26519}, {26497,26524}
X(26502) lies on these lines: {3,26323}, {35,26299}, {55,494}, {56,26504}, {100,26503}, {197,26305}, {1376,5491}, {3295,26368}, {5687,26443}, {6464,26493}, {10267,26507}, {10310,26293}, {11248,26509}, {11383,26374}, {11490,26428}, {11491,26440}, {11494,26313}, {11496,26329}, {11498,26338}, {11499,26467}, {11500,26484}, {11501,26478}, {11502,26472}, {11509,26434}, {11510,26510}, {11848,26448}, {18523,18524}, {18999,26455}, {19000,26461}, {26505,26512}, {26506,26513}
X(26503) lies on these lines: {2,494}, {3,26440}, {4,26374}, {8,26443}, {10,26299}, {20,26293}, {22,26305}, {30,18523}, {100,26502}, {145,26504}, {193,13439}, {388,26434}, {491,19421}, {492,26505}, {497,26354}, {631,26507}, {1270,26338}, {2896,26313}, {2975,26323}, {2996,13428}, {3091,26329}, {3434,26489}, {3436,26484}, {3616,26368}, {4240,26448}, {5552,26509}, {5905,19217}, {6392,6464}, {6995,8946}, {7585,26461}, {7586,26455}, {7787,26428}, {10527,26508}, {10528,26511}, {10529,26510}, {26392,26394}, {26416,26418}
X(26503) = isotomic conjugate of X(26494)
X(26503) = anticomplement of X(8223)
X(26503) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (494, 5491, 2), (6392, 6515, 26494)
X(26504) lies on these lines: {1,494}, {8,5491}, {55,26323}, {56,26502}, {145,26503}, {517,26293}, {519,26443}, {952,26467}, {1829,8946}, {2098,26354}, {2099,26434}, {5603,26329}, {5604,26338}, {6464,26495}, {7967,26440}, {7968,26455}, {7969,26461}, {8192,26305}, {9997,26313}, {10246,26507}, {10800,26428}, {10944,26478}, {10950,26472}, {11396,26374}, {11910,26448}, {18523,18526}, {26392,26395}, {26416,26419}, {26505,26514}, {26506,26515}
X(26504) = reflection of X(8211) in X(1)
X(26504) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26299, 26368), (26299, 26368, 494)
X(26505) lies on these lines: {193,26506}, {492,26503}, {494,3068}, {5491,26361}, {5860,26338}, {6464,26496}, {18523,18539}, {26293,26294}, {26299,26300}, {26305,26306}, {26313,26314}, {26323,26324}, {26329,26330}, {26354,26355}, {26368,26369}, {26374,26375}, {26428,26429}, {26434,26435}, {26440,26441}, {26443,26444}, {26448,26449}, {26455,26456}, {26461,26462}, {26467,26468}, {26472,26473}, {26478,26479}, {26484,26485}, {26489,26490}, {26502,26512}, {26504,26514}, {26507,26516}, {26508,26517}, {26509,26518}, {26510,26519}, {26511,26520}
X(26506) lies on these lines: {193,26505}, {393,494}, {491,19421}, {5491,7763}, {6460,8946}, {6464,26497}, {8982,26440}, {18523,26438}, {26293,26295}, {26299,26301}, {26305,26307}, {26313,26315}, {26323,26325}, {26329,26331}, {26338,26340}, {26354,26356}, {26368,26370}, {26374,26376}, {26428,26430}, {26434,26436}, {26443,26445}, {26448,26450}, {26455,26457}, {26461,26463}, {26467,26469}, {26472,26474}, {26478,26480}, {26484,26486}, {26489,26491}, {26502,26513}, {26504,26515}, {26507,26521}, {26508,26522}, {26509,26523}, {26510,26524}, {26511,26525}
X(26506) = {X(494), X(24243)}-harmonic conjugate of X(3069)
X(26507) lies on these lines: {2,26440}, {3,494}, {24,26374}, {30,26329}, {35,26354}, {36,26434}, {140,5491}, {498,26478}, {499,26472}, {517,26368}, {631,26503}, {1152,12979}, {1656,18523}, {2080,26428}, {3311,26455}, {3312,26461}, {3517,8946}, {3576,26299}, {6464,26498}, {6642,26305}, {10246,26504}, {10267,26502}, {10269,26323}, {16202,26510}, {16203,26511}, {26313,26316}, {26338,26348}, {26392,26398}, {26416,26422}, {26443,26446}, {26448,26451}, {26484,26487}, {26489,26492}, {26505,26516}, {26506,26521}
X(26507) = midpoint of X(3) and X(11950)
X(26507) = {X(2), X(26440)}-harmonic conjugate of X(26467)
X(26508) lies on these lines: {1,494}, {5,26484}, {5491,26363}, {6464,26499}, {6734,26443}, {10267,26502}, {10527,26503}, {10943,26489}, {11012,26293}, {11249,26323}, {12116,26440}, {18523,18544}, {26305,26308}, {26313,26317}, {26329,26332}, {26338,26349}, {26354,26357}, {26374,26377}, {26428,26431}, {26434,26437}, {26448,26452}, {26455,26458}, {26461,26464}, {26467,26470}, {26472,26475}, {26478,26481}, {26505,26517}, {26506,26522}
X(26509) lies on these lines: {1,494}, {5,26489}, {119,26467}, {1470,26434}, {2077,26293}, {5491,26364}, {5552,26503}, {6464,26500}, {6735,26443}, {10269,26323}, {10942,26484}, {11248,26502}, {12115,26440}, {18523,18542}, {26305,26309}, {26313,26318}, {26329,26333}, {26338,26350}, {26354,26358}, {26374,26378}, {26428,26432}, {26448,26453}, {26455,26459}, {26461,26465}, {26472,26476}, {26478,26482}, {26505,26518}, {26506,26523}
X(26510) lies on these lines: {1,494}, {11,26484}, {5491,10527}, {6464,26501}, {8946,26377}, {10529,26503}, {10532,26329}, {10804,26428}, {10806,26440}, {10835,26305}, {10879,26313}, {10916,26443}, {10932,26338}, {10943,26467}, {10949,26489}, {10957,26478}, {10959,26472}, {10966,26323}, {11249,26293}, {11401,26374}, {11510,26502}, {11915,26448}, {16202,26507}, {18523,18543}, {18967,26434}, {19049,26455}, {19050,26461}, {24243,26522}, {26505,26519}, {26506,26524}
X(26511) lies on these lines: {1,494}, {12,26489}, {5491,5552}, {8946,26378}, {10528,26503}, {10531,26329}, {10803,26428}, {10805,26440}, {10834,26305}, {10878,26313}, {10915,26443}, {10930,26338}, {10942,26467}, {10955,26484}, {10956,26478}, {10958,26472}, {10965,26354}, {11248,26293}, {11400,26374}, {11509,26434}, {11914,26448}, {16203,26507}, {18523,18545}, {19047,26455}, {19048,26461}, {22768,26323}, {24243,26523}, {26505,26520}, {26506,26525}
X(26512) lies on these lines: {3,26324}, {4,12344}, {35,26300}, {55,3068}, {56,26514}, {100,492}, {193,12329}, {197,26306}, {1376,26361}, {3295,26369}, {4421,5860}, {5687,26444}, {10267,26516}, {10310,26294}, {11248,26518}, {11383,26375}, {11490,26429}, {11491,26441}, {11494,26314}, {11496,26330}, {11497,26339}, {11499,26468}, {11500,26485}, {11501,26479}, {11502,26473}, {11509,26435}, {11510,26519}, {11848,26449}, {13675,15682}, {18524,18539}, {18999,26456}, {19000,26462}, {26393,26396}, {26417,26420}, {26493,26496}, {26502,26505}
X(26513) lies on these lines: {3,26325}, {4,12343}, {35,26301}, {55,3069}, {56,26515}, {100,491}, {193,12329}, {197,26307}, {1376,26362}, {3295,26370}, {4421,5861}, {5687,26445}, {8982,11491}, {10267,26521}, {10310,26295}, {11248,26523}, {11383,26376}, {11490,26430}, {11494,26315}, {11496,26331}, {11498,26340}, {11499,26469}, {11500,26486}, {11501,26480}, {11502,26474}, {11509,26436}, {11510,26524}, {11848,26450}, {13795,15682}, {18524,26438}, {18999,26457}, {19000,26463}, {26393,26397}, {26417,26421}, {26493,26497}, {26502,26506}
X(26514) lies on these lines: {1,1336}, {4,7981}, {8,26361}, {55,26324}, {56,26512}, {145,492}, {193,3242}, {517,26294}, {519,26444}, {952,26468}, {2098,26355}, {2099,26435}, {3241,5604}, {5603,26330}, {5605,20057}, {7967,26441}, {7968,26456}, {7969,26462}, {8192,26306}, {9997,26314}, {10246,26516}, {10800,26429}, {10944,26479}, {10950,26473}, {11396,26375}, {11910,26449}, {13702,15682}, {18526,18539}, {26395,26396}, {26419,26420}, {26495,26496}, {26504,26505}
X(26514) = reflection of X(13902) in X(1)
X(26514) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26300, 26369), (26300, 26369, 3068), (26519, 26520, 3068)
X(26515) lies on these lines: {1,1123}, {4,7980}, {8,26362}, {55,26325}, {56,26513}, {145,491}, {193,3242}, {517,26295}, {519,26445}, {952,26469}, {2098,26356}, {2099,26436}, {3241,5605}, {5603,26331}, {5604,20057}, {7967,8982}, {7968,26457}, {7969,26463}, {8192,26307}, {9997,26315}, {10246,26521}, {10800,26430}, {10944,26480}, {10950,26474}, {11396,26376}, {11910,26450}, {13822,15682}, {18526,26438}, {26395,26397}, {26419,26421}, {26495,26497}, {26504,26506}
X(26515) = reflection of X(13959) in X(1)
X(26515) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26301, 26370), (26301, 26370, 3069), (26524, 26525, 3069)
X(26516) lies on these lines: {2,14234}, {3,1587}, {20,12974}, {24,26375}, {30,26330}, {35,26355}, {36,26435}, {140,26361}, {182,193}, {230,1151}, {371,19102}, {487,492}, {488,21445}, {498,26479}, {499,26473}, {517,26369}, {549,5860}, {1656,18539}, {2080,26429}, {3311,26456}, {3312,26462}, {3530,26339}, {3576,26300}, {3767,15885}, {5305,8407}, {6200,12123}, {6459,12601}, {6642,26306}, {7585,9739}, {7735,15883}, {8960,12124}, {9680,11824}, {10246,26514}, {10267,26512}, {10269,26324}, {11294,26469}, {12314,19054}, {12975,15692}, {16202,26519}, {16203,26520}, {26314,26316}, {26396,26398}, {26420,26422}, {26444,26446}, {26449,26451}, {26485,26487}, {26490,26492}, {26496,26498}, {26505,26507}
X(26516) = midpoint of X(3) and X(13903)
X(26516) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26441, 26468), (182, 3523, 26521)
X(26517) lies on these lines: {1,1336}, {5,26485}, {193,10529}, {371,13135}, {492,10527}, {5860,26349}, {6734,26444}, {10267,26512}, {10943,26490}, {11012,26294}, {11249,26324}, {12116,26441}, {18539,18544}, {24244,26501}, {26306,26308}, {26314,26317}, {26330,26332}, {26339,26342}, {26355,26357}, {26361,26363}, {26375,26377}, {26396,26399}, {26420,26423}, {26429,26431}, {26435,26437}, {26449,26452}, {26456,26458}, {26462,26464}, {26468,26470}, {26473,26475}, {26479,26481}, {26496,26499}, {26505,26508}
X(26517) = {X(3068), X(26519)}-harmonic conjugate of X(1)
X(26518) lies on these lines: {1,1336}, {5,26490}, {119,26468}, {193,10528}, {371,13134}, {492,5552}, {1470,26435}, {2077,26294}, {5860,26350}, {6735,26444}, {10269,26324}, {10942,26485}, {11248,26512}, {12115,26441}, {18539,18542}, {26306,26309}, {26314,26318}, {26330,26333}, {26339,26343}, {26355,26358}, {26361,26364}, {26375,26378}, {26396,26400}, {26420,26424}, {26429,26432}, {26449,26453}, {26456,26459}, {26462,26465}, {26473,26476}, {26479,26482}, {26505,26509}
X(26518) = {X(3068), X(26520)}-harmonic conjugate of X(1)
X(26519) lies on these lines: {1,1336}, {4,13135}, {11,26485}, {193,12595}, {492,10529}, {5860,10932}, {10527,26361}, {10532,26330}, {10804,26429}, {10806,26441}, {10835,26306}, {10879,26314}, {10916,26444}, {10931,26339}, {10943,26468}, {10949,26490}, {10957,26479}, {10959,26473}, {10966,26324}, {11249,26294}, {11401,26375}, {11510,26512}, {11915,26449}, {13717,15682}, {16202,26516}, {18539,18543}, {18967,26435}, {19049,26456}, {19050,26462}, {26396,26401}, {26420,26425}, {26496,26501}, {26505,26510}
X(26519) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26517, 3068), (3068, 26514, 26520)
X(26520) lies on these lines: {1,1336}, {4,13134}, {12,26490}, {193,12594}, {492,10528}, {5552,26361}, {5860,10930}, {10531,26330}, {10803,26429}, {10805,26441}, {10834,26306}, {10878,26314}, {10915,26444}, {10929,26339}, {10942,26468}, {10955,26485}, {10956,26479}, {10958,26473}, {10965,26355}, {11248,26294}, {11400,26375}, {11509,26435}, {11914,26449}, {13716,15682}, {16203,26516}, {18539,18545}, {19047,26456}, {19048,26462}, {22768,26324}, {26396,26402}, {26420,26426}, {26505,26511}
X(26520) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26518, 3068), (3068, 26514, 26519)
X(26521) lies on these lines: {2,8982}, {3,1588}, {20,12975}, {24,26376}, {30,26331}, {35,26356}, {36,26436}, {140,26362}, {182,193}, {230,1152}, {372,19105}, {487,21445}, {488,491}, {498,26480}, {499,26474}, {517,26370}, {549,5861}, {1656,26438}, {2080,26430}, {3311,26457}, {3312,26463}, {3530,26340}, {3576,26301}, {3767,15886}, {5305,8400}, {5420,21737}, {6396,12124}, {6460,12602}, {6642,26307}, {7586,9738}, {7735,15884}, {10246,26515}, {10267,26513}, {10269,26325}, {11293,26468}, {12313,19053}, {12974,15692}, {16202,26524}, {16203,26525}, {26315,26316}, {26397,26398}, {26421,26422}, {26445,26446}, {26450,26451}, {26486,26487}, {26491,26492}, {26497,26498}, {26506,26507}
X(26521) = midpoint of X(3) and X(13961)
X(26521) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 8982, 26469), (182, 3523, 26516)
X(26522) lies on these lines: {1,1123}, {5,26486}, {193,10529}, {372,13133}, {491,10527}, {5861,26342}, {6734,26445}, {8982,12116}, {10267,26513}, {10943,26491}, {11012,26295}, {11249,26325}, {18544,26438}, {24243,26510}, {26307,26308}, {26315,26317}, {26331,26332}, {26340,26349}, {26356,26357}, {26362,26363}, {26376,26377}, {26397,26399}, {26421,26423}, {26430,26431}, {26436,26437}, {26450,26452}, {26457,26458}, {26463,26464}, {26469,26470}, {26474,26475}, {26480,26481}, {26497,26499}, {26506,26508}
X(26522) = {X(3069), X(26524)}-harmonic conjugate of X(1)
X(26523) lies on these lines: {1,1123}, {5,26491}, {119,26469}, {193,10528}, {372,13132}, {491,5552}, {1470,26436}, {2077,26295}, {5861,26343}, {6735,26445}, {8982,12115}, {10269,26325}, {10942,26486}, {11248,26513}, {18542,26438}, {24243,26511}, {26307,26309}, {26315,26318}, {26331,26333}, {26340,26350}, {26356,26358}, {26362,26364}, {26376,26378}, {26397,26400}, {26421,26424}, {26430,26432}, {26450,26453}, {26457,26459}, {26463,26465}, {26474,26476}, {26480,26482}, {26497,26500}, {26506,26509}
X(26523) = {X(3069), X(26525)}-harmonic conjugate of X(1)
X(26524) lies on these lines: {1,1123}, {4,13133}, {11,26486}, {193,12595}, {491,10529}, {5861,10931}, {8982,10806}, {10527,26362}, {10532,26331}, {10804,26430}, {10835,26307}, {10879,26315}, {10916,26445}, {10932,26340}, {10943,26469}, {10949,26491}, {10957,26480}, {10959,26474}, {10966,26325}, {11249,26295}, {11401,26376}, {11510,26513}, {11915,26450}, {13840,15682}, {16202,26521}, {18543,26438}, {18967,26436}, {19049,26457}, {19050,26463}, {26397,26401}, {26421,26425}, {26497,26501}, {26506,26510}
X(26524) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26522, 3069), (3069, 26515, 26525)
X(26525) lies on these lines: {1,1123}, {4,13132}, {12,26491}, {193,12594}, {491,10528}, {5552,26362}, {5861,10929}, {8982,10805}, {10531,26331}, {10803,26430}, {10834,26307}, {10878,26315}, {10915,26445}, {10930,26340}, {10942,26469}, {10955,26486}, {10956,26480}, {10958,26474}, {10965,26356}, {11248,26295}, {11400,26376}, {11509,26436}, {11914,26450}, {13839,15682}, {16203,26521}, {18545,26438}, {19047,26457}, {19048,26463}, {22768,26325}, {26397,26402}, {26421,26426}, {26506,26511}
X(26525) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 26523, 3069), (3069, 26515, 26524)
Collineation mappings involving Gemini triangle 45: X(26526)-X(26574)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 45, as in centers X(26526)-X(26574). Then
m(X) = (b + c - a)(b - c)^2 x + b^2 (a - b + c) y + c^2 (a + b - c) z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 1, 2018)
X(26526) lies on these lines: {1, 2}, {21, 24619}, {220, 27132}, {664, 27006}, {673, 5086}, {1146, 26563}, {1572, 26099}, {2082, 21285}, {2170, 17046}, {2241, 25886}, {2475, 27000}, {3662, 26549}, {3753, 17672}, {3877, 17671}, {4904, 20880}, {4967, 25966}, {5141, 27183}, {5794, 24596}, {10025, 26793}, {17062, 17451}, {17184, 26528}, {17270, 25880}, {20257, 21029}, {20905, 26543}, {21240, 24548}, {24547, 25964}, {24986, 25887}, {26527, 26561}, {26529, 26533}, {26530, 26538}, {26536, 26542}, {26567, 26569}
X(26527) lies on these lines: {2, 3}, {7761, 25886}, {23661, 26157}, {26526, 26561}, {26530, 26537}, {26531, 26565}, {26541, 26564}, {26582, 26653}
X(26528) lies on these lines: {2, 3}, {318, 26157}, {8735, 18639}, {17184, 26526}, {26533, 26561}, {26540, 26541}
X(26529) lies on these lines: {2, 3}, {26526, 26533}, {26590, 26653}
X(26530) lies on these lines: {2, 6}, {120, 25279}, {125, 16067}, {894, 16608}, {1086, 26567}, {1330, 25990}, {1352, 16048}, {1368, 3794}, {1503, 17522}, {1853, 26096}, {1899, 25494}, {3271, 17047}, {3662, 26932}, {7083, 21280}, {17236, 27288}, {20905, 26570}, {21258, 26806}, {25007, 25966}, {26526, 26538}, {26527, 26537}, {26536, 26559}, {26557, 26569}
X(26531) lies on these lines: {1, 2}, {4, 27000}, {5, 27183}, {75, 25002}, {85, 1146}, {116, 17181}, {150, 169}, {192, 25019}, {319, 25878}, {355, 17682}, {404, 25954}, {515, 4209}, {517, 17671}, {673, 1837}, {1107, 24555}, {1482, 17675}, {1699, 26839}, {3177, 9436}, {3662, 17435}, {3673, 4904}, {4534, 9311}, {5086, 24596}, {5179, 17753}, {6554, 6604}, {6999, 24590}, {7179, 17451}, {7190, 27547}, {7991, 26790}, {8256, 16593}, {10481, 20089}, {10950, 26007}, {11101, 24619}, {11109, 14621}, {13567, 26558}, {15888, 27475}, {17086, 18634}, {17121, 26668}, {17194, 26804}, {17233, 25067}, {17242, 26669}, {17247, 25238}, {17248, 24554}, {17364, 26651}, {18928, 27064}, {19786, 26958}, {20262, 26125}, {23893, 26985}, {26527, 26565}, {26533, 26611}, {26541, 26572}, {26567, 26574}
X(26532) lies on these lines: {1, 2}, {355, 17683}, {409, 24619}, {894, 26793}, {1837, 24596}, {2646, 24582}, {5046, 27000}, {5154, 27183}, {17050, 21044}, {17062, 21921}, {17184, 25977}, {17862, 26592}, {20905, 26541}, {21258, 26563}, {24993, 25964}, {26533, 26587}, {26550, 26565}
X(26533) lies on these lines: {2, 11}, {1146, 20940}, {26526, 26529}, {26528, 26561}, {26531, 26611}, {26532, 26587}
X(26534) lies on these lines: {2, 3}
X(26535) lies on these lines: {2, 3}
X(26536) lies on these lines: {2, 31}, {21912, 27149}, {26526, 26542}, {26530, 26559}, {26560, 26565}
X(26537) lies on these lines: {2, 32}, {26527, 26530}, {26541, 26557}, {26542, 26633}, {26564, 26569}
X(26538) lies on these lines: {2, 37}, {10, 20633}, {86, 26639}, {141, 3262}, {239, 15988}, {322, 3620}, {594, 26594}, {693, 24098}, {726, 25024}, {1086, 18179}, {1125, 1733}, {1441, 3662}, {1738, 4642}, {2550, 14923}, {3218, 11683}, {3616, 4008}, {3661, 20895}, {3663, 20236}, {3821, 23690}, {4357, 4858}, {4419, 20927}, {4872, 26837}, {4967, 25007}, {5294, 20879}, {10030, 26806}, {16725, 16738}, {16732, 17235}, {16817, 25906}, {17236, 26563}, {17258, 18151}, {17277, 26699}, {17304, 17861}, {17355, 20881}, {18252, 20556}, {18698, 24199}, {20172, 26621}, {20432, 25997}, {20911, 21442}, {21020, 24997}, {24342, 24563}, {25023, 26001}, {25082, 25601}, {25964, 26570}, {26526, 26530}, {26539, 26548}, {26581, 26582}
X(26358) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 11248, 1470), (1482, 8069, 26437), (3295, 10679, 1)
X(26539) lies on these lines: {2, 39}, {7187, 23989}, {26527, 26530}, {26538, 26548}, {26557, 26564}
X(26540) lies on these lines: {2, 6}, {7, 281}, {10, 18412}, {77, 18634}, {105, 12589}, {142, 26001}, {189, 6355}, {307, 24635}, {314, 26607}, {315, 26678}, {320, 26651}, {451, 5707}, {857, 10446}, {948, 5942}, {1352, 4223}, {1442, 17073}, {1486, 21293}, {1861, 10394}, {1899, 4224}, {3240, 25882}, {3661, 25001}, {3662, 17435}, {3823, 25005}, {3879, 26006}, {3912, 25019}, {4228, 11442}, {4357, 24554}, {4466, 18161}, {5142, 18180}, {5273, 26942}, {6740, 17579}, {6824, 12359}, {6833, 26879}, {7671, 24388}, {10449, 25017}, {15466, 17862}, {16696, 26636}, {16948, 24538}, {17074, 20266}, {17126, 25968}, {17139, 18747}, {17170, 18636}, {17231, 25067}, {17233, 25243}, {17287, 25584}, {17296, 25930}, {20262, 21617}, {21911, 24430}, {21931, 24341}, {23291, 26118}, {26528, 26541}, {26555, 26564}
X(26541) lies on these lines: {2, 39}, {75, 24999}, {85, 18359}, {86, 311}, {264, 3945}, {313, 24993}, {321, 26581}, {338, 17392}, {343, 1231}, {1226, 17863}, {1232, 5224}, {1235, 11109}, {1269, 24547}, {2995, 10401}, {3006, 20436}, {3260, 17378}, {3673, 24984}, {3760, 19861}, {3761, 19860}, {3936, 21596}, {5741, 21581}, {6376, 25005}, {6381, 24982}, {18133, 24986}, {18147, 24540}, {20888, 24987}, {20905, 26532}, {22028, 26595}, {26527, 26564}, {26528, 26540}, {26531, 26572}, {26537, 26557}
X(26542) lies on these lines: {2, 6}, {858, 3794}, {1086, 20886}, {3662, 26552}, {11442, 25494}, {16067, 23293}, {17184, 26932}, {26526, 26536}, {26537, 26633}, {26559, 26565}
X(26543) lies on these lines: {2, 6}, {7, 11683}, {21, 1503}, {85, 257}, {142, 16609}, {182, 7483}, {189, 18632}, {274, 6393}, {286, 297}, {287, 25536}, {377, 1350}, {405, 1352}, {440, 17185}, {441, 2193}, {442, 511}, {443, 10519}, {518, 8261}, {542, 15670}, {594, 26665}, {611, 10198}, {613, 26363}, {857, 17183}, {958, 12588}, {1001, 12589}, {1086, 18179}, {1386, 24541}, {1428, 4999}, {1469, 25466}, {1723, 17272}, {1762, 7289}, {1843, 25985}, {1901, 17139}, {2330, 6690}, {2476, 5480}, {2478, 10516}, {2781, 12826}, {2886, 3056}, {3002, 16887}, {3098, 11112}, {3416, 19860}, {3434, 10387}, {3564, 6675}, {3818, 11113}, {3844, 24982}, {3912, 25099}, {3925, 17792}, {3932, 25024}, {3943, 25245}, {4187, 24206}, {4188, 21167}, {4357, 15595}, {4437, 25001}, {4904, 24199}, {5085, 6910}, {5249, 24471}, {5398, 17698}, {5721, 16062}, {5723, 17291}, {5724, 7270}, {5798, 10446}, {5830, 17289}, {5831, 17308}, {5921, 17558}, {6776, 6857}, {6856, 14853}, {9015, 26641}, {10436, 16608}, {11180, 17561}, {11645, 17525}, {14927, 17576}, {15812, 25907}, {16418, 18440}, {16603, 20258}, {17045, 26639}, {17052, 17197}, {17202, 26601}, {17237, 25887}, {17239, 25007}, {17298, 17739}, {17322, 24559}, {17332, 26699}, {17530, 19130}, {18750, 27184}, {20905, 26526}, {23983, 26165}, {26547, 26548}, {26554, 26563}
X(26544) lies on these lines: {1, 2}, {76, 26572}, {5330, 17675}, {6604, 26793}, {26561, 26565}
X(26545) lies on these lines: {2, 661}, {297, 525}, {513, 25981}, {693, 26596}, {4077, 27184}, {9013, 25898}, {17420, 17494}, {18199, 26625}, {25009, 26571}
X(26546) lies on these lines: {2, 650}, {297, 525}, {377, 8760}, {812, 26017}, {1577, 25007}, {1738, 23793}, {2517, 24990}, {2788, 8642}, {3434, 11934}, {4077, 4468}, {4379, 25955}, {4382, 25924}, {23989, 26565}
X(26547) lies on these lines: {2, 31}, {24993, 25964}, {26526, 26530}, {26543, 26548}
X(26548) lies on these lines: {1, 2}, {517, 17672}, {1573, 25888}, {16912, 24809}, {17184, 26561}, {17236, 20089}, {24547, 26574}, {26538, 26539}, {26543, 26547}
X(26549) lies on these lines: {2, 3}, {3662, 26526}
X(26550) lies on these lines: {2, 3}, {85, 257}, {23536, 25935}, {23661, 26153}, {25000, 26035}, {26526, 26536}, {26532, 26565}
X(26551) lies on these lines: {2, 3}
X(26552) lies on these lines: {2, 3}, {3662, 26542}
X(26553) lies on these lines: {2, 3}
X(26554) lies on these lines: {2, 3}, {26543, 26563}
X(26555) lies on these lines: {2, 3}, {26540, 26564}
X(26556) lies on these lines: {2, 3}, {318, 26158}, {3662, 17435}, {26590, 26658}
X(26557) lies on these lines: {2, 3}, {26530, 26569}, {26537, 26541}, {26539, 26564}
X(26558) lies on these lines: {2, 12}, {4, 20172}, {5, 17030}, {8, 17550}, {10, 6656}, {11, 17669}, {21, 26629}, {36, 17694}, {75, 5254}, {116, 16887}, {141, 6376}, {239, 1834}, {257, 1146}, {325, 1107}, {341, 3661}, {442, 16819}, {495, 27255}, {626, 1573}, {993, 7807}, {1211, 3975}, {1376, 7791}, {1478, 11321}, {1574, 4045}, {1698, 17670}, {2886, 5025}, {3035, 7824}, {3662, 21258}, {3691, 24995}, {3704, 3797}, {3820, 8362}, {4187, 26959}, {4357, 17062}, {4366, 17685}, {4386, 7750}, {4426, 7792}, {4766, 10459}, {5051, 26965}, {5080, 17686}, {5432, 17684}, {6292, 27076}, {6554, 17257}, {7354, 16915}, {7745, 20179}, {7866, 9708}, {7876, 9711}, {7887, 26363}, {7933, 9710}, {8356, 25440}, {9709, 11287}, {11285, 26364}, {13567, 26531}, {14064, 19843}, {15326, 17693}, {16062, 27299}, {16829, 24390}, {16910, 24596}, {17045, 23905}, {17184, 25977}, {17671, 27248}, {17672, 27026}, {17757, 27020}, {21031, 26752}, {21485, 22654}, {21935, 24592}, {26526, 26529}, {26576, 26621}, {26804, 27149}
X(26559) lies on these lines: {1, 2}, {26530, 26536}, {26542, 26565}
X(26560) lies on these lines: {1, 2}, {17046, 22173}, {26536, 26565}
X(26561) lies on these lines: {1, 6656}, {2, 12}, {3, 26629}, {5, 26959}, {8, 26582}, {10, 17670}, {11, 5025}, {34, 297}, {35, 8356}, {36, 7807}, {55, 7791}, {85, 257}, {141, 1909}, {172, 7792}, {192, 7864}, {239, 7270}, {315, 16502}, {325, 2275}, {330, 3314}, {334, 20255}, {350, 5254}, {377, 20172}, {384, 7354}, {442, 17030}, {458, 11392}, {495, 8362}, {498, 11285}, {499, 7887}, {626, 1015}, {673, 17680}, {894, 7247}, {948, 26132}, {999, 7866}, {1003, 4299}, {1201, 4766}, {1475, 24995}, {1478, 7770}, {1479, 7841}, {1500, 4045}, {1834, 17027}, {1914, 7750}, {1975, 9597}, {2241, 7761}, {2242, 7834}, {2886, 26801}, {3058, 7924}, {3085, 16043}, {3086, 14064}, {3295, 11287}, {3552, 15326}, {3585, 8370}, {3614, 16921}, {3616, 17550}, {3665, 7187}, {3734, 9651}, {3782, 17789}, {3816, 17669}, {4202, 26965}, {4293, 14001}, {4324, 8353}, {4366, 6284}, {4904, 24190}, {5080, 17541}, {5204, 16925}, {5299, 7762}, {5432, 7824}, {5563, 8363}, {5716, 26626}, {6690, 17684}, {7179, 25918}, {7773, 9599}, {7784, 16781}, {7808, 9650}, {7819, 18990}, {7825, 9665}, {7833, 15338}, {7872, 9664}, {7876, 15888}, {8352, 18514}, {8357, 15171}, {8361, 15325}, {8728, 16819}, {9596, 11174}, {9655, 11286}, {9657, 16898}, {10350, 12835}, {10352, 12184}, {10483, 19687}, {10591, 16041}, {10895, 16924}, {10896, 14063}, {12607, 26752}, {12943, 14035}, {15048, 25264}, {17144, 21956}, {17184, 26548}, {17366, 24366}, {17397, 26601}, {17448, 20541}, {17757, 27091}, {17798, 21993}, {26279, 27068}, {26526, 26527}, {26528, 26533}, {26544, 26565}, {26578, 26621}, {26802, 26977}
X(26562) lies on these lines: {1, 24602}, {2, 65}, {116, 17211}, {141, 21951}, {321, 22202}, {335, 4696}, {517, 27097}, {942, 26965}, {1837, 16910}, {3125, 20911}, {3263, 3721}, {3290, 17152}, {3662, 17435}, {3701, 24080}, {3742, 26807}, {3868, 27299}, {3912, 4642}, {3924, 24586}, {4357, 21921}, {5086, 17680}, {5836, 26759}, {5883, 16818}, {16583, 17137}, {16720, 21331}, {17184, 25977}, {18180, 27185}, {18191, 26841}, {20271, 26234}, {20347, 25994}, {20880, 24190}, {21281, 26242}, {26526, 26527}
X(26563) lies on these lines: {2, 85}, {7, 3436}, {8, 3673}, {10, 1111}, {37, 20448}, {38, 20436}, {41, 24249}, {56, 26229}, {57, 24612}, {65, 20347}, {69, 5016}, {75, 3617}, {76, 321}, {77, 24540}, {88, 274}, {141, 1229}, {142, 21921}, {145, 16284}, {220, 26653}, {244, 24215}, {257, 18031}, {304, 4358}, {307, 24986}, {322, 3672}, {333, 16749}, {343, 1231}, {349, 23989}, {350, 20955}, {354, 21967}, {404, 5088}, {498, 25581}, {518, 20247}, {519, 7264}, {529, 7198}, {551, 7278}, {693, 21132}, {908, 3674}, {984, 20435}, {986, 21422}, {1086, 21951}, {1146, 26526}, {1211, 1233}, {1329, 3665}, {1334, 21232}, {1434, 27003}, {1441, 4357}, {1447, 2975}, {1475, 17048}, {1565, 4187}, {1828, 17183}, {1837, 21285}, {1909, 5484}, {1921, 20892}, {1930, 3701}, {2329, 9318}, {2478, 17170}, {2551, 7195}, {3057, 21272}, {3212, 3869}, {3262, 4389}, {3263, 6376}, {3452, 24994}, {3619, 20927}, {3620, 20171}, {3621, 17158}, {3634, 25585}, {3662, 17435}, {3663, 4642}, {3666, 21596}, {3693, 25237}, {3702, 3760}, {3721, 21138}, {3732, 17681}, {3739, 27170}, {3752, 18600}, {3761, 4968}, {3765, 4359}, {3812, 4059}, {3953, 21208}, {4193, 17181}, {4202, 20235}, {4352, 4850}, {4391, 17192}, {4487, 25278}, {4513, 24352}, {4515, 26757}, {4721, 24254}, {4861, 24203}, {4872, 5046}, {4911, 5080}, {5253, 7176}, {5439, 17169}, {5554, 6604}, {5836, 20244}, {6646, 10030}, {6691, 7181}, {7112, 17291}, {7179, 11681}, {7200, 16604}, {7223, 25524}, {7247, 20060}, {8582, 10481}, {9312, 19861}, {9436, 24982}, {10521, 12527}, {10587, 17321}, {14552, 19788}, {16583, 26978}, {16609, 24633}, {16611, 24790}, {16732, 17237}, {17044, 26660}, {17046, 21044}, {17233, 22040}, {17236, 26538}, {17257, 25001}, {17266, 18140}, {17272, 17861}, {17320, 17791}, {17448, 27918}, {17451, 20335}, {18133, 20336}, {18743, 21605}, {20245, 24471}, {20891, 21615}, {21258, 26532}, {21609, 26132}, {24214, 24443}, {24268, 25940}, {24326, 25102}, {25244, 27025}, {26167, 26171}, {26543, 26554}, {26669, 27282}, {27813, 27814}
X(26564) lies on these lines: {2, 99}, {1086, 26566}, {26527, 26541}, {26537, 26569}, {26539, 26557}, {26540, 26555}, {26565, 26572}
X(26565) lies on these lines: {2, 11}, {1086, 26568}, {4904, 26566}, {14936, 26641}, {23989, 26546}, {26527, 26531}, {26532, 26550}, {26536, 26560}, {26542, 26559}, {26544, 26561}, {26564, 26572}
X(26566) lies on these lines: {2, 101}, {1086, 26564}, {4904, 26565}
X(26567) lies on these lines: {2, 37}, {1086, 26530}, {3262, 17232}, {3662, 4858}, {4361, 26657}, {4440, 20927}, {7336, 17047}, {17230, 20895}, {17276, 18151}, {17339, 20881}, {26526, 26569}, {26531, 26574}
X(26568) lies on these lines: {2, 900}, {1086, 26565}, {4435, 26657}
X(26569) lies on these lines: {2, 39}, {26526, 26567}, {26530, 26557}, {26537, 26564}
X(26570) lies on these lines: {1, 2}, {524, 26674}, {3762, 26571}, {20905, 26530}, {25964, 26538}
X(26571) lies on these lines: {2, 649}, {3662, 4468}, {3762, 26570}, {4521, 27184}, {25009, 26545}
X(26572) lies on these lines: {2, 668}, {6, 26693}, {76, 26544}, {693, 4534}, {1146, 23989}, {1358, 4462}, {4366, 26691}, {4391, 4904}, {26531, 26541}, {26564, 26565}
X(26573) lies on these lines: {2, 7}, {141, 26594}, {320, 15988}, {335, 26581}, {1086, 18179}, {3663, 25241}, {3834, 25099}, {3836, 25024}, {3912, 25245}, {4201, 18444}, {14621, 26628}, {17273, 26671}, {17302, 26639}, {17324, 24559}, {20905, 26530}, {24231, 24987}, {26526, 26567}
X(26574) lies on these lines: {2, 38}, {20905, 26532}, {24547, 26548}, {26526, 26530}, {26531, 26567}
Collineation mappings involving Gemini triangle 46: X(26575)-X(26612)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 46, as in centers X(26575)-X(26612). Then
m(X) = (a + b - c) (a - b + c) (b + c)^2 x + b^2 (b + c - a) (a + b - c) y + c^2 (b + c - a) (a - b + c) z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 1, 2018)
X(26575) lies on these lines: {1, 2}, {37, 24986}, {141, 24993}, {594, 24547}, {1229, 21933}, {2171, 21244}, {2285, 21286}, {3553, 27507}, {4364, 24998}, {4437, 20905}, {4851, 24540}, {17237, 24999}, {20262, 27058}, {25000, 25099}, {25023, 25243}, {26576, 26590}, {26578, 26582}, {26579, 26580}, {26585, 26601}, {26793, 27064}
X(26576) lies on these lines: {2, 3}, {26558, 26621}, {26575, 26590}, {26579, 26586}
X(26577) lies on these lines: {2, 3}, {26580, 26581}
X(26578) lies on these lines: {2, 3}, {17184, 26581}, {26561, 26621}, {26575, 26582}
X(26579) lies on these lines: {2, 6}, {12, 25005}, {42, 24991}, {511, 16067}, {908, 21244}, {1853, 26032}, {2887, 24996}, {4671, 26610}, {26575, 26580}, {26576, 26586}, {26585, 26590}, {26591, 26594}, {26611, 26612}, {26942, 27184}
X(26580) lies on these lines: {2, 7}, {10, 3120}, {31, 4703}, {37, 3936}, {38, 3846}, {42, 4425}, {72, 5051}, {73, 5484}, {78, 17676}, {100, 24723}, {141, 4358}, {145, 4101}, {171, 4683}, {210, 4972}, {238, 26230}, {257, 18359}, {306, 3950}, {312, 17228}, {313, 321}, {349, 23989}, {612, 6327}, {651, 26637}, {748, 26128}, {750, 4655}, {756, 2887}, {899, 3821}, {982, 25960}, {984, 3006}, {1086, 5241}, {1125, 19740}, {1150, 4396}, {1999, 2895}, {2886, 4981}, {3124, 3721}, {3175, 3969}, {3187, 5739}, {3622, 16485}, {3661, 4044}, {3663, 17495}, {3666, 5741}, {3687, 17147}, {3696, 4442}, {3705, 7226}, {3755, 19998}, {3772, 5278}, {3773, 3994}, {3782, 4359}, {3842, 4892}, {3844, 4009}, {3876, 16062}, {3883, 20045}, {3891, 3966}, {3896, 4819}, {3914, 4104}, {3920, 4388}, {3971, 15523}, {3993, 4062}, {4011, 24943}, {4028, 27804}, {4052, 6539}, {4085, 21805}, {4135, 6535}, {4199, 21319}, {4202, 5044}, {4292, 19284}, {4364, 5718}, {4365, 21085}, {4389, 4850}, {4402, 19824}, {4407, 21242}, {4416, 16704}, {4419, 17740}, {4424, 21042}, {4645, 5297}, {4667, 26860}, {5057, 5263}, {5222, 19823}, {5235, 17256}, {5269, 20064}, {5719, 13745}, {8620, 9284}, {9330, 25959}, {11263, 16828}, {11319, 12572}, {11374, 16342}, {12609, 19874}, {13411, 16347}, {14554, 26844}, {14555, 19785}, {14996, 17364}, {14997, 17367}, {15254, 24542}, {16610, 17235}, {16738, 17174}, {16887, 17198}, {17012, 17302}, {17013, 17396}, {17019, 17778}, {17021, 17300}, {17135, 24210}, {17182, 27163}, {17230, 21071}, {17255, 17595}, {17719, 24697}, {17889, 26037}, {18249, 25982}, {18250, 25904}, {18541, 19290}, {20234, 21810}, {20905, 26005}, {21077, 26115}, {22020, 27041}, {24217, 25378}, {24441, 27739}, {24552, 24703}, {25000, 26011}, {26526, 26529}, {26575, 26579}, {26577, 26581}, {26589, 26601}, {26590, 26593}, {26594, 26612}, {26609, 26942}, {27493, 27495}
X(26581) lies on these lines: {1, 2}, {9, 21286}, {141, 24547}, {321, 26541}, {335, 26573}, {536, 24999}, {594, 24993}, {1319, 24583}, {1332, 17289}, {3877, 7377}, {4357, 4552}, {4437, 25001}, {5252, 24612}, {17184, 26578}, {17239, 24986}, {17303, 24540}, {26538, 26582}, {26577, 26580}, {26591, 26592}
X(26582) lies on these lines: {1, 17670}, {2, 11}, {4, 26687}, {5, 27091}, {8, 26561}, {10, 6656}, {12, 26752}, {37, 25357}, {75, 141}, {115, 27076}, {157, 11329}, {190, 2345}, {239, 5846}, {297, 1861}, {325, 1575}, {350, 21956}, {404, 26686}, {442, 27020}, {537, 3775}, {545, 17254}, {626, 1574}, {740, 1738}, {812, 21261}, {857, 27047}, {894, 5845}, {899, 4766}, {900, 19964}, {958, 7791}, {993, 8356}, {1111, 20431}, {1211, 18037}, {1213, 4422}, {1329, 5025}, {1573, 4045}, {3008, 17766}, {3136, 27035}, {3589, 20179}, {3763, 20181}, {3797, 3932}, {4000, 4360}, {4085, 17023}, {4386, 7792}, {4426, 7750}, {4440, 17238}, {4966, 6542}, {4971, 17310}, {4999, 7824}, {5051, 27026}, {5254, 6376}, {5819, 26685}, {6284, 16916}, {6645, 17565}, {7807, 25440}, {7866, 9709}, {7876, 9710}, {7887, 26364}, {7933, 9711}, {8362, 17030}, {8728, 27255}, {9708, 11287}, {9780, 17550}, {11285, 26363}, {11349, 27323}, {15338, 17692}, {16043, 19843}, {16706, 16826}, {17303, 24358}, {17308, 17738}, {17446, 21035}, {17672, 26965}, {17674, 27097}, {17684, 24953}, {18082, 18095}, {20356, 25748}, {23891, 24222}, {24390, 26959}, {26527, 26653}, {26538, 26581}, {26575, 26578}, {26605, 27059}, {26772, 27058}
X(26582) = complement of X(4366)
X(26583) lies on these lines: {2, 3}
X(26584) lies on these lines: {2, 3}
X(26585) lies on these lines: {2, 31}, {213, 24992}, {5025, 25005}, {17555, 26653}, {26575, 26601}, {26579, 26590}, {26586, 26589}
X(26586) lies on these lines: {2, 32}, {26576, 26579}, {26585, 26589}, {26592, 26608}
X(26587) lies on these lines: {2, 37}, {329, 5933}, {756, 24996}, {908, 2171}, {1220, 1411}, {2292, 24982}, {2551, 3869}, {3124, 26611}, {3262, 5718}, {3816, 21333}, {4415, 18179}, {4425, 24991}, {5311, 24545}, {5712, 20928}, {23690, 25385}, {25024, 26013}, {26532, 26533}, {26575, 26579}, {26588, 26599}, {26590, 26602}
X(26588) lies on these lines: {2, 39}, {1232, 26979}, {26576, 26579}, {26587, 26599}
X(26589) lies on these lines: {2, 41}, {6, 26176}, {872, 21235}, {1211, 21025}, {4805, 24587}, {17671, 26688}, {20305, 26772}, {21244, 26756}, {26580, 26601}, {26585, 26586}, {26595, 26602}
X(26590) lies on these lines: {1, 6656}, {2, 11}, {3, 26686}, {5, 27020}, {8, 17550}, {12, 5025}, {33, 297}, {35, 7807}, {36, 8356}, {37, 20541}, {42, 4766}, {56, 7791}, {75, 21956}, {141, 350}, {172, 7750}, {192, 3314}, {239, 4514}, {257, 312}, {321, 8024}, {325, 2276}, {330, 7864}, {335, 3782}, {384, 6284}, {442, 27255}, {458, 11393}, {496, 8362}, {498, 7887}, {499, 11285}, {626, 1500}, {894, 4872}, {999, 11287}, {1003, 4302}, {1015, 4045}, {1125, 17670}, {1329, 17669}, {1334, 24995}, {1478, 7841}, {1479, 7770}, {1834, 17033}, {1909, 5254}, {1914, 7792}, {1975, 9598}, {2241, 7834}, {2242, 7761}, {2478, 26687}, {2887, 3912}, {3085, 14064}, {3086, 16043}, {3295, 7866}, {3552, 15338}, {3583, 8370}, {3703, 3797}, {3734, 9664}, {3746, 8363}, {3813, 26801}, {3933, 25264}, {3970, 17211}, {4187, 27091}, {4202, 27097}, {4294, 14001}, {4316, 8353}, {4415, 4437}, {4660, 24586}, {4999, 17684}, {5217, 16925}, {5276, 20553}, {5280, 7762}, {5433, 7824}, {5434, 7924}, {6645, 6655}, {7173, 16921}, {7264, 17192}, {7773, 9596}, {7803, 16502}, {7808, 9665}, {7819, 15171}, {7825, 9650}, {7833, 15326}, {7872, 9651}, {7933, 15888}, {8352, 18513}, {8357, 18990}, {8359, 15325}, {8364, 15172}, {9599, 11174}, {9668, 11286}, {9670, 16898}, {10350, 10799}, {10352, 12185}, {10483, 19695}, {10590, 16041}, {10895, 14063}, {10896, 16924}, {11343, 27309}, {12953, 14035}, {13728, 27274}, {16062, 27248}, {16826, 19786}, {17030, 24390}, {17032, 17056}, {17316, 18134}, {17671, 27299}, {17694, 25440}, {17747, 24514}, {20173, 27184}, {22370, 25978}, {24424, 25364}, {26529, 26653}, {26556, 26658}, {26575, 26576}, {26579, 26585}, {26580, 26593}, {26587, 26602}, {26597, 26598}
X(26591) lies on these lines: {2, 37}, {10, 23528}, {92, 18228}, {349, 23989}, {394, 26223}, {594, 26005}, {908, 1441}, {936, 23661}, {1211, 26603}, {1215, 25941}, {1265, 4696}, {1698, 17869}, {3187, 10601}, {3262, 5233}, {3452, 6358}, {3661, 26607}, {3701, 24987}, {3702, 19860}, {3980, 25938}, {4011, 25885}, {4054, 20880}, {4363, 25934}, {4647, 8582}, {4656, 24213}, {4858, 5316}, {4968, 19861}, {8580, 17860}, {14555, 20928}, {19875, 23580}, {21438, 26695}, {26579, 26594}, {26581, 26592}
X(26592) lies on these lines: {2, 39}, {75, 23978}, {264, 391}, {311, 17277}, {313, 25001}, {321, 13567}, {338, 17330}, {1232, 17234}, {1235, 26003}, {1269, 20905}, {3260, 17346}, {3761, 25930}, {3963, 25243}, {4044, 25935}, {4385, 25017}, {17862, 26532}, {20888, 26001}, {26581, 26591}, {26586, 26608}
X(26593) lies on these lines: {1, 2}, {321, 1233}, {3219, 20533}, {3555, 17672}, {3693, 17229}, {3773, 4712}, {10025, 17287}, {14828, 17295}, {17231, 20483}, {21096, 25261}, {26580, 26590}
X(26594) lies on these lines: {1, 2}, {104, 21495}, {141, 26573}, {594, 26538}, {740, 25010}, {1577, 26596}, {3775, 25024}, {4357, 25245}, {15988, 17289}, {17239, 25099}, {17280, 26699}, {17285, 26671}, {26579, 26591}, {26580, 26612}
X(26595) lies on these lines: {1, 2}, {22028, 26541}, {26579, 26585}, {26589, 26602}
X(26596) lies on these lines: {2, 649}, {513, 26640}, {693, 26545}, {1577, 26594}, {3676, 27184}, {4106, 25981}, {4728, 25008}, {4776, 25902}
X(26597) lies on these lines: {1, 2}, {26590, 26598}
X(26598) lies on these lines: {2, 31}, {26575, 26579}, {26590, 26597}
X(26599) lies on these lines: {1, 2}, {1086, 24993}, {4665, 24547}, {4708, 24986}, {25004, 25099}, {26587, 26588}
X(26600) lies on these lines: {2, 3}
X(26601) lies on these lines: {2, 3}, {37, 4150}, {115, 5977}, {141, 18147}, {239, 1834}, {257, 312}, {321, 1228}, {894, 1901}, {1213, 4422}, {1441, 8736}, {2303, 21287}, {3454, 3912}, {3662, 18635}, {3936, 17316}, {4357, 17052}, {16826, 17056}, {17202, 26543}, {17397, 26561}, {18091, 18703}, {18096, 27067}, {18139, 26100}, {23978, 26165}, {26575, 26585}, {26580, 26589}, {27042, 27254}
X(26602) lies on these lines: {2, 3}, {26587, 26590}, {26589, 26595}
X(26603) lies on these lines: {2, 3}, {1211, 26591}, {21245, 25091}
X(26604) lies on these lines: {2, 3}
X(26605) lies on these lines: {2, 3}, {286, 26167}, {307, 17052}, {321, 349}, {948, 3936}, {1086, 17863}, {1441, 18642}, {1726, 16549}, {2287, 21287}, {2997, 16608}, {26582, 27059}
X(26606) lies on these lines: {2, 3}
X(26607) lies on these lines: {2, 3}, {314, 26540}, {1446, 27184}, {3661, 26591}, {4766, 25930}, {24210, 25935}
X(26608) lies on these lines: {2, 3}, {26586, 26592}
X(26609) lies on these lines: {2, 6}, {442, 25005}, {3060, 16067}, {3454, 24982}, {5051, 5554}, {26575, 26585}, {26580, 26942}
X(26610) lies on these lines: {1, 2}, {4664, 24998}, {4671, 26579}, {17228, 24993}, {17233, 24986}, {17295, 24540}
X(26611) lies on these lines: {2, 45}, {6, 2990}, {9, 2006}, {11, 24433}, {220, 5723}, {226, 16578}, {312, 343}, {321, 23978}, {329, 394}, {338, 1211}, {349, 23989}, {726, 26010}, {867, 24828}, {908, 1465}, {1146, 18359}, {1331, 15252}, {1407, 5905}, {3124, 26587}, {3326, 15632}, {3952, 23541}, {4671, 23970}, {26531, 26533}, {26579, 26612}
X(26612) lies on these lines: {2, 37}, {149, 1837}, {3971, 24997}, {4642, 25005}, {17743, 18359}, {17869, 26029}, {25934, 26659}, {26579, 26611}, {26580, 26594}
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28568.
Let AB, AC, BC, BA, CA, CB be the points on the Dao 6-point circle as defined at X(5569). Triangles BACBAC and CAABBC are perspective at X(2), and X(26613) lies on their perspectrix, with X(8704). (Randy Hutson, August 11, 2020)
The trilinear polar of X(26613) passes through X(9123).
X(26613) lies on these lines: {2,187}, {3,7827}, {30,9166}, {32,7622}, {39,22564}, {99,9136}, {115,9855}, {230,671}, {249,524}, {381,14693}, {385,2482}, {395,8594}, {396,8595}, {511,3524}, {512,15724}, {530,16267}, {531,16268}, {542,21445}, {543,5152}, {549,2080}, {551,5184}, {597,5104}, {599,7835}, {620,7840}, {691,7426}, {754,9167}, {842,18579}, {843,9127}, {1003,7610}, {1078,8369}, {1384,11163}, {1692,5032}, {1992,2030}, {2021,7618}, {3053,7769}, {3096,8366}, {3111,11673}, {3523,7878}, {3788,9939}, {5023,7841}, {5071,13449}, {5077,15655}, {5206,7828}, {5210,7790}, {5461,6781}, {6055,11676}, {7617,11361}, {7619,7753}, {7768,7870}, {7775,7907}, {7793,7801}, {7802,11318}, {7806,8588}, {7807,7883}, {7810,7832}, {7811,11288}, {7817,7847}, {7859,8359}, {7925,22247}, {7944,8365}, {8352,14061}, {8370,15597}, {8553,21395}, {8593,15993}, {8860,11159}, {8997,9893}, {9181,15360}, {9301,15693}, {9741,11055}, {9761,19781}, {9763,19780}, {9891,13989}, {11165,14614}, {11185,23055}, {13677,13908}, {14041,14971}, {15692,18860}
X(26613) = midpoint of X(i) and X(j) for these {i,j}: {187, 5215}, {8859, 13586}
X(26613) = reflection of X(i) in X(j) for these {i,j}: {2, 5215}, {5032, 1692}, {14041, 14971}, {14568, 8859}
X(26613) = X(661)-isoconjugate of X(9124)
X(26613) = crossdifference of every pair of points on line {17414, 22260}
X(26613) = centroid of X(2)X(15)X(16)
X(26613) = centroid of X(2)PU(2)
X(26613) = Dao-6-point-circle-inverse of X(2)
X(26613) = barycentric product X(99)X(9123)
X(26613) = barycentric quotient X(i)/X(j) for these {i,j}: {110, 9124}, {9123, 523}
X(26613) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (99, 22329, 11054), (230, 8598, 671), (5461, 6781, 8597)
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28568.
X(26614) lies on these lines: {2,5191}, {3,9166}, {30,5215}, {98,15694}, {99,15701}, {114,10124}, {115,12100}, {140,6055}, {148,15719}, {542,11539}, {543,549}, {547,22505}, {620,15713}, {631,11632}, {671,15693}, {2482,11812}, {2782,5054}, {2794,15699}, {3525,11177}, {3526,6054}, {3534,14061}, {3830,15092}, {3845,6722}, {5461,8703}, {6321,15692}, {7610,13085}, {8724,15702}, {10723,14093}, {10991,16239}, {11161,12017}, {11623,14869}, {12117,15700}, {12243,15721}, {12355,15718}, {14639,15688}, {14651,15708}, {15561,15709}, {15707,21166}, {15712,20398}, {17504,23698}
X(26614) = midpoint of X(i) and X(j) for these {i,j}: {3, 9166}, {6055, 9167}, {14639, 15688}
X(26614) = reflection of X(9167) in X(140)
X(26614) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 12042, 22566), (5461, 8703, 22515)
X(26615) = 4*(SW+3*S)*X(3)+(2*SW-3*S)*X(4)
As a point on the Euler line, X(26615) has Shinagawa coefficients (E+F+3*S, -9*S/2).
See César Lozada, ADGEOM 5001
X(26615) lies on these lines: {2, 3}, {524, 9541}, {1285, 19054}, {3068, 13662}, {3595, 6451}, {5860, 9741}, {6221, 13639}, {12158, 12256}, {13663, 23249}, {13757, 23273}
X(26615) = reflection of X(i) in X(j) for these (i,j): (13639, 6221), (23249, 13663)
X(26616) = 4*(SW-3*S)*X(3)+(2*SW+3*S)*X(4)
As a point on the Euler line, X(26616) has Shinagawa coefficients (E+F-3*S, 9*S/2).
See César Lozada, ADGEOM 5001
X(26616) lies on these lines: {2, 3}, {597, 9541}, {1285, 19053}, {3069, 13782}, {3593, 6452}, {5861, 9741}, {6398, 13759}, {12159, 12257}, {13637, 23267}, {13783, 23259}
X(26616) = reflection of X(i) in X(j) for these (i,j): (13759, 6398), (23259, 13783)
As a point on the Euler line, X(26617) has Shinagawa coefficients (E+F+4*S, -6*S).
See César Lozada, ADGEOM 5001
X(26617) lies on these lines: {2, 3}, {99, 1270}, {193, 9541}, {488, 13712}, {490, 5861}, {591, 12221}, {1151, 12222}, {1271, 14907}, {5860, 8716}, {6409, 12323}, {6462, 13678}, {6567, 13639}, {7585, 9675}, {12313, 12510}
X(26617) = reflection of X(488) in X(13712)
As a point on the Euler line, X(26618) has Shinagawa coefficients (E+F-4*S, 6*S).
See César Lozada, ADGEOM 5001
X(26618) lies on these lines: {2, 3}, {99, 1271}, {487, 13835}, {489, 5860}, {1152, 12221}, {1270, 14907}, {1991, 12222}, {5861, 8716}, {6410, 12322}, {6463, 13798}, {6566, 13759}, {12314, 12509}
X(26618) = reflection of X(487) in X(13835)
As a point on the Euler line, X(26619) has Shinagawa coefficients (E+F+S, -3*S/2).
See César Lozada, ADGEOM 5001
X(26619) lies on these lines: {2, 3}, {141, 9541}, {371, 5861}, {372, 13712}, {488, 7582}, {490, 7581}, {492, 23273}, {591, 1588}, {1271, 6221}, {1285, 3068}, {1384, 8974}, {3593, 13785}, {5490, 14226}, {5590, 6561}, {5591, 6200}, {6202, 12305}, {7586, 14482}, {9738, 10517}, {12323, 13886}, {13789, 13794}, {13950, 15048}, {19054, 19103}, {23263, 23311}
X(26619) = {X(11292), X(11294)}-harmonic conjugate of X(4)
As a point on the Euler line, X(26612) has Shinagawa coefficients (E+F-S, 3*S/2).
See César Lozada, ADGEOM 5001
X(26620) lies on these lines: {2, 3}, {371, 13835}, {372, 5860}, {487, 7581}, {489, 7582}, {491, 23267}, {1270, 6398}, {1285, 3069}, {1384, 13950}, {1587, 1991}, {3589, 9541}, {3595, 13665}, {5491, 14241}, {5590, 6396}, {5591, 6560}, {6201, 12306}, {7585, 14482}, {8974, 15048}, {9739, 10518}, {12322, 13939}, {13669, 13674}, {19053, 19104}, {23253, 23312}
X(26620) = {X(11291), X(11293)}-harmonic conjugate of X(4)
Collineation mappings involving Gemini triangle 47: X(26621)-X(26652)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 47, as in centers X(26621)-X(26652). Then
m(X) = a^2 (a - b + c) (a + b - c) x + (b + c - a) (a + b - c) (a + c)^2 y + (b + c - a) (a - b + c) (a + b)^2 z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 2, 2018)
X(26621) lies on these lines: {1, 2}, {6, 24547}, {56, 24633}, {77, 27170}, {269, 26836}, {604, 21233}, {960, 24612}, {1229, 2256}, {1334, 24266}, {2285, 21273}, {2324, 27058}, {3554, 16713}, {3739, 24540}, {3877, 6996}, {4361, 24993}, {5783, 20895}, {9310, 26265}, {16609, 26229}, {17251, 24998}, {17275, 24986}, {17301, 24999}, {20172, 26538}, {24583, 26066}, {25060, 26635}, {26558, 26576}, {26561, 26578}, {26624, 26629}, {26625, 26627}, {26637, 26643}
X(26622) lies on these lines: {2, 3}, {239, 1993}, {20172, 26538}, {26625, 26633}
X(26623) lies on these lines: {2, 3}, {25060, 26636}, {26627, 26628}
X(26624) lies on these lines: {2, 3}, {26621, 26629}
X(26625) lies on these lines: {2, 6}, {3, 18465}, {25, 3794}, {31, 24550}, {56, 3218}, {222, 27184}, {474, 9567}, {608, 3662}, {959, 5253}, {1010, 5707}, {1352, 16067}, {1407, 26840}, {3741, 24545}, {5651, 16048}, {5788, 14011}, {6646, 22129}, {7252, 26640}, {9306, 25494}, {13478, 17182}, {18199, 26545}, {26621, 26627}, {26622, 26633}, {26635, 26639}
X(26626) lies on these lines: {1, 2}, {6, 4364}, {7, 604}, {35, 21537}, {36, 21508}, {37, 3618}, {45, 597}, {55, 21495}, {56, 21511}, {57, 17081}, {63, 1475}, {69, 1100}, {75, 4470}, {81, 2221}, {86, 4000}, {141, 16884}, {144, 17120}, {192, 5749}, {193, 1449}, {226, 5395}, {278, 11341}, {304, 4359}, {319, 17400}, {320, 17399}, {344, 3589}, {345, 20182}, {346, 17319}, {348, 5228}, {377, 19834}, {379, 19719}, {391, 17121}, {458, 7952}, {469, 7718}, {524, 17325}, {673, 20131}, {894, 3672}, {940, 16781}, {942, 24609}, {944, 7377}, {946, 7406}, {966, 3759}, {980, 1015}, {999, 11343}, {1278, 7229}, {1438, 27950}, {1453, 13736}, {1580, 9791}, {1621, 16367}, {1790, 8025}, {1959, 5744}, {1992, 4643}, {2238, 16523}, {2241, 5337}, {2275, 3666}, {2280, 20769}, {2329, 18228}, {2345, 4360}, {3061, 5273}, {3161, 4704}, {3207, 5834}, {3247, 17353}, {3295, 21477}, {3303, 21540}, {3304, 21516}, {3619, 4851}, {3620, 3879}, {3629, 17253}, {3662, 3945}, {3664, 17304}, {3674, 21454}, {3723, 17279}, {3729, 4021}, {3758, 4419}, {3763, 17390}, {3765, 18135}, {3782, 11352}, {3875, 5750}, {3946, 4758}, {4007, 4464}, {4038, 24586}, {4339, 7791}, {4346, 4747}, {4361, 17398}, {4363, 17395}, {4389, 4644}, {4398, 7222}, {4402, 4699}, {4416, 16667}, {4422, 16672}, {4452, 17116}, {4472, 17119}, {4648, 16706}, {4658, 24632}, {4667, 17274}, {4670, 17301}, {4675, 17382}, {4688, 4798}, {4748, 17346}, {4852, 17303}, {4869, 17291}, {4909, 21255}, {4916, 17295}, {4969, 17251}, {5224, 5839}, {5232, 17326}, {5253, 11329}, {5263, 20162}, {5266, 16043}, {5296, 17349}, {5435, 7146}, {5603, 6996}, {5712, 19786}, {5716, 26561}, {5731, 6999}, {5905, 16783}, {6329, 16885}, {6646, 16779}, {6654, 14267}, {6703, 24384}, {6767, 21526}, {7277, 17255}, {7373, 21514}, {7397, 10595}, {7402, 7967}, {8236, 20533}, {8772, 25378}, {9345, 24602}, {9441, 10186}, {9708, 21986}, {10283, 19512}, {11008, 17344}, {11037, 17691}, {14996, 16784}, {14997, 16785}, {15668, 17366}, {16524, 24512}, {16673, 25101}, {16780, 27184}, {16786, 20072}, {16787, 17778}, {17141, 26065}, {17147, 25244}, {17227, 26104}, {17236, 20090}, {17272, 20080}, {17275, 25498}, {17289, 17314}, {17290, 17392}, {17293, 17388}, {17299, 17385}, {17300, 17383}, {17305, 17378}, {17307, 17377}, {17315, 17371}, {17317, 17370}, {17318, 17369}, {17323, 17365}, {17324, 17364}, {17327, 17362}, {17374, 21356}, {17592, 24631}, {17742, 27065}, {17776, 27109}, {17917, 26023}, {18156, 19804}, {18230, 27268}, {19281, 19684}, {20905, 24553}, {20917, 25303}, {21840, 26274}, {24554, 26668}, {24604, 27000}, {25524, 25946}, {26635, 26649}, {26818, 27170}
X(26626) = anticomplement of X(17308)
X(26627) lies on these lines: {1, 17495}, {2, 7}, {6, 24589}, {81, 3759}, {86, 4850}, {89, 16815}, {192, 17021}, {239, 14996}, {321, 17118}, {612, 17140}, {740, 9345}, {748, 4697}, {750, 4434}, {902, 24331}, {940, 3187}, {942, 16454}, {964, 5439}, {1125, 4414}, {1150, 3739}, {1215, 17124}, {1449, 26860}, {1961, 17155}, {2226, 27922}, {2999, 19717}, {3210, 17019}, {3337, 19858}, {3720, 3980}, {3742, 24552}, {3752, 19684}, {3891, 4682}, {3936, 4675}, {3995, 17022}, {4358, 4363}, {4384, 16704}, {4392, 16830}, {4418, 26102}, {4648, 17740}, {4652, 17588}, {4670, 16610}, {4671, 17116}, {4672, 17125}, {4751, 5235}, {5241, 17365}, {5256, 8025}, {5268, 17165}, {5287, 17147}, {5297, 24349}, {5311, 24165}, {5436, 17539}, {5708, 16458}, {7174, 17154}, {7295, 26261}, {11518, 19337}, {14997, 17120}, {15668, 17595}, {15803, 16347}, {15934, 19290}, {16496, 17146}, {16823, 17126}, {17011, 17490}, {17012, 17379}, {17272, 27081}, {18141, 19822}, {19309, 26866}, {19336, 24929}, {24046, 25526}, {25001, 25934}, {26621, 26625}, {26623, 26628}, {26634, 26643}
X(26628) lies on these lines: {1, 2}, {65, 24583}, {3897, 7377}, {4670, 24999}, {4999, 24633}, {5228, 27187}, {11375, 24612}, {14621, 26573}, {14953, 17173}, {17045, 24547}, {17398, 24993}, {24986, 25498}, {26623, 26627}, {26635, 26636}
X(26629) lies on these lines: {1, 7807}, {2, 11}, {3, 26561}, {12, 384}, {21, 26558}, {35, 6656}, {56, 16925}, {140, 26959}, {192, 7806}, {230, 350}, {287, 26956}, {325, 1914}, {330, 7891}, {335, 17724}, {495, 8369}, {498, 7770}, {620, 1015}, {902, 4766}, {999, 11288}, {1003, 1478}, {1125, 17694}, {1329, 16916}, {1479, 7887}, {1500, 6680}, {1909, 7789}, {2241, 3788}, {2276, 7792}, {3085, 14001}, {3552, 7354}, {3584, 6661}, {3585, 19687}, {3614, 16044}, {3666, 5976}, {3712, 3797}, {3771, 24586}, {3912, 4434}, {4294, 14064}, {4302, 7841}, {4316, 8598}, {4324, 19695}, {4357, 24685}, {4396, 22329}, {4999, 26801}, {5010, 8356}, {5025, 6284}, {5217, 7791}, {5305, 25264}, {5433, 7907}, {5552, 26687}, {5718, 14621}, {6645, 15888}, {6655, 15338}, {6675, 16819}, {7031, 7762}, {7294, 16923}, {7483, 17030}, {7763, 16502}, {7819, 27020}, {7844, 9664}, {7851, 9598}, {7862, 9665}, {7951, 8370}, {8164, 14039}, {8361, 15171}, {9668, 11318}, {10198, 11321}, {10349, 10801}, {10352, 12835}, {10590, 14033}, {10895, 14035}, {11269, 20162}, {11681, 16920}, {12953, 14063}, {13586, 15326}, {16915, 25466}, {17321, 26273}, {17540, 27091}, {17541, 27529}, {17670, 25440}, {17719, 17738}, {26621, 26624}
X(26630) lies on these lines: {2, 3}
X(26631) lies on these lines: {2, 3}
X(26632) lies on these lines: {2, 37}, {1441, 24627}, {3218, 24633}, {5933, 9776}, {20172, 26644}, {24178, 24443}, {26621, 26625}
X(26633) lies on these lines: {2, 39}, {311, 26979}, {26526, 26527}, {26537, 26542}, {26622, 26625}
X(26634) lies on these lines: {2, 41}, {21, 23206}, {48, 27145}, {141, 26222}, {604, 17178}, {942, 19271}, {1468, 17751}, {1958, 27017}, {16915, 27003}, {21240, 24587}, {26627, 26643}
X(26635) lies on these lines: {2, 37}, {57, 16579}, {81, 3554}, {86, 26645}, {394, 17011}, {990, 1005}, {1040, 1621}, {1214, 9776}, {1961, 25938}, {3218, 5228}, {3219, 10601}, {3616, 17102}, {3743, 8583}, {3977, 25082}, {4364, 26005}, {5249, 17080}, {5437, 16577}, {6173, 18593}, {8025, 18603}, {16699, 16704}, {16777, 25934}, {17592, 25941}, {17811, 20182}, {18607, 21454}, {20276, 21321}, {24181, 25094}, {25009, 25098}, {25060, 26621}, {26625, 26639}, {26626, 26649}, {26628, 26636}
X(26636) lies on these lines: {2, 39}, {216, 3945}, {394, 4255}, {566, 17392}, {570, 4648}, {1993, 2271}, {3060, 17209}, {5308, 13006}, {13351, 17245}, {16696, 26540}, {25060, 26623}, {26628, 26635}
X(26637) lies on these lines: {2, 6}, {21, 104}, {58, 19861}, {63, 1412}, {274, 2990}, {404, 7998}, {405, 6090}, {511, 4239}, {651, 26580}, {960, 1408}, {1010, 3193}, {1014, 3218}, {1172, 26651}, {1396, 17184}, {1790, 17185}, {2341, 17195}, {3794, 4228}, {3869, 5323}, {3877, 4221}, {4188, 21766}, {4189, 6800}, {4234, 6580}, {4357, 22128}, {4658, 19860}, {15080, 17549}, {16370, 26864}, {16726, 25939}, {17187, 25941}, {17588, 24558}, {24987, 25526}, {26621, 26643}
X(26638) lies on these lines: {2, 6}, {21, 3427}, {27, 10444}, {283, 1010}, {1014, 5744}, {1412, 5745}, {1434, 3218}, {4357, 17923}, {7054, 26645}, {8822, 24547}, {10458, 25941}, {11110, 18465}, {16054, 24590}, {16696, 25939}, {25060, 26621}
X(26639) lies on these lines: {1, 2}, {6, 26699}, {40, 21537}, {48, 26998}, {86, 26538}, {193, 3554}, {238, 8772}, {297, 1870}, {323, 16784}, {394, 16781}, {401, 3100}, {441, 18455}, {458, 6198}, {517, 21495}, {740, 24563}, {894, 7269}, {1100, 15988}, {1385, 21511}, {1429, 1959}, {1442, 3662}, {1482, 21477}, {1953, 27059}, {1993, 16502}, {1994, 5299}, {2170, 20769}, {2329, 27065}, {3061, 3219}, {3576, 21508}, {3674, 26842}, {3723, 25099}, {3875, 18261}, {3877, 16367}, {4360, 26665}, {4560, 26652}, {4881, 19308}, {4904, 25593}, {7146, 27003}, {7291, 27950}, {8148, 21539}, {10222, 21540}, {10246, 11343}, {10247, 21526}, {12702, 16431}, {15018, 16785}, {15178, 21516}, {17045, 26543}, {17302, 26573}, {17319, 25245}, {17614, 25946}, {18465, 26643}, {18650, 26837}, {19512, 19907}, {20236, 24202}, {26130, 27180}, {26625, 26635}
X(26640) lies on these lines: {2, 661}, {513, 26596}, {693, 26652}, {905, 3904}, {1993, 23092}, {7252, 26625}, {26674, 26694}
X(26641) lies on these lines: {2, 650}, {21, 8760}, {647, 2799}, {905, 3904}, {1621, 11934}, {1635, 25900}, {1993, 22383}, {4705, 25901}, {4893, 25924}, {6589, 16757}, {9001, 15988}, {9015, 26543}, {14936, 26565}, {15313, 16158}
X(26642) lies on these lines: {2, 3}
X(26643) lies on these lines: {2, 3}, {10, 24632}, {58, 4384}, {75, 2303}, {81, 239}, {86, 4000}, {284, 1958}, {333, 17103}, {894, 2287}, {1014, 16738}, {1043, 17316}, {1333, 3739}, {1444, 27164}, {1468, 5271}, {1580, 24342}, {1778, 17277}, {1931, 5235}, {3666, 16716}, {4273, 4670}, {4653, 16831}, {4658, 16834}, {4720, 6542}, {5277, 26243}, {5333, 17397}, {6703, 24366}, {8025, 17014}, {8822, 17257}, {14621, 27644}, {16589, 24271}, {16756, 25060}, {16815, 16948}, {16818, 24588}, {17023, 25526}, {17189, 24199}, {18465, 26639}, {19719, 19767}, {19791, 19848}, {26621, 26637}, {26627, 26634}
X(26644) lies on these lines: {2, 3}, {20172, 26632}
X(26645) lies on these lines: {2, 3}, {86, 26635}, {333, 2988}, {7054, 26638}
X(26646) lies on these lines: {2, 3}
X(26647) lies on these lines: {2, 3}, {78, 24632}, {81, 348}, {86, 7054}, {284, 307}, {333, 24635}, {1790, 16887}, {2328, 26006}, {4288, 17171}
X(26648) lies on these lines: {2, 3}
X(26649) lies on these lines: {2, 3}, {941, 26668}, {968, 26006}, {24555, 25058}, {26626, 26635}
X(26650) lies on these lines: {2, 3}
X(26651) lies on these lines: {2, 7}, {6, 20905}, {75, 1332}, {86, 16743}, {190, 26669}, {320, 26540}, {321, 17811}, {394, 3187}, {990, 11115}, {1150, 26011}, {1172, 26637}, {2257, 26818}, {2284, 26653}, {3100, 24307}, {3551, 24428}, {3663, 26006}, {3664, 25935}, {3673, 26678}, {3729, 25243}, {4000, 26668}, {4358, 25934}, {4363, 25001}, {4416, 26001}, {4643, 25000}, {5757, 16454}, {6505, 18662}, {7289, 14543}, {10444, 14953}, {10861, 13727}, {14942, 25722}, {16551, 24237}, {17321, 24553}, {17351, 25067}, {17364, 26531}, {17365, 25964}, {20172, 26538}, {26655, 26660}
X(26652) lies on these lines: {2, 649}, {512, 24561}, {513, 25981}, {652, 26049}, {693, 26640}, {812, 24560}, {894, 4468}, {4380, 25902}, {4521, 27064}, {4560, 26639}, {4979, 25008}, {9002, 25898}, {17215, 26854}, {17418, 17494}
Collineation mappings involving Gemini triangle 48: X(26653)-X(26699)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 48, as in centers X(26653)-X(26699). Then
m(X) = a^2 (b + c - a) x + (a - b + c) (a - c)^2 y + (a + b - c) (a - b)^2 z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 2, 2018)
X(26653) lies on these lines:
X(26654) lies on these lines: {2, 3}, {3934, 25886}, {26653, 26667}, {26657, 26664}, {26658, 26692}
X(26655) lies on these lines: {2, 3}, {26651, 26660}, {26667, 26686}
X(26656) lies on these lines: {2, 3}, {26653, 26686}
X(26657) lies on these lines: {1, 25903}, {2, 6}, {55, 25279}, {56, 27678}, {105, 25304}, {218, 17364}, {219, 3662}, {220, 6646}, {320, 2911}, {511, 16048}, {651, 26685}, {1100, 25891}, {1278, 4513}, {1332, 4000}, {1350, 17522}, {2256, 17302}, {2284, 26651}, {2323, 17282}, {3564, 14019}, {3713, 17230}, {3888, 7083}, {3917, 25494}, {4361, 26567}, {4435, 26568}, {5782, 17358}, {5783, 17292}, {6180, 17350}, {7232, 17796}, {10449, 25990}, {17288, 23151}, {17792, 26241}, {20818, 27950}, {26654, 26664}, {26663, 26667}, {26669, 26672}
X(26658) lies on these lines: {1, 2}, {7, 9310}, {20, 27129}, {101, 17170}, {193, 25019}, {220, 348}, {277, 24203}, {279, 10025}, {347, 27420}, {664, 6554}, {672, 17081}, {883, 26668}, {944, 17671}, {952, 17675}, {962, 4209}, {2098, 26007}, {3160, 3177}, {3618, 25067}, {5603, 17682}, {5687, 25954}, {6603, 6604}, {9436, 20111}, {9778, 26790}, {17321, 25878}, {23058, 25719}, {24553, 25001}, {25091, 26065}, {25239, 25243}, {26556, 26590}, {26654, 26692}, {26667, 26678}
X(26659) lies on these lines: {2, 45}, {2284, 26651}, {4459, 26241}, {5220, 25005}, {25934, 26612}
X(26660) lies on these lines: {1, 2}, {3057, 24582}, {4188, 27129}, {5886, 17683}, {11376, 24596}, {17044, 26563}, {26651, 26655}, {26678, 26692}, {26686, 26689}
X(26661) lies on these lines: {2, 3}
X(26662) lies on these lines: {2, 3}
X(26663) lies on these lines: {2, 31}, {26653, 26670}, {26657, 26667}
X(26664) lies on these lines: {2, 32}, {26654, 26657}
X(26665) lies on these lines: {1, 24563}, {2, 37}, {6, 3262}, {8, 4008}, {10, 1733}, {19, 21368}, {38, 24997}, {86, 16740}, {92, 26065}, {141, 26573}, {190, 26671}, {193, 322}, {239, 20895}, {287, 651}, {313, 25978}, {594, 26543}, {726, 23689}, {1738, 21935}, {1958, 24334}, {1959, 20258}, {2174, 24324}, {2284, 26651}, {2550, 5086}, {3212, 20348}, {3219, 11683}, {3403, 20911}, {3663, 20881}, {3729, 17861}, {3821, 25010}, {3923, 23690}, {4357, 25007}, {4360, 26639}, {4429, 24433}, {4459, 17792}, {4644, 20930}, {4858, 17353}, {4872, 26789}, {5294, 14213}, {6646, 10030}, {7283, 25906}, {12723, 20556}, {16284, 20080}, {16732, 17351}, {17033, 21422}, {17080, 27338}, {17116, 17741}, {17132, 24208}, {17139, 21853}, {17319, 24559}, {17355, 20236}, {17752, 20436}, {17872, 24996}, {20235, 26678}, {21033, 27492}, {22019, 24224}, {25081, 25589}, {25083, 25241}, {26575, 26578}, {26666, 26676}, {26667, 26679}
X(26666) lies on these lines: {2, 39}, {26654, 26657}, {26665, 26676}, {26684, 26691}
X(26667) lies on these lines: {2, 11}, {4554, 7123}, {26653, 26654}, {26655, 26686}, {26657, 26663}, {26658, 26678}, {26665, 26679}
X(26668) lies on these lines: {2, 6}, {9, 26006}, {184, 26052}, {273, 27382}, {329, 17923}, {572, 14021}, {573, 24580}, {651, 27509}, {692, 11677}, {883, 26658}, {941, 26649}, {1439, 5744}, {1449, 25935}, {1743, 25019}, {1876, 3869}, {2182, 4329}, {2261, 18589}, {2297, 5294}, {2317, 26130}, {2398, 4012}, {3616, 5728}, {4000, 26651}, {4223, 14853}, {5222, 20905}, {5286, 26678}, {5435, 14524}, {5749, 25001}, {5751, 6857}, {5752, 7521}, {5803, 6856}, {13742, 18465}, {17121, 26531}, {17353, 25930}, {19767, 24570}, {24554, 26626}, {26682, 26691}
X(26669) lies on these lines: {2, 37}, {9, 77}, {45, 25878}, {100, 4319}, {144, 241}, {190, 26651}, {227, 8165}, {322, 27108}, {404, 990}, {527, 17092}, {883, 26658}, {908, 3668}, {1214, 18228}, {1418, 20059}, {1445, 2324}, {1465, 5328}, {1766, 11349}, {1818, 10394}, {2092, 25004}, {2310, 25722}, {2321, 26001}, {2400, 4130}, {3161, 25083}, {3218, 25934}, {3219, 17811}, {3306, 4328}, {3452, 17080}, {3661, 25000}, {3663, 25076}, {3681, 25941}, {3731, 25065}, {3755, 24982}, {3869, 21371}, {3870, 18216}, {3873, 21346}, {3912, 25019}, {4327, 5253}, {4356, 8582}, {5749, 24553}, {7174, 15839}, {7191, 25893}, {7308, 16577}, {9352, 25938}, {11683, 26265}, {17011, 17825}, {17242, 26531}, {17243, 25964}, {17353, 26006}, {18601, 24556}, {20275, 21320}, {21955, 25973}, {25078, 25097}, {25082, 25101}, {26563, 27282}, {26653, 26671}, {26657, 26672}
X(26670) lies on these lines: {2, 6}, {3909, 5324}, {26653, 26663}, {26673, 26692}, {26680, 26685}
X(26671) lies on these lines: {2, 6}, {9, 11683}, {44, 25971}, {55, 24752}, {190, 26665}, {220, 27282}, {239, 3965}, {257, 17260}, {322, 8557}, {1043, 25906}, {1100, 24559}, {1376, 25631}, {2245, 8822}, {3692, 20173}, {6180, 27334}, {6554, 26678}, {17273, 26573}, {17285, 26594}, {17289, 25007}, {17348, 25887}, {17353, 20262}, {21677, 23904}, {23693, 24982}, {24612, 27624}, {24757, 25531}, {26653, 26669}, {26675, 26676}
X(26672) lies on these lines: {1, 2}, {190, 26674}, {1442, 17338}, {9310, 27003}, {15988, 25067}, {21222, 26694}, {26657, 26669}
X(26673) lies on these lines: {1, 2}, {26657, 26663}, {26670, 26692}
X(26674) lies on these lines: {2, 44}, {190, 26672}, {524, 26570}, {2284, 26651}, {6646, 27006}, {26640, 26694}
X(26675) lies on these lines: {2, 31}, {2284, 26651}, {24547, 25878}, {26671, 26676}
X(26676) lies on these lines: {1, 2}, {1574, 25888}, {9956, 17672}, {24986, 25971}, {26665, 26666}, {26671, 26675}
X(26677) lies on these lines: {2, 3}, {26653, 26685}
X(26678) lies on these lines: {2, 3}, {169, 16564}, {294, 18299}, {315, 26540}, {318, 26203}, {894, 1446}, {3673, 26651}, {5081, 26153}, {5286, 26668}, {6554, 26671}, {7745, 25964}, {13161, 26006}, {15988, 17499}, {20235, 26665}, {26653, 26663}, {26658, 26667}, {26660, 26692}
X(26679) lies on these lines: {2, 3}, {26665, 26667}
X(26680) lies on these lines: {2, 3}, {26670, 26685}
X(26681) lies on these lines: {2, 3}
X(26682) lies on these lines: {2, 3}, {26668, 26691}
X(26683) lies on these lines: {2, 3}, {883, 26658}
X(26684) lies on these lines: {2, 3}, {26666, 26691}
X(26685) lies on these lines: {1, 4899}, {2, 7}, {6, 344}, {8, 238}, {10, 5395}, {37, 3618}, {41, 17696}, {44, 69}, {45, 3589}, {56, 25879}, {72, 13742}, {100, 7083}, {141, 16885}, {145, 3717}, {169, 27059}, {190, 4000}, {192, 3161}, {193, 1743}, {198, 21495}, {239, 346}, {281, 458}, {319, 17342}, {320, 17341}, {345, 4383}, {391, 3661}, {404, 24320}, {524, 17267}, {597, 16777}, {651, 26657}, {883, 26658}, {899, 1716}, {962, 6211}, {966, 17289}, {984, 3616}, {1104, 1265}, {1212, 25099}, {1278, 4402}, {1405, 5933}, {1453, 20009}, {1654, 17358}, {1738, 24280}, {1766, 26998}, {1992, 4851}, {2183, 26041}, {2287, 16050}, {2325, 3875}, {2345, 17277}, {2347, 22370}, {2478, 26939}, {2550, 4676}, {2899, 5230}, {3008, 3729}, {3217, 20769}, {3220, 4188}, {3271, 25304}, {3617, 3883}, {3619, 4643}, {3620, 3973}, {3621, 4901}, {3622, 7174}, {3629, 17311}, {3663, 20073}, {3672, 17261}, {3686, 17286}, {3707, 17270}, {3718, 4358}, {3730, 27299}, {3731, 17023}, {3758, 4648}, {3759, 17264}, {3763, 17332}, {3836, 24695}, {3876, 17526}, {3879, 16670}, {3888, 9309}, {3945, 17120}, {3950, 16834}, {3952, 26228}, {4078, 16475}, {4339, 7787}, {4361, 17340}, {4363, 17337}, {4370, 17262}, {4384, 17355}, {4419, 16706}, {4429, 5698}, {4431, 16833}, {4440, 4488}, {4461, 17117}, {4470, 4751}, {4480, 4862}, {4641, 18141}, {4644, 17234}, {4657, 16814}, {4660, 4759}, {4699, 7229}, {4748, 17307}, {4869, 17266}, {4969, 17309}, {5232, 17292}, {5308, 17379}, {5817, 13727}, {5819, 26582}, {5838, 20533}, {5839, 17233}, {6210, 26029}, {6329, 16884}, {6554, 26671}, {6687, 17278}, {7277, 17313}, {7406, 10445}, {9441, 9801}, {9778, 26047}, {9780, 25611}, {10327, 17127}, {11008, 17374}, {14001, 25066}, {15828, 17304}, {16020, 24349}, {16517, 16826}, {16552, 27248}, {16675, 17045}, {16831, 25072}, {16989, 27538}, {17014, 17319}, {17033, 27523}, {17232, 20072}, {17249, 26104}, {17256, 17371}, {17258, 17370}, {17259, 17369}, {17265, 17365}, {17268, 17363}, {17269, 17362}, {17275, 17359}, {17276, 17356}, {17281, 17348}, {17283, 17347}, {17285, 17346}, {17290, 17334}, {17293, 17330}, {17296, 20080}, {17344, 21356}, {20262, 25007}, {21390, 23828}, {24509, 26752}, {24890, 25659}, {26364, 27528}, {26653, 26677}, {26670, 26680}, {26772, 27021}, {27060, 27063}
X(26685) = anticomplement of X(17282)
X(26686) lies on these lines: {1, 7807}, {2, 12}, {3, 26590}, {10, 17694}, {11, 384}, {36, 6656}, {55, 16925}, {140, 27020}, {172, 325}, {192, 7891}, {230, 1909}, {287, 26955}, {330, 7806}, {350, 7789}, {404, 26582}, {496, 8369}, {499, 7770}, {594, 24384}, {609, 7762}, {620, 1500}, {754, 9341}, {894, 17095}, {1003, 1479}, {1015, 6680}, {1055, 24995}, {1478, 7887}, {2242, 3788}, {2275, 7792}, {2886, 16915}, {3035, 26752}, {3086, 14001}, {3295, 11288}, {3552, 6284}, {3582, 6661}, {3583, 19687}, {3816, 16916}, {3925, 16917}, {4293, 14064}, {4299, 7841}, {4316, 19695}, {4324, 8598}, {4400, 22329}, {5025, 7354}, {5204, 7791}, {5326, 16923}, {5432, 7907}, {6390, 25264}, {6655, 15326}, {7173, 16044}, {7181, 7187}, {7267, 16886}, {7280, 8356}, {7483, 27255}, {7741, 8370}, {7819, 15325}, {7844, 9651}, {7851, 9597}, {7862, 9650}, {8361, 18990}, {9655, 11318}, {10349, 10802}, {10352, 10799}, {10527, 20172}, {10591, 14033}, {10896, 14035}, {11321, 26363}, {11680, 16919}, {12943, 14063}, {13586, 15338}, {13747, 27091}, {26653, 26656}, {26655, 26667}, {26660, 26689}, {26755, 27027}
X(26687) lies on these lines: {2, 12}, {3, 27091}, {4, 26582}, {6, 6376}, {8, 17541}, {9, 3503}, {10, 7770}, {32, 27076}, {55, 16916}, {100, 16920}, {183, 4426}, {220, 17743}, {239, 341}, {335, 17054}, {384, 1376}, {405, 27020}, {458, 25007}, {668, 16502}, {899, 11339}, {956, 26959}, {964, 27026}, {993, 11285}, {1001, 16918}, {1003, 25440}, {1011, 27035}, {1107, 11174}, {1191, 17752}, {1478, 17670}, {1573, 7808}, {1574, 3734}, {1575, 1975}, {1616, 10027}, {1698, 11321}, {2478, 26590}, {2886, 16924}, {3035, 16925}, {3814, 7887}, {3820, 7819}, {3912, 11353}, {3913, 4366}, {3975, 4383}, {4386, 25107}, {4413, 16915}, {4462, 26697}, {5217, 17692}, {5552, 26629}, {6381, 7754}, {6554, 26671}, {7773, 20541}, {7807, 26364}, {9708, 17030}, {9709, 11286}, {9711, 16898}, {9780, 17686}, {11108, 27255}, {11319, 27025}, {11320, 27044}, {13741, 27248}, {16781, 24524}, {17540, 17757}, {17681, 27299}, {17691, 26029}, {17738, 24440}, {26653, 26654}
X(26688) lies on these lines: {2, 7}, {31, 24003}, {192, 17020}, {321, 17119}, {614, 3952}, {748, 26227}, {899, 4011}, {936, 11319}, {1215, 17125}, {1332, 18743}, {1722, 25253}, {1836, 24988}, {1997, 24597}, {1999, 14997}, {2999, 3995}, {3187, 4358}, {3550, 9458}, {3740, 24552}, {3749, 17780}, {3873, 25531}, {3876, 13741}, {3891, 4009}, {4080, 23681}, {4414, 6686}, {4672, 17124}, {4679, 4972}, {4723, 16483}, {5044, 5192}, {5205, 17127}, {5272, 17165}, {5329, 26262}, {5423, 19993}, {5438, 17539}, {5440, 11346}, {5573, 17154}, {5741, 17279}, {7191, 27538}, {12527, 25881}, {17022, 19717}, {17147, 25268}, {17495, 23511}, {17671, 26589}, {20076, 25879}, {26653, 26654}
X(26689) lies on these lines: {2, 65}, {72, 27097}, {210, 26759}, {321, 16827}, {392, 26965}, {748, 16822}, {883, 26658}, {894, 24557}, {1201, 17755}, {2176, 3263}, {3752, 25248}, {3876, 27248}, {3877, 27299}, {4358, 17033}, {4676, 16919}, {5057, 17680}, {15254, 16931}, {16910, 24703}, {25895, 27624}, {26653, 26654}, {26660, 26686}
X(26690) lies on these lines: {1, 644}, {2, 85}, {6, 27396}, {8, 25066}, {9, 604}, {37, 3622}, {39, 4850}, {75, 25244}, {78, 16572}, {100, 2082}, {145, 3693}, {169, 404}, {218, 4511}, {269, 25880}, {304, 27109}, {312, 26770}, {346, 1108}, {355, 26074}, {664, 26653}, {672, 3061}, {883, 26658}, {894, 24554}, {910, 4188}, {934, 7131}, {982, 23649}, {1018, 3885}, {1146, 25005}, {1334, 3890}, {1475, 3873}, {1743, 25078}, {1759, 5030}, {2170, 3501}, {2275, 26242}, {3039, 6691}, {3207, 4881}, {3208, 14439}, {3218, 5022}, {3241, 3991}, {3616, 16601}, {3617, 4875}, {3621, 4515}, {3668, 25966}, {3681, 21384}, {3730, 3877}, {3868, 4253}, {3876, 16552}, {3889, 3970}, {3897, 16788}, {3959, 20331}, {4073, 20978}, {4190, 5819}, {4193, 5179}, {4358, 27523}, {4534, 8256}, {4676, 5701}, {4687, 27058}, {5086, 24247}, {5120, 5279}, {5222, 25083}, {5262, 9605}, {5283, 11342}, {5540, 25440}, {7123, 16502}, {7288, 26258}, {7291, 21477}, {8568, 24982}, {8666, 17744}, {9311, 21272}, {9780, 25068}, {11115, 16699}, {16284, 27096}, {16728, 18600}, {17092, 17282}, {17141, 26065}, {17451, 17754}, {17745, 22836}, {20905, 27334}, {24540, 27420}, {24547, 26059}, {25237, 26964}, {25261, 27146}
X(26691) lies on these lines: {2, 99}, {190, 26693}, {1577, 5546}, {4366, 26572}, {4558, 15455}, {26666, 26684}, {26668, 26682}, {26692, 26698}
X(26692) lies on these lines: {2, 11}, {644, 26693}, {1332, 26696}, {26654, 26658}, {26660, 26678}, {26670, 26673}, {26691, 26698}
X(26693) lies on these lines: {2, 101}, {6, 26572}, {190, 26691}, {644, 26692}, {18047, 26698}, {21859, 24562}
X(26694) lies on these lines: {2, 649}, {652, 27139}, {3676, 27064}, {21222, 26672}, {26640, 26674}
X(26695) lies on these lines: {2, 650}, {812, 25955}, {3126, 15283}, {3835, 25900}, {4369, 25924}, {4379, 26017}, {4397, 20315}, {4811, 8062}, {4874, 25926}, {5084, 8760}, {7658, 17896}, {11934, 26105}, {20905, 23757}, {21438, 26591}, {26640, 26674}
X(26696) lies on these lines: {2, 662}, {190, 26691}, {1332, 26692}
X(26697) lies on these lines: {2, 667}, {3309, 17541}, {4462, 26687}
X(26698) lies on these lines: {2, 668}, {106, 25920}, {644, 905}, {1252, 6516}, {4767, 25925}, {8671, 14419}, {18047, 26693}, {26691, 26692}
X(26699) lies on these lines: {2, 7}, {6, 26639}, {37, 1332}, {72, 25906}, {190, 26665}, {193, 8557}, {1994, 16470}, {2183, 26998}, {3729, 24209}, {3935, 4073}, {4672, 24563}, {5554, 27549}, {15492, 25887}, {16062, 26878}, {16814, 25099}, {17120, 24559}, {17261, 25245}, {17277, 26538}, {17280, 26594}, {17332, 26543}, {17355, 25007}, {20360, 25024}, {21061, 24090}, {26657, 26669}
Circumcircle-X-antipodes: X(26700)-X(26717)
Let C(P) be the circumconic with perspector P = p : q : r (barycentrics), and let U = u : v : w and F = f : g : h be distinct points, with U on C(P). Let U* be the point, other than U, that lies on C(P) and on the line FU. Then
U* = u^2 q r (h v p + f w q + f v r) (g w p + f w q + f v r) : :
If P = X(6), then C(P) is the circumcircle; in this case, the point U* is here named the circumcircle-F-antipode of U, given by
U* = b^2 c^2 u^2 (a^2 h v + b^2 f w + c^2 f v)(a^2 g w + b^2 f w + c^2 f v) : :
Note that the circumcircle-X(3)-antipode of U is the ordinary antipode of U.
Circumcircle-X(1)-antipodes:
{74, 26700}, {99, 741}, {100, 106}, {101, 105}, {102, 108}, {103, 934}, {104, 109}, {107, 26701}{110, 759}, {111, 8691}, {112, 26702}, {689, 719}, {705, 9065}, {727, 932}, {731, 789}, {753, 13396}, {761, 825}, {813, 14665}, {840, 1308}, {898, 2382}, {901, 2718}, {919, 2725}, {927, 12032}, {953, 2222}, {1292, 1477}, {1293, 8686}, {1295, 8059}, {1381, 1382}, {2291, 14074}, {2716, 2720}, {2717, 14733}, {2748, 9097}, {6079, 12029}, {7597, 13444}
Circumcircle-X(2)-antipodes:
{74, 1302}, {98, 110}, {99, 111}, {100, 105}, {101, 675}, {102, 9056}, {103, 9057}, {104, 9058}, {106, 9059}, {107, 1297}, {108, 26703}, {109, 1311}, {112, 2373}, {476, 842}, {477, 9060}, {689, 733}, {691, 2770}, {699, 3222}, {703, 9062}, {707, 9063}, {721, 9065}, {729, 9066}, {739, 9067}, {743, 789}, {753, 9068}, {755, 9069}, {759, 9070}, {761, 9071}, {767, 9072}, {813, 9073}, {815, 9074}, {825, 9075}, {827, 9076}, {831, 9077}, {833, 9078}, {839, 9079}, {843, 9080}, {898, 9081}, {901, 2726}, {919, 2862}, {925, 3563}, {930, 5966}, {932, 9082}, {1113, 1114}, {1290, 2752}, {1292, 9061}, {1293, 9083}, {1294, 9064}, {1295, 9107}, {1296, 9084}, {1304, 2697}, {1305, 9085}, {2291, 9086}, {2367, 9087}, {2370, 9088}, {2374, 3565}, {2384, 9089}, {2696, 10102}, {2715, 2857}, {2856, 9090}, {2858, 14659}, {2868, 9091}, {3067, 9092}, {4588, 9093}, {5970, 9150}, {6013, 9094}, {6014, 9095}, {6015, 9096}, {6079, 9097}, {6082, 9136}, {6135, 9098}, {6136, 9099}, {6323, 9100}, {6325, 11636}, {6572, 9101}, {6579, 9102}, {8652, 9103}, {8686, 9104}, {8694, 9105}, {8698, 9106}, {8701, 9108}, {8706, 9109}, {8708, 9110}, {8709, 9111}, {13397, 15344}
Circumcircle-X(3)-antipodes:
{74, 110}, {98, 99}, {100, 104}, {101, 103}, {102, 109}, {105, 1292}, {106, 1293}, {107, 1294}, {108, 1295}, {111, 1296}, {112, 1297}, {476, 477}, {691, 842}, {741, 6010}, {759, 6011}, {805, 2698}, {813, 12032}, {840, 2742}, {841, 9060}, {843, 2709}, {901, 953}, {915, 13397}, {917, 1305}, {925, 1300}, {927, 2724}, {929, 2723}, {930, 1141}, {932, 15323}, {933, 18401}, {934, 972}, {935, 2697}, {1113, 1114}, {1290, 2687}, {1291, 14979}, {1298, 1303}, {1299, 13398}, {1301, 5897}, {1304, 2693}, {1308, 2717}, {1309, 2734}, {1379, 1380}, {1381, 1382}, {2222, 2716}, {2374, 20187}, {2378, 9202}, {2379, 9203}, {2383, 20185}, {2688, 2690}, {2689, 2695}, {2691, 2752}, {2692, 2758}, {2694, 2766}, {2696, 2770}, {2699, 2703}, {2700, 2702}, {2701, 2708}, {2704, 2711}, {2705, 2712}, {2706, 2713}, {2707, 2714}, {2710, 2715}, {2718, 2743}, {2719, 2744}, {2720, 2745}, {2721, 2746}, {2722, 2747}, {2725, 2736}, {2726, 2737}, {2727, 2738}, {2728, 2739}, {2729, 2740}, {2730, 2751}, {2731, 2757}, {2732, 2762}, {2733, 2765}, {2735, 2768}, {3563, 3565}, {3659, 7597}, {5606, 5951}, {6082, 6093}, {6233, 6323}, {6236, 6325}, {9160, 9161}, {9831, 13241}, {10425, 23700}, {11636, 14388}, {12092, 22751}, {12507, 13238}, {13593, 13594}, {13597, 20189}, {14074, 15731}, {14719, 14720}, {16169, 16170}
Circumcircle-X(4)-antipodes:
{74, 107}, {98, 112}, {99, 3563}, {100, 915}, {101, 917}, {102, 26704}, {103, 26705}, {104, 108}, {105, 26706}, {110, 1300}, {477, 1304}, {842, 935}, {925, 1299}, {930, 2383}, {933, 1141}, {953, 1309}, {1113, 1114}, {1289, 1297}, {1292, 15344}, {1294, 1301}, {1296, 2374}, {2687, 2766}, {2693, 22239}, {2697, 10423}, {2698, 22456}, {2752, 10101}, {2770, 10098}, {18401, 20626}
Circumcircle-X(5)-antipodes:
{98, 827}, {99, 5966}, {100, 26797}, {101,26708}, {102,26709}, {103, 26710}, {104, 26711}, {105, 26712}, {106, 26713}, {107, 18401}, {110, 1141}, {476, 14979}, {477, 16166}, {842, 1287}, {925, 2383}, {1113, 1114}
Circumcircle-X(6)-antipodes:
{74, 112}, {98, 26714}, {99, 729}, {100, 739}, {101, 106}, {102, 26715}, {103, 26716}, {105, 8693}, {107, 26717}, {109, 2291}, {110, 111}, {689, 703}, {691, 843}, {699, 25424}, {717, 789}, {753, 825}, {755, 827}, {805, 5970}, {813, 2382}, {840, 919}, {842, 2715}, {901, 2384}, {1293, 17222}, {1379, 1380}, {2378, 5995}, {2379, 5994}, {2380, 16806}, {2381, 16807}, {2702, 2712}, {2709, 9136}, {3222, 6380}, {6078, 9097}, {6323, 11636}, {8694, 17223}, {8696, 8697}, {8700, 8701}, {10425, 14659}, {11651, 11652}
Circumcircle-X(7)-antipodes:
{100, 15728}, {101, 2369}, {104, 934}, {105, 6183}, {109, 675}, {840, 927}, {2720, 2861}, {2723, 24016}
Circumcircle-X(8)-antipodes: {100, 104}, {101, 1311}, {109, 2370}, {901, 2757}, {1309, 2745}
Circumcircle-X(9)-antipodes: {100, 2291}, {101, 104}, {813, 2726}, {919, 2751}, {934, 2371}
Circumcircle-X(10)-antipodes: {98, 101}, {100, 759}, {106, 8706}, {110, 2372}, {901, 2758}, {929, 2708}
Circumcircle-X(11)-antipodes: {100, 105}, {104, 108}, {110, 19628}
Circumcircle-X(12)-antipodes: {109, 2372}, {2222, 12030}
Circumcircle-X(13)-antipodes: {74, 5618}, {98, 5995}, {99, 2381}, {476, 2379}, {1141, 16806}
Circumcircle-X(14)-antipodes: {74, 5619}, {98, 5994}, {99, 2380}, {476, 2378}, {1141, 16807}
Circumcircle-X(15)-antipodes: {74, 5995}, {110, 2378}, {111, 9202}, {691, 2379}, {842, 5994}, {843, 9203}, {1379, 1380}, {2380, 10409}
Circumcircle-X(16)-antipodes: {74, 5994}, {110, 2379}, {111, 9203}, {691, 2378}, {842, 5995}, {843, 9202}, {1379, 1380}, {2381, 10410}
Circumcircle-X(17)-antipodes: {98, 16806}, {930, 2381}
Circumcircle-X(18)-antipodes: {98, 16807}, {930, 2380}
Circumcircle-X(19)-antipodes: {100, 9085}, {101, 915}, {107, 2249}, {108, 2291}, {109, 20624}, {112, 759}
Circumcircle-X(20)-antipodes: {20, {{74, 925}, {98, 3565}, {99, 1297}, {100, 1295}, {103, 1305}, {104, 13397}, {107, 5897}, {110, 1294}, {111, 20187}, {476, 2693}, {477, 10420}, {691, 2697}, {841, 16167}, {901, 2734}, {930, 18401}, {1113, 1114}, {1141, 20185}, {1290, 2694}, {1293, 2370}, {1296, 2373}, {1300, 13398}
Circumcircle-X(21)-antipodes: {99, 105}, {100, 759}, {104, 110}, {107, 1295}, {476, 2687}, {691, 2752}, {741, 932}, {915, 925}, {1113, 1114}, {1290, 12030}, {1296, 9061}, {1304, 2694}, {3565, 15344}, {8686, 8690}
Circumcircle-X(22)-antipodes: {98, 925}, {99, 2373}, {105, 13397}, {110, 1297}, {111, 3565}, {476, 2697}, {477, 16167}, {675, 1305}, {842, 10420}, {1113, 1114}, {1294, 1302}, {1295, 9058}, {2370, 9059}, {2693, 9060}, {3563, 13398}, {5897, 9064}, {5966, 20185}, {9084, 20187}
Circumcircle-X(23)-antipodes: {74, 9060}, {98, 476}, {99, 2770}, {100, 2752}, {105, 1290}, {107, 2697}, {110, 842}, {111, 691}, {477, 1302}, {675, 2690}, {935, 2373}, {1113, 1114}, {1287, 9076}, {1291, 5966}, {1296, 10102}, {1297, 1304}, {1300, 16167}, {1311, 2689}, {2687, 9058}, {2688, 9057}, {2691, 9061}, {2692, 9083}, {2693, 9064}, {2694, 9107}, {2695, 9056}, {2696, 9084}, {2758, 9059}, {3563, 10420}, {9070, 12030}, {20185, 23096}
Circumcircle-X(24)-antipodes: {74, 1301}, {98, 1289}, {107, 1300}, {108, 915}, {110, 1299}, {112, 3563}, {477, 22239}, {842, 10423}, {933, 2383}, {1113, 1114}, {1141, 20626}
Circumcircle-X(25)-antipodes: {74, 9064}, {98, 107}, {99, 2374}, {100, 15344}, {101, 9085}, {104, 9107}, {105, 108}, {106, 9088}, {110, 3563}, {111, 112}, {842, 1304}, {915, 9058}, {917, 9057}, {933, 5966}, {935, 2770}, {1113, 1114}, {1289, 2373}, {1291, 23096}, {1297, 1301}, {1300, 1302}, {1309, 2726}, {2697, 22239}, {2752, 2766}, {10098, 10102}
Circumcircle-X(26)-antipodes: {98, 1286}, {1113, 1114}
Circumcircle-X(27)-antipodes: {99, 9085}, {103, 107}, {110, 917}, {112, 675}, {1113, 1114}, {1304, 2688}
Circumcircle-X(28)-antipodes: {99, 15344}, {104, 107}, {105, 112}, {108, 759}, {110, 915}, {935, 2752}, {1113, 1114}, {1295, 1301}, {1304, 2687}, {2694, 22239}, {2766, 12030}
Circumcircle-X(29)-antipodes: {102, 107}, {112, 1311}, {1113, 1114}, {1304, 2695}
This preamble was contributed by Clark Kimberling (definitions and presentation) and Peter Moses (formulas and centers), November 2, 2018.
X(26700) lies on these lines: {1, 74}, {35, 5951}, {36, 2687}, {56, 759}, {57, 2611}, {79, 104}, {100, 4458}, {102, 1385}, {103, 354}, {105, 5322}, {110, 9811}, {162, 1304}, {226, 14844}, {265, 12773}, {554, 11705}, {651, 8652}, {739, 16488}, {842, 18593}, {972, 8606}, {1020, 15439}, {1081, 11706}, {1108, 2160}, {1295, 11012}, {1414, 6578}, {1429, 2711}, {1464, 14158}, {2716, 22765}, {4551, 8701}, {5427, 12030}, {8707, 15455}, {20219, 23890}
X(26700) = isogonal conjugate of X(35057)
X(26700) = cevapoint of X(i) and X(j) for these {i,j}: {56, 4017}, {513, 32636}, {523, 27555}
X(26700) = crosssum of X(1) and X(9904)
X(26700) = trilinear pole of line X(6)X(1406)
X(26700) = Ψ(X(6), X(1406))
X(26700) = Λ(X(1), X(656))
X(26700) = Ψ(X(1), X(30))
X(26700) = Ψ(X(4), X(79))
X(26700) = X(14656)-of-intouch-triangle
X(26701) lies on these lines: {1, 107}, {36, 2719}, {48, 112}, {56, 1363}, {58, 8059}, {73, 108}, {99, 326}, {100, 1816}, {101, 3990}, {109, 2360}, {110, 255}, {336, 22456}, {933, 2169}, {1113, 2585}, {1114, 2584}, {1301, 19614}, {1309, 3465}, {2734, 3737}, {2762, 10535}
X(26701) = Ψ(X(1), X(520))
X(26701) = Λ(X(1), X(29))
X(26701) = trilinear product of circumcircle intercepts of line X(1)X(520)
X(26702) = trilinear pole of line X(6)X(656)
X(26702) = Λ(X(65), X(1439))
X(26702) = Ψ(X(1), X(525))
X(26702) = Ψ(X(6), X(656))
X(26702) = trilinear product of circumcircle intercepts of line X(1)X(525)
X(26702) = the point of intersection, other than A, B, and C, of the circumcircle and hyperbola {{A,B,C,X(1),X(63)}}
X(26703) lies on these lines: {2, 108}, {20, 1292}, {21, 112}, {22, 100}, {23, 2766}, {25, 2968}, {28, 1289}, {30, 10101}, {63, 109}, {78, 101}, {99, 16049}, {107, 4228}, {110, 1812}, {348, 934}, {858, 1290}, {915, 7427}, {917, 7445}, {919, 3100}, {927, 7112}, {929, 10538}, {935, 1325}, {1295, 2417}, {1300, 7425}, {1301, 4233}, {1302, 26268}, {1304, 7469}, {1370, 13397}, {1791, 8687}, {1995, 9107}, {2071, 2691}, {2074, 10423}, {2374, 7458}, {2731, 5205}, {2856, 6563}, {3563, 7423}, {7219, 22654}, {7493, 9058}, {9056, 26227}, {9057, 26265}, {9070, 26253}, {9086, 26260}, {13577, 22769}
X(26703) = isogonal conjugate of X(3827)
X(26703) = anticomplement of X(20621)
X(26703) = trilinear pole of line X(6)X(521)
X(26703) = Ψ(X(6), X(521))
X(26703) = inverse-in-orthoptic-circle-of-Steiner-inellipse of X(123)
X(26703) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(34188)
X(26703) = de-Longchamps-circle-inverse of X(20344)
X(26704) lies on these lines: {4, 102}, {25, 1311}, {74, 15232}, {99, 7463}, {100, 7461}, {103, 13478}, {104, 2217}, {106, 1068}, {109, 23987}, {110, 1897}, {186, 2695}, {242, 2717}, {925, 7450}, {1294, 7421}, {1295, 6906}, {1297, 7413}, {1305, 7460}, {1824, 19607}, {2365, 7046}, {2370, 7428}, {2373, 7449}, {2708, 17927}, {2995, 20901}, {3565, 7462}, {7451, 13397}
X(26704) = anticomplement of X(38977)
X(26704) = Ψ(X(3), X(10))
X(26704) = Ψ(X(6), X(1826))
X(26704) = trilinear pole of line X(6)X(1826)
X(26704) = inverse-in-polar-circle of X(124)
X(26704) = X(63)-isoconjugate of X(6589)
X(26704) = perspector, wrt 2nd circumperp triangle, of polar circle
X(26705) lies on these lines: {3, 21665}, {4, 103}, {24, 917}, {25, 675}, {74, 15320}, {99, 4249}, {100, 4250}, {102, 5603}, {110, 3732}, {186, 2688}, {242, 2725}, {925, 4243}, {1006, 1295}, {1294, 7430}, {1297, 6998}, {1783, 8693}, {1897, 8701}, {2370, 4245}, {2373, 7453}, {3565, 4237}, {6353, 9085}, {6577, 8750}, {7437, 13397}, {7479, 10420}
X(26705) = polar conjugate of X(25259)
X(26705) = trilinear pole of line X(6)X(1836)
X(26705) = Ψ(X(6), X(1836))
X(26705) = inverse-in-polar-circle of X(116)
X(26705) = reflection of X(4) in X(20622)
X(26705) = X(63)-isoconjugate of X(6586)
X(26706) lies on these lines: {4, 105}, {24, 15344}, {25, 9061}, {98, 7414}, {102, 18446}, {104, 378}, {107, 4244}, {110, 4238}, {111, 4231}, {186, 2752}, {376, 1295}, {476, 7476}, {523, 10101}, {675, 4219}, {759, 4227}, {915, 18533}, {919, 1783}, {925, 4236}, {927, 18026}, {972, 11491}, {1068, 2376}, {1297, 3651}, {1302, 4246}, {1311, 7412}, {1565, 7071}, {1897, 13397}, {2373, 4220}, {2687, 10295}, {2694, 7464}, {4222, 9083}, {4242, 9058}, {4250, 9057}, {7435, 9064}, {7438, 9084}, {7461, 9056}, {7475, 10420}, {7477, 16167}
X(26707) lies on these lines: {5, 100}, {21, 930}, {28, 933}, {101, 1953}, {108, 3518}, {109, 1393}, {110, 6583}, {901, 10225}, {1290, 2070}, {1291, 1325}, {7423, 9076}, {7488, 13397}, {9058, 13595}, {16049, 20185}
X(26708) lies on these lines: {5, 101}, {27, 933}, {100, 14213}, {109, 11246}, {110, 17167}, {930, 4184}, {1291, 5196}, {1305, 7488}, {2070, 2690}, {7432, 9076}, {9057, 13595}
X(26709) lies on these lines: {5, 102}, {930, 7450}, {933, 7452}, {1311, 13595}, {2070, 2695}, {7449, 9076}
X(26710) lies on these lines: {5, 103}, {675, 13595}, {917, 3518}, {930, 4243}, {933, 4241}, {1291, 7479}, {2070, 2688}, {7453, 9076}
X(26711) lies on these lines: {5, 104}, {74, 13145}, {102, 11014}, {105, 13595}, {915, 3518}, {930, 3658}, {933, 4246}, {1291, 7477}, {1295, 7488}, {1311, 26263}, {1633, 8697}, {1897, 2766}, {2070, 2687}, {2694, 3153}, {4239, 9076}, {7435, 20626}
X(26712) lies on these lines: {5, 105}, {915, 7576}, {930, 4236}, {933, 4238}, {1291, 7475}, {2070, 2752}, {3518, 15344}, {4220, 9076}, {4244, 20626}, {9061, 13595}
X(26713) lies on these lines: {5, 106}, {2070, 2758}, {2370, 7488}, {9083, 13595}
X(26714) lies on these lines: {3, 14252}, {6, 98}, {74, 574}, {99, 1625}, {110, 14966}, {111, 263}, {163, 8685}, {187, 2698}, {323, 2857}, {327, 2367}, {352, 2770}, {353, 11593}, {648, 22456}, {689, 4563}, {729, 1384}, {733, 17970}, {741, 3402}, {759, 2186}, {842, 5104}, {1141, 11060}, {1296, 5118}, {1297, 3098}, {1576, 2715}, {2030, 5970}, {2373, 15066}, {2420, 11636}, {3288, 6037}, {5467, 6233}, {5468, 9066}, {9181, 13241}
X(26714) = Ψ(X(i), X(j)) for these (i,j): (2, 51), (4, 39), (6, 160), (76, 5)
X(26714) = trilinear pole of line X(6)X(160)
X(26714) = trilinear pole, wrt circumsymmedial triangle, of line X(6)X(523)
X(26714) = circumcircle intercept, other than X(98), of circle {{X(15),X(16),X(98)}} (or V(X(98))
X(26714) = X(182)-isoconjugate of X(1577)
X(26714) = isogonal conjugate of X(23878)
X(26714) = barycentric product X(110)*X(262)
X(26714) = barycentric quotient X(262)/X(850)
X(26714) = trilinear pole, wrt circumsymmedial triangle, of line X(6)X(523)
X(26714) = barycentric product of circumcircle intercepts of line X(2)X(51)
X(26715) lies on these lines: {6, 102}, {103, 4257}, {105, 16485}, {109, 2425}, {187, 2708}, {1293, 1983}, {1384, 2291}, {2750, 5526}
X(26715) = trilinear pole, wrt circumsymmedial triangle, of line X(6)X(652)
X(26715) = circumcircle intercept, other than X(102), of circle {{X(15),X(16),X(102)}} (or V(X(102))
X(26716) lies on these lines: {6, 103}, {101, 2426}, {102, 4262}, {105, 16487}, {106, 1384}, {163, 5545}, {187, 2700}, {906, 6575}, {1461, 24016}, {2030, 2712}
X(26716) = trilinear pole, wrt circumsymmedial triangle, of line X(6)X(657)
X(26716) = circumcircle intercept, other than X(103), of circle {{X(15),X(16),X(103)}} (or V(X(103))
X(26717) lies on these lines: {6, 107}, {99, 394}, {100, 3990}, {101, 4055}, {108, 1409}, {110, 577}, {112, 184}, {187, 2713}, {287, 22456}, {353, 12507}, {933, 14533}, {935, 13509}, {1294, 2430}, {1301, 14642}, {1304, 1971}, {1629, 1988}, {9064, 10311}, {15032, 23232}
X(26717) = Λ(X(2), X(216))
X(26717) = circumcircle intercept, other than X(107), of circle {{X(15),X(16),X(107)}} (or V(X(107))
Centers associated with the Gemini triangles 1-10: X(26718)-X(26751)
These centers were contributed by Randy Hutson, November 2, 2018. The Gemini triangles are introduced in the preamble just before X(24537).
X(26718) lies on these lines: {1, 6692}, {1125, 8834}, {1698, 6552}, {1699, 26719}
X(26718) = reflection of X(1699) in X(26719)
X(26719) lies on these lines: {5, 6552}, {1699, 26718}, {3091, 6553}
X(26719) = midpoint of X(1699) and X(26718)
X(26720) lies on this line: {1210, 3953}
X(26721) lies on these lines: {514, 2082}, {905, 918}, {1734, 4025}, {3309, 4897}
X(26722) lies on these lines: {7, 101}, {314, 7259}, {5526, 9442}
X(26723) lies on these lines: {1, 2}, {6, 5249}, {27, 162}, {31, 1738}, {44, 3782}, {57, 15474}, {63, 4000}, {75, 5294}, {81, 142}, {238, 3914}, {278, 1445}, {377, 1453}, {908, 2911}, {1086, 4641}, {1194, 16583}, {1203, 12609}, {1211, 17348}, {1386, 3925}, {1427, 5723}, {1621, 3755}, {1708, 22464}, {1724, 23537}, {1743, 5905}, {1746, 12610} et al
X(26724) lies on these lines: {2, 37}, {44, 17483}, {63, 4859}, {81, 142}, {277, 15474}, {404, 1612}, {748, 5057}, {1086, 3219}, {1621, 1738} et al
X(26725) lies on these lines: {1, 442}, {2, 758}, {10, 5425}, {21, 36}, {30, 1699}, {35, 12609}, {57, 191}, {80, 3822}, {140, 5535}, {142, 10090}, {214, 5424}, {226, 5251}, {451, 1835}, {484, 6690}, {517, 11218}, {551, 6175}, {946, 3651}, {1001, 16581}, {1479, 2475}, {1698, 11374}, {1790, 2126}, {2646, 3824} et al
X(26726) lies on these lines: {1, 1145}, {8, 6702}, {11, 3632}, {35, 13278}, {36, 25438}, {57, 1317}, {80, 519}, {100, 3244}, {104, 5537}, {119, 16200}, {145, 2802}, {149, 20050}, {214, 3241}, {952, 3627}, {1387, 3679}, {1482, 12611}, {1537, 11224} et al
X(26727) lies on these lines: {1, 1145}, {8, 244}, {10, 3699}, {80, 900}, {88, 2581}, {106, 519}, {109, 4848}, {141, 3679}, {291, 2401}, {644, 21950}, {905, 9260}, {952, 1054}, {986, 5554}, {1046, 14985}, {1086, 3036}, {1320, 1647}, {1421, 1722}, {1772, 10573} et al
X(26728) lies on these lines: {1, 224}, {31, 11551}, {86, 99}, {553, 4257}, {595, 3671}, {982, 1125}, {990, 5603}, {1086, 24929}, {1104, 6147} et al
X(26729) lies on these lines: {1, 11015}, {946, 3315}, {1104, 17483}, {1714, 3868}, {3487, 4850}, {3649, 7191}, {3984, 4859} et al
X(26730) lies on these lines: {79, 1757}, {3914, 4416}, {5223, 24851} et al
X(26731) lies on these lines: {69, 4683}, {79, 3751}, {193, 17491}, {518, 24851}, {1756, 7289} et al
X(26732) is the infinite point of the perspectrix of Gemini triangles 2 and 7.
X(26732) lies on these lines: {30, 511}, {3700, 4560}, {4391, 4976} et al
X(26733) lies on the circumcircle and these lines: {1415, 8652}, {2291, 10460}, {4559, 8701}, {4565, 6578}
X(26734) lies on these lines: {313, 3260}, {321, 3578}
X(26734) = trilinear pole of line X(1577)X(26732)
X(26735) lies on these lines: {40, 3729}, {223, 9312}
X(26735) = trilinear pole of line X(2517)X(4885)
X(26736) lies on this line: {3729, 3732}
X(26736) = trilinear pole of line X(4000)X(4885)
X(26737) lies on these lines: (pending)
X(26738) lies on these lines: {1, 10031}, {2, 44}, {88, 6173}, {226, 22464}, {651, 5219}, {1086, 4850} et al
X(26739) lies on this line: {2, 4912}
X(26740) lies on these lines: {1, 6940}, {2, 26741}, {42, 5083}, {57, 77}, {226, 1086}, {241, 9328}, {354, 24025}, {553, 1465}, {1319, 4868}, {1427, 4031}, {1450, 4424} et al
X(27040) = complement of X(18600)
X(26740) = {X(2),X(26742)}-harmonic conjugate of X(26741)
X(26741) lies on these lines: {2, 26740}, {43,5083}, {57,88}, {216,1108}, {1450,1739} et al
X(26741) = {X(2),X(26742)}-harmonic conjugate of X(26740)
X(26742) lies on these lines: {2, 26740}, {6, 57}, {484, 1480}, {614, 3256}, {2006, 4000} et al
X(26742) = {X(26740),X(26741)}-harmonic conjugate of X(2)
X(26743) lies on these lines: {30, 80}, {2006, 6357}, {14206, 17484}
X(26743) = isogonal conjugate of X(26744)
X(26744) lies on these lines: {3, 16554}, {9, 1030}, {35, 2161}, {36, 2245}, {37, 14579}, {44, 11063}, {55, 4516}, {71, 74}, {198, 16553}, {284, 2316}, {484, 19297}, {2077, 2173} et al
X(26744) = isogonal conjugate of X(26743)
Let A10B10C10 be the Gemini triangle 10. Let LA be the line through A10 parallel to BC, and define LB, LC cyclically. Let A'10 = LB∩C, and define B'10, C'10 cyclically. Triangle A'10B'10C'10 is homothetic to ABC at X(26745).
X(26745) lies on these lines: {1, 1392}, {2, 4912}, {88, 4383}, {89, 3752}, {105, 8697}, {1022, 4498}, {1054, 4430}, {1219, 4678}, {1224, 19877} et al
X(26745) = isogonal conjugate of X(16885)
X(26746) lies on these lines: {2, 313}, {333, 2275}, {4850, 6703}
X(26747) lies on these lines: {2,313}, {81,1193}, {1575,3969}, {2275,5278}, {2277,19684} et al
X(26748) lies on these lines: (pending)
X(26749) lies on this line: {545, 3218}
X(26749) = trilinear pole of line X(3960)X(14475)
X(26750) lies on these lines: (pending)
The perspectrix of Gemini triangles 2 and 10 passes through X(14838).
X(26751) lies on these lines: {1211, 3219}, {4357, 5267}
X(26751) = isotomic conjugate of X(36974)
Collineation mappings involving Gemini triangle 49: X(26752)-X(26802)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 49, as in centers X(26752)-X(26802). Then
m(X) = a (b + c)^2 x + b (a - c)^2 y + c (a - b)^2 z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 3, 2018)
X(26752) lies on these lines: {1, 2}, {12, 26582}, {35, 17692}, {37, 25107}, {39, 668}, {41, 17743}, {55, 16916}, {69, 26042}, {75, 21021}, {76, 17759}, {100, 384}, {192, 1921}, {194, 17756}, {274, 1574}, {335, 24443}, {350, 20691}, {404, 6645}, {495, 17670}, {874, 17280}, {891, 27140}, {956, 11285}, {958, 17684}, {1018, 26765}, {1078, 5291}, {1107, 25280}, {1278, 21443}, {1329, 17669}, {1376, 16915}, {1500, 18140}, {1575, 1909}, {1621, 16918}, {1654, 26082}, {1655, 2276}, {2238, 27033}, {2275, 9263}, {2277, 17786}, {2975, 7824}, {3035, 26686}, {3249, 27013}, {3421, 16043}, {3434, 16924}, {3436, 7791}, {3501, 24514}, {3693, 25994}, {3701, 3797}, {3758, 26076}, {3871, 4366}, {3934, 17143}, {3952, 25248}, {3959, 18055}, {4429, 16906}, {4557, 18099}, {4595, 27103}, {4645, 26058}, {4967, 25538}, {4986, 24786}, {5025, 11681}, {5080, 6655}, {5263, 20148}, {5687, 7770}, {6381, 25264}, {6625, 26072}, {6646, 26756}, {6653, 16044}, {6656, 17757}, {7785, 20553}, {7786, 16975}, {9709, 11321}, {11680, 16921}, {12607, 26561}, {12782, 17794}, {16284, 25918}, {16549, 17499}, {16604, 25303}, {16720, 20955}, {17243, 27111}, {17279, 25610}, {17295, 26979}, {17299, 25505}, {17300, 20561}, {17301, 26142}, {17302, 26100}, {17303, 26110}, {17314, 26107}, {17395, 25534}, {17693, 25440}, {18040, 24530}, {18047, 21008}, {21031, 26558}, {21264, 21868}, {23632, 25286}, {24491, 27073}, {24502, 27136}, {24509, 26685}, {25570, 26135}, {26753, 26790}, {26762, 26771}, {26784, 26789}, {26797, 26799}, {27039, 27296}
X(26752) = anticomplement of X(26959)
X(26753) lies on these lines: {2, 3}, {315, 27515}, {3177, 18738}, {26752, 26790}, {26756, 26763}, {26757, 26758}, {26770, 26794}
X(26754) lies on these lines: {2, 3}, {69, 4513}, {6646, 26759}
X(26755) lies on these lines: {2, 3}, {26686, 27027}
X(26756) lies on these lines: {1, 25292}, {2, 6}, {9, 27073}, {76, 1278}, {190, 26797}, {192, 4033}, {239, 27011}, {319, 26971}, {320, 27102}, {330, 27671}, {594, 26976}, {894, 27044}, {3009, 25284}, {3879, 27166}, {4361, 26850}, {4446, 17154}, {4699, 26817}, {4741, 26042}, {6646, 26752}, {7232, 27107}, {16706, 27106}, {16816, 27192}, {17121, 26982}, {17227, 27311}, {17228, 27261}, {17252, 27020}, {17256, 27032}, {17263, 27036}, {17280, 26774}, {17288, 27017}, {17292, 27078}, {17350, 21362}, {17353, 27113}, {17360, 25505}, {17364, 27091}, {17373, 26107}, {17495, 21857}, {21244, 26589}, {26048, 26806}, {26149, 26812}, {26753, 26763}, {26762, 26766}
X(26757) lies on these lines: {1, 2}, {668, 26770}, {3620, 26836}, {3991, 25261}, {4023, 27256}, {4445, 16713}, {4515, 26563}, {4595, 17152}, {17233, 27039}, {17280, 26787}, {17286, 27058}, {17373, 26818}, {26753, 26758}, {26780, 26790}, {26797, 26800}
X(26758) lies on these lines: {2, 6}, {2476, 4678}, {4033, 4671}, {4651, 21241}, {19998, 25760}, {26753, 26757}
X(26759) lies on these lines: {1, 2}, {38, 25248}, {69, 20109}, {141, 17152}, {210, 26689}, {257, 21272}, {335, 17164}, {668, 27040}, {1018, 16887}, {1500, 16705}, {1621, 16931}, {3434, 16910}, {3662, 20244}, {3775, 27047}, {3871, 16060}, {4390, 24549}, {5263, 16930}, {5484, 20533}, {5836, 26562}, {6645, 11115}, {6646, 26754}, {7187, 25244}, {8682, 21802}, {12135, 15149}, {14210, 25263}, {16600, 17497}, {16920, 20139}, {16975, 27109}, {17141, 24254}, {17143, 26978}, {17280, 21226}, {17289, 25303}, {17759, 18600}, {18047, 26843}, {26781, 26795}, {26787, 26792}
X(26760) lies on these lines: {2, 3}
X(26761) lies on these lines: {2, 3}
X(26762) lies on these lines: {2, 31}, {26752, 26771}, {26756, 26766}, {26767, 26795}
X(26763) lies on these lines: {2, 32}, {26753, 26756}, {26770, 26788}
X(26764) lies on these lines: {2, 37}, {8, 5145}, {141, 26774}, {190, 26772}, {291, 25295}, {573, 17350}, {594, 16738}, {894, 3882}, {1100, 26975}, {1964, 20044}, {2309, 20352}, {3912, 27017}, {3943, 26979}, {3946, 26982}, {4033, 16696}, {4357, 27044}, {4360, 26821}, {4389, 27095}, {4393, 5105}, {4436, 18082}, {6542, 17178}, {6646, 26752}, {7184, 25284}, {7227, 27042}, {16814, 27036}, {17116, 27020}, {17142, 24327}, {17233, 27145}, {17234, 27107}, {17235, 27106}, {17247, 27091}, {17291, 27113}, {17300, 26816}, {17319, 27166}, {17355, 27078}, {21278, 24696}, {26765, 26779}, {26782, 26789}
X(26765) lies on these lines: {2, 39}, {1018, 26752}, {26753, 26756}, {26764, 26779}, {26788, 26794}
X(26766) lies on these lines: {1, 2}, {26756, 26762}, {26771, 26795}
X(26767) lies on these lines: {1, 2}, {20284, 21224}, {26762, 26795}
X(26768) lies on these lines: {2, 44}, {141, 26799}, {144, 27136}, {190, 26774}, {391, 27192}, {524, 26821}, {527, 27044}, {1654, 26812}, {3768, 17217}, {6646, 26752}, {16819, 17252}, {17271, 26976}, {17273, 26772}, {17343, 20561}, {17344, 26971}, {17345, 27102}, {17347, 27095}
X(26769) lies on these lines: {2, 45}, {141, 26797}, {192, 16696}, {194, 1278}, {3662, 27073}, {3663, 27011}, {4398, 26850}, {6646, 26752}, {7226, 24451}, {7321, 27032}, {16819, 17116}, {17236, 27136}, {17246, 26963}, {17254, 27044}, {17255, 27095}, {17258, 27102}, {17261, 27017}, {17262, 27145}, {17280, 26857}, {17320, 26975}, {17334, 26772}, {17336, 27311}, {20068, 24351}, {26082, 26812}
X(26770) lies on these lines: {2, 39}, {6, 145}, {8, 1018}, {32, 17539}, {75, 25237}, {190, 17152}, {213, 20040}, {257, 25248}, {312, 26690}, {321, 1212}, {350, 26964}, {391, 4271}, {668, 26757}, {672, 17751}, {966, 17676}, {1011, 7172}, {1089, 24036}, {1475, 21071}, {2549, 26085}, {3061, 25253}, {3263, 25244}, {3496, 4427}, {3691, 4651}, {3693, 4696}, {3701, 25066}, {3729, 20244}, {3780, 20051}, {3840, 23649}, {4095, 14439}, {4202, 15048}, {4385, 25082}, {4968, 16601}, {5192, 9605}, {5275, 19284}, {5276, 11115}, {6376, 27025}, {6554, 17740}, {7745, 17537}, {7758, 26099}, {7791, 17007}, {7798, 25497}, {7864, 16991}, {7920, 16905}, {10459, 17355}, {11320, 19742}, {16583, 17495}, {16909, 16989}, {16920, 17349}, {17002, 17696}, {17135, 21384}, {17140, 21808}, {17164, 17451}, {17264, 25303}, {17280, 21226}, {17350, 20109}, {20331, 21025}, {25092, 26115}, {25242, 26961}, {25261, 26234}, {25264, 26965}, {26753, 26794}, {26763, 26788}
X(26771) lies on these lines: {2, 6}, {3995, 4033}, {17163, 21684}, {17490, 27794}, {17495, 27792}, {20068, 20966}, {26752, 26762}, {26766, 26795}, {26774, 27040}, {27021, 27043}
X(26772) lies on these lines: {2, 6}, {7, 27107}, {10, 21803}, {37, 4033}, {41, 26222}, {42, 21257}, {75, 26976}, {190, 26764}, {192, 2092}, {239, 26971}, {320, 27017}, {321, 21857}, {386, 27262}, {442, 26029}, {661, 24130}, {869, 21278}, {872, 21238}, {874, 17280}, {894, 21362}, {1100, 27166}, {1230, 3210}, {1269, 17495}, {2245, 17350}, {2277, 3765}, {3122, 25295}, {3661, 27261}, {3662, 27311}, {3752, 27792}, {3759, 25505}, {3770, 24530}, {3952, 21035}, {3963, 21796}, {4026, 21031}, {4043, 21858}, {4272, 4393}, {4277, 18147}, {4395, 26850}, {4422, 27073}, {4429, 11681}, {4443, 25277}, {4446, 17165}, {4557, 18082}, {5051, 27282}, {16589, 27268}, {16815, 25538}, {17120, 26975}, {17121, 26959}, {17142, 24478}, {17260, 20372}, {17273, 26768}, {17285, 26774}, {17289, 27044}, {17291, 27106}, {17334, 26769}, {17340, 26797}, {17354, 27136}, {17357, 27113}, {17366, 27011}, {17368, 27091}, {20305, 26589}, {20691, 22016}, {22174, 25124}, {26582, 27058}, {26685, 27021}, {26778, 26779}, {26785, 26793}, {27030, 27034}, {27035, 27069}
X(26773) lies on these lines: {1, 2}
X(26774) lies on these lines: {1, 2}, {69, 27136}, {141, 26764}, {190, 26768}, {536, 18073}, {594, 26812}, {1654, 27073}, {4129, 21385}, {6646, 26797}, {17229, 26971}, {17231, 27102}, {17233, 27095}, {17239, 27032}, {17280, 26756}, {17285, 26772}, {17295, 26963}, {17297, 26816}, {17374, 26975}, {26771, 27040}
X(26775) lies on these lines: {2, 661}, {1019, 27013}, {3762, 4560}, {3768, 17217}, {4833, 16738}, {7199, 26985}, {7252, 16704}, {8025, 18199}, {16751, 27115}, {17494, 18155}, {18197, 20295}
X(26776) lies on these lines: {2, 667}, {4129, 26778}
X(26777) lies on these lines: {2, 650}, {514, 27013}, {661, 26853}, {812, 26798}, {1635, 7192}, {2490, 4789}, {3522, 8760}, {3620, 9015}, {3623, 14077}, {3762, 4560}, {4024, 10196}, {4382, 27138}, {4468, 27486}, {4704, 4777}, {4765, 25259}, {4893, 20295}, {6546, 21196}, {14936, 26846}, {19998, 21727}, {21297, 25666}, {23791, 26037}
X(26778) lies on these lines: {2, 31}, {141, 17152}, {4026, 26807}, {4129, 26776}, {6646, 26752}, {16549, 17350}, {24697, 27080}, {26772, 26779}
X(26779) lies on these lines: {1, 2}, {16705, 27076}, {20148, 26825}, {26764, 26765}, {26772, 26778}
X(26780) lies on these lines: {2, 3}, {26757, 26790}
X(26781) lies on these lines: {2, 3}, {3454, 27096}, {17052, 27170}, {21245, 27514}, {26752, 26762}, {26759, 26795}, {26794, 27040}
X(26782) lies on these lines: {2, 3}, {26764, 26789}
X(26783) lies on these lines: {2, 3}, {306, 7206}, {17280, 17482}
X(26784) lies on these lines: {2, 3}, {26752, 26789}
X(26785) lies on these lines: {2, 3}, {26772, 26793}
X(26786) lies on these lines: {2, 3}
X(26787) lies on these lines: {2, 3}, {17280, 26757}, {26759, 26792}
X(26788) lies on these lines: {2, 3}, {26763, 26770}, {26765, 26794}
X(26789) lies on these lines: {2, 19}, {7, 17319}, {192, 17483}, {346, 17481}, {3672, 26842}, {4872, 26665}, {6646, 26754}, {11997, 20292}, {17280, 17482}, {26752, 26784}, {26764, 26782}
X(26790) lies on these lines: {2, 40}, {3730, 5195}, {3869, 20533}, {4209, 6361}, {4295, 27253}, {4872, 21872}, {6542, 25270}, {6646, 26754}, {7991, 26531}, {9778, 26658}, {12702, 17671}, {26752, 26753}, {26757, 26780}
X(26791) lies on these lines: {2, 7}, {43, 17777}, {65, 25979}, {145, 2899}, {181, 3038}, {312, 17299}, {1252, 6634}, {1572, 27546}, {1836, 26073}, {1999, 4856}, {3873, 26139}, {4096, 17722}, {5205, 20101}, {5741, 17280}, {11415, 26029}, {17387, 17778}, {26752, 26753}, {26793, 27040}
X(26792) lies on these lines: {2, 7}, {8, 3583}, {72, 5046}, {78, 15680}, {79, 26060}, {149, 3681}, {165, 9809}, {190, 5741}, {191, 27529}, {200, 20095}, {210, 5057}, {312, 2895}, {321, 4886}, {346, 26837}, {497, 4661}, {960, 20060}, {962, 4678}, {997, 20067}, {1329, 11684}, {1698, 14450}, {2475, 3876}, {2476, 15650}, {3083, 17806}, {3084, 17803}, {3146, 5811}, {3487, 16859}, {3616, 17544}, {3617, 11415}, {3621, 5815}, {3648, 25440}, {3663, 17020}, {3679, 5180}, {3699, 4450}, {3703, 4756}, {3740, 20292}, {3828, 11552}, {3832, 5758}, {3873, 4679}, {3874, 26127}, {3878, 5559}, {3927, 4193}, {3935, 21060}, {3940, 11114}, {3952, 4388}, {3995, 4053}, {4005, 5178}, {4420, 20066}, {4533, 22793}, {4656, 17011}, {4671, 5739}, {4677, 9802}, {4909, 17019}, {5080, 5692}, {5211, 20068}, {5220, 11680}, {5719, 16858}, {5777, 6895}, {5812, 6894}, {6147, 17536}, {6327, 27538}, {6546, 20295}, {6960, 26921}, {7411, 13257}, {8818, 27081}, {9342, 11246}, {9785, 20014}, {11374, 15674}, {12526, 25005}, {14555, 20886}, {14997, 19785}, {15481, 17605}, {17135, 17777}, {17280, 17482}, {17535, 24470}, {17548, 27383}, {22022, 24048}, {26752, 26762}, {26757, 26780}, {26759, 26787}
X(26793) lies on these lines: {2, 85}, {8, 5526}, {9, 21066}, {12, 3039}, {149, 2082}, {169, 2475}, {894, 26532}, {1252, 11607}, {2345, 15492}, {2348, 5086}, {5046, 5179}, {5199, 24982}, {6604, 26544}, {10025, 26526}, {17280, 26757}, {23058, 25005}, {24036, 27529}, {26575, 27064}, {26772, 26785}, {26791, 27040}
X(26794) lies on these lines: {2, 99}, {190, 26796}, {661, 21272}, {668, 26795}, {1018, 4129}, {4781, 27045}, {23903, 26964}, {26753, 26770}, {26765, 26788}, {26781, 27040}
X(26795) lies on these lines: {2, 11}, {668, 26794}, {1018, 26796}, {26753, 26757}, {26759, 26781}, {26762, 26767}, {26766, 26771}
X(26796) lies on these lines: {2, 101}, {190, 26794}, {644, 27134}, {693, 21859}, {1018, 26795}, {3314, 27096}
X(26797) lies on these lines: {2, 37}, {141, 26769}, {190, 26756}, {3663, 27113}, {3882, 17350}, {3943, 26963}, {3950, 27166}, {6646, 26774}, {17118, 26817}, {17178, 17233}, {17261, 27044}, {17262, 27095}, {17267, 27107}, {17268, 27017}, {17269, 27145}, {17315, 26975}, {17340, 26772}, {26752, 26799}, {26757, 26800}
X(26798) lies on these lines: {2, 649}, {513, 26985}, {661, 21297}, {693, 4940}, {812, 26777}, {2516, 4380}, {3620, 9002}, {3768, 17217}, {4106, 4776}, {4129, 21385}, {4671, 20952}, {4728, 7192}, {4772, 27485}, {4775, 21301}, {4928, 4979}, {4992, 21343}, {17300, 23345}
X(26799) lies on these lines: {2, 7}, {6, 26821}, {44, 26971}, {141, 26768}, {190, 26764}, {192, 4277}, {256, 3952}, {3739, 27036}, {4473, 27073}, {4643, 27261}, {16738, 17332}, {16814, 27032}, {17120, 27166}, {17178, 20072}, {17276, 27311}, {17277, 26812}, {17280, 26756}, {17347, 27145}, {17351, 27102}, {17354, 27095}, {17355, 27044}, {17357, 27106}, {17365, 26816}, {17375, 27291}, {17789, 27727}, {18082, 23343}, {22279, 24517}, {26752, 26797}
X(26800) lies on these lines: {2, 38}, {2345, 3770}, {3730, 17350}, {6646, 26752}, {17280, 21226}, {26757, 26797}
Collineation mappings involving Gemini triangle 50: X(26801)-X(26862)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 50, as in centers X(26801)-X(26862). Then
m(X) = a (b - c)^2 x + b (a + c)^2 y + c (a + b)^2 z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 3, 2018)
X(26801) lies on these lines: {1, 2}, {7, 1424}, {11, 17669}, {21, 4366}, {36, 17693}, {39, 17143}, {55, 17684}, {56, 16915}, {69, 26149}, {75, 2275}, {76, 16975}, {83, 5291}, {100, 7824}, {141, 27155}, {172, 20179}, {192, 26082}, {194, 4441}, {238, 18756}, {257, 2170}, {274, 1015}, {350, 1107}, {384, 2975}, {668, 3934}, {891, 27015}, {894, 1475}, {941, 20168}, {956, 7770}, {958, 16916}, {966, 16525}, {993, 17692}, {999, 11321}, {1100, 26110}, {1468, 14621}, {1573, 18140}, {1654, 20561}, {1909, 9263}, {1960, 27075}, {2276, 17144}, {2345, 24737}, {2886, 26561}, {2896, 20553}, {3434, 7791}, {3436, 16924}, {3702, 3797}, {3813, 26590}, {3879, 25538}, {3954, 18061}, {4390, 17743}, {4645, 27019}, {4875, 25994}, {4999, 26629}, {5025, 11680}, {5080, 16044}, {5082, 16043}, {5253, 16917}, {5260, 16918}, {5284, 16912}, {5303, 13586}, {5687, 11285}, {6604, 26134}, {6645, 17686}, {6650, 26835}, {6656, 24390}, {7187, 20880}, {7797, 17737}, {11681, 16921}, {12263, 17794}, {15325, 17694}, {16502, 16998}, {16705, 16738}, {16781, 16992}, {16887, 17761}, {17045, 27164}, {17169, 17178}, {17209, 26802}, {17237, 26142}, {17257, 23640}, {17275, 25505}, {17277, 21788}, {17278, 24652}, {17280, 27109}, {17322, 26045}, {17688, 24552}, {18230, 27291}, {19765, 20162}, {20072, 26976}, {21024, 27033}, {21384, 24514}, {26810, 26819}, {26827, 26836}, {26831, 26837}, {26844, 26846}, {26850, 26852}
X(26801) = anticomplement of X(27020)
X(26802) lies on these lines: {2, 3}, {284, 26125}, {3177, 16699}, {4653, 27253}, {11185, 27515}, {14621, 26964}, {14964, 17753}, {17178, 26811}, {17209, 26801}, {18600, 26845}, {19591, 20244}, {26561, 26977}, {26805, 26846}
X(26803) lies on these lines: {2, 3}, {18600, 26818}, {26806, 26807}, {26811, 26849}
X(26804) lies on these lines: {2, 3}, {17167, 26839}, {17194, 26531}, {24632, 27526}, {26558, 27149}, {26813, 26849}
X(26805) lies on these lines: {1, 2}, {1015, 18600}, {1509, 26845}, {4366, 17539}, {8025, 26828}, {16713, 17045}, {17048, 21272}, {17169, 17761}, {17302, 26818}, {17474, 20347}, {26802, 26846}, {26827, 26839}, {26850, 26859}
X(26806) lies on these lines: {2, 7}, {8, 4772}, {10, 17288}, {37, 4440}, {69, 4699}, {75, 4675}, {86, 1086}, {190, 17245}, {192, 4648}, {193, 16816}, {239, 3664}, {244, 256}, {319, 4688}, {320, 1654}, {330, 27454}, {344, 7222}, {536, 17317}, {594, 17297}, {673, 20147}, {903, 17246}, {942, 26051}, {966, 4741}, {1125, 9791}, {1213, 7238}, {1266, 17319}, {1278, 17316}, {1284, 5253}, {1463, 3812}, {1909, 20892}, {2321, 17312}, {2345, 17232}, {3008, 17120}, {3589, 27191}, {3616, 24248}, {3619, 4470}, {3661, 17298}, {3663, 16826}, {3666, 26109}, {3729, 17244}, {3758, 17278}, {3834, 17289}, {3875, 17391}, {3879, 17117}, {3888, 17049}, {3912, 17116}, {3945, 4393}, {4000, 17379}, {4334, 19860}, {4335, 4666}, {4340, 19851}, {4359, 17778}, {4360, 7263}, {4361, 17378}, {4363, 17234}, {4384, 4888}, {4389, 15668}, {4398, 16777}, {4416, 4896}, {4419, 27268}, {4431, 17310}, {4454, 25269}, {4472, 17307}, {4473, 17263}, {4480, 25072}, {4643, 4751}, {4644, 17349}, {4645, 17153}, {4659, 17242}, {4665, 17295}, {4667, 17121}, {4670, 16706}, {4686, 17315}, {4687, 17276}, {4698, 17258}, {4704, 5308}, {4739, 5564}, {4740, 17314}, {4796, 16671}, {4798, 17400}, {4859, 17367}, {4862, 16831}, {4869, 17230}, {4967, 17287}, {5224, 7232}, {5263, 25557}, {5712, 17490}, {6356, 21940}, {7184, 21352}, {7227, 17285}, {7240, 22343}, {9782, 26115}, {10030, 26538}, {11110, 24470}, {16817, 20077}, {16830, 24231}, {16832, 17331}, {17118, 17233}, {17119, 17377}, {17151, 17389}, {17160, 17390}, {17169, 17178}, {17175, 17202}, {17180, 17761}, {17227, 17303}, {17235, 17322}, {17241, 17281}, {17252, 24603}, {17256, 17345}, {17259, 17347}, {17265, 17354}, {17266, 17355}, {17275, 17361}, {17277, 17365}, {17283, 17369}, {17290, 17381}, {17292, 21255}, {17301, 17394}, {17304, 17397}, {17305, 17398}, {17343, 21296}, {17695, 25500}, {17777, 25421}, {17790, 18143}, {17951, 27827}, {20295, 21211}, {20337, 27707}, {20924, 21442}, {21258, 26530}, {21330, 24463}, {26048, 26756}, {26803, 26807}, {26821, 26850}
X(26806) = anticomplement of X(17260)
X(26807) lies on these lines: {1, 2}, {86, 26825}, {1015, 16705}, {2975, 16931}, {3742, 26562}, {4026, 26778}, {4357, 17474}, {4366, 11115}, {4986, 25089}, {8025, 26841}, {16710, 17302}, {17152, 24512}, {17175, 17761}, {24631, 25248}, {26803, 26806}, {26828, 26846}, {26834, 26842}
X(26808) lies on these lines: {2, 3}
X(26809) lies on these lines: {2, 3}
X(26810) lies on these lines: {2, 31}, {17178, 26814}, {26801, 26819}, {26815, 26846}
X(26811) lies on these lines: {2, 32}, {17178, 26802}, {18600, 26835}, {26803, 26849}, {26845, 26852}
X(26812) lies on these lines: {2, 37}, {86, 26821}, {594, 26774}, {1086, 16738}, {1268, 25534}, {1654, 26768}, {3008, 27078}, {4395, 27042}, {4967, 27044}, {5750, 26982}, {16819, 17324}, {16829, 17288}, {17117, 25538}, {17140, 24575}, {17169, 17178}, {17202, 17761}, {17239, 27106}, {17277, 26799}, {17445, 20044}, {24199, 27017}, {26082, 26769}, {26149, 26756}, {26813, 26826}, {26829, 26837}
X(26813) lies on these lines: {2, 39}, {1909, 16742}, {7187, 16727}, {16887, 17761}, {17178, 26802}, {17205, 26959}, {26804, 26849}, {26812, 26826}, {26835, 26843}, {26964, 27011}
X(26814) lies on these lines: {1, 2}, {1015, 16748}, {17178, 26810}, {17208, 17761}, {26819, 26846}
X(26815) lies on these lines: {1, 2}, {56, 16954}, {310, 1015}, {350, 23632}, {4184, 4366}, {17759, 26963}, {18152, 22199}, {21224, 21345}, {26810, 26846}
X(26816) lies on these lines: {2, 44}, {86, 26857}, {1086, 26821}, {3664, 27017}, {4869, 27136}, {17139, 26844}, {17169, 17178}, {17217, 26822}, {17297, 26774}, {17300, 26764}, {17365, 26799}, {17375, 20561}, {17376, 27102}, {17378, 27107}
X(26817) lies on these lines: {2, 45}, {86, 26850}, {4699, 26756}, {7321, 27154}, {10436, 27011}, {17116, 27073}, {17118, 26797}, {17169, 17178}, {17236, 24190}
X(26818) lies on these lines: {2, 6}, {7, 17197}, {58, 14986}, {144, 17183}, {145, 27334}, {192, 16728}, {284, 8732}, {314, 4461}, {390, 3286}, {757, 26856}, {1014, 14953}, {1024, 17212}, {1434, 26827}, {1449, 17077}, {2257, 26651}, {3662, 26964}, {3663, 18186}, {3672, 16696}, {4000, 16726}, {4267, 5265}, {4346, 18198}, {4352, 18171}, {4772, 16740}, {5281, 18185}, {5435, 18163}, {10580, 17194}, {11019, 20978}, {17120, 27058}, {17139, 20059}, {17169, 17207}, {17175, 27304}, {17287, 27025}, {17302, 26805}, {17367, 26997}, {17373, 26757}, {18600, 26803}, {18601, 18603}, {26626, 27170}, {26833, 26845}
X(26819) lies on these lines: {2, 6}, {3736, 20011}, {4359, 16726}, {4651, 18792}, {16696, 17147}, {16705, 26821}, {17135, 17187}, {17143, 18171}, {17184, 17197}, {17495, 18601}, {26801, 26810}, {26814, 26846}, {26830, 26836}, {26844, 26856}
X(26820) lies on these lines: {1, 2}
X(26821) lies on these lines: {1, 2}, {6, 26799}, {86, 26812}, {192, 5069}, {524, 26768}, {536, 26975}, {1019, 26853}, {1086, 26816}, {1100, 26971}, {2275, 17147}, {3286, 4366}, {3723, 27032}, {3946, 27017}, {4360, 26764}, {4648, 27192}, {4852, 27102}, {16705, 26819}, {16738, 17045}, {17178, 17302}, {17300, 27011}, {17314, 27136}, {17343, 26143}, {17374, 27106}, {17377, 27095}, {17380, 27145}, {17776, 24737}, {20530, 25298}, {26806, 26850}, {26842, 26852}
X(26822) lies on these lines: {2, 661}, {1019, 17174}, {3733, 18108}, {3960, 4560}, {7199, 16751}, {7252, 8025}, {16704, 18199}, {17096, 17498}, {17217, 26816}, {18155, 26985}, {18197, 27013}, {23829, 25259}
X(26823) lies on these lines: {2, 667}, {1019, 26825}, {23470, 26846}
X(26824) lies on these lines: {2, 650}, {193, 9015}, {514, 4024}, {523, 2528}, {649, 17029}, {661, 21297}, {812, 4979}, {1278, 4777}, {3146, 8760}, {3621, 14077}, {3676, 27486}, {3960, 4560}, {4379, 27013}, {4411, 4772}, {4453, 4976}, {4467, 21104}, {4498, 27673}, {4671, 21611}, {4699, 4828}, {4765, 21183}, {4776, 23813}, {4801, 17496}, {4802, 24719}, {4810, 4977}, {4814, 21302}, {4893, 27138}, {6545, 21196}, {6548, 21212}, {6646, 23838}, {9001, 20080}, {23989, 26846}
X(26824) = anticomplement of X(17494)
X(26825) lies on these lines: {2, 31}, {86, 26807}, {1019, 26823}, {2140, 27011}, {4366, 14953}, {5263, 16930}, {16738, 26826}, {17169, 17178}, {20148, 26779}
X(26826) lies on these lines: {1, 2}, {2975, 16930}, {4366, 17588}, {16738, 26825}, {17210, 17761}, {26812, 26813}
X(26827) lies on these lines: {2, 3}, {1434, 26818}, {26801, 26836}, {26805, 26839}
X(26828) lies on these lines: {2, 3}, {8025, 26805}, {16705, 26845}, {16738, 26836}, {25526, 27146}, {26801, 26810}, {26807, 26846}
X(26829) lies on these lines: {2, 3}, {26812, 26837}
X(26830) lies on these lines: {2, 3}, {284, 5905}, {1333, 19785}, {2185, 8025}, {2206, 24248}, {3189, 20017}, {3210, 16704}, {3285, 3782}, {8822, 20078}, {17173, 17190}, {17185, 18653}, {21376, 25254}, {26819, 26836}
X(26831) lies on these lines: {2, 3}, {26801, 26837}, {26840, 26841}
X(26832) lies on these lines: {2, 3}
X(26833) lies on these lines: {2, 3}, {26818, 26845}
X(26834) lies on these lines: {2, 3}, {17302, 26805}, {26807, 26842}
X(26835) lies on these lines: {2, 3}, {6650, 26801}, {17178, 26852}, {18600, 26811}, {26813, 26843}
X(26836) lies on these lines: {2, 7}, {269, 26621}, {1086, 16713}, {1122, 24633}, {1418, 24547}, {3620, 26757}, {4366, 17178}, {16738, 26828}, {17183, 24237}, {17273, 27039}, {17302, 26805}, {17304, 26964}, {23830, 27043}, {26801, 26827}, {26819, 26830}
X(26837) lies on these lines: {2, 19}, {7, 17396}, {192, 17484}, {346, 26792}, {2185, 8025}, {3100, 15680}, {3672, 17481}, {4295, 19783}, {4872, 26538}, {5057, 11997}, {18650, 26639}, {26801, 26831}, {26803, 26806}, {26812, 26829}
X(26838) lies on these lines: {2, 38}, {26801, 26810}
X(26839) lies on these lines: {2, 40}, {7, 17474}, {1699, 26531}, {2140, 5195}, {4209, 5603}, {11415, 27304}, {17167, 26804}, {17209, 26801}, {17682, 22791}, {26803, 26806}, {26805, 26827}
X(26840) lies on these lines: {1, 20101}, {2, 7}, {8, 17155}, {38, 4645}, {65, 5484}, {69, 3210}, {81, 17302}, {210, 26073}, {222, 17086}, {239, 4001}, {244, 4683}, {306, 17288}, {310, 6650}, {312, 17276}, {320, 3666}, {321, 4440}, {333, 1086}, {354, 24723}, {593, 763}, {752, 17598}, {940, 4389}, {942, 26117}, {960, 24803}, {982, 4388}, {1010, 24470}, {1111, 20882}, {1211, 17273}, {1330, 3670}, {1407, 26625}, {1654, 4359}, {1757, 24169}, {1790, 27950}, {1999, 3663}, {2551, 25979}, {2895, 17495}, {2896, 6542}, {3487, 19278}, {3720, 9791}, {3739, 26044}, {3752, 17345}, {3757, 24231}, {3782, 14829}, {3794, 3937}, {3840, 17777}, {3846, 18201}, {3868, 4201}, {4030, 24841}, {4352, 4393}, {4383, 17347}, {4392, 6327}, {4416, 24177}, {4417, 17595}, {4419, 18141}, {4514, 21342}, {4641, 16706}, {4643, 19804}, {4650, 26128}, {4703, 17063}, {4741, 5739}, {4862, 11679}, {4886, 17344}, {4902, 18229}, {5256, 17364}, {5262, 20077}, {5263, 11246}, {5287, 17247}, {6147, 19270}, {7232, 18134}, {7238, 17056}, {9782, 19874}, {10453, 24248}, {14555, 24620}, {17011, 20090}, {17024, 20064}, {17182, 24237}, {17209, 26801}, {17232, 17776}, {17235, 19786}, {17237, 19808}, {17238, 19822}, {17239, 19797}, {17339, 25734}, {17378, 20182}, {17790, 18136}, {18144, 19807}, {20043, 20080}, {24349, 26034}, {26831, 26841}
X(26841) lies on these lines: {2, 58}, {6645, 11115}, {8025, 26807}, {16738, 26825}, {17178, 26802}, {18191, 26562}, {26801, 26810}, {26831, 26840}
X(26842) lies on these lines:
X(26843) lies on these lines: {2, 32}, {86, 26807}, {1019, 16887}, {2975, 3286}, {17143, 18171}, {17178, 18600}, {17200, 26965}, {18047, 26759}, {26813, 26835}
X(26844) lies on these lines: {2, 45}, {1977, 26860}, {3952, 24399}, {4033, 17147}, {14554, 26580}, {17139, 26816}, {26801, 26846}, {26819, 26856}
X(26845) lies on these lines: {2, 99}, {1015, 26846}, {1019, 17761}, {1086, 26847}, {1111, 4560}, {1509, 26805}, {2170, 7192}, {16705, 26828}, {17103, 26964}, {18600, 26802}, {26811, 26852}, {26813, 26835}, {26818, 26833}
X(26846) lies on these lines: {2, 11}, {1015, 26845}, {1086, 26851}, {14936, 26777}, {17761, 26847}, {23470, 26823}, {23989, 26824}, {26801, 26844}, {26802, 26805}, {26807, 26828}, {26810, 26815}, {26814, 26819}, {26848, 26856}
X(26847) lies on these lines: {2, 101}, {1086, 26845}, {4904, 27009}, {11998, 17496}, {17761, 26846}
X(26848) lies on these lines: {2, 98}, {26846, 26856}
X(26849) lies on these lines: {2, 99}, {26803, 26811}, {26804, 26813}
X(26850) lies on these lines: {2, 37}, {86, 26817}, {1086, 17178}, {4361, 26756}, {4395, 26772}, {4398, 26769}, {4431, 27113}, {5564, 27106}, {7263, 26963}, {17116, 26982}, {17119, 27095}, {17154, 24575}, {17366, 26976}, {24199, 27166}, {26801, 26852}, {26805, 26859}, {26806, 26821}
X(26851) lies on these lines: {2, 900}, {1086, 26846}, {4435, 20090}
X(26852) lies on these lines: {2, 39}, {330, 16742}, {2275, 27011}, {16709, 26143}, {16710, 16744}, {16722, 21219}, {17178, 26835}, {26801, 26850}, {26811, 26845}, {26821, 26842}
X(26853) lies on these lines: {2, 649}, {144, 4468}, {193, 9002}, {512, 14712}, {513, 4380}, {514, 14779}, {661, 26777}, {693, 4790}, {788, 20011}, {812, 4979}, {1019, 26821}, {3667, 25259}, {3676, 21454}, {4106, 26985}, {4369, 21297}, {4382, 4932}, {4394, 4776}, {4453, 23729}, {4834, 21301}, {4984, 21196}, {8663, 9147}, {9313, 20064}, {9433, 20041}, {16874, 18108}, {17217, 26816}, {17410, 24562}, {18200, 26860}, {20090, 21143}
X(26854) lies on these lines: {1, 23791}, {2, 650}, {514, 27272}, {3837, 25299}, {4382, 27345}, {4449, 25301}, {8640, 23815}, {17215, 26652}, {17217, 26816}, {21297, 26983}, {27258, 27294}
X(26855) lies on these lines: {2, 659}, {1086, 26846}, {17217, 26816}
X(26856) lies on these lines: {2, 662}, {261, 4612}, {346, 7258}, {757, 26818}, {849, 3086}, {1019, 24237}, {1086, 26845}, {2310, 7253}, {3942, 7192}, {4366, 16738}, {4560, 4858}, {14570, 14616}, {16726, 16727}, {17058, 27008}, {17197, 17219}, {26819, 26844}, {26846, 26848}
X(26857) lies on these lines: {2, 7}, {86, 26816}, {141, 26764}, {1086, 16738}, {3619, 27136}, {3834, 27032}, {4389, 27145}, {4643, 27311}, {4698, 27159}, {5224, 27107}, {7238, 27042}, {17178, 17302}, {17202, 24237}, {17235, 26971}, {17237, 27102}, {17273, 26768}, {17276, 27261}, {17280, 26769}, {17305, 26963}, {17324, 27166}, {17384, 26975}, {26801, 26850}
X(26858) lies on these lines: {2, 896}, {17217, 26816}, {26801, 26810}
X(26859) lies on these lines: {2, 38}, {16710, 17302}, {17169, 17178}, {26805, 26850}
X(26860) lies on these lines: {1, 4427}, {2, 6}, {21, 7373}, {58, 3622}, {145, 4658}, {551, 21747}, {896, 5625}, {1010, 3621}, {1100, 16710}, {1412, 21454}, {1449, 26627}, {1509, 4610}, {1977, 26844}, {3187, 25590}, {3210, 25417}, {3218, 18164}, {3240, 18792}, {3617, 25526}, {3623, 11115}, {3720, 18192}, {3977, 4909}, {3995, 17351}, {4649, 19998}, {4667, 26580}, {4678, 17589}, {4697, 27804}, {4720, 20049}, {4781, 21806}, {4850, 16726}, {16666, 24589}, {16723, 27754}, {16816, 17175}, {17018, 17187}, {17019, 17261}, {17021, 17120}, {17103, 20092}, {17147, 17393}, {17162, 24342}, {17169, 17191}, {17183, 17484}, {17450, 18174}, {18163, 27003}, {18200, 26853}, {18653, 26842}, {19825, 20046}, {26802, 26805}
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28573.
X(26861) lies on the Jerabek hyperbola and these lines: {4, 11017}, {6, 15720}, {54, 15712}, {65, 5557}, {140, 1173}, {265, 5447}, {550, 16835}, {1216, 14861}, {1657, 22334}, {2889, 11592}, {3521, 3917}, {3522, 13452}, {3523, 13472}, {5562, 13623}, {7386, 14843}, {15321, 18553}, {15740, 23039}, {18296, 18531}
X(26861) = isogonal conjugate of X(26863)
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28573.
X(26862) lies these lines: {140, 1173}, {3850, 11703}
As a point on the Euler line, X(26863) has Shinagawa coefficients (-4*F, 9*E+4*F).
See Antreas Hatzipolakis and César Lozada, Hyacinthos 28573.
X(26863) lies on these lines: {2, 3}, {113, 25714}, {389, 12112}, {1173, 1199}, {1493, 10540}, {2914, 5609}, {3060, 15083}, {5007, 8744}, {5446, 15801}, {5943, 8718}, {6152, 16982}, {6243, 15052}, {6759, 11423}, {9781, 15032}, {12254, 16657}, {13353, 23060}, {13452, 22334}, {13474, 16835}, {14094, 16625}, {14853, 15581}, {15873, 16659}, {18296, 18532}
X(26863) = isogonal conjugate of X(26861)
X(26863) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3091, 3146, 18531), (3091, 3547, 3090), (3518, 14865, 186)
Endo-homothetic centers: X(26864)-X(26958)
This preamble and centers X(26864)-X(26958) were contributed by César Eliud Lozada, November 3, 2018.
This section comprises the endo-homothetic centers of the family of triangles homothetic with the excentral triangle of a reference triangle ABC. This family is composed by the following 31 triangles:
Ascella, Atik, 1st circumperp, 2nd circumperp, inner-Conway, Conway, 2nd Conway, 3rd Conway, 3rd Euler, 4th Euler, excenters-reflections, excentral, 2nd extouch, hexyl, Honsberger, inner-Hutson, Hutson intouch, outer-Hutson, incircle-circles, intouch, inverse-in-incircle, 6th mixtilinear, 2nd Pamfilos-Zhou, 1st Sharygin, tangential-midarc, 2nd tangential-midarc, Ursa major, Ursa minor, Wasat, Yff central, 2nd Zaniah.
For definitions and coordinates of these triangles, see the index of triangles referenced in ETC.
The homothetic center of these triangles is X(5744)
X(26864) lies on these lines: {2,8780}, {3,74}, {4,14530}, {6,25}, {22,323}, {23,1351}, {24,15032}, {26,12160}, {49,7387}, {54,1598}, {55,23201}, {155,9715}, {182,11284}, {185,15750}, {198,23202}, {215,10833}, {235,18925}, {237,1384}, {352,15655}, {353,3148}, {378,3426}, {381,14389}, {394,3098}, {427,11206}, {428,11427}, {462,5334}, {463,5335}, {468,6776}, {511,11181}, {575,3066}, {578,5198}, {902,2187}, {1112,15073}, {1147,11414}, {1181,3515}, {1350,3292}, {1352,13394}, {1398,26888}, {1498,3516}, {1503,5094}, {1593,6759}, {1597,14157}, {1899,10192}, {1976,2502}, {1993,9909}, {1995,5050}, {2477,18954}, {3043,9919}, {3044,13175}, {3045,13222}, {3047,12310}, {3060,20850}, {3129,11485}, {3130,11486}, {3147,18914}, {3155,6221}, {3156,6398}, {3172,9408}, {3203,10790}, {3231,20885}, {3233,6795}, {3295,9638}, {3517,7592}, {3518,11432}, {3520,12315}, {3526,11457}, {3564,7493}, {3581,14070}, {3619,7499}, {3620,7494}, {3796,5092}, {3843,12289}, {4224,14996}, {4232,14912}, {4550,18451}, {5012,5020}, {5055,25739}, {5064,23292}, {5085,5651}, {5093,11422}, {5200,23267}, {5210,15504}, {5422,10545}, {5502,14685}, {5544,16042}, {5640,12283}, {5642,14982}, {5889,16195}, {6000,11410}, {6200,10132}, {6353,11245}, {6396,10133}, {6417,11463}, {6418,11462}, {6445,21097}, {6515,10154}, {6593,8547}, {6618,14569}, {7071,10535}, {7393,18350}, {7395,10539}, {7426,21970}, {7464,11820}, {7488,12164}, {7503,15052}, {7506,15037}, {7507,9833}, {7517,9704}, {7529,18874}, {7687,18396}, {8185,9587}, {8276,9677}, {8550,15448}, {8778,9412}, {8908,26953}, {9652,10831}, {9667,10832}, {9703,12083}, {9714,12161}, {9818,10540}, {10018,26944}, {10301,14853}, {10536,11406}, {10541,22112}, {10564,21312}, {10565,20080}, {10594,11426}, {10605,11202}, {10979,26898}, {11002,11482}, {11403,11425}, {12165,13289}, {13884,18924}, {13937,18923}, {14490,14528}, {15033,18535}, {15069,24981}, {15577,21284}, {15647,19504}, {16030,26887}, {16187,20190}, {16252,19467}, {17811,22352}, {18386,18400}, {19121,19588}, {19456,20773}, {22052,26865}, {26866,26884}, {26867,26885}, {26868,26886}
X(26864) = isogonal conjugate of X(36889)
X(26864) = crosssum of X(2) and X(3543)
X(26864) = crossdifference of every pair of points on line X(525)X(1637)
X(26864) = isogonal conjugate of the isotomic conjugate of X(376)
X(26864) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6800, 15066, 15080), (9707, 11456, 11464), (11456, 11464, 3)
The homothetic center of these triangles is X(10856)
X(26865) lies on these lines: {2,3}, {6,26907}, {97,3167}, {184,26909}, {216,9777}, {577,11402}, {1398,26903}, {1993,26895}, {7071,26904}, {7592,26896}, {11245,26870}, {11406,26908}, {16030,26902}, {19118,26899}, {19459,23195}, {22052,26864}, {26866,26900}, {26867,26901}, {26869,26905}
X(26865) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 418, 25), (3155, 3156, 3517)
The homothetic center of these triangles is X(11854)
X(26866) lies on these lines: {3,3218}, {4,26928}, {6,3937}, {22,23958}, {25,57}, {46,8192}, {55,4864}, {56,15854}, {63,7484}, {84,11403}, {182,22129}, {184,1407}, {220,5650}, {222,11402}, {418,7011}, {427,26929}, {603,1398}, {999,17126}, {1155,22769}, {1210,17516}, {1357,2175}, {1486,4860}, {1993,26910}, {2969,4000}, {3219,16419}, {3295,4392}, {3306,11284}, {3336,9798}, {3337,11365}, {3516,26927}, {3928,7085}, {4214,4292}, {4224,21454}, {4617,7053}, {5091,15635}, {5094,26933}, {5221,22654}, {5708,13730}, {5905,16434}, {6090,7193}, {7004,7071}, {7295,18201}, {7395,24467}, {7592,26914}, {9777,26892}, {9965,19649}, {11245,26871}, {11406,26934}, {16030,26931}, {19118,26923}, {26864,26884}, {26865,26900}, {26868,26930}, {26869,26932}
X(26866) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (57, 1473, 25), (63, 7484, 26867)
The homothetic center of these triangles is X(11855)
X(26867) lies on these lines: {3,3219}, {4,26938}, {6,3690}, {9,25}, {10,4214}, {40,11403}, {44,55}, {63,7484}, {71,11406}, {184,220}, {197,3715}, {201,1398}, {212,7071}, {219,11402}, {268,418}, {427,26939}, {756,1460}, {894,16353}, {999,7226}, {1011,1260}, {1397,7064}, {1407,5650}, {1473,3929}, {1993,26911}, {2267,2318}, {2345,7140}, {3218,16419}, {3295,17127}, {3305,11284}, {3516,26935}, {3683,12329}, {3819,22129}, {3955,6090}, {4219,21168}, {5094,21015}, {5314,24320}, {7395,26921}, {7592,26915}, {9777,26893}, {11245,26872}, {12414,18259}, {12572,17516}, {16030,26941}, {19118,26924}, {21319,21483}, {26864,26885}, {26865,26901}, {26868,26940}, {26869,26942}
X(26867) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (9, 7085, 25), (63, 7484, 26866)
The homothetic center of these triangles is X(10858)
X(26868) lies on these lines: {2,13960}, {3,6}, {25,8911}, {53,6561}, {154,8908}, {184,26953}, {233,8253}, {393,6459}, {427,26945}, {485,6748}, {493,8882}, {1398,26948}, {1586,3068}, {1588,6810}, {1593,6457}, {1993,26912}, {3155,19356}, {3516,26936}, {3815,18289}, {5094,26951}, {5407,8963}, {5410,6413}, {5412,10132}, {7071,26949}, {7395,26922}, {7592,26916}, {8576,19005}, {9777,26894}, {10311,15199}, {11245,26873}, {11402,26891}, {11403,26918}, {11406,26952}, {16030,26947}, {18924,21736}, {19118,26925}, {26864,26886}, {26866,26930}, {26867,26940}, {26869,26950}
X(26868) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 1151, 216), (3311, 15905, 6), (5058, 5065, 6)
The homothetic center of these triangles is X(17612)
X(26869) lies on these lines: {2,3167}, {3,3580}, {4,3426}, {5,18916}, {6,67}, {23,21970}, {25,1503}, {51,1853}, {54,3526}, {184,26958}, {193,16051}, {235,5656}, {343,7484}, {373,10516}, {381,5640}, {389,7507}, {394,5965}, {427,9777}, {468,6776}, {599,5650}, {858,1351}, {1147,11232}, {1192,21659}, {1209,15805}, {1316,12079}, {1352,11284}, {1353,5159}, {1368,6515}, {1398,26955}, {1593,16657}, {1594,11432}, {1598,11457}, {1656,7592}, {1657,15107}, {1885,18913}, {1906,12324}, {1993,26913}, {1995,3448}, {2452,3154}, {2453,6070}, {2777,10605}, {3066,3818}, {3515,6146}, {3516,12241}, {3527,15559}, {3534,15360}, {3542,18914}, {3548,13292}, {3763,22112}, {5020,11442}, {5079,5643}, {5198,14216}, {5422,23293}, {5651,15069}, {6247,11403}, {6642,25738}, {7071,26956}, {7395,12359}, {7495,12017}, {7505,19347}, {7539,10601}, {7703,15019}, {8262,8547}, {8901,19166}, {9730,14852}, {9786,12173}, {10182,19357}, {10982,20299}, {10989,16981}, {11179,13394}, {11406,26957}, {11422,15059}, {11438,18396}, {11472,16003}, {11550,17810}, {11585,12160}, {11898,15066}, {12024,15750}, {12429,17928}, {12827,14643}, {13154,21230}, {13754,16072}, {13857,15534}, {13884,18923}, {13937,18924}, {14361,14569}, {16030,26954}, {16352,25977}, {18494,25739}, {19118,26926}, {19161,23049}, {19588,26156}, {26865,26905}, {26866,26932}, {26867,26942}, {26868,26950}
X(26869) = reflection of X(6090) in X(2)
X(26869) = inverse of X(12099) in the orthocentroidal circle
X(26869) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 11245, 11402), (2, 18950, 11245)
X(26869) = X(25)-of-orthocentroidal-triangle
The homothetic center of these triangles is X(10862)
X(26870) lies on these lines: {2,26898}, {3,69}, {4,216}, {98,7494}, {418,11433}, {577,14912}, {631,6389}, {1899,26907}, {3524,12096}, {6353,26880}, {6515,26874}, {6638,18928}, {6641,11206}, {7386,9744}, {10996,11257}, {11245,26865}, {12324,26897}, {13567,26909}, {18911,26895}, {18912,26896}, {18915,26903}, {18916,26876}, {18921,26908}, {18922,26904}, {19119,26899}, {19166,26902}, {23291,26906}, {26871,26900}, {26872,26901}
X(26870) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (12256, 12257, 18925), (26898, 26905, 2)
The homothetic center of these triangles is X(11856)
X(26871) lies on these lines: {2,222}, {4,26892}, {7,92}, {57,11433}, {63,69}, {73,25876}, {77,6349}, {81,8048}, {84,12324}, {320,18750}, {329,4358}, {343,22129}, {348,6513}, {497,1364}, {603,18915}, {631,26890}, {908,1997}, {966,14597}, {1407,13567}, {1433,14986}, {1439,9776}, {1473,6776}, {1748,7291}, {1899,3937}, {1948,6820}, {1959,18730}, {2003,11427}, {2096,10538}, {2975,19262}, {3218,6515}, {3220,11206}, {3306,18928}, {3784,7386}, {3869,18732}, {3917,26939}, {3942,6508}, {3955,7494}, {4295,20220}, {5081,5768}, {5174,9799}, {5739,5744}, {5906,6836}, {6353,26884}, {6507,20769}, {6604,20223}, {7004,18922}, {7017,18816}, {7085,10519}, {7288,7335}, {7293,25406}, {7515,23072}, {11245,26866}, {11411,24467}, {14826,24320}, {14912,26889}, {17923,18623}, {18911,26910}, {18912,26914}, {18913,26927}, {18914,26928}, {18916,26877}, {19119,26923}, {19166,26931}, {23291,26933}, {26870,26900}, {26873,26930}
X(26871) = anticomplement of X(34048)
X(26871) = isotomic conjugate of the polar conjugate of X(3086)
X(26871) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (7, 189, 92), (222, 26932, 2)
The homothetic center of these triangles is X(11857)
X(26872) lies on these lines: {2,219}, {4,8}, {9,11433}, {40,12324}, {63,69}, {81,22132}, {144,2895}, {200,2947}, {201,18915}, {209,5800}, {212,18922}, {220,13567}, {307,6349}, {319,18750}, {348,6505}, {388,7066}, {518,11435}, {534,17781}, {631,26889}, {908,5271}, {1264,19799}, {1441,5905}, {1473,10519}, {1748,5279}, {1899,3690}, {1947,6820}, {2323,11427}, {2975,13726}, {3219,6515}, {3305,18928}, {3781,7386}, {3870,14547}, {3917,26929}, {3949,6508}, {3990,5712}, {4886,20921}, {5218,6056}, {5249,6604}, {5285,11206}, {5314,25406}, {5596,12329}, {5816,22000}, {5928,21871}, {6353,26885}, {6776,7085}, {7193,7494}, {7536,20818}, {11245,26867}, {11411,26921}, {12587,22276}, {14912,26890}, {18911,26911}, {18912,26915}, {18913,26935}, {18914,26938}, {18916,26878}, {19119,26924}, {19166,26941}, {21015,23291}, {26870,26901}, {26873,26940}
X(26872) = anticomplement of X(37543)
X(26872) = anticomplementary conjugate of the anticomplement of X(2335)
X(26872) = isotomic conjugate of the polar conjugate of X(3085)
X(26872) = anticomplement of the isogonal conjugate of X(2335)
X(26872) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8, 329, 92), (219, 26942, 2), (13386, 13387, 72)
The homothetic center of these triangles is X(10867)
X(26873) lies on these lines: {2,26920}, {4,372}, {69,1589}, {159,3156}, {371,18916}, {577,1899}, {615,10133}, {1152,17845}, {6353,26886}, {6457,18909}, {6515,26875}, {6776,8911}, {8961,19061}, {11245,26868}, {11411,26922}, {11433,26919}, {12324,26918}, {13567,26953}, {14912,26891}, {18911,26912}, {18912,26916}, {18913,26936}, {18915,26948}, {18921,26952}, {18922,26949}, {19119,26925}, {19166,26947}, {23291,26951}, {26871,26930}, {26872,26940}
X(26873) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3069, 12256, 6414), (26920, 26950, 2)
The homothetic center of these triangles is X(10434)
X(26874) lies on these lines: {2,3}, {95,1629}, {97,184}, {110,26880}, {160,11206}, {216,3060}, {394,26909}, {511,26907}, {577,5012}, {1993,26898}, {2979,26895}, {3100,26904}, {3101,26908}, {3218,26900}, {3219,26901}, {3289,3796}, {3410,18437}, {3580,26905}, {4296,26903}, {6509,7998}, {6515,26870}, {6776,23195}, {10979,15107}, {11003,23606}, {11412,26896}, {15080,22052}, {19121,26899}
X(26874) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 417, 15717), (3, 418, 2), (3, 426, 15246)
The homothetic center of these triangles is X(8224)
X(26875) lies on these lines: {2,26919}, {3,6}, {4,26922}, {20,6457}, {22,8911}, {97,26947}, {110,26886}, {317,491}, {394,26953}, {858,26951}, {1370,26945}, {1993,26920}, {2979,26912}, {3060,26894}, {3069,8576}, {3100,26949}, {3101,26952}, {3146,26918}, {3155,10962}, {3218,26930}, {3219,26940}, {3580,26950}, {4296,26948}, {5012,26891}, {5889,6458}, {6290,12960}, {6413,11417}, {6515,26873}, {8855,13960}, {11412,26916}, {11413,26936}, {19121,26925}
X(26875) = {X(5409), X(5412)}-harmonic conjugate of X(10960)
The homothetic center of these triangles is X(10882)
X(26876) lies on these lines: {2,3}, {54,577}, {97,1147}, {216,3567}, {389,26907}, {1181,26909}, {1614,26880}, {1870,26903}, {5889,26895}, {5890,26896}, {6197,26908}, {6198,26904}, {6509,7999}, {7592,26898}, {9545,19210}, {11464,22052}, {15653,18925}, {18916,26870}, {26877,26900}, {26878,26901}, {26879,26905}
X(26876) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 417, 3524), (3, 418, 4)
The homothetic center of these triangles is X(8109)
X(26877) lies on these lines: {1,6950}, {2,24467}, {3,3218}, {4,57}, {7,6833}, {8,6955}, {9,3525}, {20,23958}, {21,10202}, {24,1473}, {25,26928}, {35,12005}, {36,5884}, {40,3244}, {46,944}, {54,26889}, {63,631}, {65,104}, {72,6940}, {79,11219}, {140,3219}, {191,10165}, {222,7592}, {226,6952}, {244,3073}, {329,6967}, {371,26930}, {376,5709}, {377,5770}, {378,26927}, {388,17700}, {389,3937}, {404,912}, {411,13369}, {474,5780}, {484,5882}, {497,17437}, {499,1776}, {515,3336}, {553,6705}, {601,982}, {602,4650}, {603,1870}, {920,7288}, {938,6938}, {942,6906}, {943,17603}, {946,1768}, {993,15016}, {1006,3916}, {1012,5708}, {1155,11491}, {1158,3338}, {1181,1407}, {1199,2003}, {1385,5303}, {1445,6927}, {1454,4293}, {1476,12776}, {1594,26933}, {1614,26884}, {1621,13373}, {1708,6880}, {1788,12115}, {2077,3874}, {2094,5758}, {2800,5563}, {3075,6198}, {3090,3306}, {3220,3518}, {3305,3533}, {3333,10595}, {3359,12245}, {3474,12116}, {3487,6977}, {3523,26921}, {3524,3928}, {3529,7171}, {3567,26892}, {3585,10265}, {3587,21735}, {3651,10167}, {3652,11230}, {3784,11412}, {3817,7701}, {3855,18540}, {3869,10269}, {3873,11248}, {3877,16203}, {3889,10679}, {3911,6949}, {3929,15702}, {3957,11849}, {4295,10785}, {4297,5535}, {4652,6875}, {4857,16767}, {4860,11496}, {4973,11012}, {5067,5437}, {5218,7162}, {5221,12114}, {5249,6852}, {5253,5887}, {5270,16763}, {5330,24927}, {5435,6834}, {5439,6920}, {5450,5902}, {5557,11218}, {5657,10805}, {5704,6968}, {5714,6879}, {5744,6889}, {5761,6966}, {5768,6934}, {5777,6946}, {5811,6983}, {5889,26910}, {5890,26914}, {5905,6891}, {6197,26934}, {6361,10806}, {6684,6763}, {6734,6951}, {6831,13226}, {6832,9776}, {6847,21454}, {6876,10884}, {6909,24474}, {6911,12528}, {6915,13243}, {6926,9965}, {6942,15803}, {6948,12649}, {6972,17483}, {6985,11220}, {7289,14912}, {7293,7512}, {7505,20266}, {8726,21165}, {9352,11499}, {9841,17538}, {10246,19535}, {10532,14647}, {10698,24928}, {11009,11715}, {11010,13607}, {11570,18861}, {12512,24468}, {12515,24680}, {12608,16116}, {14988,19525}, {16139,17502}, {17549,24299}, {18916,26871}, {19128,26923}, {20292,26470}, {26876,26900}, {26879,26932}
X(26877) = reflection of X(5330) in X(24927)
X(26877) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (36, 5884, 21740), (63, 631, 26878)
The homothetic center of these triangles is X(8110)
X(26878) lies on these lines: {2,26921}, {3,3219}, {4,9}, {8,6936}, {24,7085}, {25,26938}, {35,1776}, {45,5706}, {46,5714}, {54,72}, {57,3525}, {63,631}, {78,6875}, {84,3528}, {140,3218}, {191,6684}, {201,1870}, {210,11491}, {212,6198}, {219,7592}, {220,1181}, {226,3336}, {329,6889}, {371,26940}, {376,7330}, {378,26935}, {389,3690}, {405,1482}, {498,7098}, {517,5260}, {601,7262}, {602,984}, {756,3072}, {908,6853}, {912,6986}, {920,5218}, {936,6942}, {943,11428}, {954,11025}, {1158,5658}, {1199,2323}, {1490,16192}, {1594,21015}, {1614,26885}, {1708,3338}, {1728,3488}, {1782,21361}, {2077,3647}, {2095,16842}, {2949,5506}, {3090,3305}, {3295,5729}, {3306,3533}, {3452,6949}, {3467,4330}, {3518,5285}, {3523,24467}, {3524,3929}, {3529,3587}, {3567,26893}, {3579,5927}, {3634,5535}, {3651,3652}, {3678,10902}, {3681,10267}, {3715,11500}, {3781,11412}, {3817,24468}, {3868,6883}, {3916,6940}, {3928,15702}, {3951,18443}, {4187,5771}, {4294,7082}, {5044,6905}, {5047,24474}, {5067,7308}, {5227,14912}, {5250,12245}, {5273,6833}, {5302,14110}, {5314,7512}, {5690,11113}, {5692,21740}, {5720,6876}, {5744,6967}, {5745,6952}, {5758,6832}, {5791,6830}, {5812,6829}, {5889,26911}, {5890,26915}, {5905,6989}, {6734,6902}, {6763,10165}, {6834,18228}, {6937,11681}, {6984,9780}, {7171,21735}, {7701,12512}, {7987,18446}, {9841,19708}, {9956,16139}, {10176,11012}, {10323,24320}, {10806,20588}, {12710,15837}, {14872,15481}, {15492,15852}, {16845,24541}, {18916,26872}, {19128,26924}, {20104,25525}, {26876,26901}, {26879,26942}
X(26878) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5817, 6361, 4), (6191, 6192, 71)
The homothetic center of these triangles is X(17614)
X(26879) lies on these lines: {2,155}, {3,3580}, {4,64}, {5,5890}, {24,1899}, {25,11457}, {51,15559}, {52,858}, {54,140}, {68,17928}, {74,1885}, {110,16238}, {125,389}, {141,3525}, {184,10018}, {185,403}, {186,2917}, {235,6241}, {343,631}, {371,26950}, {372,26951}, {378,26937}, {427,3567}, {468,1614}, {546,7728}, {568,13371}, {632,11423}, {1181,7505}, {1192,18396}, {1199,6143}, {1204,18390}, {1209,5892}, {1368,11412}, {1503,3518}, {1511,11264}, {1595,9781}, {1596,12290}, {1870,26955}, {1906,11455}, {1993,3548}, {2072,6102}, {2935,6696}, {3060,23335}, {3147,6776}, {3448,12134}, {3520,12241}, {3526,11402}, {3541,11433}, {3542,11456}, {3546,6515}, {3564,26156}, {3575,25739}, {5012,7542}, {5094,11432}, {5133,5462}, {5449,9730}, {5576,5946}, {5640,7403}, {5889,11585}, {6197,26957}, {6198,26956}, {6240,11438}, {6640,12161}, {6642,11442}, {6644,14516}, {6833,26540}, {6949,26005}, {7399,15045}, {7405,15028}, {7495,13336}, {7576,18381}, {7577,12233}, {8901,19168}, {10024,13630}, {10095,12099}, {10114,17701}, {10257,13292}, {10295,21659}, {10545,23411}, {10574,15760}, {10594,14216}, {11424,23329}, {11441,18917}, {11462,13884}, {11463,13937}, {11799,13491}, {12006,13565}, {12079,14894}, {12118,15078}, {13399,13474}, {13403,21663}, {14157,21841}, {14788,21243}, {14940,15032}, {15061,23336}, {19128,26926}, {26876,26905}, {26877,26932}, {26878,26942}
X(26879) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18916, 7592), (3, 18912, 12022), (3, 26869, 18912)
The homothetic center of these triangles is X(10882)
X(26880) lies on these lines: {2,1629}, {3,64}, {25,216}, {51,5158}, {97,9544}, {110,26874}, {122,7386}, {160,1660}, {182,6638}, {184,418}, {206,26899}, {426,22352}, {468,26905}, {1495,6641}, {1503,26906}, {1614,26876}, {2187,23207}, {3091,19169}, {3284,11402}, {3549,10600}, {5085,6617}, {6353,26870}, {6389,7494}, {10304,23608}, {10535,26904}, {10536,26908}, {15905,17809}, {18437,21243}, {22052,26864}, {26881,26895}, {26882,26896}, {26883,26897}, {26884,26900}, {26885,26901}, {26887,26902}, {26888,26903}
X(26880) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 26898, 216), (154, 26909, 3)
The homothetic center of these triangles is X(11680)
X(26881) lies on these lines: {2,1495}, {3,6030}, {4,18475}, {20,10282}, {22,110}, {23,184}, {24,10574}, {25,5012}, {26,1614}, {30,11464}, {49,17714}, {51,11003}, {54,7517}, {74,18324}, {143,11423}, {156,2937}, {159,12272}, {182,11451}, {186,15072}, {206,12220}, {305,10330}, {382,5944}, {428,14389}, {468,26913}, {511,9544}, {669,11450}, {858,10192}, {1147,12088}, {1176,20987}, {1180,1915}, {1498,11440}, {1501,9465}, {1503,23293}, {1511,3534}, {1539,18561}, {1613,8627}, {1658,6241}, {1971,22240}, {1993,9909}, {1995,3796}, {2070,5890}, {2071,11202}, {2393,11443}, {2502,21001}, {3131,14170}, {3132,14169}, {3146,13367}, {3167,23061}, {3431,15682}, {3518,15043}, {3529,12038}, {3543,11430}, {3580,10154}, {3843,10610}, {3845,14805}, {3917,7492}, {3981,14567}, {4240,15466}, {5133,13394}, {5651,15246}, {5943,14002}, {6000,10298}, {6353,18911}, {6515,15360}, {6636,7998}, {6644,20791}, {6759,7488}, {7387,9707}, {7426,13567}, {7493,11206}, {7502,10540}, {7506,15028}, {7512,10539}, {7525,7999}, {7530,15033}, {7542,16659}, {7552,18474}, {7555,23039}, {7556,13754}, {7592,9714}, {7691,9715}, {8780,15066}, {9703,13391}, {9704,10263}, {9705,16266}, {9781,18378}, {10020,23294}, {10201,25739}, {10244,12160}, {10533,11418}, {10534,11417}, {10535,11446}, {10536,11445}, {10545,10601}, {10564,11001}, {10575,21844}, {10594,13434}, {11002,13366}, {11004,21969}, {11188,19127}, {11265,11463}, {11266,11462}, {11267,11467}, {11268,11466}, {11402,20850}, {11413,17821}, {11416,19153}, {11420,11453}, {11421,11452}, {11439,26883}, {11455,18570}, {11456,14070}, {11468,15331}, {11750,16868}, {12087,13346}, {12106,15045}, {12225,16252}, {12270,13289}, {12283,19154}, {12289,15761}, {13406,18394}, {15019,17810}, {15024,15038}, {15051,20771}, {18392,18400}, {18404,18504}, {18928,26255}, {19167,26887}, {19367,26888}, {26880,26895}, {26884,26910}, {26885,26911}, {26886,26912}
X(26881) = reflection of X(11454) in X(10298)
X(26881) = gibert circumtangential conjugate of X(3357)
X(26881) = isogonal conjugate of the isotomic conjugate of X(7802)
X(26881) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 11550, 7703), (1495, 7712, 15080), (1495, 15080, 10546)
The homothetic center of these triangles is X(11681)
X(26882) lies on these lines: {3,6030}, {4,1495}, {23,1147}, {24,154}, {25,54}, {26,110}, {30,11449}, {49,3060}, {52,9544}, {74,1498}, {140,15080}, {143,9704}, {156,2070}, {159,12283}, {182,11465}, {184,1199}, {186,1204}, {195,12380}, {206,6403}, {217,10986}, {378,15811}, {381,5944}, {403,12289}, {468,26917}, {569,13595}, {1092,12088}, {1173,17810}, {1503,10018}, {1511,1657}, {1594,10192}, {1656,10546}, {1658,10540}, {1993,9705}, {2393,11458}, {2883,10295}, {2937,2979}, {3091,18475}, {3146,12038}, {3147,11206}, {3357,12112}, {3515,11456}, {3517,7592}, {3520,11202}, {3523,7712}, {3525,22352}, {3533,5092}, {3542,18945}, {3850,14805}, {3851,10610}, {5012,7506}, {5059,10564}, {5446,9545}, {5447,7492}, {5462,11003}, {5562,7556}, {5622,15581}, {6000,11468}, {6143,11550}, {6146,15448}, {6240,16252}, {6353,18912}, {6642,6800}, {7488,10539}, {7502,11444}, {7505,9833}, {7512,7999}, {7525,7998}, {7526,16261}, {7691,15068}, {7730,12234}, {7746,15340}, {8537,19153}, {8780,9715}, {9703,10263}, {10020,23293}, {10274,13423}, {10298,12162}, {10533,10881}, {10534,10880}, {10535,11461}, {10536,11460}, {10594,15033}, {10632,11467}, {10633,11466}, {11265,11448}, {11266,11447}, {11267,11453}, {11268,11452}, {11413,15035}, {11439,18570}, {11440,18324}, {11441,14070}, {11451,13353}, {11454,15331}, {12022,21841}, {12082,15034}, {12106,15043}, {12107,18436}, {12163,14094}, {12244,17701}, {12254,18390}, {12272,19154}, {12278,15761}, {12281,13289}, {13383,14516}, {13394,14788}, {13406,18392}, {13434,13861}, {13619,22802}, {14487,14528}, {14575,25044}, {14940,18381}, {15073,15582}, {15107,16266}, {16868,18394}, {17714,22115}, {18403,18504}, {19168,26887}, {19368,26888}, {22658,22750}, {26880,26896}, {26884,26914}, {26885,26915}, {26886,26916}
X(26882) = reflection of X(i) in X(j) for these (i,j): (11468, 21844), (18394, 16868), (23294, 10018)
X(26882) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 14157, 12290), (4, 10282, 11464), (1495, 10282, 4)
The homothetic center of these triangles is X(11682)
X(26883) lies on these lines: {2,13347}, {3,1495}, {4,54}, {5,10984}, {6,5198}, {20,9306}, {22,5907}, {23,12111}, {24,1204}, {25,185}, {26,12162}, {30,1092}, {32,3331}, {33,26888}, {34,10535}, {40,26885}, {49,3830}, {51,1181}, {52,7530}, {64,1620}, {74,13452}, {84,26884}, {110,3146}, {113,18569}, {125,3542}, {154,1593}, {155,18534}, {156,1514}, {159,12294}, {182,3091}, {186,3357}, {206,7507}, {235,1503}, {378,10282}, {381,11572}, {382,1147}, {389,10594}, {399,6243}, {403,16659}, {427,15152}, {428,12233}, {468,6247}, {511,11441}, {546,569}, {576,15531}, {631,8718}, {1216,12083}, {1425,11399}, {1568,14790}, {1594,16658}, {1595,16654}, {1596,6146}, {1597,14530}, {1657,18350}, {1660,17845}, {1843,19149}, {1899,3089}, {1906,12241}, {1907,16656}, {1968,1971}, {1993,13598}, {1995,9729}, {2070,7689}, {2207,8779}, {2393,11470}, {2807,8185}, {2883,3575}, {2935,17701}, {2937,18435}, {2979,12087}, {3090,22112}, {3092,21640}, {3093,21641}, {3098,11444}, {3270,11398}, {3516,17821}, {3517,10605}, {3518,6241}, {3520,11202}, {3796,11479}, {3818,13160}, {3832,5012}, {3839,13434}, {3917,11414}, {4232,18913}, {5073,22115}, {5079,13339}, {5320,5706}, {5412,12970}, {5413,12964}, {5446,18445}, {5562,7387}, {5609,16105}, {5656,7487}, {5876,17714}, {5878,18533}, {5895,15139}, {5899,18436}, {6001,11363}, {6193,24981}, {6225,22750}, {6240,22802}, {6293,22972}, {6353,12324}, {6636,15056}, {6644,10575}, {6696,15448}, {6912,13323}, {7395,22352}, {7488,15305}, {7505,20299}, {7512,15058}, {7517,13754}, {7525,15060}, {7526,16194}, {7553,22660}, {7592,10110}, {7998,16661}, {8976,9687}, {9544,17578}, {9707,11430}, {9714,12163}, {9730,13861}, {9781,15032}, {9927,11799}, {9970,11663}, {9973,12175}, {10018,23329}, {10019,23324}, {10117,21650}, {10298,15062}, {10301,11745}, {10303,16187}, {10323,11793}, {10533,11473}, {10534,11474}, {10536,11471}, {10574,13595}, {10606,15750}, {10625,15068}, {10641,10676}, {10642,10675}, {10982,13366}, {10990,12250}, {11204,21844}, {11245,15873}, {11403,11425}, {11439,26881}, {11449,12086}, {11459,12088}, {11464,14865}, {12082,15644}, {12106,13491}, {12133,15647}, {12160,21969}, {12164,14531}, {12279,22467}, {12292,13289}, {12688,14529}, {13348,15066}, {13472,14487}, {13851,15125}, {14094,14448}, {15761,18474}, {15887,17810}, {16835,20421}, {16868,23325}, {17703,22261}, {19137,25406}, {21451,26913}, {26880,26897}, {26886,26918}
X(26883) = reflection of X(i) in X(j) for these (i,j): (1092, 10539), (1204, 24)
X(26883) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 184, 11424), (4, 9833, 21659), (1495, 11381, 3)
The homothetic center of these triangles is X(11685)
X(26884) lies on these lines: {1,5197}, {2,3955}, {7,17985}, {9,5651}, {22,3784}, {25,222}, {28,60}, {31,56}, {34,7335}, {48,8763}, {51,2003}, {57,184}, {63,9306}, {84,26883}, {105,2720}, {110,2651}, {141,26924}, {182,3306}, {199,22097}, {206,26923}, {212,4191}, {219,6090}, {243,23353}, {244,1428}, {255,13738}, {354,20986}, {394,26893}, {450,1948}, {468,26932}, {511,22128}, {614,1397}, {649,834}, {692,1155}, {750,2330}, {851,1936}, {953,4588}, {1086,5137}, {1092,5709}, {1104,1408}, {1385,1621}, {1393,19365}, {1401,5322}, {1458,20999}, {1474,14597}, {1495,3220}, {1498,26927}, {1503,26933}, {1614,26877}, {1709,15503}, {1851,18623}, {1899,20266}, {1935,13724}, {1974,7289}, {2187,9316}, {2249,2727}, {2267,16373}, {2323,3292}, {2328,22060}, {2360,22345}, {2361,20470}, {2915,11573}, {2969,6357}, {3011,5061}, {3145,4303}, {3781,15066}, {3819,5314}, {3912,17977}, {3917,5285}, {4224,17074}, {4579,5205}, {4871,5150}, {6353,26871}, {7004,10535}, {7085,17811}, {8679,20989}, {9225,16514}, {9544,23958}, {10536,26934}, {10539,24467}, {11206,26929}, {13329,23202}, {13737,23072}, {14530,26928}, {16064,22053}, {18360,23844}, {20744,20857}, {22129,24320}, {26864,26866}, {26880,26900}, {26881,26910}, {26882,26914}, {26886,26930}, {26887,26931}
X(26884) = isogonal conjugate of the isotomic conjugate of X(5088)
X(26884) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3955, 26890), (25, 222, 26892)
The homothetic center of these triangles is X(11686)
X(26885) lies on these lines: {1,5320}, {9,184}, {22,3781}, {25,219}, {31,172}, {33,6056}, {37,2194}, {40,26883}, {48,1011}, {51,2323}, {55,2164}, {57,5651}, {63,9306}, {71,199}, {72,2203}, {101,228}, {110,3219}, {141,26923}, {154,205}, {182,3305}, {198,10537}, {201,26888}, {206,26924}, {209,17796}, {210,692}, {212,8761}, {222,6090}, {394,24320}, {450,1947}, {468,26942}, {517,2355}, {572,23201}, {612,2175}, {674,20988}, {748,1428}, {756,2330}, {1092,7330}, {1473,17811}, {1495,3690}, {1498,26935}, {1503,21015}, {1614,26878}, {1762,21318}, {1818,16064}, {1914,16520}, {1915,16514}, {1974,5227}, {2003,3292}, {2200,16372}, {2280,16516}, {2299,3990}, {3145,3682}, {3220,3917}, {3683,20986}, {3688,5310}, {3784,15066}, {3819,7293}, {5138,5287}, {5279,6061}, {5311,19133}, {6353,26872}, {7069,11429}, {7076,7120}, {7140,7359}, {7186,24436}, {10539,26921}, {11206,26939}, {13615,20818}, {14530,26938}, {14547,22356}, {16058,23095}, {17976,20834}, {20989,22276}, {20999,25941}, {26864,26867}, {26880,26901}, {26881,26911}, {26882,26915}, {26886,26940}, {26887,26941}
X(26885) = isogonal conjugate of the isotomic conjugate of X(7283)
X(26885) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (9, 184, 26890), (25, 219, 26893)
The homothetic center of these triangles is X(11687)
X(26886) lies on these lines: {24,6458}, {25,26894}, {110,26875}, {154,8911}, {184,26891}, {206,26925}, {371,1614}, {372,3518}, {468,26950}, {577,1495}, {1498,26936}, {1503,26951}, {3155,6413}, {5412,6414}, {6200,12112}, {6353,26873}, {6457,6759}, {10535,26949}, {10536,26952}, {10539,26922}, {10962,11417}, {11206,26945}, {26864,26868}, {26881,26912}, {26882,26916}, {26883,26918}, {26884,26930}, {26885,26940}, {26887,26947}, {26888,26948}
X(26886) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 26920, 26894), (154, 26953, 8911)
The homothetic center of these triangles is X(11688)
X(26887) lies on these lines: {3,19206}, {4,54}, {25,9792}, {26,19194}, {49,13322}, {95,9306}, {97,110}, {154,19180}, {156,19210}, {159,19197}, {182,19188}, {206,19171}, {436,8795}, {468,26954}, {1495,21638}, {1498,19172}, {1503,23295}, {1971,8882}, {1988,14533}, {2393,19178}, {4993,5012}, {6000,19192}, {6353,19166}, {10282,19185}, {10533,19183}, {10534,19184}, {10535,19182}, {10536,19181}, {10539,19179}, {10540,19176}, {13289,19195}, {14530,19173}, {16030,26864}, {19167,26881}, {19168,26882}, {19175,26888}, {26880,26902}, {26884,26931}, {26885,26941}, {26886,26947}
X(26887) = barycentric product X(54)*X(3164)
X(26887) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (25, 19170, 9792), (184, 275, 54)
The homothetic center of these triangles is X(11690)
X(26888) lies on these lines: {1,6759}, {3,7355}, {4,11429}, {11,16252}, {12,1503}, {20,12940}, {25,19349}, {26,7352}, {28,65}, {31,56}, {33,26883}, {34,184}, {35,6000}, {36,10282}, {40,6056}, {48,1950}, {55,1498}, {64,5217}, {73,3145}, {109,2360}, {110,4296}, {159,1469}, {161,9658}, {172,1971}, {182,19372}, {201,26885}, {206,1428}, {222,13730}, {227,692}, {388,11206}, {468,26955}, {498,14216}, {999,14530}, {1038,9306}, {1060,10539}, {1181,11398}, {1250,10675}, {1319,1612}, {1393,26889}, {1394,7335}, {1398,26864}, {1409,1474}, {1425,1495}, {1478,9833}, {1614,1870}, {1619,10831}, {1887,2182}, {1935,3955}, {2066,12970}, {2067,10533}, {2099,10537}, {2192,3303}, {2307,11243}, {2393,19369}, {2646,6001}, {2777,4324}, {2818,11012}, {2883,6284}, {3028,15647}, {3056,19149}, {3146,9637}, {3157,7387}, {3215,13738}, {3295,11189}, {3357,5010}, {3576,14925}, {3585,18400}, {4294,5656}, {4295,7554}, {4302,5878}, {4354,9934}, {4857,14862}, {5204,17821}, {5218,12324}, {5285,7066}, {5414,12964}, {5432,6247}, {5433,10192}, {5596,12588}, {5706,11428}, {6198,14157}, {6353,18915}, {6502,10534}, {7280,11202}, {7951,18381}, {10060,12315}, {10540,18447}, {10638,10676}, {11510,18621}, {12943,17845}, {13289,19470}, {15311,15338}, {17819,18996}, {17820,18995}, {17975,20836}, {19175,26887}, {19367,26881}, {19368,26882}, {20122,20831}, {20306,24953}, {26880,26903}, {26886,26948}
X(26888) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 6759, 10535), (25, 19349, 19366)
X(26888) = homothetic center of anti-tangential midarc triangle and X(3)-Ehrmann triangle
The homothetic center of these triangles is X(11886)
X(26889) lies on these lines: {2,7193}, {3,26893}, {6,1473}, {31,1403}, {38,2330}, {42,20999}, {48,4191}, {51,3220}, {54,26877}, {55,12595}, {57,184}, {58,22344}, {63,182}, {84,11424}, {181,5322}, {199,22390}, {209,5096}, {219,7484}, {222,11402}, {228,13329}, {354,692}, {511,7293}, {569,24467}, {572,22060}, {577,26900}, {580,22345}, {603,19365}, {614,2175}, {631,26872}, {1155,20986}, {1393,26888}, {1407,17809}, {1471,2187}, {1851,5222}, {1993,3784}, {2003,3937}, {2194,3752}, {2317,22053}, {2323,3917}, {2999,5320}, {3218,3955}, {3306,9306}, {3666,5135}, {3741,24253}, {3781,7485}, {3914,5091}, {4652,13323}, {5085,7085}, {5092,5314}, {5138,5256}, {5157,26924}, {5221,14529}, {5285,22352}, {5398,23206}, {5437,5651}, {5709,10984}, {7004,11429}, {7308,22112}, {7499,26942}, {10601,24320}, {11003,23958}, {11245,26932}, {11422,26910}, {11423,26914}, {11425,26927}, {11426,26928}, {11427,26929}, {11428,26934}, {13336,26921}, {14547,16064}, {14912,26871}, {15299,15503}, {16059,23095}, {16560,21318}, {17017,19133}, {17188,24618}, {18162,21319}, {22394,23621}, {23292,26933}, {26891,26930}
X(26889) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 7193, 26885), (6, 1473, 26892)
The homothetic center of these triangles is X(11887)
X(26890) lies on these lines: {2,3955}, {3,26892}, {6,31}, {9,184}, {38,1428}, {40,11424}, {44,2194}, {51,5285}, {54,72}, {63,182}, {78,13323}, {101,23201}, {199,2183}, {201,19365}, {210,20986}, {219,11402}, {220,17809}, {222,7484}, {228,572}, {375,20989}, {511,5314}, {569,26921}, {577,26901}, {612,1397}, {631,26871}, {692,3683}, {1211,3035}, {1437,5044}, {1473,5085}, {1743,5320}, {1829,6197}, {1993,3781}, {2003,3917}, {2203,4183}, {2317,2318}, {2323,3690}, {2328,23202}, {2352,4268}, {3219,5012}, {3220,22352}, {3271,5310}, {3305,9306}, {3687,17977}, {3741,5150}, {3757,4579}, {3784,7485}, {3796,24320}, {3819,22128}, {4415,5137}, {4641,5135}, {5092,7293}, {5130,5136}, {5157,26923}, {5197,16569}, {5437,22112}, {5651,7308}, {5749,7102}, {5752,26285}, {7069,10535}, {7330,10984}, {7499,26932}, {9957,17015}, {11245,26942}, {11422,26911}, {11423,26915}, {11425,26935}, {11426,26938}, {11427,26939}, {13329,22060}, {13336,24467}, {14153,16514}, {14912,26872}, {20683,20959}, {21015,23292}, {21319,23693}, {26891,26940}
X(26890) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3955, 26884), (6, 7085, 26893), (212, 2267, 1011)
The homothetic center of these triangles is X(10885)
X(26891) lies on these lines: {6,3156}, {54,371}, {184,26886}, {372,1199}, {569,26922}, {577,13366}, {578,6457}, {3311,19356}, {3518,5413}, {5012,26875}, {6431,17820}, {6458,7592}, {11245,26950}, {11402,26868}, {11422,26912}, {11423,26916}, {11424,26918}, {11425,26936}, {11427,26945}, {11428,26952}, {11429,26949}, {14912,26873}, {17809,26953}, {19365,26948}, {23292,26951}, {26889,26930}, {26890,26940}
X(26891) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 8911, 26894), (184, 26919, 26886)
The homothetic center of these triangles is X(9783)
X(26892) lies on these lines: {1,855}, {2,3784}, {3,26890}, {4,26871}, {6,1473}, {7,1851}, {9,3917}, {22,3955}, {25,222}, {27,2659}, {31,1469}, {33,1364}, {38,3056}, {40,16980}, {47,23850}, {51,57}, {52,24467}, {55,8679}, {63,511}, {84,185}, {182,7293}, {184,2003}, {189,7102}, {212,16064}, {216,26900}, {228,991}, {244,7248}, {255,3145}, {373,5437}, {375,4413}, {386,22344}, {394,24320}, {405,11573}, {427,26932}, {513,1836}, {517,6938}, {573,22060}, {581,22345}, {603,19366}, {614,1401}, {651,4224}, {942,1828}, {966,22412}, {970,4652}, {971,1824}, {984,7186}, {993,2392}, {1011,22097}, {1350,7085}, {1394,1425}, {1397,5322}, {1399,23843}, {1407,17810}, {1423,23440}, {1621,23155}, {1626,2361}, {1709,2807}, {1843,7289}, {1935,13733}, {1993,7193}, {2082,23630}, {2099,2390}, {2183,4191}, {2270,22440}, {2277,17187}, {2310,21328}, {2810,3870}, {2841,25415}, {2979,3219}, {3060,3218}, {3098,5314}, {3157,13730}, {3305,3819}, {3306,5943}, {3434,15310}, {3567,26877}, {3690,3929}, {3772,18191}, {3792,7262}, {3868,20077}, {3916,5752}, {3928,21969}, {4001,10477}, {4259,4641}, {4303,13738}, {4459,17871}, {4640,9037}, {4884,9024}, {5208,17364}, {5248,23156}, {5360,24635}, {5396,23206}, {5562,7330}, {5640,26910}, {5650,7308}, {6090,23140}, {7004,11436}, {7363,15508}, {8614,14529}, {9306,22128}, {9777,26866}, {9781,26914}, {9786,26927}, {9792,26931}, {10167,14557}, {10391,17441}, {10625,26921}, {11002,23958}, {11432,26928}, {11433,26929}, {11435,26934}, {13567,26933}, {14963,22420}, {15030,18540}, {18161,21318}, {20665,23636}, {20831,23070}, {20834,22161}, {20852,23131}, {22069,23619}, {26894,26930}
X(26892) = reflection of X(i) in X(j) for these (i,j): (17441, 10391), (26893, 63)
X(26892) = isogonal conjugate of the isotomic conjugate of X(17181)
X(26892) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 1473, 26889), (25, 222, 26884)
The homothetic center of these triangles is X(9787)
X(26893) lies on these lines: {1,10974}, {2,3781}, {3,26889}, {4,8}, {6,31}, {9,51}, {22,7193}, {25,219}, {34,7066}, {38,1469}, {40,185}, {48,199}, {52,26921}, {57,3917}, {63,511}, {78,970}, {181,612}, {182,5314}, {184,2323}, {201,19366}, {210,2262}, {216,26901}, {220,17810}, {228,573}, {306,10477}, {373,7308}, {375,3715}, {394,26884}, {427,26942}, {464,16465}, {518,17441}, {756,4517}, {851,24310}, {916,7580}, {941,2335}, {968,21746}, {982,3792}, {991,22060}, {1211,2886}, {1282,1763}, {1350,1473}, {1818,4191}, {1836,20718}, {1837,22299}, {1843,5227}, {1864,21871}, {1993,3955}, {2082,20683}, {2099,10459}, {2175,5310}, {2183,2318}, {2245,2352}, {2277,20966}, {2900,3169}, {2979,3218}, {3060,3219}, {3098,7293}, {3151,20243}, {3270,7070}, {3305,5943}, {3306,3819}, {3416,22275}, {3567,26878}, {3666,4259}, {3682,13738}, {3725,3764}, {3868,17778}, {3870,9052}, {3928,3937}, {3929,21969}, {3981,16514}, {4215,4269}, {4260,5256}, {4640,9047}, {4645,25308}, {4650,7186}, {4855,15489}, {5231,10439}, {5364,20684}, {5437,5650}, {5562,5709}, {5640,26911}, {5791,18180}, {6506,15508}, {6734,10441}, {6745,10440}, {7069,21801}, {7235,17871}, {9777,26867}, {9781,26915}, {9786,26935}, {9792,26941}, {10625,24467}, {11269,21334}, {11432,26938}, {11433,26939}, {13567,21015}, {13726,19767}, {17792,26034}, {20012,20075}, {20539,22321}, {20857,22126}, {26894,26940}
X(26893) = reflection of X(i) in X(j) for these (i,j): (55, 22276), (26892, 63)
X(26893) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 7085, 26890), (6, 12329, 26924), (3869, 25306, 4388)
The homothetic center of these triangles is X(9789)
X(26894) lies on these lines: {4,372}, {6,3156}, {25,26886}, {51,577}, {52,26922}, {185,26918}, {371,3567}, {389,6457}, {427,26950}, {571,8576}, {1589,3618}, {3060,26875}, {3312,19347}, {3594,12964}, {5408,10963}, {5640,26912}, {6420,11423}, {6423,19005}, {8908,13366}, {9777,26868}, {9781,26916}, {9786,26936}, {9792,26947}, {11242,17849}, {11433,26945}, {11435,26952}, {11436,26949}, {13567,26951}, {17810,26953}, {19366,26948}, {26892,26930}, {26893,26940}
X(26894) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 372, 6458), (372, 5413, 6414)
The homothetic center of these triangles is X(10886)
X(26895) lies on these lines: {2,26907}, {3,74}, {22,26909}, {216,5640}, {418,3060}, {577,11422}, {1993,26865}, {2979,26874}, {5012,26898}, {5889,26876}, {6638,11451}, {10546,10979}, {11439,26897}, {11445,26908}, {11446,26904}, {11746,18573}, {18911,26870}, {19122,26899}, {19167,26902}, {19367,26903}, {23293,26906}, {26880,26881}, {26900,26910}, {26901,26911}, {26905,26913}
The homothetic center of these triangles is X(10887)
X(26896) lies on these lines: {3,74}, {4,26907}, {24,26909}, {54,26898}, {216,9781}, {418,3567}, {577,11423}, {5890,26876}, {6638,11465}, {7592,26865}, {11412,26874}, {11455,26897}, {11460,26908}, {11461,26904}, {18912,26870}, {19123,26899}, {19168,26902}, {19368,26903}, {23294,26906}, {26880,26882}, {26900,26914}, {26901,26915}, {26905,26917}
The homothetic center of these triangles is X(11521)
X(26897) lies on these lines: {2,3}, {33,26903}, {34,26904}, {40,26901}, {54,14152}, {84,26900}, {95,1105}, {160,17845}, {185,216}, {577,11424}, {578,23606}, {1498,26898}, {2055,15033}, {2972,11793}, {5562,13409}, {6000,23719}, {6247,26905}, {11381,26907}, {11439,26895}, {11455,26896}, {11471,26908}, {12324,26870}, {15811,26909}, {19124,26899}, {19169,26902}, {19467,20775}, {21659,23195}, {26880,26883}
X(26897) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 4, 418), (3, 6905, 408), (3, 7395, 426)
The homothetic center of these triangles is X(10888)
X(26898) lies on these lines: {2,26870}, {3,49}, {6,418}, {25,216}, {54,26896}, {154,157}, {183,7494}, {219,26901}, {222,26900}, {426,5085}, {577,11402}, {852,17825}, {1073,5650}, {1350,13409}, {1498,26897}, {1899,26906}, {1993,26874}, {5012,26895}, {5158,9777}, {6389,7499}, {6509,7484}, {6638,10601}, {7503,19172}, {7592,26876}, {10979,26864}, {13366,15905}, {15004,15851}, {17809,23606}, {19125,26899}, {19170,26902}, {19349,26903}, {19350,26908}, {19354,26904}
X(26898) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26870, 26905), (184, 26907, 3), (10132, 10133, 19357)
The homothetic center of these triangles is X(10889)
X(26899) lies on these lines: {3,6}, {53,12362}, {97,193}, {206,26880}, {233,3549}, {418,1974}, {1352,10600}, {1428,26903}, {1843,6641}, {2330,26904}, {2351,6467}, {3087,7400}, {3589,26906}, {5907,17849}, {6638,19137}, {6676,10314}, {6748,6823}, {7494,10311}, {14576,15818}, {19118,26865}, {19119,26870}, {19121,26874}, {19122,26895}, {19123,26896}, {19124,26897}, {19125,26898}, {19128,26876}, {19132,26909}, {19133,26908}, {19171,26902}, {21637,26907}, {26900,26923}, {26901,26924}, {26905,26926}
X(26899) = midpoint of X(11513) and X(11514)
X(26899) = isogonal conjugate of the polar conjugate of X(7395)
X(26899) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (10979, 22052, 8588), (11515, 11516, 3098), (11574, 19126, 13355)
The homothetic center of these triangles is X(11892)
X(26900) lies on these lines: {3,63}, {57,418}, {84,26897}, {216,26892}, {222,26898}, {577,26889}, {603,26903}, {852,5437}, {1407,26909}, {3218,26874}, {3220,6641}, {3306,6638}, {3937,26907}, {7004,26904}, {26865,26866}, {26870,26871}, {26876,26877}, {26880,26884}, {26895,26910}, {26896,26914}, {26899,26923}, {26902,26931}, {26905,26932}, {26906,26933}, {26908,26934}
X(26900) = {X(3), X(63)}-harmonic conjugate of X(26901)
The homothetic center of these triangles is X(11893)
X(26901) lies on these lines: {3,63}, {9,418}, {40,26897}, {71,26908}, {201,26903}, {212,26904}, {216,26893}, {219,26898}, {220,26909}, {408,5438}, {577,26890}, {852,7308}, {3219,26874}, {3305,6638}, {3690,26907}, {5285,6641}, {21015,26906}, {26865,26867}, {26870,26872}, {26876,26878}, {26880,26885}, {26895,26911}, {26896,26915}, {26899,26924}, {26902,26941}, {26905,26942}
X(26901) = {X(3), X(63)}-harmonic conjugate of X(26900)
The homothetic center of these triangles is X(10892)
X(26902) lies on these lines: {3,95}, {54,577}, {97,184}, {216,9792}, {275,418}, {6638,19188}, {16030,26865}, {19166,26870}, {19167,26895}, {19168,26896}, {19169,26897}, {19170,26898}, {19171,26899}, {19175,26903}, {19180,26909}, {19181,26908}, {19182,26904}, {21638,26907}, {23295,26906}, {26880,26887}, {26900,26931}, {26901,26941}, {26905,26954}
The homothetic center of these triangles is X(11894)
X(26903) lies on these lines: {1,3}, {12,26906}, {33,26897}, {34,418}, {201,26901}, {216,19366}, {221,26909}, {577,19365}, {603,26900}, {1398,26865}, {1425,26907}, {1428,26899}, {1870,26876}, {4296,26874}, {6638,19372}, {18915,26870}, {19175,26902}, {19349,26898}, {19367,26895}, {19368,26896}, {26880,26888}, {26905,26955}
X(26903) = {X(1), X(3)}-harmonic conjugate of X(26904)
The homothetic center of these triangles is X(11895)
X(26904) lies on these lines: {1,3}, {11,26906}, {33,418}, {34,26897}, {97,9637}, {212,26901}, {216,11436}, {577,11429}, {2192,26909}, {2330,26899}, {3100,26874}, {3270,26907}, {6198,26876}, {6638,9817}, {7004,26900}, {7071,26865}, {10535,26880}, {11446,26895}, {11461,26896}, {18922,26870}, {19182,26902}, {19354,26898}, {26905,26956}
X(26904) = {X(1), X(3)}-harmonic conjugate of X(26903)
The homothetic center of these triangles is X(17617)
X(26905) lies on these lines: {2,26870}, {3,68}, {125,26906}, {216,427}, {325,7386}, {418,13567}, {468,26880}, {577,11245}, {1503,6641}, {3001,13409}, {3580,26874}, {6247,26897}, {6389,7484}, {7399,10600}, {8550,23606}, {26865,26869}, {26876,26879}, {26895,26913}, {26896,26917}, {26899,26926}, {26900,26932}, {26901,26942}, {26902,26954}, {26903,26955}, {26904,26956}, {26908,26957}, {26909,26958}
X(26905) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26870, 26898), (125, 26907, 26906)
The homothetic center of these triangles is X(10473)
X(26906) lies on these lines: {2,3}, {11,26904}, {12,26903}, {125,26905}, {141,6509}, {216,13567}, {577,23292}, {1503,26880}, {1853,26909}, {1899,26898}, {3589,26899}, {3925,26908}, {11427,15905}, {21015,26901}, {23291,26870}, {23293,26895}, {23294,26896}, {23295,26902}, {26900,26933}
X(26906) = isotomic conjugate of the polar conjugate of X(12233)
X(26906) = complement of the polar conjugate of X(13599)
X(26906) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (465, 466, 549), (1589, 1590, 3523)
The homothetic center of these triangles is X(10478)
X(26907) lies on these lines: {2,26895}, {3,49}, {4,26896}, {5,12012}, {6,26865}, {25,26909}, {51,216}, {125,26905}, {311,7494}, {373,6638}, {389,26876}, {511,26874}, {577,13366}, {1425,26903}, {1495,6641}, {1843,3135}, {1899,26870}, {3270,26904}, {3611,26908}, {3690,26901}, {3937,26900}, {5650,6509}, {6467,23195}, {6617,22112}, {10282,23719}, {11381,26897}, {21637,26899}, {21638,26902}, {22052,23606}
X(26907) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 26898, 184), (216, 418, 51)
The homothetic center of these triangles is X(11896)
X(26908) lies on these lines: {1,3}, {19,418}, {71,26901}, {216,11435}, {577,11428}, {3101,26874}, {3197,26909}, {3611,26907}, {3925,26906}, {6197,26876}, {6638,9816}, {10536,26880}, {11406,26865}, {11436,18591}, {11445,26895}, {11460,26896}, {11471,26897}, {18921,26870}, {19133,26899}, {19181,26902}, {19350,26898}, {26900,26934}, {26905,26957}
The homothetic center of these triangles is X(18229)
X(26909) lies on these lines: {3,64}, {6,418}, {22,26895}, {24,26896}, {25,26907}, {184,26865}, {216,17810}, {220,26901}, {221,26903}, {394,26874}, {577,17809}, {1181,26876}, {1407,26900}, {1853,26906}, {2192,26904}, {3197,26908}, {6638,17825}, {7494,15271}, {13567,26870}, {15811,26897}, {19132,26899}, {19180,26902}, {26905,26958}
X(26909) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 26880, 154), (418, 26898, 6)
The homothetic center of these triangles is X(8377)
X(26910) lies on these lines: {2,3937}, {3,26914}, {22,1407}, {55,840}, {57,3060}, {63,7998}, {84,11439}, {108,17074}, {110,1473}, {222,5012}, {511,23958}, {603,19367}, {1155,23155}, {1401,17126}, {1993,26866}, {2979,3218}, {3271,9335}, {3306,11451}, {4188,23154}, {5640,26892}, {5889,26877}, {7004,11446}, {7293,15080}, {7485,22129}, {8679,9352}, {11422,26889}, {11440,26927}, {11441,26928}, {11442,26929}, {11444,24467}, {11445,26934}, {17375,22413}, {18911,26871}, {19122,26923}, {19167,26931}, {26881,26884}, {26895,26900}, {26912,26930}, {26913,26932}
X(26910) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63, 7998, 26911), (3218, 3784, 2979)
The homothetic center of these triangles is X(8378)
X(26911) lies on these lines: {2,3690}, {3,26915}, {9,3060}, {22,220}, {40,11439}, {56,7144}, {63,7998}, {71,11445}, {110,7085}, {181,9330}, {201,19367}, {212,11446}, {219,5012}, {469,3876}, {1180,16514}, {1993,26867}, {2979,3219}, {3305,11451}, {3681,17233}, {3688,17127}, {3730,4184}, {3920,4517}, {5314,15080}, {5640,26893}, {5650,23958}, {5692,15523}, {5889,26878}, {11422,26890}, {11440,26935}, {11441,26938}, {11442,26939}, {11444,26921}, {12109,17570}, {17018,20683}, {18911,26872}, {19122,26924}, {19167,26941}, {21015,23293}, {26881,26885}, {26895,26901}, {26912,26940}, {26913,26942}
X(26911) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63, 7998, 26910), (3219, 3781, 2979)
The homothetic center of these triangles is X(8228)
X(26912) lies on these lines: {2,95}, {3,5410}, {6,588}, {22,26953}, {32,7585}, {50,590}, {110,8911}, {371,5889}, {372,15043}, {492,4558}, {571,3068}, {1583,15905}, {1993,26868}, {2193,16441}, {2979,26875}, {3060,26919}, {3069,5063}, {3155,11418}, {5012,26920}, {5065,7586}, {5640,26894}, {6413,11447}, {6457,12111}, {6458,10574}, {6748,15234}, {8908,9544}, {8963,22052}, {10316,11292}, {10962,11448}, {11422,26891}, {11439,26918}, {11440,26936}, {11442,26945}, {11444,26922}, {11445,26952}, {11446,26949}, {11514,12220}, {13345,19054}, {18911,26873}, {19122,26925}, {19167,26947}, {19367,26948}, {23293,26951}, {26881,26886}, {26910,26930}, {26911,26940}, {26913,26950}
The homothetic center of these triangles is X(17618)
X(26913) lies on these lines: {2,98}, {3,26917}, {4,13445}, {5,6241}, {22,26958}, {54,6640}, {235,12279}, {343,7998}, {403,15072}, {427,5640}, {468,26881}, {569,6143}, {631,5449}, {858,3060}, {1209,3525}, {1368,2979}, {1370,15107}, {1594,15043}, {1648,3981}, {1656,13561}, {1853,1995}, {1993,26869}, {2071,18390}, {2072,5890}, {3091,5878}, {3153,11438}, {3548,18912}, {3567,13371}, {3618,6697}, {3855,18488}, {5094,5422}, {5133,7703}, {5159,11245}, {5169,5943}, {5576,15024}, {5643,18928}, {5889,11585}, {6030,7493}, {6146,11449}, {6247,11439}, {6515,8538}, {6643,7691}, {6644,25739}, {6677,10546}, {7394,10545}, {7509,9932}, {7527,23329}, {7569,15805}, {7577,9730}, {8263,12272}, {8889,12834}, {10024,11704}, {10254,20304}, {10255,13630}, {10257,12022}, {10264,18435}, {10413,11648}, {11004,11225}, {11440,26937}, {11441,26944}, {11444,12359}, {11445,26957}, {11446,26956}, {11550,13595}, {12278,22467}, {15033,18281}, {15060,20379}, {15061,18570}, {15078,18396}, {15760,20791}, {15801,18951}, {19122,26926}, {19167,26954}, {19367,26955}, {21451,26883}, {26895,26905}, {26910,26932}, {26911,26942}, {26912,26950}
X(26913) = inverse of X(3047) in the Brocard circle
X(26913) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 3410, 5651), (2, 9544, 5972), (13414, 13415, 3047)
The homothetic center of these triangles is X(8380)
X(26914) lies on these lines: {3,26910}, {4,3937}, {24,1407}, {54,222}, {56,953}, {57,3567}, {63,7999}, {74,26927}, {84,11455}, {603,19368}, {1473,1614}, {3218,11412}, {3306,11465}, {5890,26877}, {6942,23154}, {7004,11461}, {7509,22129}, {7592,26866}, {9781,26892}, {11423,26889}, {11456,26928}, {11457,26929}, {11459,24467}, {11460,26934}, {18912,26871}, {19123,26923}, {19168,26931}, {23294,26933}, {26882,26884}, {26896,26900}, {26916,26930}, {26917,26932}
X(26914) = {X(63), X(7999)}-harmonic conjugate of X(26915)
The homothetic center of these triangles is X(8381)
X(26915) lies on these lines: {3,26911}, {4,3690}, {9,3567}, {24,220}, {40,11455}, {54,219}, {55,7144}, {63,7999}, {71,11460}, {74,26935}, {201,19368}, {212,11461}, {1614,7085}, {3219,11412}, {3305,11465}, {5890,26878}, {7592,26867}, {9781,26893}, {11423,26890}, {11456,26938}, {11457,26939}, {11459,26921}, {18912,26872}, {19123,26924}, {19168,26941}, {21015,23294}, {26882,26885}, {26896,26901}, {26916,26940}, {26917,26942}
X(26915) = {X(63), X(7999)}-harmonic conjugate of X(26914)
The homothetic center of these triangles is X(8230)
X(26916) lies on these lines: {3,5410}, {4,577}, {24,26953}, {32,7581}, {50,3070}, {54,26920}, {74,26936}, {97,1586}, {371,5890}, {372,3567}, {571,1587}, {637,4558}, {1588,5063}, {1614,8911}, {3155,10881}, {5065,7582}, {6241,6457}, {6413,11462}, {6811,10313}, {7592,26868}, {9781,26894}, {10316,21736}, {11412,26875}, {11423,26891}, {11455,26918}, {11457,26945}, {11459,26922}, {11460,26952}, {11461,26949}, {18912,26873}, {19123,26925}, {19168,26947}, {19368,26948}, {23294,26951}, {26882,26886}, {26914,26930}, {26915,26940}, {26917,26950}
X(26916) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (371, 6458, 5890), (372, 26919, 3567)
The homothetic center of these triangles is X(17619)
X(26917) lies on these lines: {2,54}, {3,26913}, {4,74}, {5,5890}, {24,25739}, {110,25738}, {140,12022}, {143,12099}, {184,14940}, {185,16868}, {186,12289}, {235,12290}, {265,12278}, {343,7999}, {381,13561}, {389,7577}, {403,2883}, {427,9781}, {468,26882}, {568,10224}, {578,6143}, {1594,3567}, {1614,1899}, {1656,7592}, {1853,10594}, {2072,5889}, {2929,16013}, {3060,13371}, {3090,18916}, {3448,10539}, {3518,18381}, {3520,18390}, {3542,11457}, {3549,18911}, {3580,11412}, {3628,11245}, {3839,18488}, {5012,6639}, {5067,18950}, {5070,11402}, {5448,23515}, {5576,5640}, {6102,7723}, {6146,10018}, {6240,18394}, {6247,11455}, {6640,15059}, {6697,14853}, {6723,10112}, {6794,10413}, {7547,9786}, {7552,10984}, {7569,10601}, {7699,12233}, {9544,10116}, {9703,11264}, {9927,22467}, {9938,14852}, {10024,10574}, {10113,18565}, {10182,10619}, {10254,13630}, {10264,18439}, {11202,12254}, {11250,15061}, {11456,26944}, {11459,12359}, {11460,26957}, {11461,26956}, {11465,14788}, {11468,18560}, {11695,14789}, {11799,12279}, {12106,15027}, {12118,15035}, {12161,24572}, {12293,15078}, {12824,15114}, {12897,20397}, {13160,15045}, {14516,16238}, {14865,23329}, {14912,24206}, {15072,15761}, {15559,23332}, {16659,21841}, {18350,18356}, {18383,18559}, {19123,26926}, {19168,26954}, {19368,26955}, {21659,21844}, {26896,26905}, {26914,26932}, {26915,26942}, {26916,26950}
X(26917) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18912, 54), (4, 125, 23294), (4, 26937, 74)
The homothetic center of these triangles is X(11532)
X(26918) lies on these lines: {4,371}, {25,26936}, {30,26922}, {33,26948}, {34,26949}, {40,26940}, {64,1152}, {84,26930}, {185,26894}, {235,26951}, {372,6241}, {577,11381}, {1498,26920}, {1593,8911}, {3146,26875}, {3155,6409}, {6000,6458}, {6247,26950}, {8576,23261}, {11403,26868}, {11424,26891}, {11439,26912}, {11455,26916}, {11471,26952}, {11513,14927}, {12324,26873}, {15811,26953}, {19124,26925}, {19169,26947}, {26883,26886}
X(26918) = {X(4), X(6457)}-harmonic conjugate of X(26919)
The homothetic center of these triangles is X(8231)
X(26919) lies on these lines: {2,26875}, {4,371}, {5,26922}, {6,3155}, {9,26940}, {19,26952}, {25,8911}, {33,26949}, {34,26948}, {51,577}, {57,26930}, {184,26886}, {275,26947}, {372,3567}, {389,6458}, {427,26951}, {571,8577}, {1495,8908}, {1590,3618}, {1593,26936}, {1974,26925}, {3060,26912}, {3311,19347}, {3592,12970}, {5409,10961}, {6419,11423}, {8963,9738}, {11241,17849}, {11433,26873}
X(26919) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 371, 6457), (4, 6457, 26918), (371, 5412, 6413)
The homothetic center of these triangles is X(8233)
X(26920) lies on these lines: {2,26873}, {3,6413}, {6,3155}, {24,372}, {25,26886}, {32,26461}, {48,606}, {54,26916}, {96,485}, {155,26922}, {184,418}, {185,26936}, {216,21640}, {219,26940}, {222,26930}, {371,7592}, {1152,17819}, {1181,6457}, {1300,6560}, {1498,26918}, {1590,18923}, {1600,10960}, {1899,26951}, {1993,26875}, {3068,12256}, {3070,22261}, {3156,10533}, {3284,21641}, {3365,8837}, {3390,8839}, {5012,26912}, {5408,11513}, {5409,9723}, {6423,19006}, {6776,26945}, {11402,26868}, {15905,19356}, {19125,26925}, {19170,26947}, {19349,26948}, {19350,26952}, {19354,26949}
X(26920) = isogonal conjugate of the isotomic conjugate of X(5409)
X(26920) = isogonal conjugate of the polar conjugate of X(372)
X(26920) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26873, 26950), (3, 19355, 6413)
The homothetic center of these triangles is X(8112)
X(26921) lies on these lines: {1,2361}, {2,26878}, {3,63}, {4,3219}, {5,9}, {7,6989}, {8,6868}, {10,6917}, {12,46}, {19,7534}, {26,5285}, {30,40}, {37,5707}, {38,602}, {52,26893}, {55,920}, {57,140}, {68,71}, {77,23070}, {84,550}, {90,6284}, {144,6908}, {155,219}, {165,17857}, {201,255}, {210,11499}, {212,1062}, {329,6825}, {392,10680}, {405,24474}, {484,9579}, {498,1454}, {516,18517}, {517,958}, {518,10267}, {527,6684}, {548,7171}, {549,3928}, {569,26890}, {573,5810}, {601,896}, {631,3218}, {632,5437}, {908,6863}, {936,6924}, {942,1708}, {946,5325}, {960,11249}, {971,1158}, {984,3072}, {997,26286}, {1006,3868}, {1147,3955}, {1214,3157}, {1216,3781}, {1385,11194}, {1445,5708}, {1479,7082}, {1482,5250}, {1483,6762}, {1656,3305}, {1697,5844}, {1698,5535}, {1699,24468}, {1728,5722}, {1737,10953}, {1766,5788}, {1768,12738}, {1776,4294}, {2003,16266}, {2095,11108}, {2323,12161}, {2771,12520}, {3073,7262}, {3085,7098}, {3306,3526}, {3336,4654}, {3338,5298}, {3359,10942}, {3419,7491}, {3428,5887}, {3436,5657}, {3452,6959}, {3523,26877}, {3555,16202}, {3564,5227}, {3576,6763}, {3601,7508}, {3627,18540}, {3628,7308}, {3651,12528}, {3678,6796}, {3681,11491}, {3690,5562}, {3695,3719}, {3730,8558}, {3784,5447}, {3811,22937}, {3824,11231}, {3876,6905}, {3899,11014}, {4640,11248}, {4880,15016}, {5010,16767}, {5044,6911}, {5119,10950}, {5130,7511}, {5223,5534}, {5273,5758}, {5302,7686}, {5428,11523}, {5432,17700}, {5433,17437}, {5536,8227}, {5692,11012}, {5694,6261}, {5744,6891}, {5745,6862}, {5759,6851}, {5761,6857}, {5769,21061}, {5770,6865}, {5777,6985}, {5811,6172}, {5886,12704}, {5904,10902}, {5905,6889}, {6643,26939}, {6734,6928}, {6929,12572}, {6936,12649}, {6944,18228}, {7066,7352}, {7070,8144}, {7162,17699}, {7387,24320}, {7395,26867}, {7680,18253}, {7688,15071}, {7965,12699}, {8545,11662}, {8703,9841}, {9780,10599}, {9956,10894}, {10039,18962}, {10198,15296}, {10303,23958}, {10523,24914}, {10525,18232}, {10539,26885}, {10595,17561}, {10625,26892}, {11111,12245}, {11411,26872}, {11444,26911}, {11459,26915}, {11585,21015}, {11929,17528}, {12359,26942}, {12526,14988}, {12619,13272}, {13336,26889}, {13374,15254}, {14110,22758}, {15481,18491}, {18443,24475}, {18518,18908}, {19131,26924}, {19179,26941}, {19861,22765}, {26922,26940}
X(26921) = midpoint of X(i) and X(j) for these {i,j}: {3, 3927}, {8, 6868}, {40, 7330}
X(26921) = reflection of X(i) in X(j) for these (i,j): (6147, 140), (6917, 10)
X(26921) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 63, 24467), (78, 21165, 3)
X(26921) = 2nd-extouch-to-excentral similarity image of X(5)
The homothetic center of these triangles is X(8234)
X(26922) lies on these lines: {2,371}, {3,6414}, {4,26875}, {5,26919}, {6,19493}, {30,26918}, {52,26894}, {68,6413}, {97,5408}, {155,26920}, {372,5889}, {569,26891}, {577,5562}, {1060,26948}, {1062,26949}, {1151,19409}, {1217,11473}, {1297,11824}, {1322,5412}, {3071,13046}, {3092,9732}, {6458,13754}, {6643,26945}, {6776,11513}, {7395,26868}, {8251,26952}, {10539,26886}, {10880,10960}, {11411,26873}, {11444,26912}, {11459,26916}, {11585,26951}, {12313,14489}, {12359,26950}, {17814,26953}, {19131,26925}, {19179,26947}, {24467,26930}, {26921,26940}
X(26922) = isogonal conjugate of the polar conjugate of X(11091)
X(26922) = isotomic conjugate of the polar conjugate of X(6414)
X(26922) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 10666, 6414), (371, 486, 8576)
The homothetic center of these triangles is X(8385)
X(26923) lies on these lines: {6,1473}, {48,20731}, {57,1974}, {63,19126}, {69,7193}, {84,19124}, {141,26885}, {184,7289}, {206,26884}, {222,19125}, {603,1428}, {1176,3955}, {1407,19132}, {1843,3220}, {2330,7004}, {3218,19121}, {3306,19137}, {3589,26933}, {3618,26929}, {3784,20806}, {3937,21637}, {5050,26928}, {5085,26927}, {5157,26890}, {7293,11574}, {19118,26866}, {19119,26871}, {19122,26910}, {19123,26914}, {19128,26877}, {19131,24467}, {19133,26934}, {19171,26931}, {26899,26900}, {26925,26930}, {26926,26932}
X(26923) = {X(63), X(19126)}-harmonic conjugate of X(26924)
The homothetic center of these triangles is X(8386)
X(26924) lies on these lines: {6,31}, {9,1974}, {40,19124}, {63,19126}, {69,3955}, {72,1176}, {141,26884}, {184,5227}, {201,1428}, {206,26885}, {219,19125}, {220,19132}, {1843,5285}, {3219,19121}, {3305,19137}, {3589,21015}, {3618,26939}, {3690,21637}, {3781,20806}, {5050,26938}, {5085,26935}, {5157,26889}, {5314,11574}, {19118,26867}, {19119,26872}, {19122,26911}, {19123,26915}, {19128,26878}, {19131,26921}, {19171,26941}, {26899,26901}, {26925,26940}, {26926,26942}
X(26924) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6, 12329, 26893), (63, 19126, 26923)
The homothetic center of these triangles is X(8237)
X(26925) lies on these lines: {6,3156}, {182,6457}, {206,26886}, {371,19128}, {577,21637}, {1176,6414}, {1428,26948}, {1974,26919}, {2330,26949}, {3589,26951}, {3618,26945}, {5085,26936}, {6467,8908}, {11514,22151}, {19118,26868}, {19119,26873}, {19121,26875}, {19122,26912}, {19123,26916}, {19124,26918}, {19125,26920}, {19131,26922}, {19132,26953}, {19133,26952}, {19171,26947}, {26923,26930}, {26924,26940}, {26926,26950}
The homothetic center of these triangles is X(17620)
X(26926) lies on these lines: {2,13562}, {3,69}, {4,20079}, {6,66}, {25,5596}, {30,10938}, {67,13198}, {110,26156}, {125,3589}, {141,184}, {159,21213}, {185,1503}, {193,1370}, {206,468}, {235,19149}, {287,14601}, {343,19126}, {394,15812}, {399,18358}, {428,9969}, {441,14575}, {511,6146}, {524,3313}, {542,974}, {1176,6676}, {1181,1352}, {1350,19467}, {1351,13292}, {1353,23335}, {1368,20806}, {1428,26955}, {1974,13567}, {2330,26956}, {2892,19504}, {3269,23642}, {3541,14912}, {3580,19121}, {3618,23291}, {3629,15826}, {3867,11550}, {5050,26944}, {5085,26937}, {5576,18583}, {5622,10264}, {5848,17660}, {5921,6815}, {5965,11577}, {6247,19124}, {8541,15583}, {9924,17818}, {10111,14984}, {10116,12421}, {10937,11188}, {11585,19139}, {12241,12294}, {12359,19131}, {12588,19349}, {12589,19354}, {13142,18945}, {16310,23333}, {18400,21851}, {18420,18440}, {18911,26206}, {18923,19022}, {18924,19021}, {19118,26869}, {19122,26913}, {19123,26917}, {19128,26879}, {19132,26958}, {19133,26957}, {19171,26954}, {26899,26905}, {26923,26932}, {26924,26942}, {26925,26950}
X(26926) = reflection of X(i) in X(j) for these (i,j): (1351, 13292), (3575, 19161), (6776, 18914), (12294, 12241)
X(26926) = anticomplement of X(13562)
X(26926) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 19119, 19125), (69, 6776, 19459), (6776, 18913, 25406)
The homothetic center of these triangles is X(8390)
X(26927) lies on these lines: {3,63}, {4,26933}, {20,26929}, {25,84}, {31,1208}, {55,603}, {56,774}, {57,1593}, {64,1407}, {74,26914}, {185,222}, {197,12680}, {235,20266}, {378,26877}, {474,25019}, {1204,3937}, {1433,3270}, {1436,2155}, {1498,26884}, {1622,12330}, {1709,11365}, {1768,9912}, {1795,11508}, {2096,7412}, {3218,11413}, {3220,3515}, {3306,11479}, {3516,26866}, {4185,6245}, {4222,12246}, {5085,26923}, {5285,9841}, {5584,26934}, {5709,21312}, {7171,11414}, {7335,19354}, {7523,21151}, {9026,12329}, {9786,26892}, {9798,10085}, {11220,11337}, {11248,15626}, {11425,26889}, {11440,26910}, {11509,15622}, {12086,23958}, {12164,22128}, {17928,24320}, {18913,26871}, {19172,26931}, {26930,26936}, {26932,26937}
X(26927) = {X(3), X(63)}-harmonic conjugate of X(26935)
The homothetic center of these triangles is X(11039)
X(26928) lies on these lines: {3,63}, {4,26866}, {5,26929}, {25,26877}, {57,1598}, {84,1597}, {222,19347}, {603,999}, {1181,3937}, {1407,6759}, {1656,26933}, {3218,11414}, {3220,3517}, {3295,7004}, {3306,11484}, {5050,26923}, {10306,26934}, {10984,22129}, {11426,26889}, {11432,26892}, {11441,26910}, {11456,26914}, {14530,26884}, {18914,26871}, {19173,26931}, {26932,26944}
X(26928) = {X(3), X(63)}-harmonic conjugate of X(26938)
The homothetic center of these triangles is X(11026)
X(26929) lies on these lines: {2,1473}, {4,57}, {5,26928}, {7,26118}, {20,26927}, {63,7386}, {69,3784}, {150,8817}, {171,388}, {222,6776}, {376,5285}, {427,26866}, {464,22060}, {497,982}, {944,8270}, {990,21621}, {1056,5269}, {1058,3677}, {1364,18922}, {1370,3218}, {1407,1503}, {1460,4293}, {1479,18193}, {1899,3937}, {2003,14912}, {2550,3980}, {3220,6353}, {3306,7392}, {3487,10383}, {3618,26923}, {3917,26872}, {3955,25406}, {4425,4466}, {5225,18201}, {5744,26052}, {6643,24467}, {6804,7330}, {6821,17754}, {7009,7365}, {7182,17170}, {7248,12589}, {7289,18935}, {7293,7494}, {7391,23958}, {9364,12667}, {9436,10444}, {10519,26942}, {11206,26884}, {11427,26889}, {11433,26892}, {11442,26910}, {11457,26914}, {11677,24477}, {19174,26931}, {22344,25876}, {23291,26932}, {26930,26945}
X(26929) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63, 7386, 26939), (1473, 26933, 2)
The homothetic center of these triangles is X(11922)
X(26930) lies on these lines: {57,26919}, {63,26940}, {84,26918}, {222,26920}, {371,26877}, {577,3937}, {603,26948}, {1407,26953}, {1473,8911}, {3218,26875}, {7004,26949}, {24467,26922}, {26866,26868}, {26871,26873}, {26884,26886}, {26889,26891}, {26892,26894}, {26910,26912}, {26914,26916}, {26923,26925}, {26927,26936}, {26929,26945}, {26931,26947}, {26932,26950}, {26933,26951}, {26934,26952}
The homothetic center of these triangles is X(8391)
X(26931) lies on these lines: {54,26877}, {57,275}, {63,95}, {84,19169}, {97,1214}, {222,19170}, {603,19175}, {1407,19180}, {1473,19189}, {3306,19188}, {3937,21638}, {7004,19182}, {9792,26892}, {16030,26866}, {19166,26871}, {19167,26910}, {19168,26914}, {19171,26923}, {19172,26927}, {19173,26928}, {19174,26929}, {19179,24467}, {19181,26934}, {23295,26933}, {26884,26887}, {26900,26902}, {26930,26947}, {26932,26954}
X(26931) = {X(63), X(95)}-harmonic conjugate of X(26941)
The homothetic center of these triangles is X(17621)
X(26932) lies on these lines: {1,20306}, {2,222}, {3,23161}, {7,281}, {9,141}, {11,124}, {57,13567}, {63,343}, {69,219}, {77,17073}, {84,6247}, {85,1952}, {109,25968}, {116,5514}, {120,3041}, {123,125}, {142,1439}, {189,278}, {220,599}, {226,20205}, {255,7515}, {268,20208}, {269,282}, {297,1948}, {320,1944}, {427,26892}, {440,22097}, {468,26884}, {513,21252}, {521,3270}, {522,4081}, {523,21340}, {524,2323}, {525,20902}, {603,26955}, {608,8048}, {656,22084}, {692,5848}, {918,1086}, {960,2836}, {971,1861}, {1211,5745}, {1212,17237}, {1352,24320}, {1358,1367}, {1368,3784}, {1407,20266}, {1433,3086}, {1437,4999}, {1442,17043}, {1443,18644}, {1473,1899}, {1486,12586}, {1503,3220}, {1565,3942}, {1633,21293}, {2003,23292}, {2097,18636}, {2262,12610}, {2324,17296}, {2995,8736}, {3061,18730}, {3218,3580}, {3452,16594}, {3554,20270}, {3564,7193}, {3662,26530}, {3664,18635}, {3911,26005}, {3917,21015}, {3955,6676}, {4303,18641}, {4357,15595}, {4383,23122}, {4391,23978}, {4503,17056}, {4551,25882}, {4579,26231}, {5249,6708}, {5433,7335}, {5662,23585}, {5743,16554}, {5928,21370}, {6173,21258}, {6335,18816}, {6357,17923}, {6388,16592}, {6506,8287}, {6510,26006}, {6518,20769}, {6603,17374}, {6831,14058}, {7083,12589}, {7117,16731}, {7354,10570}, {7499,26890}, {9119,24471}, {10519,26939}, {11064,22128}, {11245,26889}, {11573,21530}, {12359,24467}, {14100,24388}, {15526,16595}, {15849,21239}, {15985,19557}, {15993,16514}, {17077,25000}, {17170,18639}, {17184,26542}, {17238,26059}, {17421,18210}, {17880,23983}, {17917,18623}, {18642,18650}, {20122,25985}, {20258,20341}, {21739,24145}, {21912,22053}, {23291,26929}, {26866,26869}, {26877,26879}, {26900,26905}, {26910,26913}, {26914,26917}, {26923,26926}, {26927,26937}, {26928,26944}, {26930,26950}, {26931,26954}, {26934,26957}
X(26932) = midpoint of X(i) and X(j) for these {i,j}: {69, 1814}, {1633, 21293}
X(26932) = anticomplement of X(36949)
X(26932) = complementary conjugate of X(4885)
X(26932) = isogonal conjugate of X(7115)
X(26932) = isotomic conjugate of the isogonal conjugate of X(7117)
X(26932) = isotomic conjugate of the polar conjugate of X(11)
X(26932) = polar conjugate of the isogonal conjugate of X(1364)
X(26932) = complement of X(651)
X(26932) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26871, 222), (3, 23161, 23198)
X(26932) = center of hyperbola {{A,B,C,X(7),X(63)}}
X(26932) = X(19)-isoconjugate of X(59)
X(26932) = trilinear pole, wrt medial triangle, of line X(5)X(10)
X(26932) = X(2)-Ceva conjugate of X(905)
X(26932) = barycentric product X(63)*X(4564)
X(26932) = barycentric product X(1)*X(17880)
X(26932) = crosssum of circumcircle-intercepts of Stevanovic circle
The homothetic center of these triangles is X(17607)
X(26933) lies on these lines: {2,1473}, {4,26927}, {5,3306}, {11,244}, {12,603}, {25,20266}, {57,427}, {63,1368}, {84,235}, {116,5521}, {123,125}, {222,1899}, {343,3784}, {429,4292}, {440,22060}, {468,3220}, {858,3218}, {1210,1883}, {1364,26956}, {1407,1853}, {1448,5130}, {1503,26884}, {1565,2968}, {1594,26877}, {1656,26928}, {1824,21621}, {1836,23304}, {1904,9579}, {1985,21239}, {2003,11245}, {2611,17876}, {2969,4858}, {3138,6506}, {3564,22128}, {3589,26923}, {3662,16067}, {3916,21530}, {3917,26942}, {3925,26934}, {5094,26866}, {5285,7667}, {5314,10691}, {5515,5517}, {5518,5993}, {6676,7293}, {7085,7386}, {7102,7365}, {7193,11064}, {11585,24467}, {13567,26892}, {17111,17728}, {18641,22345}, {18671,21915}, {20999,25968}, {23291,26871}, {23292,26889}, {23293,26910}, {23294,26914}, {23295,26931}, {24611,24701}, {26900,26906}, {26930,26951}
X(26933) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26929, 1473), (63, 1368, 21015)
The homothetic center of these triangles is X(11923)
X(26934) lies on these lines: {1,1782}, {2,1762}, {3,18673}, {6,2312}, {9,20106}, {19,57}, {31,3827}, {38,55}, {40,376}, {48,1214}, {58,14015}, {63,69}, {65,603}, {81,18161}, {84,11471}, {184,18210}, {209,8679}, {212,17441}, {222,3942}, {223,2261}, {226,1726}, {255,18732}, {527,21375}, {579,18598}, {649,23726}, {774,3556}, {940,2294}, {1040,20780}, {1150,20896}, {1155,3198}, {1210,1842}, {1407,3197}, {1427,2182}, {1451,1829}, {1708,1763}, {1869,4292}, {2083,23620}, {2173,11347}, {2187,8758}, {2264,3752}, {2385,3914}, {2504,6084}, {2550,3980}, {3101,3164}, {3188,3212}, {3306,9816}, {3611,3937}, {3925,26933}, {4376,5845}, {5584,26927}, {5745,16551}, {5905,21368}, {6197,26877}, {6211,25568}, {7066,23154}, {7193,20254}, {8251,24467}, {8680,19645}, {9536,23958}, {10306,26928}, {10536,26884}, {11406,26866}, {11428,26889}, {11435,26892}, {11445,26910}, {11460,26914}, {11683,14829}, {12587,15523}, {17889,21381}, {19133,26923}, {19181,26931}, {20256,24332}, {26900,26908}, {26930,26952}, {26932,26957}
X(26934) = isogonal conjugate of the polar conjugate of X(17861)
X(26934) = isotomic conjugate of the polar conjugate of X(3924)
X(26934) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63, 8897, 3719), (63, 10319, 71)
The homothetic center of these triangles is X(8392)
X(26935) lies on these lines: {3,63}, {4,21015}, {9,1593}, {20,24320}, {25,40}, {28,5759}, {41,4300}, {55,201}, {56,212}, {64,71}, {74,26915}, {165,16389}, {185,219}, {378,26878}, {405,25019}, {573,2983}, {958,13734}, {962,4223}, {1204,3690}, {1425,7078}, {1486,7957}, {1498,26885}, {3145,10310}, {3219,11413}, {3305,11479}, {3428,13738}, {3515,5285}, {3516,26867}, {3587,11414}, {4220,26264}, {5085,26924}, {5657,7412}, {6056,19349}, {7330,21312}, {8273,22769}, {9786,26893}, {10373,13737}, {11425,26890}, {11440,26911}, {18913,26872}, {19172,26941}, {26936,26940}, {26937,26942}
X(26935) = {X(3), X(63)}-harmonic conjugate of X(26927)
The homothetic center of these triangles is X(8239)
X(26936) lies on these lines: {3,6414}, {4,26951}, {20,26945}, {25,26918}, {55,26948}, {56,26949}, {64,1151}, {74,26916}, {185,26920}, {371,378}, {577,1204}, {1322,6561}, {1498,26886}, {1593,26919}, {2063,5409}, {3516,26868}, {5085,26925}, {5584,26952}, {6200,11456}, {6409,10132}, {6458,10605}, {9786,26894}, {9862,9987}, {11413,26875}, {11425,26891}, {11440,26912}, {18913,26873}, {19172,26947}, {26927,26930}, {26935,26940}, {26937,26950}
X(26936) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 6457, 8911), (64, 1151, 26953)
The homothetic center of these triangles is X(17622)
X(26937) lies on these lines: {2,185}, {3,68}, {4,74}, {5,10605}, {20,21663}, {24,14216}, {25,6247}, {51,3088}, {55,26955}, {56,26956}, {64,235}, {69,18936}, {140,1181}, {155,10257}, {184,631}, {186,9833}, {287,16925}, {376,21659}, {378,26879}, {389,3541}, {394,16196}, {403,5878}, {417,6389}, {427,9786}, {468,1498}, {549,18914}, {550,18396}, {578,18916}, {974,5654}, {1092,11411}, {1147,6699}, {1192,1853}, {1352,17928}, {1425,3085}, {1503,3515}, {1593,6696}, {1620,17845}, {1885,10606}, {1907,17810}, {2781,15128}, {2929,5621}, {3086,3270}, {3089,11381}, {3146,13851}, {3147,6759}, {3183,6619}, {3269,3767}, {3516,12241}, {3517,16655}, {3520,18912}, {3522,18945}, {3523,3620}, {3524,18925}, {3529,18918}, {3542,6000}, {3546,5562}, {3548,13754}, {3574,8889}, {3580,11413}, {4846,10024}, {5054,19347}, {5064,11745}, {5085,26926}, {5094,12233}, {5133,9815}, {5218,18915}, {5432,19349}, {5433,19354}, {5448,20397}, {5584,26957}, {5622,15057}, {5703,10360}, {5892,14786}, {5895,10151}, {6102,16270}, {6225,6622}, {6241,7505}, {6353,12324}, {6467,10519}, {6515,13346}, {6623,12250}, {6746,23327}, {6815,21243}, {7288,18922}, {7383,16836}, {7487,11550}, {7507,13568}, {7544,15053}, {7689,18531}, {7691,16063}, {9140,12278}, {9540,21640}, {9936,22115}, {10018,11456}, {10201,13491}, {10299,10619}, {10539,16003}, {11064,12164}, {11204,13403}, {11245,11425}, {11250,19353}, {11403,15873}, {11424,11433}, {11440,26913}, {11442,22467}, {11585,12163}, {12161,23336}, {12174,16252}, {13148,15131}, {13352,18951}, {13935,21641}, {14156,15083}, {14379,15526}, {14516,15078}, {14561,15043}, {14585,21843}, {14683,17701}, {15122,16266}, {15738,18439}, {16238,18451}, {18381,18533}, {18570,18952}, {19172,26954}, {19348,19361}, {22533,22978}, {26927,26932}, {26935,26942}, {26936,26950}
X(26937) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18913, 185), (3, 26944, 6146), (9938, 12359, 68)
The homothetic center of these triangles is X(11040)
X(26938) lies on these lines: {3,63}, {4,26867}, {5,26939}, {9,1598}, {25,26878}, {40,1597}, {71,3527}, {201,999}, {212,1497}, {219,19347}, {220,6759}, {1181,3690}, {1656,21015}, {3219,11414}, {3305,11484}, {3517,5285}, {5050,26924}, {7412,21168}, {11426,26890}, {11432,26893}, {11441,26911}, {11456,26915}, {14530,26885}, {18914,26872}, {19173,26941}, {26942,26944}
X(26938) = {X(3), X(63)}-harmonic conjugate of X(26928)
The homothetic center of these triangles is X(11027)
X(26939) lies on these lines: {2,7085}, {4,9}, {5,26938}, {20,24320}, {37,5800}, {63,7386}, {69,72}, {201,388}, {210,5928}, {212,238}, {219,6776}, {220,1503}, {226,5268}, {228,464}, {329,4645}, {376,3220}, {377,17257}, {405,12410}, {427,26867}, {440,1260}, {443,4357}, {975,3487}, {1056,7174}, {1058,7290}, {1370,3219}, {1818,18446}, {1899,3690}, {2323,14912}, {3305,7392}, {3421,3717}, {3434,5278}, {3618,26924}, {3651,16119}, {3883,5082}, {3917,26871}, {4294,7083}, {4307,5276}, {4517,12588}, {5084,17353}, {5227,18935}, {5273,26118}, {5285,6353}, {5314,7494}, {5709,6804}, {6356,23603}, {6643,26921}, {7066,18915}, {7193,25406}, {7379,26059}, {10519,26932}, {11206,26885}, {11427,26890}, {11433,26893}, {11442,26911}, {11457,26915}, {17306,17582}, {19174,26941}, {21912,26040}, {23291,26942}, {26940,26945}
X(26939) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (63, 7386, 26929), (7085, 21015, 2)
The homothetic center of these triangles is X(11925)
X(26940) lies on these lines: {9,26919}, {40,26918}, {63,26930}, {71,6414}, {72,6413}, {201,26948}, {212,26949}, {219,26920}, {220,26953}, {371,26878}, {577,3690}, {3219,26875}, {5415,7968}, {7085,8911}, {21015,26951}, {26867,26868}, {26872,26873}, {26885,26886}, {26890,26891}, {26893,26894}, {26911,26912}, {26915,26916}, {26921,26922}, {26924,26925}, {26935,26936}, {26939,26945}, {26941,26947}, {26942,26950}
The homothetic center of these triangles is X(11926)
X(26941) lies on these lines: {9,275}, {40,19169}, {54,72}, {63,95}, {71,8795}, {97,3219}, {201,19175}, {212,19182}, {219,19170}, {220,19180}, {3305,19188}, {3690,21638}, {7085,19189}, {9792,26893}, {16030,26867}, {19166,26872}, {19167,26911}, {19168,26915}, {19171,26924}, {19172,26935}, {19173,26938}, {19174,26939}, {19179,26921}, {21015,23295}, {26885,26887}, {26901,26902}, {26940,26947}, {26942,26954}
X(26941) = {X(63), X(95)}-harmonic conjugate of X(26931)
The homothetic center of these triangles is X(17623)
X(26942) lies on these lines: {2,219}, {3,23162}, {7,19822}, {8,278}, {9,13567}, {10,12}, {34,5814}, {40,6247}, {48,7536}, {57,141}, {63,343}, {66,12329}, {69,222}, {71,440}, {81,22123}, {125,3690}, {197,12587}, {200,223}, {201,3695}, {212,26956}, {220,26958}, {225,5295}, {281,329}, {297,1947}, {306,307}, {312,1952}, {319,1943}, {321,8736}, {355,5307}, {427,26893}, {468,26885}, {517,1848}, {524,2003}, {594,6354}, {599,1407}, {608,5739}, {651,2895}, {756,21717}, {908,6708}, {914,18607}, {940,22132}, {1254,20653}, {1368,3781}, {1451,17698}, {1460,11358}, {1465,3687}, {1471,24943}, {1503,5285}, {1766,5928}, {1783,18687}, {1864,12618}, {1899,7085}, {2318,21912}, {2323,23292}, {2594,3811}, {3085,5711}, {3219,3580}, {3452,26005}, {3564,3955}, {3682,18641}, {3745,13405}, {3782,17861}, {3911,20106}, {3917,26933}, {3949,6356}, {3969,4552}, {3990,17056}, {4016,4415}, {4383,22131}, {4904,24789}, {5219,5743}, {5273,26540}, {5432,6056}, {5718,22134}, {5849,20986}, {6057,7068}, {6510,18652}, {6676,7193}, {7011,20208}, {7080,26027}, {7140,21028}, {7499,26889}, {7522,26063}, {7680,10478}, {10198,19701}, {10371,21147}, {10479,15844}, {10519,26929}, {11245,26890}, {12359,26921}, {12526,20306}, {17077,18139}, {17484,24146}, {17811,20266}, {19542,24310}, {19645,21270}, {21062,21871}, {21072,22001}, {21231,25361}, {21483,26130}, {23291,26939}, {26580,26609}, {26867,26869}, {26878,26879}, {26901,26905}, {26911,26913}, {26915,26917}, {26924,26926}, {26935,26937}, {26938,26944}, {26940,26950}, {26941,26954}
X(26942) = isogonal conjugate of X(2189)
X(26942) = isotomic conjugate of the isogonal conjugate of X(2197)
X(26942) = isotomic conjugate of the polar conjugate of X(12)
X(26942) = polar conjugate of the isogonal conjugate of X(7066)
X(26942) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26872, 219), (3, 23162, 23199)
The homothetic center of these triangles is X(11042)
X(26943) lies on the line {48,26946}
The homothetic center of these triangles is X(17624)
X(26944) lies on these lines: {2,18914}, {3,68}, {4,3426}, {5,18909}, {6,19361}, {25,11457}, {30,18913}, {64,18390}, {125,399}, {140,3619}, {184,3526}, {185,381}, {235,12315}, {382,10605}, {389,1853}, {403,12174}, {427,11432}, {468,14530}, {495,18915}, {496,18922}, {549,18925}, {550,18931}, {858,12160}, {999,26955}, {1192,18400}, {1204,1657}, {1351,18951}, {1368,11411}, {1503,3517}, {1593,18912}, {1595,3527}, {1596,12324}, {1597,6247}, {1598,13567}, {3088,18950}, {3167,3548}, {3295,26956}, {3448,17928}, {3516,12022}, {3534,17712}, {3541,11245}, {3546,3564}, {3567,5064}, {3580,11414}, {3627,18918}, {5050,26926}, {5054,19357}, {5076,13851}, {5094,7592}, {5447,6467}, {5622,15132}, {5890,7507}, {6147,10360}, {6193,16196}, {6391,18934}, {6642,18440}, {6759,26958}, {7395,18911}, {7517,21970}, {7526,10264}, {8567,20417}, {8780,16238}, {8981,18923}, {9140,10574}, {9704,13198}, {9777,15559}, {9786,18381}, {9818,18952}, {10018,26864}, {10306,26957}, {10516,11695}, {10606,13403}, {10627,15073}, {10938,14852}, {11425,23329}, {11441,26913}, {11456,26917}, {11585,12164}, {12111,16072}, {12163,22808}, {12173,25739}, {13367,15720}, {13382,23325}, {13903,21640}, {13961,21641}, {13966,18924}, {14912,16774}, {15696,21663}, {16003,17818}, {17836,22834}, {19173,26954}, {19360,19362}, {26928,26932}, {26938,26942}
X(26944) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18914, 19347), (3, 25738, 12429), (1899, 26937, 6146)
The homothetic center of these triangles is X(11030)
X(26945) lies on these lines: {2,8911}, {4,371}, {20,26936}, {69,1590}, {159,3155}, {372,18916}, {388,26948}, {427,26868}, {497,26949}, {577,1899}, {590,10132}, {1151,17845}, {1370,26875}, {1503,26953}, {2550,26952}, {3618,26925}, {6458,18909}, {6643,26922}, {6776,26920}, {11206,26886}, {11427,26891}, {11433,26894}, {11442,26912}, {11457,26916}, {19174,26947}, {23291,26950}, {26929,26930}, {26939,26940}
X(26945) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3068, 12257, 6413), (8911, 26951, 2)
The homothetic center of these triangles is X(8244)
X(26946) lies on the line {48,26943}
The homothetic center of these triangles is X(8246)
X(26947) lies on these lines: {54,371}, {97,26875}, {275,26919}, {577,21638}, {6413,8795}, {6457,8884}, {8911,19189}, {9792,26894}, {16030,26868}, {19166,26873}, {19167,26912}, {19168,26916}, {19169,26918}, {19170,26920}, {19171,26925}, {19172,26936}, {19174,26945}, {19175,26948}, {19179,26922}, {19180,26953}, {19181,26952}, {19182,26949}, {23295,26951}, {26886,26887}, {26930,26931}, {26940,26941}, {26950,26954}
The homothetic center of these triangles is X(8247)
X(26948) lies on these lines: {1,6457}, {12,26951}, {33,26918}, {34,26919}, {55,26936}, {56,8911}, {65,2067}, {73,6414}, {201,26940}, {221,26953}, {371,1870}, {388,26945}, {577,1425}, {603,26930}, {1060,26922}, {1398,26868}, {1428,26925}, {4296,26875}, {18915,26873}, {19175,26947}, {19349,26920}, {19365,26891}, {19366,26894}, {19367,26912}, {19368,26916}, {26886,26888}, {26950,26955}
X(26948) = {X(1), X(6457)}-harmonic conjugate of X(26949)
The homothetic center of these triangles is X(8248)
X(26949) lies on these lines: {1,6457}, {33,26919}, {34,26918}, {55,8911}, {56,26936}, {212,26940}, {371,6198}, {497,26945}, {577,3270}, {1062,26922}, {2066,6413}, {2192,26953}, {2330,26925}, {3100,26875}, {7004,26930}, {7071,26868}, {10535,26886}, {11429,26891}, {11436,26894}, {11446,26912}, {11461,26916}, {18922,26873}, {19182,26947}, {19354,26920}, {26950,26956}
X(26949) = {X(1), X(6457)}-harmonic conjugate of X(26948)
The homothetic center of these triangles is X(17627)
X(26950) lies on these lines: {2,26873}, {5,6458}, {125,577}, {371,26879}, {372,1594}, {427,26894}, {468,26886}, {615,6414}, {1899,8911}, {3580,26875}, {6247,26918}, {8252,10133}, {8961,13970}, {11090,20563}, {11245,26891}, {12359,26922}, {13567,26919}, {23291,26945}, {26868,26869}, {26912,26913}, {26916,26917}, {26925,26926}, {26930,26932}, {26936,26937}, {26940,26942}, {26947,26954}, {26948,26955}, {26949,26956}, {26952,26957}, {26953,26958}
X(26950) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26873, 26920), (125, 577, 26951)
The homothetic center of these triangles is X(17610)
X(26951) lies on these lines: {2,8911}, {4,26936}, {5,6457}, {12,26948}, {125,577}, {235,26918}, {371,1594}, {372,26879}, {427,26919}, {590,6413}, {858,26875}, {1503,26886}, {1853,26953}, {1899,26920}, {3589,26925}, {3925,26952}, {5094,26868}, {8253,10132}, {11091,20563}, {11585,26922}, {13567,26894}, {21015,26940}, {23291,26873}, {23292,26891}, {23293,26912}, {23294,26916}, {23295,26947}, {26930,26933}
X(26951) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 26945, 8911), (125, 577, 26950)
The homothetic center of these triangles is X(11996)
X(26952) lies on these lines: {19,26919}, {40,6457}, {55,8911}, {65,2067}, {71,6414}, {371,6197}, {577,3611}, {2550,26945}, {3101,26875}, {3197,26953}, {3925,26951}, {5584,26936}, {8251,26922}, {10536,26886}, {11406,26868}, {11428,26891}, {11435,26894}, {11445,26912}, {11460,26916}, {11471,26918}, {18921,26873}, {19133,26925}, {19181,26947}, {19350,26920}, {26930,26934}, {26950,26957}
The homothetic center of these triangles is X(18234)
X(26953) lies on these lines: {3,3093}, {5,1322}, {6,3155}, {22,26912}, {24,26916}, {25,577}, {32,19006}, {64,1151}, {97,15187}, {154,8911}, {184,26868}, {216,5410}, {220,26940}, {221,26948}, {371,1181}, {394,26875}, {1407,26930}, {1498,6457}, {1503,26945}, {1583,11513}, {1584,10961}, {1599,11417}, {1853,26951}, {2192,26949}, {3068,21736}, {3092,14152}, {3197,26952}, {3284,5411}, {5065,19005}, {5407,10960}, {5413,15905}, {6458,9786}, {8908,26864}, {10132,10533}, {13567,26873}, {15811,26918}, {17809,26891}, {17810,26894}, {17814,26922}, {19132,26925}, {19180,26947}, {26950,26958}
X(26953) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (64, 1151, 26936), (1151, 17819, 6413), (26919, 26920, 6)
The homothetic center of these triangles is X(17628)
X(26954) lies on these lines: {2,19166}, {54,140}, {95,343}, {97,3580}, {125,21638}, {235,19206}, {275,6749}, {427,9792}, {468,26887}, {1899,19189}, {6146,19185}, {6247,19169}, {8612,8795}, {8901,19209}, {11585,19194}, {12359,19179}, {16030,26869}, {19167,26913}, {19168,26917}, {19171,26926}, {19172,26937}, {19173,26944}, {19174,23291}, {19175,26955}, {19180,26958}, {19181,26957}, {19182,26956}, {26902,26905}, {26931,26932}, {26941,26942}, {26947,26950}
X(26954) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 19166, 19170), (125, 21638, 23295)
The homothetic center of these triangles is X(17629)
X(26955) lies on these lines: {1,26956}, {2,18915}, {3,10071}, {4,10076}, {11,185}, {12,125}, {33,6247}, {34,10361}, {36,6146}, {55,26937}, {56,1899}, {65,429}, {73,18641}, {184,5433}, {201,3695}, {221,26958}, {235,7355}, {343,1038}, {388,23291}, {427,19366}, {468,26888}, {497,18913}, {499,1181}, {603,26932}, {999,26944}, {1060,12359}, {1069,18917}, {1204,6284}, {1213,1409}, {1398,26869}, {1428,26926}, {1479,10605}, {1853,11392}, {1870,26879}, {2477,13198}, {3086,18909}, {3157,3548}, {3215,7515}, {3485,10360}, {3580,4296}, {4294,18931}, {4299,18396}, {5204,19467}, {6776,7288}, {7066,21015}, {7352,11585}, {9786,11393}, {11245,19365}, {11399,14216}, {14986,18922}, {15325,18914}, {15326,21659}, {15338,21663}, {18965,21640}, {18966,21641}, {18970,25738}, {19175,26954}, {19367,26913}, {19368,26917}, {26903,26905}, {26948,26950}
X(26955) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18915, 19349), (125, 1425, 12)
The homothetic center of these triangles is X(17630)
X(26956) lies on these lines: {1,26955}, {2,18922}, {3,10055}, {4,10060}, {11,125}, {12,185}, {33,13567}, {34,6247}, {35,6146}, {55,1899}, {56,26937}, {184,5432}, {212,26942}, {215,13198}, {235,6285}, {343,1040}, {388,18913}, {427,11436}, {468,10535}, {497,23291}, {498,1181}, {1062,12359}, {1069,3548}, {1146,8735}, {1204,7354}, {1364,26933}, {1425,15888}, {1478,10605}, {1853,11393}, {2192,26958}, {2330,26926}, {2342,25968}, {2968,7004}, {3085,18909}, {3100,3580}, {3157,18917}, {3295,26944}, {9638,10018}, {11398,14216}, {15526,17421}, {19182,26954}
X(26956) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18922, 19354), (125, 3270, 11)
The homothetic center of these triangles is X(17631)
X(26957) lies on these lines: {2,18921}, {19,5928}, {55,1899}, {65,429}, {71,440}, {125,3611}, {235,6254}, {343,10319}, {427,11435}, {468,10536}, {1409,17056}, {2550,23291}, {3101,3580}, {3197,26958}, {5584,26937}, {6146,10902}, {6197,26879}, {6237,11585}, {6247,11471}, {8251,12359}, {8896,18589}, {10306,26944}, {11245,11428}, {11406,26869}, {11445,26913}, {11460,26917}, {19133,26926}, {19181,26954}, {26905,26908}, {26932,26934}, {26950,26952}
X(26957) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 18921, 19350), (125, 3611, 3925)
The homothetic center of these triangles is X(18236)
X(26958) lies on these lines: {2,6}, {3,2929}, {4,1192}, {5,9786}, {20,1620}, {22,26913}, {24,25739}, {25,125}, {51,5094}, {55,21912}, {64,235}, {68,16238}, {140,11425}, {154,468}, {184,26869}, {186,18396}, {220,26942}, {221,26955}, {278,1146}, {281,6354}, {338,2052}, {373,7539}, {381,11438}, {389,1656}, {393,459}, {402,5877}, {403,10605}, {427,17810}, {441,3053}, {451,5706}, {465,11480}, {466,11481}, {470,5340}, {471,5339}, {542,8780}, {578,3526}, {631,12241}, {800,20208}, {1030,21482}, {1073,15526}, {1181,7505}, {1204,5895}, {1350,1368}, {1351,6723}, {1352,6677}, {1407,20266}, {1427,18634}, {1498,3542}, {1503,6353}, {1585,23251}, {1586,23261}, {1589,6409}, {1590,6410}, {1597,23329}, {1598,20299}, {1609,6617}, {1885,8567}, {1990,14361}, {1995,23293}, {2192,26956}, {2883,6622}, {3003,6509}, {3052,25968}, {3060,11746}, {3066,5133}, {3070,3535}, {3071,3536}, {3088,15873}, {3089,6247}, {3090,12233}, {3091,13568}, {3119,7147}, {3144,5786}, {3147,6146}, {3167,5972}, {3168,15274}, {3197,26957}, {3515,17845}, {3517,18381}, {3767,20207}, {3772,24005}, {3796,18911}, {3830,7687}, {4265,25907}, {5020,10516}, {5054,11430}, {5055,18388}, {5070,11432}, {5085,6676}, {5096,25947}, {5159,11477}, {5449,6642}, {5480,8889}, {5644,25555}, {5816,6678}, {5943,19161}, {6525,6619}, {6623,15311}, {6644,14852}, {6759,26944}, {6776,10192}, {7547,11704}, {7569,15024}, {7592,14940}, {7716,23300}, {8550,18950}, {9119,25525}, {9306,15069}, {9820,18951}, {10018,18912}, {10594,23294}, {11206,15448}, {11216,15118}, {11245,17809}, {11585,17834}, {12359,17814}, {12828,15131}, {13561,13861}, {14216,21841}, {15081,18559}, {15585,18935}, {15750,21659}, {15752,17578}, {16252,18909}, {18405,18533}, {18494,23325}, {19132,26926}, {19180,26954}, {19786,26531}, {24789,26001}, {26905,26909}, {26950,26953}
X(26958) = midpoint of X(i) and X(j) for these {i,j}: {6353, 23291}, {6623, 18931}
X(26958) = polar conjugate of X(18848)
X(26958) = complement of the isotomic conjugate of X(459)
X(26958) = complement of the polar conjugate of X(6526)
X(26958) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (343, 17811, 599), (11433, 23292, 6), (13567, 23292, 11433)
Collineation mappings involving Gemini triangle 51: X(26959)-X(27019)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 51, as in centers X(26595)-X(27019). Then
m(X) = a (b - c)^2 x + b (a^2 + c^2) y + c (a^2 + b^2) z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 4, 2018)
X(26959) lies on these lines: {1, 2}, {5, 26561}, {6, 25505}, {9, 26107}, {11, 6656}, {35, 4366}, {36, 384}, {39, 350}, {55, 11285}, {56, 7770}, {76, 2275}, {83, 172}, {86, 23660}, {140, 26629}, {183, 16502}, {192, 27351}, {194, 3760}, {238, 1923}, {274, 4602}, {291, 12263}, {314, 27633}, {315, 9599}, {330, 3761}, {335, 3953}, {385, 5299}, {458, 11399}, {474, 20172}, {496, 8362}, {497, 16043}, {609, 7787}, {667, 18102}, {668, 17448}, {894, 20372}, {946, 8924}, {956, 26687}, {993, 16916}, {1003, 5204}, {1015, 1909}, {1078, 1914}, {1107, 18140}, {1111, 7187}, {1475, 17499}, {1478, 16924}, {1479, 7791}, {1500, 6683}, {1575, 17143}, {1920, 18833}, {1966, 16706}, {2241, 7815}, {2242, 7808}, {2276, 7786}, {2886, 17670}, {2975, 17541}, {3329, 5280}, {3403, 4000}, {3405, 27004}, {3503, 3911}, {3508, 17353}, {3552, 7280}, {3583, 6655}, {3585, 16044}, {3662, 17181}, {3664, 26149}, {3673, 25918}, {3721, 18061}, {3739, 20363}, {3825, 17669}, {3873, 27285}, {3875, 26042}, {4063, 26984}, {4187, 26558}, {4253, 24514}, {4299, 14035}, {4316, 6658}, {4396, 7760}, {4649, 20148}, {5025, 7741}, {5248, 17684}, {5251, 16918}, {5253, 17686}, {5267, 17692}, {5277, 20179}, {5298, 6661}, {5322, 16950}, {5332, 6179}, {5433, 7807}, {5563, 6645}, {6284, 8356}, {6376, 16975}, {6381, 21226}, {6626, 25530}, {6691, 17694}, {7031, 7793}, {7288, 14001}, {7296, 7878}, {7354, 8370}, {7761, 9665}, {7819, 15325}, {7841, 10896}, {7951, 16921}, {8359, 15171}, {9597, 11185}, {9669, 11287}, {10069, 10352}, {10483, 11361}, {10589, 14064}, {11321, 25524}, {14210, 24786}, {15271, 16781}, {15326, 19687}, {16061, 18758}, {16552, 27262}, {16564, 26992}, {16720, 27918}, {16738, 17210}, {16887, 19579}, {16912, 25542}, {17117, 27102}, {17121, 26772}, {17178, 17288}, {17205, 26813}, {17237, 25534}, {17265, 24679}, {17277, 21760}, {17287, 27095}, {17291, 27145}, {17302, 25599}, {17348, 27111}, {17755, 25079}, {17758, 27155}, {17760, 24172}, {17761, 24170}, {18152, 23632}, {18170, 21238}, {19565, 21443}, {19792, 26746}, {21327, 21412}, {21431, 27698}, {24390, 26582}, {24945, 25660}, {25280, 27076}, {25498, 27164}, {25521, 26106}, {26279, 27010}, {26960, 26977}, {26962, 26966}, {26969, 26989}, {26988, 26997}, {27007, 27011}, {27185, 27190}
X(26959) = complement of X(26752)
X(26960) lies on these lines: {2, 3}, {1975, 27515}, {26959, 26977}, {26963, 26970}, {26964, 27009}, {26965, 27335}, {26978, 27008}
X(26961) lies on these lines: {2, 3}, {6, 6604}, {34, 26203}, {894, 20605}, {1730, 26065}, {1861, 26153}, {25242, 26770}, {26035, 26059}, {26085, 27039}
X(26962) lies on these lines: {2, 3}, {26959, 26966}, {27000, 27324}
X(26963) lies on these lines: {2, 6}, {37, 27166}, {39, 192}, {75, 27809}, {239, 27102}, {291, 17142}, {319, 27044}, {583, 17350}, {604, 26222}, {894, 20372}, {1015, 3963}, {1086, 27011}, {2275, 17148}, {2350, 24514}, {3248, 21238}, {3662, 24237}, {3758, 25505}, {3943, 26797}, {4000, 27107}, {4253, 27262}, {4360, 26764}, {4393, 5153}, {4687, 27037}, {5069, 18147}, {7032, 21278}, {7263, 26850}, {16679, 18082}, {16696, 18046}, {16706, 26982}, {16710, 20913}, {16726, 18143}, {16826, 27032}, {17169, 27155}, {17231, 27113}, {17233, 27136}, {17243, 27073}, {17246, 26769}, {17260, 25510}, {17273, 25534}, {17288, 27106}, {17295, 26774}, {17305, 26857}, {17363, 27091}, {17367, 27311}, {17368, 27261}, {17759, 26815}, {18170, 20352}, {20868, 23488}, {21257, 22343}, {24327, 25295}, {26012, 26176}, {26960, 26970}, {26969, 26973}, {26974, 27007}, {26978, 27005}
X(26964) lies on these lines: {1, 2}, {86, 27172}, {350, 26770}, {673, 5253}, {1015, 26978}, {1212, 25261}, {1475, 20347}, {1509, 27189}, {1655, 27348}, {2082, 26229}, {2140, 17169}, {2170, 17048}, {2275, 16742}, {3061, 20247}, {3618, 27058}, {3662, 26818}, {3663, 23649}, {3759, 27039}, {4000, 27161}, {4657, 16713}, {5701, 17302}, {6691, 24582}, {14621, 26802}, {16706, 26995}, {16975, 26100}, {17103, 26845}, {17141, 18061}, {17164, 24631}, {17304, 26836}, {17474, 20335}, {17672, 24390}, {17754, 20244}, {19284, 20172}, {19717, 27142}, {19743, 27181}, {23903, 26794}, {24596, 25524}, {25237, 26690}, {26813, 27011}, {26960, 27009}, {26977, 26989}, {26988, 27000}
X(26965) lies on these lines: {1, 2}, {6, 17137}, {75, 17489}, {81, 27185}, {86, 27169}, {100, 16061}, {141, 3780}, {213, 17152}, {350, 27040}, {392, 26689}, {607, 17913}, {673, 1220}, {894, 20605}, {942, 26562}, {964, 20172}, {1086, 4754}, {1107, 16705}, {1334, 17353}, {1468, 24586}, {1478, 16910}, {1573, 25499}, {1655, 17302}, {1829, 15149}, {1909, 16706}, {2082, 10436}, {2241, 25497}, {2275, 27162}, {2276, 27109}, {2280, 24549}, {2292, 17755}, {2295, 3589}, {2345, 20174}, {2975, 16060}, {3212, 17077}, {3263, 25263}, {3618, 21281}, {3672, 27523}, {3691, 4357}, {3721, 17141}, {3739, 17497}, {3975, 19786}, {4026, 27047}, {4202, 26561}, {4424, 25248}, {4657, 24735}, {4699, 21216}, {4972, 6656}, {5051, 26558}, {5251, 16931}, {5303, 21937}, {5826, 27300}, {6376, 26100}, {8192, 16412}, {11321, 24596}, {16583, 26234}, {16707, 16735}, {17062, 24995}, {17200, 26843}, {17356, 24656}, {17370, 24524}, {17499, 20347}, {17672, 26582}, {17694, 24582}, {17741, 27078}, {18107, 21301}, {19717, 27152}, {20255, 24512}, {20963, 21240}, {24174, 24629}, {24443, 24631}, {25264, 26770}, {26960, 27335}, {26989, 27009}, {26995, 27003}
X(26966) lies on these lines: {2, 11}, {26959, 26962}
X(26967) lies on these lines: {2, 3}
X(26968) lies on these lines: {2, 3}, {10566, 27015}
X(26969) lies on these lines: {2, 31}, {5205, 27128}, {5297, 27061}, {5329, 16949}, {16706, 27004}, {26959, 26989}, {26963, 26973}, {26974, 27009}
X(26970) lies on these lines: {2, 32}, {26960, 26963}, {26978, 26996}
X(26971) lies on these lines: {1, 21278}, {2, 37}, {44, 26799}, {76, 17148}, {86, 27166}, {141, 27106}, {142, 27159}, {239, 26772}, {319, 26756}, {320, 17178}, {594, 27044}, {894, 20372}, {1086, 26979}, {1100, 26821}, {1125, 2309}, {1213, 17475}, {1654, 20561}, {1964, 24688}, {3056, 11376}, {3589, 26982}, {3616, 21299}, {3661, 27095}, {3662, 24220}, {3728, 17793}, {3778, 12263}, {3934, 3963}, {4272, 27041}, {4357, 16738}, {7155, 15315}, {16826, 25538}, {17030, 17248}, {17045, 27042}, {17053, 20913}, {17174, 17184}, {17229, 26774}, {17235, 26857}, {17277, 27036}, {17285, 27113}, {17300, 26149}, {17307, 25534}, {17319, 27020}, {17344, 26768}, {17379, 23660}, {17445, 20352}, {21035, 25347}, {21257, 21352}, {25591, 27680}, {26279, 26977}, {26972, 26987}, {27097, 27155}
X(26972) lies on these lines: {2, 39}, {17761, 24170}, {26960, 26963}, {26971, 26987}, {26996, 27005}
X(26973) lies on these lines: {1, 2}, {16742, 16748}, {26963, 26969}
X(26974) lies on these lines: {1, 2}, {75, 22218}, {310, 16606}, {1920, 3121}, {1978, 21345}, {21384, 26108}, {26963, 27007}, {26969, 27009}, {26977, 26986}
X(26975) lies on these lines: {2, 44}, {6, 27102}, {86, 27032}, {87, 21278}, {190, 27166}, {192, 2275}, {524, 27044}, {536, 26821}, {798, 26983}, {894, 20372}, {1086, 26982}, {1100, 26764}, {3248, 20352}, {3589, 27017}, {3618, 27311}, {4473, 26113}, {4851, 27136}, {5749, 27261}, {5750, 16738}, {6542, 26076}, {7321, 27011}, {10436, 27154}, {17120, 26772}, {17178, 17289}, {17297, 27113}, {17315, 26797}, {17317, 27073}, {17320, 26769}, {17364, 27095}, {17367, 27107}, {17368, 27145}, {17374, 26774}, {17379, 17750}, {17384, 26857}, {26979, 27078}
X(26976) lies on these lines: {2, 45}, {7, 27145}, {37, 18143}, {75, 26772}, {76, 192}, {256, 17142}, {594, 26756}, {894, 20372}, {1215, 3123}, {1654, 17152}, {2345, 27095}, {3122, 17140}, {3589, 27011}, {3662, 27261}, {4443, 17165}, {4670, 27166}, {6646, 16738}, {7321, 27017}, {16706, 27078}, {16710, 17053}, {16815, 27036}, {17030, 17333}, {17116, 27102}, {17178, 17365}, {17246, 27042}, {17257, 27142}, {17260, 27154}, {17261, 25538}, {17271, 26768}, {17277, 26799}, {17280, 26149}, {17292, 27106}, {17340, 27073}, {17352, 27192}, {17359, 27113}, {17366, 26850}, {20072, 26801}, {24325, 24399}, {26125, 27252}
X(26977) lies on these lines: {2, 11}, {894, 26981}, {26279, 26971}, {26561, 26802}, {26959, 26960}, {26963, 26969}, {26964, 26989}, {26974, 26986}
X(26978) lies on these lines: {1, 2140}, {2, 39}, {4, 26099}, {8, 141}, {10, 24790}, {37, 20880}, {69, 26085}, {86, 17686}, {142, 23536}, {213, 20347}, {244, 17048}, {277, 1390}, {315, 16910}, {335, 17141}, {350, 27097}, {377, 4648}, {379, 940}, {672, 24214}, {964, 15668}, {1015, 26964}, {1086, 2295}, {1111, 16600}, {1193, 20335}, {1334, 3663}, {1475, 24215}, {1574, 27025}, {1909, 16706}, {3008, 3691}, {3314, 16906}, {3589, 4754}, {3662, 17033}, {3666, 6706}, {3672, 27253}, {3673, 26242}, {3720, 23682}, {3734, 11319}, {3739, 4968}, {3752, 20436}, {3780, 17366}, {3924, 24249}, {3975, 18136}, {3995, 20432}, {4039, 24169}, {4260, 4310}, {4441, 27248}, {4447, 17061}, {4642, 21232}, {4851, 5300}, {5046, 26145}, {5264, 14377}, {5275, 17683}, {5276, 17682}, {5337, 14953}, {7191, 20556}, {7264, 24403}, {7816, 17539}, {7892, 17003}, {9620, 26653}, {10448, 25500}, {10459, 17050}, {15971, 24220}, {16020, 16850}, {16583, 26563}, {16927, 16994}, {17046, 21935}, {17143, 26759}, {17149, 27313}, {17164, 24254}, {17169, 24512}, {17245, 17672}, {17300, 17680}, {17313, 17679}, {17316, 18139}, {17382, 24656}, {17497, 20955}, {17751, 21240}, {18150, 24524}, {26960, 27008}, {26963, 27005}, {26970, 26996}
X(26979) lies on these lines: {2, 6}, {10, 24659}, {39, 18137}, {75, 17053}, {311, 26633}, {314, 24530}, {594, 27102}, {980, 18147}, {1086, 26971}, {1230, 18601}, {1232, 26588}, {1284, 5433}, {1966, 16706}, {3634, 25113}, {3662, 25505}, {3934, 18143}, {3943, 26764}, {3948, 16696}, {4357, 24237}, {4369, 21143}, {4389, 26107}, {4447, 18082}, {4751, 17030}, {6675, 25492}, {7263, 27107}, {10471, 24897}, {17045, 27166}, {17228, 27091}, {17233, 26042}, {17295, 26752}, {17317, 27020}, {17322, 25510}, {17366, 27311}, {17369, 27261}, {20927, 25918}, {21236, 26176}, {21330, 24327}, {26975, 27078}, {26986, 26987}, {26989, 26997}, {26993, 27006}
X(26980) lies on these lines: {1, 2}
X(26981) lies on these lines: {1, 2}, {894, 26977}, {16742, 16750}, {27003, 27009}
X(26982) lies on these lines: {1, 2}, {524, 27106}, {894, 27011}, {1086, 26975}, {3589, 26971}, {3759, 27095}, {3875, 27136}, {3946, 26764}, {4063, 27013}, {5750, 26812}, {10436, 27192}, {16706, 26963}, {16738, 17384}, {17045, 27032}, {17116, 26850}, {17121, 26756}, {17178, 17291}, {17319, 27073}, {17366, 27102}, {17370, 27145}, {17398, 27154}, {18106, 18107}, {20072, 26142}
X(26983) lies on these lines: {2, 661}, {649, 23803}, {798, 26975}, {810, 21302}, {850, 7180}, {1150, 18199}, {1577, 3960}, {2978, 24674}, {4761, 26115}, {4776, 25511}, {4885, 21894}, {7199, 24900}, {7252, 19684}, {11322, 23864}, {16751, 25667}, {17494, 27345}, {20295, 26114}, {21297, 26854}, {27138, 27193}
X(26984) lies on these lines: {2, 667}, {4063, 26959}, {23807, 27318}, {27013, 27016}
X(26985) lies on these lines: {2, 650}, {37, 4828}, {192, 4411}, {513, 26798}, {514, 17266}, {523, 7925}, {649, 21297}, {661, 4928}, {812, 24924}, {885, 15283}, {1577, 3960}, {1638, 4467}, {3004, 4789}, {3091, 8760}, {3239, 21183}, {3617, 14077}, {3618, 9015}, {3620, 9001}, {3662, 23838}, {3676, 25259}, {3700, 4453}, {3776, 6548}, {3835, 4379}, {3840, 23791}, {3995, 25271}, {4024, 14475}, {4106, 26853}, {4358, 21611}, {4369, 4728}, {4374, 4526}, {4380, 23813}, {4500, 17161}, {4554, 27134}, {4560, 4823}, {4671, 21438}, {4699, 4777}, {4791, 21222}, {4804, 25380}, {4814, 17072}, {4895, 21302}, {5274, 11934}, {7199, 26775}, {7658, 27486}, {8047, 17036}, {8142, 21734}, {14996, 22383}, {16892, 21204}, {17166, 21260}, {17291, 23810}, {18155, 26822}, {23100, 25244}, {23806, 27186}, {23893, 26531}, {27114, 27293}, {27167, 27345}
X(26985) = complement of X(26777)
X(26985) = anticomplement of X(31209)
X(26986) lies on these lines: {2, 31}, {6, 20561}, {7, 26108}, {335, 27166}, {894, 20372}, {2295, 3589}, {3662, 24491}, {12263, 24349}, {16830, 27080}, {17030, 17368}, {17232, 27341}, {17291, 27159}, {17398, 27148}, {18103, 20556}, {18111, 18705}, {20549, 20669}, {26974, 26977}, {26979, 26987}
X(26987) lies on these lines: {1, 2}, {16705, 20530}, {26971, 26972}, {26979, 26986}
X(26988) lies on these lines: {2, 3}, {26959, 26997}, {26964, 27000}
X(26989) lies on these lines: {2, 3}, {6703, 27146}, {26959, 26969}, {26964, 26977}, {26965, 27009}, {26979, 26997}
X(26990) lies on these lines: {2, 3}, {1395, 26211}, {26279, 26971}
X(26991) lies on these lines: {2, 3}, {16568, 16706}
X(26992) lies on these lines: {2, 3}, {16564, 26959}
X(26993) lies on these lines: {2, 3}, {26979, 27006}
X(26994) lies on these lines: {2, 3}
X(26995) lies on these lines: {2, 3}, {16706, 26964}, {26965, 27003}
X(26996) lies on these lines: {2, 3}, {26970, 26978}, {26972, 27005}
X(26997) lies on these lines: {2, 7}, {3619, 27025}, {4188, 20470}, {15717, 26093}, {16706, 26964}, {16713, 16726}, {17227, 27039}, {17367, 26818}, {20172, 27145}, {20946, 25237}, {21255, 24778}, {26959, 26988}, {26979, 26989}
X(26998) lies on these lines: {2, 19}, {9, 4967}, {48, 26639}, {75, 3219}, {141, 7297}, {169, 17257}, {193, 2082}, {238, 17872}, {239, 5279}, {524, 7300}, {597, 5356}, {608, 26206}, {673, 11683}, {894, 20605}, {1731, 16574}, {1760, 3218}, {1763, 26132}, {1766, 26685}, {1781, 17023}, {1861, 5046}, {1890, 2475}, {1958, 3061}, {2183, 26699}, {2262, 15988}, {2329, 17868}, {2345, 27065}, {3008, 16566}, {3100, 17522}, {3589, 5341}, {3662, 7291}, {3663, 20602}, {4357, 16547}, {4416, 5540}, {4431, 17744}, {7083, 12530}, {7191, 17446}, {16548, 17353}, {16564, 26959}, {16568, 16706}, {17787, 23978}, {18698, 24588}, {21376, 26723}, {26279, 26971}
X(26999) lies on these lines: {2, 38}, {7292, 27030}, {17123, 27079}, {26959, 26969}
X(27000) lies on these lines: {1, 4209}, {2, 40}, {4, 26531}, {7, 2082}, {63, 27304}, {65, 673}, {169, 10025}, {239, 379}, {517, 17682}, {894, 20605}, {1697, 27253}, {1730, 16819}, {2140, 5011}, {2170, 7176}, {2270, 26125}, {2475, 26526}, {3218, 27171}, {3303, 27475}, {3339, 24600}, {3496, 17050}, {3509, 20257}, {3753, 17681}, {3869, 24596}, {3877, 17683}, {4185, 14621}, {4384, 12526}, {4872, 21258}, {4904, 4911}, {5046, 26532}, {5088, 14377}, {5819, 6604}, {6915, 25954}, {6999, 25935}, {7223, 9311}, {7384, 26001}, {7406, 9800}, {11329, 24559}, {11349, 16826}, {12699, 17671}, {17030, 24627}, {17220, 27420}, {17397, 24580}, {17541, 25965}, {17691, 19860}, {24604, 26626}, {26959, 26960}, {26962, 27324}, {26964, 26988}, {27064, 27299}
X(27001) lies on these lines: {2, 48}, {894, 27010}, {16564, 26959}
X(27002) lies on these lines: {2, 7}, {8, 11512}, {21, 22376}, {40, 26093}, {46, 25492}, {88, 321}, {244, 7081}, {333, 16602}, {968, 26103}, {982, 5205}, {1054, 3840}, {1999, 3752}, {2975, 25965}, {3336, 19847}, {3699, 21342}, {3756, 4514}, {3757, 17063}, {4388, 5121}, {4429, 17728}, {4640, 25531}, {4847, 26073}, {4871, 17596}, {5122, 13735}, {5484, 8582}, {5741, 17288}, {5795, 25979}, {8056, 11679}, {9335, 26227}, {9843, 26117}, {14829, 16610}, {15803, 17697}, {16830, 17124}, {17020, 17121}, {17595, 18743}, {19242, 23169}, {20237, 25580}, {24183, 26724}, {26959, 26960}
X(27003) lies on these lines: {1, 1392}, {2, 7}, {5, 26877}, {6, 17020}, {8, 3338}, {10, 3337}, {11, 20292}, {20, 5804}, {21, 5439}, {23, 7293}, {31, 7292}, {36, 5883}, {38, 5297}, {40, 3622}, {42, 1054}, {46, 3616}, {55, 9352}, {65, 5253}, {72, 17531}, {78, 17572}, {79, 3825}, {81, 88}, {84, 3832}, {89, 8056}, {100, 354}, {110, 26889}, {145, 3333}, {149, 11019}, {165, 4666}, {171, 244}, {191, 19862}, {200, 4430}, {210, 9342}, {214, 5425}, {222, 5422}, {320, 5741}, {333, 24589}, {388, 25005}, {404, 942}, {411, 9940}, {474, 3868}, {484, 551}, {612, 4392}, {614, 9335}, {631, 5761}, {649, 21204}, {678, 9337}, {748, 4650}, {750, 982}, {896, 17123}, {912, 6946}, {938, 4190}, {940, 4850}, {962, 10586}, {984, 17124}, {1004, 11020}, {1005, 11575}, {1019, 4049}, {1046, 27627}, {1071, 6915}, {1125, 3336}, {1150, 19804}, {1155, 1621}, {1210, 2475}, {1376, 3873}, {1385, 1389}, {1393, 4296}, {1407, 10601}, {1434, 26563}, {1454, 7288}, {1465, 17074}, {1468, 24174}, {1473, 1995}, {1706, 3621}, {1709, 9779}, {1730, 19717}, {1748, 17917}, {1749, 11263}, {1768, 3817}, {1776, 10129}, {1943, 24148}, {1962, 17593}, {1993, 23140}, {1994, 22128}, {1999, 17495}, {2096, 6957}, {2975, 3812}, {3007, 3101}, {3058, 17051}, {3060, 3784}, {3085, 17437}, {3086, 17700}, {3090, 24467}, {3091, 18540}, {3187, 17490}, {3220, 13595}, {3245, 3898}, {3262, 4359}, {3304, 14923}, {3315, 3744}, {3339, 19861}, {3361, 19860}, {3487, 6921}, {3523, 5709}, {3525, 26921}, {3526, 26878}, {3543, 7171}, {3582, 16763}, {3587, 15692}, {3600, 5554}, {3634, 6763}, {3636, 11010}, {3647, 25542}, {3649, 6691}, {3666, 3723}, {3681, 4413}, {3683, 3848}, {3720, 17596}, {3750, 17450}, {3754, 4861}, {3816, 5057}, {3833, 4973}, {3840, 4418}, {3869, 5221}, {3870, 10980}, {3871, 5045}, {3874, 4420}, {3876, 16408}, {3885, 7373}, {3889, 5687}, {3916, 5047}, {3918, 5288}, {3922, 11260}, {3927, 16862}, {3937, 5943}, {3961, 17449}, {3995, 22003}, {4000, 27059}, {4003, 4682}, {4004, 24928}, {4090, 9458}, {4187, 24470}, {4189, 15803}, {4253, 21373}, {4292, 5046}, {4298, 20060}, {4384, 5361}, {4414, 26102}, {4438, 25961}, {4440, 16561}, {4511, 5902}, {4640, 5284}, {4641, 16602}, {4652, 16865}, {4655, 25960}, {4678, 6762}, {4855, 11518}, {4880, 10176}, {4921, 17348}, {4993, 26931}, {5012, 26884}, {5020, 26866}, {5044, 17535}, {5056, 7330}, {5059, 9841}, {5122, 17549}, {5133, 26933}, {5154, 9612}, {5176, 5434}, {5183, 10179}, {5205, 17165}, {5256, 14996}, {5262, 24046}, {5268, 7226}, {5269, 17024}, {5271, 5372}, {5272, 17127}, {5278, 24594}, {5285, 15246}, {5311, 17591}, {5314, 7496}, {5432, 25557}, {5433, 7098}, {5438, 11520}, {5535, 10165}, {5536, 10164}, {5550, 12514}, {5603, 6966}, {5640, 26892}, {5704, 6871}, {5714, 6931}, {5722, 17579}, {5770, 6854}, {5826, 7291}, {5880, 11680}, {5885, 21740}, {5927, 13243}, {6147, 13747}, {6245, 6894}, {6734, 12436}, {6904, 12649}, {6905, 10202}, {6918, 12528}, {6940, 24474}, {6997, 26929}, {7081, 17140}, {7146, 26639}, {7196, 23989}, {7262, 17125}, {7411, 11227}, {7419, 22344}, {7705, 9654}, {7998, 26893}, {8025, 17168}, {8226, 13226}, {9310, 26672}, {9345, 17592}, {9347, 17599}, {9782, 12609}, {10107, 20323}, {10199, 18393}, {10273, 10698}, {10404, 11681}, {10461, 17589}, {10528, 11037}, {10566, 18087}, {10580, 20075}, {10587, 12704}, {10914, 15179}, {11015, 12433}, {11220, 19541}, {11374, 17566}, {11491, 13373}, {11552, 11813}, {11684, 25917}, {12527, 25011}, {13407, 27529}, {13587, 24929}, {14450, 21616}, {14997, 23511}, {15024, 26914}, {15650, 16863}, {15932, 24541}, {15934, 16371}, {16297, 22458}, {16421, 22149}, {16465, 17612}, {16549, 17266}, {16568, 16706}, {16586, 26740}, {16610, 16671}, {16672, 17021}, {16815, 18206}, {16826, 20367}, {16915, 26634}, {17016, 24443}, {17121, 18164}, {17556, 18541}, {17740, 18141}, {17763, 24165}, {17825, 22129}, {17862, 18359}, {18134, 27757}, {18163, 26860}, {18398, 25440}, {19241, 23169}, {19245, 23206}, {21540, 25083}, {24175, 26723}, {24586, 24629}, {24602, 24631}, {26959, 26969}, {26964, 26988}, {26965, 26995}, {26981, 27009}
X(27004) lies on these lines: {2, 82}, {2295, 3589}, {2345, 3112}, {3405, 26959}, {16706, 26969}, {16890, 18101}, {18095, 18102}
X(27005) lies on these lines: {2, 32}, {377, 17500}, {2295, 3589}, {16889, 18101}, {17686, 18092}, {18082, 19874}, {26963, 26978}, {26972, 26996}
X(27006) lies on these lines: {2, 85}, {8, 20269}, {142, 5253}, {277, 10527}, {664, 26526}, {1385, 26140}, {3661, 25593}, {4000, 10529}, {4861, 4904}, {5086, 9317}, {5337, 17397}, {6646, 26674}, {7195, 26258}, {7483, 20328}, {16706, 26964}, {17073, 25876}, {17298, 25582}, {20935, 27337}, {21255, 24780}, {24784, 27529}, {26979, 26993}
X(27007) lies on these lines: {2, 87}, {26959, 27011}, {26963, 26974}
X(27008) lies on these lines: {2, 99}, {1015, 27009}, {1086, 27010}, {1111, 14838}, {2170, 4369}, {7192, 20982}, {17058, 26856}, {26100, 27302}, {26960, 26978}, {26972, 26996}
X(27009) lies on these lines: {2, 11}, {767, 3767}, {1015, 27008}, {1086, 27012}, {4904, 26847}, {7192, 20974}, {14936, 17494}, {17761, 27010}, {26960, 26964}, {26965, 26989}, {26969, 26974}, {26981, 27003}, {27146, 27302}
X(27010) lies on these lines: {2, 101}, {11, 18101}, {894, 27001}, {1086, 27008}, {1311, 3086}, {4391, 11998}, {4560, 7117}, {17761, 27009}, {26279, 26959}
X(27011) lies on these lines: {2, 37}, {142, 27166}, {239, 26756}, {319, 27106}, {894, 26982}, {1086, 26963}, {1654, 26142}, {2140, 26825}, {2275, 26852}, {2321, 27113}, {3589, 26976}, {3662, 17178}, {3663, 26769}, {4361, 27095}, {7321, 26975}, {10436, 26817}, {16738, 17305}, {17117, 27044}, {17290, 27145}, {17300, 26821}, {17366, 26772}, {25253, 27680}, {26813, 26964}, {26959, 27007}
X(27012) lies on these lines: {2, 900}, {665, 17302}, {1086, 27009}, {4435, 17300}, {6646, 22108}, {27190, 27191}
X(27013) lies on these lines: {2, 649}, {100, 23865}, {514, 26777}, {650, 7192}, {661, 4763}, {667, 21302}, {693, 4394}, {798, 26975}, {812, 24924}, {890, 25537}, {1019, 26775}, {1635, 4369}, {2487, 4453}, {2490, 4897}, {2527, 3004}, {3239, 4786}, {3240, 23655}, {3249, 26752}, {3618, 9002}, {3676, 5435}, {3733, 20293}, {3798, 25259}, {4063, 26982}, {4359, 20952}, {4379, 26824}, {4380, 4885}, {4468, 5744}, {4521, 5273}, {4598, 8050}, {4651, 7234}, {4776, 4790}, {4789, 4976}, {4893, 4932}, {4979, 25666}, {6006, 18230}, {6586, 17159}, {6590, 17161}, {8653, 15724}, {8663, 11176}, {9463, 23575}, {16704, 18200}, {18197, 26822}, {25577, 27134}, {26049, 27114}, {26114, 27167}, {26984, 27016}
X(27014) lies on these lines: {2, 650}, {661, 23466}, {798, 26975}, {1635, 27345}, {3210, 21438}, {3666, 21611}, {4893, 27527}, {6589, 25258}, {17215, 25955}, {25666, 27293}
X(27015) lies on these lines: {2, 659}, {798, 26975}, {891, 26801}, {1086, 27009}, {10566, 26968}, {17030, 21385}
X(27016) lies on these lines: {2, 669}, {10566, 26968}, {26984, 27013}
X(27017) lies on these lines: {2, 7}, {6, 27311}, {75, 27107}, {141, 27044}, {239, 17178}, {314, 17495}, {320, 26772}, {1086, 26971}, {1958, 26634}, {3589, 26975}, {3664, 26816}, {3739, 16709}, {3912, 26764}, {3923, 26094}, {3946, 26821}, {4359, 16753}, {4363, 27261}, {4859, 27192}, {7321, 26976}, {10566, 18094}, {16706, 26963}, {16816, 27343}, {17227, 27095}, {17232, 26042}, {17245, 27032}, {17261, 26769}, {17266, 27073}, {17268, 26797}, {17273, 27111}, {17284, 27136}, {17288, 26756}, {17302, 27166}, {17324, 25510}, {17332, 27036}, {24199, 26812}, {25269, 27291}, {26959, 27007}
X(27018) lies on these lines: {2, 896}, {798, 26975}, {17122, 27061}, {26959, 26969}
X(27019) lies on these lines: {2, 38}, {7, 26134}, {10, 27116}, {142, 27169}, {330, 17383}, {894, 20372}, {1909, 16706}, {2140, 3662}, {2275, 4657}, {4357, 20459}, {4645, 26801}, {5749, 26107}, {16819, 17291}, {16823, 27047}, {17278, 25610}, {17302, 19565}, {17322, 27148}, {24789, 27313}, {26813, 26964}
Collineation mappings involving Gemini triangle 52: X(27020)-X(27081)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 52, as in centers X(27020)-X(27081). Then
m(X) = a (b + c)^2 x + b (a^2 + c^2) y + c (a^2 + b^2) z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 4, 2018)
X(27020) lies on these lines: {1, 2}, {5, 26590}, {9, 26068}, {12, 6656}, {35, 384}, {36, 6645}, {37, 308}, {39, 1909}, {55, 7770}, {56, 11285}, {75, 3774}, {76, 2276}, {83, 1914}, {86, 21760}, {100, 17686}, {140, 26686}, {171, 1923}, {172, 1078}, {190, 4721}, {192, 3760}, {194, 3761}, {226, 3503}, {238, 20148}, {274, 1575}, {315, 9596}, {335, 3670}, {350, 1500}, {385, 5280}, {388, 16043}, {405, 26687}, {442, 26582}, {458, 11398}, {495, 8362}, {609, 7793}, {668, 1107}, {672, 17499}, {894, 16549}, {980, 20917}, {993, 17684}, {1003, 5217}, {1015, 6683}, {1089, 3797}, {1220, 16061}, {1376, 11321}, {1478, 7791}, {1479, 16924}, {1573, 25280}, {1621, 17541}, {1655, 6381}, {1966, 17289}, {2241, 7808}, {2242, 7815}, {2275, 7786}, {2345, 3403}, {3035, 17694}, {3247, 26107}, {3329, 5299}, {3405, 27066}, {3508, 4357}, {3552, 5010}, {3583, 16044}, {3585, 6655}, {3663, 26149}, {3727, 18061}, {3730, 24514}, {3735, 18055}, {3739, 21897}, {3746, 4366}, {3814, 17669}, {4063, 27046}, {4302, 14035}, {4324, 6658}, {4400, 7760}, {4416, 26082}, {4698, 20363}, {4754, 20331}, {4995, 6661}, {5025, 7951}, {5218, 14001}, {5248, 16916}, {5259, 16918}, {5264, 14621}, {5283, 6376}, {5310, 16950}, {5332, 7878}, {5432, 7807}, {5687, 20172}, {5750, 26110}, {6179, 7296}, {6284, 8370}, {6651, 27057}, {6684, 8924}, {7031, 7787}, {7242, 14620}, {7354, 8356}, {7741, 16921}, {7761, 9650}, {7819, 26629}, {7833, 10483}, {7841, 10895}, {8359, 18990}, {8367, 15172}, {9312, 26134}, {9598, 11185}, {9654, 11287}, {10053, 10352}, {10436, 26042}, {10588, 14064}, {11174, 16502}, {11681, 17550}, {15338, 19687}, {16060, 18758}, {16564, 27053}, {16589, 27076}, {16601, 25994}, {16604, 24656}, {16720, 20924}, {16738, 17287}, {16777, 25505}, {16788, 17743}, {16915, 25440}, {16975, 24524}, {17116, 26764}, {17143, 20691}, {17239, 27164}, {17252, 26756}, {17260, 20372}, {17268, 27261}, {17277, 23660}, {17291, 27116}, {17312, 27145}, {17317, 26979}, {17319, 26971}, {17326, 27095}, {17357, 25629}, {17670, 25466}, {17755, 25073}, {17757, 26558}, {17758, 24170}, {17759, 20888}, {18040, 18148}, {19579, 27033}, {20174, 21858}, {24530, 25458}, {27021, 27038}, {27023, 27027}, {27030, 27041}, {27049, 27058}, {27069, 27073}, {27070, 27072}
X(27020) = complement of X(26801)
X(27021) lies on these lines: {2, 3}, {183, 27515}, {1901, 26125}, {17056, 27253}, {18299, 21838}, {26685, 26772}, {26771, 27043}, {27020, 27038}, {27025, 27072}, {27040, 27071}, {27097, 27256}, {27129, 27255}
X(27022) lies on these lines: {2, 3}, {33, 26203}, {346, 1228}, {17052, 27509}, {17260, 20605}, {27031, 27062}, {27039, 27040}
X(27023) lies on these lines: {2, 3}, {257, 27261}, {27020, 27027}, {27033, 27062}
X(27024) lies on these lines: {1, 2}, {1575, 16750}, {17260, 27038}, {27065, 27072}
X(27025) lies on these lines: {1, 2}, {1574, 26978}, {1575, 18600}, {3619, 26997}, {3693, 25261}, {5241, 27256}, {6376, 26770}, {6537, 27071}, {11319, 26687}, {16713, 17239}, {17287, 26818}, {17289, 27039}, {17672, 17757}, {25244, 26563}, {27021, 27072}, {27038, 27050}, {27040, 27076}, {27049, 27065}, {27073, 27080}
X(27026) lies on these lines: {1, 2}, {35, 16931}, {75, 26100}, {964, 26687}, {1213, 27047}, {1574, 25499}, {1575, 16705}, {2345, 18135}, {3739, 21021}, {5051, 26582}, {5260, 16061}, {5263, 17541}, {6376, 26035}, {14005, 27185}, {14210, 25089}, {17260, 20605}, {17289, 27040}, {17307, 27116}, {17385, 25107}, {17672, 26558}, {17680, 26060}, {18136, 19808}, {20911, 25263}, {27050, 27072}, {27056, 27065}
X(27027) lies on these lines: {2, 11}, {26686, 26755}, {27020, 27023}, {27074, 27294}
X(27028) lies on these lines: {2, 3}
X(27029) lies on these lines: {2, 3}, {10566, 27075}
X(27030) lies on these lines: {2, 31}, {7292, 26999}, {7295, 16949}, {16823, 27182}, {17289, 27066}, {26772, 27034}, {27020, 27041}, {27035, 27072}
X(27031) lies on these lines: {2, 32}, {26685, 26772}, {27022, 27062}, {27040, 27057}
X(27032) lies on these lines: {2, 37}, {86, 26975}, {1125, 21803}, {1213, 27044}, {3723, 26821}, {3834, 26857}, {3912, 16738}, {4357, 27106}, {4422, 27042}, {7321, 26769}, {16814, 26799}, {16826, 26963}, {17030, 17242}, {17045, 26982}, {17178, 17317}, {17239, 26774}, {17244, 27145}, {17245, 27017}, {17248, 27095}, {17256, 26756}, {17260, 20372}, {17261, 25538}, {17285, 27164}, {17300, 26082}, {17307, 27113}, {17349, 23660}, {17368, 27255}, {25611, 26030}, {27033, 27048}, {27038, 27051}, {27107, 27147}
X(27033) lies on these lines: {2, 39}, {256, 26030}, {2238, 26752}, {7148, 26115}, {9263, 23447}, {19579, 27020}, {21024, 26801}, {26685, 26772}, {27023, 27062}, {27032, 27048}, {27057, 27067}
X(27034) lies on these lines: {1, 2}, {1575, 16748}, {4430, 27351}, {8299, 18103}, {17147, 27285}, {23632, 25102}, {26772, 27030}, {27041, 27072}
X(27035) lies on these lines: {1, 2}, {75, 27285}, {310, 1575}, {668, 23632}, {1011, 26687}, {1921, 21814}, {3136, 26582}, {16954, 25440}, {18152, 21877}, {21838, 27076}, {22199, 25286}, {26772, 27069}, {27030, 27072}, {27038, 27047}
X(27036) lies on these lines: {2, 44}, {9, 27102}, {798, 20295}, {966, 27261}, {1213, 27078}, {2245, 27070}, {3739, 26799}, {4422, 27044}, {4473, 26048}, {16814, 26764}, {16815, 26976}, {17257, 27311}, {17259, 27154}, {17260, 20372}, {17263, 26756}, {17277, 26971}, {17331, 27145}, {17332, 27017}, {17333, 27107}, {17338, 27095}, {17349, 21760}, {17368, 27116}, {20363, 27268}, {27290, 27321}
X(27037) lies on these lines: {2, 45}, {1213, 27073}, {3780, 17349}, {4687, 26963}, {4708, 27113}, {4755, 27166}, {5296, 27095}, {17260, 20372}, {17261, 27154}
X(27038) lies on these lines: {2, 11}, {1233, 25249}, {17260, 27024}, {26772, 27030}, {27020, 27021}, {27025, 27050}, {27032, 27051}, {27035, 27047}, {27096, 27283}
X(27039) lies on these lines: {2, 6}, {9, 14543}, {10, 21931}, {144, 2245}, {344, 27096}, {346, 3948}, {442, 7679}, {2092, 3672}, {3759, 26964}, {3882, 17183}, {3965, 17863}, {4199, 5281}, {4272, 17014}, {4466, 27689}, {4515, 22040}, {5051, 7080}, {5227, 26267}, {16609, 21033}, {17077, 17272}, {17227, 26997}, {17233, 26757}, {17257, 25601}, {17273, 26836}, {17289, 27025}, {18600, 24530}, {26085, 26961}, {26752, 27296}, {27022, 27040}, {27055, 27071}
X(27040) lies on these lines: {2, 39}, {4, 26085}, {6, 5192}, {8, 2176}, {10, 1018}, {21, 26244}, {32, 11319}, {37, 3701}, {42, 21071}, {45, 1213}, {69, 26099}, {115, 5992}, {145, 20970}, {187, 17539}, {213, 17751}, {281, 429}, {315, 17007}, {321, 16583}, {344, 27042}, {346, 2092}, {350, 26965}, {668, 26759}, {672, 3831}, {857, 1211}, {862, 17920}, {874, 17280}, {964, 5275}, {965, 27378}, {966, 2478}, {1089, 16600}, {1215, 21808}, {1475, 3840}, {1654, 24958}, {1909, 27097}, {2275, 26094}, {2276, 26030}, {2292, 3985}, {2295, 21025}, {2321, 3214}, {2475, 26079}, {3061, 25591}, {3125, 17164}, {3290, 4968}, {3293, 21070}, {3691, 3741}, {3735, 25253}, {3952, 3954}, {4065, 24049}, {4099, 4868}, {4109, 15523}, {4202, 5254}, {4272, 17314}, {4385, 26242}, {4441, 27299}, {4647, 16611}, {4721, 20347}, {4754, 17169}, {5025, 16991}, {5224, 17550}, {5276, 13740}, {5277, 11115}, {6155, 27804}, {6537, 6627}, {7735, 17526}, {7747, 17537}, {7751, 25497}, {7806, 16905}, {10453, 21753}, {11185, 16910}, {14953, 24271}, {15985, 17183}, {16050, 26243}, {16926, 16993}, {16997, 17688}, {17137, 24514}, {17277, 17541}, {17281, 25610}, {17289, 27026}, {17359, 25107}, {17497, 17762}, {20255, 24330}, {20911, 25994}, {20947, 25263}, {25255, 27697}, {25264, 27324}, {26771, 26774}, {26781, 26794}, {26791, 26793}, {27021, 27071}, {27022, 27039}, {27025, 27076}, {27031, 27057}
X(27041) lies on these lines: {2, 6}, {321, 21858}, {740, 21684}, {1230, 2092}, {1500, 3948}, {3454, 26030}, {3752, 27793}, {4272, 26971}, {4850, 27792}, {5051, 17757}, {16549, 21361}, {17165, 20966}, {22020, 26580}, {27020, 27030}, {27034, 27072}, {27052, 27058}
X(27042) lies on these lines: {2, 6}, {10, 872}, {12, 1284}, {37, 313}, {75, 2092}, {239, 4272}, {257, 18714}, {274, 24530}, {344, 27040}, {442, 4429}, {495, 4205}, {661, 24103}, {740, 21730}, {860, 17913}, {894, 2245}, {1084, 19581}, {1215, 21035}, {1268, 26048}, {1269, 3666}, {1500, 4043}, {1966, 17289}, {2511, 3766}, {3122, 25124}, {3759, 17030}, {3775, 19863}, {3826, 26030}, {3882, 10455}, {3934, 18046}, {4395, 26812}, {4422, 27032}, {4443, 23444}, {4446, 20966}, {4472, 27102}, {4687, 6376}, {7227, 26764}, {7238, 26857}, {16706, 25538}, {17045, 26971}, {17233, 21024}, {17243, 27261}, {17246, 26976}, {17305, 26149}, {17397, 25505}, {17719, 17954}, {26601, 27254}, {27047, 27048}, {27050, 27058}, {27054, 27068}
X(27043) lies on these lines: {1, 2}, {23830, 26836}, {26771, 27021}
X(27044) lies on these lines: {1, 2}, {9, 27136}, {75, 27095}, {141, 27017}, {319, 26963}, {335, 27116}, {524, 26975}, {527, 26768}, {594, 26971}, {894, 26756}, {1086, 27106}, {1213, 27032}, {1278, 4494}, {1574, 20913}, {2309, 25121}, {3763, 27311}, {3948, 27076}, {3995, 18140}, {4063, 4129}, {4357, 26764}, {4359, 21021}, {4422, 27036}, {4967, 26812}, {7032, 25292}, {11320, 26687}, {16738, 17239}, {17117, 27011}, {17160, 25534}, {17178, 17287}, {17227, 27107}, {17228, 27145}, {17238, 26042}, {17254, 26769}, {17260, 27073}, {17261, 26797}, {17285, 27111}, {17289, 26772}, {17293, 27261}, {17355, 26799}, {17786, 27641}, {18046, 21858}, {18091, 18093}, {19308, 21005}, {20072, 26076}, {20349, 26072}
X(27045) lies on these lines: {2, 661}, {649, 4129}, {669, 21051}, {798, 20295}, {810, 25301}, {850, 3709}, {1577, 17494}, {2978, 25636}, {4391, 27648}, {4761, 19874}, {4781, 26794}, {5278, 7252}, {18155, 24948}, {20910, 25271}, {21383, 27134}, {21960, 27588}, {24459, 27712}, {27138, 27346}
X(27046) lies on these lines: {2, 667}, {4063, 27020}, {4129, 27047}, {16158, 18110}, {20295, 27077}, {21261, 27345}
X(27047) lies on these lines: {2, 31}, {141, 27097}, {857, 26582}, {1213, 27026}, {3230, 20549}, {3775, 26759}, {4026, 26965}, {4129, 27046}, {4429, 17550}, {16823, 27019}, {17238, 27248}, {17248, 27255}, {17260, 20372}, {17326, 27106}, {17338, 24491}, {20561, 21788}, {26041, 27280}, {27035, 27038}, {27042, 27048}
X(27048) lies on these lines: {1, 2}, {35, 16930}, {27032, 27033}, {27042, 27047}, {27050, 27060}
X(27049) lies on these lines: {2, 3}, {27020, 27058}, {27025, 27065}
X(27050) lies on these lines: {2, 3}, {1211, 27096}, {3936, 27283}, {18635, 27170}, {27020, 27030}, {27025, 27038}, {27026, 27072}, {27042, 27058}, {27048, 27060}
X(27051) lies on these lines: {2, 3}, {2212, 26211}, {27032, 27038}
X(27052) lies on these lines: {2, 3}, {63, 17052}, {210, 4463}, {226, 21065}, {306, 1089}, {312, 1230}, {321, 4150}, {1211, 17293}, {1441, 18588}, {1901, 5905}, {5928, 26223}, {16568, 17289}, {18082, 18083}, {18139, 18147}, {18744, 19792}, {27041, 27058}
X(27053) lies on these lines: {2, 3}, {16564, 27020}
X(27054) lies on these lines: {2, 3}, {27042, 27068}
X(27055) lies on these lines: {2, 3}, {27039, 27071}
X(27056) lies on these lines: {2, 3}, {17289, 27025}, {27026, 27065}
X(27057) lies on these lines: {2, 3}, {6651, 27020}, {27031, 27040}, {27033, 27067}
X(27058) lies on these lines: {2, 7}, {44, 16713}, {86, 23617}, {344, 18040}, {2324, 26621}, {2345, 27108}, {3618, 26964}, {4687, 26690}, {5046, 17500}, {5782, 27381}, {7146, 20248}, {17120, 26818}, {17152, 17277}, {17263, 18150}, {17286, 26757}, {17289, 27025}, {20262, 26575}, {26582, 26772}, {27020, 27049}, {27041, 27052}, {27042, 27050}
X(27059) lies on these lines: {2, 19}, {10, 16566}, {75, 1150}, {141, 5341}, {169, 26685}, {171, 17872}, {193, 2285}, {524, 5356}, {597, 7300}, {607, 26206}, {894, 7291}, {910, 25099}, {1429, 17868}, {1441, 26213}, {1738, 24883}, {1760, 2345}, {1766, 17257}, {1781, 3912}, {1861, 2475}, {1890, 5046}, {1953, 26639}, {1958, 7146}, {2171, 20769}, {2182, 15988}, {3589, 7297}, {3661, 5279}, {3920, 17446}, {4000, 27003}, {4357, 16548}, {7269, 27950}, {16547, 17353}, {16564, 27020}, {16568, 17289}, {17260, 20605}, {17355, 20602}, {26582, 26605}, {27032, 27038}
X(27060) lies on these lines: {2, 36}, {4129, 27046}, {26685, 27063}, {27020, 27021}, {27048, 27050}, {27251, 27255}, {27274, 27283}
X(27061) lies on these lines: {2, 38}, {5297, 26969}, {17122, 27018}, {27020, 27030}
X(27062) lies on these lines: {2, 99}, {27022, 27031}, {27023, 27033}
X(27063) lies on these lines: {2, 48}, {16564, 27020}, {26685, 27060}
X(27064) lies on these lines: {1, 979}, {2, 7}, {6, 312}, {8, 989}, {10, 4388}, {31, 7081}, {42, 3685}, {43, 3923}, {44, 333}, {55, 4676}, {72, 13740}, {75, 4383}, {78, 4195}, {81, 4358}, {83, 213}, {92, 458}, {100, 20967}, {171, 4672}, {190, 3666}, {192, 5256}, {210, 5263}, {228, 4203}, {238, 1215}, {306, 17280}, {318, 3195}, {341, 5710}, {344, 5712}, {386, 7283}, {404, 22344}, {474, 23085}, {537, 17598}, {594, 4886}, {612, 27538}, {614, 24349}, {645, 14534}, {748, 16823}, {756, 16830}, {846, 6685}, {899, 4418}, {940, 3758}, {942, 13741}, {960, 1220}, {964, 3876}, {984, 25496}, {1010, 5044}, {1046, 3831}, {1054, 6686}, {1089, 1203}, {1211, 17289}, {1255, 3227}, {1265, 5716}, {1386, 3967}, {1460, 26264}, {1468, 25591}, {1696, 25895}, {1728, 26123}, {1743, 11679}, {1757, 3741}, {1766, 9535}, {1836, 4429}, {2235, 21779}, {2258, 3240}, {2295, 3975}, {2308, 17763}, {2345, 14555}, {2895, 17287}, {2999, 3210}, {3175, 4360}, {3187, 4671}, {3333, 26093}, {3337, 19847}, {3338, 25492}, {3487, 13742}, {3589, 4415}, {3649, 25992}, {3661, 5739}, {3676, 26694}, {3681, 24552}, {3687, 17355}, {3720, 17794}, {3742, 25531}, {3745, 4009}, {3750, 4432}, {3751, 10453}, {3752, 17351}, {3765, 17752}, {3782, 16706}, {3791, 16477}, {3868, 5192}, {3886, 20012}, {3912, 17499}, {3920, 3952}, {3940, 11354}, {3944, 25453}, {3961, 4090}, {3973, 18229}, {3980, 16569}, {3995, 17011}, {3996, 4849}, {4001, 20072}, {4044, 17034}, {4054, 26723}, {4063, 23825}, {4234, 5440}, {4344, 5423}, {4359, 17116}, {4362, 16468}, {4363, 19804}, {4385, 16466}, {4395, 19820}, {4417, 17354}, {4422, 17056}, {4438, 17717}, {4521, 26652}, {4641, 14829}, {4644, 18141}, {4656, 17023}, {4664, 20182}, {4687, 19701}, {4692, 5315}, {4697, 17122}, {4698, 25507}, {4852, 22034}, {4972, 5057}, {4975, 16474}, {5271, 17349}, {5283, 11342}, {5287, 17379}, {5484, 12527}, {5506, 25512}, {5737, 16885}, {5743, 17369}, {5927, 13727}, {6537, 27068}, {6651, 19579}, {6679, 17719}, {6763, 19864}, {7123, 14621}, {7191, 17165}, {7227, 19797}, {7292, 17140}, {8025, 17021}, {10394, 27394}, {12572, 26117}, {13425, 19065}, {13458, 19066}, {13735, 24929}, {14997, 17117}, {17012, 17147}, {17016, 25253}, {17019, 19717}, {17020, 17495}, {17123, 24325}, {17127, 26227}, {17266, 18139}, {17279, 18134}, {17316, 27523}, {17335, 19732}, {17339, 17776}, {17352, 24789}, {17366, 19796}, {17367, 19785}, {17394, 19722}, {17777, 24210}, {18662, 25245}, {18928, 26531}, {23511, 24620}, {24725, 25957}, {25066, 27399}, {25760, 26061}, {25930, 27340}, {26575, 26793}, {27000, 27299}, {27020, 27021}
X(27065) lies on these lines: {1, 4134}, {2, 7}, {5, 26878}, {6, 17019}, {8, 7162}, {10, 3583}, {20, 18540}, {21, 5044}, {23, 5314}, {31, 5297}, {37, 17011}, {38, 7292}, {39, 27646}, {40, 3832}, {44, 81}, {45, 4383}, {46, 19877}, {72, 5047}, {78, 16865}, {84, 15717}, {100, 3683}, {110, 26890}, {149, 25006}, {190, 4359}, {191, 3634}, {210, 1621}, {219, 5422}, {220, 10601}, {238, 756}, {239, 3294}, {306, 25101}, {312, 5278}, {321, 17277}, {333, 4358}, {344, 5739}, {354, 15481}, {405, 3876}, {484, 3828}, {518, 5284}, {612, 9330}, {614, 7226}, {662, 17190}, {748, 984}, {750, 7262}, {846, 899}, {896, 17122}, {936, 4189}, {940, 16885}, {942, 17536}, {958, 1388}, {960, 5260}, {968, 3240}, {982, 17125}, {988, 27625}, {993, 4881}, {1001, 3681}, {1018, 6539}, {1100, 1255}, {1125, 5506}, {1150, 18743}, {1155, 9342}, {1171, 1963}, {1211, 2503}, {1212, 15889}, {1697, 4678}, {1698, 4338}, {1728, 5703}, {1743, 5287}, {1749, 14526}, {1757, 3720}, {1770, 26060}, {1776, 5432}, {1961, 2308}, {1995, 7085}, {1999, 19742}, {2183, 26044}, {2329, 26639}, {2345, 26998}, {2475, 12572}, {2895, 3912}, {2975, 5302}, {3060, 3781}, {3090, 26921}, {3100, 7069}, {3175, 17348}, {3187, 17349}, {3220, 15246}, {3245, 3968}, {3337, 19878}, {3523, 7330}, {3525, 24467}, {3526, 26877}, {3543, 3587}, {3617, 5250}, {3661, 21373}, {3666, 16814}, {3678, 5259}, {3685, 4651}, {3690, 5943}, {3691, 6542}, {3697, 3871}, {3711, 4428}, {3731, 5256}, {3746, 4015}, {3750, 21805}, {3757, 3952}, {3782, 17337}, {3812, 11684}, {3826, 20292}, {3833, 4880}, {3836, 4683}, {3868, 11108}, {3873, 4423}, {3874, 25542}, {3877, 9708}, {3916, 17531}, {3923, 26037}, {3925, 5057}, {3927, 16842}, {3938, 15485}, {3969, 4886}, {3973, 14996}, {3984, 5436}, {4038, 4722}, {4113, 4702}, {4193, 5791}, {4392, 5272}, {4414, 16569}, {4420, 5248}, {4430, 4666}, {4438, 25960}, {4473, 16561}, {4511, 5251}, {4641, 15492}, {4650, 17124}, {4652, 17572}, {4655, 25961}, {4656, 26723}, {4671, 5271}, {4679, 11680}, {4687, 19684}, {4698, 5333}, {4703, 25957}, {4745, 5541}, {4993, 26941}, {5012, 26885}, {5020, 26867}, {5056, 5709}, {5129, 12649}, {5133, 21015}, {5154, 5705}, {5218, 7082}, {5234, 19861}, {5268, 17126}, {5285, 13595}, {5311, 16468}, {5438, 17548}, {5439, 17534}, {5535, 10172}, {5536, 10171}, {5640, 26893}, {5657, 6957}, {5708, 16854}, {5729, 11020}, {5741, 27757}, {5758, 6886}, {5777, 6986}, {5779, 11220}, {5812, 6991}, {5815, 10587}, {5817, 10431}, {5927, 7411}, {6147, 17590}, {6197, 7563}, {6763, 19862}, {6871, 9780}, {6883, 18444}, {6932, 26446}, {6997, 26939}, {7171, 15692}, {7174, 17024}, {7291, 17292}, {7293, 7496}, {7322, 15601}, {7485, 24320}, {7548, 9956}, {7998, 26892}, {8025, 17120}, {9350, 17601}, {9945, 17525}, {10578, 15299}, {10580, 15298}, {10916, 26127}, {11227, 13243}, {11415, 19855}, {12527, 24564}, {13411, 15674}, {14555, 17776}, {15024, 26915}, {15064, 15931}, {15066, 23140}, {15296, 26105}, {15934, 17542}, {16296, 22458}, {16373, 20760}, {16514, 20965}, {16552, 16826}, {16568, 17289}, {16578, 16585}, {16667, 25417}, {16670, 25430}, {16675, 20182}, {16676, 17013}, {16823, 17165}, {16824, 25253}, {16858, 24929}, {17023, 17744}, {17147, 17261}, {17242, 20017}, {17263, 18139}, {17336, 19804}, {17394, 19738}, {17479, 25243}, {17742, 26626}, {17825, 24554}, {18151, 20886}, {18249, 24982}, {18250, 24987}, {18607, 25067}, {19249, 23169}, {19292, 23206}, {21511, 25066}, {21516, 25083}, {25068, 25946}, {26227, 27538}, {27020, 27030}, {27024, 27072}, {27025, 27049}, {27026, 27056}
X(27066) lies on these lines: {2, 82}, {1213, 27026}, {3112, 4000}, {3405, 27020}, {17289, 27030}, {18082, 18095}, {18092, 18101}
X(27067) lies on these lines: {2, 32}, {10, 22025}, {12, 1284}, {308, 941}, {857, 18086}, {874, 17280}, {1176, 20029}, {1213, 27026}, {1228, 2092}, {1500, 3948}, {2478, 17500}, {4129, 4375}, {8299, 18091}, {16890, 17550}, {17541, 18092}, {18096, 26601}, {27033, 27057}
X(27068) lies on these lines: {2, 85}, {9, 7679}, {10, 5526}, {21, 5179}, {41, 5086}, {169, 2476}, {388, 26258}, {498, 25082}, {644, 10039}, {894, 25000}, {910, 2475}, {1220, 1311}, {2082, 11680}, {2329, 5176}, {2345, 27522}, {3039, 6668}, {3496, 5057}, {3684, 5178}, {3746, 21090}, {3871, 21073}, {4262, 11015}, {4766, 17739}, {4850, 5286}, {5262, 5305}, {5540, 25639}, {5750, 7110}, {5819, 6871}, {6537, 27064}, {9318, 17062}, {9956, 26074}, {15492, 17303}, {16589, 23988}, {17289, 27025}, {19860, 23058}, {24547, 27547}, {25066, 27529}, {26279, 26561}, {27042, 27054}
X(27069) lies on these lines: {2, 87}, {26772, 27035}, {27020, 27073}
X(27070) lies on these lines: {2, 45}, {2245, 27036}, {21362, 26223}, {27020, 27072}
X(27071) lies on these lines: {2, 99}, {661, 21232}, {1577, 24036}, {6537, 27025}, {16592, 27256}, {20982, 21272}, {26035, 27251}, {27021, 27040}, {27033, 27057}, {27039, 27055}, {27072, 27076}
X(27072) lies on these lines: {2, 11}, {767, 7795}, {4422, 27074}, {6184, 23989}, {17494, 23988}, {27020, 27070}, {27021, 27025}, {27024, 27065}, {27026, 27050}, {27030, 27035}, {27034, 27041}, {27071, 27076}
X(27073) lies on these lines: {2, 37}, {9, 26756}, {45, 27095}, {1213, 27037}, {1654, 26774}, {3662, 26769}, {3912, 17178}, {4357, 27113}, {4422, 26772}, {4473, 26799}, {16738, 17285}, {17116, 26817}, {17243, 26963}, {17258, 27106}, {17260, 27044}, {17265, 27107}, {17266, 27017}, {17267, 27145}, {17317, 26975}, {17319, 26982}, {17340, 26976}, {22343, 25284}, {24491, 26752}, {27020, 27069}, {27025, 27080}
X(27074) lies on these lines: {2, 900}, {190, 27134}, {3766, 17280}, {4422, 27072}, {4526, 17302}, {17281, 21606}, {27027, 27294}
X(27075) lies on these lines: {2, 659}, {798, 20295}, {1960, 26801}, {4422, 27072}, {10566, 27029}, {20979, 24356}, {21385, 27255}
X(27076) lies on these lines: {2, 668}, {10, 3934}, {32, 26687}, {39, 6376}, {75, 9466}, {76, 1574}, {115, 26582}, {116, 121}, {192, 18146}, {291, 1698}, {519, 20530}, {537, 3739}, {538, 1575}, {620, 2787}, {625, 3814}, {626, 1329}, {812, 4422}, {891, 4928}, {958, 7815}, {1018, 4465}, {1107, 6683}, {1125, 25102}, {1376, 3734}, {1500, 18140}, {1921, 21830}, {2551, 7800}, {2885, 21258}, {3008, 25125}, {3039, 20317}, {3634, 25109}, {3788, 26364}, {3948, 27044}, {4103, 9055}, {4386, 7804}, {4403, 18159}, {4426, 7780}, {4482, 9259}, {4561, 24281}, {4568, 21138}, {4986, 27918}, {6292, 26558}, {6685, 25115}, {6686, 25116}, {6702, 17239}, {7257, 25530}, {7816, 25440}, {8649, 18047}, {9317, 9458}, {9708, 15271}, {9780, 17794}, {16589, 27020}, {16705, 26779}, {17759, 18145}, {19862, 24656}, {19878, 25130}, {21838, 27035}, {24988, 25468}, {25280, 26959}, {25499, 26030}, {27025, 27040}, {27071, 27072}
X(27077) lies on these lines: {2, 669}, {10566, 27029}, {20295, 27046}
X(27078) lies on these lines: {2, 7}, {6, 27261}, {44, 16738}, {1213, 27036}, {3008, 26812}, {3589, 26971}, {3758, 27145}, {3923, 26030}, {4363, 27311}, {4422, 27032}, {4698, 16726}, {16706, 26976}, {17120, 17178}, {17289, 26772}, {17292, 26756}, {17337, 27154}, {17355, 26764}, {17369, 27102}, {17371, 27095}, {17741, 26965}, {20352, 21803}, {26975, 26979}, {27020, 27069}
X(27079) lies on these lines: {2, 896}, {798, 20295}, {17123, 26999}, {27020, 27030}
X(27080) lies on these lines: {2, 38}, {4357, 27116}, {16830, 26986}, {17248, 27091}, {17260, 20372}, {17263, 27097}, {17289, 27026}, {17326, 27102}, {17338, 27255}, {24697, 26778}, {27025, 27073}
X(27081) lies on these lines: {2, 6}, {10, 3120}, {145, 4205}, {306, 3986}, {321, 6539}, {1086, 27791}, {1230, 3596}, {1330, 17589}, {1834, 4678}, {2321, 3995}, {3187, 4034}, {3218, 17252}, {3454, 9780}, {3617, 5051}, {3661, 17497}, {3948, 4671}, {4026, 19998}, {4062, 25354}, {4085, 4651}, {4272, 17013}, {4357, 17495}, {4358, 17239}, {4359, 17235}, {4425, 8013}, {4427, 24697}, {4442, 4733}, {4748, 17740}, {4850, 17250}, {4938, 5625}, {6536, 21085}, {6537, 6627}, {7226, 20966}, {8818, 26792}, {11115, 26064}, {16589, 17230}, {17012, 17326}, {17021, 17287}, {17147, 17247}, {17184, 24199}, {17236, 27794}, {17237, 24589}, {17272, 26627}, {17292, 21383}, {17491, 24342}, {19804, 27793}, {27021, 27025}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.
X(27082) lies on the cubics K041 and K934 and these lines: {3,15077}, {4,5972}, {20,154}, { 69,3522}, {159,11413}, {343, 21734}, {376,5562}, {394,16936}, {511,16879}, {631,11704}, {1092, 8718}, {2071,8907}, {3146,15748}, {3528,12254}, {3619,14118}, { 5059,11064}, {5921,8567}, {6225,16386}, {6467,25406}, {10167, 18732}, {11206,12279}, {12118, 18931}, {19467,22647}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.
X(27083) lies on the cubic K934 and these lines: {21,60}, {1175,18123}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.
X(27084) lies on the cubic K934 and these lines: {4,15462}, {22,206}, {343,19127}, {1176,1899}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.
X(27085) lies on the cubic K934 and these lines: {4,83}, {23,6593}, {1177,9140}, { 2070,19381}, {3047,12367}, { 5169,19127}, {9979,13315}, {15019,19136}
As a point on the Euler line, X(27086) has Shinagawa coefficients {2 r^2 + 2 r R - R^2, -2 r (r + R)}.
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.
X(27086) lies on these lines: {2,3}, {35,3754}, {36,214}, {100, 5172}, {191,997}, {515,17009}, { 1125,14794}, {1470,21454}, {1708,4855}, {1737,17010}, {1994, 5398}, {2206,4257}, {2646,8261}, {2771,18861}, {2975,21677}, {3002,5546}, {4256,20966}, {4861,14798}, {5010,5426}, {5204,11684}, {5253,11281}, {5303,18253}, {5445,25440}, {6796,25005}, {10090,11604}, {11263,14792}, {17653,22936}
X(27086)= {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {3,4216,6636}, {3,4218,15246}, { 3,19525,17549},
{21,404,442}, { 21,3651,15680}, {404,1006,2}, { 442,5428,21}, {1006,6905,6882}, {1006,21161,5428},
{4188,4189,4190}, {4189,15674,21}, {6827,6921,2}, {6830,17566,2}, {11334,19245,13595}
As a point on the Euler line, X(27087) has Shinagawa coefficients {20 R^4 - S^2 - 12 R^2 SW + 2 SW^2, 12 R^4 + S^2 - 4 R^2 SW}.
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.
X(27087) lies on these lines: {2,3}, {131,12095}, {3564,13557}
X(27087)= midpoint of X(131) and X(12095)
As a point on the Euler line, X(27088) has Shinagawa coefficients {2 SW^2 - 9 S^2, 9 S^2}.
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.
X(27088) lies on these lines: {2,3}, {6,7618}, {32,8584}, {69,15655}, {99,9136}, {110,6093}, {115,5215}, {141,8588}, {187,524}, {230,543}, {574,597}, {598,11149}, {599,5210}, {620,3849}, {625,22247}, {671,10153}, {1384,1992}, {1499,4786}, {2021,5969}, {2080,5182}, {3053,15534}, {3054,7617}, {3055,7619}, {3564,8593}, {3589,8589}, {3734,5569}, {3815,7622}, {3933,5023}, {5008,20583}, {5032,21309}, {5104,15483}, {5206,7767}, {5305,7782}, {5475,9771}, {5476,9734}, {5585,21358}, {6781,9167}, {7610,21843}, {7737,11184}, {7750,7870}, {7789,7810}, {7820,15810}, {7891,9939}, {8030,14567}, {8290,9889}, {8591,8859}, {8860,11164}, {9486,16317}, {9489,25423}, {9741,22253}, {11151,11171}, {11161,14830}, {11162,14666}, {11163,12040}, {11645,19662}, {14148,15480}, {15993,19911}
X(27088) = midpoint of X(i) and X(j) for these {i,j}: {2,8598}, {99,22329}, {187,2482}, {376,1513}, {1551,10295}, {6661,10997}, {7426,7472}, {8352,9855}, {35303,35304}
X(27088) = reflection of X(i) in X(j) for these {i,j}: {381,10011}, {625,22247}, {6390,2482}, {8352,8355}, {22110,620}
X(27088) = complement of X(8352)
X(27088) = anticomplement of X(8355)
X(27088) = X(230)-of-anti-Artzt-triangle
X(27088) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {2,376,5077}, {2,8352,8355}, {2,8703,8354}, {2,9855,8352}, {2,11159,3363}, {2,11317,5}, {2,13586,8598}, {3,8369,8359}, {187,6390,3793}, {548,7807,8357}, {548,8360,7833}, {550,16925,8361}, {599,5210,8182}, {1384,11165,1992}, {3734,5569,11168}, {5077,11288,2}, {7807,7833,8360}, {7820,15810,20582}, {7833,8360,8357}, {8352,8598,9855}, {8359,8369,7819}, {8860,11164,11185}, {8860,11185,16509}, {12040,18907,11163}, {16431,16436,11350}
As a point on the Euler line, X(27089) has Shinagawa coefficients {160 R^4+S^2-64 R^2 SW+6 SW^2,-192 R^4-S^2+80 R^2 SW-8 SW^2}.
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.
X(27089) lies on these lines: {2,3}, {1503,11589}, {3184,12096}, {5894,14379}, {8057,15427}
X(27089) = midpoint of X(i) and X(j) for these {i,j}: {20,1559}, {3184,12096}
X(27089) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {20,2060,6616}, {376,3079,20}, {550,13155,20}
As a point on the Euler line, X(27090) has Shinagawa coefficients {47 R^4-16 S^2-44 R^2 SW+12 SW^2,3 R^4+16 S^2+4 R^2 SW-4 SW^2}.
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28576.
X(27090) lies on these lines: {2,3}, {930,24385}, {6150,6592}
X(27090) = midpoint of X(i) and X(j) for these {i,j}:{930,24385}, {6150,6592}
X(27090) = complement of X(24306)
X(27090) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {3,140,15334}, {140,5501,3628}
Collineation mappings involving Gemini triangle 53: X(27091)-X(27141)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 53, as in centers X(27091)-X(27141). Then
m(X) = a (b^2 + c^2) x + b (a - c)^2 y + c (a - b)^2 z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 5, 2018)
X(27091) lies on these lines: {1, 2}, {3, 26687}, {5, 26582}, {12, 17670}, {35, 16916}, {37, 10009}, {39, 6376}, {75, 1574}, {76, 1575}, {83, 4386}, {100, 17541}, {101, 17743}, {194, 6381}, {312, 21412}, {335, 24046}, {384, 25440}, {538, 20943}, {594, 25505}, {668, 2275}, {672, 26043}, {726, 24080}, {874, 17279}, {958, 11285}, {993, 7824}, {1015, 24524}, {1018, 27103}, {1078, 4426}, {1107, 7786}, {1329, 6656}, {1376, 7770}, {1500, 30963}, {1573, 6683}, {1837, 28798}, {1921, 32453}, {1964, 31337}, {2276, 18140}, {2321, 26107}, {2550, 32968}, {2551, 16043}, {2886, 32992}, {3035, 7807}, {3125, 18055}, {3249, 31286}, {3596, 27633}, {3662, 24170}, {3760, 17759}, {3814, 5025}, {3820, 8362}, {3826, 33033}, {3841, 33045}, {3959, 18061}, {3963, 27641}, {4021, 26143}, {4075, 27481}, {4187, 26590}, {4357, 26042}, {4358, 21435}, {4359, 27285}, {4366, 8715}, {4413, 11321}, {4699, 27298}, {5010, 17692}, {5248, 16918}, {5251, 17684}, {5267, 33004}, {5280, 16997}, {7752, 20541}, {7808, 20179}, {8165, 33202}, {9709, 20172}, {12782, 17793}, {13747, 26686}, {15482, 31456}, {16549, 24514}, {16604, 25102}, {16606, 25115}, {16921, 25639}, {16975, 25280}, {17053, 17786}, {17228, 26979}, {17234, 20549}, {17242, 20501}, {17243, 20491}, {17247, 26764}, {17248, 27080}, {17301, 25534}, {17338, 24491}, {17339, 27136}, {17353, 24502}, {17363, 26963}, {17364, 26756}, {17368, 26772}, {17499, 17754}, {17540, 26629}, {17756, 18135}, {17757, 26561}, {18044, 24530}, {20335, 24190}, {20530, 20691}, {20888, 31276}, {21067, 24166}, {21385, 27140}, {22199, 25287}, {24914, 28771}, {25066, 25994}, {25092, 27269}, {25590, 26149}, {26689, 28737}, {27092, 27129}, {27100, 27110}, {27122, 27127}, {30478, 32978}, {31418, 32987}
X(27092) lies on these lines: {2, 3}, {325, 27515}, {27091, 27129}, {27095, 27101}, {27096, 27134}, {27109, 27133}
X(27093) lies on these lines: {2, 3}, {36, 28410}, {1040, 26203}, {3662, 27097}, {27108, 27109}
X(27094) lies on this line: {2, 3}
X(27095) lies on these lines: {2, 6}, {45, 27073}, {75, 27044}, {190, 27136}, {192, 646}, {2345, 26976}, {3009, 25140}, {3661, 26971}, {3662, 24170}, {3759, 26982}, {4360, 25534}, {4361, 27011}, {4389, 26764}, {4751, 27160}, {4851, 27166}, {5296, 27037}, {17119, 26850}, {17148, 27633}, {17227, 27017}, {17228, 25505}, {17230, 26107}, {17233, 26774}, {17236, 26042}, {17248, 27032}, {17255, 26769}, {17262, 26797}, {17279, 27113}, {17287, 26959}, {17291, 27311}, {17292, 27261}, {17302, 26100}, {17312, 25510}, {17326, 27020}, {17338, 27036}, {17347, 26768}, {17354, 26799}, {17364, 26975}, {17371, 27078}, {17377, 26821}, {17786, 28395}, {18133, 31036}, {18170, 25292}, {20352, 31337}, {20917, 27641}, {21244, 26176}, {21352, 25121}, {21858, 29764}, {25535, 29570}, {25538, 29610}, {25940, 26222}, {26076, 31300}, {26149, 28604}, {27035, 31004}, {27092, 27101}, {27100, 27104}, {27126, 27137}, {27154, 29576}
X(27096) lies on these lines: {1, 2}, {3, 31020}, {5, 31031}, {85, 25244}, {141, 27170}, {344, 27039}, {345, 18136}, {495, 17672}, {668, 27109}, {857, 31032}, {1211, 27050}, {1500, 26100}, {3061, 21272}, {3314, 26796}, {3454, 26781}, {3501, 20347}, {3693, 25237}, {3871, 17681}, {3930, 20247}, {4193, 31058}, {4851, 27161}, {5046, 20533}, {5233, 27256}, {9709, 17683}, {16284, 26690}, {16593, 21031}, {17170, 31080}, {17279, 27108}, {17756, 18600}, {20244, 20335}, {21232, 33299}, {25066, 30806}, {27021, 31037}, {27038, 27283}, {27049, 31018}, {27072, 31017}, {27092, 27134}, {27118, 27129}, {27119, 30831}, {28772, 33160}
X(27097) lies on these lines: {1, 2}, {21, 27185}, {37, 16705}, {56, 28777}, {72, 26689}, {141, 27047}, {213, 30941}, {304, 17489}, {321, 16752}, {350, 26978}, {517, 26562}, {595, 29473}, {894, 17169}, {1018, 24170}, {1475, 17353}, {1479, 16910}, {1621, 16060}, {1909, 27040}, {2176, 17137}, {2242, 25497}, {2275, 17279}, {2276, 27162}, {2345, 25504}, {3230, 17152}, {3263, 28598}, {3290, 20911}, {3294, 16887}, {3662, 27093}, {3670, 25248}, {3726, 17141}, {3915, 24586}, {4202, 26590}, {5074, 17211}, {5253, 16061}, {5255, 24602}, {5259, 16931}, {5263, 27169}, {5749, 26106}, {9310, 24549}, {11321, 24552}, {11363, 15149}, {14210, 16600}, {16583, 17497}, {16712, 32026}, {16738, 17201}, {17053, 27634}, {17081, 28739}, {17084, 27273}, {17263, 27080}, {17283, 27116}, {17674, 26582}, {17683, 20172}, {17686, 32942}, {18600, 25264}, {20244, 24190}, {25082, 25918}, {25994, 30806}, {26035, 31997}, {26041, 32099}, {26100, 30963}, {26971, 27155}, {27021, 27256}, {27119, 27134}, {27125, 27131}, {27249, 27259}
X(27098) lies on these lines: {2, 3}
X(27099) lies on these lines: {2, 3}
X(27100) lies on these lines: {2, 31}, {20965, 21250}, {27091, 27110}, {27095, 27104}, {27105, 27134}
X(27101) lies on these lines: {2, 32}, {27092, 27095}, {27109, 27126}, {27119, 27312}, {27133, 27137}
X(27102) lies on these lines: {2, 37}, {6, 26975}, {9, 27036}, {10, 16738}, {38, 25120}, {141, 27017}, {190, 27111}, {239, 26963}, {319, 17178}, {320, 26756}, {594, 26979}, {894, 21362}, {1268, 27164}, {1269, 31026}, {1654, 26048}, {1740, 21278}, {1909, 16710}, {1958, 26222}, {1964, 20352}, {2234, 21238}, {2309, 20340}, {3009, 28597}, {3596, 17148}, {3661, 27145}, {3662, 24170}, {4360, 27166}, {4438, 25611}, {4472, 27042}, {4852, 26821}, {17077, 27315}, {17116, 26976}, {17117, 26959}, {17231, 26774}, {17234, 27159}, {17237, 26857}, {17258, 26769}, {17283, 27113}, {17300, 20561}, {17319, 25510}, {17326, 27080}, {17345, 26768}, {17351, 26799}, {17366, 26982}, {17369, 27078}, {17376, 26816}, {17872, 30801}, {20255, 29964}, {21858, 30939}, {22012, 24195}, {24746, 33115}, {26029, 27334}, {27103, 27117}, {27120, 27127}
X(27103) lies on these lines: {2, 39}, {1018, 27091}, {4595, 26752}, {27092, 27095}, {27102, 27117}, {27126, 27133}
X(27104) lies on these lines: {1, 2}, {27095, 27100}, {27110, 27134}
X(27105) lies on these lines: {1, 2}, {1978, 20284}, {2229, 6384}, {2309, 27188}, {21071, 26108}, {27100, 27134}, {27285, 30818}
X(27106) lies on these lines: {2, 44}, {141, 26971}, {190, 27113}, {319, 27011}, {524, 26982}, {536, 18073}, {1086, 27044}, {3619, 27261}, {3662, 24170}, {3768, 27114}, {4357, 27032}, {5224, 27154}, {5564, 26850}, {6542, 26142}, {16706, 26756}, {17235, 26764}, {17238, 20549}, {17239, 26812}, {17258, 27073}, {17275, 27192}, {17276, 27136}, {17288, 26963}, {17291, 26772}, {17292, 26976}, {17297, 25534}, {17326, 27047}, {17357, 26799}, {17374, 26821}, {25140, 28597}
X(27107) lies on these lines: {2, 45}, {7, 26772}, {75, 27017}, {274, 330}, {894, 27311}, {3662, 24170}, {4000, 26963}, {4361, 17178}, {5224, 26857}, {7232, 26756}, {7263, 26979}, {17116, 27261}, {17148, 20892}, {17227, 27044}, {17234, 26764}, {17244, 27159}, {17265, 27073}, {17267, 26797}, {17283, 27136}, {17301, 27166}, {17302, 27162}, {17333, 27036}, {17349, 27343}, {17367, 26975}, {17378, 26816}, {27032, 27147}
X(27108) lies on these lines: {2, 6}, {9, 27514}, {198, 24612}, {319, 28748}, {322, 26669}, {346, 646}, {390, 2478}, {908, 17220}, {1229, 3965}, {2183, 20245}, {2269, 3452}, {2293, 6745}, {2345, 27058}, {2347, 21246}, {3262, 25243}, {3672, 27282}, {3686, 28797}, {4266, 17183}, {4384, 7190}, {4416, 17077}, {4643, 27170}, {4698, 4875}, {5227, 26265}, {6666, 28742}, {17279, 27096}, {27093, 27109}, {27124, 27133}, {27396, 30854}, {28778, 29616}
X(27109) lies on these lines: {2, 39}, {8, 4595}, {21, 5132}, {75, 25082}, {83, 11319}, {304, 26690}, {344, 3616}, {345, 5222}, {668, 27096}, {672, 17137}, {1193, 17353}, {1212, 20911}, {1280, 30701}, {1334, 30038}, {1475, 3912}, {1909, 28742}, {1930, 24036}, {2275, 17279}, {2276, 26965}, {2549, 16910}, {3263, 25066}, {3501, 30036}, {3618, 17526}, {3730, 17152}, {3735, 25248}, {3972, 17539}, {4253, 30941}, {4651, 23407}, {5030, 29473}, {5192, 11174}, {5276, 16061}, {5278, 16367}, {7772, 25497}, {7774, 26099}, {7791, 26085}, {7800, 17007}, {7864, 16906}, {7875, 16905}, {7876, 16991}, {7920, 17003}, {14021, 14555}, {16050, 32911}, {16549, 30109}, {16601, 26234}, {16818, 25092}, {16975, 26759}, {17169, 17234}, {17280, 26801}, {17303, 27156}, {17349, 17696}, {17754, 29966}, {17755, 33299}, {17756, 27299}, {17776, 26626}, {18061, 25253}, {20255, 20331}, {21070, 29742}, {21808, 24631}, {21877, 27313}, {23632, 27263}, {23649, 30821}, {27092, 27133}, {27093, 27108}, {27101, 27126}, {29590, 33168}
X(27110) lies on these lines: {2, 6}, {646, 3995}, {27091, 27100}, {27104, 27134}
X(27111) lies on these lines: {2, 6}, {37, 646}, {45, 26042}, {190, 27102}, {594, 26048}, {874, 17279}, {1100, 25510}, {2092, 25660}, {2664, 21238}, {3863, 27805}, {3948, 24530}, {4261, 30830}, {4361, 26107}, {4384, 25505}, {4698, 20363}, {16706, 25534}, {17243, 26752}, {17269, 27291}, {17273, 27017}, {17285, 27044}, {17305, 27311}, {17348, 26959}, {17390, 26113}, {17790, 21796}, {23345, 28758}, {25538, 31238}, {27073, 31333}, {27116, 27117}, {27123, 27132}
X(27112) lies on these lines: {1, 2}, {26687, 31020}
X(27113) lies on these lines: {1, 2}, {190, 27106}, {2321, 27011}, {3662, 27136}, {3663, 26797}, {4357, 27073}, {4431, 26850}, {4708, 27037}, {17231, 26963}, {17279, 27095}, {17283, 27102}, {17285, 26971}, {17291, 26764}, {17297, 26975}, {17307, 27032}, {17353, 26756}, {17357, 26772}, {17359, 26976}, {21385, 27138}, {27070, 31029}, {27131, 27137}
X(27114) lies on these lines: {2, 661}, {1150, 7252}, {2978, 24755}, {3762, 14838}, {3768, 27106}, {3952, 30584}, {4160, 26115}, {18155, 24900}, {18199, 19684}, {20295, 27346}, {21259, 21302}, {26049, 27013}, {26985, 27293}
X(27115) lies on these lines: {2, 650}, {149, 10006}, {514, 29607}, {661, 4763}, {812, 27138}, {1635, 20295}, {1639, 4467}, {1643, 29569}, {2516, 4380}, {3004, 14425}, {3239, 27486}, {3523, 8760}, {3619, 9015}, {3622, 14077}, {3762, 14838}, {4359, 21611}, {4394, 4776}, {4406, 27344}, {4521, 25259}, {4560, 4791}, {4777, 27268}, {4828, 31238}, {4893, 7192}, {5059, 8142}, {5281, 11934}, {6050, 31291}, {6546, 21212}, {9780, 29066}, {10196, 16892}, {16751, 26775}, {17069, 30565}, {17166, 31288}, {17260, 23808}, {17495, 25271}, {21297, 30835}, {21727, 29822}, {23806, 31053}
X(27116) lies on these lines: {2, 31}, {10, 27019}, {141, 20561}, {335, 27044}, {3662, 24170}, {4357, 27080}, {17283, 27097}, {17291, 27020}, {17307, 27026}, {17368, 27036}, {21003, 21301}, {27111, 27117}
X(27117) lies on these lines: {1, 2}, {24988, 32992}, {27102, 27103}, {27111, 27116}
X(27118) lies on these lines: {2, 3}, {346, 21579}, {4461, 21403}, {27096, 27129}
X(27119) lies on these lines: {2, 3}, {7790, 28749}, {24170, 27135}, {27025, 30832}, {27091, 27100}, {27096, 30831}, {27097, 27134}, {27101, 27312}
X(27120) lies on these lines: {2, 3}, {27102, 27127}
X(27121) lies on these lines: {2, 3}, {16581, 17279}
X(27122) lies on these lines: {2, 3}, {27091, 27127}
X(27123) lies on these lines: {2, 3}, {27111, 27132}
X(27124) lies on these lines: {2, 3}, {27108, 27133}
X(27125) lies on these lines: {2, 3}, {17279, 27096}, {27097, 27131}
X(27126) lies on these lines: {2, 3}, {27095, 27137}, {27101, 27109}, {27103, 27133}
X(27127) lies on these lines: {2, 19}, {35, 25582}, {37, 31019}, {344, 16580}, {3218, 28420}, {3662, 27093}, {16581, 17279}, {17073, 21495}, {17321, 27186}, {18651, 26065}, {20336, 32858}, {21062, 26132}, {27091, 27122}, {27102, 27120}
X(27128) lies on these lines: {2, 38}, {5205, 26969}, {27091, 27100}
X(27129) lies on these lines: {2, 40}, {20, 26658}, {78, 20533}, {85, 17747}, {169, 5195}, {220, 4872}, {226, 27253}, {516, 4209}, {517, 17671}, {673, 12701}, {857, 3661}, {1334, 7179}, {3649, 27475}, {3662, 27093}, {3730, 5074}, {3868, 31038}, {3912, 19582}, {4101, 29616}, {4188, 26660}, {4329, 27420}, {5046, 26653}, {5080, 28961}, {5088, 17732}, {6999, 25930}, {10025, 17170}, {11415, 28740}, {12699, 17682}, {12702, 17675}, {14021, 16826}, {21062, 27184}, {21068, 26125}, {21872, 33298}, {27021, 27255}, {27049, 31053}, {27091, 27092}, {27096, 27118}, {31045, 32858}
X(27130) lies on these lines: {2, 7}, {43, 11814}, {306, 30861}, {1401, 3038}, {1699, 26073}, {1997, 1999}, {3340, 25979}, {3699, 4952}, {3772, 4997}, {3782, 31233}, {3870, 26139}, {4033, 16594}, {5121, 32937}, {6557, 30699}, {6700, 17697}, {13466, 29582}, {21075, 26093}, {24003, 29641}, {27091, 27092}, {27132, 29629}, {30855, 32911}
X(27131) lies on these lines: {1, 26127}, {2, 7}, {5, 3876}, {8, 5187}, {10, 3899}, {11, 3681}, {43, 33134}, {72, 4193}, {78, 3586}, {100, 24703}, {145, 21075}, {149, 200}, {165, 21635}, {210, 5087}, {238, 29665}, {244, 33101}, {312, 3969}, {321, 5233}, {333, 17174}, {344, 27180}, {474, 18541}, {497, 3935}, {517, 6945}, {612, 33107}, {614, 33153}, {748, 17719}, {750, 33096}, {756, 17717}, {899, 3944}, {912, 6963}, {936, 2475}, {946, 3617}, {960, 11681}, {984, 29680}, {993, 5444}, {997, 5080}, {1054, 33098}, {1125, 17570}, {1215, 25960}, {1329, 3869}, {1376, 5057}, {1479, 4420}, {1621, 4679}, {1656, 15650}, {1699, 33110}, {1757, 29662}, {2051, 6539}, {2476, 5044}, {2478, 3488}, {2975, 25681}, {2994, 6557}, {2999, 33155}, {3006, 27538}, {3120, 16569}, {3240, 24210}, {3266, 21590}, {3436, 3476}, {3522, 6260}, {3616, 21077}, {3621, 12053}, {3654, 12611}, {3661, 31014}, {3671, 25011}, {3678, 7741}, {3679, 11813}, {3687, 4671}, {3697, 9955}, {3699, 5014}, {3705, 3952}, {3711, 11235}, {3740, 17605}, {3752, 33151}, {3786, 14008}, {3814, 5692}, {3816, 3873}, {3817, 25006}, {3825, 5904}, {3835, 6546}, {3840, 33065}, {3846, 29667}, {3868, 4187}, {3877, 17757}, {3890, 12607}, {3916, 17566}, {3925, 10129}, {3936, 18743}, {3940, 17556}, {3947, 24564}, {3957, 25568}, {3967, 33089}, {3971, 29849}, {3984, 9581}, {3994, 32855}, {3995, 22020}, {4009, 32862}, {4011, 29846}, {4090, 33120}, {4188, 6700}, {4189, 12572}, {4292, 17572}, {4358, 4417}, {4383, 17796}, {4413, 20292}, {4415, 4850}, {4416, 5372}, {4430, 11019}, {4661, 21060}, {4677, 21630}, {4703, 32918}, {4767, 30615}, {4855, 15680}, {4863, 10707}, {4871, 33069}, {4892, 25961}, {4997, 14829}, {5047, 11374}, {5123, 31165}, {5154, 6734}, {5176, 5289}, {5178, 10896}, {5205, 6327}, {5235, 17173}, {5253, 24954}, {5260, 11375}, {5268, 33112}, {5272, 33148}, {5284, 17718}, {5297, 26098}, {5423, 31091}, {5440, 11114}, {5550, 13407}, {5554, 8165}, {5709, 6979}, {5712, 17021}, {5720, 6840}, {5737, 30824}, {5739, 28808}, {5758, 6953}, {5761, 6898}, {5777, 6943}, {5791, 7504}, {5811, 6890}, {5812, 6915}, {5815, 10529}, {5880, 9342}, {6147, 17575}, {6384, 27461}, {6536, 29825}, {6686, 33125}, {6863, 26878}, {6872, 27383}, {6919, 12649}, {6922, 12528}, {6941, 31837}, {6947, 18444}, {6949, 26921}, {6971, 31835}, {6972, 7330}, {6975, 24474}, {7226, 24239}, {7292, 33144}, {7951, 10176}, {9335, 24231}, {9350, 24715}, {9352, 17768}, {9580, 20095}, {9780, 12047}, {10157, 10883}, {10584, 24477}, {11220, 13257}, {11684, 24914}, {11814, 30957}, {12514, 27529}, {12609, 19877}, {13411, 16865}, {14923, 21031}, {15228, 25440}, {15677, 30282}, {16468, 29683}, {16581, 17279}, {16610, 33146}, {16704, 17182}, {17020, 19785}, {17063, 32856}, {17122, 24725}, {17123, 33127}, {17124, 33097}, {17125, 33130}, {17155, 21093}, {17245, 17775}, {17331, 24220}, {17339, 27141}, {17521, 27412}, {17720, 32911}, {17776, 27757}, {17777, 32929}, {18139, 30829}, {18250, 24541}, {19861, 20060}, {20052, 21627}, {21805, 33141}, {22000, 31025}, {23536, 27625}, {24003, 25957}, {25385, 26037}, {25760, 28595}, {26105, 29817}, {27091, 27100}, {27096, 27118}, {27097, 27125}, {27113, 27137}, {27489, 27493}, {29612, 31039}, {29648, 32944}, {29649, 32843}, {29666, 32775}, {30567, 32863}, {30568, 32849}, {30578, 33168}, {30818, 32782}
X(27132) lies on these lines: {2, 85}, {220, 26526}, {344, 10528}, {1146, 26653}, {2348, 21285}, {3039, 3665}, {17279, 27096}, {17353, 24982}, {21856, 27337}, {25005, 31640}, {27111, 27123}, {27130, 29629}
X(27133) lies on these lines: {2, 99}, {190, 27135}, {668, 27134}, {27092, 27109}, {27101, 27137}, {27103, 27126}, {27108, 27124}, {28736, 28747}, {28737, 28749}
X(27134) lies on these lines: {2, 11}, {190, 27074}, {644, 26796}, {668, 27133}, {1018, 27135}, {4554, 26985}, {21383, 27045}, {25577, 27013}, {27092, 27096}, {27097, 27119}, {27100, 27105}, {27104, 27110}
X(27135) lies on these lines: {2, 101}, {190, 27133}, {644, 28743}, {1018, 27134}, {4885, 21859}, {24170, 27119}, {28737, 33298}
X(27136) lies on these lines: {2, 37}, {9, 27044}, {69, 26774}, {87, 25284}, {144, 26768}, {190, 27095}, {3619, 26857}, {3662, 27113}, {3875, 26982}, {4851, 26975}, {4869, 26816}, {7032, 23354}, {16738, 17293}, {17178, 17230}, {17233, 26963}, {17236, 26769}, {17242, 27166}, {17276, 27106}, {17283, 27107}, {17284, 27017}, {17285, 27145}, {17300, 26076}, {17314, 26821}, {17339, 27091}, {17350, 21362}, {17354, 26772}, {22343, 25292}, {24502, 26752}, {26082, 29591}
X(27137) lies on these lines: {2, 39}, {2176, 4595}, {17339, 27091}, {27095, 27126}, {27101, 27133}, {27113, 27131}
X(27138) lies on these lines: {2, 649}, {192, 27485}, {650, 21297}, {661, 4928}, {812, 27115}, {1960, 21301}, {2516, 4106}, {3240, 24749}, {3619, 9002}, {3676, 5226}, {3768, 27106}, {4120, 21212}, {4358, 20952}, {4379, 31290}, {4380, 31287}, {4382, 26777}, {4453, 14321}, {4468, 5748}, {4521, 5328}, {4671, 20909}, {4728, 17494}, {4775, 21260}, {4776, 4885}, {4806, 30795}, {4893, 26824}, {4940, 31250}, {5284, 23865}, {8656, 31291}, {8657, 24601}, {9404, 28834}, {9780, 29350}, {9812, 15599}, {14433, 29587}, {17234, 23345}, {20293, 31946}, {21051, 21343}, {21385, 27113}, {23655, 29814}, {23813, 31150}, {25301, 29824}, {26983, 27193}, {27045, 27346}
X(27139) lies on these lines: {2, 650}, {312, 25271}, {652, 26694}, {3768, 27106}, {4379, 28758}, {4928, 27293}, {21611, 30818}, {24924, 27345}, {27527, 30835}
X(27140) lies on these lines: {2, 659}, {190, 27074}, {891, 26752}, {3768, 27106}, {21385, 27091}
X(27141) lies on these lines: {2, 6}, {646, 4671}, {3306, 31029}, {4080, 17740}, {5219, 31025}, {17286, 30852}, {17339, 27131}, {24589, 30823}, {27092, 27096}, {27757, 30867}
Collineation mappings involving Gemini triangle 54: X(27142)-X(27195)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 54, as in centers X(27142)-X(27195). Then
m(X) = a (b^2 + c^2) x + b (a + c)^2 y + c (a + b)^2 z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 5, 2018)
X(27142) lies on these lines: {2, 3}, {6, 26125}, {1730, 16819}, {2481, 5283}, {5278, 27304}, {10025, 16552}, {17030, 27181}, {17257, 26976}, {19717, 26964}, {19740, 27146}, {27145, 27153}, {27162, 27189}
X(27143) lies on these lines: {2, 3}, {35, 28410}, {1038, 26203}, {27147, 27148}, {27161, 27162}
X(27144) lies on these lines: {2, 3}, {17030, 27149}
X(27145) lies on these lines: {2, 6}, {7, 26976}, {48, 26634}, {75, 27017}, {192, 980}, {238, 26094}, {239, 27311}, {894, 27261}, {982, 17142}, {1001, 16347}, {1107, 29982}, {1429, 17077}, {1740, 30942}, {2274, 17751}, {2309, 3840}, {3009, 24659}, {3286, 11319}, {3661, 27102}, {3662, 24220}, {3758, 27078}, {4389, 26857}, {4649, 26030}, {4657, 27166}, {4699, 10472}, {5253, 5263}, {16342, 26093}, {16696, 18137}, {16887, 27262}, {17030, 27147}, {17046, 26176}, {17148, 20891}, {17227, 25505}, {17228, 27044}, {17230, 26042}, {17233, 26764}, {17236, 26107}, {17244, 27032}, {17262, 26769}, {17267, 27073}, {17269, 26797}, {17285, 27136}, {17290, 27011}, {17291, 26959}, {17312, 27020}, {17326, 25510}, {17331, 27036}, {17347, 26799}, {17368, 26975}, {17370, 26982}, {17380, 26821}, {18144, 31026}, {18792, 27312}, {20172, 26997}, {24437, 25277}, {25528, 29827}, {27142, 27153}, {27152, 27157}, {27158, 27188}, {27162, 30940}, {27191, 27192}
X(27146) lies on these lines: {1, 2}, {496, 17672}, {1015, 26100}, {3295, 31020}, {4657, 27161}, {5333, 27172}, {6703, 26989}, {16744, 18600}, {17045, 27514}, {17164, 24629}, {17302, 24486}, {19740, 27142}, {24631, 25253}, {25261, 26690}, {25526, 26828}, {27009, 27302}, {27162, 27195}, {27171, 27183}
X(27147) lies on these lines: {2, 7}, {6, 29628}, {8, 17312}, {10, 17232}, {37, 4398}, {45, 7321}, {69, 16815}, {75, 3943}, {76, 29982}, {86, 4273}, {141, 4751}, {192, 4098}, {239, 4648}, {319, 17313}, {320, 17259}, {344, 17116}, {594, 17241}, {966, 17288}, {1086, 4687}, {1125, 17383}, {1213, 17227}, {1266, 4704}, {1278, 29599}, {1449, 29590}, {1654, 16832}, {1738, 3616}, {2321, 4772}, {2345, 17266}, {2999, 26109}, {3008, 17379}, {3596, 30044}, {3617, 4684}, {3618, 29607}, {3619, 29610}, {3622, 3755}, {3624, 3821}, {3661, 3739}, {3663, 27268}, {3664, 17349}, {3686, 17375}, {3731, 4440}, {3758, 17337}, {3759, 17392}, {3763, 28653}, {3778, 17063}, {3834, 5224}, {3875, 29569}, {3879, 16816}, {3912, 4058}, {3925, 29843}, {3945, 17121}, {3946, 29570}, {3950, 4740}, {3963, 30090}, {4000, 16826}, {4029, 4788}, {4270, 17020}, {4361, 17317}, {4363, 17263}, {4384, 17300}, {4389, 4698}, {4395, 17393}, {4399, 17386}, {4402, 29585}, {4416, 31211}, {4430, 22312}, {4431, 29600}, {4472, 17371}, {4657, 27191}, {4664, 7263}, {4665, 17240}, {4670, 17352}, {4675, 17277}, {4688, 17233}, {4798, 25357}, {4851, 29617}, {4859, 16831}, {4869, 17287}, {4888, 20072}, {4967, 17230}, {5308, 17319}, {5564, 17311}, {6707, 17400}, {7227, 17342}, {7232, 17256}, {7238, 17329}, {15668, 16706}, {16484, 24693}, {16777, 29622}, {16911, 24549}, {16917, 25500}, {16994, 24586}, {17030, 27145}, {17049, 25279}, {17067, 29595}, {17073, 21940}, {17117, 17316}, {17118, 17264}, {17119, 17315}, {17202, 25508}, {17238, 21255}, {17262, 31139}, {17265, 17289}, {17268, 29627}, {17275, 17297}, {17280, 25590}, {17283, 17303}, {17284, 28604}, {17290, 17322}, {17295, 28634}, {17299, 29618}, {17314, 29575}, {17321, 29578}, {17330, 17361}, {17334, 31285}, {17335, 17365}, {17341, 17369}, {17346, 17376}, {17348, 17378}, {17356, 17381}, {17362, 17387}, {17366, 17394}, {17370, 17398}, {17380, 28639}, {17385, 31243}, {17743, 32015}, {17889, 25501}, {20913, 20923}, {24058, 27586}, {24077, 27565}, {24325, 33165}, {24661, 27846}, {24789, 29841}, {27032, 27107}, {27143, 27148}, {27166, 27192}, {27641, 31198}, {29583, 32087}, {29603, 31312}
X(27148) lies on these lines: {1, 2}, {36, 16931}, {4657, 27162}, {5284, 16061}, {5333, 27185}, {16604, 16705}, {17169, 31004}, {17322, 27019}, {17398, 26986}, {24739, 25498}, {25263, 26234}, {26035, 30963}, {26100, 31997}, {27143, 27147}, {27172, 27190}, {27178, 27186}
X(27149) lies on these lines: {2, 11}, {17030, 27144}, {21912, 26536}, {26558, 26804}
X(27150) lies on these lines: {2, 3}
X(27151) lies on these lines: {2, 3}
X(27152) lies on these lines: {2, 31}, {2140, 17176}, {5372, 27314}, {8267, 21415}, {16704, 27313}, {17030, 27163}, {18067, 31078}, {19717, 26965}, {20255, 20965}, {27145, 27157}, {27158, 27190}
X(27153) lies on these lines: {2, 32}, {27142, 27145}, {27162, 27179}
X(27154) lies on these lines: {2, 37}, {142, 16738}, {5224, 27106}, {7321, 26817}, {10436, 26975}, {16815, 25538}, {16819, 17291}, {16829, 17312}, {17030, 27145}, {17259, 27036}, {17260, 26976}, {17261, 27037}, {17337, 27078}, {17398, 26982}, {19853, 26150}, {25534, 31248}, {26110, 29590}, {26821, 28639}, {27095, 29576}, {27155, 27156}, {27164, 27191}, {27173, 27180}
X(27155) lies on these lines: {2, 39}, {141, 26801}, {2275, 18143}, {17169, 26963}, {17758, 26959}, {26971, 27097}, {27142, 27145}, {27154, 27156}, {27179, 27189}
X(27156) lies on these lines: {1, 2}, {3739, 16705}, {3876, 31322}, {5251, 16930}, {17303, 27109}, {27154, 27155}, {27164, 27169}, {27172, 27181}
X(27157) lies on these lines: {1, 2}, {4430, 27298}, {16748, 21264}, {27145, 27152}, {27163, 27190}, {27351, 28605}
X(27158) lies on these lines: {1, 2}, {36, 16955}, {354, 27285}, {672, 26107}, {2275, 18152}, {2350, 24514}, {6384, 30955}, {21330, 30004}, {24512, 25505}, {27145, 27188}, {27152, 27190}
X(27159) lies on these lines: {2, 44}, {142, 26971}, {4648, 27311}, {4698, 26857}, {17030, 27145}, {17232, 20549}, {17234, 27102}, {17244, 27107}, {17245, 27017}, {17291, 26986}, {20295, 27167}, {27166, 27191}, {27272, 27342}
X(27160) lies on these lines: {2, 45}, {4751, 27095}, {17030, 27145}
X(27161) lies on these lines: {2, 6}, {579, 17183}, {1108, 24993}, {1475, 21246}, {2260, 20245}, {3672, 27334}, {4000, 26964}, {4657, 27146}, {4747, 26125}, {4851, 27096}, {5750, 28797}, {7289, 26229}, {8732, 24609}, {10200, 27519}, {10586, 27520}, {17023, 17077}, {27143, 27162}, {27177, 27189}
X(27162) lies on these lines: {1, 24170}, {2, 39}, {86, 404}, {99, 11319}, {304, 4850}, {325, 4202}, {348, 5435}, {350, 26094}, {386, 30941}, {536, 24668}, {574, 25497}, {941, 26106}, {982, 17141}, {995, 17152}, {1125, 25599}, {1193, 17137}, {1509, 19717}, {1909, 26030}, {1921, 27311}, {1975, 5192}, {2275, 26965}, {2276, 27097}, {2295, 25350}, {2548, 16910}, {3216, 16887}, {3616, 8299}, {3672, 26093}, {3752, 20911}, {4357, 27627}, {4398, 5550}, {4657, 27148}, {5701, 10030}, {6337, 17526}, {7758, 17007}, {7774, 26085}, {7777, 16906}, {7782, 17539}, {7791, 26099}, {7891, 16905}, {7906, 16991}, {7907, 17003}, {11329, 19684}, {11337, 19769}, {16549, 30106}, {16720, 17489}, {17205, 20108}, {17206, 32911}, {17302, 27107}, {17382, 24739}, {17756, 27248}, {19767, 30962}, {19864, 20888}, {24190, 30112}, {26115, 31997}, {27142, 27189}, {27143, 27161}, {27145, 30940}, {27146, 27195}, {27153, 27179}
X(27163) lies on these lines: {2, 6}, {75, 18601}, {314, 17147}, {321, 16696}, {1444, 17587}, {3286, 24552}, {3662, 17173}, {3736, 17135}, {3741, 17187}, {3995, 32026}, {4359, 16700}, {4658, 26115}, {10458, 29824}, {10471, 28605}, {16050, 31039}, {16726, 31993}, {16736, 24589}, {16753, 19804}, {16887, 16891}, {17030, 27152}, {17174, 27184}, {17182, 26580}, {18169, 30942}, {18192, 29827}, {18206, 26223}, {18600, 19789}, {18792, 31330}, {26801, 33150}, {27157, 27190}, {27170, 27174}, {28606, 30939}, {30599, 30710}
X(27164) lies on these lines: {2, 6}, {9, 10455}, {10, 3736}, {21, 5263}, {37, 314}, {58, 19858}, {142, 16887}, {238, 19863}, {261, 1333}, {274, 1107}, {286, 1841}, {334, 28653}, {958, 1010}, {1001, 4267}, {1014, 17077}, {1125, 4281}, {1220, 14005}, {1268, 27102}, {1444, 26643}, {1698, 18792}, {1740, 18169}, {1918, 32917}, {2274, 31339}, {2309, 30970}, {3616, 5331}, {3666, 20174}, {3863, 32010}, {4000, 16705}, {4269, 4357}, {4361, 33296}, {4483, 4653}, {4657, 17030}, {4687, 30939}, {4751, 16709}, {4833, 27527}, {4851, 27255}, {4852, 16829}, {5132, 19270}, {5247, 16828}, {5257, 17197}, {5283, 10471}, {5296, 17183}, {5327, 27509}, {10436, 18206}, {10458, 31330}, {15320, 24723}, {16589, 25660}, {16724, 17382}, {16726, 31238}, {17045, 26801}, {17139, 17257}, {17175, 18164}, {17185, 25515}, {17202, 17248}, {17210, 17306}, {17237, 25538}, {17239, 27020}, {17285, 27032}, {17326, 25534}, {17369, 26082}, {18192, 25528}, {18196, 21191}, {21264, 31008}, {24437, 25124}, {25498, 26959}, {25512, 28619}, {27037, 31333}, {27154, 27191}, {27156, 27169}, { 27170, 27172}, {27176, 27187}, {28639, 31996}
X(27164) = complement of X(26110)
X(27165) lies on these lines: {1, 2}
X(27166) lies on these lines: {1, 2}, {37, 26963}, {39, 3995}, {56, 11320}, {86, 26971}, {142, 27011}, {190, 26975}, {321, 16604}, {330, 31060}, {335, 26986}, {1015, 3948}, {1019, 17174}, {1100, 26772}, {1269, 16710}, {1909, 31026}, {2260, 17350}, {2275, 31036}, {3210, 26747}, {3879, 26756}, {3950, 26797}, {3952, 20456}, {4357, 17178}, {4360, 27102}, {4366, 19308}, {4657, 27145}, {4670, 26976}, {4755, 27037}, {4851, 27095}, {12263, 17140}, {16685, 29453}, {16736, 19821}, {16738, 17322}, {17045, 26979}, {17120, 26799}, {17147, 24598}, {17148, 18147}, {17236, 26143}, {17238, 25535}, {17242, 27136}, {17297, 25534}, {17301, 27107}, {17302, 27017}, {17319, 26764}, {17324, 26857}, {17379, 26107}, {17380, 27311}, {17381, 27261}, {17394, 25505}, {19717, 27262}, {20349, 26138}, {20363, 20868}, {20530, 31061}, {24199, 26850}, {27147, 27192}, {27159, 27191}, {27318, 28605}, {28654, 29974}
X(27167) lies on these lines: {2, 661}, {850, 17066}, {4077, 17077}, {4160, 19874}, {4978, 14838}, {5278, 18199}, {7199, 24948}, {16751, 18154}, {20295, 27159}, {21191, 27673}, {21259, 25301}, {26114, 27013}, {26985, 27345}
X(27168) lies on these lines: {2, 667}, {194, 23807}, {1019, 27169}, {4063, 16819}, {8630, 25299}, {8632, 27293}, {9010, 20139}, {9491, 23301}, {21191, 23572}
X(27169) lies on these lines: {2, 31}, {86, 26965}, {142, 27019}, {940, 27313}, {1019, 27168}, {1740, 29966}, {2309, 29968}, {3701, 20167}, {5263, 27097}, {9780, 20139}, {16738, 16819}, {17030, 27145}, {17379, 27299}, {18792, 30109}, {20133, 26115}, {20140, 26030}, {27156, 27164}
X(27170) lies on these lines: {2, 7}, {77, 26621}, {141, 27096}, {160, 4189}, {241, 24547}, {1229, 25237}, {3522, 10882}, {3663, 28797}, {3739, 26563}, {4000, 16696}, {4643, 27108}, {4657, 27146}, {7146, 21273}, {7613, 19843}, {14953, 16738}, {17030, 27171}, {17052, 26781}, {17258, 28748}, {18635, 27050}, {21255, 28742}, {24471, 24633}, {25601, 29579}, {26626, 26818}, {27163, 27174}, {27164, 27172}, {27283, 33298}
X(27171) lies on these lines: {2, 3}, {3218, 27000}, {17030, 27170}, {20367, 27304}, {27146, 27183}
X(27172) lies on these lines: {2, 3}, {86, 26964}, {3218, 16819}, {4267, 24596}, {5333, 27146}, {16704, 27304}, {17030, 27152}, {17174, 27183}, {27148, 27190}, {27156, 27181}, {27164, 27170}
X(27173) lies on these lines: {2, 3}, {27154, 27180}
X(27174) lies on these lines: {2, 3}, {35, 306}, {58, 4652}, {63, 284}, {81, 593}, {333, 2164}, {993, 5271}, {1014, 8025}, {1030, 1211}, {1172, 1748}, {1214, 1950}, {1230, 26243}, {1396, 17080}, {1621, 2352}, {1778, 4261}, {1790, 17185}, {1792, 33077}, {1801, 2328}, {1993, 23602}, {2194, 4640}, {2206, 4414}, {2287, 3219}, {2303, 28606}, {2360, 5250}, {2975, 3187}, {3305, 4877}, {3687, 4276}, {3871, 20017}, {4273, 4641}, {4278, 17023}, {4288, 24611}, {4384, 5358}, {4653, 5287}, {4657, 5333}, {5303, 29833}, {5905, 8822}, {11683, 25254}, {12572, 27412}, {12610, 17167}, {15817, 27540}, {16704, 20043}, {16948, 17012}, {21376, 25080}, {27163, 27170}, {27398, 31018}
X(27175) lies on these lines: {2, 3}, {16887, 18648}, {17030, 27180}, {27184, 27185}
X(27176) lies on these lines: {2, 3}, {7054, 25508}, {27164, 27187}
X(27177) lies on these lines: {2, 3}, {27161, 27189}
X(27178) lies on these lines: {2, 3}, {4657, 27146}, {27148, 27186}
X(27179) lies on these lines: {2, 3}, {27153, 27162}, {27155, 27189}
X(27180) lies on these lines: {2, 19}, {21, 16114}, {37, 31053}, {344, 27131}, {1001, 20846}, {3219, 28420}, {3662, 17183}, {4657, 5333}, {16580, 17321}, {17030, 27175}, {17073, 21511}, {18639, 26156}, {20254, 23635}, {20336, 33077}, {26130, 26639}, {27143, 27147}, {27154, 27173}, {28022, 33146}
X(27181) lies on these lines: {2, 36}, {1019, 27168}, {16819, 20367}, {17030, 27142}, {19743, 26964}, {24296, 28803}, {27156, 27172}
X(27182) lies on these lines: {2, 38}, {2140, 16891}, {16823, 27030}, {17030, 27152}
X(27183) lies on these lines: {2, 40}, {5, 26531}, {379, 17397}, {673, 11375}, {908, 27304}, {1125, 4209}, {2140, 17181}, {5141, 26526}, {5154, 26532}, {5886, 17682}, {9779, 11201}, {9955, 17671}, {11349, 29612}, {12053, 27253}, {17030, 27142}, {17174, 27172}, {17691, 24541}, {17747, 31269}, {24580, 29609}, {26964, 31019}, {27143, 27147}, {27146, 27171}
X(27184) lies on these lines: {1, 1330}, {2, 7}, {6, 19786}, {8, 3914}, {10, 17889}, {31, 4683}, {37, 18134}, {38, 3705}, {42, 32776}, {43, 3821}, {55, 24723}, {69, 1999}, {72, 16062}, {75, 1211}, {76, 321}, {78, 4201}, {81, 17202}, {85, 6354}, {92, 257}, {100, 32950}, {141, 312}, {171, 4655}, {190, 32777}, {192, 306}, {210, 4429}, {222, 26625}, {223, 17086}, {238, 4703}, {239, 5739}, {244, 25960}, {320, 940}, {333, 3772}, {345, 4419}, {518, 32773}, {537, 33169}, {612, 4645}, {726, 32778}, {740, 33084}, {748, 33123}, {750, 33067}, {752, 17716}, {756, 25957}, {846, 3771}, {899, 33125}, {902, 29848}, {968, 9791}, {982, 3846}, {984, 2887}, {1001, 33124}, {1086, 5743}, {1150, 33133}, {1215, 32784}, {1376, 33068}, {1426, 17555}, {1446, 26607}, {1458, 24550}, {1621, 33122}, {1654, 5271}, {1738, 4104}, {1757, 25453}, {1836, 5263}, {1931, 5333}, {2308, 29636}, {2895, 3187}, {2975, 25906}, {2999, 17304}, {3006, 7226}, {3061, 23636}, {3120, 17794}, {3175, 17233}, {3210, 3663}, {3242, 4514}, {3416, 32926}, {3419, 17677}, {3487, 13725}, {3616, 13736}, {3620, 34255}, {3666, 4389}, {3673, 21405}, {3676, 26596}, {3677, 5211}, {3681, 4972}, {3685, 33171}, {3688, 25308}, {3720, 33069}, {3721, 3981}, {3741, 3944}, {3752, 5233}, {3755, 20012}, {3757, 33144}, {3758, 19812}, {3769, 17602}, {3790, 15523}, {3794, 26892}, {3844, 3967}, {3868, 5051}, {3873, 29843}, {3876, 4202}, {3891, 33075}, {3912, 4656}, {3920, 6327}, {3923, 32783}, {3936, 17247}, {3938, 32947}, {3940, 11359}, {3952, 29679}, {3961, 4660}, {3966, 32922}, {3971, 29674}, {3980, 32857}, {3989, 29643}, {3995, 17242}, {4000, 14555}, {4001, 4741}, {4011, 29637}, {4052, 27835}, {4054, 17238}, {4077, 26545}, {4101, 20018}, {4205, 6147}, {4320, 19861}, {4358, 33172}, {4359, 33146}, {4361, 4886}, {4362, 33082}, {4363, 19808}, {4364, 17056}, {4383, 16706}, {4384, 23681}, {4414, 29846}, {4418, 33098}, {4430, 29835}, {4521, 26571}, {4641, 17347}, {4651, 33131}, {4850, 5741}, {4892, 33111}, {4981, 33108}, {5057, 24552}, {5220, 33118}, {5224, 31993}, {5256, 17302}, {5269, 20101}, {5278, 17331}, {5287, 17300}, {5311, 32949}, {5712, 17321}, {5718, 17249}, {5737, 17253}, {6376, 30631}, {6679, 7262}, {6682, 17717}, {6703, 17365}, {7018, 17149}, {7081, 26034}, {8580, 26073}, {8616, 29656}, {9284, 20284}, {9534, 23537}, {9535, 12610}, {10453, 24210}, {10468, 10478}, {11263, 19858}, {11374, 19270}, {11679, 17272}, {11814, 31242}, {12572, 17697}, {12609, 19853}, {13411, 19278}, {13567, 26531}, {14829, 17273}, {15485, 29672}, {16468, 29654}, {16569, 24169}, {16608, 25977}, {16738, 17167}, {16780, 26626}, {16817, 24159}, {16825, 33147}, {16887, 17177}, {17011, 17396}, {17017, 32843}, {17019, 17391}, {17022, 17298}, {17030, 27142}, {17073, 25908}, {17116, 19822}, {17117, 19789}, {17118, 19797}, {17119, 19820}, {17121, 19823}, {17127, 26230}, {17135, 33134}, {17147, 31037}, {17165, 29667}, {17174, 27163}, {17192, 17284}, {17227, 18743}, {17229, 22034}, {17244, 18139}, {17255, 32851}, {17256, 19732}, {17258, 30811}, {17261, 17776}, {17276, 30832}, {17277, 24789}, {17320, 20182}, {17322, 19701}, {17339, 33157}, {17349, 26723}, {17367, 32774}, {17397, 19684}, {17599, 33071}, {17719, 32916}, {17763, 33080}, {17770, 29645}, {18056, 30660}, {18541, 19276}, {18750, 26543}, {20173, 26590}, {20256, 30546}, {21062, 27129}, {21240, 30830}, {21616, 26123}, {21813, 26242}, {23806, 26049}, {24177, 24620}, {24190, 24603}, {24214, 24621}, {24248, 32932}, {24320, 25494}, {24325, 33103}, {24697, 33130}, {24703, 32942}, {24725, 32772}, {24943, 32930}, {25466, 31359}, {25496, 33096}, {25935, 27288}, {26061, 32938}, {26227, 33083}, {26579, 26942}, {26724, 29628}, {27175, 27185}, {27476, 27481}, {27479, 27495}, {28595, 33165}, {29617, 31143}, {29631, 32912}, {29635, 32913}, {29649, 33085}, {29652, 33106}, {30473, 30713}, {30831, 33113}, {30965, 31008}, {31134, 33072}, {31237, 33115}, {32771, 32856}, {32779, 32933}, {32780, 32935}, {32781, 32931}, {32852, 32928}, {32853, 33135}, {32860, 33145}, {32861, 32921}, {32864, 33128}, {32914, 33143}, {32915, 33081}, {32917, 33127}, {32920, 33076}, {32927, 33074}, {32929, 33100}, {32934, 33160}, {32936, 33156}, {32941, 33095}, {32945, 33094}
X(27184) = anticomplement of isotomic conjugate of polar conjugate of X(1891)
X(27185) lies on these lines: {2, 58}, {21, 27097}, {81, 26965}, {4184, 27263}, {5333, 27148}, {11115, 27248}, {14005, 27026}, {16703, 16735}, {16704, 27299}, {16716, 20911}, {16738, 17169}, {17030, 27152}, {17187, 29960}, {18169, 29966}, {18180, 26562}, {26807, 28619}, {26959, 27190}, {26969, 30176}, {27142, 27145}, {27156, 27164}, {27175, 27184}
X(27186) lies on these lines: {2, 7}, {6, 26724}, {10, 3894}, {37, 33146}, {46, 9782}, {75, 3969}, {81, 4675}, {85, 30690}, {86, 17173}, {90, 10266}, {149, 4666}, {171, 29681}, {244, 29680}, {273, 445}, {306, 24199}, {320, 5278}, {321, 17234}, {343, 21258}, {354, 33108}, {377, 3488}, {404, 943}, {405, 18541}, {474, 25593}, {612, 33148}, {614, 33112}, {726, 29854}, {748, 33097}, {750, 29665}, {756, 33103}, {940, 33129}, {942, 4197}, {946, 3522}, {968, 33102}, {982, 29664}, {1001, 20292}, {1054, 29678}, {1071, 6991}, {1086, 28606}, {1125, 1770}, {1215, 25961}, {1230, 20923}, {1621, 5880}, {1738, 17018}, {1836, 5284}, {1961, 33143}, {1962, 33149}, {2140, 14953}, {2475, 3586}, {2476, 3824}, {2550, 3957}, {2895, 4384}, {3120, 26102}, {3187, 17300}, {3434, 29817}, {3475, 3935}, {3476, 28629}, {3550, 29689}, {3578, 17361}, {3612, 3616}, {3617, 21620}, {3624, 3648}, {3661, 6539}, {3664, 26723}, {3671, 24564}, {3681, 3826}, {3720, 17889}, {3739, 32782}, {3742, 11680}, {3782, 17245}, {3811, 26060}, {3812, 25005}, {3816, 10129}, {3833, 7951}, {3834, 31993}, {3836, 29679}, {3841, 18398}, {3848, 17605}, {3868, 8728}, {3873, 3925}, {3876, 6147}, {3889, 31419}, {3912, 28605}, {3914, 29814}, {3923, 29851}, {3936, 19804}, {3944, 30950}, {3947, 25011}, {3980, 29632}, {3995, 17244}, {4000, 17011}, {4038, 33128}, {4188, 12436}, {4208, 12649}, {4292, 16865}, {4359, 18134}, {4363, 33157}, {4393, 17050}, {4417, 24589}, {4418, 29642}, {4423, 5057}, {4430, 5542}, {4648, 17019}, {4657, 5333}, {4850, 17056}, {4859, 5256}, {4883, 21949}, {4892, 25960}, {4980, 17233}, {5068, 6260}, {5133, 25365}, {5154, 9843}, {5248, 15228}, {5253, 28628}, {5260, 10404}, {5268, 33153}, {5271, 17298}, {5272, 33107}, {5287, 23681}, {5297, 33144}, {5311, 33147}, {5436, 15680}, {5444, 26725}, {5550, 12047}, {5712, 17012}, {5722, 6175}, {5768, 6993}, {5770, 6877}, {5805, 7411}, {5886, 6909}, {6327, 16823}, {6384, 27446}, {6690, 9352}, {6701, 7741}, {6826, 18444}, {6828, 9940}, {6829, 10202}, {6839, 18443}, {6861, 26877}, {6894, 10884}, {6895, 8726}, {6990, 13369}, {7226, 24231}, {7232, 19732}, {7292, 26098}, {7321, 32933}, {7560, 20291}, {8226, 11220}, {9335, 24239}, {9345, 33135}, {9347, 17061}, {9780, 13407}, {10167, 10883}, {10389, 20095}, {10431, 21151}, {10528, 11024}, {11374, 17531}, {12572, 17570}, {13411, 17572}, {16484, 33094}, {16706, 19684}, {16708, 18045}, {16753, 26746}, {16825, 32949}, {16891, 17175}, {17013, 17067}, {17014, 24181}, {17030, 27152}, {17063, 33105}, {17117, 20017}, {17122, 33127}, {17123, 24725}, {17124, 17719}, {17125, 33096}, {17140, 29641}, {17155, 29653}, {17277, 32859}, {17278, 32911}, {17290, 19701}, {17305, 25507}, {17314, 19819}, {17315, 19820}, {17316, 19789}, {17317, 19796}, {17321, 27127}, {17364, 19742}, {17367, 19717}, {17450, 33141}, {17521, 25526}, {17591, 29682}, {17596, 29661}, {17761, 30562}, {19877, 21077}, {20269, 25946}, {20271, 20859}, {20917, 28654}, {20966, 24046}, {21020, 33087}, {21026, 33169}, {21195, 27486}, {21566, 31540}, {21567, 31541}, {21590, 26235}, {23806, 26985}, {24165, 29643}, {24325, 25957}, {24331, 32947}, {24342, 24943}, {24693, 32945}, {25385, 30957}, {25495, 25496}, {26037, 33064}, {27146, 27171}, {27148, 27178}, {29648, 33123}, {29651, 32948}, {29666, 32772}, {29820, 33104}, {29830, 32932}, {29968, 31060}, {31151, 33074}, {31178, 33162}
X(27187) lies on these lines: {1, 25581}, {2, 85}, {8, 32818}, {21, 17181}, {57, 24583}, {150, 3897}, {304, 33113}, {321, 3926}, {325, 5016}, {498, 30806}, {1358, 31260}, {1434, 31019}, {1565, 7483}, {1931, 5333}, {2476, 5088}, {2646, 21285}, {2975, 7179}, {3665, 4999}, {3772, 18600}, {3869, 17084}, {4056, 5267}, {4189, 4872}, {4352, 33133}, {4357, 24540}, {4657, 27146}, {5228, 26628}, {5433, 26229}, {5794, 17136}, {6910, 17170}, {7181, 25466}, {7278, 10197}, {7763, 20911}, {9310, 25353}, {9436, 24541}, {10448, 24241}, {10586, 17321}, {11375, 20347}, {16601, 28734}, {17206, 32859}, {17248, 24557}, {17257, 24553}, {17740, 32831}, {20880, 26363}, {24215, 33127}, {24627, 29614}, {27164, 27176}, {31039, 31121}
X(27188) lies on these lines: {2, 87}, {2309, 27105}, {15668, 23538}, {17030, 27192}, {27145, 27158}
X(27189) lies on these lines: {2, 99}, {1509, 26964}, {4576, 18061}, {27142, 27162}, {27155, 27179}, {27161, 27177}, {27190, 27195}
X(27190) lies on these lines: {2, 11}, {19740, 27142}, {26959, 27185}, {27012, 27191}, {27148, 27172}, {27152, 27158}, {27157, 27163}, {27189, 27195}
X(27191) lies on these lines: {1, 25351}, {2, 45}, {3, 24827}, {5, 24813}, {7, 17352}, {10, 24841}, {37, 29626}, {44, 29607}, {69, 24599}, {75, 646}, {86, 142}, {140, 24833}, {141, 32025}, {192, 17265}, {238, 24692}, {239, 3834}, {314, 29756}, {319, 21255}, {320, 3008}, {333, 26724}, {335, 1268}, {344, 4398}, {524, 29590}, {528, 3616}, {536, 17266}, {537, 1698}, {590, 24819}, {599, 16816}, {615, 24818}, {631, 29243}, {668, 18150}, {726, 31252}, {812, 27195}, {894, 17356}, {900, 30795}, {918, 31640}, {1100, 32096}, {1111, 18151}, {1125, 24715}, {1222, 23675}, {1227, 25527}, {1266, 17264}, {1278, 17267}, {2224, 17682}, {2486, 30993}, {2786, 14061}, {2796, 19862}, {3090, 24828}, {3120, 24709}, {3306, 16560}, {3315, 20042}, {3525, 24817}, {3589, 26806}, {3617, 9041}, {3618, 4747}, {3619, 4437}, {3624, 4432}, {3662, 4643}, {3663, 17263}, {3699, 24988}, {3729, 17341}, {3758, 6173}, {3759, 17298}, {3763, 4699}, {3836, 17769}, {3875, 17241}, {3912, 17067}, {3946, 17317}, {4000, 4360}, {4014, 24482}, {4033, 30866}, {4357, 31211}, {4361, 17232}, {4366, 15668}, {4384, 17227}, {4393, 17313}, {4395, 6542}, {4413, 24820}, {4479, 30822}, {4499, 16482}, {4648, 17380}, {4657, 27147}, {4659, 17342}, {4665, 29587}, {4670, 29630}, {4675, 17367}, {4686, 17268}, {4687, 17304}, {4688, 17292}, {4698, 17324}, {4740, 17269}, {4751, 17306}, {4772, 17293}, {4792, 25031}, {4796, 17120}, {4852, 17312}, {4862, 17336}, {4869, 17377}, {4885, 32016}, {5043, 23958}, {5070, 24844}, {5094, 24814}, {5219, 31233}, {5222, 17378}, {5263, 24693}, {5432, 24837}, {5433, 24836}, {6547, 6631}, {6646, 17337}, {6650, 6707}, {6651, 25498}, {6653, 17045}, {6666, 17258}, {6678, 16099}, {7232, 17349}, {7238, 20072}, {7263, 17280}, {7321, 17353}, {7484, 24822}, {7808, 24815}, {7914, 24825}, {10436, 17370}, {14475, 24129}, {14829, 24789}, {15184, 24830}, {16593, 17321}, {16610, 30823}, {16672, 29599}, {16726, 24625}, {16815, 17237}, {16826, 17382}, {16831, 17399}, {16832, 17250}, {16833, 17360}, {16834, 17387}, {17116, 17357}, {17117, 17231}, {17118, 17358}, {17119, 17230}, {17121, 17376}, {17151, 17240}, {17235, 17260}, {17236, 17259}, {17244, 17301}, {17245, 17302}, {17261, 31333}, {17274, 17335}, {17276, 17338}, {17281, 29629}, {17287, 32108}, {17288, 17348}, {17289, 24199}, {17300, 17366}, {17318, 29572}, {17320, 29571}, {17323, 27268}, {17326, 31238}, {17371, 25590}, {17384, 24358}, {17395, 29569}, {17400, 17738}, {17719, 24188}, {17724, 26073}, {18044, 30090}, {18743, 23681}, {20582, 29591}, {21358, 29593}, {24177, 33116}, {24589, 30832}, {24617, 25536}, {24620, 30811}, {24627, 31205}, {24790, 33296}, {24835, 24953}, {24842, 32785}, {24843, 32786}, {24847, 26364}, {24848, 26363}, {25961, 32926}, {27012, 27190}, {27145, 27192}, {27154, 27164}, {27159, 27166}, {30598, 31312}, {30867, 31197}, {31289, 32857}, {31647, 32028}
X(27191) = isotomic conjugate of X(36954)
X(27191) = complement of X(4473)
X(27192) lies on these lines: {2, 37}, {391, 26768}, {4648, 26821}, {4859, 27017}, {10436, 26982}, {16738, 17290}, {16816, 26756}, {17030, 27188}, {17164, 27680}, {17275, 27106}, {17352, 26976}, {25277, 30982}, {25295, 31005}, {26149, 29590}, {27145, 27191}, {27147, 27166}
X(27193) lies on these lines: {2, 650}, {37, 25271}, {1019, 3835}, {3261, 25258}, {3837, 4057}, {4369, 27293}, {4379, 27527}, {4449, 25627}, {4728, 27345}, {17215, 25924}, {17217, 27673}, {19874, 21727}, {20295, 27159}, {21191, 28398}, {23301, 30795}, {23791, 25501}, {23803, 29426}, {26248, 27294}, {26983, 27138}, {28758, 30835}
X(27194) lies on these lines: {2, 659}, {20295, 27159}, {27012, 27190}
X(27195) lies on these lines: {1, 4595}, {2, 668}, {39, 32026}, {83, 5253}, {86, 25532}, {106, 18047}, {244, 18061}, {274, 4602}, {291, 1125}, {537, 4687}, {812, 27191}, {1086, 24508}, {1621, 8671}, {2275, 18140}, {2787, 14061}, {2810, 3618}, {3616, 7786}, {3624, 17793}, {4389, 24497}, {5222, 31234}, {5550, 17794}, {6703, 17946}, {7200, 20568}, {7208, 18159}, {9336, 24524}, {14759, 31233}, {16723, 25498}, {16726, 25534}, {17205, 30997}, {18145, 20530}, {27146, 27162}, {27189, 27190}, {29750, 33296}, {31286, 32016}
X(27195) = isotomic conjugate of X(36957)
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28578.
X(27196) lies on these lines: {5,49}, {128,6689}, {137,18400}, {1154,24147}, {6592,25042}, {10610,25150}, {18370,24144}, {20424,25044}
X(27196) = midpoint of X(54) and X(1141)
X(27196) = reflection of X(128) in X(6689)
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28578.
X(27197)lies on these lines: {5,79}, {11,1354}, {12,11544}, {30,4325}, {392,11263}, {442,3828}, {517,3649}, {2475,9657}, {3647,17575}, {3654,5499}, {3813,15679}, {4309,16117}, {4317,10525}, {4338,16159}, {5221,16116}, {6175,9710}, {6701,17529}, {9711,11684}, {10543,20323}
X(27197) = midpoint of X(79) and X(3336)
X(27197) = reflection of X(10543) in X(20323)
Collineation mappings involving Gemini triangle 55: X(27198)-X(27208)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 55, as in centers X(27198)-X(27208). Then
m(X) = a^2 (b^2 - 2 a c) (c^2 - 2 a b) x + 2 a c (a^2 - 2 b c) (c^2 - 2 a b) y + 2 a b (a^2 - 2 b c) (b^2 - 2 a c) z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 6, 2018)
X(27198) lies on these lines: {1, 2}
X(27199) lies on these lines:
X(27200) lies on these lines:
X(27201) lies on these lines:
X(27202) lies on these lines: {2, 6}, {16777, 27205}
X(27203) lies on these lines:
X(27204) lies on these lines:
X(27205) lies on these lines: {2, 37}, {16777, 27202}
X(27206) lies on these lines:
X(27207) lies on these lines:
X(27208) lies on these lines:
X(27209) lies on these lines:
Collineation mappings involving Gemini triangle 56: X(27210)-X(27220)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 56, as in centers X(27210)-X(27228). Then
m(X) = a^2 (b^2 + 2 a c) (c^2 + 2 a b) x - 2 a c (a^2 + 2 b c) (c^2 + 2 a b) y - 2 a b (a^2 + 2 b c) (b^2 + 2 a c) z : : ,
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 6, 2018)
X(27210) lies on these lines: {1, 2}
X(27211) lies on these lines:
X(27212) lies on these lines:
X(27213) lies on these lines:
X(27214) lies on these lines:
X(27215) lies on these lines:
X(27216) lies on these lines:
X(27217) lies on these lines: {2, 37}, {45, 27214}
X(27218) lies on these lines:
X(27219) lies on these lines:
X(27220) lies on these lines:
Collineation mappings involving Gemini triangle 57: X(27221)-X(27232)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 57, as in centers X(27221)-X(27232). Then
m(X) = (b^2 +c^2) x / (b^2 - b c + c^ 2) + a c y / (c^2 - c a + a^2) + a b z / (a^2 - a b + b^2) : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 6, 2018)
X(27221) lies on these lines: {1, 2}, {732, 27226}, {756, 27222}, {27227, 27228}
X(27222) lies on these lines:
X(27223) lies on these lines:
X(27224) lies on these lines: {2, 3}
X(27225) lies on these lines:
X(27226) lies on these lines:
X(27227) lies on these lines:
X(27228) lies on these lines:
X(27229) lies on these lines:
X(27230) lies on these lines:
X(27231) lies on these lines:
X(27232) lies on these lines:
Collineation mappings involving Gemini triangle 58: X(27233)-X(27245)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 58, as in centers X(27233)-X(27245). Then
m(X) = (b^2 +c^2) x / (b^2 + b c + c^ 2) - a c y / (c^2 + c a + a^2) - a b z / (a^2 + a b + b^2) : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 6, 2018)
X(27233) lies on these lines: {1, 2}, {238, 1492}, {244, 27237}
X(27234) lies on these lines:
X(27235) lies on these lines:
X(27236) lies on these lines:
X(27237) lies on these lines:
X(27238) lies on these lines:
X(27239) lies on these lines:
X(27240) lies on these lines:
X(27241) lies on these lines:
X(27242) lies on these lines:
X(27243) lies on these lines: {2, 11}
X(27244) lies on these lines:
X(27245) lies on these lines:
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28585.
X(27246) lies on these lines: {3,54}, {128,24147}, {1263,18400}, {3459,6288}, {8254,16336}, {10615,16768}, {16337,24385}
X(27246) = midpoint of X(195) and X(1157)
X(27246) = reflection of X(i) in X(j) for these {i,j}: {16336,8254}, {21230,10615}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28585.
X(27247) lies on these lines: {1,3}, {3814,20292}, {5180,10200}
Collineation mappings involving Gemini triangle 59: X(27248)-X(27297)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 59, as in centers X(27248)-X(27297). Then
m(X) = a(a b + a c - b c) x + b (a b + a c + b c) y + c (a b + a c + b c) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 7, 2018)
X(27248) lies on these lines: {1, 2}, {35, 22267}, {37, 304}, {55, 16060}, {56, 16061}, {69, 213}, {141, 2176}, {192, 1930}, {194, 17280}, {238, 20139}, {274, 2345}, {330, 17358}, {344, 5283}, {345, 980}, {346, 4352}, {388, 28777}, {894, 17742}, {966, 16782}, {993, 17696}, {1107, 17279}, {1213, 16524}, {1959, 27259}, {2223, 14001}, {2295, 30945}, {2329, 24549}, {3230, 3619}, {3294, 17170}, {3618, 20963}, {3662, 17753}, {3674, 26125}, {3721, 24282}, {3729, 24214}, {3730, 16887}, {3747, 26034}, {3763, 16969}, {3876, 26689}, {3976, 24631}, {4000, 17143}, {4201, 20533}, {4441, 26978}, {4687, 18156}, {5217, 21937}, {5255, 24586}, {5263, 11321}, {5264, 29473}, {5280, 17379}, {5291, 25497}, {5299, 17349}, {5750, 26106}, {6645, 17688}, {7176, 28739}, {7718, 15149}, {7770, 32942}, {7800, 8624}, {8193, 11329}, {11115, 27185}, {12410, 16412}, {13741, 26687}, {14210, 27268}, {16062, 26590}, {16502, 17277}, {16523, 17398}, {16552, 26685}, {16600, 21216}, {16604, 24652}, {16706, 17144}, {16738, 16788}, {16781, 17259}, {17050, 17282}, {17192, 17236}, {17233, 33296}, {17238, 27047}, {17270, 26041}, {17289, 31997}, {17303, 25504}, {17321, 25499}, {17350, 17744}, {17353, 21384}, {17355, 24215}, {17357, 17448}, {17373, 27320}, {17383, 32095}, {17385, 25130}, {17671, 26558}, {17682, 20172}, {17686, 24552}, {17750, 30962}, {17756, 27162}, {18206, 26065}, {20553, 26085}, {20911, 26242}, {21062, 27129}, {21240, 21281}, {23493, 27341}, {24790, 32104}, {25066, 25918}, {27249, 27284}, {27251, 27256}, {27252, 27254}, {27275, 27282}, {27289, 27291}, {28598, 31130}
X(27248) = anticomplement of X(30107)
X(27248) = {X(2),X(8)}-harmonic conjugate of X(27299)
X(27249) lies on these lines:
X(27250) lies on these lines: {2, 3}, {37, 20914}, {169, 17260}, {192, 20235}, {344, 6376}, {1446, 26125}, {2333, 4329}, {4766, 28740}, {5179, 27254}, {27267, 27269}
X(27251) lies on these lines: {2, 3}, {37, 21579}, {192, 21403}, {1212, 18738}, {4766, 28742}, {17338, 24491}, {26035, 27071}, {27060, 27255}, {27248, 27256}
X(27252) lies on these lines: {2, 6}, {37, 20444}, {192, 20234}, {573, 3662}, {941, 17302}, {1740, 29846}, {1918, 6327}, {2209, 2887}, {2309, 3771}, {4270, 17367}, {4277, 16706}, {5145, 25645}, {7175, 28774}, {14963, 27249}, {17142, 33144}, {20170, 33155}, {22343, 29865}, {26125, 26976}, {27248, 27254}, {27259, 27263}, {27264, 27289}, {27268, 27272}, {27290, 27291}
X(27253) lies on these lines: {1, 2}, {6, 32008}, {7, 1334}, {31, 19225}, {37, 85}, {44, 32088}, {45, 32024}, {55, 4209}, {65, 27475}, {142, 3208}, {192, 20880}, {220, 14828}, {226, 27129}, {344, 1909}, {377, 20533}, {495, 17671}, {673, 3303}, {728, 10436}, {956, 17687}, {1621, 17691}, {1697, 27000}, {2275, 24654}, {2295, 4648}, {3177, 16601}, {3212, 21808}, {3247, 25521}, {3295, 17682}, {3475, 4517}, {3672, 26978}, {3691, 18230}, {3731, 30625}, {3871, 17683}, {3945, 26059}, {3976, 25073}, {4050, 20195}, {4295, 26790}, {4433, 26040}, {4653, 26802}, {4675, 32007}, {4687, 16284}, {4704, 25241}, {4869, 17137}, {5141, 31058}, {6645, 17696}, {8232, 14189}, {9331, 24790}, {12053, 27183}, {16814, 32100}, {17056, 27021}, {17077, 32003}, {17234, 21281}, {17263, 24524}, {17279, 24656}, {17572, 31020}, {17753, 17758}, {25082, 27340}, {26839, 30305}, {27267, 27268}, {27269, 27295}, {27275, 27287}, {27291, 27298}
X(27254) lies on these lines: {2, 7}, {37, 20927}, {190, 25601}, {192, 20236}, {193, 28797}, {239, 3553}, {344, 1234}, {498, 3923}, {1743, 27317}, {1757, 26363}, {2298, 26282}, {2663, 11269}, {2911, 17277}, {3085, 3685}, {3751, 10527}, {3886, 10528}, {3912, 27267}, {4648, 28748}, {5179, 27250}, {5692, 19853}, {9612, 26057}, {11374, 25519}, {17244, 28778}, {20964, 26098}, {24342, 26364}, {26601, 27042}, {27248, 27252}, {27268, 27290}, {27272, 27291}
X(27255) lies on these lines: {1, 2}, {9, 17499}, {35, 16915}, {36, 17684}, {37, 76}, {39, 31997}, {55, 11321}, {75, 1500}, {86, 17750}, {142, 24190}, {192, 20888}, {194, 25092}, {238, 20140}, {274, 2276}, {334, 25499}, {384, 5248}, {442, 26590}, {495, 26558}, {595, 14621}, {750, 18756}, {894, 3730}, {958, 33036}, {993, 6645}, {1001, 7770}, {1107, 24656}, {1329, 33034}, {1376, 33035}, {1573, 24524}, {1621, 17686}, {1655, 3761}, {1909, 5283}, {2241, 20179}, {2296, 7109}, {2550, 33026}, {2886, 33033}, {3294, 24514}, {3295, 20172}, {3501, 10436}, {3662, 17758}, {3739, 20691}, {3814, 33046}, {3816, 32992}, {3822, 5025}, {3825, 16921}, {3934, 30963}, {3963, 29983}, {3971, 24080}, {4687, 6376}, {4698, 25102}, {4851, 27164}, {5010, 17693}, {5179, 27250}, {5259, 16916}, {5267, 33063}, {5280, 16998}, {5284, 17541}, {5432, 17694}, {5711, 20131}, {5847, 20139}, {6381, 19565}, {6656, 25466}, {6668, 33249}, {6681, 33015}, {6690, 7807}, {7483, 26686}, {7786, 16604}, {7951, 17669}, {8715, 16911}, {8728, 26582}, {9331, 32104}, {11108, 26687}, {11285, 25524}, {11375, 28771}, {12782, 24325}, {15668, 21788}, {16525, 17398}, {16549, 17175}, {16738, 17391}, {16917, 25440}, {16975, 25303}, {17234, 21240}, {17242, 21070}, {17243, 21024}, {17245, 20255}, {17248, 27047}, {17270, 26045}, {17303, 25508}, {17321, 25538}, {17338, 27080}, {17368, 27032}, {17759, 32092}, {18136, 20917}, {18140, 32009}, {18145, 32090}, {18832, 21827}, {20533, 26051}, {20913, 28606}, {21385, 27075}, {21868, 31238}, {23657, 25127}, {24068, 27481}, {24631, 25073}, {25639, 33045}, {26105, 32968}, {27021, 27129}, {27050, 31053}, {27060, 27251}, {27280, 27287}, {30478, 33044}, {31418, 33037}
X(27256) lies on these lines: {2, 11}, {37, 21580}, {192, 21404}, {4011, 28772}, {4023, 26757}, {4728, 27292}, {5233, 27096}, {5241, 27025}, {16592, 27071}, {17717, 28742}, {27021, 27097}, {27248, 27251}
X(27257) lies on these lines: {2, 3}, {37, 21583}, {192, 21407}, {17492, 21034}
X(27258) lies on these lines: {2, 3}, {37, 21584}, {192, 21408}, {26854, 27294}
X(27259) lies on these lines: {2, 31}, {37, 20641}, {192, 20627}, {315, 2205}, {1621, 17550}, {1959, 27248}, {8616, 30104}, {27097, 27249}, {27252, 27263}
X(27260) lies on these lines: {2, 32}, {37, 21585}, {192, 21409}, {14963, 27249}, {27269, 27281}
X(27261) lies on these lines: {2, 37}, {6, 27078}, {9, 16738}, {257, 27023}, {726, 19864}, {740, 26030}, {872, 17135}, {894, 27145}, {966, 27036}, {984, 25591}, {1215, 21330}, {2300, 17349}, {3619, 27106}, {3661, 26772}, {3662, 26976}, {3758, 17178}, {3953, 24349}, {4022, 17165}, {4363, 27017}, {4473, 26082}, {4643, 26799}, {5749, 26975}, {6375, 21327}, {16685, 17277}, {17030, 17338}, {17116, 27107}, {17228, 26756}, {17243, 27042}, {17266, 25538}, {17268, 27020}, {17276, 26857}, {17292, 27095}, {17293, 27044}, {17368, 26963}, {17369, 26979}, {17381, 27166}, {18044, 31026}, {21895, 23632}, {22220, 24325}, {25124, 31264}, {26110, 29569}, {27248, 27252}, {27262, 27274}, {27270, 27290}
X(27262) lies on these lines: {2, 39}, {6, 26107}, {37, 18050}, {148, 26058}, {192, 21412}, {385, 25520}, {386, 26772}, {2896, 26124}, {3159, 19858}, {4253, 26963}, {14963, 27249}, {16552, 26959}, {16887, 27145}, {17030, 17248}, {19717, 27166}, {27261, 27274}
X(27263) lies on these lines: {1, 2}, {37, 18138}, {192, 21415}, {4184, 27185}, {7109, 17137}, {23632, 27109}, {27030, 31017}, {27047, 32782}, {27252, 27259}
X(27264) lies on these lines: {1, 2}, {37, 21590}, {192, 21416}, {344, 21838}, {1575, 25504}, {16606, 17279}, {17754, 26106}, {25074, 25918}, {27252, 27289}
X(27265) lies on these lines: {2, 44}, {37, 21591}, {192, 21417}, {26114, 27293}, {27248, 27252}, {27272, 27290}
X(27266) lies on these lines: {2, 45}, {37, 21592}, {192, 21418}, {27248, 27252}
X(27267) lies on these lines: {2, 6}, {37, 20930}, {71, 5905}, {192, 1441}, {226, 22370}, {239, 25521}, {518, 25613}, {527, 25601}, {914, 27287}, {1234, 31060}, {2269, 30985}, {2550, 10528}, {3085, 4645}, {3475, 24752}, {3912, 27254}, {4660, 10056}, {8232, 20533}, {10198, 33082}, {17298, 27305}, {17718, 17792}, {20072, 26059}, {21299, 29839}, {26685, 28742}, {27250, 27269}, {27253, 27268}, {27518, 33111}, {28778, 29572}
X(27268) lies on these lines: {1, 4991}, {2, 37}, {6, 29570}, {8, 3842}, {9, 16826}, {10, 17242}, {44, 17394}, {45, 86}, {55, 16993}, {69, 29569}, {141, 29572}, {142, 17247}, {144, 27475}, {145, 15569}, {190, 15668}, {193, 29624}, {194, 31996}, {239, 3247}, {274, 32107}, {329, 26109}, {330, 5283}, {335, 4473}, {391, 27495}, {518, 3622}, {631, 20430}, {726, 3624}, {740, 9780}, {742, 3619}, {872, 17018}, {894, 3731}, {966, 6542}, {984, 3616}, {1100, 17335}, {1107, 31999}, {1125, 17368}, {1213, 17233}, {1255, 5278}, {1449, 29580}, {1654, 5296}, {1698, 3993}, {1743, 29597}, {2321, 27480}, {2667, 3240}, {3008, 17396}, {3090, 29010}, {3091, 30273}, {3161, 31336}, {3329, 4423}, {3618, 29586}, {3620, 29621}, {3661, 5257}, {3662, 29571}, {3663, 27147}, {3664, 17333}, {3686, 17389}, {3723, 3759}, {3728, 10180}, {3758, 16814}, {3766, 27292}, {3826, 21927}, {3834, 17249}, {3875, 16815}, {3879, 17331}, {3912, 3986}, {3945, 20072}, {3946, 29628}, {3950, 24603}, {3963, 30830}, {3971, 17157}, {4022, 7226}, {4029, 4967}, {4032, 5226}, {4098, 4431}, {4357, 17232}, {4360, 16672}, {4361, 16674}, {4363, 16677}, {4364, 17234}, {4384, 16673}, {4389, 17245}, {4393, 16777}, {4416, 17391}, {4419, 26806}, {4422, 17381}, {4445, 31144}, {4643, 17317}, {4648, 6646}, {4670, 17336}, {4675, 17258}, {4678, 28581}, {4690, 17386}, {4708, 17228}, {4709, 19875}, {4741, 5308}, {4748, 29589}, {4777, 27115}, {4851, 17256}, {5224, 17230}, {5232, 29583}, {5259, 7787}, {5281, 11997}, {5435, 7201}, {5550, 24325}, {5750, 17339}, {5839, 29588}, {6381, 19565}, {6536, 29854}, {6666, 17367}, {6682, 26103}, {6685, 17038}, {6707, 17340}, {9330, 29822}, {10436, 16676}, {14206, 27277}, {14210, 27248}, {15717, 30271}, {15966, 23493}, {16578, 25521}, {16589, 26772}, {16601, 27340}, {16669, 31313}, {16832, 17117}, {16989, 29838}, {17023, 17338}, {17045, 17352}, {17145, 29814}, {17231, 17250}, {17237, 17241}, {17239, 17240}, {17251, 17295}, {17252, 17296}, {17253, 17297}, {17254, 17298}, {17265, 17305}, {17266, 17306}, {17267, 17307}, {17268, 17308}, {17270, 17310}, {17271, 17311}, {17272, 17312}, {17273, 17313}, {17275, 17315}, {17282, 17324}, {17283, 17325}, {17284, 17326}, {17285, 17327}, {17286, 29610}, {17287, 29573}, {17288, 29620}, {17309, 32025}, {17323, 27191}, {17328, 17374}, {17329, 17376}, {17330, 17377}, {17332, 17378}, {17337, 17380}, {17344, 17387}, {17346, 17390}, {17347, 17392}, {17348, 17393}, {17353, 17397}, {17354, 17398}, {17363, 29574}, {17364, 29622}, {17366, 31285}, {17592, 26038}, {18230, 26626}, {19237, 20136}, {19853, 27785}, {20140, 30667}, {20363, 27036}, {21219, 24656}, {21830, 32090}, {22343, 24661}, {25092, 27318}, {25124, 32931}, {25354, 29674}, {26082, 26113}, {27252, 27272}, {27253, 27267}, {27254, 27290}, {27299, 28594}, {27472, 31019}, {27481, 29609}, {28611, 31320}, {31276, 32453}, {31997, 32005}
X(27269) lies on these lines: {1, 20464}, {2, 39}, {3, 16999}, {6, 16918}, {10, 192}, {21, 7793}, {32, 16914}, {37, 2998}, {38, 22190}, {69, 33029}, {99, 33062}, {148, 377}, {183, 33047}, {193, 5129}, {315, 17685}, {325, 33046}, {330, 1125}, {344, 27296}, {384, 5275}, {385, 405}, {452, 20065}, {474, 7783}, {519, 32095}, {536, 25614}, {551, 31999}, {908, 3177}, {1007, 33053}, {1078, 33063}, {1107, 30963}, {1500, 4704}, {1654, 10449}, {1698, 25264}, {1975, 16917}, {2478, 7785}, {2549, 17565}, {2996, 4208}, {3210, 29576}, {3294, 30114}, {3501, 17261}, {3552, 5277}, {3616, 21226}, {3622, 9263}, {3634, 32107}, {3661, 21071}, {3662, 29968}, {3663, 30063}, {3686, 20168}, {3691, 17027}, {3720, 23457}, {3734, 16913}, {3760, 16819}, {3761, 31996}, {3785, 33059}, {3912, 27288}, {3933, 33034}, {3995, 29593}, {4187, 7777}, {4364, 21025}, {4389, 20255}, {4443, 21700}, {4664, 20691}, {4681, 21868}, {4687, 20943}, {4699, 20888}, {4791, 21225}, {5047, 16998}, {5051, 16991}, {5084, 7774}, {5224, 21024}, {5276, 7787}, {6337, 33054}, {6381, 19565}, {6857, 17008}, {6872, 14712}, {7483, 17004}, {7751, 16996}, {7752, 33061}, {7754, 11108}, {7823, 11113}, {7864, 17670}, {7875, 17540}, {7891, 17694}, {7912, 17669}, {7938, 17550}, {9780, 17759}, {11185, 33030}, {11321, 16993}, {15589, 33040}, {16408, 31859}, {16853, 22253}, {16859, 17002}, {16865, 17001}, {16912, 16992}, {17030, 30998}, {17034, 17349}, {17230, 31035}, {17236, 21240}, {17275, 20170}, {17302, 27299}, {17343, 33297}, {17350, 17750}, {17379, 17499}, {17383, 30107}, {17490, 24603}, {19862, 32005}, {21218, 27287}, {22011, 24080}, {24450, 24717}, {25092, 27091}, {25261, 31087}, {25918, 30829}, {27250, 27267}, {27253, 27295}, {27260, 27281}, {27340, 29571}, {29966, 31004}, {32006, 33032}, {32815, 33058}, {32817, 33043}, {32818, 33042}
X(27270) lies on these lines: {2, 6}, {37, 20932}, {192, 18697}, {238, 26064}, {1655, 17280}, {1918, 33083}, {2209, 32784}, {2309, 32783}, {2475, 5263}, {3770, 17289}, {3882, 17306}, {3948, 24958}, {5904, 19853}, {14210, 27248}, {16818, 17121}, {17257, 17481}, {17368, 17499}, {18792, 24931}, {20174, 33150}, {27261, 27290}, {27273, 27274}, {27276, 27282}, {27278, 27288}
X(27271) lies on these lines: {1, 2}, {37, 21605}, {192, 21432}
X(27272) lies on these lines: {1, 2}, {37, 17789}, {192, 20432}, {194, 17776}, {213, 17778}, {345, 24621}, {514, 26854}, {2176, 18134}, {2273, 17379}, {3685, 23682}, {3747, 4645}, {4648, 27349}, {6645, 16050}, {16752, 17759}, {17144, 24789}, {21277, 26147}, {25504, 26042}, {27159, 27342}, {27252, 27268}, {27254, 27291}, {27265, 27290}, {31997, 32777}
X(27273) lies on these lines: {2, 31}, {37, 20643}, {192, 20629}, {1001, 17550}, {17084, 27097}, {17737, 30940}, {27248, 27252}, {27270, 27274}
X(27274) lies on these lines: {1, 2}, {39, 17289}, {213, 30966}, {319, 20970}, {350, 25499}, {894, 16887}, {993, 17688}, {2140, 17291}, {3294, 17210}, {3678, 27495}, {3841, 17673}, {4253, 17368}, {5045, 31306}, {5074, 17248}, {5259, 16927}, {5263, 16060}, {13728, 26590}, {16604, 17385}, {16705, 25264}, {16738, 17200}, {17280, 25092}, {17759, 25599}, {23657, 24665}, {27060, 27283}, {27261, 27262}, {27270, 27273}, {27276, 27284}
X(27275) lies on these lines:
X(27276) lies on these lines:
X(27277) lies on these lines:
X(27278) lies on these lines:
X(27279) lies on these lines:
X(27280) lies on these lines:
X(27281) lies on these lines: {2, 3}, {27260, 27269}
X(27282) lies on these lines: {2, 7}, {37, 322}, {141, 28778}, {192, 20895}, {220, 26671}, {242, 4194}, {346, 3948}, {1284, 2551}, {1463, 24954}, {3672, 27108}, {3965, 20173}, {4335, 6745}, {4517, 24752}, {5051, 26772}, {5552, 9791}, {17238, 27290}, {17261, 27544}, {26563, 26669}, {27248, 27275}, {27253, 27267}, {27270, 27276}
X(27283) lies on these lines: {2, 12}, {37, 21581}, {192, 21405}, {3936, 27050}, {27038, 27096}, {27060, 27274}, {27170, 33298}, {27248, 27251}, {30867, 31996}
X(27284) lies on these lines: {2, 36}, {37, 21587}, {192, 21411}, {27248, 27249}, {27274, 27276}
X(27285) lies on these lines: {2, 38}, {37, 561}, {75, 27035}, {76, 21814}, {192, 20889}, {354, 27158}, {1959, 27248}, {3726, 25505}, {3873, 26959}, {4359, 27091}, {4493, 24327}, {4687, 17149}, {4981, 17030}, {17017, 20148}, {17147, 27034}, {17486, 28592}, {21345, 25102}, {23538, 24679}, {26752, 32860}, {27020, 28606}, {27105, 30818}
X(27286) lies on these lines: {2, 7}, {37, 20928}, {192, 20237}, {345, 3948}, {1329, 1403}, {1402, 3436}, {4364, 19721}, {5552, 17594}, {5903, 19853}, {16878, 20076}, {17332, 19720}, {17596, 26364}, {24210, 27518}, {25906, 27410}, {27248, 27249}
X(27287) lies on these lines: {2, 7}, {4, 228}, {5, 20760}, {8, 3191}, {12, 17555}, {27, 198}, {37, 92}, {55, 14004}, {189, 5308}, {192, 14213}, {281, 2052}, {498, 846}, {499, 32913}, {573, 22000}, {631, 22060}, {914, 27267}, {948, 6349}, {966, 26872}, {968, 1785}, {1473, 21554}, {1656, 22149}, {1896, 7952}, {1959, 27248}, {1985, 21319}, {3177, 16585}, {3869, 19853}, {3948, 17776}, {3980, 26364}, {4415, 19721}, {4468, 23787}, {4648, 26871}, {4687, 18750}, {4699, 20879}, {5051, 11681}, {5552, 32932}, {6051, 20220}, {6350, 18592}, {6360, 16577}, {6991, 23542}, {6998, 7085}, {9612, 26027}, {10478, 21361}, {11374, 25490}, {11427, 20752}, {12526, 16828}, {13411, 26091}, {14206, 27268}, {14552, 28797}, {18141, 28748}, {19795, 28811}, {21218, 27269}, {27253, 27275}, {27255, 27280}
X(27288) lies on these lines: {2, 85}, {8, 192}, {9, 3212}, {10, 25242}, {37, 16284}, {65, 144}, {145, 25261}, {169, 17691}, {194, 4384}, {330, 16823}, {344, 20955}, {405, 3732}, {728, 17261}, {894, 30625}, {960, 20535}, {3617, 25237}, {3673, 27304}, {3691, 27484}, {3912, 27269}, {3959, 4419}, {4352, 16583}, {4416, 6738}, {4699, 20880}, {5273, 16609}, {5296, 31994}, {6604, 6646}, {7146, 18228}, {7754, 19851}, {10025, 19860}, {10405, 31359}, {17090, 18230}, {17236, 26530}, {17350, 32024}, {17451, 30946}, {17480, 21226}, {17760, 27538}, {20911, 27523}, {25935, 27184}, {27253, 27267}, {27270, 27278}
X(27289) lies on these lines: {2, 87}, {6, 21250}, {37, 21599}, {192, 21426}, {6376, 17289}, {27248, 27291}, {27252, 27264}
X(27290) lies on these lines: {2, 45}, {37, 18151}, {149, 4557}, {192, 4858}, {219, 17349}, {3762, 27295}, {4466, 31053}, {4699, 20881}, {6646, 28748}, {17232, 28778}, {17238, 27282}, {21320, 30993}, {27036, 27321}, {27252, 27291}, {27254, 27268}, {27261, 27270}, {27265, 27272}, {27292, 27294}
X(27291) lies on these lines: {2, 37}, {87, 24672}, {145, 872}, {726, 25492}, {740, 26029}, {4022, 31302}, {4903, 21080}, {5749, 26113}, {16826, 20146}, {16969, 17277}, {17030, 25072}, {17233, 21025}, {17269, 27111}, {17349, 21769}, {17375, 26799}, {18230, 26801}, {21330, 32937}, {22019, 24190}, {22220, 24349}, {25269, 27017}, {26149, 29627}, {27078, 29570}, {27248, 27289}, {27252, 27290}, {27253, 27298}, {27254, 27272}
X(27292) lies on these lines: {2, 900}, {37, 21606}, {192, 21433}, {3766, 27268}, {4526, 4699}, {4728, 27256}, {4928, 14408}, {14407, 21297}, {27290, 27294}
X(27293) lies on these lines: {1, 25301}, {2, 649}, {37, 20952}, {192, 20909}, {513, 25511}, {514, 26854}, {647, 3766}, {650, 20954}, {659, 25686}, {661, 26114}, {665, 25594}, {669, 21301}, {24459, 27527}, {812, 26049}, {1577, 27045}, {4040, 23791}, {4083, 25636}, {4391, 28374}, {4468, 23787}, {4521, 23810}, {4728, 27346}, {4928, 27139}, {7192, 14349}, {8632, 27168}, {8640, 21260}, {8655, 31291}, {10453, 25128}, {19853, 29350}, {20908, 25271}, {21834, 25638}, {25666, 27014}, {26148, 30968}, {26985, 27114}
X(27294) lies on these lines: {2, 659}, {37, 21612}, {192, 21439}, {26114, 27265}, {26248, 27193}, {26854, 27258}, {27027, 27074}, {27290, 27292}
X(27295) lies on these lines: {2, 668}, {37, 18159}, {148, 20533}, {150, 17300}, {192, 1111}, {335, 21232}, {1018, 4440}, {1086, 4595}, {3761, 17280}, {3762, 27290}, {4699, 4986}, {4704, 20568}, {9507, 19951}, {10027, 20335}, {17232, 24222}, {21226, 28742}, {23354, 33148}, {24190, 29697}, {27253, 27269}
X(27296) lies on these lines: {2, 7}, {37, 17788}, {192, 21442}, {344, 27269}, {966, 27321}, {2273, 17349}, {2663, 29837}, {3948, 17280}, {4388, 20964}, {4503, 17300}, {26752, 27039}, {27248, 27289}, {27252, 27268}, {27261, 27270}
X(27297) lies on these lines: {2, 896}, {37, 20944}, {192, 20904}, {26114, 27265}, {1580, 16818}, {1959, 27248}
X(27298) lies on these lines: {2, 38}, {37, 18135}, {192, 3760}, {330, 31996}, {1909, 4687}, {2275, 4698}, {3774, 4441}, {4430, 27157}, {4699, 27091}, {6381, 19565}, {27034, 28605}, {27248, 27252}, {27253, 27291}
Collineation mappings involving Gemini triangle 60: X(27299)-X(27351)
Extending the preambles just before X(24537) and X(26153), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 60, as in centers X(27299)-X(27351). Then
m(X) = a(a b + a c + b c) x + b (a b - a c + b c) y + c (a c - a b + b c) z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 7, 2018)
X(27299) lies on these lines: {1, 2}, {6, 20255}, {7, 17499}, {35, 17696}, {69, 21240}, {75, 16583}, {76, 4000}, {169, 894}, {192, 16600}, {213, 21281}, {304, 30748}, {344, 1500}, {673, 7770}, {958, 16060}, {986, 17755}, {993, 22267}, {1100, 25504}, {1107, 24735}, {1220, 11321}, {1376, 16061}, {1449, 26106}, {1468, 24602}, {1478, 17680}, {1730, 26065}, {1930, 21216}, {2901, 27480}, {3501, 17353}, {3618, 17750}, {3673, 25994}, {3684, 24549}, {3730, 26685}, {3739, 16605}, {3761, 24790}, {3780, 30945}, {3868, 26562}, {3875, 21071}, {3877, 26689}, {3948, 19785}, {3959, 24282}, {4044, 30699}, {4253, 24170}, {4357, 26041}, {4361, 21024}, {4429, 6656}, {4441, 27040}, {4699, 16611}, {4972, 17550}, {5080, 16910}, {5247, 24586}, {5839, 33297}, {6376, 16706}, {8074, 27325}, {9798, 11329}, {10446, 20606}, {13740, 20172}, {14064, 20544}, {16062, 26558}, {16589, 17321}, {16609, 27309}, {16704, 27185}, {17062, 25521}, {17065, 23664}, {17279, 20691}, {17302, 27269}, {17356, 25102}, {17357, 21868}, {17366, 21025}, {17379, 27169}, {17384, 25614}, {17489, 31130}, {17671, 26590}, {17681, 26687}, {17686, 24596}, {17753, 24514}, {17756, 27109}, {20553, 26099}, {20963, 30962}, {24174, 24631}, {25264, 27523}, {27000, 27064}, {27268, 28594}, {27300, 27336}, {27302, 27306}, {27303, 27305}, {27341, 27343}, {31060, 33150}
X(27299) = anticomplement of X(30110)
X(27299) = {X(2),X(8)}-harmonic conjugate of X(27248)
X(27300) lies on these lines: {2, 3}, {894, 1729}, {5723, 27304}, {5826, 26965}, {17368, 27324}, {27299, 27336}, {27303, 27310}
X(27301) lies on these lines: {2, 3}, {241, 19804}, {3002, 27317}, {17030, 27305}, {20110, 22126}, {27335, 27337}
X(27302) lies on these lines: {2, 3}, {25242, 27397}, {26100, 27008}, {27009, 27146}, {27299, 27306}
X(27303) lies on these lines: {2, 6}, {894, 16551}, {1468, 3836}, {2975, 4429}, {4000, 17148}, {4699, 27321}, {18805, 20274}, {21257, 29662}, {27299, 27305}, {27300, 27310}, {27309, 27313}, {27314, 27341}, {27342, 27343}
X(27304) lies on these lines: {1, 2}, {7, 17050}, {9, 20257}, {37, 17158}, {63, 27000}, {72, 27484}, {75, 1212}, {85, 4875}, {144, 16552}, {192, 16601}, {218, 17349}, {220, 17277}, {241, 19804}, {274, 279}, {277, 330}, {333, 5228}, {344, 17144}, {346, 17143}, {391, 26125}, {673, 958}, {894, 16572}, {908, 27183}, {956, 17682}, {1107, 4000}, {1213, 16518}, {2975, 4209}, {3160, 17077}, {3177, 20880}, {3295, 17687}, {3662, 24181}, {3672, 5283}, {3673, 27288}, {3686, 25521}, {3691, 30946}, {3693, 31269}, {3945, 20963}, {4195, 20172}, {4307, 16476}, {4359, 24635}, {4441, 27523}, {4452, 25264}, {4461, 32104}, {4513, 32008}, {4699, 20435}, {4859, 24215}, {5082, 20533}, {5278, 27142}, {5723, 27300}, {6706, 16284}, {7176, 8732}, {9708, 17681}, {10481, 24199}, {11415, 26839}, {15853, 30854}, {16604, 24737}, {16704, 27172}, {16969, 17337}, {17175, 26818}, {17278, 17448}, {17671, 24390}, {17784, 23407}, {18206, 21454}, {19789, 31036}, {20367, 27171}, {21010, 26040}, {21264, 24735}, {27318, 27348}, {27325, 27339}, {27326, 27337}, {27343, 27351}, {27544, 32087}
X(27305) lies on these lines: {2, 7}, {192, 25065}, {344, 25601}, {499, 3821}, {1210, 26057}, {1738, 10527}, {3008, 27317}, {3755, 10529}, {4384, 24778}, {4419, 28748}, {4652, 26123}, {4684, 10528}, {4699, 27342}, {17030, 27301}, {17261, 28778}, {17268, 27544}, {17298, 27267}, {20358, 24655}, {27299, 27303}, {27321, 27343}, {27514, 29579}
X(27306) lies on these lines: {2, 11}, {4763, 27344}, {27299, 27302}
X(27307) lies on these lines: {2, 3}
X(27308) lies on these lines: {2, 3}
X(27309) lies on these lines: {2, 31}, {3925, 11321}, {11343, 26590}, {16060, 32773}, {16609, 27299}, {27303, 27313}
X(27310) lies on these lines: {2, 32}, {27300, 27303}, {27318, 27333}
X(27311) lies on these lines: {2, 37}, {6, 27017}, {38, 25106}, {239, 27145}, {740, 26094}, {894, 27107}, {1921, 27162}, {3618, 26975}, {3662, 26772}, {3697, 26029}, {3759, 17178}, {3763, 27044}, {3993, 19847}, {4022, 25277}, {4363, 27078}, {4384, 16738}, {4643, 26857}, {4648, 27159}, {16609, 17077}, {17227, 26756}, {17257, 27036}, {17276, 26799}, {17291, 27095}, {17305, 27111}, {17336, 26769}, {17366, 26979}, {17367, 26963}, {17380, 27166}, {18600, 21615}, {24046, 24349}, {24325, 26030}, {27299, 27303}, {27312, 27324}, {27320, 27342}, {27327, 27337}
X(27312) lies on these lines: {2, 39}, {148, 26124}, {2896, 26058}, {3662, 24170}, {17128, 25520}, {18792, 27145}, {26963, 29455}, {27101, 27119}, {27300, 27303}, {27311, 27324}
X(27313) lies on these lines: {1, 2}, {940, 27169}, {16704, 27152}, {17149, 26978}, {21877, 27109}, {24789, 27019}, {25123, 30028}, {27047, 32773}, {27303, 27309}
X(27314) lies on these lines: {1, 2}, {5372, 27152}, {27303, 27341}, {27323, 27337}
X(27315) lies on these lines: {2, 44}, {4369, 27345}, {17077, 27102}, {27299, 27303}, {27321, 27342}
X(27316) lies on these lines: {2, 45}, {27299, 27303}
X(27317) lies on these lines: {1, 25589}, {2, 6}, {87, 33138}, {192, 26059}, {238, 10527}, {894, 1723}, {1001, 10529}, {1212, 20171}, {1714, 5145}, {1743, 27254}, {2309, 33137}, {3002, 27301}, {3008, 27305}, {3015, 27331}, {3286, 4190}, {3434, 20992}, {3875, 25601}, {4699, 20435}, {5723, 27342}, {8053, 20075}, {10198, 28650}, {11240, 16484}, {16468, 26363}, {17364, 25521}, {20072, 26125}, {21384, 29967}, {22343, 24892}, {26685, 28797}
X(27318) lies on these lines: {2, 39}, {3, 17000}, {6, 16917}, {10, 330}, {32, 33062}, {75, 16604}, {83, 16913}, {87, 23652}, {99, 16914}, {115, 33061}, {148, 2478}, {192, 1125}, {193, 17580}, {257, 24174}, {315, 17565}, {377, 7785}, {385, 474}, {386, 17379}, {404, 7793}, {405, 7783}, {442, 7777}, {443, 7774}, {519, 31999}, {551, 32095}, {574, 33063}, {894, 978}, {1078, 16996}, {1269, 25535}, {1506, 33060}, {1509, 20145}, {1575, 24656}, {1975, 16918}, {2092, 20146}, {2271, 20147}, {2548, 33030}, {2549, 17685}, {3002, 27301}, {3008, 27340}, {3177, 29628}, {3210, 17397}, {3314, 17670}, {3329, 11321}, {3616, 17759}, {3617, 9263}, {3624, 25264}, {3634, 32005}, {3662, 29991}, {3815, 33045}, {3963, 26077}, {4190, 14712}, {4253, 6629}, {4359, 20899}, {4461, 26111}, {4699, 17030}, {5013, 33047}, {5021, 20142}, {5022, 20154}, {5024, 33036}, {5069, 25457}, {5254, 33046}, {5275, 7839}, {5277, 7766}, {6376, 25109}, {6384, 22028}, {6904, 20065}, {7735, 33054}, {7736, 33028}, {7738, 33029}, {7754, 16408}, {7760, 16995}, {7787, 16915}, {7806, 17694}, {7823, 11112}, {7824, 16992}, {9605, 33035}, {9780, 21226}, {11108, 31859}, {13747, 17004}, {15048, 33034}, {16602, 25994}, {16710, 16887}, {16827, 17754}, {16863, 22253}, {16991, 17674}, {16997, 17531}, {17002, 17572}, {17008, 17567}, {17023, 17490}, {17065, 23414}, {17148, 19858}, {17358, 30110}, {17367, 21216}, {17480, 19868}, {17499, 17749}, {19804, 25918}, {19862, 32107}, {20888, 30998}, {21223, 26037}, {22036, 27494}, {23807, 26984}, {24514, 27627}, {25092, 27268}, {26223, 27646}, {26959, 32092}, {27166, 28605}, {27304, 27348}, {27310, 27333}, {31404, 33056}, {31406, 33033}
X(27319) lies on these lines: {2, 6}, {226, 17499}, {894, 1762}, {958, 26117}, {977, 19851}, {1107, 19786}, {1220, 3925}, {1330, 2887}, {3770, 3772}, {4281, 25650}, {16609, 27299}, {17789, 27321}, {19804, 27349}, {21384, 25527}, {23751, 27345}, {27328, 27334}
X(27320) lies on these lines: {2, 6}, {274, 24919}, {314, 24958}, {894, 1781}, {1269, 33150}, {1405, 28780}, {1655, 17302}, {2475, 4429}, {3662, 17499}, {3770, 16706}, {3836, 26131}, {4026, 5260}, {4446, 33170}, {4699, 16611}, {16818, 17326}, {17373, 27248}, {17391, 30110}, {21035, 33166}, {21221, 26222}, {21257, 29631}, {21857, 32779}, {26064, 32784}, {27311, 27342}, {27323, 27324}, {27326, 27334}, {27330, 27340}
X(27321) lies on these lines: {1, 2}, {514, 27345}, {966, 27296}, {1324, 19308}, {1500, 25059}, {2975, 24610}, {3772, 6376}, {4699, 27303}, {6645, 16054}, {14829, 20255}, {15149, 17927}, {17789, 27319}, {20691, 33116}, {20917, 24789}, {21277, 26081}, {27036, 27290}, {27305, 27343}, {27315, 27342}
X(27322) lies on these lines: {2, 667}, {514, 27347}, {21263, 21304}, {27323, 27336}
X(27323) lies on these lines: {2, 31}, {11349, 26582}, {27299, 27303}, {27314, 27337}, {27320, 27324}, {27322, 27336}
X(27324) lies on these lines: {1, 2}, {894, 24170}, {1574, 17289}, {1655, 25599}, {3822, 17673}, {3934, 16706}, {4015, 27495}, {4026, 33034}, {7951, 16906}, {17368, 27300}, {17688, 25440}, {18107, 21260}, {19786, 30819}, {21904, 33297}, {23657, 24748}, {24046, 31317}, {25264, 27040}, {26962, 27000}, {27311, 27312}, {27320, 27323}, {27326, 27336}
X(27325) lies on these lines:
X(27326) lies on these lines:
X(27327) lies on these lines:
X(27328) lies on these lines:
X(27329) lies on these lines:
X(27330) lies on these lines:
X(27331) lies on these lines:
X(27332) lies on these lines:
X(27333) lies on these lines: {2, 3}, {27310, 27318}
X(27334) lies on these lines: {2, 7}, {75, 1108}, {86, 2256}, {145, 26818}, {192, 25083}, {956, 1010}, {1418, 25971}, {1604, 11329}, {3086, 3923}, {3672, 27161}, {3685, 14986}, {3751, 7080}, {3945, 27514}, {4699, 20435}, {6180, 26671}, {7190, 24559}, {7229, 28797}, {8074, 27299}, {15149, 31917}, {16571, 33137}, {16826, 25601}, {17316, 27544}, {17379, 20742}, {19843, 24342}, {20171, 25242}, {20358, 24669}, {20905, 26690}, {23125, 27644}, {24635, 24993}, {25099, 31225}, {26029, 27102}, {26543, 33298}, {27319, 27328}, {27320, 27326}
X(27335) lies on these lines:
X(27336) lies on these lines:
X(27337) lies on these lines:
X(27338) lies on these lines:
X(27339) lies on these lines:
X(27340) lies on these lines: {1, 87}, {2, 85}, {7, 3061}, {9, 7176}, {37, 24654}, {65, 20535}, {142, 7185}, {144, 960}, {145, 25244}, {193, 20007}, {220, 6645}, {294, 16915}, {346, 18156}, {474, 3732}, {1219, 4461}, {1278, 17158}, {1323, 17368}, {1655, 5308}, {2124, 9312}, {3008, 27318}, {3160, 5749}, {3210, 17014}, {3212, 17754}, {3622, 25237}, {3662, 10481}, {4416, 12447}, {4518, 30669}, {4699, 20435}, {4741, 7960}, {5088, 17691}, {5222, 17490}, {5836, 9311}, {6743, 17363}, {8583, 30625}, {10025, 19861}, {16572, 17349}, {16601, 27268}, {17291, 21314}, {19719, 31036}, {20060, 31080}, {21384, 27484}, {23988, 24555}, {25082, 27253}, {25930, 27064}, {27269, 29571}, {27320, 27330}
X(27341) lies on these lines:
X(27342) lies on these lines:
X(27343) lies on these lines: {1, 24765}, {2, 37}, {740, 26093}, {4719, 26111}, {6686, 24182}, {9335, 25295}, {16816, 27017}, {17232, 20255}, {17349, 27107}, {22343, 24753}, {24174, 24349}, {25106, 32937}, {26106, 27487}, {27299, 27341}, {27303, 27342}, {27304, 27351}, {27305, 27321}
X(27344) lies on these lines:
X(27345) lies on these lines:
X(27346) lies on these lines: {2, 650}, {192, 25098}, {321, 25271}, {513, 24755}, {514, 28758}, {3662, 23806}, {3835, 17217}, {4017, 25380}, {4147, 24749}, {4369, 27315}, {4449, 24675}, {4728, 27293}, {20295, 27114}, {27045, 27138}
X(27347) lies on these lines: {2, 659}, {514, 27322}, {1638, 27342}, {4369, 27315}
X(27348) lies on these lines: {2, 668}, {101, 17349}, {192, 24036}, {1655, 26964}, {2241, 17695}, {3888, 23456}, {3960, 27342}, {4440, 17761}, {9259, 17277}, {27304, 27318}
X(27349) lies on these lines: {2, 7}, {980, 17302}, {4000, 24621}, {4648, 27272}, {4699, 27303}, {19804, 27319}, {20358, 24678}, {27299, 27341}, {27311, 27320}
X(27350) lies on these lines: {2, 896}, {4369, 27315}, {16609, 27299}
X(27351) lies on these lines: {2, 38}, {192, 26959}, {330, 16819}, {1909, 4751}, {2275, 3739}, {3212, 17077}, {4430, 27034}, {4699, 17030}, {10436, 20459}, {20435, 25918}, {27157, 28605}, {27299, 27303}, {27304, 27343}
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27352) lies on these lines: {4,157}, {1899, 2165}
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27353) lies on these lines: {4,323}, {30,2980}, {53,1154}, {97,1141}, {525,10412}, {2165,2549}, {8800,11591}, {13450,14918}
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27354) lies on these lines: {4,325}, {5562,6751}
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27355) lies on these lines: {2,13348}, {4,373}, {5,51}, {20,6688}, {185,3091}, {381,11381}, {389,3545}, {511,5056}, {547,10625}, {632,12046}, {1216,5079}, {1495,7529}, {1656,5447}, {1995,13367}, {3060,15022}, {3066,11479}, {3090,3917}, {3146,13570}, {3543,17704}, {3544,3567}, {3819,7486}, {3832,9729}, {3839,15028}, {3843,5892}, {3850,9730}, {3851,5462}, {3854,10574}, {3855,6000}, {3857,12006}, {3858,10575}, {3859,13491}, {3861,14855}, {5020,11424}, {5055,5446}, {5066,12162}, {5067,15644}, {5068,5640}, {5071,9781}, {5072,13754}, {5198,17825}, {5642,15465}, {5651,10982}, {5876,11737}, {5946,12811}, {6101,10109}, {6467,14561}, {7398,19467}, {7528,11572}, {7544,13851}, {8227,16980}, {10219,10303}, {10263,12812}, {10545,14118}, {10594,22352}, {11414,22112}, {11444,21849}, {13474,15045}, {14269,14641}, {14831,19709}, {14892,16881}, {15004,17814}, {15056,16625}, {18369,18475}
X(27355) = midpoint of X(3855) and X(15024)See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27356) lies on these lines: {4,394}, {53,5562}, {343,13450}, {2165,5254}, {5891,8800}
X(27356) = X(16936)-of-orthic-triangle
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27357) lies on these lines: {4,1117}, {137,24772}, {1154,1263}, {1291,5899}, {13582,19552}
X(27357) = isogonal conjugate of X(32637)
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27358) lies on these lines: {4,1970}, {5,53}, {52,129}
X(27358) = X(32)-of-orthic-triangle
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27359) lies on these lines: {4,1987}, {5,53}, {6,1093}, {217,13450}, {436,1970}, {458,15466}, {6748,10110}
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27360) lies on this line: {4,1988}
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27361) lies on these lines: {4,1994}, {5,15869}, {26,2165}, {30,22261}, {53,143}, {343,565}, {1141,8883}, {1154,8800}, {3459,7488}, {5576,16837}, {7540,11816}, {8905,25150}, {10279,10412}, {13450,14129}
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27362) lies on these lines: {4,2351}, {5,51}, {129,134}, {132,135}, {138,139}, {230,427}, {1899,2450}, {5133,9753}, {11245,23333}
X(27362) = X(25)-of-orthic-triangle
X(27362) = X(4)-Ceva conjugate of X(6751)
X(27362) = QA-P18 (Involutary Conjugate of QA-P19) of quadrangle ABCX(4)
See Seiichi Kirikami and Angel Montesdeoca, Hyacinthos 28595.
X(27363) lies on these lines: {4,2413}, {143,1510}
X(27364) lies on the conic {{A,B,C,X(4),X(5)}}, the cubic K1087, and these lines: {4,193}, {327,6374}, {1141,3565}, {2165,6676}, {6340,8797}
X(27364) = X(343)-cross conjugate of X(5)
X(27364) = X(i)-isoconjugate of X(j) for these (i,j): {54, 1707}, {193, 2148}, {2167, 3053}, {2169, 6353}, {2190, 3167}, {14587, 17876}
X(27364) = barycentric product X(i)*X(j) for these {i,j}: {5, 2996}, {53, 6340}, {311, 8770}, {324, 6391}, {3565, 18314}, {8769, 14213}
X(27364) = barycentric quotient X(i)/X(j) for these {i,j}: {5, 193}, {51, 3053}, {53, 6353}, {216, 3167}, {343, 6337}, {1953, 1707}, {2996, 95}, {3199, 19118}, {3565, 18315}, {5562, 10607}, {6391, 97}, {8769, 2167}, {8770, 54}, {12077, 3566}, {13450, 21447}, {14213, 18156}, {14248, 8882}, {21011, 4028}, {21102, 3798}, {21807, 21874}
X(27365) lies on these lines: {2,15073}, {22,2393}, {24,12235}, {51,110}, {52,539}, {185,12278}, {193,1843}, {427,12827}, {511,7391}, {569,8907}, {2888,3153}, {2904,10539}, {2979,7396}, {3543,12111}, {3917,23293}, {5012,6467}, {5446,11441}, {5889,21651}, {6403,6515}, {6997,11188}, {7499,15074}, {8548,21213}, {12825,16194}, {15030,18392}
X(27366) lies on the cubic K1088 and these lines: {4, 15897}, {5, 182}, {32, 11550}, {211, 20021}, {217, 7753}, {315, 2387}, {427, 3203}, {2548, 11175}, {3313, 14994}, {5475, 10014}, {6145, 12202}, {6292, 14096}, {12212, 15321}
X(27366) = X(i)-isoconjugate of X(j) for these (i,j): {82, 2979}, {160, 3112}, {3202, 18833}
X(27366) = crosssum of X(i) and X(j) for these (i,j): {22, 8266}, {160, 2979}
X(27366) = barycentric product X(141)X(2980)
X(27366) = barycentric quotient X(i)/X(j) for these {i,j}: {39, 2979}, {141, 7796}, {2980, 83}, {3051, 160}
X(27367) lies on the cubic K1088 and these lines: {4, 52}, {211, 1843}, {217, 2971}, {384, 925}, {1692, 1974}
X(27367) = X(i)-isoconjugate of X(j) for these (i,j): {1147, 18833}, {3112, 9723}
barycentric product X(i)*X(j) for these {i,j}: {39, 14593}, {847, 3051}, {1843, 2165}
barycentric quotient X(i)/X(j) for these {i,j}: {1843, 7763}, {3051, 9723}, {14593, 308}
X(27368) lies on these lines:
X(27369) lies on the cubic K1088 and these lines: {2, 3}, {6, 15270}, {32, 682}, {39, 1843}, {69, 9917}, {112, 733}, {160, 5013}, {193, 19597}, {217, 9418}, {232, 13357}, {695, 1915}, {881, 9491}, {1235, 12143}, {1973, 18265}, {2356, 18758}, {2489, 9489}, {2971, 3199}, {3051, 14820}, {3095, 6403}, {3186, 19566}, {3313, 22424}, {3398, 19128}, {3455, 3456}, {5188, 12294}, {7772, 8541}, {7800, 22062}, {9468, 14946}, {9605, 12167}, {10311, 13356}, {15257, 18374}
Let circles (O)A, (O)B, (O)C be as defined at X(8160). Let PA be the perspector of (O)A, and define PB and PC cyclically. The lines APA, BPB, CPC concur in X(32). Let LA be the polar of PA wrt (O)A and define LB and LC cyclically. Let A' = LBnLC and define B' and C' cycllically. The lines AA', BB', CC' concur in X(27369). (Randy Hutson, November 30, 2018)
The trilinear polar of X(27369) meets the line at infinity at X(688). (Randy Hutson, November 30, 2018)
X(27369) = isogonal conjugate of the complement X(10340)
X(27369) = X(i)-Ceva conjugate of X(j) for these (i,j): {25, 1843}, {1843, 3051}, {17980, 2211}
X(27369) = crosspoint of X(i) and X(j) for these (i,j): {25, 1974}, {32, 2353}
X(27369) = crossdifference of every pair of points on line {647, 3267}
X(27369) = crosssum of X(i) and X(j) for these (i,j): {2, 12220}, {69, 305}, {76, 315}, {10999, 11000}
X(27369) = circumcircle-inverse of X(37912)
X(27369) = X(i)-isoconjugate of X(j) for these (i,j): {3, 18833}, {63, 308}, {69, 3112}, {75, 1799}, {82, 305}, {83, 304}, {336, 20022}, {525, 4593}, {561, 1176}, {656, 689}, {799, 4580}, {1928, 10547}, {3267, 4599}, {4563, 18070}, {4577, 14208}
X(27369) = barycentric product X(i)*X(j) for these {i,j}: {4, 3051}, {6, 1843}, {19, 1964}, {25, 39}, {28, 21814}, {31, 17442}, {32, 427}, {38, 1973}, {92, 1923}, {112, 3005}, {141, 1974}, {162, 2084}, {217, 19174}, {393, 20775}, {560, 20883}, {607, 1401}, {608, 3688}, {648, 688}, {1096, 4020}, {1235, 1501}, {1474, 21035}, {1634, 2489}, {1918, 17171}, {2203, 3954}, {2205, 16747}, {2206, 21016}, {2207, 3917}, {2211, 20021}, {2333, 17187}, {3186, 19606}, {3199, 16030}, {3787, 14248}, {6331, 9494}, {8623, 17980}, {8750, 21123}, {13854, 23208}, {19595, 22262}
X(27369) = barycentric quotient X(i)/X(j) for these {i,j}: {19, 18833}, {25, 308}, {32, 1799}, {39, 305}, {112, 689}, {427, 1502}, {669, 4580}, {688, 525}, {1501, 1176}, {1843, 76}, {1923, 63}, {1964, 304}, {1973, 3112}, {1974, 83}, {2084, 14208}, {2211, 20022}, {2531, 2525}, {3005, 3267}, {3051, 69}, {3118, 4121}, {9233, 10547}, {9494, 647}, {17442, 561}, {20775, 3926}, {20883, 1928}, {21814, 20336}
X(27369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 8362, 14096), (3, 11328, 14001), (3, 20960, 237), (25, 11325, 4), (39, 23208, 20775), (237, 3148, 418), (237, 11326, 3)
X(27370) lies on the Kiepert hyperbola of the orthic triangle, the cubic K1088, and on these lines: {39, 1843}, {51, 217}, {52, 14978}, {53, 15897}, {211, 427}, {389, 1503}, {460, 2387}, {2909, 10311}, {6746, 12131}, {7715, 15510}
X(27370) = crosspoint of X(4) and X(10312)
X(27370) = barycentric product X(i)*X(j) for these {i,j}: {324, 3203}, {6663, 26922}
X(27370) = barycentric quotient X(3203)/X(97)
X(27371) lies on the cubic K1088 and these lines: {4, 32}, {5, 53}, {6, 18381}, {24, 7749}, {25, 7746}, {39, 427}, {51, 15897}, {54, 15340}, {187, 3575}, {211, 1843}, {217, 3574}, {230, 6756}, {232, 1506}, {264, 626}, {297, 3934}, {317, 7751}, {378, 7756}, {393, 2548}, {458, 7834}, {574, 3541}, {577, 14790}, {648, 7838}, {1196, 15809}, {1235, 7794}, {1593, 7748}, {1595, 5254}, {1598, 1609}, {1970, 18400}, {1971, 13419}, {2207, 5475}, {2241, 11393}, {2242, 11392}, {3053, 18494}, {3087, 5319}, {3162, 5064}, {5007, 16318}, {5169, 26216}, {5206, 18533}, {5286, 7378}, {5305, 6748}, {5523, 7765}, {6240, 6781}, {6643, 26899}, {7528, 10314}, {7745, 14581}, {7753, 8743}, {7759, 9308}, {7808, 17907}, {10641, 22481}, {10642, 22482}, {16589, 25985}, {22401, 23335}
X(27371) = X(i)-isoconjugate of X(j) for these (i,j): {82, 97}, {83, 2169}, {1176, 2167}, {1799, 2148}, {3112, 14533}, {4599, 23286}, {15958, 18070}
X(27371) = crosspoint of X(53) and X(324)
X(27371) = crossdifference of every pair of points on line {684, 23286}
X(27371) = crosssum of X(97) and X(14533)
X(27371) = barycentric product X(i)*X(j) for these {i,j}: {5, 427}, {39, 324}, {51, 1235}, {53, 141}, {311, 1843}, {1634, 23290}, {1930, 2181}, {1953, 20883}, {3199, 8024}, {3917, 13450}, {3933, 14569}, {14213, 17442}, {16747, 21807}, {17167, 21016}, {17171, 21011}
X(27371) = barycentric quotient X(i)/X(j) for these {i,j}: {5, 1799}, {39, 97}, {51, 1176}, {53, 83}, {324, 308}, {427, 95}, {1843, 54}, {1964, 2169}, {2181, 82}, {2525, 15414}, {3005, 23286}, {3051, 14533}, {3199, 251}, {12077, 4580}, {17442, 2167}, {20775, 19210}
X(27371) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 1968, 7747), (5, 53, 3199), (232, 1594, 1506), (2207, 7507, 5475), (5305, 16198, 6748)
X(27372) lies on the cubic K1088 and these lines: {4, 66}, {39, 184}, {51, 15897}, {217, 6751}, {1216, 14376}, {1289, 1298}, {11437, 16318}
X(27372) = X(i)-isoconjugate of X(j) for these (i,j): {275, 1760}, {276, 2172}, {315, 2190}, {2167, 17907}, {8882, 20641}
X(27372) = crosssum of X(22) and X(17907)
X(27372) = barycentric product X(i)*X(j) for these {i,j}: {51, 14376}, {66, 216}, {217, 18018}, {343, 2353}, {1289, 17434}, {5562, 13854}
X(27372) = barycentric quotient X(i)/X(j) for these {i,j}: {51, 17907}, {66, 276}, {216, 315}, {217, 22}, {418, 20806}, {2353, 275}, {13854, 8795}
X(27373) lies on the cubic K1088 and these lines: {4, 66}, {5, 127}, {6, 22262}, {25, 32}, {51, 11437}, {83, 107}, {206, 8743}, {232, 20960}, {1843, 19595}, {3542, 9752}, {7507, 22682}, {11397, 16318}
X(27373) = X(107)-Ceva conjugate of X(2485)
X(27373) = X(326)-isoconjugate of X(16277)
X(27373) = crosspoint of X(i) and X(j) for these (i,j): {4, 8743}, {315, 19613}
X(27373) = crosssum of X(3) and X(14376)
X(27373) = polar-circle-inverse of X(34237)
X(27373) = barycentric product X(i)*X(j) for these {i,j}: {393, 3313}, {427, 8743}, {1235, 17409}, {1824, 16715}, {1843, 17907}, {2052, 23208}
X(27373) = barycentric quotient X(i)/X(j) for these {i,j}: {1843, 14376}, {2207, 16277}, {3313, 3926}, {8743, 1799}, {17409, 1176}, {23208, 394}
X(27373) = {X(25),X(3172)}-harmonic conjugate of X(20993)
X(27374) lies on the cubic K1088 and these lines: {4, 263}, {5, 51}, {6, 4173}, {32, 2909}, {39, 211}, {184, 20960}, {389, 1513}, {511, 6656}, {694, 3499}, {1186, 8265}, {1285, 9292}, {1843, 19595}, {2387, 5007}, {2979, 7876}, {3051, 14820}, {3060, 5025}, {3199, 15897}, {3491, 7762}, {3852, 12212}, {3917, 8362}, {5167, 7745}, {5446, 15980}, {5640, 16921}, {5889, 13862}, {6310, 8370}, {6680, 14962}, {6784, 7755}, {6786, 7764}, {7824, 11673}, {8041, 14822}, {10547, 19558}, {11272, 11675}
X(27374) = lies on the cubic K1088 and these lines: X(i)-isoconjugate of X(j) for these (i,j): {54, 18833}, {95, 3112}, {308, 2167}, {689, 2616}, {4593, 15412}
X(27374) = crosspoint of X(1843) and X(3051)
X(27374) = crosssum of X(i) and X(j) for these (i,j): {76, 1078}, {308, 1799}
X(27374) = barycentric product X(i)*X(j) for these {i,j}: {5, 3051}, {38, 2179}, {39, 51}, {53, 20775}, {216, 1843}, {217, 427}, {688, 14570}, {1625, 3005}, {1923, 14213}, {1953, 1964}, {2084, 2617}, {2181, 4020}, {3199, 3917}, {18180, 21814}
X(27374) = barycentric quotient X(i)/X(j) for these {i,j}: {51, 308}, {217, 1799}, {688, 15412}, {1625, 689}, {1843, 276}, {1923, 2167}, {1953, 18833}, {2179, 3112}, {3051, 95}, {9494, 2623}
X(27375) lies on the cubics K054 and K1088, and on these lines: {5, 141}, {25, 3202}, {39, 51}, {52, 6248}, {76, 3060}, {143, 2782}, {194, 11002}, {262, 9781}, {263, 3767}, {384, 14962}, {512, 7747}, {538, 21849}, {550, 15510}, {674, 21067}, {732, 6664}, {882, 8711}, {1112, 12143}, {1843, 2211}, {2387, 7745}, {2698, 12110}, {3094, 11360}, {3491, 7843}, {3567, 11257}, {3954, 5360}, {4173, 7753}, {5462, 13334}, {5640, 7786}, {5876, 22681}, {5943, 6683}, {6243, 7697}, {7730, 18304}, {7737, 9292}, {7760, 14970}, {9466, 21969}, {9971, 13330}, {10095, 11272}, {10625, 15819}, {11426, 22655}, {11576, 22480}, {14569, 14715}, {14839, 24068}, {18322, 18502}
X(27375) = midpoint of X(i) and X(j) for these {i,j}: {52, 6248}, {1843, 5052}, {9466, 21969}
X(27375) = reflection of X(i) in X(j) for these {i,j}: {11272, 10095}, {13334, 5462}
X(27375) = isogonal conjugate of X(1078)
X(27375) = isotomic conjugate of X(33769)
X(27375) = X(115)-cross conjugate of X(512)
X(27375) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1078}, {2, 18042}, {75, 5012}, {304, 10312}, {326, 1629}, {799, 3050}, {3203, 18833}, {4564, 27010}, {7668, 24041}
X(27375) = cevapoint of X(688) and X(3124)
X(27375) = trilinear pole of line {2491, 3005}
X(27375) = crosssum of X(2) and X(8266)
X(27375) = barycentric product X(i)*X(j) for these {i,j}: {6, 3613}, {512, 11794}
X(27375) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 1078}, {31, 18042}, {32, 5012}, {669, 3050}, {1974, 10312}, {2207, 1629}, {3124, 7668}, {3271, 27010}, {3613, 76}, {11794, 670}
X(27375) = {X(5403),X(5404)}-harmonic conjugate of X(3613)
The trilinear polar of X(27376) passes through X(3005). (Randy Hutson, November 30, 2018)
X(27376) lies on the cubic K1088 and theswe lines: {4, 6}, {5, 232}, {24, 230}, {25, 2353}, {30, 1968}, {32, 3575}, {39, 427}, {76, 297}, {83, 10549}, {107, 755}, {112, 6240}, {115, 235}, {141, 1235}, {216, 7399}, {264, 6656}, {315, 9308}, {317, 7754}, {324, 26214}, {403, 16308}, {428, 5309}, {458, 7803}, {460, 2909}, {468, 7746}, {607, 11391}, {648, 7762}, {1194, 15809}, {1562, 11381}, {1593, 2549}, {1594, 3815}, {1595, 15048}, {1625, 22660}, {1799, 17037}, {1843, 19595}, {1885, 7748}, {1907, 7765}, {2501, 23105}, {2548, 7507}, {3051, 19174}, {3053, 18533}, {3054, 10018}, {3172, 7737}, {3269, 6247}, {3541, 5013}, {3542, 13881}, {5064, 7739}, {5090, 9620}, {5117, 17042}, {5133, 26216}, {5283, 25985}, {5305, 6756}, {5306, 7576}, {5412, 12147}, {5413, 12148}, {5475, 23047}, {6392, 6464}, {6528, 14970}, {6531, 8884}, {7487, 7735}, {7715, 10985}, {7747, 14581}, {7770, 17907}, {7790, 21447}, {7859, 14165}, {9607, 15559}, {9722, 14576}, {10019, 18424}, {11393, 16502}, {12085, 15075}, {12134, 23128}, {13160, 22240}, {14569, 14715}, {14790, 23115}, {14961, 23335}, {15750, 21843}, {21016, 21035}, {24989, 26035}
X(27376) = X(19174)-Ceva conjugate of X(1843)
X(27376) = X(1843)-cross conjugate of X(427)
X(27376) = X(i)-isoconjugate of X(j) for these (i,j): {48, 1799}, {63, 1176}, {82, 394}, {83, 255}, {251, 326}, {304, 10547}, {520, 4599}, {577, 3112}, {822, 4577}, {827, 24018}, {3405, 17974}, {4131, 4628}, {4575, 4580}, {14585, 18833}, {18082, 18604}
X(27376) = crosspoint of X(393) and X(2052)
X(27376) = crosssum of X(i) and X(j) for these (i,j): {3, 10316}, {32, 20993}, {394, 577}
X(27376) = polar conjugate of X(1799)
X(27376) = polar-circle-inverse of X(34137)
X(27376) = barycentric product X(i)*X(j) for these {i,j}: {4, 427}, {5, 19174}, {19, 20883}, {25, 1235}, {27, 21016}, {38, 158}, {39, 2052}, {92, 17442}, {107, 826}, {141, 393}, {264, 1843}, {823, 8061}, {1093, 3917}, {1096, 1930}, {1118, 3703}, {1824, 16747}, {1826, 17171}, {1857, 3665}, {1897, 21108}, {2207, 8024}, {2525, 6529}, {3005, 6528}, {3051, 18027}, {3867, 8801}, {3933, 6524}, {4020, 6521}, {6530, 20021}, {8747, 15523}, {13450, 16030}
X(27376) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 1799}, {25, 1176}, {38, 326}, {39, 394}, {107, 4577}, {141, 3926}, {158, 3112}, {393, 83}, {427, 69}, {823, 4593}, {826, 3265}, {1096, 82}, {1235, 305}, {1401, 1804}, {1843, 3}, {1964, 255}, {1974, 10547}, {2052, 308}, {2084, 822}, {2207, 251}, {2501, 4580}, {2525, 4143}, {2530, 4131}, {3005, 520}, {3051, 577}, {3665, 7055}, {3688, 1259}, {3703, 1264}, {3787, 10607}, {3867, 3785}, {3917, 3964}, {3933, 4176}, {3954, 3998}, {4020, 6507}, {6528, 689}, {6530, 20022}, {8061, 24018}, {14569, 17500}, {17171, 17206}, {17442, 63}, {19174, 95}, {20021, 6394}, {20775, 1092}, {20883, 304}, {21016, 306}, {21035, 3682}, {21108, 4025}, {21123, 4091}, {21814, 3990}, {24019, 4599}
X(27376) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4, 393, 2207), (4, 5523, 5254), (4, 8743, 7745), (53, 5254, 4), (115, 3199, 235), (1990, 7745, 8743), (3172, 12173, 7737), (3575, 16318, 32), (5305, 6756, 10311)
X(27377) lies on these lines: {2,15905}, {4,193}, {5,17035}, {6,297}, {25,7774}, {30,3164}, {53,648}, {69,458}, {141,340}, {194,3575}, {235,7785}, {239,7282}, {264,524}, {273,17364}, {275,343}, {318,17363}, {325,10311}, {385,427}, {393,1992}, {428,7837}, {445,19742}, {460,3186}, {467,1994}, {468,7777}, {472,3180}, {473,3181}, {542,16264}, {576,6530}, {894,5081}, {1585,5411}, {1586,5410}, {1593,20065}, {1654,11109}, {1885,7823}, {1904,2905}, {3199,7838}, {3618,11331}, {4558,8882}, {5094,17008}, {5278,25986}, {7513,20077}, {7763,10607}, {7766,16318}, {7807,10312}, {7812,21447}, {9289,13568}, {10316,26205}, {10754,20774}, {14389,14918}, {14590,18122}, {15014,18907}, {16997,26020}, {16998,25985}, {17037,17578}, {17300,26003}, {17379,17555}, {18494,22253}, {23115,26155}
X(27377) = reflection of X(264) in X(6748)
X(27377) = anticomplement of the isotomic of X(14860)
X(27377) = X(14860)-anticomplementary conjugate of X(6327)
X(27377) = X(14860)-Ceva conjugate of X(2)
X(27377) = cevapoint of X(193) and X(17035)
X(27377) = polar conjugate of isogonal conjugate of X(34986)
X(27377) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 193, 9308}, {6, 317, 297}, {53, 3629, 648}, {69, 3087, 458}
Collineation mappings involving Gemini triangles 61: X(27378)-X(27422)
Following is a list of central triangles, by barycentric coordinates of A-vertex. The full names are Gemini triangle 61, Gemini triangle 62, etc. See the preamble just before X(24537) and X(26153) for definitions of Gemini triangles 1-60. (Clark Kimberling, November 8, 2018)
Gemini 61 a (a + b + c) (a - b - c) : (b + c) (a - b + c) (a + b - c) : (b + c) (a - b + c)(a + b - c)
Let A''B''C'' = Gemini triangle 1, defined by A' = a : b + c : b + c, and let A'B'C' = Gemini triangle 61.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 62 (b c + a c - a b ) (a b - a c + b c) (b^2 + b c + c^2) : (a b - a c - b c) (a b + a c - b c)(c^2 + a b) : (a c - a b - b c) (a c + a b - b c)(b^2 + a c)
Let A''B''C'' = Gemini triangle 3, defined by A' = a : a + b : a + c, and let A'B'C' = Gemini triangle 62.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 63 - (b^2 + b c + c^2) : a b + 2 a c + 2 b c + c^2 : a c + 2 a b + 2 b c + b^2
Let A''B''C'' = Gemini triangle 4, defined by A' = -a : a + b : a + c, and let A'B'C' = Gemini triangle 63.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 64 (a b - a c + b c) (a b - a c - b c) (b^2 + c^2 - b c) : (-a b + a c + b c) (a b + a c - b c)(c^2 + a b - 2 b c) : (a b - a c + b c) (a b + a c - b c) (b^2 + a c - 2 b c)
Let A''B''C'' = Gemini triangle 5, defined by A' = -a : a - b : a - c, and let A'B'C' = Gemini triangle 64.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 65 (a - b - c) (a + b + c) : (a + b - c) (a - b + c) : (a + b - c) (a - b + c)
Let A''B''C'' = Gemini triangle 13, defined by A' = b + c : a : a, and let A'B'C' = Gemini triangle 65.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 66 (b + c)(a^2 + b^2 + c^2 + 2 a b + 2 a c + b c) : -a (a + b) (a + c) : -a (a + b) (a + c)
Let A''B''C'' = Gemini triangle 21, defined by A' = a + b + c : a : a, and let A'B'C' = Gemini triangle 66.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 67 (2 a + b + c) (a^2 + b^2 + c^2 + 2 a b + 2 a c + b c) : a (a + 2 b + c) (a + b + 2 c) : a (a + 2 b + c)(a + b + 2 c)
Let A''B''C'' = Gemini triangle 22, defined by A' = a + b + c : -a : -a, and let A'B'C' = Gemini triangle 67.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 68 a (b^2 + c^2 + a b + c a + b c) : -b c (b + c) : -b c (b + c)
Let A''B''C'' = Gemini triangle 23, defined by A' = a + b + c : b + c : b + c, and let A'B'C' = Gemini triangle 68.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 69 (b + c) (b^2 + c^2 - a^2 - b c) : -a (a + b) (a + c) : -a (a + b) (a + c)
Let A''B''C'' = Gemini triangle 27, defined by A' = a - b - c : a : a, and let A'B'C' = Gemini triangle 69.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 70 (a - 2 b -2 c) (b^2 + c^2 + a b + a c - b c) : (b + c) (2 a + 2 b - c) (2 a - b + 2 c) : (b + c) (2 a + 2 b - c) (2 a - b + 2 c)
Let A''B''C'' = Gemini triangle 28, defined by A' = a - b - c : b + c : b + c, and let A'B'C' = Gemini triangle 70.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 71 a ( a - 3 b + c) (a + b - 3 c) : (3 a - b - c) (3 c - a - b) (b - c) : (3 a - b - c) (a - 3 b + c) (b - c)
Let A''B''C'' = Gemini triangle 30, defined by A' = a : c - b : b - c, and let A'B'C' = Gemini triangle 71.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 72 b c (a^2 - b c)^2 : a^2 (b^2 - a c) (c^2 - a b) : a^2 (b^2 - a c) (c^2 - a b)
Let A''B''C'' = Gemini triangle 31, defined by A' = b c : a^2 : a^2, and let A'B'C' = Gemini triangle 72.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 73 b c (a^4 - b^2 c^2) : a^2 (b^2 + a c) (c^2 + a b) : a^2 (b^2 + a c) (c^2 + a b)
Let A''B''C'' = Gemini triangle 32, defined by A' = -b c : a^2 : a^2, and let A'B'C' = Gemini triangle 73.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 74 (a^2 - b c)^2 : (b^2 - a c) (c^2 - a b) : (b^2 - a c) (c^2 - a b)
Let A''B''C'' = Gemini triangle 33, defined by A' = a^2 : b c : b c, and let A'B'C' = Gemini triangle 74.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 75 a^4 - b^2 c^2 : -(b^2 + a c) (c^2 + a b) : -(b^2 + a c) (c^2 + a b)
Let A''B''C'' = Gemini triangle 34, defined by A' = -a^2 : b c : b c, and let A'B'C' = Gemini triangle 75.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 76 (a + b + c) (a^2 + b^2 + c^2 - 2 b c) : 2 b c (a - b - c) : 2 b c (a - b - c)
Let A''B''C'' = Gemini triangle 35, defined by A' = cos A : 1 : 1 = -a^2 + b^2 + c^2 : 2 b c : 2 b c, and let A'B'C' = Gemini triangle 76.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 77 (a - b - c)^2 (a^2 + b^2 + c^2 - 2 b c) : -2 b c (a - b + c) (a + b - c) : - 2 b c (a - b + c) (a + b - c)
Let A''B''C'' = Gemini triangle 36, defined by A' = -cos A : 1 : 1 = a^2 - b^2 - c^2 : 2 b c : 2 b c, and let A'B'C' = Gemini triangle 77.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 78 (a + b + c) (a^2 + b^2 + c^2 - 2 b c) : (b + c - a) (a^2 - b^2 - c^2) : (b + c - a) (a^2 - b^2 - c^2)
Let A''B''C'' = Gemini triangle 37, defined by A' = sec A : 1 : 1 = 2 b c : -a^2 + b^2 + c^2 : -a^2 + b^2 + c^2, and let A'B'C' = Gemini triangle 78.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 79 (a - b - c)^2 (a^2 + b^2 + c^2 - 2 b c) : (a - b + c) (a + b - c) (b^2 + c^2 - a^2) : (a - b + c) (a + b - c) (b^2 + c^2 - a^2)
Let A''B''C'' = Gemini triangle 38, defined by A' = -sec A : 1 : 1 = -2 b c : -a^2 + b^2 + c^2 : -a^2 + b^2 + c^2, and let A'B'C' = Gemini triangle 79.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 80 a (b^2 + c^2 + a b + a c) : -b c (a + b + c) : -b c (a + b + c)
Let A''B''C'' = Gemini triangle 39, defined by A' = -a + b + c : a + b + c : a + b + c, and let A'B'C' = Gemini triangle 80.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 81 a (b^2 + c^2 + a b + a c) : b c (a - b - c) : b c (a - b - c)
Let A''B''C'' = Gemini triangle 40, defined by A' = a + b + c : -a + b + c : -a + b + c, and let A'B'C' = Gemini triangle 81.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 82 (a^2 - b^2 - c^2) (a^2 + b^2 + c^2 : (a^2 + b^2 - c^2) (a^2 - b^2 + c^2 : (a^2 + b^2 - c^2) (a^2 - b^2 + c^2
Let A''B''C'' = Gemini triangle 41, defined by A' = b^2 + c^2 : a^2 : a^2, and let A'B'C' = Gemini triangle 82.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 83 (b^2 + c^2) (a^2 + b^2 + c^2 - b c) (a^2 + b^2 + c^2 + b c) : - a^2 (a^2 + b^2) (a^2 + c^2) : - a^2 (a^2 + b^2) (a^2 + c^2)
Let A''B''C'' = Gemini triangle 42, defined by A' = a^2 + b^2 + c^2 : a^2 : a^2, and let A'B'C' = Gemini triangle 83.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 84 a^2 (a^2 + b^2 + c^2) (a^2 - b^2 - c^2) : (b^2 + c^2) (a^2 - b^2 + c^2) (a^2 + b^2 - c^2) : (b^2 + c^2)(a^2 - b^2 + c^2) (a^2 + b^2 - c^2)
Let A''B''C'' = Gemini triangle 43, defined by A' = a^2 : b^2 + c^2 : b^2 + c^2 , and let A'B'C' = Gemini triangle 84.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 85 a^2 - a b - a c + 2 b c : a (a - b - c) : a (a - b - c)
Let A''B''C'' = Gemini triangle 45, defined by A' = (b - c)^2 : a^2 : a^2, and let A'B'C' = Gemini triangle 85.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 86 (a - b - c) (a^2 + a b + a c + 2 b c) : a (a - b + c) (a + b - c) : a (a - b + c) (a + b - c)
Let A''B''C'' = Gemini triangle 46, defined by A' = (b + c)^2 : a^2 : a^2, and let A'B'C' = Gemini triangle 86.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 87 a (a - b - c) (a^2 + a b + a c + 2 b c) : (b + c)^2 (a - b + c) (a + b - c) : (b + c)^2 (a - b + c)(a + b - c)
Let A''B''C'' = Gemini triangle 47, defined by A' = a^2 : (b + c)^2 : (b + c)^2 , and let A'B'C' = Gemini triangle 87.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 88 a (a^2 - a b - a c + 2 b c) : (b - c)^2 (a - b - c) : (b - c)^2 (a - b - c)
Let A''B''C'' = Gemini triangle 48, defined by A' = a^2 : (b - c)^2 : (b - c)^2, and let A'B'C' = Gemini triangle 88.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 89 (b + c)(a^2 + b c) : -a (b - c)^2 : -a (b - c)^2
Let A''B''C'' = Gemini triangle 49, defined by A' = (b + c)^2 : (b - c)^2 : (b - c)^2, and let A'B'C' = Gemini triangle 89.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 90 a^2 + b c : -a b - a c : -a b - a c
Let A''B''C'' = Gemini triangle 50, defined by A' = (b - c)^2 : (b + c)^2 : (b + c)^2, and let A'B'C' = Gemini triangle 90.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 91 a^2 b+a^2 c - 2 a b c + b^2 c + b c^2 : -a (b^2 + c^2) : -a (b^2 + c^2)
Let A''B''C'' = Gemini triangle 51, defined by A' = (b - c)^2 : b^2 + c^2 : b^2 + c^2, and let A'B'C' = Gemini triangle 91.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 92 a^2 b + a^2 c + 2 a b c + b^2 c + b c^2 : -a (b^2 + c^2) : -a (b^2 +c ^2)
Let A''B''C'' = Gemini triangle 52, defined by A' = (b + c)^2 : b^2 + c^2 : b^2 + c^2, and let A'B'C' = Gemini triangle 92.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 93 a^2 b + a^2 c - 2 a b c + b^2 c + b c^2 : -a (b - c)^2 : -a (b - c)^2
Let A''B''C'' = Gemini triangle 53, defined by A' = b^2 + c^2 : (b - c)^2 : (b - c)^2, and let A'B'C' = Gemini triangle 93.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 94 a^2 b + a^2 c + 2 a b c + b^2 c + b c^2 : -a (b + c)^2 : -a (b + c)^2
Let A''B''C'' = Gemini triangle 54, defined by A' = b^2 + c^2 : (b + c)^2 : (b + c)^2 , and let A'B'C' = Gemini triangle 94.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 95 (a^2 - 2 b c) (4 a^2 - b c) : 2 (b^2 - 2 a c) (c^2 - 2 a b) : 2 (b^2 - 2 a c)(c^2 - 2 a b)
Let A''B''C'' = Gemini triangle 55, defined by A' = a^2 : 2 b c : 2 b c, and let A'B'C' = Gemini triangle 95.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 96 (a^2 + 2 b c) (4 a^2 - b c) : -2 (b^2 + 2 a c) (c^2 + 2 a b) : -2 (b^2 + 2 a c) (c^2 + 2 a b)
Let A''B''C'' = Gemini triangle 56, defined by A' = -a^2 : 2bc : 2bc , and let A'B'C' = Gemini triangle 96.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 97 (b^2 - b c + c^2) (a^4 + a^2 b^2 + a^2 c^2 - a^2 b c + b^2 c^2) : -b c (a^2 - a b + b^2) (a^2 - a c + c^2) : -b c (a^2 - a b + b^2) (a^2 - a c + c^2)
Let A''B''C'' = Gemini triangle 57, defined by A' = b^2 + c^2 : b c : b c, and let A'B'C' = Gemini triangle 97.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 98 (b^2 + b c + c^2) (a^4 + a^2 b^2 + a^2 c^2 - a^2 b c + b^2 c^2) : b c (a^2 + a b + b^2) (a^2 + a c + c^2) : b c (a^2 + a b + b^2) (a^2 + a c + c^2)
Let A''B''C'' = Gemini triangle 58, defined by A' = b^2 + c^2 : -b c : -b c, and let A'B'C' = Gemini triangle 98.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 99 a b^2 + a c^2 + b^2 c + b c^2 : -a (b c + c a + a b): -a (b c + c a + a b)
Let A''B''C'' = Gemini triangle 59, defined by A' = -b c + c a + a b : b c + c a + a b : b c + c a + a b, and let A'B'C' = Gemini triangle 99.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
Gemini 100 ab^2+ac^2+b^2 c+bc^2 : a (b c - c a - a b): a (b c - c a - a b)
Let A''B''C'' = Gemini triangle 60, defined by A' = -b c + c a + a b : b c + c a + a b : b c + c a + a b, and let A'B'C' = Gemini triangle 100.
The collineation (A,B,C,X(2); A',B',C',X(2)) is the inverse of the collineation (A,B,C,X(2); A'',B'',C'',X(2)).
If T is a central triangle A'B'C' with A' of the form f(a,b,c) : g(a,b,c) : g(a,b,c), then the (A,B,C,X(2); A',B',C',X(2)) collineation image of the Euler line is the Euler line. Examples include Gemini triangles 61, 65-70, and 72-100.
X(27378) lies on these lines: {2, 3}, {8, 7074}, {31, 1210}, {78, 3701}, {255, 14058}, {283, 1150}, {318, 3100}, {965, 27040}, {1040, 23661}, {1076, 1125}, {1479, 23518}, {1897, 9538}, {2328, 10479}, {2899, 27383}, {3883, 6734}, {5250, 24552}, {5705, 32917}, {5906, 26932}, {6253, 25882}, {10448, 13411}, {18635, 26099}, {27381, 27389}, {27397, 27415}, {27398, 28809}
X(27379) lies on these lines: {2, 3}, {283, 5739}, {968, 13411}, {1098, 14555}, {1259, 27540}, {1792, 28807}, {3616, 17080}, {4011, 6700}, {5250, 24611}, {9371, 9375}, {27384, 27385}, {27395, 27397}
X(27380) lies on these lines: {2, 3}, {40, 6711}, {283, 5741}, {1259, 28826}, {6796, 23541}, {15252, 20222}
X(27381) lies on these lines: {2, 6}, {7, 16412}, {41, 21246}, {48, 24612}, {78, 1229}, {198, 20245}, {220, 27514}, {329, 11350}, {332, 28809}, {379, 2327}, {908, 1958}, {1253, 6745}, {2264, 30812}, {2268, 3452}, {3217, 20258}, {3553, 24993}, {4193, 25679}, {4254, 17183}, {4402, 24203}, {4875, 28639}, {5283, 16743}, {5782, 27058}, {11344, 27383}, {16833, 24202}, {17077, 23151}, {20769, 29965}, {21239, 21285}, {24435, 27471}, {27378, 27389}, {27388, 27391}, {27396, 27399}, {27397, 27414}
X(27382) lies on these lines: {2, 7}, {6, 938}, {8, 29}, {10, 3332}, {19, 962}, {20, 610}, {37, 5703}, {44, 5704}, {48, 5731}, {72, 7498}, {78, 280}, {189, 394}, {198, 411}, {220, 965}, {273, 26668}, {284, 4313}, {345, 5931}, {347, 26006}, {380, 390}, {391, 6734}, {497, 2264}, {516, 18594}, {645, 1264}, {651, 5932}, {936, 990}, {944, 20818}, {952, 22147}, {1034, 3692}, {1100, 15933}, {1103, 20224}, {1146, 5839}, {1210, 1743}, {1249, 1895}, {1259, 8805}, {1436, 6909}, {1723, 3086}, {1781, 4295}, {1783, 22132}, {1814, 6559}, {1857, 6056}, {1901, 25015}, {1903, 12528}, {1953, 5734}, {2182, 6836}, {2257, 14986}, {2277, 9367}, {2289, 7538}, {2321, 20007}, {2323, 12649}, {2551, 5800}, {3161, 27383}, {3211, 5768}, {3618, 30854}, {3682, 20226}, {3686, 23058}, {3699, 30681}, {3731, 13411}, {3868, 9119}, {4329, 14543}, {4402, 4858}, {4644, 18635}, {5175, 7518}, {5222, 17863}, {5227, 5815}, {5308, 5736}, {5776, 9799}, {5801, 18250}, {6603, 17314}, {7090, 31413}, {7102, 26885}, {8822, 24607}, {15817, 20846}, {17277, 28827}, {18249, 19859}, {18623, 18750}, {18655, 24604}, {21296, 26932}, {23603, 30625}, {24553, 24635}, {26068, 26110}
X(27383) lies on these lines:
X(27384) lies on these lines:
X(27385) lies on these lines:
X(27386) lies on these lines:
X(27387) lies on these lines:
X(27388) lies on these lines:
X(27389) lies on these lines:
X(27390) lies on these lines:
X(27391) lies on these lines:
X(27392) lies on these lines:
X(27393) lies on these lines:
X(27394) lies on these lines:
X(27395) lies on these lines:
X(27396) lies on these lines: {1, 1257}, {2, 37}, {3, 5279}, {6, 26690}, {7, 25083}, {8, 2335}, {9, 21}, {19, 100}, {22, 198}, {45, 965}, {69, 24635}, {71, 3869}, {72, 13726}, {81, 3719}, {101, 2908}, {145, 1108}, {200, 21039}, {219, 4511}, {241, 4869}, {273, 4552}, {281, 5552}, {307, 3912}, {329, 464}, {332, 16743}, {391, 1212}, {411, 1766}, {579, 2198}, {594, 5742}, {610, 4855}, {728, 3247}, {800, 23988}, {894, 5736}, {908, 8804}, {936, 3731}, {938, 3991}, {1210, 3950}, {1441, 25252}, {1612, 1723}, {1698, 25081}, {1743, 24036}, {1765, 12528}, {1781, 25440}, {1826, 11681}, {1901, 31053}, {1953, 14923}, {1959, 22370}, {2170, 3169}, {2171, 3501}, {2189, 5546}, {2257, 3870}, {2260, 3873}, {2269, 3061}, {2293, 4073}, {2321, 6734}, {2325, 27385}, {2975, 5227}, {3161, 27382}, {3208, 17452}, {3218, 21488}, {3610, 32862}, {3681, 3949}, {3730, 21078}, {3936, 18591}, {3985, 27409}, {4098, 9843}, {4165, 21798}, {4513, 16777}, {4557, 18610}, {4881, 37519}, {5086, 26063}, {5296, 13725}, {5703, 5749}, {5738, 17316}, {5740, 17242}, {5839, 20013}, {6554, 27522}, {6986, 17742}, {6991, 21073}, {7101, 17916}, {8609, 12649}, {11517, 14017}, {13411, 17355}, {15936, 17391}, {16578, 18634}, {17019, 19716}, {17073, 28757}, {17092, 17298}, {17243, 18635}, {17284, 25065}, {18721, 31047}, {20880, 25521}, {21933, 25005}, {25242, 26125}, {27108, 30854}, {27381, 27399}, {27404, 27413}, {27505, 27508}
X(27397) lies on these lines:
X(27398) lies on these lines:
X(27399) lies on these lines:
X(27400) lies on these lines:
X(27401) lies on these lines:
X(27402) lies on these lines:
X(27403) lies on these lines:
X(27404) lies on these lines:
X(27405) lies on these lines:
X(27406) lies on these lines:
X(27407) lies on these lines:
X(27408) lies on these lines:
X(27409) lies on these lines:
X(27410) lies on these lines:
X(27411) lies on these lines:
X(27412) lies on these lines:
X(27413) lies on these lines:
X(27414) lies on these lines:
X(27415) lies on these lines:
X(27416) lies on these lines:
X(27417) lies on these lines:
X(27418) lies on these lines:
X(27419) lies on these lines:
X(27420) lies on these lines:
X(27421) lies on these lines:
X(27422) lies on these lines:
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28607.
X(27423) lies on these lines: {5,49}, {128,539}, {137,12242}, {195,13512}, {930,15801}, {1154,14071}, {1157,6592}, {1493,25150}, {5965,12060}, {6343,20424}, {14072,25044}, {14857,18400}, {15959,19468}
X(27423) = reflection of X(137) in X(12242)
Collineation mappings involving Gemini triangle 62: X(27424)-X(27470)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 62, as in centers X(27424)-X(27470). Then
m(X) = (bc+ac-ab)(ab-ac+bc)(b^2+bc+c^2)x + (c^2+ab)(ab-ac+bc)ab-ac-bc)y + (b^2+ac)(ac-ab-bc)(ac-ab-bc)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 8, 2018)
X(27424) lies on these lines:
X(27424) = isotomic conjugate of X(1423)
X(27424) = complement of X(36858)
X(27425) lies on these lines:
X(27426) lies on these lines:
X(27427) lies on these lines:
X(27428) lies on these lines:
X(27429) lies on these lines:
X(27430) lies on these lines:
X(27431) lies on these lines:
X(27432) lies on these lines:
X(27433) lies on these lines:
X(27434) lies on these lines:
X(27435) lies on these lines:
X(27436) lies on these lines:
X(27437) lies on these lines:
X(27438) lies on these lines:
X(27439) lies on these lines:
X(27440) lies on these lines:
X(27441) lies on these lines:
X(27442) lies on these lines:
X(27443) lies on these lines:
X(27444) lies on these lines:
X(27445) lies on these lines:
X(27446) lies on these lines:
X(27447) lies on these lines:
X(27447) = isotomic conjugate of X(17752)
X(27448) lies on these lines:
X(27449) lies on these lines:
X(27450) lies on these lines:
X(27451) lies on these lines:
X(27452) lies on these lines:
X(27453) lies on these lines:
X(27454) lies on these lines:
X(27455) lies on these lines:
X(27456) lies on these lines:
X(27457) lies on these lines:
X(27458) lies on these lines:
X(27459) lies on these lines:
X(27460) lies on these lines:
X(27461) lies on these lines:
X(27462) lies on these lines:
X(27463) lies on these lines:
X(27464) lies on these lines:
X(27465) lies on these lines:
X(27466) lies on these lines:
X(27467) lies on these lines:
X(27468) lies on these lines:
X(27469) lies on these lines:
X(27470) lies on these lines:
Collineation mappings involving Gemini triangle 63: X(27471)-X(27495)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : z, where A'B'C' = Gemini triangle 63, as in centers X(27471)-X(27495). Then
m(X) = -(b^2+bc+c^2)x + (ab+2ac+2bc+c^2)y + (ac+2ab+2bc+b^2)z : :
(Clark Kimberling, November 9, 2018)
X(27471) lies on these lines: {2, 8680}, {9, 3739}, {37, 1465}, {75, 908}, {142, 5179}, {192, 27493}, {273, 1826}, {514, 18161}, {518, 5587}, {984, 7951}, {1246, 27483}, {4688, 31142}, {4699, 31018}, {5692, 20718}, {6996, 24315}, {7146, 16732}, {7384, 24682}, {7406, 24683}, {13476, 18412}, {17789, 20923}, {18697, 20236}, {20171, 27491}, {20891, 27476}, {24435, 27381}, {24773, 25651}, {26063, 27484}, {31160, 31178}
X(27472) lies on these lines: {2, 8680}, {7, 37}, {9, 5088}, {19, 31346}, {63, 27492}, {75, 5744}, {192, 3218}, {374, 31169}, {514, 573}, {518, 5731}, {984, 4293}, {1444, 27958}, {2094, 4664}, {2183, 3177}, {2245, 3212}, {3696, 5775}, {5768, 30273}, {5770, 29010}, {6999, 24316}, {7560, 21367}, {16574, 25252}, {17134, 24435}, {22001, 27339}, {25241, 27480}, {27268, 31019}
X(27473) lies on these lines: {2, 8680}, {37, 3911}, {142, 3986}, {518, 10165}, {1445, 25523}, {3306, 4687}, {4777, 15584}, {5883, 20718}, {16560, 24684}, {25456, 27474}
X(27474) lies on these lines: {2, 740}, {8, 17755}, {10, 31322}, {37, 17269}, {75, 142}, {192, 29611}, {239, 32941}, {306, 27491}, {312, 1921}, {321, 20435}, {335, 4535}, {518, 17294}, {536, 21358}, {726, 29594}, {742, 17281}, {871, 1978}, {982, 31027}, {984, 3661}, {1001, 3696}, {1043, 16822}, {1930, 20431}, {3008, 4709}, {3061, 17762}, {3687, 27489}, {3706, 17026}, {3739, 3875}, {3755, 24603}, {3943, 24357}, {3946, 4751}, {3993, 29604}, {4044, 21615}, {4085, 29576}, {4133, 29571}, {4527, 17244}, {4671, 27493}, {4673, 30038}, {4699, 5308}, {4766, 33077}, {4772, 29621}, {5695, 17738}, {6542, 31314}, {10453, 24631}, {11679, 21483}, {15569, 29603}, {16061, 17733}, {16819, 31327}, {16826, 31335}, {16834, 28581}, {17063, 31028}, {17310, 31178}, {17316, 24325}, {17389, 17769}, {17550, 20653}, {17765, 29617}, {18697, 20236}, {20131, 24342}, {20891, 20895}, {24349, 29616}, {24586, 32932}, {24629, 29824}, {25456, 27473}, {26582, 29674}, {26590, 32778}, {29593, 31323}
X(27475) lies on these lines: {1, 673}, {2, 210}, {7, 37}, {9, 86}, {27, 33}, {57, 21453}, {65, 27253}, {75, 142}, {85, 21808}, {144, 27268}, {192, 4373}, {226, 1088}, {272, 2303}, {273, 1826}, {310, 312}, {335, 16593}, {341, 29968}, {390, 15569}, {480, 27399}, {675, 8693}, {726, 29600}, {740, 29573}, {742, 17313}, {857, 8818}, {871, 20917}, {903, 4664}, {984, 5542}, {1001, 14621}, {1215, 30822}, {1240, 20923}, {1268, 4751}, {1440, 1903}, {1445, 25523}, {1475, 31269}, {2250, 8545}, {2346, 11349}, {2400, 28898}, {2550, 17316}, {2886, 31038}, {3243, 4384}, {3303, 27000}, {3649, 27129}, {3661, 3826}, {3673, 17758}, {3696, 29616}, {3739, 5936}, {3797, 27494}, {3807, 30758}, {3834, 24357}, {3842, 5223}, {3957, 24596}, {3993, 29606}, {4321, 17022}, {4393, 15570}, {4678, 31352}, {4698, 18230}, {4755, 4795}, {4776, 6548}, {4871, 30869}, {5220, 29578}, {5226, 31526}, {5249, 20173}, {5805, 30273}, {5845, 17392}, {5852, 31350}, {5853, 29574}, {5880, 6650}, {6384, 18743}, {6600, 16412}, {6666, 17381}, {7247, 26101}, {7249, 17056}, {8049, 14746}, {9311, 17451}, {10129, 31058}, {13407, 17671}, {15254, 29595}, {15888, 26531}, {16503, 17394}, {16728, 17169}, {16830, 20135}, {17021, 18450}, {17050, 17158}, {17230, 31329}, {17266, 31317}, {17284, 24325}, {17292, 31335}, {17768, 29622}, {18139, 27476}, {20430, 31657}, {24349, 29627}, {24393, 24603}, {24427, 30663}, {27431, 27447}, {27493, 31019}, {29579, 31347}, {29581, 31323}, {30821, 32771}, {30829, 31002}
X(27475) = isogonal conjugate of X(2280)
X(27475) = isotomic conjugate of X(4384)
X(27476) lies on these lines: {2, 742}, {75, 3936}, {312, 27493}, {321, 20435}, {740, 33122}, {2296, 27483}, {3797, 33151}, {4688, 31179}, {5249, 27478}, {5739, 27484}, {5741, 27489}, {17778, 31314}, {18139, 27475}, {19684, 31306}, {19785, 27480}, {20891, 27471}, {20892, 27488}, {24325, 33070}, {26234, 31006}, {27184, 27481}, {27495, 32782}
X(27477) lies on these lines: {2, 744}, {75, 4766}, {18697, 20236}
X(27478) lies on these lines: {2, 726}, {10, 335}, {37, 4472}, {75, 142}, {192, 16673}, {239, 31314}, {274, 17760}, {321, 24060}, {514, 3572}, {740, 29574}, {899, 31063}, {984, 24603}, {1125, 31319}, {1266, 24357}, {1278, 5308}, {1909, 14951}, {3008, 31317}, {3661, 31329}, {3687, 27491}, {3797, 29571}, {3807, 21101}, {3993, 16826}, {4054, 27493}, {4384, 5223}, {4385, 30063}, {4688, 9055}, {4699, 4859}, {4709, 6542}, {4772, 29611}, {4821, 29621}, {4968, 30030}, {4970, 17032}, {4991, 20145}, {5249, 27476}, {8669, 16917}, {8720, 33047}, {10009, 20917}, {15497, 21062}, {16823, 17738}, {17023, 24325}, {17140, 24592}, {20131, 32921}, {20154, 32935}, {20498, 27489}, {20913, 21443}, {21078, 27492}, {22030, 22047}, {24621, 32453}, {31331, 31350}
X(27478) = complement of X(27481)
X(27479) lies on these lines: {2, 14439}, {75, 908}, {226, 27491}, {312, 27487}, {321, 20435}, {329, 27484}, {518, 31140}, {984, 3120}, {4713, 31993}, {5249, 20173}, {5905, 24694}, {7249, 27494}, {10707, 31178}, {15497, 21062}, {27184, 27495}, {27480, 30699}
X(27480) lies on these lines: {1, 27478}, {2, 740}, {8, 27495}, {9, 192}, {37, 28634}, {75, 4470}, {145, 335}, {726, 16834}, {1278, 17014}, {2321, 27268}, {2550, 17316}, {2901, 27299}, {3210, 17027}, {3661, 3755}, {3797, 5222}, {3886, 16826}, {3912, 4780}, {3946, 4699}, {3993, 4384}, {4000, 27487}, {4085, 29593}, {4133, 24603}, {4360, 20159}, {4393, 4649}, {4704, 31323}, {4709, 17308}, {4743, 17230}, {4970, 17026}, {5853, 17389}, {17147, 25249}, {17733, 22267}, {19785, 27476}, {19791, 27491}, {20158, 31310}, {20162, 32922}, {24427, 27919}, {25241, 27472}, {27479, 30699}, {29570, 32941}, {31350, 31352}
X(27481) lies on these lines: {1, 6651}, {2, 726}, {9, 192}, {10, 31329}, {37, 17339}, {38, 31028}, {75, 1213}, {190, 14621}, {335, 16593}, {440, 20254}, {518, 17389}, {536, 16590}, {597, 4370}, {740, 29617}, {742, 17333}, {984, 3661}, {1278, 31352}, {2276, 3807}, {3159, 17030}, {3161, 4704}, {3662, 27487}, {3710, 30177}, {3739, 31351}, {3799, 19586}, {3993, 4393}, {3995, 17027}, {4075, 27091}, {4392, 30967}, {4687, 31350}, {4699, 17324}, {5513, 27493}, {6544, 27486}, {7226, 31027}, {8669, 33063}, {8720, 33062}, {10459, 25270}, {16475, 29584}, {16826, 24349}, {16972, 17319}, {17032, 17165}, {17262, 20172}, {17316, 31302}, {17367, 17755}, {20132, 32935}, {20142, 32921}, {21443, 31060}, {21838, 28606}, {24068, 27255}, {24325, 29612}, {27184, 27476}, {27268, 29609}, {28582, 29622}, {31036, 32453}
X(27481) = complement of X(27494)
X(27481) = anticomplement of X(27478)
X(27482) lies on these lines: {2, 714}, {37, 17339}, {75, 31344}, {3661, 4735}, {4377, 29576}, {25241, 27472}
X(27483) lies on these lines: {2, 740}, {7, 1654}, {10, 335}, {27, 242}, {37, 1268}, {75, 1213}, {86, 239}, {192, 5936}, {273, 26023}, {310, 1921}, {673, 6651}, {675, 28841}, {871, 10009}, {903, 4688}, {984, 27494}, {1246, 27471}, {2296, 27476}, {3125, 4469}, {3661, 3826}, {3696, 16826}, {3797, 24603}, {4373, 4772}, {4384, 14621}, {4393, 5625}, {4732, 6542}, {4751, 6707}, {4835, 27447}, {6384, 19804}, {6548, 27791}, {6650, 17755}, {20090, 30712}, {21926, 26019}, {24325, 31314}, {24589, 31002}, {26626, 28626}, {27493, 31025}, {28581, 29580}, {29609, 31238}
X(27483) = isotomic conjugate of X(16826)
X(27484) lies on these lines: {2, 210}, {7, 1654}, {8, 17755}, {9, 192}, {37, 17014}, {69, 27487}, {72, 27304}, {75, 144}, {142, 17238}, {145, 31342}, {329, 27479}, {335, 15590}, {390, 3797}, {527, 17488}, {673, 5220}, {726, 16833}, {984, 5222}, {1001, 4393}, {2550, 31329}, {3243, 16826}, {3616, 31336}, {3661, 24393}, {3691, 27288}, {3739, 5232}, {3951, 27000}, {4384, 5223}, {4740, 6172}, {4772, 20059}, {4875, 20535}, {5542, 24603}, {5698, 31310}, {5739, 27476}, {5845, 17346}, {5853, 29617}, {6008, 27855}, {6600, 16367}, {6666, 17397}, {10005, 29616}, {16552, 25242}, {16593, 17230}, {16827, 17480}, {17026, 27538}, {17134, 24435}, {17350, 20172}, {17490, 31348}, {17746, 17753}, {18230, 26626}, {20154, 32029}, {21168, 29010}, {21384, 27340}, {24592, 32937}, {24599, 31302}, {24616, 28910}, {24631, 26038}, {26063, 27471}, {27493, 31018}, {28132, 28898}
X(27485) lies on these lines: {37, 30835}, {75, 3835}, {192, 27138}, {514, 1921}, {872, 24749}, {4688, 31147}, {4699, 20295}, {4728, 4777}, {4751, 31286}, {4772, 26798}, {4850, 27773}, {9002, 14433}, {17458, 20906}, {20923, 20952}, {30090, 30094}, {31207, 31238}
X(27486) lies on these lines: {2, 522}, {81, 16755}, {239, 514}, {649, 1019}, {25259, 28898}, {657, 3219}, {661, 28867}, {824, 1635}, {900, 1491}, {918, 31150}, {16892, 17494}, {1459, 17011}, {1638, 17069}, {2786, 4893}, {3210, 21225}, {3907, 13254}, {4393, 30573}, {4453, 4762}, {4786, 5011}, {4728, 30765}, {18197, 18668}, {4777, 4789}, {4897, 28902}, {4932, 4960}, {5256, 21173}, {6544, 27481}, {6546, 30519}, {6586, 28606}, {6589, 16751}, {7658, 26985}, {11125, 27344}, {14475, 24184}, {16815, 21201}, {16816, 21132}, {17924, 26023}, {19804, 20954}, {21124, 23755}, {21195, 27186}, {25009, 26732}
X(27487) lies on these lines: {2, 742}, {37, 17266}, {69, 27484}, {75, 142}, {86, 239}, {141, 27495}, {312, 27479}, {320, 17755}, {322, 27488}, {335, 3834}, {514, 1921}, {518, 17297}, {984, 17227}, {1086, 3797}, {3008, 4751}, {3263, 3807}, {3662, 27481}, {3696, 15570}, {4000, 27480}, {4358, 27493}, {4360, 31342}, {4417, 27489}, {4648, 4699}, {4657, 31319}, {4675, 31317}, {4688, 17310}, {5224, 31322}, {10436, 20159}, {17050, 17762}, {17237, 31323}, {17244, 24357}, {17292, 25384}, {17300, 31314}, {17302, 31308}, {17322, 31336}, {17789, 20923}, {18134, 27491}, {20335, 20947}, {20955, 30030}, {24325, 32847}, {26106, 27343}, {27918, 30967}, {29607, 31238}, {31138, 31349}
X(27488) lies on these lines: {7, 1654}, {75, 908}, {192, 5328}, {322, 27487}, {1278, 27493}, {3306, 3739}, {4688, 31164}, {7777, 31344}, {20891, 20895}, {20892, 27476}
X(27489) lies on these lines: {2, 210}, {75, 908}, {239, 5289}, {312, 3807}, {3452, 20173}, {3687, 27474}, {3949, 20946}, {4417, 27487}, {4751, 30832}, {5741, 27476}, {5854, 29617}, {19804, 30985}, {20498, 27478}, {27131, 27493}
X(27490) lies on these lines: {37, 30832}, {75, 3936}, {86, 239}, {744, 33160}, {3687, 25361}, {4043, 27493}, {4451, 4777}, {18697, 20236}, {18805, 32861}, {20923, 20932}
X(27491) lies on these lines: {2, 210}, {37, 31018}, {75, 3936}, {149, 33070}, {226, 27479}, {306, 27474}, {440, 20254}, {495, 3661}, {952, 17389}, {956, 16826}, {3687, 27478}, {4664, 31179}, {5252, 6542}, {5719, 17397}, {7381, 31342}, {13257, 20430}, {18134, 27487}, {19791, 27480}, {20171, 27471}, {20173, 27493}, {30758, 31006}
X(27492) lies on these lines: {9, 192}, {63, 27472}, {75, 908}, {80, 4709}, {514, 4416}, {726, 5692}, {1278, 31018}, {3807, 17787}, {3949, 28974}, {3993, 5251}, {4431, 5179}, {4699, 5219}, {4740, 31142}, {4777, 22271}, {7201, 21617}, {8680, 17781}, {20882, 30006}, {21033, 26665}, {21078, 27478}
X(27493) lies on these lines: {2, 14439}, {75, 30566}, {192, 27471}, {312, 27476}, {321, 3807}, {335, 4080}, {518, 10707}, {536, 4945}, {1278, 27488}, {3696, 4767}, {3944, 31084}, {4043, 27490}, {4054, 27478}, {4358, 27487}, {4671, 27474}, {4688, 31171}, {5513, 27481}, {17484, 24712}, {17755, 30578}, {18359, 30565}, {20173, 27491}, {24325, 24709}, {26580, 27495}, {27131, 27489}, {27475, 31019}, {27483, 31025}, {27484, 31018}
X(27494) lies on these lines: {2, 726}, {7, 1278}, {8, 6650}, {37, 30598}, {75, 4377}, {86, 192}, {310, 6382}, {321, 6384}, {330, 27809}, {335, 4535}, {536, 31342}, {599, 903}, {673, 5220}, {984, 27483}, {1268, 4699}, {2296, 17147}, {3634, 31351}, {3797, 27475}, {4373, 4821}, {4393, 4649}, {4671, 31002}, {4704, 28626}, {4772, 5936}, {4788, 29585}, {7249, 27479}, {17389, 28522}, {17490, 32011}, {20055, 24692}, {20158, 32935}, {22036, 27318}, {24080, 24176}, {24325, 31319}, {27447, 27465}
X(27494) = isogonal conjugate of X(21793)
X(27494) = isotomic conjugate of X(4393)
X(27494) = anticomplement of X(27481)
X(27494) = X(19)-isoconjugate of X(23095)
X(27495) lies on these lines: {2, 210}, {8, 27480}, {10, 335}, {37, 319}, {38, 31348}, {75, 4377}, {141, 27487}, {192, 5232}, {320, 25384}, {391, 27268}, {740, 29615}, {742, 17271}, {756, 31027}, {984, 3661}, {1100, 4687}, {1211, 30179}, {3678, 27274}, {3807, 3862}, {3842, 4649}, {3912, 31323}, {4015, 27324}, {4078, 31331}, {4698, 29592}, {4725, 16590}, {6653, 24723}, {15569, 29588}, {16503, 17260}, {16830, 20132}, {17250, 24357}, {17292, 17755}, {17308, 31317}, {17389, 17772}, {17769, 29617}, {24325, 29610}, {24349, 31347}, {26580, 27493}, {27184, 27479}, {27476, 32782}, {28605, 30638}, {29574, 31350}
Collineation mappings involving Gemini triangle 64: X(27496)-X(27503)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 64, as in centers X(27496)-X(27503). Then
m(X) = (ab-ac-bc)(ab-ac+bc)(b^2-bc+c^2)x + (ab-ac-bc)(ab-ac+bc)(ab-2ac+c^2)y : (ac-ab-bc)(ac-ab+bc)(ac-2ab+b^2)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 9, 2018)
X(27496) lies on these lines: {2, 330}, {75, 4051}, {87, 1222}, {932, 9083}, {4598, 7153}, {5749, 25303}, {7155, 7320}, {7209, 27818}, {7275, 12782}, {8051, 31994}, {17754, 24524}, {27431, 30036}
X(27497) lies on these lines:
X(27498) lies on these lines:
X(27499) lies on these lines:
X(27500) lies on these lines:
X(27501) lies on these lines:
X(27502) lies on these lines:
X(27503) lies on these lines:
Collineation mappings involving Gemini triangle 65: X(27504)-X(27549)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 65, as in centers X(27504)-X(27549). Then
m(X) = a(a+b+c)(a-b-c)x - b(a+b-c)(a-b-c) - c(a-b+c)(a-b-c)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 9, 2018)
X(27504) lies on these lines: {2, 3}, {78, 28826}, {1265, 3699}, {1936, 5906}, {3193, 31034}, {5552, 27521}, {6734, 28796}, {7952, 20222}, {11500, 23541}, {27507, 27513}
X(27505) lies on these lines:
X(27506) lies on these lines:
X(27507) lies on these lines:
X(27508) lies on these lines:
X(27509) lies on these lines:
X(27510) lies on these lines:
X(27511) lies on these lines:
X(27512) lies on these lines:
X(27513) lies on these lines:
X(27514) lies on these lines:
X(27515) lies on these lines:
X(27516) lies on these lines:
X(27517) lies on these lines:
X(27518) lies on these lines:
X(27519) lies on these lines:
X(27520) lies on these lines:
X(27521) lies on these lines:
X(27522) lies on these lines:
X(27523) lies on these lines:
X(27524) lies on these lines:
X(27525) lies on these lines:
X(27526) lies on these lines:
X(27527) lies on these lines:
X(27528) lies on these lines:
X(27529) lies on these lines:
X(27530) lies on these lines:
X(27531) lies on these lines:
X(27532) lies on these lines:
X(27533) lies on these lines:
X(27534) lies on these lines:
X(27535) lies on these lines:
X(27536) lies on these lines:
X(27537) lies on these lines:
X(27538) lies on these lines: {1, 4090}, {2, 38}, {7, 30758}, {8, 210}, {9, 2319}, {10, 3944}, {11, 4126}, {43, 192}, {44, 3769}, {45, 24351}, {55, 3699}, {63, 5205}, {69, 20947}, {75, 3740}, {165, 25728}, {171, 16995}, {190, 1376}, {194, 2664}, {200, 3685}, {329, 4645}, {333, 3715}, {344, 25568}, {346, 3985}, {354, 26103}, {386, 4075}, {390, 6555}, {392, 4737}, {518, 18743}, {612, 27064}, {644, 28130}, {726, 16569}, {748, 32927}, {750, 32938}, {883, 31526}, {894, 5268}, {899, 3210}, {908, 29641}, {976, 17697}, {986, 26029}, {1089, 9534}, {1329, 20487}, {1575, 21884}, {1621, 4767}, {1757, 29649}, {1961, 17379}, {1962, 25294}, {1997, 24477}, {2292, 25123}, {2550, 20716}, {3006, 27131}, {3161, 3693}, {3212, 6376}, {3240, 3995}, {3263, 21590}, {3305, 3757}, {3434, 17777}, {3452, 3705}, {3596, 7064}, {3617, 25253}, {3661, 4104}, {3662, 30791}, {3678, 10449}, {3681, 4358}, {3687, 3790}, {3703, 5233}, {3711, 3996}, {3729, 8580}, {3758, 4682}, {3836, 33101}, {3840, 30861}, {3846, 33165}, {3873, 30947}, {3912, 21060}, {3932, 4417}, {3961, 4011}, {3992, 5692}, {3994, 32860}, {4023, 6057}, {4028, 17242}, {4195, 5293}, {4318, 28996}, {4362, 17349}, {4365, 4937}, {4383, 32926}, {4384, 30393}, {4385, 5044}, {4388, 10327}, {4413, 32939}, {4415, 4429}, {4434, 7262}, {4439, 32855}, {4579, 9306}, {4640, 17336}, {4651, 4671}, {4661, 29824}, {4703, 33079}, {4704, 17592}, {4741, 33085}, {4756, 32933}, {4899, 11019}, {5218, 17611}, {5220, 14829}, {5223, 30567}, {5274, 10005}, {5297, 26223}, {5552, 7105}, {5741, 32862}, {5748, 30741}, {6327, 26792}, {6377, 20286}, {6686, 17591}, {7046, 28137}, {7085, 26264}, {7191, 26688}, {7308, 16823}, {7322, 16830}, {9350, 32845}, {9369, 19861}, {9780, 31993}, {10180, 25295}, {11680, 30566}, {12647, 21290}, {13405, 25101}, {14997, 17150}, {16602, 28582}, {16989, 26685}, {17018, 31035}, {17026, 27484}, {17061, 17352}, {17122, 32935}, {17123, 32920}, {17124, 32940}, {17125, 32923}, {17155, 24620}, {17164, 27798}, {17230, 33084}, {17232, 33064}, {17236, 33174}, {17261, 17594}, {17279, 33126}, {17314, 20693}, {17353, 29634}, {17358, 32783}, {17480, 21214}, {17597, 25531}, {17720, 33118}, {17749, 24068}, {17760, 27288}, {17792, 26069}, {17889, 21093}, {20012, 21805}, {20363, 24528}, {20683, 30830}, {21080, 28248}, {21085, 21713}, {21951, 25612}, {24703, 32850}, {24988, 33146}, {25269, 32934}, {25960, 33162}, {25961, 32856}, {26227, 27065}, {26580, 29679}, {27518, 28830}, {27523, 33299}, {27527, 30584}, {28058, 28070}, {28118, 28142}, {29687, 33065}, {30578, 33110}
X(27538) = anticomplement of X(17063)
X(27538) = X(9)-Ceva conjugate of X(8)
X(27539) lies on these lines:
X(27540) lies on these lines:
X(27541) lies on these lines:
X(27542) lies on these lines:
X(27543) lies on these lines:
X(27544) lies on these lines:
X(27545) lies on these lines:
X(27546) lies on these lines:
X(27547) lies on these lines:
X(27548) lies on these lines:
X(27549) lies on these lines:
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28613.
X(27550) lies on these lines: {2,9162}, {13,9180}, {14,5466}, {15,9147}, {30,511}, {98,2378}, {99,9202}, {115,11625}, {351,9194}, {619,1649}, {623,9148}, {691,23896}, {842,11613}, {1637,11627}, {5460,8371}, {5464,9168}, {5479,23283}, {5608,6109}, {5652,22689}, {5996,6114}, {6671,11176}, {7684,19912}, {8594,9485}, {9123,13304}, {9191,9205}, {14174,22687}, {14176,14181}, {14184,14187}, {14817,16220}, {15342,23895}, {25152,25172}, {25153,25174}, {25155,25176}, {25207,25210}, {25212,25216}, {25215,25229}, {25221,25231}, {25225,25233}
X(27550) = isogonal conjugate of X(9203)See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28613.
X(27551) lies on these lines: {2,9163}, {13,5466}, {14,9180}, {16,9147}, {30,511}, {98,2379}, {99,9203}, {115,11627}, {351,9195}, {618,1649}, {624,9148}, {691,23895}, {842,11612}, {1637,11625}, {5459,8371}, {5463,9168}, {5478,23284}, {5607,6108}, {5652,22687}, {5996,6115}, {6672,11176}, {7685,19912}, {8595,9485}, {9123,13305}, {9191,9204}, {14175,14177}, {14180,22689}, {14183,14185}, {14816,16220}, {15342,23896}, {25162,25171}, {25163,25179}, {25165,25181}, {25208,25209}, {25211,25213}, {25218,25230}, {25222,25232}, {25226,25234}
X(27551) = isogonal conjugate of X(9202)See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28613.
X(27552) lies on these lines: {54,5498}, {125,8254}, {3530,10610}, {5012,21230}, {10116,11802}, {11245,22051}
Collineation mappings involving Gemini triangle 66: X(27553)-X(27589)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 66, as in centers X(27553)-X(27589). Then
m(X) = (b+c)(a^2+b^2+c^2+2ab+2ac+bc)x - a(a+b)(a+c)y - a(a+b)(a+c)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 10, 2018)
X(27553) lies on these lines: {2, 3}, {37, 8818}, {40, 125}, {210, 20653}, {498, 14873}, {1698, 2940}, {3178, 3971}, {3454, 4011}, {3695, 3952}, {3936, 19582}, {5692, 22076}, {6739, 18481}, {8286, 12701}, {8287, 24914}, {15526, 31158}, {16974, 23903}, {21075, 27572}, {21682, 23902}, {27556, 27564}
X(27554) lies on these lines:
X(27555) lies on these lines:
X(27555) = complement of X(37405)
X(27556) lies on these lines: {2, 6}, {115, 3875}, {125, 30738}, {536, 8818}, {3178, 4078}, {4000, 20337}, {4272, 21245}, {4360, 23903}, {4361, 5949}, {4851, 8287}, {17058, 17298}, {17314, 23947}, {18755, 21287}, {20653, 21698}, {21076, 27697}, {27553, 27564}, {27563, 27567}, {27569, 27573}, {27585, 27586}
X(27557) lies on these lines:
X(27558) lies on these lines:
X(27559) lies on these lines:
X(27560) lies on these lines:
X(27561) lies on these lines:
X(27562) lies on these lines:
X(27563) lies on these lines:
X(27564) lies on these lines:
X(27565) lies on these lines:
X(27566) lies on these lines:
X(27567) lies on these lines:
X(27568) lies on these lines:
X(27569) lies on these lines: {2, 37}, {10, 23928}, {142, 24058}, {238, 3702}, {313, 338}, {314, 6651}, {319, 20538}, {594, 23947}, {894, 1509}, {1089, 3178}, {1654, 17762}, {2321, 24086}, {3661, 21810}, {3662, 24077}, {3701, 3773}, {3729, 17736}, {3770, 20932}, {3912, 24050}, {3948, 18697}, {3949, 3969}, {3950, 24081}, {3970, 24092}, {4044, 20234}, {4053, 17233}, {4115, 4416}, {4125, 27589}, {4357, 24067}, {4431, 24044}, {4647, 25354}, {17231, 24076}, {17241, 24063}, {17248, 21816}, {17294, 24048}, {17363, 21839}, {23868, 32929}, {24090, 29594}, {27556, 27573}, {27557, 27558}
X(27570) lies on these lines:
X(27571) lies on these lines:
X(27572) lies on these lines:
X(27573) lies on these lines:
X(27574) lies on these lines:
X(27575) lies on these lines:
X(27576) lies on these lines:
X(27577) lies on these lines:
X(27578) lies on these lines:
X(27579) lies on these lines:
X(27580) lies on these lines:
X(27581) lies on these lines:
X(27582) lies on these lines:
X(27583) lies on these lines:
X(27584) lies on these lines:
X(27585) lies on these lines:
X(27586) lies on these lines:
X(27587) lies on these lines:
X(27588) lies on these lines:
X(27589) lies on these lines:
Collineation mappings involving Gemini triangle 67: X(27590)-X(27620)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 67, as in centers X(27590)-X(27620). Then
m(X) = (2a+b+c)(a^2+b^2+c^2+2ab+2ac+bc)x + b(2a+b+c)(a+b+2c)y + c(2a+b+c)(a+2b+c)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 11, 2018)
X(27590) lies on these lines:
X(27591) lies on these lines:
X(27592) lies on these lines:
X(27593) lies on these lines:
X(27594) lies on these lines:
X(27595) lies on these lines:
X(27596) lies on these lines:
X(27597) lies on these lines: {1, 2}, {4974, 27607}, {6533, 8040}, {27591, 27596}, {27605, 27606}
X(27598) lies on these lines:
X(27599) lies on these lines:
X(27600) lies on these lines:
X(27601) lies on these lines:
X(27602) lies on these lines:
X(27603) lies on these lines:
X(27604) lies on these lines:
X(27605) lies on these lines:
X(27606) lies on these lines:
X(27607) lies on these lines:
X(27608) lies on these lines:
X(27609) lies on these lines:
X(27610) lies on these lines: {2, 650}
X(27611) lies on these lines:
X(27612) lies on these lines:
X(27613) lies on these lines:
X(27614) lies on these lines:
X(27615) lies on these lines:
X(27616) lies on these lines:
X(27617) lies on these lines:
X(27618) lies on these lines:
X(27619) lies on these lines:
X(27620) lies on these lines:
Collineation mappings involving Gemini triangle 68: X(27621)-X(27682)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 68, as in centers X(27621)-X(27682). Then
m(X) = a(b^2+c^2+ab+ca+bc)x - ac(a+c)y - ab(a+b)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. Fixed points of m include X(2), X(36), X(238), and X(667). (Clark Kimberling, November 11, 2018)
X(27621) lies on these lines: {2, 3}, {7, 22345}, {56, 1610}, {57, 959}, {60, 5138}, {228, 5703}, {386, 1730}, {388, 23361}, {497, 23383}, {610, 1400}, {978, 1044}, {1249, 3209}, {1410, 18623}, {1829, 17080}, {3000, 15601}, {3185, 3485}, {4267, 5712}, {4293, 15654}, {4652, 28287}, {5122, 27625}, {5204, 28265}, {5745, 31339}, {7288, 20470}, {8583, 10856}, {9965, 20805}, {10476, 25941}, {16678, 30478}, {19734, 19764}, {19767, 25059}, {27632, 27669}, {27639, 27657}, {27640, 27642}
X(27622) lies on these lines: {2, 3}, {11, 23383}, {12, 23361}, {19, 216}, {35, 33109}, {46, 978}, {56, 5230}, {57, 1425}, {65, 1193}, {100, 30029}, {226, 22345}, {228, 13411}, {672, 28246}, {992, 2245}, {1155, 27627}, {1400, 2182}, {1465, 1829}, {1478, 15654}, {1730, 3216}, {1745, 26892}, {1764, 22076}, {1824, 17102}, {1951, 7119}, {3075, 26884}, {3185, 11375}, {3831, 17647}, {3915, 28353}, {4267, 5718}, {4292, 22344}, {4551, 16980}, {4999, 16678}, {5135, 23692}, {5348, 14529}, {5396, 18180}, {5433, 20470}, {5905, 20805}, {10527, 23853}, {11374, 21319}, {12609, 24169}, {15803, 27659}, {15950, 23846}, {26066, 31339}, {27385, 29967}, {27634, 27669}
X(27623) lies on these lines: {1, 19282}, {2, 6}, {3, 238}, {9, 980}, {31, 28247}, {44, 21371}, {55, 16690}, {75, 2176}, {213, 10436}, {219, 21246}, {239, 20923}, {241, 30456}, {326, 16968}, {386, 19518}, {405, 3736}, {474, 5156}, {748, 2309}, {899, 2209}, {958, 2274}, {1001, 1193}, {1191, 5263}, {1269, 4713}, {1376, 1918}, {1400, 6180}, {1616, 20036}, {1722, 10441}, {1724, 18792}, {1764, 23511}, {1975, 2669}, {2277, 28287}, {2300, 4384}, {2305, 11329}, {2911, 29967}, {3008, 24220}, {3230, 3875}, {3286, 13738}, {3759, 21785}, {3879, 29968}, {4279, 17749}, {4360, 16969}, {4361, 16685}, {4833, 27647}, {5110, 16367}, {5710, 31339}, {5711, 16456}, {16345, 17123}, {16355, 17125}, {16458, 16466}, {16468, 25528}, {16483, 32941}, {16502, 29960}, {17033, 21788}, {18147, 29983}, {21857, 22370}, {22144, 30017}, {27624, 28283}, {27631, 27635}, {27636, 27663}, {27641, 27646}, {27642, 27662}, {27650, 28276}, {27656, 27672}, {27667, 28285}, {27669, 28263}, {27670, 27671}, {30022, 30940}
X(27624) lies on these lines: {1, 5756}, {2, 7}, {22, 7083}, {46, 7613}, {65, 24554}, {71, 3672}, {145, 22370}, {192, 20247}, {573, 5222}, {583, 4644}, {651, 5120}, {959, 28265}, {978, 27649}, {991, 1193}, {1386, 2646}, {1723, 7291}, {1732, 7289}, {1958, 4188}, {2245, 4000}, {2260, 3945}, {2269, 17014}, {3286, 4225}, {3501, 4461}, {4019, 31130}, {5022, 6180}, {5036, 17366}, {5043, 17365}, {5753, 13731}, {7229, 16549}, {7288, 24553}, {7465, 17126}, {14636, 15937}, {17002, 26236}, {18206, 21296}, {21061, 29611}, {24471, 24635}, {24557, 25524}, {24612, 26671}, {25631, 31338}, {25895, 26689}, {27623, 28283}, {27625, 27640}, {27643, 27651}
X(27625) lies on these lines: {1, 2}, {31, 17572}, {238, 4188}, {404, 17127}, {443, 33107}, {474, 17126}, {748, 4189}, {988, 27065}, {992, 16885}, {1064, 10303}, {1450, 5261}, {1468, 14997}, {2277, 16814}, {2975, 8572}, {3218, 11512}, {3868, 9335}, {3869, 16610}, {3876, 4392}, {3976, 4661}, {3984, 5573}, {4225, 27639}, {4255, 5284}, {4383, 5253}, {4671, 25079}, {4850, 25917}, {5044, 7226}, {5122, 27621}, {5274, 22072}, {5710, 9342}, {5711, 17535}, {10448, 17570}, {11375, 26724}, {13738, 27666}, {16466, 17531}, {16669, 28244}, {16859, 17125}, {16865, 17123}, {17164, 24620}, {17490, 25253}, {17495, 19582}, {17674, 25959}, {23536, 27131}, {24178, 31053}, {24954, 33133}, {25524, 32911}, {25591, 28605}, {25681, 33129}, {25914, 32782}, {27624, 27640}, {27628, 28271}, {27642, 27676}, {27657, 28250}, {27671, 27680}
X(27626) lies on these lines: {1, 3688}, {2, 7}, {3, 238}, {40, 1738}, {56, 25878}, {69, 21384}, {71, 4000}, {75, 3501}, {86, 25500}, {219, 1429}, {239, 3169}, {256, 8731}, {284, 27644}, {314, 17026}, {322, 21232}, {573, 3008}, {583, 4675}, {610, 992}, {614, 3778}, {748, 4224}, {942, 984}, {960, 25887}, {1018, 17151}, {1193, 2293}, {1212, 24471}, {1334, 3672}, {1475, 3945}, {1697, 3755}, {1722, 9548}, {1756, 15803}, {1958, 21495}, {2092, 2999}, {2108, 16571}, {2171, 24554}, {2176, 28358}, {2212, 4219}, {2245, 17278}, {2260, 4648}, {2269, 5222}, {2275, 28350}, {2277, 16970}, {2287, 25940}, {2354, 7490}, {2911, 18162}, {3000, 15601}, {3094, 16968}, {3208, 3875}, {3220, 13738}, {3663, 3730}, {3664, 4253}, {3691, 5232}, {3717, 24391}, {3718, 17755}, {3821, 12514}, {3973, 21362}, {4684, 6762}, {4859, 20367}, {4901, 17751}, {5120, 7175}, {5138, 16468}, {5272, 17065}, {5709, 6211}, {5738, 26101}, {5783, 21526}, {5791, 33159}, {7174, 11518}, {8726, 13731}, {8728, 32784}, {9317, 17134}, {10383, 21321}, {10447, 29433}, {10856, 21363}, {10889, 24600}, {12437, 20036}, {12723, 24341}, {15509, 21892}, {16549, 25590}, {16552, 17272}, {17123, 25514}, {17125, 22174}, {17284, 21061}, {17298, 18206}, {21195, 22443}, {24310, 24789}, {27640, 28254}, {27641, 27670}, {27646, 27671}, {28251, 28260}
X(27627) lies on these lines: {1, 2}, {3, 748}, {11, 22072}, {12, 1450}, {21, 17123}, {31, 474}, {38, 5044}, {44, 583}, {45, 2277}, {58, 27643}, {63, 11512}, {65, 16602}, {72, 244}, {73, 5433}, {75, 25591}, {88, 11684}, {106, 5288}, {140, 1064}, {171, 17531}, {238, 404}, {321, 25079}, {392, 4642}, {405, 17125}, {496, 33136}, {602, 6911}, {631, 4300}, {740, 29982}, {750, 16408}, {896, 27657}, {902, 25440}, {908, 24178}, {956, 32577}, {960, 16610}, {968, 3646}, {982, 3876}, {988, 3305}, {1010, 32944}, {1036, 16419}, {1042, 3911}, {1043, 25531}, {1046, 27003}, {1055, 4426}, {1066, 15325}, {1155, 27622}, {1191, 4413}, {1211, 25914}, {1334, 1575}, {1376, 3915}, {1457, 24914}, {1458, 7288}, {1468, 4383}, {1475, 2238}, {1574, 3230}, {1724, 19769}, {1739, 3878}, {1740, 19278}, {1742, 15717}, {2170, 16605}, {2173, 28261}, {2230, 27634}, {2234, 15254}, {2243, 28243}, {2246, 28246}, {2274, 17259}, {2275, 3691}, {2292, 3752}, {2309, 16342}, {2347, 21892}, {2635, 5204}, {2650, 5439}, {2887, 17674}, {3000, 15601}, {3057, 4695}, {3072, 6946}, {3073, 6940}, {3120, 21616}, {3142, 7173}, {3290, 33299}, {3338, 32912}, {3452, 23536}, {3551, 27671}, {3555, 21805}, {3579, 19513}, {3670, 10176}, {3678, 3953}, {3681, 3976}, {3701, 24003}, {3736, 17557}, {3772, 24954}, {3846, 4202}, {3868, 17063}, {3869, 24174}, {3877, 24440}, {3884, 3987}, {3893, 17460}, {3951, 18193}, {4005, 21342}, {4187, 21935}, {4197, 17717}, {4225, 27666}, {4255, 4423}, {4256, 5259}, {4281, 5333}, {4297, 5400}, {4322, 4551}, {4357, 27162}, {4653, 25542}, {4766, 17670}, {4849, 17609}, {4887, 20245}, {5217, 8053}, {5247, 5253}, {5277, 21764}, {5687, 9350}, {5692, 24046}, {5711, 16862}, {5904, 17449}, {5919, 21896}, {7515, 22057}, {8012, 9367}, {8056, 12526}, {8167, 19765}, {8421, 17593}, {8728, 33105}, {9709, 16483}, {10448, 11108}, {10571, 31231}, {11362, 32486}, {11375, 17278}, {12702, 19549}, {13624, 13731}, {16062, 25960}, {16454, 25496}, {16477, 27644}, {16552, 23649}, {16948, 27660}, {17067, 21246}, {17122, 17535}, {17127, 17572}, {17239, 24668}, {17337, 24953}, {17348, 24739}, {17349, 23579}, {17490, 19582}, {18792, 22343}, {20227, 21033}, {20331, 28245}, {21075, 23675}, {22345, 28351}, {24161, 26724}, {24514, 27318}, {24789, 25681}, {24984, 26010}, {26060, 33109}, {27641, 27642}, {27655, 27661}, {28238, 28239}
X(27628) lies on these lines: {2, 11}, {31, 16056}, {46, 978}, {56, 24597}, {88, 959}, {238, 851}, {244, 942}, {291, 2282}, {444, 2355}, {474, 1036}, {659, 28283}, {748, 4192}, {899, 28256}, {992, 20331}, {1004, 7083}, {1183, 5253}, {1284, 33129}, {1400, 2246}, {1402, 26723}, {1460, 16438}, {2783, 17888}, {3120, 15507}, {3185, 24789}, {3579, 19513}, {4225, 28265}, {4359, 18235}, {4557, 17724}, {5249, 20967}, {6187, 13731}, {7465, 23868}, {7742, 9798}, {13097, 33145}, {14798, 28238}, {15253, 23067}, {15496, 28259}, {16415, 16466}, {16827, 28264}, {18785, 23988}, {21319, 33130}, {21320, 33148}, {22345, 24178}, {27625, 28271}, {27669, 28285}, {28242, 28248}, {28247, 28251}, {28253, 28274}, {31339, 33115}
X(27629) lies on these lines: {2, 3}, {9571, 25645}, {20470, 26747}, {23853, 33090}
X(27630) lies on these lines: {2, 3}, {4057, 27675}, {24436, 27679}
X(27631) lies on these lines: {2, 31}, {978, 4225}, {993, 1193}, {1468, 19717}, {1740, 4210}, {1918, 24552}, {2209, 17135}, {3915, 17751}, {4279, 31330}, {4423, 19734}, {4426, 20965}, {5284, 16690}, {16468, 18169}, {27623, 27635}, {27636, 27666}
X(27632) lies on these lines: {2, 32}, {1914, 29966}, {2205, 24549}, {3286, 13738}, {27621, 27669}, {27642, 27656}, {27665, 27672}
X(27633) lies on these lines: {2, 37}, {3, 238}, {6, 20769}, {39, 4357}, {69, 2275}, {72, 4283}, {86, 16604}, {198, 4383}, {239, 21857}, {274, 25538}, {314, 26959}, {319, 17448}, {583, 4641}, {662, 1333}, {980, 17306}, {992, 2235}, {1015, 3879}, {1086, 29967}, {1107, 5224}, {1193, 1386}, {1400, 28283}, {1574, 4967}, {1755, 28260}, {2092, 17023}, {2221, 19591}, {2227, 28269}, {2234, 15254}, {2236, 28242}, {2237, 28243}, {3596, 27091}, {3662, 24598}, {3771, 24653}, {3773, 3831}, {3783, 24575}, {3834, 29981}, {3882, 20228}, {3912, 17053}, {4360, 20691}, {4446, 20358}, {4643, 5069}, {4852, 21858}, {5337, 16470}, {5439, 24923}, {5564, 21868}, {7032, 9025}, {8610, 17243}, {9367, 27420}, {16043, 30479}, {16696, 17237}, {16726, 17376}, {16975, 17270}, {17121, 24625}, {17148, 27095}, {17189, 25532}, {17277, 21892}, {17353, 21796}, {17793, 21080}, {18134, 26746}, {18139, 26747}, {18698, 24786}, {21769, 22370}, {24471, 28391}, {24739, 30939}, {24744, 33137}, {27639, 27650}
X(27634) lies on these lines: {2, 39}, {141, 2275}, {978, 28285}, {992, 2231}, {1193, 1386}, {2230, 27627}, {2232, 28242}, {2233, 28243}, {3286, 13738}, {16584, 20911}, {17053, 27097}, {27622, 27669}, {27656, 27662}
X(27635) lies on these lines: {1, 2}, {238, 4210}, {3725, 24589}, {14969, 19734}, {16604, 21753}, {27623, 27631}, {27643, 27666}, {28250, 28289}
X(27636) lies on these lines: {1, 2}, {238, 4191}, {748, 1740}, {1743, 2350}, {16343, 17123}, {16571, 32930}, {18792, 27643}, {27623, 27663}, {27631, 27666}, {27641, 28269}, {29982, 32915}
X(27637) lies on these lines: {2, 44}, {3, 238}, {513, 27647}, {524, 29988}, {1193, 3246}, {2245, 16610}, {4273, 27644}, {24715, 28198}, {27646, 27670}, {27678, 28244}, {28252, 28256}
X(27638) lies on these lines: {2, 45}, {3, 238}, {6, 27678}, {1001, 28288}, {3285, 27644}, {4383, 27661}, {4484, 17597}, {7232, 29964}
X(27639) lies on these lines: {2, 11}, {3, 748}, {31, 16059}, {36, 978}, {56, 32911}, {228, 5272}, {238, 4191}, {244, 20760}, {474, 32772}, {750, 16409}, {899, 23853}, {999, 1066}, {1011, 17123}, {1036, 16410}, {2209, 28360}, {2269, 25889}, {3185, 16610}, {3286, 27643}, {3306, 20967}, {3624, 19763}, {4038, 19734}, {4210, 20992}, {4225, 27625}, {4267, 5333}, {4383, 20470}, {4557, 17597}, {5204, 27645}, {5687, 32943}, {5711, 16297}, {7485, 23868}, {8168, 17751}, {11358, 32944}, {11512, 22345}, {11688, 24620}, {16058, 17125}, {16414, 16466}, {16421, 17124}, {19684, 25524}, {24436, 27680}, {27621, 27657}, {27623, 27631}, {27633, 27650}
X(27640) lies on these lines: {2, 6}, {238, 1958}, {332, 11342}, {899, 22370}, {978, 28287}, {2239, 25571}, {3008, 29965}, {27621, 27642}, {27624, 27625}, {27626, 28254}
X(27641) lies on these lines: {2, 37}, {39, 17248}, {58, 87}, {980, 17326}, {992, 28283}, {1015, 17363}, {1211, 26746}, {1400, 28254}, {1654, 2275}, {2092, 17397}, {2228, 25279}, {3123, 16571}, {3661, 17053}, {3662, 29985}, {3876, 4283}, {3963, 27091}, {4357, 24598}, {4393, 21857}, {5069, 17256}, {6376, 17148}, {8610, 17233}, {16604, 17379}, {16696, 17250}, {16726, 17361}, {17157, 17793}, {17349, 21892}, {17368, 21796}, {17393, 21858}, {17786, 27044}, {20917, 27095}, {21214, 22370}, {24653, 29846}, {25624, 31338}, {26747, 32782}, {27147, 31198}, {27623, 27646}, {27624, 27625}, {27626, 27670}, {27627, 27642}, {27636, 28269}, {27651, 27661}
X(27642) lies on these lines: {2, 39}, {404, 5156}, {992, 28264}, {1193, 23493}, {1575, 17033}, {6374, 19565}, {13738, 27665}, {27621, 27640}, {27623, 27662}, {27625, 27676}, {27627, 27641}, {27632, 27656}, {27669, 28243}, {28254, 28274}
X(27643) lies on these lines: {2, 6}, {44, 16700}, {58, 27627}, {238, 4184}, {274, 26223}, {748, 3736}, {978, 4225}, {1193, 4653}, {2176, 28605}, {2999, 25060}, {3008, 17167}, {3286, 27639}, {3786, 7191}, {3995, 33296}, {4641, 16736}, {4720, 16483}, {5208, 7292}, {5711, 17551}, {5905, 16752}, {10458, 17123}, {13588, 17127}, {14005, 16466}, {16948, 27645}, {17012, 25058}, {17020, 25059}, {17182, 26723}, {17185, 28281}, {18792, 27636}, {27064, 30599}, {27624, 27651}, {27635, 27666}
X(27644) lies on these lines: {1, 3728}, {2, 6}, {7, 16752}, {10, 31338}, {21, 238}, {31, 1582}, {37, 4469}, {43, 2209}, {44, 16696}, {58, 87}, {100, 715}, {110, 9082}, {144, 18600}, {171, 28248}, {192, 2176}, {213, 274}, {239, 314}, {284, 27626}, {310, 24514}, {332, 16050}, {404, 5156}, {579, 24598}, {608, 14013}, {614, 5208}, {651, 1014}, {662, 1333}, {673, 20028}, {748, 10458}, {757, 27646}, {759, 29237}, {1010, 16466}, {1043, 1191}, {1045, 3747}, {1172, 2905}, {1203, 25526}, {1434, 6180}, {1444, 1778}, {1621, 16690}, {1724, 5145}, {1743, 18186}, {1790, 27659}, {1817, 28274}, {2245, 24530}, {2274, 2975}, {2295, 28604}, {2305, 19308}, {2308, 28247}, {2323, 21246}, {2664, 20964}, {2999, 17185}, {3142, 24883}, {3193, 5230}, {3216, 4279}, {3230, 17319}, {3285, 27638}, {3286, 4225}, {3725, 11688}, {3758, 16709}, {3759, 20923}, {4000, 17139}, {4184, 17127}, {4273, 27637}, {4360, 16685}, {4384, 10455}, {4393, 21769}, {4416, 16887}, {4503, 17252}, {4594, 7104}, {4604, 27664}, {4641, 16700}, {4653, 15485}, {4658, 28650}, {4720, 32941}, {5009, 27680}, {5222, 17183}, {5256, 25058}, {5299, 29960}, {5711, 14007}, {7032, 16476}, {7083, 16876}, {7109, 17759}, {7168, 20663}, {7304, 31008}, {10025, 16750}, {14005, 31339}, {14621, 26643}, {16477, 27627}, {16669, 16726}, {16670, 18164}, {16705, 17257}, {16712, 17333}, {16744, 28366}, {17012, 25060}, {17033, 17743}, {17034, 29983}, {17121, 20228}, {17142, 32922}, {17167, 26723}, {17187, 22343}, {17189, 29967}, {17196, 17382}, {17200, 29991}, {17202, 17367}, {17212, 20980}, {17363, 33297}, {19283, 19767}, {21024, 24958}, {23092, 27527}, {23125, 27334}, {23444, 24520}, {23692, 27653}, {26223, 30599}, {30984, 32843}
X(27644) = isogonal conjugate of X(16606)
X(27644) = isotomic conjugate of complement of X(36857)
X(27644) = X(92)-isoconjugate of X(22381)
X(27645) lies on these lines:
X(27646) lies on these lines:
X(27647) lies on these lines:
X(27648) lies on these lines:
X(27649) lies on these lines:
X(27650) lies on these lines:
X(27651) lies on these lines:
X(27652) lies on these lines:
X(27653) lies on these lines:
X(27654) lies on these lines:
X(27655) lies on these lines:
X(27656) lies on these lines:
X(27657) lies on these lines:
X(27658) lies on these lines:
X(27659) lies on these lines:
X(27660) lies on these lines:
X(27661) lies on these lines:
X(27662) lies on these lines:
X(27663) lies on these lines:
X(27664) lies on these lines:
X(27665) lies on these lines:
X(27666) lies on these lines:
X(27667) lies on these lines:
X(27668) lies on these lines:
X(27669) lies on these lines:
X(27670) lies on these lines:
X(27671) lies on these lines:
X(27672) lies on these lines:
X(27673) lies on these lines:
X(27674) lies on these lines:
X(27675) lies on these lines:
X(27676) lies on these lines:
X(27677) lies on these lines:
X(27678) lies on these lines: {2, 7}, {6, 27638}, {56, 26657}, {71, 17302}, {238, 28288}, {320, 583}, {573, 17367}, {662, 1333}, {978, 4257}, {1278, 3501}, {1475, 20090}, {1716, 17127}, {2092, 17012}, {2176, 28395}, {2245, 16706}, {2260, 17300}, {3730, 17247}, {3778, 7191}, {3882, 17121}, {4253, 17364}, {4393, 22370}, {5043, 7232}, {7292, 17065}, {14964, 17200}, {16549, 17116}, {16552, 17252}, {16723, 17376}, {17123, 22174}, {17288, 18206}, {17292, 21061}, {17343, 21384}, {20228, 24625}, {21010, 25279}, {27623, 27641}, {27637, 28244}
X(27679) lies on these lines: {2, 896}, {23, 238}, {513, 27637}, {758, 20703}, {978, 4225}, {7292, 20984}, {7449, 27659}, {24436, 27630}
X(27680) lies on these lines: {2, 38}, {3, 238}, {9, 9367}, {986, 16706}, {2292, 17383}, {3086, 24744}, {3831, 33165}, {4650, 28274}, {5009, 27644}, {5247, 22769}, {5657, 24440}, {6211, 19549}, {7262, 28242}, {7786, 17353}, {17123, 25494}, {17164, 27192}, {17278, 24174}, {24436, 27639}, {24520, 25650}, {25079, 26107}, {25253, 27011}, {25591, 26971}, {27625, 27671}, {27627, 27641}, {29960, 33087}
X(27681) lies on these lines:
X(27682) lies on these lines:
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28615.
X(27683) lies on this line: {1503,3628}
See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos 28615.
X(27684) lies on these lines: {4,15047}, {1263,14627}, {5944,13631}, {13163,14706}
Collineation mappings involving Gemini triangle 69: X(27685)-X(27735)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 69, as in centers X(27685)-X(27735). Then
m(X) = (b+c)(b^2+c^2-a^2-bc)x - b(a+b)(b+c)y - c(a+c)(b+c)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 12, 2018)
X(27685) lies on these lines: {1, 125}, {2, 3}, {10, 21318}, {227, 21674}, {355, 6739}, {1478, 14873}, {1837, 8287}, {3698, 27714}, {5130, 17073}, {5587, 30436}, {8286, 11376}, {12079, 13869}, {17181, 23674}, {20277, 20278}, {27688, 27696}
X(27686) lies on these lines: {2, 3}, {8, 125}, {944, 6739}, {10590, 14873}, {17170, 23674}, {21674, 27691}, {26364, 31845}, {27704, 27706}
X(27687) lies on these lines: {2, 3}, {10, 125}, {12, 201}, {120, 27698}, {594, 21687}, {1385, 6739}, {1698, 1726}, {1834, 3924}, {3057, 8286}, {3454, 10176}, {3822, 22001}, {3925, 27714}, {7951, 14873}, {8287, 17606}, {10175, 30436}, {17757, 27690}, {20337, 30961}, {21029, 23897}, {21033, 23921}, {22076, 31806}, {25466, 32775}, {25623, 27688}
X(27688) lies on these lines: {2, 6}, {7, 20337}, {9, 16565}, {10, 7235}, {115, 3729}, {125, 29857}, {192, 23903}, {346, 23947}, {645, 25687}, {2245, 21245}, {2305, 21287}, {3923, 20546}, {3963, 27733}, {4019, 16886}, {4363, 5949}, {4416, 27970}, {4461, 23942}, {8287, 17279}, {8818, 17351}, {11104, 20558}, {17058, 17282}, {21674, 21728}, {24271, 32431}, {24311, 33100}, {25623, 27687}, {27685, 27696}, {27695, 27700}, {27705, 27709}, {27723, 27729}, {27726, 27727}, {27971, 28604}
X(27689) lies on these lines:
X(27690) lies on these lines:
X(27691) lies on these lines:
X(27692) lies on these lines:
X(27693) lies on these lines:
X(27694) lies on these lines:
X(27695) lies on these lines:
X(27696) lies on these lines:
X(27697) lies on these lines:
X(27698) lies on these lines:
X(27699) lies on these lines:
X(27700) lies on these lines:
X(27701) lies on these lines:
X(27702) lies on these lines:
X(27703) lies on these lines:
X(27704) lies on these lines:
X(27705) lies on these lines:
X(27706) lies on these lines:
X(27707) lies on these lines:
X(27708) lies on these lines:
X(27709) lies on these lines:
X(27710) lies on these lines:
X(27711) lies on these lines:
X(27712) lies on these lines:
X(27713) lies on these lines:
X(27714) lies on these lines:
X(27715) lies on these lines:
X(27716) lies on these lines:
X(27717) lies on these lines:
X(27718) lies on these lines:
X(27719) lies on these lines:
X(27720) lies on these lines:
X(27721) lies on these lines:
X(27722) lies on these lines:
X(27723) lies on these lines:
X(27724) lies on these lines:
X(27725) lies on these lines:
X(27726) lies on these lines:
X(27727) lies on these lines:
X(27728) lies on these lines:
X(27729) lies on these lines:
X(27730) lies on these lines:
X(27731) lies on these lines:
X(27732) lies on these lines:
X(27733) lies on these lines:
X(27734) lies on these lines:
X(27735) lies on these lines:
Collineation mappings involving Gemini triangle 70: X(27736)-X(27777)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 70, as in centers X(27736)-X(27777). Then
m(X) = (b+c)(b^2+c^2-a^2-bc)x - b(a+b)(b+c)y - c(a+c)(b+c)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 12, 2018)
X(27736) lies on these lines:
X(27737) lies on these lines:
X(27738) lies on these lines:
X(27739) lies on these lines:
X(27740) lies on these lines:
X(27741) lies on these lines:
X(27742) lies on these lines:
X(27743) lies on these lines:
X(27744) lies on these lines:
X(27745) lies on these lines:
X(27746) lies on these lines:
X(27747) lies on these lines:
X(27748) lies on these lines:
X(27749) lies on these lines:
X(27750) lies on these lines:
X(27751) lies on these lines:
X(27752) lies on these lines:
X(27753) lies on these lines:
X(27754) lies on these lines:
X(27755) lies on these lines:
X(27756) lies on these lines:
X(27757) lies on these lines:
X(27758) lies on these lines:
X(27759) lies on these lines:
X(27760) lies on these lines:
X(27761) lies on these lines:
X(27762) lies on these lines:
X(27763) lies on these lines:
X(27764) lies on these lines:
X(27765) lies on these lines:
X(27766) lies on these lines:
X(27767) lies on these lines:
X(27768) lies on these lines:
X(27769) lies on these lines:
X(27770) lies on these lines:
X(27771) lies on these lines:
X(27772) lies on these lines:
X(27773) lies on these lines:
X(27774) lies on these lines:
X(27775) lies on these lines:
X(27776) lies on these lines:
X(27777) lies on these lines:
See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28619.
X(27778) lies on these lines: {11,118}, {55,13243}, {80,10404}, {100,4661}, {518,6154}, {952,5903}, {1317,2771}, {2800,12680}, {3614,12005}, {3874,12690}, {5432,13226}, {5904,9945}, {6797,11570}, {7672,11246}, {9803,12763}, {9809,13274}, {9946,14872}, {9964,10950}, {10864,13253}, {12675,12691}, {12750,16128}
X(27778) = reflection of X(i) in X(j) for these {i,j}: {11, 17660}, {5904, 9945}, {12690, 3874}, {12691, 12675}, {14872, 9946}See Antreas Hatzipolakis and Peter Moses, Hyacinthos 28619.
X(27779) lies on these lines: {99,11593}, {115,373}, {543,3060}, {2482,3819}, {2936,8780}, {10219,14971}, {12162,14981}, {14928,17710}
See Aris Pavlakis and Peter Moses, Hyacinthos 28621.
X(27780) lies on these lines: {6,647}, {9,650}, {212,663}, {652,3217}, {654,3196}, {2423,6586}
See Aris Pavlakis and Peter Moses, Hyacinthos 28621.
X(27781) lies on these lines: {2,525}, {78,522}, {312,4391} ,{2401,25259}, {3239,21198}, {4130,25082}, {6332,6505}
Centers associated with Gemini triangles 11-18: X(27782)-X(27812)
These centers were contributed by Randy Hutson, November 12, 2018. Gemini triangles are introduced in the preamble just before X(24537).
X(27782) lies on the line {2, 3723}
X(27783) lies on these lines: {2, 319}, {191, 6175}
X(27784) lies on these lines: {1, 748}, {2, 3743}, {3, 7611}, {10, 3706}, {37, 39}, {58, 1963}, {214, 10448}, {386, 2667}, {409, 4653}, {549, 8143}, {595, 1961}, {968, 25440}, {975, 5248}, {984, 3881}, {986, 3833}, {1698, 4868} et al
X(27784) = {X(2),X(27785)}-harmonic conjugate of X(3743)
X(27785) lies on these lines: {1, 6}, {2, 3743}, {3, 2941}, {35, 968}, {40, 25430}, {191, 940}, {386, 1962}, {595, 5311}, {612, 1995}, {1125, 26747}, {1224, 2345}, {1479, 7557}, {1698, 3931} et al
X(27786) lies on the line {1213, 1224}
X(27786) = isogonal conjugate of X(27787)
X(27786) = trilinear pole of line X(4988)X(8043)
X(27787) lies on these lines: {1, 1030}, {35, 42}, {55, 8185}, {100, 1224}, {678, 1283}, {1203, 4272}, {1724, 3795}, {1962, 3746} et al
X(27787) = isogonal conjugate of X(27786)
X(27787) = crossdifference of every pair of points on line X(4988)X(8043)
X(27788) lies on these lines: {75, 1030}, {4657, 5333}
Let A11B11C11 be Gemini triangle 11. Let LA be the line through A11 parallel to BC, and define LB and LC cyclically. Let A'11 = LB∩LC, and define B'11 and C'11 cyclically. Triangle A'11B'11C'11' is homothetic to ABC at X(27789).
X(27789) lies on these lines: {1, 4134}, {2, 3723}, {37, 25417}, {57, 7269}, {81, 16777}, {330, 3995}, {959, 11011}, {961, 1388}, {1224, 3616}, {1255, 4383} et al
X(27789) = isogonal conjugate of X(16884)
X(27789) = anticomplement of X(28651)
X(27790) lies on these lines: {2, 594}, {10, 6534}, {5936, 19684}, {9782, 11024}
X(27791) lies on these lines: {2, 3943}, {1647, 27812}, {4033, 24589}, {4080, 4688}, {4359, 4708}
X(27792) lies on these lines: {2, 3770}, {75, 1211}, {76, 2051}, {85, 1228}, {226, 313}, {306, 4043}, {312, 1230}, {321, 4033}, {341, 442}, {1022, 1577}, {1269, 3687} et al
X(27792) = {X(2),X(27794)}-harmonic conjugate of X(27793)
X(27793) lies on these lines: {2, 3770}, {226, 306}, {312, 26738}, {442, 4696}, {1086, 1211}, {1230, 4358} et al
X(27793) = {X(2),X(27794)}-harmonic conjugate of X(27792)
X(27794) lies on these lines: {2, 3770}, {1211, 7263}, {3936, 4671}, {3963, 4080} et al
X(27794) = {X(27792),X(27793)}-harmonic conjugate of X(2)
The perspectrix of Gemini triangles 13 and 14 passes through X(4768).
X(27795) lies on these lines: (pending)
X(27795) = isogonal conjugate of X(27796)
X(27796) lies on these lines: {101, 2268}, {604, 1415}
X(27796) = isogonal conjugate of X(27795)
Let A14B14C14 be Gemini triangle 14. Let LA be the line through A14 parallel to BC, and define LB and LC cyclically. Let A'14 = LB∩LC, and define B'14 and C'14 cyclically. Triangle A'14B'14C'14 is homothetic to ABC at X(27797).
X(27797) lies on these lines: {2, 3943}, {4, 4678}, {594, 4080}, {4024, 4049} et al
X(27797) = isotomic conjugate of X(26860)
X(27798) lies on these lines: {1, 14007}, {2, 740}, {10, 12}, {42, 4457}, {75, 17038}, {312, 1698}, {321, 3842}, {333, 4697}, {512, 27799}, {523, 21204}, {537, 4981}, {714, 4688}, {804, 4763}, {812, 9148}, {966, 4703}, {982, 3728}, {1010, 5429}, {1125, 3706}, {1213, 3985}, {1268, 20947} et al
X(27798) = midpoint of X(i) and X(j) for these {i,j}: {2, 21020}, {1962, 17163}
X(27798) = reflection of X(10180) in X(2)
X(27798) = complement of X(1962)
X(27799) lies on these lines: {2, 27806}, {512, 27798}, {523, 10180}, {3740, 4132}
X(27799) = complement of complement of X(27806)
X(27800) lies on these lines: {2, 27807}, {3005, 4369}, {3925, 17761}
X(27800) = complement of complement of X(27807)
X(27801) lies on these lines: {1, 4485}, {10, 1237}, {37, 308}, {72, 290}, {75, 3670}, {76, 321}, {100, 2367}, {213, 3114}, {264, 1969}, {274, 1920}, {276, 3998}, {313, 1089}, {349, 6458}, {350, 2901}, {700, 2085}, {1502, 1928}, {1978, 18359}, {2205, 3115} et al
X(27801) = isotomic conjugate of X(1333)
X(27801) = polar conjugate of X(2203)
X(27801) = trilinear pole of line X(850)X(4036)
X(27801) = trilinear product of vertices of Gemini triangle 13
X(27801) = trilinear product of vertices of Gemini triangle 14
X(27801) = trilinear product of vertices of Gemini triangle 20
The Gemini triangle 15 is also the Gergonne line extraversion triangle (see X(10180)), and its unary cofactor triangle is the extraversion triangle of X(55). These two triangles are perspective at X(27802).
X(27802) lies on these lines: {1, 25}, {3, 37}, {8, 4239}, {55, 2915}, {56, 226}, {101, 386}, {108, 388}, {197, 3931}, {219, 10974}, {404, 17776}, {429, 1478}, {612, 8193}, {936, 17742}, {958, 4205}, {999, 1104}, {1376, 3695}, {1460, 12514}, {1486, 5266}, {1754, 26935}, {1791, 13725}, {1995, 5262} et al
X(27803) lies on these lines: {1376, 3053}, {2176, 4362}
Let A'B'C' be the incentral triangle. Let A" be the reflection of A in A', and define B" and C" cyclically. X(27804) is the centroid of A"B"C".
X(27804) lies on these lines: {1, 596}, {2, 740}, {8, 3743}, {10, 8040}, {37, 3896}, {42, 3952}, {81, 4427}, {99, 6628}, {145, 2292}, {171, 4781}, {192, 714}, {306, 4356}, {519, 3989}, {758, 3241}, {846, 16704}, {968, 3187}, {984, 20011}, {1215, 21806} et al
X(27804) = reflection of X(i) in X(j) for these (i,j): (2, 1962), (17163, 2), (21020, 10180)
X(27804) = anticomplement of X(21020)
Line X(8)X(192) is the line of the (degenerate) cross-triangle of Gemini triangles 17 and 18.
X(27805) lies on these lines: {2, 694}, {43, 4154}, {257, 4997}, {644, 4621}, {645, 3570}, {646, 3807}, {661, 799}, {893, 6651}, {1581, 24003}, {3452, 7018}, {3699, 3799}, {3888, 4598} et al
X(27805) = isogonal conjugate of X(20981)
X(27805) = isotomic conjugate of X(4369)
X(27805) = trilinear pole of line X(8)X(192)
X(27805) = X(19)-isoconjugate of X(22093)
X(27806) lies on these lines: {2, 27799}, {875, 3112}, {3681, 4132}
X(27806) = anticomplement of anticomplement of X(27799)
X(27807) is also the perspector of the {Gemini 17, Gemini 18}-circumconic.
Let A17B17C17 and A18B18C18 be the Gemini triangles 17 and 18, resp. Let A' be the intersection of the tangents to the {Gemini 17, Gemini 18}-circumconic at A17 and A18. Define B' and C' cyclically. The lines AA', BB', CC' concur in X(27807). (Randy Hutson, November 30, 2018)
X(27807) lies on these lines: {2, 27800}, {38, 7192}, {239, 3294}, {350, 4651}, {870, 17165}, {873, 4576}, {1447, 3920}, {1621, 4068} et al
X(27807) = anticomplement of anticomplement of X(27800)
X(27808) lies on these lines: {75, 21208}, {76, 334}, {99, 8707}, {100, 839}, {313, 4013}, {321, 3125}, {646, 2397}, {668, 891}, {670, 6540}, {756, 6382}, {874, 4557}, {1016, 4574} et al
X(27808) = isotomic conjugate of X(3733)
X(27808) = trilinear product of vertices of Gemini triangle 17
X(27808) = trilinear product of vertices of Gemini triangle 18
X(27809) lies on these lines: {2, 1978}, {6, 190}, {25, 1897}, {37, 4033}, {42, 3952}, {111, 8709}, {145, 263}, {321, 3121}, {335, 812}, {694, 6542}, {726, 23579}, {727, 835}, {941, 4704}, {1171, 4632}, {1400, 4552} et al
X(27810) lies on these lines: {6, 668}, {32, 100}, {213, 3952}, {1018, 1918}, {1783, 1974} et al
X(27811) lies on these lines: {1, 16704}, {2, 740}, {37, 3121}, {86, 4427}, {100, 4068}, {758, 15672}, {846, 8025}, {2292, 3622} et al
X(27811) = reflection of X(27812) in X(2)
X(27812) lies on these lines: {2, 740}, {10, 3120}, {523, 6548}, {1213, 4442}, {1647, 27791}, {1654, 17491}, {2292, 9330} et al
X(27812) = reflection of X(27811) in X(2)
Collineation mappings involving Gemini triangle 71: X(27813)-X(27837)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 71, as in centers X(27813)-X(27837). Then
m(X) = a(a-3b+c)(a+b-3c)x + (a-c)(a-3b+c)(a+b-3c)y + (a-b)(a-3b+c)(a+b-3c)z : :
(Clark Kimberling, November 13, 2018)
X(27813) lies on these lines:
X(27814) lies on these lines: {2, 27815}, {348, 27818}, {26563, 27813}, {27817, 27822}
X(27815) lies on these lines:
X(27816) lies on these lines:
X(27817) lies on these lines:
X(27818) lies on the cubics K1011 and K1069 and these lines: {2, 16078}, {7, 145}, {8, 1358}, {85, 5226}, {279, 3008}, {348, 27814}, {673, 63626}, {738, 37789}, {1222, 16079}, {1293, 2369}, {1434, 16711}, {3160, 3445}, {3161, 56081}, {3177, 56719}, {3212, 56174}, {3241, 24796}, {3616, 24805}, {3617, 62575}, {3621, 63591}, {3663, 7320}, {3665, 52715}, {3672, 47636}, {3674, 4052}, {4051, 53538}, {4308, 7195}, {4323, 32086}, {5222, 51839}, {6172, 27834}, {6556, 7185}, {7209, 27496}, {7233, 17090}, {8051, 24175}, {10481, 10563}, {10509, 60941}, {17951, 35578}, {18230, 27819}, {23062, 45202}, {24798, 53620}, {27816, 52422}, {27826, 27827}, {36621, 64114}, {36638, 36640}, {40154, 64146}, {40617, 62403}, {40621, 62525}, {41527, 60789}, {42318, 43760}, {44301, 53645}, {56049, 56938}, {58793, 58816}, {60831, 62786}
X(27818) = reflection of X(62525) in X(40621)
X(27818) = isotomic conjugate of X(3161)
X(27818) = anticomplement of X(63620)
X(27818) = antitomic conjugate of X(62525)
X(27818) = isotomic conjugate of the anticomplement of X(4859)
X(27818) = isotomic conjugate of the complement of X(4373)
X(27818) = isotomic conjugate of the isogonal conjugate of X(40151)
X(27818) = X(i)-Ceva conjugate of X(j) for these (i,j): {85, 27828}, {62528, 4373}
X(27818) = X(i)-cross conjugate of X(j) for these (i,j): {2, 7}, {514, 53647}, {3663, 1088}, {3731, 56348}, {4373, 16078}, {4859, 2}, {8056, 4373}, {9311, 43750}, {23681, 1440}, {24175, 75}, {24177, 273}, {24199, 7249}, {24778, 8049}, {40617, 3676}, {45202, 3680}, {47444, 279}, {58794, 65173}, {63621, 36606}
X(27818) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3158}, {9, 3052}, {31, 3161}, {32, 44720}, {33, 20818}, {41, 145}, {55, 1743}, {56, 4936}, {101, 4162}, {163, 44729}, {210, 33628}, {213, 52352}, {220, 1420}, {284, 4849}, {560, 44723}, {604, 6555}, {607, 4855}, {644, 8643}, {663, 57192}, {667, 30720}, {692, 4521}, {1110, 4534}, {1253, 5435}, {1334, 16948}, {1415, 4546}, {1973, 44722}, {2149, 4953}, {2175, 18743}, {2194, 3950}, {2204, 52354}, {3063, 43290}, {3939, 4394}, {4248, 52370}, {4729, 5546}, {4939, 23990}, {4943, 34080}, {6602, 62787}, {9247, 44721}, {9406, 44727}, {14321, 65375}, {14827, 39126}, {15519, 38266}, {52353, 57657}
X(27818) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 4936}, {2, 3161}, {9, 3158}, {115, 44729}, {223, 1743}, {478, 3052}, {514, 4534}, {650, 4953}, {1015, 4162}, {1086, 4521}, {1146, 4546}, {1214, 3950}, {3160, 145}, {3161, 6555}, {3669, 40621}, {5976, 44728}, {6337, 44722}, {6374, 44723}, {6376, 44720}, {6626, 52352}, {6631, 30720}, {9410, 44727}, {10001, 43290}, {17113, 5435}, {19604, 46946}, {24151, 9}, {30471, 44725}, {30472, 44726}, {36905, 4899}, {40590, 4849}, {40593, 18743}, {40615, 3667}, {40617, 4394}, {40621, 4943}, {40622, 14321}, {56846, 4856}, {59507, 12640}, {59608, 4848}, {62565, 52354}, {62570, 52353}, {62575, 8}, {62576, 44721}
X(27818) = cevapoint of X(i) and X(j) for these (i,j): {2, 4373}, {7, 64114}, {514, 1358}, {650, 4014}, {3676, 40617}, {8056, 19604}
X(27818) = trilinear pole of line {3667, 3676}
X(27818) = barycentric product X(i)*X(j) for these {i,j}: {1, 62528}, {7, 4373}, {57, 40014}, {75, 19604}, {76, 40151}, {85, 8056}, {92, 27832}, {145, 16078}, {279, 6557}, {479, 6556}, {561, 16945}, {655, 27836}, {673, 10029}, {693, 65173}, {1088, 3680}, {1293, 52621}, {1434, 4052}, {3261, 38828}, {3445, 6063}, {3676, 53647}, {4554, 58794}, {8051, 27828}, {9311, 27829}, {15474, 27815}, {20567, 38266}, {24002, 27834}, {27813, 42304}, {27826, 64240}, {31343, 59941}, {32017, 45205}, {40617, 57578}, {56174, 57785}
X(27818) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3158}, {2, 3161}, {7, 145}, {8, 6555}, {9, 4936}, {11, 4953}, {56, 3052}, {57, 1743}, {65, 4849}, {69, 44722}, {75, 44720}, {76, 44723}, {77, 4855}, {85, 18743}, {86, 52352}, {145, 15519}, {190, 30720}, {222, 20818}, {226, 3950}, {264, 44721}, {269, 1420}, {279, 5435}, {298, 44725}, {299, 44726}, {307, 52354}, {325, 44728}, {479, 62787}, {513, 4162}, {514, 4521}, {522, 4546}, {523, 44729}, {553, 4856}, {651, 57192}, {664, 43290}, {1014, 16948}, {1086, 4534}, {1088, 39126}, {1111, 4939}, {1122, 45219}, {1293, 3939}, {1358, 3756}, {1412, 33628}, {1434, 41629}, {1440, 56940}, {1441, 52353}, {1443, 4881}, {1494, 44727}, {2415, 30731}, {3445, 55}, {3663, 12640}, {3665, 4884}, {3667, 4943}, {3668, 4848}, {3669, 4394}, {3676, 3667}, {3680, 200}, {4017, 4729}, {4052, 2321}, {4059, 4891}, {4077, 4404}, {4373, 8}, {4654, 4898}, {4859, 63620}, {4998, 44724}, {5274, 63624}, {6556, 5423}, {6557, 346}, {7178, 14321}, {7190, 4917}, {7209, 27496}, {8051, 24150}, {8056, 9}, {9436, 4899}, {10029, 3912}, {10563, 62218}, {16078, 4373}, {16079, 3445}, {16945, 31}, {19604, 1}, {22464, 51433}, {24002, 4462}, {27813, 30568}, {27815, 17776}, {27819, 55337}, {27820, 56078}, {27824, 56079}, {27827, 25082}, {27828, 8055}, {27829, 3729}, {27831, 4529}, {27832, 63}, {27834, 644}, {27835, 19582}, {27836, 3904}, {30617, 4952}, {30719, 31182}, {30725, 14425}, {31343, 4578}, {36838, 62532}, {38266, 41}, {38828, 101}, {40014, 312}, {40151, 6}, {40617, 40621}, {41003, 4918}, {43035, 53579}, {43041, 53580}, {43042, 4925}, {43924, 8643}, {43932, 51656}, {45205, 3752}, {46367, 1201}, {47444, 63621}, {47636, 2136}, {51839, 2348}, {52563, 45204}, {53545, 21950}, {53647, 3699}, {56174, 210}, {58794, 650}, {58817, 30719}, {62528, 75}, {62543, 4012}, {62780, 64736}, {62787, 6049}, {65173, 100}, {65337, 65160}
X(27818) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 27828, 27813}, {8, 1358, 63577}, {85, 62528, 40014}, {145, 63574, 7}, {4373, 19604, 7}, {27813, 27820, 2}, {43983, 52563, 7}
X(27818) = pole of line {4862, 5274} with respect to the ABCGGe
X(27818) = pole of line {3158, 4936} with respect to the Jerabek circumhyperbola of the excentral triangle
X(27818) = pole of line {3161, 44722} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(27818) = pole of line {3676, 4943} with respect to the Steiner circumellipse
X(27819) lies on these lines:
X(27820) lies on these lines:
X(27821) lies on these lines:
X(27822) lies on these lines:
X(27823) lies on these lines:
X(27824) lies on these lines:
X(27825) lies on these lines:
X(27826) lies on these lines:
X(27827) lies on these lines:
X(27828) lies on these lines:
X(27829) lies on these lines:
X(27830) lies on these lines:
X(27831) lies on these lines:
X(27832) lies on these lines:
X(27833) lies on these lines:
X(27834) lies on these lines:
X(27834) = isogonal conjugate of X(4394)
X(27834) = isotomic conjugate of X(4462)
X(27835) lies on these lines:
X(27836) lies on these lines:
X(27837) lies on these lines:
Collineation mappings involving Gemini triangle 72: X(27838)-X(27865)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 72, as in centers X(27838)-X(27865). Then
m(X) = bc(a^2-bc)^2x + b^2(a^-bc)(c^2-ab)y + c^2(a^2-bc)(b^2-ac)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 13, 2018)
X(27838) lies on these lines:
X(27839) lies on these lines:
X(27840) lies on these lines:
X(27841) lies on these lines:
X(27842) lies on these lines:
X(27843) lies on these lines:
X(27844) lies on these lines:
X(27845) lies on these lines:
X(27846) lies on these lines:
X(27846) = isogonal conjugate of X(5378)
X(27846) = crossdifference of every pair of points on line X(100)X(649) (the tangent at X(100) to hyperbola {{A,B,C,X(81),X(100),PU(8)})}
X(27847) lies on these lines:
X(27848) lies on these lines:
X(27849) lies on these lines:
X(27850) lies on these lines:
X(27851) lies on these lines:
X(27852) lies on these lines:
X(27853) lies on these lines:
X(27853) = isotomic conjugate of X(3572)
X(27854) lies on these lines:
X(27855) lies on these lines:
X(27856) lies on these lines:
X(27857) lies on these lines:
X(27858) lies on these lines:
X(27859) lies on these lines:
X(27860) lies on these lines:
X(27861) lies on these lines:
X(27862) lies on these lines:
X(27863) lies on these lines:
X(27864) lies on these lines:
X(27865) lies on these lines:
See Alexandr Skutin and Ercole Suppa, Hyacinthos 28625.
Another construction of the conic described in Hyacinthos 28625: Let P be a point on the Euler line. Let A'B'C' be the cevian triangle of P. Let A", B", C" be the circumcircle-inverses of A', B', C', resp. Triangle A"B"C" is perspective to ABC, and the locus of the perspector, as P moves on the Euler line, is the conic with center X(27866) and perspector X(27867). This conic passes through X(3), X(6), X(24), X(60), X(143), X(1511) and X(1986). (Randy Hutson, August 19, 2019)
X(27866) lies on these lines: {2,98}, {3,7731}, {54,1511}, {140,11597}, {146,10984}, {399,15056}, {568,12228}, {569,12383}, {1112,15107}, {1176,6593}, {1216,2914}, {1539,8718}, {1614,14643}, {1986,7691}, {2888,10114}, {2931,15043}, {2979,19504}, {5157,11061}, {5422,12310}, {5504,13472}, {5900,6699}, {6030,12824}, {6636,13417}, {7485,17847}, {7488,16223}, {7503,12270}, {7512,11557}, {7514,12281}, {7592,12273}, {10117,15080}, {10203,11702}, {10721,18564}, {11746,12834}, {12121,15033}, {12893,15053}, {13434,17702}, {15051,15463}, {15140,19121}, {19126,25321}
X(27866) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {3047,5642,110})
See Alexandr Skutin and Ercole Suppa, Hyacinthos 28625.
X(27867) lies on these lines: {110,9514}, {5012,5661}, {5201,23061}
X(27867) = isogonal conjugate of X(7668)
X(27867) = isotomic conjugate of X(36901)
X(27867) = trilinear pole of line X(1625)X(1634)
X(27867) = isotomic conjugate of complement of X(11794)
As a point on the Euler line, X(27868) has Shinagawa coefficients {7 R^4+4 S^2-4 R^2 SW,43 R^4-4 S^2-36 R^2 SW+8 SW^2}.
See Tran Quang Hung and Ercole Suppa, Hyacinthos 28626.
X(27868) lies on these lines: {2,3}, {1154,14143}, {1157,20424}, {3574,6150}, {6288,14072}, {18016,18400}, {21975,23237}, {22051,25044}
X(27868) = reflection of X(i) in X(j) for these (i,j): {3,10126}, {10285,5}, {14142,140}, {20030,15335}, {20120,546}
X(27868) = X(10285)-of-Johnson-triangle
X(27868) = {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {15335,20030,381}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28629.
X(27869) lies on these lines: {11,7671}, {1001,1006}, {5851,5886}, {5856,5901}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28629.
X(27870) lies on these lines: {11,8256}, {355,528}, {1145,10826}, {2802,10943}, {3057,15842}, {3434,10953}, {3816,17622}, {3829,17619}, {3871,6224}, {3880,12616}, {3885,10949}, {5687,10043}, {8668,12114}, {10785,10912}, {10948,17652}, {12607,12672}
See Antreas Hatzipolakis and Ercole Suppa, Hyacinthos 28629.
X(27871) lies on these lines: {115,8258}, {3828,17677}
Collineation mappings involving Gemini triangle 73: X(27872)-X(27906)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 73, as in centers X(27872)-X(27906). Then
m(X) = bc(a^2-bc)^2x + b^2(a^2-bc)(c^2-ab)y + c^2(a^2-bc)(b^2-ac)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 14, 2018)
X(27872) lies on these lines: {1, 2}, {1215, 27884}, {27875, 27881}, {27876, 27879}, {27877, 27897}
X(27873) lies on these lines: {2, 3}, {27876, 27885}
X(27874) lies on these lines: {2, 3}, {27879, 27880}, {27889, 27891}
X(27875) lies on these lines:
X(27876) lies on these lines:
X(27877) lies on these lines:
X(27878) lies on these lines:
X(27879) lies on these lines:
X(27880) lies on these lines:
X(27881) lies on these lines:
X(27882) lies on these lines:
X(27883) lies on these lines:
X(27884) lies on these lines:
X(27885) lies on these lines:
X(27886) lies on these lines:
X(27887) lies on these lines:
X(27888) lies on these lines:
X(27889) lies on these lines:
X(27890) lies on these lines:
X(27891) lies on these lines:
X(27892) lies on these lines:
X(27893) lies on these lines:
X(27894) lies on these lines:
X(27895) lies on these lines:
X(27896) lies on these lines:
X(27897) lies on these lines:
X(27898) lies on these lines:
X(27899) lies on these lines:
X(27900) lies on these lines:
X(27901) lies on these lines:
X(27902) lies on these lines:
X(27903) lies on these lines:
X(27904) lies on these lines:
X(27905) lies on these lines:
X(27906) lies on these lines:
Collineation mappings involving Gemini triangle 74: X(27907)-X(27952)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 74, as in centers X(27907)-X(27952). Then
m(X) = bc(a^2-bc)^2x + ac(a^2-bc)(c^2-ab)y + ab(a^2-bc)(b^2-ac)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 14, 2018)
X(27907) lies on these lines:
X(27908) lies on these lines:
X(27909) lies on these lines:
X(27910) lies on these lines:
X(27911) lies on these lines:
X(27912) lies on these lines: {2, 7}, {192, 24398}, {239, 3570}, {335, 26273}, {350, 27920}, {385, 27916}, {1054, 4440}, {1281, 17793}, {1647, 32843}, {3685, 24428}, {4366, 24685}, {4465, 6651}, {9259, 18159}, {17319, 24403}, {20769, 27933}, {26240, 31317}, {27908, 27913}, {27943, 27950}
X(27913) lies on these lines:
X(27914) lies on these lines:
X(27915) lies on these lines:
X(27916) lies on these lines:
X(27917) lies on these lines:
X(27918) lies on these lines: {1, 16377}, {2, 37}, {6, 9318}, {7, 9599}, {8, 19951}, {9, 24398}, {11, 244}, {39, 7264}, {42, 19952}, {43, 19953}, {44, 24407}, {45, 24408}, {76, 19974}, {86, 19975}, {145, 19954}, {213, 24455}, {238, 24428}, {239, 3570}, {292, 2481}, {335, 30997}, {386, 19956}, {514, 2087}, {519, 19957}, {551, 19958}, {612, 19959}, {614, 19960}, {673, 26273}, {759, 30927}, {876, 3675}, {899, 19961}, {982, 4493}, {984, 24427}, {1015, 1111}, {1125, 19962}, {1193, 19938}, {1429, 27943}, {1447, 1914}, {1500, 24786}, {1642, 3008}, {1698, 19963}, {2161, 30930}, {2170, 21138}, {2176, 24460}, {2238, 27942}, {2275, 3673}, {2295, 17048}, {2352, 16378}, {3006, 19964}, {3121, 14296}, {3125, 17761}, {3177, 24737}, {3227, 20568}, {3241, 19966}, {3244, 19967}, {3248, 23774}, {3616, 19968}, {3617, 19969}, {3621, 19970}, {3624, 19933}, {3626, 19971}, {3632, 19972}, {3634, 20000}, {3661, 19973}, {3663, 24318}, {3679, 20006}, {3721, 24172}, {3726, 20335}, {3828, 20010}, {3834, 31041}, {3934, 21021}, {3946, 25342}, {4056, 9665}, {4124, 4448}, {4363, 24629}, {4366, 4760}, {4386, 26229}, {4444, 23822}, {4465, 17755}, {4516, 21210}, {4675, 17721}, {4692, 9466}, {4738, 13466}, {4858, 6377}, {4894, 7854}, {4986, 27076}, {5475, 7272}, {6545, 8042}, {6652, 33295}, {7198, 7745}, {7796, 30155}, {9259, 9317}, {9263, 18159}, {9458, 17119}, {9780, 20001}, {14523, 17626}, {16604, 20880}, {16720, 26959}, {16726, 16727}, {17063, 24458}, {17197, 23824}, {17374, 20042}, {17392, 17450}, {17395, 17602}, {17445, 21922}, {17448, 26563}, {18895, 32020}, {19862, 20004}, {19997, 29633}, {20005, 26115}, {20172, 26240}, {20257, 21951}, {20363, 20435}, {21004, 28111}, {21022, 21684}, {21204, 21211}, {21352, 21967}, {23816, 31647}, {24330, 24631}, {24775, 24792}, {27487, 30967}, {31337, 33117}
X(27918) = crossdifference of every pair of points on line X(101)X(667) (the tangent at X(101) to hyperbola {{A,B,C,X(101),PU(9)})}
X(27919) lies on these lines: {1, 2}, {291, 32029}, {350, 3570}, {740, 27942}, {1282, 17738}, {3685, 27945}, {4366, 4368}, {4375, 27855}, {4441, 9318}, {6546, 21832}, {8299, 17755}, {20769, 27934}, {24427, 27480}, {24428, 27947}
X(27920) lies on these lines:
X(27921) lies on these lines:
X(27922) lies on these lines:
X(27923) lies on these lines:
X(27924) lies on these lines:
X(27925) lies on these lines:
X(27926) lies on these lines:
X(27927) lies on these lines:
X(27928) lies on these lines:
X(27929) lies on these lines:
X(27929) = complement of X(4444)
X(27930) lies on these lines:
X(27931) lies on these lines:
X(27932) lies on these lines:
X(27933) lies on these lines:
X(27934) lies on these lines:
X(27935) lies on these lines:
X(27936) lies on these lines:
X(27937) lies on these lines:
X(27938) lies on these lines:
X(27939) lies on these lines:
X(27940) lies on these lines:
X(27941) lies on these lines:
X(27942) lies on these lines:
X(27943) lies on these lines:
X(27944) lies on these lines:
X(27945) lies on these lines:
X(27946) lies on these lines:
X(27947) lies on these lines:
X(27948) lies on these lines:
X(27949) lies on these lines:
X(27950) lies on these lines: {1, 4475}, {2, 101}, {6, 24625}, {36, 214}, {41, 17367}, {48, 3662}, {75, 24324}, {81, 1015}, {100, 5091}, {106, 14996}, {141, 18042}, {239, 385}, {284, 17302}, {320, 7113}, {572, 6646}, {584, 17380}, {604, 17364}, {662, 1086}, {750, 3809}, {812, 4366}, {894, 18162}, {940, 9259}, {1026, 31073}, {1438, 26626}, {1790, 26840}, {1958, 7225}, {1964, 18209}, {2112, 17397}, {2174, 16706}, {2239, 11364}, {2267, 17333}, {2268, 17247}, {2278, 4389}, {2329, 17292}, {2481, 16381}, {3204, 17352}, {3219, 24036}, {3573, 8299}, {3661, 4390}, {3720, 5168}, {3960, 17191}, {3963, 18048}, {4268, 17347}, {4287, 17255}, {4579, 21320}, {4585, 17455}, {5053, 20072}, {5228, 11329}, {5905, 28922}, {6184, 21495}, {7237, 16556}, {7269, 27059}, {7291, 26639}, {8300, 27846}, {9310, 17244}, {11716, 29817}, {16367, 20672}, {17322, 25367}, {18645, 24237}, {19308, 20367}, {20818, 26657}, {21748, 28402}, {24296, 33151}, {27838, 32115}, {27912, 27943}
X(27951) lies on these lines:
X(27952) lies on these lines:
As a point on the Euler line, X(27953) has Shinagawa coefficients {100 R^6 - 105 R^4 SW + 36 R^2 SW^2 - 4 SW^3, -156 R^6 + 18 R^2 S^2 + 175 R^4 SW - 4 S^2 SW - 66 R^2 SW^2 + 8 SW^3}.
See Tran Quang Hung and Ercole Suppa, Hyacinthos 28632.
X(27953) lies on these lines: {2,3}, {6102,6798}, {8146,20414}
Collineation mappings involving Gemini triangle 75: X(27954)-X(28010)
Extending the preambles just before X(24537), X(26153), and X(27378), let m(X) denote the (A,B,C,X(2); A',B',C',X(2)) collineation image of X = x : y : where A'B'C' = Gemini triangle 75, as in centers X(27954)-X(28010). Then
m(X) = bc(a^4-b^2c^2)x - ac(a^2+bc)(c^2+ab)y - ab(a^2+bc)(b^2+ac)z : :
and m(X) is on the Euler line if and only if X is on the Euler line. (Clark Kimberling, November 15, 2018)
X(27954) lies on these lines: {1, 2}, {21, 6651}, {56, 31317}, {75, 21008}, {99, 2134}, {172, 894}, {257, 26244}, {423, 11363}, {846, 17689}, {1055, 17116}, {1078, 24254}, {1215, 6645}, {1654, 17084}, {1655, 14949}, {1909, 27966}, {2329, 7061}, {3219, 17209}, {3552, 3923}, {3980, 33062}, {4011, 16914}, {4414, 25270}, {4418, 17693}, {6626, 21879}, {8782, 17760}, {13586, 24850}, {16916, 25591}, {16918, 25079}, {17673, 24161}, {17692, 32930}, {17762, 18755}, {18047, 21021}, {22061, 27987}, {24249, 31276}, {25280, 27733}, {25385, 33030}, {27955, 27972}, {27965, 27983}, {27998, 28003}
X(27955) lies on these lines: {2, 3}, {6645, 27959}, {27954, 27972}, {27958, 27964}
X(27956) lies on these lines:
X(27957) lies on these lines:
X(27958) lies on these lines: {1, 1178}, {2, 6}, {8, 23902}, {9, 261}, {21, 2053}, {48, 75}, {87, 741}, {99, 3729}, {110, 26227}, {172, 894}, {274, 7132}, {284, 314}, {312, 2185}, {423, 2322}, {593, 26223}, {643, 1253}, {648, 2331}, {757, 3758}, {799, 30988}, {1326, 3923}, {1419, 4573}, {1444, 27472}, {1474, 31623}, {1909, 7119}, {1931, 17350}, {2206, 14012}, {2329, 17787}, {2330, 7081}, {2640, 23944}, {3963, 18047}, {4054, 18653}, {4110, 4390}, {4416, 27691}, {4565, 28968}, {4754, 27984}, {5209, 16788}, {6626, 17257}, {7058, 11679}, {7175, 7196}, {16702, 17351}, {17279, 25536}, {18200, 28005}, {20072, 27702}, {21728, 27714}, {22065, 28287}, {24678, 32917}, {27713, 33082}, {27955, 27964}, {27969, 27998}, {27974, 27979}, {27991, 28004}, {28002, 28003}
X(27959) lies on these lines:
X(27960) lies on these lines:
X(27961) lies on these lines:
X(27962) lies on these lines:
X(27963) lies on these lines: {2, 31}, {1215, 6645}, {1920, 19574}, {7018, 19557}, {7081, 27995}, {7175, 7196}, {27964, 27967}, {27969, 27999}, {30074, 31108}
X(27964) lies on these lines:
X(27965) lies on these lines:
X(27966) lies on these lines:
X(27967) lies on these lines:
X(27968) lies on these lines:
X(27969) lies on these lines:
X(27970) lies on these lines:
X(27971) lies on these lines:
X(27972) lies on these lines:
X(27973) lies on these lines:
X(27974) lies on these lines:
X(27975) lies on these lines:
X(27976) lies on these lines:
X(27977) lies on these lines:
X(27978) lies on these lines:
X(27979) lies on these lines:
X(27980) lies on these lines:
X(27981) lies on these lines:
X(27982) lies on these lines: {2, 31}, {172, 894}, {239, 1428}, {330, 604}, {1258, 2298}, {1691, 1966}, {1922, 4589}, {2330, 17752}, {4164, 27980}, {3552, 7155}, {4434, 28009}, {7081, 27997}, {8845, 17693}, {17493, 19557}, {19554, 19565}, {20964, 28008}, {27969, 27972}
X(27983) lies on these lines:
X(27984) lies on these lines:
X(27985) lies on these lines:
X(27986) lies on these lines:
X(27987) lies on these lines:
X(27988) lies on these lines:
X(27989) lies on these lines:
X(27990) lies on these lines:
X(27991) lies on these lines:
X(27992) lies on these lines:
X(27993) lies on these lines:
X(27994) lies on these lines:
X(27995) lies on these lines:
X(27996) lies on these lines:
X(27997) lies on these lines:
X(27998) lies on these lines:
X(27999) lies on these lines:
X(28000) lies on these lines:
PART 1: | Introduction and Centers X(1) - X(1000) | PART 2: | Centers X(1001) - X(3000) | PART 3: | Centers X(3001) - X(5000) |
PART 4: | Centers X(5001) - X(7000) | PART 5: | Centers X(7001) - X(10000) | PART 6: | Centers X(10001) - X(12000) |
PART 7: | Centers X(12001) - X(14000) | PART 8: | Centers X(14001) - X(16000) | PART 9: | Centers X(16001) - X(18000) |
PART 10: | Centers X(18001) - X(20000) | PART 11: | Centers X(20001) - X(22000) | PART 12: | Centers X(22001) - X(24000) |
PART 13: | Centers X(24001) - X(26000) | PART 14: | Centers X(26001) - X(28000) | PART 15: | Centers X(28001) - X(30000) |
PART 16: | Centers X(30001) - X(32000) | PART 17: | Centers X(32001) - X(34000) | PART 18: | Centers X(34001) - X(36000) |
PART 19: | Centers X(36001) - X(38000) | PART 20: | Centers X(38001) - X(40000) | PART 21: | Centers X(40001) - X(42000) |
PART 22: | Centers X(42001) - X(44000) | PART 23: | Centers X(44001) - X(46000) | PART 24: | Centers X(46001) - X(48000) |
PART 25: | Centers X(48001) - X(50000) | PART 26: | Centers X(50001) - X(52000) | PART 27: | Centers X(52001) - X(54000) |
PART 28: | Centers X(54001) - X(56000) | PART 29: | Centers X(56001) - X(58000) | PART 30: | Centers X(58001) - X(60000) |
PART 31: | Centers X(60001) - X(62000) | PART 32: | Centers X(62001) - X(64000) | PART 33: | Centers X(64001) - X(66000) |
PART 34: | Centers X(66001) - X(68000) | PART 35: | Centers X(68001) - X(70000) | PART 36: | Centers X(70001) - X(72000) |