leftri rightri


This is PART 29: Centers X(56001) - X(58000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)


X(56001) = KP2(X(3)) OF X(2) AND X(29)

Barycentrics    a^2*(a+b)*(a+c)*(b^5-a^3*b*c-b^3*c^2-b^2*c^3+c^5+a^4*(b+c)+a*b*c*(b+c)^2-a^2*(2*b^3+b^2*c+b*c^2+2*c^3)) : :

X(56001) lies on these lines: {2, 6}, {21, 7078}, {27, 651}, {28, 3157}, {29, 3562}, {34, 41723}, {58, 1167}, {73, 4225}, {110, 2299}, {212, 4184}, {222, 1817}, {284, 2003}, {580, 34148}, {581, 5889}, {648, 2988}, {1172, 3173}, {1409, 3101}, {2193, 53819}, {3193, 3194}, {3219, 3990}, {4641, 18603}, {8021, 22117}, {8757, 31902}, {9536, 21767}, {16049, 19349}, {16054, 20744}, {18604, 40214}, {18605, 41332}, {23070, 52012}, {23071, 36011}, {23131, 37265}, {38832, 40958}, {45924, 50435}

X(56001) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 28788}, {661, 41906}
X(56001) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 28788}, {36830, 41906}
X(56001) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44130, 4225}
X(56001) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1167)}}, {{A, B, C, X(73), X(14055)}}, {{A, B, C, X(394), X(2988)}}, {{A, B, C, X(837), X(1262)}}, {{A, B, C, X(37652), X(55999)}}
X(56001) = barycentric quotient X(i)/X(j) for these (i, j): {3, 28788}, {110, 41906}, {14055, 3142}
X(56001) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {212, 54411, 4184}


X(56002) = KP2(X(3)) OF X(2) AND X(54)

Barycentrics    a^2*(a^8+b^2*(b^2-c^2)^3-a^6*(4*b^2+3*c^2)+3*a^4*(2*b^4+b^2*c^2+c^4)-a^2*(4*b^6-3*b^4*c^2+2*b^2*c^4+c^6))*(a^8+c^2*(-b^2+c^2)^3-a^6*(3*b^2+4*c^2)+3*a^4*(b^4+b^2*c^2+2*c^4)-a^2*(b^6+2*b^4*c^2-3*b^2*c^4+4*c^6)) : :

X(56002) lies on these lines: {2, 47731}, {24, 3060}, {54, 12095}, {254, 1147}, {1609, 1993}, {1994, 52505}, {5012, 55159}, {6515, 7763}, {11547, 37192}, {43756, 52032}

X(56002) = isogonal conjugate of X(9722)
X(56002) = trilinear pole of line {10540, 13557}
X(56002) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 9722}, {19, 12359}, {91, 50647}
X(56002) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 9722}, {6, 12359}, {34116, 50647}
X(56002) = X(i)-cross conjugate of X(j) for these {i, j}: {2501, 110}
X(56002) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(24)}}, {{A, B, C, X(3), X(6504)}}, {{A, B, C, X(6), X(1609)}}, {{A, B, C, X(57), X(32760)}}, {{A, B, C, X(74), X(13579)}}, {{A, B, C, X(83), X(288)}}, {{A, B, C, X(97), X(2986)}}, {{A, B, C, X(193), X(5422)}}, {{A, B, C, X(249), X(275)}}, {{A, B, C, X(394), X(5504)}}, {{A, B, C, X(459), X(38534)}}, {{A, B, C, X(588), X(41516)}}, {{A, B, C, X(589), X(41515)}}, {{A, B, C, X(1073), X(16867)}}, {{A, B, C, X(1176), X(2987)}}, {{A, B, C, X(1790), X(2990)}}, {{A, B, C, X(1994), X(3580)}}, {{A, B, C, X(10559), X(44828)}}, {{A, B, C, X(11449), X(14919)}}, {{A, B, C, X(11538), X(14483)}}, {{A, B, C, X(11595), X(34986)}}, {{A, B, C, X(12095), X(52032)}}, {{A, B, C, X(13585), X(16835)}}, {{A, B, C, X(14518), X(40393)}}, {{A, B, C, X(30528), X(46639)}}, {{A, B, C, X(32654), X(41271)}}, {{A, B, C, X(34545), X(41628)}}, {{A, B, C, X(42410), X(55982)}}, {{A, B, C, X(43705), X(44175)}}
X(56002) = barycentric quotient X(i)/X(j) for these (i, j): {3, 12359}, {6, 9722}, {571, 50647}


X(56003) = KP2(X(3)) OF X(2) AND X(63)

Barycentrics    a^2*(a^3-a^2*b-a*b^2+b^3+c^3)*(a^3+b^3-a^2*c-a*c^2+c^3) : :

X(56003) lies on these lines: {6, 26690}, {31, 3190}, {81, 33113}, {219, 608}, {394, 1407}, {579, 604}, {1462, 3662}, {2203, 26893}, {2273, 2298}, {2287, 5016}

X(56003) = isogonal conjugate of X(3772)
X(56003) = trilinear pole of line {667, 8676}
X(56003) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3772}, {2, 3924}, {4, 26934}, {6, 17861}, {7, 40968}, {8, 36570}, {19, 41004}, {37, 17189}, {42, 16749}, {57, 1837}, {81, 21935}, {226, 40980}, {514, 53279}
X(56003) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3772}, {6, 41004}, {9, 17861}, {5452, 1837}, {32664, 3924}, {36033, 26934}, {40586, 21935}, {40589, 17189}, {40592, 16749}
X(56003) = X(i)-cross conjugate of X(j) for these {i, j}: {1946, 100}, {6589, 101}
X(56003) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1175)}}, {{A, B, C, X(2), X(284)}}, {{A, B, C, X(3), X(1257)}}, {{A, B, C, X(6), X(31)}}, {{A, B, C, X(8), X(283)}}, {{A, B, C, X(9), X(1021)}}, {{A, B, C, X(28), X(39945)}}, {{A, B, C, X(35), X(39708)}}, {{A, B, C, X(37), X(33113)}}, {{A, B, C, X(59), X(77)}}, {{A, B, C, X(63), X(5279)}}, {{A, B, C, X(71), X(321)}}, {{A, B, C, X(72), X(5016)}}, {{A, B, C, X(75), X(4570)}}, {{A, B, C, X(88), X(1436)}}, {{A, B, C, X(103), X(4373)}}, {{A, B, C, X(219), X(394)}}, {{A, B, C, X(270), X(55991)}}, {{A, B, C, X(279), X(3451)}}, {{A, B, C, X(323), X(35192)}}, {{A, B, C, X(346), X(15629)}}, {{A, B, C, X(572), X(14964)}}, {{A, B, C, X(596), X(10623)}}, {{A, B, C, X(672), X(3056)}}, {{A, B, C, X(909), X(15474)}}, {{A, B, C, X(941), X(2259)}}, {{A, B, C, X(947), X(1219)}}, {{A, B, C, X(989), X(18772)}}, {{A, B, C, X(1037), X(1280)}}, {{A, B, C, X(1169), X(2215)}}, {{A, B, C, X(1172), X(2990)}}, {{A, B, C, X(1174), X(34260)}}, {{A, B, C, X(1433), X(34040)}}, {{A, B, C, X(1795), X(51497)}}, {{A, B, C, X(2273), X(2300)}}, {{A, B, C, X(2297), X(2364)}}, {{A, B, C, X(2316), X(55989)}}, {{A, B, C, X(2997), X(37142)}}, {{A, B, C, X(3415), X(38813)}}, {{A, B, C, X(3450), X(39946)}}, {{A, B, C, X(3681), X(4388)}}, {{A, B, C, X(3765), X(5360)}}, {{A, B, C, X(3868), X(54125)}}, {{A, B, C, X(4257), X(41434)}}, {{A, B, C, X(4271), X(17281)}}, {{A, B, C, X(8769), X(28471)}}, {{A, B, C, X(13404), X(30712)}}, {{A, B, C, X(16667), X(17745)}}, {{A, B, C, X(17754), X(27678)}}, {{A, B, C, X(22122), X(22123)}}, {{A, B, C, X(22131), X(22132)}}, {{A, B, C, X(23707), X(40424)}}, {{A, B, C, X(25306), X(32937)}}, {{A, B, C, X(30457), X(41798)}}, {{A, B, C, X(36101), X(40802)}}
X(56003) = barycentric product X(i)*X(j) for these (i, j): {1, 40436}, {3, 34406}, {34399, 55}, {55994, 63}
X(56003) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17861}, {3, 41004}, {6, 3772}, {31, 3924}, {41, 40968}, {42, 21935}, {48, 26934}, {55, 1837}, {58, 17189}, {81, 16749}, {604, 36570}, {692, 53279}, {2194, 40980}, {6056, 53850}, {34399, 6063}, {34406, 264}, {40436, 75}, {55994, 92}
X(56003) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {219, 608, 38875}


X(56004) = KP2(X(3)) OF X(2) AND X(69)

Barycentrics    a^2*(a^4-2*a^2*b^2+b^4+c^4)*(a^4+b^4-2*a^2*c^2+c^4) : :

X(56004) lies on these lines: {3, 14601}, {6, 6393}, {24, 511}, {32, 1993}, {69, 34138}, {76, 6531}, {99, 9289}, {155, 36998}, {183, 36952}, {213, 42700}, {297, 315}, {323, 20065}, {525, 1975}, {626, 11060}, {637, 13429}, {638, 13440}, {729, 42297}, {1078, 42313}, {1147, 3425}, {2794, 11441}, {2979, 28724}, {5017, 46288}, {5028, 26206}, {5422, 6680}, {7592, 13335}, {7851, 44415}, {7857, 42295}, {9468, 43183}, {9753, 36747}, {10316, 51439}, {14585, 36790}, {16266, 46319}, {20576, 36749}, {22416, 30541}, {28710, 34148}, {35431, 46308}, {35910, 40354}, {39238, 44499}

X(56004) = isogonal conjugate of X(3767)
X(56004) = trilinear pole of line {669, 684}
X(56004) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3767}, {4, 2083}, {6, 17871}, {19, 1899}, {31, 41760}, {63, 41762}, {75, 42295}, {92, 40947}, {158, 39643}, {426, 6520}, {661, 1632}, {1096, 6389}, {1910, 2450}, {1973, 41009}, {2156, 41761}, {2168, 27362}
X(56004) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 41760}, {3, 3767}, {6, 1899}, {9, 17871}, {206, 42295}, {1147, 39643}, {3162, 41762}, {6337, 41009}, {6503, 6389}, {11672, 2450}, {22391, 40947}, {36033, 2083}, {36830, 1632}, {37867, 426}
X(56004) = X(i)-cross conjugate of X(j) for these {i, j}: {2485, 110}, {17994, 10425}, {39201, 99}
X(56004) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(24)}}, {{A, B, C, X(3), X(76)}}, {{A, B, C, X(4), X(2987)}}, {{A, B, C, X(6), X(32)}}, {{A, B, C, X(25), X(7807)}}, {{A, B, C, X(39), X(5017)}}, {{A, B, C, X(59), X(30701)}}, {{A, B, C, X(64), X(671)}}, {{A, B, C, X(68), X(18876)}}, {{A, B, C, X(69), X(315)}}, {{A, B, C, X(74), X(2996)}}, {{A, B, C, X(99), X(1975)}}, {{A, B, C, X(183), X(1078)}}, {{A, B, C, X(193), X(26206)}}, {{A, B, C, X(257), X(3422)}}, {{A, B, C, X(287), X(15316)}}, {{A, B, C, X(323), X(14385)}}, {{A, B, C, X(335), X(7163)}}, {{A, B, C, X(394), X(801)}}, {{A, B, C, X(598), X(3527)}}, {{A, B, C, X(626), X(44558)}}, {{A, B, C, X(694), X(2353)}}, {{A, B, C, X(1016), X(42019)}}, {{A, B, C, X(1173), X(5395)}}, {{A, B, C, X(1297), X(40824)}}, {{A, B, C, X(1350), X(30270)}}, {{A, B, C, X(1351), X(13335)}}, {{A, B, C, X(1384), X(44499)}}, {{A, B, C, X(1504), X(12968)}}, {{A, B, C, X(1505), X(12963)}}, {{A, B, C, X(1691), X(43183)}}, {{A, B, C, X(1994), X(5422)}}, {{A, B, C, X(2076), X(32452)}}, {{A, B, C, X(2139), X(3926)}}, {{A, B, C, X(2165), X(42406)}}, {{A, B, C, X(2979), X(8024)}}, {{A, B, C, X(3053), X(5028)}}, {{A, B, C, X(3095), X(35424)}}, {{A, B, C, X(3289), X(14585)}}, {{A, B, C, X(3398), X(35431)}}, {{A, B, C, X(3407), X(14495)}}, {{A, B, C, X(3426), X(53105)}}, {{A, B, C, X(3431), X(18840)}}, {{A, B, C, X(3435), X(17946)}}, {{A, B, C, X(3531), X(53107)}}, {{A, B, C, X(3532), X(32901)}}, {{A, B, C, X(3978), X(32542)}}, {{A, B, C, X(5162), X(44453)}}, {{A, B, C, X(5359), X(34945)}}, {{A, B, C, X(5392), X(34439)}}, {{A, B, C, X(5485), X(11270)}}, {{A, B, C, X(5504), X(14376)}}, {{A, B, C, X(5976), X(38907)}}, {{A, B, C, X(6664), X(34436)}}, {{A, B, C, X(8266), X(41262)}}, {{A, B, C, X(8743), X(41363)}}, {{A, B, C, X(8770), X(39644)}}, {{A, B, C, X(8781), X(40801)}}, {{A, B, C, X(9217), X(30496)}}, {{A, B, C, X(9515), X(27375)}}, {{A, B, C, X(9605), X(41413)}}, {{A, B, C, X(10159), X(14528)}}, {{A, B, C, X(11610), X(40358)}}, {{A, B, C, X(11824), X(11825)}}, {{A, B, C, X(13334), X(50685)}}, {{A, B, C, X(13472), X(18841)}}, {{A, B, C, X(14483), X(18845)}}, {{A, B, C, X(14491), X(18843)}}, {{A, B, C, X(16835), X(38259)}}, {{A, B, C, X(17743), X(52186)}}, {{A, B, C, X(17811), X(37672)}}, {{A, B, C, X(18532), X(43678)}}, {{A, B, C, X(22151), X(41614)}}, {{A, B, C, X(22334), X(53106)}}, {{A, B, C, X(23128), X(32661)}}, {{A, B, C, X(31360), X(43725)}}, {{A, B, C, X(32640), X(44767)}}, {{A, B, C, X(34401), X(44717)}}, {{A, B, C, X(37128), X(39945)}}, {{A, B, C, X(39201), X(39643)}}, {{A, B, C, X(39396), X(47643)}}, {{A, B, C, X(40403), X(56003)}}, {{A, B, C, X(40421), X(40708)}}, {{A, B, C, X(40436), X(52378)}}, {{A, B, C, X(40830), X(54973)}}, {{A, B, C, X(40832), X(54114)}}, {{A, B, C, X(42354), X(43679)}}, {{A, B, C, X(43527), X(43908)}}, {{A, B, C, X(43714), X(46140)}}, {{A, B, C, X(46164), X(52568)}}, {{A, B, C, X(46321), X(50659)}}, {{A, B, C, X(52518), X(53109)}}
X(56004) = barycentric product X(i)*X(j) for these (i, j): {3, 34405}, {42297, 512}, {42407, 6}
X(56004) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17871}, {2, 41760}, {3, 1899}, {6, 3767}, {22, 41761}, {25, 41762}, {32, 42295}, {48, 2083}, {52, 27362}, {69, 41009}, {110, 1632}, {184, 40947}, {394, 6389}, {418, 6751}, {511, 2450}, {577, 39643}, {1092, 426}, {1993, 41770}, {3313, 52532}, {3964, 44141}, {20806, 28405}, {34405, 264}, {42297, 670}, {42407, 76}, {44175, 41765}


X(56005) = KP2(X(3)) OF X(2) AND X(77)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(a^3-a^2*b-a*b^2+b^3-c^3)*(a^3-b^3-a^2*c-a*c^2+c^3) : :

X(56005) lies on these lines: {35, 255}, {41, 2003}, {81, 34398}, {220, 394}, {222, 607}, {651, 17181}, {1433, 10394}, {1437, 45963}, {2287, 34016}, {18604, 40214}

X(56005) = isogonal conjugate of X(46835)
X(56005) = trilinear pole of line {2605, 8641}
X(56005) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46835}, {2, 4336}, {6, 17860}, {9, 1836}, {33, 17073}, {37, 17188}, {190, 2520}, {281, 20277}, {1172, 21912}, {2341, 51462}, {4162, 27833}
X(56005) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46835}, {9, 17860}, {478, 1836}, {32664, 4336}, {40589, 17188}, {55053, 2520}
X(56005) = X(i)-cross conjugate of X(j) for these {i, j}: {1946, 934}, {6586, 109}, {20122, 7}
X(56005) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1262)}}, {{A, B, C, X(2), X(1167)}}, {{A, B, C, X(3), X(36101)}}, {{A, B, C, X(6), X(41)}}, {{A, B, C, X(7), X(1803)}}, {{A, B, C, X(21), X(37378)}}, {{A, B, C, X(35), X(57)}}, {{A, B, C, X(54), X(44178)}}, {{A, B, C, X(56), X(34056)}}, {{A, B, C, X(58), X(279)}}, {{A, B, C, X(59), X(7131)}}, {{A, B, C, X(60), X(271)}}, {{A, B, C, X(73), X(45963)}}, {{A, B, C, X(81), X(222)}}, {{A, B, C, X(85), X(52378)}}, {{A, B, C, X(102), X(10405)}}, {{A, B, C, X(189), X(1790)}}, {{A, B, C, X(277), X(36052)}}, {{A, B, C, X(284), X(41894)}}, {{A, B, C, X(514), X(3417)}}, {{A, B, C, X(593), X(1422)}}, {{A, B, C, X(693), X(17181)}}, {{A, B, C, X(1255), X(53995)}}, {{A, B, C, X(1257), X(40802)}}, {{A, B, C, X(1819), X(10394)}}, {{A, B, C, X(34028), X(46882)}}, {{A, B, C, X(38690), X(54232)}}, {{A, B, C, X(40403), X(56003)}}
X(56005) = barycentric product X(i)*X(j) for these (i, j): {3, 34398}, {57, 55965}, {4131, 52776}, {23224, 54968}, {34409, 56}, {37741, 7}
X(56005) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17860}, {6, 46835}, {31, 4336}, {56, 1836}, {58, 17188}, {73, 21912}, {222, 17073}, {603, 20277}, {667, 2520}, {1464, 51462}, {7335, 53847}, {34398, 264}, {34409, 3596}, {37741, 8}, {38828, 27833}, {55965, 312}
X(56005) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {222, 607, 38877}


X(56006) = KP2(X(3)) OF X(2) AND X(98)

Barycentrics    (a^8-a^6*(b^2+4*c^2)+(b^2+c^2)*(-(b^2*c)+c^3)^2+a^4*(-b^4+3*b^2*c^2+6*c^4)+a^2*(b^6-4*b^4*c^2+3*b^2*c^4-4*c^6))*(a^8-a^6*(4*b^2+c^2)+(b^2+c^2)*(b^3-b*c^2)^2+a^4*(6*b^4+3*b^2*c^2-c^4)+a^2*(-4*b^6+3*b^4*c^2-4*b^2*c^4+c^6)) : :

X(56006) lies on the MacBeath circumconic and on these lines: {110, 6353}, {193, 571}, {524, 43755}, {648, 8745}, {895, 55121}, {1331, 4028}, {1353, 54034}, {1993, 4563}, {5392, 39109}, {44768, 51481}

X(56006) = trilinear pole of line {3, 3566}
X(56006) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 34382}
X(56006) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 34382}, {35067, 31842}
X(56006) = X(i)-cross conjugate of X(j) for these {i, j}: {6132, 99}, {32654, 98}
X(56006) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(193)}}, {{A, B, C, X(5), X(1353)}}, {{A, B, C, X(6), X(571)}}, {{A, B, C, X(69), X(5392)}}, {{A, B, C, X(83), X(13472)}}, {{A, B, C, X(94), X(18947)}}, {{A, B, C, X(95), X(42354)}}, {{A, B, C, X(98), X(46039)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(141), X(41628)}}, {{A, B, C, X(249), X(38534)}}, {{A, B, C, X(323), X(37784)}}, {{A, B, C, X(394), X(40318)}}, {{A, B, C, X(524), X(3580)}}, {{A, B, C, X(671), X(30477)}}, {{A, B, C, X(847), X(7763)}}, {{A, B, C, X(1972), X(35511)}}, {{A, B, C, X(1992), X(37645)}}, {{A, B, C, X(2996), X(34386)}}, {{A, B, C, X(4590), X(16081)}}, {{A, B, C, X(6339), X(6504)}}, {{A, B, C, X(8548), X(19139)}}, {{A, B, C, X(13567), X(40316)}}, {{A, B, C, X(15316), X(19141)}}, {{A, B, C, X(15988), X(40571)}}, {{A, B, C, X(30535), X(56002)}}, {{A, B, C, X(35142), X(51481)}}, {{A, B, C, X(42313), X(42410)}}, {{A, B, C, X(44174), X(51776)}}
X(56006) = barycentric product X(i)*X(j) for these (i, j): {40120, 69}
X(56006) = barycentric quotient X(i)/X(j) for these (i, j): {3, 34382}, {3564, 31842}, {40120, 4}, {42065, 53787}


X(56007) = KP2(X(3)) OF X(2) AND X(111)

Barycentrics    a^2*(a^6+2*b^6-3*b^4*c^2-4*b^2*c^4+c^6-a^4*(4*b^2+c^2)-a^2*(3*b^4-12*b^2*c^2+c^4))*(a^6+b^6-4*b^4*c^2-3*b^2*c^4+2*c^6-a^4*(b^2+4*c^2)-a^2*(b^4-12*b^2*c^2+3*c^4)) : :

X(56007) lies on the MacBeath circumconic and on these lines: {110, 19118}, {126, 193}, {648, 6392}, {1332, 21874}, {3053, 4558}, {3291, 37784}, {3926, 15525}, {6391, 15369}, {14273, 41909}, {41617, 43755}

X(56007) = trilinear pole of line {3, 8651}
X(56007) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(40324)}}, {{A, B, C, X(6), X(193)}}, {{A, B, C, X(67), X(6096)}}, {{A, B, C, X(69), X(40318)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(111), X(126)}}, {{A, B, C, X(524), X(1177)}}, {{A, B, C, X(1297), X(35511)}}, {{A, B, C, X(1992), X(1993)}}, {{A, B, C, X(2996), X(55977)}}, {{A, B, C, X(3580), X(41617)}}, {{A, B, C, X(3926), X(6338)}}, {{A, B, C, X(4590), X(8749)}}, {{A, B, C, X(5505), X(25322)}}, {{A, B, C, X(6515), X(31626)}}, {{A, B, C, X(32240), X(34898)}}, {{A, B, C, X(36792), X(52234)}}, {{A, B, C, X(38263), X(52041)}}


X(56008) = KP2(X(3)) OF X(2) AND X(112)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^6+a^4*(b^2-c^2)-a^2*(b^2-c^2)^2-(b^2-c^2)*(b^2+c^2)^2)*(a^6-a^2*(b^2-c^2)^2+a^4*(-b^2+c^2)+(b^2-c^2)*(b^2+c^2)^2) : :

X(56008) lies on the MacBeath circumconic and on these lines: {32, 23974}, {110, 39417}, {112, 44766}, {193, 46767}, {287, 6515}, {895, 32262}, {1993, 40358}, {2986, 50188}, {2987, 40144}, {4563, 4611}, {14919, 52041}, {44770, 52917}

X(56008) = isogonal conjugate of X(47125)
X(56008) = trilinear pole of line {3, 206}
X(56008) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 47125}, {75, 52588}, {159, 1577}, {512, 21582}, {523, 18596}, {656, 41361}, {661, 1370}, {3162, 14208}, {4041, 18629}, {23115, 24006}, {24018, 41766}, {24019, 55069}
X(56008) = X(i)-vertex conjugate of X(j) for these {i, j}: {32713, 44766}
X(56008) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 47125}, {206, 52588}, {35071, 55069}, {36830, 1370}, {39054, 21582}, {40596, 41361}, {55047, 53822}
X(56008) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1301)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(112), X(4611)}}, {{A, B, C, X(520), X(23974)}}, {{A, B, C, X(1304), X(44326)}}, {{A, B, C, X(1993), X(34211)}}, {{A, B, C, X(2421), X(6515)}}, {{A, B, C, X(2966), X(13398)}}, {{A, B, C, X(3580), X(50188)}}, {{A, B, C, X(5468), X(40318)}}, {{A, B, C, X(35575), X(46134)}}, {{A, B, C, X(40173), X(46963)}}
X(56008) = barycentric product X(i)*X(j) for these (i, j): {110, 13575}, {163, 39733}, {1576, 40009}, {4558, 52583}, {34207, 99}, {39129, 827}, {39417, 69}, {40144, 4563}, {40358, 44766}, {52041, 648}
X(56008) = barycentric quotient X(i)/X(j) for these (i, j): {6, 47125}, {32, 52588}, {110, 1370}, {112, 41361}, {163, 18596}, {520, 55069}, {662, 21582}, {1576, 159}, {1624, 41602}, {4558, 28419}, {4565, 18629}, {4630, 8793}, {8673, 53822}, {13575, 850}, {32661, 23115}, {32713, 41766}, {34207, 523}, {39129, 23285}, {39172, 8673}, {39417, 4}, {39733, 20948}, {40009, 44173}, {40144, 2501}, {40358, 33294}, {46767, 2485}, {52041, 525}, {52583, 14618}


X(56009) = KP2(X(1)) OF X(6) AND X(44)

Barycentrics    a*(a^2+3*b*c-2*a*(b+c)) : :

X(56009) lies on these lines: {1, 3689}, {2, 2177}, {3, 6048}, {6, 43}, {9, 6181}, {10, 4256}, {31, 14997}, {36, 31855}, {42, 4038}, {44, 9324}, {55, 15485}, {78, 24440}, {88, 17449}, {100, 238}, {106, 519}, {165, 2348}, {200, 982}, {210, 17596}, {239, 4434}, {244, 3935}, {404, 3214}, {474, 50581}, {511, 3030}, {515, 38471}, {517, 5529}, {518, 1054}, {528, 51415}, {536, 24398}, {612, 17600}, {650, 1734}, {726, 3699}, {740, 5205}, {750, 3240}, {846, 3740}, {908, 24715}, {936, 37598}, {940, 42043}, {978, 5687}, {984, 17593}, {1155, 1757}, {1215, 17116}, {1386, 17779}, {1429, 3507}, {1574, 41239}, {1698, 16844}, {1722, 16485}, {1738, 6745}, {1961, 3723}, {1979, 20669}, {2226, 52925}, {2291, 53891}, {2345, 4070}, {2550, 17717}, {2664, 3230}, {2802, 45763}, {2999, 16491}, {3035, 33140}, {3068, 41421}, {3158, 5272}, {3216, 5255}, {3218, 21805}, {3247, 3290}, {3257, 41461}, {3293, 16474}, {3306, 49490}, {3452, 33095}, {3550, 4383}, {3570, 41142}, {3619, 33174}, {3620, 33084}, {3621, 32577}, {3631, 33085}, {3634, 33771}, {3679, 16499}, {3685, 24003}, {3687, 33079}, {3693, 3731}, {3711, 17595}, {3720, 9342}, {3722, 7292}, {3742, 3979}, {3749, 16487}, {3752, 3961}, {3792, 51377}, {3811, 24174}, {3823, 29862}, {3826, 29640}, {3828, 4653}, {3836, 26073}, {3840, 3996}, {3870, 17063}, {3871, 27627}, {3880, 13541}, {3911, 49772}, {3913, 16486}, {3936, 31151}, {3952, 32845}, {4000, 17725}, {4023, 33082}, {4090, 32939}, {4220, 8296}, {4257, 5247}, {4358, 4693}, {4384, 16497}, {4420, 24443}, {4421, 8616}, {4447, 4489}, {4511, 4695}, {4551, 9364}, {4578, 4947}, {4640, 15492}, {4651, 32918}, {4660, 5233}, {4674, 4867}, {4685, 14829}, {4716, 17763}, {4849, 32913}, {4860, 49498}, {5121, 5853}, {5211, 17765}, {5212, 5847}, {5297, 46904}, {5363, 36741}, {5400, 5537}, {5432, 33138}, {5741, 32948}, {6174, 35466}, {6686, 32942}, {6765, 11512}, {7081, 17117}, {7186, 23638}, {7963, 11519}, {8298, 31073}, {8649, 52959}, {8715, 17749}, {9352, 32912}, {9355, 17613}, {10327, 32855}, {10448, 46933}, {10563, 16189}, {11499, 37570}, {15604, 37508}, {16468, 37540}, {16477, 17126}, {16489, 48696}, {16602, 29820}, {16788, 41416}, {17018, 17124}, {17020, 17469}, {17021, 21806}, {17261, 42056}, {17278, 29675}, {17356, 29860}, {17490, 32920}, {17495, 17780}, {17740, 33165}, {17764, 17777}, {19746, 43997}, {19804, 29670}, {19998, 32919}, {20103, 24210}, {20368, 33878}, {21008, 21868}, {21026, 27757}, {21241, 27759}, {21747, 32911}, {21870, 37520}, {22313, 50362}, {24169, 33126}, {24582, 31210}, {24627, 49457}, {24988, 29632}, {25269, 27538}, {25568, 33103}, {25882, 47296}, {26582, 30837}, {27131, 33094}, {30577, 49701}, {31137, 49460}, {31197, 42819}, {32783, 34573}, {32922, 43290}, {33104, 37651}, {33106, 34612}, {33109, 37662}, {37674, 42042}, {37684, 49497}, {37789, 53531}, {40091, 49992}, {40663, 43056}, {41684, 51402}, {43055, 51463}, {49984, 54391}

X(56009) = midpoint of X(i) and X(j) for these {i,j}: {1054, 5524}
X(56009) = reflection of X(i) in X(j) for these {i,j}: {18201, 1054}, {39343, 44}
X(56009) = trilinear pole of line {21343, 23650}
X(56009) = perspector of circumconic {{A, B, C, X(932), X(2346)}}
X(56009) = X(i)-Dao conjugate of X(j) for these {i, j}: {4928, 1647}
X(56009) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40400, 1}
X(56009) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(87), X(9325)}}, {{A, B, C, X(1120), X(21343)}}, {{A, B, C, X(1266), X(24216)}}, {{A, B, C, X(2162), X(2382)}}, {{A, B, C, X(2319), X(4900)}}
X(56009) = barycentric product X(i)*X(j) for these (i, j): {100, 4928}, {101, 21433}, {190, 21343}, {22437, 6335}, {23650, 668}
X(56009) = barycentric quotient X(i)/X(j) for these (i, j): {4928, 693}, {21343, 514}, {21433, 3261}, {22437, 905}, {23650, 513}
X(56009) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2177, 16484}, {42, 17122, 4038}, {43, 1376, 171}, {55, 16569, 17123}, {100, 37680, 902}, {100, 899, 238}, {244, 3935, 49675}, {518, 1054, 18201}, {750, 3240, 4649}, {899, 902, 37680}, {978, 5687, 37588}, {1054, 5524, 518}, {1738, 6745, 17719}, {2177, 16484, 3750}, {3158, 5272, 17715}, {3218, 21805, 49712}, {3218, 54309, 21805}, {3550, 36634, 4383}, {3689, 16610, 1}, {3711, 17595, 49448}, {3752, 3961, 17598}, {4421, 37679, 8616}, {17495, 17780, 32927}, {24988, 29632, 31252}, {34612, 37663, 33106}, {37662, 49732, 33109}


X(56010) = KP2(X(1)) OF X(6) AND X(45)

Barycentrics    a*(2*a^2+3*b*c-a*(b+c)) : :

X(56010) lies on these lines: {1, 88}, {2, 902}, {6, 43}, {8, 37608}, {9, 2243}, {10, 4257}, {31, 16569}, {35, 13738}, {36, 16499}, {37, 17601}, {38, 9352}, {42, 14996}, {46, 5293}, {55, 16059}, {57, 3961}, {58, 6048}, {75, 4434}, {81, 42043}, {142, 29675}, {165, 846}, {200, 32913}, {210, 4650}, {238, 4413}, {474, 5255}, {498, 26027}, {519, 37684}, {528, 24217}, {612, 17596}, {748, 9342}, {752, 5233}, {899, 14997}, {940, 42042}, {964, 1698}, {978, 5264}, {982, 49465}, {984, 1155}, {996, 1150}, {1055, 40790}, {1086, 17725}, {1201, 17572}, {1480, 6911}, {1621, 17124}, {1707, 3973}, {1738, 29658}, {1742, 44425}, {1961, 3247}, {2108, 31073}, {2209, 25528}, {2223, 16497}, {2330, 5197}, {2550, 33140}, {2664, 8621}, {3035, 17717}, {3052, 8692}, {3098, 20368}, {3158, 3979}, {3218, 49448}, {3242, 18201}, {3246, 31197}, {3474, 33099}, {3501, 5277}, {3570, 50127}, {3619, 32783}, {3620, 33085}, {3631, 33084}, {3632, 32919}, {3689, 37520}, {3699, 32935}, {3711, 49712}, {3723, 4682}, {3729, 16997}, {3740, 7262}, {3742, 17715}, {3744, 17063}, {3749, 5437}, {3750, 4421}, {3751, 5524}, {3752, 17716}, {3790, 49994}, {3836, 29858}, {3911, 29676}, {3915, 17531}, {3920, 17591}, {3923, 5205}, {3935, 49498}, {3938, 27003}, {3971, 25269}, {3980, 7081}, {4188, 10459}, {4216, 5010}, {4315, 51301}, {4334, 9364}, {4362, 17117}, {4396, 4659}, {4414, 5297}, {4428, 37682}, {4429, 29856}, {4432, 30829}, {4450, 25960}, {4598, 17105}, {4640, 16814}, {4653, 41451}, {4671, 24344}, {4676, 24003}, {4685, 37683}, {4781, 31035}, {4860, 49675}, {4867, 53115}, {4954, 34747}, {5096, 5363}, {5212, 51196}, {5218, 29640}, {5219, 23703}, {5235, 19875}, {5241, 50296}, {5247, 9709}, {5263, 29827}, {5266, 16498}, {5269, 16491}, {5272, 16487}, {5432, 33111}, {5687, 37607}, {5718, 6174}, {5880, 17719}, {6015, 28841}, {6649, 9312}, {6745, 50307}, {8167, 21000}, {8296, 18235}, {8693, 29352}, {9082, 40780}, {9335, 29818}, {9350, 32911}, {9780, 51674}, {10327, 33167}, {10456, 55094}, {11112, 37716}, {11246, 33101}, {13588, 18169}, {16371, 37617}, {16474, 37522}, {16475, 17779}, {16485, 37552}, {16486, 25524}, {16489, 37610}, {16490, 48696}, {16571, 20964}, {17051, 53534}, {17282, 29860}, {17284, 24602}, {17336, 42056}, {17602, 33149}, {17696, 30063}, {17720, 24715}, {17740, 32847}, {17752, 33062}, {17763, 49474}, {18792, 35983}, {19740, 43997}, {21242, 49720}, {24169, 29634}, {24342, 29828}, {24397, 45140}, {24440, 37539}, {24452, 27747}, {24620, 50023}, {24627, 36480}, {24850, 46937}, {25590, 37670}, {27002, 29668}, {29571, 51300}, {29649, 32932}, {29662, 33110}, {29683, 33131}, {29825, 50302}, {30039, 33839}, {30644, 35342}, {30811, 31151}, {31137, 32941}, {31242, 32942}, {32845, 49445}, {32865, 37646}, {32927, 49532}, {33141, 34612}, {33174, 34573}, {37699, 51340}

X(56010) = perspector of circumconic {{A, B, C, X(932), X(3257)}}
X(56010) = X(i)-Dao conjugate of X(j) for these {i, j}: {4389, 33934}
X(56010) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40401, 1}
X(56010) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(48344)}}, {{A, B, C, X(87), X(88)}}, {{A, B, C, X(106), X(2162)}}, {{A, B, C, X(996), X(4792)}}, {{A, B, C, X(1320), X(2319)}}, {{A, B, C, X(4674), X(16606)}}, {{A, B, C, X(9025), X(40780)}}, {{A, B, C, X(9082), X(40753)}}
X(56010) = barycentric product X(i)*X(j) for these (i, j): {100, 47779}, {190, 48344}
X(56010) = barycentric quotient X(i)/X(j) for these (i, j): {47779, 693}, {48344, 514}
X(56010) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3550, 8616}, {2, 902, 15485}, {55, 17122, 26102}, {100, 37633, 2177}, {100, 750, 1}, {165, 5268, 846}, {171, 1376, 43}, {474, 5255, 21214}, {750, 2177, 37633}, {899, 21747, 14997}, {1621, 17124, 25502}, {3550, 15485, 902}, {3689, 37520, 49490}, {3749, 5437, 29820}, {3750, 9337, 4421}, {3751, 46917, 5524}, {4413, 37540, 238}, {4421, 37674, 3750}, {9350, 32911, 36634}, {14997, 17126, 21747}, {14997, 21747, 16468}, {34612, 37634, 33141}, {37675, 41423, 3731}


X(56011) = KP2(X(1)) OF X(6) AND X(81)

Barycentrics    a*(a^2*(b-c)+b*c^2-a*c*(2*b+c))*(a^2*(b-c)-b^2*c+a*b*(b+2*c)) : :

X(56011) lies on these lines: {6, 40720}, {43, 7121}, {81, 27044}, {595, 2209}, {727, 3293}, {932, 20971}, {2176, 4393}, {20332, 20691}, {21760, 27644}, {21904, 34077}

X(56011) = isogonal conjugate of X(16604)
X(56011) = trilinear pole of line {4057, 4782}
X(56011) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 16604}, {6, 24165}, {42, 16710}, {75, 21757}, {86, 21827}, {87, 17459}, {92, 22378}, {101, 48406}, {330, 20971}, {2162, 34832}, {2176, 52573}, {7121, 20899}, {21128, 34071}
X(56011) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 16604}, {9, 24165}, {206, 21757}, {1015, 48406}, {22391, 22378}, {40592, 16710}, {40598, 20899}, {40600, 21827}, {40610, 21128}
X(56011) = X(i)-cross conjugate of X(j) for these {i, j}: {1919, 100}
X(56011) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4393)}}, {{A, B, C, X(2), X(979)}}, {{A, B, C, X(6), X(904)}}, {{A, B, C, X(31), X(41396)}}, {{A, B, C, X(42), X(41240)}}, {{A, B, C, X(43), X(53675)}}, {{A, B, C, X(58), X(1016)}}, {{A, B, C, X(81), X(83)}}, {{A, B, C, X(87), X(32095)}}, {{A, B, C, X(88), X(25439)}}, {{A, B, C, X(213), X(1924)}}, {{A, B, C, X(256), X(39722)}}, {{A, B, C, X(257), X(39979)}}, {{A, B, C, X(330), X(39969)}}, {{A, B, C, X(1002), X(5395)}}, {{A, B, C, X(1170), X(18772)}}, {{A, B, C, X(1220), X(39971)}}, {{A, B, C, X(1222), X(40432)}}, {{A, B, C, X(1255), X(43531)}}, {{A, B, C, X(1432), X(6630)}}, {{A, B, C, X(1509), X(41434)}}, {{A, B, C, X(1575), X(20691)}}, {{A, B, C, X(2334), X(14621)}}, {{A, B, C, X(3224), X(40735)}}, {{A, B, C, X(3293), X(27044)}}, {{A, B, C, X(3500), X(38247)}}, {{A, B, C, X(3795), X(46032)}}, {{A, B, C, X(5559), X(17946)}}, {{A, B, C, X(9309), X(54123)}}, {{A, B, C, X(23617), X(35105)}}, {{A, B, C, X(32008), X(37128)}}, {{A, B, C, X(32009), X(39748)}}, {{A, B, C, X(32012), X(39797)}}, {{A, B, C, X(32014), X(40434)}}, {{A, B, C, X(39952), X(39970)}}
X(56011) = barycentric product X(i)*X(j) for these (i, j): {1, 55997}, {35572, 4083}
X(56011) = barycentric quotient X(i)/X(j) for these (i, j): {1, 24165}, {6, 16604}, {32, 21757}, {43, 34832}, {81, 16710}, {87, 52573}, {184, 22378}, {192, 20899}, {213, 21827}, {513, 48406}, {2176, 17459}, {2209, 20971}, {4083, 21128}, {20691, 21040}, {35572, 18830}, {55997, 75}


X(56012) = KP2(X(1)) OF X(6) AND X(105)

Barycentrics    a*(a^3*(b-c)-a^2*c^2-b^2*c*(b+c)+a*(b^3+2*b*c^2))*(a^2*b^2+a^3*(b-c)+b*c^2*(b+c)-a*(2*b^2*c+c^3)) : :

X(56012) lies on these lines: {6, 20532}, {101, 978}, {644, 2176}, {645, 27644}, {666, 39930}, {904, 20971}, {932, 20467}, {1575, 34077}, {1743, 20370}, {2209, 3169}, {3009, 33854}, {7121, 17754}, {20332, 40848}, {32911, 52136}

X(56012) = trilinear pole of line {55, 8640}
X(56012) = X(i)-isoconjugate-of-X(j) for these {i, j}: {727, 20343}, {3226, 20467}, {20332, 20366}, {20443, 34077}
X(56012) = X(i)-Dao conjugate of X(j) for these {i, j}: {17793, 20343}, {20532, 20443}
X(56012) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(6), X(904)}}, {{A, B, C, X(8), X(978)}}, {{A, B, C, X(43), X(17754)}}, {{A, B, C, X(55), X(4383)}}, {{A, B, C, X(83), X(713)}}, {{A, B, C, X(87), X(41527)}}, {{A, B, C, X(101), X(294)}}, {{A, B, C, X(105), X(33295)}}, {{A, B, C, X(239), X(292)}}, {{A, B, C, X(257), X(39798)}}, {{A, B, C, X(291), X(7261)}}, {{A, B, C, X(672), X(39930)}}, {{A, B, C, X(1016), X(1438)}}, {{A, B, C, X(1126), X(1178)}}, {{A, B, C, X(1575), X(20532)}}, {{A, B, C, X(3108), X(40394)}}, {{A, B, C, X(3212), X(25311)}}, {{A, B, C, X(7035), X(9082)}}, {{A, B, C, X(17033), X(41268)}}, {{A, B, C, X(17752), X(20971)}}, {{A, B, C, X(18785), X(27810)}}, {{A, B, C, X(28317), X(37680)}}, {{A, B, C, X(36125), X(43531)}}
X(56012) = barycentric quotient X(i)/X(j) for these (i, j): {726, 20443}, {1575, 20343}, {3009, 20366}, {20777, 20738}, {21760, 20467}


X(56013) = KP2(X(2)) OF X(4) AND X(20)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(5*a^4+b^4+6*b^2*c^2+c^4-6*a^2*(b^2+c^2)) : :

X(56013) lies on these lines: {2, 15851}, {4, 193}, {6, 32000}, {20, 15312}, {53, 6144}, {69, 648}, {112, 32817}, {141, 40138}, {144, 1897}, {196, 1943}, {239, 1119}, {253, 441}, {264, 1992}, {281, 3879}, {297, 20080}, {317, 11008}, {376, 3164}, {385, 6353}, {393, 524}, {394, 14361}, {458, 51170}, {459, 34410}, {653, 53997}, {894, 7046}, {1092, 41425}, {1350, 15258}, {1944, 7003}, {1990, 40341}, {2322, 3945}, {3087, 3629}, {3172, 32830}, {3618, 5702}, {3793, 37460}, {3855, 17035}, {4416, 7952}, {6103, 37690}, {6527, 15905}, {6616, 11441}, {6617, 20213}, {6620, 46444}, {6748, 15534}, {7490, 37683}, {7493, 35311}, {7774, 8889}, {10002, 15069}, {10299, 43980}, {14552, 41083}, {15143, 22152}, {15262, 20806}, {15589, 45141}, {16264, 54132}, {16318, 37668}, {17008, 52290}, {18848, 33893}, {21447, 44146}, {36794, 52710}, {37667, 38282}, {37765, 50992}, {37766, 45794}, {40330, 42873}, {41370, 52713}

X(56013) = reflection of X(i) in X(j) for these {i,j}: {32001, 393}, {6527, 15905}
X(56013) = anticomplement of X(40995)
X(56013) = X(i)-Dao conjugate of X(j) for these {i, j}: {40995, 40995}
X(56013) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14944, 441}, {18848, 2}
X(56013) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {18848, 6327}, {41894, 4329}
X(56013) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2996), X(34410)}}, {{A, B, C, X(6330), X(34208)}}, {{A, B, C, X(6391), X(36609)}}, {{A, B, C, X(8778), X(14248)}}
X(56013) = barycentric product X(i)*X(j) for these (i, j): {75, 8765}, {76, 8778}
X(56013) = barycentric quotient X(i)/X(j) for these (i, j): {8765, 1}, {8778, 6}
X(56013) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 32000, 52288}, {69, 1249, 52283}, {69, 648, 1249}, {193, 43981, 27377}, {193, 9308, 4}, {253, 36413, 441}, {264, 1992, 40065}, {9308, 27377, 43981}


X(56014) = KP2(X(2)) OF X(4) AND X(21)

Barycentrics    (a+b)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^2+2*b*c-a*(b+c)) : :

X(56014) lies on these lines: {4, 193}, {19, 18206}, {21, 20222}, {25, 17002}, {27, 4373}, {28, 330}, {29, 10405}, {81, 92}, {86, 281}, {144, 3559}, {225, 4416}, {264, 34283}, {273, 2287}, {278, 333}, {283, 45738}, {286, 648}, {314, 46108}, {385, 4231}, {469, 31034}, {524, 1865}, {653, 1014}, {860, 1654}, {894, 41013}, {1068, 17257}, {1119, 16054}, {1396, 31623}, {1783, 27644}, {1792, 25252}, {1812, 1943}, {1826, 3879}, {1957, 38832}, {2303, 54314}, {2322, 15149}, {2331, 54308}, {3164, 6906}, {3194, 26735}, {3651, 18666}, {4227, 41676}, {4658, 39585}, {5136, 17379}, {5235, 17923}, {5333, 52412}, {10446, 46011}, {14571, 16696}, {17037, 37434}, {17913, 27164}, {23602, 54107}, {31917, 31925}, {31923, 53238}, {38810, 44129}

X(56014) = trilinear pole of line {4885, 22091}
X(56014) = X(i)-isoconjugate-of-X(j) for these {i, j}: {71, 9309}, {72, 9315}, {228, 9311}, {810, 30610}, {1214, 9439}, {2200, 32023}
X(56014) = X(i)-Dao conjugate of X(j) for these {i, j}: {4885, 53560}, {39062, 30610}
X(56014) = intersection, other than A, B, C, of circumconics {{A, B, C, X(330), X(2481)}}, {{A, B, C, X(1814), X(6180)}}, {{A, B, C, X(8751), X(14248)}}, {{A, B, C, X(9311), X(44735)}}, {{A, B, C, X(19607), X(38810)}}, {{A, B, C, X(34208), X(54235)}}
X(56014) = barycentric product X(i)*X(j) for these (i, j): {27, 3729}, {29, 9312}, {162, 20907}, {1376, 286}, {4449, 811}, {4885, 648}, {16759, 46102}, {17218, 1897}, {18110, 41676}, {18199, 6335}, {20980, 6331}, {22091, 6528}, {31623, 6180}, {44129, 9310}, {44130, 9316}
X(56014) = barycentric quotient X(i)/X(j) for these (i, j): {27, 9311}, {28, 9309}, {286, 32023}, {648, 30610}, {1376, 72}, {1474, 9315}, {2299, 9439}, {3729, 306}, {3967, 3695}, {4014, 18210}, {4449, 656}, {4513, 3694}, {4885, 525}, {6180, 1214}, {9310, 71}, {9312, 307}, {9316, 73}, {16283, 52370}, {16759, 26932}, {17218, 4025}, {18110, 4580}, {18199, 905}, {20907, 14208}, {20980, 647}, {21052, 4064}, {21139, 4466}, {22091, 520}
X(56014) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {81, 92, 44734}, {286, 1172, 31926}, {286, 648, 1172}


X(56015) = KP2(X(2)) OF X(4) AND X(22)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+2*b^2*c^2*(b^2+c^2)-a^2*(b^2+c^2)^2) : :

X(56015) lies on circumconic {{A, B, C, X(2996), X(46140)}} and on these lines: {3, 41676}, {4, 193}, {6, 1235}, {24, 385}, {69, 19595}, {76, 648}, {112, 1975}, {148, 35490}, {183, 39575}, {194, 378}, {232, 7751}, {253, 28425}, {264, 7760}, {297, 45794}, {315, 5523}, {339, 26226}, {458, 1994}, {524, 27376}, {538, 1968}, {1593, 22253}, {1594, 7774}, {2207, 44146}, {2904, 39931}, {3147, 37667}, {3162, 8024}, {3164, 10323}, {3520, 31859}, {3788, 6103}, {3933, 16318}, {4235, 8778}, {6240, 20065}, {7547, 7785}, {7777, 52296}, {7783, 35477}, {7784, 19221}, {7793, 32534}, {7803, 44134}, {7805, 10311}, {7823, 35480}, {7839, 37337}, {7890, 27371}, {7893, 40889}, {7894, 36794}, {9605, 37125}, {10018, 17008}, {10312, 14614}, {12251, 41204}, {15014, 20081}, {15073, 39646}, {17037, 52404}, {17907, 41366}, {18018, 28701}, {19124, 41622}, {20806, 43678}, {23115, 30737}, {28695, 52058}, {28717, 36413}, {28728, 40888}, {32451, 39588}, {34507, 39604}

X(56015) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 648, 8743}, {7754, 9308, 4}


X(56016) = KP2(X(2)) OF X(4) AND X(23)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+2*b^2*c^2*(b^2+c^2)-a^2*(b^4+3*b^2*c^2+c^4)) : :

X(56016) lies on circumconic {{A, B, C, X(2996), X(14364)}} and on these lines: {4, 193}, {25, 9870}, {112, 538}, {186, 385}, {194, 3520}, {297, 37779}, {339, 52058}, {378, 22253}, {458, 11004}, {511, 41377}, {524, 5523}, {648, 8744}, {732, 41363}, {892, 52490}, {1235, 7760}, {1236, 22151}, {2914, 39931}, {3793, 10295}, {5971, 44467}, {6103, 7813}, {7577, 7774}, {7751, 39575}, {7775, 50718}, {7785, 54001}, {7793, 17506}, {7805, 10312}, {7839, 37125}, {10311, 41748}, {11580, 34336}, {17037, 34621}, {20065, 34797}, {31859, 35473}, {40889, 50248}, {41253, 51481}

X(56016) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {385, 41676, 186}, {648, 44146, 8744}


X(56017) = KP2(X(2)) OF X(4) AND X(24)

Barycentrics    a^8-2*b^2*c^2*(b^2-c^2)^2-a^6*(b^2+c^2)-a^4*(b^2+c^2)^2+a^2*(b^6+b^4*c^2+b^2*c^4+c^6) : :
X(56017) = -3*X[2]+2*X[52347]

X(56017) lies on these lines: {2, 52347}, {4, 193}, {6, 311}, {22, 385}, {69, 41237}, {148, 52842}, {155, 44145}, {194, 7503}, {264, 275}, {393, 467}, {524, 44128}, {648, 8745}, {1316, 23163}, {1609, 14570}, {1654, 37156}, {2165, 39113}, {3580, 17907}, {5133, 7774}, {5889, 33971}, {7494, 37667}, {7495, 17008}, {7566, 7785}, {7777, 19577}, {7783, 43980}, {8553, 44376}, {9723, 44375}, {9818, 22253}, {11441, 43976}, {12220, 39646}, {19221, 40341}, {19588, 53350}, {20806, 41238}, {25051, 34777}, {26206, 40814}, {31859, 35921}, {35360, 52439}, {40393, 54636}, {41375, 41767}

X(56017) = anticomplement of X(52347)
X(56017) = X(i)-Dao conjugate of X(j) for these {i, j}: {52347, 52347}
X(56017) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8884, 2}
X(56017) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1096, 2888}, {2148, 6527}, {2190, 1370}, {8795, 21275}, {8882, 4329}, {8884, 6327}, {15422, 21294}, {16813, 17217}, {42405, 21305}
X(56017) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2996), X(34385)}}, {{A, B, C, X(5392), X(27364)}}, {{A, B, C, X(14248), X(41525)}}, {{A, B, C, X(34208), X(42354)}}
X(56017) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 311, 41231}, {1993, 5392, 52253}, {7754, 9308, 193}, {20806, 41760, 41238}


X(56018) = KP2(X(2)) OF X(4) AND X(27)

Barycentrics    (a+b)*(a+c)*(a^2+2*a*(b+c)-(b+c)^2) : :
X(56018) = -3*X[2]+2*X[41014], -3*X[3017]+2*X[3454], -4*X[8258]+3*X[33160]

X(56018) lies on these lines: {1, 333}, {2, 41014}, {3, 20018}, {4, 193}, {6, 10449}, {8, 81}, {10, 86}, {20, 20019}, {21, 145}, {27, 3187}, {28, 39696}, {29, 1069}, {30, 20077}, {40, 4229}, {55, 37296}, {58, 519}, {65, 1943}, {69, 387}, {72, 1999}, {78, 18465}, {99, 28527}, {100, 37288}, {110, 4248}, {190, 2901}, {192, 3927}, {238, 35633}, {239, 942}, {283, 41575}, {284, 24391}, {314, 989}, {320, 23537}, {341, 30939}, {385, 6998}, {386, 14829}, {404, 37639}, {405, 37652}, {442, 17778}, {447, 44698}, {474, 37684}, {496, 37373}, {517, 37422}, {518, 18178}, {524, 1330}, {643, 1780}, {648, 8747}, {740, 1046}, {758, 18719}, {849, 30606}, {859, 20037}, {894, 5295}, {938, 2287}, {940, 9534}, {944, 7415}, {958, 18185}, {964, 37685}, {986, 17206}, {999, 20036}, {1014, 53997}, {1150, 19270}, {1193, 32919}, {1203, 32942}, {1210, 27398}, {1326, 49609}, {1408, 41687}, {1412, 4848}, {1434, 3339}, {1654, 4205}, {1698, 25507}, {1706, 18164}, {1714, 18134}, {1724, 33309}, {1737, 31631}, {1743, 35629}, {1778, 14974}, {1788, 14868}, {1812, 18391}, {1817, 20043}, {1897, 3559}, {1993, 11109}, {2049, 17379}, {2292, 41813}, {2303, 5839}, {2322, 3562}, {2475, 20086}, {2476, 31034}, {2650, 27368}, {2784, 54160}, {2895, 5051}, {2907, 14054}, {2975, 37303}, {3017, 3454}, {3167, 16066}, {3180, 37144}, {3181, 37145}, {3241, 4921}, {3244, 4653}, {3286, 3913}, {3293, 29766}, {3555, 5208}, {3578, 26064}, {3616, 5235}, {3617, 8025}, {3621, 4720}, {3622, 17557}, {3623, 17588}, {3633, 52352}, {3634, 28620}, {3679, 25526}, {3695, 6542}, {3710, 50292}, {3714, 4663}, {3736, 49497}, {3769, 3811}, {3786, 34790}, {3870, 54356}, {3871, 4184}, {3874, 32922}, {3875, 8822}, {3931, 40773}, {3936, 24883}, {3945, 37153}, {3996, 5264}, {4018, 19642}, {4042, 19853}, {4201, 48847}, {4202, 32863}, {4221, 12245}, {4225, 20040}, {4228, 19993}, {4256, 50588}, {4259, 50633}, {4260, 50628}, {4267, 12513}, {4273, 50131}, {4276, 8666}, {4278, 8715}, {4340, 48816}, {4417, 5292}, {4442, 14450}, {4641, 7283}, {4646, 16696}, {4678, 17589}, {4701, 4803}, {5015, 5847}, {5047, 19742}, {5247, 38832}, {5278, 37035}, {5333, 9780}, {5361, 16342}, {5554, 26637}, {5687, 13588}, {5706, 13727}, {5708, 17490}, {5739, 52258}, {5752, 50579}, {5767, 37088}, {5774, 16738}, {5786, 10446}, {5814, 17363}, {5815, 17183}, {5844, 15952}, {5889, 37420}, {5904, 18417}, {5965, 37823}, {6175, 50256}, {6515, 17555}, {6646, 50067}, {6762, 10461}, {6996, 10441}, {7380, 7774}, {7410, 37667}, {7413, 48909}, {7419, 20041}, {7474, 20045}, {8258, 33160}, {8728, 17300}, {10453, 16466}, {10471, 35616}, {10916, 33071}, {11024, 17169}, {11108, 17349}, {11851, 31900}, {12514, 49470}, {13161, 34379}, {13725, 14552}, {13728, 37653}, {13741, 32911}, {14009, 24390}, {14011, 17757}, {14594, 41538}, {14996, 16454}, {15934, 19851}, {16053, 17316}, {16065, 33093}, {16726, 21896}, {16749, 30806}, {16834, 24632}, {16948, 20050}, {17002, 37149}, {17034, 17681}, {17056, 25446}, {17156, 54421}, {17162, 17164}, {17182, 21075}, {17343, 37164}, {17514, 26044}, {17528, 50133}, {17539, 20014}, {17551, 46933}, {17587, 20046}, {17676, 31303}, {17770, 24851}, {18165, 34791}, {18755, 50252}, {19280, 19684}, {19623, 52244}, {19860, 26638}, {19998, 35983}, {20009, 47512}, {20051, 35978}, {20090, 26051}, {20158, 33817}, {20536, 37159}, {20970, 26244}, {22253, 49130}, {24161, 50755}, {24556, 24982}, {24880, 41878}, {25059, 37592}, {25441, 30832}, {25645, 41806}, {25650, 35466}, {26117, 49716}, {26131, 42045}, {26300, 49592}, {26301, 49593}, {30699, 31902}, {31145, 51669}, {32852, 36568}, {34195, 39766}, {35935, 50129}, {37038, 54429}, {37092, 51223}, {37156, 45794}, {37176, 37666}, {37482, 50586}, {37516, 50619}, {39589, 49765}, {39594, 54386}, {41610, 51192}, {42025, 53620}, {43531, 46922}, {44143, 51481}, {48863, 50638}, {48875, 50577}, {50074, 54367}

X(56018) = reflection of X(i) in X(j) for these {i,j}: {1043, 58}, {1330, 1834}, {4234, 41629}
X(56018) = anticomplement of X(41014)
X(56018) = trilinear pole of line {20315, 48269}
X(56018) = X(i)-Dao conjugate of X(j) for these {i, j}: {4361, 4365}, {20315, 3120}, {41014, 41014}
X(56018) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {28, 2891}, {1126, 52364}, {1171, 4329}, {1474, 41821}, {28615, 3151}, {32676, 14779}, {40438, 1370}, {47947, 13219}, {52558, 20243}
X(56018) = intersection, other than A, B, C, of circumconics {{A, B, C, X(79), X(3879)}}, {{A, B, C, X(989), X(1126)}}, {{A, B, C, X(1000), X(1222)}}, {{A, B, C, X(1069), X(6391)}}, {{A, B, C, X(1778), X(5331)}}, {{A, B, C, X(2994), X(2996)}}, {{A, B, C, X(4600), X(8747)}}, {{A, B, C, X(5203), X(31013)}}, {{A, B, C, X(32014), X(37870)}}
X(56018) = barycentric product X(i)*X(j) for these (i, j): {1778, 75}, {1788, 333}, {14868, 92}, {14974, 310}, {17314, 86}, {17888, 4567}, {20315, 648}, {46937, 81}, {48269, 99}, {50501, 799}
X(56018) = barycentric quotient X(i)/X(j) for these (i, j): {1778, 1}, {1788, 226}, {14868, 63}, {14974, 42}, {17314, 10}, {17888, 16732}, {20315, 525}, {46937, 321}, {48269, 523}, {50501, 661}
X(56018) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 333, 11110}, {6, 10449, 13740}, {8, 81, 1010}, {10, 4658, 86}, {10, 86, 14007}, {58, 519, 1043}, {69, 387, 16062}, {145, 16704, 21}, {519, 41629, 4234}, {1043, 41629, 58}, {1150, 19767, 19270}, {1330, 1834, 17677}, {1698, 28619, 25507}, {3555, 18180, 5208}, {3617, 8025, 14005}, {3621, 11115, 4720}, {4205, 49718, 1654}, {4678, 26860, 17589}, {12649, 40571, 29}, {17731, 49488, 35916}, {20090, 26051, 49743}


X(56019) = KP2(X(2)) OF X(4) AND X(28)

Barycentrics    (a+b)*(a+c)*(a^3-2*b*c*(b+c)+a*(b+c)^2) : :

X(56019) lies on these lines: {4, 193}, {6, 44140}, {21, 192}, {27, 30699}, {58, 3729}, {69, 33736}, {75, 2303}, {81, 314}, {86, 2345}, {92, 1172}, {144, 16704}, {190, 1778}, {194, 37399}, {239, 2287}, {284, 3875}, {297, 18685}, {333, 17257}, {346, 16050}, {385, 4220}, {524, 21287}, {536, 1333}, {648, 2991}, {964, 17379}, {1010, 20009}, {1444, 19623}, {1654, 5051}, {1766, 18206}, {1817, 3210}, {2092, 26243}, {2346, 20045}, {3164, 36029}, {3663, 24632}, {3912, 17189}, {4019, 17763}, {4273, 4852}, {4452, 14953}, {4461, 11115}, {4921, 17333}, {5016, 17363}, {5235, 17248}, {5279, 19791}, {5327, 51192}, {8759, 44766}, {13588, 17759}, {14005, 28604}, {16998, 47511}, {17033, 17743}, {17147, 27174}, {17148, 54391}, {17366, 30906}, {18178, 43216}, {19645, 37683}, {25255, 39766}, {27958, 33296}, {28605, 37095}, {30939, 46738}, {32863, 50320}, {41316, 52897}, {41364, 46108}, {41610, 49496}, {41629, 42047}, {53421, 53508}

X(56019) = reflection of X(i) in X(j) for these {i,j}: {21287, 53417}
X(56019) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1169, 4329}, {2203, 5484}, {2363, 1370}
X(56019) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2298), X(14248)}}, {{A, B, C, X(2991), X(6391)}}, {{A, B, C, X(2996), X(2997)}}, {{A, B, C, X(4601), X(5317)}}, {{A, B, C, X(14534), X(38810)}}, {{A, B, C, X(30710), X(34208)}}
X(56019) = barycentric product X(i)*X(j) for these (i, j): {23676, 4600}
X(56019) = barycentric quotient X(i)/X(j) for these (i, j): {23676, 3120}
X(56019) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 2303, 26643}


X(56020) = KP2(X(2)) OF X(4) AND X(29)

Barycentrics    (a+b)*(a+c)*(a^3-3*a^2*(b+c)+(b-c)^2*(b+c)+a*(b+c)^2) : :

X(56020) lies on these lines: {4, 193}, {6, 37086}, {7, 2287}, {9, 86}, {21, 144}, {27, 5905}, {28, 42461}, {29, 3868}, {57, 27398}, {63, 37265}, {69, 5746}, {72, 894}, {81, 329}, {190, 22021}, {218, 27644}, {226, 333}, {284, 527}, {332, 40882}, {385, 7413}, {405, 17379}, {440, 17778}, {442, 1654}, {518, 5327}, {524, 1901}, {648, 8748}, {651, 52673}, {758, 11683}, {943, 37296}, {1014, 12848}, {1043, 3729}, {1260, 13588}, {1434, 23618}, {1708, 31631}, {1743, 17189}, {1817, 9965}, {1944, 9119}, {1992, 5802}, {1993, 37279}, {2303, 4644}, {2327, 41572}, {2328, 9440}, {2905, 14054}, {3419, 17363}, {3487, 11110}, {3879, 8804}, {3945, 37169}, {4199, 40721}, {4229, 5759}, {4273, 17276}, {4461, 4720}, {4480, 52352}, {4658, 12572}, {5208, 10025}, {5757, 13727}, {5758, 37422}, {5776, 10446}, {6356, 17950}, {7232, 30906}, {7415, 18446}, {7522, 37652}, {8232, 16713}, {10381, 17499}, {11517, 37288}, {12635, 25252}, {13442, 20077}, {14953, 20059}, {16050, 17350}, {17139, 41610}, {17169, 24557}, {17206, 27958}, {17300, 30810}, {17364, 41004}, {17532, 50074}, {18666, 30266}, {20072, 25516}, {20078, 27174}, {25255, 34195}, {26647, 40905}, {28609, 41629}

X(56020) = reflection of X(i) in X(j) for these {i,j}: {2893, 1901}, {8822, 284}
X(56020) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {40430, 1370}
X(56020) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2279), X(14248)}}, {{A, B, C, X(2996), X(39695)}}, {{A, B, C, X(4416), X(6598)}}, {{A, B, C, X(4620), X(8748)}}, {{A, B, C, X(23618), X(25568)}}
X(56020) = barycentric product X(i)*X(j) for these (i, j): {25568, 86}
X(56020) = barycentric quotient X(i)/X(j) for these (i, j): {25568, 10}
X(56020) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 2287, 16054}, {9, 86, 16053}, {69, 5746, 37445}, {284, 527, 8822}, {524, 1901, 2893}, {5905, 40571, 27}


X(56021) = KP2(X(2)) OF X(4) AND X(30)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(4*a^4+b^4+4*b^2*c^2+c^4-5*a^2*(b^2+c^2)) : :
X(56021) = -3*X[297]+2*X[340], -2*X[1494]+3*X[44578], -4*X[3163]+3*X[44576], -4*X[3284]+3*X[40884], -3*X[44650]+4*X[52951]

X(56021) lies on these lines: {2, 5702}, {4, 193}, {6, 44134}, {30, 39358}, {69, 11331}, {232, 50251}, {264, 3629}, {297, 340}, {317, 6144}, {323, 15262}, {325, 6103}, {385, 468}, {393, 11008}, {427, 7837}, {441, 39352}, {445, 50256}, {458, 1992}, {460, 38294}, {470, 3180}, {471, 3181}, {532, 6110}, {533, 6111}, {550, 3164}, {1249, 20080}, {1494, 44578}, {1897, 20072}, {2322, 20090}, {3163, 44576}, {3186, 46444}, {3284, 40884}, {3292, 47204}, {3580, 14920}, {3589, 53025}, {3793, 37934}, {3850, 17035}, {5032, 52288}, {5059, 17037}, {5094, 7774}, {5095, 39931}, {5965, 6530}, {7777, 52293}, {7779, 16318}, {7877, 27376}, {8057, 33294}, {9870, 52301}, {10151, 19570}, {10295, 41676}, {11064, 16080}, {11160, 52283}, {11898, 41371}, {15534, 52281}, {15712, 43980}, {16264, 37517}, {17008, 52292}, {17555, 50074}, {17907, 40341}, {20065, 37196}, {25045, 46818}, {25986, 42045}, {31859, 35485}, {32000, 51170}, {32455, 36794}, {34380, 41204}, {34507, 42873}, {37448, 50133}, {37667, 52290}, {38664, 53778}, {40890, 52229}, {41617, 52418}, {41628, 52280}, {44650, 52951}

X(56021) = reflection of X(i) in X(j) for these {i,j}: {297, 648}, {340, 1990}, {39352, 441}
X(56021) = anticomplement of X(40996)
X(56021) = X(i)-Dao conjugate of X(j) for these {i, j}: {40996, 40996}
X(56021) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34570, 4329}
X(56021) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2996), X(5641)}}, {{A, B, C, X(44877), X(51228)}}
X(56021) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 44134, 52289}, {69, 40138, 11331}, {193, 9308, 27377}, {340, 1990, 297}, {340, 648, 1990}, {524, 1990, 340}


X(56022) = KP2(X(2)) OF X(4) AND X(140)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(-b^4+4*b^2*c^2-c^4+a^2*(b^2+c^2)) : :

X(56022) lies on these lines: {2, 42459}, {4, 193}, {5, 3164}, {6, 52281}, {25, 17008}, {53, 141}, {69, 52282}, {194, 1907}, {273, 48627}, {317, 40341}, {318, 48628}, {324, 3580}, {385, 428}, {393, 458}, {427, 7777}, {468, 17006}, {524, 32002}, {546, 17035}, {547, 43982}, {550, 43980}, {623, 52670}, {624, 52671}, {625, 27371}, {648, 6748}, {1990, 6329}, {2052, 37648}, {3260, 53481}, {3575, 14712}, {3589, 37765}, {3793, 6756}, {5064, 7774}, {5241, 31623}, {6530, 19130}, {6656, 44142}, {6820, 8796}, {7714, 37667}, {7790, 21447}, {8744, 53489}, {8754, 39931}, {10549, 46104}, {10985, 22329}, {11547, 41244}, {14129, 37636}, {14767, 52945}, {14893, 39358}, {15466, 37873}, {16264, 48884}, {17037, 50689}, {17907, 47355}, {32000, 37174}, {32085, 52979}, {33630, 51171}, {33971, 46264}, {36412, 45198}, {36430, 44576}, {39284, 54911}, {40853, 41008}, {40896, 41005}, {42400, 51360}, {53416, 53477}

X(56022) = reflection of X(i) in X(j) for these {i,j}: {45198, 36412}
X(56022) = polar conjugate of X(45857)
X(56022) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 45857}
X(56022) = intersection, other than A, B, C, of circumconics {{A, B, C, X(327), X(2996)}}, {{A, B, C, X(5943), X(6391)}}, {{A, B, C, X(27377), X(40413)}}
X(56022) = barycentric product X(i)*X(j) for these (i, j): {264, 5943}, {17868, 92}
X(56022) = barycentric quotient X(i)/X(j) for these (i, j): {4, 45857}, {5943, 3}, {17868, 63}
X(56022) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 43981, 9308}, {4, 9308, 27377}, {53, 264, 297}


X(56023) = KP2(X(2)) OF X(6) AND X(81)

Barycentrics    (a+b)*(a+c)*(-(b*c*(b+c))+a*(b^2+b*c+c^2)) : :

X(56023) lies on these lines: {2, 39983}, {6, 194}, {21, 16684}, {37, 274}, {45, 32107}, {58, 32921}, {75, 27164}, {76, 4261}, {81, 4360}, {86, 192}, {99, 713}, {148, 53421}, {190, 27644}, {310, 2276}, {314, 536}, {325, 53417}, {330, 16884}, {333, 3210}, {344, 16752}, {346, 18600}, {385, 1030}, {538, 2092}, {583, 17034}, {594, 17759}, {668, 21858}, {714, 1045}, {726, 3736}, {740, 24437}, {1014, 4552}, {1043, 3242}, {1107, 20174}, {1108, 16728}, {1172, 41676}, {1213, 1655}, {1278, 16738}, {1444, 19623}, {1575, 31008}, {1778, 17489}, {2220, 7760}, {2277, 28660}, {2321, 16887}, {2345, 16705}, {3175, 16700}, {3247, 17175}, {3286, 49453}, {3644, 30939}, {3693, 16750}, {3703, 33730}, {3729, 54308}, {3760, 25505}, {3786, 49447}, {3875, 18206}, {3891, 4184}, {3943, 33947}, {3948, 24530}, {3950, 17205}, {3995, 5333}, {4254, 22253}, {4272, 17499}, {4277, 34283}, {4452, 16713}, {4658, 50281}, {4659, 10455}, {4664, 16709}, {4718, 16726}, {4788, 17178}, {5019, 7781}, {5069, 7757}, {5124, 7783}, {5235, 17495}, {5276, 8267}, {6144, 50577}, {6385, 40874}, {7754, 36744}, {7798, 16946}, {8680, 39774}, {10458, 17155}, {13588, 20990}, {14570, 32029}, {15668, 24621}, {16589, 25457}, {16685, 34063}, {16712, 17281}, {16722, 16885}, {16736, 35652}, {16749, 27396}, {17150, 39673}, {17160, 29767}, {17189, 25536}, {17233, 30965}, {17262, 52897}, {17277, 31036}, {17299, 33297}, {17314, 30941}, {17318, 18166}, {17362, 21226}, {18140, 46838}, {18147, 24598}, {18196, 23886}, {18601, 42044}, {18792, 49445}, {20168, 32005}, {21065, 30170}, {24557, 25243}, {25426, 42328}, {25507, 41839}, {25534, 27633}, {26110, 40908}, {28606, 30599}, {30940, 32453}, {30984, 32848}, {31089, 53486}, {31859, 36743}, {32934, 38832}, {39747, 42025}, {41629, 50120}, {47286, 50036}

X(56023) = reflection of X(i) in X(j) for these {i,j}: {314, 16696}, {3770, 2092}
X(56023) = anticomplement of X(53478)
X(56023) = trilinear pole of line {20983, 21260}
X(56023) = X(i)-Dao conjugate of X(j) for these {i, j}: {21260, 3121}, {53478, 53478}
X(56023) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40408, 2}
X(56023) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {40408, 6327}, {40433, 21287}, {40439, 315}, {50520, 21294}
X(56023) = intersection, other than A, B, C, of circumconics {{A, B, C, X(713), X(3224)}}, {{A, B, C, X(2998), X(18825)}}, {{A, B, C, X(25264), X(25426)}}
X(56023) = barycentric product X(i)*X(j) for these (i, j): {17458, 799}, {20909, 662}, {20983, 670}, {21055, 4610}, {21142, 4600}, {21260, 99}, {22095, 6331}, {30473, 81}, {32925, 86}
X(56023) = barycentric quotient X(i)/X(j) for these (i, j): {17458, 661}, {20909, 1577}, {20983, 512}, {21055, 4024}, {21142, 3120}, {21260, 523}, {22095, 647}, {30473, 321}, {32925, 10}
X(56023) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 274, 25508}, {75, 40773, 27164}, {330, 20170, 16884}, {536, 16696, 314}, {538, 2092, 3770}, {3948, 24530, 27111}, {17147, 17148, 4360}


X(56024) = KP2(X(2)) OF X(8) AND X(42)

Barycentrics    2*b^2*c^2+a^3*(b+c)-a^2*(b^2+c^2) : :
X(56024) = -3*X[2]+2*X[24214]

X(56024) lies on these lines: {2, 24214}, {7, 27523}, {8, 144}, {9, 34284}, {31, 7754}, {37, 4754}, {39, 4721}, {41, 1975}, {42, 17499}, {57, 28809}, {71, 3770}, {72, 50156}, {75, 3691}, {76, 672}, {190, 1334}, {194, 1193}, {213, 538}, {321, 25735}, {330, 1149}, {346, 36854}, {350, 1475}, {519, 20109}, {527, 17137}, {536, 3780}, {726, 17489}, {894, 1655}, {1107, 24330}, {1400, 28660}, {2251, 7816}, {2269, 34283}, {2275, 4713}, {2292, 49514}, {2295, 17351}, {2340, 25242}, {3161, 27253}, {3214, 17759}, {3663, 26965}, {3730, 3761}, {3760, 4253}, {3765, 25733}, {3933, 4766}, {3952, 25244}, {3967, 4447}, {3971, 25263}, {3975, 32939}, {3978, 53129}, {4044, 18206}, {4357, 26035}, {4396, 33863}, {4400, 17735}, {4441, 21384}, {4465, 16604}, {4805, 7748}, {4968, 49516}, {5230, 6392}, {5254, 24995}, {5308, 30568}, {6381, 16549}, {7760, 21764}, {7881, 30816}, {16466, 22253}, {16552, 20888}, {16827, 40908}, {17001, 37603}, {17002, 54354}, {17033, 17350}, {17140, 25261}, {17165, 25237}, {17257, 31339}, {17353, 26978}, {17738, 33950}, {17753, 30036}, {17754, 18135}, {17755, 20880}, {17781, 50154}, {19582, 27340}, {20244, 49774}, {20335, 27109}, {20347, 26770}, {21024, 24690}, {21071, 30941}, {21422, 30807}, {21935, 47286}, {23649, 26959}, {24215, 27097}, {24443, 25994}, {25591, 25918}, {27318, 28257}, {50093, 50155}

X(56024) = anticomplement of X(24214)
X(56024) = X(i)-Dao conjugate of X(j) for these {i, j}: {24214, 24214}
X(56024) = barycentric product X(i)*X(j) for these (i, j): {17066, 190}
X(56024) = barycentric quotient X(i)/X(j) for these (i, j): {17066, 514}
X(56024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 27523, 29966}, {190, 1909, 1334}, {194, 24514, 1193}, {16552, 20888, 24592}, {17350, 20081, 17033}, {17499, 25264, 42}, {20347, 26770, 29960}


X(56025) = KP2(X(2)) OF X(8) AND X(43)

Barycentrics    2*b^2*c^2+a^3*(b+c)-a*b*c*(b+c)-a^2*(b^2-b*c+c^2) : :

X(56025) lies on these lines: {1, 1655}, {2, 23649}, {7, 30030}, {8, 144}, {9, 1909}, {43, 194}, {45, 24656}, {57, 3975}, {63, 3765}, {76, 17026}, {85, 17755}, {190, 3208}, {239, 20081}, {304, 35102}, {330, 21214}, {527, 21281}, {668, 3501}, {726, 21216}, {799, 24615}, {894, 41838}, {982, 25994}, {1086, 24735}, {1334, 25728}, {1423, 27424}, {1475, 18135}, {1707, 4039}, {1743, 17033}, {1757, 9902}, {1975, 3684}, {2082, 17738}, {2295, 50127}, {3177, 17760}, {3596, 44421}, {3691, 4384}, {3760, 45751}, {3761, 16552}, {3780, 3875}, {3912, 27523}, {3985, 18156}, {4253, 6381}, {4554, 34497}, {4713, 17448}, {4721, 16975}, {4754, 10436}, {5247, 7754}, {5814, 50153}, {5905, 30059}, {6376, 17754}, {6392, 33137}, {9369, 10025}, {16779, 16916}, {16997, 37608}, {17298, 29966}, {17304, 26965}, {17308, 26035}, {17316, 30568}, {17350, 17752}, {17753, 49774}, {18206, 28660}, {19565, 53676}, {20347, 30036}, {20436, 30807}, {20943, 37686}, {21025, 24691}, {24214, 27299}, {24349, 27288}, {24351, 24708}, {25101, 27253}, {25264, 50581}, {25298, 32933}, {25350, 25610}, {26102, 27269}, {27340, 27538}, {27626, 44139}, {28809, 30567}, {30038, 30946}, {33888, 33890}, {37598, 49514}, {41015, 49518}, {46196, 52716}, {50029, 54406}

X(56025) = anticomplement of X(24215)
X(56025) = X(i)-Dao conjugate of X(j) for these {i, j}: {24215, 24215}
X(56025) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2665), X(3062)}}, {{A, B, C, X(10405), X(39925)}}
X(56025) = barycentric product X(i)*X(j) for these (i, j): {22222, 799}, {24666, 668}
X(56025) = barycentric quotient X(i)/X(j) for these (i, j): {22222, 661}, {24666, 513}
X(56025) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 21384, 17026}, {190, 24524, 3208}, {3177, 32937, 17760}, {17350, 21219, 17752}, {21226, 24514, 1}, {27523, 36854, 3912}


X(56026) = KP2(X(2)) OF X(8) AND X(86)

Barycentrics    (a^3+(b-c)^2*c-a^2*(2*b+c)+a*(b^2+4*b*c-c^2))*(a^3+b*(b-c)^2-a^2*(b+2*c)+a*(-b^2+4*b*c+c^2)) : :

X(56026) lies on these lines: {2, 4513}, {7, 480}, {8, 36620}, {75, 8580}, {86, 13405}, {144, 11051}, {200, 1088}, {658, 17658}, {673, 3452}, {2319, 27498}, {3729, 19605}, {5437, 27475}, {5836, 7249}, {6745, 21453}, {14828, 30712}, {35983, 39734}

X(56026) = isogonal conjugate of X(20978)
X(56026) = isotomic conjugate of X(11019)
X(56026) = trilinear pole of line {40872, 514}
X(56026) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20978}, {6, 40133}, {19, 22088}, {25, 10167}, {31, 11019}, {32, 20905}, {56, 14100}, {57, 1200}, {213, 26818}, {604, 41006}, {1333, 21049}, {1420, 45229}
X(56026) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 14100}, {2, 11019}, {3, 20978}, {6, 22088}, {9, 40133}, {37, 21049}, {3161, 41006}, {5452, 1200}, {6376, 20905}, {6505, 10167}, {6626, 26818}
X(56026) = X(i)-cross conjugate of X(j) for these {i, j}: {3900, 190}, {20103, 2}, {46402, 668}
X(56026) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(8580)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(8), X(16284)}}, {{A, B, C, X(10), X(13405)}}, {{A, B, C, X(69), X(52406)}}, {{A, B, C, X(76), X(52156)}}, {{A, B, C, X(144), X(4461)}}, {{A, B, C, X(200), X(480)}}, {{A, B, C, X(312), X(8817)}}, {{A, B, C, X(333), X(4998)}}, {{A, B, C, X(664), X(31628)}}, {{A, B, C, X(765), X(6605)}}, {{A, B, C, X(1043), X(1257)}}, {{A, B, C, X(1222), X(1376)}}, {{A, B, C, X(1280), X(55997)}}, {{A, B, C, X(1909), X(5836)}}, {{A, B, C, X(2481), X(40420)}}, {{A, B, C, X(3452), X(7018)}}, {{A, B, C, X(4102), X(34409)}}, {{A, B, C, X(4416), X(4431)}}, {{A, B, C, X(4847), X(6745)}}, {{A, B, C, X(4997), X(6063)}}, {{A, B, C, X(5437), X(40719)}}, {{A, B, C, X(5850), X(51090)}}, {{A, B, C, X(6557), X(44186)}}, {{A, B, C, X(7045), X(40399)}}, {{A, B, C, X(11019), X(20103)}}, {{A, B, C, X(14004), X(35983)}}, {{A, B, C, X(26981), X(27024)}}, {{A, B, C, X(32008), X(40419)}}, {{A, B, C, X(32023), X(35160)}}, {{A, B, C, X(40417), X(40422)}}
X(56026) = barycentric product X(i)*X(j) for these (i, j): {14493, 304}, {23618, 8}
X(56026) = barycentric quotient X(i)/X(j) for these (i, j): {1, 40133}, {2, 11019}, {3, 22088}, {6, 20978}, {8, 41006}, {9, 14100}, {10, 21049}, {55, 1200}, {63, 10167}, {75, 20905}, {86, 26818}, {144, 43182}, {3680, 45202}, {14493, 19}, {23618, 7}


X(56027) = KP3(X(1)) OF X(1) AND X(4)

Barycentrics    a*(2*a^3+2*b^3-b^2*c-2*b*c^2+c^3-a^2*(2*b+c)-2*a*(b^2+c^2))*(2*a^3+b^3-2*b^2*c-b*c^2+2*c^3-a^2*(b+2*c)-2*a*(b^2+c^2)) : :

X(56027) lies on the Feuerbach hyperbola and on these lines: {1, 6875}, {3, 17097}, {4, 2646}, {7, 1385}, {8, 5791}, {9, 22836}, {21, 5730}, {36, 15173}, {55, 1389}, {79, 3485}, {80, 498}, {84, 13384}, {90, 45230}, {104, 34471}, {411, 37606}, {1000, 37080}, {1056, 24299}, {1058, 43740}, {1156, 3560}, {1319, 3296}, {1320, 3295}, {1388, 15179}, {1392, 9957}, {1476, 10246}, {2320, 3869}, {2476, 10609}, {3057, 14497}, {3062, 6261}, {3255, 5698}, {3488, 6598}, {3576, 5665}, {3577, 3601}, {3612, 6876}, {3616, 11604}, {3746, 21398}, {4313, 37820}, {5426, 15910}, {5557, 21842}, {5558, 24928}, {5560, 6873}, {5561, 12047}, {5703, 10526}, {6597, 30144}, {6855, 7319}, {6869, 30275}, {10266, 11415}, {10393, 38271}, {18490, 20323}, {23838, 48340}, {34918, 45701}

X(56027) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 31266}
X(56027) = X(i)-vertex conjugate of X(j) for these {i, j}: {56, 3296}
X(56027) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 31266}
X(56027) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(2), X(22836)}}, {{A, B, C, X(3), X(2646)}}, {{A, B, C, X(28), X(6857)}}, {{A, B, C, X(29), X(6875)}}, {{A, B, C, X(35), X(37525)}}, {{A, B, C, X(36), X(37571)}}, {{A, B, C, X(37), X(5730)}}, {{A, B, C, X(40), X(13384)}}, {{A, B, C, X(55), X(945)}}, {{A, B, C, X(56), X(1175)}}, {{A, B, C, X(77), X(4305)}}, {{A, B, C, X(78), X(21165)}}, {{A, B, C, X(284), X(3417)}}, {{A, B, C, X(498), X(4511)}}, {{A, B, C, X(517), X(34471)}}, {{A, B, C, X(759), X(959)}}, {{A, B, C, X(951), X(10623)}}, {{A, B, C, X(953), X(1036)}}, {{A, B, C, X(957), X(2218)}}, {{A, B, C, X(999), X(37080)}}, {{A, B, C, X(1057), X(3445)}}, {{A, B, C, X(1068), X(45230)}}, {{A, B, C, X(1319), X(3295)}}, {{A, B, C, X(1388), X(9957)}}, {{A, B, C, X(1411), X(37739)}}, {{A, B, C, X(1442), X(4299)}}, {{A, B, C, X(1807), X(11375)}}, {{A, B, C, X(1870), X(3486)}}, {{A, B, C, X(2098), X(15178)}}, {{A, B, C, X(2167), X(55963)}}, {{A, B, C, X(2217), X(5791)}}, {{A, B, C, X(2339), X(45098)}}, {{A, B, C, X(3057), X(10246)}}, {{A, B, C, X(3303), X(24928)}}, {{A, B, C, X(3316), X(30557)}}, {{A, B, C, X(3317), X(30556)}}, {{A, B, C, X(3345), X(3576)}}, {{A, B, C, X(3431), X(52185)}}, {{A, B, C, X(3477), X(28219)}}, {{A, B, C, X(3560), X(52891)}}, {{A, B, C, X(3746), X(21842)}}, {{A, B, C, X(3748), X(7373)}}, {{A, B, C, X(3869), X(4653)}}, {{A, B, C, X(5048), X(37624)}}, {{A, B, C, X(5397), X(10570)}}, {{A, B, C, X(5426), X(46441)}}, {{A, B, C, X(5697), X(24926)}}, {{A, B, C, X(6767), X(20323)}}, {{A, B, C, X(6852), X(17515)}}, {{A, B, C, X(7040), X(7098)}}, {{A, B, C, X(7952), X(21740)}}, {{A, B, C, X(7987), X(53054)}}, {{A, B, C, X(10013), X(37142)}}, {{A, B, C, X(11270), X(37741)}}, {{A, B, C, X(13390), X(38234)}}, {{A, B, C, X(13472), X(36052)}}, {{A, B, C, X(24299), X(26357)}}, {{A, B, C, X(24624), X(25417)}}, {{A, B, C, X(24927), X(26358)}}, {{A, B, C, X(25430), X(36100)}}, {{A, B, C, X(26363), X(34772)}}, {{A, B, C, X(30392), X(53053)}}, {{A, B, C, X(37600), X(37606)}}, {{A, B, C, X(37837), X(39167)}}, {{A, B, C, X(39392), X(41442)}}, {{A, B, C, X(40437), X(43531)}}
X(56027) = barycentric quotient X(i)/X(j) for these (i, j): {1, 31266}


X(56028) = KP3(X(1)) OF X(1) AND X(7)

Barycentrics    a*(2*a^2-4*a*b+2*b^2-3*a*c-3*b*c+c^2)*(2*a^2-3*a*b+b^2-4*a*c-3*b*c+2*c^2) : :

X(56028) lies on the Feuerbach hyperbola and on these lines: {4, 8236}, {7, 3748}, {8, 17240}, {9, 3957}, {21, 42871}, {79, 390}, {294, 16777}, {516, 43732}, {885, 4802}, {1000, 15933}, {1001, 32635}, {1100, 40779}, {1320, 8162}, {2550, 43741}, {3254, 20095}, {3255, 20059}, {3551, 4343}, {3616, 43745}, {4326, 31507}, {4900, 54318}, {5557, 11038}, {5558, 37080}, {5560, 43179}, {5561, 30331}, {6598, 10587}, {7284, 30284}, {10389, 10390}, {14189, 30494}, {17570, 38316}, {18490, 24929}, {30318, 43730}, {30332, 43733}

X(56028) = trilinear pole of line {650, 42325}
X(56028) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 20195}, {1212, 39669}
X(56028) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 20195}
X(56028) = X(i)-cross conjugate of X(j) for these {i, j}: {11025, 7}
X(56028) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(2), X(3957)}}, {{A, B, C, X(6), X(42819)}}, {{A, B, C, X(37), X(42871)}}, {{A, B, C, X(55), X(3748)}}, {{A, B, C, X(59), X(3477)}}, {{A, B, C, X(77), X(8236)}}, {{A, B, C, X(81), X(42318)}}, {{A, B, C, X(390), X(1442)}}, {{A, B, C, X(518), X(4802)}}, {{A, B, C, X(673), X(25417)}}, {{A, B, C, X(765), X(30712)}}, {{A, B, C, X(1001), X(1100)}}, {{A, B, C, X(1002), X(2160)}}, {{A, B, C, X(1255), X(39273)}}, {{A, B, C, X(1280), X(5936)}}, {{A, B, C, X(1319), X(8162)}}, {{A, B, C, X(1445), X(27818)}}, {{A, B, C, X(2646), X(33963)}}, {{A, B, C, X(3243), X(16673)}}, {{A, B, C, X(3303), X(37080)}}, {{A, B, C, X(3750), X(17715)}}, {{A, B, C, X(3872), X(15933)}}, {{A, B, C, X(4661), X(17240)}}, {{A, B, C, X(5220), X(46845)}}, {{A, B, C, X(5572), X(34522)}}, {{A, B, C, X(6553), X(40430)}}, {{A, B, C, X(6767), X(24929)}}, {{A, B, C, X(7269), X(11038)}}, {{A, B, C, X(10385), X(28071)}}, {{A, B, C, X(10587), X(34772)}}, {{A, B, C, X(13384), X(51779)}}, {{A, B, C, X(15570), X(16675)}}, {{A, B, C, X(16667), X(38316)}}, {{A, B, C, X(20059), X(29007)}}, {{A, B, C, X(29815), X(32858)}}, {{A, B, C, X(39704), X(55989)}}
X(56028) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20195}


X(56029) = KP3(X(1)) OF X(1) AND X(8)

Barycentrics    a*(2*a^3+2*b^3-b^2*c-2*b*c^2+c^3-a^2*(2*b+c)-2*a*(b^2-5*b*c+c^2))*(2*a^3+b^3-2*b^2*c-b*c^2+2*c^3-a^2*(b+2*c)-2*a*(b^2-5*b*c+c^2)) : :

X(56029) lies on the Feuerbach hyperbola and on these lines: {4, 51788}, {8, 17728}, {80, 14986}, {354, 1392}, {1000, 24928}, {1210, 43731}, {1319, 7320}, {1320, 3304}, {1388, 2346}, {1389, 7373}, {3255, 11038}, {3296, 5734}, {4308, 5555}, {4866, 19861}, {4900, 17572}, {5045, 14497}, {5553, 11037}, {6598, 11240}, {13602, 21842}, {13606, 15717}, {18398, 24302}, {21398, 37602}, {26129, 30513}

X(56029) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 20196}
X(56029) = X(i)-vertex conjugate of X(j) for these {i, j}: {56, 7320}
X(56029) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 20196}
X(56029) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(51788)}}, {{A, B, C, X(56), X(20323)}}, {{A, B, C, X(145), X(55991)}}, {{A, B, C, X(354), X(1388)}}, {{A, B, C, X(936), X(38314)}}, {{A, B, C, X(945), X(41431)}}, {{A, B, C, X(963), X(41432)}}, {{A, B, C, X(999), X(24928)}}, {{A, B, C, X(1002), X(17728)}}, {{A, B, C, X(1319), X(2334)}}, {{A, B, C, X(1385), X(7373)}}, {{A, B, C, X(3241), X(36846)}}, {{A, B, C, X(3616), X(19861)}}, {{A, B, C, X(4511), X(14986)}}, {{A, B, C, X(5045), X(10246)}}, {{A, B, C, X(5734), X(7190)}}, {{A, B, C, X(7131), X(44559)}}, {{A, B, C, X(11240), X(34772)}}, {{A, B, C, X(12629), X(20057)}}, {{A, B, C, X(15178), X(15934)}}, {{A, B, C, X(17609), X(34471)}}, {{A, B, C, X(21842), X(37602)}}, {{A, B, C, X(25417), X(34234)}}
X(56029) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20196}


X(56030) = KP3(X(1)) OF X(1) AND X(21)

Barycentrics    a*(3*a^3+4*b^3-3*b^2*c-4*b*c^2+3*c^3-a^2*(4*b+3*c)-3*a*(b^2+c^2))*(3*a^3+3*b^3-4*b^2*c-3*b*c^2+4*c^3-a^2*(3*b+4*c)-3*a*(b^2+c^2)) : :

X(56030) lies on the Feuerbach hyperbola and on these lines: {8, 31245}, {21, 44663}, {79, 28164}, {943, 50194}, {1389, 33597}, {1476, 44840}, {2346, 11011}, {3485, 7319}, {3486, 5556}, {3984, 4866}, {4311, 5557}, {5045, 37518}, {5559, 13405}, {5844, 7317}, {10592, 43734}, {12047, 17501}, {15910, 34195}, {16615, 21740}, {17098, 36002}

X(56030) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(81), X(6336)}}, {{A, B, C, X(105), X(31245)}}, {{A, B, C, X(354), X(11011)}}, {{A, B, C, X(523), X(31503)}}, {{A, B, C, X(942), X(50194)}}, {{A, B, C, X(1482), X(15934)}}, {{A, B, C, X(2099), X(2218)}}, {{A, B, C, X(3057), X(44840)}}, {{A, B, C, X(3984), X(4652)}}, {{A, B, C, X(4311), X(7269)}}, {{A, B, C, X(4861), X(13405)}}, {{A, B, C, X(5045), X(10222)}}, {{A, B, C, X(5048), X(17609)}}, {{A, B, C, X(7373), X(10247)}}, {{A, B, C, X(25417), X(36100)}}, {{A, B, C, X(28164), X(35057)}}, {{A, B, C, X(33179), X(51788)}}, {{A, B, C, X(34195), X(46441)}}, {{A, B, C, X(37741), X(43719)}}


X(56031) = KP3(X(1)) OF X(1) AND X(56)

Barycentrics    a*(2*b*c*(b+c)+a^2*(2*b+c)+a*(2*b^2-5*b*c+c^2))*(2*b*c*(b+c)+a^2*(b+2*c)+a*(b^2-5*b*c+2*c^2)) : :

X(56031) lies on these lines: {58, 37542}, {106, 474}, {977, 38460}, {1222, 5192}, {2163, 5255}, {3623, 5331}, {10459, 41436}, {11354, 39748}, {20057, 40433}, {23345, 48342}

X(56031) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(29), X(33963)}}, {{A, B, C, X(65), X(6553)}}, {{A, B, C, X(280), X(3057)}}, {{A, B, C, X(474), X(37168)}}, {{A, B, C, X(519), X(15315)}}, {{A, B, C, X(976), X(38460)}}, {{A, B, C, X(2099), X(5255)}}, {{A, B, C, X(3241), X(10459)}}, {{A, B, C, X(3666), X(42360)}}, {{A, B, C, X(3720), X(20057)}}, {{A, B, C, X(3938), X(4861)}}, {{A, B, C, X(4186), X(11115)}}, {{A, B, C, X(4492), X(5559)}}, {{A, B, C, X(11011), X(37540)}}, {{A, B, C, X(15179), X(40401)}}


X(56032) = KP3(X(1)) OF X(1) AND X(58)

Barycentrics    a*(2*b*c*(b+c)+a^2*(2*b+c)+a*(2*b^2+c^2))*(2*b*c*(b+c)+a^2*(b+2*c)+a*(b^2+2*c^2)) : :

X(56032) lies on these lines: {1, 31264}, {56, 16374}, {58, 5258}, {519, 5331}, {977, 30147}, {2163, 2975}, {2334, 50637}, {3244, 40433}, {4653, 52150}, {8672, 23345}, {30145, 40436}

X(56032) = isogonal conjugate of X(50604)
X(56032) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(8), X(30116)}}, {{A, B, C, X(10), X(10459)}}, {{A, B, C, X(29), X(16374)}}, {{A, B, C, X(37), X(5258)}}, {{A, B, C, X(98), X(1389)}}, {{A, B, C, X(291), X(31264)}}, {{A, B, C, X(502), X(2292)}}, {{A, B, C, X(519), X(8672)}}, {{A, B, C, X(943), X(2975)}}, {{A, B, C, X(975), X(3872)}}, {{A, B, C, X(976), X(30147)}}, {{A, B, C, X(1000), X(55036)}}, {{A, B, C, X(1224), X(34434)}}, {{A, B, C, X(1255), X(2985)}}, {{A, B, C, X(3244), X(3720)}}, {{A, B, C, X(3616), X(50637)}}, {{A, B, C, X(3924), X(30145)}}, {{A, B, C, X(3938), X(30143)}}, {{A, B, C, X(4492), X(5560)}}, {{A, B, C, X(5053), X(40450)}}, {{A, B, C, X(12629), X(17022)}}, {{A, B, C, X(15446), X(40401)}}, {{A, B, C, X(17098), X(23051)}}, {{A, B, C, X(25430), X(34234)}}, {{A, B, C, X(30142), X(49487)}}, {{A, B, C, X(31359), X(40039)}}
X(56032) = barycentric quotient X(i)/X(j) for these (i, j): {6, 50604}


X(56033) = KP3(X(1)) OF X(1) AND X(63)

Barycentrics    a*(a^4+3*b^4-4*b^2*c^2+c^4-2*a^2*(2*b^2+c^2))*(a^4+b^4-4*b^2*c^2+3*c^4-2*a^2*(b^2+2*c^2)) : :

X(56033) lies on these lines: {1, 2181}, {19, 2167}, {63, 1953}, {72, 1482}, {226, 8796}, {304, 14213}, {306, 8797}, {1214, 3306}, {2184, 45224}, {13464, 39130}

X(56033) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 11402}, {3, 3087}, {4, 36748}, {6, 631}, {32, 44149}, {97, 6755}, {110, 47122}, {275, 26907}
X(56033) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 631}, {244, 47122}, {6376, 44149}, {32664, 11402}, {36033, 36748}, {36103, 3087}
X(56033) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(63)}}, {{A, B, C, X(2), X(1320)}}, {{A, B, C, X(7), X(34408)}}, {{A, B, C, X(19), X(1953)}}, {{A, B, C, X(27), X(3577)}}, {{A, B, C, X(57), X(1482)}}, {{A, B, C, X(81), X(11682)}}, {{A, B, C, X(82), X(18713)}}, {{A, B, C, X(189), X(1255)}}, {{A, B, C, X(223), X(13464)}}, {{A, B, C, X(278), X(1389)}}, {{A, B, C, X(329), X(5558)}}, {{A, B, C, X(908), X(44733)}}, {{A, B, C, X(945), X(1790)}}, {{A, B, C, X(969), X(54121)}}, {{A, B, C, X(1096), X(2186)}}, {{A, B, C, X(1392), X(40399)}}, {{A, B, C, X(1821), X(23051)}}, {{A, B, C, X(2339), X(18359)}}, {{A, B, C, X(2982), X(14497)}}, {{A, B, C, X(3305), X(43745)}}, {{A, B, C, X(3680), X(40435)}}, {{A, B, C, X(5665), X(40444)}}, {{A, B, C, X(7131), X(30690)}}, {{A, B, C, X(10405), X(27789)}}, {{A, B, C, X(17097), X(55963)}}, {{A, B, C, X(17098), X(37203)}}, {{A, B, C, X(19611), X(40440)}}, {{A, B, C, X(21398), X(37887)}}, {{A, B, C, X(25417), X(36100)}}, {{A, B, C, X(25430), X(34234)}}, {{A, B, C, X(34051), X(45098)}}
X(56033) = barycentric product X(i)*X(j) for these (i, j): {1, 8797}, {63, 8796}, {304, 34818}, {3527, 75}
X(56033) = barycentric quotient X(i)/X(j) for these (i, j): {1, 631}, {19, 3087}, {31, 11402}, {48, 36748}, {75, 44149}, {661, 47122}, {2181, 6755}, {3527, 1}, {8796, 92}, {8797, 75}, {34818, 19}


X(56034) = KP3(X(1)) OF X(1) AND X(75)

Barycentrics    a*(2*a^2+2*b^2+c^2)*(2*a^2+b^2+2*c^2) : :

X(56034) lies on these lines: {10, 17352}, {37, 5332}, {75, 17469}, {759, 7954}, {1581, 17467}, {1964, 51844}, {2186, 17438}, {2962, 4008}, {5263, 39708}, {17370, 17716}, {17393, 39714}, {17394, 39712}, {17400, 29648}, {18058, 18832}, {18833, 52138}, {32922, 39711}

X(56034) = trilinear pole of line {661, 48065}
X(56034) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 7772}, {3, 5064}, {6, 3763}, {39, 39668}, {99, 8665}, {101, 47923}, {110, 7950}, {3108, 39784}
X(56034) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 3763}, {244, 7950}, {1015, 47923}, {32664, 7772}, {36103, 5064}, {38986, 8665}
X(56034) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(2), X(17371)}}, {{A, B, C, X(6), X(5332)}}, {{A, B, C, X(31), X(17469)}}, {{A, B, C, X(81), X(17352)}}, {{A, B, C, X(92), X(39727)}}, {{A, B, C, X(105), X(30598)}}, {{A, B, C, X(673), X(25417)}}, {{A, B, C, X(749), X(985)}}, {{A, B, C, X(751), X(983)}}, {{A, B, C, X(757), X(39958)}}, {{A, B, C, X(765), X(9452)}}, {{A, B, C, X(977), X(36125)}}, {{A, B, C, X(1100), X(15485)}}, {{A, B, C, X(1390), X(28650)}}, {{A, B, C, X(1449), X(3246)}}, {{A, B, C, X(1964), X(34248)}}, {{A, B, C, X(2298), X(39704)}}, {{A, B, C, X(3920), X(29648)}}, {{A, B, C, X(3938), X(29852)}}, {{A, B, C, X(5263), X(17394)}}, {{A, B, C, X(7194), X(40401)}}, {{A, B, C, X(16706), X(17342)}}, {{A, B, C, X(17149), X(18058)}}, {{A, B, C, X(17289), X(17400)}}, {{A, B, C, X(17358), X(17370)}}, {{A, B, C, X(17393), X(32922)}}, {{A, B, C, X(27475), X(40044)}}, {{A, B, C, X(28395), X(29423)}}, {{A, B, C, X(30597), X(51838)}}, {{A, B, C, X(38831), X(39973)}}
X(56034) = barycentric product X(i)*X(j) for these (i, j): {1, 43527}, {1577, 7954}, {39955, 75}
X(56034) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3763}, {19, 5064}, {31, 7772}, {82, 39668}, {513, 47923}, {661, 7950}, {798, 8665}, {7954, 662}, {17469, 39784}, {39955, 1}, {43527, 75}


X(56035) = KP3(X(1)) OF X(1) AND X(79)

Barycentrics    a*(2*a^3+2*b^3-b^2*c-2*b*c^2+c^3-a^2*(2*b+c)-a*(2*b^2+5*b*c+2*c^2))*(2*a^3+b^3-2*b^2*c-b*c^2+2*c^3-a^2*(b+2*c)-a*(2*b^2+5*b*c+2*c^2)) : :

X(56035) lies on the Feuerbach hyperbola and on these lines: {4, 11218}, {79, 4330}, {2320, 3881}, {3295, 15173}, {3296, 37571}, {3612, 10390}, {3748, 5559}, {5557, 24929}, {5558, 37525}, {5560, 37719}, {5561, 6284}, {6147, 43732}, {6767, 21398}, {10389, 17098}, {18490, 21842}, {41862, 43740}

X(56035) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(35), X(37080)}}, {{A, B, C, X(1442), X(4330)}}, {{A, B, C, X(3295), X(37571)}}, {{A, B, C, X(3303), X(37525)}}, {{A, B, C, X(3612), X(10389)}}, {{A, B, C, X(3746), X(24929)}}, {{A, B, C, X(3748), X(5563)}}, {{A, B, C, X(3881), X(4653)}}, {{A, B, C, X(5919), X(24926)}}, {{A, B, C, X(6767), X(21842)}}, {{A, B, C, X(25417), X(43758)}}, {{A, B, C, X(28146), X(35057)}}


X(56036) = KP3(X(1)) OF X(1) AND X(80)

Barycentrics    a*(2*a^3+2*b^3-b^2*c-2*b*c^2+c^3-a^2*(2*b+c)+a*(-2*b^2+5*b*c-2*c^2))*(2*a^3+b^3-2*b^2*c-b*c^2+2*c^3-a^2*(b+2*c)+a*(-2*b^2+5*b*c-2*c^2)) : :

X(56036) lies on the Feuerbach hyperbola and on these lines: {1, 12515}, {4, 11715}, {8, 214}, {9, 17455}, {11, 5560}, {21, 10074}, {36, 1320}, {56, 21398}, {79, 24928}, {80, 1319}, {515, 23959}, {517, 24302}, {549, 1317}, {943, 24926}, {952, 43731}, {1000, 37525}, {1385, 5559}, {1387, 5561}, {1388, 15446}, {1389, 5563}, {1392, 5903}, {1476, 10058}, {1807, 46821}, {2320, 3898}, {2646, 13606}, {2802, 37307}, {3036, 13747}, {3065, 12740}, {3255, 42819}, {3304, 15173}, {3467, 6265}, {3680, 5541}, {4867, 45393}, {5258, 32635}, {5533, 37406}, {5557, 20323}, {5902, 14497}, {6598, 12750}, {7161, 12739}, {7320, 37571}, {7705, 37710}, {10090, 24297}, {10246, 15175}, {10308, 46816}, {10698, 37518}, {11256, 15015}, {12737, 13143}, {12749, 34918}, {13602, 24929}, {23838, 53314}, {33709, 45287}, {36004, 50891}, {37719, 38032}

X(56036) = reflection of X(i) in X(j) for these {i,j}: {5560, 11}
X(56036) = trilinear pole of line {650, 16669}
X(56036) = X(i)-vertex conjugate of X(j) for these {i, j}: {56, 80}, {34442, 55929}
X(56036) = X(i)-cross conjugate of X(j) for these {i, j}: {25405, 1}
X(56036) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(35), X(24928)}}, {{A, B, C, X(36), X(106)}}, {{A, B, C, X(56), X(21842)}}, {{A, B, C, X(59), X(28219)}}, {{A, B, C, X(74), X(1318)}}, {{A, B, C, X(765), X(6095)}}, {{A, B, C, X(942), X(24926)}}, {{A, B, C, X(999), X(37525)}}, {{A, B, C, X(1100), X(5258)}}, {{A, B, C, X(1385), X(5563)}}, {{A, B, C, X(1388), X(5903)}}, {{A, B, C, X(1411), X(2718)}}, {{A, B, C, X(1420), X(37618)}}, {{A, B, C, X(1795), X(11715)}}, {{A, B, C, X(1807), X(16173)}}, {{A, B, C, X(2006), X(3218)}}, {{A, B, C, X(2160), X(5445)}}, {{A, B, C, X(2164), X(41436)}}, {{A, B, C, X(3304), X(37571)}}, {{A, B, C, X(3445), X(7163)}}, {{A, B, C, X(3582), X(4511)}}, {{A, B, C, X(3738), X(28204)}}, {{A, B, C, X(3746), X(20323)}}, {{A, B, C, X(3898), X(4653)}}, {{A, B, C, X(4564), X(34578)}}, {{A, B, C, X(4867), X(8609)}}, {{A, B, C, X(5902), X(10246)}}, {{A, B, C, X(7052), X(41225)}}, {{A, B, C, X(8756), X(41529)}}, {{A, B, C, X(10013), X(40110)}}, {{A, B, C, X(12515), X(44693)}}, {{A, B, C, X(13384), X(51816)}}, {{A, B, C, X(15227), X(28193)}}, {{A, B, C, X(15337), X(28211)}}, {{A, B, C, X(16669), X(39781)}}, {{A, B, C, X(18398), X(34471)}}, {{A, B, C, X(24929), X(37602)}}, {{A, B, C, X(25417), X(43757)}}, {{A, B, C, X(26745), X(31231)}}, {{A, B, C, X(28233), X(36052)}}, {{A, B, C, X(30282), X(53058)}}, {{A, B, C, X(38602), X(51565)}}, {{A, B, C, X(43655), X(46819)}}


X(56037) = KP3(X(1)) OF X(1) AND X(81)

Barycentrics    a*(3*a+4*b+3*c)*(3*a+3*b+4*c) : :

X(56037) lies on these lines: {1, 3988}, {2, 4399}, {81, 3723}, {88, 17019}, {105, 28214}, {274, 4980}, {551, 1224}, {1022, 15309}, {1255, 35595}, {1929, 3722}, {5287, 39963}, {16777, 25417}, {17011, 40434}, {19738, 38247}, {24857, 51107}, {24858, 51104}, {25430, 37680}, {26745, 37633}, {27789, 32911}, {28606, 39980}, {29570, 39736}, {29584, 32009}, {31332, 50277}, {33761, 39260}, {36871, 42044}, {39747, 42025}

X(56037) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 19862}, {55, 4114}, {101, 28213}, {1213, 39670}
X(56037) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 19862}, {223, 4114}, {1015, 28213}
X(56037) = X(i)-cross conjugate of X(j) for these {i, j}: {4813, 100}, {48074, 4606}, {50191, 7}
X(56037) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(21), X(4102)}}, {{A, B, C, X(27), X(16861)}}, {{A, B, C, X(37), X(3723)}}, {{A, B, C, X(42), X(29580)}}, {{A, B, C, X(226), X(3988)}}, {{A, B, C, X(335), X(42041)}}, {{A, B, C, X(519), X(15309)}}, {{A, B, C, X(551), X(17011)}}, {{A, B, C, X(553), X(35595)}}, {{A, B, C, X(739), X(39967)}}, {{A, B, C, X(989), X(41895)}}, {{A, B, C, X(1029), X(5559)}}, {{A, B, C, X(1100), X(46845)}}, {{A, B, C, X(1171), X(41434)}}, {{A, B, C, X(1320), X(42030)}}, {{A, B, C, X(1962), X(52208)}}, {{A, B, C, X(2051), X(37518)}}, {{A, B, C, X(2214), X(16777)}}, {{A, B, C, X(3187), X(48855)}}, {{A, B, C, X(3241), X(5287)}}, {{A, B, C, X(3720), X(29584)}}, {{A, B, C, X(3920), X(29574)}}, {{A, B, C, X(4664), X(42044)}}, {{A, B, C, X(4921), X(37633)}}, {{A, B, C, X(5256), X(38314)}}, {{A, B, C, X(5311), X(17389)}}, {{A, B, C, X(5557), X(55027)}}, {{A, B, C, X(6605), X(7073)}}, {{A, B, C, X(10013), X(20332)}}, {{A, B, C, X(16834), X(29814)}}, {{A, B, C, X(17012), X(51103)}}, {{A, B, C, X(17013), X(51105)}}, {{A, B, C, X(17018), X(29597)}}, {{A, B, C, X(17021), X(51071)}}, {{A, B, C, X(17310), X(29816)}}, {{A, B, C, X(17388), X(23617)}}, {{A, B, C, X(28606), X(42034)}}, {{A, B, C, X(29570), X(42042)}}, {{A, B, C, X(29573), X(29815)}}, {{A, B, C, X(29817), X(50114)}}, {{A, B, C, X(32008), X(52393)}}, {{A, B, C, X(32089), X(40438)}}, {{A, B, C, X(32911), X(42025)}}, {{A, B, C, X(37680), X(42028)}}, {{A, B, C, X(39284), X(40396)}}, {{A, B, C, X(40433), X(55971)}}, {{A, B, C, X(40439), X(55997)}}
X(56037) = barycentric product X(i)*X(j) for these (i, j): {28214, 693}
X(56037) = barycentric quotient X(i)/X(j) for these (i, j): {1, 19862}, {57, 4114}, {513, 28213}, {28214, 100}


X(56038) = KP3(X(1)) OF X(1) AND X(84)

Barycentrics    a*(a^3+3*b^3-b^2*c-3*b*c^2+c^3-a^2*(3*b+c)-a*(b^2-10*b*c+c^2))*(a^3+b^3-3*b^2*c-b*c^2+3*c^3-a^2*(b+3*c)-a*(b^2-10*b*c+c^2)) : :

X(56038) lies on the Feuerbach hyperbola and on these lines: {4, 7962}, {7, 7982}, {9, 9957}, {21, 31393}, {40, 1476}, {46, 15180}, {57, 15179}, {79, 30323}, {80, 51785}, {84, 3057}, {104, 1697}, {517, 7091}, {936, 3680}, {943, 37556}, {944, 10307}, {1000, 1210}, {1320, 19861}, {1387, 11530}, {1482, 5665}, {2098, 3577}, {3062, 12672}, {3243, 3255}, {3244, 34919}, {3296, 3340}, {5258, 30337}, {5445, 13602}, {5557, 25415}, {5558, 11529}, {5697, 7284}, {5777, 33576}, {5919, 7160}, {7320, 14986}, {7971, 10309}, {10912, 42470}, {11518, 18490}, {12641, 17527}, {13384, 37518}, {15829, 34918}, {16005, 37738}, {16200, 17097}, {25097, 34894}

X(56038) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(2), X(12629)}}, {{A, B, C, X(3), X(7962)}}, {{A, B, C, X(10), X(36846)}}, {{A, B, C, X(35), X(30323)}}, {{A, B, C, X(40), X(3057)}}, {{A, B, C, X(55), X(7982)}}, {{A, B, C, X(57), X(9957)}}, {{A, B, C, X(65), X(31393)}}, {{A, B, C, X(145), X(936)}}, {{A, B, C, X(517), X(1697)}}, {{A, B, C, X(519), X(19861)}}, {{A, B, C, X(909), X(2334)}}, {{A, B, C, X(942), X(37556)}}, {{A, B, C, X(947), X(53089)}}, {{A, B, C, X(996), X(1067)}}, {{A, B, C, X(1057), X(1126)}}, {{A, B, C, X(1167), X(3478)}}, {{A, B, C, X(1210), X(3872)}}, {{A, B, C, X(1482), X(3601)}}, {{A, B, C, X(1807), X(37709)}}, {{A, B, C, X(1870), X(51785)}}, {{A, B, C, X(2098), X(3576)}}, {{A, B, C, X(2646), X(16200)}}, {{A, B, C, X(3247), X(5258)}}, {{A, B, C, X(3295), X(3340)}}, {{A, B, C, X(3303), X(11529)}}, {{A, B, C, X(3333), X(5919)}}, {{A, B, C, X(3445), X(45818)}}, {{A, B, C, X(3554), X(31435)}}, {{A, B, C, X(3746), X(25415)}}, {{A, B, C, X(4853), X(14986)}}, {{A, B, C, X(5045), X(51779)}}, {{A, B, C, X(5119), X(5697)}}, {{A, B, C, X(6336), X(39963)}}, {{A, B, C, X(6767), X(11518)}}, {{A, B, C, X(7991), X(9819)}}, {{A, B, C, X(8602), X(34434)}}, {{A, B, C, X(10222), X(13384)}}, {{A, B, C, X(11531), X(53053)}}, {{A, B, C, X(16189), X(53054)}}, {{A, B, C, X(25430), X(34234)}}


X(56039) = KP3(X(1)) OF X(1) AND X(89)

Barycentrics    a*(4*a+7*b+4*c)*(4*a+4*b+7*c) : :

X(56039) lies on these lines: {2, 4727}, {44, 25417}, {81, 16672}, {88, 16777}, {1022, 4813}, {1224, 46934}, {5287, 36603}, {8056, 17021}, {16676, 39948}, {17013, 25430}, {17019, 39980}, {29570, 36871}, {29585, 34914}, {29624, 34578}, {30589, 40833}, {37682, 39962}

X(56039) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(6), X(39260)}}, {{A, B, C, X(37), X(16672)}}, {{A, B, C, X(44), X(941)}}, {{A, B, C, X(145), X(17021)}}, {{A, B, C, X(679), X(30712)}}, {{A, B, C, X(1029), X(43734)}}, {{A, B, C, X(3240), X(29570)}}, {{A, B, C, X(3247), X(16676)}}, {{A, B, C, X(3616), X(17013)}}, {{A, B, C, X(3617), X(17019)}}, {{A, B, C, X(3621), X(5287)}}, {{A, B, C, X(3622), X(17012)}}, {{A, B, C, X(3920), X(29583)}}, {{A, B, C, X(3935), X(29624)}}, {{A, B, C, X(4792), X(30590)}}, {{A, B, C, X(5297), X(29585)}}, {{A, B, C, X(7320), X(21739)}}, {{A, B, C, X(16666), X(39960)}}, {{A, B, C, X(16816), X(29814)}}, {{A, B, C, X(17011), X(46934)}}, {{A, B, C, X(17018), X(29595)}}, {{A, B, C, X(17025), X(29586)}}, {{A, B, C, X(29579), X(29815)}}, {{A, B, C, X(43733), X(55027)}}


X(56040) = KP3(X(1)) OF X(1) AND X(104)

Barycentrics    a*(3*a^3+4*b^3-3*b^2*c-4*b*c^2+3*c^3-a^2*(4*b+3*c)+a*(-3*b^2+10*b*c-3*c^2))*(3*a^3+3*b^3-4*b^2*c-3*b*c^2+4*c^3-a^2*(3*b+4*c)+a*(-3*b^2+10*b*c-3*c^2)) : :

X(56040) lies on the Feuerbach hyperbola and on these lines: {1, 34474}, {4, 1317}, {7, 10247}, {8, 1387}, {84, 10698}, {100, 1392}, {104, 5048}, {952, 7319}, {1000, 5432}, {1156, 12737}, {1320, 5440}, {1389, 33176}, {1476, 10222}, {3057, 37518}, {3062, 25485}, {3255, 30331}, {3680, 45391}, {5553, 30305}, {5556, 5734}, {5603, 38307}, {6264, 33576}, {7972, 17501}, {10090, 24302}, {10308, 20586}, {11011, 15179}, {12531, 17533}, {12739, 16615}, {12740, 24297}, {17097, 33179}, {23838, 53532}

X(56040) = reflection of X(i) in X(j) for these {i,j}: {100, 51577}, {43734, 11}
X(56040) = isogonal conjugate of X(25405)
X(56040) = trilinear pole of line {650, 16885}
X(56040) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(33963)}}, {{A, B, C, X(55), X(10247)}}, {{A, B, C, X(59), X(28203)}}, {{A, B, C, X(102), X(1391)}}, {{A, B, C, X(105), X(31272)}}, {{A, B, C, X(106), X(18771)}}, {{A, B, C, X(517), X(5048)}}, {{A, B, C, X(999), X(54446)}}, {{A, B, C, X(1057), X(34442)}}, {{A, B, C, X(1120), X(40437)}}, {{A, B, C, X(1168), X(8686)}}, {{A, B, C, X(1280), X(6095)}}, {{A, B, C, X(1317), X(1807)}}, {{A, B, C, X(1318), X(36052)}}, {{A, B, C, X(1385), X(33176)}}, {{A, B, C, X(1387), X(1411)}}, {{A, B, C, X(1482), X(2098)}}, {{A, B, C, X(2316), X(28219)}}, {{A, B, C, X(2646), X(33179)}}, {{A, B, C, X(2802), X(4962)}}, {{A, B, C, X(3057), X(10222)}}, {{A, B, C, X(5919), X(50194)}}, {{A, B, C, X(6553), X(7040)}}, {{A, B, C, X(7962), X(16200)}}, {{A, B, C, X(7982), X(54197)}}, {{A, B, C, X(9957), X(11011)}}, {{A, B, C, X(10698), X(15501)}}, {{A, B, C, X(12740), X(34232)}}, {{A, B, C, X(15337), X(28197)}}, {{A, B, C, X(25416), X(36125)}}, {{A, B, C, X(34474), X(51565)}}
X(56040) = barycentric quotient X(i)/X(j) for these (i, j): {6, 25405}


X(56041) = KP3(X(1)) OF X(2) AND X(4)

Barycentrics    a*(a^4-2*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2))*(a^4-2*a*b*c^2+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(56041) lies on these lines: {1, 1993}, {2, 44179}, {28, 37615}, {57, 2337}, {278, 31019}, {279, 26842}, {1224, 19860}, {2006, 31266}, {2990, 28606}, {3083, 3302}, {3084, 3300}

X(56041) = trilinear pole of line {39212, 513}
X(56041) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 498}, {9, 1454}, {19, 26921}, {71, 14016}
X(56041) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 26921}, {9, 498}, {478, 1454}
X(56041) = X(i)-cross conjugate of X(j) for these {i, j}: {13401, 100}
X(56041) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(7), X(6504)}}, {{A, B, C, X(9), X(26842)}}, {{A, B, C, X(21), X(2994)}}, {{A, B, C, X(34), X(593)}}, {{A, B, C, X(60), X(56002)}}, {{A, B, C, X(63), X(30690)}}, {{A, B, C, X(77), X(97)}}, {{A, B, C, X(78), X(31626)}}, {{A, B, C, X(79), X(13579)}}, {{A, B, C, X(84), X(1029)}}, {{A, B, C, X(85), X(2167)}}, {{A, B, C, X(86), X(1993)}}, {{A, B, C, X(92), X(2185)}}, {{A, B, C, X(189), X(2320)}}, {{A, B, C, X(257), X(5392)}}, {{A, B, C, X(275), X(1063)}}, {{A, B, C, X(394), X(7100)}}, {{A, B, C, X(612), X(26639)}}, {{A, B, C, X(1039), X(8796)}}, {{A, B, C, X(1061), X(2052)}}, {{A, B, C, X(1096), X(30650)}}, {{A, B, C, X(1214), X(37615)}}, {{A, B, C, X(1411), X(2221)}}, {{A, B, C, X(1870), X(45126)}}, {{A, B, C, X(2339), X(18359)}}, {{A, B, C, X(3218), X(31266)}}, {{A, B, C, X(3577), X(55027)}}, {{A, B, C, X(3615), X(6513)}}, {{A, B, C, X(5560), X(11538)}}, {{A, B, C, X(5561), X(13585)}}, {{A, B, C, X(5712), X(26637)}}, {{A, B, C, X(13582), X(43732)}}, {{A, B, C, X(14621), X(40393)}}, {{A, B, C, X(14919), X(41081)}}, {{A, B, C, X(17011), X(19860)}}, {{A, B, C, X(17019), X(19861)}}, {{A, B, C, X(25930), X(29817)}}, {{A, B, C, X(28606), X(48380)}}
X(56041) = barycentric product X(i)*X(j) for these (i, j): {2337, 85}
X(56041) = barycentric quotient X(i)/X(j) for these (i, j): {1, 498}, {3, 26921}, {28, 14016}, {56, 1454}, {2337, 9}, {3338, 10044}


X(56042) = KP3(X(1)) OF X(2) AND X(6)

Barycentrics    (a^2+3*a*b+b^2)*(a^2+3*a*c+c^2) : :

X(56042) lies on these lines: {1, 7783}, {238, 1468}, {239, 940}, {330, 4038}, {1016, 17750}, {1429, 21454}, {1434, 17396}, {2275, 39971}, {6625, 24217}, {7785, 48825}, {7793, 37607}, {9345, 21226}, {17319, 34860}, {17743, 24512}, {27145, 27156}, {40432, 51356}

X(56042) = isotomic conjugate of X(48628)
X(56042) = trilinear pole of line {659, 4778}
X(56042) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 48628}, {55, 7201}, {100, 4502}, {101, 4490}, {190, 4507}, {292, 4489}, {692, 4500}, {1333, 48644}, {2176, 7275}
X(56042) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 48628}, {37, 48644}, {223, 7201}, {1015, 4490}, {1086, 4500}, {8054, 4502}, {19557, 4489}, {55053, 4507}
X(56042) = X(i)-cross conjugate of X(j) for these {i, j}: {48016, 190}
X(56042) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(83)}}, {{A, B, C, X(2), X(1434)}}, {{A, B, C, X(7), X(257)}}, {{A, B, C, X(8), X(18845)}}, {{A, B, C, X(56), X(81)}}, {{A, B, C, X(76), X(5557)}}, {{A, B, C, X(79), X(53105)}}, {{A, B, C, X(80), X(53107)}}, {{A, B, C, X(86), X(330)}}, {{A, B, C, X(321), X(35576)}}, {{A, B, C, X(335), X(3296)}}, {{A, B, C, X(385), X(17103)}}, {{A, B, C, X(514), X(17771)}}, {{A, B, C, X(596), X(44572)}}, {{A, B, C, X(598), X(5559)}}, {{A, B, C, X(671), X(43732)}}, {{A, B, C, X(673), X(39738)}}, {{A, B, C, X(904), X(2162)}}, {{A, B, C, X(1000), X(18843)}}, {{A, B, C, X(1015), X(17750)}}, {{A, B, C, X(1125), X(29612)}}, {{A, B, C, X(1220), X(38247)}}, {{A, B, C, X(1258), X(3445)}}, {{A, B, C, X(2163), X(40408)}}, {{A, B, C, X(2214), X(17962)}}, {{A, B, C, X(2275), X(24512)}}, {{A, B, C, X(2296), X(39925)}}, {{A, B, C, X(2321), X(17396)}}, {{A, B, C, X(2334), X(20332)}}, {{A, B, C, X(3227), X(43531)}}, {{A, B, C, X(3247), X(17117)}}, {{A, B, C, X(3304), X(5228)}}, {{A, B, C, X(3750), X(8616)}}, {{A, B, C, X(3875), X(17319)}}, {{A, B, C, X(3946), X(17242)}}, {{A, B, C, X(4038), X(7304)}}, {{A, B, C, X(5331), X(25417)}}, {{A, B, C, X(5395), X(7320)}}, {{A, B, C, X(6625), X(9311)}}, {{A, B, C, X(6650), X(31359)}}, {{A, B, C, X(8025), X(35058)}}, {{A, B, C, X(14377), X(32009)}}, {{A, B, C, X(14534), X(39948)}}, {{A, B, C, X(14623), X(24037)}}, {{A, B, C, X(17109), X(37633)}}, {{A, B, C, X(17367), X(49768)}}, {{A, B, C, X(18166), X(34444)}}, {{A, B, C, X(18490), X(30701)}}, {{A, B, C, X(19722), X(42025)}}, {{A, B, C, X(27475), X(39724)}}, {{A, B, C, X(31999), X(40720)}}, {{A, B, C, X(32014), X(36871)}}, {{A, B, C, X(34892), X(43527)}}, {{A, B, C, X(36807), X(39730)}}, {{A, B, C, X(39702), X(39722)}}, {{A, B, C, X(39716), X(54123)}}, {{A, B, C, X(39736), X(42335)}}, {{A, B, C, X(43731), X(53109)}}
X(56042) = barycentric quotient X(i)/X(j) for these (i, j): {2, 48628}, {10, 48644}, {57, 7201}, {87, 7275}, {238, 4489}, {513, 4490}, {514, 4500}, {649, 4502}, {667, 4507}, {39914, 27450}


X(56043) = KP3(X(1)) OF X(2) AND X(9)

Barycentrics    (a^2-2*a*(b-3*c)+(b-c)^2)*(a^2+a*(6*b-2*c)+(b-c)^2) : :

X(56043) lies on these lines: {1, 144}, {2, 4875}, {57, 3160}, {88, 23587}, {105, 3304}, {145, 39959}, {192, 6553}, {241, 44794}, {274, 26818}, {279, 50561}, {291, 14759}, {330, 4452}, {1002, 3057}, {1219, 4461}, {1280, 3623}, {1422, 7955}, {5222, 8056}, {10405, 11019}, {18228, 25430}, {21105, 35348}, {21226, 39703}, {25242, 50122}, {28610, 39948}, {28809, 32017}, {30330, 42483}, {31793, 51223}, {34018, 43983}, {36603, 50114}, {37685, 40399}

X(56043) = isotomic conjugate of X(4461)
X(56043) = trilinear pole of line {2473, 2487}
X(56043) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 8580}, {31, 4461}, {41, 31994}, {42, 24557}
X(56043) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4461}, {9, 8580}, {3160, 31994}, {40592, 24557}
X(56043) = X(i)-cross conjugate of X(j) for these {i, j}: {3672, 2}, {10980, 7}, {17410, 100}
X(56043) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(36605)}}, {{A, B, C, X(6), X(20978)}}, {{A, B, C, X(7), X(144)}}, {{A, B, C, X(8), X(1434)}}, {{A, B, C, X(27), X(11106)}}, {{A, B, C, X(85), X(5558)}}, {{A, B, C, X(145), X(5222)}}, {{A, B, C, X(192), X(4452)}}, {{A, B, C, X(241), X(3304)}}, {{A, B, C, X(257), X(4373)}}, {{A, B, C, X(346), X(42317)}}, {{A, B, C, X(514), X(3296)}}, {{A, B, C, X(673), X(7320)}}, {{A, B, C, X(1000), X(9328)}}, {{A, B, C, X(1121), X(5556)}}, {{A, B, C, X(1222), X(39716)}}, {{A, B, C, X(1476), X(39273)}}, {{A, B, C, X(2214), X(52223)}}, {{A, B, C, X(2334), X(3669)}}, {{A, B, C, X(2994), X(10429)}}, {{A, B, C, X(2996), X(36606)}}, {{A, B, C, X(3008), X(3623)}}, {{A, B, C, X(3057), X(5228)}}, {{A, B, C, X(3420), X(38811)}}, {{A, B, C, X(3445), X(42290)}}, {{A, B, C, X(3616), X(29624)}}, {{A, B, C, X(3621), X(50114)}}, {{A, B, C, X(3622), X(5308)}}, {{A, B, C, X(3672), X(4461)}}, {{A, B, C, X(4673), X(18228)}}, {{A, B, C, X(4875), X(17474)}}, {{A, B, C, X(5395), X(6185)}}, {{A, B, C, X(6625), X(52803)}}, {{A, B, C, X(7091), X(36101)}}, {{A, B, C, X(7100), X(8813)}}, {{A, B, C, X(7153), X(9309)}}, {{A, B, C, X(7955), X(42872)}}, {{A, B, C, X(9533), X(11019)}}, {{A, B, C, X(15179), X(44178)}}, {{A, B, C, X(16020), X(29585)}}, {{A, B, C, X(17018), X(27304)}}, {{A, B, C, X(17113), X(30330)}}, {{A, B, C, X(17758), X(18490)}}, {{A, B, C, X(18840), X(39697)}}, {{A, B, C, X(26626), X(39587)}}, {{A, B, C, X(26805), X(41276)}}, {{A, B, C, X(27475), X(27818)}}, {{A, B, C, X(31793), X(37543)}}, {{A, B, C, X(38259), X(39720)}}, {{A, B, C, X(39702), X(39749)}}
X(56043) = barycentric quotient X(i)/X(j) for these (i, j): {1, 8580}, {2, 4461}, {7, 31994}, {81, 24557}


X(56044) = KP3(X(1)) OF X(2) AND X(19)

Barycentrics    (a^2+b^2+2*a*c+2*b*c-c^2)*(a^2+2*a*b-b^2+2*b*c+c^2) : :

X(56044) lies on these lines: {1, 6392}, {2, 7176}, {7, 257}, {8, 193}, {312, 1909}, {333, 17103}, {388, 17257}, {2996, 24210}, {3486, 14942}, {4102, 50079}, {4518, 27340}, {5308, 6557}, {5749, 17743}, {5942, 55036}, {19797, 42030}, {26065, 40435}, {26685, 32008}, {26965, 41791}, {27424, 27443}, {39581, 40745}, {39721, 41015}

X(56044) = isotomic conjugate of X(17257)
X(56044) = trilinear pole of line {3798, 4369}
X(56044) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 17594}, {31, 17257}, {101, 48136}, {1333, 4104}
X(56044) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17257}, {9, 17594}, {37, 4104}, {1015, 48136}
X(56044) = X(i)-cross conjugate of X(j) for these {i, j}: {10436, 2}, {26098, 7}
X(56044) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2991)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(4), X(274)}}, {{A, B, C, X(7), X(330)}}, {{A, B, C, X(27), X(50408)}}, {{A, B, C, X(34), X(81)}}, {{A, B, C, X(75), X(2996)}}, {{A, B, C, X(79), X(36871)}}, {{A, B, C, X(80), X(32022)}}, {{A, B, C, X(83), X(277)}}, {{A, B, C, X(86), X(193)}}, {{A, B, C, X(87), X(1432)}}, {{A, B, C, X(142), X(26685)}}, {{A, B, C, X(145), X(5308)}}, {{A, B, C, X(256), X(27443)}}, {{A, B, C, X(278), X(14534)}}, {{A, B, C, X(279), X(4307)}}, {{A, B, C, X(287), X(348)}}, {{A, B, C, X(334), X(5936)}}, {{A, B, C, X(335), X(1219)}}, {{A, B, C, X(388), X(5307)}}, {{A, B, C, X(514), X(5847)}}, {{A, B, C, X(673), X(5395)}}, {{A, B, C, X(948), X(40950)}}, {{A, B, C, X(959), X(37128)}}, {{A, B, C, X(977), X(25417)}}, {{A, B, C, X(996), X(17758)}}, {{A, B, C, X(1000), X(32009)}}, {{A, B, C, X(1222), X(27475)}}, {{A, B, C, X(1255), X(42360)}}, {{A, B, C, X(1258), X(42290)}}, {{A, B, C, X(2297), X(4876)}}, {{A, B, C, X(3227), X(3296)}}, {{A, B, C, X(3241), X(29569)}}, {{A, B, C, X(3486), X(5236)}}, {{A, B, C, X(3616), X(6542)}}, {{A, B, C, X(3661), X(39581)}}, {{A, B, C, X(3662), X(5749)}}, {{A, B, C, X(3765), X(52082)}}, {{A, B, C, X(4373), X(7229)}}, {{A, B, C, X(5249), X(26065)}}, {{A, B, C, X(5275), X(41015)}}, {{A, B, C, X(5485), X(32018)}}, {{A, B, C, X(5550), X(20055)}}, {{A, B, C, X(5556), X(6650)}}, {{A, B, C, X(5558), X(38247)}}, {{A, B, C, X(6630), X(7320)}}, {{A, B, C, X(7319), X(39736)}}, {{A, B, C, X(9309), X(40432)}}, {{A, B, C, X(9776), X(27064)}}, {{A, B, C, X(10327), X(26965)}}, {{A, B, C, X(10436), X(17257)}}, {{A, B, C, X(15315), X(47947)}}, {{A, B, C, X(17077), X(27254)}}, {{A, B, C, X(17292), X(48849)}}, {{A, B, C, X(17350), X(26806)}}, {{A, B, C, X(17363), X(28626)}}, {{A, B, C, X(17493), X(41838)}}, {{A, B, C, X(18230), X(27147)}}, {{A, B, C, X(18840), X(20568)}}, {{A, B, C, X(19797), X(28605)}}, {{A, B, C, X(23617), X(40779)}}, {{A, B, C, X(26125), X(27334)}}, {{A, B, C, X(26627), X(31018)}}, {{A, B, C, X(26735), X(31643)}}, {{A, B, C, X(27253), X(36845)}}, {{A, B, C, X(27340), X(39914)}}, {{A, B, C, X(27483), X(43533)}}, {{A, B, C, X(27818), X(39716)}}, {{A, B, C, X(29579), X(36479)}}, {{A, B, C, X(34434), X(39981)}}, {{A, B, C, X(35578), X(50128)}}, {{A, B, C, X(39713), X(39732)}}, {{A, B, C, X(39722), X(39749)}}, {{A, B, C, X(40023), X(43681)}}, {{A, B, C, X(40720), X(41771)}}
X(56044) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17594}, {2, 17257}, {10, 4104}, {513, 48136}


X(56045) = KP3(X(1)) OF X(2) AND X(28)

Barycentrics    a*(a+b)*(a+c)*(a^3+b^3+a^2*(b-c)+b^2*c+b*c^2+c^3+a*(b^2-c^2))*(a^3+b^3+b^2*c+b*c^2+c^3+a^2*(-b+c)+a*(-b^2+c^2)) : :

X(56045) lies on these lines: {2, 1396}, {58, 78}, {63, 1412}, {81, 345}, {280, 11115}, {593, 1812}, {1171, 41610}, {1172, 17587}, {1791, 3219}, {2303, 26223}, {2339, 27174}, {4357, 52381}, {31623, 36419}

X(56045) = trilinear pole of line {3733, 48387}
X(56045) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 41340}, {42, 19785}, {1400, 2478}
X(56045) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 41340}, {40582, 2478}, {40592, 19785}
X(56045) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(40406)}}, {{A, B, C, X(2), X(21)}}, {{A, B, C, X(3), X(37095)}}, {{A, B, C, X(58), X(81)}}, {{A, B, C, X(86), X(40571)}}, {{A, B, C, X(275), X(1172)}}, {{A, B, C, X(314), X(2994)}}, {{A, B, C, X(333), X(26637)}}, {{A, B, C, X(394), X(2193)}}, {{A, B, C, X(404), X(17587)}}, {{A, B, C, X(1010), X(27174)}}, {{A, B, C, X(1220), X(2167)}}, {{A, B, C, X(1257), X(39700)}}, {{A, B, C, X(1476), X(35058)}}, {{A, B, C, X(1790), X(1801)}}, {{A, B, C, X(1817), X(11115)}}, {{A, B, C, X(1931), X(35623)}}, {{A, B, C, X(2194), X(7123)}}, {{A, B, C, X(2215), X(2298)}}, {{A, B, C, X(2982), X(39945)}}, {{A, B, C, X(2991), X(25417)}}, {{A, B, C, X(3219), X(4357)}}, {{A, B, C, X(4184), X(26643)}}, {{A, B, C, X(4195), X(27651)}}, {{A, B, C, X(4228), X(16050)}}, {{A, B, C, X(4567), X(37870)}}, {{A, B, C, X(5333), X(37783)}}, {{A, B, C, X(8025), X(41610)}}, {{A, B, C, X(16046), X(35983)}}, {{A, B, C, X(38813), X(40142)}}, {{A, B, C, X(40435), X(55991)}}
X(56045) = barycentric quotient X(i)/X(j) for these (i, j): {3, 41340}, {21, 2478}, {81, 19785}


X(56046) = KP3(X(1)) OF X(2) AND X(56)

Barycentrics    (a^3+a^2*c+a*b*c+b^2*(b+c))*(a^3+a^2*b+a*b*c+c^2*(b+c)) : :

X(56046) lies on these lines: {2, 604}, {6, 312}, {8, 31}, {29, 2203}, {63, 257}, {81, 3765}, {85, 1407}, {92, 608}, {239, 2221}, {333, 1333}, {384, 54373}, {612, 1911}, {958, 31359}, {1462, 18031}, {1943, 41247}, {2162, 27424}, {2214, 17790}, {4102, 17281}, {4181, 52865}, {4997, 9456}, {5294, 17743}, {5737, 28607}, {6557, 38266}, {7020, 7151}, {17961, 28606}, {18359, 26223}, {25898, 27184}, {26081, 27319}, {27130, 42339}, {34819, 42030}

X(56046) = isotomic conjugate of X(27184)
X(56046) = trilinear pole of line {667, 8045}
X(56046) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2277}, {6, 986}, {31, 27184}
X(56046) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 27184}, {3, 2277}, {9, 986}
X(56046) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1999)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(6), X(31)}}, {{A, B, C, X(7), X(26065)}}, {{A, B, C, X(9), X(7058)}}, {{A, B, C, X(27), X(330)}}, {{A, B, C, X(57), X(83)}}, {{A, B, C, X(63), X(287)}}, {{A, B, C, X(75), X(7224)}}, {{A, B, C, X(80), X(34258)}}, {{A, B, C, X(86), X(37652)}}, {{A, B, C, X(89), X(42338)}}, {{A, B, C, X(171), X(3223)}}, {{A, B, C, X(226), X(34895)}}, {{A, B, C, X(239), X(612)}}, {{A, B, C, X(274), X(1751)}}, {{A, B, C, X(279), X(4339)}}, {{A, B, C, X(321), X(5130)}}, {{A, B, C, X(335), X(33163)}}, {{A, B, C, X(870), X(40415)}}, {{A, B, C, X(940), X(2334)}}, {{A, B, C, X(967), X(1258)}}, {{A, B, C, X(996), X(13478)}}, {{A, B, C, X(1016), X(25430)}}, {{A, B, C, X(1029), X(39700)}}, {{A, B, C, X(1107), X(4426)}}, {{A, B, C, X(1222), X(39694)}}, {{A, B, C, X(1509), X(39948)}}, {{A, B, C, X(1824), X(3765)}}, {{A, B, C, X(2185), X(55991)}}, {{A, B, C, X(2296), X(4600)}}, {{A, B, C, X(2982), X(40403)}}, {{A, B, C, X(3218), X(26223)}}, {{A, B, C, X(3662), X(5294)}}, {{A, B, C, X(4359), X(17281)}}, {{A, B, C, X(5235), X(5737)}}, {{A, B, C, X(5256), X(41261)}}, {{A, B, C, X(5278), X(27164)}}, {{A, B, C, X(5331), X(25417)}}, {{A, B, C, X(6542), X(29837)}}, {{A, B, C, X(6692), X(27130)}}, {{A, B, C, X(8033), X(41534)}}, {{A, B, C, X(9776), X(26685)}}, {{A, B, C, X(11323), X(26643)}}, {{A, B, C, X(16826), X(17156)}}, {{A, B, C, X(17790), X(28606)}}, {{A, B, C, X(21384), X(41239)}}, {{A, B, C, X(26627), X(27065)}}, {{A, B, C, X(30513), X(34277)}}, {{A, B, C, X(33162), X(40013)}}, {{A, B, C, X(34409), X(39712)}}, {{A, B, C, X(37870), X(43531)}}, {{A, B, C, X(39701), X(41629)}}, {{A, B, C, X(39748), X(53083)}}, {{A, B, C, X(39979), X(46331)}}, {{A, B, C, X(41258), X(52136)}}
X(56046) = barycentric product X(i)*X(j) for these (i, j): {75, 987}
X(56046) = barycentric quotient X(i)/X(j) for these (i, j): {1, 986}, {2, 27184}, {6, 2277}, {987, 1}


X(56047) = KP3(X(1)) OF X(2) AND X(58)

Barycentrics    (a+b)*(a+c)*(a^2+a*(b+c)+b*(b+c))*(a^2+a*(b+c)+c*(b+c)) : :

X(56047) lies on cubic K1285 and on these lines: {1, 15376}, {2, 58}, {7, 1412}, {27, 29833}, {75, 81}, {86, 593}, {226, 16947}, {272, 5249}, {273, 1396}, {284, 19717}, {310, 1509}, {333, 1171}, {335, 741}, {903, 42028}, {1240, 14534}, {1246, 7560}, {1333, 19684}, {1790, 20028}, {2206, 33682}, {2303, 26223}, {3285, 19722}, {3286, 19719}, {4273, 19738}, {4373, 26860}, {5235, 28650}, {5323, 27174}, {5333, 30598}, {5936, 16704}, {6548, 48580}, {8049, 18656}, {17169, 39732}, {17185, 53081}, {18739, 37633}, {19741, 33628}, {26626, 26830}, {27475, 51443}, {27494, 51449}, {29766, 30593}, {37218, 40039}, {39704, 42025}, {43926, 43927}

X(56047) = trilinear pole of line {3733, 21121}
X(56047) = X(i)-isoconjugate-of-X(j) for these {i, j}: {32, 42714}, {37, 386}, {42, 28606}, {72, 44103}, {100, 42664}, {101, 47842}, {163, 23282}, {190, 50488}, {213, 5224}, {228, 469}, {692, 23879}, {798, 33948}, {834, 1018}, {1400, 3876}, {1918, 33935}, {4033, 8637}, {4557, 14349}, {17038, 28622}, {22276, 53082}, {40521, 52615}
X(56047) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 23282}, {1015, 47842}, {1086, 23879}, {6376, 42714}, {6626, 5224}, {8054, 42664}, {31998, 33948}, {34021, 33935}, {40582, 3876}, {40589, 386}, {40592, 28606}, {40620, 45746}, {55053, 50488}
X(56047) = X(i)-cross conjugate of X(j) for these {i, j}: {86, 28621}, {940, 81}, {4657, 274}, {4840, 99}, {4932, 4610}, {54311, 39747}
X(56047) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1724)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(21), X(46103)}}, {{A, B, C, X(28), X(37095)}}, {{A, B, C, X(57), X(37522)}}, {{A, B, C, X(58), X(81)}}, {{A, B, C, X(79), X(321)}}, {{A, B, C, X(83), X(1255)}}, {{A, B, C, X(97), X(1790)}}, {{A, B, C, X(226), X(3454)}}, {{A, B, C, X(239), X(17019)}}, {{A, B, C, X(251), X(1474)}}, {{A, B, C, X(257), X(1029)}}, {{A, B, C, X(274), X(25526)}}, {{A, B, C, X(279), X(4340)}}, {{A, B, C, X(306), X(29833)}}, {{A, B, C, X(324), X(17167)}}, {{A, B, C, X(333), X(8025)}}, {{A, B, C, X(940), X(2221)}}, {{A, B, C, X(996), X(48867)}}, {{A, B, C, X(1220), X(35058)}}, {{A, B, C, X(1231), X(52381)}}, {{A, B, C, X(1330), X(6625)}}, {{A, B, C, X(1434), X(39747)}}, {{A, B, C, X(1999), X(17011)}}, {{A, B, C, X(2006), X(37693)}}, {{A, B, C, X(2162), X(2206)}}, {{A, B, C, X(2185), X(19607)}}, {{A, B, C, X(3615), X(27412)}}, {{A, B, C, X(3666), X(28273)}}, {{A, B, C, X(5235), X(42025)}}, {{A, B, C, X(5331), X(25417)}}, {{A, B, C, X(6186), X(40747)}}, {{A, B, C, X(6693), X(55090)}}, {{A, B, C, X(6994), X(11110)}}, {{A, B, C, X(7108), X(10266)}}, {{A, B, C, X(8024), X(17171)}}, {{A, B, C, X(13486), X(43190)}}, {{A, B, C, X(14014), X(26643)}}, {{A, B, C, X(15315), X(28606)}}, {{A, B, C, X(16704), X(42028)}}, {{A, B, C, X(17206), X(30679)}}, {{A, B, C, X(17743), X(27789)}}, {{A, B, C, X(18653), X(46809)}}, {{A, B, C, X(19717), X(29766)}}, {{A, B, C, X(20569), X(48868)}}, {{A, B, C, X(21907), X(26131)}}, {{A, B, C, X(24624), X(37870)}}, {{A, B, C, X(26860), X(41629)}}, {{A, B, C, X(27174), X(44734)}}, {{A, B, C, X(27660), X(40432)}}, {{A, B, C, X(27946), X(40725)}}, {{A, B, C, X(28621), X(43531)}}, {{A, B, C, X(28654), X(34920)}}, {{A, B, C, X(29841), X(33077)}}, {{A, B, C, X(30588), X(37887)}}, {{A, B, C, X(34914), X(49723)}}, {{A, B, C, X(36011), X(51354)}}, {{A, B, C, X(40409), X(55971)}}, {{A, B, C, X(40415), X(40439)}}, {{A, B, C, X(44572), X(49729)}}, {{A, B, C, X(49744), X(52374)}}, {{A, B, C, X(50226), X(55949)}}
X(56047) = barycentric product X(i)*X(j) for these (i, j): {1019, 37218}, {2214, 274}, {7192, 835}, {17379, 28621}, {43531, 86}, {43927, 99}
X(56047) = barycentric quotient X(i)/X(j) for these (i, j): {21, 3876}, {27, 469}, {58, 386}, {75, 42714}, {81, 28606}, {86, 5224}, {99, 33948}, {274, 33935}, {513, 47842}, {514, 23879}, {523, 23282}, {649, 42664}, {667, 50488}, {835, 3952}, {1019, 14349}, {1434, 33949}, {1474, 44103}, {2214, 37}, {3733, 834}, {4184, 26911}, {7192, 45746}, {37218, 4033}, {43531, 10}, {43927, 523}, {53081, 21078}
X(56047) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {81, 37095, 3187}


X(56048) = KP3(X(1)) OF X(2) AND X(81)

Barycentrics    a*(a+b)*(a+c)*(a+3*b+c)*(a+b+3*c) : :

X(56048) lies on the Feuerbach hyperbola and on these lines: {1, 1014}, {4, 3945}, {7, 4854}, {8, 86}, {9, 81}, {21, 757}, {77, 5665}, {79, 3664}, {104, 5545}, {256, 4038}, {284, 42317}, {294, 2303}, {314, 873}, {347, 51512}, {885, 47844}, {940, 941}, {943, 37594}, {1039, 54407}, {1172, 14014}, {1320, 4614}, {1434, 5558}, {1442, 17097}, {1444, 2320}, {1449, 24557}, {1476, 7269}, {1963, 2344}, {2298, 37595}, {2346, 3745}, {3296, 3672}, {3663, 5557}, {3680, 54308}, {4346, 5551}, {4606, 4876}, {4633, 36798}, {4658, 4866}, {4663, 32635}, {4888, 43732}, {4909, 5559}, {7091, 7190}, {7155, 51356}, {9345, 22174}, {10455, 45032}, {18166, 34820}, {30479, 30941}, {30939, 40023}, {42025, 50292}, {42028, 42032}

X(56048) = isogonal conjugate of X(37593)
X(56048) = trilinear pole of line {650, 1019}
X(56048) = perspector of circumconic {{A, B, C, X(4614), X(4633)}}
X(56048) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 37593}, {6, 5257}, {19, 4047}, {25, 4101}, {37, 1449}, {42, 3616}, {55, 3671}, {56, 4061}, {65, 4512}, {72, 5338}, {73, 461}, {100, 4822}, {101, 4841}, {106, 4819}, {109, 4843}, {190, 4832}, {210, 3361}, {213, 19804}, {226, 4258}, {228, 5342}, {292, 4771}, {307, 44100}, {391, 1400}, {604, 42712}, {664, 8653}, {672, 14625}, {692, 4815}, {741, 4829}, {813, 4839}, {1018, 4790}, {1020, 4827}, {1334, 21454}, {1402, 4673}, {1500, 42028}, {1824, 4652}, {3690, 31903}, {4557, 4778}, {4559, 4765}, {4734, 23493}, {4835, 20964}, {7180, 30728}
X(56048) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4061}, {3, 37593}, {6, 4047}, {9, 5257}, {11, 4843}, {214, 4819}, {223, 3671}, {1015, 4841}, {1086, 4815}, {3161, 42712}, {6505, 4101}, {6626, 19804}, {8054, 4822}, {8299, 4829}, {19557, 4771}, {39025, 8653}, {40582, 391}, {40589, 1449}, {40592, 3616}, {40602, 4512}, {40605, 4673}, {40620, 4801}, {40623, 4839}, {40625, 4811}, {55053, 4832}, {55067, 4765}
X(56048) = X(i)-cross conjugate of X(j) for these {i, j}: {1697, 333}, {4658, 81}, {6005, 100}, {6051, 2}, {17418, 651}
X(56048) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(2), X(969)}}, {{A, B, C, X(6), X(51443)}}, {{A, B, C, X(28), X(14005)}}, {{A, B, C, X(29), X(37402)}}, {{A, B, C, X(37), X(4733)}}, {{A, B, C, X(57), X(28626)}}, {{A, B, C, X(75), X(1255)}}, {{A, B, C, X(77), X(1812)}}, {{A, B, C, X(81), X(86)}}, {{A, B, C, X(88), X(30598)}}, {{A, B, C, X(105), X(2214)}}, {{A, B, C, X(171), X(4038)}}, {{A, B, C, X(269), X(39948)}}, {{A, B, C, X(286), X(39734)}}, {{A, B, C, X(354), X(3745)}}, {{A, B, C, X(513), X(46971)}}, {{A, B, C, X(942), X(37594)}}, {{A, B, C, X(1100), X(4663)}}, {{A, B, C, X(1178), X(51449)}}, {{A, B, C, X(1268), X(40434)}}, {{A, B, C, X(1280), X(39739)}}, {{A, B, C, X(1390), X(13476)}}, {{A, B, C, X(1442), X(3664)}}, {{A, B, C, X(1509), X(38810)}}, {{A, B, C, X(1963), X(30966)}}, {{A, B, C, X(2160), X(34585)}}, {{A, B, C, X(2194), X(10579)}}, {{A, B, C, X(2991), X(25417)}}, {{A, B, C, X(2995), X(55987)}}, {{A, B, C, X(3477), X(7050)}}, {{A, B, C, X(3663), X(7269)}}, {{A, B, C, X(3666), X(37595)}}, {{A, B, C, X(3672), X(7190)}}, {{A, B, C, X(3702), X(3931)}}, {{A, B, C, X(3744), X(4883)}}, {{A, B, C, X(4373), X(27789)}}, {{A, B, C, X(4854), X(7073)}}, {{A, B, C, X(5936), X(25430)}}, {{A, B, C, X(7100), X(49743)}}, {{A, B, C, X(8049), X(40422)}}, {{A, B, C, X(13610), X(30571)}}, {{A, B, C, X(17011), X(50292)}}, {{A, B, C, X(17377), X(39704)}}, {{A, B, C, X(23617), X(40433)}}, {{A, B, C, X(27644), X(51356)}}, {{A, B, C, X(30576), X(30939)}}, {{A, B, C, X(30941), X(47844)}}, {{A, B, C, X(39972), X(40400)}}, {{A, B, C, X(40401), X(49680)}}
X(56048) = barycentric product X(i)*X(j) for these (i, j): {1019, 53658}, {1434, 4866}, {2334, 274}, {3737, 4624}, {4391, 5545}, {4606, 7192}, {4614, 514}, {4627, 693}, {4633, 513}, {5936, 81}, {7199, 8694}, {25430, 86}, {34074, 52619}, {40023, 58}, {47915, 99}
X(56048) = barycentric quotient X(i)/X(j) for these (i, j): {1, 5257}, {3, 4047}, {6, 37593}, {8, 42712}, {9, 4061}, {21, 391}, {27, 5342}, {44, 4819}, {57, 3671}, {58, 1449}, {63, 4101}, {81, 3616}, {86, 19804}, {105, 14625}, {238, 4771}, {284, 4512}, {333, 4673}, {513, 4841}, {514, 4815}, {643, 30728}, {649, 4822}, {650, 4843}, {659, 4839}, {667, 4832}, {757, 42028}, {1014, 21454}, {1019, 4778}, {1172, 461}, {1412, 3361}, {1474, 5338}, {1790, 4652}, {2194, 4258}, {2204, 44100}, {2238, 4829}, {2334, 37}, {3063, 8653}, {3733, 4790}, {3737, 4765}, {4481, 4818}, {4560, 4811}, {4606, 3952}, {4614, 190}, {4627, 100}, {4633, 668}, {4866, 2321}, {5545, 651}, {5936, 321}, {7192, 4801}, {7203, 30723}, {8694, 1018}, {14626, 3930}, {16702, 4831}, {16704, 4742}, {18206, 4684}, {21789, 4827}, {25430, 10}, {27644, 4734}, {34074, 4557}, {34820, 210}, {35339, 4115}, {40023, 313}, {40153, 4719}, {40432, 4835}, {47915, 523}, {50456, 4830}, {52680, 4700}, {52897, 4706}, {53658, 4033}


X(56049) = KP3(X(1)) OF X(2) AND X(88)

Barycentrics    a*(a+b-2*c)*(a+b-c)*(a-2*b+c)*(a-b+c) : :

X(56049) lies on these lines: {7, 528}, {57, 88}, {77, 19604}, {106, 269}, {226, 4945}, {241, 51908}, {279, 14260}, {347, 52803}, {479, 4626}, {679, 1318}, {901, 15728}, {1014, 1122}, {1022, 34056}, {1119, 36118}, {1156, 3675}, {1168, 6549}, {1447, 52761}, {1462, 6610}, {1465, 2226}, {2161, 53546}, {3160, 45247}, {3257, 37787}, {3911, 36592}, {4674, 7271}, {4792, 18421}, {4896, 5425}, {4997, 5226}, {6336, 55110}, {8051, 31227}, {8545, 21446}, {8686, 39414}, {16610, 40400}, {16944, 38859}, {17074, 47056}, {20568, 31643}, {21454, 42026}, {23345, 43930}, {23838, 43736}, {28997, 42304}, {30379, 46790}, {36048, 36058}, {36918, 40615}, {37771, 40617}, {38459, 52478}, {40862, 46795}

X(56049) = isogonal conjugate of X(3689)
X(56049) = isotomic conjugate of X(4723)
X(56049) = trilinear pole of line {57, 1022}
X(56049) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3689}, {6, 2325}, {8, 902}, {9, 44}, {19, 52978}, {21, 21805}, {31, 4723}, {33, 5440}, {41, 4358}, {55, 519}, {100, 4895}, {101, 1639}, {106, 4152}, {109, 4528}, {200, 1319}, {210, 52680}, {212, 38462}, {214, 52371}, {219, 8756}, {220, 3911}, {281, 22356}, {284, 3943}, {294, 14439}, {312, 2251}, {318, 23202}, {333, 52963}, {346, 1404}, {522, 23344}, {607, 3977}, {643, 4730}, {644, 1635}, {645, 14407}, {649, 30731}, {650, 1023}, {651, 14427}, {663, 17780}, {678, 1320}, {692, 4768}, {900, 3939}, {901, 4543}, {1017, 4997}, {1145, 2342}, {1252, 4530}, {1260, 1877}, {1318, 8028}, {1334, 16704}, {1500, 30606}, {1647, 6065}, {1783, 14418}, {1802, 37790}, {1960, 3699}, {2175, 3264}, {2194, 3992}, {2316, 4370}, {2318, 37168}, {2319, 52964}, {2321, 3285}, {2328, 40663}, {2338, 51406}, {2341, 40988}, {2361, 51975}, {2364, 4908}, {2429, 4521}, {3063, 24004}, {3596, 9459}, {3900, 23703}, {4120, 5546}, {4169, 7252}, {4432, 7077}, {4511, 40172}, {4542, 9268}, {4578, 53528}, {4700, 34820}, {4814, 52924}, {4845, 6174}, {4969, 33635}, {5548, 6544}, {10482, 51463}, {17455, 36910}, {28071, 53531}, {40869, 45144}, {41553, 42064}, {46109, 52425}, {46791, 52969}
X(56049) = X(i)-vertex conjugate of X(j) for these {i, j}: {1156, 3446}
X(56049) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4723}, {3, 3689}, {6, 52978}, {9, 2325}, {11, 4528}, {214, 4152}, {223, 519}, {478, 44}, {661, 4530}, {1015, 1639}, {1086, 4768}, {1214, 3992}, {3160, 4358}, {5375, 30731}, {6609, 1319}, {8054, 4895}, {9460, 312}, {10001, 24004}, {16591, 4783}, {16594, 52871}, {36908, 40663}, {38979, 4543}, {38991, 14427}, {39006, 14418}, {40590, 3943}, {40593, 3264}, {40594, 8}, {40595, 9}, {40611, 21805}, {40615, 3762}, {40617, 900}, {40837, 38462}, {45247, 51380}, {52659, 4738}, {52879, 6174}, {55060, 4730}
X(56049) = X(i)-cross conjugate of X(j) for these {i, j}: {106, 88}, {1319, 57}, {1411, 34051}, {1443, 1014}, {1465, 279}, {14260, 2226}, {30117, 81}, {53528, 651}
X(56049) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3241)}}, {{A, B, C, X(2), X(50101)}}, {{A, B, C, X(6), X(42871)}}, {{A, B, C, X(7), X(57)}}, {{A, B, C, X(8), X(45818)}}, {{A, B, C, X(9), X(16487)}}, {{A, B, C, X(19), X(41439)}}, {{A, B, C, X(21), X(37817)}}, {{A, B, C, X(28), X(17579)}}, {{A, B, C, X(34), X(1476)}}, {{A, B, C, X(56), X(1405)}}, {{A, B, C, X(59), X(1477)}}, {{A, B, C, X(75), X(4398)}}, {{A, B, C, X(80), X(9802)}}, {{A, B, C, X(81), X(17378)}}, {{A, B, C, X(86), X(1255)}}, {{A, B, C, X(88), X(679)}}, {{A, B, C, X(104), X(6224)}}, {{A, B, C, X(105), X(513)}}, {{A, B, C, X(106), X(1168)}}, {{A, B, C, X(244), X(14193)}}, {{A, B, C, X(279), X(17079)}}, {{A, B, C, X(291), X(7312)}}, {{A, B, C, X(651), X(664)}}, {{A, B, C, X(738), X(27818)}}, {{A, B, C, X(739), X(9319)}}, {{A, B, C, X(759), X(9963)}}, {{A, B, C, X(840), X(909)}}, {{A, B, C, X(915), X(34256)}}, {{A, B, C, X(937), X(5558)}}, {{A, B, C, X(957), X(55924)}}, {{A, B, C, X(961), X(5434)}}, {{A, B, C, X(1002), X(51099)}}, {{A, B, C, X(1022), X(36887)}}, {{A, B, C, X(1122), X(1441)}}, {{A, B, C, X(1280), X(37129)}}, {{A, B, C, X(1317), X(1319)}}, {{A, B, C, X(1358), X(7233)}}, {{A, B, C, X(1390), X(55919)}}, {{A, B, C, X(1416), X(7316)}}, {{A, B, C, X(1438), X(10699)}}, {{A, B, C, X(1443), X(34051)}}, {{A, B, C, X(1447), X(52896)}}, {{A, B, C, X(2006), X(41803)}}, {{A, B, C, X(2191), X(2346)}}, {{A, B, C, X(2298), X(7194)}}, {{A, B, C, X(2481), X(53391)}}, {{A, B, C, X(2718), X(10031)}}, {{A, B, C, X(2991), X(25417)}}, {{A, B, C, X(3418), X(41442)}}, {{A, B, C, X(3451), X(41431)}}, {{A, B, C, X(3598), X(8545)}}, {{A, B, C, X(3660), X(18801)}}, {{A, B, C, X(3669), X(43038)}}, {{A, B, C, X(3676), X(18815)}}, {{A, B, C, X(4555), X(39414)}}, {{A, B, C, X(6548), X(52031)}}, {{A, B, C, X(6610), X(34855)}}, {{A, B, C, X(7023), X(16079)}}, {{A, B, C, X(7192), X(18816)}}, {{A, B, C, X(7313), X(55022)}}, {{A, B, C, X(8056), X(36588)}}, {{A, B, C, X(9083), X(15742)}}, {{A, B, C, X(9456), X(23345)}}, {{A, B, C, X(16099), X(36100)}}, {{A, B, C, X(17096), X(34018)}}, {{A, B, C, X(19302), X(28535)}}, {{A, B, C, X(36124), X(40450)}}, {{A, B, C, X(39982), X(55935)}}, {{A, B, C, X(40215), X(52553)}}, {{A, B, C, X(50839), X(55920)}}, {{A, B, C, X(51643), X(51654)}}
X(56049) = barycentric product X(i)*X(j) for these (i, j): {7, 88}, {57, 903}, {106, 85}, {269, 4997}, {331, 36058}, {348, 36125}, {651, 6548}, {1014, 4080}, {1022, 664}, {1088, 2316}, {1168, 17078}, {1170, 53240}, {1319, 54974}, {1320, 279}, {1358, 5376}, {1414, 4049}, {1417, 76}, {1434, 4674}, {1797, 273}, {2006, 52553}, {2099, 40833}, {3257, 3676}, {3669, 4555}, {3911, 679}, {4017, 4615}, {4077, 4591}, {4564, 6549}, {4573, 55244}, {4622, 7178}, {4625, 55263}, {4634, 7180}, {6063, 9456}, {6336, 77}, {7182, 8752}, {18815, 40215}, {19604, 31227}, {20568, 56}, {23345, 4554}, {23838, 658}, {24002, 901}, {30725, 4618}, {32665, 52621}, {34018, 34230}, {34056, 36887}, {43932, 4582}, {52574, 8686}
X(56049) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2325}, {2, 4723}, {3, 52978}, {6, 3689}, {7, 4358}, {34, 8756}, {44, 4152}, {56, 44}, {57, 519}, {65, 3943}, {77, 3977}, {85, 3264}, {88, 8}, {100, 30731}, {106, 9}, {109, 1023}, {222, 5440}, {226, 3992}, {244, 4530}, {269, 3911}, {273, 46109}, {278, 38462}, {513, 1639}, {514, 4768}, {553, 4975}, {603, 22356}, {604, 902}, {649, 4895}, {650, 4528}, {651, 17780}, {663, 14427}, {664, 24004}, {679, 4997}, {757, 30606}, {764, 52338}, {901, 644}, {903, 312}, {1014, 16704}, {1022, 522}, {1106, 1404}, {1119, 37790}, {1122, 51415}, {1168, 36910}, {1319, 4370}, {1320, 346}, {1357, 2087}, {1396, 37168}, {1397, 2251}, {1400, 21805}, {1402, 52963}, {1403, 52964}, {1404, 678}, {1407, 1319}, {1408, 3285}, {1412, 52680}, {1415, 23344}, {1417, 6}, {1418, 51463}, {1427, 40663}, {1429, 4432}, {1434, 30939}, {1435, 1877}, {1443, 51583}, {1456, 51406}, {1458, 14439}, {1459, 14418}, {1461, 23703}, {1464, 40988}, {1465, 1145}, {1635, 4543}, {1797, 78}, {2006, 51975}, {2087, 4542}, {2099, 4908}, {2226, 1320}, {2316, 200}, {2441, 4162}, {3257, 3699}, {3361, 4700}, {3669, 900}, {3676, 3762}, {3911, 4738}, {4017, 4120}, {4049, 4086}, {4080, 3701}, {4510, 4494}, {4551, 4169}, {4555, 646}, {4573, 55243}, {4591, 643}, {4615, 7257}, {4618, 4582}, {4622, 645}, {4625, 55262}, {4674, 2321}, {4792, 4873}, {4997, 341}, {5221, 4727}, {5228, 4702}, {5376, 4076}, {5435, 4487}, {5548, 4578}, {6336, 318}, {6548, 4391}, {6549, 4858}, {6610, 6174}, {7146, 4439}, {7175, 4434}, {7180, 4730}, {7216, 30572}, {7223, 4506}, {7341, 30576}, {8686, 52556}, {8752, 33}, {9456, 55}, {10428, 52663}, {16609, 4783}, {16610, 52871}, {16944, 2323}, {17078, 1227}, {20568, 3596}, {21454, 4742}, {23345, 650}, {23352, 4944}, {23703, 53582}, {23838, 3239}, {27922, 3975}, {31227, 44720}, {32636, 4969}, {32659, 212}, {32665, 3939}, {34051, 36944}, {34056, 52746}, {34230, 3693}, {36058, 219}, {36125, 281}, {40215, 4511}, {42026, 3902}, {43922, 2170}, {43924, 1635}, {43932, 30725}, {46150, 33299}, {47056, 36926}, {51641, 14407}, {51656, 14425}, {51664, 14429}, {52031, 6735}, {52206, 3880}, {52411, 23202}, {52440, 17455}, {52553, 32851}, {52900, 4009}, {53240, 1229}, {53528, 6544}, {53538, 1647}, {53546, 51402}, {55244, 3700}, {55263, 4041}


X(56050) = KP3(X(1)) OF X(2) AND X(90)

Barycentrics    (a^3-a^2*(b-3*c)+(b-c)^2*(b+c)-a*(b^2-3*c^2))*(a^3+a^2*(3*b-c)+(b-c)^2*(b+c)+a*(3*b^2-c^2)) : :

X(56050) lies on these lines: {1, 5905}, {2, 20930}, {81, 26830}, {88, 37642}, {279, 33150}, {330, 19789}, {347, 2982}, {908, 25430}, {1219, 28605}, {1255, 5712}, {1257, 20013}, {1993, 40399}, {2401, 4801}, {2994, 53596}, {3086, 30690}, {3672, 25417}, {3995, 54123}, {8056, 26723}, {17147, 39696}, {21454, 34051}, {30699, 35058}

X(56050) = trilinear pole of line {21188, 513}
X(56050) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 11509}
X(56050) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 11509}
X(56050) = X(i)-cross conjugate of X(j) for these {i, j}: {3338, 7}, {19785, 2}
X(56050) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(26830)}}, {{A, B, C, X(7), X(5905)}}, {{A, B, C, X(27), X(2994)}}, {{A, B, C, X(92), X(1434)}}, {{A, B, C, X(145), X(26723)}}, {{A, B, C, X(189), X(44559)}}, {{A, B, C, X(192), X(19789)}}, {{A, B, C, X(346), X(33150)}}, {{A, B, C, X(552), X(32023)}}, {{A, B, C, X(757), X(7318)}}, {{A, B, C, X(908), X(4801)}}, {{A, B, C, X(1029), X(10405)}}, {{A, B, C, X(1797), X(30679)}}, {{A, B, C, X(2221), X(3669)}}, {{A, B, C, X(3668), X(43675)}}, {{A, B, C, X(3672), X(28605)}}, {{A, B, C, X(5712), X(8025)}}, {{A, B, C, X(6336), X(44733)}}, {{A, B, C, X(16704), X(37642)}}, {{A, B, C, X(17014), X(25006)}}, {{A, B, C, X(17147), X(30699)}}, {{A, B, C, X(20013), X(40940)}}, {{A, B, C, X(33099), X(39720)}}, {{A, B, C, X(55027), X(55937)}}
X(56050) = barycentric quotient X(i)/X(j) for these (i, j): {56, 11509}


X(56051) = KP3(X(2)) OF X(1) AND X(2)

Barycentrics    (2*b*c+a*(2*b+c))*(2*b*c+a*(b+2*c)) : :

X(56051) lies on these lines: {1, 3696}, {2, 3760}, {9, 39797}, {10, 1002}, {57, 4059}, {75, 4099}, {81, 4384}, {89, 16815}, {105, 5248}, {142, 51223}, {194, 39736}, {239, 25417}, {274, 4751}, {277, 24778}, {278, 17911}, {279, 17077}, {291, 1698}, {330, 16819}, {957, 17050}, {959, 3671}, {1107, 36871}, {1219, 19853}, {1224, 25499}, {1255, 16831}, {1258, 54981}, {1390, 39586}, {2282, 20367}, {3227, 31997}, {3294, 25590}, {3624, 30571}, {3644, 32090}, {3934, 19872}, {4000, 25512}, {4668, 24656}, {4687, 32102}, {4699, 31996}, {4932, 43928}, {5283, 31238}, {8056, 24774}, {10471, 19804}, {16826, 27789}, {16833, 39948}, {17030, 39925}, {17066, 47683}, {17289, 32019}, {17758, 26037}, {20269, 37887}, {21264, 34595}, {21384, 39950}, {25430, 31993}, {27248, 54123}

X(56051) = isotomic conjugate of X(4687)
X(56051) = trilinear pole of line {4382, 4804}
X(56051) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 17018}, {9, 16878}, {31, 4687}, {37, 39673}, {101, 6005}, {163, 48407}, {190, 8655}, {662, 50483}, {692, 47666}
X(56051) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4687}, {9, 17018}, {115, 48407}, {478, 16878}, {1015, 6005}, {1084, 50483}, {1086, 47666}, {40589, 39673}, {55053, 8655}
X(56051) = X(i)-cross conjugate of X(j) for these {i, j}: {2258, 10435}, {5283, 1}, {29198, 668}, {31238, 2}, {37593, 7}, {47926, 190}
X(56051) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(8), X(16832)}}, {{A, B, C, X(9), X(16552)}}, {{A, B, C, X(10), X(85)}}, {{A, B, C, X(27), X(16458)}}, {{A, B, C, X(29), X(37075)}}, {{A, B, C, X(37), X(4751)}}, {{A, B, C, X(43), X(16819)}}, {{A, B, C, X(58), X(39981)}}, {{A, B, C, X(75), X(3739)}}, {{A, B, C, X(76), X(27483)}}, {{A, B, C, X(79), X(39721)}}, {{A, B, C, X(80), X(32022)}}, {{A, B, C, X(86), X(14377)}}, {{A, B, C, X(87), X(25264)}}, {{A, B, C, X(239), X(1698)}}, {{A, B, C, X(257), X(20569)}}, {{A, B, C, X(292), X(34819)}}, {{A, B, C, X(333), X(19732)}}, {{A, B, C, X(335), X(39711)}}, {{A, B, C, X(514), X(28581)}}, {{A, B, C, X(596), X(27475)}}, {{A, B, C, X(612), X(16818)}}, {{A, B, C, X(673), X(43531)}}, {{A, B, C, X(756), X(4099)}}, {{A, B, C, X(870), X(1268)}}, {{A, B, C, X(996), X(32008)}}, {{A, B, C, X(1107), X(54981)}}, {{A, B, C, X(1125), X(16831)}}, {{A, B, C, X(1218), X(2665)}}, {{A, B, C, X(1247), X(7096)}}, {{A, B, C, X(1400), X(45820)}}, {{A, B, C, X(1434), X(42335)}}, {{A, B, C, X(2163), X(40432)}}, {{A, B, C, X(2191), X(24790)}}, {{A, B, C, X(2218), X(40398)}}, {{A, B, C, X(2258), X(5283)}}, {{A, B, C, X(2279), X(25092)}}, {{A, B, C, X(2481), X(5936)}}, {{A, B, C, X(2664), X(17030)}}, {{A, B, C, X(2999), X(19853)}}, {{A, B, C, X(3226), X(34816)}}, {{A, B, C, X(3294), X(21384)}}, {{A, B, C, X(3500), X(39949)}}, {{A, B, C, X(3624), X(16826)}}, {{A, B, C, X(3634), X(16834)}}, {{A, B, C, X(3671), X(19804)}}, {{A, B, C, X(3679), X(16815)}}, {{A, B, C, X(4359), X(39700)}}, {{A, B, C, X(4657), X(28653)}}, {{A, B, C, X(4687), X(31238)}}, {{A, B, C, X(4852), X(28650)}}, {{A, B, C, X(4866), X(36796)}}, {{A, B, C, X(4932), X(31997)}}, {{A, B, C, X(5219), X(26627)}}, {{A, B, C, X(5248), X(18206)}}, {{A, B, C, X(5256), X(16828)}}, {{A, B, C, X(5272), X(27248)}}, {{A, B, C, X(5287), X(25512)}}, {{A, B, C, X(5561), X(6625)}}, {{A, B, C, X(6650), X(43732)}}, {{A, B, C, X(7110), X(41791)}}, {{A, B, C, X(8580), X(27304)}}, {{A, B, C, X(9311), X(42285)}}, {{A, B, C, X(9780), X(16833)}}, {{A, B, C, X(10435), X(10436)}}, {{A, B, C, X(14621), X(32014)}}, {{A, B, C, X(15175), X(40403)}}, {{A, B, C, X(16706), X(17303)}}, {{A, B, C, X(16816), X(19875)}}, {{A, B, C, X(16823), X(17284)}}, {{A, B, C, X(16825), X(17308)}}, {{A, B, C, X(16830), X(29598)}}, {{A, B, C, X(17012), X(19871)}}, {{A, B, C, X(17023), X(39586)}}, {{A, B, C, X(17278), X(17289)}}, {{A, B, C, X(17356), X(17371)}}, {{A, B, C, X(17367), X(36531)}}, {{A, B, C, X(17370), X(17385)}}, {{A, B, C, X(18152), X(26037)}}, {{A, B, C, X(18822), X(36957)}}, {{A, B, C, X(18827), X(28639)}}, {{A, B, C, X(18841), X(42318)}}, {{A, B, C, X(19808), X(24789)}}, {{A, B, C, X(19862), X(29597)}}, {{A, B, C, X(19872), X(29584)}}, {{A, B, C, X(20367), X(37523)}}, {{A, B, C, X(24778), X(27819)}}, {{A, B, C, X(25055), X(29578)}}, {{A, B, C, X(25130), X(40027)}}, {{A, B, C, X(25426), X(39983)}}, {{A, B, C, X(26102), X(31996)}}, {{A, B, C, X(27351), X(41531)}}, {{A, B, C, X(28660), X(45032)}}, {{A, B, C, X(29570), X(34595)}}, {{A, B, C, X(30712), X(31312)}}, {{A, B, C, X(31211), X(49451)}}, {{A, B, C, X(31327), X(34258)}}, {{A, B, C, X(33296), X(52716)}}, {{A, B, C, X(35167), X(36954)}}, {{A, B, C, X(36956), X(53209)}}, {{A, B, C, X(40509), X(52209)}}, {{A, B, C, X(43731), X(54120)}}
X(56051) = barycentric product X(i)*X(j) for these (i, j): {6013, 693}, {10013, 75}, {17110, 34258}, {46772, 86}
X(56051) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17018}, {2, 4687}, {56, 16878}, {58, 39673}, {512, 50483}, {513, 6005}, {514, 47666}, {523, 48407}, {667, 8655}, {6013, 100}, {10013, 1}, {17110, 940}, {46772, 10}


X(56052) = KP3(X(2)) OF X(1) AND X(86)

Barycentrics    (a+b)*(a+c)*(a*(b+c)+b*(2*b+c))*(a*(b+c)+c*(b+2*c)) : :

X(56052) lies on these lines: {2, 21024}, {7, 30966}, {10, 40418}, {27, 6626}, {75, 17038}, {86, 3741}, {274, 6384}, {310, 30970}, {333, 14621}, {335, 31993}, {675, 43359}, {871, 40072}, {1246, 5224}, {2296, 31330}, {3666, 27483}, {16609, 44733}, {16738, 53677}, {17206, 40164}, {18091, 52394}, {25507, 31028}, {26102, 30598}, {27447, 32010}, {29827, 40027}, {30712, 30941}, {31002, 31241}

X(56052) = isotomic conjugate of X(43223)
X(56052) = trilinear pole of line {17217, 514}
X(56052) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 43223}, {213, 17379}, {1918, 31997}, {2214, 28622}
X(56052) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43223}, {86, 17689}, {6626, 17379}, {34021, 31997}, {40620, 4932}
X(56052) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28621, 86}
X(56052) = X(i)-cross conjugate of X(j) for these {i, j}: {784, 190}, {4699, 274}, {17591, 81}
X(56052) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(3741)}}, {{A, B, C, X(42), X(30970)}}, {{A, B, C, X(58), X(28513)}}, {{A, B, C, X(65), X(4038)}}, {{A, B, C, X(256), X(16606)}}, {{A, B, C, X(257), X(51865)}}, {{A, B, C, X(274), X(7304)}}, {{A, B, C, X(291), X(5331)}}, {{A, B, C, X(333), X(30966)}}, {{A, B, C, X(350), X(16609)}}, {{A, B, C, X(693), X(41851)}}, {{A, B, C, X(893), X(40775)}}, {{A, B, C, X(899), X(31241)}}, {{A, B, C, X(1698), X(26102)}}, {{A, B, C, X(3223), X(4492)}}, {{A, B, C, X(3634), X(25501)}}, {{A, B, C, X(4212), X(11110)}}, {{A, B, C, X(6626), X(7019)}}, {{A, B, C, X(16569), X(29827)}}, {{A, B, C, X(16832), X(30822)}}, {{A, B, C, X(17026), X(17308)}}, {{A, B, C, X(17038), X(39967)}}, {{A, B, C, X(18827), X(37870)}}, {{A, B, C, X(19875), X(31137)}}, {{A, B, C, X(26037), X(30942)}}, {{A, B, C, X(29576), X(31028)}}, {{A, B, C, X(29828), X(30752)}}, {{A, B, C, X(30710), X(39717)}}, {{A, B, C, X(32783), X(33138)}}
X(56052) = barycentric product X(i)*X(j) for these (i, j): {310, 39967}, {3261, 43359}, {17038, 274}, {28621, 5224}
X(56052) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43223}, {86, 17379}, {274, 31997}, {386, 28622}, {6626, 17689}, {7192, 4932}, {17038, 37}, {28621, 43531}, {39967, 42}, {43359, 101}


X(56053) = KP3(X(2)) OF X(1) AND X(99)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(a*(b-c)-b*c)*(a*(b-c)+b*c) : :

X(56053) lies on these lines: {87, 261}, {99, 932}, {645, 4584}, {662, 4598}, {670, 3733}, {1509, 7121}, {2106, 51864}, {4565, 17941}, {6383, 23086}, {17103, 17105}, {17929, 43931}, {19623, 40881}, {34594, 35572}, {40753, 51356}

X(56053) = isogonal conjugate of X(50491)
X(56053) = isotomic conjugate of X(21051)
X(56053) = trilinear pole of line {81, 330}
X(56053) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 50491}, {6, 21834}, {10, 8640}, {31, 21051}, {37, 20979}, {42, 4083}, {43, 512}, {190, 21835}, {192, 798}, {213, 3835}, {523, 2209}, {649, 20691}, {661, 2176}, {667, 3971}, {669, 6376}, {756, 16695}, {872, 17217}, {1018, 6377}, {1084, 36860}, {1334, 43051}, {1402, 4147}, {1403, 4041}, {1423, 3709}, {1500, 18197}, {1824, 22090}, {1918, 20906}, {1924, 6382}, {2333, 25098}, {2489, 22370}, {3121, 4595}, {3122, 52923}, {3123, 4557}, {3208, 7180}, {3700, 41526}, {3952, 38986}, {4033, 21762}, {4079, 27644}, {4455, 41531}, {4705, 38832}, {18107, 21814}, {21759, 23886}, {21832, 51973}, {23493, 25142}, {27538, 51641}, {31008, 53581}, {33296, 50487}, {52964, 55263}
X(56053) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 21051}, {3, 50491}, {9, 21834}, {5375, 20691}, {6626, 3835}, {6631, 3971}, {9428, 6382}, {16606, 21056}, {17755, 21959}, {31998, 192}, {34021, 20906}, {36830, 2176}, {39054, 43}, {40589, 20979}, {40592, 4083}, {40605, 4147}, {40620, 21138}, {55053, 21835}
X(56053) = X(i)-cross conjugate of X(j) for these {i, j}: {87, 5383}, {748, 1016}, {799, 99}, {4594, 53655}, {16695, 81}, {23467, 6}, {25537, 1}
X(56053) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(86), X(670)}}, {{A, B, C, X(99), X(662)}}, {{A, B, C, X(190), X(8709)}}, {{A, B, C, X(261), X(645)}}, {{A, B, C, X(648), X(17930)}}, {{A, B, C, X(651), X(789)}}, {{A, B, C, X(692), X(898)}}, {{A, B, C, X(799), X(3222)}}, {{A, B, C, X(932), X(34071)}}, {{A, B, C, X(1492), X(8707)}}, {{A, B, C, X(3737), X(21388)}}, {{A, B, C, X(4033), X(30598)}}, {{A, B, C, X(4565), X(36066)}}, {{A, B, C, X(4573), X(53631)}}, {{A, B, C, X(4583), X(54458)}}, {{A, B, C, X(4589), X(4625)}}, {{A, B, C, X(4598), X(18830)}}, {{A, B, C, X(8706), X(36086)}}, {{A, B, C, X(9067), X(27834)}}, {{A, B, C, X(15455), X(35147)}}, {{A, B, C, X(18829), X(40834)}}, {{A, B, C, X(25537), X(50491)}}, {{A, B, C, X(35008), X(37218)}}
X(56053) = barycentric product X(i)*X(j) for these (i, j): {110, 6383}, {274, 932}, {310, 34071}, {330, 99}, {643, 7209}, {799, 87}, {1414, 27424}, {2162, 670}, {2319, 4625}, {4573, 7155}, {4598, 86}, {4602, 7121}, {5383, 7192}, {6384, 662}, {7153, 7257}, {16606, 4623}, {16710, 35572}, {18830, 81}, {23086, 6331}, {23493, 52612}, {32039, 33296}, {34252, 4639}, {36860, 53678}, {39914, 4589}, {42027, 4610}, {43931, 4601}
X(56053) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21834}, {2, 21051}, {6, 50491}, {58, 20979}, {81, 4083}, {86, 3835}, {87, 661}, {99, 192}, {100, 20691}, {110, 2176}, {163, 2209}, {190, 3971}, {261, 27527}, {274, 20906}, {330, 523}, {333, 4147}, {593, 16695}, {643, 3208}, {645, 27538}, {662, 43}, {667, 21835}, {670, 6382}, {757, 18197}, {799, 6376}, {932, 37}, {1014, 43051}, {1019, 3123}, {1333, 8640}, {1414, 1423}, {1444, 25098}, {1509, 17217}, {1790, 22090}, {2053, 3709}, {2162, 512}, {2319, 4041}, {3733, 6377}, {3912, 21959}, {4556, 38832}, {4558, 20760}, {4565, 1403}, {4567, 52923}, {4573, 3212}, {4584, 41531}, {4589, 40848}, {4592, 22370}, {4598, 10}, {4600, 4595}, {4601, 36863}, {4609, 40367}, {4610, 33296}, {4623, 31008}, {4625, 30545}, {5383, 3952}, {6383, 850}, {6384, 1577}, {7121, 798}, {7153, 4017}, {7155, 3700}, {7192, 21138}, {7209, 4077}, {7257, 4110}, {8025, 4992}, {15373, 810}, {16606, 4705}, {16695, 40610}, {16710, 21128}, {18830, 321}, {21759, 50487}, {23086, 647}, {23493, 4079}, {23829, 23773}, {24037, 36860}, {27424, 4086}, {27455, 50330}, {27496, 4404}, {27644, 25142}, {27958, 30584}, {32039, 42027}, {33296, 23886}, {34071, 42}, {34252, 21832}, {36860, 8026}, {39914, 4010}, {40720, 4806}, {42027, 4024}, {43931, 3125}, {45218, 42661}, {51321, 4455}, {51837, 4122}, {52394, 18107}, {52680, 14408}, {52897, 14426}, {52935, 27644}


X(56054) = KP3(X(2)) OF X(2) AND X(8)

Barycentrics    (a^2+3*b^2-4*b*c+c^2-2*a*(2*b+c))*(a^2+b^2-4*b*c+3*c^2-2*a*(b+2*c)) : :

X(56054) lies on these lines: {2, 10481}, {7, 32008}, {8, 142}, {29, 53238}, {85, 34019}, {92, 53237}, {277, 10578}, {312, 20880}, {333, 17169}, {962, 20328}, {1121, 31994}, {1220, 34821}, {3616, 14942}, {4384, 30711}, {4518, 53239}, {4997, 53240}, {6557, 25525}, {6706, 9780}, {9776, 40435}, {9778, 14377}, {9779, 34847}, {10405, 52715}, {18230, 32100}, {21258, 53620}, {28660, 53236}, {38093, 41006}, {52156, 52422}

X(56054) = isotomic conjugate of X(18230)
X(56054) = trilinear pole of line {21104, 48125}
X(56054) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 10389}, {31, 18230}
X(56054) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 18230}, {9, 10389}
X(56054) = X(i)-cross conjugate of X(j) for these {i, j}: {3475, 7}, {20195, 2}
X(56054) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3243)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(4), X(38200)}}, {{A, B, C, X(7), X(142)}}, {{A, B, C, X(21), X(21446)}}, {{A, B, C, X(27), X(37436)}}, {{A, B, C, X(57), X(11518)}}, {{A, B, C, X(75), X(32086)}}, {{A, B, C, X(86), X(4869)}}, {{A, B, C, X(274), X(39749)}}, {{A, B, C, X(279), X(5558)}}, {{A, B, C, X(514), X(7320)}}, {{A, B, C, X(673), X(5556)}}, {{A, B, C, X(1219), X(36807)}}, {{A, B, C, X(2320), X(7131)}}, {{A, B, C, X(2346), X(41790)}}, {{A, B, C, X(2481), X(5936)}}, {{A, B, C, X(3296), X(34578)}}, {{A, B, C, X(3616), X(3912)}}, {{A, B, C, X(3748), X(41711)}}, {{A, B, C, X(4384), X(9780)}}, {{A, B, C, X(5226), X(5437)}}, {{A, B, C, X(5249), X(9776)}}, {{A, B, C, X(5273), X(41867)}}, {{A, B, C, X(5435), X(25525)}}, {{A, B, C, X(5550), X(29616)}}, {{A, B, C, X(5665), X(8056)}}, {{A, B, C, X(5749), X(17282)}}, {{A, B, C, X(6172), X(38093)}}, {{A, B, C, X(8797), X(46137)}}, {{A, B, C, X(10266), X(34401)}}, {{A, B, C, X(10578), X(17093)}}, {{A, B, C, X(16284), X(52715)}}, {{A, B, C, X(16823), X(29611)}}, {{A, B, C, X(17077), X(25521)}}, {{A, B, C, X(17257), X(27147)}}, {{A, B, C, X(17296), X(28626)}}, {{A, B, C, X(18025), X(30598)}}, {{A, B, C, X(18221), X(44794)}}, {{A, B, C, X(18230), X(20195)}}, {{A, B, C, X(18810), X(38254)}}, {{A, B, C, X(18821), X(36956)}}, {{A, B, C, X(20568), X(32022)}}, {{A, B, C, X(20569), X(30701)}}, {{A, B, C, X(25935), X(27383)}}, {{A, B, C, X(27827), X(56003)}}, {{A, B, C, X(30625), X(31618)}}, {{A, B, C, X(30712), X(35160)}}, {{A, B, C, X(30806), X(31994)}}, {{A, B, C, X(30807), X(52422)}}, {{A, B, C, X(32014), X(37202)}}, {{A, B, C, X(32021), X(36620)}}, {{A, B, C, X(35158), X(43527)}}, {{A, B, C, X(35167), X(39738)}}, {{A, B, C, X(39963), X(55924)}}, {{A, B, C, X(40014), X(43533)}}, {{A, B, C, X(40509), X(43531)}}
X(56054) = barycentric product X(i)*X(j) for these (i, j): {10390, 75}, {34821, 3596}
X(56054) = barycentric quotient X(i)/X(j) for these (i, j): {1, 10389}, {2, 18230}, {10390, 1}, {34821, 56}


X(56055) = KP3(X(2)) OF X(2) AND X(13)

Barycentrics    -11*a^4+31*a^2*(b^2+c^2)-8*(b^4-5*b^2*c^2+c^4)+10*sqrt(3)*(a^2+2*(b^2+c^2))*S : :

X(56055) lies on the Kiepert hyperbola and on these lines: {4, 618}, {13, 40334}, {14, 620}, {98, 12213}, {141, 43544}, {530, 33602}, {616, 38412}, {623, 54562}, {629, 54937}, {3424, 9749}, {3642, 54848}, {5459, 33604}, {5463, 12816}, {6669, 43542}, {10188, 44382}, {14971, 42036}, {21156, 54850}, {22489, 33607}, {22687, 54673}, {36767, 54480}, {38743, 54570}, {41042, 54939}

X(56055) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(618), X(40709)}}


X(56056) = KP3(X(2)) OF X(2) AND X(14)

Barycentrics    -11*a^4+31*a^2*(b^2+c^2)-8*(b^4-5*b^2*c^2+c^4)-10*sqrt(3)*(a^2+2*(b^2+c^2))*S : :

X(56056) lies on the Kiepert hyperbola and on these lines: {4, 619}, {13, 620}, {14, 40335}, {98, 12214}, {141, 43545}, {531, 33603}, {617, 43541}, {624, 54561}, {630, 54938}, {3424, 9750}, {3643, 54847}, {5460, 33605}, {5464, 12817}, {6670, 43543}, {10187, 44383}, {14971, 42035}, {21157, 54849}, {22490, 33606}, {22689, 54672}, {38743, 54569}, {41043, 54940}

X(56056) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(619), X(40710)}}


X(56057) = KP3(X(2)) OF X(2) AND X(67)

Barycentrics    (a^4+3*b^4-2*b^2*c^2+c^4-a^2*(2*b^2+c^2))*(a^4+b^4-2*b^2*c^2+3*c^4-a^2*(b^2+2*c^2)) : :

X(56057) lies on these lines: {67, 625}, {126, 136}, {599, 626}, {7761, 30542}, {9132, 25328}, {9133, 41133}, {9464, 44166}, {10130, 16890}, {32961, 45809}, {36792, 43620}

X(56057) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 9131}, {923, 10552}
X(56057) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 9131}, {2482, 10552}
X(56057) = X(i)-cross conjugate of X(j) for these {i, j}: {31275, 2}
X(56057) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(67)}}, {{A, B, C, X(4), X(11318)}}, {{A, B, C, X(83), X(626)}}, {{A, B, C, X(98), X(40511)}}, {{A, B, C, X(126), X(30786)}}, {{A, B, C, X(136), X(338)}}, {{A, B, C, X(141), X(37688)}}, {{A, B, C, X(264), X(9516)}}, {{A, B, C, X(290), X(8797)}}, {{A, B, C, X(316), X(625)}}, {{A, B, C, X(325), X(44380)}}, {{A, B, C, X(328), X(51454)}}, {{A, B, C, X(523), X(8781)}}, {{A, B, C, X(524), X(41133)}}, {{A, B, C, X(671), X(5461)}}, {{A, B, C, X(1494), X(36953)}}, {{A, B, C, X(1502), X(2963)}}, {{A, B, C, X(1916), X(1989)}}, {{A, B, C, X(2165), X(2996)}}, {{A, B, C, X(2980), X(53105)}}, {{A, B, C, X(3228), X(35005)}}, {{A, B, C, X(5475), X(7934)}}, {{A, B, C, X(5503), X(6094)}}, {{A, B, C, X(7603), X(7831)}}, {{A, B, C, X(7608), X(42286)}}, {{A, B, C, X(9227), X(34898)}}, {{A, B, C, X(9462), X(40824)}}, {{A, B, C, X(13481), X(42407)}}, {{A, B, C, X(39446), X(40513)}}, {{A, B, C, X(40347), X(44182)}}, {{A, B, C, X(40826), X(43529)}}, {{A, B, C, X(40832), X(51480)}}, {{A, B, C, X(44369), X(44377)}}, {{A, B, C, X(46154), X(46316)}}, {{A, B, C, X(52154), X(54122)}}
X(56057) = barycentric product X(i)*X(j) for these (i, j): {523, 9133}, {850, 9132}
X(56057) = barycentric quotient X(i)/X(j) for these (i, j): {523, 9131}, {524, 10552}, {9132, 110}, {9133, 99}


X(56058) = KP3(X(2)) OF X(2) AND X(81)

Barycentrics    (2*b*c*(b+c)+a^2*(2*b+c)+a*(2*b^2+c^2))*(2*b*c*(b+c)+a^2*(b+2*c)+a*(b^2+2*c^2)) : :

X(56058) lies on these lines: {1, 31264}, {81, 44417}, {88, 31993}, {89, 14829}, {291, 31241}, {957, 3820}, {959, 40663}, {1022, 50457}, {1255, 30818}, {3739, 39962}, {4358, 37870}, {5235, 53083}, {17946, 27076}

X(56058) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 50604}
X(56058) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 50604}
X(56058) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(239), X(31241)}}, {{A, B, C, X(321), X(44417)}}, {{A, B, C, X(335), X(31264)}}, {{A, B, C, X(4358), X(31993)}}, {{A, B, C, X(4359), X(30818)}}, {{A, B, C, X(5235), X(14829)}}, {{A, B, C, X(5936), X(8797)}}, {{A, B, C, X(14624), X(23617)}}, {{A, B, C, X(17289), X(33133)}}, {{A, B, C, X(18825), X(34816)}}, {{A, B, C, X(19623), X(31247)}}, {{A, B, C, X(19822), X(28808)}}, {{A, B, C, X(27163), X(37680)}}, {{A, B, C, X(35155), X(36957)}}, {{A, B, C, X(43757), X(56046)}}
X(56058) = barycentric product X(i)*X(j) for these (i, j): {56032, 75}
X(56058) = barycentric quotient X(i)/X(j) for these (i, j): {1, 50604}, {56032, 1}


X(56059) = KP3(X(2)) OF X(2) AND X(83)

Barycentrics    (3*a^2+4*b^2+3*c^2)*(3*a^2+3*b^2+4*c^2) : :

X(56059) lies on the Kiepert hyperbola and on these lines: {2, 5368}, {4, 48879}, {5, 54890}, {83, 34573}, {98, 632}, {140, 54857}, {262, 5070}, {547, 14492}, {549, 54852}, {598, 7784}, {620, 11606}, {1916, 14047}, {3096, 5395}, {3407, 14067}, {3530, 8725}, {3763, 43527}, {3860, 54813}, {5054, 14458}, {5079, 14488}, {6656, 53106}, {6683, 42006}, {7770, 53107}, {7812, 54639}, {7834, 54748}, {7841, 54493}, {7859, 10302}, {7883, 18842}, {7911, 45103}, {7915, 43535}, {7940, 11167}, {8362, 52886}, {8370, 54646}, {8703, 54477}, {10159, 51128}, {11289, 43550}, {11290, 43551}, {11303, 54591}, {11304, 54592}, {11540, 54608}, {14484, 46936}, {15692, 54519}, {15696, 54917}, {16045, 18844}, {18843, 32006}, {19709, 54582}, {38071, 54717}, {41984, 54644}, {43459, 54539}

X(56059) = isotomic conjugate of X(51126)
X(56059) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 51126}, {17457, 39676}
X(56059) = X(i)-cross conjugate of X(j) for these {i, j}: {7950, 99}
X(56059) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(141), X(34573)}}, {{A, B, C, X(297), X(632)}}, {{A, B, C, X(419), X(14047)}}, {{A, B, C, X(458), X(5070)}}, {{A, B, C, X(547), X(52289)}}, {{A, B, C, X(729), X(17042)}}, {{A, B, C, X(1698), X(29607)}}, {{A, B, C, X(2963), X(5368)}}, {{A, B, C, X(3114), X(24861)}}, {{A, B, C, X(3225), X(34816)}}, {{A, B, C, X(3589), X(51128)}}, {{A, B, C, X(3978), X(31239)}}, {{A, B, C, X(5054), X(11331)}}, {{A, B, C, X(5117), X(14067)}}, {{A, B, C, X(6292), X(33665)}}, {{A, B, C, X(6656), X(52297)}}, {{A, B, C, X(7770), X(52298)}}, {{A, B, C, X(7859), X(26235)}}, {{A, B, C, X(7890), X(40405)}}, {{A, B, C, X(14387), X(40410)}}, {{A, B, C, X(17265), X(17327)}}, {{A, B, C, X(17283), X(17307)}}, {{A, B, C, X(31268), X(40850)}}, {{A, B, C, X(42346), X(52660)}}, {{A, B, C, X(46936), X(52288)}}
X(56059) = barycentric quotient X(i)/X(j) for these (i, j): {2, 51126}


X(56060) = KP3(X(2)) OF X(2) AND X(85)

Barycentrics    (2*a^2-4*a*b+2*b^2-3*a*c-3*b*c+c^2)*(2*a^2-3*a*b+b^2-4*a*c-3*b*c+2*c^2) : :

X(56060) lies on these lines: {2, 32007}, {8, 17240}, {9, 32015}, {85, 6666}, {1698, 14942}, {3912, 42030}, {4102, 4384}, {17044, 31269}, {18230, 32100}, {30690, 30854}

X(56060) = isotomic conjugate of X(20195)
X(56060) = trilinear pole of line {47664, 47974}
X(56060) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 20195}, {2293, 39669}
X(56060) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(42819)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(9), X(6666)}}, {{A, B, C, X(75), X(17263)}}, {{A, B, C, X(79), X(27475)}}, {{A, B, C, X(673), X(3296)}}, {{A, B, C, X(1125), X(4384)}}, {{A, B, C, X(1223), X(34919)}}, {{A, B, C, X(1434), X(42318)}}, {{A, B, C, X(1698), X(3912)}}, {{A, B, C, X(2481), X(30598)}}, {{A, B, C, X(3873), X(5284)}}, {{A, B, C, X(5560), X(17758)}}, {{A, B, C, X(5745), X(51780)}}, {{A, B, C, X(5936), X(35160)}}, {{A, B, C, X(7162), X(37131)}}, {{A, B, C, X(8797), X(18025)}}, {{A, B, C, X(9311), X(13606)}}, {{A, B, C, X(16823), X(17367)}}, {{A, B, C, X(17095), X(30854)}}, {{A, B, C, X(17240), X(20565)}}, {{A, B, C, X(17260), X(17338)}}, {{A, B, C, X(17294), X(51073)}}, {{A, B, C, X(18841), X(42335)}}, {{A, B, C, X(29627), X(46933)}}, {{A, B, C, X(29827), X(30030)}}, {{A, B, C, X(29966), X(30970)}}, {{A, B, C, X(31269), X(40864)}}, {{A, B, C, X(31618), X(32088)}}, {{A, B, C, X(32022), X(36807)}}, {{A, B, C, X(34595), X(50095)}}, {{A, B, C, X(35158), X(56059)}}, {{A, B, C, X(35167), X(36954)}}
X(56060) = barycentric product X(i)*X(j) for these (i, j): {56028, 75}
X(56060) = barycentric quotient X(i)/X(j) for these (i, j): {2, 20195}, {1170, 39669}, {56028, 1}


X(56061) = KP3(X(2)) OF X(2) AND X(86)

Barycentrics    (3*a+4*b+3*c)*(3*a+3*b+4*c) : :

X(56061) lies on these lines: {2, 4399}, {86, 3634}, {335, 31238}, {675, 28214}, {903, 28653}, {1268, 51073}, {1698, 30598}, {4360, 19872}, {4389, 39709}, {4422, 6650}, {4698, 27483}, {5224, 30712}, {5257, 52885}, {5936, 17160}, {17272, 39704}, {19877, 28626}

X(56061) = isotomic conjugate of X(19862)
X(56061) = trilinear pole of line {48429, 514}
X(56061) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 19862}, {41, 4114}, {692, 28213}, {1962, 39670}
X(56061) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 19862}, {1086, 28213}, {3160, 4114}
X(56061) = X(i)-cross conjugate of X(j) for these {i, j}: {4802, 190}, {31253, 2}
X(56061) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(3634)}}, {{A, B, C, X(37), X(55932)}}, {{A, B, C, X(334), X(48636)}}, {{A, B, C, X(350), X(31238)}}, {{A, B, C, X(757), X(39962)}}, {{A, B, C, X(1125), X(51073)}}, {{A, B, C, X(1220), X(43731)}}, {{A, B, C, X(1222), X(1224)}}, {{A, B, C, X(1698), X(43531)}}, {{A, B, C, X(2481), X(56059)}}, {{A, B, C, X(3226), X(34816)}}, {{A, B, C, X(3624), X(19872)}}, {{A, B, C, X(4358), X(28653)}}, {{A, B, C, X(6381), X(48551)}}, {{A, B, C, X(7317), X(31359)}}, {{A, B, C, X(8797), X(18025)}}, {{A, B, C, X(9780), X(19877)}}, {{A, B, C, X(17038), X(37129)}}, {{A, B, C, X(17160), X(32016)}}, {{A, B, C, X(17322), X(24589)}}, {{A, B, C, X(17731), X(31248)}}, {{A, B, C, X(19862), X(31253)}}, {{A, B, C, X(19875), X(19876)}}, {{A, B, C, X(32008), X(35141)}}, {{A, B, C, X(32014), X(32089)}}, {{A, B, C, X(35153), X(36954)}}, {{A, B, C, X(35166), X(36957)}}, {{A, B, C, X(39983), X(40433)}}, {{A, B, C, X(40410), X(40417)}}, {{A, B, C, X(40434), X(40438)}}, {{A, B, C, X(46930), X(46933)}}, {{A, B, C, X(46931), X(46932)}}
X(56061) = barycentric product X(i)*X(j) for these (i, j): {28214, 3261}, {56037, 75}
X(56061) = barycentric quotient X(i)/X(j) for these (i, j): {2, 19862}, {7, 4114}, {514, 28213}, {1171, 39670}, {28214, 101}, {56037, 1}
X(56061) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {19872, 28650, 4360}


X(56062) = KP3(X(2)) OF X(2) AND X(92)

Barycentrics    (2*a^3+2*b^3-b^2*c-2*b*c^2+c^3-a^2*(2*b+c)-2*a*(b^2+c^2))*(2*a^3+b^3-2*b^2*c-b*c^2+2*c^3-a^2*(b+2*c)-2*a*(b^2+c^2)) : :

X(56062) lies on these lines: {8, 5791}, {29, 5705}, {92, 5745}, {312, 54357}, {1952, 17044}, {3305, 4997}, {4417, 30608}, {5235, 19607}, {5273, 50442}, {24541, 31359}

X(56062) = isotomic conjugate of X(31266)
X(56062) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(27), X(6857)}}, {{A, B, C, X(57), X(759)}}, {{A, B, C, X(63), X(5745)}}, {{A, B, C, X(75), X(33113)}}, {{A, B, C, X(273), X(40412)}}, {{A, B, C, X(306), X(5705)}}, {{A, B, C, X(1214), X(51281)}}, {{A, B, C, X(2006), X(37739)}}, {{A, B, C, X(3305), X(3911)}}, {{A, B, C, X(4417), X(5235)}}, {{A, B, C, X(5271), X(13411)}}, {{A, B, C, X(5273), X(5744)}}, {{A, B, C, X(5316), X(31224)}}, {{A, B, C, X(5791), X(13478)}}, {{A, B, C, X(5936), X(34393)}}, {{A, B, C, X(11679), X(24541)}}, {{A, B, C, X(14616), X(30598)}}, {{A, B, C, X(17338), X(27002)}}, {{A, B, C, X(19804), X(32849)}}, {{A, B, C, X(24624), X(44733)}}, {{A, B, C, X(34016), X(52412)}}, {{A, B, C, X(39962), X(43760)}}
X(56062) = barycentric product X(i)*X(j) for these (i, j): {56027, 75}
X(56062) = barycentric quotient X(i)/X(j) for these (i, j): {2, 31266}, {56027, 1}


X(56063) = KP3(X(2)) OF X(2) AND X(94)

Barycentrics    (2*a^6+2*b^6-3*b^4*c^2+c^6-a^4*(2*b^2+3*c^2)+a^2*(-2*b^4+5*b^2*c^2))*(2*a^6+b^6-3*b^2*c^4+2*c^6-a^4*(3*b^2+2*c^2)+a^2*(5*b^2*c^2-2*c^4)) : :

X(56063) lies on the Kiepert hyperbola and on these lines: {4, 1511}, {94, 11064}, {98, 30745}, {323, 16080}, {671, 46571}, {858, 54810}, {2052, 14920}, {2072, 18316}, {2394, 8552}, {3548, 54498}, {7506, 54912}, {12086, 54658}, {13371, 54486}, {13595, 14492}, {14458, 31074}, {33314, 55009}, {38253, 45794}, {38321, 54809}, {41254, 43676}, {44441, 54942}, {44555, 46201}, {52695, 54918}, {53105, 54395}

X(56063) = trilinear pole of line {550, 30511}
X(56063) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 30510}, {1539, 2159}, {2173, 52130}
X(56063) = X(i)-Dao conjugate of X(j) for these {i, j}: {3163, 1539}, {36830, 30510}, {36896, 52130}
X(56063) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(297), X(30745)}}, {{A, B, C, X(323), X(1511)}}, {{A, B, C, X(328), X(340)}}, {{A, B, C, X(468), X(46571)}}, {{A, B, C, X(1990), X(34570)}}, {{A, B, C, X(11331), X(31074)}}, {{A, B, C, X(13485), X(30786)}}, {{A, B, C, X(13595), X(52289)}}, {{A, B, C, X(18019), X(18020)}}, {{A, B, C, X(18384), X(40347)}}, {{A, B, C, X(19778), X(40709)}}, {{A, B, C, X(19779), X(40710)}}, {{A, B, C, X(36789), X(46809)}}
X(56063) = barycentric quotient X(i)/X(j) for these (i, j): {30, 1539}, {74, 52130}, {110, 30510}, {22451, 381}


X(56064) = KP3(X(2)) OF X(2) AND X(98)

Barycentrics    (3*a^4+3*b^4-3*b^2*c^2+4*c^4-a^2*(4*b^2+3*c^2))*(3*a^4+4*b^4-3*b^2*c^2+3*c^4-a^2*(3*b^2+4*c^2)) : :

X(56064) lies on the Kiepert hyperbola and on these lines: {4, 620}, {83, 37647}, {98, 13196}, {99, 53105}, {114, 3424}, {141, 53104}, {147, 47586}, {542, 54866}, {598, 11288}, {2482, 54720}, {5395, 33203}, {5485, 14971}, {5503, 44534}, {6036, 43537}, {6721, 14484}, {7607, 7778}, {7612, 37690}, {10153, 22110}, {10754, 35005}, {11668, 15271}, {14061, 32820}, {14458, 23234}, {15300, 32532}, {17005, 43528}, {18843, 31274}, {18845, 33205}, {20094, 38259}, {33698, 41134}, {41133, 54103}, {41895, 52695}, {52886, 53106}

X(56064) = trilinear pole of line {40341, 523}
X(56064) = X(i)-vertex conjugate of X(j) for these {i, j}: {5503, 39644}
X(56064) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(95), X(44558)}}, {{A, B, C, X(141), X(37647)}}, {{A, B, C, X(297), X(40336)}}, {{A, B, C, X(325), X(44377)}}, {{A, B, C, X(620), X(30786)}}, {{A, B, C, X(1007), X(37690)}}, {{A, B, C, X(1494), X(36953)}}, {{A, B, C, X(1799), X(7862)}}, {{A, B, C, X(2987), X(5966)}}, {{A, B, C, X(5094), X(11288)}}, {{A, B, C, X(7868), X(31489)}}, {{A, B, C, X(7931), X(17005)}}, {{A, B, C, X(8889), X(33203)}}, {{A, B, C, X(9516), X(55958)}}, {{A, B, C, X(14971), X(52141)}}, {{A, B, C, X(17983), X(40511)}}, {{A, B, C, X(18023), X(42349)}}, {{A, B, C, X(22110), X(41133)}}, {{A, B, C, X(33205), X(52299)}}, {{A, B, C, X(34816), X(43664)}}, {{A, B, C, X(39644), X(39951)}}, {{A, B, C, X(40429), X(41909)}}


X(56065) = KP3(X(1)) OF X(6) AND X(75)

Barycentrics    (a^3+a^2*b+b^3+a*b*(b+c))*(a^3+a^2*c+c^3+a*c*(b+c)) : :

X(56065) lies on these lines: {2, 172}, {7, 17087}, {56, 7249}, {75, 171}, {86, 17203}, {310, 14012}, {335, 940}, {675, 29018}, {1429, 44733}, {2162, 27447}, {6384, 37100}, {6650, 19785}, {14621, 19786}, {21010, 37090}, {29636, 52394}, {29649, 40033}

X(56065) = isotomic conjugate of X(32778)
X(56065) = trilinear pole of line {20981, 514}
X(56065) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 32778}, {42, 35623}, {692, 29017}
X(56065) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 32778}, {1086, 29017}, {40592, 35623}
X(56065) = X(i)-cross conjugate of X(j) for these {i, j}: {29645, 2}
X(56065) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4362)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(25), X(82)}}, {{A, B, C, X(56), X(171)}}, {{A, B, C, X(83), X(7033)}}, {{A, B, C, X(89), X(6628)}}, {{A, B, C, X(238), X(39967)}}, {{A, B, C, X(278), X(51865)}}, {{A, B, C, X(757), X(967)}}, {{A, B, C, X(849), X(37522)}}, {{A, B, C, X(870), X(14534)}}, {{A, B, C, X(940), X(1429)}}, {{A, B, C, X(969), X(1435)}}, {{A, B, C, X(987), X(8852)}}, {{A, B, C, X(1010), X(31997)}}, {{A, B, C, X(1403), X(37607)}}, {{A, B, C, X(1509), X(40419)}}, {{A, B, C, X(1751), X(39717)}}, {{A, B, C, X(1929), X(3980)}}, {{A, B, C, X(1961), X(16825)}}, {{A, B, C, X(2298), X(3113)}}, {{A, B, C, X(3226), X(56046)}}, {{A, B, C, X(4600), X(25417)}}, {{A, B, C, X(5311), X(32914)}}, {{A, B, C, X(7247), X(33930)}}, {{A, B, C, X(13478), X(32010)}}, {{A, B, C, X(15523), X(29636)}}, {{A, B, C, X(17017), X(17763)}}, {{A, B, C, X(17087), X(40037)}}, {{A, B, C, X(17743), X(55997)}}, {{A, B, C, X(19785), X(20947)}}, {{A, B, C, X(19786), X(33931)}}, {{A, B, C, X(26128), X(43534)}}, {{A, B, C, X(29645), X(32778)}}, {{A, B, C, X(29649), X(29821)}}, {{A, B, C, X(29654), X(29674)}}, {{A, B, C, X(29658), X(29671)}}, {{A, B, C, X(29683), X(29849)}}, {{A, B, C, X(29687), X(29852)}}
X(56065) = barycentric product X(i)*X(j) for these (i, j): {29018, 3261}
X(56065) = barycentric quotient X(i)/X(j) for these (i, j): {2, 32778}, {81, 35623}, {514, 29017}, {29018, 101}


X(56066) = KP3(X(1)) OF X(6) AND X(81)

Barycentrics    a*(a+b)*(a+c)*(a*(b+c)+b*(2*b+c))*(a*(b+c)+c*(b+2*c)) : :

X(56066) lies on these lines: {1, 3728}, {2, 21024}, {6, 19232}, {21, 985}, {28, 38814}, {37, 1258}, {57, 40773}, {81, 1107}, {86, 330}, {105, 43359}, {239, 37870}, {274, 20891}, {278, 17084}, {959, 1284}, {1193, 30571}, {1929, 37442}, {2282, 28606}, {5333, 28621}, {16777, 39738}, {16826, 30710}, {16827, 32009}, {17175, 36871}, {18169, 53678}, {18206, 39980}, {25508, 34063}, {27643, 27789}, {29570, 39694}, {30562, 35058}, {31313, 38247}

X(56066) = trilinear pole of line {18197, 29807}
X(56066) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 43223}, {42, 17379}, {213, 31997}, {4557, 4932}, {28622, 43531}
X(56066) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 43223}, {6626, 31997}, {40592, 17379}
X(56066) = X(i)-cross conjugate of X(j) for these {i, j}: {17038, 56052}, {26102, 86}
X(56066) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(21), X(3786)}}, {{A, B, C, X(37), X(257)}}, {{A, B, C, X(58), X(32014)}}, {{A, B, C, X(65), X(27483)}}, {{A, B, C, X(79), X(13584)}}, {{A, B, C, X(86), X(27644)}}, {{A, B, C, X(239), X(48144)}}, {{A, B, C, X(256), X(6625)}}, {{A, B, C, X(286), X(41527)}}, {{A, B, C, X(423), X(37442)}}, {{A, B, C, X(893), X(23493)}}, {{A, B, C, X(932), X(7260)}}, {{A, B, C, X(978), X(29570)}}, {{A, B, C, X(1016), X(56032)}}, {{A, B, C, X(1193), X(16826)}}, {{A, B, C, X(1220), X(39971)}}, {{A, B, C, X(1400), X(25426)}}, {{A, B, C, X(1444), X(17084)}}, {{A, B, C, X(3720), X(16827)}}, {{A, B, C, X(3920), X(29960)}}, {{A, B, C, X(5331), X(37128)}}, {{A, B, C, X(9311), X(39737)}}, {{A, B, C, X(16703), X(17442)}}, {{A, B, C, X(17022), X(20036)}}, {{A, B, C, X(18169), X(31008)}}, {{A, B, C, X(18827), X(56048)}}, {{A, B, C, X(20332), X(43531)}}, {{A, B, C, X(21352), X(41240)}}, {{A, B, C, X(27627), X(29580)}}, {{A, B, C, X(27643), X(42025)}}, {{A, B, C, X(30598), X(31997)}}, {{A, B, C, X(43073), X(54120)}}
X(56066) = barycentric product X(i)*X(j) for these (i, j): {1, 56052}, {274, 39967}, {17038, 86}, {28606, 28621}, {43359, 693}
X(56066) = barycentric quotient X(i)/X(j) for these (i, j): {1, 43223}, {81, 17379}, {86, 31997}, {1019, 4932}, {17038, 10}, {38814, 17689}, {39967, 37}, {43359, 100}, {56052, 75}


X(56067) = KP3(X(2)) OF X(4) AND X(76)

Barycentrics    b^2*c^2*(3*a^2+3*b^2-c^2)*(3*a^2-b^2+3*c^2) : :

X(56067) lies on these lines: {76, 193}, {264, 6353}, {308, 8667}, {311, 40819}, {313, 4028}, {327, 14615}, {1502, 3815}, {1975, 45857}, {8940, 34392}, {8944, 34391}, {15480, 40074}, {18027, 21447}, {32832, 43981}, {44144, 52581}

X(56067) = isotomic conjugate of X(5013)
X(56067) = trilinear pole of line {850, 3566}
X(56067) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 5013}, {48, 12167}, {560, 3620}, {8889, 9247}
X(56067) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 5013}, {1249, 12167}, {6374, 3620}
X(56067) = X(i)-cross conjugate of X(j) for these {i, j}: {40022, 76}, {47122, 99}
X(56067) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(193)}}, {{A, B, C, X(4), X(32971)}}, {{A, B, C, X(6), X(3815)}}, {{A, B, C, X(69), X(34229)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(83), X(393)}}, {{A, B, C, X(141), X(8667)}}, {{A, B, C, X(262), X(2998)}}, {{A, B, C, X(523), X(31360)}}, {{A, B, C, X(598), X(32085)}}, {{A, B, C, X(671), X(8801)}}, {{A, B, C, X(1031), X(14458)}}, {{A, B, C, X(1221), X(32023)}}, {{A, B, C, X(1239), X(40831)}}, {{A, B, C, X(2052), X(42354)}}, {{A, B, C, X(2963), X(9516)}}, {{A, B, C, X(3613), X(9462)}}, {{A, B, C, X(3763), X(15480)}}, {{A, B, C, X(6339), X(14494)}}, {{A, B, C, X(6664), X(18575)}}, {{A, B, C, X(7789), X(13881)}}, {{A, B, C, X(8781), X(8797)}}, {{A, B, C, X(9230), X(43976)}}, {{A, B, C, X(14615), X(44144)}}, {{A, B, C, X(16081), X(37874)}}, {{A, B, C, X(17039), X(36212)}}, {{A, B, C, X(17983), X(43527)}}, {{A, B, C, X(18841), X(36611)}}, {{A, B, C, X(24861), X(42286)}}, {{A, B, C, X(25322), X(45090)}}, {{A, B, C, X(40073), X(52570)}}, {{A, B, C, X(40410), X(42407)}}, {{A, B, C, X(52395), X(53102)}}
X(56067) = barycentric product X(i)*X(j) for these (i, j): {5395, 76}, {31506, 40016}
X(56067) = barycentric quotient X(i)/X(j) for these (i, j): {2, 5013}, {4, 12167}, {76, 3620}, {264, 8889}, {5395, 6}, {31506, 3051}


X(56068) = KP3(X(3)) OF X(3) AND X(4)

Barycentrics    a^2*(a^2-b^2-c^2)*(2*a^6+2*b^6-3*b^4*c^2+c^6-a^4*(2*b^2+3*c^2)-2*a^2*(b^4-5*b^2*c^2))*(2*a^6+b^6-3*b^2*c^4+2*c^6-a^4*(3*b^2+2*c^2)+2*a^2*(5*b^2*c^2-c^4)) : :

X(56068) lies on the Jerabek hyperbola and on these lines: {74, 43652}, {265, 3546}, {376, 43695}, {631, 14457}, {1942, 22085}, {3426, 11413}, {3522, 10293}, {3527, 17928}, {3531, 6642}, {3917, 11270}, {5486, 10299}, {7464, 22334}, {10519, 13622}, {11585, 21400}, {15740, 51394}, {16051, 32533}

X(56068) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(4)}}, {{A, B, C, X(186), X(3546)}}, {{A, B, C, X(376), X(11413)}}, {{A, B, C, X(631), X(17928)}}, {{A, B, C, X(1995), X(10299)}}, {{A, B, C, X(3522), X(7464)}}, {{A, B, C, X(3524), X(6642)}}, {{A, B, C, X(3528), X(12085)}}, {{A, B, C, X(5879), X(18851)}}, {{A, B, C, X(5897), X(18849)}}, {{A, B, C, X(11585), X(21844)}}, {{A, B, C, X(13599), X(51967)}}, {{A, B, C, X(16051), X(32534)}}, {{A, B, C, X(18853), X(45301)}}, {{A, B, C, X(19708), X(47527)}}, {{A, B, C, X(43652), X(51394)}}


X(56069) = KP3(X(3)) OF X(3) AND X(54)

Barycentrics    a^2*(a^2-b^2-c^2)*(3*a^6-a^4*(2*b^2+3*c^2)+(b^2-c^2)^2*(4*b^2+3*c^2)-a^2*(5*b^4+3*c^4))*(3*a^6-a^4*(3*b^2+2*c^2)+(b^2-c^2)^2*(3*b^2+4*c^2)-a^2*(3*b^4+5*c^4)) : :

X(56069) lies on the Jerabek hyperbola and on these lines: {4, 35240}, {20, 44836}, {64, 8718}, {376, 38442}, {3426, 9715}, {3521, 6676}, {3527, 54994}, {3528, 16774}, {5889, 43908}, {6030, 43719}, {12161, 44731}, {14542, 43841}

X(56069) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(20), X(44837)}}, {{A, B, C, X(376), X(9715)}}, {{A, B, C, X(3520), X(6676)}}, {{A, B, C, X(3528), X(9909)}}, {{A, B, C, X(6368), X(31504)}}, {{A, B, C, X(7512), X(44239)}}, {{A, B, C, X(22261), X(44684)}}


X(56070) = KP3(X(3)) OF X(3) AND X(63)

Barycentrics    a^2*(2*a+2*b+c)*(2*a+b+2*c)*(a^2-b^2-c^2) : :

X(56070) lies on these lines: {3, 23165}, {27, 19812}, {48, 1796}, {57, 1442}, {58, 5313}, {63, 22054}, {84, 37106}, {103, 8652}, {967, 28625}, {2221, 34819}, {7501, 55105}, {11340, 52423}, {34234, 37211}

X(56070) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 16777}, {19, 1698}, {25, 28605}, {33, 4654}, {34, 4007}, {37, 31902}, {108, 4820}, {162, 4838}, {225, 4877}, {278, 3715}, {281, 5221}, {393, 3927}, {648, 48005}, {811, 4826}, {1474, 4066}, {1783, 4802}, {1824, 5333}, {1826, 4658}, {1897, 4813}, {1973, 30596}, {2355, 43260}, {4727, 36125}, {4756, 6591}, {4823, 8750}, {4834, 6335}, {4938, 36128}, {36074, 44426}
X(56070) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 1698}, {125, 4838}, {6337, 30596}, {6505, 28605}, {11517, 4007}, {17423, 4826}, {26932, 4823}, {34467, 4813}, {36033, 16777}, {38983, 4820}, {39006, 4802}, {40589, 31902}, {51574, 4066}, {55066, 48005}
X(56070) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(27)}}, {{A, B, C, X(48), X(22054)}}, {{A, B, C, X(77), X(1442)}}, {{A, B, C, X(78), X(17011)}}, {{A, B, C, X(97), X(41081)}}, {{A, B, C, X(228), X(15373)}}, {{A, B, C, X(306), X(5313)}}, {{A, B, C, X(394), X(25507)}}, {{A, B, C, X(1214), X(7280)}}, {{A, B, C, X(1444), X(40143)}}, {{A, B, C, X(1812), X(14996)}}, {{A, B, C, X(1817), X(37106)}}, {{A, B, C, X(2982), X(3431)}}, {{A, B, C, X(3998), X(19812)}}
X(56070) = barycentric product X(i)*X(j) for these (i, j): {3, 30598}, {222, 42030}, {304, 34819}, {1332, 48074}, {1459, 32042}, {4025, 8652}, {17206, 28625}, {25417, 63}, {30590, 55979}, {30597, 3927}, {37211, 905}
X(56070) = barycentric quotient X(i)/X(j) for these (i, j): {3, 1698}, {48, 16777}, {58, 31902}, {63, 28605}, {69, 30596}, {72, 4066}, {212, 3715}, {219, 4007}, {222, 4654}, {255, 3927}, {603, 5221}, {647, 4838}, {652, 4820}, {810, 48005}, {905, 4823}, {1331, 4756}, {1437, 4658}, {1459, 4802}, {1790, 5333}, {1796, 43260}, {2193, 4877}, {3049, 4826}, {3292, 4938}, {4303, 3824}, {7193, 4716}, {7254, 4960}, {8652, 1897}, {20818, 4898}, {22086, 4958}, {22356, 4727}, {22383, 4813}, {22384, 4810}, {25417, 92}, {28625, 1826}, {30598, 264}, {32660, 36074}, {34819, 19}, {37211, 6335}, {42030, 7017}, {48074, 17924}, {52407, 4880}, {55979, 30589}


X(56071) = KP3(X(3)) OF X(3) AND X(68)

Barycentrics    a^2*(a^2-b^2-c^2)*(2*a^6+b^6-2*a^2*c^4-3*b^2*c^4+2*c^6-a^4*(3*b^2+2*c^2))*(2*a^6-2*a^2*b^4+2*b^6-3*b^4*c^2+c^6-a^4*(2*b^2+3*c^2)) : :

X(56071) lies on the Jerabek hyperbola and on these lines: {2, 16000}, {4, 18475}, {5, 18434}, {6, 1658}, {54, 10298}, {64, 18570}, {68, 13367}, {69, 12038}, {70, 43608}, {184, 43689}, {265, 6639}, {631, 33565}, {2070, 3527}, {3426, 14130}, {3431, 5889}, {3529, 18363}, {3531, 18378}, {5944, 38447}, {6145, 10610}, {6391, 9932}, {10201, 22466}, {10254, 21400}, {10282, 38436}, {11270, 40647}, {11464, 43949}, {11564, 30714}, {12161, 14528}, {12289, 44516}, {18364, 43719}, {18550, 18562}, {19357, 34801}, {20421, 43604}, {37440, 52518}, {37814, 42059}, {42021, 51394}

X(56071) = isogonal conjugate of X(7547)
X(56071) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1658)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(5), X(10298)}}, {{A, B, C, X(20), X(18570)}}, {{A, B, C, X(184), X(12038)}}, {{A, B, C, X(186), X(6639)}}, {{A, B, C, X(376), X(14130)}}, {{A, B, C, X(631), X(2070)}}, {{A, B, C, X(1092), X(18475)}}, {{A, B, C, X(1147), X(13367)}}, {{A, B, C, X(3523), X(37440)}}, {{A, B, C, X(3524), X(18378)}}, {{A, B, C, X(3529), X(18364)}}, {{A, B, C, X(10201), X(22467)}}, {{A, B, C, X(10254), X(21844)}}, {{A, B, C, X(18562), X(35473)}}, {{A, B, C, X(19357), X(47391)}}, {{A, B, C, X(36952), X(55999)}}
X(56071) = barycentric quotient X(i)/X(j) for these (i, j): {6, 7547}


X(56072) = KP3(X(3)) OF X(3) AND X(69)

Barycentrics    a^2*(a^2-b^2-c^2)*(2*a^2+2*b^2+c^2)*(2*a^2+b^2+2*c^2) : :

X(56072) lies on the Jerabek hyperbola and on these lines: {2, 15321}, {4, 5092}, {6, 6636}, {54, 3098}, {64, 15578}, {66, 3619}, {67, 3620}, {68, 25406}, {69, 22352}, {70, 39874}, {74, 7954}, {182, 1173}, {184, 41435}, {216, 43706}, {248, 10979}, {263, 48261}, {265, 28437}, {511, 13472}, {895, 19126}, {1177, 27866}, {1503, 38433}, {3426, 7514}, {3431, 54041}, {3519, 6776}, {3521, 33750}, {3527, 12017}, {3531, 12083}, {3618, 43726}, {3796, 34817}, {4846, 28708}, {5085, 52518}, {5157, 41464}, {5486, 11008}, {7494, 18124}, {7712, 34573}, {10519, 34483}, {11179, 45972}, {11515, 36297}, {11516, 36296}, {11574, 43697}, {13203, 31267}, {13622, 20080}, {15717, 16623}, {16835, 17508}, {22052, 43718}, {22085, 36214}, {22334, 53094}, {33878, 43908}, {34437, 52697}, {34567, 37517}, {37353, 51126}, {43720, 44573}

X(56072) = isogonal conjugate of X(5064)
X(56072) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 5064}, {19, 3763}, {92, 7772}, {162, 7950}, {811, 8665}, {1783, 47923}, {17442, 39668}
X(56072) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 5064}, {6, 3763}, {125, 7950}, {17423, 8665}, {22391, 7772}, {39006, 47923}
X(56072) = X(i)-Ceva conjugate of X(j) for these {i, j}: {43527, 39955}
X(56072) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6636)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(20), X(37126)}}, {{A, B, C, X(95), X(34168)}}, {{A, B, C, X(97), X(42287)}}, {{A, B, C, X(182), X(22052)}}, {{A, B, C, X(184), X(22352)}}, {{A, B, C, X(187), X(19126)}}, {{A, B, C, X(216), X(3098)}}, {{A, B, C, X(263), X(51477)}}, {{A, B, C, X(315), X(46448)}}, {{A, B, C, X(328), X(14388)}}, {{A, B, C, X(376), X(7514)}}, {{A, B, C, X(511), X(10979)}}, {{A, B, C, X(520), X(29323)}}, {{A, B, C, X(574), X(11574)}}, {{A, B, C, X(577), X(5092)}}, {{A, B, C, X(1265), X(41432)}}, {{A, B, C, X(1297), X(8797)}}, {{A, B, C, X(1383), X(1799)}}, {{A, B, C, X(1485), X(7612)}}, {{A, B, C, X(1791), X(2163)}}, {{A, B, C, X(3425), X(33631)}}, {{A, B, C, X(3524), X(12083)}}, {{A, B, C, X(3619), X(20806)}}, {{A, B, C, X(3620), X(22151)}}, {{A, B, C, X(3926), X(7859)}}, {{A, B, C, X(5481), X(36948)}}, {{A, B, C, X(6337), X(33632)}}, {{A, B, C, X(6340), X(39389)}}, {{A, B, C, X(6776), X(44180)}}, {{A, B, C, X(7056), X(41431)}}, {{A, B, C, X(7494), X(21213)}}, {{A, B, C, X(8589), X(11511)}}, {{A, B, C, X(8746), X(39874)}}, {{A, B, C, X(8801), X(29011)}}, {{A, B, C, X(9723), X(25406)}}, {{A, B, C, X(9967), X(14806)}}, {{A, B, C, X(10641), X(54849)}}, {{A, B, C, X(10642), X(54850)}}, {{A, B, C, X(11008), X(41614)}}, {{A, B, C, X(11140), X(42313)}}, {{A, B, C, X(11430), X(26899)}}, {{A, B, C, X(12017), X(36748)}}, {{A, B, C, X(12087), X(15717)}}, {{A, B, C, X(15066), X(28708)}}, {{A, B, C, X(15246), X(20062)}}, {{A, B, C, X(15389), X(20775)}}, {{A, B, C, X(15692), X(37945)}}, {{A, B, C, X(23041), X(33629)}}, {{A, B, C, X(33878), X(36751)}}, {{A, B, C, X(36889), X(41891)}}, {{A, B, C, X(38317), X(54032)}}
X(56072) = barycentric product X(i)*X(j) for these (i, j): {3, 43527}, {525, 7954}, {39955, 69}, {56034, 63}
X(56072) = barycentric quotient X(i)/X(j) for these (i, j): {3, 3763}, {6, 5064}, {184, 7772}, {647, 7950}, {1176, 39668}, {1459, 47923}, {3049, 8665}, {7954, 648}, {22352, 39784}, {39955, 4}, {43527, 264}, {56034, 92}


X(56073) = KP3(X(3)) OF X(3) AND X(74)

Barycentrics    a^2*(a^2-b^2-c^2)*(7*a^6+(b^2-c^2)^2*(6*b^2+7*c^2)-a^4*(8*b^2+7*c^2)+a^2*(-5*b^4+20*b^2*c^2-7*c^4))*(7*a^6+(b^2-c^2)^2*(7*b^2+6*c^2)-a^4*(7*b^2+8*c^2)+a^2*(-7*b^4+20*b^2*c^2-5*c^4)) : :

X(56073) lies on the Jerabek hyperbola and on these lines: {4, 15036}, {64, 15035}, {110, 43719}, {265, 16976}, {3426, 15051}, {13452, 15034}, {13622, 51737}, {14094, 43691}, {15055, 44763}, {15077, 38729}, {16163, 43699}

X(56073) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(186), X(16976)}}, {{A, B, C, X(20480), X(46087)}}, {{A, B, C, X(35921), X(44268)}}, {{A, B, C, X(40082), X(48378)}}


X(56074) = KP3(X(2)) OF X(8) AND X(75)

Barycentrics    b*(a^2-2*a*(b-3*c)+(b-c)^2)*(a^2+a*(6*b-2*c)+(b-c)^2)*c : :

X(56074) lies on these lines: {2, 4875}, {7, 3742}, {75, 11019}, {85, 36620}, {673, 5437}, {3452, 27475}, {4666, 51567}, {6384, 33780}, {10582, 21453}, {17394, 40424}, {18743, 39749}, {20173, 27494}, {20905, 44186}

X(56074) = isotomic conjugate of X(8580)
X(56074) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 8580}, {32, 4461}, {213, 24557}, {2175, 31994}
X(56074) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 8580}, {6376, 4461}, {6626, 24557}, {40593, 31994}
X(56074) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(11019)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(85), X(16284)}}, {{A, B, C, X(3452), X(40719)}}, {{A, B, C, X(3673), X(18841)}}, {{A, B, C, X(3676), X(25430)}}, {{A, B, C, X(3680), X(3742)}}, {{A, B, C, X(4666), X(26015)}}, {{A, B, C, X(4847), X(10582)}}, {{A, B, C, X(5437), X(9436)}}, {{A, B, C, X(6376), X(33780)}}, {{A, B, C, X(6745), X(31249)}}, {{A, B, C, X(7018), X(40014)}}, {{A, B, C, X(7033), X(18743)}}, {{A, B, C, X(8580), X(31507)}}, {{A, B, C, X(11059), X(16750)}}, {{A, B, C, X(14942), X(26105)}}, {{A, B, C, X(20173), X(30963)}}, {{A, B, C, X(20905), X(50561)}}, {{A, B, C, X(31359), X(43672)}}, {{A, B, C, X(39702), X(39959)}}
X(56074) = barycentric product X(i)*X(j) for these (i, j): {56043, 75}
X(56074) = barycentric quotient X(i)/X(j) for these (i, j): {2, 8580}, {75, 4461}, {85, 31994}, {86, 24557}, {56043, 1}


X(56075) = KIMBERLING-PAVLOV X(8)-CONJUGATE OF X(2) AND X(8)

Barycentrics    (a+b-5*c)*(a-b-c)*(a-5*b+c) : :

X(56075) lies on these lines: {2, 1266}, {8, 4342}, {85, 4358}, {92, 46873}, {144, 30578}, {346, 4997}, {908, 10405}, {1121, 29616}, {1220, 3622}, {1311, 6014}, {3912, 55948}, {4767, 31145}, {4873, 5328}, {8055, 31722}, {18228, 30711}, {21454, 40420}, {26860, 55942}, {27757, 50442}, {28808, 30608}, {29569, 56044}, {31359, 46933}

X(56075) = trilinear pole of line {4528, 522}
X(56075) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 13462}, {34, 23073}, {56, 16670}, {604, 3241}, {651, 8656}, {1397, 30829}, {1408, 4029}, {1412, 21870}, {1415, 6006}, {16236, 28607}
X(56075) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 16670}, {9, 13462}, {1146, 6006}, {3161, 3241}, {11517, 23073}, {36911, 16236}, {38991, 8656}, {40599, 21870}
X(56075) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40029, 36588}
X(56075) = X(i)-cross conjugate of X(j) for these {i, j}: {4873, 8}, {4900, 36588}, {5328, 2}
X(56075) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(9), X(16676)}}, {{A, B, C, X(63), X(46873)}}, {{A, B, C, X(75), X(52709)}}, {{A, B, C, X(79), X(45100)}}, {{A, B, C, X(88), X(3680)}}, {{A, B, C, X(89), X(1320)}}, {{A, B, C, X(144), X(908)}}, {{A, B, C, X(278), X(51785)}}, {{A, B, C, X(279), X(4342)}}, {{A, B, C, X(346), X(2325)}}, {{A, B, C, X(522), X(28301)}}, {{A, B, C, X(693), X(1266)}}, {{A, B, C, X(885), X(24408)}}, {{A, B, C, X(2051), X(3296)}}, {{A, B, C, X(2321), X(30588)}}, {{A, B, C, X(2339), X(27789)}}, {{A, B, C, X(3306), X(45121)}}, {{A, B, C, X(3452), X(18600)}}, {{A, B, C, X(3622), X(3687)}}, {{A, B, C, X(3701), X(4080)}}, {{A, B, C, X(4009), X(28809)}}, {{A, B, C, X(4391), X(40021)}}, {{A, B, C, X(4659), X(36796)}}, {{A, B, C, X(4671), X(28808)}}, {{A, B, C, X(4873), X(4945)}}, {{A, B, C, X(4900), X(39963)}}, {{A, B, C, X(5233), X(26860)}}, {{A, B, C, X(6332), X(30680)}}, {{A, B, C, X(6601), X(17067)}}, {{A, B, C, X(6745), X(29616)}}, {{A, B, C, X(7172), X(17292)}}, {{A, B, C, X(9965), X(27131)}}, {{A, B, C, X(11679), X(46933)}}, {{A, B, C, X(27525), X(34255)}}, {{A, B, C, X(30701), X(52500)}}, {{A, B, C, X(35510), X(40424)}}, {{A, B, C, X(42032), X(46938)}}
X(56075) = barycentric product X(i)*X(j) for these (i, j): {312, 39963}, {522, 53659}, {3596, 41436}, {4900, 75}, {35519, 6014}, {36588, 8}, {36915, 4997}, {40029, 9}
X(56075) = barycentric quotient X(i)/X(j) for these (i, j): {1, 13462}, {8, 3241}, {9, 16670}, {210, 21870}, {219, 23073}, {312, 30829}, {522, 6006}, {663, 8656}, {2321, 4029}, {3679, 16236}, {3686, 4982}, {4873, 36911}, {4900, 1}, {4944, 52593}, {6014, 109}, {36588, 7}, {36915, 3911}, {36924, 1317}, {39963, 57}, {40029, 85}, {41436, 56}, {53659, 664}
X(56075) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {36588, 36915, 2}


X(56076) = KIMBERLING-PAVLOV X(8)-CONJUGATE OF X(7) AND X(7)

Barycentrics    (a-b-c)*(a^2+2*a*(b-3*c)+(b+c)^2)*(a^2+(b+c)^2+a*(-6*b+2*c)) : :

X(56076) lies on the Feuerbach hyperbola and on these lines: {1, 3161}, {7, 8051}, {9, 6555}, {104, 53630}, {346, 3680}, {1476, 44301}, {2137, 7091}, {2899, 5556}, {5558, 19582}, {7319, 32850}

X(56076) = trilinear pole of line {650, 4546}
X(56076) = X(i)-isoconjugate-of-X(j) for these {i, j}: {34, 23089}, {56, 23511}, {57, 1616}, {604, 4452}, {1106, 8055}, {1397, 33780}, {1407, 2136}, {1412, 21896}, {4564, 17071}, {6552, 7366}
X(56076) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 23511}, {3161, 4452}, {5452, 1616}, {6552, 8055}, {11517, 23089}, {24771, 2136}, {40599, 21896}
X(56076) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8051, 8}
X(56076) = X(i)-cross conjugate of X(j) for these {i, j}: {5423, 8}
X(56076) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(2), X(52549)}}, {{A, B, C, X(281), X(38255)}}, {{A, B, C, X(346), X(3161)}}, {{A, B, C, X(1261), X(2297)}}, {{A, B, C, X(5296), X(50127)}}, {{A, B, C, X(5423), X(8055)}}, {{A, B, C, X(5749), X(17353)}}, {{A, B, C, X(6332), X(30681)}}, {{A, B, C, X(6556), X(8834)}}, {{A, B, C, X(21296), X(32850)}}
X(56076) = barycentric product X(i)*X(j) for these (i, j): {346, 8051}, {2137, 341}, {4391, 53630}, {6553, 8}, {44301, 6556}, {46356, 6552}
X(56076) = barycentric quotient X(i)/X(j) for these (i, j): {8, 4452}, {9, 23511}, {55, 1616}, {200, 2136}, {210, 21896}, {219, 23089}, {312, 33780}, {346, 8055}, {2137, 269}, {3271, 17071}, {3680, 47636}, {5423, 6552}, {6553, 7}, {6557, 27828}, {8051, 279}, {53630, 651}


X(56077) = KIMBERLING-PAVLOV X(8)-CONJUGATE OF X(8) AND X(9)

Barycentrics    (a-b-c)*(a*(b-2*c)-2*b*c)*(2*a*b-a*c+2*b*c) : :

X(56077) lies on the Feuerbach hyperbola and on these lines: {1, 536}, {4, 29353}, {7, 29824}, {8, 4494}, {9, 4009}, {80, 3416}, {104, 29351}, {256, 17306}, {312, 36798}, {941, 5750}, {1156, 37209}, {1320, 3886}, {2320, 3685}, {2325, 40779}, {4873, 4876}, {7319, 17751}, {23836, 47694}, {26227, 55920}, {30942, 50092}

X(56077) = trilinear pole of line {650, 4474}
X(56077) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 3240}, {57, 54981}, {109, 29350}, {604, 4664}, {1415, 4776}
X(56077) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3240}, {11, 29350}, {1146, 4776}, {3161, 4664}, {5452, 54981}
X(56077) = X(i)-cross conjugate of X(j) for these {i, j}: {4519, 8}
X(56077) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(29), X(16394)}}, {{A, B, C, X(75), X(49483)}}, {{A, B, C, X(200), X(7253)}}, {{A, B, C, X(312), X(522)}}, {{A, B, C, X(320), X(3416)}}, {{A, B, C, X(521), X(29353)}}, {{A, B, C, X(894), X(17306)}}, {{A, B, C, X(2297), X(2995)}}, {{A, B, C, X(2319), X(3737)}}, {{A, B, C, X(2321), X(41683)}}, {{A, B, C, X(2325), X(3886)}}, {{A, B, C, X(3596), X(49493)}}, {{A, B, C, X(3685), X(4693)}}, {{A, B, C, X(3738), X(9024)}}, {{A, B, C, X(4363), X(4494)}}, {{A, B, C, X(4451), X(49452)}}, {{A, B, C, X(4518), X(31178)}}, {{A, B, C, X(4581), X(8056)}}, {{A, B, C, X(4659), X(36796)}}, {{A, B, C, X(4670), X(30608)}}, {{A, B, C, X(5231), X(26227)}}, {{A, B, C, X(5750), X(10436)}}, {{A, B, C, X(7081), X(29827)}}, {{A, B, C, X(14942), X(48805)}}, {{A, B, C, X(17318), X(36799)}}, {{A, B, C, X(18816), X(39959)}}, {{A, B, C, X(36910), X(50126)}}, {{A, B, C, X(44040), X(50122)}}, {{A, B, C, X(50092), X(50127)}}
X(56077) = barycentric product X(i)*X(j) for these (i, j): {312, 55919}, {29351, 4391}, {36871, 8}, {37209, 522}
X(56077) = barycentric quotient X(i)/X(j) for these (i, j): {8, 4664}, {9, 3240}, {55, 54981}, {522, 4776}, {650, 29350}, {29351, 651}, {36871, 7}, {37209, 664}, {55919, 57}


X(56078) = KP2(X(8)) OF X(2) AND X(10)

Barycentrics    (a-b-c)*(2*a^2-b^2-c^2+a*(b+c)) : :

X(56078) lies on these lines: {1, 26065}, {2, 2415}, {8, 4314}, {9, 345}, {10, 846}, {21, 3710}, {31, 49476}, {37, 6703}, {55, 3717}, {57, 344}, {63, 3730}, {69, 3929}, {81, 644}, {142, 32939}, {171, 4078}, {190, 226}, {192, 40940}, {200, 27549}, {210, 3712}, {306, 2895}, {312, 2325}, {321, 54357}, {329, 25728}, {333, 2321}, {346, 5273}, {516, 29641}, {519, 8616}, {527, 18134}, {553, 17234}, {645, 40605}, {894, 26109}, {908, 33113}, {968, 33163}, {1025, 52373}, {1125, 19582}, {1211, 50093}, {1213, 50052}, {1229, 20882}, {1265, 3601}, {1266, 24789}, {1279, 4884}, {1332, 2003}, {1334, 17185}, {1621, 49466}, {1698, 2899}, {1699, 30741}, {1730, 30030}, {1738, 32934}, {1757, 4028}, {1812, 52405}, {1947, 6335}, {1997, 31231}, {1999, 3950}, {2183, 29531}, {2999, 26685}, {3008, 3210}, {3011, 32925}, {3101, 20602}, {3175, 35466}, {3305, 17740}, {3452, 32851}, {3666, 17353}, {3683, 3703}, {3685, 4847}, {3689, 4126}, {3695, 31445}, {3704, 5302}, {3705, 40998}, {3707, 4886}, {3714, 18253}, {3744, 49527}, {3750, 49529}, {3752, 4422}, {3755, 33118}, {3772, 17262}, {3817, 17777}, {3870, 4899}, {3879, 4641}, {3911, 18743}, {3914, 32936}, {3920, 35263}, {3928, 18141}, {3932, 4640}, {3936, 17781}, {3944, 50752}, {3967, 6690}, {3979, 49536}, {3995, 25268}, {3996, 24393}, {4001, 32858}, {4009, 5432}, {4011, 24239}, {4029, 34064}, {4035, 33066}, {4044, 19810}, {4082, 7081}, {4104, 33160}, {4138, 29862}, {4304, 16086}, {4312, 44446}, {4357, 32777}, {4370, 37662}, {4384, 41915}, {4388, 51090}, {4391, 40603}, {4417, 17336}, {4419, 25527}, {4428, 49688}, {4431, 5271}, {4438, 24210}, {4480, 5905}, {4545, 42030}, {4661, 50744}, {4704, 29841}, {4869, 28610}, {4936, 17316}, {4967, 19732}, {5205, 10164}, {5249, 32933}, {5257, 19808}, {5278, 50095}, {5281, 5423}, {5294, 17023}, {5712, 50127}, {5737, 17281}, {5743, 16814}, {5744, 30567}, {5847, 7262}, {6358, 28974}, {6666, 19804}, {6679, 49456}, {6684, 46937}, {6692, 30829}, {6745, 27538}, {9778, 39570}, {9965, 17298}, {10327, 35258}, {10453, 52155}, {10543, 42378}, {12437, 52352}, {13405, 32937}, {14552, 17294}, {14829, 17264}, {16704, 50292}, {17056, 17351}, {17061, 49523}, {17147, 26723}, {17182, 20258}, {17242, 37683}, {17280, 38000}, {17315, 41629}, {17338, 17490}, {17340, 44417}, {17600, 38049}, {17760, 25080}, {17862, 20881}, {17889, 28526}, {17977, 26885}, {19742, 50306}, {19822, 24603}, {20073, 26132}, {20106, 27184}, {21255, 26840}, {21454, 29627}, {21949, 28530}, {22000, 29967}, {22097, 29529}, {22464, 28776}, {24215, 27272}, {24231, 29642}, {24541, 25253}, {25006, 32929}, {25061, 25066}, {25083, 25091}, {25308, 29353}, {26792, 27757}, {27065, 33168}, {28580, 32865}, {28609, 30828}, {28661, 46934}, {29001, 34050}, {29594, 37653}, {29596, 33157}, {29639, 32930}, {29643, 41011}, {29653, 50307}, {29656, 49520}, {29873, 33100}, {30699, 55998}, {30768, 32776}, {31247, 32779}, {31424, 54433}, {32780, 50290}, {33158, 49511}, {34772, 52354}, {35652, 37646}, {37650, 42049}, {37674, 41313}, {39559, 52258}, {39595, 41839}, {39597, 50295}, {40774, 43223}, {41867, 42697}, {49774, 54373}

X(56078) = midpoint of X(i) and X(j) for these {i,j}: {7262, 33092}
X(56078) = X(i)-Dao conjugate of X(j) for these {i, j}: {3686, 1125}, {17058, 514}
X(56078) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1268, 8}
X(56078) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(27820)}}, {{A, B, C, X(1247), X(2339)}}, {{A, B, C, X(3879), X(4373)}}, {{A, B, C, X(4052), X(4102)}}, {{A, B, C, X(4859), X(42304)}}, {{A, B, C, X(9311), X(23681)}}
X(56078) = barycentric product X(i)*X(j) for these (i, j): {312, 4641}, {3699, 4897}, {3879, 8}, {11363, 3718}, {17213, 4076}, {21944, 6064}, {27820, 3161}
X(56078) = barycentric quotient X(i)/X(j) for these (i, j): {3879, 7}, {4641, 57}, {4897, 3676}, {11363, 34}, {17058, 53545}, {17213, 1358}, {17476, 53540}, {21944, 1365}, {27820, 27818}
X(56078) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17261, 4656}, {2, 3161, 30568}, {9, 345, 3687}, {63, 17776, 3912}, {190, 33116, 226}, {306, 3219, 4416}, {333, 42033, 2321}, {346, 5273, 11679}, {846, 33164, 10}, {2321, 5325, 333}, {2325, 5745, 312}, {3219, 32849, 306}, {3683, 3703, 3883}, {5294, 28606, 17023}, {5905, 25734, 4480}, {7262, 33092, 5847}, {19732, 50048, 4967}, {29862, 33099, 4138}, {32936, 33115, 3914}, {33157, 54311, 29596}


X(56079) = KP2(X(8)) OF X(2) AND X(42)

Barycentrics    (a-b-c)*(-2*b^2*c^2+a^3*(b+c)+a^2*(b^2+c^2)) : :

X(56079) lies on these lines: {2, 2415}, {9, 28809}, {71, 17790}, {190, 1400}, {192, 1193}, {313, 29509}, {536, 992}, {644, 27644}, {894, 1655}, {978, 55998}, {1334, 17787}, {1423, 18135}, {1654, 36926}, {2269, 3596}, {2277, 17262}, {2325, 21246}, {2347, 3975}, {2899, 17257}, {3912, 20245}, {3948, 52087}, {4343, 24351}, {4416, 17751}, {17759, 28248}, {17760, 25255}, {20891, 49516}, {20923, 51052}, {24443, 25975}, {27660, 56019}, {28245, 28366}

X(56079) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40418, 8}
X(56079) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(27824)}}, {{A, B, C, X(4373), X(35159)}}
X(56079) = barycentric product X(i)*X(j) for these (i, j): {27824, 3161}
X(56079) = barycentric quotient X(i)/X(j) for these (i, j): {16811, 53538}, {27824, 27818}


X(56080) = KP2(X(8)) OF X(2) AND X(43)

Barycentrics    (a-b-c)*(-2*b^2*c^2+a^3*(b+c)+a*b*c*(b+c)+a^2*(b^2-3*b*c+c^2)) : :

X(56080) lies on circumconic {{A, B, C, X(8056), X(52652)}} and on these lines: {2, 2415}, {9, 3596}, {190, 1423}, {344, 30097}, {646, 3169}, {726, 19582}, {1201, 49446}, {2325, 20258}, {2899, 24248}, {3208, 27424}, {3730, 6381}, {3912, 20348}, {4660, 36926}, {5205, 24728}, {15983, 17294}, {15985, 17281}, {17262, 28358}, {17350, 17752}, {17738, 24590}, {17776, 30076}, {18065, 29698}, {28369, 50127}, {29057, 46937}

X(56080) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32011, 8}
X(56080) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3161, 56079, 30568}


X(56081) = KP2(X(8)) OF X(2) AND X(75)

Barycentrics    (2*a^2+2*b^2-b*c+c^2-a*(4*b+c))*(2*a^2+b^2-b*c+2*c^2-a*(b+4*c)) : :

X(56081) lies on these lines: {145, 344}, {3008, 17158}, {3161, 27818}, {3669, 25082}, {4595, 31638}, {4936, 36807}, {5435, 6604}, {9311, 25101}, {17107, 35160}, {29573, 41629}, {42304, 56078}

X(56081) = isotomic conjugate of X(4859)
X(56081) = trilinear pole of line {4380, 4468}
X(56081) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 4859}, {604, 24392}, {1333, 21949}
X(56081) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4859}, {37, 21949}, {3161, 24392}
X(56081) = X(i)-cross conjugate of X(j) for these {i, j}: {3676, 190}
X(56081) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1279)}}, {{A, B, C, X(2), X(145)}}, {{A, B, C, X(8), X(10005)}}, {{A, B, C, X(10), X(29573)}}, {{A, B, C, X(75), X(344)}}, {{A, B, C, X(83), X(39704)}}, {{A, B, C, X(85), X(1016)}}, {{A, B, C, X(86), X(17158)}}, {{A, B, C, X(277), X(1120)}}, {{A, B, C, X(312), X(33116)}}, {{A, B, C, X(519), X(49703)}}, {{A, B, C, X(644), X(25082)}}, {{A, B, C, X(673), X(39702)}}, {{A, B, C, X(749), X(39970)}}, {{A, B, C, X(765), X(7131)}}, {{A, B, C, X(870), X(3759)}}, {{A, B, C, X(1121), X(40026)}}, {{A, B, C, X(3624), X(49543)}}, {{A, B, C, X(3729), X(25101)}}, {{A, B, C, X(3731), X(17355)}}, {{A, B, C, X(4595), X(6376)}}, {{A, B, C, X(6553), X(42318)}}, {{A, B, C, X(6625), X(17743)}}, {{A, B, C, X(7033), X(42310)}}, {{A, B, C, X(17261), X(17339)}}, {{A, B, C, X(17263), X(20946)}}, {{A, B, C, X(17315), X(28650)}}, {{A, B, C, X(25072), X(25590)}}, {{A, B, C, X(28978), X(29423)}}, {{A, B, C, X(30829), X(37758)}}, {{A, B, C, X(32012), X(39707)}}, {{A, B, C, X(34860), X(34892)}}, {{A, B, C, X(40012), X(42030)}}, {{A, B, C, X(41316), X(51488)}}
X(56081) = barycentric quotient X(i)/X(j) for these (i, j): {2, 4859}, {8, 24392}, {10, 21949}


X(56082) = KP2(X(8)) OF X(2) AND X(78)

Barycentrics    a^3+2*b*c*(b+c)-a*(b+c)^2 : :

X(56082) lies on these lines: {1, 3159}, {2, 2415}, {4, 3710}, {6, 3175}, {8, 3586}, {9, 321}, {19, 46738}, {31, 3994}, {37, 19701}, {40, 3701}, {44, 19750}, {45, 19744}, {55, 3967}, {57, 4358}, {63, 190}, {69, 17781}, {75, 3305}, {78, 3362}, {81, 50127}, {92, 3692}, {144, 4001}, {165, 4427}, {192, 5256}, {193, 50292}, {200, 3952}, {204, 1897}, {209, 49979}, {210, 5695}, {223, 4552}, {226, 2325}, {253, 306}, {333, 17336}, {343, 51390}, {344, 5249}, {345, 908}, {516, 4082}, {518, 4387}, {528, 30615}, {536, 4383}, {538, 28368}, {612, 3923}, {614, 726}, {728, 30807}, {756, 50314}, {846, 29828}, {894, 5287}, {940, 17351}, {968, 1215}, {988, 25591}, {1001, 4942}, {1018, 21361}, {1043, 3984}, {1089, 12514}, {1150, 3929}, {1211, 17281}, {1376, 4009}, {1697, 4696}, {1698, 32776}, {1699, 3006}, {1706, 52353}, {1707, 17763}, {1743, 3187}, {1757, 17156}, {1760, 46747}, {1766, 21376}, {1796, 55094}, {1817, 38869}, {1836, 3932}, {1965, 8026}, {1999, 17350}, {2257, 22040}, {2321, 5739}, {2324, 28950}, {2401, 6332}, {2895, 17294}, {2899, 24982}, {2999, 17147}, {3008, 19789}, {3058, 49688}, {3208, 3765}, {3218, 30567}, {3219, 4671}, {3247, 19684}, {3306, 18743}, {3403, 18152}, {3416, 6057}, {3434, 3717}, {3452, 17740}, {3501, 3948}, {3589, 50068}, {3666, 17262}, {3679, 32947}, {3681, 3886}, {3685, 3870}, {3687, 31018}, {3696, 3715}, {3703, 24703}, {3705, 17777}, {3706, 5220}, {3723, 19722}, {3730, 4044}, {3749, 32927}, {3751, 32915}, {3758, 34064}, {3760, 27661}, {3769, 36277}, {3771, 21093}, {3773, 4703}, {3782, 17279}, {3790, 4388}, {3799, 25308}, {3875, 32911}, {3891, 7290}, {3895, 4737}, {3912, 5905}, {3936, 28609}, {3944, 29857}, {3946, 50071}, {3951, 10449}, {3969, 4873}, {3973, 19742}, {3974, 5698}, {3985, 40131}, {3992, 54286}, {3998, 27413}, {4042, 15481}, {4050, 25298}, {4115, 54330}, {4135, 4362}, {4309, 50607}, {4359, 4659}, {4363, 44307}, {4384, 27065}, {4385, 5250}, {4415, 17340}, {4417, 42033}, {4418, 5268}, {4419, 54311}, {4422, 24789}, {4423, 49483}, {4432, 32920}, {4439, 4865}, {4454, 9776}, {4480, 20078}, {4488, 9965}, {4494, 29418}, {4512, 26227}, {4582, 52031}, {4654, 18139}, {4661, 49451}, {4666, 24349}, {4676, 32926}, {4681, 20182}, {4702, 41711}, {4854, 38047}, {4884, 17721}, {4901, 5014}, {4903, 5205}, {4968, 31435}, {5044, 50044}, {5057, 32862}, {5219, 33113}, {5223, 17135}, {5272, 17155}, {5294, 54389}, {5300, 41869}, {5423, 17784}, {5687, 12912}, {5741, 31142}, {5743, 50048}, {6172, 14552}, {6541, 32946}, {6542, 56025}, {6703, 49726}, {7081, 35258}, {7174, 24552}, {7191, 49446}, {9369, 36846}, {10582, 17140}, {11320, 54329}, {11346, 16485}, {11348, 26006}, {12526, 17751}, {14206, 20928}, {14212, 20920}, {14213, 20927}, {14555, 50107}, {15492, 19723}, {16469, 17150}, {16475, 32928}, {16496, 32943}, {16672, 37869}, {16777, 19747}, {16814, 19732}, {17022, 31035}, {17064, 33115}, {17123, 49493}, {17146, 30350}, {17184, 17284}, {17233, 33066}, {17242, 17778}, {17264, 18134}, {17274, 33172}, {17277, 42029}, {17280, 27184}, {17282, 33146}, {17286, 32782}, {17296, 32859}, {17298, 17483}, {17316, 56024}, {17333, 37653}, {17352, 19796}, {17353, 19785}, {17354, 19786}, {17484, 32858}, {17495, 23511}, {17526, 34937}, {17594, 32931}, {17597, 28582}, {17598, 49517}, {17599, 49523}, {17720, 44416}, {17742, 22001}, {17753, 29988}, {18056, 52049}, {18193, 30957}, {18655, 20336}, {19582, 19861}, {19591, 52664}, {20064, 50000}, {20075, 53661}, {20095, 53660}, {20214, 21296}, {20588, 24026}, {20688, 23543}, {21282, 50865}, {24210, 33163}, {24400, 42719}, {24411, 53340}, {24558, 28661}, {24589, 51780}, {25006, 27549}, {25242, 25930}, {25496, 49456}, {25507, 51488}, {25527, 33151}, {26237, 52155}, {26243, 41423}, {26685, 26723}, {26792, 33077}, {27002, 30861}, {27003, 46938}, {27131, 30578}, {27523, 30059}, {27538, 32932}, {27792, 29712}, {28606, 41242}, {29616, 30625}, {29652, 49520}, {29674, 33099}, {29679, 33100}, {29687, 33098}, {29820, 49532}, {29821, 49445}, {29855, 33152}, {30566, 30827}, {30713, 46109}, {30852, 32851}, {31053, 32849}, {31224, 37758}, {31231, 51583}, {31266, 33116}, {32912, 39594}, {32941, 42054}, {32942, 49447}, {32945, 50126}, {33092, 33096}, {33095, 33165}, {33101, 33158}, {33134, 33166}, {33154, 33159}, {37553, 46897}, {37674, 49721}, {37679, 42051}, {37680, 50106}, {39585, 52387}, {41816, 48630}, {41883, 51367}, {48644, 50308}, {48843, 50066}

X(56082) = reflection of X(i) in X(j) for these {i,j}: {10327, 4082}, {614, 4011}
X(56082) = anticomplement of X(24177)
X(56082) = perspector of circumconic {{A, B, C, X(51566), X(53647)}}
X(56082) = X(i)-Dao conjugate of X(j) for these {i, j}: {24177, 24177}, {53417, 23537}
X(56082) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40424, 8}
X(56082) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(253), X(2997)}}, {{A, B, C, X(1751), X(2184)}}, {{A, B, C, X(4052), X(42471)}}, {{A, B, C, X(6336), X(23681)}}, {{A, B, C, X(6557), X(36624)}}
X(56082) = barycentric product X(i)*X(j) for these (i, j): {100, 17894}, {312, 34048}, {5687, 75}, {16228, 4561}, {38389, 7035}, {48303, 668}
X(56082) = barycentric quotient X(i)/X(j) for these (i, j): {5687, 1}, {16228, 7649}, {17894, 693}, {34048, 57}, {38389, 244}, {48303, 513}
X(56082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 321, 5271}, {63, 190, 25734}, {144, 34255, 4001}, {190, 312, 63}, {192, 27064, 5256}, {226, 2325, 17776}, {329, 346, 306}, {516, 4082, 10327}, {726, 4011, 614}, {894, 41839, 5287}, {2999, 55998, 17147}, {3219, 4671, 11679}, {3685, 32937, 3870}, {3729, 30568, 2}, {3923, 3971, 612}, {3944, 33164, 29857}, {3952, 32929, 200}, {4358, 32933, 57}, {4415, 17340, 32777}, {4552, 28997, 223}, {4659, 7308, 4359}, {4901, 9580, 5014}, {5423, 17784, 49991}, {11679, 25728, 3219}, {17336, 42034, 333}, {17351, 35652, 940}, {17495, 26688, 23511}, {18743, 32939, 3306}, {26685, 30699, 26723}, {27065, 28605, 4384}, {30578, 33168, 27131}, {32911, 42044, 3875}, {32915, 32938, 3751}, {32925, 32930, 1}, {32931, 32936, 17594}, {33151, 33157, 25527}


X(56083) = KP2(X(8)) OF X(7) AND X(65)

Barycentrics    (a-b-c)*(-4*b^2*c^2+a^3*(b+c)+a*(b-c)^2*(b+c)+2*a^2*(b^2+c^2)) : :

X(56083) lies on these lines: {7, 8051}, {8, 10978}, {37, 56079}, {69, 2899}, {75, 19582}, {210, 314}, {319, 36926}, {1264, 1837}, {3057, 3596}, {3161, 4687}, {3175, 39774}, {3663, 25079}, {3701, 17183}, {3718, 4009}, {3948, 43216}, {3985, 20258}, {4357, 30818}, {4358, 20245}, {4460, 8834}, {4640, 55094}, {4679, 30479}, {5044, 10447}, {10436, 30568}, {10446, 46937}, {17790, 21871}, {18135, 24471}, {24993, 25253}, {25585, 31995}, {49518, 56080}


X(56084) = KP2(X(8)) OF X(7) AND X(69)

Barycentrics    a^3-b^3+3*b^2*c+3*b*c^2-c^3+a^2*(b+c)-a*(b^2+4*b*c+c^2) : :

X(56084) lies on these lines: {2, 45}, {4, 1265}, {7, 8051}, {8, 3967}, {57, 1997}, {63, 28808}, {65, 2899}, {69, 189}, {75, 18228}, {92, 55112}, {144, 14829}, {196, 6335}, {226, 344}, {239, 42047}, {306, 36889}, {320, 20942}, {321, 14555}, {341, 962}, {345, 908}, {346, 4417}, {388, 19582}, {391, 55095}, {497, 17777}, {527, 30567}, {573, 29418}, {668, 44723}, {1155, 44446}, {1214, 28978}, {1266, 23511}, {1332, 34048}, {1376, 24280}, {1699, 3717}, {1764, 29497}, {1836, 4009}, {1992, 1999}, {2550, 20716}, {2886, 27549}, {2999, 50101}, {3008, 4052}, {3161, 5226}, {3210, 26791}, {3262, 20921}, {3305, 4054}, {3434, 3952}, {3436, 25253}, {3452, 3729}, {3474, 5205}, {3596, 9535}, {3618, 27064}, {3619, 27184}, {3685, 25568}, {3687, 31142}, {3699, 17784}, {3701, 11415}, {3772, 26685}, {3886, 21060}, {3912, 28609}, {3928, 4480}, {3936, 26783}, {3971, 26098}, {3974, 4388}, {3977, 30852}, {3994, 33088}, {4011, 21093}, {4126, 31140}, {4295, 46937}, {4308, 28661}, {4358, 5905}, {4383, 30699}, {4488, 5435}, {4554, 7056}, {4561, 32815}, {4645, 4903}, {4656, 17321}, {4671, 5739}, {4673, 5815}, {4737, 30305}, {4756, 11680}, {4767, 49719}, {4899, 24392}, {5014, 53661}, {5057, 10327}, {5219, 56078}, {5273, 17336}, {5423, 9812}, {5698, 7081}, {5712, 41839}, {5745, 25728}, {5748, 32851}, {7228, 37682}, {9776, 30829}, {10580, 49499}, {11185, 33948}, {11269, 32938}, {11679, 24705}, {13386, 13458}, {13387, 13425}, {14923, 42020}, {17012, 50071}, {17132, 45204}, {17257, 44417}, {17262, 37662}, {17279, 26132}, {17316, 35652}, {17317, 41825}, {17347, 37655}, {17350, 37642}, {17483, 46938}, {17605, 30741}, {17720, 26065}, {17740, 27131}, {17776, 30828}, {18045, 18135}, {18229, 50093}, {19789, 37680}, {19795, 28836}, {20928, 30807}, {21281, 28809}, {24199, 51780}, {24349, 26105}, {24695, 29649}, {25101, 25525}, {26830, 30905}, {27287, 28803}, {27339, 28748}, {28016, 34860}, {28194, 51284}, {28739, 28754}, {28967, 28993}, {28996, 37800}, {29848, 32930}, {30115, 48817}, {34400, 34401}, {39595, 50127}, {41883, 51390}

X(56084) = X(i)-Ceva conjugate of X(j) for these {i, j}: {34399, 8}, {34401, 69}, {34523, 2}
X(56084) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {18811, 21285}, {34523, 6327}, {55989, 8}
X(56084) = intersection, other than A, B, C, of circumconics {{A, B, C, X(88), X(189)}}, {{A, B, C, X(309), X(903)}}, {{A, B, C, X(4997), X(34404)}}
X(56084) = barycentric product X(i)*X(j) for these (i, j): {16231, 4561}, {20296, 6335}, {34040, 3596}
X(56084) = barycentric quotient X(i)/X(j) for these (i, j): {16231, 7649}, {20296, 905}, {34040, 56}, {38384, 3756}
X(56084) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 8055, 18743}, {226, 30568, 344}, {312, 329, 69}, {312, 33066, 34255}, {321, 14555, 42696}, {321, 31018, 14555}, {329, 34255, 33066}, {908, 56082, 345}, {3161, 5226, 33116}, {3967, 24703, 8}, {4011, 21093, 33144}, {4358, 5905, 18141}, {4488, 6557, 5435}, {4671, 26792, 5739}, {5423, 9812, 32850}, {5435, 6557, 37758}, {17776, 31053, 30828}, {17777, 32937, 497}, {30566, 32933, 2}


X(56085) = KP2(X(8)) OF X(7) AND X(85)

Barycentrics    b*c*(-a+b+c)*(5*a^2+(b-c)^2-2*a*(b+c)) : :

X(56085) lies on these lines: {7, 8051}, {9, 312}, {75, 3161}, {85, 344}, {142, 30829}, {144, 4358}, {190, 1445}, {322, 17264}, {341, 390}, {346, 30854}, {480, 3685}, {516, 46937}, {518, 19582}, {644, 3759}, {1265, 5809}, {1997, 8732}, {2550, 2899}, {3059, 27538}, {3174, 3699}, {3644, 25268}, {3701, 52653}, {3952, 30628}, {3975, 30693}, {4009, 14100}, {4473, 20171}, {4554, 23062}, {4673, 5686}, {4687, 16705}, {4737, 30331}, {5205, 11495}, {5572, 32937}, {5853, 44720}, {6172, 20942}, {6666, 19804}, {11025, 49499}, {17158, 22040}, {17234, 41857}, {17277, 32088}, {17776, 20921}, {20059, 46938}, {20173, 26685}, {20923, 51052}, {22016, 27484}, {25067, 25242}, {25918, 27291}, {27544, 34852}, {28739, 31627}, {28778, 31225}, {29641, 42356}, {30090, 56080}

X(56085) = X(i)-Dao conjugate of X(j) for these {i, j}: {4515, 210}
X(56085) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18153, 17158}
X(56085) = intersection, other than A, B, C, of circumconics {{A, B, C, X(312), X(22040)}}, {{A, B, C, X(314), X(17158)}}, {{A, B, C, X(333), X(8051)}}, {{A, B, C, X(27475), X(30568)}}
X(56085) = barycentric product X(i)*X(j) for these (i, j): {312, 37681}, {17158, 8}, {18153, 9}, {22040, 333}, {23819, 3699}
X(56085) = barycentric quotient X(i)/X(j) for these (i, j): {17158, 7}, {18153, 85}, {22040, 226}, {23819, 3676}, {37681, 57}
X(56085) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 20946, 39126}, {22040, 37681, 17158}


X(56086) = KP3(X(8)) OF X(2) AND X(8)

Barycentrics    (a-b-c)*(a+3*b+c)*(a+b+3*c) : :

X(56086) lies on these lines: {2, 2321}, {8, 4082}, {9, 30711}, {29, 4720}, {85, 321}, {92, 4671}, {144, 189}, {145, 1220}, {329, 10405}, {333, 346}, {345, 30608}, {391, 42030}, {1121, 5739}, {1311, 8694}, {3175, 5232}, {3452, 56075}, {3617, 3714}, {3621, 27064}, {3687, 6557}, {3704, 46933}, {3912, 56054}, {3974, 14942}, {4007, 18228}, {4072, 18229}, {4102, 14555}, {4461, 21454}, {4519, 5274}, {4606, 5372}, {4624, 52156}, {4869, 42029}, {4873, 5273}, {5333, 29624}, {5686, 6057}, {6542, 56044}, {7172, 52133}, {8025, 56019}, {14626, 17135}, {17229, 42047}, {17281, 37666}, {17294, 55948}, {20055, 54120}, {32849, 56062}, {33077, 46873}, {37642, 53664}, {37655, 50107}, {41825, 49765}

X(56086) = isotomic conjugate of X(21454)
X(56086) = trilinear pole of line {20317, 522}
X(56086) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3361}, {31, 21454}, {56, 1449}, {109, 4790}, {222, 5338}, {269, 4258}, {391, 1106}, {461, 7099}, {604, 3616}, {608, 4652}, {692, 30723}, {1333, 3671}, {1397, 19804}, {1402, 42028}, {1407, 4512}, {1408, 5257}, {1409, 31903}, {1412, 37593}, {1414, 4832}, {1415, 4778}, {1417, 4700}, {4565, 4822}, {4637, 8653}, {4673, 52410}, {4827, 6614}, {5342, 52411}, {5586, 34819}, {7177, 44100}
X(56086) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1449}, {2, 21454}, {9, 3361}, {11, 4790}, {37, 3671}, {1086, 30723}, {1146, 4778}, {2092, 4719}, {2968, 4765}, {3161, 3616}, {6552, 391}, {6600, 4258}, {6741, 4841}, {24771, 4512}, {40599, 37593}, {40605, 42028}, {40608, 4832}, {40624, 4801}, {40625, 48580}, {51402, 4773}, {52871, 4700}, {55064, 4822}
X(56086) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40023, 5936}
X(56086) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {7050, 41915}
X(56086) = X(i)-cross conjugate of X(j) for these {i, j}: {4007, 8}, {4866, 5936}, {18228, 2}, {23880, 646}, {51785, 7}
X(56086) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(45100)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(4), X(18250)}}, {{A, B, C, X(9), X(1255)}}, {{A, B, C, X(21), X(27789)}}, {{A, B, C, X(57), X(4900)}}, {{A, B, C, X(75), X(32087)}}, {{A, B, C, X(81), X(3680)}}, {{A, B, C, X(88), X(31509)}}, {{A, B, C, X(144), X(329)}}, {{A, B, C, X(145), X(3687)}}, {{A, B, C, X(200), X(29616)}}, {{A, B, C, X(210), X(40779)}}, {{A, B, C, X(253), X(40422)}}, {{A, B, C, X(279), X(12575)}}, {{A, B, C, X(306), X(1265)}}, {{A, B, C, X(314), X(3875)}}, {{A, B, C, X(321), X(346)}}, {{A, B, C, X(345), X(4671)}}, {{A, B, C, X(391), X(4007)}}, {{A, B, C, X(522), X(17133)}}, {{A, B, C, X(593), X(3478)}}, {{A, B, C, X(1000), X(2051)}}, {{A, B, C, X(1029), X(30513)}}, {{A, B, C, X(1219), X(34258)}}, {{A, B, C, X(1320), X(2339)}}, {{A, B, C, X(1392), X(2185)}}, {{A, B, C, X(2996), X(39703)}}, {{A, B, C, X(3596), X(4967)}}, {{A, B, C, X(3617), X(11679)}}, {{A, B, C, X(3661), X(7172)}}, {{A, B, C, X(3701), X(6539)}}, {{A, B, C, X(3702), X(8025)}}, {{A, B, C, X(3706), X(16748)}}, {{A, B, C, X(3902), X(42026)}}, {{A, B, C, X(3946), X(6601)}}, {{A, B, C, X(4061), X(29624)}}, {{A, B, C, X(4402), X(39721)}}, {{A, B, C, X(4451), X(27494)}}, {{A, B, C, X(4673), X(18228)}}, {{A, B, C, X(4866), X(25430)}}, {{A, B, C, X(5744), X(46873)}}, {{A, B, C, X(6332), X(30679)}}, {{A, B, C, X(6553), X(42360)}}, {{A, B, C, X(7155), X(17319)}}, {{A, B, C, X(7317), X(45098)}}, {{A, B, C, X(7320), X(44733)}}, {{A, B, C, X(9965), X(31018)}}, {{A, B, C, X(13478), X(43734)}}, {{A, B, C, X(14554), X(44794)}}, {{A, B, C, X(17117), X(52652)}}, {{A, B, C, X(17396), X(43749)}}, {{A, B, C, X(20078), X(26792)}}, {{A, B, C, X(27797), X(30713)}}, {{A, B, C, X(28605), X(42032)}}, {{A, B, C, X(28795), X(33091)}}, {{A, B, C, X(28916), X(31091)}}, {{A, B, C, X(30479), X(30712)}}, {{A, B, C, X(30680), X(44189)}}, {{A, B, C, X(30710), X(43533)}}, {{A, B, C, X(43740), X(55027)}}
X(56086) = barycentric product X(i)*X(j) for these (i, j): {522, 53658}, {2334, 3596}, {3239, 4624}, {3700, 4633}, {3701, 56048}, {4086, 4614}, {4391, 4606}, {4866, 75}, {5936, 8}, {25430, 312}, {34820, 76}, {35519, 8694}, {40023, 9}, {47915, 646}
X(56086) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3361}, {2, 21454}, {8, 3616}, {9, 1449}, {10, 3671}, {29, 31903}, {33, 5338}, {78, 4652}, {200, 4512}, {210, 37593}, {220, 4258}, {312, 19804}, {318, 5342}, {333, 42028}, {341, 4673}, {346, 391}, {514, 30723}, {522, 4778}, {650, 4790}, {960, 4719}, {1639, 4773}, {1698, 5586}, {2321, 5257}, {2325, 4700}, {2334, 56}, {3239, 4765}, {3694, 4047}, {3700, 4841}, {3709, 4832}, {3710, 4101}, {3712, 4831}, {3716, 4830}, {3717, 4684}, {3985, 4771}, {4009, 4706}, {4041, 4822}, {4082, 4061}, {4086, 4815}, {4130, 4827}, {4391, 4801}, {4397, 4811}, {4451, 4835}, {4522, 4818}, {4524, 8653}, {4560, 48580}, {4606, 651}, {4614, 1414}, {4624, 658}, {4627, 4565}, {4633, 4573}, {4720, 17553}, {4723, 4742}, {4765, 53586}, {4866, 1}, {5936, 7}, {6558, 30728}, {6735, 51423}, {7046, 461}, {7071, 44100}, {8694, 109}, {14626, 1458}, {25430, 57}, {27538, 4734}, {34074, 1415}, {34820, 6}, {40023, 85}, {47915, 3669}, {50333, 50357}, {53658, 664}, {56048, 1014}
X(56086) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4461, 34255, 21454}, {5936, 25430, 2}


X(56087) = KP3(X(8)) OF X(8) AND X(9)

Barycentrics    (a-b-c)*(2*b*c+a*(2*b+c))*(2*b*c+a*(b+2*c)) : :

X(56087) lies on the Feuerbach hyperbola and on these lines: {1, 3696}, {4, 29311}, {7, 7243}, {9, 3706}, {21, 3886}, {104, 6013}, {256, 4496}, {941, 5257}, {2298, 17156}, {2321, 40779}, {2335, 4847}, {2346, 5271}, {3296, 50625}, {3714, 4866}, {4007, 4876}, {4923, 21246}, {10435, 17617}, {10436, 56048}, {35628, 45032}

X(56087) = isogonal conjugate of X(16878)
X(56087) = trilinear pole of line {650, 48264}
X(56087) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 16878}, {56, 17018}, {65, 39673}, {109, 6005}, {604, 4687}, {664, 8655}, {1414, 50483}, {1415, 47666}
X(56087) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 17018}, {3, 16878}, {11, 6005}, {1146, 47666}, {3161, 4687}, {6741, 48407}, {39025, 8655}, {40602, 39673}, {40608, 50483}
X(56087) = X(i)-cross conjugate of X(j) for these {i, j}: {53526, 522}
X(56087) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(29), X(16458)}}, {{A, B, C, X(75), X(2321)}}, {{A, B, C, X(200), X(17135)}}, {{A, B, C, X(210), X(13476)}}, {{A, B, C, X(312), X(3706)}}, {{A, B, C, X(333), X(4042)}}, {{A, B, C, X(391), X(30712)}}, {{A, B, C, X(521), X(29311)}}, {{A, B, C, X(522), X(28581)}}, {{A, B, C, X(670), X(4069)}}, {{A, B, C, X(2215), X(40505)}}, {{A, B, C, X(3685), X(4007)}}, {{A, B, C, X(3687), X(17156)}}, {{A, B, C, X(3701), X(39708)}}, {{A, B, C, X(3714), X(4673)}}, {{A, B, C, X(4102), X(4361)}}, {{A, B, C, X(4451), X(49459)}}, {{A, B, C, X(4518), X(40328)}}, {{A, B, C, X(4847), X(5271)}}, {{A, B, C, X(10472), X(11679)}}, {{A, B, C, X(27958), X(49717)}}, {{A, B, C, X(28639), X(36800)}}, {{A, B, C, X(39959), X(40422)}}
X(56087) = barycentric product X(i)*X(j) for these (i, j): {333, 46772}, {4391, 6013}, {10013, 312}, {56051, 8}
X(56087) = barycentric quotient X(i)/X(j) for these (i, j): {6, 16878}, {8, 4687}, {9, 17018}, {284, 39673}, {522, 47666}, {650, 6005}, {3063, 8655}, {3700, 48407}, {3709, 50483}, {6013, 651}, {10013, 57}, {46772, 226}, {56051, 7}
X(56087) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10013, 46772, 56051}


X(56088) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(1) AND X(2)

Barycentrics    (a-b-c)*(3*a^2+b^2-4*b*c+3*c^2-2*a*(2*b+c))*(3*a^2+3*b^2-4*b*c+c^2-2*a*(b+2*c)) : :

X(56088) lies on these lines: {1, 56054}, {2, 3158}, {8, 4936}, {85, 145}, {92, 20015}, {200, 6557}, {312, 6555}, {519, 55948}, {1121, 31145}, {1280, 4373}, {3617, 32008}, {3621, 10025}, {3622, 32015}, {3935, 50442}, {12630, 40719}, {12632, 31359}, {12640, 46872}, {20052, 36605}, {36845, 42315}, {42309, 51351}, {46933, 56060}, {52156, 52164}

X(56088) = isogonal conjugate of X(42314)
X(56088) = isotomic conjugate of X(51351)
X(56088) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42314}, {6, 51302}, {31, 51351}, {56, 3243}, {604, 29627}, {1106, 10005}
X(56088) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3243}, {2, 51351}, {3, 42314}, {9, 51302}, {3161, 29627}, {6552, 10005}
X(56088) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6605)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(7), X(8236)}}, {{A, B, C, X(9), X(30712)}}, {{A, B, C, X(78), X(20015)}}, {{A, B, C, X(81), X(7218)}}, {{A, B, C, X(144), X(10025)}}, {{A, B, C, X(145), X(200)}}, {{A, B, C, X(280), X(43745)}}, {{A, B, C, X(281), X(38200)}}, {{A, B, C, X(346), X(522)}}, {{A, B, C, X(390), X(3886)}}, {{A, B, C, X(461), X(17589)}}, {{A, B, C, X(903), X(50839)}}, {{A, B, C, X(996), X(46916)}}, {{A, B, C, X(1002), X(7220)}}, {{A, B, C, X(1043), X(6553)}}, {{A, B, C, X(1088), X(7319)}}, {{A, B, C, X(1219), X(15998)}}, {{A, B, C, X(2287), X(42470)}}, {{A, B, C, X(3254), X(36916)}}, {{A, B, C, X(3617), X(4847)}}, {{A, B, C, X(3870), X(20007)}}, {{A, B, C, X(4900), X(39959)}}, {{A, B, C, X(6556), X(6598)}}, {{A, B, C, X(6745), X(31145)}}, {{A, B, C, X(7320), X(21453)}}, {{A, B, C, X(19605), X(31509)}}, {{A, B, C, X(36910), X(51102)}}, {{A, B, C, X(37658), X(40779)}}, {{A, B, C, X(43672), X(43734)}}
X(56088) = barycentric product X(i)*X(j) for these (i, j): {341, 42315}, {42318, 8}
X(56088) = barycentric quotient X(i)/X(j) for these (i, j): {1, 51302}, {2, 51351}, {6, 42314}, {8, 29627}, {9, 3243}, {346, 10005}, {42315, 269}, {42318, 7}


X(56089) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(1) AND X(4)

Barycentrics    (a-b-c)*(a^3+(b-c)^2*(b+c)-a^2*(3*b+c)-a*(3*b^2-8*b*c+c^2))*(a^3+(b-c)^2*(b+c)-a^2*(b+3*c)-a*(b^2-8*b*c+3*c^2)) : :
X(56089) = -3*X[2]+2*X[15347]

X(56089) lies on the Feuerbach hyperbola and on these lines: {1, 6692}, {2, 15347}, {4, 3880}, {7, 13601}, {8, 17622}, {9, 45193}, {10, 56038}, {84, 519}, {104, 5854}, {145, 1476}, {355, 38307}, {497, 34918}, {517, 10309}, {518, 10307}, {521, 23836}, {758, 16005}, {952, 34256}, {1000, 17559}, {1156, 3621}, {1320, 7080}, {1389, 34619}, {1392, 27383}, {2136, 3476}, {2802, 12667}, {2804, 24128}, {3062, 5853}, {3189, 7284}, {3241, 56029}, {3296, 10107}, {3625, 55931}, {3632, 38271}, {3680, 6736}, {3885, 30513}, {3893, 6601}, {3913, 15179}, {4900, 21627}, {5176, 7319}, {5555, 12648}, {8058, 23838}, {10308, 44669}, {12625, 33576}, {14839, 55001}, {20050, 55921}, {24392, 31509}, {30201, 43728}

X(56089) = isogonal conjugate of X(41426)
X(56089) = anticomplement of X(15347)
X(56089) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 41426}, {56, 36846}, {109, 30198}, {269, 52804}, {604, 1997}, {1106, 42020}
X(56089) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 36846}, {3, 41426}, {11, 30198}, {3161, 1997}, {6552, 42020}, {6600, 52804}, {15347, 15347}
X(56089) = X(i)-cross conjugate of X(j) for these {i, j}: {3756, 522}, {34524, 2}
X(56089) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(2), X(6692)}}, {{A, B, C, X(6), X(3057)}}, {{A, B, C, X(29), X(17567)}}, {{A, B, C, X(55), X(13601)}}, {{A, B, C, X(68), X(34901)}}, {{A, B, C, X(69), X(32049)}}, {{A, B, C, X(145), X(346)}}, {{A, B, C, X(281), X(1222)}}, {{A, B, C, X(318), X(36596)}}, {{A, B, C, X(341), X(1120)}}, {{A, B, C, X(513), X(33963)}}, {{A, B, C, X(517), X(10310)}}, {{A, B, C, X(519), X(7080)}}, {{A, B, C, X(521), X(1265)}}, {{A, B, C, X(522), X(6553)}}, {{A, B, C, X(1413), X(17622)}}, {{A, B, C, X(2123), X(51565)}}, {{A, B, C, X(2804), X(5854)}}, {{A, B, C, X(3445), X(17648)}}, {{A, B, C, X(3452), X(44794)}}, {{A, B, C, X(3621), X(6745)}}, {{A, B, C, X(3632), X(27383)}}, {{A, B, C, X(5435), X(6557)}}, {{A, B, C, X(7046), X(14923)}}, {{A, B, C, X(9368), X(39969)}}, {{A, B, C, X(10107), X(42696)}}, {{A, B, C, X(11051), X(18236)}}, {{A, B, C, X(12667), X(15500)}}, {{A, B, C, X(15347), X(34524)}}, {{A, B, C, X(17519), X(17559)}}, {{A, B, C, X(30701), X(52517)}}
X(56089) = barycentric product X(i)*X(j) for these (i, j): {346, 52803}, {30236, 4391}
X(56089) = barycentric quotient X(i)/X(j) for these (i, j): {6, 41426}, {8, 1997}, {9, 36846}, {220, 52804}, {346, 42020}, {650, 30198}, {30236, 651}, {34524, 15347}, {52803, 279}


X(56090) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(1) AND X(7)

Barycentrics    (a-b-c)*(a^3+(b-c)^2*(b+c)-a^2*(5*b+c)-a*(5*b^2-14*b*c+c^2))*(a^3+(b-c)^2*(b+c)-a^2*(b+5*c)-a*(b^2-14*b*c+5*c^2)) : :

X(56090) lies on the Feuerbach hyperbola and on these lines: {4, 12541}, {7, 3880}, {84, 28234}, {104, 6244}, {145, 7091}, {517, 10307}, {519, 3062}, {1156, 5854}, {3296, 39779}, {3621, 33576}, {3680, 4345}, {3900, 23836}, {4866, 8275}, {4900, 5328}, {5853, 55922}, {7320, 10179}, {9785, 17648}, {11041, 15179}, {11525, 56038}, {21627, 31509}, {36922, 55931}

X(56090) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(81), X(18228)}}, {{A, B, C, X(145), X(1043)}}, {{A, B, C, X(312), X(44794)}}, {{A, B, C, X(341), X(6553)}}, {{A, B, C, X(346), X(1120)}}, {{A, B, C, X(514), X(6557)}}, {{A, B, C, X(517), X(6244)}}, {{A, B, C, X(959), X(3057)}}, {{A, B, C, X(1265), X(12541)}}, {{A, B, C, X(3241), X(36916)}}, {{A, B, C, X(3880), X(3900)}}, {{A, B, C, X(4873), X(16236)}}, {{A, B, C, X(5854), X(6366)}}, {{A, B, C, X(6556), X(34860)}}, {{A, B, C, X(8058), X(28234)}}, {{A, B, C, X(36588), X(36596)}}, {{A, B, C, X(39749), X(52517)}}, {{A, B, C, X(51567), X(56088)}}


X(56091) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(1) AND X(21)

Barycentrics    a*(a+b-4*c)*(a-b-c)*(a-4*b+c) : :
X(56091) = -4*X[3626]+3*X[5559]

X(56091) lies on the Feuerbach hyperbola and on these lines: {1, 3833}, {4, 3621}, {7, 10944}, {8, 11238}, {9, 3885}, {10, 13606}, {21, 3880}, {79, 519}, {80, 3625}, {100, 56036}, {104, 3579}, {145, 3296}, {496, 1000}, {515, 16005}, {517, 10308}, {523, 23836}, {941, 16672}, {1159, 5551}, {1320, 3893}, {1389, 3935}, {1392, 10912}, {1476, 32636}, {2298, 16666}, {2320, 3871}, {2802, 3065}, {3057, 32635}, {3255, 5853}, {3626, 5559}, {3632, 5560}, {3634, 13602}, {3680, 5330}, {3869, 36599}, {3877, 4866}, {4193, 56089}, {4816, 43731}, {5854, 11604}, {5919, 17546}, {7284, 14923}, {7320, 9780}, {7962, 31509}, {10266, 44669}, {10914, 15179}, {11278, 16615}, {12641, 21627}, {17648, 34894}, {23838, 35057}, {25722, 31507}, {37524, 54391}, {37567, 55921}, {38251, 49492}

X(56091) = reflection of X(i) in X(j) for these {i,j}: {20050, 39777}
X(56091) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 3244}, {57, 16669}, {101, 30726}, {109, 28217}, {4935, 16945}
X(56091) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3244}, {8, 4935}, {11, 28217}, {1015, 30726}, {5452, 16669}, {51577, 39781}
X(56091) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39710, 39962}
X(56091) = X(i)-cross conjugate of X(j) for these {i, j}: {4959, 644}
X(56091) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(8148)}}, {{A, B, C, X(10), X(3918)}}, {{A, B, C, X(29), X(17531)}}, {{A, B, C, X(78), X(3621)}}, {{A, B, C, X(81), X(4102)}}, {{A, B, C, X(88), X(312)}}, {{A, B, C, X(105), X(11238)}}, {{A, B, C, X(145), X(4917)}}, {{A, B, C, X(200), X(20050)}}, {{A, B, C, X(333), X(40434)}}, {{A, B, C, X(517), X(3579)}}, {{A, B, C, X(519), X(4420)}}, {{A, B, C, X(521), X(5844)}}, {{A, B, C, X(523), X(3701)}}, {{A, B, C, X(596), X(52409)}}, {{A, B, C, X(958), X(16672)}}, {{A, B, C, X(960), X(3902)}}, {{A, B, C, X(1043), X(17160)}}, {{A, B, C, X(1126), X(41432)}}, {{A, B, C, X(1222), X(6740)}}, {{A, B, C, X(1255), X(42030)}}, {{A, B, C, X(1261), X(10944)}}, {{A, B, C, X(1807), X(37705)}}, {{A, B, C, X(1809), X(12645)}}, {{A, B, C, X(2349), X(40399)}}, {{A, B, C, X(3057), X(3702)}}, {{A, B, C, X(3617), X(3872)}}, {{A, B, C, X(3625), X(4511)}}, {{A, B, C, X(3626), X(4861)}}, {{A, B, C, X(3723), X(5302)}}, {{A, B, C, X(3871), X(4720)}}, {{A, B, C, X(3877), X(4673)}}, {{A, B, C, X(3893), X(4723)}}, {{A, B, C, X(4853), X(9780)}}, {{A, B, C, X(4915), X(5550)}}, {{A, B, C, X(5330), X(16948)}}, {{A, B, C, X(5697), X(37524)}}, {{A, B, C, X(5854), X(8674)}}, {{A, B, C, X(6553), X(51786)}}, {{A, B, C, X(6557), X(39963)}}, {{A, B, C, X(7131), X(36605)}}, {{A, B, C, X(8702), X(44669)}}, {{A, B, C, X(11107), X(15679)}}, {{A, B, C, X(11278), X(13624)}}, {{A, B, C, X(17124), X(52133)}}, {{A, B, C, X(29298), X(35104)}}
X(56091) = barycentric product X(i)*X(j) for these (i, j): {28218, 4391}, {39710, 9}, {39962, 8}
X(56091) = barycentric quotient X(i)/X(j) for these (i, j): {9, 3244}, {55, 16669}, {513, 30726}, {650, 28217}, {3161, 4935}, {4578, 30732}, {16814, 39777}, {16885, 39781}, {28218, 651}, {39710, 85}, {39962, 7}


X(56092) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(1) AND X(30)

Barycentrics    (a-b-c)*(b-c)*(2*a^3+a^2*(b+c)-(b-c)^2*(b+c)-2*a*(b^2+b*c+c^2)) : :

X(56092) lies on these lines: {8, 52355}, {30, 511}, {1320, 14224}, {1389, 43737}, {4105, 47887}, {4895, 21119}, {6742, 55017}, {7178, 48293}, {7629, 53527}, {8611, 14400}, {10015, 48303}, {11278, 42750}, {13254, 16156}, {13255, 16157}, {21120, 48307}, {21180, 39540}, {34958, 48292}, {43728, 56091}, {44811, 48391}, {48962, 48966}, {48994, 48998}

X(56092) = perspector of circumconic {{A, B, C, X(2), X(17781)}}
X(56092) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 55185}, {109, 10308}
X(56092) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 55185}, {11, 10308}, {8818, 38340}, {41800, 4467}
X(56092) = X(i)-Ceva conjugate of X(j) for these {i, j}: {38340, 9}, {55186, 41800}
X(56092) = X(i)-complementary conjugate of X(j) for these {i, j}: {10308, 124}, {55185, 1329}
X(56092) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {10308, 33650}, {55185, 3436}
X(56092) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(30)}}, {{A, B, C, X(314), X(29301)}}, {{A, B, C, X(514), X(41800)}}, {{A, B, C, X(515), X(5559)}}, {{A, B, C, X(517), X(3579)}}, {{A, B, C, X(527), X(17781)}}, {{A, B, C, X(758), X(3680)}}, {{A, B, C, X(900), X(14224)}}, {{A, B, C, X(971), X(2346)}}, {{A, B, C, X(1320), X(2771)}}, {{A, B, C, X(1389), X(6001)}}, {{A, B, C, X(2800), X(13143)}}, {{A, B, C, X(4802), X(44426)}}, {{A, B, C, X(6601), X(17768)}}, {{A, B, C, X(9033), X(52355)}}, {{A, B, C, X(28217), X(43728)}}, {{A, B, C, X(44669), X(56089)}}
X(56092) = barycentric product X(i)*X(j) for these (i, j): {3579, 4391}, {17781, 522}, {41800, 8}, {55186, 9}
X(56092) = barycentric quotient X(i)/X(j) for these (i, j): {9, 55185}, {650, 10308}, {3579, 651}, {17781, 664}, {41800, 7}, {55186, 85}
X(56092) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {521, 8058, 2804}, {522, 3738, 28217}, {28217, 42337, 522}


X(56093) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(1) AND X(55)

Barycentrics    a*(a-b-c)*(a^2*b-2*b*c^2+a*(b^2-b*c-2*c^2))*(a^2*c-2*b^2*c+a*(-2*b^2-b*c+c^2)) : :

X(56093) lies on these lines: {1, 45787}, {8, 52196}, {42, 750}, {55, 35104}, {65, 7223}, {69, 13576}, {210, 4042}, {518, 1824}, {573, 29310}, {958, 1334}, {10371, 41506}, {10441, 40516}, {13478, 29311}

X(56093) = trilinear pole of line {3709, 17418}
X(56093) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 49470}, {57, 37657}, {109, 48080}, {604, 30830}
X(56093) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 49470}, {11, 48080}, {3161, 30830}, {5452, 37657}
X(56093) = X(i)-Ceva conjugate of X(j) for these {i, j}: {55945, 39981}
X(56093) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(333)}}, {{A, B, C, X(6), X(314)}}, {{A, B, C, X(8), X(42)}}, {{A, B, C, X(9), X(969)}}, {{A, B, C, X(21), X(1889)}}, {{A, B, C, X(56), X(18021)}}, {{A, B, C, X(69), X(219)}}, {{A, B, C, X(78), X(17156)}}, {{A, B, C, X(171), X(37614)}}, {{A, B, C, X(200), X(49495)}}, {{A, B, C, X(261), X(10013)}}, {{A, B, C, X(291), X(312)}}, {{A, B, C, X(523), X(3596)}}, {{A, B, C, X(573), X(29311)}}, {{A, B, C, X(750), X(1320)}}, {{A, B, C, X(960), X(51223)}}, {{A, B, C, X(1037), X(2997)}}, {{A, B, C, X(1126), X(45032)}}, {{A, B, C, X(1222), X(1376)}}, {{A, B, C, X(2481), X(52013)}}, {{A, B, C, X(3868), X(10371)}}, {{A, B, C, X(3872), X(29828)}}, {{A, B, C, X(3880), X(14077)}}, {{A, B, C, X(3913), X(3996)}}, {{A, B, C, X(4492), X(11609)}}, {{A, B, C, X(4900), X(7220)}}, {{A, B, C, X(4997), X(52654)}}, {{A, B, C, X(6366), X(14839)}}, {{A, B, C, X(7155), X(52030)}}, {{A, B, C, X(10441), X(16678)}}, {{A, B, C, X(13476), X(30479)}}, {{A, B, C, X(20029), X(43740)}}, {{A, B, C, X(30571), X(30608)}}, {{A, B, C, X(31509), X(36630)}}, {{A, B, C, X(37581), X(41600)}}
X(56093) = barycentric product X(i)*X(j) for these (i, j): {39981, 8}, {40030, 55}, {55945, 9}
X(56093) = barycentric quotient X(i)/X(j) for these (i, j): {8, 30830}, {9, 49470}, {55, 37657}, {650, 48080}, {39981, 7}, {40030, 6063}, {55945, 85}


X(56094) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(1) AND X(75)

Barycentrics    (2*a+2*b-c)*(-a+b+c)^2*(2*a-b+2*c) : :

X(56094) lies on these lines: {8, 2320}, {75, 519}, {89, 1219}, {145, 30588}, {190, 36922}, {312, 52409}, {318, 4673}, {341, 6737}, {515, 17347}, {952, 30273}, {1222, 2163}, {2364, 4007}, {2370, 4588}, {3996, 51565}, {4451, 44669}, {4597, 18025}, {6556, 20007}, {17740, 31145}, {20014, 30589}

X(56094) = trilinear pole of line {3239, 14427}
X(56094) = X(i)-isoconjugate-of-X(j) for these {i, j}: {45, 1407}, {56, 2099}, {57, 1405}, {269, 2177}, {604, 5219}, {934, 4775}, {1042, 4653}, {1106, 3679}, {1398, 3940}, {1415, 43052}, {1417, 36920}, {1427, 4273}, {1461, 4893}, {3711, 7023}, {4671, 52410}, {4814, 6614}, {4833, 53321}, {4873, 7366}, {4957, 23979}
X(56094) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 2099}, {1146, 43052}, {2968, 4777}, {3161, 5219}, {5452, 1405}, {6552, 3679}, {6600, 2177}, {14714, 4775}, {24771, 45}, {35508, 4893}, {52871, 36920}, {55068, 4833}
X(56094) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1098)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(9), X(50116)}}, {{A, B, C, X(21), X(3897)}}, {{A, B, C, X(29), X(6910)}}, {{A, B, C, X(80), X(37740)}}, {{A, B, C, X(145), X(20007)}}, {{A, B, C, X(200), X(519)}}, {{A, B, C, X(220), X(49490)}}, {{A, B, C, X(312), X(1016)}}, {{A, B, C, X(332), X(1265)}}, {{A, B, C, X(1000), X(1065)}}, {{A, B, C, X(1088), X(3427)}}, {{A, B, C, X(1120), X(6601)}}, {{A, B, C, X(1220), X(30478)}}, {{A, B, C, X(1320), X(2287)}}, {{A, B, C, X(2320), X(39704)}}, {{A, B, C, X(2328), X(41434)}}, {{A, B, C, X(3057), X(37603)}}, {{A, B, C, X(3239), X(49780)}}, {{A, B, C, X(3632), X(6736)}}, {{A, B, C, X(3680), X(3879)}}, {{A, B, C, X(3907), X(44669)}}, {{A, B, C, X(4183), X(48816)}}, {{A, B, C, X(4397), X(50751)}}, {{A, B, C, X(4515), X(4709)}}, {{A, B, C, X(4853), X(6743)}}, {{A, B, C, X(6598), X(34860)}}, {{A, B, C, X(7073), X(48825)}}, {{A, B, C, X(7110), X(10570)}}, {{A, B, C, X(11604), X(39707)}}, {{A, B, C, X(17947), X(27475)}}, {{A, B, C, X(20569), X(30608)}}, {{A, B, C, X(28071), X(49720)}}, {{A, B, C, X(39702), X(43740)}}, {{A, B, C, X(42064), X(50301)}}, {{A, B, C, X(43731), X(44040)}}, {{A, B, C, X(51567), X(56088)}}
X(56094) = barycentric product X(i)*X(j) for these (i, j): {200, 20569}, {341, 89}, {346, 39704}, {1043, 30588}, {2320, 312}, {2364, 3596}, {3239, 4597}, {4397, 4604}, {4588, 52622}, {24026, 5385}, {30608, 8}, {35519, 5549}, {52620, 6558}, {55246, 7258}
X(56094) = barycentric quotient X(i)/X(j) for these (i, j): {8, 5219}, {9, 2099}, {55, 1405}, {89, 269}, {200, 45}, {220, 2177}, {341, 4671}, {346, 3679}, {522, 43052}, {657, 4775}, {728, 3711}, {1021, 4833}, {1043, 5235}, {2163, 1407}, {2287, 4653}, {2320, 57}, {2325, 36920}, {2328, 4273}, {2364, 56}, {3239, 4777}, {3686, 4870}, {3692, 3940}, {3707, 39782}, {3900, 4893}, {4130, 4814}, {4148, 4800}, {4163, 4944}, {4171, 4770}, {4397, 4791}, {4529, 4774}, {4578, 4752}, {4588, 1461}, {4597, 658}, {4604, 934}, {5385, 7045}, {5423, 4873}, {5549, 109}, {6558, 4767}, {7253, 47683}, {7258, 55245}, {20569, 1088}, {24026, 4957}, {28607, 1106}, {28658, 1042}, {28808, 36595}, {30588, 3668}, {30608, 7}, {32851, 36589}, {39704, 279}, {53114, 1427}, {55246, 7216}, {55979, 7053}


X(56095) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(1) AND X(79)

Barycentrics    (a-b-c)*(a^3+(b-c)^2*(b+c)-a^2*(4*b+c)-a*(4*b^2-11*b*c+c^2))*(a^3+(b-c)^2*(b+c)-a^2*(b+4*c)-a*(b^2-11*b*c+4*c^2)) : :

X(56095) lies on the Feuerbach hyperbola and on these lines: {79, 3880}, {84, 5844}, {517, 16005}, {519, 10308}, {1329, 4900}, {3065, 5854}, {3244, 15179}, {3633, 7284}, {3740, 5559}, {7091, 37738}, {11373, 56038}, {23836, 35057}, {23838, 56092}

X(56095) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(596), X(36596)}}, {{A, B, C, X(3880), X(35057)}}, {{A, B, C, X(5844), X(8058)}}


X(56096) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(1) AND X(84)

Barycentrics    a*(a-b-c)*(a^4-6*a^3*c+(b-c)^2*(b^2-4*b*c-5*c^2)-2*a^2*(b^2-5*b*c-2*c^2)+2*a*c*(5*b^2-12*b*c+3*c^2))*(a^4-6*a^3*b-(b-c)^2*(5*b^2+4*b*c-c^2)+2*a^2*(2*b^2+5*b*c-c^2)+2*a*b*(3*b^2-12*b*c+5*c^2)) : :

X(56096) lies on the Feuerbach hyperbola and on these lines: {1, 15347}, {84, 3880}, {104, 12629}, {519, 10309}, {1320, 2057}, {2802, 34256}, {5853, 10307}, {5854, 46435}, {7320, 24982}, {8058, 23836}, {16005, 44669}, {23340, 38308}, {23838, 30201}

X(56096) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(519), X(2057)}}, {{A, B, C, X(3737), X(39123)}}, {{A, B, C, X(3880), X(8058)}}, {{A, B, C, X(4853), X(24982)}}, {{A, B, C, X(6735), X(12629)}}, {{A, B, C, X(15347), X(36846)}}, {{A, B, C, X(21164), X(23340)}}


X(56097) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(1) AND X(104)

Barycentrics    a*(a-b-c)*(a^4-5*a^3*c+(b-c)^2*(b^2-3*b*c-4*c^2)+a^2*(-2*b^2+7*b*c+3*c^2)+a*c*(7*b^2-16*b*c+5*c^2))*(a^4-5*a^3*b+a^2*(3*b^2+7*b*c-2*c^2)-(b-c)^2*(4*b^2+3*b*c-c^2)+a*b*(5*b^2-16*b*c+7*c^2)) : :

X(56097) lies on the Feuerbach hyperbola and on these lines: {4, 5854}, {11, 56089}, {84, 2802}, {100, 15347}, {104, 3880}, {517, 34256}, {519, 46435}, {528, 10307}, {952, 10309}, {1000, 3816}, {2804, 23836}, {9951, 33576}, {12758, 38271}, {18254, 55931}, {30201, 46041}

X(56097) = reflection of X(i) in X(j) for these {i,j}: {100, 15347}, {56089, 11}
X(56097) = trilinear pole of line {650, 34524}
X(56097) = X(i)-Dao conjugate of X(j) for these {i, j}: {1145, 18802}
X(56097) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(517), X(13528)}}, {{A, B, C, X(521), X(1811)}}, {{A, B, C, X(952), X(30201)}}, {{A, B, C, X(2316), X(38452)}}, {{A, B, C, X(2802), X(8058)}}, {{A, B, C, X(2804), X(3880)}}
X(56097) = barycentric product X(i)*X(j) for these (i, j): {4391, 53897}
X(56097) = barycentric quotient X(i)/X(j) for these (i, j): {53897, 651}


X(56098) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(2)

Barycentrics    a*(a-b-c)*(a^3-b^3+b^2*c-b*c^2+c^3-a^2*(b+c)+a*(b^2-2*b*c-c^2))*(a^3+b^3-b^2*c+b*c^2-c^3-a^2*(b+c)+a*(-b^2-2*b*c+c^2)) : :

X(56098) lies on these lines: {1, 348}, {2, 33}, {3, 7131}, {21, 2332}, {55, 63}, {64, 10884}, {75, 4319}, {78, 220}, {103, 6183}, {200, 345}, {243, 55963}, {990, 40719}, {997, 4845}, {1005, 36100}, {1253, 4712}, {1791, 3601}, {1812, 2328}, {2192, 41081}, {2339, 13615}, {2342, 36819}, {2808, 18446}, {3744, 7050}, {3749, 51476}, {3811, 10482}, {3872, 42064}, {3935, 30680}, {3957, 30679}, {4189, 55986}, {4326, 7218}, {4327, 21453}, {4666, 7073}, {5307, 10431}, {6513, 7072}, {7007, 41514}, {7411, 10319}, {8299, 52001}, {10393, 34259}, {13436, 30400}, {13453, 30401}, {20111, 34772}, {21258, 54392}, {24218, 24283}, {36721, 37697}, {39959, 54440}, {52351, 52371}

X(56098) = isogonal conjugate of X(2263)
X(56098) = trilinear pole of line {657, 521}
X(56098) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2263}, {6, 948}, {7, 37580}, {56, 2550}, {57, 40131}, {109, 47123}, {269, 28043}, {607, 23603}, {934, 6182}, {1400, 16054}
X(56098) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 2550}, {3, 2263}, {9, 948}, {11, 47123}, {5452, 40131}, {6600, 28043}, {14714, 6182}, {40582, 16054}
X(56098) = X(i)-cross conjugate of X(j) for these {i, j}: {949, 39273}
X(56098) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(33)}}, {{A, B, C, X(2), X(21)}}, {{A, B, C, X(3), X(1040)}}, {{A, B, C, X(7), X(2287)}}, {{A, B, C, X(8), X(1280)}}, {{A, B, C, X(9), X(75)}}, {{A, B, C, X(20), X(10884)}}, {{A, B, C, X(29), X(20835)}}, {{A, B, C, X(34), X(8852)}}, {{A, B, C, X(77), X(3100)}}, {{A, B, C, X(84), X(1088)}}, {{A, B, C, X(86), X(282)}}, {{A, B, C, X(90), X(43672)}}, {{A, B, C, X(243), X(2734)}}, {{A, B, C, X(268), X(326)}}, {{A, B, C, X(271), X(52365)}}, {{A, B, C, X(284), X(36740)}}, {{A, B, C, X(294), X(1002)}}, {{A, B, C, X(341), X(7160)}}, {{A, B, C, X(346), X(2346)}}, {{A, B, C, X(596), X(3811)}}, {{A, B, C, X(650), X(39954)}}, {{A, B, C, X(893), X(9398)}}, {{A, B, C, X(949), X(3423)}}, {{A, B, C, X(969), X(1172)}}, {{A, B, C, X(990), X(991)}}, {{A, B, C, X(997), X(6745)}}, {{A, B, C, X(1010), X(13615)}}, {{A, B, C, X(1253), X(1458)}}, {{A, B, C, X(1320), X(56088)}}, {{A, B, C, X(1390), X(40779)}}, {{A, B, C, X(1697), X(3744)}}, {{A, B, C, X(1807), X(9817)}}, {{A, B, C, X(2293), X(4327)}}, {{A, B, C, X(2389), X(29066)}}, {{A, B, C, X(2646), X(17594)}}, {{A, B, C, X(2862), X(52133)}}, {{A, B, C, X(3057), X(3749)}}, {{A, B, C, X(3576), X(9371)}}, {{A, B, C, X(3601), X(3666)}}, {{A, B, C, X(3786), X(51837)}}, {{A, B, C, X(3872), X(3935)}}, {{A, B, C, X(3900), X(28849)}}, {{A, B, C, X(4183), X(36706)}}, {{A, B, C, X(4297), X(12520)}}, {{A, B, C, X(4321), X(4326)}}, {{A, B, C, X(4420), X(4666)}}, {{A, B, C, X(4640), X(19605)}}, {{A, B, C, X(4689), X(13384)}}, {{A, B, C, X(4866), X(41711)}}, {{A, B, C, X(5307), X(10393)}}, {{A, B, C, X(7162), X(44040)}}, {{A, B, C, X(8021), X(13727)}}, {{A, B, C, X(16054), X(23151)}}, {{A, B, C, X(17512), X(33305)}}, {{A, B, C, X(25723), X(36627)}}, {{A, B, C, X(31359), X(44692)}}, {{A, B, C, X(34525), X(51565)}}, {{A, B, C, X(34894), X(36916)}}, {{A, B, C, X(34919), X(52663)}}, {{A, B, C, X(36796), X(42310)}}
X(56098) = barycentric product X(i)*X(j) for these (i, j): {75, 949}, {312, 3423}, {3239, 6183}, {39273, 8}, {45974, 52652}
X(56098) = barycentric quotient X(i)/X(j) for these (i, j): {1, 948}, {6, 2263}, {9, 2550}, {21, 16054}, {41, 37580}, {55, 40131}, {77, 23603}, {220, 28043}, {650, 47123}, {657, 6182}, {949, 1}, {3423, 57}, {6183, 658}, {39273, 7}, {45974, 7146}


X(56099) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(3)

Barycentrics    (a-b-c)*(a^6-a^5*c+2*a^3*c^2*(-b+c)+a*(b-c)^3*c*(b+c)-a^4*(2*b^2-2*b*c+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4-2*b^3*c+4*b^2*c^2-2*b*c^3-c^4))*(a^6-a^5*b+2*a^3*b^2*(b-c)-a*b*(b-c)^3*(b+c)-a^4*(b^2-2*b*c+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4-2*b^3*c+4*b^2*c^2-2*b*c^3+c^4)) : :

X(56099) lies on these lines: {3, 318}, {8, 255}, {75, 1804}, {341, 1259}, {346, 2289}, {2193, 2322}, {11109, 36055}, {37094, 40445}, {37727, 51565}, {45392, 52409}

X(56099) = trilinear pole of line {3239, 36054}
X(56099) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2734)}}, {{A, B, C, X(3), X(21)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(271), X(10538)}}, {{A, B, C, X(333), X(7361)}}, {{A, B, C, X(2320), X(41904)}}, {{A, B, C, X(10623), X(43743)}}, {{A, B, C, X(26703), X(52133)}}


X(56100) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(4)

Barycentrics    a*(a-b-c)*(a^4-2*a^3*b+2*a^2*(b-c)*c-(b-c)^3*(b+c)+2*a*b*(b^2-b*c+c^2))*(a^4-2*a^2*b*(b-c)-2*a^3*c+(b-c)^3*(b+c)+2*a*c*(b^2-b*c+c^2)) : :

X(56100) lies on the Feuerbach hyperbola and on these lines: {4, 4511}, {7, 44179}, {78, 80}, {104, 3869}, {200, 43731}, {404, 17097}, {1000, 4861}, {1389, 14923}, {1858, 55961}, {3485, 5555}, {3486, 30513}, {3872, 5559}, {4420, 43734}, {5553, 21740}, {6261, 12119}, {6597, 15829}, {10309, 11415}, {12514, 15446}, {30144, 39599}

X(56100) = X(i)-isoconjugate-of-X(j) for these {i, j}: {34, 37700}, {56, 10573}
X(56100) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 10573}, {11517, 37700}
X(56100) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(78), X(4511)}}, {{A, B, C, X(312), X(2167)}}, {{A, B, C, X(921), X(14987)}}, {{A, B, C, X(1043), X(44179)}}, {{A, B, C, X(1318), X(41505)}}, {{A, B, C, X(1385), X(37533)}}, {{A, B, C, X(1807), X(39167)}}, {{A, B, C, X(3872), X(4861)}}, {{A, B, C, X(6261), X(15500)}}, {{A, B, C, X(6557), X(36100)}}, {{A, B, C, X(6857), X(17519)}}, {{A, B, C, X(24467), X(51379)}}, {{A, B, C, X(37531), X(37611)}}, {{A, B, C, X(40436), X(51565)}}
X(56100) = barycentric quotient X(i)/X(j) for these (i, j): {9, 10573}, {219, 37700}


X(56101) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(7)

Barycentrics    a*(a-b-c)*(a^4-2*a^3*b+2*a^2*(b-c)*c-(b-c)^3*(b+c)+2*a*b*(b^2+c^2))*(a^4-2*a^2*b*(b-c)-2*a^3*c+(b-c)^3*(b+c)+2*a*c*(b^2+c^2)) : :

X(56101) lies on the Feuerbach hyperbola and on these lines: {1, 1259}, {4, 78}, {7, 326}, {9, 51379}, {20, 10309}, {63, 104}, {80, 200}, {84, 5693}, {90, 5692}, {224, 5553}, {294, 34526}, {377, 5555}, {1000, 3872}, {1012, 41389}, {1043, 1896}, {1156, 41228}, {1172, 2327}, {1260, 37533}, {1476, 3868}, {2057, 5587}, {2298, 3553}, {2997, 20895}, {3062, 5538}, {3577, 37569}, {4420, 7319}, {4853, 5559}, {4861, 7320}, {4867, 7284}, {4882, 43731}, {5251, 7162}, {5438, 5665}, {5727, 34918}, {6061, 52380}, {6065, 52377}, {6264, 36922}, {6326, 46435}, {6332, 43728}, {6598, 9581}, {7675, 34919}, {8809, 15394}, {10305, 10884}, {11520, 15179}, {15446, 31424}, {15909, 43166}, {20588, 51506}

X(56101) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 54366}, {34, 18446}, {56, 18391}, {57, 8557}, {278, 19350}, {608, 6350}, {4017, 54442}
X(56101) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 18391}, {9, 54366}, {1145, 1512}, {5452, 8557}, {11517, 18446}, {34961, 54442}
X(56101) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(37531)}}, {{A, B, C, X(29), X(37248)}}, {{A, B, C, X(63), X(312)}}, {{A, B, C, X(78), X(326)}}, {{A, B, C, X(165), X(5538)}}, {{A, B, C, X(200), X(2750)}}, {{A, B, C, X(268), X(1807)}}, {{A, B, C, X(271), X(1793)}}, {{A, B, C, X(280), X(1257)}}, {{A, B, C, X(282), X(6740)}}, {{A, B, C, X(517), X(37611)}}, {{A, B, C, X(518), X(34526)}}, {{A, B, C, X(759), X(39943)}}, {{A, B, C, X(960), X(3553)}}, {{A, B, C, X(998), X(2316)}}, {{A, B, C, X(1036), X(2259)}}, {{A, B, C, X(1295), X(51497)}}, {{A, B, C, X(3306), X(30608)}}, {{A, B, C, X(3423), X(3478)}}, {{A, B, C, X(3576), X(37569)}}, {{A, B, C, X(3868), X(20895)}}, {{A, B, C, X(4853), X(4861)}}, {{A, B, C, X(4867), X(4873)}}, {{A, B, C, X(7020), X(40431)}}, {{A, B, C, X(7218), X(41432)}}, {{A, B, C, X(14942), X(34525)}}, {{A, B, C, X(17515), X(37358)}}, {{A, B, C, X(18443), X(37533)}}, {{A, B, C, X(30806), X(41228)}}, {{A, B, C, X(36626), X(44692)}}, {{A, B, C, X(40399), X(41514)}}, {{A, B, C, X(51567), X(56098)}}
X(56101) = barycentric product X(i)*X(j) for these (i, j): {55963, 78}
X(56101) = barycentric quotient X(i)/X(j) for these (i, j): {1, 54366}, {9, 18391}, {55, 8557}, {78, 6350}, {212, 19350}, {219, 18446}, {5546, 54442}, {55963, 273}


X(56102) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(33)

Barycentrics    (a-b-c)*(a^2+b^2-2*a*c-2*b*c-c^2)*(a^2-2*a*b-b^2-2*b*c+c^2) : :

X(56102) lies on these lines: {1, 6392}, {2, 968}, {85, 350}, {92, 4207}, {145, 54120}, {189, 10453}, {333, 497}, {346, 4518}, {390, 52133}, {1220, 54291}, {1311, 28847}, {2994, 17135}, {3974, 4102}, {4514, 42030}, {20012, 34527}, {27518, 46880}, {30943, 34234}

X(56102) = trilinear pole of line {4148, 522}
X(56102) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 3751}, {109, 50336}, {604, 17316}, {1106, 27549}, {1397, 30758}, {1408, 4078}, {1409, 14013}, {1415, 28846}
X(56102) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3751}, {11, 50336}, {1146, 28846}, {3161, 17316}, {6552, 27549}, {6741, 48047}
X(56102) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40028, 39721}
X(56102) = X(i)-cross conjugate of X(j) for these {i, j}: {3886, 8}
X(56102) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(17594)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(4), X(24210)}}, {{A, B, C, X(7), X(4451)}}, {{A, B, C, X(9), X(30571)}}, {{A, B, C, X(21), X(33)}}, {{A, B, C, X(42), X(1036)}}, {{A, B, C, X(60), X(39961)}}, {{A, B, C, X(105), X(1096)}}, {{A, B, C, X(225), X(497)}}, {{A, B, C, X(280), X(32932)}}, {{A, B, C, X(281), X(314)}}, {{A, B, C, X(291), X(3680)}}, {{A, B, C, X(310), X(318)}}, {{A, B, C, X(341), X(6384)}}, {{A, B, C, X(346), X(350)}}, {{A, B, C, X(390), X(3790)}}, {{A, B, C, X(522), X(28580)}}, {{A, B, C, X(1002), X(1320)}}, {{A, B, C, X(1043), X(18156)}}, {{A, B, C, X(1219), X(7033)}}, {{A, B, C, X(1738), X(3596)}}, {{A, B, C, X(1929), X(36623)}}, {{A, B, C, X(2321), X(30479)}}, {{A, B, C, X(3254), X(50080)}}, {{A, B, C, X(3424), X(7261)}}, {{A, B, C, X(3702), X(3974)}}, {{A, B, C, X(3886), X(27549)}}, {{A, B, C, X(4391), X(40030)}}, {{A, B, C, X(4651), X(10527)}}, {{A, B, C, X(4720), X(32631)}}, {{A, B, C, X(4876), X(7220)}}, {{A, B, C, X(4900), X(52654)}}, {{A, B, C, X(5552), X(17135)}}, {{A, B, C, X(6598), X(17064)}}, {{A, B, C, X(7018), X(43533)}}, {{A, B, C, X(7080), X(10453)}}, {{A, B, C, X(10449), X(27517)}}, {{A, B, C, X(11604), X(33134)}}, {{A, B, C, X(17751), X(27518)}}, {{A, B, C, X(20007), X(29839)}}, {{A, B, C, X(32929), X(36626)}}, {{A, B, C, X(33131), X(43741)}}, {{A, B, C, X(36798), X(36916)}}, {{A, B, C, X(36910), X(50126)}}, {{A, B, C, X(39967), X(53089)}}
X(56102) = barycentric product X(i)*X(j) for these (i, j): {312, 39954}, {28847, 35519}, {39721, 8}, {40028, 9}
X(56102) = barycentric quotient X(i)/X(j) for these (i, j): {8, 17316}, {9, 3751}, {29, 14013}, {312, 30758}, {346, 27549}, {522, 28846}, {650, 50336}, {2321, 4078}, {3700, 48047}, {28847, 109}, {39721, 7}, {39954, 57}, {40028, 85}


X(56103) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(74)

Barycentrics    (a-b-c)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+2*b^2*c^2-c^4))*(a^6-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4+2*b^2*c^2+c^4)) : :

X(56103) lies on these lines: {10, 1331}, {100, 1300}, {281, 5546}, {1441, 6516}, {1793, 52356}, {2321, 4587}, {3701, 4571}, {5504, 38955}, {6757, 25440}, {14624, 14910}, {18878, 35141}

X(56103) = trilinear pole of line {219, 3700}
X(56103) = X(i)-isoconjugate-of-X(j) for these {i, j}: {34, 13754}, {56, 1725}, {57, 3003}, {77, 44084}, {278, 2315}, {403, 603}, {604, 3580}, {1400, 18609}, {1414, 21731}, {4017, 15329}, {14264, 51654}, {51651, 52451}
X(56103) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1725}, {3161, 3580}, {5452, 3003}, {6739, 113}, {6741, 55121}, {7952, 403}, {11517, 13754}, {34961, 15329}, {40582, 18609}, {40608, 21731}
X(56103) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(10)}}, {{A, B, C, X(21), X(74)}}, {{A, B, C, X(69), X(36626)}}, {{A, B, C, X(98), X(52380)}}, {{A, B, C, X(100), X(1331)}}, {{A, B, C, X(312), X(52412)}}, {{A, B, C, X(1265), X(5552)}}, {{A, B, C, X(1300), X(36053)}}, {{A, B, C, X(1320), X(43655)}}, {{A, B, C, X(2341), X(2372)}}, {{A, B, C, X(8759), X(32706)}}, {{A, B, C, X(15742), X(52409)}}, {{A, B, C, X(56099), X(56100)}}
X(56103) = barycentric product X(i)*X(j) for these (i, j): {312, 36053}, {1300, 345}, {2986, 8}, {5504, 7017}, {14910, 3596}, {15328, 645}, {15421, 36797}, {15627, 52552}, {18878, 3700}, {40423, 7359}, {40832, 55}, {52355, 687}
X(56103) = barycentric quotient X(i)/X(j) for these (i, j): {8, 3580}, {9, 1725}, {21, 18609}, {55, 3003}, {212, 2315}, {219, 13754}, {281, 403}, {607, 44084}, {1300, 278}, {2986, 7}, {3700, 55121}, {3709, 21731}, {5504, 222}, {5546, 15329}, {7017, 44138}, {7359, 113}, {10420, 4565}, {14910, 56}, {15328, 7178}, {15421, 17094}, {15454, 6357}, {15627, 14264}, {15628, 52451}, {18878, 4573}, {36053, 57}, {36797, 16237}, {40832, 6063}, {52355, 6334}


X(56104) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(75)

Barycentrics    a*(a-b-c)*(a^4-a^3*b-b^4+b^3*c-b*c^3+c^4-a^2*c*(b+2*c)+a*(b^3-b*c^2))*(a^4+b^4-a^3*c-b^3*c+b*c^3-c^4-a^2*b*(2*b+c)+a*(-(b^2*c)+c^3)) : :

X(56104) lies on these lines: {1, 5125}, {2, 1807}, {3, 3218}, {77, 17078}, {78, 32851}, {219, 4511}, {284, 17515}, {296, 12739}, {945, 21740}, {1036, 45230}, {1794, 22836}, {2167, 37525}, {3152, 7100}, {37591, 40442}

X(56104) = trilinear pole of line {652, 3738}
X(56104) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 37695}, {56, 3419}, {57, 54324}, {65, 36011}
X(56104) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3419}, {9, 37695}, {5452, 54324}, {40602, 36011}
X(56104) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3)}}, {{A, B, C, X(2), X(2167)}}, {{A, B, C, X(4), X(44687)}}, {{A, B, C, X(7), X(18444)}}, {{A, B, C, X(8), X(5174)}}, {{A, B, C, X(21), X(75)}}, {{A, B, C, X(60), X(977)}}, {{A, B, C, X(104), X(273)}}, {{A, B, C, X(270), X(51223)}}, {{A, B, C, X(281), X(44693)}}, {{A, B, C, X(318), X(943)}}, {{A, B, C, X(388), X(45230)}}, {{A, B, C, X(522), X(15175)}}, {{A, B, C, X(596), X(6734)}}, {{A, B, C, X(765), X(30513)}}, {{A, B, C, X(944), X(21740)}}, {{A, B, C, X(1034), X(7320)}}, {{A, B, C, X(1098), X(43740)}}, {{A, B, C, X(1320), X(2287)}}, {{A, B, C, X(1870), X(3431)}}, {{A, B, C, X(2218), X(7105)}}, {{A, B, C, X(2646), X(37591)}}, {{A, B, C, X(5882), X(40257)}}, {{A, B, C, X(15446), X(24475)}}, {{A, B, C, X(26877), X(40836)}}, {{A, B, C, X(27385), X(30144)}}, {{A, B, C, X(51567), X(56098)}}
X(56104) = barycentric product X(i)*X(j) for these (i, j): {312, 3418}
X(56104) = barycentric quotient X(i)/X(j) for these (i, j): {1, 37695}, {9, 3419}, {55, 54324}, {284, 36011}, {3418, 57}


X(56105) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(80)

Barycentrics    a*(a-b-c)*(a^4-2*a^3*b+2*a^2*(b-c)*c-(b-c)^3*(b+c)+a*b*(2*b^2-3*b*c+2*c^2))*(a^4-2*a^2*b*(b-c)-2*a^3*c+(b-c)^3*(b+c)+a*c*(2*b^2-3*b*c+2*c^2)) : :

X(56105) lies on the Feuerbach hyperbola and on these lines: {1, 4996}, {4, 6224}, {21, 30538}, {78, 43731}, {79, 39778}, {80, 3814}, {84, 9964}, {100, 1389}, {104, 14988}, {943, 51683}, {2802, 21398}, {3218, 56036}, {3255, 30284}, {3878, 15446}, {4861, 5559}, {5553, 5731}, {5560, 45764}, {11604, 12740}

X(56105) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 41684}
X(56105) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 41684}
X(56105) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(46920)}}, {{A, B, C, X(1411), X(18771)}}, {{A, B, C, X(1807), X(6265)}}, {{A, B, C, X(1809), X(6224)}}, {{A, B, C, X(2804), X(14988)}}, {{A, B, C, X(3218), X(4997)}}, {{A, B, C, X(4511), X(4996)}}, {{A, B, C, X(6065), X(42064)}}, {{A, B, C, X(12611), X(51379)}}
X(56105) = barycentric product X(i)*X(j) for these (i, j): {43355, 4391}
X(56105) = barycentric quotient X(i)/X(j) for these (i, j): {9, 41684}, {43355, 651}


X(56106) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(84)

Barycentrics    a*(a-b-c)*(2*a^4-3*a^3*c+(b-c)^2*(2*b^2+b*c-c^2)-a^2*(4*b^2-3*b*c+c^2)+a*c*(3*b^2-2*b*c+3*c^2))*(2*a^4-3*a^3*b-(b-c)^2*(b^2-b*c-2*c^2)+a*b*(3*b^2-2*b*c+3*c^2)-a^2*(b^2-3*b*c+4*c^2)) : :

X(56106) lies on the Feuerbach hyperbola and on these lines: {4, 5440}, {20, 46435}, {78, 38271}, {80, 7080}, {84, 4511}, {104, 5730}, {1259, 1320}, {4313, 30513}, {4420, 55931}, {4861, 56038}, {5560, 6745}, {6736, 43731}, {10309, 50371}

X(56106) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(63), X(5748)}}, {{A, B, C, X(78), X(27383)}}, {{A, B, C, X(280), X(40436)}}, {{A, B, C, X(1259), X(5440)}}, {{A, B, C, X(1319), X(33963)}}, {{A, B, C, X(4511), X(7080)}}, {{A, B, C, X(10310), X(50371)}}


X(56107) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(86)

Barycentrics    (a+b)*(a-b-c)*(a+c)*(a^2-4*a*b+b^2-c^2)*(a^2-b^2-4*a*c+c^2) : :

X(56107) lies on these lines: {21, 145}, {29, 936}, {86, 7190}, {333, 36596}, {376, 3426}, {452, 14556}, {1010, 3615}, {1043, 44720}, {1098, 30606}, {2287, 3161}, {4234, 6580}, {6740, 51564}, {28193, 51705}

X(56107) = trilinear pole of line {1021, 4521}
X(56107) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 3753}, {65, 999}, {213, 17079}, {604, 4054}, {1042, 3872}, {1400, 3306}, {1402, 42697}, {1425, 17519}, {1880, 22129}, {3668, 52428}, {4017, 35281}
X(56107) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3753}, {3161, 4054}, {6626, 17079}, {34961, 35281}, {40582, 3306}, {40602, 999}, {40605, 42697}, {40625, 21183}
X(56107) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3295)}}, {{A, B, C, X(8), X(145)}}, {{A, B, C, X(9), X(956)}}, {{A, B, C, X(21), X(29)}}, {{A, B, C, X(78), X(268)}}, {{A, B, C, X(79), X(15174)}}, {{A, B, C, X(80), X(37728)}}, {{A, B, C, X(90), X(40446)}}, {{A, B, C, X(280), X(5936)}}, {{A, B, C, X(332), X(1793)}}, {{A, B, C, X(333), X(4560)}}, {{A, B, C, X(1000), X(36596)}}, {{A, B, C, X(1010), X(11107)}}, {{A, B, C, X(1065), X(15175)}}, {{A, B, C, X(1067), X(15446)}}, {{A, B, C, X(1222), X(32635)}}, {{A, B, C, X(2320), X(14942)}}, {{A, B, C, X(2370), X(40417)}}, {{A, B, C, X(3478), X(7220)}}, {{A, B, C, X(4102), X(39700)}}, {{A, B, C, X(7361), X(40435)}}, {{A, B, C, X(28194), X(51705)}}, {{A, B, C, X(31359), X(36626)}}, {{A, B, C, X(32013), X(36796)}}, {{A, B, C, X(34446), X(52429)}}, {{A, B, C, X(36910), X(42285)}}, {{A, B, C, X(39702), X(43745)}}, {{A, B, C, X(39707), X(43740)}}, {{A, B, C, X(51567), X(56098)}}
X(56107) = barycentric product X(i)*X(j) for these (i, j): {29, 30680}, {274, 52429}, {1000, 333}, {4560, 51564}, {16704, 36596}, {28660, 34446}, {36916, 86}
X(56107) = barycentric quotient X(i)/X(j) for these (i, j): {8, 4054}, {9, 3753}, {21, 3306}, {86, 17079}, {283, 22129}, {284, 999}, {314, 20925}, {333, 42697}, {1000, 226}, {1043, 28808}, {2287, 3872}, {2326, 17519}, {4560, 21183}, {5235, 36595}, {5546, 35281}, {30680, 307}, {34446, 1400}, {36596, 4080}, {36916, 10}, {51564, 4552}, {52429, 37}


X(56108) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(90)

Barycentrics    a*(a-b-c)*(2*a^4-3*a^3*c+(b-c)^2*(2*b^2+b*c-c^2)-a^2*(4*b^2-3*b*c+c^2)+a*c*(3*b^2-4*b*c+3*c^2))*(2*a^4-3*a^3*b-(b-c)^2*(b^2-b*c-2*c^2)+a*b*(3*b^2-4*b*c+3*c^2)-a^2*(b^2-3*b*c+4*c^2)) : :

X(56108) lies on the Feuerbach hyperbola and on these lines: {80, 5552}, {90, 4511}, {1320, 10965}, {1389, 10679}, {4188, 17098}, {5553, 11415}, {5560, 27385}, {6735, 43731}, {11509, 17097}, {45230, 55961}

X(56108) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(280), X(4511)}}, {{A, B, C, X(1319), X(10965)}}, {{A, B, C, X(1385), X(10679)}}, {{A, B, C, X(2646), X(11509)}}, {{A, B, C, X(2745), X(11248)}}, {{A, B, C, X(8686), X(41505)}}, {{A, B, C, X(10269), X(33596)}}, {{A, B, C, X(24927), X(37622)}}, {{A, B, C, X(36100), X(38255)}}


X(56109) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(98)

Barycentrics    a^2*(a-b-c)*(a^4+b^4-b^2*c^2+2*c^4-a^2*(2*b^2+c^2))*(a^4+2*b^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(56109) lies on these lines: {42, 1331}, {65, 6516}, {100, 1824}, {210, 4571}, {607, 5546}, {1334, 4587}, {1857, 36797}, {8781, 13576}, {10425, 28471}, {35142, 54952}

X(56109) = trilinear pole of line {219, 3709}
X(56109) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 8772}, {34, 3564}, {56, 1733}, {57, 230}, {77, 460}, {85, 1692}, {273, 52144}, {603, 44145}, {604, 51481}, {1414, 55122}, {4017, 4226}, {4625, 42663}, {7182, 44099}, {14265, 51651}, {36875, 51654}, {51653, 52450}
X(56109) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1733}, {3161, 51481}, {5452, 230}, {7952, 44145}, {11517, 3564}, {34961, 4226}, {40608, 55122}, {50440, 114}
X(56109) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8773, 2987}
X(56109) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(42)}}, {{A, B, C, X(9), X(7095)}}, {{A, B, C, X(21), X(98)}}, {{A, B, C, X(60), X(893)}}, {{A, B, C, X(100), X(1331)}}, {{A, B, C, X(345), X(42700)}}, {{A, B, C, X(1252), X(4518)}}, {{A, B, C, X(1320), X(53873)}}, {{A, B, C, X(2311), X(28482)}}, {{A, B, C, X(2337), X(30479)}}, {{A, B, C, X(2339), X(24624)}}, {{A, B, C, X(3563), X(36051)}}, {{A, B, C, X(4451), X(7054)}}, {{A, B, C, X(56098), X(56100)}}
X(56109) = barycentric product X(i)*X(j) for these (i, j): {55, 8781}, {219, 35142}, {281, 43705}, {312, 36051}, {345, 3563}, {2987, 8}, {8773, 9}, {10425, 3700}, {15627, 36891}, {15628, 52091}, {32654, 3596}, {32697, 52355}, {35364, 645}, {36105, 8611}, {42065, 7017}
X(56109) = barycentric quotient X(i)/X(j) for these (i, j): {8, 51481}, {9, 1733}, {41, 8772}, {55, 230}, {219, 3564}, {281, 44145}, {607, 460}, {2175, 1692}, {2987, 7}, {3563, 278}, {3709, 55122}, {5546, 4226}, {5547, 52450}, {8773, 85}, {8781, 6063}, {10425, 4573}, {15627, 36875}, {15628, 14265}, {32654, 56}, {34157, 43034}, {35142, 331}, {35364, 7178}, {36051, 57}, {42065, 222}, {43705, 348}, {52425, 52144}


X(56110) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(103)

Barycentrics    (a-b-c)*(a^5-a^4*b+(b-c)^2*c^2*(b+c)-a^3*(b^2+c^2)+a^2*(b^3+2*b*c^2-c^3))*(a^5-a^4*c+b^2*(b-c)^2*(b+c)-a^3*(b^2+c^2)+a^2*(-b^3+2*b^2*c+c^3)) : :

X(56110) lies on these lines: {2, 1331}, {8, 4587}, {29, 5546}, {55, 55019}, {85, 404}, {92, 100}, {312, 4571}, {1259, 34387}, {1311, 35182}, {1952, 4511}, {7360, 18359}, {10405, 54233}, {27506, 41791}

X(56110) = trilinear pole of line {219, 522}
X(56110) = X(i)-isoconjugate-of-X(j) for these {i, j}: {34, 916}, {56, 1736}, {57, 8608}, {278, 2253}, {604, 48381}, {1415, 55125}, {1456, 54232}, {4017, 4243}
X(56110) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1736}, {1146, 55125}, {3161, 48381}, {5452, 8608}, {11517, 916}, {34961, 4243}, {50441, 118}
X(56110) = X(i)-cross conjugate of X(j) for these {i, j}: {31897, 318}
X(56110) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(21), X(103)}}, {{A, B, C, X(95), X(2287)}}, {{A, B, C, X(98), X(294)}}, {{A, B, C, X(100), X(1331)}}, {{A, B, C, X(272), X(39943)}}, {{A, B, C, X(404), X(1261)}}, {{A, B, C, X(1320), X(36122)}}, {{A, B, C, X(2322), X(40424)}}, {{A, B, C, X(3615), X(32021)}}, {{A, B, C, X(4511), X(7360)}}, {{A, B, C, X(7045), X(41905)}}, {{A, B, C, X(36796), X(37202)}}, {{A, B, C, X(56099), X(56106)}}
X(56110) = barycentric product X(i)*X(j) for these (i, j): {345, 917}, {2989, 8}, {35182, 35519}, {35518, 36107}
X(56110) = barycentric quotient X(i)/X(j) for these (i, j): {8, 48381}, {9, 1736}, {55, 8608}, {212, 2253}, {219, 916}, {522, 55125}, {917, 278}, {2338, 54232}, {2989, 7}, {5546, 4243}, {32699, 32674}, {35182, 109}, {36107, 108}, {40869, 118}, {54233, 43035}


X(56111) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(105)

Barycentrics    a*(a-b-c)*(a^3-a^2*c+a*(b^2-2*b*c-c^2)+c*(b^2+c^2))*(a^3-a^2*b+b*(b^2+c^2)+a*(-b^2-2*b*c+c^2)) : :

X(56111) lies on these lines: {25, 100}, {31, 1331}, {41, 4587}, {55, 4126}, {56, 6337}, {105, 3263}, {884, 50333}, {2204, 5546}, {4518, 28071}, {6187, 49991}

X(56111) = trilinear pole of line {219, 3063}
X(56111) = X(i)-isoconjugate-of-X(j) for these {i, j}: {34, 34381}, {56, 1738}, {57, 3290}, {109, 23770}, {120, 1416}, {1400, 16752}, {1412, 21956}, {1457, 51832}, {1458, 14267}, {1462, 17464}, {4017, 4236}, {20504, 32735}, {43924, 53358}
X(56111) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1738}, {11, 23770}, {4904, 55137}, {5452, 3290}, {11517, 34381}, {34961, 4236}, {40582, 16752}, {40599, 21956}, {40609, 120}
X(56111) = X(i)-cross conjugate of X(j) for these {i, j}: {926, 644}
X(56111) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3749)}}, {{A, B, C, X(8), X(1280)}}, {{A, B, C, X(9), X(291)}}, {{A, B, C, X(21), X(25)}}, {{A, B, C, X(88), X(2339)}}, {{A, B, C, X(100), X(1331)}}, {{A, B, C, X(200), X(56102)}}, {{A, B, C, X(285), X(38251)}}, {{A, B, C, X(345), X(17776)}}, {{A, B, C, X(753), X(33635)}}, {{A, B, C, X(943), X(15323)}}, {{A, B, C, X(985), X(36630)}}, {{A, B, C, X(1252), X(26703)}}, {{A, B, C, X(1320), X(1862)}}, {{A, B, C, X(1792), X(6337)}}, {{A, B, C, X(1821), X(36799)}}, {{A, B, C, X(2287), X(7155)}}, {{A, B, C, X(3263), X(3693)}}, {{A, B, C, X(3685), X(8299)}}, {{A, B, C, X(4076), X(34894)}}, {{A, B, C, X(4126), X(32635)}}, {{A, B, C, X(4511), X(49991)}}, {{A, B, C, X(4723), X(14191)}}, {{A, B, C, X(4876), X(7281)}}, {{A, B, C, X(14947), X(36122)}}, {{A, B, C, X(36798), X(52663)}}
X(56111) = barycentric product X(i)*X(j) for these (i, j): {2991, 8}, {15344, 345}, {34159, 36796}, {35574, 650}
X(56111) = barycentric quotient X(i)/X(j) for these (i, j): {9, 1738}, {21, 16752}, {55, 3290}, {210, 21956}, {219, 34381}, {294, 14267}, {644, 53358}, {650, 23770}, {2340, 17464}, {2991, 7}, {3693, 120}, {3717, 20431}, {5546, 4236}, {15344, 278}, {15382, 1462}, {34159, 241}, {35574, 4554}, {52663, 51832}


X(56112) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(109)

Barycentrics    (a-b)*(a-c)*(a-b-c)*(a^3+b^3+a*(b-c)*c-b*c^2)*(a^3-b^2*c+c^3+a*b*(-b+c)) : :

X(56112) lies on these lines: {100, 7461}, {1331, 3952}, {1793, 52409}, {1808, 4518}, {1810, 13478}, {1811, 2217}, {1897, 36108}, {3239, 32739}, {4391, 53279}, {4587, 30730}, {5552, 10570}, {53658, 54951}

X(56112) = trilinear pole of line {219, 2321}
X(56112) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 21189}, {57, 6589}, {513, 10571}, {573, 3669}, {649, 17080}, {1019, 40590}, {1396, 52310}, {1400, 16754}, {1461, 38345}, {3185, 3676}, {3869, 43924}, {4017, 4225}, {7203, 22276}, {32714, 47411}, {34242, 53314}
X(56112) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 21189}, {2968, 124}, {5375, 17080}, {5452, 6589}, {7358, 34588}, {34961, 4225}, {35508, 38345}, {39026, 10571}, {40582, 16754}
X(56112) = X(i)-cross conjugate of X(j) for these {i, j}: {4557, 644}
X(56112) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32704)}}, {{A, B, C, X(8), X(1897)}}, {{A, B, C, X(21), X(109)}}, {{A, B, C, X(55), X(32739)}}, {{A, B, C, X(100), X(1331)}}, {{A, B, C, X(162), X(9056)}}, {{A, B, C, X(333), X(43190)}}, {{A, B, C, X(643), X(835)}}, {{A, B, C, X(644), X(7256)}}, {{A, B, C, X(931), X(5549)}}, {{A, B, C, X(1309), X(13138)}}, {{A, B, C, X(3161), X(43290)}}, {{A, B, C, X(3699), X(3952)}}, {{A, B, C, X(4076), X(46649)}}, {{A, B, C, X(5552), X(17780)}}, {{A, B, C, X(8706), X(31343)}}, {{A, B, C, X(9057), X(52133)}}, {{A, B, C, X(26704), X(36050)}}, {{A, B, C, X(27506), X(46541)}}, {{A, B, C, X(36037), X(41906)}}
X(56112) = barycentric product X(i)*X(j) for these (i, j): {312, 36050}, {2217, 646}, {2321, 54951}, {2995, 644}, {10570, 190}, {13478, 3699}, {15232, 645}, {15386, 52622}, {19607, 3952}, {19608, 8707}, {26704, 345}, {32653, 3596}, {40160, 7256}, {44765, 8}
X(56112) = barycentric quotient X(i)/X(j) for these (i, j): {9, 21189}, {21, 16754}, {55, 6589}, {100, 17080}, {101, 10571}, {644, 3869}, {2217, 3669}, {2318, 52310}, {2995, 24002}, {3239, 124}, {3699, 4417}, {3900, 38345}, {3939, 573}, {4069, 21078}, {4557, 40590}, {5546, 4225}, {10570, 514}, {13478, 3676}, {15232, 7178}, {15386, 1461}, {19607, 7192}, {19608, 3004}, {26704, 278}, {32653, 56}, {36050, 57}, {44765, 7}, {54951, 1434}


X(56113) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(8) AND X(145)

Barycentrics    a*(a^3+b^3-3*b^2*c-3*b*c^2+c^3-a^2*(3*b+c)-a*(3*b^2-10*b*c+c^2))*(a^3+b^3-3*b^2*c-3*b*c^2+c^3-a^2*(b+3*c)-a*(b^2-10*b*c+3*c^2)) : :

X(56113) lies on these lines: {1, 42020}, {6, 38496}, {34, 38460}, {56, 3880}, {106, 11512}, {269, 1266}, {341, 1120}, {522, 37627}, {2191, 4861}, {3445, 3872}, {19860, 41436}

X(56113) = X(i)-cross conjugate of X(j) for these {i, j}: {17648, 8}
X(56113) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(8), X(36846)}}, {{A, B, C, X(21), X(145)}}, {{A, B, C, X(78), X(38460)}}, {{A, B, C, X(90), X(519)}}, {{A, B, C, X(280), X(1320)}}, {{A, B, C, X(341), X(522)}}, {{A, B, C, X(1280), X(1392)}}, {{A, B, C, X(2339), X(42360)}}, {{A, B, C, X(3241), X(19860)}}, {{A, B, C, X(3577), X(39702)}}, {{A, B, C, X(3811), X(22837)}}, {{A, B, C, X(3870), X(4861)}}, {{A, B, C, X(4666), X(20057)}}, {{A, B, C, X(7131), X(39456)}}, {{A, B, C, X(8056), X(38496)}}, {{A, B, C, X(21398), X(24858)}}, {{A, B, C, X(36795), X(39694)}}


X(56114) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(9) AND X(7)

Barycentrics    a*(a-b-c)*(2*a^3-(b-2*c)*(b-c)^2-a^2*(5*b+2*c)+a*(4*b^2+6*b*c-2*c^2))*(2*a^3+(b-c)^2*(2*b-c)-a^2*(2*b+5*c)+a*(-2*b^2+6*b*c+4*c^2)) : :

X(56114) lies on the Feuerbach hyperbola and on these lines: {1, 25076}, {7, 3689}, {480, 1320}, {518, 55921}, {1000, 18230}, {3306, 10390}, {3935, 55922}, {4105, 23838}, {5328, 6601}, {7091, 30318}

X(56114) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 31146}
X(56114) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 31146}
X(56114) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(480), X(3689)}}, {{A, B, C, X(765), X(56088)}}, {{A, B, C, X(1445), X(5328)}}, {{A, B, C, X(3306), X(18230)}}
X(56114) = barycentric quotient X(i)/X(j) for these (i, j): {9, 31146}


X(56115) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(9) AND X(21)

Barycentrics    a*(a-b-c)*(a+4*b+c)*(a+b+4*c) : :

X(56115) lies on the Feuerbach hyperbola and on these lines: {1, 4015}, {2, 18490}, {4, 4678}, {7, 11237}, {10, 5557}, {21, 3689}, {79, 4691}, {80, 4669}, {100, 51570}, {104, 17502}, {210, 1320}, {256, 49984}, {314, 4723}, {495, 3296}, {517, 14496}, {519, 13602}, {941, 16675}, {960, 56091}, {1000, 15170}, {1156, 15481}, {1392, 5289}, {2298, 16669}, {2320, 3711}, {2478, 15998}, {2551, 43745}, {3036, 11604}, {3254, 24393}, {3255, 6735}, {3617, 43733}, {3626, 17501}, {3679, 5561}, {3680, 3876}, {3877, 4900}, {3885, 31509}, {3895, 4866}, {4041, 23838}, {4701, 5559}, {5551, 50237}, {5558, 19877}, {5686, 34919}, {7320, 20053}, {10266, 21677}, {10308, 16139}, {15180, 54391}, {17547, 42819}, {30329, 45834}

X(56115) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 4031}, {7, 21747}, {56, 551}, {57, 16666}, {101, 30722}, {109, 28209}, {278, 22357}, {604, 24589}, {1014, 21806}, {1106, 3902}, {1400, 26860}, {1404, 42026}, {1407, 3707}, {1408, 4714}, {2163, 39782}, {4781, 43924}
X(56115) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 551}, {9, 4031}, {11, 28209}, {1015, 30722}, {3161, 24589}, {5452, 16666}, {6552, 3902}, {24771, 3707}, {40582, 26860}, {40587, 39782}
X(56115) = X(i)-Ceva conjugate of X(j) for these {i, j}: {55955, 40434}
X(56115) = X(i)-cross conjugate of X(j) for these {i, j}: {4711, 8}, {4814, 644}
X(56115) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(10), X(4015)}}, {{A, B, C, X(29), X(17536)}}, {{A, B, C, X(78), X(4678)}}, {{A, B, C, X(210), X(1261)}}, {{A, B, C, X(333), X(37222)}}, {{A, B, C, X(391), X(3895)}}, {{A, B, C, X(517), X(17502)}}, {{A, B, C, X(521), X(28212)}}, {{A, B, C, X(958), X(16675)}}, {{A, B, C, X(960), X(16669)}}, {{A, B, C, X(1807), X(38138)}}, {{A, B, C, X(2160), X(46187)}}, {{A, B, C, X(2287), X(17271)}}, {{A, B, C, X(2316), X(41432)}}, {{A, B, C, X(3701), X(4662)}}, {{A, B, C, X(3872), X(31145)}}, {{A, B, C, X(3876), X(44720)}}, {{A, B, C, X(3902), X(4711)}}, {{A, B, C, X(4511), X(4669)}}, {{A, B, C, X(4701), X(4861)}}, {{A, B, C, X(4853), X(20053)}}, {{A, B, C, X(4882), X(19877)}}, {{A, B, C, X(5289), X(16885)}}, {{A, B, C, X(6603), X(15481)}}, {{A, B, C, X(6605), X(36590)}}, {{A, B, C, X(7081), X(49984)}}, {{A, B, C, X(8686), X(9353)}}, {{A, B, C, X(17125), X(52133)}}, {{A, B, C, X(52409), X(55076)}}
X(56115) = barycentric product X(i)*X(j) for these (i, j): {21, 27797}, {312, 41434}, {28210, 4391}, {40434, 8}, {55955, 9}
X(56115) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4031}, {8, 24589}, {9, 551}, {21, 26860}, {41, 21747}, {45, 39782}, {55, 16666}, {200, 3707}, {212, 22357}, {346, 3902}, {513, 30722}, {644, 4781}, {650, 28209}, {1320, 42026}, {1334, 21806}, {2321, 4714}, {3711, 16590}, {4578, 30727}, {4873, 4793}, {4895, 14435}, {27797, 1441}, {28210, 651}, {40434, 7}, {41434, 57}, {55955, 85}


X(56116) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(9) AND X(55)

Barycentrics    a*(a-b-c)*(a*(b-2*c)-2*b*c)*(2*a*b-a*c+2*b*c) : :

X(56116) lies on these lines: {6, 750}, {9, 4009}, {55, 4390}, {57, 7223}, {649, 17119}, {673, 1150}, {893, 17599}, {909, 45145}, {956, 2291}, {2161, 5282}, {2258, 3745}, {2316, 37658}, {2319, 4042}, {2364, 3684}, {3711, 7077}, {4003, 16975}, {9319, 16506}, {16704, 42302}, {21061, 41441}

X(56116) = trilinear pole of line {663, 4526}
X(56116) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 54981}, {56, 4664}, {57, 3240}, {109, 4776}, {651, 29350}
X(56116) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4664}, {11, 4776}, {5452, 3240}, {38991, 29350}
X(56116) = X(i)-Ceva conjugate of X(j) for these {i, j}: {36871, 55919}
X(56116) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(9)}}, {{A, B, C, X(8), X(650)}}, {{A, B, C, X(171), X(17599)}}, {{A, B, C, X(200), X(16833)}}, {{A, B, C, X(210), X(30711)}}, {{A, B, C, X(220), X(1021)}}, {{A, B, C, X(750), X(1320)}}, {{A, B, C, X(940), X(3745)}}, {{A, B, C, X(956), X(6603)}}, {{A, B, C, X(996), X(4413)}}, {{A, B, C, X(2053), X(7252)}}, {{A, B, C, X(3218), X(5282)}}, {{A, B, C, X(3684), X(3711)}}, {{A, B, C, X(3689), X(16704)}}, {{A, B, C, X(4003), X(37540)}}, {{A, B, C, X(4876), X(30608)}}, {{A, B, C, X(5289), X(5291)}}, {{A, B, C, X(7050), X(13478)}}, {{A, B, C, X(8611), X(52388)}}, {{A, B, C, X(16788), X(34522)}}
X(56116) = barycentric product X(i)*X(j) for these (i, j): {1, 56077}, {29351, 522}, {36871, 9}, {37209, 650}, {55919, 8}
X(56116) = barycentric quotient X(i)/X(j) for these (i, j): {9, 4664}, {41, 54981}, {55, 3240}, {650, 4776}, {663, 29350}, {29351, 664}, {36871, 85}, {37209, 4554}, {55919, 7}, {56077, 75}


X(56117) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(9) AND X(80)

Barycentrics    a*(a-b-c)*(2*a^4-3*a^3*c+(b-c)^2*(2*b^2+b*c-c^2)-a^2*(4*b^2-2*b*c+c^2)+a*c*(2*b^2-b*c+3*c^2))*(2*a^4-3*a^3*b-(b-c)^2*(b^2-b*c-2*c^2)+a*b*(3*b^2-b*c+2*c^2)-a^2*(b^2-2*b*c+4*c^2)) : :

X(56117) lies on the Feuerbach hyperbola and on these lines: {4, 5660}, {7, 214}, {80, 3689}, {100, 55924}, {104, 4867}, {1000, 26726}, {2346, 51506}, {3062, 6326}, {3577, 5541}, {5561, 9945}, {5692, 55918}, {14217, 15909}, {23838, 53285}

X(56117) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(214), X(3689)}}, {{A, B, C, X(1807), X(5660)}}, {{A, B, C, X(4511), X(36910)}}, {{A, B, C, X(4867), X(51362)}}, {{A, B, C, X(5537), X(50371)}}


X(56118) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(9) AND X(86)

Barycentrics    (a-b-c)*(a^2+b*(b-c)-a*(2*b+c))*(a^2+c*(-b+c)-a*(b+2*c)) : :

X(56118) lies on these lines: {8, 344}, {69, 10509}, {75, 200}, {86, 2340}, {190, 3059}, {319, 6606}, {341, 3886}, {346, 3996}, {1043, 3717}, {1170, 1219}, {1222, 6737}, {1229, 3699}, {2321, 6559}, {2370, 53243}, {3935, 25001}, {4360, 28043}, {4687, 42310}, {4847, 17263}, {7172, 16992}, {16284, 42311}, {17295, 30620}, {20070, 22334}, {28057, 42696}, {28133, 32089}, {47487, 51565}

X(56118) = isotomic conjugate of X(10481)
X(56118) = trilinear pole of line {3239, 28058}
X(56118) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1418}, {31, 10481}, {34, 22053}, {56, 354}, {57, 1475}, {77, 40983}, {109, 48151}, {142, 604}, {184, 53237}, {269, 2293}, {279, 20229}, {667, 35312}, {738, 8012}, {934, 2488}, {1014, 52020}, {1042, 17194}, {1106, 4847}, {1119, 22079}, {1212, 1407}, {1229, 52410}, {1333, 52023}, {1397, 20880}, {1400, 18164}, {1402, 17169}, {1408, 3925}, {1409, 53238}, {1412, 21808}, {1415, 21104}, {1417, 51463}, {1461, 21127}, {1827, 7053}, {1855, 7099}, {2175, 53242}, {2199, 13156}, {3059, 7023}, {3669, 35326}, {4617, 10581}, {6608, 6614}, {7366, 51972}, {23599, 32739}, {35338, 43924}, {52635, 53241}
X(56118) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 354}, {2, 10481}, {9, 1418}, {11, 48151}, {37, 52023}, {1146, 21104}, {2968, 6362}, {3161, 142}, {5452, 1475}, {6552, 4847}, {6600, 2293}, {6631, 35312}, {6741, 55282}, {11517, 22053}, {14714, 2488}, {23050, 1827}, {24771, 1212}, {35508, 21127}, {40582, 18164}, {40593, 53242}, {40599, 21808}, {40605, 17169}, {40619, 23599}, {52871, 51463}
X(56118) = X(i)-cross conjugate of X(j) for these {i, j}: {4130, 190}, {4391, 3699}, {6605, 32008}
X(56118) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3303)}}, {{A, B, C, X(2), X(18230)}}, {{A, B, C, X(6), X(7220)}}, {{A, B, C, X(7), X(8236)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(9), X(86)}}, {{A, B, C, X(10), X(6743)}}, {{A, B, C, X(29), X(5047)}}, {{A, B, C, X(55), X(40433)}}, {{A, B, C, X(69), X(30681)}}, {{A, B, C, X(82), X(294)}}, {{A, B, C, X(200), X(480)}}, {{A, B, C, X(210), X(18082)}}, {{A, B, C, X(281), X(1268)}}, {{A, B, C, X(312), X(344)}}, {{A, B, C, X(313), X(2321)}}, {{A, B, C, X(314), X(4076)}}, {{A, B, C, X(333), X(3996)}}, {{A, B, C, X(522), X(39710)}}, {{A, B, C, X(765), X(2287)}}, {{A, B, C, X(903), X(6601)}}, {{A, B, C, X(1120), X(4900)}}, {{A, B, C, X(1220), X(4866)}}, {{A, B, C, X(1229), X(4391)}}, {{A, B, C, X(1320), X(56107)}}, {{A, B, C, X(2346), X(6605)}}, {{A, B, C, X(3059), X(4130)}}, {{A, B, C, X(3522), X(20070)}}, {{A, B, C, X(4102), X(7017)}}, {{A, B, C, X(4373), X(12630)}}, {{A, B, C, X(5493), X(12512)}}, {{A, B, C, X(5559), X(45081)}}, {{A, B, C, X(6736), X(6737)}}, {{A, B, C, X(7218), X(51341)}}, {{A, B, C, X(9365), X(40505)}}, {{A, B, C, X(15742), X(40417)}}, {{A, B, C, X(15998), X(34860)}}, {{A, B, C, X(20895), X(49698)}}, {{A, B, C, X(31618), X(32008)}}, {{A, B, C, X(36910), X(55076)}}, {{A, B, C, X(39737), X(40779)}}, {{A, B, C, X(42470), X(56098)}}
X(56118) = barycentric product X(i)*X(j) for these (i, j): {200, 31618}, {1170, 341}, {1174, 3596}, {2346, 312}, {3239, 6606}, {3700, 55281}, {3886, 42310}, {6605, 75}, {10482, 76}, {10509, 5423}, {21453, 346}, {32008, 8}, {40443, 7101}, {42311, 728}, {47487, 7017}, {52622, 53243}
X(56118) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1418}, {2, 10481}, {8, 142}, {9, 354}, {10, 52023}, {21, 18164}, {29, 53238}, {55, 1475}, {85, 53242}, {92, 53237}, {190, 35312}, {200, 1212}, {210, 21808}, {219, 22053}, {220, 2293}, {280, 13156}, {312, 20880}, {314, 16708}, {333, 17169}, {341, 1229}, {346, 4847}, {480, 8012}, {522, 21104}, {607, 40983}, {644, 35338}, {650, 48151}, {657, 2488}, {693, 23599}, {728, 3059}, {1043, 16713}, {1170, 269}, {1174, 56}, {1253, 20229}, {1334, 52020}, {1802, 22079}, {1803, 7053}, {2287, 17194}, {2321, 3925}, {2325, 51463}, {2346, 57}, {3239, 6362}, {3294, 43915}, {3596, 1233}, {3700, 55282}, {3717, 51384}, {3900, 21127}, {3939, 35326}, {4069, 35310}, {4105, 10581}, {4130, 6608}, {4515, 21039}, {4518, 53239}, {4578, 35341}, {4997, 53240}, {5423, 51972}, {6605, 1}, {6606, 658}, {7046, 1855}, {7079, 1827}, {10482, 6}, {10509, 479}, {14942, 53241}, {21453, 279}, {28660, 53236}, {31618, 1088}, {32008, 7}, {40443, 7177}, {42311, 23062}, {47487, 222}, {51972, 6067}, {53243, 1461}, {55281, 4573}
X(56118) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 480, 17277}


X(56119) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(9) AND X(104)

Barycentrics    a*(a-b-c)*(a^4+3*a^3*b+a*b*(-3*b^2+16*b*c-5*c^2)+(b-c)^2*(4*b^2+5*b*c+c^2)-a^2*(5*b^2+5*b*c+2*c^2))*(a^4+3*a^3*c+a*c*(-5*b^2+16*b*c-3*c^2)+(b-c)^2*(b^2+5*b*c+4*c^2)-a^2*(2*b^2+5*b*c+5*c^2)) : :

X(56119) lies on the Feuerbach hyperbola and on these lines: {4, 13996}, {7, 1145}, {84, 38665}, {100, 55921}, {104, 3689}, {1320, 51380}, {3036, 6601}, {3062, 5541}, {4528, 43728}, {4900, 15558}, {53055, 56114}

X(56119) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(1145), X(3689)}}, {{A, B, C, X(1811), X(13996)}}, {{A, B, C, X(36596), X(52663)}}


X(56120) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(21) AND X(4)

Barycentrics    a*(a-b-c)*(a^4-a^3*c+b*(b-c)^2*(b+c)-a^2*(2*b^2+b*c+c^2)+a*c*(-b^2+6*b*c+c^2))*(a^4-a^3*b+(b-c)^2*c*(b+c)+a*b*(b^2+6*b*c-c^2)-a^2*(b^2+b*c+2*c^2)) : :

X(56120) lies on the Feuerbach hyperbola and on these lines: {4, 44455}, {7, 11501}, {79, 48696}, {90, 3681}, {404, 3296}, {1000, 5047}, {3065, 46685}, {3811, 7284}, {3935, 10308}, {4193, 6601}, {5555, 26482}, {7411, 10305}, {14923, 17098}, {15179, 34772}, {20078, 35448}

X(56120) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 49627}
X(56120) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 49627}
X(56120) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(44455)}}, {{A, B, C, X(1261), X(11501)}}, {{A, B, C, X(4193), X(4233)}}, {{A, B, C, X(5047), X(17519)}}
X(56120) = barycentric quotient X(i)/X(j) for these (i, j): {9, 49627}


X(56121) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(21) AND X(80)

Barycentrics    a*(a-b-c)*(a^4-a^3*c+b*(b-c)^2*(b+c)+a*c^2*(2*b+c)-a^2*(2*b^2+c^2))*(a^4-a^3*b+(b-c)^2*c*(b+c)+a*b^2*(b+2*c)-a^2*(b^2+2*c^2)) : :

X(56121) lies on the Feuerbach hyperbola and on these lines: {4, 11698}, {11, 43741}, {79, 100}, {1476, 12739}, {2975, 11279}, {3065, 47320}, {3467, 3678}, {5260, 5559}, {5424, 51506}, {10308, 12738}, {10385, 30513}, {13278, 34918}, {13606, 26726}, {17484, 35000}, {43728, 53342}, {54391, 56036}

X(56121) = reflection of X(i) in X(j) for these {i,j}: {43741, 11}
X(56121) = trilinear pole of line {650, 52405}
X(56121) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(765), X(6740)}}, {{A, B, C, X(1807), X(11698)}}, {{A, B, C, X(1809), X(12331)}}, {{A, B, C, X(2752), X(4518)}}, {{A, B, C, X(11107), X(35982)}}
X(56121) = barycentric quotient X(i)/X(j) for these (i, j): {17796, 33667}


X(56122) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(2) AND X(75)

Barycentrics    (b+c)*(a^2*c+b^2*c+a*(b+c)^2)*(a^2*b+b*c^2+a*(b+c)^2) : :

X(56122) lies on these lines: {37, 239}, {75, 40085}, {242, 1824}, {274, 335}, {321, 1921}, {514, 27495}, {594, 3948}, {740, 756}, {984, 31036}, {2171, 16609}, {3294, 4366}, {3807, 27483}, {6652, 18098}, {18082, 40607}, {22035, 27478}

X(56122) = trilinear pole of line {4010, 4129}
X(56122) = X(i)-isoconjugate-of-X(j) for these {i, j}: {28, 22099}, {58, 24512}, {81, 20985}, {163, 21146}, {1333, 24325}, {2206, 20913}, {17031, 18268}
X(56122) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 24512}, {37, 24325}, {115, 21146}, {35068, 17031}, {40586, 20985}, {40591, 22099}, {40603, 20913}
X(56122) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4043)}}, {{A, B, C, X(10), X(239)}}, {{A, B, C, X(37), X(321)}}, {{A, B, C, X(75), X(3995)}}, {{A, B, C, X(81), X(40504)}}, {{A, B, C, X(226), X(17260)}}, {{A, B, C, X(762), X(3954)}}, {{A, B, C, X(3696), X(4026)}}, {{A, B, C, X(3807), X(27495)}}, {{A, B, C, X(4080), X(27475)}}, {{A, B, C, X(4451), X(30713)}}, {{A, B, C, X(4852), X(46772)}}, {{A, B, C, X(6385), X(30582)}}, {{A, B, C, X(13576), X(14621)}}, {{A, B, C, X(17319), X(42027)}}, {{A, B, C, X(22016), X(31993)}}, {{A, B, C, X(25322), X(39957)}}, {{A, B, C, X(26580), X(37787)}}, {{A, B, C, X(27494), X(27797)}}, {{A, B, C, X(31323), X(43534)}}, {{A, B, C, X(32009), X(40515)}}, {{A, B, C, X(32018), X(42471)}}, {{A, B, C, X(39700), X(39737)}}, {{A, B, C, X(39971), X(40024)}}
X(56122) = barycentric product X(i)*X(j) for these (i, j): {10, 39717}, {37, 40024}, {321, 39971}
X(56122) = barycentric quotient X(i)/X(j) for these (i, j): {10, 24325}, {37, 24512}, {42, 20985}, {71, 22099}, {321, 20913}, {523, 21146}, {740, 17031}, {39717, 86}, {39971, 81}, {40024, 274}


X(56123) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(7) AND X(7)

Barycentrics    (b+c)*(a*(b-2*c)+b*(b+c))*(a*(-2*b+c)+c*(b+c)) : :

X(56123) lies on these lines: {7, 3175}, {9, 32923}, {37, 2275}, {321, 3662}, {335, 22016}, {594, 3721}, {756, 3778}, {894, 1255}, {1824, 15733}, {2161, 5279}, {2171, 3671}, {8690, 53686}, {21078, 22035}, {22036, 42712}

X(56123) = trilinear pole of line {2512, 4705}
X(56123) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 4383}, {60, 28387}, {81, 3915}, {86, 16946}, {110, 4498}, {163, 4106}, {249, 21963}, {593, 3214}, {849, 3175}, {1014, 3217}, {1252, 17214}, {1333, 3875}, {1408, 30568}, {1412, 3913}, {1790, 4186}, {2206, 18135}, {4139, 4556}, {4565, 42312}, {4567, 17477}
X(56123) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 4383}, {37, 3875}, {115, 4106}, {244, 4498}, {661, 17214}, {4075, 3175}, {6741, 20317}, {40586, 3915}, {40599, 3913}, {40600, 16946}, {40603, 18135}, {40627, 17477}, {55064, 42312}
X(56123) = X(i)-Ceva conjugate of X(j) for these {i, j}: {42304, 10}
X(56123) = X(i)-cross conjugate of X(j) for these {i, j}: {6057, 10}, {22036, 321}
X(56123) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(17526)}}, {{A, B, C, X(6), X(5069)}}, {{A, B, C, X(7), X(10)}}, {{A, B, C, X(9), X(3970)}}, {{A, B, C, X(19), X(39700)}}, {{A, B, C, X(37), X(321)}}, {{A, B, C, X(76), X(941)}}, {{A, B, C, X(226), X(5749)}}, {{A, B, C, X(313), X(41683)}}, {{A, B, C, X(523), X(28582)}}, {{A, B, C, X(525), X(3694)}}, {{A, B, C, X(608), X(33146)}}, {{A, B, C, X(894), X(21021)}}, {{A, B, C, X(1213), X(42025)}}, {{A, B, C, X(1400), X(2275)}}, {{A, B, C, X(1441), X(21101)}}, {{A, B, C, X(1826), X(4080)}}, {{A, B, C, X(2285), X(26580)}}, {{A, B, C, X(2321), X(3161)}}, {{A, B, C, X(2994), X(5839)}}, {{A, B, C, X(3175), X(6057)}}, {{A, B, C, X(3701), X(7155)}}, {{A, B, C, X(3930), X(40704)}}, {{A, B, C, X(4013), X(41013)}}, {{A, B, C, X(4037), X(22016)}}, {{A, B, C, X(21061), X(22021)}}, {{A, B, C, X(22174), X(27447)}}, {{A, B, C, X(34895), X(43749)}}, {{A, B, C, X(39798), X(39994)}}, {{A, B, C, X(39956), X(40012)}}, {{A, B, C, X(39975), X(40021)}}
X(56123) = barycentric product X(i)*X(j) for these (i, j): {10, 34860}, {37, 40012}, {321, 39956}, {2321, 42304}, {4036, 8690}
X(56123) = barycentric quotient X(i)/X(j) for these (i, j): {10, 3875}, {37, 4383}, {42, 3915}, {210, 3913}, {213, 16946}, {244, 17214}, {321, 18135}, {523, 4106}, {594, 3175}, {661, 4498}, {756, 3214}, {1334, 3217}, {1824, 4186}, {2171, 28387}, {2321, 30568}, {2643, 21963}, {3122, 17477}, {3700, 20317}, {4041, 42312}, {4052, 27813}, {4705, 4139}, {8690, 52935}, {34860, 86}, {39956, 81}, {40012, 274}, {42304, 1434}


X(56124) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(7) AND X(37)

Barycentrics    (a^2*(b-c)+a*(b^2-b*c-c^2)+b*(2*b^2+b*c+c^2))*(a^2*(b-c)+a*(b^2+b*c-c^2)-c*(b^2+b*c+2*c^2)) : :

X(56124) lies on these lines: {2, 21101}, {7, 726}, {75, 3844}, {86, 24349}, {192, 14621}, {335, 17232}, {673, 4361}, {1278, 6650}, {1440, 41352}, {3662, 27494}, {5749, 27481}, {6384, 33931}, {20947, 40027}, {32087, 39721}, {39716, 49528}, {51837, 53677}

X(56124) = trilinear pole of line {21261, 514}
X(56124) = X(i)-cross conjugate of X(j) for these {i, j}: {29674, 2}
X(56124) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(76), X(39714)}}, {{A, B, C, X(192), X(33931)}}, {{A, B, C, X(313), X(27809)}}, {{A, B, C, X(330), X(334)}}, {{A, B, C, X(347), X(41352)}}, {{A, B, C, X(518), X(50995)}}, {{A, B, C, X(522), X(726)}}, {{A, B, C, X(536), X(28898)}}, {{A, B, C, X(561), X(39694)}}, {{A, B, C, X(918), X(6664)}}, {{A, B, C, X(941), X(984)}}, {{A, B, C, X(985), X(39742)}}, {{A, B, C, X(1278), X(20947)}}, {{A, B, C, X(1441), X(21101)}}, {{A, B, C, X(2298), X(17038)}}, {{A, B, C, X(3844), X(13476)}}, {{A, B, C, X(4361), X(4408)}}, {{A, B, C, X(6383), X(24002)}}, {{A, B, C, X(7018), X(39703)}}, {{A, B, C, X(7192), X(40021)}}, {{A, B, C, X(7233), X(34860)}}, {{A, B, C, X(7241), X(52030)}}, {{A, B, C, X(7261), X(30701)}}, {{A, B, C, X(17232), X(33295)}}, {{A, B, C, X(30635), X(39698)}}, {{A, B, C, X(30636), X(35058)}}, {{A, B, C, X(30663), X(39956)}}, {{A, B, C, X(40013), X(54128)}}, {{A, B, C, X(40030), X(54456)}}


X(56125) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(10) AND X(37)

Barycentrics    (b+c)*(a*(b-2*c)-2*b*c)*(2*a*b-a*c+2*b*c) : :

X(56125) lies on these lines: {1, 536}, {10, 714}, {19, 56116}, {37, 2229}, {65, 44671}, {75, 4392}, {192, 39737}, {321, 41683}, {518, 994}, {726, 42285}, {740, 53114}, {759, 29351}, {876, 4777}, {897, 37209}, {1266, 39712}, {1278, 39739}, {2363, 19848}, {3670, 39708}, {3696, 4674}, {3728, 46772}, {3739, 17038}, {3962, 34434}, {3967, 52875}, {4003, 4688}, {4686, 13476}, {4726, 39742}, {4804, 55244}, {4968, 31359}, {21342, 31136}, {39697, 50117}

X(56125) = trilinear pole of line {661, 14431}
X(56125) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 3240}, {81, 54981}, {110, 29350}, {163, 4776}, {1333, 4664}
X(56125) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 3240}, {37, 4664}, {115, 4776}, {244, 29350}, {40586, 54981}
X(56125) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(4), X(16394)}}, {{A, B, C, X(42), X(4492)}}, {{A, B, C, X(210), X(522)}}, {{A, B, C, X(256), X(28625)}}, {{A, B, C, X(291), X(28658)}}, {{A, B, C, X(310), X(513)}}, {{A, B, C, X(313), X(49493)}}, {{A, B, C, X(321), X(523)}}, {{A, B, C, X(335), X(4670)}}, {{A, B, C, X(594), X(49462)}}, {{A, B, C, X(740), X(4693)}}, {{A, B, C, X(903), X(40718)}}, {{A, B, C, X(1219), X(15232)}}, {{A, B, C, X(1400), X(7241)}}, {{A, B, C, X(1441), X(40085)}}, {{A, B, C, X(2321), X(49468)}}, {{A, B, C, X(3696), X(3943)}}, {{A, B, C, X(3842), X(52706)}}, {{A, B, C, X(3962), X(52357)}}, {{A, B, C, X(4043), X(4686)}}, {{A, B, C, X(4080), X(4363)}}, {{A, B, C, X(4373), X(14624)}}, {{A, B, C, X(4392), X(4735)}}, {{A, B, C, X(4651), X(50001)}}, {{A, B, C, X(4726), X(22016)}}, {{A, B, C, X(13576), X(36588)}}, {{A, B, C, X(17318), X(27797)}}, {{A, B, C, X(18082), X(39710)}}, {{A, B, C, X(19998), X(31136)}}, {{A, B, C, X(24696), X(54980)}}, {{A, B, C, X(27483), X(53034)}}, {{A, B, C, X(29822), X(30970)}}, {{A, B, C, X(31178), X(43534)}}, {{A, B, C, X(39747), X(43927)}}
X(56125) = barycentric product X(i)*X(j) for these (i, j): {10, 36871}, {226, 56077}, {321, 55919}, {1441, 56116}, {1577, 29351}, {37209, 523}
X(56125) = barycentric quotient X(i)/X(j) for these (i, j): {10, 4664}, {37, 3240}, {42, 54981}, {523, 4776}, {661, 29350}, {29351, 662}, {36871, 86}, {37209, 99}, {55919, 81}, {56077, 333}, {56116, 21}
X(56125) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {36871, 56077, 55919}


X(56126) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(10) AND X(75)

Barycentrics    (b+c)*(b*c+a*(4*b+c))*(b*c+a*(b+4*c)) : :

X(56126) lies on these lines: {1, 4753}, {2, 52875}, {37, 19998}, {75, 3994}, {596, 49447}, {756, 41683}, {876, 28209}, {984, 39697}, {3842, 4674}, {4043, 46772}, {4687, 13476}, {4824, 55244}, {17250, 39712}, {39708, 46937}

X(56126) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 30950}, {81, 16971}, {1333, 4688}, {1408, 4519}
X(56126) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 30950}, {37, 4688}, {40586, 16971}
X(56126) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(2), X(19998)}}, {{A, B, C, X(4), X(51595)}}, {{A, B, C, X(321), X(51488)}}, {{A, B, C, X(335), X(27797)}}, {{A, B, C, X(740), X(27922)}}, {{A, B, C, X(749), X(52555)}}, {{A, B, C, X(756), X(3994)}}, {{A, B, C, X(3842), X(3943)}}, {{A, B, C, X(3986), X(49468)}}, {{A, B, C, X(3993), X(52706)}}, {{A, B, C, X(4043), X(4687)}}, {{A, B, C, X(4080), X(27475)}}, {{A, B, C, X(4389), X(7677)}}, {{A, B, C, X(5257), X(49462)}}, {{A, B, C, X(13576), X(39704)}}, {{A, B, C, X(14624), X(28650)}}, {{A, B, C, X(17335), X(30588)}}, {{A, B, C, X(18082), X(30598)}}, {{A, B, C, X(27809), X(39706)}}, {{A, B, C, X(43534), X(50094)}}
X(56126) = barycentric product X(i)*X(j) for these (i, j): {321, 55932}
X(56126) = barycentric quotient X(i)/X(j) for these (i, j): {10, 4688}, {37, 30950}, {42, 16971}, {2321, 4519}, {55932, 81}


X(56127) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(10) AND X(85)

Barycentrics    b*c*(b+c)*(a^2+b*(b-c)-a*(2*b+c))*(a^2+c*(-b+c)-a*(b+2*c)) : :

X(56127) lies on these lines: {75, 28742}, {85, 3930}, {312, 728}, {318, 56118}, {321, 4515}, {349, 2321}, {2346, 46738}, {3696, 3701}, {4044, 30713}, {17762, 48280}, {21615, 28659}, {24044, 52623}, {31618, 40023}, {42310, 56051}

X(56127) = isotomic conjugate of X(18164)
X(56127) = trilinear pole of line {4086, 4804}
X(56127) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 18164}, {32, 17169}, {58, 1475}, {142, 2206}, {163, 48151}, {184, 53238}, {354, 1333}, {560, 16708}, {593, 52020}, {604, 17194}, {849, 21808}, {1014, 20229}, {1212, 1408}, {1396, 22079}, {1397, 16713}, {1412, 2293}, {1418, 2194}, {1474, 22053}, {1501, 53236}, {1576, 21104}, {1790, 40983}, {2488, 4565}, {3733, 35326}, {4847, 16947}, {7341, 21795}
X(56127) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 18164}, {10, 1475}, {37, 354}, {115, 48151}, {1214, 1418}, {3161, 17194}, {4075, 21808}, {4858, 21104}, {6374, 16708}, {6376, 17169}, {6741, 21127}, {40599, 2293}, {40603, 142}, {51574, 22053}, {55064, 2488}
X(56127) = X(i)-cross conjugate of X(j) for these {i, j}: {850, 4033}, {17163, 75}
X(56127) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(85)}}, {{A, B, C, X(75), X(4043)}}, {{A, B, C, X(92), X(6539)}}, {{A, B, C, X(226), X(3983)}}, {{A, B, C, X(312), X(318)}}, {{A, B, C, X(728), X(2321)}}, {{A, B, C, X(874), X(17762)}}, {{A, B, C, X(1089), X(52623)}}, {{A, B, C, X(3995), X(39700)}}, {{A, B, C, X(4103), X(24044)}}, {{A, B, C, X(4651), X(28742)}}, {{A, B, C, X(4674), X(9311)}}, {{A, B, C, X(13576), X(18097)}}, {{A, B, C, X(16708), X(17163)}}, {{A, B, C, X(18359), X(27797)}}, {{A, B, C, X(27475), X(40515)}}, {{A, B, C, X(27809), X(34860)}}, {{A, B, C, X(40011), X(43533)}}, {{A, B, C, X(42714), X(46738)}}
X(56127) = barycentric product X(i)*X(j) for these (i, j): {349, 6605}, {1170, 30713}, {1174, 27801}, {1441, 56118}, {2321, 31618}, {2346, 313}, {4036, 55281}, {4044, 42310}, {4082, 42311}, {4086, 6606}, {21453, 3701}, {32008, 321}
X(56127) = barycentric quotient X(i)/X(j) for these (i, j): {2, 18164}, {8, 17194}, {10, 354}, {37, 1475}, {72, 22053}, {75, 17169}, {76, 16708}, {92, 53238}, {210, 2293}, {226, 1418}, {312, 16713}, {313, 20880}, {321, 142}, {523, 48151}, {561, 53236}, {594, 21808}, {756, 52020}, {1018, 35326}, {1089, 3925}, {1170, 1412}, {1174, 1333}, {1334, 20229}, {1441, 10481}, {1577, 21104}, {1824, 40983}, {2318, 22079}, {2321, 1212}, {2346, 58}, {3700, 21127}, {3701, 4847}, {3952, 35338}, {3992, 51463}, {4006, 40606}, {4036, 55282}, {4041, 2488}, {4082, 3059}, {4086, 6362}, {4103, 35310}, {4171, 10581}, {4515, 8012}, {6057, 21039}, {6358, 52023}, {6605, 284}, {6606, 1414}, {10482, 2194}, {21453, 1014}, {27801, 1233}, {30713, 1229}, {30730, 35341}, {31618, 1434}, {32008, 81}, {42310, 42302}, {47487, 1437}, {53008, 1827}, {55281, 52935}, {56118, 21}


X(56128) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(37) AND X(1)

Barycentrics    (a*b^3+b^2*c*(b+c)+a^2*(b^2-c^2))*(-(a*c^3)-b*c^2*(b+c)+a^2*(b^2-c^2)) : :

X(56128) lies on these lines: {1, 714}, {10, 4443}, {37, 4009}, {65, 536}, {75, 35532}, {312, 41683}, {726, 53114}, {740, 994}, {2363, 19840}, {4674, 49474}, {13476, 17157}, {30942, 56125}, {34434, 44671}, {48090, 55244}

X(56128) = trilinear pole of line {661, 14430}
X(56128) = X(i)-isoconjugate-of-X(j) for these {i, j}: {32, 30964}, {27773, 34073}
X(56128) = X(i)-Dao conjugate of X(j) for these {i, j}: {6376, 30964}
X(56128) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(87), X(40010)}}, {{A, B, C, X(291), X(46018)}}, {{A, B, C, X(310), X(4492)}}, {{A, B, C, X(312), X(522)}}, {{A, B, C, X(335), X(32931)}}, {{A, B, C, X(513), X(3223)}}, {{A, B, C, X(523), X(561)}}, {{A, B, C, X(726), X(4777)}}, {{A, B, C, X(871), X(4443)}}, {{A, B, C, X(2998), X(6385)}}, {{A, B, C, X(3240), X(30942)}}, {{A, B, C, X(4581), X(35058)}}, {{A, B, C, X(5312), X(50605)}}, {{A, B, C, X(6383), X(42328)}}, {{A, B, C, X(6664), X(20567)}}, {{A, B, C, X(9348), X(32010)}}, {{A, B, C, X(9462), X(18031)}}, {{A, B, C, X(9516), X(37208)}}, {{A, B, C, X(14973), X(44671)}}, {{A, B, C, X(17157), X(40088)}}, {{A, B, C, X(17763), X(33077)}}, {{A, B, C, X(26227), X(29643)}}, {{A, B, C, X(27494), X(39698)}}, {{A, B, C, X(30939), X(48090)}}, {{A, B, C, X(31137), X(49988)}}, {{A, B, C, X(40039), X(52654)}}, {{A, B, C, X(45988), X(52150)}}
X(56128) = barycentric product X(i)*X(j) for these (i, j): {36873, 76}
X(56128) = barycentric quotient X(i)/X(j) for these (i, j): {75, 30964}, {4777, 27773}, {36873, 6}


X(56129) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(37) AND X(76)

Barycentrics    b*c*(a*b*(b-c)+b^2*c+a^2*(b+c))*(b*c^2+a*c*(-b+c)+a^2*(b+c)) : :

X(56129) lies on these lines: {37, 6383}, {75, 899}, {76, 536}, {85, 52896}, {192, 6385}, {274, 2176}, {286, 52890}, {334, 4389}, {668, 4492}, {2481, 52902}, {4664, 30964}, {20568, 52900}, {20569, 52901}, {23493, 53679}

X(56129) = isotomic conjugate of X(16975)
X(56129) = trilinear pole of line {693, 50491}
X(56129) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 16975}, {32, 30942}
X(56129) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 16975}, {6376, 30942}
X(56129) = X(i)-cross conjugate of X(j) for these {i, j}: {4776, 668}
X(56129) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(43095)}}, {{A, B, C, X(2), X(513)}}, {{A, B, C, X(6), X(39745)}}, {{A, B, C, X(7), X(308)}}, {{A, B, C, X(37), X(192)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(335), X(32931)}}, {{A, B, C, X(693), X(40826)}}, {{A, B, C, X(714), X(1215)}}, {{A, B, C, X(1002), X(3228)}}, {{A, B, C, X(1239), X(39723)}}, {{A, B, C, X(1278), X(3739)}}, {{A, B, C, X(1502), X(54121)}}, {{A, B, C, X(1921), X(4389)}}, {{A, B, C, X(2998), X(13476)}}, {{A, B, C, X(3644), X(4687)}}, {{A, B, C, X(3797), X(24357)}}, {{A, B, C, X(3963), X(8818)}}, {{A, B, C, X(4080), X(4363)}}, {{A, B, C, X(4601), X(7033)}}, {{A, B, C, X(4681), X(4704)}}, {{A, B, C, X(4686), X(4699)}}, {{A, B, C, X(4688), X(4740)}}, {{A, B, C, X(4698), X(4788)}}, {{A, B, C, X(4718), X(27268)}}, {{A, B, C, X(4726), X(4772)}}, {{A, B, C, X(4739), X(4821)}}, {{A, B, C, X(4751), X(4764)}}, {{A, B, C, X(7241), X(54117)}}, {{A, B, C, X(9309), X(39968)}}, {{A, B, C, X(9462), X(39925)}}, {{A, B, C, X(10009), X(39995)}}, {{A, B, C, X(16705), X(18135)}}, {{A, B, C, X(17139), X(44144)}}, {{A, B, C, X(27475), X(36805)}}, {{A, B, C, X(32020), X(39704)}}, {{A, B, C, X(34816), X(39746)}}, {{A, B, C, X(39742), X(42328)}}, {{A, B, C, X(40031), X(40039)}}, {{A, B, C, X(40515), X(42027)}}
X(56129) = barycentric quotient X(i)/X(j) for these (i, j): {2, 16975}, {75, 30942}


X(56130) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(37) AND X(86)

Barycentrics    (a^2*(b-c)+a*(2*b^2-c^2)+b*(2*b^2+2*b*c+c^2))*(a^2*(b-c)+a*(b^2-2*c^2)-c*(b^2+2*b*c+2*c^2)) : :

X(56130) lies on these lines: {86, 726}, {141, 27494}, {310, 35538}, {335, 17231}, {1268, 49521}, {1278, 39720}, {4360, 14621}, {6650, 9055}, {24325, 30598}, {27483, 28633}, {28554, 39704}, {32922, 55970}

X(56130) = trilinear pole of line {21053, 514}
X(56130) = isotomic conjugate of X(49477)
X(56130) = X(i)-cross conjugate of X(j) for these {i, j}: {29078, 190}
X(56130) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(76), X(3226)}}, {{A, B, C, X(313), X(523)}}, {{A, B, C, X(334), X(596)}}, {{A, B, C, X(984), X(40433)}}, {{A, B, C, X(1222), X(35162)}}, {{A, B, C, X(1269), X(49521)}}, {{A, B, C, X(2786), X(9055)}}, {{A, B, C, X(4777), X(28554)}}, {{A, B, C, X(32018), X(39717)}}, {{A, B, C, X(35150), X(40417)}}
X(56130) = barycentric quotient X(i)/X(j) for these (i, j): {2, 49477}


X(56131) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(1) AND X(2)

Barycentrics    a*(b+c)*(a^2*c+b^2*c+a*(b+c)^2)*(a^2*b+b*c^2+a*(b+c)^2) : :

X(56131) lies on these lines: {10, 350}, {42, 238}, {86, 291}, {181, 1284}, {513, 40774}, {740, 756}, {1500, 2238}, {2201, 2333}, {3799, 30571}, {4368, 18082}, {7148, 26115}, {9505, 40796}, {22279, 34585}, {22323, 28600}

X(56131) = trilinear pole of line {4079, 21832}
X(56131) = X(i)-isoconjugate-of-X(j) for these {i, j}: {27, 22099}, {58, 24325}, {81, 24512}, {86, 20985}, {110, 21146}, {741, 17031}, {1333, 20913}
X(56131) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 24325}, {37, 20913}, {244, 21146}, {8299, 17031}, {40586, 24512}, {40600, 20985}
X(56131) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39717, 56122}
X(56131) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1621)}}, {{A, B, C, X(2), X(3293)}}, {{A, B, C, X(10), X(42)}}, {{A, B, C, X(37), X(86)}}, {{A, B, C, X(43), X(26115)}}, {{A, B, C, X(58), X(40147)}}, {{A, B, C, X(65), X(3750)}}, {{A, B, C, X(75), X(52555)}}, {{A, B, C, X(310), X(42471)}}, {{A, B, C, X(985), X(18785)}}, {{A, B, C, X(1002), X(4674)}}, {{A, B, C, X(2078), X(4424)}}, {{A, B, C, X(3214), X(43223)}}, {{A, B, C, X(3720), X(43972)}}, {{A, B, C, X(3799), X(40774)}}, {{A, B, C, X(4492), X(41683)}}, {{A, B, C, X(14624), X(17038)}}, {{A, B, C, X(27033), X(31008)}}, {{A, B, C, X(29822), X(31855)}}, {{A, B, C, X(38277), X(52654)}}, {{A, B, C, X(39971), X(40024)}}, {{A, B, C, X(40433), X(40504)}}, {{A, B, C, X(40786), X(40794)}}, {{A, B, C, X(43534), X(52651)}}
X(56131) = barycentric product X(i)*X(j) for these (i, j): {1, 56122}, {10, 39971}, {37, 39717}, {40024, 42}
X(56131) = barycentric quotient X(i)/X(j) for these (i, j): {10, 20913}, {37, 24325}, {42, 24512}, {213, 20985}, {228, 22099}, {661, 21146}, {2238, 17031}, {39717, 274}, {39971, 86}, {40024, 310}, {56122, 75}


X(56132) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(1) AND X(4)

Barycentrics    (b+c)*(a^3+b^3-b*c^2-a*c*(2*b+c))*(a^3-b^2*c+c^3-a*b*(b+2*c)) : :

X(56132) lies on these lines: {10, 1621}, {12, 3293}, {313, 5564}, {334, 33297}, {594, 3294}, {1089, 4015}, {1220, 47033}, {1268, 33954}, {1734, 29070}, {1826, 5526}, {3214, 45095}, {31855, 51870}

X(56132) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 3874}, {81, 583}, {1333, 18139}
X(56132) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 3874}, {37, 18139}, {40586, 583}
X(56132) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1621)}}, {{A, B, C, X(4), X(5047)}}, {{A, B, C, X(8), X(3293)}}, {{A, B, C, X(10), X(12)}}, {{A, B, C, X(37), X(79)}}, {{A, B, C, X(65), X(3746)}}, {{A, B, C, X(72), X(5526)}}, {{A, B, C, X(210), X(10482)}}, {{A, B, C, X(321), X(33157)}}, {{A, B, C, X(740), X(29070)}}, {{A, B, C, X(1126), X(40504)}}, {{A, B, C, X(1734), X(4006)}}, {{A, B, C, X(2321), X(23604)}}, {{A, B, C, X(3679), X(26115)}}, {{A, B, C, X(3696), X(7247)}}, {{A, B, C, X(3701), X(6598)}}, {{A, B, C, X(4024), X(7206)}}, {{A, B, C, X(4080), X(32019)}}, {{A, B, C, X(4647), X(33954)}}, {{A, B, C, X(5178), X(41013)}}, {{A, B, C, X(5557), X(15320)}}, {{A, B, C, X(13602), X(31503)}}, {{A, B, C, X(13606), X(53114)}}, {{A, B, C, X(14624), X(39708)}}, {{A, B, C, X(15065), X(41501)}}, {{A, B, C, X(17751), X(31855)}}, {{A, B, C, X(27797), X(39729)}}, {{A, B, C, X(32008), X(40515)}}, {{A, B, C, X(37702), X(52383)}}, {{A, B, C, X(38955), X(43731)}}
X(56132) = barycentric quotient X(i)/X(j) for these (i, j): {10, 18139}, {37, 3874}, {42, 583}, {18082, 29568}


X(56133) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(1) AND X(8)

Barycentrics    (b+c)*(a^3+b^3+a*(2*b-c)*c-b*c^2)*(a^3-a*b*(b-2*c)-b^2*c+c^3) : :

X(56133) lies on these lines: {1, 51870}, {10, 36}, {12, 1464}, {58, 80}, {313, 320}, {513, 3585}, {594, 2245}, {758, 1089}, {952, 3293}, {1826, 52413}, {3072, 41506}, {5053, 21011}, {18395, 54300}, {26115, 51111}, {37701, 45095}

X(56133) = trilinear pole of line {4024, 21828}
X(56133) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 3878}, {81, 4271}, {283, 1866}, {1333, 5741}, {1437, 11105}
X(56133) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 3878}, {37, 5741}, {40586, 4271}
X(56133) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2975)}}, {{A, B, C, X(4), X(404)}}, {{A, B, C, X(10), X(12)}}, {{A, B, C, X(36), X(58)}}, {{A, B, C, X(37), X(5258)}}, {{A, B, C, X(83), X(24614)}}, {{A, B, C, X(225), X(45287)}}, {{A, B, C, X(226), X(34234)}}, {{A, B, C, X(252), X(5397)}}, {{A, B, C, X(267), X(40453)}}, {{A, B, C, X(514), X(18097)}}, {{A, B, C, X(1222), X(42471)}}, {{A, B, C, X(3668), X(4311)}}, {{A, B, C, X(3679), X(19874)}}, {{A, B, C, X(3701), X(34918)}}, {{A, B, C, X(5176), X(41013)}}, {{A, B, C, X(5445), X(8818)}}, {{A, B, C, X(5557), X(53114)}}, {{A, B, C, X(5560), X(13576)}}, {{A, B, C, X(5561), X(36604)}}, {{A, B, C, X(6757), X(37710)}}, {{A, B, C, X(14452), X(40663)}}, {{A, B, C, X(15320), X(37129)}}, {{A, B, C, X(32918), X(40718)}}, {{A, B, C, X(33119), X(43534)}}
X(56133) = barycentric quotient X(i)/X(j) for these (i, j): {10, 5741}, {37, 3878}, {42, 4271}, {1826, 11105}, {1880, 1866}, {18082, 29534}


X(56134) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(1) AND X(37)

Barycentrics    a*(b+c)*(a+4*b+c)*(a+b+4*c) : :

X(56134) lies on these lines: {1, 4015}, {2, 39697}, {10, 27797}, {37, 3921}, {75, 3992}, {596, 1698}, {740, 56126}, {756, 3968}, {759, 28210}, {897, 51294}, {1018, 21822}, {1743, 2214}, {1757, 55925}, {3679, 31035}, {3842, 41683}, {3956, 21806}, {4134, 53114}, {4533, 31503}, {4705, 55244}, {9330, 17461}, {13476, 49448}, {34595, 39702}, {36478, 39714}

X(56134) = trilinear pole of line {661, 4145}
X(56134) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 26860}, {27, 22357}, {58, 551}, {81, 16666}, {86, 21747}, {110, 28209}, {284, 4031}, {757, 21806}, {849, 4714}, {1333, 24589}, {1408, 3902}, {1412, 3707}, {3285, 42026}, {3733, 4781}, {4591, 14435}, {5546, 30722}
X(56134) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 26860}, {10, 551}, {37, 24589}, {244, 28209}, {4075, 4714}, {40586, 16666}, {40590, 4031}, {40599, 3707}, {40600, 21747}, {40607, 21806}
X(56134) = X(i)-Ceva conjugate of X(j) for these {i, j}: {55955, 27797}
X(56134) = X(i)-cross conjugate of X(j) for these {i, j}: {4770, 1018}
X(56134) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(2), X(18145)}}, {{A, B, C, X(4), X(17536)}}, {{A, B, C, X(12), X(4015)}}, {{A, B, C, X(42), X(19875)}}, {{A, B, C, X(226), X(3921)}}, {{A, B, C, X(512), X(28554)}}, {{A, B, C, X(756), X(3992)}}, {{A, B, C, X(979), X(1698)}}, {{A, B, C, X(1126), X(32089)}}, {{A, B, C, X(1213), X(4868)}}, {{A, B, C, X(1743), X(52353)}}, {{A, B, C, X(3294), X(49448)}}, {{A, B, C, X(3696), X(52708)}}, {{A, B, C, X(3701), X(4866)}}, {{A, B, C, X(3842), X(52959)}}, {{A, B, C, X(3968), X(40663)}}, {{A, B, C, X(4026), X(16611)}}, {{A, B, C, X(4424), X(13462)}}, {{A, B, C, X(4732), X(16589)}}, {{A, B, C, X(4770), X(21822)}}, {{A, B, C, X(5561), X(13576)}}, {{A, B, C, X(6539), X(25430)}}, {{A, B, C, X(17125), X(40718)}}, {{A, B, C, X(20121), X(42289)}}, {{A, B, C, X(21839), X(51294)}}, {{A, B, C, X(27797), X(40434)}}, {{A, B, C, X(27809), X(36871)}}, {{A, B, C, X(31025), X(31035)}}, {{A, B, C, X(38277), X(52654)}}, {{A, B, C, X(43972), X(55093)}}
X(56134) = barycentric product X(i)*X(j) for these (i, j): {1, 27797}, {10, 40434}, {37, 55955}, {226, 56115}, {321, 41434}, {1577, 28210}
X(56134) = barycentric quotient X(i)/X(j) for these (i, j): {1, 26860}, {10, 24589}, {37, 551}, {42, 16666}, {65, 4031}, {210, 3707}, {213, 21747}, {228, 22357}, {594, 4714}, {661, 28209}, {1018, 4781}, {1500, 21806}, {2321, 3902}, {4017, 30722}, {4069, 30727}, {4674, 42026}, {4730, 14435}, {27797, 75}, {28210, 662}, {40434, 86}, {41434, 81}, {55955, 274}, {56115, 333}
X(56134) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40434, 56115, 41434}


X(56135) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(1) AND X(65)

Barycentrics    a*(a+b-4*c)*(a-4*b+c)*(b+c) : :

X(56135) lies on these lines: {1, 3833}, {8, 39697}, {10, 48642}, {19, 3973}, {37, 3987}, {65, 31855}, {75, 32101}, {596, 3679}, {759, 28218}, {994, 6048}, {1698, 42285}, {2166, 51975}, {2214, 16667}, {2292, 56134}, {3293, 53114}, {3678, 4674}, {3753, 31503}, {4668, 34860}, {4677, 39702}, {11010, 53391}, {13476, 49498}, {19875, 31359}, {39708, 51066}, {40663, 52382}

X(56135) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 3244}, {81, 16669}, {110, 28217}, {5546, 30726}
X(56135) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 3244}, {244, 28217}, {40586, 16669}
X(56135) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(4), X(17531)}}, {{A, B, C, X(8), X(31855)}}, {{A, B, C, X(12), X(3918)}}, {{A, B, C, X(57), X(6539)}}, {{A, B, C, X(72), X(3973)}}, {{A, B, C, X(88), X(27797)}}, {{A, B, C, X(226), X(4002)}}, {{A, B, C, X(321), X(3987)}}, {{A, B, C, X(758), X(28221)}}, {{A, B, C, X(1089), X(4695)}}, {{A, B, C, X(1126), X(32101)}}, {{A, B, C, X(2292), X(4714)}}, {{A, B, C, X(3214), X(4668)}}, {{A, B, C, X(3293), X(3679)}}, {{A, B, C, X(3294), X(49498)}}, {{A, B, C, X(3361), X(4424)}}, {{A, B, C, X(3678), X(40663)}}, {{A, B, C, X(3697), X(4848)}}, {{A, B, C, X(3698), X(3947)}}, {{A, B, C, X(3701), X(4900)}}, {{A, B, C, X(3753), X(10563)}}, {{A, B, C, X(4080), X(39963)}}, {{A, B, C, X(4642), X(4647)}}, {{A, B, C, X(5560), X(13576)}}, {{A, B, C, X(17124), X(40718)}}, {{A, B, C, X(25417), X(30582)}}, {{A, B, C, X(38955), X(43731)}}, {{A, B, C, X(39748), X(39960)}}, {{A, B, C, X(39975), X(43533)}}, {{A, B, C, X(43534), X(48642)}}
X(56135) = barycentric product X(i)*X(j) for these (i, j): {10, 39962}, {37, 39710}, {226, 56091}, {1577, 28218}
X(56135) = barycentric quotient X(i)/X(j) for these (i, j): {37, 3244}, {42, 16669}, {661, 28217}, {3950, 4935}, {4017, 30726}, {4069, 30732}, {28218, 662}, {39710, 274}, {39962, 86}, {56091, 333}


X(56136) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(19)

Barycentrics    a*(a^3+3*b^3+b^2*c-b*c^2+c^3-a^2*(b+c)+a*(b^2-c^2))*(a^3+b^3-b^2*c+b*c^2+3*c^3-a^2*(b+c)+a*(-b^2+c^2)) : :

X(56136) lies on these lines: {1, 55939}, {8, 23604}, {19, 758}, {37, 9620}, {63, 759}, {65, 3689}, {200, 4674}, {225, 49168}, {267, 3901}, {519, 3668}, {2218, 12514}, {3771, 34895}, {3900, 55244}, {5711, 31503}, {18785, 54330}, {26942, 52383}, {54336, 54421}

X(56136) = isogonal conjugate of X(37817)
X(56136) = trilinear pole of line {661, 14427}
X(56136) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 37817}, {6, 24597}
X(56136) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 37817}, {9, 24597}
X(56136) = X(i)-cross conjugate of X(j) for these {i, j}: {49454, 1}
X(56136) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(4), X(1257)}}, {{A, B, C, X(8), X(3811)}}, {{A, B, C, X(9), X(56104)}}, {{A, B, C, X(21), X(12559)}}, {{A, B, C, X(63), X(525)}}, {{A, B, C, X(66), X(80)}}, {{A, B, C, X(76), X(44178)}}, {{A, B, C, X(78), X(6598)}}, {{A, B, C, X(90), X(40436)}}, {{A, B, C, X(104), X(4373)}}, {{A, B, C, X(106), X(608)}}, {{A, B, C, X(191), X(3901)}}, {{A, B, C, X(200), X(519)}}, {{A, B, C, X(281), X(1320)}}, {{A, B, C, X(291), X(998)}}, {{A, B, C, X(459), X(40399)}}, {{A, B, C, X(517), X(8270)}}, {{A, B, C, X(522), X(56101)}}, {{A, B, C, X(726), X(1938)}}, {{A, B, C, X(903), X(7284)}}, {{A, B, C, X(936), X(6738)}}, {{A, B, C, X(943), X(43533)}}, {{A, B, C, X(996), X(1065)}}, {{A, B, C, X(997), X(18391)}}, {{A, B, C, X(1000), X(1280)}}, {{A, B, C, X(1170), X(18840)}}, {{A, B, C, X(1219), X(1389)}}, {{A, B, C, X(1220), X(17098)}}, {{A, B, C, X(1222), X(11501)}}, {{A, B, C, X(1224), X(15173)}}, {{A, B, C, X(1411), X(7241)}}, {{A, B, C, X(1698), X(30143)}}, {{A, B, C, X(2184), X(4052)}}, {{A, B, C, X(2320), X(36588)}}, {{A, B, C, X(2995), X(39768)}}, {{A, B, C, X(2996), X(40403)}}, {{A, B, C, X(2997), X(38955)}}, {{A, B, C, X(3340), X(5711)}}, {{A, B, C, X(3426), X(7123)}}, {{A, B, C, X(3427), X(42361)}}, {{A, B, C, X(3680), X(5687)}}, {{A, B, C, X(3745), X(18421)}}, {{A, B, C, X(3868), X(12514)}}, {{A, B, C, X(3872), X(45701)}}, {{A, B, C, X(3874), X(5250)}}, {{A, B, C, X(5248), X(11520)}}, {{A, B, C, X(5485), X(36101)}}, {{A, B, C, X(5665), X(40446)}}, {{A, B, C, X(6743), X(6765)}}, {{A, B, C, X(8056), X(40509)}}, {{A, B, C, X(8666), X(11682)}}, {{A, B, C, X(9623), X(13405)}}, {{A, B, C, X(10198), X(19860)}}, {{A, B, C, X(11529), X(37543)}}, {{A, B, C, X(15910), X(22836)}}, {{A, B, C, X(19611), X(28786)}}, {{A, B, C, X(36121), X(51497)}}, {{A, B, C, X(36123), X(40424)}}, {{A, B, C, X(36125), X(39956)}}, {{A, B, C, X(37131), X(40029)}}, {{A, B, C, X(37817), X(49454)}}, {{A, B, C, X(39700), X(40149)}}, {{A, B, C, X(43708), X(52387)}}
X(56136) = barycentric product X(i)*X(j) for these (i, j): {10, 55939}
X(56136) = barycentric quotient X(i)/X(j) for these (i, j): {1, 24597}, {6, 37817}, {55939, 86}


X(56137) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(28)

Barycentrics    a*(a^3+2*b^3-a^2*c+b^2*c+c^3+a*(b^2-2*b*c-c^2))*(a^3-a^2*b+b^3+b*c^2+2*c^3+a*(-b^2-2*b*c+c^2)) : :

X(56137) lies on these lines: {1, 4284}, {8, 15474}, {28, 518}, {57, 3811}, {72, 105}, {81, 5266}, {88, 4420}, {141, 277}, {145, 56050}, {279, 53997}, {519, 52374}, {957, 12635}, {961, 3555}, {1002, 1009}, {1022, 35057}, {1231, 34018}, {2006, 10916}, {14839, 16100}, {35637, 53083}, {41610, 52376}

X(56137) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 26723}
X(56137) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 26723}
X(56137) = X(i)-cross conjugate of X(j) for these {i, j}: {50350, 100}
X(56137) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(8), X(3811)}}, {{A, B, C, X(9), X(41863)}}, {{A, B, C, X(10), X(2346)}}, {{A, B, C, X(21), X(596)}}, {{A, B, C, X(58), X(4284)}}, {{A, B, C, X(65), X(5266)}}, {{A, B, C, X(72), X(518)}}, {{A, B, C, X(75), X(943)}}, {{A, B, C, X(76), X(2991)}}, {{A, B, C, X(78), X(6601)}}, {{A, B, C, X(79), X(23617)}}, {{A, B, C, X(90), X(4373)}}, {{A, B, C, X(104), X(34860)}}, {{A, B, C, X(141), X(41610)}}, {{A, B, C, X(285), X(3254)}}, {{A, B, C, X(318), X(34894)}}, {{A, B, C, X(335), X(40403)}}, {{A, B, C, X(392), X(34791)}}, {{A, B, C, X(447), X(3651)}}, {{A, B, C, X(519), X(4420)}}, {{A, B, C, X(749), X(977)}}, {{A, B, C, X(903), X(10308)}}, {{A, B, C, X(956), X(12635)}}, {{A, B, C, X(960), X(3555)}}, {{A, B, C, X(979), X(36125)}}, {{A, B, C, X(987), X(39742)}}, {{A, B, C, X(996), X(17097)}}, {{A, B, C, X(1009), X(31926)}}, {{A, B, C, X(1065), X(1222)}}, {{A, B, C, X(1067), X(40424)}}, {{A, B, C, X(1126), X(38813)}}, {{A, B, C, X(1320), X(10570)}}, {{A, B, C, X(1476), X(39697)}}, {{A, B, C, X(1814), X(14376)}}, {{A, B, C, X(2218), X(7241)}}, {{A, B, C, X(2334), X(34250)}}, {{A, B, C, X(2775), X(9041)}}, {{A, B, C, X(2975), X(35637)}}, {{A, B, C, X(3242), X(16466)}}, {{A, B, C, X(3243), X(31435)}}, {{A, B, C, X(4511), X(10916)}}, {{A, B, C, X(4867), X(5288)}}, {{A, B, C, X(5258), X(41696)}}, {{A, B, C, X(5730), X(12513)}}, {{A, B, C, X(6051), X(49478)}}, {{A, B, C, X(7162), X(43533)}}, {{A, B, C, X(15175), X(39711)}}, {{A, B, C, X(15179), X(39702)}}, {{A, B, C, X(16496), X(54386)}}, {{A, B, C, X(18840), X(39273)}}, {{A, B, C, X(36121), X(42019)}}, {{A, B, C, X(39700), X(40406)}}, {{A, B, C, X(39749), X(44178)}}, {{A, B, C, X(39982), X(52372)}}, {{A, B, C, X(42470), X(44692)}}, {{A, B, C, X(43740), X(52663)}}
X(56137) = barycentric quotient X(i)/X(j) for these (i, j): {1, 26723}


X(56138) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(31)

Barycentrics    (a^3*b+b*c^2*(b+c)+a^2*(b^2-c^2))*(a^3*c+b^2*c*(b+c)+a^2*(-b^2+c^2)) : :

X(56138) lies on these lines: {1, 35544}, {31, 740}, {42, 50281}, {75, 741}, {213, 2901}, {523, 875}, {964, 23493}, {1402, 4362}, {29016, 49127}, {40148, 50302}

X(56138) = trilinear pole of line {798, 6133}
X(56138) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 24598}
X(56138) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 24598}
X(56138) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(31)}}, {{A, B, C, X(2), X(17982)}}, {{A, B, C, X(4), X(34527)}}, {{A, B, C, X(8), X(4362)}}, {{A, B, C, X(10), X(2901)}}, {{A, B, C, X(75), X(523)}}, {{A, B, C, X(86), X(9348)}}, {{A, B, C, X(92), X(43534)}}, {{A, B, C, X(98), X(2985)}}, {{A, B, C, X(145), X(29670)}}, {{A, B, C, X(291), X(7033)}}, {{A, B, C, X(430), X(11104)}}, {{A, B, C, X(519), X(26227)}}, {{A, B, C, X(596), X(32929)}}, {{A, B, C, X(870), X(30571)}}, {{A, B, C, X(985), X(3226)}}, {{A, B, C, X(996), X(1390)}}, {{A, B, C, X(1255), X(43531)}}, {{A, B, C, X(1280), X(1389)}}, {{A, B, C, X(2214), X(18082)}}, {{A, B, C, X(2997), X(42027)}}, {{A, B, C, X(2998), X(38810)}}, {{A, B, C, X(3679), X(50756)}}, {{A, B, C, X(3791), X(31359)}}, {{A, B, C, X(3875), X(50314)}}, {{A, B, C, X(4360), X(50302)}}, {{A, B, C, X(5263), X(32921)}}, {{A, B, C, X(7035), X(52654)}}, {{A, B, C, X(9462), X(37130)}}, {{A, B, C, X(11113), X(15150)}}, {{A, B, C, X(11599), X(39700)}}, {{A, B, C, X(13576), X(35058)}}, {{A, B, C, X(13588), X(56137)}}, {{A, B, C, X(17393), X(50293)}}, {{A, B, C, X(24325), X(49470)}}, {{A, B, C, X(32922), X(32941)}}
X(56138) = barycentric quotient X(i)/X(j) for these (i, j): {1, 24598}


X(56139) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(33)

Barycentrics    a*(a^5+b^5-b^4*c+2*a^3*(b-c)*c-b*c^4+c^5+a^4*(-b+c)-2*a^2*c^2*(b+c)-a*(b-c)*(b+c)^3)*(a^5+b^5+a^4*(b-c)-2*a^3*b*(b-c)-b^4*c-b*c^4+c^5-2*a^2*b^2*(b+c)+a*(b-c)*(b+c)^3) : :

X(56139) lies on these lines: {33, 516}, {40, 2332}, {55, 45126}, {77, 103}, {118, 46344}, {200, 5739}, {220, 12514}, {991, 56098}, {1214, 2192}, {1742, 7281}, {1801, 2328}, {5089, 54370}, {9746, 47800}

X(56139) = isogonal conjugate of X(990)
X(56139) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 42467}
X(56139) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(33)}}, {{A, B, C, X(2), X(972)}}, {{A, B, C, X(3), X(1801)}}, {{A, B, C, X(4), X(81)}}, {{A, B, C, X(9), X(77)}}, {{A, B, C, X(10), X(40)}}, {{A, B, C, X(34), X(9315)}}, {{A, B, C, X(57), X(43672)}}, {{A, B, C, X(84), X(39958)}}, {{A, B, C, X(88), X(45097)}}, {{A, B, C, X(90), X(2190)}}, {{A, B, C, X(104), X(3424)}}, {{A, B, C, X(284), X(1041)}}, {{A, B, C, X(573), X(50314)}}, {{A, B, C, X(928), X(28850)}}, {{A, B, C, X(941), X(14493)}}, {{A, B, C, X(969), X(15909)}}, {{A, B, C, X(985), X(9442)}}, {{A, B, C, X(991), X(2263)}}, {{A, B, C, X(997), X(2745)}}, {{A, B, C, X(998), X(1945)}}, {{A, B, C, X(1390), X(15731)}}, {{A, B, C, X(1706), X(43174)}}, {{A, B, C, X(1742), X(5018)}}, {{A, B, C, X(1766), X(50295)}}, {{A, B, C, X(2191), X(39964)}}, {{A, B, C, X(2717), X(5089)}}, {{A, B, C, X(2723), X(52133)}}, {{A, B, C, X(3345), X(43531)}}, {{A, B, C, X(3923), X(6210)}}, {{A, B, C, X(4296), X(12520)}}, {{A, B, C, X(4347), X(10884)}}, {{A, B, C, X(4660), X(6211)}}, {{A, B, C, X(5119), X(8758)}}, {{A, B, C, X(9357), X(52654)}}, {{A, B, C, X(10623), X(29290)}}, {{A, B, C, X(11372), X(51090)}}, {{A, B, C, X(12572), X(12705)}}, {{A, B, C, X(29056), X(40718)}}
X(56139) = barycentric quotient X(i)/X(j) for these (i, j): {6, 990}


X(56140) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(34)

Barycentrics    a*(a^3+b^3+a^2*(b-c)+b^2*c+b*c^2+c^3+a*(b^2-4*b*c-c^2))*(a^3+b^3+b^2*c+b*c^2+c^3+a^2*(-b+c)+a*(-b^2-4*b*c+c^2)) : :

X(56140) lies on these lines: {6, 3991}, {10, 2191}, {34, 519}, {56, 3555}, {58, 3870}, {78, 106}, {145, 998}, {269, 6765}, {521, 23345}, {997, 3445}, {1062, 9041}, {1438, 17742}, {1474, 7719}, {7194, 50581}, {8747, 15954}

X(56140) = trilinear pole of line {649, 14418}
X(56140) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(4), X(1280)}}, {{A, B, C, X(8), X(3811)}}, {{A, B, C, X(9), X(596)}}, {{A, B, C, X(10), X(3870)}}, {{A, B, C, X(75), X(7162)}}, {{A, B, C, X(78), X(519)}}, {{A, B, C, X(81), X(18841)}}, {{A, B, C, X(84), X(39697)}}, {{A, B, C, X(90), X(765)}}, {{A, B, C, X(104), X(6553)}}, {{A, B, C, X(145), X(997)}}, {{A, B, C, X(200), X(6765)}}, {{A, B, C, X(280), X(34894)}}, {{A, B, C, X(518), X(17742)}}, {{A, B, C, X(595), X(9315)}}, {{A, B, C, X(903), X(36599)}}, {{A, B, C, X(943), X(1219)}}, {{A, B, C, X(947), X(56139)}}, {{A, B, C, X(1000), X(1257)}}, {{A, B, C, X(1059), X(7123)}}, {{A, B, C, X(1252), X(10623)}}, {{A, B, C, X(2287), X(15998)}}, {{A, B, C, X(2991), X(30701)}}, {{A, B, C, X(3244), X(19861)}}, {{A, B, C, X(3296), X(23617)}}, {{A, B, C, X(3340), X(37589)}}, {{A, B, C, X(3682), X(15954)}}, {{A, B, C, X(3872), X(22836)}}, {{A, B, C, X(3961), X(50581)}}, {{A, B, C, X(4866), X(41711)}}, {{A, B, C, X(5256), X(30145)}}, {{A, B, C, X(7131), X(34892)}}, {{A, B, C, X(7161), X(39711)}}, {{A, B, C, X(7284), X(39702)}}, {{A, B, C, X(10390), X(43972)}}, {{A, B, C, X(30144), X(36846)}}, {{A, B, C, X(39696), X(42467)}}, {{A, B, C, X(39979), X(40188)}}, {{A, B, C, X(40403), X(54123)}}


X(56141) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(35)

Barycentrics    (a^5-a^4*c-a^2*b*c^2-a^3*b*(2*b+c)+c*(b^2-c^2)^2+a*(b^4+b^3*c-b*c^3-c^4))*(a^5-a^4*b-a^2*b^2*c-a^3*c*(b+2*c)+b*(b^2-c^2)^2+a*(-b^4-b^3*c+b*c^3+c^4)) : :

X(56141) lies on these lines: {10, 13746}, {12, 30}, {74, 79}, {502, 10572}, {594, 7359}, {1089, 4420}, {1442, 7278}, {1784, 6198}, {1826, 41502}, {2166, 38336}, {10483, 37741}

X(56141) = trilinear pole of line {4024, 9404}
X(56141) = X(i)-cross conjugate of X(j) for these {i, j}: {48903, 1}
X(56141) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(35)}}, {{A, B, C, X(4), X(2166)}}, {{A, B, C, X(7), X(4324)}}, {{A, B, C, X(8), X(3584)}}, {{A, B, C, X(10), X(12)}}, {{A, B, C, X(29), X(30)}}, {{A, B, C, X(171), X(5697)}}, {{A, B, C, X(447), X(27555)}}, {{A, B, C, X(1043), X(5424)}}, {{A, B, C, X(1065), X(5559)}}, {{A, B, C, X(1836), X(10483)}}, {{A, B, C, X(3064), X(47160)}}, {{A, B, C, X(3065), X(3615)}}, {{A, B, C, X(3467), X(5397)}}, {{A, B, C, X(3649), X(5441)}}, {{A, B, C, X(4995), X(7278)}}, {{A, B, C, X(5119), X(37559)}}, {{A, B, C, X(5557), X(15338)}}, {{A, B, C, X(7095), X(39959)}}, {{A, B, C, X(10570), X(44693)}}, {{A, B, C, X(15175), X(54972)}}, {{A, B, C, X(15446), X(40430)}}, {{A, B, C, X(17098), X(44692)}}, {{A, B, C, X(35056), X(36129)}}, {{A, B, C, X(37525), X(37573)}}, {{A, B, C, X(43682), X(52412)}}


X(56142) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(43)

Barycentrics    a*(-(a*b*(b-2*c)*c^2)-b^2*c^2*(b+c)+a^3*(b^2-c^2)+a^2*(b^3-b^2*c-b*c^2-c^3))*(a*b^2*c*(-2*b+c)+b^2*c^2*(b+c)+a^3*(b^2-c^2)+a^2*(b^3+b^2*c+b*c^2-c^3)) : :

X(56142) lies on these lines: {43, 726}, {87, 727}, {893, 16557}, {978, 1575}, {979, 3500}, {1403, 1463}, {1742, 8927}, {3550, 13588}, {3551, 18793}, {17459, 39967}, {24524, 33296}, {51973, 52656}

X(56142) = trilinear pole of line {20979, 21348}
X(56142) = X(i)-cross conjugate of X(j) for these {i, j}: {24349, 1}
X(56142) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(43)}}, {{A, B, C, X(2), X(978)}}, {{A, B, C, X(4), X(291)}}, {{A, B, C, X(42), X(50581)}}, {{A, B, C, X(56), X(32011)}}, {{A, B, C, X(65), X(3550)}}, {{A, B, C, X(75), X(87)}}, {{A, B, C, X(1246), X(39742)}}, {{A, B, C, X(1929), X(24260)}}, {{A, B, C, X(3216), X(26102)}}, {{A, B, C, X(3293), X(42042)}}, {{A, B, C, X(7153), X(32020)}}, {{A, B, C, X(9361), X(39954)}}, {{A, B, C, X(16569), X(21214)}}, {{A, B, C, X(20615), X(40027)}}, {{A, B, C, X(36602), X(39966)}}


X(56143) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(54)

Barycentrics    (a-b-c)*(a^3+b^3+a*(2*b-c)*c-b*c^2)*(a^3-a*b*(b-2*c)-b^2*c+c^3) : :

X(56143) lies on these lines: {1, 15065}, {5, 953}, {10, 36}, {54, 952}, {59, 10944}, {60, 6740}, {355, 3417}, {519, 51803}, {529, 12946}, {1441, 1443}, {1870, 11109}, {2321, 2323}, {3701, 4511}, {3737, 13746}, {5587, 44759}

X(56143) = trilinear pole of line {654, 3700}
X(56143) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 1866}, {56, 3878}, {57, 4271}, {603, 11105}, {604, 5741}
X(56143) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3878}, {3161, 5741}, {5452, 4271}, {7952, 11105}, {36103, 1866}
X(56143) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36)}}, {{A, B, C, X(4), X(45287)}}, {{A, B, C, X(5), X(952)}}, {{A, B, C, X(7), X(4311)}}, {{A, B, C, X(8), X(10)}}, {{A, B, C, X(9), X(5258)}}, {{A, B, C, X(11), X(10944)}}, {{A, B, C, X(12), X(10950)}}, {{A, B, C, X(21), X(1220)}}, {{A, B, C, X(29), X(404)}}, {{A, B, C, X(80), X(2962)}}, {{A, B, C, X(83), X(4560)}}, {{A, B, C, X(145), X(27385)}}, {{A, B, C, X(280), X(30513)}}, {{A, B, C, X(318), X(5176)}}, {{A, B, C, X(495), X(37730)}}, {{A, B, C, X(519), X(27529)}}, {{A, B, C, X(596), X(11604)}}, {{A, B, C, X(958), X(49492)}}, {{A, B, C, X(1043), X(32635)}}, {{A, B, C, X(1065), X(17097)}}, {{A, B, C, X(1219), X(43740)}}, {{A, B, C, X(1411), X(8615)}}, {{A, B, C, X(1476), X(36123)}}, {{A, B, C, X(1483), X(5901)}}, {{A, B, C, X(1837), X(5252)}}, {{A, B, C, X(2320), X(43531)}}, {{A, B, C, X(2985), X(46880)}}, {{A, B, C, X(4242), X(6742)}}, {{A, B, C, X(4391), X(54120)}}, {{A, B, C, X(4518), X(33119)}}, {{A, B, C, X(5442), X(13606)}}, {{A, B, C, X(5445), X(5559)}}, {{A, B, C, X(5587), X(5881)}}, {{A, B, C, X(5727), X(9578)}}, {{A, B, C, X(5886), X(37727)}}, {{A, B, C, X(7412), X(11103)}}, {{A, B, C, X(7741), X(37707)}}, {{A, B, C, X(7951), X(37706)}}, {{A, B, C, X(7972), X(37735)}}, {{A, B, C, X(9581), X(37709)}}, {{A, B, C, X(10826), X(37708)}}, {{A, B, C, X(10827), X(37711)}}, {{A, B, C, X(11374), X(37739)}}, {{A, B, C, X(11375), X(37740)}}, {{A, B, C, X(11376), X(37738)}}, {{A, B, C, X(15950), X(37734)}}, {{A, B, C, X(17718), X(37724)}}, {{A, B, C, X(17947), X(39722)}}, {{A, B, C, X(18357), X(37705)}}, {{A, B, C, X(19607), X(30710)}}, {{A, B, C, X(31623), X(40394)}}, {{A, B, C, X(32918), X(52133)}}, {{A, B, C, X(34918), X(52409)}}, {{A, B, C, X(35058), X(46103)}}, {{A, B, C, X(37712), X(37714)}}, {{A, B, C, X(37728), X(37737)}}
X(56143) = barycentric product X(i)*X(j) for these (i, j): {333, 56133}
X(56143) = barycentric quotient X(i)/X(j) for these (i, j): {8, 5741}, {9, 3878}, {19, 1866}, {55, 4271}, {281, 11105}, {56133, 226}


X(56144) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(55)

Barycentrics    (a^4-a^3*(b+c)+b*(b-c)^2*(b+c)-a^2*c*(b+c)-a*(b-c)*(b+c)^2)*(a^4-a^3*(b+c)-a^2*b*(b+c)+(b-c)^2*c*(b+c)+a*(b-c)*(b+c)^2) : :

X(56144) lies on the Kiepert hyperbola and on these lines: {1, 1446}, {2, 1754}, {3, 17758}, {4, 2332}, {6, 43672}, {7, 103}, {10, 220}, {33, 40149}, {55, 226}, {64, 3671}, {76, 1043}, {83, 36652}, {118, 13576}, {200, 321}, {376, 54831}, {459, 461}, {740, 43683}, {946, 36907}, {963, 4298}, {990, 40719}, {991, 14828}, {1503, 5138}, {1541, 54668}, {1751, 8226}, {2051, 19541}, {2052, 14004}, {2192, 8808}, {2263, 56139}, {2784, 11608}, {3085, 10482}, {3839, 54622}, {3870, 29016}, {4049, 28292}, {4052, 28580}, {4262, 36028}, {4301, 53089}, {4307, 51476}, {4336, 24014}, {4349, 7050}, {4355, 44760}, {4444, 6003}, {4845, 18391}, {5542, 52013}, {5721, 54516}, {5733, 14548}, {5757, 33536}, {7073, 43682}, {7218, 43166}, {7281, 17861}, {8580, 27413}, {9746, 40131}, {10197, 28854}, {10883, 24624}, {11028, 30329}, {11500, 40515}, {15951, 21620}, {18841, 36682}, {28850, 42064}, {32022, 36660}, {36737, 37833}, {36738, 37830}, {37658, 48888}

X(56144) = polar conjugate of X(37448)
X(56144) = trilinear pole of line {657, 523}
X(56144) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 991}, {6, 24635}, {48, 37448}, {56, 41228}
X(56144) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 13478}
X(56144) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 41228}, {3, 991}, {9, 24635}, {1249, 37448}
X(56144) = X(i)-cross conjugate of X(j) for these {i, j}: {1536, 43672}, {42289, 1}
X(56144) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(33)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(4251)}}, {{A, B, C, X(6), X(13329)}}, {{A, B, C, X(7), X(281)}}, {{A, B, C, X(8), X(13405)}}, {{A, B, C, X(9), X(954)}}, {{A, B, C, X(12), X(17703)}}, {{A, B, C, X(20), X(461)}}, {{A, B, C, X(25), X(13727)}}, {{A, B, C, X(29), X(5665)}}, {{A, B, C, X(31), X(29015)}}, {{A, B, C, X(40), X(37543)}}, {{A, B, C, X(57), X(36124)}}, {{A, B, C, X(65), X(1754)}}, {{A, B, C, X(66), X(1826)}}, {{A, B, C, X(75), X(15909)}}, {{A, B, C, X(79), X(158)}}, {{A, B, C, X(80), X(17718)}}, {{A, B, C, X(81), X(972)}}, {{A, B, C, X(84), X(29310)}}, {{A, B, C, X(86), X(3062)}}, {{A, B, C, X(118), X(50441)}}, {{A, B, C, X(269), X(14553)}}, {{A, B, C, X(273), X(7110)}}, {{A, B, C, X(280), X(51512)}}, {{A, B, C, X(390), X(5542)}}, {{A, B, C, X(393), X(3332)}}, {{A, B, C, X(406), X(10431)}}, {{A, B, C, X(427), X(36652)}}, {{A, B, C, X(514), X(28849)}}, {{A, B, C, X(517), X(29066)}}, {{A, B, C, X(519), X(28292)}}, {{A, B, C, X(572), X(37502)}}, {{A, B, C, X(573), X(5138)}}, {{A, B, C, X(596), X(42361)}}, {{A, B, C, X(740), X(6003)}}, {{A, B, C, X(860), X(10883)}}, {{A, B, C, X(943), X(6605)}}, {{A, B, C, X(962), X(4298)}}, {{A, B, C, X(985), X(2717)}}, {{A, B, C, X(990), X(2263)}}, {{A, B, C, X(991), X(42289)}}, {{A, B, C, X(996), X(1065)}}, {{A, B, C, X(1000), X(56088)}}, {{A, B, C, X(1002), X(39421)}}, {{A, B, C, X(1013), X(36027)}}, {{A, B, C, X(1093), X(6757)}}, {{A, B, C, X(1246), X(32085)}}, {{A, B, C, X(1280), X(1389)}}, {{A, B, C, X(1323), X(53014)}}, {{A, B, C, X(1536), X(37448)}}, {{A, B, C, X(2297), X(40424)}}, {{A, B, C, X(2298), X(14493)}}, {{A, B, C, X(2364), X(23707)}}, {{A, B, C, X(2481), X(52133)}}, {{A, B, C, X(2736), X(51560)}}, {{A, B, C, X(2784), X(2785)}}, {{A, B, C, X(2980), X(15320)}}, {{A, B, C, X(3085), X(4847)}}, {{A, B, C, X(3427), X(42285)}}, {{A, B, C, X(3600), X(4301)}}, {{A, B, C, X(3615), X(5556)}}, {{A, B, C, X(3663), X(4307)}}, {{A, B, C, X(3667), X(28580)}}, {{A, B, C, X(3672), X(4349)}}, {{A, B, C, X(3811), X(3870)}}, {{A, B, C, X(3887), X(28850)}}, {{A, B, C, X(3945), X(4356)}}, {{A, B, C, X(4196), X(36660)}}, {{A, B, C, X(4207), X(36706)}}, {{A, B, C, X(4292), X(4295)}}, {{A, B, C, X(4302), X(11551)}}, {{A, B, C, X(4313), X(12563)}}, {{A, B, C, X(4314), X(11036)}}, {{A, B, C, X(4321), X(43166)}}, {{A, B, C, X(4344), X(4353)}}, {{A, B, C, X(4355), X(9589)}}, {{A, B, C, X(5125), X(8226)}}, {{A, B, C, X(5136), X(36002)}}, {{A, B, C, X(5231), X(31434)}}, {{A, B, C, X(5706), X(41342)}}, {{A, B, C, X(5732), X(12560)}}, {{A, B, C, X(6743), X(10578)}}, {{A, B, C, X(6745), X(18391)}}, {{A, B, C, X(7080), X(11019)}}, {{A, B, C, X(7378), X(36682)}}, {{A, B, C, X(7498), X(50696)}}, {{A, B, C, X(7513), X(13615)}}, {{A, B, C, X(7952), X(40960)}}, {{A, B, C, X(8727), X(17555)}}, {{A, B, C, X(8814), X(52223)}}, {{A, B, C, X(8818), X(24006)}}, {{A, B, C, X(9442), X(30571)}}, {{A, B, C, X(9785), X(12577)}}, {{A, B, C, X(10198), X(25006)}}, {{A, B, C, X(10307), X(30712)}}, {{A, B, C, X(10309), X(43972)}}, {{A, B, C, X(10390), X(36629)}}, {{A, B, C, X(10570), X(17097)}}, {{A, B, C, X(11037), X(12575)}}, {{A, B, C, X(11038), X(30331)}}, {{A, B, C, X(11109), X(19541)}}, {{A, B, C, X(14377), X(34018)}}, {{A, B, C, X(14497), X(29348)}}, {{A, B, C, X(14828), X(37658)}}, {{A, B, C, X(15173), X(56141)}}, {{A, B, C, X(15313), X(29016)}}, {{A, B, C, X(16870), X(34231)}}, {{A, B, C, X(23876), X(28845)}}, {{A, B, C, X(23884), X(28877)}}, {{A, B, C, X(24248), X(50307)}}, {{A, B, C, X(26015), X(45701)}}, {{A, B, C, X(30332), X(43180)}}, {{A, B, C, X(34917), X(36910)}}, {{A, B, C, X(37381), X(52255)}}, {{A, B, C, X(39748), X(52518)}}, {{A, B, C, X(39954), X(40131)}}
X(56144) = barycentric quotient X(i)/X(j) for these (i, j): {1, 24635}, {4, 37448}, {6, 991}, {9, 41228}


X(56145) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(56)

Barycentrics    (a^2+a*(-3*b+c)+b*(b+c))*(a^2+a*(b-3*c)+c*(b+c)) : :

X(56145) lies on these lines: {1, 4723}, {6, 2325}, {8, 106}, {10, 3445}, {34, 38462}, {56, 519}, {58, 145}, {86, 40018}, {269, 12629}, {292, 49458}, {522, 10912}, {937, 2901}, {977, 15955}, {998, 36846}, {1125, 41436}, {1126, 3241}, {1220, 50637}, {1411, 22837}, {1724, 20039}, {2098, 44040}, {2163, 3633}, {2334, 3635}, {3623, 41434}, {3878, 9432}, {4076, 9268}, {5697, 9457}, {20050, 37639}, {36604, 49492}, {39748, 48863}

X(56145) = isotomic conjugate of X(4398)
X(56145) = trilinear pole of line {649, 1639}
X(56145) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 4398}, {56, 3885}, {58, 3987}
X(56145) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3885}, {2, 4398}, {10, 3987}
X(56145) = X(i)-cross conjugate of X(j) for these {i, j}: {17340, 2}
X(56145) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(2), X(3244)}}, {{A, B, C, X(4), X(6553)}}, {{A, B, C, X(8), X(519)}}, {{A, B, C, X(10), X(145)}}, {{A, B, C, X(29), X(16371)}}, {{A, B, C, X(65), X(37610)}}, {{A, B, C, X(75), X(5559)}}, {{A, B, C, X(76), X(6630)}}, {{A, B, C, X(79), X(24858)}}, {{A, B, C, X(83), X(38247)}}, {{A, B, C, X(85), X(34892)}}, {{A, B, C, X(200), X(12629)}}, {{A, B, C, X(239), X(49458)}}, {{A, B, C, X(277), X(36954)}}, {{A, B, C, X(280), X(56089)}}, {{A, B, C, X(318), X(12641)}}, {{A, B, C, X(330), X(1016)}}, {{A, B, C, X(514), X(30701)}}, {{A, B, C, X(551), X(3623)}}, {{A, B, C, X(765), X(15446)}}, {{A, B, C, X(903), X(5560)}}, {{A, B, C, X(976), X(15955)}}, {{A, B, C, X(997), X(36846)}}, {{A, B, C, X(1043), X(4900)}}, {{A, B, C, X(1125), X(3241)}}, {{A, B, C, X(1193), X(50637)}}, {{A, B, C, X(1224), X(13602)}}, {{A, B, C, X(1280), X(1389)}}, {{A, B, C, X(1320), X(10570)}}, {{A, B, C, X(1392), X(56143)}}, {{A, B, C, X(1698), X(51093)}}, {{A, B, C, X(1751), X(35058)}}, {{A, B, C, X(2051), X(39696)}}, {{A, B, C, X(2985), X(13478)}}, {{A, B, C, X(3227), X(14377)}}, {{A, B, C, X(3621), X(3625)}}, {{A, B, C, X(3622), X(51071)}}, {{A, B, C, X(3626), X(20050)}}, {{A, B, C, X(3632), X(39710)}}, {{A, B, C, X(3633), X(3679)}}, {{A, B, C, X(3636), X(20057)}}, {{A, B, C, X(3680), X(5687)}}, {{A, B, C, X(3699), X(10912)}}, {{A, B, C, X(3811), X(3872)}}, {{A, B, C, X(3957), X(30143)}}, {{A, B, C, X(4373), X(43734)}}, {{A, B, C, X(4398), X(17340)}}, {{A, B, C, X(4511), X(22837)}}, {{A, B, C, X(4669), X(20014)}}, {{A, B, C, X(4701), X(20053)}}, {{A, B, C, X(4853), X(6765)}}, {{A, B, C, X(4861), X(22836)}}, {{A, B, C, X(4882), X(11519)}}, {{A, B, C, X(5485), X(36605)}}, {{A, B, C, X(5558), X(43972)}}, {{A, B, C, X(5854), X(55134)}}, {{A, B, C, X(6743), X(6764)}}, {{A, B, C, X(6757), X(34895)}}, {{A, B, C, X(7317), X(43533)}}, {{A, B, C, X(7320), X(42285)}}, {{A, B, C, X(8580), X(12127)}}, {{A, B, C, X(9797), X(12447)}}, {{A, B, C, X(13606), X(31359)}}, {{A, B, C, X(14497), X(54972)}}, {{A, B, C, X(15179), X(23617)}}, {{A, B, C, X(15315), X(46187)}}, {{A, B, C, X(17015), X(30142)}}, {{A, B, C, X(17016), X(30145)}}, {{A, B, C, X(17758), X(49536)}}, {{A, B, C, X(20037), X(50608)}}, {{A, B, C, X(20054), X(34641)}}, {{A, B, C, X(21398), X(56141)}}, {{A, B, C, X(27818), X(40509)}}, {{A, B, C, X(30144), X(38460)}}, {{A, B, C, X(30652), X(40718)}}, {{A, B, C, X(32008), X(36871)}}, {{A, B, C, X(32013), X(39736)}}, {{A, B, C, X(36479), X(49476)}}, {{A, B, C, X(36534), X(49477)}}, {{A, B, C, X(36565), X(49682)}}, {{A, B, C, X(38955), X(42471)}}, {{A, B, C, X(39720), X(53109)}}, {{A, B, C, X(49560), X(50015)}}, {{A, B, C, X(50017), X(50316)}}
X(56145) = barycentric product X(i)*X(j) for these (i, j): {40018, 6}
X(56145) = barycentric quotient X(i)/X(j) for these (i, j): {2, 4398}, {9, 3885}, {37, 3987}, {40018, 76}


X(56146) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(64)

Barycentrics    (a-b-c)*(a^3-b^2*c+c^3-a*b*(b+c))*(a^3+b^3-b*c^2-a*c*(b+c)) : :

X(56146) lies on these lines: {1, 1441}, {3, 34429}, {8, 2328}, {10, 55}, {20, 103}, {29, 3190}, {33, 2901}, {64, 516}, {101, 37055}, {200, 3701}, {220, 2321}, {272, 4313}, {281, 2332}, {515, 7169}, {519, 2192}, {952, 6759}, {958, 55076}, {963, 4297}, {996, 10950}, {1043, 3596}, {2310, 52387}, {2342, 38955}, {2900, 54396}, {3216, 27394}, {3294, 54359}, {3771, 52257}, {4298, 52013}, {4339, 5264}, {4347, 28850}, {5090, 21072}, {5496, 6757}, {5711, 6738}, {6284, 26942}, {8058, 23289}, {10570, 44669}, {12432, 32118}, {12575, 32941}, {13727, 15467}, {14547, 43531}, {14624, 16788}, {14942, 40011}, {15065, 52371}, {32943, 51785}, {32945, 53053}, {33937, 56098}, {37387, 49542}

X(56146) = isogonal conjugate of X(4306)
X(56146) = trilinear pole of line {657, 3700}
X(56146) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4306}, {7, 2352}, {56, 3868}, {57, 579}, {109, 23800}, {110, 51658}, {209, 1014}, {269, 3190}, {603, 5125}, {604, 18134}, {651, 43060}, {934, 8676}, {1396, 51574}, {1407, 27396}, {1412, 22021}, {1427, 56000}, {1434, 2198}, {2217, 19367}, {7177, 41320}, {17878, 23979}
X(56146) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3868}, {3, 4306}, {11, 23800}, {244, 51658}, {2968, 20294}, {3161, 18134}, {5452, 579}, {6600, 3190}, {7952, 5125}, {14714, 8676}, {24771, 27396}, {38991, 43060}, {40599, 22021}
X(56146) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2997, 1751}
X(56146) = X(i)-cross conjugate of X(j) for these {i, j}: {2318, 9}, {3695, 44040}, {34969, 7253}, {42069, 3239}
X(56146) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(33)}}, {{A, B, C, X(2), X(6743)}}, {{A, B, C, X(4), X(346)}}, {{A, B, C, X(7), X(4314)}}, {{A, B, C, X(8), X(10)}}, {{A, B, C, X(9), X(29)}}, {{A, B, C, X(20), X(516)}}, {{A, B, C, X(21), X(5248)}}, {{A, B, C, X(28), X(294)}}, {{A, B, C, X(78), X(3811)}}, {{A, B, C, X(80), X(158)}}, {{A, B, C, X(84), X(1067)}}, {{A, B, C, X(90), X(24179)}}, {{A, B, C, X(219), X(3191)}}, {{A, B, C, X(280), X(596)}}, {{A, B, C, X(284), X(19763)}}, {{A, B, C, X(312), X(32777)}}, {{A, B, C, X(318), X(3419)}}, {{A, B, C, X(333), X(19732)}}, {{A, B, C, X(345), X(3189)}}, {{A, B, C, X(390), X(4298)}}, {{A, B, C, X(497), X(49542)}}, {{A, B, C, X(519), X(7080)}}, {{A, B, C, X(522), X(36626)}}, {{A, B, C, X(937), X(51341)}}, {{A, B, C, X(943), X(2287)}}, {{A, B, C, X(958), X(3294)}}, {{A, B, C, X(960), X(16788)}}, {{A, B, C, X(962), X(4297)}}, {{A, B, C, X(1010), X(3886)}}, {{A, B, C, X(1065), X(7160)}}, {{A, B, C, X(1098), X(15175)}}, {{A, B, C, X(1167), X(3362)}}, {{A, B, C, X(1219), X(15998)}}, {{A, B, C, X(1220), X(4866)}}, {{A, B, C, X(1222), X(4900)}}, {{A, B, C, X(1257), X(41798)}}, {{A, B, C, X(1260), X(52676)}}, {{A, B, C, X(1265), X(3239)}}, {{A, B, C, X(1320), X(8715)}}, {{A, B, C, X(1697), X(5711)}}, {{A, B, C, X(1770), X(4302)}}, {{A, B, C, X(1857), X(4082)}}, {{A, B, C, X(2318), X(3190)}}, {{A, B, C, X(2901), X(3694)}}, {{A, B, C, X(3057), X(5264)}}, {{A, B, C, X(3085), X(6737)}}, {{A, B, C, X(3100), X(4347)}}, {{A, B, C, X(3486), X(39579)}}, {{A, B, C, X(3600), X(12575)}}, {{A, B, C, X(3663), X(4339)}}, {{A, B, C, X(3671), X(4313)}}, {{A, B, C, X(3680), X(5687)}}, {{A, B, C, X(3710), X(41507)}}, {{A, B, C, X(3871), X(49492)}}, {{A, B, C, X(3900), X(29016)}}, {{A, B, C, X(4292), X(4294)}}, {{A, B, C, X(4293), X(10624)}}, {{A, B, C, X(4295), X(4304)}}, {{A, B, C, X(4301), X(5731)}}, {{A, B, C, X(4308), X(4342)}}, {{A, B, C, X(4311), X(30305)}}, {{A, B, C, X(4315), X(9785)}}, {{A, B, C, X(5255), X(10480)}}, {{A, B, C, X(5496), X(35193)}}, {{A, B, C, X(5732), X(12651)}}, {{A, B, C, X(6556), X(17895)}}, {{A, B, C, X(6735), X(49168)}}, {{A, B, C, X(6736), X(18391)}}, {{A, B, C, X(7017), X(36934)}}, {{A, B, C, X(7040), X(10395)}}, {{A, B, C, X(7319), X(23521)}}, {{A, B, C, X(8611), X(52387)}}, {{A, B, C, X(11037), X(30331)}}, {{A, B, C, X(13405), X(20007)}}, {{A, B, C, X(15315), X(40505)}}, {{A, B, C, X(15446), X(24202)}}, {{A, B, C, X(17885), X(43731)}}, {{A, B, C, X(33576), X(40446)}}, {{A, B, C, X(34919), X(43972)}}, {{A, B, C, X(36123), X(38271)}}, {{A, B, C, X(40836), X(43672)}}, {{A, B, C, X(42470), X(56140)}}
X(56146) = barycentric product X(i)*X(j) for these (i, j): {29, 40161}, {190, 23289}, {333, 41506}, {1305, 3239}, {1751, 8}, {2218, 312}, {2321, 272}, {2322, 28786}, {2997, 9}, {3710, 40574}, {15467, 220}, {40011, 55}, {51566, 650}
X(56146) = barycentric quotient X(i)/X(j) for these (i, j): {6, 4306}, {8, 18134}, {9, 3868}, {41, 2352}, {55, 579}, {200, 27396}, {210, 22021}, {220, 3190}, {272, 1434}, {281, 5125}, {573, 19367}, {650, 23800}, {657, 8676}, {661, 51658}, {663, 43060}, {1305, 658}, {1334, 209}, {1751, 7}, {2218, 57}, {2318, 51574}, {2328, 56000}, {2997, 85}, {3239, 20294}, {7071, 41320}, {23289, 514}, {24026, 17878}, {40011, 6063}, {40161, 307}, {41506, 226}, {42069, 5190}, {51566, 4554}
X(56146) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2218, 41506, 1751}, {40161, 41506, 10}


X(56147) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(76)

Barycentrics    a*(-b^4+a*c^3+b*c^3+a^3*(b+c))*(a*b^3+a^3*(b+c)+c*(b^3-c^3)) : :

X(56147) lies on these lines: {32, 761}, {42, 7146}, {55, 16876}, {76, 760}, {210, 3661}, {257, 54291}, {518, 51837}, {984, 1334}, {2176, 52029}, {2809, 3864}, {3212, 13576}

X(56147) = trilinear pole of line {1491, 3709}
X(56147) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 24586}
X(56147) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 24586}
X(56147) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(76)}}, {{A, B, C, X(4), X(16876)}}, {{A, B, C, X(6), X(7261)}}, {{A, B, C, X(8), X(42)}}, {{A, B, C, X(19), X(7233)}}, {{A, B, C, X(25), X(7224)}}, {{A, B, C, X(32), X(760)}}, {{A, B, C, X(56), X(2113)}}, {{A, B, C, X(85), X(105)}}, {{A, B, C, X(251), X(7357)}}, {{A, B, C, X(291), X(17743)}}, {{A, B, C, X(518), X(2176)}}, {{A, B, C, X(812), X(2809)}}, {{A, B, C, X(904), X(1469)}}, {{A, B, C, X(981), X(39712)}}, {{A, B, C, X(983), X(1581)}}, {{A, B, C, X(1390), X(31359)}}, {{A, B, C, X(1432), X(43751)}}, {{A, B, C, X(1829), X(32937)}}, {{A, B, C, X(1876), X(43750)}}, {{A, B, C, X(3907), X(10570)}}, {{A, B, C, X(4429), X(33938)}}, {{A, B, C, X(7241), X(9278)}}, {{A, B, C, X(9941), X(12194)}}, {{A, B, C, X(13476), X(41527)}}, {{A, B, C, X(35628), X(42550)}}
X(56147) = barycentric quotient X(i)/X(j) for these (i, j): {1, 24586}


X(56148) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(78)

Barycentrics    a*(a^6-2*a^5*b+(b-c)^4*(b+c)^2+2*a^3*b*(2*b^2-b*c-c^2)-a^4*(b^2-4*b*c+c^2)-a^2*(b-c)^2*(b^2+4*b*c+c^2)-2*a*b*(b^4-b^3*c+b^2*c^2+b*c^3-2*c^4))*(a^6-2*a^5*c+(b-c)^4*(b+c)^2-2*a^3*c*(b^2+b*c-2*c^2)-a^4*(b^2-4*b*c+c^2)-a^2*(b-c)^2*(b^2+4*b*c+c^2)-2*a*c*(-2*b^4+b^3*c+b^2*c^2-b*c^3+c^4)) : :

X(56148) lies on these lines: {1, 14257}, {3, 227}, {29, 47372}, {34, 102}, {40, 283}, {46, 1795}, {65, 1433}, {78, 515}, {219, 1766}, {282, 1826}, {284, 2331}, {322, 332}, {517, 1069}, {945, 34036}, {1482, 38248}, {2646, 8283}, {3576, 40442}, {4320, 44075}, {5691, 39990}, {20220, 51565}

X(56148) = isogonal conjugate of X(6261)
X(56148) = trilinear pole of line {652, 6588}
X(56148) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6261}
X(56148) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 42464}
X(56148) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 6261}
X(56148) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3)}}, {{A, B, C, X(4), X(961)}}, {{A, B, C, X(28), X(3427)}}, {{A, B, C, X(34), X(84)}}, {{A, B, C, X(40), X(65)}}, {{A, B, C, X(46), X(517)}}, {{A, B, C, X(57), X(14110)}}, {{A, B, C, X(64), X(1411)}}, {{A, B, C, X(80), X(921)}}, {{A, B, C, X(280), X(36121)}}, {{A, B, C, X(937), X(30500)}}, {{A, B, C, X(944), X(34036)}}, {{A, B, C, X(963), X(38269)}}, {{A, B, C, X(972), X(1002)}}, {{A, B, C, X(1063), X(40437)}}, {{A, B, C, X(1155), X(7982)}}, {{A, B, C, X(1167), X(56101)}}, {{A, B, C, X(1385), X(3612)}}, {{A, B, C, X(1420), X(50371)}}, {{A, B, C, X(1870), X(15176)}}, {{A, B, C, X(2646), X(3576)}}, {{A, B, C, X(2804), X(2817)}}, {{A, B, C, X(3062), X(54197)}}, {{A, B, C, X(3417), X(3449)}}, {{A, B, C, X(4185), X(37422)}}, {{A, B, C, X(4320), X(10444)}}, {{A, B, C, X(5119), X(34339)}}, {{A, B, C, X(5560), X(29374)}}, {{A, B, C, X(7991), X(36279)}}, {{A, B, C, X(10309), X(36125)}}, {{A, B, C, X(14956), X(37117)}}, {{A, B, C, X(22766), X(37611)}}, {{A, B, C, X(28473), X(44661)}}, {{A, B, C, X(29056), X(40718)}}, {{A, B, C, X(30389), X(37606)}}, {{A, B, C, X(37570), X(39598)}}, {{A, B, C, X(40397), X(41514)}}
X(56148) = barycentric quotient X(i)/X(j) for these (i, j): {6, 6261}


X(56149) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(82)

Barycentrics    a*(a^3+a*b^2+2*b^3+b^2*c+c^3)*(a^3+b^3+a*c^2+b*c^2+2*c^3) : :

X(56149) lies on these lines: {10, 32775}, {37, 30117}, {38, 759}, {82, 758}, {994, 49454}, {2363, 3874}, {3868, 54336}, {3961, 4674}, {29656, 34895}, {49686, 53114}

X(56149) = isogonal conjugate of X(49480)
X(56149) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 49480}, {32, 30893}
X(56149) = X(i)-vertex conjugate of X(j) for these {i, j}: {58, 38813}
X(56149) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 49480}, {6376, 30893}
X(56149) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(2), X(17925)}}, {{A, B, C, X(6), X(22453)}}, {{A, B, C, X(38), X(758)}}, {{A, B, C, X(58), X(1257)}}, {{A, B, C, X(76), X(40398)}}, {{A, B, C, X(80), X(15321)}}, {{A, B, C, X(291), X(32775)}}, {{A, B, C, X(519), X(3961)}}, {{A, B, C, X(675), X(1390)}}, {{A, B, C, X(741), X(39395)}}, {{A, B, C, X(753), X(1280)}}, {{A, B, C, X(977), X(52375)}}, {{A, B, C, X(993), X(49454)}}, {{A, B, C, X(996), X(1168)}}, {{A, B, C, X(998), X(39959)}}, {{A, B, C, X(1000), X(2751)}}, {{A, B, C, X(1120), X(4360)}}, {{A, B, C, X(1126), X(38813)}}, {{A, B, C, X(1255), X(32013)}}, {{A, B, C, X(1389), X(45136)}}, {{A, B, C, X(2292), X(3874)}}, {{A, B, C, X(2334), X(7087)}}, {{A, B, C, X(3242), X(5526)}}, {{A, B, C, X(3679), X(49686)}}, {{A, B, C, X(3757), X(30116)}}, {{A, B, C, X(4492), X(15175)}}, {{A, B, C, X(5561), X(40401)}}, {{A, B, C, X(7096), X(40023)}}, {{A, B, C, X(15315), X(40436)}}, {{A, B, C, X(32779), X(33155)}}
X(56149) = barycentric quotient X(i)/X(j) for these (i, j): {6, 49480}, {75, 30893}


X(56150) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(87)

Barycentrics    a*(a^2*(b-c)+b*c*(b+c)+a*(b^2-5*b*c-c^2))*(a^2*(b-c)-b*c*(b+c)+a*(b^2+5*b*c-c^2)) : :

X(56150) lies on these lines: {6, 52964}, {43, 106}, {56, 50581}, {58, 25439}, {87, 519}, {145, 979}, {978, 3445}, {3244, 39969}, {3632, 39949}, {3633, 39748}, {3751, 9432}, {4083, 23345}, {16236, 37627}

X(56150) = trilinear pole of line {649, 14408}
X(56150) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 24620}
X(56150) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 24620}
X(56150) = X(i)-cross conjugate of X(j) for these {i, j}: {3241, 1}
X(56150) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(8), X(50581)}}, {{A, B, C, X(43), X(519)}}, {{A, B, C, X(57), X(1016)}}, {{A, B, C, X(80), X(39742)}}, {{A, B, C, X(145), X(959)}}, {{A, B, C, X(291), X(1000)}}, {{A, B, C, X(1002), X(56142)}}, {{A, B, C, X(1219), X(43073)}}, {{A, B, C, X(1247), X(7160)}}, {{A, B, C, X(2802), X(25574)}}, {{A, B, C, X(3216), X(3633)}}, {{A, B, C, X(3244), X(21214)}}, {{A, B, C, X(3293), X(3632)}}, {{A, B, C, X(3362), X(21398)}}, {{A, B, C, X(3500), X(38247)}}, {{A, B, C, X(3551), X(39697)}}, {{A, B, C, X(3577), X(29348)}}, {{A, B, C, X(4674), X(25439)}}, {{A, B, C, X(4752), X(16236)}}, {{A, B, C, X(4866), X(52549)}}, {{A, B, C, X(4900), X(7220)}}, {{A, B, C, X(6553), X(45989)}}, {{A, B, C, X(7284), X(9282)}}, {{A, B, C, X(18793), X(53114)}}, {{A, B, C, X(30116), X(42042)}}, {{A, B, C, X(32013), X(39963)}}, {{A, B, C, X(34860), X(46187)}}, {{A, B, C, X(42285), X(52654)}}, {{A, B, C, X(42360), X(43071)}}, {{A, B, C, X(49997), X(51093)}}, {{A, B, C, X(52924), X(53115)}}
X(56150) = barycentric quotient X(i)/X(j) for these (i, j): {1, 24620}


X(56151) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(89)

Barycentrics    a*(2*a^2+5*b^2+a*(b-2*c)+b*c+2*c^2)*(2*a^2+2*b^2+b*c+5*c^2+a*(-2*b+c)) : :

X(56151) lies on these lines: {45, 105}, {81, 41711}, {88, 4392}, {89, 518}, {279, 5252}, {985, 49712}, {3227, 36534}, {3242, 55935}, {3617, 39724}, {3938, 39948}, {3961, 39980}, {5550, 32019}, {7174, 39963}, {16670, 39958}, {34914, 36479}, {36480, 36871}

X(56151) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(39744)}}, {{A, B, C, X(8), X(5252)}}, {{A, B, C, X(44), X(4492)}}, {{A, B, C, X(45), X(518)}}, {{A, B, C, X(899), X(36534)}}, {{A, B, C, X(984), X(49712)}}, {{A, B, C, X(2297), X(41439)}}, {{A, B, C, X(3240), X(36480)}}, {{A, B, C, X(3242), X(3246)}}, {{A, B, C, X(3617), X(3961)}}, {{A, B, C, X(3938), X(9780)}}, {{A, B, C, X(4373), X(39977)}}, {{A, B, C, X(5220), X(49515)}}, {{A, B, C, X(5297), X(36479)}}, {{A, B, C, X(7174), X(16670)}}, {{A, B, C, X(9309), X(23051)}}, {{A, B, C, X(14191), X(14947)}}, {{A, B, C, X(28370), X(29668)}}, {{A, B, C, X(29820), X(46934)}}, {{A, B, C, X(36588), X(40401)}}, {{A, B, C, X(49448), X(51297)}}


X(56152) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(90)

Barycentrics    a*(a^3+3*b^3-b^2*c-3*b*c^2+c^3-a^2*(3*b+c)-a*(b^2-4*b*c+c^2))*(a^3+b^3-3*b^2*c-b*c^2+3*c^3-a^2*(b+3*c)-a*(b^2-4*b*c+c^2)) : :

X(56152) lies on the Feuerbach hyperbola and on these lines: {1, 6911}, {4, 25415}, {7, 45287}, {8, 5187}, {9, 5697}, {21, 5119}, {40, 15446}, {46, 104}, {65, 7284}, {79, 3340}, {80, 7982}, {84, 5903}, {90, 517}, {515, 5553}, {519, 43740}, {952, 41688}, {1000, 3090}, {1320, 3811}, {1392, 34772}, {1420, 56036}, {1476, 3338}, {1478, 5555}, {1479, 30513}, {1697, 15175}, {2099, 17098}, {2136, 6596}, {2320, 3612}, {2802, 45393}, {3057, 7162}, {3085, 7320}, {3254, 3633}, {3296, 3476}, {3333, 15180}, {3577, 11009}, {3632, 6598}, {5557, 11529}, {5559, 7741}, {5560, 11280}, {5691, 46435}, {5902, 7091}, {6867, 10827}, {6942, 37618}, {7133, 35642}, {7280, 11279}, {7971, 37006}, {9614, 34918}, {10915, 30852}, {11491, 37518}, {11531, 38271}, {12641, 12653}, {13606, 37735}, {15179, 51816}, {15313, 23838}, {16200, 21398}, {35641, 42013}, {37356, 41687}, {38665, 56040}

X(56152) = isogonal conjugate of X(37618)
X(56152) = X(i)-cross conjugate of X(j) for these {i, j}: {1482, 1}
X(56152) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(25415)}}, {{A, B, C, X(28), X(5187)}}, {{A, B, C, X(29), X(6911)}}, {{A, B, C, X(33), X(45287)}}, {{A, B, C, X(34), X(1168)}}, {{A, B, C, X(35), X(3340)}}, {{A, B, C, X(36), X(7982)}}, {{A, B, C, X(40), X(5903)}}, {{A, B, C, X(46), X(517)}}, {{A, B, C, X(56), X(30323)}}, {{A, B, C, X(57), X(5697)}}, {{A, B, C, X(65), X(5119)}}, {{A, B, C, X(92), X(39947)}}, {{A, B, C, X(102), X(52186)}}, {{A, B, C, X(519), X(3811)}}, {{A, B, C, X(945), X(36052)}}, {{A, B, C, X(998), X(21616)}}, {{A, B, C, X(1121), X(44178)}}, {{A, B, C, X(1126), X(3422)}}, {{A, B, C, X(1222), X(11501)}}, {{A, B, C, X(1391), X(16835)}}, {{A, B, C, X(1411), X(10826)}}, {{A, B, C, X(1482), X(37618)}}, {{A, B, C, X(1697), X(5902)}}, {{A, B, C, X(1807), X(37711)}}, {{A, B, C, X(2093), X(7991)}}, {{A, B, C, X(2099), X(3612)}}, {{A, B, C, X(2334), X(52185)}}, {{A, B, C, X(2802), X(55126)}}, {{A, B, C, X(3057), X(3338)}}, {{A, B, C, X(3085), X(4853)}}, {{A, B, C, X(3090), X(17519)}}, {{A, B, C, X(3362), X(39969)}}, {{A, B, C, X(3478), X(3527)}}, {{A, B, C, X(3576), X(11009)}}, {{A, B, C, X(3632), X(34772)}}, {{A, B, C, X(3633), X(3935)}}, {{A, B, C, X(3746), X(11529)}}, {{A, B, C, X(3872), X(10039)}}, {{A, B, C, X(4674), X(14923)}}, {{A, B, C, X(4915), X(5703)}}, {{A, B, C, X(5563), X(7962)}}, {{A, B, C, X(5691), X(15500)}}, {{A, B, C, X(7095), X(39959)}}, {{A, B, C, X(7280), X(11280)}}, {{A, B, C, X(8056), X(50442)}}, {{A, B, C, X(9623), X(19843)}}, {{A, B, C, X(9957), X(51816)}}, {{A, B, C, X(10428), X(45818)}}, {{A, B, C, X(10570), X(11499)}}, {{A, B, C, X(10623), X(15337)}}, {{A, B, C, X(11502), X(14942)}}, {{A, B, C, X(11531), X(15803)}}, {{A, B, C, X(12629), X(34619)}}, {{A, B, C, X(15227), X(44760)}}, {{A, B, C, X(15617), X(18771)}}, {{A, B, C, X(16200), X(21842)}}, {{A, B, C, X(18398), X(31393)}}, {{A, B, C, X(37556), X(50190)}}
X(56152) = barycentric quotient X(i)/X(j) for these (i, j): {6, 37618}


X(56153) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(92)

Barycentrics    a*(-(a^3*b^2)+a^4*(b+c)-a^2*b*(b+c)^2+a*(b^4-b^2*c^2)+c*(b^4-c^4))*(-b^5-a^3*c^2+b*c^4+a^4*(b+c)-a^2*c*(b+c)^2+a*(-(b^2*c^2)+c^4)) : :

X(56153) lies on these lines: {48, 26702}, {63, 4184}, {72, 3693}, {92, 44661}, {226, 1861}, {304, 33297}, {306, 3681}, {518, 1214}, {3419, 39993}, {3868, 9436}

X(56153) = isogonal conjugate of X(51687)
X(56153) = trilinear pole of line {656, 6586}
X(56153) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 51687}, {2, 44081}, {6, 379}
X(56153) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 51687}, {9, 379}, {32664, 44081}
X(56153) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(63)}}, {{A, B, C, X(4), X(103)}}, {{A, B, C, X(6), X(15314)}}, {{A, B, C, X(8), X(2328)}}, {{A, B, C, X(9), X(75)}}, {{A, B, C, X(21), X(6063)}}, {{A, B, C, X(48), X(520)}}, {{A, B, C, X(58), X(39732)}}, {{A, B, C, X(65), X(2258)}}, {{A, B, C, X(66), X(2259)}}, {{A, B, C, X(69), X(284)}}, {{A, B, C, X(189), X(955)}}, {{A, B, C, X(253), X(2335)}}, {{A, B, C, X(291), X(1751)}}, {{A, B, C, X(313), X(22021)}}, {{A, B, C, X(405), X(1224)}}, {{A, B, C, X(909), X(5486)}}, {{A, B, C, X(928), X(2809)}}, {{A, B, C, X(943), X(1390)}}, {{A, B, C, X(951), X(34259)}}, {{A, B, C, X(956), X(18397)}}, {{A, B, C, X(960), X(11523)}}, {{A, B, C, X(984), X(10477)}}, {{A, B, C, X(994), X(2249)}}, {{A, B, C, X(1257), X(34258)}}, {{A, B, C, X(1280), X(39700)}}, {{A, B, C, X(1903), X(13476)}}, {{A, B, C, X(2334), X(7169)}}, {{A, B, C, X(2733), X(18446)}}, {{A, B, C, X(3451), X(17040)}}, {{A, B, C, X(5223), X(5728)}}, {{A, B, C, X(7018), X(40436)}}, {{A, B, C, X(8048), X(13404)}}, {{A, B, C, X(8748), X(40417)}}, {{A, B, C, X(14054), X(41229)}}, {{A, B, C, X(38883), X(41434)}}, {{A, B, C, X(41863), X(45120)}}, {{A, B, C, X(52560), X(55035)}}
X(56153) = barycentric quotient X(i)/X(j) for these (i, j): {1, 379}, {6, 51687}, {31, 44081}


X(56154) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(98)

Barycentrics    a*(a+b)*(a-b-c)*(a+c)*(-b^2+a*c)*(a*b-c^2) : :
X(56154) = -3*X[2]+2*X[50440]

X(56154) lies on these lines: {1, 1581}, {2, 50440}, {6, 24523}, {8, 7257}, {21, 644}, {27, 295}, {42, 81}, {55, 643}, {58, 3864}, {65, 664}, {86, 17792}, {98, 385}, {99, 3110}, {210, 333}, {261, 3688}, {270, 607}, {292, 5331}, {334, 7270}, {512, 7983}, {518, 7061}, {528, 19635}, {645, 3271}, {660, 17763}, {662, 8301}, {674, 19623}, {799, 17794}, {813, 53707}, {875, 4155}, {940, 37099}, {1002, 51563}, {1010, 40848}, {1362, 4573}, {2334, 4614}, {2357, 13138}, {2363, 18268}, {2887, 30965}, {3056, 27958}, {3124, 25819}, {3286, 51928}, {3750, 51867}, {3868, 3905}, {3873, 6742}, {4553, 25536}, {4589, 4645}, {8033, 24349}, {9025, 40882}, {9413, 9415}, {10760, 41610}, {17944, 34079}, {18206, 18788}, {20531, 31001}, {24678, 27164}, {28471, 36066}, {30995, 31126}, {36214, 48909}, {37683, 54383}

X(56154) = reflection of X(i) in X(j) for these {i,j}: {3903, 1}, {8, 40608}, {99, 3110}
X(56154) = isogonal conjugate of X(1284)
X(56154) = anticomplement of X(50440)
X(56154) = trilinear pole of line {9, 3287}
X(56154) = perspector of circumconic {{A, B, C, X(4584), X(36806)}}
X(56154) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 1284}, {3, 1874}, {6, 16609}, {7, 3747}, {10, 1428}, {12, 5009}, {37, 1429}, {42, 1447}, {56, 740}, {57, 2238}, {58, 7235}, {65, 238}, {73, 242}, {77, 862}, {85, 41333}, {101, 7212}, {108, 53556}, {109, 4010}, {181, 33295}, {213, 10030}, {225, 7193}, {226, 1914}, {239, 1400}, {269, 4433}, {349, 14599}, {350, 1402}, {604, 3948}, {651, 21832}, {659, 4551}, {664, 4455}, {741, 3027}, {804, 29055}, {812, 4559}, {874, 51641}, {1020, 4435}, {1042, 3685}, {1214, 2201}, {1397, 35544}, {1407, 3985}, {1412, 4037}, {1414, 4155}, {1417, 4783}, {1425, 14024}, {1427, 3684}, {1431, 4039}, {1441, 2210}, {1464, 36815}, {1880, 20769}, {1910, 16591}, {1918, 18033}, {2197, 31905}, {2720, 42767}, {3570, 7180}, {3573, 4017}, {3716, 53321}, {4552, 8632}, {4557, 43041}, {4564, 39786}, {4573, 46390}, {7066, 34856}, {7132, 18904}, {8850, 18793}, {12835, 43534}, {13576, 51329}, {18785, 34253}, {21859, 50456}, {24459, 32674}, {26700, 53563}
X(56154) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 740}, {3, 1284}, {9, 16609}, {10, 7235}, {11, 4010}, {1015, 7212}, {2886, 51464}, {3161, 3948}, {5452, 2238}, {6600, 4433}, {6626, 10030}, {8299, 3027}, {9470, 65}, {11672, 16591}, {24771, 3985}, {34021, 18033}, {34961, 3573}, {35072, 24459}, {35095, 46842}, {36103, 1874}, {36906, 226}, {38981, 42767}, {38983, 53556}, {38991, 21832}, {39025, 4455}, {40582, 239}, {40589, 1429}, {40592, 1447}, {40599, 4037}, {40602, 238}, {40605, 350}, {40608, 4155}, {40625, 3766}, {50440, 50440}, {52871, 4783}, {55042, 53563}, {55067, 812}, {55068, 3716}
X(56154) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18827, 37128}
X(56154) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {741, 147}, {1976, 39367}, {3572, 39359}
X(56154) = X(i)-cross conjugate of X(j) for these {i, j}: {295, 1808}, {926, 5546}, {2311, 37128}, {4433, 9}, {4435, 645}, {4876, 36800}, {7077, 2311}, {35104, 8}
X(56154) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(98)}}, {{A, B, C, X(6), X(7155)}}, {{A, B, C, X(8), X(42)}}, {{A, B, C, X(9), X(4649)}}, {{A, B, C, X(21), X(27)}}, {{A, B, C, X(29), X(13588)}}, {{A, B, C, X(56), X(20359)}}, {{A, B, C, X(58), X(3794)}}, {{A, B, C, X(60), X(17187)}}, {{A, B, C, X(74), X(39768)}}, {{A, B, C, X(78), X(1999)}}, {{A, B, C, X(80), X(53873)}}, {{A, B, C, X(100), X(643)}}, {{A, B, C, X(103), X(2481)}}, {{A, B, C, X(280), X(39696)}}, {{A, B, C, X(283), X(5208)}}, {{A, B, C, X(284), X(314)}}, {{A, B, C, X(290), X(53336)}}, {{A, B, C, X(291), X(1581)}}, {{A, B, C, X(345), X(19791)}}, {{A, B, C, X(511), X(23996)}}, {{A, B, C, X(518), X(4645)}}, {{A, B, C, X(521), X(17973)}}, {{A, B, C, X(522), X(11609)}}, {{A, B, C, X(741), X(2311)}}, {{A, B, C, X(940), X(37539)}}, {{A, B, C, X(1043), X(33296)}}, {{A, B, C, X(1469), X(3056)}}, {{A, B, C, X(1793), X(19642)}}, {{A, B, C, X(1911), X(1967)}}, {{A, B, C, X(2316), X(36798)}}, {{A, B, C, X(2699), X(36051)}}, {{A, B, C, X(2983), X(31643)}}, {{A, B, C, X(2990), X(26703)}}, {{A, B, C, X(2997), X(37741)}}, {{A, B, C, X(3423), X(54128)}}, {{A, B, C, X(3680), X(7220)}}, {{A, B, C, X(3684), X(7281)}}, {{A, B, C, X(3868), X(7270)}}, {{A, B, C, X(3871), X(3996)}}, {{A, B, C, X(3873), X(35193)}}, {{A, B, C, X(4155), X(35104)}}, {{A, B, C, X(4511), X(17763)}}, {{A, B, C, X(4570), X(14616)}}, {{A, B, C, X(5148), X(5194)}}, {{A, B, C, X(9840), X(48909)}}, {{A, B, C, X(11604), X(42552)}}, {{A, B, C, X(13476), X(43749)}}, {{A, B, C, X(13577), X(43740)}}, {{A, B, C, X(14947), X(43672)}}, {{A, B, C, X(15630), X(40608)}}, {{A, B, C, X(17792), X(24349)}}, {{A, B, C, X(19628), X(56105)}}, {{A, B, C, X(28531), X(50520)}}, {{A, B, C, X(34409), X(56153)}}, {{A, B, C, X(36800), X(37128)}}, {{A, B, C, X(39933), X(39941)}}, {{A, B, C, X(39971), X(52652)}}, {{A, B, C, X(46273), X(53194)}}, {{A, B, C, X(50612), X(50635)}}, {{A, B, C, X(50615), X(50629)}}, {{A, B, C, X(50617), X(50630)}}, {{A, B, C, X(50618), X(50631)}}, {{A, B, C, X(50621), X(50626)}}, {{A, B, C, X(50622), X(50627)}}
X(56154) = barycentric product X(i)*X(j) for these (i, j): {1, 36800}, {21, 335}, {274, 7077}, {284, 334}, {291, 333}, {292, 314}, {295, 31623}, {310, 51858}, {312, 741}, {645, 876}, {1019, 36801}, {1172, 337}, {1581, 27958}, {1808, 92}, {1911, 28660}, {1922, 40072}, {2185, 43534}, {2196, 44130}, {2287, 7233}, {2311, 75}, {3056, 40834}, {3572, 7257}, {3703, 39276}, {3737, 4562}, {4444, 643}, {4518, 81}, {4560, 660}, {4583, 7252}, {4584, 522}, {4589, 650}, {4639, 663}, {4876, 86}, {17197, 5378}, {18155, 813}, {18206, 33676}, {18265, 6385}, {18268, 3596}, {18827, 9}, {18829, 3287}, {18895, 2194}, {35352, 4612}, {36066, 3700}, {36806, 512}, {37128, 8}, {37134, 3907}, {39292, 40608}, {40017, 55}
X(56154) = barycentric quotient X(i)/X(j) for these (i, j): {1, 16609}, {6, 1284}, {8, 3948}, {9, 740}, {19, 1874}, {21, 239}, {37, 7235}, {41, 3747}, {55, 2238}, {58, 1429}, {81, 1447}, {86, 10030}, {200, 3985}, {210, 4037}, {220, 4433}, {261, 30940}, {270, 31905}, {274, 18033}, {283, 20769}, {284, 238}, {291, 226}, {292, 65}, {295, 1214}, {312, 35544}, {314, 1921}, {333, 350}, {334, 349}, {335, 1441}, {337, 1231}, {511, 16591}, {513, 7212}, {521, 24459}, {607, 862}, {643, 3570}, {645, 874}, {650, 4010}, {652, 53556}, {660, 4552}, {663, 21832}, {741, 57}, {805, 37137}, {813, 4551}, {875, 7180}, {876, 7178}, {1019, 43041}, {1021, 3716}, {1043, 3975}, {1172, 242}, {1333, 1428}, {1808, 63}, {1911, 1400}, {1922, 1402}, {2150, 5009}, {2175, 41333}, {2185, 33295}, {2193, 7193}, {2194, 1914}, {2196, 73}, {2238, 3027}, {2287, 3685}, {2299, 2201}, {2311, 1}, {2325, 4783}, {2326, 14024}, {2328, 3684}, {2329, 4039}, {2341, 36815}, {3056, 18904}, {3063, 4455}, {3271, 39786}, {3286, 34253}, {3287, 804}, {3572, 4017}, {3684, 4368}, {3709, 4155}, {3737, 812}, {3786, 3797}, {3794, 33891}, {3864, 16603}, {4433, 35068}, {4444, 4077}, {4512, 4771}, {4518, 321}, {4560, 3766}, {4584, 664}, {4589, 4554}, {4639, 4572}, {4876, 10}, {4877, 4716}, {5546, 3573}, {7077, 37}, {7233, 1446}, {7252, 659}, {7257, 27853}, {9404, 53563}, {13588, 39930}, {16588, 51464}, {18191, 27918}, {18206, 39775}, {18265, 213}, {18268, 56}, {18787, 4032}, {18827, 85}, {21789, 4435}, {27958, 1966}, {28660, 18891}, {31623, 40717}, {34067, 4559}, {35104, 46842}, {36066, 4573}, {36800, 75}, {36801, 4033}, {36806, 670}, {37128, 7}, {40017, 6063}, {40072, 44169}, {40972, 4093}, {43534, 6358}, {45783, 17084}, {46393, 42767}, {51858, 42}
X(56154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {291, 741, 37128}


X(56155) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(10) AND X(145)

Barycentrics    a*(a+b-c)*(a-b+c)*(a*(b-2*c)+b*(b+c))*(a*(2*b-c)-c*(b+c)) : :

X(56155) lies on cubic K571 and on these lines: {1, 14261}, {2, 39701}, {8, 1357}, {56, 7419}, {57, 3214}, {65, 145}, {959, 1401}, {978, 1400}, {1042, 1149}, {1388, 45247}, {1426, 1878}, {1463, 5265}, {3445, 8686}, {3485, 20615}, {3616, 55011}, {3813, 40617}, {3976, 53538}, {4307, 5045}, {4308, 17114}, {4441, 35159}, {5697, 38515}, {9309, 52541}, {23617, 25524}

X(56155) = isogonal conjugate of X(3913)
X(56155) = trilinear pole of line {4394, 7180}
X(56155) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3913}, {2, 3217}, {6, 30568}, {8, 3915}, {9, 4383}, {21, 3214}, {41, 18135}, {55, 3875}, {78, 4186}, {100, 42312}, {284, 3175}, {312, 16946}, {643, 4139}, {644, 4498}, {2287, 28387}, {3939, 4106}, {4076, 17477}
X(56155) = X(i)-vertex conjugate of X(j) for these {i, j}: {1002, 1617}
X(56155) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3913}, {9, 30568}, {223, 3875}, {478, 4383}, {1015, 20317}, {3160, 18135}, {8054, 42312}, {32664, 3217}, {40590, 3175}, {40611, 3214}, {40617, 4106}, {55060, 4139}
X(56155) = X(i)-Ceva conjugate of X(j) for these {i, j}: {42304, 39956}
X(56155) = X(i)-cross conjugate of X(j) for these {i, j}: {37, 57}, {2275, 279}, {3616, 959}
X(56155) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(145)}}, {{A, B, C, X(2), X(978)}}, {{A, B, C, X(3), X(840)}}, {{A, B, C, X(4), X(106)}}, {{A, B, C, X(6), X(5558)}}, {{A, B, C, X(7), X(56)}}, {{A, B, C, X(8), X(513)}}, {{A, B, C, X(9), X(12632)}}, {{A, B, C, X(10), X(28370)}}, {{A, B, C, X(21), X(2191)}}, {{A, B, C, X(28), X(4190)}}, {{A, B, C, X(34), X(1476)}}, {{A, B, C, X(37), X(3214)}}, {{A, B, C, X(43), X(26111)}}, {{A, B, C, X(54), X(41442)}}, {{A, B, C, X(57), X(3361)}}, {{A, B, C, X(58), X(1002)}}, {{A, B, C, X(60), X(3433)}}, {{A, B, C, X(64), X(38882)}}, {{A, B, C, X(78), X(28080)}}, {{A, B, C, X(79), X(957)}}, {{A, B, C, X(84), X(105)}}, {{A, B, C, X(87), X(1219)}}, {{A, B, C, X(102), X(10305)}}, {{A, B, C, X(104), X(56148)}}, {{A, B, C, X(108), X(7040)}}, {{A, B, C, X(269), X(961)}}, {{A, B, C, X(277), X(1019)}}, {{A, B, C, X(279), X(4334)}}, {{A, B, C, X(479), X(52013)}}, {{A, B, C, X(596), X(3676)}}, {{A, B, C, X(738), X(21446)}}, {{A, B, C, X(945), X(10309)}}, {{A, B, C, X(951), X(1119)}}, {{A, B, C, X(953), X(5553)}}, {{A, B, C, X(979), X(6553)}}, {{A, B, C, X(994), X(43733)}}, {{A, B, C, X(998), X(15179)}}, {{A, B, C, X(1037), X(1413)}}, {{A, B, C, X(1106), X(7248)}}, {{A, B, C, X(1126), X(18490)}}, {{A, B, C, X(1173), X(41487)}}, {{A, B, C, X(1247), X(50520)}}, {{A, B, C, X(1257), X(11851)}}, {{A, B, C, X(1319), X(1388)}}, {{A, B, C, X(1376), X(52541)}}, {{A, B, C, X(1411), X(37738)}}, {{A, B, C, X(1416), X(8817)}}, {{A, B, C, X(1434), X(42290)}}, {{A, B, C, X(1462), X(7131)}}, {{A, B, C, X(1463), X(17090)}}, {{A, B, C, X(1617), X(5045)}}, {{A, B, C, X(2163), X(5557)}}, {{A, B, C, X(2275), X(24349)}}, {{A, B, C, X(3161), X(3913)}}, {{A, B, C, X(3418), X(51496)}}, {{A, B, C, X(3435), X(38269)}}, {{A, B, C, X(3551), X(43533)}}, {{A, B, C, X(3612), X(34489)}}, {{A, B, C, X(3669), X(27818)}}, {{A, B, C, X(3742), X(4255)}}, {{A, B, C, X(3752), X(25524)}}, {{A, B, C, X(3896), X(17127)}}, {{A, B, C, X(4307), X(4350)}}, {{A, B, C, X(4719), X(37674)}}, {{A, B, C, X(5193), X(5697)}}, {{A, B, C, X(5438), X(5573)}}, {{A, B, C, X(5556), X(34434)}}, {{A, B, C, X(7320), X(41436)}}, {{A, B, C, X(8056), X(45047)}}, {{A, B, C, X(9957), X(41426)}}, {{A, B, C, X(10428), X(39267)}}, {{A, B, C, X(15337), X(38273)}}, {{A, B, C, X(16079), X(46356)}}, {{A, B, C, X(17107), X(43760)}}, {{A, B, C, X(18398), X(37583)}}, {{A, B, C, X(18771), X(42019)}}, {{A, B, C, X(20332), X(54123)}}, {{A, B, C, X(28479), X(39732)}}, {{A, B, C, X(29814), X(50590)}}, {{A, B, C, X(34860), X(39956)}}, {{A, B, C, X(35577), X(56150)}}, {{A, B, C, X(36602), X(39975)}}, {{A, B, C, X(37129), X(39702)}}, {{A, B, C, X(40436), X(46972)}}, {{A, B, C, X(44301), X(51656)}}, {{A, B, C, X(45104), X(54121)}}, {{A, B, C, X(52205), X(53146)}}
X(56155) = barycentric product X(i)*X(j) for these (i, j): {1, 42304}, {1014, 56123}, {4383, 55011}, {7178, 8690}, {34860, 57}, {39956, 7}, {40012, 56}
X(56155) = barycentric quotient X(i)/X(j) for these (i, j): {1, 30568}, {6, 3913}, {7, 18135}, {31, 3217}, {56, 4383}, {57, 3875}, {65, 3175}, {513, 20317}, {604, 3915}, {608, 4186}, {649, 42312}, {1042, 28387}, {1397, 16946}, {1400, 3214}, {3669, 4106}, {7180, 4139}, {8690, 645}, {19604, 27813}, {34860, 312}, {39956, 8}, {40012, 3596}, {42304, 75}, {43924, 4498}, {55011, 40012}, {56123, 3701}


X(56156) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(37) AND X(2)

Barycentrics    a*(b+c)*(b*c+a*(4*b+c))*(b*c+a*(b+4*c)) : :

X(56156) lies on these lines: {2, 52959}, {6, 30653}, {37, 19998}, {1218, 1278}, {2276, 39982}, {2350, 17018}, {4651, 52708}, {17314, 39983}, {17756, 39798}, {26860, 37128}

X(56156) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 4688}, {81, 30950}, {86, 16971}, {1412, 4519}
X(56156) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 4688}, {40586, 30950}, {40599, 4519}, {40600, 16971}
X(56156) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(19998)}}, {{A, B, C, X(2), X(6)}}, {{A, B, C, X(65), X(46872)}}, {{A, B, C, X(89), X(18785)}}, {{A, B, C, X(1000), X(13576)}}, {{A, B, C, X(1002), X(4674)}}, {{A, B, C, X(1500), X(50487)}}, {{A, B, C, X(2238), X(21806)}}, {{A, B, C, X(3240), X(29822)}}, {{A, B, C, X(3995), X(17756)}}, {{A, B, C, X(4651), X(17018)}}, {{A, B, C, X(8049), X(39739)}}, {{A, B, C, X(18098), X(25417)}}, {{A, B, C, X(21805), X(31011)}}, {{A, B, C, X(30653), X(40718)}}
X(56156) = barycentric product X(i)*X(j) for these (i, j): {1, 56126}, {10, 55932}
X(56156) = barycentric quotient X(i)/X(j) for these (i, j): {37, 4688}, {42, 30950}, {210, 4519}, {213, 16971}, {55932, 86}, {56126, 75}


X(56157) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(37) AND X(7)

Barycentrics    (b+c)*(a^2+b*(b-c)-a*(2*b+c))*(a^2+c*(-b+c)-a*(b+2*c)) : :

X(56157) lies on these lines: {2, 55076}, {7, 20683}, {8, 344}, {10, 21931}, {210, 1441}, {281, 6605}, {1026, 16713}, {1170, 5772}, {1174, 10327}, {1893, 3697}, {2321, 4651}, {3596, 4441}, {3696, 3701}, {3956, 15065}, {4015, 6757}, {4298, 14626}, {4552, 21039}, {5308, 10013}, {5936, 21453}, {6606, 35141}, {7064, 13576}, {10482, 56146}, {10570, 47487}, {25001, 40659}, {31994, 42311}

X(56157) = isotomic conjugate of X(17169)
X(56157) = trilinear pole of line {3700, 4151}
X(56157) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 18164}, {28, 22053}, {31, 17169}, {32, 16708}, {48, 53238}, {56, 17194}, {58, 354}, {81, 1475}, {110, 48151}, {142, 1333}, {163, 21104}, {284, 1418}, {560, 53236}, {593, 21808}, {604, 16713}, {757, 52020}, {849, 3925}, {1014, 2293}, {1019, 35326}, {1212, 1412}, {1229, 16947}, {1408, 4847}, {1414, 2488}, {1434, 20229}, {1444, 40983}, {2150, 52023}, {2194, 10481}, {2206, 20880}, {3733, 35338}, {4565, 21127}, {4637, 10581}, {7341, 21039}
X(56157) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 17194}, {2, 17169}, {9, 18164}, {10, 354}, {37, 142}, {115, 21104}, {244, 48151}, {1214, 10481}, {1249, 53238}, {3161, 16713}, {4075, 3925}, {6374, 53236}, {6376, 16708}, {6741, 6362}, {40586, 1475}, {40590, 1418}, {40591, 22053}, {40599, 1212}, {40603, 20880}, {40607, 52020}, {40608, 2488}, {52872, 51463}, {55064, 21127}, {55065, 55282}
X(56157) = X(i)-cross conjugate of X(j) for these {i, j}: {1577, 3952}, {4171, 4552}, {22042, 190}, {46196, 2}
X(56157) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4043)}}, {{A, B, C, X(4), X(5047)}}, {{A, B, C, X(7), X(37)}}, {{A, B, C, X(8), X(10)}}, {{A, B, C, X(65), X(3303)}}, {{A, B, C, X(72), X(3697)}}, {{A, B, C, X(82), X(27807)}}, {{A, B, C, X(210), X(480)}}, {{A, B, C, X(226), X(18230)}}, {{A, B, C, X(321), X(344)}}, {{A, B, C, X(333), X(27039)}}, {{A, B, C, X(594), X(3932)}}, {{A, B, C, X(758), X(3956)}}, {{A, B, C, X(966), X(37670)}}, {{A, B, C, X(1000), X(4674)}}, {{A, B, C, X(1002), X(40504)}}, {{A, B, C, X(1654), X(3570)}}, {{A, B, C, X(1826), X(38057)}}, {{A, B, C, X(3617), X(17751)}}, {{A, B, C, X(3668), X(8236)}}, {{A, B, C, X(3678), X(4015)}}, {{A, B, C, X(3753), X(3921)}}, {{A, B, C, X(3754), X(4540)}}, {{A, B, C, X(4171), X(21039)}}, {{A, B, C, X(4373), X(41683)}}, {{A, B, C, X(4685), X(26038)}}, {{A, B, C, X(6539), X(17233)}}, {{A, B, C, X(7064), X(20683)}}, {{A, B, C, X(7319), X(41506)}}, {{A, B, C, X(8049), X(39737)}}, {{A, B, C, X(9534), X(26115)}}, {{A, B, C, X(17038), X(55035)}}, {{A, B, C, X(17169), X(46196)}}, {{A, B, C, X(18785), X(41527)}}, {{A, B, C, X(18793), X(39956)}}, {{A, B, C, X(21031), X(21677)}}, {{A, B, C, X(27809), X(39721)}}, {{A, B, C, X(28626), X(40718)}}, {{A, B, C, X(36588), X(42027)}}, {{A, B, C, X(46772), X(49460)}}
X(56157) = barycentric product X(i)*X(j) for these (i, j): {1, 56127}, {10, 32008}, {210, 31618}, {226, 56118}, {1170, 3701}, {1174, 313}, {1441, 6605}, {2346, 321}, {3696, 42310}, {3700, 6606}, {4024, 55281}, {10482, 349}, {10509, 4082}, {21453, 2321}, {42311, 4515}
X(56157) = barycentric quotient X(i)/X(j) for these (i, j): {1, 18164}, {2, 17169}, {4, 53238}, {8, 16713}, {9, 17194}, {10, 142}, {12, 52023}, {37, 354}, {42, 1475}, {65, 1418}, {71, 22053}, {75, 16708}, {76, 53236}, {210, 1212}, {226, 10481}, {313, 1233}, {321, 20880}, {523, 21104}, {594, 3925}, {661, 48151}, {756, 21808}, {1018, 35338}, {1170, 1014}, {1174, 58}, {1334, 2293}, {1446, 53242}, {1500, 52020}, {2321, 4847}, {2333, 40983}, {2346, 81}, {3700, 6362}, {3701, 1229}, {3709, 2488}, {3932, 51384}, {3943, 51463}, {3991, 15185}, {4024, 55282}, {4041, 21127}, {4069, 35341}, {4077, 23599}, {4080, 53240}, {4082, 51972}, {4171, 6608}, {4515, 3059}, {4524, 10581}, {4552, 35312}, {4557, 35326}, {6605, 21}, {6606, 4573}, {7064, 21795}, {10482, 284}, {13576, 53241}, {18082, 18087}, {20616, 43915}, {21096, 41573}, {21453, 1434}, {32008, 86}, {35309, 35335}, {39130, 13156}, {40149, 53237}, {40521, 35310}, {43534, 53239}, {47487, 1790}, {52370, 22079}, {53008, 1855}, {53243, 4565}, {55281, 4610}, {56118, 333}, {56127, 75}
X(56157) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32008, 56118, 2346}


X(56158) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(37) AND X(42)

Barycentrics    a*(b+c)*(a*(b-2*c)-2*b*c)*(2*a*b-a*c+2*b*c) : :

X(56158) lies on these lines: {2, 3761}, {6, 750}, {37, 2229}, {42, 52959}, {43, 39961}, {111, 5251}, {672, 46018}, {941, 5750}, {1218, 4751}, {1575, 39974}, {2238, 28658}, {2998, 4699}, {3572, 4893}, {3720, 39967}, {3911, 42290}, {5235, 37128}, {16569, 39965}, {16610, 39957}, {16975, 30970}, {27809, 31025}, {29822, 56156}, {36856, 39798}

X(56158) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 4664}, {81, 3240}, {86, 54981}, {110, 4776}, {662, 29350}
X(56158) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 4664}, {244, 4776}, {1084, 29350}, {40586, 3240}, {40600, 54981}
X(56158) = X(i)-Ceva conjugate of X(j) for these {i, j}: {36871, 56125}
X(56158) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(52716)}}, {{A, B, C, X(2), X(6)}}, {{A, B, C, X(10), X(661)}}, {{A, B, C, X(88), X(40747)}}, {{A, B, C, X(274), X(649)}}, {{A, B, C, X(291), X(53114)}}, {{A, B, C, X(650), X(1334)}}, {{A, B, C, X(750), X(3761)}}, {{A, B, C, X(1220), X(31356)}}, {{A, B, C, X(1224), X(1245)}}, {{A, B, C, X(1500), X(52708)}}, {{A, B, C, X(1575), X(31025)}}, {{A, B, C, X(2238), X(4893)}}, {{A, B, C, X(2296), X(39742)}}, {{A, B, C, X(3720), X(43223)}}, {{A, B, C, X(3911), X(21805)}}, {{A, B, C, X(4413), X(13576)}}, {{A, B, C, X(4699), X(21877)}}, {{A, B, C, X(5251), X(21839)}}, {{A, B, C, X(14474), X(21832)}}, {{A, B, C, X(17077), X(40586)}}, {{A, B, C, X(17756), X(31993)}}, {{A, B, C, X(18098), X(39962)}}, {{A, B, C, X(18785), X(39963)}}, {{A, B, C, X(28248), X(31330)}}, {{A, B, C, X(29822), X(30950)}}, {{A, B, C, X(30571), X(53034)}}, {{A, B, C, X(31002), X(42027)}}, {{A, B, C, X(37132), X(40775)}}
X(56158) = barycentric product X(i)*X(j) for these (i, j): {1, 56125}, {10, 55919}, {226, 56116}, {29351, 523}, {36871, 37}, {37209, 661}, {56077, 65}
X(56158) = barycentric quotient X(i)/X(j) for these (i, j): {37, 4664}, {42, 3240}, {213, 54981}, {512, 29350}, {661, 4776}, {29351, 99}, {36871, 274}, {37209, 799}, {55919, 86}, {56077, 314}, {56116, 333}, {56125, 75}


X(56159) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(37) AND X(65)

Barycentrics    a*(a+b-5*c)*(a-5*b+c)*(b+c) : :

X(56159) lies on these lines: {1, 3689}, {8, 39702}, {10, 48641}, {19, 1878}, {37, 4695}, {65, 21805}, {75, 4723}, {210, 4674}, {596, 4691}, {759, 6014}, {897, 15481}, {2214, 16668}, {3668, 40663}, {3696, 41683}, {3753, 21870}, {3828, 30818}, {3968, 37593}, {4002, 4868}, {4041, 55244}, {4424, 56134}, {4669, 36924}, {4678, 34860}, {4732, 42027}, {5919, 31197}, {13476, 49984}, {16602, 17460}, {18827, 53659}, {21886, 21888}, {21896, 31503}, {24620, 31145}, {31359, 46933}

X(56159) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 13462}, {27, 23073}, {58, 3241}, {81, 16670}, {99, 8656}, {110, 6006}, {593, 4029}, {757, 21870}, {1171, 4982}, {1333, 30829}
X(56159) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 3241}, {37, 30829}, {244, 6006}, {38986, 8656}, {40586, 16670}, {40607, 21870}, {40611, 13462}
X(56159) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(4), X(16408)}}, {{A, B, C, X(12), X(3698)}}, {{A, B, C, X(72), X(16885)}}, {{A, B, C, X(210), X(1261)}}, {{A, B, C, X(226), X(4731)}}, {{A, B, C, X(321), X(1878)}}, {{A, B, C, X(1122), X(4642)}}, {{A, B, C, X(1214), X(5183)}}, {{A, B, C, X(3696), X(43037)}}, {{A, B, C, X(3701), X(3893)}}, {{A, B, C, X(3753), X(40587)}}, {{A, B, C, X(3983), X(4848)}}, {{A, B, C, X(3987), X(4647)}}, {{A, B, C, X(4058), X(21896)}}, {{A, B, C, X(4413), X(13576)}}, {{A, B, C, X(4424), X(4714)}}, {{A, B, C, X(4651), X(49984)}}, {{A, B, C, X(4669), X(31855)}}, {{A, B, C, X(4709), X(21868)}}, {{A, B, C, X(4732), X(20691)}}, {{A, B, C, X(6539), X(26745)}}, {{A, B, C, X(9709), X(15232)}}, {{A, B, C, X(15481), X(21839)}}, {{A, B, C, X(30818), X(31025)}}, {{A, B, C, X(36588), X(41436)}}, {{A, B, C, X(39956), X(43533)}}, {{A, B, C, X(39963), X(40029)}}, {{A, B, C, X(43534), X(48641)}}
X(56159) = barycentric product X(i)*X(j) for these (i, j): {10, 39963}, {226, 4900}, {321, 41436}, {1577, 6014}, {30575, 36924}, {36588, 37}, {36915, 4674}, {40029, 42}, {53659, 661}, {56075, 65}
X(56159) = barycentric quotient X(i)/X(j) for these (i, j): {10, 30829}, {37, 3241}, {42, 16670}, {228, 23073}, {661, 6006}, {756, 4029}, {798, 8656}, {1400, 13462}, {1500, 21870}, {1962, 4982}, {4770, 52593}, {4900, 333}, {6014, 662}, {36588, 274}, {36915, 30939}, {36924, 16729}, {39963, 86}, {40029, 310}, {41436, 81}, {53659, 799}, {56075, 314}
X(56159) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4900, 39963, 41436}


X(56160) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(37) AND X(75)

Barycentrics    a*(b+c)*(-(b*(b-2*c)*c)+2*a^2*(b+c)-a*(b^2-2*c^2))*(b*(2*b-c)*c+2*a^2*(b+c)+a*(2*b^2-c^2)) : :

X(56160) lies on these lines: {37, 22294}, {75, 21805}, {596, 49499}, {872, 4674}, {4687, 42285}, {4850, 13476}, {19998, 56125}, {31025, 46772}, {39697, 49490}, {50487, 55244}

X(56160) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 31136}
X(56160) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 31136}
X(56160) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(749), X(18082)}}, {{A, B, C, X(751), X(13576)}}, {{A, B, C, X(872), X(21805)}}, {{A, B, C, X(3240), X(19998)}}, {{A, B, C, X(4043), X(4850)}}, {{A, B, C, X(4687), X(31025)}}, {{A, B, C, X(22294), X(30575)}}
X(56160) = barycentric quotient X(i)/X(j) for these (i, j): {37, 31136}


X(56161) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(4)

Barycentrics    (-(a^2*b*c)+a^3*(b+c)+b*c*(b^2-c^2)+a*(b^3-b^2*c-3*b*c^2-c^3))*(-(a^2*b*c)-b^3*c+b*c^3+a^3*(b+c)-a*(b^3+3*b^2*c+b*c^2-c^3)) : :

X(56161) lies on the Kiepert hyperbola and on these lines: {2, 37502}, {4, 2238}, {10, 3208}, {30, 54793}, {43, 226}, {69, 40017}, {76, 9534}, {321, 27538}, {376, 54497}, {377, 6625}, {386, 17758}, {443, 37632}, {573, 43672}, {656, 4444}, {1446, 3212}, {2550, 40718}, {3545, 54728}, {3949, 43534}, {4251, 43531}, {5082, 54291}, {5084, 32022}, {5138, 14534}, {6685, 38204}, {6821, 37676}, {7235, 40149}, {13329, 13478}, {13584, 37191}, {14956, 55944}, {24624, 30943}, {30962, 40031}, {37193, 54119}

X(56161) = isogonal conjugate of X(37507)
X(56161) = isotomic conjugate of X(30962)
X(56161) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 37507}, {31, 30962}
X(56161) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 30962}, {3, 37507}
X(56161) = X(i)-cross conjugate of X(j) for these {i, j}: {37673, 2}
X(56161) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(39741)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(37502)}}, {{A, B, C, X(7), X(17038)}}, {{A, B, C, X(8), X(43)}}, {{A, B, C, X(19), X(40422)}}, {{A, B, C, X(25), X(1244)}}, {{A, B, C, X(37), X(1246)}}, {{A, B, C, X(42), X(9534)}}, {{A, B, C, X(65), X(39967)}}, {{A, B, C, X(69), X(656)}}, {{A, B, C, X(80), X(52654)}}, {{A, B, C, X(277), X(18031)}}, {{A, B, C, X(314), X(8769)}}, {{A, B, C, X(330), X(56138)}}, {{A, B, C, X(377), X(4213)}}, {{A, B, C, X(386), X(4251)}}, {{A, B, C, X(406), X(6817)}}, {{A, B, C, X(443), X(4207)}}, {{A, B, C, X(475), X(6818)}}, {{A, B, C, X(573), X(13329)}}, {{A, B, C, X(740), X(2998)}}, {{A, B, C, X(860), X(30943)}}, {{A, B, C, X(966), X(37632)}}, {{A, B, C, X(985), X(41527)}}, {{A, B, C, X(994), X(1000)}}, {{A, B, C, X(1738), X(3596)}}, {{A, B, C, X(1929), X(54128)}}, {{A, B, C, X(2092), X(5138)}}, {{A, B, C, X(2321), X(9307)}}, {{A, B, C, X(2478), X(4212)}}, {{A, B, C, X(2481), X(39954)}}, {{A, B, C, X(3144), X(37193)}}, {{A, B, C, X(3296), X(8049)}}, {{A, B, C, X(3617), X(6685)}}, {{A, B, C, X(3696), X(39957)}}, {{A, B, C, X(4194), X(6821)}}, {{A, B, C, X(4196), X(5084)}}, {{A, B, C, X(4200), X(6822)}}, {{A, B, C, X(4441), X(26242)}}, {{A, B, C, X(5936), X(55035)}}, {{A, B, C, X(6048), X(10453)}}, {{A, B, C, X(10482), X(11578)}}, {{A, B, C, X(14555), X(37676)}}, {{A, B, C, X(15320), X(39983)}}, {{A, B, C, X(15474), X(17982)}}, {{A, B, C, X(16606), X(41506)}}, {{A, B, C, X(17889), X(43740)}}, {{A, B, C, X(19853), X(26037)}}, {{A, B, C, X(25612), X(40027)}}, {{A, B, C, X(29822), X(48852)}}, {{A, B, C, X(30962), X(37673)}}, {{A, B, C, X(31359), X(40418)}}, {{A, B, C, X(36695), X(37276)}}, {{A, B, C, X(39734), X(43733)}}, {{A, B, C, X(40399), X(45137)}}
X(56161) = barycentric product X(i)*X(j) for these (i, j): {10, 55968}
X(56161) = barycentric quotient X(i)/X(j) for these (i, j): {2, 30962}, {6, 37507}, {55968, 86}


X(56162) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(6)

Barycentrics    a*(a*b^3+b^2*c*(b+c)+a^2*(b^2-c^2))*(-(a*c^3)-b*c^2*(b+c)+a^2*(b^2-c^2)) : :

X(56162) lies on these lines: {6, 2229}, {37, 4009}, {42, 4116}, {899, 1400}, {1150, 37128}, {1427, 43037}, {1575, 28658}, {2238, 46018}, {4671, 27809}, {16606, 31330}, {16704, 39952}, {16975, 30970}, {37660, 39981}

X(56162) = isotomic conjugate of X(30964)
X(56162) = trilinear pole of line {4526, 512}
X(56162) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 30964}, {4588, 27773}
X(56162) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 30964}, {55045, 27773}
X(56162) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6)}}, {{A, B, C, X(4), X(16405)}}, {{A, B, C, X(8), X(650)}}, {{A, B, C, X(31), X(30710)}}, {{A, B, C, X(43), X(31330)}}, {{A, B, C, X(76), X(661)}}, {{A, B, C, X(87), X(31002)}}, {{A, B, C, X(291), X(994)}}, {{A, B, C, X(310), X(3223)}}, {{A, B, C, X(330), X(649)}}, {{A, B, C, X(1150), X(2238)}}, {{A, B, C, X(1575), X(4671)}}, {{A, B, C, X(2162), X(35058)}}, {{A, B, C, X(3240), X(30970)}}, {{A, B, C, X(5291), X(5692)}}, {{A, B, C, X(7241), X(55035)}}, {{A, B, C, X(16704), X(37673)}}, {{A, B, C, X(16975), X(36871)}}, {{A, B, C, X(27810), X(40024)}}, {{A, B, C, X(37657), X(37660)}}, {{A, B, C, X(38955), X(56161)}}, {{A, B, C, X(39694), X(40148)}}
X(56162) = barycentric product X(i)*X(j) for these (i, j): {1, 56128}, {36873, 75}
X(56162) = barycentric quotient X(i)/X(j) for these (i, j): {2, 30964}, {4893, 27773}, {36873, 1}, {56128, 75}


X(56163) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(7)

Barycentrics    (b*(b-c)*c+a^2*(b+c)+a*(b^2-5*b*c-c^2))*(b*c*(-b+c)+a^2*(b+c)+a*(-b^2-5*b*c+c^2)) : :

X(56163) lies on these lines: {7, 899}, {8, 31002}, {75, 4009}, {86, 4413}, {310, 26038}, {335, 24620}, {903, 30946}, {1088, 43037}, {6650, 31018}, {10453, 40027}, {16569, 39741}, {16610, 27475}, {17484, 39720}, {30598, 52638}

X(56163) = isotomic conjugate of X(30947)
X(56163) = trilinear pole of line {4526, 514}
X(56163) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(8), X(650)}}, {{A, B, C, X(42), X(26038)}}, {{A, B, C, X(80), X(52654)}}, {{A, B, C, X(88), X(41527)}}, {{A, B, C, X(291), X(1000)}}, {{A, B, C, X(330), X(7035)}}, {{A, B, C, X(350), X(24620)}}, {{A, B, C, X(2481), X(39963)}}, {{A, B, C, X(3911), X(30946)}}, {{A, B, C, X(4413), X(13576)}}, {{A, B, C, X(4441), X(16610)}}, {{A, B, C, X(7045), X(38250)}}, {{A, B, C, X(8056), X(54128)}}, {{A, B, C, X(10453), X(16569)}}, {{A, B, C, X(18490), X(30571)}}, {{A, B, C, X(20347), X(31188)}}, {{A, B, C, X(21448), X(52030)}}, {{A, B, C, X(26745), X(27807)}}
X(56163) = barycentric quotient X(i)/X(j) for these (i, j): {2, 30947}


X(56164) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(8)

Barycentrics    (a^2*b*(-2*b+c)+a^3*(b+c)+b*c*(b^2-c^2)+a*(b^3+b^2*c+b*c^2-c^3))*(-(b^3*c)+a^2*(b-2*c)*c+b*c^3+a^3*(b+c)+a*(-b^3+b^2*c+b*c^2+c^3)) : :

X(56164) lies on these lines: {2, 1458}, {6, 14942}, {7, 18031}, {8, 672}, {85, 3812}, {92, 1876}, {257, 3177}, {312, 518}, {333, 1376}, {958, 32008}, {1212, 31359}, {3252, 4518}, {4651, 30711}, {4997, 30947}, {5554, 54120}, {9309, 13576}, {14626, 17135}, {17947, 18391}, {26103, 38255}, {28660, 30941}, {28850, 52517}, {29824, 56075}, {39741, 54128}, {41245, 52013}

X(56164) = isotomic conjugate of X(30946)
X(56164) = trilinear pole of line {665, 21348}
X(56164) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 37555}, {31, 30946}
X(56164) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 30946}, {9, 37555}
X(56164) = X(i)-cross conjugate of X(j) for these {i, j}: {17754, 2}
X(56164) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10453)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(4), X(291)}}, {{A, B, C, X(6), X(7)}}, {{A, B, C, X(9), X(31643)}}, {{A, B, C, X(65), X(36854)}}, {{A, B, C, X(80), X(52654)}}, {{A, B, C, X(310), X(1219)}}, {{A, B, C, X(314), X(2297)}}, {{A, B, C, X(519), X(30947)}}, {{A, B, C, X(749), X(1246)}}, {{A, B, C, X(958), X(1212)}}, {{A, B, C, X(959), X(2350)}}, {{A, B, C, X(1000), X(30571)}}, {{A, B, C, X(1016), X(40031)}}, {{A, B, C, X(1222), X(6384)}}, {{A, B, C, X(1376), X(3967)}}, {{A, B, C, X(1390), X(41527)}}, {{A, B, C, X(2481), X(39959)}}, {{A, B, C, X(2995), X(7155)}}, {{A, B, C, X(3177), X(7196)}}, {{A, B, C, X(3241), X(29824)}}, {{A, B, C, X(3427), X(24247)}}, {{A, B, C, X(3616), X(17135)}}, {{A, B, C, X(3617), X(26038)}}, {{A, B, C, X(3621), X(26103)}}, {{A, B, C, X(4441), X(44798)}}, {{A, B, C, X(4651), X(9780)}}, {{A, B, C, X(4998), X(56144)}}, {{A, B, C, X(5222), X(41245)}}, {{A, B, C, X(5331), X(5558)}}, {{A, B, C, X(5556), X(8049)}}, {{A, B, C, X(6063), X(43672)}}, {{A, B, C, X(7123), X(56154)}}, {{A, B, C, X(8048), X(43749)}}, {{A, B, C, X(12649), X(29839)}}, {{A, B, C, X(15909), X(34399)}}, {{A, B, C, X(17754), X(30946)}}, {{A, B, C, X(20028), X(39975)}}, {{A, B, C, X(30701), X(40017)}}, {{A, B, C, X(34434), X(39966)}}, {{A, B, C, X(38955), X(40718)}}, {{A, B, C, X(39749), X(40030)}}, {{A, B, C, X(39956), X(55035)}}, {{A, B, C, X(39967), X(46187)}}
X(56164) = barycentric quotient X(i)/X(j) for these (i, j): {1, 37555}, {2, 30946}


X(56165) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(57)

Barycentrics    a*(a^2*(b-c)+a*(b^2-b*c-c^2)+b*(2*b^2+b*c+c^2))*(a^2*(b-c)+a*(b^2+b*c-c^2)-c*(b^2+b*c+2*c^2)) : :

X(56165) lies on these lines: {2, 21101}, {43, 985}, {57, 1575}, {81, 17754}, {105, 748}, {274, 17308}, {279, 43040}, {312, 32020}, {330, 3661}, {982, 52654}, {1422, 52089}, {1929, 16569}, {3227, 17294}, {3676, 20515}, {3795, 5269}, {6542, 38247}, {7243, 34018}, {7308, 39954}, {17397, 39738}, {29591, 39740}, {29603, 32009}, {29608, 39736}, {43928, 47828}, {45782, 53678}

X(56165) = trilinear pole of line {21349, 513}
X(56165) = X(i)-cross conjugate of X(j) for these {i, j}: {49509, 1}
X(56165) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(42), X(17308)}}, {{A, B, C, X(43), X(3661)}}, {{A, B, C, X(75), X(39979)}}, {{A, B, C, X(76), X(979)}}, {{A, B, C, X(87), X(335)}}, {{A, B, C, X(223), X(52089)}}, {{A, B, C, X(226), X(16606)}}, {{A, B, C, X(257), X(39969)}}, {{A, B, C, X(312), X(650)}}, {{A, B, C, X(321), X(18793)}}, {{A, B, C, X(596), X(3500)}}, {{A, B, C, X(673), X(7241)}}, {{A, B, C, X(748), X(4382)}}, {{A, B, C, X(749), X(39957)}}, {{A, B, C, X(899), X(17294)}}, {{A, B, C, X(2051), X(7350)}}, {{A, B, C, X(2254), X(40217)}}, {{A, B, C, X(2258), X(2276)}}, {{A, B, C, X(3223), X(18795)}}, {{A, B, C, X(3551), X(20332)}}, {{A, B, C, X(3676), X(6384)}}, {{A, B, C, X(3720), X(29603)}}, {{A, B, C, X(6542), X(16569)}}, {{A, B, C, X(7153), X(34860)}}, {{A, B, C, X(7261), X(8817)}}, {{A, B, C, X(14621), X(39742)}}, {{A, B, C, X(17038), X(39971)}}, {{A, B, C, X(17397), X(26102)}}, {{A, B, C, X(25502), X(29586)}}, {{A, B, C, X(27475), X(39798)}}, {{A, B, C, X(29591), X(42043)}}, {{A, B, C, X(29608), X(42042)}}, {{A, B, C, X(36807), X(39981)}}, {{A, B, C, X(39749), X(39956)}}, {{A, B, C, X(39966), X(40746)}}, {{A, B, C, X(40029), X(47915)}}, {{A, B, C, X(40098), X(51844)}}
X(56165) = barycentric product X(i)*X(j) for these (i, j): {1, 56124}
X(56165) = barycentric quotient X(i)/X(j) for these (i, j): {56124, 75}


X(56166) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(75)

Barycentrics    (a*b*(b-c)+b^2*c+a^2*(b+c))*(b*c^2+a*c*(-b+c)+a^2*(b+c)) : :

X(56166) lies on these lines: {1, 31002}, {2, 3230}, {42, 6384}, {43, 310}, {75, 899}, {86, 750}, {335, 4850}, {649, 3758}, {903, 37678}, {1240, 3875}, {2229, 27447}, {2296, 6685}, {2382, 50300}, {3720, 40027}, {17393, 40010}, {17495, 27494}, {21759, 37677}, {26037, 56052}, {30963, 40039}, {37632, 39704}

X(56166) = isotomic conjugate of X(30942)
X(56166) = trilinear pole of line {3768, 514}
X(56166) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 16975}, {31, 30942}
X(56166) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 30942}, {9, 16975}
X(56166) = X(i)-cross conjugate of X(j) for these {i, j}: {29350, 190}
X(56166) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(649)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(42), X(43)}}, {{A, B, C, X(57), X(3112)}}, {{A, B, C, X(81), X(7033)}}, {{A, B, C, X(83), X(4998)}}, {{A, B, C, X(88), X(870)}}, {{A, B, C, X(89), X(3226)}}, {{A, B, C, X(190), X(3758)}}, {{A, B, C, X(291), X(994)}}, {{A, B, C, X(350), X(4850)}}, {{A, B, C, X(537), X(50300)}}, {{A, B, C, X(561), X(2051)}}, {{A, B, C, X(749), X(18082)}}, {{A, B, C, X(750), X(3761)}}, {{A, B, C, X(873), X(8056)}}, {{A, B, C, X(1002), X(1120)}}, {{A, B, C, X(2229), X(2295)}}, {{A, B, C, X(2279), X(37132)}}, {{A, B, C, X(2350), X(3223)}}, {{A, B, C, X(3720), X(16569)}}, {{A, B, C, X(3771), X(29850)}}, {{A, B, C, X(3875), X(54308)}}, {{A, B, C, X(4600), X(17743)}}, {{A, B, C, X(4664), X(46922)}}, {{A, B, C, X(4672), X(32935)}}, {{A, B, C, X(5235), X(37632)}}, {{A, B, C, X(6685), X(31330)}}, {{A, B, C, X(6686), X(30957)}}, {{A, B, C, X(10455), X(25590)}}, {{A, B, C, X(14554), X(39712)}}, {{A, B, C, X(16606), X(40504)}}, {{A, B, C, X(16704), X(37678)}}, {{A, B, C, X(17495), X(30963)}}, {{A, B, C, X(25430), X(40439)}}, {{A, B, C, X(25453), X(29846)}}, {{A, B, C, X(26037), X(43223)}}, {{A, B, C, X(29663), X(32783)}}, {{A, B, C, X(29678), X(33138)}}, {{A, B, C, X(29825), X(30970)}}
X(56166) = barycentric product X(i)*X(j) for these (i, j): {1, 56129}
X(56166) = barycentric quotient X(i)/X(j) for these (i, j): {1, 16975}, {2, 30942}, {56129, 75}


X(56167) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(76)

Barycentrics    (b^3*c+a^3*(b+c)+a*(b^3-b*c^2))*(b*c^3+a^3*(b+c)+a*(-(b^2*c)+c^3)) : :

X(56167) lies on the Kiepert hyperbola and on these lines: {2, 41333}, {6, 40017}, {10, 54291}, {76, 2238}, {798, 4444}, {872, 43534}, {1916, 40729}, {4429, 40718}, {6625, 17680}, {17758, 37632}, {24512, 40031}, {37657, 40030}, {37673, 40024}, {37676, 40012}

X(56167) = isotomic conjugate of X(30945)
X(56167) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(798)}}, {{A, B, C, X(19), X(38810)}}, {{A, B, C, X(25), X(39276)}}, {{A, B, C, X(43), X(17033)}}, {{A, B, C, X(239), X(985)}}, {{A, B, C, X(291), X(17743)}}, {{A, B, C, X(717), X(3402)}}, {{A, B, C, X(899), X(30114)}}, {{A, B, C, X(941), X(40409)}}, {{A, B, C, X(1002), X(1016)}}, {{A, B, C, X(1218), X(18082)}}, {{A, B, C, X(2296), X(32009)}}, {{A, B, C, X(3223), X(39970)}}, {{A, B, C, X(4213), X(17680)}}, {{A, B, C, X(4383), X(37676)}}, {{A, B, C, X(6383), X(55035)}}, {{A, B, C, X(14377), X(39925)}}, {{A, B, C, X(14621), X(30571)}}, {{A, B, C, X(16606), X(40516)}}, {{A, B, C, X(17277), X(37632)}}, {{A, B, C, X(18793), X(39797)}}, {{A, B, C, X(24512), X(37673)}}, {{A, B, C, X(29846), X(30165)}}, {{A, B, C, X(29850), X(30149)}}, {{A, B, C, X(30701), X(39741)}}, {{A, B, C, X(32008), X(40418)}}, {{A, B, C, X(39961), X(40408)}}
X(56167) = barycentric quotient X(i)/X(j) for these (i, j): {2, 30945}


X(56168) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(81)

Barycentrics    a*(a^2*(b-c)+a*(2*b^2-c^2)+b*(2*b^2+2*b*c+c^2))*(a^2*(b-c)+a*(b^2-2*c^2)-c*(b^2+2*b*c+2*c^2)) : :

X(56168) lies on these lines: {2, 56130}, {38, 52654}, {81, 1575}, {89, 37676}, {274, 29610}, {321, 32020}, {330, 29593}, {985, 32911}, {3227, 29615}, {20055, 38247}, {24512, 25417}, {29609, 32009}, {30966, 39747}, {43928, 47827}

X(56168) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 49477}
X(56168) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 49477}
X(56168) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(42), X(29610)}}, {{A, B, C, X(43), X(29593)}}, {{A, B, C, X(75), X(20332)}}, {{A, B, C, X(87), X(27494)}}, {{A, B, C, X(321), X(661)}}, {{A, B, C, X(335), X(39798)}}, {{A, B, C, X(899), X(29615)}}, {{A, B, C, X(1268), X(39971)}}, {{A, B, C, X(3720), X(29609)}}, {{A, B, C, X(5235), X(37676)}}, {{A, B, C, X(5333), X(24512)}}, {{A, B, C, X(6539), X(18793)}}, {{A, B, C, X(7241), X(14621)}}, {{A, B, C, X(16569), X(20055)}}, {{A, B, C, X(27483), X(39979)}}, {{A, B, C, X(30965), X(33854)}}, {{A, B, C, X(30966), X(32911)}}, {{A, B, C, X(32018), X(39748)}}, {{A, B, C, X(41836), X(41839)}}
X(56168) = barycentric product X(i)*X(j) for these (i, j): {1, 56130}
X(56168) = barycentric quotient X(i)/X(j) for these (i, j): {1, 49477}, {56130, 75}


X(56169) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(86)

Barycentrics    b*c*(b*c+a*(4*b+c))*(b*c+a*(b+4*c)) : :

X(56169) lies on these lines: {2, 52959}, {10, 31002}, {75, 3994}, {86, 899}, {310, 6381}, {335, 24589}, {350, 55955}, {871, 40089}, {2296, 16569}, {4358, 27483}, {6384, 26037}, {14621, 37680}, {31330, 40027}

X(56169) = isotomic conjugate of X(30950)
X(56169) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 16971}, {31, 30950}, {32, 4688}, {1397, 4519}
X(56169) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 30950}, {9, 16971}, {6376, 4688}
X(56169) = X(i)-cross conjugate of X(j) for these {i, j}: {4776, 1978}
X(56169) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(661)}}, {{A, B, C, X(43), X(26037)}}, {{A, B, C, X(88), X(39717)}}, {{A, B, C, X(274), X(7035)}}, {{A, B, C, X(291), X(41434)}}, {{A, B, C, X(350), X(24589)}}, {{A, B, C, X(3226), X(39706)}}, {{A, B, C, X(4600), X(32008)}}, {{A, B, C, X(6686), X(31241)}}, {{A, B, C, X(16569), X(31330)}}, {{A, B, C, X(18031), X(20569)}}, {{A, B, C, X(18827), X(40434)}}, {{A, B, C, X(20568), X(40024)}}, {{A, B, C, X(30571), X(39697)}}, {{A, B, C, X(30966), X(37680)}}, {{A, B, C, X(32010), X(39962)}}
X(56169) = barycentric product X(i)*X(j) for these (i, j): {274, 56126}, {310, 56156}, {55932, 76}
X(56169) = barycentric quotient X(i)/X(j) for these (i, j): {1, 16971}, {2, 30950}, {75, 4688}, {312, 4519}, {55932, 6}, {56126, 37}, {56156, 42}


X(56170) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(88)

Barycentrics    a*(a^2*(b-c)-a*c*(2*b+c)+b*(2*b^2+c^2))*(a^2*(b-c)+a*b*(b+2*c)-c*(b^2+2*c^2)) : :

X(56170) lies on these lines: {1, 3799}, {2, 3807}, {88, 1575}, {89, 20331}, {100, 985}, {105, 37680}, {244, 52654}, {274, 17292}, {291, 17449}, {330, 17230}, {1390, 3315}, {3227, 17310}, {4358, 32020}, {24183, 41836}, {27805, 40738}, {29614, 32009}, {30965, 39747}, {40833, 46795}, {43928, 48244}

X(56170) = trilinear pole of line {984, 513}
X(56170) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 50023}
X(56170) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 50023}
X(56170) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(42), X(17292)}}, {{A, B, C, X(43), X(17230)}}, {{A, B, C, X(100), X(1978)}}, {{A, B, C, X(312), X(8851)}}, {{A, B, C, X(335), X(513)}}, {{A, B, C, X(593), X(28574)}}, {{A, B, C, X(739), X(52205)}}, {{A, B, C, X(899), X(17310)}}, {{A, B, C, X(1126), X(10159)}}, {{A, B, C, X(1575), X(1635)}}, {{A, B, C, X(2051), X(15323)}}, {{A, B, C, X(3720), X(29614)}}, {{A, B, C, X(4080), X(18793)}}, {{A, B, C, X(4674), X(32012)}}, {{A, B, C, X(4893), X(4945)}}, {{A, B, C, X(4997), X(56154)}}, {{A, B, C, X(4998), X(9075)}}, {{A, B, C, X(6186), X(39966)}}, {{A, B, C, X(6187), X(39967)}}, {{A, B, C, X(16606), X(30588)}}, {{A, B, C, X(17449), X(18109)}}, {{A, B, C, X(21297), X(30941)}}, {{A, B, C, X(24625), X(31002)}}, {{A, B, C, X(27475), X(36494)}}, {{A, B, C, X(30575), X(30866)}}, {{A, B, C, X(30965), X(32911)}}, {{A, B, C, X(36807), X(37128)}}, {{A, B, C, X(40735), X(52660)}}
X(56170) = barycentric quotient X(i)/X(j) for these (i, j): {1, 50023}


X(56171) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(42) AND X(98)

Barycentrics    (b^2-a*c)*(a*b-c^2)*(a^3*c-a*c*(b+c)^2-a^2*b*(2*b+c)+b*c*(b^2-c^2))*(-(a^3*b)+a*b*(b+c)^2+a^2*c*(b+2*c)+b*c*(b^2-c^2)) : :

X(56171) lies on the Kiepert hyperbola and on these lines: {2, 50440}, {10, 4876}, {76, 52257}, {83, 1009}, {98, 2238}, {226, 291}, {321, 4518}, {325, 40017}, {598, 11355}, {694, 53425}, {1446, 7233}, {2311, 6998}, {6054, 19635}

X(56171) = trilinear pole of line {49509, 523}
X(56171) = X(i)-isoconjugate-of-X(j) for these {i, j}: {238, 37609}
X(56171) = X(i)-Dao conjugate of X(j) for these {i, j}: {9470, 37609}
X(56171) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(25), X(52257)}}, {{A, B, C, X(100), X(4583)}}, {{A, B, C, X(291), X(1581)}}, {{A, B, C, X(305), X(43698)}}, {{A, B, C, X(325), X(2238)}}, {{A, B, C, X(427), X(1009)}}, {{A, B, C, X(1390), X(53707)}}, {{A, B, C, X(5094), X(11355)}}, {{A, B, C, X(7095), X(52654)}}, {{A, B, C, X(7249), X(30571)}}
X(56171) = barycentric quotient X(i)/X(j) for these (i, j): {292, 37609}


X(56172) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(65) AND X(4)

Barycentrics    (b+c)*(a^3+a^2*b+b^3-b*c^2+a*(b^2-4*b*c-c^2))*(a^3+a^2*c-b^2*c+c^3+a*(-b^2-4*b*c+c^2)) : :

X(56172) lies on the Kiepert hyperbola and on these lines:: {2, 496}, {8, 40013}, {40, 43672}, {76, 42696}, {226, 3293}, {321, 3697}, {2550, 43531}, {3436, 54775}, {4000, 17758}, {9614, 14554}, {21896, 54933}, {40149, 53861}

X(56172) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 3555}
X(56172) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 3555}
X(56172) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(8), X(3293)}}, {{A, B, C, X(37), X(3296)}}, {{A, B, C, X(65), X(1000)}}, {{A, B, C, X(210), X(11578)}}, {{A, B, C, X(225), X(1058)}}, {{A, B, C, X(496), X(52383)}}, {{A, B, C, X(1002), X(4651)}}, {{A, B, C, X(1247), X(39768)}}, {{A, B, C, X(2321), X(15998)}}, {{A, B, C, X(3696), X(3931)}}, {{A, B, C, X(3701), X(6601)}}, {{A, B, C, X(4000), X(4043)}}, {{A, B, C, X(4373), X(42471)}}, {{A, B, C, X(4646), X(5295)}}, {{A, B, C, X(5082), X(41013)}}, {{A, B, C, X(5687), X(38955)}}, {{A, B, C, X(9709), X(15232)}}, {{A, B, C, X(15170), X(52382)}}, {{A, B, C, X(15320), X(43733)}}, {{A, B, C, X(24298), X(24390)}}, {{A, B, C, X(31419), X(51870)}}, {{A, B, C, X(39708), X(55035)}}, {{A, B, C, X(40504), X(51223)}}
X(56172) = barycentric quotient X(i)/X(j) for these (i, j): {37, 3555}


X(56173) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(65) AND X(8)

Barycentrics    (a+b-c)*(a-b+c)*(b+c)*(a^2+a*(-2*b+c)+b*(b+c))*(a^2+a*(b-2*c)+c*(b+c)) : :

X(56173) lies on these lines: {1, 40451}, {7, 3596}, {8, 56}, {10, 1042}, {65, 3701}, {281, 608}, {388, 20615}, {938, 27394}, {959, 32017}, {1400, 2321}, {1426, 3753}, {1441, 3698}, {1837, 40528}, {2295, 21049}, {2475, 39270}, {3617, 55076}, {3754, 15065}, {3918, 6757}, {4339, 5264}, {4358, 13601}, {4552, 4642}, {5554, 10570}, {6613, 35141}, {6740, 14584}, {11545, 48877}, {12709, 52353}, {17539, 23703}, {21677, 56157}, {24806, 26030}

X(56173) = isotomic conjugate of X(17183)
X(56173) = trilinear pole of line {3700, 7180}
X(56173) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 18163}, {21, 1201}, {28, 22072}, {29, 22344}, {31, 17183}, {41, 18600}, {58, 3057}, {60, 4642}, {81, 2347}, {110, 6615}, {163, 21120}, {283, 1828}, {284, 3752}, {333, 20228}, {593, 21809}, {643, 6363}, {849, 21031}, {1122, 2328}, {1333, 3452}, {1408, 6736}, {1444, 40982}, {2150, 4415}, {2185, 21796}, {2194, 3663}, {2206, 20895}, {3737, 23845}, {5546, 48334}, {7252, 21362}, {7256, 42336}, {38832, 52195}
X(56173) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17183}, {9, 18163}, {10, 3057}, {37, 3452}, {115, 21120}, {244, 6615}, {1214, 3663}, {3160, 18600}, {4075, 21031}, {6741, 42337}, {36908, 1122}, {40586, 2347}, {40590, 3752}, {40591, 22072}, {40603, 20895}, {40611, 1201}, {55060, 6363}
X(56173) = X(i)-cross conjugate of X(j) for these {i, j}: {661, 4552}, {4404, 3952}, {51662, 4551}
X(56173) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4581)}}, {{A, B, C, X(2), X(11109)}}, {{A, B, C, X(4), X(404)}}, {{A, B, C, X(7), X(56)}}, {{A, B, C, X(8), X(10)}}, {{A, B, C, X(12), X(14584)}}, {{A, B, C, X(37), X(7320)}}, {{A, B, C, X(72), X(3753)}}, {{A, B, C, X(75), X(55036)}}, {{A, B, C, X(189), X(321)}}, {{A, B, C, X(210), X(3698)}}, {{A, B, C, X(225), X(3476)}}, {{A, B, C, X(226), X(4848)}}, {{A, B, C, X(279), X(18097)}}, {{A, B, C, X(307), X(5749)}}, {{A, B, C, X(377), X(7412)}}, {{A, B, C, X(523), X(38455)}}, {{A, B, C, X(661), X(4642)}}, {{A, B, C, X(758), X(3754)}}, {{A, B, C, X(1376), X(3967)}}, {{A, B, C, X(1427), X(8051)}}, {{A, B, C, X(2295), X(2533)}}, {{A, B, C, X(2475), X(4242)}}, {{A, B, C, X(2994), X(6539)}}, {{A, B, C, X(3427), X(23604)}}, {{A, B, C, X(3617), X(4651)}}, {{A, B, C, X(3668), X(4308)}}, {{A, B, C, X(3678), X(3918)}}, {{A, B, C, X(3696), X(31994)}}, {{A, B, C, X(3697), X(4002)}}, {{A, B, C, X(3919), X(4084)}}, {{A, B, C, X(3922), X(3962)}}, {{A, B, C, X(3925), X(21677)}}, {{A, B, C, X(3932), X(21049)}}, {{A, B, C, X(3968), X(4015)}}, {{A, B, C, X(3983), X(4731)}}, {{A, B, C, X(4004), X(4018)}}, {{A, B, C, X(5423), X(53013)}}, {{A, B, C, X(5558), X(53114)}}, {{A, B, C, X(6553), X(41683)}}, {{A, B, C, X(8256), X(51870)}}, {{A, B, C, X(10449), X(19874)}}, {{A, B, C, X(10944), X(52383)}}, {{A, B, C, X(17097), X(31643)}}, {{A, B, C, X(20683), X(53110)}}, {{A, B, C, X(21739), X(27797)}}, {{A, B, C, X(34265), X(43533)}}, {{A, B, C, X(40420), X(40446)}}
X(56173) = barycentric product X(i)*X(j) for these (i, j): {10, 40420}, {306, 40446}, {313, 3451}, {349, 51476}, {1222, 226}, {1261, 1446}, {1441, 23617}, {1476, 321}, {3668, 52549}, {3700, 6613}, {7178, 8706}, {32017, 65}
X(56173) = barycentric quotient X(i)/X(j) for these (i, j): {1, 18163}, {2, 17183}, {7, 18600}, {10, 3452}, {12, 4415}, {37, 3057}, {42, 2347}, {65, 3752}, {71, 22072}, {181, 21796}, {226, 3663}, {321, 20895}, {523, 21120}, {594, 21031}, {661, 6615}, {756, 21809}, {1222, 333}, {1261, 2287}, {1400, 1201}, {1402, 20228}, {1409, 22344}, {1427, 1122}, {1441, 26563}, {1476, 81}, {1880, 1828}, {2171, 4642}, {2321, 6736}, {2333, 40982}, {2533, 28006}, {3451, 58}, {3668, 52563}, {3700, 42337}, {3950, 12640}, {3952, 25268}, {4017, 48334}, {4551, 21362}, {4552, 21272}, {4559, 23845}, {4848, 45204}, {6613, 4573}, {7180, 6363}, {8706, 645}, {14321, 14284}, {16606, 52195}, {18082, 18086}, {23067, 23113}, {23617, 21}, {32017, 314}, {40420, 86}, {40446, 27}, {40451, 17197}, {40663, 51415}, {51476, 284}, {52384, 42549}, {52549, 1043}
X(56173) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1222, 40420, 1476}


X(56174) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(65) AND X(65)

Barycentrics    a*(a+b-3*c)*(a-3*b+c)*(b+c) : :

X(56174) lies on cubic K372 and on these lines: {1, 474}, {8, 21342}, {10, 3967}, {19, 44}, {37, 3698}, {42, 3922}, {43, 10107}, {72, 4674}, {75, 3617}, {158, 38462}, {165, 52183}, {225, 40663}, {244, 3893}, {513, 23835}, {517, 14261}, {518, 39742}, {596, 3626}, {656, 55244}, {759, 1293}, {876, 29226}, {897, 11684}, {899, 34434}, {942, 50575}, {994, 50193}, {1054, 11260}, {1086, 6736}, {1104, 54286}, {1155, 2217}, {1247, 5302}, {1575, 2186}, {1738, 8256}, {1910, 34080}, {2214, 16666}, {2218, 37568}, {2292, 4731}, {3057, 16602}, {3125, 4515}, {3212, 27818}, {3293, 4004}, {3621, 3999}, {3625, 39697}, {3634, 42285}, {3668, 4848}, {3679, 39711}, {3696, 42027}, {3697, 56135}, {3754, 50587}, {3756, 21627}, {3918, 3931}, {3959, 44798}, {3983, 56159}, {4002, 4424}, {4018, 31855}, {4301, 51415}, {4420, 31343}, {4663, 13610}, {4689, 40430}, {4952, 11851}, {5121, 13463}, {5220, 8769}, {5221, 40151}, {5295, 42471}, {6048, 44663}, {6557, 9780}, {7991, 37679}, {8286, 34895}, {9588, 31187}, {11278, 45763}, {12640, 24175}, {14923, 16610}, {15854, 22837}, {16605, 18785}, {16945, 32636}, {17751, 41683}, {18827, 53647}, {19604, 24471}, {20331, 45202}, {24880, 50821}, {27827, 39739}, {33963, 52429}, {46032, 51844}, {46187, 49537}

X(56174) = midpoint of X(i) and X(j) for these {i,j}: {8, 34860}
X(56174) = isogonal conjugate of X(16948)
X(56174) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 16948}, {2, 33628}, {3, 4248}, {6, 41629}, {21, 1420}, {27, 20818}, {28, 4855}, {56, 52352}, {58, 145}, {60, 4848}, {81, 1743}, {86, 3052}, {99, 8643}, {110, 3667}, {163, 4462}, {249, 21950}, {284, 5435}, {593, 3950}, {643, 51656}, {662, 4394}, {757, 4849}, {759, 4881}, {765, 18211}, {849, 52353}, {1014, 3158}, {1171, 4856}, {1333, 18743}, {1408, 44720}, {1412, 3161}, {1414, 4162}, {2194, 39126}, {3285, 31227}, {3733, 43290}, {3756, 4570}, {4521, 4565}, {4534, 52378}, {4556, 14321}, {4591, 14425}, {4729, 52935}, {5546, 30719}, {7419, 54237}, {16947, 44723}
X(56174) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 52352}, {3, 16948}, {9, 41629}, {10, 145}, {37, 18743}, {115, 4462}, {244, 3667}, {513, 18211}, {1084, 4394}, {1214, 39126}, {3739, 4891}, {4075, 52353}, {24151, 86}, {32664, 33628}, {34586, 4881}, {36103, 4248}, {38986, 8643}, {40586, 1743}, {40590, 5435}, {40591, 4855}, {40599, 3161}, {40600, 3052}, {40607, 4849}, {40608, 4162}, {40611, 1420}, {50330, 3756}, {52872, 4487}, {55060, 51656}, {55064, 4521}, {55065, 4404}
X(56174) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4373, 4052}
X(56174) = X(i)-cross conjugate of X(j) for these {i, j}: {210, 37}, {21809, 226}, {21963, 513}, {53540, 523}
X(56174) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(2), X(4214)}}, {{A, B, C, X(4), X(474)}}, {{A, B, C, X(6), X(4255)}}, {{A, B, C, X(8), X(3214)}}, {{A, B, C, X(12), X(3753)}}, {{A, B, C, X(28), X(16052)}}, {{A, B, C, X(42), X(3617)}}, {{A, B, C, X(44), X(72)}}, {{A, B, C, X(88), X(321)}}, {{A, B, C, X(89), X(6539)}}, {{A, B, C, X(105), X(4906)}}, {{A, B, C, X(201), X(21866)}}, {{A, B, C, X(210), X(3158)}}, {{A, B, C, X(213), X(49515)}}, {{A, B, C, X(226), X(3698)}}, {{A, B, C, X(291), X(4096)}}, {{A, B, C, X(313), X(24440)}}, {{A, B, C, X(512), X(28582)}}, {{A, B, C, X(523), X(3701)}}, {{A, B, C, X(594), X(1254)}}, {{A, B, C, X(650), X(6598)}}, {{A, B, C, X(740), X(21868)}}, {{A, B, C, X(758), X(4926)}}, {{A, B, C, X(860), X(15952)}}, {{A, B, C, X(896), X(11684)}}, {{A, B, C, X(899), X(17751)}}, {{A, B, C, X(959), X(4492)}}, {{A, B, C, X(1042), X(4346)}}, {{A, B, C, X(1089), X(3987)}}, {{A, B, C, X(1156), X(43703)}}, {{A, B, C, X(1214), X(37567)}}, {{A, B, C, X(1242), X(51499)}}, {{A, B, C, X(1245), X(28658)}}, {{A, B, C, X(1257), X(2161)}}, {{A, B, C, X(1334), X(10005)}}, {{A, B, C, X(1376), X(3967)}}, {{A, B, C, X(1426), X(40085)}}, {{A, B, C, X(1441), X(5836)}}, {{A, B, C, X(1575), X(42711)}}, {{A, B, C, X(1706), X(1826)}}, {{A, B, C, X(1739), X(24006)}}, {{A, B, C, X(1824), X(4696)}}, {{A, B, C, X(1888), X(40149)}}, {{A, B, C, X(1903), X(5438)}}, {{A, B, C, X(2136), X(2321)}}, {{A, B, C, X(2292), X(4719)}}, {{A, B, C, X(2996), X(39981)}}, {{A, B, C, X(3212), X(3696)}}, {{A, B, C, X(3293), X(3626)}}, {{A, B, C, X(3445), X(4373)}}, {{A, B, C, X(3596), X(35634)}}, {{A, B, C, X(3625), X(31855)}}, {{A, B, C, X(3649), X(4002)}}, {{A, B, C, X(3671), X(4731)}}, {{A, B, C, X(3679), X(50587)}}, {{A, B, C, X(3694), X(43708)}}, {{A, B, C, X(3714), X(19582)}}, {{A, B, C, X(3742), X(7249)}}, {{A, B, C, X(3754), X(4792)}}, {{A, B, C, X(3842), X(25614)}}, {{A, B, C, X(3931), X(5221)}}, {{A, B, C, X(3932), X(16605)}}, {{A, B, C, X(4041), X(4515)}}, {{A, B, C, X(4052), X(8056)}}, {{A, B, C, X(4424), X(4647)}}, {{A, B, C, X(4663), X(21879)}}, {{A, B, C, X(4682), X(52208)}}, {{A, B, C, X(4714), X(16666)}}, {{A, B, C, X(5220), X(21874)}}, {{A, B, C, X(5295), X(21858)}}, {{A, B, C, X(5297), X(27714)}}, {{A, B, C, X(5551), X(35576)}}, {{A, B, C, X(5556), X(15320)}}, {{A, B, C, X(5687), X(38955)}}, {{A, B, C, X(8688), X(56155)}}, {{A, B, C, X(9353), X(39946)}}, {{A, B, C, X(10308), X(17614)}}, {{A, B, C, X(10914), X(24297)}}, {{A, B, C, X(14624), X(31356)}}, {{A, B, C, X(17063), X(21951)}}, {{A, B, C, X(17122), X(32011)}}, {{A, B, C, X(17490), X(22034)}}, {{A, B, C, X(17898), X(40933)}}, {{A, B, C, X(18211), X(21963)}}, {{A, B, C, X(21677), X(41539)}}, {{A, B, C, X(24174), X(43677)}}, {{A, B, C, X(31993), X(44417)}}, {{A, B, C, X(32635), X(34893)}}, {{A, B, C, X(39970), X(40023)}}, {{A, B, C, X(39974), X(51223)}}, {{A, B, C, X(49468), X(52959)}}, {{A, B, C, X(52371), X(53013)}}, {{A, B, C, X(52389), X(52391)}}
X(56174) = barycentric product X(i)*X(j) for these (i, j): {1, 4052}, {10, 8056}, {37, 4373}, {65, 6557}, {210, 27818}, {226, 3680}, {313, 38266}, {321, 3445}, {1293, 1577}, {1427, 6556}, {2415, 55244}, {3120, 5382}, {3701, 40151}, {16945, 30713}, {17958, 34899}, {19604, 2321}, {27823, 7241}, {27832, 53008}, {27834, 523}, {31343, 7178}, {34080, 850}, {38828, 4086}, {40014, 42}, {53647, 661}
X(56174) = barycentric quotient X(i)/X(j) for these (i, j): {1, 41629}, {6, 16948}, {9, 52352}, {10, 18743}, {19, 4248}, {31, 33628}, {37, 145}, {42, 1743}, {65, 5435}, {71, 4855}, {210, 3161}, {213, 3052}, {226, 39126}, {228, 20818}, {512, 4394}, {523, 4462}, {594, 52353}, {661, 3667}, {756, 3950}, {798, 8643}, {1015, 18211}, {1018, 43290}, {1293, 662}, {1334, 3158}, {1400, 1420}, {1500, 4849}, {1962, 4856}, {2171, 4848}, {2245, 4881}, {2321, 44720}, {2415, 55243}, {2643, 21950}, {3125, 3756}, {3445, 81}, {3680, 333}, {3694, 44722}, {3701, 44723}, {3709, 4162}, {3930, 4899}, {3943, 4487}, {3949, 52354}, {3954, 4884}, {4017, 30719}, {4024, 4404}, {4041, 4521}, {4052, 75}, {4069, 30720}, {4079, 4729}, {4171, 4546}, {4373, 274}, {4515, 6555}, {4516, 4534}, {4642, 45204}, {4674, 31227}, {4705, 14321}, {4729, 31182}, {4730, 14425}, {5382, 4600}, {6557, 314}, {7180, 51656}, {8056, 86}, {16589, 4891}, {16945, 1412}, {17958, 37792}, {19604, 1434}, {21044, 4939}, {21796, 45219}, {21801, 51433}, {21809, 12640}, {21810, 4918}, {21832, 53580}, {24290, 4925}, {27834, 99}, {27837, 17218}, {31343, 645}, {34080, 110}, {36042, 4591}, {36197, 4953}, {38266, 58}, {38828, 1414}, {40014, 310}, {40151, 1014}, {42027, 27496}, {48005, 4949}, {53540, 40617}, {53647, 799}, {55244, 2403}
X(56174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11512, 8688}, {65, 21896, 4849}, {65, 4695, 21896}, {1739, 10914, 52541}, {3698, 4642, 37}, {3753, 3987, 4646}, {5836, 24440, 3752}, {8056, 10563, 3680}, {14923, 16610, 45219}, {16605, 21888, 21872}


X(56175) = KIMBERLING-PAVLOV X(37)-CONJUGATE OF X(65) AND X(75)

Barycentrics    (b+c)*(b*c*(b+c)+a^2*(2*b+c)+a*(2*b^2-2*b*c+c^2))*(b*c*(b+c)+a^2*(b+2*c)+a*(b^2-2*b*c+2*c^2)) : :

X(56175) lies on these lines: {1, 4434}, {65, 22294}, {75, 4695}, {876, 48249}, {982, 39697}, {1215, 4674}, {2533, 55244}, {4972, 52383}, {13476, 51055}, {17038, 50094}, {26030, 34434}, {30829, 42285}, {31025, 56159}, {46895, 56135}

X(56175) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1333, 30818}
X(56175) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 30818}
X(56175) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(756), X(4695)}}, {{A, B, C, X(1215), X(2533)}}, {{A, B, C, X(2292), X(4642)}}, {{A, B, C, X(4080), X(40029)}}, {{A, B, C, X(17751), X(26030)}}, {{A, B, C, X(18082), X(38955)}}, {{A, B, C, X(30829), X(31025)}}, {{A, B, C, X(40014), X(40515)}}
X(56175) = barycentric quotient X(i)/X(j) for these (i, j): {10, 30818}


X(56176) = KP2(X(9)) OF X(1) AND X(37)

Barycentrics    a*(a-b-c)*(2*a^2-b^2-c^2+a*(b+c)) : :
X(56176) = 3*X[2]+X[3189], -X[40]+3*X[4421], 3*X[165]+X[11523], -3*X[551]+X[21627], X[962]+3*X[34607], -5*X[1698]+X[12625], -7*X[3523]+3*X[24477], 3*X[3576]+X[6765], 7*X[3622]+X[12632], -7*X[3624]+3*X[24392], -3*X[3928]+7*X[16192], -X[5691]+3*X[11236] and many others

X(56176) lies on these lines: {1, 474}, {2, 3189}, {3, 518}, {6, 37552}, {8, 2320}, {9, 4258}, {10, 6675}, {11, 27385}, {20, 12678}, {21, 210}, {30, 21077}, {35, 72}, {36, 3555}, {37, 1247}, {40, 4421}, {41, 3693}, {42, 37539}, {43, 1104}, {44, 54354}, {55, 78}, {56, 3870}, {58, 3939}, {63, 5217}, {65, 100}, {101, 3991}, {140, 10916}, {145, 1319}, {165, 11523}, {200, 958}, {214, 3244}, {224, 11509}, {284, 3694}, {354, 404}, {355, 33596}, {377, 17718}, {386, 1386}, {389, 34372}, {392, 3746}, {405, 2900}, {411, 7957}, {480, 7675}, {484, 4018}, {495, 17647}, {497, 25681}, {498, 3419}, {515, 12607}, {516, 5763}, {517, 6796}, {519, 549}, {521, 33649}, {522, 3159}, {524, 48893}, {527, 12512}, {528, 946}, {529, 4297}, {536, 24315}, {537, 8720}, {540, 48926}, {551, 21627}, {581, 9025}, {612, 16352}, {674, 970}, {740, 8669}, {758, 3579}, {908, 6284}, {912, 26285}, {936, 1001}, {942, 25440}, {944, 32049}, {950, 1329}, {952, 10915}, {954, 15587}, {956, 3612}, {962, 34607}, {975, 15569}, {976, 3666}, {978, 1279}, {984, 37574}, {993, 34790}, {997, 3295}, {1012, 17857}, {1043, 3714}, {1071, 2077}, {1100, 3169}, {1125, 3813}, {1155, 3868}, {1191, 3749}, {1193, 3744}, {1201, 3722}, {1210, 3035}, {1212, 3684}, {1215, 50054}, {1259, 10391}, {1260, 10393}, {1320, 33176}, {1324, 40660}, {1331, 1399}, {1388, 4917}, {1410, 2283}, {1479, 5087}, {1490, 15726}, {1621, 25917}, {1697, 5289}, {1698, 12625}, {1792, 2330}, {1818, 30621}, {1837, 5123}, {1858, 51379}, {1897, 1940}, {2098, 3895}, {2177, 37548}, {2223, 54300}, {2264, 27396}, {2268, 3965}, {2292, 4689}, {2329, 4515}, {2348, 25082}, {2550, 5703}, {2551, 4313}, {2801, 34862}, {2802, 10222}, {2886, 13411}, {2975, 3935}, {3052, 54386}, {3057, 3871}, {3058, 41012}, {3085, 5794}, {3149, 37569}, {3208, 6603}, {3214, 12642}, {3219, 4005}, {3241, 20323}, {3243, 3361}, {3256, 12709}, {3303, 10179}, {3304, 35262}, {3333, 42871}, {3336, 24473}, {3338, 16371}, {3421, 4305}, {3434, 11375}, {3452, 4314}, {3475, 6904}, {3485, 17784}, {3486, 7080}, {3487, 5880}, {3523, 24477}, {3576, 6765}, {3584, 47033}, {3585, 13272}, {3616, 3748}, {3622, 12632}, {3624, 24392}, {3625, 51111}, {3632, 37525}, {3633, 21842}, {3647, 4134}, {3678, 15481}, {3679, 33595}, {3681, 4189}, {3683, 3876}, {3697, 5251}, {3699, 52352}, {3710, 3712}, {3739, 25500}, {3745, 19767}, {3751, 4252}, {3769, 20018}, {3772, 36573}, {3816, 6700}, {3825, 18527}, {3838, 11374}, {3848, 16408}, {3869, 37568}, {3872, 34471}, {3873, 4188}, {3874, 37582}, {3885, 5048}, {3893, 4861}, {3894, 37524}, {3901, 37572}, {3916, 5010}, {3921, 5426}, {3928, 16192}, {3931, 30115}, {3940, 12514}, {3957, 5253}, {3961, 36529}, {3967, 7283}, {3970, 35342}, {3976, 4864}, {3983, 5260}, {3998, 36559}, {4004, 5425}, {4097, 35104}, {4104, 49728}, {4190, 10404}, {4201, 33126}, {4251, 25066}, {4256, 37592}, {4294, 24703}, {4304, 21075}, {4413, 54392}, {4428, 31435}, {4430, 37307}, {4661, 17548}, {4847, 4999}, {4849, 5247}, {4850, 36565}, {4853, 8168}, {4863, 10527}, {4867, 11010}, {4870, 49719}, {4882, 53054}, {4981, 16347}, {4995, 21677}, {5013, 16973}, {5022, 51194}, {5044, 5248}, {5045, 15570}, {5057, 20066}, {5080, 11015}, {5119, 5730}, {5172, 16465}, {5175, 10588}, {5204, 41711}, {5220, 31424}, {5221, 11520}, {5225, 5748}, {5227, 37504}, {5252, 10528}, {5281, 20007}, {5288, 37616}, {5432, 6734}, {5433, 26015}, {5436, 8580}, {5534, 12114}, {5541, 11009}, {5554, 37724}, {5563, 15015}, {5691, 11236}, {5719, 12609}, {5720, 11496}, {5722, 26364}, {5745, 6743}, {5752, 9047}, {5855, 11362}, {5856, 24470}, {5882, 38455}, {5887, 11849}, {5901, 49600}, {6001, 11248}, {6244, 12520}, {6261, 10306}, {6265, 23340}, {6326, 12672}, {6601, 17582}, {6691, 11019}, {6692, 6744}, {6708, 56146}, {6735, 10950}, {6762, 7987}, {6764, 54445}, {6769, 52026}, {6906, 14872}, {6909, 12680}, {6911, 13374}, {6921, 17728}, {7288, 36845}, {7674, 17580}, {7686, 11499}, {8069, 11517}, {8227, 11235}, {8583, 10389}, {8666, 13624}, {8951, 15601}, {9037, 37482}, {9052, 15489}, {9709, 54318}, {9780, 12536}, {9844, 18236}, {9943, 10310}, {9945, 18990}, {9957, 25439}, {10107, 54286}, {10164, 24391}, {10178, 10884}, {10382, 18227}, {10448, 54387}, {10477, 19760}, {10525, 37713}, {10543, 21031}, {10572, 17757}, {10595, 34640}, {10609, 45287}, {10679, 45770}, {10896, 30852}, {11011, 14923}, {11112, 13407}, {11115, 46897}, {11230, 24387}, {11281, 49732}, {11491, 14110}, {11500, 37531}, {11519, 30392}, {11698, 16160}, {12433, 47742}, {12436, 25557}, {12521, 18241}, {12526, 35445}, {12541, 38314}, {12559, 36279}, {12631, 22754}, {12648, 37738}, {12649, 24914}, {12701, 20075}, {12738, 16138}, {12740, 13278}, {13405, 25466}, {13462, 45036}, {13463, 13464}, {14054, 36152}, {15071, 17613}, {15171, 21616}, {15178, 22837}, {15325, 49627}, {15347, 51577}, {15803, 41863}, {15823, 15837}, {15829, 53053}, {16370, 41229}, {16610, 28082}, {16616, 18491}, {16783, 25068}, {16866, 51572}, {17100, 17660}, {17201, 25585}, {17243, 40530}, {17351, 24850}, {17558, 38057}, {17605, 52367}, {17606, 27529}, {17619, 37702}, {17689, 27495}, {17715, 21214}, {17724, 23536}, {17733, 28581}, {17735, 21874}, {17765, 49613}, {17768, 28645}, {17780, 52353}, {17792, 52544}, {18178, 20359}, {18360, 35281}, {18391, 37828}, {19785, 36578}, {19862, 24386}, {21937, 51050}, {21949, 24161}, {24299, 26446}, {24475, 33814}, {24953, 25006}, {25973, 37722}, {26877, 34474}, {27399, 30812}, {28609, 34626}, {31660, 44782}, {31837, 32613}, {33956, 37727}, {34379, 48929}, {34707, 48661}, {35242, 54422}, {36745, 45728}, {36746, 45729}, {37176, 38047}, {37284, 45120}, {37540, 54421}, {37562, 37733}, {37583, 41539}, {37605, 54391}, {37607, 49478}, {37608, 49490}, {40663, 41575}, {41239, 44798}, {49467, 50608}, {51071, 51714}

X(56176) = midpoint of X(i) and X(j) for these {i,j}: {1, 3913}, {10, 12437}, {1001, 3174}, {11236, 34701}, {11248, 37700}, {11500, 37531}, {2136, 10912}, {28609, 34626}, {3, 3811}, {3244, 12640}, {34607, 34647}, {37727, 49169}, {40, 12635}, {5534, 12114}, {6261, 10306}, {6265, 25438}, {6326, 13205}, {6765, 12513}, {8715, 22836}, {944, 32049}, {997, 52804}
X(56176) = reflection of X(i) in X(j) for these {i,j}: {10916, 140}, {11260, 1385}, {11362, 32157}, {13463, 13464}, {22837, 15178}, {3813, 1125}, {32537, 10915}, {33895, 1}, {49600, 5901}, {8666, 13624}
X(56176) = perspector of circumconic {{A, B, C, X(27834), X(53629)}}
X(56176) = X(i)-Dao conjugate of X(j) for these {i, j}: {3686, 4359}, {17058, 693}
X(56176) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1255, 9}, {3879, 4641}, {40406, 219}
X(56176) = intersection, other than A, B, C, of circumconics {{A, B, C, X(145), X(10912)}}, {{A, B, C, X(1036), X(2320)}}, {{A, B, C, X(1247), X(2339)}}, {{A, B, C, X(3680), X(3879)}}, {{A, B, C, X(3812), X(23617)}}, {{A, B, C, X(9309), X(17054)}}, {{A, B, C, X(32635), X(34893)}}, {{A, B, C, X(34195), X(44669)}}
X(56176) = barycentric product X(i)*X(j) for these (i, j): {1, 56078}, {3879, 9}, {4641, 8}, {4897, 644}, {11363, 345}, {27820, 3158}
X(56176) = barycentric quotient X(i)/X(j) for these (i, j): {3879, 85}, {4641, 7}, {4897, 24002}, {11363, 278}, {17476, 53545}, {56078, 75}
X(56176) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1376, 3812}, {1, 2136, 10912}, {1, 3158, 3913}, {1, 3880, 33895}, {1, 3913, 3880}, {1, 4255, 4719}, {1, 474, 3742}, {1, 48696, 10914}, {1, 5438, 25524}, {1, 5687, 5836}, {2, 37080, 51715}, {8, 5218, 26066}, {10, 12437, 44669}, {21, 210, 5302}, {21, 4420, 210}, {35, 72, 4640}, {40, 12635, 44663}, {41, 3693, 30618}, {55, 78, 960}, {56, 3870, 34791}, {100, 34772, 65}, {200, 3601, 958}, {200, 958, 4662}, {214, 3244, 24928}, {386, 5266, 1386}, {484, 41696, 4018}, {497, 27383, 25681}, {519, 1385, 11260}, {950, 6745, 1329}, {952, 10915, 32537}, {1043, 7081, 3714}, {1125, 5853, 3813}, {1837, 5552, 5123}, {2550, 5703, 28628}, {2646, 3689, 8}, {3295, 52804, 8668}, {3303, 19861, 10179}, {3678, 31445, 15481}, {3870, 4855, 56}, {3871, 4511, 3057}, {3873, 4188, 32636}, {3957, 5253, 17609}, {4421, 12635, 40}, {5010, 5904, 3916}, {5044, 5248, 15254}, {5293, 37573, 37}, {5855, 32157, 11362}, {6762, 7987, 11194}, {8715, 22836, 517}, {10310, 18446, 9943}, {10679, 45770, 45776}, {11248, 37700, 6001}, {11499, 37533, 7686}, {25439, 30144, 9957}, {30115, 33771, 3931}


X(56177) = KP2(X(9)) OF X(1) AND X(45)

Barycentrics    a*(a-b-c)*(3*a^2+a*(b+c)-2*(b^2-b*c+c^2)) : :
X(56177) = -4*X[140]+X[49168], X[3189]+5*X[3616], -7*X[3624]+X[12625], -4*X[3636]+X[21627], 11*X[5550]+X[12536], -X[6762]+7*X[30389], 5*X[7987]+X[11523], -5*X[10595]+2*X[13463], -4*X[11729]+X[13271], -X[12245]+4*X[32157], -X[24392]+3*X[25055], -X[24477]+3*X[54445]

X(56177) lies on these lines: {1, 474}, {2, 44669}, {3, 758}, {6, 5429}, {8, 4999}, {9, 53054}, {10, 37739}, {35, 3899}, {36, 3894}, {55, 3877}, {56, 3873}, {63, 37600}, {65, 4855}, {72, 3612}, {78, 210}, {100, 2099}, {106, 41457}, {140, 49168}, {165, 44663}, {191, 19535}, {200, 4711}, {214, 999}, {224, 17616}, {354, 35262}, {376, 17768}, {392, 4428}, {405, 5426}, {443, 11281}, {480, 30284}, {498, 38058}, {515, 11236}, {516, 34626}, {517, 4421}, {518, 3576}, {519, 3653}, {522, 47040}, {528, 5603}, {529, 5731}, {551, 5853}, {938, 6691}, {944, 12607}, {950, 25681}, {952, 34717}, {956, 37525}, {960, 3601}, {968, 54387}, {993, 3940}, {995, 40499}, {997, 1001}, {1012, 6326}, {1125, 12437}, {1259, 22768}, {1317, 12648}, {1319, 3870}, {1329, 3486}, {1385, 3811}, {1420, 34791}, {1470, 12739}, {1478, 10609}, {1482, 8715}, {1483, 49169}, {1699, 34701}, {1837, 27385}, {1962, 19765}, {2096, 38759}, {2098, 3871}, {2320, 3711}, {2478, 10543}, {2802, 10247}, {2900, 8167}, {2975, 4661}, {3035, 18391}, {3061, 4258}, {3161, 30728}, {3169, 16884}, {3174, 42819}, {3189, 3616}, {3241, 5854}, {3242, 37617}, {3243, 13462}, {3295, 3898}, {3303, 8668}, {3306, 44840}, {3336, 19537}, {3361, 45036}, {3434, 15950}, {3488, 3816}, {3555, 37618}, {3586, 5087}, {3617, 51683}, {3624, 12625}, {3632, 24926}, {3635, 12640}, {3636, 21627}, {3649, 4190}, {3684, 34522}, {3689, 3872}, {3794, 4267}, {3868, 5204}, {3869, 5217}, {3895, 5048}, {3897, 4420}, {3919, 25440}, {3927, 4525}, {3956, 9708}, {3962, 4652}, {3968, 9709}, {3976, 8572}, {4188, 5221}, {4302, 51409}, {4304, 24703}, {4361, 25523}, {4539, 41229}, {4640, 30282}, {4731, 19860}, {4744, 36279}, {4867, 5010}, {5123, 5727}, {5131, 19705}, {5433, 12649}, {5529, 37679}, {5538, 7580}, {5550, 12536}, {5552, 10950}, {5657, 5855}, {5692, 16370}, {5703, 25466}, {5790, 34700}, {5794, 13411}, {5851, 54052}, {5882, 32049}, {5883, 16417}, {5886, 11235}, {5902, 15015}, {5904, 37616}, {5905, 15326}, {6265, 10679}, {6282, 11495}, {6735, 37740}, {6737, 26066}, {6762, 30389}, {6765, 11260}, {6767, 52804}, {6910, 21677}, {6911, 22935}, {6932, 54193}, {7223, 17136}, {7280, 41696}, {7483, 39783}, {7967, 34619}, {7987, 11523}, {8583, 51715}, {9668, 11813}, {9945, 39542}, {10072, 34123}, {10176, 16418}, {10179, 10389}, {10200, 12433}, {10306, 40257}, {10310, 21740}, {10528, 10944}, {10595, 13463}, {10915, 37727}, {11015, 12953}, {11041, 35023}, {11108, 35016}, {11321, 30135}, {11374, 17647}, {11415, 15338}, {11496, 33596}, {11517, 22766}, {11520, 32636}, {11682, 37568}, {11684, 17548}, {11729, 13271}, {12114, 37700}, {12245, 32157}, {12559, 37582}, {12738, 18519}, {12943, 31053}, {14882, 38901}, {15174, 17527}, {15624, 37620}, {16126, 37524}, {16137, 17563}, {16408, 30143}, {16486, 17715}, {16761, 37285}, {17318, 24324}, {17532, 37701}, {17558, 45085}, {17595, 49454}, {17619, 37721}, {18185, 18465}, {18446, 50371}, {18481, 21077}, {19538, 41872}, {19582, 52352}, {19861, 37080}, {19907, 25438}, {20007, 30478}, {22753, 37533}, {22837, 37624}, {24392, 25055}, {24473, 35271}, {24477, 54445}, {24914, 41575}, {24982, 37724}, {26364, 37730}, {26725, 44217}, {28160, 34739}, {28234, 34743}, {30115, 30903}, {31165, 35258}, {33126, 48801}, {33135, 48842}, {35227, 46943}, {37531, 37837}, {38028, 45700}, {38202, 50839}, {41711, 54391}, {50194, 54286}, {53037, 54423}

X(56177) = midpoint of X(i) and X(j) for these {i,j}: {1, 3158}, {1699, 34701}, {12437, 24386}, {5731, 25568}, {7967, 34619}
X(56177) = reflection of X(i) in X(j) for these {i,j}: {11194, 3576}, {11235, 5886}, {24386, 1125}, {3158, 56176}, {3913, 3158}, {34700, 5790}, {34706, 1699}, {45700, 38028}
X(56177) = X(i)-Dao conjugate of X(j) for these {i, j}: {3707, 24589}
X(56177) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40434, 9}
X(56177) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2136, 33895}, {1, 3158, 3880}, {1, 3913, 10912}, {1, 5438, 3812}, {1, 5440, 1376}, {1, 56176, 3913}, {3, 22836, 12635}, {55, 4511, 5289}, {78, 2646, 958}, {354, 35262, 40726}, {993, 3940, 5220}, {997, 24929, 1001}, {1385, 3811, 12513}, {3189, 3616, 3813}, {3486, 27383, 1329}, {3689, 3872, 8168}, {3873, 4881, 56}, {3880, 56176, 3158}, {3940, 37606, 993}, {4188, 34195, 5221}, {4881, 34772, 3873}, {5731, 25568, 529}, {5902, 15015, 16371}, {7967, 34619, 38455}, {33596, 45770, 11496}


X(56178) = KP2(X(9)) OF X(1) AND X(72)

Barycentrics    a*(a-b-c)*(2*a^4-a^3*(b+c)-(b^2-c^2)^2-a^2*(b^2+c^2)+a*(b^3+b^2*c+b*c^2+c^3)) : :

X(56178) lies on these lines: {1, 474}, {6, 2900}, {8, 27407}, {31, 15733}, {33, 1260}, {40, 10606}, {55, 39943}, {56, 15954}, {65, 951}, {72, 3465}, {100, 1214}, {200, 219}, {210, 2328}, {278, 17784}, {387, 3189}, {517, 53815}, {518, 1754}, {612, 6600}, {1104, 12625}, {1172, 3694}, {1279, 24392}, {1498, 17857}, {1723, 3052}, {1998, 52424}, {3174, 5269}, {3190, 3689}, {3198, 5285}, {3332, 25568}, {3434, 37695}, {3744, 5853}, {3811, 5706}, {3870, 37543}, {4030, 4847}, {4640, 53388}, {4689, 25080}, {5927, 23693}, {6244, 30265}, {6737, 50366}, {6745, 40960}, {7322, 47375}, {8715, 37528}, {12437, 37539}, {12664, 38857}, {21949, 37887}, {22308, 52139}, {34381, 49127}

X(56178) = X(i)-Dao conjugate of X(j) for these {i, j}: {950, 17863}
X(56178) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1257, 9}
X(56178) = intersection, other than A, B, C, of circumconics {{A, B, C, X(282), X(2341)}}, {{A, B, C, X(2192), X(3445)}}, {{A, B, C, X(52371), X(53013)}}
X(56178) = barycentric product X(i)*X(j) for these (i, j): {44409, 644}
X(56178) = barycentric quotient X(i)/X(j) for these (i, j): {44409, 24002}
X(56178) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {200, 7070, 219}


X(56179) = KP2(X(9)) OF X(8) AND X(2)

Barycentrics    a*(a^2-2*a*b+b^2+c^2)*(a^2+b^2-2*a*c+c^2) : :

X(56179) lies on these lines: {1, 344}, {2, 2191}, {6, 3692}, {8, 34}, {9, 1438}, {33, 30688}, {42, 52396}, {43, 7194}, {46, 34378}, {55, 30676}, {56, 78}, {58, 1792}, {63, 12329}, {69, 200}, {72, 12410}, {75, 28043}, {86, 612}, {87, 3961}, {100, 7289}, {106, 997}, {190, 4319}, {193, 3935}, {271, 1413}, {292, 16973}, {326, 2340}, {519, 998}, {522, 1027}, {613, 42019}, {614, 17352}, {937, 6765}, {977, 54418}, {1026, 53996}, {1126, 16475}, {1253, 4712}, {1386, 2334}, {1411, 3872}, {1431, 3779}, {1474, 2287}, {1809, 36819}, {2261, 4579}, {2263, 32850}, {2279, 51194}, {2346, 25082}, {3056, 9432}, {3174, 51190}, {3226, 54967}, {3242, 3445}, {3416, 52372}, {3589, 4666}, {3619, 8580}, {3912, 8271}, {3957, 51171}, {3979, 39972}, {4327, 49499}, {4384, 55076}, {4385, 8747}, {4437, 25930}, {4578, 26669}, {4737, 36123}, {4855, 22769}, {5287, 10013}, {5531, 39878}, {5534, 6776}, {5687, 34381}, {5720, 39898}, {6600, 25083}, {6769, 51212}, {7172, 54303}, {8816, 20007}, {9001, 16504}, {9053, 36846}, {9277, 42042}, {10382, 30702}, {12651, 51538}, {14872, 39877}, {15624, 16728}, {16491, 41434}, {16713, 26227}, {16972, 25426}, {17962, 49509}, {19860, 49524}, {22836, 49536}, {25050, 51210}, {25992, 38047}, {26924, 43146}, {34249, 53146}, {37782, 53661}, {41436, 49465}

X(56179) = isogonal conjugate of X(614)
X(56179) = isotomic conjugate of X(3673)
X(56179) = trilinear pole of line {649, 3309}
X(56179) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 614}, {2, 16502}, {3, 1851}, {4, 1473}, {6, 4000}, {7, 7083}, {9, 28017}, {19, 7289}, {21, 40961}, {25, 17170}, {27, 23620}, {28, 17441}, {31, 3673}, {34, 1040}, {55, 7195}, {56, 497}, {57, 2082}, {58, 3914}, {65, 5324}, {72, 4211}, {77, 40987}, {81, 16583}, {86, 40934}, {99, 50490}, {101, 48398}, {110, 48403}, {112, 21107}, {213, 16750}, {269, 4319}, {274, 21750}, {278, 7124}, {279, 30706}, {286, 22363}, {513, 1633}, {608, 27509}, {649, 3732}, {738, 28070}, {934, 17115}, {1014, 40965}, {1333, 53510}, {1407, 6554}, {1438, 51400}, {1474, 18589}, {1509, 21813}, {1790, 52577}, {1863, 7053}, {2203, 20235}, {2221, 5286}, {4012, 7023}, {7290, 21450}, {7386, 51686}, {8020, 17206}, {8747, 22057}, {15487, 40188}, {17060, 41934}
X(56179) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 497}, {2, 3673}, {3, 614}, {6, 7289}, {9, 4000}, {10, 3914}, {37, 53510}, {223, 7195}, {244, 48403}, {478, 28017}, {1015, 48398}, {5375, 3732}, {5452, 2082}, {6184, 51400}, {6505, 17170}, {6600, 4319}, {6626, 16750}, {11517, 1040}, {14714, 17115}, {23050, 1863}, {24771, 6554}, {32664, 16502}, {34591, 21107}, {36033, 1473}, {36103, 1851}, {38986, 50490}, {39026, 1633}, {40181, 5286}, {40586, 16583}, {40591, 17441}, {40600, 40934}, {40602, 5324}, {40611, 40961}, {51574, 18589}
X(56179) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8817, 7131}, {40403, 7123}
X(56179) = X(i)-cross conjugate of X(j) for these {i, j}: {657, 190}, {905, 100}, {3938, 1}, {7123, 7131}, {14523, 7}, {17658, 8}, {22131, 63}, {25066, 2}, {53583, 1026}
X(56179) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(2), X(344)}}, {{A, B, C, X(4), X(56137)}}, {{A, B, C, X(7), X(1280)}}, {{A, B, C, X(8), X(69)}}, {{A, B, C, X(9), X(75)}}, {{A, B, C, X(10), X(3811)}}, {{A, B, C, X(19), X(291)}}, {{A, B, C, X(21), X(1219)}}, {{A, B, C, X(28), X(13742)}}, {{A, B, C, X(29), X(37282)}}, {{A, B, C, X(33), X(7033)}}, {{A, B, C, X(37), X(3751)}}, {{A, B, C, X(42), X(612)}}, {{A, B, C, X(43), X(3961)}}, {{A, B, C, X(44), X(9353)}}, {{A, B, C, X(57), X(82)}}, {{A, B, C, X(59), X(77)}}, {{A, B, C, X(63), X(28739)}}, {{A, B, C, X(65), X(989)}}, {{A, B, C, X(66), X(80)}}, {{A, B, C, X(67), X(43731)}}, {{A, B, C, X(72), X(4385)}}, {{A, B, C, X(79), X(43726)}}, {{A, B, C, X(81), X(3618)}}, {{A, B, C, X(84), X(34860)}}, {{A, B, C, X(90), X(596)}}, {{A, B, C, X(95), X(52133)}}, {{A, B, C, X(105), X(39956)}}, {{A, B, C, X(145), X(19861)}}, {{A, B, C, X(190), X(3729)}}, {{A, B, C, X(200), X(480)}}, {{A, B, C, X(219), X(326)}}, {{A, B, C, X(238), X(16973)}}, {{A, B, C, X(256), X(23051)}}, {{A, B, C, X(257), X(31360)}}, {{A, B, C, X(264), X(4518)}}, {{A, B, C, X(281), X(34894)}}, {{A, B, C, X(282), X(14942)}}, {{A, B, C, X(284), X(36741)}}, {{A, B, C, X(319), X(3416)}}, {{A, B, C, X(320), X(49688)}}, {{A, B, C, X(321), X(3681)}}, {{A, B, C, X(341), X(44692)}}, {{A, B, C, X(517), X(4737)}}, {{A, B, C, X(519), X(997)}}, {{A, B, C, X(611), X(3553)}}, {{A, B, C, X(613), X(3554)}}, {{A, B, C, X(614), X(3938)}}, {{A, B, C, X(657), X(4319)}}, {{A, B, C, X(751), X(49527)}}, {{A, B, C, X(757), X(39958)}}, {{A, B, C, X(897), X(41441)}}, {{A, B, C, X(903), X(3062)}}, {{A, B, C, X(905), X(7289)}}, {{A, B, C, X(936), X(6765)}}, {{A, B, C, X(941), X(1390)}}, {{A, B, C, X(969), X(1002)}}, {{A, B, C, X(1000), X(17040)}}, {{A, B, C, X(1001), X(51194)}}, {{A, B, C, X(1014), X(39975)}}, {{A, B, C, X(1016), X(40405)}}, {{A, B, C, X(1023), X(16504)}}, {{A, B, C, X(1037), X(1041)}}, {{A, B, C, X(1038), X(12410)}}, {{A, B, C, X(1100), X(16475)}}, {{A, B, C, X(1156), X(4373)}}, {{A, B, C, X(1252), X(37741)}}, {{A, B, C, X(1253), X(2340)}}, {{A, B, C, X(1268), X(41712)}}, {{A, B, C, X(1320), X(35262)}}, {{A, B, C, X(1386), X(1449)}}, {{A, B, C, X(1476), X(6553)}}, {{A, B, C, X(1743), X(3242)}}, {{A, B, C, X(1757), X(49509)}}, {{A, B, C, X(1807), X(6391)}}, {{A, B, C, X(1814), X(40399)}}, {{A, B, C, X(1909), X(2330)}}, {{A, B, C, X(1911), X(1974)}}, {{A, B, C, X(1961), X(42042)}}, {{A, B, C, X(1992), X(24557)}}, {{A, B, C, X(2161), X(7241)}}, {{A, B, C, X(2209), X(9288)}}, {{A, B, C, X(2827), X(9041)}}, {{A, B, C, X(3247), X(4663)}}, {{A, B, C, X(3422), X(43725)}}, {{A, B, C, X(3467), X(39711)}}, {{A, B, C, X(3551), X(9282)}}, {{A, B, C, X(3673), X(25066)}}, {{A, B, C, X(3869), X(4696)}}, {{A, B, C, X(3872), X(4511)}}, {{A, B, C, X(3920), X(5256)}}, {{A, B, C, X(3957), X(4666)}}, {{A, B, C, X(3979), X(26102)}}, {{A, B, C, X(4384), X(17277)}}, {{A, B, C, X(4570), X(56139)}}, {{A, B, C, X(4649), X(16972)}}, {{A, B, C, X(4659), X(17336)}}, {{A, B, C, X(5223), X(50995)}}, {{A, B, C, X(5287), X(17018)}}, {{A, B, C, X(5293), X(50581)}}, {{A, B, C, X(5486), X(5559)}}, {{A, B, C, X(5557), X(38005)}}, {{A, B, C, X(5560), X(15321)}}, {{A, B, C, X(6339), X(54123)}}, {{A, B, C, X(6601), X(52663)}}, {{A, B, C, X(7091), X(39702)}}, {{A, B, C, X(7093), X(34250)}}, {{A, B, C, X(7131), X(30676)}}, {{A, B, C, X(7155), X(18816)}}, {{A, B, C, X(7160), X(31359)}}, {{A, B, C, X(7161), X(39708)}}, {{A, B, C, X(7163), X(34207)}}, {{A, B, C, X(7284), X(39697)}}, {{A, B, C, X(8270), X(37577)}}, {{A, B, C, X(9309), X(40400)}}, {{A, B, C, X(10390), X(39704)}}, {{A, B, C, X(13476), X(40401)}}, {{A, B, C, X(14191), X(52556)}}, {{A, B, C, X(15180), X(24858)}}, {{A, B, C, X(16491), X(16666)}}, {{A, B, C, X(16667), X(38315)}}, {{A, B, C, X(16670), X(49465)}}, {{A, B, C, X(16774), X(43734)}}, {{A, B, C, X(17792), X(24524)}}, {{A, B, C, X(18743), X(25067)}}, {{A, B, C, X(19604), X(46972)}}, {{A, B, C, X(19860), X(34772)}}, {{A, B, C, X(20880), X(25082)}}, {{A, B, C, X(21446), X(36807)}}, {{A, B, C, X(22277), X(47373)}}, {{A, B, C, X(22336), X(43732)}}, {{A, B, C, X(25237), X(25244)}}, {{A, B, C, X(25430), X(39737)}}, {{A, B, C, X(26893), X(26924)}}, {{A, B, C, X(30648), X(56142)}}, {{A, B, C, X(32635), X(43533)}}, {{A, B, C, X(34399), X(44184)}}, {{A, B, C, X(34525), X(51567)}}, {{A, B, C, X(36101), X(39749)}}, {{A, B, C, X(36404), X(49490)}}, {{A, B, C, X(39798), X(39954)}}, {{A, B, C, X(42301), X(44327)}}, {{A, B, C, X(47595), X(49698)}}, {{A, B, C, X(51565), X(56101)}}
X(56179) = barycentric product X(i)*X(j) for these (i, j): {1, 30701}, {10, 40403}, {100, 48070}, {200, 30705}, {514, 52778}, {1037, 312}, {1041, 345}, {1459, 42384}, {3239, 8269}, {7084, 76}, {7123, 75}, {7131, 8}, {8817, 9}, {40411, 72}, {54967, 649}
X(56179) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4000}, {2, 3673}, {3, 7289}, {6, 614}, {9, 497}, {10, 53510}, {19, 1851}, {31, 16502}, {37, 3914}, {41, 7083}, {42, 16583}, {48, 1473}, {55, 2082}, {56, 28017}, {57, 7195}, {63, 17170}, {71, 17441}, {72, 18589}, {78, 27509}, {86, 16750}, {100, 3732}, {101, 1633}, {200, 6554}, {212, 7124}, {213, 40934}, {219, 1040}, {220, 4319}, {228, 23620}, {284, 5324}, {306, 20235}, {480, 28070}, {513, 48398}, {518, 51400}, {607, 40987}, {612, 5286}, {656, 21107}, {657, 17115}, {661, 48403}, {728, 4012}, {798, 50490}, {872, 21813}, {1037, 57}, {1041, 278}, {1253, 30706}, {1334, 40965}, {1400, 40961}, {1474, 4211}, {1824, 52577}, {1918, 21750}, {2200, 22363}, {3681, 17671}, {3870, 41785}, {3949, 21015}, {3990, 22057}, {4712, 17060}, {5227, 7386}, {7079, 1863}, {7084, 6}, {7123, 1}, {7131, 7}, {8269, 658}, {8270, 41786}, {8817, 85}, {12329, 15487}, {13577, 41788}, {14935, 2170}, {17742, 11677}, {17784, 41787}, {30701, 75}, {30705, 1088}, {40403, 86}, {40411, 286}, {48070, 693}, {52778, 190}, {54967, 1978}


X(56180) = KP2(X(9)) OF X(8) AND X(55)

Barycentrics    (a^2-a*b+b^2)*(a-b-c)*(a^2-a*c+c^2) : :

X(56180) lies on these lines: {8, 238}, {75, 183}, {87, 1911}, {200, 4451}, {242, 318}, {341, 3685}, {346, 3217}, {390, 6556}, {1043, 3790}, {1219, 7132}, {1222, 49688}, {2220, 17281}, {2370, 8685}, {2726, 8684}, {3705, 17279}, {7155, 19589}, {17786, 24820}, {36815, 52409}

X(56180) = isogonal conjugate of X(7248)
X(56180) = isotomic conjugate of X(7185)
X(56180) = trilinear pole of line {3239, 4435}
X(56180) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 7248}, {6, 41777}, {7, 7032}, {31, 7185}, {34, 3784}, {56, 982}, {57, 2275}, {109, 3777}, {269, 3056}, {279, 20665}, {604, 3662}, {664, 50514}, {1014, 3778}, {1042, 3794}, {1106, 3705}, {1119, 20753}, {1333, 16888}, {1396, 20727}, {1397, 33930}, {1402, 33947}, {1407, 3061}, {1408, 2887}, {1409, 31917}, {1412, 3721}, {1415, 3776}, {1431, 7184}, {1434, 16584}, {3863, 7175}, {3888, 43924}, {4073, 7023}, {7153, 20284}, {7186, 52372}, {7237, 7341}, {16947, 20234}, {40499, 43932}
X(56180) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 982}, {2, 7185}, {3, 7248}, {9, 41777}, {11, 3777}, {37, 16888}, {1146, 3776}, {2968, 3810}, {3161, 3662}, {5452, 2275}, {6552, 3705}, {6600, 3056}, {6741, 3801}, {11517, 3784}, {24771, 3061}, {39025, 50514}, {40599, 3721}, {40605, 33947}, {51402, 53533}
X(56180) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7033, 17743}
X(56180) = X(i)-cross conjugate of X(j) for these {i, j}: {4147, 3699}, {8641, 644}
X(56180) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(37588)}}, {{A, B, C, X(2), X(26685)}}, {{A, B, C, X(6), X(8851)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(9), X(87)}}, {{A, B, C, X(21), X(3217)}}, {{A, B, C, X(29), X(17697)}}, {{A, B, C, X(55), X(1403)}}, {{A, B, C, X(183), X(2287)}}, {{A, B, C, X(200), X(7081)}}, {{A, B, C, X(281), X(4518)}}, {{A, B, C, X(312), X(17280)}}, {{A, B, C, X(314), X(32941)}}, {{A, B, C, X(333), X(17349)}}, {{A, B, C, X(390), X(3161)}}, {{A, B, C, X(522), X(17765)}}, {{A, B, C, X(1253), X(51928)}}, {{A, B, C, X(1261), X(1376)}}, {{A, B, C, X(2220), X(3871)}}, {{A, B, C, X(2321), X(3773)}}, {{A, B, C, X(2325), X(49700)}}, {{A, B, C, X(2329), X(3208)}}, {{A, B, C, X(3596), X(33165)}}, {{A, B, C, X(4183), X(37099)}}, {{A, B, C, X(4433), X(4517)}}, {{A, B, C, X(7071), X(34247)}}, {{A, B, C, X(7155), X(14942)}}, {{A, B, C, X(14621), X(36799)}}, {{A, B, C, X(15742), X(56179)}}, {{A, B, C, X(20895), X(49688)}}, {{A, B, C, X(30479), X(36916)}}, {{A, B, C, X(36630), X(39972)}}, {{A, B, C, X(43749), X(49704)}}, {{A, B, C, X(49693), X(55076)}}
X(56180) = barycentric product X(i)*X(j) for these (i, j): {41, 7034}, {210, 38810}, {261, 43265}, {312, 983}, {341, 7132}, {2321, 40415}, {3114, 4517}, {3407, 3790}, {4621, 522}, {7033, 9}, {7064, 7307}, {17743, 8}, {30713, 38813}, {30730, 7255}, {40834, 4433}, {52622, 8685}
X(56180) = barycentric quotient X(i)/X(j) for these (i, j): {1, 41777}, {2, 7185}, {6, 7248}, {8, 3662}, {9, 982}, {10, 16888}, {29, 31917}, {41, 7032}, {55, 2275}, {200, 3061}, {210, 3721}, {219, 3784}, {220, 3056}, {312, 33930}, {333, 33947}, {346, 3705}, {522, 3776}, {644, 3888}, {650, 3777}, {728, 4073}, {983, 57}, {1253, 20665}, {1334, 3778}, {1639, 53533}, {1802, 20753}, {2287, 3794}, {2318, 20727}, {2321, 2887}, {2329, 7184}, {3063, 50514}, {3208, 41886}, {3239, 3810}, {3685, 33891}, {3699, 33946}, {3700, 3801}, {3701, 20234}, {3790, 3314}, {4069, 7239}, {4082, 4136}, {4433, 18904}, {4435, 3808}, {4517, 3094}, {4621, 664}, {6057, 16886}, {7033, 85}, {7034, 20567}, {7081, 7187}, {7132, 269}, {7255, 17096}, {8685, 1461}, {16886, 41291}, {17743, 7}, {27538, 33890}, {38813, 1412}, {40415, 1434}, {43265, 12}, {52405, 7186}


X(56181) = KP2(X(9)) OF X(21) AND X(41)

Barycentrics    a*(a+b)*(a-b-c)*(a+c)*(-(b*c)+a*(b+c)) : :

X(56181) lies on these lines: {1, 25059}, {2, 37502}, {3, 20018}, {6, 4203}, {8, 21}, {27, 11406}, {41, 7075}, {42, 81}, {43, 2209}, {58, 3550}, {69, 37467}, {86, 1376}, {145, 4225}, {149, 14008}, {165, 18206}, {192, 20760}, {193, 37400}, {200, 3786}, {228, 1999}, {284, 2319}, {314, 7081}, {385, 4220}, {387, 37030}, {404, 940}, {497, 27518}, {519, 4276}, {581, 50579}, {612, 25058}, {643, 2194}, {740, 11688}, {846, 3728}, {851, 17778}, {941, 5275}, {956, 37303}, {1010, 5687}, {1011, 37652}, {1014, 5933}, {1030, 50252}, {1333, 6043}, {1350, 7411}, {1403, 3212}, {1444, 17731}, {1621, 5235}, {1654, 4199}, {1697, 46877}, {1778, 17735}, {1816, 1936}, {1817, 37581}, {2177, 10458}, {2269, 2287}, {2303, 4386}, {2328, 7220}, {2651, 26893}, {2975, 32853}, {3158, 3794}, {3185, 49470}, {3214, 27660}, {3286, 4421}, {3295, 11110}, {3434, 14009}, {3651, 48917}, {3685, 20967}, {3750, 10459}, {3769, 15624}, {3779, 41610}, {3868, 18673}, {3870, 5208}, {3920, 25060}, {3961, 35623}, {3971, 52923}, {4038, 5253}, {4184, 16704}, {4191, 37684}, {4204, 26044}, {4210, 37639}, {4219, 56014}, {4229, 6244}, {4278, 50590}, {4281, 5255}, {4413, 25507}, {4427, 25294}, {4511, 21334}, {4653, 25439}, {4658, 25440}, {4921, 4954}, {5047, 19732}, {5132, 14829}, {5281, 16713}, {5284, 30970}, {5331, 5710}, {5440, 18465}, {5552, 14011}, {6745, 17182}, {6765, 10461}, {7580, 56020}, {8025, 35983}, {9709, 14007}, {10306, 37422}, {10434, 49495}, {10449, 19763}, {11322, 37685}, {11358, 17379}, {11502, 31631}, {14005, 26115}, {14459, 40592}, {14552, 37175}, {14942, 46880}, {14956, 20075}, {15149, 38300}, {16056, 17300}, {16058, 17349}, {16678, 54391}, {16830, 37870}, {16858, 48862}, {17139, 25568}, {17232, 50199}, {17594, 40773}, {18178, 20359}, {20009, 27652}, {20077, 37425}, {20691, 51319}, {20805, 41835}, {21319, 37759}, {25254, 53349}, {27639, 30947}, {27653, 34772}, {30984, 32948}, {32863, 35984}, {32911, 35992}, {35206, 35633}, {35978, 37540}, {37329, 37653}

X(56181) = perspector of circumconic {{A, B, C, X(645), X(4584)}}
X(56181) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 23493}, {37, 7153}, {56, 42027}, {57, 16606}, {65, 87}, {85, 21759}, {213, 7209}, {225, 23086}, {226, 2162}, {273, 22381}, {330, 1400}, {932, 4017}, {961, 45197}, {1014, 7148}, {1042, 7155}, {1402, 6384}, {1427, 2319}, {1434, 6378}, {1441, 7121}, {2053, 3668}, {4032, 51974}, {4551, 43931}, {4598, 7180}, {7178, 34071}, {15373, 40149}, {18830, 51641}
X(56181) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 42027}, {75, 349}, {3061, 16888}, {3835, 53540}, {5452, 16606}, {6377, 4077}, {6626, 7209}, {17063, 48643}, {20257, 21927}, {34961, 932}, {40582, 330}, {40589, 7153}, {40598, 1441}, {40602, 87}, {40605, 6384}, {40610, 7178}, {55062, 523}
X(56181) = X(i)-Ceva conjugate of X(j) for these {i, j}: {284, 21}, {33296, 27644}
X(56181) = X(i)-cross conjugate of X(j) for these {i, j}: {4147, 52923}
X(56181) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(43)}}, {{A, B, C, X(9), X(38275)}}, {{A, B, C, X(21), X(741)}}, {{A, B, C, X(42), X(4433)}}, {{A, B, C, X(55), X(1403)}}, {{A, B, C, X(171), X(3684)}}, {{A, B, C, X(192), X(345)}}, {{A, B, C, X(333), X(27644)}}, {{A, B, C, X(893), X(3685)}}, {{A, B, C, X(958), X(2176)}}, {{A, B, C, X(1036), X(41526)}}, {{A, B, C, X(1043), X(33296)}}, {{A, B, C, X(1259), X(20760)}}, {{A, B, C, X(1320), X(49492)}}, {{A, B, C, X(1423), X(5273)}}, {{A, B, C, X(1792), X(1808)}}, {{A, B, C, X(2269), X(18235)}}, {{A, B, C, X(3486), X(20287)}}, {{A, B, C, X(3704), X(20691)}}, {{A, B, C, X(3971), X(4147)}}, {{A, B, C, X(4083), X(44669)}}, {{A, B, C, X(4600), X(13588)}}, {{A, B, C, X(7081), X(45216)}}, {{A, B, C, X(27527), X(31008)}}
X(56181) = barycentric product X(i)*X(j) for these (i, j): {100, 27527}, {192, 21}, {210, 7304}, {284, 6376}, {312, 38832}, {333, 43}, {1043, 1423}, {2176, 314}, {2185, 3971}, {2194, 6382}, {2209, 28660}, {2287, 3212}, {2328, 30545}, {3208, 86}, {3737, 4595}, {3786, 52136}, {3835, 643}, {4083, 645}, {4110, 58}, {4147, 662}, {4560, 52923}, {4631, 50491}, {16695, 646}, {16742, 4076}, {17217, 644}, {17921, 4571}, {18197, 3699}, {20691, 261}, {20760, 31623}, {20906, 5546}, {20979, 7257}, {21051, 4612}, {22370, 29}, {25098, 36797}, {27538, 81}, {27644, 8}, {30584, 4603}, {31008, 55}, {33296, 9}, {36860, 663}, {36863, 7252}, {43051, 7256}
X(56181) = barycentric quotient X(i)/X(j) for these (i, j): {9, 42027}, {21, 330}, {41, 23493}, {43, 226}, {55, 16606}, {58, 7153}, {86, 7209}, {192, 1441}, {284, 87}, {314, 6383}, {333, 6384}, {643, 4598}, {645, 18830}, {1043, 27424}, {1334, 7148}, {1403, 1427}, {1423, 3668}, {2175, 21759}, {2176, 65}, {2193, 23086}, {2194, 2162}, {2209, 1400}, {2269, 45197}, {2287, 7155}, {2328, 2319}, {3123, 53545}, {3208, 10}, {3212, 1446}, {3786, 51837}, {3835, 4077}, {3913, 27432}, {3971, 6358}, {4083, 7178}, {4110, 313}, {4147, 1577}, {4267, 27455}, {4612, 56053}, {5546, 932}, {6376, 349}, {6377, 53540}, {7252, 43931}, {8640, 7180}, {14408, 30572}, {16695, 3669}, {16742, 1358}, {17217, 24002}, {18197, 3676}, {20691, 12}, {20760, 1214}, {20967, 45218}, {20979, 4017}, {22090, 51664}, {22370, 307}, {25098, 17094}, {27527, 693}, {27538, 321}, {27644, 7}, {31008, 6063}, {33296, 85}, {36860, 4572}, {38832, 57}, {41526, 1042}, {41886, 16888}, {45216, 45208}, {51902, 4032}, {52352, 27496}, {52425, 22381}, {52923, 4552}, {52964, 40663}
X(56181) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {43, 38832, 27644}, {81, 100, 13588}, {200, 17185, 3786}, {1043, 4267, 21}, {1376, 18185, 86}, {3913, 4267, 1043}


X(56182) = KP2(X(9)) OF X(21) AND X(78)

Barycentrics    a*(a+b)*(a-b-c)^3*(a+c) : :

X(56182) lies on these lines: {3, 37655}, {8, 21}, {27, 17784}, {28, 5687}, {29, 7080}, {58, 6765}, {69, 7411}, {78, 7070}, {81, 3870}, {86, 10578}, {92, 32929}, {99, 15731}, {100, 306}, {200, 1253}, {284, 3158}, {314, 2346}, {332, 1014}, {346, 1260}, {391, 13615}, {404, 18141}, {461, 27522}, {480, 5423}, {643, 1812}, {644, 2318}, {728, 6602}, {740, 26000}, {943, 5295}, {968, 23668}, {1005, 5739}, {1172, 3694}, {1261, 2194}, {1330, 33557}, {1441, 32932}, {1621, 3886}, {1778, 3052}, {2352, 49687}, {2895, 35989}, {3198, 5279}, {3295, 47512}, {3651, 41014}, {3695, 30733}, {3719, 41228}, {3935, 40571}, {3936, 35990}, {4082, 4578}, {4233, 10327}, {4417, 36002}, {4571, 42033}, {4651, 40435}, {4653, 9623}, {4869, 37270}, {5082, 25516}, {5174, 54340}, {5208, 7672}, {5235, 25006}, {5281, 37265}, {5327, 25568}, {6600, 7172}, {6745, 17188}, {6986, 10449}, {7256, 28071}, {7283, 52345}, {7677, 10453}, {8822, 9778}, {9709, 17581}, {11239, 51669}, {11491, 37418}, {12410, 27652}, {14552, 20835}, {16704, 20015}, {18139, 35985}, {19860, 25059}, {23079, 50423}, {23600, 27404}, {26872, 35981}, {32863, 36003}, {34409, 37741}, {35613, 52769}, {37224, 43533}, {37292, 49718}, {37442, 37580}

X(56182) = perspector of circumconic {{A, B, C, X(645), X(7259)}}
X(56182) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 1042}, {10, 7023}, {34, 1439}, {37, 738}, {42, 479}, {56, 3668}, {57, 1427}, {58, 6046}, {65, 269}, {73, 1119}, {77, 1426}, {81, 7147}, {86, 7143}, {213, 23062}, {225, 7053}, {226, 1407}, {273, 1410}, {278, 52373}, {279, 1400}, {307, 1398}, {321, 7366}, {349, 52410}, {512, 4626}, {523, 6614}, {604, 1446}, {651, 7216}, {658, 7180}, {661, 4617}, {664, 7250}, {669, 52937}, {798, 36838}, {934, 4017}, {1014, 1254}, {1020, 3669}, {1088, 1402}, {1106, 1441}, {1214, 1435}, {1245, 7197}, {1262, 53545}, {1396, 37755}, {1409, 1847}, {1412, 6354}, {1461, 7178}, {1474, 20618}, {1880, 7177}, {2333, 30682}, {3120, 7339}, {3676, 53321}, {4516, 24013}, {4551, 43932}, {4566, 43924}, {4569, 51641}, {6611, 8808}, {7045, 53540}, {7099, 40149}, {8809, 40933}, {21044, 23971}, {32714, 51664}
X(56182) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3668}, {10, 6046}, {2968, 4077}, {3161, 1446}, {3900, 4516}, {5452, 1427}, {6552, 1441}, {6600, 65}, {6608, 3120}, {6626, 23062}, {7358, 17094}, {11517, 1439}, {14714, 4017}, {17115, 53540}, {23050, 225}, {24771, 226}, {31998, 36838}, {34961, 934}, {35508, 7178}, {36830, 4617}, {38991, 7216}, {39025, 7250}, {39054, 4626}, {40582, 279}, {40586, 7147}, {40589, 738}, {40592, 479}, {40599, 6354}, {40600, 7143}, {40602, 269}, {40605, 1088}, {51574, 20618}, {55068, 3676}
X(56182) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1043, 2287}
X(56182) = X(i)-cross conjugate of X(j) for these {i, j}: {4163, 4578}
X(56182) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4313)}}, {{A, B, C, X(8), X(200)}}, {{A, B, C, X(9), X(5273)}}, {{A, B, C, X(21), X(2328)}}, {{A, B, C, X(33), X(3486)}}, {{A, B, C, X(55), X(480)}}, {{A, B, C, X(92), X(41798)}}, {{A, B, C, X(210), X(21677)}}, {{A, B, C, X(220), X(958)}}, {{A, B, C, X(333), X(2287)}}, {{A, B, C, X(345), X(346)}}, {{A, B, C, X(413), X(4206)}}, {{A, B, C, X(1014), X(2299)}}, {{A, B, C, X(1156), X(7008)}}, {{A, B, C, X(1259), X(1260)}}, {{A, B, C, X(1441), X(53013)}}, {{A, B, C, X(1476), X(2192)}}, {{A, B, C, X(3263), X(45791)}}, {{A, B, C, X(3680), X(12536)}}, {{A, B, C, X(3704), X(4515)}}, {{A, B, C, X(3712), X(4130)}}, {{A, B, C, X(3870), X(28057)}}, {{A, B, C, X(3900), X(44669)}}, {{A, B, C, X(4082), X(4163)}}, {{A, B, C, X(4105), X(4433)}}, {{A, B, C, X(4267), X(23609)}}, {{A, B, C, X(6060), X(7070)}}, {{A, B, C, X(6559), X(6605)}}, {{A, B, C, X(7072), X(22760)}}, {{A, B, C, X(7073), X(10543)}}, {{A, B, C, X(10950), X(52371)}}
X(56182) = barycentric product X(i)*X(j) for these (i, j): {21, 346}, {28, 30681}, {29, 3692}, {200, 333}, {210, 7058}, {220, 314}, {261, 4515}, {274, 480}, {283, 7101}, {284, 341}, {310, 6602}, {321, 6061}, {332, 7079}, {345, 4183}, {522, 7259}, {644, 7253}, {650, 7256}, {657, 7257}, {663, 7258}, {728, 86}, {1021, 3699}, {1043, 9}, {1098, 2321}, {1172, 1265}, {1253, 28660}, {1260, 31623}, {1792, 281}, {1802, 44130}, {1812, 7046}, {2185, 4082}, {2287, 8}, {2299, 52406}, {2322, 78}, {2326, 3710}, {2327, 318}, {2328, 312}, {2332, 3718}, {3022, 4601}, {3119, 4600}, {3239, 643}, {3701, 7054}, {3737, 6558}, {3900, 645}, {4012, 40403}, {4081, 4567}, {4105, 799}, {4130, 99}, {4163, 662}, {4397, 5546}, {4524, 4631}, {4560, 4578}, {5423, 81}, {14827, 40072}, {17926, 4571}, {21789, 646}, {23609, 28654}, {24010, 4620}, {30693, 58}, {36197, 6064}
X(56182) = barycentric quotient X(i)/X(j) for these (i, j): {8, 1446}, {9, 3668}, {21, 279}, {29, 1847}, {37, 6046}, {41, 1042}, {42, 7147}, {55, 1427}, {58, 738}, {72, 20618}, {81, 479}, {86, 23062}, {99, 36838}, {110, 4617}, {163, 6614}, {200, 226}, {210, 6354}, {212, 52373}, {213, 7143}, {219, 1439}, {220, 65}, {283, 7177}, {284, 269}, {333, 1088}, {341, 349}, {346, 1441}, {480, 37}, {607, 1426}, {643, 658}, {644, 4566}, {645, 4569}, {657, 4017}, {662, 4626}, {663, 7216}, {728, 10}, {762, 7314}, {799, 52937}, {1021, 3676}, {1043, 85}, {1098, 1434}, {1172, 1119}, {1253, 1400}, {1260, 1214}, {1265, 1231}, {1333, 7023}, {1334, 1254}, {1444, 30682}, {1792, 348}, {1802, 73}, {1812, 7056}, {2193, 7053}, {2194, 1407}, {2204, 1398}, {2206, 7366}, {2287, 7}, {2299, 1435}, {2303, 7197}, {2310, 53545}, {2318, 37755}, {2322, 273}, {2327, 77}, {2328, 57}, {2332, 34}, {3022, 3125}, {3059, 52023}, {3063, 7250}, {3119, 3120}, {3239, 4077}, {3692, 307}, {3694, 6356}, {3900, 7178}, {3939, 1020}, {3965, 41003}, {4012, 53510}, {4069, 4605}, {4073, 16888}, {4081, 16732}, {4082, 6358}, {4105, 661}, {4130, 523}, {4163, 1577}, {4183, 278}, {4515, 12}, {4578, 4552}, {4612, 4616}, {4620, 24011}, {4636, 4637}, {4936, 4848}, {5423, 321}, {5546, 934}, {6061, 81}, {6602, 42}, {7046, 40149}, {7054, 1014}, {7070, 36908}, {7071, 1880}, {7079, 225}, {7252, 43932}, {7253, 24002}, {7256, 4554}, {7257, 46406}, {7258, 4572}, {7259, 664}, {7367, 52384}, {7368, 227}, {8551, 52020}, {8641, 7180}, {14427, 30572}, {14827, 1402}, {14936, 53540}, {16713, 53242}, {16726, 41292}, {21789, 3669}, {23609, 593}, {24010, 21044}, {28070, 3914}, {30681, 20336}, {30693, 313}, {30706, 40961}, {35508, 4516}, {36197, 1365}, {36797, 13149}, {45791, 3925}, {46877, 3674}, {46889, 24471}, {52370, 1425}, {52378, 24013}, {52425, 1410}, {52614, 53551}, {53013, 13853}, {54416, 10376}
X(56182) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {200, 2328, 2287}, {1043, 1792, 21}


X(56183) = KP2(X(9)) OF X(21) AND X(100)

Barycentrics    a*(a-b)*(a-c)*(a-b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(56183) lies on these lines: {4, 528}, {19, 3174}, {20, 38687}, {25, 23858}, {28, 12437}, {33, 3158}, {34, 2136}, {55, 4081}, {100, 108}, {101, 40117}, {105, 34337}, {153, 10731}, {162, 4606}, {200, 40971}, {281, 1863}, {318, 3871}, {480, 55116}, {519, 37305}, {521, 651}, {522, 1633}, {646, 4571}, {648, 4238}, {664, 8269}, {692, 3900}, {728, 7156}, {1018, 1783}, {1119, 8730}, {1172, 4876}, {1260, 44695}, {1292, 26706}, {1295, 38554}, {1634, 7463}, {1753, 6765}, {1785, 48696}, {1826, 4097}, {1845, 5541}, {1861, 5853}, {1870, 3880}, {2356, 19589}, {2766, 9058}, {3189, 41227}, {3270, 52663}, {3813, 52252}, {4183, 36910}, {4200, 12632}, {4231, 36898}, {4249, 52604}, {4421, 37441}, {4551, 31511}, {4557, 6135}, {4578, 30730}, {4605, 8058}, {4953, 16686}, {5440, 15500}, {5687, 7952}, {6174, 23711}, {6198, 56176}, {6335, 15742}, {6606, 18026}, {7079, 47375}, {7412, 8715}, {10310, 18283}, {11248, 38870}, {12331, 21664}, {12536, 54343}, {13138, 36059}, {16578, 36122}, {17314, 38860}, {20344, 20621}, {24028, 36121}, {30236, 32704}, {32714, 35338}, {35994, 41803}

X(56183) = reflection of X(i) in X(j) for these {i,j}: {28071, 6600}
X(56183) = trilinear pole of line {33, 210}
X(56183) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 3676}, {7, 1459}, {34, 4131}, {48, 24002}, {56, 4025}, {57, 905}, {58, 17094}, {63, 3669}, {69, 43924}, {71, 17096}, {72, 7203}, {73, 7192}, {77, 513}, {78, 43932}, {81, 51664}, {85, 22383}, {109, 1565}, {184, 52621}, {222, 514}, {226, 7254}, {244, 6516}, {269, 521}, {273, 23224}, {278, 4091}, {279, 652}, {286, 51640}, {295, 43041}, {307, 3733}, {326, 43923}, {332, 7250}, {348, 649}, {522, 7053}, {525, 1412}, {552, 55230}, {603, 693}, {604, 15413}, {608, 30805}, {647, 1434}, {650, 7177}, {651, 3942}, {656, 1014}, {657, 30682}, {658, 7117}, {663, 7056}, {664, 3937}, {667, 7182}, {934, 7004}, {1019, 1214}, {1086, 1813}, {1088, 1946}, {1106, 35518}, {1111, 36059}, {1331, 1358}, {1332, 53538}, {1357, 4561}, {1364, 36118}, {1396, 24018}, {1398, 52616}, {1400, 15419}, {1407, 6332}, {1408, 14208}, {1409, 7199}, {1410, 18155}, {1414, 18210}, {1437, 4077}, {1439, 3737}, {1444, 4017}, {1461, 26932}, {1509, 55234}, {1790, 7178}, {1796, 30724}, {1797, 30725}, {1803, 21104}, {1804, 7649}, {1812, 7216}, {1814, 53544}, {1818, 43930}, {1847, 36054}, {2968, 6614}, {2969, 6517}, {3121, 55205}, {3261, 52411}, {3267, 16947}, {3270, 4626}, {3668, 23189}, {4064, 7341}, {4391, 7099}, {4394, 27832}, {4466, 4565}, {4558, 53545}, {4560, 52373}, {4572, 22096}, {4592, 53540}, {4617, 34591}, {4637, 53560}, {6545, 44717}, {6591, 7183}, {7125, 17924}, {7153, 25098}, {7180, 17206}, {7215, 36127}, {7233, 22384}, {7249, 22093}, {7335, 46107}, {7366, 15416}, {14837, 55117}, {17107, 24562}, {17197, 52610}, {17205, 23067}, {17219, 53321}, {17925, 40152}, {18815, 22379}, {23696, 34855}, {23727, 56005}, {23989, 32660}, {31637, 53539}, {36057, 43042}, {40443, 48151}, {43052, 55979}, {43925, 52565}, {52392, 53314}, {53532, 56049}
X(56183) = X(i)-vertex conjugate of X(j) for these {i, j}: {1461, 37141}
X(56183) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4025}, {10, 17094}, {11, 1565}, {220, 24562}, {1249, 24002}, {2968, 17880}, {3161, 15413}, {3162, 3669}, {5139, 53540}, {5375, 348}, {5452, 905}, {5521, 1358}, {6552, 35518}, {6600, 521}, {6631, 7182}, {7952, 693}, {11517, 4131}, {13999, 4089}, {14714, 7004}, {15259, 43923}, {20620, 1111}, {20621, 43042}, {23050, 522}, {24771, 6332}, {34822, 23732}, {34961, 1444}, {35508, 26932}, {36103, 3676}, {38966, 11}, {38991, 3942}, {39025, 3937}, {39026, 77}, {39052, 1434}, {39053, 1088}, {40582, 15419}, {40586, 51664}, {40596, 1014}, {40599, 525}, {40608, 18210}, {53990, 40615}, {55064, 4466}, {55068, 17219}
X(56183) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1897, 1783}, {7012, 9}, {15742, 281}
X(56183) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {26706, 33650}
X(56183) = X(i)-cross conjugate of X(j) for these {i, j}: {3900, 7046}, {4130, 9}, {4557, 3939}, {18344, 33}
X(56183) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(651)}}, {{A, B, C, X(21), X(14074)}}, {{A, B, C, X(55), X(692)}}, {{A, B, C, X(100), X(677)}}, {{A, B, C, X(108), X(8750)}}, {{A, B, C, X(281), X(6335)}}, {{A, B, C, X(521), X(4130)}}, {{A, B, C, X(522), X(47695)}}, {{A, B, C, X(528), X(15733)}}, {{A, B, C, X(644), X(646)}}, {{A, B, C, X(653), X(1783)}}, {{A, B, C, X(943), X(44059)}}, {{A, B, C, X(1292), X(40576)}}, {{A, B, C, X(2310), X(46041)}}, {{A, B, C, X(2321), X(4605)}}, {{A, B, C, X(2328), X(43347)}}, {{A, B, C, X(2804), X(3900)}}, {{A, B, C, X(3699), X(14594)}}, {{A, B, C, X(4183), X(4242)}}, {{A, B, C, X(4238), X(28044)}}, {{A, B, C, X(4557), X(4571)}}, {{A, B, C, X(4569), X(6601)}}, {{A, B, C, X(6065), X(46649)}}, {{A, B, C, X(6558), X(36147)}}, {{A, B, C, X(7046), X(53151)}}, {{A, B, C, X(7070), X(31511)}}, {{A, B, C, X(8693), X(33635)}}, {{A, B, C, X(42069), X(44426)}}
X(56183) = barycentric product X(i)*X(j) for these (i, j): {4, 644}, {19, 3699}, {25, 646}, {27, 4069}, {28, 30730}, {34, 6558}, {55, 6335}, {100, 281}, {101, 318}, {107, 3694}, {108, 346}, {109, 7101}, {112, 3701}, {158, 4587}, {162, 2321}, {190, 33}, {200, 653}, {210, 648}, {225, 7259}, {270, 4103}, {278, 4578}, {312, 8750}, {393, 4571}, {607, 668}, {651, 7046}, {664, 7079}, {692, 7017}, {1016, 18344}, {1018, 29}, {1110, 46110}, {1172, 3952}, {1252, 44426}, {1253, 46404}, {1260, 54240}, {1261, 17906}, {1332, 1857}, {1334, 811}, {1783, 8}, {1802, 52938}, {1824, 645}, {1826, 643}, {1880, 7256}, {1896, 4574}, {1897, 9}, {1978, 2212}, {2201, 36801}, {2204, 27808}, {2299, 4033}, {2318, 823}, {2322, 4551}, {2333, 7257}, {3064, 765}, {3239, 7012}, {3700, 5379}, {3900, 46102}, {3939, 92}, {3949, 52921}, {4076, 6591}, {4163, 7128}, {4183, 4552}, {4397, 7115}, {4554, 7071}, {4600, 55206}, {4606, 461}, {4612, 7140}, {13138, 55116}, {13149, 480}, {15742, 650}, {17924, 6065}, {18026, 220}, {24019, 3710}, {28044, 32041}, {30713, 32676}, {30731, 36125}, {31615, 42069}, {31623, 4557}, {32674, 341}, {32714, 5423}, {34080, 44721}, {36099, 3974}, {36118, 728}, {36127, 3692}, {36147, 46878}, {36797, 37}, {36802, 5089}, {36804, 52427}, {36910, 4242}, {38462, 5548}, {40117, 7080}, {40521, 46103}, {40971, 44327}, {41013, 5546}, {41320, 51566}, {42384, 7083}, {46108, 52927}, {52370, 6528}, {52607, 56182}, {52663, 53151}, {52914, 594}, {53008, 662}, {55231, 7064}, {55233, 872}
X(56183) = barycentric quotient X(i)/X(j) for these (i, j): {4, 24002}, {8, 15413}, {9, 4025}, {19, 3676}, {21, 15419}, {25, 3669}, {28, 17096}, {29, 7199}, {33, 514}, {37, 17094}, {41, 1459}, {42, 51664}, {55, 905}, {78, 30805}, {92, 52621}, {100, 348}, {101, 77}, {108, 279}, {109, 7177}, {112, 1014}, {162, 1434}, {190, 7182}, {200, 6332}, {210, 525}, {212, 4091}, {219, 4131}, {220, 521}, {281, 693}, {318, 3261}, {346, 35518}, {461, 4801}, {607, 513}, {608, 43932}, {643, 17206}, {644, 69}, {646, 305}, {650, 1565}, {651, 7056}, {653, 1088}, {657, 7004}, {663, 3942}, {692, 222}, {862, 7212}, {872, 55234}, {906, 1804}, {934, 30682}, {1018, 307}, {1021, 17219}, {1110, 1813}, {1172, 7192}, {1252, 6516}, {1253, 652}, {1293, 27832}, {1331, 7183}, {1332, 7055}, {1334, 656}, {1415, 7053}, {1474, 7203}, {1783, 7}, {1824, 7178}, {1826, 4077}, {1827, 21104}, {1857, 17924}, {1897, 85}, {1973, 43924}, {2175, 22383}, {2194, 7254}, {2200, 51640}, {2201, 43041}, {2204, 3733}, {2207, 43923}, {2212, 649}, {2299, 1019}, {2318, 24018}, {2321, 14208}, {2322, 18155}, {2332, 3737}, {2333, 4017}, {2355, 30724}, {2356, 53544}, {2489, 53540}, {3063, 3937}, {3064, 1111}, {3239, 17880}, {3692, 52616}, {3694, 3265}, {3699, 304}, {3701, 3267}, {3709, 18210}, {3711, 49280}, {3900, 26932}, {3939, 63}, {3952, 1231}, {4041, 4466}, {4069, 306}, {4105, 34591}, {4130, 2968}, {4183, 4560}, {4242, 17078}, {4336, 23727}, {4433, 24459}, {4515, 52355}, {4524, 53560}, {4557, 1214}, {4559, 1439}, {4571, 3926}, {4574, 52385}, {4578, 345}, {4587, 326}, {4600, 55205}, {5089, 43042}, {5338, 30723}, {5379, 4573}, {5423, 15416}, {5546, 1444}, {6059, 6591}, {6065, 1332}, {6066, 906}, {6335, 6063}, {6558, 3718}, {6591, 1358}, {6600, 24562}, {7012, 658}, {7017, 40495}, {7046, 4391}, {7064, 55232}, {7071, 650}, {7079, 522}, {7101, 35519}, {7115, 934}, {7128, 4626}, {7156, 21172}, {7259, 332}, {7719, 31605}, {8611, 17216}, {8641, 7117}, {8750, 57}, {8751, 43930}, {11107, 16755}, {13138, 34400}, {14006, 16737}, {14776, 34051}, {14827, 1946}, {15742, 4554}, {16283, 22091}, {18344, 1086}, {20310, 23732}, {21859, 6356}, {23990, 36059}, {28044, 4762}, {30730, 20336}, {31623, 52619}, {32652, 55117}, {32656, 7125}, {32674, 269}, {32676, 1412}, {32713, 1396}, {32714, 479}, {32739, 603}, {36054, 7215}, {36118, 23062}, {36127, 1847}, {36797, 274}, {40116, 43736}, {40117, 1440}, {40521, 26942}, {40965, 21107}, {40971, 14837}, {40976, 48131}, {40982, 48334}, {40987, 48398}, {41320, 23800}, {41339, 39470}, {42069, 40166}, {44100, 4790}, {44426, 23989}, {46102, 4569}, {46878, 4509}, {52370, 520}, {52425, 23224}, {52426, 22379}, {52427, 3960}, {52914, 1509}, {52927, 1814}, {53008, 1577}, {54416, 51644}, {55116, 17896}, {55206, 3120}, {55232, 1367}, {56182, 15411}
X(56183) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 1897, 108}


X(56184) = KP2(X(10)) OF X(2) AND X(12)

Barycentrics    (a^3+b^3-2*a^2*c+c^3-a*c*(3*b+2*c))*(a^3-2*a^2*b+b^3+c^3-a*b*(2*b+3*c)) : :

X(56184) lies on these lines: {192, 15474}, {274, 27272}, {277, 3210}, {278, 41839}, {330, 17776}, {344, 39694}, {1929, 29653}, {3995, 21907}, {19822, 39736}, {28606, 39724}, {29641, 39954}, {29642, 52654}, {32849, 39747}, {33157, 39722}, {33168, 39706}, {37759, 37887}

X(56184) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(42), X(27272)}}, {{A, B, C, X(192), X(17776)}}, {{A, B, C, X(226), X(1016)}}, {{A, B, C, X(335), X(40435)}}, {{A, B, C, X(344), X(3210)}}, {{A, B, C, X(345), X(41839)}}, {{A, B, C, X(2985), X(17758)}}, {{A, B, C, X(3995), X(32849)}}, {{A, B, C, X(4393), X(29642)}}, {{A, B, C, X(5382), X(33116)}}, {{A, B, C, X(6542), X(29653)}}, {{A, B, C, X(6625), X(40394)}}, {{A, B, C, X(6630), X(30690)}}, {{A, B, C, X(17280), X(28606)}}, {{A, B, C, X(17302), X(33157)}}, {{A, B, C, X(17316), X(29641)}}, {{A, B, C, X(19822), X(27268)}}, {{A, B, C, X(25453), X(29570)}}, {{A, B, C, X(29569), X(29673)}}, {{A, B, C, X(29586), X(29654)}}, {{A, B, C, X(31035), X(33168)}}, {{A, B, C, X(36954), X(55090)}}


X(56185) = KP2(X(10)) OF X(2) AND X(43)

Barycentrics    (b+c)*(-(b^2*c^2)+a^3*(b+c)+a^2*(b^2-b*c+c^2)) : :

X(56185) lies on these lines: {2, 37}, {6, 17148}, {9, 31036}, {42, 25295}, {43, 22024}, {72, 20036}, {190, 27644}, {194, 213}, {239, 21061}, {310, 1221}, {313, 26772}, {330, 37677}, {335, 20028}, {518, 20040}, {714, 872}, {726, 1193}, {730, 23659}, {740, 4642}, {894, 54308}, {978, 3159}, {1258, 33296}, {1269, 26976}, {1400, 4552}, {2092, 3963}, {2205, 7766}, {2229, 6378}, {2269, 40886}, {2998, 17486}, {3187, 54373}, {3294, 16827}, {3662, 22008}, {3728, 4651}, {3764, 21278}, {3831, 28522}, {3875, 21371}, {3879, 31061}, {3896, 22294}, {3922, 49462}, {3948, 21796}, {3952, 21080}, {3971, 28248}, {4033, 21858}, {4442, 21927}, {4670, 16710}, {10455, 16826}, {13731, 51046}, {14923, 49470}, {16584, 22218}, {17033, 17489}, {17038, 26037}, {17053, 27166}, {17157, 17165}, {17178, 37596}, {17262, 27623}, {18044, 27095}, {20245, 49518}, {20352, 24478}, {21330, 29824}, {21935, 27713}, {22003, 27678}, {22028, 53675}, {24067, 27646}, {25059, 30710}, {25124, 29822}, {25250, 41240}, {25268, 56079}, {25271, 47894}, {25302, 34063}, {26756, 52043}, {29010, 51558}, {32925, 53676}, {34020, 34086}, {40504, 41683}, {45222, 46720}

X(56185) = reflection of X(i) in X(j) for these {i,j}: {4043, 37}
X(56185) = anticomplement of X(20891)
X(56185) = X(i)-Dao conjugate of X(j) for these {i, j}: {6378, 42027}, {20891, 20891}, {21025, 3840}
X(56185) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1258, 2}, {32011, 10}, {33296, 42}
X(56185) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1221, 21275}, {1258, 6327}, {40409, 17138}, {40418, 315}
X(56185) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(34020)}}, {{A, B, C, X(75), X(34063)}}, {{A, B, C, X(312), X(27809)}}, {{A, B, C, X(350), X(20028)}}, {{A, B, C, X(536), X(40504)}}, {{A, B, C, X(1278), X(4674)}}, {{A, B, C, X(1400), X(1575)}}, {{A, B, C, X(3263), X(25302)}}, {{A, B, C, X(18137), X(41683)}}, {{A, B, C, X(20891), X(42027)}}, {{A, B, C, X(45988), X(46838)}}
X(56185) = barycentric product X(i)*X(j) for these (i, j): {10, 34063}, {13576, 25302}, {25305, 38955}, {34020, 37}, {34086, 42}
X(56185) = barycentric quotient X(i)/X(j) for these (i, j): {25300, 17217}, {25302, 30941}, {25305, 17139}, {34020, 274}, {34063, 86}, {34086, 310}
X(56185) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 192, 3995}, {37, 536, 4043}, {42, 42027, 25295}, {192, 3210, 1278}, {3210, 4850, 17495}, {3995, 17495, 31025}, {17790, 24530, 27102}


X(56186) = KP2(X(10)) OF X(2) AND X(75)

Barycentrics    b*(a^2+b^2)*c*(b+c)*(a^2+c^2) : :

X(56186) lies on these lines: {1, 18050}, {8, 18088}, {10, 16889}, {37, 308}, {72, 42299}, {75, 16549}, {76, 17489}, {83, 213}, {100, 39427}, {242, 4222}, {257, 668}, {274, 292}, {335, 18167}, {514, 1909}, {689, 2375}, {718, 40936}, {740, 872}, {762, 56122}, {1215, 23629}, {1237, 16600}, {1500, 3948}, {2295, 21412}, {3294, 39044}, {3405, 21061}, {3770, 40085}, {4075, 56131}, {6358, 16609}, {6378, 52538}, {14839, 18101}, {18003, 18010}, {18083, 22010}, {18104, 31330}, {21814, 31622}, {27005, 27070}, {27040, 27808}, {28594, 35544}, {28615, 32018}, {29418, 29534}, {30710, 52376}

X(56186) = isotomic conjugate of X(16696)
X(56186) = trilinear pole of line {4010, 4036}
X(56186) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 17187}, {27, 20775}, {28, 4020}, {31, 16696}, {32, 16887}, {38, 1333}, {39, 58}, {81, 1964}, {86, 3051}, {110, 21123}, {141, 2206}, {163, 2530}, {184, 17171}, {274, 1923}, {284, 1401}, {310, 41331}, {560, 16703}, {593, 21035}, {649, 1634}, {662, 50521}, {688, 4610}, {757, 21814}, {849, 3954}, {1014, 40972}, {1408, 33299}, {1412, 3688}, {1437, 17442}, {1459, 35325}, {1474, 3917}, {1509, 41267}, {1576, 16892}, {1790, 1843}, {1914, 46159}, {1919, 4576}, {1980, 55239}, {2084, 52935}, {3005, 4556}, {3285, 46150}, {3703, 16947}, {3733, 46148}, {6629, 41272}, {7113, 46160}, {7252, 46153}, {7303, 21752}, {9247, 16747}, {9494, 52612}, {17206, 27369}, {17209, 51869}, {21108, 32661}
X(56186) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 16696}, {9, 17187}, {10, 39}, {37, 38}, {115, 2530}, {244, 21123}, {1084, 50521}, {4075, 3954}, {4858, 16892}, {5375, 1634}, {6374, 16703}, {6376, 16887}, {9296, 4576}, {36901, 48084}, {36906, 46159}, {37891, 18182}, {40586, 1964}, {40590, 1401}, {40591, 4020}, {40599, 3688}, {40600, 3051}, {40603, 141}, {40607, 21814}, {41884, 81}, {51574, 3917}, {55065, 8061}
X(56186) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3112, 18082}
X(56186) = X(i)-cross conjugate of X(j) for these {i, j}: {37, 18098}, {4705, 668}, {21021, 10}, {21901, 1018}, {27067, 83}
X(56186) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(27809)}}, {{A, B, C, X(2), X(3293)}}, {{A, B, C, X(10), X(239)}}, {{A, B, C, X(37), X(213)}}, {{A, B, C, X(42), X(27020)}}, {{A, B, C, X(65), X(3227)}}, {{A, B, C, X(75), X(4043)}}, {{A, B, C, X(81), X(27041)}}, {{A, B, C, X(83), X(308)}}, {{A, B, C, X(226), X(27064)}}, {{A, B, C, X(313), X(33941)}}, {{A, B, C, X(321), X(1089)}}, {{A, B, C, X(330), X(4674)}}, {{A, B, C, X(335), X(40515)}}, {{A, B, C, X(668), X(1909)}}, {{A, B, C, X(671), X(40827)}}, {{A, B, C, X(762), X(4037)}}, {{A, B, C, X(1215), X(39929)}}, {{A, B, C, X(1222), X(53194)}}, {{A, B, C, X(3112), X(18833)}}, {{A, B, C, X(3175), X(31993)}}, {{A, B, C, X(3228), X(40408)}}, {{A, B, C, X(3701), X(36796)}}, {{A, B, C, X(3954), X(4705)}}, {{A, B, C, X(3963), X(17741)}}, {{A, B, C, X(4080), X(41242)}}, {{A, B, C, X(4103), X(22011)}}, {{A, B, C, X(4183), X(27053)}}, {{A, B, C, X(4651), X(29433)}}, {{A, B, C, X(6539), X(39708)}}, {{A, B, C, X(6543), X(40085)}}, {{A, B, C, X(11611), X(51870)}}, {{A, B, C, X(14624), X(27810)}}, {{A, B, C, X(16748), X(17163)}}, {{A, B, C, X(17277), X(41681)}}, {{A, B, C, X(20691), X(40844)}}, {{A, B, C, X(27067), X(52376)}}, {{A, B, C, X(29418), X(52358)}}, {{A, B, C, X(30588), X(36805)}}, {{A, B, C, X(30713), X(31623)}}, {{A, B, C, X(31008), X(52538)}}, {{A, B, C, X(32020), X(40718)}}, {{A, B, C, X(40504), X(42328)}}
X(56186) = barycentric product X(i)*X(j) for these (i, j): {10, 3112}, {100, 52618}, {213, 40016}, {251, 27801}, {308, 37}, {313, 82}, {321, 83}, {1089, 52394}, {1799, 41013}, {1978, 55240}, {4024, 4593}, {4036, 4577}, {4580, 6335}, {4599, 52623}, {4705, 689}, {10566, 4033}, {16889, 7033}, {18070, 190}, {18082, 75}, {18087, 56127}, {18097, 312}, {18098, 76}, {18099, 7018}, {18105, 6386}, {18108, 27808}, {18833, 42}, {20336, 32085}, {20948, 4628}, {21094, 37221}, {21807, 41488}, {27067, 30710}, {28654, 52376}, {34294, 4601}, {37204, 4079}, {42299, 42711}, {42371, 50487}, {46104, 72}
X(56186) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17187}, {2, 16696}, {10, 38}, {37, 39}, {42, 1964}, {65, 1401}, {71, 4020}, {72, 3917}, {75, 16887}, {76, 16703}, {80, 46160}, {82, 58}, {83, 81}, {92, 17171}, {100, 1634}, {210, 3688}, {213, 3051}, {228, 20775}, {251, 1333}, {264, 16747}, {291, 46159}, {308, 274}, {313, 1930}, {321, 141}, {512, 50521}, {523, 2530}, {594, 3954}, {661, 21123}, {668, 4576}, {689, 4623}, {756, 21035}, {850, 48084}, {872, 41267}, {1018, 46148}, {1089, 15523}, {1176, 1437}, {1334, 40972}, {1441, 3665}, {1500, 21814}, {1577, 16892}, {1783, 35325}, {1799, 1444}, {1824, 1843}, {1826, 17442}, {1918, 1923}, {1978, 55239}, {2205, 41331}, {2321, 33299}, {3112, 86}, {3405, 17209}, {3434, 41582}, {3701, 3703}, {3952, 4553}, {3954, 8041}, {3963, 16720}, {4024, 8061}, {4033, 4568}, {4036, 826}, {4039, 2236}, {4079, 2084}, {4086, 48278}, {4103, 35309}, {4463, 3313}, {4551, 46153}, {4577, 52935}, {4580, 905}, {4593, 4610}, {4599, 4556}, {4628, 163}, {4674, 46150}, {4705, 3005}, {4972, 18183}, {5380, 36827}, {6335, 41676}, {6656, 18182}, {10566, 1019}, {13576, 46149}, {16889, 982}, {16890, 18167}, {17500, 18180}, {17907, 16715}, {18070, 514}, {18082, 1}, {18083, 18161}, {18084, 7289}, {18085, 18162}, {18086, 18163}, {18087, 18164}, {18088, 18165}, {18089, 18166}, {18090, 18168}, {18091, 18169}, {18093, 18170}, {18094, 18171}, {18095, 18176}, {18096, 18179}, {18097, 57}, {18098, 6}, {18099, 171}, {18100, 18189}, {18101, 18191}, {18102, 18192}, {18103, 18205}, {18104, 18195}, {18105, 667}, {18106, 18196}, {18107, 18197}, {18108, 3733}, {18109, 18198}, {18110, 18199}, {18111, 18200}, {18112, 18201}, {18113, 18211}, {18700, 18723}, {18701, 18724}, {18702, 18725}, {18703, 18726}, {18704, 18727}, {18705, 18728}, {18706, 18729}, {18707, 18730}, {18708, 18731}, {18709, 18732}, {18710, 18733}, {18711, 18734}, {18712, 18735}, {18833, 310}, {20022, 51369}, {20336, 3933}, {21021, 16587}, {21067, 40585}, {21094, 18715}, {21802, 11205}, {21803, 40936}, {21832, 46387}, {21874, 3787}, {22105, 14419}, {22322, 8711}, {24006, 21108}, {27067, 3666}, {27801, 8024}, {28724, 18604}, {32085, 28}, {34055, 1790}, {34294, 3125}, {37204, 52612}, {40016, 6385}, {41013, 427}, {42703, 51371}, {42711, 14994}, {42713, 7813}, {46104, 286}, {46289, 2206}, {50487, 688}, {51906, 3121}, {52353, 4884}, {52376, 593}, {52394, 757}, {52395, 52376}, {52570, 16707}, {52618, 693}, {52893, 52961}, {52898, 16702}, {55240, 649}


X(56187) = KP2(X(10)) OF X(2) AND X(78)

Barycentrics    (b+c)*(a^5+a^2*b*c*(b+c)-b*(b-c)^2*c*(b+c)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c+b*c^3+c^4)) : :

X(56187) lies on these lines: {2, 37}, {33, 32929}, {72, 944}, {190, 1812}, {200, 22027}, {201, 17751}, {306, 4552}, {329, 21078}, {860, 3695}, {997, 3159}, {1824, 17784}, {1897, 56182}, {2318, 3952}, {2324, 28950}, {2406, 7364}, {2901, 18391}, {3187, 8557}, {3191, 4511}, {3553, 26223}, {3687, 18662}, {3694, 40149}, {3936, 6354}, {3969, 51367}, {4651, 40967}, {7080, 41013}, {17479, 33077}, {17742, 36023}, {21061, 22002}, {21933, 25003}, {22003, 22022}, {25241, 27184}, {25254, 26580}, {28654, 52386}, {30713, 52609}

X(56187) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1474, 43724}
X(56187) = X(i)-Dao conjugate of X(j) for these {i, j}: {21933, 1210}, {51574, 43724}
X(56187) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40424, 10}
X(56187) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7412)}}, {{A, B, C, X(350), X(46400)}}, {{A, B, C, X(4552), X(42718)}}, {{A, B, C, X(17862), X(40149)}}, {{A, B, C, X(20171), X(27809)}}, {{A, B, C, X(28654), X(42698)}}
X(56187) = barycentric product X(i)*X(j) for these (i, j): {3952, 46400}, {20336, 7412}, {27808, 39199}
X(56187) = barycentric quotient X(i)/X(j) for these (i, j): {72, 43724}, {7412, 28}, {39199, 3733}, {46400, 7192}
X(56187) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {321, 42700, 2}, {321, 42710, 42698}, {3995, 45744, 321}, {21078, 22001, 329}


X(56188) = TRILINEAR POLE OF LINE {5, 10}

Barycentrics    (a-b)*(a-c)*(-b^3+b*c^2+a*c*(-b+c)+a^2*(b+c))*(a*b*(b-c)+a^2*(b+c)+c*(b^2-c^2)) : :
X(56188) = -3*X[2]+2*X[40624]

X(56188) lies on these lines: {2, 40624}, {101, 44765}, {145, 25048}, {190, 14570}, {192, 54121}, {335, 20028}, {345, 34267}, {651, 17496}, {835, 1331}, {1897, 4246}, {1978, 55258}, {1999, 39698}, {2051, 4080}, {2397, 4033}, {2398, 4613}, {3661, 25243}, {3882, 4552}, {3952, 25268}, {3995, 18359}, {9058, 53702}, {22003, 54118}, {23978, 23980}, {25245, 53245}

X(56188) = isotomic conjugate of X(17496)
X(56188) = anticomplement of X(40624)
X(56188) = KP2(X(10)) of X(2) and X(100)
X(56188) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 21173}, {19, 23187}, {31, 17496}, {108, 38344}, {109, 11998}, {163, 53566}, {284, 51662}, {513, 572}, {514, 20986}, {649, 2975}, {663, 17074}, {667, 14829}, {692, 24237}, {1019, 52139}, {1415, 34589}, {3733, 21061}, {7121, 27346}, {7252, 37558}, {7649, 22118}, {11109, 22383}
X(56188) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17496}, {6, 23187}, {9, 21173}, {11, 11998}, {115, 53566}, {1086, 24237}, {1146, 34589}, {5375, 2975}, {6631, 14829}, {38983, 38344}, {39026, 572}, {40590, 51662}, {40598, 27346}, {40624, 40624}
X(56188) = X(i)-cross conjugate of X(j) for these {i, j}: {4391, 2}, {12607, 4998}, {21859, 100}, {41883, 46102}, {55182, 34527}
X(56188) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(651)}}, {{A, B, C, X(94), X(648)}}, {{A, B, C, X(100), X(646)}}, {{A, B, C, X(110), X(43069)}}, {{A, B, C, X(145), X(23891)}}, {{A, B, C, X(190), X(335)}}, {{A, B, C, X(192), X(42720)}}, {{A, B, C, X(321), X(4605)}}, {{A, B, C, X(330), X(42408)}}, {{A, B, C, X(645), X(51562)}}, {{A, B, C, X(653), X(43190)}}, {{A, B, C, X(662), X(36804)}}, {{A, B, C, X(664), X(21272)}}, {{A, B, C, X(692), X(941)}}, {{A, B, C, X(1331), X(52609)}}, {{A, B, C, X(2398), X(3661)}}, {{A, B, C, X(2804), X(23978)}}, {{A, B, C, X(3257), X(15455)}}, {{A, B, C, X(4373), X(4569)}}, {{A, B, C, X(4391), X(17496)}}, {{A, B, C, X(4554), X(27834)}}, {{A, B, C, X(4582), X(6648)}}, {{A, B, C, X(4606), X(13138)}}, {{A, B, C, X(4625), X(53208)}}, {{A, B, C, X(6606), X(51568)}}, {{A, B, C, X(9295), X(53213)}}, {{A, B, C, X(17147), X(24004)}}, {{A, B, C, X(17906), X(38828)}}, {{A, B, C, X(21907), X(46119)}}, {{A, B, C, X(25243), X(42719)}}, {{A, B, C, X(25245), X(42717)}}, {{A, B, C, X(26856), X(46041)}}, {{A, B, C, X(32040), X(42357)}}, {{A, B, C, X(35058), X(42362)}}, {{A, B, C, X(35147), X(54458)}}, {{A, B, C, X(36037), X(37212)}}
X(56188) = barycentric product X(i)*X(j) for these (i, j): {100, 54121}, {190, 2051}, {3262, 53702}, {4033, 53083}, {4552, 46880}, {20028, 3952}, {27808, 52150}, {34434, 668}, {51870, 99}
X(56188) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21173}, {2, 17496}, {3, 23187}, {65, 51662}, {100, 2975}, {101, 572}, {190, 14829}, {192, 27346}, {514, 24237}, {522, 34589}, {523, 53566}, {650, 11998}, {651, 17074}, {652, 38344}, {692, 20986}, {906, 22118}, {1018, 21061}, {1897, 11109}, {2051, 514}, {3952, 17751}, {4391, 40624}, {4551, 37558}, {4552, 52358}, {4557, 52139}, {17494, 26847}, {20028, 7192}, {21011, 52322}, {34434, 513}, {40521, 14973}, {46880, 4560}, {51870, 523}, {52150, 3733}, {53083, 1019}, {53702, 104}, {54121, 693}


X(56189) = KP2(X(10)) OF X(75) AND X(8)

Barycentrics    b*c*(b+c)*(a^4+b^4-b^2*c^2-a^2*(2*b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(56189) lies on these lines: {37, 42300}, {72, 8795}, {95, 7523}, {275, 321}, {314, 39277}, {319, 35519}, {668, 46138}, {3998, 37872}, {7066, 34388}, {27801, 34385}, {34384, 42711}, {39287, 42703}

X(56189) = isotomic conjugate of X(18180)
X(56189) = trilinear pole of line {15412, 42701}
X(56189) = X(i)-isoconjugate-of-X(j) for these {i, j}: {5, 2206}, {25, 44709}, {27, 217}, {31, 18180}, {32, 17167}, {51, 58}, {81, 2179}, {86, 40981}, {216, 1474}, {418, 8747}, {649, 1625}, {667, 2617}, {849, 21807}, {1333, 1953}, {1393, 2194}, {1408, 7069}, {1437, 2181}, {1459, 52604}, {1576, 21102}, {1790, 3199}, {1919, 14570}, {1973, 16697}, {2203, 44706}, {2204, 44708}, {2299, 30493}, {4556, 55219}, {27374, 52394}, {42293, 52919}
X(56189) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 18180}, {10, 51}, {37, 1953}, {226, 30493}, {1214, 1393}, {4075, 21807}, {4858, 21102}, {5375, 1625}, {6337, 16697}, {6376, 17167}, {6505, 44709}, {6631, 2617}, {9296, 14570}, {40586, 2179}, {40600, 40981}, {40603, 5}, {51574, 216}
X(56189) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7523)}}, {{A, B, C, X(37), X(42711)}}, {{A, B, C, X(72), X(3990)}}, {{A, B, C, X(95), X(275)}}, {{A, B, C, X(226), X(286)}}, {{A, B, C, X(290), X(40412)}}, {{A, B, C, X(313), X(314)}}, {{A, B, C, X(319), X(668)}}, {{A, B, C, X(321), X(20336)}}, {{A, B, C, X(1441), X(18816)}}, {{A, B, C, X(2997), X(4080)}}
X(56189) = barycentric product X(i)*X(j) for these (i, j): {276, 72}, {306, 40440}, {321, 95}, {349, 44687}, {1978, 2616}, {2167, 313}, {2190, 40071}, {2623, 6386}, {3954, 41488}, {3998, 8795}, {4601, 8901}, {4705, 55218}, {15412, 668}, {20336, 275}, {27801, 54}, {34384, 37}, {34385, 42700}, {34386, 41013}, {42300, 42711}, {42701, 46138}
X(56189) = barycentric quotient X(i)/X(j) for these (i, j): {2, 18180}, {10, 1953}, {37, 51}, {42, 2179}, {54, 1333}, {63, 44709}, {69, 16697}, {72, 216}, {75, 17167}, {95, 81}, {97, 1437}, {100, 1625}, {190, 2617}, {213, 40981}, {226, 1393}, {228, 217}, {275, 28}, {276, 286}, {306, 44706}, {307, 44708}, {313, 14213}, {321, 5}, {594, 21807}, {668, 14570}, {1089, 21011}, {1214, 30493}, {1332, 23181}, {1577, 21102}, {1783, 52604}, {1824, 3199}, {1826, 2181}, {2148, 2206}, {2167, 58}, {2190, 1474}, {2321, 7069}, {2616, 649}, {2623, 667}, {3694, 44707}, {3969, 35194}, {3990, 418}, {3998, 5562}, {4036, 12077}, {4553, 35319}, {4705, 55219}, {5360, 52967}, {6335, 35360}, {8882, 2203}, {8884, 5317}, {8901, 3125}, {15412, 513}, {15414, 4131}, {16813, 52920}, {19166, 18603}, {20336, 343}, {21814, 27374}, {23286, 22383}, {27801, 311}, {34384, 274}, {34386, 1444}, {35196, 2150}, {39182, 18108}, {39287, 52376}, {40071, 18695}, {40440, 27}, {41013, 53}, {42700, 52}, {42701, 1154}, {42704, 5891}, {42713, 41586}, {43768, 51420}, {44687, 284}, {52345, 42459}, {52623, 2618}, {53576, 18210}, {55218, 4623}, {55232, 15451}, {56186, 17500}


X(56190) = KP2(X(37)) OF X(1) AND X(10)

Barycentrics    a*(b+c)*(a^2+a*(-2*b+c)+b*(b+c))*(a^2+a*(b-2*c)+c*(b+c)) : :

X(56190) lies on these lines: {1, 341}, {2, 40451}, {9, 15621}, {10, 1042}, {31, 200}, {42, 3950}, {55, 40528}, {210, 1402}, {213, 4515}, {612, 40148}, {741, 8706}, {936, 1476}, {1245, 3293}, {1376, 53389}, {1973, 5574}, {2258, 52549}, {4418, 50346}, {5268, 30801}, {5400, 29673}, {6555, 41276}, {8580, 40420}, {53008, 53663}

X(56190) = trilinear pole of line {798, 4171}
X(56190) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 18600}, {21, 1122}, {56, 17183}, {57, 18163}, {58, 3663}, {81, 3752}, {86, 1201}, {99, 6363}, {274, 20228}, {284, 52563}, {286, 22344}, {593, 4415}, {662, 48334}, {757, 4642}, {1014, 3057}, {1019, 21362}, {1333, 26563}, {1408, 20895}, {1412, 3452}, {1414, 6615}, {1434, 2347}, {1444, 1828}, {1509, 21796}, {1817, 42549}, {3733, 21272}, {4565, 21120}, {7192, 23845}, {7254, 17906}, {7257, 42336}, {7341, 21031}, {17925, 23113}, {27499, 27644}, {46367, 52352}
X(56190) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 17183}, {9, 18600}, {10, 3663}, {37, 26563}, {1084, 48334}, {5452, 18163}, {38986, 6363}, {40586, 3752}, {40590, 52563}, {40599, 3452}, {40600, 1201}, {40607, 4642}, {40608, 6615}, {40611, 1122}, {55064, 21120}
X(56190) = X(i)-cross conjugate of X(j) for these {i, j}: {3709, 1018}, {44729, 4069}
X(56190) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(31)}}, {{A, B, C, X(9), X(14624)}}, {{A, B, C, X(10), X(200)}}, {{A, B, C, X(25), X(13741)}}, {{A, B, C, X(37), X(1743)}}, {{A, B, C, X(55), X(996)}}, {{A, B, C, X(57), X(18098)}}, {{A, B, C, X(282), X(2321)}}, {{A, B, C, X(321), X(34525)}}, {{A, B, C, X(612), X(3293)}}, {{A, B, C, X(756), X(3992)}}, {{A, B, C, X(936), X(4061)}}, {{A, B, C, X(1050), X(52521)}}, {{A, B, C, X(1215), X(20683)}}, {{A, B, C, X(1222), X(51476)}}, {{A, B, C, X(1824), X(4674)}}, {{A, B, C, X(3062), X(42027)}}, {{A, B, C, X(3294), X(21384)}}, {{A, B, C, X(3747), X(18192)}}, {{A, B, C, X(3991), X(32560)}}, {{A, B, C, X(4512), X(8666)}}, {{A, B, C, X(7050), X(56145)}}, {{A, B, C, X(8056), X(16606)}}, {{A, B, C, X(8605), X(39697)}}, {{A, B, C, X(13462), X(21870)}}, {{A, B, C, X(13576), X(39959)}}, {{A, B, C, X(15621), X(52139)}}, {{A, B, C, X(18082), X(56179)}}, {{A, B, C, X(18698), X(21039)}}, {{A, B, C, X(23617), X(32017)}}, {{A, B, C, X(39980), X(40747)}}
X(56190) = barycentric product X(i)*X(j) for these (i, j): {10, 23617}, {210, 40420}, {321, 51476}, {661, 8706}, {1222, 37}, {1261, 226}, {1476, 2321}, {3451, 3701}, {3694, 40446}, {4171, 6613}, {32017, 42}, {52549, 65}, {56173, 9}
X(56190) = barycentric quotient X(i)/X(j) for these (i, j): {1, 18600}, {9, 17183}, {10, 26563}, {37, 3663}, {42, 3752}, {55, 18163}, {65, 52563}, {210, 3452}, {213, 1201}, {512, 48334}, {756, 4415}, {798, 6363}, {872, 21796}, {1018, 21272}, {1222, 274}, {1261, 333}, {1334, 3057}, {1400, 1122}, {1476, 1434}, {1500, 4642}, {1918, 20228}, {2200, 22344}, {2321, 20895}, {2333, 1828}, {2357, 42549}, {3451, 1014}, {3709, 6615}, {3952, 21580}, {4041, 21120}, {4069, 25268}, {4171, 42337}, {4515, 6736}, {4557, 21362}, {4849, 45204}, {6613, 4635}, {7064, 21809}, {8706, 799}, {21805, 51415}, {23493, 27499}, {23617, 86}, {32017, 310}, {40451, 16727}, {40528, 17197}, {51476, 81}, {52370, 22072}, {52549, 314}, {56173, 85}
X(56190) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1261, 23617, 51476}


X(56191) = KP2(X(37)) OF X(1) AND X(45)

Barycentrics    a*(b+c)*(a^2+3*b*c+a*(b+c)) : :

X(56191) lies on these lines: {1, 2}, {9, 49500}, {12, 1464}, {35, 859}, {36, 16374}, {37, 1018}, {38, 5883}, {40, 54287}, {55, 4245}, {56, 19261}, {58, 5260}, {65, 51504}, {71, 2093}, {80, 47515}, {86, 668}, {100, 4653}, {101, 37675}, {165, 19262}, {171, 5251}, {209, 7322}, {213, 46196}, {244, 3833}, {313, 3761}, {321, 46895}, {392, 22325}, {405, 3052}, {484, 846}, {500, 18357}, {517, 21363}, {581, 5818}, {595, 5047}, {740, 4714}, {750, 993}, {756, 758}, {940, 9708}, {956, 19534}, {958, 16357}, {968, 54286}, {970, 11521}, {984, 5902}, {986, 19258}, {999, 16499}, {1001, 19239}, {1042, 3947}, {1064, 5400}, {1089, 49598}, {1191, 16842}, {1215, 3992}, {1220, 25526}, {1329, 37693}, {1458, 51782}, {1573, 24512}, {1706, 19257}, {1724, 5711}, {1736, 50195}, {1739, 3666}, {1785, 30686}, {1909, 17175}, {1918, 15485}, {1962, 3968}, {2140, 26100}, {2223, 19263}, {2292, 3754}, {2295, 3294}, {2533, 4040}, {2650, 3678}, {2667, 4732}, {3159, 17164}, {3247, 9331}, {3295, 19250}, {3303, 19253}, {3315, 31514}, {3421, 4648}, {3468, 21686}, {3550, 19260}, {3576, 19550}, {3579, 52524}, {3583, 33109}, {3670, 3812}, {3698, 3931}, {3742, 4694}, {3743, 3918}, {3746, 19241}, {3749, 19267}, {3750, 48696}, {3751, 9038}, {3814, 33105}, {3820, 5718}, {3841, 21935}, {3877, 22294}, {3892, 17450}, {3894, 49448}, {3921, 4849}, {3925, 37715}, {3953, 5439}, {3956, 21805}, {3997, 52708}, {4002, 4646}, {4026, 39688}, {4036, 21173}, {4038, 16474}, {4134, 53114}, {4216, 5010}, {4300, 19925}, {4306, 5261}, {4450, 14020}, {4472, 50160}, {4649, 52897}, {4692, 24325}, {4705, 14421}, {4731, 37593}, {4738, 25106}, {4792, 40434}, {5204, 19252}, {5217, 19251}, {5219, 24806}, {5247, 37559}, {5255, 5259}, {5258, 37607}, {5275, 16788}, {5283, 16549}, {5284, 40091}, {5285, 19264}, {5291, 40750}, {5315, 17123}, {5396, 38042}, {5443, 51870}, {5492, 13145}, {5563, 19249}, {5692, 22275}, {5697, 22300}, {5710, 11108}, {5774, 19732}, {5790, 50317}, {5793, 16458}, {5836, 6051}, {5903, 22299}, {5919, 22313}, {7951, 33111}, {8167, 16483}, {8715, 17782}, {9548, 12435}, {9578, 37523}, {9709, 19765}, {9956, 37732}, {10013, 49680}, {10448, 25440}, {10571, 10588}, {10827, 15232}, {11230, 32486}, {11552, 33099}, {12433, 56132}, {13745, 44419}, {14839, 56131}, {16418, 37540}, {16484, 19265}, {16496, 22277}, {16552, 17750}, {16600, 21921}, {16611, 21840}, {16705, 24170}, {16777, 21858}, {17056, 17757}, {17245, 24222}, {17594, 19266}, {17719, 26725}, {17790, 24342}, {18480, 48897}, {19244, 37588}, {20150, 30473}, {20255, 25499}, {21025, 52538}, {21080, 49532}, {21290, 27295}, {21373, 36404}, {21714, 53314}, {21808, 28594}, {22271, 49490}, {22276, 25415}, {22289, 45223}, {22307, 53115}, {22316, 49469}, {22320, 48337}, {22392, 31399}, {24473, 49515}, {24487, 50302}, {25089, 39244}, {25349, 50179}, {27785, 37598}, {28653, 54308}, {33082, 38302}, {33857, 52371}, {39748, 43531}, {49462, 50083}

X(56191) = reflection of X(i) in X(j) for these {i,j}: {1, 3720}, {4651, 10}
X(56191) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 42285}, {81, 39974}, {7252, 46480}
X(56191) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 42285}, {40586, 39974}
X(56191) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32013, 3294}, {40434, 37}
X(56191) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(4674)}}, {{A, B, C, X(10), X(32487)}}, {{A, B, C, X(37), X(519)}}, {{A, B, C, X(65), X(1125)}}, {{A, B, C, X(80), X(4651)}}, {{A, B, C, X(86), X(49997)}}, {{A, B, C, X(87), X(5313)}}, {{A, B, C, X(105), X(29823)}}, {{A, B, C, X(239), X(48320)}}, {{A, B, C, X(291), X(29822)}}, {{A, B, C, X(386), X(5035)}}, {{A, B, C, X(551), X(53114)}}, {{A, B, C, X(899), X(40718)}}, {{A, B, C, X(957), X(3622)}}, {{A, B, C, X(979), X(5312)}}, {{A, B, C, X(1018), X(17780)}}, {{A, B, C, X(1193), X(39949)}}, {{A, B, C, X(1220), X(3293)}}, {{A, B, C, X(1224), X(26115)}}, {{A, B, C, X(1390), X(20045)}}, {{A, B, C, X(1647), X(3125)}}, {{A, B, C, X(3216), X(43531)}}, {{A, B, C, X(3240), X(18793)}}, {{A, B, C, X(3634), X(56174)}}, {{A, B, C, X(3636), X(31503)}}, {{A, B, C, X(4424), X(30588)}}, {{A, B, C, X(4828), X(30109)}}, {{A, B, C, X(8028), X(21821)}}, {{A, B, C, X(17135), X(38955)}}, {{A, B, C, X(17946), X(29586)}}, {{A, B, C, X(18082), X(31855)}}, {{A, B, C, X(18785), X(36480)}}, {{A, B, C, X(29655), X(34895)}}, {{A, B, C, X(29824), X(30571)}}, {{A, B, C, X(31339), X(39708)}}
X(56191) = barycentric product X(i)*X(j) for these (i, j): {1, 31025}, {10, 37633}, {313, 5035}, {1018, 47780}, {3952, 48320}, {4557, 4828}
X(56191) = barycentric quotient X(i)/X(j) for these (i, j): {37, 42285}, {42, 39974}, {4551, 46480}, {4828, 52619}, {5035, 58}, {31025, 75}, {37633, 86}, {47780, 7199}, {48320, 7192}
X(56191) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10, 3293}, {1, 16569, 5313}, {1, 1698, 3216}, {1, 19875, 43}, {1, 2, 49997}, {1, 25502, 25055}, {1, 31855, 42}, {1, 34595, 21214}, {1, 6048, 5312}, {1, 9623, 49494}, {10, 1125, 26115}, {10, 16828, 1698}, {10, 42, 31855}, {10, 519, 4651}, {37, 3753, 4424}, {171, 5251, 52680}, {1064, 10175, 5400}, {1125, 10459, 1}, {1125, 19847, 3624}, {1125, 49993, 2}, {1125, 50749, 29689}, {1573, 24512, 45751}, {1698, 5313, 16569}, {1962, 4695, 4868}, {2295, 16589, 3294}, {3698, 3931, 3987}, {3743, 3918, 4642}, {3753, 4424, 4674}, {3968, 4868, 4695}, {16819, 41240, 29433}, {17751, 19874, 10}, {17752, 31996, 29383}, {50604, 51073, 27627}


X(56192) = KP2(X(37)) OF X(1) AND X(90)

Barycentrics    a*(b+c)*(a*(b-2*c)+b*(b+c))*(a*(2*b-c)-c*(b+c)) : :

X(56192) lies on these lines: {10, 982}, {42, 1449}, {57, 3214}, {171, 1126}, {181, 4849}, {291, 4685}, {756, 3778}, {1254, 4695}, {1500, 16584}, {2333, 5338}, {3122, 4082}, {4052, 21963}, {5285, 6187}, {6057, 22214}, {8690, 28482}, {22276, 22323}, {43223, 56131}

X(56192) = trilinear pole of line {4079, 4822}
X(56192) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 3875}, {81, 4383}, {86, 3915}, {110, 4106}, {274, 16946}, {593, 3175}, {662, 4498}, {757, 3214}, {765, 17214}, {1014, 3913}, {1333, 18135}, {1412, 30568}, {1414, 42312}, {1434, 3217}, {1444, 4186}, {2185, 28387}, {4139, 52935}, {4565, 20317}, {4600, 17477}, {21963, 24041}, {27813, 33628}
X(56192) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 3875}, {37, 18135}, {244, 4106}, {513, 17214}, {1084, 4498}, {3005, 21963}, {40586, 4383}, {40599, 30568}, {40600, 3915}, {40607, 3214}, {40608, 42312}, {50497, 17477}, {55064, 20317}
X(56192) = X(i)-Ceva conjugate of X(j) for these {i, j}: {34860, 56123}, {56155, 37}
X(56192) = X(i)-cross conjugate of X(j) for these {i, j}: {20684, 226}
X(56192) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(5105)}}, {{A, B, C, X(10), X(42)}}, {{A, B, C, X(25), X(33833)}}, {{A, B, C, X(31), X(596)}}, {{A, B, C, X(37), X(57)}}, {{A, B, C, X(55), X(7241)}}, {{A, B, C, X(65), X(5269)}}, {{A, B, C, X(75), X(2258)}}, {{A, B, C, X(171), X(21803)}}, {{A, B, C, X(209), X(52139)}}, {{A, B, C, X(210), X(3158)}}, {{A, B, C, X(226), X(16606)}}, {{A, B, C, X(321), X(17756)}}, {{A, B, C, X(656), X(2318)}}, {{A, B, C, X(661), X(4052)}}, {{A, B, C, X(871), X(982)}}, {{A, B, C, X(1096), X(56136)}}, {{A, B, C, X(1395), X(24046)}}, {{A, B, C, X(1416), X(24171)}}, {{A, B, C, X(1460), X(4424)}}, {{A, B, C, X(1824), X(4674)}}, {{A, B, C, X(2319), X(2321)}}, {{A, B, C, X(3214), X(4061)}}, {{A, B, C, X(4041), X(4082)}}, {{A, B, C, X(7093), X(18793)}}, {{A, B, C, X(8013), X(50587)}}, {{A, B, C, X(8817), X(13576)}}, {{A, B, C, X(9436), X(20683)}}, {{A, B, C, X(22174), X(23532)}}, {{A, B, C, X(39697), X(40148)}}, {{A, B, C, X(39956), X(40012)}}
X(56192) = barycentric product X(i)*X(j) for these (i, j): {1, 56123}, {10, 39956}, {210, 42304}, {2321, 56155}, {4024, 8690}, {34860, 37}, {40012, 42}
X(56192) = barycentric quotient X(i)/X(j) for these (i, j): {10, 18135}, {37, 3875}, {42, 4383}, {181, 28387}, {210, 30568}, {213, 3915}, {512, 4498}, {661, 4106}, {756, 3175}, {1015, 17214}, {1334, 3913}, {1500, 3214}, {1918, 16946}, {2333, 4186}, {3121, 17477}, {3124, 21963}, {3709, 42312}, {4041, 20317}, {4079, 4139}, {7148, 27432}, {8034, 23777}, {8690, 4610}, {31993, 18078}, {34860, 274}, {39956, 86}, {40012, 310}, {56123, 75}, {56155, 1434}, {56174, 27813}


X(56193) = KP2(X(37)) OF X(1) AND X(100)

Barycentrics    a*(a-b)*(a-c)*(b+c)*(a^2+a*b+b^2-c^2)*(a^2-b^2+a*c+c^2) : :

X(56193) lies on these lines: {10, 7100}, {42, 1989}, {79, 3293}, {100, 13486}, {692, 4705}, {2160, 7077}, {3214, 32259}, {3699, 6742}, {3939, 21891}, {4041, 21784}, {8606, 52139}, {8694, 26700}, {37138, 38340}

X(56193) = trilinear pole of line {1334, 21816}
X(56193) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 16755}, {35, 7192}, {58, 4467}, {81, 14838}, {86, 2605}, {249, 21141}, {286, 23226}, {319, 3733}, {514, 40214}, {593, 7265}, {649, 34016}, {662, 7202}, {693, 17104}, {1014, 35057}, {1015, 55235}, {1019, 3219}, {1333, 18160}, {1399, 18155}, {1414, 53524}, {1434, 9404}, {1442, 3737}, {1444, 54244}, {1509, 55210}, {2003, 4560}, {2174, 7199}, {2611, 52935}, {3676, 35193}, {4420, 7203}, {4556, 8287}, {4610, 20982}, {7186, 7255}, {7252, 17095}, {7254, 52412}, {7266, 13486}, {7282, 23189}, {17096, 52405}, {17190, 47947}, {24002, 35192}
X(56193) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 16755}, {10, 4467}, {37, 18160}, {1084, 7202}, {5375, 34016}, {38986, 53542}, {40586, 14838}, {40600, 2605}, {40608, 53524}, {55065, 17886}
X(56193) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(37), X(651)}}, {{A, B, C, X(42), X(692)}}, {{A, B, C, X(100), X(40521)}}, {{A, B, C, X(1783), X(21859)}}, {{A, B, C, X(1826), X(4605)}}, {{A, B, C, X(1989), X(15455)}}, {{A, B, C, X(2214), X(42362)}}, {{A, B, C, X(3699), X(3939)}}, {{A, B, C, X(4569), X(15320)}}, {{A, B, C, X(4705), X(21043)}}, {{A, B, C, X(6742), X(14560)}}
X(56193) = barycentric product X(i)*X(j) for these (i, j): {37, 6742}, {100, 8818}, {101, 6757}, {210, 38340}, {1018, 79}, {1783, 52388}, {2160, 3952}, {2321, 26700}, {3939, 43682}, {4033, 6186}, {4053, 476}, {4069, 52374}, {4103, 52375}, {4551, 7110}, {4552, 7073}, {4559, 52344}, {13486, 594}, {15455, 42}, {21859, 3615}, {30690, 4557}, {30730, 52372}, {34922, 8611}, {40521, 52393}, {52382, 644}, {55209, 872}, {55236, 765}
X(56193) = barycentric quotient X(i)/X(j) for these (i, j): {1, 16755}, {10, 18160}, {37, 4467}, {42, 14838}, {79, 7199}, {100, 34016}, {213, 2605}, {512, 7202}, {692, 40214}, {756, 7265}, {765, 55235}, {798, 53542}, {872, 55210}, {1018, 319}, {1334, 35057}, {2160, 7192}, {2200, 23226}, {2333, 54244}, {2643, 21141}, {3709, 53524}, {3952, 33939}, {4024, 17886}, {4053, 3268}, {4069, 42033}, {4079, 2611}, {4551, 17095}, {4552, 52421}, {4557, 3219}, {4559, 1442}, {4705, 8287}, {6186, 1019}, {6742, 274}, {6757, 3261}, {7073, 4560}, {7100, 15419}, {7110, 18155}, {8818, 693}, {13486, 1509}, {15455, 310}, {21859, 40999}, {26700, 1434}, {30690, 52619}, {32739, 17104}, {35327, 17190}, {39258, 53554}, {40521, 3969}, {43682, 52621}, {50487, 20982}, {52372, 17096}, {52382, 24002}, {52388, 15413}, {55210, 7266}, {55236, 1111}


X(56194) = KP2(X(37)) OF X(1) AND X(101)

Barycentrics    a*(a-b)*(a-c)*(-b^3+b*c^2+a*c*(-b+c)+a^2*(b+c))*(a*b*(b-c)+a^2*(b+c)+c*(b^2-c^2)) : :

X(56194) lies on these lines: {1, 26095}, {42, 46880}, {43, 1699}, {80, 3293}, {100, 2617}, {109, 21173}, {291, 53083}, {692, 36050}, {1018, 2427}, {1201, 40451}, {3216, 4674}, {3952, 25268}, {4040, 53279}, {4551, 21362}, {4566, 20520}, {5247, 52150}, {17860, 32931}, {17861, 40619}, {17906, 23706}, {24026, 42078}, {27810, 54329}

X(56194) = reflection of X(i) in X(j) for these {i,j}: {1, 40613}
X(56194) = isogonal conjugate of X(21173)
X(56194) = trilinear pole of line {37, 1953}
X(56194) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 21173}, {4, 23187}, {6, 17496}, {21, 51662}, {101, 24237}, {109, 34589}, {110, 53566}, {513, 2975}, {514, 572}, {649, 14829}, {650, 17074}, {651, 11998}, {653, 38344}, {693, 20986}, {1019, 21061}, {1415, 40624}, {1459, 11109}, {2162, 27346}, {3733, 17751}, {3737, 37558}, {7192, 52139}, {7252, 52358}, {17924, 22118}
X(56194) = X(i)-vertex conjugate of X(j) for these {i, j}: {163, 36098}, {643, 32665}, {1415, 36050}, {32641, 52928}
X(56194) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 21173}, {9, 17496}, {11, 34589}, {244, 53566}, {1015, 24237}, {1146, 40624}, {2051, 23799}, {5375, 14829}, {36033, 23187}, {38991, 11998}, {39026, 2975}, {40611, 51662}
X(56194) = X(i)-cross conjugate of X(j) for these {i, j}: {522, 1}, {650, 46880}
X(56194) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(109)}}, {{A, B, C, X(43), X(1026)}}, {{A, B, C, X(57), X(43190)}}, {{A, B, C, X(80), X(100)}}, {{A, B, C, X(84), X(32704)}}, {{A, B, C, X(101), X(3699)}}, {{A, B, C, X(110), X(51562)}}, {{A, B, C, X(162), X(1956)}}, {{A, B, C, X(513), X(40451)}}, {{A, B, C, X(522), X(21173)}}, {{A, B, C, X(645), X(43069)}}, {{A, B, C, X(646), X(651)}}, {{A, B, C, X(650), X(20520)}}, {{A, B, C, X(653), X(2656)}}, {{A, B, C, X(658), X(8056)}}, {{A, B, C, X(660), X(8706)}}, {{A, B, C, X(664), X(1293)}}, {{A, B, C, X(666), X(37137)}}, {{A, B, C, X(901), X(6742)}}, {{A, B, C, X(978), X(23705)}}, {{A, B, C, X(1020), X(6335)}}, {{A, B, C, X(1743), X(23343)}}, {{A, B, C, X(2258), X(32739)}}, {{A, B, C, X(3216), X(17780)}}, {{A, B, C, X(3737), X(46041)}}, {{A, B, C, X(4040), X(40619)}}, {{A, B, C, X(4242), X(37357)}}, {{A, B, C, X(4397), X(21189)}}, {{A, B, C, X(5903), X(23703)}}, {{A, B, C, X(6011), X(36086)}}, {{A, B, C, X(6577), X(53321)}}, {{A, B, C, X(8694), X(36049)}}, {{A, B, C, X(8701), X(32641)}}, {{A, B, C, X(9057), X(39954)}}, {{A, B, C, X(13486), X(26711)}}, {{A, B, C, X(17861), X(53279)}}, {{A, B, C, X(24026), X(46393)}}, {{A, B, C, X(28226), X(37138)}}, {{A, B, C, X(30250), X(36108)}}, {{A, B, C, X(32040), X(39980)}}
X(56194) = barycentric product X(i)*X(j) for these (i, j): {1, 56188}, {100, 2051}, {101, 54121}, {190, 34434}, {1018, 20028}, {3952, 53083}, {4033, 52150}, {4551, 46880}, {51870, 662}, {53702, 908}
X(56194) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17496}, {6, 21173}, {43, 27346}, {48, 23187}, {100, 14829}, {101, 2975}, {109, 17074}, {513, 24237}, {522, 40624}, {650, 34589}, {661, 53566}, {663, 11998}, {692, 572}, {1018, 17751}, {1400, 51662}, {1783, 11109}, {1946, 38344}, {2051, 693}, {4040, 26847}, {4551, 52358}, {4557, 21061}, {4559, 37558}, {20028, 7199}, {21807, 52322}, {21859, 52357}, {32656, 22118}, {32739, 20986}, {34434, 514}, {46880, 18155}, {51870, 1577}, {52150, 1019}, {53083, 7192}, {53702, 34234}, {54121, 3261}, {56188, 75}


X(56195) = KP2(X(37)) OF X(10) AND X(9)

Barycentrics    a*(b+c)*(a^4+a^3*c-a*(b-c)^2*c+b*(b-c)*(b+c)^2-a^2*(2*b^2+b*c+c^2))*(a^4+a^3*b-a*b*(b-c)^2-(b-c)*c*(b+c)^2-a^2*(b^2+b*c+2*c^2)) : :

X(56195) lies on these lines: {9, 17916}, {40, 318}, {72, 37558}, {78, 947}, {200, 15623}, {210, 22341}, {307, 21075}, {3694, 4006}, {3710, 17751}, {3718, 33932}, {12514, 44040}, {17757, 52388}

X(56195) = X(i)-isoconjugate-of-X(j) for these {i, j}: {27, 22063}, {28, 17102}, {58, 946}, {81, 2262}, {1408, 23528}, {1412, 20262}, {1434, 40957}
X(56195) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 946}, {40586, 2262}, {40591, 17102}, {40599, 20262}
X(56195) = X(i)-cross conjugate of X(j) for these {i, j}: {520, 4551}
X(56195) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2975)}}, {{A, B, C, X(3), X(37420)}}, {{A, B, C, X(4), X(6986)}}, {{A, B, C, X(9), X(10)}}, {{A, B, C, X(37), X(7160)}}, {{A, B, C, X(40), X(71)}}, {{A, B, C, X(65), X(84)}}, {{A, B, C, X(90), X(4674)}}, {{A, B, C, X(158), X(56153)}}, {{A, B, C, X(210), X(21075)}}, {{A, B, C, X(758), X(6597)}}, {{A, B, C, X(947), X(40417)}}, {{A, B, C, X(956), X(56145)}}, {{A, B, C, X(3294), X(5223)}}, {{A, B, C, X(3577), X(15232)}}, {{A, B, C, X(3678), X(17757)}}, {{A, B, C, X(3681), X(4006)}}, {{A, B, C, X(3697), X(21060)}}, {{A, B, C, X(7091), X(53114)}}, {{A, B, C, X(13576), X(38271)}}, {{A, B, C, X(18097), X(39273)}}, {{A, B, C, X(21078), X(41229)}}, {{A, B, C, X(42471), X(56140)}}, {{A, B, C, X(43739), X(51223)}}
X(56195) = barycentric product X(i)*X(j) for these (i, j): {10, 55987}, {37, 40417}, {306, 40396}, {321, 947}
X(56195) = barycentric quotient X(i)/X(j) for these (i, j): {37, 946}, {42, 2262}, {71, 17102}, {210, 20262}, {228, 22063}, {947, 81}, {2321, 23528}, {40396, 27}, {40417, 274}, {52370, 40945}, {55987, 86}


X(56196) = KP2(X(37)) OF X(10) AND X(42)

Barycentrics    (a^2-a*b+b^2)*(b+c)*(a^2-a*c+c^2) : :

X(56196) lies on these lines: {8, 238}, {10, 1284}, {42, 27438}, {43, 350}, {86, 38810}, {256, 17261}, {281, 2201}, {513, 17351}, {740, 3214}, {1193, 49472}, {1215, 1441}, {1376, 23182}, {1874, 41013}, {2238, 2321}, {2295, 21759}, {3507, 17787}, {3741, 55076}, {4085, 26772}, {20691, 40729}, {21320, 25140}, {21803, 40718}, {37677, 40735}, {50576, 56080}

X(56196) = isotomic conjugate of X(33947)
X(56196) = polar conjugate of X(31917)
X(56196) = trilinear pole of line {3700, 21832}
X(56196) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 7248}, {28, 3784}, {31, 33947}, {48, 31917}, {56, 3794}, {58, 982}, {81, 2275}, {86, 7032}, {99, 50514}, {110, 3777}, {163, 3776}, {284, 41777}, {552, 4531}, {593, 3721}, {757, 3778}, {849, 2887}, {873, 40935}, {1014, 3056}, {1178, 7184}, {1333, 3662}, {1408, 3705}, {1412, 3061}, {1434, 20665}, {1509, 16584}, {2150, 16888}, {2194, 7185}, {2206, 33930}, {3733, 3888}, {7186, 52375}, {7203, 40499}, {18268, 33891}
X(56196) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3794}, {2, 33947}, {10, 982}, {37, 3662}, {115, 3776}, {244, 3777}, {1214, 7185}, {1249, 31917}, {3741, 23473}, {4075, 2887}, {6741, 3810}, {16587, 7187}, {35068, 33891}, {38986, 50514}, {40586, 2275}, {40590, 41777}, {40591, 3784}, {40599, 3061}, {40600, 7032}, {40603, 33930}, {40607, 3778}, {40611, 7248}, {55065, 3801}
X(56196) = X(i)-cross conjugate of X(j) for these {i, j}: {21051, 3952}
X(56196) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3214)}}, {{A, B, C, X(2), X(4685)}}, {{A, B, C, X(4), X(17697)}}, {{A, B, C, X(8), X(10)}}, {{A, B, C, X(19), X(56138)}}, {{A, B, C, X(37), X(86)}}, {{A, B, C, X(42), X(43)}}, {{A, B, C, X(65), X(1120)}}, {{A, B, C, X(75), X(32941)}}, {{A, B, C, X(190), X(17351)}}, {{A, B, C, X(210), X(1215)}}, {{A, B, C, X(226), X(26685)}}, {{A, B, C, X(239), X(25425)}}, {{A, B, C, X(313), X(33165)}}, {{A, B, C, X(321), X(17280)}}, {{A, B, C, X(523), X(17765)}}, {{A, B, C, X(594), X(3773)}}, {{A, B, C, X(894), X(17261)}}, {{A, B, C, X(983), X(7033)}}, {{A, B, C, X(1016), X(39745)}}, {{A, B, C, X(1193), X(3293)}}, {{A, B, C, X(1213), X(4527)}}, {{A, B, C, X(1222), X(56174)}}, {{A, B, C, X(1400), X(18793)}}, {{A, B, C, X(1826), X(43534)}}, {{A, B, C, X(2295), X(20691)}}, {{A, B, C, X(3697), X(49598)}}, {{A, B, C, X(3741), X(4651)}}, {{A, B, C, X(3755), X(3950)}}, {{A, B, C, X(3886), X(25590)}}, {{A, B, C, X(3943), X(4085)}}, {{A, B, C, X(4029), X(4780)}}, {{A, B, C, X(4052), X(39749)}}, {{A, B, C, X(4133), X(5257)}}, {{A, B, C, X(4360), X(49472)}}, {{A, B, C, X(4373), X(13576)}}, {{A, B, C, X(7035), X(39977)}}, {{A, B, C, X(15320), X(39707)}}, {{A, B, C, X(16704), X(26772)}}, {{A, B, C, X(17393), X(32921)}}, {{A, B, C, X(17743), X(40834)}}, {{A, B, C, X(21803), X(40790)}}, {{A, B, C, X(21865), X(40521)}}, {{A, B, C, X(29822), X(49988)}}, {{A, B, C, X(51561), X(55037)}}
X(56196) = barycentric product X(i)*X(j) for these (i, j): {10, 17743}, {37, 7033}, {213, 7034}, {226, 56180}, {321, 983}, {3407, 3773}, {3701, 7132}, {3774, 46281}, {4103, 7255}, {4621, 523}, {21803, 40835}, {28654, 38813}, {38810, 756}, {40415, 594}, {43265, 86}
X(56196) = barycentric quotient X(i)/X(j) for these (i, j): {2, 33947}, {4, 31917}, {9, 3794}, {10, 3662}, {12, 16888}, {37, 982}, {42, 2275}, {65, 41777}, {71, 3784}, {210, 3061}, {213, 7032}, {226, 7185}, {321, 33930}, {523, 3776}, {594, 2887}, {661, 3777}, {740, 33891}, {756, 3721}, {762, 7237}, {798, 50514}, {872, 16584}, {983, 81}, {1018, 3888}, {1089, 20234}, {1215, 7187}, {1334, 3056}, {1400, 7248}, {1500, 3778}, {2295, 7184}, {2321, 3705}, {3690, 20727}, {3700, 3810}, {3773, 3314}, {3774, 3116}, {3952, 33946}, {3971, 33890}, {4024, 3801}, {4090, 41771}, {4120, 53533}, {4515, 4073}, {4621, 99}, {6057, 4136}, {6535, 16886}, {7033, 274}, {7034, 6385}, {7064, 20684}, {7109, 40935}, {7132, 1014}, {7305, 763}, {8684, 4584}, {8685, 4565}, {17743, 86}, {20684, 12836}, {20691, 41886}, {21803, 18905}, {21832, 3808}, {21838, 23473}, {38810, 873}, {38813, 593}, {40415, 1509}, {40521, 7239}, {43265, 10}, {52370, 20753}, {52651, 3865}, {56180, 333}
X(56196) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17743, 56180, 983}


X(56197) = KP2(X(37)) OF X(42) AND X(2)

Barycentrics    (b+c)*(a*b*(b-2*c)+b^2*c+a^2*(b+c))*(b*c^2+a*c*(-2*b+c)+a^2*(b+c)) : :

X(56197) lies on the Kiepert hyperbola and on these lines: {2, 16969}, {76, 1278}, {321, 21868}, {3210, 40013}, {4444, 48334}, {4642, 43534}, {4850, 39994}, {17758, 24190}, {18600, 40017}, {20691, 56185}, {27162, 40031}, {35353, 50487}

X(56197) = isotomic conjugate of X(17178)
X(56197) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 18192}, {28, 22066}, {31, 17178}, {58, 17448}, {81, 22343}, {593, 22167}, {849, 21025}, {1333, 3840}, {2206, 20892}, {7121, 16722}
X(56197) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17178}, {9, 18192}, {10, 17448}, {37, 3840}, {4075, 21025}, {40586, 22343}, {40591, 22066}, {40598, 16722}, {40603, 20892}
X(56197) = X(i)-cross conjugate of X(j) for these {i, j}: {21834, 3952}, {26772, 2}
X(56197) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(26756)}}, {{A, B, C, X(37), X(1278)}}, {{A, B, C, X(42), X(20691)}}, {{A, B, C, X(65), X(27809)}}, {{A, B, C, X(330), X(4674)}}, {{A, B, C, X(1500), X(50487)}}, {{A, B, C, X(2998), X(40504)}}, {{A, B, C, X(3210), X(3995)}}, {{A, B, C, X(3948), X(4642)}}, {{A, B, C, X(8049), X(18832)}}, {{A, B, C, X(15320), X(53677)}}, {{A, B, C, X(17178), X(26772)}}, {{A, B, C, X(26115), X(29593)}}, {{A, B, C, X(27162), X(31060)}}, {{A, B, C, X(27321), X(27690)}}, {{A, B, C, X(39740), X(56174)}}
X(56197) = barycentric product X(i)*X(j) for these (i, j): {10, 32011}
X(56197) = barycentric quotient X(i)/X(j) for these (i, j): {1, 18192}, {2, 17178}, {10, 3840}, {37, 17448}, {42, 22343}, {71, 22066}, {192, 16722}, {321, 20892}, {594, 21025}, {756, 22167}, {18082, 18102}, {32011, 86}


X(56198) = KP2(X(37)) OF X(65) AND X(71)

Barycentrics    a*(a+b-c)*(a-b+c)*(b+c)*(a^3+2*b*c*(b+c)-a*(b+c)^2) : :

X(56198) lies on circumconic {{A, B, C, X(5687), X(38955)}} and on these lines: {1, 3090}, {8, 1457}, {10, 73}, {12, 42}, {31, 11501}, {33, 1103}, {34, 200}, {40, 2635}, {43, 388}, {56, 899}, {71, 3330}, {100, 1935}, {201, 210}, {212, 11500}, {222, 9709}, {225, 2318}, {226, 3293}, {255, 11499}, {341, 23691}, {355, 22350}, {386, 9578}, {515, 22072}, {518, 1393}, {581, 31434}, {603, 1376}, {664, 25280}, {748, 11510}, {902, 7299}, {978, 3476}, {995, 37709}, {1042, 40663}, {1064, 10039}, {1066, 1737}, {1106, 9350}, {1149, 37738}, {1167, 2342}, {1193, 5252}, {1201, 10944}, {1214, 3697}, {1254, 21805}, {1319, 27627}, {1329, 25941}, {1334, 21859}, {1388, 28352}, {1394, 46917}, {1420, 17749}, {1450, 3216}, {1454, 32912}, {1458, 24914}, {1465, 34790}, {1496, 11502}, {1574, 52635}, {1706, 54400}, {1745, 5657}, {1757, 7098}, {1788, 6048}, {1818, 5552}, {1880, 3949}, {2654, 5587}, {3057, 45885}, {3074, 11491}, {3085, 14547}, {3240, 5261}, {3485, 50581}, {3617, 24806}, {3679, 10571}, {3681, 37591}, {3682, 17757}, {3870, 19372}, {3947, 50587}, {3953, 43048}, {4303, 26446}, {4322, 5433}, {4413, 34046}, {4848, 31855}, {5293, 54292}, {5312, 5726}, {5399, 9956}, {5400, 12053}, {5687, 34048}, {5887, 24028}, {6684, 22053}, {6796, 22361}, {7004, 14872}, {7066, 51377}, {7074, 15811}, {7288, 16569}, {9627, 52371}, {9780, 37523}, {10590, 37529}, {10914, 53530}, {11392, 40976}, {17102, 18908}, {17814, 42019}, {18524, 52408}, {21031, 51421}, {21801, 53861}, {24390, 52659}, {24592, 28771}, {28270, 38472}, {31397, 37732}, {31479, 37698}, {31803, 45269}, {37710, 54427}, {37828, 51649}, {41687, 49984}, {43043, 47742}, {50031, 51424}

X(56198) = barycentric product X(i)*X(j) for these (i, j): {10, 34048}, {226, 5687}, {4552, 48303}, {17894, 4559}, {56082, 65}
X(56198) = barycentric quotient X(i)/X(j) for these (i, j): {5687, 333}, {34048, 86}, {38389, 17197}, {48303, 4560}, {56082, 314}
X(56198) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 37694, 1457}, {10, 4551, 73}, {210, 227, 201}, {1254, 21805, 41538}, {1376, 9370, 603}, {3085, 37699, 14547}, {3216, 10106, 1450}


X(56199) = KP3(X(9)) OF X(1) AND X(1)

Barycentrics    a*(a-b-c)*(a^2-2*a*b+5*b^2+2*a*c-2*b*c+c^2)*(a^2+b^2+2*a*(b-c)-2*b*c+5*c^2) : :

X(56199) lies on these lines: {2, 52528}, {9, 3752}, {57, 23617}, {63, 55989}, {200, 2136}, {281, 20106}, {282, 42549}, {346, 3452}, {2287, 18163}, {2297, 5437}, {3061, 19605}, {3928, 55993}, {3929, 55992}, {6167, 36636}, {9311, 30567}, {36916, 42049}

X(56199) = trilinear pole of line {6615, 3900}
X(56199) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 4308}, {109, 43061}, {1461, 8710}
X(56199) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 4308}, {11, 43061}, {35508, 8710}
X(56199) = X(i)-cross conjugate of X(j) for these {i, j}: {10866, 7}
X(56199) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6557)}}, {{A, B, C, X(2), X(9)}}, {{A, B, C, X(7), X(34991)}}, {{A, B, C, X(8), X(2136)}}, {{A, B, C, X(21), X(38255)}}, {{A, B, C, X(57), X(312)}}, {{A, B, C, X(63), X(30827)}}, {{A, B, C, X(78), X(20106)}}, {{A, B, C, X(88), X(31509)}}, {{A, B, C, X(189), X(34918)}}, {{A, B, C, X(333), X(37679)}}, {{A, B, C, X(614), X(3687)}}, {{A, B, C, X(728), X(52528)}}, {{A, B, C, X(899), X(11679)}}, {{A, B, C, X(1320), X(39980)}}, {{A, B, C, X(1427), X(2321)}}, {{A, B, C, X(2051), X(5665)}}, {{A, B, C, X(2339), X(4997)}}, {{A, B, C, X(3596), X(7249)}}, {{A, B, C, X(3729), X(30567)}}, {{A, B, C, X(3928), X(5328)}}, {{A, B, C, X(4900), X(36603)}}, {{A, B, C, X(5273), X(51780)}}, {{A, B, C, X(5437), X(18228)}}, {{A, B, C, X(5745), X(7308)}}, {{A, B, C, X(6546), X(52140)}}, {{A, B, C, X(7131), X(42339)}}, {{A, B, C, X(10390), X(44733)}}, {{A, B, C, X(13478), X(33576)}}, {{A, B, C, X(28808), X(42049)}}, {{A, B, C, X(30711), X(39962)}}, {{A, B, C, X(42015), X(42318)}}
X(56199) = barycentric product X(i)*X(j) for these (i, j): {4397, 6571}
X(56199) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4308}, {650, 43061}, {3900, 8710}, {6571, 934}


X(56200) = KP3(X(9)) OF X(1) AND X(2)

Barycentrics    (a-b-c)*(a^2-6*a*b+b^2-c^2)*(a^2-b^2-6*a*c+c^2) : :

X(56200) lies on these lines: {2, 39126}, {9, 145}, {144, 21446}, {200, 3161}, {220, 23617}, {346, 44720}, {2287, 52352}, {2297, 19861}, {3177, 42483}, {3452, 4373}, {3731, 10580}, {4461, 36796}, {6553, 15829}, {6555, 52549}, {7110, 27508}, {18228, 56199}, {35160, 45789}

X(56200) = isotomic conjugate of X(43983)
X(56200) = trilinear pole of line {4521, 3900}
X(56200) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 7271}, {31, 43983}, {56, 5437}, {57, 3304}, {604, 31995}, {1407, 4853}, {1412, 3698}
X(56200) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 5437}, {2, 43983}, {9, 7271}, {3161, 31995}, {5452, 3304}, {24771, 4853}, {40599, 3698}
X(56200) = X(i)-cross conjugate of X(j) for these {i, j}: {8710, 3699}
X(56200) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(37556)}}, {{A, B, C, X(2), X(9)}}, {{A, B, C, X(7), X(8236)}}, {{A, B, C, X(8), X(145)}}, {{A, B, C, X(63), X(30681)}}, {{A, B, C, X(81), X(51341)}}, {{A, B, C, X(97), X(55111)}}, {{A, B, C, X(279), X(41441)}}, {{A, B, C, X(280), X(32635)}}, {{A, B, C, X(391), X(2325)}}, {{A, B, C, X(941), X(7050)}}, {{A, B, C, X(1219), X(4866)}}, {{A, B, C, X(2161), X(52223)}}, {{A, B, C, X(2321), X(4029)}}, {{A, B, C, X(3177), X(30695)}}, {{A, B, C, X(3219), X(27508)}}, {{A, B, C, X(3452), X(6555)}}, {{A, B, C, X(3680), X(35577)}}, {{A, B, C, X(3692), X(30680)}}, {{A, B, C, X(3693), X(4461)}}, {{A, B, C, X(4076), X(30479)}}, {{A, B, C, X(6552), X(15829)}}, {{A, B, C, X(6556), X(46872)}}, {{A, B, C, X(6601), X(36606)}}, {{A, B, C, X(7003), X(8796)}}, {{A, B, C, X(7080), X(44687)}}, {{A, B, C, X(7220), X(9309)}}, {{A, B, C, X(14100), X(26818)}}, {{A, B, C, X(14942), X(30712)}}, {{A, B, C, X(30711), X(39721)}}, {{A, B, C, X(43533), X(44040)}}
X(56200) = barycentric product X(i)*X(j) for these (i, j): {346, 44794}, {7320, 8}
X(56200) = barycentric quotient X(i)/X(j) for these (i, j): {1, 7271}, {2, 43983}, {8, 31995}, {9, 5437}, {55, 3304}, {200, 4853}, {210, 3698}, {7320, 7}, {44794, 279}


X(56201) = KP3(X(9)) OF X(1) AND X(8)

Barycentrics    (a-b-c)*(3*a+3*b-c)*(3*a-b+3*c) : :

X(56201) lies on these lines: {2, 1743}, {8, 3158}, {9, 6557}, {63, 50442}, {85, 5435}, {92, 4359}, {145, 46872}, {257, 5222}, {312, 3161}, {345, 4102}, {1150, 40435}, {1220, 5737}, {1311, 28162}, {3452, 38255}, {3616, 31359}, {3687, 30711}, {4113, 5218}, {4384, 10405}, {4847, 56088}, {4997, 18228}, {5278, 34234}, {5296, 37646}, {5437, 56054}, {5739, 56062}, {6546, 43061}, {8055, 31722}, {8056, 23649}, {11679, 56086}, {14555, 30608}, {14829, 29627}, {16602, 39956}, {16713, 46880}, {17277, 40420}, {17743, 29611}, {18359, 20881}, {25057, 33133}, {26038, 56164}, {26047, 32918}, {32851, 42030}, {33116, 55954}, {41915, 51583}, {52653, 56102}

X(56201) = isotomic conjugate of X(5226)
X(56201) = complement of X(41913)
X(56201) = trilinear pole of line {4162, 522}
X(56201) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3340}, {31, 5226}, {56, 3731}, {604, 3617}, {608, 3984}, {651, 48338}, {1397, 42034}, {1408, 4058}, {1415, 28161}
X(56201) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3731}, {2, 5226}, {9, 3340}, {1146, 28161}, {3161, 3617}, {3756, 14350}, {38991, 48338}
X(56201) = X(i)-cross conjugate of X(j) for these {i, j}: {391, 8}, {3486, 7}, {53526, 4560}
X(56201) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(7), X(261)}}, {{A, B, C, X(9), X(1261)}}, {{A, B, C, X(21), X(57)}}, {{A, B, C, X(55), X(2350)}}, {{A, B, C, X(60), X(967)}}, {{A, B, C, X(63), X(1809)}}, {{A, B, C, X(75), X(21296)}}, {{A, B, C, X(80), X(45098)}}, {{A, B, C, X(81), X(2320)}}, {{A, B, C, X(88), X(2339)}}, {{A, B, C, X(89), X(2185)}}, {{A, B, C, X(277), X(8051)}}, {{A, B, C, X(278), X(44559)}}, {{A, B, C, X(314), X(28626)}}, {{A, B, C, X(345), X(4001)}}, {{A, B, C, X(673), X(5281)}}, {{A, B, C, X(958), X(959)}}, {{A, B, C, X(1255), X(1392)}}, {{A, B, C, X(2051), X(7319)}}, {{A, B, C, X(2269), X(45988)}}, {{A, B, C, X(2319), X(40779)}}, {{A, B, C, X(3008), X(43061)}}, {{A, B, C, X(3616), X(11679)}}, {{A, B, C, X(3687), X(9780)}}, {{A, B, C, X(3705), X(29611)}}, {{A, B, C, X(3911), X(4723)}}, {{A, B, C, X(4373), X(32093)}}, {{A, B, C, X(4391), X(34258)}}, {{A, B, C, X(4416), X(34277)}}, {{A, B, C, X(4513), X(4875)}}, {{A, B, C, X(4847), X(29627)}}, {{A, B, C, X(5222), X(7081)}}, {{A, B, C, X(5235), X(14555)}}, {{A, B, C, X(5271), X(27383)}}, {{A, B, C, X(5324), X(40193)}}, {{A, B, C, X(5437), X(18230)}}, {{A, B, C, X(5556), X(18231)}}, {{A, B, C, X(5737), X(19608)}}, {{A, B, C, X(5936), X(17272)}}, {{A, B, C, X(7155), X(39716)}}, {{A, B, C, X(10453), X(28797)}}, {{A, B, C, X(10527), X(34255)}}, {{A, B, C, X(11604), X(43757)}}, {{A, B, C, X(14829), X(16713)}}, {{A, B, C, X(16610), X(48559)}}, {{A, B, C, X(17120), X(52652)}}, {{A, B, C, X(17298), X(39749)}}, {{A, B, C, X(17364), X(39721)}}, {{A, B, C, X(17776), X(28930)}}, {{A, B, C, X(21255), X(55076)}}, {{A, B, C, X(24627), X(26065)}}, {{A, B, C, X(27549), X(52653)}}, {{A, B, C, X(27818), X(37887)}}, {{A, B, C, X(28605), X(32851)}}, {{A, B, C, X(30827), X(31188)}}, {{A, B, C, X(32023), X(38254)}}, {{A, B, C, X(32635), X(39963)}}, {{A, B, C, X(33576), X(34991)}}, {{A, B, C, X(34404), X(52344)}}, {{A, B, C, X(36948), X(40422)}}, {{A, B, C, X(39800), X(41913)}}, {{A, B, C, X(41514), X(56099)}}, {{A, B, C, X(44189), X(52381)}}
X(56201) = barycentric product X(i)*X(j) for these (i, j): {312, 39980}, {314, 31503}, {28162, 35519}, {30712, 8}
X(56201) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3340}, {2, 5226}, {8, 3617}, {9, 3731}, {78, 3984}, {312, 42034}, {522, 28161}, {663, 48338}, {2321, 4058}, {3680, 10563}, {4521, 14350}, {4853, 11530}, {28162, 109}, {30712, 7}, {31503, 65}, {39980, 57}
X(56201) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 18231, 39800}


X(56202) = KP3(X(9)) OF X(8) AND X(6)

Barycentrics    (a-b-c)*(a^3+a^2*c+a*b*c+b^2*(b+c))*(a^3+a^2*b+a*b*c+c^2*(b+c)) : :

X(56202) lies on these lines: {8, 31}, {25, 318}, {41, 346}, {55, 341}, {56, 75}, {78, 904}, {280, 2208}, {1036, 3685}, {1043, 2194}, {2204, 2322}, {6186, 52344}, {6187, 52409}, {11679, 37603}, {34858, 51565}, {37087, 40445}, {37573, 41839}

X(56202) = trilinear pole of line {3063, 3239}
X(56202) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 986}, {57, 2277}, {604, 27184}
X(56202) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 986}, {3161, 27184}, {5452, 2277}
X(56202) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5255)}}, {{A, B, C, X(2), X(26065)}}, {{A, B, C, X(7), X(4339)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(9), X(979)}}, {{A, B, C, X(21), X(25)}}, {{A, B, C, X(29), X(4195)}}, {{A, B, C, X(78), X(7081)}}, {{A, B, C, X(86), X(38251)}}, {{A, B, C, X(261), X(36602)}}, {{A, B, C, X(314), X(56146)}}, {{A, B, C, X(333), X(37652)}}, {{A, B, C, X(958), X(34820)}}, {{A, B, C, X(1220), X(52549)}}, {{A, B, C, X(1791), X(26264)}}, {{A, B, C, X(1821), X(17743)}}, {{A, B, C, X(4076), X(4866)}}, {{A, B, C, X(4183), X(37091)}}, {{A, B, C, X(4518), X(33163)}}, {{A, B, C, X(5710), X(37542)}}, {{A, B, C, X(19765), X(37540)}}, {{A, B, C, X(36798), X(43531)}}, {{A, B, C, X(37573), X(37603)}}
X(56202) = barycentric product X(i)*X(j) for these (i, j): {312, 987}, {56046, 8}
X(56202) = barycentric quotient X(i)/X(j) for these (i, j): {8, 27184}, {9, 986}, {55, 2277}, {987, 57}, {56046, 7}


X(56203) = KP3(X(9)) OF X(8) AND X(9)

Barycentrics    a*(a-b-c)*(2*a+2*b+c)*(2*a+b+2*c) : :

X(56203) lies on the Feuerbach hyperbola and on these lines: {1, 2308}, {2, 79}, {3, 10308}, {4, 2355}, {7, 5550}, {8, 3683}, {9, 4420}, {10, 5560}, {21, 56177}, {44, 941}, {45, 2298}, {55, 32635}, {80, 3617}, {84, 37106}, {100, 51572}, {104, 8652}, {145, 13606}, {191, 16859}, {376, 26202}, {405, 11684}, {452, 6598}, {497, 43741}, {518, 56028}, {631, 9809}, {958, 1320}, {960, 2320}, {1000, 20050}, {1155, 5556}, {1156, 5217}, {1172, 11107}, {1389, 7489}, {1392, 3877}, {1697, 31509}, {1708, 5665}, {1770, 3634}, {2346, 5220}, {2478, 11604}, {2481, 32042}, {2975, 15179}, {3062, 21153}, {3065, 4189}, {3254, 10527}, {3296, 3616}, {3305, 35242}, {3523, 16005}, {3524, 22936}, {3545, 22937}, {3551, 27627}, {3621, 5559}, {3626, 43731}, {3650, 50202}, {3680, 5250}, {3685, 56087}, {3871, 56115}, {3935, 7162}, {4512, 4866}, {4640, 19877}, {4652, 31507}, {4900, 5234}, {5047, 5221}, {5260, 12702}, {5273, 43740}, {5424, 5692}, {5506, 17572}, {5557, 20078}, {5902, 17544}, {6601, 52653}, {6910, 10266}, {7319, 37568}, {9782, 17552}, {10032, 50714}, {11279, 30144}, {12514, 17098}, {12532, 56036}, {12867, 13615}, {14450, 16845}, {16866, 34195}, {17418, 23838}, {18483, 54357}, {19862, 27186}, {23958, 25542}, {27065, 36599}, {27383, 34919}, {33576, 35445}, {33696, 46933}, {35355, 48074}, {37567, 55924}, {37572, 46931}, {37582, 43733}, {37605, 55921}

X(56203) = isogonal conjugate of X(5221)
X(56203) = anticomplement of X(41862)
X(56203) = trilinear pole of line {650, 35057}
X(56203) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 5221}, {6, 4654}, {34, 3927}, {56, 1698}, {57, 16777}, {65, 4658}, {73, 31902}, {109, 4802}, {269, 3715}, {514, 36074}, {604, 28605}, {651, 4813}, {664, 4834}, {1397, 30596}, {1400, 5333}, {1405, 30589}, {1407, 4007}, {1408, 4066}, {1411, 4880}, {1414, 48005}, {1415, 4823}, {1427, 4877}, {1461, 4820}, {2334, 5586}, {4551, 4840}, {4559, 4960}, {4565, 4838}, {4573, 4826}, {4756, 43924}, {4898, 40151}, {4938, 7316}, {4949, 38828}
X(56203) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1698}, {3, 5221}, {9, 4654}, {11, 4802}, {442, 3824}, {1146, 4823}, {3161, 28605}, {5452, 16777}, {6600, 3715}, {11517, 3927}, {24771, 4007}, {35204, 4880}, {35508, 4820}, {38991, 4813}, {39025, 4834}, {40582, 5333}, {40602, 4658}, {40608, 48005}, {41862, 41862}, {51576, 5586}, {55064, 4838}, {55067, 4960}
X(56203) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30598, 25417}
X(56203) = X(i)-cross conjugate of X(j) for these {i, j}: {3876, 8}
X(56203) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(2), X(2349)}}, {{A, B, C, X(3), X(3579)}}, {{A, B, C, X(6), X(5302)}}, {{A, B, C, X(10), X(4067)}}, {{A, B, C, X(28), X(31156)}}, {{A, B, C, X(29), X(16865)}}, {{A, B, C, X(35), X(3431)}}, {{A, B, C, X(44), X(958)}}, {{A, B, C, X(45), X(960)}}, {{A, B, C, X(55), X(60)}}, {{A, B, C, X(56), X(41432)}}, {{A, B, C, X(58), X(33635)}}, {{A, B, C, X(78), X(3951)}}, {{A, B, C, X(88), X(2339)}}, {{A, B, C, X(89), X(333)}}, {{A, B, C, X(105), X(10385)}}, {{A, B, C, X(200), X(5550)}}, {{A, B, C, X(220), X(15254)}}, {{A, B, C, X(271), X(9778)}}, {{A, B, C, X(280), X(44687)}}, {{A, B, C, X(285), X(6605)}}, {{A, B, C, X(341), X(17249)}}, {{A, B, C, X(346), X(1098)}}, {{A, B, C, X(452), X(13739)}}, {{A, B, C, X(521), X(28146)}}, {{A, B, C, X(765), X(1219)}}, {{A, B, C, X(959), X(2161)}}, {{A, B, C, X(1001), X(17201)}}, {{A, B, C, X(1036), X(34820)}}, {{A, B, C, X(1043), X(41847)}}, {{A, B, C, X(1155), X(5217)}}, {{A, B, C, X(1167), X(37741)}}, {{A, B, C, X(1212), X(5220)}}, {{A, B, C, X(1220), X(56107)}}, {{A, B, C, X(1247), X(39956)}}, {{A, B, C, X(1334), X(2053)}}, {{A, B, C, X(1385), X(8148)}}, {{A, B, C, X(1443), X(4294)}}, {{A, B, C, X(1708), X(5273)}}, {{A, B, C, X(1793), X(34259)}}, {{A, B, C, X(2115), X(6065)}}, {{A, B, C, X(2164), X(3450)}}, {{A, B, C, X(2185), X(30711)}}, {{A, B, C, X(2218), X(9309)}}, {{A, B, C, X(3160), X(43178)}}, {{A, B, C, X(3161), X(5250)}}, {{A, B, C, X(3478), X(32427)}}, {{A, B, C, X(3615), X(56146)}}, {{A, B, C, X(3617), X(4511)}}, {{A, B, C, X(3621), X(4861)}}, {{A, B, C, X(3647), X(35193)}}, {{A, B, C, X(3678), X(6701)}}, {{A, B, C, X(3872), X(20050)}}, {{A, B, C, X(3876), X(4877)}}, {{A, B, C, X(3895), X(31722)}}, {{A, B, C, X(3935), X(10527)}}, {{A, B, C, X(4102), X(27789)}}, {{A, B, C, X(4518), X(7226)}}, {{A, B, C, X(4560), X(39740)}}, {{A, B, C, X(4567), X(32022)}}, {{A, B, C, X(5204), X(37568)}}, {{A, B, C, X(5234), X(16670)}}, {{A, B, C, X(6557), X(40434)}}, {{A, B, C, X(6740), X(43531)}}, {{A, B, C, X(7288), X(52429)}}, {{A, B, C, X(9083), X(17127)}}, {{A, B, C, X(11375), X(52371)}}, {{A, B, C, X(12702), X(13624)}}, {{A, B, C, X(20078), X(27065)}}, {{A, B, C, X(24798), X(56151)}}, {{A, B, C, X(25417), X(42030)}}, {{A, B, C, X(27549), X(33950)}}, {{A, B, C, X(31359), X(52409)}}, {{A, B, C, X(36588), X(56137)}}, {{A, B, C, X(37567), X(37600)}}, {{A, B, C, X(37606), X(50193)}}, {{A, B, C, X(40436), X(43533)}}, {{A, B, C, X(41872), X(52405)}}, {{A, B, C, X(42318), X(44178)}}, {{A, B, C, X(44040), X(55091)}}
X(56203) = barycentric product X(i)*X(j) for these (i, j): {1, 42030}, {318, 56070}, {2320, 30590}, {3699, 48074}, {4391, 8652}, {25417, 8}, {28625, 314}, {30597, 4007}, {30598, 9}, {32042, 650}, {34819, 3596}, {37211, 522}
X(56203) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4654}, {6, 5221}, {8, 28605}, {9, 1698}, {21, 5333}, {55, 16777}, {200, 4007}, {219, 3927}, {220, 3715}, {284, 4658}, {312, 30596}, {522, 4823}, {644, 4756}, {650, 4802}, {663, 4813}, {692, 36074}, {1172, 31902}, {1449, 5586}, {2320, 30589}, {2321, 4066}, {2323, 4880}, {2328, 4877}, {3063, 4834}, {3158, 4898}, {3684, 4716}, {3689, 4727}, {3709, 48005}, {3737, 4960}, {3900, 4820}, {3907, 4842}, {4041, 4838}, {4162, 4949}, {4435, 4810}, {4513, 4942}, {4895, 4958}, {7252, 4840}, {8652, 651}, {25417, 7}, {28625, 65}, {30598, 85}, {32042, 4554}, {32635, 43260}, {34819, 56}, {35057, 23883}, {37211, 664}, {40937, 3824}, {42030, 75}, {48074, 3676}, {56070, 77}
X(56203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3647, 41872, 2}


X(56204) = KP3(X(9)) OF X(8) AND X(21)

Barycentrics    a*(a+b)*(a-b-c)*(a+c)*(a+3*b+c)*(a+b+3*c) : :

X(56204) lies on these lines: {2, 1434}, {9, 81}, {10, 51505}, {21, 200}, {27, 281}, {270, 4183}, {333, 346}, {958, 2334}, {1014, 7308}, {1817, 19605}, {2184, 24635}, {2185, 2287}, {2297, 3305}, {2363, 5297}, {3945, 44306}, {4606, 5325}, {4614, 27174}, {4627, 52663}, {4633, 36796}, {4921, 36916}, {5333, 18228}, {5745, 7110}, {7079, 14014}, {8694, 53707}, {14005, 18250}, {16704, 56200}, {23617, 27065}, {26637, 55989}, {30599, 30854}

X(56204) = trilinear pole of line {3737, 3900}
X(56204) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3671}, {34, 4047}, {37, 3361}, {42, 21454}, {56, 5257}, {57, 37593}, {65, 1449}, {109, 4841}, {181, 42028}, {391, 1042}, {461, 52373}, {608, 4101}, {651, 4822}, {658, 8653}, {664, 4832}, {1106, 42712}, {1214, 5338}, {1400, 3616}, {1402, 19804}, {1407, 4061}, {1409, 5342}, {1415, 4815}, {1427, 4512}, {1458, 14625}, {1461, 4843}, {1880, 4652}, {2197, 31903}, {3668, 4258}, {4551, 4790}, {4557, 30723}, {4559, 4778}, {4765, 53321}, {5586, 28625}, {7250, 30728}
X(56204) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 5257}, {9, 3671}, {11, 4841}, {1146, 4815}, {5452, 37593}, {6552, 42712}, {11517, 4047}, {24771, 4061}, {35508, 4843}, {38991, 4822}, {39025, 4832}, {40582, 3616}, {40589, 3361}, {40592, 21454}, {40602, 1449}, {40605, 19804}, {40625, 4801}, {55067, 4778}, {55068, 4765}
X(56204) = X(i)-cross conjugate of X(j) for these {i, j}: {4877, 21}
X(56204) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5234)}}, {{A, B, C, X(2), X(9)}}, {{A, B, C, X(8), X(1255)}}, {{A, B, C, X(21), X(27)}}, {{A, B, C, X(55), X(967)}}, {{A, B, C, X(63), X(1792)}}, {{A, B, C, X(88), X(2339)}}, {{A, B, C, X(226), X(12867)}}, {{A, B, C, X(284), X(1171)}}, {{A, B, C, X(285), X(46880)}}, {{A, B, C, X(312), X(32635)}}, {{A, B, C, X(314), X(39734)}}, {{A, B, C, X(345), X(19822)}}, {{A, B, C, X(943), X(13478)}}, {{A, B, C, X(960), X(5302)}}, {{A, B, C, X(1029), X(6598)}}, {{A, B, C, X(1156), X(44733)}}, {{A, B, C, X(1170), X(1751)}}, {{A, B, C, X(1320), X(42030)}}, {{A, B, C, X(1793), X(1812)}}, {{A, B, C, X(3218), X(5325)}}, {{A, B, C, X(3219), X(5745)}}, {{A, B, C, X(3305), X(18228)}}, {{A, B, C, X(3452), X(27065)}}, {{A, B, C, X(3680), X(27789)}}, {{A, B, C, X(3687), X(5297)}}, {{A, B, C, X(4866), X(25430)}}, {{A, B, C, X(7259), X(37216)}}, {{A, B, C, X(10308), X(55090)}}, {{A, B, C, X(11679), X(17018)}}, {{A, B, C, X(16948), X(17185)}}, {{A, B, C, X(18750), X(24635)}}, {{A, B, C, X(27174), X(52891)}}, {{A, B, C, X(30582), X(30713)}}, {{A, B, C, X(30608), X(39962)}}, {{A, B, C, X(38271), X(45100)}}, {{A, B, C, X(43757), X(45393)}}
X(56204) = barycentric product X(i)*X(j) for these (i, j): {21, 5936}, {274, 34820}, {284, 40023}, {1021, 4624}, {2334, 314}, {3737, 53658}, {4391, 4627}, {4397, 5545}, {4560, 4606}, {4614, 522}, {4633, 650}, {4866, 86}, {18155, 8694}, {25430, 333}, {47915, 645}, {56048, 8}, {56086, 81}
X(56204) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3671}, {9, 5257}, {21, 3616}, {29, 5342}, {55, 37593}, {58, 3361}, {78, 4101}, {81, 21454}, {200, 4061}, {219, 4047}, {270, 31903}, {283, 4652}, {284, 1449}, {294, 14625}, {333, 19804}, {346, 42712}, {522, 4815}, {650, 4841}, {663, 4822}, {1019, 30723}, {1021, 4765}, {1043, 4673}, {2185, 42028}, {2287, 391}, {2299, 5338}, {2328, 4512}, {2334, 65}, {3063, 4832}, {3684, 4771}, {3689, 4819}, {3737, 4778}, {3900, 4843}, {4183, 461}, {4267, 4719}, {4433, 4829}, {4435, 4839}, {4560, 4801}, {4606, 4552}, {4614, 664}, {4627, 651}, {4633, 4554}, {4658, 5586}, {4866, 10}, {5545, 934}, {5936, 1441}, {7252, 4790}, {7253, 4811}, {7259, 30728}, {8641, 8653}, {8694, 4551}, {25430, 226}, {34074, 4559}, {34820, 37}, {40023, 349}, {47915, 7178}, {56048, 7}, {56086, 321}, {56181, 4734}


X(56205) = KP3(X(9)) OF X(8) AND X(33)

Barycentrics    (a-b-c)*(a^2+b^2+2*a*c+2*b*c-c^2)*(a^2+2*a*b-b^2+2*b*c+c^2) : :

X(56205) lies on these lines: {2, 4451}, {8, 193}, {75, 7196}, {318, 37384}, {341, 17787}, {346, 5281}, {1043, 27958}, {2322, 14006}, {5686, 6556}, {7172, 56180}, {8769, 39721}, {11683, 24280}, {11997, 56102}

X(56205) = trilinear pole of line {3239, 3907}
X(56205) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 17594}, {109, 48136}, {604, 17257}, {1408, 4104}
X(56205) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 17594}, {11, 48136}, {3161, 17257}
X(56205) = X(i)-cross conjugate of X(j) for these {i, j}: {11679, 8}
X(56205) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(894)}}, {{A, B, C, X(7), X(3424)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(9), X(291)}}, {{A, B, C, X(19), X(21)}}, {{A, B, C, X(29), X(50408)}}, {{A, B, C, X(55), X(45966)}}, {{A, B, C, X(82), X(2320)}}, {{A, B, C, X(193), X(333)}}, {{A, B, C, X(256), X(2319)}}, {{A, B, C, X(261), X(34919)}}, {{A, B, C, X(281), X(314)}}, {{A, B, C, X(391), X(17731)}}, {{A, B, C, X(393), X(52550)}}, {{A, B, C, X(522), X(5847)}}, {{A, B, C, X(673), X(5281)}}, {{A, B, C, X(897), X(56203)}}, {{A, B, C, X(941), X(56154)}}, {{A, B, C, X(1261), X(24477)}}, {{A, B, C, X(1320), X(23051)}}, {{A, B, C, X(2053), X(9292)}}, {{A, B, C, X(2344), X(13610)}}, {{A, B, C, X(3161), X(5686)}}, {{A, B, C, X(3705), X(7172)}}, {{A, B, C, X(4373), X(43749)}}, {{A, B, C, X(4518), X(5936)}}, {{A, B, C, X(4876), X(17038)}}, {{A, B, C, X(6557), X(7229)}}, {{A, B, C, X(17363), X(30711)}}, {{A, B, C, X(49529), X(55076)}}
X(56205) = barycentric product X(i)*X(j) for these (i, j): {56044, 8}
X(56205) = barycentric quotient X(i)/X(j) for these (i, j): {8, 17257}, {9, 17594}, {650, 48136}, {2321, 4104}, {56044, 7}


X(56206) = KP3(X(9)) OF X(9) AND X(21)

Barycentrics    a*(a-b-c)*(3*a+4*b+3*c)*(3*a+3*b+4*c) : :

X(56206) lies on the Feuerbach hyperbola and on these lines: {1, 3988}, {2, 5551}, {4, 28216}, {7, 56061}, {104, 28214}, {1000, 20054}, {1698, 43732}, {2298, 15492}, {3296, 15325}, {3715, 56203}, {4745, 17501}, {5556, 10895}, {7317, 20052}, {10266, 18253}, {10308, 22937}, {10592, 43733}, {15171, 43734}, {15481, 17546}, {18490, 50398}

X(56206) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 4114}, {56, 19862}, {109, 28213}, {3649, 39670}
X(56206) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 19862}, {9, 4114}, {11, 28213}
X(56206) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56061, 56037}
X(56206) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(10), X(3988)}}, {{A, B, C, X(29), X(16861)}}, {{A, B, C, X(517), X(31666)}}, {{A, B, C, X(521), X(28216)}}, {{A, B, C, X(960), X(15492)}}, {{A, B, C, X(3872), X(20054)}}, {{A, B, C, X(4518), X(42041)}}
X(56206) = barycentric product X(i)*X(j) for these (i, j): {28214, 4391}, {56037, 8}, {56061, 9}
X(56206) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4114}, {9, 19862}, {650, 28213}, {28214, 651}, {56037, 7}, {56061, 85}


X(56207) = KP3(X(9)) OF X(9) AND X(33)

Barycentrics    a*(a-b-c)*(a^2+3*b^2+c^2)*(a^2+b^2+3*c^2) : :

X(56207) lies on these lines: {9, 5324}, {33, 33299}, {37, 614}, {210, 2082}, {226, 7195}, {479, 28739}, {497, 2321}, {1826, 1851}, {1903, 34817}, {7308, 16600}, {35144, 54971}

X(56207) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 30435}, {56, 3618}, {109, 48060}, {222, 6995}, {278, 3796}, {604, 39731}, {608, 3785}, {651, 3803}, {1397, 40022}, {1401, 42037}, {1415, 48109}, {3793, 7316}, {3800, 4565}, {3804, 4573}
X(56207) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3618}, {11, 48060}, {1146, 48109}, {3161, 39731}, {38991, 3803}, {40182, 57}, {55064, 3800}
X(56207) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18840, 23051}
X(56207) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(17599)}}, {{A, B, C, X(8), X(34)}}, {{A, B, C, X(9), X(33)}}, {{A, B, C, X(78), X(15523)}}, {{A, B, C, X(200), X(17284)}}, {{A, B, C, X(1212), X(31435)}}, {{A, B, C, X(2285), X(3974)}}, {{A, B, C, X(2298), X(45100)}}, {{A, B, C, X(2339), X(4876)}}, {{A, B, C, X(3061), X(39248)}}, {{A, B, C, X(4423), X(4866)}}, {{A, B, C, X(4514), X(4863)}}, {{A, B, C, X(5750), X(7308)}}, {{A, B, C, X(7018), X(56179)}}, {{A, B, C, X(8801), X(23051)}}, {{A, B, C, X(28070), X(28739)}}, {{A, B, C, X(32635), X(56102)}}
X(56207) = barycentric product X(i)*X(j) for these (i, j): {78, 8801}, {312, 39951}, {318, 34817}, {4041, 54971}, {4086, 907}, {18840, 9}, {23051, 8}
X(56207) = barycentric quotient X(i)/X(j) for these (i, j): {8, 39731}, {9, 3618}, {33, 6995}, {41, 30435}, {78, 3785}, {212, 3796}, {312, 40022}, {522, 48109}, {650, 48060}, {663, 3803}, {907, 1414}, {4041, 3800}, {8801, 273}, {18840, 85}, {23051, 7}, {33299, 8362}, {34817, 77}, {39951, 57}, {54971, 4625}


X(56208) = KP3(X(9)) OF X(9) AND X(55)

Barycentrics    a*(a-b-c)*(2*b*c+a*(2*b+c))*(2*b*c+a*(b+2*c)) : :

X(56208) lies on these lines: {2, 42302}, {6, 748}, {9, 3706}, {19, 1889}, {55, 3691}, {57, 4059}, {284, 37658}, {333, 28809}, {405, 1174}, {673, 5278}, {2258, 5283}, {2291, 6013}, {2299, 28044}, {3715, 7077}, {5115, 5275}, {17110, 19730}

X(56208) = trilinear pole of line {663, 4501}
X(56208) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 16878}, {56, 4687}, {57, 17018}, {109, 47666}, {226, 39673}, {651, 6005}, {4554, 8655}, {4565, 48407}, {4573, 50483}
X(56208) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4687}, {11, 47666}, {5452, 17018}, {32664, 16878}, {38991, 6005}, {55064, 48407}
X(56208) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56051, 10013}
X(56208) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(210)}}, {{A, B, C, X(6), X(9)}}, {{A, B, C, X(8), X(3691)}}, {{A, B, C, X(21), X(1889)}}, {{A, B, C, X(200), X(16832)}}, {{A, B, C, X(220), X(16552)}}, {{A, B, C, X(354), X(5686)}}, {{A, B, C, X(391), X(940)}}, {{A, B, C, X(405), X(1212)}}, {{A, B, C, X(522), X(9038)}}, {{A, B, C, X(748), X(4387)}}, {{A, B, C, X(958), X(5283)}}, {{A, B, C, X(1334), X(2350)}}, {{A, B, C, X(2287), X(19732)}}, {{A, B, C, X(2321), X(39983)}}, {{A, B, C, X(3684), X(3715)}}, {{A, B, C, X(3700), X(34258)}}, {{A, B, C, X(4183), X(37075)}}, {{A, B, C, X(4254), X(5115)}}, {{A, B, C, X(4423), X(4866)}}, {{A, B, C, X(4512), X(39980)}}, {{A, B, C, X(4876), X(42030)}}, {{A, B, C, X(5275), X(14555)}}, {{A, B, C, X(7220), X(39748)}}, {{A, B, C, X(17330), X(28920)}}, {{A, B, C, X(30711), X(40779)}}, {{A, B, C, X(56154), X(56203)}}
X(56208) = barycentric product X(i)*X(j) for these (i, j): {1, 56087}, {21, 46772}, {522, 6013}, {10013, 8}, {56051, 9}
X(56208) = barycentric quotient X(i)/X(j) for these (i, j): {9, 4687}, {31, 16878}, {55, 17018}, {650, 47666}, {663, 6005}, {2194, 39673}, {4041, 48407}, {6013, 664}, {10013, 7}, {46772, 1441}, {56051, 85}, {56087, 75}


X(56209) = KP3(X(10)) OF X(2) AND X(10)

Barycentrics    (b+c)*(3*a+4*b+3*c)*(3*a+3*b+4*c) : :

X(56209) lies on the Kiepert hyperbola and on these lines: {2, 4399}, {4, 28216}, {98, 28214}, {3617, 19743}, {4049, 47678}, {6625, 43990}, {17758, 29593}, {19804, 39994}, {27797, 41809}, {30473, 40013}, {32014, 51353}

X(56209) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 28213}, {1100, 39670}, {1333, 19862}, {2194, 4114}
X(56209) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 19862}, {115, 28213}, {1214, 4114}
X(56209) = X(i)-cross conjugate of X(j) for these {i, j}: {4838, 3952}
X(56209) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(30582)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(330), X(3995)}}, {{A, B, C, X(525), X(28216)}}, {{A, B, C, X(1268), X(32089)}}, {{A, B, C, X(1654), X(43990)}}, {{A, B, C, X(3992), X(31011)}}, {{A, B, C, X(4651), X(29593)}}, {{A, B, C, X(4674), X(25417)}}, {{A, B, C, X(4714), X(26860)}}, {{A, B, C, X(5224), X(19743)}}, {{A, B, C, X(8013), X(51353)}}, {{A, B, C, X(27809), X(46772)}}, {{A, B, C, X(28605), X(39738)}}, {{A, B, C, X(28650), X(30594)}}, {{A, B, C, X(30711), X(30713)}}, {{A, B, C, X(35058), X(39708)}}
X(56209) = barycentric product X(i)*X(j) for these (i, j): {10, 56061}, {321, 56037}, {1441, 56206}, {28214, 850}
X(56209) = barycentric quotient X(i)/X(j) for these (i, j): {10, 19862}, {226, 4114}, {523, 28213}, {1126, 39670}, {28214, 110}, {56037, 81}, {56061, 86}, {56206, 21}


X(56210) = KP3(X(10)) OF X(2) AND X(37)

Barycentrics    (a*(b+c)+b*(2*b+c))*(a*(b+c)+c*(b+2*c)) : :

X(56210) lies on the Kiepert hyperbola and on these lines: {2, 21024}, {4, 1654}, {8, 40718}, {10, 192}, {69, 6625}, {76, 17238}, {83, 17349}, {98, 43359}, {194, 10479}, {226, 3212}, {274, 40031}, {321, 6376}, {330, 3741}, {391, 5395}, {594, 53675}, {2996, 5232}, {3617, 13576}, {3831, 41836}, {3948, 34258}, {4444, 50457}, {4658, 10449}, {4772, 20255}, {7783, 37660}, {13478, 37416}, {14534, 37683}, {16996, 33954}, {17230, 30588}, {17232, 17758}, {17239, 20943}, {17499, 50074}, {17503, 50271}, {18135, 40024}, {20081, 30966}, {20913, 40012}, {21071, 27268}, {24688, 25625}, {25102, 48630}, {26043, 26801}, {27040, 56167}, {27318, 50605}, {27430, 41527}, {31330, 41838}, {31999, 50608}, {33297, 50133}, {34284, 40017}, {35353, 47666}, {40848, 43534}

X(56210) = isotomic conjugate of X(17379)
X(56210) = anticomplement of X(41849)
X(56210) = trilinear pole of line {3835, 4500}
X(56210) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 17379}, {32, 31997}, {692, 4932}, {1333, 43223}, {17689, 18757}
X(56210) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17379}, {37, 43223}, {1086, 4932}, {6376, 31997}, {41849, 41849}
X(56210) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56052, 17038}
X(56210) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {28621, 17137}
X(56210) = X(i)-cross conjugate of X(j) for these {i, j}: {5224, 2}, {33154, 7}, {47514, 264}
X(56210) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(27494)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(48875)}}, {{A, B, C, X(6), X(17238)}}, {{A, B, C, X(7), X(17248)}}, {{A, B, C, X(8), X(3661)}}, {{A, B, C, X(27), X(37164)}}, {{A, B, C, X(69), X(1654)}}, {{A, B, C, X(75), X(192)}}, {{A, B, C, X(85), X(27483)}}, {{A, B, C, X(141), X(17349)}}, {{A, B, C, X(193), X(5232)}}, {{A, B, C, X(274), X(31060)}}, {{A, B, C, X(310), X(18832)}}, {{A, B, C, X(334), X(5936)}}, {{A, B, C, X(335), X(31359)}}, {{A, B, C, X(391), X(3620)}}, {{A, B, C, X(514), X(28522)}}, {{A, B, C, X(594), X(1502)}}, {{A, B, C, X(596), X(9328)}}, {{A, B, C, X(673), X(39730)}}, {{A, B, C, X(966), X(17300)}}, {{A, B, C, X(1211), X(37683)}}, {{A, B, C, X(1218), X(46772)}}, {{A, B, C, X(1219), X(6630)}}, {{A, B, C, X(1246), X(5224)}}, {{A, B, C, X(1432), X(51844)}}, {{A, B, C, X(1509), X(39720)}}, {{A, B, C, X(2165), X(23927)}}, {{A, B, C, X(2292), X(51311)}}, {{A, B, C, X(3227), X(39711)}}, {{A, B, C, X(3314), X(4136)}}, {{A, B, C, X(3617), X(3912)}}, {{A, B, C, X(3679), X(17230)}}, {{A, B, C, X(3741), X(6382)}}, {{A, B, C, X(3948), X(7235)}}, {{A, B, C, X(4373), X(39712)}}, {{A, B, C, X(4431), X(10405)}}, {{A, B, C, X(4461), X(24547)}}, {{A, B, C, X(4492), X(40432)}}, {{A, B, C, X(4658), X(25417)}}, {{A, B, C, X(4678), X(29594)}}, {{A, B, C, X(4791), X(30590)}}, {{A, B, C, X(5361), X(31037)}}, {{A, B, C, X(5739), X(37653)}}, {{A, B, C, X(6381), X(47666)}}, {{A, B, C, X(7148), X(52651)}}, {{A, B, C, X(8024), X(21016)}}, {{A, B, C, X(9780), X(29576)}}, {{A, B, C, X(14996), X(27081)}}, {{A, B, C, X(15315), X(17946)}}, {{A, B, C, X(17232), X(17277)}}, {{A, B, C, X(17251), X(50133)}}, {{A, B, C, X(17271), X(50074)}}, {{A, B, C, X(17493), X(18891)}}, {{A, B, C, X(17555), X(37416)}}, {{A, B, C, X(17743), X(39729)}}, {{A, B, C, X(18135), X(20913)}}, {{A, B, C, X(20917), X(27430)}}, {{A, B, C, X(23493), X(30496)}}, {{A, B, C, X(24603), X(46933)}}, {{A, B, C, X(25446), X(27709)}}, {{A, B, C, X(27299), X(29679)}}, {{A, B, C, X(29591), X(29659)}}, {{A, B, C, X(32782), X(37652)}}, {{A, B, C, X(39721), X(39724)}}, {{A, B, C, X(39957), X(56174)}}, {{A, B, C, X(40776), X(51223)}}, {{A, B, C, X(49560), X(51353)}}
X(56210) = barycentric product X(i)*X(j) for these (i, j): {10, 56052}, {321, 56066}, {17038, 75}, {39967, 76}, {43359, 850}
X(56210) = barycentric quotient X(i)/X(j) for these (i, j): {2, 17379}, {10, 43223}, {75, 31997}, {514, 4932}, {1654, 17689}, {5224, 41849}, {17038, 1}, {28621, 56047}, {39967, 6}, {43359, 110}, {56052, 86}, {56066, 81}
X(56210) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39967, 56052, 2}


X(56211) = KP3(X(10)) OF X(37) AND X(37)

Barycentrics    (b+c)*(2*a*b^2*c+b^2*c^2+a^2*(b^2+c^2))*(2*a*b*c^2+b^2*c^2+a^2*(b^2+c^2)) : :

X(56211) lies on the Kiepert hyperbola and on these lines: {2, 1740}, {4, 51913}, {10, 21838}, {75, 40162}, {76, 3741}, {226, 39780}, {321, 3728}, {2051, 45305}, {3223, 23652}, {3840, 17758}, {4651, 56197}, {22039, 34475}, {31330, 41838}, {50295, 56161}

X(56211) = trilinear pole of line {40627, 523}
X(56211) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(37), X(6384)}}, {{A, B, C, X(42), X(256)}}, {{A, B, C, X(75), X(1740)}}, {{A, B, C, X(291), X(1245)}}, {{A, B, C, X(594), X(21257)}}, {{A, B, C, X(2296), X(31330)}}, {{A, B, C, X(3840), X(4651)}}, {{A, B, C, X(4685), X(30942)}}, {{A, B, C, X(15320), X(40418)}}, {{A, B, C, X(16887), X(21814)}}, {{A, B, C, X(20888), X(21753)}}, {{A, B, C, X(27701), X(33138)}}, {{A, B, C, X(32010), X(40747)}}


X(56212) = KP3(X(10)) OF X(37) AND X(75)

Barycentrics    b*c*(b*c+a*(3*b+c))*(b*c+a*(b+3*c)) : :

X(56212) lies on these lines: {2, 17144}, {7, 26038}, {10, 6384}, {43, 86}, {75, 3971}, {310, 6376}, {312, 27483}, {335, 19804}, {350, 5936}, {675, 29199}, {899, 2296}, {1268, 30963}, {1698, 56052}, {3741, 40027}, {4359, 27494}, {4383, 14621}, {4479, 55955}, {4688, 25116}, {16569, 40418}, {16606, 41836}, {19875, 34020}, {27439, 27447}, {30598, 43223}, {31002, 31330}

X(56212) = isotomic conjugate of X(26102)
X(56212) = complement of X(41912)
X(56212) = trilinear pole of line {4502, 21834}
X(56212) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 26102}, {32, 4699}, {692, 29198}, {32739, 48399}
X(56212) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 26102}, {1086, 29198}, {6376, 4699}, {40619, 48399}
X(56212) = X(i)-cross conjugate of X(j) for these {i, j}: {27147, 85}, {48005, 4033}
X(56212) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(8), X(26038)}}, {{A, B, C, X(10), X(43)}}, {{A, B, C, X(42), X(749)}}, {{A, B, C, X(57), X(39717)}}, {{A, B, C, X(85), X(40024)}}, {{A, B, C, X(256), X(39966)}}, {{A, B, C, X(274), X(7033)}}, {{A, B, C, X(291), X(2334)}}, {{A, B, C, X(312), X(51865)}}, {{A, B, C, X(330), X(32095)}}, {{A, B, C, X(334), X(34258)}}, {{A, B, C, X(350), X(19804)}}, {{A, B, C, X(751), X(2350)}}, {{A, B, C, X(899), X(31330)}}, {{A, B, C, X(1220), X(56161)}}, {{A, B, C, X(1698), X(43223)}}, {{A, B, C, X(1909), X(27439)}}, {{A, B, C, X(3223), X(39798)}}, {{A, B, C, X(3741), X(16569)}}, {{A, B, C, X(4359), X(30963)}}, {{A, B, C, X(4383), X(30966)}}, {{A, B, C, X(4479), X(24589)}}, {{A, B, C, X(6686), X(29827)}}, {{A, B, C, X(8026), X(41836)}}, {{A, B, C, X(8056), X(32010)}}, {{A, B, C, X(18827), X(25430)}}, {{A, B, C, X(27807), X(39706)}}, {{A, B, C, X(30571), X(34860)}}, {{A, B, C, X(32018), X(40031)}}, {{A, B, C, X(39395), X(40145)}}, {{A, B, C, X(40017), X(40023)}}
X(56212) = barycentric product X(i)*X(j) for these (i, j): {29199, 3261}, {39738, 75}, {39972, 76}
X(56212) = barycentric quotient X(i)/X(j) for these (i, j): {2, 26102}, {75, 4699}, {514, 29198}, {693, 48399}, {29199, 101}, {39738, 1}, {39972, 6}


X(56213) = KP3(X(37)) OF X(1) AND X(1)

Barycentrics    a*(b+c)*(a^2+2*b^2+2*b*c+c^2+2*a*(b+c))*(a^2+b^2+2*b*c+2*c^2+2*a*(b+c)) : :

X(56213) lies on these lines: {2, 40085}, {37, 17011}, {321, 18140}, {335, 5333}, {594, 3995}, {756, 3293}, {1255, 3954}, {1824, 4222}, {2298, 33761}, {6156, 40592}, {18098, 21816}

X(56213) = trilinear pole of line {4705, 4132}
X(56213) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 17398}, {110, 50522}, {284, 52783}
X(56213) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 17398}, {244, 50522}, {40590, 52783}
X(56213) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6539)}}, {{A, B, C, X(2), X(3293)}}, {{A, B, C, X(10), X(81)}}, {{A, B, C, X(21), X(30713)}}, {{A, B, C, X(37), X(321)}}, {{A, B, C, X(42), X(29610)}}, {{A, B, C, X(226), X(4015)}}, {{A, B, C, X(2238), X(4813)}}, {{A, B, C, X(3954), X(21816)}}, {{A, B, C, X(4043), X(27475)}}, {{A, B, C, X(4080), X(25430)}}, {{A, B, C, X(4674), X(25417)}}, {{A, B, C, X(5276), X(32782)}}, {{A, B, C, X(17038), X(27809)}}, {{A, B, C, X(27789), X(27797)}}, {{A, B, C, X(28606), X(31359)}}
X(56213) = barycentric quotient X(i)/X(j) for these (i, j): {37, 17398}, {65, 52783}, {661, 50522}


X(56214) = KP3(X(37)) OF X(1) AND X(8)

Barycentrics    (b+c)*(a^3*(b+c)+2*a^2*b*(b+c)+b*c*(b^2-c^2)+a*(b^3+2*b^2*c+2*b*c^2-c^3))*(-(b^3*c)+b*c^3+a^3*(b+c)+2*a^2*c*(b+c)+a*(-b^3+2*b^2*c+2*b*c^2+c^3)) : :

X(56214) lies on the Kiepert hyperbola and on these lines: {2, 10468}, {4, 30116}, {10, 14973}, {37, 2051}, {76, 18045}, {226, 40491}, {958, 43531}, {1751, 19731}, {3159, 43677}, {3588, 53083}, {4415, 40515}, {5249, 40013}, {13478, 34261}, {27802, 54972}

X(56214) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(12), X(22020)}}, {{A, B, C, X(37), X(14973)}}, {{A, B, C, X(65), X(53083)}}, {{A, B, C, X(181), X(40147)}}, {{A, B, C, X(306), X(30116)}}, {{A, B, C, X(4674), X(44733)}}, {{A, B, C, X(10408), X(31993)}}, {{A, B, C, X(18097), X(37887)}}, {{A, B, C, X(18134), X(19731)}}, {{A, B, C, X(21688), X(30106)}}, {{A, B, C, X(29653), X(41232)}}, {{A, B, C, X(30710), X(42471)}}, {{A, B, C, X(30713), X(45095)}}


X(56215) = KP3(X(37)) OF X(1) AND X(37)

Barycentrics    a*(b+c)*(3*a+4*b+3*c)*(3*a+3*b+4*c) : :

X(56215) lies on these lines: {1, 3988}, {10, 56209}, {75, 56061}, {596, 3624}, {759, 28214}, {1757, 46971}, {2214, 3731}, {3616, 39697}, {3632, 42285}, {3743, 56134}, {3994, 39711}, {4668, 31359}, {40438, 51294}

X(56215) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 19862}, {110, 28213}, {284, 4114}, {1125, 39670}
X(56215) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 19862}, {244, 28213}, {40590, 4114}
X(56215) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56061, 56209}
X(56215) = X(i)-cross conjugate of X(j) for these {i, j}: {48005, 1018}
X(56215) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(4), X(16861)}}, {{A, B, C, X(12), X(3988)}}, {{A, B, C, X(87), X(3293)}}, {{A, B, C, X(756), X(32487)}}, {{A, B, C, X(1255), X(27797)}}, {{A, B, C, X(1698), X(39972)}}, {{A, B, C, X(3616), X(15315)}}, {{A, B, C, X(3649), X(3956)}}, {{A, B, C, X(4080), X(25430)}}, {{A, B, C, X(13576), X(43732)}}, {{A, B, C, X(21816), X(51294)}}, {{A, B, C, X(27789), X(30582)}}, {{A, B, C, X(39748), X(39983)}}, {{A, B, C, X(42041), X(43534)}}
X(56215) = barycentric product X(i)*X(j) for these (i, j): {1, 56209}, {10, 56037}, {37, 56061}, {226, 56206}, {1577, 28214}
X(56215) = barycentric quotient X(i)/X(j) for these (i, j): {37, 19862}, {65, 4114}, {661, 28213}, {28214, 662}, {28615, 39670}, {56037, 86}, {56061, 274}, {56206, 333}, {56209, 75}


X(56216) = KP3(X(37)) OF X(10) AND X(3)

Barycentrics    (a^6+a^5*(b+c)+(b-c)^2*c*(b+c)^3-a^4*(2*b^2+b*c+c^2)-2*a^3*(b^3+c^3)+a^2*(b^4-c^4)+a*(b^5-b^4*c-b*c^4+c^5))*(a^6+a^5*(b+c)+b*(b-c)^2*(b+c)^3-a^4*(b^2+b*c+2*c^2)-2*a^3*(b^3+c^3)+a^2*(-b^4+c^4)+a*(b^5-b^4*c-b*c^4+c^5)) : :

X(56216) lies on the Kiepert hyperbola and on these lines: {4, 2360}, {10, 7078}, {222, 8808}, {223, 40149}, {226, 7011}, {281, 40407}, {459, 5712}, {1751, 23292}, {2051, 11347}, {2052, 41083}, {17532, 54661}, {18641, 54972}

X(56216) = polar conjugate of X(52248)
X(56216) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 52248}
X(56216) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(222)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(29), X(2184)}}, {{A, B, C, X(57), X(36123)}}, {{A, B, C, X(63), X(10570)}}, {{A, B, C, X(86), X(8809)}}, {{A, B, C, X(92), X(17073)}}, {{A, B, C, X(281), X(329)}}, {{A, B, C, X(581), X(3682)}}, {{A, B, C, X(948), X(40960)}}, {{A, B, C, X(996), X(40399)}}, {{A, B, C, X(2297), X(2316)}}, {{A, B, C, X(2339), X(8777)}}, {{A, B, C, X(3346), X(46014)}}, {{A, B, C, X(5712), X(5930)}}, {{A, B, C, X(5739), X(24553)}}, {{A, B, C, X(7532), X(37279)}}, {{A, B, C, X(11109), X(11347)}}, {{A, B, C, X(18134), X(23292)}}, {{A, B, C, X(18641), X(26942)}}, {{A, B, C, X(19684), X(37659)}}, {{A, B, C, X(27398), X(44692)}}
X(56216) = barycentric quotient X(i)/X(j) for these (i, j): {4, 52248}


X(56217) = KP3(X(37)) OF X(10) AND X(7)

Barycentrics    (a^2+(b-c)^2-2*a*(2*b+c))*(a^2+(b-c)^2-2*a*(b+2*c)) : :

X(56217) lies on these lines: {1, 4878}, {2, 3991}, {37, 277}, {57, 3730}, {81, 218}, {105, 3295}, {274, 344}, {278, 17916}, {279, 8232}, {948, 52374}, {1002, 5045}, {1125, 39959}, {1170, 5543}, {1255, 5222}, {1280, 3616}, {1390, 16020}, {2345, 56051}, {3008, 25430}, {4000, 42326}, {4698, 19855}, {5325, 39980}, {8056, 24181}, {16572, 25072}, {16578, 34578}, {17014, 27789}, {17263, 30701}, {17280, 39736}, {25417, 29624}, {27268, 39724}, {27304, 39738}, {30723, 37626}, {34018, 52422}, {43065, 56043}

X(56217) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 4666}
X(56217) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 4666}
X(56217) = X(i)-cross conjugate of X(j) for these {i, j}: {49296, 190}
X(56217) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(16053)}}, {{A, B, C, X(7), X(6666)}}, {{A, B, C, X(8), X(17758)}}, {{A, B, C, X(9), X(8232)}}, {{A, B, C, X(10), X(5308)}}, {{A, B, C, X(27), X(17552)}}, {{A, B, C, X(37), X(218)}}, {{A, B, C, X(76), X(32013)}}, {{A, B, C, X(85), X(1000)}}, {{A, B, C, X(86), X(18841)}}, {{A, B, C, X(220), X(16601)}}, {{A, B, C, X(241), X(3295)}}, {{A, B, C, X(281), X(2338)}}, {{A, B, C, X(333), X(15998)}}, {{A, B, C, X(335), X(32022)}}, {{A, B, C, X(345), X(44307)}}, {{A, B, C, X(348), X(1807)}}, {{A, B, C, X(514), X(7320)}}, {{A, B, C, X(673), X(3296)}}, {{A, B, C, X(943), X(7131)}}, {{A, B, C, X(948), X(6198)}}, {{A, B, C, X(949), X(2335)}}, {{A, B, C, X(1121), X(7317)}}, {{A, B, C, X(1125), X(4989)}}, {{A, B, C, X(1126), X(42290)}}, {{A, B, C, X(1434), X(18490)}}, {{A, B, C, X(1698), X(29624)}}, {{A, B, C, X(1783), X(42303)}}, {{A, B, C, X(2051), X(10429)}}, {{A, B, C, X(2345), X(4687)}}, {{A, B, C, X(2346), X(44178)}}, {{A, B, C, X(3008), X(3616)}}, {{A, B, C, X(3085), X(25930)}}, {{A, B, C, X(3622), X(31183)}}, {{A, B, C, X(3624), X(17014)}}, {{A, B, C, X(4000), X(17263)}}, {{A, B, C, X(5045), X(5228)}}, {{A, B, C, X(5226), X(5325)}}, {{A, B, C, X(5287), X(19855)}}, {{A, B, C, X(5395), X(32012)}}, {{A, B, C, X(5543), X(10481)}}, {{A, B, C, X(5550), X(50114)}}, {{A, B, C, X(5558), X(14377)}}, {{A, B, C, X(5559), X(10405)}}, {{A, B, C, X(6185), X(43527)}}, {{A, B, C, X(7160), X(21446)}}, {{A, B, C, X(7162), X(36101)}}, {{A, B, C, X(9311), X(32015)}}, {{A, B, C, X(9328), X(44559)}}, {{A, B, C, X(9442), X(17038)}}, {{A, B, C, X(16020), X(17023)}}, {{A, B, C, X(17279), X(17321)}}, {{A, B, C, X(17280), X(27268)}}, {{A, B, C, X(17284), X(39587)}}, {{A, B, C, X(17353), X(28015)}}, {{A, B, C, X(18810), X(38261)}}, {{A, B, C, X(18840), X(31359)}}, {{A, B, C, X(21450), X(41785)}}, {{A, B, C, X(26102), X(27304)}}, {{A, B, C, X(28742), X(41276)}}, {{A, B, C, X(29578), X(50282)}}, {{A, B, C, X(29579), X(50291)}}, {{A, B, C, X(29596), X(48856)}}, {{A, B, C, X(30705), X(39977)}}, {{A, B, C, X(31721), X(43186)}}, {{A, B, C, X(36954), X(43531)}}, {{A, B, C, X(45085), X(45098)}}
X(56217) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4666}


X(56218) = KP3(X(37)) OF X(10) AND X(8)

Barycentrics    (a^3+a^2*(b-c)+(b-c)^2*(b+c)+a*(b^2+4*b*c-c^2))*(a^3+a^2*(-b+c)+(b-c)^2*(b+c)+a*(-b^2+4*b*c+c^2)) : :

X(56218) lies on these lines: {1, 2551}, {2, 20270}, {28, 7952}, {57, 1766}, {81, 329}, {88, 19785}, {89, 9965}, {105, 5020}, {226, 1422}, {277, 3772}, {278, 17720}, {499, 1224}, {517, 959}, {527, 39980}, {938, 1257}, {940, 34051}, {961, 999}, {1002, 12915}, {1219, 4385}, {1255, 37651}, {1280, 10580}, {1997, 3596}, {2401, 23880}, {2990, 5422}, {3086, 44417}, {3672, 44794}, {4000, 6692}, {5226, 34056}, {5292, 51499}, {7271, 7365}, {8102, 41799}, {8257, 39947}, {11019, 39959}, {12652, 24210}, {15474, 33133}, {17019, 56041}, {18743, 30701}, {20196, 25430}, {24440, 33135}, {26745, 33155}, {28161, 35348}, {28808, 30710}, {31142, 39948}, {37594, 37822}, {40836, 41013}

X(56218) = trilinear pole of line {21120, 47136}
X(56218) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 19861}, {284, 12709}
X(56218) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 19861}, {40590, 12709}
X(56218) = X(i)-cross conjugate of X(j) for these {i, j}: {2285, 4}, {3304, 7}
X(56218) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(312)}}, {{A, B, C, X(7), X(2051)}}, {{A, B, C, X(8), X(5795)}}, {{A, B, C, X(27), X(5084)}}, {{A, B, C, X(37), X(40160)}}, {{A, B, C, X(79), X(45100)}}, {{A, B, C, X(83), X(34523)}}, {{A, B, C, X(92), X(3421)}}, {{A, B, C, X(104), X(2339)}}, {{A, B, C, X(226), X(329)}}, {{A, B, C, X(281), X(1766)}}, {{A, B, C, X(333), X(1000)}}, {{A, B, C, X(344), X(3772)}}, {{A, B, C, X(345), X(1807)}}, {{A, B, C, X(498), X(17019)}}, {{A, B, C, X(499), X(17011)}}, {{A, B, C, X(517), X(940)}}, {{A, B, C, X(527), X(5226)}}, {{A, B, C, X(650), X(7050)}}, {{A, B, C, X(673), X(26105)}}, {{A, B, C, X(938), X(40940)}}, {{A, B, C, X(939), X(1427)}}, {{A, B, C, X(941), X(2316)}}, {{A, B, C, X(948), X(31627)}}, {{A, B, C, X(967), X(42019)}}, {{A, B, C, X(987), X(7281)}}, {{A, B, C, X(999), X(3666)}}, {{A, B, C, X(1068), X(5712)}}, {{A, B, C, X(1171), X(52186)}}, {{A, B, C, X(1217), X(31623)}}, {{A, B, C, X(1434), X(42339)}}, {{A, B, C, X(1476), X(42467)}}, {{A, B, C, X(1997), X(3752)}}, {{A, B, C, X(2297), X(31325)}}, {{A, B, C, X(2338), X(51476)}}, {{A, B, C, X(2341), X(36916)}}, {{A, B, C, X(2985), X(42360)}}, {{A, B, C, X(2999), X(14986)}}, {{A, B, C, X(3008), X(10580)}}, {{A, B, C, X(3085), X(5287)}}, {{A, B, C, X(3086), X(5256)}}, {{A, B, C, X(3296), X(4997)}}, {{A, B, C, X(3582), X(17013)}}, {{A, B, C, X(3664), X(36640)}}, {{A, B, C, X(3672), X(7271)}}, {{A, B, C, X(4000), X(18743)}}, {{A, B, C, X(4102), X(43734)}}, {{A, B, C, X(4358), X(19785)}}, {{A, B, C, X(4385), X(7365)}}, {{A, B, C, X(5020), X(15149)}}, {{A, B, C, X(5219), X(9965)}}, {{A, B, C, X(5222), X(11019)}}, {{A, B, C, X(5228), X(12915)}}, {{A, B, C, X(5308), X(13405)}}, {{A, B, C, X(5435), X(6692)}}, {{A, B, C, X(5558), X(38255)}}, {{A, B, C, X(5559), X(30711)}}, {{A, B, C, X(6591), X(39951)}}, {{A, B, C, X(7317), X(42030)}}, {{A, B, C, X(7961), X(34919)}}, {{A, B, C, X(8025), X(37651)}}, {{A, B, C, X(8051), X(44559)}}, {{A, B, C, X(8814), X(40424)}}, {{A, B, C, X(9311), X(40420)}}, {{A, B, C, X(10056), X(17021)}}, {{A, B, C, X(10072), X(17012)}}, {{A, B, C, X(10428), X(34260)}}, {{A, B, C, X(10520), X(36620)}}, {{A, B, C, X(10578), X(29571)}}, {{A, B, C, X(12848), X(25525)}}, {{A, B, C, X(17321), X(44417)}}, {{A, B, C, X(17595), X(51788)}}, {{A, B, C, X(17776), X(33133)}}, {{A, B, C, X(17917), X(37800)}}, {{A, B, C, X(17924), X(37874)}}, {{A, B, C, X(20196), X(21454)}}, {{A, B, C, X(23618), X(25568)}}, {{A, B, C, X(24239), X(26626)}}, {{A, B, C, X(33150), X(46938)}}, {{A, B, C, X(36279), X(37595)}}, {{A, B, C, X(37759), X(41839)}}
X(56218) = barycentric quotient X(i)/X(j) for these (i, j): {1, 19861}, {65, 12709}, {3304, 22754}


X(56219) = KP3(X(37)) OF X(10) AND X(10)

Barycentrics    a*(b+c)*(a^2+2*a*b+b^2+c^2)*(a^2+b^2+2*a*c+c^2) : :

X(56219) lies on cubic K689 and on these lines: {1, 25}, {2, 304}, {6, 63}, {37, 306}, {42, 72}, {65, 18202}, {81, 1169}, {92, 393}, {111, 1310}, {169, 19725}, {226, 1880}, {251, 17011}, {257, 1999}, {293, 1976}, {321, 14624}, {940, 46010}, {941, 5739}, {942, 19714}, {967, 980}, {1214, 1400}, {1427, 5244}, {1468, 1472}, {2092, 3998}, {2165, 17720}, {2167, 8882}, {2184, 41489}, {2248, 37596}, {2286, 45126}, {2298, 3101}, {2349, 8749}, {2350, 37597}, {2582, 8105}, {2583, 8106}, {2999, 39951}, {3108, 17012}, {3228, 54982}, {3444, 37595}, {3672, 52223}, {3743, 4028}, {3752, 39798}, {3870, 37548}, {4352, 18663}, {4841, 55261}, {4850, 39956}, {5271, 41015}, {5287, 8770}, {5814, 33088}, {6051, 33171}, {6508, 42485}, {6546, 47965}, {7085, 17594}, {16081, 46273}, {16968, 37323}, {17013, 39955}, {17020, 39389}, {17022, 21448}, {17054, 19718}, {17267, 39983}, {17788, 19786}, {19684, 20227}, {19701, 40941}, {19715, 20271}, {23988, 39979}, {25060, 40571}, {26702, 32691}, {26893, 45966}, {34288, 50068}, {34818, 56033}, {37128, 37215}, {37539, 54371}

X(56219) = isogonal conjugate of X(2303)
X(56219) = trilinear pole of line {656, 50330}
X(56219) = perspector of circumconic {{A, B, C, X(1310), X(36099)}}
X(56219) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2303}, {2, 44119}, {6, 1010}, {9, 5323}, {21, 2285}, {27, 7085}, {28, 5227}, {29, 2286}, {32, 44154}, {58, 2345}, {63, 4206}, {81, 612}, {86, 54416}, {99, 2484}, {101, 47844}, {110, 6590}, {112, 23874}, {162, 2522}, {163, 2517}, {284, 388}, {333, 1460}, {662, 8678}, {799, 8646}, {1038, 1172}, {1098, 8898}, {1333, 4385}, {1412, 3974}, {1474, 54433}, {1790, 7102}, {2203, 19799}, {2287, 4320}, {2327, 7103}, {2328, 7365}, {4556, 48395}, {4610, 50494}, {5331, 34261}, {7252, 14594}, {19459, 40411}
X(56219) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 2303}, {9, 1010}, {10, 2345}, {37, 4385}, {115, 2517}, {125, 2522}, {244, 6590}, {478, 5323}, {1015, 47844}, {1084, 8678}, {3162, 4206}, {6376, 44154}, {15267, 8898}, {18589, 5286}, {32664, 44119}, {34591, 23874}, {36908, 7365}, {38986, 2484}, {38996, 8646}, {40586, 612}, {40590, 388}, {40591, 5227}, {40599, 3974}, {40600, 54416}, {40611, 2285}, {51574, 54433}
X(56219) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(63)}}, {{A, B, C, X(2), X(6)}}, {{A, B, C, X(4), X(16368)}}, {{A, B, C, X(10), X(57)}}, {{A, B, C, X(27), X(256)}}, {{A, B, C, X(65), X(81)}}, {{A, B, C, X(73), X(3998)}}, {{A, B, C, X(89), X(6539)}}, {{A, B, C, X(209), X(2280)}}, {{A, B, C, X(210), X(294)}}, {{A, B, C, X(241), X(3930)}}, {{A, B, C, X(284), X(3694)}}, {{A, B, C, X(333), X(18097)}}, {{A, B, C, X(469), X(13723)}}, {{A, B, C, X(513), X(56047)}}, {{A, B, C, X(523), X(34377)}}, {{A, B, C, X(525), X(44662)}}, {{A, B, C, X(893), X(2203)}}, {{A, B, C, X(894), X(1999)}}, {{A, B, C, X(940), X(1867)}}, {{A, B, C, X(949), X(2318)}}, {{A, B, C, X(1039), X(2339)}}, {{A, B, C, X(1100), X(1230)}}, {{A, B, C, X(1245), X(2221)}}, {{A, B, C, X(1255), X(4641)}}, {{A, B, C, X(1412), X(34914)}}, {{A, B, C, X(1439), X(1763)}}, {{A, B, C, X(1468), X(28606)}}, {{A, B, C, X(1500), X(16583)}}, {{A, B, C, X(1824), X(40747)}}, {{A, B, C, X(1903), X(2298)}}, {{A, B, C, X(1905), X(36121)}}, {{A, B, C, X(2276), X(19791)}}, {{A, B, C, X(2294), X(18607)}}, {{A, B, C, X(2994), X(15232)}}, {{A, B, C, X(3175), X(4850)}}, {{A, B, C, X(3752), X(3995)}}, {{A, B, C, X(3936), X(48300)}}, {{A, B, C, X(3991), X(16600)}}, {{A, B, C, X(4028), X(5287)}}, {{A, B, C, X(4052), X(39948)}}, {{A, B, C, X(4062), X(17019)}}, {{A, B, C, X(4080), X(11396)}}, {{A, B, C, X(4674), X(39980)}}, {{A, B, C, X(6354), X(43675)}}, {{A, B, C, X(13476), X(39700)}}, {{A, B, C, X(15523), X(16696)}}, {{A, B, C, X(16609), X(34252)}}, {{A, B, C, X(17056), X(40571)}}, {{A, B, C, X(17441), X(37755)}}, {{A, B, C, X(17720), X(42700)}}, {{A, B, C, X(18593), X(47965)}}, {{A, B, C, X(21216), X(21775)}}, {{A, B, C, X(26377), X(40160)}}, {{A, B, C, X(26942), X(28787)}}, {{A, B, C, X(36124), X(40718)}}, {{A, B, C, X(40394), X(46187)}}, {{A, B, C, X(40407), X(52389)}}, {{A, B, C, X(40435), X(43073)}}, {{A, B, C, X(40515), X(55090)}}, {{A, B, C, X(42704), X(50068)}}
X(56219) = barycentric product X(i)*X(j) for these (i, j): {226, 2339}, {512, 54982}, {1036, 1441}, {1039, 307}, {1245, 75}, {1310, 523}, {1472, 313}, {2221, 321}, {2281, 76}, {14208, 32691}, {20336, 51686}, {21750, 40831}, {30479, 65}, {31993, 34260}, {36099, 525}, {37215, 661}
X(56219) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1010}, {6, 2303}, {10, 4385}, {25, 4206}, {31, 44119}, {37, 2345}, {42, 612}, {56, 5323}, {65, 388}, {71, 5227}, {72, 54433}, {73, 1038}, {75, 44154}, {210, 3974}, {213, 54416}, {228, 7085}, {306, 19799}, {512, 8678}, {513, 47844}, {523, 2517}, {647, 2522}, {656, 23874}, {661, 6590}, {669, 8646}, {798, 2484}, {1036, 21}, {1039, 29}, {1042, 4320}, {1245, 1}, {1310, 99}, {1400, 2285}, {1402, 1460}, {1409, 2286}, {1426, 7103}, {1427, 7365}, {1472, 58}, {1824, 7102}, {2221, 81}, {2281, 6}, {2339, 333}, {3949, 3610}, {4551, 14594}, {4705, 48395}, {7143, 10376}, {16583, 5286}, {17441, 7386}, {18210, 26933}, {21750, 1184}, {22363, 19459}, {30479, 314}, {32691, 162}, {34260, 37870}, {36099, 648}, {37215, 799}, {50487, 50494}, {51686, 28}, {54982, 670}


X(56220) = KP3(X(37)) OF X(10) AND X(19)

Barycentrics    a*(a^3+b^3+a^2*(b-c)+b^2*c+b*c^2+c^3+a*(b^2-c^2))*(a^3+b^3+b^2*c+b*c^2+c^3+a^2*(-b+c)+a*(-b^2+c^2)) : :

X(56220) lies on these lines: {1, 3710}, {6, 3694}, {8, 998}, {9, 1474}, {10, 34}, {33, 44040}, {56, 72}, {58, 78}, {86, 975}, {87, 5293}, {106, 19861}, {200, 937}, {269, 307}, {318, 8747}, {612, 43531}, {978, 7194}, {979, 3961}, {1062, 44416}, {1125, 2191}, {1126, 3870}, {1211, 52372}, {1220, 4737}, {1413, 52389}, {1431, 10974}, {1438, 5248}, {1612, 26690}, {1763, 25440}, {1829, 54286}, {2215, 4253}, {3678, 54377}, {3938, 56140}, {6198, 54389}, {7085, 8193}, {7129, 17355}, {9432, 50594}, {26890, 36507}, {32931, 54401}, {40746, 54406}

X(56220) = trilinear pole of line {649, 8611}
X(56220) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 19785}, {28, 41340}, {56, 2478}
X(56220) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 2478}, {9, 19785}, {40591, 41340}
X(56220) = X(i)-cross conjugate of X(j) for these {i, j}: {976, 1}
X(56220) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(2), X(943)}}, {{A, B, C, X(3), X(1801)}}, {{A, B, C, X(4), X(1257)}}, {{A, B, C, X(7), X(56137)}}, {{A, B, C, X(8), X(997)}}, {{A, B, C, X(9), X(10)}}, {{A, B, C, X(21), X(475)}}, {{A, B, C, X(28), X(17526)}}, {{A, B, C, X(29), X(37249)}}, {{A, B, C, X(40), X(17355)}}, {{A, B, C, X(42), X(975)}}, {{A, B, C, X(43), X(5293)}}, {{A, B, C, X(57), X(5266)}}, {{A, B, C, X(63), X(14376)}}, {{A, B, C, X(65), X(40401)}}, {{A, B, C, X(75), X(90)}}, {{A, B, C, X(77), X(4347)}}, {{A, B, C, X(80), X(20029)}}, {{A, B, C, X(84), X(596)}}, {{A, B, C, X(104), X(1219)}}, {{A, B, C, X(200), X(936)}}, {{A, B, C, X(212), X(3682)}}, {{A, B, C, X(282), X(56146)}}, {{A, B, C, X(285), X(6601)}}, {{A, B, C, X(291), X(987)}}, {{A, B, C, X(326), X(1794)}}, {{A, B, C, X(386), X(612)}}, {{A, B, C, X(519), X(19861)}}, {{A, B, C, X(749), X(2363)}}, {{A, B, C, X(765), X(7162)}}, {{A, B, C, X(951), X(1041)}}, {{A, B, C, X(978), X(3961)}}, {{A, B, C, X(989), X(994)}}, {{A, B, C, X(993), X(10461)}}, {{A, B, C, X(1038), X(8193)}}, {{A, B, C, X(1039), X(2316)}}, {{A, B, C, X(1125), X(3870)}}, {{A, B, C, X(1170), X(18841)}}, {{A, B, C, X(1211), X(3678)}}, {{A, B, C, X(1215), X(10974)}}, {{A, B, C, X(1224), X(15175)}}, {{A, B, C, X(1247), X(33164)}}, {{A, B, C, X(1280), X(3296)}}, {{A, B, C, X(1476), X(11546)}}, {{A, B, C, X(1829), X(4737)}}, {{A, B, C, X(2203), X(15376)}}, {{A, B, C, X(2218), X(39798)}}, {{A, B, C, X(2298), X(51223)}}, {{A, B, C, X(2345), X(12514)}}, {{A, B, C, X(3065), X(39711)}}, {{A, B, C, X(3467), X(39708)}}, {{A, B, C, X(3501), X(3923)}}, {{A, B, C, X(3680), X(17614)}}, {{A, B, C, X(3730), X(50314)}}, {{A, B, C, X(3872), X(30144)}}, {{A, B, C, X(4373), X(10308)}}, {{A, B, C, X(4866), X(17272)}}, {{A, B, C, X(5248), X(18206)}}, {{A, B, C, X(5256), X(30142)}}, {{A, B, C, X(5936), X(56203)}}, {{A, B, C, X(6513), X(17206)}}, {{A, B, C, X(6553), X(15179)}}, {{A, B, C, X(6765), X(8583)}}, {{A, B, C, X(7091), X(39697)}}, {{A, B, C, X(7160), X(42285)}}, {{A, B, C, X(7284), X(34860)}}, {{A, B, C, X(10393), X(27396)}}, {{A, B, C, X(10570), X(56101)}}, {{A, B, C, X(15315), X(23051)}}, {{A, B, C, X(16468), X(16519)}}, {{A, B, C, X(18840), X(36101)}}, {{A, B, C, X(19860), X(22836)}}, {{A, B, C, X(24036), X(36819)}}, {{A, B, C, X(25430), X(56219)}}, {{A, B, C, X(26890), X(26893)}}, {{A, B, C, X(30614), X(56155)}}, {{A, B, C, X(40396), X(51497)}}, {{A, B, C, X(56100), X(56143)}}
X(56220) = barycentric product X(i)*X(j) for these (i, j): {10, 56045}
X(56220) = barycentric quotient X(i)/X(j) for these (i, j): {1, 19785}, {9, 2478}, {71, 41340}, {56045, 86}


X(56221) = KP3(X(37)) OF X(10) AND X(37)

Barycentrics    a*(b+c)*(2*a+2*b+c)*(2*a+b+2*c) : :

X(56221) lies on these lines: {1, 2308}, {2, 39708}, {8, 30590}, {10, 1962}, {19, 3247}, {35, 1255}, {37, 3678}, {58, 40438}, {65, 3743}, {75, 1125}, {91, 13411}, {100, 25431}, {158, 13405}, {225, 3947}, {226, 52382}, {267, 4354}, {386, 17038}, {519, 31359}, {551, 596}, {740, 46772}, {758, 31503}, {759, 8652}, {876, 6005}, {897, 37211}, {975, 8769}, {984, 39737}, {994, 5697}, {1247, 30115}, {2153, 46073}, {2154, 46077}, {2166, 18359}, {2214, 5248}, {2292, 53114}, {2363, 4653}, {2901, 10180}, {3159, 42027}, {3244, 42285}, {3293, 56134}, {3295, 53855}, {3361, 7190}, {3612, 56070}, {3616, 39711}, {3624, 4365}, {3634, 17592}, {3636, 34860}, {3647, 37595}, {3697, 37593}, {3811, 16673}, {3868, 31320}, {3918, 3931}, {3971, 42471}, {4002, 4868}, {4066, 43223}, {4674, 14752}, {5045, 13476}, {5266, 35007}, {6051, 50604}, {6155, 52708}, {8672, 55244}, {9957, 34434}, {16828, 27804}, {18398, 28606}, {18827, 32042}, {23051, 30148}, {23604, 36250}, {27274, 31308}, {28619, 32936}, {30143, 56136}, {31318, 49992}, {31445, 46971}, {37594, 55925}, {39702, 51103}, {39717, 49477}, {46904, 51073}, {56135, 56191}

X(56221) = isogonal conjugate of X(4658)
X(56221) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4658}, {3, 31902}, {6, 5333}, {21, 5221}, {28, 3927}, {57, 4877}, {58, 1698}, {81, 16777}, {99, 4834}, {100, 4840}, {101, 4960}, {110, 4802}, {163, 4823}, {284, 4654}, {662, 4813}, {691, 30595}, {741, 4716}, {759, 4880}, {849, 4066}, {1014, 3715}, {1175, 3824}, {1333, 28605}, {1412, 4007}, {2206, 30596}, {3733, 4756}, {4273, 30589}, {4556, 4838}, {4560, 36074}, {4565, 4820}, {4591, 4958}, {4610, 4826}, {48005, 52935}
X(56221) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 4658}, {9, 5333}, {10, 1698}, {37, 28605}, {115, 4823}, {244, 4802}, {1015, 4960}, {1084, 4813}, {4075, 4066}, {5452, 4877}, {8054, 4840}, {8299, 4716}, {34586, 4880}, {36103, 31902}, {38986, 4834}, {40586, 16777}, {40590, 4654}, {40591, 3927}, {40599, 4007}, {40603, 30596}, {40611, 5221}, {55064, 4820}
X(56221) = X(i)-Ceva conjugate of X(j) for these {i, j}: {25417, 28625}, {32042, 48074}
X(56221) = X(i)-cross conjugate of X(j) for these {i, j}: {4822, 1018}
X(56221) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(2), X(17562)}}, {{A, B, C, X(3), X(4262)}}, {{A, B, C, X(4), X(16865)}}, {{A, B, C, X(12), X(4067)}}, {{A, B, C, X(21), X(2321)}}, {{A, B, C, X(42), X(58)}}, {{A, B, C, X(56), X(52555)}}, {{A, B, C, X(72), X(3247)}}, {{A, B, C, X(79), X(41506)}}, {{A, B, C, X(106), X(1245)}}, {{A, B, C, X(226), X(502)}}, {{A, B, C, X(256), X(43972)}}, {{A, B, C, X(306), X(30142)}}, {{A, B, C, X(321), X(27789)}}, {{A, B, C, X(386), X(28622)}}, {{A, B, C, X(512), X(28522)}}, {{A, B, C, X(519), X(8672)}}, {{A, B, C, X(551), X(3293)}}, {{A, B, C, X(740), X(6005)}}, {{A, B, C, X(756), X(42031)}}, {{A, B, C, X(758), X(28161)}}, {{A, B, C, X(893), X(15376)}}, {{A, B, C, X(932), X(4103)}}, {{A, B, C, X(941), X(43531)}}, {{A, B, C, X(975), X(4028)}}, {{A, B, C, X(987), X(11599)}}, {{A, B, C, X(1042), X(4021)}}, {{A, B, C, X(1126), X(1400)}}, {{A, B, C, X(1224), X(40433)}}, {{A, B, C, X(1334), X(4845)}}, {{A, B, C, X(1388), X(4424)}}, {{A, B, C, X(1420), X(3931)}}, {{A, B, C, X(1442), X(33670)}}, {{A, B, C, X(1500), X(3993)}}, {{A, B, C, X(1826), X(15175)}}, {{A, B, C, X(2171), X(6538)}}, {{A, B, C, X(2292), X(4125)}}, {{A, B, C, X(2320), X(3701)}}, {{A, B, C, X(2335), X(56146)}}, {{A, B, C, X(2346), X(39130)}}, {{A, B, C, X(3159), X(3971)}}, {{A, B, C, X(3178), X(30115)}}, {{A, B, C, X(3214), X(3636)}}, {{A, B, C, X(3294), X(15569)}}, {{A, B, C, X(3296), X(13576)}}, {{A, B, C, X(3361), X(37593)}}, {{A, B, C, X(3616), X(50587)}}, {{A, B, C, X(3671), X(3697)}}, {{A, B, C, X(3682), X(13405)}}, {{A, B, C, X(3896), X(17127)}}, {{A, B, C, X(3918), X(4848)}}, {{A, B, C, X(3932), X(47713)}}, {{A, B, C, X(3989), X(34475)}}, {{A, B, C, X(3991), X(4350)}}, {{A, B, C, X(4029), X(4868)}}, {{A, B, C, X(4066), X(16777)}}, {{A, B, C, X(4078), X(16600)}}, {{A, B, C, X(4256), X(35007)}}, {{A, B, C, X(5248), X(28606)}}, {{A, B, C, X(5424), X(45095)}}, {{A, B, C, X(5557), X(15320)}}, {{A, B, C, X(5559), X(15232)}}, {{A, B, C, X(7226), X(43534)}}, {{A, B, C, X(7320), X(38955)}}, {{A, B, C, X(9277), X(52375)}}, {{A, B, C, X(9957), X(37558)}}, {{A, B, C, X(10013), X(15315)}}, {{A, B, C, X(16484), X(21802)}}, {{A, B, C, X(25430), X(56219)}}, {{A, B, C, X(26102), X(50590)}}, {{A, B, C, X(26115), X(50604)}}, {{A, B, C, X(27809), X(39738)}}, {{A, B, C, X(28594), X(50290)}}, {{A, B, C, X(28625), X(30598)}}, {{A, B, C, X(32014), X(40776)}}, {{A, B, C, X(32912), X(33942)}}, {{A, B, C, X(34585), X(39949)}}, {{A, B, C, X(37865), X(55090)}}, {{A, B, C, X(39748), X(39974)}}, {{A, B, C, X(39945), X(45129)}}, {{A, B, C, X(40412), X(43680)}}, {{A, B, C, X(40432), X(44572)}}
X(56221) = barycentric product X(i)*X(j) for these (i, j): {10, 25417}, {226, 56203}, {313, 34819}, {1577, 8652}, {3952, 48074}, {28625, 75}, {30590, 53114}, {30598, 37}, {32042, 661}, {37211, 523}, {41013, 56070}, {42030, 65}
X(56221) = barycentric quotient X(i)/X(j) for these (i, j): {1, 5333}, {6, 4658}, {10, 28605}, {19, 31902}, {37, 1698}, {42, 16777}, {55, 4877}, {65, 4654}, {71, 3927}, {210, 4007}, {321, 30596}, {512, 4813}, {513, 4960}, {523, 4823}, {594, 4066}, {649, 4840}, {661, 4802}, {798, 4834}, {1018, 4756}, {1334, 3715}, {1400, 5221}, {2238, 4716}, {2245, 4880}, {2294, 3824}, {2533, 4842}, {2642, 30595}, {4041, 4820}, {4079, 48005}, {4705, 4838}, {4729, 4949}, {4730, 4958}, {4849, 4898}, {8652, 662}, {21805, 4727}, {21832, 4810}, {21839, 4938}, {25417, 86}, {28625, 1}, {30598, 274}, {32042, 799}, {34819, 58}, {37211, 99}, {42030, 314}, {48005, 53585}, {48074, 7192}, {50487, 4826}, {53114, 30589}, {56070, 1444}, {56203, 333}
X(56221) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1125, 3993, 42031}


X(56222) = KP3(X(37)) OF X(10) AND X(42)

Barycentrics    (a^2+3*a*b+b^2)*(b+c)*(a^2+3*a*c+c^2) : :

X(56222) lies on these lines: {86, 7240}, {238, 1468}, {256, 16826}, {350, 10436}, {513, 28639}, {894, 30571}, {1284, 3671}, {1400, 10180}, {2238, 4104}, {3778, 56131}, {4670, 34585}

X(56222) = trilinear pole of line {4841, 21832}
X(56222) = X(i)-isoconjugate-of-X(j) for these {i, j}: {99, 4507}, {110, 4490}, {163, 4500}, {284, 7201}, {662, 4502}, {741, 4489}, {849, 48644}, {1333, 48628}, {7275, 38832}
X(56222) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 48628}, {115, 4500}, {244, 4490}, {1084, 4502}, {4075, 48644}, {8299, 4489}, {38986, 4507}, {40590, 7201}
X(56222) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1400)}}, {{A, B, C, X(2), X(17379)}}, {{A, B, C, X(7), X(10)}}, {{A, B, C, X(21), X(12567)}}, {{A, B, C, X(37), X(86)}}, {{A, B, C, X(42), X(87)}}, {{A, B, C, X(190), X(28639)}}, {{A, B, C, X(213), X(9403)}}, {{A, B, C, X(226), X(4104)}}, {{A, B, C, X(333), X(10180)}}, {{A, B, C, X(523), X(17771)}}, {{A, B, C, X(527), X(4151)}}, {{A, B, C, X(873), X(9277)}}, {{A, B, C, X(894), X(4039)}}, {{A, B, C, X(903), X(46772)}}, {{A, B, C, X(941), X(43531)}}, {{A, B, C, X(957), X(53114)}}, {{A, B, C, X(1125), X(26115)}}, {{A, B, C, X(1178), X(1402)}}, {{A, B, C, X(2296), X(17038)}}, {{A, B, C, X(3720), X(40147)}}, {{A, B, C, X(4871), X(29822)}}, {{A, B, C, X(7240), X(21803)}}, {{A, B, C, X(7271), X(42289)}}, {{A, B, C, X(13576), X(30712)}}, {{A, B, C, X(13610), X(40439)}}, {{A, B, C, X(14624), X(28626)}}, {{A, B, C, X(15320), X(39704)}}, {{A, B, C, X(20072), X(30588)}}, {{A, B, C, X(23493), X(40729)}}, {{A, B, C, X(28625), X(37129)}}, {{A, B, C, X(28658), X(40433)}}, {{A, B, C, X(29653), X(29838)}}, {{A, B, C, X(30598), X(41683)}}, {{A, B, C, X(32014), X(54117)}}, {{A, B, C, X(42285), X(55035)}}
X(56222) = barycentric product X(i)*X(j) for these (i, j): {10, 56042}
X(56222) = barycentric quotient X(i)/X(j) for these (i, j): {10, 48628}, {65, 7201}, {512, 4502}, {523, 4500}, {594, 48644}, {661, 4490}, {798, 4507}, {2238, 4489}, {16606, 7275}, {56042, 86}


X(56223) = KP3(X(37)) OF X(10) AND X(44)

Barycentrics    a*(2*a^3-2*a^2*b+3*b^3-b^2*c-2*b*c^2+2*c^3-a*b*(b+c))*(2*a^3+2*b^3-2*a^2*c-2*b^2*c-b*c^2+3*c^3-a*c*(b+c)) : :

X(56223) lies on these lines: {44, 758}, {226, 14584}, {519, 3936}, {1168, 30575}, {1319, 18593}, {2718, 3315}, {3218, 18173}, {9325, 17960}, {20924, 30939}, {36872, 48866}

X(56223) = trilinear pole of line {1635, 53527}
X(56223) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(44)}}, {{A, B, C, X(10), X(7649)}}, {{A, B, C, X(79), X(36935)}}, {{A, B, C, X(81), X(226)}}, {{A, B, C, X(89), X(54974)}}, {{A, B, C, X(256), X(4653)}}, {{A, B, C, X(896), X(48544)}}, {{A, B, C, X(977), X(15173)}}, {{A, B, C, X(994), X(18173)}}, {{A, B, C, X(1016), X(27789)}}, {{A, B, C, X(1411), X(24222)}}, {{A, B, C, X(2802), X(3315)}}, {{A, B, C, X(4567), X(48587)}}, {{A, B, C, X(5665), X(7012)}}, {{A, B, C, X(6549), X(15635)}}, {{A, B, C, X(8056), X(40509)}}, {{A, B, C, X(9269), X(17960)}}, {{A, B, C, X(25417), X(35168)}}, {{A, B, C, X(25430), X(36954)}}, {{A, B, C, X(30116), X(50023)}}, {{A, B, C, X(33136), X(42285)}}, {{A, B, C, X(36125), X(40400)}}, {{A, B, C, X(48303), X(52640)}}, {{A, B, C, X(48855), X(50018)}}


X(56224) = KP3(X(37)) OF X(10) AND X(58)

Barycentrics    (a^3+c*(b+c)^2+a^2*(2*b+c)+a*(b^2+c^2))*(a^3+b*(b+c)^2+a^2*(b+2*c)+a*(b^2+c^2)) : :

X(56224) lies on these lines: {8, 13740}, {29, 49542}, {189, 5749}, {257, 27064}, {312, 4360}, {333, 5294}, {1412, 5750}, {2221, 2345}, {3305, 31359}, {4102, 50306}, {17353, 40435}, {17368, 56046}, {19742, 30711}, {20043, 56086}, {37445, 41791}

X(56224) = trilinear pole of line {4063, 47711}
X(56224) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 37592}, {31, 54311}
X(56224) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 54311}, {9, 37592}
X(56224) = X(i)-cross conjugate of X(j) for these {i, j}: {14349, 190}
X(56224) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1412)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(27), X(83)}}, {{A, B, C, X(57), X(996)}}, {{A, B, C, X(81), X(1222)}}, {{A, B, C, X(86), X(1255)}}, {{A, B, C, X(226), X(5294)}}, {{A, B, C, X(278), X(18841)}}, {{A, B, C, X(321), X(17289)}}, {{A, B, C, X(329), X(5749)}}, {{A, B, C, X(469), X(1010)}}, {{A, B, C, X(561), X(1268)}}, {{A, B, C, X(673), X(24552)}}, {{A, B, C, X(894), X(27064)}}, {{A, B, C, X(967), X(979)}}, {{A, B, C, X(1016), X(37870)}}, {{A, B, C, X(1065), X(2051)}}, {{A, B, C, X(1120), X(25417)}}, {{A, B, C, X(1125), X(50306)}}, {{A, B, C, X(1215), X(41534)}}, {{A, B, C, X(1434), X(35058)}}, {{A, B, C, X(2297), X(2316)}}, {{A, B, C, X(2321), X(5750)}}, {{A, B, C, X(2339), X(51565)}}, {{A, B, C, X(3305), X(10436)}}, {{A, B, C, X(3616), X(20043)}}, {{A, B, C, X(5249), X(17353)}}, {{A, B, C, X(6336), X(43527)}}, {{A, B, C, X(14534), X(32017)}}, {{A, B, C, X(14621), X(39694)}}, {{A, B, C, X(17368), X(27184)}}, {{A, B, C, X(19742), X(25507)}}, {{A, B, C, X(25430), X(36124)}}, {{A, B, C, X(26627), X(26688)}}, {{A, B, C, X(30513), X(34404)}}, {{A, B, C, X(37874), X(52781)}}, {{A, B, C, X(39698), X(56047)}}, {{A, B, C, X(39948), X(56145)}}
X(56224) = barycentric quotient X(i)/X(j) for these (i, j): {1, 37592}, {2, 54311}


X(56225) = KP3(X(37)) OF X(10) AND X(63)

Barycentrics    a*(a-b-c)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2+2*b*c-c^2))*(a^3+a^2*(b+c)-(b-c)*(b+c)^2+a*(-b^2+2*b*c+c^2)) : :

X(56225) lies on these lines: {1, 1826}, {3, 37}, {6, 1069}, {9, 283}, {19, 3422}, {33, 284}, {48, 52185}, {71, 54401}, {77, 226}, {78, 2321}, {210, 219}, {312, 332}, {469, 45126}, {1060, 1901}, {1100, 38248}, {1433, 1903}, {1442, 31042}, {1794, 25063}, {1795, 2250}, {3247, 40442}, {5795, 20263}, {6505, 27052}, {7015, 52651}, {7100, 8818}, {7163, 54385}, {8736, 21147}, {35996, 54420}, {37445, 53996}

X(56225) = isogonal conjugate of X(45126)
X(56225) = trilinear pole of line {652, 4041}
X(56225) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 45126}, {7, 36744}, {56, 5739}, {57, 12514}, {63, 1452}, {65, 27174}, {222, 406}, {348, 44086}, {1408, 42707}, {1460, 14258}
X(56225) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 5739}, {3, 45126}, {3162, 1452}, {5452, 12514}, {40602, 27174}
X(56225) = X(i)-cross conjugate of X(j) for these {i, j}: {2268, 9}
X(56225) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3)}}, {{A, B, C, X(2), X(1172)}}, {{A, B, C, X(6), X(913)}}, {{A, B, C, X(7), X(990)}}, {{A, B, C, X(8), X(975)}}, {{A, B, C, X(9), X(33)}}, {{A, B, C, X(19), X(2006)}}, {{A, B, C, X(57), X(7129)}}, {{A, B, C, X(63), X(5747)}}, {{A, B, C, X(81), X(27395)}}, {{A, B, C, X(92), X(7097)}}, {{A, B, C, X(200), X(5287)}}, {{A, B, C, X(256), X(46475)}}, {{A, B, C, X(281), X(1766)}}, {{A, B, C, X(485), X(7133)}}, {{A, B, C, X(486), X(42013)}}, {{A, B, C, X(612), X(11679)}}, {{A, B, C, X(650), X(2214)}}, {{A, B, C, X(941), X(52663)}}, {{A, B, C, X(998), X(1169)}}, {{A, B, C, X(1039), X(27802)}}, {{A, B, C, X(1041), X(56144)}}, {{A, B, C, X(1061), X(5397)}}, {{A, B, C, X(1217), X(42464)}}, {{A, B, C, X(1255), X(2287)}}, {{A, B, C, X(1390), X(6601)}}, {{A, B, C, X(1449), X(6603)}}, {{A, B, C, X(2189), X(3615)}}, {{A, B, C, X(2193), X(6513)}}, {{A, B, C, X(2289), X(41087)}}, {{A, B, C, X(2297), X(2316)}}, {{A, B, C, X(2326), X(18651)}}, {{A, B, C, X(2337), X(2342)}}, {{A, B, C, X(2648), X(17038)}}, {{A, B, C, X(3254), X(23051)}}, {{A, B, C, X(4183), X(37185)}}, {{A, B, C, X(4328), X(8544)}}, {{A, B, C, X(8748), X(40169)}}, {{A, B, C, X(16831), X(28043)}}, {{A, B, C, X(34820), X(52371)}}, {{A, B, C, X(39393), X(46952)}}, {{A, B, C, X(40141), X(45129)}}
X(56225) = barycentric product X(i)*X(j) for these (i, j): {312, 46010}
X(56225) = barycentric quotient X(i)/X(j) for these (i, j): {6, 45126}, {9, 5739}, {25, 1452}, {33, 406}, {41, 36744}, {55, 12514}, {284, 27174}, {2212, 44086}, {2321, 42707}, {2339, 14258}, {46010, 57}


X(56226) = KP3(X(37)) OF X(10) AND X(65)

Barycentrics    (3*a+3*b-c)*(b+c)*(3*a-b+3*c) : :

X(56226) lies on the Kiepert hyperbola and on these lines: {1, 43533}, {2, 1743}, {4, 1125}, {10, 4035}, {37, 4052}, {76, 18743}, {98, 28162}, {142, 2051}, {226, 3986}, {306, 6539}, {321, 3950}, {519, 54786}, {551, 3772}, {598, 19812}, {1427, 25081}, {1751, 19701}, {2996, 16831}, {3008, 32022}, {3452, 17758}, {3812, 10440}, {3821, 54883}, {3912, 56210}, {4058, 31993}, {4080, 4656}, {4138, 40718}, {4657, 54586}, {4896, 38000}, {5333, 18645}, {5395, 29603}, {5437, 45098}, {6682, 38054}, {6685, 38204}, {10444, 45100}, {13478, 15668}, {13576, 43223}, {14534, 25507}, {16844, 19862}, {17206, 32014}, {19786, 54686}, {19804, 34258}, {29600, 44417}, {48649, 50290}, {50302, 56144}, {50808, 54657}

X(56226) = trilinear pole of line {4729, 23755}
X(56226) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 3731}, {163, 28161}, {284, 3340}, {662, 48338}, {849, 4058}, {1333, 3617}, {1474, 3984}, {2194, 5226}, {2206, 42034}, {10563, 33628}
X(56226) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 3731}, {37, 3617}, {115, 28161}, {1084, 48338}, {1214, 5226}, {4075, 4058}, {40590, 3340}, {40603, 42034}, {51574, 3984}
X(56226) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30712, 31503}
X(56226) = X(i)-cross conjugate of X(j) for these {i, j}: {5257, 10}
X(56226) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1427)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(27), X(43972)}}, {{A, B, C, X(37), X(1743)}}, {{A, B, C, X(42), X(29571)}}, {{A, B, C, X(57), X(53114)}}, {{A, B, C, X(65), X(8056)}}, {{A, B, C, X(72), X(5436)}}, {{A, B, C, X(86), X(3664)}}, {{A, B, C, X(92), X(42285)}}, {{A, B, C, X(142), X(52358)}}, {{A, B, C, X(274), X(55090)}}, {{A, B, C, X(306), X(1125)}}, {{A, B, C, X(307), X(25525)}}, {{A, B, C, X(469), X(16844)}}, {{A, B, C, X(514), X(37870)}}, {{A, B, C, X(525), X(28164)}}, {{A, B, C, X(1211), X(3947)}}, {{A, B, C, X(1214), X(3576)}}, {{A, B, C, X(1441), X(4035)}}, {{A, B, C, X(2287), X(25081)}}, {{A, B, C, X(2321), X(3986)}}, {{A, B, C, X(3671), X(19804)}}, {{A, B, C, X(3701), X(38255)}}, {{A, B, C, X(3912), X(43223)}}, {{A, B, C, X(3936), X(4823)}}, {{A, B, C, X(3992), X(4656)}}, {{A, B, C, X(4028), X(16831)}}, {{A, B, C, X(4058), X(5226)}}, {{A, B, C, X(4078), X(4356)}}, {{A, B, C, X(4125), X(5219)}}, {{A, B, C, X(4138), X(16603)}}, {{A, B, C, X(4416), X(42335)}}, {{A, B, C, X(4417), X(15668)}}, {{A, B, C, X(4642), X(45204)}}, {{A, B, C, X(5745), X(19607)}}, {{A, B, C, X(6703), X(41878)}}, {{A, B, C, X(10436), X(44735)}}, {{A, B, C, X(17023), X(29653)}}, {{A, B, C, X(17120), X(32017)}}, {{A, B, C, X(17272), X(30598)}}, {{A, B, C, X(18134), X(19701)}}, {{A, B, C, X(21060), X(31627)}}, {{A, B, C, X(25430), X(56219)}}, {{A, B, C, X(27475), X(42027)}}, {{A, B, C, X(29600), X(29822)}}, {{A, B, C, X(31247), X(41818)}}, {{A, B, C, X(31312), X(46772)}}, {{A, B, C, X(31503), X(39980)}}, {{A, B, C, X(39741), X(53112)}}, {{A, B, C, X(48633), X(48651)}}
X(56226) = barycentric product X(i)*X(j) for these (i, j): {10, 30712}, {226, 56201}, {321, 39980}, {28162, 850}, {31503, 75}
X(56226) = barycentric quotient X(i)/X(j) for these (i, j): {10, 3617}, {37, 3731}, {65, 3340}, {72, 3984}, {226, 5226}, {321, 42034}, {512, 48338}, {523, 28161}, {594, 4058}, {3698, 11530}, {14321, 14350}, {28162, 110}, {30712, 86}, {31503, 1}, {39980, 81}, {56174, 10563}, {56201, 333}
X(56226) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30712, 56201}, {30712, 56201, 39980}


X(56227) = KP3(X(37)) OF X(10) AND X(71)

Barycentrics    (b+c)*(a^6+a^5*c+a*c*(b^2-c^2)^2-2*a^3*c*(b^2+c^2)-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4-c^4))*(a^6+a^5*b+a*b*(b^2-c^2)^2-2*a^3*b*(b^2+c^2)-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4+c^4)) : :

X(56227) lies on the Kiepert hyperbola and on these lines: {1, 2052}, {2, 255}, {4, 48}, {10, 3990}, {73, 40149}, {76, 326}, {226, 22341}, {275, 2169}, {321, 3682}, {459, 19614}, {681, 26701}, {1751, 19755}, {2051, 51759}, {2584, 2592}, {2585, 2593}, {16080, 35200}, {32591, 32593}

X(56227) = trilinear pole of line {822, 523}
X(56227) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 19366}, {107, 680}, {1172, 53819}, {2194, 53821}, {2204, 53818}, {32713, 35521}
X(56227) = X(i)-Dao conjugate of X(j) for these {i, j}: {1214, 53821}, {38985, 680}, {40611, 19366}
X(56227) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(48)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(12), X(1881)}}, {{A, B, C, X(29), X(72)}}, {{A, B, C, X(37), X(3074)}}, {{A, B, C, X(65), X(3075)}}, {{A, B, C, X(71), X(3362)}}, {{A, B, C, X(1427), X(8747)}}, {{A, B, C, X(1441), X(3615)}}, {{A, B, C, X(1745), X(53012)}}, {{A, B, C, X(2184), X(39585)}}, {{A, B, C, X(2311), X(56225)}}, {{A, B, C, X(5906), X(6757)}}, {{A, B, C, X(32590), X(32593)}}, {{A, B, C, X(32591), X(32592)}}, {{A, B, C, X(40836), X(52560)}}, {{A, B, C, X(40942), X(52673)}}, {{A, B, C, X(51496), X(53114)}}
X(56227) = barycentric product X(i)*X(j) for these (i, j): {307, 53817}, {24018, 681}
X(56227) = barycentric quotient X(i)/X(j) for these (i, j): {73, 53819}, {226, 53821}, {307, 53818}, {681, 823}, {822, 680}, {1400, 19366}, {24018, 35521}, {53817, 29}


X(56228) = KP3(X(37)) OF X(10) AND X(79)

Barycentrics    (a^3+(b-c)^2*(b+c)-a^2*(2*b+c)-a*(2*b^2+5*b*c+c^2))*(a^3+(b-c)^2*(b+c)-a^2*(b+2*c)-a*(b^2+5*b*c+2*c^2)) : :

X(56228) lies on these lines: {1, 50205}, {57, 17245}, {89, 5273}, {1125, 56137}, {1255, 26723}, {3666, 42326}, {16578, 21907}, {17263, 30710}, {32777, 56051}, {37887, 44307}

X(56228) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(27), X(50205)}}, {{A, B, C, X(37), X(1174)}}, {{A, B, C, X(55), X(7110)}}, {{A, B, C, X(226), X(32008)}}, {{A, B, C, X(333), X(17245)}}, {{A, B, C, X(354), X(34585)}}, {{A, B, C, X(1125), X(26723)}}, {{A, B, C, X(1167), X(2003)}}, {{A, B, C, X(1214), X(47487)}}, {{A, B, C, X(1223), X(40573)}}, {{A, B, C, X(1751), X(27475)}}, {{A, B, C, X(1807), X(52381)}}, {{A, B, C, X(3666), X(17263)}}, {{A, B, C, X(4654), X(5556)}}, {{A, B, C, X(4687), X(32777)}}, {{A, B, C, X(4698), X(19808)}}, {{A, B, C, X(4720), X(5219)}}, {{A, B, C, X(5559), X(30690)}}, {{A, B, C, X(17758), X(40435)}}, {{A, B, C, X(25006), X(29571)}}, {{A, B, C, X(28626), X(40154)}}, {{A, B, C, X(33116), X(44307)}}


X(56229) = KP3(X(37)) OF X(10) AND X(83)

Barycentrics    a*(a^3*c+a^2*b*(b+c)+b^2*c*(b+c)+a*(b^3+2*b^2*c+b*c^2+c^3))*(a^3*b+a^2*c*(b+c)+b*c^2*(b+c)+a*(b^3+b^2*c+2*b*c^2+c^3)) : :

X(56229) lies on these lines: {6, 37090}, {37, 3757}, {42, 41239}, {239, 56219}, {333, 39957}, {1400, 5276}, {1427, 41245}, {2350, 37261}, {5275, 45988}, {16353, 39951}

X(56229) = trilinear pole of line {21389, 512}
X(56229) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3757)}}, {{A, B, C, X(2), X(6)}}, {{A, B, C, X(4), X(37090)}}, {{A, B, C, X(27), X(2298)}}, {{A, B, C, X(31), X(40432)}}, {{A, B, C, X(105), X(5331)}}, {{A, B, C, X(239), X(612)}}, {{A, B, C, X(256), X(9285)}}, {{A, B, C, X(294), X(333)}}, {{A, B, C, X(981), X(1751)}}, {{A, B, C, X(1013), X(26052)}}, {{A, B, C, X(1220), X(1390)}}, {{A, B, C, X(1244), X(40718)}}, {{A, B, C, X(1438), X(37870)}}, {{A, B, C, X(1937), X(7249)}}, {{A, B, C, X(2296), X(52030)}}, {{A, B, C, X(3920), X(32914)}}, {{A, B, C, X(4426), X(16519)}}, {{A, B, C, X(5275), X(37652)}}, {{A, B, C, X(6995), X(16353)}}, {{A, B, C, X(7378), X(16403)}}, {{A, B, C, X(14004), X(37261)}}, {{A, B, C, X(16587), X(21355)}}, {{A, B, C, X(30646), X(40738)}}


X(56230) = KP3(X(37)) OF X(10) AND X(84)

Barycentrics    a*(a^4+8*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2))*(a^4+8*a*b*c^2+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(56230) lies on these lines: {1, 17658}, {9, 1422}, {28, 1753}, {57, 2324}, {81, 26669}, {105, 10388}, {277, 23681}, {278, 3452}, {279, 329}, {936, 7046}, {1219, 19861}, {2006, 20196}, {2982, 8257}, {2999, 56218}, {3305, 34056}, {8056, 25939}, {12555, 53083}, {16578, 34051}, {31142, 52374}, {32017, 52406}, {53996, 54414}

X(56230) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 14986}
X(56230) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 14986}
X(56230) = X(i)-cross conjugate of X(j) for these {i, j}: {40137, 100}
X(56230) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(3), X(936)}}, {{A, B, C, X(8), X(34546)}}, {{A, B, C, X(9), X(329)}}, {{A, B, C, X(10), X(1753)}}, {{A, B, C, X(63), X(3452)}}, {{A, B, C, X(75), X(43744)}}, {{A, B, C, X(78), X(1073)}}, {{A, B, C, X(86), X(17825)}}, {{A, B, C, X(92), X(17658)}}, {{A, B, C, X(189), X(3680)}}, {{A, B, C, X(200), X(2338)}}, {{A, B, C, X(223), X(1167)}}, {{A, B, C, X(241), X(10388)}}, {{A, B, C, X(282), X(2983)}}, {{A, B, C, X(306), X(47344)}}, {{A, B, C, X(312), X(2184)}}, {{A, B, C, X(321), X(26669)}}, {{A, B, C, X(333), X(25934)}}, {{A, B, C, X(335), X(37874)}}, {{A, B, C, X(459), X(1041)}}, {{A, B, C, X(527), X(3305)}}, {{A, B, C, X(673), X(25893)}}, {{A, B, C, X(801), X(17743)}}, {{A, B, C, X(1063), X(38253)}}, {{A, B, C, X(1214), X(6282)}}, {{A, B, C, X(1807), X(41081)}}, {{A, B, C, X(2051), X(30500)}}, {{A, B, C, X(2094), X(51780)}}, {{A, B, C, X(2221), X(2999)}}, {{A, B, C, X(2297), X(2316)}}, {{A, B, C, X(2339), X(4564)}}, {{A, B, C, X(2994), X(4900)}}, {{A, B, C, X(3218), X(20196)}}, {{A, B, C, X(3219), X(31142)}}, {{A, B, C, X(3306), X(6692)}}, {{A, B, C, X(3445), X(6612)}}, {{A, B, C, X(5044), X(31424)}}, {{A, B, C, X(5249), X(8257)}}, {{A, B, C, X(5256), X(8583)}}, {{A, B, C, X(5560), X(6504)}}, {{A, B, C, X(5785), X(31658)}}, {{A, B, C, X(6557), X(56101)}}, {{A, B, C, X(7308), X(9965)}}, {{A, B, C, X(12555), X(37558)}}, {{A, B, C, X(17022), X(19860)}}, {{A, B, C, X(18743), X(25939)}}, {{A, B, C, X(23617), X(51341)}}, {{A, B, C, X(23681), X(27819)}}, {{A, B, C, X(38255), X(56100)}}
X(56230) = barycentric product X(i)*X(j) for these (i, j): {8, 8829}, {312, 8828}
X(56230) = barycentric quotient X(i)/X(j) for these (i, j): {1, 14986}, {8828, 57}, {8829, 7}


X(56231) = KP3(X(37)) OF X(10) AND X(90)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^3+a^2*(b-c)-(b-c)*(b+c)^2-a*(b^2+4*b*c+c^2))*(a^3+a^2*(-b+c)+(b-c)*(b+c)^2-a*(b^2+4*b*c+c^2)) : :

X(56231) lies on these lines: {1, 6883}, {2, 7269}, {57, 2178}, {81, 1708}, {223, 52374}, {226, 15474}, {274, 31631}, {278, 52033}, {985, 8270}, {1219, 4511}, {1422, 2003}, {2006, 2999}, {2910, 6826}, {2990, 16578}, {4654, 34578}, {5219, 37887}, {5422, 56041}, {6198, 40836}, {7073, 37696}, {7146, 40188}, {8056, 26742}, {8257, 40399}, {11518, 51498}, {25417, 37787}, {34489, 51223}, {37543, 39947}, {45126, 56050}

X(56231) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 10527}, {7, 32561}, {9, 3338}, {57, 42012}, {100, 13401}, {284, 12609}, {664, 17412}, {2337, 10044}
X(56231) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 10527}, {478, 3338}, {5452, 42012}, {8054, 13401}, {39025, 17412}, {40590, 12609}
X(56231) = X(i)-cross conjugate of X(j) for these {i, j}: {52424, 57}
X(56231) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(6), X(913)}}, {{A, B, C, X(9), X(1857)}}, {{A, B, C, X(27), X(6883)}}, {{A, B, C, X(33), X(1174)}}, {{A, B, C, X(58), X(7130)}}, {{A, B, C, X(63), X(2051)}}, {{A, B, C, X(78), X(45127)}}, {{A, B, C, X(92), X(44178)}}, {{A, B, C, X(189), X(1389)}}, {{A, B, C, X(222), X(1807)}}, {{A, B, C, X(223), X(2003)}}, {{A, B, C, X(226), X(1708)}}, {{A, B, C, X(269), X(7269)}}, {{A, B, C, X(329), X(44861)}}, {{A, B, C, X(937), X(5397)}}, {{A, B, C, X(967), X(998)}}, {{A, B, C, X(997), X(5256)}}, {{A, B, C, X(1041), X(40149)}}, {{A, B, C, X(1061), X(40397)}}, {{A, B, C, X(1096), X(2279)}}, {{A, B, C, X(1945), X(39967)}}, {{A, B, C, X(2149), X(2258)}}, {{A, B, C, X(2167), X(42467)}}, {{A, B, C, X(2334), X(8777)}}, {{A, B, C, X(2339), X(14554)}}, {{A, B, C, X(2994), X(56152)}}, {{A, B, C, X(2999), X(4511)}}, {{A, B, C, X(4564), X(44733)}}, {{A, B, C, X(4654), X(37787)}}, {{A, B, C, X(5227), X(34276)}}, {{A, B, C, X(7146), X(8270)}}, {{A, B, C, X(32008), X(40573)}}, {{A, B, C, X(34489), X(37543)}}, {{A, B, C, X(36100), X(45098)}}, {{A, B, C, X(36599), X(55027)}}
X(56231) = barycentric product X(i)*X(j) for these (i, j): {7, 7162}
X(56231) = barycentric quotient X(i)/X(j) for these (i, j): {1, 10527}, {41, 32561}, {55, 42012}, {56, 3338}, {65, 12609}, {649, 13401}, {1454, 10044}, {3063, 17412}, {7162, 8}


X(56232) = KP3(X(37)) OF X(10) AND X(92)

Barycentrics    a*(a-b-c)*(-b^3+b*c^2+a^2*(b+c)+a*c*(2*b+c))*(a^2*(b+c)+a*b*(b+2*c)+c*(b^2-c^2)) : :

X(56232) lies on these lines: {1, 40572}, {9, 54356}, {33, 46884}, {37, 579}, {210, 3190}, {270, 35192}, {273, 16577}, {1826, 1838}, {1903, 16601}, {2250, 3731}, {2268, 2341}, {2321, 6734}, {4687, 16578}, {7064, 37993}, {8818, 18591}, {29343, 45926}, {54287, 54407}

X(56232) = trilinear pole of line {4041, 8676}
X(56232) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 584}, {56, 5278}, {57, 5248}, {651, 48297}, {37543, 45128}
X(56232) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 5278}, {5452, 5248}, {38991, 48297}
X(56232) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(270)}}, {{A, B, C, X(2), X(284)}}, {{A, B, C, X(6), X(2006)}}, {{A, B, C, X(9), X(33)}}, {{A, B, C, X(21), X(3596)}}, {{A, B, C, X(29), X(16290)}}, {{A, B, C, X(55), X(7110)}}, {{A, B, C, X(212), X(16577)}}, {{A, B, C, X(264), X(56153)}}, {{A, B, C, X(281), X(2338)}}, {{A, B, C, X(349), X(22021)}}, {{A, B, C, X(393), X(1174)}}, {{A, B, C, X(522), X(17038)}}, {{A, B, C, X(581), X(1068)}}, {{A, B, C, X(847), X(943)}}, {{A, B, C, X(941), X(2316)}}, {{A, B, C, X(947), X(1217)}}, {{A, B, C, X(1172), X(1255)}}, {{A, B, C, X(1212), X(3247)}}, {{A, B, C, X(1807), X(7951)}}, {{A, B, C, X(1880), X(2279)}}, {{A, B, C, X(2066), X(3302)}}, {{A, B, C, X(2165), X(2259)}}, {{A, B, C, X(2167), X(7094)}}, {{A, B, C, X(2287), X(40434)}}, {{A, B, C, X(2294), X(43682)}}, {{A, B, C, X(2324), X(16601)}}, {{A, B, C, X(2346), X(36122)}}, {{A, B, C, X(2364), X(39798)}}, {{A, B, C, X(3254), X(10013)}}, {{A, B, C, X(3255), X(4492)}}, {{A, B, C, X(3300), X(5414)}}, {{A, B, C, X(3451), X(46952)}}, {{A, B, C, X(3693), X(4687)}}, {{A, B, C, X(3737), X(30598)}}, {{A, B, C, X(3738), X(29343)}}, {{A, B, C, X(3876), X(4877)}}, {{A, B, C, X(4876), X(17750)}}, {{A, B, C, X(5750), X(27659)}}, {{A, B, C, X(7318), X(13404)}}, {{A, B, C, X(8748), X(32008)}}, {{A, B, C, X(34585), X(40505)}}, {{A, B, C, X(34820), X(36910)}}, {{A, B, C, X(43220), X(56221)}}
X(56232) = barycentric quotient X(i)/X(j) for these (i, j): {9, 5278}, {41, 584}, {55, 5248}, {663, 48297}


X(56233) = KP3(X(37)) OF X(10) AND X(103)

Barycentrics    (a^5+a^4*c+c*(b^2-c^2)^2+2*a^2*c*(b^2+2*b*c-c^2)+a*(b-c)^2*(b^2+c^2)-2*a^3*(b^2+b*c+c^2))*(a^5+a^4*b+b*(b^2-c^2)^2+a*(b-c)^2*(b^2+c^2)-2*a^3*(b^2+b*c+c^2)+2*a^2*b*(-b^2+2*b*c+c^2)) : :

X(56233) lies on these lines: {75, 25930}, {86, 25019}, {273, 27384}, {310, 55241}, {651, 1440}, {673, 26006}, {1815, 6559}, {3912, 52781}, {4209, 55937}, {7318, 26668}, {26658, 39721}

X(56233) = trilinear pole of line {40, 514}
X(56233) = isotomic conjugate of X(26001)
X(56233) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(25930)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(29), X(7131)}}, {{A, B, C, X(63), X(27384)}}, {{A, B, C, X(92), X(30705)}}, {{A, B, C, X(226), X(25019)}}, {{A, B, C, X(318), X(34401)}}, {{A, B, C, X(329), X(27508)}}, {{A, B, C, X(651), X(1897)}}, {{A, B, C, X(801), X(40435)}}, {{A, B, C, X(908), X(40880)}}, {{A, B, C, X(1067), X(44178)}}, {{A, B, C, X(1275), X(36796)}}, {{A, B, C, X(2297), X(2316)}}, {{A, B, C, X(3618), X(24556)}}, {{A, B, C, X(3912), X(26006)}}, {{A, B, C, X(4564), X(8777)}}, {{A, B, C, X(14942), X(36101)}}, {{A, B, C, X(17316), X(26658)}}, {{A, B, C, X(26575), X(26660)}}, {{A, B, C, X(26639), X(26672)}}, {{A, B, C, X(26668), X(31631)}}, {{A, B, C, X(40450), X(43760)}}, {{A, B, C, X(40802), X(56179)}}, {{A, B, C, X(43762), X(54235)}}
X(56233) = barycentric quotient X(i)/X(j) for these (i, j): {2, 26001}


X(56234) = KP3(X(37)) OF X(10) AND X(104)

Barycentrics    a*(a^4+a^3*b-a*b*(b^2-6*b*c+c^2)+(b-c)^2*(2*b^2+3*b*c+c^2)-a^2*(3*b^2+b*c+2*c^2))*(a^4+a^3*c-a*c*(b^2-6*b*c+c^2)+(b-c)^2*(b^2+3*b*c+2*c^2)-a^2*(2*b^2+b*c+3*c^2)) : :

X(56234) lies on these lines: {1, 14740}, {28, 1872}, {57, 16578}, {274, 26591}, {278, 5748}, {279, 26611}, {651, 1422}, {957, 1482}, {1219, 24558}, {1897, 27383}, {4358, 16082}, {5422, 25417}, {25243, 39706}

X(56234) = trilinear pole of line {40, 513}
X(56234) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 44675}, {909, 1537}, {2183, 52178}
X(56234) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 44675}, {23980, 1537}
X(56234) = X(i)-cross conjugate of X(j) for these {i, j}: {46393, 100}
X(56234) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(37), X(26591)}}, {{A, B, C, X(63), X(5748)}}, {{A, B, C, X(104), X(14554)}}, {{A, B, C, X(226), X(44861)}}, {{A, B, C, X(321), X(1872)}}, {{A, B, C, X(335), X(9372)}}, {{A, B, C, X(651), X(1897)}}, {{A, B, C, X(908), X(45393)}}, {{A, B, C, X(1016), X(2988)}}, {{A, B, C, X(1252), X(2338)}}, {{A, B, C, X(1320), X(34234)}}, {{A, B, C, X(1807), X(4358)}}, {{A, B, C, X(2185), X(42339)}}, {{A, B, C, X(2994), X(56089)}}, {{A, B, C, X(2999), X(24558)}}, {{A, B, C, X(4511), X(16586)}}, {{A, B, C, X(4564), X(4997)}}, {{A, B, C, X(5121), X(26639)}}, {{A, B, C, X(5333), X(5422)}}, {{A, B, C, X(6336), X(43760)}}, {{A, B, C, X(7131), X(50442)}}, {{A, B, C, X(8582), X(17019)}}, {{A, B, C, X(14740), X(16578)}}, {{A, B, C, X(23617), X(56225)}}, {{A, B, C, X(25243), X(31035)}}, {{A, B, C, X(26637), X(37651)}}, {{A, B, C, X(36807), X(52780)}}, {{A, B, C, X(43736), X(51567)}}
X(56234) = barycentric quotient X(i)/X(j) for these (i, j): {1, 44675}, {104, 52178}, {517, 1537}, {13528, 52116}


X(56235) = TRILINEAR POLE OF LINE {40, 64}

Barycentrics    a*(a-b)*(a-c)*(a^4+b^4+2*b^2*c^2-3*c^4-2*a^2*(b^2-c^2))*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b^2-c^2)) : :

X(56235) lies on these lines: {100, 1301}, {253, 6559}, {1073, 17776}, {1332, 7259}, {2405, 4552}, {6558, 52609}, {6574, 36079}, {7258, 44326}, {19611, 27396}, {27382, 46351}, {32849, 52514}, {46065, 51367}, {53639, 54970}

X(56235) = KP3(X(37)) of X(10) and X(108)
X(56235) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 21172}, {20, 649}, {27, 42658}, {56, 14331}, {58, 6587}, {154, 514}, {204, 905}, {513, 610}, {521, 3213}, {647, 44698}, {650, 1394}, {652, 44696}, {663, 18623}, {667, 18750}, {1019, 3198}, {1021, 40933}, {1249, 1459}, {1333, 17898}, {1412, 14308}, {1474, 8057}, {1790, 44705}, {1895, 22383}, {1919, 14615}, {1946, 44697}, {3063, 33673}, {3122, 36841}, {3172, 4025}, {3669, 7070}, {3733, 8804}, {3737, 30456}, {4091, 6525}, {5930, 7252}, {7254, 53011}, {7649, 15905}, {11125, 15291}, {16892, 51508}, {21102, 33629}, {21789, 36908}, {27382, 43924}
X(56235) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 14331}, {9, 21172}, {10, 6587}, {37, 17898}, {3343, 905}, {5375, 20}, {6631, 18750}, {7358, 40616}, {9296, 14615}, {10001, 33673}, {14092, 513}, {14390, 23224}, {39026, 610}, {39052, 44698}, {39053, 44697}, {40599, 14308}, {40839, 17924}, {51574, 8057}, {55063, 55058}
X(56235) = X(i)-cross conjugate of X(j) for these {i, j}: {1020, 190}, {1783, 100}
X(56235) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32714)}}, {{A, B, C, X(2), X(2405)}}, {{A, B, C, X(100), X(1332)}}, {{A, B, C, X(190), X(644)}}, {{A, B, C, X(651), X(1897)}}, {{A, B, C, X(653), X(13138)}}, {{A, B, C, X(934), X(36099)}}, {{A, B, C, X(1020), X(1783)}}, {{A, B, C, X(1025), X(27508)}}, {{A, B, C, X(1301), X(44326)}}, {{A, B, C, X(2397), X(17776)}}, {{A, B, C, X(5382), X(46119)}}, {{A, B, C, X(13136), X(27834)}}, {{A, B, C, X(27396), X(42719)}}, {{A, B, C, X(32038), X(42303)}}, {{A, B, C, X(42700), X(42716)}}
X(56235) = barycentric product X(i)*X(j) for these (i, j): {37, 44326}, {64, 668}, {100, 253}, {190, 2184}, {321, 46639}, {341, 36079}, {1073, 6335}, {1301, 20336}, {1332, 459}, {1783, 34403}, {1897, 19611}, {1978, 2155}, {3699, 8809}, {4551, 5931}, {30457, 4554}, {33581, 6386}, {41530, 692}, {44692, 664}, {52345, 53886}, {52581, 906}, {53012, 811}, {53639, 72}
X(56235) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21172}, {9, 14331}, {10, 17898}, {37, 6587}, {64, 513}, {72, 8057}, {100, 20}, {101, 610}, {108, 44696}, {109, 1394}, {162, 44698}, {190, 18750}, {210, 14308}, {228, 42658}, {253, 693}, {459, 17924}, {644, 27382}, {651, 18623}, {653, 44697}, {664, 33673}, {668, 14615}, {692, 154}, {906, 15905}, {1018, 8804}, {1020, 36908}, {1073, 905}, {1301, 28}, {1332, 37669}, {1783, 1249}, {1824, 44705}, {1897, 1895}, {2155, 649}, {2184, 514}, {3699, 52346}, {3939, 7070}, {3952, 52345}, {3998, 20580}, {4551, 5930}, {4557, 3198}, {4559, 30456}, {4567, 36841}, {4601, 55224}, {5379, 52913}, {5931, 18155}, {6335, 15466}, {8750, 204}, {8809, 3676}, {13138, 41084}, {14379, 23224}, {14642, 22383}, {15384, 52920}, {15394, 4131}, {19611, 4025}, {19614, 1459}, {30457, 650}, {32674, 3213}, {33581, 667}, {34403, 15413}, {36079, 269}, {41088, 6129}, {41489, 6591}, {41530, 40495}, {44326, 274}, {44692, 522}, {46639, 81}, {52158, 3737}, {52609, 42699}, {53012, 656}, {53321, 40933}, {53639, 286}, {55232, 1562}, {56183, 44695}


X(56236) = KP3(X(37)) OF X(37) AND X(42)

Barycentrics    a*(b+c)*(2*b*c+a*(2*b+c))*(2*b*c+a*(b+2*c)) : :

X(56236) lies on these lines: {1, 39961}, {2, 3760}, {6, 748}, {25, 40975}, {37, 4365}, {42, 16589}, {111, 6013}, {226, 42290}, {251, 5259}, {899, 39967}, {941, 5257}, {967, 17110}, {1218, 4687}, {1334, 40147}, {1400, 39793}, {2238, 28625}, {2276, 39983}, {2350, 30950}, {2998, 27268}, {3572, 4813}, {4651, 52708}, {5333, 37128}, {21071, 26037}, {21838, 56158}, {24592, 39971}, {26102, 39965}, {30821, 39957}, {31027, 40776}, {31136, 39974}

X(56236) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 39673}, {58, 4687}, {81, 17018}, {110, 47666}, {333, 16878}, {662, 6005}, {799, 8655}, {4556, 48407}, {4610, 50483}
X(56236) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 4687}, {244, 47666}, {1084, 6005}, {32664, 39673}, {38996, 8655}, {40586, 17018}
X(56236) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56051, 46772}
X(56236) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32092)}}, {{A, B, C, X(2), X(6)}}, {{A, B, C, X(10), X(310)}}, {{A, B, C, X(210), X(6557)}}, {{A, B, C, X(226), X(756)}}, {{A, B, C, X(291), X(56221)}}, {{A, B, C, X(523), X(9038)}}, {{A, B, C, X(649), X(37870)}}, {{A, B, C, X(748), X(3760)}}, {{A, B, C, X(899), X(43223)}}, {{A, B, C, X(1088), X(42289)}}, {{A, B, C, X(1255), X(40747)}}, {{A, B, C, X(1334), X(40586)}}, {{A, B, C, X(2238), X(4813)}}, {{A, B, C, X(2296), X(17038)}}, {{A, B, C, X(3954), X(5259)}}, {{A, B, C, X(4423), X(5556)}}, {{A, B, C, X(4651), X(30950)}}, {{A, B, C, X(7196), X(21803)}}, {{A, B, C, X(10013), X(46772)}}, {{A, B, C, X(15320), X(34585)}}, {{A, B, C, X(18098), X(40434)}}, {{A, B, C, X(18785), X(25430)}}, {{A, B, C, X(21805), X(36915)}}, {{A, B, C, X(21877), X(27268)}}, {{A, B, C, X(23493), X(25264)}}, {{A, B, C, X(30588), X(52651)}}, {{A, B, C, X(31330), X(31356)}}, {{A, B, C, X(40439), X(40775)}}
X(56236) = barycentric product X(i)*X(j) for these (i, j): {1, 46772}, {10, 10013}, {37, 56051}, {226, 56208}, {523, 6013}, {56087, 65}
X(56236) = barycentric quotient X(i)/X(j) for these (i, j): {31, 39673}, {37, 4687}, {42, 17018}, {512, 6005}, {661, 47666}, {669, 8655}, {1402, 16878}, {4705, 48407}, {6013, 99}, {10013, 86}, {46772, 75}, {50487, 50483}, {56051, 274}, {56087, 314}, {56208, 333}


X(56237) = KP3(X(37)) OF X(37) AND X(65)

Barycentrics    a*(b+c)*(a+3*b+c)*(a+b+3*c) : :
X(56237) = -5*X[1698]+X[39711]

X(56237) lies on these lines: {1, 210}, {10, 3175}, {12, 3668}, {19, 45}, {37, 3214}, {44, 2214}, {65, 756}, {72, 53114}, {75, 3701}, {82, 15254}, {225, 7140}, {267, 2941}, {518, 39739}, {596, 3634}, {759, 8694}, {876, 29198}, {897, 4606}, {960, 9330}, {969, 5220}, {984, 39742}, {1247, 4689}, {1698, 39711}, {1910, 34074}, {2217, 37600}, {2292, 4731}, {2363, 5297}, {3246, 56034}, {3617, 3714}, {3626, 42285}, {3663, 34501}, {3689, 54287}, {3694, 16676}, {3697, 37593}, {3698, 4674}, {3743, 3921}, {3842, 27432}, {3962, 56191}, {3967, 19874}, {4005, 31503}, {4009, 19853}, {4015, 21870}, {4059, 24797}, {4420, 40430}, {4424, 56135}, {4518, 18827}, {4642, 56159}, {4663, 32635}, {4906, 17534}, {5550, 39702}, {6051, 50575}, {13476, 14626}, {17536, 49465}, {19862, 24003}, {21674, 52382}, {26115, 41683}, {31855, 56215}, {46897, 46934}, {47842, 55244}, {49462, 56126}

X(56237) = trilinear pole of line {661, 4139}
X(56237) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 31903}, {6, 42028}, {21, 3361}, {28, 4652}, {58, 3616}, {60, 3671}, {81, 1449}, {101, 48580}, {110, 4778}, {163, 4801}, {284, 21454}, {391, 1412}, {593, 5257}, {662, 4790}, {757, 37593}, {1014, 4512}, {1333, 19804}, {1408, 4673}, {1434, 4258}, {1437, 5342}, {1444, 5338}, {2163, 17553}, {2363, 4719}, {4061, 7341}, {4556, 4841}, {4565, 4765}, {4591, 4773}, {4610, 4832}, {4627, 53586}, {4637, 4827}, {4822, 52935}, {5546, 30723}
X(56237) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 42028}, {10, 3616}, {37, 19804}, {115, 4801}, {244, 4778}, {960, 4719}, {1015, 48580}, {1084, 4790}, {6741, 4811}, {36103, 31903}, {40586, 1449}, {40587, 17553}, {40590, 21454}, {40591, 4652}, {40599, 391}, {40607, 37593}, {40611, 3361}, {52872, 4742}, {52875, 4706}, {55064, 4765}, {55065, 4815}
X(56237) = X(i)-Ceva conjugate of X(j) for these {i, j}: {53658, 47915}
X(56237) = X(i)-cross conjugate of X(j) for these {i, j}: {4646, 65}, {8672, 3952}
X(56237) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(2), X(3175)}}, {{A, B, C, X(4), X(11108)}}, {{A, B, C, X(12), X(210)}}, {{A, B, C, X(42), X(9780)}}, {{A, B, C, X(44), X(3992)}}, {{A, B, C, X(45), X(72)}}, {{A, B, C, X(79), X(34585)}}, {{A, B, C, X(86), X(55093)}}, {{A, B, C, X(88), X(56219)}}, {{A, B, C, X(201), X(3694)}}, {{A, B, C, X(226), X(3983)}}, {{A, B, C, X(321), X(1900)}}, {{A, B, C, X(512), X(28555)}}, {{A, B, C, X(740), X(29198)}}, {{A, B, C, X(758), X(28205)}}, {{A, B, C, X(899), X(26115)}}, {{A, B, C, X(979), X(28650)}}, {{A, B, C, X(1001), X(24797)}}, {{A, B, C, X(1156), X(25917)}}, {{A, B, C, X(1213), X(3931)}}, {{A, B, C, X(1214), X(37568)}}, {{A, B, C, X(1224), X(46187)}}, {{A, B, C, X(1268), X(43073)}}, {{A, B, C, X(1427), X(39963)}}, {{A, B, C, X(1698), X(50587)}}, {{A, B, C, X(1903), X(5044)}}, {{A, B, C, X(1989), X(51501)}}, {{A, B, C, X(2238), X(48027)}}, {{A, B, C, X(2292), X(4918)}}, {{A, B, C, X(2297), X(8951)}}, {{A, B, C, X(2334), X(5936)}}, {{A, B, C, X(3293), X(3634)}}, {{A, B, C, X(3294), X(49515)}}, {{A, B, C, X(3696), X(4059)}}, {{A, B, C, X(3697), X(51572)}}, {{A, B, C, X(3698), X(40663)}}, {{A, B, C, X(3842), X(20691)}}, {{A, B, C, X(3932), X(48395)}}, {{A, B, C, X(3954), X(15254)}}, {{A, B, C, X(3986), X(21896)}}, {{A, B, C, X(3993), X(25614)}}, {{A, B, C, X(4026), X(16583)}}, {{A, B, C, X(4420), X(21674)}}, {{A, B, C, X(4423), X(5556)}}, {{A, B, C, X(4492), X(20615)}}, {{A, B, C, X(4646), X(5257)}}, {{A, B, C, X(4663), X(21816)}}, {{A, B, C, X(4731), X(4848)}}, {{A, B, C, X(4854), X(52372)}}, {{A, B, C, X(4868), X(52706)}}, {{A, B, C, X(5221), X(37593)}}, {{A, B, C, X(5297), X(20653)}}, {{A, B, C, X(5302), X(21810)}}, {{A, B, C, X(7317), X(38955)}}, {{A, B, C, X(7319), X(41506)}}, {{A, B, C, X(9708), X(15232)}}, {{A, B, C, X(10693), X(56203)}}, {{A, B, C, X(15320), X(43733)}}, {{A, B, C, X(16605), X(50290)}}, {{A, B, C, X(19862), X(31855)}}, {{A, B, C, X(19870), X(50575)}}, {{A, B, C, X(21859), X(37138)}}, {{A, B, C, X(25430), X(40023)}}, {{A, B, C, X(27809), X(39740)}}, {{A, B, C, X(31993), X(41839)}}, {{A, B, C, X(34790), X(41013)}}, {{A, B, C, X(41711), X(56151)}}, {{A, B, C, X(43534), X(48644)}}, {{A, B, C, X(49468), X(52708)}}, {{A, B, C, X(52429), X(53013)}}
X(56237) = barycentric product X(i)*X(j) for these (i, j): {10, 25430}, {12, 56204}, {37, 5936}, {226, 4866}, {594, 56048}, {1441, 34820}, {1577, 8694}, {2334, 321}, {3952, 47915}, {4024, 4614}, {4036, 4627}, {4041, 4624}, {4606, 523}, {4633, 4705}, {31010, 35339}, {34074, 850}, {40023, 42}, {53658, 661}, {56086, 65}
X(56237) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42028}, {10, 19804}, {19, 31903}, {37, 3616}, {42, 1449}, {45, 17553}, {65, 21454}, {71, 4652}, {210, 391}, {512, 4790}, {513, 48580}, {523, 4801}, {661, 4778}, {756, 5257}, {1334, 4512}, {1400, 3361}, {1500, 37593}, {1826, 5342}, {2092, 4719}, {2171, 3671}, {2321, 4673}, {2333, 5338}, {2334, 81}, {3690, 4047}, {3700, 4811}, {3930, 4684}, {3943, 4742}, {3949, 4101}, {4017, 30723}, {4024, 4815}, {4041, 4765}, {4069, 30728}, {4079, 4822}, {4155, 4839}, {4524, 4827}, {4606, 99}, {4614, 4610}, {4624, 4625}, {4627, 52935}, {4633, 4623}, {4705, 4841}, {4730, 4773}, {4822, 53586}, {4866, 333}, {5936, 274}, {6057, 42712}, {8694, 662}, {14626, 18206}, {20691, 4734}, {21801, 51423}, {21805, 4700}, {21832, 4830}, {21839, 4831}, {24290, 50357}, {25430, 86}, {34074, 110}, {34820, 21}, {40023, 310}, {47915, 7192}, {50487, 4832}, {52651, 4835}, {52959, 4706}, {53658, 799}, {56048, 1509}, {56086, 314}, {56204, 261}
X(56237) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4866, 25430, 2334}


X(56238) = KP3(X(37)) OF X(42) AND X(4)

Barycentrics    (a^3*(b-c)-a^2*b*c-b^3*c+b*c^3-a*(b^3+b^2*c+b*c^2+c^3))*(a^3*(b-c)+a^2*b*c-b^3*c+b*c^3+a*(b^3+b^2*c+b*c^2+c^3)) : :

X(56238) lies on the Feuerbach hyperbola and on these lines: {1, 20753}, {4, 3056}, {7, 3784}, {9, 3971}, {21, 192}, {212, 983}, {242, 1039}, {314, 6382}, {321, 7155}, {350, 30479}, {2276, 2335}, {2345, 4876}, {3254, 38484}, {10453, 43749}, {17863, 41527}

X(56238) = trilinear pole of line {650, 21051}
X(56238) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(2), X(4362)}}, {{A, B, C, X(19), X(40422)}}, {{A, B, C, X(69), X(12588)}}, {{A, B, C, X(87), X(54128)}}, {{A, B, C, X(192), X(321)}}, {{A, B, C, X(212), X(3056)}}, {{A, B, C, X(242), X(350)}}, {{A, B, C, X(257), X(19222)}}, {{A, B, C, X(608), X(1244)}}, {{A, B, C, X(976), X(10449)}}, {{A, B, C, X(1246), X(2214)}}, {{A, B, C, X(1390), X(2995)}}, {{A, B, C, X(2276), X(44140)}}, {{A, B, C, X(2991), X(17040)}}, {{A, B, C, X(3757), X(33137)}}, {{A, B, C, X(3961), X(10453)}}, {{A, B, C, X(4581), X(5936)}}, {{A, B, C, X(4812), X(33889)}}, {{A, B, C, X(7009), X(17787)}}, {{A, B, C, X(9309), X(30651)}}, {{A, B, C, X(13610), X(39741)}}, {{A, B, C, X(18816), X(23051)}}, {{A, B, C, X(20056), X(29652)}}, {{A, B, C, X(21334), X(23853)}}, {{A, B, C, X(23289), X(34820)}}, {{A, B, C, X(30710), X(34208)}}


X(56239) = KP3(X(37)) OF X(42) AND X(7)

Barycentrics    a^4*(b-c)^2+b^2*(b-c)^2*c^2-a^2*(b^4+8*b^3*c+7*b^2*c^2+8*b*c^3+c^4) : :

X(56239) lies on these lines: {239, 3305}, {350, 3974}, {612, 1447}, {756, 41527}, {870, 32937}, {873, 24349}, {984, 54128}, {3112, 27538}, {7192, 7226}, {9330, 27807}

X(56239) = trilinear pole of line {47965, 812}
X(56239) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(39741)}}, {{A, B, C, X(2), X(239)}}, {{A, B, C, X(7), X(1255)}}, {{A, B, C, X(8), X(33)}}, {{A, B, C, X(38), X(27538)}}, {{A, B, C, X(75), X(39694)}}, {{A, B, C, X(310), X(39703)}}, {{A, B, C, X(756), X(7235)}}, {{A, B, C, X(984), X(32937)}}, {{A, B, C, X(1000), X(8817)}}, {{A, B, C, X(1280), X(7320)}}, {{A, B, C, X(2296), X(39738)}}, {{A, B, C, X(2481), X(25430)}}, {{A, B, C, X(3952), X(7226)}}, {{A, B, C, X(5559), X(34409)}}, {{A, B, C, X(5936), X(54235)}}, {{A, B, C, X(8049), X(27789)}}, {{A, B, C, X(9330), X(17140)}}, {{A, B, C, X(21453), X(43750)}}, {{A, B, C, X(34258), X(39714)}}


X(56240) = KP3(X(37)) OF X(42) AND X(42)

Barycentrics    a*(b+c)*(2*a*b^2*c+b^2*c^2+a^2*(b^2+c^2))*(2*a*b*c^2+b^2*c^2+a^2*(b^2+c^2)) : :

X(56240) lies on these lines: {1, 1197}, {2, 18832}, {10, 21838}, {19, 11325}, {75, 194}, {82, 38834}, {893, 16827}, {1581, 47642}, {5283, 17038}, {13476, 17448}, {16819, 18833}, {16975, 39742}, {18298, 37596}, {30038, 39712}

X(56240) = trilinear pole of line {661, 3221}
X(56240) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(2), X(194)}}, {{A, B, C, X(42), X(330)}}, {{A, B, C, X(213), X(274)}}, {{A, B, C, X(756), X(21345)}}, {{A, B, C, X(894), X(16827)}}, {{A, B, C, X(3294), X(17448)}}, {{A, B, C, X(16696), X(16819)}}, {{A, B, C, X(20691), X(40844)}}, {{A, B, C, X(21387), X(21608)}}, {{A, B, C, X(21830), X(40881)}}, {{A, B, C, X(31996), X(52894)}}
X(56240) = barycentric product X(i)*X(j) for these (i, j): {1, 56211}
X(56240) = barycentric quotient X(i)/X(j) for these (i, j): {56211, 75}


X(56241) = KP3(X(37)) OF X(42) AND X(99)

Barycentrics    (a-b)*b*(a-c)*c*(b^2+a*c)*(a*b+c^2) : :

X(56241) lies on these lines: {75, 1581}, {192, 40729}, {256, 40844}, {523, 670}, {646, 3807}, {694, 9055}, {874, 3903}, {1178, 4360}, {3263, 52135}, {4367, 56053}, {4451, 20895}, {4552, 37137}, {4561, 29055}, {11611, 33941}, {18830, 33946}, {40017, 53559}, {40873, 40875}

X(56241) = isotomic conjugate of X(4367)
X(56241) = trilinear pole of line {257, 312}
X(56241) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 20981}, {25, 22093}, {31, 4367}, {32, 4369}, {58, 7234}, {110, 4128}, {162, 22373}, {163, 16592}, {171, 667}, {172, 649}, {184, 54229}, {213, 18200}, {513, 7122}, {560, 4374}, {604, 3287}, {662, 21755}, {669, 17103}, {692, 53541}, {741, 5027}, {875, 1580}, {876, 1933}, {894, 1919}, {1106, 4477}, {1397, 3907}, {1576, 53559}, {1691, 3572}, {1909, 1980}, {1911, 4164}, {1918, 17212}, {1922, 4107}, {1924, 8033}, {1977, 18047}, {2205, 16737}, {2206, 2533}, {2330, 43924}, {3051, 18111}, {3063, 7175}, {3248, 4579}, {3733, 20964}, {4140, 16947}, {4444, 14602}, {4529, 52410}, {4556, 21823}, {7119, 22383}, {7121, 24533}, {7200, 32739}, {14296, 14598}, {21752, 39179}, {22061, 43925}, {40745, 46386}, {40746, 45882}
X(56241) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4367}, {9, 20981}, {10, 7234}, {115, 16592}, {125, 22373}, {244, 4128}, {1084, 21755}, {1086, 53541}, {3161, 3287}, {4858, 53559}, {5375, 172}, {6374, 4374}, {6376, 4369}, {6505, 22093}, {6552, 4477}, {6626, 18200}, {6631, 171}, {6651, 4164}, {6741, 40608}, {8299, 5027}, {9296, 894}, {9428, 8033}, {10001, 7175}, {16592, 7207}, {17755, 53553}, {18277, 14296}, {19584, 45882}, {27481, 3805}, {34021, 17212}, {39026, 7122}, {39028, 4107}, {39092, 875}, {40598, 24533}, {40603, 2533}, {40619, 7200}, {40624, 4459}, {52651, 45902}, {55065, 21725}
X(56241) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7260, 27805}
X(56241) = X(i)-cross conjugate of X(j) for these {i, j}: {3700, 76}, {3703, 1016}, {21051, 2}, {21604, 799}, {27853, 4583}, {33938, 7035}
X(56241) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(75), X(670)}}, {{A, B, C, X(99), X(4552)}}, {{A, B, C, X(190), X(3807)}}, {{A, B, C, X(523), X(2643)}}, {{A, B, C, X(645), X(3596)}}, {{A, B, C, X(646), X(668)}}, {{A, B, C, X(662), X(35147)}}, {{A, B, C, X(693), X(42555)}}, {{A, B, C, X(789), X(6335)}}, {{A, B, C, X(883), X(20895)}}, {{A, B, C, X(1268), X(37205)}}, {{A, B, C, X(1581), X(3903)}}, {{A, B, C, X(1978), X(18830)}}, {{A, B, C, X(3573), X(51836)}}, {{A, B, C, X(3952), X(4609)}}, {{A, B, C, X(4367), X(21051)}}, {{A, B, C, X(4594), X(27805)}}, {{A, B, C, X(4602), X(53216)}}, {{A, B, C, X(4623), X(15455)}}, {{A, B, C, X(6742), X(17914)}}, {{A, B, C, X(8709), X(54458)}}, {{A, B, C, X(17930), X(38340)}}
X(56241) = barycentric product X(i)*X(j) for these (i, j): {10, 7260}, {100, 44187}, {190, 7018}, {257, 668}, {313, 4603}, {321, 4594}, {646, 7249}, {1581, 27853}, {1916, 874}, {1934, 3570}, {1978, 256}, {3596, 37137}, {3903, 76}, {4451, 4554}, {6335, 7019}, {6386, 893}, {17493, 4583}, {18829, 3948}, {18896, 3573}, {27447, 36863}, {27805, 75}, {27808, 40432}, {28659, 29055}, {32010, 4033}, {35544, 37134}, {40729, 4609}, {40738, 4505}, {52651, 670}
X(56241) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20981}, {2, 4367}, {8, 3287}, {37, 7234}, {63, 22093}, {75, 4369}, {76, 4374}, {86, 18200}, {92, 54229}, {100, 172}, {101, 7122}, {190, 171}, {192, 24533}, {239, 4164}, {256, 649}, {257, 513}, {274, 17212}, {310, 16737}, {312, 3907}, {321, 2533}, {341, 4529}, {346, 4477}, {350, 4107}, {512, 21755}, {514, 53541}, {523, 16592}, {644, 2330}, {646, 7081}, {647, 22373}, {661, 4128}, {664, 7175}, {668, 894}, {670, 8033}, {693, 7200}, {694, 875}, {789, 40745}, {799, 17103}, {805, 18268}, {874, 385}, {893, 667}, {904, 1919}, {984, 45882}, {1016, 4579}, {1018, 20964}, {1332, 3955}, {1432, 43924}, {1577, 53559}, {1581, 3572}, {1897, 7119}, {1916, 876}, {1921, 14296}, {1934, 4444}, {1978, 1909}, {2238, 5027}, {3112, 18111}, {3570, 1580}, {3573, 1691}, {3661, 3805}, {3699, 2329}, {3700, 40608}, {3701, 4140}, {3783, 30654}, {3807, 40790}, {3863, 50514}, {3903, 6}, {3912, 53553}, {3948, 804}, {3952, 2295}, {4024, 21725}, {4033, 1215}, {4103, 21803}, {4110, 30584}, {4155, 2086}, {4358, 4922}, {4369, 7207}, {4391, 4459}, {4451, 650}, {4554, 7176}, {4562, 18787}, {4572, 7196}, {4583, 30669}, {4594, 81}, {4595, 51902}, {4603, 58}, {4671, 4774}, {4705, 21823}, {4835, 4790}, {6335, 7009}, {6386, 1920}, {7015, 22383}, {7018, 514}, {7019, 905}, {7035, 18047}, {7104, 1980}, {7249, 3669}, {7257, 27958}, {7260, 86}, {17493, 659}, {18743, 4504}, {18786, 8632}, {18829, 37128}, {20895, 28006}, {24004, 4434}, {27447, 43931}, {27569, 24381}, {27805, 1}, {27808, 3963}, {27853, 1966}, {29055, 604}, {30596, 4842}, {30670, 40746}, {32010, 1019}, {33946, 7184}, {35309, 40936}, {36863, 17752}, {37134, 741}, {37137, 56}, {39292, 36066}, {40432, 3733}, {40729, 669}, {40835, 7255}, {41209, 39276}, {42720, 4447}, {42721, 7267}, {43263, 4401}, {44187, 693}, {51614, 41534}, {52651, 512}, {52923, 51319}, {53332, 28369}, {53363, 4754}


X(56242) = X(6)X(23570)∩X(31)X(669)

Barycentrics    a^3*(b-c)*(a^2+b*c) : :

X(56242) lies on these lines: {6, 23570}, {31, 669}, {81, 50524}, {110, 24041}, {171, 24533}, {238, 25537}, {512, 5006}, {513, 8633}, {649, 1980}, {661, 5040}, {667, 50514}, {692, 41405}, {788, 8646}, {1021, 50544}, {1397, 7180}, {1580, 4367}, {1919, 8640}, {3063, 4507}, {3733, 9426}, {4164, 4369}, {4897, 24286}, {6373, 21005}, {7234, 20981}, {8635, 21758}, {8651, 23189}, {9256, 16612}, {9404, 17990}, {17123, 24747}, {18199, 53271}, {20979, 23568}, {21349, 21392}, {23301, 50302}, {25473, 32784}, {27982, 28007}, {31003, 32772}

X(56242) = midpoint of X(i) and X(j) for these {i,j}: {7252, 16874}, {8646, 22383}
X(56242) = isogonal conjugate of X(56241)
X(56242) = trilinear pole of line {21755, 22373}
X(56242) = perspector of circumconic {{A, B, C, X(172), X(604)}}
X(56242) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 56241}, {2, 27805}, {10, 4594}, {37, 7260}, {75, 3903}, {100, 7018}, {101, 44187}, {190, 257}, {256, 668}, {274, 56257}, {312, 37137}, {321, 4603}, {646, 1432}, {664, 4451}, {694, 27853}, {740, 18829}, {799, 52651}, {805, 35544}, {874, 1581}, {893, 1978}, {904, 6386}, {1178, 27808}, {1897, 7019}, {1916, 3570}, {1934, 3573}, {3596, 29055}, {3699, 7249}, {3807, 40738}, {3948, 37134}, {3952, 32010}, {4033, 40432}, {4505, 40763}, {4562, 17493}, {4583, 18786}, {4595, 27447}, {4602, 40729}, {4835, 53658}, {7239, 40835}, {18047, 40099}, {30670, 33931}, {51614, 52135}
X(56242) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 56241}, {206, 3903}, {1015, 44187}, {4369, 850}, {8054, 7018}, {16592, 561}, {19576, 874}, {32664, 27805}, {34467, 7019}, {38996, 52651}, {39025, 4451}, {39031, 3570}, {39043, 27853}, {40589, 7260}, {40597, 1978}, {55053, 257}
X(56242) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4565, 32}, {4579, 172}, {53628, 1333}
X(56242) = lies on inconic with perspector X(4579)
X(56242) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(1580)}}, {{A, B, C, X(110), X(669)}}, {{A, B, C, X(171), X(51864)}}, {{A, B, C, X(385), X(9111)}}, {{A, B, C, X(875), X(4367)}}, {{A, B, C, X(1215), X(40148)}}, {{A, B, C, X(2162), X(8033)}}, {{A, B, C, X(3287), X(7252)}}
X(56242) = barycentric product X(i)*X(j) for these (i, j): {1, 20981}, {19, 22093}, {31, 4369}, {32, 4374}, {48, 54229}, {101, 53541}, {110, 16592}, {163, 53559}, {171, 649}, {172, 513}, {292, 4164}, {385, 875}, {514, 7122}, {663, 7175}, {667, 894}, {669, 8033}, {692, 7200}, {1015, 4579}, {1019, 20964}, {1106, 4529}, {1333, 2533}, {1407, 4477}, {1408, 4140}, {1415, 4459}, {1438, 53553}, {1459, 7119}, {1580, 3572}, {1691, 876}, {1909, 1919}, {1911, 4107}, {1920, 1980}, {1933, 4444}, {2086, 36066}, {2162, 24533}, {2295, 3733}, {2329, 43924}, {2330, 3669}, {3063, 7176}, {3287, 56}, {3805, 40746}, {3907, 604}, {3955, 6591}, {4128, 662}, {4367, 6}, {4922, 9456}, {7234, 81}, {14296, 1922}, {16737, 1918}, {17103, 798}, {17212, 213}, {18047, 3248}, {18111, 1964}, {18200, 42}, {18268, 804}, {18787, 8632}, {21725, 4556}, {21755, 99}, {21823, 52935}, {22373, 648}, {22383, 7009}, {27958, 51641}, {28607, 4774}, {37128, 5027}, {38266, 4504}, {39179, 40936}, {40608, 4565}, {40745, 788}, {43929, 4447}, {43931, 51319}, {45882, 985}
X(56242) = barycentric quotient X(i)/X(j) for these (i, j): {6, 56241}, {31, 27805}, {32, 3903}, {58, 7260}, {171, 1978}, {172, 668}, {513, 44187}, {649, 7018}, {667, 257}, {669, 52651}, {875, 1916}, {876, 18896}, {894, 6386}, {1333, 4594}, {1397, 37137}, {1580, 27853}, {1691, 874}, {1918, 56257}, {1919, 256}, {1933, 3570}, {1980, 893}, {2206, 4603}, {2295, 27808}, {2330, 646}, {2533, 27801}, {3063, 4451}, {3287, 3596}, {3572, 1934}, {3907, 28659}, {4107, 18891}, {4128, 1577}, {4164, 1921}, {4367, 76}, {4369, 561}, {4374, 1502}, {4579, 31625}, {5027, 3948}, {7122, 190}, {7175, 4572}, {7200, 40495}, {7234, 321}, {8033, 4609}, {9426, 40729}, {14296, 44169}, {14602, 3573}, {16592, 850}, {17103, 4602}, {17212, 6385}, {18111, 18833}, {18200, 310}, {18268, 18829}, {20964, 4033}, {20981, 75}, {21725, 52623}, {21755, 523}, {21823, 4036}, {22093, 304}, {22373, 525}, {22383, 7019}, {24533, 6382}, {40745, 46132}, {45882, 33931}, {51319, 36863}, {53541, 3261}, {53559, 20948}, {54229, 1969}

X(56242) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7252, 16874, 512}, {8635, 21758, 50521}, {8646, 22383, 788}


X(56243) = KP4(X(9)) OF X(8) AND X(8)

Barycentrics    a*(a-b-c)*(a^2-2*a*b+b^2+c^2)*(a^2+b^2-2*a*c+c^2) : :

X(56243) lies on these lines: {6, 3692}, {9, 30681}, {19, 346}, {55, 30618}, {57, 345}, {63, 4437}, {169, 49782}, {200, 2195}, {312, 673}, {644, 1040}, {1024, 3239}, {1334, 2339}, {2291, 52778}, {2299, 62265}, {2321, 39943}, {3699, 6169}, {3719, 39273}, {4513, 17597}, {7077, 14935}, {7347, 13458}, {7348, 13425}

X(56243) = isogonal conjugate of X(28017)
X(56243) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 28017}, {6, 7195}, {7, 16502}, {34, 7289}, {56, 4000}, {57, 614}, {81, 40961}, {109, 48398}, {222, 1851}, {269, 2082}, {278, 1473}, {279, 7083}, {479, 30706}, {497, 1407}, {552, 21813}, {604, 3673}, {608, 17170}, {738, 4319}, {1014, 16583}, {1040, 1435}, {1119, 7124}, {1214, 4211}, {1396, 17441}, {1398, 27509}, {1402, 16750}, {1408, 53510}, {1412, 3914}, {1416, 51400}, {1427, 5324}, {1434, 40934}, {1633, 3669}, {3732, 43924}, {4565, 48403}, {4573, 50490}, {4617, 17115}, {6554, 7023}, {7177, 40987}
X(56243) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4000}, {3, 28017}, {9, 7195}, {11, 48398}, {3161, 3673}, {5452, 614}, {6600, 2082}, {11517, 7289}, {24771, 497}, {40586, 40961}, {40599, 3914}, {40605, 16750}, {40609, 51400}, {55064, 48403}
X(56243) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30701, 62262}
X(56243) = X(i)-cross conjugate of X(j) for these {i, j}: {9, 7131}, {521, 644}, {4105, 3699}
X(56243) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3744)}}, {{A, B, C, X(2), X(1261)}}, {{A, B, C, X(6), X(9)}}, {{A, B, C, X(8), X(1280)}}, {{A, B, C, X(21), X(6995)}}, {{A, B, C, X(33), X(4876)}}, {{A, B, C, X(63), X(1252)}}, {{A, B, C, X(78), X(10327)}}, {{A, B, C, X(92), X(34525)}}, {{A, B, C, X(200), X(312)}}, {{A, B, C, X(271), X(17784)}}, {{A, B, C, X(345), X(346)}}, {{A, B, C, X(521), X(1040)}}, {{A, B, C, X(1260), X(3719)}}, {{A, B, C, X(2287), X(18141)}}, {{A, B, C, X(3501), X(7079)}}, {{A, B, C, X(3610), X(3694)}}, {{A, B, C, X(3749), X(17597)}}, {{A, B, C, X(3886), X(3996)}}, {{A, B, C, X(4105), X(6168)}}, {{A, B, C, X(4183), X(37280)}}, {{A, B, C, X(4997), X(19605)}}, {{A, B, C, X(6557), X(41798)}}, {{A, B, C, X(7123), X(7131)}}, {{A, B, C, X(8817), X(62262)}}, {{A, B, C, X(17594), X(37540)}}
X(56243) = barycentric product X(i)*X(j) for these (i, j): {200, 8817}, {312, 7123}, {346, 7131}, {522, 52778}, {1037, 341}, {1041, 1265}, {2321, 40403}, {3596, 7084}, {3694, 40411}, {4163, 8269}, {14935, 7035}, {30701, 9}, {30705, 728}, {42384, 652}, {48070, 644}, {54967, 663}, {62262, 8}
X(56243) = barycentric quotient X(i)/X(j) for these (i, j): {1, 7195}, {6, 28017}, {8, 3673}, {9, 4000}, {33, 1851}, {41, 16502}, {42, 40961}, {55, 614}, {78, 17170}, {200, 497}, {210, 3914}, {212, 1473}, {219, 7289}, {220, 2082}, {333, 16750}, {480, 4319}, {644, 3732}, {650, 48398}, {728, 6554}, {1037, 269}, {1041, 1119}, {1253, 7083}, {1260, 1040}, {1334, 16583}, {1802, 7124}, {2299, 4211}, {2318, 17441}, {2321, 53510}, {2328, 5324}, {3501, 28110}, {3692, 27509}, {3693, 51400}, {3694, 18589}, {3710, 20235}, {3939, 1633}, {4041, 48403}, {4105, 17115}, {6602, 30706}, {7071, 40987}, {7084, 56}, {7123, 57}, {7131, 279}, {8269, 4626}, {8611, 21107}, {8817, 1088}, {14935, 244}, {17742, 41786}, {30701, 85}, {30705, 23062}, {40403, 1434}, {42384, 46404}, {48070, 24002}, {52370, 23620}, {52778, 664}, {54967, 4572}, {62262, 7}, {55337, 41785}


X(56244) = KP4(X(9)) OF X(8) AND X(142)

Barycentrics    a*(a-b-c)*(a^2+b^2-b*c+c^2-2*a*(b+c)) : :

X(56244) lies on these lines: {8, 9}, {21, 7259}, {45, 3721}, {63, 29627}, {75, 32088}, {85, 17336}, {190, 20880}, {220, 4511}, {644, 1212}, {1445, 32098}, {1759, 3730}, {2348, 3871}, {2975, 41391}, {3177, 28961}, {3219, 3912}, {3241, 16572}, {3294, 4115}, {3693, 4420}, {3731, 54392}, {3872, 4936}, {3957, 17745}, {4054, 30578}, {4384, 27065}, {5526, 34772}, {6559, 52344}, {6604, 37787}, {8545, 32086}, {10025, 28742}, {10039, 26793}, {12514, 39570}, {16284, 32100}, {17263, 32007}, {17350, 27253}, {24635, 28982}, {25242, 43984}, {27006, 40534}, {27529, 40869}, {30806, 32024}, {49466, 52354}

X(56244) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 42326}
X(56244) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 42326}, {25006, 21617}
X(56244) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17263, 3957}
X(56244) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(3957)}}, {{A, B, C, X(9), X(17745)}}, {{A, B, C, X(21), X(5853)}}, {{A, B, C, X(346), X(17263)}}, {{A, B, C, X(390), X(62286)}}, {{A, B, C, X(3717), X(52344)}}, {{A, B, C, X(24393), X(32635)}}
X(56244) = barycentric product X(i)*X(j) for these (i, j): {200, 32007}, {3699, 42325}, {3957, 8}, {17263, 9}, {17745, 312}
X(56244) = barycentric quotient X(i)/X(j) for these (i, j): {9, 42326}, {3957, 7}, {17263, 85}, {17745, 57}, {32007, 1088}, {42325, 3676}
X(56244) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 1334, 33950}, {9, 55337, 8}, {190, 32008, 20880}, {644, 1212, 4861}


X(56245) = KP4(X(9)) OF X(21) AND X(21)

Barycentrics    a*(a^2+b^2)*(a-b-c)*(a^2+c^2) : :

X(56245) lies on these lines: {9, 4123}, {37, 82}, {38, 54328}, {41, 312}, {78, 56207}, {83, 226}, {101, 32942}, {210, 30618}, {497, 18101}, {643, 40972}, {1176, 1903}, {1826, 2201}, {2185, 36800}, {2250, 4628}, {2321, 3684}, {2329, 4514}, {3112, 6654}, {3573, 52651}, {4251, 32926}, {4577, 35144}, {16788, 32773}, {18711, 27067}, {25430, 52376}, {27475, 52394}, {35354, 55240}

X(56245) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 1401}, {6, 3665}, {7, 39}, {38, 57}, {56, 141}, {65, 16696}, {73, 17171}, {77, 17442}, {85, 1964}, {109, 16892}, {181, 61407}, {222, 427}, {226, 17187}, {241, 46149}, {251, 41285}, {269, 33299}, {273, 4020}, {278, 3917}, {279, 3688}, {331, 20775}, {348, 1843}, {479, 61316}, {514, 46153}, {603, 20883}, {604, 1930}, {608, 3933}, {651, 2530}, {664, 21123}, {826, 4565}, {905, 46152}, {1014, 3954}, {1088, 40972}, {1235, 52411}, {1357, 61406}, {1397, 8024}, {1400, 16887}, {1402, 16703}, {1403, 62541}, {1407, 3703}, {1409, 16747}, {1412, 15523}, {1414, 8061}, {1415, 48084}, {1431, 16720}, {1434, 21035}, {1461, 48278}, {1634, 7178}, {1804, 27376}, {1813, 21108}, {1923, 20567}, {2084, 4625}, {3005, 4573}, {3051, 6063}, {3669, 4553}, {3676, 46148}, {3911, 46150}, {4554, 50521}, {4568, 43924}, {4576, 7180}, {4617, 58335}, {4884, 40151}, {6357, 46147}, {7181, 46154}, {7198, 52554}, {7203, 35309}, {7316, 7813}, {16609, 46159}, {17083, 21355}, {17094, 35325}, {18593, 46160}, {18627, 61451}, {20021, 43034}, {21814, 57785}, {27369, 57918}, {30725, 46162}, {34050, 46359}, {35333, 53544}, {41280, 52568}, {41283, 41331}, {43039, 46158}, {43042, 46163}, {43045, 46164}, {51641, 55239}
X(56245) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 141}, {9, 3665}, {11, 16892}, {1146, 48084}, {3161, 1930}, {5452, 38}, {6600, 33299}, {6741, 62418}, {7952, 20883}, {24771, 3703}, {32664, 1401}, {35508, 48278}, {38991, 2530}, {39025, 21123}, {40582, 16887}, {40585, 41285}, {40599, 15523}, {40602, 16696}, {40605, 16703}, {40608, 8061}, {41884, 85}, {55064, 826}, {62452, 4625}, {62585, 8024}, {62647, 3933}
X(56245) = X(i)-Ceva conjugate of X(j) for these {i, j}: {83, 82}
X(56245) = X(i)-cross conjugate of X(j) for these {i, j}: {48307, 644}
X(56245) = pole of line {2330, 33950} with respect to the Feuerbach hyperbola
X(56245) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3744)}}, {{A, B, C, X(8), X(3920)}}, {{A, B, C, X(9), X(33)}}, {{A, B, C, X(21), X(1621)}}, {{A, B, C, X(29), X(37325)}}, {{A, B, C, X(41), X(2205)}}, {{A, B, C, X(55), X(1429)}}, {{A, B, C, X(63), X(34525)}}, {{A, B, C, X(81), X(1261)}}, {{A, B, C, X(82), X(32085)}}, {{A, B, C, X(200), X(2339)}}, {{A, B, C, X(212), X(60726)}}, {{A, B, C, X(220), X(41239)}}, {{A, B, C, X(284), X(2220)}}, {{A, B, C, X(294), X(333)}}, {{A, B, C, X(318), X(4123)}}, {{A, B, C, X(346), X(2326)}}, {{A, B, C, X(497), X(34919)}}, {{A, B, C, X(643), X(3573)}}, {{A, B, C, X(765), X(7033)}}, {{A, B, C, X(1252), X(2167)}}, {{A, B, C, X(2214), X(56279)}}, {{A, B, C, X(2268), X(3217)}}, {{A, B, C, X(2298), X(52549)}}, {{A, B, C, X(2330), X(51323)}}, {{A, B, C, X(2363), X(56202)}}, {{A, B, C, X(3961), X(60664)}}, {{A, B, C, X(3974), X(4886)}}, {{A, B, C, X(4183), X(6559)}}, {{A, B, C, X(4514), X(43749)}}, {{A, B, C, X(4564), X(7123)}}, {{A, B, C, X(4876), X(7073)}}, {{A, B, C, X(5377), X(40419)}}, {{A, B, C, X(18097), X(18098)}}, {{A, B, C, X(21817), X(33299)}}, {{A, B, C, X(23617), X(38869)}}, {{A, B, C, X(34920), X(44040)}}, {{A, B, C, X(56102), X(56203)}}
X(56245) = barycentric product X(i)*X(j) for these (i, j):, {8, 82}, {31, 62539}, {83, 9}, {210, 52394}, {212, 46104}, {251, 312}, {281, 34055}, {284, 56186}, {308, 41}, {1176, 318}, {1799, 33}, {2185, 61405}, {2194, 56251}, {2319, 62537}, {2321, 52376}, {3112, 55}, {3596, 46289}, {3700, 4599}, {3709, 4593}, {4041, 4577}, {4086, 827}, {4391, 4628}, {10566, 644}, {15628, 3405}, {16277, 4123}, {17500, 44687}, {18070, 5546}, {18082, 21}, {18086, 23617}, {18087, 6605}, {18097, 2287}, {18098, 333}, {18101, 765}, {18105, 7257}, {18108, 3699}, {18833, 2175}, {28659, 46288}, {30730, 39179}, {32085, 78}, {33299, 52395}, {36081, 3716}, {39276, 3985}, {39287, 7069}, {40016, 9447}, {42037, 56207}, {42396, 8611}, {55240, 645}, {58784, 643}
X(56245) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3665}, {8, 1930}, {9, 141}, {21, 16887}, {29, 16747}, {31, 1401}, {33, 427}, {38, 41285}, {41, 39}, {55, 38}, {78, 3933}, {82, 7}, {83, 85}, {200, 3703}, {210, 15523}, {212, 3917}, {220, 33299}, {251, 57}, {281, 20883}, {284, 16696}, {308, 20567}, {312, 8024}, {318, 1235}, {333, 16703}, {522, 48084}, {607, 17442}, {643, 4576}, {644, 4568}, {645, 55239}, {650, 16892}, {663, 2530}, {689, 55213}, {692, 46153}, {827, 1414}, {1172, 17171}, {1176, 77}, {1253, 3688}, {1334, 3954}, {1799, 7182}, {2175, 1964}, {2185, 61407}, {2194, 17187}, {2195, 46149}, {2212, 1843}, {2319, 62541}, {2329, 16720}, {3063, 21123}, {3112, 6063}, {3158, 4884}, {3700, 62418}, {3709, 8061}, {3900, 48278}, {3939, 4553}, {4030, 20898}, {4041, 826}, {4086, 23285}, {4105, 58335}, {4577, 4625}, {4599, 4573}, {4628, 651}, {6602, 61316}, {8611, 2525}, {8750, 46152}, {9447, 3051}, {9448, 1923}, {10547, 603}, {10566, 24002}, {14827, 40972}, {18082, 1441}, {18086, 26563}, {18087, 59181}, {18097, 1446}, {18098, 226}, {18101, 1111}, {18105, 4017}, {18108, 3676}, {18344, 21108}, {18833, 41283}, {27067, 45196}, {28659, 52568}, {28724, 7183}, {32085, 273}, {33299, 7794}, {33950, 17192}, {34055, 348}, {34072, 4565}, {38834, 1424}, {39179, 17096}, {40972, 8041}, {44694, 51371}, {46104, 57787}, {46288, 604}, {46289, 56}, {51508, 1394}, {52376, 1434}, {52394, 57785}, {52425, 4020}, {52927, 35333}, {55240, 7178}, {56186, 349}, {58784, 4077}, {61383, 1395}, {61405, 6358}, {62537, 30545}, {62539, 561}
X(56245) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {251, 18098, 82}


X(56246) = KP4(X(10)) OF X(2) AND X(8)

Barycentrics    (b+c)*(a^4+b^4-b^2*c^2-a^2*(2*b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(56246) lies on these lines: {2, 23112}, {10, 275}, {42, 42300}, {71, 8795}, {95, 306}, {190, 46138}, {313, 34385}, {333, 39277}, {3219, 4391}, {3682, 37872}, {3695, 17751}, {3936, 26942}, {19811, 34384}, {21011, 39286}, {52369, 56189}

X(56246) = isotomic conjugate of X(17167)
X(56246) = trilinear pole of line {2616, 4064}
X(56246) = X(i)-isoconjugate-of-X(j) for these {i, j}: {5, 1333}, {6, 18180}, {19, 44709}, {25, 16697}, {28, 216}, {31, 17167}, {51, 81}, {53, 1437}, {58, 1953}, {86, 2179}, {163, 21102}, {217, 286}, {274, 40981}, {284, 1393}, {343, 2203}, {513, 1625}, {593, 21807}, {649, 2617}, {667, 14570}, {849, 21011}, {905, 52604}, {1172, 30493}, {1396, 44707}, {1412, 7069}, {1444, 3199}, {1474, 44706}, {1790, 2181}, {2206, 14213}, {2299, 44708}, {5317, 5562}, {6591, 23181}, {14399, 36831}, {14569, 18604}, {17434, 52920}, {18108, 35319}, {22383, 35360}, {44715, 52955}, {52935, 55219}
X(56246) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17167}, {6, 44709}, {9, 18180}, {10, 1953}, {37, 5}, {115, 21102}, {226, 44708}, {4075, 21011}, {5375, 2617}, {6505, 16697}, {6631, 14570}, {39026, 1625}, {40586, 51}, {40590, 1393}, {40591, 216}, {40599, 7069}, {40600, 2179}, {40603, 14213}, {51574, 44706}, {55065, 12077}
X(56246) = X(i)-cross conjugate of X(j) for these {i, j}: {21012, 10}, {24082, 4632}, {52623, 190}
X(56246) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11109)}}, {{A, B, C, X(4), X(7573)}}, {{A, B, C, X(9), X(52561)}}, {{A, B, C, X(10), X(306)}}, {{A, B, C, X(27), X(65)}}, {{A, B, C, X(37), X(19811)}}, {{A, B, C, X(71), X(4055)}}, {{A, B, C, X(72), X(3074)}}, {{A, B, C, X(81), X(18097)}}, {{A, B, C, X(92), X(38955)}}, {{A, B, C, X(95), X(275)}}, {{A, B, C, X(190), X(3219)}}, {{A, B, C, X(226), X(34234)}}, {{A, B, C, X(321), X(333)}}, {{A, B, C, X(469), X(3597)}}, {{A, B, C, X(1441), X(40417)}}, {{A, B, C, X(1751), X(4674)}}, {{A, B, C, X(2167), X(2190)}}, {{A, B, C, X(2322), X(3694)}}, {{A, B, C, X(17277), X(32863)}}, {{A, B, C, X(18082), X(40394)}}, {{A, B, C, X(19874), X(34255)}}, {{A, B, C, X(21011), X(21012)}}, {{A, B, C, X(30588), X(40420)}}
X(56246) = barycentric product X(i)*X(j) for these (i, j): {1, 56189}, {10, 95}, {275, 306}, {276, 71}, {313, 54}, {1441, 44687}, {1826, 34386}, {1978, 2623}, {2148, 27801}, {2167, 321}, {2616, 668}, {3682, 8795}, {4079, 55218}, {4600, 8901}, {15412, 190}, {15523, 39287}, {18315, 52623}, {18831, 4064}, {20336, 2190}, {21012, 31617}, {21035, 41488}, {34384, 42}, {34388, 35196}, {39182, 4568}, {40071, 8882}, {40440, 72}, {52396, 8884}
X(56246) = barycentric quotient X(i)/X(j) for these (i, j): {1, 18180}, {2, 17167}, {3, 44709}, {10, 5}, {37, 1953}, {42, 51}, {54, 58}, {63, 16697}, {65, 1393}, {71, 216}, {72, 44706}, {73, 30493}, {95, 86}, {97, 1790}, {100, 2617}, {101, 1625}, {190, 14570}, {210, 7069}, {213, 2179}, {275, 27}, {276, 44129}, {306, 343}, {313, 311}, {321, 14213}, {523, 21102}, {594, 21011}, {756, 21807}, {1214, 44708}, {1331, 23181}, {1824, 2181}, {1826, 53}, {1897, 35360}, {1918, 40981}, {2148, 1333}, {2167, 81}, {2169, 1437}, {2190, 28}, {2200, 217}, {2318, 44707}, {2333, 3199}, {2616, 513}, {2623, 649}, {3678, 35194}, {3682, 5562}, {4024, 12077}, {4028, 41588}, {4036, 2618}, {4055, 418}, {4062, 41586}, {4064, 6368}, {4079, 55219}, {8750, 52604}, {8804, 42459}, {8882, 1474}, {8884, 8747}, {8901, 3120}, {15412, 514}, {15414, 30805}, {16030, 17187}, {16813, 52919}, {18082, 17500}, {18315, 4556}, {20336, 18695}, {21011, 36412}, {21012, 233}, {21016, 27371}, {21043, 41221}, {21859, 35307}, {23286, 1459}, {34384, 310}, {34386, 17206}, {35196, 60}, {38808, 44698}, {39182, 10566}, {39287, 52394}, {40071, 28706}, {40440, 286}, {41267, 27374}, {43768, 18653}, {44687, 21}, {46148, 35319}, {52320, 52321}, {52369, 42698}, {52396, 52347}, {52623, 18314}, {53012, 8798}, {53576, 4466}, {54034, 2206}, {55218, 52612}, {55230, 15451}, {56189, 75}


X(56247) = KP4(X(10)) OF X(2) AND X(42)

Barycentrics    (-2*a*b^2*c+b^2*c^2+a^2*(b^2+c^2))*(-2*a*b*c^2+b^2*c^2+a^2*(b^2+c^2)) : :

X(56247) lies on these lines: {7, 26752}, {8, 39746}, {75, 31276}, {86, 26042}, {1575, 6384}, {1740, 25311}, {17350, 20979}, {17792, 27498}, {21264, 56212}, {26048, 39721}, {27044, 27494}

X(56247) = isogonal conjugate of X(23538)
X(56247) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23538}, {6, 18194}, {28, 22439}, {56, 39250}, {58, 21345}, {81, 23652}, {1333, 21257}, {2162, 14823}, {2206, 21435}
X(56247) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 39250}, {3, 23538}, {9, 18194}, {10, 21345}, {37, 21257}, {40586, 23652}, {40591, 22439}, {40603, 21435}
X(56247) = X(i)-cross conjugate of X(j) for these {i, j}: {23886, 190}, {27091, 2}, {50516, 668}
X(56247) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32033)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(6), X(192)}}, {{A, B, C, X(8), X(26752)}}, {{A, B, C, X(43), X(1740)}}, {{A, B, C, X(190), X(17350)}}, {{A, B, C, X(264), X(40098)}}, {{A, B, C, X(274), X(31276)}}, {{A, B, C, X(291), X(2998)}}, {{A, B, C, X(308), X(330)}}, {{A, B, C, X(321), X(26042)}}, {{A, B, C, X(749), X(38262)}}, {{A, B, C, X(1221), X(52654)}}, {{A, B, C, X(1376), X(17792)}}, {{A, B, C, X(1581), X(30701)}}, {{A, B, C, X(1964), X(30650)}}, {{A, B, C, X(2186), X(54123)}}, {{A, B, C, X(2221), X(3210)}}, {{A, B, C, X(3596), X(9229)}}, {{A, B, C, X(4000), X(33891)}}, {{A, B, C, X(4360), X(4393)}}, {{A, B, C, X(4492), X(39968)}}, {{A, B, C, X(4699), X(21264)}}, {{A, B, C, X(9295), X(9309)}}, {{A, B, C, X(13476), X(36957)}}, {{A, B, C, X(17316), X(26048)}}, {{A, B, C, X(17490), X(28358)}}, {{A, B, C, X(17743), X(17786)}}, {{A, B, C, X(23051), X(40738)}}, {{A, B, C, X(31360), X(40099)}}, {{A, B, C, X(32020), X(39742)}}, {{A, B, C, X(34248), X(51973)}}, {{A, B, C, X(39738), X(39983)}}
X(56247) = barycentric quotient X(i)/X(j) for these (i, j): {1, 18194}, {6, 23538}, {9, 39250}, {10, 21257}, {37, 21345}, {42, 23652}, {43, 14823}, {71, 22439}, {321, 21435}


X(56248) = KP4(X(10)) OF X(2) AND X(100)

Barycentrics    (a-b)*(a-c)*(a^2*(b-c)-b^2*c+c^3+a*b*(b+c))*(-b^3+a^2*(b-c)+b*c^2-a*c*(b+c)) : :

X(56248) lies on these lines: {100, 46541}, {190, 47793}, {3888, 48243}, {4552, 17906}, {4553, 48204}, {14543, 21362}, {24004, 25268}, {26685, 27136}, {36872, 37828}, {44040, 52746}

X(56248) = isotomic conjugate of X(47796)
X(56248) = trilinear pole of line {72, 950}
X(56248) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 48281}, {31, 47796}, {57, 48387}, {108, 39006}, {404, 649}, {514, 44085}, {604, 20293}, {667, 32939}, {849, 21721}, {1415, 44311}, {1919, 44139}
X(56248) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 47796}, {9, 48281}, {1146, 44311}, {3161, 20293}, {4075, 21721}, {5375, 404}, {5452, 48387}, {6631, 32939}, {9296, 44139}, {38983, 39006}
X(56248) = X(i)-cross conjugate of X(j) for these {i, j}: {652, 8}, {22071, 59}, {25078, 765}, {42312, 7}, {47794, 2}
X(56248) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(190)}}, {{A, B, C, X(37), X(40519)}}, {{A, B, C, X(100), X(1332)}}, {{A, B, C, X(281), X(3939)}}, {{A, B, C, X(345), X(1813)}}, {{A, B, C, X(514), X(47793)}}, {{A, B, C, X(644), X(40117)}}, {{A, B, C, X(645), X(655)}}, {{A, B, C, X(646), X(651)}}, {{A, B, C, X(648), X(51562)}}, {{A, B, C, X(650), X(40523)}}, {{A, B, C, X(653), X(3699)}}, {{A, B, C, X(662), X(36804)}}, {{A, B, C, X(666), X(38340)}}, {{A, B, C, X(789), X(42363)}}, {{A, B, C, X(941), X(34071)}}, {{A, B, C, X(1783), X(30730)}}, {{A, B, C, X(1897), X(42362)}}, {{A, B, C, X(2406), X(28826)}}, {{A, B, C, X(3952), X(37218)}}, {{A, B, C, X(4033), X(8050)}}, {{A, B, C, X(4554), X(4606)}}, {{A, B, C, X(4566), X(51566)}}, {{A, B, C, X(4572), X(5936)}}, {{A, B, C, X(4612), X(31628)}}, {{A, B, C, X(4627), X(43069)}}, {{A, B, C, X(8709), X(54458)}}, {{A, B, C, X(9058), X(36099)}}, {{A, B, C, X(9067), X(54982)}}, {{A, B, C, X(15455), X(37212)}}, {{A, B, C, X(17279), X(42720)}}, {{A, B, C, X(47794), X(47796)}}
X(56248) = barycentric product X(i)*X(j) for these (i, j): {40518, 7017}, {44040, 664}
X(56248) = barycentric quotient X(i)/X(j) for these (i, j): {1, 48281}, {2, 47796}, {8, 20293}, {55, 48387}, {100, 404}, {190, 32939}, {522, 44311}, {594, 21721}, {652, 39006}, {668, 44139}, {692, 44085}, {40518, 222}, {44040, 522}, {52609, 42705}


X(56249) = KP4(X(10)) OF X(75) AND X(1)

Barycentrics    b*c*(b+c)*(a^2-b*c+a*(b+c)) : :

X(56249) lies on these lines: {2, 18040}, {8, 18147}, {9, 29395}, {10, 75}, {37, 4033}, {42, 17393}, {45, 29712}, {63, 29551}, {71, 17336}, {86, 668}, {142, 18150}, {190, 29705}, {192, 21858}, {239, 18046}, {274, 1268}, {306, 5233}, {308, 39717}, {310, 31341}, {312, 48630}, {314, 32025}, {319, 17751}, {321, 6539}, {322, 18738}, {334, 40004}, {344, 27108}, {350, 4651}, {391, 41316}, {594, 3948}, {756, 28593}, {894, 29388}, {1100, 25298}, {1213, 3963}, {1654, 17790}, {1698, 18148}, {1909, 16709}, {1964, 25120}, {2322, 6335}, {3263, 31117}, {3293, 4360}, {3617, 44140}, {3661, 18137}, {3701, 42714}, {3728, 21238}, {3739, 18143}, {3759, 41233}, {3765, 17303}, {3766, 21714}, {3770, 28604}, {3834, 30044}, {3875, 31855}, {3952, 21865}, {3975, 17289}, {3992, 18697}, {4022, 20340}, {4036, 20954}, {4089, 33943}, {4103, 22012}, {4110, 4664}, {4150, 30854}, {4358, 17229}, {4359, 18136}, {4361, 29764}, {4384, 18044}, {4687, 17786}, {4699, 18144}, {4710, 50298}, {4751, 20917}, {6384, 28650}, {6542, 25660}, {15523, 20932}, {16696, 27102}, {16815, 18073}, {16828, 31997}, {16832, 18065}, {17148, 46838}, {17227, 30090}, {17228, 20923}, {17231, 29982}, {17233, 30830}, {17237, 20892}, {17239, 20891}, {17256, 17787}, {17258, 40875}, {17260, 29396}, {17261, 24004}, {17322, 26115}, {17394, 24524}, {17445, 17793}, {17788, 20654}, {18057, 33931}, {18082, 39044}, {18135, 42696}, {18146, 50088}, {18151, 21011}, {18739, 19804}, {20336, 52353}, {20646, 20659}, {20711, 23498}, {20930, 30758}, {20944, 21729}, {20952, 21720}, {20953, 21055}, {21591, 21689}, {21611, 21721}, {21612, 21722}, {22172, 41683}, {22343, 24487}, {24530, 26048}, {25107, 27633}, {25255, 52609}, {26042, 41838}, {27792, 31993}, {28654, 41809}, {30829, 37651}, {34021, 55239}, {39996, 50116}, {44153, 49524}

X(56249) = isotomic conjugate of X(39949)
X(56249) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 39949}, {32, 39747}, {58, 40148}, {596, 2206}, {667, 34594}, {1333, 39798}, {1576, 40086}, {1919, 37205}, {2194, 20615}, {3733, 40519}
X(56249) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39949}, {10, 40148}, {37, 39798}, {594, 37}, {1214, 20615}, {4359, 1125}, {4858, 40086}, {6376, 39747}, {6631, 34594}, {9296, 37205}, {21827, 16604}, {40603, 596}
X(56249) = X(i)-Ceva conjugate of X(j) for these {i, j}: {274, 321}, {308, 4043}, {668, 20295}, {1268, 75}, {18140, 3995}
X(56249) = X(i)-cross conjugate of X(j) for these {i, j}: {4075, 3995}, {4132, 4033}
X(56249) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(18133)}}, {{A, B, C, X(10), X(3293)}}, {{A, B, C, X(37), X(726)}}, {{A, B, C, X(75), X(3995)}}, {{A, B, C, X(76), X(18140)}}, {{A, B, C, X(86), X(20295)}}, {{A, B, C, X(256), X(4057)}}, {{A, B, C, X(310), X(30594)}}, {{A, B, C, X(313), X(40039)}}, {{A, B, C, X(321), X(1269)}}, {{A, B, C, X(595), X(31359)}}, {{A, B, C, X(756), X(21035)}}, {{A, B, C, X(798), X(22201)}}, {{A, B, C, X(1441), X(3264)}}, {{A, B, C, X(1921), X(20949)}}, {{A, B, C, X(3159), X(39949)}}, {{A, B, C, X(3971), X(34832)}}, {{A, B, C, X(4129), X(6381)}}, {{A, B, C, X(4222), X(16062)}}, {{A, B, C, X(5224), X(32911)}}, {{A, B, C, X(6376), X(28650)}}, {{A, B, C, X(16606), X(25121)}}, {{A, B, C, X(41683), X(49493)}}, {{A, B, C, X(42027), X(50117)}}
X(56249) = barycentric product X(i)*X(j) for these (i, j): {10, 18140}, {37, 40087}, {274, 4075}, {313, 32911}, {321, 4360}, {349, 3871}, {1978, 4132}, {3293, 76}, {3948, 40093}, {3995, 75}, {4129, 668}, {20295, 4033}, {20949, 3952}, {27801, 595}, {27808, 4063}, {32018, 4065}, {40071, 4222}
X(56249) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39949}, {10, 39798}, {37, 40148}, {75, 39747}, {190, 34594}, {226, 20615}, {313, 40013}, {321, 596}, {595, 1333}, {668, 37205}, {1018, 40519}, {1089, 40085}, {1577, 40086}, {2220, 2206}, {3293, 6}, {3871, 284}, {3995, 1}, {4033, 8050}, {4063, 3733}, {4065, 1100}, {4075, 37}, {4129, 513}, {4132, 649}, {4222, 1474}, {4360, 81}, {18140, 86}, {20295, 1019}, {20949, 7192}, {21208, 16726}, {27044, 18792}, {29398, 5253}, {32911, 58}, {40087, 274}, {40093, 37128}, {47793, 3737}, {48307, 7252}
X(56249) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30473, 18040}, {10, 313, 75}, {37, 21900, 22201}, {75, 18133, 39995}, {75, 6376, 18133}, {594, 3948, 4043}, {1909, 28653, 16709}, {3739, 52043, 18143}, {4967, 6381, 1269}, {21022, 21699, 10}


X(56250) = KP4(X(10)) OF X(75) AND X(43)

Barycentrics    b*c*(b+c)*(-(b^2*c^2)+a^3*(b+c)+a^2*(b^2-b*c+c^2)) : :

X(56250) lies on these lines: {1, 18148}, {10, 75}, {42, 17149}, {65, 20716}, {334, 51870}, {350, 17152}, {668, 3293}, {714, 7148}, {1086, 30045}, {1237, 2292}, {1909, 16705}, {1918, 52138}, {3159, 27808}, {3210, 40598}, {3501, 29423}, {3666, 18136}, {3735, 18050}, {3948, 4415}, {3952, 25307}, {4033, 20691}, {4043, 21024}, {4424, 27801}, {4485, 37598}, {4642, 35544}, {4651, 25280}, {6384, 43223}, {18046, 41240}, {18057, 22275}, {18135, 21281}, {18140, 56191}, {18739, 20917}, {19998, 25278}, {20255, 29983}, {21858, 30473}, {21884, 25614}, {25303, 29822}, {25350, 30054}, {29454, 49997}, {29511, 37555}, {31008, 40418}, {34020, 34063}

X(56250) = X(i)-Dao conjugate of X(j) for these {i, j}: {6378, 16606}, {20891, 3741}, {21025, 17448}
X(56250) = X(i)-Ceva conjugate of X(j) for these {i, j}: {668, 25300}, {31008, 37}, {34020, 56185}, {40418, 75}
X(56250) = intersection, other than A, B, C, of circumconics {{A, B, C, X(65), X(726)}}, {{A, B, C, X(75), X(34063)}}, {{A, B, C, X(76), X(34020)}}, {{A, B, C, X(4080), X(20943)}}, {{A, B, C, X(6381), X(40515)}}, {{A, B, C, X(25300), X(33296)}}
X(56250) = barycentric product X(i)*X(j) for these (i, j): {10, 34020}, {321, 34063}, {34086, 37}, {56185, 75}
X(56250) = barycentric quotient X(i)/X(j) for these (i, j): {25300, 18197}, {25302, 18206}, {34020, 86}, {34063, 81}, {34086, 274}, {56185, 1}
X(56250) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 6376, 56249}


X(56251) = KP4(X(10)) OF X(75) AND X(75)

Barycentrics    b^2*(a^2+b^2)*c^2*(b+c)*(a^2+c^2) : :

X(56251) lies on these lines: {10, 18833}, {42, 308}, {76, 17141}, {83, 41233}, {181, 34388}, {291, 310}, {334, 16891}, {561, 18057}, {689, 28482}, {693, 1920}, {756, 28593}, {1240, 52394}, {1500, 3948}, {1909, 17176}, {1978, 7018}, {2333, 46104}, {2887, 18090}, {3963, 21327}, {4377, 21345}, {6187, 20566}, {7148, 16889}, {8024, 31111}, {17027, 18089}, {17751, 20022}, {17990, 17995}, {28595, 35532}, {32781, 35539}

X(56251) = isotomic conjugate of X(17187)
X(56251) = trilinear pole of line {4079, 4129}
X(56251) = X(i)-isoconjugate-of-X(j) for these {i, j}: {28, 20775}, {31, 17187}, {32, 16696}, {38, 2206}, {39, 1333}, {58, 1964}, {81, 3051}, {86, 1923}, {110, 50521}, {163, 21123}, {274, 41331}, {560, 16887}, {593, 21814}, {667, 1634}, {688, 52935}, {757, 41267}, {849, 21035}, {1401, 2194}, {1408, 3688}, {1412, 40972}, {1437, 1843}, {1444, 27369}, {1474, 4020}, {1501, 16703}, {1576, 2530}, {1980, 4576}, {2084, 4556}, {2203, 3917}, {2210, 46159}, {4623, 9494}, {9247, 17171}, {14574, 48084}, {14575, 16747}, {16702, 41272}, {16947, 33299}, {22383, 35325}, {46160, 52434}
X(56251) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17187}, {10, 1964}, {37, 39}, {115, 21123}, {244, 50521}, {1214, 1401}, {4075, 21035}, {4858, 2530}, {6374, 16887}, {6376, 16696}, {6631, 1634}, {36901, 16892}, {40586, 3051}, {40591, 20775}, {40599, 40972}, {40600, 1923}, {40603, 38}, {40607, 41267}, {41884, 58}, {51574, 4020}, {55065, 3005}
X(56251) = X(i)-Ceva conjugate of X(j) for these {i, j}: {308, 56186}
X(56251) = X(i)-cross conjugate of X(j) for these {i, j}: {10, 18082}, {4024, 1978}, {4151, 4033}, {21022, 10}
X(56251) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37678)}}, {{A, B, C, X(10), X(42)}}, {{A, B, C, X(37), X(28593)}}, {{A, B, C, X(75), X(3995)}}, {{A, B, C, X(76), X(18152)}}, {{A, B, C, X(86), X(27041)}}, {{A, B, C, X(226), X(31002)}}, {{A, B, C, X(308), X(40016)}}, {{A, B, C, X(310), X(321)}}, {{A, B, C, X(313), X(20566)}}, {{A, B, C, X(661), X(43687)}}, {{A, B, C, X(1920), X(1978)}}, {{A, B, C, X(2296), X(18832)}}, {{A, B, C, X(3112), X(18833)}}, {{A, B, C, X(4024), X(4039)}}, {{A, B, C, X(4080), X(6384)}}, {{A, B, C, X(7034), X(32926)}}, {{A, B, C, X(18097), X(27067)}}, {{A, B, C, X(21022), X(21035)}}
X(56251) = barycentric product X(i)*X(j) for these (i, j): {10, 308}, {190, 52618}, {306, 46104}, {313, 83}, {1240, 27067}, {3112, 321}, {4024, 689}, {4036, 4593}, {4079, 42371}, {4577, 52623}, {10566, 27808}, {16894, 3115}, {18070, 668}, {18082, 76}, {18097, 3596}, {18098, 561}, {18099, 44187}, {18833, 37}, {21011, 41488}, {21022, 31622}, {27801, 82}, {28654, 52394}, {32085, 40071}, {37204, 4705}, {40016, 42}, {44173, 4628}, {55240, 6386}, {56186, 75}
X(56251) = barycentric quotient X(i)/X(j) for these (i, j): {2, 17187}, {10, 39}, {37, 1964}, {42, 3051}, {71, 20775}, {72, 4020}, {75, 16696}, {76, 16887}, {82, 1333}, {83, 58}, {190, 1634}, {210, 40972}, {213, 1923}, {226, 1401}, {251, 2206}, {264, 17171}, {306, 3917}, {308, 86}, {313, 141}, {321, 38}, {335, 46159}, {349, 3665}, {523, 21123}, {561, 16703}, {594, 21035}, {661, 50521}, {689, 4610}, {756, 21814}, {850, 16892}, {1089, 3954}, {1237, 16720}, {1500, 41267}, {1577, 2530}, {1799, 1790}, {1826, 1843}, {1897, 35325}, {1918, 41331}, {1969, 16747}, {1978, 4576}, {2321, 3688}, {2333, 27369}, {3112, 81}, {3701, 33299}, {3952, 46148}, {4010, 46387}, {4024, 3005}, {4028, 3787}, {4033, 4553}, {4036, 8061}, {4037, 4093}, {4039, 8623}, {4079, 688}, {4080, 46150}, {4150, 3313}, {4456, 23208}, {4552, 46153}, {4577, 4556}, {4580, 1459}, {4593, 52935}, {4628, 1576}, {4705, 2084}, {6386, 55239}, {7141, 21016}, {10566, 3733}, {14618, 21108}, {15523, 8041}, {16889, 2275}, {18070, 513}, {18082, 6}, {18083, 26892}, {18084, 1473}, {18085, 26889}, {18097, 56}, {18098, 31}, {18099, 172}, {18105, 1919}, {18107, 16695}, {18359, 46160}, {18833, 274}, {20022, 17209}, {20927, 41582}, {20948, 48084}, {21021, 40936}, {21094, 9019}, {21803, 21752}, {27067, 1193}, {27801, 1930}, {27808, 4568}, {28654, 15523}, {30713, 3703}, {32085, 1474}, {34055, 1437}, {34294, 3122}, {37204, 4623}, {39998, 17193}, {40016, 310}, {40071, 3933}, {41013, 17442}, {42371, 52612}, {46104, 27}, {52376, 849}, {52394, 593}, {52570, 17200}, {52618, 514}, {52623, 826}, {53581, 9494}, {55240, 667}, {56186, 1}, {56245, 2194}, {56246, 16030}


X(56252) = KP4(X(10)) OF X(75) AND X(100)

Barycentrics    (a-b)*b*(a-c)*c*(-b^3+b*c^2+a*c*(-b+c)+a^2*(b+c))*(a*b*(b-c)+a^2*(b+c)+c*(b^2-c^2)) : :

X(56252) lies on these lines: {334, 51870}, {668, 56194}, {1332, 37218}, {2051, 18061}, {2397, 4033}, {4391, 21859}, {18133, 54121}, {20028, 40039}, {20566, 56249}, {21580, 53332}, {33116, 46880}

X(56252) = isotomic conjugate of X(21173)
X(56252) = trilinear pole of line {321, 908}
X(56252) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 23187}, {31, 21173}, {32, 17496}, {513, 20986}, {572, 649}, {667, 2975}, {1415, 11998}, {1576, 53566}, {1919, 14829}, {2194, 51662}, {3063, 17074}, {3733, 52139}, {6591, 22118}, {24237, 32739}, {32674, 38344}
X(56252) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 21173}, {75, 27346}, {1146, 11998}, {1214, 51662}, {4858, 53566}, {5375, 572}, {6376, 17496}, {6505, 23187}, {6631, 2975}, {9296, 14829}, {10001, 17074}, {35072, 38344}, {39026, 20986}, {40619, 24237}, {40624, 34589}
X(56252) = X(i)-cross conjugate of X(j) for these {i, j}: {35519, 75}
X(56252) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(21859)}}, {{A, B, C, X(75), X(664)}}, {{A, B, C, X(85), X(31624)}}, {{A, B, C, X(101), X(31359)}}, {{A, B, C, X(190), X(53332)}}, {{A, B, C, X(334), X(668)}}, {{A, B, C, X(811), X(35174)}}, {{A, B, C, X(4554), X(21580)}}, {{A, B, C, X(4572), X(53647)}}, {{A, B, C, X(4595), X(6376)}}, {{A, B, C, X(6540), X(13136)}}, {{A, B, C, X(7257), X(36804)}}, {{A, B, C, X(18743), X(41314)}}, {{A, B, C, X(33931), X(42719)}}, {{A, B, C, X(40014), X(46406)}}
X(56252) = barycentric product X(i)*X(j) for these (i, j): {190, 54121}, {1978, 34434}, {2051, 668}, {20028, 4033}, {27808, 53083}, {51870, 799}, {56188, 75}, {56194, 76}
X(56252) = barycentric quotient X(i)/X(j) for these (i, j): {2, 21173}, {63, 23187}, {75, 17496}, {100, 572}, {101, 20986}, {190, 2975}, {226, 51662}, {521, 38344}, {522, 11998}, {664, 17074}, {668, 14829}, {693, 24237}, {1018, 52139}, {1331, 22118}, {1577, 53566}, {2051, 513}, {3952, 21061}, {4033, 17751}, {4103, 14973}, {4391, 34589}, {4552, 37558}, {4605, 20617}, {6335, 11109}, {6376, 27346}, {20028, 1019}, {20954, 26847}, {34434, 649}, {35519, 40624}, {46880, 3737}, {51870, 661}, {53083, 3733}, {53702, 909}, {54121, 514}, {56188, 1}, {56194, 6}


X(56253) = KP4(X(10)) OF X(75) AND X(145)

Barycentrics    b*c*(b+c)*(a^2-2*b*c+a*(b+c)) : :

X(56253) lies on these lines: {2, 18065}, {10, 75}, {71, 25728}, {142, 30044}, {306, 3452}, {314, 25280}, {322, 46937}, {350, 4685}, {519, 18147}, {594, 4044}, {668, 3879}, {730, 25120}, {1213, 4377}, {1441, 52353}, {1743, 41316}, {2321, 3948}, {2893, 36926}, {3008, 18044}, {3214, 3875}, {3679, 44140}, {3701, 18697}, {3760, 42696}, {3761, 19870}, {3765, 5750}, {3882, 56079}, {3912, 30473}, {3950, 4033}, {3963, 5257}, {3971, 35544}, {3975, 17353}, {3992, 20336}, {4043, 4058}, {4096, 42711}, {4125, 42714}, {4360, 50587}, {4416, 17790}, {4464, 50590}, {4494, 17257}, {4506, 17334}, {4656, 30713}, {4710, 50290}, {4718, 21858}, {4723, 17863}, {4780, 4783}, {7179, 30636}, {16828, 52716}, {17121, 41233}, {17286, 28809}, {17751, 32099}, {17786, 30830}, {17787, 50093}, {18040, 29571}, {18046, 50114}, {18136, 24177}, {18137, 29594}, {18144, 24199}, {18145, 50099}, {18739, 24175}, {20892, 50092}, {20930, 33942}, {25140, 35539}, {25590, 44147}, {25660, 29574}, {27076, 27633}, {29696, 56080}, {29705, 50118}, {31060, 48628}, {36856, 53541}, {44139, 50116}, {44153, 49529}

X(56253) = X(i)-isoconjugate-of-X(j) for these {i, j}: {667, 8690}, {849, 56192}, {1333, 39956}, {2194, 56155}, {2206, 34860}
X(56253) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 39956}, {1214, 56155}, {2321, 9}, {3175, 17749}, {4075, 56192}, {6631, 8690}, {40603, 34860}
X(56253) = X(i)-Ceva conjugate of X(j) for these {i, j}: {85, 321}, {18135, 3175}
X(56253) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(3214)}}, {{A, B, C, X(37), X(49447)}}, {{A, B, C, X(75), X(3175)}}, {{A, B, C, X(76), X(18135)}}, {{A, B, C, X(726), X(4139)}}, {{A, B, C, X(1266), X(3668)}}, {{A, B, C, X(1269), X(7018)}}, {{A, B, C, X(3596), X(30636)}}, {{A, B, C, X(3718), X(30568)}}, {{A, B, C, X(3915), X(42285)}}, {{A, B, C, X(3971), X(41886)}}, {{A, B, C, X(4106), X(39995)}}, {{A, B, C, X(4186), X(16062)}}, {{A, B, C, X(4357), X(28387)}}, {{A, B, C, X(4383), X(5224)}}, {{A, B, C, X(6376), X(27432)}}, {{A, B, C, X(19945), X(21963)}}, {{A, B, C, X(42027), X(49493)}}
X(56253) = barycentric product X(i)*X(j) for these (i, j): {10, 18135}, {313, 4383}, {321, 3875}, {349, 3913}, {1441, 30568}, {1978, 4139}, {3175, 75}, {3214, 76}, {4033, 4106}, {21963, 31625}, {27432, 6376}, {27801, 3915}, {27808, 4498}, {27813, 52353}, {28387, 3596}, {40071, 4186}
X(56253) = barycentric quotient X(i)/X(j) for these (i, j): {10, 39956}, {190, 8690}, {226, 56155}, {313, 40012}, {321, 34860}, {594, 56192}, {1089, 56123}, {1441, 42304}, {3175, 1}, {3214, 6}, {3217, 2194}, {3875, 81}, {3913, 284}, {3915, 1333}, {4106, 1019}, {4139, 649}, {4186, 1474}, {4383, 58}, {4498, 3733}, {16946, 2206}, {18135, 86}, {20317, 3737}, {21963, 1015}, {27432, 87}, {28387, 56}, {30568, 21}, {42312, 7252}
X(56253) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {313, 56249, 10}, {3264, 18133, 3663}, {3596, 6376, 4357}


X(56254) = KP4(X(37)) OF X(1) AND X(9)

Barycentrics    a*(b+c)*(a^4+b^4-b^2*c^2-a^2*(2*b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(56254) lies on these lines: {2, 22457}, {12, 860}, {21, 1807}, {35, 522}, {37, 2190}, {54, 72}, {95, 7523}, {96, 321}, {100, 1141}, {201, 758}, {228, 7412}, {933, 43659}, {1157, 48698}, {2148, 21078}, {3695, 17751}, {3949, 21061}, {4996, 51255}, {5251, 55091}, {6356, 41804}, {8901, 27687}, {10902, 22002}, {16030, 37247}, {23067, 37154}

X(56254) = isogonal conjugate of X(18180)
X(56254) = trilinear pole of line {2616, 2623}
X(56254) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 18180}, {4, 44709}, {5, 58}, {6, 17167}, {19, 16697}, {21, 1393}, {27, 216}, {28, 44706}, {29, 30493}, {51, 86}, {53, 1790}, {81, 1953}, {110, 21102}, {217, 44129}, {274, 2179}, {310, 40981}, {311, 2206}, {343, 1474}, {513, 2617}, {514, 1625}, {593, 21011}, {649, 14570}, {757, 21807}, {1014, 7069}, {1172, 44708}, {1333, 14213}, {1444, 2181}, {1459, 35360}, {2203, 18695}, {3199, 17206}, {4025, 52604}, {4243, 35363}, {4556, 12077}, {4610, 55219}, {5562, 8747}, {7649, 23181}, {8798, 44698}, {10566, 35319}, {11125, 36831}, {17187, 17500}, {17434, 52919}, {35194, 52375}, {35196, 41279}, {44715, 52954}
X(56254) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 18180}, {6, 16697}, {9, 17167}, {10, 5}, {37, 14213}, {244, 21102}, {5375, 14570}, {36033, 44709}, {39026, 2617}, {40586, 1953}, {40591, 44706}, {40600, 51}, {40603, 311}, {40607, 21807}, {40611, 1393}, {51574, 343}, {55065, 2618}
X(56254) = X(i)-Ceva conjugate of X(j) for these {i, j}: {95, 56246}
X(56254) = X(i)-cross conjugate of X(j) for these {i, j}: {4036, 100}, {42443, 1}
X(56254) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2975)}}, {{A, B, C, X(3), X(7412)}}, {{A, B, C, X(4), X(1006)}}, {{A, B, C, X(9), X(3191)}}, {{A, B, C, X(10), X(21)}}, {{A, B, C, X(12), X(37)}}, {{A, B, C, X(25), X(7523)}}, {{A, B, C, X(28), X(1400)}}, {{A, B, C, X(35), X(100)}}, {{A, B, C, X(42), X(26890)}}, {{A, B, C, X(54), X(95)}}, {{A, B, C, X(65), X(104)}}, {{A, B, C, X(73), X(45766)}}, {{A, B, C, X(90), X(13576)}}, {{A, B, C, X(98), X(1175)}}, {{A, B, C, X(267), X(53707)}}, {{A, B, C, X(321), X(42700)}}, {{A, B, C, X(947), X(2695)}}, {{A, B, C, X(1389), X(15232)}}, {{A, B, C, X(1476), X(53114)}}, {{A, B, C, X(1621), X(6763)}}, {{A, B, C, X(1826), X(26878)}}, {{A, B, C, X(1903), X(44861)}}, {{A, B, C, X(2167), X(2190)}}, {{A, B, C, X(2318), X(4183)}}, {{A, B, C, X(2346), X(39130)}}, {{A, B, C, X(3701), X(45393)}}, {{A, B, C, X(3962), X(38058)}}, {{A, B, C, X(4036), X(35194)}}, {{A, B, C, X(4222), X(37247)}}, {{A, B, C, X(4649), X(24053)}}, {{A, B, C, X(4674), X(15446)}}, {{A, B, C, X(5251), X(5260)}}, {{A, B, C, X(10308), X(15320)}}, {{A, B, C, X(10693), X(51870)}}, {{A, B, C, X(15179), X(31503)}}, {{A, B, C, X(18180), X(42443)}}, {{A, B, C, X(37733), X(52383)}}, {{A, B, C, X(42027), X(56137)}}, {{A, B, C, X(43743), X(56104)}}
X(56254) = barycentric product X(i)*X(j) for these (i, j): {1, 56246}, {6, 56189}, {10, 2167}, {37, 95}, {100, 15412}, {190, 2616}, {213, 34384}, {226, 44687}, {228, 276}, {275, 72}, {321, 54}, {1141, 42701}, {1824, 34386}, {2148, 313}, {2190, 306}, {2623, 668}, {3990, 8795}, {3998, 8884}, {4567, 8901}, {16030, 56186}, {18315, 4036}, {18831, 55232}, {20336, 8882}, {21814, 41488}, {23286, 6335}, {26941, 56227}, {27801, 54034}, {35196, 6358}, {36134, 52623}, {39182, 4553}, {39277, 4053}, {39287, 3954}, {40440, 71}, {41013, 97}, {42700, 96}, {50487, 55218}, {53576, 5379}
X(56254) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17167}, {3, 16697}, {6, 18180}, {10, 14213}, {37, 5}, {42, 1953}, {48, 44709}, {54, 81}, {71, 44706}, {72, 343}, {73, 44708}, {95, 274}, {97, 1444}, {100, 14570}, {101, 2617}, {213, 51}, {228, 216}, {275, 286}, {306, 18695}, {321, 311}, {661, 21102}, {692, 1625}, {756, 21011}, {906, 23181}, {1334, 7069}, {1400, 1393}, {1409, 30493}, {1500, 21807}, {1783, 35360}, {1824, 53}, {1918, 2179}, {2148, 58}, {2167, 86}, {2169, 1790}, {2190, 27}, {2205, 40981}, {2333, 2181}, {2616, 514}, {2623, 513}, {3198, 42459}, {3695, 42698}, {3990, 5562}, {3998, 52347}, {4024, 2618}, {4036, 18314}, {4705, 12077}, {8882, 28}, {8901, 16732}, {14533, 1437}, {15412, 693}, {16030, 16696}, {16035, 18603}, {18098, 17500}, {18315, 52935}, {18831, 55231}, {19210, 18604}, {20336, 28706}, {21011, 1087}, {21794, 2599}, {21807, 36412}, {21833, 41221}, {21839, 41586}, {21855, 45238}, {21874, 41588}, {23286, 905}, {34384, 6385}, {35196, 2185}, {36134, 4556}, {40440, 44129}, {41013, 324}, {42700, 39113}, {42701, 1273}, {42702, 44716}, {44687, 333}, {46088, 23224}, {50487, 55219}, {51255, 16698}, {52370, 44707}, {53562, 2600}, {54034, 1333}, {55232, 6368}, {56189, 76}, {56246, 75}
X(56254) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2167, 44687, 54}


X(56255) = KP4(X(37)) OF X(1) AND X(10)

Barycentrics    a*(b+c)*(a^2+b*(b-c)-a*(2*b+c))*(a^2+c*(-b+c)-a*(b+2*c)) : :

X(56255) lies on these lines: {9, 1174}, {33, 7322}, {37, 41539}, {57, 21453}, {210, 3294}, {226, 1334}, {312, 728}, {1018, 3925}, {1170, 25430}, {2284, 17194}, {2321, 4651}, {3247, 56232}, {3475, 3730}, {3501, 41867}, {4551, 21795}, {6606, 35144}, {6690, 35341}, {8049, 30949}, {8818, 17747}, {10382, 41509}, {16552, 41711}, {31435, 56207}, {31618, 40025}, {36483, 36800}, {47487, 56225}

X(56255) = isogonal conjugate of X(18164)
X(56255) = isotomic conjugate of X(16708)
X(56255) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 18164}, {3, 53238}, {6, 17169}, {21, 1418}, {27, 22053}, {31, 16708}, {32, 53236}, {56, 16713}, {57, 17194}, {58, 142}, {60, 52023}, {81, 354}, {86, 1475}, {110, 21104}, {284, 10481}, {552, 21795}, {593, 3925}, {662, 48151}, {757, 21808}, {1014, 1212}, {1019, 35338}, {1229, 1408}, {1233, 2206}, {1333, 20880}, {1412, 4847}, {1414, 21127}, {1434, 2293}, {1509, 52020}, {2193, 53237}, {2360, 13156}, {2488, 4573}, {3285, 53240}, {3286, 53241}, {4556, 55282}, {4565, 6362}, {4616, 10581}, {4637, 6608}, {5009, 53239}, {7192, 35326}, {7203, 35341}, {7252, 35312}, {17187, 18087}, {17206, 40983}, {35335, 39179}
X(56255) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 16713}, {2, 16708}, {3, 18164}, {9, 17169}, {10, 142}, {37, 20880}, {244, 21104}, {1084, 48151}, {5452, 17194}, {6376, 53236}, {36103, 53238}, {40586, 354}, {40590, 10481}, {40599, 4847}, {40600, 1475}, {40603, 1233}, {40607, 21808}, {40608, 21127}, {40611, 1418}, {40622, 23599}, {47345, 53237}, {55064, 6362}
X(56255) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32008, 56157}
X(56255) = X(i)-cross conjugate of X(j) for these {i, j}: {523, 1018}, {4068, 1}, {4524, 4551}
X(56255) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1621)}}, {{A, B, C, X(9), X(33)}}, {{A, B, C, X(10), X(3870)}}, {{A, B, C, X(19), X(52555)}}, {{A, B, C, X(42), X(57)}}, {{A, B, C, X(65), X(10389)}}, {{A, B, C, X(84), X(56221)}}, {{A, B, C, X(523), X(3925)}}, {{A, B, C, X(728), X(1334)}}, {{A, B, C, X(756), X(3930)}}, {{A, B, C, X(846), X(3573)}}, {{A, B, C, X(885), X(17194)}}, {{A, B, C, X(1174), X(32008)}}, {{A, B, C, X(1400), X(7308)}}, {{A, B, C, X(1441), X(34784)}}, {{A, B, C, X(2238), X(6654)}}, {{A, B, C, X(2279), X(40147)}}, {{A, B, C, X(3681), X(4006)}}, {{A, B, C, X(3695), X(28594)}}, {{A, B, C, X(3731), X(21061)}}, {{A, B, C, X(3943), X(14628)}}, {{A, B, C, X(4068), X(18164)}}, {{A, B, C, X(4524), X(21795)}}, {{A, B, C, X(5260), X(39458)}}, {{A, B, C, X(5665), X(41506)}}, {{A, B, C, X(6605), X(42310)}}, {{A, B, C, X(7046), X(40779)}}, {{A, B, C, X(10390), X(15320)}}, {{A, B, C, X(16577), X(17747)}}, {{A, B, C, X(16606), X(39963)}}, {{A, B, C, X(18793), X(39954)}}, {{A, B, C, X(21039), X(42449)}}, {{A, B, C, X(21808), X(42438)}}, {{A, B, C, X(21809), X(21811)}}, {{A, B, C, X(39797), X(39961)}}, {{A, B, C, X(39948), X(40747)}}, {{A, B, C, X(43739), X(45100)}}
X(56255) = barycentric product X(i)*X(j) for these (i, j): {1, 56157}, {6, 56127}, {10, 2346}, {210, 21453}, {226, 6605}, {1170, 2321}, {1174, 321}, {1334, 31618}, {4041, 6606}, {4086, 53243}, {4705, 55281}, {10482, 1441}, {10509, 4515}, {32008, 37}, {40443, 53008}, {41013, 47487}, {56118, 65}
X(56255) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17169}, {2, 16708}, {6, 18164}, {9, 16713}, {10, 20880}, {19, 53238}, {37, 142}, {42, 354}, {55, 17194}, {65, 10481}, {75, 53236}, {210, 4847}, {213, 1475}, {225, 53237}, {228, 22053}, {321, 1233}, {512, 48151}, {661, 21104}, {756, 3925}, {872, 52020}, {1170, 1434}, {1174, 81}, {1334, 1212}, {1400, 1418}, {1500, 21808}, {1903, 13156}, {2171, 52023}, {2321, 1229}, {2346, 86}, {3668, 53242}, {3709, 21127}, {3930, 51384}, {4041, 6362}, {4515, 51972}, {4524, 6608}, {4551, 35312}, {4557, 35338}, {4674, 53240}, {4705, 55282}, {4878, 15185}, {6605, 333}, {6606, 4625}, {7064, 21039}, {7178, 23599}, {10482, 21}, {18098, 18087}, {18785, 53241}, {21039, 6067}, {21805, 51463}, {28594, 17672}, {32008, 274}, {47487, 1444}, {53243, 1414}, {55281, 4623}, {56118, 314}, {56127, 76}, {56157, 75}
X(56255) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2346, 6605, 1174}


X(56256) = KP4(X(37)) OF X(1) AND X(42)

Barycentrics    a*(b+c)*(a*b*(b-2*c)+b^2*c+a^2*(b+c))*(b*c^2+a*c*(-2*b+c)+a^2*(b+c)) : :

X(56256) lies on these lines: {1, 22220}, {10, 56197}, {75, 16569}, {596, 978}, {872, 41683}, {876, 6363}, {995, 39697}, {3294, 56240}, {4090, 42027}, {17795, 39714}

X(56256) = isogonal conjugate of X(18192)
X(56256) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 18192}, {6, 17178}, {27, 22066}, {58, 3840}, {81, 17448}, {86, 22343}, {593, 21025}, {757, 22167}, {1333, 20892}, {2162, 16722}, {17187, 18102}
X(56256) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 18192}, {9, 17178}, {10, 3840}, {37, 20892}, {40586, 17448}, {40600, 22343}, {40607, 22167}
X(56256) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32011, 56197}
X(56256) = X(i)-cross conjugate of X(j) for these {i, j}: {50491, 1018}
X(56256) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(42), X(16569)}}, {{A, B, C, X(57), X(27809)}}, {{A, B, C, X(87), X(18082)}}, {{A, B, C, X(213), X(53676)}}, {{A, B, C, X(740), X(6363)}}, {{A, B, C, X(872), X(53581)}}, {{A, B, C, X(978), X(3293)}}, {{A, B, C, X(995), X(31855)}}, {{A, B, C, X(1400), X(18793)}}, {{A, B, C, X(2171), X(22220)}}, {{A, B, C, X(2998), X(39797)}}, {{A, B, C, X(3223), X(40147)}}, {{A, B, C, X(3551), X(13576)}}, {{A, B, C, X(3993), X(21892)}}, {{A, B, C, X(14624), X(52654)}}, {{A, B, C, X(20964), X(21830)}}, {{A, B, C, X(28248), X(42043)}}, {{A, B, C, X(39748), X(45988)}}, {{A, B, C, X(39972), X(52555)}}
X(56256) = barycentric product X(i)*X(j) for these (i, j): {1, 56197}, {32011, 37}
X(56256) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17178}, {6, 18192}, {10, 20892}, {37, 3840}, {42, 17448}, {43, 16722}, {213, 22343}, {228, 22066}, {756, 21025}, {1500, 22167}, {18098, 18102}, {32011, 274}, {56197, 75}


X(56257) = KP4(X(37)) OF X(1) AND X(100)

Barycentrics    a*(a-b)*(a-c)*(b+c)*(b^2+a*c)*(a*b+c^2) : :

X(56257) lies on these lines: {37, 256}, {190, 4079}, {291, 21823}, {644, 3903}, {646, 3807}, {1432, 3970}, {4043, 44187}, {4053, 40873}, {4552, 7239}, {4606, 24052}, {7015, 21061}, {7018, 22015}, {7202, 36228}, {21295, 21834}, {21809, 55064}, {22003, 32041}

X(56257) = isogonal conjugate of X(18200)
X(56257) = isotomic conjugate of X(16737)
X(56257) = trilinear pole of line {210, 20691}
X(56257) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 18200}, {6, 17212}, {27, 22093}, {31, 16737}, {58, 4369}, {81, 4367}, {86, 20981}, {110, 7200}, {171, 1019}, {172, 7192}, {593, 2533}, {649, 17103}, {662, 53541}, {667, 8033}, {741, 4107}, {894, 3733}, {1014, 3287}, {1333, 4374}, {1412, 3907}, {1509, 7234}, {1790, 54229}, {2329, 7203}, {2330, 17096}, {3737, 7175}, {3955, 17925}, {4128, 4610}, {4140, 7341}, {4164, 37128}, {4459, 4565}, {4556, 53559}, {4579, 16726}, {4603, 7207}, {4623, 21755}, {4817, 40731}, {7009, 7254}, {7122, 7199}, {7176, 7252}, {7267, 43926}, {14296, 18268}, {16592, 52935}, {17187, 18111}, {18787, 50456}, {22373, 55231}, {27958, 43924}
X(56257) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 16737}, {3, 18200}, {9, 17212}, {10, 4369}, {37, 4374}, {244, 7200}, {1084, 53541}, {5375, 17103}, {6631, 8033}, {8299, 4107}, {35068, 14296}, {40586, 4367}, {40599, 3907}, {40600, 20981}, {55064, 4459}
X(56257) = X(i)-cross conjugate of X(j) for these {i, j}: {22280, 4551}, {22314, 4674}, {40501, 100}
X(56257) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(42363)}}, {{A, B, C, X(10), X(4572)}}, {{A, B, C, X(37), X(190)}}, {{A, B, C, X(42), X(34071)}}, {{A, B, C, X(101), X(4103)}}, {{A, B, C, X(256), X(4594)}}, {{A, B, C, X(644), X(646)}}, {{A, B, C, X(661), X(45661)}}, {{A, B, C, X(694), X(27805)}}, {{A, B, C, X(1581), X(3903)}}, {{A, B, C, X(2321), X(3939)}}, {{A, B, C, X(3799), X(40790)}}, {{A, B, C, X(3807), X(3862)}}, {{A, B, C, X(3952), X(36863)}}, {{A, B, C, X(4623), X(30571)}}, {{A, B, C, X(14624), X(56248)}}, {{A, B, C, X(29351), X(56221)}}, {{A, B, C, X(40519), X(52555)}}
X(56257) = barycentric product X(i)*X(j) for these (i, j): {10, 3903}, {42, 56241}, {190, 52651}, {256, 3952}, {1018, 257}, {1432, 30730}, {1500, 7260}, {1978, 40729}, {2321, 37137}, {4033, 893}, {4069, 7249}, {4451, 4551}, {4557, 7018}, {4594, 756}, {4603, 594}, {27805, 37}, {27808, 904}, {29055, 3701}, {30670, 3773}, {32010, 40521}, {37134, 4037}, {40432, 4103}
X(56257) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17212}, {2, 16737}, {6, 18200}, {10, 4374}, {37, 4369}, {42, 4367}, {100, 17103}, {190, 8033}, {210, 3907}, {213, 20981}, {228, 22093}, {256, 7192}, {257, 7199}, {512, 53541}, {644, 27958}, {661, 7200}, {740, 14296}, {756, 2533}, {872, 7234}, {893, 1019}, {904, 3733}, {1018, 894}, {1334, 3287}, {1431, 7203}, {1432, 17096}, {1824, 54229}, {2238, 4107}, {3747, 4164}, {3774, 45882}, {3903, 86}, {3952, 1909}, {4033, 1920}, {4041, 4459}, {4069, 7081}, {4079, 16592}, {4103, 3963}, {4451, 18155}, {4515, 4529}, {4551, 7176}, {4552, 7196}, {4557, 171}, {4559, 7175}, {4594, 873}, {4603, 1509}, {4705, 53559}, {4849, 4504}, {7018, 52619}, {7116, 7254}, {7234, 7207}, {7239, 7187}, {18098, 18111}, {20683, 53553}, {21805, 4922}, {21809, 28006}, {21859, 4032}, {27805, 274}, {29055, 1014}, {30730, 17787}, {35309, 16720}, {36863, 27891}, {37137, 1434}, {40521, 1215}, {40729, 649}, {50487, 4128}, {52651, 514}, {53581, 21755}, {56183, 14006}, {56241, 310}


X(56258) = KP4(X(37)) OF X(10) AND X(2)

Barycentrics    (b+c)*(a^2+a*(-2*b+c)+b*(b+c))*(a^2+a*(b-2*c)+c*(b+c)) : :

X(56258) lies on these lines: {2, 32017}, {6, 145}, {25, 1261}, {37, 52353}, {42, 3950}, {75, 26997}, {111, 8706}, {192, 39957}, {251, 20056}, {321, 1427}, {967, 37639}, {1171, 31011}, {1400, 2321}, {2345, 39798}, {2350, 10453}, {3056, 40528}, {3952, 21809}, {3995, 56219}, {4024, 55263}, {4033, 27039}, {4140, 55261}, {4461, 42290}, {17178, 37128}, {17280, 39979}, {17281, 39982}, {20039, 20228}, {27145, 39981}, {30942, 40451}, {31325, 39951}, {40420, 56086}

X(56258) = isotomic conjugate of X(18600)
X(56258) = trilinear pole of line {14321, 512}
X(56258) = X(i)-isoconjugate-of-X(j) for these {i, j}: {27, 22344}, {31, 18600}, {56, 18163}, {58, 3752}, {81, 1201}, {86, 20228}, {110, 48334}, {284, 1122}, {593, 4642}, {604, 17183}, {645, 42336}, {662, 6363}, {757, 21796}, {849, 4415}, {1014, 2347}, {1019, 23845}, {1333, 3663}, {1396, 22072}, {1408, 3452}, {1412, 3057}, {1790, 1828}, {2194, 52563}, {2206, 26563}, {2360, 42549}, {3733, 21362}, {4565, 6615}, {7341, 21809}, {16947, 20895}, {27499, 38832}
X(56258) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 18163}, {2, 18600}, {10, 3752}, {37, 3663}, {244, 48334}, {1084, 6363}, {1214, 52563}, {3161, 17183}, {4075, 4415}, {6741, 21120}, {40586, 1201}, {40590, 1122}, {40599, 3057}, {40600, 20228}, {40603, 26563}, {40607, 21796}, {52872, 51415}, {55064, 6615}
X(56258) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1222, 56190}
X(56258) = X(i)-cross conjugate of X(j) for these {i, j}: {4041, 3952}, {27040, 2}, {56190, 56173}
X(56258) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(6)}}, {{A, B, C, X(4), X(11319)}}, {{A, B, C, X(7), X(18082)}}, {{A, B, C, X(8), X(17751)}}, {{A, B, C, X(10), X(145)}}, {{A, B, C, X(19), X(35058)}}, {{A, B, C, X(65), X(6553)}}, {{A, B, C, X(76), X(26770)}}, {{A, B, C, X(280), X(3701)}}, {{A, B, C, X(291), X(56256)}}, {{A, B, C, X(306), X(7172)}}, {{A, B, C, X(321), X(346)}}, {{A, B, C, X(330), X(18785)}}, {{A, B, C, X(523), X(9053)}}, {{A, B, C, X(594), X(3943)}}, {{A, B, C, X(966), X(37639)}}, {{A, B, C, X(1220), X(39458)}}, {{A, B, C, X(1826), X(4080)}}, {{A, B, C, X(2238), X(17178)}}, {{A, B, C, X(2298), X(39698)}}, {{A, B, C, X(2345), X(3995)}}, {{A, B, C, X(3293), X(15315)}}, {{A, B, C, X(3930), X(3963)}}, {{A, B, C, X(4029), X(5257)}}, {{A, B, C, X(4041), X(21809)}}, {{A, B, C, X(4058), X(4072)}}, {{A, B, C, X(4373), X(13576)}}, {{A, B, C, X(4651), X(10453)}}, {{A, B, C, X(4674), X(41446)}}, {{A, B, C, X(6539), X(17314)}}, {{A, B, C, X(9309), X(18793)}}, {{A, B, C, X(15320), X(36606)}}, {{A, B, C, X(15523), X(20056)}}, {{A, B, C, X(17340), X(40085)}}, {{A, B, C, X(18098), X(39694)}}, {{A, B, C, X(18600), X(27040)}}, {{A, B, C, X(19998), X(30942)}}, {{A, B, C, X(23617), X(32017)}}, {{A, B, C, X(27145), X(37657)}}, {{A, B, C, X(30710), X(56255)}}, {{A, B, C, X(30712), X(40718)}}, {{A, B, C, X(31503), X(35577)}}, {{A, B, C, X(38247), X(40747)}}
X(56258) = barycentric product X(i)*X(j) for these (i, j): {10, 1222}, {226, 52549}, {313, 51476}, {523, 8706}, {1261, 1441}, {1476, 3701}, {2321, 40420}, {3710, 40446}, {23617, 321}, {30713, 3451}, {32017, 37}, {56173, 8}, {56190, 75}
X(56258) = barycentric quotient X(i)/X(j) for these (i, j): {2, 18600}, {8, 17183}, {9, 18163}, {10, 3663}, {37, 3752}, {42, 1201}, {65, 1122}, {210, 3057}, {213, 20228}, {226, 52563}, {228, 22344}, {321, 26563}, {512, 6363}, {594, 4415}, {661, 48334}, {756, 4642}, {1018, 21362}, {1222, 86}, {1261, 21}, {1334, 2347}, {1476, 1014}, {1500, 21796}, {1824, 1828}, {1903, 42549}, {2318, 22072}, {2321, 3452}, {3451, 1412}, {3700, 21120}, {3701, 20895}, {3943, 51415}, {3950, 45204}, {3952, 21272}, {4033, 21580}, {4041, 6615}, {4082, 6736}, {4140, 28006}, {4557, 23845}, {4574, 23113}, {4849, 45219}, {6057, 21031}, {6613, 4616}, {8706, 99}, {16606, 27499}, {23617, 81}, {30730, 25268}, {32017, 274}, {40420, 1434}, {40451, 17205}, {40528, 18191}, {44729, 14284}, {51476, 58}, {51641, 42336}, {52549, 333}, {56173, 7}, {56190, 1}
X(56258) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1222, 52549, 23617}


X(56259) = KP4(X(37)) OF X(10) AND X(9)

Barycentrics    a*(b+c)*(a^4-a^3*c+b*(b-c)^2*(b+c)+a*c*(b+c)^2-a^2*(2*b^2-b*c+c^2))*(a^4-a^3*b+(b-c)^2*c*(b+c)+a*b*(b+c)^2-a^2*(b^2-b*c+2*c^2)) : :

X(56259) lies on these lines: {1, 1167}, {3, 40527}, {19, 1802}, {65, 3191}, {72, 52384}, {75, 936}, {158, 200}, {225, 2318}, {596, 997}, {2214, 3553}, {3333, 13476}, {3668, 3682}, {7982, 34434}, {8580, 39708}, {9623, 31359}, {21031, 52383}, {25091, 50196}, {30144, 39697}

X(56259) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 37566}, {28, 1071}, {57, 40979}, {58, 1210}, {81, 1108}, {86, 40958}, {286, 23204}, {593, 21933}, {1014, 1864}, {1226, 2206}, {1333, 17862}, {2360, 52571}, {7192, 53288}, {41562, 52375}
X(56259) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 1210}, {37, 17862}, {5452, 40979}, {40586, 1108}, {40591, 1071}, {40600, 40958}, {40603, 1226}, {40611, 37566}
X(56259) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(9), X(3191)}}, {{A, B, C, X(42), X(936)}}, {{A, B, C, X(72), X(2321)}}, {{A, B, C, X(84), X(13576)}}, {{A, B, C, X(200), X(1802)}}, {{A, B, C, X(201), X(1089)}}, {{A, B, C, X(758), X(21031)}}, {{A, B, C, X(937), X(1400)}}, {{A, B, C, X(943), X(56255)}}, {{A, B, C, X(997), X(3293)}}, {{A, B, C, X(1167), X(40424)}}, {{A, B, C, X(1214), X(6769)}}, {{A, B, C, X(3680), X(38955)}}, {{A, B, C, X(3701), X(56101)}}, {{A, B, C, X(7952), X(51497)}}, {{A, B, C, X(7982), X(37558)}}, {{A, B, C, X(18793), X(39946)}}, {{A, B, C, X(21061), X(45032)}}, {{A, B, C, X(30144), X(31855)}}, {{A, B, C, X(30457), X(56146)}}, {{A, B, C, X(38271), X(41506)}}, {{A, B, C, X(39130), X(42470)}}, {{A, B, C, X(43531), X(52518)}}
X(56259) = barycentric product X(i)*X(j) for these (i, j): {10, 40399}, {37, 40424}, {1167, 321}, {3710, 40397}, {40444, 72}
X(56259) = barycentric quotient X(i)/X(j) for these (i, j): {10, 17862}, {37, 1210}, {42, 1108}, {55, 40979}, {71, 1071}, {213, 40958}, {321, 1226}, {756, 21933}, {1167, 81}, {1334, 1864}, {1400, 37566}, {1903, 52571}, {2200, 23204}, {21801, 1532}, {21871, 6260}, {21872, 41561}, {40399, 86}, {40424, 274}, {40444, 286}, {40527, 17219}


X(56260) = KP4(X(37)) OF X(10) AND X(10)

Barycentrics    a*(b+c)*(a^2-2*a*b+b^2+c^2)*(a^2+b^2-2*a*c+c^2) : :

X(56260) lies on these lines: {1, 39951}, {2, 30701}, {6, 3692}, {25, 200}, {42, 3991}, {111, 52778}, {251, 3935}, {306, 1427}, {346, 52223}, {393, 7101}, {967, 5337}, {1009, 2350}, {1018, 17441}, {1171, 40403}, {1400, 3694}, {1500, 56219}, {1880, 2321}, {3108, 3957}, {3228, 54967}, {3700, 3967}, {3938, 25066}, {3965, 53088}, {5347, 46010}, {8580, 21448}, {8817, 42290}, {16081, 42384}, {29817, 39389}, {39798, 44798}

X(56260) = isotomic conjugate of X(16750)
X(56260) = perspector of circumconic {{A, B, C, X(52778), X(54967)}}
X(56260) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 28017}, {27, 1473}, {28, 7289}, {31, 16750}, {57, 5324}, {58, 4000}, {63, 4211}, {81, 614}, {86, 16502}, {110, 48398}, {284, 7195}, {497, 1412}, {593, 3914}, {757, 16583}, {849, 53510}, {873, 21750}, {1014, 2082}, {1019, 1633}, {1040, 1396}, {1333, 3673}, {1434, 7083}, {1474, 17170}, {1509, 40934}, {1790, 1851}, {2185, 40961}, {3732, 3733}, {4556, 48403}, {4610, 50490}, {4637, 17115}, {6628, 21813}, {22057, 36419}
X(56260) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 16750}, {10, 4000}, {37, 3673}, {244, 48398}, {3162, 4211}, {4075, 53510}, {5452, 5324}, {40586, 614}, {40590, 7195}, {40591, 7289}, {40599, 497}, {40600, 16502}, {40607, 16583}, {40611, 28017}, {51574, 17170}
X(56260) = X(i)-cross conjugate of X(j) for these {i, j}: {656, 1018}, {4524, 3952}
X(56260) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(39731)}}, {{A, B, C, X(2), X(6)}}, {{A, B, C, X(10), X(3870)}}, {{A, B, C, X(65), X(1280)}}, {{A, B, C, X(72), X(17742)}}, {{A, B, C, X(200), X(306)}}, {{A, B, C, X(210), X(321)}}, {{A, B, C, X(656), X(17441)}}, {{A, B, C, X(765), X(40033)}}, {{A, B, C, X(1009), X(14004)}}, {{A, B, C, X(1088), X(41683)}}, {{A, B, C, X(1089), X(4006)}}, {{A, B, C, X(1214), X(40910)}}, {{A, B, C, X(1826), X(34525)}}, {{A, B, C, X(2318), X(3998)}}, {{A, B, C, X(3294), X(3555)}}, {{A, B, C, X(3696), X(4651)}}, {{A, B, C, X(3931), X(28594)}}, {{A, B, C, X(3935), X(15523)}}, {{A, B, C, X(3952), X(3967)}}, {{A, B, C, X(3995), X(44798)}}, {{A, B, C, X(7123), X(30701)}}, {{A, B, C, X(13576), X(42361)}}, {{A, B, C, X(18082), X(21453)}}, {{A, B, C, X(21840), X(37593)}}, {{A, B, C, X(34892), X(38825)}}, {{A, B, C, X(42471), X(43672)}}, {{A, B, C, X(45744), X(45791)}}, {{A, B, C, X(51564), X(56257)}}
X(56260) = barycentric product X(i)*X(j) for these (i, j): {10, 56179}, {210, 8817}, {226, 56243}, {313, 7084}, {321, 7123}, {512, 54967}, {523, 52778}, {1018, 48070}, {1037, 3701}, {1041, 3710}, {2321, 7131}, {3949, 40411}, {30701, 37}, {30705, 4515}, {40403, 594}, {42384, 647}
X(56260) = barycentric quotient X(i)/X(j) for these (i, j): {2, 16750}, {10, 3673}, {25, 4211}, {37, 4000}, {42, 614}, {55, 5324}, {65, 7195}, {71, 7289}, {72, 17170}, {181, 40961}, {210, 497}, {213, 16502}, {228, 1473}, {594, 53510}, {661, 48398}, {756, 3914}, {872, 40934}, {1018, 3732}, {1037, 1014}, {1334, 2082}, {1400, 28017}, {1500, 16583}, {1824, 1851}, {2318, 1040}, {3690, 17441}, {3694, 27509}, {3695, 20235}, {3930, 51400}, {3949, 18589}, {3991, 41785}, {4006, 17671}, {4515, 6554}, {4524, 17115}, {4557, 1633}, {4705, 48403}, {7064, 40965}, {7084, 58}, {7109, 21750}, {7123, 81}, {7131, 1434}, {8269, 4616}, {14935, 18191}, {30701, 274}, {40403, 1509}, {42384, 6331}, {48070, 7199}, {50487, 50490}, {52370, 7124}, {52778, 99}, {54967, 670}, {55232, 21107}, {56179, 86}, {56243, 333}
X(56260) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {56179, 56243, 7123}


X(56261) = KIMBERLING-PAVLOV X(1)-CONJUGATE OF X(3) AND X(4)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6-a^5*c+2*a^3*c^3-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a*c*(b^4-c^4)+a^2*(b^4+4*b^2*c^2-c^4))*(a^6-a^5*b+2*a^3*b^3-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4+4*b^2*c^2+c^4)+a*(-b^5+b*c^4)) : :

X(56261) lies on these lines: {1, 1941}, {3, 158}, {4, 255}, {273, 1804}, {281, 2289}, {318, 1013}, {771, 43764}, {2193, 8748}, {5722, 36123}, {7040, 7531}, {36055, 37695}, {36607, 37234}, {51281, 51282}

X(56261) = trilinear pole of line {3064, 36054}
X(56261) = X(i)-isoconjugate-of-X(j) for these {i, j}: {770, 1813}
X(56261) = X(i)-cross conjugate of X(j) for these {i, j}: {13734, 1}
X(56261) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(243)}}, {{A, B, C, X(3), X(21)}}, {{A, B, C, X(4), X(29)}}, {{A, B, C, X(7), X(18850)}}, {{A, B, C, X(8), X(1217)}}, {{A, B, C, X(77), X(1294)}}, {{A, B, C, X(78), X(40448)}}, {{A, B, C, X(79), X(18848)}}, {{A, B, C, X(80), X(264)}}, {{A, B, C, X(87), X(90)}}, {{A, B, C, X(276), X(17743)}}, {{A, B, C, X(277), X(34234)}}, {{A, B, C, X(1039), X(8884)}}, {{A, B, C, X(1061), X(1300)}}, {{A, B, C, X(5560), X(14860)}}, {{A, B, C, X(7319), X(18855)}}, {{A, B, C, X(13478), X(31623)}}, {{A, B, C, X(14621), X(23582)}}, {{A, B, C, X(23707), X(55918)}}, {{A, B, C, X(40801), X(52133)}}
X(56261) = barycentric product X(i)*X(j) for these (i, j): {44426, 771}
X(56261) = barycentric quotient X(i)/X(j) for these (i, j): {771, 6516}, {18344, 770}


X(56262) = KIMBERLING-PAVLOV X(1)-CONJUGATE OF X(7) AND X(8)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^4-4*a^3*c-4*a*c^3-2*a^2*(b^2-3*c^2)+(b^2-c^2)^2)*(a^4-4*a^3*b-4*a*b^3+a^2*(6*b^2-2*c^2)+(b^2-c^2)^2) : :

X(56262) lies on the Feuerbach hyperbola and on these lines: {8, 37787}, {9, 2078}, {57, 3254}, {80, 15299}, {100, 15348}, {104, 3358}, {294, 8557}, {518, 56101}, {885, 46006}, {1156, 30223}, {1320, 7672}, {1445, 6601}, {2801, 55966}, {3243, 6596}, {3333, 34485}, {3870, 34894}, {4321, 7284}, {5784, 37579}, {7160, 34486}, {7330, 55918}, {8545, 34919}, {11372, 46435}, {15175, 15298}, {21390, 23893}, {36976, 54408}, {37550, 43740}, {41575, 56089}

X(56262) = isogonal conjugate of X(54408)
X(56262) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 54408}, {6, 52457}, {57, 34526}
X(56262) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 54408}, {9, 52457}, {5452, 34526}
X(56262) = X(i)-cross conjugate of X(j) for these {i, j}: {30199, 100}, {33925, 1}
X(56262) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(19), X(1037)}}, {{A, B, C, X(57), X(59)}}, {{A, B, C, X(77), X(82)}}, {{A, B, C, X(273), X(56179)}}, {{A, B, C, X(765), X(1088)}}, {{A, B, C, X(1440), X(23617)}}, {{A, B, C, X(2161), X(52013)}}, {{A, B, C, X(2990), X(55937)}}, {{A, B, C, X(3333), X(34486)}}, {{A, B, C, X(7045), X(55927)}}, {{A, B, C, X(18815), X(39959)}}, {{A, B, C, X(34234), X(39273)}}, {{A, B, C, X(41431), X(41441)}}, {{A, B, C, X(42019), X(55105)}}
X(56262) = barycentric product X(i)*X(j) for these (i, j): {4554, 46006}, {34525, 7}
X(56262) = barycentric quotient X(i)/X(j) for these (i, j): {1, 52457}, {6, 54408}, {55, 34526}, {34525, 8}, {46006, 650}


X(56263) = KIMBERLING-PAVLOV X(1)-CONJUGATE OF X(8) AND X(9)

Barycentrics    (a^4+a^3*(4*b-2*c)-10*a^2*b*(b-c)+(b-c)^3*(b+c)+2*a*(2*b^3+5*b^2*c-8*b*c^2+c^3))*(a^4-2*a^3*(b-2*c)+10*a^2*(b-c)*c-(b-c)^3*(b+c)+2*a*(b^3-8*b^2*c+5*b*c^2+2*c^3)) : :

X(56263) lies on the Feuerbach hyperbola and on these lines: {1, 54228}, {8, 15726}, {80, 36991}, {516, 4900}, {518, 56090}, {527, 3680}, {971, 1000}, {1156, 5435}, {1320, 5851}, {3254, 9812}, {3667, 23893}, {4866, 43174}, {5856, 56097}, {7995, 45830}, {9814, 14986}, {15733, 56089}, {18490, 36996}, {34862, 55918}, {34894, 52804}, {38454, 56091}

X(56263) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 36973}, {1253, 36888}
X(56263) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 36973}, {17113, 36888}
X(56263) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(144), X(10509)}}, {{A, B, C, X(479), X(513)}}, {{A, B, C, X(516), X(6006)}}, {{A, B, C, X(527), X(3667)}}, {{A, B, C, X(900), X(5851)}}, {{A, B, C, X(1014), X(53086)}}, {{A, B, C, X(15733), X(30198)}}, {{A, B, C, X(22334), X(56155)}}, {{A, B, C, X(23062), X(42483)}}, {{A, B, C, X(28217), X(38454)}}, {{A, B, C, X(34234), X(55937)}}, {{A, B, C, X(41441), X(52803)}}
X(56263) = barycentric quotient X(i)/X(j) for these (i, j): {1, 36973}, {279, 36888}


X(56264) = KIMBERLING-PAVLOV X(2)-CONJUGATE OF X(7) AND X(8)

Barycentrics    (a+b-c)*(a-b+c)*(a^2+3*b^2-2*a*c+c^2)*(a^2-2*a*b+b^2+3*c^2) : :

X(56264) lies on these lines: {2, 6559}, {7, 346}, {8, 279}, {69, 10509}, {75, 23062}, {85, 341}, {318, 1847}, {1043, 1434}, {2322, 15149}, {2481, 5274}, {3160, 49466}, {3663, 10322}, {3672, 21450}, {5281, 40419}, {6556, 7185}, {7172, 17093}, {7176, 32003}, {7233, 40217}, {10004, 24349}, {13577, 17784}, {18821, 41075}, {29616, 51351}, {29627, 40719}, {37223, 43762}

X(56264) = isotomic conjugate of X(390)
X(56264) = trilinear pole of line {3239, 3676}
X(56264) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 390}, {32, 30854}, {41, 5222}, {55, 7290}, {663, 35280}, {1106, 28057}, {1253, 3598}, {1415, 14330}, {2194, 3755}
X(56264) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 390}, {223, 7290}, {1146, 14330}, {1214, 3755}, {3160, 5222}, {6376, 30854}, {6552, 28057}, {17113, 3598}
X(56264) = X(i)-cross conjugate of X(j) for these {i, j}: {2550, 2}, {4762, 4554}, {39959, 39749}
X(56264) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(693)}}, {{A, B, C, X(7), X(85)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(92), X(42361)}}, {{A, B, C, X(291), X(14484)}}, {{A, B, C, X(330), X(2481)}}, {{A, B, C, X(390), X(2550)}}, {{A, B, C, X(479), X(42304)}}, {{A, B, C, X(518), X(40779)}}, {{A, B, C, X(961), X(5665)}}, {{A, B, C, X(3600), X(3668)}}, {{A, B, C, X(7131), X(43736)}}, {{A, B, C, X(7241), X(8801)}}, {{A, B, C, X(30806), X(42697)}}
X(56264) = barycentric product X(i)*X(j) for these (i, j): {21446, 75}, {24002, 37223}, {39749, 7}, {39959, 85}, {41075, 918}, {52013, 76}
X(56264) = barycentric quotient X(i)/X(j) for these (i, j): {2, 390}, {7, 5222}, {57, 7290}, {75, 30854}, {226, 3755}, {279, 3598}, {346, 28057}, {522, 14330}, {553, 4989}, {651, 35280}, {21446, 1}, {21450, 2082}, {24002, 30804}, {32560, 4326}, {37223, 644}, {39749, 8}, {39959, 9}, {41075, 666}, {52013, 6}


X(56265) = KIMBERLING-PAVLOV X(2)-CONJUGATE OF X(9) AND X(9)

Barycentrics    (a^3*(b-c)+b*(b-c)^2*c+a*(b-c)*(b+c)^2-a^2*(2*b^2+b*c-2*c^2))*(a^3*(b-c)-b*(b-c)^2*c+a*(b-c)*(b+c)^2+a^2*(-2*b^2+b*c+2*c^2)) : :
X(56265) = -3*X[2]+2*X[40593]

X(56265) lies on these lines: {2, 40593}, {7, 14943}, {9, 3177}, {192, 28071}, {200, 1721}, {281, 26125}, {282, 41246}, {346, 17786}, {4183, 56014}, {6605, 51352}, {7110, 25521}, {17261, 21218}, {19605, 40719}, {20906, 28132}, {23617, 27340}, {30695, 56200}, {42483, 43983}

X(56265) = isogonal conjugate of X(20995)
X(56265) = isotomic conjugate of X(3177)
X(56265) = anticomplement of X(40593)
X(56265) = trilinear pole of line {4885, 17072}
X(56265) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20995}, {6, 1742}, {19, 20793}, {31, 3177}, {32, 20935}, {41, 31526}, {55, 34497}, {58, 21856}, {354, 38835}, {692, 21195}, {1333, 21084}, {2175, 40593}, {2223, 51846}
X(56265) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 3177}, {3, 20995}, {6, 20793}, {9, 1742}, {10, 21856}, {37, 21084}, {223, 34497}, {1086, 21195}, {3160, 31526}, {6376, 20935}, {40593, 40593}
X(56265) = X(i)-cross conjugate of X(j) for these {i, j}: {85, 2}
X(56265) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(9)}}, {{A, B, C, X(7), X(14189)}}, {{A, B, C, X(92), X(335)}}, {{A, B, C, X(189), X(1821)}}, {{A, B, C, X(192), X(54121)}}, {{A, B, C, X(330), X(2481)}}, {{A, B, C, X(522), X(43971)}}, {{A, B, C, X(7155), X(18031)}}, {{A, B, C, X(7361), X(30690)}}, {{A, B, C, X(14942), X(23618)}}
X(56265) = barycentric product X(i)*X(j) for these (i, j): {4397, 53632}, {43750, 8}
X(56265) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1742}, {2, 3177}, {3, 20793}, {6, 20995}, {7, 31526}, {10, 21084}, {37, 21856}, {57, 34497}, {75, 20935}, {85, 40593}, {514, 21195}, {673, 51846}, {1174, 38835}, {43750, 7}, {53632, 934}
X(56265) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 46706, 3177}


X(56266) = KIMBERLING-PAVLOV X(3)-CONJUGATE OF X(2) AND X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(2*a^4+2*b^4-b^2*c^2-c^4-a^2*(4*b^2+c^2))*(2*a^4-b^4-b^2*c^2+2*c^4-a^2*(b^2+4*c^2)) : :

X(56266) lies on these lines: {2, 340}, {3, 323}, {23, 40801}, {276, 43768}, {376, 18317}, {394, 52437}, {577, 14919}, {1217, 3146}, {1297, 7492}, {1993, 52703}, {1995, 14489}, {3090, 14938}, {3292, 54032}, {3346, 50693}, {3523, 46412}, {3525, 22268}, {5158, 11004}, {10303, 22270}, {15066, 51545}, {15421, 31296}, {18316, 18531}, {34225, 38435}, {34287, 43988}, {34897, 37188}, {51350, 54973}

X(56266) = trilinear pole of line {8552, 520}
X(56266) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 381}, {92, 34417}, {158, 5158}, {393, 18477}, {1096, 37638}, {1784, 51544}, {1969, 34416}, {1973, 44135}, {2181, 4993}, {8749, 18486}, {18487, 36119}, {32225, 36128}
X(56266) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 381}, {1147, 5158}, {1511, 18487}, {4550, 36430}, {6337, 44135}, {6503, 37638}, {22391, 34417}
X(56266) = X(i)-cross conjugate of X(j) for these {i, j}: {23039, 69}
X(56266) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3)}}, {{A, B, C, X(68), X(13582)}}, {{A, B, C, X(69), X(323)}}, {{A, B, C, X(89), X(1795)}}, {{A, B, C, X(94), X(9289)}}, {{A, B, C, X(184), X(39955)}}, {{A, B, C, X(248), X(1383)}}, {{A, B, C, X(275), X(13472)}}, {{A, B, C, X(287), X(7578)}}, {{A, B, C, X(577), X(3284)}}, {{A, B, C, X(647), X(40103)}}, {{A, B, C, X(2052), X(13452)}}, {{A, B, C, X(2986), X(34386)}}, {{A, B, C, X(2987), X(55977)}}, {{A, B, C, X(2996), X(43756)}}, {{A, B, C, X(3292), X(52898)}}, {{A, B, C, X(3431), X(43530)}}, {{A, B, C, X(8796), X(16835)}}, {{A, B, C, X(11270), X(16080)}}, {{A, B, C, X(13579), X(15077)}}, {{A, B, C, X(20421), X(40384)}}, {{A, B, C, X(51336), X(52153)}}
X(56266) = barycentric product X(i)*X(j) for these (i, j): {311, 46091}, {394, 43530}, {3431, 69}, {14919, 46809}, {16263, 3964}, {18316, 52437}, {54959, 8552}
X(56266) = barycentric quotient X(i)/X(j) for these (i, j): {3, 381}, {69, 44135}, {97, 4993}, {184, 34417}, {255, 18477}, {394, 37638}, {577, 5158}, {1531, 18484}, {3167, 21970}, {3284, 18487}, {3292, 32225}, {3431, 4}, {5158, 36430}, {14575, 34416}, {14919, 46808}, {16263, 1093}, {18316, 6344}, {18877, 51544}, {22115, 3581}, {43530, 2052}, {46091, 54}, {46809, 46106}, {47391, 40909}, {51394, 1531}, {51545, 1990}, {52437, 52149}, {54959, 46456}


X(56267) = KIMBERLING-PAVLOV X(3)-CONJUGATE OF X(2) AND X(6)

Barycentrics    (a^2-b^2-c^2)*(3*a^4+b^4-4*b^2*c^2+3*c^4-2*a^2*(2*b^2+c^2))*(3*a^4+3*b^4-4*b^2*c^2+c^4-2*a^2*(b^2+2*c^2)) : :

X(56267) lies on these lines: {2, 3167}, {6, 8797}, {20, 1972}, {68, 32972}, {69, 10607}, {95, 3620}, {141, 36948}, {155, 32987}, {182, 42351}, {193, 264}, {253, 401}, {287, 53783}, {394, 6340}, {524, 36889}, {1494, 11160}, {2987, 2996}, {3424, 46807}, {3580, 10603}, {5032, 55958}, {5921, 33971}, {6193, 32990}, {6330, 15258}, {6776, 42313}, {9007, 14977}, {11411, 32973}, {11898, 37188}, {12164, 32979}, {12429, 32982}, {13575, 45794}, {33272, 44665}, {37668, 46806}, {37779, 41896}, {40410, 51171}

X(56267) = isotomic conjugate of X(37174)
X(56267) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 51288}, {19, 1351}, {31, 37174}, {1007, 1973}
X(56267) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 37174}, {6, 1351}, {9, 51288}, {6337, 1007}, {6338, 10008}, {35067, 10011}
X(56267) = X(i)-cross conjugate of X(j) for these {i, j}: {11898, 69}, {37188, 2}
X(56267) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5050)}}, {{A, B, C, X(4), X(14912)}}, {{A, B, C, X(6), X(97)}}, {{A, B, C, X(20), X(401)}}, {{A, B, C, X(66), X(8796)}}, {{A, B, C, X(68), X(525)}}, {{A, B, C, X(193), X(394)}}, {{A, B, C, X(265), X(41895)}}, {{A, B, C, X(275), X(17040)}}, {{A, B, C, X(524), X(9007)}}, {{A, B, C, X(2052), X(16774)}}, {{A, B, C, X(3424), X(6776)}}, {{A, B, C, X(3519), X(14376)}}, {{A, B, C, X(4846), X(53101)}}, {{A, B, C, X(6090), X(14919)}}, {{A, B, C, X(6339), X(6504)}}, {{A, B, C, X(9028), X(9031)}}, {{A, B, C, X(9289), X(15077)}}, {{A, B, C, X(15316), X(28724)}}, {{A, B, C, X(15740), X(18845)}}, {{A, B, C, X(16081), X(34285)}}, {{A, B, C, X(18850), X(54973)}}, {{A, B, C, X(20080), X(37669)}}, {{A, B, C, X(30541), X(55978)}}, {{A, B, C, X(31626), X(34817)}}, {{A, B, C, X(34403), X(43681)}}, {{A, B, C, X(43537), X(47388)}}
X(56267) = barycentric product X(i)*X(j) for these (i, j): {69, 7612}, {394, 42298}, {3926, 47735}, {40819, 6340}
X(56267) = barycentric quotient X(i)/X(j) for these (i, j): {1, 51288}, {2, 37174}, {3, 1351}, {69, 1007}, {3564, 10011}, {3926, 10008}, {6391, 40809}, {6776, 9752}, {7612, 4}, {40819, 6353}, {42298, 2052}, {43718, 51338}, {47735, 393}


X(56268) = KIMBERLING-PAVLOV X(3)-CONJUGATE OF X(4) AND X(6)

Barycentrics    (a^2-b^2-c^2)*(a^6+(b^2-c^2)^2*(b^2+c^2)-a^4*(5*b^2+c^2)-a^2*(5*b^4-14*b^2*c^2+c^4))*(a^6+(b^2-c^2)^2*(b^2+c^2)-a^4*(b^2+5*c^2)-a^2*(b^4-14*b^2*c^2+5*c^4)) : :

X(56268) lies on the Jerabek hyperbola and on these lines: {3, 53021}, {4, 8681}, {6, 40132}, {64, 524}, {66, 9027}, {74, 20187}, {511, 35512}, {895, 37669}, {1177, 1660}, {2393, 43695}, {2854, 11744}, {3426, 3564}, {4846, 34382}, {6391, 18919}, {8057, 10097}, {9004, 43703}, {9007, 35364}, {10293, 14984}, {16051, 55977}, {18934, 42021}, {34383, 54962}, {40048, 47343}, {44495, 45011}

X(56268) = X(i)-isoconjugate-of-X(j) for these {i, j}: {162, 20186}
X(56268) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 20186}, {6338, 36895}
X(56268) = X(i)-cross conjugate of X(j) for these {i, j}: {6791, 525}
X(56268) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(520), X(4176)}}, {{A, B, C, X(523), X(6340)}}, {{A, B, C, X(524), X(8057)}}, {{A, B, C, X(1265), X(34893)}}, {{A, B, C, X(2393), X(30211)}}, {{A, B, C, X(3564), X(9007)}}, {{A, B, C, X(3926), X(41909)}}, {{A, B, C, X(7056), X(34916)}}, {{A, B, C, X(8673), X(9027)}}, {{A, B, C, X(8675), X(34382)}}, {{A, B, C, X(9051), X(34381)}}, {{A, B, C, X(9516), X(42287)}}, {{A, B, C, X(41894), X(42484)}}
X(56268) = barycentric product X(i)*X(j) for these (i, j): {20187, 525}, {36878, 3926}
X(56268) = barycentric quotient X(i)/X(j) for these (i, j): {647, 20186}, {3926, 36895}, {6791, 53992}, {20187, 648}, {36878, 393}


X(56269) = KIMBERLING-PAVLOV X(3)-CONJUGATE OF X(7) AND X(7)

Barycentrics    a^2*(a-b-c)*(a^2-b^2-c^2)*(a^3+a^2*(b-c)+(b-c)^2*(b+c)+a*(b^2-2*b*c-c^2))*(a^3+a^2*(-b+c)+(b-c)^2*(b+c)+a*(-b^2-2*b*c+c^2)) : :

X(56269) lies on these lines: {6, 169}, {7, 2982}, {9, 40141}, {48, 4303}, {63, 45127}, {155, 45130}, {159, 2876}, {222, 22122}, {912, 2911}, {1172, 3193}, {1812, 27509}, {1814, 20806}, {2192, 15733}, {2193, 7124}, {2194, 7083}, {2219, 23604}, {8761, 15310}, {13397, 32726}, {14578, 15905}, {22132, 52431}, {27382, 52663}

X(56269) = trilinear pole of line {1946, 52306}
X(56269) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 1708}, {27, 41538}, {34, 17776}, {92, 37579}, {158, 3173}, {225, 40571}, {226, 30733}, {273, 2911}, {278, 3811}, {281, 4341}, {653, 15313}, {1780, 40149}, {2052, 3215}, {4564, 5521}, {7115, 17877}, {14054, 40573}
X(56269) = X(i)-Dao conjugate of X(j) for these {i, j}: {1147, 3173}, {11517, 17776}, {22391, 37579}, {36033, 1708}, {40628, 17877}, {51473, 278}
X(56269) = X(i)-Ceva conjugate of X(j) for these {i, j}: {15474, 3}
X(56269) = X(i)-cross conjugate of X(j) for these {i, j}: {3271, 521}, {6056, 3}
X(56269) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(7)}}, {{A, B, C, X(6), X(48)}}, {{A, B, C, X(9), X(169)}}, {{A, B, C, X(58), X(78)}}, {{A, B, C, X(63), X(284)}}, {{A, B, C, X(72), X(1036)}}, {{A, B, C, X(77), X(13404)}}, {{A, B, C, X(255), X(1069)}}, {{A, B, C, X(269), X(36057)}}, {{A, B, C, X(345), X(2189)}}, {{A, B, C, X(348), X(2335)}}, {{A, B, C, X(394), X(2989)}}, {{A, B, C, X(521), X(1264)}}, {{A, B, C, X(608), X(32658)}}, {{A, B, C, X(1400), X(3694)}}, {{A, B, C, X(1820), X(2164)}}, {{A, B, C, X(2316), X(3692)}}, {{A, B, C, X(2359), X(2364)}}, {{A, B, C, X(2983), X(41081)}}, {{A, B, C, X(15733), X(55111)}}, {{A, B, C, X(28787), X(43740)}}
X(56269) = barycentric product X(i)*X(j) for these (i, j): {3, 43740}, {21, 28787}, {1259, 39267}, {2193, 43675}, {3719, 46886}, {11517, 46354}, {13397, 521}, {15474, 219}, {23604, 283}, {39943, 63}
X(56269) = barycentric quotient X(i)/X(j) for these (i, j): {48, 1708}, {184, 37579}, {212, 3811}, {219, 17776}, {228, 41538}, {577, 3173}, {603, 4341}, {1946, 15313}, {2193, 40571}, {2194, 30733}, {3271, 5521}, {6056, 11517}, {7004, 17877}, {13397, 18026}, {15474, 331}, {20967, 41609}, {23207, 14054}, {28787, 1441}, {39943, 92}, {43675, 52575}, {43740, 264}, {52425, 2911}, {52430, 3215}


X(56270) = KIMBERLING-PAVLOV X(4)-CONJUGATE OF X(2) AND X(4)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4+4*b^2*c^2-5*c^4-2*a^2*(b^2-2*c^2))*(a^4-5*b^4+4*b^2*c^2+c^4+a^2*(4*b^2-2*c^2)) : :

X(56270) lies on the Kiepert hyperbola and on these lines: {2, 1990}, {3, 54660}, {4, 3426}, {5, 54763}, {27, 54587}, {29, 54790}, {30, 54667}, {76, 46106}, {98, 4232}, {193, 2986}, {235, 54604}, {262, 52284}, {275, 51990}, {297, 5485}, {324, 37874}, {340, 54774}, {381, 54838}, {393, 16080}, {458, 18842}, {467, 54930}, {468, 7612}, {469, 54689}, {470, 43542}, {471, 43543}, {472, 33603}, {473, 33602}, {475, 54727}, {671, 37174}, {1585, 14241}, {1586, 14226}, {1993, 41899}, {2394, 2501}, {2996, 3580}, {3424, 52301}, {3523, 40448}, {3535, 43536}, {3536, 54597}, {3542, 54498}, {3543, 54512}, {3839, 18554}, {4194, 54758}, {4196, 54740}, {4198, 54533}, {4200, 54757}, {4207, 54657}, {4213, 54885}, {5056, 13599}, {5068, 31363}, {5094, 14494}, {5125, 54787}, {5177, 54559}, {5702, 14361}, {6515, 43670}, {6620, 55009}, {6872, 54555}, {6995, 14458}, {7378, 14492}, {7391, 54640}, {7396, 54709}, {7408, 54519}, {7409, 54520}, {7500, 54610}, {7505, 54500}, {7518, 54526}, {7519, 54632}, {7607, 53857}, {7714, 54612}, {8796, 13567}, {8889, 54523}, {10301, 54845}, {11109, 54624}, {11331, 18840}, {13736, 54702}, {14004, 54690}, {14035, 54551}, {14063, 54828}, {14918, 43676}, {14920, 44877}, {15274, 53099}, {17555, 54786}, {17578, 54552}, {18316, 18533}, {18841, 52289}, {31099, 54919}, {32532, 52282}, {32971, 54682}, {32974, 54898}, {34767, 55276}, {35486, 54969}, {37122, 54486}, {37192, 54785}, {37337, 54529}, {37384, 54677}, {37388, 54499}, {37448, 54831}, {37460, 52168}, {40138, 43530}, {40890, 54651}, {50689, 54923}, {52253, 54772}, {52280, 54867}, {52288, 54616}, {52290, 53103}, {52293, 53098}, {54372, 54770}

X(56270) = polar conjugate of X(376)
X(56270) = trilinear pole of line {16231, 37984}
X(56270) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 376}, {63, 26864}, {163, 9007}, {255, 40138}, {4100, 47392}, {4575, 9209}, {9247, 44133}, {52147, 52430}
X(56270) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 9007}, {136, 9209}, {1249, 376}, {3162, 26864}, {6523, 40138}, {16253, 36427}
X(56270) = X(i)-Ceva conjugate of X(j) for these {i, j}: {36889, 52452}
X(56270) = X(i)-cross conjugate of X(j) for these {i, j}: {1596, 264}, {3426, 36889}, {34288, 52487}, {37643, 2}
X(56270) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(55982)}}, {{A, B, C, X(53), X(46952)}}, {{A, B, C, X(64), X(14919)}}, {{A, B, C, X(89), X(36121)}}, {{A, B, C, X(97), X(3532)}}, {{A, B, C, X(193), X(3580)}}, {{A, B, C, X(253), X(850)}}, {{A, B, C, X(297), X(4232)}}, {{A, B, C, X(393), X(1990)}}, {{A, B, C, X(394), X(43719)}}, {{A, B, C, X(1383), X(43717)}}, {{A, B, C, X(6995), X(11331)}}, {{A, B, C, X(10603), X(35142)}}, {{A, B, C, X(11738), X(40384)}}, {{A, B, C, X(13854), X(18384)}}, {{A, B, C, X(14528), X(31626)}}, {{A, B, C, X(34288), X(46808)}}
X(56270) = barycentric product X(i)*X(j) for these (i, j): {253, 52452}, {264, 3426}, {850, 9064}, {18027, 51990}, {36889, 4}
X(56270) = barycentric quotient X(i)/X(j) for these (i, j): {4, 376}, {25, 26864}, {264, 44133}, {393, 40138}, {523, 9007}, {1093, 47392}, {2052, 52147}, {2501, 9209}, {3426, 3}, {9064, 110}, {14593, 40348}, {18554, 1531}, {36889, 69}, {40138, 36427}, {47649, 5063}, {51385, 1515}, {51990, 577}, {52168, 47391}, {52452, 20}


X(56271) = KIMBERLING-PAVLOV X(4)-CONJUGATE OF X(3) AND X(3)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^10*(b^2-c^2)+b^2*c^2*(b^2-c^2)^4+a^2*(b^2-c^2)^3*(b^2+c^2)^2+a^8*(-4*b^4+b^2*c^2+4*c^4)+2*a^6*(3*b^6+b^4*c^2-b^2*c^4-3*c^6)-2*a^4*(2*b^8+b^6*c^2-2*b^4*c^4+b^2*c^6-2*c^8))*(a^10*(b^2-c^2)-b^2*c^2*(b^2-c^2)^4+a^2*(b^2-c^2)^3*(b^2+c^2)^2-a^8*(4*b^4+b^2*c^2-4*c^4)+2*a^6*(3*b^6+b^4*c^2-b^2*c^4-3*c^6)+a^4*(-4*b^8+2*b^6*c^2-4*b^4*c^4+2*b^2*c^6+4*c^8)) : :

X(56271) lies on the Jerabek hyperbola and on these lines: {3, 1075}, {54, 3168}, {64, 41365}, {68, 6761}, {73, 1148}, {393, 8612}, {450, 15316}, {1942, 3542}, {1987, 52011}, {13450, 43710}, {14528, 42457}, {19173, 43918}, {37070, 43908}

X(56271) = polar conjugate of X(46717)
X(56271) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 46717}, {63, 41373}, {255, 1075}, {2169, 41481}
X(56271) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 46717}, {3162, 41373}, {6523, 1075}, {14363, 41481}
X(56271) = X(i)-Ceva conjugate of X(j) for these {i, j}: {13855, 4}
X(56271) = X(i)-cross conjugate of X(j) for these {i, j}: {1093, 4}
X(56271) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(158), X(7049)}}, {{A, B, C, X(254), X(1941)}}, {{A, B, C, X(450), X(3542)}}, {{A, B, C, X(1075), X(1093)}}, {{A, B, C, X(3168), X(13450)}}, {{A, B, C, X(32230), X(34449)}}
X(56271) = barycentric product X(i)*X(j) for these (i, j): {13855, 2052}, {34287, 4}
X(56271) = barycentric quotient X(i)/X(j) for these (i, j): {4, 46717}, {25, 41373}, {53, 41481}, {393, 1075}, {13855, 394}, {34287, 69}


X(56272) = KIMBERLING-PAVLOV X(5)-CONJUGATE OF X(4) AND X(4)

Barycentrics    b^2*c^2*(a^4-2*a^2*b^2+(b^2-c^2)^2)*(a^4-2*a^2*c^2+(b^2-c^2)^2)*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :
X(56272) = -3*X[568]+2*X[15231]

X(56272) lies on cubic K562 and on these lines: {3, 22261}, {4, 52}, {5, 45793}, {23, 11816}, {26, 2351}, {51, 40449}, {53, 41587}, {91, 52383}, {94, 96}, {216, 2165}, {311, 1209}, {338, 11585}, {343, 8800}, {565, 1154}, {568, 15231}, {2970, 12359}, {2980, 7517}, {3459, 53028}, {3613, 5576}, {7526, 16391}, {8797, 20563}, {10539, 44145}, {11799, 17703}, {15761, 15912}, {32379, 32734}, {34385, 39286}, {36747, 41244}, {40441, 41271}

X(56272) = X(i)-isoconjugate-of-X(j) for these {i, j}: {24, 2169}, {47, 54}, {275, 563}, {571, 2167}, {924, 36134}, {1147, 2190}, {1748, 14533}, {1993, 2148}, {18315, 55216}, {40440, 52435}, {44179, 54034}
X(56272) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 1147}, {137, 924}, {139, 15423}, {216, 1993}, {338, 6563}, {6663, 52}, {14363, 24}, {15450, 30451}, {17433, 44808}, {18402, 52416}, {34853, 54}, {37864, 54034}, {39019, 52584}, {40588, 571}, {52032, 9723}, {52869, 51393}
X(56272) = X(i)-Ceva conjugate of X(j) for these {i, j}: {847, 5}
X(56272) = X(i)-cross conjugate of X(j) for these {i, j}: {216, 324}
X(56272) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(5889)}}, {{A, B, C, X(4), X(5)}}, {{A, B, C, X(51), X(1209)}}, {{A, B, C, X(52), X(216)}}, {{A, B, C, X(94), X(324)}}, {{A, B, C, X(96), X(5962)}}, {{A, B, C, X(343), X(34853)}}, {{A, B, C, X(850), X(3519)}}, {{A, B, C, X(5562), X(6368)}}, {{A, B, C, X(8798), X(34802)}}, {{A, B, C, X(11442), X(53174)}}, {{A, B, C, X(18314), X(51481)}}
X(56272) = barycentric product X(i)*X(j) for these (i, j): {5, 5392}, {324, 68}, {343, 847}, {1953, 20571}, {2165, 311}, {12077, 46134}, {13450, 52350}, {14213, 91}, {14593, 28706}, {15415, 32734}, {18314, 925}, {20563, 53}, {30450, 6368}, {34385, 36412}, {39116, 8800}, {45793, 96}
X(56272) = barycentric quotient X(i)/X(j) for these (i, j): {5, 1993}, {51, 571}, {53, 24}, {68, 97}, {91, 2167}, {216, 1147}, {217, 52435}, {311, 7763}, {324, 317}, {343, 9723}, {847, 275}, {925, 18315}, {1820, 2169}, {1953, 47}, {2081, 44808}, {2165, 54}, {2351, 14533}, {3199, 44077}, {5392, 95}, {6368, 52584}, {11062, 52416}, {12077, 924}, {13450, 11547}, {14213, 44179}, {14569, 8745}, {14576, 52432}, {14593, 8882}, {15451, 30451}, {18180, 18605}, {18314, 6563}, {20563, 34386}, {30450, 18831}, {32734, 14586}, {35360, 41679}, {36145, 36134}, {36412, 52}, {40981, 52436}, {41221, 47421}, {41536, 34756}, {45793, 39113}, {47731, 8883}, {51513, 6753}, {52945, 51393}, {53174, 51776}, {53245, 31635}, {55219, 34952}, {55250, 2616}
X(56272) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {847, 5392, 68}


X(56273) = X(3)-VERTEX CONJUGATE OF X(9)

Barycentrics    a*(a^6-a^4*(b-c)^2-2*a^5*(b+c)+(b-c)^4*(b+c)^2-a^2*(b^2-c^2)^2+4*a^3*(b^3-2*b*c^2+c^3)-2*a*(b^5-b^4*c+4*b^3*c^2-5*b*c^4+c^5))*(a^6-a^4*(b-c)^2-2*a^5*(b+c)+(b-c)^4*(b+c)^2-a^2*(b^2-c^2)^2+4*a^3*(b^3-2*b^2*c+c^3)-2*a*(b^5-5*b^4*c+4*b^2*c^3-b*c^4+c^5)) : :

X(56273) lies on the Feuerbach hyperbola and on these lines: {1, 1035}, {4, 207}, {8, 1490}, {9, 3197}, {21, 8726}, {34, 7149}, {57, 30500}, {79, 12676}, {80, 1750}, {84, 1467}, {90, 7992}, {514, 43737}, {515, 6601}, {517, 42470}, {1000, 18446}, {1768, 55966}, {1864, 38308}, {1870, 38268}, {2800, 34894}, {2829, 3254}, {2900, 12641}, {2950, 45393}, {3427, 54366}, {3577, 15239}, {3911, 55964}, {6245, 10429}, {6282, 56101}, {7091, 12114}, {7160, 7971}, {7966, 56038}, {10305, 12246}, {10396, 17649}, {12664, 38271}, {28234, 56089}

X(56273) = isogonal conjugate of X(6282)
X(56273) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 9}
X(56273) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(937)}}, {{A, B, C, X(28), X(40)}}, {{A, B, C, X(34), X(64)}}, {{A, B, C, X(57), X(30503)}}, {{A, B, C, X(78), X(40446)}}, {{A, B, C, X(102), X(269)}}, {{A, B, C, X(103), X(998)}}, {{A, B, C, X(282), X(36123)}}, {{A, B, C, X(514), X(1422)}}, {{A, B, C, X(515), X(2751)}}, {{A, B, C, X(516), X(30199)}}, {{A, B, C, X(971), X(28292)}}, {{A, B, C, X(1243), X(39393)}}, {{A, B, C, X(1295), X(53086)}}, {{A, B, C, X(2217), X(54197)}}, {{A, B, C, X(2291), X(3426)}}, {{A, B, C, X(2324), X(8748)}}, {{A, B, C, X(2800), X(2826)}}, {{A, B, C, X(2829), X(3887)}}, {{A, B, C, X(3900), X(7008)}}, {{A, B, C, X(8917), X(47645)}}, {{A, B, C, X(28234), X(30198)}}, {{A, B, C, X(40836), X(44692)}}, {{A, B, C, X(43672), X(56136)}}
X(56273) = barycentric quotient X(i)/X(j) for these (i, j): {6, 6282}


X(56274) = KIMBERLING-PAVLOV X(7)-CONJUGATE OF X(2) AND X(7)

Barycentrics    (a+b-c)*(a-b+c)*(a^2-2*a*b+b^2+4*a*c+4*b*c-5*c^2)*(a^2+4*a*b-5*b^2-2*a*c+4*b*c+c^2) : :

X(56274) lies on these lines: {2, 1323}, {7, 55922}, {75, 37780}, {145, 51567}, {903, 51351}, {2400, 21183}, {3911, 42318}, {4373, 26015}, {9436, 36588}, {11019, 20121}, {31527, 31721}

X(56274) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 6172}, {55, 35445}, {59, 23056}
X(56274) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 35445}, {3160, 6172}, {6615, 23056}, {40615, 46919}
X(56274) = X(i)-cross conjugate of X(j) for these {i, j}: {21314, 7}, {55922, 55948}
X(56274) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(80), X(56088)}}, {{A, B, C, X(89), X(43736)}}, {{A, B, C, X(279), X(1323)}}, {{A, B, C, X(693), X(10405)}}, {{A, B, C, X(1000), X(43672)}}, {{A, B, C, X(3062), X(41798)}}
X(56274) = barycentric product X(i)*X(j) for these (i, j): {55922, 85}, {55948, 7}
X(56274) = barycentric quotient X(i)/X(j) for these (i, j): {7, 6172}, {57, 35445}, {2170, 23056}, {3676, 46919}, {23062, 47374}, {55922, 9}, {55948, 8}


X(56275) = KIMBERLING-PAVLOV X(7)-CONJUGATE OF X(8) AND X(8)

Barycentrics    (a+b-c)*(a-b+c)*(a^4-4*a^3*(b-c)+(b-c)^4-4*a*(b-c)*(b+c)^2+2*a^2*(3*b^2+2*b*c-5*c^2))*(a^4+4*a^3*(b-c)+(b-c)^4+4*a*(b-c)*(b+c)^2+a^2*(-10*b^2+4*b*c+6*c^2)) : :

X(56275) lies on the Feuerbach hyperbola and on these lines: {1, 3599}, {7, 10939}, {8, 31527}, {9, 2124}, {279, 3062}, {347, 42015}, {2898, 7319}, {5543, 10390}, {7320, 31526}, {10481, 31507}

X(56275) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 1615}, {41, 30695}, {55, 2951}, {220, 2124}, {1253, 31527}, {3939, 17427}, {6602, 17113}
X(56275) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 2951}, {478, 1615}, {3160, 30695}, {17113, 31527}, {40617, 17427}
X(56275) = X(i)-cross conjugate of X(j) for these {i, j}: {479, 7}, {8917, 42483}
X(56275) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(277), X(38254)}}, {{A, B, C, X(479), X(2124)}}, {{A, B, C, X(2125), X(8917)}}
X(56275) = barycentric product X(i)*X(j) for these (i, j): {85, 8917}, {1088, 2125}, {42483, 7}
X(56275) = barycentric quotient X(i)/X(j) for these (i, j): {7, 30695}, {56, 1615}, {57, 2951}, {269, 2124}, {279, 31527}, {479, 17113}, {2125, 200}, {3022, 17426}, {3669, 17427}, {8917, 9}, {42483, 8}
X(56275) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3160, 15913, 2124}


X(56276) = KIMBERLING-PAVLOV X(8)-CONJUGATE OF X(1) AND X(1)

Barycentrics    (a-b-c)*(a^2*(b-c)+b*c*(b+c)+a*(b^2-b*c-c^2))*(a^2*(b-c)-b*c*(b+c)+a*(b^2+b*c-c^2)) : :

X(56276) lies on the Feuerbach hyperbola and on these lines: {1, 979}, {2, 45989}, {4, 36926}, {7, 2899}, {21, 27538}, {84, 5205}, {104, 13732}, {190, 38286}, {941, 3161}, {2478, 43749}, {3239, 3249}, {3296, 30947}, {3701, 7155}, {4518, 43748}, {4876, 27523}, {5192, 24349}, {5558, 8055}, {7080, 9365}, {9780, 24451}, {26093, 33144}, {28997, 45254}, {38271, 51284}

X(56276) = X(i)-isoconjugate-of-X(j) for these {i, j}: {34, 20805}, {56, 978}, {57, 21769}, {604, 3210}, {1106, 19582}, {1407, 3169}, {1412, 21857}, {4564, 16614}
X(56276) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 978}, {3161, 3210}, {5452, 21769}, {6552, 19582}, {11517, 20805}, {24771, 3169}, {40599, 21857}
X(56276) = X(i)-Ceva conjugate of X(j) for these {i, j}: {979, 8}
X(56276) = X(i)-cross conjugate of X(j) for these {i, j}: {341, 8}
X(56276) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(29), X(56180)}}, {{A, B, C, X(280), X(9369)}}, {{A, B, C, X(318), X(4518)}}, {{A, B, C, X(2319), X(39976)}}, {{A, B, C, X(2899), X(5423)}}, {{A, B, C, X(3701), X(43534)}}, {{A, B, C, X(4076), X(56146)}}, {{A, B, C, X(5205), X(7080)}}
X(56276) = barycentric product X(i)*X(j) for these (i, j): {312, 979}, {4391, 53625}, {39694, 8}, {39701, 6557}
X(56276) = barycentric quotient X(i)/X(j) for these (i, j): {8, 3210}, {9, 978}, {55, 21769}, {200, 3169}, {210, 21857}, {219, 20805}, {346, 19582}, {979, 57}, {3271, 16614}, {6557, 27835}, {39694, 7}, {39701, 5435}, {53625, 651}
X(56276) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39694, 39701, 979}


X(56277) = KIMBERLING-PAVLOV X(8)-CONJUGATE OF X(4) AND X(4)

Barycentrics    (a-b-c)*(a^3+b^3+a^2*(b-3*c)+b^2*c+b*c^2+c^3+a*(b^2-3*c^2))*(a^3+b^3+b^2*c+b*c^2+c^3+a^2*(-3*b+c)+a*(-3*b^2+c^2)) : :

X(56277) lies on the Feuerbach hyperbola and on these lines: {1, 26065}, {4, 2899}, {7, 19582}, {104, 42469}, {941, 25082}, {989, 4339}, {1476, 15375}, {2298, 3161}, {2481, 30022}, {5423, 56276}, {5556, 8055}, {7319, 36926}

X(56277) = isotomic conjugate of X(31598)
X(56277) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 28039}, {31, 31598}, {34, 42461}, {56, 1722}, {604, 30699}, {608, 8897}, {1106, 2899}
X(56277) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1722}, {2, 31598}, {9, 28039}, {3161, 30699}, {6552, 2899}, {11517, 42461}
X(56277) = X(i)-cross conjugate of X(j) for these {i, j}: {1265, 8}
X(56277) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(280), X(4518)}}, {{A, B, C, X(960), X(34820)}}, {{A, B, C, X(1265), X(2899)}}, {{A, B, C, X(8851), X(9375)}}
X(56277) = barycentric product X(i)*X(j) for these (i, j): {312, 39946}, {4391, 53629}, {39696, 8}, {42469, 7017}
X(56277) = barycentric quotient X(i)/X(j) for these (i, j): {1, 28039}, {2, 31598}, {8, 30699}, {9, 1722}, {78, 8897}, {219, 42461}, {346, 2899}, {15375, 1407}, {39696, 7}, {39946, 57}, {42469, 222}, {53629, 651}


X(56278) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(4) AND X(4)

Barycentrics    a*(a-b-c)*(a^4-2*a^3*b-2*a^2*c^2+2*a*b^2*(b+c)-(b-c)^3*(b+c))*(a^4-2*a^2*b^2-2*a^3*c+(b-c)^3*(b+c)+2*a*c^2*(b+c)) : :

X(56278) lies on the Feuerbach hyperbola and on these lines: {1, 11517}, {4, 2900}, {7, 224}, {8, 10395}, {72, 90}, {78, 43740}, {80, 12625}, {84, 912}, {200, 6598}, {226, 5555}, {376, 10305}, {405, 7162}, {950, 30513}, {1000, 16845}, {1476, 3873}, {1490, 5840}, {2136, 3577}, {2481, 53652}, {3158, 5665}, {3487, 41540}, {3880, 56152}, {3913, 17098}, {3935, 7319}, {5436, 7160}, {5553, 18446}, {5758, 10309}, {6769, 56273}, {7149, 15500}, {14923, 17097}, {18232, 55918}, {21627, 43745}, {34489, 37301}

X(56278) = isogonal conjugate of X(34489)
X(56278) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34489}, {34, 224}, {56, 12649}, {57, 1723}, {269, 2900}, {278, 3211}
X(56278) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 12649}, {3, 34489}, {1145, 51432}, {5452, 1723}, {6600, 2900}, {11517, 224}, {41540, 41565}
X(56278) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39695, 39947}
X(56278) = X(i)-cross conjugate of X(j) for these {i, j}: {1260, 9}
X(56278) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(34), X(2316)}}, {{A, B, C, X(78), X(11517)}}, {{A, B, C, X(224), X(1260)}}, {{A, B, C, X(281), X(1257)}}, {{A, B, C, X(318), X(56136)}}, {{A, B, C, X(912), X(8058)}}, {{A, B, C, X(2184), X(18359)}}, {{A, B, C, X(2218), X(39943)}}, {{A, B, C, X(3737), X(39946)}}, {{A, B, C, X(7220), X(9398)}}, {{A, B, C, X(7367), X(42064)}}, {{A, B, C, X(10570), X(56179)}}, {{A, B, C, X(14942), X(40436)}}, {{A, B, C, X(34430), X(41505)}}, {{A, B, C, X(42019), X(56148)}}
X(56278) = barycentric product X(i)*X(j) for these (i, j): {312, 34430}, {345, 41505}, {39695, 9}, {39947, 8}, {53652, 650}
X(56278) = barycentric quotient X(i)/X(j) for these (i, j): {6, 34489}, {9, 12649}, {55, 1723}, {212, 3211}, {219, 224}, {220, 2900}, {34430, 57}, {39695, 85}, {39947, 7}, {41505, 278}, {53652, 4554}


X(56279) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(6) AND X(6)

Barycentrics    a*(a-b-c)*(a^2*(b-c)+b*c*(b+c)+a*(b^2-b*c-c^2))*(a^2*(b-c)-b*c*(b+c)+a*(b^2+b*c-c^2)) : :

X(56279) lies on these lines: {6, 979}, {9, 56276}, {57, 1999}, {284, 3208}, {333, 4110}, {2258, 3158}, {2291, 53625}, {2319, 2321}, {3500, 17786}, {4876, 51995}

X(56279) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 21769}, {56, 3210}, {57, 978}, {269, 3169}, {278, 20805}, {1014, 21857}, {1407, 19582}, {4998, 16614}
X(56279) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3210}, {5452, 978}, {6600, 3169}, {24771, 19582}
X(56279) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39694, 979}
X(56279) = X(i)-cross conjugate of X(j) for these {i, j}: {346, 9}
X(56279) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5255)}}, {{A, B, C, X(6), X(9)}}, {{A, B, C, X(281), X(3501)}}, {{A, B, C, X(314), X(7220)}}, {{A, B, C, X(983), X(7350)}}, {{A, B, C, X(1043), X(1120)}}, {{A, B, C, X(1261), X(2298)}}, {{A, B, C, X(2321), X(3208)}}, {{A, B, C, X(3900), X(30693)}}, {{A, B, C, X(7155), X(8851)}}, {{A, B, C, X(56154), X(56180)}}
X(56279) = barycentric product X(i)*X(j) for these (i, j): {1, 56276}, {8, 979}, {522, 53625}, {3680, 39701}, {39694, 9}
X(56279) = barycentric quotient X(i)/X(j) for these (i, j): {9, 3210}, {41, 21769}, {55, 978}, {200, 19582}, {212, 20805}, {220, 3169}, {979, 7}, {1334, 21857}, {3680, 27835}, {39694, 85}, {39701, 39126}, {53625, 664}, {56276, 75}


X(56280) = KIMBERLING-PAVLOV X(9)-CONJUGATE OF X(10) AND X(10)

Barycentrics    a*(a-b-c)*(a^4+b^4-c^4-a*b*c*(b+c)-a^2*b*(2*b+c))*(a^4-b^4+c^4-a*b*c*(b+c)-a^2*c*(b+2*c)) : :

X(56280) lies on these lines: {1, 52388}, {9, 41502}, {10, 451}, {35, 72}, {40, 37979}, {74, 16132}, {78, 35193}, {307, 1442}, {1717, 56141}, {3694, 52405}, {3710, 4420}, {7110, 38336}

X(56280) = trilinear pole of line {8611, 9404}
X(56280) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 18625}, {34, 52362}, {56, 2475}, {57, 1781}, {65, 229}, {608, 28754}, {1042, 52360}, {1400, 52361}, {1427, 40582}, {37583, 41495}
X(56280) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 2475}, {9, 18625}, {5452, 1781}, {11517, 52362}, {40582, 52361}, {40602, 229}
X(56280) = X(i)-cross conjugate of X(j) for these {i, j}: {2328, 9}, {44782, 8}
X(56280) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(35)}}, {{A, B, C, X(9), X(10)}}, {{A, B, C, X(21), X(191)}}, {{A, B, C, X(65), X(2341)}}, {{A, B, C, X(90), X(2166)}}, {{A, B, C, X(200), X(56278)}}, {{A, B, C, X(285), X(3255)}}, {{A, B, C, X(522), X(1098)}}, {{A, B, C, X(1039), X(2364)}}, {{A, B, C, X(2287), X(6598)}}, {{A, B, C, X(7040), X(15446)}}, {{A, B, C, X(7161), X(52409)}}, {{A, B, C, X(7281), X(9398)}}, {{A, B, C, X(15175), X(36626)}}, {{A, B, C, X(15910), X(52344)}}, {{A, B, C, X(19605), X(26702)}}
X(56280) = barycentric product X(i)*X(j) for these (i, j): {312, 34435}, {54454, 9}
X(56280) = barycentric quotient X(i)/X(j) for these (i, j): {1, 18625}, {9, 2475}, {21, 52361}, {55, 1781}, {78, 28754}, {219, 52362}, {284, 229}, {2287, 52360}, {2328, 40582}, {34435, 57}, {54454, 85}


X(56281) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(1) AND X(10)

Barycentrics    (b+c)*(a^2*(b-2*c)-2*b*c*(b+c)+a*(b^2-2*c^2))*(a^2*(2*b-c)+2*b*c*(b+c)+a*(2*b^2-c^2)) : :

X(56281) lies on these lines: {1, 3994}, {65, 49980}, {596, 30942}, {740, 56160}, {897, 51285}, {1089, 41683}, {3632, 34434}, {4671, 39697}, {13476, 49532}, {29822, 56221}

X(56281) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(1089), X(4024)}}, {{A, B, C, X(5561), X(18082)}}
X(56281) = barycentric product X(i)*X(j) for these (i, j): {10, 55953}, {321, 55926}
X(56281) = barycentric quotient X(i)/X(j) for these (i, j): {55926, 81}, {55953, 86}


X(56282) = KIMBERLING-PAVLOV X(10)-CONJUGATE OF X(4) AND X(4)

Barycentrics    -((b+c)*(-(a^2*c)+b^2*(b+c)+a*(b^2-c^2))*(a^2*b-c^2*(b+c)+a*(b^2-c^2))) : :

X(56282) lies on the Kiepert hyperbola and on these lines: {2, 3670}, {4, 2901}, {10, 4016}, {37, 43531}, {72, 1751}, {76, 42714}, {98, 29014}, {226, 3159}, {321, 3454}, {519, 54676}, {912, 13478}, {2051, 39566}, {3175, 54928}, {3743, 40718}, {4444, 23875}, {14534, 15376}, {22035, 43672}, {42471, 44040}

X(56282) = trilinear pole of line {21719, 21721}
X(56282) = X(i)-isoconjugate-of-X(j) for these {i, j}: {28, 42463}, {58, 1724}, {81, 5301}, {163, 29013}, {849, 2901}, {1333, 3187}, {2206, 18147}
X(56282) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 1724}, {37, 3187}, {115, 29013}, {4075, 2901}, {40586, 5301}, {40591, 42463}, {40603, 18147}, {55065, 50329}
X(56282) = X(i)-cross conjugate of X(j) for these {i, j}: {3695, 10}
X(56282) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(313)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(34), X(4674)}}, {{A, B, C, X(37), X(1089)}}, {{A, B, C, X(65), X(3454)}}, {{A, B, C, X(525), X(29016)}}, {{A, B, C, X(596), X(1441)}}, {{A, B, C, X(740), X(23875)}}, {{A, B, C, X(6757), X(42027)}}, {{A, B, C, X(14208), X(28787)}}
X(56282) = barycentric product X(i)*X(j) for these (i, j): {10, 39700}, {15376, 28654}, {29014, 850}
X(56282) = barycentric quotient X(i)/X(j) for these (i, j): {10, 3187}, {37, 1724}, {42, 5301}, {71, 42463}, {321, 18147}, {523, 29013}, {594, 2901}, {4024, 50329}, {4064, 52599}, {15376, 593}, {29014, 110}, {39700, 86}


X(56283) = KIMBERLING-PAVLOV X(11)-CONJUGATE OF X(1) AND X(1)

Barycentrics    (a+b)*(b-c)^3*(a+c)*(-a+b+c)^2 : :

X(56283) lies on these lines: {1, 523}, {21, 884}, {28, 2401}, {140, 14838}, {512, 34434}, {513, 4292}, {514, 942}, {522, 960}, {764, 4089}, {1043, 7253}, {1393, 7178}, {1434, 7192}, {1577, 4187}, {2283, 3658}, {2424, 8747}, {3575, 54244}, {3700, 33299}, {3884, 4151}, {3900, 6737}, {4124, 21132}, {4833, 5327}, {6003, 20420}, {6842, 39212}, {8042, 23764}, {10006, 33528}, {14010, 40213}, {15914, 18191}, {24006, 37368}, {37298, 45671}

X(56283) = perspector of circumconic {{A, B, C, X(16727), X(17197)}}
X(56283) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 4619}, {59, 4551}, {765, 53321}, {1018, 1262}, {1020, 1252}, {1110, 4566}, {1400, 31615}, {2149, 4552}, {3952, 24027}, {4033, 23979}, {4069, 7339}, {4557, 7045}, {4559, 4564}, {4574, 7128}, {7012, 23067}, {21859, 52378}
X(56283) = X(i)-Dao conjugate of X(j) for these {i, j}: {513, 53321}, {514, 4566}, {522, 3952}, {650, 4552}, {661, 1020}, {3239, 52609}, {4988, 4605}, {6608, 4069}, {6615, 4551}, {17115, 4557}, {40582, 31615}, {40589, 4619}, {40620, 1275}, {40625, 4998}, {55067, 4564}, {55068, 765}
X(56283) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3737, 11}, {7192, 17197}
X(56283) = X(i)-cross conjugate of X(j) for these {i, j}: {1090, 11}, {42462, 40213}
X(56283) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(11)}}, {{A, B, C, X(341), X(1146)}}, {{A, B, C, X(885), X(42462)}}, {{A, B, C, X(1086), X(1847)}}, {{A, B, C, X(2170), X(34434)}}
X(56283) = barycentric product X(i)*X(j) for these (i, j): {1, 40213}, {11, 4560}, {21, 40166}, {261, 55195}, {341, 8042}, {645, 7336}, {1019, 24026}, {1021, 1111}, {1043, 6545}, {1086, 7253}, {1090, 662}, {1146, 7192}, {1412, 23104}, {1434, 23615}, {1565, 17926}, {2310, 7199}, {3737, 4858}, {4573, 5532}, {14010, 2401}, {14616, 46384}, {14936, 52619}, {15411, 2969}, {15419, 42069}, {16726, 4397}, {16727, 3900}, {17096, 4081}, {17197, 522}, {17205, 3239}, {17219, 3064}, {17925, 2968}, {18155, 2170}, {18191, 4391}, {21132, 333}, {21666, 7254}, {21789, 23989}, {23090, 2973}, {23100, 2328}, {23978, 3733}, {26856, 523}, {34387, 7252}, {39277, 52325}, {42455, 81}, {42462, 86}
X(56283) = barycentric quotient X(i)/X(j) for these (i, j): {11, 4552}, {21, 31615}, {58, 4619}, {244, 1020}, {261, 55194}, {764, 1427}, {1015, 53321}, {1019, 7045}, {1021, 765}, {1043, 6632}, {1086, 4566}, {1090, 1577}, {1146, 3952}, {2170, 4551}, {2310, 1018}, {2968, 52609}, {2969, 52607}, {3119, 4069}, {3120, 4605}, {3270, 4574}, {3271, 4559}, {3733, 1262}, {3737, 4564}, {3937, 52610}, {4081, 30730}, {4516, 21859}, {4560, 4998}, {5532, 3700}, {6545, 3668}, {7117, 23067}, {7192, 1275}, {7252, 59}, {7253, 1016}, {7336, 7178}, {8042, 269}, {14010, 2397}, {14936, 4557}, {16726, 934}, {16727, 4569}, {17197, 664}, {17205, 658}, {17926, 15742}, {18191, 651}, {21132, 226}, {21143, 1042}, {21789, 1252}, {23104, 30713}, {23189, 44717}, {23615, 2321}, {23978, 27808}, {24026, 4033}, {26856, 99}, {36197, 40521}, {40166, 1441}, {40213, 75}, {42455, 321}, {42462, 10}, {46384, 758}, {52316, 17757}, {52335, 4103}, {52338, 40663}, {55195, 12}


X(56284) = KIMBERLING-PAVLOV X(11)-CONJUGATE OF X(9) AND X(9)

Barycentrics    (a-b-c)*(b-c)^3*(a^2+b*(b-c)-a*(2*b+c))*(a^2+c*(-b+c)-a*(b+2*c)) : :
X(56284) = -3*X[42454]+X[42462]

X(56284) lies on these lines: {9, 6362}, {513, 52819}, {514, 5572}, {522, 40659}, {523, 885}, {2488, 13476}, {10509, 23351}, {21104, 21346}, {21132, 21133}, {42454, 42462}, {52305, 56283}

X(56284) = X(i)-isoconjugate-of-X(j) for these {i, j}: {59, 35338}, {1110, 35312}, {1212, 4619}, {1262, 35341}, {1475, 31615}, {4564, 35326}, {35310, 52378}
X(56284) = X(i)-Dao conjugate of X(j) for these {i, j}: {514, 35312}, {6615, 35338}, {35509, 51384}
X(56284) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(11)}}, {{A, B, C, X(885), X(42462)}}, {{A, B, C, X(1086), X(23062)}}, {{A, B, C, X(2170), X(13476)}}
X(56284) = barycentric product X(i)*X(j) for these (i, j): {1170, 42455}, {2346, 40166}, {10482, 23100}, {10509, 23615}, {21132, 32008}, {21453, 42462}, {56118, 6545}
X(56284) = barycentric quotient X(i)/X(j) for these (i, j): {764, 1418}, {1086, 35312}, {2170, 35338}, {2310, 35341}, {2346, 31615}, {3271, 35326}, {4516, 35310}, {6545, 10481}, {7336, 21104}, {21132, 142}, {23615, 51972}, {40166, 20880}, {42455, 1229}, {42462, 4847}, {52305, 51384}, {52316, 51416}, {52338, 51463}, {55195, 3925}, {56118, 6632}, {56283, 16713}


X(56285) = KIMBERLING-PAVLOV X(12)-CONJUGATE OF X(10) AND X(10)

Barycentrics    b*(a+b-c)*c*(a-b+c)*(b+c)^2*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(56285) lies on these lines: {4, 80}, {10, 201}, {12, 7140}, {33, 158}, {34, 92}, {46, 91}, {65, 1867}, {78, 20928}, {108, 2372}, {273, 1268}, {278, 1224}, {286, 18812}, {313, 52575}, {331, 334}, {407, 40663}, {429, 51870}, {498, 1068}, {594, 8736}, {756, 1091}, {1089, 7141}, {1109, 1254}, {1118, 7102}, {1393, 4858}, {1441, 54346}, {1733, 7098}, {1784, 6198}, {1824, 1882}, {1826, 2171}, {1835, 56133}, {1873, 56132}, {1874, 18082}, {1893, 53861}, {1902, 42385}, {1935, 14206}, {1940, 7009}, {4092, 7314}, {4552, 5552}, {5136, 30147}, {6354, 26955}, {6796, 22342}, {10950, 37239}, {11499, 23067}, {13411, 23710}, {14213, 37591}, {17871, 37550}, {18026, 35162}, {18815, 24883}, {20832, 32626}, {23290, 24006}

X(56285) = polar conjugate of X(2185)
X(56285) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 60}, {11, 47390}, {21, 1437}, {48, 2185}, {58, 283}, {63, 2150}, {78, 849}, {81, 2193}, {110, 23189}, {184, 261}, {212, 757}, {219, 593}, {222, 7054}, {249, 7117}, {250, 1364}, {255, 270}, {284, 1790}, {332, 2206}, {394, 2189}, {577, 46103}, {603, 1098}, {652, 4556}, {763, 52370}, {1101, 7004}, {1172, 18604}, {1260, 7341}, {1265, 7342}, {1333, 1812}, {1408, 1792}, {1412, 2327}, {1439, 23609}, {1444, 2194}, {1459, 4636}, {1474, 6514}, {1509, 52425}, {1789, 17104}, {1798, 4267}, {1805, 1806}, {1808, 5009}, {1946, 52935}, {2326, 7125}, {3049, 55196}, {3737, 4575}, {4558, 7252}, {4560, 32661}, {4565, 23090}, {4612, 22383}, {5546, 7254}, {6061, 7053}, {6064, 22096}, {7058, 52411}, {7305, 20753}, {9247, 52379}, {14575, 18021}, {17880, 23995}, {23224, 52914}, {23357, 26932}, {30606, 32659}, {35196, 44709}, {52380, 52407}
X(56285) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 283}, {37, 1812}, {136, 3737}, {244, 23189}, {523, 7004}, {1214, 1444}, {1249, 2185}, {2171, 23114}, {3162, 2150}, {4075, 78}, {6523, 270}, {7952, 1098}, {15267, 603}, {18314, 17880}, {21233, 22400}, {23050, 6061}, {36103, 60}, {39053, 52935}, {39060, 4610}, {40586, 2193}, {40590, 1790}, {40599, 2327}, {40603, 332}, {40607, 212}, {40611, 1437}, {40837, 757}, {47345, 81}, {51574, 6514}, {55064, 23090}, {55065, 521}
X(56285) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40149, 8736}, {41013, 12}
X(56285) = X(i)-cross conjugate of X(j) for these {i, j}: {2171, 6358}, {2970, 24006}
X(56285) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(24006)}}, {{A, B, C, X(10), X(12)}}, {{A, B, C, X(33), X(756)}}, {{A, B, C, X(91), X(6757)}}, {{A, B, C, X(201), X(2171)}}, {{A, B, C, X(1825), X(7012)}}, {{A, B, C, X(2800), X(6370)}}, {{A, B, C, X(8818), X(54972)}}
X(56285) = barycentric product X(i)*X(j) for these (i, j): {4, 6358}, {10, 40149}, {12, 92}, {19, 34388}, {42, 52575}, {57, 7141}, {75, 8736}, {108, 52623}, {158, 26942}, {181, 1969}, {201, 2052}, {225, 321}, {226, 41013}, {273, 594}, {318, 6354}, {331, 756}, {338, 7012}, {1089, 278}, {1091, 46103}, {1109, 46102}, {1118, 52369}, {1254, 7017}, {1426, 30713}, {1441, 1826}, {1446, 53008}, {1824, 349}, {1847, 6057}, {1880, 313}, {2171, 264}, {2970, 4564}, {4036, 653}, {4064, 54240}, {4086, 52607}, {6046, 7101}, {6521, 7066}, {7140, 85}, {14618, 4551}, {18026, 4024}, {21859, 46107}, {23994, 7115}, {24006, 4552}, {27808, 55208}, {28654, 34}, {37790, 4013}, {44426, 4605}, {46404, 4705}, {52938, 55232}, {55197, 811}
X(56285) = barycentric quotient X(i)/X(j) for these (i, j): {4, 2185}, {10, 1812}, {12, 63}, {19, 60}, {25, 2150}, {33, 7054}, {34, 593}, {37, 283}, {42, 2193}, {65, 1790}, {72, 6514}, {73, 18604}, {92, 261}, {108, 4556}, {115, 7004}, {158, 46103}, {181, 48}, {201, 394}, {210, 2327}, {225, 81}, {226, 1444}, {264, 52379}, {273, 1509}, {278, 757}, {281, 1098}, {318, 7058}, {321, 332}, {331, 873}, {338, 17880}, {393, 270}, {429, 17185}, {594, 78}, {608, 849}, {653, 52935}, {661, 23189}, {756, 219}, {762, 2318}, {811, 55196}, {872, 52425}, {1089, 345}, {1091, 26942}, {1096, 2189}, {1109, 26932}, {1254, 222}, {1365, 3942}, {1400, 1437}, {1425, 7125}, {1426, 1412}, {1435, 7341}, {1441, 17206}, {1500, 212}, {1783, 4636}, {1824, 284}, {1825, 40214}, {1826, 21}, {1847, 552}, {1857, 2326}, {1865, 54356}, {1877, 30576}, {1880, 58}, {1897, 4612}, {1969, 18021}, {2149, 47390}, {2171, 3}, {2197, 255}, {2321, 1792}, {2332, 23609}, {2333, 2194}, {2501, 3737}, {2643, 7117}, {2970, 4858}, {3690, 2289}, {3695, 3719}, {3708, 1364}, {3949, 1259}, {4017, 7254}, {4024, 521}, {4036, 6332}, {4041, 23090}, {4077, 15419}, {4079, 1946}, {4086, 15411}, {4092, 34591}, {4103, 4571}, {4551, 4558}, {4552, 4592}, {4559, 4575}, {4605, 6516}, {4705, 652}, {6046, 7177}, {6057, 3692}, {6058, 3949}, {6354, 77}, {6356, 7183}, {6358, 69}, {6535, 3694}, {7012, 249}, {7064, 1802}, {7066, 6507}, {7079, 6061}, {7115, 1101}, {7140, 9}, {7141, 312}, {7143, 7099}, {7147, 7053}, {7235, 20769}, {7314, 37755}, {8736, 1}, {8754, 2170}, {8818, 1789}, {14618, 18155}, {16732, 17219}, {18026, 4610}, {21043, 53560}, {21794, 52408}, {21853, 1800}, {21859, 1331}, {21871, 1819}, {24006, 4560}, {26942, 326}, {27808, 55207}, {28654, 3718}, {34388, 304}, {35307, 23181}, {37755, 1804}, {38462, 30606}, {40149, 86}, {40521, 4587}, {41013, 333}, {44113, 4282}, {46102, 24041}, {46404, 4623}, {52369, 1264}, {52567, 22097}, {52575, 310}, {52577, 5324}, {52607, 1414}, {52623, 35518}, {52938, 55231}, {53008, 2287}, {55197, 656}, {55206, 21789}, {55208, 3733}, {55230, 36054}, {55234, 23224}
X(56285) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40149, 41013, 225}


X(56286) = KP2(X(1)) OF X(5) AND X(12)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^7-a*b^2*c^2*(b+c)^2-2*a^5*(b^2+b*c+c^2)+(b-c)^2*(b+c)^3*(b^2+b*c+c^2)+a^3*(b^2+b*c+c^2)^2+a^4*(b^3+b^2*c+b*c^2+c^3)-a^2*(2*b^5+3*b^4*c+b^3*c^2+b^2*c^3+3*b*c^4+2*c^5)) : :

X(56286) lies on these lines: {1, 49}, {5, 2595}, {12, 14985}, {110, 2599}, {201, 1325}, {484, 37230}, {501, 16577}, {1726, 37523}, {1762, 7066}, {2070, 35194}, {2594, 21381}, {2957, 7173}, {4225, 21368}, {11101, 52391}


X(56287) = KP2(X(1)) OF X(7) AND X(8)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^4+4*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2))*(a^4+4*a*b*c^2+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(56287) lies on these lines: {7, 5552}, {8, 34413}, {40, 1804}, {46, 269}, {57, 53995}, {63, 55110}, {77, 3359}, {479, 55015}, {1014, 3193}, {1068, 1119}, {7040, 7330}, {13437, 52419}, {13459, 52420}

X(56287) = isogonal conjugate of X(30223)
X(56287) = trilinear pole of line {3669, 46389}
X(56287) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 30223}, {4, 19354}, {6, 53994}, {9, 3554}, {41, 54284}, {55, 3086}, {284, 24005}, {607, 26871}, {836, 8748}, {1436, 38015}, {1519, 2342}, {2194, 17869}, {13456, 38003}
X(56287) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 30223}, {9, 53994}, {223, 3086}, {478, 3554}, {1214, 17869}, {3160, 54284}, {36033, 19354}, {40590, 24005}
X(56287) = X(i)-cross conjugate of X(j) for these {i, j}: {6129, 651}
X(56287) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(46)}}, {{A, B, C, X(7), X(57)}}, {{A, B, C, X(8), X(40)}}, {{A, B, C, X(9), X(59)}}, {{A, B, C, X(19), X(1037)}}, {{A, B, C, X(21), X(51498)}}, {{A, B, C, X(63), X(1804)}}, {{A, B, C, X(75), X(77)}}, {{A, B, C, X(78), X(775)}}, {{A, B, C, X(88), X(1440)}}, {{A, B, C, X(103), X(39943)}}, {{A, B, C, X(282), X(8759)}}, {{A, B, C, X(291), X(1041)}}, {{A, B, C, X(342), X(7128)}}, {{A, B, C, X(347), X(40399)}}, {{A, B, C, X(484), X(5119)}}, {{A, B, C, X(921), X(7163)}}, {{A, B, C, X(972), X(6601)}}, {{A, B, C, X(1155), X(54408)}}, {{A, B, C, X(1156), X(53086)}}, {{A, B, C, X(1167), X(42464)}}, {{A, B, C, X(1259), X(47849)}}, {{A, B, C, X(1697), X(5128)}}, {{A, B, C, X(1937), X(8769)}}, {{A, B, C, X(2160), X(52013)}}, {{A, B, C, X(3336), X(3338)}}, {{A, B, C, X(3345), X(43740)}}, {{A, B, C, X(7012), X(56179)}}, {{A, B, C, X(8809), X(18815)}}, {{A, B, C, X(9372), X(39956)}}, {{A, B, C, X(55076), X(56139)}}
X(56287) = barycentric product X(i)*X(j) for these (i, j): {1, 34401}, {223, 34413}, {42019, 85}, {52385, 837}, {53995, 75}
X(56287) = barycentric quotient X(i)/X(j) for these (i, j): {1, 53994}, {6, 30223}, {7, 54284}, {40, 38015}, {48, 19354}, {56, 3554}, {57, 3086}, {65, 24005}, {77, 26871}, {226, 17869}, {837, 1896}, {1465, 1519}, {22341, 836}, {34401, 75}, {34413, 34404}, {37755, 26955}, {42019, 9}, {52419, 40650}, {53995, 1}


X(56288) = KP2(X(1)) OF X(8) AND X(10)

Barycentrics    a*(a^3-b^3-c^3+a^2*(b+c)-a*(b^2+b*c+c^2)) : :
X(56288) = -2*X[2646]+3*X[17549], -3*X[37298]+2*X[37737]

X(56288) lies on these lines: {1, 89}, {2, 46}, {3, 3417}, {4, 1748}, {5, 5057}, {7, 37550}, {8, 20}, {9, 5128}, {10, 191}, {12, 17768}, {21, 65}, {30, 5086}, {31, 986}, {35, 758}, {36, 3878}, {38, 5255}, {42, 1046}, {55, 3868}, {56, 3877}, {57, 3616}, {58, 4424}, {60, 2651}, {71, 1761}, {72, 74}, {78, 165}, {79, 3822}, {81, 3931}, {92, 6197}, {109, 283}, {140, 51409}, {142, 9782}, {144, 7080}, {145, 4305}, {149, 10916}, {171, 2292}, {190, 3701}, {200, 3951}, {221, 17080}, {224, 37105}, {226, 14450}, {227, 651}, {238, 24443}, {307, 27535}, {329, 3359}, {355, 48363}, {377, 3474}, {386, 49500}, {390, 10936}, {391, 54420}, {392, 5253}, {404, 960}, {405, 36279}, {411, 6001}, {442, 20292}, {452, 1708}, {474, 9352}, {498, 31053}, {516, 6734}, {517, 2975}, {518, 3871}, {519, 6763}, {535, 37710}, {548, 10609}, {551, 3337}, {595, 3670}, {644, 21872}, {649, 5592}, {662, 37294}, {672, 3496}, {748, 24174}, {813, 52085}, {894, 26115}, {896, 4642}, {908, 6684}, {912, 11491}, {920, 6872}, {942, 1621}, {944, 24467}, {946, 5180}, {956, 12702}, {958, 37567}, {962, 5709}, {970, 42448}, {976, 3550}, {982, 3915}, {993, 5903}, {997, 4188}, {999, 3890}, {1001, 5221}, {1005, 44547}, {1006, 34339}, {1042, 1758}, {1054, 27627}, {1098, 1325}, {1104, 54315}, {1125, 3336}, {1159, 17571}, {1191, 17595}, {1193, 17596}, {1203, 17012}, {1259, 5584}, {1319, 5330}, {1320, 11260}, {1334, 3509}, {1376, 3876}, {1385, 5303}, {1399, 54292}, {1400, 9791}, {1406, 1443}, {1441, 8822}, {1442, 1444}, {1445, 52653}, {1452, 4194}, {1453, 36277}, {1454, 3485}, {1468, 4650}, {1571, 17756}, {1697, 3241}, {1698, 4338}, {1706, 3929}, {1707, 54418}, {1709, 3146}, {1714, 33131}, {1727, 10572}, {1737, 5046}, {1738, 26998}, {1756, 26699}, {1757, 3214}, {1759, 3730}, {1760, 2550}, {1766, 24280}, {1768, 4297}, {1776, 1837}, {1780, 17521}, {1788, 2478}, {1817, 40660}, {1836, 2476}, {2077, 31806}, {2093, 19860}, {2094, 11037}, {2098, 11194}, {2099, 3897}, {2136, 20053}, {2185, 46441}, {2245, 5051}, {2287, 4047}, {2646, 17549}, {2650, 37573}, {2800, 4996}, {2802, 5288}, {2893, 20291}, {2949, 2950}, {3008, 10899}, {3052, 37549}, {3057, 54391}, {3085, 5905}, {3160, 7183}, {3178, 32949}, {3185, 16451}, {3244, 37563}, {3245, 5258}, {3256, 15556}, {3295, 3873}, {3303, 3889}, {3305, 19877}, {3306, 5550}, {3333, 38314}, {3338, 3622}, {3339, 4512}, {3434, 6361}, {3436, 5657}, {3486, 34744}, {3501, 5282}, {3556, 11337}, {3559, 40149}, {3562, 18607}, {3576, 11682}, {3584, 14526}, {3612, 17548}, {3617, 31295}, {3625, 5541}, {3634, 35595}, {3647, 3754}, {3649, 6690}, {3650, 17757}, {3652, 18480}, {3654, 37430}, {3671, 15932}, {3679, 4333}, {3681, 3927}, {3683, 3812}, {3685, 16574}, {3695, 33078}, {3698, 5302}, {3702, 14829}, {3721, 17735}, {3727, 33863}, {3743, 17019}, {3746, 3874}, {3753, 5260}, {3757, 50404}, {3814, 5445}, {3821, 27678}, {3831, 32930}, {3832, 54370}, {3833, 25542}, {3870, 54422}, {3872, 7991}, {3884, 4973}, {3885, 12513}, {3895, 6762}, {3896, 56018}, {3899, 4881}, {3904, 53300}, {3911, 41012}, {3914, 24883}, {3920, 5264}, {3924, 54354}, {3925, 18253}, {3935, 5904}, {3953, 40091}, {3958, 54316}, {3962, 56176}, {3980, 31339}, {3983, 15481}, {4018, 24929}, {4031, 51723}, {4066, 51285}, {4193, 24703}, {4197, 5880}, {4202, 33068}, {4252, 37614}, {4278, 18417}, {4292, 24987}, {4294, 12649}, {4301, 5536}, {4302, 49168}, {4304, 41575}, {4318, 37591}, {4385, 32933}, {4427, 7283}, {4450, 5015}, {4458, 42657}, {4641, 4646}, {4651, 46519}, {4660, 36568}, {4676, 5192}, {4744, 5426}, {4757, 5425}, {4847, 5493}, {4850, 16466}, {4855, 35242}, {4921, 50083}, {4930, 19704}, {4968, 32939}, {5010, 22836}, {5011, 16552}, {5122, 17614}, {5172, 45288}, {5174, 52414}, {5175, 5775}, {5176, 5690}, {5183, 5836}, {5204, 5289}, {5217, 12635}, {5223, 43178}, {5230, 24248}, {5231, 9589}, {5248, 5902}, {5259, 5883}, {5278, 5342}, {5284, 5439}, {5292, 33134}, {5440, 31663}, {5442, 6681}, {5506, 51073}, {5530, 41011}, {5603, 6892}, {5692, 25440}, {5693, 6796}, {5697, 8666}, {5711, 28606}, {5714, 10585}, {5770, 12116}, {5774, 50044}, {5784, 30295}, {5791, 33108}, {5794, 17579}, {5815, 37427}, {5884, 10902}, {5887, 6905}, {6051, 37633}, {6061, 10536}, {6260, 9809}, {6350, 8251}, {6735, 12527}, {6737, 12512}, {6836, 14647}, {6840, 12616}, {6845, 11680}, {6894, 12617}, {6909, 14110}, {6912, 7686}, {6937, 11681}, {6942, 45770}, {6960, 12608}, {6996, 24633}, {7082, 54361}, {7262, 24440}, {7288, 37789}, {7292, 24046}, {7384, 28940}, {7411, 9943}, {7483, 39542}, {7504, 17605}, {7580, 9961}, {7677, 37566}, {7701, 31673}, {8256, 34606}, {8258, 29631}, {8582, 51090}, {8583, 53056}, {8616, 28082}, {9678, 38235}, {9785, 11240}, {9802, 21627}, {9812, 12705}, {10032, 50821}, {10039, 20060}, {10164, 27385}, {10198, 31019}, {10248, 11372}, {10268, 10884}, {10306, 37287}, {10381, 22080}, {10395, 45043}, {10449, 32929}, {10528, 20078}, {10529, 30305}, {10624, 26015}, {11009, 51111}, {11015, 15338}, {11101, 51290}, {11239, 28610}, {11246, 25466}, {11263, 11552}, {11344, 37541}, {11495, 41228}, {11500, 12528}, {11507, 20846}, {11523, 35445}, {11570, 14798}, {11571, 39778}, {12005, 34486}, {12436, 24564}, {12572, 24982}, {12672, 37623}, {12680, 13243}, {12688, 36002}, {13145, 22937}, {13407, 17483}, {13465, 18524}, {13587, 31165}, {14868, 35997}, {14974, 26242}, {15228, 47033}, {15254, 17536}, {15298, 20059}, {15507, 28238}, {15678, 16141}, {15777, 26888}, {15803, 19861}, {15829, 35262}, {16062, 32950}, {16138, 33697}, {16454, 31359}, {16678, 23844}, {16823, 20367}, {16865, 54318}, {17021, 27785}, {17100, 46684}, {17484, 21077}, {17531, 25917}, {17566, 25681}, {17577, 28534}, {17594, 19767}, {17606, 37375}, {17613, 31793}, {17647, 37256}, {17739, 56024}, {17748, 32843}, {17781, 21075}, {18193, 28011}, {18228, 26062}, {18249, 26060}, {18357, 19919}, {18360, 35193}, {18398, 29817}, {18419, 34489}, {18421, 51576}, {20057, 31393}, {20067, 45287}, {20070, 41338}, {20290, 27558}, {20653, 33082}, {20992, 38286}, {21078, 37508}, {21384, 41319}, {21677, 26750}, {21853, 38871}, {21935, 24851}, {22060, 35614}, {22344, 37620}, {23537, 33102}, {23661, 54107}, {24159, 29681}, {24231, 28027}, {24390, 28174}, {24468, 28194}, {24475, 37621}, {24850, 54331}, {25082, 42316}, {25522, 31224}, {25581, 33949}, {26027, 28950}, {26030, 27064}, {26127, 40998}, {26131, 50307}, {26364, 27131}, {26562, 33821}, {26689, 33828}, {26842, 51706}, {26934, 49687}, {27059, 50314}, {27129, 28734}, {27383, 37560}, {27509, 45040}, {28916, 37416}, {29958, 51377}, {30852, 31423}, {31159, 51113}, {31803, 44425}, {31938, 41853}, {32912, 50581}, {32917, 49598}, {33100, 54355}, {33862, 37733}, {34610, 36977}, {35238, 38901}, {36643, 40131}, {37298, 37737}, {37534, 54445}, {41013, 52344}, {48924, 49716}, {50194, 51683}, {54289, 54295}, {54320, 54400}

X(56288) = midpoint of X(i) and X(j) for these {i,j}: {12702, 26321}, {6763, 11010}
X(56288) = reflection of X(i) in X(j) for these {i,j}: {1, 5267}, {11009, 51111}, {11015, 15338}, {20060, 10039}, {2975, 3916}, {21740, 3}, {3585, 10}, {3871, 37568}, {31159, 51113}, {34772, 35}, {37733, 33862}, {4861, 2975}, {52367, 6734}
X(56288) = anticomplement of X(12047)
X(56288) = perspector of circumconic {{A, B, C, X(4604), X(44327)}}
X(56288) = X(i)-Dao conjugate of X(j) for these {i, j}: {12047, 12047}
X(56288) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {52185, 8}
X(56288) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(84)}}, {{A, B, C, X(89), X(189)}}, {{A, B, C, X(280), X(2320)}}, {{A, B, C, X(502), X(17097)}}, {{A, B, C, X(1442), X(41013)}}, {{A, B, C, X(1444), X(52344)}}, {{A, B, C, X(4420), X(5379)}}
X(56288) = barycentric product X(i)*X(j) for these (i, j): {1, 33066}, {312, 34043}
X(56288) = barycentric quotient X(i)/X(j) for these (i, j): {33066, 75}, {34043, 57}
X(56288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14988, 21740}, {3, 3869, 4511}, {10, 1770, 2475}, {10, 191, 3219}, {31, 986, 5262}, {35, 758, 34772}, {40, 1158, 20}, {40, 1782, 3101}, {40, 54290, 63}, {46, 12514, 2}, {57, 5250, 3616}, {58, 4424, 17016}, {65, 4640, 21}, {71, 1761, 5279}, {72, 3579, 100}, {100, 11684, 72}, {191, 2475, 18259}, {191, 484, 10}, {392, 37582, 5253}, {516, 6734, 52367}, {517, 2975, 4861}, {517, 3916, 2975}, {518, 37568, 3871}, {595, 3670, 7191}, {672, 3496, 33950}, {896, 4642, 5247}, {908, 6684, 27529}, {956, 12702, 14923}, {960, 1155, 404}, {962, 5744, 10527}, {1125, 3336, 27003}, {1468, 37598, 17015}, {1571, 54406, 17756}, {1788, 5698, 2478}, {1836, 26066, 2476}, {2093, 31424, 19860}, {3306, 31435, 5550}, {3339, 4512, 54392}, {3579, 11684, 4420}, {3622, 23958, 3338}, {3647, 3754, 5251}, {3683, 3812, 5047}, {3743, 37559, 17019}, {3746, 3874, 3957}, {3746, 4880, 3874}, {3753, 31445, 5260}, {3884, 4973, 5563}, {3895, 6762, 20050}, {3899, 7280, 30144}, {3927, 5687, 3681}, {3929, 41348, 1706}, {3983, 15481, 32635}, {4018, 24929, 34195}, {4650, 37598, 1468}, {4757, 35016, 5425}, {5177, 18231, 9780}, {5692, 37572, 25440}, {5697, 8666, 38460}, {5884, 10902, 18444}, {7280, 30144, 4881}, {12515, 16139, 3579}, {15338, 44669, 11015}, {17594, 54421, 19767}, {17784, 54398, 8}, {24703, 24914, 4193}, {41229, 54286, 3617}


X(56289) = X(12)-CEVA CONJUGATE OF X(1)

Barycentrics    a*(a^6+a^5*(b+c)-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+b*c+c^2)+a^2*(b^2+b*c+c^2)^2-a*(b^5-4*b^3*c^2-4*b^2*c^3+c^5)) : :

X(56289) lies on these lines: {1, 60}, {5, 2607}, {9, 6537}, {10, 191}, {12, 14985}, {35, 228}, {57, 40655}, {65, 1046}, {655, 1091}, {1048, 4551}, {1400, 1781}, {1761, 5341}, {2938, 3579}, {2940, 13589}, {3336, 24880}, {3337, 50757}, {3460, 7951}, {3496, 20607}, {3841, 24342}, {4647, 34997}, {6757, 39137}, {6763, 54335}, {7701, 12368}, {10944, 36935}, {11010, 36171}, {14882, 38903}, {20369, 25446}, {24443, 39394}, {37710, 47270}, {50198, 52706}

X(56289) = reflection of X(i) in X(j) for these {i,j}: {1, 37816}
X(56289) = X(i)-Dao conjugate of X(j) for these {i, j}: {2185, 261}
X(56289) = X(i)-Ceva conjugate of X(j) for these {i, j}: {12, 1}, {14985, 50346}, {56286, 3460}
X(56289) = intersection, other than A, B, C, of circumconics {{A, B, C, X(267), X(3437)}}, {{A, B, C, X(502), X(759)}}, {{A, B, C, X(6757), X(21381)}}, {{A, B, C, X(17104), X(39137)}}
X(56289) = barycentric product X(i)*X(j) for these (i, j): {10, 47059}
X(56289) = barycentric quotient X(i)/X(j) for these (i, j): {47059, 86}
X(56289) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {191, 267, 484}


X(56290) = KP2(X(2)) OF X(3) AND X(5)

Barycentrics    a^8-b^2*c^2*(b^2-c^2)^2-2*a^6*(b^2+c^2)+a^4*(b^4+3*b^2*c^2+c^4) : :

X(56290) lies on these lines: {2, 6}, {3, 3164}, {5, 17035}, {20, 33971}, {30, 56022}, {52, 9792}, {53, 40853}, {95, 216}, {97, 324}, {98, 6467}, {110, 44088}, {112, 35928}, {140, 56021}, {147, 46442}, {148, 52069}, {194, 7503}, {264, 401}, {297, 41008}, {311, 4558}, {317, 52247}, {384, 26166}, {411, 18666}, {458, 15905}, {549, 39358}, {631, 56013}, {1235, 28723}, {1350, 20792}, {1879, 53507}, {1941, 26897}, {1968, 21447}, {1975, 10607}, {2322, 21940}, {2896, 26154}, {2905, 37354}, {3148, 3186}, {3284, 14767}, {3933, 26205}, {5063, 41760}, {5065, 40814}, {5158, 52712}, {5562, 9290}, {5889, 46866}, {5999, 12220}, {6389, 44134}, {6815, 20065}, {6905, 56014}, {7395, 7754}, {7399, 7762}, {7488, 19189}, {7509, 56015}, {7549, 56019}, {7550, 56016}, {7567, 56020}, {7767, 26155}, {7783, 14118}, {7785, 13160}, {7793, 17928}, {7839, 26216}, {7928, 26170}, {8743, 37186}, {9512, 20775}, {9863, 41757}, {10979, 47383}, {12167, 13860}, {14570, 44180}, {14712, 38323}, {15576, 15717}, {16081, 41890}, {16310, 53477}, {17364, 53821}, {19210, 37127}, {20477, 36748}, {22052, 46724}, {23115, 37337}, {23635, 37334}, {26179, 26221}, {26226, 31276}, {26873, 55021}, {26945, 55020}, {31859, 54994}, {32000, 37188}, {32002, 36412}, {32467, 45857}, {34664, 47286}, {35360, 54375}, {35921, 41676}, {35937, 42459}, {37457, 38294}, {37893, 39931}, {39352, 41005}, {41891, 42300}, {46760, 46832}

X(56290) = reflection of X(i) in X(j) for these {i,j}: {32002, 36412}, {46724, 22052}
X(56290) = isotomic conjugate of X(9290)
X(56290) = anticomplement of X(45198)
X(56290) = perspector of circumconic {{A, B, C, X(99), X(41208)}}
X(56290) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 9251}, {31, 9290}, {661, 1303}
X(56290) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 9290}, {9, 9251}, {36830, 1303}, {45198, 45198}
X(56290) = X(i)-Ceva conjugate of X(j) for these {i, j}: {5562, 8613}, {9291, 436}, {14941, 401}, {40448, 2}
X(56290) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {40402, 21270}, {40448, 6327}, {42333, 21275}
X(56290) = X(i)-cross conjugate of X(j) for these {i, j}: {1970, 436}
X(56290) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(43710)}}, {{A, B, C, X(6), X(1970)}}, {{A, B, C, X(69), X(54114)}}, {{A, B, C, X(81), X(1954)}}, {{A, B, C, X(343), X(1972)}}, {{A, B, C, X(394), X(40800)}}, {{A, B, C, X(3289), X(41890)}}, {{A, B, C, X(8795), X(9290)}}, {{A, B, C, X(13567), X(16081)}}
X(56290) = barycentric product X(i)*X(j) for these (i, j): {3, 9291}, {63, 9252}, {110, 42331}, {436, 69}, {1954, 75}, {1970, 76}, {21449, 343}, {27359, 34386}
X(56290) = barycentric quotient X(i)/X(j) for these (i, j): {1, 9251}, {2, 9290}, {110, 1303}, {436, 4}, {1954, 1}, {1970, 6}, {9252, 92}, {9291, 264}, {21449, 275}, {27359, 53}, {42331, 850}
X(56290) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 36413, 51171}, {2, 52058, 3329}, {3, 9308, 3164}, {95, 648, 216}, {97, 324, 8613}, {264, 577, 401}, {3164, 43980, 3}, {3180, 3181, 41628}, {3284, 14767, 36794}, {20477, 36748, 51350}, {40896, 51350, 20477}


X(56291) = ANTICOMPLEMENT OF X(261)

Barycentrics    a^5-b^5-b^4*c+b^3*c^2+b^2*c^3-b*c^4-c^5+a^4*(b+c)+a^2*(b+c)^3+a^3*(b^2+4*b*c+c^2)-a*(b^4-3*b^2*c^2+c^4) : :
X(56291) = -3*X[2]+2*X[261]

X(56291) lies on these lines: {1, 20558}, {2, 261}, {6, 26081}, {10, 894}, {75, 44370}, {86, 20337}, {148, 192}, {193, 5177}, {226, 1943}, {1029, 3995}, {1655, 18666}, {2895, 31025}, {3770, 17789}, {5207, 28369}, {5949, 19623}, {6646, 20349}, {7384, 17300}, {7785, 17379}, {17103, 27688}, {17234, 26147}, {17363, 20536}, {21287, 26110}, {24267, 25650}, {25978, 49745}, {26117, 50290}

X(56291) = anticomplement of X(261)
X(56291) = X(i)-Ceva conjugate of X(j) for these {i, j}: {12, 2}
X(56291) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 35614}, {6, 21273}, {9, 54109}, {12, 6327}, {31, 2975}, {32, 18662}, {37, 20245}, {41, 54107}, {42, 3869}, {56, 17140}, {57, 17143}, {59, 21295}, {65, 17135}, {73, 20243}, {85, 54112}, {109, 17166}, {181, 8}, {201, 1370}, {213, 63}, {225, 20242}, {226, 17137}, {594, 21286}, {604, 4360}, {651, 17159}, {756, 3436}, {872, 144}, {1020, 4374}, {1042, 3873}, {1214, 18659}, {1254, 3434}, {1333, 18654}, {1334, 18750}, {1400, 75}, {1402, 1}, {1409, 17134}, {1415, 17161}, {1423, 34086}, {1425, 52365}, {1427, 20244}, {1441, 17138}, {1500, 329}, {1880, 17220}, {1903, 20246}, {2149, 99}, {2171, 69}, {2197, 4329}, {2333, 92}, {2357, 20220}, {3690, 52366}, {4079, 37781}, {4551, 512}, {4552, 17217}, {4559, 7192}, {4564, 4576}, {4705, 33650}, {6354, 21285}, {6358, 315}, {6378, 20348}, {7012, 53350}, {7109, 3177}, {7143, 36845}, {7147, 6604}, {7148, 20557}, {7235, 20554}, {8736, 21270}, {20616, 40007}, {21859, 20295}, {34388, 21275}, {50487, 39351}, {51641, 17154}, {55197, 21294}, {55230, 34188}, {56285, 11442}
X(56291) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1654, 6625, 894}, {14534, 46828, 2}, {17778, 54119, 1999}


X(56292) = KP2(X(3)) OF X(4) AND X(5)

Barycentrics    a^2*(a^8+b^8-b^6*c^2-b^2*c^6+c^8-4*a^6*(b^2+c^2)+a^4*(6*b^4+5*b^2*c^2+6*c^4)-4*a^2*(b^6+c^6)) : :
X(56292) = -3*X[3520]+2*X[11440]

X(56292) lies on these lines: {2, 1199}, {3, 323}, {4, 155}, {5, 195}, {6, 3090}, {20, 16266}, {23, 156}, {24, 3167}, {26, 9544}, {30, 43605}, {49, 1154}, {51, 43598}, {52, 110}, {54, 5562}, {68, 7577}, {69, 7558}, {81, 6852}, {93, 56272}, {140, 15087}, {143, 13595}, {182, 7999}, {184, 7512}, {185, 43574}, {186, 1147}, {193, 2904}, {235, 19504}, {343, 12325}, {376, 1181}, {378, 12164}, {389, 3292}, {394, 631}, {399, 3627}, {511, 1614}, {524, 7552}, {546, 15052}, {549, 43845}, {567, 1493}, {568, 44802}, {569, 7550}, {576, 9781}, {578, 11459}, {632, 15037}, {648, 13450}, {1006, 22136}, {1092, 5890}, {1173, 5097}, {1204, 37948}, {1216, 5012}, {1351, 9925}, {1498, 33703}, {1568, 10112}, {1594, 3564}, {1656, 34545}, {1658, 9703}, {1986, 45172}, {1995, 37493}, {2070, 12316}, {2071, 34783}, {2072, 32358}, {2930, 12061}, {3060, 10539}, {3091, 11004}, {3146, 12112}, {3153, 44076}, {3410, 5576}, {3448, 13371}, {3470, 44769}, {3520, 11440}, {3525, 15066}, {3529, 11456}, {3533, 17811}, {3545, 17814}, {3549, 45794}, {3567, 9306}, {3574, 41171}, {3580, 9820}, {3581, 32171}, {3628, 15018}, {3832, 39522}, {3855, 10982}, {4994, 39530}, {5067, 5422}, {5133, 31831}, {5446, 52294}, {5448, 50435}, {5449, 41724}, {5504, 7722}, {5609, 51882}, {5651, 15024}, {5654, 16868}, {5663, 12086}, {5707, 6874}, {5818, 16473}, {5876, 7527}, {5891, 13434}, {5907, 15033}, {6090, 11432}, {6101, 6636}, {6102, 22115}, {6143, 12359}, {6238, 9637}, {6240, 12383}, {6241, 7464}, {6247, 12317}, {6353, 35603}, {6403, 52016}, {6515, 7505}, {6759, 37925}, {6776, 18948}, {6800, 37486}, {6832, 37685}, {6920, 36750}, {6946, 37509}, {7496, 32142}, {7502, 9704}, {7509, 11402}, {7525, 54048}, {7537, 40571}, {7540, 9143}, {7543, 56000}, {7547, 12429}, {7551, 56001}, {7553, 46818}, {7556, 9707}, {7574, 45731}, {7576, 31802}, {7691, 9706}, {7998, 13336}, {8537, 8681}, {8538, 15531}, {8883, 52032}, {8889, 17836}, {9705, 10282}, {9927, 54001}, {9936, 11442}, {10116, 51392}, {10263, 10540}, {10323, 19347}, {10605, 41427}, {10625, 23061}, {10984, 44832}, {11002, 13861}, {11064, 26879}, {11264, 51391}, {11381, 14094}, {11411, 37119}, {11424, 15058}, {11430, 45187}, {11464, 46730}, {11585, 43808}, {11660, 21284}, {11793, 13366}, {12038, 17506}, {12087, 13391}, {12111, 12364}, {12118, 34797}, {12121, 34798}, {12162, 13596}, {12163, 35473}, {12225, 12254}, {12227, 15035}, {12902, 18567}, {13340, 16661}, {13353, 15067}, {13409, 14152}, {13419, 24981}, {13431, 52675}, {13482, 43613}, {13491, 37477}, {14118, 18436}, {14157, 45186}, {14449, 18378}, {14611, 36160}, {14651, 39810}, {14831, 43572}, {14912, 20806}, {15026, 16042}, {15319, 50433}, {15331, 32608}, {15606, 22352}, {15704, 37496}, {15800, 23236}, {17538, 37483}, {17824, 34782}, {18533, 34966}, {18569, 34799}, {18583, 34939}, {18859, 45957}, {18912, 22151}, {18916, 37669}, {19150, 43150}, {19161, 22828}, {21844, 47391}, {22128, 26877}, {22139, 37120}, {22330, 32127}, {23039, 32046}, {26863, 46261}, {26869, 31282}, {26882, 37939}, {31074, 32140}, {31724, 32423}, {31804, 43590}, {31810, 34397}, {32609, 40640}, {34224, 46450}, {34864, 55039}, {35265, 37440}, {35471, 44752}, {37452, 43588}, {37489, 44879}, {37494, 38435}, {37943, 41587}, {38683, 47064}, {40111, 45735}, {41202, 41481}, {41758, 41759}, {43595, 43818}, {43614, 53863}

X(56292) = reflection of X(i) in X(j) for these {i,j}: {1614, 43844}, {12086, 37495}, {12088, 1614}, {3520, 34148}, {7488, 49}
X(56292) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14860, 3}
X(56292) = intersection, other than A, B, C, of circumconics {{A, B, C, X(254), X(2383)}}, {{A, B, C, X(323), X(15319)}}
X(56292) = barycentric product X(i)*X(j) for these (i, j): {305, 41759}, {41758, 69}
X(56292) = barycentric quotient X(i)/X(j) for these (i, j): {41758, 4}, {41759, 25}
X(56292) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 12161, 1199}, {5, 195, 1994}, {49, 1154, 7488}, {52, 41597, 110}, {54, 5562, 35921}, {110, 15801, 52}, {143, 18350, 13595}, {155, 36747, 11441}, {156, 6243, 23}, {184, 11412, 7512}, {195, 50461, 5}, {394, 7592, 631}, {511, 1614, 12088}, {511, 43844, 1614}, {578, 11459, 35500}, {1147, 5889, 186}, {1493, 11591, 567}, {1993, 11441, 36747}, {3060, 10539, 34484}, {3091, 11004, 36749}, {3146, 32139, 12112}, {3167, 12160, 24}, {3580, 9820, 14940}, {5562, 34986, 54}, {5663, 37495, 12086}, {5876, 37472, 7527}, {6102, 22115, 22467}, {6241, 13346, 7464}, {7691, 9706, 18475}, {7999, 11423, 182}, {9707, 17834, 7556}, {11411, 37645, 37119}, {11422, 11444, 569}, {11441, 36747, 4}, {11456, 37498, 3529}, {11585, 45968, 43808}, {11793, 13366, 43651}, {12111, 13352, 14865}, {13352, 15083, 12111}, {13754, 34148, 3520}, {15066, 36752, 3525}, {15067, 32136, 13353}, {15068, 36749, 3091}, {15801, 41597, 3518}, {16266, 18445, 20}, {23039, 32046, 37126}, {23061, 52525, 10625}, {32142, 37471, 7496}, {43595, 52069, 43818}


X(56293) = X(8)-CEVA CONJUGATE OF X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^6+2*a^3*b*c*(b+c)-2*a*b*(b-c)^2*c*(b+c)+a^4*(-3*b^2+2*b*c-3*c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(b-c)^2*(3*b^2+4*b*c+3*c^2)) : :

X(56293) lies on these lines: {1, 90}, {3, 1364}, {6, 1210}, {8, 15501}, {33, 41560}, {55, 47371}, {68, 10523}, {72, 15524}, {78, 271}, {221, 2800}, {222, 1181}, {255, 39167}, {323, 20013}, {519, 22130}, {521, 5687}, {613, 34381}, {651, 7952}, {1071, 19354}, {1147, 8071}, {1158, 34052}, {1406, 1735}, {1498, 5930}, {1785, 8757}, {1993, 3562}, {2956, 34488}, {3075, 36754}, {6193, 10629}, {6238, 11508}, {6700, 17811}, {7352, 22766}, {8068, 14852}, {8069, 13754}, {10320, 12359}, {10321, 11411}, {12528, 15500}, {14793, 47391}, {15068, 15252}, {17814, 34048}, {18445, 23070}, {22117, 22136}, {22132, 22133}, {37194, 45046}, {40518, 44040}

X(56293) = midpoint of X(i) and X(j) for these {i,j}: {1069, 3157}
X(56293) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 42464}, {19, 54451}
X(56293) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 54451}, {222, 7}, {36033, 42464}
X(56293) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8, 3}, {15501, 46974}
X(56293) = intersection, other than A, B, C, of circumconics {{A, B, C, X(90), X(271)}}, {{A, B, C, X(36059), X(42019)}}
X(56293) = barycentric product X(i)*X(j) for these (i, j): {219, 31600}, {1158, 63}, {10692, 914}, {34052, 78}
X(56293) = barycentric quotient X(i)/X(j) for these (i, j): {3, 54451}, {48, 42464}, {1158, 92}, {10692, 37203}, {31600, 331}, {34052, 273}
X(56293) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {155, 3157, 3173}, {1069, 3157, 912}, {1433, 7078, 46974}, {7335, 40944, 3}


X(56294) = X(9)-CEVA CONJUGATE OF X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^5-a^4*(b+c)+2*a^2*(b-c)^2*(b+c)-(b-c)^2*(b+c)^3+a*(b-c)^2*(b^2+c^2)-2*a^3*(b^2-3*b*c+c^2)) : :

X(56294) lies on circumconic {{A, B, C, X(90), X(1433)}} and on these lines: {1, 90}, {3, 1433}, {6, 20310}, {55, 36059}, {219, 22117}, {222, 7004}, {521, 1376}, {971, 2192}, {1060, 15524}, {1200, 2280}, {1413, 34862}, {1422, 3358}, {1709, 34492}, {1993, 37782}, {3295, 47371}, {3938, 22130}, {3940, 7078}, {5452, 36054}, {7046, 13138}, {7952, 8757}, {10629, 18970}, {12915, 34381}, {15252, 34048}, {20793, 22139}

X(56294) = X(i)-Dao conjugate of X(j) for these {i, j}: {77, 85}
X(56294) = X(i)-Ceva conjugate of X(j) for these {i, j}: {9, 3}
X(56294) = barycentric product X(i)*X(j) for these (i, j): {3, 5942}, {1709, 63}, {34492, 78}
X(56294) = barycentric quotient X(i)/X(j) for these (i, j): {1709, 92}, {5942, 264}, {34492, 273}
X(56294) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 56293, 3157}, {7125, 40945, 3}


X(56295) = X(10)-CEVA CONJUGATE OF X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^6+a^5*(b+c)-a*(b-c)^2*(b+c)^3-a^4*(b^2-b*c+c^2)-(b^2-c^2)^2*(b^2+b*c+c^2)+a^2*(b^4+c^4)) : :

X(56295) lies on these lines: {5, 6}, {31, 6238}, {58, 13754}, {72, 23120}, {386, 1147}, {387, 6193}, {394, 41014}, {539, 3017}, {1069, 16466}, {1468, 7352}, {1834, 44665}, {1993, 11109}, {2594, 36059}, {2650, 3157}, {3192, 10539}, {3940, 7078}, {4055, 22139}, {4252, 12163}, {4255, 47391}, {4256, 12038}, {4257, 7689}, {5230, 10055}, {5449, 45939}, {7141, 44765}, {9820, 37662}, {10071, 11269}, {10573, 56293}, {11411, 37642}, {12118, 48837}, {12359, 37646}, {18755, 32661}, {22123, 22133}, {22145, 23070}, {37698, 47371}

X(56295) = X(i)-Dao conjugate of X(j) for these {i, j}: {1790, 86}
X(56295) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10, 3}
X(56295) = barycentric product X(i)*X(j) for these (i, j): {1710, 63}
X(56295) = barycentric quotient X(i)/X(j) for these (i, j): {1710, 92}


X(56296) = KP2(X(4)) OF X(2) AND X(3)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^8+2*b^2*c^2*(b^2-c^2)^2-3*a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+3*a^4*(b^4+c^4)) : :

X(56296) lies on these lines: {2, 253}, {3, 1075}, {4, 3527}, {6, 275}, {22, 35360}, {24, 16035}, {25, 3168}, {51, 33971}, {92, 37543}, {107, 154}, {112, 35941}, {145, 3176}, {184, 37070}, {193, 6820}, {196, 21454}, {264, 10601}, {268, 7361}, {297, 6515}, {324, 458}, {343, 17907}, {381, 6761}, {389, 41365}, {393, 11433}, {394, 648}, {401, 3172}, {427, 41371}, {436, 11402}, {450, 3167}, {467, 37644}, {470, 42988}, {471, 42989}, {472, 36303}, {473, 36302}, {653, 6360}, {999, 1148}, {1033, 3164}, {1093, 1181}, {1260, 1897}, {1370, 44704}, {1498, 14249}, {1503, 52448}, {1559, 5656}, {1585, 7583}, {1586, 7584}, {1629, 17810}, {1656, 3462}, {1853, 15274}, {1896, 5706}, {1899, 6530}, {1990, 11547}, {1993, 46106}, {1994, 15262}, {2207, 40814}, {3060, 37200}, {3183, 3522}, {3295, 7049}, {3523, 41425}, {3534, 5667}, {5059, 15005}, {5523, 14715}, {6000, 41372}, {6524, 6776}, {6525, 11206}, {6529, 41376}, {6617, 46717}, {6759, 14363}, {6819, 43981}, {7592, 13450}, {8613, 15905}, {8778, 51350}, {8888, 15022}, {10002, 32064}, {11064, 46927}, {11331, 37636}, {11427, 40138}, {11456, 52661}, {14165, 26958}, {15004, 42400}, {17811, 52147}, {17821, 38808}, {19221, 53415}, {20477, 51936}, {26869, 52249}, {27377, 37192}, {34032, 54240}, {34545, 52253}, {34854, 39646}, {36751, 46760}, {36794, 41244}, {37067, 39575}, {37505, 45062}, {41370, 52281}, {41678, 43988}, {52283, 56015}

X(56296) = isogonal conjugate of X(18890)
X(56296) = polar conjugate of X(15318)
X(56296) = perspector of circumconic {{A, B, C, X(52779), X(53639)}}
X(56296) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 18890}, {48, 15318}, {63, 32319}, {810, 30441}, {1953, 14371}
X(56296) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 18890}, {53, 5}, {1249, 15318}, {3162, 32319}, {39062, 30441}
X(56296) = X(i)-Ceva conjugate of X(j) for these {i, j}: {95, 4}
X(56296) = X(i)-cross conjugate of X(j) for these {i, j}: {6759, 20477}
X(56296) = intersection, other than A, B, C, of circumconics {{A, B, C, X(253), X(8795)}}, {{A, B, C, X(275), X(1073)}}, {{A, B, C, X(394), X(34538)}}, {{A, B, C, X(2052), X(13157)}}
X(56296) = barycentric product X(i)*X(j) for these (i, j): {264, 6759}, {14363, 95}, {20477, 4}, {30442, 6331}, {51936, 76}, {52585, 648}
X(56296) = barycentric quotient X(i)/X(j) for these (i, j): {4, 15318}, {6, 18890}, {25, 32319}, {54, 14371}, {648, 30441}, {6759, 3}, {14363, 5}, {20477, 69}, {30442, 647}, {51936, 6}, {52585, 525}
X(56296) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14361, 51358}, {2, 17037, 20213}, {2, 20217, 253}, {324, 5422, 458}, {648, 15466, 394}, {1249, 14361, 2}, {1990, 13567, 11547}, {3168, 41204, 25}, {5656, 36876, 1559}, {6525, 15258, 11206}, {11245, 14569, 4}


X(56297) = KP2(X(4)) OF X(2) AND X(5)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^8-5*a^6*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)-(b^2-c^2)^2*(b^4+c^4)+a^4*(3*b^4+4*b^2*c^2+3*c^4)) : :

X(56297) lies on these lines: {2, 253}, {4, 11402}, {5, 3462}, {6, 11547}, {22, 44704}, {25, 41371}, {51, 42873}, {53, 275}, {97, 112}, {107, 10192}, {140, 1075}, {154, 15274}, {184, 6530}, {217, 19170}, {264, 37649}, {297, 1993}, {324, 14389}, {343, 648}, {393, 11427}, {394, 17907}, {427, 41204}, {436, 14569}, {441, 46717}, {458, 41361}, {467, 1994}, {468, 3168}, {472, 36302}, {473, 36303}, {549, 40664}, {597, 37873}, {1148, 15325}, {1559, 41372}, {1585, 3311}, {1586, 3312}, {1629, 5480}, {1853, 15576}, {1941, 6823}, {1990, 2052}, {2883, 51892}, {3176, 3622}, {3183, 15717}, {5068, 8888}, {5523, 52281}, {5667, 8703}, {6509, 23583}, {6524, 37070}, {6525, 35260}, {6747, 13366}, {6750, 37505}, {6819, 51171}, {8613, 42459}, {8746, 53477}, {8884, 45089}, {8887, 12242}, {10002, 11206}, {10282, 33549}, {10303, 41425}, {11064, 15466}, {11245, 52249}, {11433, 40138}, {13567, 14165}, {14249, 16252}, {14918, 41628}, {15005, 50693}, {15258, 32064}, {15262, 34545}, {18121, 53176}, {23332, 51939}, {34782, 38808}, {34986, 39569}, {38652, 40938}, {40684, 41366}, {41170, 52917}, {41203, 41588}, {41370, 52282}, {43462, 53506}, {45794, 56021}, {52147, 53415}, {52253, 56022}

X(56297) = polar conjugate of X(15319)
X(56297) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 15319}, {6748, 140}
X(56297) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40410, 4}
X(56297) = intersection, other than A, B, C, of circumconics {{A, B, C, X(253), X(39286)}}, {{A, B, C, X(288), X(1073)}}, {{A, B, C, X(13157), X(34579)}}
X(56297) = barycentric product X(i)*X(j) for these (i, j): {10282, 264}, {33549, 40410}
X(56297) = barycentric quotient X(i)/X(j) for these (i, j): {4, 15319}, {10282, 3}, {33549, 140}
X(56297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1249, 56296}, {2, 56296, 51358}, {154, 15274, 52448}, {467, 1994, 27377}, {1990, 23292, 2052}, {1994, 37766, 467}, {51266, 51273, 5}


X(56298) = KP2(X(4)) OF X(3) AND X(5)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^12+b^2*c^2*(b^2-c^2)^4-4*a^10*(b^2+c^2)+a^4*(b^2-c^2)^2*(b^4+c^4)+a^8*(6*b^4+9*b^2*c^2+6*c^4)-4*a^6*(b^6+b^4*c^2+b^2*c^4+c^6)) : :

X(56298) lies on these lines: {3, 1075}, {4, 6}, {5, 3462}, {24, 3168}, {51, 8884}, {54, 436}, {55, 7049}, {56, 1148}, {107, 10282}, {133, 14862}, {140, 51358}, {184, 1093}, {186, 47153}, {216, 40448}, {275, 8887}, {324, 13434}, {450, 1147}, {459, 3525}, {550, 5667}, {567, 37127}, {578, 2052}, {631, 14361}, {648, 5562}, {1092, 15466}, {1614, 52661}, {1629, 10110}, {2055, 8613}, {3176, 7967}, {3183, 3528}, {3518, 51887}, {3524, 41425}, {3544, 8888}, {5158, 13599}, {6524, 18925}, {6759, 14249}, {6952, 18687}, {7383, 46741}, {7395, 9308}, {7488, 35360}, {7567, 41083}, {9833, 52448}, {10112, 39569}, {11001, 15005}, {11202, 51877}, {11547, 39571}, {11587, 15912}, {15033, 44732}, {15318, 53852}, {15459, 38933}, {15781, 41481}, {16252, 51385}, {17401, 52011}, {18912, 52249}, {19169, 55084}, {20299, 51939}, {26883, 47392}, {32379, 52917}, {34148, 46106}, {37124, 43651}, {41203, 41587}, {42329, 51936}

X(56298) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 8612}
X(56298) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 8612}, {38976, 525}, {52280, 45198}
X(56298) = X(i)-Ceva conjugate of X(j) for these {i, j}: {216, 436}, {40448, 4}
X(56298) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(41373)}}, {{A, B, C, X(4), X(8613)}}, {{A, B, C, X(6), X(3463)}}, {{A, B, C, X(96), X(41204)}}
X(56298) = barycentric product X(i)*X(j) for these (i, j): {4, 8613}, {275, 51888}, {2052, 2055}
X(56298) = barycentric quotient X(i)/X(j) for these (i, j): {25, 8612}, {2055, 394}, {8613, 69}, {51888, 343}
X(56298) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 56296, 1075}, {4, 1498, 48364}, {5, 56297, 3462}, {54, 13450, 436}, {107, 38808, 10282}, {2055, 51888, 8613}, {3462, 6761, 5}, {10112, 39569, 43995}, {10282, 14363, 107}, {10982, 33971, 4}, {36302, 36303, 53}


X(56299) = X(9)-CEVA CONJUGATE OF X(4)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^7*(b+c)-b*(b-c)^4*c*(b+c)^2-a^3*(b-c)^2*(b+c)^3+a*(b-c)^2*(b+c)^3*(b^2+c^2)-a^2*(b^2-c^2)^2*(2*b^2-b*c+2*c^2)-a^6*(2*b^2+b*c+2*c^2)-a^5*(b^3+b^2*c+b*c^2+c^3)+a^4*(4*b^4+b^3*c-2*b^2*c^2+b*c^3+4*c^4)) : :

X(56299) lies on these lines: {4, 65}, {37, 1249}, {72, 1895}, {92, 5728}, {243, 1708}, {342, 5927}, {653, 7580}, {943, 7049}, {971, 44697}, {1075, 1712}, {1260, 1897}, {1784, 18397}, {1940, 10393}, {3168, 26000}, {3487, 7551}, {3651, 8762}, {5658, 40837}, {5729, 37279}, {5759, 44695}, {7046, 14361}, {7952, 40967}, {34032, 36127}, {36996, 55110}

X(56299) = X(i)-Dao conjugate of X(j) for these {i, j}: {273, 85}
X(56299) = X(i)-Ceva conjugate of X(j) for these {i, j}: {9, 4}
X(56299) = barycentric product X(i)*X(j) for these (i, j): {318, 51969}, {2947, 92}
X(56299) = barycentric quotient X(i)/X(j) for these (i, j): {2947, 63}, {51969, 77}
X(56299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12664, 47372, 4}


X(56300) = KP2(X(4)) OF X(9) AND X(10)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^7-a^6*(b+c)+b*(b-c)^2*c*(b+c)^3+a*b*c*(b^2-c^2)^2+a^3*(b+c)^2*(b^2+c^2)-a^5*(2*b^2+3*b*c+2*c^2)+a^4*(2*b^3-b^2*c-b*c^2+2*c^3)-a^2*(b^5-b^4*c-b*c^4+c^5)) : :

X(56300) lies on these lines: {1, 281}, {6, 158}, {9, 56299}, {19, 1148}, {65, 8748}, {92, 54358}, {196, 52819}, {219, 1895}, {243, 579}, {284, 1940}, {393, 18391}, {1118, 5802}, {1172, 2982}, {1449, 39585}, {1783, 3990}, {1857, 5746}, {1897, 3694}, {1990, 21933}, {5776, 47372}, {6520, 19350}, {30456, 36127}, {32674, 47345}

X(56300) = X(i)-Dao conjugate of X(j) for these {i, j}: {1838, 5249}
X(56300) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40435, 4}
X(56300) = intersection, other than A, B, C, of circumconics {{A, B, C, X(282), X(40395)}}, {{A, B, C, X(2982), X(41087)}}
X(56300) = barycentric product X(i)*X(j) for these (i, j): {10536, 264}
X(56300) = barycentric quotient X(i)/X(j) for these (i, j): {10536, 3}
X(56300) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1249, 3176, 281}


X(56301) = X(10)-CEVA CONJUGATE OF X(4)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+3*a^5*(b+c)-a*(b-c)^2*(b+c)^3-a^2*(b+c)^2*(b^2+c^2)-(b^2-c^2)^2*(b^2+b*c+c^2)+a^4*(b^2+3*b*c+c^2)-2*a^3*(b^3+b^2*c+b*c^2+c^3)) : :

X(56301) lies on these lines: {1, 18679}, {4, 6}, {10, 56300}, {30, 44698}, {40, 52011}, {42, 4213}, {108, 38856}, {186, 47163}, {297, 56018}, {442, 41083}, {451, 3085}, {648, 1330}, {1068, 1148}, {1897, 3695}, {2322, 4205}, {3487, 18678}, {3651, 8885}, {5292, 7543}, {6998, 16318}, {7149, 12867}, {7380, 45141}, {7513, 48847}, {7554, 37642}, {7952, 40967}, {9308, 16062}, {10449, 17907}, {11109, 56297}, {17555, 56296}, {39591, 45766}

X(56301) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 34440}
X(56301) = X(i)-Dao conjugate of X(j) for these {i, j}: {27, 86}, {3162, 34440}
X(56301) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10, 4}, {56300, 56299}
X(56301) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3151)}}, {{A, B, C, X(1172), X(7105)}}
X(56301) = barycentric product X(i)*X(j) for these (i, j): {2939, 92}, {3151, 4}, {18631, 281}
X(56301) = barycentric quotient X(i)/X(j) for these (i, j): {25, 34440}, {2939, 63}, {3151, 69}, {18631, 348}
X(56301) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1834, 1990, 8747}, {1834, 8747, 4}


X(56302) = KP2(X(5)) OF X(2) AND X(3)

Barycentrics    (-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^8+b^2*c^2*(b^2-c^2)^2-3*a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(3*b^4+b^2*c^2+3*c^4)) : :

X(56302) lies on circumconic {{A, B, C, X(343), X(46106)}} and on these lines: {2, 216}, {3, 15912}, {5, 23607}, {20, 52}, {22, 9755}, {95, 31626}, {97, 648}, {343, 14570}, {401, 34545}, {418, 35360}, {467, 42459}, {925, 41271}, {1370, 41169}, {1972, 11794}, {1994, 8613}, {3060, 42329}, {3917, 44003}, {5422, 20477}, {5664, 20577}, {6360, 23958}, {8799, 50689}, {9308, 37068}, {10003, 11197}, {11140, 54547}, {14129, 34836}, {15108, 39352}, {19772, 51264}, {19773, 51271}, {20222, 45238}, {21734, 22257}, {23195, 47143}, {26842, 44354}, {30506, 32428}, {35061, 56266}, {35937, 41676}, {39284, 54105}, {41244, 52703}, {41480, 45794}, {41678, 56297}, {42441, 51888}

X(56302) = anticomplement of X(40684)
X(56302) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2148, 6662}
X(56302) = X(i)-Dao conjugate of X(j) for these {i, j}: {216, 6662}, {36412, 5}, {40684, 40684}
X(56302) = X(i)-Ceva conjugate of X(j) for these {i, j}: {95, 5}, {31626, 2}
X(56302) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {48, 2889}, {1173, 21270}, {20574, 21271}, {31626, 6327}, {33631, 5906}, {39180, 21294}
X(56302) = barycentric product X(i)*X(j) for these (i, j): {1614, 311}, {6663, 95}, {18831, 34979}, {46724, 5}
X(56302) = barycentric quotient X(i)/X(j) for these (i, j): {5, 6662}, {1614, 54}, {6663, 5}, {34979, 6368}, {46724, 95}
X(56302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3164, 43988}, {216, 324, 2}, {418, 42453, 35360}, {1994, 8613, 43768}, {34836, 52945, 14129}


X(56303) = KP2(X(5)) OF X(3) AND X(4)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^8+b^2*c^2*(b^2-c^2)^2-3*a^6*(b^2+c^2)-a^2*(b^2+c^2)^3+a^4*(3*b^4+5*b^2*c^2+3*c^4)) : :

X(56303) lies on these lines: {3, 15912}, {4, 52}, {5, 35360}, {24, 9308}, {49, 35311}, {54, 648}, {74, 1105}, {107, 43598}, {143, 14978}, {216, 631}, {264, 3567}, {418, 41481}, {436, 56292}, {511, 44732}, {1093, 11459}, {1216, 46106}, {1941, 3520}, {1994, 37127}, {2052, 11412}, {2967, 37121}, {3090, 3168}, {3164, 26876}, {3541, 41169}, {4240, 18350}, {5462, 40684}, {5562, 13450}, {5907, 52661}, {6750, 41586}, {7509, 56296}, {7512, 41204}, {7999, 15466}, {8887, 14531}, {11455, 52578}, {14249, 15058}, {14920, 43839}, {15559, 44704}, {16080, 43866}, {31388, 51888}, {34334, 45959}, {35318, 37124}, {35921, 56298}, {37493, 52253}

X(56303) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2169, 45195}
X(56303) = X(i)-Dao conjugate of X(j) for these {i, j}: {14363, 45195}
X(56303) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1105, 5}
X(56303) = intersection, other than A, B, C, of circumconics {{A, B, C, X(68), X(18890)}}, {{A, B, C, X(5392), X(15318)}}
X(56303) = barycentric quotient X(i)/X(j) for these (i, j): {53, 45195}
X(56303) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15912, 56302}, {52, 324, 4}, {143, 14978, 30506}


X(56304) = X(6)-CEVA CONJUGATE OF X(5)

Barycentrics    (-(b^2-c^2)^2+a^2*(b^2+c^2))*(-(b^2*c^2*(b^2-c^2)^2)+a^6*(b^2+c^2)-2*a^4*(b^4+b^2*c^2+c^4)+a^2*(b^6+c^6)) : :

X(56304) lies on these lines: {5, 45793}, {22, 9755}, {30, 52}, {216, 230}, {324, 427}, {378, 56303}, {523, 34986}, {925, 54034}, {6663, 41587}, {12161, 46200}, {31802, 41481}, {34751, 39910}, {41588, 42453}

X(56304) = X(i)-Dao conjugate of X(j) for these {i, j}: {311, 76}
X(56304) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6, 5}
X(56304) = barycentric product X(i)*X(j) for these (i, j): {14570, 34964}, {23158, 324}
X(56304) = barycentric quotient X(i)/X(j) for these (i, j): {23158, 97}, {34964, 15412}


X(56305) = KP2(X(6)) OF X(1) AND X(4)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3-a^2*b-a*b^2+b^3+c^3)*(a^3+b^3-a^2*c-a*c^2+c^3) : :

X(56305) lies on these lines: {3, 1398}, {4, 28776}, {24, 37547}, {25, 1260}, {28, 1792}, {55, 7337}, {212, 573}, {943, 7412}, {972, 52775}, {1061, 37533}, {1283, 1957}, {1802, 1973}, {2203, 26893}, {11436, 44085}, {14017, 40436}

X(56305) = isogonal conjugate of X(41004)
X(56305) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 41004}, {2, 26934}, {3, 17861}, {63, 3772}, {69, 3924}, {71, 16749}, {72, 17189}, {77, 1837}, {273, 53850}, {307, 40980}, {345, 36570}, {348, 40968}, {1444, 21935}, {4025, 53279}
X(56305) = X(i)-vertex conjugate of X(j) for these {i, j}: {63, 278}
X(56305) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 41004}, {3162, 3772}, {32664, 26934}, {36103, 17861}
X(56305) = X(i)-Ceva conjugate of X(j) for these {i, j}: {34406, 56003}
X(56305) = X(i)-cross conjugate of X(j) for these {i, j}: {3063, 1783}
X(56305) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1297)}}, {{A, B, C, X(3), X(55)}}, {{A, B, C, X(4), X(2299)}}, {{A, B, C, X(25), X(28)}}, {{A, B, C, X(31), X(3418)}}, {{A, B, C, X(33), X(1061)}}, {{A, B, C, X(42), X(41013)}}, {{A, B, C, X(57), X(251)}}, {{A, B, C, X(102), X(2328)}}, {{A, B, C, X(104), X(7169)}}, {{A, B, C, X(197), X(1486)}}, {{A, B, C, X(200), X(3345)}}, {{A, B, C, X(278), X(9085)}}, {{A, B, C, X(281), X(284)}}, {{A, B, C, X(945), X(2192)}}, {{A, B, C, X(951), X(51476)}}, {{A, B, C, X(1175), X(2258)}}, {{A, B, C, X(1436), X(9456)}}, {{A, B, C, X(2194), X(3417)}}, {{A, B, C, X(2335), X(2359)}}, {{A, B, C, X(7097), X(41890)}}, {{A, B, C, X(7412), X(8021)}}, {{A, B, C, X(10623), X(34429)}}, {{A, B, C, X(29206), X(56098)}}, {{A, B, C, X(37741), X(40419)}}
X(56305) = barycentric product X(i)*X(j) for these (i, j): {1, 55994}, {4, 56003}, {19, 40436}, {34399, 607}, {34406, 6}
X(56305) = barycentric quotient X(i)/X(j) for these (i, j): {6, 41004}, {19, 17861}, {25, 3772}, {28, 16749}, {31, 26934}, {607, 1837}, {1395, 36570}, {1474, 17189}, {1973, 3924}, {2204, 40980}, {2212, 40968}, {2333, 21935}, {34406, 76}, {40436, 304}, {52425, 53850}, {52775, 13149}, {55994, 75}, {56003, 69}


X(56306) = KP2(X(6)) OF X(2) AND X(3)

Barycentrics    a^2*(2*a^6-b^6-b^2*c^4+2*c^6+2*a^2*c^2*(b^2-c^2)-a^4*(b^2+2*c^2))*(2*a^6+2*b^6-b^4*c^2-c^6-a^4*(2*b^2+c^2)-2*a^2*(b^4-b^2*c^2)) : :

X(56306) lies on these lines: {20, 10002}, {22, 15905}, {69, 20587}, {154, 15394}, {253, 42671}, {1350, 7488}, {3522, 51347}, {6636, 40358}, {7492, 52513}, {8801, 11348}, {10565, 23608}

X(56306) = isogonal conjugate of X(1853)
X(56306) = trilinear pole of line {8673, 16040}
X(56306) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 1853}, {19, 20208}, {64, 20322}, {158, 53852}, {2184, 46829}
X(56306) = X(i)-vertex conjugate of X(j) for these {i, j}: {6, 253}
X(56306) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 1853}, {6, 20208}, {32, 53851}, {1147, 53852}
X(56306) = X(i)-cross conjugate of X(j) for these {i, j}: {39575, 2}, {52613, 110}
X(56306) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(22)}}, {{A, B, C, X(3), X(20)}}, {{A, B, C, X(4), X(1166)}}, {{A, B, C, X(5), X(38435)}}, {{A, B, C, X(6), X(253)}}, {{A, B, C, X(30), X(10298)}}, {{A, B, C, X(54), X(3346)}}, {{A, B, C, X(59), X(347)}}, {{A, B, C, X(60), X(280)}}, {{A, B, C, X(64), X(31361)}}, {{A, B, C, X(69), X(250)}}, {{A, B, C, X(74), X(16251)}}, {{A, B, C, X(95), X(34168)}}, {{A, B, C, X(160), X(1576)}}, {{A, B, C, X(186), X(50480)}}, {{A, B, C, X(206), X(21458)}}, {{A, B, C, X(237), X(15389)}}, {{A, B, C, X(264), X(43697)}}, {{A, B, C, X(376), X(2071)}}, {{A, B, C, X(393), X(1177)}}, {{A, B, C, X(842), X(34208)}}, {{A, B, C, X(1014), X(26703)}}, {{A, B, C, X(1217), X(40441)}}, {{A, B, C, X(1249), X(15384)}}, {{A, B, C, X(1294), X(3431)}}, {{A, B, C, X(1370), X(6636)}}, {{A, B, C, X(1383), X(2373)}}, {{A, B, C, X(1790), X(37741)}}, {{A, B, C, X(2165), X(3447)}}, {{A, B, C, X(2693), X(20421)}}, {{A, B, C, X(2697), X(45838)}}, {{A, B, C, X(2998), X(51862)}}, {{A, B, C, X(3091), X(9715)}}, {{A, B, C, X(3108), X(34427)}}, {{A, B, C, X(3146), X(38444)}}, {{A, B, C, X(3424), X(8882)}}, {{A, B, C, X(3425), X(52223)}}, {{A, B, C, X(3522), X(11413)}}, {{A, B, C, X(3529), X(38448)}}, {{A, B, C, X(3532), X(50710)}}, {{A, B, C, X(3563), X(51316)}}, {{A, B, C, X(3565), X(5649)}}, {{A, B, C, X(5059), X(38438)}}, {{A, B, C, X(6391), X(34570)}}, {{A, B, C, X(6759), X(10282)}}, {{A, B, C, X(10304), X(21312)}}, {{A, B, C, X(13472), X(15318)}}, {{A, B, C, X(13575), X(39955)}}, {{A, B, C, X(14910), X(34285)}}, {{A, B, C, X(15324), X(33629)}}, {{A, B, C, X(16774), X(29011)}}, {{A, B, C, X(17040), X(42484)}}, {{A, B, C, X(18355), X(33643)}}, {{A, B, C, X(18855), X(34225)}}, {{A, B, C, X(40801), X(41891)}}
X(56306) = barycentric product X(i)*X(j) for these (i, j): {15905, 34407}, {34412, 6}
X(56306) = barycentric quotient X(i)/X(j) for these (i, j): {3, 20208}, {6, 1853}, {154, 46829}, {206, 53851}, {577, 53852}, {610, 20322}, {34407, 52581}, {34412, 76}


X(56307) = KP2(X(6)) OF X(2) AND X(4)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-2*a^2*b^2+b^4+c^4)*(a^4+b^4-2*a^2*c^2+c^4) : :

X(56307) lies on these lines: {3, 6530}, {4, 16391}, {22, 232}, {24, 511}, {25, 317}, {26, 19189}, {95, 6641}, {157, 523}, {262, 36794}, {264, 3148}, {378, 14356}, {393, 37183}, {458, 3613}, {648, 9307}, {1176, 39575}, {1485, 1576}, {2374, 42297}, {2453, 48379}, {2967, 3425}, {3060, 8882}, {5413, 26875}, {6644, 35908}, {7509, 39604}, {8430, 21397}, {9530, 15078}, {10594, 14111}, {11337, 22341}, {14379, 17928}, {21213, 51862}, {21284, 52692}, {32112, 40914}, {36426, 52275}, {41768, 51776}, {44096, 50666}

X(56307) = isogonal conjugate of X(1899)
X(56307) = polar conjugate of X(41760)
X(56307) = trilinear pole of line {3569, 6753}
X(56307) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 1899}, {2, 2083}, {3, 17871}, {19, 6389}, {31, 41009}, {48, 41760}, {63, 3767}, {75, 40947}, {92, 39643}, {158, 426}, {293, 2450}, {304, 42295}, {326, 41762}, {656, 1632}, {1096, 44141}, {1820, 41770}, {2156, 28405}, {6751, 40440}
X(56307) = X(i)-vertex conjugate of X(j) for these {i, j}: {69, 393}, {9307, 9307}
X(56307) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 41009}, {3, 1899}, {6, 6389}, {132, 2450}, {206, 40947}, {427, 52532}, {1147, 426}, {1249, 41760}, {3162, 3767}, {6503, 44141}, {15259, 41762}, {22391, 39643}, {32664, 2083}, {36103, 17871}, {40596, 1632}
X(56307) = X(i)-Ceva conjugate of X(j) for these {i, j}: {34405, 56004}
X(56307) = X(i)-cross conjugate of X(j) for these {i, j}: {3049, 648}, {52584, 110}
X(56307) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(22)}}, {{A, B, C, X(3), X(95)}}, {{A, B, C, X(4), X(24)}}, {{A, B, C, X(5), X(26)}}, {{A, B, C, X(6), X(232)}}, {{A, B, C, X(20), X(17928)}}, {{A, B, C, X(21), X(11337)}}, {{A, B, C, X(23), X(1995)}}, {{A, B, C, X(25), X(1974)}}, {{A, B, C, X(54), X(1217)}}, {{A, B, C, X(64), X(18848)}}, {{A, B, C, X(66), X(14910)}}, {{A, B, C, X(68), X(34225)}}, {{A, B, C, X(69), X(1297)}}, {{A, B, C, X(74), X(18850)}}, {{A, B, C, X(96), X(34439)}}, {{A, B, C, X(98), X(34207)}}, {{A, B, C, X(111), X(10603)}}, {{A, B, C, X(157), X(1576)}}, {{A, B, C, X(184), X(3155)}}, {{A, B, C, X(186), X(378)}}, {{A, B, C, X(199), X(1011)}}, {{A, B, C, X(237), X(3148)}}, {{A, B, C, X(253), X(895)}}, {{A, B, C, X(276), X(39968)}}, {{A, B, C, X(305), X(34427)}}, {{A, B, C, X(324), X(3060)}}, {{A, B, C, X(381), X(2070)}}, {{A, B, C, X(382), X(45735)}}, {{A, B, C, X(393), X(3563)}}, {{A, B, C, X(405), X(2915)}}, {{A, B, C, X(427), X(21213)}}, {{A, B, C, X(648), X(9308)}}, {{A, B, C, X(687), X(805)}}, {{A, B, C, X(967), X(40414)}}, {{A, B, C, X(1093), X(34428)}}, {{A, B, C, X(1173), X(18355)}}, {{A, B, C, X(1177), X(2165)}}, {{A, B, C, X(1300), X(18532)}}, {{A, B, C, X(1494), X(6391)}}, {{A, B, C, X(1502), X(46239)}}, {{A, B, C, X(1593), X(3515)}}, {{A, B, C, X(1657), X(43809)}}, {{A, B, C, X(2351), X(15389)}}, {{A, B, C, X(2353), X(9468)}}, {{A, B, C, X(3049), X(40947)}}, {{A, B, C, X(3129), X(3130)}}, {{A, B, C, X(3131), X(3132)}}, {{A, B, C, X(3432), X(52518)}}, {{A, B, C, X(3516), X(15750)}}, {{A, B, C, X(3518), X(10594)}}, {{A, B, C, X(3520), X(32534)}}, {{A, B, C, X(3527), X(14860)}}, {{A, B, C, X(4185), X(20832)}}, {{A, B, C, X(5020), X(9909)}}, {{A, B, C, X(5094), X(21284)}}, {{A, B, C, X(5481), X(36948)}}, {{A, B, C, X(6330), X(40802)}}, {{A, B, C, X(6636), X(7485)}}, {{A, B, C, X(6660), X(11328)}}, {{A, B, C, X(6662), X(15317)}}, {{A, B, C, X(7488), X(7503)}}, {{A, B, C, X(8749), X(34208)}}, {{A, B, C, X(8797), X(41891)}}, {{A, B, C, X(9723), X(47390)}}, {{A, B, C, X(11413), X(22467)}}, {{A, B, C, X(13472), X(18853)}}, {{A, B, C, X(14489), X(40410)}}, {{A, B, C, X(15316), X(15318)}}, {{A, B, C, X(15319), X(38260)}}, {{A, B, C, X(15740), X(45301)}}, {{A, B, C, X(17974), X(18890)}}, {{A, B, C, X(17983), X(41489)}}, {{A, B, C, X(18124), X(44177)}}, {{A, B, C, X(18401), X(34801)}}, {{A, B, C, X(22261), X(34438)}}, {{A, B, C, X(23582), X(40416)}}, {{A, B, C, X(34436), X(45838)}}, {{A, B, C, X(34570), X(36889)}}, {{A, B, C, X(40144), X(47847)}}, {{A, B, C, X(42407), X(56004)}}, {{A, B, C, X(43725), X(45857)}}
X(56307) = barycentric product X(i)*X(j) for these (i, j): {4, 56004}, {25, 42407}, {2489, 42297}, {34405, 6}
X(56307) = barycentric quotient X(i)/X(j) for these (i, j): {2, 41009}, {3, 6389}, {4, 41760}, {6, 1899}, {19, 17871}, {22, 28405}, {24, 41770}, {25, 3767}, {31, 2083}, {32, 40947}, {112, 1632}, {184, 39643}, {217, 6751}, {232, 2450}, {394, 44141}, {577, 426}, {1974, 42295}, {2207, 41762}, {7592, 18953}, {8743, 41761}, {14576, 27362}, {34405, 76}, {40938, 52532}, {42297, 52608}, {42407, 305}, {56004, 69}
X(56307) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9308, 36176, 157}


X(56308) = X(5)-CEVA CONJUGATE OF X(6)

Barycentrics    a^2*(a^10-3*a^8*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+a^6*(4*b^4+5*b^2*c^2+4*c^4)-2*a^4*(2*b^6+b^4*c^2+b^2*c^4+2*c^6)+3*a^2*(b^8-b^6*c^2-b^2*c^6+c^8)) : :

X(56308) lies on these lines: {2, 14652}, {3, 161}, {5, 1601}, {6, 2351}, {22, 9756}, {24, 19172}, {25, 2934}, {26, 23709}, {50, 47328}, {51, 2965}, {97, 44668}, {154, 157}, {184, 566}, {456, 21394}, {512, 34985}, {577, 34751}, {925, 45793}, {973, 8883}, {1157, 7730}, {2070, 9222}, {3053, 3148}, {3155, 42265}, {3156, 42262}, {5172, 23383}, {10192, 54375}, {13409, 17847}, {15109, 23195}, {15139, 46832}, {15577, 37068}, {17809, 40947}, {17824, 42441}, {19468, 51255}, {30715, 36178}, {32379, 46025}, {41205, 56304}, {43653, 50669}

X(56308) = perspector of circumconic {{A, B, C, X(16039), X(32692)}}
X(56308) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 3432}, {6798, 40440}, {14213, 40140}
X(56308) = X(i)-Dao conjugate of X(j) for these {i, j}: {54, 95}, {206, 3432}
X(56308) = X(i)-Ceva conjugate of X(j) for these {i, j}: {5, 6}, {2888, 45800}
X(56308) = X(i)-cross conjugate of X(j) for these {i, j}: {8565, 45800}
X(56308) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2888), X(6145)}}, {{A, B, C, X(3432), X(54034)}}, {{A, B, C, X(51477), X(52677)}}
X(56308) = barycentric product X(i)*X(j) for these (i, j): {4, 45800}, {216, 52677}, {264, 8565}, {2888, 6}
X(56308) = barycentric quotient X(i)/X(j) for these (i, j): {32, 3432}, {217, 6798}, {2888, 76}, {8565, 3}, {45800, 69}, {52677, 276}, {54034, 40140}
X(56308) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 1601, 3432}, {157, 6641, 154}


X(56309) = KP2(X(7)) OF X(2) AND X(9)

Barycentrics    (a+b-c)*(a-b+c)*(a^4+2*b*(b-c)^2*c-3*a^3*(b+c)-a*(b-c)^2*(b+c)+3*a^2*(b^2+c^2)) : :

X(56309) lies on these lines: {1, 1088}, {2, 3160}, {7, 9580}, {57, 14189}, {63, 35312}, {77, 4666}, {85, 10582}, {165, 658}, {200, 664}, {223, 36905}, {226, 2898}, {241, 24600}, {279, 10580}, {347, 3875}, {348, 4847}, {354, 42309}, {390, 479}, {516, 7056}, {934, 7411}, {1214, 45742}, {1323, 11019}, {1419, 10025}, {1996, 13405}, {2124, 3177}, {2951, 50561}, {3058, 30623}, {3668, 14548}, {3870, 25716}, {3886, 7182}, {4326, 23062}, {5932, 17270}, {6610, 24352}, {9446, 10389}, {9533, 9778}, {9812, 10004}, {10436, 33673}, {10980, 33765}, {17078, 31146}, {25006, 31600}, {30350, 52511}, {30353, 47374}, {36640, 51351}, {40443, 52769}

X(56309) = X(i)-isoconjugate-of-X(j) for these {i, j}: {663, 42301}, {3063, 42303}
X(56309) = X(i)-Dao conjugate of X(j) for these {i, j}: {10001, 42303}, {10481, 142}
X(56309) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32008, 7}, {34019, 30625}
X(56309) = X(i)-cross conjugate of X(j) for these {i, j}: {11495, 30625}
X(56309) = intersection, other than A, B, C, of circumconics {{A, B, C, X(200), X(24011)}}, {{A, B, C, X(10390), X(19605)}}
X(56309) = barycentric product X(i)*X(j) for these (i, j): {1, 34019}, {11495, 85}, {30625, 7}
X(56309) = barycentric quotient X(i)/X(j) for these (i, j): {651, 42301}, {664, 42303}, {11495, 9}, {30625, 8}, {34019, 75}
X(56309) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1323, 11019, 17093}, {3160, 31527, 2}, {3160, 34059, 9312}, {14189, 31526, 57}


X(56310) = X(9)-CEVA CONJUGATE OF X(7)

Barycentrics    (a+b-c)*(a-b+c)*(-(b*(b-c)^4*c)+a^5*(b+c)+a*(b-c)^2*(b+c)^3-2*a^2*(b-c)^2*(2*b^2+3*b*c+2*c^2)-a^4*(4*b^2+b*c+4*c^2)+a^3*(6*b^3-2*b^2*c-2*b*c^2+6*c^3)) : :

X(56310) lies on cubic K977 and on these lines: {2, 42449}, {7, 354}, {9, 56309}, {144, 35312}, {279, 21346}, {347, 52160}, {480, 664}, {658, 11495}, {1212, 3160}, {1445, 2082}, {2346, 43750}, {3059, 31627}, {6172, 15913}, {8232, 17084}, {30628, 37780}

X(56310) = reflection of X(i) in X(j) for these {i,j}: {7, 50561}
X(56310) = X(i)-Dao conjugate of X(j) for these {i, j}: {1088, 85}
X(56310) = X(i)-Ceva conjugate of X(j) for these {i, j}: {9, 7}, {56309, 3160}
X(56310) = barycentric product X(i)*X(j) for these (i, j): {170, 85}
X(56310) = barycentric quotient X(i)/X(j) for these (i, j): {170, 9}
X(56310) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1088, 5572, 7}


X(56311) = KP2(X(8)) OF X(1) AND X(10)

Barycentrics    (a-b-c)*(a^3+a*b*c+a^2*(b+c)-b*c*(b+c)) : :

X(56311) lies on these lines: {1, 979}, {2, 988}, {3, 5205}, {4, 29641}, {8, 9}, {10, 846}, {12, 33116}, {21, 3701}, {29, 4518}, {31, 41261}, {35, 3992}, {37, 1220}, {45, 5793}, {55, 341}, {56, 18743}, {65, 190}, {78, 27538}, {86, 56083}, {92, 37318}, {99, 35991}, {100, 28029}, {145, 42360}, {192, 54418}, {210, 1043}, {213, 644}, {239, 16916}, {312, 958}, {321, 5260}, {333, 3714}, {344, 388}, {345, 2551}, {405, 3757}, {612, 4195}, {756, 54331}, {894, 1655}, {946, 17777}, {964, 5283}, {989, 4339}, {1001, 56085}, {1054, 8720}, {1089, 5251}, {1104, 32926}, {1222, 5919}, {1265, 3486}, {1329, 32851}, {1447, 18135}, {1621, 4696}, {1722, 3210}, {1793, 52409}, {1834, 33118}, {1885, 34337}, {1940, 6335}, {1975, 30758}, {1997, 7288}, {1999, 5247}, {2292, 17261}, {2329, 3985}, {2478, 3705}, {2646, 4009}, {2650, 32938}, {2975, 4358}, {3006, 5046}, {3091, 30741}, {3146, 39570}, {3219, 17751}, {3295, 4737}, {3333, 30947}, {3436, 17776}, {3485, 56084}, {3616, 8055}, {3617, 32929}, {3687, 18250}, {3699, 52352}, {3704, 42033}, {3712, 21031}, {3812, 32939}, {3831, 24627}, {3871, 4723}, {3876, 49492}, {3912, 12527}, {3913, 44720}, {3920, 11319}, {3923, 56080}, {3924, 32925}, {3932, 7270}, {3948, 37225}, {3952, 34772}, {3977, 24982}, {3995, 17016}, {3996, 4662}, {4066, 54335}, {4075, 30115}, {4217, 50286}, {4313, 5423}, {4387, 4673}, {4388, 12572}, {4391, 29070}, {4420, 46877}, {4425, 19879}, {4429, 50065}, {4432, 37588}, {4642, 32936}, {4676, 5710}, {4692, 5259}, {4720, 32635}, {4756, 34195}, {4936, 49495}, {4968, 5047}, {4975, 5288}, {5015, 11113}, {5016, 32862}, {5025, 30763}, {5080, 52364}, {5088, 33942}, {5089, 37087}, {5100, 15171}, {5234, 11679}, {5266, 13735}, {5297, 11115}, {5300, 11114}, {5433, 37758}, {5552, 10538}, {5835, 17340}, {5882, 47624}, {6284, 32850}, {6651, 17752}, {6763, 49999}, {6872, 10327}, {7172, 11106}, {7836, 30798}, {10371, 17233}, {10404, 17234}, {10448, 32931}, {10449, 41229}, {10459, 32930}, {10572, 16086}, {10915, 21290}, {11681, 33113}, {12513, 38475}, {12526, 25728}, {13741, 37592}, {16706, 25992}, {16826, 33816}, {16865, 26227}, {17260, 31339}, {17264, 34606}, {17350, 54421}, {17480, 28011}, {17526, 29634}, {17676, 29679}, {17685, 30179}, {17738, 27000}, {19842, 20989}, {19860, 56082}, {21077, 25650}, {21935, 33115}, {24068, 30117}, {24349, 54392}, {24440, 32934}, {24443, 25965}, {25079, 37617}, {25524, 30829}, {25531, 52541}, {25583, 32817}, {26139, 28018}, {27002, 46827}, {27383, 27411}, {27396, 27410}, {28058, 52346}, {28661, 38314}, {28808, 30478}, {30055, 48899}, {30740, 32831}, {37549, 49447}, {41575, 52354}, {50171, 50223}

X(56311) = anticomplement of X(24178)
X(56311) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1408, 43677}, {3669, 6010}
X(56311) = X(i)-Dao conjugate of X(j) for these {i, j}: {3687, 4357}, {16613, 514}, {24178, 24178}
X(56311) = X(i)-Ceva conjugate of X(j) for these {i, j}: {37, 7081}, {1220, 8}
X(56311) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(39694)}}, {{A, B, C, X(9), X(979)}}, {{A, B, C, X(5853), X(6002)}}
X(56311) = barycentric product X(i)*X(j) for these (i, j): {312, 5247}, {1999, 8}, {3699, 6002}
X(56311) = barycentric quotient X(i)/X(j) for these (i, j): {1999, 7}, {2321, 43677}, {3699, 54986}, {3939, 6010}, {5247, 57}, {6002, 3676}, {16613, 53540}, {39774, 3674}
X(56311) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 30568, 19582}, {3, 46937, 5205}, {10, 7283, 32932}, {21, 3701, 7081}, {45, 5793, 31359}, {321, 5260, 16824}, {405, 4385, 3757}, {950, 3717, 8}, {3699, 52352, 56176}, {3714, 5302, 333}, {4968, 5047, 16823}, {17738, 30030, 27000}


X(56312) = X(6)-CEVA CONJUGATE OF X(8)

Barycentrics    (a-b-c)*(a*b^2*c^2+a^2*(b-c)^2*(b+c)-b^2*c^2*(b+c)+a^3*(b^2+c^2)) : :

X(56312) lies on these lines: {1, 979}, {8, 23638}, {9, 2319}, {43, 56080}, {190, 1403}, {192, 39929}, {312, 21334}, {329, 2899}, {346, 20684}, {668, 20537}, {1397, 8707}, {2345, 52651}, {3161, 21838}, {3677, 24349}, {3794, 4903}, {3831, 27184}, {3952, 17127}, {4009, 20359}, {4388, 36926}, {5205, 20368}, {6685, 56078}, {8055, 17794}, {18906, 41318}, {19579, 41840}, {24514, 56079}, {35104, 44723}

X(56312) = X(i)-Dao conjugate of X(j) for these {i, j}: {3596, 76}
X(56312) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6, 8}
X(56312) = intersection, other than A, B, C, of circumconics {{A, B, C, X(979), X(2319)}}, {{A, B, C, X(7155), X(39694)}}
X(56312) = barycentric product X(i)*X(j) for these (i, j): {1, 45242}, {23159, 7017}, {32468, 75}
X(56312) = barycentric quotient X(i)/X(j) for these (i, j): {23159, 222}, {32468, 1}, {45242, 75}
X(56312) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7155, 27538, 7081}, {19582, 56276, 56311}


X(56313) = KP2(X(8)) OF X(10) AND X(10)

Barycentrics    (a-b-c)*(a^3-b^3+a*b*c-c^3+2*a^2*(b+c)) : :

X(56313) lies on these lines: {1, 8258}, {2, 986}, {5, 17777}, {8, 21}, {9, 38408}, {10, 846}, {12, 190}, {35, 16086}, {40, 29641}, {45, 1213}, {65, 33116}, {71, 1761}, {78, 9398}, {100, 3145}, {191, 1330}, {192, 5230}, {256, 56276}, {312, 26066}, {341, 17611}, {344, 1284}, {346, 18231}, {498, 30358}, {631, 30285}, {644, 2295}, {758, 25650}, {896, 20077}, {956, 20849}, {960, 32851}, {962, 8229}, {1046, 3178}, {1125, 11533}, {1220, 44416}, {1222, 45081}, {1265, 5218}, {1281, 3501}, {1283, 8715}, {1385, 47624}, {1406, 28965}, {1654, 20653}, {1698, 4425}, {2276, 25082}, {2475, 4427}, {2895, 27558}, {2933, 37311}, {2975, 52273}, {3017, 4065}, {3085, 32937}, {3159, 17734}, {3596, 31496}, {3616, 6703}, {3617, 23937}, {3647, 36974}, {3649, 41878}, {3685, 6734}, {3687, 18249}, {3695, 37327}, {3701, 17787}, {3705, 5250}, {3710, 7081}, {3714, 42033}, {3868, 29839}, {3869, 33113}, {3904, 24099}, {3915, 29840}, {3932, 8424}, {3936, 11684}, {3977, 24987}, {3995, 54355}, {4201, 4414}, {4220, 26264}, {4300, 23691}, {4339, 35261}, {4388, 12514}, {4418, 21674}, {4438, 37598}, {4585, 8614}, {4640, 7270}, {4642, 33115}, {4646, 33118}, {4647, 25446}, {4918, 35466}, {5177, 24280}, {5205, 6684}, {5221, 17234}, {5253, 51583}, {5530, 27064}, {5552, 7105}, {5657, 9840}, {5687, 20834}, {7080, 27544}, {7206, 51285}, {8055, 19877}, {8245, 9588}, {8582, 25101}, {8731, 10453}, {9369, 31397}, {9534, 12567}, {9778, 48890}, {9959, 26446}, {10588, 56084}, {11043, 30947}, {11688, 17776}, {16824, 54357}, {17084, 53332}, {17491, 31888}, {17751, 32849}, {18743, 24914}, {18755, 21711}, {21035, 26115}, {21935, 32936}, {25459, 33135}, {25466, 32939}, {26109, 27577}, {26131, 52068}, {26139, 28096}, {27529, 28803}, {27554, 27704}, {28604, 56079}, {28653, 56083}, {28742, 52157}, {30055, 48917}, {32850, 37568}, {33121, 37548}, {33841, 41842}, {38057, 45705}, {39800, 49730}, {50247, 50252}

X(56313) = anticomplement of X(24161)
X(56313) = perspector of circumconic {{A, B, C, X(645), X(54986)}}
X(56313) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 1247}, {604, 54119}, {1408, 36934}, {4017, 53633}
X(56313) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1247}, {333, 86}, {3161, 54119}, {24161, 24161}, {34961, 53633}
X(56313) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10, 8}, {56078, 3161}, {56311, 19582}
X(56313) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(1046)}}, {{A, B, C, X(333), X(7108)}}, {{A, B, C, X(958), X(7241)}}, {{A, B, C, X(2305), X(34435)}}
X(56313) = barycentric product X(i)*X(j) for these (i, j): {10, 40605}, {1046, 312}, {2305, 3596}, {2907, 306}, {3144, 345}, {3178, 333}, {17778, 8}, {36927, 3936}
X(56313) = barycentric quotient X(i)/X(j) for these (i, j): {8, 54119}, {9, 1247}, {1046, 57}, {2305, 56}, {2321, 36934}, {2907, 27}, {3144, 278}, {3178, 226}, {5546, 53633}, {17778, 7}, {36927, 24624}, {40605, 86}
X(56313) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 56078, 56311}, {10, 56311, 36926}, {10, 846, 26117}, {1043, 21677, 8}, {1046, 3178, 17778}, {3161, 9780, 2899}, {3704, 18253, 333}, {3712, 21677, 1043}, {4418, 21674, 26051}, {4427, 27690, 2475}, {9780, 9791, 5051}


X(56314) = KP2(X(9)) OF X(1) AND X(2)

Barycentrics    a*(2*a^2+2*b^2-b*c+c^2-a*(4*b+c))*(2*a^2+b^2-b*c+2*c^2-a*(b+4*c)) : :

X(56314) lies on these lines: {145, 344}, {192, 2402}, {1420, 1445}, {1743, 3870}, {3158, 19604}, {6600, 43760}, {8686, 56177}, {16948, 41610}, {17093, 32093}, {56155, 56176}

X(56314) = trilinear pole of line {3309, 4394}
X(56314) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 4859}, {56, 24392}, {58, 21949}
X(56314) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 24392}, {9, 4859}, {10, 21949}
X(56314) = X(i)-cross conjugate of X(j) for these {i, j}: {3669, 100}, {25082, 2}
X(56314) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(145)}}, {{A, B, C, X(2), X(2346)}}, {{A, B, C, X(6), X(1279)}}, {{A, B, C, X(7), X(765)}}, {{A, B, C, X(8), X(54125)}}, {{A, B, C, X(9), X(1280)}}, {{A, B, C, X(21), X(6553)}}, {{A, B, C, X(75), X(55920)}}, {{A, B, C, X(82), X(89)}}, {{A, B, C, X(105), X(39975)}}, {{A, B, C, X(192), X(42720)}}, {{A, B, C, X(346), X(34894)}}, {{A, B, C, X(519), X(14497)}}, {{A, B, C, X(749), X(26745)}}, {{A, B, C, X(943), X(1219)}}, {{A, B, C, X(983), X(1002)}}, {{A, B, C, X(1037), X(1252)}}, {{A, B, C, X(1156), X(36606)}}, {{A, B, C, X(1257), X(7160)}}, {{A, B, C, X(2191), X(40400)}}, {{A, B, C, X(2287), X(56088)}}, {{A, B, C, X(5558), X(55991)}}, {{A, B, C, X(7162), X(43533)}}, {{A, B, C, X(7320), X(40436)}}, {{A, B, C, X(8769), X(55935)}}, {{A, B, C, X(9282), X(41439)}}, {{A, B, C, X(14621), X(17127)}}, {{A, B, C, X(27789), X(40776)}}, {{A, B, C, X(30651), X(34445)}}, {{A, B, C, X(34860), X(56203)}}, {{A, B, C, X(34893), X(39956)}}, {{A, B, C, X(39697), X(55918)}}
X(56314) = barycentric product X(i)*X(j) for these (i, j): {1, 56081}
X(56314) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4859}, {9, 24392}, {37, 21949}, {56081, 75}


X(56315) = X(3)-CEVA CONJUGATE OF X(9)

Barycentrics    a*(a-b-c)*(a^6*(b+c)-b*(b-c)^2*c*(b+c)^3+a^5*(b^2-3*b*c+c^2)-2*a^3*(b-c)^2*(b^2+b*c+c^2)+a*(b^2-c^2)^2*(b^2+b*c+c^2)+a^4*(-2*b^3+b^2*c+b*c^2-2*c^3)+a^2*(b^5-b^4*c-b*c^4+c^5)) : :
X(56315) = -3*X[3158]+2*X[3190]

X(56315) lies on these lines: {1, 856}, {9, 7003}, {40, 376}, {200, 44707}, {212, 56183}, {2900, 3169}, {3158, 3190}, {3185, 3900}, {7125, 13138}, {8270, 9451}, {15829, 44692}

X(56315) = X(i)-Dao conjugate of X(j) for these {i, j}: {318, 264}
X(56315) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3, 9}
X(56315) = barycentric product X(i)*X(j) for these (i, j): {18751, 55}
X(56315) = barycentric quotient X(i)/X(j) for these (i, j): {18751, 6063}
X(56315) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7046, 40945, 9}


X(56316) = KP2(X(9)) OF X(4) AND X(10)

Barycentrics    a*(a-b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+b^3+c^3-a^2*(b+c)-a*(b^2+b*c+c^2)) : :

X(56316) lies on these lines: {1, 17917}, {4, 2900}, {10, 451}, {19, 3158}, {25, 6600}, {28, 56176}, {29, 4420}, {33, 200}, {92, 3935}, {108, 41539}, {210, 4183}, {278, 3870}, {518, 4219}, {1013, 3681}, {1172, 3694}, {1435, 3243}, {1783, 4849}, {1824, 56183}, {1848, 5853}, {1859, 3689}, {1861, 13405}, {1891, 12437}, {1897, 3896}, {2299, 3939}, {3873, 35994}, {3957, 17923}, {4123, 23600}, {5174, 34772}, {6197, 8715}, {6743, 46878}, {7076, 21805}, {11406, 52804}, {11471, 11523}, {15500, 18391}, {15627, 53013}, {17442, 19589}, {28609, 52840}

X(56316) = X(i)-isoconjugate-of-X(j) for these {i, j}: {222, 37887}, {1014, 43708}, {6598, 7053}
X(56316) = X(i)-Dao conjugate of X(j) for these {i, j}: {8286, 4025}, {23050, 6598}, {35193, 1444}
X(56316) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40445, 9}
X(56316) = intersection, other than A, B, C, of circumconics {{A, B, C, X(33), X(41505)}}, {{A, B, C, X(200), X(56278)}}, {{A, B, C, X(2324), X(15627)}}
X(56316) = barycentric product X(i)*X(j) for these (i, j): {33, 33116}, {281, 34772}, {321, 41503}, {5174, 9}, {13739, 2321}, {15556, 2322}, {37583, 7101}
X(56316) = barycentric quotient X(i)/X(j) for these (i, j): {33, 37887}, {1334, 43708}, {5174, 85}, {7079, 6598}, {13739, 1434}, {33116, 7182}, {34772, 348}, {37583, 7177}, {41503, 81}, {53008, 43683}
X(56316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {33, 200, 281}


X(56317) = KP2(X(9)) OF X(10) AND X(10)

Barycentrics    a*(a-b-c)*(a^4+a^2*b*c+a*b*c*(b+c)-(b^2-c^2)^2) : :

X(56317) lies on these lines: {1, 442}, {9, 33}, {10, 451}, {25, 16547}, {37, 56178}, {40, 7414}, {42, 17737}, {55, 4516}, {57, 2000}, {78, 4720}, {100, 16577}, {184, 16554}, {191, 1717}, {199, 16553}, {200, 4007}, {210, 52405}, {403, 5587}, {522, 4418}, {612, 1962}, {756, 3939}, {846, 53388}, {936, 37696}, {975, 17581}, {990, 3928}, {1062, 5705}, {1376, 34977}, {1421, 11680}, {1824, 5285}, {1897, 6358}, {2475, 18625}, {3100, 5745}, {3189, 30142}, {3193, 31938}, {3601, 37277}, {3683, 9629}, {3745, 15733}, {3811, 5496}, {3920, 5853}, {4123, 11679}, {4220, 44661}, {4939, 32942}, {5249, 37782}, {5273, 9539}, {5791, 8144}, {6555, 30729}, {6608, 23954}, {6734, 33178}, {7046, 54283}, {7191, 24386}, {9579, 54289}, {9640, 26066}, {9644, 31446}, {9817, 30827}, {16585, 35989}, {17059, 33123}, {18593, 35990}, {18685, 53011}, {21677, 38336}, {25431, 56176}, {28043, 28050}, {28125, 28135}, {40635, 40910}, {46488, 52381}

X(56317) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 34435}, {56, 54454}, {269, 56280}
X(56317) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 54454}, {21, 86}, {6600, 56280}
X(56317) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10, 9}, {2475, 1781}, {56316, 2900}
X(56317) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1172), X(7110)}}, {{A, B, C, X(2299), X(7073)}}, {{A, B, C, X(2475), X(4183)}}
X(56317) = barycentric product X(i)*X(j) for these (i, j): {10, 40582}, {37, 52360}, {210, 52361}, {229, 2321}, {281, 52362}, {1781, 8}, {2475, 9}, {18625, 200}, {28754, 33}
X(56317) = barycentric quotient X(i)/X(j) for these (i, j): {9, 54454}, {41, 34435}, {220, 56280}, {229, 1434}, {1781, 7}, {2475, 85}, {18625, 1088}, {28754, 7182}, {40582, 86}, {52360, 274}, {52362, 348}
X(56317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1824, 5285, 16548}, {2328, 40967, 9}


X(56318) = KP2(X(10)) OF X(1) AND X(8)

Barycentrics    (b+c)*(a^3+b*c*(b+c)-a*(b^2-b*c+c^2)) : :
X(56318) = -3*X[2]+2*X[3670]

X(56318) lies on these lines: {1, 3159}, {2, 3670}, {3, 32933}, {4, 8}, {7, 20336}, {10, 3120}, {21, 190}, {29, 1257}, {34, 28997}, {35, 4427}, {37, 2275}, {65, 3701}, {69, 21594}, {73, 4552}, {75, 3876}, {78, 990}, {100, 53905}, {140, 51583}, {144, 54429}, {145, 2901}, {192, 19767}, {201, 52358}, {213, 22036}, {226, 3710}, {228, 36510}, {238, 17142}, {244, 25079}, {274, 33948}, {312, 3868}, {335, 27097}, {346, 5746}, {350, 17141}, {377, 1265}, {386, 17147}, {404, 32939}, {518, 3702}, {519, 17537}, {595, 20045}, {596, 49997}, {712, 4721}, {726, 1193}, {756, 19874}, {758, 1089}, {894, 25263}, {942, 4358}, {946, 22010}, {960, 4968}, {976, 3923}, {978, 17155}, {982, 25591}, {986, 26030}, {1018, 21067}, {1038, 28968}, {1046, 17763}, {1086, 17674}, {1125, 3989}, {1150, 3927}, {1203, 17150}, {1215, 2292}, {1222, 1320}, {1230, 10974}, {1330, 17484}, {1334, 21101}, {1468, 32935}, {1479, 36500}, {1757, 27368}, {1836, 5300}, {1897, 3194}, {1909, 53332}, {1930, 20347}, {2287, 19848}, {2321, 4101}, {2475, 16086}, {2478, 56084}, {2650, 3994}, {3006, 12047}, {3175, 3241}, {3191, 4511}, {3212, 42711}, {3214, 4090}, {3216, 17495}, {3294, 4115}, {3487, 17776}, {3648, 29301}, {3649, 3932}, {3671, 4082}, {3678, 4647}, {3685, 22012}, {3687, 9569}, {3695, 3936}, {3696, 4005}, {3705, 22000}, {3714, 3962}, {3721, 27040}, {3743, 29822}, {3751, 24077}, {3753, 52353}, {3754, 3992}, {3760, 20247}, {3782, 4202}, {3790, 22008}, {3811, 32929}, {3812, 4009}, {3822, 27690}, {3872, 22027}, {3874, 29824}, {3878, 4692}, {3881, 4975}, {3889, 49499}, {3891, 16466}, {3915, 32920}, {3931, 46897}, {3940, 50044}, {3944, 36568}, {3951, 11679}, {3953, 17154}, {3954, 17794}, {3963, 22076}, {3969, 41014}, {3977, 13411}, {3985, 21808}, {3993, 25295}, {3998, 27383}, {4011, 28082}, {4015, 4714}, {4024, 48304}, {4066, 4067}, {4075, 56191}, {4084, 4125}, {4126, 9710}, {4134, 17163}, {4187, 30566}, {4283, 26971}, {4295, 10327}, {4359, 5044}, {4363, 16454}, {4365, 25294}, {4415, 5051}, {4418, 5293}, {4420, 32932}, {4454, 6904}, {4568, 25244}, {4645, 14450}, {4671, 10449}, {4723, 5836}, {4742, 34791}, {4756, 5260}, {4861, 9369}, {4942, 12635}, {4996, 51255}, {5192, 37549}, {5222, 19791}, {5247, 32938}, {5255, 32927}, {5262, 27064}, {5294, 34937}, {5423, 43214}, {5904, 11330}, {5905, 54433}, {6147, 18139}, {7066, 34388}, {7081, 56288}, {7283, 34772}, {8258, 29683}, {9534, 28605}, {9780, 27538}, {11110, 33761}, {11115, 30115}, {11374, 33113}, {11523, 49687}, {12053, 22031}, {12514, 26227}, {12701, 49688}, {13740, 41242}, {14001, 30884}, {14839, 18101}, {16062, 33151}, {16393, 49721}, {16817, 27065}, {16863, 24594}, {17137, 33931}, {17146, 50190}, {17152, 33941}, {17262, 19765}, {17351, 37539}, {17489, 24514}, {17733, 32912}, {17753, 31130}, {17757, 30449}, {17760, 56024}, {17781, 50215}, {18055, 27109}, {19372, 28996}, {19847, 24167}, {20050, 22034}, {20244, 33937}, {20886, 31835}, {21214, 49532}, {21327, 23447}, {22037, 53343}, {23661, 51379}, {24080, 30114}, {24161, 33115}, {24165, 27627}, {24171, 25881}, {24282, 27801}, {24883, 37759}, {24983, 26611}, {25030, 37829}, {25248, 27020}, {25277, 49474}, {25650, 32849}, {25688, 27102}, {25734, 31424}, {25917, 49483}, {26801, 33888}, {27156, 31323}, {27255, 31063}, {29069, 50702}, {30149, 31023}, {30173, 31041}, {30568, 54392}, {30578, 37162}, {30905, 52012}, {30941, 33939}, {30947, 43220}, {32922, 40085}, {32936, 37573}, {32940, 37607}, {33146, 33833}, {33297, 33775}, {37462, 42697}, {38314, 51673}, {49274, 53336}

X(56318) = reflection of X(i) in X(j) for these {i,j}: {17751, 1089}, {8, 4696}
X(56318) = anticomplement of X(3670)
X(56318) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1408, 44040}
X(56318) = X(i)-Dao conjugate of X(j) for these {i, j}: {3670, 3670}, {4415, 3663}
X(56318) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1222, 10}, {1257, 8}, {40424, 306}
X(56318) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3453, 1}, {40394, 69}
X(56318) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(4674)}}, {{A, B, C, X(10), X(38462)}}, {{A, B, C, X(92), X(4080)}}
X(56318) = barycentric product X(i)*X(j) for these (i, j): {4, 42705}, {10, 32939}, {37, 44139}, {321, 404}, {3952, 47796}, {4033, 48281}, {20293, 4552}, {21721, 99}, {27801, 44085}
X(56318) = barycentric quotient X(i)/X(j) for these (i, j): {404, 81}, {2321, 44040}, {3952, 56248}, {20293, 4560}, {21721, 523}, {23067, 40518}, {32939, 86}, {42705, 69}, {44085, 1333}, {44139, 274}, {44311, 17197}, {47796, 7192}, {48281, 1019}, {48387, 7252}
X(56318) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3159, 3995}, {65, 3967, 3701}, {756, 49598, 19874}, {758, 1089, 17751}, {982, 25591, 26094}, {986, 32931, 26030}, {1215, 2292, 26115}, {3678, 4647, 4651}, {3869, 4385, 8}, {3952, 17164, 10}, {4115, 22011, 3294}, {17165, 25253, 1}, {19582, 24349, 3616}, {19791, 41249, 5222}, {25248, 31052, 27020}


X(56319) = KP2(X(10)) OF X(4) AND X(9)

Barycentrics    (b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+b*c*(b+c)-a*(b^2-b*c+c^2)) : :

X(56319) lies on these lines: {4, 2901}, {9, 22027}, {19, 17915}, {37, 158}, {71, 42456}, {92, 3995}, {190, 56014}, {225, 2321}, {273, 45744}, {278, 321}, {594, 860}, {1068, 2345}, {1172, 1897}, {1824, 15733}, {1826, 3950}, {1841, 38462}, {1865, 3943}, {1880, 56258}, {1953, 45131}, {3247, 54396}, {3694, 40149}, {4043, 46108}, {4552, 51574}, {5136, 16777}, {5257, 53008}, {5750, 23710}, {17917, 31993}, {17923, 31025}, {34064, 44734}

X(56319) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3737, 40518}
X(56319) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40444, 10}
X(56319) = barycentric product X(i)*X(j) for these (i, j): {4, 56318}, {393, 42705}, {404, 41013}, {1824, 44139}, {1826, 32939}, {21721, 648}
X(56319) = barycentric quotient X(i)/X(j) for these (i, j): {404, 1444}, {4559, 40518}, {21721, 525}, {32939, 17206}, {42705, 3926}, {44085, 1437}, {44311, 17219}, {47796, 15419}, {48387, 23189}, {53008, 44040}, {56318, 69}
X(56319) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 41013, 281}


X(56320) = KP2(X(11)) OF X(1) AND X(2)

Barycentrics    -((b-c)*(a^3-a^2*b+b^3-b*c^2-a*(b+c)^2)*(-a^3+a^2*c+a*(b+c)^2+c*(b^2-c^2))) : :

X(56320) lies on these lines: {448, 525}, {514, 652}, {522, 3465}, {523, 2074}, {647, 17925}, {650, 17924}, {655, 14543}, {666, 54952}, {879, 1175}, {885, 943}, {905, 24002}, {929, 15439}, {2394, 40395}, {2401, 2982}, {2432, 40573}, {3267, 15411}, {3309, 50343}, {4077, 14838}, {4391, 17494}, {14618, 17926}, {14977, 40412}, {26080, 52599}, {32641, 32651}, {37986, 51258}, {40435, 43991}, {52222, 52560}

X(56320) = reflection of X(i) in X(j) for these {i,j}: {17924, 650}, {4077, 14838}
X(56320) = trilinear pole of line {11, 125}
X(56320) = perspector of circumconic {{A, B, C, X(40395), X(40412)}}
X(56320) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 53323}, {99, 40978}, {100, 2260}, {101, 942}, {109, 40937}, {110, 2294}, {162, 18591}, {163, 442}, {190, 40956}, {651, 14547}, {653, 23207}, {662, 40952}, {692, 5249}, {906, 1838}, {1020, 8021}, {1252, 50354}, {1331, 1841}, {1415, 6734}, {1783, 4303}, {1813, 1859}, {1865, 4575}, {1897, 14597}, {1983, 45926}, {4551, 46882}, {4559, 54356}, {4565, 40967}, {4574, 46883}, {7012, 52306}, {7045, 33525}, {8750, 18607}, {23067, 46884}
X(56320) = X(i)-Dao conjugate of X(j) for these {i, j}: {11, 40937}, {115, 442}, {125, 18591}, {136, 1865}, {244, 2294}, {661, 50354}, {1015, 942}, {1084, 40952}, {1086, 5249}, {1146, 6734}, {3162, 53323}, {4988, 23752}, {5190, 1838}, {5521, 1841}, {8054, 2260}, {8287, 16585}, {17115, 33525}, {26932, 18607}, {34467, 14597}, {36901, 1234}, {38986, 40978}, {38991, 14547}, {39006, 4303}, {40622, 55010}, {53167, 3824}, {55053, 40956}, {55064, 40967}, {55065, 21675}, {55067, 54356}
X(56320) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54952, 943}
X(56320) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {163, 2894}, {943, 21294}, {1175, 150}, {1794, 13219}, {2259, 3448}, {15439, 2893}
X(56320) = X(i)-cross conjugate of X(j) for these {i, j}: {16732, 2}, {53524, 7}, {53560, 4}
X(56320) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(2752)}}, {{A, B, C, X(104), X(54235)}}, {{A, B, C, X(267), X(279)}}, {{A, B, C, X(277), X(1247)}}, {{A, B, C, X(278), X(3465)}}, {{A, B, C, X(348), X(7040)}}, {{A, B, C, X(513), X(17925)}}, {{A, B, C, X(514), X(522)}}, {{A, B, C, X(523), X(525)}}, {{A, B, C, X(650), X(652)}}, {{A, B, C, X(812), X(29051)}}, {{A, B, C, X(915), X(1814)}}, {{A, B, C, X(1019), X(18108)}}, {{A, B, C, X(1821), X(35145)}}, {{A, B, C, X(2395), X(4705)}}, {{A, B, C, X(2402), X(3309)}}, {{A, B, C, X(2982), X(40447)}}, {{A, B, C, X(3669), X(50344)}}, {{A, B, C, X(4608), X(7372)}}, {{A, B, C, X(6332), X(44426)}}, {{A, B, C, X(40437), X(46102)}}
X(56320) = barycentric product X(i)*X(j) for these (i, j): {11, 54952}, {693, 943}, {1175, 850}, {1794, 46107}, {2259, 3261}, {2982, 4391}, {3267, 40570}, {14775, 69}, {15439, 34387}, {23978, 32651}, {24026, 36048}, {40395, 525}, {40412, 523}, {40422, 513}, {40435, 514}, {40447, 905}, {40573, 6332}, {52560, 7253}
X(56320) = barycentric quotient X(i)/X(j) for these (i, j): {25, 53323}, {244, 50354}, {512, 40952}, {513, 942}, {514, 5249}, {522, 6734}, {523, 442}, {647, 18591}, {649, 2260}, {650, 40937}, {661, 2294}, {663, 14547}, {667, 40956}, {798, 40978}, {850, 1234}, {905, 18607}, {943, 100}, {1175, 110}, {1459, 4303}, {1794, 1331}, {1946, 23207}, {2259, 101}, {2501, 1865}, {2605, 500}, {2982, 651}, {3120, 23752}, {3737, 54356}, {4024, 21675}, {4041, 40967}, {4802, 3824}, {6003, 39772}, {6591, 1841}, {7117, 52306}, {7178, 55010}, {7252, 46882}, {7253, 51978}, {7649, 1838}, {14775, 4}, {14838, 16585}, {14936, 33525}, {15313, 14054}, {15439, 59}, {18344, 1859}, {21789, 8021}, {22383, 14597}, {28473, 41571}, {32651, 1262}, {35057, 31938}, {36048, 7045}, {40395, 648}, {40412, 99}, {40422, 668}, {40435, 190}, {40447, 6335}, {40570, 112}, {40573, 653}, {43925, 46890}, {52560, 4566}, {54244, 1844}, {54952, 4998}


X(56321) = KP2(X(11)) OF X(1) AND X(8)

Barycentrics    (b-c)*(a^2+b^2-b*c-2*c^2-a*(2*b+c))*(a^2-2*b^2-b*c+c^2-a*(b+2*c)) : :
X(56321) = -4*X[21186]+3*X[48242]

X(56321) lies on these lines: {415, 2501}, {522, 17950}, {523, 4833}, {850, 17161}, {3239, 4024}, {4036, 4397}, {4581, 6089}, {4620, 17136}, {17097, 43728}, {21186, 48242}, {23352, 28183}, {28132, 40500}, {36802, 39185}

X(56321) = isogonal conjugate of X(53324)
X(56321) = isotomic conjugate of X(17136)
X(56321) = trilinear pole of line {115, 124}
X(56321) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 53324}, {31, 17136}, {56, 53388}, {108, 22361}, {109, 2646}, {110, 2650}, {163, 17056}, {407, 4575}, {651, 21748}, {692, 3664}, {1331, 40985}, {1333, 22003}, {1415, 5745}, {1576, 18698}, {4565, 21811}, {36050, 37836}, {36059, 40950}
X(56321) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 53388}, {2, 17136}, {3, 53324}, {11, 2646}, {37, 22003}, {115, 17056}, {124, 37836}, {136, 407}, {244, 2650}, {1086, 3664}, {1146, 5745}, {2968, 6737}, {4858, 18698}, {4988, 23755}, {5521, 40985}, {6741, 21677}, {20620, 40950}, {38983, 22361}, {38991, 21748}, {55064, 21811}, {55065, 21674}
X(56321) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {17097, 3448}, {40430, 33650}
X(56321) = X(i)-cross conjugate of X(j) for these {i, j}: {21044, 2}
X(56321) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(17950)}}, {{A, B, C, X(4), X(2695)}}, {{A, B, C, X(158), X(55036)}}, {{A, B, C, X(476), X(523)}}, {{A, B, C, X(513), X(4777)}}, {{A, B, C, X(514), X(28161)}}, {{A, B, C, X(522), X(693)}}, {{A, B, C, X(900), X(28183)}}, {{A, B, C, X(2166), X(38955)}}, {{A, B, C, X(2399), X(4560)}}, {{A, B, C, X(4017), X(50520)}}, {{A, B, C, X(4802), X(28165)}}, {{A, B, C, X(4926), X(28205)}}, {{A, B, C, X(4977), X(28187)}}, {{A, B, C, X(7040), X(54457)}}, {{A, B, C, X(7192), X(7649)}}, {{A, B, C, X(28147), X(28169)}}, {{A, B, C, X(36917), X(44184)}}
X(56321) = barycentric product X(i)*X(j) for these (i, j): {1577, 40430}, {17097, 4391}, {40442, 46110}
X(56321) = barycentric quotient X(i)/X(j) for these (i, j): {2, 17136}, {6, 53324}, {9, 53388}, {10, 22003}, {514, 3664}, {522, 5745}, {523, 17056}, {650, 2646}, {652, 22361}, {661, 2650}, {663, 21748}, {1577, 18698}, {2501, 407}, {3064, 40950}, {3120, 23755}, {3239, 6737}, {3700, 21677}, {4024, 21674}, {4036, 42708}, {4041, 21811}, {6589, 37836}, {6591, 40985}, {17097, 651}, {40430, 662}, {40442, 1813}


X(56322) = KP2(X(11)) OF X(2) AND X(7)

Barycentrics    (b-c)*(a^2+b*(b-c)-a*(2*b+c))*(a^2+c*(-b+c)-a*(b+2*c)) : :

X(56322) lies on these lines: {7, 21127}, {514, 657}, {522, 3935}, {523, 885}, {650, 24002}, {665, 17096}, {666, 4552}, {918, 4560}, {929, 53243}, {1170, 2401}, {1654, 56157}, {3709, 42310}, {4130, 4391}, {4581, 47890}, {6605, 43991}, {17924, 47965}, {28132, 31618}

X(56322) = reflection of X(i) in X(j) for these {i,j}: {24002, 650}, {31605, 14282}, {7, 21127}
X(56322) = trilinear pole of line {11, 116}
X(56322) = perspector of circumconic {{A, B, C, X(21453), X(32008)}}
X(56322) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 35326}, {6, 35338}, {41, 35312}, {56, 35341}, {58, 35310}, {59, 21127}, {100, 1475}, {101, 354}, {109, 1212}, {110, 21808}, {142, 692}, {163, 3925}, {251, 35335}, {651, 2293}, {653, 22079}, {662, 52020}, {664, 20229}, {934, 8012}, {1110, 21104}, {1252, 48151}, {1262, 6608}, {1332, 40983}, {1414, 21795}, {1415, 4847}, {1418, 3939}, {1461, 3059}, {1783, 22053}, {1813, 1827}, {1855, 36059}, {2149, 6362}, {2488, 4564}, {4557, 18164}, {4559, 17194}, {4565, 21039}, {4626, 8551}, {6066, 23599}, {6614, 45791}, {7045, 10581}, {20880, 32739}, {32665, 51463}, {32666, 51384}, {32669, 51416}, {53241, 54325}
X(56322) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 35341}, {3, 35326}, {9, 35338}, {10, 35310}, {11, 1212}, {115, 3925}, {116, 40606}, {244, 21808}, {514, 21104}, {650, 6362}, {661, 48151}, {1015, 354}, {1084, 52020}, {1086, 142}, {1146, 4847}, {2968, 51972}, {3160, 35312}, {4988, 55282}, {6615, 21127}, {8054, 1475}, {14714, 8012}, {17115, 10581}, {20620, 1855}, {35092, 51463}, {35094, 51384}, {35508, 3059}, {38991, 2293}, {39006, 22053}, {39025, 20229}, {40585, 35335}, {40608, 21795}, {40615, 10481}, {40617, 1418}, {40619, 20880}, {40620, 17169}, {40622, 52023}, {40624, 1229}, {40625, 16713}, {55064, 21039}, {55067, 17194}, {55153, 51416}
X(56322) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6606, 2346}
X(56322) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {101, 2890}, {1174, 150}, {2346, 21293}, {6606, 21280}, {10482, 33650}, {53243, 3434}, {55281, 17138}, {56255, 21294}
X(56322) = X(i)-cross conjugate of X(j) for these {i, j}: {1111, 2}, {2310, 7}, {23821, 86}, {24012, 43750}, {24225, 75}, {38347, 1}, {38358, 4}, {38375, 8}, {45743, 314}, {47970, 7192}
X(56322) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(765)}}, {{A, B, C, X(7), X(14189)}}, {{A, B, C, X(330), X(9295)}}, {{A, B, C, X(513), X(4724)}}, {{A, B, C, X(514), X(522)}}, {{A, B, C, X(523), X(918)}}, {{A, B, C, X(650), X(657)}}, {{A, B, C, X(651), X(3737)}}, {{A, B, C, X(665), X(3709)}}, {{A, B, C, X(693), X(2402)}}, {{A, B, C, X(1440), X(42483)}}, {{A, B, C, X(1654), X(54117)}}, {{A, B, C, X(2346), X(31618)}}, {{A, B, C, X(2400), X(4608)}}, {{A, B, C, X(3261), X(56321)}}, {{A, B, C, X(4580), X(14208)}}, {{A, B, C, X(4802), X(28898)}}, {{A, B, C, X(7012), X(9503)}}, {{A, B, C, X(7192), X(10566)}}, {{A, B, C, X(10405), X(36917)}}, {{A, B, C, X(17925), X(47947)}}, {{A, B, C, X(23836), X(25576)}}, {{A, B, C, X(36101), X(54235)}}, {{A, B, C, X(36796), X(43760)}}
X(56322) = barycentric product X(i)*X(j) for these (i, j): {11, 6606}, {1019, 56127}, {1170, 4391}, {1174, 3261}, {1803, 46110}, {2346, 693}, {3120, 55281}, {3676, 56118}, {3900, 42311}, {4998, 56284}, {10482, 52621}, {10509, 3239}, {21453, 522}, {24002, 6605}, {31618, 650}, {32008, 514}, {34387, 53243}, {40443, 44426}, {42310, 4762}, {46107, 47487}, {56157, 7192}, {56255, 7199}
X(56322) = barycentric quotient X(i)/X(j) for these (i, j): {1, 35338}, {6, 35326}, {7, 35312}, {9, 35341}, {11, 6362}, {37, 35310}, {38, 35335}, {244, 48151}, {512, 52020}, {513, 354}, {514, 142}, {522, 4847}, {523, 3925}, {649, 1475}, {650, 1212}, {657, 8012}, {661, 21808}, {663, 2293}, {693, 20880}, {900, 51463}, {918, 51384}, {1019, 18164}, {1086, 21104}, {1170, 651}, {1174, 101}, {1459, 22053}, {1803, 1813}, {1946, 22079}, {2170, 21127}, {2310, 6608}, {2346, 100}, {2804, 51416}, {2826, 41555}, {3022, 6607}, {3063, 20229}, {3064, 1855}, {3120, 55282}, {3239, 51972}, {3261, 1233}, {3271, 2488}, {3309, 15185}, {3669, 1418}, {3676, 10481}, {3709, 21795}, {3737, 17194}, {3900, 3059}, {4041, 21039}, {4130, 45791}, {4391, 1229}, {4444, 53239}, {4560, 16713}, {6362, 6067}, {6548, 53240}, {6586, 40606}, {6605, 644}, {6606, 4998}, {7178, 52023}, {7192, 17169}, {7199, 16708}, {10482, 3939}, {10509, 658}, {10566, 18087}, {14936, 10581}, {17925, 53238}, {18344, 1827}, {21453, 664}, {28292, 41570}, {28473, 41548}, {31618, 4554}, {32008, 190}, {40443, 6516}, {42310, 32041}, {42311, 4569}, {47487, 1331}, {47660, 17672}, {52619, 53236}, {53243, 59}, {53522, 51424}, {55281, 4600}, {56118, 3699}, {56127, 4033}, {56157, 3952}, {56255, 1018}, {56284, 11}
X(56322) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 14282, 31605}


X(56323) = KP2(X(11)) OF X(4) AND X(8)

Barycentrics    (b-c)*(a^2+a*(-2*b+c)+b*(b+c))*(a^2+a*(b-2*c)+c*(b+c)) : :
X(56323) = -3*X[2]+2*X[6615], -4*X[8062]+3*X[27545], -2*X[24457]+3*X[48209], -4*X[44409]+3*X[53361]

X(56323) lies on these lines: {2, 6615}, {513, 4397}, {522, 4318}, {523, 1222}, {649, 3239}, {693, 43932}, {900, 3733}, {901, 3952}, {1476, 43728}, {2475, 39270}, {3120, 40451}, {3287, 23617}, {3572, 56258}, {3737, 11115}, {4374, 43930}, {4391, 30198}, {4418, 50346}, {4459, 40528}, {4579, 32735}, {6362, 56321}, {6613, 35157}, {8062, 27545}, {15150, 17926}, {24457, 48209}, {28217, 50344}, {32017, 43928}, {40446, 53152}, {43923, 44426}, {43931, 47694}, {44409, 53361}

X(56323) = anticomplement of X(6615)
X(56323) = isogonal conjugate of X(23845)
X(56323) = isotomic conjugate of X(21272)
X(56323) = polar conjugate of X(17906)
X(56323) = trilinear pole of line {1015, 1146}
X(56323) = perspector of circumconic {{A, B, C, X(1222), X(32017)}}
X(56323) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23845}, {6, 21362}, {19, 23113}, {31, 21272}, {32, 21580}, {48, 17906}, {59, 6615}, {100, 1201}, {101, 3752}, {108, 22072}, {109, 3057}, {110, 4642}, {163, 4415}, {190, 20228}, {604, 25268}, {651, 2347}, {662, 21796}, {692, 3663}, {765, 6363}, {1122, 3939}, {1252, 48334}, {1293, 45219}, {1331, 1828}, {1415, 3452}, {1897, 22344}, {2149, 21120}, {4076, 42336}, {4559, 18163}, {4565, 21809}, {6516, 40982}, {24027, 42337}, {26563, 32739}, {32665, 51415}, {34080, 45204}
X(56323) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 21272}, {3, 23845}, {6, 23113}, {9, 21362}, {11, 3057}, {115, 4415}, {244, 4642}, {513, 6363}, {522, 42337}, {650, 21120}, {661, 48334}, {1015, 3752}, {1084, 21796}, {1086, 3663}, {1146, 3452}, {1249, 17906}, {2968, 6736}, {3161, 25268}, {3756, 12640}, {5521, 1828}, {6376, 21580}, {6615, 6615}, {6741, 21031}, {8054, 1201}, {34467, 22344}, {35092, 51415}, {38983, 22072}, {38991, 2347}, {40451, 5836}, {40615, 52563}, {40617, 1122}, {40619, 26563}, {40620, 18600}, {40621, 45204}, {40624, 20895}, {40625, 17183}, {55053, 20228}, {55064, 21809}, {55067, 18163}
X(56323) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1222, 40451}, {6613, 40420}, {8706, 1222}
X(56323) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1222, 33650}, {1476, 149}, {3451, 4440}, {6613, 3434}, {8706, 3436}, {23617, 37781}, {40420, 150}, {51476, 39351}, {56173, 3448}
X(56323) = X(i)-cross conjugate of X(j) for these {i, j}: {2170, 2}, {4939, 8}, {40451, 1222}, {40528, 23617}
X(56323) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5205)}}, {{A, B, C, X(4), X(1168)}}, {{A, B, C, X(7), X(82)}}, {{A, B, C, X(84), X(55036)}}, {{A, B, C, X(100), X(3737)}}, {{A, B, C, X(190), X(56322)}}, {{A, B, C, X(513), X(649)}}, {{A, B, C, X(514), X(2403)}}, {{A, B, C, X(522), X(693)}}, {{A, B, C, X(523), X(900)}}, {{A, B, C, X(885), X(46135)}}, {{A, B, C, X(2254), X(3287)}}, {{A, B, C, X(2370), X(36123)}}, {{A, B, C, X(2475), X(10266)}}, {{A, B, C, X(2739), X(8048)}}, {{A, B, C, X(2757), X(40437)}}, {{A, B, C, X(2995), X(3062)}}, {{A, B, C, X(3065), X(38955)}}, {{A, B, C, X(4373), X(7155)}}, {{A, B, C, X(4492), X(27807)}}, {{A, B, C, X(4777), X(4926)}}, {{A, B, C, X(4778), X(6006)}}, {{A, B, C, X(4962), X(28161)}}, {{A, B, C, X(4977), X(28217)}}, {{A, B, C, X(5553), X(54457)}}, {{A, B, C, X(6548), X(7649)}}, {{A, B, C, X(7219), X(10309)}}, {{A, B, C, X(9372), X(26703)}}, {{A, B, C, X(13577), X(34919)}}, {{A, B, C, X(28183), X(28221)}}, {{A, B, C, X(28209), X(39386)}}
X(56323) = barycentric product X(i)*X(j) for these (i, j): {190, 40451}, {1086, 8706}, {1146, 6613}, {1222, 514}, {1261, 24002}, {1476, 4391}, {3261, 51476}, {3451, 35519}, {3676, 52549}, {4560, 56173}, {23617, 693}, {32017, 513}, {40420, 522}, {40446, 6332}, {40528, 4554}, {56190, 7199}, {56258, 7192}
X(56323) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21362}, {2, 21272}, {3, 23113}, {4, 17906}, {6, 23845}, {8, 25268}, {11, 21120}, {75, 21580}, {244, 48334}, {512, 21796}, {513, 3752}, {514, 3663}, {522, 3452}, {523, 4415}, {649, 1201}, {650, 3057}, {652, 22072}, {661, 4642}, {663, 2347}, {667, 20228}, {693, 26563}, {900, 51415}, {1015, 6363}, {1146, 42337}, {1222, 190}, {1261, 644}, {1476, 651}, {2170, 6615}, {3239, 6736}, {3451, 109}, {3667, 45204}, {3669, 1122}, {3676, 52563}, {3700, 21031}, {3737, 18163}, {4041, 21809}, {4391, 20895}, {4394, 45219}, {4459, 28006}, {4521, 12640}, {4534, 14284}, {4560, 17183}, {6591, 1828}, {6613, 1275}, {7192, 18600}, {8706, 1016}, {22383, 22344}, {23617, 100}, {32017, 668}, {40420, 664}, {40446, 653}, {40451, 514}, {40528, 650}, {43931, 27499}, {51476, 101}, {52549, 3699}, {56173, 4552}, {56190, 1018}, {56258, 3952}


X(56324) = X(6)-CEVA CONJUGATE OF X(11)

Barycentrics    (a-b-c)*(b-c)*(-(b*(b-c)^2*c*(b+c))+a^3*(b^2+c^2)-a*(b-c)^2*(b^2+b*c+c^2)) : :

X(56324) lies on these lines: {11, 47394}, {65, 514}, {522, 14310}, {523, 1459}, {650, 784}, {652, 4976}, {663, 56283}, {2530, 40166}, {17102, 21185}, {20358, 23877}, {46393, 48264}

X(56324) = reflection of X(i) in X(j) for these {i,j}: {11, 47394}, {663, 56283}
X(56324) = perspector of circumconic {{A, B, C, X(13478), X(24220)}}
X(56324) = X(i)-Dao conjugate of X(j) for these {i, j}: {34387, 76}
X(56324) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6, 11}
X(56324) = barycentric product X(i)*X(j) for these (i, j): {3737, 40564}, {24220, 522}, {44411, 4560}
X(56324) = barycentric quotient X(i)/X(j) for these (i, j): {23161, 44717}, {24220, 664}, {44411, 4552}


X(56325) = KP2(X(12)) OF X(2) AND X(2)

Barycentrics    a*(a+b-c)*(a-b+c)*(b+c)^2*(a^3-b*c*(b+c)-a*(b^2-b*c+c^2)) : :
X(56325) = -3*X[2]+X[54121]

X(56325) lies on these lines: {2, 54121}, {9, 4559}, {10, 40590}, {12, 15281}, {37, 65}, {44, 21741}, {56, 34261}, {75, 4552}, {226, 40491}, {241, 4032}, {261, 6648}, {478, 958}, {517, 14749}, {570, 8609}, {572, 11998}, {594, 2197}, {674, 41381}, {1214, 6358}, {1415, 38871}, {1880, 56285}, {2092, 40663}, {2277, 24914}, {2321, 51574}, {3666, 3911}, {3950, 40599}, {5433, 17053}, {5750, 40937}, {16578, 21233}, {21061, 37558}, {21078, 22275}, {44671, 52024}

X(56325) = complement of X(54121)
X(56325) = center of circumconic {{A, B, C, X(655), X(4552)}}
X(56325) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 53083}, {58, 46880}, {60, 2051}, {284, 20028}, {333, 52150}, {2150, 54121}, {2185, 34434}, {17185, 40453}
X(56325) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 46880}, {12, 2}, {1193, 17185}, {21796, 17183}, {34589, 4560}, {40590, 20028}, {40611, 53083}
X(56325) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 12}, {31629, 2975}, {52357, 14973}, {52358, 52357}, {56173, 181}
X(56325) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 12}, {32, 37662}, {560, 21796}, {572, 141}, {2206, 1193}, {2975, 2887}, {11109, 21243}, {14829, 626}, {17074, 17046}, {20986, 10}, {21061, 21245}, {21173, 21252}, {22118, 18589}, {32739, 4391}, {52139, 3454}
X(56325) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(34278)}}, {{A, B, C, X(12), X(2292)}}, {{A, B, C, X(37), X(21061)}}, {{A, B, C, X(71), X(52139)}}, {{A, B, C, X(75), X(20718)}}, {{A, B, C, X(572), X(2245)}}
X(56325) = barycentric product X(i)*X(j) for these (i, j): {1, 52357}, {10, 37558}, {12, 2975}, {37, 52358}, {572, 6358}, {1441, 52139}, {3952, 51662}, {11109, 201}, {14829, 2171}, {14973, 7}, {17074, 594}, {17496, 21859}, {17751, 65}, {20617, 8}, {20986, 34388}, {21061, 226}
X(56325) = barycentric quotient X(i)/X(j) for these (i, j): {12, 54121}, {37, 46880}, {65, 20028}, {181, 34434}, {572, 2185}, {1400, 53083}, {1402, 52150}, {2171, 2051}, {2975, 261}, {11998, 26856}, {14829, 52379}, {14973, 8}, {17074, 1509}, {17751, 314}, {20617, 7}, {20986, 60}, {21061, 333}, {21859, 56188}, {31629, 31620}, {37558, 86}, {51662, 7192}, {52087, 17185}, {52139, 21}, {52357, 75}, {52358, 274}
X(56325) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 2171, 20616}, {594, 2197, 21859}, {15281, 15282, 12}


X(56326) = X(7)-CEVA CONJUGATE OF X(12)

Barycentrics    (a+b-c)*(a-b+c)*(b+c)^2*(a^2-b*c+a*(b+c)) : :

X(56326) lies on these lines: {7, 31011}, {12, 6058}, {57, 4552}, {65, 2901}, {181, 3027}, {201, 4424}, {209, 22027}, {226, 306}, {389, 517}, {536, 553}, {1211, 22022}, {1708, 54359}, {1825, 49542}, {2051, 52212}, {2099, 48863}, {2245, 22002}, {3666, 3911}, {3982, 4059}, {4605, 6354}, {10473, 36862}, {16609, 20616}, {21853, 22001}, {22014, 53510}, {39579, 56285}, {52357, 52567}

X(56326) = X(i)-isoconjugate-of-X(j) for these {i, j}: {60, 39798}, {284, 39949}, {596, 2150}, {2185, 40148}, {2194, 39747}, {7054, 20615}, {7252, 34594}
X(56326) = X(i)-Dao conjugate of X(j) for these {i, j}: {594, 8}, {1214, 39747}, {40590, 39949}, {56325, 596}
X(56326) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7, 12}
X(56326) = intersection, other than A, B, C, of circumconics {{A, B, C, X(306), X(3293)}}, {{A, B, C, X(2051), X(3936)}}
X(56326) = barycentric product X(i)*X(j) for these (i, j): {12, 4360}, {181, 40087}, {226, 3995}, {1441, 3293}, {4075, 7}, {4129, 4552}, {4605, 47793}, {18140, 2171}, {20949, 21859}, {27808, 51650}, {32911, 6358}, {34388, 595}, {40093, 7235}, {56249, 65}
X(56326) = barycentric quotient X(i)/X(j) for these (i, j): {12, 596}, {65, 39949}, {181, 40148}, {226, 39747}, {595, 60}, {1254, 20615}, {2171, 39798}, {2220, 2150}, {3293, 21}, {3871, 1098}, {3995, 333}, {4075, 8}, {4129, 4560}, {4132, 3737}, {4222, 270}, {4360, 261}, {4551, 34594}, {4552, 37205}, {6358, 40013}, {18140, 52379}, {32911, 2185}, {40087, 18021}, {51650, 3733}, {56249, 314}
X(56326) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2171, 6358, 226}


X(56327) = X(8)-CEVA CONJUGATE OF X(12)

Barycentrics    (a+b-c)*(a-b+c)*(b+c)^2*(a^6-a^5*(b+c)+b*c*(b^2-c^2)^2+a^2*(b^2+c^2)^2-a^4*(2*b^2+b*c+2*c^2)+2*a^3*(b^3+c^3)-a*(b^5-b^4*c-b*c^4+c^5)) : :

X(56327) lies on these lines: {10, 201}, {12, 7314}, {65, 22001}, {78, 4552}, {389, 517}, {516, 1825}, {1713, 40968}, {2171, 8804}, {4605, 7066}, {5750, 40937}, {6796, 23067}, {13411, 16577}, {30147, 48866}, {40965, 41538}

X(56327) = X(i)-Dao conjugate of X(j) for these {i, j}: {6354, 7}
X(56327) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8, 12}
X(56327) = barycentric product X(i)*X(j) for these (i, j): {12, 54107}, {411, 6358}, {1089, 34035}, {1630, 34388}
X(56327) = barycentric quotient X(i)/X(j) for these (i, j): {411, 2185}, {1630, 60}, {34035, 757}, {44087, 2150}, {54107, 261}
X(56327) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {201, 56285, 10}, {15443, 51879, 56326}


X(56328) = KP3(X(1)) OF X(2) AND X(2)

Barycentrics    a*(a^2+2*a*b+b^2+c^2)*(a^2+b^2+2*a*c+c^2) : :

X(56328) lies on these lines: {1, 69}, {6, 63}, {7, 34}, {31, 54404}, {33, 7224}, {42, 52396}, {43, 39977}, {56, 77}, {58, 988}, {75, 1220}, {81, 1474}, {86, 614}, {87, 29821}, {106, 1310}, {141, 5287}, {189, 7129}, {193, 17011}, {269, 7056}, {286, 3673}, {292, 2277}, {320, 977}, {326, 1193}, {386, 56220}, {518, 2334}, {540, 17274}, {579, 2279}, {611, 42019}, {612, 5224}, {942, 969}, {975, 52782}, {979, 18906}, {996, 3875}, {998, 3663}, {1027, 4778}, {1100, 28022}, {1120, 17393}, {1126, 3751}, {1222, 4360}, {1411, 7190}, {1438, 1449}, {1469, 43070}, {2191, 3945}, {2297, 2999}, {2647, 4328}, {2983, 54369}, {2995, 17863}, {3226, 54982}, {3445, 38315}, {3619, 17022}, {3620, 17019}, {3664, 24162}, {3672, 17016}, {3920, 5232}, {3946, 24268}, {4666, 10013}, {5138, 26923}, {5227, 28606}, {5307, 19785}, {5738, 13577}, {6337, 39946}, {10436, 33945}, {16496, 41434}, {16973, 25426}, {17012, 51171}, {17013, 51170}, {17394, 28011}, {18194, 40763}, {18734, 39273}, {18816, 36123}, {27633, 54317}, {32691, 43363}, {34260, 45126}, {36099, 36101}, {36741, 54337}, {37129, 37215}, {37492, 51686}, {37549, 54344}

X(56328) = isogonal conjugate of X(612)
X(56328) = isotomic conjugate of X(4385)
X(56328) = trilinear pole of line {649, 905}
X(56328) = perspector of circumconic {{A, B, C, X(1310), X(37215)}}
X(56328) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 612}, {2, 54416}, {3, 7102}, {4, 7085}, {6, 2345}, {8, 1460}, {9, 2285}, {10, 44119}, {19, 5227}, {25, 54433}, {31, 4385}, {33, 1038}, {37, 2303}, {42, 1010}, {55, 388}, {56, 3974}, {72, 4206}, {99, 50494}, {100, 8678}, {101, 6590}, {110, 48395}, {190, 2484}, {200, 4320}, {210, 5323}, {220, 7365}, {281, 2286}, {480, 7197}, {663, 14594}, {668, 8646}, {692, 2517}, {941, 34261}, {1184, 30701}, {1260, 7103}, {1474, 3610}, {1783, 2522}, {1918, 44154}, {1973, 19799}, {2287, 8898}, {4557, 47844}, {5286, 7123}, {7070, 10375}, {8750, 23874}, {8816, 30706}, {10376, 56182}, {17742, 40184}, {51644, 56183}
X(56328) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3974}, {2, 4385}, {3, 612}, {6, 5227}, {9, 2345}, {223, 388}, {244, 48395}, {478, 2285}, {1015, 6590}, {1086, 2517}, {6337, 19799}, {6505, 54433}, {6609, 4320}, {8054, 8678}, {15487, 5286}, {26932, 23874}, {32664, 54416}, {34021, 44154}, {36033, 7085}, {36103, 7102}, {38986, 50494}, {39006, 2522}, {40589, 2303}, {40592, 1010}, {51574, 3610}, {55053, 2484}
X(56328) = X(i)-cross conjugate of X(j) for these {i, j}: {1036, 2339}, {1245, 2221}, {1468, 57}, {3803, 100}, {17017, 1}, {37492, 39273}, {37592, 2}
X(56328) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(2), X(1014)}}, {{A, B, C, X(7), X(63)}}, {{A, B, C, X(9), X(82)}}, {{A, B, C, X(19), X(256)}}, {{A, B, C, X(33), X(23868)}}, {{A, B, C, X(37), X(9348)}}, {{A, B, C, X(42), X(614)}}, {{A, B, C, X(43), X(29821)}}, {{A, B, C, X(57), X(75)}}, {{A, B, C, X(60), X(78)}}, {{A, B, C, X(65), X(988)}}, {{A, B, C, X(66), X(79)}}, {{A, B, C, X(80), X(43726)}}, {{A, B, C, X(84), X(2363)}}, {{A, B, C, X(89), X(4373)}}, {{A, B, C, X(105), X(941)}}, {{A, B, C, X(222), X(326)}}, {{A, B, C, X(264), X(7249)}}, {{A, B, C, X(284), X(56098)}}, {{A, B, C, X(309), X(9311)}}, {{A, B, C, X(350), X(1428)}}, {{A, B, C, X(513), X(2214)}}, {{A, B, C, X(518), X(1449)}}, {{A, B, C, X(524), X(15309)}}, {{A, B, C, X(674), X(29186)}}, {{A, B, C, X(749), X(39959)}}, {{A, B, C, X(765), X(9452)}}, {{A, B, C, X(893), X(1716)}}, {{A, B, C, X(903), X(39980)}}, {{A, B, C, X(904), X(1974)}}, {{A, B, C, X(1036), X(1039)}}, {{A, B, C, X(1088), X(8809)}}, {{A, B, C, X(1100), X(3751)}}, {{A, B, C, X(1106), X(1193)}}, {{A, B, C, X(1169), X(3415)}}, {{A, B, C, X(1245), X(1472)}}, {{A, B, C, X(1246), X(2481)}}, {{A, B, C, X(1258), X(40422)}}, {{A, B, C, X(1268), X(8056)}}, {{A, B, C, X(1390), X(39956)}}, {{A, B, C, X(1439), X(3673)}}, {{A, B, C, X(1509), X(40405)}}, {{A, B, C, X(2160), X(4492)}}, {{A, B, C, X(2298), X(9309)}}, {{A, B, C, X(2339), X(30479)}}, {{A, B, C, X(2991), X(25417)}}, {{A, B, C, X(2997), X(20028)}}, {{A, B, C, X(3062), X(56139)}}, {{A, B, C, X(3296), X(17040)}}, {{A, B, C, X(3422), X(34207)}}, {{A, B, C, X(3551), X(13610)}}, {{A, B, C, X(3737), X(56225)}}, {{A, B, C, X(4570), X(34183)}}, {{A, B, C, X(5486), X(5557)}}, {{A, B, C, X(5559), X(38005)}}, {{A, B, C, X(5561), X(15321)}}, {{A, B, C, X(6391), X(7100)}}, {{A, B, C, X(7121), X(9288)}}, {{A, B, C, X(7163), X(43725)}}, {{A, B, C, X(7167), X(43096)}}, {{A, B, C, X(7177), X(19611)}}, {{A, B, C, X(10435), X(14616)}}, {{A, B, C, X(19604), X(39704)}}, {{A, B, C, X(25430), X(39979)}}, {{A, B, C, X(28476), X(46010)}}, {{A, B, C, X(32085), X(52133)}}, {{A, B, C, X(36603), X(55955)}}, {{A, B, C, X(39717), X(39970)}}, {{A, B, C, X(41441), X(55927)}}, {{A, B, C, X(43664), X(47647)}}
X(56328) = barycentric product X(i)*X(j) for these (i, j): {304, 51686}, {1036, 85}, {1039, 348}, {1245, 274}, {1310, 514}, {1472, 76}, {2221, 75}, {2281, 310}, {2339, 7}, {10436, 34260}, {15413, 32691}, {30479, 57}, {36099, 4025}, {37215, 513}, {54982, 649}, {56219, 86}
X(56328) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2345}, {2, 4385}, {3, 5227}, {6, 612}, {9, 3974}, {19, 7102}, {31, 54416}, {48, 7085}, {56, 2285}, {57, 388}, {58, 2303}, {63, 54433}, {69, 19799}, {72, 3610}, {81, 1010}, {222, 1038}, {269, 7365}, {274, 44154}, {513, 6590}, {514, 2517}, {603, 2286}, {604, 1460}, {614, 5286}, {649, 8678}, {651, 14594}, {661, 48395}, {667, 2484}, {738, 7197}, {798, 50494}, {905, 23874}, {1019, 47844}, {1036, 9}, {1039, 281}, {1042, 8898}, {1245, 37}, {1310, 190}, {1333, 44119}, {1407, 4320}, {1412, 5323}, {1435, 7103}, {1459, 2522}, {1468, 34261}, {1472, 6}, {1474, 4206}, {1919, 8646}, {2221, 1}, {2281, 42}, {2339, 8}, {3942, 26933}, {7289, 7386}, {30479, 312}, {32691, 1783}, {34260, 31359}, {36099, 1897}, {37215, 668}, {51686, 19}, {54982, 1978}, {56219, 10}
X(56328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2221, 56219, 2339}


X(56329) = KP3(X(1)) OF X(6) AND X(6)

Barycentrics    a*(2*a*b^2*c+b^2*c^2+a^2*(b^2+c^2))*(2*a*b*c^2+b^2*c^2+a^2*(b^2+c^2)) : :

X(56329) lies on these lines: {1, 1197}, {2, 1740}, {31, 1258}, {57, 50661}, {81, 18194}, {274, 18169}, {330, 21352}, {614, 40738}, {3009, 39738}, {10458, 56066}, {11328, 39970}, {18192, 39950}, {21001, 45223}, {26102, 32020}, {30701, 40790}

X(56329) = trilinear pole of line {23572, 513}
X(56329) = X(i)-cross conjugate of X(j) for these {i, j}: {31997, 87}
X(56329) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(25), X(40763)}}, {{A, B, C, X(31), X(87)}}, {{A, B, C, X(43), X(3112)}}, {{A, B, C, X(85), X(9285)}}, {{A, B, C, X(86), X(1613)}}, {{A, B, C, X(238), X(56046)}}, {{A, B, C, X(256), X(54128)}}, {{A, B, C, X(614), X(40790)}}, {{A, B, C, X(694), X(56328)}}, {{A, B, C, X(727), X(43531)}}, {{A, B, C, X(741), X(1472)}}, {{A, B, C, X(743), X(7166)}}, {{A, B, C, X(870), X(893)}}, {{A, B, C, X(1621), X(18192)}}, {{A, B, C, X(2258), X(2665)}}, {{A, B, C, X(3009), X(26102)}}, {{A, B, C, X(3226), X(39967)}}, {{A, B, C, X(5560), X(30505)}}, {{A, B, C, X(5561), X(55028)}}, {{A, B, C, X(7303), X(40746)}}, {{A, B, C, X(9315), X(40737)}}, {{A, B, C, X(30650), X(38275)}}, {{A, B, C, X(36614), X(55919)}}
X(56329) = barycentric product X(i)*X(j) for these (i, j): {56211, 81}, {56240, 86}
X(56329) = barycentric quotient X(i)/X(j) for these (i, j): {56211, 321}, {56240, 10}


X(56330) = KP3(X(1)) OF X(7) AND X(7)

Barycentrics    a*(a^4-2*a^3*(2*b+c)+(b-c)^2*(b^2+c^2)+2*a^2*(3*b^2+b*c+c^2)-2*a*(2*b^3-b^2*c-2*b*c^2+c^3))*(a^4-2*a^3*(b+2*c)+(b-c)^2*(b^2+c^2)+2*a^2*(b^2+b*c+3*c^2)-2*a*(b^3-2*b^2*c-b*c^2+2*c^3)) : :

X(56330) lies on these lines: {1, 17093}, {33, 10578}, {55, 1445}, {200, 344}, {220, 3870}, {2328, 41610}, {2332, 4233}, {4319, 21453}, {4666, 17044}, {7675, 52013}

X(56330) = trilinear pole of line {657, 3309}
X(56330) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(33)}}, {{A, B, C, X(2), X(2346)}}, {{A, B, C, X(7), X(6605)}}, {{A, B, C, X(9), X(1088)}}, {{A, B, C, X(78), X(10578)}}, {{A, B, C, X(241), X(10389)}}, {{A, B, C, X(1280), X(7320)}}, {{A, B, C, X(3477), X(56328)}}, {{A, B, C, X(7162), X(43672)}}, {{A, B, C, X(17097), X(56088)}}, {{A, B, C, X(31359), X(39959)}}


X(56331) = KP3(X(1)) OF X(7) AND X(9)

Barycentrics    (a+b-c)*(a-b+c)*(3*a^2+3*b^2-2*b*c-c^2-2*a*(3*b+c))*(3*a^2-b^2-2*b*c+3*c^2-2*a*(b+3*c)) : :

X(56331) lies on these lines: {1, 36620}, {2, 5543}, {7, 165}, {226, 55937}, {479, 37703}, {673, 5226}, {1088, 3160}, {3475, 3599}, {3616, 56074}, {4323, 7249}, {4373, 40719}, {5435, 27475}, {5936, 7190}, {9436, 30712}, {11019, 38254}, {31527, 31721}, {55082, 56026}

X(56331) = X(i)-isoconjugate-of-X(j) for these {i, j}: {55, 10980}
X(56331) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 10980}
X(56331) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(165)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(8), X(13405)}}, {{A, B, C, X(200), X(2346)}}, {{A, B, C, X(1458), X(39967)}}, {{A, B, C, X(3616), X(7091)}}, {{A, B, C, X(5556), X(43672)}}, {{A, B, C, X(6605), X(55920)}}, {{A, B, C, X(7045), X(25417)}}, {{A, B, C, X(7056), X(52351)}}, {{A, B, C, X(7320), X(14942)}}, {{A, B, C, X(17097), X(39959)}}, {{A, B, C, X(25430), X(43736)}}, {{A, B, C, X(39391), X(40141)}}
X(56331) = barycentric quotient X(i)/X(j) for these (i, j): {57, 10980}


X(56332) = KP3(X(2)) OF X(1) AND X(1)

Barycentrics    (2*a*b^2*c+b^2*c^2+a^2*(b^2+c^2))*(2*a*b*c^2+b^2*c^2+a^2*(b^2+c^2)) : :

X(56332) lies on these lines: {2, 1740}, {6, 40418}, {7, 1424}, {8, 39745}, {10, 56247}, {75, 194}, {310, 16738}, {384, 20992}, {1268, 26042}, {1575, 56212}, {2296, 17379}, {3741, 53147}, {6384, 21264}, {16571, 16819}, {17157, 27494}, {17178, 39734}, {17277, 32011}, {17349, 56166}, {17792, 20139}, {19591, 39741}, {20028, 26802}, {25528, 26959}, {27145, 31002}, {27164, 56052}, {27188, 31241}

X(56332) = trilinear pole of line {50510, 50516}
X(56332) = X(i)-cross conjugate of X(j) for these {i, j}: {17030, 2}, {56240, 56329}
X(56332) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(6), X(330)}}, {{A, B, C, X(87), X(194)}}, {{A, B, C, X(192), X(308)}}, {{A, B, C, X(256), X(2998)}}, {{A, B, C, X(513), X(1218)}}, {{A, B, C, X(751), X(38262)}}, {{A, B, C, X(941), X(39925)}}, {{A, B, C, X(1221), X(3551)}}, {{A, B, C, X(1964), X(30651)}}, {{A, B, C, X(2221), X(37128)}}, {{A, B, C, X(3227), X(39972)}}, {{A, B, C, X(6063), X(9229)}}, {{A, B, C, X(7123), X(20992)}}, {{A, B, C, X(7241), X(39968)}}, {{A, B, C, X(9309), X(54117)}}, {{A, B, C, X(14377), X(40409)}}, {{A, B, C, X(34248), X(51974)}}, {{A, B, C, X(36598), X(36871)}}, {{A, B, C, X(38247), X(40433)}}, {{A, B, C, X(39694), X(39971)}}
X(56332) = barycentric product X(i)*X(j) for these (i, j): {274, 56240}, {56211, 86}, {56329, 75}
X(56332) = barycentric quotient X(i)/X(j) for these (i, j): {56211, 10}, {56240, 37}, {56329, 1}


X(56333) = KP3(X(2)) OF X(1) AND X(6)

Barycentrics    (a^2*b^3*c+a*b^3*c^2+b^3*c^3+a^3*(b^3+c^3))*(a^2*b*c^3+a*b^2*c^3+b^3*c^3+a^3*(b^3+c^3)) : :

X(56333) lies on these lines: {2, 40935}, {75, 16584}, {310, 2275}, {675, 773}, {2296, 18278}, {6384, 26959}, {8049, 26973}, {17030, 56052}, {17750, 40418}, {26974, 56166}, {27158, 31002}

X(56333) = X(i)-isoconjugate-of-X(j) for these {i, j}: {692, 772}
X(56333) = X(i)-Dao conjugate of X(j) for these {i, j}: {1086, 772}
X(56333) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(274), X(2162)}}, {{A, B, C, X(308), X(3223)}}, {{A, B, C, X(2275), X(16584)}}, {{A, B, C, X(32020), X(39967)}}
X(56333) = barycentric product X(i)*X(j) for these (i, j): {3261, 773}
X(56333) = barycentric quotient X(i)/X(j) for these (i, j): {514, 772}, {773, 101}, {3261, 35554}


X(56334) = KP3(X(2)) OF X(4) AND X(4)

Barycentrics    (a^4+5*b^4-2*b^2*c^2+c^4-2*a^2*(b^2-c^2))*(a^4+b^4-2*b^2*c^2+5*c^4+2*a^2*(b^2-c^2)) : :

X(56334) lies on these lines: {69, 5254}, {95, 32990}, {253, 5025}, {264, 32972}, {393, 40413}, {1799, 37667}, {6340, 7778}, {8797, 32988}, {9229, 33180}, {11382, 37174}, {32971, 41762}, {33040, 40412}, {33200, 35510}

X(56334) = trilinear pole of line {12075, 525}
X(56334) = isotomic conjugate of X(32973)
X(56334) = X(i)-cross conjugate of X(j) for these {i, j}: {14064, 2}
X(56334) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(76), X(6392)}}, {{A, B, C, X(193), X(42407)}}, {{A, B, C, X(230), X(40429)}}, {{A, B, C, X(393), X(1502)}}, {{A, B, C, X(1916), X(52223)}}, {{A, B, C, X(2987), X(22263)}}, {{A, B, C, X(5395), X(8801)}}, {{A, B, C, X(6339), X(9307)}}, {{A, B, C, X(8781), X(17040)}}, {{A, B, C, X(17983), X(43681)}}, {{A, B, C, X(32085), X(38259)}}, {{A, B, C, X(51316), X(54122)}}, {{A, B, C, X(52395), X(53101)}}
X(56334) = barycentric quotient X(i)/X(j) for these (i, j): {2, 32973}


X(56335) = KP3(X(2)) OF X(7) AND X(7)

Barycentrics    (a^2-2*a*b+5*b^2+2*a*c-2*b*c+c^2)*(a^2+b^2+2*a*(b-c)-2*b*c+5*c^2) : :

X(56335) lies on these lines: {2, 52528}, {8, 3663}, {144, 17743}, {279, 40420}, {312, 26563}, {333, 18600}, {1220, 7195}, {1311, 6571}, {3008, 56201}, {3662, 10405}, {6557, 17284}, {9965, 40394}, {12541, 56088}, {21454, 56046}, {27184, 56086}, {31359, 43037}, {41824, 51351}

X(56335) = trilinear pole of line {23813, 522}
X(56335) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 4308}, {692, 43061}, {1415, 8710}
X(56335) = X(i)-Dao conjugate of X(j) for these {i, j}: {1086, 43061}, {1146, 8710}, {3160, 4308}
X(56335) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(76), X(279)}}, {{A, B, C, X(145), X(30701)}}, {{A, B, C, X(277), X(43533)}}, {{A, B, C, X(514), X(1219)}}, {{A, B, C, X(1434), X(36606)}}, {{A, B, C, X(2996), X(55937)}}, {{A, B, C, X(5485), X(14377)}}, {{A, B, C, X(6553), X(9311)}}, {{A, B, C, X(6650), X(43681)}}
X(56335) = barycentric product X(i)*X(j) for these (i, j): {35519, 6571}, {56199, 85}
X(56335) = barycentric quotient X(i)/X(j) for these (i, j): {7, 4308}, {514, 43061}, {522, 8710}, {6571, 109}, {56199, 9}


X(56336) = KP3(X(3)) OF X(1) AND X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(2*a^3+2*b^3-b^2*c-2*b*c^2+c^3-a^2*(2*b+c)-2*a*(b^2+c^2))*(2*a^3+b^3-2*b^2*c-b*c^2+2*c^3-a^2*(b+2*c)-2*a*(b^2+c^2)) : :

X(56336) lies on these lines: {1, 6875}, {29, 5705}, {165, 56148}, {255, 40442}, {945, 11012}, {1037, 36152}, {1057, 26357}, {1059, 37579}, {1069, 45231}, {1807, 26921}, {3422, 14794}, {3679, 10570}, {3731, 56225}, {5010, 52185}, {7100, 54320}

X(56336) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 31266}
X(56336) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 31266}
X(56336) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3)}}, {{A, B, C, X(80), X(34259)}}, {{A, B, C, X(90), X(7092)}}, {{A, B, C, X(271), X(15910)}}, {{A, B, C, X(1437), X(2163)}}, {{A, B, C, X(1444), X(15446)}}, {{A, B, C, X(1790), X(39980)}}, {{A, B, C, X(1792), X(15175)}}, {{A, B, C, X(5561), X(34800)}}
X(56336) = barycentric product X(i)*X(j) for these (i, j): {3, 56062}, {56027, 63}
X(56336) = barycentric quotient X(i)/X(j) for these (i, j): {3, 31266}, {56027, 92}, {56062, 264}


X(56337) = KP3(X(3)) OF X(2) AND X(2)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^8-2*a^6*(2*b^2+c^2)+(b^2-c^2)^2*(b^4+c^4)+2*a^4*(3*b^4+b^2*c^2+c^4)-2*a^2*(2*b^6-b^4*c^2-2*b^2*c^4+c^6))*(a^8-2*a^6*(b^2+2*c^2)+(b^2-c^2)^2*(b^4+c^4)+2*a^4*(b^4+b^2*c^2+3*c^4)-2*a^2*(b^6-2*b^4*c^2-b^2*c^4+2*c^6)) : :

X(56337) lies on these lines: {3, 317}, {69, 16391}, {95, 426}, {264, 40448}, {418, 56307}, {577, 1993}, {1092, 9723}, {1105, 46724}, {6394, 44149}, {34385, 41009}, {36748, 51776}

X(56337) = trilinear pole of line {32320, 52584}
X(56337) = X(i)-isoconjugate-of-X(j) for these {i, j}: {158, 6641}, {2181, 19179}
X(56337) = X(i)-Dao conjugate of X(j) for these {i, j}: {1147, 6641}
X(56337) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(95)}}, {{A, B, C, X(69), X(97)}}, {{A, B, C, X(264), X(394)}}, {{A, B, C, X(511), X(34817)}}, {{A, B, C, X(1073), X(40410)}}, {{A, B, C, X(3425), X(14533)}}, {{A, B, C, X(8797), X(14919)}}, {{A, B, C, X(31626), X(36948)}}, {{A, B, C, X(36609), X(55958)}}, {{A, B, C, X(43725), X(51444)}}
X(56337) = barycentric quotient X(i)/X(j) for these (i, j): {97, 19179}, {577, 6641}


X(56338) = KP3(X(3)) OF X(2) AND X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(2*a^4+2*b^4-3*b^2*c^2+c^4-a^2*(4*b^2+3*c^2))*(2*a^4+b^4-3*b^2*c^2+2*c^4-a^2*(3*b^2+4*c^2)) : :

X(56338) lies on these lines: {2, 10985}, {3, 1199}, {4, 14938}, {22, 14489}, {276, 51350}, {394, 44180}, {577, 31626}, {631, 22268}, {1214, 23958}, {1217, 3522}, {3346, 21734}, {3523, 22270}, {5422, 36748}, {6636, 40801}, {14941, 26874}, {15692, 46412}, {18317, 19708}, {22352, 54032}, {34287, 56302}, {37872, 43768}, {43988, 54114}, {46832, 56266}

X(56338) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 1656}, {92, 15004}, {158, 10979}, {1953, 4994}
X(56338) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 1656}, {1147, 10979}, {22391, 15004}
X(56338) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3)}}, {{A, B, C, X(4), X(1199)}}, {{A, B, C, X(69), X(1994)}}, {{A, B, C, X(74), X(8796)}}, {{A, B, C, X(184), X(1383)}}, {{A, B, C, X(248), X(39955)}}, {{A, B, C, X(275), X(3431)}}, {{A, B, C, X(287), X(56072)}}, {{A, B, C, X(459), X(20421)}}, {{A, B, C, X(577), X(22052)}}, {{A, B, C, X(1795), X(25417)}}, {{A, B, C, X(1993), X(2996)}}, {{A, B, C, X(2052), X(11270)}}, {{A, B, C, X(2987), X(34817)}}, {{A, B, C, X(4846), X(11538)}}, {{A, B, C, X(6504), X(55999)}}, {{A, B, C, X(9289), X(11140)}}, {{A, B, C, X(13452), X(39284)}}, {{A, B, C, X(13582), X(42021)}}, {{A, B, C, X(34386), X(40393)}}, {{A, B, C, X(41895), X(55978)}}, {{A, B, C, X(51336), X(51477)}}
X(56338) = barycentric product X(i)*X(j) for these (i, j): {13472, 69}
X(56338) = barycentric quotient X(i)/X(j) for these (i, j): {3, 1656}, {54, 4994}, {184, 15004}, {577, 10979}, {13472, 4}


X(56339) = KP3(X(3)) OF X(2) AND X(6)

Barycentrics    (a^2-b^2-c^2)*(a^4-6*a^2*b^2+b^4-c^4)*(a^4-b^4-6*a^2*c^2+c^4) : :

X(56339) lies on these lines: {2, 22401}, {3, 193}, {4, 14489}, {20, 40801}, {185, 54032}, {394, 6337}, {439, 577}, {1073, 37188}, {1217, 43981}, {1297, 3522}, {1368, 2996}, {1578, 6462}, {1579, 6463}, {3164, 3346}, {3538, 31859}, {5013, 11433}, {5481, 15717}, {6225, 54961}, {6527, 54114}, {7404, 14938}, {17974, 43652}, {26206, 32973}, {32982, 35142}

X(56339) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 5020}, {31, 43981}
X(56339) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43981}, {6, 5020}
X(56339) = X(i)-cross conjugate of X(j) for these {i, j}: {40680, 2}
X(56339) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3)}}, {{A, B, C, X(4), X(14912)}}, {{A, B, C, X(68), X(38259)}}, {{A, B, C, X(69), X(193)}}, {{A, B, C, X(78), X(54123)}}, {{A, B, C, X(248), X(52223)}}, {{A, B, C, X(253), X(9290)}}, {{A, B, C, X(287), X(5395)}}, {{A, B, C, X(441), X(3522)}}, {{A, B, C, X(525), X(34380)}}, {{A, B, C, X(3053), X(40323)}}, {{A, B, C, X(4846), X(18845)}}, {{A, B, C, X(5013), X(36748)}}, {{A, B, C, X(6390), X(52898)}}, {{A, B, C, X(11270), X(52583)}}, {{A, B, C, X(14642), X(43718)}}, {{A, B, C, X(15077), X(41895)}}, {{A, B, C, X(31371), X(53101)}}, {{A, B, C, X(34403), X(42313)}}, {{A, B, C, X(40319), X(51336)}}
X(56339) = barycentric product X(i)*X(j) for these (i, j): {17040, 69}
X(56339) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43981}, {3, 5020}, {17040, 4}


X(56340) = KP3(X(4)) OF X(2) AND X(2)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^8+5*b^8-4*a^6*c^2-8*b^6*c^2+2*b^4*c^4+c^8+2*a^4*(b^4+3*c^4)-4*a^2*(2*b^6-3*b^4*c^2+c^6))*(a^8-4*a^6*b^2+b^8+2*b^4*c^4-8*b^2*c^6+5*c^8+2*a^4*(3*b^4+c^4)-4*a^2*(b^6-3*b^2*c^4+2*c^6)) : :

X(56340) lies on these lines: {4, 6527}, {69, 1105}, {264, 6619}, {317, 18848}, {393, 13567}, {1093, 44131}, {1217, 32000}, {6389, 40402}, {6618, 40680}, {8884, 18909}, {18850, 32001}, {34208, 52249}

X(56340) = X(i)-isoconjugate-of-X(j) for these {i, j}: {255, 6618}
X(56340) = X(i)-Dao conjugate of X(j) for these {i, j}: {6523, 6618}
X(56340) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(93)}}, {{A, B, C, X(69), X(459)}}, {{A, B, C, X(95), X(38253)}}, {{A, B, C, X(253), X(2052)}}, {{A, B, C, X(1249), X(44556)}}, {{A, B, C, X(8795), X(36889)}}, {{A, B, C, X(22263), X(43717)}}
X(56340) = barycentric quotient X(i)/X(j) for these (i, j): {393, 6618}


X(56341) = KP3(X(4)) OF X(4) AND X(6)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*b^2*c^2*(b^2-c^2)^2+a^6*(2*b^2+c^2)-2*a^4*(2*b^4+b^2*c^2+c^4)+a^2*(2*b^6-b^4*c^2-2*b^2*c^4+c^6))*(2*b^2*c^2*(b^2-c^2)^2+a^6*(b^2+2*c^2)-2*a^4*(b^4+b^2*c^2+2*c^4)+a^2*(b^6-2*b^4*c^2-b^2*c^4+2*c^6)) : :

X(56341) lies on the Jerabek hyperbola and on these lines: {3, 14767}, {4, 15649}, {6, 42400}, {25, 50446}, {53, 43718}, {54, 19212}, {1176, 52253}, {1853, 8612}, {3527, 8887}, {9969, 38449}, {13472, 41204}

X(56341) = isogonal conjugate of X(26874)
X(56341) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(51), X(42487)}}, {{A, B, C, X(53), X(264)}}, {{A, B, C, X(275), X(45838)}}, {{A, B, C, X(2052), X(3613)}}, {{A, B, C, X(2980), X(40402)}}, {{A, B, C, X(8796), X(8801)}}, {{A, B, C, X(43530), X(53864)}}
X(56341) = barycentric quotient X(i)/X(j) for these (i, j): {6, 26874}


X(56342) = KP3(X(6)) OF X(1) AND X(2)

Barycentrics    a^2*(a^3+a^2*b+a*b^2+b^3+c^3)*(a^3+b^3+a^2*c+a*c^2+c^3) : :

X(56342) lies on these lines: {6, 977}, {31, 579}, {81, 3662}, {604, 2172}, {608, 8743}, {739, 833}, {1333, 2275}, {2214, 4645}, {2221, 3218}, {2298, 17750}, {2300, 56003}, {5749, 40401}, {32911, 40406}

X(56342) = isogonal conjugate of X(32777)
X(56342) = trilinear pole of line {667, 43060}
X(56342) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 32777}, {2, 976}, {63, 5090}, {75, 2273}, {100, 48300}, {190, 832}, {306, 17520}, {1978, 8636}, {7033, 22398}
X(56342) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 32777}, {206, 2273}, {3162, 5090}, {8054, 48300}, {32664, 976}, {55053, 832}
X(56342) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1474)}}, {{A, B, C, X(6), X(31)}}, {{A, B, C, X(7), X(58)}}, {{A, B, C, X(9), X(40188)}}, {{A, B, C, X(19), X(251)}}, {{A, B, C, X(56), X(1257)}}, {{A, B, C, X(57), X(1169)}}, {{A, B, C, X(69), X(9309)}}, {{A, B, C, X(75), X(3415)}}, {{A, B, C, X(88), X(46010)}}, {{A, B, C, X(513), X(9021)}}, {{A, B, C, X(593), X(2215)}}, {{A, B, C, X(937), X(1041)}}, {{A, B, C, X(941), X(1438)}}, {{A, B, C, X(1172), X(8743)}}, {{A, B, C, X(1244), X(2997)}}, {{A, B, C, X(1400), X(2275)}}, {{A, B, C, X(1412), X(2983)}}, {{A, B, C, X(1798), X(3450)}}, {{A, B, C, X(2189), X(39943)}}, {{A, B, C, X(2259), X(30650)}}, {{A, B, C, X(2285), X(3218)}}, {{A, B, C, X(6186), X(45988)}}, {{A, B, C, X(8752), X(39955)}}, {{A, B, C, X(9372), X(36058)}}, {{A, B, C, X(37741), X(38813)}}
X(56342) = barycentric product X(i)*X(j) for these (i, j): {1, 977}, {513, 833}
X(56342) = barycentric quotient X(i)/X(j) for these (i, j): {6, 32777}, {25, 5090}, {31, 976}, {32, 2273}, {649, 48300}, {667, 832}, {833, 668}, {977, 75}, {1980, 8636}, {2203, 17520}


X(56343) = KP3(X(6)) OF X(1) AND X(6)

Barycentrics    a^2*(2*a+2*b+c)*(2*a+b+2*c) : :

X(56343) lies on these lines: {1, 2308}, {6, 35}, {10, 30590}, {31, 1126}, {34, 3339}, {43, 39748}, {56, 1203}, {57, 52372}, {58, 5313}, {60, 55088}, {86, 3624}, {87, 3216}, {106, 1468}, {238, 10013}, {255, 13404}, {292, 7296}, {595, 41434}, {849, 52558}, {870, 32092}, {939, 54301}, {978, 39949}, {979, 3293}, {996, 3632}, {1027, 48074}, {1171, 17104}, {1193, 2163}, {1220, 3679}, {1222, 3633}, {1411, 3340}, {1698, 5278}, {2191, 16469}, {2334, 3295}, {3017, 18514}, {3226, 32042}, {3445, 16466}, {3585, 48870}, {3894, 16478}, {4324, 48857}, {5315, 7373}, {5331, 52680}, {6763, 16475}, {7150, 11072}, {10591, 37666}, {15338, 48861}, {16473, 42019}, {16477, 37522}, {19872, 37604}, {30652, 50587}, {37129, 37211}, {37595, 41872}, {51093, 56145}

X(56343) = isogonal conjugate of X(1698)
X(56343) = isotomic conjugate of X(30596)
X(56343) = trilinear pole of line {649, 2605}
X(56343) = perspector of circumconic {{A, B, C, X(8652), X(37211)}}
X(56343) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 1698}, {2, 16777}, {4, 3927}, {6, 28605}, {7, 3715}, {8, 5221}, {9, 4654}, {10, 4658}, {31, 30596}, {37, 5333}, {45, 30589}, {57, 4007}, {58, 4066}, {72, 31902}, {80, 4880}, {88, 4727}, {99, 48005}, {100, 4802}, {101, 4823}, {190, 4813}, {226, 4877}, {291, 4716}, {513, 4756}, {651, 4820}, {660, 4810}, {662, 4838}, {668, 4834}, {799, 4826}, {897, 4938}, {943, 3824}, {1018, 4960}, {1100, 43260}, {3257, 4958}, {3296, 51572}, {3952, 4840}, {4391, 36074}, {4866, 5586}, {4898, 8056}, {4942, 9309}, {4949, 27834}, {5380, 30595}, {37211, 53585}
X(56343) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 30596}, {3, 1698}, {9, 28605}, {10, 4066}, {478, 4654}, {1015, 4823}, {1084, 4838}, {5452, 4007}, {6593, 4938}, {8054, 4802}, {32664, 16777}, {36033, 3927}, {38986, 48005}, {38991, 4820}, {38996, 4826}, {39026, 4756}, {39029, 4716}, {40589, 5333}, {55053, 4813}, {55055, 4958}
X(56343) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30598, 56070}
X(56343) = X(i)-cross conjugate of X(j) for these {i, j}: {386, 1}, {28625, 25417}, {48340, 109}
X(56343) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(3), X(3062)}}, {{A, B, C, X(4), X(28159)}}, {{A, B, C, X(9), X(60)}}, {{A, B, C, X(10), X(751)}}, {{A, B, C, X(19), X(3467)}}, {{A, B, C, X(21), X(2364)}}, {{A, B, C, X(28), X(15175)}}, {{A, B, C, X(31), X(849)}}, {{A, B, C, X(35), X(57)}}, {{A, B, C, X(36), X(17098)}}, {{A, B, C, X(43), X(3216)}}, {{A, B, C, X(54), X(84)}}, {{A, B, C, X(59), X(7091)}}, {{A, B, C, X(65), X(5561)}}, {{A, B, C, X(69), X(45132)}}, {{A, B, C, X(79), X(9309)}}, {{A, B, C, X(80), X(959)}}, {{A, B, C, X(81), X(37685)}}, {{A, B, C, X(102), X(3527)}}, {{A, B, C, X(103), X(14528)}}, {{A, B, C, X(104), X(13472)}}, {{A, B, C, X(105), X(39955)}}, {{A, B, C, X(213), X(7121)}}, {{A, B, C, X(222), X(1794)}}, {{A, B, C, X(251), X(39954)}}, {{A, B, C, X(274), X(39952)}}, {{A, B, C, X(291), X(15315)}}, {{A, B, C, X(511), X(29116)}}, {{A, B, C, X(514), X(9047)}}, {{A, B, C, X(593), X(39948)}}, {{A, B, C, X(596), X(749)}}, {{A, B, C, X(603), X(35200)}}, {{A, B, C, X(731), X(10014)}}, {{A, B, C, X(757), X(55991)}}, {{A, B, C, X(943), X(1014)}}, {{A, B, C, X(947), X(43908)}}, {{A, B, C, X(957), X(5559)}}, {{A, B, C, X(961), X(15446)}}, {{A, B, C, X(967), X(8056)}}, {{A, B, C, X(978), X(3293)}}, {{A, B, C, X(985), X(17127)}}, {{A, B, C, X(994), X(5560)}}, {{A, B, C, X(1002), X(5557)}}, {{A, B, C, X(1036), X(2316)}}, {{A, B, C, X(1168), X(32899)}}, {{A, B, C, X(1173), X(3417)}}, {{A, B, C, X(1193), X(1405)}}, {{A, B, C, X(1224), X(39956)}}, {{A, B, C, X(1245), X(4674)}}, {{A, B, C, X(1247), X(3453)}}, {{A, B, C, X(1389), X(44759)}}, {{A, B, C, X(1404), X(1468)}}, {{A, B, C, X(1408), X(28615)}}, {{A, B, C, X(1475), X(28873)}}, {{A, B, C, X(1791), X(43697)}}, {{A, B, C, X(1929), X(2258)}}, {{A, B, C, X(2078), X(3338)}}, {{A, B, C, X(2218), X(52375)}}, {{A, B, C, X(2221), X(39980)}}, {{A, B, C, X(2350), X(28499)}}, {{A, B, C, X(3108), X(3415)}}, {{A, B, C, X(3295), X(3361)}}, {{A, B, C, X(3422), X(38271)}}, {{A, B, C, X(3423), X(7163)}}, {{A, B, C, X(3431), X(10308)}}, {{A, B, C, X(3437), X(39394)}}, {{A, B, C, X(3449), X(7284)}}, {{A, B, C, X(3451), X(52185)}}, {{A, B, C, X(3500), X(39950)}}, {{A, B, C, X(7285), X(37741)}}, {{A, B, C, X(7290), X(17745)}}, {{A, B, C, X(7316), X(56342)}}, {{A, B, C, X(7373), X(13462)}}, {{A, B, C, X(8696), X(30650)}}, {{A, B, C, X(9282), X(15383)}}, {{A, B, C, X(9499), X(15378)}}, {{A, B, C, X(14491), X(16615)}}, {{A, B, C, X(14621), X(40408)}}, {{A, B, C, X(15173), X(36125)}}, {{A, B, C, X(15381), X(29374)}}, {{A, B, C, X(15803), X(37541)}}, {{A, B, C, X(15910), X(39943)}}, {{A, B, C, X(18772), X(56152)}}, {{A, B, C, X(22334), X(28163)}}, {{A, B, C, X(22453), X(38831)}}, {{A, B, C, X(28189), X(46851)}}, {{A, B, C, X(28193), X(44731)}}, {{A, B, C, X(28476), X(39951)}}, {{A, B, C, X(28625), X(56221)}}, {{A, B, C, X(30571), X(39961)}}, {{A, B, C, X(36871), X(40432)}}, {{A, B, C, X(39273), X(52123)}}, {{A, B, C, X(42290), X(42326)}}
X(56343) = barycentric product X(i)*X(j) for these (i, j): {1, 25417}, {4, 56070}, {57, 56203}, {100, 48074}, {514, 8652}, {2163, 30590}, {16777, 30597}, {28625, 86}, {30598, 6}, {32042, 649}, {34819, 75}, {37211, 513}, {42030, 56}, {56221, 81}
X(56343) = barycentric quotient X(i)/X(j) for these (i, j): {1, 28605}, {2, 30596}, {6, 1698}, {31, 16777}, {37, 4066}, {41, 3715}, {48, 3927}, {55, 4007}, {56, 4654}, {58, 5333}, {101, 4756}, {187, 4938}, {512, 4838}, {513, 4823}, {604, 5221}, {649, 4802}, {663, 4820}, {667, 4813}, {669, 4826}, {798, 48005}, {902, 4727}, {1126, 43260}, {1333, 4658}, {1474, 31902}, {1914, 4716}, {1919, 4834}, {1960, 4958}, {2163, 30589}, {2194, 4877}, {2260, 3824}, {2605, 23883}, {3052, 4898}, {3733, 4960}, {4367, 4842}, {4834, 53585}, {7113, 4880}, {8632, 4810}, {8643, 4949}, {8652, 190}, {9310, 4942}, {25417, 75}, {28625, 10}, {30598, 76}, {32042, 1978}, {34819, 1}, {37211, 668}, {42030, 3596}, {48074, 693}, {56070, 69}, {56203, 312}, {56221, 321}
X(56343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 34819, 28625}, {25417, 56203, 56221}, {25417, 56221, 1}


X(56344) = KP3(X(6)) OF X(2) AND X(2)

Barycentrics    a^2*(a^4+2*a^2*b^2+b^4+c^4)*(a^4+b^4+2*a^2*c^2+c^4) : :

X(56344) lies on these lines: {6, 315}, {22, 32}, {83, 42295}, {213, 4463}, {1918, 4456}, {1974, 8743}, {2207, 52448}, {2422, 3800}, {3051, 56004}, {5422, 10014}, {7754, 9045}, {7760, 40405}, {7894, 41909}, {11610, 11641}, {13357, 40799}, {20065, 34482}, {20960, 46319}, {46288, 52580}

X(56344) = isogonal conjugate of X(7795)
X(56344) = trilinear pole of line {669, 2485}
X(56344) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 7795}, {662, 50552}
X(56344) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 7795}, {1084, 50552}
X(56344) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(38826)}}, {{A, B, C, X(4), X(22)}}, {{A, B, C, X(6), X(32)}}, {{A, B, C, X(25), X(76)}}, {{A, B, C, X(111), X(18840)}}, {{A, B, C, X(511), X(3527)}}, {{A, B, C, X(598), X(14248)}}, {{A, B, C, X(695), X(2353)}}, {{A, B, C, X(1383), X(2996)}}, {{A, B, C, X(3051), X(42295)}}, {{A, B, C, X(3108), X(18841)}}, {{A, B, C, X(3456), X(30495)}}, {{A, B, C, X(5007), X(5017)}}, {{A, B, C, X(5395), X(8753)}}, {{A, B, C, X(8751), X(56342)}}, {{A, B, C, X(8770), X(10159)}}, {{A, B, C, X(9307), X(51245)}}, {{A, B, C, X(10302), X(36616)}}, {{A, B, C, X(10630), X(53107)}}, {{A, B, C, X(14370), X(14906)}}, {{A, B, C, X(17042), X(46286)}}, {{A, B, C, X(18842), X(34572)}}, {{A, B, C, X(21399), X(27375)}}, {{A, B, C, X(22263), X(35140)}}, {{A, B, C, X(37892), X(40421)}}, {{A, B, C, X(39951), X(43527)}}, {{A, B, C, X(43717), X(52223)}}
X(56344) = barycentric quotient X(i)/X(j) for these (i, j): {6, 7795}, {512, 50552}


X(56345) = KP3(X(6)) OF X(3) AND X(3)

Barycentrics    a^2*(a^8+5*b^8-4*a^6*c^2-8*b^6*c^2+2*b^4*c^4+c^8+2*a^4*(b^4+3*c^4)-4*a^2*(2*b^6-3*b^4*c^2+c^6))*(a^8-4*a^6*b^2+b^8+2*b^4*c^4-8*b^2*c^6+5*c^8+2*a^4*(3*b^4+c^4)-4*a^2*(b^6-3*b^2*c^4+2*c^6)) : :

X(56345) lies on these lines: {6, 6509}, {25, 185}, {393, 13567}, {394, 41890}, {426, 11425}, {1880, 8807}, {1993, 41894}, {2165, 26958}, {3343, 41489}, {8882, 19180}, {10601, 41891}, {11427, 52224}, {11433, 52223}, {23292, 46952}, {37643, 51316}

X(56345) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 6618}
X(56345) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 6618}
X(56345) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6)}}, {{A, B, C, X(3), X(459)}}, {{A, B, C, X(4), X(1032)}}, {{A, B, C, X(54), X(38253)}}, {{A, B, C, X(64), X(185)}}, {{A, B, C, X(97), X(3532)}}, {{A, B, C, X(222), X(36121)}}, {{A, B, C, X(275), X(26883)}}, {{A, B, C, X(389), X(11425)}}, {{A, B, C, X(1039), X(41081)}}, {{A, B, C, X(1993), X(26958)}}, {{A, B, C, X(2184), X(15629)}}, {{A, B, C, X(3426), X(36609)}}, {{A, B, C, X(6330), X(22263)}}, {{A, B, C, X(6504), X(22466)}}, {{A, B, C, X(8796), X(14919)}}, {{A, B, C, X(10601), X(23292)}}, {{A, B, C, X(14457), X(17811)}}, {{A, B, C, X(14490), X(39284)}}, {{A, B, C, X(14528), X(16080)}}, {{A, B, C, X(34403), X(43690)}}
X(56345) = barycentric product X(i)*X(j) for these (i, j): {3, 56340}
X(56345) = barycentric quotient X(i)/X(j) for these (i, j): {25, 6618}, {56340, 264}


X(56346) = KP3(X(6)) OF X(3) AND X(4)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^4+3*b^4-2*b^2*c^2-c^4-2*a^2*(3*b^2+c^2))*(3*a^4-b^4-2*b^2*c^2+3*c^4-2*a^2*(b^2+3*c^2)) : :

X(56346) lies on the Kiepert hyperbola and on these lines: {2, 15905}, {3, 31363}, {4, 154}, {6, 459}, {10, 34231}, {25, 14484}, {27, 45100}, {76, 37669}, {83, 52283}, {98, 8889}, {226, 17917}, {262, 6353}, {275, 33629}, {297, 5395}, {321, 26668}, {393, 54867}, {427, 3424}, {428, 54520}, {458, 2996}, {461, 43672}, {468, 53099}, {470, 22237}, {471, 22235}, {472, 43540}, {473, 43541}, {485, 3536}, {486, 3535}, {631, 13599}, {801, 36794}, {1073, 11348}, {1131, 1586}, {1132, 1585}, {1249, 2052}, {1593, 40053}, {2051, 7490}, {3079, 5480}, {3090, 40448}, {3524, 54763}, {3543, 54923}, {3618, 37874}, {3839, 54552}, {5064, 54519}, {5071, 54660}, {5094, 43537}, {5392, 37645}, {5702, 14361}, {6504, 6819}, {6515, 42410}, {6622, 45300}, {6748, 54531}, {6820, 14389}, {6995, 43951}, {7394, 54705}, {7408, 54706}, {7608, 52290}, {7612, 52299}, {7714, 14492}, {9290, 37188}, {11001, 54838}, {11109, 43533}, {11433, 15291}, {11547, 39284}, {12233, 15005}, {13567, 38253}, {14033, 54828}, {14494, 38282}, {15682, 54585}, {16041, 54551}, {17809, 41374}, {17811, 18840}, {17907, 54629}, {18845, 37174}, {18890, 46831}, {30456, 40149}, {33190, 54682}, {41099, 54512}, {41106, 54667}, {41895, 52281}, {45867, 53108}, {47586, 52284}, {52282, 53101}, {52293, 53859}

X(56346) = polar conjugate of X(3091)
X(56346) = complement of X(41914)
X(56346) = trilinear pole of line {37931, 42658}
X(56346) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 3091}, {63, 17810}, {92, 26880}, {304, 33578}, {18596, 33579}
X(56346) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 3091}, {3162, 17810}, {22391, 26880}
X(56346) = X(i)-cross conjugate of X(j) for these {i, j}: {3087, 4}, {19467, 69}
X(56346) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(11425)}}, {{A, B, C, X(6), X(154)}}, {{A, B, C, X(54), X(394)}}, {{A, B, C, X(57), X(40396)}}, {{A, B, C, X(63), X(52663)}}, {{A, B, C, X(69), X(23292)}}, {{A, B, C, X(97), X(3431)}}, {{A, B, C, X(278), X(36123)}}, {{A, B, C, X(287), X(17040)}}, {{A, B, C, X(458), X(6353)}}, {{A, B, C, X(1032), X(14376)}}, {{A, B, C, X(1172), X(2297)}}, {{A, B, C, X(1585), X(3536)}}, {{A, B, C, X(1586), X(3535)}}, {{A, B, C, X(1988), X(43718)}}, {{A, B, C, X(2982), X(41081)}}, {{A, B, C, X(3618), X(17811)}}, {{A, B, C, X(6330), X(8801)}}, {{A, B, C, X(6340), X(54124)}}, {{A, B, C, X(7003), X(40435)}}, {{A, B, C, X(8795), X(36948)}}, {{A, B, C, X(10570), X(41514)}}, {{A, B, C, X(10603), X(46104)}}, {{A, B, C, X(11270), X(31626)}}, {{A, B, C, X(13452), X(55982)}}, {{A, B, C, X(13472), X(14919)}}, {{A, B, C, X(14542), X(34403)}}, {{A, B, C, X(16774), X(42313)}}, {{A, B, C, X(23964), X(39955)}}, {{A, B, C, X(25430), X(36121)}}, {{A, B, C, X(36609), X(43908)}}, {{A, B, C, X(36952), X(38442)}}, {{A, B, C, X(39944), X(39956)}}, {{A, B, C, X(39951), X(43717)}}, {{A, B, C, X(40402), X(46952)}}
X(56346) = barycentric product X(i)*X(j) for these (i, j): {14528, 264}, {31504, 8795}
X(56346) = barycentric quotient X(i)/X(j) for these (i, j): {4, 3091}, {25, 17810}, {184, 26880}, {275, 19188}, {1593, 33537}, {1974, 33578}, {8884, 19169}, {14528, 3}, {31504, 5562}, {34207, 33579}, {46092, 19210}
X(56346) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 43841, 8888}, {43841, 45062, 4}


X(56347) = KP3(X(6)) OF X(4) AND X(4)

Barycentrics    a^2*(a^8-2*a^6*(2*b^2+c^2)+(b^2-c^2)^2*(b^4+c^4)+2*a^4*(3*b^4+b^2*c^2+c^4)-2*a^2*(2*b^6-b^4*c^2-2*b^2*c^4+c^6))*(a^8-2*a^6*(b^2+2*c^2)+(b^2-c^2)^2*(b^4+c^4)+2*a^4*(b^4+b^2*c^2+3*c^4)-2*a^2*(b^6-2*b^4*c^2-b^2*c^4+2*c^6)) : :

X(56347) lies on these lines: {6, 11547}, {24, 184}, {275, 39643}, {394, 7763}, {577, 1993}, {2052, 40402}, {2430, 45681}, {3990, 42700}, {5422, 18883}, {14533, 19170}, {52032, 56004}

X(56347) = trilinear pole of line {39201, 924}
X(56347) = X(i)-isoconjugate-of-X(j) for these {i, j}: {92, 6641}, {1953, 19179}
X(56347) = X(i)-Dao conjugate of X(j) for these {i, j}: {22391, 6641}
X(56347) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(24)}}, {{A, B, C, X(3), X(389)}}, {{A, B, C, X(4), X(97)}}, {{A, B, C, X(6), X(184)}}, {{A, B, C, X(64), X(39284)}}, {{A, B, C, X(74), X(8796)}}, {{A, B, C, X(232), X(11402)}}, {{A, B, C, X(249), X(37874)}}, {{A, B, C, X(288), X(1073)}}, {{A, B, C, X(459), X(3431)}}, {{A, B, C, X(1994), X(15066)}}, {{A, B, C, X(2987), X(17040)}}, {{A, B, C, X(5392), X(30541)}}, {{A, B, C, X(5408), X(55020)}}, {{A, B, C, X(5409), X(55021)}}, {{A, B, C, X(10601), X(37672)}}, {{A, B, C, X(13472), X(14919)}}, {{A, B, C, X(13579), X(21399)}}, {{A, B, C, X(14528), X(16080)}}, {{A, B, C, X(20806), X(42287)}}, {{A, B, C, X(38253), X(55982)}}, {{A, B, C, X(40384), X(44731)}}, {{A, B, C, X(42313), X(43725)}}
X(56347) = barycentric product X(i)*X(j) for these (i, j): {4, 56337}
X(56347) = barycentric quotient X(i)/X(j) for these (i, j): {54, 19179}, {184, 6641}, {56337, 69}


X(56348) = KP3(X(7)) OF X(2) AND X(7)

Barycentrics    (a+b-c)*(a-b+c)*(a^2+3*b^2-4*b*c+c^2-2*a*(2*b+c))*(a^2+b^2-4*b*c+3*c^2-2*a*(b+2*c)) : :

X(56348) lies on these lines: {2, 10481}, {7, 9580}, {57, 42318}, {75, 51351}, {86, 34821}, {144, 1223}, {145, 42361}, {279, 21453}, {673, 21454}, {2400, 48268}, {3598, 55967}, {4373, 36845}, {4666, 7271}, {5936, 9436}, {10136, 52511}, {10578, 21314}, {11019, 20121}, {17014, 55941}, {28626, 40719}, {32093, 39695}, {37780, 56074}

X(56348) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 18230}, {55, 10389}
X(56348) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 10389}, {3160, 18230}
X(56348) = X(i)-cross conjugate of X(j) for these {i, j}: {3731, 27818}, {10390, 56054}, {10580, 2}
X(56348) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(56088)}}, {{A, B, C, X(200), X(55922)}}, {{A, B, C, X(279), X(10481)}}, {{A, B, C, X(354), X(40779)}}, {{A, B, C, X(1280), X(7091)}}, {{A, B, C, X(1458), X(39965)}}, {{A, B, C, X(3062), X(6605)}}, {{A, B, C, X(3296), X(43672)}}, {{A, B, C, X(5556), X(14942)}}, {{A, B, C, X(9436), X(21454)}}, {{A, B, C, X(25417), X(43736)}}, {{A, B, C, X(31507), X(41798)}}
X(56348) = barycentric product X(i)*X(j) for these (i, j): {10390, 85}, {34821, 76}, {56054, 7}
X(56348) = barycentric quotient X(i)/X(j) for these (i, j): {7, 18230}, {57, 10389}, {10390, 9}, {34821, 6}, {56054, 8}


X(56349) = KP3(X(8)) OF X(2) AND X(2)

Barycentrics    (a-b-c)*(a^2-2*a*b+5*b^2+2*a*c-2*b*c+c^2)*(a^2+b^2+2*a*(b-c)-2*b*c+5*c^2) : :

X(56349) lies on these lines: {7, 1222}, {8, 3663}, {341, 20895}, {346, 3452}, {1043, 9785}, {1219, 31995}, {2370, 6571}, {3616, 56202}, {4901, 6556}, {29627, 31325}

X(56349) = trilinear pole of line {3239, 21120}
X(56349) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 4308}, {1415, 43061}
X(56349) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4308}, {1146, 43061}, {2968, 8710}
X(56349) = X(i)-cross conjugate of X(j) for these {i, j}: {56199, 56335}
X(56349) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(2051)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(86), X(38255)}}, {{A, B, C, X(312), X(4373)}}, {{A, B, C, X(536), X(23880)}}, {{A, B, C, X(969), X(1392)}}, {{A, B, C, X(3668), X(3701)}}, {{A, B, C, X(5853), X(28161)}}, {{A, B, C, X(30479), X(55022)}}
X(56349) = barycentric product X(i)*X(j) for these (i, j): {52622, 6571}, {56199, 75}, {56335, 8}
X(56349) = barycentric quotient X(i)/X(j) for these (i, j): {2, 4308}, {522, 43061}, {3239, 8710}, {6571, 1461}, {56199, 1}, {56335, 7}


X(56350) = KP3(X(9)) OF X(2) AND X(9)

Barycentrics    a*(a-b-c)*(2*a^2-4*a*b+2*b^2-3*a*c-3*b*c+c^2)*(2*a^2-3*a*b+b^2-4*a*c-3*b*c+2*c^2) : :

X(56350) lies on these lines: {2, 32007}, {9, 3957}, {200, 56244}, {3219, 21446}, {3715, 28071}, {4820, 28132}, {20015, 36916}, {28605, 36796}, {31618, 51352}, {43989, 56265}

X(56350) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 20195}, {354, 39669}
X(56350) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 20195}
X(56350) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56060, 56028}
X(56350) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(9)}}, {{A, B, C, X(21), X(56088)}}, {{A, B, C, X(55), X(89)}}, {{A, B, C, X(210), X(4080)}}, {{A, B, C, X(294), X(25417)}}, {{A, B, C, X(1280), X(4866)}}, {{A, B, C, X(2195), X(39955)}}, {{A, B, C, X(3693), X(28605)}}, {{A, B, C, X(3870), X(4373)}}, {{A, B, C, X(7073), X(27789)}}, {{A, B, C, X(8025), X(37658)}}, {{A, B, C, X(14942), X(56203)}}, {{A, B, C, X(21453), X(55920)}}, {{A, B, C, X(32635), X(56098)}}
X(56350) = barycentric product X(i)*X(j) for these (i, j): {56028, 8}, {56060, 9}
X(56350) = barycentric quotient X(i)/X(j) for these (i, j): {9, 20195}, {1174, 39669}, {56028, 7}, {56060, 85}


X(56351) = KP3(X(10)) OF X(2) AND X(2)

Barycentrics    (b+c)*(a^2+2*b^2+2*b*c+c^2+2*a*(b+c))*(a^2+b^2+2*b*c+2*c^2+2*a*(b+c)) : :

X(56351) lies on these lines: {10, 4360}, {80, 32101}, {86, 1224}, {313, 40087}, {594, 3995}, {1089, 56249}, {1220, 32025}, {1268, 15523}, {4802, 35352}, {8013, 18082}

X(56351) = trilinear pole of line {4024, 4129}
X(56351) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 50522}, {1333, 17398}, {2194, 52783}
X(56351) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 17398}, {115, 50522}, {1214, 52783}
X(56351) = X(i)-cross conjugate of X(j) for these {i, j}: {23282, 190}
X(56351) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(12)}}, {{A, B, C, X(75), X(4360)}}, {{A, B, C, X(86), X(321)}}, {{A, B, C, X(257), X(28613)}}, {{A, B, C, X(740), X(4802)}}, {{A, B, C, X(1441), X(55955)}}
X(56351) = barycentric product X(i)*X(j) for these (i, j): {56213, 75}
X(56351) = barycentric quotient X(i)/X(j) for these (i, j): {10, 17398}, {226, 52783}, {523, 50522}, {56213, 1}


X(56352) = KP4(X(1)) OF X(2) AND X(4)

Barycentrics    a*(a^4+2*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2))*(a^4+2*a*b*c^2+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(56352) lies on these lines: {1, 5422}, {28, 37533}, {37, 56041}, {57, 7130}, {278, 31053}, {279, 17483}, {1224, 19861}, {2006, 30852}, {3083, 3300}, {3084, 3302}, {17011, 56218}, {25930, 42326}, {26639, 30701}, {31164, 52374}, {34772, 40836}

X(56352) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 499}, {19, 24467}, {57, 7082}, {2164, 10052}
X(56352) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 24467}, {9, 499}, {5452, 7082}
X(56352) = X(i)-cross conjugate of X(j) for these {i, j}: {46389, 100}
X(56352) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(8), X(6504)}}, {{A, B, C, X(33), X(1252)}}, {{A, B, C, X(59), X(56002)}}, {{A, B, C, X(63), X(18359)}}, {{A, B, C, X(77), X(31626)}}, {{A, B, C, X(78), X(97)}}, {{A, B, C, X(80), X(13579)}}, {{A, B, C, X(84), X(55027)}}, {{A, B, C, X(92), X(4564)}}, {{A, B, C, X(189), X(1392)}}, {{A, B, C, X(275), X(1016)}}, {{A, B, C, X(312), X(2167)}}, {{A, B, C, X(335), X(5392)}}, {{A, B, C, X(394), X(1807)}}, {{A, B, C, X(1029), X(3577)}}, {{A, B, C, X(1041), X(8796)}}, {{A, B, C, X(1063), X(2052)}}, {{A, B, C, X(1096), X(30651)}}, {{A, B, C, X(1320), X(2994)}}, {{A, B, C, X(1897), X(4619)}}, {{A, B, C, X(2987), X(56179)}}, {{A, B, C, X(5561), X(11538)}}, {{A, B, C, X(7073), X(7123)}}, {{A, B, C, X(7131), X(30690)}}, {{A, B, C, X(17743), X(40393)}}, {{A, B, C, X(30535), X(56328)}}, {{A, B, C, X(56003), X(56225)}}
X(56352) = barycentric product X(i)*X(j) for these (i, j): {312, 7130}, {52186, 75}
X(56352) = barycentric quotient X(i)/X(j) for these (i, j): {1, 499}, {3, 24467}, {46, 10052}, {55, 7082}, {7130, 57}, {52186, 1}


X(56353) = KP4(X(1)) OF X(2) AND X(6)

Barycentrics    (a^2-3*a*b+b^2)*(a^2-3*a*c+c^2) : :

X(56353) lies on these lines: {145, 238}, {239, 16969}, {1222, 17339}, {1429, 5435}, {2295, 56042}, {2403, 25237}, {3208, 7153}, {4513, 27496}, {7754, 10027}, {9311, 17261}, {17244, 31227}, {17277, 24759}, {17389, 41629}

X(56353) = isotomic conjugate of X(48627)
X(56353) = trilinear pole of line {659, 13252}
X(56353) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 23524}, {6, 17063}, {31, 48627}, {56, 4051}, {58, 21951}, {81, 22172}, {101, 23765}, {513, 25577}, {649, 4499}, {692, 48415}, {893, 7240}, {1333, 48643}, {2162, 4941}
X(56353) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4051}, {2, 48627}, {9, 17063}, {10, 21951}, {37, 48643}, {1015, 23765}, {1086, 48415}, {5375, 4499}, {32664, 23524}, {39026, 25577}, {40586, 22172}, {40597, 7240}
X(56353) = X(i)-cross conjugate of X(j) for these {i, j}: {20980, 100}, {25101, 2}, {31286, 190}
X(56353) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(83)}}, {{A, B, C, X(2), X(145)}}, {{A, B, C, X(6), X(16969)}}, {{A, B, C, X(7), X(18845)}}, {{A, B, C, X(8), X(335)}}, {{A, B, C, X(56), X(56011)}}, {{A, B, C, X(76), X(5559)}}, {{A, B, C, X(79), X(53107)}}, {{A, B, C, X(80), X(53105)}}, {{A, B, C, X(81), X(37679)}}, {{A, B, C, X(85), X(6630)}}, {{A, B, C, X(192), X(56180)}}, {{A, B, C, X(257), X(1000)}}, {{A, B, C, X(330), X(1120)}}, {{A, B, C, X(333), X(39703)}}, {{A, B, C, X(519), X(17758)}}, {{A, B, C, X(598), X(5557)}}, {{A, B, C, X(673), X(38247)}}, {{A, B, C, X(996), X(32009)}}, {{A, B, C, X(1255), X(56046)}}, {{A, B, C, X(1258), X(2334)}}, {{A, B, C, X(1911), X(2176)}}, {{A, B, C, X(2329), X(17752)}}, {{A, B, C, X(2985), X(25430)}}, {{A, B, C, X(3445), X(20332)}}, {{A, B, C, X(4998), X(9312)}}, {{A, B, C, X(5395), X(5558)}}, {{A, B, C, X(7121), X(9265)}}, {{A, B, C, X(27475), X(54120)}}, {{A, B, C, X(34914), X(43527)}}, {{A, B, C, X(37128), X(39969)}}, {{A, B, C, X(39694), X(40435)}}, {{A, B, C, X(41909), X(56179)}}
X(56353) = barycentric product X(i)*X(j) for these (i, j): {190, 25576}
X(56353) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17063}, {2, 48627}, {9, 4051}, {10, 48643}, {31, 23524}, {37, 21951}, {42, 22172}, {43, 4941}, {100, 4499}, {101, 25577}, {171, 7240}, {513, 23765}, {514, 48415}, {25576, 514}


X(56354) = KP4(X(1)) OF X(2) AND X(8)

Barycentrics    a*(a^4+4*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2))*(a^4+4*a*b*c^2+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(56354) lies on these lines: {1, 10601}, {28, 1819}, {57, 53995}, {63, 34051}, {78, 15500}, {81, 3553}, {223, 26611}, {274, 24556}, {277, 25930}, {278, 908}, {279, 5905}, {312, 16082}, {394, 1422}, {837, 20928}, {1123, 3083}, {1224, 8583}, {1336, 3084}, {2006, 30827}, {2401, 6332}, {5256, 56218}, {25243, 39747}, {26639, 54123}, {26669, 40399}, {28609, 52374}, {34056, 34526}

X(56354) = isogonal conjugate of X(3554)
X(56354) = isotomic conjugate of X(54284)
X(56354) = trilinear pole of line {13528, 513}
X(56354) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3554}, {6, 3086}, {25, 26871}, {31, 54284}, {56, 53994}, {57, 30223}, {58, 24005}, {278, 19354}, {836, 8747}, {909, 1519}, {1333, 17869}, {1413, 38015}, {2189, 26955}, {8602, 49171}
X(56354) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 53994}, {2, 54284}, {3, 3554}, {9, 3086}, {10, 24005}, {37, 17869}, {5452, 30223}, {6505, 26871}, {23980, 1519}
X(56354) = X(i)-Ceva conjugate of X(j) for these {i, j}: {34401, 56287}
X(56354) = X(i)-cross conjugate of X(j) for these {i, j}: {4091, 190}, {14298, 100}, {42019, 56287}
X(56354) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(8), X(55987)}}, {{A, B, C, X(9), X(5905)}}, {{A, B, C, X(33), X(7123)}}, {{A, B, C, X(63), X(312)}}, {{A, B, C, X(77), X(40424)}}, {{A, B, C, X(78), X(394)}}, {{A, B, C, X(80), X(6504)}}, {{A, B, C, X(86), X(10601)}}, {{A, B, C, X(92), X(7131)}}, {{A, B, C, X(189), X(1320)}}, {{A, B, C, X(200), X(1252)}}, {{A, B, C, X(223), X(1262)}}, {{A, B, C, X(275), X(1039)}}, {{A, B, C, X(282), X(56003)}}, {{A, B, C, X(292), X(1096)}}, {{A, B, C, X(335), X(1041)}}, {{A, B, C, X(346), X(2324)}}, {{A, B, C, X(459), X(1063)}}, {{A, B, C, X(801), X(1016)}}, {{A, B, C, X(837), X(42019)}}, {{A, B, C, X(1032), X(1265)}}, {{A, B, C, X(1073), X(1807)}}, {{A, B, C, X(1797), X(40436)}}, {{A, B, C, X(2167), X(2339)}}, {{A, B, C, X(2184), X(18359)}}, {{A, B, C, X(2983), X(56225)}}, {{A, B, C, X(2994), X(3680)}}, {{A, B, C, X(3062), X(55027)}}, {{A, B, C, X(5560), X(13579)}}, {{A, B, C, X(7361), X(36796)}}, {{A, B, C, X(14554), X(42467)}}, {{A, B, C, X(34546), X(56089)}}, {{A, B, C, X(40802), X(56179)}}, {{A, B, C, X(42361), X(43736)}}
X(56354) = barycentric product X(i)*X(j) for these (i, j): {312, 53995}, {3998, 837}, {34401, 9}, {34413, 40}, {42019, 75}, {56287, 8}
X(56354) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3086}, {2, 54284}, {6, 3554}, {9, 53994}, {10, 17869}, {37, 24005}, {55, 30223}, {63, 26871}, {201, 26955}, {212, 19354}, {517, 1519}, {1124, 38003}, {2324, 38015}, {3083, 40650}, {3990, 836}, {10310, 49171}, {34401, 85}, {34413, 309}, {42019, 1}, {53995, 57}, {55104, 18909}, {56287, 7}


X(56355) = KP4(X(1)) OF X(2) AND X(9)

Barycentrics    a*(2*a^3+2*a*(3*b-c)*c+(b-c)^2*(b+2*c)-a^2*(3*b+2*c))*(2*a^3-2*a*b*(b-3*c)+(b-c)^2*(2*b+c)-a^2*(2*b+3*c)) : :

X(56355) lies on these lines: {88, 25934}, {105, 2098}, {220, 34056}, {279, 6603}, {330, 25243}, {1002, 20323}, {1255, 17825}, {2006, 5328}, {2401, 25242}, {4105, 35348}, {4671, 16082}, {8056, 25930}, {17014, 56218}, {20007, 40836}

X(56355) = trilinear pole of line {15599, 513}
X(56355) = X(i)-isoconjugate-of-X(j) for these {i, j}: {909, 1538}
X(56355) = X(i)-Dao conjugate of X(j) for these {i, j}: {23980, 1538}
X(56355) = X(i)-cross conjugate of X(j) for these {i, j}: {26669, 2}
X(56355) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(8), X(4564)}}, {{A, B, C, X(85), X(1392)}}, {{A, B, C, X(145), X(2991)}}, {{A, B, C, X(220), X(1252)}}, {{A, B, C, X(1262), X(42019)}}, {{A, B, C, X(1320), X(7131)}}, {{A, B, C, X(1476), X(55937)}}, {{A, B, C, X(2125), X(41798)}}, {{A, B, C, X(2320), X(32008)}}, {{A, B, C, X(2338), X(56003)}}, {{A, B, C, X(2989), X(17743)}}, {{A, B, C, X(3497), X(41446)}}, {{A, B, C, X(3680), X(36101)}}, {{A, B, C, X(4373), X(43736)}}, {{A, B, C, X(7077), X(9310)}}, {{A, B, C, X(8025), X(17825)}}, {{A, B, C, X(10429), X(55027)}}, {{A, B, C, X(14497), X(17758)}}
X(56355) = barycentric quotient X(i)/X(j) for these (i, j): {517, 1538}


X(56356) = KP4(X(1)) OF X(4) AND X(7)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^4-2*a^2*b^2+b^4+2*a*b*c^2-c^4)*(a^4-b^4+2*a*b^2*c-2*a^2*c^2+c^4) : :

X(56356) lies on these lines: {1, 50434}, {7, 1063}, {35, 77}, {63, 15066}, {69, 1443}, {81, 41502}, {269, 52392}, {1439, 18532}, {1442, 7056}, {1444, 35193}, {1814, 17092}

X(56356) = trilinear pole of line {905, 9404}
X(56356) = X(i)-isoconjugate-of-X(j) for these {i, j}: {33, 1062}, {42, 17584}, {55, 1479}, {210, 5358}, {2332, 18588}, {4183, 54360}, {4354, 7073}
X(56356) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 1479}, {40592, 17584}
X(56356) = X(i)-cross conjugate of X(j) for these {i, j}: {7163, 55985}, {15313, 651}
X(56356) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(35)}}, {{A, B, C, X(7), X(63)}}, {{A, B, C, X(8), X(35512)}}, {{A, B, C, X(59), X(1041)}}, {{A, B, C, X(86), X(15066)}}, {{A, B, C, X(269), X(1443)}}, {{A, B, C, X(273), X(7045)}}, {{A, B, C, X(277), X(43736)}}, {{A, B, C, X(1037), X(34207)}}, {{A, B, C, X(1039), X(15339)}}, {{A, B, C, X(1063), X(7163)}}, {{A, B, C, X(2346), X(56139)}}, {{A, B, C, X(7100), X(34801)}}, {{A, B, C, X(8809), X(18815)}}, {{A, B, C, X(40118), X(55017)}}
X(56356) = barycentric product X(i)*X(j) for these (i, j): {1063, 348}, {7163, 85}, {55985, 7}
X(56356) = barycentric quotient X(i)/X(j) for these (i, j): {57, 1479}, {81, 17584}, {222, 1062}, {1063, 281}, {1412, 5358}, {1439, 18588}, {2003, 4354}, {7163, 9}, {52373, 54360}, {55985, 8}


X(56357) = KP4(X(1)) OF X(6) AND X(6)

Barycentrics    a*(-2*a*b^2*c+b^2*c^2+a^2*(b^2+c^2))*(-2*a*b*c^2+b^2*c^2+a^2*(b^2+c^2)) : :

X(56357) lies on these lines: {2, 56247}, {37, 56329}, {43, 32020}, {330, 3009}, {612, 40738}, {1613, 51864}, {2663, 39948}, {3247, 9401}, {3550, 8640}, {21352, 39738}

X(56357) = isogonal conjugate of X(18194)
X(56357) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 18194}, {2, 23538}, {27, 22439}, {57, 39250}, {58, 21257}, {81, 21345}, {86, 23652}, {87, 14823}, {1333, 21435}
X(56357) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 18194}, {10, 21257}, {37, 21435}, {5452, 39250}, {32664, 23538}, {40586, 21345}, {40600, 23652}
X(56357) = X(i)-cross conjugate of X(j) for these {i, j}: {23572, 190}, {25142, 100}
X(56357) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(31), X(43)}}, {{A, B, C, X(87), X(3112)}}, {{A, B, C, X(92), X(30663)}}, {{A, B, C, X(100), X(3550)}}, {{A, B, C, X(292), X(3223)}}, {{A, B, C, X(312), X(9285)}}, {{A, B, C, X(612), X(40790)}}, {{A, B, C, X(694), X(56179)}}, {{A, B, C, X(978), X(1472)}}, {{A, B, C, X(983), X(41531)}}, {{A, B, C, X(1613), X(2176)}}, {{A, B, C, X(2162), X(32011)}}, {{A, B, C, X(2663), X(3247)}}, {{A, B, C, X(3226), X(39966)}}, {{A, B, C, X(5560), X(55028)}}, {{A, B, C, X(5561), X(30505)}}, {{A, B, C, X(9315), X(9361)}}, {{A, B, C, X(16468), X(32911)}}, {{A, B, C, X(18098), X(56256)}}, {{A, B, C, X(30651), X(38275)}}, {{A, B, C, X(39951), X(40763)}}
X(56357) = barycentric product X(i)*X(j) for these (i, j): {1, 56247}
X(56357) = barycentric quotient X(i)/X(j) for these (i, j): {6, 18194}, {10, 21435}, {31, 23538}, {37, 21257}, {42, 21345}, {55, 39250}, {213, 23652}, {228, 22439}, {2176, 14823}, {56247, 75}


X(56358) = KP4(X(1)) OF X(6) AND X(7)

Barycentrics    (a^2-a*b+b^2)*(a+b-c)*(a-b+c)*(a^2-a*c+c^2) : :

X(56358) lies on the K1031 and on these lines: {1, 5999}, {2, 1429}, {7, 171}, {31, 51935}, {56, 6384}, {57, 335}, {75, 183}, {85, 40038}, {86, 7179}, {226, 3407}, {272, 38813}, {273, 7009}, {310, 13588}, {385, 1423}, {604, 39746}, {673, 3772}, {675, 8685}, {871, 1402}, {1088, 7176}, {1284, 3113}, {1434, 24801}, {1469, 56154}, {2162, 6180}, {3212, 3905}, {3598, 4373}, {4308, 36620}, {4621, 36807}, {5226, 39716}, {5435, 39749}, {5936, 56196}, {5989, 30545}, {6649, 7248}, {7175, 53677}, {7225, 39745}, {7247, 56065}, {10404, 40164}, {17084, 29838}, {18613, 23865}, {20284, 37137}, {26228, 39732}, {27475, 37674}, {37543, 45965}, {40418, 55082}

X(56358) = isogonal conjugate of X(3056)
X(56358) = isotomic conjugate of X(3705)
X(56358) = trilinear pole of line {3287, 20980}
X(56358) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3056}, {2, 20665}, {4, 20753}, {6, 3061}, {8, 7032}, {9, 2275}, {21, 3778}, {31, 3705}, {33, 3784}, {41, 3662}, {42, 3794}, {55, 982}, {56, 4073}, {60, 7237}, {81, 20684}, {86, 4531}, {200, 7248}, {220, 41777}, {284, 3721}, {314, 40935}, {333, 16584}, {513, 40499}, {663, 3888}, {692, 3810}, {983, 12836}, {1172, 20727}, {1253, 7185}, {1333, 4136}, {2053, 41886}, {2150, 16886}, {2175, 33930}, {2194, 2887}, {2311, 18904}, {2319, 20284}, {2320, 4787}, {2329, 3863}, {2330, 3865}, {2344, 3094}, {3063, 33946}, {3116, 52133}, {3117, 52652}, {3699, 50514}, {3777, 3939}, {7073, 7186}, {7239, 7252}, {8022, 40072}, {21751, 28660}, {21815, 52379}, {22364, 44130}, {31917, 52370}, {33891, 51858}
X(56358) = X(i)-vertex conjugate of X(j) for these {i, j}: {56, 52133}
X(56358) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4073}, {2, 3705}, {3, 3056}, {9, 3061}, {37, 4136}, {223, 982}, {478, 2275}, {1086, 3810}, {1214, 2887}, {3160, 3662}, {6609, 7248}, {10001, 33946}, {17113, 7185}, {32664, 20665}, {36033, 20753}, {39026, 40499}, {40586, 20684}, {40590, 3721}, {40592, 3794}, {40593, 33930}, {40600, 4531}, {40611, 3778}, {40615, 3776}, {40617, 3777}, {40622, 3801}, {56325, 16886}
X(56358) = X(i)-cross conjugate of X(j) for these {i, j}: {667, 651}, {983, 17743}, {17072, 653}, {18758, 6}, {19522, 37128}, {24533, 37137}, {24793, 13149}, {28470, 190}, {31286, 658}, {47837, 38340}
X(56358) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(98)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(4518)}}, {{A, B, C, X(8), X(3424)}}, {{A, B, C, X(25), X(1037)}}, {{A, B, C, X(43), X(238)}}, {{A, B, C, X(55), X(21010)}}, {{A, B, C, X(56), X(1403)}}, {{A, B, C, X(57), X(552)}}, {{A, B, C, X(59), X(251)}}, {{A, B, C, X(60), X(5481)}}, {{A, B, C, X(77), X(1799)}}, {{A, B, C, X(79), X(262)}}, {{A, B, C, X(80), X(14458)}}, {{A, B, C, X(81), X(183)}}, {{A, B, C, X(92), X(7224)}}, {{A, B, C, X(95), X(56328)}}, {{A, B, C, X(105), X(1376)}}, {{A, B, C, X(111), X(41431)}}, {{A, B, C, X(257), X(54122)}}, {{A, B, C, X(278), X(8817)}}, {{A, B, C, X(305), X(52392)}}, {{A, B, C, X(312), X(7261)}}, {{A, B, C, X(333), X(41527)}}, {{A, B, C, X(385), X(52136)}}, {{A, B, C, X(614), X(5205)}}, {{A, B, C, X(904), X(47643)}}, {{A, B, C, X(951), X(28476)}}, {{A, B, C, X(983), X(56180)}}, {{A, B, C, X(1284), X(1469)}}, {{A, B, C, X(1390), X(9103)}}, {{A, B, C, X(2006), X(6063)}}, {{A, B, C, X(2113), X(9258)}}, {{A, B, C, X(2186), X(55037)}}, {{A, B, C, X(2481), X(13478)}}, {{A, B, C, X(2770), X(55017)}}, {{A, B, C, X(2862), X(40413)}}, {{A, B, C, X(3112), X(56046)}}, {{A, B, C, X(3296), X(7612)}}, {{A, B, C, X(3407), X(7033)}}, {{A, B, C, X(3415), X(52150)}}, {{A, B, C, X(3425), X(7163)}}, {{A, B, C, X(3596), X(15314)}}, {{A, B, C, X(5556), X(14484)}}, {{A, B, C, X(5557), X(7607)}}, {{A, B, C, X(5558), X(43537)}}, {{A, B, C, X(5559), X(53100)}}, {{A, B, C, X(5561), X(14492)}}, {{A, B, C, X(5970), X(55018)}}, {{A, B, C, X(7045), X(9073)}}, {{A, B, C, X(7091), X(9108)}}, {{A, B, C, X(7320), X(47586)}}, {{A, B, C, X(7357), X(18359)}}, {{A, B, C, X(9315), X(14665)}}, {{A, B, C, X(14486), X(42019)}}, {{A, B, C, X(29352), X(51476)}}, {{A, B, C, X(32085), X(56179)}}, {{A, B, C, X(34234), X(54128)}}, {{A, B, C, X(34429), X(37741)}}, {{A, B, C, X(34893), X(45819)}}
X(56358) = barycentric product X(i)*X(j) for these (i, j): {57, 7033}, {85, 983}, {181, 7307}, {226, 40415}, {279, 56180}, {349, 38813}, {604, 7034}, {1284, 40834}, {1434, 56196}, {1469, 3114}, {3113, 7146}, {3261, 8685}, {3407, 7179}, {3676, 4621}, {4552, 7255}, {6358, 7305}, {7132, 75}, {17743, 7}, {38810, 65}, {43265, 552}
X(56358) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3061}, {2, 3705}, {6, 3056}, {7, 3662}, {9, 4073}, {10, 4136}, {12, 16886}, {31, 20665}, {42, 20684}, {48, 20753}, {56, 2275}, {57, 982}, {65, 3721}, {73, 20727}, {81, 3794}, {85, 33930}, {101, 40499}, {213, 4531}, {222, 3784}, {226, 2887}, {269, 41777}, {279, 7185}, {514, 3810}, {604, 7032}, {651, 3888}, {664, 33946}, {983, 9}, {1284, 18904}, {1400, 3778}, {1402, 16584}, {1403, 20284}, {1405, 4787}, {1407, 7248}, {1423, 41886}, {1431, 3863}, {1432, 3865}, {1434, 33947}, {1441, 20234}, {1447, 33891}, {1469, 3094}, {2003, 7186}, {2171, 7237}, {2275, 12836}, {3113, 52652}, {3212, 33890}, {3407, 52133}, {3668, 16888}, {3669, 3777}, {3676, 3776}, {4551, 7239}, {4621, 3699}, {7033, 312}, {7034, 28659}, {7132, 1}, {7146, 51836}, {7175, 7184}, {7176, 7187}, {7178, 3801}, {7179, 3314}, {7255, 4560}, {7296, 10877}, {7305, 2185}, {7307, 18021}, {8685, 101}, {17743, 8}, {18097, 16889}, {30725, 53533}, {38810, 314}, {38813, 284}, {40415, 333}, {43265, 6057}, {56180, 346}, {56196, 2321}


X(56359) = KP4(X(1)) OF X(7) AND X(7)

Barycentrics    a*(a+b-c)^2*(a-b+c)^2*(a^2-2*a*b+b^2+c^2)*(a^2+b^2-2*a*c+c^2) : :

X(56359) lies on these lines: {1, 7056}, {7, 33}, {34, 54128}, {55, 77}, {57, 1814}, {63, 220}, {69, 200}, {81, 2332}, {222, 39273}, {279, 17784}, {479, 4318}, {614, 658}, {1043, 4320}, {1088, 2263}, {1439, 56328}, {1443, 52429}, {1444, 2328}, {1448, 56146}, {1458, 56098}, {1619, 7177}, {2293, 56330}, {3676, 34036}, {3920, 10004}, {3938, 41355}, {4334, 7281}, {4911, 34398}, {5018, 7220}, {7073, 7190}, {7084, 10482}, {7191, 9533}, {8816, 29616}, {14935, 52001}, {52371, 52392}

X(56359) = isogonal conjugate of X(4319)
X(56359) = trilinear pole of line {657, 905}
X(56359) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4319}, {2, 30706}, {3, 1863}, {6, 6554}, {8, 7083}, {9, 2082}, {21, 40965}, {33, 1040}, {55, 497}, {56, 4012}, {57, 28070}, {78, 40987}, {100, 17115}, {200, 614}, {210, 5324}, {220, 4000}, {281, 7124}, {346, 16502}, {480, 7195}, {607, 27509}, {657, 3732}, {728, 28017}, {1043, 40934}, {1253, 3673}, {1260, 1851}, {1473, 7046}, {1633, 3900}, {1763, 40176}, {2287, 16583}, {2322, 23620}, {2327, 52577}, {2328, 3914}, {2332, 18589}, {2999, 40175}, {4183, 17441}, {5089, 23601}, {7058, 21813}, {7071, 17170}, {7079, 7289}, {7256, 50490}, {40961, 56182}
X(56359) = X(i)-vertex conjugate of X(j) for these {i, j}: {56, 56098}
X(56359) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4012}, {3, 4319}, {9, 6554}, {223, 497}, {478, 2082}, {5452, 28070}, {6609, 614}, {8054, 17115}, {17113, 3673}, {32664, 30706}, {36103, 1863}, {36908, 3914}, {40611, 40965}
X(56359) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30705, 7131}
X(56359) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 56179}, {649, 658}, {1037, 7131}, {3309, 651}, {9316, 57}, {17613, 88}
X(56359) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(33)}}, {{A, B, C, X(2), X(43736)}}, {{A, B, C, X(7), X(63)}}, {{A, B, C, X(31), X(1458)}}, {{A, B, C, X(57), X(241)}}, {{A, B, C, X(75), X(8809)}}, {{A, B, C, X(79), X(14457)}}, {{A, B, C, X(84), X(775)}}, {{A, B, C, X(86), X(17811)}}, {{A, B, C, X(269), X(1407)}}, {{A, B, C, X(273), X(56287)}}, {{A, B, C, X(278), X(15728)}}, {{A, B, C, X(614), X(649)}}, {{A, B, C, X(1037), X(1041)}}, {{A, B, C, X(1252), X(3870)}}, {{A, B, C, X(1476), X(26703)}}, {{A, B, C, X(2162), X(2191)}}, {{A, B, C, X(2249), X(40439)}}, {{A, B, C, X(2363), X(7091)}}, {{A, B, C, X(2862), X(40413)}}, {{A, B, C, X(4334), X(5018)}}, {{A, B, C, X(5665), X(56153)}}, {{A, B, C, X(7012), X(56262)}}, {{A, B, C, X(7131), X(8817)}}, {{A, B, C, X(38254), X(39962)}}, {{A, B, C, X(40399), X(42361)}}
X(56359) = barycentric product X(i)*X(j) for these (i, j): {1, 30705}, {7, 7131}, {57, 8817}, {269, 30701}, {279, 56179}, {479, 56243}, {514, 8269}, {1037, 85}, {1041, 348}, {1088, 7123}, {1439, 40411}, {3668, 40403}, {48070, 934}, {56328, 8816}
X(56359) = barycentric quotient X(i)/X(j) for these (i, j): {1, 6554}, {6, 4319}, {9, 4012}, {19, 1863}, {31, 30706}, {55, 28070}, {56, 2082}, {57, 497}, {77, 27509}, {222, 1040}, {269, 4000}, {279, 3673}, {603, 7124}, {604, 7083}, {608, 40987}, {649, 17115}, {738, 7195}, {934, 3732}, {1037, 9}, {1041, 281}, {1042, 16583}, {1106, 16502}, {1400, 40965}, {1407, 614}, {1410, 23620}, {1412, 5324}, {1426, 52577}, {1427, 3914}, {1435, 1851}, {1439, 18589}, {1461, 1633}, {3668, 53510}, {4320, 5286}, {4350, 41785}, {7023, 28017}, {7050, 40175}, {7053, 7289}, {7084, 220}, {7099, 1473}, {7123, 200}, {7131, 8}, {7169, 40176}, {7177, 17170}, {7216, 48403}, {8269, 190}, {8816, 4385}, {8817, 312}, {14935, 3119}, {30701, 341}, {30705, 75}, {34855, 51400}, {36057, 23601}, {37755, 21015}, {40403, 1043}, {43932, 48398}, {48070, 4397}, {52373, 17441}, {52778, 6558}, {56179, 346}, {56243, 5423}, {56260, 4082}


X(56360) = KP4(X(2)) OF X(4) AND X(4)

Barycentrics    (5*a^4+5*b^4-2*b^2*c^2+c^4-2*a^2*(3*b^2+c^2))*(5*a^4+b^4-2*b^2*c^2+5*c^4-2*a^2*(b^2+3*c^2)) : :

X(56360) lies on these lines: {3, 56334}, {69, 32989}, {230, 6340}, {253, 16925}, {264, 32973}, {305, 37667}, {3523, 9229}, {8797, 32971}, {32987, 40410}, {35927, 41762}

X(56360) = isotomic conjugate of X(32972)
X(56360) = X(i)-vertex conjugate of X(j) for these {i, j}: {6339, 52439}
X(56360) = X(i)-cross conjugate of X(j) for these {i, j}: {32970, 2}
X(56360) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(66), X(36953)}}, {{A, B, C, X(98), X(6339)}}, {{A, B, C, X(193), X(230)}}, {{A, B, C, X(384), X(3523)}}, {{A, B, C, X(1031), X(53099)}}, {{A, B, C, X(2996), X(34285)}}, {{A, B, C, X(2998), X(43537)}}, {{A, B, C, X(3407), X(52224)}}, {{A, B, C, X(5395), X(40416)}}, {{A, B, C, X(7612), X(40405)}}, {{A, B, C, X(8781), X(16774)}}, {{A, B, C, X(8882), X(55999)}}
X(56360) = barycentric quotient X(i)/X(j) for these (i, j): {2, 32972}


X(56361) = KP4(X(3)) OF X(2) AND X(4)

Barycentrics    a^2*(a^8-(b^2-c^2)^3*(b^2+c^2)-2*a^6*(b^2+2*c^2)+2*a^4*c^2*(b^2+3*c^2)+2*a^2*(b^6-2*b^4*c^2+b^2*c^4-2*c^6))*(a^8+(b^2-c^2)^3*(b^2+c^2)-2*a^6*(2*b^2+c^2)+2*a^4*b^2*(3*b^2+c^2)+2*a^2*(-2*b^6+b^4*c^2-2*b^2*c^4+c^6)) : :

X(56361) lies on these lines: {3, 44405}, {24, 16172}, {394, 8553}, {1217, 22467}, {3580, 52350}, {3926, 35296}, {7395, 22268}, {7503, 22270}, {14376, 52275}, {17974, 44208}, {34897, 35302}

X(56361) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 3548}, {75, 44527}
X(56361) = X(i)-vertex conjugate of X(j) for these {i, j}: {6504, 6524}
X(56361) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 3548}, {206, 44527}, {577, 44752}
X(56361) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3)}}, {{A, B, C, X(4), X(56002)}}, {{A, B, C, X(6), X(8553)}}, {{A, B, C, X(25), X(23357)}}, {{A, B, C, X(64), X(13579)}}, {{A, B, C, X(74), X(6504)}}, {{A, B, C, X(94), X(34438)}}, {{A, B, C, X(249), X(1993)}}, {{A, B, C, X(288), X(598)}}, {{A, B, C, X(297), X(44208)}}, {{A, B, C, X(323), X(26958)}}, {{A, B, C, X(393), X(1609)}}, {{A, B, C, X(459), X(43756)}}, {{A, B, C, X(2987), X(34207)}}, {{A, B, C, X(3527), X(11538)}}, {{A, B, C, X(5392), X(34439)}}, {{A, B, C, X(8796), X(55999)}}, {{A, B, C, X(11140), X(34436)}}, {{A, B, C, X(13575), X(43705)}}, {{A, B, C, X(13582), X(43719)}}, {{A, B, C, X(30535), X(43725)}}, {{A, B, C, X(40799), X(51477)}}
X(56361) = barycentric product X(i)*X(j) for these (i, j): {264, 44405}
X(56361) = barycentric quotient X(i)/X(j) for these (i, j): {3, 3548}, {32, 44527}, {1147, 44752}, {44405, 3}


X(56362) = KP4(X(3)) OF X(2) AND X(6)

Barycentrics    a^2*(2*a^4-b^4+b^2*c^2+2*c^4+a^2*(b^2-4*c^2))*(2*a^4+2*b^4+b^2*c^2-c^4+a^2*(-4*b^2+c^2)) : :

X(56362) lies on these lines: {187, 439}, {394, 5023}, {1073, 52275}, {1204, 17974}, {1214, 21508}, {3053, 5866}, {5206, 28724}, {6803, 14938}, {7487, 32132}, {13219, 16925}, {14376, 32973}, {14489, 17928}, {22467, 40801}, {32985, 34897}, {35302, 36609}

X(56362) = isogonal conjugate of X(44518)
X(56362) = trilinear pole of line {6132, 520}
X(56362) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44518}, {19, 30771}, {75, 34481}
X(56362) = X(i)-vertex conjugate of X(j) for these {i, j}: {2207, 2996}
X(56362) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 44518}, {6, 30771}, {206, 34481}
X(56362) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3)}}, {{A, B, C, X(4), X(249)}}, {{A, B, C, X(6), X(5023)}}, {{A, B, C, X(25), X(3053)}}, {{A, B, C, X(32), X(187)}}, {{A, B, C, X(39), X(5206)}}, {{A, B, C, X(54), X(5395)}}, {{A, B, C, X(64), X(2987)}}, {{A, B, C, X(74), X(2996)}}, {{A, B, C, X(76), X(11270)}}, {{A, B, C, X(83), X(3431)}}, {{A, B, C, X(111), X(40322)}}, {{A, B, C, X(193), X(40318)}}, {{A, B, C, X(237), X(3552)}}, {{A, B, C, X(248), X(41894)}}, {{A, B, C, X(253), X(43705)}}, {{A, B, C, X(574), X(15513)}}, {{A, B, C, X(598), X(13472)}}, {{A, B, C, X(671), X(13452)}}, {{A, B, C, X(1173), X(53101)}}, {{A, B, C, X(1204), X(36212)}}, {{A, B, C, X(1968), X(52144)}}, {{A, B, C, X(1993), X(8796)}}, {{A, B, C, X(3532), X(40802)}}, {{A, B, C, X(5013), X(5210)}}, {{A, B, C, X(5866), X(6337)}}, {{A, B, C, X(6339), X(34207)}}, {{A, B, C, X(7163), X(54123)}}, {{A, B, C, X(8588), X(37512)}}, {{A, B, C, X(9217), X(9292)}}, {{A, B, C, X(9605), X(15655)}}, {{A, B, C, X(11738), X(53105)}}, {{A, B, C, X(11741), X(16835)}}, {{A, B, C, X(14491), X(53107)}}, {{A, B, C, X(14528), X(30535)}}, {{A, B, C, X(18840), X(20421)}}, {{A, B, C, X(20251), X(53102)}}, {{A, B, C, X(29011), X(40824)}}
X(56362) = barycentric quotient X(i)/X(j) for these (i, j): {3, 30771}, {6, 44518}, {32, 34481}


X(56363) = KP4(X(6)) OF X(3) AND X(4)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^6-b^6-b^2*c^4+2*c^6+2*a^2*c^2*(b^2-c^2)-a^4*(b^2+2*c^2))*(2*a^6+2*b^6-b^4*c^2-c^6-a^4*(2*b^2+c^2)-2*a^2*(b^4-b^2*c^2)) : :

X(56363) lies on these lines: {22, 15905}, {112, 53852}, {154, 8743}, {315, 34412}, {459, 34407}, {1073, 3172}, {1249, 8779}, {1297, 17409}, {1301, 20232}, {11605, 41370}

X(56363) = isogonal conjugate of X(20208)
X(56363) = trilinear pole of line {2485, 42658}
X(56363) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20208}, {63, 1853}, {92, 53852}, {1073, 20322}, {19611, 46829}
X(56363) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 20208}, {3162, 1853}, {22391, 53852}
X(56363) = X(i)-cross conjugate of X(j) for these {i, j}: {520, 112}
X(56363) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(23964)}}, {{A, B, C, X(4), X(22)}}, {{A, B, C, X(6), X(154)}}, {{A, B, C, X(25), X(459)}}, {{A, B, C, X(54), X(15324)}}, {{A, B, C, X(111), X(38253)}}, {{A, B, C, X(184), X(8779)}}, {{A, B, C, X(196), X(7115)}}, {{A, B, C, X(275), X(39955)}}, {{A, B, C, X(801), X(41894)}}, {{A, B, C, X(1383), X(2052)}}, {{A, B, C, X(1988), X(43706)}}, {{A, B, C, X(2189), X(7003)}}, {{A, B, C, X(3431), X(15388)}}, {{A, B, C, X(13472), X(14371)}}, {{A, B, C, X(32230), X(43697)}}
X(56363) = barycentric product X(i)*X(j) for these (i, j): {4, 56306}, {25, 34412}, {154, 34407}
X(56363) = barycentric quotient X(i)/X(j) for these (i, j): {6, 20208}, {25, 1853}, {184, 53852}, {204, 20322}, {3172, 46829}, {17409, 53851}, {34407, 41530}, {34412, 305}, {56306, 69}


X(56364) = KP4(X(6)) OF X(4) AND X(4)

Barycentrics    a^2*(a^4-2*a^2*b^2+b^4+c^4)*(a^4+b^4-2*a^2*c^2+c^4)*(a^4-(b^2-c^2)^2)^2 : :

X(56364) lies on these lines: {6, 52448}, {22, 232}, {25, 11610}, {107, 42295}, {184, 8743}, {217, 56347}, {287, 2052}, {297, 315}, {393, 41757}, {1501, 51334}, {1993, 36426}, {3425, 17409}, {3990, 4463}, {4055, 4456}, {6524, 41363}, {6747, 11605}, {8744, 51831}, {8746, 14533}, {10002, 34945}, {27373, 56344}, {39643, 42294}, {41372, 44415}

X(56364) = isogonal conjugate of X(6389)
X(56364) = polar conjugate of X(41009)
X(56364) = trilinear pole of line {2485, 17994}
X(56364) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6389}, {19, 44141}, {48, 41009}, {63, 1899}, {69, 2083}, {75, 39643}, {92, 426}, {255, 41760}, {304, 40947}, {326, 3767}, {394, 17871}, {1102, 41762}, {1632, 24018}
X(56364) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 6389}, {6, 44141}, {206, 39643}, {1249, 41009}, {3162, 1899}, {6523, 41760}, {15259, 3767}, {22391, 426}
X(56364) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 56004}, {669, 107}, {684, 32687}, {924, 112}
X(56364) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(43717)}}, {{A, B, C, X(4), X(22)}}, {{A, B, C, X(6), X(184)}}, {{A, B, C, X(25), X(232)}}, {{A, B, C, X(111), X(459)}}, {{A, B, C, X(248), X(32319)}}, {{A, B, C, X(393), X(8745)}}, {{A, B, C, X(669), X(42295)}}, {{A, B, C, X(1383), X(8796)}}, {{A, B, C, X(1629), X(33971)}}, {{A, B, C, X(1987), X(2351)}}, {{A, B, C, X(1993), X(23357)}}, {{A, B, C, X(2763), X(15384)}}, {{A, B, C, X(6531), X(39109)}}, {{A, B, C, X(8770), X(16080)}}, {{A, B, C, X(15388), X(18532)}}, {{A, B, C, X(34405), X(56307)}}, {{A, B, C, X(34427), X(35140)}}, {{A, B, C, X(39951), X(43530)}}
X(56364) = barycentric product X(i)*X(j) for these (i, j): {4, 56307}, {25, 34405}, {393, 56004}, {2207, 42407}
X(56364) = barycentric quotient X(i)/X(j) for these (i, j): {3, 44141}, {4, 41009}, {6, 6389}, {25, 1899}, {32, 39643}, {184, 426}, {393, 41760}, {1096, 17871}, {1973, 2083}, {1974, 40947}, {2207, 3767}, {8743, 28405}, {8745, 41770}, {27373, 52532}, {32713, 1632}, {34405, 305}, {34854, 2450}, {36417, 42295}, {40981, 6751}, {52439, 41762}, {56004, 3926}, {56307, 69}


X(56365) = KP4(X(11)) OF X(7) AND X(8)

Barycentrics    (a^3+2*b^3-2*b^2*c-b*c^2+c^3-a^2*(b+c)-a*(2*b^2-4*b*c+c^2))*(a^3+b^3-b^2*c-2*b*c^2+2*c^3-a^2*(b+c)-a*(b^2-4*b*c+2*c^2)) : :

X(56365) lies on these lines: {2, 31611}, {11, 4998}, {666, 46101}, {693, 10006}, {3816, 40419}, {3912, 6631}, {4887, 9436}, {8817, 10589}, {10584, 13577}, {14061, 28758}, {18771, 30941}, {18821, 45310}

X(56365) = isogonal conjugate of X(20958)
X(56365) = isotomic conjugate of X(3035)
X(56365) = trilinear pole of line {4440, 37781}
X(56365) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20958}, {6, 17439}, {19, 22055}, {31, 3035}, {32, 20881}, {109, 11124}, {213, 18645}, {649, 14589}, {692, 21105}, {1110, 43909}, {1333, 21013}, {2149, 46101}, {6139, 35340}, {35328, 46393}
X(56365) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 3035}, {3, 20958}, {6, 22055}, {9, 17439}, {11, 11124}, {37, 21013}, {514, 43909}, {650, 46101}, {1086, 21105}, {5375, 14589}, {6376, 20881}, {6626, 18645}
X(56365) = X(i)-Ceva conjugate of X(j) for these {i, j}: {31619, 31628}
X(56365) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 31619}, {11, 31611}, {883, 2481}, {6667, 2}, {52305, 666}
X(56365) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(7608)}}, {{A, B, C, X(2), X(693)}}, {{A, B, C, X(86), X(40410)}}, {{A, B, C, X(650), X(14947)}}, {{A, B, C, X(2481), X(4997)}}, {{A, B, C, X(3262), X(8797)}}, {{A, B, C, X(4555), X(6631)}}, {{A, B, C, X(8781), X(32020)}}, {{A, B, C, X(10159), X(18299)}}, {{A, B, C, X(17983), X(37129)}}, {{A, B, C, X(30786), X(31637)}}, {{A, B, C, X(35147), X(40429)}}
X(56365) = barycentric product X(i)*X(j) for these (i, j): {11, 31619}, {18771, 76}, {31611, 4998}, {31628, 693}, {34387, 38809}
X(56365) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17439}, {2, 3035}, {3, 22055}, {6, 20958}, {10, 21013}, {11, 46101}, {75, 20881}, {86, 18645}, {100, 14589}, {514, 21105}, {650, 11124}, {666, 35313}, {1086, 43909}, {2720, 35328}, {18771, 6}, {31611, 11}, {31619, 4998}, {31628, 100}, {37139, 35340}, {38809, 59}, {40166, 42547}
X(56365) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 31611, 31628}


X(56366) = X(2)X(7)∩X(10)X(34)

Barycentrics    1 + 2*Cos[A] - Cos[2*A] - Cos[2*B] - Cos[2*C] : :

X(56366) lies on these lines: {2, 7}, {3, 31832}, {4, 5285}, {5, 37581}, {6, 26942}, {10, 34}, {11, 54326}, {12, 1460}, {33, 12618}, {40, 3088}, {47, 171}, {56, 17698}, {65, 19784}, {69, 2003}, {84, 7400}, {92, 54283}, {109, 26034}, {141, 222}, {198, 7536}, {219, 23292}, {278, 2345}, {306, 45126}, {343, 55400}, {344, 28754}, {388, 37037}, {406, 12572}, {427, 7085}, {440, 54322}, {478, 1211}, {499, 982}, {631, 26929}, {651, 32782}, {966, 37799}, {1214, 14376}, {1352, 3955}, {1370, 5314}, {1397, 12588}, {1407, 3763}, {1442, 32858}, {1458, 24943}, {1473, 7499}, {1478, 5329}, {1726, 24316}, {1766, 1848}, {1788, 35650}, {1899, 26890}, {1943, 3661}, {1947, 17907}, {2323, 11427}, {3085, 5269}, {3086, 3677}, {3220, 7494}, {3361, 19881}, {3454, 26364}, {3476, 48803}, {3541, 55104}, {3547, 7330}, {3589, 52424}, {3618, 52423}, {3745, 5808}, {4318, 29667}, {4417, 19795}, {5044, 34120}, {5094, 21015}, {5125, 40573}, {5230, 52357}, {5278, 40999}, {5709, 7404}, {5782, 34032}, {5824, 17602}, {5831, 31993}, {6354, 17369}, {6357, 17293}, {6389, 53819}, {6515, 54444}, {6676, 24320}, {7182, 17095}, {7484, 26933}, {8889, 26939}, {9316, 32781}, {9364, 33174}, {10056, 17716}, {10072, 17598}, {10198, 43531}, {12587, 20986}, {13567, 55432}, {14786, 37532}, {15149, 26036}, {16435, 51414}, {16549, 41342}, {16577, 17776}, {17073, 25091}, {17074, 33172}, {17080, 32779}, {17289, 21582}, {18623, 29611}, {18652, 53996}, {19822, 37800}, {19854, 32780}, {25760, 34029}, {26878, 37119}, {26892, 43653}, {26932, 55406}, {28420, 56078}, {28738, 33116}, {28793, 33066}, {28813, 37655}, {29647, 42289}, {36493, 41346}, {37176, 37583}, {37557, 45132}, {37638, 55438}, {37649, 55399}, {38047, 41539}, {45206, 53816}

X(56366) = isotomic conjugate of the polar conjugate of X(11392)
X(56366) = barycentric product X(i)*X(j) for these {i,j}: {69, 11392}, {349, 4280}, {4554, 46380}
X(56366) = barycentric quotient X(i)/X(j) for these {i,j}: {4280, 284}, {11392, 4}, {46380, 650}
X(56366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3218, 55900}, {2, 28739, 226}, {2, 55910, 9}, {2, 55912, 27509}, {278, 2345, 6358}, {307, 5294, 1708}, {427, 7085, 50861}, {3306, 55903, 2}, {5094, 26867, 21015}, {11427, 26872, 2323}, {27509, 55912, 3929}


X(56367) = X(2)X(7)∩X(10)X(1448)

Barycentrics    1 - 4*Cos[A] + Cos[2*A] + Cos[2*B] + Cos[2*C] : :

X(55967) lies on these lines: {2, 7}, {3, 26929}, {4, 37581}, {8, 1943}, {10, 1448}, {12, 37153}, {20, 5285}, {48, 7364}, {55, 36706}, {56, 37176}, {69, 222}, {75, 278}, {77, 306}, {84, 52404}, {85, 19808}, {141, 1407}, {145, 52362}, {171, 255}, {193, 2003}, {196, 11683}, {219, 37669}, {220, 53415}, {223, 3687}, {241, 32777}, {268, 45200}, {281, 18750}, {304, 345}, {320, 19795}, {333, 1396}, {343, 22129}, {347, 18632}, {388, 1010}, {393, 1947}, {394, 26872}, {441, 7011}, {497, 54326}, {499, 18193}, {651, 5739}, {948, 20235}, {958, 24570}, {982, 3086}, {1038, 54433}, {1211, 6180}, {1259, 37180}, {1368, 26939}, {1395, 1935}, {1441, 19822}, {1456, 3966}, {1458, 33171}, {1473, 7494}, {1654, 27328}, {1751, 26961}, {1766, 21621}, {1812, 3173}, {2345, 7365}, {2975, 24538}, {3088, 5709}, {3089, 7330}, {3101, 36850}, {3210, 17086}, {3220, 10565}, {3339, 19784}, {3361, 19836}, {3436, 24537}, {3546, 26921}, {3547, 24467}, {3618, 52424}, {3677, 14986}, {3704, 15832}, {3784, 10519}, {3927, 34120}, {3937, 43653}, {3955, 6776}, {3974, 14594}, {4200, 6734}, {4293, 5329}, {4315, 48803}, {4331, 4418}, {4334, 32783}, {4359, 37800}, {4363, 6354}, {5018, 32778}, {6350, 18607}, {6353, 24320}, {6357, 42696}, {6358, 21406}, {6604, 37543}, {7085, 7386}, {7146, 45220}, {7169, 41735}, {7318, 39700}, {7321, 19794}, {7383, 26877}, {7396, 50861}, {7404, 37532}, {7499, 26866}, {9316, 26034}, {10319, 17170}, {10996, 26927}, {11064, 55466}, {11427, 55399}, {11433, 55400}, {11679, 34050}, {13567, 55406}, {14555, 34048}, {14826, 26884}, {16028, 55882}, {16051, 21015}, {16197, 26928}, {17076, 52421}, {17080, 17740}, {17598, 18477}, {18624, 32087}, {18625, 19825}, {18629, 19835}, {18656, 24310}, {18928, 55432}, {19645, 21279}, {19786, 39126}, {19843, 49598}, {19855, 32780}, {23292, 55405}, {24586, 45984}, {26867, 30739}, {28420, 28754}, {28439, 52373}, {28605, 37798}, {28753, 33116}, {28795, 37655}, {28807, 33066}, {30679, 52351}, {30680, 52381}, {34030, 52357}, {37648, 55438}, {37649, 55437}, {40680, 53819}, {41883, 54113}, {43216, 46017}, {51171, 52423}, {52283, 55110}

X(56367) = isotomic conjugate of the isogonal conjugate of X(2286)
X(56367) = isotomic conjugate of the polar conjugate of X(388)
X(56367) = X(i)-isoconjugate of X(j) for these (i,j): {6, 1039}, {9, 51686}, {19, 1036}, {25, 2339}, {29, 2281}, {33, 2221}, {281, 1472}, {607, 56328}, {650, 32691}, {663, 36099}, {1172, 1245}, {1973, 30479}, {2299, 56219}
X(56367) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 1036}, {9, 1039}, {226, 56219}, {478, 51686}, {5515, 3064}, {6337, 30479}, {6505, 2339}, {17421, 650}, {40179, 497}, {40181, 33}, {55046, 18344}
X(56367) = cevapoint of X(i) and X(j) for these (i,j): {1038, 5227}, {2285, 8900}, {2522, 26933}
X(56367) = trilinear pole of line {23874, 51644}
X(56367) = barycentric product X(i)*X(j) for these {i,j}: {7, 54433}, {57, 19799}, {69, 388}, {73, 44154}, {75, 1038}, {76, 2286}, {77, 4385}, {85, 5227}, {304, 2285}, {305, 1460}, {307, 1010}, {345, 7365}, {348, 2345}, {612, 7182}, {664, 23874}, {668, 51644}, {1231, 2303}, {1264, 7103}, {1265, 7197}, {1434, 3610}, {2517, 6516}, {2522, 4554}, {3718, 4320}, {3974, 7056}, {4025, 14594}, {4998, 26933}, {5323, 20336}, {6063, 7085}, {7055, 7102}, {7386, 8817}, {8816, 27509}
X(56367) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1039}, {3, 1036}, {56, 51686}, {63, 2339}, {69, 30479}, {73, 1245}, {77, 56328}, {109, 32691}, {222, 2221}, {388, 4}, {603, 1472}, {612, 33}, {651, 36099}, {1010, 29}, {1038, 1}, {1214, 56219}, {1409, 2281}, {1460, 25}, {2285, 19}, {2286, 6}, {2303, 1172}, {2345, 281}, {2517, 44426}, {2522, 650}, {3610, 2321}, {3974, 7046}, {4320, 34}, {4385, 318}, {5227, 9}, {5323, 28}, {6516, 1310}, {6590, 3064}, {7085, 55}, {7102, 1857}, {7103, 1118}, {7197, 1119}, {7365, 278}, {7386, 497}, {8678, 18344}, {8898, 1880}, {8900, 36103}, {10376, 1426}, {14594, 1897}, {19459, 7083}, {19799, 312}, {23874, 522}, {26933, 11}, {44119, 2299}, {44154, 44130}, {51644, 513}, {54416, 607}, {54433, 8}
X(56367) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63, 27509}, {2, 144, 27540}, {2, 329, 27539}, {2, 3218, 55905}, {2, 55912, 9}, {8, 18623, 1943}, {9, 20266, 2}, {222, 26942, 69}, {343, 22129, 26871}, {345, 348, 1214}, {3306, 55902, 2}, {5435, 28780, 2}, {7085, 26933, 7386}, {17077, 28776, 2}, {28774, 52358, 2}


X(56368) = X(2)X(3)∩X(99)X(10098)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^8 - 6*a^6*b^2 - a^4*b^4 + 6*a^2*b^6 - b^8 - 6*a^6*c^2 + 20*a^4*b^2*c^2 - 10*a^2*b^4*c^2 - a^4*c^4 - 10*a^2*b^2*c^4 + 2*b^4*c^4 + 6*a^2*c^6 - c^8) : :

X(56368) lies on the cubic K088 and these lines: {2, 3}, {99, 10098}, {112, 2696}, {648, 691}, {935, 1296}, {1289, 53961}, {1304, 30256}, {1499, 32729}, {10423, 20187}, {14654, 51258}, {39382, 53895}, {41676, 47291}, {47293, 53350}, {47545, 52474}

X(56368) = X(i)-isoconjugate of X(j) for these (i,j): {63, 10103}, {656, 10102}
X(56368) = X(i)-Dao conjugate of X(j) for these (i,j): {3162, 10103}, {40596, 10102}
X(56368) = barycentric product X(4235)*X(52232)
X(56368) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 10103}, {112, 10102}, {52232, 14977}
X(56368) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4235, 7473, 46619}, {4235, 7482, 7473}, {5000, 5001, 36168}, {7468, 7482, 46592}, {7472, 7473, 4235}, {7472, 7482, 46619}, {40894, 40895, 36166}


X(56369) = X(2)X(3)∩X(74)X(11564)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(5*a^6 - 8*a^4*b^2 + a^2*b^4 + 2*b^6 - 8*a^4*c^2 + 9*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 - 2*b^2*c^4 + 2*c^6) : :
X(56369) = 3 X[2] - 4 X[47335], 3 X[3] - 2 X[18572], 6 X[3] - 5 X[30745], 2 X[4] - 3 X[186], 5 X[4] - 6 X[403], 3 X[4] - 4 X[468], 11 X[4] - 12 X[10151], 13 X[4] - 12 X[13473], X[4] - 3 X[13619], 5 X[4] - 9 X[35489], 7 X[4] - 12 X[37931], 5 X[4] - 8 X[37934], 17 X[4] - 24 X[37935], 19 X[4] - 24 X[37942], 7 X[4] - 9 X[37943], and many others

X(56369) lies on the cubic K330 and these lines: {2, 3}, {74, 11564}, {112, 41358}, {187, 44972}, {323, 12121}, {340, 35520}, {511, 7722}, {516, 31948}, {935, 14388}, {1204, 40242}, {1495, 10721}, {1503, 12244}, {1531, 15035}, {1990, 18365}, {2777, 12112}, {3043, 10294}, {3098, 41470}, {5095, 19924}, {5702, 16303}, {6103, 6781}, {6242, 14641}, {6325, 10098}, {6403, 48896}, {6776, 47280}, {7728, 35265}, {7967, 47469}, {8550, 47466}, {8588, 50718}, {8705, 48905}, {10722, 47326}, {10733, 32110}, {10990, 18400}, {11468, 34786}, {11522, 51701}, {11645, 13169}, {11738, 47445}, {13148, 13391}, {13449, 38704}, {13568, 43818}, {14712, 56016}, {14853, 47458}, {14912, 47464}, {14989, 16080}, {15463, 43576}, {15826, 43273}, {17702, 41724}, {17854, 44668}, {19651, 38808}, {20417, 25739}, {21445, 47000}, {29012, 32250}, {30247, 53938}, {31670, 52238}, {32210, 52863}, {32217, 48910}, {32710, 53693}, {33638, 40118}, {34627, 47492}, {34631, 47489}, {36990, 47448}, {38295, 47271}, {38723, 51391}, {40138, 47322}, {41869, 51693}, {46982, 47241}, {47003, 47247}, {47549, 54132}, {47581, 51538}

X(56369) = midpoint of X(17800) and X(37924)
X(56369) = reflection of X(i) in X(j) for these {i,j}: {4, 10295}, {186, 13619}, {323, 12121}, {382, 7575}, {858, 47308}, {3146, 11799}, {3153, 44246}, {3543, 44265}, {5073, 44267}, {7464, 20}, {7574, 550}, {10296, 3}, {10721, 1495}, {10722, 47326}, {10733, 32110}, {10989, 3534}, {14989, 47327}, {15682, 7426}, {15684, 44266}, {18323, 47335}, {35480, 37969}, {41869, 51693}, {44972, 187}, {46450, 16386}, {48910, 32217}
X(56369) = isogonal conjugate of X(43720)
X(56369) = anticomplement of X(18323)
X(56369) = circumcircle-inverse of X(35473)
X(56369) = polar-circle-inverse of X(3845)
X(56369) = orthoptic-circle-of-the-Steiner-inellipse inverse of X(52293)
X(56369) = X(1)-isoconjugate of X(43720)
X(56369) = X(3)-Dao conjugate of X(43720)
X(56369) = crossdifference of every pair of points on line {647, 15860}
X(56369) = barycentric quotient X(6)/X(43720)
X(56369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 18572, 30745}, {4, 10295, 186}, {4, 13619, 10295}, {4, 35473, 5094}, {4, 35486, 16868}, {4, 35491, 35478}, {4, 35503, 35486}, {4, 37458, 34484}, {4, 37943, 37984}, {20, 7492, 3534}, {20, 34797, 3520}, {186, 7464, 3520}, {186, 10296, 54001}, {376, 15682, 30775}, {403, 10295, 37934}, {403, 35489, 186}, {468, 52301, 37777}, {550, 7574, 2071}, {858, 47308, 376}, {1113, 1114, 35473}, {2070, 5073, 44267}, {3146, 35486, 4}, {3146, 35503, 16868}, {3153, 3522, 15122}, {3153, 44246, 37948}, {3522, 15122, 37948}, {3534, 35480, 35473}, {3534, 47596, 376}, {3543, 37760, 47336}, {3830, 37958, 44961}, {5000, 5001, 37907}, {5073, 32534, 4}, {5094, 35480, 4}, {7464, 7512, 2071}, {7547, 15696, 23040}, {7575, 21844, 186}, {10295, 37934, 35489}, {10296, 30745, 18572}, {10297, 44280, 631}, {10750, 10751, 18566}, {11799, 35503, 186}, {15122, 44246, 3522}, {15160, 15161, 35481}, {15681, 33532, 20}, {15682, 52290, 4}, {18323, 47335, 2}, {18533, 49670, 4}, {18559, 35481, 13596}, {18560, 37458, 4}, {21284, 35001, 378}, {35473, 37969, 186}, {37931, 37943, 186}, {37958, 44961, 37907}, {42789, 42790, 7575}, {44265, 47336, 37760}


X(56370) = X(2)X(3)∩X(98)X(325)

Barycentrics    2*a^8 - 3*a^6*b^2 + 5*a^4*b^4 - 5*a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 + 5*a^4*c^4 + a^2*b^2*c^4 + 6*b^4*c^4 - 5*a^2*c^6 - 4*b^2*c^6 + c^8 : :
X(56370) = 3 X[2] + X[5999], 9 X[2] - X[40236], 3 X[2] - 5 X[40336], X[4] - 3 X[33228], X[20] + 3 X[14041], 5 X[631] - X[11676], 5 X[631] - 3 X[35297], 3 X[1513] - X[40236], X[1513] - 5 X[40336], 3 X[2071] + X[36174], 7 X[3523] - 3 X[13586], 3 X[3524] - X[8598], 3 X[5054] - X[37461], X[5999] + 2 X[10011], 3 X[5999] + X[40236], X[5999] + 5 X[40336], and many others

X(56370) lies on the cubic K460 and these lines: {2, 3}, {98, 325}, {114, 1503}, {115, 18860}, {141, 13355}, {147, 7925}, {182, 3815}, {183, 48876}, {187, 38737}, {230, 511}, {262, 7792}, {316, 34473}, {385, 34380}, {523, 47570}, {524, 6055}, {538, 11623}, {542, 22110}, {575, 9300}, {576, 5306}, {620, 10256}, {625, 2794}, {1007, 6776}, {1184, 36747}, {1350, 37637}, {1351, 7735}, {1352, 7778}, {1353, 7774}, {1499, 16235}, {1550, 30789}, {1611, 37498}, {2080, 38739}, {2393, 44389}, {2407, 47277}, {2782, 6390}, {2967, 16318}, {2974, 30737}, {3001, 16310}, {3054, 3098}, {3055, 5092}, {3095, 5305}, {3260, 51611}, {3313, 53414}, {3329, 51732}, {3424, 48662}, {3589, 13354}, {5050, 7736}, {5085, 31489}, {5093, 5304}, {5188, 7749}, {5254, 9737}, {5286, 10983}, {5359, 36749}, {5480, 35387}, {5913, 37477}, {5915, 10564}, {5965, 35021}, {6033, 22664}, {6054, 41133}, {6194, 17004}, {6248, 7789}, {6393, 46236}, {6721, 29012}, {7607, 33706}, {7608, 54906}, {7610, 54173}, {7612, 37667}, {7745, 13335}, {7746, 30270}, {7763, 39646}, {7767, 10104}, {7769, 12203}, {7773, 36998}, {7799, 38664}, {7912, 9863}, {8705, 44386}, {9732, 49221}, {9733, 49220}, {9744, 48906}, {9752, 51212}, {9753, 21850}, {9754, 48874}, {9771, 51737}, {10519, 34229}, {11064, 47200}, {11163, 50979}, {11168, 50977}, {11174, 35429}, {11179, 11184}, {11580, 37496}, {11632, 52229}, {11898, 37668}, {13346, 40326}, {13449, 38749}, {14061, 39663}, {14627, 34482}, {14651, 47286}, {14881, 20576}, {15491, 42534}, {15597, 54169}, {15819, 24256}, {16303, 46127}, {16306, 18114}, {16320, 16760}, {18440, 37690}, {19924, 41139}, {22712, 37688}, {23055, 50967}, {23698, 53419}, {25406, 34803}, {26926, 39113}, {29181, 44381}, {31275, 36519}, {31455, 37479}, {31842, 38970}, {32006, 39647}, {32132, 34427}, {32459, 38748}, {35002, 38224}, {35383, 38227}, {37647, 43461}, {37665, 53091}, {37689, 44456}, {38064, 42849}, {38552, 47177}, {38642, 39266}, {44392, 49212}, {44394, 49213}, {44531, 47619}, {47239, 47584}, {47467, 53274}, {49111, 54187}}.

X(56370) = midpoint of X(i) and X(j) for these {i,j}: {3, 15980}, {4, 54996}, {98, 325}, {115, 18860}, {376, 8352}, {858, 36166}, {1350, 53505}, {1513, 5999}, {13449, 38749}, {36196, 54995}, {38642, 39266}, {47619, 53475}
X(56370) = reflection of X(i) in X(j) for these {i,j}: {114, 44377}, {230, 6036}, {381, 8355}, {1513, 10011}, {16320, 16760}, {27088, 549}, {36170, 5159}, {37459, 140}, {47584, 47239}
X(56370) = complement of X(1513)
X(56370) = anticomplement of X(10011)
X(56370) = orthocentroidal-circle-inverse of X(37071)
X(56370) = orthoptic-circle-of-Steiner-inellipse-inverse of X(36163)
X(56370) = X(36051)-anticomplementary conjugate of X(9742)
X(56370) = X(i)-complementary conjugate of X(j) for these (i,j): {40799, 16591}, {41074, 21259}
X(56370) = X(41074)-Ceva conjugate of X(525)
X(56370) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 37451}, {2, 4, 37071}, {2, 376, 40248}, {2, 1513, 10011}, {2, 5999, 1513}, {2, 13860, 5}, {2, 37450, 140}, {4, 631, 32973}, {4, 7887, 5}, {5, 140, 7819}, {5, 550, 40279}, {5, 33186, 1656}, {20, 32980, 4}, {262, 7792, 18583}, {631, 11676, 35297}, {858, 7426, 36188}, {1513, 40336, 2}, {5000, 5001, 460}, {5004, 5005, 35296}, {5999, 37455, 10997}, {5999, 40336, 10011}, {6039, 6040, 20}, {6998, 21554, 16917}, {7774, 9755, 1353}, {7778, 9756, 1352}, {10486, 37455, 2}, {14782, 14783, 14001}, {15765, 18585, 8369}, {16434, 19544, 11350}, {32490, 36714, 5}, {32491, 36709, 5}, {32981, 33015, 7807}, {33228, 54996, 4}, {47612, 47613, 441}


X(56371) = X(2)X(3)∩X(4677)X(11910)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^8 - a^6*b^2 + 6*a^4*b^4 - 13*a^2*b^6 + 7*b^8 - a^6*c^2 - 11*a^4*b^2*c^2 + 13*a^2*b^4*c^2 - b^6*c^2 + 6*a^4*c^4 + 13*a^2*b^2*c^4 - 12*b^4*c^4 - 13*a^2*c^6 - b^2*c^6 + 7*c^8) : :
X(56371) = 4 X[2] - 3 X[402], X[2] - 3 X[1650], 5 X[2] - 3 X[1651], 7 X[2] - 3 X[4240], 2 X[2] - 3 X[11049], X[2] + 3 X[11050], 17 X[2] - 15 X[15183], 5 X[2] - 6 X[15184], 5 X[2] + 3 X[45289], X[402] - 4 X[1650], 5 X[402] - 4 X[1651], 9 X[402] - 4 X[3081], 7 X[402] - 4 X[4240], X[402] + 4 X[11050], 17 X[402] - 20 X[15183], 5 X[402] - 8 X[15184], and many otrhers

X(56371) lies on the cubic K700 and these lines: {2, 3}, {4677, 11910}, {9033, 38240}, {11900, 51071}, {12438, 51066}, {12583, 50993}, {12793, 36767}, {18317, 34297}, {49585, 51109}, {51110, 51712}

X(56371) = midpoint of X(i) and X(j) for these {i,j}: {1650, 11050}, {1651, 45289}, {3543, 46472}
X(56371) = reflection of X(i) in X(j) for these {i,j}: {402, 11049}, {1651, 15184}, {11049, 1650}, {15774, 549}, {34582, 2}
X(56371) = complement of X(3081)
X(56371) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 18870, 3845}, {2, 34582, 402}, {1650, 45289, 15184}, {11049, 34582, 2}


X(56372) = X(2)X(3)∩X(6)X(1632)

Barycentrics    (a^4 - a^2*b^2 - a^2*c^2 + 2*b^2*c^2)*(3*a^4 + b^4 - 2*b^2*c^2 + c^4) : :

X(56372) lies on the cubic K790 and these lines: {2, 3}, {6, 1632}, {154, 11257}, {157, 7668}, {194, 3167}, {264, 34233}, {1853, 9873}, {1974, 20477}, {1975, 9306}, {3164, 19118}, {3168, 3172}, {3186, 15905}, {9747, 9755}, {12110, 17810}, {13567, 36998}, {14712, 21970}, {17809, 32467}, {20065, 41588}, {31859, 51430}, {39646, 42671}, {40821, 40825}

X(56372) = isogonal conjugate of X(43727)
X(56372) = X(6)-Ceva conjugate of X(9755)
X(56372) = X(i)-isoconjugate of X(j) for these (i,j): {1, 43727}, {9255, 40801}, {9258, 40802}
X(56372) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 43727}, {7710, 9307}
X(56372) = barycentric product X(i)*X(j) for these {i,j}: {1958, 4008}, {1975, 7735}, {6776, 9308}, {9306, 40814}, {30476, 35278}
X(56372) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 43727}, {1968, 40801}, {1975, 40824}, {6776, 9289}, {7735, 9307}, {9306, 40802}, {9308, 55972}, {35278, 43188}, {40825, 9292}
X(56372) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 30549, 9307}, {458, 3148, 13860}, {1316, 3148, 458}, {1316, 7473, 37930}, {6620, 37188, 1513}


X(56373) = X(2)X(3)∩X(3917)X(14670)

Barycentrics    a^4*(a^10*b^2 - 5*a^8*b^4 + 10*a^6*b^6 - 10*a^4*b^8 + 5*a^2*b^10 - b^12 + a^10*c^2 - 8*a^8*b^2*c^2 + 14*a^6*b^4*c^2 - 4*a^4*b^6*c^2 - 7*a^2*b^8*c^2 + 4*b^10*c^2 - 5*a^8*c^4 + 14*a^6*b^2*c^4 - 22*a^4*b^4*c^4 + 11*a^2*b^6*c^4 + 2*b^8*c^4 + 10*a^6*c^6 - 4*a^4*b^2*c^6 + 11*a^2*b^4*c^6 - 10*b^6*c^6 - 10*a^4*c^8 - 7*a^2*b^2*c^8 + 2*b^4*c^8 + 5*a^2*c^10 + 4*b^2*c^10 - c^12) : :

X(56373) lies on the cubic K920 and these lines: {2, 3}, {3917, 14670}, {12041, 23217}, {13366, 15786}, {13391, 18114}, {16186, 54042}, {20126, 36829}, {32423, 53246}, {47055, 54044}

X(56373) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15329, 549}


X(56374) = X(2)X(3)∩X(57)X(162)

Barycentrics     a*(a + b)*(a + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5 - a^4*b - a*b^4 + b^5 - a^4*c + a^3*b*c + a^2*b^2*c - a*b^3*c + a^2*b*c^2 - b^3*c^2 - a*b*c^3 - b^2*c^3 - a*c^4 + c^5) : :

X(56374) lies on the cubic K972 and these lines: {2, 3}, {55, 14192}, {57, 162}, {92, 107}, {229, 44696}, {610, 2326}, {1621, 38860}, {2062, 7282}, {2184, 40431}, {5285, 52412}, {16547, 46884}, {18613, 52604}, {18743, 36797}, {46103, 52913}, {51762, 53684}

X(56374) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 25443, 5125}, {28, 2074, 7501}, {28, 4183, 1817}, {28, 36011, 17515}, {4223, 37386, 37279}


X(56375) = X(2)X(3)∩X(63)X(162)

Barycentrics   a*(a + b)*(a - b - c)*(a + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - b^4 + a^2*b*c - b^3*c - b*c^3 - c^4) : :

X(56375) lies on the cubic K973 and these lines: {2, 3}, {33, 2326}, {34, 40431}, {63, 162}, {312, 36797}, {1376, 14192}, {2328, 55994}, {15621, 52604}, {41502, 56316}

X(56375) = X(i)-isoconjugate of X(j) for these (i,j): {73, 15314}, {307, 8615}
X(56375) = X(i)-Dao conjugate of X(j) for these (i,j): {34846, 17094}, {46878, 41003}, {52355, 17879}
X(56375) = barycentric product X(i)*X(j) for these {i,j}: {29, 5279}, {645, 54247}, {1172, 7270}, {2064, 2299}, {2322, 4296}, {5285, 31623}, {16612, 36797}
X(56375) = barycentric quotient X(i)/X(j) for these {i,j}: {1172, 15314}, {2204, 8615}, {5279, 307}, {5285, 1214}, {7270, 1231}, {16612, 17094}, {54247, 7178}
X(56375) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37386, 47511, 11109}


X(56376) = X(2)X(3)∩X(38)X(7224)

Barycentrics   a^8 - a^6*b^2 + 2*a^4*b^4 - a^2*b^6 - b^8 - a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 + 2*a^4*c^4 - a^2*b^2*c^4 - a^2*c^6 + b^2*c^6 - c^8 : :

X(56376) lies on the cubic K1000 and these lines: {2, 3}, {38, 7224}, {69, 52636}, {99, 40876}, {147, 8841}, {194, 1899}, {325, 19599}, {394, 9863}, {925, 53894}, {1853, 1975}, {1959, 4645}, {2227, 7261}, {2896, 3491}, {3001, 44363}, {3229, 43449}, {3800, 6563}, {5207, 40708}, {7750, 37894}, {7779, 36214}, {7839, 11245}, {9218, 9514}, {9306, 9873}, {9473, 30737}, {11606, 22735}, {20021, 40847}, {22089, 23301}, {32529, 34214}, {40888, 45279}, {45029, 46717}

X(56376) = isogonal conjugate of X(43721)
X(56376) = anticomplement of X(419)
X(56376) = de-Longchamps-circle-inverse of X(1316)
X(56376) = anticomplement of the isogonal conjugate of X(36214)
X(56376) = anticomplement of the isotomic conjugate of X(40708)
X(56376) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {48, 8782}, {63, 25332}, {694, 5905}, {805, 7253}, {1581, 4}, {1916, 21270}, {1934, 11442}, {1967, 193}, {7015, 17794}, {7019, 20554}, {7116, 33888}, {9468, 21216}, {17938, 17498}, {17970, 192}, {18829, 21300}, {36214, 8}, {37134, 850}, {40708, 6327}, {43763, 3060}
X(56376) = X(i)-Ceva conjugate of X(j) for these (i,j): {5207, 7779}, {40708, 2}
X(56376) = X(i)-isoconjugate of X(j) for these (i,j): {1, 43721}, {1910, 51250}
X(56376) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 43721}, {11672, 51250}
X(56376) = barycentric product X(i)*X(j) for these {i,j}: {141, 8928}, {325, 8861}
X(56376) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 43721}, {511, 51250}, {8861, 98}, {8928, 83}
X(56376) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3146, 6620}, {2, 6658, 33336}, {3, 5117, 2}, {5002, 5003, 40236}, {6660, 11007, 420}, {14957, 36163, 40853}, {33314, 37183, 2}, {33314, 50706, 37183}


X(56377) = X(2)X(3)∩X(31)X(3212)

Barycentrics   2*a^8 - a^6*b^2 - a^2*b^6 - a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 - a^2*b^2*c^4 - 2*b^4*c^4 - a^2*c^6 + b^2*c^6 : :

X(56377) lies on the cubic K1037 and these lines: {2, 3}, {31, 3212}, {51, 7787}, {69, 19571}, {76, 42671}, {154, 1975}, {184, 194}, {263, 52083}, {343, 9863}, {1976, 2998}, {2001, 46717}, {2896, 43653}, {3100, 49530}, {3186, 37893}, {6194, 8922}, {7738, 10329}, {7766, 19222}, {7793, 52144}, {7802, 40876}, {7839, 11402}, {7898, 51431}, {9157, 26233}, {9873, 21243}, {24349, 52134}

X(56377) = anticomplement of X(5117)
X(56377) = anticomplement of the isogonal conjugate of X(43722)
X(56377) = isogonal conjugate of the isotomic conjugate of X(8920)
X(56377) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3113, 11442}, {3407, 21270}, {18898, 5905}, {33514, 21300}, {43722, 8}
X(56377) = X(18906)-Ceva conjugate of X(7766)
X(56377) = barycentric product X(6)*X(8920)
X(56377) = barycentric quotient X(8920)/X(76)
X(56377) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 419, 2}, {20, 11348, 7396}, {22, 401, 20}, {237, 35926, 3552}, {1316, 46546, 37190}, {4226, 37184, 51350}


X(56378) = X(1)X(7)∩X(171)X(50562)

Barycentrics   (a + b - c)^2*(a - b + c)^2*(a^5 - 2*a^4*b + a^3*b^2 - 2*a^4*c + 3*a^3*b*c + a^2*b^2*c - a*b^3*c - b^4*c + a^3*c^2 + a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 - a*b*c^3 + b^2*c^3 - b*c^4) : :

X(56378) lies on the cubic K221 and these lines: {1, 7}, {171, 50562}, {240, 36118}, {657, 14837}, {658, 896}, {1757, 4566}, {1966, 46406}, {24011, 24013}

X(56378) = X(14837)-line conjugate of X(657)
X(56378) = {X(14189),X(41351)}-harmonic conjugate of X(41355)


X(56379) = X(1)X(7)∩X(56)X(927)

Barycentrics   (a + b - c)*(a - b + c)*(a^5*b - 2*a^4*b^2 + a^3*b^3 + a^5*c - a^4*b*c + a^3*b^2*c - a^2*b^3*c - 2*a^4*c^2 + a^3*b*c^2 + a^2*b^2*c^2 + b^4*c^2 + a^3*c^3 - a^2*b*c^3 - 2*b^3*c^3 + b^2*c^4) : :

X(56379) lies on the cubic K359 and these lines: {1, 7}, {56, 927}, {348, 19888}, {514, 3212}, {573, 34057}, {664, 1362}, {1025, 3501}, {1434, 3110}, {7223, 43671}, {17084, 17758}, {18328, 43672}, {38285, 44043}


X(56380) = X(1)X(7)∩X(101)X(165)

Barycentrics   a*(a^6 - 9*a^4*b^2 + 16*a^3*b^3 - 9*a^2*b^4 + b^6 + 4*a^4*b*c - 8*a^3*b^2*c + 8*a*b^4*c - 4*b^5*c - 9*a^4*c^2 - 8*a^3*b*c^2 + 18*a^2*b^2*c^2 - 8*a*b^3*c^2 + 7*b^4*c^2 + 16*a^3*c^3 - 8*a*b^2*c^3 - 8*b^3*c^3 - 9*a^2*c^4 + 8*a*b*c^4 + 7*b^2*c^4 - 4*b*c^5 + c^6) : :

X(56380) lies on the cubic K609 and these lines: {1, 7}, {101, 165}, {1212, 16112}, {3062, 52705}, {6603, 11495}, {10860, 54474}, {15726, 34522}, {24009, 56309}

X(56380) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2951, 5527}, {170, 5527, 2951}, {4319, 38459, 1}, {31573, 31574, 43178}


X(56381) = X(1)X(7)∩X(103)X(105)

Barycentrics   a*(a^8*b - 3*a^7*b^2 + 3*a^6*b^3 - a^5*b^4 - a^4*b^5 + 3*a^3*b^6 - 3*a^2*b^7 + a*b^8 + a^8*c - 2*a^5*b^3*c - 4*a^4*b^4*c + 4*a^3*b^5*c + 4*a^2*b^6*c - 2*a*b^7*c - b^8*c - 3*a^7*c^2 + 4*a^5*b^2*c^2 + 5*a^4*b^3*c^2 - 3*a^3*b^4*c^2 - 6*a^2*b^5*c^2 + 2*a*b^6*c^2 + b^7*c^2 + 3*a^6*c^3 - 2*a^5*b*c^3 + 5*a^4*b^2*c^3 - 8*a^3*b^3*c^3 + 5*a^2*b^4*c^3 - 6*a*b^5*c^3 + 3*b^6*c^3 - a^5*c^4 - 4*a^4*b*c^4 - 3*a^3*b^2*c^4 + 5*a^2*b^3*c^4 + 10*a*b^4*c^4 - 3*b^5*c^4 - a^4*c^5 + 4*a^3*b*c^5 - 6*a^2*b^2*c^5 - 6*a*b^3*c^5 - 3*b^4*c^5 + 3*a^3*c^6 + 4*a^2*b*c^6 + 2*a*b^2*c^6 + 3*b^3*c^6 - 3*a^2*c^7 - 2*a*b*c^7 + b^2*c^7 + a*c^8 - b*c^8) : :

X(56381) lies on the cubic K921 and these lines: {1, 7}, {103, 105}, {104, 28848}, {812, 24813}, {971, 17435}, {1001, 44357}, {2082, 38502}, {2724, 12032}, {2808, 52004}, {24411, 24708}, {29015, 41905}

X(56381) = crossdifference of every pair of points on line {657, 9502}


X(56382) = X(1)X(7)∩X(85)X(92)

Barycentrics   (a + b - c)^2*(a - b + c)^2*(b + c)*(a^2 - b^2 - c^2) : :

X(56382) lies on the cubic K974 and these lines: {1, 7}, {2, 2184}, {4, 34059}, {10, 4566}, {21, 934}, {57, 24580}, {63, 348}, {72, 307}, {85, 92}, {86, 40431}, {223, 5813}, {226, 857}, {273, 52248}, {274, 4569}, {306, 1231}, {342, 46353}, {349, 4054}, {377, 9312}, {379, 43035}, {658, 2349}, {908, 40702}, {1020, 3294}, {1071, 1565}, {1088, 18651}, {1119, 7498}, {1212, 39063}, {1214, 20618}, {1427, 5244}, {1434, 1790}, {1441, 39130}, {1729, 51775}, {2167, 17078}, {2475, 38948}, {2741, 24016}, {3665, 34855}, {3868, 9436}, {4208, 31994}, {5226, 30838}, {5273, 9533}, {6604, 11520}, {6611, 16368}, {7282, 52846}, {8767, 14944}, {9856, 41007}, {10431, 56309}, {17079, 56033}, {17106, 31424}, {17181, 51364}, {17205, 44709}, {17880, 20880}, {22125, 22131}, {26125, 27275}, {30032, 30097}, {34060, 37434}, {34168, 36079}, {44708, 52563}, {45227, 51150}, {46273, 46406}, {46330, 54311}, {53237, 55108}

X(56382) = isogonal conjugate of X(2332)
X(56382) = isotomic conjugate of X(2322)
X(56382) = isotomic conjugate of the anticomplement of X(18643)
X(56382) = isotomic conjugate of the isogonal conjugate of X(52373)
X(56382) = isotomic conjugate of the polar conjugate of X(3668)
X(56382) = X(i)-Ceva conjugate of X(j) for these (i,j): {85, 1446}, {4569, 4025}, {7056, 1439}, {30705, 1427}
X(56382) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2332}, {6, 4183}, {8, 2204}, {9, 2299}, {19, 2328}, {21, 607}, {25, 2287}, {27, 1253}, {28, 220}, {29, 41}, {31, 2322}, {33, 284}, {42, 2326}, {55, 1172}, {58, 7079}, {81, 7071}, {112, 3900}, {162, 657}, {200, 1474}, {210, 2189}, {212, 8748}, {228, 36421}, {250, 36197}, {270, 1334}, {281, 2194}, {286, 14827}, {294, 37908}, {333, 2212}, {346, 2203}, {480, 1396}, {608, 56182}, {648, 8641}, {692, 17926}, {1021, 8750}, {1043, 1973}, {1096, 2327}, {1098, 2333}, {1260, 5317}, {1333, 7046}, {1783, 21789}, {1792, 2207}, {1802, 8747}, {1812, 6059}, {1824, 7054}, {1857, 2193}, {1880, 6061}, {1896, 52425}, {2150, 53008}, {2175, 31623}, {2206, 7101}, {2341, 52427}, {3063, 36797}, {3194, 7367}, {3239, 32676}, {3709, 52914}, {4578, 43925}, {4636, 55206}, {5379, 14936}, {5546, 18344}, {7073, 41502}, {7156, 52158}, {7252, 56183}, {8736, 23609}, {9447, 44130}, {14024, 51858}, {18889, 52891}, {44100, 56204}
X(56382) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 2322}, {3, 2332}, {6, 2328}, {9, 4183}, {10, 7079}, {37, 7046}, {125, 657}, {223, 1172}, {226, 9}, {478, 2299}, {647, 52335}, {1086, 17926}, {1214, 281}, {1427, 1249}, {3160, 29}, {4988, 42069}, {6337, 1043}, {6503, 2327}, {6505, 2287}, {6609, 1474}, {10001, 36797}, {15267, 2333}, {15526, 3239}, {16583, 6554}, {17113, 27}, {26932, 1021}, {34591, 3900}, {36908, 19}, {39006, 21789}, {40586, 7071}, {40590, 33}, {40591, 220}, {40592, 2326}, {40593, 31623}, {40603, 7101}, {40611, 607}, {40618, 7253}, {40622, 3064}, {40837, 8748}, {47345, 1857}, {51574, 200}, {52870, 52891}, {55066, 8641}, {56325, 53008}
X(56382) = cevapoint of X(i) and X(j) for these (i,j): {7, 18633}, {525, 17216}, {1214, 1439}, {3668, 36908}, {4466, 17094}, {6356, 37755}
X(56382) = trilinear pole of line {656, 8057}
X(56382) = barycentric product X(i)*X(j) for these {i,j}: {7, 307}, {10, 7056}, {57, 1231}, {63, 1446}, {65, 7182}, {69, 3668}, {72, 1088}, {73, 6063}, {75, 1439}, {76, 52373}, {77, 1441}, {85, 1214}, {86, 6356}, {222, 349}, {225, 7055}, {226, 348}, {269, 20336}, {273, 52385}, {274, 37755}, {278, 52565}, {279, 306}, {304, 1427}, {305, 1042}, {310, 1425}, {313, 7053}, {321, 7177}, {331, 40152}, {332, 6046}, {333, 20618}, {479, 3710}, {525, 658}, {561, 1410}, {647, 46406}, {656, 4569}, {664, 17094}, {934, 14208}, {1020, 15413}, {1119, 52396}, {1275, 4466}, {1407, 40071}, {1409, 20567}, {1434, 26942}, {1461, 3267}, {1847, 3998}, {2321, 30682}, {3261, 52610}, {3265, 36118}, {3694, 23062}, {4025, 4566}, {4064, 4616}, {4077, 6516}, {4554, 51664}, {4605, 15419}, {4626, 52355}, {4635, 55232}, {6354, 17206}, {6355, 8822}, {7099, 27801}, {7125, 52575}, {7183, 40149}, {8611, 36838}, {13149, 24018}, {17216, 55346}, {18589, 30705}, {20235, 56359}, {23067, 52621}, {30805, 52607}, {34403, 36908}, {36620, 50563}, {40702, 52037}, {41804, 52392}, {52390, 52421}
X(56382) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 4183}, {2, 2322}, {3, 2328}, {6, 2332}, {7, 29}, {10, 7046}, {12, 53008}, {27, 36421}, {37, 7079}, {42, 7071}, {56, 2299}, {57, 1172}, {63, 2287}, {65, 33}, {69, 1043}, {71, 220}, {72, 200}, {73, 55}, {77, 21}, {78, 56182}, {81, 2326}, {85, 31623}, {125, 52335}, {201, 210}, {222, 284}, {225, 1857}, {226, 281}, {227, 40971}, {228, 1253}, {269, 28}, {273, 1896}, {278, 8748}, {279, 27}, {283, 6061}, {306, 346}, {307, 8}, {321, 7101}, {326, 1792}, {348, 333}, {349, 7017}, {394, 2327}, {514, 17926}, {525, 3239}, {603, 2194}, {604, 2204}, {647, 657}, {656, 3900}, {658, 648}, {664, 36797}, {738, 1396}, {810, 8641}, {905, 1021}, {934, 162}, {1014, 270}, {1020, 1783}, {1042, 25}, {1088, 286}, {1106, 2203}, {1119, 8747}, {1214, 9}, {1231, 312}, {1254, 1824}, {1323, 52891}, {1332, 7259}, {1400, 607}, {1402, 2212}, {1407, 1474}, {1409, 41}, {1410, 31}, {1412, 2189}, {1414, 52914}, {1425, 42}, {1426, 1096}, {1427, 19}, {1434, 46103}, {1435, 5317}, {1439, 1}, {1441, 318}, {1442, 11107}, {1443, 17515}, {1444, 1098}, {1446, 92}, {1447, 14024}, {1458, 37908}, {1459, 21789}, {1461, 112}, {1464, 52427}, {1790, 7054}, {1804, 283}, {1813, 5546}, {2003, 41502}, {2197, 1334}, {2200, 14827}, {2318, 480}, {3120, 42069}, {3267, 52622}, {3668, 4}, {3671, 461}, {3682, 1260}, {3694, 728}, {3695, 4082}, {3708, 36197}, {3710, 5423}, {3914, 1863}, {3949, 4515}, {3990, 1802}, {3998, 3692}, {4017, 18344}, {4025, 7253}, {4077, 44426}, {4091, 23090}, {4303, 8021}, {4320, 4206}, {4341, 30733}, {4350, 4233}, {4466, 1146}, {4551, 56183}, {4561, 7256}, {4566, 1897}, {4569, 811}, {4635, 55231}, {5088, 15146}, {5930, 44695}, {6046, 225}, {6063, 44130}, {6354, 1826}, {6355, 39130}, {6356, 10}, {6357, 52956}, {6516, 643}, {7045, 5379}, {7053, 58}, {7055, 332}, {7056, 86}, {7066, 2318}, {7099, 1333}, {7125, 2193}, {7138, 228}, {7147, 1880}, {7176, 14006}, {7177, 81}, {7178, 3064}, {7182, 314}, {7183, 1812}, {7216, 6591}, {7591, 6726}, {8611, 4130}, {8808, 7003}, {8811, 7007}, {8812, 3183}, {13149, 823}, {14208, 4397}, {14256, 41083}, {14429, 4528}, {15556, 56316}, {17094, 522}, {17206, 7058}, {17216, 2968}, {17441, 4319}, {18210, 2310}, {18589, 6554}, {20336, 341}, {20618, 226}, {21207, 21666}, {22097, 46889}, {22341, 212}, {23067, 3939}, {23603, 16054}, {23620, 30706}, {23973, 4241}, {24459, 4148}, {26942, 2321}, {28786, 56146}, {30456, 7156}, {30682, 1434}, {30705, 40411}, {30805, 15411}, {32714, 24019}, {34855, 54407}, {36079, 1301}, {36118, 107}, {36908, 1249}, {37583, 41503}, {37755, 37}, {39791, 14547}, {40152, 219}, {40933, 204}, {40961, 40987}, {41003, 46878}, {41087, 7367}, {41353, 4238}, {41393, 40967}, {41804, 5081}, {42289, 28044}, {42309, 31926}, {46406, 6331}, {51640, 1946}, {51645, 2202}, {51664, 650}, {52023, 1855}, {52037, 282}, {52354, 6555}, {52355, 4163}, {52370, 6602}, {52373, 6}, {52384, 7008}, {52385, 78}, {52390, 7073}, {52391, 52371}, {52392, 6740}, {52396, 1265}, {52565, 345}, {52609, 6558}, {52610, 101}, {53321, 8750}, {53545, 8735}, {53560, 3119}, {55205, 4631}, {55230, 4524}, {55232, 4171}, {55234, 3709}
X(56382) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 77, 18650}, {7, 347, 18655}, {7, 3160, 20}, {7, 3188, 4292}, {307, 50563, 72}, {348, 7056, 7177}, {1231, 52565, 306}, {1323, 4292, 3188}, {1439, 6356, 307}, {10884, 17170, 18650}


X(56383) = X(1)X(7)∩X(657)X(4091)

Barycentrics   a*(a + b - c)*(a - b + c)*(a^5*b - 2*a^4*b^2 + 2*a^2*b^4 - a*b^5 + a^5*c - 2*a^2*b^3*c - a*b^4*c + 2*b^5*c - 2*a^4*c^2 + 2*a^2*b^2*c^2 + 2*a*b^3*c^2 - 2*b^4*c^2 - 2*a^2*b*c^3 + 2*a*b^2*c^3 + 2*a^2*c^4 - a*b*c^4 - 2*b^2*c^4 - a*c^5 + 2*b*c^5) : :

X(56383) lies on the cubic K1076 and these lines: {1, 7}, {657, 4091}, {658, 2635}, {1414, 23692}, {1804, 24320}, {4617, 36002}, {6516, 23693}, {14943, 36101}

X(56383) =crossdifference of every pair of points on line {657, 4336}
X(56383) =X(i)-line conjugate of X(j) for these (i,j): {1, 4336}, {4091, 657}
X(56383) ={X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 51308, 77}, {3000, 41355, 14189}


X(56384) = X(1)X(2)∩X(37)X(589)

Barycentrics   1 + 2*Sin[A] : :
Barycentrics   a*(b*c + 2*S) : :

X(56384) lies on these lines: {1, 2}, {11, 15234}, {12, 15233}, {33, 55475}, {34, 55476}, {37, 589}, {40, 21567}, {55, 1600}, {56, 1599}, {81, 7968}, {176, 5905}, {192, 37881}, {326, 32793}, {329, 17805}, {394, 3297}, {481, 26842}, {482, 17483}, {495, 1592}, {496, 1591}, {517, 16440}, {940, 44636}, {999, 1583}, {1015, 8962}, {1038, 55897}, {1040, 55893}, {1056, 6806}, {1058, 6805}, {1060, 1590}, {1062, 1589}, {1124, 1993}, {1267, 44179}, {1270, 55391}, {1271, 55392}, {1335, 5422}, {1385, 16441}, {1398, 15198}, {1482, 16432}, {1584, 3295}, {1585, 1870}, {1586, 6198}, {1659, 31053}, {1994, 3299}, {2066, 55566}, {3100, 55883}, {3218, 13389}, {3219, 30556}, {3298, 10601}, {3301, 34545}, {3553, 7586}, {3554, 7585}, {3576, 21566}, {3593, 55456}, {3595, 55457}, {3640, 4430}, {3641, 4661}, {3681, 45714}, {3873, 45713}, {4296, 55888}, {4383, 44635}, {5408, 35769}, {5409, 35808}, {5483, 31583}, {6502, 55567}, {6767, 55577}, {7071, 15201}, {7373, 55579}, {7969, 32911}, {7982, 21568}, {8148, 21561}, {9538, 55894}, {9776, 17802}, {10222, 21492}, {10246, 16433}, {10247, 21548}, {11398, 15188}, {11399, 15187}, {12702, 21560}, {13388, 27003}, {13390, 31019}, {15066, 55409}, {15178, 21553}, {15192, 52427}, {15325, 55865}, {16200, 21569}, {16777, 31473}, {17484, 31538}, {17597, 45476}, {18447, 55890}, {18455, 55885}, {18992, 37685}, {20060, 31533}, {20075, 30333}, {21547, 37624}, {21555, 33179}, {27065, 30557}, {37696, 55882}, {37697, 55881}, {37729, 55892}, {55389, 55425}, {55390, 55424}, {55403, 55436}, {55404, 55464}

X(56384) = anticomplement of X(6347)
X(56384) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3300}, {2963, 3301}
X(56384) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 3300}, {600, 1}, {10639, 42679}, {10640, 42681}
X(56384) = barycentric product X(i)*X(j) for these {i,j}: {1, 32791}, {75, 3299}, {302, 42676}, {303, 42678}
X(56384) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3300}, {61, 42681}, {62, 42679}, {2964, 3301}, {3083, 39312}, {3299, 1}, {3302, 2962}, {32791, 75}, {38004, 39316}, {42676, 17}, {42678, 18}
X(56384) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3083, 2}, {33, 55475, 55569}, {34, 55476, 55573}, {1124, 55410, 1993}, {1125, 6348, 2}, {5405, 55876, 2}, {13389, 55398, 3218}, {30556, 55397, 3219}, {55391, 55427, 1270}, {55392, 55426, 1271}, {55409, 55442, 15066}


X(56385) = X(1)X(2)∩X(7)X(1270)

Barycentrics   1 + Cot[A/2] : :
Barycentrics   a^2 - b^2 - c^2 - 2*b*c - 2*S : :

X(56385) lies on these lines: {1, 2}, {7, 1270}, {9, 7348}, {63, 488}, {69, 1267}, {75, 492}, {100, 16440}, {264, 55458}, {280, 55894}, {312, 7090}, {317, 55429}, {318, 1586}, {319, 491}, {320, 32801}, {321, 486}, {326, 55427}, {329, 31548}, {332, 2066}, {333, 14121}, {345, 13425}, {346, 15892}, {391, 30413}, {517, 2048}, {585, 3210}, {586, 41839}, {590, 17362}, {591, 4363}, {594, 615}, {637, 31550}, {908, 13387}, {956, 16433}, {966, 6352}, {1271, 32099}, {1585, 5081}, {1659, 4417}, {2047, 5814}, {2345, 3069}, {2886, 45444}, {2968, 55885}, {2975, 16441}, {3068, 5839}, {3536, 7046}, {3593, 32087}, {3713, 31473}, {3758, 45421}, {4000, 5590}, {4361, 45472}, {4371, 26361}, {4385, 7388}, {4388, 52805}, {4445, 45473}, {4644, 5860}, {4969, 32787}, {5015, 7389}, {5391, 32805}, {5564, 32792}, {5687, 16432}, {5739, 55397}, {5744, 46421}, {5749, 7586}, {6351, 17314}, {10538, 55883}, {13453, 50559}, {13458, 28808}, {13637, 50077}, {13701, 51583}, {13973, 44417}, {14555, 30557}, {17360, 32809}, {17369, 32788}, {17740, 35775}, {19066, 37642}, {21296, 32814}, {26098, 49347}, {30479, 42013}, {30568, 31595}, {30699, 53593}, {32795, 32806}, {32796, 32812}, {32797, 32810}, {32932, 52808}, {37646, 49232}, {37662, 49233}, {45872, 48636}, {46891, 53122}, {55385, 55423}, {55386, 55452}, {55387, 55421}, {55388, 55450}, {55393, 55474}, {55394, 55479}

X(56385) = isotomic conjugate of X(1659)
X(56385) = anticomplement of X(5393)
X(56385) = isotomic conjugate of the complement of X(46422)
X(56385) = isotomic conjugate of the isogonal conjugate of X(2066)
X(56385) = isotomic conjugate of the polar conjugate of X(14121)
X(56385) = X(69)-Ceva conjugate of X(31547)
X(56385) = X(i)-isoconjugate of X(j) for these (i,j): {4, 53063}, {6, 2362}, {19, 2067}, {25, 13388}, {31, 1659}, {34, 5414}, {56, 7133}, {278, 53066}, {513, 54018}, {604, 7090}, {608, 30557}, {1123, 53064}, {1805, 1880}, {2066, 13438}, {13437, 53065}, {16232, 34121}
X(56385) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 7133}, {2, 1659}, {6, 2067}, {9, 2362}, {3161, 7090}, {6505, 13388}, {11517, 5414}, {13388, 57}, {30556, 6204}, {36033, 53063}, {39026, 54018}, {40626, 54017}
X(56385) = cevapoint of X(i) and X(j) for these (i,j): {2, 46422}, {8, 30412}, {63, 3083}
X(56385) = trilinear pole of line {6332, 54019}
X(56385) = barycentric product X(i)*X(j) for these {i,j}: {69, 14121}, {75, 30556}, {76, 2066}, {190, 54019}, {304, 42013}, {312, 13389}, {313, 1806}, {345, 13390}, {561, 53065}, {1267, 7090}, {1659, 13425}, {3596, 6502}, {3718, 16232}, {28659, 53064}, {30557, 46744}, {31547, 40699}
X(56385) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 2362}, {2, 1659}, {3, 2067}, {8, 7090}, {9, 7133}, {48, 53063}, {63, 13388}, {78, 30557}, {101, 54018}, {212, 53066}, {219, 5414}, {283, 1805}, {605, 53064}, {1124, 6502}, {1659, 13437}, {1806, 58}, {2066, 6}, {2362, 13438}, {3083, 13389}, {5414, 34121}, {6212, 16232}, {6332, 54017}, {6502, 56}, {7090, 1123}, {13386, 13390}, {13389, 57}, {13390, 278}, {14121, 4}, {16232, 34}, {30556, 1}, {30557, 6213}, {31535, 482}, {31547, 175}, {34908, 46433}, {42013, 19}, {53064, 604}, {53065, 31}, {54016, 32674}, {54019, 514}
X(56385) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 5405, 2}, {10, 49624, 1}, {63, 13386, 31547}, {319, 32791, 491}, {329, 46422, 31548}, {1270, 32793, 7}, {6348, 55877, 2}, {32805, 42696, 5391}


X(56386) = X(1)X(2)∩X(63)X(487)

Barycentrics   1 - Cot[A/2] : :
Barycentrics   a^2 - b^2 - c^2 - 2*b*c + 2*S : :

X(56386) lies on these lines: {1, 2}, {7, 1271}, {9, 7347}, {63, 487}, {69, 5391}, {75, 491}, {100, 16441}, {264, 55428}, {280, 55898}, {312, 14121}, {317, 55459}, {318, 1585}, {319, 492}, {320, 32802}, {321, 485}, {326, 55457}, {329, 31547}, {332, 5414}, {333, 7090}, {345, 13458}, {346, 15891}, {355, 2048}, {391, 30412}, {585, 41839}, {586, 3210}, {590, 594}, {615, 17362}, {638, 31549}, {908, 13386}, {956, 16432}, {966, 6351}, {1267, 32806}, {1270, 32099}, {1586, 5081}, {1991, 4363}, {2047, 5295}, {2345, 3068}, {2886, 45445}, {2968, 55890}, {2975, 16440}, {3069, 5839}, {3535, 7046}, {3595, 32087}, {3758, 45420}, {4000, 5591}, {4361, 45473}, {4371, 26362}, {4385, 7389}, {4388, 52808}, {4417, 13390}, {4445, 45472}, {4644, 5861}, {4969, 32788}, {5015, 7388}, {5564, 32791}, {5687, 16433}, {5739, 55398}, {5744, 46422}, {5749, 7585}, {6352, 17314}, {7133, 30479}, {7595, 11687}, {10538, 55888}, {13425, 28808}, {13436, 50559}, {13461, 32851}, {13757, 50077}, {13821, 51583}, {13911, 44417}, {14555, 30556}, {17360, 32808}, {17369, 32787}, {17740, 35774}, {19065, 37642}, {26098, 49348}, {30568, 31594}, {30699, 53595}, {32795, 32813}, {32796, 32805}, {32798, 32811}, {32804, 32807}, {32932, 52805}, {37646, 49233}, {37662, 49232}, {45871, 48636}, {46892, 53122}, {55385, 55453}, {55386, 55422}, {55387, 55451}, {55388, 55420}, {55393, 55480}, {55394, 55473}

X(56386) = isotomic conjugate of X(13390)
X(56386) = anticomplement of X(5405)
X(56386) = isotomic conjugate of the complement of X(46421)
X(56386) = isotomic conjugate of the isogonal conjugate of X(5414)
X(56386) = isotomic conjugate of the polar conjugate of X(7090)
X(56386) = X(69)-Ceva conjugate of X(31548)
X(56386) = X(i)-isoconjugate of X(j) for these (i,j): {4, 53064}, {6, 16232}, {19, 6502}, {25, 13389}, {31, 13390}, {34, 2066}, {56, 42013}, {278, 53065}, {513, 54016}, {604, 14121}, {608, 30556}, {1336, 53063}, {1806, 1880}, {2362, 34125}, {5414, 13460}, {13459, 53066}
X(56386) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 42013}, {2, 13390}, {6, 6502}, {9, 16232}, {3161, 14121}, {6505, 13389}, {11517, 2066}, {13389, 57}, {30557, 6203}, {36033, 53064}, {39026, 54016}, {40626, 54019}
X(56386) = cevapoint of X(i) and X(j) for these (i,j): {2, 46421}, {8, 30413}, {63, 3084}
X(56386) = trilinear pole of line {6332, 54017}
X(56386) = barycentric product X(i)*X(j) for these {i,j}: {69, 7090}, {75, 30557}, {76, 5414}, {190, 54017}, {304, 7133}, {312, 13388}, {313, 1805}, {345, 1659}, {561, 53066}, {2067, 3596}, {2362, 3718}, {5391, 14121}, {13390, 13458}, {28659, 53063}, {30556, 46745}, {31548, 40700}
X(56386) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 16232}, {2, 13390}, {3, 6502}, {8, 14121}, {9, 42013}, {48, 53064}, {63, 13389}, {78, 30556}, {101, 54016}, {212, 53065}, {219, 2066}, {283, 1806}, {606, 53063}, {1335, 2067}, {1659, 278}, {1805, 58}, {2066, 34125}, {2067, 56}, {2362, 34}, {3084, 13388}, {5414, 6}, {6213, 2362}, {6332, 54019}, {7090, 4}, {7133, 19}, {13387, 1659}, {13388, 57}, {13390, 13459}, {14121, 1336}, {16232, 13460}, {30556, 6212}, {30557, 1}, {31534, 481}, {31548, 176}, {34907, 46434}, {53063, 604}, {53066, 31}, {54017, 514}, {54018, 32674}
X(56386) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 5393, 2}, {10, 49625, 1}, {63, 13387, 31548}, {319, 32792, 492}, {329, 46421, 31547}, {1271, 32794, 7}, {6347, 55876, 2}, {32806, 42696, 1267}


X(56387) = X(1)X(2)∩X(46)X(214)

Barycentrics   Cot[A] + Cos[A]*Cot[A] - 2*Sin[A] : :
Barycentrics   a*(a - b - c)*(3*a^2 - 3*b^2 + 4*b*c - 3*c^2) : :
X(56387) = X[8] - 3 X[5552], 3 X[499] - 4 X[1125], 7 X[3622] - 3 X[10529], 12 X[20107] - 13 X[34595], 3 X[11928] - 5 X[18493]

X(56387) lies on these lines: {1, 2}, {3, 11682}, {9, 3897}, {20, 51423}, {21, 13384}, {40, 54192}, {46, 214}, {63, 1385}, {65, 35262}, {72, 10246}, {77, 320}, {100, 7982}, {224, 1537}, {326, 7190}, {355, 30852}, {404, 3340}, {474, 50194}, {480, 15570}, {517, 4855}, {518, 1388}, {758, 37618}, {908, 944}, {956, 3984}, {960, 34471}, {999, 1259}, {1260, 7373}, {1317, 32049}, {1319, 12635}, {1320, 2136}, {1329, 37740}, {1376, 11011}, {1420, 3868}, {1467, 18467}, {1482, 5440}, {1697, 5330}, {1837, 3847}, {2093, 4188}, {2096, 10884}, {2098, 3895}, {2099, 10107}, {2646, 5250}, {2975, 3951}, {3035, 41687}, {3100, 4779}, {3158, 3885}, {3306, 17614}, {3333, 34195}, {3419, 5901}, {3434, 13464}, {3436, 5882}, {3486, 41012}, {3555, 51379}, {3576, 3869}, {3577, 6915}, {3601, 3877}, {3612, 3878}, {3650, 33858}, {3685, 7221}, {3689, 10912}, {3713, 3723}, {3814, 37711}, {3816, 37724}, {3825, 37721}, {3871, 7962}, {3899, 37616}, {3913, 5048}, {3927, 28451}, {3940, 37624}, {3962, 11194}, {3965, 16884}, {4004, 16417}, {4018, 4930}, {4187, 37739}, {4193, 5727}, {4297, 11415}, {4311, 5905}, {4323, 6904}, {4742, 23528}, {4848, 6921}, {4867, 21842}, {4881, 15803}, {5057, 6261}, {5086, 8227}, {5128, 13587}, {5204, 44663}, {5227, 17438}, {5253, 11529}, {5439, 35272}, {5560, 45764}, {5563, 12559}, {5687, 10222}, {5691, 6224}, {5692, 24926}, {5734, 17784}, {5794, 15950}, {5837, 6910}, {5855, 24914}, {5881, 11681}, {6603, 55337}, {6909, 7971}, {7082, 30538}, {7269, 52709}, {7280, 45392}, {7290, 44694}, {7354, 34647}, {8715, 30323}, {9580, 11015}, {9613, 31053}, {9624, 11680}, {9643, 10538}, {10074, 45393}, {10247, 10914}, {10595, 55108}, {10680, 11517}, {10698, 49163}, {10950, 25681}, {11009, 54286}, {11041, 17567}, {11376, 44669}, {11522, 52367}, {11523, 54391}, {11928, 18493}, {12514, 37525}, {12526, 30389}, {12607, 37738}, {12735, 55016}, {13253, 17100}, {13607, 21075}, {14923, 16200}, {16126, 37587}, {16371, 50193}, {17360, 55392}, {17757, 37727}, {17880, 18156}, {18446, 31789}, {18480, 45770}, {18481, 41543}, {18526, 37700}, {18802, 19907}, {18990, 31164}, {22759, 42843}, {25415, 25440}, {25716, 30806}, {31266, 37737}, {31730, 40257}, {37281, 37533}, {38316, 41228}, {41229, 51111}, {51714, 51816}
X(56387) = X(56)-isoconjugate of X(43734)
X(56387) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 43734}, {16885, 31231}
X(56387) = barycentric product X(i)*X(j) for these {i,j}: {333, 4018}, {4930, 30608}
X(56387) = barycentric quotient X(i)/X(j) for these {i,j}: {9, 43734}, {4018, 226}, {4930, 5219}, {51577, 31231}
X(56387) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 78, 3872}, {1, 200, 4861}, {1, 997, 19860}, {1, 3811, 36846}, {1, 4511, 78}, {1, 6765, 38460}, {1, 19861, 54392}, {1, 22836, 3870}, {1, 30144, 19861}, {1, 47623, 28011}, {8, 27383, 27525}, {8, 27525, 6735}, {145, 27383, 6735}, {145, 27525, 8}, {551, 6737, 10527}, {1385, 5730, 63}, {2646, 5289, 5250}, {3244, 6745, 8}, {3576, 3869, 4652}, {3576, 54290, 5303}, {3612, 3878, 35258}, {3689, 33176, 10912}, {3869, 5303, 54290}, {5128, 45036, 13587}, {5303, 54290, 4652}, {13384, 15829, 21}, {21740, 37611, 10884}, {44179, 55391, 77}


X(56388) = X(3)X(6)∩X(163)X(14599)

Barycentrics   a^3*(a + b)*(a + c)*(a^2*b^2 + a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 - b^2*c^2) : :

X(56388) lies on the cubic K1021 and these lines: {3, 6}, {163, 14599}, {172, 757}, {593, 2205}, {2106, 51331}, {4567, 4590}, {6043, 51319}, {9454, 18268}, {20796, 21788}, {24727, 52680}

X(56388) = isogonal conjugate of X(43685)
X(56388) = isogonal conjugate of the isotomic conjugate of X(2106)
X(56388) = isogonal conjugate of the polar conjugate of X(15148)
X(56388) = X(i)-isoconjugate of X(j) for these (i,j): {1, 43685}, {10, 39925}, {75, 54980}, {76, 2107}, {313, 51333}, {321, 2665}, {661, 53216}, {1577, 53624}
X(56388) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 43685}, {206, 54980}, {27854, 16732}, {36830, 53216}, {39056, 313}, {39057, 561}
X(56388) = crossdifference of every pair of points on line {523, 53478}
X(56388) = barycentric product X(i)*X(j) for these {i,j}: {3, 15148}, {6, 2106}, {28, 20796}, {31, 2669}, {32, 40874}, {58, 2664}, {81, 21788}, {560, 41535}, {593, 21897}, {1333, 17759}, {2206, 52049}, {5009, 40796}, {18268, 39916}, {37128, 51331}
X(56388) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 43685}, {32, 54980}, {110, 53216}, {560, 2107}, {1333, 39925}, {1576, 53624}, {2106, 76}, {2206, 2665}, {2664, 313}, {2669, 561}, {15148, 264}, {17759, 27801}, {20796, 20336}, {21788, 321}, {21897, 28654}, {40874, 1502}, {41535, 1928}, {51331, 3948}


X(56389) = X(3)X(6)∩X(112)X(3565)

Barycentrics   a^2*(a^2 - b^2)*(a^2 - c^2)*(a^2 - b^2 - c^2)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(56389) lies on the cubic K658 and these lines: {3, 6}, {112, 3565}, {1576, 1625}, {1634, 35324}, {2421, 2715}, {2501, 30512}, {2974, 12829}, {3564, 53783}, {4226, 55267}, {4558, 8552}, {5477, 35067}, {7418, 10313}, {10097, 32662}, {15329, 23357}, {36830, 52603}

X(56389) = isogonal conjugate of the polar conjugate of X(4226)
X(56389) = X(i)-Ceva conjugate of X(j) for these (i,j): {250, 51335}, {2715, 32661}, {32697, 110}
X(56389) = X(i)-isoconjugate of X(j) for these (i,j): {92, 35364}, {115, 36105}, {661, 35142}, {1109, 32697}, {1577, 3563}, {2501, 8773}, {2987, 24006}, {14618, 36051}
X(56389) = X(i)-Dao conjugate of X(j) for these (i,j): {114, 14618}, {22391, 35364}, {34156, 43665}, {35067, 850}, {36830, 35142}, {39001, 115}, {39069, 24006}, {39072, 2501}, {41181, 339}, {55152, 2970}
X(56389) = trilinear pole of line {47406, 52144}
X(56389) = crossdifference of every pair of points on line {523, 8754}
X(56389) = barycentric product X(i)*X(j) for these {i,j}: {3, 4226}, {99, 52144}, {110, 3564}, {114, 43754}, {230, 4558}, {1692, 4563}, {1733, 4575}, {2966, 47406}, {3292, 52035}, {4230, 53783}, {4592, 8772}, {6782, 38414}, {6783, 38413}, {17932, 51335}, {32661, 51481}, {32697, 35067}, {42663, 47389}
X(56389) = barycentric quotient X(i)/X(j) for these {i,j}: {110, 35142}, {184, 35364}, {230, 14618}, {1101, 36105}, {1576, 3563}, {1692, 2501}, {3564, 850}, {4226, 264}, {4558, 8781}, {4575, 8773}, {8772, 24006}, {23357, 32697}, {32661, 2987}, {42663, 8754}, {43754, 40428}, {44102, 52476}, {47390, 10425}, {47406, 2799}, {51335, 16230}, {52035, 46111}, {52144, 523}, {55122, 2970}


X(56390) = X(4)X(147)∩X(25)X(648)

Barycentrics   (-a^2 - b^2 + c^2)*(a^2 - b^2 + c^2)*(a^4*b^2 - 2*a^2*b^4 + a^4*c^2 + b^4*c^2 - 2*a^2*c^4 + b^2*c^4) : :

X(56390) lies on the cubic K484 and these lines: {4, 147}, {25, 648}, {230, 231}, {264, 2970}, {427, 8754}, {1112, 1843}, {3186, 4232}, {6531, 36822}, {10295, 53793}, {36156, 52951}

X(56390) = reflection of X(47211) in X(2493)
X(56390) = polar conjugate of X(35146)
X(56390) = polar conjugate of the isotomic conjugate of X(5969)
X(56390) = polar conjugate of the isogonal conjugate of X(5106)
X(56390) = X(i)-isoconjugate of X(j) for these (i,j): {48, 35146}, {63, 5970}, {4592, 14606}
X(56390) = X(i)-Dao conjugate of X(j) for these (i,j): {1249, 35146}, {3162, 5970}, {5139, 14606}, {35077, 69}
X(56390) = barycentric product X(i)*X(j) for these {i,j}: {4, 5969}, {264, 5106}, {648, 11182}, {2501, 14607}, {17983, 45330}, {17984, 51494}
X(56390) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 35146}, {25, 5970}, {419, 47646}, {2489, 14606}, {5106, 3}, {5969, 69}, {11182, 525}, {14607, 4563}, {45330, 6390}, {51494, 36214}
X(56390) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {648, 36898, 25}, {2971, 41676, 5186}, {6103, 41360, 468}


X(56391) = X(3)X(541)∩X(230)X(231)

Barycentrics   2*a^12 - 15*a^8*b^4 + 24*a^6*b^6 - 12*a^4*b^8 + b^12 + 24*a^8*b^2*c^2 - 22*a^6*b^4*c^2 - 10*a^4*b^6*c^2 + 10*a^2*b^8*c^2 - 2*b^10*c^2 - 15*a^8*c^4 - 22*a^6*b^2*c^4 + 44*a^4*b^4*c^4 - 10*a^2*b^6*c^4 - b^8*c^4 + 24*a^6*c^6 - 10*a^4*b^2*c^6 - 10*a^2*b^4*c^6 + 4*b^6*c^6 - 12*a^4*c^8 + 10*a^2*b^2*c^8 - b^4*c^8 - 2*b^2*c^10 + c^12 : :

X(56391) lies on the cubic K816 and these lines: {3, 541}, {125, 14685}, {230, 231}, {574, 35282}, {5094, 53568}, {14220, 34291}, {14919, 32247}, {15118, 44889}, {35278, 35485}, {41376, 46949}

X(56391) = X(541)-line conjugate of X(3)


X(56392) = X(2)X(41330)∩X(187)X(237)

Barycentrics   a^2*(a^10*b^6 - 3*a^8*b^8 + 3*a^6*b^10 - a^4*b^12 + 2*a^10*b^4*c^2 - 5*a^8*b^6*c^2 + 3*a^6*b^8*c^2 + 2*a^10*b^2*c^4 - 2*a^8*b^4*c^4 + 3*a^6*b^6*c^4 + a^4*b^8*c^4 - 2*a^2*b^10*c^4 + b^12*c^4 + a^10*c^6 - 5*a^8*b^2*c^6 + 3*a^6*b^4*c^6 - 6*a^4*b^6*c^6 + 2*a^2*b^8*c^6 - 4*b^10*c^6 - 3*a^8*c^8 + 3*a^6*b^2*c^8 + a^4*b^4*c^8 + 2*a^2*b^6*c^8 + 6*b^8*c^8 + 3*a^6*c^10 - 2*a^2*b^4*c^10 - 4*b^6*c^10 - a^4*c^12 + b^4*c^12) : :

X(56392) lies on the cubic K508 and these lines: {2, 41330}, {30, 11673}, {187, 237}, {263, 52446}, {3580, 18322}, {6785, 37988}, {14957, 43453}, {15993, 51441}, {18321, 37465}, {31848, 37338}, {38230, 44215}

X(56392) = reflection of X(i) in X(j) for these {i,j}: {237, 47638}, {33873, 21531}
X(56392) = X(41330)-line conjugate of X(2)


X(56393) = X(23)X(94)∩X(187)X(237)

Barycentrics   a^4*(a^8*b^4 - 3*a^6*b^6 + 3*a^4*b^8 - a^2*b^10 - a^4*b^6*c^2 + a^2*b^8*c^2 + a^8*c^4 + 2*a^4*b^4*c^4 - a^2*b^6*c^4 - b^8*c^4 - 3*a^6*c^6 - a^4*b^2*c^6 - a^2*b^4*c^6 + 2*b^6*c^6 + 3*a^4*c^8 + a^2*b^2*c^8 - b^4*c^8 - a^2*c^10) : :

X(56393) lies on the cubic K592 and these lines: {23, 94}, {184, 14966}, {187, 237}, {1576, 9418}, {5926, 36180}, {7669, 33983}, {9419, 14567}, {11332, 34417}, {15080, 15920}, {17938, 17970}, {22463, 52128}, {26714, 32730}, {46272, 52169}

X(56393) = X(43654)-Ceva conjugate of X(6)
X(56393) = X(75)-isoconjugate of X(43654)
X(56393) = X(206)-Dao conjugate of X(43654)
X(56393) = barycentric quotient X(32)/X(43654)
X(56393) = {X(237),X(669)}-harmonic conjugate of X(1495)


X(56394) = X(3)X(34290)∩X(187)X(237)

Barycentrics   a^4*(b - c)*(b + c)*(a^6*b^2 - 2*a^4*b^4 + a^2*b^6 + a^6*c^2 - 4*a^4*b^2*c^2 + 4*a^2*b^4*c^2 - 3*b^6*c^2 - 2*a^4*c^4 + 4*a^2*b^2*c^4 + 2*b^4*c^4 + a^2*c^6 - 3*b^2*c^6) : :
X(56394) = 4 X[21531] - 5 X[31279]

X(56394) lies on the cubic K593 and these lines: {3, 34290}, {30, 31176}, {187, 237}, {523, 1634}, {1084, 3049}, {5652, 11328}, {11182, 14096}, {11183, 37338}, {14957, 23301}, {20775, 22260}, {21531, 31279}, {35364, 38354}, {35606, 53327}, {44445, 46518}, {53247, 53365}

X(56394) = midpoint of X(44445) and X(46518)
X(56394) = reflection of X(i) in X(j) for these {i,j}: {669, 237}, {14957, 23301}


X(56395) = X(2)X(249)∩X(6)X(13)

Barycentrics   (2*a^2 - b^2 - c^2)*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2) : :

X(56395) lies on the cubic K055 and these lines: {2, 249}, {4, 38395}, {6, 13}, {30, 2088}, {32, 23967}, {39, 51254}, {51, 512}, {94, 598}, {187, 1648}, {262, 18316}, {328, 22486}, {476, 843}, {524, 43084}, {1995, 15539}, {2420, 10413}, {3148, 52153}, {3815, 5915}, {5099, 5967}, {5627, 35906}, {5968, 50711}, {7603, 41939}, {7745, 14254}, {7812, 35139}, {8176, 18883}, {9143, 52668}, {10630, 52449}, {11005, 23969}, {11179, 53768}, {11555, 11556}, {13851, 39563}, {14357, 51429}, {14560, 19136}, {14591, 37943}, {15538, 34365}, {16461, 16462}, {16770, 39405}, {16771, 39404}, {18907, 34209}, {19780, 51274}, {19781, 51267}, {22826, 22827}, {23895, 41746}, {23896, 41745}, {34288, 51349}, {51479, 52038}, {53771, 54131}

X(56395) = reflection of X(45901) in X(7753)
X(56395) = isogonal conjugate of the anticomplement of X(13162)
X(56395) = isogonal conjugate of the isotomic conjugate of X(43084)
X(56395) = X(i)-isoconjugate of X(j) for these (i,j): {50, 46277}, {75, 52668}, {323, 897}, {340, 36060}, {526, 36085}, {662, 9213}, {671, 6149}, {691, 32679}, {892, 2624}, {895, 52414}, {923, 7799}, {1577, 51478}, {3268, 36142}, {10411, 23894}, {36128, 52437}
X(56395) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 52668}, {1084, 9213}, {1560, 340}, {1648, 45808}, {2482, 7799}, {6593, 323}, {14993, 671}, {15295, 111}, {21905, 2088}, {23992, 3268}, {38988, 526}, {48317, 44427}
X(56395) = cevapoint of X(9115) and X(9117)
X(56395) = trilinear pole of line {351, 33919}
X(56395) = crossdifference of every pair of points on line {323, 526}
X(56395) = barycentric product X(i)*X(j) for these {i,j}: {6, 43084}, {13, 52040}, {14, 52039}, {94, 187}, {110, 51479}, {265, 468}, {328, 44102}, {351, 35139}, {476, 690}, {523, 14559}, {524, 1989}, {896, 2166}, {1141, 41586}, {1648, 39295}, {2642, 32680}, {3266, 11060}, {3292, 6344}, {4235, 14582}, {5467, 10412}, {5468, 15475}, {5627, 5642}, {5967, 14356}, {6390, 18384}, {9717, 14254}, {12028, 12828}, {14357, 52449}, {14560, 35522}, {14567, 20573}, {14583, 36890}, {18316, 32225}, {18817, 23200}, {22105, 46155}, {23968, 50942}, {30454, 36310}, {30455, 36307}, {37778, 50433}, {44146, 52153}, {45662, 54554}
X(56395) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 52668}, {94, 18023}, {187, 323}, {265, 30786}, {351, 526}, {468, 340}, {476, 892}, {512, 9213}, {524, 7799}, {690, 3268}, {922, 6149}, {1576, 51478}, {1649, 45808}, {1989, 671}, {2166, 46277}, {2642, 32679}, {2682, 3258}, {3292, 52437}, {5467, 10411}, {5642, 6148}, {6344, 46111}, {8014, 52750}, {8015, 52751}, {9115, 14922}, {9117, 14921}, {9155, 51383}, {10412, 52632}, {11060, 111}, {14273, 44427}, {14417, 45792}, {14559, 99}, {14560, 691}, {14567, 50}, {14582, 14977}, {14583, 9214}, {15475, 5466}, {18384, 17983}, {21839, 42701}, {21906, 2088}, {23200, 22115}, {23968, 50941}, {32225, 52149}, {32678, 36085}, {35139, 53080}, {39295, 52940}, {40355, 9139}, {41586, 1273}, {43084, 76}, {44102, 186}, {51479, 850}, {52039, 299}, {52040, 298}, {52153, 895}, {52449, 52551}, {54274, 44814}
X(56395) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 14, 14356}, {8014, 8015, 14583}, {21466, 21467, 476}


X(56396) = X(6)X(13)∩X(187)X(476)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^8 - 2*a^6*b^2 + a^4*b^4 - 2*a^6*c^2 + 3*a^4*b^2*c^2 - a^2*b^4*c^2 - b^6*c^2 + a^4*c^4 - a^2*b^2*c^4 + 2*b^4*c^4 - b^2*c^6) : :

X(56396) lies on the cubic K222 and these lines: {6, 13}, {32, 14254}, {94, 23588}, {112, 6344}, {187, 476}, {230, 34209}, {248, 32650}, {385, 35139}, {1637, 14270}, {5627, 48451}, {6781, 52056}, {7735, 51835}, {7737, 52449}, {7746, 39170}, {7748, 51254}, {9160, 15544}, {14910, 39375}, {18316, 48453}, {23969, 43654}, {47229, 51479}

X(56396) = X(i)-isoconjugate of X(j) for these (i,j): {2624, 53192}, {9160, 32679}
X(56396) = crossdifference of every pair of points on line {526, 34834}
X(56396) = barycentric product X(i)*X(j) for these {i,j}: {94, 32761}, {1989, 40879}
X(56396) = barycentric quotient X(i)/X(j) for these {i,j}: {476, 53192}, {14560, 9160}, {32761, 323}, {40879, 7799}
X(56396) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {265, 1989, 115}, {1989, 41392, 11060}


X(56397) = X(6)X(13)∩X(94)X(110)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^10 - 3*a^8*b^2 + 3*a^6*b^4 - a^4*b^6 - 3*a^8*c^2 + 5*a^6*b^2*c^2 - 3*a^4*b^4*c^2 + 2*a^2*b^6*c^2 - b^8*c^2 + 3*a^6*c^4 - 3*a^4*b^2*c^4 - 2*a^2*b^4*c^4 + b^6*c^4 - a^4*c^6 + 2*a^2*b^2*c^6 + b^4*c^6 - b^2*c^8) : :
X(56397) = X[265] - 3 X[1989]

X(56397) lies on the cubic K223 and these lines: {6, 13}, {74, 39290}, {94, 110}, {125, 18883}, {182, 43084}, {264, 3043}, {328, 15462}, {476, 1495}, {511, 53768}, {1141, 9160}, {1503, 51847}, {2410, 52772}, {3448, 30529}, {5961, 13289}, {6000, 12028}, {8754, 12140}, {10264, 49006}, {10706, 18316}, {14254, 46261}, {14560, 43087}, {14582, 14697}, {14595, 46818}, {18381, 53168}, {18576, 46686}, {20573, 44155}, {21650, 39139}, {22265, 39295}, {29012, 53771}, {34209, 46817}, {41204, 46456}, {41512, 52153}


X(56398) = X(6)X(13)∩X(476)X(10412)

Barycentrics   (a^2 - b^2)*(a^2 - c^2)*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^6*b^2 - 2*a^4*b^4 + a^2*b^6 + a^6*c^2 - 2*b^6*c^2 - 2*a^4*c^4 + 4*b^4*c^4 + a^2*c^6 - 2*b^2*c^6) : :

X(56398) lies on the cubic K229 and these lines: {6, 13}, {476, 10412}, {523, 2410}, {4230, 46456}, {5467, 39295}, {14380, 39290}, {18867, 38393}, {53267, 53768}

X(56398) = X(32679)-isoconjugate of X(32730)
X(56398) = crossdifference of every pair of points on line {526, 18334}
X(56398) = barycentric product X(i)*X(j) for these {i,j}: {110, 52983}, {3016, 35139}
X(56398) = barycentric quotient X(i)/X(j) for these {i,j}: {3016, 526}, {14560, 32730}, {23966, 32731}, {41392, 52763}, {52983, 850}


X(56399) = X(6)X(13)∩X(94)X(264)

Barycentrics   (a^2 - b^2 - c^2)*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(56399) lies on the cubic K260 and these lines: {2, 39290}, {6, 13}, {30, 51545}, {94, 264}, {184, 14595}, {206, 14560}, {216, 647}, {393, 23964}, {476, 46869}, {577, 32662}, {1249, 51835}, {1495, 3081}, {1531, 3284}, {1539, 39176}, {1990, 14254}, {2088, 16310}, {2420, 52945}, {3589, 43084}, {4550, 11074}, {4846, 12028}, {5158, 10217}, {6103, 41512}, {6794, 34298}, {8918, 8919}, {15454, 32761}, {18316, 54585}, {31670, 53768}, {36430, 36435}, {40578, 40579}, {40947, 52153}, {45778, 45779}, {46262, 47050}, {48905, 53771}, {48906, 51847}

X(56399) = complement of the isotomic conjugate of X(15454)
X(56399) = isotomic conjugate of the polar conjugate of X(14583)
X(56399) = isogonal conjugate of the polar conjugate of X(14254)
X(56399) = polar conjugate of the isotomic conjugate of X(51254)
X(56399) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 39170}, {15454, 2887}, {51965, 20305}, {52552, 21235}
X(56399) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 39170}, {94, 30}, {12028, 52153}, {14254, 14583}, {23588, 32662}, {39290, 43083}, {41392, 18558}, {41512, 512}
X(56399) = X(i)-isoconjugate of X(j) for these (i,j): {74, 52414}, {92, 14385}, {186, 2349}, {323, 36119}, {340, 2159}, {1304, 32679}, {2624, 16077}, {3268, 36131}, {6149, 16080}, {14165, 35200}, {33805, 34397}, {35201, 40384}, {36034, 44427}
X(56399) = X(i)-Dao conjugate of X(j) for these (i,j): {30, 14920}, {133, 14165}, {1511, 323}, {1650, 5664}, {3163, 340}, {3258, 44427}, {8552, 23965}, {14993, 16080}, {15295, 8749}, {22391, 14385}, {38999, 8552}, {39008, 3268}, {39170, 2}, {52869, 14918}
X(56399) = cevapoint of X(i) and X(j) for these (i,j): {1636, 39008}, {3163, 52945}
X(56399) = trilinear pole of line {9409, 18558}
X(56399) = crossdifference of every pair of points on line {186, 526}
X(56399) = barycentric product X(i)*X(j) for these {i,j}: {3, 14254}, {4, 51254}, {30, 265}, {69, 14583}, {94, 3284}, {112, 18557}, {113, 12028}, {328, 1495}, {476, 9033}, {525, 41392}, {648, 18558}, {1141, 1568}, {1531, 18316}, {1636, 46456}, {1989, 11064}, {2407, 14582}, {2420, 14592}, {2631, 32680}, {3260, 52153}, {4240, 43083}, {5627, 16163}, {6148, 14595}, {6344, 51394}, {9409, 35139}, {10272, 15392}, {11079, 36789}, {13754, 39375}, {14356, 35912}, {14401, 39290}, {14993, 20123}, {15454, 39170}, {17702, 51349}, {32662, 41079}, {34334, 50464}, {36035, 36061}, {36298, 40709}, {36299, 40710}, {40427, 47405}, {46106, 50433}, {51457, 51847}
X(56399) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 340}, {184, 14385}, {265, 1494}, {476, 16077}, {1495, 186}, {1531, 52149}, {1568, 1273}, {1636, 8552}, {1637, 44427}, {1989, 16080}, {1990, 14165}, {2173, 52414}, {2420, 14590}, {2631, 32679}, {3163, 14920}, {3284, 323}, {9033, 3268}, {9407, 34397}, {9408, 39176}, {9409, 526}, {11060, 8749}, {11064, 7799}, {11074, 40391}, {11079, 40384}, {12028, 40423}, {14254, 264}, {14391, 41078}, {14398, 47230}, {14401, 5664}, {14560, 1304}, {14581, 52418}, {14582, 2394}, {14583, 4}, {14595, 5627}, {15475, 18808}, {16163, 6148}, {18557, 3267}, {18558, 525}, {23347, 53176}, {32662, 44769}, {36298, 470}, {36299, 471}, {41077, 45792}, {41392, 648}, {41995, 6111}, {41996, 6110}, {42074, 35201}, {43083, 34767}, {47405, 34834}, {50433, 14919}, {51254, 69}, {51394, 52437}, {52153, 74}, {52945, 14918}
X(56399) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10217, 10218, 39170}, {36298, 36299, 14583}, {51270, 51277, 14356}


X(56400) = X(3)X(476)∩X(6)X(13)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 - 3*a^6*c^2 + 9*a^4*b^2*c^2 - 4*a^2*b^4*c^2 - 2*b^6*c^2 + 3*a^4*c^4 - 4*a^2*b^2*c^4 + 4*b^4*c^4 - a^2*c^6 - 2*b^2*c^6) : :

X(56400) lies on the cubic K297 and these lines: {2, 34209}, {3, 476}, {5, 14611}, {6, 13}, {30, 52449}, {94, 31861}, {183, 35139}, {378, 6344}, {382, 51254}, {1141, 21308}, {1656, 39170}, {3258, 16535}, {3534, 14583}, {5054, 14993}, {5055, 5627}, {5070, 53137}, {10620, 41512}, {14702, 52153}, {15688, 51345}, {18316, 54807}, {36193, 52772}, {37924, 53267}, {44438, 52415}, {51479, 53266}

X(56400) = X(32679)-isoconjugate of X(32732)
X(56400) = barycentric product X(94)*X(37477)
X(56400) = barycentric quotient X(i)/X(j) for these {i,j}: {14560, 32732}, {37477, 323}
X(56400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 51835, 34209}, {265, 5655, 41390}, {265, 14356, 381}, {381, 34810, 399}


X(56401) = X(6)X(13)∩X(23)X(94)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2) : :

X(56401) lies on the cubic K302 and these lines: {3, 30542}, {6, 13}, {23, 94}, {30, 15364}, {95, 99}, {114, 18883}, {147, 30529}, {300, 5981}, {301, 5980}, {671, 18316}, {804, 10412}, {2782, 13233}, {2788, 43082}, {2790, 2980}, {2793, 14662}, {2799, 43083}, {5613, 8838}, {5617, 8836}, {5961, 7502}, {6055, 47596}, {6321, 14980}, {6344, 32085}, {6770, 16771}, {6771, 40710}, {6773, 16770}, {6774, 40709}, {11169, 38664}, {11177, 52449}, {11623, 39170}, {14254, 45819}, {14486, 18384}, {14639, 18300}, {14651, 18478}, {14830, 52056}, {14854, 15535}, {18572, 39818}, {20774, 23956}, {32305, 53267}, {34209, 44266}, {34218, 53274}, {35139, 43664}, {39295, 43532}, {39809, 52842}, {43088, 55122}, {43090, 44961}, {43535, 54554}, {46039, 48983}, {52772, 53346}

X(56401) = midpoint of X(12188) and X(15928)
X(56401) = X(i)-isoconjugate of X(j) for these (i,j): {262, 6149}, {323, 2186}, {2290, 42300}, {3402, 7799}, {26714, 32679}, {43718, 52414}, {51444, 51801}
X(56401) = X(i)-Dao conjugate of X(j) for these (i,j): {14993, 262}, {15295, 263}, {38997, 526}, {51580, 7799}
X(56401) = trilinear pole of line {3288, 45321}
X(56401) = barycentric product X(i)*X(j) for these {i,j}: {94, 182}, {183, 1989}, {265, 458}, {328, 10311}, {476, 23878}, {2166, 52134}, {3288, 35139}, {5627, 51372}, {11060, 20023}, {14356, 46806}, {20573, 34396}, {44144, 52153}
X(56401) = barycentric quotient X(i)/X(j) for these {i,j}: {94, 327}, {182, 323}, {183, 7799}, {265, 42313}, {458, 340}, {1141, 42300}, {1989, 262}, {3288, 526}, {6784, 2088}, {10311, 186}, {11060, 263}, {11077, 51444}, {14356, 46807}, {14560, 26714}, {23878, 3268}, {23968, 36885}, {33971, 14165}, {34396, 50}, {39530, 14918}, {50433, 54032}, {51372, 6148}, {51542, 14355}, {52153, 43718}
X(56401) = {X(265),X(1989)}-harmonic conjugate of X(14356)


X(56402) = X(1)X(30)∩X(6)X(13)

Barycentrics   (a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + a*c + c^2)*(2*a^3 - a^2*b - 2*a*b^2 + b^3 - a^2*c - 2*a*b*c - b^2*c - 2*a*c^2 - b*c^2 + c^3) : :
X(56402) = 2 X[13408] + X[48903], X[48916] - 4 X[49743]

X(56402) lies on the cubic K383 and these lines: {1, 30}, {2, 582}, {3, 52375}, {6, 13}, {57, 50462}, {94, 54679}, {226, 54613}, {376, 52393}, {519, 6757}, {541, 7986}, {942, 52390}, {999, 26700}, {1789, 16370}, {2160, 37584}, {3120, 11699}, {3241, 6742}, {3524, 24936}, {3534, 48868}, {3545, 24883}, {3578, 48887}, {3579, 27577}, {3746, 47749}, {4388, 50215}, {4653, 28460}, {5055, 24880}, {5663, 5902}, {5722, 34301}, {5886, 14844}, {6186, 14636}, {10247, 53794}, {11334, 52153}, {13743, 51748}, {14158, 51340}, {15699, 24902}, {21674, 50821}, {28194, 46617}, {28202, 32167}, {28368, 50415}, {30602, 39948}, {38430, 50301}, {41930, 52381}, {43682, 54526}, {44229, 48857}, {46441, 52269}, {48877, 50256}

X(56402) = midpoint of X(48877) and X(50256)
X(56402) = reflection of X(i) in X(j) for these {i,j}: {500, 37631}, {3578, 48887}
X(56402) = X(6149)-isoconjugate of X(54528)
X(56402) = X(14993)-Dao conjugate of X(54528)
X(56402) = crossdifference of every pair of points on line {526, 9404}
X(56402) = barycentric product X(i)*X(j) for these {i,j}: {79, 54357}, {24929, 30690}
X(56402) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 54528}, {15670, 3578}, {15762, 445}, {24929, 3219}, {54357, 319}
X(56402) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 79, 52382}, {13, 14, 8818}, {381, 3017, 45926}, {381, 45923, 3017}, {3017, 45924, 381}, {3019, 45924, 45923}, {45923, 45924, 45926}


X(56403) = X(4)X(40388)∩X(6)X(13)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(56403) lies on the cubic K429 and these lines: {4, 40388}, {6, 13}, {53, 2501}, {94, 34289}, {141, 43084}, {157, 52153}, {231, 2420}, {571, 32662}, {1974, 14560}, {2088, 39235}, {3003, 34104}, {5063, 51254}, {5627, 34288}, {8014, 36298}, {8015, 36299}, {10413, 52945}, {10733, 14910}, {11074, 11080}, {11079, 51964}, {12383, 52557}, {15441, 15442}, {15475, 22260}, {21850, 51847}, {32223, 53274}, {39295, 54925}, {40158, 40159}, {46264, 53768}, {48910, 53771}, {52552, 54395}, {54556, 54557}

X(56403) = polar conjugate of the isotomic conjugate of X(39170)
X(56403) = orthic-isogonal conjugate of X(14583)
X(56403) = X(i)-Ceva conjugate of X(j) for these (i,j): {4, 14583}, {1989, 3003}
X(56403) = X(i)-isoconjugate of X(j) for these (i,j): {63, 38936}, {75, 52557}, {323, 36053}, {662, 15470}, {2349, 39371}, {2624, 18878}, {2986, 6149}, {5504, 52414}, {8552, 36114}, {10420, 32679}
X(56403) = X(i)-Dao conjugate of X(j) for these (i,j): {113, 323}, {206, 52557}, {1084, 15470}, {3003, 6148}, {3162, 38936}, {6334, 23965}, {14993, 2986}, {15295, 14910}, {16178, 44427}, {34834, 7799}, {39005, 8552}, {39021, 3268}
X(56403) = crossdifference of every pair of points on line {526, 15470}
X(56403) = barycentric product X(i)*X(j) for these {i,j}: {4, 39170}, {94, 3003}, {113, 5627}, {265, 403}, {328, 44084}, {476, 55121}, {523, 41512}, {686, 46456}, {1725, 2166}, {1989, 3580}, {6344, 13754}, {10412, 15329}, {12825, 48374}, {14254, 14264}, {14356, 52451}, {14582, 16237}, {14993, 18781}, {21731, 35139}, {34209, 39985}, {39290, 55265}, {44138, 52153}
X(56403) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 38936}, {32, 52557}, {94, 40832}, {113, 6148}, {403, 340}, {476, 18878}, {512, 15470}, {686, 8552}, {1495, 39371}, {1989, 2986}, {3003, 323}, {3580, 7799}, {5627, 40423}, {6334, 45792}, {11060, 14910}, {13754, 52437}, {14254, 52552}, {14560, 10420}, {14582, 15421}, {14583, 15454}, {14595, 12028}, {15329, 10411}, {15475, 15328}, {18384, 1300}, {21731, 526}, {32662, 43755}, {34209, 39988}, {39170, 69}, {39290, 55264}, {40355, 10419}, {41512, 99}, {44084, 186}, {47236, 44427}, {51821, 14385}, {52153, 5504}, {55121, 3268}, {55265, 5664}
X(56403) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1989, 41392, 3018}, {11080, 11085, 14583}, {14595, 34417, 14583}


X(56404) = X(6)X(13)∩X(51)X(14595)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6) : :

X(56404) lies on the cubic K486 and these lines: {6, 13}, {51, 14595}, {69, 43084}, {1117, 11071}, {2965, 32662}, {5627, 11074}, {8014, 11085}, {8015, 11080}, {8929, 8930}, {10413, 11063}, {13483, 16771}, {13484, 16770}, {15538, 39170}, {18316, 54827}, {31670, 53771}, {32002, 46456}, {34325, 34326}, {48906, 53768}

X(56404) = X(i)-Ceva conjugate of X(j) for these (i,j): {249, 41512}, {39295, 47053}
X(56404) = X(i)-isoconjugate of X(j) for these (i,j): {323, 51804}, {1291, 32679}, {6149, 13582}, {43704, 52414}
X(56404) = X(i)-Dao conjugate of X(j) for these (i,j): {14993, 13582}, {15295, 14579}, {16336, 54461}, {53989, 44427}
X(56404) = barycentric product X(i)*X(j) for these {i,j}: {13, 51274}, {14, 51267}, {94, 11063}, {265, 37943}, {476, 45147}, {1749, 2166}, {1989, 37779}, {3470, 14254}, {5627, 10272}, {6140, 35139}, {6344, 50461}, {10412, 47053}, {10413, 39295}, {14451, 14993}, {14583, 46751}
X(56404) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 13582}, {6140, 526}, {10272, 6148}, {11060, 14579}, {11063, 323}, {14560, 1291}, {14583, 3471}, {14595, 15392}, {37779, 7799}, {37943, 340}, {45147, 3268}, {47053, 10411}, {50461, 52437}, {51267, 299}, {51274, 298}, {52153, 43704}


X(56405) = X(1)X(60)∩X(6)X(13)

Barycentrics   a*(a + b)*(a + c)*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - a*b*c - b^2*c - a*c^2 - b*c^2 - c^3) : :

X(56405) lies on the cubics K058 and K498 and these lines: {1, 60}, {6, 13}, {10, 36927}, {58, 2771}, {80, 502}, {81, 6126}, {125, 24880}, {519, 6740}, {1793, 5692}, {1807, 40602}, {2361, 5127}, {3448, 24883}, {3751, 41741}, {4653, 16164}, {5620, 39140}, {11699, 15955}, {12047, 24624}, {13605, 37791}, {15059, 24902}, {15065, 47318}, {43700, 52391}

X(56405) = isogonal conjugate of X(39149)
X(56405) = X(80)-Ceva conjugate of X(759)
X(56405) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39149}, {36, 502}, {267, 758}, {1029, 2245}, {2250, 41910}, {3218, 21353}, {3444, 3936}, {3724, 44188}, {4053, 40143}
X(56405) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39149}, {81, 320}, {15898, 502}
X(56405) = crossdifference of every pair of points on line {526, 2610}
X(56405) = barycentric product X(i)*X(j) for these {i,j}: {80, 40592}, {191, 24624}, {501, 18359}, {759, 2895}, {1030, 14616}, {2341, 41808}, {2906, 52351}, {6740, 47057}, {20932, 34079}, {31947, 47318}
X(56405) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39149}, {191, 3936}, {501, 3218}, {759, 1029}, {859, 41910}, {1030, 758}, {2161, 502}, {2895, 35550}, {2906, 17923}, {6187, 21353}, {8614, 18593}, {24624, 44188}, {31947, 4707}, {34079, 267}, {40592, 320}, {42653, 2610}, {47057, 41804}
X(56405) = {X(1),X(52380)}-harmonic conjugate of X(759)


X(56406) = X(6)X(13)∩X(141)X(46155)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(b^2 + c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + b^2*c^2 - 2*c^4) : :

X(56406) lies on the cubic K975 and these lines: {6, 13}, {141, 46155}, {308, 35139}, {1176, 14560}, {10412, 31065}, {11119, 11120}, {15107, 38393}, {35222, 52153}

X(56406) =X(51360)-Dao conjugate of X(1511)


X(56407) = X(3)X(94)∩X(6)X(13)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 - 3*a^6*c^2 + 3*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 2*b^6*c^2 + 3*a^4*c^4 + 2*a^2*b^2*c^4 + 4*b^4*c^4 - a^2*c^6 - 2*b^2*c^6) : :

X(56407) lies on the cubic K1057 and these lines: {3, 94}, {5, 30529}, {6, 13}, {25, 6344}, {183, 20573}, {476, 1141}, {567, 9222}, {1656, 18883}, {2166, 18524}, {3830, 18316}, {3843, 18300}, {7545, 14254}, {7574, 51847}, {12028, 18859}, {18386, 23956}, {18494, 52415}, {20304, 30685}, {23181, 38587}, {37924, 53768}, {39290, 44715}, {44275, 51835}

X(56407) = X(6149)-isoconjugate of X(9221)
X(56407) = X(14993)-Dao conjugate of X(9221)
X(56407) = barycentric product X(94)*X(567)
X(56407) = barycentric quotient X(i)/X(j) for these {i,j}: {567, 323}, {1989, 9221}


X(56408) = X(6)X(13)∩X(141)X(328)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 - a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(56408) lies on the cubic K1284 and these lines: {6, 13}, {53, 6344}, {94, 3580}, {141, 328}, {216, 8579}, {476, 47275}, {1141, 14533}, {1609, 31676}, {3569, 10412}, {5627, 51544}, {6748, 23956}, {10733, 38872}, {11063, 34448}, {18316, 51545}, {18573, 39170}, {18877, 40389}, {32227, 44529}, {34209, 47322}

X(56408) = X(6149)-isoconjugate of X(7578)
X(56408) = X(i)-Dao conjugate of X(j) for these (i,j): {566, 52149}, {14993, 7578}
X(56408) = barycentric product X(i)*X(j) for these {i,j}: {94, 566}, {265, 7577}, {5627, 51391}, {6344, 23039}, {10412, 36829}, {14356, 52190}, {18117, 35139}
X(56408) = barycentric quotient X(i)/X(j) for these {i,j}: {566, 323}, {1989, 7578}, {7577, 340}, {18117, 526}, {23039, 52437}, {36829, 10411}, {51391, 6148}
X(56408) = {X(265),X(1989)}-harmonic conjugate of X(6)


X(56409) = X(6)X(13)∩X(76)X(5641)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^6 - a^4*b^2 + 2*a^2*b^4 - 2*b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 + 2*a^2*c^4 - b^2*c^4 - 2*c^6) : :

X(56409) lies on the cubic K1316 and these lines: {6, 13}, {76, 5641}, {476, 36194}, {599, 46155}, {826, 15475}, {3407, 18316}, {7884, 14355}, {11178, 43087}, {11328, 52153}, {14458, 39295}, {14560, 19127}, {43453, 52449}

X(56409) = X(6149)-isoconjugate of X(55009)
X(56409) = X(14993)-Dao conjugate of X(55009)
X(56409) = barycentric product X(94)*X(35002)
X(56409) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 55009}, {35002, 323}


X(56410) = X(1)X(3)∩X(108)X(13397)

Barycentrics   a^2*(a - b)*(a - c)*(a + b - c)*(a - b + c)*(a^2 - b^2 - c^2)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c + a*b^2*c - a^2*c^2 + a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :

X(56410) lies on the cubic K658 and these lines: {1, 3}, {108, 13397}, {109, 36082}, {912, 53786}, {1331, 1813}, {2720, 6099}, {7335, 22457}, {12832, 34332}

X(56410) = X(2720)-Ceva conjugate of X(36059)
X(56410) = X(i)-isoconjugate of X(j) for these (i,j): {11, 36106}, {29, 3657}, {522, 915}, {650, 37203}, {663, 46133}, {913, 4391}, {2990, 3064}, {4858, 32698}, {7649, 45393}, {32655, 46110}, {36052, 44426}
X(56410) = X(i)-Dao conjugate of X(j) for these (i,j): {119, 44426}, {39002, 11}, {39175, 43728}
X(56410) = trilinear pole of line {2252, 47408}
X(56410) = crossdifference of every pair of points on line {650, 6506}
X(56410) = barycentric product X(i)*X(j) for these {i,j}: {109, 914}, {190, 51649}, {651, 912}, {664, 2252}, {1214, 3658}, {1332, 18838}, {1737, 1813}, {6516, 8609}, {36059, 48380}, {44717, 55126}, {47408, 54953}
X(56410) = barycentric quotient X(i)/X(j) for these {i,j}: {109, 37203}, {651, 46133}, {906, 45393}, {912, 4391}, {914, 35519}, {1409, 3657}, {1415, 915}, {1737, 46110}, {2149, 36106}, {2252, 522}, {3658, 31623}, {8609, 44426}, {18838, 17924}, {32660, 36052}, {36059, 2990}, {47408, 2804}, {51649, 514}


X(56411) = X(1)X(3)∩X(33)X(2222)

Barycentrics   a*(a^8 - 2*a^7*b + 4*a^5*b^3 - 4*a^4*b^4 - 2*a^3*b^5 + 4*a^2*b^6 - b^8 - 2*a^7*c + 7*a^6*b*c - 7*a^5*b^2*c - 4*a^4*b^3*c + 12*a^3*b^4*c - 5*a^2*b^5*c - 3*a*b^6*c + 2*b^7*c - 7*a^5*b*c^2 + 18*a^4*b^2*c^2 - 10*a^3*b^3*c^2 - 6*a^2*b^4*c^2 + 5*a*b^5*c^2 + 4*a^5*c^3 - 4*a^4*b*c^3 - 10*a^3*b^2*c^3 + 14*a^2*b^3*c^3 - 2*a*b^4*c^3 - 2*b^5*c^3 - 4*a^4*c^4 + 12*a^3*b*c^4 - 6*a^2*b^2*c^4 - 2*a*b^3*c^4 + 2*b^4*c^4 - 2*a^3*c^5 - 5*a^2*b*c^5 + 5*a*b^2*c^5 - 2*b^3*c^5 + 4*a^2*c^6 - 3*a*b*c^6 + 2*b*c^7 - c^8) : :

X(56411) lies on the cubic K817 and these lines: {1, 3}, {33, 2222}, {43, 2957}, {59, 9637}, {513, 1709}, {614, 37815}, {1699, 3259}, {1768, 2807}, {2817, 10058}, {7680, 47270}, {11124, 42757}, {44425, 44670}


X(56412) = X(1)X(3)∩X(5)X(30493)

Barycentrics   a*(a + b - c)*(a - b + c)*(a^3 - a*b^2 + a*b*c - b^2*c - a*c^2 - b*c^2)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(56412) lies on the cubic K976 and these lines: {1, 3}, {5, 30493}, {54, 36059}, {109, 37806}, {276, 18026}, {1210, 20122}, {1361, 5901}, {1393, 18180}, {1425, 43043}, {1887, 13369}, {6906, 45022}, {29958, 52659}

X(56412) = X(18026)-Ceva conjugate of X(17496)
X(56412) = X(i)-isoconjugate of X(j) for these (i,j): {34434, 44687}, {35196, 51870}
X(56412) = barycentric product X(i)*X(j) for these {i,j}: {5, 17074}, {1393, 14829}, {1414, 52322}, {11109, 44708}, {14570, 51662}, {17167, 37558}, {18180, 52358}
X(56412) = barycentric quotient X(i)/X(j) for these {i,j}: {572, 44687}, {1393, 2051}, {17074, 95}, {18180, 46880}, {37558, 56246}, {51662, 15412}, {52322, 4086}, {52358, 56189}, {55323, 56254}


X(56413) = X(1)X(3)∩X(31)X(3212)

Barycentrics   a*(a + b - c)*(a - b + c)*(a^2 - b*c)*(a^2*b - a*b^2 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(56413) lies on the cubic K989 and these lines: {1, 3}, {31, 3212}, {109, 43040}, {238, 242}, {239, 51329}, {1447, 3747}, {1966, 18033}, {3501, 52657}, {4433, 34253}, {9285, 51917}, {12194, 55086}, {19222, 51902}, {20967, 24579}, {24578, 52635}, {34252, 51903}, {51246, 51909}

X(56413) = isogonal conjugate of X(43748)
X(56413) = X(31)-Ceva conjugate of X(51935)
X(56413) = X(i)-isoconjugate of X(j) for these (i,j): {1, 43748}, {2, 51995}, {694, 39936}, {3500, 4876}, {7077, 54128}
X(56413) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 43748}, {32664, 51995}, {39043, 39936}
X(56413) = crossdifference of every pair of points on line {650, 20359}
X(56413) = X(1)-line conjugate of X(20359)
X(56413) = barycentric product X(i)*X(j) for these {i,j}: {1, 39930}, {75, 51956}, {1423, 14199}, {1428, 17786}, {1429, 32937}, {1447, 3501}, {1966, 51986}, {8927, 39940}, {10030, 34247}, {13588, 16609}, {18033, 51949}
X(56413) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 43748}, {31, 51995}, {1428, 3500}, {1429, 54128}, {1580, 39936}, {3501, 4518}, {13588, 36800}, {14199, 27424}, {34247, 4876}, {39930, 75}, {51949, 7077}, {51956, 1}, {51986, 1581}


X(56414) = X(1)X(3)∩X(20)X(108)

Barycentrics   a^2*(a + b - c)*(a - b + c)*(a^2 - b^2 - c^2)*(a^4 - b^4 + 2*a^2*b*c - 2*a*b^2*c - 2*a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(56414) lies on the cubic K1324 and these lines: {1, 3}, {12, 34120}, {20, 108}, {34, 37034}, {68, 53786}, {73, 7125}, {78, 7111}, {109, 3556}, {123, 3436}, {197, 21147}, {198, 15905}, {222, 1425}, {225, 37241}, {307, 1804}, {577, 2178}, {859, 53995}, {958, 51368}, {1012, 11399}, {1066, 52218}, {1092, 7078}, {1259, 23067}, {1359, 11827}, {1394, 40212}, {1396, 27652}, {1398, 1465}, {1415, 10316}, {1437, 19349}, {1455, 9798}, {1887, 37696}, {2933, 53321}, {2968, 12513}, {3157, 7335}, {3435, 3827}, {3869, 39167}, {3911, 34823}, {3926, 6516}, {4296, 11337}, {5226, 25909}, {5253, 25876}, {6759, 52830}, {6827, 54200}, {7099, 33587}, {7114, 22350}, {7952, 37404}, {8283, 18481}, {10106, 34822}, {10571, 22119}, {11500, 38554}, {13273, 18404}, {14257, 16049}, {15524, 52097}, {17306, 55118}, {18531, 18961}, {18641, 46009}, {19365, 36754}, {19366, 36742}, {20122, 36746}, {21773, 36748}, {22479, 37259}, {26377, 37397}, {28405, 28773}, {28407, 28771}, {36029, 44696}, {37179, 54366}, {40944, 56294}, {43742, 52366}, {52389, 55117}, {54081, 54083}

X(56414) = isogonal conjugate of X(43742)
X(56414) = isotomic conjugate of the polar conjugate of X(478)
X(56414) = X(i)-Ceva conjugate of X(j) for these (i,j): {69, 222}, {16049, 21147}
X(56414) = X(i)-isoconjugate of X(j) for these (i,j): {1, 43742}, {19, 34277}, {29, 43703}, {33, 8048}, {158, 39167}, {281, 42467}, {318, 3435}, {522, 40097}, {3064, 46640}, {15385, 24026}, {40454, 46878}
X(56414) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 43742}, {6, 34277}, {56, 4}, {123, 44426}, {1147, 39167}, {6588, 23978}
X(56414) = barycentric product X(i)*X(j) for these {i,j}: {7, 22132}, {63, 21147}, {69, 478}, {77, 1766}, {123, 1262}, {197, 348}, {205, 7182}, {222, 3436}, {394, 14257}, {603, 20928}, {1214, 16049}, {1231, 52143}, {1813, 21186}, {3926, 17408}, {6516, 6588}, {41364, 52385}, {47410, 55346}
X(56414) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 34277}, {6, 43742}, {123, 23978}, {197, 281}, {205, 33}, {222, 8048}, {478, 4}, {577, 39167}, {603, 42467}, {1409, 43703}, {1415, 40097}, {1766, 318}, {3436, 7017}, {6588, 44426}, {14257, 2052}, {16049, 31623}, {17408, 393}, {21147, 92}, {21186, 46110}, {22132, 8}, {23979, 15385}, {36059, 46640}, {41364, 1896}, {47410, 2968}, {52143, 1172}, {52411, 3435}
X(56414) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 999, 17102}, {1398, 37257, 1465}


X(56415) = X(1)X(5)∩X(44)X(655)

Barycentrics   (a + b - c)*(a - b + c)*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^5 - a^4*b - a^3*b^2 + a^2*b^3 - a^4*c + a^3*b*c + a^2*b^2*c - b^4*c - a^3*c^2 + a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 + b^2*c^3 - b*c^4) : :

X(56415) lies on the cubic K137 and these lines: {1, 5}, {44, 655}, {239, 35174}, {651, 16732}, {654, 10015}, {1086, 52392}, {1146, 52351}, {18359, 23592}

X(56415) = X(10015)-line conjugate of X(654)


X(56416) = X(1)X(5)∩X(10)X(522)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(56416) lies on the cubic K259 and these lines: {1, 5}, {2, 36590}, {3, 2222}, {4, 7012}, {8, 51562}, {10, 522}, {30, 23703}, {35, 45828}, {40, 29374}, {45, 14358}, {55, 39173}, {56, 47051}, {79, 46821}, {109, 10742}, {169, 2161}, {220, 35113}, {221, 18542}, {318, 7141}, {517, 35015}, {651, 10711}, {655, 5657}, {759, 38903}, {942, 43947}, {1145, 26611}, {1168, 24864}, {1500, 23980}, {1512, 22464}, {1737, 53525}, {2804, 37629}, {3120, 6797}, {3259, 14260}, {3295, 38938}, {3585, 18360}, {3673, 18815}, {3679, 36909}, {4075, 15065}, {5697, 13756}, {5790, 14629}, {6376, 20566}, {6702, 52537}, {6788, 17054}, {7004, 12619}, {10703, 19914}, {11010, 51886}, {12611, 53530}, {14010, 17757}, {14628, 31397}, {15325, 41343}, {18480, 33649}, {18524, 38945}, {18545, 34046}, {21290, 28829}, {23058, 36910}, {24929, 40172}, {24984, 25005}, {25413, 34242}, {33298, 35174}, {34040, 45631}, {35004, 52391}, {38950, 51631}

X(56416) = complement of X(36944)
X(56416) = complement of the isogonal conjugate of X(14260)
X(56416) = X(i)-complementary conjugate of X(j) for these (i,j): {106, 517}, {517, 121}, {859, 34587}, {1417, 44675}, {1457, 1145}, {1769, 3259}, {2183, 16594}, {8752, 26011}, {9456, 3911}, {14260, 10}, {17109, 45247}, {52031, 141}
X(56416) = X(i)-Ceva conjugate of X(j) for these (i,j): {80, 517}, {36590, 80}, {51562, 2804}
X(56416) = X(i)-isoconjugate of X(j) for these (i,j): {36, 104}, {214, 10428}, {320, 34858}, {654, 37136}, {909, 3218}, {1309, 22379}, {1443, 2342}, {1795, 1870}, {1983, 2401}, {2323, 34051}, {2423, 4585}, {2720, 3738}, {3904, 32669}, {3960, 32641}, {7113, 34234}, {8648, 54953}, {11570, 15381}, {13136, 21758}, {14578, 17923}, {16586, 41933}, {16944, 36944}, {18816, 52434}, {36037, 53314}, {36123, 52407}, {51565, 52440}
X(56416) = X(i)-Dao conjugate of X(j) for these (i,j): {517, 34586}, {1145, 4511}, {3259, 53314}, {3911, 41801}, {15898, 104}, {16586, 320}, {23980, 3218}, {25640, 1870}, {36909, 51565}, {38981, 3738}, {40613, 36}, {46398, 4453}, {55153, 3904}
X(56416) = cevapoint of X(i) and X(j) for these (i,j): {1145, 17757}, {1769, 3259}, {23757, 35015}, {23980, 51377}
X(56416) = trilinear pole of line {21801, 42763}
X(56416) = crossdifference of every pair of points on line {654, 7113}
X(56416) = barycentric product X(i)*X(j) for these {i,j}: {8, 52212}, {80, 908}, {517, 18359}, {655, 2804}, {1465, 52409}, {1769, 36804}, {1785, 52351}, {2006, 6735}, {2161, 3262}, {2183, 20566}, {10015, 51562}, {14616, 21801}, {17757, 24624}, {22464, 36910}, {24029, 52356}, {26611, 40437}, {35174, 46393}, {36590, 52659}, {46398, 46649}, {46405, 53549}, {51975, 52031}
X(56416) = barycentric quotient X(i)/X(j) for these {i,j}: {80, 34234}, {517, 3218}, {655, 54953}, {908, 320}, {1145, 51583}, {1411, 34051}, {1465, 1443}, {1769, 3960}, {1785, 17923}, {2161, 104}, {2183, 36}, {2222, 37136}, {2804, 3904}, {3262, 20924}, {3310, 53314}, {3326, 46398}, {6187, 909}, {6735, 32851}, {10015, 4453}, {14260, 40215}, {14571, 1870}, {14584, 40218}, {15507, 27950}, {17757, 3936}, {18359, 18816}, {21801, 758}, {22350, 22128}, {22464, 17078}, {23980, 34586}, {24028, 16586}, {32675, 2720}, {34857, 2250}, {36910, 51565}, {41215, 38353}, {42753, 53546}, {42754, 4089}, {46393, 3738}, {51362, 27757}, {51377, 2245}, {51562, 13136}, {52031, 52553}, {52212, 7}, {52371, 52663}, {52409, 36795}, {52431, 1795}, {52659, 41801}, {53549, 654}
X(56416) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 80, 14584}, {1, 14584, 34232}, {1, 52005, 34586}, {80, 52383, 45926}


X(56417) = X(1)X(5)∩X(2)X(52409)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c + b^2*c - a*c^2 + b*c^2 - c^3) : :

X(56417) lies on the cubic K491 and these lines: {1, 5}, {2, 52409}, {37, 1989}, {79, 18360}, {171, 16152}, {498, 15065}, {499, 51975}, {759, 4228}, {915, 1785}, {1319, 38954}, {1478, 11700}, {1720, 34257}, {1725, 17734}, {1737, 33129}, {1784, 37770}, {2161, 17699}, {3085, 18359}, {3193, 21077}, {3582, 36909}, {3583, 51361}, {3664, 52392}, {3672, 18815}, {4862, 56287}, {7040, 7952}, {10058, 51889}, {10260, 54064}, {13273, 33649}, {17322, 20566}

X(56417) = X(i)-isoconjugate of X(j) for these (i,j): {36, 90}, {1069, 1870}, {1443, 7072}, {2164, 3218}, {2361, 7318}, {2994, 7113}, {3738, 36082}, {6513, 52413}, {7040, 52407}, {20570, 52434}, {36626, 52440}
X(56417) = X(i)-Dao conjugate of X(j) for these (i,j): {15898, 90}, {36909, 36626}
X(56417) = trilinear pole of line {21853, 46389}
X(56417) = barycentric product X(i)*X(j) for these {i,j}: {46, 18359}, {80, 5905}, {1068, 52351}, {2006, 5552}, {2161, 20930}, {2178, 20566}, {14616, 21853}, {21077, 24624}, {21188, 51562}, {31631, 52383}, {35174, 46389}, {36804, 51648}
X(56417) = barycentric quotient X(i)/X(j) for these {i,j}: {46, 3218}, {80, 2994}, {1068, 17923}, {1807, 6513}, {2006, 7318}, {2161, 90}, {2178, 36}, {3157, 22128}, {5552, 32851}, {5905, 320}, {6187, 2164}, {18359, 20570}, {20930, 20924}, {21077, 3936}, {21188, 4453}, {21853, 758}, {32675, 36082}, {36910, 36626}, {46389, 3738}, {51648, 3960}, {52033, 1870}, {52431, 1069}, {55214, 53527}
X(56417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 45946, 1718}, {1807, 52383, 80}, {45926, 52371, 80}


X(56418) = X(1)X(5)∩X(6)X(57)

Barycentrics   a*(a + b - c)*(a - b + c)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 4*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3) : :

X(56418) lies on the cubic K502 and these lines: {1, 5}, {2, 914}, {6, 57}, {7, 17012}, {34, 386}, {42, 34036}, {43, 8270}, {46, 36754}, {73, 34489}, {77, 3911}, {165, 2361}, {198, 51413}, {226, 3946}, {227, 16466}, {278, 52033}, {582, 1399}, {651, 4850}, {990, 2635}, {995, 998}, {997, 54292}, {1038, 3216}, {1079, 3338}, {1103, 1697}, {1193, 21147}, {1203, 37550}, {1214, 1723}, {1445, 18593}, {1453, 37583}, {1456, 37541}, {1480, 5119}, {1490, 33178}, {1708, 17080}, {1722, 37558}, {1724, 54320}, {1728, 37565}, {1758, 16468}, {1877, 48837}, {2051, 5307}, {2078, 7290}, {2264, 15851}, {2324, 31142}, {3240, 4318}, {3305, 16577}, {3306, 43048}, {3666, 34048}, {3914, 34029}, {3995, 28996}, {4646, 34040}, {4654, 7274}, {4846, 50527}, {5018, 17779}, {5222, 8776}, {5226, 17011}, {5316, 25930}, {5398, 15803}, {5435, 17020}, {5709, 54301}, {6510, 25934}, {6848, 15836}, {7269, 17013}, {7308, 40937}, {8758, 15299}, {9370, 37592}, {10571, 54418}, {10964, 16215}, {14997, 37787}, {15297, 34977}, {17073, 26005}, {17147, 28997}, {17495, 28968}, {23511, 31231}, {25939, 55432}, {28780, 33077}, {28830, 40863}, {31019, 37771}, {31187, 54390}, {34050, 34492}, {39943, 40407}

X(56418) = X(i)-isoconjugate of X(j) for these (i,j): {9, 7284}, {1481, 36916}
X(56418) = X(i)-Dao conjugate of X(j) for these (i,j): {478, 7284}, {3306, 28808}
X(56418) = crossdifference of every pair of points on line {654, 3900}
X(56418) = barycentric product X(i)*X(j) for these {i,j}: {7, 5119}, {57, 31018}
X(56418) = barycentric quotient X(i)/X(j) for these {i,j}: {56, 7284}, {1480, 3872}, {5119, 8}, {31018, 312}
X(56418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5400, 9817}, {6, 1465, 57}, {222, 3752, 57}, {223, 2999, 57}, {1427, 52424, 57}, {5396, 37697, 1}, {5718, 5723, 37695}, {5718, 37695, 5219}, {17080, 32911, 1708}, {17720, 52659, 5219}


X(56419) = X(1)X(5)∩X(4)X(2964)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2*b - b^3 + a^2*c + a*b*c + b^2*c + b*c^2 - c^3) : :

X(56419) lies on the cubic K588 and these lines: {1, 5}, {4, 2964}, {10, 18359}, {58, 3585}, {201, 18395}, {225, 2166}, {484, 2161}, {759, 4225}, {1698, 52351}, {1737, 18815}, {2323, 31160}, {3120, 11571}, {3254, 46821}, {3582, 40437}, {3584, 54528}, {4792, 33136}, {6187, 38938}, {6702, 16586}, {6734, 52409}, {9780, 41226}, {10894, 16473}, {10895, 36750}, {11219, 46820}, {15932, 47054}, {19875, 36910}, {29675, 40172}, {33140, 40109}

X(56419) = X(54528)-Ceva conjugate of X(80)
X(56419) = X(36)-isoconjugate of X(15175)
X(56419) = X(i)-Dao conjugate of X(j) for these (i,j): {15898, 15175}, {17057, 4511}
X(56419) = barycentric product X(i)*X(j) for these {i,j}: {80, 31019}, {3822, 24624}, {5902, 18359}
X(56419) = barycentric quotient X(i)/X(j) for these {i,j}: {2161, 15175}, {3822, 3936}, {5902, 3218}, {17057, 27757}, {23758, 23884}, {31019, 320}
X(56419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {80, 2006, 1}, {37718, 51310, 80}, {45926, 52383, 80}


X(56420) = X(1)X(5)∩X(4)X(38954)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^5*b - 2*a^3*b^3 + a*b^5 + a^5*c - 4*a^4*b*c + 4*a^3*b^2*c + 3*a^2*b^3*c - 5*a*b^4*c + b^5*c + 4*a^3*b*c^2 - 8*a^2*b^2*c^2 + 4*a*b^3*c^2 - 2*a^3*c^3 + 3*a^2*b*c^3 + 4*a*b^2*c^3 - 2*b^3*c^3 - 5*a*b*c^4 + a*c^5 + b*c^5) : :
X(56420) = 3 X[5587] - X[52005], 3 X[381] - X[14260]

X(56420) lies on the cubic K594 and these lines: {1, 5}, {4, 38954}, {381, 14260}, {513, 18480}, {517, 51975}, {1482, 51562}, {2222, 6924}, {3656, 36909}, {5903, 18302}, {6911, 40437}, {14923, 52409}, {17753, 35174}, {36944, 38617}


X(56421) = X(1)X(5)∩X(56)X(40577)

Barycentrics   (2*a - b - c)*(a + b - c)*(a - b + c)*(a^3*b + a^2*b^2 - a*b^3 - b^4 + a^3*c - 6*a^2*b*c + 2*a*b^2*c + a^2*c^2 + 2*a*b*c^2 + 2*b^2*c^2 - a*c^3 - c^4) : :

X(56421) lies on the cubic K666 and these lines: {1, 5}, {56, 40577}, {65, 13756}, {946, 38385}, {1319, 14028}, {1647, 40663}, {2099, 45247}, {3649, 4017}, {5298, 23703}, {10106, 39752}, {10222, 31841}, {11717, 18976}, {13751, 17705}, {15326, 41343}, {21630, 52537}, {23243, 24928}, {24871, 25028}, {28174, 46820}, {41801, 55082}

X(56421) = X(52537)-Dao conjugate of X(8)
X(56421) = barycentric product X(i)*X(j) for these {i,j}: {3911, 21630}, {14628, 52537}
X(56421) = barycentric quotient X(21630)/X(4997)
X(56421) = {X(1),X(14584)}-harmonic conjugate of X(1317)


X(56422) = X(1)X(5)∩X(74)X(484)

Barycentrics   a*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 - a*c + c^2) : :

X(56422) lies on the cubic K668 and these lines: {1, 5}, {35, 35194}, {59, 10091}, {74, 484}, {78, 52409}, {104, 46821}, {269, 52392}, {759, 5293}, {1250, 46077}, {2161, 3731}, {2166, 35320}, {2324, 36910}, {3065, 52377}, {3678, 35193}, {3811, 18359}, {3961, 40172}, {4354, 4420}, {5010, 10260}, {6740, 15065}, {7150, 10638}, {7161, 52380}, {7190, 18815}, {7280, 10623}, {7984, 14513}, {10090, 46820}, {13146, 35338}, {16110, 52242}, {17104, 47378}, {24433, 35204}, {41684, 45272}

X(56422) = X(i)-isoconjugate of X(j) for these (i,j): {36, 79}, {94, 52059}, {320, 6186}, {654, 38340}, {758, 52375}, {1443, 7073}, {1464, 3615}, {1789, 1835}, {1870, 7100}, {2160, 3218}, {2245, 52393}, {2323, 52374}, {3179, 41225}, {3738, 26700}, {4282, 43682}, {4511, 52372}, {6742, 53314}, {7113, 30690}, {13486, 53527}, {15455, 21758}, {17515, 52390}, {20565, 52434}, {39152, 39153}, {47317, 53046}, {52344, 52440}, {52381, 52413}
X(56422) = X(i)-Dao conjugate of X(j) for these (i,j): {8287, 4453}, {15898, 79}, {36909, 52344}, {55042, 3738}
X(56422) = barycentric product X(i)*X(j) for these {i,j}: {1, 41226}, {35, 18359}, {80, 3219}, {319, 2161}, {655, 35057}, {759, 3969}, {1411, 42033}, {1442, 36910}, {1807, 52412}, {2003, 52409}, {2006, 4420}, {2174, 20566}, {2341, 40999}, {2605, 36804}, {3678, 24624}, {6187, 33939}, {6198, 52351}, {6740, 16577}, {9404, 35174}, {14838, 51562}, {15065, 40214}, {17095, 52371}, {18815, 52405}, {34016, 34857}
X(56422) = barycentric quotient X(i)/X(j) for these {i,j}: {35, 3218}, {80, 30690}, {319, 20924}, {759, 52393}, {1411, 52374}, {1442, 17078}, {1807, 52381}, {2003, 1443}, {2161, 79}, {2174, 36}, {2222, 38340}, {2341, 3615}, {2594, 18593}, {2605, 3960}, {3219, 320}, {3678, 3936}, {3969, 35550}, {4420, 32851}, {6187, 2160}, {6198, 17923}, {7202, 4089}, {9404, 3738}, {14838, 4453}, {14975, 52413}, {16577, 41804}, {17454, 4973}, {18359, 20565}, {21741, 1464}, {32675, 26700}, {33939, 40075}, {34079, 52375}, {34857, 8818}, {35057, 3904}, {36910, 52344}, {41226, 75}, {41502, 17515}, {42624, 3179}, {47054, 26842}, {51562, 15455}, {52371, 7110}, {52383, 43682}, {52405, 4511}, {52408, 22128}, {52431, 7100}, {53542, 53546}, {55210, 53527}
X(56422) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5400, 38458}, {80, 1807, 1}, {1807, 52371, 80}, {6740, 51562, 15065}


X(56423) = X(1)X(5)∩X(100)X(24026)

Barycentrics   a^9 - 2*a^8*b + 3*a^6*b^3 - 3*a^5*b^4 + 2*a^3*b^6 - a^2*b^7 - 2*a^8*c + 6*a^7*b*c - 5*a^6*b^2*c - 4*a^5*b^3*c + 11*a^4*b^4*c - 6*a^3*b^5*c - 3*a^2*b^6*c + 4*a*b^7*c - b^8*c - 5*a^6*b*c^2 + 15*a^5*b^2*c^2 - 11*a^4*b^3*c^2 - 9*a^3*b^4*c^2 + 17*a^2*b^5*c^2 - 8*a*b^6*c^2 + b^7*c^2 + 3*a^6*c^3 - 4*a^5*b*c^3 - 11*a^4*b^2*c^3 + 26*a^3*b^3*c^3 - 13*a^2*b^4*c^3 - 4*a*b^5*c^3 + 3*b^6*c^3 - 3*a^5*c^4 + 11*a^4*b*c^4 - 9*a^3*b^2*c^4 - 13*a^2*b^3*c^4 + 16*a*b^4*c^4 - 3*b^5*c^4 - 6*a^3*b*c^5 + 17*a^2*b^2*c^5 - 4*a*b^3*c^5 - 3*b^4*c^5 + 2*a^3*c^6 - 3*a^2*b*c^6 - 8*a*b^2*c^6 + 3*b^3*c^6 - a^2*c^7 + 4*a*b*c^7 + b^2*c^7 - b*c^8 : :

X(56423) lies on the cubic K817 and these lines: {1, 5}, {100, 24026}, {104, 53610}, {108, 10090}, {153, 25436}, {523, 34464}, {900, 1768}, {2771, 18342}, {2801, 15343}, {3520, 18861}, {5494, 10265}, {5691, 38950}, {8674, 34462}, {10777, 35015}, {10778, 21635}, {14130, 35451}, {17100, 22467}, {24410, 53742}, {34460, 47227}, {43655, 47270}, {43728, 43940}

X(56423) = reflection of X(i) in X(j) for these {i,j}: {153, 25436}, {5691, 38950}, {18341, 10265}, {47270, 43655}
X(56423) = reflection of X(34464) in the Euler line


X(56424) = X(1)X(5)∩X(4)X(522)

Barycentrics   2*a^10 - 3*a^9*b - a^8*b^2 + 5*a^7*b^3 - 7*a^6*b^4 + 3*a^5*b^5 + 7*a^4*b^6 - 9*a^3*b^7 + a^2*b^8 + 4*a*b^9 - 2*b^10 - 3*a^9*c + 8*a^8*b*c - 6*a^7*b^2*c - 2*a^6*b^3*c + 12*a^5*b^4*c - 18*a^4*b^5*c + 6*a^3*b^6*c + 10*a^2*b^7*c - 9*a*b^8*c + 2*b^9*c - a^8*c^2 - 6*a^7*b*c^2 + 18*a^6*b^2*c^2 - 15*a^5*b^3*c^2 - 3*a^4*b^4*c^2 + 24*a^3*b^5*c^2 - 20*a^2*b^6*c^2 - 3*a*b^7*c^2 + 6*b^8*c^2 + 5*a^7*c^3 - 2*a^6*b*c^3 - 15*a^5*b^2*c^3 + 28*a^4*b^3*c^3 - 21*a^3*b^4*c^3 - 10*a^2*b^5*c^3 + 23*a*b^6*c^3 - 8*b^7*c^3 - 7*a^6*c^4 + 12*a^5*b*c^4 - 3*a^4*b^2*c^4 - 21*a^3*b^3*c^4 + 38*a^2*b^4*c^4 - 15*a*b^5*c^4 - 4*b^6*c^4 + 3*a^5*c^5 - 18*a^4*b*c^5 + 24*a^3*b^2*c^5 - 10*a^2*b^3*c^5 - 15*a*b^4*c^5 + 12*b^5*c^5 + 7*a^4*c^6 + 6*a^3*b*c^6 - 20*a^2*b^2*c^6 + 23*a*b^3*c^6 - 4*b^4*c^6 - 9*a^3*c^7 + 10*a^2*b*c^7 - 3*a*b^2*c^7 - 8*b^3*c^7 + a^2*c^8 - 9*a*b*c^8 + 6*b^2*c^8 + 4*a*c^9 + 2*b*c^9 - 2*c^10 : :

X(56424) lies on the cubic K858 and these lines: {1, 5}, {4, 522}, {34, 13999}, {515, 36944}, {5136, 54243}, {5691, 34464}, {5693, 31847}, {16554, 23058}

X(56424) = {X(14584),X(45950)}-harmonic conjugate of X(1)


X(56425) = X(1)X(5)∩X(89)X(8046)

Barycentrics   (a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(3*a^3 - a^2*b - 3*a*b^2 + b^3 - a^2*c + 5*a*b*c - b^2*c - 3*a*c^2 - b*c^2 + c^3) : :

X(56425) lies on the cubic K915 and these lines: {1, 5}, {89, 8046}, {145, 51975}, {1168, 5425}, {2222, 5563}, {3241, 36909}, {3244, 51562}, {4977, 14812}, {5559, 52377}, {6126, 41558}, {6224, 52537}, {10222, 38954}, {11009, 51886}, {13606, 46821}, {36590, 51071}, {36975, 53525}, {40437, 52640}

X(56425) = X(36)-isoconjugate of X(13143)
X(56425) = X(15898)-Dao conjugate of X(13143)
X(56425) = barycentric quotient X(i)/X(j) for these {i,j}: {2161, 13143}, {33812, 51583}
X(56425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 14584, 80}, {14584, 34232, 1}


X(56426) = X(1)X(5)∩X(44)X(517)

Barycentrics   a*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 + 4*b*c - c^2)*(a^2 - b^2 - a*c + c^2) : :

X(56426) lies on the cubic K1075 and these lines: {1, 5}, {3, 6187}, {13, 11072}, {14, 11073}, {30, 8481}, {44, 517}, {88, 104}, {109, 6797}, {244, 12773}, {265, 1245}, {381, 49487}, {515, 15898}, {678, 12331}, {759, 1293}, {899, 35459}, {1010, 6740}, {1054, 38602}, {1443, 17895}, {1480, 40587}, {1482, 34857}, {2153, 52202}, {2154, 52201}, {2166, 52372}, {2222, 5126}, {3120, 10742}, {3527, 52391}, {3576, 39963}, {3577, 16670}, {3656, 49494}, {3753, 35281}, {3924, 18525}, {3938, 50798}, {4285, 48848}, {4642, 13743}, {4674, 12515}, {4695, 35000}, {4696, 52409}, {5297, 24808}, {6914, 17601}, {7052, 19551}, {7126, 33655}, {7292, 39572}, {9324, 33814}, {9623, 36910}, {9955, 15955}, {10246, 40172}, {15934, 53531}, {16615, 52380}, {17595, 22758}, {18526, 28082}, {19860, 37150}, {24297, 52377}, {24443, 26321}, {24624, 54933}, {26727, 34311}, {28204, 30117}, {29820, 50824}, {30588, 54528}, {34242, 50193}, {36590, 38460}, {37611, 54390}, {44414, 52431}, {49682, 50796}

X(56426) = X(i)-isoconjugate of X(j) for these (i,j): {36, 1000}, {320, 34446}, {1443, 52429}, {1464, 56107}, {30680, 52413}, {51564, 53314}
X(56426) = X(i)-Dao conjugate of X(j) for these (i,j): {45, 27757}, {15898, 1000}, {52148, 4511}
X(56426) = crossdifference of every pair of points on line {654, 53535}
X(56426) = barycentric product X(i)*X(j) for these {i,j}: {80, 3306}, {759, 4054}, {999, 18359}, {1411, 28808}, {2006, 3872}, {2161, 42697}, {3753, 24624}, {6187, 20925}, {17079, 52371}, {18815, 55432}
X(56426) = barycentric quotient X(i)/X(j) for these {i,j}: {999, 3218}, {1807, 30680}, {2161, 1000}, {2341, 56107}, {3306, 320}, {3753, 3936}, {3872, 32851}, {4054, 35550}, {20925, 40075}, {35281, 4585}, {40587, 27757}, {42697, 20924}, {52371, 36916}, {52428, 2323}, {55432, 4511}
X(56426) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 80, 52371}, {1, 52371, 1807}, {80, 1411, 1807}, {1411, 52371, 1}, {39150, 39151, 2161}


X(56427) = X(1)X(2)∩X(37)X(588)

Barycentrics   1 - 2*Sin[A] : :
Barycentrics   a*(b*c - 2*S) : :

X(56427) lies on these lines: {1, 2}, {11, 15233}, {12, 15234}, {33, 55481}, {34, 55482}, {37, 588}, {40, 21566}, {55, 1599}, {56, 1600}, {81, 7969}, {175, 5905}, {326, 32794}, {329, 17802}, {394, 3298}, {481, 17483}, {482, 26842}, {495, 1591}, {496, 1592}, {517, 16441}, {940, 44635}, {999, 1584}, {1038, 55893}, {1040, 55897}, {1056, 6805}, {1058, 6806}, {1060, 1589}, {1062, 1590}, {1124, 5422}, {1270, 55392}, {1271, 55391}, {1335, 1993}, {1385, 16440}, {1398, 15201}, {1482, 16433}, {1500, 8962}, {1583, 3295}, {1585, 6198}, {1586, 1870}, {1659, 31019}, {1994, 3301}, {2067, 55566}, {3100, 55888}, {3218, 13388}, {3219, 30557}, {3297, 10601}, {3299, 34545}, {3553, 7585}, {3554, 7586}, {3576, 21567}, {3593, 55427}, {3595, 55426}, {3640, 4661}, {3641, 4430}, {3681, 45713}, {3873, 45714}, {4296, 55883}, {4383, 44636}, {5391, 44179}, {5408, 35809}, {5409, 35768}, {5414, 55567}, {5483, 31582}, {6767, 55579}, {7071, 15198}, {7373, 55577}, {7968, 32911}, {7982, 21565}, {8148, 21558}, {8968, 9632}, {9538, 55898}, {9776, 17805}, {10222, 21553}, {10246, 16432}, {10247, 21547}, {11398, 15187}, {11399, 15188}, {12702, 21559}, {13389, 27003}, {13390, 31053}, {15066, 55410}, {15178, 21492}, {15191, 52427}, {15325, 55878}, {16200, 21564}, {16884, 31473}, {17484, 31539}, {17597, 45477}, {18447, 55885}, {18455, 55890}, {18991, 37685}, {20060, 31532}, {20075, 30334}, {21548, 37624}, {21552, 33179}, {27065, 30556}, {32582, 45716}, {37696, 55881}, {37697, 55882}, {37729, 55887}, {55389, 55455}, {55390, 55454}, {55403, 55465}, {55404, 55435}

X(56427) = anticomplement of X(6348)
X(56427) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3302}, {2963, 3299}
X(56427) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 3302}, {5507, 1}, {10639, 42676}, {10640, 42678}
X(56427) = barycentric product X(i)*X(j) for these {i,j}: {1, 32792}, {75, 3301}, {302, 42679}, {303, 42681}
X(56427) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3302}, {61, 42678}, {62, 42676}, {2964, 3299}, {3300, 2962}, {3301, 1}, {32792, 75}, {42679, 17}, {42681, 18}
X(56427) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3084, 2}, {33, 55481, 55573}, {34, 55482, 55569}, {1125, 6347, 2}, {1335, 55409, 1993}, {5393, 55877, 2}, {13388, 55397, 3218}, {30557, 55398, 3219}, {55391, 55457, 1271}, {55392, 55456, 1270}, {55410, 55441, 15066}


X(56428) = X(2)X(6)∩X(159)X(20998)

Barycentrics   a^2*(a^4*b^2 + a^2*b^4 + a^4*c^2 - 3*a^2*b^2*c^2 - b^4*c^2 + a^2*c^4 - b^2*c^4) : :

X(56428) lies on the cubic K076 and these lines: {2, 6}, {159, 20998}, {182, 6310}, {1176, 30496}, {1691, 1968}, {1915, 19137}, {3053, 11326}, {3124, 12220}, {3229, 20794}, {3291, 6467}, {3981, 11574}, {5085, 35687}, {5640, 31390}, {6375, 11328}, {8770, 9924}, {9225, 52016}, {9230, 11333}, {18278, 21778}, {19132, 32445}, {19133, 34251}, {22138, 43183}, {34249, 41396}, {34811, 41328}, {48262, 55697}

X(56428) = X(53059)-Ceva conjugate of X(6)
X(56428) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 21001, 69}, {6, 38303, 6144}, {597, 16285, 6}, {3051, 51171, 6}, {26206, 42295, 6}


X(56429) = X(2)X(6)∩X(99)X(1499)

Barycentrics   (a^2 - b^2)*(a^2 - c^2)*(2*a^6 - 6*a^4*b^2 + 9*a^2*b^4 - b^6 - 6*a^4*c^2 - 3*b^4*c^2 + 9*a^2*c^4 - 3*b^2*c^4 - c^6) : :
X(56429) = 2 X[37746] - 3 X[41133]

X(56429) lies on the cubic K088 and these lines: {2, 6}, {99, 1499}, {110, 6082}, {523, 9124}, {843, 47077}, {892, 4563}, {1975, 15098}, {2696, 35575}, {6077, 16092}, {6390, 11006}, {14588, 35356}, {34169, 44956}, {50567, 53136}

X(56429) = reflection of X(i) in X(j) for these {i,j}: {843, 47077}, {5912, 5108}, {22329, 37745}, {34169, 44956}
X(56429) = isotomic conjugate of X(43667)
X(56429) = antitomic conjugate of X(52235)
X(56429) = psi-transform of X(47047)
X(56429) = X(i)-isoconjugate of X(j) for these (i,j): {31, 43667}, {661, 9136}, {798, 9487}
X(56429) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 43667}, {31998, 9487}, {36830, 9136}, {39075, 512}
X(56429) = barycentric product X(670)*X(9486)
X(56429) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 43667}, {99, 9487}, {110, 9136}, {5468, 37860}, {9486, 512}, {52233, 9178}, {52235, 43674}
X(56429) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5468, 9182, 14999}, {5468, 14607, 9182}


X(56430) = X(2)X(6)∩X(23)X(4576)

Barycentrics   a^6 - a^4*b^2 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - b^2*c^4 : :

X(56430) lies on the cubic K223 and these lines: {2, 6}, {23, 4576}, {32, 35275}, {74, 9150}, {76, 5651}, {99, 1495}, {110, 2868}, {125, 37803}, {182, 11059}, {305, 9306}, {316, 51360}, {419, 18020}, {450, 44132}, {468, 6393}, {511, 4563}, {538, 35279}, {669, 3265}, {698, 20998}, {732, 9225}, {805, 2373}, {858, 5207}, {1078, 5650}, {1799, 3819}, {1915, 16951}, {1975, 35259}, {1976, 17932}, {1995, 18906}, {2366, 9091}, {2482, 35295}, {3094, 26257}, {3917, 33651}, {4074, 16950}, {4176, 6353}, {5642, 7799}, {5972, 37804}, {6331, 41204}, {6337, 35260}, {6340, 32064}, {6394, 44436}, {7760, 40130}, {7782, 35268}, {7783, 35301}, {7793, 35288}, {7809, 13857}, {7998, 26233}, {8627, 13586}, {9146, 15107}, {9888, 48991}, {10330, 35265}, {11056, 24206}, {11206, 19583}, {11326, 37889}, {11459, 37334}, {12036, 51224}, {13414, 46810}, {13415, 46813}, {19577, 53475}, {30793, 39141}, {31101, 33796}, {32223, 50567}, {32269, 51374}, {32741, 52501}, {34336, 34397}, {34405, 52249}, {35277, 37512}, {35575, 53704}, {43363, 53624}, {47582, 51438}

X(56430) = isogonal conjugate of X(16098)
X(56430) = isogonal conjugate of the isotomic conjugate of X(16084)
X(56430) = isotomic conjugate of the polar conjugate of X(15014)
X(56430) = X(2366)-Ceva conjugate of X(69)
X(56430) = X(i)-isoconjugate of X(j) for these (i,j): {1, 16098}, {661, 9091}, {798, 53202}
X(56430) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 16098}, {31998, 53202}, {36830, 9091}
X(56430) = crossdifference of every pair of points on line {512, 1196}
X(56430) = barycentric product X(i)*X(j) for these {i,j}: {6, 16084}, {69, 15014}, {99, 9035}, {865, 34537}, {4563, 47206}
X(56430) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 16098}, {99, 53202}, {110, 9091}, {865, 3124}, {9035, 523}, {15014, 4}, {16084, 76}, {47206, 2501}
X(56430) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 3266, 12215}, {5468, 5971, 39099}, {5972, 51371, 37804}


X(56431) = X(2)X(6)∩X(31)X(8033)

Barycentrics   (a + b)*(a + c)*(a^3*b + a^3*c - a^2*b*c - b^2*c^2) : :

X(56431) lies on the cubic K224 and these lines: {2, 6}, {31, 8033}, {42, 7304}, {99, 902}, {100, 2669}, {106, 4615}, {171, 873}, {238, 799}, {310, 24259}, {669, 4367}, {675, 805}, {750, 51314}, {1326, 4610}, {1458, 4573}, {1621, 39915}, {1911, 4589}, {2054, 17930}, {2239, 40017}, {3011, 51370}, {3218, 18827}, {3747, 40874}, {4038, 40439}, {4039, 4600}, {4576, 20045}, {6384, 27631}, {7191, 32010}, {16690, 34022}, {17103, 17126}, {17122, 33779}, {17763, 52137}, {26247, 36800}, {52899, 56053}

X(56431) = isotomic conjugate of the polar conjugate of X(15147)
X(56431) = X(2368)-Ceva conjugate of X(86)
X(56431) = X(798)-isoconjugate of X(53195)
X(56431) = X(31998)-Dao conjugate of X(53195)
X(56431) = crossdifference of every pair of points on line {512, 21838}
X(56431) = barycentric product X(i)*X(j) for these {i,j}: {69, 15147}, {86, 40859}
X(56431) = barycentric quotient X(i)/X(j) for these {i,j}: {99, 53195}, {15147, 4}, {40859, 10}


X(56432) = X(2)X(6)∩X(99)X(1055)

Barycentrics   (a + b)*(a + c)*(a^4*b - a^3*b^2 + a^4*c - a^3*b*c + a^2*b^2*c - a^3*c^2 + a^2*b*c^2 + a*b^2*c^2 - b^3*c^2 - b^2*c^3) : :

X(56432) lies on the cubic K225 and these lines: {2, 6}, {99, 1055}, {101, 5209}, {350, 662}, {645, 672}, {669, 7253}, {805, 1311}, {811, 2202}, {1326, 4368}, {2291, 9150}, {4594, 41882}, {4620, 34537}, {5011, 38477}, {17499, 27698}, {20863, 56154}, {26279, 32010}, {53624, 53707}

X(56432) = barycentric product X(1)*X(14195)
X(56432) = barycentric quotient X(14195)/X(75)
X(56432) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {}


X(56433) = X(2)X(6)∩X(75)X(517)

Barycentrics   a^4*b + a^3*b^2 - a^2*b^3 - a*b^4 + a^4*c - a^3*b*c - 2*a^2*b^2*c - a*b^3*c - b^4*c + a^3*c^2 - 2*a^2*b*c^2 - 4*a*b^2*c^2 - b^3*c^2 - a^2*c^3 - a*b*c^3 - b^2*c^3 - a*c^4 - b*c^4 : :

X(56433) lies on the cubic K386 and these lines: {2, 6}, {8, 3264}, {56, 54429}, {75, 517}, {104, 1310}, {320, 31997}, {991, 3883}, {995, 4357}, {1444, 4216}, {2274, 50295}, {3879, 30116}, {3966, 9025}, {4352, 4389}, {4360, 20037}, {4643, 37596}, {4690, 25125}, {10449, 30939}, {17139, 34284}, {17152, 42697}, {17183, 44140}, {17196, 48838}, {17272, 49997}, {19257, 49716}, {37617, 50296}


X(56434) = X(2)X(6)∩X(187)X(48657)

Barycentrics   a^6 - 7*a^4*b^2 + 5*a^2*b^4 - 2*b^6 - 7*a^4*c^2 + 3*a^2*b^2*c^2 + 2*b^4*c^2 + 5*a^2*c^4 + 2*b^2*c^4 - 2*c^6 : :
X(56434) = 5 X[6] - 8 X[230], X[6] - 4 X[15993], 5 X[69] + X[50248], 2 X[230] - 5 X[15993], 2 X[385] + X[40341], 5 X[599] - 2 X[7840], 2 X[3630] + X[50249], 4 X[3631] - X[7779], 5 X[3763] - 2 X[39099], 5 X[21358] - 4 X[41133], 5 X[32113] - 2 X[47154], 5 X[47448] - 8 X[47559]

X(56434) lies on the cubic K487 and these lines: {2, 6}, {187, 48657}, {511, 38732}, {523, 47445}, {542, 2076}, {1634, 11063}, {5017, 50955}, {5104, 11645}, {5116, 50977}, {5965, 15561}, {6034, 15514}, {7812, 44530}, {9225, 32225}, {11082, 22826}, {11087, 22827}, {11178, 13330}, {11646, 19924}, {14537, 43150}, {15360, 20998}, {18362, 37517}, {18365, 23967}, {19780, 22998}, {19781, 22997}, {25214, 25217}, {32113, 47154}, {44532, 51224}, {47237, 47465}, {47448, 47559}

X(56434) = crossdifference of every pair of points on line {512, 50664}
X(56434) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {599, 40341, 7788}


X(56435) = X(2)X(6)∩X(4)X(10748)

Barycentrics   a^6 + a^4*b^2 - a^2*b^4 - b^6 + a^4*c^2 + 16*a^2*b^2*c^2 - 3*b^4*c^2 - a^2*c^4 - 3*b^2*c^4 - c^6 : :
X(56435) = X[14360] + 2 X[34166], 5 X[3091] - 2 X[14262]

X(56435) lies on the cubic K582 and these lines: {2, 6}, {4, 10748}, {111, 34511}, {126, 7775}, {316, 11059}, {1383, 32985}, {1995, 6390}, {3091, 14262}, {3266, 11185}, {3524, 6031}, {3926, 16042}, {6337, 14002}, {6719, 7764}, {7664, 7763}, {7752, 14246}, {7758, 39576}, {7813, 8585}, {9146, 20423}, {9464, 52713}, {10989, 32827}, {13608, 38698}, {19583, 37349}, {31125, 33006}, {31128, 33007}, {32829, 52300}

X(56435) = anticomplement of X(20481)
X(56435) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 11580}


X(56436) = X(2)X(6)∩X(3)X(33979)

Barycentrics   a^2*(a^4 + 14*a^2*b^2 + b^4 + 14*a^2*c^2 - 58*b^2*c^2 + c^4) : :

X(56436) lies on the cubic K765 and these lines: {2, 6}, {3, 33979}, {111, 31884}, {353, 55684}, {1350, 21448}, {5024, 5646}, {5585, 20998}, {11477, 22111}, {13192, 55591}, {14924, 44500}, {15603, 32237}, {15655, 41424}, {16187, 21309}, {39576, 53097}

X(56436) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8617, 20481, 46949}, {20481, 46949, 6}


X(56437) = X(2)X(6)∩X(3)X(9292)

Barycentrics   a^2*(a^4 - a^2*b^2 - a^2*c^2 + 2*b^2*c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(56437) lies on the cubic K783 and these lines: {2, 6}, {3, 9292}, {99, 3331}, {154, 10607}, {217, 7763}, {232, 36790}, {237, 51337}, {538, 45938}, {669, 684}, {805, 1297}, {1498, 6461}, {1625, 6390}, {1971, 4558}, {1987, 43705}, {2211, 6393}, {2451, 17215}, {3491, 11326}, {6337, 32445}, {6786, 9418}, {9150, 26717}, {9419, 51373}, {9475, 36212}, {9737, 23098}, {12215, 46272}, {13335, 32518}

X(56437) = isotomic conjugate of the polar conjugate of X(15143)
X(56437) = X(3)-Ceva conjugate of X(36790)
X(56437) = X(i)-isoconjugate of X(j) for these (i,j): {98, 9258}, {1821, 9292}, {1910, 9307}, {6531, 9255}, {36120, 51336}
X(56437) = X(i)-Dao conjugate of X(j) for these (i,j): {11672, 9307}, {30476, 51404}, {40601, 9292}, {46094, 51336}, {48316, 523}
X(56437) = crossdifference of every pair of points on line {512, 3767}
X(56437) = X(3)-line conjugate of X(9292)
X(56437) = barycentric product X(i)*X(j) for these {i,j}: {69, 15143}, {325, 9306}, {394, 40887}, {511, 1975}, {877, 22089}, {1958, 1959}, {1968, 6393}, {2396, 2451}, {2421, 30476}, {9308, 36212}, {17893, 23997}
X(56437) = barycentric quotient X(i)/X(j) for these {i,j}: {237, 9292}, {511, 9307}, {1755, 9258}, {1957, 36120}, {1958, 1821}, {1968, 6531}, {1975, 290}, {2421, 43188}, {2451, 2395}, {3289, 51336}, {9306, 98}, {9308, 16081}, {15143, 4}, {22089, 879}, {30476, 43665}, {36212, 9289}, {40887, 2052}
X(56437) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {232, 51386, 36790}, {325, 2421, 3289}


X(56438) = X(2)X(6)∩X(110)X(41359)

Barycentrics   3*a^10 - 7*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + 3*a^2*b^8 - b^10 - 7*a^8*c^2 + 15*a^6*b^2*c^2 - 8*a^4*b^4*c^2 + 5*a^2*b^6*c^2 - b^8*c^2 + 6*a^6*c^4 - 8*a^4*b^2*c^4 - 8*a^2*b^4*c^4 + 2*b^6*c^4 - 4*a^4*c^6 + 5*a^2*b^2*c^6 + 2*b^4*c^6 + 3*a^2*c^8 - b^2*c^8 - c^10 : :

X(56438) lies on the cubic K818 and these lines: {2, 6}, {110, 41359}, {1352, 16188}, {1499, 18556}, {1550, 11180}, {2709, 40118}, {2715, 53186}, {7471, 16334}, {38970, 44956}, {40915, 48540}


X(56439) = X(1)X(1098)∩X(2)X(6)

Barycentrics   a*(a + b)*(a + c)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - a*b*c - a*c^2 + c^3) : :

X(56439) lies on the cubic K972 and these lines: {1, 1098}, {2, 6}, {7, 52361}, {8, 46441}, {21, 12635}, {55, 2651}, {57, 662}, {58, 22836}, {60, 3868}, {63, 2185}, {75, 7058}, {92, 648}, {110, 3873}, {191, 37029}, {326, 757}, {448, 33296}, {593, 4558}, {643, 3870}, {645, 18743}, {758, 9275}, {894, 42708}, {1088, 4573}, {1326, 4650}, {1762, 18714}, {1836, 19642}, {2194, 5208}, {2363, 54421}, {3218, 40214}, {3219, 4053}, {3751, 6043}, {3758, 14534}, {3874, 17104}, {4273, 25059}, {4360, 18662}, {4658, 30143}, {5221, 35991}, {5228, 24378}, {5902, 11116}, {6061, 11020}, {6626, 23151}, {11101, 34195}, {11102, 35637}, {11684, 37032}, {12649, 52360}, {13739, 39772}, {14570, 17147}, {14628, 47318}, {17728, 25533}, {24473, 51420}, {24624, 31053}, {24929, 51290}, {30606, 32939}, {35145, 54951}, {49168, 56018}

X(56439) = reflection of X(17512) in X(9275)
X(56439) = isotomic conjugate of X(43683)
X(56439) = isotomic conjugate of the polar conjugate of X(13739)
X(56439) = X(4573)-Ceva conjugate of X(31603)
X(56439) = X(i)-isoconjugate of X(j) for these (i,j): {6, 41501}, {19, 43708}, {31, 43683}, {42, 37887}, {661, 6011}, {1400, 6598}
X(56439) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 43683}, {6, 43708}, {9, 41501}, {8286, 3700}, {35193, 9}, {35583, 2610}, {36830, 6011}, {40582, 6598}, {40592, 37887}
X(56439) = trilinear pole of line {6003, 27086}
X(56439) = barycentric product X(i)*X(j) for these {i,j}: {69, 13739}, {81, 33116}, {86, 34772}, {99, 6003}, {261, 15556}, {314, 37583}, {643, 31603}, {1444, 5174}, {7182, 41503}, {8286, 24041}, {14616, 27086}, {39772, 40412}
X(56439) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 41501}, {2, 43683}, {3, 43708}, {21, 6598}, {81, 37887}, {110, 6011}, {229, 41495}, {5174, 41013}, {6003, 523}, {8286, 1109}, {11101, 34243}, {13739, 4}, {15556, 12}, {27086, 758}, {31603, 4077}, {33116, 321}, {34772, 10}, {37583, 65}, {39772, 442}, {41503, 33}, {41547, 3649}, {56316, 53008}
X(56439) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {81, 1812, 86}, {81, 26637, 42028}, {81, 37783, 2}, {81, 40571, 333}, {81, 41610, 41629}, {333, 40882, 4417}


X(56440) = X(2)X(6)∩X(8)X(13746)

Barycentrics   a*(a + b)*(a - b - c)*(a + c)*(a^2 - b^2 - b*c - c^2) : :

X(56440) lies on the cubic K973 and these lines: {2, 6}, {8, 13746}, {9, 2185}, {21, 56177}, {60, 3876}, {63, 662}, {72, 51420}, {78, 1098}, {110, 3681}, {200, 643}, {312, 645}, {319, 52412}, {409, 12635}, {758, 11116}, {1043, 7072}, {1326, 7262}, {1376, 2651}, {2003, 17095}, {2174, 3219}, {2194, 3786}, {2323, 4886}, {2363, 54386}, {2982, 55096}, {3173, 33298}, {3678, 17104}, {3969, 41226}, {4273, 25058}, {4420, 35193}, {4573, 31627}, {4653, 22836}, {5440, 51290}, {5692, 17512}, {5905, 52361}, {6061, 41228}, {6514, 55965}, {9275, 10176}, {9780, 46441}, {11107, 31938}, {11684, 37405}, {15792, 37029}, {17781, 18653}, {19642, 24703}, {24624, 27131}, {32939, 39767}, {35195, 52126}, {42033, 52405}, {46877, 52680}

X(56440) = isotomic conjugate of X(43682)
X(56440) = isotomic conjugate of the isogonal conjugate of X(35192)
X(56440) = isotomic conjugate of the polar conjugate of X(11107)
X(56440) = X(24041)-Ceva conjugate of X(643)
X(56440) = X(i)-isoconjugate of X(j) for these (i,j): {6, 52382}, {19, 52390}, {31, 43682}, {37, 52372}, {42, 52374}, {56, 8818}, {65, 2160}, {79, 1400}, {109, 55236}, {181, 52393}, {226, 6186}, {512, 38340}, {604, 6757}, {608, 52388}, {661, 26700}, {1042, 7110}, {1402, 30690}, {1427, 7073}, {1464, 1989}, {1637, 36064}, {1880, 7100}, {2171, 52375}, {2643, 35049}, {3669, 56193}, {6742, 7180}, {11060, 41804}, {15455, 51641}, {20982, 55017}, {32678, 51663}
X(56440) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 8818}, {2, 43682}, {6, 52390}, {9, 52382}, {11, 55236}, {1100, 3649}, {3161, 6757}, {3700, 1109}, {5249, 55010}, {8287, 7178}, {18334, 51663}, {34544, 1464}, {36830, 26700}, {39054, 38340}, {40582, 79}, {40589, 52372}, {40592, 52374}, {40602, 2160}, {40604, 18593}, {40605, 30690}, {55042, 661}
X(56440) = cevapoint of X(4420) and X(52405)
X(56440) = barycentric product X(i)*X(j) for these {i,j}: {9, 34016}, {21, 319}, {35, 314}, {69, 11107}, {75, 35193}, {76, 35192}, {81, 42033}, {86, 4420}, {99, 35057}, {261, 3678}, {274, 52405}, {284, 33939}, {304, 41502}, {312, 40214}, {332, 6198}, {333, 3219}, {340, 1793}, {643, 4467}, {644, 16755}, {645, 14838}, {650, 55235}, {799, 9404}, {1043, 1442}, {1098, 40999}, {1792, 7282}, {1812, 52412}, {2174, 28660}, {2185, 3969}, {2287, 17095}, {2328, 52421}, {2341, 7799}, {2605, 7257}, {2611, 6064}, {3596, 17104}, {4102, 17190}, {4600, 53524}, {4612, 7265}, {4631, 55210}, {5546, 18160}, {6741, 24041}, {7058, 16577}, {10411, 52356}, {31938, 40412}, {35195, 46750}, {44130, 52408}
X(56440) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 52382}, {2, 43682}, {3, 52390}, {8, 6757}, {9, 8818}, {21, 79}, {35, 65}, {58, 52372}, {60, 52375}, {78, 52388}, {81, 52374}, {110, 26700}, {186, 1835}, {249, 35049}, {283, 7100}, {284, 2160}, {314, 20565}, {319, 1441}, {323, 18593}, {333, 30690}, {526, 51663}, {643, 6742}, {645, 15455}, {650, 55236}, {662, 38340}, {1043, 52344}, {1098, 3615}, {1399, 1042}, {1442, 3668}, {1793, 265}, {1812, 52381}, {2003, 1427}, {2174, 1400}, {2185, 52393}, {2194, 6186}, {2287, 7110}, {2328, 7073}, {2341, 1989}, {2594, 1254}, {2605, 4017}, {2611, 1365}, {3024, 2611}, {3219, 226}, {3647, 3649}, {3678, 12}, {3939, 56193}, {3969, 6358}, {4420, 10}, {4467, 4077}, {4631, 55209}, {4636, 13486}, {5379, 34922}, {6149, 1464}, {6198, 225}, {6740, 2166}, {6741, 1109}, {7202, 53545}, {9404, 661}, {11107, 4}, {14838, 7178}, {15776, 34301}, {16577, 6354}, {16585, 55010}, {16755, 24002}, {17095, 1446}, {17104, 56}, {17190, 553}, {22342, 1425}, {31938, 442}, {33939, 349}, {34016, 85}, {35057, 523}, {35192, 6}, {35193, 1}, {35195, 3336}, {36034, 36064}, {40214, 57}, {41502, 19}, {42033, 321}, {52126, 11263}, {52356, 10412}, {52405, 37}, {52408, 73}, {52412, 40149}, {53524, 3120}, {53542, 53540}, {53554, 53551}, {55235, 4554}
X(56440) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {645, 7058, 312}, {1812, 2287, 333}


X(56441) = X(1)X(1581)∩X(2)X(6)

Barycentrics   a*(a + b)*(a + c)*(a^2 + b*c)*(b^2 + b*c + c^2) : :

X(56441) lies on the cubic K1017 and these lines: {1, 1581}, {2, 6}, {37, 51369}, {55, 38814}, {171, 7122}, {192, 39915}, {213, 34016}, {662, 4386}, {799, 24514}, {894, 1920}, {984, 40777}, {1509, 17743}, {2176, 6626}, {2295, 6645}, {3736, 3795}, {3753, 16756}, {3783, 40734}, {3794, 18174}, {3873, 24437}, {3997, 6629}, {4576, 31087}, {5209, 30114}, {7146, 25429}, {17033, 52379}, {17754, 37128}, {27891, 39933}, {38481, 49519}, {40731, 40790}

X(56441) = X(i)-isoconjugate of X(j) for these (i,j): {37, 40763}, {42, 40738}, {256, 40747}, {661, 30670}, {870, 40729}, {893, 40718}, {985, 52651}
X(56441) = X(i)-Dao conjugate of X(j) for these (i,j): {3789, 52651}, {36830, 30670}, {40589, 40763}, {40592, 40738}, {40597, 40718}
X(56441) = barycentric product X(i)*X(j) for these {i,j}: {75, 40731}, {86, 40790}, {99, 3805}, {171, 30966}, {799, 45882}, {894, 40773}, {984, 17103}, {1909, 3736}, {2276, 8033}, {3786, 7176}, {3799, 17212}, {3807, 18200}, {4469, 40745}, {4481, 18047}, {4639, 30654}, {7146, 27958}
X(56441) = barycentric quotient X(i)/X(j) for these {i,j}: {58, 40763}, {81, 40738}, {110, 30670}, {171, 40718}, {172, 40747}, {2276, 52651}, {3736, 256}, {3786, 4451}, {3805, 523}, {4579, 4613}, {17103, 870}, {18200, 4817}, {27958, 52652}, {30654, 21832}, {30966, 7018}, {40728, 40729}, {40731, 1}, {40773, 257}, {40790, 10}, {45882, 661}
X(56441) = {X({}),X(1)}-harmonic conjugate of X({}[[1]][[3]])


X(56442) = X(2)X(6)∩X(99)X(237)

Barycentrics   a^6*b^2 - a^4*b^4 + a^6*c^2 + 2*a^4*b^2*c^2 - a^4*c^4 - 2*b^4*c^4 : :

X(56442) lies on the cubic K1119 and these lines: {2, 6}, {23, 5989}, {76, 37338}, {98, 9150}, {99, 237}, {538, 5106}, {669, 804}, {805, 8842}, {1302, 2868}, {1502, 40981}, {1799, 41297}, {1916, 20977}, {1975, 37465}, {2396, 32515}, {3117, 7798}, {3266, 5976}, {4027, 14567}, {5152, 37916}, {5201, 30736}, {5970, 9066}, {5999, 33877}, {6031, 32531}, {6390, 44215}, {7771, 14096}, {9080, 53604}, {9146, 11673}, {9148, 42652}, {11059, 22712}, {11328, 20023}, {15631, 47638}, {16083, 18024}, {20022, 21531}, {32458, 41586}, {44132, 47202}

X(56442) = crossdifference of every pair of points on line {512, 3117}
X(56442) = X(7798)-line conjugate of X(3117)
X(56442) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 385, 3231}, {3231, 20965, 32748}, {23342, 46777, 183}


X(56443) = X(2)X(6)∩X(99)X(6093)

Barycentrics   a^8 + a^6*b^2 - a^4*b^4 - a^2*b^6 + a^6*c^2 - 31*a^4*b^2*c^2 + 20*a^2*b^4*c^2 - 2*b^6*c^2 - a^4*c^4 + 20*a^2*b^2*c^4 - 4*b^4*c^4 - a^2*c^6 - 2*b^2*c^6 : :

X(56443) lies on the cubic K1299 and these lines: {2, 6}, {99, 6093}, {511, 13167}, {538, 45012}, {6082, 9084}, {9027, 9146}, {9870, 9872}, {10754, 52239}, {13492, 35179}

X(56443) = reflection of X(i) in X(j) for these {i,j}: {1992, 52231}, {9870, 9872}


X(56444) = X(2)X(7)∩X(56)X(19784)

Barycentrics   1 - Cos[A] + Sin[A]^2 + Sin[B]^2 + Sin[C]^2 : :

X(56444) lies on these lines: {2, 7}, {56, 19784}, {65, 19836}, {69, 52423}, {140, 37581}, {141, 52424}, {171, 499}, {222, 3589}, {406, 9843}, {475, 12436}, {498, 982}, {631, 5285}, {1125, 8270}, {1407, 47355}, {1458, 29663}, {1460, 5433}, {1466, 17698}, {1471, 32781}, {1473, 37439}, {1943, 17367}, {2003, 3618}, {3085, 3677}, {3086, 5269}, {3088, 37526}, {3090, 26929}, {3220, 7392}, {3339, 19881}, {3476, 48831}, {3763, 26942}, {3784, 14561}, {4000, 6358}, {4318, 29666}, {5432, 54326}, {6997, 7293}, {7404, 37534}, {7484, 50861}, {7539, 26933}, {10056, 17598}, {10072, 17716}, {14786, 37612}, {17625, 38047}, {17740, 26740}, {17825, 26932}, {19854, 33174}, {26034, 55086}, {26126, 26363}, {29677, 42289}, {32944, 34029}, {54283, 54284}, {55391, 56231}

X(56444) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 57, 56366}, {2, 3218, 55902}, {2, 3306, 20266}, {2, 21454, 28780}, {2, 27509, 7308}, {2, 27539, 20196}, {2, 27540, 5316}, {2, 55905, 9}, {3306, 55901, 2}


X(56445) = X(2)X(7)∩X(47)X(238)

Barycentrics   1 + Cos[A] - Sin[A]^2 - Sin[B]^2 - Sin[C]^2 : :

X(56445) lies on these lines: {1, 34823}, {2, 7}, {3, 50861}, {4, 3220}, {5, 24320}, {6, 26932}, {8, 27528}, {11, 7083}, {19, 12610}, {40, 7400}, {47, 238}, {69, 2323}, {75, 54283}, {84, 3088}, {141, 219}, {220, 3763}, {222, 23292}, {241, 17073}, {278, 20268}, {281, 4000}, {320, 28738}, {343, 55399}, {346, 28813}, {406, 1210}, {427, 1473}, {475, 4292}, {498, 984}, {631, 26939}, {692, 12586}, {950, 27505}, {958, 13728}, {960, 19836}, {990, 1861}, {1108, 20270}, {1111, 24773}, {1146, 17366}, {1212, 17384}, {1352, 7193}, {1370, 7293}, {1479, 7295}, {1486, 40560}, {1714, 34831}, {1716, 33140}, {1721, 45281}, {1848, 21370}, {1899, 26889}, {1948, 17907}, {2003, 11427}, {2082, 41791}, {2175, 12589}, {2182, 42857}, {2195, 17059}, {2289, 25940}, {2321, 28795}, {2324, 17284}, {3008, 20262}, {3085, 7174}, {3086, 7290}, {3161, 27543}, {3501, 28439}, {3546, 37534}, {3547, 5709}, {3548, 37612}, {3549, 37532}, {3589, 55432}, {3619, 52405}, {3705, 27512}, {3717, 5552}, {3718, 28793}, {3883, 10527}, {3912, 28420}, {4026, 16851}, {4194, 9581}, {4200, 9579}, {4202, 27410}, {4319, 24388}, {4383, 41883}, {4657, 40937}, {4869, 28757}, {4901, 7080}, {4999, 16343}, {5091, 46100}, {5094, 26866}, {5120, 43053}, {5222, 53994}, {5228, 16608}, {5256, 45206}, {5285, 7494}, {5737, 51571}, {5773, 21270}, {6180, 36949}, {6603, 17231}, {6676, 37581}, {6693, 10200}, {6708, 24789}, {7085, 7499}, {7330, 7404}, {7359, 17290}, {7365, 17917}, {7383, 55104}, {7484, 21015}, {8889, 26929}, {10528, 49527}, {11269, 34589}, {11343, 15817}, {11433, 52423}, {11471, 16388}, {11677, 24309}, {13567, 52424}, {15509, 19542}, {16466, 20306}, {16470, 37642}, {16551, 24316}, {16580, 21744}, {16706, 21582}, {17278, 24774}, {17298, 28753}, {17356, 34852}, {17370, 30854}, {19854, 32784}, {20205, 40940}, {20269, 46830}, {21239, 30808}, {22128, 37645}, {23058, 41785}, {23518, 48482}, {23537, 54396}, {23542, 27378}, {25876, 37583}, {25968, 37541}, {26006, 53996}, {26363, 37530}, {26877, 37119}, {26893, 43653}, {26942, 55405}, {27108, 27519}, {27514, 28789}, {27529, 27549}, {28834, 43728}, {31261, 34847}, {31600, 43047}, {34120, 37582}, {36910, 50101}, {37638, 55437}, {37649, 55400}, {52412, 54284}

X(56445) = complement of X(28739)
X(56445) = complement of the isotomic conjugate of X(41791)
X(56445) = isotomic conjugate of the polar conjugate of X(11393)
X(56445) = X(i)-complementary conjugate of X(j) for these (i,j): {41, 15487}, {604, 23050}, {39732, 17046}, {40188, 2886}, {41791, 2887}, {46740, 17047}
X(56445) = X(53643)-Ceva conjugate of X(522)
X(56445) = X(16582)-Dao conjugate of X(226)
X(56445) = barycentric product X(i)*X(j) for these {i,j}: {69, 11393}, {333, 16580}, {21744, 28660}, {21799, 52379}, {22348, 44130}
X(56445) = barycentric quotient X(i)/X(j) for these {i,j}: {11393, 4}, {16580, 226}, {21744, 1400}, {21799, 2171}, {22348, 73}
X(56445) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 57, 20266}, {2, 63, 56366}, {2, 144, 28780}, {2, 3219, 55902}, {2, 27509, 9}, {2, 27539, 30827}, {2, 27540, 3452}, {2, 55905, 57}, {2, 55907, 56367}, {281, 4000, 4858}, {3305, 55901, 2}, {5094, 26866, 26933}, {11427, 26871, 2003}, {17353, 40880, 9}, {55907, 56367, 3928}


X(56446) = X(2)X(7)∩X(5)X(50861)

Barycentrics   1 + Cos[A] + Sin[A]^2 + Sin[B]^2 + Sin[C]^2 : :

X(56446) lies on these lines: {2, 7}, {5, 50861}, {37, 20270}, {140, 24320}, {141, 55432}, {219, 3589}, {220, 47355}, {238, 498}, {391, 28813}, {499, 984}, {631, 3220}, {958, 19836}, {960, 19784}, {1212, 17357}, {1696, 31230}, {2323, 3618}, {2324, 29598}, {2345, 4858}, {2550, 36682}, {3085, 7290}, {3086, 7174}, {3090, 26939}, {3686, 28795}, {3717, 10527}, {3763, 26932}, {3781, 14561}, {3883, 5552}, {3912, 55392}, {5234, 19881}, {5285, 7392}, {5314, 6997}, {5432, 7083}, {5826, 21271}, {7085, 37439}, {7110, 28827}, {7539, 21015}, {10529, 49527}, {15817, 21477}, {16579, 17776}, {17073, 25067}, {17263, 28738}, {17267, 34522}, {17279, 40937}, {17289, 54283}, {17325, 34524}, {17371, 30854}, {17385, 34852}, {17825, 26942}, {19854, 33159}, {20262, 29604}, {24388, 28043}, {25101, 28420}, {25878, 36949}, {26364, 50295}, {26872, 52423}, {27108, 28789}, {29611, 53994}

X(56446) = X(41)-complementary conjugate of X(40181)
X(56446) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3219, 55900}, {2, 28739, 142}, {2, 55902, 56366}, {2, 55910, 57}, {2, 56366, 20266}, {2, 56367, 5437}, {3305, 55903, 2}, {27065, 28731, 9}


X(56447) = X(2)X(7)∩X(5)X(26866)

Barycentrics   1 - 2*Cos[A] + Sin[A]^2 + Sin[B]^2 + Sin[C]^2 : :

X(56447) lies on these lines: {2, 7}, {5, 26866}, {141, 55437}, {1407, 37649}, {1473, 6997}, {3085, 4392}, {3086, 17126}, {3541, 37612}, {3589, 22129}, {3937, 14561}, {5133, 26929}, {5422, 26871}, {6515, 52424}, {7193, 54013}, {7293, 7500}, {7383, 37532}, {7404, 26877}, {17367, 41791}, {19843, 33086}, {26939, 40916}

X(56447) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 23958, 56367}, {2, 55907, 3219}, {57, 55900, 2}, {55901, 56366, 2}


X(56448) = X(2)X(7)∩X(47)X(3086)

Barycentrics   1 + 2*Cos[A] - Sin[A]^2 - Sin[B]^2 - Sin[C]^2 : :

X(56448) lies on these lines: {2, 7}, {47, 3086}, {140, 26867}, {141, 55466}, {222, 37645}, {239, 2994}, {343, 55405}, {858, 26929}, {1368, 26866}, {1370, 1473}, {1407, 11064}, {1993, 26871}, {3085, 7226}, {3220, 7500}, {3541, 24467}, {3542, 37532}, {3546, 26877}, {3589, 55438}, {4000, 21582}, {6515, 26932}, {6997, 24320}, {7293, 50861}, {7383, 26921}, {7485, 26939}, {7493, 37581}, {12649, 27505}, {13567, 55437}, {18359, 30699}, {19843, 33083}, {20879, 54283}, {21015, 46336}, {22129, 23292}, {23600, 33168}, {26872, 37636}, {26885, 54013}, {37309, 51366}, {37649, 55406}, {37774, 54284}

X(56448) = X(15176)-anticomplementary conjugate of X(69)
X(56448) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20078, 28739}, {2, 55907, 3218}, {9, 55900, 2}, {26932, 55399, 6515}, {27509, 55905, 2}


X(56449) = X(2)X(7)∩X(47)X(3085)

Barycentrics   1 + 4*Cos[A] - Cos[2*A] - Cos[2*B] - Cos[2*C] : :

X(56449) lies on these lines: {2, 7}, {47, 3085}, {140, 26866}, {141, 22129}, {219, 37645}, {220, 11064}, {343, 55406}, {858, 26939}, {1330, 5552}, {1368, 26867}, {1370, 7085}, {1993, 26872}, {2000, 12618}, {2345, 21582}, {2895, 23600}, {3086, 4392}, {3541, 26921}, {3546, 26878}, {3589, 55437}, {5285, 7500}, {6515, 26942}, {6997, 37581}, {7383, 24467}, {7485, 26929}, {7493, 24320}, {13567, 55438}, {14206, 54283}, {17347, 28793}, {17479, 25252}, {18607, 32777}, {19795, 33066}, {19843, 33170}, {20076, 52017}, {21368, 24316}, {23292, 55466}, {26871, 37636}, {26884, 54013}, {26933, 46336}, {31099, 50861}, {37649, 55405}

X(56449) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 26792, 27539}, {2, 55912, 3219}, {57, 55902, 2}, {63, 56366, 2}, {3305, 20266, 2}, {5744, 28780, 2}, {26942, 55400, 6515}, {55910, 56367, 2}


X(56450) = X(2)X(7)∩X(5)X(26867)

Barycentrics   1 + 2*Cos[A] + Sin[A]^2 + Sin[B]^2 + Sin[C]^2 : :

X(56450) lies on these lines: {2, 7}, {5, 26867}, {141, 55438}, {220, 37649}, {2994, 3661}, {3085, 17127}, {3086, 7226}, {3589, 55466}, {3690, 14561}, {3955, 54013}, {5133, 26939}, {5314, 7500}, {5422, 26872}, {6515, 55432}, {6997, 7085}, {7404, 26878}, {19843, 33166}, {23600, 37656}, {26929, 40916}

X(56450) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 55912, 3218}, {9, 55902, 2}, {3305, 55916, 56366}, {3305, 56366, 2}


X(56451) = X(2)X(7)∩X(65)X(19881)

Barycentrics   1 - Cos[A] + 2*Sin[A]^2 + 2*Sin[B]^2 + 2*Sin[C]^2 : :

X(56451) lies on these lines: {2, 7}, {65, 19881}, {140, 5285}, {141, 52423}, {222, 47355}, {498, 3677}, {499, 5269}, {1420, 19784}, {1943, 29630}, {2003, 3589}, {3220, 37439}, {3340, 19836}, {3526, 37581}, {3582, 17716}, {3584, 17598}, {3624, 8270}, {3763, 52424}, {3784, 38317}, {5067, 26929}, {6358, 16706}, {7293, 37990}, {7404, 37526}, {14786, 37534}, {26740, 32779}, {26942, 34573}, {32781, 55086}

X(56451) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3218, 55903}, {2, 55900, 9}


X(56452) = X(2)X(7)∩X(5)X(3220)

Barycentrics   1 + Cos[A] - 2*Sin[A]^2 - 2*Sin[B]^2 - 2*Sin[C]^2 : :

X(56452) lies on these lines: {2, 7}, {5, 3220}, {40, 7383}, {84, 7404}, {124, 32944}, {141, 2323}, {219, 3763}, {238, 2964}, {284, 27418}, {343, 52423}, {451, 9843}, {498, 7174}, {499, 7290}, {631, 50861}, {960, 19881}, {1473, 7539}, {1656, 24320}, {2003, 37649}, {2321, 28813}, {3088, 9841}, {3525, 26939}, {3541, 37526}, {3589, 26932}, {3717, 27529}, {3883, 27528}, {4000, 24209}, {4007, 28795}, {4858, 16706}, {4901, 5552}, {5120, 31230}, {5133, 7293}, {5285, 7499}, {7110, 17356}, {7193, 24206}, {7295, 7741}, {7330, 14786}, {12436, 52252}, {12610, 16548}, {14389, 22128}, {15817, 21514}, {15829, 19836}, {16470, 37646}, {17298, 28738}, {17370, 20915}, {17382, 36910}, {17384, 40937}, {20262, 31191}, {20305, 24618}, {26933, 37454}, {29631, 34589}, {34573, 52405}, {47355, 55432}

X(56452) = complement of X(28780)
X(56452) = X(i)-complementary conjugate of X(j) for these (i,j): {39728, 17046}, {52123, 2886}
X(56452) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3219, 55903}, {2, 55900, 57}, {2, 55905, 56366}, {4357, 17353, 26699}, {55905, 56366, 3928}


X(56453) = X(2)X(7)∩X(5)X(5285)

Barycentrics   2 + Cos[A] - Cos[2*A] - Cos[2*B] - Cos[2*C] : :

X(56453) lies on these lines: {2, 7}, {5, 5285}, {12, 50318}, {35, 50324}, {40, 7404}, {56, 19881}, {84, 7383}, {109, 32781}, {141, 2003}, {171, 2964}, {222, 3763}, {498, 5269}, {499, 3677}, {1420, 19836}, {1656, 37581}, {1698, 8270}, {1943, 17292}, {2006, 44417}, {2323, 37649}, {3088, 37551}, {3220, 7499}, {3340, 19784}, {3525, 26929}, {3582, 17598}, {3584, 17716}, {3589, 26942}, {3955, 24206}, {4551, 32783}, {5133, 5314}, {5329, 7951}, {5709, 14786}, {6358, 17289}, {7085, 7539}, {14787, 37584}, {16577, 33157}, {17371, 20915}, {17698, 37583}, {21015, 37454}, {37636, 54444}, {47355, 52424}

X(56453) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3218, 55901}, {2, 28780, 226}, {2, 55902, 9}, {2, 56366, 57}, {3589, 26942, 52423}


X(56454) = X(2)X(7)∩X(140)X(3220)

Barycentrics   1 + Cos[A] + 2*Sin[A]^2 + 2*Sin[B]^2 + 2*Sin[C]^2 : :

X(56454) lies on these lines: {2, 7}, {140, 3220}, {219, 47355}, {498, 7290}, {499, 7174}, {958, 19881}, {2323, 3589}, {3090, 50861}, {3526, 24320}, {3686, 28813}, {3763, 55432}, {3781, 38317}, {3883, 27529}, {4034, 28795}, {4858, 17289}, {4901, 10527}, {5067, 26939}, {5285, 37439}, {5314, 37990}, {7110, 34852}, {15817, 21526}, {15829, 19784}, {16470, 37662}, {16579, 33157}, {17357, 40937}, {26932, 34573}, {51126, 52405}

X(56454) = X(i)-complementary conjugate of X(j) for these (i,j): {39723, 17046}, {40044, 17047}
X(56454) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3219, 55901}, {2, 28780, 142}, {2, 55902, 57}, {2, 56366, 5437}


X(56455) = X(2)X(7)∩X(244)X(498)

Barycentrics   2 - Cos[A] + Sin[A]^2 + Sin[B]^2 + Sin[C]^2 : :

X(56455) lies on these lines: {2, 7}, {244, 498}, {499, 750}, {1656, 26928}, {3526, 26938}, {3618, 22128}, {5253, 19784}, {7293, 7392}, {10200, 26092}, {17370, 17923}, {25524, 25877}, {40916, 50861}

X(56455) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 57, 55902}, {2, 27003, 56366}, {2, 55905, 3305}, {2, 56366, 55904}, {2, 56367, 55903}


X(56456) = X(2)X(7)∩X(3)X(21015)

Barycentrics   2 + Cos[A] - Sin[A]^2 - Sin[B]^2 - Sin[C]^2 : :

X(56456) lies on these lines: {2, 7}, {3, 21015}, {8, 9538}, {22, 50861}, {75, 52412}, {92, 37774}, {219, 343}, {222, 11064}, {255, 499}, {278, 14206}, {281, 14213}, {283, 17188}, {306, 28420}, {326, 6513}, {345, 52351}, {348, 52381}, {394, 26932}, {406, 6734}, {427, 24320}, {468, 37581}, {498, 756}, {1111, 15474}, {1125, 54289}, {1259, 7515}, {1352, 26885}, {1368, 1473}, {1370, 3220}, {1479, 5358}, {1899, 7193}, {1948, 11547}, {2003, 37645}, {2323, 6515}, {3541, 7330}, {3542, 5709}, {3547, 55104}, {3548, 24467}, {3549, 26921}, {3556, 41602}, {3616, 52362}, {3781, 43653}, {3916, 34120}, {4000, 21406}, {5224, 40435}, {5260, 19784}, {5285, 7493}, {5314, 7494}, {6505, 26006}, {6676, 7085}, {6823, 26935}, {7264, 19785}, {7289, 18651}, {7293, 7386}, {7558, 26878}, {10056, 18477}, {11427, 54444}, {13567, 55399}, {15812, 26923}, {16028, 55887}, {16051, 26929}, {16196, 26927}, {17073, 18607}, {17170, 28422}, {17923, 18750}, {20235, 32774}, {20769, 52025}, {22128, 26871}, {23292, 55400}, {24984, 27410}, {26866, 31255}, {26933, 30771}, {26942, 37638}, {26958, 55405}, {27512, 29641}, {28738, 33066}, {28793, 33116}, {37577, 40560}, {37648, 52424}, {37649, 55432}

X(56456) = isotomic conjugate of the polar conjugate of X(1479)
X(56456) = X(i)-isoconjugate of X(j) for these (i,j): {6, 1063}, {19, 7163}, {25, 55985}, {607, 56356}
X(56456) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 7163}, {9, 1063}, {6505, 55985}
X(56456) = barycentric product X(i)*X(j) for these {i,j}: {69, 1479}, {75, 1062}, {307, 17584}, {314, 54360}, {333, 18588}, {5358, 20336}
X(56456) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1063}, {3, 7163}, {63, 55985}, {77, 56356}, {1062, 1}, {1479, 4}, {3422, 18532}, {4354, 6198}, {5358, 28}, {17584, 29}, {18531, 1478}, {18588, 226}, {54360, 65}
X(56456) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9, 55902}, {2, 3218, 20266}, {2, 3219, 56366}, {2, 27509, 63}, {2, 27539, 30852}, {2, 27540, 908}, {2, 27547, 27287}, {2, 55905, 3306}, {3219, 56366, 55911}, {7494, 26939, 5314}, {26871, 37669, 22128}, {37638, 55466, 26942}


X(56457) = X(2)X(7)∩X(3)X(26933)

Barycentrics   1 - 2*Cos[A] + Cos[2*A] + Cos[2*B] + Cos[2*C] : :

X(56457) lies on these lines: {2, 7}, {3, 26933}, {8, 14544}, {10, 54289}, {69, 22128}, {72, 34120}, {75, 17923}, {77, 914}, {219, 11064}, {222, 343}, {244, 499}, {255, 498}, {278, 14213}, {281, 14206}, {283, 10198}, {306, 326}, {320, 28793}, {345, 6349}, {348, 6350}, {394, 26942}, {427, 37581}, {468, 24320}, {475, 6734}, {858, 50861}, {1214, 52350}, {1259, 18641}, {1352, 26884}, {1368, 7085}, {1370, 5285}, {1473, 6676}, {1478, 11103}, {1804, 51368}, {1861, 2000}, {1899, 3955}, {1930, 16586}, {1947, 11547}, {2003, 6515}, {2323, 37645}, {2345, 21406}, {3220, 7493}, {3541, 5709}, {3542, 7330}, {3546, 55104}, {3548, 26921}, {3549, 24467}, {3561, 26028}, {3784, 43653}, {3977, 28420}, {5227, 28419}, {5253, 19836}, {5314, 7386}, {6823, 26927}, {7169, 41602}, {7293, 7494}, {7383, 37534}, {7558, 26877}, {10072, 18477}, {10319, 18651}, {11433, 54444}, {13567, 55400}, {15812, 26924}, {16028, 55892}, {16051, 26939}, {16196, 26935}, {17917, 20879}, {18134, 19795}, {18698, 19822}, {18750, 52412}, {20238, 34277}, {21015, 30771}, {22129, 26932}, {23292, 55399}, {26867, 31255}, {26872, 37669}, {26958, 55406}, {28738, 32851}, {37179, 54337}, {37584, 44441}, {37648, 55432}, {37649, 52424}, {39901, 52434}

X(56457) = isotomic conjugate of the polar conjugate of X(1478)
X(56457) = X(i)-isoconjugate of X(j) for these (i,j): {6, 1061}, {19, 3422}, {25, 55936}, {650, 36076}
X(56457) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 3422}, {9, 1061}, {6505, 55936}, {38964, 3064}
X(56457) = barycentric product X(i)*X(j) for these {i,j}: {69, 1478}, {75, 1060}, {307, 11103}, {348, 54283}
X(56457) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1061}, {3, 3422}, {63, 55936}, {109, 36076}, {1060, 1}, {1478, 4}, {4351, 1870}, {7163, 18532}, {11103, 29}, {18531, 1479}, {54283, 281}
X(56457) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 57, 55900}, {2, 28739, 908}, {2, 55910, 3305}, {2, 56366, 55902}, {2, 56367, 63}, {77, 53816, 914}, {306, 18652, 6505}, {3218, 28731, 63}, {7494, 26929, 7293}, {20266, 56366, 2}, {22129, 37638, 26932}


X(56458) = X(2)X(7)∩X(498)X(748)

Barycentrics   2 + Cos[A] + Sin[A]^2 + Sin[B]^2 + Sin[C]^2 : :

X(56458) lies on these lines: {2, 7}, {498, 748}, {499, 756}, {1656, 21015}, {3526, 26928}, {5260, 19836}, {5314, 7392}, {17352, 40435}, {17371, 52412}, {21813, 31497}, {28808, 52369}, {37990, 50861}

X(56458) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9, 55900}, {2, 27509, 55901}, {2, 55910, 3306}


X(56459) = X(2)X(7)∩X(498)X(4392)

Barycentrics   1 - 2*Cos[A] + 2*Sin[A]^2 + 2*Sin[B]^2 + 2*Sin[C]^2 : :

X(56459) lies on these lines: {2, 7}, {498, 4392}, {499, 17126}, {1473, 37990}, {1656, 26866}, {3763, 55437}, {3937, 38317}, {5222, 24148}, {7293, 7394}, {7496, 50861}, {14786, 26877}, {22129, 47355}, {26363, 33086}, {26364, 33170}, {37636, 52424}, {45794, 52423}

X(56459) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 23958, 56366}, {2, 27509, 35595}, {2, 55905, 3219}, {57, 55901, 2}


X(56460) = X(2)X(7)∩X(5)X(26928)

Barycentrics   2 - 2*Cos[A] + Sin[A]^2 + Sin[B]^2 + Sin[C]^2 : :

X(56460) lies on these lines: {2, 7}, {5, 26928}, {69, 52424}, {140, 26938}, {171, 1497}, {193, 52423}, {222, 3618}, {278, 16706}, {388, 33833}, {498, 18193}, {631, 37581}, {982, 3085}, {1407, 3589}, {1460, 7288}, {1466, 37176}, {1471, 26034}, {1473, 7392}, {1943, 5222}, {2003, 51171}, {3088, 37534}, {3220, 7398}, {3339, 19836}, {3361, 19784}, {3523, 5285}, {3616, 8270}, {3619, 26942}, {3784, 14853}, {4315, 48831}, {4331, 33125}, {5218, 54326}, {5269, 14986}, {6354, 17290}, {6995, 7293}, {7182, 52422}, {7404, 37612}, {8817, 55082}, {10601, 26871}, {14826, 26889}, {16411, 51366}, {16419, 26939}, {18141, 37543}, {18623, 41791}, {18928, 26932}, {19766, 37523}, {19855, 33174}, {26866, 37439}, {26872, 55437}, {37339, 37583}, {52288, 55110}

X(56460) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 57, 56367}, {2, 3218, 55910}, {2, 8732, 27339}, {2, 21454, 28739}, {2, 55905, 27509}, {2, 55907, 9}, {3306, 55900, 2}


X(56461) = X(2)X(7)∩X(222)X(14389)

Barycentrics   1 + 2*Cos[A] - 2*Sin[A]^2 - 2*Sin[B]^2 - 2*Sin[C]^2 : :

X(56461) lies on these lines: {2, 7}, {222, 14389}, {498, 7226}, {499, 2964}, {1473, 5133}, {2994, 5222}, {3220, 7394}, {3526, 26867}, {3580, 52424}, {3763, 55466}, {5422, 26932}, {7293, 7391}, {7495, 37581}, {7558, 37532}, {11442, 26889}, {15246, 50861}, {16706, 20915}, {18359, 19785}, {19795, 51583}, {21015, 40916}, {24320, 37990}, {26363, 33083}, {26364, 33166}, {26933, 31236}, {30690, 37800}, {37119, 37612}, {37636, 55399}, {37644, 52423}, {47355, 55438}

X(56461) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20078, 28780}, {2, 27509, 27065}, {2, 55905, 3218}, {9, 55901, 2}


X(56462) = X(2)X(7)∩X(47)X(748)

Barycentrics   2 + Cos[A] - 2*Sin[A]^2 - 2*Sin[B]^2 - 2*Sin[C]^2 : :

X(56462) lies on these lines: {2, 7}, {47, 748}, {140, 21015}, {241, 52381}, {427, 7293}, {2003, 14389}, {2323, 37636}, {3220, 5133}, {3580, 52423}, {3666, 52351}, {5285, 7495}, {5314, 7499}, {5709, 7558}, {7539, 24320}, {16706, 20883}, {17307, 40435}, {17370, 21582}, {21243, 26889}, {22128, 23292}, {24206, 26885}, {26932, 37649}, {32851, 52369}, {37119, 37534}, {37638, 52424}

X(56462) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9, 55903}, {2, 27509, 55902}, {2, 55900, 3306}, {26932, 37649, 54444}


X(56463) = X(2)X(7)∩X(8)X(24148)

Barycentrics   2 + 2*Cos[A] - Cos[2*A] - Cos[2*B] - Cos[2*C] : :

X(56463) lies on these lines: {2, 7}, {8, 24148}, {219, 14389}, {498, 2964}, {499, 4392}, {3526, 26866}, {3580, 55432}, {3763, 22129}, {5133, 7085}, {5169, 50861}, {5285, 7394}, {5314, 7391}, {5422, 26942}, {5741, 19795}, {7495, 24320}, {11442, 26890}, {15817, 21478}, {17289, 20915}, {21015, 31236}, {26363, 33170}, {26364, 33086}, {26933, 40916}, {37581, 37990}, {37636, 55400}, {45794, 54444}, {47355, 55437}

X(56463) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 28739, 31019}, {2, 55910, 3219}, {2, 56367, 27003}, {57, 55903, 2}, {55902, 56366, 2}


X(56464) = X(2)X(7)∩X(10)X(1718)

Barycentrics   1 + Cos[A] - Cos[2*A] - Cos[2*B] - Cos[2*C] : :

X(56464) lies on these lines: {2, 7}, {10, 1718}, {47, 750}, {140, 26933}, {141, 22128}, {244, 24160}, {343, 54444}, {427, 5314}, {2003, 37636}, {2323, 14389}, {3220, 7495}, {5133, 5285}, {5253, 19881}, {7293, 7499}, {7330, 7558}, {7539, 37581}, {16586, 32779}, {17289, 17923}, {17371, 21582}, {21243, 26890}, {24206, 26884}, {25078, 33157}, {26942, 37649}, {37638, 55432}

X(56464) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 57, 55901}, {2, 28780, 908}, {2, 55902, 3305}, {2, 56366, 63}, {2, 56367, 55900}


X(56465) = X(2)X(7)∩X(498)X(17127)

Barycentrics   1 + 2*Cos[A] + 2*Sin[A]^2 + 2*Sin[B]^2 + 2*Sin[C]^2 : :

X(56465) lies on these lines: {2, 7}, {498, 17127}, {499, 7226}, {1656, 26867}, {2994, 29611}, {3690, 38317}, {3763, 55438}, {5314, 7394}, {7085, 37990}, {14786, 26878}, {26363, 33166}, {26364, 33083}, {37353, 50861}, {37636, 55432}, {47355, 55466}

X(56465) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 28739, 27186}, {2, 55910, 3218}, {9, 55903, 2}


X(56466) = X(2)X(7)∩X(5)X(26938)

Barycentrics   2 + 2*Cos[A] + Sin[A]^2 + Sin[B]^2 + Sin[C]^2 : :

X(56466) lies on these lines: {2, 7}, {5, 26938}, {8, 24388}, {69, 55432}, {140, 26928}, {219, 3618}, {220, 3589}, {238, 1497}, {281, 17289}, {344, 40937}, {391, 28795}, {631, 24320}, {958, 13742}, {960, 38047}, {984, 3086}, {1146, 17293}, {1212, 17279}, {1696, 43053}, {2323, 51171}, {2324, 17023}, {2550, 36652}, {2551, 13740}, {3091, 50861}, {3220, 3523}, {3619, 26932}, {3661, 53994}, {3718, 28808}, {3781, 14853}, {3883, 7080}, {4364, 34524}, {5218, 7083}, {5233, 30479}, {5234, 19836}, {5285, 7398}, {5314, 6995}, {5552, 27108}, {7085, 7392}, {7174, 14986}, {10527, 27549}, {10601, 26872}, {14555, 23600}, {14826, 26890}, {15817, 21495}, {16419, 26929}, {17243, 34522}, {17263, 28753}, {17303, 34852}, {17308, 20262}, {17320, 36916}, {17371, 37774}, {17385, 46835}, {18928, 26942}, {19855, 33159}, {25001, 37800}, {26867, 37439}, {26871, 55438}, {27111, 34807}, {27522, 28789}, {36698, 54322}, {37650, 41785}, {52288, 55116}

X(56466) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9, 27509}, {2, 3219, 55905}, {2, 8232, 25521}, {2, 18228, 27539}, {2, 55910, 56367}, {2, 55912, 57}, {9, 17306, 40880}, {3305, 55902, 2}, {3452, 5750, 27384}, {7308, 56366, 2}, {17289, 30854, 281}, {18230, 28780, 2}, {20266, 51780, 2}


X(56467) = X(2)X(7)∩X(2003)X(47355)

Barycentrics   1 - Cos[A] + 4*Sin[A]^2 + 4*Sin[B]^2 + 4*Sin[C]^2 : :

X(56467) lies on these lines: {2, 7}, {2003, 47355}, {3340, 19881}, {3526, 5285}, {3763, 52423}, {6358, 17370}, {8270, 34595}, {14786, 37526}, {26942, 51128}, {37581, 46219}

X(56467) = {X(2),X(55901)}-harmonic conjugate of X(9)


X(56468) = X(2)X(7)∩X(84)X(14786)

Barycentrics   1 + Cos[A] - 4*Sin[A]^2 - 4*Sin[B]^2 - 4*Sin[C]^2 : :

X(56468) lies on these lines: {2, 7}, {84, 14786}, {1656, 3220}, {2323, 3763}, {3525, 50861}, {4007, 28813}, {4858, 17370}, {4901, 27529}, {5070, 24320}, {7171, 14787}, {7293, 7571}, {7404, 9841}, {15817, 21529}, {15829, 19881}, {26932, 51126}

X(56468) = {X(2),X(55901)}-harmonic conjugate of X(57)


X(56469) = X(2)X(7)∩X(40)X(14786)

Barycentrics   1 - Cos[A] - 4*Sin[A]^2 - 4*Sin[B]^2 - 4*Sin[C]^2 : :

X(56469) lies on these lines: {2, 7}, {40, 14786}, {1420, 19881}, {1656, 5285}, {2003, 3763}, {3587, 14787}, {5070, 37581}, {5314, 7571}, {6358, 17371}, {7404, 37551}, {26942, 51126}, {47355, 52423}

X(56469) = {X(2),X(55903)}-harmonic conjugate of X(9)


X(56470) = X(2)X(7)∩X(2323)X(47355)

Barycentrics   1 + Cos[A] + 4*Sin[A]^2 + 4*Sin[B]^2 + 4*Sin[C]^2 : :

X(56470) lies on these lines: {2, 7}, {2323, 47355}, {3220, 3526}, {4034, 28813}, {4858, 17371}, {5067, 50861}, {15817, 21542}, {24320, 46219}, {26932, 51128}

X(56470) = {X(2),X(55903)}-harmonic conjugate of X(57)




leftri  Centers on the cubic K008 (Part 2): X(56471) - X(56494)  rightri

Centers X(56471)-X(56494) were contributed by César Eliud Lozada, August 17, 2023.

underbar

X(56471) = ANTICOMPLEMENT OF X(46082)

Barycentrics    (a^10-5*(b^2+c^2)*a^8+(4*b^4+b^2*c^2+4*c^4)*a^6-((b^2-c^2)^2-4*b^2*c^2)*(b^2+c^2)*a^4+(b^8+c^8-b^2*c^2*(3*b^4+4*b^2*c^2+3*c^4))*a^2+2*(b^4-c^4)*(b^2-c^2)*b^2*c^2)*sqrt(SW^2+9*S^2)+a^12-(10*b^4+23*b^2*c^2+10*c^4)*a^8+(b^2+c^2)*(14*b^4+9*b^2*c^2+14*c^4)*a^6-4*(2*b^8+2*c^8+b^2*c^2*(b^4+c^4))*a^4+(b^2+c^2)*(4*b^8+4*c^8-3*b^2*c^2*(b^2+c^2)^2)*a^2-(b^4-3*b^2*c^2+c^4)*(b^4-c^4)^2 : :
X(56471) = X(12243)-2*X(46083)

X(56471) lies on the Steiner-Wallace hyperbola, the cubics K008, K800 and these lines: {2, 46082}, {3, 67}, {5, 39230}, {316, 56483}, {524, 39229}, {12243, 46083}

X(56471) = reflection of X(i) in X(j) for these (i, j): (12243, 46083), (56472, 8724)
X(56471) = anticomplementary conjugate of the anticomplement of X(39229)
X(56471) = anticomplement of X(46082)
X(56471) = isotomic conjugate of X(56483)
X(56471) = X(39229)-anticomplementary conjugate of-X(8)
X(56471) = X(316)-Ceva conjugate of-X(56472)
X(56471) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 56483), (46082, 46082)
X(56471) = X(31)-isoconjugate of-X(56483)
X(56471) = X(2)-reciprocal conjugate of-X(56483)
X(56471) = touchpoint of Steiner-Wallace hyperbola and line {316, 56483}
X(56471) = pole of line {39229, 43291} with respect to Kiepert circumhyperbola
X(56471) = pole of line {23, 39229} with respect to Stammler hyperbola
X(56471) = trilinear quotient X(75)/X(56483)
X(56471) = (X(3), X(34507))-harmonic conjugate of X(56472)


X(56472) = ANTICOMPLEMENT OF X(46083)

Barycentrics    -(a^10-5*(b^2+c^2)*a^8+(4*b^4+b^2*c^2+4*c^4)*a^6-((b^2-c^2)^2-4*b^2*c^2)*(b^2+c^2)*a^4+(b^8+c^8-b^2*c^2*(3*b^4+4*b^2*c^2+3*c^4))*a^2+2*(b^4-c^4)*(b^2-c^2)*b^2*c^2)*sqrt(SW^2+9*S^2)+a^12-(10*b^4+23*b^2*c^2+10*c^4)*a^8+(b^2+c^2)*(14*b^4+9*b^2*c^2+14*c^4)*a^6-4*(2*b^8+2*c^8+b^2*c^2*(b^4+c^4))*a^4+(b^2+c^2)*(4*b^8+4*c^8-3*b^2*c^2*(b^2+c^2)^2)*a^2-(b^4-3*b^2*c^2+c^4)*(b^4-c^4)^2 : :
X(56472) = X(12243)-2*X(46082)

X(56472) lies on the Steiner-Wallace hyperbola, the cubics K008, K800 and these lines: {2, 46083}, {3, 67}, {5, 39229}, {316, 56484}, {524, 39230}, {12243, 46082}

X(56472) = reflection of X(i) in X(j) for these (i, j): (12243, 46082), (56471, 8724)
X(56472) = anticomplementary conjugate of the anticomplement of X(39230)
X(56472) = anticomplement of X(46083)
X(56472) = isotomic conjugate of X(56484)
X(56472) = X(39230)-anticomplementary conjugate of-X(8)
X(56472) = X(316)-Ceva conjugate of-X(56471)
X(56472) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 56484), (46083, 46083)
X(56472) = X(31)-isoconjugate of-X(56484)
X(56472) = X(2)-reciprocal conjugate of-X(56484)
X(56472) = touchpoint of Steiner-Wallace hyperbola and line {316, 56484}
X(56472) = pole of line {39230, 43291} with respect to Kiepert circumhyperbola
X(56472) = pole of line {23, 39230} with respect to Stammler hyperbola
X(56472) = trilinear quotient X(75)/X(56484)
X(56472) = (X(3), X(34507))-harmonic conjugate of X(56471)


X(56473) = ISOTOMIC CONJUGATE OF X(34163)

Barycentrics    (-a^2+b^2+c^2)*(a^12-2*a^10*b^2-(b^4-3*b^2*c^2+c^4)*a^8+(b^2-c^2)*(4*b^2+c^2)*b^2*a^6-(b^2-c^2)^2*(b^4+3*b^2*c^2+c^4)*a^4-(b^4-c^4)*(2*b^4-3*b^2*c^2+3*c^4)*b^2*a^2+(b^4-c^4)^2*(b^2-c^2)^2)*(a^12-2*a^10*c^2-(b^4-3*b^2*c^2+c^4)*a^8-(b^2-c^2)*(b^2+4*c^2)*c^2*a^6-(b^2-c^2)^2*(b^4+3*b^2*c^2+c^4)*a^4+(b^4-c^4)*(3*b^4-3*b^2*c^2+2*c^4)*c^2*a^2+(b^4-c^4)^2*(b^2-c^2)^2) : :

X(56473) lies on the cubic K008 and these lines: {2, 55841}, {69, 55839}, {316, 34163}, {524, 55840}, {671, 55845}, {858, 2892}, {14360, 55847}, {34164, 56485}, {34165, 55838}, {34166, 55844}, {55842, 55852}, {55843, 55846}, {55853, 56489}, {56486, 56488}

X(56473) = isogonal conjugate of X(8428)
X(56473) = cyclocevian conjugate of the isogonal conjugate of X(15139)
X(56473) = isotomic conjugate of X(34163)
X(56473) = antigonal conjugate of X(41511)
X(56473) = X(897)-anticomplementary conjugate of-X(55841)
X(56473) = X(i)-cross conjugate of-X(j) for these (i, j): (67, 69), (18876, 2)
X(56473) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 34163), (6, 15141)
X(56473) = X(i)-isoconjugate of-X(j) for these {i, j}: {19, 15141}, {31, 34163}
X(56473) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 34163), (3, 15141), (895, 19330)
X(56473) = perspector of the inconic with center X(18876)
X(56473) = pole of line {8428, 15141} with respect to Stammler hyperbola
X(56473) = pole of line {8428, 34163} with respect to Steiner-Wallace hyperbola
X(56473) = trilinear quotient X(i)/X(j) for these (i, j): (63, 15141), (75, 34163)


X(56474) = ISOTOMIC CONJUGATE OF X(55838)

Barycentrics    (2*a^2-b^2-c^2)*(a^12-2*(3*b^2-c^2)*a^10-(b^4-8*b^2*c^2+c^4)*a^8+2*(5*b^6-5*b^4*c^2-2*c^6)*a^6-(3*b^8+c^8+(2*b-3*c)*(2*b+3*c)*b^4*c^2)*a^4-2*(b^4-c^4)*(2*b^6+c^6-4*(b^2-c^2)*b^2*c^2)*a^2+(b^4-c^4)*(b^2+c^2)*(3*b^6-c^6-7*(b^2-c^2)*b^2*c^2))*(a^12+2*(b^2-3*c^2)*a^10-(b^4-8*b^2*c^2+c^4)*a^8-2*(2*b^6+5*b^2*c^4-5*c^6)*a^6-(b^8+3*c^8-(3*b-2*c)*(3*b+2*c)*b^2*c^4)*a^4+2*(b^4-c^4)*(b^6+2*c^6+4*(b^2-c^2)*b^2*c^2)*a^2+(b^4-c^4)*(b^2+c^2)*(b^6-3*c^6-7*(b^2-c^2)*b^2*c^2)) : :

X(56474) lies on the cubic K008 and these lines: {2, 55844}, {4, 55845}, {69, 55852}, {316, 55838}, {524, 55839}, {858, 55846}, {11061, 14360}, {34163, 34164}, {34165, 56488}, {39157, 55841}, {55840, 55850}, {55847, 55853}

X(56474) = antigonal conjugate of X(41498)
X(56474) = isotomic conjugate of X(55838)
X(56474) = X(897)-anticomplementary conjugate of-X(55844)
X(56474) = X(67)-cross conjugate of-X(524)
X(56474) = X(2)-Dao conjugate of-X(55838)
X(56474) = X(31)-isoconjugate of-X(55838)
X(56474) = X(2)-reciprocal conjugate of-X(55838)
X(56474) = trilinear quotient X(75)/X(55838)


X(56475) = ISOTOMIC CONJUGATE OF X(55840)

Barycentrics    (a^18-3*(b^2+c^2)*a^16-(2*b^2-11*c^2)*b^2*a^14+2*(5*b^6+4*c^6-(4*b^2+7*c^2)*b^2*c^2)*a^12-(b^2-c^2)*(15*b^4-17*b^2*c^2-6*c^4)*c^2*a^10-2*(b^2-c^2)*(6*b^8-3*c^8-(6*b^4-3*b^2*c^2-14*c^4)*b^2*c^2)*a^8+(2*b^8+8*c^8+(b^4-20*b^2*c^2+5*c^4)*b^2*c^2)*(b^2-c^2)^2*a^6+2*(b^4-c^4)*(3*b^8+7*c^8-2*(3*b^4-8*b^2*c^2+8*c^4)*b^2*c^2)*b^2*a^4-(b^4-c^4)^2*(b^2-c^2)^2*(b^4-5*b^2*c^2+3*c^4)*a^2+(b^4-c^4)^3*(b^2-c^2)*(-b^4-2*b^2*c^2+c^4))*(a^18-3*(b^2+c^2)*a^16+(11*b^2-2*c^2)*c^2*a^14+2*(4*b^6+5*c^6-b^2*c^2*(7*b^2+4*c^2))*a^12-(b^2-c^2)*(6*b^4+17*b^2*c^2-15*c^4)*b^2*a^10-2*(b^2-c^2)*(3*b^8-6*c^8-b^2*c^2*(14*b^4+3*b^2*c^2-6*c^4))*a^8+(8*b^8+2*c^8+b^2*c^2*(5*b^4-20*b^2*c^2+c^4))*(b^2-c^2)^2*a^6-2*(b^4-c^4)*(7*b^8+3*c^8-2*b^2*c^2*(8*b^4-8*b^2*c^2+3*c^4))*c^2*a^4-(b^4-c^4)^2*(b^2-c^2)^2*(3*b^4-5*b^2*c^2+c^4)*a^2+(b^4-c^4)^3*(b^2-c^2)*(b^4-2*b^2*c^2-c^4))*(3*a^6-(b^2+c^2)*a^4-(3*b^4-2*b^2*c^2+3*c^4)*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(56475) lies on the cubic K008 and these lines: {69, 55841}, {316, 55840}, {858, 34163}, {11061, 55847}, {14360, 56485}, {34165, 55839}, {34166, 55845}, {55838, 55843}, {55842, 55844}, {55846, 56489}, {55852, 56486}

X(56475) = isotomic conjugate of X(55840)
X(56475) = X(67)-cross conjugate of-X(34165)
X(56475) = X(2)-Dao conjugate of-X(55840)
X(56475) = X(31)-isoconjugate of-X(55840)
X(56475) = X(2)-reciprocal conjugate of-X(55840)
X(56475) = trilinear quotient X(75)/X(55840)


X(56476) = ISOTOMIC CONJUGATE OF X(55841)

Barycentrics    (a^20-2*(b^2+c^2)*a^18+(b^4+8*b^2*c^2-3*c^4)*a^16+2*(b^6-7*b^4*c^2+4*c^6)*a^14-(8*b^8-2*c^8-b^2*c^2*(8*b^4+19*b^2*c^2-20*c^4))*a^12+2*(b^2-c^2)*(3*b^8+6*c^8+b^2*c^2*(12*b^4-8*b^2*c^2-c^4))*a^10+2*(b^2-c^2)*(4*b^10-c^10-(14*b^6+8*c^6+3*b^2*c^2*(b-2*c)*(b+2*c))*b^2*c^2)*a^8-2*(b^2-c^2)*(5*b^12+4*c^12-(2*b^8+6*c^8+b^2*c^2*(14*b^4-16*b^2*c^2-c^4))*b^2*c^2)*a^6-(b^4-c^4)*(b^12-3*c^12-2*(8*b^6-8*c^6-b^2*c^2*(19*b^2-20*c^2))*b^4*c^2)*a^4+2*(b^4-c^4)^2*(b^2-c^2)^2*(2*b^6-c^6-2*b^2*c^2*(2*b^2-c^2))*a^2+(b^4-c^4)^3*(b^2-c^2)*(-b^6+c^6+b^2*c^2*(3*b^2-c^2)))*(a^20-2*(b^2+c^2)*a^18-(3*b^4-8*b^2*c^2-c^4)*a^16+2*(4*b^6-7*b^2*c^4+c^6)*a^14+(2*b^8-8*c^8-b^2*c^2*(20*b^4-19*b^2*c^2-8*c^4))*a^12-2*(b^2-c^2)*(6*b^8+3*c^8-b^2*c^2*(b^4+8*b^2*c^2-12*c^4))*a^10+2*(b^2-c^2)*(b^10-4*c^10+(8*b^6+14*c^6-3*b^2*c^2*(2*b-c)*(2*b+c))*b^2*c^2)*a^8+2*(b^2-c^2)*(4*b^12+5*c^12-(6*b^8+2*c^8-b^2*c^2*(b^4+16*b^2*c^2-14*c^4))*b^2*c^2)*a^6-(b^4-c^4)*(3*b^12-c^12-2*(8*b^6-8*c^6-b^2*c^2*(20*b^2-19*c^2))*b^2*c^4)*a^4-2*(b^4-c^4)^2*(b^2-c^2)^2*(b^6-2*c^6-2*b^2*c^2*(b^2-2*c^2))*a^2+(b^4-c^4)^3*(b^2-c^2)*(b^6-c^6-b^2*c^2*(b^2-3*c^2)))*((b^2+c^2)*a^4-2*b^2*c^2*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(56476) lies on the cubic K008 and these lines: {69, 55845}, {316, 55841}, {858, 55839}, {11061, 34163}, {14360, 55840}, {34165, 55844}, {55838, 55847}, {55843, 55852}, {55846, 56485}, {56488, 56489}

X(56476) = isotomic conjugate of X(55841)
X(56476) = X(67)-cross conjugate of-X(858)
X(56476) = X(2)-Dao conjugate of-X(55841)
X(56476) = X(31)-isoconjugate of-X(55841)
X(56476) = X(2)-reciprocal conjugate of-X(55841)
X(56476) = trilinear quotient X(75)/X(55841)


X(56477) = ISOTOMIC CONJUGATE OF X(55843)

Barycentrics    (a^6+(b^2+c^2)*a^4-(b^4+26*b^2*c^2+c^4)*a^2-(b^2+c^2)*(b^4-10*b^2*c^2+c^4))*(a^12-2*(b^2+3*c^2)*a^10-((b^2-c^2)^2-16*b^2*c^2)*a^8+4*(b^2-c^2)*(b^4+b^2*c^2-3*c^4)*a^6-(b^2-c^2)^2*(b^4+18*b^2*c^2+c^4)*a^4-2*(b^4-c^4)*(b^6-3*c^2*((b^2-c^2)^2-b^2*c^2))*a^2+(b^4-c^4)^2*(b^2-c^2)^2)*(a^12-2*(3*b^2+c^2)*a^10-((b^2-c^2)^2-16*b^2*c^2)*a^8+4*(b^2-c^2)*(3*b^4-b^2*c^2-c^4)*a^6-(b^2-c^2)^2*(b^4+18*b^2*c^2+c^4)*a^4+2*(b^4-c^4)*(c^6-3*b^2*((b^2-c^2)^2-b^2*c^2))*a^2+(b^4-c^4)^2*(b^2-c^2)^2) : :

X(56477) lies on the cubic K008 and these lines: {2, 56485}, {69, 55847}, {316, 55843}, {524, 56489}, {671, 55840}, {858, 34165}, {11061, 55842}, {14360, 56486}, {34163, 34166}, {55838, 56487}, {55839, 55855}, {55841, 55851}, {55845, 56482}

X(56477) = isotomic conjugate of X(55843)
X(56477) = X(897)-anticomplementary conjugate of-X(56485)
X(56477) = X(67)-cross conjugate of-X(55855)
X(56477) = X(2)-Dao conjugate of-X(55843)
X(56477) = X(31)-isoconjugate of-X(55843)
X(56477) = X(2)-reciprocal conjugate of-X(55843)
X(56477) = trilinear quotient X(75)/X(55843)


X(56478) = ISOTOMIC CONJUGATE OF X(55844)

Barycentrics    (a^20+2*(b-2*c)*(b+2*c)*a^18-(3*b^4-25*b^2*c^2+7*c^4)*a^16-(8*b^6-24*c^6+b^2*c^2*(25*b^2+11*c^2))*a^14+(2*b^8+6*c^8+b^2*c^2*(7*b^4+57*b^2*c^2-57*c^4))*a^12+(12*b^10-32*c^10+(47*b^6+41*c^6-b^2*c^2*(101*b^2-27*c^2))*b^2*c^2)*a^10+(2*b^12+6*c^12-(83*b^8-41*c^8-b^2*c^2*(56*b^4+83*b^2*c^2-104*c^4))*b^2*c^2)*a^8-(b^2-c^2)*(8*b^12+24*c^12-(9*b^8+33*c^8+b^2*c^2*(72*b^4-77*b^2*c^2+6*c^4))*b^2*c^2)*a^6-(b^4-c^4)*(3*b^12-7*c^12-(49*b^8+11*c^8-2*b^2*c^2*(53*b^4-56*b^2*c^2+25*c^4))*b^2*c^2)*a^4+(b^4-c^4)*(b^2+c^2)*(2*b^2-c^2)*(b^10-8*c^10-(16*b^6-17*c^6-2*b^2*c^2*(17*b^2-16*c^2))*b^2*c^2)*a^2+(b^2-c^2)^4*(b^2+c^2)^6)*(a^20-2*(2*b-c)*(2*b+c)*a^18-(7*b^4-25*b^2*c^2+3*c^4)*a^16+(24*b^6-8*c^6-b^2*c^2*(11*b^2+25*c^2))*a^14+(6*b^8+2*c^8-b^2*c^2*(57*b^4-57*b^2*c^2-7*c^4))*a^12-(32*b^10-12*c^10-(41*b^6+47*c^6+b^2*c^2*(27*b^2-101*c^2))*b^2*c^2)*a^10+(6*b^12+2*c^12+(41*b^8-83*c^8-b^2*c^2*(104*b^4-83*b^2*c^2-56*c^4))*b^2*c^2)*a^8+(b^2-c^2)*(24*b^12+8*c^12-(33*b^8+9*c^8+b^2*c^2*(6*b^4-77*b^2*c^2+72*c^4))*b^2*c^2)*a^6-(b^4-c^4)*(7*b^12-3*c^12+(11*b^8+49*c^8-2*b^2*c^2*(25*b^4-56*b^2*c^2+53*c^4))*b^2*c^2)*a^4-(b^4-c^4)*(b^2+c^2)*(b^2-2*c^2)*(8*b^10-c^10-(17*b^6-16*c^6-2*b^2*c^2*(16*b^2-17*c^2))*b^2*c^2)*a^2+(b^2-c^2)^4*(b^2+c^2)^6)*(a^6+(b^2+c^2)*a^4-(b^4+5*b^2*c^2+c^4)*a^2-(b^2+c^2)*(b^4-4*b^2*c^2+c^4)) : :

X(56478) lies on the cubic K008 and these lines: {316, 55844}, {524, 55845}, {858, 55852}, {11061, 55838}, {14360, 55839}, {34163, 55846}, {34164, 55841}, {55840, 55853}, {55847, 56488}

X(56478) = isotomic conjugate of X(55844)
X(56478) = X(67)-cross conjugate of-X(14360)
X(56478) = X(2)-Dao conjugate of-X(55844)
X(56478) = X(31)-isoconjugate of-X(55844)
X(56478) = X(2)-reciprocal conjugate of-X(55844)
X(56478) = trilinear quotient X(75)/X(55844)


X(56479) = ISOTOMIC CONJUGATE OF X(55845)

Barycentrics    (a^24-6*b^2*a^22+(5*b^2-2*c^2)*(2*b^2+3*c^2)*a^20+(14*b^4-41*b^2*c^2+7*c^4)*b^2*a^18-(45*b^8-15*c^8-b^2*c^2*(18*b^4+53*b^2*c^2-26*c^4))*a^16+2*(2*b^6+3*c^6+2*b^2*c^2*(23*b^2-27*c^2))*b^4*a^14+(60*b^12-20*c^12-(110*b^8-14*c^8+b^2*c^2*(7*b^4-127*b^2*c^2+63*c^4))*b^2*c^2)*a^12-(b^2-c^2)*(36*b^10+14*c^10+(66*b^6+84*c^6-b^2*c^2*(112*b^2-33*c^2))*b^2*c^2)*b^2*a^10-(b^2-c^2)*(25*b^14+15*c^14-(87*b^10-15*c^10-(36*b^6-48*c^6+b^2*c^2*(115*b^2-99*c^2))*b^2*c^2)*b^2*c^2)*a^8+(b^4-c^4)*(34*b^12+26*c^12-(52*b^8+6*c^8+b^2*c^2*(22*b^4-139*b^2*c^2+101*c^4))*b^2*c^2)*b^2*a^6-(b^4-c^4)*(b^2+c^2)*(6*b^14-6*c^14+(15*b^10+13*c^10-(98*b^6-34*c^6-5*b^2*c^2*(35*b^2-27*c^2))*b^2*c^2)*b^2*c^2)*a^4-(b^4-c^4)^3*(b^2-c^2)*b^2*(2*b^2-c^2)*(5*b^4-8*b^2*c^2+11*c^4)*a^2+(5*b^8+c^8-2*b^2*c^2*(5*b^4-7*b^2*c^2+3*c^4))*(b^4-c^4)^4)*(a^24-6*c^2*a^22-(3*b^2+2*c^2)*(2*b^2-5*c^2)*a^20+(7*b^4-41*b^2*c^2+14*c^4)*c^2*a^18+(15*b^8-45*c^8-b^2*c^2*(26*b^4-53*b^2*c^2-18*c^4))*a^16+2*(3*b^6+2*c^6-2*b^2*c^2*(27*b^2-23*c^2))*c^4*a^14-(20*b^12-60*c^12-(14*b^8-110*c^8-b^2*c^2*(63*b^4-127*b^2*c^2+7*c^4))*b^2*c^2)*a^12+(b^2-c^2)*(14*b^10+36*c^10+(84*b^6+66*c^6+b^2*c^2*(33*b^2-112*c^2))*b^2*c^2)*c^2*a^10+(b^2-c^2)*(15*b^14+25*c^14+(15*b^10-87*c^10-(48*b^6-36*c^6+b^2*c^2*(99*b^2-115*c^2))*b^2*c^2)*b^2*c^2)*a^8-(b^4-c^4)*(26*b^12+34*c^12-(6*b^8+52*c^8+b^2*c^2*(101*b^4-139*b^2*c^2+22*c^4))*b^2*c^2)*c^2*a^6-(b^4-c^4)*(b^2+c^2)*(6*b^14-6*c^14-(13*b^10+15*c^10+(34*b^6-98*c^6-5*b^2*c^2*(27*b^2-35*c^2))*b^2*c^2)*b^2*c^2)*a^4+(b^4-c^4)^3*(b^2-c^2)*c^2*(b^2-2*c^2)*(11*b^4-8*b^2*c^2+5*c^4)*a^2+(b^8+5*c^8-2*(3*b^4-7*b^2*c^2+5*c^4)*b^2*c^2)*(b^4-c^4)^4)*(3*a^8-2*(b^2+c^2)*a^6-(2*b^4-3*b^2*c^2+2*c^4)*a^4+(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)*a^2-(b^4-c^4)^2) : :

X(56479) lies on the cubic K008 and these lines: {316, 55845}, {858, 55844}, {11061, 55839}, {14360, 55841}, {34163, 55838}, {55840, 55846}, {55847, 55852}, {56485, 56488}

X(56479) = isotomic conjugate of X(55845)
X(56479) = X(67)-cross conjugate of-X(11061)
X(56479) = X(2)-Dao conjugate of-X(55845)
X(56479) = X(31)-isoconjugate of-X(55845)
X(56479) = X(2)-reciprocal conjugate of-X(55845)
X(56479) = trilinear quotient X(75)/X(55845)


X(56480) = ISOTOMIC CONJUGATE OF X(55847)

Barycentrics    (a^12-(2*b^2+3*c^2)*a^10-((b^2-c^2)^2-4*b^2*c^2)*a^8+2*(b^4-c^4)*(2*b^2-3*c^2)*a^6-(b^2-c^2)^2*(b^4+6*b^2*c^2+c^4)*a^4-(b^4-c^4)*(2*b^6-3*c^6-3*b^2*c^2*(3*b^2-2*c^2))*a^2+(b^4-c^4)^2*(b^2-c^2)^2)*(a^12-(3*b^2+2*c^2)*a^10-((b^2-c^2)^2-4*b^2*c^2)*a^8+2*(b^4-c^4)*(3*b^2-2*c^2)*a^6-(b^2-c^2)^2*(b^4+6*b^2*c^2+c^4)*a^4-(b^4-c^4)*(3*b^6-2*c^6-3*b^2*c^2*(2*b^2-3*c^2))*a^2+(b^4-c^4)^2*(b^2-c^2)^2)*(a^4-b^4+4*b^2*c^2-c^4) : :

X(56480) lies on the cubic K008 and these lines: {2, 55840}, {69, 34163}, {316, 55847}, {524, 56485}, {671, 55841}, {858, 19330}, {11061, 34165}, {14360, 55843}, {34164, 56489}, {34166, 55839}, {55838, 55842}, {55844, 55855}, {55845, 55851}, {55846, 56486}, {55852, 56487}

X(56480) = isotomic conjugate of X(55847)
X(56480) = X(897)-anticomplementary conjugate of-X(55840)
X(56480) = X(67)-cross conjugate of-X(34166)
X(56480) = X(2)-Dao conjugate of-X(55847)
X(56480) = X(31)-isoconjugate of-X(55847)
X(56480) = X(2)-reciprocal conjugate of-X(55847)
X(56480) = trilinear quotient X(75)/X(55847)


X(56481) = ISOTOMIC CONJUGATE OF X(55852)

Barycentrics    (a^18-5*(3*b^2-c^2)*a^16-(10*b^4-41*b^2*c^2-8*c^4)*a^14+2*(25*b^4-14*b^2*c^2-51*c^4)*b^2*a^12+(12*b^8-14*c^8-(101*b^4-243*b^2*c^2+45*c^4)*b^2*c^2)*a^10-(80*b^10+14*c^10-(100*b^6+226*c^6-(125*b^2+173*c^2)*b^2*c^2)*b^2*c^2)*a^8-(14*b^10+45*c^10-(127*b^6-173*c^6-5*(33*b^2-59*c^2)*b^2*c^2)*b^2*c^2)*b^2*a^6+(b^2+c^2)*(54*b^12+8*c^12-(142*b^8+110*c^8-b^2*c^2*(313*b^4-478*b^2*c^2+353*c^4))*b^2*c^2)*a^4+(b^4-c^4)*(b^2+c^2)^2*(11*b^8-5*c^8-b^2*c^2*(89*b^4-90*b^2*c^2+31*c^4))*a^2+(b^4-c^4)*(b^2+c^2)^3*(-9*b^8-c^8+2*(19*b^4-21*b^2*c^2+9*c^4)*b^2*c^2))*(a^18+5*(b^2-3*c^2)*a^16+(8*b^4+41*b^2*c^2-10*c^4)*a^14-2*(51*b^4+14*b^2*c^2-25*c^4)*c^2*a^12-(14*b^8-12*c^8+(45*b^4-243*b^2*c^2+101*c^4)*b^2*c^2)*a^10-(14*b^10+80*c^10-(226*b^6+100*c^6-(173*b^2+125*c^2)*b^2*c^2)*b^2*c^2)*a^8-(45*b^10+14*c^10+(173*b^6-127*c^6-5*b^2*c^2*(59*b^2-33*c^2))*b^2*c^2)*c^2*a^6+(b^2+c^2)*(8*b^12+54*c^12-(110*b^8+142*c^8-b^2*c^2*(353*b^4-478*b^2*c^2+313*c^4))*b^2*c^2)*a^4+(b^4-c^4)*(b^2+c^2)^2*(5*b^8-11*c^8+b^2*c^2*(31*b^4-90*b^2*c^2+89*c^4))*a^2+(b^4-c^4)*(b^2+c^2)^3*(b^8+9*c^8-2*(9*b^4-21*b^2*c^2+19*c^4)*b^2*c^2))*(7*a^6-3*(b^2+c^2)*a^4-9*(b^4-b^2*c^2+c^4)*a^2+(b^2+c^2)^3) : :

X(56481) lies on the cubic K008 and these lines: {316, 55852}, {524, 55844}, {858, 56488}, {11061, 55846}, {14360, 55838}, {34163, 55853}, {34164, 55839}, {39157, 55845}, {55841, 55850}

X(56481) = isotomic conjugate of X(55852)
X(56481) = X(67)-cross conjugate of-X(34164)
X(56481) = X(2)-Dao conjugate of-X(55852)
X(56481) = X(31)-isoconjugate of-X(55852)
X(56481) = X(2)-reciprocal conjugate of-X(55852)
X(56481) = trilinear quotient X(75)/X(55852)


X(56482) = ISOTOMIC CONJUGATE OF X(55853)

Barycentrics    (4*a^6-9*(b^2+c^2)*a^4-6*(2*b^2-c^2)*(b^2-2*c^2)*a^2+(b^2+c^2)^3)*(a^12-6*(3*b^2-c^2)*a^10-3*(11*b^4-24*b^2*c^2-5*c^4)*a^8+2*(7*b^6+10*c^6+15*b^2*c^2*(b^2-6*c^2))*a^6+3*(15*b^8+5*c^8-b^2*c^2*(40*b^4-123*b^2*c^2+60*c^4))*a^4+6*(b^2+c^2)^2*(2*b^6+c^6-2*b^2*c^2*(8*b^2-5*c^2))*a^2-(b^2+c^2)^3*(5*b^6-c^6-3*b^2*c^2*(9*b^2-7*c^2)))*(a^12+6*(b^2-3*c^2)*a^10+3*(5*b^4+24*b^2*c^2-11*c^4)*a^8+2*(10*b^6+7*c^6-15*b^2*c^2*(6*b^2-c^2))*a^6+3*(5*b^8+15*c^8-b^2*c^2*(60*b^4-123*b^2*c^2+40*c^4))*a^4+6*(b^2+c^2)^2*(b^6+2*c^6+2*b^2*c^2*(5*b^2-8*c^2))*a^2+(b^2+c^2)^3*(b^6-5*c^6-3*(7*b^2-9*c^2)*b^2*c^2)) : :

X(56482) lies on the cubic K008 and these lines: {2, 56488}, {4, 55852}, {316, 55853}, {524, 55846}, {11061, 55850}, {14360, 34164}, {34163, 56490}, {39157, 55838}, {55839, 55849}, {55841, 56492}, {55844, 55848}, {55845, 56477}

X(56482) = isotomic conjugate of X(55853)
X(56482) = X(897)-anticomplementary conjugate of-X(56488)
X(56482) = X(67)-cross conjugate of-X(55849)
X(56482) = X(2)-Dao conjugate of-X(55853)
X(56482) = X(31)-isoconjugate of-X(55853)
X(56482) = X(2)-reciprocal conjugate of-X(55853)
X(56482) = trilinear quotient X(75)/X(55853)


X(56483) = ISOTOMIC CONJUGATE OF X(56471)

Barycentrics    (-(a^4-b^4)^2*(a^4-3*b^2*a^2+b^4)+(a^2+b^2)*(4*a^8+4*b^8-3*a^2*b^2*(a^2+b^2)^2)*c^2-4*(2*a^8+a^6*b^2+a^2*b^6+2*b^8)*c^4+(a^2+b^2)*(14*a^4+9*b^2*a^2+14*b^4)*c^6-(10*a^4+23*b^2*a^2+10*b^4)*c^8+c^12+(2*a^2*b^2*(a^2-b^2)*(a^4-b^4)+(a^8-3*a^6*b^2-4*a^4*b^4-3*a^2*b^6+b^8)*c^2-(a^2+b^2)*(a^4-6*b^2*a^2+b^4)*c^4+(4*a^4+b^2*a^2+4*b^4)*c^6-5*(a^2+b^2)*c^8+c^10)*sqrt(SW^2+9*S^2))*(b^12-(a^4-c^4)^2*(a^4-3*c^2*a^2+c^4)-b^8*(10*a^4+23*c^2*a^2+10*c^4)+b^6*(c^2+a^2)*(14*a^4+9*c^2*a^2+14*c^4)-4*b^4*(2*a^8+a^6*c^2+a^2*c^6+2*c^8)+b^2*(c^2+a^2)*(4*a^8+4*c^8-3*a^2*c^2*(c^2+a^2)^2)+(b^10-5*b^8*(c^2+a^2)+2*a^2*c^2*(a^2-c^2)*(a^4-c^4)-b^4*(c^2+a^2)*(a^4-6*c^2*a^2+c^4)+b^6*(4*a^4+c^2*a^2+4*c^4)+b^2*(a^8-3*a^6*c^2-4*a^4*c^4-3*a^2*c^6+c^8))*sqrt(SW^2+9*S^2)) : :

X(56483) lies on the cubic K008, the curve Q124 and these lines: {316, 56471}, {55839, 56484}

X(56483) = isotomic conjugate of X(56471)
X(56483) = X(i)-cross conjugate of-X(j) for these (i, j): (67, 56484), (46082, 2)
X(56483) = X(2)-Dao conjugate of-X(56471)
X(56483) = X(31)-isoconjugate of-X(56471)
X(56483) = X(2)-reciprocal conjugate of-X(56471)
X(56483) = perspector of the inconic with center X(46082)
X(56483) = trilinear quotient X(75)/X(56471)


X(56484) = ISOTOMIC CONJUGATE OF X(56472)

Barycentrics    (-(a^4-b^4)^2*(a^4-3*b^2*a^2+b^4)+(a^2+b^2)*(4*a^8+4*b^8-3*a^2*b^2*(a^2+b^2)^2)*c^2-4*(2*a^8+a^6*b^2+a^2*b^6+2*b^8)*c^4+(a^2+b^2)*(14*a^4+9*b^2*a^2+14*b^4)*c^6-(10*a^4+23*b^2*a^2+10*b^4)*c^8+c^12+(-2*a^2*b^2*(a^2-b^2)*(a^4-b^4)-(a^8-3*a^6*b^2-4*a^4*b^4-3*a^2*b^6+b^8)*c^2+(a^2+b^2)*(a^4-6*b^2*a^2+b^4)*c^4-(4*a^4+b^2*a^2+4*b^4)*c^6+5*(a^2+b^2)*c^8-c^10)*sqrt(SW^2+9*S^2))*(b^12-(a^4-c^4)^2*(a^4-3*c^2*a^2+c^4)-b^8*(10*a^4+23*c^2*a^2+10*c^4)+b^6*(c^2+a^2)*(14*a^4+9*c^2*a^2+14*c^4)-4*b^4*(2*a^8+a^6*c^2+a^2*c^6+2*c^8)+b^2*(c^2+a^2)*(4*a^8+4*c^8-3*a^2*c^2*(c^2+a^2)^2)+(-b^10+5*b^8*(c^2+a^2)-2*a^2*c^2*(a^2-c^2)*(a^4-c^4)+b^4*(c^2+a^2)*(a^4-6*c^2*a^2+c^4)-b^6*(4*a^4+c^2*a^2+4*c^4)-b^2*(a^8-3*a^6*c^2-4*a^4*c^4-3*a^2*c^6+c^8))*sqrt(SW^2+9*S^2)) : :

X(56484) lies on the cubic K008, the curve Q124 and these lines: {316, 56472}, {55839, 56483}

X(56484) = isotomic conjugate of X(56472)
X(56484) = X(i)-cross conjugate of-X(j) for these (i, j): (67, 56483), (46083, 2)
X(56484) = X(2)-Dao conjugate of-X(56472)
X(56484) = X(31)-isoconjugate of-X(56472)
X(56484) = X(2)-reciprocal conjugate of-X(56472)
X(56484) = perspector of the inconic with center X(46083)
X(56484) = trilinear quotient X(75)/X(56472)


X(56485) = X(4)X(55848)∩X(2373)X(39157)

Barycentrics    (a^8-8*b^2*a^6+2*(b^4+8*b^2*c^2-c^4)*a^4+8*(b^2-c^2)*(b^2-2*c^2)*b^2*a^2-(b^4-c^4)*(3*b^4-8*b^2*c^2+c^4))*(a^8-8*c^2*a^6-2*(b^4-8*b^2*c^2-c^4)*a^4+8*(b^2-c^2)*(2*b^2-c^2)*c^2*a^2+(b^4-c^4)*(b^4-8*b^2*c^2+3*c^4))*(2*a^18-7*(b^2+c^2)*a^16+28*b^2*c^2*a^14+4*(b^2+c^2)*(5*b^4-11*b^2*c^2+5*c^4)*a^12-4*(3*b^8+3*c^8+(9*b^4-14*b^2*c^2+9*c^4)*b^2*c^2)*a^10-2*(3*b^2-c^2)*(b^2-3*c^2)*(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4)*a^8+4*(b^2-c^2)^2*(4*b^8+4*c^8+(5*b^4-6*b^2*c^2+5*c^4)*b^2*c^2)*a^6+4*(-4*b^2*c^2+(b^2-c^2)^2)*(b^2-c^2)^2*(b^6+c^6)*a^4-2*(b^4-c^4)^2*(3*b^8+3*c^8-10*(b^4-b^2*c^2+c^4)*b^2*c^2)*a^2+(b^2+c^2)^3*(b^2-c^2)^6) : :

X(56485) lies on the cubic K008 and these lines: {2, 56477}, {4, 55848}, {67, 55849}, {69, 56494}, {316, 56491}, {524, 56480}, {671, 56492}, {2373, 39157}, {13574, 56490}, {14360, 56475}, {14364, 55850}, {34164, 56473}, {55846, 56476}, {56479, 56488}

X(56485) = isotomic conjugate of X(56491)
X(56485) = X(897)-anticomplementary conjugate of-X(56477)
X(56485) = X(316)-Ceva conjugate of-X(55849)
X(56485) = X(2)-Dao conjugate of-X(56491)
X(56485) = X(31)-isoconjugate of-X(56491)
X(56485) = X(2)-reciprocal conjugate of-X(56491)
X(56485) = trilinear quotient X(75)/X(56491)


X(56486) = X(4)X(55850)∩X(524)X(55849)

Barycentrics    (a^12-(21*b^2-4*c^2)*a^10+(15*b^4+92*b^2*c^2+5*c^4)*a^8+2*(37*b^2-125*c^2)*(b^2+c^2)*b^2*a^6+(15*b^8-5*c^8-2*b^2*c^2*(88*b^4-447*b^2*c^2+108*c^4))*a^4-(b^2+c^2)*(21*b^8+4*c^8-b^2*c^2*(113*b^4-363*b^2*c^2+147*c^4))*a^2+(b^2-c^2)*(b^2+c^2)^5)*(a^12+(4*b^2-21*c^2)*a^10+(5*b^4+92*b^2*c^2+15*c^4)*a^8-2*(125*b^2-37*c^2)*(b^2+c^2)*c^2*a^6-(5*b^8-15*c^8+2*b^2*c^2*(108*b^4-447*b^2*c^2+88*c^4))*a^4-(b^2+c^2)*(4*b^8+21*c^8-b^2*c^2*(147*b^4-363*b^2*c^2+113*c^4))*a^2-(b^2-c^2)*(b^2+c^2)^5)*(a^16-4*(b^4+12*b^2*c^2+c^4)*a^12+96*(b^2+c^2)*b^2*c^2*a^10+2*(3*b^8+3*c^8+2*b^2*c^2*(28*b^4-89*b^2*c^2+28*c^4))*a^8-32*(b^2+c^2)*(5*b^4-9*b^2*c^2+5*c^4)*b^2*c^2*a^6-4*(b^4-4*b^2*c^2+c^4)*(b^8+c^8+2*b^2*c^2*(8*b^4-9*b^2*c^2+8*c^4))*a^4+32*(b^4-c^4)*(b^2-c^2)*b^2*c^2*(b^2-2*c^2)*(2*b^2-c^2)*a^2+(b^8+c^8-2*b^2*c^2*(8*b^4-19*b^2*c^2+8*c^4))*(b^4-c^4)^2) : :

X(56486) lies on the cubic K008 and these lines: {2, 56490}, {4, 55850}, {316, 56492}, {524, 55849}, {2373, 55853}, {11061, 56494}, {14360, 56477}, {34164, 55848}, {55838, 56491}, {55846, 56480}, {55852, 56475}, {56473, 56488}

X(56486) = isotomic conjugate of X(56492)
X(56486) = X(897)-anticomplementary conjugate of-X(56490)
X(56486) = X(2)-Dao conjugate of-X(56492)
X(56486) = X(31)-isoconjugate of-X(56492)
X(56486) = X(2)-reciprocal conjugate of-X(56492)
X(56486) = trilinear quotient X(75)/X(56492)


X(56487) = X(4)X(55853)∩X(524)X(55850)

Barycentrics    (a^12-6*(2*b-c)*(2*b+c)*a^10-3*(3*b^4-41*b^2*c^2-5*c^4)*a^8+(116*b^6+20*c^6-3*b^2*c^2*(39*b^2+161*c^2))*a^6+3*(49*b^8+5*c^8-b^2*c^2*(181*b^4-576*b^2*c^2+161*c^4))*a^4+3*(12*b^6+2*c^6-b^2*c^2*(115*b^2-37*c^2))*(b^2+c^2)^2*a^2-(11*b^6-c^6-3*b^2*c^2*(23*b^2-9*c^2))*(b^2+c^2)^3)*(a^12+6*(b-2*c)*(b+2*c)*a^10+3*(5*b^4+41*b^2*c^2-3*c^4)*a^8+(20*b^6+116*c^6-3*(161*b^2+39*c^2)*b^2*c^2)*a^6+3*(5*b^8+49*c^8-b^2*c^2*(161*b^4-576*b^2*c^2+181*c^4))*a^4+3*(2*b^6+12*c^6+b^2*c^2*(37*b^2-115*c^2))*(b^2+c^2)^2*a^2+(b^6-11*c^6-3*(9*b^2-23*c^2)*b^2*c^2)*(b^2+c^2)^3)*(9*a^12-34*(b^2+c^2)*a^10-(33*b^4-182*b^2*c^2+33*c^4)*a^8+4*(b^2+c^2)*(13*b^4-23*b^2*c^2+13*c^4)*a^6+(23*b^8+23*c^8-2*b^2*c^2*(92*b^4-225*b^2*c^2+92*c^4))*a^4-2*(b^2+c^2)*(9*b^8+9*c^8-2*b^2*c^2*(23*b^4-53*b^2*c^2+23*c^4))*a^2+(b^4-c^4)^2*(b^2+c^2)^2) : :

X(56487) lies on the cubic K008 and these lines: {4, 55853}, {316, 56490}, {524, 55850}, {2373, 56488}, {11061, 56492}, {14360, 55849}, {34164, 39157}, {55838, 56477}, {55839, 56494}, {55844, 56491}, {55846, 55848}, {55852, 56480}

X(56487) = isotomic conjugate of X(56490)
X(56487) = X(67)-cross conjugate of-X(56494)
X(56487) = X(2)-Dao conjugate of-X(56490)
X(56487) = X(31)-isoconjugate of-X(56490)
X(56487) = X(2)-reciprocal conjugate of-X(56490)
X(56487) = trilinear quotient X(75)/X(56490)


X(56488) = X(67)X(55855)∩X(13574)X(34166)

Barycentrics    (a^8+2*(2*b^2-7*c^2)*a^6+3*(b^2+10*c^2)*(2*b^2-c^2)*a^4+(4*b^6-14*c^6-3*b^2*c^2*(29*b^2-19*c^2))*a^2+(b^2+c^2)^4)*(a^8-2*(7*b^2-2*c^2)*a^6-3*(10*b^2+c^2)*(b^2-2*c^2)*a^4-(14*b^6-4*c^6-3*b^2*c^2*(19*b^2-29*c^2))*a^2+(b^2+c^2)^4)*(a^18+7*(b^2+c^2)*a^16+(20*b^4-209*b^2*c^2+20*c^4)*a^14+4*(b^2+c^2)*(7*b^4+53*b^2*c^2+7*c^4)*a^12+(14*b^8+14*c^8+5*b^2*c^2*(13*b^4-147*b^2*c^2+13*c^4))*a^10-(b^2+c^2)*(14*b^8+14*c^8+b^2*c^2*(698*b^4-1251*b^2*c^2+698*c^4))*a^8-(28*b^12+28*c^12-(261*b^8+261*c^8+35*b^2*c^2*(27*b^4-25*b^2*c^2+27*c^4))*b^2*c^2)*a^6-(b^2+c^2)*(20*b^12+20*c^12-(456*b^8+456*c^8-b^2*c^2*(1263*b^4-896*b^2*c^2+1263*c^4))*b^2*c^2)*a^4-(7*b^8+7*c^8+b^2*c^2*(97*b^4-252*b^2*c^2+97*c^4))*(b^2+c^2)^4*a^2-(b^8+c^8-2*b^2*c^2*(13*b^4-27*b^2*c^2+13*c^4))*(b^2+c^2)^5) : :

X(56488) lies on the cubic K008 and these lines: {2, 56482}, {67, 55855}, {69, 55854}, {316, 56493}, {671, 55851}, {858, 56481}, {2373, 56487}, {13574, 34166}, {14364, 55842}, {34165, 56474}, {55847, 56478}, {56473, 56486}, {56476, 56489}, {56479, 56485}

X(56488) = isotomic conjugate of X(56493)
X(56488) = X(897)-anticomplementary conjugate of-X(56482)
X(56488) = X(316)-Ceva conjugate of-X(55855)
X(56488) = X(2)-Dao conjugate of-X(56493)
X(56488) = X(31)-isoconjugate of-X(56493)
X(56488) = X(2)-reciprocal conjugate of-X(56493)
X(56488) = trilinear quotient X(75)/X(56493)


X(56489) = X(4)X(55849)∩X(2373)X(55850)

Barycentrics    (a^12+2*(b-3*c)*(b+3*c)*a^10-(b^4-74*b^2*c^2-23*c^4)*a^8-4*(b^6-13*c^6+2*b^2*c^2*(15*b^2+23*c^2))*a^6-(b^8+33*c^8+10*b^2*c^2*(12*b^4-45*b^2*c^2+4*c^4))*a^4+2*(b^4-c^4)*(b^6+17*c^6+b^2*c^2*(37*b^2-91*c^2))*a^2+(b^4-c^4)*(b^2+c^2)*(b^3-3*c^3+b*c*(3*b-5*c))*(b^3+3*c^3-b*c*(3*b+5*c)))*(7*a^20-34*(b^2+c^2)*a^18+19*(b^4+10*b^2*c^2+c^4)*a^16+4*(b^2+c^2)*(22*b^4-89*b^2*c^2+22*c^4)*a^14-2*(49*b^8+49*c^8+2*b^2*c^2*(35*b^4-211*b^2*c^2+35*c^4))*a^12-12*(b^4-c^4)*(b^2-c^2)*(5*b^4-43*b^2*c^2+5*c^4)*a^10+2*(55*b^12+55*c^12-(144*b^8+144*c^8+b^2*c^2*(263*b^4-576*b^2*c^2+263*c^4))*b^2*c^2)*a^8-4*(b^4-c^4)*(b^2-c^2)*(2*b^8+2*c^8+5*b^2*c^2*(11*b^4-26*b^2*c^2+11*c^4))*a^6-(b^4-c^4)^2*(37*b^8+37*c^8-2*b^2*c^2*(118*b^4-207*b^2*c^2+118*c^4))*a^4+2*(b^4-c^4)^2*(b^2+c^2)*(7*b^8+7*c^8-2*b^2*c^2*(19*b^4-35*b^2*c^2+19*c^4))*a^2-(b^2+c^2)^4*(b^2-c^2)^6)*(a^12-2*(3*b-c)*(3*b+c)*a^10+(23*b^4+74*b^2*c^2-c^4)*a^8+4*(13*b^6-c^6-2*b^2*c^2*(23*b^2+15*c^2))*a^6-(33*b^8+c^8+10*b^2*c^2*(4*b^4-45*b^2*c^2+12*c^4))*a^4-2*(b^4-c^4)*(17*b^6+c^6-b^2*c^2*(91*b^2-37*c^2))*a^2+(b^4-c^4)*(b^2+c^2)*(3*b^3-c^3+b*c*(5*b-3*c))*(3*b^3+c^3-b*c*(5*b+3*c))) : :

X(56489) lies on the cubic K008 and these lines: {2, 56492}, {4, 55849}, {67, 56490}, {316, 56494}, {524, 56477}, {2373, 55850}, {14360, 56491}, {34164, 56480}, {39157, 55848}, {55846, 56475}, {55853, 56473}, {56476, 56488}

X(56489) = isotomic conjugate of X(56494)
X(56489) = X(897)-anticomplementary conjugate of-X(56492)
X(56489) = X(316)-Ceva conjugate of-X(56490)
X(56489) = X(2)-Dao conjugate of-X(56494)
X(56489) = X(31)-isoconjugate of-X(56494)
X(56489) = X(2)-reciprocal conjugate of-X(56494)
X(56489) = trilinear quotient X(75)/X(56494)


X(56490) = X(69)X(55842)∩X(671)X(55843)

Barycentrics    (a^12+2*(b-3*c)*(b+3*c)*a^10-(b^4-74*b^2*c^2-23*c^4)*a^8-4*(b^6-13*c^6+2*b^2*c^2*(15*b^2+23*c^2))*a^6-(b^8+33*c^8+10*b^2*c^2*(12*b^4-45*b^2*c^2+4*c^4))*a^4+2*(b^4-c^4)*(b^6+17*c^6+b^2*c^2*(37*b^2-91*c^2))*a^2+(b^4-c^4)*(b^2+c^2)*(b^3-3*c^3+b*c*(3*b-5*c))*(b^3+3*c^3-b*c*(3*b+5*c)))*(11*a^12-36*(b^2+c^2)*a^10-21*(7*b^4-13*b^2*c^2+7*c^4)*a^8-(b^2+c^2)*(116*b^4-659*b^2*c^2+116*c^4)*a^6+9*(b^8+c^8+(13*b^4-192*b^2*c^2+13*c^4)*b^2*c^2)*a^4+3*(b^2+c^2)*(8*b^8+8*c^8-7*b^2*c^2*(7*b^4-30*b^2*c^2+7*c^4))*a^2-(b^2+c^2)^6)*(a^12-2*(3*b-c)*(3*b+c)*a^10+(23*b^4+74*b^2*c^2-c^4)*a^8+4*(13*b^6-c^6-2*b^2*c^2*(23*b^2+15*c^2))*a^6-(33*b^8+c^8+10*b^2*c^2*(4*b^4-45*b^2*c^2+12*c^4))*a^4-2*(b^4-c^4)*(17*b^6+c^6-b^2*c^2*(91*b^2-37*c^2))*a^2+(b^4-c^4)*(b^2+c^2)*(3*b^3-c^3+b*c*(5*b-3*c))*(3*b^3+c^3-b*c*(5*b+3*c))) : :

X(56490) lies on the cubic K008 and these lines: {2, 56486}, {67, 56489}, {69, 55842}, {316, 56487}, {671, 55843}, {858, 55855}, {13574, 56485}, {34163, 56482}, {34165, 34166}, {55840, 55854}, {55841, 56493}, {55847, 55851}

X(56490) = isotomic conjugate of X(56487)
X(56490) = X(897)-anticomplementary conjugate of-X(56486)
X(56490) = X(316)-Ceva conjugate of-X(56489)
X(56490) = X(2)-Dao conjugate of-X(56487)
X(56490) = X(31)-isoconjugate of-X(56487)
X(56490) = X(2)-reciprocal conjugate of-X(56487)
X(56490) = trilinear quotient X(75)/X(56487)


X(56491) = ISOTOMIC CONJUGATE OF X(56485)

Barycentrics    (a^18-3*(2*b^2+c^2)*a^16+4*(b^2+5*c^2)*b^2*a^14+8*(2*b^6+c^6-b^2*c^2*(4*b^2+c^2))*a^12-2*(b^2-c^2)*(9*b^6-3*c^6+b^2*c^2*(15*b^2-13*c^2))*a^10-2*(b^2-c^2)*(6*b^8-3*c^8-b^2*c^2*(27*b^4+3*b^2*c^2-11*c^4))*a^8+4*(b^2-c^2)^2*(5*b^8+2*c^8+b^2*c^2*(b^4-11*b^2*c^2-c^4))*a^6-8*(b^4-c^4)*(3*b^6-c^6-7*(b^2-c^2)*b^2*c^2)*b^2*c^2*a^4-(b^4-c^4)^2*(b^2-c^2)^2*(7*b^4-14*b^2*c^2+3*c^4)*a^2+(b^4-c^4)^3*(b^2-c^2)*(2*b^4-5*b^2*c^2+c^4))*(a^18-3*(b^2+2*c^2)*a^16+4*(5*b^2+c^2)*c^2*a^14+8*(b^6+2*c^6-b^2*c^2*(b^2+4*c^2))*a^12-2*(b^2-c^2)*(3*b^6-9*c^6+b^2*c^2*(13*b^2-15*c^2))*a^10-2*(b^2-c^2)*(3*b^8-6*c^8-b^2*c^2*(11*b^4-3*b^2*c^2-27*c^4))*a^8+4*(b^2-c^2)^2*(2*b^8+5*c^8-b^2*c^2*(b^4+11*b^2*c^2-c^4))*a^6-8*(b^4-c^4)*(b^6-3*c^6-7*(b^2-c^2)*b^2*c^2)*b^2*c^2*a^4-(b^4-c^4)^2*(b^2-c^2)^2*(3*b^4-14*b^2*c^2+7*c^4)*a^2+(b^4-c^4)^3*(b^2-c^2)*(b^4-5*b^2*c^2+2*c^4))*(3*a^8-8*(b^2+c^2)*a^6-2*(b^4-12*b^2*c^2+c^4)*a^4+8*(b^4-3*b^2*c^2+c^4)*(b^2+c^2)*a^2-(b^4-c^4)^2) : :

X(56491) lies on the cubic K008 and these lines: {69, 55840}, {316, 56485}, {858, 55847}, {11061, 55843}, {14360, 56489}, {34163, 34165}, {34166, 55841}, {55838, 56486}, {55839, 55842}, {55844, 56487}, {55845, 55855}

X(56491) = isotomic conjugate of X(56485)
X(56491) = X(67)-cross conjugate of-X(55842)
X(56491) = X(2)-Dao conjugate of-X(56485)
X(56491) = X(31)-isoconjugate of-X(56485)
X(56491) = X(2)-reciprocal conjugate of-X(56485)
X(56491) = trilinear quotient X(75)/X(56485)


X(56492) = ISOTOMIC CONJUGATE OF X(56486)

Barycentrics    (a^16-16*c^2*a^14-4*(b^4-16*b^2*c^2-9*c^4)*a^12-16*(3*b^4+14*b^2*c^2-c^4)*c^2*a^10+2*(3*b^8-37*c^8-2*b^2*c^2*(40*b^4-81*b^2*c^2-40*c^4))*a^8+16*(b^2-c^2)*(7*b^6-c^6+b^2*c^2*(15*b^2-11*c^2))*c^2*a^6-4*(b^4-c^4)*(b^4-4*b^2*c^2+c^4)*(b^4-20*b^2*c^2+9*c^4)*a^4-16*(b^4-c^4)*(b^2+c^2)*c^2*(3*b^6-c^6-b^2*c^2*(9*b^2-5*c^2))*a^2+(b^4-c^4)^4)*(a^16-16*b^2*a^14+4*(9*b^4+16*b^2*c^2-c^4)*a^12+16*(b^4-14*b^2*c^2-3*c^4)*b^2*a^10-2*(37*b^8-3*c^8-2*b^2*c^2*(40*b^4+81*b^2*c^2-40*c^4))*a^8+16*(b^2-c^2)*(b^6-7*c^6+b^2*c^2*(11*b^2-15*c^2))*b^2*a^6+4*(b^4-c^4)*(9*b^4-20*b^2*c^2+c^4)*(b^4-4*b^2*c^2+c^4)*a^4-16*(b^4-c^4)*(b^2+c^2)*b^2*(b^6-3*c^6-b^2*c^2*(5*b^2-9*c^2))*a^2+(b^4-c^4)^4)*(a^12+4*(b^2+c^2)*a^10+(5*b^4-143*b^2*c^2+5*c^4)*a^8+216*(b^2+c^2)*b^2*c^2*a^6-(5*b^8+5*c^8-2*b^2*c^2*(125*b^4-447*b^2*c^2+125*c^4))*a^4-4*(b^2+c^2)*(b^8+c^8+22*(b^4-3*b^2*c^2+c^4)*b^2*c^2)*a^2-(b^8+c^8-b^2*c^2*(23*b^4-60*b^2*c^2+23*c^4))*(b^2+c^2)^2) : :

X(56492) lies on the cubic K008 and these lines: {2, 56489}, {69, 55843}, {316, 56486}, {671, 56485}, {858, 55842}, {11061, 56487}, {34163, 55855}, {34166, 55847}, {55840, 55851}, {55841, 56482}

X(56492) = isotomic conjugate of X(56486)
X(56492) = X(897)-anticomplementary conjugate of-X(56489)
X(56492) = X(2)-Dao conjugate of-X(56486)
X(56492) = X(31)-isoconjugate of-X(56486)
X(56492) = X(2)-reciprocal conjugate of-X(56486)
X(56492) = trilinear quotient X(75)/X(56486)


X(56493) = ISOTOMIC CONJUGATE OF X(56488)

Barycentrics    (a^18+7*(b^2-3*c^2)*a^16+(20*b^4+125*b^2*c^2-66*c^4)*a^14+2*(14*b^6-3*c^6-(218*b^2-89*c^2)*b^2*c^2)*a^12+(14*b^8+156*c^8-(261*b^4-807*b^2*c^2+301*c^4)*b^2*c^2)*a^10-(14*b^10-156*c^10-(712*b^6-722*c^6-(945*b^2-367*c^2)*b^2*c^2)*b^2*c^2)*a^8-(28*b^12+6*c^12+(65*b^8+301*c^8+(553*b^4-875*b^2*c^2-367*c^4)*b^2*c^2)*b^2*c^2)*a^6-(b^2+c^2)*(20*b^12+66*c^12+(220*b^8-244*c^8-(955*b^4-1508*b^2*c^2+563*c^4)*b^2*c^2)*b^2*c^2)*a^4-(7*b^12+21*c^12-(223*b^8+167*c^8-b^2*c^2*(679*b^4-1070*b^2*c^2+749*c^4))*b^2*c^2)*(b^2+c^2)^2*a^2-(b^2-c^2)*(b^2+c^2)^8)*(a^18-7*(3*b^2-c^2)*a^16-(66*b^4-125*b^2*c^2-20*c^4)*a^14-2*(3*b^6-14*c^6-(89*b^2-218*c^2)*b^2*c^2)*a^12+(156*b^8+14*c^8-(301*b^4-807*b^2*c^2+261*c^4)*b^2*c^2)*a^10+(156*b^10-14*c^10-(722*b^6-712*c^6-(367*b^2-945*c^2)*b^2*c^2)*b^2*c^2)*a^8-(6*b^12+28*c^12+(301*b^8+65*c^8-(367*b^4+875*b^2*c^2-553*c^4)*b^2*c^2)*b^2*c^2)*a^6-(b^2+c^2)*(66*b^12+20*c^12-(244*b^8-220*c^8+b^2*c^2*(563*b^4-1508*b^2*c^2+955*c^4))*b^2*c^2)*a^4-(21*b^12+7*c^12-(167*b^8+223*c^8-b^2*c^2*(749*b^4-1070*b^2*c^2+679*c^4))*b^2*c^2)*(b^2+c^2)^2*a^2+(b^2-c^2)*(b^2+c^2)^8)*(a^8+4*(b^2+c^2)*a^6+3*(2*b^4-29*b^2*c^2+2*c^4)*a^4+(b^2+c^2)*(4*b^4+53*b^2*c^2+4*c^4)*a^2+(b^4-16*b^2*c^2+c^4)*(b^2+c^2)^2) : :

X(56493) lies on the cubic K008 and these lines: {316, 56488}, {524, 55852}, {11061, 55853}, {14360, 55846}, {34164, 55838}, {39157, 55844}, {55839, 55850}, {55841, 56490}, {55845, 55849}

X(56493) = isotomic conjugate of X(56488)
X(56493) = X(67)-cross conjugate of-X(55850)
X(56493) = X(2)-Dao conjugate of-X(56488)
X(56493) = X(31)-isoconjugate of-X(56488)
X(56493) = X(2)-reciprocal conjugate of-X(56488)
X(56493) = trilinear quotient X(75)/X(56488)


X(56494) = ISOTOMIC CONJUGATE OF X(56489)

Barycentrics    (a^20-2*(7*b^2+c^2)*a^18+(37*b^4+62*b^2*c^2-3*c^4)*a^16+4*(2*b^6+2*c^6-b^2*c^2*(59*b^2+9*c^2))*a^14-2*(55*b^8-c^8-2*b^2*c^2*(53*b^4+85*b^2*c^2-47*c^4))*a^12+4*(b^2-c^2)*(15*b^8+3*c^8+b^2*c^2*(87*b^4-100*b^2*c^2-41*c^4))*a^10+2*(b^2-c^2)*(49*b^10-c^10-(239*b^6+89*c^6-24*b^2*c^2*(b^2+12*c^2))*b^2*c^2)*a^8-4*(b^2-c^2)*(22*b^12+2*c^12-(13*b^8+45*c^8+2*b^2*c^2*(71*b^4-73*b^2*c^2-7*c^4))*b^2*c^2)*a^6-(b^4-c^4)*(19*b^12-3*c^12-(268*b^8+36*c^8-b^2*c^2*(863*b^4-784*b^2*c^2+337*c^4))*b^2*c^2)*a^4+2*(b^4-c^4)^2*(b^2-c^2)^2*(17*b^6-c^6-b^2*c^2*(61*b^2-29*c^2))*a^2+(b^4-c^4)^3*(b^2-c^2)*(-7*b^6+c^6+b^2*c^2*(27*b^2-13*c^2)))*(a^20-2*(b^2+7*c^2)*a^18-(3*b^4-62*b^2*c^2-37*c^4)*a^16+4*(2*b^6+2*c^6-(9*b^2+59*c^2)*b^2*c^2)*a^14+2*(b^8-55*c^8-2*(47*b^4-85*b^2*c^2-53*c^4)*b^2*c^2)*a^12-4*(b^2-c^2)*(3*b^8+15*c^8-(41*b^4+100*b^2*c^2-87*c^4)*b^2*c^2)*a^10+2*(b^2-c^2)*(b^10-49*c^10+(89*b^6+239*c^6-24*(12*b^2+c^2)*b^2*c^2)*b^2*c^2)*a^8+4*(b^2-c^2)*(2*b^12+22*c^12-(45*b^8+13*c^8-2*b^2*c^2*(7*b^4+73*b^2*c^2-71*c^4))*b^2*c^2)*a^6-(b^4-c^4)*(3*b^12-19*c^12+(36*b^8+268*c^8-b^2*c^2*(337*b^4-784*b^2*c^2+863*c^4))*b^2*c^2)*a^4-2*(b^4-c^4)^2*(b^2-c^2)^2*(b^6-17*c^6-b^2*c^2*(29*b^2-61*c^2))*a^2+(b^4-c^4)^3*(b^2-c^2)*(b^6-7*c^6-(13*b^2-27*c^2)*b^2*c^2))*(9*a^12-34*(b^2+c^2)*a^10-(33*b^4-182*b^2*c^2+33*c^4)*a^8+4*(b^2+c^2)*(13*b^4-23*b^2*c^2+13*c^4)*a^6+(23*b^8+23*c^8-2*b^2*c^2*(92*b^4-225*b^2*c^2+92*c^4))*a^4-2*(b^2+c^2)*(9*b^8+9*c^8-2*b^2*c^2*(23*b^4-53*b^2*c^2+23*c^4))*a^2+(b^4-c^4)^2*(b^2+c^2)^2) : :

X(56494) lies on the cubic K008 and these lines: {69, 56485}, {316, 56489}, {858, 55843}, {11061, 56486}, {34163, 55842}, {34165, 55847}, {34166, 55840}, {55839, 56487}, {55841, 55855}

X(56494) = isotomic conjugate of X(56489)
X(56494) = X(67)-cross conjugate of-X(56487)
X(56494) = X(2)-Dao conjugate of-X(56489)
X(56494) = X(31)-isoconjugate of-X(56489)
X(56494) = X(2)-reciprocal conjugate of-X(56489)
X(56494) = trilinear quotient X(75)/X(56489)


X(56495) = X(603)X(1418) ∩ X(604)X(17053)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(a^5-(b+c)*a^4+4*b*c*a^3+(b+c)*(b^2-3*b*c+c^2)*a^2-(b^4+c^4-(b^2-4*b*c+c^2)*b*c)*a-2*(b^2-c^2)*(b-c)*b*c) : :

In a triangle ABC, the A-mixtilinear incircle touches its circumcircircle and sides AC, AB at A', Ab, Ac, respectively. BC is cut by lines A'Ab and A'Ac at A'b and A'c, respectively; B'c, B'a, C'a, C'b are defined cyclically. Then these six points A'b, A'c, B'c, B'a, C'a, C'b lie on conic. (Tran Viet Hung, Romantics of Geometry 13125)

The described conic has equation ∑[b*c*(b^2*c^2*(b+c)*(-a+b+c)^2*x^2-a^3*(a+b-c)*(a-b+c)*(a^2+(b+c)*a+2*b*c)*y*z)]=0, center X(56495) and perspector X(56496). Note: the indicated six points are not coconic for mixtilinear excircles. (César Lozada, Aug. 17, 2023)

X(56495) lies on these lines: {603, 1418}, {604, 17053}, {1428, 16790}


X(56496) = X(56)X(7225) ∩ X(1408)X(1471)

Barycentrics    a^2*(a+b-c)*(a-b+c)*((2*b+c)*a+2*b*c)*((b+2*c)*a+2*b*c) : :

See X(56495).

X(56496) lies on these lines: {56, 7225}, {961, 56051}, {1014, 40719}, {1408, 1471}, {1476, 56087}, {6013, 8686}

X(56496) = X(10013)-beth conjugate of-X(10013)
X(56496) = X(i)-Dao conjugate of-X(j) for these (i, j): (478, 4687), (55060, 48407)
X(56496) = X(i)-isoconjugate of-X(j) for these {i, j}: {8, 17018}, {9, 4687}, {341, 16878}, {643, 48407}, {644, 47666}, {3699, 6005}, {3701, 39673}, {7257, 50483}
X(56496) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (56, 4687), (604, 17018), (6013, 646), (7180, 48407), (10013, 312), (16947, 39673), (43924, 47666), (46772, 30713), (52410, 16878), (56051, 3596), (56208, 341), (56236, 3701)
X(56496) = barycentric product X(i)*X(j) for these {i,j}: {56, 56051}, {57, 10013}, {269, 56208}, {959, 17110}, {1014, 56236}
X(56496) = trilinear product X(i)*X(j) for these {i,j}: {56, 10013}, {604, 56051}, {1106, 56087}, {1407, 56208}, {1408, 46772}
X(56496) = trilinear quotient X(i)/X(j) for these (i,j): (56, 17018), (57, 4687), (1106, 16878), (1408, 39673), (3669, 47666)


X(56497) = X(2)X(3) ∩ X(69)X(55567)

Barycentrics    Cos[2*A] + Cos[2*B] + 2*Sin[2*A] - 2*Sin[C]^2 : :

X(56497) lies on these lines: {2, 3}, {69, 55567}, {141, 5406}, {343, 1152}, {372, 6515}, {487, 1993}, {488, 37636}, {491, 40697}, {570, 3068}, {571, 3069}, {1151, 37649}, {1271, 52347}, {1899, 43121}, {5012, 12257}, {5407, 23292}, {5409, 37645}, {5413, 24245}, {6396, 11090}, {6402, 54034}, {6460, 13439}, {6560, 55471}, {6565, 55477}, {8883, 16037}, {9739, 43653}, {11427, 55566}, {11442, 12256}, {12604, 47328}, {12975, 21243}, {14806, 32785}, {33365, 52032}, {44135, 55529}

X(56497) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 55573, 15233}, {2, 55897, 1599}, {372, 11091, 6515}, {1584, 55890, 2}, {1585, 39388, 2}, {1590, 11291, 2}, {1592, 11316, 2}, {3155, 37342, 6997}, {6805, 55899, 2}, {7389, 55889, 2}, {11313, 55865, 2}, {26620, 55899, 6805}, {55878, 55887, 2}


X(56498) = X(2)X(3) ∩ X(69)X(55566)

Barycentrics    1 - Cos[2*A] - Cos[2*B] - Cos[2*C] + 2*Sin[2*A] : :

X(56498) lies on these lines: {2, 3}, {69, 55566}, {141, 5407}, {343, 1151}, {371, 6515}, {487, 37636}, {488, 1993}, {492, 40697}, {570, 3069}, {571, 3068}, {1152, 37649}, {1270, 52347}, {1899, 43120}, {5012, 12256}, {5406, 23292}, {5408, 37645}, {5412, 24246}, {6200, 11091}, {6401, 54034}, {6459, 13428}, {8883, 16032}, {9738, 43653}, {11427, 55567}, {11442, 12257}, {12603, 47328}, {12974, 21243}, {14806, 32786}, {33364, 52032}, {44135, 55530}

X(56498) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 55569, 15234}, {2, 55893, 1600}, {371, 11090, 6515}, {1583, 55885, 2}, {1586, 39387, 2}, {1589, 11292, 2}, {1591, 11315, 2}, {3156, 37343, 6997}, {6806, 55895, 2}, {7388, 55884, 2}, {11314, 55878, 2}, {26619, 55895, 6806}, {55865, 55892, 2}


X(56499) = X(2)X(3) ∩ X(343)X(6410)

Barycentrics    Cos[2*A] + Cos[2*B] + 4*Sin[2*A] - 2*Sin[C]^2 : :

X(56499) lies on these lines: {2, 3}, {343, 6410}, {487, 55567}, {570, 7585}, {571, 7586}, {1152, 6515}, {1271, 40697}, {1899, 12975}, {5407, 37645}, {6396, 11091}, {6409, 37649}, {8972, 14806}, {13428, 13935}, {35821, 55477}, {43141, 43653}

X(56499) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1590, 1600, 2}, {1599, 11291, 2}


X(56500) = X(2)X(3) ∩ X(343)X(6409)

Barycentrics    1 - Cos[2*A] - Cos[2*B] - Cos[2*C] + 4*Sin[2*A] : :

X(56500) lies on these lines: {2, 3}, {343, 6409}, {488, 55566}, {570, 7586}, {571, 7585}, {1151, 6515}, {1270, 40697}, {1899, 12974}, {5406, 37645}, {6200, 11090}, {6410, 37649}, {9540, 13439}, {9541, 13428}, {13941, 14806}, {32814, 52347}, {43144, 43653}

X(56500) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1589, 1599, 2}, {1600, 11292, 2}


X(56501) = X(2)X(3) ∩ X(141)X(55567)

Barycentrics    2 - Cos[2*A] - Cos[2*B] - Cos[2*C] - Sin[2*A] : :

X(56501) lies on these lines: {2, 3}, {141, 55567}, {372, 37636}, {491, 1238}, {590, 13351}, {615, 2965}, {3312, 45794}, {3763, 5406}, {5409, 14389}, {5422, 11091}, {6420, 41628}, {11442, 43118}, {37649, 55566}, {45410, 45968}

X(56501) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7389, 15234}, {2, 11291, 1600}


X(56502) = X(2)X(3) ∩ X(141)X(55566)

Barycentrics    2 - Cos[2*A] - Cos[2*B] - Cos[2*C] + Sin[2*A] : :

X(56502) lies on these lines: {2, 3}, {141, 55566}, {371, 37636}, {492, 1238}, {590, 2965}, {615, 13351}, {3311, 45794}, {3763, 5407}, {5408, 14389}, {5422, 11090}, {6419, 41628}, {11442, 43119}, {13430, 32807}, {37649, 55567}, {40711, 51727}, {45411, 45968}

X(56502) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7388, 15233}, {2, 11292, 1599}


X(56503) = X(2)X(3) ∩ X(372)X(45794)

Barycentrics    2 - Cos[2*A] - Cos[2*B] - Cos[2*C] - 2*Sin[2*A] : :

X(56503) lies on these lines: {2, 3}, {372, 45794}, {487, 1994}, {1152, 37636}, {1238, 1271}, {2965, 3069}, {3068, 13351}, {3410, 12256}, {3594, 41628}, {5407, 14389}, {11091, 37644}, {11442, 43121}

X(56503) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11316, 15233, 2}, {13616, 36714, 20062}


X(56504) = X(2)X(3) ∩ X(6)X(11091)

Barycentrics    Cos[2*A] + Cos[2*B] + Sin[2*A] - 2*Sin[C]^2 : :

X(56504) lies on these lines: {2, 3}, {6, 11091}, {141, 5408}, {343, 372}, {371, 37649}, {485, 52350}, {487, 11427}, {491, 52347}, {570, 590}, {571, 615}, {642, 8967}, {1152, 11090}, {1352, 10133}, {1899, 43118}, {3312, 6515}, {5409, 23292}, {7584, 13428}, {9733, 43653}, {11245, 45410}, {13439, 42216}, {14389, 55566}, {14806, 32789}, {16037, 49355}, {21243, 43121}, {32806, 40697}, {37636, 55567}, {42262, 55477}

X(56504) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1585, 1592}, {2, 1590, 1583}, {2, 1600, 55885}, {2, 7389, 1591}, {2, 11291, 1584}, {2, 11293, 1586}, {2, 15233, 32490}, {2, 39388, 55878}, {2, 55888, 7388}, {2, 55889, 55865}, {2, 55897, 11292}, {2, 55898, 6806}, {5, 8964, 3155}, {7375, 55899, 2}, {11316, 55887, 2}


X(56505) = X(2)X(3) ∩ X(371)X(45794)

Barycentrics    2 - Cos[2*A] - Cos[2*B] - Cos[2*C] + 2*Sin[2*A] : :

X(56505) lies on these lines: {2, 3}, {371, 45794}, {488, 1994}, {1151, 37636}, {1238, 1270}, {2965, 3068}, {3069, 13351}, {3410, 12257}, {3592, 41628}, {5406, 14389}, {11090, 37644}, {11442, 43120}

X(56505) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11315, 15234, 2}, {13617, 36709, 20062}


X(56506) = X(2)X(3) ∩ X(6)X(11090)

Barycentrics    1 - Cos[2*A] - Cos[2*B] - Cos[2*C] + Sin[2*A] : :

X(56506) lies on these lines: {2, 3}, {6, 11090}, {141, 5409}, {343, 371}, {372, 37649}, {486, 52350}, {488, 11427}, {492, 52347}, {570, 615}, {571, 590}, {641, 52032}, {1151, 11091}, {1352, 10132}, {1899, 43119}, {3311, 6515}, {5408, 23292}, {7583, 13439}, {8252, 55477}, {8962, 32497}, {9732, 43653}, {11245, 45411}, {13428, 42215}, {14389, 55567}, {14806, 32790}, {16032, 49356}, {21243, 43120}, {32805, 40697}, {37636, 55566}

X(56506) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1586, 1591}, {2, 1589, 1584}, {2, 1599, 55890}, {2, 7388, 1592}, {2, 11292, 1583}, {2, 11294, 1585}, {2, 15234, 32491}, {2, 39387, 55865}, {2, 55883, 7389}, {2, 55884, 55878}, {2, 55893, 11291}, {2, 55894, 6805}, {7376, 55895, 2}, {11315, 55892, 2}


X(56507) = X(2)X(7) ∩ X(31)X(43)

Barycentrics    a*(a^3*b - a*b^3 + a^3*c + 3*a^2*b*c - a*b^2*c + b^3*c - a*b*c^2 - a*c^3 + b*c^3) : :

X(56507) lies on these lines: {1, 20456}, {2, 7}, {6, 22370}, {31, 43}, {38, 22220}, {41, 21495}, {42, 3749}, {71, 3618}, {78, 1009}, {218, 20769}, {238, 26241}, {239, 3501}, {291, 614}, {312, 37686}, {321, 17026}, {344, 2260}, {350, 56082}, {583, 17279}, {899, 36277}, {1011, 5314}, {1018, 16834}, {1334, 26626}, {1473, 16059}, {1475, 17316}, {1575, 4383}, {1621, 52155}, {1707, 2239}, {1959, 26690}, {2198, 41249}, {2225, 41241}, {2269, 51171}, {2276, 5256}, {3095, 20821}, {3097, 29821}, {3169, 17121}, {3208, 4393}, {3294, 29603}, {3423, 37309}, {3661, 21384}, {3730, 17023}, {3741, 33163}, {3760, 29561}, {3790, 10453}, {3870, 8299}, {3873, 4712}, {3882, 16670}, {3895, 50282}, {3912, 4253}, {4044, 29455}, {4050, 20016}, {4191, 7293}, {4384, 16549}, {4423, 28600}, {4438, 30752}, {5119, 50287}, {5287, 24512}, {7085, 16058}, {7123, 55399}, {7175, 26657}, {11328, 20777}, {12514, 29633}, {16367, 41239}, {16552, 17308}, {17165, 26238}, {17284, 18206}, {17294, 45751}, {17367, 37555}, {17469, 42042}, {17474, 29585}, {17792, 36635}, {19587, 27481}, {19684, 36808}, {20978, 25304}, {21526, 23151}, {21540, 25940}, {21985, 25066}, {25502, 51294}, {26724, 31200}, {29857, 30953}, {30568, 35341}, {30760, 30816}, {30982, 32935}, {31005, 32940}, {52043, 56025}

X(56507) = X(55970)-Ceva conjugate of X(1)
X(56507) = X(49509)-Dao conjugate of X(29674)
X(56507) = barycentric product X(75)*X(37590)
X(56507) = barycentric quotient X(37590)/X(1)
X(56507) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 672, 63}, {2, 5905, 20335}, {218, 21477, 20769}, {579, 17353, 21371}, {1707, 16569, 2239}, {17350, 27678, 1423}, {26065, 28274, 63}


X(56508) = X(2)X(7) ∩ X(38)X(43)

Barycentrics    a*(a^3*b - a*b^3 + a^3*c - a^2*b*c - a*b^2*c - 3*b^3*c - a*b*c^2 - a*c^3 - 3*b*c^3) : :

X(56508) lies on these lines: {1, 2239}, {2, 7}, {31, 5284}, {38, 43}, {41, 21516}, {42, 16496}, {71, 3619}, {81, 16779}, {88, 36263}, {141, 22370}, {218, 21496}, {239, 24249}, {1009, 4652}, {1011, 7293}, {1150, 17026}, {1334, 29579}, {1473, 16058}, {1575, 17595}, {1707, 25502}, {2269, 3620}, {2887, 30752}, {3169, 17287}, {3208, 17230}, {3434, 3741}, {3501, 17292}, {3661, 37555}, {3666, 49509}, {3730, 29596}, {3761, 3765}, {3795, 17593}, {3840, 40998}, {3895, 50316}, {4191, 5314}, {4713, 30818}, {4860, 28600}, {5057, 29827}, {5119, 50311}, {5256, 16973}, {5439, 16846}, {5927, 19540}, {7085, 16059}, {8299, 35258}, {11328, 22449}, {11343, 20769}, {12514, 29637}, {14996, 21764}, {16610, 37673}, {16816, 21219}, {16850, 54392}, {17185, 30965}, {17298, 31006}, {17304, 21061}, {17308, 20367}, {17367, 21384}, {18206, 29598}, {19263, 23206}, {19591, 21264}, {20344, 33086}, {21511, 25940}, {21514, 23151}, {21977, 37597}, {24491, 24593}, {24591, 37086}, {29814, 35227}, {29826, 40718}, {30950, 36277}, {30982, 32916}, {30988, 34234}, {31005, 32917}, {37653, 54373}, {48822, 51816}

X(56508) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3218, 17754}, {2, 30946, 908}, {2, 30961, 30852}, {2, 30985, 31266}, {3218, 5282, 63}


X(56509) = X(2)X(7) ∩ X(38)X(42)

Barycentrics    a*(a^3*b - a*b^3 + a^3*c - a*b^2*c - 2*b^3*c - a*b*c^2 - a*c^3 - 2*b*c^3) : :

X(56509) lies on these lines: {2, 7}, {3, 25940}, {8, 37555}, {10, 20367}, {31, 940}, {38, 42}, {41, 11343}, {43, 5223}, {69, 2269}, {71, 141}, {72, 37597}, {81, 16503}, {191, 29637}, {210, 4712}, {218, 21514}, {237, 22449}, {239, 21226}, {241, 960}, {269, 15479}, {310, 333}, {312, 51052}, {350, 14829}, {390, 10453}, {516, 1764}, {528, 31136}, {573, 17272}, {583, 17384}, {851, 5784}, {857, 17046}, {896, 15254}, {899, 5220}, {942, 16850}, {958, 5228}, {971, 4192}, {980, 1193}, {1009, 3916}, {1011, 1473}, {1018, 29594}, {1201, 37596}, {1214, 25941}, {1334, 3912}, {1376, 3789}, {1429, 2975}, {1441, 21233}, {1458, 35628}, {1475, 16705}, {1707, 26102}, {1755, 21264}, {2183, 4643}, {2221, 54358}, {2238, 3752}, {2245, 17237}, {2260, 4657}, {2276, 50995}, {2296, 27475}, {2328, 36057}, {2339, 39273}, {2347, 4416}, {2550, 6817}, {2887, 30751}, {2999, 37657}, {3008, 16552}, {3061, 24635}, {3169, 32099}, {3208, 29616}, {3243, 17018}, {3294, 29571}, {3336, 19856}, {3423, 13615}, {3496, 7291}, {3501, 29611}, {3620, 22370}, {3663, 21061}, {3691, 4384}, {3707, 53391}, {3730, 17284}, {3783, 17596}, {3826, 32781}, {3840, 4368}, {3869, 7146}, {4022, 40934}, {4032, 24547}, {4184, 7293}, {4191, 7085}, {4199, 5728}, {4210, 5314}, {4253, 29598}, {4271, 17344}, {4274, 4503}, {4292, 52245}, {4343, 35892}, {4352, 5222}, {4441, 11679}, {4640, 8299}, {4651, 24393}, {4655, 30953}, {4847, 13576}, {5119, 50316}, {5256, 51194}, {5542, 43223}, {5698, 30942}, {5708, 16846}, {5732, 10856}, {5762, 37365}, {5779, 19540}, {5781, 15509}, {5845, 24690}, {5850, 6685}, {5853, 17135}, {5880, 30960}, {6682, 40718}, {6763, 29633}, {7081, 17794}, {7330, 36670}, {7675, 37175}, {7677, 24550}, {10319, 33171}, {11320, 26634}, {12555, 43166}, {14096, 20777}, {14552, 54373}, {15296, 29678}, {15481, 36869}, {16549, 29604}, {16570, 25502}, {16593, 30821}, {16609, 24633}, {17026, 20665}, {17027, 37683}, {17185, 30941}, {17469, 37595}, {17474, 26626}, {17490, 27484}, {17768, 31241}, {18162, 38871}, {19263, 23169}, {19732, 36808}, {20182, 42871}, {20533, 31027}, {20769, 21511}, {21078, 25065}, {21244, 40999}, {22072, 45270}, {22097, 47595}, {23649, 28367}, {24268, 28916}, {24330, 44417}, {24598, 28254}, {24703, 30959}, {25083, 33299}, {25237, 49757}, {25501, 38059}, {26037, 33163}, {26101, 37169}, {28606, 51058}, {29814, 38316}, {30331, 42057}, {30964, 30988}, {30969, 33067}, {31137, 50836}, {31424, 52241}, {36101, 37137}, {37467, 41228}, {45751, 50114}, {48802, 54286}

X(56509) = barycentric product X(75)*X(37575)
X(56509) = barycentric quotient X(37575)/X(1)
X(56509) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63, 672}, {2, 20347, 226}, {2, 30946, 30961}, {9, 29812, 142}, {38, 2239, 42}, {63, 54311, 28274}, {3662, 28287, 28351}, {3666, 37676, 42}, {4357, 16574, 1400}, {4640, 8299, 35270}, {5745, 20335, 2}, {11343, 23151, 41}, {17023, 18206, 1475}, {20245, 27170, 30097}, {24633, 26563, 16609}, {30979, 30986, 30950}


X(56510) = X(1)X(3799) ∩ X(2)X(7)

Barycentrics    a*(a^3*b - a*b^3 + a^3*c + 5*a^2*b*c - a*b^2*c + 3*b^3*c - a*b*c^2 - a*c^3 + 3*b*c^3) : :

X(56510) lies on these lines: {1, 3799}, {2, 7}, {31, 16569}, {38, 25502}, {41, 21540}, {42, 16491}, {218, 21519}, {1009, 4855}, {1473, 16409}, {1475, 29579}, {2239, 36277}, {3501, 17367}, {3618, 22370}, {3840, 33163}, {3895, 50287}, {4253, 29596}, {4383, 4386}, {5250, 29633}, {5314, 16058}, {7293, 16059}, {14997, 21764}, {17292, 21384}, {17469, 42043}, {17474, 29583}, {20769, 21526}, {21542, 23151}, {25144, 36635}, {29630, 37555}, {50282, 51786}

X(56510) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17754, 3306}, {3305, 3306, 40131}


X(56511) = X(2)X(7) ∩ X(19)X(4699)

Barycentrics    a*(a^4 - b^4 - 2*a*b^2*c - 2*a*b*c^2 - 4*b^2*c^2 - c^4) : :

X(56511) lies on these lines: {2, 7}, {19, 4699}, {22, 22060}, {72, 19314}, {81, 16973}, {89, 5297}, {150, 3661}, {169, 16815}, {228, 7485}, {484, 48851}, {612, 32913}, {614, 846}, {940, 49509}, {968, 7191}, {997, 27950}, {1024, 27486}, {1054, 52654}, {1150, 3263}, {1278, 54359}, {1282, 31073}, {1390, 9347}, {1654, 7289}, {1760, 3739}, {1766, 17116}, {1768, 9746}, {2082, 16816}, {2339, 17490}, {3099, 56010}, {3403, 35545}, {3705, 42012}, {3916, 19310}, {3920, 4430}, {3927, 19313}, {3940, 19323}, {3951, 19327}, {3980, 4660}, {4220, 11220}, {4384, 5540}, {4640, 26241}, {4850, 33854}, {5119, 50310}, {5227, 17300}, {5231, 31126}, {5256, 16779}, {5440, 19325}, {5709, 7379}, {6763, 39586}, {6998, 24467}, {7081, 20588}, {7330, 7385}, {7380, 37532}, {7484, 20760}, {11688, 54348}, {12514, 16823}, {14828, 27491}, {15066, 20752}, {16048, 31445}, {16367, 25083}, {16419, 22149}, {16465, 37090}, {16566, 25590}, {16832, 20602}, {16990, 20785}, {17024, 35227}, {17244, 17742}, {17439, 52134}, {17522, 31424}, {17740, 45962}, {20075, 32932}, {21554, 26921}, {27484, 39273}, {29855, 34997}, {39581, 56288}

X(56511) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63, 3306, 3509}, {51400, 54357, 2}


X(56512) = X(2)X(7) ∩ X(19)X(4772)

Barycentrics    a*(a^4 - b^4 - a*b^2*c - a*b*c^2 - 3*b^2*c^2 - c^4) : :

X(56512) lies on these lines: {2, 7}, {19, 4772}, {191, 16823}, {210, 31073}, {228, 15246}, {846, 7191}, {968, 17024}, {1760, 4699}, {3920, 32913}, {3927, 19314}, {3940, 19325}, {3980, 29667}, {4220, 13243}, {4688, 16568}, {4788, 54359}, {5227, 17375}, {5361, 31130}, {5525, 29575}, {6636, 22060}, {6763, 16830}, {7289, 17343}, {7484, 22149}, {7485, 20760}, {16566, 17116}, {16815, 20602}, {17266, 17744}, {17742, 29572}, {17799, 21352}, {20095, 32932}, {24587, 33933}, {26230, 34997}, {29590, 33950}, {31087, 37639}, {33764, 35545}


X(56513) = X(2)X(7) ∩ X(19)X(1278)

Barycentrics    a*(a^4 - b^4 + a*b^2*c + a*b*c^2 - b^2*c^2 - c^4) : :

X(56513) lies on these lines: {2, 7}, {19, 1278}, {22, 20760}, {25, 22149}, {81, 3726}, {169, 16816}, {191, 16830}, {192, 1760}, {228, 6636}, {239, 5540}, {323, 20752}, {536, 16568}, {649, 2786}, {758, 5202}, {760, 3573}, {799, 35545}, {813, 9075}, {846, 902}, {968, 29815}, {1155, 31073}, {1281, 3006}, {1282, 3935}, {1580, 20590}, {1766, 25269}, {1781, 17116}, {1836, 31084}, {1914, 28606}, {1959, 17439}, {2243, 5276}, {2308, 7191}, {2309, 16556}, {3009, 17799}, {3868, 17522}, {3927, 19310}, {3940, 19326}, {3980, 29679}, {4414, 40774}, {4518, 26250}, {5057, 31126}, {5089, 52414}, {5205, 20375}, {5227, 17343}, {5525, 17310}, {6542, 7291}, {6763, 16823}, {7289, 17375}, {7297, 17160}, {7779, 20785}, {8624, 40773}, {14953, 25257}, {15246, 22060}, {16491, 17024}, {16547, 17117}, {16566, 17261}, {17230, 17742}, {17292, 17744}, {17444, 18722}, {17481, 28420}, {19308, 25083}, {20601, 33888}, {21368, 33889}, {32932, 33091}

X(56513) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63, 3509, 3218}, {846, 3099, 902}, {3218, 3219, 672}


X(56514) = X(4)X(13) ∩ X(6)X(74)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4 - 2*Sqrt[3]*(a^2 - b^2 - c^2)*S) : :

X(56514) lies on the cubic K639 and these lines: {4, 13}, {6, 74}, {14, 7577}, {15, 186}, {16, 35473}, {17, 16868}, {18, 6143}, {24, 22236}, {25, 2981}, {62, 3520}, {395, 37118}, {396, 403}, {397, 18560}, {398, 1594}, {468, 42912}, {470, 11092}, {1596, 42633}, {2307, 6198}, {2967, 5611}, {2971, 51447}, {3043, 3200}, {3131, 23606}, {3163, 46470}, {3284, 35469}, {3412, 44958}, {3438, 20975}, {3439, 14575}, {3541, 42999}, {3575, 42925}, {5094, 42975}, {5158, 35470}, {5238, 21844}, {5339, 7547}, {5340, 35490}, {5351, 23040}, {5352, 17506}, {5899, 11267}, {6240, 42147}, {6636, 10634}, {7502, 11421}, {7505, 42152}, {10018, 16772}, {10151, 11542}, {10295, 42942}, {10641, 16538}, {10642, 34754}, {10653, 35481}, {10676, 11466}, {11137, 52416}, {11243, 14157}, {11244, 11464}, {11408, 18535}, {11409, 55572}, {11410, 11486}, {11420, 12083}, {11475, 13596}, {11480, 35472}, {11515, 44832}, {13473, 43416}, {13619, 36967}, {14170, 50468}, {16962, 37943}, {18559, 41101}, {21462, 30468}, {22238, 35477}, {32534, 36836}, {34797, 42157}, {35471, 42150}, {35480, 42154}, {35487, 42598}, {35488, 42156}, {35491, 42148}, {37119, 40694}, {37197, 42988}, {37984, 42496}, {42116, 55576}, {42124, 52297}, {42153, 52296}, {42814, 54001}, {42974, 44438}, {42991, 52295}

X(56514) = isogonal conjugate of X(10217)
X(56514) = polar conjugate of the isotomic conjugate of X(11131)
X(56514) = orthic-isogonal conjugate of X(10633)
X(56514) = X(i)-Ceva conjugate of X(j) for these (i,j): {4, 10633}, {39407, 11062}
X(56514) = X(i)-isoconjugate of X(j) for these (i,j): {1, 10217}, {63, 11080}, {265, 51805}, {656, 36839}, {2153, 40709}, {2166, 50465}, {3383, 52204}, {14206, 39380}, {23283, 36061}
X(56514) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 10217}, {3162, 11080}, {11127, 69}, {11597, 50465}, {16221, 23283}, {23870, 339}, {40580, 40709}, {40596, 36839}
X(56514) = barycentric product X(i)*X(j) for these {i,j}: {4, 11131}, {15, 470}, {25, 11129}, {92, 1094}, {186, 11092}, {250, 43961}, {298, 8739}, {340, 11086}, {471, 36209}, {473, 37848}, {10633, 19778}, {14165, 50466}, {14590, 23284}, {51806, 52414}
X(56514) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 10217}, {15, 40709}, {25, 11080}, {50, 50465}, {112, 36839}, {186, 11078}, {470, 300}, {1094, 63}, {3043, 11130}, {3200, 52349}, {8739, 13}, {8740, 36211}, {10633, 16770}, {10642, 11581}, {11086, 265}, {11092, 328}, {11129, 305}, {11131, 69}, {11137, 50468}, {23284, 14592}, {34394, 36296}, {34397, 11081}, {36209, 40710}, {37848, 40712}, {40352, 39380}, {43961, 339}, {47230, 23283}, {51891, 52204}
X(56514) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 46925, 35714}, {15, 8739, 186}, {61, 5669, 36296}, {186, 8739, 10633}, {5669, 36296, 52686}, {23712, 35714, 46925}


X(56515) = X(4)X(14) ∩ X(6)X(74)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4 + 2*Sqrt[3]*(a^2 - b^2 - c^2)*S) : :

X(56515) lies on the cubic K639 and these lines: {4, 14}, {6, 74}, {13, 7577}, {15, 35473}, {16, 186}, {17, 6143}, {18, 16868}, {24, 22238}, {25, 6151}, {61, 3520}, {395, 403}, {396, 37118}, {397, 1594}, {398, 18560}, {468, 42913}, {471, 11078}, {1596, 42634}, {1870, 7127}, {2967, 5615}, {2971, 51446}, {3043, 3201}, {3132, 23606}, {3163, 46471}, {3284, 35470}, {3411, 44958}, {3438, 14575}, {3439, 20975}, {3541, 42998}, {3575, 42924}, {5094, 42974}, {5158, 35469}, {5237, 21844}, {5339, 35490}, {5340, 7547}, {5351, 17506}, {5352, 23040}, {5899, 11268}, {6240, 42148}, {6636, 10635}, {7502, 11420}, {7505, 42149}, {10018, 16773}, {10151, 11543}, {10295, 42943}, {10641, 34755}, {10642, 16539}, {10654, 35481}, {10675, 11467}, {11134, 52416}, {11243, 11464}, {11244, 14157}, {11408, 55572}, {11409, 18535}, {11410, 11485}, {11421, 12083}, {11476, 13596}, {11481, 35472}, {11516, 44832}, {13473, 43417}, {13619, 36968}, {14169, 50469}, {16963, 37943}, {18559, 41100}, {21461, 30465}, {22236, 35477}, {32534, 36843}, {34797, 42158}, {35471, 42151}, {35480, 42155}, {35487, 42599}, {35488, 42153}, {35491, 42147}, {37119, 40693}, {37197, 42989}, {37984, 42497}, {42115, 55576}, {42121, 52297}, {42156, 52296}, {42813, 54001}, {42975, 44438}, {42990, 52295}

X(56515) = isogonal conjugate of X(10218)
X(56515) = polar conjugate of the isotomic conjugate of X(11130)
X(56515) = orthic-isogonal conjugate of X(10632)
X(56515) = X(i)-Ceva conjugate of X(j) for these (i,j): {4, 10632}, {39406, 11062}
X(56515) = X(i)-isoconjugate of X(j) for these (i,j): {1, 10218}, {63, 11085}, {265, 51806}, {656, 36840}, {2154, 40710}, {2166, 50466}, {3376, 52203}, {14206, 39381}, {23284, 36061}
X(56515) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 10218}, {3162, 11085}, {11126, 69}, {11597, 50466}, {16221, 23284}, {23871, 339}, {40581, 40710}, {40596, 36840}
X(56515) = barycentric product X(i)*X(j) for these {i,j}: {4, 11130}, {16, 471}, {25, 11128}, {92, 1095}, {186, 11078}, {250, 43962}, {299, 8740}, {340, 11081}, {470, 36208}, {472, 37850}, {10632, 19779}, {14165, 50465}, {14590, 23283}, {51805, 52414}
X(56515) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 10218}, {16, 40710}, {25, 11085}, {50, 50466}, {112, 36840}, {186, 11092}, {471, 301}, {1095, 63}, {3043, 11131}, {3201, 52348}, {8739, 36210}, {8740, 14}, {10632, 16771}, {10641, 11582}, {11078, 328}, {11081, 265}, {11128, 305}, {11130, 69}, {11134, 50469}, {23283, 14592}, {34395, 36297}, {34397, 11086}, {36208, 40709}, {37850, 40711}, {40352, 39381}, {43962, 339}, {47230, 23284}, {51890, 52203}
X(56515) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 46926, 35715}, {16, 8740, 186}, {62, 5668, 36297}, {186, 8740, 10632}, {5668, 36297, 52687}, {23713, 35715, 46926}


X(56516) = X(3)X(33556) ∩ X(5)X(3618)

Barycentrics    a^2*(9*a^8 - 30*a^6*b^2 + 36*a^4*b^4 - 18*a^2*b^6 + 3*b^8 - 30*a^6*c^2 + 12*a^4*b^2*c^2 + 2*a^2*b^4*c^2 + 16*b^6*c^2 + 36*a^4*c^4 + 2*a^2*b^2*c^4 - 38*b^4*c^4 - 18*a^2*c^6 + 16*b^2*c^6 + 3*c^8) : :
X(56516) = 3 X[3] - 4 X[33556], 8 X[33556] - 3 X[43719], 2 X[33556] - 3 X[51933], X[43719] - 4 X[51933], X[20] - 3 X[25712], 3 X[381] - 2 X[32533]

X(56516) lies on the cubic K814 and these lines: {3, 33556}, {5, 3618}, {20, 25712}, {110, 12315}, {155, 44456}, {381, 32533}, {382, 3167}, {548, 11821}, {576, 1598}, {1071, 10246}, {1092, 11820}, {1216, 55624}, {1350, 6759}, {1593, 9705}, {3089, 50974}, {3527, 38263}, {3528, 6090}, {3574, 3843}, {3832, 11426}, {3855, 11402}, {4549, 15696}, {5092, 17814}, {5609, 7387}, {6000, 45248}, {6053, 17845}, {7691, 9715}, {8780, 32139}, {9714, 10540}, {10245, 45187}, {10539, 10937}, {10620, 44763}, {11793, 55673}, {12121, 15063}, {13093, 38942}, {14094, 15750}, {15068, 55639}, {15083, 20850}, {18535, 43844}, {30734, 43600}, {33540, 55692}, {33541, 47524}, {35446, 41450}, {35498, 52055}, {38444, 41398}, {43895, 52292}

X(56516) = reflection of X(i) in X(j) for these {i,j}: {3, 51933}, {43719, 3}


X(56517) = X(1)X(2210) ∩ X(2)X(7)

Barycentrics    a*(a^4 - b^4 + 2*a*b^2*c + 2*a*b*c^2 - c^4) : :

X(56517) lies on these lines: {1, 2210}, {2, 7}, {19, 192}, {22, 228}, {25, 20760}, {37, 1760}, {72, 19310}, {81, 16972}, {105, 3873}, {120, 11246}, {152, 1709}, {169, 239}, {191, 39586}, {295, 26892}, {335, 20601}, {346, 27059}, {385, 1762}, {518, 26241}, {612, 846}, {614, 16468}, {942, 16048}, {968, 3749}, {1281, 29641}, {1282, 3870}, {1654, 5227}, {1699, 31126}, {1726, 20373}, {1729, 36021}, {1748, 5089}, {1766, 17261}, {1781, 3729}, {1959, 9310}, {1993, 20752}, {2082, 4393}, {3099, 8616}, {3263, 32933}, {3290, 4641}, {3661, 17742}, {3672, 26998}, {3673, 50200}, {3731, 16566}, {3790, 10327}, {3868, 4223}, {3875, 16547}, {3916, 19314}, {3927, 19309}, {3940, 19322}, {3951, 19318}, {4228, 5208}, {4664, 16568}, {4704, 54359}, {5020, 22149}, {5119, 50286}, {5268, 51294}, {5276, 28606}, {5278, 26234}, {5341, 17262}, {5440, 19326}, {5525, 17294}, {5540, 16834}, {5709, 7385}, {6360, 21218}, {6998, 26921}, {7191, 16475}, {7289, 17300}, {7291, 17316}, {7297, 17318}, {7330, 7379}, {7427, 37533}, {7485, 22060}, {7774, 20785}, {11329, 25083}, {12514, 16830}, {14019, 24470}, {14953, 25237}, {15487, 27481}, {16367, 16601}, {16997, 21368}, {17147, 25246}, {17308, 17744}, {17379, 54385}, {17451, 52134}, {17481, 18589}, {17482, 31158}, {17736, 18206}, {21495, 25082}, {21554, 24467}, {21808, 54419}, {22163, 55400}, {24471, 26657}, {25242, 37274}, {25261, 37076}, {26274, 37652}, {26626, 33950}, {29857, 34997}, {34772, 37254}

X(56517) = crossdifference of every pair of points on line {663, 50454}
X(56517) = barycentric product X(75)*X(37576)
X(56517) = barycentric quotient X(37576)/X(1)
X(56517) = {X(63),X(40131)}-harmonic conjugate of X(2)


X(56518) = X(2)X(7) ∩ X(19)X(3739)

Barycentrics    a*(a^4 - b^4 - 4*a*b^2*c - 4*a*b*c^2 - 6*b^2*c^2 - c^4) : :

X(56518) lies on these lines: {2, 7}, {19, 3739}, {25, 22060}, {40, 39581}, {72, 19313}, {75, 54359}, {78, 19314}, {81, 51194}, {84, 7390}, {105, 4512}, {169, 16832}, {228, 7484}, {241, 958}, {333, 18157}, {390, 32932}, {405, 37597}, {516, 3980}, {518, 612}, {614, 968}, {673, 2339}, {846, 5272}, {936, 25940}, {942, 16849}, {960, 5228}, {966, 7289}, {971, 19544}, {980, 19283}, {1211, 47595}, {1214, 25907}, {1282, 8580}, {1429, 19861}, {1760, 4751}, {1764, 39553}, {1766, 25590}, {2082, 4384}, {2329, 25930}, {2550, 7386}, {2999, 33854}, {3243, 3920}, {3263, 11679}, {3496, 24590}, {3687, 45962}, {3895, 50310}, {3912, 26101}, {3916, 19309}, {3927, 19319}, {3951, 19320}, {3984, 19327}, {4220, 5732}, {4223, 31424}, {4648, 5227}, {4652, 19310}, {5119, 50305}, {5220, 37520}, {5223, 5268}, {5234, 51302}, {5250, 16823}, {5256, 16503}, {5287, 51058}, {5440, 19323}, {5686, 37655}, {5737, 30748}, {5743, 5845}, {5805, 37360}, {5880, 30778}, {6703, 51150}, {6762, 39587}, {7131, 31225}, {7146, 19860}, {7191, 38316}, {7410, 26877}, {7672, 35614}, {7675, 37090}, {8229, 54370}, {10327, 24393}, {10856, 19649}, {12514, 20367}, {12704, 39605}, {14555, 51190}, {14829, 30758}, {15254, 17595}, {15299, 24239}, {15487, 19732}, {15668, 54385}, {16020, 31435}, {16419, 20760}, {16434, 31658}, {16593, 32777}, {16852, 37582}, {17451, 51304}, {17742, 29571}, {17811, 20752}, {19288, 39586}, {19727, 37060}, {20182, 42819}, {21526, 25068}, {21554, 55104}, {26241, 35258}, {27484, 37683}, {29667, 38200}, {31143, 51152}, {32939, 51052}, {37456, 52835}, {37556, 39567}, {37595, 42871}, {37674, 50995}, {48851, 54286}

X(56518) = {X(2),X(63)}-harmonic conjugate of X(40131)


X(56519) = X(1)X(4438) ∩ X(2)X(7)

Barycentrics    3*a^3 - a*b^2 + 2*b^3 - a*c^2 + 2*c^3 : :

X(56519) lies on these lines: {1, 4438}, {2, 7}, {10, 37176}, {31, 29857}, {38, 29855}, {46, 19846}, {69, 20106}, {72, 40656}, {165, 4429}, {193, 4035}, {200, 33118}, {306, 24597}, {312, 41806}, {321, 31229}, {333, 17270}, {344, 39595}, {345, 3875}, {612, 33115}, {614, 33119}, {846, 29856}, {896, 31237}, {940, 2273}, {968, 29631}, {975, 6693}, {1010, 1698}, {1210, 13742}, {1265, 39589}, {1699, 4676}, {1707, 2887}, {1743, 4417}, {1751, 50412}, {2999, 32851}, {3008, 50010}, {3011, 33163}, {3220, 37099}, {3247, 29841}, {3434, 35263}, {3436, 25982}, {3586, 13735}, {3624, 6682}, {3634, 37153}, {3705, 7290}, {3729, 3772}, {3749, 29673}, {3751, 3771}, {3752, 25083}, {3758, 41878}, {3870, 33114}, {3879, 37666}, {3882, 27319}, {3886, 33137}, {3912, 37642}, {3923, 17064}, {3977, 19785}, {4138, 24695}, {4202, 4652}, {4384, 16968}, {4392, 29871}, {4414, 29867}, {4415, 25728}, {4426, 5337}, {4512, 32773}, {4641, 30811}, {4655, 16570}, {4666, 24542}, {4972, 35258}, {5223, 33126}, {5231, 32942}, {5256, 33113}, {5269, 29641}, {5271, 32779}, {5285, 25494}, {5336, 11679}, {5358, 25440}, {5704, 37024}, {5705, 13740}, {5791, 17698}, {6327, 36277}, {6690, 38047}, {6703, 16831}, {6734, 17526}, {7174, 29634}, {7226, 29874}, {8056, 24781}, {8582, 24570}, {8616, 29861}, {9581, 17697}, {10164, 36706}, {14829, 17284}, {15509, 21477}, {15803, 33833}, {16062, 31424}, {16469, 33071}, {16475, 29671}, {16496, 29656}, {17061, 49446}, {17080, 26690}, {17126, 29873}, {17127, 29872}, {17156, 33156}, {17279, 30567}, {17289, 18229}, {17296, 37683}, {17352, 23511}, {17355, 31232}, {17594, 25453}, {17720, 30568}, {17740, 26723}, {18163, 22370}, {18743, 44735}, {19860, 24539}, {21711, 29597}, {23681, 32939}, {24538, 24982}, {24914, 25992}, {25441, 54287}, {25531, 31249}, {25734, 33151}, {26034, 30768}, {26061, 29828}, {26098, 50752}, {29658, 33164}, {29665, 33166}, {29681, 33170}, {29843, 38316}, {29858, 32913}, {29865, 32912}, {31187, 44417}, {33133, 56082}, {33138, 50314}, {33158, 39594}, {36499, 54354}, {50089, 50104}, {56062, 56224}

X(56519) = complement of X(26132)
X(56519) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 57, 17282}, {2, 63, 25527}, {2, 894, 25525}, {2, 5273, 4357}, {2, 17338, 51780}, {2, 26065, 226}, {2, 26223, 31266}, {2, 26685, 3452}, {2, 27064, 5219}, {2, 38000, 17306}, {2, 55868, 54311}, {63, 25527, 17274}, {226, 26065, 50127}, {345, 40940, 3875}, {3772, 44416, 3729}, {4438, 6679, 1}, {11679, 32777, 17286}, {17279, 37646, 30567}, {32777, 35466, 11679}


X(56520) = X(2)X(7) ∩ X(6)X(33113)

Barycentrics    2*a^3 - a*b^2 + b^3 - a*c^2 + c^3 : :

X(56520) lies on these lines: {2, 7}, {6, 33113}, {8, 37817}, {10, 11115}, {31, 3006}, {38, 6679}, {44, 5741}, {55, 33114}, {81, 1332}, {100, 5324}, {171, 33115}, {190, 33133}, {238, 33119}, {239, 33168}, {306, 16704}, {319, 4921}, {321, 35466}, {333, 32025}, {345, 3187}, {354, 24542}, {651, 26670}, {846, 29631}, {896, 2887}, {902, 29673}, {964, 5791}, {968, 29829}, {1150, 32777}, {1227, 4422}, {1621, 29835}, {1698, 48835}, {1707, 6327}, {1757, 29846}, {1999, 32849}, {2308, 29671}, {3011, 17165}, {3052, 5014}, {3550, 33117}, {3661, 5361}, {3685, 33142}, {3687, 19742}, {3705, 17127}, {3712, 3896}, {3752, 51583}, {3757, 33170}, {3769, 32862}, {3771, 32912}, {3772, 31229}, {3791, 32848}, {3821, 29867}, {3912, 37639}, {3914, 4427}, {3916, 4202}, {3923, 24892}, {3936, 4641}, {3969, 50084}, {3971, 29683}, {3977, 17147}, {3989, 29645}, {3995, 25268}, {4001, 20106}, {4011, 29662}, {4138, 17491}, {4358, 37646}, {4359, 21417}, {4362, 33161}, {4365, 50755}, {4388, 29872}, {4414, 25453}, {4416, 31037}, {4418, 33138}, {4425, 29863}, {4640, 4972}, {4645, 29873}, {4650, 25957}, {4655, 31237}, {4672, 33105}, {4676, 11680}, {4847, 35263}, {5051, 31445}, {5235, 19808}, {5722, 11346}, {6539, 54553}, {6690, 46897}, {6734, 11319}, {7081, 33166}, {7226, 29634}, {7262, 25760}, {7270, 16948}, {7283, 24883}, {8616, 33120}, {9340, 21026}, {12527, 25982}, {14829, 33157}, {16468, 29849}, {16729, 40603}, {16738, 41248}, {17012, 26070}, {17016, 56313}, {17070, 48645}, {17126, 29641}, {17256, 31247}, {17449, 29672}, {17495, 26723}, {17521, 54337}, {17591, 29852}, {17596, 29850}, {17674, 37582}, {17676, 31424}, {17719, 32938}, {17743, 26594}, {17763, 33164}, {17768, 48646}, {17776, 37642}, {20064, 36277}, {20075, 35261}, {22060, 35984}, {24295, 31241}, {24349, 29681}, {25599, 29630}, {26061, 26251}, {26128, 36263}, {26227, 33163}, {26263, 49692}, {26542, 26942}, {26634, 33819}, {26653, 26655}, {26660, 26686}, {26676, 26687}, {28606, 29833}, {29590, 50010}, {29632, 32913}, {29654, 46901}, {29658, 32925}, {29665, 32937}, {29682, 33682}, {29689, 49479}, {29690, 49482}, {29848, 49448}, {29854, 37604}, {29856, 32776}, {29858, 33069}, {29861, 32947}, {29862, 32949}, {29865, 33064}, {29869, 49676}, {30652, 50289}, {30811, 32859}, {30831, 33066}, {31035, 39595}, {32780, 32917}, {32845, 33132}, {32851, 32911}, {32853, 33156}, {32858, 37683}, {32864, 33160}, {32914, 33167}, {32918, 33159}, {32919, 33158}, {32929, 33137}, {32930, 33140}, {32932, 33139}, {32934, 33128}, {32935, 33127}, {32936, 33135}, {32939, 33129}, {32940, 33130}, {33077, 37652}, {34234, 55990}, {36568, 54354}, {37662, 41241}, {40435, 55942}, {41011, 50752}, {48650, 50304}, {54355, 56311}

X(56520) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63, 17184}, {2, 3219, 26580}, {2, 17350, 31053}, {2, 20078, 26132}, {2, 26065, 26223}, {2, 26685, 26688}, {31, 4438, 3006}, {38, 6679, 26230}, {190, 41806, 33133}, {345, 24597, 3187}, {1621, 33121, 29835}, {1707, 29857, 6327}, {3769, 32862, 50000}, {3977, 40940, 17147}, {4001, 20106, 31017}, {5294, 5745, 2}, {26061, 32916, 26251}, {26686, 26689, 26660}, {31229, 32933, 3772}, {35466, 44416, 321}


X(56521) = X(2)X(7) ∩ X(968)X(29856)

Barycentrics    5*a^3 - a*b^2 + 4*b^3 - a*c^2 + 4*c^3 : :

X(56521) lies on these lines: {2, 7}, {968, 29856}, {1698, 37817}, {1707, 31237}, {1743, 30831}, {2887, 36277}, {3677, 29871}, {3751, 29865}, {3758, 17785}, {4438, 29855}, {4865, 6679}, {5269, 29873}, {7174, 29874}, {7290, 29872}, {11679, 31229}, {14005, 52680}, {17594, 29867}, {18229, 31204}, {20106, 24597}, {29607, 50010}, {29868, 37553}, {48835, 51073}

X(56521) ={X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5294, 31266}, {2, 17353, 30852}


X(56522) = X(1)X(31237) ∩ X(2)X(7)

Barycentrics    3*a^3 + a*b^2 + 4*b^3 + a*c^2 + 4*c^3 : :

X(56522) lies on these lines: {1, 31237}, {2, 7}, {968, 29858}, {1698, 33127}, {2887, 29855}, {2999, 30831}, {3624, 33105}, {3677, 29872}, {3751, 29867}, {4202, 4855}, {5256, 30811}, {5269, 25959}, {5271, 32025}, {6679, 36277}, {7174, 29873}, {7290, 25958}, {16832, 31247}, {17064, 24943}, {17227, 41806}, {17266, 50010}, {17284, 33133}, {17304, 33113}, {17557, 31280}, {17594, 29865}, {19785, 20106}, {19862, 48835}, {21432, 33942}, {23681, 32779}, {26128, 29857}, {29866, 37553}, {30768, 33144}

X(56522) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25527, 63}, {2, 26132, 5294}, {2, 54311, 55867}, {5294, 26132, 31164}, {25958, 29871, 7290}, {25959, 29874, 5269}


X(56523) = X(2)X(7) ∩ X(345)X(519)

Barycentrics    5*a^3 - 3*a*b^2 + 2*b^3 - 3*a*c^2 + 2*c^3 : :
X(56523) = X[1707] + 2 X[4438]

X(56523) lies on these lines: {2, 7}, {10, 48833}, {43, 45048}, {81, 27754}, {165, 33118}, {333, 3550}, {345, 519}, {545, 3772}, {752, 1707}, {896, 29857}, {903, 23681}, {950, 51606}, {1010, 31446}, {1150, 17286}, {1227, 18743}, {1743, 32851}, {1751, 11352}, {2887, 16570}, {3006, 36277}, {3241, 37666}, {3687, 37654}, {3712, 49495}, {3729, 35466}, {3828, 48835}, {3834, 54281}, {3875, 3977}, {3973, 5233}, {4217, 6734}, {4370, 30568}, {4512, 33121}, {4640, 48829}, {4650, 31151}, {4676, 5231}, {4795, 17056}, {5269, 50286}, {5291, 17294}, {5526, 28920}, {5791, 37150}, {5853, 35261}, {6679, 50285}, {11679, 17281}, {14829, 17342}, {15803, 54345}, {16670, 26070}, {17270, 32779}, {17310, 37683}, {17351, 31187}, {17378, 33116}, {17594, 50287}, {17720, 25728}, {18141, 41141}, {18145, 19806}, {19808, 19875}, {19859, 51604}, {24036, 28936}, {24695, 50752}, {25734, 33133}, {26625, 52405}, {28301, 30699}, {28580, 33137}, {29855, 36263}, {31424, 37038}, {31445, 54367}, {33114, 35258}, {36911, 41839}, {37642, 56078}, {40940, 50101}, {41140, 50010}, {41629, 50132}, {50089, 50105}

X(56523) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63, 17274}, {2, 17274, 25527}, {2, 26065, 50115}, {3977, 24597, 3875}, {5745, 50115, 2}


X(56524) = X(2)X(7) ∩ X(40)X(16086)

Barycentrics    a*(a^5 - a^3*b^2 + a^2*b^3 - b^5 - a^3*c^2 + 2*a*b^2*c^2 - b^3*c^2 + a^2*c^3 - b^2*c^3 - c^5) : :

X(56524) lies on these lines: {2, 7}, {40, 16086}, {43, 34997}, {72, 11334}, {78, 8615}, {190, 21375}, {191, 37603}, {312, 1726}, {1746, 20927}, {1760, 1764}, {1762, 11679}, {1763, 3719}, {1782, 54433}, {2273, 3666}, {3912, 26934}, {4218, 4652}, {10461, 36011}, {12514, 30115}, {14829, 16551}, {16560, 30567}, {16579, 52134}, {16968, 18206}, {21368, 56082}, {30904, 54406}

X(56524) = {X(1763),X(3719)}-harmonic conjugate of X(3882)


X(56525) = X(2)X(7) ∩ X(75)X(1726)

Barycentrics    a*(a^5 - a^3*b^2 + a^2*b^3 - b^5 - a^3*c^2 - 2*a*b^2*c^2 - b^3*c^2 + a^2*c^3 - b^2*c^3 - c^5) : :

X(56525) lies on these lines: {2, 7}, {75, 1726}, {78, 4218}, {333, 16551}, {1444, 30878}, {1730, 1760}, {1762, 4384}, {3687, 26934}, {3869, 55086}, {3916, 11334}, {4652, 37311}, {5271, 21367}, {6763, 37608}, {6996, 21375}, {11679, 16560}, {12514, 30117}, {16566, 24310}, {16577, 52134}, {17185, 30903}, {26102, 34997}

X(56525) = X(2273)-Dao conjugate of X(976)
X(56525) = {X(9),X(57)}-harmonic conjugate of X(25527)


X(56526) = X(1)X(3) ∩ X(4)X(1773)

Barycentrics    a*(a^9 + a^8*b - 2*a^7*b^2 - 2*a^6*b^3 + 2*a^3*b^6 + 2*a^2*b^7 - a*b^8 - b^9 + a^8*c - 2*a^4*b^4*c + b^8*c - 2*a^7*c^2 + 4*a^5*b^2*c^2 + 2*a^4*b^3*c^2 - 2*a^3*b^4*c^2 - 4*a^2*b^5*c^2 + 2*b^7*c^2 - 2*a^6*c^3 + 2*a^4*b^2*c^3 - 16*a^3*b^3*c^3 + 2*a^2*b^4*c^3 - 2*b^6*c^3 - 2*a^4*b*c^4 - 2*a^3*b^2*c^4 + 2*a^2*b^3*c^4 + 2*a*b^4*c^4 - 4*a^2*b^2*c^5 + 2*a^3*c^6 - 2*b^3*c^6 + 2*a^2*c^7 + 2*b^2*c^7 - a*c^8 + b*c^8 - c^9) : :

X(56526) lies on the cubic K152 and these lines: {1, 3}, {4, 1773}, {497, 1452}, {1071, 39883}, {1753, 13161}, {12514, 27509}, {55907, 56288}

X(56526) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65, 16541, 1}, {1773, 2961, 4}


X(56527) = X(1)X(6) ∩ X(379)X(9965)

Barycentrics    a*(a^3 - 4*a^2*b + 3*a*b^2 - 4*a^2*c - 2*a*b*c + 2*b^2*c + 3*a*c^2 + 2*b*c^2) : :

X(56527) lies on the cubic K977 and these lines: {1, 6}, {379, 9965}, {391, 443}, {474, 4253}, {553, 19723}, {672, 5687}, {966, 17529}, {2287, 16410}, {3927, 33950}, {3940, 26690}, {4251, 16370}, {4258, 19535}, {5022, 16371}, {5030, 19537}, {5276, 19313}, {5278, 9776}, {5739, 37326}, {6361, 28915}, {6515, 25933}, {6996, 37652}, {7839, 17691}, {9605, 37657}, {11112, 37654}, {16854, 46196}, {16948, 21309}, {17349, 17682}, {18206, 37272}, {19732, 31211}, {21002, 22312}, {21514, 32911}, {31034, 37111}

X(56527) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 16552, 405}, {218, 21384, 956}, {4253, 37658, 474}


X(56528) = X(1)X(6) ∩ X(4)X(14661)

Barycentrics    a^2*(a^5 - 3*a^4*b + 2*a^3*b^2 + 2*a^2*b^3 - 3*a*b^4 + b^5 - 3*a^4*c + 5*a^3*b*c - 2*a^2*b^2*c - a*b^3*c + b^4*c + 2*a^3*c^2 - 2*a^2*b*c^2 + 2*a^2*c^3 - a*b*c^3 - 3*a*c^4 + b*c^4 + c^5) : :

X(56528) lies on the cubic K165 and these lines: {1, 6}, {4, 14661}, {442, 18343}, {644, 952}, {953, 6078}, {1260, 6065}, {2287, 3109}, {3309, 7580}, {4585, 38941}, {6985, 18345}, {12739, 24036}


X(56529) = X(1)X(6) ∩ X(74)X(898)

Barycentrics    a*(a^5 - a^3*b^2 - a^3*b*c + a^2*b^2*c + a*b^3*c - b^4*c - a^3*c^2 + a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 + a*b*c^3 - b^2*c^3 - b*c^4) : :

X(56529) lies on the cubic K223 and these lines: {1, 6}, {74, 898}, {100, 1495}, {110, 17977}, {182, 344}, {184, 17776}, {242, 40863}, {306, 26885}, {345, 9306}, {468, 51367}, {511, 1332}, {667, 15313}, {692, 3932}, {813, 26702}, {1016, 5379}, {1352, 28420}, {2330, 4078}, {2703, 43659}, {3573, 4645}, {3836, 5091}, {3912, 7193}, {3955, 56078}, {3977, 26884}, {4158, 30733}, {4553, 20872}, {5135, 17243}, {5138, 17316}, {5651, 17740}, {6335, 41204}, {6353, 55112}, {11517, 18621}, {20610, 20797}, {22161, 29529}, {27549, 43146}, {33116, 37527}

X(56529) = isogonal conjugate of X(16100)
X(56529) = isogonal conjugate of the isotomic conjugate of X(16085)
X(56529) = X(i)-isoconjugate of X(j) for these (i,j): {1, 16100}, {649, 53203}
X(56529) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 16100}, {5375, 53203}
X(56529) = crossdifference of every pair of points on line {513, 40941}
X(56529) = barycentric product X(i)*X(j) for these {i,j}: {6, 16085}, {72, 44330}, {866, 1016}
X(56529) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 16100}, {100, 53203}, {866, 1086}, {16085, 76}, {44330, 286}
X(56529) = {X(110),X(32849)}-harmonic conjugate of X(17977)


X(56530) = X(1)X(6) ∩ X(101)X(519)

Barycentrics    a*(a^3 - a^2*b - a^2*c + 3*a*b*c - b^2*c - b*c^2) : :

X(56530) lies on the cubic K225 and these lines: {1, 6}, {2, 4390}, {3, 3208}, {8, 9310}, {32, 37588}, {36, 1018}, {41, 145}, {48, 17314}, {56, 3501}, {78, 46345}, {100, 1055}, {101, 519}, {104, 813}, {169, 4051}, {171, 2242}, {172, 5255}, {198, 3169}, {295, 55004}, {312, 24266}, {346, 604}, {350, 18047}, {385, 10027}, {517, 3509}, {529, 17747}, {535, 5134}, {572, 3950}, {609, 37610}, {643, 5060}, {644, 672}, {664, 46180}, {667, 3900}, {728, 1420}, {740, 42669}, {758, 3708}, {898, 2291}, {910, 3880}, {934, 6168}, {982, 9620}, {999, 17754}, {1000, 2344}, {1016, 1429}, {1120, 1438}, {1125, 9327}, {1145, 19557}, {1146, 38455}, {1149, 33854}, {1155, 41322}, {1319, 3693}, {1334, 2975}, {1385, 3991}, {1436, 56279}, {1447, 21232}, {1575, 9259}, {1604, 12410}, {1759, 5697}, {1897, 2202}, {1910, 34895}, {2082, 36846}, {2112, 50015}, {2170, 38460}, {2174, 17388}, {2224, 34892}, {2238, 16613}, {2276, 37617}, {2280, 3241}, {2295, 37607}, {2325, 5053}, {2347, 38869}, {2802, 5011}, {3057, 3496}, {3207, 3913}, {3244, 4251}, {3451, 52549}, {3476, 24247}, {3729, 7175}, {3730, 8666}, {3872, 40131}, {3877, 5282}, {3903, 41882}, {3930, 4511}, {3935, 37763}, {3943, 7113}, {4050, 5687}, {4119, 16086}, {4262, 25439}, {4350, 6167}, {4447, 9441}, {4482, 6381}, {4752, 5030}, {4851, 18162}, {4861, 17451}, {4869, 7225}, {5088, 6647}, {5176, 21044}, {5205, 39059}, {5279, 17452}, {5316, 17023}, {5563, 16549}, {5657, 28870}, {5744, 17316}, {5882, 21096}, {5903, 17736}, {6542, 20769}, {7075, 23853}, {7132, 30701}, {7257, 56432}, {7793, 56353}, {7991, 36643}, {8649, 52959}, {9318, 30806}, {10025, 35102}, {10453, 51949}, {10944, 40997}, {11194, 42316}, {12648, 26258}, {15955, 16600}, {16609, 40863}, {16822, 39731}, {17015, 21840}, {17284, 31190}, {17299, 54316}, {17310, 27950}, {17315, 18042}, {17601, 31433}, {17613, 18788}, {17682, 20257}, {17717, 31409}, {17735, 52964}, {18723, 30941}, {19584, 52148}, {20173, 24268}, {20335, 24203}, {20471, 32468}, {20539, 28845}, {20691, 21008}, {21073, 45287}, {21372, 41702}, {23354, 26250}, {24549, 27334}, {24928, 25066}, {25500, 27253}, {25940, 29616}, {26242, 49487}, {29585, 54419}, {29588, 40744}, {32049, 46835}, {32926, 40597}, {32927, 47874}, {34064, 41243}, {34610, 41325}, {35106, 53624}, {35342, 48696}, {41534, 51614}, {41794, 50010}, {49709, 54328}

X(56530) = midpoint of X(3509) and X(4919)
X(56530) = reflection of X(i) in X(j) for these {i,j}: {3684, 101}, {5088, 6647}
X(56530) = isogonal conjugate of the isotomic conjugate of X(40875)
X(56530) = X(40862)-Ceva conjugate of X(9364)
X(56530) = X(i)-isoconjugate of X(j) for these (i,j): {2, 9432}, {56, 52517}, {57, 9365}, {649, 53208}
X(56530) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 52517}, {5375, 53208}, {5452, 9365}, {32664, 9432}, {39049, 7}, {39059, 75}
X(56530) = crossdifference of every pair of points on line {513, 3752}
X(56530) = barycentric product X(i)*X(j) for these {i,j}: {1, 5205}, {6, 40875}, {8, 9364}, {9, 40862}, {72, 15150}
X(56530) = barycentric quotient X(i)/X(j) for these {i,j}: {9, 52517}, {31, 9432}, {55, 9365}, {100, 53208}, {5205, 75}, {9364, 7}, {15150, 286}, {40862, 85}, {40875, 76}
X(56530) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2329, 41239}, {1, 16788, 16503}, {1, 17742, 3061}, {1, 54329, 16502}, {56, 4513, 3501}, {220, 12513, 21384}, {644, 54391, 672}, {1023, 45751, 5526}, {1447, 40872, 21232}, {2329, 16503, 16788}, {3230, 5291, 238}, {3930, 17439, 4511}, {16503, 16788, 41239}, {41391, 43065, 9}


X(56531) = X(1)X(6) ∩ X(2)X(17791)

Barycentrics    a*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c + 2*a^2*b*c - a^2*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :

X(56531) lies on the cubic K277 and these lines: {1, 6}, {2, 17791}, {36, 7297}, {241, 37771}, {583, 1953}, {650, 4802}, {672, 17444}, {910, 41341}, {1333, 40582}, {1575, 33139}, {1731, 7113}, {2161, 5053}, {2170, 2245}, {2223, 21889}, {2260, 17443}, {3163, 35128}, {3218, 18722}, {3693, 4727}, {3943, 24036}, {3991, 50123}, {4268, 40968}, {4282, 52949}, {4289, 37525}, {5043, 5903}, {5540, 19297}, {7292, 47231}, {7300, 34890}, {8610, 49758}, {16547, 21773}, {16586, 35466}, {16602, 31201}, {16679, 21804}, {17281, 26690}, {17301, 24635}, {17362, 25078}, {17463, 21323}, {21907, 33129}, {35066, 35125}, {35069, 35092}

X(56531) = complement of X(17791)
X(56531) = complement of the isotomic conjugate of X(3065)
X(56531) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 51569}, {32, 40612}, {3065, 2887}, {11075, 21237}, {19302, 141}, {21739, 626}, {34921, 17072}, {40716, 21235}
X(56531) = X(2)-Ceva conjugate of X(51569)
X(56531) = X(57)-isoconjugate of X(56121)
X(56531) = X(i)-Dao conjugate of X(j) for these (i,j): {5452, 56121}, {51569, 2}
X(56531) = crossdifference of every pair of points on line {35, 513}
X(56531) = barycentric product X(i)*X(j) for these {i,j}: {3065, 51569}, {11604, 33667}
X(56531) = barycentric quotient X(i)/X(j) for these {i,j}: {55, 56121}, {51569, 17791}
X(56531) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {36, 7297, 15586}, {37, 40133, 16666}, {44, 1100, 2323}, {44, 8609, 37}, {583, 1953, 21863}, {672, 17444, 21864}, {1100, 40937, 37}, {8609, 43065, 44}


X(56532) = X(1)X(6) ∩ X(2)X(5540)

Barycentrics    a*(a^3 - a^2*b + a*b^2 - b^3 - a^2*c - 3*a*b*c - b^2*c + a*c^2 - b*c^2 - c^3) : :

X(56532) lies on the cubic K282 and these lines: {1, 6}, {2, 5540}, {169, 3624}, {191, 4253}, {484, 6205}, {597, 34914}, {644, 3898}, {1125, 33950}, {1475, 6763}, {1621, 24036}, {1698, 2082}, {1759, 3337}, {2344, 3065}, {3218, 17023}, {3305, 29573}, {3306, 29598}, {3336, 3496}, {3501, 37563}, {3746, 25066}, {3825, 27068}, {3912, 35595}, {4251, 39244}, {4262, 15015}, {5011, 29633}, {5248, 26690}, {5541, 29659}, {5749, 30305}, {7031, 54317}, {11010, 16549}, {14210, 17277}, {16546, 16547}, {16550, 29660}, {17397, 20602}, {17456, 29820}, {17739, 29438}, {17779, 39389}, {18596, 41923}, {18637, 25964}, {24205, 53510}, {24631, 33952}, {25055, 40131}, {25263, 30133}, {26127, 26793}, {27065, 29574}, {37546, 54322}, {44798, 48696}, {45755, 49278}

X(56532) = X(i)-Ceva conjugate of X(j) for these (i,j): {597, 17779}, {34914, 1}
X(56532) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 9, 5525}, {9, 5525, 17744}, {37, 16784, 1}, {3061, 16783, 1}, {6205, 41319, 484}, {17754, 41319, 6205}


X(56533) = X(1)X(6) ∩ X(2)X(7167)

Barycentrics    a*(a^3*b^2 - a^2*b^3 - a^3*b*c - a^2*b^2*c - a*b^3*c + a^3*c^2 - a^2*b*c^2 + a*b^2*c^2 - b^3*c^2 - a^2*c^3 - a*b*c^3 - b^2*c^3) : :

X(56533) lies on the cubic K423 and these lines: {1, 6}, {2, 7167}, {39, 256}, {83, 3405}, {182, 2344}, {262, 3402}, {572, 9417}, {894, 20459}, {983, 2241}, {1475, 17120}, {1966, 17277}, {2170, 25024}, {2225, 32944}, {2276, 50616}, {2279, 40739}, {2999, 21387}, {3329, 40738}, {3403, 4384}, {3691, 17752}, {3923, 24578}, {4357, 26959}, {16547, 16564}, {17260, 39914}, {17306, 25506}, {17335, 52138}, {17353, 27020}, {17594, 39250}, {21369, 29821}, {32942, 40972}, {39244, 44694}

X(56533) = X(i)-Ceva conjugate of X(j) for these (i,j): {3329, 17795}, {40738, 1}
X(56533) = {X(1),X(9)}-harmonic conjugate of X(3508)


X(56534) = X(1)X(6) ∩ X(41)X(1030)

Barycentrics    a^2*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - 3*a*b*c + b^2*c - a*c^2 + b*c^2 + c^3) : :

X(56534) lies on the cubic K486 and these lines: {1, 6}, {41, 1030}, {53, 1783}, {71, 54409}, {101, 583}, {517, 7300}, {579, 3204}, {584, 3730}, {644, 17388}, {672, 2174}, {906, 2965}, {1332, 3629}, {1914, 40599}, {2178, 5043}, {2238, 5949}, {2287, 17369}, {3196, 3217}, {3763, 23151}, {3779, 16686}, {4289, 54285}, {4383, 31053}, {4415, 26792}, {4641, 22128}, {4878, 19624}, {5371, 17735}, {5497, 22141}, {7069, 7073}, {7123, 34819}, {7277, 37659}, {7297, 21853}, {8818, 45883}, {16547, 21863}, {17243, 41610}, {17454, 24047}, {22129, 55873}, {29255, 32431}, {31266, 37679}, {37509, 50558}, {50103, 55399}

X(56534) = X(i)-Ceva conjugate of X(j) for these (i,j): {79, 55}, {17483, 11849}
X(56534) = X(57)-isoconjugate of X(43741)
X(56534) = X(i)-Dao conjugate of X(j) for these (i,j): {5452, 43741}, {52405, 319}
X(56534) = barycentric quotient X(55)/X(43741)
X(56534) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 220, 16777}, {6, 2911, 17796}, {6, 16672, 54358}, {101, 583, 21773}, {218, 2911, 6}, {579, 3204, 19297}, {672, 2174, 5124}, {1100, 17745, 6}, {2323, 16669, 6}, {17745, 52405, 1100}


X(56535) = X(1)X(6) ∩ X(35)X(500)

Barycentrics    a^2*(a^2 - b^2 - b*c - c^2)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c + b^2*c - a*c^2 + b*c^2 - c^3) : :

X(56535) lies on the cubic K500 and these lines: {1, 6}, {35, 500}, {36, 582}, {46, 1079}, {47, 32760}, {65, 23071}, {155, 17857}, {210, 22136}, {227, 484}, {255, 22069}, {323, 4420}, {354, 37509}, {651, 1770}, {1155, 23070}, {1331, 43756}, {1717, 40263}, {1718, 24474}, {1737, 3562}, {1780, 56001}, {1993, 3811}, {2361, 5399}, {3193, 21077}, {3338, 36754}, {3579, 8614}, {3584, 37559}, {3746, 37698}, {3914, 16153}, {4354, 41562}, {5248, 54444}, {5310, 50593}, {6126, 12778}, {7293, 23156}, {9037, 20833}, {11507, 22117}, {17441, 31811}, {18398, 52423}, {22128, 25440}, {23166, 38903}, {23202, 23850}, {36747, 37569}, {36750, 37080}

X(56535) = X(6198)-Ceva conjugate of X(35)
X(56535) = X(i)-isoconjugate of X(j) for these (i,j): {79, 90}, {2160, 2994}, {2164, 30690}, {6186, 20570}, {7040, 7100}, {7073, 7318}, {36626, 52372}
X(56535) = barycentric product X(i)*X(j) for these {i,j}: {35, 5905}, {46, 3219}, {319, 2178}, {323, 56417}, {1406, 42033}, {2003, 5552}, {2174, 20930}, {2594, 31631}, {3157, 52412}, {3193, 16577}, {6198, 6505}, {21077, 40214}
X(56535) = barycentric quotient X(i)/X(j) for these {i,j}: {35, 2994}, {46, 30690}, {1406, 52374}, {2003, 7318}, {2174, 90}, {2178, 79}, {3157, 52381}, {3219, 20570}, {5905, 20565}, {21853, 6757}, {52405, 36626}, {52408, 6513}, {56417, 94}
X(56535) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {35, 35197, 2003}, {2361, 5399, 14798}, {2594, 52408, 35}, {5353, 5357, 52405}


X(56536) = X(1)X(6) ∩ X(3)X(25082)

Barycentrics    a*(a^3 - 2*a^2*b + 3*a*b^2 - 2*b^3 - 2*a^2*c + 2*a*b*c + 3*a*c^2 - 2*c^3) : :

X(56536) lies on the cubic K594 and these lines: {1, 6}, {3, 25082}, {4, 10743}, {56, 24036}, {140, 26258}, {169, 3693}, {190, 17753}, {198, 20833}, {226, 24796}, {329, 18139}, {344, 17170}, {346, 5082}, {442, 27040}, {474, 25066}, {517, 55337}, {644, 1482}, {728, 10914}, {962, 3161}, {999, 26690}, {1565, 28740}, {1696, 25078}, {1759, 42316}, {2082, 3991}, {2348, 3811}, {3039, 12607}, {3295, 33950}, {3419, 49782}, {3869, 56244}, {3913, 5540}, {4006, 21373}, {4534, 49169}, {4936, 7982}, {5022, 17736}, {5044, 16851}, {5296, 13728}, {5813, 17776}, {5927, 15490}, {6554, 17757}, {7522, 42715}, {7580, 15487}, {8226, 14268}, {9605, 26242}, {10896, 21090}, {11036, 13742}, {11517, 39048}, {13730, 27396}, {13747, 40127}, {15831, 37179}, {15972, 48907}, {16854, 25086}, {16862, 25068}, {17350, 33821}, {17540, 26685}, {17675, 33864}, {17682, 25242}, {17683, 25244}, {21477, 56511}, {22425, 52539}, {25083, 37272}, {27068, 31479}, {27508, 42018}, {29621, 37169}, {31397, 52528}

X(56536) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 16601, 405}, {169, 3693, 5687}, {1212, 17742, 956}, {25066, 40131, 474}


X(56537) = X(1)X(6) ∩ X(2)X(22279)

Barycentrics    a*(a^2 - a*b - a*c - b*c)*(b^2 + c^2) : :

X(56537) lies on the cubic K975 and these lines: {1, 6}, {2, 22279}, {8, 22289}, {38, 1964}, {63, 3941}, {75, 17142}, {86, 13476}, {141, 3688}, {210, 17348}, {239, 22271}, {291, 39798}, {308, 668}, {319, 350}, {354, 28639}, {513, 6646}, {594, 14839}, {674, 4357}, {692, 1176}, {1026, 29492}, {1213, 17049}, {1654, 25048}, {3009, 4022}, {3056, 4643}, {3057, 49467}, {3271, 17332}, {3589, 20683}, {3678, 4974}, {3681, 3759}, {3728, 17445}, {3739, 20358}, {3770, 17794}, {3775, 12263}, {3779, 4657}, {3783, 21858}, {3786, 32922}, {3789, 17275}, {3799, 17285}, {3873, 17394}, {3874, 50293}, {3878, 49473}, {3881, 5625}, {3888, 17273}, {3920, 22275}, {3961, 22304}, {4016, 17446}, {4026, 9052}, {4033, 28597}, {4111, 4399}, {4360, 44671}, {4364, 21746}, {4422, 7064}, {4446, 46838}, {4517, 17279}, {4735, 27633}, {5263, 20718}, {5314, 16678}, {6007, 17246}, {9025, 17344}, {9054, 17045}, {9318, 25368}, {14973, 32926}, {16574, 20990}, {16679, 18206}, {16709, 17140}, {16710, 17154}, {17023, 22277}, {17034, 22292}, {17143, 40088}, {17227, 25279}, {17237, 17792}, {17239, 21264}, {17277, 40607}, {17280, 40521}, {17289, 21865}, {17345, 49537}, {17793, 21238}, {20352, 56249}, {22293, 41240}, {22312, 50114}, {24405, 29382}, {25108, 31243}, {43915, 55082}, {46909, 50362}

X(56537) = reflection of X(52020) in X(17045)
X(56537) = anticomplement of X(22279)
X(56537) = X(27807)-anticomplementary conjugate of X(1330)
X(56537) = X(i)-Ceva conjugate of X(j) for these (i,j): {668, 17494}, {32009, 21814}
X(56537) = X(i)-isoconjugate of X(j) for these (i,j): {82, 13476}, {83, 2350}, {251, 17758}, {18098, 39950}, {18105, 53649}, {40216, 46289}
X(56537) = X(i)-Dao conjugate of X(j) for these (i,j): {39, 40216}, {141, 13476}, {40585, 17758}
X(56537) = crossdifference of every pair of points on line {513, 55240}
X(56537) = X(6646)-line conjugate of X(513)
X(56537) = barycentric product X(i)*X(j) for these {i,j}: {38, 17277}, {39, 17143}, {141, 1621}, {1930, 4251}, {1964, 18152}, {3051, 40088}, {3294, 16887}, {4040, 4568}, {4043, 17187}, {4553, 17494}, {4651, 16696}, {20954, 46148}, {33299, 55082}
X(56537) = barycentric quotient X(i)/X(j) for these {i,j}: {38, 17758}, {39, 13476}, {141, 40216}, {1621, 83}, {1964, 2350}, {3294, 18082}, {4040, 10566}, {4043, 56251}, {4151, 18070}, {4251, 82}, {4553, 54118}, {4651, 56186}, {16696, 39734}, {16887, 40004}, {17143, 308}, {17187, 39950}, {17277, 3112}, {18152, 18833}, {21007, 18108}, {33299, 55076}, {38347, 18101}, {40088, 40016}, {55340, 18087}
X(56537) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 9, 16684}, {38, 1964, 16696}, {141, 3688, 4553}


X(56538) = X(1)X(6) ∩ X(3)X(321)

Barycentrics    a*(b + c)*(a^5 + a^4*b - a^3*b^2 - a^2*b^3 + a^4*c + a^3*b*c - a^2*b^2*c - a*b^3*c - a^3*c^2 - a^2*b*c^2 - 2*a*b^2*c^2 - 2*b^3*c^2 - a^2*c^3 - a*b*c^3 - 2*b^2*c^3) : :

X(56538) lies on the cubic K1057 and these lines: {1, 6}, {3, 321}, {21, 3995}, {25, 26227}, {55, 2901}, {63, 37536}, {75, 16453}, {183, 27801}, {228, 5295}, {312, 16287}, {345, 16455}, {346, 13726}, {404, 31025}, {474, 31993}, {975, 16357}, {993, 3159}, {1006, 56187}, {1089, 52139}, {1150, 22458}, {1324, 2915}, {1791, 37227}, {2218, 22027}, {2975, 56318}, {3175, 16370}, {3421, 37314}, {3666, 16302}, {3695, 17751}, {4043, 7283}, {4204, 29822}, {4205, 17757}, {4358, 16286}, {4359, 16414}, {4671, 16452}, {5262, 19243}, {6883, 42700}, {6986, 45744}, {7484, 42715}, {11343, 19791}, {14973, 42443}, {15623, 45766}, {15976, 49716}, {16289, 41839}, {16290, 17776}, {16295, 48380}, {16296, 18743}, {16297, 19804}, {16299, 19785}, {16301, 33157}, {16451, 28605}, {16817, 19241}, {17763, 37327}, {18003, 53263}, {19238, 19851}, {19287, 27802}, {19531, 37539}, {19535, 22034}, {20045, 37325}, {21319, 41014}, {21483, 42706}, {29824, 37319}, {32777, 50605}, {37246, 42707}, {37329, 50067}, {41227, 56319}, {51862, 56186}

X(56538) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {228, 5295, 5687}, {3191, 21061, 72}


X(56539) = X(1)X(6) ∩ X(104)X(1350)

Barycentrics    a*(3*a^5 - 2*a^3*b^2 - a*b^4 + 8*a^3*b*c + 4*a*b^3*c - 4*b^4*c - 2*a^3*c^2 - 6*a*b^2*c^2 - 4*b^3*c^2 + 4*a*b*c^3 - 4*b^2*c^3 - a*c^4 - 4*b*c^4) : :

X(56539) lies on the cubic K1124 and these lines: {1, 6}, {104, 1350}, {154, 24477}, {1000, 51147}, {3416, 3911}, {3844, 31190}, {5085, 5657}, {5744, 51192}, {9025, 11194}, {15069, 39903}, {35514, 44882}


X(56540) = X(1)X(6) ∩ X(12)X(7110)

Barycentrics    a*(a - b - c)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + a^4*b*c + a^3*b^2*c - a^2*b^3*c - a*b^4*c - a^4*c^2 + a^3*b*c^2 + 2*a^2*b^2*c^2 + a*b^3*c^2 - b^4*c^2 - a^2*b*c^3 + a*b^2*c^3 - a^2*c^4 - a*b*c^4 - b^2*c^4 + c^6) : :

X(56540) lies on the cubic K1169 and these lines: {1, 6}, {12, 7110}, {24, 17857}, {30, 16548}, {101, 53921}, {355, 16547}, {377, 54283}, {451, 21077}, {4858, 50200}, {9659, 15817}, {16310, 56417}, {20602, 21277}


X(56541) = X(1)X(6) ∩ X(10)X(4016)

Barycentrics    a*(b + c)*(a*b^2 + b^3 + a*b*c + b^2*c + a*c^2 + b*c^2 + c^3) : :

X(56541) lies on the cubic K1284 and these lines: {1, 6}, {10, 4016}, {53, 41013}, {101, 4280}, {141, 20336}, {209, 756}, {228, 1030}, {313, 321}, {976, 5301}, {1213, 3721}, {1333, 30115}, {1573, 17443}, {1761, 5293}, {2178, 7085}, {2214, 30142}, {2292, 3949}, {2321, 3159}, {2345, 56318}, {2901, 5814}, {3175, 50087}, {3589, 41249}, {3661, 42714}, {3670, 46838}, {3727, 17362}, {3735, 17275}, {3940, 54423}, {3995, 5739}, {4134, 53037}, {4361, 19791}, {4419, 45744}, {4424, 21858}, {4469, 56023}, {5044, 40941}, {5224, 18179}, {7069, 17452}, {14533, 56254}, {21070, 24067}, {22008, 24090}, {27801, 30473}, {33761, 40571}, {52555, 56219}

X(56541) = X(36080)-Ceva conjugate of X(55232)
X(56541) = X(81)-isoconjugate of X(54336)
X(56541) = X(40586)-Dao conjugate of X(54336)
X(56541) = barycentric product X(i)*X(j) for these {i,j}: {37, 32782}, {72, 5142}, {321, 4261}, {838, 27808}
X(56541) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 54336}, {838, 3733}, {3952, 839}, {4261, 81}, {5142, 286}, {32782, 274}
X(56541) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 72, 6}, {37, 21873, 213}, {594, 4415, 53417}, {3954, 21810, 37}


X(56542) = X(1)X(6) ∩ X(8)X(76)

Barycentrics    a*(a^2*b^2 - a*b^3 + a^2*b*c - a*b^2*c - b^3*c + a^2*c^2 - a*b*c^2 - a*c^3 - b*c^3) : :
X(56542) = 2 X[10] - 3 X[3789], 3 X[1002] - 5 X[3616], 7 X[3624] - 6 X[28600], 3 X[10186] - 2 X[14520]

X(56542) lies on the cubic K1316 and these lines: {1, 6}, {2, 20683}, {3, 40638}, {8, 76}, {10, 2140}, {38, 869}, {55, 23151}, {63, 2223}, {65, 24805}, {69, 3688}, {78, 37575}, {145, 1655}, {194, 31302}, {200, 37555}, {210, 4384}, {239, 3681}, {274, 3786}, {344, 7064}, {348, 1362}, {354, 16831}, {517, 48944}, {599, 4553}, {674, 4643}, {692, 19127}, {758, 24333}, {760, 3869}, {942, 39586}, {966, 17049}, {982, 2664}, {1002, 3616}, {1282, 3496}, {1376, 20367}, {1469, 3674}, {2340, 56509}, {2550, 17753}, {2809, 3878}, {3041, 6554}, {3056, 4416}, {3057, 49451}, {3059, 18252}, {3219, 23407}, {3271, 54280}, {3624, 28600}, {3678, 16825}, {3690, 33171}, {3696, 32104}, {3717, 29960}, {3730, 8299}, {3740, 16832}, {3747, 3938}, {3779, 4357}, {3781, 49511}, {3783, 12782}, {3799, 17230}, {3868, 16830}, {3873, 16826}, {3876, 16823}, {3877, 49753}, {3888, 4741}, {3912, 4517}, {3927, 37590}, {3946, 22312}, {4111, 42696}, {4134, 50023}, {4260, 25499}, {4301, 29311}, {4361, 22271}, {4364, 9054}, {4393, 4661}, {4419, 6007}, {4430, 29570}, {4447, 41276}, {4531, 17144}, {4657, 22277}, {4712, 33299}, {4899, 30038}, {5231, 30986}, {5686, 27304}, {5902, 36531}, {7226, 40773}, {7976, 21226}, {9052, 50295}, {9564, 25568}, {9785, 50579}, {10176, 24331}, {10186, 14520}, {10822, 19853}, {13476, 15668}, {16574, 34247}, {16818, 38047}, {16829, 50075}, {17257, 21746}, {17259, 40607}, {17269, 40521}, {17272, 17792}, {17288, 25279}, {17293, 21865}, {17318, 44671}, {17321, 52020}, {17327, 22279}, {17346, 25048}, {17716, 40749}, {18171, 52564}, {18206, 21010}, {18785, 37658}, {20257, 24393}, {20544, 30961}, {20694, 27474}, {20769, 37586}, {20985, 32912}, {24214, 54338}, {25264, 49447}, {26911, 33173}, {31997, 49499}, {32092, 49483}, {34016, 56154}, {37632, 39717}, {37676, 41265}, {39959, 39970}

X(56542) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 984, 5283}, {1, 1757, 16476}, {1, 3294, 1001}, {1, 3751, 20963}, {1, 5223, 21384}, {8, 17794, 76}, {38, 869, 980}, {210, 20358, 4384}, {2176, 3242, 1}


X(56543) = X(2)X(7) ∩ X(100)X(658)

Barycentrics    (a - b)*(a - c)*(a + b - c)*(a - b + c)*(2*a^2 - a*b - b^2 - a*c + 2*b*c - c^2) : :
X(56543) = 3 X[14477] - X[33573], 6 X[14477] - X[45293]

X(56543) lies on the cubic K015 and these lines: {2, 7}, {100, 658}, {109, 9086}, {883, 4998}, {901, 927}, {1088, 9352}, {1155, 37780}, {1323, 36887}, {2400, 51562}, {3321, 6174}, {3658, 7192}, {3676, 23703}, {4089, 24980}, {4427, 4554}, {4620, 5468}, {6068, 52870}, {6183, 9058}, {7045, 23973}, {24582, 39063}, {37139, 37143}, {53151, 55346}

X(56543) = reflection of X(i) in X(j) for these {i,j}: {2, 14477}, {45293, 33573}
X(56543) = isogonal conjugate of X(23351)
X(56543) = complement of X(45293)
X(56543) = anticomplement of X(33573)
X(56543) = isotomic conjugate of the complement of X(45290)
X(56543) = isotomic conjugate of the isogonal conjugate of X(23346)
X(56543) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {14733, 37781}, {24027, 39357}, {36141, 39351}, {37139, 33650}
X(56543) = X(i)-Ceva conjugate of X(j) for these (i,j): {1275, 35110}, {35157, 664}, {37143, 35312}
X(56543) = X(i)-isoconjugate of X(j) for these (i,j): {1, 23351}, {6, 23893}, {55, 35348}, {513, 4845}, {514, 18889}, {522, 34068}, {649, 41798}, {650, 2291}, {657, 34056}, {663, 1156}, {1121, 3063}, {1146, 36141}, {2310, 14733}, {14936, 37139}, {15734, 22108}, {24026, 32728}
X(56543) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 23351}, {9, 23893}, {223, 35348}, {527, 6366}, {5375, 41798}, {6594, 3900}, {10001, 1121}, {35091, 1146}, {35110, 522}, {39026, 4845}, {40629, 11}, {52870, 514}, {52879, 513}, {52880, 521}
X(56543) = cevapoint of X(i) and X(j) for these (i,j): {2, 45290}, {527, 6366}, {1155, 1638}, {3660, 43050}
X(56543) = trilinear pole of line {527, 1323}
X(56543) = crossdifference of every pair of points on line {663, 14936}
X(56543) = barycentric product X(i)*X(j) for these {i,j}: {75, 23890}, {76, 23346}, {100, 37780}, {190, 1323}, {527, 664}, {651, 30806}, {658, 6745}, {668, 6610}, {1055, 4572}, {1155, 4554}, {1275, 6366}, {1332, 38461}, {1638, 4998}, {4569, 6603}, {4620, 30574}, {6510, 18026}, {6516, 37805}, {15730, 35171}, {34085, 35293}, {35110, 35157}
X(56543) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 23893}, {6, 23351}, {57, 35348}, {100, 41798}, {101, 4845}, {109, 2291}, {527, 522}, {651, 1156}, {664, 1121}, {692, 18889}, {934, 34056}, {1055, 663}, {1155, 650}, {1262, 14733}, {1275, 35157}, {1308, 15734}, {1323, 514}, {1415, 34068}, {1638, 11}, {3321, 1638}, {3328, 52334}, {6139, 14936}, {6174, 1639}, {6366, 1146}, {6510, 521}, {6603, 3900}, {6610, 513}, {6647, 3907}, {6745, 3239}, {7045, 37139}, {14392, 3119}, {14413, 2170}, {14414, 34591}, {14477, 14476}, {15730, 3887}, {23346, 6}, {23710, 3064}, {23890, 1}, {23979, 32728}, {24027, 36141}, {24685, 3716}, {30573, 4530}, {30574, 21044}, {30806, 4391}, {33573, 23615}, {35110, 6366}, {37780, 693}, {37805, 44426}, {38461, 17924}, {42762, 35015}, {52334, 5532}, {52891, 17926}
X(56543) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 45293, 33573}, {100, 658, 35312}, {883, 4998, 17780}, {4566, 6516, 17136}, {4620, 17933, 5468}


X(56544) = X(2)X(7) ∩ X(40)X(77)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5 + a^4*c - 2*a^2*b^2*c + b^4*c - 2*a^3*c^2 - 2*a^2*b*c^2 + 6*a*b^2*c^2 - 2*b^3*c^2 - 2*a^2*c^3 - 2*b^2*c^3 + a*c^4 + b*c^4 + c^5) : :

X(56544) lies on the cubic K133 and these lines: {1, 1804}, {2, 7}, {40, 77}, {46, 269}, {75, 7183}, {84, 21279}, {223, 39592}, {255, 21160}, {279, 55015}, {280, 55119}, {347, 7177}, {517, 7053}, {610, 23144}, {651, 2270}, {962, 1440}, {1014, 8829}, {1419, 54420}, {1439, 5709}, {1442, 1697}, {1443, 5128}, {1815, 47850}, {2322, 18206}, {3333, 7190}, {3336, 7271}, {3337, 7274}, {3338, 4328}, {4862, 17437}, {4888, 17700}, {6359, 17753}, {6516, 55391}, {7023, 37567}, {7318, 50443}, {7330, 10400}, {8759, 8809}, {12704, 22464}, {22079, 55288}, {24471, 45729}, {24590, 54425}, {35987, 43744}

X(56544) = isotomic conjugate of the isogonal conjugate of X(52218)
X(56544) = X(309)-Ceva conjugate of X(77)
X(56544) = X(7011)-Dao conjugate of X(40)
X(56544) = cevapoint of X(57) and X(34498)
X(56544) = barycentric product X(i)*X(j) for these {i,j}: {76, 52218}, {348, 1753}
X(56544) = barycentric quotient X(i)/X(j) for these {i,j}: {1753, 281}, {52218, 6}
X(56544) = {X(52419),X(52420)}-harmonic conjugate of X(2)


X(56545) = X(2)X(7) ∩ X(78)X(84)

Barycentrics    a*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 - a^4*c + 4*a^3*b*c + 2*a^2*b^2*c - 4*a*b^3*c - b^4*c - 2*a^3*c^2 + 2*a^2*b*c^2 - 2*a*b^2*c^2 + 2*b^3*c^2 + 2*a^2*c^3 - 4*a*b*c^3 + 2*b^2*c^3 + a*c^4 - b*c^4 - c^5) : :

X(56545) lies on the cubic K154 and these lines: {1, 55400}, {2, 7}, {8, 12705}, {37, 55406}, {40, 3436}, {44, 55405}, {72, 1012}, {78, 84}, {90, 5904}, {92, 3729}, {100, 10860}, {101, 6507}, {189, 346}, {190, 3719}, {191, 16152}, {200, 1709}, {273, 40444}, {345, 54113}, {394, 1422}, {516, 20588}, {518, 30223}, {651, 47848}, {971, 1260}, {1040, 23693}, {1103, 1720}, {1158, 21075}, {1259, 1490}, {1331, 7070}, {1407, 34524}, {1419, 6505}, {1449, 54444}, {1467, 25875}, {1532, 5709}, {1697, 6872}, {1706, 2475}, {1711, 1757}, {1728, 54422}, {1743, 55399}, {1748, 7719}, {1763, 21362}, {1864, 1998}, {2057, 10310}, {2183, 39592}, {2950, 55016}, {2975, 31435}, {3151, 3882}, {3359, 17757}, {3419, 18540}, {3434, 11372}, {3587, 37429}, {3683, 33925}, {3692, 55114}, {3710, 52366}, {3811, 12059}, {3868, 10396}, {3869, 3872}, {3870, 10394}, {3912, 26871}, {3927, 6913}, {4416, 26872}, {4512, 15298}, {4641, 8557}, {4659, 14213}, {4847, 54370}, {4855, 9841}, {5176, 49719}, {5223, 42012}, {5227, 43216}, {5440, 7171}, {5552, 37560}, {5687, 18528}, {5903, 9623}, {6180, 25091}, {6223, 7080}, {6244, 51380}, {6282, 51379}, {6350, 56078}, {6603, 37672}, {6734, 6957}, {6745, 41561}, {6762, 11682}, {6907, 26921}, {6916, 55104}, {7082, 18839}, {7282, 55478}, {7580, 52684}, {7701, 31938}, {7994, 51378}, {8544, 35977}, {8583, 13370}, {10900, 23681}, {11517, 41854}, {12514, 12527}, {14793, 52050}, {15845, 24703}, {16586, 36636}, {17742, 18727}, {17784, 36991}, {18662, 25237}, {20223, 30807}, {20921, 32939}, {21061, 22014}, {24635, 33761}, {25734, 45738}, {27385, 37526}, {27834, 36100}, {30567, 34234}, {32858, 37781}, {34789, 41338}, {35445, 35989}, {37611, 41389}, {38869, 55987}, {38876, 51418}, {40571, 40979}, {41694, 41866}

X(56545) = isogonal conjugate of X(8602)
X(56545) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1167, 7}, {40399, 3434}, {40424, 21285}, {56259, 2893}
X(56545) = X(322)-Ceva conjugate of X(78)
X(56545) = X(i)-isoconjugate of X(j) for these (i,j): {1, 8602}, {6, 10309}, {650, 30239}
X(56545) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 8602}, {9, 10309}, {268, 84}, {3554, 3086}
X(56545) = barycentric product X(i)*X(j) for these {i,j}: {7, 2057}, {75, 10310}, {345, 1767}, {664, 30201}, {7045, 52112}, {18239, 40424}
X(56545) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 10309}, {6, 8602}, {109, 30239}, {1767, 278}, {2057, 8}, {10310, 1}, {18239, 1210}, {30201, 522}, {49171, 3086}, {52112, 24026}
X(56545) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 7308, 31190}, {63, 908, 57}, {63, 3305, 5744}, {144, 3219, 63}, {21362, 21375, 1763}, {30807, 32933, 20223}


X(56546) = X(2)X(7) ∩ X(6)X(109)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^2*b - 2*a*b^2 + b^3 + a^2*c - a*b*c + 2*b^2*c - 2*a*c^2 + 2*b*c^2 + c^3) : :

X(56546) lies on the cubic K280 and these lines: {2, 7}, {6, 109}, {19, 39393}, {37, 3660}, {39, 10571}, {41, 32625}, {55, 572}, {56, 3730}, {65, 4253}, {101, 1470}, {218, 1466}, {221, 9605}, {378, 32674}, {388, 16549}, {573, 1155}, {574, 17966}, {603, 5280}, {604, 2078}, {608, 4284}, {658, 47393}, {664, 7757}, {995, 4559}, {1018, 3476}, {1108, 5173}, {1174, 1436}, {1334, 1420}, {1362, 12837}, {1409, 5105}, {1450, 54981}, {1475, 3340}, {1477, 52013}, {1604, 15804}, {1617, 2256}, {1766, 54408}, {1788, 16552}, {1950, 5037}, {2261, 2272}, {2269, 35445}, {2276, 52635}, {2280, 3256}, {2549, 38945}, {3294, 7288}, {3501, 10106}, {3693, 17625}, {4251, 11509}, {4266, 54377}, {4551, 17756}, {4848, 21384}, {5021, 55101}, {5083, 51058}, {5120, 15830}, {5286, 34030}, {6180, 43063}, {7146, 43047}, {7736, 34029}, {9593, 21147}, {13601, 40133}, {15048, 51421}, {16601, 37566}, {17112, 46830}, {24047, 37579}, {25092, 37523}, {32689, 53911}, {34867, 37583}, {37500, 38864}

X(56546) = X(650)-isoconjugate of X(9086)
X(56546) = crossdifference of every pair of points on line {663, 6366}
X(56546) = barycentric product X(i)*X(j) for these {i,j}: {7, 41276}, {109, 47808}, {664, 9029}
X(56546) = barycentric quotient X(i)/X(j) for these {i,j}: {109, 9086}, {9029, 522}, {41276, 8}, {47808, 35519}
X(56546) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 17754, 8568}, {604, 41423, 2078}, {6203, 6204, 8257}


X(56547) = X(1)X(182) ∩ X(2)X(7)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^2 - a*b + b^2 - a*c + b*c + c^2) : :

X(56547) lies on the cubic K423 and these lines: {1, 182}, {2, 7}, {6, 2114}, {12, 33159}, {19, 47738}, {37, 1429}, {39, 3497}, {44, 24471}, {46, 6210}, {56, 984}, {65, 238}, {77, 54377}, {83, 3405}, {169, 20370}, {241, 7175}, {256, 4192}, {262, 7351}, {404, 44694}, {572, 25065}, {846, 1403}, {986, 37415}, {1054, 41886}, {1376, 4073}, {1404, 1442}, {1420, 7174}, {1431, 17799}, {1466, 23085}, {1469, 1757}, {1726, 2999}, {1743, 16551}, {1756, 3336}, {1762, 4383}, {1766, 37555}, {1788, 50295}, {2161, 17366}, {2329, 25099}, {2347, 7291}, {2957, 5091}, {2975, 25024}, {3056, 18788}, {3212, 17349}, {3220, 22344}, {3329, 7249}, {3340, 3924}, {3589, 41003}, {3600, 27549}, {3717, 9369}, {3883, 4848}, {3961, 41346}, {4032, 17755}, {4850, 21368}, {4901, 37709}, {5222, 40968}, {5228, 7201}, {5252, 33165}, {6180, 20601}, {7083, 37541}, {7131, 7153}, {7176, 27998}, {7295, 11509}, {9310, 26669}, {9441, 12723}, {11031, 19649}, {12588, 29674}, {13329, 32118}, {16470, 52423}, {16547, 53391}, {16561, 17262}, {16603, 17289}, {16609, 17277}, {16822, 21384}, {17259, 50198}, {17280, 17741}, {17779, 21381}, {18206, 27958}, {20964, 51329}, {21061, 27697}, {21364, 56418}, {21367, 32911}, {21392, 43051}, {22343, 41350}, {23693, 24476}, {24248, 36670}, {24266, 25252}, {24727, 36215}, {24914, 32784}, {32846, 39897}, {32913, 51902}, {33076, 40663}, {37247, 37583}, {37650, 54324}, {37738, 49534}, {41687, 49506}

X(56547) = X(7249)-Ceva conjugate of X(1)
X(56547) = X(i)-isoconjugate of X(j) for these (i,j): {6, 43749}, {9, 7194}, {41, 40038}, {55, 39724}, {2319, 3502}
X(56547) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 43749}, {223, 39724}, {478, 7194}, {2329, 7081}, {3160, 40038}
X(56547) = barycentric product X(i)*X(j) for these {i,j}: {7, 3961}, {56, 33938}, {57, 17280}, {65, 33954}, {75, 41346}, {1432, 17741}, {3212, 3494}, {4559, 18077}, {30545, 34249}
X(56547) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 43749}, {7, 40038}, {56, 7194}, {57, 39724}, {1403, 3502}, {3494, 7155}, {3961, 8}, {7194, 55014}, {17280, 312}, {17741, 17787}, {33938, 3596}, {33954, 314}, {34249, 2319}, {41346, 1}
X(56547) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 57, 1423}, {9, 36540, 17257}, {1445, 2285, 57}, {6203, 6204, 17754}, {26699, 27003, 28402}


X(56548) = X(2)X(7) ∩ X(109)X(230)

Barycentrics    (a + b - c)*(a - b + c)*(a^5 - 2*a^4*b + a^2*b^3 + a*b^4 - b^5 - 2*a^4*c + a^3*b*c - b^4*c - 2*a*b^2*c^2 + 2*b^3*c^2 + a^2*c^3 + 2*b^2*c^3 + a*c^4 - b*c^4 - c^5) : :

X(56548) lies on the cubic K492 and these lines: {2, 7}, {98, 32689}, {109, 230}, {115, 17966}, {403, 32674}, {664, 14568}, {1901, 38864}, {3064, 17985}, {3767, 10571}, {4551, 17737}, {4559, 17734}, {5134, 5172}, {7735, 34029}, {24045, 37579}, {43291, 51421}

X(56548) = crossdifference of every pair of points on line {663, 22361}
X(56548) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {115, 17966, 38945}


X(56549) = X(2)X(7) ∩ X(25)X(109)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^4*b - 2*a^2*b^3 + b^5 + a^4*c - a^3*b*c - a^2*b^2*c + a*b^3*c - a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 - 2*a^2*c^3 + a*b*c^3 - b^2*c^3 + c^5) : :

X(56549) lies on the cubic K555 and these lines: {1, 40945}, {2, 7}, {3, 34956}, {6, 7011}, {25, 109}, {41, 2003}, {46, 208}, {56, 580}, {58, 56414}, {101, 3173}, {108, 1754}, {196, 41342}, {198, 222}, {221, 13737}, {223, 2183}, {228, 45963}, {278, 1020}, {389, 20764}, {573, 1214}, {581, 19366}, {653, 2052}, {991, 20122}, {1073, 15629}, {1407, 23980}, {1412, 53995}, {1425, 10571}, {1452, 1782}, {1715, 7952}, {1736, 1779}, {1771, 7412}, {1804, 55400}, {1813, 1993}, {2245, 18592}, {2270, 47848}, {2360, 19349}, {3190, 23067}, {3561, 17928}, {4266, 45126}, {7114, 54301}, {8808, 10445}, {8953, 54462}, {9306, 17975}, {11347, 34032}, {11349, 34035}, {11429, 53847}, {13567, 51368}, {14557, 43058}, {19542, 51365}, {34029, 37367}, {34030, 37384}, {34042, 37269}, {34048, 46009}, {36049, 55117}

X(56549) = X(i)-Ceva conjugate of X(j) for these (i,j): {264, 10571}, {40444, 223}
X(56549) = X(i)-isoconjugate of X(j) for these (i,j): {650, 41906}, {1172, 28788}
X(56549) = X(3064)-Dao conjugate of X(21666)
X(56549) = barycentric product X(226)*X(56001)
X(56549) = barycentric quotient X(i)/X(j) for these {i,j}: {73, 28788}, {109, 41906}, {14055, 34831}, {20620, 21666}, {56001, 333}
X(56549) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 27287, 226}, {1020, 1730, 278}, {1425, 13738, 10571}, {2183, 52373, 223}, {6203, 6204, 1741}, {19366, 22341, 581}


X(56550) = X(2)X(7) ∩ X(3)X(102)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^4*b - 2*a^2*b^3 + b^5 + a^4*c - a^3*b*c - a^2*b^2*c + a*b^3*c - a^2*b*c^2 - 2*a*b^2*c^2 + 3*b^3*c^2 - 2*a^2*c^3 + a*b*c^3 + 3*b^2*c^3 + c^5) : :

X(56550) lies on the cubic K657 and these lines: {2, 7}, {3, 102}, {141, 51368}, {182, 17975}, {222, 572}, {223, 10856}, {278, 1764}, {573, 1465}, {653, 52147}, {1214, 46330}, {1407, 36743}, {1813, 15066}, {3561, 7503}, {4266, 56418}, {7011, 17811}, {11793, 20764}, {15509, 34048}, {16435, 34032}

X(56550) = X(i)-isoconjugate of X(j) for these (i,j): {650, 9056}, {14304, 32683}
X(56550) = barycentric product X(i)*X(j) for these {i,j}: {307, 7436}, {664, 8999}
X(56550) = barycentric quotient X(i)/X(j) for these {i,j}: {109, 9056}, {7436, 29}, {8999, 522}, {32643, 32683}, {36040, 36088}
X(56550) = {X(57),X(27626)}-harmonic conjugate of X(3911)


X(56551) = X(2)X(7) ∩ X(153)X(516)

Barycentrics    a*(a^4 - 2*a^3*b + 2*a*b^3 - b^4 - 2*a^3*c + 11*a^2*b*c - 6*a*b^2*c - 3*b^3*c - 6*a*b*c^2 + 8*b^2*c^2 + 2*a*c^3 - 3*b*c^3 - c^4) : :
X(56551) = 4 X[9] - 3 X[37787], 2 X[3218] - 3 X[37787], 4 X[3911] - 5 X[18230], 3 X[6172] - 2 X[50573], 4 X[214] - 3 X[18450]

X(56551) lies on the cubic K716 and these lines: {2, 7}, {153, 516}, {190, 30806}, {214, 18450}, {518, 1156}, {651, 6603}, {2801, 4867}, {3062, 56114}, {3689, 15726}, {3895, 30332}, {5011, 21362}, {5057, 5856}, {5853, 20085}, {6068, 17768}, {7671, 42871}, {11372, 28234}, {12736, 41700}, {16112, 34784}, {17092, 34524}, {35258, 55920}, {46917, 55922}

X(56551) = midpoint of X(144) and X(17484)
X(56551) = reflection of X(i) in X(j) for these {i,j}: {7, 908}, {3218, 9}
X(56551) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 37787, 37789}, {9, 3218, 37787}, {8545, 36973, 6172}


X(56552) = X(2)X(7) ∩ X(284)X(286)

Barycentrics    a^8 - a^7*b - 2*a^6*b^2 + 2*a^5*b^3 + a^4*b^4 - a^3*b^5 - a^7*c + a^5*b^2*c + a^4*b^3*c + a^3*b^4*c - 2*a^2*b^5*c - a*b^6*c + b^7*c - 2*a^6*c^2 + a^5*b*c^2 + 4*a^4*b^2*c^2 - a*b^5*c^2 - 2*b^6*c^2 + 2*a^5*c^3 + a^4*b*c^3 + 4*a^2*b^3*c^3 + 2*a*b^4*c^3 - b^5*c^3 + a^4*c^4 + a^3*b*c^4 + 2*a*b^3*c^4 + 4*b^4*c^4 - a^3*c^5 - 2*a^2*b*c^5 - a*b^2*c^5 - b^3*c^5 - a*b*c^6 - 2*b^2*c^6 + b*c^7 : :

X(56552) lies on the cubic K906 and these lines: {2, 7}, {3, 8680}, {85, 6518}, {284, 286}, {946, 55105}, {1352, 9028}, {1441, 2289}, {4224, 24321}, {6675, 25363}, {6824, 24316}, {6841, 24682}, {6851, 24683}, {6861, 24317}, {34176, 34830}


X(56553) = X(2)X(7) ∩ X(22)X(109)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^2 - b^2 - c^2)*(a^2*b - b^3 + a^2*c - a*b*c - c^3) : :

X(56553) lies on the cubic K935 and these lines: {2, 7}, {3, 1425}, {22, 109}, {36, 255}, {46, 1074}, {56, 283}, {77, 22097}, {184, 17975}, {221, 37250}, {222, 1790}, {343, 51368}, {394, 1813}, {573, 17080}, {653, 15466}, {1014, 23602}, {1020, 1764}, {1458, 16778}, {1730, 37800}, {1817, 34035}, {1835, 37591}, {3576, 44075}, {4225, 10571}, {4417, 40626}, {5425, 18477}, {5562, 20764}, {5709, 37414}, {5902, 44706}, {7125, 22128}, {11350, 34042}, {12259, 24467}, {14552, 55119}, {22464, 24310}, {23114, 52610}, {23853, 53548}

X(56553) = isotomic conjugate of the polar conjugate of X(10571)
X(56553) = X(i)-Ceva conjugate of X(j) for these (i,j): {1262, 1813}, {17206, 77}
X(56553) = X(i)-isoconjugate of X(j) for these (i,j): {19, 10570}, {33, 13478}, {281, 2217}, {607, 2995}, {650, 26704}, {1172, 15232}, {1824, 19607}, {3064, 36050}, {4183, 40160}, {6591, 56112}, {14304, 32700}, {18344, 44765}, {32653, 44426}, {54951, 55206}
X(56553) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 10570}, {65, 1826}, {124, 3064}, {6332, 23978}, {6589, 21666}
X(56553) = barycentric product X(i)*X(j) for these {i,j}: {56, 51612}, {63, 17080}, {69, 10571}, {77, 3869}, {85, 22134}, {222, 4417}, {307, 4225}, {348, 573}, {1262, 40626}, {1275, 47411}, {1804, 17555}, {3185, 7182}, {3192, 7055}, {4573, 52310}, {6516, 21189}, {7045, 34588}, {17206, 40590}
X(56553) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 10570}, {73, 15232}, {77, 2995}, {109, 26704}, {124, 21666}, {222, 13478}, {573, 281}, {603, 2217}, {1331, 56112}, {1790, 19607}, {1813, 44765}, {3185, 33}, {3192, 1857}, {3869, 318}, {4225, 29}, {4417, 7017}, {6589, 3064}, {10571, 4}, {17080, 92}, {19367, 5125}, {21189, 44426}, {22097, 19608}, {22134, 9}, {22276, 53008}, {32643, 32700}, {32660, 32653}, {34588, 24026}, {36040, 36108}, {36059, 36050}, {37836, 40950}, {40590, 1826}, {40626, 23978}, {47411, 1146}, {51612, 3596}, {52310, 3700}, {52373, 40160}
X(56553) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {394, 7011, 1813}, {4225, 19367, 10571}, {22097, 52373, 77}


X(56554) = X(1)X(30547) ∩ X(2)X(7)

Barycentrics    (a + b - c)*(a - b + c)*(a^2*b^2 + a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 + b^2*c^2) : :

X(56554) lies on the cubic K998 and these lines: {1, 30547}, {2, 7}, {31, 51935}, {38, 7249}, {85, 7211}, {145, 20537}, {263, 54128}, {279, 56357}, {561, 3212}, {651, 3051}, {1401, 4554}, {1431, 1965}, {1432, 21226}, {1463, 7196}, {1469, 17149}, {1613, 6180}, {3009, 7176}, {3112, 4388}, {3503, 26752}, {3674, 40790}, {7224, 20021}, {17083, 17087}, {18135, 56312}, {24280, 36861}, {24471, 41318}, {25049, 33142}

X(56554) = X(56358)-anticomplementary conjugate of X(30660)
X(56554) = X(1431)-Ceva conjugate of X(3212)
X(56554) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3495}, {41, 39746}, {2194, 43687}, {39937, 51858}
X(56554) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 3495}, {1214, 43687}, {3160, 39746}
X(56554) = barycentric product X(i)*X(j) for these {i,j}: {7, 26752}, {75, 3503}, {7249, 39929}, {18033, 51985}
X(56554) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3495}, {7, 39746}, {226, 43687}, {1447, 39937}, {3503, 1}, {26752, 8}, {39929, 7081}, {51323, 2330}, {51917, 2329}, {51985, 7077}


X(56555) = X(2)X(7) ∩ X(190)X(325)

Barycentrics    a^4 - a^3*b + 2*a^2*b^2 - a*b^3 - b^4 - a^3*c + a^2*b*c - a*b^2*c + b^3*c + 2*a^2*c^2 - a*b*c^2 - a*c^3 + b*c^3 - c^4 : :

X(56555) lies on the cubic K1002 and these lines: {2, 7}, {4, 25242}, {8, 7985}, {72, 7379}, {183, 17347}, {190, 325}, {192, 497}, {210, 1654}, {346, 37668}, {385, 4831}, {388, 27340}, {651, 20741}, {1018, 5195}, {1699, 3705}, {1757, 5988}, {1909, 30082}, {1916, 5992}, {1959, 3930}, {2329, 17084}, {2345, 20541}, {2475, 25244}, {2551, 27288}, {3097, 24248}, {3177, 3436}, {3263, 3975}, {3314, 17280}, {3329, 17302}, {3475, 17379}, {3501, 33867}, {3661, 51304}, {3672, 37665}, {3693, 4872}, {3732, 17757}, {3815, 17334}, {3925, 11683}, {3927, 7380}, {3943, 50771}, {4329, 27544}, {4360, 41624}, {4389, 11174}, {4416, 7081}, {4419, 7736}, {4440, 33891}, {4468, 4778}, {4511, 20096}, {4518, 4645}, {4568, 16086}, {4741, 16990}, {4911, 25066}, {5046, 25237}, {5176, 39351}, {5211, 17036}, {5942, 10327}, {6999, 25083}, {7229, 21241}, {7291, 27526}, {7407, 54398}, {7788, 17233}, {7837, 41711}, {7868, 17354}, {8878, 21217}, {9300, 17246}, {9311, 32049}, {9766, 17262}, {10513, 29616}, {11163, 49748}, {11681, 16991}, {12527, 16830}, {14732, 20344}, {14930, 17014}, {16549, 33865}, {17181, 17742}, {17332, 26244}, {17363, 20056}, {17787, 30660}, {20234, 31130}, {20244, 26839}, {20553, 42720}, {20556, 39350}, {24703, 51052}, {25261, 37162}, {25568, 51190}, {27129, 55337}, {29586, 52134}, {29641, 45738}, {30695, 39570}, {30941, 36800}, {32850, 40883}, {37456, 45744}, {40236, 44694}, {41352, 52089}

X(56555) = anticomplement of X(1447)
X(56555) = anticomplement of the isogonal conjugate of X(7077)
X(56555) = anticomplement of the isotomic conjugate of X(4518)
X(56555) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {8, 20554}, {9, 20345}, {41, 33888}, {55, 17794}, {291, 3434}, {292, 7}, {295, 52365}, {334, 21280}, {335, 21285}, {660, 21302}, {741, 3873}, {813, 693}, {1808, 20243}, {1911, 145}, {1922, 3210}, {1967, 29840}, {2175, 30667}, {2196, 347}, {2311, 75}, {2329, 25332}, {3063, 39362}, {4518, 6327}, {4584, 4374}, {4876, 69}, {5378, 3888}, {7077, 8}, {18265, 192}, {18268, 3875}, {33676, 20556}, {34067, 522}, {36800, 17137}, {36801, 21301}, {37128, 20244}, {40730, 52164}, {40848, 20559}, {41531, 20350}, {51858, 2}, {51973, 20537}, {56154, 17135}
X(56555) = X(i)-Ceva conjugate of X(j) for these (i,j): {4518, 2}, {4645, 6542}
X(56555) = X(6)-isoconjugate of X(43747)
X(56555) = X(9)-Dao conjugate of X(43747)
X(56555) = barycentric product X(i)*X(j) for these {i,j}: {8, 41352}, {75, 18788}, {312, 52089}, {334, 8932}, {3596, 51871}
X(56555) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 43747}, {8848, 34252}, {8932, 238}, {18788, 1}, {41352, 7}, {51871, 56}, {52089, 57}
X(56555) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20059, 3598}, {9, 7179, 2}, {192, 7774, 29840}, {3693, 4872, 20533}, {7779, 33889, 6542}, {30740, 40127, 2}


X(56556) = X(2)X(7) ∩ X(31)X(184)

Barycentrics    a^3*(a + b - c)*(a - b + c)*(b^2 + b*c + c^2) : :

X(56556) lies on the cubic K1016 and these lines: {2, 7}, {6, 893}, {31, 184}, {38, 2171}, {41, 22345}, {46, 20606}, {56, 292}, {65, 1107}, {87, 1707}, {109, 743}, {194, 3212}, {213, 41526}, {218, 20805}, {239, 19591}, {573, 17596}, {664, 43095}, {869, 3116}, {870, 41245}, {1014, 2106}, {1046, 4253}, {1284, 24512}, {1404, 21764}, {1405, 2225}, {1424, 7176}, {1469, 2276}, {1475, 9575}, {1500, 50626}, {1967, 14251}, {2179, 16502}, {2269, 17594}, {2295, 28386}, {2311, 7132}, {4020, 54416}, {5021, 40978}, {5283, 45208}, {7146, 25429}, {8850, 20331}, {11031, 35612}, {16514, 52655}, {16604, 28389}, {16780, 23443}, {16878, 30651}, {17452, 35645}, {17735, 41346}, {20594, 31785}, {20752, 51949}, {23640, 54418}, {29956, 46386}, {39258, 42316}

X(56556) = isogonal conjugate of X(52652)
X(56556) = isogonal conjugate of the isotomic conjugate of X(7146)
X(56556) = X(1469)-Ceva conjugate of X(869)
X(56556) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52652}, {2, 52133}, {8, 14621}, {9, 870}, {41, 871}, {75, 2344}, {312, 985}, {314, 40747}, {333, 40718}, {522, 4586}, {650, 789}, {663, 37133}, {825, 35519}, {1492, 4391}, {3056, 3114}, {3061, 3113}, {3063, 46132}, {3271, 5388}, {3407, 3705}, {3596, 40746}, {3699, 4817}, {3716, 37207}, {4076, 43266}, {4384, 40739}, {4435, 41072}, {4441, 40757}, {4451, 40745}, {4560, 4613}, {4858, 5384}, {7081, 40738}, {7155, 52136}, {17787, 40763}, {20665, 46281}, {23597, 36801}, {30660, 40771}
X(56556) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 52652}, {206, 2344}, {478, 870}, {3160, 871}, {3789, 312}, {10001, 46132}, {19584, 3596}, {27481, 28659}, {32664, 52133}, {38995, 4391}, {52658, 3061}, {55049, 522}
X(56556) = crossdifference of every pair of points on line {663, 3716}
X(56556) = barycentric product X(i)*X(j) for these {i,j}: {1, 1469}, {6, 7146}, {7, 869}, {31, 7179}, {34, 3781}, {55, 7204}, {56, 984}, {57, 2276}, {59, 4475}, {65, 3736}, {85, 40728}, {109, 1491}, {269, 4517}, {307, 46503}, {604, 3661}, {651, 3250}, {664, 788}, {824, 1415}, {985, 12837}, {1025, 29956}, {1042, 3786}, {1106, 3790}, {1333, 16603}, {1397, 33931}, {1400, 40773}, {1402, 30966}, {1403, 45782}, {1408, 3773}, {1409, 31909}, {1411, 3792}, {1417, 4439}, {1423, 52655}, {1428, 3864}, {1429, 3862}, {1431, 40790}, {1434, 3774}, {1458, 52029}, {2263, 45974}, {2279, 40784}, {3094, 7132}, {3116, 56358}, {3799, 43924}, {3805, 29055}, {4481, 4559}, {4554, 46386}, {4572, 8630}, {6063, 18900}, {18784, 40797}, {30545, 40736}, {37137, 45882}, {41526, 51837}
X(56556) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 52652}, {7, 871}, {31, 52133}, {32, 2344}, {56, 870}, {109, 789}, {604, 14621}, {651, 37133}, {664, 46132}, {788, 522}, {869, 8}, {984, 3596}, {1397, 985}, {1402, 40718}, {1415, 4586}, {1469, 75}, {1491, 35519}, {2276, 312}, {3116, 3705}, {3117, 3061}, {3250, 4391}, {3661, 28659}, {3736, 314}, {3774, 2321}, {3781, 3718}, {3783, 4087}, {4475, 34387}, {4517, 341}, {4554, 52611}, {4564, 5388}, {7132, 3114}, {7146, 76}, {7179, 561}, {7204, 6063}, {8630, 663}, {12837, 33931}, {14436, 1639}, {16514, 3975}, {16603, 27801}, {18899, 20665}, {18900, 55}, {30966, 40072}, {33931, 40363}, {40728, 9}, {40732, 3886}, {40736, 2319}, {40773, 28660}, {40784, 21615}, {41526, 52136}, {46386, 650}, {46503, 29}, {52655, 27424}, {56358, 46281}
X(56556) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 1755, 20665}, {57, 1423, 1447}, {672, 53129, 9}, {1402, 52635, 604}, {1475, 23544, 9575}, {2179, 16502, 23535}, {6203, 6204, 21371}, {53063, 53064, 7122}


X(56557) = X(2)X(7) ∩ X(6)X(2196)

Barycentrics    a^3*(b^2 - b*c + c^2)*(a^2*b - a*b^2 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(56557) lies on the cubic K1016 and these lines: {2, 7}, {6, 2196}, {32, 2209}, {194, 8866}, {813, 983}, {869, 9288}, {3117, 7032}, {3501, 14199}, {3778, 20665}, {19587, 20964}, {20706, 21330}

X(56557) = isogonal conjugate of the isotomic conjugate of X(52657)
X(56557) = X(6)-Ceva conjugate of X(7032)
X(56557) = X(i)-isoconjugate of X(j) for these (i,j): {3500, 7033}, {17743, 54128}
X(56557) = X(982)-Dao conjugate of X(76)
X(56557) = crossdifference of every pair of points on line {663, 20906}
X(56557) = barycentric product X(i)*X(j) for these {i,j}: {6, 52657}, {31, 51840}, {982, 34247}, {2275, 3501}, {3662, 51949}, {3778, 13588}, {3888, 23655}, {7032, 32937}
X(56557) = barycentric quotient X(i)/X(j) for these {i,j}: {7032, 54128}, {32937, 7034}, {34247, 7033}, {51840, 561}, {51949, 17743}, {52657, 76}


X(56558) = X(2)X(7) ∩ X(171)X(172)

Barycentrics    a*(a - b - c)*(a^2 + b*c)*(b^2 - b*c + c^2) : :

X(56558) lies on the cubic K1036 and these lines: {2, 7}, {8, 2319}, {10, 8924}, {171, 172}, {219, 1613}, {220, 21001}, {237, 5285}, {281, 51913}, {291, 694}, {333, 2311}, {345, 7075}, {497, 39250}, {649, 32948}, {982, 2275}, {2225, 33119}, {2323, 3051}, {3220, 7467}, {3231, 52405}, {3501, 20368}, {3690, 47638}, {3705, 20665}, {3784, 52657}, {3794, 20684}, {3955, 36213}, {4876, 20359}, {7085, 20885}, {7184, 18905}, {7186, 7239}, {11328, 37581}, {16557, 24248}, {20528, 30547}, {21369, 33140}, {21387, 33137}, {26921, 37466}, {29846, 46148}, {32851, 40972}, {33950, 55014}

X(56558) = X(i)-complementary conjugate of X(j) for these (i,j): {3495, 141}, {39746, 17046}
X(56558) = X(i)-Ceva conjugate of X(j) for these (i,j): {1220, 7032}, {7187, 7184}
X(56558) = X(i)-isoconjugate of X(j) for these (i,j): {256, 7132}, {893, 56358}, {983, 1432}, {1402, 40835}, {1431, 17743}
X(56558) = X(i)-Dao conjugate of X(j) for these (i,j): {17792, 45240}, {19564, 226}, {40597, 56358}, {40605, 40835}, {41886, 257}, {52657, 7249}
X(56558) = barycentric product X(i)*X(j) for these {i,j}: {8, 7184}, {9, 7187}, {171, 3705}, {333, 18905}, {894, 3061}, {982, 7081}, {1215, 3794}, {1909, 3056}, {1920, 20665}, {2275, 17787}, {2329, 3662}, {2330, 33930}, {3287, 33946}, {3721, 27958}, {3810, 4579}, {3888, 3907}, {4073, 7176}, {4374, 40499}, {4451, 7188}, {8033, 20684}, {39936, 52657}
X(56558) = barycentric quotient X(i)/X(j) for these {i,j}: {171, 56358}, {172, 7132}, {333, 40835}, {982, 7249}, {2275, 1432}, {2329, 17743}, {2330, 983}, {3056, 256}, {3061, 257}, {3705, 7018}, {3794, 32010}, {4073, 4451}, {7032, 1431}, {7081, 7033}, {7184, 7}, {7187, 85}, {7188, 7176}, {12836, 3865}, {18905, 226}, {20665, 893}, {20684, 52651}, {20753, 7015}, {27958, 38810}, {40499, 3903}
X(56558) = {X(3509),X(17754)}-harmonic conjugate of X(1400)


X(56559) = X(2)X(7) ∩ X(12)X(50197)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^2*b - b^3 + a^2*c + a*b*c - c^3) : :

X(56559) lies on the cubic K1285 and these lines: {2, 7}, {12, 50197}, {27, 28786}, {65, 4463}, {71, 25361}, {72, 25015}, {73, 3152}, {78, 1448}, {85, 32782}, {92, 48381}, {145, 5930}, {223, 31034}, {225, 11851}, {241, 18139}, {273, 39700}, {278, 3187}, {279, 52565}, {306, 3668}, {312, 18742}, {321, 349}, {324, 48380}, {651, 1396}, {912, 37381}, {948, 5739}, {1211, 52023}, {1214, 41804}, {1257, 7270}, {1427, 3936}, {1441, 26942}, {1848, 17220}, {1943, 18625}, {1999, 18632}, {2263, 6327}, {2287, 33066}, {3188, 52025}, {3782, 17863}, {3868, 5125}, {4080, 8808}, {4101, 20007}, {4202, 37544}, {4331, 32929}, {4334, 33069}, {4340, 5703}, {4415, 18635}, {5018, 32949}, {5173, 29835}, {5228, 32774}, {5307, 21270}, {5333, 17095}, {6180, 32859}, {6604, 19785}, {7196, 30965}, {8024, 40704}, {8804, 31045}, {13567, 30807}, {15936, 37595}, {17011, 17086}, {17075, 45126}, {17147, 22464}, {18134, 27396}, {18655, 50697}, {18750, 26540}, {19645, 41004}, {19788, 33146}, {20305, 53036}, {20367, 40677}, {25239, 41839}, {29833, 37543}, {31047, 56382}, {33151, 40702}, {34050, 37639}, {40149, 43675}, {40160, 44765}

X(56559) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {951, 4329}, {2983, 52366}, {40431, 20245}, {40445, 21286}
X(56559) = X(331)-Ceva conjugate of X(1441)
X(56559) = X(i)-isoconjugate of X(j) for these (i,j): {41, 272}, {163, 23289}, {212, 40574}, {284, 2218}, {1333, 56146}, {1751, 2194}, {2150, 41506}
X(56559) = X(i)-Dao conjugate of X(j) for these (i,j): {37, 56146}, {72, 219}, {115, 23289}, {1214, 1751}, {3160, 272}, {40590, 2218}, {40837, 40574}, {56325, 41506}
X(56559) = barycentric product X(i)*X(j) for these {i,j}: {85, 22021}, {209, 6063}, {226, 18134}, {307, 5125}, {313, 4306}, {331, 51574}, {349, 579}, {668, 51658}, {1441, 3868}, {1446, 27396}, {2198, 20567}, {4566, 20294}
X(56559) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 272}, {10, 56146}, {12, 41506}, {65, 2218}, {209, 55}, {226, 1751}, {278, 40574}, {349, 40011}, {523, 23289}, {579, 284}, {1441, 2997}, {2198, 41}, {2352, 2194}, {3190, 2328}, {3868, 21}, {4306, 58}, {4566, 1305}, {5125, 29}, {6356, 28786}, {8676, 21789}, {18134, 333}, {19367, 4225}, {20294, 7253}, {22021, 9}, {23800, 3737}, {26942, 40161}, {27396, 2287}, {41320, 2332}, {43060, 7252}, {51574, 219}, {51658, 513}, {56000, 7054}
X(56559) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 40905, 63}, {226, 307, 2}, {18634, 27413, 2}, {18634, 28609, 27413}, {26942, 55010, 1441}


X(56560) = X(2)X(7) ∩ X(23)X(109)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^4*b - 2*a^2*b^3 + b^5 + a^4*c - a^3*b*c - a^2*b^2*c + a*b^3*c - a^2*b*c^2 + a*b^2*c^2 - 2*a^2*c^3 + a*b*c^3 + c^5) : :

X(56560) lies on the cubic K1303 and these lines: {2, 7}, {23, 109}, {110, 17975}, {323, 1813}, {653, 46106}, {1020, 37798}, {1262, 17966}, {1425, 4225}, {1993, 7011}, {3561, 22467}, {3580, 51368}, {5889, 20764}, {9637, 53847}, {13738, 19367}, {42289, 46923}, {46487, 51365}

X(56560) = X(650)-isoconjugate of X(2689)
X(56560) = barycentric product X(i)*X(j) for these {i,j}: {307, 2075}, {664, 2773}
X(56560) = barycentric quotient X(i)/X(j) for these {i,j}: {109, 2689}, {2075, 29}, {2773, 522}, {10571, 39992}


X(56561) = X(2)X(3) ∩ X(86)X(1691)

Barycentrics    a^6 - a^5*b - a^2*b^4 - a*b^5 - a^5*c - a^4*b*c - a*b^4*c - b^5*c - 2*a^2*b^2*c^2 - a^2*c^4 - a*b*c^4 - a*c^5 - b*c^5 : :

X(56561) lies on these lines: {2, 3}, {86, 1691}, {325, 18755}, {385, 17206}, {1654, 6393}, {2271, 7774}, {3094, 17277}, {5021, 16989}, {5976, 6626}, {7792, 33863}, {10352, 54388}, {17379, 40825}, {17798, 26686}

X(56561) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 21993}, {2, 16060, 22360}, {2, 17689, 19312}, {16060, 21554, 2}


X(56562) = X(2)X(3) ∩ X(325)X(5021)

Barycentrics    a^6 + 2*a^5*b - a^2*b^4 + 2*a*b^5 + 2*a^5*c + 2*a^4*b*c + 2*a*b^4*c + 2*b^5*c - 2*a^2*b^2*c^2 - a^2*c^4 + 2*a*b*c^4 + 2*a*c^5 + 2*b*c^5 : :

X(56562) lies on these lines: {2, 3}, {325, 5021}, {1691, 17259}, {2271, 7792}, {3094, 15668}, {4648, 6393}, {7778, 33863}, {17277, 40825}, {30104, 37576}

X(56562) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21993, 3}


X(56563) = X(2)X(3) ∩ X(6)X(51370)

Barycentrics    a^6 - 2*a^5*b - a^2*b^4 - 2*a*b^5 - 2*a^5*c - 2*a^4*b*c - 2*a*b^4*c - 2*b^5*c - 2*a^2*b^2*c^2 - a^2*c^4 - 2*a*b*c^4 - 2*a*c^5 - 2*b*c^5 : :

X(56563) lies on these lines: {2, 3}, {6, 51370}, {86, 40825}, {325, 2271}, {966, 6393}, {1691, 15668}, {3094, 17259}, {5021, 7792}, {7735, 17206}, {7778, 18755}, {30103, 37576}

X(56563) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 22267, 6998}


X(56564) = X(2)X(37) ∩ X(72)X(2895)

Barycentrics    b*c*(b + c)*(a*b^2 + b^3 + a*b*c + b^2*c + a*c^2 + b*c^2 + c^3) : :

X(56564) lies on the cubic K1285 and these lines: {2, 37}, {72, 2895}, {97, 56189}, {313, 20896}, {894, 56047}, {1089, 3822}, {1228, 27801}, {1230, 20234}, {1930, 17184}, {2901, 5262}, {3187, 16470}, {4463, 33091}, {5280, 26223}, {5310, 32929}, {5695, 20988}, {5905, 54433}, {7283, 17521}, {17744, 56082}, {18697, 52369}, {19857, 42031}, {20235, 31046}, {22021, 32858}, {32782, 56541}

X(56564) = isotomic conjugate of the isogonal conjugate of X(56541)
X(56564) = X(1333)-isoconjugate of X(54336)
X(56564) = X(37)-Dao conjugate of X(54336)
X(56564) = barycentric product X(i)*X(j) for these {i,j}: {76, 56541}, {321, 32782}, {4261, 27801}, {5142, 20336}
X(56564) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 54336}, {4261, 1333}, {5142, 28}, {27808, 839}, {32782, 81}, {56541, 6}
X(56564) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {321, 20336, 2}, {321, 42707, 3995}, {321, 42710, 37}, {321, 42715, 31025}


X(56565) = X(6)X(13) ∩ X(69)X(110)

Barycentrics    4*a^8 - 2*a^6*b^2 - 3*a^4*b^4 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 2*a^4*b^2*c^2 - 3*a^4*c^4 + 2*b^4*c^4 + 2*a^2*c^6 - c^8 : :
X(56565) = 2 X[6] - 3 X[15303], X[6] - 3 X[34319], 3 X[113] - 2 X[3818], X[265] - 3 X[45016], 3 X[399] + X[39899], X[3818] - 3 X[19140], 3 X[5655] - X[18440], 3 X[67] - 5 X[3763], X[67] - 3 X[52697], 5 X[3763] - 6 X[5972], 5 X[3763] + 3 X[25336], 5 X[3763] - 9 X[52697], 2 X[5972] + X[25336], 2 X[5972] - 3 X[52697], and many others

X(56565) lies on the cubic K442 and these lines: {6, 13}, {67, 3763}, {69, 110}, {125, 3589}, {141, 5642}, {146, 5596}, {182, 16003}, {193, 9143}, {511, 30714}, {524, 1495}, {526, 22105}, {541, 46264}, {690, 14928}, {754, 32224}, {895, 14683}, {1112, 1843}, {1351, 23236}, {1352, 16534}, {1503, 1531}, {1974, 12828}, {2393, 46818}, {2777, 11820}, {2781, 3313}, {2930, 6144}, {3448, 15118}, {3564, 5609}, {3618, 9140}, {3620, 13169}, {4550, 11179}, {5085, 20417}, {5157, 6699}, {5467, 14981}, {5622, 12317}, {5648, 40341}, {5663, 48906}, {6697, 19122}, {6698, 51128}, {6776, 14094}, {8550, 15030}, {8972, 13643}, {8998, 49264}, {9003, 14420}, {9027, 32220}, {9033, 32279}, {9969, 12824}, {9970, 17702}, {10272, 13562}, {10510, 29012}, {10519, 15034}, {10752, 12383}, {10990, 44882}, {10991, 46127}, {11003, 16511}, {11063, 35463}, {11511, 52098}, {11557, 21852}, {11693, 50977}, {12017, 20126}, {12121, 48679}, {12295, 32271}, {12827, 41593}, {13289, 37485}, {13762, 13941}, {13990, 49265}, {14561, 36253}, {14643, 32306}, {14653, 15655}, {14915, 54215}, {15035, 32247}, {15054, 25406}, {15140, 15321}, {15342, 45018}, {15448, 47558}, {16111, 35257}, {16491, 50921}, {16510, 40914}, {17847, 32264}, {18374, 32223}, {19136, 37644}, {19153, 37638}, {19161, 25711}, {20379, 38110}, {24206, 38795}, {25335, 32300}, {25489, 32455}, {32127, 47549}, {32217, 41586}, {32274, 36518}, {32275, 43150}, {32278, 49688}, {32289, 46683}, {32290, 46687}, {32298, 49679}, {34146, 50434}, {35265, 41721}, {35266, 47449}, {35282, 35357}, {36990, 38791}, {38793, 49116}, {41724, 52238}, {42663, 55121}, {44569, 47454}, {44665, 47571}, {45311, 47355}, {47569, 51393}

X(56565) = midpoint of X(i) and X(j) for these {i,j}: {67, 25336}, {110, 11061}, {895, 14683}, {1351, 23236}, {5095, 24981}, {6776, 14094}, {9143, 41720}, {10752, 12383}, {12121, 48679}, {17847, 32264}, {32233, 51941}
X(56565) = reflection of X(i) in X(j) for these {i,j}: {67, 5972}, {113, 19140}, {125, 6593}, {1352, 16534}, {3448, 15118}, {5095, 25329}, {5181, 110}, {10990, 44882}, {12295, 32271}, {14982, 6053}, {15303, 34319}, {16003, 182}, {19161, 25711}, {25329, 40342}, {32127, 47549}, {36990, 38791}, {41583, 1495}, {41586, 32217}, {47558, 15448}
X(56565) = X(22105)-lineconjugate of X(526)
X(56565) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {67, 52697, 5972}, {3448, 52699, 15118}, {14683, 25321, 895}, {25336, 52697, 67}


X(56566) = X(6)X(13) ∩ X(110)X(2482)

Barycentrics    8*a^10 - 16*a^8*b^2 + 23*a^6*b^4 - 19*a^4*b^6 + 5*a^2*b^8 - b^10 - 16*a^8*c^2 + 2*a^6*b^2*c^2 + 3*a^4*b^4*c^2 + 11*a^2*b^6*c^2 - b^8*c^2 + 23*a^6*c^4 + 3*a^4*b^2*c^4 - 24*a^2*b^4*c^4 + 2*b^6*c^4 - 19*a^4*c^6 + 11*a^2*b^2*c^6 + 2*b^4*c^6 + 5*a^2*c^8 - b^2*c^8 - c^10 : :
X(56566) = 3 X[115] - 4 X[5465], 3 X[110] - X[11006], 3 X[2482] - 2 X[11006], 4 X[5609] - X[14981], 4 X[5642] - 3 X[9167], 3 X[9167] - 2 X[15357], 2 X[9140] - 3 X[14971], X[10991] + 2 X[14094], 4 X[11694] - 3 X[38748], 5 X[20125] - 3 X[23234], 2 X[20126] - 3 X[38737]

X(56566) lies on the cubic K451 and these lines: {6, 13}, {110, 2482}, {543, 9143}, {671, 14683}, {690, 8030}, {3448, 5461}, {5609, 14981}, {5642, 9167}, {9140, 14971}, {9144, 50711}, {9880, 32423}, {10706, 39838}, {10991, 14094}, {11694, 38748}, {12308, 14830}, {20125, 23234}, {20126, 38737}

X(56566) = midpoint of X(i) and X(j) for these {i,j}: {671, 14683}, {9143, 15342}, {12308, 14830}
X(56566) = reflection of X(i) in X(j) for these {i,j}: {2482, 110}, {3448, 5461}, {5477, 34319}, {15357, 5642}, {39838, 10706}
X(56566) = {X(5642),X(15357)}-harmonic conjugate of X(9167)


X(56567) = X(6)X(13) ∩ X(110)X(376)

Barycentrics    4*a^10 - 18*a^8*b^2 + 29*a^6*b^4 - 19*a^4*b^6 + 3*a^2*b^8 + b^10 - 18*a^8*c^2 + 2*a^6*b^2*c^2 + 5*a^4*b^4*c^2 + 14*a^2*b^6*c^2 - 3*b^8*c^2 + 29*a^6*c^4 + 5*a^4*b^2*c^4 - 34*a^2*b^4*c^4 + 2*b^6*c^4 - 19*a^4*c^6 + 14*a^2*b^2*c^6 + 2*b^4*c^6 + 3*a^2*c^8 - 3*b^2*c^8 + c^10 : :
X(56567) = 5 X[2] - 4 X[20397], 4 X[2] - 5 X[38795], 2 X[14094] + X[16003], X[14094] + 2 X[16534], 5 X[14094] + 4 X[20397], 4 X[14094] + 5 X[38795], X[16003] - 4 X[16534], 5 X[16003] - 8 X[20397], 2 X[16003] - 5 X[38795], 5 X[16534] - 2 X[20397], 8 X[16534] - 5 X[38795], 16 X[20397] - 25 X[38795], 2 X[3] - 3 X[11693], and many others

X(56567) lies on the cubic K808 and these lines: {2, 14094}, {3, 11693}, {5, 38632}, {6, 13}, {30, 3292}, {74, 15692}, {110, 376}, {125, 547}, {146, 15683}, {524, 46993}, {549, 5642}, {1511, 34200}, {1596, 5095}, {2771, 5049}, {2777, 15681}, {2930, 18534}, {2948, 50878}, {3524, 15054}, {3543, 9143}, {3545, 36253}, {3581, 32267}, {3830, 23236}, {5054, 20417}, {5071, 9140}, {5181, 52098}, {5648, 51941}, {5972, 12308}, {6623, 32234}, {6699, 15702}, {7426, 13754}, {7728, 15684}, {8703, 10990}, {10124, 10272}, {10304, 15034}, {10620, 15700}, {10989, 51392}, {11006, 33512}, {11539, 38729}, {11562, 44211}, {11694, 12041}, {11723, 50921}, {11737, 36518}, {12083, 12584}, {12100, 51522}, {12162, 44218}, {12295, 15687}, {12317, 12900}, {13202, 35404}, {14093, 32609}, {14157, 37901}, {14643, 15703}, {14683, 46686}, {14893, 32423}, {14915, 40112}, {15020, 19708}, {15021, 15698}, {15039, 15688}, {15055, 15715}, {15057, 15709}, {15061, 15723}, {15686, 16163}, {15699, 20379}, {15712, 38626}, {15718, 48378}, {15760, 32275}, {18535, 32254}, {20301, 50135}, {25711, 44212}, {32110, 35266}, {32225, 46817}, {34153, 44903}, {35403, 38789}, {38724, 38792}, {41586, 44266}, {43573, 43605}, {44665, 47310}, {47332, 47549}, {47333, 51393}

X(56567) = midpoint of X(i) and X(j) for these {i,j}: {2, 14094}, {399, 5655}, {2948, 50878}, {3830, 23236}, {5648, 51941}, {9143, 10706}, {12308, 20126}
X(56567) = reflection of X(i) in X(j) for these {i,j}: {2, 16534}, {113, 5655}, {3581, 32267}, {3830, 38791}, {5655, 6053}, {10990, 8703}, {11006, 33512}, {12041, 11694}, {15303, 19140}, {16003, 2}, {20126, 5972}, {32110, 35266}, {32225, 46817}, {38724, 38792}, {41586, 44266}, {50921, 11723}, {51522, 12100}
X(56567) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {399, 6053, 113}, {5609, 15063, 30714}, {14094, 16534, 16003}, {16003, 16534, 38795}


X(56568) = X(6)X(13) ∩ X(22)X(110)

Barycentrics    a^2*(a^10 - 3*a^8*b^2 + 2*a^6*b^4 + 2*a^4*b^6 - 3*a^2*b^8 + b^10 - 3*a^8*c^2 - 3*a^6*b^2*c^2 + 4*a^4*b^4*c^2 + a^2*b^6*c^2 + b^8*c^2 + 2*a^6*c^4 + 4*a^4*b^2*c^4 - 4*a^2*b^4*c^4 - 2*b^6*c^4 + 2*a^4*c^6 + a^2*b^2*c^6 - 2*b^4*c^6 - 3*a^2*c^8 + b^2*c^8 + c^10) : :
X(56568) = X[3] + 2 X[52098], 4 X[5] - X[25335], X[6] + 2 X[399], 7 X[6] - 4 X[9976], X[6] - 4 X[19140], 5 X[6] - 8 X[25556], 3 X[6] - 4 X[34155], 3 X[6] - 2 X[39562], 7 X[399] + 2 X[9976], X[399] + 2 X[19140], 5 X[399] + 4 X[25556], 3 X[399] + 2 X[34155], 3 X[399] + X[39562], 4 X[5655] - X[47353], 4 X[6053] - X[14982], and many others

X(56568) lies on the cubic K939 and these lines: on lines {3, 34437}, {5, 25335}, {6, 13}, {22, 110}, {67, 16534}, {74, 55676}, {125, 7539}, {141, 20125}, {146, 17812}, {155, 2930}, {182, 12308}, {206, 12168}, {323, 37901}, {389, 17848}, {511, 5899}, {576, 32254}, {597, 15032}, {599, 15068}, {895, 52518}, {1092, 9968}, {1176, 15100}, {1181, 5622}, {1352, 25336}, {1498, 15063}, {1503, 3153}, {1511, 55646}, {1974, 12165}, {1993, 9143}, {1994, 5480}, {2771, 38315}, {2836, 45728}, {2854, 5102}, {2888, 11061}, {3098, 34006}, {3242, 11699}, {3292, 40114}, {3313, 9919}, {3448, 5422}, {3564, 11563}, {3589, 12317}, {3618, 40640}, {3763, 10272}, {3851, 44494}, {5085, 5621}, {5562, 32262}, {5642, 15106}, {5648, 50973}, {7592, 25328}, {8549, 41737}, {8550, 43605}, {9019, 14157}, {9140, 10601}, {9786, 25711}, {9971, 46261}, {10249, 54037}, {10264, 47355}, {10539, 37473}, {10541, 32305}, {10620, 53094}, {11456, 43273}, {11459, 19127}, {11470, 32240}, {11579, 55711}, {12041, 55671}, {12270, 44883}, {12364, 47571}, {12383, 48910}, {12412, 18475}, {12584, 48679}, {12824, 17810}, {12825, 19132}, {13171, 22352}, {13630, 43811}, {13754, 18374}, {14561, 25330}, {15034, 55641}, {15035, 55654}, {15039, 55614}, {15040, 55651}, {15041, 55673}, {15052, 47354}, {15085, 38898}, {15305, 51739}, {15805, 20379}, {15811, 38791}, {15993, 45769}, {16003, 37514}, {16176, 44492}, {17813, 41743}, {19125, 21650}, {19139, 36990}, {19504, 24981}, {20301, 36753}, {20582, 54434}, {23236, 32271}, {25555, 43845}, {29959, 43590}, {30714, 37498}, {31884, 32609}, {32234, 40342}, {32273, 36749}, {32306, 44480}, {32423, 39522}, {34146, 34947}, {34153, 48872}, {38633, 55670}, {38638, 55649}, {44493, 50955}

X(56568) = midpoint of X(i) and X(j) for these {i,j}: {399, 45016}, {5622, 14094}
X(56568) = reflection of X(i) in X(j) for these {i,j}: {6, 45016}, {5085, 52697}, {5621, 15462}, {5622, 6593}, {16010, 5622}, {19596, 10540}, {25330, 14561}, {31884, 32609}, {39562, 34155}, {45016, 19140}
X(56568) = 2nd-Lemoine-circleinverse of X(41672)
X(56568) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 18451, 47353}, {110, 51941, 1350}, {399, 5655, 18451}, {399, 19140, 6}, {2930, 9970, 11477}, {5476, 15087, 6}, {5609, 9970, 2930}, {5621, 15462, 5085}, {5621, 52697, 15462}, {5642, 15106, 17811}, {6593, 14094, 16010}, {6593, 16010, 53093}, {9143, 51882, 1993}, {11441, 34117, 15069}, {12584, 48679, 53097}, {34155, 39562, 6}, {39562, 45016, 34155}





leftri  Centers on random selected cubics: X(56569) - X(56730)  rightri

Centers X(56569)-X(56730) were contributed by César Eliud Lozada, August 19, 2023.

underbar

X(56569) = THIRD INTERSECTION OF THE CUBIC K1315 AND THE LINE THROUGH ITS POINTS X(66) AND X(193)

Barycentrics    (a^2-2*b^2+c^2)*(a^2+b^2-2*c^2)*(-a^2+b^2+c^2)*(2*a^8-(b^2+c^2)*a^6-(b^2-c^2)^2*a^4+(b^4-c^4)*(b^2-c^2)*a^2-(b^4-c^4)^2) : :

X(56569) lies on the cubic K1315 and these lines: {2, 41511}, {66, 193}, {69, 525}, {253, 11148}, {317, 671}, {892, 33797}, {5596, 32729}, {9214, 9308}, {41760, 52450}

X(56569) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (92, 56685), (897, 2393), (923, 23), (18669, 14360), (34158, 6360), (36128, 44146), (51962, 192)
X(56569) = X(54075)-Dao conjugate of-X(1560)
X(56569) = X(54075)-reciprocal conjugate of-X(524)
X(56569) = pole of line {858, 47138} with respect to Steiner circumellipse
X(56569) = barycentric product X(671)*X(54075)
X(56569) = trilinear product X(897)*X(54075)
X(56569) = trilinear quotient X(54075)/X(896)


X(56570) = THIRD INTERSECTION OF THE CUBIC K1315 AND THE LINE THROUGH ITS POINTS X(66) AND X(253)

Barycentrics    (a^6-c^2*a^4+(b^4-c^4)*a^2-(b^2-c^2)*(2*b^4+b^2*c^2+c^4))*(a^6-b^2*a^4-(b^4-c^4)*a^2+(b^2-c^2)*(b^4+b^2*c^2+2*c^4))*(-a^2+b^2+c^2)*(2*a^12-(b^2+c^2)*a^10-5*(b^2-c^2)^2*a^8+2*(b^4-c^4)*(b^2-c^2)*a^6+4*(b^6-c^6)*(b^2-c^2)*a^4-(b^4-c^4)*(b^2-c^2)*(b^4+6*b^2*c^2+c^4)*a^2-(b^4-c^4)^2*(b^2-c^2)^2) : :

X(56570) lies on the cubic K1315 and these lines: {66, 253}, {69, 2419}, {317, 35140}


X(56571) = THIRD INTERSECTION OF THE CUBIC K1315 AND THE LINE THROUGH ITS POINTS X(66) AND X(317)

Barycentrics    (a^4-b^2*a^2-(b^2-c^2)*c^2)*(a^4-c^2*a^2+(b^2-c^2)*b^2)*(-a^2+b^2+c^2)*((b^2+c^2)*a^8-2*(b^4-b^2*c^2+c^4)*a^6+2*(b^6-c^6)*(b^2-c^2)*a^2-(b^4-c^4)^2*(b^2+c^2)) : :

X(56571) lies on the cubic K1315 and these lines: {66, 290}, {69, 520}, {193, 253}, {6394, 40697}, {12384, 31670}, {15407, 34156}, {20021, 20402}, {26926, 36822}

X(56571) = anticomplement of the isotomic conjugate of X(51257)
X(56571) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (92, 56687), (1821, 1503), (2312, 39355), (34156, 6360), (36036, 6333), (36120, 297), (51257, 6327), (51963, 192), (52641, 5905)
X(56571) = X(51257)-Ceva conjugate of-X(2)
X(56571) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (287, 34168), (34146, 232), (52672, 56599)
X(56571) = pole of the tripolar of X(51257) with respect to Steiner circumellipse
X(56571) = trilinear product X(336)*X(34146)
X(56571) = trilinear quotient X(336)/X(34168)


X(56572) = THIRD INTERSECTION OF THE CUBIC K1315 AND THE LINE THROUGH ITS POINTS X(66) AND X(40697)

Barycentrics    (a^4-(b^2+2*c^2)*a^2+2*b^4-b^2*c^2+c^4)*(a^4-(2*b^2+c^2)*a^2+b^4-b^2*c^2+2*c^4)*(2*a^6-(b^2+c^2)*a^4-(b^4-c^4)*(b^2-c^2)) : :

X(56572) lies on the cubic K1315 and these lines: {2, 40428}, {66, 40697}, {69, 523}, {147, 3424}, {193, 317}, {1352, 34157}, {2065, 6776}, {2697, 10425}, {2980, 25046}, {5921, 56687}, {6527, 14721}, {9473, 37668}, {15595, 51963}, {16318, 34211}, {20080, 39359}

X(56572) = isotomic conjugate of X(56687)
X(56572) = cevapoint of X(1503) and X(15595)
X(56572) = crosspoint of X(35142) and X(40428)
X(56572) = crosssum of X(51335) and X(52144)
X(56572) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (92, 56688), (8773, 30737), (34157, 6360), (36051, 401), (36105, 53331), (52091, 4329)
X(56572) = X(34156)-cross conjugate of-X(2)
X(56572) = X(i)-daleth conjugate of-X(j) for these (i, j): (35142, 2987), (40428, 2)
X(56572) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 56687), (441, 114), (15595, 3564), (23976, 230), (39071, 52144), (39073, 51335), (50938, 460)
X(56572) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 56687}, {1297, 8772}, {8767, 52144}
X(56572) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 56687), (441, 3564), (1503, 230), (2312, 8772), (2987, 1297), (3563, 43717), (6793, 51431), (8779, 52144), (8781, 35140), (9475, 51335), (15595, 114), (16318, 460), (30737, 51481), (32697, 44770), (34211, 4226), (35142, 6330), (35282, 5477), (35364, 34212), (40428, 9476), (42671, 1692), (51437, 44099), (51963, 51820)
X(56572) = perspector of the inconic with center X(34156)
X(56572) = pole of line {325, 16230} with respect to Steiner circumellipse
X(56572) = pole of line {4226, 56687} with respect to Steiner-Wallace hyperbola
X(56572) = barycentric product X(i)*X(j) for these {i, j}: {441, 35142}, {1503, 8781}, {2987, 30737}, {15595, 40428}, {34157, 51257}
X(56572) = trilinear product X(i)*X(j) for these {i, j}: {1503, 8773}, {2065, 17875}, {2312, 8781}, {8766, 35142}, {30737, 36051}
X(56572) = trilinear quotient X(i)/X(j) for these (i, j): (75, 56687), (1503, 8772), (2312, 1692), (8766, 52144), (8773, 1297), (15595, 17462), (17875, 114), (30737, 1733), (32697, 36046), (35142, 8767), (36105, 44770)
X(56572) = (X(69), X(36891))-harmonic conjugate of X(52091)


X(56573) = THIRD INTERSECTION OF THE CUBIC K1315 AND THE LINE THROUGH ITS POINTS X(193) AND X(8048)

Barycentrics    (a^2-b*a-c*(b-c))*(a^2-c*a+b*(b-c))*(-a^2+b^2+c^2)*((b+c)*a^7-(b^2+c^2)*a^6-(b^2-c^2)*(b-c)*a^5+(b^2-c^2)^2*a^4-(b^2-c^2)^2*(b+c)*a^3+(b^4-c^4)*(b^2-c^2)*a^2+(b^4-c^4)*(b^2+c^2)*(b-c)*a-(b^4-c^4)^2) : :

X(56573) lies on the cubic K1315 and these lines: {66, 21293}, {69, 521}, {193, 1814}, {253, 7674}, {317, 2481}

X(56573) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (105, 7291), (673, 3827), (1462, 4318), (3827, 20533), (34160, 6360), (36124, 46108), (51838, 1814), (51961, 192)


X(56574) = THIRD INTERSECTION OF THE CUBIC K1315 AND THE LINE THROUGH ITS POINTS X(193) AND X(40697)

Barycentrics    (a^8-(b^2+4*c^2)*a^6-(b^4-3*b^2*c^2-6*c^4)*a^4+(b^6-4*c^6-b^2*c^2*(4*b^2-3*c^2))*a^2+(b^4-c^4)*(b^2-c^2)*c^2)*(a^8-(4*b^2+c^2)*a^6+(6*b^4+3*b^2*c^2-c^4)*a^4-(4*b^6-c^6-b^2*c^2*(3*b^2-4*c^2))*a^2+(b^4-c^4)*(b^2-c^2)*b^2)*((b^2+c^2)*a^2-b^4-c^4) : :

X(56574) lies on the cubic K1315 and these lines: {69, 924}, {193, 571}, {317, 670}, {35575, 40120}

X(56574) = isotomic conjugate of X(56688)
X(56574) = X(92)-anticomplementary conjugate of-X(56689)
X(56574) = X(34157)-cross conjugate of-X(2)
X(56574) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 56688), (36212, 31842)
X(56574) = X(31)-isoconjugate of-X(56688)
X(56574) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 56688), (36212, 34382), (40120, 6531), (56006, 98)
X(56574) = perspector of the inconic with center X(34157)
X(56574) = barycentric product X(i)*X(j) for these {i, j}: {325, 56006}, {6393, 40120}
X(56574) = trilinear product X(1959)*X(56006)
X(56574) = trilinear quotient X(i)/X(j) for these (i, j): (75, 56688), (56006, 1910)


X(56575) = THIRD INTERSECTION OF THE CUBIC K1315 AND THE LINE THROUGH ITS POINTS X(193) AND X(55848)

Barycentrics    (-a^2+b^2+c^2)*(a^6-5*c^2*a^4-(b^4-10*b^2*c^2+5*c^4)*a^2-(b^4-c^4)*c^2)*(a^6-5*b^2*a^4-(5*b^4-10*b^2*c^2+c^4)*a^2+(b^4-c^4)*b^2)*((b^2+c^2)*a^10-(b^4+8*b^2*c^2+c^4)*a^8-2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)*a^6+2*(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)*a^4+((b^2-c^2)^2-4*b^2*c^2)*(b^4-c^4)*(b^2-c^2)*a^2-(b^4-4*b^2*c^2+c^4)*(b^4-c^4)^2) : :

X(56575) lies on the cubic K1315 and these lines: {69, 30209}, {193, 55848}


X(56576) = THIRD INTERSECTION OF THE CUBIC K1315 AND THE LINE THROUGH ITS POINTS X(253) AND X(317)

Barycentrics    (a^4+(b^2-2*c^2)*a^2-(b^2-c^2)*(2*b^2+c^2))*(a^4-(2*b^2-c^2)*a^2+(b^2-c^2)*(b^2+2*c^2))*(-a^2+b^2+c^2)*(2*a^10-(b^2+c^2)*a^8-8*(b^2-c^2)^2*a^6+10*(b^4-c^4)*(b^2-c^2)*a^4-2*(b^2-c^2)^2*(b^4+6*b^2*c^2+c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3) : :

X(56576) lies on the cubic K1315 and these lines: {2, 34568}, {69, 3265}, {193, 14919}, {253, 317}, {6527, 16077}, {15459, 17037}, {16251, 31621}, {32000, 52766}, {36890, 41005}

X(56576) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (92, 56683), (2349, 6000), (36034, 41077), (36119, 46106), (39174, 6360), (51964, 192), (52646, 5905)
X(56576) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (3184, 3163), (12096, 3284), (14919, 5897), (15311, 1990), (27089, 52948)
X(56576) = barycentric product X(3184)*X(31621)
X(56576) = trilinear quotient X(3184)/X(42074)


X(56577) = THIRD INTERSECTION OF THE CUBIC K1315 AND THE LINE THROUGH ITS POINTS X(253) AND X(40697)

Barycentrics    (a^6-(2*b^2+c^2)*a^4+(b^4+2*b^2*c^2-c^4)*a^2+(b^2-c^2)^2*c^2)*(a^6-(b^2+2*c^2)*a^4-(b^4-2*b^2*c^2-c^4)*a^2+(b^2-c^2)^2*b^2)*((b^2+c^2)*a^6-(3*b^4-4*b^2*c^2+3*c^4)*a^4+3*(b^4-c^4)*(b^2-c^2)*a^2-(b^4+4*b^2*c^2+c^4)*(b^2-c^2)^2) : :

X(56577) lies on the cubic K1315 and these lines: {69, 850}, {193, 2986}, {253, 35520}, {317, 6528}, {15454, 40423}

X(56577) = isotomic conjugate of X(56683)
X(56577) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (92, 56686), (1300, 18668), (15454, 6360), (51965, 192), (52552, 4329)
X(56577) = X(39174)-cross conjugate of-X(2)
X(56577) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 56683), (44436, 113), (50937, 44084)
X(56577) = X(31)-isoconjugate of-X(56683)
X(56577) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 56683), (2986, 1294), (6000, 3003), (15421, 43701), (40832, 54988), (40948, 47405), (44436, 13754), (51358, 403), (51895, 6), (51964, 51821)
X(56577) = perspector of the inconic with center X(39174)
X(56577) = pole of line {15329, 56683} with respect to Steiner-Wallace hyperbola
X(56577) = barycentric product X(i)*X(j) for these {i, j}: {76, 51895}, {6000, 40832}
X(56577) = trilinear product X(75)*X(51895)
X(56577) = trilinear quotient X(i)/X(j) for these (i, j): (75, 56683), (44436, 2315), (51895, 31)
X(56577) = (X(39988), X(52552))-harmonic conjugate of X(69)


X(56578) = THIRD INTERSECTION OF THE CUBIC K1315 AND THE LINE THROUGH ITS POINTS X(253) AND X(55848)

Barycentrics    (a^6-c^2*a^4-(b^2-c^2)^2*a^2-(b^4-c^4)*c^2)*(a^6-b^2*a^4-(b^2-c^2)^2*a^2+(b^4-c^4)*b^2)*(-a^2+b^2+c^2)*((b^2+c^2)*a^10-(b^4+c^4)*a^8-2*(b^4-c^4)*(b^2-c^2)*a^6+2*(b^4-c^4)^2*a^4+(b^4-c^4)*(b^2-c^2)^3*a^2-(b^4+c^4)*(b^4-c^4)^2) : :

X(56578) lies on the cubic K1315 and these lines: {66, 46165}, {69, 8673}, {193, 46767}, {253, 55848}, {317, 46140}


X(56579) = SECOND INTERSECTION OF THE CUBIC K1315 AND ITS TANGENT LINE AT X(193)

Barycentrics    (a^4+(b-2*c)*(b+2*c)*a^2+c^2*(b^2+c^2))*(a^4-(2*b-c)*(2*b+c)*a^2+b^2*(b^2+c^2))*((b^2+c^2)*a^4-2*b^2*c^2*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(56579) lies on the cubic K1315 and these lines: {69, 512}, {110, 193}, {317, 34518}, {5181, 51962}, {5486, 44182}, {14357, 34161}, {15387, 48945}, {40697, 55848}

X(56579) = isotomic conjugate of X(56685)
X(56579) = cevapoint of X(2393) and X(5181)
X(56579) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (2374, 17497), (34161, 6360)
X(56579) = X(34158)-cross conjugate of-X(2)
X(56579) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 56685), (5181, 8681), (14961, 126), (38971, 9134)
X(56579) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 56685}, {10422, 17466}
X(56579) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 56685), (858, 47286), (2393, 3291), (5181, 126), (14580, 5140), (14961, 8681), (15387, 10422), (41909, 2373), (47138, 9134), (51962, 51819), (52672, 36874)
X(56579) = perspector of the inconic with center X(34158)
X(56579) = pole of line {5140, 9134} with respect to polar circle
X(56579) = pole of line {3266, 14273} with respect to Steiner circumellipse
X(56579) = pole of line {11634, 56685} with respect to Steiner-Wallace hyperbola
X(56579) = barycentric product X(i)*X(j) for these {i, j}: {858, 41909}, {5181, 44182}, {36892, 52672}
X(56579) = trilinear product X(18669)*X(41909)
X(56579) = trilinear quotient X(i)/X(j) for these (i, j): (75, 56685), (5181, 17466), (17172, 16756), (18669, 3291), (20884, 47286)


X(56580) = SECOND INTERSECTION OF THE CUBIC K1315 AND ITS TANGENT LINE AT X(253)

Barycentrics    (-a^2+b^2+c^2)*(a^8+(2*b^2-3*c^2)*a^6-3*(b^2-c^2)*(2*b^2+c^2)*a^4+(b^2-c^2)*(2*b^4+5*b^2*c^2+c^4)*a^2+(b^2-c^2)^3*b^2)*(a^8-(3*b^2-2*c^2)*a^6+3*(b^2-c^2)*(b^2+2*c^2)*a^4-(b^2-c^2)*(b^4+5*b^2*c^2+2*c^4)*a^2-(b^2-c^2)^3*c^2)*((b^2+c^2)*a^12-2*(2*b^4-3*b^2*c^2+2*c^4)*a^10+5*(b^4-c^4)*(b^2-c^2)*a^8-28*(b^2-c^2)^2*b^2*c^2*a^6-(b^4-c^4)*(b^2-c^2)*(5*b^4-34*b^2*c^2+5*c^4)*a^4+2*(b^2-c^2)^2*(2*b^8+2*c^8-(b^4+18*b^2*c^2+c^4)*b^2*c^2)*a^2-(b^4-c^4)*(b^2-c^2)^3*(b^4+6*b^2*c^2+c^4)) : :

X(56580) lies on the cubic K1315 and these lines: {69, 43701}, {253, 1294}, {317, 54988}


X(56581) = THIRD INTERSECTION OF THE CUBIC K434 AND THE LINE THROUGH ITS POINTS X(1) AND X(90)

Barycentrics    a^2*(a^8-(4*b^2+3*b*c+4*c^2)*a^6-2*(b+c)*b*c*a^5+(6*b^2-5*b*c+6*c^2)*(b+c)^2*a^4+4*(b^3+c^3)*b*c*a^3-(4*b^6+4*c^6+b*c*(5*b^4+2*b^2*c^2+5*c^4))*a^2-2*(b^4-c^4)*b*c*(b-c)*a+(b^4+c^4+b*c*(b^2+4*b*c+c^2))*(b^2-c^2)^2) : :

X(56581) lies on the cubic K434 and these lines: {1, 90}, {35, 56587}, {46, 2911}, {79, 23604}, {191, 52405}, {267, 56588}, {1717, 40263}, {10052, 15474}

X(56581) = X(1770)-Ceva conjugate of-X(35)
X(56581) = (X(3157), X(7072))-harmonic conjugate of X(1)


X(56582) = THIRD INTERSECTION OF THE CUBIC K434 AND THE LINE THROUGH ITS POINTS X(1) AND X(267)

Barycentrics    a^2*(a+b)*(a+c)*(a^9+(b+c)*a^8-2*(b^2+b*c+c^2)*a^7-2*(b+c)*(b^2+b*c+c^2)*a^6+(b+2*c)*(2*b+c)*b*c*a^5+(b+c)*(2*b^2+7*b*c+2*c^2)*b*c*a^4+(2*b^4+2*c^4-b*c*(2*b^2-b*c+2*c^2))*(b+c)^2*a^3+(b+c)*(2*b^6+2*c^6+(2*b^4+2*c^4-b*c*(3*b^2+4*b*c+3*c^2))*b*c)*a^2-(b^2-c^2)^2*(b^4+c^4+2*b*c*(b+c)^2)*a+(b^2-c^2)^2*(b+c)*(-b^4-c^4-2*b*c*(b+c)^2)) : :

X(56582) lies on the cubic K434 and these lines: {1, 229}, {46, 2906}, {79, 284}, {90, 56584}, {580, 3520}, {1780, 56587}

X(56582) = X(1770)-Ceva conjugate of-X(1780)
X(56582) = pole of line {191, 56589} with respect to Stammler hyperbola


X(56583) = THIRD INTERSECTION OF THE CUBIC K434 AND THE LINE THROUGH ITS POINTS X(1) AND X(23604)

Barycentrics    a*(a^6-2*(b+c)*a^5-(b^2+6*b*c+c^2)*a^4+4*(b+c)*(b^2+c^2)*a^3-(b^4+c^4-2*b*c*(2*b^2+3*b*c+2*c^2))*a^2-2*(b+c)*(b^2+c^2)^2*a+(b^2-c^2)^2*(b+c)^2) : :
X(56583) = X(1)-2*X(224) = X(90)-2*X(11517) = 5*X(1698)-4*X(10395) = X(41709)-2*X(41710)

X(56583) lies on the cubic K434 and these lines: {1, 224}, {3, 45632}, {9, 35}, {40, 912}, {46, 2900}, {57, 41537}, {78, 4302}, {79, 56278}, {100, 920}, {165, 2949}, {191, 200}, {610, 9591}, {936, 5506}, {1490, 16127}, {1698, 10382}, {1709, 11248}, {1770, 3811}, {1998, 3336}, {2136, 5903}, {2950, 5531}, {2960, 18598}, {3174, 4312}, {3601, 3646}, {3689, 35448}, {3901, 5541}, {4654, 7702}, {5727, 47033}, {5732, 6763}, {5840, 6326}, {7675, 19854}, {7742, 15733}, {11826, 37700}, {16545, 16550}, {17668, 42885}, {25440, 55871}, {34489, 41709}, {36599, 45393}, {37569, 41688}, {37585, 50528}, {37601, 41229}, {37702, 41859}, {41871, 56176}, {56586, 56590}

X(56583) = reflection of X(i) in X(j) for these (i, j): (1, 224), (90, 11517), (41709, 41710), (43740, 41540), (45632, 3)
X(56583) = X(i)-aleph conjugate of-X(j) for these (i, j): (100, 1331), (188, 5709)
X(56583) = X(i)-Ceva conjugate of-X(j) for these (i, j): (1770, 191), (3811, 1), (5905, 9)
X(56583) = pole of line {3927, 7082} with respect to Feuerbach circumhyperbola
X(56583) = pole of line {1780, 56589} with respect to Stammler hyperbola


X(56584) = THIRD INTERSECTION OF THE CUBIC K434 AND THE LINE THROUGH ITS POINTS X(35) AND X(191)

Barycentrics    a*(a^4-(b+2*c)*c*a^2-(b+c)*b*c*a-b^4+c^4)*(a^4-(2*b+c)*b*a^2-(b+c)*b*c*a+b^4-c^4)*(a^4-2*(b+c)*a^3-2*b*c*a^2+2*(b^3+c^3)*a-(b^2-c^2)^2) : :

X(56584) lies on the cubic K434 and these lines: {1, 56586}, {35, 72}, {46, 41494}, {90, 56582}, {1717, 23604}, {1770, 56588}

X(56584) = isogonal conjugate of X(56588)
X(56584) = X(i)-isoconjugate of-X(j) for these {i, j}: {1781, 39947}, {2475, 34430}, {41505, 52362}
X(56584) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (224, 28754), (1723, 2475), (3211, 52362), (34435, 39947), (34489, 18625)
X(56584) = pole of line {229, 56588} with respect to Stammler hyperbola
X(56584) = barycentric product X(1723)*X(54454)
X(56584) = trilinear product X(i)*X(j) for these {i, j}: {12649, 34435}, {34489, 56280}
X(56584) = trilinear quotient X(i)/X(j) for these (i, j): (224, 52362), (1723, 1781), (2900, 56317), (12649, 2475), (34435, 34430), (54454, 39695), (56280, 56278)


X(56585) = THIRD INTERSECTION OF THE CUBIC K434 AND THE LINE THROUGH ITS POINTS X(35) AND X(23604)

Barycentrics    (a^3-b*a^2-(b+c)*b*a+(b^2-c^2)*(b-c))*(a^3-c*a^2-(b+c)*c*a+(b^2-c^2)*(b-c))*(3*a^7-3*(b+c)*a^6-(5*b^2+6*b*c+5*c^2)*a^5+(b+c)*(5*b^2+2*b*c+5*c^2)*a^4+(b^4+c^4+2*b*c*(b+2*c)*(2*b+c))*a^3-(b+c)*(b^2+c^2)*(b^2+4*b*c+c^2)*a^2+(b^2-c^2)^2*(b+c)^2*a-(b^2-c^2)^3*(b-c)) : :

X(56585) lies on the cubic K434 and these lines: {1, 56588}, {35, 23604}, {90, 191}, {56586, 56587}

X(56585) = X(1770)-Ceva conjugate of-X(56586)


X(56586) = THIRD INTERSECTION OF THE CUBIC K434 AND THE LINE THROUGH ITS POINTS X(46) AND X(267)

Barycentrics    (a^3-b*a^2-(b+c)*b*a+(b^2-c^2)*(b-c))*(a^3-c*a^2-(b+c)*c*a+(b^2-c^2)*(b-c))*(a^7-(b+c)*a^6-(3*b^2+4*b*c+3*c^2)*a^5+(b^2-c^2)*(b-c)*a^4+(3*b^4+3*c^4+b*c*(4*b^2+3*b*c+4*c^2))*a^3+(b^3+c^3)*(b^2+3*b*c+c^2)*a^2-(b^4-c^4)*(b^2-c^2)*a-(b^4-c^4)*(b^2-c^2)*(b+c)) : :

X(56586) lies on the cubic K434 and these lines: {1, 56584}, {46, 267}, {79, 1780}, {18865, 37702}, {56583, 56590}, {56585, 56587}

X(56586) = X(1770)-Ceva conjugate of-X(56585)


X(56587) = THIRD INTERSECTION OF THE CUBIC K434 AND THE LINE THROUGH ITS POINTS X(46) AND X(1717)

Barycentrics    a^2*(a^4+b*a^3+(b+c)*(b-2*c)*a^2-(b^2+c^2)*b*a-(b^2-c^2)*(2*b^2+b*c+c^2))*(a^4+c*a^3-(b+c)*(2*b-c)*a^2-(b^2+c^2)*c*a+(b^2-c^2)*(b^2+b*c+2*c^2)) : :

X(56587) lies on the cubics K434, K749 and these lines: {1, 56589}, {3, 7072}, {33, 46}, {35, 56581}, {55, 500}, {191, 200}, {220, 1030}, {501, 1800}, {942, 7073}, {1770, 7282}, {1780, 56582}, {2192, 7742}, {2342, 7727}, {3579, 52371}, {4302, 56146}, {23604, 56591}, {56585, 56586}

X(56587) = isogonal conjugate of X(1770)
X(56587) = cevapoint of X(3) and X(6238)
X(56587) = crosspoint of X(90) and X(56590)
X(56587) = crosssum of X(i) and X(j) for these {i, j}: {1, 56589}, {35, 56581}, {46, 1717}, {191, 56583}, {1780, 56582}, {23604, 56591}, {56585, 56586}
X(56587) = X(i)-cross conjugate of-X(j) for these (i, j): (4303, 1), (8606, 284)
X(56587) = X(i)-isoconjugate of-X(j) for these {i, j}: {943, 41492}, {1442, 41504}, {7282, 45243}
X(56587) = X(2260)-reciprocal conjugate of-X(41492)
X(56587) = trilinear quotient X(i)/X(j) for these (i, j): (942, 41492), (7073, 41504), (8606, 45243)


X(56588) = THIRD INTERSECTION OF THE CUBIC K434 AND THE LINE THROUGH ITS POINTS X(46) AND X(1780)

Barycentrics    a*(a^4+b*c*a^2+(b+c)*b*c*a-(b^2-c^2)^2)*(a^4-2*b*a^3-2*c^2*a^2+2*(b+c)*b^2*a-(b^2-c^2)*(b-c)^2)*(a^4-2*c*a^3-2*b^2*a^2+2*(b+c)*c^2*a+(b^2-c^2)*(b-c)^2) : :

X(56588) lies on the cubic K434 and these lines: {1, 56585}, {28, 46}, {79, 56278}, {267, 56581}, {1770, 56584}, {4295, 39695}, {34430, 36152}, {41495, 56317}, {56590, 56591}

X(56588) = isogonal conjugate of X(56584)
X(56588) = X(i)-isoconjugate of-X(j) for these {i, j}: {12649, 34435}, {34489, 56280}
X(56588) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1781, 12649), (39947, 54454)
X(56588) = pole of line {224, 56584} with respect to Stammler hyperbola
X(56588) = barycentric product X(i)*X(j) for these {i, j}: {1781, 39695}, {2475, 39947}, {18625, 56278}, {28754, 41505}
X(56588) = trilinear product X(i)*X(j) for these {i, j}: {1781, 39947}, {2475, 34430}, {41505, 52362}
X(56588) = trilinear quotient X(i)/X(j) for these (i, j): (1781, 1723), (2475, 12649), (34430, 34435), (39695, 54454), (52362, 224), (56278, 56280), (56317, 2900)


X(56589) = THIRD INTERSECTION OF THE CUBIC K434 AND THE LINE THROUGH ITS POINTS X(79) AND X(90)

Barycentrics    a*(a^9+3*(b+c)*a^8+5*b*c*a^7-8*(b^3+c^3)*a^6-(6*b^4+6*c^4+(9*b^2-10*b*c+9*c^2)*b*c)*a^5+2*(3*b^2-4*b*c+3*c^2)*(b^3+c^3)*a^4+(b^2+c^2)*(8*b^4+8*c^4+(3*b^2-16*b*c+3*c^2)*b*c)*a^3+4*(b-c)^2*(b^3+c^3)*b*c*a^2-(b^2-c^2)^2*(3*b^4+3*c^4-b*c*(b^2-8*b*c+c^2))*a-(b^4-c^4)*(b^2-c^2)^2*(b-c)) : :

X(56589) lies on the cubic K434 and these lines: {1, 56587}, {35, 47057}, {46, 41492}, {57, 79}, {223, 3215}, {267, 23604}, {3182, 4333}

X(56589) = X(1770)-Ceva conjugate of-X(1)
X(56589) = pole of line {56582, 56583} with respect to Stammler hyperbola


X(56590) = THIRD INTERSECTION OF THE CUBIC K434 AND THE LINE THROUGH ITS POINTS X(1717) AND X(1770)

Barycentrics    a*(a^6+2*b*a^5-(b^2-b*c+c^2)*a^4-(4*b^2+b*c-c^2)*b*a^3-(b^4+c^4+b*c*(b-c)^2)*a^2+(b^2-c^2)*(2*b^2+b*c+3*c^2)*b*a+(b^4-c^4)*(b^2-c^2))*(a^6+2*c*a^5-(b^2-b*c+c^2)*a^4+(b^2-b*c-4*c^2)*c*a^3-(b^4+c^4+b*c*(b-c)^2)*a^2-(b^2-c^2)*(3*b^2+b*c+2*c^2)*c*a+(b^4-c^4)*(b^2-c^2)) : :

X(56590) lies on the cubic K434 and these lines: {35, 47057}, {46, 2906}, {191, 52405}, {1717, 1770}, {2895, 4420}, {6505, 35193}, {56583, 56586}, {56588, 56591}

X(56590) = isogonal conjugate of X(1717)
X(56590) = X(i)-cross conjugate of-X(j) for these (i, j): (7100, 1), (56587, 90)
X(56590) = X(35)-isoconjugate of-X(41496)
X(56590) = X(2160)-reciprocal conjugate of-X(41496)
X(56590) = trilinear pole of the line {9404, 31947} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56590) = trilinear quotient X(79)/X(41496)


X(56591) = SECOND INTERSECTION OF THE CUBIC K434 AND ITS TANGENT LINE AT X(90)

Barycentrics    (a^3+(b-c)*a^2+(b^2-2*b*c-c^2)*a+(b^2-c^2)*(b-c))*(4*a^13-(b+c)*a^12-4*(3*b^2+5*b*c+3*c^2)*a^11-2*(b+c)*(b^2-4*b*c+c^2)*a^10+4*(2*b^4+2*c^4+9*b*c*(b+c)^2)*a^9+(b+c)*(17*b^4+17*c^4-2*b*c*(8*b^2+5*b*c+8*c^2))*a^8+8*(b^2+3*b*c+c^2)*(b^4+c^4-2*b*c*(b+c)^2)*a^7-4*(b+c)*(7*b^6+7*c^6-b^2*c^2*(5*b^2+8*b*c+5*c^2))*a^6-4*(3*b^6+3*c^6+(4*b^4+4*c^4-b*c*(7*b^2+8*b*c+7*c^2))*b*c)*(b+c)^2*a^5+(b+c)*(17*b^8+17*c^8+2*(8*b^6+8*c^6+(2*b^4+2*c^4-b*c*(8*b^2+29*b*c+8*c^2))*b*c)*b*c)*a^4+4*(b^2-c^2)^2*(b^6+c^6+(3*b^4+3*c^4+7*b*c*(b+c)^2)*b*c)*a^3-2*(b^4-c^4)*(b^2-c^2)*(b+c)*(b^4+c^4+2*b*c*(b+2*c)*(2*b+c))*a^2+4*(b^2-c^2)^4*(b+c)^2*b*c*a-(b^2-c^2)^6*(b+c))*(a^3-(b-c)*a^2-(b^2+2*b*c-c^2)*a+(b^2-c^2)*(b-c)) : :

X(56591) lies on the cubic K434 and these lines: {90, 39943}, {23604, 56587}, {56588, 56590}

X(56591) = X(1770)-Ceva conjugate of-X(23604)


X(56592) = SECOND INTERSECTION OF THE CUBIC K183 AND ITS TANGENT LINE AT X(253)

Barycentrics    (a^4+2*(b^2-c^2)*a^2-(b^2-c^2)*(3*b^2+c^2))*(a^4-2*(b^2-c^2)*a^2+(b^2-c^2)*(b^2+3*c^2))*(-a^2+b^2+c^2)*(a^16-8*(b^2+c^2)*a^14+4*(7*b^4-10*b^2*c^2+7*c^4)*a^12-56*(b^4-c^4)*(b^2-c^2)*a^10+2*(b^2-c^2)^2*(35*b^4+114*b^2*c^2+35*c^4)*a^8-8*(b^4-c^4)*(b^2-c^2)*(7*b^4+18*b^2*c^2+7*c^4)*a^6+4*(b^2-c^2)^2*(b^4+7*c^4)*(7*b^4+c^4)*a^4-8*(b^2-c^2)^6*(b^2+c^2)*a^2+(b^4+14*b^2*c^2+c^4)*(b^2-c^2)^6) : :

X(56592) lies on the cubic K183 and these lines: {69, 14362}, {253, 1853}, {264, 34403}, {309, 56596}, {15394, 33537}

X(56592) = isotomic conjugate of X(2131)
X(56592) = X(14615)-Ceva conjugate of-X(253)
X(56592) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 2131), (3349, 28781)
X(56592) = X(31)-isoconjugate of-X(2131)
X(56592) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 2131), (2130, 6), (14362, 3356), (14481, 28781), (17833, 3172), (28782, 47439), (47435, 55833), (55830, 3344)
X(56592) = pole of line {2060, 2131} with respect to Steiner-Wallace hyperbola
X(56592) = barycentric product X(i)*X(j) for these {i, j}: {76, 2130}, {47435, 55830}
X(56592) = trilinear product X(75)*X(2130)
X(56592) = trilinear quotient X(i)/X(j) for these (i, j): (75, 2131), (2130, 31)


X(56593) = SECOND INTERSECTION OF THE CUBIC K183 AND ITS TANGENT LINE AT X(309)

Barycentrics    (5*a^12-10*(b^2+c^2)*a^10-(3*b^2-4*b*c-3*c^2)*(3*b^2+4*b*c-3*c^2)*a^8+36*(b^4-c^4)*(b^2-c^2)*a^6-(b^2-c^2)^2*(29*b^4+54*b^2*c^2+29*c^4)*a^4+2*(b^4-c^4)*(b^2-c^2)*(b^2+3*c^2)*(3*b^2+c^2)*a^2+(b^2-c^2)^6)*(a^2+b^2-c^2)*(a^2-b^2+c^2)/a^2 : :

X(56593) lies on the cubic K183 and these lines: {69, 1032}, {75, 40701}, {92, 309}, {253, 264}, {317, 12324}, {1093, 40995}, {6527, 52578}, {14615, 42465}, {15583, 51843}, {46106, 54111}, {46351, 46353}

X(56593) = isotomic conjugate of X(3348)
X(56593) = polar conjugate of X(31956)
X(56593) = X(14615)-Ceva conjugate of-X(264)
X(56593) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 3348), (4, 28781), (459, 64), (1249, 31956), (3344, 28783), (6374, 56594)
X(56593) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 3348}, {48, 31956}, {560, 56594}, {19614, 28781}, {42465, 52430}
X(56593) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 3348), (4, 31956), (76, 56594), (1249, 28781), (2052, 42465), (2060, 15905), (3183, 6), (3350, 28783), (8812, 52373), (14361, 3349), (14362, 1073), (15466, 14365), (28785, 14642), (40839, 64)
X(56593) = pole of the tripolar of X(31956) with respect to polar circle
X(56593) = pole of line {3348, 6617} with respect to Steiner-Wallace hyperbola
X(56593) = barycentric product X(i)*X(j) for these {i, j}: {76, 3183}, {2060, 52581}, {14362, 15466}, {14615, 40839}
X(56593) = trilinear product X(i)*X(j) for these {i, j}: {75, 3183}, {1895, 14362}, {18750, 40839}
X(56593) = trilinear quotient X(i)/X(j) for these (i, j): (75, 3348), (92, 31956), (561, 56594), (1895, 28781), (3183, 31), (8812, 1410), (14362, 19614), (40839, 2155)
X(56593) = (X(253), X(14249))-harmonic conjugate of X(264)


X(56594) = SECOND INTERSECTION OF THE CUBIC K183 AND ITS TANGENT LINE AT X(6527)

Barycentrics    (a^12+6*(b^2-c^2)*a^10-(b^2-c^2)*(29*b^2+15*c^2)*a^8+4*(b^2-c^2)*(9*b^4+10*b^2*c^2+5*c^4)*a^6-(b^2-c^2)*(9*b^6+15*c^6+5*b^2*c^2*(3*b-c)*(3*b+c))*a^4-2*(b^2-c^2)^4*(5*b^2+3*c^2)*a^2+(5*b^4+10*b^2*c^2+c^4)*(b^2-c^2)^4)*(a^12-6*(b^2-c^2)*a^10+(b^2-c^2)*(15*b^2+29*c^2)*a^8-4*(b^2-c^2)*(5*b^4+10*b^2*c^2+9*c^4)*a^6+(b^2-c^2)*(15*b^6+9*c^6-5*b^2*c^2*(b-3*c)*(b+3*c))*a^4-2*(b^2-c^2)^4*(3*b^2+5*c^2)*a^2+(b^4+10*b^2*c^2+5*c^4)*(b^2-c^2)^4)*(-a^2+b^2+c^2) : :

X(56594) lies on the cubic K183 and these lines: {69, 14362}, {264, 47633}, {6527, 31956}, {14615, 42465}, {33672, 56595}

X(56594) = isotomic conjugate of X(3183)
X(56594) = X(i)-cross conjugate of-X(j) for these (i, j): (253, 69), (1032, 34403), (33546, 2)
X(56594) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 3183), (3343, 28785), (3349, 17833), (6374, 56593), (14481, 1033)
X(56594) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 3183}, {204, 28785}, {560, 56593}
X(56594) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 3183), (76, 56593), (253, 40839), (1032, 3350), (1073, 28785), (3348, 6), (3349, 1033), (6617, 31944), (14365, 1249), (14481, 17833), (28781, 3172), (31956, 25), (34403, 14362), (37669, 2060), (42465, 393), (56382, 8812)
X(56594) = perspector of the inconic with center X(33546)
X(56594) = pole of line {2060, 3183} with respect to Steiner-Wallace hyperbola
X(56594) = barycentric product X(i)*X(j) for these {i, j}: {76, 3348}, {305, 31956}, {3926, 42465}, {14365, 34403}
X(56594) = trilinear product X(i)*X(j) for these {i, j}: {75, 3348}, {304, 31956}, {326, 42465}, {14365, 19611}
X(56594) = trilinear quotient X(i)/X(j) for these (i, j): (75, 3183), (561, 56593), (3348, 31), (14365, 204), (19611, 28785), (31956, 1973), (42465, 1096)


X(56595) = THIRD INTERSECTION OF THE CUBIC K183 AND THE LINE THROUGH ITS POINTS X(75) AND X(253)

Barycentrics    (a^9+3*(b+c)*a^8-4*(b+c)*(2*b^2-3*b*c+2*c^2)*a^6-6*(b^2-c^2)^2*a^5+2*(b^2-c^2)*(b-c)*(3*b^2-4*b*c+3*c^2)*a^4+8*(b^4-c^4)*(b^2-c^2)*a^3+4*(b^2-c^2)*(b-c)^3*b*c*a^2-(b^2-c^2)^2*(3*b^2+c^2)*(b^2+3*c^2)*a-(b^2-c^2)^3*(b-c)^3)/a : :

X(56595) lies on the cubic K183 and these lines: {69, 1034}, {75, 253}, {85, 264}, {322, 52565}, {18134, 20921}, {18147, 33780}, {33672, 56594}

X(56595) = isotomic conjugate of X(3347)
X(56595) = X(14615)-Ceva conjugate of-X(75)
X(56595) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 3347), (57, 34167), (2184, 64), (3342, 7037), (40836, 7008)
X(56595) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 3347}, {2192, 34167}
X(56595) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 3347), (223, 34167), (3182, 6), (3351, 7037), (5932, 3352), (8802, 607), (8894, 33), (28784, 7118), (34162, 282), (40702, 41080), (42451, 19), (47851, 2192)
X(56595) = pole of line {1819, 3347} with respect to Steiner-Wallace hyperbola
X(56595) = barycentric product X(i)*X(j) for these {i, j}: {76, 3182}, {304, 42451}, {7182, 8894}, {34162, 40702}
X(56595) = trilinear product X(i)*X(j) for these {i, j}: {69, 42451}, {75, 3182}, {347, 34162}, {348, 8894}, {7182, 8802}, {40702, 47851}
X(56595) = trilinear quotient X(i)/X(j) for these (i, j): (75, 3347), (347, 34167), (3182, 31), (8802, 2212), (8894, 607), (34162, 2192), (42451, 25), (47851, 7118)


X(56596) = THIRD INTERSECTION OF THE CUBIC K183 AND THE LINE THROUGH ITS POINTS X(322) AND X(6527)

Barycentrics    (a^6+2*(b-c)*a^5-(b-c)^2*a^4-4*(b^3-c^3)*a^3-(b^2-c^2)^2*a^2+2*(b^4-c^4)*(b+c)*a+(b^2-c^2)^2*(b-c)^2)*(a^6-2*(b-c)*a^5-(b-c)^2*a^4+4*(b^3-c^3)*a^3-(b^2-c^2)^2*a^2-2*(b^4-c^4)*(b+c)*a+(b^2-c^2)^2*(b-c)^2)/a : :

X(56596) lies on the cubic K183 and these lines: {69, 1034}, {75, 40701}, {85, 46352}, {264, 34404}, {271, 342}, {286, 5931}, {309, 56592}, {322, 345}, {332, 3345}, {3718, 8806}, {7149, 30479}

X(56596) = isotomic conjugate of X(1490)
X(56596) = cevapoint of X(i) and X(j) for these {i, j}: {2, 9799}, {514, 24031}, {1034, 41514}
X(56596) = X(i)-cross conjugate of-X(j) for these (i, j): (189, 85), (253, 309), (273, 75), (6245, 2), (8806, 41514), (46352, 47634)
X(56596) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 1490), (9, 3197), (223, 1035), (3160, 47848), (3351, 198), (6374, 33672), (40593, 5932), (40605, 13614), (40624, 14302), (40837, 207)
X(56596) = X(i)-isoconjugate of-X(j) for these {i, j}: {6, 3197}, {31, 1490}, {40, 47438}, {41, 47848}, {55, 1035}, {184, 3176}, {207, 212}, {228, 8885}, {560, 33672}, {1402, 13614}, {2175, 5932}, {2187, 3341}, {3195, 46881}, {40837, 52425}
X(56596) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 3197), (2, 1490), (7, 47848), (27, 8885), (57, 1035), (76, 33672), (85, 5932), (92, 3176), (189, 3341), (273, 40837), (278, 207), (333, 13614), (1034, 9), (1436, 47438), (3342, 198), (3345, 6), (4391, 14302), (7007, 607), (7037, 41), (7149, 19), (7152, 31), (8064, 32652), (8806, 37), (8811, 1400), (17896, 8063), (34404, 46350), (40838, 33), (41081, 46881), (41514, 1), (44190, 47436), (46352, 223), (47634, 329), (47850, 55)
X(56596) = trilinear pole of the line {6332, 17896} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56596) = perspector of the inconic with center X(6245)
X(56596) = pole of line {1490, 13614} with respect to Steiner-Wallace hyperbola
X(56596) = barycentric product X(i)*X(j) for these {i, j}: {75, 41514}, {76, 3345}, {85, 1034}, {189, 47634}, {274, 8806}, {304, 7149}, {561, 7152}, {3342, 44190}, {6063, 47850}, {7037, 20567}, {7182, 40838}, {8811, 28660}, {34404, 46352}
X(56596) = trilinear product X(i)*X(j) for these {i, j}: {2, 41514}, {7, 1034}, {69, 7149}, {75, 3345}, {76, 7152}, {84, 47634}, {85, 47850}, {86, 8806}, {280, 46352}, {309, 3342}, {314, 8811}, {348, 40838}, {6063, 7037}, {7007, 7182}
X(56596) = trilinear quotient X(i)/X(j) for these (i, j): (2, 3197), (7, 1035), (75, 1490), (84, 47438), (85, 47848), (264, 3176), (273, 207), (286, 8885), (309, 3341), (314, 13614), (331, 40837), (561, 33672), (1034, 55), (3342, 2187), (3345, 31), (6063, 5932), (7007, 2212), (7037, 2175), (7149, 25), (7152, 32)


X(56597) = THIRD INTERSECTION OF THE CUBIC K160 AND THE LINE THROUGH ITS POINTS X(6) AND X(66)

Barycentrics    a^2*((b^2+c^2)*a^10+b^2*c^2*a^8-2*(b^6+c^6)*a^6+(b^8-c^8)*a^2*(b^2-c^2)-(b^4-c^4)^2*b^2*c^2) : :

X(56597) lies on the cubic K160 and these lines: {6, 66}, {159, 35325}, {206, 46242}, {1613, 20987}, {3053, 20960}, {5301, 21774}, {12220, 36828}, {18374, 40054}

X(56597) = isogonal conjugate of the cyclocevian conjugate of X(315)
X(56597) = polar conjugate of the isotomic conjugate of X(23172)
X(56597) = crosssum of X(525) and X(55047)
X(56597) = X(206)-Ceva conjugate of-X(6)
X(56597) = X(18018)-Dao conjugate of-X(40421)
X(56597) = X(23172)-reciprocal conjugate of-X(69)
X(56597) = pole of the tripolar of X(206) with respect to circumcircle
X(56597) = barycentric product X(4)*X(23172)
X(56597) = trilinear product X(19)*X(23172)
X(56597) = trilinear quotient X(23172)/X(63)


X(56598) = SECOND INTERSECTION OF THE CUBIC K616 AND ITS TANGENT LINE AT X(376)

Barycentrics    (a^8-(3*b^2-4*c^2)*a^6+(3*b^4+5*b^2*c^2-10*c^4)*a^4-(b^2-c^2)*(b^4+9*b^2*c^2+4*c^4)*a^2-(b^2-c^2)^3*c^2)*(a^8+(4*b^2-3*c^2)*a^6-(10*b^4-5*b^2*c^2-3*c^4)*a^4+(b^2-c^2)*(4*b^4+9*b^2*c^2+c^4)*a^2+(b^2-c^2)^3*b^2)*((b^2+c^2)*a^4-2*(b^4-b^2*c^2+c^4)*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(56598) lies on the cubic K616 and these lines: {4, 8675}, {110, 376}, {36876, 51833}

X(56598) = X(113)-Dao conjugate of-X(14915)
X(56598) = X(14915)-isoconjugate of-X(36053)
X(56598) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (3003, 14915), (43660, 2986)
X(56598) = barycentric product X(3580)*X(43660)
X(56598) = trilinear product X(1725)*X(43660)
X(56598) = trilinear quotient X(i)/X(j) for these (i, j): (1725, 14915), (43660, 36053)


X(56599) = SECOND INTERSECTION OF THE CUBIC K616 AND ITS TANGENT LINE AT X(1249)

Barycentrics    ((b^2+c^2)*a^4-2*b^2*c^2*a^2-(b^4-c^4)*(b^2-c^2))*(a^10+(b^2-2*c^2)*a^8-2*(b^2-c^2)*b^2*a^6-2*(b^6-c^6)*a^4+(b^4-c^4)*(b^2+c^2)^2*a^2+(b^4-c^4)*(b^2-c^2)^2*b^2)*(a^10-(2*b^2-c^2)*a^8+2*(b^2-c^2)*c^2*a^6+2*(b^6-c^6)*a^4-(b^4-c^4)*(b^2+c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)^2*c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(56599) lies on the cubic K616 and these lines: {4, 8673}, {206, 1249}, {376, 34168}, {36876, 51831}

X(56599) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (14580, 34146), (52672, 56571)
X(56599) = barycentric product X(5523)*X(34168)


X(56600) = SECOND INTERSECTION OF THE CUBIC K616 AND ITS TANGENT LINE AT X(3421)

Barycentrics    (a^5-c*a^4-(b-3*c)*b*a^3+(b^2+b*c-4*c^2)*b*a^2-(b^2-c^2)*(3*b-c)*c*a-(b^2-c^2)*(b^3+c^3))*(a^5-b*a^4+(3*b-c)*c*a^3-(4*b^2-b*c-c^2)*c*a^2-(b^2-c^2)*(b-3*c)*b*a+(b^2-c^2)*(b^3+c^3))*(a^3-b*c*a+(b^2-c^2)*(b-c)) : :

X(56600) lies on the cubic K616 and these lines: {4, 9013}, {376, 6011}, {3421, 3952}


X(56601) = THIRD INTERSECTION OF THE CUBIC K616 AND THE LINE THROUGH ITS POINTS X(69) AND X(1249)

Barycentrics    (2*a^2-b^2-c^2)*(a^6-b^2*a^4-(b^4-c^4)*a^2+(b^2-c^2)*(b^4+b^2*c^2+2*c^4))*(a^6-c^2*a^4+(b^4-c^4)*a^2-(b^2-c^2)*(2*b^4+b^2*c^2+c^4))*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(56601) lies on the cubic K616 and these lines: {2, 51937}, {4, 525}, {69, 648}, {376, 1297}, {4235, 6390}, {5485, 36876}, {6353, 32649}, {9476, 52288}, {14912, 15407}, {32687, 53186}, {47389, 55270}

X(56601) = polar conjugate of the tripolar centroidal conjugate of X(3424)
X(56601) = isotomic conjugate of X(36894)
X(56601) = cevapoint of X(14273) and X(51429)
X(56601) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 36894), (1560, 1503), (2482, 441), (6593, 8779)
X(56601) = X(43673)-hirst inverse of-X(47105)
X(56601) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 36894}, {111, 8766}, {441, 923}, {895, 2312}, {897, 8779}, {1503, 36060}
X(56601) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 36894), (187, 8779), (468, 1503), (524, 441), (896, 8766), (1297, 895), (4235, 34211), (5095, 35282), (5967, 34156), (6330, 671), (8767, 897), (12828, 53568), (14417, 39473), (32649, 32729), (34212, 10097), (35140, 30786), (36046, 36142), (39265, 5968), (43673, 14977), (43717, 111), (44102, 42671), (44146, 30737), (44770, 691), (47105, 16092), (51822, 51980), (52485, 9214)
X(56601) = trilinear pole of the line {468, 14417} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56601) = pole of line {441, 36894} with respect to Steiner-Wallace hyperbola
X(56601) = barycentric product X(i)*X(j) for these {i, j}: {468, 35140}, {524, 6330}, {1297, 44146}, {3266, 43717}, {4235, 43673}, {8767, 14210}, {32687, 45807}, {35522, 44770}, {36890, 52485}, {39265, 52145}, {47105, 52094}
X(56601) = trilinear product X(i)*X(j) for these {i, j}: {524, 8767}, {896, 6330}, {14210, 43717}, {14417, 36092}, {35522, 36046}
X(56601) = trilinear quotient X(i)/X(j) for these (i, j): (75, 36894), (468, 2312), (524, 8766), (896, 8779), (1297, 36060), (6330, 897), (8767, 111), (14210, 441), (36046, 32729), (43717, 923), (44770, 36142)
X(56601) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (39265, 47105, 52485), (39265, 56687, 4), (47105, 52485, 4), (52485, 56687, 47105)


X(56602) = THIRD INTERSECTION OF THE CUBIC K616 AND THE LINE THROUGH ITS POINTS X(69) AND X(6601)

Barycentrics    (a^2-b*a-c*(b-c))*(a^2-c*a+b*(b-c))*((b+c)*a^4-2*(b^2+b*c+c^2)*a^3+2*(b^3+c^3)*a^2-2*(b^2+3*b*c+c^2)*(b-c)^2*a+(b^4-c^4)*(b-c)) : :

X(56602) lies on the cubic K616 and these lines: {4, 885}, {69, 2481}, {105, 376}, {1249, 8751}, {2550, 36816}, {3421, 5485}, {18785, 41325}

X(56602) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (14267, 34173, 52456), (34173, 52456, 4)


X(56603) = THIRD INTERSECTION OF THE CUBIC K616 AND THE LINE THROUGH ITS POINTS X(69) AND X(9214)

Barycentrics    (a^6-(b^2+c^2)*a^4+(2*b^4-c^4)*a^2-(b^2-c^2)*(2*b^4+c^4))*(a^6-(b^2+c^2)*a^4-(b^4-2*c^4)*a^2+(b^2-c^2)*(b^4+2*c^4))*(2*a^6-2*(b^2+c^2)*a^4-(3*b^4-8*b^2*c^2+3*c^4)*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(56603) lies on the cubic K616 and these lines: {4, 690}, {69, 892}, {376, 842}, {5485, 51835}, {7735, 48453}, {11006, 52483}, {36163, 36825}

X(56603) = X(31655)-Dao conjugate of-X(542)
X(56603) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7472, 14999), (10418, 542), (34169, 16092)
X(56603) = barycentric product X(i)*X(j) for these {i, j}: {5641, 10418}, {7472, 14223}, {34169, 52094}
X(56603) = trilinear quotient X(10418)/X(2247)


X(56604) = THIRD INTERSECTION OF THE CUBIC K616 AND THE LINE THROUGH ITS POINTS X(69) AND X(34208)

Barycentrics    (2*a^6-3*(b^2+c^2)*a^4-4*(b^4-3*b^2*c^2+c^4)*a^2+(b^4-c^4)*(b^2-c^2))*(a^4-(2*b^2+c^2)*a^2+b^4-b^2*c^2+2*c^4)*(a^4-(b^2+2*c^2)*a^2+2*b^4-b^2*c^2+c^4)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(56604) lies on the cubic K616 and these lines: {4, 3566}, {69, 8754}, {376, 3563}, {5485, 51833}, {6353, 32697}

X(56604) = X(3563)-reciprocal conjugate of-X(56007)


X(56605) = THIRD INTERSECTION OF THE CUBIC K616 AND THE LINE THROUGH ITS POINTS X(69) AND X(36876)

Barycentrics    ((b^2+c^2)*a^2-b^4-c^4)*(a^8+(2*b^2-3*c^2)*a^6-3*(b^2-c^2)*(2*b^2+c^2)*a^4+(b^2-c^2)*(2*b^4+5*b^2*c^2+c^4)*a^2+(b^2-c^2)^3*b^2)*(a^8-(3*b^2-2*c^2)*a^6+3*(b^2-c^2)*(b^2+2*c^2)*a^4-(b^2-c^2)*(b^4+5*b^2*c^2+2*c^4)*a^2-(b^2-c^2)^3*c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(56605) lies on the cubic K616 and these lines: {4, 520}, {69, 6528}, {112, 376}, {877, 51386}, {2706, 6524}, {4230, 44704}, {47390, 53050}

X(56605) = isotomic conjugate of X(36893)
X(56605) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 36893), (132, 6000), (11672, 44436)
X(56605) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 36893}, {293, 6000}, {1910, 44436}
X(56605) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 36893), (232, 6000), (511, 44436), (1294, 287), (6530, 51358), (32646, 685), (43701, 53173)
X(56605) = barycentric product X(i)*X(j) for these {i, j}: {232, 54988}, {297, 1294}, {6333, 32646}
X(56605) = trilinear product X(i)*X(j) for these {i, j}: {240, 1294}, {684, 36043}
X(56605) = trilinear quotient X(i)/X(j) for these (i, j): (75, 36893), (240, 6000), (1294, 293), (1959, 44436), (32646, 36104), (36043, 685), (54988, 336)


X(56606) = THIRD INTERSECTION OF THE CUBIC K616 AND THE LINE THROUGH ITS POINTS X(69) AND X(36878)

Barycentrics    ((b^2+c^2)*a^8-14*b^2*c^2*a^6-2*(b^2+c^2)*(b^4-9*b^2*c^2+c^4)*a^4+2*(11*b^4-30*b^2*c^2+11*c^4)*b^2*c^2*a^2+(b^4-c^4)*(b^2-c^2)*(b^4-8*b^2*c^2+c^4))*(a^4-(2*b-c)*(2*b+c)*a^2+b^2*(b^2+c^2))*(a^4+(b-2*c)*(b+2*c)*a^2+c^2*(b^2+c^2))*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(56606) lies on the cubic K616 and these lines: {4, 20186}, {69, 36878}, {376, 2374}, {5485, 34208}


X(56607) = THIRD INTERSECTION OF THE CUBIC K616 AND THE LINE THROUGH ITS POINTS X(69) AND X(51830)

Barycentrics    (a^6+(2*b-c)*(2*b+c)*a^4-(3*b^4+c^4)*a^2-(b^2-c^2)*(2*b^4+5*b^2*c^2+c^4))*(a^6-(b-2*c)*(b+2*c)*a^4-(b^4+3*c^4)*a^2+(b^2-c^2)*(b^4+5*b^2*c^2+2*c^4))*(2*a^6+3*(b^2+c^2)*a^4+2*((b^2-c^2)^2-4*b^2*c^2)*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(56607) lies on the cubic K616 and these lines: {4, 3800}, {69, 51830}, {376, 29180}


X(56608) = SECOND INTERSECTION OF THE CUBIC K1232 AND ITS TANGENT LINE AT X(15)

Barycentrics    -10*S*a^2+sqrt(3)*(77*a^4-50*(b^2+c^2)*a^2-27*(b^2-c^2)^2) : :

X(56608) lies on the cubic K1232 and these lines: {6, 56609}, {15, 15704}, {548, 42107}, {3534, 18581}, {11543, 42685}, {15683, 16644}, {17800, 23302}, {36968, 42585}, {41981, 43241}, {42087, 46333}, {42104, 42948}, {42108, 43365}, {42114, 49136}, {42140, 42686}, {42144, 44020}, {42156, 42684}, {42504, 42543}, {42943, 43303}, {43106, 43775}, {43228, 43308}, {43298, 43501}


X(56609) = SECOND INTERSECTION OF THE CUBIC K1232 AND ITS TANGENT LINE AT X(16)

Barycentrics    10*S*a^2+sqrt(3)*(77*a^4-50*(b^2+c^2)*a^2-27*(b^2-c^2)^2) : :

X(56609) lies on the cubic K1232 and these lines: {6, 56608}, {16, 15704}, {548, 42110}, {3534, 18582}, {11542, 42684}, {15683, 16645}, {17800, 23303}, {36967, 42584}, {41981, 43240}, {42088, 46333}, {42105, 42949}, {42109, 43364}, {42111, 49136}, {42141, 42687}, {42145, 44019}, {42153, 42685}, {42505, 42544}, {42942, 43302}, {43105, 43776}, {43229, 43309}, {43299, 43502}


X(56610) = SECOND INTERSECTION OF THE CUBIC K1232 AND ITS TANGENT LINE AT X(43771)

Barycentrics    -350*S*a^2+sqrt(3)*(197*a^4-98*(b^2+c^2)*a^2-99*(b^2-c^2)^2) : :

X(56610) lies on the cubic K1232 and these lines: {6, 56611}, {15, 12811}, {3627, 43334}, {8703, 16961}, {12103, 43303}, {41991, 43301}, {42105, 42974}, {42117, 43775}, {42164, 43771}, {43106, 49137}, {43466, 49905}, {43769, 56614}, {43774, 43870}


X(56611) = SECOND INTERSECTION OF THE CUBIC K1232 AND ITS TANGENT LINE AT X(43772)

Barycentrics    350*S*a^2+sqrt(3)*(197*a^4-98*(b^2+c^2)*a^2-99*(b^2-c^2)^2) : :

X(56611) lies on the cubic K1232 and these lines: {6, 56610}, {16, 12811}, {3627, 43335}, {8703, 16960}, {12103, 43302}, {41991, 43300}, {42104, 42975}, {42118, 43776}, {42165, 43772}, {43105, 49137}, {43465, 49906}, {43770, 56615}, {43773, 43869}


X(56612) = THIRD INTERSECTION OF THE CUBIC K1232 AND THE LINE THROUGH ITS POINTS X(4) AND X(43779)

Barycentrics    -184*sqrt(3)*S*a^2+59*a^4-24*(b^2+c^2)*a^2-35*(b^2-c^2)^2 : :

X(56612) lies on the cubic K1232 and these lines: {4, 43779}, {6, 56613}, {20, 42804}, {398, 33603}, {5366, 43502}, {11539, 43479}, {22237, 35018}, {35409, 42432}, {42494, 42919}, {42511, 42805}, {42949, 42999}, {43300, 43769}, {43487, 43492}


X(56613) = THIRD INTERSECTION OF THE CUBIC K1232 AND THE LINE THROUGH ITS POINTS X(4) AND X(43780)

Barycentrics    184*sqrt(3)*S*a^2+59*a^4-24*(b^2+c^2)*a^2-35*(b^2-c^2)^2 : :

X(56613) lies on the cubic K1232 and these lines: {4, 43780}, {6, 56612}, {20, 42803}, {397, 33602}, {5365, 43501}, {11539, 43480}, {22235, 35018}, {35409, 42431}, {42495, 42918}, {42510, 42806}, {42948, 42998}, {43301, 43770}, {43488, 43491}


X(56614) = THIRD INTERSECTION OF THE CUBIC K1232 AND THE LINE THROUGH ITS POINTS X(4) AND X(43781)

Barycentrics    -300*sqrt(3)*S*a^2+131*a^4-54*(b^2+c^2)*a^2-77*(b^2-c^2)^2 : :

X(56614) lies on the cubic K1232 and these lines: {4, 43781}, {6, 56615}, {12811, 49824}, {42495, 42816}, {42775, 43772}, {43769, 56610}, {43776, 43777}


X(56615) = THIRD INTERSECTION OF THE CUBIC K1232 AND THE LINE THROUGH ITS POINTS X(4) AND X(43782)

Barycentrics    300*sqrt(3)*S*a^2+131*a^4-54*(b^2+c^2)*a^2-77*(b^2-c^2)^2 : :

X(56615) lies on the cubic K1232 and these lines: {4, 43782}, {6, 56614}, {12811, 49825}, {42494, 42815}, {42776, 43771}, {43770, 56611}, {43775, 43778}


X(56616) = THIRD INTERSECTION OF THE CUBIC K1232 AND THE LINE THROUGH ITS POINTS X(4) AND X(43783)

Barycentrics    -380*S*a^2+(113*a^4-50*(b^2+c^2)*a^2-63*(b^2-c^2)^2)*sqrt(3) : :

X(56616) lies on the cubic K1232 and these lines: {4, 43783}, {6, 56617}, {20, 43105}, {5066, 11485}, {10654, 43494}, {42139, 42934}, {42494, 43299}, {42969, 43103}, {43869, 43878}


X(56617) = THIRD INTERSECTION OF THE CUBIC K1232 AND THE LINE THROUGH ITS POINTS X(4) AND X(43784)

Barycentrics    380*S*a^2+(113*a^4-50*(b^2+c^2)*a^2-63*(b^2-c^2)^2)*sqrt(3) : :

X(56617) lies on the cubic K1232 and these lines: {4, 43784}, {6, 56616}, {20, 43106}, {5066, 11486}, {10653, 43493}, {42142, 42935}, {42495, 43298}, {42968, 43102}, {43870, 43877}


X(56618) = THIRD INTERSECTION OF THE CUBIC K1232 AND THE LINE THROUGH ITS POINTS X(4) AND X(43791)

Barycentrics    84*S*a^2-41*a^4+18*(b^2+c^2)*a^2+23*(b^2-c^2)^2 : :

X(56618) lies on the cubic K1232 and these lines: {4, 43791}, {6, 56619}, {20, 3594}, {1151, 41949}, {1588, 6452}, {1656, 9540}, {3068, 3854}, {3525, 9693}, {3591, 6433}, {6419, 43522}, {6459, 10299}, {6560, 43798}, {10195, 43792}, {15022, 43381}, {42225, 42414}, {42266, 42574}, {42566, 42571}, {42637, 43788}, {43376, 51850}


X(56619) = THIRD INTERSECTION OF THE CUBIC K1232 AND THE LINE THROUGH ITS POINTS X(4) AND X(43792)

Barycentrics    -84*S*a^2-41*a^4+18*(b^2+c^2)*a^2+23*(b^2-c^2)^2 : :

X(56619) lies on the cubic K1232 and these lines: {4, 43792}, {6, 56618}, {20, 3592}, {1152, 41950}, {1587, 6451}, {1656, 13935}, {3069, 3854}, {3525, 31414}, {3590, 6434}, {6420, 43521}, {6460, 8960}, {6561, 43797}, {10194, 43791}, {15022, 43380}, {42226, 42413}, {42267, 42575}, {42567, 42570}, {42638, 43787}, {43377, 51849}


X(56620) = SECOND INTERSECTION OF THE CUBIC K585 AND ITS TANGENT LINE AT X(3274)

Barycentrics    a*(sin(A/3-B/3)*sin(2*C/3)*(c*cos(A/3+Pi/6)-a*cos(C/3+Pi/6))-sin(A/3-C/3)*sin(2*B/3)*(b*cos(A/3+Pi/6)-a*cos(B/3+Pi/6))) : :

X(56620) lies on the cubic K585 and these lines: {6, 3274}, {61, 1137}, {357, 1135}

X(56620) = X(3602)-Ceva conjugate of-X(3274)


X(56621) = SECOND INTERSECTION OF THE CUBIC K1204 AND ITS TANGENT LINE AT X(41945)

Barycentrics    3*a^2*S+41*a^4-76*(b^2+c^2)*a^2+35*(b^2-c^2)^2 : :

X(56621) lies on the cubic K1204 and these lines: {2, 6410}, {6, 56622}, {632, 43385}, {1151, 42609}, {3592, 10194}, {3594, 55859}, {6200, 15723}, {6411, 10124}, {6438, 42602}, {6489, 41992}, {6519, 46219}, {8252, 56626}, {11540, 43563}, {13846, 55858}, {18512, 42558}, {32790, 41967}, {35255, 42600}, {35381, 42577}, {35822, 55866}, {41965, 42566}


X(56622) = SECOND INTERSECTION OF THE CUBIC K1204 AND ITS TANGENT LINE AT X(41946)

Barycentrics    -3*a^2*S+41*a^4-76*(b^2+c^2)*a^2+35*(b^2-c^2)^2 : :

X(56622) lies on the cubic K1204 and these lines: {2, 6409}, {6, 56621}, {632, 43384}, {1152, 42608}, {3592, 55859}, {3594, 10195}, {6396, 15723}, {6412, 10124}, {6437, 42603}, {6488, 41992}, {6522, 46219}, {8253, 56625}, {11540, 43562}, {13847, 31487}, {18510, 42557}, {32789, 41968}, {35256, 42601}, {35381, 42576}, {35823, 55866}, {41966, 42567}


X(56623) = SECOND INTERSECTION OF THE CUBIC K1204 AND ITS TANGENT LINE AT X(42490)

Barycentrics    sqrt(3)*a^2*S+38*a^4-72*(b^2+c^2)*a^2+34*(b^2-c^2)^2 : :

X(56623) lies on the cubic K1204 and these lines: {2, 42165}, {6, 56624}, {14, 42596}, {17, 43441}, {18, 56627}, {398, 42477}, {10187, 42818}, {10645, 46219}, {11543, 42493}, {16239, 42159}, {41984, 42152}, {42594, 42599}, {42806, 42949}, {42890, 43551}, {42936, 55866}, {42957, 43028}, {42975, 43440}, {42999, 43444}


X(56624) = SECOND INTERSECTION OF THE CUBIC K1204 AND ITS TANGENT LINE AT X(42491)

Barycentrics    -sqrt(3)*a^2*S+38*a^4-72*(b^2+c^2)*a^2+34*(b^2-c^2)^2 : :

X(56624) lies on the cubic K1204 and these lines: {2, 42164}, {6, 56623}, {13, 42597}, {17, 56628}, {18, 43440}, {397, 42476}, {10188, 42817}, {10646, 46219}, {11542, 42492}, {16239, 42162}, {41984, 42149}, {42595, 42598}, {42805, 42948}, {42891, 43550}, {42937, 55866}, {42956, 43029}, {42974, 43441}, {42998, 43445}


X(56625) = THIRD INTERSECTION OF THE CUBIC K1204 AND THE LINE THROUGH ITS POINTS X(13) AND X(41945)

Barycentrics    6*a^2*S+32*a^4-58*(b^2+c^2)*a^2+26*(b^2-c^2)^2-sqrt(3)*(19*a^4-35*(b^2+c^2)*a^2+16*(b^2-c^2)^2) : :

X(56625) lies on the cubic K1204 and these lines: {2, 3366}, {13, 41945}, {17, 36470}, {3367, 16267}, {8253, 56622}, {16962, 42563}, {23302, 41944}, {32790, 43544}, {33417, 36452}, {34552, 42158}, {42244, 53130}, {42990, 52214}, {49907, 53456}, {50245, 54534}

X(56625) = (X(23302), X(41944))-harmonic conjugate of X(56626)


X(56626) = THIRD INTERSECTION OF THE CUBIC K1204 AND THE LINE THROUGH ITS POINTS X(13) AND X(41946)

Barycentrics    -6*a^2*S+32*a^4-58*(b^2+c^2)*a^2+26*(b^2-c^2)^2+sqrt(3)*(19*a^4-35*(b^2+c^2)*a^2+16*(b^2-c^2)^2) : :

X(56626) lies on the cubic K1204 and these lines: {2, 3367}, {13, 41946}, {17, 36452}, {3366, 16267}, {6450, 35735}, {8252, 56621}, {16962, 42562}, {23302, 41944}, {32789, 43544}, {33417, 36470}, {34551, 42158}, {35738, 54535}, {42245, 53131}, {42990, 52215}, {49907, 53457}

X(56626) = (X(23302), X(41944))-harmonic conjugate of X(56625)


X(56627) = THIRD INTERSECTION OF THE CUBIC K1204 AND THE LINE THROUGH ITS POINTS X(13) AND X(42491)

Barycentrics    -2*sqrt(3)*a^2*S+49*a^4-91*(b^2+c^2)*a^2+42*(b^2-c^2)^2 : :

X(56627) lies on the cubic K1204 and these lines: {2, 5352}, {6, 43370}, {13, 42491}, {17, 16239}, {18, 56623}, {61, 10187}, {632, 5318}, {1656, 42430}, {3525, 42106}, {3533, 36968}, {3628, 42108}, {5237, 42494}, {10124, 12816}, {14869, 43226}, {15723, 16965}, {16241, 42611}, {16242, 43441}, {16773, 43443}, {16967, 42690}, {19107, 42498}, {33417, 42599}, {41984, 42489}, {41992, 42163}, {42087, 55861}, {42089, 42499}, {42162, 42958}, {42429, 55863}, {42500, 42964}, {42546, 43401}, {42592, 43014}, {42593, 42897}, {42596, 43423}, {42597, 42598}, {42991, 43238}, {43004, 43469}, {43107, 43237}

X(56627) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (6, 55858, 56628), (42489, 43022, 54594)


X(56628) = THIRD INTERSECTION OF THE CUBIC K1204 AND THE LINE THROUGH ITS POINTS X(14) AND X(42490)

Barycentrics    2*sqrt(3)*a^2*S+49*a^4-91*(b^2+c^2)*a^2+42*(b^2-c^2)^2 : :

X(56628) lies on the cubic K1204 and these lines: {2, 5351}, {6, 43370}, {14, 42490}, {17, 56624}, {18, 16239}, {62, 10188}, {632, 5321}, {1656, 42429}, {3525, 42103}, {3533, 36967}, {3628, 42109}, {5238, 42495}, {10124, 12817}, {14869, 43227}, {15723, 16964}, {16241, 43440}, {16242, 42610}, {16772, 43442}, {16966, 42691}, {19106, 42499}, {33416, 42598}, {41984, 42488}, {41992, 42166}, {42088, 55861}, {42092, 42498}, {42159, 42959}, {42430, 55863}, {42501, 42965}, {42545, 43402}, {42592, 42896}, {42593, 43015}, {42596, 42599}, {42597, 43422}, {42990, 43239}, {43005, 43470}, {43100, 43236}

X(56628) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (6, 55858, 56627), (42488, 43023, 54593)


X(56629) = SECOND INTERSECTION OF THE CUBIC K609 AND ITS TANGENT LINE AT X(20)

Barycentrics    a^2*(a^8-10*(b^2+c^2)*a^6-20*(b^2-3*c^2)*(3*b^2-c^2)*a^4+2*(b^2+c^2)*(37*b^4-102*b^2*c^2+37*c^4)*a^2-5*b^8-5*c^8-2*b^2*c^2*(26*b^4-81*b^2*c^2+26*c^4)) : :

X(56629) lies on the cubic K609 and these lines: {6, 19617}, {20, 3564}, {3167, 3565}, {56630, 56632}


X(56630) = THIRD INTERSECTION OF THE CUBIC K609 AND THE LINE THROUGH ITS POINTS X(1) AND X(2)

Barycentrics    a*(a^3-3*(b+c)*a^2-(3*b^2-8*b*c+3*c^2)*a+(b+c)*(b^2+c^2)) : :
X(56630) = X(1)-2*X(54319)

X(56630) lies on the cubic K609 and these lines: {1, 2}, {9, 15839}, {56, 1707}, {63, 32577}, {87, 4321}, {105, 28528}, {106, 39946}, {165, 2943}, {238, 1420}, {244, 11682}, {392, 988}, {517, 11512}, {518, 3445}, {982, 15829}, {999, 54386}, {1054, 7991}, {1319, 9370}, {1376, 45219}, {1616, 3749}, {1739, 30323}, {1743, 9310}, {2098, 16610}, {2136, 56009}, {2956, 54354}, {3304, 3751}, {3340, 17063}, {3731, 39244}, {3869, 18193}, {3915, 35262}, {4255, 10179}, {4383, 20323}, {4640, 8572}, {5266, 35272}, {5289, 52541}, {5438, 37588}, {5603, 24178}, {6282, 13069}, {7955, 52161}, {7962, 24440}, {7982, 24174}, {7987, 8616}, {8056, 11531}, {8245, 30389}, {9259, 39248}, {9624, 24161}, {11194, 15854}, {11260, 37679}, {11376, 17064}, {11520, 46190}, {11522, 17889}, {16483, 17614}, {16486, 56176}, {25522, 37716}, {31435, 37617}, {32049, 51415}, {56629, 56632}

X(56630) = reflection of X(1) in X(54319)
X(56630) = X(21)-beth conjugate of-X(1722)
X(56630) = pole of line {4057, 9048} with respect to circumcircle
X(56630) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 49997, 1722), (78, 1149, 1), (1201, 19861, 1), (4511, 28011, 1), (7991, 45047, 1054), (8056, 52181, 11531), (16483, 17614, 37552), (21214, 47623, 1), (28082, 56387, 1)


X(56631) = THIRD INTERSECTION OF THE CUBIC K609 AND THE LINE THROUGH ITS POINTS X(1) AND X(35237)

Barycentrics    a*(a^8-2*(b+c)*a^7-2*(b^2-8*b*c+c^2)*a^6+2*(b-3*c)*(3*b-c)*(b+c)*a^5-4*(6*b^2-17*b*c+6*c^2)*b*c*a^4-2*(b+c)*(3*b^4+3*c^4-2*b*c*(8*b^2-15*b*c+8*c^2))*a^3+2*(b-c)^2*(b^4+c^4+2*b*c*(3*b^2-2*b*c+3*c^2))*a^2+2*(b-c)*(b^2-c^2)*(b^4+c^4-2*b*c*(2*b^2+b*c+2*c^2))*a-(b^2-c^2)^4) : :
X(56631) = X(7284)-2*X(45633)

X(56631) lies on the cubic K609 and these lines: {1, 1406}, {2, 1709}, {90, 24914}, {100, 43178}, {165, 52684}, {1158, 5657}, {3158, 5537}, {6261, 37403}, {7701, 37401}, {10085, 38669}, {11502, 41860}, {15299, 33994}, {31435, 52148}, {35242, 55160}, {52026, 52050}

X(56631) = reflection of X(7284) in X(45633)


X(56632) = THIRD INTERSECTION OF THE CUBIC K609 AND THE LINE THROUGH ITS POINTS X(3) AND X(56380)

Barycentrics    a*(a^7+3*(b+c)*a^6-5*(b-c)^2*a^5-(b+c)*(7*b^2-16*b*c+7*c^2)*a^4+(7*b^4+7*c^4-6*b*c*(2*b^2-b*c+2*c^2))*a^3+(b+c)*(5*b^4+5*c^4-6*b*c*(2*b^2-b*c+2*c^2))*a^2-(b-c)^2*(3*b^4+3*c^4+2*b*c*(6*b^2+11*b*c+6*c^2))*a-(b-c)^3*(b^4-c^4)) : :

X(56632) lies on the cubic K609 and these lines: {2, 1709}, {3, 56380}, {46, 2082}, {57, 1719}, {1155, 1707}, {2328, 35997}, {41338, 56633}, {56629, 56630}

X(56632) = X(5698)-Ceva conjugate of-X(1)


X(56633) = THIRD INTERSECTION OF THE CUBIC K609 AND THE LINE THROUGH ITS POINTS X(20) AND X(35237)

Barycentrics    3*a^12-4*(b^2+c^2)*a^10-(13*b^4-18*b^2*c^2+13*c^4)*a^8+16*(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)*a^6-(23*b^8+23*c^8-2*b^2*c^2*(2*b^4+11*b^2*c^2+2*c^4))*a^4+4*(b^4-c^4)^2*(b^2+c^2)*a^2+(b^2-c^2)^6 : :
X(56633) = 4*X(5)-3*X(52487)

X(56633) lies on the cubic K609 and these lines: {4, 21667}, {5, 254}, {20, 155}, {136, 33494}, {1147, 33495}, {6337, 6563}, {7493, 47195}, {41338, 56632}


X(56634) = SECOND INTERSECTION OF THE CUBIC K360 AND ITS TANGENT LINE AT X(4)

Barycentrics    a^2*(a^4-c*a^3-(2*b+c)*(b-c)*a^2+(b-c)^2*c*a+(b^2-c^2)*(b^2-b*c+2*c^2))*(a^4-b*a^3+(b+2*c)*(b-c)*a^2+(b-c)^2*b*a-(b^2-c^2)*(2*b^2-b*c+c^2))*((b+c)*a^5-(b^2+c^2)*a^4-2*(b^2-c^2)*(b-c)*a^3+2*(b^2-c^2)^2*a^2+(b^2-c^2)*(b-c)^3*a-(b^4-c^4)*(b^2-c^2)) : :

X(56634) lies on the cubic K360 and these lines: {1, 521}, {3, 36040}, {4, 1854}, {56, 102}, {218, 15629}, {221, 36067}, {1210, 15633}, {36055, 39167}

X(56634) = crosssum of X(i) and X(j) for these {i, j}: {10017, 53522}, {23986, 51361}
X(56634) = X(51660)-cross conjugate of-X(102)
X(56634) = X(35580)-Dao conjugate of-X(39471)
X(56634) = X(i)-isoconjugate of-X(j) for these {i, j}: {515, 1295}, {2431, 24035}, {36044, 39471}
X(56634) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2432, 43737), (2443, 23987), (32667, 36044), (32677, 1295), (51660, 34050)
X(56634) = pole of line {6001, 14312} with respect to incircle
X(56634) = pole of line {1875, 35014} with respect to Feuerbach circumhyperbola
X(56634) = barycentric product X(6001)*X(36100)
X(56634) = trilinear product X(i)*X(j) for these {i, j}: {102, 6001}, {14312, 36040}, {15629, 43058}, {36055, 51359}
X(56634) = trilinear quotient X(i)/X(j) for these (i, j): (102, 1295), (2405, 24035), (6001, 515), (7435, 7452), (14312, 14304), (32667, 32647), (36067, 36044), (43058, 34050), (51660, 1455)


X(56635) = SECOND INTERSECTION OF THE CUBIC K360 AND ITS TANGENT LINE AT X(145)

Barycentrics    a^2*((b+c)*a+b^2-4*b*c+c^2)*(a^3-(b+4*c)*a^2-(b^2-12*b*c+3*c^2)*a+(b+c)*(b^2-5*b*c+2*c^2))*(a^3-(4*b+c)*a^2-(3*b^2-12*b*c+c^2)*a+(b+c)*(2*b^2-5*b*c+c^2)) : :

X(56635) lies on the cubic K360 and these lines: {1, 30198}, {56, 1293}, {145, 3699}

X(56635) = cevapoint of X(1149) and X(6018)
X(56635) = X(6)-cross conjugate of-X(52206)


X(56636) = SECOND INTERSECTION OF THE CUBIC K360 AND ITS TANGENT LINE AT X(218)

Barycentrics    a^2*((b+c)*a^2-2*(b^2-b*c+c^2)*a+(b^2-c^2)*(b-c))*(a^4-(4*b+c)*a^3+(6*b^2+b*c+c^2)*a^2-(b+c)*(4*b^2-5*b*c+3*c^2)*a+(b^2+b*c+2*c^2)*(b-c)^2)*(a^4-(b+4*c)*a^3+(b^2+b*c+6*c^2)*a^2-(b+c)*(3*b^2-5*b*c+4*c^2)*a+(2*b^2+b*c+c^2)*(b-c)^2) : :

X(56636) lies on the cubic K360 and these lines: {1, 30199}, {56, 5580}, {218, 3939}


X(56637) = SECOND INTERSECTION OF THE CUBIC K360 AND ITS TANGENT LINE AT X(279)

Barycentrics    a^2*(a^2-(2*b-c)*a+(b+2*c)*(b-c))*(a^2+(b-2*c)*a-(2*b+c)*(b-c))*((b+c)*a^3-(3*b^2-4*b*c+3*c^2)*a^2+3*(b^2-c^2)*(b-c)*a-(b^2+4*b*c+c^2)*(b-c)^2) : :

X(56637) lies on the cubic K360 and these lines: {1, 650}, {56, 2291}, {145, 41798}, {218, 4845}, {279, 1086}, {3207, 14733}

X(56637) = crosssum of X(i) and X(j) for these {i, j}: {1638, 35091}, {6603, 35110}
X(56637) = X(34056)-Ceva conjugate of-X(43064)
X(56637) = X(527)-isoconjugate of-X(15731)
X(56637) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (15726, 30806), (34068, 15731), (43064, 37780)
X(56637) = barycentric product X(i)*X(j) for these {i, j}: {1156, 15726}, {41798, 43064}
X(56637) = trilinear product X(i)*X(j) for these {i, j}: {2291, 15726}, {4845, 43064}
X(56637) = trilinear quotient X(i)/X(j) for these (i, j): (2291, 15731), (15726, 527), (43064, 1323)


X(56638) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(4) AND X(56)

Barycentrics    (a^3-c*a^2-(b-c)^2*a-(b^2-c^2)*c)*(a^3-b*a^2-(b-c)^2*a+(b^2-c^2)*b)*(2*a^4-(b+c)*a^3-(b-c)^2*a^2+(b^2-c^2)*(b-c)*a-(b^2-c^2)^2) : :

X(56638) lies on the cubic K360 and these lines: {1, 522}, {4, 11}, {8, 36037}, {20, 40577}, {145, 280}, {218, 52663}, {348, 54953}, {944, 2720}, {1210, 52178}, {1309, 7952}, {1455, 23987}, {1771, 1795}, {1809, 5552}, {5731, 37136}, {6554, 32641}, {7251, 32702}, {11700, 24034}, {14266, 14584}, {22758, 53786}, {35015, 41343}

X(56638) = cevapoint of X(i) and X(j) for these {i, j}: {515, 11700}, {1359, 1455}
X(56638) = cross-difference of every pair of points on the line X(2183)X(52307)
X(56638) = crosssum of X(1769) and X(38981)
X(56638) = X(36037)-beth conjugate of-X(3)
X(56638) = X(7)-Ceva conjugate of-X(40218)
X(56638) = X(i)-cross conjugate of-X(j) for these (i, j): (1455, 104), (6087, 1309), (23986, 34050), (51422, 515)
X(56638) = X(i)-Dao conjugate of-X(j) for these (i, j): (3160, 56666), (10017, 2804), (23986, 908), (36944, 8), (51221, 1785)
X(56638) = X(i)-isoconjugate of-X(j) for these {i, j}: {41, 56666}, {102, 517}, {908, 32677}, {1465, 15629}, {1785, 36055}, {2183, 36100}, {2432, 24029}, {2804, 36040}, {22350, 36121}
X(56638) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7, 56666), (104, 36100), (515, 908), (909, 102), (1455, 1465), (2182, 517), (2342, 15629), (2425, 23981), (8755, 1785), (11700, 16586), (14578, 36055), (32669, 36040), (32702, 36067), (34050, 22464), (34234, 34393), (34858, 32677), (36123, 52780), (43728, 2399), (51422, 52659), (53522, 10015)
X(56638) = X(2182)-zayin conjugate of-X(2183)
X(56638) = pole of line {515, 53522} with respect to incircle
X(56638) = pole of line {1785, 2804} with respect to polar circle
X(56638) = pole of line {34050, 40218} with respect to circumhyperbola dual of Yff parabola
X(56638) = pole of line {6001, 40218} with respect to Feuerbach circumhyperbola
X(56638) = barycentric product X(i)*X(j) for these {i, j}: {515, 34234}, {909, 35516}, {1455, 36795}, {2182, 18816}, {2406, 43728}, {13136, 53522}, {14304, 37136}, {16082, 46974}, {24035, 37628}, {34050, 51565}
X(56638) = trilinear product X(i)*X(j) for these {i, j}: {104, 515}, {1455, 51565}, {2182, 34234}, {2423, 42718}, {2720, 14304}, {11700, 40437}, {23987, 37628}, {34050, 52663}, {34858, 35516}, {36037, 53522}, {36110, 39471}, {36123, 46974}
X(56638) = trilinear quotient X(i)/X(j) for these (i, j): (85, 56666), (104, 102), (515, 517), (909, 32677), (1455, 1457), (1795, 36055), (2182, 2183), (2406, 24029), (2720, 36040), (7452, 4246), (8755, 14571), (11700, 34586), (14304, 2804), (16082, 52780), (18816, 34393), (23987, 23706), (32669, 32643), (32702, 32667), (34050, 1465), (34234, 36100)
X(56638) = (X(12114), X(39175))-harmonic conjugate of X(104)


X(56639) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(4) AND X(218)

Barycentrics    (a^2-b*a-(b-c)*c)*(a^2-c*a+b*(b-c))*(2*a^3-(b+c)*a^2-(b^2-c^2)*(b-c)) : :

X(56639) lies on the cubic K360 and these lines: {1, 514}, {2, 2115}, {4, 218}, {8, 666}, {56, 105}, {144, 9501}, {145, 10405}, {277, 36041}, {673, 55937}, {884, 37018}, {919, 2724}, {927, 3160}, {1118, 23984}, {1456, 23973}, {1777, 14377}, {1814, 45728}, {2195, 4331}, {2398, 30807}, {3436, 35313}, {4000, 51838}, {4307, 40754}, {4310, 9453}, {4676, 46798}, {5091, 5222}, {5698, 36086}, {6559, 27541}, {6654, 17014}, {9309, 52030}, {9502, 51435}, {17350, 33676}, {24410, 28132}, {34529, 52456}

X(56639) = cevapoint of X(i) and X(j) for these {i, j}: {516, 51435}, {1360, 1456}
X(56639) = cross-difference of every pair of points on the line X(672)X(52614)
X(56639) = crosssum of X(2340) and X(6184)
X(56639) = X(7)-Ceva conjugate of-X(52210)
X(56639) = X(i)-cross conjugate of-X(j) for these (i, j): (1456, 105), (23972, 43035)
X(56639) = X(6185)-daleth conjugate of-X(52210)
X(56639) = X(i)-Dao conjugate of-X(j) for these (i, j): (478, 52213), (516, 50441), (1566, 918), (3160, 56668), (20622, 1861), (23972, 3912), (39077, 4712), (40869, 4437), (46095, 1818), (50441, 3717)
X(56639) = X(i)-isoconjugate of-X(j) for these {i, j}: {9, 52213}, {41, 56668}, {103, 518}, {241, 2338}, {672, 36101}, {677, 2254}, {911, 3912}, {918, 36039}, {1026, 2424}, {1815, 5089}, {1818, 36122}, {1861, 36056}, {2223, 18025}, {2340, 43736}, {2400, 54325}, {6184, 9503}, {20752, 52781}, {32657, 46108}
X(56639) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7, 56668), (56, 52213), (105, 36101), (516, 3912), (673, 18025), (676, 918), (910, 518), (919, 677), (1360, 39063), (1438, 103), (1456, 241), (1462, 43736), (1886, 1861), (2195, 2338), (2398, 42720), (2426, 2284), (8751, 36122), (9502, 4712), (14953, 30941), (17747, 3932), (23972, 50441), (30807, 3263), (32658, 36056), (32666, 36039), (36057, 1815), (36124, 52781), (40869, 3717), (41339, 3693), (42077, 9502), (43035, 9436), (43929, 2424), (50441, 4437), (51435, 17755), (51436, 20683), (51838, 9503), (53579, 4899)
X(56639) = X(910)-zayin conjugate of-X(672)
X(56639) = trilinear pole of the line {676, 910} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56639) = pole of line {918, 1861} with respect to polar circle
X(56639) = barycentric product X(i)*X(j) for these {i, j}: {105, 30807}, {516, 673}, {666, 676}, {910, 2481}, {1027, 42719}, {1438, 35517}, {1456, 36796}, {1886, 31637}, {6185, 50441}, {9503, 24014}, {13576, 14953}, {14942, 43035}, {23973, 28132}, {26006, 36124}, {34018, 41339}, {51435, 52209}
X(56639) = trilinear product X(i)*X(j) for these {i, j}: {105, 516}, {294, 43035}, {673, 910}, {676, 36086}, {1027, 2398}, {1438, 30807}, {1456, 14942}, {1462, 40869}, {1814, 1886}, {4241, 10099}, {6185, 9502}, {8751, 26006}, {9503, 23972}, {14953, 18785}, {42719, 43929}, {50441, 51838}, {51435, 52030}
X(56639) = trilinear quotient X(i)/X(j) for these (i, j): (57, 52213), (85, 56668), (105, 103), (294, 2338), (516, 518), (673, 36101), (676, 2254), (910, 672), (919, 36039), (1027, 2424), (1360, 53547), (1438, 911), (1456, 1458), (1814, 1815), (1886, 5089), (2398, 1026), (2426, 54325), (2481, 18025), (4241, 4238), (6185, 9503)
X(56639) = (X(5222), X(6185))-harmonic conjugate of X(52210)


X(56640) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(4) AND X(279)

Barycentrics    a^2*(a^3-b*a^2-(b^2-c^2)*a+(b-c)*(b^2+b*c+2*c^2))*(a^3-c*a^2+(b^2-c^2)*a-(b-c)*(2*b^2+b*c+c^2))*((b+c)*a^4-2*(b^2-b*c+c^2)*a^3+2*(b^3-c^3)*(b-c)*a-(b^2-c^2)^2*(b+c)) : :

X(56640) lies on the cubic K360 and these lines: {1, 905}, {4, 279}, {56, 103}, {218, 1433}, {220, 36039}, {5729, 36101}, {52213, 54232}

X(56640) = crosssum of X(23972) and X(41339)
X(56640) = X(i)-Ceva conjugate of-X(j) for these (i, j): (7, 52213), (43736, 43044)
X(56640) = X(516)-isoconjugate of-X(972)
X(56640) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (911, 972), (971, 30807), (2272, 516), (36101, 46137), (45250, 8)
X(56640) = X(2272)-zayin conjugate of-X(910)
X(56640) = pole of line {43044, 52213} with respect to Feuerbach circumhyperbola
X(56640) = barycentric product X(i)*X(j) for these {i, j}: {7, 45250}, {971, 36101}, {2272, 18025}, {2338, 51364}
X(56640) = trilinear product X(i)*X(j) for these {i, j}: {57, 45250}, {103, 971}, {2272, 36101}, {2338, 43044}
X(56640) = trilinear quotient X(i)/X(j) for these (i, j): (103, 972), (971, 516), (2272, 910), (18025, 46137), (42772, 42756), (43044, 43035), (45250, 9)


X(56641) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(4) AND X(52382)

Barycentrics    a^2*(a^4-(2*b^2-c^2)*a^2+(b^2-c^2)*(b^2+2*c^2))*((b+c)*a^5-(b-c)^2*a^4-(b+c)*(2*b^2-3*b*c+2*c^2)*a^3+(2*b^2+3*b*c+2*c^2)*(b-c)^2*a^2+(b^3+c^3)*(b-c)^2*a-(b+c)*(b^2-c^2)*(b^3-c^3))*(a^4+(b^2-2*c^2)*a^2-(b^2-c^2)*(2*b^2+c^2)) : :

X(56641) lies on the cubic K360 and these lines: {1, 656}, {4, 36119}, {56, 74}, {145, 44693}, {218, 15627}, {35193, 36034}


X(56642) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(56) AND X(145)

Barycentrics    (2*a-b-c)*(a^2-(4*b-c)*a+b*(b+c))*(a^2+(b-4*c)*a+c*(b+c))*(a+b-c)*(a-b+c) : :

X(56642) lies on the cubic K360 and these lines: {1, 3667}, {7, 4618}, {8, 6079}, {56, 100}, {59, 6049}, {218, 40400}, {388, 56421}, {1023, 1404}, {1319, 4487}, {3476, 14584}

X(56642) = isogonal conjugate of X(45247)
X(56642) = cevapoint of X(i) and X(j) for these {i, j}: {900, 14027}, {1317, 1319}
X(56642) = X(i)-cross conjugate of-X(j) for these (i, j): (6, 40218), (900, 6079), (1319, 8686), (4370, 3911)
X(56642) = X(i)-Dao conjugate of-X(j) for these (i, j): (9, 52140), (214, 3880), (478, 52206), (519, 52871), (3160, 52574), (52659, 1266)
X(56642) = X(i)-isoconjugate of-X(j) for these {i, j}: {6, 52140}, {8, 17109}, {9, 52206}, {41, 52574}, {106, 3880}, {1149, 1320}, {1318, 17460}, {2316, 16610}, {23345, 23705}, {23832, 23838}
X(56642) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 52140), (7, 52574), (44, 3880), (56, 52206), (604, 17109), (1023, 23705), (1120, 4997), (1317, 16594), (1319, 16610), (1404, 1149), (3911, 1266), (4370, 52871), (6079, 4582), (8686, 88), (20972, 6018), (30725, 4927), (37627, 1022), (39771, 21129), (40400, 1320), (52556, 8)
X(56642) = trilinear pole of the line {44, 14425} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56642) = barycentric product X(i)*X(j) for these {i, j}: {7, 52556}, {1120, 3911}, {1319, 36805}, {1811, 37790}, {4358, 8686}, {6079, 30725}, {24004, 37627}
X(56642) = trilinear product X(i)*X(j) for these {i, j}: {57, 52556}, {519, 8686}, {1120, 1319}, {1404, 36805}, {1811, 1877}, {3911, 40400}, {6079, 53528}, {17780, 37627}, {23703, 23836}
X(56642) = trilinear quotient X(i)/X(j) for these (i, j): (2, 52140), (56, 17109), (57, 52206), (85, 52574), (519, 3880), (1120, 1320), (1317, 17460), (1319, 1149), (1877, 1878), (3911, 16610), (4738, 52871), (8686, 106), (17460, 6018), (17780, 23705), (23703, 23832), (23836, 23838), (36805, 4997), (37627, 23345), (40400, 2316), (40663, 4695)


X(56643) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(56) AND X(218)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(a^2-(b+2*c)*a+2*b^2-b*c+c^2)*((b+c)*a-b^2-c^2)*(a^2-(2*b+c)*a+b^2-b*c+2*c^2) : :

X(56643) lies on the cubic K360 and these lines: {1, 3309}, {56, 101}, {145, 279}, {220, 6078}, {241, 1026}, {1262, 37301}, {1458, 2284}, {34253, 37138}, {51682, 52213}

X(56643) = cevapoint of X(i) and X(j) for these {i, j}: {926, 35505}, {1362, 1458}
X(56643) = cross-difference of every pair of points on the line X(2348)X(53523)
X(56643) = X(i)-cross conjugate of-X(j) for these (i, j): (6, 52213), (926, 6078), (1458, 1477), (6184, 241)
X(56643) = X(i)-Dao conjugate of-X(j) for these (i, j): (478, 52210), (518, 40609), (3160, 56667), (38989, 53523), (39046, 5853)
X(56643) = X(i)-isoconjugate of-X(j) for these {i, j}: {9, 52210}, {41, 56667}, {105, 5853}, {294, 3008}, {673, 2348}, {1024, 53337}, {1279, 14942}, {2481, 8647}, {36086, 53523}, {36802, 48032}, {40609, 51838}
X(56643) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7, 56667), (56, 52210), (665, 53523), (672, 5853), (1280, 36796), (1362, 16593), (1458, 3008), (1477, 673), (2223, 2348), (2283, 53337), (6078, 36802), (6184, 40609), (9454, 8647), (20662, 3021), (35160, 18031), (43760, 2481), (52635, 1279), (53539, 6084), (53548, 51419), (54325, 23704)
X(56643) = X(672)-zayin conjugate of-X(2348)
X(56643) = trilinear pole of the line {672, 53539} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56643) = barycentric product X(i)*X(j) for these {i, j}: {241, 1280}, {518, 43760}, {672, 35160}, {1025, 35355}, {1026, 37626}, {1458, 36807}, {1477, 3912}, {1810, 5236}, {6078, 43042}
X(56643) = trilinear product X(i)*X(j) for these {i, j}: {518, 1477}, {672, 43760}, {1280, 1458}, {1810, 1876}, {2223, 35160}, {2283, 35355}, {2284, 37626}, {6078, 53544}, {36807, 52635}
X(56643) = trilinear quotient X(i)/X(j) for these (i, j): (57, 52210), (85, 56667), (241, 3008), (518, 5853), (672, 2348), (1025, 53337), (1280, 14942), (1362, 53552), (1458, 1279), (1477, 105), (1876, 54234), (2223, 8647), (2254, 53523), (2284, 23704), (4712, 40609), (35160, 2481), (35355, 885), (36807, 36796), (43760, 673), (53531, 53534)


X(56644) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(56) AND X(14584)

Barycentrics    (a^3-2*c*a^2-(b^2-4*b*c+2*c^2)*a-(b^2-c^2)*c)*(a^3-2*b*a^2-(2*b^2-4*b*c+c^2)*a+(b^2-c^2)*b)*(2*a^4-2*(b+c)*a^3-(b^2-4*b*c+c^2)*a^2+2*(b^2-c^2)*(b-c)*a-(b^2-c^2)^2) : :

X(56644) lies on the cubic K360 and these lines: {1, 900}, {56, 2222}, {145, 36037}, {37222, 47043}

X(56644) = X(953)-isoconjugate of-X(2802)
X(56644) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (952, 30566), (2265, 2802), (37222, 46136)
X(56644) = barycentric product X(i)*X(j) for these {i, j}: {952, 37222}, {2265, 35175}
X(56644) = trilinear product X(i)*X(j) for these {i, j}: {952, 2718}, {2265, 37222}
X(56644) = trilinear quotient X(i)/X(j) for these (i, j): (952, 2802), (2718, 953), (35175, 46136), (43043, 43048), (46781, 50943)


X(56645) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(56) AND X(52382)

Barycentrics    (a+c)*(a+b)*(a^2-c*a-b^2+c^2)*(a^2-b*a+b^2-c^2)*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2) : :

X(56645) lies on the cubic K360 and these lines: {1, 523}, {4, 162}, {56, 759}, {145, 6740}, {218, 2341}, {477, 36069}, {1138, 40214}, {3017, 38938}, {5627, 56402}, {5641, 34016}, {34079, 34288}, {35193, 56416}

X(56645) = cevapoint of X(1354) and X(51654)
X(56645) = X(52380)-beth conjugate of-X(56)
X(56645) = X(i)-cross conjugate of-X(j) for these (i, j): (3163, 6357), (42750, 4240), (51654, 759)
X(56645) = X(i)-Dao conjugate of-X(j) for these (i, j): (30, 6739), (133, 860), (3163, 3936), (3258, 6370), (39170, 52388)
X(56645) = X(i)-isoconjugate of-X(j) for these {i, j}: {74, 758}, {860, 35200}, {1464, 44693}, {1494, 3724}, {1983, 2394}, {2159, 3936}, {2245, 2349}, {2433, 4585}, {2610, 44769}, {4242, 14380}, {6370, 36034}, {6757, 14385}, {15627, 18593}, {35550, 40352}
X(56645) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (30, 3936), (759, 2349), (1495, 2245), (1637, 6370), (1990, 860), (2173, 758), (2341, 44693), (3163, 6739), (6357, 41804), (9406, 3724), (11125, 4707), (14206, 35550), (14398, 42666), (14399, 53527), (14581, 44113), (14583, 8818), (14616, 33805), (18653, 320), (24624, 1494), (32671, 36034), (34079, 74), (36069, 44769), (41392, 6742), (51382, 32851), (51420, 3218), (51654, 18593), (52949, 4511), (52954, 17923), (52955, 1870), (52956, 5081), (56399, 52388)
X(56645) = X(2173)-zayin conjugate of-X(2245)
X(56645) = trilinear pole of the line {1637, 2173} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56645) = pole of line {860, 6370} with respect to polar circle
X(56645) = barycentric product X(i)*X(j) for these {i, j}: {30, 24624}, {80, 18653}, {759, 14206}, {2006, 51382}, {2173, 14616}, {3260, 34079}, {4467, 41392}, {6357, 6740}, {11125, 47318}, {14254, 40214}, {14583, 34016}, {18359, 51420}, {18815, 52949}, {36035, 37140}, {36069, 41079}, {39277, 52945}, {52351, 52954}, {52392, 52956}
X(56645) = trilinear product X(i)*X(j) for these {i, j}: {30, 759}, {80, 51420}, {1411, 51382}, {1495, 14616}, {1637, 37140}, {1807, 52954}, {2006, 52949}, {2161, 18653}, {2173, 24624}, {2341, 6357}, {6740, 51654}, {14206, 34079}, {14254, 17104}, {14399, 47318}, {14838, 41392}, {32671, 41079}, {36035, 36069}, {52351, 52955}
X(56645) = trilinear quotient X(i)/X(j) for these (i, j): (30, 758), (759, 74), (1099, 6739), (1495, 3724), (1637, 2610), (1784, 860), (2173, 2245), (2341, 15627), (2407, 4585), (2420, 1983), (3260, 35550), (4240, 4242), (6357, 18593), (6739, 4736), (6740, 44693), (11125, 53527), (14206, 3936), (14254, 6757), (14399, 21828), (14616, 1494)


X(56646) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(145) AND X(218)

Barycentrics    (a^4-(b+4*c)*a^3-(b^2-3*b*c-6*c^2)*a^2+(b^3-4*c^3-b*c*(4*b-3*c))*a+(b^2-c^2)*(b-c)*c)*(a^4-(4*b+c)*a^3+(6*b^2+3*b*c-c^2)*a^2-(4*b^3-c^3-b*c*(3*b-4*c))*a+(b^2-c^2)*(b-c)*b)*(2*a^2-(b+c)*a+(b-c)^2) : :

X(56646) lies on the cubic K360 and these lines: {1, 30719}, {56, 1292}, {145, 218}, {37272, 52210}

X(56646) = cevapoint of X(1279) and X(3021)
X(56646) = X(i)-cross conjugate of-X(j) for these (i, j): (6, 52210), (1279, 53623), (35111, 3008)
X(56646) = X(53623)-reciprocal conjugate of-X(43760)
X(56646) = trilinear pole of the line {2348, 2976} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56646) = trilinear product X(5853)*X(53623)
X(56646) = trilinear quotient X(53623)/X(1477)


X(56647) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(145) AND X(14584)

Barycentrics    a^2*(a+b-c)*(a-b+c)*((b+c)*a^2-4*b*c*a-(b+c)*(b^2-3*b*c+c^2))*(a^3-(3*b+c)*a^2-(2*b^2-8*b*c+c^2)*a+(b+c)*(2*b^2-4*b*c+c^2))*(a^3-(b+3*c)*a^2-(b^2-8*b*c+2*c^2)*a+(b+c)*(b^2-4*b*c+2*c^2)) : :

X(56647) lies on the cubic K360 and these lines: {1, 2827}, {56, 901}, {145, 14584}

X(56647) = X(35129)-cross conjugate of-X(43048)
X(56647) = X(2718)-isoconjugate of-X(5854)
X(56647) = X(43081)-reciprocal conjugate of-X(37222)
X(56647) = barycentric product X(30566)*X(43081)
X(56647) = trilinear product X(2802)*X(43081)
X(56647) = trilinear quotient X(i)/X(j) for these (i, j): (2802, 5854), (43048, 43055), (43081, 2718)


X(56648) = THIRD INTERSECTION OF THE CUBIC K360 AND THE LINE THROUGH ITS POINTS X(145) AND X(52382)

Barycentrics    a^2*(b+c)*(a+b-c)*(a-b+c)*(a^2-b^2+b*c-c^2)*(a^3-(b+c)*a^2-b^2*a+(b+c)*(b^2-2*b*c+2*c^2))*(a^3-(b+c)*a^2-c^2*a+(b+c)*(2*b^2-2*b*c+c^2)) : :

X(56648) lies on the cubic K360 and these lines: {1, 4017}, {56, 110}, {145, 6742}, {1254, 4551}, {1464, 27086}, {6083, 35193}

X(56648) = cevapoint of X(1464) and X(3028)
X(56648) = X(i)-cross conjugate of-X(j) for these (i, j): (526, 6083), (35069, 18593)
X(56648) = X(34586)-Dao conjugate of-X(44669)
X(56648) = X(i)-isoconjugate of-X(j) for these {i, j}: {759, 44669}, {1793, 1884}, {2341, 35466}
X(56648) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1464, 35466), (2245, 44669), (35354, 52356)
X(56648) = trilinear product X(6083)*X(51663)
X(56648) = trilinear quotient X(i)/X(j) for these (i, j): (758, 44669), (1835, 1884), (18593, 35466), (51663, 6089)


X(56649) = SECOND INTERSECTION OF THE CUBIC K1289 AND ITS TANGENT LINE AT X(31862)

Barycentrics    -(a^2+b^2+c^2)*(a^4+(b^2+c^2)*a^2-2*(b^2-c^2)^2)*(a^6-3*(b^2+c^2)*a^4-3*(b^4-5*b^2*c^2+c^4)*a^2+(b^2+c^2)*(b^4-4*b^2*c^2+c^4))*sqrt(-3*S^2+SW^2)+6*a^2*(a^4-(b^2+c^2)*a^2+b^4-b^2*c^2+c^4)*((b^2+c^2)*a^6+((b^2+c^2)^2-16*b^2*c^2)*a^4-(b^2+c^2)*((b^2-c^2)^2-9*b^2*c^2)*a^2-b^8-c^8+b^2*c^2*(7*b^4-20*b^2*c^2+7*c^4)) : :

X(56649) lies on the cubic K1289 and these lines: {381, 10717}, {543, 31862}

X(56649) = reflection of X(56650) in X(381)


X(56650) = SECOND INTERSECTION OF THE CUBIC K1289 AND ITS TANGENT LINE AT X(31863)

Barycentrics    (a^2+b^2+c^2)*(a^4+(b^2+c^2)*a^2-2*(b^2-c^2)^2)*(a^6-3*(b^2+c^2)*a^4-3*(b^4-5*b^2*c^2+c^4)*a^2+(b^2+c^2)*(b^4-4*b^2*c^2+c^4))*sqrt(-3*S^2+SW^2)+6*a^2*(a^4-(b^2+c^2)*a^2+b^4-b^2*c^2+c^4)*((b^2+c^2)*a^6+((b^2+c^2)^2-16*b^2*c^2)*a^4-(b^2+c^2)*((b^2-c^2)^2-9*b^2*c^2)*a^2-b^8-c^8+b^2*c^2*(7*b^4-20*b^2*c^2+7*c^4)) : :

X(56650) lies on the cubic K1289 and these lines: {381, 10717}, {543, 31863}

X(56650) = reflection of X(56649) in X(381)


X(56651) = THIRD INTERSECTION OF THE CUBIC K1289 AND THE LINE THROUGH ITS POINTS X(30) AND X(39162)

Barycentrics    (2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)*sqrt(-3*S^2+SW^2)-3*(a^2+b^2-c^2)*(a^2-b^2+c^2)*sqrt(-3*S^2-18*SW*R^2+5*SW^2+2*OH^2*sqrt(-3*S^2+SW^2))+2*(b^2+c^2)*a^4-(b^4+c^4)*a^2-2*a^6+(b^2+c^2)*(b^2-c^2)^2 : :
X(56651) = 2*X(4)+X(40851) = 4*X(4)-X(40852) = 4*X(5)-X(42412) = 2*X(382)+X(42411) = 3*X(3839)-X(39159) = 2*X(40851)+X(40852) = X(40852)-2*X(56652) = 3*X(52053)-2*X(54055)

X(56651) lies on the cubic K1289 and these lines: {2, 52053}, {4, 3413}, {5, 42412}, {30, 39162}, {381, 39163}, {382, 42411}, {3146, 54056}, {3543, 39158}, {3839, 39159}

X(56651) = midpoint of X(i) and X(j) for these {i, j}: {3146, 54056}, {3543, 39158}, {40851, 56652}
X(56651) = reflection of X(i) in X(j) for these (i, j): (39163, 381), (40852, 56652), (52053, 2), (52054, 39162), (56652, 4)
X(56651) = complement of X(54055)
X(56651) = (X(4), X(40851))-harmonic conjugate of X(40852)


X(56652) = THIRD INTERSECTION OF THE CUBIC K1289 AND THE LINE THROUGH ITS POINTS X(30) AND X(39163)

Barycentrics    (2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)*sqrt(-3*S^2+SW^2)+3*(a^2+b^2-c^2)*(a^2-b^2+c^2)*sqrt(-3*S^2-18*SW*R^2+5*SW^2+2*OH^2*sqrt(-3*S^2+SW^2))+2*(b^2+c^2)*a^4-(b^4+c^4)*a^2-2*a^6+(b^2+c^2)*(b^2-c^2)^2 : :
X(56652) = 4*X(4)-X(40851) = 2*X(4)+X(40852) = 4*X(5)-X(42411) = 2*X(382)+X(42412) = 3*X(3839)-X(39158) = X(40851)+2*X(40852) = X(40851)-2*X(56651) = 3*X(52054)-2*X(54056)

X(56652) lies on the cubic K1289 and these lines: {2, 52054}, {4, 3413}, {5, 42411}, {30, 39163}, {381, 39162}, {382, 42412}, {3146, 54055}, {3543, 39159}, {3839, 39158}

X(56652) = midpoint of X(i) and X(j) for these {i, j}: {3146, 54055}, {3543, 39159}, {40852, 56651}
X(56652) = reflection of X(i) in X(j) for these (i, j): (39162, 381), (40851, 56651), (52053, 39163), (52054, 2), (56651, 4)
X(56652) = complement of X(54056)
X(56652) = (X(4), X(40852))-harmonic conjugate of X(40851)


X(56653) = SECOND INTERSECTION OF THE CUBIC K767 AND ITS TANGENT LINE AT X(2)

Barycentrics    (a^2-b*c)*((b-c)*a-b*c-2*c^2)*((b-c)*a+2*b^2+b*c)*((b+c)*a^2-(b^2-b*c+c^2)*a+b*c*(b+c)) : :

X(56653) lies on the cubic K767 and these lines: {2, 726}, {75, 56664}, {239, 56655}, {518, 53648}, {740, 39914}, {1281, 56654}, {2481, 33679}, {3797, 56702}, {56660, 56662}

X(56653) = antitomic conjugate of X(39923)
X(56653) = X(75)-Ceva conjugate of-X(56655)
X(56653) = X(239)-cross conjugate of-X(56654)
X(56653) = X(39028)-Dao conjugate of-X(56664)
X(56653) = X(1922)-isoconjugate of-X(56664)
X(56653) = X(350)-reciprocal conjugate of-X(56664)
X(56653) = pole of line {3661, 56655} with respect to circumhyperbola dual of Yff parabola
X(56653) = trilinear quotient X(1921)/X(56664)


X(56654) = SECOND INTERSECTION OF THE CUBIC K767 AND ITS TANGENT LINE AT X(8)

Barycentrics    (a^2-b*c)*((b+c)*a^2-(b^2-b*c+c^2)*a+b*c*(b+c))*((b-c)*a^3-(2*b+c)*b*a^2+(b-c)*(b^2+c^2)*a-c*(b-c)*(b^2+b*c+2*c^2))*((b-c)*a^3+(b+2*c)*c*a^2+(b-c)*(b^2+c^2)*a-b*(b-c)*(2*b^2+b*c+c^2)) : :

X(56654) lies on the cubic K767 and these lines: {8, 7985}, {350, 56661}, {1281, 56653}, {3978, 56659}, {17755, 56657}

X(56654) = antitomic conjugate of X(56699)
X(56654) = X(239)-cross conjugate of-X(56653)


X(56655) = SECOND INTERSECTION OF THE CUBIC K767 AND ITS TANGENT LINE AT X(350)

Barycentrics    ((b-c)*a-b*c-2*c^2)*(a^2-b*c)*((b-c)*a+2*b^2+b*c)*((b+c)*a^3+(b^2+b*c+c^2)*a^2+(b^2-c^2)*(b-c)*a-b*c*(b^2+3*b*c+c^2)) : :

X(56655) lies on the cubic K767 and these lines: {8, 6650}, {239, 56653}, {274, 20899}, {291, 56658}, {335, 53648}, {740, 56702}

X(56655) = X(75)-Ceva conjugate of-X(56653)
X(56655) = X(3797)-Dao conjugate of-X(27481)


X(56656) = SECOND INTERSECTION OF THE CUBIC K767 AND ITS TANGENT LINE AT X(740)

Barycentrics    (a^2-b*c)*((b^2+b*c+c^2)*a^2+(b+c)*(2*b+c)*b*a+b^2*c*(2*b+c))*((b^2+3*b*c+c^2)*a^3-(b^2-c^2)*(b-c)*a^2-(b^2+b*c+c^2)*b*c*a-b^2*c^2*(b+c))*((b^2+b*c+c^2)*a^2+(b+2*c)*(b+c)*c*a+b*c^2*(b+2*c)) : :

X(56656) lies on the cubic K767 and these lines: {2, 40775}, {291, 30570}, {740, 39916}, {3978, 56662}


X(56657) = THIRD INTERSECTION OF THE CUBIC K767 AND THE LINE THROUGH ITS POINTS X(2) AND X(256)

Barycentrics    ((b-c)*a+b*c)*(a^2-b*c)*((b-c)*a-b*c)*((b^2+c^2)*a^2-(b^3+c^3)*a+b*c*(b^2+c^2)) : :

X(56657) lies on the cubic K767 and these lines: {2, 256}, {75, 2319}, {87, 24631}, {239, 34252}, {274, 56664}, {649, 21438}, {1281, 8848}, {2053, 16822}, {3509, 4598}, {3729, 16557}, {10030, 56660}, {17755, 56654}, {17760, 40785}, {17792, 27436}, {33679, 40845}, {33891, 39914}

X(56657) = isotomic conjugate of the antitomic conjugate of X(3212)
X(56657) = antitomic conjugate of X(39919)
X(56657) = X(75)-Ceva conjugate of-X(56663)
X(56657) = X(i)-hirst inverse of-X(j) for these {i, j}: {2, 7155}, {27436, 52211}
X(56657) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (8844, 43), (17760, 40848), (17792, 41531), (18269, 1922), (27436, 335), (39919, 3212), (52211, 291), (53129, 51973)
X(56657) = inverse of X(7155) in Steiner circumellipse
X(56657) = pole of line {30038, 56663} with respect to circumhyperbola dual of Yff parabola
X(56657) = barycentric product X(i)*X(j) for these {i, j}: {239, 27436}, {350, 52211}, {6384, 8844}, {7155, 39919}, {17760, 39914}, {18269, 44169}, {34252, 51861}
X(56657) = trilinear product X(i)*X(j) for these {i, j}: {238, 27436}, {239, 52211}, {330, 8844}, {2319, 39919}, {17760, 34252}, {17792, 39914}, {18269, 18891}, {51321, 51861}
X(56657) = trilinear quotient X(i)/X(j) for these (i, j): (8844, 2176), (17760, 41531), (17792, 51973), (18269, 14598), (27436, 291), (39919, 1423), (51861, 40848), (52211, 292)


X(56658) = THIRD INTERSECTION OF THE CUBIC K767 AND THE LINE THROUGH ITS POINTS X(2) AND X(740)

Barycentrics    ((2*b+c)*a+b^2+2*b*c)*((b+2*c)*a+2*b*c+c^2)*(a^2-(b+c)*a-2*b*c) : :

X(56658) lies on the cubic K767 and these lines: {2, 740}, {75, 56662}, {256, 30570}, {291, 56655}, {553, 10030}, {2481, 50095}, {3978, 56664}, {16834, 25426}, {20172, 40748}, {26243, 28841}

X(56658) = X(i)-Dao conjugate of-X(j) for these (i, j): (2276, 40774), (39028, 56662)
X(56658) = X(i)-isoconjugate of-X(j) for these {i, j}: {1922, 56662}, {2279, 4649}, {4784, 8693}
X(56658) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (350, 56662), (1001, 4649), (3696, 3842), (3789, 40774), (4384, 16826), (4702, 4753), (4724, 4784), (4762, 28840), (4804, 4824), (25426, 2279), (27474, 27495), (27483, 27475), (28841, 8693), (30571, 1002), (31926, 31904)
X(56658) = barycentric product X(i)*X(j) for these {i, j}: {4384, 27483}, {4441, 30571}, {21615, 25426}
X(56658) = trilinear product X(i)*X(j) for these {i, j}: {1001, 27483}, {4384, 30571}, {4441, 25426}, {27474, 40748}
X(56658) = trilinear quotient X(i)/X(j) for these (i, j): (1921, 56662), (4044, 3842), (4384, 4649), (4441, 16826), (4762, 4784), (27474, 40774), (27483, 1002), (30571, 2279)


X(56659) = THIRD INTERSECTION OF THE CUBIC K767 AND THE LINE THROUGH ITS POINTS X(2) AND X(2481)

Barycentrics    (a^2-b*c)*((2*b+c)*a+b*c-c^2)*((b+2*c)*a-b^2+b*c)*(a^4+(b^2+b*c+c^2)*a^2-2*(b^3+c^3)*a-b*c*(b-c)^2)/a : :

X(56659) lies on the cubic K767 and these lines: {2, 2481}, {239, 56662}, {291, 56664}, {740, 10030}, {3978, 56654}, {4881, 27475}

X(56659) = X(75)-Ceva conjugate of-X(56662)
X(56659) = trilinear product X(18789)*X(56662)


X(56660) = THIRD INTERSECTION OF THE CUBIC K767 AND THE LINE THROUGH ITS POINTS X(2) AND X(40844)

Barycentrics    (a^2-b*c)^2/a^2 : :
X(56660) = X(1500)-2*X(27076)

X(56660) lies on the cubic K767 and these lines: {2, 1978}, {8, 76}, {75, 291}, {239, 3978}, {274, 1015}, {308, 594}, {310, 6650}, {350, 740}, {670, 1086}, {789, 8301}, {812, 46387}, {874, 8299}, {1281, 9472}, {1500, 18140}, {1502, 4361}, {1965, 24259}, {1966, 17031}, {3403, 17026}, {3802, 4368}, {4000, 6374}, {4395, 30736}, {4479, 21615}, {4651, 56251}, {5222, 41259}, {7046, 44144}, {8783, 21442}, {9263, 34284}, {10030, 56657}, {13466, 18145}, {16748, 26819}, {17362, 33769}, {17759, 20671}, {18135, 53675}, {18152, 28654}, {20347, 20561}, {20630, 33935}, {24478, 24732}, {36225, 43685}, {40845, 44187}, {42697, 44152}, {48635, 55081}, {52570, 56186}, {56131, 56249}, {56653, 56662}

X(56660) = midpoint of X(668) and X(17143)
X(56660) = reflection of X(1500) in X(27076)
X(56660) = isogonal conjugate of X(51856)
X(56660) = isotomic conjugate of X(52205)
X(56660) = complement of X(54101)
X(56660) = cevapoint of X(27855) and X(35119)
X(56660) = crosspoint of X(27853) and X(31625)
X(56660) = X(i)-beth conjugate of-X(j) for these (i, j): (7257, 14839), (52379, 1015)
X(56660) = X(i)-Ceva conjugate of-X(j) for these (i, j): (75, 3978), (308, 3948), (670, 3766), (31625, 27853)
X(56660) = X(35119)-cross conjugate of-X(27855)
X(56660) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 52205), (350, 40796), (740, 1500), (812, 1015), (1575, 40155), (1966, 1), (2238, 40730), (3912, 3252), (3948, 52656), (6374, 40098), (6376, 30663), (6651, 292), (18277, 335), (19557, 1911), (32664, 18267), (35119, 3572), (39028, 291), (39029, 1922), (39044, 18787), (39786, 512), (40623, 875)
X(56660) = X(i)-hirst inverse of-X(j) for these {i, j}: {76, 20345}, {350, 1921}
X(56660) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 18267}, {31, 52205}, {32, 30663}, {291, 1922}, {292, 1911}, {334, 18897}, {335, 14598}, {560, 40098}, {813, 875}, {904, 30657}, {1927, 30669}, {3572, 34067}, {9468, 18787}, {18263, 40794}, {18893, 18895}, {40730, 51866}
X(56660) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 52205), (31, 18267), (75, 30663), (76, 40098), (238, 1911), (239, 292), (350, 291), (659, 875), (812, 3572), (874, 660), (894, 30657), (1914, 1922), (1921, 335), (1966, 18787), (2210, 14598), (3027, 181), (3570, 813), (3573, 34067), (3684, 51858), (3685, 7077), (3766, 876), (3797, 3862), (3802, 869), (3975, 4881), (3978, 30669), (4087, 4518), (4094, 872), (4154, 20964), (4366, 6), (4368, 42), (4375, 649), (4486, 30671), (6652, 1914), (6654, 51866), (8299, 40730), (8300, 31), (12835, 1397), (14599, 18897), (17493, 694), (17755, 3252), (17793, 40155), (18033, 7233), (18786, 1967), (18891, 334), (18892, 18893), (20769, 2196), (27853, 4562), (27855, 513), (27919, 672), (27926, 17735)
X(56660) = perspector of the inconic through X(27853) and X(36803)
X(56660) = pole of line {3978, 20340} with respect to circumhyperbola dual of Yff parabola
X(56660) = pole of line {3766, 6373} with respect to Steiner circumellipse
X(56660) = pole of line {6373, 27854} with respect to Steiner inellipse
X(56660) = pole of line {741, 813} with respect to Steiner-Wallace hyperbola
X(56660) = barycentric product X(i)*X(j) for these {i, j}: {75, 39044}, {76, 4366}, {238, 18891}, {239, 1921}, {310, 4368}, {350, 350}, {561, 8300}, {668, 27855}, {812, 27853}, {871, 3802}, {874, 3766}, {1447, 4087}, {1502, 51328}, {1914, 44169}, {1926, 18786}, {1978, 4375}, {2210, 44171}, {3027, 18021}, {3685, 18033}, {3948, 30940}
X(56660) = trilinear product X(i)*X(j) for these {i, j}: {2, 39044}, {75, 4366}, {76, 8300}, {190, 27855}, {238, 1921}, {239, 350}, {274, 4368}, {334, 6652}, {561, 51328}, {659, 27853}, {668, 4375}, {740, 30940}, {812, 874}, {873, 35068}, {1429, 4087}, {1447, 3975}, {1914, 18891}, {1966, 17493}, {2210, 44169}, {2481, 27919}
X(56660) = trilinear quotient X(i)/X(j) for these (i, j): (6, 18267), (75, 52205), (76, 30663), (238, 1922), (239, 1911), (350, 292), (561, 40098), (812, 875), (874, 813), (1909, 30657), (1914, 14598), (1921, 291), (1926, 30669), (2210, 18897), (3570, 34067), (3684, 18265), (3685, 51858), (3766, 3572), (3802, 40728), (3975, 7077)
X(56660) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (75, 20446, 18895), (75, 52044, 291), (239, 18891, 3978), (239, 19579, 20457), (350, 39028, 17793), (668, 32035, 17794), (4441, 17794, 32035)


X(56661) = THIRD INTERSECTION OF THE CUBIC K767 AND THE LINE THROUGH ITS POINTS X(2) AND X(40845)

Barycentrics    (a+b-c)*(a-b+c)*(a^2-b*c)*(a^4-(b+c)*a^3+(2*b^2+b*c+2*c^2)*a^2-(b+c)*(b^2+c^2)*a-(b^3-c^3)*(b-c))/a : :

X(56661) lies on the cubic K767 and these lines: {2, 20940}, {75, 52160}, {239, 10030}, {256, 2481}, {291, 7196}, {350, 56654}, {740, 39919}, {6650, 56664}, {29840, 30545}

X(56661) = X(75)-Ceva conjugate of-X(10030)
X(56661) = X(1447)-Dao conjugate of-X(1)
X(56661) = X(43747)-isoconjugate of-X(51858)
X(56661) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1447, 43747), (8848, 2053), (8932, 55), (18788, 7077), (41352, 291), (51871, 1911), (52089, 292)
X(56661) = barycentric product X(i)*X(j) for these {i, j}: {350, 41352}, {1921, 52089}, {6063, 8932}, {18033, 18788}, {18891, 51871}
X(56661) = trilinear product X(i)*X(j) for these {i, j}: {85, 8932}, {239, 41352}, {350, 52089}, {1921, 51871}, {8848, 30545}, {10030, 18788}
X(56661) = trilinear quotient X(i)/X(j) for these (i, j): (8932, 41), (10030, 43747), (18788, 51858), (41352, 292), (51871, 1922), (52089, 1911)


X(56662) = THIRD INTERSECTION OF THE CUBIC K767 AND THE LINE THROUGH ITS POINTS X(8) AND X(274)

Barycentrics    (a^2-b*c)*((2*b+c)*a+b*c-c^2)*((b+2*c)*a-b^2+b*c)*(a^2+2*(b+c)*a+b*c)/a : :

X(56662) lies on the cubic K767 and these lines: {8, 274}, {75, 56658}, {239, 56659}, {350, 3985}, {740, 56700}, {3783, 39923}, {3978, 56656}, {6650, 40868}, {17759, 32041}, {56653, 56660}

X(56662) = antitomic conjugate of X(56702)
X(56662) = X(75)-Ceva conjugate of-X(56659)
X(56662) = X(39028)-Dao conjugate of-X(56658)
X(56662) = X(1922)-isoconjugate of-X(56658)
X(56662) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (350, 56658), (20142, 1001)
X(56662) = trilinear product X(20142)*X(27475)
X(56662) = trilinear quotient X(i)/X(j) for these (i, j): (1921, 56658), (20142, 2280)


X(56663) = THIRD INTERSECTION OF THE CUBIC K767 AND THE LINE THROUGH ITS POINTS X(8) AND X(291)

Barycentrics    ((b-c)*a+b*c)*(a^2-b*c)*((b-c)*a-b*c)*((b^2+c^2)*a-b^2*c-b*c^2) : :

X(56663) lies on the cubic K767 and these lines: {2, 40783}, {8, 291}, {75, 87}, {238, 14199}, {239, 34252}, {350, 3978}, {659, 4107}, {740, 39914}, {1054, 4598}, {1278, 7155}, {1281, 8843}, {1575, 20467}, {2053, 16825}, {2162, 3980}, {6384, 52151}, {6650, 27447}, {9055, 42027}, {9902, 27424}, {24165, 52211}

X(56663) = isotomic conjugate of X(33680)
X(56663) = X(i)-Ceva conjugate of-X(j) for these (i, j): (75, 56657), (330, 40881)
X(56663) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 33680), (1575, 192), (3837, 3123), (3948, 6376), (17793, 41531), (20532, 40848), (27846, 4083), (39028, 40844)
X(56663) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 33680}, {727, 41531}, {1922, 40844}, {20332, 51973}, {34077, 40848}
X(56663) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 33680), (350, 40844), (726, 40848), (1575, 41531), (3009, 51973), (8850, 1423), (17475, 43), (17793, 192), (20663, 2176), (20681, 20691), (20750, 20760), (34252, 20332), (38367, 8640), (39914, 3226), (40881, 291), (51321, 727), (51864, 1911)
X(56663) = barycentric product X(i)*X(j) for these {i, j}: {330, 17793}, {350, 40881}, {726, 39914}, {6383, 20663}, {6384, 17475}, {8850, 27424}, {18891, 51864}, {34252, 52043}, {35538, 51321}
X(56663) = trilinear product X(i)*X(j) for these {i, j}: {87, 17793}, {239, 40881}, {330, 17475}, {726, 34252}, {1575, 39914}, {1921, 51864}, {6384, 20663}, {7155, 8850}, {51321, 52043}
X(56663) = trilinear quotient X(i)/X(j) for these (i, j): (75, 33680), (726, 41531), (1575, 51973), (1921, 40844), (8850, 1403), (17475, 2176), (17793, 43), (20663, 2209), (34252, 727), (39914, 20332), (40881, 292), (51321, 34077), (51864, 1922), (52043, 40848)


X(56664) = THIRD INTERSECTION OF THE CUBIC K767 AND THE LINE THROUGH ITS POINTS X(8) AND X(350)

Barycentrics    (2*a^2+(b+c)*a-b*c)*((b-c)*a^2+(b^2+b*c+c^2)*a-b*c*(b-c))*((b-c)*a^2-(b^2+b*c+c^2)*a-b*c*(b-c))/a : :

X(56664) lies on the cubics K767, K971 and these lines: {2, 40787}, {8, 350}, {75, 56653}, {274, 56657}, {291, 56659}, {740, 56705}, {1281, 47647}, {3978, 56658}, {6650, 56661}, {17755, 36799}

X(56664) = X(27481)-cross conjugate of-X(30963)
X(56664) = X(i)-Dao conjugate of-X(j) for these (i, j): (3661, 19584), (39028, 56653)
X(56664) = X(i)-isoconjugate of-X(j) for these {i, j}: {1922, 56653}, {17754, 40735}, {43077, 54251}
X(56664) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (350, 56653), (3795, 19586), (4393, 17754), (4782, 54251), (4785, 54249), (10009, 20917), (16468, 21010), (27481, 19584), (30963, 24349), (40733, 19587), (41527, 52654)
X(56664) = barycentric product X(30963)*X(41527)
X(56664) = trilinear product X(i)*X(j) for these {i, j}: {4393, 41527}, {27481, 47647}
X(56664) = trilinear quotient X(i)/X(j) for these (i, j): (1921, 56653), (3795, 19587), (4393, 21010), (4782, 54275), (4785, 54251), (10009, 24349), (27481, 19586), (30963, 17754)


X(56665) = SECOND INTERSECTION OF THE CUBIC K1069 AND ITS TANGENT LINE AT X(8)

Barycentrics    (a^2+(b-2*c)*a-(2*b+c)*(b-c))*((b+c)*a^2-2*(b^2-b*c+c^2)*a+(b^2-c^2)*(b-c))*(a^2-(2*b-c)*a+(b+2*c)*(b-c)) : :

X(56665) lies on the cubics K1066, K1069 and these lines: {4, 53801}, {8, 190}, {85, 693}, {6554, 41798}, {6604, 35157}

X(56665) = cevapoint of X(10427) and X(26015)
X(56665) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (14733, 3887), (36141, 48571)
X(56665) = X(10427)-cross conjugate of-X(26015)
X(56665) = X(i)-Dao conjugate of-X(j) for these (i, j): (6745, 6068), (10427, 1155), (26015, 6594), (43065, 35110)
X(56665) = X(i)-isoconjugate of-X(j) for these {i, j}: {2742, 14413}, {10426, 42082}
X(56665) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1121, 51567), (2826, 1638), (3660, 6610), (10427, 35110), (15733, 6603), (26015, 527), (30379, 1323), (34056, 15728), (37788, 30806), (38468, 37780), (41798, 34894), (43065, 1155)
X(56665) = barycentric product X(i)*X(j) for these {i, j}: {1121, 26015}, {1156, 37788}, {38468, 41798}
X(56665) = trilinear product X(i)*X(j) for these {i, j}: {1121, 43065}, {1156, 26015}, {2291, 37788}, {4845, 38468}, {30379, 41798}
X(56665) = trilinear quotient X(i)/X(j) for these (i, j): (2826, 14413), (10427, 42082), (26015, 1155), (30379, 6610), (37788, 527), (38468, 1323), (43065, 1055)


X(56666) = SECOND INTERSECTION OF THE CUBIC K1069 AND ITS TANGENT LINE AT X(348)

Barycentrics    ((b+c)*a^2-2*b*c*a-(b^2-c^2)*(b-c))*(a^4-c*a^3-(2*b+c)*(b-c)*a^2+(b-c)^2*c*a+(b^2-c^2)*(b^2-b*c+2*c^2))*(a^4-b*a^3+(b+2*c)*(b-c)*a^2+(b-c)^2*b*a-(b^2-c^2)*(2*b^2-b*c+c^2))*(a+b-c)*(a-b+c) : :

X(56666) lies on the cubic K1069 and these lines: {8, 34393}, {76, 40701}, {85, 2399}, {348, 658}

X(56666) = X(908)-cross conjugate of-X(34393)
X(56666) = X(i)-Dao conjugate of-X(j) for these (i, j): (1465, 23986), (3160, 56638), (23980, 51361)
X(56666) = X(i)-isoconjugate of-X(j) for these {i, j}: {41, 56638}, {909, 51361}, {2182, 2342}, {14776, 46391}
X(56666) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7, 56638), (102, 2342), (517, 51361), (1465, 2182), (22464, 515), (34393, 51565), (36038, 14304), (36067, 14776), (36100, 52663)
X(56666) = trilinear pole of the line {22464, 45945} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56666) = barycentric product X(22464)*X(34393)
X(56666) = trilinear product X(i)*X(j) for these {i, j}: {1465, 34393}, {22464, 36100}
X(56666) = trilinear quotient X(i)/X(j) for these (i, j): (85, 56638), (908, 51361), (22464, 2182), (34393, 52663), (36100, 2342)


X(56667) = THIRD INTERSECTION OF THE CUBIC K1069 AND THE LINE THROUGH ITS POINTS X(8) AND X(76)

Barycentrics    (a^2-b*a-c*(b-c))*(2*a^2-(b+c)*a+(b-c)^2)*(a^2-c*a+b*(b-c))/a^2 : :

X(56667) lies on the cubic K1069 and these lines: {8, 76}, {85, 514}, {218, 666}, {277, 348}, {3208, 36816}, {33675, 36221}

X(56667) = isotomic conjugate of the isogonal conjugate of X(52210)
X(56667) = crosssum of X(9454) and X(39686)
X(56667) = X(51560)-beth conjugate of-X(6604)
X(56667) = X(18031)-daleth conjugate of-X(2481)
X(56667) = X(i)-Dao conjugate of-X(j) for these (i, j): (3008, 6184), (3160, 56643), (16593, 672), (33675, 1280), (35111, 2340), (39048, 2223)
X(56667) = X(i)-isoconjugate of-X(j) for these {i, j}: {41, 56643}, {1280, 9454}, {9455, 36807}
X(56667) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7, 56643), (666, 6078), (1279, 2223), (2481, 1280), (3008, 672), (5853, 2340), (6084, 665), (16593, 6184), (18031, 36807), (20662, 39686), (20749, 20776), (31637, 1810), (34018, 43760), (52210, 6), (53337, 2284), (53523, 926), (53552, 42079), (54234, 2356)
X(56667) = barycentric product X(i)*X(j) for these {i, j}: {76, 52210}, {3008, 18031}, {6084, 36803}, {46135, 53523}
X(56667) = trilinear product X(i)*X(j) for these {i, j}: {75, 52210}, {1279, 18031}, {2481, 3008}, {5853, 34018}, {6084, 51560}, {34085, 53523}, {36803, 48032}
X(56667) = trilinear quotient X(i)/X(j) for these (i, j): (85, 56643), (1279, 9454), (3008, 2223), (16593, 42079), (18031, 1280), (34018, 1477), (51560, 6078), (52210, 31), (53337, 54325), (53523, 46388), (53552, 39686)


X(56668) = THIRD INTERSECTION OF THE CUBIC K1069 AND THE LINE THROUGH ITS POINTS X(8) AND X(348)

Barycentrics    (a+b-c)*(a-b+c)*((b+c)*a-b^2-c^2)*(a^3-b*a^2-(b^2-c^2)*a+(b-c)*(b^2+b*c+2*c^2))*(a^3-c*a^2+(b^2-c^2)*a-(b-c)*(2*b^2+b*c+c^2)) : :

X(56668) lies on the cubic K1069 and these lines: {8, 348}, {76, 46406}, {85, 4391}, {279, 35094}, {883, 3717}, {1016, 3926}, {1566, 10405}

X(56668) = isotomic conjugate of the isogonal conjugate of X(52213)
X(56668) = cevapoint of X(i) and X(j) for these {i, j}: {9436, 39063}, {35094, 43042}
X(56668) = X(i)-cross conjugate of-X(j) for these (i, j): (3912, 18025), (39063, 9436), (53583, 883)
X(56668) = X(i)-Dao conjugate of-X(j) for these (i, j): (241, 23972), (918, 1566), (3160, 56639), (6184, 41339), (17755, 40869), (36905, 516), (39063, 910), (40609, 51418), (45250, 55)
X(56668) = X(18025)-hirst inverse of-X(52156)
X(56668) = X(i)-isoconjugate of-X(j) for these {i, j}: {41, 56639}, {910, 2195}, {1024, 2426}, {1416, 51418}, {1438, 41339}, {32735, 46392}
X(56668) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7, 56639), (103, 2195), (241, 910), (518, 41339), (677, 52927), (883, 2398), (2283, 2426), (2400, 885), (2424, 884), (3693, 51418), (3912, 40869), (5236, 1886), (9436, 516), (18025, 14942), (24016, 32735), (25083, 51376), (34855, 1456), (35094, 1566), (36101, 294), (39063, 23972), (39775, 51435), (40704, 30807), (43042, 676), (43736, 105), (52156, 673), (52213, 6), (53547, 42077)
X(56668) = trilinear pole of the line {9436, 50333} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56668) = barycentric product X(i)*X(j) for these {i, j}: {76, 52213}, {883, 2400}, {3263, 43736}, {3912, 52156}, {9436, 18025}, {36101, 40704}
X(56668) = trilinear product X(i)*X(j) for these {i, j}: {75, 52213}, {103, 40704}, {241, 18025}, {518, 52156}, {1025, 2400}, {3912, 43736}, {9436, 36101}
X(56668) = trilinear quotient X(i)/X(j) for these (i, j): (85, 56639), (1025, 2426), (2400, 1024), (3263, 40869), (3717, 51418), (3912, 41339), (9436, 910), (18025, 294), (36101, 2195), (39063, 42077), (40704, 516), (43736, 1438), (50333, 46392), (52156, 105), (52213, 31)


X(56669) = SECOND INTERSECTION OF THE CUBIC K1209 AND ITS TANGENT LINE AT X(15)

Barycentrics    2*((b^2+c^2)*a^4+2*(b^4+6*b^2*c^2+c^4)*a^2-3*(b^4-c^4)*(b^2-c^2))*S+(2*a^8-8*(b^2+c^2)*a^6+(13*b^4+10*b^2*c^2+13*c^4)*a^4-(b^2+c^2)*(9*(b^2-c^2)^2-b^2*c^2)*a^2+(b^2-c^2)^2*(2*b^2-c^2)*(b^2-2*c^2))*sqrt(3) : :

X(56669) lies on the cubic K1209 and these lines: {5, 9736}, {262, 52266}, {36970, 52650}, {42785, 56672}, {56674, 56676}


X(56670) = SECOND INTERSECTION OF THE CUBIC K1209 AND ITS TANGENT LINE AT X(16)

Barycentrics    -2*((b^2+c^2)*a^4+2*(b^4+6*b^2*c^2+c^4)*a^2-3*(b^4-c^4)*(b^2-c^2))*S+(2*a^8-8*(b^2+c^2)*a^6+(13*b^4+10*b^2*c^2+13*c^4)*a^4-(b^2+c^2)*(9*(b^2-c^2)^2-b^2*c^2)*a^2+(b^2-c^2)^2*(2*b^2-c^2)*(b^2-2*c^2))*sqrt(3) : :

X(56670) lies on the cubic K1209 and these lines: {5, 9735}, {262, 52263}, {36969, 44223}, {42785, 56671}, {56673, 56675}


X(56671) = SECOND INTERSECTION OF THE CUBIC K1209 AND ITS TANGENT LINE AT X(17)

Barycentrics    -2*(16*a^6-5*(b^2+c^2)*a^4-4*(5*b^4+17*b^2*c^2+5*c^4)*a^2+9*(b^4-c^4)*(b^2-c^2))*S+sqrt(3)*((b^2+c^2)*a^6+(31*b^4+74*b^2*c^2+31*c^4)*a^4-(b^2+c^2)*(35*b^4-52*b^2*c^2+35*c^4)*a^2+3*(b^4-4*b^2*c^2+c^4)*(b^2-c^2)^2) : :

X(56671) lies on the cubic K1209 and these lines: {2, 52647}, {42785, 56670}, {42787, 52645}, {52643, 56676}


X(56672) = SECOND INTERSECTION OF THE CUBIC K1209 AND ITS TANGENT LINE AT X(18)

Barycentrics    2*(16*a^6-5*(b^2+c^2)*a^4-4*(5*b^4+17*b^2*c^2+5*c^4)*a^2+9*(b^4-c^4)*(b^2-c^2))*S+sqrt(3)*((b^2+c^2)*a^6+(31*b^4+74*b^2*c^2+31*c^4)*a^4-(b^2+c^2)*(35*b^4-52*b^2*c^2+35*c^4)*a^2+3*(b^4-4*b^2*c^2+c^4)*(b^2-c^2)^2) : :

X(56672) lies on the cubic K1209 and these lines: {2, 52648}, {42785, 56669}, {42787, 52644}, {52642, 56675}


X(56673) = THIRD INTERSECTION OF THE CUBIC K1209 AND THE LINE THROUGH ITS POINTS X(2) AND X(17)

Barycentrics    (3*a^6-(b^2+c^2)*a^4-2*(2*b^4+7*b^2*c^2+2*c^4)*a^2+2*(b^4-c^4)*(b^2-c^2))*sqrt(3)+2*S*(3*a^4+8*(b^2+c^2)*a^2-2*(b^2-c^2)^2) : :

X(56673) lies on the cubic K1209 and these lines: {2, 17}, {15, 42787}, {18, 52647}, {511, 56676}, {14541, 20426}, {42121, 52642}, {42785, 52643}, {56670, 56675}

X(56673) = (X(634), X(16963))-harmonic conjugate of X(62)


X(56674) = THIRD INTERSECTION OF THE CUBIC K1209 AND THE LINE THROUGH ITS POINTS X(2) AND X(18)

Barycentrics    (3*a^6-(b^2+c^2)*a^4-2*(2*b^4+7*b^2*c^2+2*c^4)*a^2+2*(b^4-c^4)*(b^2-c^2))*sqrt(3)-2*S*(3*a^4+8*(b^2+c^2)*a^2-2*(b^2-c^2)^2) : :

X(56674) lies on the cubic K1209 and these lines: {2, 18}, {16, 42787}, {17, 52648}, {511, 56675}, {14540, 20425}, {42124, 52643}, {42785, 52642}, {56669, 56676}

X(56674) = (X(633), X(16962))-harmonic conjugate of X(61)


X(56675) = THIRD INTERSECTION OF THE CUBIC K1209 AND THE LINE THROUGH ITS POINTS X(13) AND X(140)

Barycentrics    (6*a^6-3*(b^2+c^2)*a^4-(b^4+4*b^2*c^2+c^4)*a^2-2*(b^4-c^4)*(b^2-c^2))*sqrt(3)+2*S*(12*a^4-13*(b^2+c^2)*a^2+10*(b^2-c^2)^2) : :

X(56675) lies on the cubic K1209 and these lines: {13, 140}, {511, 56674}, {30560, 41036}, {35229, 43194}, {42786, 52643}, {52642, 56672}, {56670, 56673}


X(56676) = THIRD INTERSECTION OF THE CUBIC K1209 AND THE LINE THROUGH ITS POINTS X(14) AND X(140)

Barycentrics    (6*a^6-3*(b^2+c^2)*a^4-(b^4+4*b^2*c^2+c^4)*a^2-2*(b^4-c^4)*(b^2-c^2))*sqrt(3)-2*S*(12*a^4-13*(b^2+c^2)*a^2+10*(b^2-c^2)^2) : :

X(56676) lies on the cubic K1209 and these lines: {14, 140}, {511, 56673}, {30559, 41037}, {35230, 43193}, {42786, 52642}, {52643, 56671}, {56669, 56674}


X(56677) = SECOND INTERSECTION OF THE CUBIC K097 AND ITS TANGENT LINE AT X(79)

Barycentrics    (a^2+c*a-b^2+c^2)*(a^2+b*a+b^2-c^2)*((b+c)*a^5+3*b*c*a^4-2*(b^3+c^3)*a^3-(2*b^2+b*c+2*c^2)*b*c*a^2+(b^4-c^4)*(b-c)*a-(b^2-c^2)^2*b*c) : :

X(56677) lies on the cubic K097 and these lines: {35, 38340}, {79, 942}, {3017, 24443}, {3336, 52002}, {18398, 43682}

X(56677) = X(1)-Ceva conjugate of-X(79)
X(56677) = X(30690)-Dao conjugate of-X(75)
X(56677) = X(3336)-hirst inverse of-X(52002)


X(56678) = SECOND INTERSECTION OF THE CUBIC K989 AND ITS TANGENT LINE AT X(1)

Barycentrics    a*((2*b^2+c^2)*a^2+b^2*c^2-c^4)*((b^2+c^2)*a^4-(b^4-b^2*c^2+c^4)*a^2+b^2*c^2*(b^2+c^2))*((b^2+2*c^2)*a^2-b^4+b^2*c^2)*(a^2-b*c)*(a^2+b*c) : :

X(56678) lies on the cubic K989 and these lines: {1, 1755}, {1966, 56681}, {2236, 56679}, {34252, 51935}

X(56678) = X(31)-Ceva conjugate of-X(56681)
X(56678) = X(8842)-isoconjugate of-X(47643)
X(56678) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (19591, 8842), (51997, 1581)
X(56678) = barycentric product X(i)*X(j) for these {i, j}: {1966, 51997}, {39681, 54252}
X(56678) = trilinear product X(i)*X(j) for these {i, j}: {385, 51997}, {39681, 45907}
X(56678) = trilinear quotient X(i)/X(j) for these (i, j): (18906, 8842), (45907, 39680), (51997, 694)


X(56679) = THIRD INTERSECTION OF THE CUBIC K989 AND THE LINE THROUGH ITS POINTS X(31) AND X(293)

Barycentrics    a*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((b^2+c^2)*a^2-b^4-c^4)*(a^4-b^2*c^2) : :

X(56679) lies on the cubic K989 and these lines: {19, 1581}, {31, 92}, {238, 242}, {240, 1959}, {444, 2355}, {1580, 19578}, {1707, 51913}, {2236, 56678}, {7009, 51909}

X(56679) = X(i)-Ceva conjugate of-X(j) for these (i, j): (19, 240), (14006, 419)
X(56679) = X(i)-Dao conjugate of-X(j) for these (i, j): (132, 1581), (325, 304), (2491, 3708), (8290, 336), (8623, 63), (19576, 293), (24284, 2632), (32664, 15391), (36103, 36897), (39031, 248), (39039, 1916), (39040, 40708), (39043, 287), (39052, 39291)
X(56679) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 15391}, {3, 36897}, {69, 34238}, {98, 36214}, {248, 1916}, {287, 694}, {290, 17970}, {293, 1581}, {336, 1967}, {647, 39291}, {684, 18858}, {805, 879}, {878, 18829}, {882, 17932}, {1976, 40708}, {6394, 17980}, {14600, 18896}, {40810, 47388}
X(56679) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (19, 36897), (31, 15391), (162, 39291), (232, 1581), (240, 1916), (297, 1934), (385, 336), (419, 1821), (1580, 287), (1691, 293), (1755, 36214), (1933, 248), (1959, 40708), (1973, 34238), (2211, 1967), (2679, 3708), (4230, 37134), (5976, 304), (9417, 17970), (17984, 46273), (36104, 18858), (36213, 63), (39931, 75), (40703, 18896), (44089, 1910), (51324, 1)
X(56679) = pole of line {293, 1808} with respect to Stammler hyperbola
X(56679) = barycentric product X(i)*X(j) for these {i, j}: {1, 39931}, {19, 5976}, {75, 51324}, {92, 36213}, {232, 1966}, {240, 385}, {297, 1580}, {419, 1959}, {1691, 40703}, {1755, 17984}, {1926, 2211}, {1933, 44132}, {2679, 46254}, {14006, 16591}, {17462, 47736}, {36120, 46888}, {44089, 46238}
X(56679) = trilinear product X(i)*X(j) for these {i, j}: {2, 51324}, {4, 36213}, {6, 39931}, {25, 5976}, {132, 51343}, {232, 385}, {237, 17984}, {240, 1580}, {297, 1691}, {325, 44089}, {419, 511}, {804, 4230}, {877, 5027}, {1933, 40703}, {2211, 3978}, {2679, 18020}, {2967, 40820}, {6531, 46888}, {12215, 34854}, {14602, 44132}
X(56679) = trilinear quotient X(i)/X(j) for these (i, j): (4, 36897), (6, 15391), (25, 34238), (232, 694), (237, 17970), (240, 1581), (297, 1916), (325, 40708), (385, 287), (419, 98), (511, 36214), (648, 39291), (685, 18858), (804, 879), (877, 18829), (1580, 293), (1691, 248), (1966, 336), (2211, 9468), (2679, 20975)


X(56680) = THIRD INTERSECTION OF THE CUBIC K989 AND THE LINE THROUGH ITS POINTS X(82) AND X(171)

Barycentrics    a*(a^2-b*c)*(a^2-(b-c)*a+b^2-b*c+c^2)*(a^2+(b-c)*a+b^2-b*c+c^2)*((b^2+b*c+c^2)*a^4-(b+c)*(b^2+c^2)*a^3+(b^2+c^2)*(b^2+b*c+c^2)*a^2-(b+c)*(b^2+c^2)*b*c*a+b^2*c^2*(b^2+b*c+c^2)) : :

X(56680) lies on the cubic K989 and these lines: {82, 171}, {9285, 51902}


X(56681) = THIRD INTERSECTION OF THE CUBIC K989 AND THE LINE THROUGH ITS POINTS X(82) AND X(293)

Barycentrics    a*((2*b^2+c^2)*a^2+b^2*c^2-c^4)*((b^2+2*c^2)*a^2-b^4+b^2*c^2)*((b^4+3*b^2*c^2+c^4)*a^6-(b^4-c^4)*(b^2-c^2)*a^4-(b^4+b^2*c^2+c^4)*b^2*c^2*a^2-b^4*c^4*(b^2+c^2))*(a^4-b^2*c^2) : :

X(56681) lies on the cubic K989 and these lines: {82, 293}, {1740, 3402}, {1966, 56678}

X(56681) = X(31)-Ceva conjugate of-X(56678)


X(56682) = THIRD INTERSECTION OF THE CUBIC K989 AND THE LINE THROUGH ITS POINTS X(238) AND X(293)

Barycentrics    a*(a^2+b*c)*(a^5-(b^2-b*c+c^2)*a^3+(b-c)*(b^2-b*c+c^2)*a^2+(b-c)^2*b*c*a-(b^2-c^2)*(b^3+c^3))*((b^2+b*c+c^2)*a^7-(b+c)*b*c*a^6-(b^4+c^4)*a^5+(b^3+c^3)*(b^2+c^2)*a^4-(b^2+3*b*c+c^2)*b^2*c^2*a^3-(b+c)*(b^6-b^3*c^3+c^6)*a^2+(b^4+c^4-(b^2-b*c+c^2)*b*c)*(b+c)^2*b*c*a-(b^2-c^2)*b^2*c^2*(b^3-c^3))*(a^5-(b^2-b*c+c^2)*a^3-(b-c)*(b^2-b*c+c^2)*a^2+(b-c)^2*b*c*a+(b^2-c^2)*(b^3+c^3)) : :

X(56682) lies on the cubic K989 and these lines: {238, 293}, {1581, 56413}


X(56683) = SECOND INTERSECTION OF THE CUBIC K617 AND ITS TANGENT LINE AT X(20)

Barycentrics    (a^8-(3*b^2-2*c^2)*a^6+3*(b^2-c^2)*(b^2+2*c^2)*a^4-(b^2-c^2)*(b^4+5*b^2*c^2+2*c^4)*a^2-(b^2-c^2)^3*c^2)*(a^8+(2*b^2-3*c^2)*a^6-3*(b^2-c^2)*(2*b^2+c^2)*a^4+(b^2-c^2)*(2*b^4+5*b^2*c^2+c^4)*a^2+(b^2-c^2)^3*b^2)*((b^2+c^2)*a^4-2*(b^4-b^2*c^2+c^4)*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(56683) lies on the cubic K617 and these lines: {2, 39174}, {4, 520}, {20, 110}, {113, 53785}, {315, 54988}, {477, 46968}, {525, 52646}, {4846, 52933}, {6794, 34298}, {11441, 14611}, {12825, 41512}, {14385, 15404}

X(56683) = anticomplement of X(39174)
X(56683) = isogonal conjugate of X(51895)
X(56683) = isotomic conjugate of X(56577)
X(56683) = cevapoint of X(113) and X(13754)
X(56683) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (92, 56576), (1784, 34549), (36043, 9033)
X(56683) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 56577), (113, 6000), (39174, 39174)
X(56683) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 56577}, {6000, 36053}
X(56683) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 56577), (403, 51358), (1294, 2986), (3003, 6000), (13754, 44436), (43701, 15421), (47405, 40948), (51821, 51964), (54988, 40832)
X(56683) = pole of line {6000, 51895} with respect to Stammler hyperbola
X(56683) = pole of line {41077, 46106} with respect to Steiner circumellipse
X(56683) = pole of line {51895, 56577} with respect to Steiner-Wallace hyperbola
X(56683) = barycentric product X(i)*X(j) for these {i, j}: {1294, 3580}, {3003, 54988}, {16237, 43701}
X(56683) = trilinear product X(1294)*X(1725)
X(56683) = trilinear quotient X(i)/X(j) for these (i, j): (75, 56577), (1294, 36053), (1725, 6000)


X(56684) = SECOND INTERSECTION OF THE CUBIC K617 AND ITS TANGENT LINE AT X(68)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6-(2*b^2+c^2)*a^4+(b^4+2*b^2*c^2-c^4)*a^2+(b^2-c^2)^2*c^2)*(a^6-(b^2+2*c^2)*a^4-(b^4-2*b^2*c^2-c^4)*a^2+(b^2-c^2)^2*b^2)*((b^2+c^2)*a^10-(3*b^4+4*b^2*c^2+3*c^4)*a^8+2*(b^2+c^2)^3*a^6+2*(b^4+c^4)*(b^4-4*b^2*c^2+c^4)*a^4-3*(b^4-c^4)*(b^2-c^2)^3*a^2+(b^4+c^4)*(b^2-c^2)^4) : :

X(56684) lies on the cubic K617 and these lines: {4, 924}, {20, 254}, {9545, 38936}


X(56685) = SECOND INTERSECTION OF THE CUBIC K617 AND ITS TANGENT LINE AT X(315)

Barycentrics    (a^6-c^2*a^4-(b^2-c^2)^2*a^2-(b^4-c^4)*c^2)*(a^6-b^2*a^4-(b^2-c^2)^2*a^2+(b^4-c^4)*b^2)*((b^2+c^2)*a^2+b^4-4*b^2*c^2+c^4) : :

X(56685) lies on the cubic K617 and these lines: {2, 34158}, {4, 850}, {20, 1296}, {126, 53782}, {315, 670}, {1177, 53765}, {1975, 36165}, {2996, 41361}, {8370, 36823}, {11185, 34574}, {40890, 51823}

X(56685) = anticomplement of X(34158)
X(56685) = isotomic conjugate of X(56579)
X(56685) = cevapoint of X(126) and X(8681)
X(56685) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (92, 56569), (37220, 858), (51823, 192)
X(56685) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 56579), (126, 2393), (3291, 5181), (34158, 34158)
X(56685) = X(31)-isoconjugate of-X(56579)
X(56685) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 56579), (126, 5181), (2373, 41909), (3291, 2393), (5140, 14580), (8681, 14961), (9134, 47138), (10422, 15387), (36874, 52672), (47286, 858), (51819, 51962)
X(56685) = barycentric product X(i)*X(j) for these {i, j}: {2373, 47286}, {3291, 46140}
X(56685) = trilinear product X(3291)*X(37220)
X(56685) = trilinear quotient X(i)/X(j) for these (i, j): (75, 56579), (17466, 47426), (37220, 41909), (47286, 18669)


X(56686) = THIRD INTERSECTION OF THE CUBIC K617 AND THE LINE THROUGH ITS POINTS X(20) AND X(68)

Barycentrics    (a^4+(b^2-2*c^2)*a^2-(b^2-c^2)*(2*b^2+c^2))*(a^4-(2*b^2-c^2)*a^2+(b^2-c^2)*(b^2+2*c^2))*(2*a^8-3*(b^2+c^2)*a^6+(b^2+c^2)^2*a^4-(b^4-c^4)*(b^2-c^2)*a^2+(b^2-c^2)^4) : :
X(56686) = 3*X(2)-4*X(39170) = X(14731)-2*X(51349) = X(15454)-2*X(39170)

X(56686) lies on the cubic K617 and these lines: {2, 5627}, {3, 12079}, {4, 523}, {5, 9717}, {20, 68}, {131, 53788}, {315, 1494}, {376, 40630}, {1304, 3542}, {1511, 53137}, {1899, 39174}, {1975, 36890}, {2349, 36626}, {3091, 3470}, {3146, 14989}, {3767, 48451}, {3832, 39239}, {7505, 22261}, {8749, 41361}, {10421, 18533}, {12281, 44004}, {12383, 15468}, {14731, 51349}, {14791, 46147}, {16080, 35486}, {18404, 44715}, {25739, 45289}, {30512, 44665}

X(56686) = reflection of X(i) in X(j) for these (i, j): (14731, 51349), (15454, 39170)
X(56686) = anticomplementary conjugate of the anticomplement of X(14264)
X(56686) = anticomplement of X(15454)
X(56686) = cevapoint of X(131) and X(44665)
X(56686) = cross-difference of every pair of points on the line X(3284)X(14397)
X(56686) = crosssum of X(1495) and X(47405)
X(56686) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (92, 56577), (1725, 146), (2159, 323), (2349, 3260), (14264, 8), (35200, 2071), (36034, 55121), (36119, 13754), (36131, 44427), (51821, 192)
X(56686) = X(i)-Dao conjugate of-X(j) for these (i, j): (131, 30), (12095, 1511), (15454, 15454), (36896, 43756)
X(56686) = X(2173)-isoconjugate of-X(43756)
X(56686) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (74, 43756), (2433, 43709), (8749, 1299), (16310, 30), (30512, 2407), (44665, 11064)
X(56686) = pole of line {2071, 15470} with respect to power circles radical circle
X(56686) = pole of line {3580, 6334} with respect to Steiner circumellipse
X(56686) = barycentric product X(i)*X(j) for these {i, j}: {1494, 16310}, {2394, 30512}, {16080, 44665}
X(56686) = trilinear product X(i)*X(j) for these {i, j}: {2314, 16080}, {2349, 16310}, {36119, 44665}
X(56686) = trilinear quotient X(i)/X(j) for these (i, j): (2314, 3284), (2349, 43756), (16310, 2173), (36119, 1299)
X(56686) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (4, 14264, 52488), (4, 36875, 14264), (14264, 34150, 4), (15454, 39170, 2), (34150, 36875, 52488)


X(56687) = THIRD INTERSECTION OF THE CUBIC K617 AND THE LINE THROUGH ITS POINTS X(20) AND X(315)

Barycentrics    (2*a^4-(b^2+c^2)*a^2+(b^2-c^2)^2)*(a^6-b^2*a^4-(b^4-c^4)*a^2+(b^2-c^2)*(b^4+b^2*c^2+2*c^4))*(a^6-c^2*a^4+(b^4-c^4)*a^2-(b^2-c^2)*(2*b^4+b^2*c^2+c^4)) : :

X(56687) lies on the cubic K617 and these lines: {2, 9476}, {4, 525}, {5, 51937}, {20, 99}, {68, 41361}, {114, 53783}, {850, 52641}, {3146, 39359}, {3424, 9473}, {3542, 32649}, {5877, 34212}, {5921, 56572}, {6330, 15258}, {6776, 15407}, {11005, 56688}, {14265, 52473}, {36163, 46606}

X(56687) = anticomplement of X(34156)
X(56687) = anticomplementary conjugate of the anticomplement of X(39265)
X(56687) = isotomic conjugate of X(56572)
X(56687) = cevapoint of X(i) and X(j) for these {i, j}: {114, 3564}, {41181, 55122}
X(56687) = crosspoint of X(9476) and X(35140)
X(56687) = crosssum of X(9475) and X(42671)
X(56687) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (92, 56571), (240, 12384), (8767, 511), (36046, 2799), (36092, 53345), (39265, 8), (51822, 192)
X(56687) = X(i)-daleth conjugate of-X(j) for these (i, j): (9476, 2), (35140, 1297)
X(56687) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 56572), (114, 1503), (230, 15595), (34156, 34156), (35067, 441), (39069, 2312), (39072, 42671), (41181, 39473)
X(56687) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 56572}, {1503, 36051}, {2312, 2987}, {3563, 8766}, {8773, 42671}, {51647, 56109}
X(56687) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 56572), (114, 15595), (230, 1503), (460, 16318), (1297, 2987), (1692, 42671), (3564, 441), (4226, 34211), (5477, 35282), (6330, 35142), (8772, 2312), (9476, 40428), (34212, 35364), (35140, 8781), (43717, 3563), (44099, 51437), (44770, 32697), (51335, 9475), (51431, 6793), (51481, 30737), (51820, 51963), (52144, 8779)
X(56687) = pole of line {297, 6333} with respect to Steiner circumellipse
X(56687) = pole of line {1503, 56572} with respect to Steiner-Wallace hyperbola
X(56687) = barycentric product X(i)*X(j) for these {i, j}: {114, 9476}, {230, 35140}, {1297, 51481}, {3564, 6330}, {4226, 43673}
X(56687) = trilinear product X(i)*X(j) for these {i, j}: {1297, 1733}, {3564, 8767}, {8772, 35140}, {9476, 17462}
X(56687) = trilinear quotient X(i)/X(j) for these (i, j): (75, 56572), (230, 2312), (1297, 36051), (1733, 1503), (3564, 8766), (8767, 3563), (8772, 42671), (17462, 9475), (35140, 8773)
X(56687) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (4, 39265, 52485), (4, 56601, 39265), (39265, 47105, 4), (47105, 56601, 52485)


X(56688) = THIRD INTERSECTION OF THE CUBIC K617 AND THE LINE THROUGH ITS POINTS X(68) AND X(315)

Barycentrics    (a^4-b^2*a^2-(b^2-c^2)*c^2)*(a^4-c^2*a^2+(b^2-c^2)*b^2)*((b^2+c^2)*a^6-(b^4+4*b^2*c^2+c^4)*a^4-(b^2+c^2)*(b^4-4*b^2*c^2+c^4)*a^2+(b^2-c^2)^4) : :

X(56688) lies on the cubic K617 and these lines: {2, 34157}, {4, 512}, {5, 36822}, {20, 98}, {68, 290}, {254, 6531}, {2065, 14384}, {3767, 48452}, {5254, 52672}, {5319, 33753}, {6248, 51259}, {9154, 15454}, {9744, 36897}, {11005, 56687}, {11185, 14382}, {31842, 53787}, {36181, 51820}, {44518, 51404}

X(56688) = anticomplementary conjugate of the anticomplement of X(14265)
X(56688) = anticomplement of X(34157)
X(56688) = isotomic conjugate of X(56574)
X(56688) = cevapoint of X(31842) and X(34382)
X(56688) = crosssum of X(237) and X(47406)
X(56688) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (92, 56572), (1733, 147), (1821, 325), (8772, 39355), (14265, 8), (36036, 55122), (36120, 3564), (51820, 192)
X(56688) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 56574), (31842, 511), (34157, 34157), (36899, 56006)
X(56688) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 56574}, {1755, 56006}
X(56688) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 56574), (98, 56006), (6531, 40120), (34382, 36212)
X(56688) = pole of line {51374, 56574} with respect to Steiner-Wallace hyperbola
X(56688) = barycentric product X(16081)*X(34382)
X(56688) = trilinear product X(34382)*X(36120)
X(56688) = trilinear quotient X(i)/X(j) for these (i, j): (75, 56574), (1821, 56006), (36120, 40120)
X(56688) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (4, 14265, 52451), (4, 36874, 14265), (14265, 34175, 4), (34175, 36874, 52451)


X(56689) = THIRD INTERSECTION OF THE CUBIC K617 AND THE LINE THROUGH ITS POINTS X(254) AND X(315)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-(2*b^2+c^2)*a^2+b^4-b^2*c^2+2*c^4)*(a^4-(b^2+2*c^2)*a^2+2*b^4-b^2*c^2+c^4)*(2*a^10-5*(b^2+c^2)*a^8+2*(b^4+6*b^2*c^2+c^4)*a^6+4*(b^4-3*b^2*c^2+c^4)*(b^2+c^2)*a^4-4*(b^2-c^2)^2*(b^4-b^2*c^2+c^4)*a^2+(b^4-c^4)*(b^2-c^2)^3) : :

X(56689) lies on the cubic K617 and these lines: {4, 3566}, {20, 3563}, {68, 2996}, {254, 315}, {3542, 32697}

X(56689) = X(92)-anticomplementary conjugate of-X(56574)


X(56690) = THIRD INTERSECTION OF THE CUBIC K681 AND THE LINE THROUGH ITS POINTS X(36) AND X(80)

Barycentrics    (a^3-c*a^2-(b-c)^2*a-(b^2-c^2)*c)*(a^3-b*a^2-(b-c)^2*a+(b^2-c^2)*b)*(a^7-3*(b+c)*a^6+9*b*c*a^5+(b+c)*(5*b^2-12*b*c+5*c^2)*a^4-(b+3*c)*(3*b+c)*(b-c)^2*a^3-(b^2-c^2)*(b-c)*(b^2-8*b*c+c^2)*a^2+(b^2-c^2)^2*(2*b-c)*(b-2*c)*a-(b^2-c^2)^3*(b-c)) : :
X(56690) = X(944)-2*X(3319) = 2*X(3326)-3*X(5603) = 5*X(10595)-4*X(39546)

X(56690) lies on the cubics K275, K681 and these lines: {4, 953}, {36, 80}, {150, 54953}, {517, 10538}, {522, 10698}, {944, 2720}, {952, 36037}, {1319, 36123}, {1532, 38950}, {1809, 5176}, {2716, 6906}, {3326, 5603}, {5882, 52640}, {6073, 21290}, {6941, 18340}, {10595, 39546}, {35013, 43728}, {36110, 51422}

X(56690) = reflection of X(i) in X(j) for these (i, j): (944, 3319), (45766, 1319)
X(56690) = pole of line {35013, 53047} with respect to polar circle


X(56691) = THIRD INTERSECTION OF THE CUBIC K681 AND THE LINE THROUGH ITS POINTS X(80) AND X(517)

Barycentrics    a*(a^2-b*a+b^2-c^2)*(a^2-c*a-b^2+c^2)*((b+c)*a^4-3*b*c*a^3-2*(b^2-c^2)*(b-c)*a^2+(3*b^2-5*b*c+3*c^2)*b*c*a+(b^2-c^2)*(b-c)^3) : :
X(56691) = 3*X(1)-4*X(24201) = 2*X(3025)-3*X(5902) = X(5697)-2*X(13756)

X(56691) lies on the cubic K681 and these lines: {1, 953}, {36, 1411}, {65, 56425}, {80, 517}, {143, 5903}, {484, 759}, {513, 11571}, {2099, 38586}, {2802, 51562}, {3025, 5902}, {3245, 56426}, {3259, 18393}, {3585, 39136}, {5697, 13756}, {14513, 41689}, {14923, 51975}, {18395, 31841}, {37525, 38617}, {37567, 38584}, {37572, 38614}, {37616, 38707}, {37730, 53809}, {38513, 39270}

X(56691) = reflection of X(i) in X(j) for these (i, j): (5697, 13756), (23153, 23152)
X(56691) = (X(80), X(51886))-harmonic conjugate of X(38954)


X(56692) = SECOND INTERSECTION OF THE CUBIC K190 AND ITS TANGENT LINE AT X(112)

Barycentrics    a^2*(-a^2+b^2+c^2)*(a^4+b*c*a^2-(b^3+c^3)*(b+c))*(a^4-b*c*a^2-(b^3-c^3)*(b-c))*(a^12-(2*b^2+c^2)*a^10+(2*b^4+2*b^2*c^2-c^4)*a^8-(3*b^4-2*c^4)*c^2*a^6-(b^2-c^2)*(3*b^6-c^6-b^2*c^2*(3*b^2+c^2))*a^4+(2*b^6-2*b^4*c^2-c^6)*(b^2-c^2)^2*a^2+(b^4-c^4)*(b^2-c^2)*c^2*(2*b^4-b^2*c^2+c^4))*(a^12-(b^2+2*c^2)*a^10-(b^4-2*b^2*c^2-2*c^4)*a^8+(2*b^4-3*c^4)*b^2*a^6-(b^2-c^2)*(b^6-3*c^6+b^2*c^2*(b^2+3*c^2))*a^4-(b^2-c^2)^2*(b^6+2*b^2*c^4-2*c^6)*a^2+(b^4-c^4)*(b^2-c^2)*b^2*(b^4-b^2*c^2+2*c^4))*(b^2-c^2) : :

X(56692) lies on the cubic K190 and these lines: {112, 33752}, {525, 10766}

X(56692) = X(53883)-reciprocal conjugate of-X(39297)


X(56693) = SECOND INTERSECTION OF THE CUBIC K1038 AND ITS TANGENT LINE AT X(1)

Barycentrics    a*(a^2+(b-c)*a+b^2-b*c-c^2)*(b^2+b*c+c^2)*(a^3+b*c*a-b^3-c^3)*(a^2-(b-c)*a-b^2-b*c+c^2) : :

X(56693) lies on the cubic K1038 and these lines: {1, 1929}, {982, 9506}, {2054, 26242}, {2276, 40777}, {5282, 37135}, {6376, 18760}, {7179, 27481}, {11599, 49519}, {19584, 56694}, {52651, 52656}

X(56693) = X(984)-cross conjugate of-X(56694)
X(56693) = barycentric product X(40793)*X(52085)
X(56693) = trilinear quotient X(52085)/X(40740)


X(56694) = SECOND INTERSECTION OF THE CUBIC K1038 AND ITS TANGENT LINE AT X(9)

Barycentrics    a*(b^2+b*c+c^2)*(a^3+b*c*a-b^3-c^3)*(a^4-(b-c)*a^3+(b-2*c)*c*a^2-(b-c)*(b^2+c^2)*a+(b-c)*(b^3+2*b^2*c+c^3))*(a^4+(b-c)*a^3-(2*b-c)*b*a^2+(b-c)*(b^2+c^2)*a-(b-c)*(b^3+2*b*c^2+c^3)) : :

X(56694) lies on the cubic K1038 and these lines: {9, 8245}, {19584, 56693}

X(56694) = X(984)-cross conjugate of-X(56693)


X(56695) = SECOND INTERSECTION OF THE CUBIC K1038 AND ITS TANGENT LINE AT X(75)

Barycentrics    a*(b^2+b*c+c^2)*((b^2+b*c-c^2)*a^2+(b-c)*b*c*a-b^2*c^2)*((b^3+c^3)*a^3-b^2*c^2*a^2-b^3*c^3)*((b^2-b*c-c^2)*a^2+(b-c)*b*c*a+b^2*c^2) : :

X(56695) lies on the cubic K1038 and these lines: {2, 24576}, {75, 3122}, {3789, 52655}, {22116, 52651}


X(56696) = THIRD INTERSECTION OF THE CUBIC K1038 AND THE LINE THROUGH ITS POINTS X(1) AND X(75)

Barycentrics    (a+c)*(a+b)*(a^2+b*c)*(b^2+b*c+c^2) : :

X(56696) lies on the cubic K1038 and these lines: {1, 75}, {2, 694}, {9, 6626}, {10, 51370}, {99, 3923}, {172, 894}, {312, 39915}, {799, 32931}, {873, 7033}, {1215, 8033}, {1469, 3786}, {1757, 34016}, {1909, 27880}, {2276, 40778}, {3751, 17731}, {4362, 7304}, {4481, 23596}, {6376, 34021}, {16741, 46897}, {17140, 40620}, {17381, 24530}, {18827, 24349}, {19563, 40328}, {26227, 56431}, {27481, 40773}, {31317, 37128}, {34022, 52049}, {40739, 51563}

X(56696) = isotomic conjugate of the isogonal conjugate of X(40731)
X(56696) = cross-difference of every pair of points on the line X(798)X(5027)
X(56696) = X(51563)-Ceva conjugate of-X(3907)
X(56696) = X(i)-complementary conjugate of-X(j) for these (i, j): (7122, 31336), (20981, 55059), (25426, 3846), (28841, 21051)
X(56696) = X(40790)-cross conjugate of-X(56441)
X(56696) = X(i)-Dao conjugate of-X(j) for these (i, j): (6626, 40738), (19584, 52651), (39054, 30670), (40592, 40763), (40597, 40747)
X(56696) = X(i)-isoconjugate of-X(j) for these {i, j}: {42, 40763}, {213, 40738}, {512, 30670}, {893, 40747}, {904, 40718}, {14621, 40729}, {40746, 52651}
X(56696) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (81, 40763), (86, 40738), (171, 40747), (662, 30670), (869, 40729), (894, 40718), (984, 52651), (3736, 893), (3799, 56257), (3805, 661), (8033, 870), (17103, 14621), (17212, 4817), (18047, 4613), (27958, 52133), (30654, 4455), (30671, 882), (30966, 257), (40731, 6), (40773, 256), (40790, 37), (45882, 512), (56441, 1)
X(56696) = X(45882)-zayin conjugate of-X(798)
X(56696) = perspector of the inconic through X(799) and X(18829)
X(56696) = pole of line {190, 2396} with respect to Kiepert parabola
X(56696) = pole of line {31, 893} with respect to Stammler hyperbola
X(56696) = pole of line {804, 7192} with respect to Steiner circumellipse
X(56696) = pole of line {804, 4369} with respect to Steiner inellipse
X(56696) = pole of line {1, 257} with respect to Steiner-Wallace hyperbola
X(56696) = barycentric product X(i)*X(j) for these {i, j}: {75, 56441}, {76, 40731}, {274, 40790}, {670, 45882}, {799, 3805}, {880, 30671}, {894, 30966}, {984, 8033}, {1909, 40773}, {1920, 3736}, {3661, 17103}, {3786, 7196}, {3799, 16737}, {3807, 17212}, {4505, 18200}, {4584, 30639}, {7179, 27958}, {17941, 23596}, {27891, 52655}
X(56696) = trilinear product X(i)*X(j) for these {i, j}: {2, 56441}, {75, 40731}, {86, 40790}, {99, 3805}, {171, 30966}, {799, 45882}, {894, 40773}, {984, 17103}, {1909, 3736}, {2276, 8033}, {3786, 7176}, {3799, 17212}, {3807, 18200}, {4469, 40745}, {4481, 18047}, {4639, 30654}, {7146, 27958}
X(56696) = trilinear quotient X(i)/X(j) for these (i, j): (86, 40763), (99, 30670), (274, 40738), (894, 40747), (1909, 40718), (2276, 40729), (3661, 52651), (3736, 904), (3805, 512), (3807, 56257), (8033, 14621), (9865, 18904), (16737, 4817), (17103, 985), (27958, 2344), (30639, 4010), (30966, 256), (40731, 31), (40773, 893), (40790, 42)


X(56697) = THIRD INTERSECTION OF THE CUBIC K1038 AND THE LINE THROUGH ITS POINTS X(9) AND X(75)

Barycentrics    (a^2-b*a-c*(b-c))*(a^2-c*a+b*(b-c))*(b^2+b*c+c^2)*(a^2-b*c) : :

X(56697) lies on the cubic K1038 and these lines: {1, 27942}, {2, 19897}, {9, 75}, {239, 3573}, {3661, 3789}, {3975, 18891}, {5222, 35119}, {16816, 52210}, {17284, 17793}, {29956, 40773}, {31183, 52654}, {31317, 52030}

X(56697) = X(43751)-complementary conjugate of-X(20541)
X(56697) = X(i)-Dao conjugate of-X(j) for these (i, j): (3789, 3252), (19584, 22116), (27481, 40217)
X(56697) = X(i)-isoconjugate of-X(j) for these {i, j}: {665, 30664}, {985, 3252}, {14621, 40730}, {22116, 40746}
X(56697) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (666, 37207), (869, 40730), (984, 22116), (2276, 3252), (3661, 40217), (3783, 518), (3797, 3912), (3802, 8299), (4486, 918), (6654, 14621), (16514, 672), (17569, 54407), (29956, 3572), (30665, 2254), (36086, 30664), (51560, 41072), (52029, 291)
X(56697) = trilinear pole of the line {3783, 4486} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(56697) = barycentric product X(i)*X(j) for these {i, j}: {350, 52029}, {666, 4486}, {673, 3797}, {2481, 3783}, {3661, 6654}, {16514, 18031}, {27853, 29956}, {30665, 51560}
X(56697) = trilinear product X(i)*X(j) for these {i, j}: {105, 3797}, {239, 52029}, {666, 30665}, {673, 3783}, {874, 29956}, {984, 6654}, {2481, 16514}, {3802, 52209}, {4486, 36086}
X(56697) = trilinear quotient X(i)/X(j) for these (i, j): (666, 30664), (984, 3252), (2276, 40730), (3661, 22116), (3783, 672), (3797, 518), (4486, 2254), (6654, 985), (16514, 2223), (29956, 875), (30665, 665), (33931, 40217), (36803, 41072), (51560, 37207), (52029, 292)


X(56698) = SECOND INTERSECTION OF THE CUBIC K770 AND ITS TANGENT LINE AT X(86)

Barycentrics    ((b+2*c)*a^2+(b+2*c)*(b+c)*a+b*(b^2+b*c+c^2))*((2*b+c)*a^2+(b+c)*(2*b+c)*a+c*(b^2+b*c+c^2))*(a^2-b*c)*((b^2+3*b*c+c^2)*a^4+(b+c)*(b^2+4*b*c+c^2)*a^3+(b^4+c^4+3*b*c*(b+c)^2)*a^2+(b+c)*(b^2+4*b*c+c^2)*b*c*a+b^2*c^2*(b^2+3*b*c+c^2)) : :

X(56698) lies on the cubic K770 and these lines: {239, 39922}, {17793, 39926}


X(56699) = SECOND INTERSECTION OF THE CUBIC K770 AND ITS TANGENT LINE AT X(192)

Barycentrics    (a^2-b*c)*((b+c)*a^2-(b^2-b*c+c^2)*a+b*c*(b+c))*((b-c)*(2*b^2+b*c+c^2)*a^3-(b-c)*(b^2+c^2)*c*a^2-(b+2*c)*b*c^3*a-b^2*c^3*(b-c))*((b-c)*(b^2+b*c+2*c^2)*a^3-(b-c)*(b^2+c^2)*b*a^2+(2*b+c)*b^3*c*a-b^3*c^2*(b-c)) : :

X(56699) lies on the cubic K770 and these lines: {192, 17792}, {17793, 39919}, {19581, 39923}

X(56699) = antitomic conjugate of X(56654)
X(56699) = X(350)-cross conjugate of-X(39923)


X(56700) = SECOND INTERSECTION OF THE CUBIC K770 AND ITS TANGENT LINE AT X(239)

Barycentrics    (a^2-b*c)*((2*b+c)*a+b*c-c^2)*((b+2*c)*a-b^2+b*c)*((b^2+3*b*c+c^2)*a^3-(b^2-c^2)*(b-c)*a^2-(b^2+b*c+c^2)*b*c*a-b^2*c^2*(b+c)) : :

X(56700) lies on the cubic K770 and these lines: {86, 2293}, {192, 1002}, {239, 4433}, {291, 32041}, {350, 39923}, {740, 56662}, {17793, 33701}, {39919, 39926}, {40739, 54291}

X(56700) = X(1)-Ceva conjugate of-X(39923)
X(56700) = X(3783)-Dao conjugate of-X(3789)


X(56701) = SECOND INTERSECTION OF THE CUBIC K770 AND ITS TANGENT LINE AT X(257)

Barycentrics    (a^2-b*c)*((b^3+c^3)*a^6+3*b^2*c^2*a^5+(b^3+c^3)*b*c*a^4-(b^6-4*b^3*c^3+c^6)*a^3+(b^3+c^3)*b^2*c^2*a^2+3*b^4*c^4*a+(b^3+c^3)*b^3*c^3)*(b*a^3+2*c^2*a^2+b^2*c*a-(b^3-c^3)*b)*(c*a^3+2*b^2*a^2+b*c^2*a+(b^3-c^3)*c) : :

X(56701) lies on the cubic K770 and these lines: {86, 39924}, {7168, 56706}, {39775, 39926}, {39914, 39922}


X(56702) = THIRD INTERSECTION OF THE CUBIC K770 AND THE LINE THROUGH ITS POINTS X(86) AND X(192)

Barycentrics    (a^2+2*(b+c)*a+b*c)*(a^2-b*c)*((b-c)*a-b*c-2*c^2)*((b-c)*a+2*b^2+b*c) : :

X(56702) lies on the cubic K770 and these lines: {86, 192}, {239, 17793}, {740, 56655}, {3797, 56653}, {4366, 39923}, {6542, 53648}, {16831, 52654}, {39919, 39922}

X(56702) = antitomic conjugate of X(56662)
X(56702) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (16369, 21904), (20142, 4393)
X(56702) = barycentric product X(20142)*X(27494)
X(56702) = trilinear product X(i)*X(j) for these {i, j}: {16369, 55947}, {20142, 52654}
X(56702) = trilinear quotient X(20142)/X(16468)


X(56703) = THIRD INTERSECTION OF THE CUBIC K770 AND THE LINE THROUGH ITS POINTS X(86) AND X(239)

Barycentrics    ((2*b+c)*a+b^2+2*b*c)*((b+2*c)*a+2*b*c+c^2)*(2*(b+c)*a^3+(b^2+3*b*c+c^2)*a^2+(b+c)*b*c*a+b^2*c^2) : :

X(56703) lies on the cubic K770 and these lines: {86, 239}, {192, 39926}, {257, 39923}, {14942, 39922}, {17793, 30571}

X(56703) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (30571, 40775), (40721, 16826), (40749, 4649), (54254, 4784)
X(56703) = barycentric product X(27483)*X(40721)
X(56703) = trilinear product X(i)*X(j) for these {i, j}: {27483, 40749}, {30571, 40721}
X(56703) = trilinear quotient X(i)/X(j) for these (i, j): (27483, 40775), (40721, 4649)


X(56704) = THIRD INTERSECTION OF THE CUBIC K770 AND THE LINE THROUGH ITS POINTS X(86) AND X(257)

Barycentrics    (a^2-b*c)*(a^2+(b+c)*a-b^2+b*c+c^2)*(a^2+(b+c)*a+b^2+b*c-c^2)*((b^2+b*c+c^2)*a^4+(b+c)*(b^2+c^2)*a^3-(b^4+c^4-b*c*(b+c)^2)*a^2+(b+c)*(b^2+c^2)*b*c*a+b^2*c^2*(b^2+b*c+c^2)) : :

X(56704) lies on the cubic K770 and these lines: {86, 257}, {350, 39922}, {4366, 39926}, {39925, 56706}

X(56704) = X(1)-Ceva conjugate of-X(39922)
X(56704) = X(8845)-reciprocal conjugate of-X(846)
X(56704) = barycentric product X(8845)*X(51865)
X(56704) = trilinear product X(6625)*X(8845)
X(56704) = trilinear quotient X(8845)/X(18755)


X(56705) = THIRD INTERSECTION OF THE CUBIC K770 AND THE LINE THROUGH ITS POINTS X(192) AND X(239)

Barycentrics    (a^2-(b+c)*a-2*b*c)*((b-c)*a^2-(b^2+b*c+c^2)*a-b*c*(b-c))*((b-c)*a^2+(b^2+b*c+c^2)*a-b*c*(b-c)) : :

X(56705) lies on the cubic K770 and these lines: {1, 39923}, {9, 192}, {86, 39919}, {385, 47647}, {740, 56664}, {7220, 14942}

X(56705) = X(3789)-cross conjugate of-X(4384)
X(56705) = X(i)-Dao conjugate of-X(j) for these (i, j): (2276, 19584), (6651, 39923)
X(56705) = X(i)-isoconjugate of-X(j) for these {i, j}: {1002, 21010}, {1911, 39923}, {2279, 17754}, {8693, 54249}, {32041, 54275}, {37138, 54251}
X(56705) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (239, 39923), (1001, 17754), (2280, 21010), (3696, 21101), (3789, 19584), (4384, 24349), (4441, 20917), (4724, 54249), (4762, 24720), (5228, 4334), (7220, 40779), (40732, 19587), (41527, 27475), (45755, 54271)
X(56705) = barycentric product X(i)*X(j) for these {i, j}: {4384, 41527}, {27474, 47647}
X(56705) = trilinear product X(i)*X(j) for these {i, j}: {1001, 41527}, {3789, 47647}, {7220, 40719}
X(56705) = trilinear quotient X(i)/X(j) for these (i, j): (350, 39923), (1001, 21010), (3789, 19586), (4044, 21101), (4384, 17754), (4441, 24349), (4724, 54251), (4762, 54249), (21615, 20917), (23151, 22163), (27474, 19584), (40719, 4334), (41527, 1002)


X(56706) = THIRD INTERSECTION OF THE CUBIC K770 AND THE LINE THROUGH ITS POINTS X(335) AND X(385)

Barycentrics    (a^4-b*c*a^2-(b^3+c^3)*a+2*b^2*c^2)*(a^3-b*c*a-b^3+c^3)*(a^3-b*c*a+b^3-c^3) : :

X(56706) lies on the cubic K770 and these lines: {239, 7261}, {335, 385}, {350, 18036}, {740, 7281}, {3226, 39919}, {5992, 7061}, {7168, 56701}, {33701, 39915}, {39925, 56704}

X(56706) = X(1)-Ceva conjugate of-X(39920)
X(56706) = X(239)-hirst inverse of-X(7261)
X(56706) = X(i)-isoconjugate of-X(j) for these {i, j}: {2113, 17798}, {3509, 18783}, {4645, 41528}, {18264, 52085}
X(56706) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2112, 17798), (3512, 2113), (8301, 3509), (8852, 18783), (17738, 4645), (18034, 51859), (20345, 17789), (20716, 4071), (27916, 1281)
X(56706) = barycentric product X(i)*X(j) for these {i, j}: {2112, 18036}, {3512, 20345}, {7261, 17738}, {8301, 40845}, {8852, 20446}
X(56706) = trilinear product X(i)*X(j) for these {i, j}: {2112, 40845}, {3512, 17738}, {7261, 8301}, {8852, 20345}, {24479, 27916}
X(56706) = trilinear quotient X(i)/X(j) for these (i, j): (2112, 19554), (3512, 18783), (7261, 2113), (8301, 17798), (8852, 41528), (17738, 3509), (18034, 52085), (20345, 4645), (20446, 17789), (20496, 4071), (20518, 4458), (20716, 20715), (20742, 20741), (27916, 19557)


X(56707) = THIRD INTERSECTION OF THE CUBIC K1082 AND THE LINE THROUGH ITS POINTS X(9) AND X(366)

Barycentrics    sqrt(a)*(a*(sqrt(a)+sqrt(b)+sqrt(c))-(b+c)*sqrt(a)-(sqrt(b)-sqrt(c))*(b-c)) : :

X(56707) lies on the cubic K1082 and these lines: {9, 364}, {4182, 20527}

X(56707) = X(7)-Ceva conjugate of-X(366)
X(56707) = X(4182)-Dao conjugate of-X(8)


X(56708) = SECOND INTERSECTION OF THE CUBIC K490 AND ITS TANGENT LINE AT X(2)

Barycentrics    (a^4-2*(b^2-2*c^2)*a^2+(b^2-c^2)^2)*(a^4+2*(2*b^2-c^2)*a^2+(b^2-c^2)^2)*(a^12-2*(b^2+c^2)*a^10-(b^4-9*b^2*c^2+c^4)*a^8+2*(b^2+c^2)*(2*b^4-7*b^2*c^2+2*c^4)*a^6-(b^8-10*b^4*c^4+c^8)*a^4-2*(b^6+c^6)*(b^2-c^2)^2*a^2+(b^4+3*b^2*c^2+c^4)*(b^2-c^2)^4) : :

X(56708) lies on the cubic K490 and these lines: {2, 3003}, {4, 52165}, {1300, 1990}, {1302, 16310}, {1989, 56709}, {47103, 53416}

X(56708) = X(14165)-Ceva conjugate of-X(56709)
X(56708) = pole of line {37648, 40387} with respect to Kiepert circumhyperbola


X(56709) = SECOND INTERSECTION OF THE CUBIC K490 AND ITS TANGENT LINE AT X(393)

Barycentrics    (a^4-2*(b^2-2*c^2)*a^2+(b^2-c^2)^2)*(a^4+2*(2*b^2-c^2)*a^2+(b^2-c^2)^2)*(a^8-4*(b^2+c^2)*a^6+(6*b^4-5*b^2*c^2+6*c^4)*a^4-4*(b^4-c^4)*(b^2-c^2)*a^2+(b^4+7*b^2*c^2+c^4)*(b^2-c^2)^2) : :
X(56709) = 2*X(1302)+X(47103)

X(56709) lies on the cubic K490 and these lines: {2, 39263}, {30, 841}, {393, 33885}, {403, 16080}, {1514, 40387}, {1989, 56708}, {1990, 40385}, {3543, 51471}, {3545, 4846}, {14157, 32738}, {34289, 54942}

X(56709) = X(14165)-Ceva conjugate of-X(56708)
X(56709) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (12112, 15066), (34288, 18317)
X(56709) = pole of line {40385, 51544} with respect to Kiepert circumhyperbola
X(56709) = barycentric product X(i)*X(j) for these {i, j}: {12112, 34289}, {39263, 40386}


X(56710) = THIRD INTERSECTION OF THE CUBIC K490 AND THE LINE THROUGH ITS POINTS X(393) AND X(403)

Barycentrics    (5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2)*(a^6-(b^2-c^2)*a^4-(b^4-2*b^2*c^2+5*c^4)*a^2+(b^2+3*c^2)*(b^2-c^2)^2)*(a^6+(b^2-c^2)*a^4-(5*b^4-2*b^2*c^2+c^4)*a^2+(3*b^2+c^2)*(b^2-c^2)^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(56710) lies on the cubic K490 and these lines: {4, 52165}, {393, 403}, {1249, 56598}, {16080, 17907}

X(56710) = X(i)-Dao conjugate of-X(j) for these (i, j): (3162, 52168), (16253, 37645)
X(56710) = X(63)-isoconjugate of-X(52168)
X(56710) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (25, 52168), (26864, 47391), (40138, 37645), (52487, 36889)
X(56710) = barycentric product X(i)*X(j) for these {i, j}: {376, 52487}, {34801, 47392}
X(56710) = trilinear quotient X(19)/X(52168)


X(56711) = THIRD INTERSECTION OF THE CUBIC K1276 AND THE LINE THROUGH ITS POINTS X(3) AND X(111)

Barycentrics    a^2*(a^14-6*(b^2+c^2)*a^12-(5*b^4-64*b^2*c^2+5*c^4)*a^10+2*(b^2+c^2)*(8*b^4-45*b^2*c^2+8*c^4)*a^8+(7*b^8+7*c^8-(99*b^4-313*b^2*c^2+99*c^4)*b^2*c^2)*a^6-(b^2+c^2)*(14*b^8+14*c^8-b^2*c^2*(171*b^4-350*b^2*c^2+171*c^4))*a^4-(3*b^12+3*c^12-(67*b^8+67*c^8-2*b^2*c^2*(253*b^4-450*b^2*c^2+253*c^4))*b^2*c^2)*a^2+(b^4-c^4)*(b^2-c^2)*(4*b^8+4*c^8-(41*b^4-126*b^2*c^2+41*c^4)*b^2*c^2)) : :

X(56711) lies on the cubic K1276 and these lines: {3, 111}, {115, 37748}, {542, 10765}, {5622, 28662}


X(56712) = SECOND INTERSECTION OF THE CUBIC K982 AND ITS TANGENT LINE AT X(2)

Barycentrics    a*((b+c)*a-b^2-c^2)*((b-c)*a^2-(b^2+b*c+c^2)*a-b*c*(b-c))*((b-c)*a^2+(b^2+b*c+c^2)*a-b*c*(b-c))*((b^2+c^2)*a^4-2*(b^3+c^3)*a^3+(b^4+3*b^2*c^2+c^4)*a^2-b^2*c^2*(b-c)^2) : :

X(56712) lies on the cubic K982 and these lines: {2, 10030}, {9442, 15310}


X(56713) = SECOND INTERSECTION OF THE CUBIC K982 AND ITS TANGENT LINE AT X(241)

Barycentrics    a*(a+b-c)*(a-b+c)*((b+c)*a-b^2-c^2)*(a^6-2*(b+c)*a^5+(2*b^2+3*b*c+2*c^2)*a^4-2*(b+c)*(2*b^2-3*b*c+2*c^2)*a^3+(5*b^2+6*b*c+5*c^2)*(b-c)^2*a^2-2*(b^3-c^3)*(b^2-c^2)*a+b*c*(b-c)^4) : :

X(56713) lies on the cubic K982 and these lines: {1, 1362}, {2, 658}, {7, 51846}, {105, 6180}, {220, 934}, {518, 6168}, {672, 41355}, {910, 56383}, {1200, 34253}, {39066, 53544}

X(56713) = X(9)-Ceva conjugate of-X(241)
X(56713) = X(518)-hirst inverse of-X(6168)


X(56714) = THIRD INTERSECTION OF THE CUBIC K982 AND THE LINE THROUGH ITS POINTS X(1) AND X(2)

Barycentrics    a*(a^2-(b+c)*a+2*b*c)*((b+c)*a-b^2-c^2) : :

X(56714) lies on the cubic K982 and these lines: {1, 2}, {9, 9309}, {105, 19589}, {165, 4936}, {190, 3000}, {241, 4712}, {344, 2293}, {518, 56719}, {527, 4069}, {644, 9441}, {649, 3309}, {660, 36101}, {672, 4447}, {1042, 1265}, {1083, 8647}, {1376, 4513}, {1458, 3717}, {1742, 3161}, {1818, 3932}, {2183, 4553}, {2325, 35338}, {2356, 34337}, {2635, 4009}, {3177, 27538}, {3263, 39775}, {3685, 39341}, {3693, 9502}, {3740, 4875}, {3971, 25237}, {4073, 26669}, {4449, 4885}, {4851, 4878}, {7035, 40075}, {9442, 56721}, {18252, 21809}, {20978, 26685}, {25066, 35269}, {25082, 54474}, {25083, 35293}

X(56714) = isogonal conjugate of X(51845)
X(56714) = cross-difference of every pair of points on the line X(614)X(649)
X(56714) = X(9)-Ceva conjugate of-X(4712)
X(56714) = X(1)-daleth conjugate of-X(3938)
X(56714) = X(i)-Dao conjugate of-X(j) for these (i, j): (5452, 6169), (6184, 9311), (6631, 14727), (17755, 32023), (39046, 9309), (39066, 7), (48315, 514)
X(56714) = X(i)-hirst inverse of-X(j) for these {i, j}: {1, 200}, {1376, 4513}
X(56714) = X(i)-isoconjugate of-X(j) for these {i, j}: {57, 6169}, {105, 9309}, {667, 14727}, {673, 9315}, {1438, 9311}, {30610, 43929}
X(56714) = X(i)-line conjugate of-X(j) for these (i, j): (1, 614), (3309, 649)
X(56714) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (55, 6169), (190, 14727), (518, 9311), (672, 9309), (1026, 30610), (1376, 673), (2223, 9315), (3729, 2481), (3912, 32023), (4513, 14942), (6168, 7), (9310, 105), (9312, 34018), (9316, 1462), (16283, 2195), (20980, 1027), (40883, 75), (41355, 279), (42341, 514)
X(56714) = perspector of the inconic through X(190) and X(3729)
X(56714) = pole of line {4057, 12329} with respect to circumcircle
X(56714) = pole of line {3667, 14523} with respect to incircle
X(56714) = pole of line {3057, 4712} with respect to Feuerbach circumhyperbola
X(56714) = pole of line {3239, 17658} with respect to Mandart inellipse
X(56714) = pole of line {58, 51845} with respect to Stammler hyperbola
X(56714) = pole of line {514, 25242} with respect to Steiner circumellipse
X(56714) = pole of line {514, 25066} with respect to Steiner inellipse
X(56714) = pole of line {86, 51845} with respect to Steiner-Wallace hyperbola
X(56714) = pole of line {190, 657} with respect to Yff parabola
X(56714) = barycentric product X(i)*X(j) for these {i, j}: {1, 40883}, {8, 6168}, {190, 42341}, {346, 41355}, {518, 3729}, {1026, 4885}, {1376, 3912}, {2284, 20907}, {3263, 9310}, {3693, 9312}, {3717, 6180}, {3967, 18206}, {4449, 42720}, {4513, 9436}
X(56714) = trilinear product X(i)*X(j) for these {i, j}: {6, 40883}, {9, 6168}, {100, 42341}, {200, 41355}, {241, 4513}, {518, 1376}, {672, 3729}, {1026, 4449}, {2284, 4885}, {2340, 9312}, {3286, 3967}, {3693, 6180}, {3717, 9316}, {3912, 9310}, {16283, 40704}, {20907, 54325}, {20980, 42720}, {21052, 54353}
X(56714) = trilinear quotient X(i)/X(j) for these (i, j): (9, 6169), (518, 9309), (668, 14727), (672, 9315), (1376, 105), (2340, 9439), (3263, 32023), (3729, 673), (3912, 9311), (3967, 13576), (4014, 43921), (4449, 1027), (4513, 294), (6168, 57), (6180, 1462), (9310, 1438), (9316, 1416), (20980, 43929), (40883, 2), (41355, 269)
X(56714) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1026, 3912, 2340), (5205, 23691, 899)


X(56715) = THIRD INTERSECTION OF THE CUBIC K982 AND THE LINE THROUGH ITS POINTS X(2) AND X(105)

Barycentrics    a*((b+c)*a-b^2-c^2)*(a^4-2*(b+c)*a^3+(b^2+b*c+c^2)*a^2+b*(b-c)^2*c) : :

X(56715) lies on the cubic K982 and these lines: {2, 11}, {7, 21320}, {9, 1742}, {69, 480}, {144, 52923}, {198, 1633}, {220, 35215}, {241, 518}, {516, 15507}, {1026, 46793}, {1445, 3779}, {1566, 44425}, {2283, 20776}, {2347, 17792}, {2807, 3781}, {2820, 28345}, {3119, 3740}, {3126, 3738}, {4557, 5845}, {4640, 8012}, {5220, 36101}, {6600, 16608}, {7077, 22116}, {7676, 23868}, {10868, 15587}, {14189, 28058}, {17093, 25568}, {20331, 24396}, {20990, 51150}

X(56715) = midpoint of X(9) and X(35338)
X(56715) = cross-difference of every pair of points on the line X(665)X(1024)
X(56715) = crosspoint of X(1026) and X(4998)
X(56715) = crosssum of X(i) and X(j) for these {i, j}: {1027, 3271}, {18785, 52020}
X(56715) = X(i)-Ceva conjugate of-X(j) for these (i, j): (9, 518), (1275, 2284), (6184, 8299), (6606, 918)
X(56715) = X(i)-complementary conjugate of-X(j) for these (i, j): (1170, 20335), (1174, 34852), (2223, 52818), (21453, 20544), (53243, 3716)
X(56715) = X(i)-Dao conjugate of-X(j) for these (i, j): (9436, 85), (39046, 9442), (52614, 1146)
X(56715) = X(518)-hirst inverse of-X(2340)
X(56715) = X(i)-isoconjugate of-X(j) for these {i, j}: {105, 9442}, {1462, 14943}
X(56715) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (672, 9442), (2340, 14943), (9441, 673), (10025, 2481), (14189, 34018), (28058, 36796), (33677, 18031), (36905, 85)
X(56715) = center of the inconic through X(9) and X(6606)
X(56715) = perspector of the inconic through X(666) and X(1025)
X(56715) = pole of line {918, 36905} with respect to Steiner inellipse
X(56715) = pole of line {38379, 53337} with respect to Yff parabola
X(56715) = barycentric product X(i)*X(j) for these {i, j}: {9, 36905}, {241, 28058}, {518, 10025}, {672, 33677}, {2340, 40864}, {3693, 14189}, {3912, 9441}
X(56715) = trilinear product X(i)*X(j) for these {i, j}: {55, 36905}, {518, 9441}, {672, 10025}, {1458, 28058}, {2223, 33677}, {2340, 14189}
X(56715) = trilinear quotient X(i)/X(j) for these (i, j): (518, 9442), (2340, 52001), (3693, 14943), (9441, 105), (10025, 673), (28058, 14942), (33677, 2481), (36905, 7), (40864, 34018)


X(56716) = THIRD INTERSECTION OF THE CUBIC K982 AND THE LINE THROUGH ITS POINTS X(2) AND X(165)

Barycentrics    a*(3*a^2+2*(b-c)*a+(3*b+c)*(b-c))*(3*a^2-2*(b-c)*a-(b+3*c)*(b-c))*(a^2-(b+c)*a-2*b*c)*((b+c)*a-b^2-c^2) : :

X(56716) lies on the cubic K982 and these lines: {2, 165}, {518, 9502}, {38316, 42317}

X(56716) = X(32040)-reciprocal conjugate of-X(53227)
X(56716) = trilinear quotient X(26716)/X(36138)


X(56717) = THIRD INTERSECTION OF THE CUBIC K982 AND THE LINE THROUGH ITS POINTS X(2) AND X(518)

Barycentrics    a*((2*b+c)*a+b*c-c^2)*((b+2*c)*a-b^2+b*c)*((b+c)*a^3-(2*b^2+3*b*c+2*c^2)*a^2+(b+c)^3*a-b*(b-c)^2*c) : :

X(56717) lies on the cubic K982 and these lines: {2, 210}, {55, 37138}, {2116, 42079}, {9442, 9502}

X(56717) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (9443, 4762), (54278, 4724)
X(56717) = barycentric product X(i)*X(j) for these {i, j}: {9443, 32041}, {37138, 54264}
X(56717) = trilinear product X(i)*X(j) for these {i, j}: {8693, 54264}, {9443, 37138}, {32041, 54278}
X(56717) = trilinear quotient X(i)/X(j) for these (i, j): (9443, 4724), (54264, 4762), (54266, 45755)


X(56718) = THIRD INTERSECTION OF THE CUBIC K982 AND THE LINE THROUGH ITS POINTS X(9) AND X(165)

Barycentrics    a*(a^2-2*(b-c)*a+(b+3*c)*(b-c))*(a^2+2*(b-c)*a-(3*b+c)*(b-c))*((b+c)*a-b^2-c^2) : :

X(56718) lies on the cubic K982 and these lines: {9, 165}, {75, 31627}, {518, 6168}, {522, 676}, {2751, 53622}, {3177, 3617}, {3693, 9502}, {3717, 40883}, {4081, 51364}, {4853, 39959}, {9950, 45203}, {19861, 56098}, {24010, 43064}, {53210, 53640}

X(56718) = midpoint of X(24010) and X(43064)
X(56718) = X(241)-cross conjugate of-X(518)
X(56718) = X(i)-Dao conjugate of-X(j) for these (i, j): (6184, 144), (17755, 16284), (36905, 31627), (38980, 7658), (39046, 165), (39063, 3160)
X(56718) = X(3062)-hirst inverse of-X(19605)
X(56718) = X(i)-isoconjugate of-X(j) for these {i, j}: {105, 165}, {144, 1438}, {294, 1419}, {673, 3207}, {919, 7658}, {2195, 3160}, {17106, 28071}, {22117, 36124}, {33634, 53241}
X(56718) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (241, 3160), (518, 144), (672, 165), (1458, 1419), (2223, 3207), (2254, 7658), (3062, 673), (3912, 16284), (3930, 21060), (9436, 31627), (10405, 2481), (11051, 105), (19605, 14942), (20683, 21872), (20752, 22117), (24290, 55285), (34855, 9533), (36620, 34018), (40704, 50560), (44186, 18031), (53622, 36146), (53640, 34085)
X(56718) = pole of line {1376, 4885} with respect to Spieker circle
X(56718) = pole of line {1146, 32446} with respect to circumhyperbola dual of Yff parabola
X(56718) = pole of line {9309, 36101} with respect to Feuerbach circumhyperbola
X(56718) = pole of line {7, 4130} with respect to Steiner inellipse
X(56718) = barycentric product X(i)*X(j) for these {i, j}: {518, 10405}, {672, 44186}, {3062, 3912}, {3263, 11051}, {3693, 36620}, {9436, 19605}, {24290, 55284}
X(56718) = trilinear product X(i)*X(j) for these {i, j}: {241, 19605}, {518, 3062}, {672, 10405}, {926, 53640}, {2223, 44186}, {2340, 36620}, {3912, 11051}, {50333, 53622}
X(56718) = trilinear quotient X(i)/X(j) for these (i, j): (241, 1419), (518, 165), (672, 3207), (918, 7658), (1818, 22117), (3062, 105), (3263, 16284), (3912, 144), (3930, 21872), (3932, 21060), (4088, 55285), (9436, 3160), (10405, 673), (11051, 1438), (19605, 294), (34855, 17106), (40704, 31627), (44186, 2481), (53622, 32735), (53640, 927)


X(56719) = THIRD INTERSECTION OF THE CUBIC K982 AND THE LINE THROUGH ITS POINTS X(105) AND X(165)

Barycentrics    a*(a+b-3*c)*(a-3*b+c)*(2*a^2-(b+c)*a+(b-c)^2)*((b+c)*a-b^2-c^2) : :

X(56719) lies on the cubic K982 and these lines: {9, 19604}, {105, 165}, {518, 56714}, {1212, 45205}, {1279, 51839}, {3177, 27818}

X(56719) = X(8056)-Ceva conjugate of-X(51839)
X(56719) = X(i)-Dao conjugate of-X(j) for these (i, j): (3008, 18743), (3693, 44720)
X(56719) = X(4394)-isoconjugate of-X(39272)
X(56719) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1293, 39272), (16593, 18743), (20662, 1743), (20680, 3950), (20749, 4855), (40609, 44720), (51839, 673), (53552, 145)
X(56719) = X(35355)-zayin conjugate of-X(4394)
X(56719) = barycentric product X(i)*X(j) for these {i, j}: {2348, 10029}, {3912, 51839}, {4373, 53552}, {8056, 16593}, {19604, 40609}, {20662, 40014}
X(56719) = trilinear product X(i)*X(j) for these {i, j}: {518, 51839}, {3445, 16593}, {4373, 20662}, {8056, 53552}, {8647, 10029}, {40151, 40609}
X(56719) = trilinear quotient X(i)/X(j) for these (i, j): (10029, 35160), (16593, 145), (20662, 3052), (20680, 4849), (20749, 20818), (27834, 39272), (40609, 3161), (51839, 105), (53552, 1743)


X(56720) = THIRD INTERSECTION OF THE CUBIC K982 AND THE LINE THROUGH ITS POINTS X(105) AND X(241)

Barycentrics    a*(a^2-c*a+b*(b-c))*(a^2-b*a-c*(b-c))*(a^6-3*(b+c)*a^5+(5*b^2+7*b*c+5*c^2)*a^4-2*(b+c)*(3*b^2-b*c+3*c^2)*a^3+(3*b^4+2*b^2*c^2+3*c^4)*a^2+(b^4-c^4)*(b-c)*a-(b-c)^2*(b^4+c^4+b*c*(b^2+4*b*c+c^2))) : :

X(56720) lies on the cubic K982 and these lines: {2, 2115}, {105, 241}, {294, 672}, {518, 677}, {666, 28058}, {2340, 23694}, {6185, 14197}, {9453, 39344}

X(56720) = X(9)-Ceva conjugate of-X(105)
X(56720) = X(518)-hirst inverse of-X(28071)
X(56720) = (X(9503), X(36086))-harmonic conjugate of X(41339)


X(56721) = THIRD INTERSECTION OF THE CUBIC K982 AND THE LINE THROUGH ITS POINTS X(105) AND X(518)

Barycentrics    a*(a^2-(2*b+c)*a+b^2-b*c+2*c^2)*(a^2-(b+2*c)*a+2*b^2-b*c+c^2)*(a^5-4*(b+c)*a^4+(5*b^2+3*b*c+5*c^2)*a^3-3*(b^3+c^3)*a^2+(b-c)^2*(2*b^2+3*b*c+2*c^2)*a-(b-c)^2*(b^3+c^3)) : :

X(56721) lies on the cubic K982 and these lines: {105, 518}, {672, 43760}, {1642, 39272}, {9442, 56714}, {35160, 40868}, {36807, 51384}

X(56721) = X(518)-hirst inverse of-X(1280)
X(56721) = X(52084)-reciprocal conjugate of-X(3008)
X(56721) = barycentric product X(i)*X(j) for these {i, j}: {1280, 52164}, {36807, 52084}
X(56721) = trilinear product X(1280)*X(52084)
X(56721) = trilinear quotient X(i)/X(j) for these (i, j): (52084, 1279), (52164, 3008)


X(56722) = THIRD INTERSECTION OF THE CUBIC K982 AND THE LINE THROUGH ITS POINTS X(165) AND X(518)

Barycentrics    a*(a^2-4*(b+c)*a+3*b^2-2*b*c+3*c^2)*(3*a^3-3*(b+c)*a^2+(5*b+3*c)*(b-c)*a-(b-c)*(5*b^2+3*c^2))*(3*a^3-3*(b+c)*a^2-(3*b+5*c)*(b-c)*a+(b-c)*(3*b^2+5*c^2)) : :

X(56722) lies on the cubic K982 and these lines: {2, 10029}, {165, 518}


X(56723) = SECOND INTERSECTION OF THE CUBIC K610 AND ITS TANGENT LINE AT X(21)

Barycentrics    a*(b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-2*(b^2+c^2)*a^2-4*b^2*c*a+(b^2-c^2)^2)*(a^4-2*(b^2+c^2)*a^2-4*b*c^2*a+(b^2-c^2)^2)*(a^4-2*(b^2+b*c+c^2)*a^2-2*(b+c)*b*c*a+b^4+c^4) : :

X(56723) lies on the cubic K610 and these lines: {69, 92}, {72, 56725}, {43675, 52673}, {52676, 55105}

X(56723) = X(286)-Ceva conjugate of-X(56725)


X(56724) = SECOND INTERSECTION OF THE CUBIC K610 AND ITS TANGENT LINE AT X(92)

Barycentrics    (a+c)*(a+b)*(-a^2+b^2+c^2)*(a^4-2*(b+c)^2*a^2+(b^2-c^2)^2)*((b+c)*a^5+(b-c)*c*a^4-2*(b+c)*(b^2+c^2)*a^3-2*(b+c)*(b^2+2*b*c-c^2)*c*a^2+(b^2-c^2)^2*(b+c)*a+(b^2-c^2)^2*(b-c)*c)*((b+c)*a^5-(b-c)*b*a^4-2*(b+c)*(b^2+c^2)*a^3+2*(b+c)*(b^2-2*b*c-c^2)*b*a^2+(b^2-c^2)^2*(b+c)*a-(b^2-c^2)^2*(b-c)*b) : :

X(56724) lies on the cubic K610 and these lines: {21, 52673}, {69, 52676}, {286, 56725}

X(56724) = isotomic conjugate of X(56725)
X(56724) = X(2)-Dao conjugate of-X(56725)
X(56724) = X(31)-isoconjugate of-X(56725)
X(56724) = X(2)-reciprocal conjugate of-X(56725)
X(56724) = pole of line {7513, 56725} with respect to Steiner-Wallace hyperbola
X(56724) = trilinear quotient X(75)/X(56725)


X(56725) = THIRD INTERSECTION OF THE CUBIC K610 AND THE LINE THROUGH ITS POINTS X(4) AND X(63)

Barycentrics    (a^6-(b+c)*a^5-(2*b^2+b*c+2*c^2)*a^4+2*(b+c)*(b^2+c^2)*a^3+(b^4+c^4+2*b*c*(b^2+3*b*c+c^2))*a^2-(b^2-c^2)^2*(b+c)*a-b*c*(b^2-c^2)^2)*(b+c)*(a^4-2*(b^2+c^2)*a^2-4*b*c^2*a+(b^2-c^2)^2)*(a^4-2*(b^2+c^2)*a^2-4*b^2*c*a+(b^2-c^2)^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(56725) lies on the cubic K610 and these lines: {2, 56727}, {4, 63}, {72, 56723}, {286, 56724}, {2997, 56726}, {55106, 56729}

X(56725) = isotomic conjugate of X(56724)
X(56725) = X(286)-Ceva conjugate of-X(56723)
X(56725) = X(2)-Dao conjugate of-X(56724)
X(56725) = X(31)-isoconjugate of-X(56724)
X(56725) = X(2)-reciprocal conjugate of-X(56724)
X(56725) = trilinear quotient X(75)/X(56724)


X(56726) = THIRD INTERSECTION OF THE CUBIC K610 AND THE LINE THROUGH ITS POINTS X(21) AND X(69)

Barycentrics    (a^4-2*(b+c)*c*a^2-2*(b+c)*b*c*a-b^4+c^4)*(a^4-2*(b+c)*b*a^2-2*(b+c)*b*c*a+b^4-c^4)*(a^6-3*(b+c)^2*a^4-6*(b+c)*b*c*a^3+(b+c)^2*(3*b^2-4*b*c+3*c^2)*a^2+2*(b+c)*(b^2+c^2)*b*c*a-(b^4-c^4)*(b^2-c^2)) : :

X(56726) lies on the cubics K610, K1315 and these lines: {21, 69}, {92, 43675}, {2997, 56725}, {5739, 40575}


X(56727) = THIRD INTERSECTION OF THE CUBIC K610 AND THE LINE THROUGH ITS POINTS X(21) AND X(92)

Barycentrics    (a^4+2*b*c*a^2+2*(b+c)*b*c*a-(b^2-c^2)^2)*(a^5-(2*b^2+b*c+c^2)*a^3-(b+c)^2*c*a^2+(b^2-c^2)*(b+c)*b*a+c*(b^2-c^2)^2)*(a^5-(b^2+b*c+2*c^2)*a^3-(b+c)^2*b*a^2-(b^2-c^2)*(b+c)*c*a+b*(b^2-c^2)^2)/a : :

X(56727) lies on the cubic K610 and these lines: {2, 56725}, {21, 92}, {69, 349}, {43675, 52676}

X(56727) = X(54405)-reciprocal conjugate of-X(581)
X(56727) = trilinear product X(377)*X(54972)
X(56727) = trilinear quotient X(377)/X(581)


X(56728) = THIRD INTERSECTION OF THE CUBIC K610 AND THE LINE THROUGH ITS POINTS X(63) AND X(69)

Barycentrics    (b+c)*(-a^2+b^2+c^2)*(a^6-(b+c)*a^5-(b+2*c)*(2*b+c)*a^4+2*(b^2-c^2)*(b-c)*a^3+(b+c)^2*(b^2+c^2)*a^2-(b^2-c^2)^2*(b+c)*a-b*c*(b^2-c^2)^2) : :

X(56728) lies on the cubic K610 and these lines: {2, 2335}, {4, 17776}, {8, 13726}, {21, 40435}, {63, 69}, {92, 27396}, {1441, 25254}, {3151, 32849}, {3673, 28606}, {3682, 27407}, {3998, 20235}, {5278, 11517}, {5294, 14547}, {40571, 40572}

X(56728) = anticomplement of the isogonal conjugate of X(40572)
X(56728) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (579, 2894), (40572, 8)
X(56728) = X(286)-Ceva conjugate of-X(72)
X(56728) = X(52386)-Dao conjugate of-X(72)
X(56728) = X(1612)-reciprocal conjugate of-X(28)
X(56728) = pole of line {1474, 46887} with respect to Stammler hyperbola
X(56728) = barycentric product X(1612)*X(20336)
X(56728) = trilinear product X(306)*X(1612)
X(56728) = trilinear quotient X(1612)/X(1474)
X(56728) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (71, 306, 26872), (40161, 51574, 2)


X(56729) = THIRD INTERSECTION OF THE CUBIC K610 AND THE LINE THROUGH ITS POINTS X(69) AND X(72)

Barycentrics    (-a^2+b^2+c^2)*(a^4+2*(b+c)*a^3-2*(b+c)*b*c*a+(b^2-c^2)^2)/a : :

X(56729) lies on the cubic K610 and these lines: {2, 15474}, {21, 75}, {69, 72}, {85, 18133}, {1370, 3263}, {1760, 24606}, {3262, 6527}, {33808, 53332}, {40697, 54314}, {55106, 56725}

X(56729) = anticomplement of the isogonal conjugate of X(40571)
X(56729) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (27, 43740), (58, 19789), (162, 17924), (284, 20110), (662, 15313), (1708, 2475), (1780, 2), (2911, 1654), (3173, 3152), (3215, 18667), (3811, 2895), (4570, 1332), (11517, 3151), (15313, 21221), (17776, 1330), (30733, 5905), (37579, 17778), (40571, 8), (41332, 192), (41608, 6360), (46885, 2894)
X(56729) = X(286)-Ceva conjugate of-X(69)
X(56729) = X(41507)-cross conjugate of-X(52025)
X(56729) = X(i)-Dao conjugate of-X(j) for these (i, j): (1751, 2218), (3998, 72), (6505, 39945)
X(56729) = X(25)-isoconjugate of-X(39945)
X(56729) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (63, 39945), (1714, 19), (41507, 37), (52025, 1)
X(56729) = pole of line {10916, 24162} with respect to circumhyperbola dual of Yff parabola
X(56729) = pole of line {2203, 2352} with respect to Stammler hyperbola
X(56729) = pole of line {28, 3868} with respect to Steiner-Wallace hyperbola
X(56729) = barycentric product X(i)*X(j) for these {i, j}: {75, 52025}, {274, 41507}, {304, 1714}
X(56729) = trilinear product X(i)*X(j) for these {i, j}: {2, 52025}, {69, 1714}, {86, 41507}
X(56729) = trilinear quotient X(i)/X(j) for these (i, j): (69, 39945), (1714, 25), (41507, 42), (52025, 6)


X(56730) = ISOTOMIC CONJUGATE OF X(55839)

Barycentrics    (a^4-b^4+b^2*c^2-c^4)*(a^16-4*c^2*a^14-2*(2*b^4-2*b^2*c^2-3*c^4)*a^12+2*(3*b^2-c^2)*(b^2-2*c^2)*c^2*a^10+(6*b^8-14*c^8-(10*b^4-9*b^2*c^2-10*c^4)*b^2*c^2)*a^8-2*(b^2-c^2)*(b^6+2*c^6-(3*b^2-7*c^2)*b^2*c^2)*c^2*a^6-(b^4-c^4)*(4*b^8+6*c^8-(6*b^4-15*b^2*c^2+14*c^4)*b^2*c^2)*a^4+2*(b^4-c^4)*(b^2+c^2)*(3*b^4-4*b^2*c^2+2*c^4)*c^4*a^2+(b^4-c^4)^4)*(a^16-4*b^2*a^14+2*(3*b^4+2*b^2*c^2-2*c^4)*a^12+2*(2*b^2-c^2)*(b^2-3*c^2)*b^2*a^10-(14*b^8-6*c^8-(10*b^4+9*b^2*c^2-10*c^4)*b^2*c^2)*a^8+2*(b^2-c^2)*(2*b^6+c^6+(7*b^2-3*c^2)*b^2*c^2)*b^2*a^6+(b^4-c^4)*(6*b^8+4*c^8-(14*b^4-15*b^2*c^2+6*c^4)*b^2*c^2)*a^4-2*(b^4-c^4)*(b^2+c^2)*(2*b^4-4*b^2*c^2+3*c^4)*b^4*a^2+(b^4-c^4)^4) : :

X(56730) lies on the cubic K008 and these lines: {2, 55845}, {69, 55844}, {316, 55839}, {524, 55841}, {858, 55838}, {14360, 34163}, {34164, 55840}, {34165, 55852}, {55843, 56488}, {55846, 55847}, {55853, 56485}

X(56730) = antigonal conjugate of the isogonal conjugate of X(15900)
X(56730) = isotomic conjugate of X(55839)
X(56730) = X(897)-anticomplementary conjugate of-X(55845)
X(56730) = X(67)-cross conjugate of-X(316)
X(56730) = X(2)-Dao conjugate of-X(55839)
X(56730) = X(31)-isoconjugate of-X(55839)
X(56730) = X(2)-reciprocal conjugate of-X(55839)
X(56730) = trilinear quotient X(75)/X(55839)


X(56731) = X(2)X(3)∩X(58)X(325)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2) + (a + b + c)^2*(a^4 + b^4 + c^4) : :

X(56731) lies on these lines: {2, 3}, {58, 325}, {86, 6393}, {230, 21024}, {385, 41014}, {386, 7792}, {966, 40825}, {1125, 5976}, {1213, 1691}, {3094, 17398}, {3589, 53425}, {4252, 7778}, {5988, 24850}, {16948, 30760}, {23905, 44534}, {26686, 37609}, {31089, 49716}, {49560, 50775}, {51582, 52782}

X(56731) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4195, 7380}, {2, 16925, 56563}, {2, 19312, 4205}, {2, 21993, 6656}, {21, 404, 37183}


X(56732) = X(2)X(3)∩X(58)X(7792)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2) - (a + b + c)^2*(a^4 + b^4 + c^4) : :

X(56732) lies on these lines: {2, 3}, {58, 7792}, {141, 53424}, {325, 386}, {1125, 51582}, {1213, 3094}, {1691, 17398}, {3314, 41014}, {3815, 53423}, {4255, 7778}, {5224, 6393}, {5976, 52782}, {26561, 37609}

X(56732) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4201, 6998}, {2, 7379, 13740}, {2, 7791, 56562}, {2, 56561, 7807}


X(56733) = X(2)X(3)∩X(58)X(7774)

Barycentrics    2*a^2*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2) + (a + b + c)^2*(a^4 + b^4 + c^4) : :

X(56733) lies on these lines: {2, 3}, {58, 7774}, {325, 4252}, {386, 16989}, {391, 40825}, {966, 1691}, {3945, 6393}, {4255, 7792}, {31089, 54429}

X(56733) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 32964, 56561}, {21, 404, 3148}, {7807, 56562, 2}


X(56734) = X(2)X(3)∩X(58)X(3589)

Barycentrics    a^2*(a^2 - b^2 - c^2) - (a + b + c)^2*(a^2 + b^2 + c^2) : :
X(56734) = 3 X[2] + X[4201]

X(56734) lies on these lines: {1, 4030}, {2, 3}, {10, 3752}, {11, 19864}, {32, 17398}, {35, 19881}, {39, 1213}, {55, 19836}, {56, 19784}, {58, 3589}, {72, 54311}, {86, 7767}, {141, 386}, {312, 50067}, {496, 32773}, {595, 44419}, {750, 1472}, {894, 24470}, {936, 17306}, {966, 9605}, {975, 4657}, {978, 32784}, {988, 1698}, {1125, 1279}, {1193, 32781}, {1211, 3216}, {1220, 18990}, {1466, 56366}, {1468, 29663}, {1714, 37660}, {1834, 48843}, {2223, 25512}, {2646, 19869}, {2999, 5814}, {3159, 17246}, {3210, 50042}, {3454, 20108}, {3624, 37552}, {3634, 37599}, {3662, 6147}, {3666, 3695}, {3670, 19867}, {3763, 4255}, {3813, 48821}, {3826, 19858}, {3831, 37715}, {3844, 4719}, {3913, 48803}, {3916, 5294}, {3925, 19863}, {3933, 5224}, {3976, 29659}, {4085, 50608}, {4252, 47355}, {4256, 34573}, {4257, 51126}, {4357, 5044}, {4425, 25079}, {4429, 31419}, {4852, 50606}, {4968, 26251}, {4972, 24390}, {5251, 25992}, {5257, 25066}, {5305, 26244}, {5396, 26543}, {5719, 17291}, {5743, 17749}, {5750, 12436}, {7758, 17251}, {7772, 17330}, {7795, 17327}, {7800, 15668}, {7854, 17392}, {9607, 48864}, {10449, 48847}, {10461, 29492}, {11374, 25527}, {12513, 48831}, {15171, 32942}, {15988, 37509}, {16466, 26034}, {16818, 37609}, {16828, 37575}, {17023, 37594}, {17290, 24159}, {17353, 31445}, {17757, 26030}, {18141, 19766}, {19767, 33172}, {19846, 24953}, {19862, 37589}, {19866, 26040}, {19870, 34501}, {19874, 24988}, {19879, 37617}, {20083, 37646}, {23537, 44417}, {24169, 49598}, {24295, 24850}, {25441, 37634}, {25591, 32776}, {26064, 37680}, {26558, 27324}, {26582, 27274}, {26629, 30176}, {28620, 49738}, {29598, 37554}, {29633, 37607}, {29637, 37573}, {32911, 49716}, {37583, 56451}, {37653, 49718}, {49465, 50607}, {50315, 50590}

X(56734) = midpoint of X(4201) and X(13740)
X(56734) = complement of X(13740)
X(56734) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 17698}, {2, 443, 2049}, {2, 1010, 50318}, {2, 4201, 13740}, {2, 4202, 442}, {2, 5051, 4187}, {2, 6904, 37037}, {2, 11110, 50205}, {2, 13725, 11108}, {2, 13728, 4205}, {2, 16060, 7819}, {2, 16062, 5}, {2, 17673, 33033}, {2, 17674, 17529}, {2, 17676, 5192}, {2, 19270, 6675}, {2, 25876, 37244}, {2, 26117, 13741}, {2, 33833, 8728}, {2, 33834, 32992}, {2, 37314, 16842}, {2, 37339, 37176}, {2, 37462, 16458}, {2, 48815, 16052}, {2, 52258, 17527}, {5, 16062, 16052}, {5, 48815, 16062}, {21, 404, 15246}, {141, 386, 41014}, {405, 474, 7484}, {443, 21514, 49132}, {474, 19527, 3}, {474, 50199, 16415}, {3454, 20108, 37662}, {4026, 25914, 1125}, {5192, 17676, 11113}, {6904, 37037, 19276}, {8362, 50409, 17698}, {11343, 16458, 33745}, {16842, 51677, 37314}, {17527, 50058, 52258}, {17531, 25463, 140}, {17697, 37038, 50241}, {37176, 37339, 3}, {48843, 50605, 1834}


X(56735) = X(2)X(3)∩X(58)X(3763)

Barycentrics    a^2*(a^2 - b^2 - c^2) + 2*(a + b + c)^2*(a^2 + b^2 + c^2) : :

X(56735) lies on these lines: {2, 3}, {56, 19881}, {58, 3763}, {386, 47355}, {966, 43136}, {975, 17357}, {988, 34595}, {999, 19836}, {1125, 4078}, {1213, 30435}, {1466, 56451}, {1472, 17125}, {1698, 5266}, {3295, 19784}, {3616, 32862}, {3618, 41014}, {3624, 37592}, {3927, 5294}, {5749, 6147}, {6707, 7795}, {7772, 28620}, {9605, 17398}, {16684, 19858}, {16828, 37590}, {17284, 37594}, {17306, 31445}, {17369, 24159}, {19872, 37589}, {24931, 37679}, {32774, 50044}, {37583, 56469}

X(56735) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2049, 50726}, {2, 13742, 4205}, {2, 14005, 50207}, {2, 16845, 50409}, {2, 17526, 13728}, {2, 17698, 3}, {2, 25963, 37224}, {2, 31259, 17514}, {2, 37036, 2049}, {2, 37037, 8728}, {405, 474, 22}, {1009, 16299, 3}, {4195, 11359, 1657}, {4205, 13742, 16857}, {5047, 17531, 14002}, {8728, 37037, 19277}, {11108, 16408, 5020}, {11354, 16062, 382}, {13728, 17526, 16418}, {50207, 51603, 14005}


X(56736) = X(2)X(3)∩X(58)X(47355)

Barycentrics    a^2*(a^2 - b^2 - c^2) - 2*(a + b + c)^2*(a^2 + b^2 + c^2) : :

X(56736) lies on these lines: {2, 3}, {55, 19881}, {56, 56451}, {58, 47355}, {386, 3763}, {975, 17384}, {999, 19784}, {1125, 17265}, {1213, 9605}, {1466, 56453}, {1472, 17124}, {1698, 16610}, {3159, 17323}, {3295, 19836}, {3619, 41014}, {3624, 5266}, {3927, 54311}, {3976, 36478}, {5044, 17306}, {5293, 25539}, {5711, 33174}, {5749, 24470}, {6707, 7800}, {16466, 32781}, {17259, 52782}, {17398, 30435}, {19867, 37549}, {19872, 37599}, {25512, 37590}, {29598, 37594}, {34595, 37552}, {37583, 56467}

X(56736) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 443, 50318}, {2, 4205, 16853}, {2, 13728, 11108}, {2, 17529, 16456}, {2, 17557, 50795}, {2, 17674, 16458}, {2, 33833, 2049}, {404, 37317, 3}, {405, 474, 7485}, {443, 50318, 19277}, {4201, 11354, 1657}, {11108, 16408, 16419}, {11359, 13740, 382}


X(56737) = X(2)X(3)∩X(58)X(3618)

Barycentrics    2*a^2*(a^2 - b^2 - c^2) - (a + b + c)^2*(a^2 + b^2 + c^2) : :

X(56737) lies on these lines: {1, 18141}, {2, 3}, {8, 4850}, {10, 988}, {35, 19836}, {36, 19784}, {39, 966}, {56, 56460}, {58, 3618}, {69, 386}, {78, 54311}, {86, 3785}, {141, 4255}, {171, 1472}, {387, 14829}, {391, 9605}, {936, 4357}, {940, 19766}, {975, 17321}, {978, 50295}, {980, 9534}, {984, 45989}, {1001, 25914}, {1125, 4660}, {1191, 44419}, {1193, 26034}, {1213, 5013}, {1220, 4293}, {1466, 56367}, {1479, 19864}, {3053, 17398}, {3086, 32773}, {3216, 14555}, {3416, 4719}, {3421, 5484}, {3436, 26030}, {3487, 3662}, {3589, 4252}, {3612, 19869}, {3616, 5266}, {3619, 4256}, {3620, 41014}, {3624, 33106}, {3666, 54433}, {3813, 48829}, {3916, 26065}, {3926, 5224}, {3933, 5232}, {3945, 7767}, {3976, 36479}, {4026, 25524}, {4294, 32942}, {4295, 33068}, {4429, 19843}, {4648, 7800}, {4652, 5294}, {4972, 10527}, {5010, 19881}, {5044, 17257}, {5230, 32918}, {5286, 26244}, {5292, 48843}, {5296, 25066}, {5438, 17306}, {5550, 37589}, {6292, 53665}, {6337, 52782}, {7772, 37654}, {7789, 17327}, {8666, 48831}, {8715, 48803}, {9780, 37599}, {10436, 12436}, {11374, 26132}, {11415, 32950}, {12607, 48801}, {13411, 25527}, {15988, 36754}, {17023, 37554}, {17304, 34937}, {17353, 31424}, {19853, 26040}, {20108, 48835}, {23536, 29828}, {25492, 26105}, {26128, 36573}, {26150, 43749}, {26626, 37594}, {26685, 31445}, {27162, 45962}, {29633, 37608}, {29637, 37574}, {30761, 32829}, {30818, 50065}, {32911, 54429}, {37583, 56444}, {37655, 56018}, {37679, 49728}, {48837, 50605}

X(56737) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 37176}, {2, 20, 13740}, {2, 21, 13742}, {2, 443, 37153}, {2, 452, 13741}, {2, 4189, 17526}, {2, 4190, 964}, {2, 4201, 4}, {2, 6872, 5192}, {2, 6904, 1010}, {2, 11106, 37024}, {2, 13736, 11108}, {2, 17588, 31259}, {2, 17676, 2478}, {2, 17691, 16045}, {2, 19278, 6857}, {2, 22267, 14001}, {2, 26117, 5084}, {2, 32965, 17688}, {2, 32990, 16061}, {2, 33059, 33817}, {2, 33202, 33838}, {2, 33829, 33028}, {2, 33832, 16924}, {2, 37339, 3}, {3, 11108, 19528}, {3, 37317, 4189}, {4, 4201, 48813}, {20, 13740, 48817}, {21, 404, 7485}, {405, 474, 16419}, {474, 13728, 2}, {964, 4190, 51668}, {4202, 24985, 33833}, {4205, 16408, 2}, {5084, 51665, 26117}, {8728, 19273, 2}, {11106, 37024, 33309}, {13741, 37038, 452}, {16342, 17674, 2}, {16343, 17529, 2}, {17563, 50318, 19276}, {19270, 33833, 2}, {21529, 49131, 5129}, {24609, 37180, 36706}, {25877, 37228, 2}, {32990, 50409, 37176}


X(56738) = X(2)X(137)∩X(6)X(17)

Barycentrics    (a^4 - a^2*b^2 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4)*(2*a^4 - 5*a^2*b^2 + 3*b^4 - 5*a^2*c^2 - 4*b^2*c^2 + 3*c^4) : :

X(56738) lies on the cubic K281 and these lines: {2, 137}, {6, 17}, {182, 32737}, {252, 3090}, {547, 24305}, {3526, 31392}, {3628, 25043}, {5055, 19552}, {5070, 21975}, {6642, 21394}, {11140, 11669}, {18370, 55860}, {35018, 35888}, {39171, 55856}

X(56738) = X(2964)-isoconjugate of X(53104)
X(56738) = X(21975)-Dao conjugate of X(53104)
X(56738) = barycentric product X(i)*X(j) for these {i,j}: {2963, 37647}, {5097, 11140}
X(56738) = barycentric quotient X(i)/X(j) for these {i,j}: {2963, 53104}, {5097, 1994}, {37647, 7769}


X(56739) = MIDPOINT OF X(850) AND X(2514)

Barycentrics    (b - c)*(b + c)*(-(a^4*b^2) - a^2*b^4 - a^4*c^2 + a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 + b^2*c^4) : :
X(56739) = X[3267] - 3 X[9148], X[669] - 3 X[55190]

X(56739) lies on the cubic K079 and these lines: {325, 523}, {669, 55190}, {688, 54262}, {778, 2507}, {804, 2485}, {6131, 52598}, {9426, 30217}, {14041, 18105}, {21006, 44451}, {23878, 42291}, {31101, 55271}, {38361, 53570}

X(56739) = midpoint of X(850) and X(2514)
X(56739) = reflection of X(i) in X(j) for these {i,j}: {6131, 52598}, {21006, 44451}
X(56739) = X(2489)-Ceva conjugate of X(523)
X(56739) = X(799)-isoconjugate of X(15371)
X(56739) = X(i)-Dao conjugate of X(j) for these (i,j): {305, 52608}, {38996, 15371}
X(56739) = crossdifference of every pair of points on line {32, 15371}
X(56739) = barycentric product X(i)*X(j) for these {i,j}: {512, 47846}, {14618, 19597}
vbarycentric quotient X(i)/X(j) for these {i,j}: {669, 15371}, {19597, 4558}, {47846, 670}


X(56740) = MIDPOINT OF X(850) AND X(3266)

Barycentrics    b^2*(b - c)*c^2*(b + c)*(-a^6 + 2*a^4*b^2 + 2*a^4*c^2 - 5*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4) : :

X(56740) lies on the cubic K218 and these lines: {76, 8371}, {305, 8029}, {325, 523}, {525, 3124}, {538, 31174}, {1649, 11059}, {1975, 53327}, {3291, 30476}, {4563, 30219}, {4609, 44168}, {5466, 9464}, {7809, 31176}, {8024, 10278}, {9180, 34087}, {10189, 39998}, {19577, 55190}, {26233, 44821}, {31998, 34537}, {34336, 47627}, {41357, 44146}

X(56740) = midpoint of X(850) and X(3266)
X(56740) = reflection of X(3291) in X(30476)
X(56740) = X(163)-isoconjugate of X(14948)
X(56740) = X(115)-Dao conjugate of X(14948)
X(56740) = barycentric product X(850)*X(5108)
X(56740) = barycentric quotient X(i)/X(j) for these {i,j}: {523, 14948}, {5108, 110}


X(56741) = INCIRCLE-INVERSE OF X(14100)

Barycentrics    a*(a - b - c)*(2*a^5 - a^4*b - 8*a^3*b^2 + 10*a^2*b^3 - 2*a*b^4 - b^5 - a^4*c + 16*a^3*b*c - 10*a^2*b^2*c - 8*a*b^3*c + 3*b^4*c - 8*a^3*c^2 - 10*a^2*b*c^2 + 20*a*b^2*c^2 - 2*b^3*c^2 + 10*a^2*c^3 - 8*a*b*c^3 - 2*b^2*c^3 - 2*a*c^4 + 3*b*c^4 - c^5) : :
X(56741) = 3 X[210] - 4 X[17112]

X(56741) lies on the cubics K951 and K1160 and these lines: {1, 971}, {33, 51218}, {55, 32625}, {210, 17112}, {220, 45228}, {480, 2125}, {650, 663}, {999, 35454}, {1055, 23056}, {1155, 14733}, {1317, 39757}, {1319, 3022}, {2192, 3683}, {4845, 43065}, {5048, 10699}, {5228, 31894}, {8273, 39558}, {15735, 45272}, {23972, 35593}, {33902, 39763}, {37743, 39755}

X(56741) = reflection of X(1155) in X(14733)
X(56741) = incircle-inverse of X(14100)
X(56741) = X(15726)-Ceva conjugate of X(1155)
X(56741) = {X(1),X(8835)}-harmonic conjugate of X(2124)


X(56742) = X(4)X(9)∩X(101)X(692)

Barycentrics    a^2*(a - b)*(a - c)*(a^3*b^2 - a^2*b^3 - a*b^4 + b^5 + a^3*c^2 + 2*a*b^2*c^2 - b^3*c^2 - a^2*c^3 - b^2*c^3 - a*c^4 + c^5) : :

X(56742) lies on the cubic K027 and these lines: {4, 9}, {101, 692}, {652, 23703}, {916, 54232}, {14543, 21362}, {29014, 40117}, {35182, 40116}, {35321, 43728}

X(56742) = X(40116)-Ceva conjugate of X(101)
X(56742) = X(i)-isoconjugate of X(j) for these (i,j): {513, 2989}, {905, 917}, {1111, 35182}, {1565, 36107}, {2167, 35363}, {3669, 56110}
X(56742) = X(i)-Dao conjugate of X(j) for these (i,j): {118, 514}, {39003, 1565}, {39026, 2989}, {40588, 35363}
X(56742) = trilinear pole of line {8608, 47407}
X(56742) = crossdifference of every pair of points on line {1086, 1459}
X(56742) = barycentric product X(i)*X(j) for these {i,j}: {10, 4243}, {100, 1736}, {101, 48381}, {118, 677}, {190, 8608}, {916, 1897}, {1252, 55125}, {2253, 6335}, {2398, 54232}
X(56742) = barycentric quotient X(i)/X(j) for these {i,j}: {51, 35363}, {101, 2989}, {916, 4025}, {1736, 693}, {2253, 905}, {2426, 54233}, {3939, 56110}, {4243, 86}, {8608, 514}, {8750, 917}, {23990, 35182}, {32642, 15380}, {47407, 39470}, {48381, 3261}, {54232, 2400}, {55125, 23989}


X(56743) = X(4)X(9)∩X(101)X(1614)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^4*b^2 - a^3*b^3 - a^2*b^4 + a*b^5 - a^3*b^2*c + a^2*b^3*c + a*b^4*c - b^5*c + a^4*c^2 - a^3*b*c^2 + 4*a^2*b^2*c^2 - 2*a*b^3*c^2 - a^3*c^3 + a^2*b*c^3 - 2*a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 + a*b*c^4 + a*c^5 - b*c^5) : :

X(56743) lies on the cubic K622 and these lines: {3, 39006}, {4, 9}, {48, 22164}, {72, 2253}, {101, 1614}, {201, 2170}, {212, 9310}, {3207, 46148}, {20785, 22088}, {23639, 55351}

X(56743) = crossdifference of every pair of points on line {1459, 23806}


X(56744) = X(4)X(9)∩X(101)X(3522)

Barycentrics    a^4 + 6*a^3*b - 6*a^2*b^2 - b^4 + 6*a^3*c - 6*a^2*b*c - 6*a^2*c^2 + 2*b^2*c^2 - c^4 : :

X(56744) lies on the cubic K917 and these lines: {4, 9}, {101, 3522}, {140, 42316}, {220, 550}, {1656, 17747}, {3207, 33923}, {3294, 37462}, {3523, 24047}, {5056, 24045}, {5557, 40779}, {20078, 29583}

X(56744) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 41325, 41326}, {4, 41326, 17732}, {3730, 41325, 17732}, {3730, 41326, 4}


X(56745) = X(2)X(261)∩X(4)X(9)

Barycentrics    a^5 - a^3*b^2 - a^2*b^3 - 2*a*b^4 - b^5 - a^3*b*c - 6*a^2*b^2*c - 5*a*b^3*c - 2*b^4*c - a^3*c^2 - 6*a^2*b*c^2 - 6*a*b^2*c^2 - b^3*c^2 - a^2*c^3 - 5*a*b*c^3 - b^2*c^3 - 2*a*c^4 - 2*b*c^4 - c^5 : :

X(56745) lies on the cubic K1226 and these lines: {2, 261}, {4, 9}, {6, 52258}, {8, 21810}, {314, 1654}, {604, 25960}, {846, 38408}, {1010, 1213}, {1211, 2893}, {1999, 5739}, {2092, 26117}, {2273, 37657}, {3017, 37654}, {3686, 24210}, {4426, 19865}, {4643, 44735}, {5224, 41236}, {5336, 37314}, {5484, 17053}, {5743, 23512}, {7384, 10472}, {16887, 28091}, {17275, 21879}, {25650, 34528}, {26085, 50408}, {26244, 37360}, {34258, 54119}

X(56745) = crossdifference of every pair of points on line {1459, 42661}


X(56746) = X(2)X(101)∩X(4)X(9)

Barycentrics    a^4 - 2*a^3*b + 2*a^2*b^2 - b^4 - 2*a^3*c + 2*a^2*b*c + 2*a^2*c^2 + 2*b^2*c^2 - c^4 : :

X(56746) lies on the cubic K1301 and these lines: {2, 101}, {4, 9}, {5, 220}, {6, 495}, {8, 4006}, {12, 218}, {20, 24047}, {30, 42316}, {37, 5722}, {41, 498}, {45, 12019}, {80, 40779}, {119, 53824}, {140, 3207}, {190, 11185}, {210, 23840}, {213, 9596}, {344, 21069}, {355, 1212}, {377, 16549}, {381, 17747}, {386, 31402}, {388, 4253}, {497, 56255}, {499, 9310}, {644, 11680}, {672, 1478}, {908, 4384}, {910, 26446}, {952, 34522}, {995, 7736}, {1018, 3434}, {1146, 5790}, {1213, 34812}, {1334, 1479}, {1737, 40131}, {1743, 5726}, {1837, 16601}, {1992, 37854}, {2082, 10039}, {2140, 6604}, {2170, 12647}, {2176, 2548}, {2276, 48837}, {2280, 10056}, {2329, 26363}, {2478, 3294}, {2911, 5747}, {3008, 5219}, {3052, 18907}, {3085, 4251}, {3091, 24045}, {3230, 9599}, {3419, 3693}, {3436, 16552}, {3684, 45701}, {3828, 53579}, {3970, 12649}, {3997, 26098}, {4051, 49169}, {4115, 56084}, {4262, 5218}, {4293, 5030}, {4302, 41423}, {4413, 38902}, {4513, 24390}, {4559, 34029}, {5022, 18990}, {5086, 25082}, {5230, 5280}, {5251, 52241}, {5252, 43065}, {5292, 54416}, {5475, 52963}, {5526, 7951}, {5794, 25066}, {5802, 55100}, {5886, 6603}, {6184, 36474}, {6734, 17742}, {7735, 17734}, {7737, 17735}, {7745, 14974}, {7774, 40859}, {8750, 41370}, {9327, 14986}, {9578, 16572}, {9593, 23537}, {9956, 46835}, {10175, 40869}, {10198, 41239}, {10573, 17451}, {11269, 16785}, {11499, 32561}, {12699, 21872}, {14021, 17308}, {14555, 22020}, {15634, 53133}, {17057, 39048}, {17398, 20818}, {17671, 32008}, {17682, 33298}, {17745, 37719}, {17757, 37658}, {18785, 52456}, {19541, 52818}, {20236, 33937}, {20672, 36477}, {21008, 31401}, {21073, 55337}, {21232, 24694}, {21285, 28742}, {24036, 24247}, {24249, 25353}, {24774, 30617}, {26265, 28940}, {27254, 27299}, {30825, 40534}, {31018, 31025}, {32022, 40515}, {37712, 52705}, {37725, 55432}, {38108, 51418}, {40997, 56536}, {45700, 56530}

X(56746) = anticomplement of X(55161)
X(56746) = X(25642)-Dao conjugate of X(514)
X(56746) = barycentric product X(10)*X(7474)
X(56746) = barycentric quotient X(i)/X(j) for these {i,j}: {7474, 86}, {32682, 35190}
X(56746) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 3730, 17732}, {4, 41325, 5134}, {9, 5587, 5179}, {9, 26063, 5816}, {3730, 5134, 41325}, {5134, 41325, 17732}, {5657, 5819, 5011}


X(56747) = X(4)X(9)∩X(101)X(186)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c - a^2*b*c - a*b^2*c + b^3*c - a^2*c^2 - a*b*c^2 + b^2*c^2 - a*c^3 + b*c^3 + c^4) : :

X(56747) lies on the cubic K1302 and these lines: {4, 9}, {24, 220}, {74, 40116}, {101, 186}, {112, 17735}, {190, 44146}, {232, 52963}, {378, 42316}, {403, 17747}, {451, 3294}, {672, 1870}, {813, 39439}, {1061, 40779}, {1212, 41722}, {1252, 37908}, {1334, 6198}, {2176, 39575}, {3207, 32534}, {3520, 24047}, {4213, 40586}, {5526, 52427}, {8743, 14974}, {8744, 8750}, {16549, 52252}, {16868, 24045}, {24055, 37981}, {40859, 41676}

X(56747) = X(i)-isoconjugate of X(j) for these (i,j): {81, 38535}, {905, 2690}
X(56747) = X(40586)-Dao conjugate of X(38535)
X(56747) = barycentric product X(i)*X(j) for these {i,j}: {10, 2073}, {1897, 2774}
X(56747) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 38535}, {2073, 86}, {2774, 4025}, {8750, 2690}, {42744, 15419}
X(56747) = {X(3730),X(41320)}-harmonic conjugate of X(4)


X(56748) = X(39)X(512)∩X(115)X(125)

Barycentrics    a^2*(b - c)*(b + c)*(a^4*b^4 - a^2*b^6 - a^2*b^4*c^2 + a^4*c^4 - a^2*b^2*c^4 + 2*b^4*c^4 - a^2*c^6) : :

X(56748) lies on the cubic K552 and these lines: {3, 2422}, {6, 44823}, {39, 512}, {76, 525}, {99, 39291}, {115, 125}, {182, 3049}, {262, 1499}, {523, 3094}, {574, 3288}, {647, 5650}, {1691, 44821}, {2395, 34359}, {2451, 5028}, {2489, 12294}, {3050, 5116}, {3981, 10278}, {5664, 51582}, {5968, 6787}, {6785, 14700}, {7656, 39469}, {7790, 54262}, {8029, 20859}, {8041, 11123}, {9175, 14398}, {9873, 30217}, {22159, 39500}, {30229, 34290}, {32473, 55219}, {47044, 52038}

X(56748) = reflection of X(23099) in X(882)
X(56748) = X(i)-isoconjugate of X(j) for these (i,j): {163, 53197}, {662, 53704}
X(56748) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 53197}, {1084, 53704}
X(56748) = crossdifference of every pair of points on line {110, 385}
X(56748) = barycentric product X(i)*X(j) for these {i,j}: {523, 34383}, {850, 21444}
X(56748) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 53704}, {523, 53197}, {21444, 110}, {34383, 99}
X(56748) = {X(3050),X(5116)}-harmonic conjugate of X(39495)


X(56749) = X(2)X(38950)∩X(3)X(8)

Barycentrics    (2*a - b - c)*(2*a^6 - 2*a^5*b - 5*a^4*b^2 + 3*a^3*b^3 + 3*a^2*b^4 - a*b^5 - 2*a^5*c + 10*a^4*b*c - a^3*b^2*c - 9*a^2*b^3*c + 3*a*b^4*c - b^5*c - 5*a^4*c^2 - a^3*b*c^2 + 10*a^2*b^2*c^2 - 2*a*b^3*c^2 + 3*a^3*c^3 - 9*a^2*b*c^3 - 2*a*b^2*c^3 + 2*b^3*c^3 + 3*a^2*c^4 + 3*a*b*c^4 - a*c^5 - b*c^5) : :
X(56749) = 5 X[7987] - X[56423]

X(56749) lies on the cubic K038 and these lines: {2, 38950}, {3, 8}, {30, 3259}, {36, 34590}, {101, 4370}, {106, 1086}, {121, 3035}, {187, 35092}, {214, 900}, {1317, 23703}, {3109, 53611}, {6265, 33810}, {7987, 56423}, {10058, 23404}, {24028, 39758}, {34123, 37043}, {38759, 38785}

X(56749) = midpoint of X(3109) and X(53611)
X(56749) = complement of X(38950)
X(56749) = X(53611)-Ceva conjugate of X(900)


X(56750) = X(3)X(8)∩X(10)X(513)

Barycentrics    (2*a - b - c)*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 - 3*a^3*b^2*c + a^2*b^3*c + 3*a*b^4*c - b^5*c + a^4*c^2 - 3*a^3*b*c^2 + 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + a^3*c^3 + a^2*b*c^3 - 2*a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 + 3*a*b*c^4 - a*c^5 - b*c^5) : :
X(56750) = X[8] + 3 X[47045], 3 X[5657] + X[14266], 3 X[26446] - X[52005]

X(56750) lies on the cubic K258 and these lines: {1, 34590}, {2, 14260}, {3, 8}, {5, 3259}, {10, 513}, {30, 56420}, {39, 35092}, {121, 124}, {595, 6788}, {900, 51975}, {901, 51631}, {1086, 39264}, {1387, 45247}, {3730, 4370}, {3878, 25652}, {5445, 24885}, {6544, 14825}, {14584, 23703}, {17369, 40595}, {21290, 29537}, {23838, 56416}, {24429, 37715}, {26446, 52005}

X(56750) = complement of X(14260)
X(56750) = complement of the isogonal conjugate of X(36944)
X(56750) = medial-isogonal conjugate of X(56416)
X(56750) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 56416}, {44, 52659}, {104, 519}, {519, 119}, {902, 23980}, {909, 16610}, {2250, 3936}, {4895, 55153}, {13136, 4928}, {18816, 21241}, {32641, 3960}, {34051, 17067}, {34234, 3834}, {34858, 8610}, {36037, 900}, {36944, 10}, {37136, 44902}, {40218, 142}, {40437, 6702}, {51565, 5123}, {52680, 34586}, {53532, 10017}
X(56750) = X(901)-Ceva conjugate of X(900)


X(56751) = X(3)X(8)∩X(36)X(3738)

Barycentrics    a^2*(a^2 - b^2 + b*c - c^2)*(a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^2*b - b^3 + a^2*c - 4*a*b*c + 2*b^2*c + 2*b*c^2 - c^3)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3) : :

X(56751) lies on the cubic K274 and these lines: {3, 8}, {36, 3738}, {186, 45812}, {953, 2818}, {2810, 10428}, {3196, 52663}, {15015, 36819}, {34179, 34184}

X(56751) = circumcircle-inverse of X(36944)
X(56751) = X(2718)-isoconjugate of X(56416)
X(56751) = {X(100),X(104)}-harmonic conjugate of X(36944)


X(56752) = X(3)X(8)∩X(25)X(1309)

Barycentrics    a^2*(a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c - 4*a^2*b*c + 5*a*b^2*c - 2*b^3*c - a^2*c^2 + 5*a*b*c^2 - 2*b^2*c^2 - a*c^3 - 2*b*c^3 + c^4) : :

X(56752) lies on the cubic K626 and these lines: {3, 8}, {25, 1309}, {55, 36819}, {1037, 37628}, {1384, 32641}, {2250, 37658}, {17784, 51832}, {37249, 40437}, {40218, 52804}

X(56752) = X(1769)-isoconjugate of X(2737)
X(56752) = barycentric product X(2821)*X(13136)
X(56752) = barycentric quotient X(i)/X(j) for these {i,j}: {2821, 10015}, {32641, 2737}


X(56753) = X(2)X(905)∩X(3)X(8)

Barycentrics    (a*b - b^2 + a*c - c^2)*(a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3) : :

X(56753) lies on the cubic K657 and these lines: {2, 905}, {3, 8}, {76, 348}, {241, 46108}, {277, 16082}, {344, 13136}, {345, 1016}, {1025, 3912}, {1026, 1818}, {1309, 28838}, {2550, 14198}, {3286, 4238}, {4671, 25242}, {14947, 43728}, {17126, 36037}, {18816, 32041}, {25083, 42720}, {30701, 34051}, {35158, 54953}, {39272, 55943}

X(56753) = isogonal conjugate of X(51987)
X(56753) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51987}, {6, 54364}, {105, 2183}, {294, 1457}, {517, 1438}, {859, 18785}, {884, 24029}, {919, 1769}, {1024, 23981}, {1027, 2427}, {1465, 2195}, {1785, 32658}, {3310, 36086}, {8751, 22350}, {10015, 32666}, {14571, 36057}, {15507, 51866}, {32735, 46393}, {36146, 53549}, {42078, 55943}
X(56753) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51987}, {9, 54364}, {918, 42770}, {2238, 15507}, {3008, 51419}, {3912, 51381}, {6184, 517}, {17435, 42758}, {17755, 908}, {20621, 14571}, {35094, 10015}, {36905, 22464}, {38980, 1769}, {38989, 3310}, {39014, 53549}, {39046, 2183}, {39063, 1465}
X(56753) = trilinear pole of line {518, 50333}
X(56753) = barycentric product X(i)*X(j) for these {i,j}: {75, 36819}, {104, 3263}, {241, 36795}, {518, 18816}, {883, 43728}, {918, 13136}, {2250, 18157}, {2401, 42720}, {3912, 34234}, {4437, 55943}, {9436, 51565}, {16082, 25083}, {30941, 38955}, {40704, 52663}, {50333, 54953}, {55259, 55260}
X(56753) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 54364}, {6, 51987}, {104, 105}, {241, 1465}, {518, 517}, {665, 3310}, {672, 2183}, {909, 1438}, {918, 10015}, {926, 53549}, {1025, 24029}, {1362, 53548}, {1458, 1457}, {1795, 36057}, {1818, 22350}, {1861, 1785}, {1876, 1875}, {2250, 18785}, {2254, 1769}, {2283, 23981}, {2284, 2427}, {2342, 2195}, {2423, 43929}, {2720, 32735}, {3126, 42758}, {3263, 3262}, {3286, 859}, {3675, 42753}, {3717, 6735}, {3912, 908}, {3930, 21801}, {3932, 17757}, {4238, 4246}, {4437, 51390}, {4684, 51423}, {4899, 51433}, {4966, 51409}, {5089, 14571}, {8299, 15507}, {9436, 22464}, {13136, 666}, {14198, 52480}, {14266, 52456}, {14578, 32658}, {15635, 43921}, {16082, 54235}, {16593, 51419}, {17755, 51381}, {18816, 2481}, {20683, 51377}, {23225, 23220}, {23829, 23788}, {25302, 25305}, {30941, 17139}, {32641, 919}, {34051, 1462}, {34230, 14260}, {34234, 673}, {35094, 42770}, {36037, 36086}, {36123, 36124}, {36795, 36796}, {36819, 1}, {37136, 36146}, {37628, 23696}, {38955, 13576}, {42720, 2397}, {42758, 42757}, {43728, 885}, {45145, 52902}, {50333, 2804}, {51390, 26611}, {51565, 14942}, {51832, 14267}, {52663, 294}, {53531, 53530}, {53548, 1361}, {53550, 8677}, {54953, 927}, {55259, 55261}, {55260, 55258}, {55943, 6185}


X(56754) = X(3)X(8)∩X(30)X(953)

Barycentrics    2*a^10 - 6*a^9*b - 2*a^8*b^2 + 17*a^7*b^3 - 6*a^6*b^4 - 15*a^5*b^5 + 10*a^4*b^6 + 3*a^3*b^7 - 4*a^2*b^8 + a*b^9 - 6*a^9*c + 28*a^8*b*c - 25*a^7*b^2*c - 36*a^6*b^3*c + 62*a^5*b^4*c - 11*a^4*b^5*c - 25*a^3*b^6*c + 18*a^2*b^7*c - 6*a*b^8*c + b^9*c - 2*a^8*c^2 - 25*a^7*b*c^2 + 78*a^6*b^2*c^2 - 41*a^5*b^3*c^2 - 54*a^4*b^4*c^2 + 63*a^3*b^5*c^2 - 22*a^2*b^6*c^2 + 3*a*b^7*c^2 + 17*a^7*c^3 - 36*a^6*b*c^3 - 41*a^5*b^2*c^3 + 106*a^4*b^3*c^3 - 41*a^3*b^4*c^3 - 18*a^2*b^5*c^3 + 17*a*b^6*c^3 - 4*b^7*c^3 - 6*a^6*c^4 + 62*a^5*b*c^4 - 54*a^4*b^2*c^4 - 41*a^3*b^3*c^4 + 52*a^2*b^4*c^4 - 15*a*b^5*c^4 - 15*a^5*c^5 - 11*a^4*b*c^5 + 63*a^3*b^2*c^5 - 18*a^2*b^3*c^5 - 15*a*b^4*c^5 + 6*b^5*c^5 + 10*a^4*c^6 - 25*a^3*b*c^6 - 22*a^2*b^2*c^6 + 17*a*b^3*c^6 + 3*a^3*c^7 + 18*a^2*b*c^7 + 3*a*b^2*c^7 - 4*b^3*c^7 - 4*a^2*c^8 - 6*a*b*c^8 + a*c^9 + b*c^9 : :
X(56754) = 3 X[3576] - X[56423]

X(56754) lies on the cubic K725 and these lines: {3, 8}, {5, 38950}, {30, 953}, {119, 10744}, {900, 6265}, {3576, 56423}, {4297, 53748}, {7491, 21307}, {7972, 23703}, {12114, 39173}, {24833, 38576}, {33337, 53742}, {38761, 38777}

X(56754) = midpoint of X(6224) and X(18341)
X(56754) = reflection of X(38950) in X(5)


X(56755) = X(2)X(2783)∩X(3)X(8)

Barycentrics    a^6 - 4*a^5*b - a^4*b^2 + 6*a^3*b^3 - a^2*b^4 - 2*a*b^5 + b^6 - 4*a^5*c + 11*a^4*b*c - 5*a^3*b^2*c - 7*a^2*b^3*c + 5*a*b^4*c - a^4*c^2 - 5*a^3*b*c^2 + 12*a^2*b^2*c^2 - 3*a*b^3*c^2 - b^4*c^2 + 6*a^3*c^3 - 7*a^2*b*c^3 - 3*a*b^2*c^3 - a^2*c^4 + 5*a*b*c^4 - b^2*c^4 - 2*a*c^5 + c^6 : :

X(56755) lies on the cubic K795 and these lines: {2, 2783}, {3, 8}, {573, 1768}, {1054, 18343}, {2345, 3035}, {4850, 5886}, {5524, 5531}, {5660, 17756}, {11231, 32779}, {34122, 51677}

X(56755) = psi-transform of X(392)


X(56756) = X(3)X(8)∩X(30)X(901)

Barycentrics    2*a^10 - 2*a^9*b - 6*a^8*b^2 + 7*a^7*b^3 + 6*a^6*b^4 - 9*a^5*b^5 - 2*a^4*b^6 + 5*a^3*b^7 - a*b^9 - 2*a^9*c + 4*a^8*b*c + 9*a^7*b^2*c - 20*a^6*b^3*c - 6*a^5*b^4*c + 27*a^4*b^5*c - 7*a^3*b^6*c - 10*a^2*b^7*c + 6*a*b^8*c - b^9*c - 6*a^8*c^2 + 9*a^7*b*c^2 - 10*a^6*b^2*c^2 + 25*a^5*b^3*c^2 - 6*a^4*b^4*c^2 - 31*a^3*b^5*c^2 + 22*a^2*b^6*c^2 - 3*a*b^7*c^2 + 7*a^7*c^3 - 20*a^6*b*c^3 + 25*a^5*b^2*c^3 - 42*a^4*b^3*c^3 + 33*a^3*b^4*c^3 + 10*a^2*b^5*c^3 - 17*a*b^6*c^3 + 4*b^7*c^3 + 6*a^6*c^4 - 6*a^5*b*c^4 - 6*a^4*b^2*c^4 + 33*a^3*b^3*c^4 - 44*a^2*b^4*c^4 + 15*a*b^5*c^4 - 9*a^5*c^5 + 27*a^4*b*c^5 - 31*a^3*b^2*c^5 + 10*a^2*b^3*c^5 + 15*a*b^4*c^5 - 6*b^5*c^5 - 2*a^4*c^6 - 7*a^3*b*c^6 + 22*a^2*b^2*c^6 - 17*a*b^3*c^6 + 5*a^3*c^7 - 10*a^2*b*c^7 - 3*a*b^2*c^7 + 4*b^3*c^7 + 6*a*b*c^8 - a*c^9 - b*c^9 : :
X(56756) = 3 X[36590] - X[44979]

X(56756) lies on the cubic K905 and these lines: {3, 8}, {10, 53742}, {30, 901}, {40, 56423}, {80, 23703}, {119, 10747}, {900, 12515}, {1376, 47051}, {5844, 14511}, {26031, 38752}, {51631, 56420}

X(56756) = midpoint of X(40) and X(56423)


X(56757) = X(1)X(36037)∩X(3)X(8)

Barycentrics    a*(a - b - c)*(a^2 - b^2 + b*c - c^2)*(a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3) : :

X(56757) lies on the cubic K971 and these lines: {1, 36037}, {3, 8}, {21, 7253}, {36, 4242}, {56, 44184}, {78, 765}, {85, 35164}, {318, 1309}, {499, 17555}, {513, 21307}, {993, 51975}, {1098, 4636}, {1125, 52640}, {1259, 6790}, {1795, 30144}, {2169, 44687}, {4511, 52407}, {5549, 52663}, {10269, 53786}, {22775, 33650}, {23981, 54391}, {26690, 32641}, {35262, 37136}, {38559, 40257}

X(56757) = X(54953)-Ceva conjugate of X(3904)
X(56757) = X(i)-isoconjugate of X(j) for these (i,j): {6, 52212}, {56, 56416}, {80, 1457}, {517, 1411}, {655, 3310}, {859, 52383}, {1168, 53530}, {1361, 40437}, {1465, 2161}, {1769, 2222}, {1807, 1875}, {2006, 2183}, {6187, 22464}, {10015, 32675}, {14260, 14584}, {42753, 52377}
X(56757) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 56416}, {9, 52212}, {44, 52659}, {1737, 119}, {6149, 34586}, {13999, 39534}, {35128, 10015}, {35204, 517}, {38984, 1769}, {40584, 1465}, {40612, 22464}
X(56757) = cevapoint of X(i) and X(j) for these (i,j): {36, 11700}, {4511, 4996}
X(56757) = barycentric product X(i)*X(j) for these {i,j}: {36, 36795}, {104, 32851}, {320, 52663}, {1809, 17923}, {2323, 18816}, {2342, 20924}, {3218, 51565}, {3738, 13136}, {3904, 36037}, {4511, 34234}, {4585, 43728}
X(56757) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 52212}, {9, 56416}, {36, 1465}, {104, 2006}, {214, 52659}, {654, 1769}, {909, 1411}, {1809, 52351}, {1983, 23981}, {2250, 52383}, {2323, 517}, {2342, 2161}, {2361, 2183}, {3218, 22464}, {3738, 10015}, {3904, 36038}, {4282, 859}, {4511, 908}, {4996, 16586}, {7113, 1457}, {8648, 3310}, {13136, 35174}, {17455, 53530}, {32641, 2222}, {32851, 3262}, {34234, 18815}, {34544, 34586}, {36037, 655}, {36795, 20566}, {36944, 14628}, {40437, 34535}, {51565, 18359}, {52413, 1875}, {52427, 14571}, {52663, 80}, {53046, 42757}, {53285, 46393}, {53525, 42754}
X(56757) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 36944, 51565}, {104, 1809, 51565}


X(56758) = X(2)X(901)∩X(3)X(8)

Barycentrics    (2*a - b - c)*(a^5 - 2*a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - 2*a^4*c + 9*a^3*b*c - 3*a^2*b^2*c - 5*a*b^3*c + b^4*c - 2*a^3*c^2 - 3*a^2*b*c^2 + 8*a*b^2*c^2 - b^3*c^2 + 2*a^2*c^3 - 5*a*b*c^3 - b^2*c^3 + a*c^4 + b*c^4) : :

X(56758) lies on the cubic K1265 and these lines: {2, 901}, {3, 8}, {9, 649}, {55, 34590}, {574, 35092}, {902, 1647}, {1000, 37222}, {1086, 45140}, {4370, 42316}, {5698, 16594}, {14664, 24026}

X(56758) = X(902)-complementary conjugate of X(39050)
X(56758) = X(2737)-Ceva conjugate of X(900)
X(56758) = crossdifference of every pair of points on line {1149, 3310}
X(56758) = {X(100),X(47045)}-harmonic conjugate of X(47043)


X(56759) = X(3)X(8)∩X(11)X(2342)

Barycentrics    (a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3)*(2*a^3 - 2*a^2*b + b^3 - 2*a^2*c + 2*a*b*c - b^2*c - b*c^2 + c^3) : :

X(56759) lies on the cubic K1281 and these lines: {3, 8}, {11, 2342}, {98, 35011}, {468, 14776}, {518, 15635}, {654, 900}, {909, 6174}, {1309, 53873}, {1376, 51824}, {1795, 26933}, {3035, 34858}, {11545, 40437}, {24624, 38950}

X(56759) = X(1769)-isoconjugate of X(53606)
X(56759) = crossdifference of every pair of points on line {3310, 34586}
X(56759) = barycentric product X(43728)*X(45273)
X(56759) = barycentric quotient X(i)/X(j) for these {i,j}: {5170, 859}, {32641, 53606}, {46457, 23757}, {46458, 42754}


X(56760) = X(6)X(620)∩X(99)X(110)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(2*a^6 - 4*a^4*b^2 + 2*a^2*b^4 - b^6 - 4*a^4*c^2 + 6*a^2*b^2*c^2 - b^4*c^2 + 2*a^2*c^4 - b^2*c^4 - c^6) : :
X(56760) = X[99] + 3 X[4563], 3 X[6388] - 5 X[31274]

X(56760) lies on the cubic K482 and these lines: {6, 620}, {67, 52881}, {99, 110}, {115, 5108}, {826, 47389}, {3111, 51383}, {6388, 31274}, {47291, 56429}

X(56760) = crossdifference of every pair of points on line {2872, 3124}


X(56761) = X(3)X(8)∩X(11)X(513)

Barycentrics    (2*a - b - c)*(b - c)^2*(a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3) : :
X(56761) = X[100] - 3 X[47045]

X(56761) lies on the curve Q011 and these lines: {3, 8}, {11, 513}, {149, 51832}, {244, 21132}, {1387, 14260}, {1635, 4530}, {1647, 53528}, {1977, 2423}, {2250, 4370}, {2969, 43933}, {3035, 36819}, {3119, 6544}, {6713, 52005}, {7004, 23757}, {10428, 37222}, {12832, 14584}, {14936, 35092}, {17660, 33883}, {22938, 38952}, {40218, 41556}, {40619, 52620}, {53525, 55126}

X(56761) = midpoint of X(104) and X(14266)
X(56761) = reflection of X(i) in X(j) for these {i,j}: {14260, 1387}, {52005, 6713}
X(56761) = X(i)-complementary conjugate of X(j) for these (i,j): {1647, 15608}, {2990, 4928}, {32655, 3960}, {36052, 900}, {53532, 42423}
X(56761) = X(i)-Ceva conjugate of X(j) for these (i,j): {104, 900}, {43933, 6550}
X(56761) = X(i)-isoconjugate of X(j) for these (i,j): {517, 9268}, {765, 14260}, {1252, 52031}, {1769, 6551}, {2183, 5376}, {2397, 32665}, {2427, 3257}, {5548, 24029}, {24027, 51984}
X(56761) = X(i)-Dao conjugate of X(j) for these (i,j): {513, 14260}, {522, 51984}, {661, 52031}, {900, 1145}, {3310, 26611}, {6544, 908}, {35092, 2397}, {53985, 53151}, {55055, 2427}
X(56761) = trilinear pole of line {2087, 52338}
X(56761) = crossdifference of every pair of points on line {2427, 3310}
X(56761) = barycentric product X(i)*X(j) for these {i,j}: {11, 40218}, {900, 2401}, {1086, 36944}, {1647, 34234}, {2087, 18816}, {4358, 15635}, {6550, 13136}, {30725, 43728}, {52338, 54953}
X(56761) = barycentric quotient X(i)/X(j) for these {i,j}: {104, 5376}, {244, 52031}, {900, 2397}, {909, 9268}, {1015, 14260}, {1146, 51984}, {1647, 908}, {1960, 2427}, {2087, 517}, {2401, 4555}, {2423, 901}, {3259, 26611}, {4530, 6735}, {6550, 10015}, {8661, 3310}, {13136, 6635}, {14027, 52659}, {14442, 23757}, {15635, 88}, {24188, 42754}, {32641, 6551}, {35092, 1145}, {36944, 1016}, {40218, 4998}, {43728, 4582}, {52338, 2804}, {53528, 24029}
X(56761) = {X(14266),X(47045)}-harmonic conjugate of X(45145)


X(56762) = X(3)X(3715)∩X(4)X(8)

Barycentrics    a*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c - a^3*b^2*c + 2*a^2*b^3*c - 2*b^5*c - a^4*c^2 - a^3*b*c^2 + 2*a^2*b^2*c^2 - a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a^2*b*c^3 - a*b^2*c^3 + 4*b^3*c^3 + 2*a^2*c^4 + b^2*c^4 + a*c^5 - 2*b*c^5 - c^6) : :
X(56762) = 3 X[355] + X[3869], 3 X[3681] + X[12699], X[3869] - 3 X[5694], 5 X[5777] - X[9856], 3 X[5777] - X[31937], 3 X[5777] + X[34790], 3 X[5887] + X[10914], X[5887] + 3 X[18908], 3 X[5927] - X[22793], 3 X[9856] - 5 X[31937], 3 X[9856] + 5 X[34790], X[10914] - 9 X[18908], 3 X[5] - X[3874], X[5] - 3 X[15064], and many others

X(56762) lies on the curve Q114 and these lines: {3, 3715}, {4, 8}, {5, 3874}, {10, 2771}, {21, 12738}, {30, 3678}, {35, 3065}, {37, 32167}, {40, 31828}, {42, 8143}, {100, 3652}, {140, 2801}, {191, 210}, {381, 5904}, {480, 5696}, {484, 13465}, {500, 756}, {515, 31835}, {518, 9955}, {758, 18357}, {912, 3812}, {942, 7951}, {952, 3884}, {960, 28204}, {971, 6796}, {993, 5044}, {1071, 11231}, {1215, 48887}, {1385, 5251}, {1935, 33649}, {2932, 26086}, {3057, 9897}, {3219, 22937}, {3293, 5492}, {3467, 34324}, {3555, 51709}, {3584, 17637}, {3628, 12005}, {3679, 40266}, {3697, 50821}, {3711, 35448}, {3740, 13369}, {3876, 18481}, {3878, 37705}, {3889, 5886}, {3897, 16859}, {3901, 5587}, {3925, 49107}, {3927, 18491}, {3940, 18761}, {3952, 48877}, {4005, 33697}, {4067, 50796}, {4134, 31673}, {4420, 26202}, {4511, 35597}, {4537, 34648}, {4551, 35194}, {5045, 10072}, {5055, 18398}, {5220, 6985}, {5260, 33858}, {5399, 7069}, {5439, 12009}, {5531, 37621}, {5690, 31803}, {5692, 18525}, {5693, 5790}, {5697, 50798}, {5720, 26286}, {5780, 10269}, {5844, 26200}, {5884, 38042}, {5892, 15229}, {6001, 52102}, {6763, 37251}, {6797, 45288}, {7294, 27778}, {7330, 26285}, {7701, 35000}, {9654, 18397}, {9957, 37706}, {10175, 24475}, {10176, 34773}, {10200, 13373}, {10222, 41696}, {10270, 52665}, {10284, 12645}, {10592, 18389}, {10742, 47033}, {10895, 41686}, {11278, 26088}, {12528, 26446}, {12611, 24390}, {12619, 12665}, {12680, 17502}, {15067, 23156}, {15104, 48661}, {16159, 17484}, {17857, 32613}, {18358, 34378}, {22758, 26287}, {22798, 31938}, {24474, 38140}, {26066, 40296}, {28160, 31837}, {28168, 31793}, {28174, 31871}, {31792, 37740}, {32148, 43214}, {35197, 50461}, {37562, 38176}, {38411, 38752}, {46694, 47742}

X(56762) = midpoint of X(i) and X(j) for these {i,j}: {40, 31828}, {72, 18480}, {355, 5694}, {1385, 14872}, {3579, 40263}, {3878, 37705}, {5690, 31803}, {5693, 35004}, {10284, 12645}, {11698, 47320}, {12611, 46685}, {12619, 12665}, {22798, 31938}, {31937, 34790}, {33697, 37585}
X(56762) = reflection of X(i) in X(j) for these {i,j}: {5885, 9956}, {6583, 5}, {11278, 26088}, {12005, 3628}, {13145, 10}, {13624, 5044}, {26201, 140}
X(56762) = isogonal conjugate of X(34419)
X(56762) = X(1)-isoconjugate of X(34419)
X(56762) = X(3)-Dao conjugate of X(34419)
X(56762) = barycentric quotient X(6)/X(34419)
X(56762) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {191, 18524, 3579}, {210, 40263, 3579}, {355, 5080, 18480}, {5693, 5790, 35004}, {5777, 34790, 31937}


X(56763) = X(3)X(9)∩X(189)X(55954)

Barycentrics    a*(a - b - c)*(2*a^2 - a*b - b^2 - a*c + 2*b*c - c^2)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c + 2*a*b*c + b^2*c - a*c^2 - b*c^2 - c^3)*(a^3 + a^2*b - a*b^2 - b^3 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + b*c^2 + c^3) : :

X(56763) lies on the curve Q071 and these lines: {3, 9}, {189, 55954}, {220, 1413}, {527, 28344}, {652, 3900}, {1155, 46415}, {1212, 7118}, {1422, 3929}, {2192, 3683}, {5744, 38948}, {7003, 55918}, {7008, 51218}, {8558, 36049}, {40117, 53911}
on Q071

X(56763) = circumcircle-inverse of X(1436)
X(56763) = X(i)-isoconjugate of X(j) for these (i,j): {40, 34056}, {221, 1121}, {223, 1156}, {347, 2291}, {4845, 14256}, {6129, 37139}, {14733, 14837}, {17896, 36141}, {34068, 40702}
X(56763) = X(i)-Dao conjugate of X(j) for these (i,j): {3341, 1121}, {6594, 329}, {35091, 17896}, {35110, 40702}, {52879, 14256}
X(56763) = crossdifference of every pair of points on line {223, 6129}
X(56763) = barycentric product X(i)*X(j) for these {i,j}: {84, 6745}, {189, 6603}, {268, 37805}, {271, 23710}, {280, 1155}, {282, 527}, {1055, 34404}, {2192, 30806}, {6366, 13138}, {6510, 7003}, {7367, 37780}, {14392, 53642}, {52389, 52891}
X(56763) = barycentric quotient X(i)/X(j) for these {i,j}: {282, 1121}, {527, 40702}, {1055, 223}, {1155, 347}, {1436, 34056}, {2192, 1156}, {6139, 6129}, {6366, 17896}, {6603, 329}, {6610, 14256}, {6745, 322}, {7118, 2291}, {7367, 41798}, {13138, 35157}, {14392, 8058}, {23710, 342}, {32652, 14733}, {36049, 37139}, {37805, 40701}
X(56763) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 32625, 17112}, {17112, 32625, 54079}


X(56764) = X(2)X(3)∩X(58)X(626)

Barycentrics    a^2*(a*b + a*c + b*c)*(a^2 - b^2 - c^2) - (a + b + c)^2*(a^4 + b^4 + c^4) : :

X(56764) lies on these lines: {2, 3}, {58, 626}, {386, 7834}, {1691, 20546}, {3767, 21024}, {5257, 24295}, {5305, 41014}, {17793, 20600}, {29633, 37717}, {30103, 37609}

X(56764) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14064, 37176, 36659}


X(56765) = X(2)X(3)∩X(58)X(315)

Barycentrics    2*a^2*(a*b + a*c + b*c)*(a^2 - b^2 - c^2) - (a + b + c)^2*(a^4 + b^4 + c^4) : :

X(56765) lies on these lines: {2, 3}, {58, 315}, {304, 350}, {386, 7803}, {1691, 20558}, {3771, 13161}, {3923, 4357}, {3944, 25527}, {4252, 7784}, {4385, 52406}, {5015, 33137}, {7754, 41014}, {24159, 33940}

X(56765) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 37176, 37100}


X(56766) = X(2)X(3)∩X(58)X(17277)

Barycentrics    (a + b + c)^2*(a*b + a*c + b*c) + a^2*(a^2 - b^2 - c^2) : :

X(56766) lies on these lines: {1, 3996}, {2, 3}, {8, 37633}, {10, 14829}, {35, 25512}, {36, 16828}, {46, 31359}, {56, 19853}, {58, 17277}, {75, 975}, {86, 386}, {239, 37594}, {333, 37522}, {750, 31339}, {894, 5044}, {936, 10436}, {940, 9534}, {966, 5021}, {978, 50302}, {988, 39586}, {1125, 1738}, {1213, 33863}, {1220, 1698}, {1330, 5743}, {1468, 26037}, {2975, 19874}, {3216, 4281}, {3624, 32942}, {3753, 35631}, {3813, 49725}, {3868, 26627}, {3976, 36480}, {4252, 17259}, {4255, 15668}, {4340, 14555}, {4357, 12436}, {4384, 37554}, {4385, 5268}, {4968, 5297}, {4972, 26060}, {5132, 25508}, {5224, 17206}, {5241, 49745}, {5258, 19870}, {5262, 24589}, {5266, 16823}, {5293, 24325}, {5438, 25500}, {5550, 24552}, {5564, 50606}, {5587, 15486}, {5741, 26131}, {6051, 32932}, {6147, 26806}, {6626, 52782}, {6646, 24470}, {7283, 44307}, {9342, 26030}, {10449, 37674}, {14828, 17175}, {16817, 37539}, {16819, 37609}, {16830, 37592}, {17260, 31445}, {17300, 41014}, {17398, 18755}, {17749, 43531}, {17785, 25669}, {19836, 37576}, {19861, 37529}, {24199, 34937}, {25446, 37646}, {25531, 34595}, {26035, 37675}, {27164, 54300}, {27627, 32772}, {28257, 32944}, {29399, 52529}, {30142, 32922}, {31473, 39385}, {32860, 41813}, {33126, 51706}, {37501, 48878}, {37582, 38000}, {41839, 50044}

X(56766) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 11110}, {2, 21, 37035}, {2, 377, 52258}, {2, 404, 19270}, {2, 443, 16062}, {2, 964, 13741}, {2, 1010, 13740}, {2, 4188, 16342}, {2, 4190, 37314}, {2, 4195, 11108}, {2, 4201, 4205}, {2, 6904, 13725}, {2, 11115, 5047}, {2, 11319, 17536}, {2, 11321, 17681}, {2, 14005, 19280}, {2, 16061, 17687}, {2, 16347, 17557}, {2, 16393, 51595}, {2, 16454, 1010}, {2, 16458, 14007}, {2, 16917, 16060}, {2, 16930, 17541}, {2, 17689, 16929}, {2, 17693, 16927}, {2, 17697, 16842}, {2, 19276, 33309}, {2, 19278, 16343}, {2, 19284, 21}, {2, 19290, 4234}, {2, 19337, 11115}, {2, 26051, 5}, {2, 26643, 37086}, {2, 37462, 33833}, {2, 50408, 5084}, {3, 16288, 21}, {3, 16289, 37296}, {3, 19518, 16289}, {21, 404, 4210}, {377, 52258, 17677}, {405, 474, 16059}, {443, 7523, 37092}, {443, 19313, 6996}, {474, 16357, 16453}, {474, 16374, 404}, {474, 16458, 2}, {474, 19519, 3}, {940, 9534, 56018}, {964, 13741, 13740}, {1010, 13741, 964}, {2049, 16408, 2}, {4190, 37314, 37038}, {4195, 11108, 33309}, {5047, 11115, 13735}, {11108, 19276, 4195}, {11321, 16849, 37100}, {13587, 17557, 16347}, {14005, 17531, 2}, {16343, 16371, 19278}, {16357, 16453, 21}, {16394, 16842, 17697}, {16408, 19332, 2049}, {16417, 16456, 19273}, {16456, 19273, 2}, {16457, 17573, 19279}, {17536, 51669, 11319}, {19280, 51666, 14005}, {19286, 37034, 37090}, {19314, 37462, 16054}, {21909, 21992, 6996}, {33047, 50409, 11110}, {33833, 46336, 17677}


X(56767) = X(2)X(3)∩X(58)X(17259)

Barycentrics    2*(a + b + c)^2*(a*b + a*c + b*c) + a^2*(a^2 - b^2 - c^2) : :

X(56767) lies on these lines: {2, 3}, {10, 37674}, {55, 25512}, {56, 16828}, {58, 17259}, {386, 15668}, {956, 19874}, {975, 3739}, {999, 19853}, {1125, 3755}, {1213, 5021}, {1698, 37607}, {2271, 17398}, {3159, 17118}, {3216, 19701}, {3624, 37573}, {3646, 48944}, {3976, 36531}, {4281, 17749}, {4383, 25526}, {4384, 37594}, {4387, 31318}, {4648, 41014}, {5044, 10436}, {5257, 12436}, {5293, 40328}, {5295, 17022}, {5437, 19859}, {5563, 19871}, {5695, 27784}, {5774, 31339}, {6533, 17599}, {8583, 37529}, {10175, 15486}, {14555, 49743}, {16832, 37554}, {17257, 24470}, {19732, 37522}, {19836, 37580}, {19858, 25524}, {19881, 37576}, {24159, 34824}, {25508, 37502}, {28634, 50606}, {30567, 39564}, {31359, 36279}, {33863, 52782}, {34595, 37574}, {37501, 48888}, {37545, 38000}, {37592, 39586}, {37679, 43531}, {37682, 50605}

X(56767) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 16844}, {2, 404, 16343}, {2, 443, 4205}, {2, 474, 19273}, {2, 964, 16842}, {2, 1010, 11108}, {2, 4188, 17557}, {2, 5192, 16854}, {2, 13740, 16853}, {2, 13741, 16855}, {2, 16454, 405}, {2, 16458, 2049}, {2, 17526, 17590}, {2, 17589, 5192}, {2, 19270, 16457}, {2, 19290, 11357}, {2, 19332, 11354}, {2, 33062, 16929}, {2, 37153, 5}, {2, 37176, 50205}, {2, 37462, 13728}, {2, 51671, 54367}, {21, 19290, 19274}, {140, 50432, 2}, {404, 16289, 3}, {404, 16343, 19279}, {405, 474, 4191}, {405, 16454, 19276}, {443, 4205, 11359}, {474, 19518, 3}, {1010, 11108, 11354}, {4188, 17557, 16351}, {4188, 37296, 3}, {11108, 16408, 16409}, {11108, 19332, 1010}, {11357, 19274, 21}, {16408, 16456, 2}, {16408, 19261, 474}, {16417, 16457, 19270}, {16842, 51602, 964}, {16853, 19277, 13740}, {17529, 19313, 37075}, {17535, 17551, 2}, {17580, 17687, 3}, {17588, 19336, 19535}, {21909, 21992, 37416}


X(56768) = X(2)X(3)∩X(58)X(17349)

Barycentrics    (a + b + c)^2*(a*b + a*c + b*c) + 2*a^2*(a^2 - b^2 - c^2) : :

X(56768) lies on these lines: {1, 4734}, {2, 3}, {8, 750}, {10, 37608}, {36, 19853}, {58, 17349}, {86, 4255}, {192, 975}, {239, 37554}, {386, 17379}, {391, 5021}, {894, 936}, {940, 20018}, {966, 33863}, {988, 16830}, {1043, 37674}, {1125, 17383}, {1155, 31359}, {1220, 4413}, {3217, 5749}, {3487, 26806}, {3616, 37573}, {3617, 5372}, {3662, 12436}, {3813, 49720}, {3976, 36534}, {4252, 17277}, {4256, 28620}, {4393, 37594}, {4418, 19582}, {5010, 25512}, {5044, 17350}, {5232, 17206}, {5233, 49745}, {5247, 26038}, {5262, 24620}, {5263, 25524}, {5293, 24349}, {5438, 10436}, {5711, 20036}, {7280, 16828}, {9534, 37522}, {9612, 30867}, {9780, 32918}, {14555, 20077}, {15803, 38000}, {16823, 37552}, {17124, 54331}, {17260, 31424}, {17375, 41014}, {18743, 50054}, {19804, 19851}, {20146, 37502}, {24178, 29634}, {24552, 26093}, {26627, 34772}, {27523, 37675}, {34937, 48627}

X(56768) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3522, 13736}, {2, 4188, 19278}, {2, 4190, 26117}, {2, 4201, 37164}, {2, 6904, 4201}, {2, 11115, 17697}, {2, 16915, 17691}, {2, 17539, 16859}, {2, 17548, 17588}, {2, 33062, 22267}, {2, 37307, 16347}, {2, 50322, 37162}, {2, 50431, 3091}, {2, 51674, 13740}, {3, 474, 37442}, {3, 16289, 4189}, {3, 19518, 21}, {3, 37296, 17548}, {21, 404, 4191}, {404, 16454, 2}, {405, 474, 16409}, {474, 1010, 2}, {474, 19290, 1010}, {474, 19531, 16297}, {631, 37153, 2}, {964, 17531, 2}, {1220, 4413, 26029}, {5192, 17535, 2}, {6904, 19314, 37416}, {9534, 37522, 37683}, {11108, 19274, 4234}, {11115, 17697, 4195}, {13740, 16408, 2}, {13740, 19276, 51674}, {13741, 16862, 2}, {14007, 19273, 2}, {16061, 33035, 2}, {16297, 19531, 19238}, {16371, 16458, 19270}, {16394, 16862, 13741}, {16408, 19276, 13740}, {16458, 19270, 2}, {17535, 51669, 5192}, {17573, 19332, 19273}, {17582, 37176, 2}, {19238, 19531, 16865}, {19273, 19332, 14007}, {19804, 37539, 19851}


X(56769) = X(2)X(3)∩X(58)X(17379)

Barycentrics    (a + b + c)^2*(a*b + a*c + b*c) - 2*a^2*(a^2 - b^2 - c^2) : :

X(56769) lies on these lines: {1, 37683}, {2, 3}, {8, 2177}, {10, 37574}, {31, 3616}, {35, 19853}, {58, 17379}, {69, 6626}, {86, 4252}, {145, 5361}, {333, 19765}, {386, 17349}, {391, 2271}, {894, 31424}, {936, 17260}, {966, 18755}, {975, 27268}, {978, 2309}, {988, 16823}, {1043, 5737}, {1125, 3662}, {2268, 5296}, {2646, 31359}, {3487, 6646}, {3617, 49492}, {3622, 14996}, {3666, 19851}, {3813, 49746}, {3877, 35631}, {3944, 12579}, {3945, 17206}, {4255, 17277}, {4281, 10458}, {4340, 26109}, {4352, 16992}, {4417, 49728}, {4512, 12544}, {4653, 10449}, {5010, 16828}, {5250, 10476}, {5278, 19757}, {5284, 26093}, {5293, 49530}, {5550, 32772}, {5703, 17257}, {5712, 20077}, {5731, 15486}, {7280, 25512}, {9780, 54331}, {12436, 27147}, {16817, 17490}, {16824, 17594}, {16826, 37554}, {16830, 37552}, {16948, 19684}, {17247, 34937}, {17343, 41014}, {17350, 31445}, {17778, 54429}, {19783, 37666}, {19822, 19840}, {20146, 37507}, {20992, 25524}, {24627, 54392}, {24723, 28628}, {24953, 32773}, {25446, 48837}, {29570, 37594}, {29828, 56311}

X(56769) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 26051}, {2, 21, 4195}, {2, 13725, 37164}, {2, 16347, 19278}, {2, 16865, 17697}, {2, 17548, 19284}, {2, 17576, 50408}, {2, 17689, 22267}, {2, 51674, 2049}, {3, 11108, 19519}, {3, 11110, 2}, {3, 16060, 37339}, {21, 404, 1011}, {21, 4216, 4189}, {21, 16342, 2}, {333, 19765, 20018}, {405, 16351, 19270}, {405, 19270, 2}, {474, 37035, 2}, {1010, 16343, 2}, {2049, 4234, 51674}, {2049, 17571, 4234}, {6675, 16062, 2}, {6857, 13725, 2}, {6910, 37314, 2}, {7483, 13745, 52258}, {7483, 52258, 2}, {7520, 27505, 7538}, {10448, 32917, 8}, {11115, 19333, 2}, {13740, 19273, 2}, {14005, 17574, 16393}, {14005, 19334, 2}, {14007, 16457, 2}, {14012, 16445, 2}, {15671, 50321, 2}, {16060, 33036, 2}, {16343, 16370, 1010}, {16347, 17588, 2}, {16393, 19334, 14005}, {16418, 19273, 13740}, {16454, 17557, 2}, {16457, 19276, 14007}, {16927, 17684, 2}, {17549, 17557, 16454}, {17576, 50408, 51678}


X(56770) = X(2)X(3)∩X(44)X(58)

Barycentrics    a*(a + b)*(a + c)*(a^4 - a^3*b + a*b^3 - b^4 - a^3*c - 3*a*b^2*c - 4*b^3*c - 3*a*b*c^2 - 6*b^2*c^2 + a*c^3 - 4*b*c^3 - c^4) : :

X(56770) lies on these lines: {2, 3}, {44, 58}, {81, 3940}, {86, 5719}, {1043, 12433}, {1698, 40980}, {1780, 25917}, {3752, 4653}, {4256, 46838}, {4658, 30115}, {6767, 56182}, {7308, 52680}, {11374, 25526}, {18644, 25524}, {34079, 54323}

X(56770) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 16843, 16848}, {3, 47512, 37322}, {21, 474, 52012}, {19523, 37065, 16290}


X(56771) = X(2)X(3)∩X(81)X(3094)

Barycentrics    a*(a^6 + a^5*b - a^2*b^4 - a*b^5 + a^5*c + a^4*b*c - a*b^4*c + b^5*c - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 - 2*a*b^2*c^3 - a^2*c^4 - a*b*c^4 - a*c^5 + b*c^5) : :

X(56771) lies on these lines: {2, 3}, {81, 3094}, {183, 53478}, {325, 5124}, {1030, 7792}, {1444, 3314}, {1691, 5371}, {2975, 30179}, {6393, 32863}, {7774, 36743}, {16989, 36744}, {40592, 51582}

X(56771) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4220, 21495, 2}, {16367, 37099, 2}


X(56772) = X(2)X(3)∩X(81)X(1691)

Barycentrics    a*(a^6 + a^5*b - a^2*b^4 - a*b^5 + a^5*c - a^4*b*c - a*b^4*c - b^5*c - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 - 2*a*b^2*c^3 - a^2*c^4 - a*b*c^4 - a*c^5 - b*c^5) : :

X(56772) lies on these lines: {2, 3}, {81, 1691}, {100, 30179}, {325, 1030}, {385, 1444}, {1959, 53128}, {2895, 6393}, {3094, 32911}, {5124, 7792}, {5324, 20142}, {5976, 26243}, {7774, 36744}, {16989, 36743}, {37527, 52992}, {37685, 40825}, {41624, 54409}

X(56772) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 21485, 2}, {19649, 21511, 2}, {21504, 21514, 2}


X(56773) = X(2)X(3)∩X(197)X(26582)

Barycentrics    a*(a^6 + a^5*b - a^2*b^4 - a*b^5 + a^5*c + 2*a^4*b*c - a*b^4*c + 2*b^5*c - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 - 2*a*b^2*c^3 - a^2*c^4 - a*b*c^4 - a*c^5 + 2*b*c^5) : :

X(56773) lies on these lines: {2, 3}, {197, 26582}, {325, 36743}, {940, 3094}, {956, 30179}, {1447, 20171}, {1691, 4383}, {4254, 16989}, {5120, 7774}, {5124, 7778}, {7792, 36744}, {10832, 28806}, {26629, 37577}, {30104, 37557}, {32911, 40825}

X(56773) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 21485}, {2, 19669, 41236}, {2, 21477, 21504}, {2, 21537, 19649}, {16432, 16433, 21486}, {19544, 21477, 2}


X(56774) = X(2)X(3)∩X(58)X(33854)

Barycentrics    a*(a^5 - a*b^4 + a^3*b*c + 3*a^2*b^2*c + 3*a*b^3*c + b^4*c + 3*a^2*b*c^2 + 4*a*b^2*c^2 + 3*b^3*c^2 + 3*a*b*c^3 + 3*b^2*c^3 - a*c^4 + b*c^4) : :

X(56774) lies on these lines: {1, 25940}, {2, 3}, {56, 39581}, {58, 33854}, {100, 16830}, {105, 831}, {386, 5276}, {614, 37554}, {936, 33299}, {966, 36741}, {975, 26242}, {1213, 5096}, {1792, 37664}, {2077, 39605}, {2287, 4260}, {3220, 5750}, {3616, 26241}, {3876, 56517}, {3913, 48856}, {4255, 5275}, {4256, 37675}, {4265, 17398}, {4657, 41230}, {5253, 16823}, {5563, 50305}, {5687, 39587}, {5749, 24320}, {7191, 37594}, {7373, 39567}, {8193, 19866}, {8666, 48851}, {8715, 48854}, {9709, 39570}, {12436, 51400}, {12513, 48849}, {14552, 44094}, {15172, 20097}, {15803, 56518}, {16020, 25524}, {17306, 51687}, {19868, 40910}, {25440, 39586}, {34281, 44118}

X(56774) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 22, 47511}, {2, 4188, 19314}, {2, 4239, 33849}, {2, 17522, 5047}, {2, 19310, 4223}, {2, 37254, 405}, {3, 16850, 21}, {3, 16852, 2}, {3, 50409, 47512}, {21, 404, 21495}, {405, 474, 21526}, {405, 19322, 37254}, {474, 19309, 2}, {4189, 19237, 21}, {16356, 37255, 21}


X(56775) = X(2)X(3)∩X(58)X(5276)

Barycentrics    a*(a^5 - a*b^4 - a^3*b*c - 3*a^2*b^2*c - 3*a*b^3*c - b^4*c - 3*a^2*b*c^2 - 8*a*b^2*c^2 - 3*b^3*c^2 - 3*a*b*c^3 - 3*b^2*c^3 - a*c^4 - b*c^4) : :

X(56775) lies on these lines: {1, 56518}, {2, 3}, {41, 936}, {55, 39581}, {58, 5276}, {78, 54419}, {105, 5248}, {386, 16783}, {391, 37492}, {612, 1468}, {756, 36504}, {956, 39587}, {958, 4447}, {966, 36740}, {975, 17742}, {993, 39586}, {1001, 4000}, {1125, 51400}, {1213, 4265}, {1390, 30142}, {1621, 4359}, {1792, 16992}, {2287, 5138}, {2975, 16830}, {3220, 5257}, {3555, 3920}, {3739, 41230}, {3746, 50305}, {3868, 56511}, {3913, 48849}, {4252, 5275}, {4257, 37675}, {5096, 17398}, {5209, 37670}, {5234, 5268}, {5258, 50291}, {5284, 32774}, {5296, 24320}, {5324, 19732}, {6767, 39567}, {8666, 48854}, {8715, 48851}, {9708, 39570}, {10386, 20097}, {11012, 39605}, {12513, 48856}, {20344, 31419}, {31424, 40131}

X(56775) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21, 4223}, {2, 4189, 19310}, {2, 16865, 16048}, {2, 37090, 4220}, {2, 37254, 19309}, {3, 11108, 16851}, {3, 16849, 2}, {21, 404, 21511}, {21, 11349, 13723}, {379, 16454, 443}, {405, 474, 21514}, {405, 19286, 443}, {405, 19313, 2}, {474, 13723, 11349}, {1010, 6996, 52245}, {7484, 37060, 2}, {16048, 19320, 2}, {16353, 19283, 19288}, {16370, 19309, 37254}, {16454, 19271, 26643}, {19283, 50716, 21}, {36025, 37322, 37325}


X(56776) = X(2)X(3)∩X(36)X(39581)

Barycentrics    a*(2*a^5 - 2*a*b^4 + a^3*b*c + 3*a^2*b^2*c + 3*a*b^3*c + b^4*c + 3*a^2*b*c^2 + 2*a*b^2*c^2 + 3*b^3*c^2 + 3*a*b*c^3 + 3*b^2*c^3 - 2*a*c^4 + b*c^4) : :

X(56776) lies on these lines: {2, 3}, {36, 39581}, {100, 39587}, {105, 25524}, {391, 36741}, {966, 5096}, {999, 39567}, {1058, 20097}, {1376, 39570}, {3220, 5749}, {4252, 33854}, {4255, 5276}, {5253, 26241}, {5438, 40131}, {7191, 37554}, {8666, 48849}, {8715, 48856}, {17024, 37594}, {19866, 37557}, {37538, 37655}

X(56776) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 16851, 21}, {21, 404, 21477}, {404, 19310, 2}, {405, 474, 21542}, {474, 4223, 2}, {474, 19322, 4223}, {4188, 4189, 21537}, {5004, 5005, 16435}, {5047, 17531, 21543}, {13587, 17549, 21497}, {16048, 17531, 2}, {16352, 37261, 2}


X(56777) = X(2)X(3)∩X(35)X(39581)

Barycentrics    a*(2*a^5 - 2*a*b^4 - a^3*b*c - 3*a^2*b^2*c - 3*a*b^3*c - b^4*c - 3*a^2*b*c^2 - 10*a*b^2*c^2 - 3*b^3*c^2 - 3*a*b*c^3 - 3*b^2*c^3 - 2*a*c^4 - b*c^4) : :

X(56777) lies on these lines: {2, 3}, {35, 39581}, {391, 36740}, {958, 39570}, {966, 4265}, {2975, 39587}, {3220, 5296}, {3295, 39567}, {3601, 56518}, {3889, 29815}, {3920, 37554}, {4252, 5276}, {4255, 33854}, {5248, 16020}, {5267, 39586}, {8666, 48856}, {8715, 48849}, {19843, 20344}, {31073, 46933}, {34772, 56511}

X(56777) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4189, 37254}, {21, 404, 11343}, {21, 19314, 2}, {405, 474, 21529}, {4188, 4189, 21508}, {4223, 19313, 2}, {4224, 16353, 2}, {5047, 17531, 21535}, {7484, 47511, 2}, {13587, 17549, 21498}, {14953, 19284, 6904}, {16370, 19313, 4223}, {17522, 19327, 2}, {21554, 37149, 2}


X(56778) = X(2)X(3)∩X(58)X(3936)

Barycentrics    2*a^4 + a^3*b - a^2*b^2 + a*b^3 + b^4 + a^3*c + b^3*c - a^2*c^2 + a*c^3 + b*c^3 + c^4 : :
X(56778) = 3 X[2] + X[17539]

X(56778) lies on these lines: {1, 6693}, {2, 3}, {8, 35466}, {31, 29984}, {35, 4972}, {56, 28774}, {58, 3936}, {72, 56520}, {78, 56519}, {81, 25650}, {86, 24936}, {194, 17003}, {230, 27040}, {238, 28273}, {244, 1125}, {515, 25982}, {620, 1281}, {846, 3624}, {946, 35263}, {976, 4438}, {982, 36505}, {988, 29855}, {1043, 24883}, {1193, 6679}, {1213, 3285}, {1283, 24988}, {1284, 5433}, {1330, 16948}, {1468, 3771}, {1580, 29637}, {1714, 31229}, {1724, 5741}, {1770, 48646}, {2650, 8258}, {2895, 24946}, {3002, 26690}, {3006, 5266}, {3011, 4968}, {3035, 12746}, {3053, 26085}, {3120, 24850}, {3337, 34997}, {3454, 25669}, {3616, 6703}, {3704, 39766}, {3739, 49512}, {3788, 25497}, {3811, 33114}, {3916, 17184}, {3951, 56523}, {3976, 29638}, {3977, 34937}, {4252, 30811}, {4286, 17398}, {4385, 29665}, {4418, 24161}, {4420, 33118}, {4425, 19862}, {4647, 50757}, {4652, 25527}, {4653, 25441}, {4855, 56521}, {4999, 18235}, {5015, 29872}, {5016, 37817}, {5156, 29964}, {5230, 49492}, {5247, 29846}, {5262, 32851}, {5293, 33115}, {5294, 11031}, {5300, 29857}, {5305, 26770}, {5432, 8240}, {5550, 17595}, {5750, 21811}, {6390, 18600}, {6681, 19847}, {6684, 25904}, {6690, 26115}, {6707, 9791}, {6713, 13265}, {7283, 33133}, {7778, 26099}, {7789, 26978}, {7792, 27109}, {7793, 16991}, {7799, 33955}, {10436, 25581}, {11043, 15325}, {11374, 26223}, {11533, 25055}, {12567, 25512}, {12579, 19878}, {16478, 29849}, {16589, 24956}, {16704, 41014}, {17353, 27385}, {17733, 33156}, {17778, 25663}, {18139, 37522}, {19846, 25440}, {20108, 50618}, {24552, 26363}, {24931, 41809}, {25446, 31204}, {25681, 28951}, {25760, 54354}, {25957, 37603}, {26064, 30832}, {26131, 41878}, {26230, 37592}, {26580, 31445}, {26629, 26965}, {26686, 27097}, {27252, 37507}, {27368, 33160}, {28257, 31289}, {29631, 37573}, {29632, 37607}, {29856, 37574}, {29858, 37608}, {30171, 49480}, {31037, 49716}, {31452, 48831}, {33163, 36573}, {37693, 48866}, {44378, 50255}, {44379, 50247}, {44416, 56318}, {47796, 48388}

X(56778) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 4202}, {2, 21, 5051}, {2, 404, 17674}, {2, 3552, 16906}, {2, 4188, 33833}, {2, 4189, 16062}, {2, 4195, 2476}, {2, 6857, 16342}, {2, 11115, 442}, {2, 11319, 5}, {2, 15674, 11110}, {2, 16050, 857}, {2, 16061, 17672}, {2, 16347, 13728}, {2, 16865, 52258}, {2, 16909, 7770}, {2, 16925, 33830}, {2, 16930, 33033}, {2, 17526, 5192}, {2, 17558, 37314}, {2, 17588, 4205}, {2, 17692, 33834}, {2, 17693, 17673}, {2, 17696, 17550}, {2, 17697, 4193}, {2, 19284, 8728}, {2, 19333, 50409}, {2, 26051, 31254}, {2, 33225, 33826}, {2, 33819, 33839}, {2, 33820, 7901}, {2, 33831, 16908}, {2, 37176, 964}, {2, 37248, 25017}, {3, 8229, 48890}, {21, 404, 37311}, {21, 5051, 49735}, {58, 25645, 3936}, {405, 52273, 21}, {442, 11115, 50171}, {1009, 27622, 35999}, {1043, 41806, 24883}, {4205, 15670, 17588}, {7483, 17698, 2}, {7824, 16907, 2}, {13586, 16908, 33831}, {16865, 52258, 14020}, {16948, 30831, 1330}, {25669, 52680, 3454}, {29857, 37552, 5300}, {31254, 51669, 26051}


X(56779) = X(2)X(3)∩X(58)X(30811)

Barycentrics    3*a^4 + 2*a^3*b - a^2*b^2 + 2*a*b^3 + 2*b^4 + 2*a^3*c + 2*b^3*c - a^2*c^2 + 2*a*c^3 + 2*b*c^3 + 2*c^4 : :

X(56779) lies on these lines: {2, 3}, {6, 25645}, {8, 31229}, {58, 30811}, {72, 40656}, {78, 56521}, {355, 25982}, {940, 6693}, {1125, 37549}, {1376, 19846}, {1384, 26085}, {1468, 29865}, {1724, 25669}, {3624, 3670}, {3772, 50044}, {3916, 25527}, {3927, 56520}, {3976, 29860}, {4652, 56522}, {4999, 19836}, {5266, 29857}, {5294, 11374}, {6679, 16466}, {6690, 19784}, {6691, 20266}, {7754, 17003}, {7778, 25497}, {10449, 41806}, {10479, 31187}, {12699, 35263}, {17290, 25498}, {17595, 19862}, {19732, 24931}, {19765, 20083}, {19869, 26066}, {24552, 31493}, {24597, 41014}, {25904, 26446}, {25992, 26364}, {29855, 37592}, {29856, 37573}, {29858, 37607}, {32821, 33955}, {33119, 36505}, {37719, 48832}, {47795, 48388}

X(56779) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3552, 16908}, {2, 5192, 1656}, {2, 6675, 16343}, {2, 6857, 13728}, {2, 6910, 56734}, {2, 13742, 4187}, {2, 15670, 51593}, {2, 15671, 50410}, {2, 16454, 50726}, {2, 16905, 7770}, {2, 17526, 5}, {2, 24539, 37224}, {2, 33816, 7887}, {2, 33819, 7866}, {2, 33836, 33218}, {2, 37176, 442}, {2, 56766, 50207}, {405, 474, 11334}, {442, 37176, 16394}, {6857, 13728, 16351}


X(56780) = X(2)X(3)∩X(10)X(24789)

Barycentrics    a^4 + 2*a^3*b + a^2*b^2 + 2*a*b^3 + 2*b^4 + 2*a^3*c + 2*b^3*c + a^2*c^2 + 2*a*c^3 + 2*b*c^3 + 2*c^4 : :

X(56780) lies on these lines: {2, 3}, {10, 24789}, {72, 25527}, {78, 56522}, {141, 1714}, {355, 25904}, {386, 30811}, {499, 25914}, {940, 20083}, {958, 19846}, {982, 36499}, {984, 1698}, {1125, 17721}, {1193, 31237}, {1260, 23542}, {1329, 56445}, {1468, 29867}, {2886, 19836}, {2887, 16466}, {3295, 4972}, {3454, 4383}, {3634, 17595}, {3695, 19785}, {3746, 48829}, {3763, 10479}, {3916, 56519}, {3927, 17184}, {3976, 29861}, {4255, 25645}, {4286, 52538}, {4387, 36250}, {4429, 5687}, {4652, 56521}, {5258, 48801}, {5266, 29855}, {5270, 48832}, {5300, 26230}, {5439, 17282}, {5711, 25957}, {5791, 54311}, {5794, 19869}, {5814, 26723}, {7754, 16991}, {7784, 25497}, {7788, 33955}, {13407, 38047}, {15844, 56444}, {15888, 48831}, {17599, 30172}, {17776, 50067}, {19765, 48843}, {19784, 25466}, {19789, 50042}, {20172, 30176}, {23536, 30768}, {23537, 32777}, {24177, 39559}, {24880, 37660}, {24883, 33172}, {25441, 37674}, {25982, 26446}, {26029, 27095}, {26030, 31479}, {26085, 30435}, {29856, 37607}, {29857, 37592}, {29858, 37573}, {29964, 50598}, {33123, 36568}, {41812, 41862}, {47794, 48388}

X(56780) = complement of X(17526)
X(56780) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 17698}, {2, 964, 56735}, {2, 3552, 16907}, {2, 4197, 2049}, {2, 4202, 3}, {2, 4208, 37037}, {2, 5051, 11108}, {2, 8728, 16458}, {2, 13728, 16343}, {2, 16062, 405}, {2, 16906, 7770}, {2, 17673, 11321}, {2, 17674, 16408}, {2, 24984, 37244}, {2, 26051, 37036}, {2, 33826, 33217}, {2, 33830, 32954}, {2, 33831, 16905}, {2, 33833, 474}, {2, 37035, 50795}, {2, 37156, 25875}, {2, 37164, 37035}, {2, 37314, 50205}, {2, 44217, 51590}, {2, 48815, 16351}, {2, 50058, 51676}, {2, 50409, 19272}, {2, 52258, 16842}, {2, 56737, 7483}, {377, 17698, 16394}, {405, 16062, 50056}, {4195, 17678, 50239}, {4208, 37037, 50169}, {6678, 8728, 443}, {11108, 20834, 405}, {16905, 33831, 1003}, {17528, 56735, 964}, {19272, 51598, 50409}, {23537, 32777, 50044}, {37314, 50205, 51676}, {50058, 50205, 37314}


X(56781) = X(2)X(3)∩X(58)X(31034)

Barycentrics    3*a^4 + a^3*b - 2*a^2*b^2 + a*b^3 + b^4 + a^3*c + b^3*c - 2*a^2*c^2 + a*c^3 + b*c^3 + c^4 : :

X(56781) lies on these lines: {2, 3}, {58, 31034}, {78, 56520}, {145, 37642}, {187, 26085}, {620, 25497}, {966, 3285}, {988, 26230}, {1125, 4414}, {3006, 37552}, {3286, 27252}, {3315, 3622}, {3616, 3670}, {3624, 32776}, {3788, 26099}, {3936, 4252}, {3984, 56523}, {4257, 25645}, {4297, 25982}, {4417, 16948}, {4652, 17184}, {4855, 56519}, {4972, 5217}, {4999, 24552}, {5266, 29832}, {5300, 37589}, {6337, 18600}, {6700, 26688}, {7735, 26770}, {7783, 17003}, {7793, 17007}, {8669, 33161}, {8720, 33143}, {10164, 25904}, {13411, 26223}, {17165, 36573}, {17595, 46934}, {24542, 25524}, {25669, 48835}, {26580, 31424}, {28774, 37583}, {29631, 37574}, {29632, 37608}, {29829, 37573}, {29830, 37607}, {29831, 37592}, {30834, 49745}, {31037, 54429}, {31303, 41014}, {33113, 37539}, {33114, 56176}, {33119, 36500}

X(56781) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3552, 16910}, {2, 4189, 17676}, {2, 17539, 4}, {2, 17548, 4201}, {2, 33014, 33831}, {2, 50322, 2476}, {21, 404, 11334}, {140, 5192, 2}, {631, 17526, 2}, {964, 7483, 2}, {2476, 4234, 50322}, {6675, 16454, 2}, {6910, 37176, 2}, {6921, 13742, 2}, {7807, 33819, 2}, {7824, 16905, 2}, {7907, 33816, 2}, {13741, 17566, 2}, {32954, 33839, 2}, {33245, 33836, 2}


X(56782) = X(2)X(3)∩X(8)X(3670)

Barycentrics    a^4 - a^3*b - 2*a^2*b^2 - a*b^3 - b^4 - a^3*c - b^3*c - 2*a^2*c^2 - a*c^3 - b*c^3 - c^4 : :

X(56782) lies on these lines: {1, 32948}, {2, 3}, {8, 3670}, {39, 26085}, {56, 4972}, {69, 18600}, {78, 17184}, {145, 37549}, {194, 17007}, {315, 27162}, {386, 31034}, {387, 37639}, {936, 26580}, {960, 32950}, {966, 4286}, {982, 36500}, {988, 3006}, {1043, 33172}, {1125, 33104}, {1191, 4450}, {1193, 6327}, {1201, 4660}, {1478, 26030}, {1479, 26094}, {2549, 27040}, {2975, 4429}, {3216, 48835}, {3304, 48829}, {3333, 29835}, {3617, 5484}, {3622, 4648}, {3662, 34772}, {3752, 5016}, {3836, 10448}, {3869, 33068}, {3924, 24169}, {3936, 4255}, {3984, 17274}, {4292, 26223}, {4297, 25904}, {4317, 48831}, {4340, 19717}, {4358, 50065}, {4652, 56520}, {4719, 33070}, {4850, 7270}, {4855, 25527}, {5132, 27252}, {5253, 32773}, {5266, 29831}, {5267, 19846}, {5300, 29832}, {6284, 25914}, {7738, 26770}, {7761, 26099}, {7783, 16991}, {7800, 26978}, {7811, 33955}, {7830, 25497}, {8025, 19766}, {8669, 33143}, {8720, 33161}, {10164, 25982}, {10404, 46897}, {11375, 48646}, {12436, 26627}, {12512, 35263}, {12572, 26688}, {16466, 20064}, {16610, 50050}, {17147, 54433}, {17257, 25244}, {17283, 52352}, {18139, 19765}, {19582, 33100}, {19742, 54429}, {19853, 26060}, {20018, 32863}, {21214, 32947}, {21283, 50608}, {23536, 26227}, {24248, 25253}, {24851, 25591}, {25881, 40998}, {26073, 46933}, {26230, 37552}, {26357, 27521}, {26729, 48629}, {29631, 37608}, {29632, 37574}, {29829, 37607}, {29830, 37573}, {29833, 37554}, {32774, 37539}, {33122, 56176}, {33174, 54331}, {37522, 48843}

X(56782) = anticomplement of X(5192)
X(56782) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 11319}, {2, 3552, 16909}, {2, 4190, 11115}, {2, 4201, 17676}, {2, 6904, 19284}, {2, 15680, 17697}, {2, 17539, 17526}, {2, 17690, 377}, {2, 33058, 16930}, {2, 33831, 16910}, {2, 37256, 4195}, {2, 50322, 13740}, {3, 4202, 2}, {21, 33833, 2}, {376, 17526, 17539}, {377, 56737, 2}, {404, 16062, 2}, {405, 17674, 2}, {474, 5051, 2}, {474, 11359, 5051}, {964, 56734, 2}, {4197, 19270, 2}, {5300, 37592, 29832}, {6656, 33830, 2}, {7824, 16906, 2}, {7876, 33826, 2}, {8728, 16342, 2}, {11112, 56734, 964}, {13725, 37462, 2}, {13728, 16454, 2}, {13740, 17579, 50322}, {16060, 33840, 2}, {17531, 52258, 2}, {17550, 33828, 2}, {17582, 37314, 2}, {17582, 51665, 37314}, {17673, 17684, 2}, {19336, 48815, 2}, {24985, 37228, 2}, {52258, 54345, 17531}


X(56783) = X(1)X(85)∩X(6)X(7)

Barycentrics    (a + b - c)*(a - b + c)*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2) : :

X(56783) lies on the curves {{{A,B,C,X(1),X(6)}} and Q053, and these lines: {1, 85}, {2, 6559}, {6, 7}, {31, 33765}, {34, 1847}, {42, 21453}, {56, 105}, {57, 2279}, {58, 1414}, {65, 52029}, {75, 28043}, {77, 2191}, {86, 4625}, {87, 7209}, {88, 56543}, {106, 927}, {220, 30946}, {241, 292}, {244, 658}, {269, 4626}, {278, 8751}, {334, 5378}, {348, 16020}, {388, 2334}, {614, 1088}, {666, 3008}, {676, 885}, {883, 24841}, {903, 9268}, {919, 2369}, {1027, 43041}, {1120, 51560}, {1122, 1431}, {1126, 7247}, {1220, 18031}, {1222, 1909}, {1266, 36802}, {1279, 14189}, {1411, 38459}, {1429, 1438}, {1463, 52030}, {1565, 15251}, {1886, 5236}, {2163, 21314}, {2195, 3668}, {2297, 10436}, {2983, 4357}, {3011, 37757}, {3160, 3445}, {3226, 46135}, {3315, 35312}, {3663, 9440}, {3664, 13404}, {3672, 28071}, {3752, 9446}, {3945, 10579}, {4554, 25531}, {5272, 31627}, {6063, 32942}, {6184, 43063}, {7129, 54235}, {7290, 42309}, {7292, 37780}, {9318, 9502}, {9432, 43921}, {9453, 41352}, {10030, 33674}, {15253, 40615}, {16469, 52511}, {17962, 43066}, {18610, 34444}, {21609, 32926}, {22464, 36086}, {23345, 43930}, {24471, 46149}, {27499, 51974}, {30725, 34056}, {32922, 40704}, {33930, 40436}, {34085, 37129}, {34401, 42019}, {36048, 36057}, {39977, 55096}, {40133, 51846}, {40746, 43266}, {40862, 46798}, {41436, 43038}

X(56783) = isogonal conjugate of X(2340)
X(56783) = isotomic conjugate of X(3717)
X(56783) = isotomic conjugate of the isogonal conjugate of X(1416)
X(56783) = X(i)-Ceva conjugate of X(j) for these (i,j): {927, 43930}, {34018, 673}, {39293, 927}
X(56783) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2340}, {6, 3693}, {8, 2223}, {9, 672}, {21, 20683}, {31, 3717}, {33, 1818}, {41, 3912}, {55, 518}, {72, 37908}, {78, 2356}, {100, 926}, {190, 46388}, {200, 1458}, {210, 3286}, {212, 1861}, {219, 5089}, {220, 241}, {281, 20752}, {284, 3930}, {294, 6184}, {312, 9454}, {333, 39258}, {346, 52635}, {480, 34855}, {522, 54325}, {607, 25083}, {644, 665}, {650, 2284}, {651, 52614}, {657, 1025}, {663, 1026}, {668, 8638}, {692, 50333}, {883, 8641}, {1252, 17435}, {1253, 9436}, {1260, 1876}, {1334, 18206}, {1362, 28071}, {1802, 5236}, {2175, 3263}, {2194, 3932}, {2195, 4712}, {2254, 3939}, {2283, 3900}, {2316, 14439}, {2318, 54407}, {2338, 9502}, {3063, 42720}, {3126, 52927}, {3252, 3684}, {3596, 9455}, {3675, 6065}, {3685, 40730}, {3689, 34230}, {4041, 54353}, {4105, 41353}, {4512, 14626}, {4578, 53539}, {4845, 35293}, {5546, 24290}, {7077, 8299}, {9439, 56714}, {14827, 40704}, {14942, 42079}, {15149, 52370}, {17755, 51858}, {20455, 56111}, {36796, 39686}, {46108, 52425}, {51418, 52213}, {52001, 56715}, {53550, 56183}
X(56783) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 3717}, {3, 2340}, {9, 3693}, {223, 518}, {478, 672}, {661, 17435}, {1086, 50333}, {1214, 3932}, {3160, 3912}, {6609, 1458}, {8054, 926}, {10001, 42720}, {16593, 40609}, {17113, 9436}, {33675, 312}, {36905, 4437}, {38991, 52614}, {39063, 4712}, {40590, 3930}, {40593, 3263}, {40611, 20683}, {40615, 918}, {40617, 2254}, {40622, 4088}, {40837, 1861}, {52879, 35293}, {55053, 46388}
X(56783) = cevapoint of X(i) and X(j) for these (i,j): {1, 3008}, {7, 1447}, {57, 1458}, {105, 1462}, {244, 53544}, {676, 1086}, {5723, 39755}, {43035, 56639}
X(56783) = trilinear pole of line {57, 649}
X(56783) = crossdifference of every pair of points on line {926, 46388}
X(56783) = barycentric product X(i)*X(j) for these {i,j}: {1, 34018}, {7, 673}, {56, 18031}, {57, 2481}, {75, 1462}, {76, 1416}, {77, 54235}, {85, 105}, {190, 43930}, {269, 36796}, {273, 1814}, {278, 31637}, {279, 14942}, {294, 1088}, {331, 36057}, {348, 36124}, {479, 6559}, {513, 34085}, {514, 927}, {649, 46135}, {658, 885}, {666, 3676}, {693, 36146}, {884, 46406}, {919, 52621}, {1024, 4569}, {1027, 4554}, {1086, 39293}, {1434, 13576}, {1438, 6063}, {1447, 52209}, {1477, 56667}, {3261, 32735}, {3669, 51560}, {4572, 43929}, {4625, 55261}, {4626, 28132}, {6185, 9436}, {6654, 7233}, {7182, 8751}, {10030, 52030}, {13149, 23696}, {18033, 51866}, {21453, 53241}, {22464, 55943}, {23062, 28071}, {24002, 36086}, {31638, 40154}, {35160, 52210}, {36803, 43924}, {40704, 51838}, {43750, 51846}, {52156, 56639}
X(56783) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3693}, {2, 3717}, {6, 2340}, {7, 3912}, {34, 5089}, {56, 672}, {57, 518}, {65, 3930}, {77, 25083}, {85, 3263}, {105, 9}, {109, 2284}, {222, 1818}, {226, 3932}, {241, 4712}, {244, 17435}, {269, 241}, {273, 46108}, {278, 1861}, {279, 9436}, {294, 200}, {514, 50333}, {553, 4966}, {603, 20752}, {604, 2223}, {608, 2356}, {649, 926}, {651, 1026}, {658, 883}, {663, 52614}, {664, 42720}, {666, 3699}, {667, 46388}, {673, 8}, {738, 34855}, {884, 657}, {885, 3239}, {919, 3939}, {927, 190}, {934, 1025}, {1014, 18206}, {1024, 3900}, {1027, 650}, {1088, 40704}, {1106, 52635}, {1119, 5236}, {1319, 14439}, {1396, 54407}, {1397, 9454}, {1400, 20683}, {1402, 39258}, {1407, 1458}, {1412, 3286}, {1415, 54325}, {1416, 6}, {1429, 8299}, {1434, 30941}, {1435, 1876}, {1438, 55}, {1447, 17755}, {1456, 9502}, {1458, 6184}, {1461, 2283}, {1462, 1}, {1474, 37908}, {1814, 78}, {1919, 8638}, {2195, 220}, {2402, 44448}, {2481, 312}, {3008, 40609}, {3669, 2254}, {3676, 918}, {4017, 24290}, {4565, 54353}, {4617, 41353}, {4625, 55260}, {5236, 34337}, {5435, 4899}, {6180, 56714}, {6185, 14942}, {6545, 52305}, {6559, 5423}, {6610, 35293}, {6654, 3685}, {7175, 4447}, {7178, 4088}, {7195, 51400}, {7216, 53551}, {7233, 40217}, {8751, 33}, {9312, 40883}, {9436, 4437}, {10099, 8611}, {10481, 51384}, {13576, 2321}, {14625, 4061}, {14942, 346}, {17096, 23829}, {18031, 3596}, {18785, 210}, {21454, 4684}, {22464, 51390}, {28071, 728}, {28132, 4163}, {30719, 4925}, {30723, 50357}, {31637, 345}, {32658, 212}, {32735, 101}, {34018, 75}, {34051, 36819}, {34085, 668}, {36057, 219}, {36086, 644}, {36124, 281}, {36146, 100}, {36796, 341}, {36802, 6558}, {36816, 4009}, {39293, 1016}, {41934, 2195}, {43035, 50441}, {43042, 53583}, {43921, 2170}, {43924, 665}, {43929, 663}, {43930, 514}, {43932, 53544}, {46135, 1978}, {46149, 33299}, {51560, 646}, {51655, 47431}, {51838, 294}, {51866, 7077}, {52030, 4876}, {52209, 4518}, {52210, 5853}, {52635, 42079}, {53241, 4847}, {53287, 38379}, {53538, 3675}, {53544, 3126}, {54235, 318}, {55261, 4041}, {55943, 51565}, {56639, 40869}
X(56783) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {294, 53241, 673}, {948, 5228, 41245}, {2481, 31637, 14942}


X(56784) = X(1)X(75)∩X(63)X(20934)

Barycentrics    b*c*(b^2 - b*c + c^2)*(b^2 + b*c + c^2) : :

X(56784) lies on the curves K102 and Q121 and these lines: {1, 75}, {63, 20934}, {76, 20629}, {561, 1109}, {1958, 19559}, {1965, 20641}, {3094, 3662}, {3790, 7179}, {4901, 33938}, {9239, 18837}, {17306, 33944}, {17370, 24786}, {19600, 46507}, {33932, 52662}

X(56784) = isotomic conjugate of the isogonal conjugate of X(51836)
X(56784) = X(i)-isoconjugate of X(j) for these (i,j): {6, 18898}, {25, 43722}, {32, 3407}, {560, 3113}, {669, 33514}, {1501, 3114}, {1917, 46281}, {8840, 14601}, {14617, 46288}
X(56784) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 18898}, {3314, 51291}, {6374, 3113}, {6376, 3407}, {6505, 43722}, {10335, 1}, {16584, 40747}, {19602, 31}, {27481, 983}, {41771, 985}, {52657, 40746}, {52658, 560}
X(56784) = barycentric product X(i)*X(j) for these {i,j}: {75, 3314}, {76, 51836}, {304, 5117}, {305, 46507}, {561, 3094}, {1502, 3116}, {1928, 3117}, {1934, 9865}, {3661, 33930}, {3662, 33931}, {3776, 4505}, {4602, 50549}, {20234, 30966}
X(56784) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 18898}, {63, 43722}, {75, 3407}, {76, 3113}, {561, 3114}, {799, 33514}, {982, 40746}, {1502, 46281}, {1930, 14617}, {2887, 40747}, {3094, 31}, {3116, 32}, {3117, 560}, {3314, 1}, {3661, 983}, {3662, 985}, {3705, 2344}, {3888, 825}, {4505, 4621}, {5117, 19}, {7179, 7132}, {9865, 1580}, {10335, 51291}, {17415, 1924}, {18899, 1917}, {19600, 11328}, {20234, 40718}, {33930, 14621}, {33931, 17743}, {33946, 1492}, {40773, 38813}, {42061, 1927}, {46238, 8840}, {46507, 25}, {50549, 798}, {51836, 6}
X(56784) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 304, 1966}, {1930, 46238, 75}


X(56785) = X(3)X(101)∩X(9)X(1282)

Barycentrics    a^2*(a - b - c)*(a*b - b^2 + a*c - c^2)*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3) : :
X(56785) = X[1282] + 3 X[52155]

X(56785) lies on the curve Q011 and these lines: {3, 101}, {9, 1282}, {37, 11028}, {41, 39789}, {55, 2195}, {71, 8551}, {118, 516}, {152, 41325}, {165, 56715}, {213, 40591}, {228, 8012}, {672, 1362}, {926, 46388}, {1212, 2809}, {1252, 43079}, {1334, 3022}, {2140, 6710}, {2187, 3690}, {4557, 35508}, {5185, 41320}, {5513, 35967}, {5745, 16593}, {6603, 11712}, {9502, 53547}, {10695, 34522}, {10739, 56746}, {10741, 17732}, {16601, 18413}, {17435, 53552}, {21665, 41321}, {39014, 52963}, {41353, 56713}, {55986, 56668}

X(56785) = midpoint of X(101) and X(3730)
X(56785) = reflection of X(2140) in X(6710)
X(56785) = X(46388)-complementary conjugate of X(40618)
X(56785) = X(i)-Ceva conjugate of X(j) for these (i,j): {101, 926}, {1252, 2426}, {55986, 518}
X(56785) = X(i)-isoconjugate of X(j) for these (i,j): {7, 9503}, {103, 34018}, {105, 52156}, {673, 43736}, {1462, 18025}, {2400, 36146}, {2424, 34085}, {51838, 56668}
X(56785) = X(i)-Dao conjugate of X(j) for these (i,j): {518, 56668}, {676, 23989}, {39014, 2400}, {39046, 52156}, {39077, 85}, {40869, 6063}, {50441, 18031}
X(56785) = crossdifference of every pair of points on line {676, 885}
X(56785) = barycentric product X(i)*X(j) for these {i,j}: {9, 9502}, {55, 50441}, {200, 53547}, {220, 39063}, {241, 51418}, {516, 2340}, {518, 41339}, {672, 40869}, {910, 3693}, {926, 2398}, {1025, 46392}, {1252, 1566}, {2426, 50333}, {5089, 51376}, {15742, 47422}, {37908, 51366}, {42719, 46388}
X(56785) = barycentric quotient X(i)/X(j) for these {i,j}: {41, 9503}, {672, 52156}, {910, 34018}, {926, 2400}, {1566, 23989}, {2223, 43736}, {2340, 18025}, {2398, 46135}, {2426, 927}, {6184, 56668}, {8638, 2424}, {9502, 85}, {39686, 52213}, {40869, 18031}, {41339, 2481}, {47422, 1565}, {50441, 6063}, {51418, 36796}, {53547, 1088}
X(56785) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 101, 51633}, {101, 38690, 3207}


X(56786) = X(6)X(7)∩X(190)X(39293)

Barycentrics    (a - b)*(a - c)*(a + b - c)*(a - b + c)*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3) : :

X(56786) lies on the curve Q053 and these lines: {6, 7}, {190, 39293}, {653, 7012}, {666, 10001}, {676, 2426}, {927, 26716}, {1020, 1024}, {1461, 4626}, {23890, 28843}, {53529, 56639}

X(56786) = X(39293)-Ceva conjugate of X(516)
X(56786) = X(i)-isoconjugate of X(j) for these (i,j): {677, 17435}, {911, 50333}, {926, 36101}, {2254, 2338}, {2424, 3693}, {3900, 52213}, {8641, 56668}, {18025, 46388}, {43736, 52614}
X(56786) = X(i)-Dao conjugate of X(j) for these (i,j): {241, 53583}, {23972, 50333}
X(56786) = cevapoint of X(676) and X(23972)
X(56786) = trilinear pole of line {43035, 56639}
X(56786) = barycentric product X(i)*X(j) for these {i,j}: {294, 24015}, {516, 927}, {664, 56639}, {666, 43035}, {676, 39293}, {910, 34085}, {1456, 51560}, {1462, 42719}, {14942, 23973}, {30807, 36146}, {32735, 35517}
X(56786) = barycentric quotient X(i)/X(j) for these {i,j}: {516, 50333}, {658, 56668}, {919, 2338}, {927, 18025}, {1416, 2424}, {1456, 2254}, {1461, 52213}, {2398, 3717}, {2426, 2340}, {23973, 9436}, {24015, 40704}, {32735, 103}, {36146, 36101}, {39063, 53583}, {43035, 918}, {43930, 15634}, {53547, 3126}, {56639, 522}


X(56787) = X(3)X(101)∩X(116)X(514)

Barycentrics    a^2*(a - b - c)*(b - c)^2*(a*b - b^2 + a*c - c^2)*(a^3 - a^2*b - a*b^2 + b^3 + a*c^2 + b*c^2 - 2*c^3)*(a^3 + a*b^2 - 2*b^3 - a^2*c + b^2*c - a*c^2 + c^3) : :

X(56787) lies on the curve Q011 and these lines: {3, 101}, {116, 514}, {150, 53133}, {663, 3022}, {1015, 2424}, {2973, 53150}, {3041, 22116}, {3126, 34591}, {5190, 35967}, {17435, 53544}

X(56787) = midpoint of X(103) and X(54232)
X(56787) = X(i)-Ceva conjugate of X(j) for these (i,j): {103, 926}, {53150, 52305}
X(56787) = X(i)-isoconjugate of X(j) for these (i,j): {910, 39293}, {2398, 36146}, {2426, 34085}, {4564, 56639}, {5377, 43035}, {24015, 52927}, {32735, 42719}
X(56787) = X(i)-Dao conjugate of X(j) for these (i,j): {3126, 30807}, {39014, 2398}, {45250, 4998}
X(56787) = crossdifference of every pair of points on line {676, 2426}
X(56787) = barycentric product X(i)*X(j) for these {i,j}: {677, 52305}, {926, 2400}, {1146, 52213}, {2340, 15634}, {2424, 50333}, {14936, 56668}, {17435, 36101}
X(56787) = barycentric quotient X(i)/X(j) for these {i,j}: {103, 39293}, {926, 2398}, {2400, 46135}, {2424, 927}, {3271, 56639}, {8638, 2426}, {17435, 30807}, {35505, 39063}, {52213, 1275}, {53539, 23973}, {53544, 24015}


X(56788) = X(3)X(76)∩X(115)X(512)

Barycentrics    (b - c)^2*(b + c)^2*(-a^2 + b*c)*(a^2 + b*c)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(-a^4 + a^2*b^2 + b^2*c^2 - c^4) : :
X(56788) = X[99] - 3 X[47044]

X(56788) lies on the curve Q011 and these lines: {3, 76}, {115, 512}, {148, 36874}, {338, 46778}, {1976, 39078}, {2023, 14251}, {2395, 14606}, {2422, 9427}, {2971, 53149}, {3023, 4367}, {3564, 53166}, {5191, 35606}, {6033, 52451}, {6036, 52006}, {6055, 46840}, {6321, 56688}, {12131, 52641}, {13137, 53797}, {18858, 34536}, {20021, 39080}, {22515, 34175}, {35146, 36897}, {40820, 51430}

X(56788) = midpoint of X(98) and X(14265)
X(56788) = reflection of X(i) in X(j) for these {i,j}: {14251, 2023}, {52006, 6036}
X(56788) = X(i)-complementary conjugate of X(j) for these (i,j): {1933, 55267}, {36051, 804}, {47736, 21259}
X(56788) = X(i)-Ceva conjugate of X(j) for these (i,j): {98, 804}, {34536, 2422}, {36897, 2395}
X(56788) = X(i)-isoconjugate of X(j) for these (i,j): {1755, 39292}, {2421, 37134}, {14251, 24037}, {18829, 23997}, {24041, 40810}
X(56788) = X(i)-Dao conjugate of X(j) for these (i,j): {512, 14251}, {804, 5976}, {2491, 36790}, {3005, 40810}, {35078, 2396}, {36899, 39292}
X(56788) = crossdifference of every pair of points on line {2421, 2491}
X(56788) = barycentric product X(i)*X(j) for these {i,j}: {115, 40820}, {290, 2086}, {385, 51441}, {419, 51404}, {804, 2395}, {2422, 14295}, {2679, 34536}, {3124, 14382}, {3978, 15630}, {5027, 43665}, {24284, 53149}, {35078, 36897}
X(56788) = barycentric quotient X(i)/X(j) for these {i,j}: {98, 39292}, {804, 2396}, {1084, 14251}, {2086, 511}, {2395, 18829}, {2422, 805}, {2679, 36790}, {3124, 40810}, {5027, 2421}, {14382, 34537}, {15630, 694}, {35078, 5976}, {40820, 4590}, {51404, 40708}, {51441, 1916}
X(56788) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14265, 47044, 36822}, {32540, 51869, 21444}


X(56789) = X(2)X(9983)∩X(39)X(83)

Barycentrics    2*a^6*b^2 + 2*a^4*b^4 + a^2*b^6 + 2*a^6*c^2 + 5*a^4*b^2*c^2 + 4*a^2*b^4*c^2 + 2*a^4*c^4 + 4*a^2*b^2*c^4 + b^4*c^4 + a^2*c^6 : :

X(56789) lies on the curve O073 and these lines: {2, 9983}, {20, 11171}, {39, 83}, {76, 5355}, {194, 3618}, {626, 7777}, {732, 46226}, {736, 7859}, {2023, 32528}, {2076, 12206}, {2896, 10007}, {3094, 7787}, {3095, 10359}, {3314, 10292}, {3398, 3399}, {3934, 16896}, {3972, 15870}, {5976, 10583}, {6033, 11272}, {6034, 11152}, {6683, 7925}, {7736, 7785}, {7753, 7833}, {7809, 44562}, {7819, 9865}, {7824, 13357}, {7830, 9990}, {7846, 8149}, {7878, 32452}, {7923, 39266}, {8041, 52083}, {9866, 33021}, {10131, 50659}, {10159, 44772}, {11205, 40858}, {11257, 19130}, {12150, 46283}, {14043, 51373}, {35436, 37455}

X(56789) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 83, 1916}, {39, 384, 32476}, {39, 51827, 55085}


X(56790) = X(1)X(149)∩X(11)X(30)

Barycentrics    a^7 - a^6*b - a^5*b^2 + a^4*b^3 - a^3*b^4 + a^2*b^5 + a*b^6 - b^7 - a^6*c + 2*a^5*b*c - a^3*b^3*c - a*b^5*c + b^6*c - a^5*c^2 + 3*a^3*b^2*c^2 - a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 + a^4*c^3 - a^3*b*c^3 - a^2*b^2*c^3 + 2*a*b^3*c^3 - 3*b^4*c^3 - a^3*c^4 - a*b^2*c^4 - 3*b^3*c^4 + a^2*c^5 - a*b*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7 : :
X(56790) = X[149] + 3 X[2475], X[149] - 3 X[11604], 3 X[11263] - X[33337], 2 X[33337] - 3 X[39778], X[3065] - 3 X[37718], X[16118] + 3 X[37718], 3 X[21] - 5 X[31272], X[10742] - 3 X[37230], X[100] - 3 X[6175], 3 X[442] - 2 X[3035], 4 X[3035] - 3 X[35204], X[5441] - 3 X[16173], 4 X[6667] - 3 X[15670], 2 X[12104] - 3 X[34126], 2 X[16617] - 3 X[23513], 2 X[18253] - 3 X[34122]

X(56790) lies on the curve Q110 and these lines: {1, 149}, {4, 1768}, {10, 13582}, {11, 30}, {21, 3825}, {35, 5499}, {65, 79}, {100, 3584}, {104, 4325}, {109, 56419}, {191, 18232}, {214, 6701}, {226, 41689}, {377, 15015}, {442, 3035}, {499, 15680}, {758, 1109}, {942, 33667}, {952, 3649}, {1099, 10122}, {1317, 16137}, {1385, 4857}, {1387, 10543}, {1478, 9897}, {1484, 5563}, {1737, 1749}, {2550, 24402}, {2800, 16125}, {2801, 13159}, {3434, 12653}, {3647, 6702}, {3651, 4324}, {3738, 36035}, {3814, 48698}, {3838, 33598}, {4312, 18513}, {4330, 5840}, {4338, 12767}, {5131, 6840}, {5445, 22937}, {5728, 10073}, {5885, 17637}, {5903, 16159}, {6246, 41698}, {6264, 37820}, {6326, 6917}, {6667, 15670}, {6826, 15017}, {6839, 21635}, {6841, 39692}, {7280, 17009}, {7294, 44254}, {7701, 10826}, {7741, 13743}, {7972, 50194}, {9956, 45065}, {10056, 20095}, {10057, 10914}, {10202, 16154}, {10573, 14450}, {10707, 15679}, {10724, 33557}, {10950, 33668}, {12047, 45764}, {12104, 34126}, {12331, 37719}, {12433, 13995}, {12736, 18244}, {12761, 17649}, {12764, 37582}, {12773, 18407}, {13253, 26332}, {13271, 50891}, {14217, 16155}, {16133, 20119}, {16617, 23513}, {17525, 45310}, {17606, 22936}, {17636, 37710}, {17768, 41700}, {18253, 34122}, {18393, 33594}, {18514, 37433}, {18977, 20118}, {19077, 19080}, {19078, 19079}, {21669, 48695}, {22935, 37701}, {24474, 54153}, {25416, 41702}, {33856, 41347}, {37535, 37720}, {37731, 41541}, {38938, 53542}, {49240, 49243}, {49241, 49242}

X(56790) = midpoint of X(i) and X(j) for these {i,j}: {79, 80}, {2475, 11604}, {3065, 16118}, {10707, 15679}, {10724, 33557}, {10738, 47032}, {16133, 20119}
X(56790) = reflection of X(i) in X(j) for these {i,j}: {1, 33593}, {214, 6701}, {1317, 16137}, {1749, 1737}, {3647, 6702}, {10543, 1387}, {17525, 45310}, {33667, 942}, {35204, 442}, {39778, 11263}, {46816, 11}, {48698, 3814}
X(56790) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {79, 37230, 3585}, {80, 13273, 3585}, {3336, 37718, 10265}, {10738, 16173, 4857}, {16118, 37718, 3065}


X(56791) = X(39)X(98)∩X(140)X(9865)

Barycentrics    2*a^10*b^2 - 2*a^8*b^4 + a^6*b^6 - 2*a^4*b^8 + a^2*b^10 + 2*a^10*c^2 - 3*a^8*b^2*c^2 - 6*a^6*b^4*c^2 - 5*a^4*b^6*c^2 - 2*a^2*b^8*c^2 - 2*a^8*c^4 - 6*a^6*b^2*c^4 - 9*a^4*b^4*c^4 + a^2*b^6*c^4 - b^8*c^4 + a^6*c^6 - 5*a^4*b^2*c^6 + a^2*b^4*c^6 + 2*b^6*c^6 - 2*a^4*c^8 - 2*a^2*b^2*c^8 - b^4*c^8 + a^2*c^10 : :

X(56791) lies on the curve Q183 and these lines: {3, 32476}, {39, 98}, {140, 9865}, {147, 6287}, {194, 631}, {1916, 3398}, {2782, 7797}, {5286, 7709}, {5355, 54222}, {6179, 52996}, {6776, 13331}, {7470, 35436}, {7697, 7932}, {7765, 11257}, {7786, 24206}, {7807, 32448}, {7836, 40108}, {11676, 13357}, {12177, 55085}, {12215, 50652}, {13108, 33217}, {35437, 54155}

X(56791) = {X(39),X(98)}-harmonic conjugate of X(3399)


X(56792) = X(3)X(74)∩X(125)X(523)

Barycentrics    a^2*(b - c)^2*(b + c)^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4) : :
X(56792) = X[110] - 3 X[33927]

X(56792) lies on the curves K567 and Q011 and these lines: {2, 41512}, {3, 74}, {125, 523}, {136, 6328}, {265, 56686}, {526, 16186}, {842, 40355}, {974, 39174}, {1112, 35908}, {1494, 53192}, {2088, 47230}, {2433, 3124}, {2605, 3024}, {2781, 51821}, {2970, 18808}, {3134, 55121}, {3268, 53132}, {3448, 36875}, {4576, 36890}, {5621, 33988}, {5627, 34312}, {6137, 52342}, {6138, 52343}, {6699, 52010}, {7728, 52488}, {10113, 16168}, {10419, 50464}, {12133, 52646}, {12292, 52493}, {13754, 39987}, {14254, 20304}, {14380, 15453}, {19457, 51895}, {40630, 45694}, {45237, 46788}

X(56792) = midpoint of X(74) and X(14264)
X(56792) = reflection of X(i) in X(j) for these {i,j}: {1511, 47055}, {14254, 20304}, {52010, 6699}
X(56792) = complement of X(41512)
X(56792) = complement of the isogonal conjugate of X(15470)
X(56792) = X(i)-complementary conjugate of X(j) for these (i,j): {15470, 10}, {36053, 526}, {38936, 8062}, {52557, 14838}
X(56792) = X(i)-Ceva conjugate of X(j) for these (i,j): {74, 526}, {10419, 14380}, {40384, 2433}
X(56792) = X(i)-isoconjugate of X(j) for these (i,j): {662, 41392}, {1099, 15395}, {1101, 14254}, {2173, 39295}, {2407, 32678}, {2420, 32680}, {4240, 36061}, {14583, 24041}, {24000, 51254}, {24001, 32662}, {36047, 42742}
X(56792) = X(i)-Dao conjugate of X(j) for these (i,j): {523, 14254}, {526, 1511}, {1084, 41392}, {1637, 36789}, {3005, 14583}, {5664, 3260}, {16221, 4240}, {18334, 2407}, {35581, 42742}, {36896, 39295}
X(56792) = cevapoint of X(52342) and X(52343)
X(56792) = crossdifference of every pair of points on line {1637, 2420}
X(56792) = barycentric product X(i)*X(j) for these {i,j}: {323, 12079}, {338, 14385}, {526, 2394}, {1494, 2088}, {2433, 3268}, {3258, 40384}, {8552, 18808}, {14380, 44427}, {14919, 35235}, {16080, 16186}, {19223, 40391}, {23965, 40355}, {34767, 47230}, {36308, 52343}, {36311, 52342}
X(56792) = barycentric quotient X(i)/X(j) for these {i,j}: {74, 39295}, {115, 14254}, {512, 41392}, {526, 2407}, {2088, 30}, {2394, 35139}, {2433, 476}, {3124, 14583}, {3258, 36789}, {3269, 51254}, {5489, 18557}, {12079, 94}, {14270, 2420}, {14385, 249}, {16186, 11064}, {18334, 1511}, {18808, 46456}, {20975, 56399}, {20982, 56645}, {35235, 46106}, {40353, 15395}, {40355, 23588}, {47230, 4240}, {47414, 16163}, {52342, 41888}, {52343, 41887}, {52743, 3233}
X(56792) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {74, 14385, 15468}, {14264, 33927, 9717}, {14385, 15468, 1511}


X(56793) = X(3)X(105)∩X(1015)X(1358)

Barycentrics    (b - c)^2*(a^2 + b^2 - a*c - b*c)*(-a^2 + a*b + b*c - c^2)*(a^2 - 2*a*b + b^2 - 2*a*c + c^2)*(2*a^2 - a*b + b^2 - a*c - 2*b*c + c^2) : :

X(56793) lies on the curve Q011 and these lines: {3, 105}, {1015, 1358}, {3039, 36816}, {3309, 4904}, {6714, 51989}, {10743, 52456}, {14839, 40609}, {18785, 35111}, {34547, 56602}, {43921, 55057}, {51419, 52210}

X(56793) = midpoint of X(105) and X(14267)
X(56793) = reflection of X(51989) in X(6714)
X(56793) = X(i)-Ceva conjugate of X(j) for these (i,j): {105, 6084}, {6185, 2440}
X(56793) = barycentric product X(i)*X(j) for these {i,j}: {2402, 6084}, {4904, 52210}, {5519, 6185}
X(56793) = barycentric quotient X(i)/X(j) for these {i,j}: {2440, 6078}, {5519, 4437}, {6084, 2414}, {8659, 2428}


X(56794) = X(2)X(56363)∩X(3)X(112)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - b^4 + a^2*b*c - b^3*c - b*c^3 - c^4)*(a^4 - b^4 - a^2*b*c + b^3*c + b*c^3 - c^4)*(2*a^6 - a^4*b^2 - b^6 - a^4*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :

X(56794) lies on the curve Q011 and these lines: {2, 56363}, {3, 112}, {6, 12145}, {32, 11397}, {132, 1503}, {154, 3162}, {232, 39071}, {1249, 12384}, {2207, 13166}, {5523, 19160}, {10749, 41370}, {12918, 41361}, {13195, 39045}, {17409, 22391}, {21248, 53415}, {23976, 50938}

X(56794) = midpoint of X(112) and X(8743)
X(56794) = X(52058)-complementary conjugate of X(21247)
X(56794) = X(i)-Ceva conjugate of X(j) for these (i,j): {112, 2881}, {23964, 2445}, {56363, 8779}
X(56794) = barycentric product X(i)*X(j) for these {i,j}: {2409, 2881}, {16318, 52058}, {23964, 33504}
X(56794) = barycentric quotient X(i)/X(j) for these {i,j}: {2445, 2867}, {2881, 2419}, {33504, 36793}
X(56794) = {X(112),X(38699)}-harmonic conjugate of X(8778)


X(56795) = X(3)X(106)∩X(121)X(519)

Barycentrics    a^2*(a + b - 3*c)*(2*a - b - c)*(a - 3*b + c)*(a*b + b^2 + a*c - 4*b*c + c^2) : :
X(56795) = X[13541] + 3 X[21214]

X(56795) lies on the curve Q011 and these lines: {1, 3038}, {3, 106}, {121, 519}, {1017, 2429}, {1149, 6018}, {2802, 56174}, {3680, 13541}, {8649, 34080}, {10700, 17749}, {40151, 41436}

X(56795) = midpoint of X(i) and X(j) for these {i,j}: {1293, 14261}, {10700, 17749}
X(56795) = X(1293)-Ceva conjugate of X(6085)
X(56795) = X(31227)-isoconjugate of X(40400)
X(56795) = X(i)-Dao conjugate of X(j) for these (i,j): {2087, 4462}, {2325, 44723}
X(56795) = crossdifference of every pair of points on line {2441, 14425}
X(56795) = barycentric product X(i)*X(j) for these {i,j}: {1293, 21129}, {2415, 6085}, {2429, 4927}, {3445, 16594}, {4373, 20972}, {8056, 17460}, {20900, 38266}, {40151, 52871}
X(56795) = barycentric quotient X(i)/X(j) for these {i,j}: {1149, 31227}, {2429, 6079}, {6085, 2403}, {8660, 2441}, {17460, 18743}, {20972, 145}, {52871, 44723}


X(56796) = X(3)X(105)∩X(120)X(518)

Barycentrics    (a*b - b^2 + a*c - c^2)*(a^2 - 2*a*b + b^2 - 2*b*c + c^2)*(a^2 + b^2 - 2*a*c - 2*b*c + c^2)*(2*a^2 - a*b + b^2 - a*c - 2*b*c + c^2) : :

X(56796) lies on the curve Q011 and these lines: {2, 37206}, {3, 105}, {120, 518}, {1212, 1358}, {1279, 3021}, {2428, 39686}, {5511, 24774}, {6601, 20344}, {17107, 24796}

X(56796) = midpoint of X(1292) and X(14268)
X(56796) = X(44178)-complementary conjugate of X(3823)
X(56796) = X(1292)-Ceva conjugate of X(6084)
X(56796) = X(i)-Dao conjugate of X(j) for these (i,j): {3008, 344}, {16593, 31638}
X(56796) = barycentric product X(i)*X(j) for these {i,j}: {277, 16593}, {2414, 6084}, {40154, 40609}
X(56796) = barycentric quotient X(i)/X(j) for these {i,j}: {1292, 39272}, {2428, 6078}, {3008, 31638}, {6084, 2402}, {8659, 2440}, {16593, 344}, {20662, 218}, {20680, 3991}, {53552, 3870}, {56719, 27819}


X(56797) = X(1)X(2)∩X(190)X(2415)

Barycentrics    (a - b)*(a - c)*(2*a^2 - 3*a*b - b^2 - 3*a*c + 6*b*c - c^2) : :

X(56797) lies on the cubics K090 and K409 and on these lines: {1, 2}, {190, 2415}, {514, 30731}, {835, 28307}, {1016, 53337}, {2403, 4555}, {3570, 34024}, {4427, 4482}, {4595, 17136}, {4600, 34245}, {4781, 28294}, {6558, 25272}, {6631, 42720}, {21129, 53582}

X(56797) = X(513)-isoconjugate of X(17222)
X(56797) = X(i)-Dao conjugate of X(j) for these (i,j): {17132, 45677}, {39026, 17222}
X(56797) = cevapoint of X(17132) and X(45677)
X(56797) = trilinear pole of line {12035, 17132}
X(56797) = barycentric product X(i)*X(j) for these {i,j}: {190, 17132}, {1016, 45677}, {4555, 12035}, {52907, 53647}
X(56797) = barycentric quotient X(i)/X(j) for these {i,j}: {101, 17222}, {12035, 900}, {17132, 514}, {31343, 31316}, {45140, 23345}, {45677, 1086}, {52907, 3667}


X(56798) = X(1)X(2)∩X(7)X(44301)

Barycentrics    (3*a - b - c)*(a^2*b + 2*a*b^2 + b^3 + a^2*c - 8*a*b*c - b^2*c + 2*a*c^2 - b*c^2 + c^3) : :

X(56798) lies on the cubic K666 and these lines: {1, 2}, {7, 44301}, {65, 6018}, {517, 33555}, {946, 38384}, {999, 12912}, {3445, 5853}, {3671, 55011}, {3756, 12640}, {3976, 4342}, {4941, 5542}, {6553, 8055}, {8056, 12541}, {12632, 45047}, {21627, 24175}

X(56798) = barycentric product X(i)*X(j) for these {i,j}: {145, 24175}, {5435, 21627}
X(56798) = barycentric quotient X(i)/X(j) for these {i,j}: {21627, 6557}, {24175, 4373}
X(56798) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 145, 37743}, {1, 53618, 10}


X(56799) = X(1)X(2)∩X(4)X(10744)

Barycentrics    a^3*b - a*b^3 + a^3*c - 5*a^2*b*c + 5*a*b^2*c - b^3*c + 5*a*b*c^2 - 2*b^2*c^2 - a*c^3 - b*c^3 : :
X(56799) = 5 X[3617] - 2 X[17749], 3 X[3679] - X[6048], 5 X[3091] - 2 X[14261]

X(56799) lies on the cubic K594 and these lines: {1, 2}, {4, 10744}, {341, 10914}, {474, 1222}, {515, 47639}, {517, 44720}, {668, 17753}, {1482, 3699}, {1739, 17480}, {2802, 19582}, {3091, 6556}, {3212, 4986}, {3717, 29696}, {3868, 4487}, {3880, 46937}, {3885, 52353}, {4004, 49499}, {4209, 4482}, {4723, 14923}, {4737, 5836}, {4738, 5903}, {4901, 29740}, {5176, 38512}, {5697, 27538}, {6256, 21227}, {6558, 56536}, {9369, 54286}, {12607, 52871}, {30829, 31792}, {38695, 54237}

X(56799) = reflection of X(21214) in X(10)
X(56799) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 42020, 21290}, {8, 3679, 9534}, {8, 10453, 3625}, {10, 50637, 2}, {3679, 10479, 3617}


X(56800) = X(1)X(2)∩X(32)X(101)

Barycentrics    a^2*(a^2*b^2 + a*b^3 + a*b^2*c - b^3*c + a^2*c^2 + a*b*c^2 - b^2*c^2 + a*c^3 - b*c^3) : :

X(56800) lies on the cubic K1317 and these lines: {1, 2}, {6, 21830}, {32, 101}, {58, 21010}, {194, 4568}, {213, 7296}, {292, 4253}, {596, 24621}, {726, 1740}, {984, 1964}, {1500, 16515}, {1757, 7032}, {2234, 49493}, {3230, 4262}, {3295, 16969}, {3725, 17716}, {3730, 16514}, {3774, 16525}, {3913, 40499}, {3915, 18266}, {4279, 34247}, {4360, 10009}, {4561, 34063}, {4851, 20549}, {5156, 20990}, {7226, 17187}, {8054, 14997}, {9052, 17053}, {9082, 29067}, {9463, 46148}, {16571, 50117}, {16710, 18792}, {17314, 20501}, {17388, 20491}, {17448, 34790}, {18171, 52564}, {20358, 24046}, {23493, 40753}, {24696, 49456}, {36289, 49447}, {37685, 40148}

X(56800) = crossdifference of every pair of points on line {649, 3837}
X(56800) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 43, 49477}, {1, 869, 386}, {1, 978, 50023}, {1, 1698, 21352}, {1, 2664, 16825}, {1, 3293, 4393}, {1, 16830, 30116}, {984, 1964, 5145}, {2176, 37590, 595}, {2176, 52127, 32}, {2664, 16825, 17749}


X(56801) = X(1)X(2)∩X(333)X(3110)

Barycentrics    a^4*b - a^3*b^2 + a^4*c - 3*a^3*b*c + a^2*b^2*c - a^3*c^2 + a^2*b*c^2 + 3*a*b^2*c^2 - b^3*c^2 - b^2*c^3 : :

X(56801) lies on the cubic K359 and these lines: {1, 2}, {333, 3110}, {573, 3667}, {730, 56009}, {1215, 19963}, {2748, 9073}, {3030, 3699}, {3570, 5091}, {3596, 4076}, {4886, 19987}, {5233, 24250}, {6079, 14665}, {9566, 18326}, {19808, 19977}, {34258, 43671}

X(56801) = Spieker-radical-circle-inverse of X(3912) X(56801) = incircle-of anticomplementary-triangle-inverse of X(2340)}
X(56801) = psi-transform of X(4368)


X(56802) = X(1)X(2)∩X(100)X(237)

Barycentrics    a^3*b^2 - a^2*b^3 + a^3*b*c - a^2*b^2*c + a*b^3*c + a^3*c^2 - a^2*b*c^2 + a*b^2*c^2 - b^3*c^2 - a^2*c^3 + a*b*c^3 - b^2*c^3 : :

X(56802) lies on the cubic K985 and these lines: {1, 2}, {31, 17743}, {75, 19586}, {100, 237}, {193, 25311}, {210, 25280}, {257, 756}, {263, 7155}, {346, 21299}, {561, 3212}, {646, 6007}, {649, 21302}, {660, 1821}, {668, 3978}, {740, 41531}, {1581, 33889}, {1959, 4518}, {1966, 7077}, {2227, 17759}, {2235, 2345}, {2295, 18278}, {2975, 14096}, {3229, 52959}, {3436, 37190}, {3770, 21865}, {3779, 17786}, {3799, 3948}, {4418, 17741}, {4433, 4595}, {4517, 6376}, {4553, 17790}, {5080, 14957}, {5291, 8623}, {5337, 12195}, {5360, 41520}, {5687, 11328}, {7261, 20022}, {9263, 20456}, {11681, 37988}, {17280, 21278}, {17302, 28597}, {17757, 21531}, {17787, 17792}, {17794, 52043}, {17798, 18047}, {18266, 53681}, {19565, 39939}, {20090, 25284}, {20694, 52049}, {24717, 50107}, {25332, 52662}, {32925, 33890}, {32932, 53129}, {51902, 56196}

X(56802) = isotomic conjugate of the isogonal conjugate of X(51928)
X(56802) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {983, 17794}, {7033, 20554}, {8684, 513}, {17743, 20345}, {40834, 17137}
X(56802) = X(i)-Ceva conjugate of X(j) for these (i,j): {1966, 33889}, {7077, 32937}
X(56802) = X(i)-isoconjugate of X(j) for these (i,j): {6, 7167}, {1333, 43686}
X(56802) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 7167}, {37, 43686}
X(56802) = X(21302)-lineconjugate of X(649)
X(56802) = barycentric product X(i)*X(j) for these {i,j}: {1, 52664}, {75, 3508}, {76, 51928}, {4518, 39940}
X(56802) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 7167}, {10, 43686}, {3501, 8927}, {3508, 1}, {39940, 1447}, {51928, 6}, {51935, 1429}, {52664, 75}
X(56802) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 2664, 26048}, {10, 40790, 2}


X(56803) = X(1)X(2)∩X(63)X(313)

Barycentrics    (b + c)*(-a^5 - a^4*b + a^3*b^2 + a^2*b^3 - a^4*c - a^3*b*c + a^2*b^2*c + a*b^3*c + a^3*c^2 + a^2*b*c^2 + 2*a*b^2*c^2 + 2*b^3*c^2 + a^2*c^3 + a*b*c^3 + 2*b^2*c^3) : :

X(56803) lies on the cubic K457 and these lines: {1, 2}, {63, 313}, {71, 56082}, {333, 56249}, {1150, 40603}, {1790, 55094}, {3405, 56251}, {21061, 28654}, {21368, 21376}, {29812, 40013}, {34388, 41342}, {52369, 56189}

X(56803) = barycentric product X(75)*X(56538)
X(56803) = barycentric quotient X(56538)/X(1)
X(56803) = {X({}),X(1)}-harmonic conjugate of X({}[[1]][[3]])


X(56804) = X(1)X(2)∩X(3)X(106)

Barycentrics    a^2*(a*b + b^2 + a*c - 5*b*c + c^2) : :
X(56804) = 3 X[1] + X[6048], 2 X[1] + X[17749], 2 X[6048] - 3 X[17749], X[6048] - 3 X[21214], 2 X[3] + X[14261], 3 X[3576] - X[47639]

X(56804) lies on the cubic K1264 and these lines: {1, 2}, {3, 106}, {6, 9327}, {35, 32577}, {56, 40091}, {58, 3304}, {101, 16781}, {238, 29696}, {244, 5697}, {500, 10246}, {581, 15178}, {595, 999}, {672, 9336}, {748, 5288}, {942, 45219}, {944, 32486}, {982, 3884}, {986, 3898}, {991, 35227}, {996, 13741}, {1015, 3730}, {1104, 51788}, {1191, 7373}, {1279, 24928}, {1318, 38568}, {1319, 4306}, {1388, 10571}, {1459, 23838}, {1468, 37602}, {1739, 3885}, {2241, 9259}, {2802, 24174}, {3057, 24046}, {3230, 4253}, {3303, 4256}, {3315, 5330}, {3576, 47302}, {3670, 3890}, {3723, 5105}, {3752, 31792}, {3756, 5690}, {3869, 4694}, {3877, 3953}, {3878, 3976}, {3915, 4257}, {4193, 24222}, {4266, 8610}, {4274, 21769}, {4285, 16884}, {4300, 30392}, {4342, 24171}, {4421, 8688}, {4653, 52564}, {5047, 16499}, {5109, 16777}, {5145, 16484}, {5165, 16685}, {5253, 37610}, {5603, 52524}, {5902, 46190}, {6767, 33771}, {7280, 52732}, {7290, 29740}, {9310, 16784}, {9957, 52541}, {10179, 37592}, {10700, 10912}, {11376, 24160}, {13464, 26728}, {13624, 15854}, {17474, 54981}, {17480, 24068}, {17499, 31999}, {17539, 39949}, {17758, 24654}, {18967, 55086}, {23675, 30384}, {24178, 49600}, {24429, 35016}, {29739, 48295}, {33127, 37735}, {33551, 34471}, {49535, 53676}

X(56804) = midpoint of X(1) and X(21214)
X(56804) = reflection of X(17749) in X(21214)
X(56804) = crossdifference of every pair of points on line {649, 14425}
X(56804) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 50637}, {1, 43, 3635}, {1, 614, 15955}, {1, 978, 3244}, {1, 1201, 386}, {1, 3216, 3241}, {1, 3293, 3623}, {1, 3616, 30116}, {1, 25055, 10459}, {1, 28011, 30117}, {1, 28370, 50575}, {1, 29820, 30147}, {1, 46943, 6765}, {1, 47623, 22836}, {1, 49997, 145}, {1, 50581, 51071}, {1, 54319, 47622}, {1, 56630, 3811}, {3, 3445, 106}, {3, 45247, 38504}, {106, 45247, 39264}, {386, 1201, 995}, {999, 1616, 595}, {1015, 16969, 3730}, {3216, 3241, 50575}, {3241, 28370, 3216}, {3304, 16483, 58}, {3445, 16486, 3}, {3670, 3890, 17461}, {3811, 56630, 45763}, {3915, 5563, 4257}, {5563, 16489, 3915}, {20050, 27625, 31855}, {50604, 51103, 1}


X(56805) = X(1)X(2)∩X(7)X(87)

Barycentrics    a*(a^2 - b*c)*(b^2 - b*c + c^2) : :

X(56805) lies on the cubic K1035 and these lines: {1, 2}, {7, 87}, {11, 21531}, {35, 14096}, {36, 237}, {56, 11328}, {69, 18194}, {86, 1178}, {141, 18170}, {238, 1284}, {244, 1959}, {256, 28358}, {291, 20358}, {320, 3248}, {350, 3978}, {420, 1870}, {518, 41531}, {527, 9359}, {663, 3835}, {694, 40873}, {748, 52134}, {982, 2275}, {1015, 3229}, {1045, 3946}, {1054, 18788}, {1432, 27455}, {1447, 18786}, {1475, 32913}, {1479, 37190}, {1575, 4876}, {1581, 39092}, {1613, 16502}, {1740, 4000}, {1909, 30982}, {1914, 8623}, {1921, 19581}, {1964, 16706}, {2210, 27950}, {2228, 25048}, {2230, 30997}, {2234, 37756}, {2309, 17302}, {2329, 17123}, {2887, 16889}, {3051, 5299}, {3056, 41886}, {3218, 17799}, {3231, 16784}, {3510, 20335}, {3583, 14957}, {3662, 7032}, {3760, 20023}, {3777, 50514}, {3781, 27680}, {3794, 3865}, {3797, 20356}, {3975, 17793}, {4316, 46518}, {4425, 49612}, {4648, 24661}, {4858, 17901}, {5280, 20965}, {5298, 44215}, {5337, 12194}, {5563, 37338}, {6646, 22343}, {7146, 17063}, {7280, 37184}, {7741, 37988}, {8054, 32843}, {8300, 20769}, {8616, 8647}, {10030, 39919}, {10079, 40814}, {15325, 52261}, {16705, 18169}, {16744, 18165}, {16752, 18792}, {16779, 21748}, {16781, 21001}, {16877, 20470}, {17045, 45223}, {17127, 51291}, {17278, 24655}, {17289, 17445}, {17301, 24696}, {17321, 25421}, {17364, 23524}, {17493, 39914}, {17760, 24165}, {18041, 20274}, {18193, 51304}, {18794, 53602}, {19563, 33891}, {19586, 49490}, {19589, 56009}, {20090, 23532}, {20456, 24625}, {21296, 25572}, {24255, 33940}, {24477, 24737}, {24478, 27633}, {25537, 42655}, {25570, 36646}, {26685, 53676}, {27109, 33164}, {30701, 56357}, {39742, 39956}, {43035, 52161}, {52146, 53241}

X(56805) = X(i)-complementary conjugate of X(j) for these (i,j): {7167, 141}, {43686, 21245}
X(56805) = X(i)-Ceva conjugate of X(j) for these (i,j): {673, 20665}, {3226, 33890}
X(56805) = X(i)-isoconjugate of X(j) for these (i,j): {213, 40834}, {291, 983}, {292, 17743}, {513, 8684}, {741, 56196}, {1911, 7033}, {3407, 3862}, {3572, 4621}, {4876, 7132}, {7034, 14598}, {7077, 56358}, {38813, 43534}
X(56805) = X(i)-Dao conjugate of X(j) for these (i,j): {3061, 40848}, {6626, 40834}, {6651, 7033}, {8299, 56196}, {18277, 7034}, {19557, 17743}, {19563, 10}, {19602, 3864}, {33891, 52662}, {39026, 8684}, {39029, 983}, {41771, 334}, {41886, 4518}, {52657, 335}
X(56805) = crossdifference of every pair of points on line {649, 7641}
X(56805) = X(1475)-line conjugate of X(53129)
X(56805) = barycentric product X(i)*X(j) for these {i,j}: {1, 33891}, {86, 18904}, {190, 3808}, {238, 3662}, {239, 982}, {350, 2275}, {385, 3865}, {659, 33946}, {812, 3888}, {1429, 3705}, {1447, 3061}, {1914, 33930}, {1921, 7032}, {1966, 3863}, {2238, 33947}, {3056, 10030}, {3570, 3777}, {3573, 3776}, {3684, 7185}, {3685, 41777}, {3721, 33295}, {3778, 30940}, {3794, 16609}, {3975, 7248}, {5009, 20234}, {7184, 17493}, {7187, 18786}, {9865, 40763}, {18033, 20665}, {27853, 50514}, {33890, 34252}, {39914, 41886}
X(56805) = barycentric quotient X(i)/X(j) for these {i,j}: {86, 40834}, {101, 8684}, {238, 17743}, {239, 7033}, {982, 335}, {1428, 7132}, {1429, 56358}, {1914, 983}, {1921, 7034}, {2238, 56196}, {2275, 291}, {3056, 4876}, {3061, 4518}, {3094, 3864}, {3116, 3862}, {3573, 4621}, {3662, 334}, {3684, 56180}, {3721, 43534}, {3777, 4444}, {3794, 36800}, {3808, 514}, {3863, 1581}, {3865, 1916}, {3888, 4562}, {7032, 292}, {7184, 30669}, {18904, 10}, {20284, 41531}, {20665, 7077}, {33295, 38810}, {33891, 75}, {33930, 18895}, {33946, 4583}, {33947, 40017}, {41777, 7233}, {41886, 40848}, {50456, 7255}, {50514, 3572}
X(56805) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 40790}, {1, 17795, 42}, {7, 87, 7240}, {238, 1429, 1580}, {239, 3783, 4489}, {244, 1959, 18208}, {551, 15953, 1}, {982, 3061, 51836}, {1125, 46843, 25510}, {2275, 20284, 3117}, {3662, 7032, 7184}, {3662, 7189, 7032}


X(56806) = X(1)X(2)∩X(6)X(904)

Barycentrics    a^3*(a*b + a*c - b*c)*(b^2 - b*c + c^2) : :

X(56806) lies on the cubic K1016 and these lines: {1, 2}, {6, 904}, {31, 18758}, {32, 18038}, {39, 4116}, {41, 21760}, {56, 1911}, {184, 2210}, {194, 6196}, {213, 19587}, {330, 3510}, {1475, 20667}, {1740, 39914}, {1967, 14251}, {2176, 38986}, {2209, 41526}, {2275, 3056}, {2276, 4161}, {3116, 4531}, {3117, 20665}, {3552, 18794}, {7132, 29055}, {7766, 18754}, {16975, 23629}, {17754, 23493}, {17792, 27455}, {19582, 20681}, {20462, 40952}, {21384, 23652}, {21751, 56557}, {22167, 33299}, {27891, 33296}

X(56806) = isogonal conjugate of the isotomic conjugate of X(41886)
X(56806) = polar conjugate of the isotomic conjugate of X(20783)
X(56806) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 20665}, {692, 8640}, {33296, 33890}, {41886, 20783}
X(56806) = X(i)-isoconjugate of X(j) for these (i,j): {87, 7033}, {330, 17743}, {983, 6384}, {3113, 45782}, {3114, 52655}, {3407, 51837}, {6378, 7307}, {7034, 7121}, {7132, 27424}, {7155, 56358}, {16606, 38810}, {40415, 42027}
X(56806) = X(i)-Dao conjugate of X(j) for these (i,j): {2887, 42027}, {3061, 76}, {21138, 40495}, {40598, 7034}, {52657, 6383}, {52658, 45782}
X(56806) = crossdifference of every pair of points on line {649, 21438}
X(56806) = barycentric product X(i)*X(j) for these {i,j}: {1, 20284}, {4, 20783}, {6, 41886}, {31, 33890}, {43, 2275}, {192, 7032}, {982, 2176}, {1403, 3061}, {1423, 3056}, {2209, 3662}, {3116, 52136}, {3208, 7248}, {3212, 20665}, {3705, 41526}, {3721, 38832}, {3778, 27644}, {3863, 51902}, {3865, 51319}, {3888, 20979}, {4595, 50514}, {7239, 16695}, {8640, 33946}, {16584, 33296}, {31008, 40935}, {40499, 43051}
X(56806) = barycentric quotient X(i)/X(j) for these {i,j}: {192, 7034}, {982, 6383}, {2176, 7033}, {2209, 17743}, {2275, 6384}, {3056, 27424}, {3116, 51837}, {3117, 45782}, {7032, 330}, {7248, 7209}, {8022, 21759}, {16584, 42027}, {20284, 75}, {20665, 7155}, {20783, 69}, {21751, 23493}, {21815, 7148}, {33890, 561}, {38832, 38810}, {40935, 16606}, {41526, 56358}, {41886, 76}, {52136, 46281}
X(56806) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 43, 17752}, {2275, 3056, 23473}, {2275, 40935, 7032}, {20971, 45216, 43}


X(56807) = X(1)X(2)∩X(67)X(41327)

Barycentrics    3*a^4 - a^3*b - a^2*b^2 + 2*a*b^3 - b^4 - a^3*c + a^2*b*c + 2*a*b^2*c - 2*b^3*c - a^2*c^2 + 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 - 2*b*c^3 - c^4 : :

X(56807) lies on the cubic K394 and these lines: {1, 2}, {67, 41327}, {101, 2758}, {106, 9053}, {190, 51224}, {759, 2748}, {1324, 23848}, {2372, 2705}, {2759, 28482}, {3667, 4064}, {4076, 4570}, {4568, 20072}, {34587, 49704}, {35272, 49690}, {46914, 50030}, {50536, 54389}

X(56807) = reflection of X(i) in X(j) for these {i,j}: {5211, 6789}, {6788, 5205}
X(56807) = orthoptic-circle-of-Steiner-inellipse-inverse of X(30768)
X(56807) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(31079)
X(56807) = X(513)-isoconjugate of X(53942)
X(56807) = X(39026)-Dao conjugate of X(53942)
X(56807) = barycentric quotient X(101)/X(53942)
X(56807) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 37764, 17734}, {16086, 37764, 10}


X(56808) = X(1)X(2)∩X(23)X(101)

Barycentrics    a^2*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c - a^2*b*c - a*b^2*c + b^3*c - a^2*c^2 - a*b*c^2 + b^2*c^2 - a*c^3 + b*c^3 + c^4) : :

X(56808) lies on the cubic K1303 and these lines: {1, 2}, {23, 101}, {110, 17976}, {111, 29241}, {323, 1331}, {677, 14919}, {953, 28210}, {1011, 26911}, {1252, 3285}, {1260, 1993}, {1807, 46785}, {1818, 3218}, {1897, 46106}, {2073, 56747}, {2318, 3219}, {2475, 3191}, {2979, 20760}, {3151, 41510}, {3266, 4561}, {3448, 41327}, {3580, 51366}, {3690, 4184}, {4064, 20294}, {4551, 37798}, {6099, 28471}, {6800, 20818}, {14547, 27065}, {15080, 23095}, {23067, 56560}, {38857, 43605}, {52386, 56000}

X(56808) = isotomic conjugate of the polar conjugate of X(56747)
X(56808) = X(39438)-anticomplementary conjugate of X(20242)
X(56808) = X(i)-isoconjugate of X(j) for these (i,j): {28, 38535}, {513, 2690}
X(56808) = X(i)-Dao conjugate of X(j) for these (i,j): {39026, 2690}, {40591, 38535}
X(56808) = crossdifference of every pair of points on line {649, 40955}
X(56808) = barycentric product X(i)*X(j) for these {i,j}: {69, 56747}, {190, 2774}, {306, 2073}, {3952, 42744}
X(56808) = barycentric quotient X(i)/X(j) for these {i,j}: {71, 38535}, {101, 2690}, {2073, 27}, {2774, 514}, {3730, 39993}, {42744, 7192}, {56747, 4}
X(56808) = {X({}),X(1)}-harmonic conjugate of X({}[[1]][[3]])


X(56809) = X(1)X(2)∩X(3)X(101)

Barycentrics    a^2*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c - a^2*b*c - a*b^2*c + b^3*c - a^2*c^2 - a*b*c^2 + 4*b^2*c^2 - a*c^3 + b*c^3 + c^4) : :

X(56809) lies on the cubic K657 and these lines: {1, 2}, {3, 101}, {9, 991}, {56, 20683}, {57, 2318}, {58, 218}, {72, 241}, {76, 4561}, {141, 51366}, {170, 12512}, {182, 17976}, {219, 13329}, {277, 24159}, {443, 3191}, {474, 5228}, {573, 3781}, {581, 1212}, {954, 25878}, {984, 25065}, {990, 2324}, {1260, 17811}, {1331, 15066}, {1352, 41327}, {1400, 5756}, {1458, 5223}, {1500, 4255}, {1736, 26669}, {1742, 51090}, {1897, 52147}, {2310, 5696}, {2635, 31142}, {2750, 32682}, {3204, 4265}, {3294, 40779}, {3487, 17758}, {3501, 5438}, {3690, 4191}, {3731, 5785}, {3736, 5783}, {3819, 20760}, {3876, 24635}, {3929, 22053}, {4210, 26911}, {4253, 37609}, {4257, 5526}, {4334, 5850}, {4517, 37575}, {4568, 25242}, {5085, 20818}, {5092, 23095}, {5179, 5720}, {5328, 5400}, {5396, 34522}, {5692, 35293}, {5698, 35338}, {5728, 25067}, {5779, 34524}, {6817, 22000}, {7308, 14547}, {9441, 25440}, {9502, 33299}, {10176, 54474}, {14964, 36015}, {16589, 52544}, {17499, 27340}, {17814, 38857}, {20236, 27422}, {20544, 25681}, {21796, 50591}, {23067, 56550}, {34937, 52542}, {35120, 36205}, {35333, 56639}, {36942, 43146}, {37309, 55466}, {37694, 43035}, {38052, 42289}, {51302, 54422}

X(56809) = X(i)-isoconjugate of X(j) for these (i,j): {513, 9057}, {676, 36089}
X(56809) = X(39026)-Dao conjugate of X(9057)
X(56809) = crossdifference of every pair of points on line {649, 676}
X(56809) = barycentric product X(i)*X(j) for these {i,j}: {190, 9000}, {306, 7431}
X(56809) = barycentric quotient X(i)/X(j) for these {i,j}: {101, 9057}, {7431, 27}, {9000, 514}, {32642, 32684}, {36039, 36089}
X(56809) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3216, 5222}, {9, 1818, 991}, {78, 25930, 1}, {220, 6184, 3730}, {936, 3682, 386}, {19767, 29624, 1}, {26669, 41228, 1736}


X(56810) = X(1)X(2)∩X(7)X(19825)

Barycentrics    (b + c)*(a*b + b^2 + a*c + b*c + c^2) : :

X(56810) lies on the cubic K1285 and these lines: {1, 2}, {7, 19825}, {31, 50308}, {37, 3969}, {38, 3775}, {40, 50697}, {63, 17270}, {69, 19822}, {71, 1654}, {75, 17184}, {81, 319}, {97, 56246}, {100, 27174}, {141, 4359}, {190, 41816}, {209, 3681}, {210, 4463}, {226, 6539}, {312, 48630}, {313, 321}, {320, 19797}, {333, 32025}, {355, 19645}, {469, 3876}, {693, 21721}, {756, 3773}, {850, 21719}, {857, 3697}, {894, 2895}, {908, 20659}, {940, 4445}, {964, 5814}, {966, 17776}, {1010, 56047}, {1172, 52412}, {1214, 40999}, {1255, 17315}, {1268, 25507}, {1441, 26942}, {1826, 31018}, {1848, 21271}, {1869, 6994}, {1909, 30599}, {1914, 5278}, {1962, 50298}, {2321, 3995}, {2345, 5739}, {2533, 47791}, {2887, 20360}, {2975, 37312}, {3210, 17238}, {3218, 37653}, {3305, 17286}, {3578, 4641}, {3666, 17239}, {3686, 5294}, {3696, 4972}, {3701, 26601}, {3703, 4981}, {3739, 18139}, {3782, 4665}, {3835, 21720}, {3879, 8025}, {3891, 19834}, {3896, 4026}, {3914, 17163}, {3925, 4733}, {3932, 48648}, {3936, 20483}, {3952, 4104}, {3954, 18202}, {3966, 24552}, {3971, 6535}, {3980, 33080}, {3993, 6536}, {3994, 48644}, {4036, 47790}, {4042, 33114}, {4052, 27797}, {4058, 4656}, {4083, 21724}, {4150, 14555}, {4357, 17147}, {4358, 5743}, {4361, 32774}, {4363, 32859}, {4365, 4425}, {4383, 17293}, {4385, 33736}, {4389, 50106}, {4407, 42039}, {4416, 43990}, {4417, 20654}, {4418, 33082}, {4419, 50043}, {4439, 42041}, {4472, 37631}, {4478, 6703}, {4643, 32933}, {4667, 50256}, {4670, 42045}, {4671, 56253}, {4696, 50320}, {4699, 27186}, {4705, 47781}, {4732, 28595}, {4886, 17289}, {4967, 5249}, {4968, 37096}, {5051, 5295}, {5178, 41506}, {5224, 28606}, {5232, 52396}, {5235, 33116}, {5263, 33075}, {5300, 19281}, {5333, 28653}, {5564, 19786}, {5657, 37419}, {5687, 16368}, {5690, 19542}, {5737, 33113}, {5741, 44417}, {5750, 19717}, {5767, 26446}, {5797, 9956}, {5905, 8896}, {5942, 55912}, {6327, 50314}, {6651, 21098}, {7270, 37095}, {7283, 26064}, {7321, 19833}, {8024, 19835}, {8298, 33115}, {8804, 20061}, {8897, 21285}, {9708, 37323}, {10319, 21270}, {13567, 25001}, {16894, 21705}, {17007, 56517}, {17116, 17483}, {17117, 33150}, {17140, 49511}, {17173, 29967}, {17228, 19804}, {17229, 44307}, {17237, 42051}, {17251, 50105}, {17256, 33761}, {17271, 32939}, {17277, 33157}, {17280, 27065}, {17287, 32863}, {17288, 26842}, {17303, 19684}, {17327, 20182}, {17349, 41248}, {17363, 37685}, {17372, 37595}, {17495, 54311}, {17778, 28604}, {18697, 52369}, {19785, 42696}, {19789, 32087}, {20290, 50307}, {20502, 21383}, {20655, 32931}, {20700, 21054}, {21011, 27131}, {21026, 48651}, {21027, 48650}, {21075, 31043}, {21095, 31055}, {21675, 31053}, {21726, 50491}, {21728, 23930}, {22272, 40492}, {22325, 51378}, {24325, 33081}, {24342, 32949}, {24589, 48635}, {24697, 32936}, {24789, 28634}, {25000, 25091}, {25254, 45744}, {25259, 55232}, {25498, 41820}, {26109, 43985}, {26589, 42715}, {26605, 52345}, {26747, 46838}, {27064, 37656}, {27184, 28605}, {27804, 50290}, {28639, 41818}, {28950, 54283}, {30832, 33133}, {31047, 39130}, {31143, 33066}, {32771, 33084}, {32772, 32861}, {32776, 49474}, {32780, 32864}, {32784, 32860}, {32852, 50302}, {32917, 33160}, {32929, 50295}, {32932, 33083}, {32945, 33076}, {33151, 42029}, {33162, 49457}, {33168, 38000}, {37559, 41822}, {39260, 43268}, {40161, 40435}, {44416, 49724}, {50053, 50215}, {56209, 56226}

X(56810) = isotomic conjugate of X(56047)
X(56810) = X(i)-Ceva conjugate of X(j) for these (i,j): {33935, 42714}, {33948, 23282}, {34258, 321}, {37211, 7265}, {56224, 3995}, {56351, 10}
X(56810) = X(i)-isoconjugate of X(j) for these (i,j): {31, 56047}, {58, 2214}, {163, 43927}, {1333, 43531}
X(56810) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 56047}, {10, 2214}, {37, 43531}, {115, 43927}, {28606, 5333}, {31993, 940}, {39016, 3733}, {41849, 86}
X(56810) = trilinear pole of line {23282, 23879}
X(56810) = barycentric product X(i)*X(j) for these {i,j}: {1, 42714}, {10, 5224}, {37, 33935}, {99, 23282}, {190, 23879}, {306, 469}, {313, 386}, {321, 28606}, {523, 33948}, {668, 47842}, {834, 27808}, {1441, 3876}, {1978, 42664}, {2321, 33949}, {3952, 45746}, {4033, 14349}, {6386, 50488}, {40071, 44103}, {52782, 56351}
X(56810) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 56047}, {10, 43531}, {37, 2214}, {386, 58}, {469, 27}, {523, 43927}, {834, 3733}, {3876, 21}, {3952, 835}, {4033, 37218}, {5224, 86}, {14349, 1019}, {21078, 53081}, {23282, 523}, {23879, 514}, {26911, 4184}, {28606, 81}, {33935, 274}, {33948, 99}, {33949, 1434}, {42664, 649}, {42714, 75}, {44103, 1474}, {45746, 7192}, {47842, 513}, {50488, 667}, {56210, 28621}
X(56810) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8, 3187}, {2, 3187, 29833}, {2, 6542, 17019}, {2, 20017, 1}, {2, 45222, 17023}, {8, 9780, 387}, {10, 306, 2}, {10, 21085, 42}, {75, 32782, 17184}, {319, 19808, 81}, {321, 1211, 26580}, {321, 40603, 313}, {333, 32779, 56520}, {594, 1211, 321}, {1441, 26942, 56559}, {2345, 5739, 26223}, {2887, 50312, 21020}, {3617, 3661, 48381}, {3686, 5294, 19742}, {3782, 4665, 4980}, {3969, 41809, 37}, {4026, 4046, 3896}, {4641, 4690, 3578}, {4643, 50048, 32933}, {4690, 50052, 4641}, {4886, 17289, 32911}, {5256, 17308, 2}, {6539, 31037, 31025}, {8013, 15523, 10}, {17023, 50306, 45222}, {17228, 19804, 33172}, {17256, 42033, 33761}, {17275, 32777, 5278}, {18697, 52369, 56564}, {25006, 39597, 31079}, {27184, 48628, 28605}, {30832, 55095, 33133}, {31025, 31037, 226}, {31330, 32778, 3006}, {32780, 42334, 32864}, {32783, 32914, 26230}, {33083, 46918, 32932}, {33150, 41821, 17117}


X(56811) = X(1)X(2)∩X(100)X(667)

Barycentrics    (a - b)*(a - c)*(a^2*b - 2*a*b^2 + a^2*c + b^2*c - 2*a*c^2 + b*c^2) : :
X(56811) = 4 X[4871] - 5 X[17266], 3 X[31855] - X[50016], 3 X[49997] - 2 X[50023]

X(56811) lies on the cubic K324 and these lines: {1, 2}, {100, 667}, {190, 513}, {514, 3952}, {537, 46795}, {649, 1018}, {668, 693}, {3699, 6631}, {4076, 6163}, {4427, 32094}, {4582, 36237}, {4595, 9362}, {4756, 32028}, {6547, 24988}, {20331, 35123}, {24749, 25312}, {26073, 54102}, {34024, 43290}, {36226, 46897}, {53226, 53659}

X(56811) = midpoint of X(6542) and X(19998)
X(56811) = reflection of X(i) in X(j) for these {i,j}: {239, 899}, {29824, 3912}, {52768, 35123}
X(56811) = antitomic conjugate of X(52768)
X(56811) = X(i)-isoconjugate of X(j) for these (i,j): {292, 52226}, {513, 2382}, {667, 18822}, {739, 46782}, {1911, 47070}, {23892, 51923}
X(56811) = X(i)-Dao conjugate of X(j) for these (i,j): {537, 36848}, {6631, 18822}, {6651, 47070}, {19557, 52226}, {35123, 514}, {39026, 2382}, {40614, 46782}
X(56811) = cevapoint of X(537) and X(36848)
X(56811) = trilinear pole of line {537, 20331}
X(56811) = crossdifference of every pair of points on line {649, 1646}
X(56811) = X(1018)-line conjugate of X(649)
X(56811) = barycentric product X(i)*X(j) for these {i,j}: {190, 537}, {668, 20331}, {899, 46780}, {1016, 36848}, {4562, 52908}, {7035, 52745}, {17780, 46795}, {23891, 52768}
X(56811) = barycentric quotient X(i)/X(j) for these {i,j}: {101, 2382}, {190, 18822}, {238, 52226}, {239, 47070}, {537, 514}, {899, 46782}, {17780, 46797}, {20331, 513}, {23343, 51923}, {35123, 36848}, {36848, 1086}, {42765, 42754}, {46780, 31002}, {46795, 6548}, {52745, 244}, {52908, 812}, {52960, 2530}
X(56811) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {899, 3009, 49997}, {1026, 23891, 17780}, {2664, 31855, 899}, {3699, 6631, 36236}, {17780, 23354, 23891}


X(56812) = X(1)X(2)∩X(30)X(52371)

Barycentrics    a*(a^6 - a^5*b - a^4*b^2 + 2*a^3*b^3 - a^2*b^4 - a*b^5 + b^6 - a^5*c + a^4*b*c + 2*a^3*b^2*c - 2*a^2*b^3*c - a*b^4*c + b^5*c - a^4*c^2 + 2*a^3*b*c^2 + 2*a*b^3*c^2 - b^4*c^2 + 2*a^3*c^3 - 2*a^2*b*c^3 + 2*a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 - a*b*c^4 - b^2*c^4 - a*c^5 + b*c^5 + c^6) : :

X(56812) lies on the cubic K1169 and these lines: {1, 2}, {30, 52371}, {68, 17857}, {74, 484}, {100, 1725}, {1324, 22321}, {1411, 11545}, {1464, 12738}, {1727, 23703}, {1736, 32760}, {1757, 6149}, {1771, 41686}, {1793, 52680}, {1807, 40663}, {4551, 19469}, {14882, 35194}, {14910, 56540}, {35000, 53524}, {56295, 56535}

X(56812) = X(3580)-Ceva conjugate of X(56540)
X(56812) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {484, 3465, 50527}, {484, 56422, 3465}, {3938, 10072, 1}


X(56813) = X(1)X(2)∩X(22)X(101)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a*b - b^2 + a*c - b*c - c^2) : :

X(56813) lies on the cubic K935 and these lines: {1, 2}, {3, 1796}, {22, 101}, {48, 5314}, {63, 1818}, {72, 18607}, {73, 3984}, {184, 17976}, {219, 47487}, {220, 20835}, {228, 3781}, {283, 11517}, {305, 4561}, {343, 51366}, {377, 3191}, {394, 1260}, {464, 41510}, {581, 3876}, {991, 3219}, {1252, 31616}, {1333, 1801}, {1790, 7085}, {1819, 8021}, {1897, 15466}, {2175, 36559}, {2289, 6602}, {3305, 14547}, {3697, 37698}, {3730, 4184}, {3796, 20818}, {3917, 20760}, {3937, 22149}, {3951, 4303}, {7688, 53815}, {11441, 38857}, {11442, 41327}, {16465, 25091}, {22352, 23095}, {23067, 56553}, {26867, 37474}, {35338, 44447}, {37309, 55405}

X(56813) = isotomic conjugate of the polar conjugate of X(3730)
X(56813) = isogonal conjugate of the polar conjugate of X(17233)
X(56813) = X(i)-Ceva conjugate of X(j) for these (i,j): {1252, 1331}, {17233, 3730}
X(56813) = X(i)-isoconjugate of X(j) for these (i,j): {19, 14377}, {28, 15320}, {513, 26705}, {676, 36109}, {6591, 43190}
X(56813) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 14377}, {116, 7649}, {3136, 1860}, {4025, 23989}, {6586, 2973}, {20970, 1839}, {39026, 26705}, {40591, 15320}
X(56813) = crossdifference of every pair of points on line {649, 48403}
X(56813) = barycentric product X(i)*X(j) for these {i,j}: {3, 17233}, {48, 33932}, {63, 3681}, {69, 3730}, {71, 33297}, {219, 33298}, {304, 15624}, {306, 4184}, {326, 17916}, {1016, 22084}, {1252, 40618}, {1331, 25259}, {1332, 1734}, {1444, 4006}, {1978, 22388}, {4561, 6586}, {21837, 55202}
X(56813) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 14377}, {71, 15320}, {101, 26705}, {116, 2973}, {1331, 43190}, {1734, 17924}, {3681, 92}, {3730, 4}, {4006, 41013}, {4184, 27}, {4561, 31624}, {6586, 7649}, {15624, 19}, {17233, 264}, {17916, 158}, {20974, 2969}, {22084, 1086}, {22388, 649}, {25259, 46107}, {26911, 469}, {32642, 32701}, {33297, 44129}, {33298, 331}, {33932, 1969}, {36039, 36109}, {40618, 23989}
X(56813) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {394, 1260, 1331}, {1818, 2318, 63}, {2340, 25941, 3870}, {4184, 26911, 3730}


X(56814) = X(1)X(4)∩X(10)X(275)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^3 - a^2*b - 2*a*b^2 + b^3 - a^2*c + 2*a*b*c - b^2*c - 2*a*c^2 - b*c^2 + c^3) : :

X(56814) lies on the cubic K915 and these lines: {1, 4}, {5, 46974}, {9, 3087}, {10, 275}, {19, 4266}, {24, 14793}, {25, 8071}, {29, 58}, {30, 17102}, {35, 37305}, {36, 7412}, {37, 6748}, {44, 6749}, {47, 1724}, {53, 1100}, {57, 21228}, {65, 389}, {79, 36121}, {80, 40396}, {108, 5563}, {109, 12616}, {158, 5342}, {186, 14792}, {208, 3338}, {227, 5842}, {239, 54372}, {240, 1890}, {255, 6734}, {264, 3879}, {273, 3664}, {281, 1743}, {297, 17023}, {317, 4357}, {318, 519}, {355, 34048}, {386, 37235}, {393, 1449}, {403, 8070}, {406, 499}, {412, 4304}, {427, 10523}, {445, 26723}, {458, 3912}, {469, 39595}, {472, 53588}, {473, 53589}, {475, 498}, {517, 1887}, {546, 15252}, {938, 7518}, {942, 1875}, {988, 7487}, {1006, 54346}, {1038, 6827}, {1040, 6850}, {1060, 6928}, {1062, 6923}, {1074, 2475}, {1076, 4296}, {1104, 37321}, {1118, 11529}, {1119, 4888}, {1125, 17555}, {1214, 31789}, {1249, 16667}, {1385, 23842}, {1430, 11019}, {1465, 37468}, {1585, 5405}, {1586, 5393}, {1593, 8069}, {1594, 8068}, {1595, 5266}, {1735, 1770}, {1738, 54293}, {1753, 5119}, {1783, 1855}, {1825, 41722}, {1826, 52413}, {1828, 1844}, {1829, 37226}, {1837, 39574}, {1846, 24928}, {1852, 3931}, {1861, 10039}, {1866, 53615}, {1869, 41227}, {1871, 5724}, {1872, 3057}, {1876, 13750}, {1878, 5570}, {1888, 50195}, {1892, 24231}, {1894, 40985}, {1897, 3244}, {1935, 51755}, {1990, 16666}, {2202, 4251}, {2906, 52639}, {3008, 37448}, {3085, 4200}, {3086, 4194}, {3088, 10321}, {3100, 37437}, {3419, 7078}, {3541, 10320}, {3559, 4653}, {3612, 37414}, {3632, 7046}, {3649, 42379}, {3663, 7282}, {3666, 7511}, {3875, 55394}, {3911, 7531}, {4185, 5530}, {4186, 11399}, {4222, 54428}, {4297, 37420}, {4416, 27377}, {4424, 45225}, {5125, 13411}, {5174, 31397}, {5267, 37295}, {5722, 7524}, {5725, 54394}, {6756, 37592}, {6826, 19372}, {6868, 54320}, {6893, 9817}, {6917, 37697}, {6929, 37696}, {7280, 37441}, {7491, 37565}, {7987, 37410}, {9371, 11826}, {9630, 13273}, {10222, 21664}, {10436, 55393}, {10481, 36118}, {10573, 54396}, {11508, 37391}, {12016, 31870}, {14812, 43933}, {15803, 37028}, {17272, 32001}, {17284, 52288}, {17353, 36794}, {18242, 51361}, {18391, 39585}, {19925, 51375}, {22480, 49563}, {22766, 37194}, {23511, 37276}, {26003, 29571}, {26626, 37174}, {28076, 36572}, {29574, 52281}, {29596, 52289}, {29598, 52283}, {30282, 37417}, {34822, 37157}, {36747, 56293}, {37117, 52427}, {37381, 37693}, {37458, 37599}, {37730, 39529}, {39980, 40836}, {40259, 47115}, {40446, 51476}, {40644, 49745}, {41684, 53008}, {42750, 44409}, {45022, 45046}, {54299, 54431}

X(56814) = reflection of X(30493) in X(942)
X(56814) = polar conjugate of the isogonal conjugate of X(2317)
X(56814) = X(3)-isoconjugate of X(1389)
X(56814) = X(36103)-Dao conjugate of X(1389)
X(56814) = barycentric product X(i)*X(j) for these {i,j}: {92, 1385}, {264, 2317}
X(56814) = barycentric quotient X(i)/X(j) for these {i,j}: {19, 1389}, {1385, 63}, {2317, 3}
X(56814) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4, 1785}, {4, 34, 1838}, {4, 1870, 225}, {4, 34231, 1}, {281, 40065, 1743}, {1877, 40950, 4}, {4185, 11398, 54368}, {4296, 6840, 1076}, {5081, 11109, 10}


X(56815) = X(1)X(4)∩X(6)X(342)

Barycentrics    (a + b - c)*(a - b + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5 - a^4*b - a^3*b^2 + a^2*b^3 - a^4*c + a^3*b*c + 2*a^2*b^2*c - a*b^3*c - b^4*c - a^3*c^2 + 2*a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 - a*b*c^3 + b^2*c^3 - b*c^4) : :

X(56815) lies on the cubic K137 and these lines: {1, 4}, {6, 342}, {7, 3087}, {44, 653}, {85, 458}, {239, 18026}, {241, 26003}, {273, 6180}, {275, 1446}, {393, 54425}, {652, 14837}, {1427, 37279}, {2639, 9393}, {4383, 44697}, {6748, 52023}, {23984, 24032}, {25091, 40444}, {32714, 37805}, {36794, 41246}

X(56815) = X(14837)-line conjugate of X(652)
X(56815) = barycentric product X(i)*X(j) for these {i,j}: {273, 23693}, {278, 40863}
X(56815) = barycentric quotient X(i)/X(j) for these {i,j}: {23693, 78}, {40863, 345}
X(56815) = {X(26003),X(36118)}-harmonic conjugate of X(241)


X(56816) = X(1)X(4)∩X(24)X(221)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4*b - 2*a^2*b^3 + b^5 + a^4*c - a^3*b*c - a^2*b^2*c + a*b^3*c - a^2*b*c^2 + a*b^2*c^2 - 2*a^2*c^3 + a*b*c^3 + c^5) : :

X(56816) lies on the cubic K1302 and these lines: {1, 4}, {24, 221}, {74, 36067}, {108, 1464}, {109, 186}, {112, 17966}, {403, 51421}, {451, 37558}, {664, 44146}, {859, 1262}, {2075, 56560}, {3144, 40611}, {4559, 56747}, {7505, 34030}, {8744, 32674}, {34586, 37305}, {36127, 52661}, {51896, 52427}

X(56816) = polar conjugate of the isotomic conjugate of X(56560)
X(56816) = X(521)-isoconjugate of X(2689)
X(56816) = barycentric product X(i)*X(j) for these {i,j}: {4, 56560}, {226, 2075}, {653, 2773}
X(56816) = barycentric quotient X(i)/X(j) for these {i,j}: {2075, 333}, {2773, 6332}, {32674, 2689}, {56560, 69}


X(56817) = X(1)X(4)∩X(2)X(7054)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5 + 2*a^4*b - a^3*b^2 - 3*a^2*b^3 + b^5 + 2*a^4*c - a^3*b*c - 6*a^2*b^2*c - 3*a*b^3*c - a^3*c^2 - 6*a^2*b*c^2 - 6*a*b^2*c^2 - b^3*c^2 - 3*a^2*c^3 - 3*a*b*c^3 - b^2*c^3 + c^5) : :

X(56817) lies on the cubic K1226 and these lines: {1, 4}, {2, 7054}, {6, 469}, {27, 17056}, {29, 1211}, {286, 17778}, {1172, 18679}, {1427, 7282}, {1865, 41083}, {2299, 4213}, {3151, 18591}, {5125, 19701}, {5142, 19755}, {5174, 31993}, {11341, 18134}, {17923, 37869}, {25507, 26023}


X(56818) = X(1)X(4)∩X(24)X(109)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4*b - 2*a^2*b^3 + b^5 + a^4*c - a^3*b*c - a^2*b^2*c + a*b^3*c - a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 - 2*a^2*c^3 + a*b*c^3 - b^2*c^3 + c^5) : :

X(56818) lies on the cubic K620 and these lines: {1, 4}, {19, 40957}, {24, 109}, {25, 221}, {56, 3195}, {65, 3192}, {108, 4306}, {198, 608}, {208, 1042}, {222, 11399}, {227, 1902}, {235, 51421}, {406, 37558}, {478, 1474}, {603, 2212}, {664, 54412}, {859, 53995}, {1093, 36127}, {1398, 42072}, {1452, 54400}, {1455, 11363}, {1753, 22350}, {1861, 37694}, {1968, 17966}, {2207, 32674}, {2299, 19349}, {3542, 34030}, {4559, 41320}, {8750, 37579}, {11398, 34040}, {24806, 46878}, {34043, 54428}, {36067, 54242}, {37380, 40396}, {37384, 40611}, {39575, 56546}

X(56818) = polar conjugate of the isotomic conjugate of X(56549)
X(56818) = X(1262)-Ceva conjugate of X(32674)
X(56818) = X(i)-isoconjugate of X(j) for these (i,j): {21, 28788}, {521, 41906}
X(56818) = X(i)-Dao conjugate of X(j) for these (i,j): {3064, 23978}, {40611, 28788}
X(56818) = barycentric product X(i)*X(j) for these {i,j}: {4, 56549}, {225, 56001}, {1262, 20620}
X(56818) = barycentric quotient X(i)/X(j) for these {i,j}: {1400, 28788}, {20620, 23978}, {32674, 41906}, {56001, 332}, {56549, 69}


X(56819) = X(1)X(4)∩X(20)X(109)

Barycentrics    (a + b - c)*(a - b + c)*(a^5 - 3*a^4*b + 2*a^2*b^3 - a*b^4 + b^5 - 3*a^4*c + 2*a^3*b*c + b^4*c + 2*a*b^2*c^2 - 2*b^3*c^2 + 2*a^2*c^3 - 2*b^2*c^3 - a*c^4 + b*c^4 + c^5) : :

X(56819) lies on the cubic K617 and these lines: {1, 4}, {2, 10570}, {3, 34030}, {8, 20222}, {10, 54320}, {20, 109}, {30, 221}, {56, 5292}, {65, 48837}, {68, 952}, {108, 1610}, {222, 7354}, {227, 355}, {315, 664}, {347, 2893}, {377, 37558}, {387, 55101}, {393, 1630}, {517, 7352}, {603, 4299}, {610, 8755}, {859, 5358}, {1038, 17647}, {1214, 5794}, {1455, 18481}, {1464, 18961}, {1465, 1837}, {1770, 54400}, {1771, 6934}, {1777, 6938}, {2078, 28376}, {2594, 18962}, {2817, 51896}, {3157, 5841}, {3197, 42459}, {3436, 4551}, {3767, 17966}, {3875, 22464}, {4293, 37530}, {4297, 34050}, {4331, 44661}, {4559, 17732}, {5086, 17080}, {5204, 43043}, {5230, 27621}, {5707, 18990}, {5733, 9657}, {5747, 8736}, {5816, 40590}, {5942, 17257}, {6284, 34040}, {6928, 34586}, {7074, 31799}, {7078, 11827}, {7174, 37709}, {7738, 56546}, {9597, 52635}, {9655, 13408}, {10198, 25490}, {10483, 34043}, {11510, 23404}, {12709, 50065}, {20420, 34042}, {23536, 34489}, {28027, 28034}, {32674, 41361}, {35250, 52408}, {37191, 40611}, {37591, 49168}, {37611, 56148}, {54331, 56366}

X(56819) = reflection of X(21147) in X(5930)
X(56819) = anticomplement of X(10570)
X(56819) = anticomplement of the isogonal conjugate of X(10571)
X(56819) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {57, 10446}, {81, 2995}, {573, 329}, {604, 37683}, {651, 35519}, {3185, 144}, {3192, 5942}, {3869, 3436}, {4225, 3869}, {4417, 21286}, {6589, 37781}, {10571, 8}, {17080, 69}, {17097, 15232}, {21189, 33650}, {24027, 109}, {34242, 5080}, {36040, 55128}, {40590, 2895}, {56553, 4329}
X(56819) = X(i)-Dao conjugate of X(j) for these (i,j): {407, 40950}, {38977, 522}
X(56819) = barycentric quotient X(38977)/X(40626)
X(56819) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1478, 5713}, {1, 5691, 40950}, {3, 51421, 34030}, {4, 10571, 34029}, {944, 1068, 1}, {10571, 38945, 4}


X(56820) = X(1)X(4)∩X(109)X(550)

Barycentrics    (a + b - c)*(a - b + c)*(a^5 - 4*a^4*b + 3*a^2*b^3 - a*b^4 + b^5 - 4*a^4*c + 3*a^3*b*c + b^4*c + 2*a*b^2*c^2 - 2*b^3*c^2 + 3*a^2*c^3 - 2*b^2*c^3 - a*c^4 + b*c^4 + c^5) : :

X(56820) lies on the cubic K618 and these lines: {1, 4}, {109, 550}, {140, 51421}, {221, 1657}, {664, 7768}, {1630, 1990}, {3523, 34030}, {4559, 41326}, {4658, 5434}, {7755, 17966}, {9578, 29682}, {32674, 41366}


X(56821) = X(1)X(4)∩X(20)X(221)

Barycentrics    (a + b - c)*(a - b + c)*(a^5 - 5*a^4*b + 4*a^2*b^3 - a*b^4 + b^5 - 5*a^4*c + 4*a^3*b*c + b^4*c + 2*a*b^2*c^2 - 2*b^3*c^2 + 4*a^2*c^3 - 2*b^2*c^3 - a*c^4 + b*c^4 + c^5) : :

X(56821) lies on the cubic K616 and these lines: {1, 4}, {2, 51421}, {8, 227}, {20, 221}, {56, 1610}, {65, 46330}, {69, 347}, {81, 3600}, {102, 37410}, {109, 376}, {189, 31359}, {222, 4293}, {443, 37558}, {603, 37570}, {631, 34030}, {859, 1617}, {966, 40590}, {1249, 1630}, {1388, 28098}, {1394, 4297}, {1411, 51834}, {1455, 5731}, {1465, 18391}, {1469, 34371}, {1993, 20076}, {2550, 24806}, {2551, 37694}, {3421, 4551}, {3474, 54400}, {3576, 34050}, {4294, 34040}, {4299, 34043}, {4559, 41325}, {5484, 20211}, {5727, 36636}, {6604, 33296}, {6827, 34586}, {6987, 34032}, {7735, 17966}, {22097, 47848}, {28376, 28386}, {28739, 49492}, {34042, 50701}, {36127, 36876}, {51361, 54051}, {51375, 52026}

X(56821) = reflection of X(65) in X(46330)
X(56821) = barycentric product X(226)*X(7415)
X(56821) = barycentric quotient X(7415)/X(333)
X(56821) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5731, 18623, 1455}, {10571, 38945, 34029}, {34029, 38945, 4}


X(56822) = X(1)X(4)∩X(196)X(24695)

Barycentrics    (a + b - c)*(a - b + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6 - a^5*b - a^4*b^2 + a^3*b^3 - a^5*c + a^4*b*c + a^3*b^2*c - b^5*c - a^4*c^2 + a^3*b*c^2 + 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + a^3*c^3 - 2*a*b^2*c^3 + 2*b^3*c^3 - b*c^5) : :

X(56822) lies on the cubic K221 and these lines: {1, 4}, {196, 24695}, {240, 36127}, {293, 36044}, {425, 23695}, {652, 21186}, {653, 896}, {1254, 3559}, {1758, 52607}, {1966, 46404}, {7045, 15146}, {9364, 37805}

X(56822) = X(425)-Ceva conjugate of X(41349)
X(56822) = X(i)-isoconjugate of X(j) for these (i,j): {3, 43746}, {521, 2714}, {1946, 53191}
X(56822) = X(i)-Dao conjugate of X(j) for these (i,j): {36103, 43746}, {39053, 53191}
X(56822) = X(21186)-line conjugate of X(652)
X(56822) = barycentric product X(i)*X(j) for these {i,j}: {92, 41349}, {226, 425}, {653, 2798}, {23695, 40149}
X(56822) = barycentric quotient X(i)/X(j) for these {i,j}: {19, 43746}, {425, 333}, {653, 53191}, {2798, 6332}, {23695, 1812}, {32674, 2714}, {41349, 63}
X(56822) = {X(52607),X(52891)}-harmonic conjugate of X(1758)


X(56823) = X(1)X(4)∩X(2)X(2995)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^6 + a^5*b - a^2*b^4 - a*b^5 + a^5*c + 3*a^4*b*c - 2*a^3*b^2*c - 2*a^2*b^3*c + a*b^4*c - b^5*c - 2*a^3*b*c^2 + 2*a^2*b^2*c^2 - 2*a^2*b*c^3 + 2*b^3*c^3 - a^2*c^4 + a*b*c^4 - a*c^5 - b*c^5) : :

X(56823) lies on the cubic K254 and these lines: {1, 4}, {2, 2995}, {75, 17080}, {81, 20028}, {227, 31993}, {478, 19645}, {1211, 51421}, {1400, 37642}, {4551, 22020}, {17778, 37798}, {22097, 34050}

X(56823) = anticomplement of X(19608)
X(56823) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {961, 10446}, {2363, 2995}, {36098, 35519}, {40452, 20245}
X(56823) = X(314)-Ceva conjugate of X(65)
X(56823) = X(284)-isoconjugate of X(42485)
X(56823) = X(40590)-Dao conjugate of X(42485)
X(56823) = barycentric product X(i)*X(j) for these {i,j}: {65, 54109}, {226, 23512}, {314, 15267}, {1441, 1610}, {34267, 52358}
X(56823) = barycentric quotient X(i)/X(j) for these {i,j}: {65, 42485}, {1610, 21}, {15267, 65}, {23512, 333}, {34267, 46880}, {54109, 314}
X(56823) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {73, 225, 388}, {40160, 40590, 2}


X(56824) = X(1)X(4)∩X(484)X(1763)

Barycentrics    a*(a^6 - 4*a^5*b - a^4*b^2 + 8*a^3*b^3 - a^2*b^4 - 4*a*b^5 + b^6 - 4*a^5*c - 4*a^4*b*c + 4*a*b^4*c + 4*b^5*c - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 + 8*a^3*c^3 - 8*b^3*c^3 - a^2*c^4 + 4*a*b*c^4 - b^2*c^4 - 4*a*c^5 + 4*b*c^5 + c^6) : :

X(56824) lies on the cubic K243 and these lines: {1, 4}, {484, 1763}, {610, 2265}, {3426, 5119}, {4337, 5268}, {4551, 50528}, {7991, 55311}, {11010, 16389}, {18528, 24806}, {37694, 41854}, {40263, 54320}

X(56824) = X(376)-Ceva conjugate of X(5119)
X(56824) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {223, 1490, 3465}, {223, 3465, 1}, {1490, 1745, 1}, {1745, 3465, 223}


X(56825) = X(1)X(4)∩X(10)X(10538)

Barycentrics    a^7 - 2*a^6*b - a^5*b^2 + 3*a^4*b^3 - a^3*b^4 + a*b^6 - b^7 - 2*a^6*c + 5*a^5*b*c - 3*a^4*b^2*c - 2*a^3*b^3*c + 4*a^2*b^4*c - 3*a*b^5*c + b^6*c - a^5*c^2 - 3*a^4*b*c^2 + 6*a^3*b^2*c^2 - 4*a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 + 3*a^4*c^3 - 2*a^3*b*c^3 - 4*a^2*b^2*c^3 + 6*a*b^3*c^3 - 3*b^4*c^3 - a^3*c^4 + 4*a^2*b*c^4 - a*b^2*c^4 - 3*b^3*c^4 - 3*a*b*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7 : :
X(56825) = 5 X[1] - 8 X[44901], 3 X[1] - 4 X[51616], 5 X[1785] - 4 X[44901], 3 X[1785] - 2 X[51616], 6 X[44901] - 5 X[51616]

X(56825) lies on the cubic K529 and these lines: {1, 4}, {10, 10538}, {80, 1735}, {355, 24430}, {498, 26091}, {517, 52129}, {522, 21102}, {846, 10039}, {855, 1283}, {1054, 1737}, {1324, 8185}, {1698, 25876}, {1771, 10483}, {1784, 24034}, {1936, 5841}, {2222, 9590}, {2829, 51421}, {3075, 7354}, {5080, 22350}, {5086, 44706}, {5176, 24028}, {6923, 24806}, {8069, 37716}, {8071, 35455}, {9655, 41344}, {10017, 44425}, {10073, 53619}, {10954, 37573}, {15252, 28186}, {17010, 17734}, {17102, 18480}, {18395, 50368}, {18962, 37529}, {28160, 46974}, {28164, 51375}, {32857, 53615}, {37694, 37821}

X(56825) = midpoint of X(18340) and X(38945)
X(56825) = reflection of X(i) in X(j) for these {i,j}: {1, 1785}, {10538, 10}, {45272, 51889}
X(56825) = incircle-inverse of X(13464)
X(56825) = crossdifference of every pair of points on line {652, 2317}


X(56826) = X(1)X(4)∩X(12)X(2360)

Barycentrics    (a + b - c)*(a - b + c)*(a^7 - a^5*b^2 - a^4*b^3 + a^3*b^4 - a*b^6 + b^7 - a^5*b*c + a^3*b^3*c - a^2*b^4*c + b^6*c - a^5*c^2 + a^2*b^3*c^2 + a*b^4*c^2 - b^5*c^2 - a^4*c^3 + a^3*b*c^3 + a^2*b^2*c^3 - b^4*c^3 + a^3*c^4 - a^2*b*c^4 + a*b^2*c^4 - b^3*c^4 - b^2*c^5 - a*c^6 + b*c^6 + c^7) : :

X(56826) lies on the cubic K288 and these lines: {1, 4}, {12, 2360}, {98, 35187}, {109, 1503}, {522, 16091}, {542, 17975}, {653, 51939}, {858, 1813}, {1352, 56550}, {1853, 7011}, {1899, 56549}, {2222, 26702}, {3448, 56560}, {3561, 14516}, {11442, 56553}, {18381, 20764}, {23067, 41327}, {41349, 46484}, {50366, 53816}

X(56826) = reflection of X(109) in X(51368)


X(56827) = X(1)X(4)∩X(21)X(108)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2*b - b^3 + a^2*c - a*b*c - c^3) : :

X(56827) lies on the cubic K974 and these lines: {1, 4}, {2, 14257}, {12, 41013}, {21, 108}, {65, 860}, {208, 12514}, {274, 18026}, {318, 2476}, {406, 1118}, {429, 40149}, {451, 1940}, {1426, 12709}, {1875, 11105}, {1881, 2294}, {1895, 6828}, {1897, 5086}, {2475, 38949}, {2478, 52489}, {3665, 38461}, {3869, 17555}, {4295, 37414}, {5136, 11375}, {5174, 17097}, {5219, 54396}, {6842, 21664}, {6855, 40836}, {6857, 44696}, {17904, 20613}, {21068, 53009}, {24006, 42768}, {45095, 56285}, {54121, 54314}

X(56827) = polar conjugate of X(19607)
X(56827) = polar conjugate of the isogonal conjugate of X(40590)
X(56827) = X(264)-Ceva conjugate of X(40149)
X(56827) = X(i)-isoconjugate of X(j) for these (i,j): {48, 19607}, {283, 2217}, {1437, 10570}, {1946, 54951}, {2193, 13478}, {23189, 36050}
X(56827) = X(i)-Dao conjugate of X(j) for these (i,j): {65, 3}, {124, 23189}, {1249, 19607}, {34588, 521}, {39053, 54951}, {47345, 13478}
X(56827) = barycentric product X(i)*X(j) for these {i,j}: {225, 4417}, {226, 17555}, {264, 40590}, {273, 21078}, {331, 22276}, {349, 3192}, {3185, 52575}, {3869, 40149}, {17080, 41013}, {52310, 52938}
X(56827) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 19607}, {225, 13478}, {429, 19608}, {573, 283}, {653, 54951}, {1826, 10570}, {1880, 2217}, {3185, 2193}, {3192, 284}, {3869, 1812}, {4417, 332}, {6589, 23189}, {8736, 15232}, {10571, 1790}, {17080, 1444}, {17555, 333}, {21078, 78}, {22276, 219}, {34588, 16731}, {40149, 2995}, {40590, 3}
X(56827) = {X(1785),X(12047)}-harmonic conjugate of X(4)


X(56828) = X(1)X(19)∩X(4)X(17908)

Barycentrics    a*(a^2 - b*c)*(a^2 + b*c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) : :

X(56828) lies on the cubic K861 and these lines: {1, 19}, {4, 17908}, {31, 51913}, {92, 3113}, {163, 1733}, {419, 4039}, {1284, 1914}, {1580, 19578}, {1840, 18099}, {1966, 19572}, {2295, 2330}, {4008, 9247}, {17453, 17871}, {20883, 38847}, {24037, 46238}, {36104, 36120}, {46573, 55240}

X(56828) = polar conjugate of X(1934)
X(56828) = polar conjugate of the isotomic conjugate of X(1580)
X(56828) = polar conjugate of the isogonal conjugate of X(1933)
X(56828) = X(i)-isoconjugate of X(j) for these (i,j): {2, 36214}, {3, 1916}, {6, 40708}, {48, 1934}, {63, 1581}, {69, 694}, {76, 17970}, {184, 18896}, {257, 295}, {287, 40810}, {292, 7019}, {304, 1967}, {305, 9468}, {325, 15391}, {334, 7116}, {335, 7015}, {337, 893}, {525, 805}, {647, 18829}, {656, 37134}, {684, 39291}, {733, 3933}, {881, 52608}, {882, 4563}, {1927, 40364}, {2196, 7018}, {3267, 17938}, {3917, 14970}, {3926, 17980}, {4580, 46161}, {6393, 34238}, {8789, 40050}, {8842, 43718}, {8858, 47648}, {12215, 41517}, {14575, 44160}, {14604, 40360}, {18872, 30786}, {20975, 39292}, {36212, 36897}, {37893, 40847}, {37894, 51982}, {43705, 47734}, {43714, 47642}
X(56828) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 40708}, {1249, 1934}, {3162, 1581}, {8290, 304}, {19557, 7019}, {19576, 63}, {32664, 36214}, {35078, 14208}, {36103, 1916}, {39030, 40050}, {39031, 3}, {39043, 69}, {39044, 305}, {39052, 18829}, {40596, 37134}, {40597, 337}, {53981, 1930}
X(56828) = barycentric product X(i)*X(j) for these {i,j}: {1, 419}, {4, 1580}, {19, 385}, {25, 1966}, {28, 4039}, {31, 17984}, {75, 44089}, {92, 1691}, {98, 56679}, {162, 804}, {171, 242}, {238, 7009}, {239, 7119}, {240, 40820}, {264, 1933}, {811, 5027}, {862, 17103}, {894, 2201}, {1096, 12215}, {1284, 14006}, {1783, 4107}, {1821, 51324}, {1897, 4164}, {1910, 39931}, {1926, 1974}, {1969, 14602}, {1973, 3978}, {2086, 46254}, {2236, 32085}, {2295, 31905}, {3573, 54229}, {5026, 36128}, {7122, 40717}, {8750, 14296}, {8772, 47736}, {14295, 32676}, {24019, 24284}, {36119, 51430}, {36120, 36213}, {36129, 39495}, {37892, 51904}, {39927, 51913}, {43761, 52462}
X(56828) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40708}, {4, 1934}, {19, 1916}, {25, 1581}, {31, 36214}, {92, 18896}, {112, 37134}, {162, 18829}, {171, 337}, {238, 7019}, {242, 7018}, {385, 304}, {419, 75}, {560, 17970}, {804, 14208}, {1580, 69}, {1691, 63}, {1926, 40050}, {1933, 3}, {1966, 305}, {1969, 44160}, {1973, 694}, {1974, 1967}, {2086, 3708}, {2201, 257}, {2210, 7015}, {2236, 3933}, {3978, 40364}, {4039, 20336}, {4107, 15413}, {4164, 4025}, {5027, 656}, {7009, 334}, {7119, 335}, {7122, 295}, {14599, 7116}, {14602, 48}, {17941, 55202}, {17984, 561}, {18902, 9247}, {32676, 805}, {36104, 39291}, {39931, 46238}, {40820, 336}, {44089, 1}, {44162, 1927}, {51324, 1959}, {51903, 12215}, {51904, 37894}, {56679, 325}
X(56828) = {X(1),X(19)}-harmonic conjugate of X(46507)


X(56829) = X(1)X(19)∩X(162)X(163)

Barycentrics    a*(a - b)*(a + b)*(a - c)*(a + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(56829) lies on the cubic K228 and these lines: {1, 19}, {112, 26700}, {162, 163}, {1023, 5379}, {1784, 9406}, {1990, 56645}, {2247, 36063}, {23894, 36104}, {32676, 36149}, {32678, 36131}, {52640, 52956}

X(56829) = isogonal conjugate of the isotomic conjugate of X(24001)
X(56829) = X(i)-Ceva conjugate of X(j) for these (i,j): {24000, 42074}, {36114, 32676}
X(56829) = X(i)-isoconjugate of X(j) for these (i,j): {2, 14380}, {3, 2394}, {6, 34767}, {69, 2433}, {74, 525}, {125, 44769}, {287, 32112}, {339, 32640}, {394, 18808}, {520, 16080}, {523, 14919}, {647, 1494}, {656, 2349}, {686, 40423}, {810, 33805}, {850, 18877}, {879, 35910}, {1304, 15526}, {1577, 35200}, {1650, 34568}, {2159, 14208}, {2416, 52646}, {2972, 15459}, {3265, 8749}, {3267, 40352}, {3268, 11079}, {3269, 16077}, {4558, 12079}, {4580, 46147}, {5627, 8552}, {6334, 10419}, {9033, 40384}, {9139, 14417}, {9409, 31621}, {9717, 14977}, {10097, 36890}, {14220, 46788}, {14264, 15421}, {14385, 14592}, {15412, 44715}, {15627, 17094}, {16186, 39290}, {17879, 36131}, {17986, 35911}, {18314, 46090}, {20902, 36034}, {23870, 39377}, {23871, 39378}, {24018, 36119}, {32715, 36793}, {35908, 53173}, {35909, 51227}, {36831, 53576}, {40354, 52617}, {40355, 45792}, {41433, 52720}, {44427, 50464}, {44693, 51664}
X(56829) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 34767}, {133, 1577}, {1511, 24018}, {3163, 14208}, {3258, 20902}, {32664, 14380}, {36103, 2394}, {39008, 17879}, {39052, 1494}, {39062, 33805}, {40596, 2349}
X(56829) = cevapoint of X(2173) and X(2631)
X(56829) = trilinear pole of line {2173, 42074}
X(56829) = crossdifference of every pair of points on line {656, 2632}
X(56829) = barycentric product X(i)*X(j) for these {i,j}: {1, 4240}, {6, 24001}, {19, 2407}, {30, 162}, {75, 23347}, {92, 2420}, {100, 52954}, {108, 51382}, {110, 1784}, {112, 14206}, {113, 36114}, {163, 46106}, {190, 52955}, {250, 36035}, {476, 35201}, {648, 2173}, {651, 52956}, {653, 52949}, {662, 1990}, {799, 14581}, {811, 1495}, {823, 3284}, {1099, 1304}, {1474, 42716}, {1511, 36129}, {1553, 36117}, {1783, 18653}, {1897, 51420}, {2631, 23582}, {3233, 36119}, {3260, 32676}, {4242, 56645}, {4246, 52640}, {4575, 52661}, {5379, 11125}, {6331, 9406}, {9033, 24000}, {9409, 23999}, {11064, 24019}, {14398, 46254}, {14920, 32678}, {16077, 42074}, {32680, 39176}, {34334, 36034}, {36043, 40948}, {36104, 51389}, {36105, 51431}, {36126, 51394}, {36130, 42742}, {36131, 36789}, {36797, 51654}, {41392, 52414}, {52948, 53639}
X(56829) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 34767}, {19, 2394}, {30, 14208}, {31, 14380}, {112, 2349}, {162, 1494}, {163, 14919}, {648, 33805}, {1096, 18808}, {1495, 656}, {1576, 35200}, {1637, 20902}, {1784, 850}, {1973, 2433}, {1990, 1577}, {2173, 525}, {2407, 304}, {2420, 63}, {2631, 15526}, {3284, 24018}, {4240, 75}, {9033, 17879}, {9406, 647}, {9407, 810}, {9408, 2631}, {9409, 2632}, {14206, 3267}, {14398, 3708}, {14399, 4466}, {14581, 661}, {16240, 36035}, {18653, 15413}, {23347, 1}, {24000, 16077}, {24001, 76}, {24019, 16080}, {32676, 74}, {32713, 36119}, {35201, 3268}, {36035, 339}, {36114, 40423}, {36131, 40384}, {39176, 32679}, {41937, 36131}, {42074, 9033}, {42716, 40071}, {46106, 20948}, {51382, 35518}, {51420, 4025}, {51654, 17094}, {52948, 8057}, {52949, 6332}, {52954, 693}, {52955, 514}, {52956, 4391}


X(56830) = X(1)X(19)∩X(44)X(162)

Barycentrics    a*(a + b)*(a + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - a^3*b + a*b^3 - b^4 - a^3*c + a^2*b*c + a*b^2*c - b^3*c + a*b*c^2 + a*c^3 - b*c^3 - c^4) : :

X(56830) lies on the cubic K137 and these lines: {1, 19}, {6, 2907}, {27, 3782}, {37, 2326}, {44, 162}, {45, 11107}, {190, 44330}, {216, 404}, {239, 648}, {270, 37539}, {447, 16086}, {656, 1021}, {1785, 2341}, {2075, 19297}, {2287, 5016}, {2630, 2633}, {3285, 17515}, {5276, 7466}, {5279, 36420}, {5379, 23964}, {8756, 36935}, {46974, 52949}

X(56830) = X(17923)-Ceva conjugate of X(2074)
X(56830) = X(i)-isoconjugate of X(j) for these (i,j): {2, 43693}, {6, 40715}, {71, 16099}, {647, 35169}
X(56830) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 40715}, {32664, 43693}, {35122, 14208}, {39052, 35169}
X(56830) = crossdifference of every pair of points on line {656, 18673}
X(56830) = X(i)-line conjugate of X(j) for these (i,j): {1, 18673}, {1021, 656}
X(56830) = barycentric product X(i)*X(j) for these {i,j}: {1, 447}, {28, 16086}, {811, 42662}, {867, 5379}, {1474, 42709}, {36797, 51643}
X(56830) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40715}, {28, 16099}, {31, 43693}, {162, 35169}, {447, 75}, {16086, 20336}, {42662, 656}, {42709, 40071}, {51643, 17094}
X(56830) = {X(44),X(52955)}-harmonic conjugate of X(162)


X(56831) = X(1)X(19)∩X(10)X(29)

Barycentrics    a*(a + b)*(a + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^3 - a*b^2 - 2*a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2) : :

X(56831) lies on the cubic K588 and these lines: {1, 19}, {4, 580}, {6, 37377}, {10, 29}, {25, 19725}, {27, 58}, {33, 30733}, {81, 46883}, {278, 31900}, {387, 4198}, {612, 4233}, {1214, 52012}, {1453, 5317}, {1785, 37383}, {1824, 17520}, {1859, 9895}, {1871, 40980}, {2194, 5706}, {2203, 4185}, {3362, 52158}, {4227, 5450}, {4340, 37102}, {4653, 13739}, {5125, 20083}, {5264, 54294}, {5271, 39585}, {5398, 7534}, {5721, 7511}, {7490, 37522}, {7513, 13329}, {7554, 37469}, {7713, 54373}, {9958, 44225}, {14923, 17519}, {15149, 25526}, {16118, 31902}, {31903, 41083}, {37543, 54394}, {46890, 54358}, {54340, 54418}

X(56831) = X(i)-isoconjugate of X(j) for these (i,j): {72, 51223}, {306, 2215}, {525, 36080}, {647, 54970}, {1214, 2335}, {28787, 51875}
X(56831) = X(i)-Dao conjugate of X(j) for these (i,j): {38967, 4064}, {39052, 54970}
X(56831) = cevapoint of X(1451) and X(54394)
X(56831) = barycentric product X(i)*X(j) for these {i,j}: {27, 405}, {28, 5271}, {29, 37543}, {81, 39585}, {162, 23882}, {333, 54394}, {648, 46385}, {1451, 31623}, {1474, 44140}, {1882, 2185}, {5320, 44129}, {8750, 15417}
X(56831) = barycentric quotient X(i)/X(j) for these {i,j}: {162, 54970}, {405, 306}, {1451, 1214}, {1474, 51223}, {1882, 6358}, {2203, 2215}, {2299, 2335}, {5271, 20336}, {5295, 52369}, {5320, 71}, {23882, 14208}, {32676, 36080}, {37543, 307}, {39585, 321}, {44140, 40071}, {46385, 525}, {54394, 226}
X(56831) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {27, 270, 58}, {27, 8747, 1838}, {28, 1172, 1}


X(56832) = X(1)X(19)∩X(21)X(112)

Barycentrics    a*(a + b)*(a + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^3 - a^2*b + a*b^2 - b^3 - a^2*c + 2*a*b*c - b^2*c + a*c^2 - b*c^2 - c^3) : :

X(56832) lies on the cubic K974 and these lines: {1, 19}, {2, 2138}, {4, 5276}, {6, 475}, {10, 1783}, {21, 112}, {81, 13577}, {86, 40411}, {232, 5277}, {274, 648}, {281, 5317}, {377, 41361}, {404, 39575}, {405, 3172}, {406, 2207}, {442, 16318}, {443, 1249}, {451, 8744}, {474, 45141}, {607, 5711}, {612, 4183}, {940, 37382}, {1010, 2322}, {1235, 17686}, {1396, 5236}, {1655, 15014}, {1861, 5280}, {1968, 5283}, {2204, 5089}, {2287, 22131}, {2299, 5269}, {2475, 5523}, {2478, 41370}, {3294, 8750}, {4239, 14580}, {5264, 41320}, {7521, 45786}, {8270, 20613}, {8747, 17905}, {8778, 16370}, {9308, 11321}, {14581, 16589}, {15988, 41363}, {16054, 17903}, {16747, 56014}, {17409, 37325}, {17518, 40582}, {17742, 23050}, {26637, 35325}, {28718, 30737}, {32674, 37558}, {32714, 56382}, {33854, 52252}, {34284, 56015}

X(56832) = X(i)-Ceva conjugate of X(j) for these (i,j): {86, 4183}, {648, 17498}, {40411, 28}
X(56832) = X(i)-isoconjugate of X(j) for these (i,j): {3, 36907}, {71, 39732}, {72, 40188}, {73, 41791}, {228, 46740}, {647, 53643}
X(56832) = X(i)-Dao conjugate of X(j) for these (i,j): {614, 18589}, {7079, 10}, {36103, 36907}, {39052, 53643}, {53387, 21530}
X(56832) = cevapoint of X(19) and X(3162)
X(56832) = barycentric product X(i)*X(j) for these {i,j}: {27, 17742}, {28, 10327}, {29, 8270}, {86, 23050}, {158, 1801}, {286, 12329}, {333, 20613}, {648, 2509}, {1172, 28739}, {1474, 46738}, {1783, 17498}, {15487, 40411}
X(56832) = barycentric quotient X(i)/X(j) for these {i,j}: {19, 36907}, {27, 46740}, {28, 39732}, {162, 53643}, {1172, 41791}, {1474, 40188}, {1801, 326}, {2509, 525}, {8270, 307}, {10327, 20336}, {11677, 20235}, {12329, 72}, {15487, 18589}, {17498, 15413}, {17742, 306}, {20613, 226}, {23050, 10}, {28739, 1231}, {46738, 40071}
X(56832) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2204, 5089, 30733}, {2207, 5275, 406}


X(56833) = X(1)X(21)∩X(4)X(25650)

Barycentrics    a*(a + b)*(a + c)*(a^4 - 2*a^3*b + a^2*b^2 + 2*a*b^3 - 2*b^4 - 2*a^3*c + 3*a^2*b*c - b^3*c + a^2*c^2 + 2*b^2*c^2 + 2*a*c^3 - b*c^3 - 2*c^4) : :

X(56833) lies on the cubic K594 and these lines: {1, 21}, {4, 25650}, {99, 17753}, {405, 40430}, {409, 997}, {643, 1482}, {759, 22836}, {1010, 28628}, {1043, 3419}, {1098, 5730}, {2476, 25645}, {2646, 17512}, {3178, 10572}, {3705, 7474}, {3771, 14009}, {4511, 11101}, {5180, 38568}, {5886, 52360}, {6740, 11681}, {6828, 34243}, {6871, 25663}, {6875, 37527}, {7259, 56536}, {10883, 25664}, {12699, 52352}, {14956, 29839}, {30144, 37816}, {34772, 54313}

X(56833) = {X(21),X(3869)}-harmonic conjugate of X(51290)


X(56834) = X(1)X(21)∩X(2)X(967)

Barycentrics    a*(a + b)*(a + c)*(a^2 + 2*a*b - b^2 + 2*a*c - c^2) : :

X(56834) lies on the cubic K689 and these lines: {1, 21}, {2, 967}, {6, 1444}, {41, 1790}, {86, 1778}, {172, 1812}, {193, 332}, {333, 17103}, {379, 24597}, {593, 40403}, {651, 1014}, {757, 2303}, {948, 1434}, {1171, 56219}, {1333, 2991}, {1792, 4252}, {1817, 17209}, {2238, 25946}, {2271, 21508}, {3240, 35997}, {4184, 54312}, {4253, 11349}, {4273, 16702}, {4722, 18266}, {4921, 50095}, {5235, 6629}, {5247, 17518}, {5333, 16887}, {11104, 56018}, {11329, 37657}, {11342, 30962}, {14974, 29585}, {16046, 41629}, {16050, 30941}, {16915, 37652}, {17200, 42025}, {17499, 26243}, {17746, 30581}, {18755, 35276}, {21495, 33863}, {24895, 50036}, {33718, 37507}, {36015, 42461}, {48802, 51669}

X(56834) = X(42302)-Ceva conjugate of X(81)
X(56834) = X(i)-isoconjugate of X(j) for these (i,j): {37, 39954}, {42, 39721}, {213, 40028}, {523, 28847}, {1400, 56102}
X(56834) = X(i)-Dao conjugate of X(j) for these (i,j): {4384, 4044}, {6626, 40028}, {40582, 56102}, {40589, 39954}, {40592, 39721}
X(56834) = barycentric product X(i)*X(j) for these {i,j}: {58, 30758}, {63, 14013}, {81, 17316}, {86, 3751}, {99, 50336}, {662, 28846}, {757, 4078}, {1014, 27549}, {48047, 52935}
X(56834) = barycentric quotient X(i)/X(j) for these {i,j}: {21, 56102}, {58, 39954}, {81, 39721}, {86, 40028}, {163, 28847}, {3751, 10}, {4078, 1089}, {14013, 92}, {17316, 321}, {27549, 3701}, {28846, 1577}, {30758, 313}, {48047, 4036}, {50336, 523}
X(56834) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58, 18206, 81}, {81, 1931, 21}, {333, 17103, 26643}, {33863, 37676, 21495}, {40773, 51311, 81}


X(56835) = X(1)X(21)∩X(110)X(27950)

Barycentrics    a*(a + b)*(a + c)*(a^5 - a^4*b - a^4*c + a*b^3*c - b^4*c + a*b^2*c^2 + a*b*c^3 - b*c^4) : :

X(56835) lies on the cubic K359 and these lines: {1, 21}, {110, 27950}, {261, 4590}, {333, 19987}, {572, 6003}, {643, 14839}, {1576, 25536}, {2185, 3110}, {6083, 14665}, {14534, 43671}, {30664, 53970}


X(56836) = X(1)X(21)∩X(6)X(23652)

Barycentrics    a^3*(a^2*b^2 + a^2*c^2 - b^2*c^2) : :

X(56836) lies on the cubic K1030 and these lines: {1, 21}, {6, 23652}, {8, 8622}, {32, 2209}, {48, 9236}, {163, 1917}, {172, 18900}, {184, 2210}, {304, 2236}, {560, 1932}, {734, 40365}, {748, 26959}, {750, 27020}, {799, 33788}, {978, 20663}, {1933, 9247}, {1966, 40364}, {1967, 1973}, {3116, 4020}, {3402, 38252}, {3503, 9316}, {4592, 51912}, {7032, 22389}, {14598, 51973}, {16779, 23534}, {23626, 30904}, {33760, 52138}, {53145, 53146}

X(56836) = isogonal conjugate of X(18832)
X(56836) = isogonal conjugate of the isotomic conjugate of X(1740)
X(56836) = isogonal conjugate of the polar conjugate of X(51913)
X(56836) = X(560)-Ceva conjugate of X(31)
X(56836) = X(i)-isoconjugate of X(j) for these (i,j): {1, 18832}, {2, 2998}, {4, 43714}, {6, 40162}, {75, 3223}, {76, 3224}, {83, 42551}, {264, 3504}, {512, 53654}, {523, 3222}, {561, 34248}, {1502, 51951}, {1916, 39927}, {2996, 47733}, {15389, 18022}, {19606, 40016}, {40821, 40824}
X(56836) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 18832}, {9, 40162}, {76, 1928}, {206, 3223}, {23301, 2643}, {32664, 2998}, {32746, 561}, {36033, 43714}, {39031, 39927}, {39054, 53654}, {40368, 34248}, {50516, 21142}
X(56836) = crossdifference of every pair of points on line {661, 17893}
X(56836) = barycentric product X(i)*X(j) for these {i,j}: {1, 1613}, {3, 51913}, {6, 1740}, {19, 20794}, {31, 194}, {32, 17149}, {38, 38834}, {41, 17082}, {48, 3186}, {55, 1424}, {56, 7075}, {58, 21877}, {63, 11325}, {99, 23503}, {100, 23572}, {101, 50516}, {162, 2524}, {163, 23301}, {560, 6374}, {662, 3221}, {692, 21191}, {799, 9491}, {1333, 21080}, {1415, 25128}, {1501, 18837}, {1576, 20910}, {1580, 47642}, {1910, 51427}, {2206, 22028}, {9247, 51843}, {23807, 32739}, {34248, 53147}, {40364, 41293}
X(56836) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40162}, {6, 18832}, {31, 2998}, {32, 3223}, {48, 43714}, {163, 3222}, {194, 561}, {560, 3224}, {662, 53654}, {1424, 6063}, {1501, 34248}, {1613, 75}, {1740, 76}, {1917, 51951}, {1933, 39927}, {1964, 42551}, {2524, 14208}, {3186, 1969}, {3221, 1577}, {6374, 1928}, {7075, 3596}, {9247, 3504}, {9491, 661}, {11325, 92}, {17082, 20567}, {17149, 1502}, {18837, 40362}, {20794, 304}, {20910, 44173}, {21080, 27801}, {21191, 40495}, {21877, 313}, {23301, 20948}, {23503, 523}, {23572, 693}, {38834, 3112}, {41293, 1973}, {47642, 1934}, {50516, 3261}, {51427, 46238}, {51913, 264}, {53147, 18837}
X(56836) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1923, 31}, {6, 23863, 23652}, {2209, 7121, 32}, {18758, 21760, 41268}, {53145, 53146, 53164}


X(56837) = X(1)X(21)∩X(6)X(2670)

Barycentrics    a^2*(a + b)*(a + c)*(a^2*b^2 + a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 - b^2*c^2) : :

X(56837) lies on the cubic K771 and these lines: {1, 21}, {6, 2670}, {32, 40770}, {109, 12031}, {110, 2210}, {171, 1509}, {741, 2223}, {757, 1918}, {1178, 20228}, {1326, 1911}, {1438, 41882}, {1914, 18268}, {1963, 20964}, {2106, 2664}, {2311, 16782}, {3051, 4251}, {4039, 4600}, {4279, 20132}, {9264, 9265}, {18900, 51356}, {20796, 21788}

X(56837) = isogonal conjugate of the isotomic conjugate of X(2669)
X(56837) = X(i)-Ceva conjugate of X(j) for these (i,j): {1914, 1326}, {18268, 58}
X(56837) = X(i)-isoconjugate of X(j) for these (i,j): {2, 54980}, {6, 43685}, {10, 2665}, {37, 39925}, {75, 2107}, {321, 51333}, {512, 53216}, {523, 53624}, {40769, 43534}
X(56837) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 43685}, {206, 2107}, {27854, 3120}, {32664, 54980}, {39054, 53216}, {39056, 321}, {39057, 76}, {40589, 39925}
X(56837) = crossdifference of every pair of points on line {661, 21020}
X(56837) = barycentric product X(i)*X(j) for these {i,j}: {1, 2106}, {6, 2669}, {27, 20796}, {31, 40874}, {32, 41535}, {58, 17759}, {63, 15148}, {75, 56388}, {81, 2664}, {86, 21788}, {741, 39916}, {757, 21897}, {1333, 52049}, {18268, 39028}, {18827, 51331}
X(56837) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 43685}, {31, 54980}, {32, 2107}, {58, 39925}, {163, 53624}, {662, 53216}, {1333, 2665}, {2106, 75}, {2206, 51333}, {2664, 321}, {2669, 76}, {15148, 92}, {17759, 313}, {20796, 306}, {21788, 10}, {21897, 1089}, {39916, 35544}, {40874, 561}, {41535, 1502}, {51331, 740}, {52049, 27801}, {56388, 1}
X(56837) = {X(31),X(51311)}-harmonic conjugate of X(58)


X(56838) = X(1)X(21)∩X(99)X(760)

Barycentrics    a*(a + b)*(a + c)*(b^2 + b*c + c^2)*(a^3 - b^3 + a*b*c - c^3) : :

X(56838) lies on the cubic K1041 and these lines: {1, 21}, {8, 18760}, {72, 27954}, {99, 760}, {110, 56513}, {147, 511}, {518, 7061}, {726, 38481}, {984, 40777}, {1281, 41532}, {1282, 8935}, {1326, 3099}, {1469, 3786}, {2113, 17794}, {3509, 19554}, {3805, 4122}, {7224, 18836}, {9020, 19623}, {20715, 52085}, {30965, 33064}

X(56838) = reflection of X(56154) in X(51369)
X(56838) = X(i)-isoconjugate of X(j) for these (i,j): {3512, 40747}, {8852, 40718}, {18785, 40764}
X(56838) = barycentric product X(i)*X(j) for these {i,j}: {3509, 30966}, {3736, 17789}, {4645, 40773}, {17731, 56693}, {30941, 40791}, {40873, 56696}, {52135, 56441}
X(56838) = barycentric quotient X(i)/X(j) for these {i,j}: {3286, 40764}, {3509, 40718}, {3736, 3512}, {17798, 40747}, {23605, 25425}, {25429, 8926}, {30966, 40845}, {40731, 41534}, {40773, 7261}, {40791, 13576}, {56441, 7061}, {56693, 11599}, {56696, 40846}
X(56838) = {X(40731),X(51836)}-harmonic conjugate of X(40773)


X(56839) = X(1)X(21)∩X(10)X(307)

Barycentrics    a*(b + c)*(a^2 - b^2 - c^2)*(a^2*b - b^3 + a^2*c + 2*a*b*c + b^2*c + b*c^2 - c^3) : :
X(56839) = 4 X[5] - 3 X[53036], X[20] - 3 X[53043], 5 X[631] - 6 X[53042], 4 X[8552] - 3 X[14414], 3 X[21020] - 2 X[23555], 2 X[42443] - 3 X[53035]

X(56839) lies on the cubic K749 and these lines: {1, 21}, {3, 18673}, {4, 8680}, {5, 53036}, {8, 3152}, {9, 25088}, {10, 307}, {20, 53043}, {28, 1762}, {40, 30265}, {65, 10901}, {71, 18674}, {72, 73}, {75, 44129}, {218, 25090}, {219, 3157}, {240, 8747}, {278, 37591}, {306, 52387}, {321, 42456}, {347, 18631}, {387, 986}, {442, 40967}, {518, 37528}, {631, 53042}, {656, 21134}, {684, 9391}, {756, 21077}, {938, 25255}, {942, 2260}, {984, 41874}, {1108, 4016}, {1172, 1761}, {1330, 44694}, {1331, 1794}, {1393, 37695}, {1464, 44782}, {1708, 54305}, {1714, 24443}, {1723, 40977}, {1736, 12572}, {1782, 5285}, {1817, 2939}, {1838, 6734}, {2173, 52012}, {2287, 18599}, {2323, 8555}, {2658, 22350}, {2792, 12683}, {2812, 53405}, {2947, 12528}, {2954, 6986}, {3190, 5904}, {3191, 16577}, {3339, 7013}, {3579, 56178}, {3670, 40940}, {3724, 7742}, {3916, 7004}, {3942, 11573}, {3949, 51574}, {4303, 18607}, {4466, 21530}, {4642, 22069}, {4647, 4847}, {4712, 17879}, {4736, 6737}, {5119, 15954}, {7070, 54290}, {7359, 52260}, {7535, 54324}, {8552, 14414}, {10449, 25252}, {12649, 25254}, {14054, 14547}, {16560, 37431}, {17581, 50198}, {18210, 22076}, {18593, 40661}, {18732, 22097}, {19843, 49598}, {19854, 56457}, {20718, 42440}, {21020, 23555}, {21147, 47848}, {21367, 37231}, {21808, 43220}, {23693, 26878}, {24315, 37151}, {24880, 37887}, {25091, 45120}, {37113, 51697}, {39585, 45738}, {39791, 41393}, {42443, 53035}

X(56839) = reflection of X(i) in X(j) for these {i,j}: {18673, 3}, {45038, 942}
X(56839) = isotomic conjugate of the polar conjugate of X(2294)
X(56839) = X(i)-Ceva conjugate of X(j) for these (i,j): {75, 5249}, {664, 24018}, {1331, 656}, {6734, 442}, {18607, 18591}
X(56839) = X(i)-isoconjugate of X(j) for these (i,j): {2, 40570}, {4, 1175}, {6, 40395}, {25, 40412}, {27, 2259}, {28, 943}, {110, 14775}, {112, 56320}, {284, 40573}, {1172, 2982}, {1333, 40447}, {1474, 40435}, {1794, 8747}, {2203, 40422}, {17926, 32651}, {40572, 40574}
X(56839) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 40395}, {37, 40447}, {244, 14775}, {442, 29}, {942, 1}, {6505, 40412}, {16585, 286}, {16732, 46107}, {18591, 27}, {32664, 40570}, {34591, 56320}, {36033, 1175}, {39007, 3737}, {40590, 40573}, {40591, 943}, {40937, 92}, {51574, 40435}, {52119, 24006}
X(56839) = crossdifference of every pair of points on line {661, 35993}
X(56839) = barycentric product X(i)*X(j) for these {i,j}: {10, 18607}, {48, 1234}, {63, 442}, {69, 2294}, {72, 5249}, {75, 18591}, {78, 55010}, {304, 40952}, {305, 40978}, {306, 942}, {307, 40937}, {312, 39791}, {313, 14597}, {321, 4303}, {326, 1865}, {333, 41393}, {348, 40967}, {349, 23207}, {1214, 6734}, {1231, 14547}, {1332, 23752}, {1444, 21675}, {1838, 3998}, {1841, 52396}, {1859, 52565}, {2260, 20336}, {16585, 52388}, {26942, 54356}, {37755, 51978}, {40071, 40956}, {50354, 52609}
X(56839) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40395}, {10, 40447}, {31, 40570}, {48, 1175}, {63, 40412}, {65, 40573}, {71, 943}, {72, 40435}, {73, 2982}, {228, 2259}, {306, 40422}, {442, 92}, {656, 56320}, {661, 14775}, {942, 27}, {1234, 1969}, {1841, 8747}, {1859, 8748}, {1865, 158}, {2260, 28}, {2294, 4}, {3990, 1794}, {4303, 81}, {5249, 286}, {6734, 31623}, {8021, 2326}, {14547, 1172}, {14597, 58}, {18591, 1}, {18607, 86}, {21675, 41013}, {23207, 284}, {23752, 17924}, {37755, 52560}, {37993, 46884}, {39791, 57}, {40937, 29}, {40952, 19}, {40956, 1474}, {40967, 281}, {40978, 25}, {41393, 226}, {45038, 37279}, {46882, 270}, {46883, 36419}, {50354, 17925}, {52306, 3737}, {52610, 36048}, {53323, 24019}, {54356, 46103}, {55010, 273}
X(56839) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 191, 2328}, {63, 52362, 283}, {63, 54289, 255}, {72, 1214, 3682}, {3958, 18675, 219}, {4466, 21671, 21530}, {16585, 39772, 54356}


X(56840) = X(1)X(21)∩X(3)X(60)

Barycentrics    a^2*(a + b)*(a + c)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - a*b*c - a*c^2 + c^3) : :

X(56840) lies on the cubics K360 and K383 and these lines: {1, 21}, {2, 1098}, {3, 60}, {4, 162}, {6, 7054}, {35, 9275}, {36, 17104}, {41, 5060}, {46, 1325}, {56, 110}, {57, 229}, {65, 11101}, {78, 37783}, {86, 27187}, {145, 643}, {163, 4253}, {171, 21674}, {218, 5546}, {279, 1414}, {333, 5016}, {394, 593}, {411, 580}, {499, 3615}, {501, 7280}, {517, 54313}, {579, 2150}, {582, 6876}, {662, 4188}, {757, 3945}, {759, 5903}, {849, 4257}, {1109, 24640}, {1155, 37405}, {1210, 51382}, {1333, 56000}, {1399, 4296}, {1433, 56641}, {1437, 3418}, {1451, 37791}, {1723, 40582}, {1724, 2476}, {1737, 13746}, {1792, 40571}, {1793, 18397}, {1836, 37369}, {1837, 7424}, {1993, 54431}, {2185, 4189}, {2194, 4225}, {2299, 54340}, {2361, 45230}, {2363, 17126}, {2475, 41501}, {2617, 3216}, {3017, 11114}, {3286, 3449}, {3485, 17127}, {3486, 6043}, {3559, 44698}, {3560, 45923}, {4184, 54417}, {4636, 27083}, {4640, 37032}, {4652, 40592}, {5010, 15792}, {5012, 54300}, {5086, 5247}, {5736, 40412}, {5902, 37816}, {6061, 37248}, {6284, 54399}, {6740, 10573}, {6828, 37530}, {6857, 24936}, {6871, 24898}, {6872, 37666}, {7474, 29681}, {7768, 34016}, {9273, 14366}, {9352, 35991}, {10974, 37311}, {12047, 50757}, {13486, 52382}, {13739, 41503}, {14009, 24892}, {14956, 33142}, {15474, 52393}, {16471, 37300}, {16704, 51978}, {17097, 55101}, {17102, 18609}, {17512, 56288}, {23059, 38850}, {23692, 27644}, {24914, 37158}, {26066, 37152}, {30576, 37469}, {34772, 56439}, {37582, 51420}, {40980, 41723}

X(56840) = isogonal conjugate of X(41501)
X(56840) = X(7)-Ceva conjugate of X(40214)
X(56840) = X(i)-isoconjugate of X(j) for these (i,j): {1, 41501}, {4, 43708}, {6, 43683}, {37, 37887}, {65, 6598}, {523, 6011}
X(56840) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 41501}, {9, 43683}, {6003, 8286}, {8286, 4086}, {35193, 8}, {35583, 6370}, {36033, 43708}, {40589, 37887}, {40602, 6598}
X(56840) = barycentric product X(i)*X(j) for these {i,j}: {1, 56439}, {58, 33116}, {63, 13739}, {81, 34772}, {249, 8286}, {333, 37583}, {348, 41503}, {662, 6003}, {1790, 5174}, {2185, 15556}, {5546, 31603}, {24624, 27086}
X(56840) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 43683}, {6, 41501}, {48, 43708}, {58, 37887}, {163, 6011}, {284, 6598}, {6003, 1577}, {8286, 338}, {13739, 92}, {15556, 6358}, {27086, 3936}, {33116, 313}, {34772, 321}, {37583, 226}, {41503, 281}, {56439, 75}
X(56840) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5127, 35193}, {3, 60, 40214}, {21, 2651, 3869}, {21, 46441, 1}, {58, 283, 81}, {58, 1780, 21}, {58, 5127, 1}, {81, 1931, 24635}


X(56841) = X(1)X(25)∩X(281)(312)

Barycentrics    a*(a - b - c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2 + 2*a*b + b^2 + c^2)*(a*b + b^2 + a*c + c^2)*(a^2 + b^2 + 2*a*c + c^2) : :

X(56841) lies on the cubic K1073 and these lines: {1, 25}, {222, 56328}, {281, 312}, {960, 40976}, {1245, 6001}, {1386, 1395}, {2185, 2189}, {2221, 42467}, {2354, 3666}, {32691, 53892}, {34260, 44733}

X(56841) = X(i)-isoconjugate of X(j) for these (i,j): {388, 2359}, {961, 5227}, {1038, 2298}, {1220, 2286}, {1791, 2285}, {2522, 36098}, {8687, 23874}, {36147, 51644}
X(56841) = X(i)-Dao conjugate of X(j) for these (i,j): {1211, 56367}, {2092, 54433}, {17419, 23874}, {38992, 2522}, {39015, 51644}, {52087, 1038}
X(56841) = barycentric product X(i)*X(j) for these {i,j}: {1036, 54314}, {1039, 4357}, {1829, 30479}, {1848, 2339}, {3910, 36099}, {46878, 56328}
X(56841) = barycentric quotient X(i)/X(j) for these {i,j}: {960, 54433}, {1036, 1791}, {1039, 1220}, {1193, 1038}, {1829, 388}, {2269, 5227}, {2300, 2286}, {2354, 2285}, {3666, 56367}, {3687, 19799}, {6371, 51644}, {17420, 23874}, {20967, 7085}, {21033, 3610}, {32691, 36098}, {36099, 6648}, {40976, 612}, {46878, 4385}, {51686, 961}, {52326, 2522}


X(56842) = X(1)X(25)∩X(46)(223)

Barycentrics    a*(a^9 + a^8*b - 2*a^7*b^2 - 2*a^6*b^3 + 2*a^3*b^6 + 2*a^2*b^7 - a*b^8 - b^9 + a^8*c - 2*a^7*b*c - 4*a^6*b^2*c + 2*a^5*b^3*c + 6*a^4*b^4*c + 2*a^3*b^5*c - 4*a^2*b^6*c - 2*a*b^7*c + b^8*c - 2*a^7*c^2 - 4*a^6*b*c^2 + 2*a^4*b^3*c^2 - 2*a^3*b^4*c^2 + 4*a*b^6*c^2 + 2*b^7*c^2 - 2*a^6*c^3 + 2*a^5*b*c^3 + 2*a^4*b^2*c^3 - 4*a^3*b^3*c^3 + 2*a^2*b^4*c^3 + 2*a*b^5*c^3 - 2*b^6*c^3 + 6*a^4*b*c^4 - 2*a^3*b^2*c^4 + 2*a^2*b^3*c^4 - 6*a*b^4*c^4 + 2*a^3*b*c^5 + 2*a*b^3*c^5 + 2*a^3*c^6 - 4*a^2*b*c^6 + 4*a*b^2*c^6 - 2*b^3*c^6 + 2*a^2*c^7 - 2*a*b*c^7 + 2*b^2*c^7 - a*c^8 + b*c^8 - c^9) : :

X(56842) lies on the cubic K173 and these lines: {1, 25}, {40, 1745}, {46, 223}, {57, 3468}, {255, 24611}, {1490, 5119}, {1697, 3465}, {1845, 21147}, {2270, 18599}, {3074, 10319}, {8251, 34048}, {11010, 16389}

X(56842) = X(55478)-Dao conjugate of X(55394)
X(56842) = {X(11398),X(17441)}-harmonic conjugate of X(1)


X(56843) = X(1)X(30)∩X(3)X(6186)

Barycentrics    a*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - 4*b*c - c^2)*(a^2 - b^2 + a*c + c^2) : :

X(56843) lies on the cubic K1075 and these lines: {1, 30}, {3, 6186}, {5, 55483}, {13, 11073}, {14, 11072}, {37, 2160}, {58, 26202}, {81, 10308}, {265, 1245}, {321, 4420}, {582, 41872}, {740, 6757}, {1010, 3615}, {1251, 33654}, {1725, 5221}, {1962, 16117}, {2153, 52201}, {2154, 52202}, {2166, 52371}, {2292, 12702}, {2306, 33653}, {3017, 22798}, {3426, 7986}, {3946, 18483}, {4205, 52388}, {4272, 8818}, {4653, 13624}, {4657, 18644}, {4658, 14158}, {5492, 11684}, {6742, 41813}, {8245, 48924}, {14844, 24161}, {16160, 33135}, {25430, 35242}, {26700, 28193}, {45923, 48668}, {50587, 56193}

X(56843) = X(35)-isoconjugate of X(3296)
X(56843) = barycentric product X(i)*X(j) for these {i,j}: {79, 3305}, {2160, 42696}, {3295, 30690}, {3697, 52393}, {6742, 47965}, {7073, 52422}, {7110, 7190}, {15455, 48340}, {42032, 52372}, {52344, 52424}
X(56843) = barycentric quotient X(i)/X(j) for these {i,j}: {2160, 3296}, {3295, 3219}, {3305, 319}, {3697, 3969}, {7100, 30679}, {7190, 17095}, {42696, 33939}, {47965, 4467}, {48268, 18160}, {48340, 14838}, {52422, 52421}, {52424, 1442}
X(56843) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 79, 52372}, {1, 52372, 7100}, {79, 7073, 7100}, {7073, 52372, 1}, {42677, 42680, 2160}


X(56844) = X(1)X(30)∩X(54)X(3336)

Barycentrics    a*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2 - b^2 + a*c + c^2) : :

X(56844) lies on the cubic K668 and these lines: {1, 30}, {54, 3336}, {59, 484}, {60, 3337}, {200, 1079}, {265, 56422}, {953, 26700}, {1020, 2597}, {1756, 7136}, {2160, 2364}, {2166, 40437}, {2323, 4880}, {3179, 39152}, {3615, 17586}, {3737, 4960}, {3872, 52344}, {4351, 4511}, {5010, 8606}, {5131, 50462}, {5397, 43682}, {5429, 6186}, {6149, 18593}, {6757, 56143}, {7127, 39153}, {13486, 14158}, {30690, 54318}, {31855, 56193}, {34033, 51298}, {34301, 37718}, {36064, 53932}

X(56844) = isogonal conjugate of X(56422)
X(56844) = X(i)-isoconjugate of X(j) for these (i,j): {1, 56422}, {6, 41226}, {35, 80}, {319, 6187}, {655, 9404}, {759, 3678}, {1399, 52409}, {1411, 4420}, {1442, 52371}, {1793, 1825}, {1807, 6198}, {2003, 36910}, {2006, 52405}, {2161, 3219}, {2174, 18359}, {2222, 35057}, {2341, 16577}, {2594, 6740}, {2605, 51562}, {3969, 34079}, {7161, 47054}, {11107, 52391}, {15065, 17104}, {35193, 52383}, {46073, 46077}, {47318, 55210}, {52377, 53524}, {52412, 52431}
X(56844) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 56422}, {9, 41226}, {34586, 3678}, {35069, 3969}, {35204, 4420}, {38984, 35057}, {40584, 3219}, {40612, 319}
X(56844) = barycentric product X(i)*X(j) for these {i,j}: {36, 30690}, {79, 3218}, {320, 2160}, {758, 52393}, {1443, 7110}, {1870, 52381}, {3615, 18593}, {3738, 38340}, {3904, 26700}, {3936, 52375}, {3960, 6742}, {4511, 52374}, {4707, 13486}, {6186, 20924}, {7073, 17078}, {7100, 17923}, {7113, 20565}, {15455, 53314}, {32851, 52372}
X(56844) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 41226}, {6, 56422}, {36, 3219}, {79, 18359}, {320, 33939}, {654, 35057}, {758, 3969}, {1443, 17095}, {1464, 16577}, {1870, 52412}, {2160, 80}, {2245, 3678}, {2323, 4420}, {2361, 52405}, {3218, 319}, {3960, 4467}, {4053, 7206}, {4282, 35193}, {4453, 18160}, {4511, 42033}, {4973, 3578}, {6186, 2161}, {6742, 36804}, {7073, 36910}, {7100, 52351}, {7110, 52409}, {7113, 35}, {8648, 9404}, {8818, 15065}, {13486, 47318}, {17078, 52421}, {18593, 40999}, {21758, 2605}, {26700, 655}, {30690, 20566}, {38340, 35174}, {42623, 7150}, {52059, 6149}, {52372, 2006}, {52374, 18815}, {52375, 24624}, {52393, 14616}, {52413, 6198}, {52434, 2174}, {52440, 2003}, {53314, 14838}, {53527, 7265}
X(56844) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {79, 7100, 1}, {7100, 52372, 79}


X(56845) = X(1)X(30)∩X(4)X(94)

Barycentrics    (a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + a*c + c^2)*(a^5*b - 2*a^3*b^3 + a*b^5 + a^5*c - 2*a^4*b*c + a^2*b^3*c - a*b^4*c + b^5*c - 2*a^3*c^3 + a^2*b*c^3 - 2*b^3*c^3 - a*b*c^4 + a*c^5 + b*c^5) : :

X(56845) lies on the cubic K594 and these lines: {1, 30}, {3, 3615}, {4, 94}, {5, 52388}, {516, 47749}, {517, 6757}, {1154, 48877}, {1482, 6742}, {1789, 6914}, {2166, 5903}, {3869, 52344}, {4271, 8818}, {5248, 6097}, {6003, 43082}, {13754, 18407}, {30522, 46468}, {36171, 52056}


X(56846) = X(1)X(30)∩X(2)X(6357)

Barycentrics    (a + b - c)*(a - b + c)*(2*a + b + c)*(2*a^3 + a^2*b - 2*a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c - 2*a*c^2 + b*c^2 - c^3) : :

X(56846) lies on the cubic K637 and these lines: {1, 30}, {2, 6357}, {553, 1100}, {664, 4102}, {1213, 19620}, {1214, 5325}, {3160, 34048}, {3752, 18593}, {16586, 18607}, {17525, 51654}, {41804, 50256}

X(56846) = complement of the isotomic conjugate of X(17781)
X(56846) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 9955}, {31, 553}, {213, 8818}, {1415, 56092}, {3579, 141}, {17781, 2887}, {28615, 11544}, {41800, 21252}
X(56846) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 553}, {664, 56092}
X(56846) = X(10308)-isoconjugate of X(33635)
X(56846) = X(553)-Dao conjugate of X(2)
X(56846) = barycentric product X(i)*X(j) for these {i,j}: {7, 3650}, {553, 17781}
X(56846) = barycentric quotient X(i)/X(j) for these {i,j}: {3579, 32635}, {3650, 8}, {17781, 4102}, {32636, 10308}
X(56846) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {554, 1081, 11544}, {37631, 43066, 52374}, {37631, 52374, 55010}, {43066, 47057, 55010}, {47057, 52374, 37631}


X(56847) = X(1)X(30)∩X(3)X(26700)

Barycentrics    (a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + a*c + c^2)*(2*a^3 + a^2*b - 2*a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c - 2*a*c^2 + b*c^2 - c^3) : :

X(56847) lies on the cubic K259 and these lines: {1, 30}, {3, 26700}, {8, 6739}, {40, 50462}, {220, 35066}, {265, 18526}, {355, 34301}, {476, 56645}, {517, 52390}, {999, 52375}, {1125, 6757}, {3003, 17053}, {3296, 52393}, {3615, 3622}, {3946, 24167}, {8818, 16777}, {11374, 14844}, {13486, 35193}, {25430, 30602}, {39170, 45926}

X(56847) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 8818}, {58, 9955}, {1333, 553}, {3579, 3454}, {17781, 21245}, {41800, 21253}, {55186, 53575}
X(56847) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 8818}, {6742, 56092}
X(56847) = X(i)-isoconjugate of X(j) for these (i,j): {35, 10308}, {2605, 55185}
X(56847) = X(8818)-Dao conjugate of X(2)
X(56847) = crossdifference of every pair of points on line {9404, 48389}
X(56847) = barycentric product X(i)*X(j) for these {i,j}: {79, 17781}, {3579, 30690}, {6742, 41800}, {38340, 56092}
X(56847) = barycentric quotient X(i)/X(j) for these {i,j}: {2160, 10308}, {3579, 3219}, {3650, 3578}, {17781, 319}, {41800, 4467}, {55186, 18160}
X(56847) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50148, 52382}, {1, 52382, 56402}


X(56848) = X(1)X(30)∩X(6)X(57)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c + b^2*c - a*c^2 + b*c^2 - c^3) : :

X(56488) lies on the cubic K1169 and these lines: {1, 30}, {2, 1443}, {6, 57}, {7, 17011}, {9, 18607}, {34, 4306}, {46, 1079}, {63, 18593}, {68, 17857}, {73, 1448}, {77, 226}, {241, 34048}, {278, 4341}, {279, 56231}, {329, 53996}, {553, 4667}, {582, 15803}, {651, 1708}, {738, 40212}, {913, 1435}, {990, 20277}, {1042, 21147}, {1044, 54295}, {1103, 5128}, {1155, 22117}, {1214, 6180}, {1394, 37583}, {1420, 1455}, {1422, 2006}, {1423, 7106}, {1456, 1617}, {1458, 34036}, {1565, 5928}, {1709, 8758}, {1727, 51298}, {1728, 8757}, {1944, 18663}, {3338, 36742}, {3554, 23681}, {3580, 56356}, {3772, 6357}, {3942, 21370}, {3961, 5018}, {3982, 7190}, {4320, 10571}, {4347, 49686}, {4350, 43035}, {4644, 54369}, {5219, 43036}, {5398, 52440}, {5905, 6505}, {6358, 9312}, {7125, 7147}, {8545, 16577}, {12704, 37498}, {12709, 15832}, {17075, 17184}, {17078, 33066}, {17092, 32911}, {18623, 54366}, {18625, 31019}, {20211, 53994}, {23511, 43055}, {26611, 28609}, {32859, 41804}, {34043, 37550}, {37817, 51654}

X(56848) = X(i)-Ceva conjugate of X(j) for these (i,j): {278, 57}, {4341, 34489}, {56356, 1}
X(56848) = X(i)-isoconjugate of X(j) for these (i,j): {2, 7072}, {6, 36626}, {8, 2164}, {9, 90}, {33, 6513}, {41, 20570}, {55, 2994}, {219, 7040}, {220, 7318}, {281, 1069}, {643, 55248}, {1857, 6512}, {3239, 36082}, {6061, 7363}
X(56848) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 36626}, {46, 27522}, {63, 345}, {223, 2994}, {478, 90}, {3160, 20570}, {32664, 7072}, {55060, 55248}
X(56848) = cevapoint of X(1406) and X(2178)
X(56848) = crossdifference of every pair of points on line {3900, 9404}
X(56848) = barycentric product X(i)*X(j) for these {i,j}: {7, 46}, {56, 20930}, {57, 5905}, {75, 1406}, {77, 1068}, {85, 2178}, {269, 5552}, {273, 3157}, {278, 6505}, {348, 52033}, {651, 21188}, {658, 46389}, {664, 51648}, {1014, 21077}, {1079, 7318}, {1427, 31631}, {1434, 21853}, {1439, 3559}, {1443, 56417}, {3193, 3668}, {4573, 55214}, {7180, 55247}
X(56848) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 36626}, {7, 20570}, {31, 7072}, {34, 7040}, {46, 8}, {56, 90}, {57, 2994}, {222, 6513}, {269, 7318}, {603, 1069}, {604, 2164}, {1068, 318}, {1079, 5552}, {1406, 1}, {1800, 1792}, {2178, 9}, {3157, 78}, {3193, 1043}, {5552, 341}, {5905, 312}, {6505, 345}, {6511, 3719}, {7125, 6512}, {7147, 7363}, {7180, 55248}, {20930, 3596}, {21077, 3701}, {21188, 4391}, {21853, 2321}, {46389, 3239}, {51648, 522}, {52033, 281}, {55214, 3700}, {56417, 52409}, {56535, 4420}
X(56848) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {34, 4306, 34489}, {57, 223, 56418}, {57, 1419, 2003}, {222, 1427, 57}, {223, 269, 57}, {278, 34052, 34492}, {1407, 1465, 57}, {1418, 52424, 57}, {1427, 6610, 222}, {4654, 47057, 1}


X(56849) = X(1)X(30)∩X(12)X(201)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)^2*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c + 3*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3) : :

X(56849) lies on the cubic K666 and these lines: {1, 30}, {12, 201}, {56, 229}, {65, 1365}, {278, 2906}, {2607, 5433}, {3337, 47054}, {4415, 27577}, {5221, 24883}, {7178, 50574}, {8614, 18625}, {17768, 35193}, {32636, 50757}, {41493, 43682}

X(56849) = X(1414)-Ceva conjugate of X(7178)
X(56849) = X(60)-isoconjugate of X(7161)
X(56849) = X(i)-Dao conjugate of X(j) for these (i,j): {1109, 4086}, {5949, 56440}, {13089, 1098}, {40622, 7372}
X(56849) = barycentric product X(i)*X(j) for these {i,j}: {7, 5949}, {12, 26842}, {57, 42005}, {226, 11263}, {664, 17422}, {3337, 6358}, {4573, 12071}, {6758, 7178}, {21891, 24002}
X(56849) = barycentric quotient X(i)/X(j) for these {i,j}: {1365, 7332}, {2171, 7161}, {3337, 2185}, {5949, 8}, {6758, 645}, {7178, 7372}, {11263, 333}, {12071, 3700}, {17422, 522}, {21784, 5546}, {21891, 644}, {26842, 261}, {42005, 312}, {50657, 35193}
X(56849) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 52382, 39751}, {3649, 39751, 1}


X(56850) = X(2)X(11)∩X(7)X(513)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^2*b - 2*a*b^2 + b^3 + a^2*c + 2*a*b*c - b^2*c - 2*a*c^2 - b*c^2 + c^3) : :
X(56850) = 3 X[11038] - 2 X[34230]

X(56850) lies on the cubic K295 and these lines: {2, 11}, {7, 513}, {518, 4124}, {527, 36816}, {584, 40450}, {613, 1814}, {666, 1992}, {954, 36008}, {1026, 5853}, {2481, 34919}, {4266, 18785}, {4644, 51929}, {5138, 51832}, {5377, 6601}, {5880, 14267}, {6604, 34085}, {7056, 40154}, {7437, 7677}, {8545, 24409}, {11038, 34230}, {15733, 37788}, {17316, 46798}, {24395, 54370}, {24402, 51768}, {36221, 46792}, {37516, 46149}

X(56850) = X(i)-isoconjugate of X(j) for these (i,j): {1458, 34894}, {2223, 51567}, {2254, 2742}, {2340, 15728}, {10426, 35293}
X(56850) = X(10427)-Dao conjugate of X(518)
X(56850) = trilinear pole of line {2826, 43065}
X(56850) = barycentric product X(i)*X(j) for these {i,j}: {105, 37788}, {294, 38468}, {666, 2826}, {673, 26015}, {2481, 43065}, {3660, 36796}, {14942, 30379}, {15733, 34018}
X(56850) = barycentric quotient X(i)/X(j) for these {i,j}: {294, 34894}, {673, 51567}, {919, 2742}, {1462, 15728}, {2826, 918}, {3660, 241}, {15733, 3693}, {26015, 3912}, {30379, 9436}, {37788, 3263}, {38468, 40704}, {41555, 51384}, {43065, 518}


X(56851) = X(2)X(11)∩X(99)X(16728)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^4 - a^3*b - a^3*c - a^2*b*c + 2*a*b^2*c - b^3*c + 2*a*b*c^2 - b*c^3) : :

X(56851) lies on the cubic K1305 and these lines: {2, 11}, {99, 16728}, {190, 294}, {239, 36086}, {536, 666}, {664, 1462}, {918, 1814}, {1086, 31637}, {2195, 17755}, {2481, 16732}, {3263, 41934}, {3685, 51838}, {4360, 40754}, {4422, 31638}, {6185, 36802}, {36146, 40862}, {39272, 46802}, {46804, 55943}

X(56851) = reflection of X(666) in on K1305
X(56851) = X(672)-isoconjugate of X(54977)
X(56851) = crossdifference of every pair of points on line {665, 20455}
X(56851) = barycentric product X(1083)*X(2481)
X(56851) = barycentric quotient X(i)/X(j) for these {i,j}: {105, 54977}, {666, 53213}, {1083, 518}
X(56851) = {X(6185),X(36802)}-harmonic conjugate of X(46798)


X(56852) = X(1)X(33674)∩X(2)X(11)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^3*b^2 - a^2*b^3 + 3*a^3*b*c + a^2*b^2*c - a*b^3*c + a^3*c^2 + a^2*b*c^2 - a*b^2*c^2 - b^3*c^2 - a^2*c^3 - a*b*c^3 - b^2*c^3) : :

X(56852) lies on the cubic K1176 and these lines: {1, 33674}, {2, 11}, {37, 33676}, {86, 40724}, {666, 4649}, {870, 40739}, {894, 52030}, {2481, 24325}, {15569, 46798}, {17379, 56639}, {20179, 51838}, {34085, 42289}, {40723, 40737}

X(56852) = X(40718)-Ceva conjugate of X(40724)
X(56852) = X(6)-isoconjugate of X(40788)
X(56852) = X(9)-Dao conjugate of X(40788)
X(56852) = barycentric product X(i)*X(j) for these {i,j}: {75, 40761}, {2481, 39252}
X(56852) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 40788}, {39252, 518}, {40761, 1}
X(56852) = {X(6654),X(54291)}-harmonic conjugate of X(14942)


X(56853) = X(1)X(33957)∩X(2)X(11)

Barycentrics    a^2*(b + c)*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2) : :

X(56853) lies on the circumconic {{A,B,C,X(2),X(6)}}, the cubic K1003, and these lines: {1, 39957}, {2, 11}, {3, 39981}, {6, 692}, {31, 2350}, {37, 4068}, {56, 1462}, {111, 919}, {197, 8770}, {210, 56260}, {238, 39979}, {251, 20988}, {294, 941}, {393, 6059}, {666, 3228}, {694, 21788}, {884, 6187}, {927, 6015}, {967, 36057}, {1015, 23392}, {1024, 53287}, {1027, 4491}, {1218, 2481}, {1279, 2223}, {1284, 46501}, {1400, 1918}, {1402, 1427}, {1416, 1460}, {1911, 3572}, {1914, 20875}, {2284, 7077}, {2809, 20589}, {3052, 39966}, {3286, 16876}, {3747, 39258}, {3932, 4433}, {4436, 24358}, {4455, 55261}, {4649, 24436}, {5377, 11609}, {8053, 37586}, {8424, 54117}, {8647, 20459}, {10099, 53527}, {15320, 16580}, {16606, 21856}, {16690, 27626}, {16969, 52660}, {17735, 51866}, {20992, 39956}, {27918, 53312}, {32658, 46010}, {32666, 34079}, {34160, 55057}, {35333, 52897}, {36635, 39975}, {37593, 56219}, {41333, 51436}, {46018, 51987}

X(56853) = isogonal conjugate of X(30941)
X(56853) = isogonal conjugate of the anticomplement of X(2238)
X(56853) = isogonal conjugate of the isotomic conjugate of X(13576)
X(56853) = X(i)-Ceva conjugate of X(j) for these (i,j): {105, 18785}, {32666, 884}, {36086, 43929}, {52030, 6}
X(56853) = X(i)-isoconjugate of X(j) for these (i,j): {1, 30941}, {2, 18206}, {6, 18157}, {21, 9436}, {27, 25083}, {58, 3263}, {63, 15149}, {69, 54407}, {75, 3286}, {81, 3912}, {86, 518}, {99, 2254}, {100, 23829}, {241, 333}, {274, 672}, {284, 40704}, {286, 1818}, {310, 2223}, {314, 1458}, {332, 1876}, {643, 43042}, {645, 53544}, {649, 55260}, {662, 918}, {665, 799}, {673, 16728}, {693, 54353}, {757, 3932}, {811, 53550}, {873, 20683}, {883, 3737}, {926, 4625}, {1014, 3717}, {1019, 42720}, {1025, 4560}, {1026, 7192}, {1043, 34855}, {1414, 50333}, {1434, 3693}, {1444, 1861}, {1509, 3930}, {1790, 46108}, {1812, 5236}, {2283, 18155}, {2284, 7199}, {3252, 30940}, {3675, 4600}, {4025, 4238}, {4088, 52935}, {4447, 32010}, {4594, 53553}, {4610, 24290}, {4614, 50357}, {4620, 17435}, {4635, 52614}, {4684, 56048}, {4966, 40438}, {5089, 17206}, {6385, 9454}, {7182, 37908}, {7253, 41353}, {7257, 53539}, {8299, 18827}, {8638, 55213}, {17139, 36819}, {17755, 37128}, {20752, 44129}, {22116, 33295}, {28660, 52635}, {30939, 34230}, {34253, 36800}, {39775, 56154}, {40403, 51400}, {52619, 54325}
X(56853) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 30941}, {9, 18157}, {10, 3263}, {206, 3286}, {1084, 918}, {3162, 15149}, {5375, 55260}, {8054, 23829}, {17423, 53550}, {32664, 18206}, {33675, 6385}, {38986, 2254}, {38996, 665}, {40586, 3912}, {40590, 40704}, {40600, 518}, {40607, 3932}, {40608, 50333}, {40611, 9436}, {50497, 3675}, {55060, 43042}
X(56853) = cevapoint of X(i) and X(j) for these (i,j): {42, 3747}, {8632, 38346}
X(56853) = trilinear pole of line {213, 512}
X(56853) = crossdifference of every pair of points on line {665, 918}
X(56853) = barycentric product X(i)*X(j) for these {i,j}: {1, 18785}, {6, 13576}, {10, 1438}, {37, 105}, {42, 673}, {65, 294}, {71, 36124}, {72, 8751}, {100, 55261}, {210, 1462}, {213, 2481}, {226, 2195}, {228, 54235}, {512, 666}, {523, 919}, {661, 36086}, {669, 36803}, {740, 51866}, {798, 51560}, {884, 4552}, {885, 4559}, {927, 3709}, {1018, 1027}, {1024, 4551}, {1042, 6559}, {1400, 14942}, {1402, 36796}, {1416, 2321}, {1427, 28071}, {1577, 32666}, {1783, 10099}, {1814, 1824}, {1826, 36057}, {1918, 18031}, {2238, 52030}, {2250, 54364}, {2333, 31637}, {2334, 14625}, {3125, 5377}, {3700, 32735}, {3747, 52209}, {3930, 51838}, {3932, 41934}, {3952, 43929}, {4041, 36146}, {4613, 29956}, {4804, 36138}, {6185, 20683}, {7178, 52927}, {7180, 36802}, {15382, 21956}, {18098, 46149}, {28132, 53321}, {32658, 41013}, {35333, 55240}, {38955, 51987}, {40747, 52029}, {51377, 55943}
X(56853) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 18157}, {6, 30941}, {25, 15149}, {31, 18206}, {32, 3286}, {37, 3263}, {42, 3912}, {65, 40704}, {100, 55260}, {105, 274}, {213, 518}, {228, 25083}, {294, 314}, {512, 918}, {649, 23829}, {666, 670}, {669, 665}, {673, 310}, {798, 2254}, {872, 3930}, {884, 4560}, {919, 99}, {1024, 18155}, {1027, 7199}, {1334, 3717}, {1400, 9436}, {1402, 241}, {1416, 1434}, {1438, 86}, {1500, 3932}, {1824, 46108}, {1918, 672}, {1973, 54407}, {2195, 333}, {2200, 1818}, {2205, 2223}, {2223, 16728}, {2333, 1861}, {2481, 6385}, {3049, 53550}, {3121, 3675}, {3709, 50333}, {3747, 17755}, {4079, 4088}, {4557, 42720}, {4559, 883}, {4832, 50357}, {5377, 4601}, {7109, 20683}, {7180, 43042}, {8751, 286}, {10099, 15413}, {13576, 76}, {14942, 28660}, {18785, 75}, {20683, 4437}, {20970, 4966}, {32658, 1444}, {32666, 662}, {32735, 4573}, {32739, 54353}, {34085, 55213}, {35333, 55239}, {36057, 17206}, {36086, 799}, {36124, 44129}, {36138, 51563}, {36146, 4625}, {36796, 40072}, {36803, 4609}, {39258, 4712}, {40934, 51400}, {41333, 8299}, {42752, 42770}, {43921, 16727}, {43929, 7192}, {46149, 16703}, {46163, 4576}, {50487, 24290}, {51377, 51390}, {51436, 50441}, {51560, 4602}, {51641, 53544}, {51866, 18827}, {51987, 17139}, {52020, 51384}, {52030, 40017}, {52927, 645}, {53241, 53236}, {55261, 693}
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 20714, 20702}, {16686, 20468, 20678}, {20678, 37580, 20468}


X(56854) = X(1)X(3252)∩X(2)X(11)

Barycentrics    a*(a^2 - b*c)*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(b^2 + b*c + c^2) : :

X(56854) lies on the cubic K1017 and these lines: {1, 3252}, {2, 11}, {6, 2113}, {192, 33674}, {874, 1921}, {984, 3802}, {1565, 38647}, {3242, 17475}, {3736, 4481}, {3797, 56697}, {15569, 43921}

X(56854) = X(i)-isoconjugate of X(j) for these (i,j): {665, 37207}, {870, 40730}, {985, 22116}, {2254, 30664}, {3252, 14621}, {40217, 40746}
X(56854) = X(i)-Dao conjugate of X(j) for these (i,j): {3789, 22116}, {19584, 40217}
X(56854) = cevapoint of X(3783) and X(3802)
X(56854) = trilinear pole of line {16514, 30665}
X(56854) = barycentric product X(i)*X(j) for these {i,j}: {1, 56697}, {105, 3797}, {239, 52029}, {666, 30665}, {673, 3783}, {874, 29956}, {984, 6654}, {2481, 16514}, {3802, 52209}, {4486, 36086}
X(56854) = barycentric quotient X(i)/X(j) for these {i,j}: {666, 41072}, {869, 3252}, {919, 30664}, {984, 40217}, {2276, 22116}, {3783, 3912}, {3797, 3263}, {3802, 17755}, {6654, 870}, {16514, 518}, {17569, 15149}, {29956, 876}, {30654, 53553}, {30665, 918}, {36086, 37207}, {40728, 40730}, {40791, 52085}, {52029, 335}, {56697, 75}


X(56855) = X(2)X(11)∩X(294)X(1332)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(-(a*b^3) + b^4 + 2*a^2*b*c - a*b^2*c - a*b*c^2 - a*c^3 + c^4) : :

X(56855) lies on the cubic K185 and these lines: {2, 11}, {294, 1332}, {320, 51929}, {335, 918}, {524, 666}, {668, 1146}, {1086, 2481}, {3882, 18785}, {3912, 46798}, {3932, 33676}, {3978, 36803}, {4966, 33674}, {17274, 36816}, {27191, 53241}, {51225, 52209}

X(56855) = X(2254)-isoconjugate of X(53971)
X(56855) = barycentric product X(5098)*X(36803)
X(56855) = barycentric quotient X(i)/X(j) for these {i,j}: {919, 53971}, {3110, 3286}, {5098, 665}, {13576, 43671}


X(56856) = X(2)X(11)∩X(31)X(2111)

Barycentrics    a*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^2*b^2 + a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 - b^2*c^2) : :

X(56856) lies on the cubic K131 and these lines: {2, 11}, {31, 2111}, {38, 52029}, {42, 52030}, {43, 18795}, {171, 40761}, {294, 20665}, {846, 18785}, {919, 2205}, {24576, 53129}, {40737, 53128}, {43929, 50520}

X(56856) = X(51866)-Ceva conjugate of X(105)
X(56856) = X(i)-isoconjugate of X(j) for these (i,j): {518, 2665}, {672, 39925}, {2107, 30941}, {2254, 53624}, {3912, 51333}, {18206, 54980}, {22116, 40769}
X(56856) = X(i)-Dao conjugate of X(j) for these (i,j): {27854, 3675}, {39056, 3912}, {39057, 18157}
X(56856) = barycentric product X(i)*X(j) for these {i,j}: {105, 17759}, {673, 2664}, {1438, 52049}, {2106, 13576}, {2481, 21788}, {2669, 18785}, {6654, 40796}, {20796, 54235}, {39028, 51866}, {39916, 52030}, {40772, 56697}
X(56856) = barycentric quotient X(i)/X(j) for these {i,j}: {105, 39925}, {666, 53216}, {919, 53624}, {1438, 2665}, {2106, 30941}, {2664, 3912}, {2669, 18157}, {13576, 43685}, {15148, 15149}, {17759, 3263}, {20796, 25083}, {21788, 518}, {21897, 3932}, {40796, 40217}, {51331, 8299}, {56388, 3286}
X(56856) = {X({}),X(1)}-harmonic conjugate of X({}[[1]][[3]])


X(56857) = X(1)X(1783)∩X(3)X(9)

Barycentrics    a*(a - b - c)^2*(a^4 + 2*a^2*b^2 - 3*b^4 - 4*a^2*b*c + 4*b^3*c + 2*a^2*c^2 - 2*b^2*c^2 + 4*b*c^3 - 3*c^4) : :

X(56857) lies on the cubic K258 and these lines: {1, 1783}, {2, 2184}, {3, 9}, {5, 5514}, {39, 35508}, {57, 46830}, {223, 1212}, {281, 946}, {1146, 9581}, {1467, 46345}, {1565, 41790}, {1699, 1855}, {2082, 3119}, {2272, 7992}, {2297, 7097}, {2391, 3452}, {2947, 30393}, {3468, 52705}, {3487, 40942}, {3496, 41795}, {3646, 40937}, {5084, 41006}, {5219, 13609}, {5747, 54424}, {5748, 27541}, {6848, 8074}, {7177, 36101}, {8257, 52879}, {8558, 15803}, {16389, 44798}, {19541, 19605}, {26364, 31896}, {28070, 33299}, {37774, 51304}

X(56857) = complement of X(14256)
X(56857) = complement of the isogonal conjugate of X(7367)
X(56857) = X(i)-complementary conjugate of X(j) for these (i,j): {9, 20307}, {41, 7952}, {55, 20206}, {84, 21258}, {220, 6260}, {268, 34822}, {271, 18639}, {280, 17046}, {282, 2886}, {285, 17050}, {607, 20264}, {657, 7358}, {1253, 223}, {1436, 11019}, {2053, 20260}, {2188, 17073}, {2192, 142}, {2208, 4000}, {2357, 18635}, {3939, 20314}, {4130, 46663}, {6602, 38015}, {7008, 16608}, {7118, 1}, {7154, 1210}, {7367, 10}, {13138, 46399}, {14827, 40943}, {32652, 7658}, {34404, 17047}, {36049, 3900}, {53013, 17052}
X(56857) = X(934)-Ceva conjugate of X(3900)
X(56857) = X(23970)-Dao conjugate of X(4397)
X(56857) = barycentric product X(346)*X(18725)
X(56857) = barycentric quotient X(18725)/X(279)
X(56857) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 282, 610}, {7079, 34591, 1}, {15891, 15892, 223}


X(56858) = X(3)X(9)∩X(30)X(5514)

Barycentrics    a^2*(a - b - c)^2*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 + 5*a^4*b*c - 6*a^2*b^3*c + b^5*c - 3*a^4*c^2 + 6*a^2*b^2*c^2 - 3*b^4*c^2 - 6*a^2*b*c^3 + 6*b^3*c^3 + 3*a^2*c^4 - 3*b^2*c^4 + b*c^5 - c^6) : :

X(56858) lies on the cubic K038 and these lines: {2, 38948}, {3, 9}, {30, 5514}, {35, 7079}, {36, 8558}, {187, 35508}, {1021, 3900}, {1295, 5179}, {1795, 2338}, {2184, 6617}, {3560, 23058}, {15905, 30457}, {31896, 51506}

X(56858) = midpoint of X(54079) and X(56763)
X(56858) = complement of X(38948)
X(56858) = circumcircle-inverse of X(610)
X(56858) = crossdifference of every pair of points on line {1427, 6129}


X(56859) = X(2)X(934)∩X(3)X(9)

Barycentrics    a^2*(a - b - c)^2*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 + 2*a^4*b*c - 12*a^2*b^3*c + 10*b^5*c - 3*a^4*c^2 + 18*a^2*b^2*c^2 - 15*b^4*c^2 - 12*a^2*b*c^3 + 12*b^3*c^3 + 3*a^2*c^4 - 15*b^2*c^4 + 10*b*c^5 - c^6) : :

X(56859) lies on the cubic K1265 and these lines: {2, 934}, {3, 9}, {55, 34591}, {56, 7079}, {78, 7368}, {216, 30457}, {220, 22072}, {281, 22753}, {574, 35508}, {1035, 1212}, {2256, 22063}, {3149, 8074}, {6918, 23058}, {28043, 51361}

X(56859) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 52027, 56763}, {282, 52026, 54079}


X(56860) = X(2)X(109)∩X(3)X(10)

Barycentrics    (a - b - c)*(a^5 - a^4*b - 2*a^3*b^2 + a^2*b^3 + a*b^4 - a^4*c + 4*a^3*b*c - a^2*b^2*c - 3*a*b^3*c + b^4*c - 2*a^3*c^2 - a^2*b*c^2 + 4*a*b^2*c^2 - b^3*c^2 + a^2*c^3 - 3*a*b*c^3 - b^2*c^3 + a*c^4 + b*c^4) : :

X(56860) lies on the cubic K1265 and these lines: {2, 109}, {3, 10}, {9, 32918}, {55, 34589}, {140, 20306}, {499, 1771}, {574, 1146}, {1329, 48835}, {3035, 41883}, {3452, 4703}, {4413, 41797}, {5432, 26932}, {10527, 27506}, {12647, 16499}, {16483, 44675}, {19861, 37558}, {24537, 56519}, {25876, 34030}, {27394, 53388}

X(56860) = complement of X(34029)
X(56860) = circumcircle-inverse of X(34142)
X(56860) = X(53898)-Ceva conjugate of X(522)
X(56860) = {X(10164),X(20205)}-harmonic conjugate of X(50366)


X(56861) = X(3)X(10)∩X(5)X(117)

Barycentrics    (a - b - c)*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 - a^3*b^2*c + a^2*b^3*c + a*b^4*c - b^5*c + a^4*c^2 - a^3*b*c^2 + a^3*c^3 + a^2*b*c^3 + 2*b^3*c^3 - a^2*c^4 + a*b*c^4 - a*c^5 - b*c^5) : :
X(56861) = 5 X[1698] - X[1745], 3 X[5587] + X[21228]

X(56861) lies on the cubic K258 and these lines: {1, 26095}, {2, 10571}, {3, 10}, {5, 117}, {8, 27506}, {9, 27040}, {12, 26932}, {39, 1146}, {46, 54396}, {47, 1724}, {63, 52357}, {109, 11109}, {191, 3460}, {281, 579}, {318, 522}, {478, 2122}, {564, 1772}, {960, 50605}, {1210, 16466}, {1329, 3454}, {1698, 1745}, {1735, 41013}, {3452, 3831}, {3741, 5837}, {3812, 6708}, {3814, 31847}, {3883, 6734}, {4848, 26013}, {4858, 24443}, {5105, 53994}, {5123, 35059}, {5230, 56445}, {5530, 45206}, {5587, 21228}, {8728, 40644}, {12619, 53752}, {15829, 30942}, {17750, 46835}, {17754, 23058}, {18231, 33847}, {23528, 45269}, {24537, 24982}

X(56861) = midpoint of X(10) and X(14058)
X(56861) = complement of X(10571)
X(56861) = complement of the isogonal conjugate of X(10570)
X(56861) = X(i)-complementary conjugate of X(j) for these (i,j): {21, 37836}, {55, 40590}, {521, 38977}, {650, 40626}, {2217, 1}, {2995, 2886}, {10570, 10}, {13478, 142}, {15232, 442}, {15386, 24025}, {19607, 3739}, {19608, 51571}, {26704, 521}, {32653, 905}, {36050, 522}, {36108, 39471}, {40160, 18635}, {44765, 4885}, {56112, 513}
X(56861) = X(i)-Ceva conjugate of X(j) for these (i,j): {109, 522}, {11109, 1}
X(56861) = X(23978)-Dao conjugate of X(35519)
X(56861) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 20306, 124}, {10, 12616, 50368}


X(56862) = X(3)X(10)∩X(30)X(124)

Barycentrics    (a - b - c)*(2*a^6 - 3*a^4*b^2 + a^3*b^3 + a^2*b^4 - a*b^5 + 4*a^4*b*c - a^3*b^2*c - 3*a^2*b^3*c + a*b^4*c - b^5*c - 3*a^4*c^2 - a^3*b*c^2 + 4*a^2*b^2*c^2 + a^3*c^3 - 3*a^2*b*c^3 + 2*b^3*c^3 + a^2*c^4 + a*b*c^4 - a*c^5 - b*c^5) : :
X(56862) = X[37420] - 3 X[38691]

X(56862) lies on the cubic K038 and these lines: {2, 38945}, {3, 10}, {30, 124}, {36, 34589}, {187, 1146}, {522, 663}, {550, 20306}, {1125, 51751}, {1785, 5136}, {2689, 7424}, {3612, 54396}, {5251, 41797}, {6718, 51421}, {15326, 26932}, {18340, 27506}, {24537, 24541}, {27378, 27385}, {37420, 38691}, {38955, 41684}

X(56862) = midpoint of X(i) and X(j) for these {i,j}: {2689, 7424}, {10538, 45272}
X(56862) = reflection of X(i) in X(j) for these {i,j}: {51421, 6718}, {51751, 1125}
X(56862) = complement of X(38945)
X(56862) = circumcircle-inverse of X(23361)
X(56862) = complement of the isogonal conjugate of X(40081)
X(56862) = X(i)-complementary conjugate of X(j) for these (i,j): {40081, 10}, {53965, 521}
X(56862) = X(2689)-Ceva conjugate of X(522)
X(56862) = crossdifference of every pair of points on line {1400, 6589}


X(56863) = X(3)X(10)∩X(30)X(102)

Barycentrics    a^10 - 3*a^9*b - a^8*b^2 + 8*a^7*b^3 - 3*a^6*b^4 - 6*a^5*b^5 + 5*a^4*b^6 - 2*a^2*b^8 + a*b^9 - 3*a^9*c + 9*a^8*b*c - 6*a^7*b^2*c - 10*a^6*b^3*c + 18*a^5*b^4*c - 6*a^4*b^5*c - 6*a^3*b^6*c + 6*a^2*b^7*c - 3*a*b^8*c + b^9*c - a^8*c^2 - 6*a^7*b*c^2 + 20*a^6*b^2*c^2 - 12*a^5*b^3*c^2 - 13*a^4*b^4*c^2 + 18*a^3*b^5*c^2 - 6*a^2*b^6*c^2 + 8*a^7*c^3 - 10*a^6*b*c^3 - 12*a^5*b^2*c^3 + 28*a^4*b^3*c^3 - 12*a^3*b^4*c^3 - 6*a^2*b^5*c^3 + 8*a*b^6*c^3 - 4*b^7*c^3 - 3*a^6*c^4 + 18*a^5*b*c^4 - 13*a^4*b^2*c^4 - 12*a^3*b^3*c^4 + 16*a^2*b^4*c^4 - 6*a*b^5*c^4 - 6*a^5*c^5 - 6*a^4*b*c^5 + 18*a^3*b^2*c^5 - 6*a^2*b^3*c^5 - 6*a*b^4*c^5 + 6*b^5*c^5 + 5*a^4*c^6 - 6*a^3*b*c^6 - 6*a^2*b^2*c^6 + 8*a*b^3*c^6 + 6*a^2*b*c^7 - 4*b^3*c^7 - 2*a^2*c^8 - 3*a*b*c^8 + a*c^9 + b*c^9 : :
X(56863) = 3 X[5886] - 2 X[51751]

X(56863) lies on the cubic K725 and these lines: {3, 10}, {5, 38945}, {30, 102}, {110, 2734}, {522, 53295}, {1771, 37706}, {1785, 11375}, {1899, 37002}, {3465, 6326}, {3869, 10538}, {3897, 24537}, {5136, 45766}, {5886, 51751}, {8144, 45272}, {37420, 38600}, {38955, 56690}

X(56863) = reflection of X(i) in X(j) for these {i,j}: {37420, 38600}, {38945, 5}


X(56864) = X(1)X(1857)∩X(4)X(6)

Barycentrics    (a^2 + b^2 - c^2)^2*(a^2 - b^2 + c^2)^2*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5 + a^4*c + 4*a^3*b*c - 2*a^2*b^2*c - 4*a*b^3*c + b^4*c - 2*a^3*c^2 - 2*a^2*b*c^2 - 2*a*b^2*c^2 - 2*b^3*c^2 - 2*a^2*c^3 - 4*a*b*c^3 - 2*b^2*c^3 + a*c^4 + b*c^4 + c^5) : :

X(56864) lies on the cubic K1243 and these lines: {1, 1857}, {2, 1896}, {4, 6}, {28, 6525}, {57, 1118}, {158, 278}, {225, 1712}, {281, 37528}, {318, 55910}, {672, 1753}, {1096, 1193}, {1217, 6827}, {1714, 1715}, {2052, 4200}, {4185, 6524}, {4194, 11547}, {4198, 52448}, {4214, 14569}, {6526, 37372}, {6824, 17102}, {6908, 18679}, {8885, 37380}, {14249, 51502}, {15763, 36876}, {39585, 40942}, {41083, 52248}, {52078, 53592}

X(56864) = barycentric product X(2052)*X(36746)
X(56864) = barycentric quotient X(36746)/X(394)
X(56864) = {X(4),X(1249)}-harmonic conjugate of X(5706)


X(56865) = X(4)X(6)∩X(20)X(52950)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(5*a^6 + a^4*b^2 - 5*a^2*b^4 - b^6 + a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 - 5*a^2*c^4 + b^2*c^4 - c^6) : :

X(56865) lies on the cubic K917 and these lines: {4, 6}, {20, 52950}, {112, 3522}, {140, 45141}, {550, 3172}, {1656, 16318}, {3162, 46336}, {3523, 39575}, {3542, 7755}, {5007, 37122}, {6995, 39955}, {7495, 8879}, {7768, 17907}, {8750, 56744}, {8778, 33923}, {10159, 44134}, {11331, 56297}, {32824, 41676}, {42021, 43717}, {44142, 51171}, {52289, 56296}

X(56865) = X(43527)-Ceva conjugate of X(4)
X(56865) = X(5064)-Dao conjugate of X(3763)
X(56865) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1249, 41366}, {4, 41366, 41361}, {1249, 8743, 41361}, {8743, 41361, 41370}, {8743, 41366, 4}


X(56866) = X(4)X(6)∩X(5)X(51363)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(5*a^6 - 3*a^4*b^2 - a^2*b^4 - b^6 - 3*a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 + b^2*c^4 - c^6) : :

X(56866) lies on the cubic K071 and these lines: {4, 6}, {5, 51363}, {112, 34782}, {3172, 9833}, {5305, 26883}, {5562, 42459}, {6247, 39575}, {6759, 16318}, {7505, 53496}, {10625, 53795}, {11381, 15048}, {14216, 45141}, {15873, 33885}, {20213, 51884}, {30435, 31383}, {40588, 46832}

X(56866) = X(69)-Ceva conjugate of X(51)
X(56866) = X(3199)-Dao conjugate of X(4)
X(56866) = barycentric product X(5)*X(11206)
X(56866) = barycentric quotient X(11206)/X(95)
X(56866) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {53, 217, 45089}, {1498, 41361, 15341}, {5523, 41367, 2883}, {13509, 41366, 41369}, {41369, 44762, 13509}


X(56867) = X(4)X(6)∩X(32)X(3186)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^8 - a^6*b^2 - a^2*b^6 - a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 - a^2*b^2*c^4 - 2*b^4*c^4 - a^2*c^6 + b^2*c^6) : :

X(56867) lies on the cubic K1013 and these lines: {4, 6}, {32, 3186}, {112, 35925}, {182, 47738}, {264, 51437}, {384, 3172}, {419, 40825}, {648, 18906}, {1973, 7132}, {3114, 44144}, {3168, 40820}, {5207, 17907}, {5999, 45141}, {13862, 16318}, {14001, 32000}, {39141, 39931}

X(56867) = polar conjugate of the isotomic conjugate of X(56377)
X(56867) = X(3407)-Ceva conjugate of X(4)
X(56867) = X(5117)-Dao conjugate of X(3314)
X(56867) = barycentric product X(i)*X(j) for these {i,j}: {4, 56377}, {25, 8920}
X(56867) = barycentric quotient X(i)/X(j) for these {i,j}: {8920, 305}, {56377, 69}
X(56867) = {X(8743),X(41204)}-harmonic conjugate of X(1249)


X(56868) = X(4)X(6)∩X(67)X(187)

Barycentrics    3*a^12 - 4*a^10*b^2 - a^8*b^4 + 2*a^6*b^6 - a^4*b^8 + 2*a^2*b^10 - b^12 - 4*a^10*c^2 + 3*a^8*b^2*c^2 + a^4*b^6*c^2 - 2*a^2*b^8*c^2 + 2*b^10*c^2 - a^8*c^4 + b^8*c^4 + 2*a^6*c^6 + a^4*b^2*c^6 - 4*b^6*c^6 - a^4*c^8 - 2*a^2*b^2*c^8 + b^4*c^8 + 2*a^2*c^10 + 2*b^2*c^10 - c^12 : :
X(56868) = 3 X[6] - 2 X[5523], 3 X[599] - 4 X[54075]

X(56868) lies on the cubic K481 and these lines: {4, 6}, {67, 187}, {542, 10317}, {599, 54075}, {935, 47276}, {1560, 15139}, {1971, 42426}, {2715, 43658}, {5621, 53499}, {14961, 32233}, {18472, 34507}, {54076, 54082}

X(56868) = reflection of X(i) in X(j) for these {i,j}: {41377, 8550}, {47276, 935}


X(56869) = X(4)X(7)∩X(69)X(34401)

Barycentrics    (a + b - c)*(a - b + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 - a^4*c + 3*a^3*b*c + a^2*b^2*c - 3*a*b^3*c - 2*a^3*c^2 + a^2*b*c^2 + b^3*c^2 + 2*a^2*c^3 - 3*a*b*c^3 + b^2*c^3 + a*c^4 - c^5) : :

X(56869) lies on the cubic K660 and these lines: {4, 7}, {69, 34401}, {297, 40862}, {317, 39126}, {320, 18026}, {329, 55110}, {474, 53821}, {521, 17896}, {527, 653}, {1447, 26020}, {4872, 55346}, {5905, 44697}, {6356, 31775}, {7013, 34408}, {8545, 37448}, {9965, 40837}, {17923, 37136}, {22464, 36118}, {26003, 30379}

X(56869) = X(46133)-Ceva conjugate of X(273)
X(56869) = X(212)-isoconjugate of X(46435)
X(56869) = X(40837)-Dao conjugate of X(46435)
X(56869) = barycentric product X(i)*X(j) for these {i,j}: {85, 15500}, {331, 2077}
X(56869) = barycentric quotient X(i)/X(j) for these {i,j}: {278, 46435}, {2077, 219}, {15500, 9}


X(56870) = X(4)X(7)∩X(40)X(934)

Barycentrics    a*(a + b - c)^2*(a - b + c)^2*(a^4*b - 2*a^3*b^2 + 2*a*b^4 - b^5 + a^4*c - a^3*b*c + 5*a^2*b^2*c - 3*a*b^3*c - 2*b^4*c - 2*a^3*c^2 + 5*a^2*b*c^2 - 6*a*b^2*c^2 + 3*b^3*c^2 - 3*a*b*c^3 + 3*b^2*c^3 + 2*a*c^4 - 2*b*c^4 - c^5) : :

X(56870) lies on the cubic K619 and these lines: {4, 7}, {40, 934}, {65, 9533}, {518, 17113}, {658, 3869}, {3160, 31787}, {3339, 7177}, {3812, 10004}, {4566, 16284}, {4617, 21147}, {4637, 37405}, {9856, 36620}, {9948, 51364}, {24440, 41355}, {34488, 42872}

X(56870) = barycentric product X(279)*X(11678)
X(56870) = barycentric quotient X(11678)/X(346)


X(56871) = X(4)X(7)∩X(24)X(934)

Barycentrics    (a + b - c)^2*(a - b + c)^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5 + a^4*c - 4*a^3*b*c + 4*a^2*b^2*c - b^4*c - 2*a^3*c^2 + 4*a^2*b*c^2 - 2*a*b^2*c^2 - 2*a^2*c^3 + a*c^4 - b*c^4 + c^5) : :

X(56871) lies on the cubic K620 and these lines: {4, 7}, {24, 934}, {269, 36103}, {406, 56382}, {1020, 41320}, {1435, 1763}, {2207, 32714}, {3160, 37441}, {4569, 54412}, {5236, 23058}, {36908, 37388}

X(56871) = X(23586)-Ceva conjugate of X(32714)
X(56871) = barycentric product X(23586)*X(38966)
X(56871) = barycentric quotient X(i)/X(j) for these {i,j}: {32714, 46964}, {38966, 23970}


X(56872) = X(4)X(7)∩X(20)X(934)

Barycentrics    (a + b - c)^2*(a - b + c)^2*(a^6 - 2*a^5*b + a^4*b^2 - a^2*b^4 + 2*a*b^5 - b^6 - 2*a^5*c + 4*a^4*b*c + 2*a^3*b^2*c - 2*a^2*b^3*c - 2*b^5*c + a^4*c^2 + 2*a^3*b*c^2 - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + b^4*c^2 - 2*a^2*b*c^3 - 2*a*b^2*c^3 + 4*b^3*c^3 - a^2*c^4 + b^2*c^4 + 2*a*c^5 - 2*b*c^5 - c^6) : :

X(56872) lies on the cubic K617 and these lines: {2, 7367}, {4, 7}, {20, 934}, {84, 51364}, {269, 23537}, {315, 4569}, {377, 9312}, {1020, 17732}, {3160, 6916}, {3434, 20221}, {3436, 4566}, {4292, 7177}, {4350, 43035}, {5905, 10402}, {6925, 34059}, {7013, 40657}, {18623, 55110}, {24604, 38859}, {32714, 41361}, {34035, 38877}, {36908, 37185}

X(56872) = anticomplement of X(7367)
X(56872) = anticomplement of the isogonal conjugate of X(14256)
X(56872) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {7, 189}, {40, 30695}, {196, 5942}, {208, 30694}, {221, 3177}, {223, 144}, {269, 9965}, {279, 962}, {322, 54113}, {347, 329}, {658, 4397}, {664, 20296}, {934, 6332}, {1014, 20223}, {1088, 21279}, {1434, 20220}, {1817, 45738}, {2187, 46706}, {2199, 21218}, {4617, 8058}, {4626, 4131}, {6611, 192}, {7177, 280}, {8822, 18750}, {14256, 8}, {24013, 934}, {40702, 3436}, {41082, 2184}, {42872, 10405}
X(56872) = X(53833)-Dao conjugate of X(3900)
X(56872) = barycentric quotient X(53833)/X(7358)
X(56872) = {X(14256),X(38948)}-harmonic conjugate of X(4)


X(56873) = X(4)X(7)∩X(9)X(20206)

Barycentrics    (a + b - c)^2*(a - b + c)^2*(a^6 - 2*a^5*b + a^4*b^2 - a^2*b^4 + 2*a*b^5 - b^6 - 2*a^5*c + 6*a^4*b*c + 4*a^3*b^2*c - 4*a^2*b^3*c - 2*a*b^4*c - 2*b^5*c + a^4*c^2 + 4*a^3*b*c^2 - 6*a^2*b^2*c^2 + b^4*c^2 - 4*a^2*b*c^3 + 4*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 + b^2*c^4 + 2*a*c^5 - 2*b*c^5 - c^6) : :
X(56873) = 4 X[6666] - 5 X[20198], 5 X[20195] - 4 X[20202]

X(56873) lies on the cubic K616 and these lines: {4, 7}, {9, 20206}, {69, 4569}, {77, 21151}, {142, 282}, {269, 4000}, {347, 35514}, {376, 934}, {443, 56382}, {1020, 41325}, {1249, 32714}, {1375, 8732}, {3421, 4566}, {5759, 7013}, {6666, 20198}, {8232, 30808}, {20195, 20202}, {34060, 37022}, {47386, 47393}

X(56873) = midpoint of X(7) and X(5932)
X(56873) = reflection of X(i) in X(j) for these {i,j}: {9, 20206}, {282, 142}


X(56874) = X(2)X(934)∩X(4)X(7)

Barycentrics    (a + b - c)^2*(a - b + c)^2*(a^6 - 2*a^5*b + a^4*b^2 - a^2*b^4 + 2*a*b^5 - b^6 - 2*a^5*c - 2*a^3*b^2*c + 2*a^2*b^3*c + 4*a*b^4*c - 2*b^5*c + a^4*c^2 - 2*a^3*b*c^2 + 6*a^2*b^2*c^2 - 6*a*b^3*c^2 + b^4*c^2 + 2*a^2*b*c^3 - 6*a*b^2*c^3 + 4*b^3*c^3 - a^2*c^4 + 4*a*b*c^4 + b^2*c^4 + 2*a*c^5 - 2*b*c^5 - c^6) : :

X(56874) lies on the cubic K1301 and these lines: {2, 934}, {4, 7}, {1020, 56746}, {1210, 7177}, {1445, 8074}, {2478, 56382}, {3160, 6865}, {3434, 4566}, {3436, 40702}, {4569, 11185}, {6836, 34059}, {32714, 41370}, {43035, 56418}


X(56875) = X(1)X(20279)∩X(4)X(8)

Barycentrics    b*c*(2*a + b + c)*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2) : :

X(56875) lies on the cubic K702 and these lines: {1, 20279}, {4, 8}, {19, 16552}, {25, 26261}, {28, 242}, {29, 1870}, {30, 23661}, {34, 5136}, {85, 53237}, {158, 31503}, {225, 11105}, {239, 31926}, {273, 3160}, {278, 406}, {281, 475}, {331, 38461}, {392, 1893}, {405, 1441}, {429, 2969}, {430, 1230}, {451, 17923}, {469, 32858}, {758, 1831}, {860, 1838}, {946, 6508}, {956, 37387}, {1068, 4194}, {1104, 16732}, {1146, 53422}, {1393, 14058}, {1398, 37393}, {1453, 17861}, {1746, 1782}, {1826, 17442}, {1827, 3555}, {1836, 17869}, {1839, 3686}, {1855, 41006}, {1856, 12053}, {1860, 2292}, {1877, 56285}, {1883, 7140}, {1890, 20883}, {1895, 15933}, {2355, 3916}, {2906, 46103}, {2968, 37447}, {2975, 36009}, {3191, 29016}, {3262, 7283}, {3739, 53238}, {3957, 6198}, {4222, 7009}, {4292, 4858}, {4295, 53994}, {4968, 37398}, {5142, 30830}, {5247, 23690}, {5286, 17905}, {5307, 7713}, {5603, 20220}, {5942, 55109}, {6350, 6832}, {6358, 12572}, {6708, 37154}, {6734, 14206}, {6826, 52366}, {7069, 42456}, {7141, 46109}, {7270, 20919}, {7330, 20223}, {7686, 38955}, {8555, 17188}, {9579, 20320}, {10538, 21669}, {12047, 45206}, {16478, 23689}, {17080, 25490}, {17860, 41869}, {17911, 26035}, {18147, 18156}, {18483, 24026}, {20880, 37396}, {20895, 50044}, {20927, 54433}, {21422, 50156}, {21666, 34334}, {24325, 40983}, {27378, 37697}, {28612, 54290}, {31623, 31902}, {37168, 40985}, {40717, 44129}, {49542, 54234}, {52252, 52412}

X(56875) = polar conjugate of X(1255)
X(56875) = isotomic conjugate of the isogonal conjugate of X(2355)
X(56875) = polar conjugate of the isotomic conjugate of X(4359)
X(56875) = polar conjugate of the isogonal conjugate of X(1100)
X(56875) = X(811)-Ceva conjugate of X(17924)
X(56875) = X(i)-isoconjugate of X(j) for these (i,j): {3, 1126}, {6, 1796}, {48, 1255}, {63, 28615}, {71, 1171}, {184, 1268}, {222, 33635}, {228, 40438}, {603, 32635}, {647, 4629}, {810, 4596}, {906, 47947}, {1331, 50344}, {1459, 8701}, {1790, 52555}, {2200, 32014}, {3049, 4632}, {3690, 52558}, {4102, 52411}, {4608, 32656}, {6578, 55230}, {9247, 32018}, {14908, 31013}, {17976, 53688}, {22383, 37212}, {31010, 32661}, {31011, 32659}
X(56875) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 1796}, {1125, 72}, {1213, 63}, {1249, 1255}, {3120, 656}, {3162, 28615}, {3647, 3}, {5190, 47947}, {5521, 50344}, {7952, 32635}, {35076, 905}, {36103, 1126}, {39052, 4629}, {39062, 4596}
X(56875) = cevapoint of X(1100) and X(2355)
X(56875) = trilinear pole of line {4976, 30591}
X(56875) = barycentric product X(i)*X(j) for these {i,j}: {4, 4359}, {19, 1269}, {27, 4647}, {28, 1230}, {75, 1839}, {76, 2355}, {81, 44143}, {92, 1125}, {158, 4001}, {264, 1100}, {273, 3686}, {274, 430}, {278, 3702}, {286, 1213}, {318, 553}, {321, 31900}, {331, 3683}, {648, 30591}, {653, 4985}, {811, 4988}, {1824, 52572}, {1826, 16709}, {1897, 4978}, {1962, 44129}, {1969, 2308}, {2052, 3916}, {3649, 31623}, {4033, 46542}, {4427, 17924}, {4966, 54235}, {4975, 6336}, {4976, 18026}, {4977, 6335}, {4983, 6331}, {4990, 13149}, {6367, 55231}, {7017, 32636}, {7141, 30581}, {8025, 41013}, {16082, 51409}, {18027, 23201}, {35342, 46107}, {52412, 52569}
X(56875) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1796}, {4, 1255}, {19, 1126}, {25, 28615}, {27, 40438}, {28, 1171}, {33, 33635}, {92, 1268}, {162, 4629}, {264, 32018}, {281, 32635}, {286, 32014}, {318, 4102}, {430, 37}, {553, 77}, {648, 4596}, {811, 4632}, {1100, 3}, {1125, 63}, {1213, 72}, {1230, 20336}, {1269, 304}, {1783, 8701}, {1824, 52555}, {1839, 1}, {1897, 37212}, {1962, 71}, {2308, 48}, {2355, 6}, {3649, 1214}, {3683, 219}, {3686, 78}, {3702, 345}, {3916, 394}, {3958, 3682}, {4001, 326}, {4046, 3694}, {4359, 69}, {4427, 1332}, {4647, 306}, {4856, 4855}, {4966, 25083}, {4969, 5440}, {4970, 22370}, {4973, 22128}, {4974, 20769}, {4975, 3977}, {4976, 521}, {4977, 905}, {4978, 4025}, {4979, 1459}, {4983, 647}, {4984, 53532}, {4985, 6332}, {4988, 656}, {4992, 25098}, {6335, 6540}, {6367, 55232}, {6533, 4001}, {6591, 50344}, {7649, 47947}, {8013, 3949}, {8025, 1444}, {8040, 3958}, {16709, 17206}, {17454, 52408}, {17924, 4608}, {20970, 228}, {21816, 3690}, {22054, 255}, {22080, 3990}, {23201, 577}, {24006, 31010}, {30591, 525}, {30729, 4571}, {31900, 81}, {32636, 222}, {35327, 906}, {35342, 1331}, {36075, 36059}, {38462, 31011}, {41013, 6539}, {41014, 3998}, {44143, 321}, {46542, 1019}, {50512, 22383}, {52569, 52381}, {52576, 52369}
X(56875) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 92, 41013}, {4, 41013, 38462}, {34, 39585, 5136}, {92, 5342, 4}, {1828, 1867, 4}, {1838, 46878, 860}


X(56876) = X(1)X(475)∩X(4)X(8)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 + c^3) : :

X(56876) lies on the cubic K620 and these lines: {1, 475}, {2, 1062}, {3, 52365}, {4, 8}, {10, 33}, {19, 2321}, {24, 100}, {25, 3695}, {28, 1043}, {30, 52366}, {34, 519}, {64, 38955}, {80, 43742}, {108, 1788}, {145, 1870}, {208, 4848}, {220, 281}, {225, 49168}, {235, 17757}, {264, 17143}, {278, 56137}, {280, 50701}, {306, 37388}, {345, 14017}, {378, 2975}, {403, 11681}, {405, 7071}, {427, 24390}, {451, 9780}, {496, 26020}, {515, 1753}, {516, 52849}, {668, 54412}, {728, 7719}, {860, 1834}, {944, 37305}, {950, 40971}, {956, 1593}, {1018, 41320}, {1068, 1897}, {1145, 1862}, {1172, 2345}, {1235, 4441}, {1309, 14266}, {1376, 11399}, {1452, 54286}, {1594, 11680}, {1724, 8750}, {1748, 18533}, {1783, 2207}, {1785, 10573}, {1825, 6358}, {1826, 54330}, {1841, 17299}, {1857, 41506}, {1875, 41687}, {1876, 3555}, {1877, 49169}, {1883, 11396}, {1887, 5252}, {1905, 5836}, {1968, 5291}, {2332, 16788}, {2894, 28605}, {2968, 3149}, {3085, 56316}, {3086, 15500}, {3089, 7080}, {3189, 41227}, {3192, 3293}, {3199, 52959}, {3446, 34896}, {3541, 10527}, {3542, 5552}, {3616, 52252}, {3617, 4194}, {3651, 6350}, {3679, 46878}, {3912, 37382}, {3913, 11398}, {3940, 15763}, {3991, 5089}, {4000, 18636}, {4081, 6253}, {4185, 12135}, {4196, 17135}, {4207, 4651}, {4212, 10453}, {4720, 54340}, {5236, 41863}, {5303, 35477}, {5440, 7521}, {5554, 17555}, {5657, 7412}, {5730, 37368}, {5768, 18283}, {5942, 52846}, {6197, 7487}, {6347, 55476}, {6348, 55482}, {6403, 25304}, {6826, 23661}, {6934, 10538}, {6995, 33091}, {7009, 10449}, {7219, 37241}, {7378, 33090}, {7490, 34255}, {7505, 27529}, {7537, 27383}, {7576, 49719}, {8715, 52427}, {11517, 17776}, {12527, 15942}, {12618, 54305}, {12779, 40953}, {13576, 43678}, {14016, 51978}, {14647, 38870}, {15149, 17316}, {17740, 26377}, {17751, 37384}, {17756, 39575}, {17923, 38295}, {17927, 37055}, {21956, 27376}, {24026, 48482}, {25985, 31419}, {26052, 41340}, {26801, 37337}, {29616, 37102}, {30615, 41611}, {34120, 37729}, {35974, 54391}, {37104, 54398}, {37414, 45766}, {39585, 53008}, {42696, 54314}, {43740, 48380}, {46468, 48877}

X(56876) = reflection of X(54295) in X(10)
X(56876) = anticomplement of X(1062)
X(56876) = polar conjugate of X(15474)
X(56876) = anticomplement of the isogonal conjugate of X(1063)
X(56876) = polar conjugate of the isotomic conjugate of X(17776)
X(56876) = polar conjugate of the isogonal conjugate of X(2911)
X(56876) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1063, 8}, {7163, 20}, {55985, 4329}, {56356, 52365}
X(56876) = X(i)-Ceva conjugate of X(j) for these (i,j): {1016, 1783}, {2052, 281}
X(56876) = X(i)-isoconjugate of X(j) for these (i,j): {48, 15474}, {57, 56269}, {58, 28787}, {222, 39943}, {255, 39267}, {394, 46886}, {603, 43740}, {1437, 23604}, {1459, 13397}, {3215, 46354}
X(56876) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 28787}, {219, 394}, {1249, 15474}, {5452, 56269}, {6523, 39267}, {6591, 1086}, {7952, 43740}
X(56876) = barycentric product X(i)*X(j) for these {i,j}: {4, 17776}, {92, 3811}, {264, 2911}, {318, 1708}, {321, 30733}, {1016, 5521}, {2052, 11517}, {4341, 7101}, {6335, 15313}, {7017, 37579}, {14054, 40447}, {30710, 41609}, {31623, 41538}, {40571, 41013}
X(56876) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 15474}, {33, 39943}, {37, 28787}, {55, 56269}, {281, 43740}, {393, 39267}, {1096, 46886}, {1708, 77}, {1780, 1790}, {1783, 13397}, {1826, 23604}, {2911, 3}, {3173, 1804}, {3215, 7125}, {3811, 63}, {4341, 7177}, {5521, 1086}, {7140, 41508}, {11517, 394}, {14054, 18607}, {15313, 905}, {17776, 69}, {30733, 81}, {37579, 222}, {40571, 1444}, {41013, 43675}, {41332, 1437}, {41538, 1214}, {41608, 18604}, {41609, 3666}
X(56876) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1861, 475}, {4, 7046, 41013}, {10, 33, 406}, {145, 4200, 1870}, {318, 5174, 4}, {355, 1872, 4}, {1824, 5090, 4}, {1824, 5295, 41013}, {1829, 5101, 4}, {1897, 5125, 1068}, {1900, 5130, 4}


X(56877) = X(4)X(8)∩X(10)X(451)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2 + c^3) : :

X(56877) lies on the cubic K1302 and these lines: {1, 21911}, {2, 18455}, {4, 8}, {10, 451}, {19, 4007}, {24, 5687}, {25, 33091}, {28, 4720}, {33, 3679}, {34, 3632}, {74, 1309}, {78, 7537}, {100, 186}, {108, 40663}, {112, 5291}, {145, 475}, {232, 52959}, {280, 6934}, {281, 52405}, {376, 52365}, {378, 956}, {403, 17757}, {406, 3617}, {427, 33090}, {515, 50530}, {519, 1861}, {594, 1172}, {668, 44146}, {860, 1897}, {952, 37305}, {1016, 5379}, {1018, 56747}, {1068, 49168}, {1235, 17143}, {1594, 24390}, {1737, 15500}, {1753, 5881}, {1783, 8744}, {1785, 41684}, {1825, 47033}, {1875, 36920}, {2074, 32849}, {2212, 33165}, {2356, 32847}, {2766, 20989}, {2968, 6905}, {2975, 3520}, {3144, 17751}, {3529, 52366}, {3542, 7080}, {3621, 4200}, {3626, 46878}, {3695, 30733}, {3900, 4036}, {3940, 37372}, {4081, 5842}, {4194, 4678}, {4212, 17135}, {4213, 4651}, {5223, 15942}, {5380, 8753}, {5523, 21956}, {5552, 7505}, {5564, 54314}, {5657, 37441}, {5690, 7412}, {5727, 40971}, {6353, 10327}, {6542, 15149}, {6653, 40889}, {6901, 23661}, {7071, 9708}, {7521, 54433}, {7577, 11680}, {7718, 17562}, {7952, 10573}, {7991, 52849}, {10527, 37119}, {11681, 16868}, {12247, 45766}, {12647, 34231}, {12649, 38295}, {13576, 46105}, {13619, 52414}, {14940, 27529}, {14975, 33166}, {17759, 41676}, {17784, 18533}, {18559, 49719}, {26801, 37125}, {29616, 37382}, {37712, 52848}, {43734, 43742}, {44669, 56183}, {48696, 52427}

X(56877) = reflection of X(1870) in X(1861)
X(56877) = anticomplement of X(18455)
X(56877) = polar conjugate of X(21907)
X(56877) = polar conjugate of the isotomic conjugate of X(32849)
X(56877) = polar conjugate of the isogonal conjugate of X(17796)
X(56877) = X(i)-isoconjugate of X(j) for these (i,j): {48, 21907}, {603, 11604}, {1290, 1459}, {1437, 5620}
X(56877) = X(i)-Dao conjugate of X(j) for these (i,j): {1249, 21907}, {2323, 22128}, {7952, 11604}, {35090, 905}, {53988, 513}
X(56877) = crossdifference of every pair of points on line {14597, 22383}
X(56877) = barycentric product X(i)*X(j) for these {i,j}: {4, 32849}, {8, 37799}, {264, 17796}, {321, 2074}, {668, 47235}, {5172, 7017}, {6335, 8674}, {17776, 47106}, {37783, 41013}
X(56877) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 21907}, {281, 11604}, {1783, 1290}, {1826, 5620}, {2074, 81}, {2677, 42761}, {5127, 1790}, {5172, 222}, {6335, 35156}, {8674, 905}, {17796, 3}, {19622, 1437}, {32849, 69}, {35204, 22128}, {37783, 1444}, {37799, 7}, {42670, 22383}, {42741, 7254}, {47106, 15474}, {47235, 513}
X(56877) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 6198, 451}, {5081, 38462, 4}, {5174, 41013, 4}


X(56878) = X(4)X(8)∩X(6)X(5078)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 + b^2*c^2 - c^4) : :
X(56878) = 3 X[2] - 4 X[38472], 4 X[3035] - 3 X[33852]

X(56878) lies on the cubic K289 and these lines: {2, 38472}, {4, 8}, {6, 5078}, {12, 41723}, {23, 692}, {36, 386}, {40, 31825}, {42, 5143}, {51, 1621}, {52, 11491}, {55, 3060}, {57, 23155}, {59, 7115}, {81, 181}, {100, 511}, {110, 20989}, {143, 37621}, {197, 1993}, {209, 3101}, {238, 20962}, {375, 27065}, {484, 1046}, {513, 4380}, {518, 32842}, {674, 3935}, {899, 3792}, {901, 28471}, {908, 29311}, {970, 2975}, {1001, 5640}, {1154, 18524}, {1155, 3240}, {1282, 5536}, {1376, 2979}, {1405, 2078}, {1469, 4850}, {1654, 22301}, {1757, 21368}, {1916, 5990}, {1994, 20986}, {2077, 54337}, {2475, 22300}, {2503, 17796}, {2594, 4225}, {2703, 5164}, {2807, 36002}, {2895, 22275}, {3035, 33852}, {3124, 21788}, {3218, 8679}, {3219, 22276}, {3245, 38512}, {3336, 23156}, {3337, 23157}, {3563, 6099}, {3567, 10267}, {3689, 9047}, {3715, 26911}, {3746, 31757}, {3750, 20961}, {3751, 24611}, {3784, 9352}, {3789, 5087}, {3814, 10479}, {3819, 9342}, {3909, 4645}, {4267, 5172}, {4413, 7998}, {4423, 11451}, {5048, 44843}, {5260, 22076}, {5264, 50593}, {5284, 5943}, {5303, 15489}, {5741, 35614}, {5754, 22765}, {5889, 11500}, {5903, 24725}, {6243, 32141}, {6403, 11383}, {7074, 33586}, {7731, 12334}, {10263, 11849}, {10439, 30852}, {10441, 11681}, {10902, 31760}, {11412, 11499}, {11459, 18491}, {11684, 29958}, {13391, 35000}, {15107, 20872}, {16473, 39582}, {17126, 37516}, {17484, 20718}, {18178, 54355}, {20045, 25048}, {20999, 37510}, {22325, 33083}, {23638, 32911}, {27529, 37536}, {29309, 38389}, {33761, 40966}, {53321, 56560}

X(56878) = reflection of X(i) in X(j) for these {i,j}: {100, 51377}, {2703, 5164}, {38474, 3814}, {38512, 3245}, {50362, 38472}
X(56878) = anticomplement of X(50362)
X(56878) = reflection of X(5057) in the anti-Orthic axis
X(56878) = incircle-of-anticomplementary-triangle-inverse of X(321)
X(56878) = symgonal image of X(5164)
X(56878) = X(649)-isoconjugate of X(43189)
X(56878) = X(i)-Dao conjugate of X(j) for these (i,j): {5375, 43189}, {46671, 513}
X(56878) = crossdifference of every pair of points on line {20963, 22383}
X(56878) = barycentric quotient X(100)/X(43189)
X(56878) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {970, 16980, 2975}, {3909, 22294, 4645}, {22076, 23841, 5260}, {38472, 50362, 2}


X(56879) = X(2)X(3304)∩X(4)X(8)

Barycentrics    a^4 - b^4 + 6*a^2*b*c - 6*a*b^2*c - 6*a*b*c^2 + 2*b^2*c^2 - c^4 : :
X(56879) = 3 X[2] - 4 X[9711], 4 X[140] - 3 X[16203], 5 X[3617] - 2 X[5221], 5 X[1656] - 3 X[12001]

X(56879) lies on the cubic K917 and these lines: {2, 3304}, {4, 8}, {10, 3306}, {21, 34619}, {63, 6736}, {69, 3264}, {78, 5882}, {80, 43745}, {100, 3522}, {140, 956}, {145, 2551}, {149, 20052}, {210, 32049}, {319, 21279}, {377, 3679}, {388, 3617}, {405, 11239}, {443, 53620}, {497, 3621}, {518, 5554}, {519, 2478}, {529, 4190}, {550, 5687}, {908, 4853}, {944, 4420}, {958, 10528}, {960, 12648}, {997, 36977}, {1018, 56744}, {1056, 9780}, {1058, 20050}, {1145, 3927}, {1222, 5233}, {1329, 10529}, {1376, 20076}, {1478, 3626}, {1479, 3625}, {1656, 10527}, {1728, 31397}, {2550, 4678}, {2975, 3523}, {3057, 31018}, {3146, 49719}, {3241, 5084}, {3452, 36846}, {3486, 3935}, {3533, 27529}, {3578, 15971}, {3583, 4816}, {3584, 31458}, {3623, 26105}, {3632, 4857}, {3678, 12647}, {3680, 31142}, {3746, 31156}, {3813, 5187}, {3851, 24390}, {3870, 5795}, {3872, 13464}, {3890, 7320}, {3893, 24703}, {3895, 12572}, {3913, 6872}, {3951, 6925}, {4187, 11240}, {4188, 34610}, {4193, 34625}, {4314, 4917}, {4654, 11530}, {4662, 5252}, {4723, 54433}, {5046, 31145}, {5056, 11681}, {5059, 17784}, {5068, 11680}, {5227, 8756}, {5229, 33110}, {5231, 30315}, {5258, 6910}, {5261, 33108}, {5288, 26364}, {5493, 12527}, {5559, 5692}, {5657, 24467}, {5690, 12115}, {5734, 6939}, {5790, 10532}, {5836, 5905}, {5844, 10531}, {5881, 6836}, {6175, 31410}, {6284, 8168}, {6556, 37655}, {6762, 24982}, {6838, 37725}, {6849, 38074}, {6851, 34627}, {6868, 38665}, {6871, 11236}, {6898, 10222}, {6899, 28204}, {6904, 34605}, {6921, 8666}, {6926, 38669}, {6931, 45700}, {6947, 37727}, {6957, 7982}, {6976, 37622}, {7991, 17781}, {9369, 17740}, {9578, 25006}, {9579, 51781}, {9597, 21868}, {9657, 49732}, {9710, 11237}, {9956, 10597}, {10039, 17699}, {10327, 44720}, {10449, 21290}, {10585, 19843}, {10805, 26446}, {10915, 41229}, {10950, 20013}, {11682, 21060}, {11684, 12667}, {12116, 12645}, {12526, 51433}, {12575, 51786}, {12629, 41012}, {12632, 34611}, {13576, 43681}, {15670, 31480}, {15680, 34607}, {16063, 33091}, {17559, 38314}, {20078, 37567}, {20418, 55016}, {24393, 52819}, {24477, 25005}, {24524, 45962}, {31295, 34612}, {33021, 53675}, {34742, 37435}, {35239, 54441}, {37163, 54398}, {38955, 42021}, {43731, 43740}, {43734, 43741}, {51784, 54357}

X(56879) = reflection of X(i) in X(j) for these {i,j}: {3304, 9711}, {3338, 10}
X(56879) = anticomplement of X(3304)
X(56879) = anticomplement of the isogonal conjugate of X(7320)
X(56879) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {7320, 8}, {44794, 7}, {56200, 329}
X(56879) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 329, 14923}, {8, 3421, 3436}, {8, 3436, 3434}, {8, 5080, 5082}, {8, 5815, 3869}, {8, 11415, 10914}, {1329, 10529, 10584}, {3304, 9711, 2}, {3813, 31141, 5187}, {3913, 34606, 6872}, {4487, 5016, 8}, {4678, 20060, 2550}, {5258, 45701, 6910}, {12513, 21031, 2}, {21031, 34689, 12513}


X(56880) = X(4)X(8)∩X(40)X(153)

Barycentrics    a^4 - b^4 + 3*a^2*b*c - 3*a*b^2*c - 3*a*b*c^2 + 2*b^2*c^2 - c^4 : :
X(56880) = 4 X[140] - 3 X[37535], 7 X[9780] - 4 X[32636], 2 X[4857] - 3 X[5046], 5 X[3616] - 4 X[20323], 7 X[3523] - 6 X[37561], 3 X[6175] - 2 X[27197]

X(56880) lies on the cubic K618 and these lines: {1, 26127}, {2, 5258}, {4, 8}, {10, 3218}, {21, 12607}, {40, 153}, {63, 37163}, {78, 5531}, {80, 43741}, {100, 550}, {140, 2975}, {145, 4867}, {149, 3632}, {315, 25278}, {377, 19797}, {382, 49719}, {388, 5435}, {404, 529}, {411, 37725}, {452, 11239}, {474, 34605}, {495, 5260}, {497, 20050}, {515, 4420}, {519, 4857}, {535, 37256}, {668, 7768}, {908, 4861}, {956, 1656}, {1018, 41326}, {1056, 5550}, {1329, 54391}, {1330, 2842}, {1478, 3617}, {1479, 3621}, {1657, 5687}, {1708, 9578}, {1783, 41366}, {2475, 3679}, {2476, 11236}, {2478, 3241}, {2551, 3616}, {3219, 10039}, {3519, 38955}, {3522, 7080}, {3523, 5552}, {3578, 46704}, {3583, 3625}, {3585, 3626}, {3678, 37710}, {3689, 11015}, {3754, 17483}, {3813, 34689}, {3814, 5288}, {3820, 5253}, {3850, 24390}, {3851, 11680}, {3872, 11522}, {3876, 5252}, {3877, 32049}, {3878, 5559}, {3885, 24703}, {3913, 11114}, {3916, 51362}, {3935, 10572}, {3984, 5881}, {3987, 33102}, {4067, 41684}, {4127, 15863}, {4189, 45701}, {4193, 12513}, {4197, 11237}, {4317, 17572}, {4511, 5882}, {4661, 49168}, {4723, 7270}, {4816, 18514}, {4995, 17574}, {5047, 15888}, {5056, 10527}, {5084, 38314}, {5154, 45700}, {5187, 34625}, {5189, 33091}, {5261, 54366}, {5279, 8756}, {5291, 7755}, {5300, 44720}, {5303, 15712}, {5330, 38455}, {5434, 9711}, {5484, 26030}, {5493, 6736}, {5557, 5883}, {5690, 11684}, {5734, 6893}, {5744, 5828}, {5827, 33089}, {5903, 17484}, {6172, 37155}, {6175, 9710}, {6735, 12527}, {6851, 50864}, {6872, 34619}, {6894, 37714}, {6902, 37727}, {6903, 28204}, {6919, 11240}, {6921, 34610}, {6922, 38669}, {6965, 10222}, {7319, 43745}, {7320, 30513}, {7491, 38665}, {7533, 33090}, {7860, 20553}, {7982, 13729}, {8168, 12953}, {8715, 15680}, {9654, 33108}, {9778, 12667}, {9782, 10404}, {9802, 12701}, {10056, 16865}, {10197, 15674}, {10327, 16063}, {10711, 37406}, {10805, 54445}, {11194, 17566}, {11362, 17781}, {11604, 43731}, {11849, 48698}, {12059, 12532}, {12682, 13465}, {12751, 31806}, {13272, 50890}, {13571, 21226}, {13576, 43676}, {15971, 50215}, {17100, 55016}, {17535, 50038}, {17744, 26793}, {17751, 52576}, {17784, 49135}, {19526, 31480}, {19537, 34740}, {20066, 48696}, {20067, 25440}, {21291, 42020}, {21384, 26074}, {21616, 38460}, {24387, 31160}, {24612, 28813}, {24883, 37716}, {26752, 33021}, {26801, 33020}, {30438, 31785}, {31165, 32537}, {34607, 50244}, {34746, 52841}, {38074, 44229}, {38541, 51984}

X(56880) = reflection of X(i) in X(j) for these {i,j}: {404, 21031}, {3336, 10}
X(56880) = anticomplement of X(5563)
X(56880) = anticomplement of the isogonal conjugate of X(5559)
X(56880) = X(5559)-anticomplementary conjugate of X(8)
X(56880) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 3436, 5080}, {8, 5080, 52367}, {8, 5180, 14923}, {72, 5176, 8}, {355, 3681, 8}, {2975, 17757, 27529}, {3421, 3436, 8}, {3585, 3626, 33110}, {4487, 5100, 8}, {4737, 5016, 8}, {5086, 34790, 8}, {5434, 9711, 17531}, {6735, 12527, 56288}, {12513, 31141, 4193}, {12607, 34606, 21}


X(56881) = X(4)X(8)∩X(100)X(190)

Barycentrics    (a - b)*(a - c)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c + a*b^2*c - a^2*c^2 + a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :

X(56881) lies on the cubic K027 and these lines: {2, 24431}, {4, 8}, {100, 190}, {499, 24160}, {693, 883}, {758, 51975}, {912, 14266}, {1309, 6099}, {2284, 3700}, {3573, 14887}, {4011, 30144}, {4511, 36944}, {4738, 39776}, {5379, 53176}, {8707, 43345}, {11680, 17165}, {12532, 38955}, {14213, 15064}, {15065, 47320}, {17889, 18395}, {18802, 52871}, {24026, 46685}, {26364, 56456}, {36037, 43728}, {48380, 52456}

X(56881) = anticomplement of X(53525)
X(56881) = incircle of anticomplementary triangle inverse of X(34151)
X(56881) = anticomplement of the isogonal conjugate of X(52377)
X(56881) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {59, 6224}, {655, 150}, {1262, 41803}, {2222, 149}, {6187, 17036}, {9273, 18654}, {32675, 4440}, {35174, 21293}, {46649, 5080}, {51562, 33650}, {52377, 8}
X(56881) = X(1309)-Ceva conjugate of X(100)
X(56881) = X(i)-isoconjugate of X(j) for these (i,j): {58, 3657}, {244, 6099}, {513, 36052}, {514, 32655}, {649, 2990}, {905, 913}, {915, 1459}, {1769, 15381}, {3937, 36106}, {3942, 32698}, {22383, 37203}, {43924, 45393}
X(56881) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 3657}, {119, 513}, {1737, 3738}, {5375, 2990}, {8609, 10015}, {39002, 3937}, {39026, 36052}, {42769, 764}, {56761, 15635}
X(56881) = cevapoint of X(i) and X(j) for these (i,j): {522, 18254}, {1737, 55126}
X(56881) = trilinear pole of line {1737, 8609}
X(56881) = crossdifference of every pair of points on line {1015, 22383}
X(56881) = barycentric product X(i)*X(j) for these {i,j}: {100, 48380}, {119, 13136}, {190, 1737}, {321, 3658}, {646, 18838}, {668, 8609}, {912, 6335}, {914, 1897}, {1016, 55126}, {2397, 14266}, {4582, 12832}, {7017, 56410}, {11570, 36804}, {42720, 52456}
X(56881) = barycentric quotient X(i)/X(j) for these {i,j}: {37, 3657}, {100, 2990}, {101, 36052}, {119, 10015}, {644, 45393}, {692, 32655}, {912, 905}, {914, 4025}, {1252, 6099}, {1737, 514}, {1783, 915}, {1897, 37203}, {2252, 1459}, {2427, 39173}, {3658, 81}, {6335, 46133}, {8609, 513}, {8750, 913}, {11570, 3960}, {12831, 1638}, {12832, 30725}, {14266, 2401}, {18838, 3669}, {32641, 15381}, {47408, 8677}, {48380, 693}, {51824, 2423}, {55126, 1086}, {56410, 222}
X(56881) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 30196, 3869}, {12532, 52409, 38955}


X(56882) = X(2)X(257)∩X(4)X(8)

Barycentrics    a^4*b + a^3*b^2 - a^2*b^3 - a*b^4 + a^4*c - a^3*b*c - a*b^3*c + b^4*c + a^3*c^2 - b^3*c^2 - a^2*c^3 - a*b*c^3 - b^2*c^3 - a*c^4 + b*c^4 : :

X(56832) lies on the cubic K1037 and these lines: {2, 257}, {4, 8}, {6, 11683}, {7, 26538}, {63, 194}, {69, 17788}, {75, 2262}, {144, 1278}, {192, 2269}, {263, 24349}, {346, 21271}, {573, 22003}, {908, 3661}, {966, 27697}, {1821, 7155}, {1880, 54425}, {1992, 39765}, {2099, 36486}, {2280, 2344}, {2975, 13723}, {3057, 20173}, {3208, 49757}, {3732, 23151}, {3948, 19582}, {3975, 21608}, {4359, 30082}, {4384, 51304}, {4699, 30035}, {4850, 5222}, {5748, 29611}, {7291, 28916}, {10446, 20236}, {10453, 17441}, {17014, 20247}, {17292, 30852}, {17489, 18662}, {17742, 40863}, {17752, 41839}, {17781, 29617}, {17789, 21281}, {18906, 52652}, {21272, 29616}, {26594, 27131}, {26612, 31018}, {28809, 53332}

X(56882) = anticomplement of X(7146)
X(56882) = anticomplement of the isogonal conjugate of X(2344)
X(56882) = anticomplement of the isotomic conjugate of X(52652)
X(56882) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {663, 39345}, {825, 522}, {870, 21285}, {985, 7}, {1492, 693}, {2344, 8}, {3407, 25304}, {4586, 21302}, {5384, 21272}, {14621, 3434}, {34069, 17496}, {40718, 2893}, {40746, 145}, {40747, 2475}, {40757, 2550}, {52133, 69}, {52136, 20350}, {52652, 6327}
X(56882) = X(52652)-Ceva conjugate of X(2)
X(56882) = X(6)-isoconjugate of X(7350)
X(56882) = X(9)-Dao conjugate of X(7350)
X(56882) = crossdifference of every pair of points on line {22383, 23655}
X(56882) = barycentric product X(75)*X(6210)
X(56882) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 7350}, {6210, 1}
X(56882) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20535, 1959}, {75, 43216, 20348}, {239, 33890, 3210}, {3061, 16609, 2}, {3869, 30807, 329}, {13386, 13387, 4388}, {20248, 21273, 144}, {24633, 24635, 5744}


X(56883) = X(2)X(1429)∩X(4)X(8)

Barycentrics    a^5 - a^3*b^2 + a^2*b^3 - b^5 - a^3*b*c + 2*a^2*b^2*c - a*b^3*c - a^3*c^2 + 2*a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 - a*b*c^3 + b^2*c^3 - c^5 : :

X(56883) lies on the cubic K1000 and these lines: {2, 1429}, {4, 8}, {7, 26665}, {63, 2896}, {69, 17786}, {144, 17343}, {150, 3912}, {190, 21277}, {239, 908}, {257, 34527}, {319, 43216}, {346, 21270}, {594, 11683}, {644, 857}, {660, 1821}, {1009, 2975}, {1447, 25007}, {1837, 20173}, {1959, 3930}, {2321, 2893}, {3212, 5905}, {3218, 26594}, {3948, 36926}, {4462, 48079}, {4656, 11533}, {5222, 5748}, {5744, 29611}, {5773, 28813}, {6996, 51390}, {7291, 21368}, {11681, 52257}, {17233, 21276}, {17294, 51304}, {17300, 30035}, {17367, 30852}, {17752, 17778}, {17781, 29615}, {18662, 28598}, {20055, 20535}, {20096, 20769}, {21285, 29616}, {22019, 32431}, {25000, 38869}, {25005, 26267}, {26012, 56530}, {30075, 32911}, {33864, 52160}

X(56883) = anticomplement of X(1429)
X(56883) = anticomplement of the isogonal conjugate of X(4876)
X(56883) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {8, 20345}, {9, 17794}, {41, 30667}, {55, 33888}, {291, 7}, {292, 145}, {295, 347}, {312, 20554}, {334, 21285}, {335, 3434}, {660, 693}, {663, 39362}, {694, 29840}, {741, 3875}, {813, 522}, {1334, 39367}, {1808, 17134}, {1911, 3210}, {2311, 1}, {2330, 8782}, {3252, 52164}, {4518, 69}, {4562, 21302}, {4589, 4374}, {4876, 8}, {5378, 21272}, {7077, 2}, {7081, 25332}, {7233, 6604}, {18265, 194}, {18827, 20244}, {18895, 21280}, {33676, 20347}, {34067, 17496}, {36800, 17135}, {36801, 20295}, {37128, 3873}, {40848, 20350}, {41531, 20537}, {43534, 2893}, {51858, 192}, {56154, 75}
X(56883) = X(6)-isoconjugate of X(7351)
X(56883) = X(9)-Dao conjugate of X(7351)
X(56883) = barycentric product X(i)*X(j) for these {i,j}: {75, 6211}, {17787, 45992}
X(56883) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 7351}, {6211, 1}, {45992, 1432}
X(56883) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2329, 16603, 2}, {6542, 56555, 1959}, {13386, 13387, 32937}, {20096, 27526, 20769}


X(56884) = X(4)X(8)∩X(36)X(238)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 - a^3*b^2*c - a^2*b^3*c + a*b^4*c + b^5*c + a^4*c^2 - a^3*b*c^2 + 2*a^2*b^2*c^2 + a^3*c^3 - a^2*b*c^3 - 2*b^3*c^3 - a^2*c^4 + a*b*c^4 - a*c^5 + b*c^5) : :
X(56884) = 4 X[6681] - 3 X[34583]

X(56884) lies on the cubic K591 and these lines: {2, 35059}, {4, 8}, {5, 42448}, {30, 38389}, {36, 238}, {51, 39542}, {113, 3259}, {484, 38472}, {496, 23154}, {511, 51409}, {758, 15906}, {855, 34586}, {942, 28098}, {1155, 17749}, {1319, 10571}, {1532, 2818}, {1737, 2390}, {1777, 20842}, {2392, 11813}, {2841, 40663}, {2887, 3814}, {3583, 38390}, {3585, 34434}, {3937, 15325}, {5044, 33083}, {5122, 27621}, {5126, 28370}, {5440, 15310}, {5886, 26892}, {6000, 51410}, {6001, 34462}, {6681, 34583}, {8679, 30384}, {11573, 41012}, {11680, 30438}, {12047, 18180}, {15507, 44151}, {16980, 22791}, {18838, 34029}, {24390, 29958}, {25490, 25492}, {28174, 51377}, {28242, 28268}, {28356, 28377}, {34466, 56288}

X(56884) = reflection of X(i) in X(j) for these {i,j}: {484, 38472}, {3583, 38390}, {3937, 15325}, {50362, 11813}
X(56884) = anticomplement of X(35059)
X(56884) = polar-circle-inverse of X(41013)
X(56884) = crossdifference of every pair of points on line {37, 22383}
X(56884) = {X(12047),X(42450)}-harmonic conjugate of X(18180)


X(56885) = X(3)X(21361)∩X(4)X(8)

Barycentrics    a*(a^4*b^2 + a^3*b^3 - a^2*b^4 - a*b^5 - a^3*b^2*c - a^2*b^3*c + a*b^4*c + b^5*c + a^4*c^2 - a^3*b*c^2 + 2*a*b^3*c^2 + a^3*c^3 - a^2*b*c^3 + 2*a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 + a*b*c^4 - a*c^5 + b*c^5) : :

X(56885) lies on the cubic K858 and these lines: {3, 21361}, {4, 8}, {5, 29958}, {10, 2390}, {44, 579}, {56, 1724}, {63, 34466}, {185, 13257}, {375, 12609}, {404, 36058}, {496, 2810}, {513, 25440}, {908, 37536}, {975, 49557}, {1104, 24928}, {1125, 41682}, {1329, 3454}, {1762, 3460}, {2829, 31832}, {2841, 3042}, {3216, 23169}, {3452, 11573}, {3937, 13747}, {4187, 23154}, {4415, 50594}, {5287, 10108}, {5399, 15507}, {5482, 26892}, {5763, 13598}, {5943, 6147}, {6691, 36949}, {8679, 21616}, {8727, 44865}, {9026, 49627}, {10071, 34381}, {11681, 30438}, {12528, 34462}, {16980, 51409}, {17757, 42448}, {18180, 31053}, {19547, 55406}, {21077, 42450}, {21362, 22458}, {23841, 39542}, {26364, 35059}, {30493, 52659}, {32612, 34467}, {36280, 38903}

X(56885) = midpoint of X(72) and X(1828)
X(56885) = reflection of X(41682) in X(1125)
X(56885) = X(i)-Ceva conjugate of X(j) for these (i,j): {404, 1}, {36058, 517}
X(56885) = crossdifference of every pair of points on line {22383, 48302}
X(56885) = {X(21362),X(37732)}-harmonic conjugate of X(22458)


X(56886) = X(2)X(5137)∩X(4)X(8)

Barycentrics    a^6 - a^4*b^2 + a^2*b^4 - b^6 - a^4*b*c + a^3*b^2*c + a^2*b^3*c - a*b^4*c - a^4*c^2 + a^3*b*c^2 - a*b^3*c^2 + b^4*c^2 + a^2*b*c^3 - a*b^2*c^3 + a^2*c^4 - a*b*c^4 + b^2*c^4 - c^6 : :

X(56886) lies on the cubic K288 and these lines: {2, 5137}, {4, 8}, {36, 36000}, {98, 6099}, {100, 1503}, {125, 56529}, {344, 18911}, {345, 11442}, {513, 16085}, {542, 17977}, {858, 1332}, {1352, 17740}, {1714, 3814}, {1899, 17776}, {2238, 5375}, {3006, 21293}, {3193, 19839}, {3410, 33168}, {3448, 32849}, {5078, 11322}, {5706, 11681}, {6335, 51939}, {9022, 32842}, {14956, 21277}, {32064, 55112}, {33108, 38875}

X(56886) = reflection of X(100) in X(51367)
X(56886) = anticomplement of X(5137)
X(56886) = incircle-of-anticomplementary-triangle-inverse of X(4463)


X(56887) = X(1)X(196)∩X(4)X(8)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6 + 2*a^5*b - a^4*b^2 - 4*a^3*b^3 - a^2*b^4 + 2*a*b^5 + b^6 + 2*a^5*c - 6*a^4*b*c + 8*a^2*b^3*c - 2*a*b^4*c - 2*b^5*c - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 4*a^3*c^3 + 8*a^2*b*c^3 + 4*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 - b^2*c^4 + 2*a*c^5 - 2*b*c^5 + c^6) : :

X(56887) lies on the cubic K521 and these lines: {1, 196}, {3, 347}, {4, 8}, {7, 38272}, {28, 22770}, {40, 278}, {158, 30305}, {281, 946}, {388, 2817}, {406, 52780}, {412, 20070}, {497, 3176}, {631, 6349}, {653, 14986}, {1058, 1148}, {1068, 37410}, {1118, 3057}, {1435, 37560}, {1697, 7952}, {1838, 7991}, {1857, 12701}, {1895, 9785}, {3295, 7412}, {3340, 34231}, {3428, 41227}, {3617, 7541}, {4219, 10306}, {4301, 39585}, {5603, 7498}, {5709, 6197}, {5908, 37276}, {6147, 53804}, {6684, 17917}, {6848, 51410}, {6864, 9895}, {6865, 41340}, {6988, 38300}, {7497, 8158}, {7501, 11249}, {7510, 8148}, {7531, 10595}, {10267, 37441}, {10624, 44695}, {12053, 40836}, {18655, 37379}, {31162, 39574}, {37422, 56014}

X(56887) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 278, 37417}, {92, 962, 4}, {1851, 1902, 4}


X(56888) = X(4)X(11)∩X(40)X(1720)

Barycentrics    (a + b - c)*(a - b + c)*(4*a^7*b - a^6*b^2 - 6*a^5*b^3 + a^4*b^4 + a^2*b^6 + 2*a*b^7 - b^8 + 4*a^7*c - 14*a^6*b*c + 10*a^5*b^2*c + 4*a^4*b^3*c - 8*a^3*b^4*c + 10*a^2*b^5*c - 6*a*b^6*c - a^6*c^2 + 10*a^5*b*c^2 - 10*a^4*b^2*c^2 + 8*a^3*b^3*c^2 - a^2*b^4*c^2 - 10*a*b^5*c^2 + 4*b^6*c^2 - 6*a^5*c^3 + 4*a^4*b*c^3 + 8*a^3*b^2*c^3 - 20*a^2*b^3*c^3 + 14*a*b^4*c^3 + a^4*c^4 - 8*a^3*b*c^4 - a^2*b^2*c^4 + 14*a*b^3*c^4 - 6*b^4*c^4 + 10*a^2*b*c^5 - 10*a*b^2*c^5 + a^2*c^6 - 6*a*b*c^6 + 4*b^2*c^6 + 2*a*c^7 - c^8) : :

X(56888) lies on the cubic K826 and these lines: {4, 11}, {40, 1720}, {65, 2823}, {1361, 2817}, {1769, 6087}, {2551, 25882}, {2804, 13996}, {6284, 8283}, {10271, 10702}, {11719, 20323}, {15803, 52829}, {22770, 38578}, {23981, 37725}, {26095, 37054}, {28019, 28028}, {37561, 38606}

X(56888) = reflection of X(i) in X(j) for these {i,j}: {1359, 108}, {10702, 10271}


X(56889) = X(4)X(11)∩X(40)X(64)

Barycentrics    a*(a^9 - 2*a^8*b - 2*a^7*b^2 + 6*a^6*b^3 - 6*a^4*b^5 + 2*a^3*b^6 + 2*a^2*b^7 - a*b^8 - 2*a^8*c + 2*a^7*b*c - 2*a^5*b^3*c + 8*a^4*b^4*c - 2*a^3*b^5*c - 8*a^2*b^6*c + 2*a*b^7*c + 2*b^8*c - 2*a^7*c^2 - 4*a^5*b^2*c^2 - 2*a^4*b^3*c^2 - 2*a^3*b^4*c^2 + 4*a^2*b^5*c^2 + 8*a*b^6*c^2 - 2*b^7*c^2 + 6*a^6*c^3 - 2*a^5*b*c^3 - 2*a^4*b^2*c^3 + 4*a^3*b^3*c^3 + 2*a^2*b^4*c^3 - 2*a*b^5*c^3 - 6*b^6*c^3 + 8*a^4*b*c^4 - 2*a^3*b^2*c^4 + 2*a^2*b^3*c^4 - 14*a*b^4*c^4 + 6*b^5*c^4 - 6*a^4*c^5 - 2*a^3*b*c^5 + 4*a^2*b^2*c^5 - 2*a*b^3*c^5 + 6*b^4*c^5 + 2*a^3*c^6 - 8*a^2*b*c^6 + 8*a*b^2*c^6 - 6*b^3*c^6 + 2*a^2*c^7 + 2*a*b*c^7 - 2*b^2*c^7 - a*c^8 + 2*b*c^8) : :

X(56889) lies on the cubic K844 and these lines: {1, 15239}, {3, 3452}, {4, 11}, {9, 10270}, {40, 64}, {46, 17649}, {57, 18238}, {63, 18239}, {84, 1728}, {100, 52116}, {223, 40658}, {226, 11496}, {329, 10309}, {404, 54052}, {405, 37561}, {411, 6223}, {474, 52027}, {515, 12513}, {958, 6256}, {971, 6985}, {1001, 12608}, {1012, 9612}, {1035, 7952}, {1155, 12664}, {1158, 1376}, {1167, 34048}, {1466, 2096}, {1498, 1745}, {1768, 41704}, {1785, 41402}, {2077, 5924}, {2183, 5776}, {2551, 6908}, {2800, 3913}, {3057, 18446}, {3295, 54198}, {3428, 12667}, {3560, 22792}, {3651, 5658}, {3680, 56273}, {3871, 54199}, {5220, 32159}, {5289, 6261}, {5450, 6913}, {5584, 21031}, {5698, 18243}, {5812, 12676}, {6245, 19541}, {6705, 6918}, {6796, 11495}, {6905, 12246}, {6911, 34862}, {7992, 44425}, {9799, 36002}, {9942, 41854}, {10382, 12675}, {11499, 12515}, {11517, 12332}, {12678, 26357}, {12679, 37579}, {14647, 26062}, {18491, 33899}, {22758, 31493}, {26927, 28077}, {33557, 54051}, {37426, 52026}

X(56889) = reflection of X(12330) in X(6796)
X(56889) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 54366, 7681}, {1490, 7580, 11500}


X(56890) = X(4)X(11)∩X(123)X(6667)

Barycentrics    2*a^12 - 4*a^11*b - 3*a^10*b^2 + 10*a^9*b^3 - 3*a^8*b^4 - 4*a^7*b^5 + 6*a^6*b^6 - 8*a^5*b^7 + 8*a^3*b^9 - 3*a^2*b^10 - 2*a*b^11 + b^12 - 4*a^11*c + 18*a^10*b*c - 14*a^9*b^2*c - 23*a^8*b^3*c + 35*a^7*b^4*c - 17*a^6*b^5*c - a^5*b^6*c + 29*a^4*b^7*c - 27*a^3*b^8*c - 5*a^2*b^9*c + 11*a*b^10*c - 2*b^11*c - 3*a^10*c^2 - 14*a^9*b*c^2 + 54*a^8*b^2*c^2 - 31*a^7*b^3*c^2 - 36*a^6*b^4*c^2 + 67*a^5*b^5*c^2 - 56*a^4*b^6*c^2 - 9*a^3*b^7*c^2 + 43*a^2*b^8*c^2 - 13*a*b^9*c^2 - 2*b^10*c^2 + 10*a^9*c^3 - 23*a^8*b*c^3 - 31*a^7*b^2*c^3 + 94*a^6*b^3*c^3 - 58*a^5*b^4*c^3 - 45*a^4*b^5*c^3 + 109*a^3*b^6*c^3 - 48*a^2*b^7*c^3 - 14*a*b^8*c^3 + 6*b^9*c^3 - 3*a^8*c^4 + 35*a^7*b*c^4 - 36*a^6*b^2*c^4 - 58*a^5*b^3*c^4 + 144*a^4*b^4*c^4 - 81*a^3*b^5*c^4 - 40*a^2*b^6*c^4 + 40*a*b^7*c^4 - b^8*c^4 - 4*a^7*c^5 - 17*a^6*b*c^5 + 67*a^5*b^2*c^5 - 45*a^4*b^3*c^5 - 81*a^3*b^4*c^5 + 106*a^2*b^5*c^5 - 22*a*b^6*c^5 - 4*b^7*c^5 + 6*a^6*c^6 - a^5*b*c^6 - 56*a^4*b^2*c^6 + 109*a^3*b^3*c^6 - 40*a^2*b^4*c^6 - 22*a*b^5*c^6 + 4*b^6*c^6 - 8*a^5*c^7 + 29*a^4*b*c^7 - 9*a^3*b^2*c^7 - 48*a^2*b^3*c^7 + 40*a*b^4*c^7 - 4*b^5*c^7 - 27*a^3*b*c^8 + 43*a^2*b^2*c^8 - 14*a*b^3*c^8 - b^4*c^8 + 8*a^3*c^9 - 5*a^2*b*c^9 - 13*a*b^2*c^9 + 6*b^3*c^9 - 3*a^2*c^10 + 11*a*b*c^10 - 2*b^2*c^10 - 2*a*c^11 - 2*b*c^11 + c^12 : :
X(56890) = 3 X[11] - X[10776], 3 X[108] + X[10776], X[1295] - 3 X[21154], X[10746] - 3 X[23513], X[24466] - 3 X[38696], 5 X[31272] - X[34188], 3 X[34122] - X[50917], X[34550] + 3 X[38693]

X(56890) lies on the cubic K817 and these lines: {4, 11}, {123, 6667}, {513, 28347}, {676, 2804}, {952, 11719}, {1295, 21154}, {1387, 2817}, {2778, 12736}, {2834, 33970}, {5433, 38506}, {5840, 38606}, {6713, 11798}, {10746, 23513}, {24466, 38696}, {31272, 34188}, {33566, 38761}, {34122, 50917}, {34550, 38693}

X(56890) = midpoint of X(i) and X(j) for these {i,j}: {11, 108}, {33566, 38761}
X(56890) = reflection of X(i) in X(j) for these {i,j}: {123, 6667}, {3035, 6717}


X(56891) = X(2)X(55999)∩X(5)X(6)

Barycentrics    (3*a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*b^2*c^2 + c^4)*(a^4 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(56891) lies on the cubics K054 and K055 and these lines: {2, 55999}, {5, 6}, {32, 34853}, {51, 39111}, {96, 14494}, {143, 7737}, {847, 47735}, {925, 21463}, {1992, 56007}, {2351, 39653}, {3053, 8940}, {5286, 5962}, {5392, 5395}, {5446, 50647}, {7745, 9777}, {7763, 47389}, {8906, 37493}, {11433, 52350}, {12118, 47421}, {13470, 43619}, {18907, 46200}, {19136, 32734}, {32132, 36749}, {32692, 40633}

X(56891) = X(14593)-Ceva conjugate of X(2165)
X(56891) = X(i)-isoconjugate of X(j) for these (i,j): {47, 2996}, {1748, 6391}, {1993, 8769}, {7763, 38252}, {8770, 44179}, {35136, 55216}
X(56891) = X(i)-Dao conjugate of X(j) for these (i,j): {2489, 136}, {15525, 6563}, {34853, 2996}, {37864, 8770}, {51579, 7763}
X(56891) = barycentric product X(i)*X(j) for these {i,j}: {68, 6353}, {91, 1707}, {96, 41588}, {193, 2165}, {485, 8940}, {486, 8944}, {847, 3167}, {925, 3566}, {2351, 54412}, {3053, 5392}, {6337, 14593}, {8651, 46134}, {19118, 20563}, {21447, 55549}
X(56891) = barycentric quotient X(i)/X(j) for these {i,j}: {68, 6340}, {193, 7763}, {925, 35136}, {1707, 44179}, {2165, 2996}, {2351, 6391}, {3053, 1993}, {3167, 9723}, {3566, 6563}, {5139, 136}, {6353, 317}, {8651, 924}, {8940, 492}, {8944, 491}, {14593, 34208}, {17876, 17881}, {19118, 24}, {21874, 42700}, {32734, 3565}, {41588, 39113}, {47430, 47421}
X(56891) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 47731, 2165}, {21463, 21464, 925}


X(56892) = X(2)X(136)∩X(5)X(6)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 - 2*b^2*c^2 + c^4)*(a^4 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^4 - 4*a^2*b^2 + 3*b^4 - 4*a^2*c^2 - 2*b^2*c^2 + 3*c^4) : :
X(56892) = 7 X[3090] + X[34208]

X(56892) lies on the cubic K281 and these lines: {2, 136}, {5, 6}, {96, 5395}, {182, 32734}, {847, 3090}, {1656, 34853}, {2351, 5020}, {2453, 44911}, {3545, 5962}, {3628, 46200}, {5071, 51833}, {5392, 14494}, {6642, 37813}, {7405, 32132}, {8797, 20563}, {8906, 14786}, {11479, 16391}, {14064, 27367}, {14489, 52350}, {37649, 39111}, {40132, 40348}, {46134, 53127}

X(56892) = X(i)-isoconjugate of X(j) for these (i,j): {47, 7612}, {563, 42298}
X(56892) = X(34853)-Dao conjugate of X(7612)
X(56892) = barycentric product X(i)*X(j) for these {i,j}: {68, 37174}, {1007, 2165}, {1351, 5392}, {10008, 14593}
X(56892) = barycentric quotient X(i)/X(j) for these {i,j}: {68, 56267}, {847, 42298}, {1007, 7763}, {1351, 1993}, {2165, 7612}, {14593, 47735}, {37174, 317}, {51288, 1748}


X(56893) = X(5)X(10)∩X(11)X(244)

Barycentrics    (b - c)^2*(-(a^3*b) + a*b^3 - a^3*c + 4*a^2*b*c - 4*a*b^2*c + b^3*c - 4*a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3) : :

X(56893) lies on the cubic K722 and these lines: {2, 23832}, {5, 10}, {11, 244}, {36, 51631}, {124, 2815}, {496, 23869}, {523, 42753}, {764, 42455}, {1478, 24865}, {3141, 31946}, {3816, 24169}, {3822, 25031}, {3829, 42055}, {3944, 24399}, {4293, 24877}, {7451, 20470}, {11680, 17165}, {14321, 17435}, {33130, 37735}, {34589, 38390}, {42759, 51442}

X(56893) = complement of X(23832)
X(56893) = complement of the isogonal conjugate of X(23836)
X(56893) = X(i)-complementary conjugate of X(j) for these (i,j): {244, 5516}, {513, 52871}, {1120, 513}, {1811, 20315}, {6079, 24003}, {8686, 522}, {23836, 10}, {36805, 3835}, {37627, 1}, {40400, 514}
X(56893) = {X(1647),X(35015)}-harmonic conjugate of X(24457)


X(56894) = X(5)X(10)∩X(35)X(60)

Barycentrics    a^2*(b + c)*(a^3*b + a^2*b^2 - a*b^3 - b^4 + a^3*c + a^2*b*c - a*b^2*c - b^3*c + a^2*c^2 - a*b*c^2 - b^2*c^2 - a*c^3 - b*c^3 - c^4) : :

X(56894) lies on the cubic K590 and these lines: {3, 31817}, {5, 10}, {35, 60}, {42, 595}, {54, 71}, {63, 23156}, {72, 7068}, {110, 2126}, {191, 2392}, {209, 37080}, {219, 39582}, {502, 6058}, {511, 3647}, {758, 3178}, {846, 41329}, {1125, 24934}, {1154, 22937}, {2127, 21873}, {2772, 3651}, {2779, 16139}, {2842, 11684}, {2922, 20672}, {3293, 37563}, {3579, 5663}, {3678, 3690}, {3683, 31757}, {3743, 10974}, {3781, 25440}, {4015, 51377}, {4062, 5904}, {4640, 31737}, {4868, 10822}, {5164, 21879}, {5248, 26893}, {5496, 37225}, {5640, 41872}, {5692, 20653}, {5752, 15049}, {5902, 27577}, {5903, 21674}, {6045, 12572}, {6763, 23157}, {7262, 50593}, {7998, 37524}, {8013, 26911}, {11002, 56203}, {11263, 20718}, {13391, 22936}, {21076, 46676}, {31663, 31836}, {32142, 41347}, {37621, 52139}, {50587, 50621}
on K590

X(56894) = X(52597)-Dao conjugate of X(21207)
X(56894) = crossdifference of every pair of points on line {17422, 21102}
X(56894) = barycentric product X(i)*X(j) for these {i,j}: {249, 21710}, {3952, 52597}, {9563, 28654}
X(56894) = barycentric quotient X(i)/X(j) for these {i,j}: {9563, 593}, {21710, 338}, {52597, 7192}
X(56894) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 21672, 10}, {10974, 40966, 3743}


X(56895) = X(1)X(6185)∩X(6)X(7)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^4 + a^2*b^2 - 2*a*b^3 + a^2*b*c - b^3*c + a^2*c^2 + 2*b^2*c^2 - 2*a*c^3 - b*c^3) : :

X(56895) lies on the cubic K1018 and these lines: {1, 6185}, {2, 2115}, {6, 7}, {85, 9503}, {105, 21010}, {666, 4384}, {2283, 11349}, {6559, 28827}, {14942, 17316}, {17014, 52210}, {20172, 33674}, {20917, 51560}, {25930, 54364}, {36124, 37448}, {51929, 56697}

X(56895) = X(14621)-Ceva conjugate of X(6654)
X(56895) = X(672)-isoconjugate of X(43751)
X(56895) = X(56697)-Dao conjugate of X(3661)
X(56895) = barycentric quotient X(105)/X(43751)
X(56895) = {X(1),X(6185)}-harmonic conjugate of X(6654)


X(56896) = X(6)X(7)∩X(44)X(666)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^4 - a^3*b - a^3*c + a^2*b*c + b^3*c - 2*b^2*c^2 + b*c^3) : :

X(56896) lies on the cubic K1050 and these lines: {6, 7}, {44, 666}, {105, 659}, {106, 28843}, {536, 36802}, {2481, 16732}, {4396, 51560}, {4422, 6559}, {6185, 51922}, {7113, 36146}, {8679, 52030}, {14942, 53534}, {16560, 18785}, {19624, 36086}, {24328, 52902}, {24358, 36796}, {33674, 49706}, {34371, 43921}

X(56896) = X(i)-isoconjugate of X(j) for these (i,j): {100, 34905}, {518, 9319}, {672, 14947}, {42079, 53214}
X(56896) = X(i)-Dao conjugate of X(j) for these (i,j): {8054, 34905}, {39047, 3912}
X(56896) = crossdifference of every pair of points on line {926, 6184}
X(56896) = barycentric product X(i)*X(j) for these {i,j}: {514, 34906}, {673, 9318}, {2481, 5091}
X(56896) = barycentric quotient X(i)/X(j) for these {i,j}: {105, 14947}, {649, 34905}, {1438, 9319}, {5091, 518}, {6185, 53214}, {9318, 3912}, {32735, 53607}, {34906, 190}, {40865, 42720}


X(56897) = X(6)X(7)∩X(37)X(40781)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^4 - a^3*b + 2*a^2*b^2 - a*b^3 - b^4 - a^3*c + a^2*b*c - a*b^2*c + b^3*c + 2*a^2*c^2 - a*b*c^2 - a*c^3 + b*c^3 - c^4) : :

X(56897) lies on the cubic K132 and these lines: {6, 7}, {37, 40781}, {144, 9501}, {192, 14942}, {666, 4416}, {894, 33676}, {1045, 52146}, {3663, 6185}, {3672, 6654}, {16517, 56697}, {17787, 51560}, {20883, 54235}

X(56897) = X(33676)-Ceva conjugate of X(673)
X(56897) = X(672)-isoconjugate of X(43747)
X(56897) = X(1447)-Dao conjugate of X(39775)
X(56897) = barycentric product X(i)*X(j) for these {i,j}: {673, 56555}, {2481, 18788}, {14942, 41352}, {36796, 52089}
X(56897) = barycentric quotient X(i)/X(j) for these {i,j}: {105, 43747}, {8932, 8299}, {18788, 518}, {40791, 56694}, {41352, 9436}, {51871, 1458}, {52089, 241}, {56555, 3912}


X(56898) = X(6)X(7)∩X(190)X(31637)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^4 - 2*a^3*b + 2*a^2*b^2 - b^4 - 2*a^3*c + a^2*b*c - a*b^2*c + 2*b^3*c + 2*a^2*c^2 - a*b*c^2 - 2*b^2*c^2 + 2*b*c^3 - c^4) : :

X(56898) lies on the cubic K660 and these lines: {6, 7}, {190, 31637}, {320, 666}, {527, 36086}, {918, 1280}, {2836, 52029}, {5852, 9501}, {6559, 26932}, {22464, 36146}, {24231, 51838}, {27191, 31638}

X(56898) = X(53214)-Ceva conjugate of X(673)
X(56898) = crossdifference of every pair of points on line {926, 20662}
X(56898) = barycentric product X(39047)*X(53214)
X(56898) = {X(294),X(1086)}-harmonic conjugate of X(673)


X(56899) = X(6)X(7)∩X(75)X(666)

Barycentrics    a*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^3 - a^2*b + a*b^2 - b^3 - a^2*c + a*b*c + a*c^2 - c^3) : :

X(56899) lies on the cubic K970 and these lines: {1, 51838}, {6, 7}, {9, 36086}, {19, 7012}, {37, 51922}, {75, 666}, {77, 36146}, {82, 4628}, {105, 30555}, {219, 44184}, {281, 6559}, {1449, 46972}, {2550, 56639}, {3242, 9453}, {3252, 9319}, {3287, 23617}, {4429, 40724}, {5220, 9501}, {5276, 6654}, {9503, 21446}, {17234, 31637}, {17352, 31638}, {26242, 41934}

X(56899) = X(i)-Ceva conjugate of X(j) for these (i,j): {83, 6654}, {666, 47695}
X(56899) = X(665)-isoconjugate of X(51568)
X(56899) = X(i)-Dao conjugate of X(j) for these (i,j): {1279, 16593}, {51400, 17060}
X(56899) = barycentric product X(i)*X(j) for these {i,j}: {105, 32850}, {2481, 40910}, {4318, 14942}, {36086, 47695}
X(56899) = barycentric quotient X(i)/X(j) for these {i,j}: {4318, 9436}, {32850, 3263}, {36086, 51568}, {39048, 16593}, {40910, 518}
X(56899) = {X(294),X(40754)}-harmonic conjugate of X(6)


X(56900) = X(6)X(7)∩X(9)X(522)

Barycentrics    (a - b - c)*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3) : :

X(56900) lies on the cubic K220 and these lines: {6, 7}, {9, 522}, {105, 40127}, {118, 13576}, {144, 666}, {281, 1863}, {346, 36802}, {390, 52946}, {516, 56639}, {584, 40450}, {919, 2723}, {3161, 6559}, {9318, 52210}, {18785, 38991}, {34019, 34085}, {36086, 41325}, {43166, 54364}

X(56900) = isogonal conjugate of X(52213)
X(56900) = isotomic conjugate of X(56668)
X(56900) = X(673)-Ceva conjugate of X(516)
X(56900) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52213}, {31, 56668}, {103, 241}, {672, 43736}, {677, 53544}, {911, 9436}, {1025, 2424}, {1362, 9503}, {1458, 36101}, {1815, 1876}, {2223, 52156}, {2338, 34855}, {5236, 36056}, {18025, 52635}, {32668, 50333}, {36039, 43042}
X(56900) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 56668}, {3, 52213}, {516, 39063}, {676, 35094}, {1566, 43042}, {20622, 5236}, {23972, 9436}, {50441, 3912}
X(56900) = cevapoint of X(910) and X(23972)
X(56900) = crossdifference of every pair of points on line {926, 1458}
X(56900) = barycentric product X(i)*X(j) for these {i,j}: {8, 56639}, {294, 30807}, {516, 14942}, {673, 40869}, {676, 36802}, {885, 2398}, {910, 36796}, {1024, 42719}, {2195, 35517}, {2481, 41339}, {6559, 43035}, {33676, 51435}, {34018, 51418}, {34085, 46392}, {51376, 54235}
X(56900) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 56668}, {6, 52213}, {105, 43736}, {294, 36101}, {516, 9436}, {673, 52156}, {676, 43042}, {884, 2424}, {885, 2400}, {910, 241}, {1456, 34855}, {1566, 35094}, {1886, 5236}, {2195, 103}, {2398, 883}, {2426, 2283}, {14942, 18025}, {23972, 39063}, {30807, 40704}, {32735, 24016}, {40869, 3912}, {41339, 518}, {42077, 53547}, {51376, 25083}, {51418, 3693}, {51435, 39775}, {52927, 677}, {56639, 7}


X(56901) = X(2)X(40432)∩X(6)X(8)

Barycentrics    (a^2 + b^2 + a*c + b*c)*(a^2 + a*b + b*c + c^2)*(a*b^2 + b^2*c + a*c^2 + b*c^2) : :

X(56901) lies on the cubic K285 and these lines: {2, 40432}, {6, 8}, {21, 26244}, {32, 4195}, {330, 30710}, {1240, 56332}, {1502, 34284}, {2309, 21713}, {2329, 54331}, {14534, 37683}, {14829, 17103}, {24271, 37416}, {45208, 51575}

X(56901) = X(i)-isoconjugate of X(j) for these (i,j): {1193, 1258}, {2300, 40418}, {3725, 40409}
X(56901) = X(i)-Dao conjugate of X(j) for these (i,j): {3741, 2092}, {21838, 4357}, {51575, 3666}
X(56901) = cevapoint of X(i) and X(j) for these (i,j): {1107, 21024}, {3741, 51575}
X(56901) = barycentric product X(i)*X(j) for these {i,j}: {1107, 30710}, {1220, 3741}, {1240, 2309}, {2298, 20891}, {4581, 53338}, {14534, 21024}, {14624, 16738}, {21838, 40827}
X(56901) = barycentric quotient X(i)/X(j) for these {i,j}: {1107, 3666}, {1197, 2300}, {1220, 40418}, {2298, 1258}, {2309, 1193}, {3728, 2292}, {3741, 4357}, {14534, 40409}, {16738, 16705}, {18169, 54308}, {20891, 20911}, {21024, 1211}, {21713, 20653}, {21838, 2092}, {22065, 22097}, {22206, 21810}, {22389, 22345}, {30097, 3674}, {30710, 1221}, {50510, 6371}, {53268, 53280}, {53338, 53332}


X(56902) = X(2)X(314)∩X(6)X(10)

Barycentrics    a^4*b + 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 + a^4*c + 3*a^3*b*c + 7*a^2*b^2*c + 5*a*b^3*c + b^4*c + 2*a^3*c^2 + 7*a^2*b*c^2 + 8*a*b^2*c^2 + 3*b^3*c^2 + 2*a^2*c^3 + 5*a*b*c^3 + 3*b^2*c^3 + a*c^4 + b*c^4 : :

X(56902) lies on the cubic K1200 and these lines: {2, 314}, {5, 573}, {6, 10}, {37, 19858}, {386, 17398}, {594, 30116}, {604, 9552}, {966, 4274}, {1010, 5019}, {1400, 30970}, {2050, 37499}, {2268, 9555}, {2269, 31496}, {2277, 19863}, {2300, 31339}, {2345, 5283}, {3596, 28604}, {3687, 19701}, {3739, 20227}, {5278, 17368}, {5296, 17777}, {6666, 19744}, {16843, 19763}, {17353, 19732}, {25504, 36812}, {48852, 48861}

X(56902) = crossdifference of every pair of points on line {834, 8639}


X(56903) = X(2)X(261)∩X(6)X(10)

Barycentrics    a^5 + 2*a^4*b + 3*a^3*b^2 + 3*a^2*b^3 + a*b^4 + 2*a^4*c + 7*a^3*b*c + 8*a^2*b^2*c + 5*a*b^3*c + b^4*c + 3*a^3*c^2 + 8*a^2*b*c^2 + 8*a*b^2*c^2 + 3*b^3*c^2 + 3*a^2*c^3 + 5*a*b*c^3 + 3*b^2*c^3 + a*c^4 + b*c^4 : :

X(56903) lies on the cubic K1200 and these lines: {2, 261}, {5, 572}, {6, 10}, {37, 24275}, {58, 1213}, {964, 3685}, {993, 21773}, {1010, 2092}, {1125, 24267}, {1999, 19684}, {2300, 32772}, {2303, 52538}, {5816, 13323}, {16843, 19762}, {17321, 24271}, {17720, 19701}, {24931, 34528}

X(56903) = crossdifference of every pair of points on line {834, 42661}


X(56904) = X(1)X(185)∩X(6)X(11)

Barycentrics    a*(a - b - c)*(a^4 - a^2*b^2 + a^2*b*c - b^3*c - a^2*c^2 + 2*b^2*c^2 - b*c^3)*(a^4*b - 2*a^2*b^3 + b^5 + a^4*c - 2*a^3*b*c + 2*a^2*b^2*c - b^4*c + 2*a^2*b*c^2 - 2*a^2*c^3 - b*c^4 + c^5) : :

X(56904) lies on the Feuerbach circumhyperbola of the orthic triangle, the cubic K1185 and these lines: {1, 185}, {4, 651}, {6, 11}, {221, 5895}, {390, 1480}, {851, 1936}, {1858, 2310}, {1876, 45022}, {2183, 9502}, {2269, 18675}, {2635, 42082}, {2907, 3193}, {3574, 35197}, {4307, 15501}, {6126, 12896}, {25493, 25964}

X(56904) = orthic-isogonal conjugate of X(851)
X(56904) = X(i)-Ceva conjugate of X(j) for these (i,j): {1, 8758}, {4, 851}
X(56904) = X(i)-isoconjugate of X(j) for these (i,j): {296, 43764}, {1937, 8759}, {1945, 8777}, {20624, 40843}
X(56904) = X(i)-Dao conjugate of X(j) for these (i,j): {20623, 1952}, {39032, 8777}, {39037, 8759}, {39070, 1937}
X(56904) = crossdifference of every pair of points on line {296, 928}
X(56904) = X(1)-line conjugate of X(296)
X(56904) = barycentric product X(1944)*X(8758)
X(56904) = barycentric quotient X(i)/X(j) for these {i,j}: {1936, 8777}, {1951, 8759}, {2202, 43764}, {8758, 1952}, {8776, 1937}, {51726, 20624}


X(56905) = X(2)X(17903)∩X(6)X(19)

Barycentrics    a*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a*b + b^2 + a*c + c^2)*(a^4 - b^4 + 2*a^2*b*c - 2*a*b^2*c - 2*a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(56905) lies on the cubic K253 and these lines: {2, 17903}, {6, 19}, {197, 17408}, {429, 2092}, {1196, 5089}, {3209, 37257}, {3666, 19608}, {8609, 40939}, {14257, 34263}, {16049, 41364}, {17518, 40582}, {23529, 53011}

X(56905) = complement of the isogonal conjugate of X(52143)
X(56905) = complement of the isotomic conjugate of X(16049)
X(56905) = polar conjugate of the isotomic conjugate of X(41600)
X(56905) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 429}, {58, 23304}, {197, 3454}, {205, 1211}, {478, 17052}, {1333, 12610}, {1766, 21245}, {2206, 56}, {6588, 21253}, {16049, 2887}, {16947, 20270}, {21186, 53575}, {41364, 20305}, {52143, 10}
X(56905) = X(2)-Ceva conjugate of X(429)
X(56905) = X(i)-isoconjugate of X(j) for these (i,j): {63, 40454}, {1791, 42467}, {2359, 8048}
X(56905) = X(i)-Dao conjugate of X(j) for these (i,j): {123, 15420}, {429, 2}, {3162, 40454}
X(56905) = barycentric product X(i)*X(j) for these {i,j}: {4, 41600}, {197, 54314}, {429, 16049}, {960, 14257}, {1211, 41364}, {1766, 1848}, {1829, 3436}, {2354, 20928}, {21147, 46878}
X(56905) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 40454}, {197, 1791}, {205, 2359}, {1829, 8048}, {2354, 42467}, {6588, 15420}, {14257, 31643}, {17408, 961}, {20967, 39167}, {41364, 14534}, {41600, 69}, {44092, 43703}, {52143, 1798}


X(56906) = X(6)X(19)∩X(50)X(1415)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^4 - b^4 + a^2*b*c - a*b^2*c - a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(56906) lies on the cubic K381 and these lines: {6, 19}, {50, 1415}, {109, 2245}, {222, 4654}, {500, 55100}, {513, 5061}, {524, 651}, {534, 43035}, {971, 36746}, {1015, 52970}, {1030, 1950}, {1394, 8557}, {1396, 6354}, {1399, 1400}, {1455, 8609}, {1457, 7113}, {2161, 51654}, {2278, 10571}, {2286, 16777}, {2298, 49745}, {2323, 44663}, {3220, 4252}, {3285, 17966}, {4559, 17796}, {5711, 29046}, {6648, 17790}, {7316, 32735}, {8736, 53421}, {9612, 37559}, {16548, 22123}, {18877, 32647}, {19623, 44350}, {21773, 52411}, {21786, 46384}, {23058, 55432}, {23979, 23985}

X(56906) = isogonal conjugate of X(52500)
X(56906) = isogonal conjugate of the isotomic conjugate of X(37798)
X(56906) = X(2006)-Ceva conjugate of X(56)
X(56906) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52500}, {9, 55022}, {312, 34442}, {333, 10693}, {2766, 6332}
X(56906) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 52500}, {36, 32851}, {478, 55022}, {5520, 4391}
X(56906) = crossdifference of every pair of points on line {521, 960}
X(56906) = barycentric product X(i)*X(j) for these {i,j}: {6, 37798}, {7, 20989}, {56, 5080}, {57, 16548}, {65, 1325}, {108, 2850}, {109, 21180}, {278, 22123}, {604, 20920}, {651, 47227}, {1411, 52368}, {1412, 21066}, {2006, 40584}
X(56906) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 52500}, {56, 55022}, {1325, 314}, {1397, 34442}, {1402, 10693}, {2850, 35518}, {5080, 3596}, {16548, 312}, {17408, 39990}, {20920, 28659}, {20989, 8}, {21066, 30713}, {21180, 35519}, {22123, 345}, {37798, 76}, {40584, 32851}, {47227, 4391}
X(56906) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {478, 608, 6}, {1950, 40590, 1030}, {2182, 52413, 6}, {16548, 40584, 22123}


X(56907) = X(6)X(19)∩X(109)X(583)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^4 - b^4 - a^2*b*c + a*b^2*c + a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(56907) lies on the cubic K486 and these lines: {6, 19}, {109, 583}, {584, 10571}, {651, 3629}, {1393, 2160}, {1415, 2965}, {1457, 2174}, {1950, 5124}, {2286, 16884}, {2911, 34040}, {4559, 56534}, {16547, 22122}, {40590, 54409}, {46189, 52970}

X(56907) = X(52374)-Ceva conjugate of X(56)
X(56907) = X(i)-isoconjugate of X(j) for these (i,j): {312, 34441}, {52062, 52344}
X(56907) = X(35)-Dao conjugate of X(42033)
X(56907) = barycentric product X(i)*X(j) for these {i,j}: {7, 20988}, {56, 52367}, {57, 16547}, {109, 21179}, {278, 22122}, {604, 20919}, {961, 41591}, {1412, 21065}
X(56907) = barycentric quotient X(i)/X(j) for these {i,j}: {1397, 34441}, {16547, 312}, {20919, 28659}, {20988, 8}, {21065, 30713}, {21179, 35519}, {22122, 345}, {52367, 3596}
X(56907) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1950, 43039, 5124}, {2262, 52413, 6}


X(56908) = X(6)X(19)∩X(141)X(1441)

Barycentrics    a*(a + b - c)*(a - b + c)*(b + c)*(a^2*b^2 - b^4 + a^2*b*c + a*b^2*c + a^2*c^2 + a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(56908) lies on the cubic K1284 and these lines: {6, 19}, {7, 18179}, {12, 56541}, {141, 1441}, {226, 4016}, {1214, 37674}, {1254, 2294}, {1761, 2647}, {1865, 6354}, {1953, 8608}, {2171, 40590}, {3812, 40937}, {5903, 22134}

X(56908) = barycentric product X(65)*X(2476)
X(56908) = barycentric quotient X(2476)/X(314)
X(56908) = {X(65),X(1880)}-harmonic conjugate of X(6)


X(56909) = X(6)X(19)∩X(31)X(196)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5 - a^4*b - a^3*b^2 + a^2*b^3 - a^4*c + a^3*b*c + 2*a^2*b^2*c - a*b^3*c - b^4*c - a^3*c^2 + 2*a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 - a*b*c^3 + b^2*c^3 - b*c^4) : :

X(56909) lies on the cubic K224 and these lines: {6, 19}, {31, 196}, {108, 902}, {109, 1430}, {238, 653}, {240, 4318}, {278, 9316}, {516, 1785}, {614, 1767}, {1042, 41227}, {1068, 3072}, {1148, 3073}, {1254, 6197}, {1458, 32714}, {1936, 52167}, {1946, 6129}, {2190, 3668}, {3915, 44696}, {9364, 17923}, {42379, 52840}

X(56909) = X(2376)-Ceva conjugate of X(34)
X(56909) = barycentric product X(i)*X(j) for these {i,j}: {34, 40863}, {278, 23693}
X(56909) = barycentric quotient X(i)/X(j) for these {i,j}: {23693, 345}, {40863, 3718}


X(56910) = X(6)X(19)∩X(7)X(5138)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^6 - a^5*b - a^4*b^2 + a^3*b^3 - a^5*c - a^4*b*c + a^3*b^2*c + b^5*c - a^4*c^2 + a^3*b*c^2 + a^3*c^3 - 2*b^3*c^3 + b*c^5) : :

X(56910) lies on the cubic K223 and these lines: {6, 19}, {7, 5138}, {25, 34032}, {28, 1425}, {35, 1742}, {108, 1495}, {109, 851}, {110, 37798}, {125, 37799}, {182, 37800}, {184, 278}, {185, 41227}, {225, 26888}, {468, 51365}, {511, 651}, {513, 1946}, {954, 971}, {1068, 6759}, {1175, 52560}, {1423, 3220}, {1426, 40660}, {1884, 51421}, {1976, 32735}, {2175, 4331}, {2194, 6354}, {2355, 46017}, {2724, 53243}, {2818, 37305}, {3579, 5909}, {4224, 34035}, {4552, 56529}, {4554, 56430}, {5764, 15971}, {6180, 36740}, {6357, 36059}, {7085, 34048}, {7193, 22464}, {7952, 26883}, {10535, 23710}, {10571, 13733}, {26884, 34050}, {33325, 56560}, {35993, 38389}, {41204, 54240}, {43044, 51661}, {45963, 51687}

X(56910) = isogonal conjugate of the isotomic conjugate of X(16090)
X(56910) = crossdifference of every pair of points on line {521, 40937}
X(56910) = barycentric product X(i)*X(j) for these {i,j}: {6, 16090}, {65, 448}, {226, 23692}, {651, 47203}
X(56910) = barycentric quotient X(i)/X(j) for these {i,j}: {448, 314}, {16090, 76}, {23692, 333}, {47203, 4391}
X(56910) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 37798, 41349}, {1456, 2182, 1876}


X(56911) = X(6)X(19)∩X(31)X(11190)

Barycentrics    a^2*(a^6 - a^5*b - a^4*b^2 + 2*a^3*b^3 - a^2*b^4 - a*b^5 + b^6 - a^5*c - a^4*b*c + a*b^4*c + b^5*c - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 + 2*a^3*c^3 - 2*b^3*c^3 - a^2*c^4 + a*b*c^4 - b^2*c^4 - a*c^5 + b*c^5 + c^6) : :

X(56911) lies on the cubic K1042 and these lines: {6, 19}, {31, 11190}, {42, 10536}, {44, 6001}, {45, 1854}, {109, 3284}, {171, 10174}, {216, 1630}, {219, 3362}, {222, 18735}, {650, 15313}, {1503, 15990}, {1783, 3330}, {1951, 2252}, {1990, 51421}, {2151, 11243}, {2152, 11244}, {2159, 19297}, {2173, 52431}, {2174, 2200}, {2192, 52429}, {2299, 3611}, {2778, 21864}, {2911, 21857}, {3003, 17966}, {4646, 40660}, {5158, 10571}, {7113, 8608}, {7291, 22145}, {10535, 22356}, {17330, 20306}, {19302, 19306}, {33871, 56546}, {38945, 52945}

X(56911) = X(i)-Ceva conjugate of X(j) for these (i,j): {2173, 19297}, {52431, 6}
X(56911) = X(i)-isoconjugate of X(j) for these (i,j): {2, 3466}, {3218, 34299}, {21739, 38934}
X(56911) = X(32664)-Dao conjugate of X(3466)
X(56911) = crossdifference of every pair of points on line {521, 942}
X(56911) = barycentric product X(i)*X(j) for these {i,j}: {1, 3465}, {35, 34301}, {65, 15776}, {484, 46037}
X(56911) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 3466}, {3465, 75}, {6187, 34299}, {15776, 314}, {34301, 20565}, {46037, 40716}
X(56911) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3197, 21767}, {607, 19350, 6}


X(56912) = X(6)X(19)∩X(33)X(2187)

Barycentrics    a*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(3*a^6 - 5*a^4*b^2 + a^2*b^4 + b^6 - 2*a^4*b*c + 4*a^3*b^2*c - 4*a*b^4*c + 2*b^5*c - 5*a^4*c^2 + 4*a^3*b*c^2 - 2*a^2*b^2*c^2 + 4*a*b^3*c^2 - b^4*c^2 + 4*a*b^2*c^3 - 4*b^3*c^3 + a^2*c^4 - 4*a*b*c^4 - b^2*c^4 + 2*b*c^5 + c^6) : :

X(56912) lies on the cubic K180 and these lines: {6, 19}, {33, 2187}, {198, 7079}, {281, 515}, {963, 1436}, {1783, 2270}, {1826, 52849}, {2155, 2250}, {3213, 8755}, {7008, 20991}, {7129, 32674}, {7719, 38860}

X(56912) = X(84)-Ceva conjugate of X(33)
X(56912) = X(55116)-Dao conjugate of X(322)
X(56912) = barycentric product X(33)*X(55119)
X(56912) = barycentric quotient X(55119)/X(7182)


X(56913) = X(6)X(19)∩X(32)X(56)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^3 - a^2*b + a*b^2 - b^3 - a^2*c + b^2*c + a*c^2 + b*c^2 - c^3) : :

X(56913) lies on the cubic K055 and these lines: {3, 43039}, {6, 19}, {7, 41786}, {32, 56}, {39, 11509}, {41, 1457}, {57, 5299}, {73, 2280}, {85, 20179}, {109, 4253}, {169, 5452}, {172, 26437}, {216, 11434}, {218, 4559}, {220, 31165}, {222, 553}, {603, 1475}, {651, 1992}, {910, 7124}, {950, 5710}, {1100, 2286}, {1319, 16781}, {1395, 37538}, {1399, 5021}, {1406, 52635}, {1407, 17107}, {1420, 16784}, {1451, 21764}, {1452, 45786}, {1455, 40133}, {1462, 7195}, {1470, 2275}, {1730, 22119}, {1788, 33854}, {1875, 2207}, {1914, 37579}, {1935, 21384}, {1950, 36743}, {2099, 54416}, {2199, 2260}, {2241, 11510}, {2242, 18967}, {3195, 17810}, {3340, 5280}, {3485, 5276}, {3496, 37591}, {3684, 37694}, {3913, 21859}, {4251, 10571}, {4254, 40590}, {4318, 33950}, {5193, 9336}, {5244, 37543}, {5275, 11375}, {5930, 12573}, {6180, 30617}, {7031, 37583}, {9605, 37541}, {11248, 13006}, {11998, 12114}, {14882, 31448}, {16503, 37523}, {16783, 37558}, {16975, 22759}, {18954, 21744}, {20223, 55400}, {22070, 32561}, {22153, 35326}, {24806, 41239}, {41006, 50115}, {41538, 54406}

X(56913) = midpoint of X(2362) and X(16232)
X(56913) = isogonal conjugate of the isotomic conjugate of X(37800)
X(56913) = X(i)-Ceva conjugate of X(j) for these (i,j): {279, 56}, {34036, 1486}
X(56913) = X(i)-isoconjugate of X(j) for these (i,j): {8, 44178}, {9, 13577}, {75, 40141}, {312, 3433}, {644, 26721}, {6332, 26706}
X(56913) = X(i)-Dao conjugate of X(j) for these (i,j): {55, 346}, {206, 40141}, {478, 13577}, {5511, 4391}
X(56913) = crossdifference of every pair of points on line {521, 50333}
X(56913) = barycentric product X(i)*X(j) for these {i,j}: {1, 34036}, {6, 37800}, {7, 1486}, {56, 3434}, {57, 169}, {65, 4228}, {109, 21185}, {222, 17905}, {278, 22131}, {279, 5452}, {513, 40576}, {604, 20927}, {608, 28420}, {934, 11934}, {961, 41581}, {1014, 21867}, {1412, 21073}, {1415, 26546}, {1617, 14268}, {32735, 55133}
X(56913) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 40141}, {56, 13577}, {169, 312}, {604, 44178}, {1397, 3433}, {1486, 8}, {3434, 3596}, {4228, 314}, {5452, 346}, {11934, 4397}, {17905, 7017}, {20927, 28659}, {21073, 30713}, {21185, 35519}, {21867, 3701}, {22131, 345}, {28017, 41788}, {34036, 75}, {37800, 76}, {40576, 668}, {43924, 26721}
X(56913) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 608, 478}, {169, 22131, 5452}, {218, 34040, 4559}


X(56914) = X(6)X(21)∩X(37)X(181)

Barycentrics    a*(b + c)*(a*b + b^2 + 2*a*c + b*c)*(a*b + b^2 + a*c + c^2)*(2*a*b + a*c + b*c + c^2) : :

X(56914) lies on the cubic K1284 and these lines: {6, 21}, {37, 181}, {594, 3701}, {960, 2092}, {1213, 3959}, {2258, 4272}, {3704, 21810}, {4261, 45787}, {4451, 52651}, {5743, 34258}, {6703, 37870}, {17056, 44733}, {50036, 51870}

X(56914) = X(i)-isoconjugate of X(j) for these (i,j): {940, 2363}, {1169, 10436}, {1468, 14534}, {1798, 5307}
X(56914) = X(i)-Dao conjugate of X(j) for these (i,j): {960, 940}, {3125, 43067}, {3666, 34284}
X(56914) = barycentric product X(i)*X(j) for these {i,j}: {429, 34259}, {941, 1211}, {959, 3704}, {2092, 34258}, {2258, 18697}, {2292, 31359}, {5331, 20653}, {21033, 44733}, {21810, 37870}
X(56914) = barycentric quotient X(i)/X(j) for these {i,j}: {941, 14534}, {1211, 34284}, {2092, 940}, {2258, 2363}, {2292, 10436}, {3725, 1468}, {20967, 54417}, {21033, 11679}, {21810, 31993}, {34258, 40827}, {40966, 958}, {42661, 8672}, {44092, 4185}, {50330, 43067}
X(56914) = {X(941),X(34259)}-harmonic conjugate of X(6)


X(56915) = X(6)X(22)∩X(32)X(39684)

Barycentrics    a^4*(a^2 - b*c)*(a^2 + b*c)*(b^2 + c^2) : :
X(56915) = X[9482] + 3 X[11205]

X(56915) lies on the cubic K1033 and these lines: {6, 22}, {32, 39684}, {110, 51983}, {184, 18899}, {308, 10328}, {385, 732}, {669, 688}, {1915, 3329}, {1933, 7122}, {1971, 39095}, {2715, 36897}, {3051, 20775}, {3499, 38834}, {8041, 41328}, {8177, 42554}, {9468, 19558}, {14599, 18038}, {14600, 41533}, {14602, 18902}, {14820, 23208}, {16985, 38382}, {22352, 45210}, {35006, 46303}, {40643, 44164}, {42442, 52436}

X(56915) = isogonal conjugate of the isotomic conjugate of X(8623)
X(56915) = X(i)-Ceva conjugate of X(j) for these (i,j): {1691, 8623}, {2715, 3005}, {17938, 9494}, {38826, 51318}
X(56915) = X(i)-isoconjugate of X(j) for these (i,j): {75, 14970}, {76, 43763}, {82, 18896}, {83, 1934}, {308, 1581}, {561, 733}, {694, 18833}, {882, 37204}, {1577, 41209}, {1916, 3112}, {1967, 40016}, {18070, 18829}, {37134, 52618}, {44160, 46289}
X(56915) = X(i)-Dao conjugate of X(j) for these (i,j): {39, 44160}, {141, 18896}, {206, 14970}, {8290, 40016}, {19576, 308}, {34452, 1916}, {36213, 76}, {39031, 3112}, {39043, 18833}, {40368, 733}, {53981, 18022}
X(56915) = crossdifference of every pair of points on line {76, 826}
X(56915) = barycentric product X(i)*X(j) for these {i,j}: {6, 8623}, {31, 2236}, {32, 732}, {38, 1933}, {39, 1691}, {141, 14602}, {249, 41178}, {385, 3051}, {419, 20775}, {688, 17941}, {880, 9494}, {1501, 35540}, {1580, 1964}, {1634, 5027}, {1923, 1966}, {3917, 44089}, {3978, 41331}, {5009, 40936}, {5026, 41272}, {8024, 18902}, {12215, 27369}, {14599, 16720}, {36213, 51869}
X(56915) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 14970}, {39, 18896}, {141, 44160}, {385, 40016}, {560, 43763}, {732, 1502}, {1501, 733}, {1576, 41209}, {1580, 18833}, {1691, 308}, {1923, 1581}, {1933, 3112}, {1964, 1934}, {2236, 561}, {3051, 1916}, {5027, 52618}, {8623, 76}, {9494, 882}, {14602, 83}, {16720, 44170}, {17941, 42371}, {18902, 251}, {20775, 40708}, {35540, 40362}, {41178, 338}, {41331, 694}, {44089, 46104}
X(56915) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 42444, 42548}, {9418, 33875, 32748}, {14567, 32748, 9418}


X(56916) = X(3)X(827)∩X(6)X(22)

Barycentrics    a^2*(a^2 + b^2)*(a^2 + c^2)*(2*a^4 + a^2*b^2 - 3*b^4 + a^2*c^2 - 4*b^2*c^2 - 3*c^4) : :

X(56916) lies on the cubic K297 and these lines: {3, 827}, {6, 22}, {83, 382}, {183, 4577}, {381, 38946}, {733, 39560}, {3053, 14885}, {4628, 42316}, {5064, 32085}, {5210, 52696}, {7774, 52979}, {7868, 41884}, {9076, 47596}, {9481, 15815}, {11842, 39557}, {16986, 21458}

X(56916) = barycentric product X(83)*X(14810)
X(56916) = barycentric quotient X(14810)/X(141)


X(56917) = X(6)X(22)∩X(23)X(4630)

Barycentrics    a^2*(a^2 + b^2)*(a^2 + c^2)*(a^6 - 2*a^4*b^2 + b^6 - 2*a^4*c^2 + a^2*b^2*c^2 + c^6) : :

X(56917) lies on the cubic K223 and these lines: {6, 22}, {23, 4630}, {827, 1495}, {1799, 21243}, {3231, 52696}, {3448, 52898}, {5117, 32581}, {9076, 17949}, {14247, 35268}, {41204, 42396}, {45279, 52979}

X(56917) = isogonal conjugate of X(16102)
X(56917) = isogonal conjugate of the isotomic conjugate of X(16095)
X(56917) = X(1)-isoconjugate of X(16102)
X(56917) = X(3)-Dao conjugate of X(16102)
X(56917) = barycentric product X(i)*X(j) for these {i,j}: {6, 16095}, {1176, 40889}
X(56917) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 16102}, {16095, 76}, {40889, 1235}


X(56918) = X(4)X(51730)∩X(6)X(25)

Barycentrics    a^4*(a^4 - b^4 + 3*b^2*c^2 - c^4) : :
X(56918) = X[6] + 2 X[44091]

X(56918) lies on the cubic K486 and these lines: {4, 51730}, {6, 25}, {23, 17710}, {24, 44439}, {49, 5097}, {50, 34416}, {53, 32713}, {69, 8262}, {110, 3629}, {182, 382}, {511, 45735}, {571, 33578}, {597, 1176}, {692, 56534}, {800, 7669}, {858, 3589}, {1092, 55722}, {1112, 15140}, {1147, 5102}, {1177, 15321}, {1576, 2965}, {1596, 9934}, {1614, 12007}, {1691, 52471}, {2330, 9629}, {2916, 37928}, {3518, 44668}, {3575, 51734}, {3618, 7391}, {3763, 16187}, {4630, 32740}, {5012, 6329}, {5085, 12085}, {5092, 18859}, {5111, 9603}, {5157, 34609}, {5480, 6240}, {5965, 18350}, {6034, 39840}, {7519, 51171}, {7545, 43129}, {9306, 21970}, {9407, 13338}, {10301, 13198}, {10516, 44470}, {10984, 55703}, {11002, 18882}, {11597, 34155}, {11819, 18583}, {13595, 41578}, {13621, 41714}, {14560, 56404}, {14561, 18569}, {14575, 52433}, {14763, 51797}, {14913, 53777}, {15462, 21850}, {15534, 52016}, {16776, 52238}, {17812, 32062}, {18383, 36990}, {18403, 19129}, {18565, 48901}, {19126, 30771}, {19151, 43726}, {22115, 37517}, {26206, 54334}, {27377, 52915}, {32002, 52916}, {32344, 45089}, {33534, 55699}, {35222, 37893}, {38851, 46444}, {39899, 44490}, {43572, 51132}, {43652, 55591}, {43811, 48876}, {43815, 44882}, {44276, 46264}

X(56918) = isogonal conjugate of the isotomic conjugate of X(13595)
X(56918) = X(75)-isoconjugate of X(13622)
X(56918) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 13622}, {45161, 850}
X(56918) = barycentric product X(i)*X(j) for these {i,j}: {5, 40633}, {6, 13595}, {251, 41579}
X(56918) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 13622}, {13595, 76}, {40633, 95}, {41579, 8024}
X(56918) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 25, 9973}, {6, 1974, 18374}, {6, 19596, 6467}, {51, 41593, 6}, {1576, 40981, 2965}, {1974, 19136, 6}, {3589, 32217, 19121}, {9969, 44102, 6}


X(56919) = X(6)X(25)∩X(112)X(902)

Barycentrics    a^2*(a + b)*(a + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - a^3*b + a*b^3 - b^4 - a^3*c + a^2*b*c + a*b^2*c - b^3*c + a*b*c^2 + a*c^3 - b*c^3 - c^4) : :

X(56919) lies on the cubic K224 and these lines: {6, 25}, {28, 24443}, {29, 37717}, {31, 41503}, {58, 13739}, {71, 36420}, {106, 1304}, {112, 902}, {162, 238}, {647, 21789}, {1326, 2073}, {1780, 54343}, {1870, 39439}, {2177, 41502}, {2328, 55994}, {2715, 9085}, {14165, 17555}, {32676, 52427}, {37248, 44436}

X(56919) = isogonal conjugate of X(40715)
X(56919) = isogonal conjugate of the isotomic conjugate of X(447)
X(56919) = X(39439)-Ceva conjugate of X(1474)
X(56919) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40715}, {72, 16099}, {75, 43693}, {656, 35169}
X(56919) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 40715}, {206, 43693}, {35122, 3267}, {40596, 35169}
X(56919) = crossdifference of every pair of points on line {440, 525}
X(56919) = barycentric product X(i)*X(j) for these {i,j}: {6, 447}, {648, 42662}, {1474, 16086}, {2203, 42709}
X(56919) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40715}, {32, 43693}, {112, 35169}, {447, 76}, {1474, 16099}, {16086, 40071}, {42662, 525}


X(56920) = X(4)X(147)∩X(6)X(25)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(b^2 - b*c + c^2)*(b^2 + b*c + c^2) : :

X(56920) lies on the cubic K1016 and these lines: {2, 3186}, {4, 147}, {6, 25}, {22, 37893}, {24, 3398}, {32, 39857}, {39, 11325}, {186, 26316}, {216, 20885}, {237, 22240}, {251, 38829}, {262, 43976}, {264, 305}, {378, 35002}, {419, 3329}, {428, 41624}, {468, 7792}, {576, 39810}, {1513, 30258}, {2456, 39588}, {2548, 42442}, {3001, 5094}, {3199, 46305}, {3314, 5117}, {3705, 20234}, {3778, 20665}, {5064, 9766}, {5140, 33843}, {6353, 16989}, {6620, 37665}, {7467, 12220}, {7735, 20975}, {7790, 46560}, {8743, 11380}, {9821, 35476}, {11386, 27369}, {11403, 14248}, {13330, 51324}, {19124, 47619}, {45279, 54381}, {51982, 53981}

X(56920) = polar conjugate of X(3114)
X(56920) = isogonal conjugate of the isotomic conjugate of X(5117)
X(56920) = polar conjugate of the isotomic conjugate of X(3094)
X(56920) = polar conjugate of the isogonal conjugate of X(3117)
X(56920) = X(5117)-Ceva conjugate of X(3094)
X(56920) = X(i)-isoconjugate of X(j) for these (i,j): {3, 3113}, {48, 3114}, {63, 3407}, {75, 43722}, {184, 46281}, {293, 8840}, {304, 18898}, {656, 33514}, {14617, 34055}
X(56920) = X(i)-Dao conjugate of X(j) for these (i,j): {132, 8840}, {206, 43722}, {1249, 3114}, {3162, 3407}, {5117, 8920}, {10335, 305}, {19602, 69}, {36103, 3113}, {40596, 33514}, {52658, 3}
X(56920) = barycentric product X(i)*X(j) for these {i,j}: {1, 46507}, {4, 3094}, {6, 5117}, {19, 51836}, {25, 3314}, {92, 3116}, {264, 3117}, {648, 50549}, {1235, 43977}, {1502, 46505}, {3778, 31909}, {6331, 17415}, {9865, 17980}, {17984, 42061}, {18022, 18899}, {20234, 46503}
X(56920) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 3114}, {19, 3113}, {25, 3407}, {32, 43722}, {92, 46281}, {112, 33514}, {232, 8840}, {1843, 14617}, {1974, 18898}, {3094, 69}, {3116, 63}, {3117, 3}, {3314, 305}, {5117, 76}, {6331, 9063}, {9006, 3049}, {17415, 647}, {18899, 184}, {42061, 36214}, {43977, 1176}, {46505, 32}, {46507, 75}, {50549, 525}, {51836, 304}
X(56920) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 25, 44089}, {25, 44090, 1974}, {216, 51412, 20885}, {232, 1843, 25}, {325, 52636, 305}


X(56921) = X(6)X(25)∩X(141)X(35325)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(b^2 + c^2)*(a^6 - a^2*b^4 + a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4) : :

X(56921) lies on the cubic K975 and these lines: {6, 25}, {141, 35325}, {308, 648}, {1235, 7770}, {1625, 46442}, {3051, 41584}, {8265, 44896}, {9822, 14580}, {12220, 14965}, {17409, 19126}, {39588, 43843}, {41334, 41363}

X(56921) = X(i)-Ceva conjugate of X(j) for these (i,j): {83, 427}, {40413, 27369}
X(56921) = barycentric product X(i)*X(j) for these {i,j}: {427, 19121}, {1235, 15257}, {1843, 33651}, {17442, 34065}
X(56921) = barycentric quotient X(i)/X(j) for these {i,j}: {15257, 1176}, {19121, 1799}


X(56922) = X(6)X(25)∩X(23)X(112)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^6 - 3*a^4*b^2 - 2*a^2*b^4 + 3*b^6 - 3*a^4*c^2 + 4*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + 3*c^6) : :
X(56922) = 3 X[186] - X[10098]

X(56922) lies on the Moses-Parry circle, the cubic K888, and these lines: {2, 50718}, {4, 6032}, {6, 25}, {22, 21397}, {23, 112}, {30, 1560}, {111, 186}, {115, 468}, {187, 37969}, {1113, 8427}, {1114, 8426}, {2070, 8428}, {2079, 3291}, {3162, 20850}, {3563, 35188}, {3569, 14696}, {5094, 44526}, {5523, 7426}, {5913, 10295}, {6103, 47322}, {7665, 40889}, {8430, 47230}, {9714, 51509}, {9745, 35480}, {10418, 49123}, {14002, 39575}, {14273, 55148}, {14961, 37980}, {16317, 37931}, {16318, 18487}, {20481, 35472}, {21213, 34481}, {21448, 55576}, {21844, 39576}, {26276, 41676}, {37512, 52293}, {37897, 40234}, {40349, 47097}

X(56922) = midpoint of X(23) and X(53929)
X(56922) = reflection of X(1560) in X(47187)
X(56922) = reflection of X(1560) in the Orthic axis
X(56922) = 2nd-Lemoine-circle-inverse of X(11405)
X(56922) = polar-circle-inverse of X(6032)
X(56922) = orthoptic-circle-of-Steiner-inellipse-inverse of X(50718)
X(56922) = {X(37969),X(44467)}-harmonic conjugate of X(187)


X(56923) = X(3)X(3491)∩X(6)X(25)

Barycentrics    a^2*(a^8 - a^6*b^2 + 2*a^4*b^4 - a^2*b^6 - b^8 - a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 + 2*a^4*c^4 - a^2*b^2*c^4 - a^2*c^6 + b^2*c^6 - c^8) : :
X(56923) = 3 X[154] - 2 X[1971]

X(56923) lies on the cubic K1001 and these lines: {3, 3491}, {6, 25}, {147, 325}, {157, 40805}, {194, 24730}, {450, 45279}, {511, 9861}, {924, 3804}, {1350, 15574}, {1613, 40947}, {1625, 5938}, {1691, 51412}, {1755, 2196}, {1853, 7778}, {1964, 34250}, {2076, 3852}, {2387, 39857}, {3001, 15139}, {3095, 6759}, {3289, 52162}, {3398, 10282}, {5167, 39832}, {6000, 35002}, {6033, 18400}, {6660, 36214}, {7116, 23868}, {7774, 11206}, {7792, 10192}, {8852, 51907}, {9306, 50666}, {10329, 20775}, {11202, 26316}, {14917, 39849}, {15391, 51869}, {16989, 35260}, {17845, 37200}, {37183, 56437}, {37894, 52636}, {46248, 51320}

X(56923) = reflection of X(54082) in X(39857)
X(56923) = isogonal conjugate of the isotomic conjugate of X(56376)
X(56923) = X(i)-Ceva conjugate of X(j) for these (i,j): {6660, 2076}, {8928, 56376}, {36214, 6}
X(56923) = X(i)-isoconjugate of X(j) for these (i,j): {75, 43721}, {1821, 51250}
X(56923) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 43721}, {419, 17984}, {40601, 51250}
X(56923) = crossdifference of every pair of points on line {525, 5305}
X(56923) = barycentric product X(i)*X(j) for these {i,j}: {6, 56376}, {39, 8928}, {511, 8861}
X(56923) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 43721}, {237, 51250}, {8861, 290}, {8928, 308}, {56376, 76}


X(56924) = X(2)X(18382)∩X(6)X(25)

Barycentrics    a^2*(a^10 - a^8*b^2 - 2*a^6*b^4 + 2*a^4*b^6 + a^2*b^8 - b^10 - a^8*c^2 + a^6*b^2*c^2 - 3*a^2*b^6*c^2 + 3*b^8*c^2 - 2*a^6*c^4 + 4*a^2*b^4*c^4 - 2*b^6*c^4 + 2*a^4*c^6 - 3*a^2*b^2*c^6 - 2*b^4*c^6 + a^2*c^8 + 3*b^2*c^8 - c^10) : :
X(56924) = 3 X[154] - 4 X[1495], 2 X[159] - 3 X[19596], 6 X[18374] - 5 X[19132], 3 X[2070] - 2 X[13289], 3 X[5899] - X[9919], 3 X[15131] - 2 X[51360], 3 X[18859] - 4 X[25564]

X(56924) lies on the cubic K497 and these lines: {2, 18382}, {3, 18383}, {5, 2917}, {6, 25}, {22, 1853}, {23, 1503}, {24, 12289}, {26, 14852}, {30, 2931}, {52, 17824}, {64, 7387}, {110, 44668}, {125, 21284}, {143, 32379}, {186, 15081}, {221, 9658}, {265, 2070}, {418, 56308}, {511, 12310}, {512, 34983}, {567, 9920}, {568, 6759}, {1154, 32349}, {1350, 26283}, {1498, 7517}, {1531, 12168}, {1533, 11744}, {1619, 20850}, {1953, 7073}, {1986, 14157}, {1995, 15577}, {2173, 20989}, {2192, 9673}, {2777, 37924}, {2781, 15107}, {2916, 23300}, {2937, 18381}, {3066, 23041}, {3518, 12022}, {3581, 5899}, {5189, 23315}, {5523, 34190}, {5621, 37969}, {5894, 12087}, {5898, 50461}, {6247, 12088}, {6636, 23332}, {6638, 35225}, {7488, 32345}, {7492, 15578}, {7495, 20300}, {7506, 17821}, {7530, 40909}, {7693, 10192}, {8428, 34107}, {8567, 11414}, {8705, 41744}, {9306, 18438}, {9833, 37440}, {9909, 11645}, {10110, 43829}, {10274, 14627}, {10317, 42671}, {10606, 12083}, {10938, 11438}, {11063, 34448}, {11064, 37980}, {11202, 14805}, {11206, 37644}, {11649, 45082}, {11746, 19128}, {13203, 20063}, {13292, 45044}, {13293, 35001}, {13434, 32391}, {13558, 44886}, {13564, 20299}, {13851, 37954}, {14002, 15582}, {14216, 17714}, {15131, 32227}, {15138, 32110}, {15142, 22109}, {15311, 37925}, {15448, 37777}, {15647, 45237}, {16013, 32534}, {16252, 34484}, {17846, 18350}, {18121, 37766}, {18365, 52169}, {18859, 25564}, {19149, 26284}, {20831, 48903}, {21213, 26958}, {23324, 35921}, {23358, 34864}, {25739, 37932}, {29012, 37928}, {32048, 37498}, {32064, 37913}, {32237, 37973}, {32365, 54007}, {34608, 34944}, {34785, 45735}, {34787, 35259}, {37955, 45311}, {44260, 46264}, {44407, 46085}

X(56924) = midpoint of X(i) and X(j) for these {i,j}: {12310, 37972}, {13203, 20063}
X(56924) = reflection of X(i) in X(j) for these {i,j}: {6, 41613}, {5189, 23315}, {9924, 12367}, {10117, 23}, {11744, 1533}, {15138, 32110}, {17835, 3581}, {17847, 15139}, {35001, 13293}
X(56924) = isogonal conjugate of the isotomic conjugate of X(3153)
X(56924) = X(i)-Ceva conjugate of X(j) for these (i,j): {265, 6}, {2070, 11063}
X(56924) = X(14208)-isoconjugate of X(53962)
X(56924) = X(i)-Dao conjugate of X(j) for these (i,j): {186, 340}, {46664, 850}
X(56924) = crossdifference of every pair of points on line {525, 23292}
X(56924) = barycentric product X(6)*X(3153)
X(56924) = barycentric quotient X(3153)/X(76)
X(56924) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {25, 161, 154}, {25, 20987, 41424}, {1495, 44084, 18374}, {7488, 41362, 32345}, {9920, 13621, 10282}, {9924, 41424, 154}, {12367, 20987, 19596}, {18430, 34786, 18405}, {34775, 37638, 1853}, {44757, 44758, 19596}


X(56925) = X(3)X(16324)∩X(6)X(30)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^4 + 4*a^2*b^2 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 + 4*a^2*c^2 - 2*b^2*c^2 + c^4) : :
X(56925) = 2 X[16333] + X[18325], 2 X[36177] - 3 X[47455]

X(56925) lies on the cubic K298 and these lines: {3, 16324}, {5, 18575}, {6, 30}, {23, 3425}, {186, 56307}, {250, 10295}, {262, 858}, {264, 403}, {297, 35908}, {468, 40801}, {511, 5112}, {523, 11799}, {542, 1555}, {671, 9139}, {842, 1302}, {1316, 47581}, {1485, 2070}, {1513, 5968}, {2072, 3613}, {2450, 14356}, {2799, 32112}, {3447, 7575}, {5480, 11594}, {7615, 47332}, {9307, 47096}, {10753, 32220}, {11181, 37904}, {11563, 13481}, {15594, 37971}, {16333, 18325}, {19189, 44704}, {22263, 47093}, {32217, 32738}, {32460, 47575}, {32461, 47576}, {32681, 53931}, {34130, 37906}, {34233, 37931}, {36177, 47455}, {37938, 45090}, {38526, 39263}, {44265, 47084}, {47334, 50146}, {51438, 52091}, {52691, 54995}

X(56925) = reflection of X(i) in X(j) for these {i,j}: {3, 16324}, {1316, 47581}, {6795, 16303}, {50146, 47334}
X(56925) = isogonal conjugate of X(11653)
X(56925) = reflection of X(6795) in the orthic axis
X(56925) = X(i)-isoconjugate of X(j) for these (i,j): {1, 11653}, {293, 378}, {336, 44080}, {1821, 5063}, {1910, 15066}, {8675, 36084}, {36036, 42660}, {46273, 52438}
X(56925) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 11653}, {132, 378}, {2679, 42660}, {5976, 32833}, {11672, 15066}, {35088, 30474}, {38987, 8675}, {40601, 5063}
X(56925) = crossdifference of every pair of points on line {5063, 8675}
X(56925) = barycentric product X(i)*X(j) for these {i,j}: {297, 4846}, {325, 34288}, {511, 34289}, {1302, 2799}
X(56925) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 11653}, {232, 378}, {237, 5063}, {297, 44134}, {325, 32833}, {511, 15066}, {1302, 2966}, {2211, 44080}, {2491, 42660}, {2799, 30474}, {3569, 8675}, {4846, 287}, {9418, 52438}, {32738, 2715}, {34288, 98}, {34289, 290}, {36149, 36084}


X(56926) = X(6)X(31)∩X(10)X(37)

Barycentrics    a^2*(b + c)*(a*b + b^2 + a*c + b*c + c^2) : :

X(56926) lies on the cubic K1284 and these lines: {1, 4261}, {2, 20164}, {6, 31}, {9, 3293}, {10, 37}, {12, 53417}, {35, 1333}, {39, 1100}, {44, 4263}, {45, 3214}, {48, 2933}, {53, 1826}, {65, 2197}, {86, 20166}, {100, 2303}, {141, 306}, {172, 1030}, {192, 313}, {213, 4272}, {219, 54423}, {284, 3453}, {292, 21825}, {319, 40773}, {321, 27042}, {386, 28622}, {387, 2335}, {391, 19998}, {583, 20963}, {584, 2273}, {700, 21080}, {869, 16520}, {894, 24335}, {941, 2345}, {966, 4651}, {980, 4851}, {1107, 17362}, {1125, 46838}, {1193, 16685}, {1269, 17147}, {1334, 21798}, {1385, 50650}, {1400, 21794}, {1409, 2594}, {1449, 5069}, {1575, 17398}, {1841, 1869}, {1852, 6748}, {1901, 21854}, {1909, 56023}, {1950, 14882}, {2171, 40590}, {2174, 2200}, {2214, 5264}, {2220, 5280}, {2256, 3682}, {2260, 4286}, {2271, 2911}, {2275, 16884}, {2277, 8610}, {2286, 11509}, {2292, 3949}, {2294, 4642}, {2300, 5153}, {2354, 23844}, {2646, 22071}, {2667, 3778}, {3247, 9331}, {3553, 54295}, {3589, 41248}, {3686, 25092}, {3723, 17053}, {3730, 4270}, {3731, 31855}, {3746, 16470}, {3752, 17245}, {3770, 25264}, {3826, 40941}, {3879, 16696}, {3990, 52544}, {3995, 26772}, {4016, 4424}, {4068, 40934}, {4110, 4664}, {4254, 4456}, {4360, 41233}, {4681, 56253}, {4685, 17330}, {4702, 50620}, {4735, 52020}, {4850, 17234}, {4966, 37592}, {4969, 50590}, {5019, 31451}, {5109, 20228}, {5110, 7113}, {5120, 31461}, {5224, 28606}, {5227, 17594}, {5283, 17275}, {5835, 37548}, {6051, 19857}, {6184, 22323}, {6589, 55232}, {8193, 36744}, {11507, 22132}, {14439, 52784}, {15523, 41269}, {15624, 41265}, {15989, 17792}, {16525, 41267}, {16826, 24530}, {17032, 20150}, {17045, 27633}, {17314, 17751}, {17390, 37596}, {17394, 24598}, {17395, 28358}, {17756, 29822}, {17759, 26110}, {17786, 56250}, {18591, 21866}, {19808, 25058}, {20179, 39971}, {21101, 40085}, {21838, 21904}, {21840, 40599}, {21888, 35069}, {21900, 35068}, {22095, 48283}, {22174, 25422}, {22229, 22320}, {22272, 40965}, {23846, 28266}, {24478, 45223}, {24935, 29846}, {25059, 33116}, {25060, 32779}, {25457, 31996}, {25470, 27272}, {26063, 41506}, {27320, 32849}, {27804, 46910}, {31448, 36743}, {39974, 50115}

X(56926) = isogonal conjugate of X(56047)
X(56926) = X(56232)-complementary conjugate of X(21244)
X(56926) = X(i)-Ceva conjugate of X(j) for these (i,j): {42, 28622}, {941, 37}, {28624, 55230}
X(56926) = X(i)-isoconjugate of X(j) for these (i,j): {1, 56047}, {81, 43531}, {86, 2214}, {662, 43927}, {835, 1019}, {3733, 37218}
X(56926) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 56047}, {1084, 43927}, {31993, 34284}, {39016, 7192}, {40586, 43531}, {40600, 2214}, {41340, 19785}, {41849, 310}, {50605, 27163}
X(56926) = trilinear pole of line {42664, 50488}
X(56926) = crossdifference of every pair of points on line {514, 3733}
X(56926) = barycentric product X(i)*X(j) for these {i,j}: {10, 386}, {31, 42714}, {37, 28606}, {42, 5224}, {65, 3876}, {71, 469}, {100, 47842}, {101, 23879}, {110, 23282}, {190, 42664}, {213, 33935}, {306, 44103}, {512, 33948}, {668, 50488}, {834, 3952}, {1018, 14349}, {1334, 33949}, {4103, 52615}, {4557, 45746}, {8637, 27808}, {15320, 26911}, {21078, 53082}, {28622, 56210}
X(56926) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 56047}, {42, 43531}, {213, 2214}, {386, 86}, {469, 44129}, {512, 43927}, {834, 7192}, {1018, 37218}, {3876, 314}, {4557, 835}, {5224, 310}, {8637, 3733}, {14349, 7199}, {23282, 850}, {23879, 3261}, {26911, 33297}, {28606, 274}, {28622, 17379}, {33935, 6385}, {33948, 670}, {39967, 28621}, {42664, 514}, {42714, 561}, {44103, 27}, {45746, 52619}, {47842, 693}, {50488, 513}
X(56926) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 55, 5301}, {6, 31477, 54285}, {37, 20691, 594}, {37, 21857, 1213}, {37, 21858, 10}, {42, 71, 6}, {42, 21035, 22277}, {1500, 2092, 37}, {2277, 16777, 8610}, {2292, 3949, 56541}, {3694, 3931, 37}, {4424, 22021, 4016}


X(56927) = X(1)X(307)∩X(7)X(8)

Barycentrics    (a + b - c)*(a - b + c)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 + c^3) : :
X(56927) = 3 X[2] - 4 X[16608], 4 X[16608] - X[20110]

X(56927) lies on the cubic K1315 and these lines: {1, 307}, {2, 219}, {4, 916}, {6, 28739}, {7, 8}, {9, 25935}, {19, 9028}, {40, 18650}, {44, 28966}, {48, 24580}, {55, 51893}, {56, 4966}, {57, 306}, {63, 15830}, {66, 21293}, {71, 14021}, {77, 3870}, {81, 56367}, {86, 3193}, {92, 1947}, {141, 5228}, {145, 347}, {150, 151}, {190, 41563}, {192, 17950}, {193, 608}, {220, 25964}, {226, 3686}, {239, 37800}, {241, 4851}, {253, 51565}, {269, 6765}, {273, 5174}, {278, 3187}, {279, 53997}, {281, 48381}, {317, 18026}, {329, 9119}, {331, 43740}, {332, 1014}, {340, 40701}, {342, 5081}, {344, 37787}, {346, 12848}, {348, 1442}, {391, 8232}, {499, 24202}, {515, 18655}, {517, 4329}, {519, 3668}, {524, 6180}, {527, 45738}, {664, 17377}, {674, 11677}, {740, 4331}, {758, 18692}, {944, 17134}, {948, 5839}, {962, 12324}, {1119, 4566}, {1264, 3263}, {1332, 28753}, {1375, 20818}, {1418, 17374}, {1423, 30059}, {1439, 3555}, {1440, 13138}, {1445, 3692}, {1447, 29641}, {1451, 17526}, {1482, 41007}, {1654, 26125}, {1708, 17776}, {1737, 24179}, {1953, 24316}, {2099, 41003}, {2256, 18635}, {2262, 5813}, {2263, 5847}, {2321, 52819}, {2322, 56020}, {2323, 26668}, {2324, 25019}, {2893, 3434}, {3085, 5736}, {3086, 5740}, {3173, 40571}, {3188, 3189}, {3211, 37382}, {3218, 6350}, {3476, 49687}, {3562, 3945}, {3564, 15975}, {3618, 28780}, {3661, 41246}, {3664, 31397}, {3729, 41572}, {3745, 10578}, {3757, 7179}, {3811, 4341}, {3875, 22464}, {3932, 41712}, {3936, 54366}, {4016, 4419}, {4307, 15982}, {4318, 51192}, {4319, 28849}, {4327, 49511}, {4328, 9623}, {4357, 7190}, {4384, 21617}, {4393, 17086}, {4416, 8545}, {4452, 36918}, {4460, 36640}, {4552, 17314}, {4644, 28968}, {4648, 17077}, {4869, 8732}, {5224, 55082}, {5226, 14555}, {5435, 18141}, {5712, 52358}, {5758, 18909}, {5906, 32001}, {5932, 20221}, {6361, 20291}, {6516, 40697}, {7269, 17321}, {7521, 42463}, {7967, 17221}, {7982, 41010}, {8048, 34242}, {9965, 26871}, {10327, 41539}, {10436, 24987}, {10573, 17861}, {11239, 17378}, {11526, 49466}, {12245, 21271}, {12589, 20358}, {13395, 56726}, {13567, 27540}, {14953, 20074}, {15149, 56000}, {16465, 52365}, {16609, 28081}, {17078, 50132}, {17095, 17394}, {17097, 17152}, {17270, 25006}, {17298, 30379}, {17317, 31225}, {17362, 52023}, {17364, 40862}, {17483, 45794}, {17484, 37644}, {17778, 26053}, {17863, 18391}, {17885, 41684}, {18228, 18928}, {18634, 26006}, {18636, 28409}, {18921, 19645}, {20015, 51351}, {20059, 37781}, {20347, 21286}, {20905, 52457}, {21258, 25878}, {21454, 32863}, {21769, 28078}, {22127, 27301}, {22147, 31184}, {24310, 37419}, {25728, 50573}, {26000, 33144}, {26001, 27384}, {26005, 28794}, {26052, 26893}, {26063, 34830}, {26531, 27420}, {26540, 27509}, {28420, 37796}, {28741, 37650}, {28774, 37642}, {29007, 54280}, {29839, 30962}, {30807, 53994}, {30828, 37797}, {33172, 56460}, {34388, 44140}, {34631, 53380}, {36589, 50101}, {36595, 50099}, {37030, 51612}, {40892, 50133}, {41342, 52025}, {41863, 56382}, {42289, 50295}

X(56927) = reflection of X(i) in X(j) for these {i,j}: {219, 16608}, {4329, 41004}, {20110, 219}, {30619, 8271}
X(56927) = isotomic conjugate of X(43740)
X(56927) = complement of X(20110)
X(56927) = anticomplement of X(219)
X(56927) = anticomplement of the isogonal conjugate of X(278)
X(56927) = anticomplement of the isotomic conjugate of X(331)
X(56927) = isotomic conjugate of the anticomplement of X(11517)
X(56927) = isotomic conjugate of the isogonal conjugate of X(37579)
X(56927) = polar conjugate of the isogonal conjugate of X(3173)
X(56927) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2, 52366}, {4, 329}, {7, 4329}, {19, 144}, {25, 3177}, {27, 3869}, {28, 63}, {29, 18750}, {33, 30695}, {34, 2}, {40, 55114}, {56, 6360}, {57, 20}, {65, 3151}, {77, 6527}, {85, 1370}, {92, 3436}, {108, 514}, {196, 6223}, {208, 20211}, {225, 2895}, {226, 52364}, {264, 21286}, {269, 347}, {270, 54107}, {273, 69}, {278, 8}, {279, 52365}, {286, 20245}, {318, 54113}, {331, 6327}, {393, 5942}, {514, 34188}, {603, 46717}, {604, 3164}, {608, 192}, {651, 20294}, {653, 513}, {961, 3101}, {1014, 17134}, {1041, 346}, {1042, 18667}, {1096, 30694}, {1118, 5905}, {1119, 7}, {1172, 45738}, {1395, 194}, {1396, 1}, {1398, 3210}, {1400, 18666}, {1412, 20222}, {1414, 6563}, {1422, 280}, {1426, 17778}, {1427, 3152}, {1434, 20243}, {1435, 145}, {1462, 3100}, {1783, 4468}, {1847, 3434}, {1876, 20533}, {1877, 30578}, {1880, 1654}, {1897, 4462}, {1973, 21218}, {2212, 46706}, {2362, 46421}, {2376, 40863}, {3213, 17037}, {3345, 41514}, {3668, 2897}, {4017, 39352}, {4077, 13219}, {5236, 20344}, {6336, 5176}, {6591, 39351}, {7012, 190}, {7128, 100}, {7337, 21216}, {7649, 37781}, {8747, 92}, {8751, 10025}, {8809, 253}, {11546, 34255}, {13149, 21302}, {13437, 31551}, {13459, 31552}, {16232, 46422}, {17924, 33650}, {18026, 20295}, {24033, 651}, {32085, 20248}, {32674, 17494}, {32714, 522}, {34051, 10538}, {36110, 3904}, {36118, 693}, {36124, 30807}, {36125, 908}, {36127, 4391}, {37790, 21290}, {40149, 1330}, {40397, 78}, {40446, 312}, {40573, 72}, {40836, 189}, {43923, 4440}, {44697, 6225}, {46102, 3952}, {46404, 21301}, {46886, 20110}, {51664, 34186}, {53237, 2890}, {54240, 20293}, {55110, 962}, {55208, 148}, {55346, 21272}, {56049, 3007}
X(56927) = X(38267)-complementary conjugate of X(18589)
X(56927) = X(331)-Ceva conjugate of X(2)
X(56927) = X(i)-isoconjugate of X(j) for these (i,j): {6, 39943}, {19, 56269}, {31, 43740}, {41, 15474}, {212, 39267}, {219, 46886}, {663, 13397}, {2150, 41508}, {2194, 23604}, {2299, 28787}
X(56927) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 43740}, {6, 56269}, {9, 39943}, {226, 28787}, {1214, 23604}, {1708, 5709}, {3160, 15474}, {6591, 8735}, {40837, 39267}, {56325, 41508}
X(56927) = cevapoint of X(i) and X(j) for these (i,j): {1708, 3811}, {3173, 37579}, {5905, 12649}
X(56927) = barycentric product X(i)*X(j) for these {i,j}: {7, 17776}, {75, 1708}, {76, 37579}, {85, 3811}, {145, 27815}, {264, 3173}, {274, 41538}, {312, 4341}, {331, 11517}, {349, 1780}, {1231, 30733}, {1441, 40571}, {1969, 3215}, {2911, 6063}, {4554, 15313}, {4564, 17877}, {41608, 52575}
X(56927) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 39943}, {2, 43740}, {3, 56269}, {7, 15474}, {12, 41508}, {34, 46886}, {226, 23604}, {278, 39267}, {651, 13397}, {1214, 28787}, {1441, 43675}, {1708, 1}, {1780, 284}, {2911, 55}, {3173, 3}, {3215, 48}, {3811, 9}, {4341, 57}, {5521, 8735}, {11517, 219}, {14054, 40937}, {15313, 650}, {15474, 46354}, {17776, 8}, {17877, 4858}, {27815, 4373}, {30733, 1172}, {37579, 6}, {37799, 47106}, {40571, 21}, {41332, 2194}, {41538, 37}, {41608, 2193}, {46885, 54356}, {51875, 2335}
X(56927) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20110, 219}, {7, 8, 1441}, {69, 6604, 7}, {71, 26130, 14021}, {150, 10446, 21279}, {219, 16608, 2}, {320, 39126, 7}, {3187, 56559, 278}, {3879, 9436, 77}, {17220, 21270, 4}, {24471, 30617, 7}, {26942, 37543, 2}


X(56928) = X(1)X(147)∩X(7)X(8)

Barycentrics    (a + b - c)*(a - b + c)*(a^2 - a*b + b^2 - a*c + b*c + c^2) : :
X(56928) = 3 X[2] - 4 X[17062]

X(56928) lies on the cubic K1000 and these lines: {1, 147}, {2, 1429}, {4, 30546}, {5, 24203}, {7, 8}, {10, 1447}, {12, 37678}, {38, 7224}, {41, 20096}, {56, 33298}, {57, 3661}, {80, 7264}, {145, 3905}, {226, 239}, {257, 6646}, {273, 5090}, {348, 3476}, {355, 3673}, {517, 4911}, {519, 3674}, {544, 4251}, {553, 29615}, {644, 33839}, {664, 3665}, {966, 24735}, {1031, 17086}, {1111, 37710}, {1319, 17095}, {1423, 1654}, {1432, 7779}, {1434, 5434}, {1478, 17753}, {1829, 7282}, {2082, 8545}, {2099, 33949}, {2295, 34253}, {2475, 20244}, {2893, 3875}, {2896, 3503}, {3057, 4872}, {3061, 56555}, {3112, 4388}, {3208, 20533}, {3242, 41352}, {3434, 20350}, {3436, 30946}, {3598, 3617}, {3626, 10521}, {3672, 21270}, {3772, 5222}, {3897, 25581}, {3911, 17292}, {4051, 24694}, {4056, 5195}, {4308, 17081}, {4357, 5795}, {4360, 21276}, {4389, 21277}, {4440, 33890}, {4552, 28598}, {4654, 29617}, {4904, 17682}, {5088, 45287}, {5176, 26563}, {5207, 43749}, {5219, 17367}, {5262, 7269}, {5435, 29611}, {5903, 7272}, {6542, 7146}, {6817, 39741}, {6999, 37555}, {7176, 9436}, {7185, 9312}, {7190, 54418}, {7198, 40663}, {7249, 29840}, {9327, 10708}, {9578, 40719}, {11677, 34057}, {14828, 15888}, {15971, 15982}, {16086, 33937}, {17046, 56530}, {17078, 24798}, {17079, 24797}, {17083, 39726}, {17144, 30545}, {17280, 17741}, {17300, 17752}, {17448, 28391}, {17565, 40848}, {18135, 36926}, {20060, 20347}, {21303, 43041}, {24247, 25242}, {25005, 26229}, {25719, 52563}, {25940, 27526}, {26036, 27304}, {26101, 27253}, {26140, 28742}, {26531, 40131}, {26594, 27003}, {26793, 53337}, {27005, 28780}, {28386, 30966}, {28604, 30177}, {29007, 33950}, {29613, 31231}, {33297, 50626}, {33954, 41346}, {42703, 56318}, {49772, 51782}

X(56928) = reflection of X(i) in X(j) for these {i,j}: {2329, 17062}, {33867, 4911}
X(56928) = isotomic conjugate of X(43749)
X(56928) = anticomplement of X(2329)
X(56928) = anticomplement of the isogonal conjugate of X(1432)
X(56928) = isotomic conjugate of the isogonal conjugate of X(41346)
X(56928) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {7, 30660}, {256, 329}, {257, 3436}, {604, 30661}, {694, 56555}, {893, 144}, {904, 3177}, {1178, 63}, {1428, 8782}, {1431, 2}, {1432, 8}, {1447, 25332}, {3903, 4462}, {4451, 54113}, {7018, 21286}, {7104, 21218}, {7249, 69}, {7303, 21273}, {27447, 20557}, {29055, 514}, {32010, 20245}, {37137, 513}, {40432, 3869}, {51974, 20535}
X(56928) = X(i)-isoconjugate of X(j) for these (i,j): {31, 43749}, {41, 39724}, {55, 7194}, {2053, 3502}, {2175, 40038}
X(56928) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 43749}, {223, 7194}, {3160, 39724}, {16706, 4514}, {40593, 40038}
X(56928) = cevapoint of X(i) and X(j) for these (i,j): {3961, 56547}, {6646, 29840}
X(56928) = barycentric product X(i)*X(j) for these {i,j}: {7, 17280}, {57, 33938}, {75, 56547}, {76, 41346}, {85, 3961}, {226, 33954}, {3494, 30545}, {4551, 18077}, {7249, 17741}
X(56928) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 43749}, {7, 39724}, {57, 7194}, {85, 40038}, {1423, 3502}, {3494, 2319}, {3961, 9}, {17280, 8}, {17741, 7081}, {18077, 18155}, {33938, 312}, {33954, 333}, {34249, 2053}, {39724, 55014}, {41346, 6}, {56547, 1}
X(56928) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7179, 17084}, {7, 8, 3212}, {7, 17090, 7195}, {65, 7247, 7}, {85, 30617, 7}, {388, 6604, 7}, {1429, 16603, 2}, {2329, 17062, 2}, {3665, 10944, 664}, {4056, 5697, 5195}, {4059, 32007, 7}, {5252, 30617, 85}, {5903, 7272, 33865}, {7185, 9312, 17089}, {9436, 10106, 7176}, {10401, 39126, 7}, {32049, 47595, 16284}


X(56929) = X(1)X(7056)∩X(7)X(8)

Barycentrics    (a + b - c)*(a - b + c)*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5 + a^4*c - 6*a^3*b*c + 8*a^2*b^2*c - 2*a*b^3*c - b^4*c - 2*a^3*c^2 + 8*a^2*b*c^2 + 2*a*b^2*c^2 - 2*a^2*c^3 - 2*a*b*c^3 + a*c^4 - b*c^4 + c^5) : :

X(56929) lies on the cubic K521 and these lines: {1, 7056}, {7, 8}, {40, 17093}, {64, 11036}, {226, 28827}, {279, 20070}, {348, 5250}, {479, 9785}, {658, 14986}, {946, 1996}, {948, 27000}, {962, 1088}, {1265, 8817}, {2898, 12701}, {3057, 30623}, {3485, 9446}, {3599, 3616}, {4872, 9800}, {5558, 56275}, {5907, 52506}, {6147, 18913}, {6225, 14548}, {9436, 12526}, {10136, 12577}, {12575, 56309}, {17811, 21454}, {33949, 52156}


X(56930) = X(1)X(8920)∩X(7)X(8)

Barycentrics    b*(-a + b - c)*(a + b - c)*c*(-a^2 + b*c)*(-(a^2*b) + a*b^2 - a^2*c + a*b*c - b^2*c + a*c^2 - b*c^2) : :

X(56930) lies on the cubic K992 and these lines: {1, 8920}, {7, 8}, {73, 43715}, {350, 1874}, {740, 18033}, {1284, 19581}, {1458, 4572}, {1921, 39775}, {4391, 7212}, {17786, 28110}, {33674, 46135}

X(56930) = isotomic conjugate of X(43748)
X(56930) = isotomic conjugate of the isogonal conjugate of X(56413)
X(56930) = X(i)-isoconjugate of X(j) for these (i,j): {6, 51995}, {31, 43748}, {3500, 51858}, {9468, 39936}, {18265, 54128}
X(56930) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 43748}, {9, 51995}, {39044, 39936}
X(56930) = barycentric product X(i)*X(j) for these {i,j}: {75, 39930}, {76, 56413}, {561, 51956}, {1447, 17786}, {1926, 51986}, {3501, 18033}, {10030, 32937}, {14199, 30545}
X(56930) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 51995}, {2, 43748}, {1447, 3500}, {1966, 39936}, {3501, 7077}, {10030, 54128}, {13588, 2311}, {14199, 2319}, {17786, 4518}, {32937, 4876}, {34247, 51858}, {39930, 1}, {51949, 18265}, {51956, 31}, {51986, 1967}, {56413, 6}


X(56931) = X(1)X(295)∩X(7)X(8)

Barycentrics    a^2*(b^2 - b*c + c^2)*(a^2*b - a*b^2 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(56931) lies on the cubic K1015 and these lines: {1, 295}, {7, 8}, {31, 172}, {660, 17743}, {695, 2276}, {982, 4531}, {2275, 3116}, {2295, 19586}, {3056, 3721}, {3784, 51836}, {3888, 33890}, {3959, 9016}, {9017, 24445}, {9025, 21216}, {20255, 20486}, {20284, 40935}, {20590, 26892}, {34247, 51956}

X(56931) = isogonal conjugate of the isotomic conjugate of X(51840)
X(56931) = X(i)-Ceva conjugate of X(j) for these (i,j): {1, 2275}, {109, 22443}
X(56931) = X(i)-isoconjugate of X(j) for these (i,j): {983, 54128}, {3500, 17743}
X(56931) = X(982)-Dao conjugate of X(75)
X(56931) = crossdifference of every pair of points on line {3063, 3835}
X(56931) = barycentric product X(i)*X(j) for these {i,j}: {1, 52657}, {6, 51840}, {75, 56557}, {982, 3501}, {2275, 32937}, {3662, 34247}, {3721, 13588}, {3888, 21348}, {7032, 17786}, {23655, 33946}, {33930, 51949}
X(56931) = barycentric quotient X(i)/X(j) for these {i,j}: {2275, 54128}, {3501, 7033}, {7032, 3500}, {13588, 38810}, {17786, 7034}, {34247, 17743}, {51840, 76}, {51949, 983}, {52657, 75}, {56557, 1}
X(56931) = {X(3868),X(5369)}-harmonic conjugate of X(3779)


X(56932) = X(6)X(39940)∩X(7)X(8)

Barycentrics    b*(-a + b - c)*(a + b - c)*c*(a^2*b^2 + a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 + b^2*c^2) : :

X(56932) lies on the cubic K743 and these lines: {6, 39940}, {7, 8}, {308, 17788}, {348, 26042}, {664, 1964}, {1088, 56247}, {1432, 9230}, {1502, 17786}, {1575, 7196}, {1740, 9312}, {6374, 7146}, {7205, 43040}, {17445, 55082}

X(56932) = isotomic conjugate of X(3495)
X(56932) = isotomic conjugate of the isogonal conjugate of X(3503)
X(56932) = X(1432)-Ceva conjugate of X(30545)
X(56932) = X(i)-isoconjugate of X(j) for these (i,j): {31, 3495}, {2175, 39746}, {18265, 39937}
X(56932) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 3495}, {40593, 39746}
X(56932) = cevapoint of X(26752) and X(56554)
X(56932) = barycentric product X(i)*X(j) for these {i,j}: {75, 56554}, {76, 3503}, {85, 26752}
X(56932) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 3495}, {85, 39746}, {1441, 43687}, {3503, 6}, {10030, 39937}, {26752, 9}, {39929, 2329}, {51917, 2330}, {51985, 51858}, {56554, 1}


X(56933) = X(7)X(11)∩X(220)X(651)

Barycentrics    (a + b - c)*(a - b + c)*(3*a^6 - 7*a^5*b - a^4*b^2 + 14*a^3*b^3 - 11*a^2*b^4 + a*b^5 + b^6 - 7*a^5*c + 21*a^4*b*c - 18*a^3*b^2*c - 2*a^2*b^3*c + 9*a*b^4*c - 3*b^5*c - a^4*c^2 - 18*a^3*b*c^2 + 26*a^2*b^2*c^2 - 10*a*b^3*c^2 + 3*b^4*c^2 + 14*a^3*c^3 - 2*a^2*b*c^3 - 10*a*b^2*c^3 - 2*b^3*c^3 - 11*a^2*c^4 + 9*a*b*c^4 + 3*b^2*c^4 + a*c^5 - 3*b*c^5 + c^6) : :
X(56933) = 3 X[7] - 4 X[52870], 3 X[658] - 2 X[52870], 4 X[13609] - 5 X[18230]

X(56933) lies on the cubic K1080 and these lines: {7, 11}, {144, 35312}, {220, 651}, {664, 6068}, {3212, 12848}, {8545, 17084}, {9355, 10481}, {13609, 18230}, {14189, 50573}, {17089, 43762}, {22464, 52160}, {33298, 42014}

X(56933) = reflection of X(7) in X(658)
X(56933) = X(527)-Ceva conjugate of X(7)


X(56934) = X(1)X(757)∩X(7)X(21)

Barycentrics    a*(a + b)*(a + c)*(a^2 - b^2 - b*c - c^2) : :

X(56934) lies on the cubic K970 and these lines: {1, 757}, {2, 1029}, {3, 3437}, {6, 1931}, {7, 21}, {9, 662}, {35, 319}, {36, 17322}, {37, 16702}, {55, 17377}, {63, 2185}, {69, 4189}, {71, 17209}, {75, 99}, {76, 43680}, {77, 1414}, {81, 16884}, {85, 1789}, {95, 18155}, {100, 32025}, {163, 40371}, {190, 27958}, {192, 19623}, {229, 16865}, {274, 11102}, {286, 17515}, {314, 15446}, {317, 37295}, {326, 1098}, {332, 3422}, {333, 2164}, {593, 28606}, {620, 46826}, {643, 35258}, {645, 17336}, {966, 21508}, {984, 1326}, {1010, 4299}, {1030, 1654}, {1043, 4305}, {1078, 18133}, {1100, 51311}, {1213, 19308}, {1268, 5260}, {1333, 40773}, {1399, 1442}, {1449, 33766}, {1509, 5248}, {1621, 16679}, {1626, 4184}, {1634, 8053}, {1761, 18714}, {1918, 40731}, {1963, 16777}, {2174, 3219}, {2550, 35915}, {2669, 13723}, {2893, 37286}, {2975, 4360}, {3110, 3688}, {3252, 4584}, {3295, 32004}, {3647, 10411}, {3662, 25536}, {3879, 6629}, {3964, 20835}, {4220, 30761}, {4357, 5267}, {4417, 40605}, {4429, 35916}, {4558, 7054}, {4590, 35960}, {4616, 50561}, {4622, 52553}, {4640, 51369}, {4679, 25533}, {5010, 17270}, {5196, 33108}, {5209, 18147}, {5232, 17548}, {5251, 11116}, {5258, 5564}, {5263, 11104}, {5649, 37140}, {6043, 17594}, {6757, 44188}, {6872, 52360}, {6914, 10446}, {7267, 27565}, {7279, 40999}, {7282, 11107}, {8287, 24922}, {8666, 17393}, {9274, 24041}, {9723, 20846}, {9780, 37294}, {11101, 18661}, {11343, 17352}, {12215, 15991}, {12514, 44179}, {14590, 16585}, {16367, 17234}, {16370, 17378}, {16525, 18268}, {16713, 41845}, {16783, 46194}, {17160, 54313}, {17172, 18589}, {17206, 37296}, {17233, 54285}, {17271, 17549}, {17277, 21511}, {17278, 24617}, {17280, 31059}, {17307, 21495}, {17346, 36744}, {17347, 40882}, {17354, 54322}, {17381, 36743}, {17398, 19237}, {17524, 33954}, {17595, 37791}, {17693, 26045}, {17735, 56441}, {18160, 23226}, {18653, 54357}, {18827, 23407}, {19762, 41849}, {24986, 37293}, {25946, 31248}, {27186, 52393}, {28748, 28828}, {30598, 32014}, {31144, 35276}, {33295, 34443}, {37792, 49748}, {37816, 41847}, {42624, 46176}, {52680, 54308}

X(56934) = isotomic conjugate of X(6757)
X(56934) = anticomplement of X(5949)
X(56934) = isotomic conjugate of the isogonal conjugate of X(17104)
X(56934) = X(7372)-anticomplementary conjugate of X(21294)
X(56934) = X(i)-Ceva conjugate of X(j) for these (i,j): {85, 56439}, {99, 4467}, {32014, 81}, {34016, 56440}, {40412, 86}
X(56934) = X(i)-isoconjugate of X(j) for these (i,j): {6, 8818}, {10, 6186}, {25, 52388}, {31, 6757}, {33, 52390}, {37, 2160}, {41, 43682}, {42, 79}, {55, 52382}, {65, 7073}, {101, 55236}, {181, 3615}, {210, 52372}, {213, 30690}, {225, 8606}, {265, 44113}, {476, 42666}, {512, 6742}, {513, 56193}, {756, 52375}, {798, 15455}, {860, 52153}, {1334, 52374}, {1400, 7110}, {1402, 52344}, {1500, 52393}, {1824, 7100}, {1918, 20565}, {1989, 2245}, {2166, 3724}, {2333, 52381}, {2610, 32678}, {3709, 38340}, {3936, 11060}, {4041, 26700}, {4705, 13486}, {6370, 14560}, {6739, 40355}, {53581, 55209}
X(56934) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 6757}, {9, 8818}, {223, 52382}, {1015, 55236}, {1100, 1213}, {3160, 43682}, {5249, 442}, {6505, 52388}, {6626, 30690}, {8287, 523}, {11597, 3724}, {14838, 1109}, {18334, 2610}, {31998, 15455}, {34021, 20565}, {34544, 2245}, {39026, 56193}, {39054, 6742}, {40582, 7110}, {40589, 2160}, {40592, 79}, {40602, 7073}, {40604, 758}, {40605, 52344}, {55042, 4041}
X(56934) = cevapoint of X(i) and X(j) for these (i,j): {21, 40592}, {35, 3219}, {2611, 14838}, {3647, 17190}, {35193, 40214}
X(56934) = trilinear pole of line {323, 14838}
X(56934) = crossdifference of every pair of points on line {3709, 9279}
X(56934) = barycentric product X(i)*X(j) for these {i,j}: {1, 34016}, {7, 56440}, {21, 17095}, {35, 274}, {58, 33939}, {75, 40214}, {76, 17104}, {81, 319}, {85, 35193}, {86, 3219}, {99, 14838}, {100, 16755}, {110, 18160}, {249, 17886}, {261, 16577}, {284, 52421}, {310, 2174}, {314, 2003}, {323, 14616}, {333, 1442}, {348, 11107}, {513, 55235}, {662, 4467}, {757, 3969}, {759, 7799}, {763, 7206}, {799, 2605}, {1014, 42033}, {1268, 17190}, {1399, 28660}, {1434, 4420}, {1444, 52412}, {1509, 3678}, {1812, 7282}, {2185, 40999}, {2594, 52379}, {2611, 4590}, {3268, 37140}, {3578, 40438}, {3647, 32014}, {4563, 54244}, {4573, 35057}, {4600, 7202}, {4601, 53542}, {4620, 53524}, {4623, 55210}, {4625, 9404}, {6063, 35192}, {6198, 17206}, {6331, 23226}, {7182, 41502}, {7186, 38810}, {7265, 52935}, {8287, 24041}, {16585, 40412}, {18021, 21741}, {20982, 24037}, {22094, 46254}, {44129, 52408}
X(56934) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 8818}, {2, 6757}, {7, 43682}, {21, 7110}, {35, 37}, {50, 3724}, {57, 52382}, {58, 2160}, {63, 52388}, {81, 79}, {86, 30690}, {99, 15455}, {101, 56193}, {222, 52390}, {274, 20565}, {284, 7073}, {319, 321}, {323, 758}, {333, 52344}, {500, 2294}, {513, 55236}, {526, 2610}, {593, 52375}, {662, 6742}, {757, 52393}, {759, 1989}, {1014, 52374}, {1333, 6186}, {1399, 1400}, {1412, 52372}, {1414, 38340}, {1442, 226}, {1444, 52381}, {1790, 7100}, {1825, 8736}, {1844, 1865}, {2003, 65}, {2174, 42}, {2185, 3615}, {2193, 8606}, {2477, 21741}, {2594, 2171}, {2605, 661}, {2611, 115}, {2624, 42666}, {3219, 10}, {3578, 4647}, {3647, 1213}, {3678, 594}, {3969, 1089}, {4420, 2321}, {4467, 1577}, {4556, 13486}, {4565, 26700}, {4623, 55209}, {6149, 2245}, {6198, 1826}, {7186, 3721}, {7202, 3120}, {7265, 4036}, {7266, 8287}, {7279, 16577}, {7282, 40149}, {7799, 35550}, {8025, 52569}, {8287, 1109}, {9404, 4041}, {10411, 4585}, {11107, 281}, {14590, 4242}, {14616, 94}, {14838, 523}, {14975, 2333}, {16577, 12}, {16585, 442}, {16718, 25639}, {16755, 693}, {17095, 1441}, {17104, 6}, {17190, 1125}, {17454, 1962}, {17886, 338}, {18160, 850}, {20982, 2643}, {21741, 181}, {21824, 21043}, {22094, 3708}, {22342, 2197}, {23226, 647}, {24624, 2166}, {32671, 14560}, {32679, 6370}, {33939, 313}, {34016, 75}, {35049, 55017}, {35057, 3700}, {35192, 55}, {35193, 9}, {35194, 21011}, {35197, 21863}, {36069, 32678}, {37140, 476}, {38814, 14844}, {40143, 30602}, {40214, 1}, {40999, 6358}, {41226, 15065}, {41502, 33}, {41562, 21933}, {42033, 3701}, {52405, 210}, {52408, 71}, {52412, 41013}, {52414, 860}, {52421, 349}, {52603, 1983}, {53524, 21044}, {53542, 3125}, {53554, 24290}, {54244, 2501}, {55210, 4705}, {55235, 668}, {56440, 8}, {56535, 21853}
X(56934) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 1444, 86}, {63, 2185, 56439}, {99, 261, 75}, {1931, 38814, 6}, {3219, 17190, 40214}, {3219, 40214, 56440}


X(56935) = X(7)X(21)∩X(75)X(267)

Barycentrics    (a + b)*(a + c)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2 - c^3) : :

X(56935) lies on the cubic K660 and these lines: {7, 21}, {44, 24617}, {63, 52361}, {69, 37256}, {75, 267}, {81, 17395}, {99, 320}, {190, 42713}, {261, 7321}, {333, 24616}, {484, 17791}, {523, 4467}, {524, 31297}, {527, 662}, {757, 3663}, {799, 3264}, {903, 4622}, {1043, 4299}, {1086, 1931}, {1266, 6629}, {1414, 22464}, {1509, 17320}, {1963, 17246}, {2607, 6626}, {3218, 24624}, {3219, 52393}, {3874, 4360}, {3946, 33766}, {4021, 40438}, {4440, 19623}, {5209, 39995}, {8818, 24922}, {9965, 56439}, {11112, 17271}, {16704, 20092}, {17301, 51311}, {17322, 32014}, {17365, 38814}, {17378, 37299}, {17483, 40592}, {17484, 19297}, {20078, 56440}, {20349, 44396}, {24957, 53501}, {34997, 35550}, {35984, 37678}

X(56935) = X(14616)-Ceva conjugate of X(86)
X(56935) = X(i)-isoconjugate of X(j) for these (i,j): {37, 19302}, {42, 3065}, {213, 21739}, {1918, 40716}, {2245, 11075}, {4041, 34921}, {14147, 21828}
X(56935) = X(i)-Dao conjugate of X(j) for these (i,j): {3218, 758}, {6626, 21739}, {34021, 40716}, {40589, 19302}, {40592, 3065}
X(56935) = cevapoint of X(484) and X(17484)
X(56935) = crossdifference of every pair of points on line {3709, 20970}
X(56935) = barycentric product X(i)*X(j) for these {i,j}: {81, 17791}, {86, 17484}, {274, 484}, {310, 19297}, {873, 21864}, {4554, 35055}, {14158, 33939}, {14616, 40612}, {23071, 44129}, {30939, 47058}, {34016, 50148}
X(56935) = barycentric quotient X(i)/X(j) for these {i,j}: {58, 19302}, {81, 3065}, {86, 21739}, {274, 40716}, {484, 37}, {759, 11075}, {4565, 34921}, {6126, 2245}, {14158, 2160}, {17484, 10}, {17791, 321}, {19297, 42}, {21864, 756}, {23071, 71}, {35055, 650}, {40214, 7343}, {40612, 758}, {42657, 3709}, {47058, 4674}, {50148, 8818}
X(56935) = {X(4389),X(17103)}-harmonic conjugate of X(86)


X(56936) = X(2)X(496)∩X(8)X(9)

Barycentrics    (a - b - c)*(3*a^3 + 3*a^2*b + a*b^2 + b^3 + 3*a^2*c - 6*a*b*c - b^2*c + a*c^2 - b*c^2 + c^3) : :
X(56936) = 3 X[2] - 4 X[3295], 9 X[2] - 8 X[31419], 3 X[3295] - 2 X[31419], 3 X[5082] - 4 X[31419], 3 X[8] - 4 X[5837], 3 X[1697] - 2 X[5837], 5 X[3091] - 8 X[37622], 3 X[3241] - 2 X[3340], 2 X[958] - 3 X[10385], 7 X[3523] - 8 X[10267], 5 X[3616] - 6 X[10389], 9 X[3839] - 8 X[18517], 9 X[10304] - 8 X[35239], 4 X[10386] - 3 X[11111]

X(56936) lies on the cubic K521 and these lines: {1, 6904}, {2, 496}, {8, 9}, {10, 31436}, {20, 145}, {21, 15998}, {35, 34625}, {40, 1208}, {55, 30478}, {56, 34607}, {63, 6764}, {72, 20015}, {78, 9785}, {100, 14986}, {119, 149}, {144, 12533}, {193, 9052}, {200, 12575}, {329, 6765}, {387, 37610}, {388, 528}, {443, 6767}, {497, 1329}, {515, 9800}, {518, 12706}, {519, 4294}, {553, 3241}, {908, 4917}, {956, 17576}, {958, 10385}, {962, 1490}, {999, 37267}, {1056, 37435}, {1320, 3296}, {1479, 31160}, {1482, 50701}, {1483, 6948}, {2078, 5265}, {2550, 3303}, {2551, 3058}, {3057, 3189}, {3085, 25439}, {3086, 6681}, {3146, 40267}, {3158, 12053}, {3244, 4293}, {3304, 6154}, {3421, 15171}, {3434, 5177}, {3436, 34611}, {3474, 34791}, {3486, 3880}, {3488, 10914}, {3522, 54391}, {3523, 10267}, {3543, 20060}, {3601, 21627}, {3616, 5438}, {3617, 5129}, {3621, 6872}, {3622, 17580}, {3632, 4309}, {3633, 4302}, {3650, 15680}, {3672, 41826}, {3702, 7172}, {3746, 19843}, {3748, 28629}, {3811, 30305}, {3813, 5218}, {3839, 18517}, {3872, 4313}, {3877, 20007}, {3889, 21454}, {3957, 11036}, {4193, 27525}, {4208, 10587}, {4299, 51093}, {4304, 12629}, {4314, 4853}, {4324, 34747}, {4345, 56387}, {4421, 7288}, {4666, 11024}, {4847, 53053}, {4882, 40998}, {5084, 15172}, {5175, 31397}, {5225, 12607}, {5261, 11239}, {5274, 5552}, {5281, 10527}, {5440, 24558}, {5528, 30340}, {5731, 36846}, {5748, 9614}, {5768, 49163}, {5844, 6868}, {6737, 9819}, {6745, 26129}, {6826, 12000}, {6847, 10679}, {6851, 44455}, {6869, 8148}, {6885, 10247}, {6926, 10806}, {6930, 12645}, {6944, 12331}, {6961, 32214}, {6964, 10596}, {6972, 10530}, {6987, 12245}, {6995, 20020}, {7520, 12410}, {7962, 12437}, {7991, 43161}, {8236, 54392}, {9778, 9797}, {9949, 28236}, {10056, 31418}, {10087, 10321}, {10304, 35239}, {10386, 11111}, {10588, 11235}, {10591, 45701}, {11019, 26062}, {12649, 37423}, {12701, 25568}, {13199, 25416}, {15338, 34610}, {16202, 37407}, {17316, 27000}, {19993, 41340}, {20760, 28028}, {24440, 28080}, {24477, 37568}, {26818, 35978}, {28194, 41863}, {31146, 34639}, {32900, 35249}, {32965, 54098}, {34711, 41687}, {34720, 47357}, {34772, 50700}, {37307, 41345}, {39581, 41921}

X(56936) = reflection of X(i) in X(j) for these {i,j}: {8, 1697}, {4853, 4314}, {5082, 3295}
X(56936) = anticomplement of X(5082)
X(56936) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17784, 6904}, {8, 390, 452}, {145, 9965, 3555}, {145, 20066, 20076}, {145, 20070, 3868}, {145, 20075, 20}, {149, 10528, 3091}, {390, 12632, 8}, {497, 3913, 7080}, {497, 7080, 6919}, {950, 2136, 8}, {1058, 5687, 2}, {3158, 12053, 27383}, {3295, 5082, 2}, {3555, 6361, 9965}, {3623, 20095, 4190}, {4313, 12541, 3872}, {5727, 12640, 8}, {6745, 51785, 26129}, {6765, 10624, 329}, {10587, 33110, 4208}, {11239, 52367, 5261}, {20066, 20076, 20}, {20075, 20076, 20066}


X(56937) = X(2)X(277)∩X(8)X(9)

Barycentrics    (a - b - c)*(a^3 - 3*a^2*b + 3*a*b^2 - b^3 - 3*a^2*c - 2*a*b*c + b^2*c + 3*a*c^2 + b*c^2 - c^3) : :

X(56937) lies on the cubic K1189 and these lines: {2, 277}, {4, 10743}, {8, 9}, {69, 32024}, {85, 344}, {145, 218}, {169, 17784}, {190, 6604}, {226, 8055}, {279, 28740}, {280, 6559}, {329, 3912}, {345, 30854}, {347, 41786}, {348, 28756}, {405, 26770}, {519, 4936}, {664, 28981}, {944, 41391}, {1219, 5436}, {1260, 28057}, {1655, 27253}, {2345, 41921}, {2348, 3189}, {2895, 29616}, {2899, 5177}, {2900, 6555}, {3039, 3913}, {3086, 24036}, {3263, 32034}, {3486, 30618}, {3523, 26258}, {3693, 6554}, {4253, 35341}, {4384, 41915}, {4488, 32098}, {4578, 47387}, {5423, 10382}, {5552, 27541}, {5665, 56076}, {5749, 54392}, {6552, 30730}, {6557, 25525}, {6558, 42020}, {6764, 15662}, {6904, 40131}, {7172, 13615}, {7195, 16593}, {8732, 20946}, {9263, 54123}, {10481, 30813}, {10528, 26793}, {10591, 21090}, {14923, 23840}, {14986, 26690}, {16284, 17264}, {16572, 21096}, {17280, 27288}, {17464, 17794}, {17776, 30807}, {25935, 56082}, {26036, 36926}, {27383, 40869}, {27396, 27505}, {28812, 37774}, {29966, 56079}, {30030, 56080}, {30695, 30806}, {32100, 54280}, {37421, 46937}, {38496, 40621}

X(56937) = anticomplement of X(277)
X(56937) = anticomplement of the isogonal conjugate of X(218)
X(56937) = anticomplement of the isotomic conjugate of X(344)
X(56937) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {41, 20111}, {57, 6601}, {101, 3309}, {109, 24002}, {218, 8}, {344, 6327}, {692, 47676}, {1110, 644}, {1174, 34784}, {1445, 3434}, {1617, 7}, {3309, 150}, {3870, 69}, {3991, 1330}, {4233, 17220}, {4350, 6604}, {4468, 21293}, {4878, 2895}, {6600, 329}, {6604, 21285}, {7719, 4}, {8642, 4440}, {8750, 26546}, {15185, 2890}, {21059, 2}, {21609, 21280}, {23144, 52365}, {23990, 25266}, {31638, 20556}, {41539, 2893}, {41610, 17135}, {54236, 17170}, {55337, 3436}
X(56937) = X(i)-Ceva conjugate of X(j) for these (i,j): {85, 8}, {344, 2}, {20946, 36845}, {56085, 8055}
X(56937) = X(i)-isoconjugate of X(j) for these (i,j): {604, 42361}, {1407, 42470}, {3669, 53888}
X(56937) = X(i)-Dao conjugate of X(j) for these (i,j): {200, 9}, {3161, 42361}, {24771, 42470}
X(56937) = cevapoint of X(3174) and X(24771)
X(56937) = crossdifference of every pair of points on line {8642, 43924}
X(56937) = barycentric product X(i)*X(j) for these {i,j}: {8, 36845}, {9, 20946}, {75, 3174}, {85, 24771}, {312, 16572}, {333, 21096}, {346, 8732}, {3596, 21002}, {7017, 22153}, {41573, 56118}
X(56937) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 42361}, {200, 42470}, {3174, 1}, {3699, 53653}, {3939, 53888}, {8732, 279}, {16572, 57}, {20946, 85}, {21002, 56}, {21096, 226}, {22153, 222}, {24771, 9}, {36845, 7}, {41573, 10481}
X(56937) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 3161, 55337}, {9, 51972, 8}, {728, 41006, 8}, {2325, 41006, 728}, {3693, 6554, 7080}, {16572, 21096, 36845}, {24313, 24314, 7674}


X(56938) = X(8)X(11)∩X(85)X(4555)

Barycentrics    a*(a + b - 2*c)*(a - b - c)*(a - 2*b + c)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 5*a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2 + c^3) : :

X(56938) lies on the cubic K971 and these lines: {8, 11}, {85, 4555}, {106, 22837}, {523, 1222}, {901, 14923}, {1168, 4737}, {2316, 4051}, {3872, 56757}, {10914, 52478}, {14260, 24865}, {19634, 34640}, {27818, 56049}, {42697, 52553}

X(56938) = X(2743)-isoconjugate of X(53528)
X(56938) = X(6735)-Dao conjugate of X(1145)
X(56938) = cevapoint of X(38460) and X(39776)
X(56938) = barycentric product X(i)*X(j) for these {i,j}: {1320, 37758}, {2827, 4582}, {4997, 38460}
X(56938) = barycentric quotient X(i)/X(j) for these {i,j}: {2827, 30725}, {5548, 2743}, {38460, 3911}, {39776, 52659}
X(56938) = {X(10912),X(45247)}-harmonic conjugate of X(1320)


X(56939) = X(8)X(20)∩X(282)X(3465)

Barycentrics    (2*a - b - c)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c + 2*a*b*c + b^2*c - a*c^2 - b*c^2 - c^3)*(a^3 + a^2*b - a*b^2 - b^3 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + b*c^2 + c^3) : :

X(56939) lies on the cubic K338 and these lines: {8, 20}, {282, 3465}, {318, 6705}, {519, 13539}, {522, 905}, {596, 52384}, {1145, 1339}, {1413, 56145}, {1436, 51637}, {1440, 36588}, {1785, 8056}, {2325, 5440}, {2751, 40117}, {2757, 8059}, {3911, 38462}, {3977, 4723}, {6081, 53877}, {6700, 7515}, {7046, 52027}, {8808, 52121}, {15633, 46435}, {17102, 20201}, {18821, 53642}, {36925, 40663}, {38693, 39558}

X(56939) = X(i)-isoconjugate of X(j) for these (i,j): {40, 106}, {88, 198}, {221, 1320}, {223, 2316}, {329, 9456}, {901, 6129}, {903, 2187}, {1417, 7080}, {1797, 2331}, {2199, 4997}, {2360, 4674}, {4591, 55212}, {7074, 56049}, {7078, 36125}, {7952, 36058}, {14260, 15501}, {14837, 32665}, {17896, 32719}
X(56939) = X(i)-Dao conjugate of X(j) for these (i,j): {214, 40}, {3341, 1320}, {4370, 329}, {20619, 7952}, {35092, 14837}, {38979, 6129}, {51402, 8058}, {52659, 347}, {52871, 7080}, {52872, 21075}, {53985, 54239}
X(56939) = trilinear pole of line {1639, 53532}
X(56939) = barycentric product X(i)*X(j) for these {i,j}: {44, 309}, {84, 4358}, {189, 519}, {271, 37790}, {280, 3911}, {900, 44327}, {902, 44190}, {1319, 34404}, {1422, 4723}, {1433, 46109}, {1436, 3264}, {1440, 2325}, {1639, 53642}, {1877, 44189}, {1903, 30939}, {3762, 13138}, {3977, 40836}, {4730, 55211}, {4768, 37141}, {16704, 39130}, {38462, 41081}, {55242, 55243}
X(56939) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 40}, {84, 88}, {189, 903}, {280, 4997}, {282, 1320}, {309, 20568}, {519, 329}, {900, 14837}, {902, 198}, {1319, 223}, {1404, 221}, {1422, 56049}, {1433, 1797}, {1436, 106}, {1635, 6129}, {1639, 8058}, {1877, 196}, {1903, 4674}, {2192, 2316}, {2208, 9456}, {2251, 2187}, {2325, 7080}, {3285, 2360}, {3689, 2324}, {3762, 17896}, {3911, 347}, {3943, 21075}, {4358, 322}, {4530, 38357}, {4730, 55212}, {4895, 14298}, {7129, 36125}, {7151, 8752}, {8756, 7952}, {13138, 3257}, {13156, 53240}, {16704, 8822}, {21805, 21871}, {22356, 7078}, {32652, 32665}, {36049, 901}, {37168, 41083}, {37790, 342}, {39130, 4080}, {40836, 6336}, {44327, 4555}, {52680, 1817}, {55211, 4634}, {55242, 55244}, {55243, 55241}
X(56939) = {X(84),X(280)}-harmonic conjugate of X(39130)


X(56940) = X(8)X(20)∩X(88)X(5125)

Barycentrics    (3*a - b - c)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c + 2*a*b*c + b^2*c - a*c^2 - b*c^2 - c^3)*(a^3 + a^2*b - a*b^2 - b^3 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + b*c^2 + c^3) : :

X(56940) lies on the cubic K826 and these lines: {8, 20}, {88, 5125}, {104, 46355}, {282, 56200}, {285, 56107}, {1120, 1413}, {1422, 6553}, {1436, 52549}, {1440, 4373}, {2757, 6081}, {2968, 12246}, {3086, 23681}, {3161, 4855}, {6847, 50442}, {7020, 37417}, {7046, 34862}, {27407, 52389}, {34860, 52384}, {35160, 53642}

X(56940) = X(1440)-Ceva conjugate of X(189)
X(56940) = X(i)-isoconjugate of X(j) for these (i,j): {40, 3445}, {198, 8056}, {221, 3680}, {329, 38266}, {1293, 6129}, {2187, 4373}, {2199, 6557}, {2324, 40151}, {2360, 56174}, {7074, 19604}, {7080, 16945}, {14298, 38828}, {14837, 34080}
X(56940) = X(i)-Dao conjugate of X(j) for these (i,j): {8, 7080}, {3341, 3680}, {3669, 38374}, {3756, 8058}, {40621, 14837}, {45036, 40}
X(56940) = cevapoint of X(4394) and X(4953)
X(56940) = barycentric product X(i)*X(j) for these {i,j}: {84, 18743}, {145, 189}, {280, 5435}, {282, 39126}, {309, 1743}, {1413, 44723}, {1420, 34404}, {1422, 44720}, {1440, 3161}, {3052, 44190}, {3667, 44327}, {4462, 13138}, {4521, 53642}, {4729, 55211}, {8808, 52352}, {39130, 41629}, {44721, 55117}, {44722, 55110}
X(56940) = barycentric quotient X(i)/X(j) for these {i,j}: {84, 8056}, {145, 329}, {189, 4373}, {280, 6557}, {282, 3680}, {309, 40014}, {1413, 40151}, {1420, 223}, {1422, 19604}, {1436, 3445}, {1440, 27818}, {1743, 40}, {1903, 56174}, {2208, 38266}, {3052, 198}, {3158, 2324}, {3161, 7080}, {3667, 14837}, {3950, 21075}, {4162, 14298}, {4248, 41083}, {4394, 6129}, {4462, 17896}, {4521, 8058}, {4534, 38357}, {4729, 55212}, {4849, 21871}, {4953, 5514}, {5435, 347}, {8059, 38828}, {13138, 27834}, {16948, 1817}, {18743, 322}, {20818, 7078}, {32652, 34080}, {33628, 2360}, {36049, 1293}, {39126, 40702}, {39130, 4052}, {40617, 38374}, {41629, 8822}, {44327, 53647}, {44722, 55112}, {52352, 27398}
X(56940) = {X(84),X(280)}-harmonic conjugate of X(189)


X(56941) = X(3)X(12666)∩X(8)X(20)

Barycentrics    a*(a^4 - 2*a^2*b^2 + b^4 + 4*a^2*b*c - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 - a^4*c + 3*a^3*b*c + a^2*b^2*c - 3*a*b^3*c - 2*a^3*c^2 + a^2*b*c^2 + b^3*c^2 + 2*a^2*c^3 - 3*a*b*c^3 + b^2*c^3 + a*c^4 - c^5) : : X(56941) = 3 X[4881] - 2 X[6261]

X(56941) lies on the cubic K1240 and these lines: {3, 12666}, {8, 20}, {90, 10309}, {104, 1319}, {519, 2950}, {997, 52027}, {1519, 3086}, {1709, 30384}, {1737, 1768}, {2077, 12665}, {2098, 12114}, {2800, 38460}, {2829, 40663}, {3358, 52457}, {3583, 6245}, {4511, 48695}, {4881, 6261}, {5204, 52270}, {5887, 17649}, {6256, 25005}, {6705, 7701}, {8256, 40290}, {12528, 38901}, {12684, 18524}, {17728, 26877}, {24467, 24477}, {37789, 46435}

X(56941) = midpoint of X(12684) and X(18524)
X(56941) = reflection of X(i) in X(j) for these {i,j}: {3583, 6245}, {4511, 48695}, {48697, 3}
X(56941) = X(34234)-Ceva conjugate of X(53994)
X(56941) = X(42019)-isoconjugate of X(46435)
X(56941) = X(49171)-Dao conjugate of X(46435)
X(56941) = barycentric product X(i)*X(j) for these {i,j}: {2077, 54284}, {15500, 26871}
X(56941) = barycentric quotient X(i)/X(j) for these {i,j}: {2077, 56354}, {3554, 46435}


X(56942) = X(1)X(7046)∩X(8)X(20)

Barycentrics    (a - b - c)^2*(a^4*b + 2*a^3*b^2 - 2*a*b^4 - b^5 + a^4*c - 4*a^3*b*c + 4*a*b^3*c - b^4*c + 2*a^3*c^2 - 4*a*b^2*c^2 + 2*b^3*c^2 + 4*a*b*c^3 + 2*b^2*c^3 - 2*a*c^4 - b*c^4 - c^5) : :

X(56942) lies on the cubic K667 and these lines: {1, 7046}, {8, 20}, {10, 2968}, {219, 2321}, {318, 946}, {380, 3486}, {519, 22130}, {947, 5882}, {2817, 10914}, {3057, 4081}, {3703, 6736}, {4847, 5930}, {4853, 21147}, {5081, 31673}, {5086, 36100}, {10459, 23529}, {12053, 24026}, {15633, 51889}, {20264, 24034}, {23528, 45091}

X(56942) = X(651)-Ceva conjugate of X(3239)
X(56942) = barycentric product X(8)*X(20205)
X(56942) = barycentric quotient X(20205)/X(7)
X(56942) = {X(8),X(280)}-harmonic conjugate of X(40)


X(56943) = X(2)X(92)∩X(8)X(20)

Barycentrics    a^6 - 2*a^5*b - a^4*b^2 + 4*a^3*b^3 - a^2*b^4 - 2*a*b^5 + b^6 - 2*a^5*c - 2*a^4*b*c + 2*a*b^4*c + 2*b^5*c - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 + 4*a^3*c^3 - 4*b^3*c^3 - a^2*c^4 + 2*a*b*c^4 - b^2*c^4 - 2*a*c^5 + 2*b*c^5 + c^6 : :

X(56943) lies on the cubic K154 and these lines: {1, 27402}, {2, 92}, {7, 20223}, {8, 20}, {57, 55119}, {69, 54107}, {144, 2895}, {145, 7538}, {175, 55894}, {176, 55898}, {190, 54113}, {196, 51368}, {200, 30265}, {219, 20212}, {253, 306}, {318, 37421}, {322, 345}, {344, 20921}, {394, 53997}, {651, 20211}, {653, 14361}, {664, 37669}, {908, 8055}, {956, 36029}, {1370, 2834}, {1655, 18667}, {1708, 53994}, {1748, 9536}, {1783, 22119}, {1817, 2322}, {2975, 7520}, {2994, 55873}, {3007, 5748}, {3085, 25080}, {3091, 39574}, {3100, 3870}, {3146, 5174}, {3152, 3617}, {3160, 18652}, {3176, 8885}, {3177, 55912}, {3210, 55907}, {3219, 5942}, {3346, 3998}, {3436, 32862}, {3672, 18662}, {3692, 55114}, {3757, 10565}, {4207, 21318}, {4296, 19860}, {4462, 43991}, {4552, 27540}, {5271, 5744}, {5278, 36023}, {5294, 11348}, {5361, 7560}, {5687, 30267}, {5932, 47848}, {6554, 25091}, {6908, 41013}, {7003, 7011}, {7046, 7580}, {7079, 30674}, {7361, 30680}, {7396, 29641}, {7952, 27530}, {8732, 54284}, {9263, 39696}, {9776, 25935}, {9965, 26871}, {10405, 40435}, {11350, 55987}, {11433, 12848}, {17484, 18664}, {17776, 30807}, {19822, 24635}, {20017, 20110}, {20043, 55399}, {20061, 50697}, {20078, 37781}, {20222, 27505}, {23600, 25252}, {23661, 37108}, {25255, 27533}, {27404, 41083}, {31266, 50442}, {37652, 39351}

X(56943) = isogonal conjugate of X(7152)
X(56943) = isotomic conjugate of X(41514)
X(56943) = anticomplement of X(278)
X(56943) = polar conjugate of X(7149)
X(56943) = anticomplement of the isogonal conjugate of X(219)
X(56943) = anticomplement of the isotomic conjugate of X(345)
X(56943) = isotomic conjugate of the anticomplement of X(40837)
X(56943) = isotomic conjugate of the isogonal conjugate of X(3197)
X(56943) = isotomic conjugate of the polar conjugate of X(3176)
X(56943) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3, 7}, {6, 12649}, {8, 21270}, {9, 4}, {21, 17220}, {31, 30699}, {33, 6515}, {41, 193}, {48, 145}, {55, 5905}, {59, 4566}, {63, 3434}, {69, 21285}, {71, 2475}, {72, 2893}, {77, 6604}, {78, 69}, {100, 46400}, {101, 521}, {109, 17896}, {162, 23683}, {184, 3210}, {212, 2}, {219, 8}, {220, 5942}, {222, 36845}, {228, 17778}, {255, 347}, {268, 962}, {271, 21279}, {281, 5906}, {283, 75}, {284, 3868}, {304, 21280}, {312, 11442}, {318, 317}, {332, 17137}, {333, 20242}, {345, 6327}, {394, 52365}, {521, 150}, {603, 4452}, {604, 11851}, {643, 850}, {644, 20293}, {645, 21300}, {652, 149}, {906, 522}, {943, 52673}, {1110, 651}, {1167, 273}, {1176, 20247}, {1253, 30694}, {1259, 4329}, {1260, 329}, {1265, 21286}, {1331, 693}, {1332, 21302}, {1437, 3875}, {1444, 20244}, {1790, 3873}, {1792, 20245}, {1793, 17139}, {1794, 1441}, {1796, 20292}, {1802, 144}, {1803, 30628}, {1808, 30941}, {1812, 17135}, {1813, 3900}, {1946, 4440}, {2149, 1897}, {2175, 21216}, {2188, 9965}, {2193, 1}, {2194, 3187}, {2212, 6392}, {2289, 20}, {2318, 2895}, {2327, 3869}, {2328, 92}, {2342, 48380}, {2359, 65}, {2983, 5174}, {3682, 2897}, {3692, 3436}, {3694, 1330}, {3710, 21287}, {3718, 315}, {3719, 1370}, {3939, 4391}, {3990, 3152}, {4055, 18667}, {4571, 20295}, {4575, 4467}, {4587, 513}, {4592, 4374}, {5546, 7253}, {6056, 6360}, {6332, 21293}, {6514, 20243}, {6516, 46402}, {7012, 18026}, {7070, 14361}, {7072, 2994}, {7078, 5932}, {7116, 29840}, {8134, 7048}, {8606, 17483}, {8611, 3448}, {13455, 13439}, {14578, 38460}, {15629, 5081}, {20752, 52164}, {20760, 20537}, {22074, 5484}, {22117, 31527}, {22350, 36918}, {22370, 20350}, {23202, 30577}, {32635, 20289}, {32656, 17496}, {34430, 39695}, {35200, 41804}, {36055, 22464}, {36056, 9436}, {36058, 1266}, {36059, 4025}, {36060, 4442}, {39943, 43740}, {40972, 8878}, {44687, 264}, {44692, 32001}, {44693, 340}, {47487, 85}, {51376, 152}, {52355, 21294}, {52370, 1654}, {52407, 41803}, {52408, 41808}, {52411, 17480}, {52425, 192}, {52978, 21290}, {55111, 6223}, {55207, 44445}, {56245, 3060}
X(56943) = X(38272)-complementary conjugate of X(20305)
X(56943) = X(i)-Ceva conjugate of X(j) for these (i,j): {322, 8}, {345, 2}, {18750, 329}
X(56943) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7152}, {6, 3345}, {31, 41514}, {32, 56596}, {48, 7149}, {56, 47850}, {57, 7037}, {222, 7007}, {284, 8811}, {603, 40838}, {604, 1034}, {1333, 8806}, {1436, 3342}, {6129, 8064}, {7118, 46352}
X(56943) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 47850}, {2, 41514}, {3, 7152}, {9, 3345}, {37, 8806}, {282, 84}, {1249, 7149}, {3161, 1034}, {5452, 7037}, {6376, 56596}, {7952, 40838}, {13612, 650}, {14302, 40616}, {40590, 8811}
X(56943) = barycentric product X(i)*X(j) for these {i,j}: {1, 33672}, {8, 5932}, {40, 47436}, {69, 3176}, {75, 1490}, {76, 3197}, {207, 3718}, {312, 47848}, {322, 3341}, {345, 40837}, {347, 46350}, {664, 14302}, {1035, 3596}, {1441, 13614}, {8063, 44327}, {8885, 20336}, {47637, 52345}
X(56943) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3345}, {2, 41514}, {4, 7149}, {6, 7152}, {8, 1034}, {9, 47850}, {10, 8806}, {33, 7007}, {40, 3342}, {55, 7037}, {65, 8811}, {75, 56596}, {207, 34}, {281, 40838}, {322, 47634}, {347, 46352}, {1035, 56}, {1490, 1}, {3176, 4}, {3197, 6}, {3341, 84}, {5932, 7}, {8063, 14837}, {8885, 28}, {13612, 3318}, {13614, 21}, {14302, 522}, {33672, 75}, {36049, 8064}, {40837, 278}, {46350, 280}, {46881, 1433}, {47436, 309}, {47438, 2208}, {47848, 57}
X(56943) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6360, 347}, {40, 39130, 8}, {92, 6350, 2}, {281, 1214, 2}, {306, 45738, 329}, {2184, 8804, 329}, {6349, 52412, 2}, {6527, 18750, 41514}, {46421, 46422, 20}


X(56944) = X(2)X(19611)∩X(8)X(20)

Barycentrics    (b + c)*(-a^2 + b^2 + c^2)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c + 2*a*b*c + b^2*c - a*c^2 - b*c^2 - c^3)*(-a^3 - a^2*b + a*b^2 + b^3 + a^2*c - 2*a*b*c + b^2*c + a*c^2 - b*c^2 - c^3) : :

X(56944) lies on the cubic K366 and these lines: {2, 19611}, {8, 20}, {75, 7017}, {81, 13138}, {268, 3977}, {282, 17740}, {306, 51368}, {307, 321}, {318, 46353}, {326, 345}, {1440, 56367}, {2321, 40152}, {3668, 20241}, {3710, 3998}, {5271, 7003}, {5931, 41083}, {6734, 7020}, {7013, 34255}, {33116, 44327}, {34400, 50559}, {42699, 52396}

X(56944) = isotomic conjugate of X(41083)
X(56944) = isotomic conjugate of the isogonal conjugate of X(41087)
X(56944) = isotomic conjugate of the polar conjugate of X(39130)
X(56944) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3194}, {19, 2360}, {21, 3209}, {25, 1817}, {27, 2187}, {28, 198}, {29, 2199}, {31, 41083}, {40, 1474}, {58, 2331}, {81, 3195}, {112, 6129}, {163, 54239}, {196, 2194}, {208, 284}, {221, 1172}, {223, 2299}, {227, 2189}, {329, 2203}, {347, 2204}, {849, 53009}, {1333, 7952}, {1395, 27398}, {1396, 7074}, {1408, 55116}, {1412, 40971}, {1973, 8822}, {3172, 41082}, {4183, 6611}, {5317, 7078}, {7114, 8748}, {14837, 32676}
X(56944) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 41083}, {6, 2360}, {9, 3194}, {10, 2331}, {37, 7952}, {115, 54239}, {226, 223}, {282, 8885}, {1214, 196}, {3341, 1172}, {4075, 53009}, {4988, 38362}, {6337, 8822}, {6505, 1817}, {15526, 14837}, {34591, 6129}, {40586, 3195}, {40590, 208}, {40591, 198}, {40599, 40971}, {40611, 3209}, {51574, 40}, {52389, 1249}
X(56944) = cevapoint of X(1214) and X(52037)
X(56944) = trilinear pole of line {8057, 24018}
X(56944) = barycentric product X(i)*X(j) for these {i,j}: {69, 39130}, {71, 44190}, {72, 309}, {75, 52389}, {76, 41087}, {84, 20336}, {189, 306}, {226, 44189}, {268, 349}, {271, 1441}, {274, 53010}, {280, 307}, {282, 1231}, {304, 1903}, {305, 2357}, {312, 52037}, {313, 1433}, {321, 41081}, {345, 8808}, {525, 44327}, {1043, 6355}, {1214, 34404}, {1436, 40071}, {1440, 3710}, {2321, 34400}, {3267, 36049}, {3718, 52384}, {7003, 52565}, {7020, 52385}, {7182, 53013}, {13138, 14208}, {30713, 55117}, {40836, 52396}, {52355, 53642}, {55211, 55232}
X(56944) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3194}, {2, 41083}, {3, 2360}, {10, 7952}, {37, 2331}, {42, 3195}, {63, 1817}, {65, 208}, {69, 8822}, {71, 198}, {72, 40}, {73, 221}, {84, 28}, {189, 27}, {201, 227}, {210, 40971}, {226, 196}, {228, 2187}, {268, 284}, {271, 21}, {280, 29}, {282, 1172}, {285, 270}, {306, 329}, {307, 347}, {309, 286}, {345, 27398}, {349, 40701}, {523, 54239}, {525, 14837}, {594, 53009}, {656, 6129}, {1214, 223}, {1231, 40702}, {1259, 1819}, {1400, 3209}, {1409, 2199}, {1422, 1396}, {1433, 58}, {1436, 1474}, {1441, 342}, {1903, 19}, {2188, 2194}, {2192, 2299}, {2208, 2203}, {2318, 7074}, {2321, 55116}, {2357, 25}, {3120, 38362}, {3341, 8885}, {3682, 7078}, {3694, 2324}, {3695, 21075}, {3710, 7080}, {3949, 21871}, {6355, 3668}, {7003, 8748}, {7020, 1896}, {7118, 2204}, {7129, 5317}, {7367, 2332}, {8611, 14298}, {8808, 278}, {13138, 162}, {13156, 53238}, {14208, 17896}, {19611, 41082}, {20336, 322}, {22341, 7114}, {32652, 32676}, {34400, 1434}, {34404, 31623}, {36049, 112}, {39130, 4}, {40117, 24019}, {40152, 7011}, {40836, 8747}, {41013, 47372}, {41081, 81}, {41084, 44698}, {41086, 204}, {41087, 6}, {44189, 333}, {44190, 44129}, {44327, 648}, {52037, 57}, {52078, 44696}, {52355, 8058}, {52373, 6611}, {52384, 34}, {52385, 7013}, {52389, 1}, {53010, 37}, {53012, 41088}, {53013, 33}, {55117, 1412}, {55211, 55231}, {55232, 55212}, {55242, 6591}, {56382, 14256}


X(56945) = X(8)X(21)∩X(376)X(46623)

Barycentrics    (a + b)*(a - b - c)*(a + c)*(2*a^4 + 3*a^3*b + a^2*b^2 + a*b^3 + b^4 + 3*a^3*c + 4*a^2*b*c - 3*a*b^2*c + a^2*c^2 - 3*a*b*c^2 - 2*b^2*c^2 + a*c^3 + c^4) : :

X(56945) lies on the cubic K521 and these lines: {8, 21}, {376, 46623}, {388, 19642}, {390, 1098}, {662, 14986}, {962, 56439}, {3875, 6629}, {10528, 24624}, {10529, 40214}, {11037, 52361}, {15792, 45700}, {34632, 41629}, {37422, 41610}


X(56946) = X(1)X(643)∩X(8)X(21)

Barycentrics    a*(a + b)*(a - b - c)*(a + c)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - a*b*c - a*c^2 + c^3) : :

X(56946) lies on the cubic K971 and these lines: {1, 643}, {2, 13583}, {3, 18134}, {8, 21}, {35, 7270}, {69, 4189}, {72, 51290}, {75, 40412}, {78, 1098}, {85, 99}, {86, 34430}, {100, 11101}, {229, 4188}, {283, 56104}, {312, 54430}, {318, 1793}, {405, 25446}, {409, 1376}, {662, 4855}, {759, 8715}, {982, 34882}, {1010, 10198}, {1330, 37286}, {1631, 4225}, {2185, 3601}, {2363, 37552}, {2651, 12635}, {4190, 52361}, {4234, 10056}, {4276, 11102}, {4417, 20846}, {4511, 35193}, {4653, 30147}, {5127, 22836}, {5174, 13739}, {5233, 11344}, {5248, 54335}, {5546, 25082}, {7054, 27396}, {7256, 44720}, {7259, 55337}, {7424, 11681}, {10434, 40452}, {11110, 19854}, {11116, 25440}, {13746, 27529}, {14828, 17103}, {16948, 41610}, {17234, 37301}, {17548, 40592}, {19860, 40430}, {21081, 37029}, {27385, 51382}, {27407, 28793}, {27415, 46835}, {27558, 37032}, {34772, 56439}, {35979, 41878}

X(56946) = X(i)-Ceva conjugate of X(j) for these (i,j): {75, 56440}, {40412, 333}, {40419, 27958}
X(56946) = X(i)-isoconjugate of X(j) for these (i,j): {34, 43708}, {56, 41501}, {604, 43683}, {1042, 6598}, {1400, 37887}, {4017, 6011}
X(56946) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 41501}, {21, 41495}, {3161, 43683}, {6734, 442}, {8286, 523}, {11517, 43708}, {34961, 6011}, {35193, 1}, {35583, 51663}, {40582, 37887}
X(56946) = barycentric product X(i)*X(j) for these {i,j}: {8, 56439}, {21, 33116}, {304, 41503}, {333, 34772}, {345, 13739}, {645, 6003}, {1812, 5174}, {7058, 15556}, {7259, 31603}, {17206, 56316}
X(56946) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 43683}, {9, 41501}, {21, 37887}, {219, 43708}, {2287, 6598}, {5174, 40149}, {5546, 6011}, {6003, 7178}, {13739, 278}, {15556, 6354}, {27086, 18593}, {33116, 1441}, {34772, 226}, {37583, 1427}, {39772, 55010}, {40582, 41495}, {41503, 19}, {56316, 1826}, {56439, 7}
X(56946) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 1792, 333}, {21, 3871, 54313}, {21, 56181, 40980}, {78, 1098, 56440}, {25440, 37816, 11116}


X(56947) = X(2)X(6357)∩X(8)X(30)

Barycentrics    (a^3 - a^2*b - a*b^2 + b^3 + 2*a^2*c + 2*a*b*c + 2*b^2*c - a*c^2 - b*c^2 - 2*c^3)*(a^3 + 2*a^2*b - a*b^2 - 2*b^3 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + 2*b*c^2 + c^3) : :

X(56947) lies on the cubic K455 and these lines: {2, 6357}, {8, 30}, {29, 4658}, {63, 42030}, {92, 4654}, {312, 14206}, {319, 4102}, {333, 18653}, {2895, 56086}, {3928, 55956}, {3936, 6557}, {4997, 52753}, {5325, 40435}, {10405, 26871}, {14942, 55185}

X(56947) = isotomic conjugate of X(17781)
X(56947) = isotomic conjugate of the anticomplement of X(553)
X(56947) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3579}, {31, 17781}, {692, 41800}, {1415, 56092}, {3650, 28615}, {32739, 55186}
X(56947) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 17781}, {9, 3579}, {1086, 41800}, {1146, 56092}, {1213, 3650}, {40619, 55186}
X(56947) = cevapoint of X(1146) and X(4977)
X(56947) = trilinear pole of line {522, 3582}
X(56947) = barycentric product X(i)*X(j) for these {i,j}: {75, 10308}, {693, 55185}
X(56947) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3579}, {2, 17781}, {514, 41800}, {522, 56092}, {693, 55186}, {1125, 3650}, {1210, 41543}, {10308, 1}, {55185, 100}


X(56948) = X(7)X(662)∩X(9)X(21)

Barycentrics    a^2*(a + b)*(a - b - c)*(a + c)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - a*b*c - a*c^2 + c^3) : :

X(56948) lies on the cubic K220 and these lines: {1, 40582}, {6, 5546}, {7, 662}, {9, 21}, {27, 31053}, {48, 3868}, {55, 6061}, {60, 1259}, {63, 37783}, {81, 6505}, {110, 20818}, {219, 7054}, {281, 2326}, {409, 31324}, {501, 54422}, {584, 966}, {610, 1325}, {1175, 11517}, {2174, 4053}, {2185, 5273}, {2193, 56000}, {2264, 54313}, {2323, 35192}, {3161, 7259}, {3204, 34079}, {3285, 56534}, {3615, 43740}, {4197, 24937}, {4565, 23144}, {5208, 32664}, {10883, 19642}, {13739, 34772}, {13746, 40942}, {15792, 31424}, {17434, 23090}, {21675, 54316}, {27418, 56445}, {37285, 37504}, {37311, 44093}, {38850, 38875}, {40571, 55873}

X(56948) = isotomic conjugate of the polar conjugate of X(41503)
X(56948) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 35193}, {6186, 6734}
X(56948) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 35193}, {662, 6003}, {40430, 2328}
X(56948) = X(i)-isoconjugate of X(j) for these (i,j): {56, 43683}, {57, 41501}, {65, 37887}, {278, 43708}, {1427, 6598}, {6011, 7178}
X(56948) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 43683}, {5452, 41501}, {6003, 40622}, {8286, 1577}, {35193, 2}, {40602, 37887}
X(56948) = crossdifference of every pair of points on line {4017, 6089}
X(56948) = barycentric product X(i)*X(j) for these {i,j}: {9, 56439}, {21, 34772}, {69, 41503}, {78, 13739}, {283, 5174}, {284, 33116}, {643, 6003}, {1043, 37583}, {1098, 15556}, {1444, 56316}, {6740, 27086}
X(56948) = barycentric quotient X(i)/X(j) for these {i,j}: {9, 43683}, {55, 41501}, {212, 43708}, {284, 37887}, {2328, 6598}, {6003, 4077}, {13739, 273}, {27086, 41804}, {33116, 349}, {34772, 1441}, {37583, 3668}, {41503, 4}, {56316, 41013}, {56439, 85}
X(56948) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {219, 7054, 35193}, {284, 2327, 21}


X(56949) = X(1)X(1330)∩X(10)X(12)

Barycentrics    (b + c)*(-a^3 + 2*a*b^2 + b^3 - a*b*c + 2*a*c^2 + c^3) : :
X(56949) = 3 X[1699] + X[54209], 5 X[3616] - 3 X[5429], 5 X[3616] - X[20077], 3 X[5429] - X[20077], 3 X[3817] - 2 X[7683], 3 X[3817] - X[54160], X[5255] - 3 X[33126], 4 X[6693] - 5 X[19862], 3 X[33135] - X[56018]

X(56949) lies on the cubic K1239 and these lines: {1, 1330}, {2, 1046}, {3, 2792}, {4, 43159}, {8, 3120}, {10, 12}, {21, 4683}, {58, 86}, {69, 17733}, {76, 4485}, {142, 36812}, {191, 25645}, {298, 49540}, {299, 49538}, {333, 24161}, {386, 3821}, {404, 33067}, {405, 4703}, {511, 946}, {515, 37823}, {516, 3430}, {519, 5015}, {524, 25370}, {540, 551}, {595, 29656}, {596, 53601}, {620, 25607}, {740, 41014}, {752, 5266}, {846, 25650}, {908, 3831}, {942, 3846}, {960, 25361}, {964, 24725}, {976, 6327}, {978, 3662}, {982, 14815}, {986, 4417}, {988, 17274}, {997, 1448}, {1010, 33097}, {1043, 24851}, {1089, 21093}, {1111, 21405}, {1193, 17184}, {1203, 29654}, {1329, 53566}, {1468, 32859}, {1699, 54209}, {1756, 10461}, {2292, 3178}, {2321, 22036}, {2392, 11813}, {2486, 3813}, {2650, 5051}, {2842, 11814}, {2895, 27368}, {3122, 3976}, {3159, 6541}, {3216, 24169}, {3452, 46827}, {3487, 50295}, {3616, 5429}, {3663, 39774}, {3702, 33081}, {3721, 4109}, {3741, 12047}, {3746, 50748}, {3755, 50590}, {3771, 12514}, {3794, 41012}, {3811, 4660}, {3817, 7683}, {3836, 5044}, {3840, 14058}, {3868, 25760}, {3874, 29655}, {3876, 25957}, {3914, 4101}, {3915, 33122}, {3927, 4438}, {3944, 10449}, {3951, 29857}, {3954, 4071}, {4016, 21076}, {4297, 54180}, {4301, 35680}, {4368, 17170}, {4385, 33101}, {4418, 14450}, {4420, 32948}, {4643, 25359}, {4645, 5293}, {4647, 21085}, {4653, 12579}, {4672, 17698}, {4719, 17235}, {4968, 32856}, {4987, 5277}, {5016, 49454}, {5233, 24174}, {5247, 33066}, {5255, 33126}, {5262, 32843}, {5295, 48643}, {5300, 31134}, {5550, 8040}, {5691, 54181}, {5741, 24443}, {5847, 34937}, {5904, 29673}, {6147, 24325}, {6693, 19862}, {6700, 9364}, {7232, 25524}, {7283, 33099}, {8669, 50304}, {9534, 17889}, {9560, 15349}, {10479, 25385}, {10544, 12053}, {10571, 30144}, {11115, 17491}, {11281, 49728}, {11374, 32916}, {11415, 33171}, {11684, 30831}, {12699, 32941}, {13740, 33096}, {14523, 21625}, {15523, 56318}, {16466, 26128}, {16825, 24159}, {17127, 36505}, {17137, 24211}, {17164, 20653}, {17351, 28645}, {17694, 24628}, {17738, 54365}, {17768, 24850}, {17799, 29637}, {18904, 23447}, {19767, 32776}, {19843, 26125}, {19925, 54136}, {20496, 21412}, {21255, 34847}, {21629, 54227}, {22836, 48835}, {23812, 25526}, {24210, 35633}, {24695, 37176}, {24723, 37573}, {24946, 31888}, {25253, 31017}, {25527, 54386}, {25591, 33172}, {25914, 48632}, {25958, 36568}, {28242, 54311}, {29097, 31730}, {29846, 56288}, {31019, 31339}, {31177, 50171}, {31419, 49457}, {33135, 56018}, {33592, 48887}, {49464, 50589}, {51090, 51609}

X(56949) = midpoint of X(i) and X(j) for these {i,j}: {1, 1330}, {1043, 24851}, {5691, 54181}
X(56949) = reflection of X(i) in X(j) for these {i,j}: {10, 3454}, {58, 1125}, {1046, 8258}, {3430, 54208}, {4297, 54180}, {25607, 620}, {54136, 19925}, {54160, 7683}
X(56949) = isotomic conjugate of X(18812)
X(56949) = complement of X(1046)
X(56949) = anticomplement of X(8258)
X(56949) = anticomplement of the isogonal conjugate of X(39394)
X(56949) = complement of the isogonal conjugate of X(1247)
X(56949) = X(39394)-anticomplementary conjugate of X(8)
X(56949) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 40605}, {1247, 10}, {36934, 3454}, {53633, 523}, {54119, 141}
X(56949) = X(i)-isoconjugate of X(j) for these (i,j): {31, 18812}, {1333, 34527}
X(56949) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 18812}, {37, 34527}, {15349, 10}, {34528, 1999}
X(56949) = cevapoint of X(34528) and X(42066)
X(56949) = crossdifference of every pair of points on line {4079, 7252}
X(56949) = barycentric product X(i)*X(j) for these {i,j}: {7, 38408}, {10, 26840}, {86, 34528}, {274, 42066}, {310, 9560}, {670, 17411}
X(56949) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 18812}, {10, 34527}, {9560, 42}, {15349, 1999}, {17411, 512}, {26840, 86}, {34528, 10}, {38408, 8}, {42066, 37}
X(56949) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17778, 49564}, {2, 1046, 8258}, {72, 2887, 10}, {946, 49511, 50608}, {986, 4417, 17748}, {1211, 3649, 49598}, {1211, 49598, 10}, {2292, 3936, 3178}, {3616, 20077, 5429}, {3817, 54160, 7683}, {17164, 31037, 20653}


X(56950) = X(1)X(523)∩X(10)X(21)

Barycentrics    (a + b)*(2*a - b - c)*(a + c)*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2) : :

X(56950) lies on the cubic K974 and these lines: {1, 523}, {2, 38938}, {10, 21}, {36, 3658}, {58, 56425}, {79, 476}, {86, 4618}, {110, 7972}, {140, 24885}, {274, 4597}, {443, 51834}, {1023, 3943}, {1043, 7206}, {1325, 36975}, {1411, 37558}, {2161, 3294}, {2329, 34079}, {2475, 34172}, {2758, 36069}, {3264, 55243}, {3918, 11115}, {3992, 17780}, {4187, 25652}, {4833, 14260}, {5277, 48449}, {5559, 52380}, {6797, 18191}, {11101, 37710}, {13746, 37735}, {14584, 23703}, {14628, 37168}, {16704, 52924}, {17195, 33953}, {18180, 56691}, {32004, 35153}, {36154, 38511}, {37702, 54313}, {42005, 51111}

X(56950) = X(14616)-Ceva conjugate of X(16704)
X(56950) = X(i)-isoconjugate of X(j) for these (i,j): {10, 16944}, {36, 4674}, {37, 40215}, {42, 52553}, {88, 2245}, {106, 758}, {860, 36058}, {901, 53527}, {903, 3724}, {1318, 53537}, {1320, 1464}, {1983, 4049}, {2226, 40988}, {2316, 18593}, {2610, 4591}, {3257, 21828}, {3936, 9456}, {4080, 7113}, {4585, 55263}, {4622, 42666}, {4707, 32665}, {17455, 30575}
X(56950) = X(i)-Dao conjugate of X(j) for these (i,j): {214, 758}, {4370, 3936}, {15898, 4674}, {20619, 860}, {35092, 4707}, {38979, 53527}, {40589, 40215}, {40592, 52553}, {52659, 41804}, {55055, 21828}, {56416, 10}
X(56950) = trilinear pole of line {44, 4120}
X(56950) = crossdifference of every pair of points on line {2245, 21828}
X(56950) = barycentric product X(i)*X(j) for these {i,j}: {21, 14628}, {44, 14616}, {80, 16704}, {81, 51975}, {274, 40172}, {333, 14584}, {519, 24624}, {759, 4358}, {900, 47318}, {1168, 16729}, {1793, 37790}, {2161, 30939}, {3264, 34079}, {3285, 20566}, {3911, 6740}, {15065, 30576}, {18359, 52680}, {30606, 52383}, {37168, 52351}
X(56950) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 758}, {58, 40215}, {80, 4080}, {81, 52553}, {519, 3936}, {678, 40988}, {759, 88}, {900, 4707}, {902, 2245}, {1168, 30575}, {1319, 18593}, {1333, 16944}, {1404, 1464}, {1635, 53527}, {1960, 21828}, {2161, 4674}, {2251, 3724}, {2341, 1320}, {3285, 36}, {3911, 41804}, {4120, 6370}, {4358, 35550}, {4730, 2610}, {6740, 4997}, {8756, 860}, {14407, 42666}, {14584, 226}, {14616, 20568}, {14628, 1441}, {16704, 320}, {16729, 1227}, {21805, 4053}, {24624, 903}, {30939, 20924}, {34079, 106}, {36069, 4591}, {37140, 4622}, {37168, 17923}, {40172, 37}, {40988, 4736}, {47318, 4555}, {51975, 321}, {52680, 3218}, {56645, 52753}
X(56950) = {X(759),X(6740)}-harmonic conjugate of X(80)


X(56951) = X(1)X(53559)∩X(10)X(21)

Barycentrics    (a + b)*(a + c)*(a^5 - 3*a^4*b + a^3*b^2 + 2*a^2*b^3 - 2*a*b^4 + b^5 - 3*a^4*c + 3*a^3*b*c - a*b^3*c + b^4*c + a^3*c^2 + 2*a*b^2*c^2 - 2*b^3*c^2 + 2*a^2*c^3 - a*b*c^3 - 2*b^2*c^3 - 2*a*c^4 + b*c^4 + c^5) : :

X(56951) lies on the cubic K275 and these lines: {1, 53559}, {4, 25650}, {8, 51290}, {10, 21}, {72, 190}, {74, 18123}, {99, 150}, {101, 27415}, {110, 6224}, {214, 25533}, {243, 447}, {409, 17647}, {411, 6011}, {442, 40430}, {519, 2651}, {643, 952}, {645, 6790}, {662, 3109}, {1010, 25536}, {1019, 46362}, {1325, 54059}, {1365, 3485}, {1385, 52360}, {2476, 31845}, {3486, 34194}, {3560, 14663}, {3822, 4653}, {4511, 7424}, {5080, 14513}, {5195, 17139}, {5327, 49462}, {6089, 50351}, {6758, 7984}, {6828, 42425}, {6857, 52834}, {6875, 38612}, {7256, 21290}, {11114, 38511}, {12514, 21381}, {16474, 46441}, {17524, 29810}, {18480, 52352}, {37600, 52244}, {38955, 51978}

X(56951) = reflection of X(19642) in X(759)
X(56951) = {X(3109),X(10609)}-harmonic conjugate of X(662)


X(56952) = X(10)X(21)∩X(37)X(115)

Barycentrics    (b + c)*(-a^6 - 2*a^5*b + a^4*b^2 + 2*a^3*b^3 - a^2*b^4 + b^6 - 2*a^5*c + 2*a^3*b^2*c + a^4*c^2 + 2*a^3*b*c^2 + a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 + 2*a^3*c^3 - 2*a*b^2*c^3 - a^2*c^4 - b^2*c^4 + c^6) : :

X(56952) lies on the cubic K720 and these lines: {10, 21}, {37, 115}, {42, 5497}, {72, 7068}, {306, 22307}, {1018, 21092}, {3159, 3178}, {4013, 21089}, {4736, 13605}, {5080, 32849}, {6011, 43659}, {6089, 21087}, {14680, 18480}, {20653, 21381}, {20989, 51632}, {22271, 40501}, {39140, 39185}

X(56952) = reflection of X(5620) in X(31845)
X(56952) = X(i)-Ceva conjugate of X(j) for these (i,j): {5080, 72}, {32849, 37}
X(56952) = crossdifference of every pair of points on line {21828, 42741}
X(56952) = barycentric product X(321)*X(2948)
X(56952) = barycentric quotient X(2948)/X(81)


X(56953) = X(6)X(1010)∩X(10)X(37)

Barycentrics    (b + c)*(a^2*b^2 + a*b^3 + 4*a^2*b*c + 4*a*b^2*c + b^3*c + a^2*c^2 + 4*a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3) : :

X(56953) lies on the cubic K369 and these lines: {6, 1010}, {10, 37}, {30, 573}, {43, 4272}, {75, 1211}, {181, 22271}, {192, 41809}, {333, 2305}, {386, 17398}, {442, 34528}, {966, 26117}, {1278, 27081}, {1901, 50033}, {2238, 2345}, {2245, 5794}, {2277, 31330}, {2667, 4046}, {3136, 21020}, {3596, 4665}, {3686, 38456}, {3687, 3739}, {3728, 8013}, {3741, 28244}, {3936, 4699}, {3948, 48628}, {4399, 41232}, {4647, 21810}, {4772, 31037}, {5241, 18137}, {5743, 34258}, {5750, 20970}, {5786, 37499}, {6048, 52538}, {16052, 50096}, {16777, 19853}, {17388, 30116}, {18591, 34822}, {19763, 37322}, {21018, 21690}, {21085, 25124}, {23897, 50036}, {24048, 46895}, {24325, 41014}, {36744, 37327}

X(56953) = X(i)-complementary conjugate of X(j) for these (i,j): {512, 38961}, {43350, 512}
X(56953) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 2092, 1213}, {75, 1211, 53476}, {594, 1213, 21024}


X(56954) = X(5)X(572)∩X(10)X(37)

Barycentrics    (b + c)*(2*a^4 + 3*a^3*b + 2*a^2*b^2 + 2*a*b^3 + b^4 + 3*a^3*c + 6*a^2*b*c + 3*a*b^2*c + b^3*c + 2*a^2*c^2 + 3*a*b*c^2 + 2*a*c^3 + b*c^3 + c^4) : :

X(56954) lies on the cubic K458 and these lines: {1, 34528}, {2, 5110}, {5, 572}, {6, 52258}, {10, 37}, {86, 20337}, {115, 5750}, {319, 1211}, {894, 53501}, {1100, 3846}, {1125, 20546}, {2298, 4645}, {2305, 26117}, {2345, 23903}, {3017, 17330}, {3686, 6537}, {4256, 50409}, {4425, 20461}, {6536, 21014}, {6703, 14534}, {6707, 25536}, {7227, 53508}, {8287, 17384}, {16052, 50299}, {17023, 46826}, {17045, 44396}, {17056, 21245}, {17289, 23947}, {17302, 27707}, {17303, 23897}, {17321, 27688}, {24366, 25457}, {26626, 27556}, {37159, 50302}, {40597, 50036}

X(56954) = complement of the isotomic conjugate of X(34920)
X(56954) = X(i)-complementary conjugate of X(j) for these (i,j): {512, 5993}, {8052, 42327}, {34076, 4369}, {34920, 2887}, {38470, 512}
X(56954) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {594, 53427, 53426}, {1213, 23905, 37}, {1213, 53427, 594}


X(56955) = X(3)X(966)∩X(10)X(37)

Barycentrics    (b + c)*(2*a^4 + a^3*b + a^2*b^2 + 3*a*b^3 + b^4 + a^3*c + 10*a^2*b*c + 7*a*b^2*c + 2*b^3*c + a^2*c^2 + 7*a*b*c^2 + 2*b^2*c^2 + 3*a*c^3 + 2*b*c^3 + c^4) : :

X(56955) lies on the cubic K1234 and these lines: {3, 966}, {9, 5955}, {10, 37}, {30, 56745}, {57, 1211}, {573, 5743}, {997, 4272}, {2238, 5783}, {2345, 3820}, {5019, 17330}, {17355, 38930}, {17740, 41809}, {25004, 29611}, {32431, 49734}, {37508, 49728}

X(56955) = {X(1213),X(2092)}-harmonic conjugate of X(4205)


X(56956) = X(3)X(2329)∩X(19)X(25)

Barycentrics    a^2*(a^5 - a^3*b^2 + a^2*b^3 - b^5 - a^3*b*c + 2*a^2*b^2*c - a*b^3*c - a^3*c^2 + 2*a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 - a*b*c^3 + b^2*c^3 - c^5) : :

X(56956) lies on the cubic K1001 and these lines: {3, 2329}, {6, 23438}, {19, 25}, {48, 2276}, {101, 1324}, {220, 23843}, {644, 37311}, {672, 20999}, {956, 4544}, {1334, 3145}, {1400, 10315}, {1403, 2178}, {1436, 56243}, {1604, 23857}, {1626, 42316}, {1755, 2076}, {1910, 17798}, {1914, 2183}, {2182, 3693}, {2262, 3744}, {2270, 3749}, {2272, 20871}, {2305, 51319}, {2312, 3930}, {2933, 3207}, {3730, 23850}, {4136, 5687}, {4876, 6660}, {5989, 52664}, {9310, 37259}, {15509, 33116}, {16064, 41423}, {16567, 49509}, {17747, 53279}, {18235, 38871}

X(56956) = X(4876)-Ceva conjugate of X(6)
X(56956) = X(2)-isoconjugate of X(7351)
X(56956) = X(i)-Dao conjugate of X(j) for these (i,j): {1429, 10030}, {32664, 7351}
X(56956) = crossdifference of every pair of points on line {905, 3810}
X(56956) = barycentric product X(i)*X(j) for these {i,j}: {1, 6211}, {2329, 45992}
X(56956) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 7351}, {6211, 75}
X(56956) = {X(34121),X(34125)}-harmonic conjugate of X(34247)


X(56957) = X(2)X(3)∩X(6)X(512)

Barycentrics    a^2*(a^6*b^2 - a^2*b^6 + a^6*c^2 - 4*a^4*b^2*c^2 + 2*a^2*b^4*c^2 + 3*b^6*c^2 + 2*a^2*b^2*c^4 - 6*b^4*c^4 - a^2*c^6 + 3*b^2*c^6) : :
X(56957) = 2 X[237] - 3 X[21177], X[237] - 3 X[46522], 3 X[35243] - 4 X[56373]

X(56957) lies on these lines: {2, 3}, {6, 512}, {51, 10568}, {115, 53264}, {160, 43619}, {323, 9879}, {339, 5186}, {543, 1634}, {671, 9149}, {878, 35906}, {1384, 14898}, {1499, 46124}, {2420, 44127}, {2421, 6787}, {2493, 47426}, {2549, 53328}, {2780, 46130}, {2794, 53246}, {3060, 38523}, {3734, 41337}, {3849, 5201}, {5024, 34235}, {5140, 14961}, {5663, 51335}, {7737, 53329}, {8029, 14824}, {9155, 33962}, {9465, 14263}, {9605, 49141}, {11455, 38520}, {11641, 39832}, {13480, 35259}, {14700, 30435}, {14811, 19130}, {14965, 52460}, {15302, 38524}, {19459, 35902}, {20975, 44468}, {23342, 44155}, {33843, 41172}, {34158, 51819}, {34866, 39857}, {35606, 53327}, {36822, 43665}, {42660, 48721}, {51441, 52672}

X(56957) = reflection of X(i) in X(j) for these {i,j}: {20975, 44468}, {21177, 46522}
X(56957) = circumcircle-inverse of X(36180)
X(56957) = orthocentroidal-circle-inverse of X(3143)
X(56957) = 2nd-Brocard-circle inverse of X(36157)
X(56957) = crossdifference of every pair of points on line {524, 647}
X(56957) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 3143}, {2, 11634, 3}, {2, 36182, 11634}, {4, 2554, 2570}, {4, 2555, 2571}, {4, 36183, 381}, {4, 37991, 7418}, {4, 46592, 25}, {22, 35936, 3}, {378, 37930, 3}, {1113, 1114, 36180}, {2554, 2555, 36157}, {3143, 36157, 2}, {7418, 37991, 3}, {35936, 37915, 22}


X(56958) = X(2)X(3)∩X(6)X(513)

Barycentrics    a*(a^6*b - a^2*b^5 + a^6*c - 2*a^5*b*c - a^4*b^2*c + a^3*b^3*c + a*b^5*c - a^4*b*c^2 + a^2*b^3*c^2 + 2*b^5*c^2 + a^3*b*c^3 + a^2*b^2*c^3 - 2*a*b^3*c^3 - 2*b^4*c^3 - 2*b^3*c^4 - a^2*c^5 + a*b*c^5 + 2*b^2*c^5) : :

X(56958) lies on these lines: {2, 3}, {6, 513}, {940, 3110}, {1376, 24271}, {1975, 55260}, {2795, 53280}, {2838, 18210}, {4267, 50175}, {4413, 24275}, {5132, 24296}, {16732, 53282}, {18185, 50178}

X(56958) = orthocentroidal-circle-inverse of X(3140)
X(56958) = crossdifference of every pair of points on line {518, 647}
X(56958) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 3140}, {2, 4236, 3}, {4, 4244, 25}, {851, 46578, 859}, {14953, 46501, 20857}, {16382, 37019, 3}


X(56959) = X(2)X(3)∩X(6)X(515)

Barycentrics    a^7 - 3*a^6*b - 4*a^5*b^2 + 2*a^4*b^3 + a^3*b^4 + a^2*b^5 + 2*a*b^6 - 3*a^6*c - 4*a^5*b*c - 2*a^4*b^2*c + 2*a^3*b^3*c + 3*a^2*b^4*c + 2*a*b^5*c + 2*b^6*c - 4*a^5*c^2 - 2*a^4*b*c^2 + 2*a^3*b^2*c^2 - 4*a^2*b^3*c^2 - 2*a*b^4*c^2 + 2*b^5*c^2 + 2*a^4*c^3 + 2*a^3*b*c^3 - 4*a^2*b^2*c^3 - 4*a*b^3*c^3 - 4*b^4*c^3 + a^3*c^4 + 3*a^2*b*c^4 - 2*a*b^2*c^4 - 4*b^3*c^4 + a^2*c^5 + 2*a*b*c^5 + 2*b^2*c^5 + 2*a*c^6 + 2*b*c^6 : : X(56959) = 3 X[11354] - X[49130]

X(56959) lies on these lines: {2, 3}, {6, 515}, {171, 3586}, {332, 32815}, {355, 39591}, {516, 48863}, {517, 3886}, {580, 5786}, {950, 5711}, {1724, 5691}, {1901, 2549}, {3419, 5774}, {3488, 4344}, {3576, 10888}, {4297, 43531}, {5110, 44526}, {5450, 19759}, {5587, 19732}, {5706, 10454}, {5731, 19684}, {5746, 15048}, {5783, 8804}, {5802, 18907}, {6796, 19760}, {10175, 19744}, {11500, 19763}, {12114, 19762}, {18242, 19754}, {19722, 50811}, {19782, 48899}, {22253, 56020}, {28164, 48866}, {28194, 48862}, {35259, 51382}

X(56959) = crossdifference of every pair of points on line {647, 8999}
X(56959) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7415, 3}, {20, 964, 37062}, {6905, 37069, 37058}


X(56960) = X(2)X(3)∩X(6)X(517)

Barycentrics    a*(a^6 + a^5*b - a^2*b^4 - a*b^5 + a^5*c + 4*a^4*b*c - 2*a^2*b^3*c - a*b^4*c - 2*b^5*c - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 - 2*a^2*b*c^3 - 2*a*b^2*c^3 + 4*b^3*c^3 - a^2*c^4 - a*b*c^4 - a*c^5 - 2*b*c^5) : :
X(56960) = 3 X[11354] + X[49130]

X(56960) lies on these lines: {2, 3}, {6, 517}, {34, 41340}, {40, 1724}, {55, 5725}, {321, 956}, {500, 19782}, {515, 12618}, {516, 48866}, {582, 48915}, {912, 10477}, {946, 43531}, {950, 37547}, {1444, 32815}, {1460, 37715}, {1482, 17015}, {1730, 3359}, {2345, 9708}, {2549, 36743}, {2830, 53271}, {3295, 5716}, {3303, 48824}, {3304, 48819}, {3419, 7085}, {3428, 50759}, {3488, 5807}, {3586, 5285}, {3654, 19723}, {3656, 19722}, {3746, 48827}, {4254, 18907}, {4302, 37577}, {5016, 5687}, {5120, 15048}, {5124, 44526}, {5258, 48812}, {5278, 5657}, {5482, 37501}, {5563, 48818}, {5603, 19684}, {5690, 26938}, {5707, 13323}, {5722, 37581}, {5831, 54322}, {5886, 19701}, {6284, 8193}, {7737, 36744}, {10441, 36742}, {11231, 19744}, {11248, 19763}, {11249, 19762}, {12410, 15171}, {14110, 16471}, {18591, 33843}, {19732, 26446}, {19759, 26286}, {19760, 26285}, {22253, 56019}, {22758, 24271}, {24309, 28150}, {28194, 48867}, {28204, 48862}, {32515, 44352}, {35259, 51420}, {36741, 48837}, {36746, 37536}, {37474, 50317}

X(56960) = orthocentroidal-circle-inverse of X(30444)
X(56960) = crossdifference of every pair of points on line {647, 9001}
X(56960) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 30444}, {2, 4221, 3}, {3, 5, 19547}, {3, 381, 19544}, {3, 19517, 19550}, {3, 19540, 6911}, {3, 19648, 3149}, {3, 37234, 9840}, {4, 376, 50698}, {4, 37399, 3}, {20, 37431, 3}, {376, 19649, 3}, {405, 2049, 16843}, {405, 4185, 7535}, {405, 11347, 4245}, {405, 37062, 3}, {405, 37063, 13738}, {1006, 37400, 3}, {1012, 16435, 3}, {2478, 16049, 37034}, {4192, 49128, 3}, {4214, 37246, 442}, {6865, 37404, 3}, {6872, 37231, 13730}, {6987, 37305, 3}, {13323, 15488, 5707}, {13726, 37418, 3}, {13732, 37425, 3}, {15952, 19543, 3}


X(56961) = X(2)X(3)∩X(6)X(520)

Barycentrics    a^2*(a^10*b^2 - 2*a^8*b^4 + 2*a^4*b^8 - a^2*b^10 + a^10*c^2 + a^6*b^4*c^2 - 3*a^4*b^6*c^2 - 2*a^2*b^8*c^2 + 3*b^10*c^2 - 2*a^8*c^4 + a^6*b^2*c^4 + 2*a^4*b^4*c^4 + 3*a^2*b^6*c^4 - 4*b^8*c^4 - 3*a^4*b^2*c^6 + 3*a^2*b^4*c^6 + 2*b^6*c^6 + 2*a^4*c^8 - 2*a^2*b^2*c^8 - 4*b^4*c^8 - a^2*c^10 + 3*b^2*c^10) : :

X(56961) lies on these lines: {2, 3}, {6, 520}, {339, 47202}, {1624, 2794}, {1634, 23583}, {1899, 43389}, {2420, 5651}, {2972, 53795}, {3292, 52950}, {5191, 38608}, {5640, 35910}, {6720, 47200}, {14581, 34147}, {15526, 52604}, {20204, 20775}, {23181, 51389}, {35282, 53273}, {44817, 46130}

X(56961) = orthocentroidal-circle-inverse of X(3150)
X(56961) = crossdifference of every pair of points on line {647, 1503}
X(56961) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 3150}, {2, 4230, 3}, {868, 44895, 25}, {1995, 48871, 3}


X(56962) = X(2)X(3)∩X(6)X(526)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8 - a^6*b^2 - a^4*b^4 + a^2*b^6 - a^6*c^2 + 3*a^4*b^2*c^2 - a^2*b^4*c^2 - 3*b^6*c^2 - a^4*c^4 - a^2*b^2*c^4 + 6*b^4*c^4 + a^2*c^6 - 3*b^2*c^6) : :

X(56962) lies on these lines: {2, 3}, {6, 526}, {110, 39528}, {1634, 14995}, {2453, 16171}, {5651, 9181}, {5967, 34290}, {5968, 9155}, {9213, 9717}, {12099, 44468}, {14356, 51389}, {33752, 36823}, {33927, 53793}, {35259, 42742}, {36822, 53266}, {47207, 52628}

X(56962) = orthocentroidal-circle-inverse of X(36189)
X(56962) = crossdifference of every pair of points on line {542, 647}
X(56962) = barycentric product X(i)*X(j) for these {i,j}: {511, 48540}, {2396, 53327}
X(56962) = barycentric quotient X(i)/X(j) for these {i,j}: {48540, 290}, {53327, 2395}
X(56962) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 36189}, {2, 7468, 3}, {4, 37937, 25}, {237, 868, 7418}, {237, 7418, 21525}, {378, 1995, 3148}, {381, 5094, 37988}, {381, 11328, 1995}, {868, 4230, 21525}, {868, 54380, 2450}, {1344, 1345, 1316}, {1995, 52275, 6644}, {4230, 7418, 237}, {15143, 54380, 4230}


X(56963) = X(2)X(3)∩X(6)X(527)

Barycentrics    3*a^5 + a^4*b - a^3*b^2 - a^2*b^3 - 2*a*b^4 + a^4*c - 2*a^3*b*c - 3*a^2*b^2*c - 2*a*b^3*c - 2*b^4*c - a^3*c^2 - 3*a^2*b*c^2 + 2*b^3*c^2 - a^2*c^3 - 2*a*b*c^3 + 2*b^2*c^3 - 2*a*c^4 - 2*b*c^4 : :

X(56963) lies on these lines: {2, 3}, {6, 527}, {239, 3927}, {958, 53591}, {1429, 4654}, {3175, 17742}, {3734, 5737}, {3824, 29603}, {3929, 16552}, {4383, 24296}, {4384, 31445}, {4877, 17259}, {5234, 48812}, {5278, 41915}, {5325, 48864}, {5712, 18907}, {6147, 26626}, {7737, 17056}, {9579, 29598}, {17251, 50222}, {19732, 24271}, {19744, 24275}, {22253, 37652}, {29594, 48862}, {41629, 48838}

X(56963) = crossdifference of every pair of points on line {647, 9029}
X(56963) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11352, 50060}, {2, 35935, 3}, {2, 50060, 11354}, {2, 50166, 50057}, {2, 50167, 11359}, {379, 405, 37075}, {379, 11352, 11355}, {379, 36023, 11347}, {379, 37076, 405}, {405, 11355, 11354}, {6996, 17691, 21514}, {11354, 49130, 11355}, {17681, 37416, 21526}, {35935, 37086, 2}


X(56964) = X(2)X(3)∩X(6)X(529)

Barycentrics    2*a^6*b + 2*a^5*b^2 - a^4*b^3 - a^3*b^4 - a^2*b^5 - a*b^6 + 2*a^6*c + a^5*b*c - a^4*b^2*c - 3*a^3*b^3*c - 4*a^2*b^4*c - 2*a*b^5*c - b^6*c + 2*a^5*c^2 - a^4*b*c^2 - 4*a^3*b^2*c^2 - a^2*b^3*c^2 - a*b^4*c^2 - b^5*c^2 - a^4*c^3 - 3*a^3*b*c^3 - a^2*b^2*c^3 + 2*b^4*c^3 - a^3*c^4 - 4*a^2*b*c^4 - a*b^2*c^4 + 2*b^3*c^4 - a^2*c^5 - 2*a*b*c^5 - b^2*c^5 - a*c^6 - b*c^6 : :

X(56964) lies on these lines: {2, 3}, {6, 529}, {9, 48812}, {519, 10477}, {528, 48862}, {535, 48867}, {992, 2549}, {3419, 33074}, {4660, 48863}, {5434, 19722}, {19723, 34606}, {19738, 34605}, {19763, 45701}, {28609, 48818}

X(56964) = reflection of X(11355) in X(11354)
X(56964) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {}


X(56965) = X(2)X(3)∩X(6)X(539)

Barycentrics    a^10 - 4*a^6*b^4 + 2*a^4*b^6 + 3*a^2*b^8 - 2*b^10 + 4*a^6*b^2*c^2 - 14*a^4*b^4*c^2 + 4*a^2*b^6*c^2 + 6*b^8*c^2 - 4*a^6*c^4 - 14*a^4*b^2*c^4 - 14*a^2*b^4*c^4 - 4*b^6*c^4 + 2*a^4*c^6 + 4*a^2*b^2*c^6 - 4*b^4*c^6 + 3*a^2*c^8 + 6*b^2*c^8 - 2*c^10 : :
X(56965) = X[3] + 2 X[11818], 2 X[4] + X[35243], 4 X[5] - X[9818], 2 X[5] + X[18420], 10 X[5] - X[49669], X[1597] - 7 X[3851], X[1597] + 2 X[50008], 5 X[1656] - 2 X[7514], 5 X[1656] + X[18494], 7 X[3851] + 2 X[50008], 11 X[3855] + X[35513], 11 X[5072] - 2 X[31861], 13 X[5079] - 4 X[49671], 2 X[7514] + X[18494], X[9818] + 2 X[18420], 5 X[9818] - 2 X[49669], 5 X[18420] + X[49669], 4 X[19130] - X[44413]

X(56965) lies on these lines: {2, 3}, {6, 539}, {96, 54907}, {1238, 32836}, {1853, 5892}, {3567, 9827}, {5085, 44407}, {5422, 41171}, {5943, 14852}, {6688, 23325}, {6689, 17821}, {7737, 53414}, {7865, 14767}, {9140, 9826}, {9815, 12359}, {9822, 11178}, {10516, 13754}, {10601, 18474}, {10643, 37832}, {10644, 37835}, {10896, 54401}, {11237, 37697}, {11238, 37696}, {12006, 26944}, {14561, 44665}, {15805, 18381}, {18400, 23041}, {19130, 44413}, {20806, 39522}, {32123, 40917}, {37476, 45286}, {37493, 41628}

X(56965) = crossdifference of every pair of points on line {647, 47331}
X(56965) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7401, 10127}, {2, 7544, 7576}, {2, 7565, 31180}, {2, 7576, 3}, {2, 10127, 6642}, {2, 44837, 5054}, {3, 381, 5064}, {4, 7405, 7393}, {4, 33524, 382}, {5, 7401, 6642}, {5, 10127, 2}, {5, 18420, 9818}, {5, 31833, 7404}, {381, 5055, 16072}, {547, 34351, 2}, {1656, 18494, 7514}, {2043, 2044, 7403}, {6815, 7403, 12085}, {7399, 7528, 7387}, {7544, 14788, 3}, {7576, 14788, 2}, {14787, 38321, 54994}, {15765, 18585, 14790}, {18586, 18587, 7395}


X(56966) = X(2)X(3)∩X(6)X(541)

Barycentrics    7*a^10 - 12*a^8*b^2 - 4*a^6*b^4 + 14*a^4*b^6 - 3*a^2*b^8 - 2*b^10 - 12*a^8*c^2 + 44*a^6*b^2*c^2 - 10*a^4*b^4*c^2 - 28*a^2*b^6*c^2 + 6*b^8*c^2 - 4*a^6*c^4 - 10*a^4*b^2*c^4 + 62*a^2*b^4*c^4 - 4*b^6*c^4 + 14*a^4*c^6 - 28*a^2*b^2*c^6 - 4*b^4*c^6 - 3*a^2*c^8 + 6*b^2*c^8 - 2*c^10 : :
X(56966) = 2 X[2] - 3 X[9818], 3 X[1597] - X[3830], 3 X[3839] + X[49670], 3 X[5054] - 4 X[49671], 3 X[5055] - 2 X[50008], 4 X[5066] - 3 X[18420], 6 X[7514] - 5 X[15693], 4 X[8703] - 3 X[35243], 3 X[15688] - 2 X[33532], 7 X[15698] - 3 X[35513], 3 X[5050] - X[44750], 2 X[7706] - 3 X[38072], 3 X[32620] - 2 X[50977], 2 X[51993] - 3 X[53023]

X(56966) lies on these lines: {2, 3}, {6, 541}, {64, 43573}, {542, 11472}, {543, 15928}, {597, 4846}, {599, 4550}, {2777, 5476}, {3066, 16111}, {5050, 44750}, {5622, 14848}, {5648, 17702}, {5663, 41720}, {7706, 38072}, {9756, 23699}, {13754, 15534}, {14915, 43273}, {15361, 21970}, {15807, 26944}, {20126, 26869}, {32620, 50977}, {34810, 50187}, {51993, 53023}

X(56966) = reflection of X(i) in X(j) for these {i,j}: {381, 31861}, {599, 4550}, {4846, 597}
X(56966) = orthocentroidal-circle-inverse of X(47332)
X(56966) = crossdifference of every pair of points on line {647, 47343}
X(56966) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 47332}, {2, 54995, 3}, {3, 381, 47597}, {378, 31861, 9818}, {378, 37077, 381}, {3845, 18579, 44275}, {3845, 39484, 381}, {3845, 44287, 39484}, {7579, 14269, 381}, {8703, 39487, 6644}, {26255, 35485, 47333}, {44218, 47332, 2}


X(56967) = X(2)X(3)∩X(6)X(690)

Barycentrics    2*a^10 - 3*a^8*b^2 - 2*a^6*b^4 + 3*a^4*b^6 - 3*a^8*c^2 + 10*a^6*b^2*c^2 - 4*a^4*b^4*c^2 - 7*a^2*b^6*c^2 + 2*b^8*c^2 - 2*a^6*c^4 - 4*a^4*b^2*c^4 + 14*a^2*b^4*c^4 - 2*b^6*c^4 + 3*a^4*c^6 - 7*a^2*b^2*c^6 - 2*b^4*c^6 + 2*b^2*c^8 : :

X(56967) lies on these lines: {2, 3}, {6, 690}, {99, 5968}, {183, 34205}, {543, 14995}, {1384, 5912}, {1499, 5967}, {2782, 34810}, {3972, 9828}, {7737, 44398}, {8371, 35606}, {9182, 36207}, {14246, 47288}, {14356, 23698}, {15357, 56395}, {17964, 23288}, {23699, 47200}, {26869, 53132}, {33928, 53735}, {35906, 42733}, {36822, 52076}, {52483, 53136}

X(56967) = orthocentroidal-circle-inverse of X(14120)
X(56967) = crossdifference of every pair of points on line {647, 2854}
X(56967) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 14120}, {2, 7472, 3}, {4, 46619, 25}, {3143, 36180, 7417}, {4235, 7417, 36180}, {31861, 35930, 381}


X(56968) = X(2)X(3)∩X(6)X(740)

Barycentrics    a^6 + 3*a^5*b + 2*a^4*b^2 + a^3*b^3 + a^2*b^4 + 3*a^5*c + 5*a^4*b*c + 3*a^3*b^2*c + 3*a^2*b^3*c + 2*a*b^4*c + 2*a^4*c^2 + 3*a^3*b*c^2 + 4*a^2*b^2*c^2 + 6*a*b^3*c^2 + 2*b^4*c^2 + a^3*c^3 + 3*a^2*b*c^3 + 6*a*b^2*c^3 + 4*b^3*c^3 + a^2*c^4 + 2*a*b*c^4 + 2*b^2*c^4 : :

X(56968) lies on these lines: {1, 24271}, {2, 3}, {6, 740}, {10, 17735}, {58, 50164}, {81, 50156}, {86, 50177}, {538, 4658}, {986, 13174}, {1330, 33954}, {3017, 50223}, {3944, 19701}, {4037, 54416}, {5224, 20558}, {5247, 5295}, {5814, 21085}, {7283, 41258}, {10449, 17731}, {11599, 17962}, {24267, 49482}, {25526, 50175}, {28619, 50178}, {28620, 50173}, {31143, 50236}, {31144, 50216}, {38456, 48863}, {50153, 56018}

X(56968) = orthocentroidal-circle-inverse of X(37159)
X(56968) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 37159}, {2, 11104, 3}, {4, 4195, 33745}, {964, 11320, 405}, {11354, 49130, 2049}, {13740, 35916, 2}


X(56969) = X(2)X(3)∩X(6)X(752)

Barycentrics    a^5*b - 2*a^4*b^2 - 3*a^3*b^3 - 2*a^2*b^4 - 2*a*b^5 + a^5*c - a^4*b*c - 5*a^3*b^2*c - 5*a^2*b^3*c - 4*a*b^4*c - 2*b^5*c - 2*a^4*c^2 - 5*a^3*b*c^2 - 6*a^2*b^2*c^2 - 2*a*b^3*c^2 - 2*b^4*c^2 - 3*a^3*c^3 - 5*a^2*b*c^3 - 2*a*b^2*c^3 - 2*a^2*c^4 - 4*a*b*c^4 - 2*b^2*c^4 - 2*a*c^5 - 2*b*c^5 : :

X(56969) lies on these lines: {2, 3}, {6, 752}, {10, 48864}, {3663, 50632}, {4685, 5814}, {9668, 54291}, {10449, 48838}, {10477, 17274}, {10479, 50175}, {19701, 33106}, {19735, 32948}, {42043, 48807}, {42057, 48819}, {48801, 48862}, {48808, 48863}, {48839, 50222}, {48855, 50173}

X(56969) = crossdifference of every pair of points on line {647, 9011}
X(56969) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11355, 11354}, {11359, 36721, 54367}


X(56970) = X(2)X(3)∩X(6)X(758)

Barycentrics    a*(a^6 + a^5*b - a^2*b^4 - a*b^5 + a^5*c + a^4*b*c - 2*a^3*b^2*c - 3*a^2*b^3*c - 3*a*b^4*c - 2*b^5*c - 2*a^3*b*c^2 - 4*a^2*b^2*c^2 - 4*a*b^3*c^2 - 2*b^4*c^2 - 3*a^2*b*c^3 - 4*a*b^2*c^3 - a^2*c^4 - 3*a*b*c^4 - 2*b^2*c^4 - a*c^5 - 2*b*c^5) : :

X(56970) lies on these lines: {2, 3}, {6, 758}, {55, 4680}, {191, 986}, {956, 3891}, {958, 52531}, {993, 3772}, {2339, 37697}, {2549, 32580}, {3454, 54371}, {3794, 51340}, {3821, 24288}, {3913, 48800}, {4265, 48835}, {5096, 48843}, {5251, 24271}, {5358, 49728}, {8666, 48819}, {11263, 43531}, {17303, 24275}, {19701, 26725}, {24294, 48863}

X(56970) = orthocentroidal-circle-inverse of X(37346)
X(56970) = crossdifference of every pair of points on line {647, 9013}
X(56970) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 37346}, {2, 21, 16430}, {2, 1325, 16429}, {2, 17512, 3}, {405, 4185, 2049}, {405, 7535, 16844}, {405, 37063, 37065}, {5051, 17521, 2915}, {11102, 26117, 20831}


X(56971) = X(1)X(82)∩X(75)X(1917)

Barycentrics    a*(a^2 + b^2)*(a^2 - b*c)*(a^2 + b*c)*(a^2 + c^2) : :

X(56971) lies on the curve Q121 and these lines: {1, 82}, {75, 1917}, {1101, 24037}, {1284, 12835}, {1691, 2295}, {1933, 1966}, {3112, 3113}, {19559, 36084}, {46500, 55240}

X(56971) = X(i)-isoconjugate of X(j) for these (i,j): {38, 1581}, {39, 1916}, {141, 694}, {427, 36214}, {523, 46161}, {732, 41517}, {733, 7794}, {805, 826}, {882, 4576}, {1235, 17970}, {1843, 40708}, {1930, 1967}, {1934, 1964}, {3005, 18829}, {3051, 18896}, {3933, 17980}, {4074, 51982}, {8024, 9468}, {8041, 14970}, {8061, 37134}, {8789, 52568}, {17938, 23285}, {18872, 31125}, {20021, 40810}, {34238, 51371}, {41331, 44160}, {42551, 47642}
X(56971) = X(i)-Dao conjugate of X(j) for these (i,j): {8290, 1930}, {19576, 38}, {39030, 52568}, {39031, 39}, {39043, 141}, {39044, 8024}, {41884, 1934}
X(56971) = cevapoint of X(1580) and X(1933)
X(56971) = barycentric product X(i)*X(j) for these {i,j}: {82, 385}, {83, 1580}, {251, 1966}, {308, 1933}, {419, 34055}, {804, 4599}, {1691, 3112}, {1926, 46288}, {2236, 52395}, {3405, 40820}, {3573, 18111}, {3978, 46289}, {4027, 43763}, {4039, 52376}, {4154, 39276}, {4593, 5027}, {4628, 14296}, {14295, 34072}, {14602, 18833}, {14970, 51903}, {17941, 55240}
X(56971) = barycentric quotient X(i)/X(j) for these {i,j}: {82, 1916}, {83, 1934}, {163, 46161}, {251, 1581}, {385, 1930}, {419, 20883}, {827, 37134}, {1580, 141}, {1691, 38}, {1926, 52568}, {1933, 39}, {1966, 8024}, {2236, 7794}, {3112, 18896}, {4107, 48084}, {4164, 16892}, {4599, 18829}, {5027, 8061}, {14602, 1964}, {17941, 55239}, {18833, 44160}, {18902, 1923}, {34055, 40708}, {34072, 805}, {44089, 17442}, {46288, 1967}, {46289, 694}, {51318, 2236}, {51903, 732}, {51904, 4074}
X(56971) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {82, 34054, 3405}, {82, 46289, 51312}


X(56972) = X(7)X(84)∩X(57)X(189)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^2 - b^2 - c^2)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c + 2*a*b*c + b^2*c - a*c^2 - b*c^2 - c^3)*(a^3 + a^2*b - a*b^2 - b^3 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + b*c^2 + c^3) : :

X(56972) lies on the curve Q173 and these lines: {7, 84}, {57, 189}, {63, 268}, {69, 271}, {77, 1433}, {81, 1422}, {280, 55119}, {282, 1445}, {285, 1014}, {286, 1434}, {309, 18816}, {969, 52384}, {1413, 56328}, {1436, 39273}, {2188, 40443}, {2192, 56359}, {5738, 46021}, {6355, 52392}, {7008, 34398}, {8059, 43363}, {8545, 24553}, {13386, 52419}, {13387, 52420}

X(56972) = isogonal conjugate of X(40971)
X(56972) = isotomic conjugate of the polar conjugate of X(1422)
X(56972) = X(34400)-Ceva conjugate of X(41081)
X(56972) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40971}, {4, 7074}, {6, 55116}, {8, 3195}, {9, 2331}, {19, 2324}, {25, 7080}, {33, 40}, {55, 7952}, {196, 220}, {198, 281}, {200, 208}, {210, 3194}, {212, 47372}, {221, 7046}, {223, 7079}, {227, 4183}, {278, 7368}, {284, 53009}, {318, 2187}, {322, 2212}, {329, 607}, {342, 1253}, {346, 3209}, {347, 7071}, {393, 55111}, {1103, 7008}, {1172, 21871}, {1334, 41083}, {1783, 14298}, {1857, 7078}, {2199, 7101}, {2207, 55112}, {2299, 21075}, {2333, 27398}, {2360, 53008}, {3939, 54239}, {5514, 7115}, {6065, 38362}, {6129, 56183}, {8058, 8750}, {14827, 40701}, {41088, 44695}
X(56972) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 40971}, {6, 2324}, {9, 55116}, {223, 7952}, {226, 21075}, {478, 2331}, {3341, 7046}, {6505, 7080}, {6609, 208}, {17113, 342}, {26932, 8058}, {36033, 7074}, {39006, 14298}, {40590, 53009}, {40617, 54239}, {40628, 5514}, {40837, 47372}
X(56972) = cevapoint of X(i) and X(j) for these (i,j): {57, 84}, {905, 53557}, {1433, 55117}
X(56972) = barycentric product X(i)*X(j) for these {i,j}: {1, 34400}, {7, 41081}, {63, 1440}, {69, 1422}, {75, 55117}, {77, 189}, {84, 348}, {85, 1433}, {86, 52037}, {222, 309}, {268, 1088}, {269, 44189}, {271, 279}, {280, 7177}, {282, 7056}, {285, 56382}, {304, 1413}, {326, 55110}, {552, 53010}, {603, 44190}, {905, 53642}, {1434, 52389}, {1436, 7182}, {1444, 8808}, {2185, 6355}, {3718, 6612}, {4025, 37141}, {7053, 34404}, {7055, 7129}, {7183, 40836}, {8059, 15413}, {13156, 40443}, {17206, 52384}
X(56972) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 55116}, {3, 2324}, {6, 40971}, {48, 7074}, {56, 2331}, {57, 7952}, {63, 7080}, {65, 53009}, {73, 21871}, {77, 329}, {84, 281}, {189, 318}, {212, 7368}, {222, 40}, {255, 55111}, {268, 200}, {269, 196}, {271, 346}, {278, 47372}, {279, 342}, {280, 7101}, {282, 7046}, {285, 2322}, {309, 7017}, {326, 55112}, {348, 322}, {603, 198}, {604, 3195}, {905, 8058}, {1014, 41083}, {1088, 40701}, {1106, 3209}, {1214, 21075}, {1256, 7003}, {1407, 208}, {1412, 3194}, {1413, 19}, {1422, 4}, {1433, 9}, {1436, 33}, {1440, 92}, {1444, 27398}, {1459, 14298}, {1903, 53008}, {2188, 220}, {2192, 7079}, {2208, 607}, {3669, 54239}, {3942, 38357}, {6355, 6358}, {6612, 34}, {7004, 5514}, {7011, 1103}, {7053, 223}, {7056, 40702}, {7099, 221}, {7118, 7071}, {7125, 7078}, {7129, 1857}, {7177, 347}, {8059, 1783}, {8808, 41013}, {13853, 56285}, {18604, 1819}, {23224, 10397}, {34400, 75}, {36049, 56183}, {37141, 1897}, {41081, 8}, {41087, 210}, {43058, 1528}, {44189, 341}, {52037, 10}, {52373, 227}, {52384, 1826}, {52389, 2321}, {52411, 2187}, {53010, 6057}, {53538, 38362}, {53642, 6335}, {55110, 158}, {55117, 1}
X(56972) = {X(52037),X(55117)}-harmonic conjugate of X(41081)


X(56973) = X(3)X(102)∩X(117)X(515)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^2 - b^2 - c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :

X(56973) lies on the curve Q011 and these lines: {3, 102}, {34, 27622}, {73, 1364}, {117, 515}, {198, 478}, {222, 1795}, {227, 2817}, {603, 1425}, {651, 1809}, {1262, 53703}, {1361, 1457}, {1394, 1745}, {1409, 7117}, {1465, 1845}, {2800, 17102}, {3040, 24806}, {3042, 37694}, {3454, 6700}, {4559, 35072}, {10747, 34029}, {14414, 20749}, {15654, 56414}, {18591, 52087}, {22341, 40611}, {25876, 33650}, {34044, 53819}, {35014, 53530}, {42769, 53528}

X(56973) = midpoint of X(109) and X(10571)
X(56973) = X(36050)-complementary conjugate of X(8677)
X(56973) = X(i)-Ceva conjugate of X(j) for these (i,j): {109, 8677}, {1262, 2425}
X(56973) = X(i)-isoconjugate of X(j) for these (i,j): {15629, 16082}, {36037, 53152}, {36121, 51565}, {52663, 52780}
X(56973) = X(i)-Dao conjugate of X(j) for these (i,j): {1465, 264}, {3259, 53152}
X(56973) = crossdifference of every pair of points on line {2432, 14312}
X(56973) = barycentric product X(i)*X(j) for these {i,j}: {859, 51368}, {1262, 10017}, {1465, 46974}, {1813, 42755}, {2406, 8677}, {22350, 34050}
X(56973) = barycentric quotient X(i)/X(j) for these {i,j}: {1455, 16082}, {1457, 52780}, {2425, 1309}, {3310, 53152}, {8677, 2399}, {10017, 23978}, {23220, 2432}, {42755, 46110}, {46974, 36795}
X(56973) = {X(3),X(109)}-harmonic conjugate of X(54083)


X(56974) = X(1)X(261)∩X(10)X(58)

Barycentrics    (a + b)*(a + c)*(a^5 + 2*a^4*b + 2*a^3*b^2 - a*b^4 + 2*a^4*c + 5*a^3*b*c - a^2*b^2*c - 3*a*b^3*c - b^4*c + 2*a^3*c^2 - a^2*b*c^2 - 4*a*b^2*c^2 - 3*b^3*c^2 - 3*a*b*c^3 - 3*b^2*c^3 - a*c^4 - b*c^4) : :

X(56974) lies on the curve Q073 and these lines: {1, 261}, {10, 58}, {20, 19642}, {21, 1999}, {213, 2303}, {572, 9568}, {960, 19623}, {993, 37029}, {1330, 46828}, {3017, 37038}, {3187, 37032}, {4298, 6629}, {5019, 9534}, {5291, 38858}, {11115, 33774}, {13323, 37652}, {13725, 37642}, {20077, 56291}, {25526, 33082}, {25978, 49716}, {27958, 54386}, {46976, 54119}

X(56974) = {X(10),X(58)}-harmonic conjugate of X(14534)


X(56975) = X(2)X(9233)∩X(6)X(22)

Barycentrics    a^2*(a^2 + b^2)*(a^2 - b*c)*(a^2 + b*c)*(a^2 + c^2) : :

X(56975) lies on these lines: {2, 9233}, {6, 22}, {32, 10338}, {83, 3407}, {385, 14602}, {733, 2715}, {827, 5970}, {1691, 18902}, {1799, 3314}, {1933, 20964}, {2492, 2514}, {4577, 53231}, {4590, 7779}, {7868, 10130}, {10547, 38834}, {14885, 52580}, {16985, 35540}, {21458, 41932}, {33773, 40643}, {39557, 39674}

X(56975) = X(i)-isoconjugate of X(j) for these (i,j): {38, 1916}, {39, 1934}, {141, 1581}, {694, 1930}, {826, 37134}, {882, 55239}, {1577, 46161}, {1923, 44160}, {1927, 52568}, {1964, 18896}, {1967, 8024}, {7794, 43763}, {8061, 18829}, {17442, 40708}, {20883, 36214}
X(56975) = X(i)-Dao conjugate of X(j) for these (i,j): {8290, 8024}, {8623, 51371}, {19576, 141}, {35078, 23285}, {36213, 7794}, {39031, 38}, {39043, 1930}, {41884, 18896}
X(56975) = cevapoint of X(i) and X(j) for these (i,j): {1691, 14602}, {5027, 41178}
X(56975) = trilinear pole of line {5027, 51318}
X(56975) = crossdifference of every pair of points on line {826, 7794}
X(56975) = barycentric product X(i)*X(j) for these {i,j}: {82, 1580}, {83, 1691}, {251, 385}, {308, 14602}, {419, 1176}, {733, 4027}, {804, 827}, {1799, 44089}, {1933, 3112}, {1966, 46289}, {3978, 46288}, {4107, 4628}, {4577, 5027}, {4630, 14295}, {5009, 18099}, {8623, 52395}, {10547, 17984}, {14970, 51318}, {17941, 18105}, {18902, 40016}, {21458, 51343}, {38834, 39927}, {40820, 51862}, {43763, 51903}
X(56975) = barycentric quotient X(i)/X(j) for these {i,j}: {82, 1934}, {83, 18896}, {251, 1916}, {308, 44160}, {385, 8024}, {419, 1235}, {804, 23285}, {827, 18829}, {1176, 40708}, {1576, 46161}, {1580, 1930}, {1691, 141}, {1933, 38}, {2086, 39691}, {3978, 52568}, {4027, 35540}, {4164, 48084}, {4630, 805}, {5027, 826}, {8623, 7794}, {10547, 36214}, {14602, 39}, {18902, 3051}, {34072, 37134}, {36213, 51371}, {41178, 15449}, {44089, 427}, {46288, 694}, {46289, 1581}, {51318, 732}, {51320, 4074}
X(56975) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {251, 46228, 51862}, {251, 46288, 41295}


X(56976) = X(2)X(32)∩X(6)X(41296)

Barycentrics    (a^2 + b^2)*(a^2 - b*c)*(a^2 + b*c)*(a^2 + c^2) : :

X(56976) lies on these lines: {2, 32}, {6, 41296}, {76, 1501}, {237, 11229}, {249, 34537}, {308, 3114}, {385, 14602}, {689, 53966}, {827, 53704}, {1176, 19222}, {1215, 1580}, {1691, 3978}, {1976, 53375}, {2966, 6660}, {3506, 41520}, {4159, 9983}, {4369, 18111}, {4577, 35146}, {5012, 7760}, {5027, 7927}, {6179, 34396}, {7768, 16893}, {8266, 33768}, {16609, 39043}, {18092, 52395}, {20026, 36213}, {32085, 41762}, {34294, 52979}, {34536, 53245}, {41259, 41297}, {53200, 53657}

X(56976) = X(i)-Ceva conjugate of X(j) for these (i,j): {39287, 36213}, {52395, 4027}
X(56976) = X(i)-isoconjugate of X(j) for these (i,j): {38, 694}, {39, 1581}, {141, 1967}, {661, 46161}, {805, 8061}, {881, 55239}, {1916, 1964}, {1923, 18896}, {1927, 8024}, {1930, 9468}, {1934, 3051}, {2084, 18829}, {2236, 41517}, {3005, 37134}, {3404, 40810}, {8041, 43763}, {17442, 36214}, {17970, 20883}, {46159, 52651}
X(56976) = X(i)-Dao conjugate of X(j) for these (i,j): {325, 51371}, {8290, 141}, {19576, 39}, {35078, 826}, {36213, 8041}, {36830, 46161}, {39031, 1964}, {39043, 38}, {39044, 1930}, {41884, 1916}
X(56976) = cevapoint of X(385) and X(1691)
X(56976) = trilinear pole of line {804, 4027}
X(56976) = crossdifference of every pair of points on line {3005, 8041}
X(56976) = barycentric product X(i)*X(j) for these {i,j}: {82, 1966}, {83, 385}, {251, 3978}, {308, 1691}, {419, 1799}, {689, 5027}, {732, 52395}, {804, 4577}, {827, 14295}, {880, 18105}, {1176, 17984}, {1580, 3112}, {1926, 46289}, {1933, 18833}, {3570, 18111}, {4027, 14970}, {4039, 52394}, {12215, 32085}, {14382, 51862}, {14602, 40016}, {14603, 46288}, {18099, 33295}, {20022, 40820}, {24284, 42396}
X(56976) = barycentric quotient X(i)/X(j) for these {i,j}: {82, 1581}, {83, 1916}, {110, 46161}, {251, 694}, {308, 18896}, {385, 141}, {419, 427}, {732, 7794}, {733, 41517}, {804, 826}, {827, 805}, {1176, 36214}, {1580, 38}, {1691, 39}, {1799, 40708}, {1933, 1964}, {1966, 1930}, {3112, 1934}, {3978, 8024}, {4027, 732}, {4039, 15523}, {4107, 16892}, {4164, 2530}, {4577, 18829}, {4579, 52922}, {4599, 37134}, {4630, 17938}, {5026, 7813}, {5027, 3005}, {5976, 51371}, {8623, 8041}, {10547, 17970}, {11183, 14424}, {12215, 3933}, {14295, 23285}, {14296, 48084}, {14602, 3051}, {14603, 52568}, {16985, 4074}, {17941, 4576}, {17984, 1235}, {18099, 43534}, {18105, 882}, {18111, 4444}, {18902, 41331}, {24284, 2525}, {27982, 16720}, {38834, 47642}, {39927, 42551}, {40016, 44160}, {40820, 20021}, {43977, 42061}, {44089, 1843}, {46288, 9468}, {46289, 1967}, {51318, 8623}, {51343, 46164}, {51430, 51360}, {51862, 40810}, {51903, 2236}, {52395, 14970}, {52936, 41209}
X(56976) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {83, 40850, 20022}, {8623, 16985, 17941}, {20022, 52898, 40850}


X(56977) = X(2)X(694)∩X(6)X(40416)

Barycentrics    (b^2 - a*c)*(b^2 + a*c)*(a*b - c^2)*(a*b + c^2)*(b^2 + c^2) : :

X(56977) lies on these lines: {2, 694}, {6, 40416}, {39, 14617}, {66, 36214}, {256, 24358}, {338, 1502}, {698, 21531}, {706, 3001}, {732, 20021}, {805, 9076}, {1031, 14570}, {2799, 23596}, {3493, 31982}, {3506, 8178}, {3613, 6665}, {5152, 51318}, {6660, 17938}, {8024, 16893}, {8177, 45838}, {9468, 34990}, {9483, 41209}, {14424, 35366}, {14970, 18092}, {18829, 43098}, {21906, 25326}, {32189, 52042}, {39292, 46286}

X(56977) = X(i)-isoconjugate of X(j) for these (i,j): {82, 1691}, {83, 1933}, {251, 1580}, {385, 46289}, {733, 51903}, {804, 34072}, {1966, 46288}, {3112, 14602}, {4164, 4628}, {4599, 5027}, {18833, 18902}, {34055, 44089}, {43763, 51318}
X(56977) = X(i)-Dao conjugate of X(j) for these (i,j): {39, 385}, {141, 1691}, {339, 14295}, {3124, 5027}, {6665, 732}, {9467, 46288}, {15449, 804}, {34452, 14602}, {36213, 51318}, {39092, 251}, {40585, 1580}, {40938, 419}, {47648, 51862}
X(56977) = trilinear pole of line {826, 7794}
X(56977) = crossdifference of every pair of points on line {5027, 51318}
X(56977) = X(5152)-line conjugate of X(51318)
X(56977) = barycentric product X(i)*X(j) for these {i,j}: {38, 1934}, {39, 18896}, {141, 1916}, {427, 40708}, {694, 8024}, {805, 23285}, {826, 18829}, {850, 46161}, {1235, 36214}, {1581, 1930}, {2528, 41209}, {3051, 44160}, {4074, 40847}, {7794, 14970}, {9468, 52568}, {35540, 41517}, {36897, 51371}, {39292, 39691}
X(56977) = barycentric quotient X(i)/X(j) for these {i,j}: {38, 1580}, {39, 1691}, {141, 385}, {427, 419}, {694, 251}, {732, 4027}, {805, 827}, {826, 804}, {882, 18105}, {1235, 17984}, {1581, 82}, {1843, 44089}, {1916, 83}, {1930, 1966}, {1934, 3112}, {1964, 1933}, {1967, 46289}, {2236, 51903}, {2525, 24284}, {2530, 4164}, {3005, 5027}, {3051, 14602}, {3933, 12215}, {4074, 16985}, {4444, 18111}, {4576, 17941}, {7794, 732}, {7813, 5026}, {8024, 3978}, {8041, 8623}, {8623, 51318}, {9468, 46288}, {14424, 11183}, {14970, 52395}, {15523, 4039}, {16720, 27982}, {16892, 4107}, {17938, 4630}, {17970, 10547}, {18829, 4577}, {18896, 308}, {20021, 40820}, {23285, 14295}, {36214, 1176}, {37134, 4599}, {40708, 1799}, {40810, 51862}, {41209, 52936}, {41331, 18902}, {41517, 733}, {42061, 43977}, {42551, 39927}, {43534, 18099}, {44160, 40016}, {46161, 110}, {46164, 51343}, {47642, 38834}, {48084, 14296}, {51360, 51430}, {51371, 5976}, {52568, 14603}, {52922, 4579}
X(56977) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1916, 8842, 47734}, {1916, 40708, 694}


X(56978) = X(6)X(694)∩X(76)X(115)

Barycentrics    a^2*(-b^2 + a*c)*(b^2 + a*c)*(a*b - c^2)*(a*b + c^2)*(b^2 + c^2) : :

X(56978) lies on these lines: {6, 694}, {32, 38826}, {39, 3118}, {76, 115}, {733, 7953}, {755, 805}, {882, 3569}, {1186, 8789}, {1502, 44163}, {1581, 52922}, {1625, 3493}, {2353, 17970}, {2458, 34238}, {3016, 41443}, {3933, 42551}, {3981, 19602}, {6234, 48673}, {7779, 14970}, {7788, 42359}, {7868, 8842}, {8623, 51869}, {14251, 27375}, {15391, 41270}, {17042, 47642}, {20026, 36897}, {31360, 40708}, {39935, 42822}, {46154, 46161}, {46292, 54963}

X(56978) = X(i)-Ceva conjugate of X(j) for these (i,j): {18829, 882}, {41517, 8041}
X(56978) = X(i)-isoconjugate of X(j) for these (i,j): {82, 385}, {83, 1580}, {251, 1966}, {308, 1933}, {419, 34055}, {804, 4599}, {1691, 3112}, {1926, 46288}, {2236, 52395}, {3405, 40820}, {3573, 18111}, {3978, 46289}, {4027, 43763}, {4039, 52376}, {4154, 39276}, {4593, 5027}, {4628, 14296}, {14295, 34072}, {14602, 18833}, {14970, 51903}, {17941, 55240}
X(56978) = X(i)-Dao conjugate of X(j) for these (i,j): {39, 3978}, {141, 385}, {3124, 804}, {4074, 710}, {6665, 35540}, {9467, 251}, {15449, 14295}, {34452, 1691}, {36213, 4027}, {39092, 83}, {40585, 1966}, {40938, 17984}, {47648, 20022}, {52042, 8623}, {55050, 5027}
X(56978) = cevapoint of X(i) and X(j) for these (i,j): {732, 4074}, {3005, 41178}
X(56978) = trilinear pole of line {3005, 8041}
X(56978) = crossdifference of every pair of points on line {804, 4027}
X(56978) = barycentric product X(i)*X(j) for these {i,j}: {38, 1581}, {39, 1916}, {141, 694}, {427, 36214}, {523, 46161}, {732, 41517}, {733, 7794}, {805, 826}, {882, 4576}, {1235, 17970}, {1843, 40708}, {1930, 1967}, {1934, 1964}, {3005, 18829}, {3051, 18896}, {3933, 17980}, {4074, 51982}, {8024, 9468}, {8041, 14970}, {8061, 37134}, {8789, 52568}, {17938, 23285}, {18872, 31125}, {20021, 40810}, {34238, 51371}, {41331, 44160}, {42551, 47642}
X(56978) = barycentric quotient X(i)/X(j) for these {i,j}: {38, 1966}, {39, 385}, {141, 3978}, {427, 17984}, {688, 5027}, {694, 83}, {733, 52395}, {805, 4577}, {826, 14295}, {881, 18105}, {1581, 3112}, {1634, 17941}, {1843, 419}, {1916, 308}, {1923, 1933}, {1927, 46289}, {1930, 1926}, {1934, 18833}, {1964, 1580}, {1967, 82}, {2530, 14296}, {3005, 804}, {3051, 1691}, {3572, 18111}, {3917, 12215}, {4093, 4154}, {4576, 880}, {7794, 35540}, {8024, 14603}, {8041, 732}, {8623, 4027}, {8789, 46288}, {9468, 251}, {14251, 51862}, {17938, 827}, {17970, 1176}, {17980, 32085}, {18829, 689}, {18872, 52898}, {18896, 40016}, {20021, 14382}, {21035, 4039}, {21123, 4107}, {27369, 44089}, {36214, 1799}, {37134, 4593}, {40810, 20022}, {41178, 35078}, {41331, 14602}, {41517, 14970}, {46156, 51510}, {46159, 17103}, {46161, 99}, {50521, 4164}, {51869, 40820}, {52568, 18901}
X(56978) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {694, 36214, 9468}, {1916, 42061, 47648}, {9468, 36214, 18872}, {14970, 18829, 54130}


X(56979) = X(6)X(76)∩X(32)X(710)

Barycentrics    b^2*(a^2 + b^2)*c^2*(-a^2 + b*c)*(a^2 + b*c)*(a^2 + c^2) : :

X(56979) lies on these lines: {2, 41297}, {6, 76}, {32, 710}, {182, 41296}, {251, 3407}, {385, 14603}, {689, 5970}, {733, 19566}, {804, 18105}, {1237, 1966}, {1691, 3978}, {1799, 47643}, {4577, 53197}, {4590, 44168}, {5207, 20021}, {5989, 24729}, {7751, 10010}, {7797, 41178}, {9230, 12212}, {10341, 41331}, {10342, 38834}, {14970, 41073}, {16890, 51848}, {17984, 44089}, {18111, 20981}, {24733, 40850}, {31622, 40425}, {42371, 53231}

X(56979) = reflection of X(54129) in X(41178)
X(56979) = X(41488)-Ceva conjugate of X(5976)
X(56979) = X(i)-isoconjugate of X(j) for these (i,j): {38, 9468}, {39, 1967}, {141, 1927}, {688, 37134}, {694, 1964}, {798, 46161}, {805, 2084}, {1581, 3051}, {1916, 1923}, {1930, 8789}, {1934, 41331}, {3404, 14251}, {4020, 17980}, {8061, 17938}, {17442, 17970}, {40729, 46159}
X(56979) = X(i)-Dao conjugate of X(j) for these (i,j): {804, 41178}, {8290, 39}, {19576, 3051}, {31998, 46161}, {35078, 3005}, {39030, 1930}, {39031, 1923}, {39043, 1964}, {39044, 38}, {41884, 694}
X(56979) = cevapoint of X(385) and X(3978)
X(56979) = trilinear pole of line {5027, 14295}
X(56979) = barycentric product X(i)*X(j) for these {i,j}: {82, 1926}, {83, 3978}, {251, 14603}, {308, 385}, {689, 804}, {1580, 18833}, {1691, 40016}, {1799, 17984}, {1966, 3112}, {4577, 14295}, {5027, 42371}, {12215, 46104}, {14382, 20022}, {17941, 52618}, {18111, 27853}, {18901, 46288}, {35540, 52395}
X(56979) = barycentric quotient X(i)/X(j) for these {i,j}: {82, 1967}, {83, 694}, {99, 46161}, {251, 9468}, {308, 1916}, {385, 39}, {419, 1843}, {689, 18829}, {732, 8041}, {804, 3005}, {827, 17938}, {880, 4576}, {1176, 17970}, {1580, 1964}, {1691, 3051}, {1799, 36214}, {1926, 1930}, {1933, 1923}, {1966, 38}, {3112, 1581}, {3978, 141}, {4027, 8623}, {4039, 21035}, {4107, 21123}, {4154, 4093}, {4164, 50521}, {4577, 805}, {4593, 37134}, {5027, 688}, {12215, 3917}, {14295, 826}, {14296, 2530}, {14382, 20021}, {14602, 41331}, {14603, 8024}, {14970, 41517}, {17103, 46159}, {17941, 1634}, {17984, 427}, {18105, 881}, {18111, 3572}, {18833, 1934}, {18901, 52568}, {20022, 40810}, {32085, 17980}, {35078, 41178}, {35540, 7794}, {40016, 18896}, {40820, 51869}, {44089, 27369}, {46288, 8789}, {46289, 1927}, {51510, 46156}, {51862, 14251}, {52395, 733}, {52898, 18872}


X(56980) = X(6)X(22)∩X(110)X(351)

Barycentrics    a^2*(a^2 - b^2)*(a^2 - b*c)*(a^2 + b*c)*(a^2 - c^2) : :

X(56980) lies on these lines: {2, 44127}, {6, 22}, {23, 44114}, {50, 11673}, {99, 14574}, {110, 351}, {182, 6785}, {194, 40373}, {249, 5118}, {385, 40820}, {511, 14355}, {512, 52630}, {691, 32694}, {729, 19626}, {732, 36820}, {805, 2715}, {827, 43357}, {858, 51740}, {879, 2966}, {1691, 2086}, {1915, 45914}, {1976, 46303}, {2420, 9218}, {2445, 4230}, {4577, 4630}, {5191, 46298}, {5468, 31614}, {6800, 52693}, {8290, 19575}, {11183, 14959}, {12225, 43278}, {14389, 36190}, {14510, 53766}, {14999, 35345}, {19558, 40810}, {21460, 32217}, {22146, 39836}, {32447, 34513}, {32717, 32729}, {38661, 51240}, {46888, 51343}

X(56980) = reflection of X(52630) in the Brocard axis
X(56980) = isogonal conjugate of the isotomic conjugate of X(17941)
X(56980) = X(34072)-anticomplementary conjugate of X(39359)
X(56980) = X(i)-Ceva conjugate of X(j) for these (i,j): {249, 51318}, {2715, 110}
X(56980) = X(i)-isoconjugate of X(j) for these (i,j): {75, 882}, {115, 37134}, {256, 35352}, {512, 1934}, {523, 1581}, {561, 881}, {661, 1916}, {694, 1577}, {798, 18896}, {805, 1109}, {826, 43763}, {850, 1967}, {1924, 44160}, {1927, 44173}, {2643, 18829}, {4444, 52651}, {8061, 14970}, {9468, 20948}, {14208, 17980}, {17938, 23994}, {24006, 36214}
X(56980) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 882}, {1691, 14316}, {8290, 850}, {8623, 2799}, {9428, 44160}, {19576, 523}, {31998, 18896}, {35078, 338}, {36213, 826}, {36830, 1916}, {39031, 661}, {39043, 1577}, {39044, 20948}, {39054, 1934}, {40368, 881}
X(56980) = cevapoint of X(i) and X(j) for these (i,j): {511, 5113}, {732, 24284}, {1691, 5027}
X(56980) = trilinear pole of line {1691, 8623}
X(56980) = crossdifference of every pair of points on line {115, 826}
X(56980) = barycentric product X(i)*X(j) for these {i,j}: {6, 17941}, {32, 880}, {99, 1691}, {110, 385}, {112, 12215}, {163, 1966}, {182, 39681}, {249, 804}, {250, 24284}, {419, 4558}, {662, 1580}, {670, 14602}, {691, 5026}, {694, 46294}, {732, 827}, {799, 1933}, {805, 4027}, {1576, 3978}, {1967, 46295}, {2086, 31614}, {2236, 4599}, {2421, 40820}, {2715, 5976}, {2966, 36213}, {4039, 4556}, {4107, 4570}, {4164, 4567}, {4563, 44089}, {4577, 8623}, {4590, 5027}, {4609, 18902}, {4630, 35540}, {5009, 18047}, {5118, 51510}, {8290, 46970}, {9217, 46291}, {9218, 46290}, {10425, 12829}, {14295, 23357}, {14382, 14966}, {14574, 14603}, {17932, 51324}, {17984, 32661}, {18829, 51318}, {32544, 41337}, {34211, 51343}, {36820, 52630}, {37134, 51903}, {39295, 39495}, {39931, 43754}, {40077, 40866}, {41173, 46888}, {44769, 51430}, {47736, 56389}, {51325, 53621}
X(56980) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 882}, {99, 18896}, {110, 1916}, {163, 1581}, {172, 35352}, {249, 18829}, {385, 850}, {419, 14618}, {662, 1934}, {670, 44160}, {732, 23285}, {804, 338}, {827, 14970}, {880, 1502}, {1101, 37134}, {1501, 881}, {1576, 694}, {1580, 1577}, {1691, 523}, {1933, 661}, {1966, 20948}, {2086, 8029}, {2715, 36897}, {3978, 44173}, {4027, 14295}, {4039, 52623}, {4107, 21207}, {4164, 16732}, {4558, 40708}, {4630, 733}, {5026, 35522}, {5027, 115}, {8623, 826}, {11183, 52628}, {12215, 3267}, {14295, 23962}, {14574, 9468}, {14602, 512}, {14966, 40810}, {17938, 41517}, {17941, 76}, {18902, 669}, {19576, 14316}, {23357, 805}, {23963, 17938}, {24284, 339}, {32661, 36214}, {34072, 43763}, {34396, 39680}, {36213, 2799}, {39681, 327}, {40077, 46245}, {40731, 23596}, {40820, 43665}, {44089, 2501}, {46249, 38947}, {46294, 3978}, {46295, 1926}, {46970, 9477}, {51318, 804}, {51324, 16230}, {51343, 43673}, {51430, 41079}
X(56980) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2420, 11634, 9218}, {4226, 34211, 53371}, {5467, 35329, 17403}, {5467, 35330, 17402}, {34211, 53371, 53379}


X(56981) = X(76)X(826)∩X(512)X(30492)

Barycentrics    b^2*(b - c)*c^2*(b + c)*(b^2 - a*c)*(b^2 + a*c)*(a*b - c^2)*(a*b + c^2) : :

X(56981) lies on these lines: {76, 826}, {512, 30492}, {523, 881}, {525, 39680}, {694, 9979}, {805, 877}, {850, 2528}, {1235, 14618}, {1916, 2799}, {3268, 8842}, {5466, 53080}, {8789, 53354}, {15475, 18829}, {18896, 52632}, {23105, 44173}, {32189, 52591}, {33798, 38830}

X(56981) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {39291, 21289}, {43763, 39359}
X(56981) = X(i)-isoconjugate of X(j) for these (i,j): {110, 1933}, {163, 1691}, {560, 17941}, {662, 14602}, {799, 18902}, {804, 23995}, {880, 1917}, {1101, 5027}, {1576, 1580}, {1927, 46294}, {1966, 14574}, {2236, 4630}, {4575, 44089}, {8623, 34072}, {8789, 46295}, {17938, 51903}
X(56981) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 1691}, {136, 44089}, {244, 1933}, {339, 732}, {523, 5027}, {1084, 14602}, {4858, 1580}, {5664, 39495}, {6374, 17941}, {9467, 14574}, {15449, 8623}, {18314, 804}, {23285, 24284}, {35078, 51318}, {35088, 36213}, {35971, 51320}, {36901, 385}, {38970, 51324}, {38996, 18902}, {39030, 46295}, {39092, 1576}, {46669, 19575}, {47648, 14966}
X(56981) = cevapoint of X(i) and X(j) for these (i,j): {523, 14316}, {826, 2799}
X(56981) = trilinear pole of line {338, 15449}
X(56981) = crossdifference of every pair of points on line {14602, 18902}
X(56981) = barycentric product X(i)*X(j) for these {i,j}: {338, 18829}, {512, 44160}, {523, 18896}, {694, 44173}, {805, 23962}, {850, 1916}, {881, 40362}, {882, 1502}, {1577, 1934}, {1581, 20948}, {14618, 40708}, {14970, 23285}, {23105, 39292}, {23994, 37134}, {35352, 44187}
vbarycentric quotient X(i)/X(j) for these {i,j}: {76, 17941}, {115, 5027}, {327, 39681}, {338, 804}, {339, 24284}, {512, 14602}, {523, 1691}, {661, 1933}, {669, 18902}, {694, 1576}, {733, 4630}, {804, 51318}, {805, 23357}, {826, 8623}, {850, 385}, {881, 1501}, {882, 32}, {1502, 880}, {1577, 1580}, {1581, 163}, {1916, 110}, {1926, 46295}, {1934, 662}, {2501, 44089}, {2799, 36213}, {3267, 12215}, {3978, 46294}, {8029, 2086}, {9468, 14574}, {9477, 46970}, {14295, 4027}, {14316, 19576}, {14618, 419}, {14970, 827}, {16230, 51324}, {16732, 4164}, {17938, 23963}, {18829, 249}, {18896, 99}, {20948, 1966}, {21207, 4107}, {23285, 732}, {23596, 40731}, {23962, 14295}, {35352, 172}, {35522, 5026}, {36214, 32661}, {36897, 2715}, {37134, 1101}, {38947, 46249}, {39680, 34396}, {40708, 4558}, {40810, 14966}, {41079, 51430}, {41517, 17938}, {43665, 40820}, {43673, 51343}, {43763, 34072}, {44160, 670}, {44173, 3978}, {46245, 40077}, {52623, 4039}, {52628, 11183}


X(56982) = X(1)X(82)∩X(110)X(4603)

Barycentrics    a*(a^2 - b^2)*(a^2 - b*c)*(a^2 + b*c)*(a^2 - c^2) : :

X(56982) lies on these lines: {1, 82}, {110, 4603}, {163, 662}, {1691, 28369}, {4593, 18062}, {23997, 36084}, {36133, 36142}

X(56982) = X(i)-Ceva conjugate of X(j) for these (i,j): {24041, 51903}, {36084, 662}
X(56982) = X(i)-isoconjugate of X(j) for these (i,j): {2, 882}, {76, 881}, {115, 805}, {262, 39680}, {338, 17938}, {512, 1916}, {523, 694}, {525, 17980}, {661, 1581}, {669, 18896}, {733, 826}, {798, 1934}, {804, 41517}, {850, 9468}, {876, 52651}, {893, 35352}, {1577, 1967}, {1927, 20948}, {2395, 40810}, {2489, 40708}, {2501, 36214}, {2643, 37134}, {2799, 34238}, {3005, 14970}, {3124, 18829}, {3569, 36897}, {5113, 9477}, {5466, 18872}, {8061, 43763}, {8789, 44173}, {8842, 52631}, {9180, 52700}, {9293, 46292}, {9426, 44160}, {14251, 43665}, {14618, 17970}, {15391, 16230}, {16068, 46040}, {18828, 35971}, {22260, 39292}, {34294, 46161}, {35364, 47734}, {39291, 44114}
X(56982) = X(i)-Dao conjugate of X(j) for these (i,j): {8290, 1577}, {19576, 661}, {31998, 1934}, {32664, 882}, {35078, 1109}, {36213, 8061}, {36830, 1581}, {39030, 44173}, {39031, 512}, {39043, 523}, {39044, 850}, {39054, 1916}, {40597, 35352}
X(56982) = trilinear pole of line {1580, 1933}
X(56982) = crossdifference of every pair of points on line {2643, 8061}
X(56982) = barycentric product X(i)*X(j) for these {i,j}: {1, 17941}, {31, 880}, {99, 1580}, {110, 1966}, {162, 12215}, {163, 3978}, {385, 662}, {419, 4592}, {670, 1933}, {694, 46295}, {732, 4599}, {799, 1691}, {804, 24041}, {1101, 14295}, {1576, 1926}, {1581, 46294}, {2236, 4577}, {2644, 46290}, {3573, 17103}, {4027, 37134}, {4039, 52935}, {4107, 4567}, {4154, 36066}, {4164, 4600}, {4570, 14296}, {4575, 17984}, {4579, 33295}, {4584, 53681}, {4593, 8623}, {4602, 14602}, {4603, 27982}, {5026, 36085}, {5027, 24037}, {5976, 36084}, {9395, 46291}, {14382, 23997}, {17932, 56679}, {18829, 51903}, {34072, 35540}, {36036, 36213}, {39681, 52134}, {44089, 55202}
X(56982) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 882}, {99, 1934}, {110, 1581}, {163, 694}, {171, 35352}, {249, 37134}, {385, 1577}, {419, 24006}, {560, 881}, {662, 1916}, {799, 18896}, {804, 1109}, {827, 43763}, {880, 561}, {1101, 805}, {1576, 1967}, {1580, 523}, {1691, 661}, {1926, 44173}, {1933, 512}, {1966, 850}, {2236, 826}, {3978, 20948}, {4039, 4036}, {4107, 16732}, {4164, 3120}, {4575, 36214}, {4579, 43534}, {4592, 40708}, {4599, 14970}, {4602, 44160}, {5027, 2643}, {8623, 8061}, {12215, 14208}, {14295, 23994}, {14296, 21207}, {14574, 1927}, {14602, 798}, {17941, 75}, {18902, 1924}, {19572, 14316}, {23995, 17938}, {23997, 40810}, {24041, 18829}, {24284, 20902}, {32676, 17980}, {34072, 733}, {36084, 36897}, {46291, 20939}, {46294, 1966}, {46295, 3978}, {51430, 36035}, {51903, 804}, {56441, 23596}, {56679, 16230}


X(56983) = X(1)X(3952)∩X(2)X(3)

Barycentrics    2*a^4 + a^3*b + a*b^3 + a^3*c - 2*a^2*b*c - 2*a*b^2*c + b^3*c - 2*a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3 : :

X(56983) lies on these lines:s {1, 3952}, {2, 3}, {8, 40091}, {12, 24542}, {78, 26688}, {83, 18113}, {145, 1191}, {238, 17751}, {516, 25967}, {626, 26145}, {894, 25261}, {993, 26094}, {1043, 37680}, {1104, 4358}, {1210, 56520}, {1220, 5284}, {1279, 4696}, {1506, 24956}, {1722, 32929}, {1724, 16704}, {2899, 26228}, {3616, 33153}, {3617, 17277}, {3701, 20045}, {3744, 52353}, {3924, 4011}, {3995, 5262}, {4297, 25881}, {4427, 24443}, {4432, 4642}, {4671, 19851}, {4972, 25992}, {5016, 17279}, {5247, 29824}, {5248, 26030}, {5253, 25531}, {5259, 26115}, {5260, 32942}, {5267, 19847}, {5302, 46909}, {6651, 25248}, {6680, 25683}, {7191, 56311}, {7283, 17495}, {7747, 26079}, {8582, 35263}, {10449, 19742}, {10987, 25610}, {12572, 17184}, {12649, 26685}, {14997, 20018}, {16483, 20041}, {16817, 31025}, {17054, 32933}, {17123, 54331}, {17164, 32930}, {17165, 28082}, {24295, 27714}, {24589, 50054}, {25497, 26100}, {25904, 40998}, {26139, 28829}, {26223, 54392}, {26687, 27096}, {26770, 33854}, {27091, 31020}, {27538, 36565}, {27549, 36579}, {27558, 33158}, {27690, 37717}, {28997, 34489}, {30117, 56318}, {30174, 31023}, {46897, 51715}

X(56983) = reflection of X(17690) in X(17674)
X(56983) = complement of X(17690)
X(56983) = anticomplement of X(17674)
X(56983) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 405, 17588}, {2, 452, 17676}, {2, 964, 17589}, {2, 4195, 19284}, {2, 6872, 56782}, {2, 11319, 11115}, {2, 11320, 14953}, {2, 13735, 16397}, {2, 16865, 16347}, {2, 17539, 404}, {2, 17690, 17674}, {2, 17697, 11319}, {2, 26753, 27119}, {2, 50322, 443}, {21, 5047, 19243}, {21, 13741, 2}, {404, 13735, 17539}, {404, 17539, 16397}, {405, 5192, 2}, {405, 16286, 21}, {443, 4217, 50322}, {452, 37024, 2}, {964, 11108, 2}, {1010, 17536, 2}, {2478, 13742, 2}, {3924, 4011, 25253}, {4187, 56778, 2}, {4195, 19284, 11115}, {5047, 13740, 2}, {5084, 17526, 2}, {11319, 19284, 4195}, {11354, 16842, 16454}, {13741, 33309, 21}, {13747, 37051, 2}, {16454, 16842, 2}, {16905, 33046, 2}, {16916, 33817, 2}, {16918, 33816, 2}, {17534, 56766, 2}, {17540, 33839, 2}, {17541, 33821, 2}, {24983, 25963, 2}


X(56984) = X(1)X(17136)∩X(2)X(3)

Barycentrics    (a + b)*(a + c)*(3*a^3*b - 3*a^2*b^2 + a*b^3 - b^4 + 3*a^3*c - 2*a^2*b*c + 3*a*b^2*c - 3*a^2*c^2 + 3*a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :

X(56984) lies on these lines: {1, 17136}, {2, 3}, {8, 18206}, {72, 25244}, {81, 17784}, {86, 390}, {144, 3786}, {516, 17183}, {1002, 3189}, {1043, 1434}, {2550, 3286}, {3736, 4307}, {4278, 19843}, {4292, 20347}, {4294, 17201}, {4316, 19856}, {4317, 50316}, {4344, 54308}, {5208, 21454}, {5853, 18164}, {8025, 20075}, {9579, 30961}, {9778, 17185}, {9812, 17182}, {11037, 39734}, {16710, 49704}, {18185, 34607}, {20095, 26860}, {24547, 30271}, {27040, 50164}, {39587, 40773}
X(56984) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 52245, 2}, {21, 14005, 16053}, {443, 52241, 2}, {1010, 4229, 21}, {2550, 3286, 16713}, {11115, 14953, 21}, {14956, 35983, 2}


X(56985) = X(1)X(594)∩X(2)X(3)

Barycentrics    2*a^4 + 4*a^3*b + 5*a^2*b^2 + 4*a*b^3 + b^4 + 4*a^3*c + 10*a^2*b*c + 10*a*b^2*c + 4*b^3*c + 5*a^2*c^2 + 10*a*b*c^2 + 6*b^2*c^2 + 4*a*c^3 + 4*b*c^3 + c^4 : :

X(56985) lies on these lines: {1, 594}, {2, 3}, {10, 3745}, {39, 25068}, {72, 5750}, {141, 25526}, {583, 41229}, {956, 19866}, {992, 16466}, {1104, 19857}, {1125, 2901}, {1211, 43531}, {1213, 1724}, {1453, 1698}, {3555, 19868}, {3624, 3772}, {5224, 49716}, {5247, 19856}, {5263, 19865}, {5718, 24931}, {6703, 10479}, {7283, 17322}, {9534, 17381}, {16670, 51507}, {16817, 28653}, {17321, 50044}, {19684, 41014}, {25498, 50054}, {32782, 49743}, {37685, 49718}

X(56985) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21, 50409}, {2, 405, 17514}, {2, 964, 4205}, {2, 1010, 13728}, {2, 2049, 442}, {2, 4195, 37039}, {2, 14005, 8728}, {2, 16394, 51596}, {2, 16454, 56734}, {2, 16458, 17529}, {2, 16903, 11321}, {2, 16914, 16900}, {2, 17526, 16844}, {2, 17551, 50432}, {2, 17589, 4202}, {2, 37037, 405}, {2, 37153, 56780}, {2, 37176, 16343}, {2, 37462, 56736}, {2, 50407, 51593}, {2, 51590, 15670}, {2, 51591, 50410}, {2, 51603, 51672}, {2, 51604, 51671}, {2, 51605, 13745}, {2, 51668, 51598}, {2, 51672, 51679}, {2, 51673, 51599}, {405, 17514, 51679}, {405, 37037, 51672}, {405, 51603, 37037}, {427, 8728, 442}, {475, 7498, 37377}, {964, 4205, 11113}, {1010, 13728, 11112}, {1010, 37035, 384}, {4195, 37039, 13745}, {16343, 37176, 15670}, {16343, 51590, 37176}, {16456, 56735, 2}, {16901, 16912, 2}, {17514, 51672, 405}, {17529, 51667, 16458}, {19332, 56736, 37462}, {37039, 51605, 4195}, {50059, 50409, 21}, {50410, 51591, 17525}


X(56986) = X(1)X(346)∩X(2)X(3)

Barycentrics    5*a^4 + 4*a^3*b + 2*a^2*b^2 + 4*a*b^3 + b^4 + 4*a^3*c + 4*a^2*b*c + 4*a*b^2*c + 4*b^3*c + 2*a^2*c^2 + 4*a*b*c^2 + 6*b^2*c^2 + 4*a*c^3 + 4*b*c^3 + c^4 : :
X(56986) = 3 X[2] - 4 X[56735]

X(56986) lies on these lines: {1, 346}, {2, 3}, {8, 1453}, {10, 4339}, {58, 37655}, {86, 32830}, {387, 48863}, {391, 1724}, {894, 11036}, {939, 1220}, {1043, 3618}, {1104, 2345}, {1191, 5782}, {1265, 17354}, {1714, 43533}, {3189, 38047}, {3600, 28739}, {3616, 34937}, {3620, 20077}, {3622, 3995}, {3672, 7283}, {3945, 33953}, {4000, 50054}, {4052, 25055}, {4293, 19836}, {4294, 19784}, {4295, 19869}, {4299, 19881}, {4340, 4869}, {4352, 17175}, {4452, 50044}, {5234, 19868}, {5251, 19866}, {5261, 28776}, {5265, 52358}, {5266, 7172}, {5286, 24275}, {5436, 5750}, {5716, 32777}, {5807, 54433}, {7738, 17398}, {9534, 37681}, {10449, 37666}, {11523, 50115}, {12513, 48810}, {14986, 32942}, {16712, 32824}, {17280, 20009}, {20018, 50595}, {25992, 26040}, {26065, 54398}, {32000, 44698}, {33170, 36579}

X(56986) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3146, 16062}, {2, 3522, 56737}, {2, 4195, 20}, {2, 11106, 13725}, {2, 11115, 6904}, {2, 11319, 452}, {2, 17697, 5129}, {2, 32979, 33834}, {2, 33201, 16060}, {2, 37435, 4202}, {2, 50408, 4208}, {4, 17698, 2}, {20, 51675, 4195}, {405, 37037, 2}, {405, 51603, 17514}, {405, 51672, 37037}, {452, 6904, 6995}, {964, 5192, 11109}, {964, 17526, 2}, {1010, 13742, 2}, {2049, 16845, 2}, {4190, 6872, 20062}, {4202, 50061, 37435}, {4234, 56737, 3522}, {6856, 56779, 2}, {11354, 17698, 4}, {13725, 13735, 11106}, {13725, 13742, 17540}, {13725, 37036, 2}, {13735, 37036, 13725}, {13740, 37176, 2}, {13742, 51670, 1010}, {14005, 31259, 2}, {16062, 48817, 3146}, {16458, 17552, 2}, {16903, 16912, 2}, {17561, 50323, 2}, {37037, 51673, 405}, {51672, 51673, 2}


X(56987) = X(1)X(4082)∩X(2)X(3)

Barycentrics    5*a^4 + 4*a^3*b + 2*a^2*b^2 + 4*a*b^3 + b^4 + 4*a^3*c + 4*b^3*c + 2*a^2*c^2 + 6*b^2*c^2 + 4*a*c^3 + 4*b*c^3 + c^4 : :

X(56987) lies on these lines: {1, 4082}, {2, 3}, {8, 7290}, {346, 5262}, {938, 5294}, {962, 25904}, {1453, 34255}, {1724, 14552}, {2550, 25992}, {2899, 29634}, {3616, 8055}, {3622, 31035}, {4340, 48866}, {5265, 26094}, {5281, 26030}, {5304, 27040}, {5716, 17279}, {5749, 54392}, {11024, 25967}, {11036, 26223}, {11518, 50115}, {19846, 31418}, {32836, 33955}, {33166, 36579}, {37549, 54389}, {49745, 53665}

X(56987) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3146, 4202}, {2, 4195, 6904}, {2, 11115, 17580}, {2, 11319, 20}, {2, 16909, 33181}, {2, 17576, 56737}, {2, 17697, 452}, {2, 32979, 16906}, {2, 33201, 33830}, {2, 37435, 33833}, {2, 50408, 37436}, {2, 56781, 10303}, {2049, 17552, 2}, {3090, 56779, 2}, {4202, 4217, 3146}, {5084, 17698, 2}, {5192, 17526, 2}, {11108, 37037, 2}, {13735, 56737, 17576}, {13740, 13742, 2}, {13741, 37176, 2}, {16907, 32961, 2}, {17580, 51675, 11115}, {33833, 48817, 37435}, {50241, 56736, 51665}


X(56988) = X(1)X(4699)∩X(2)X(3)

Barycentrics    2*a^4 + 3*a^3*b + 4*a^2*b^2 + 3*a*b^3 + 3*a^3*c + 11*a^2*b*c + 11*a*b^2*c + 3*b^3*c + 4*a^2*c^2 + 11*a*b*c^2 + 6*b^2*c^2 + 3*a*c^3 + 3*b*c^3 : :

X(56988) lies on these lines: {1, 4699}, {2, 3}, {10, 37604}, {86, 20018}, {145, 41821}, {750, 5247}, {966, 20077}, {1043, 15668}, {1104, 4751}, {1265, 4470}, {1453, 16815}, {1654, 4340}, {3616, 32943}, {3617, 14996}, {3634, 4257}, {3739, 19851}, {4292, 17248}, {4658, 48850}, {4687, 50054}, {4704, 50044}, {5258, 19853}, {5361, 46933}, {7283, 27268}, {9534, 17379}, {10436, 11523}, {16830, 24621}, {16994, 19761}, {19765, 25507}, {19859, 38000}, {19877, 32918}, {26044, 54429}, {28604, 54433}, {31198, 50622}

X(56988) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 377, 37164}, {2, 1010, 4195}, {2, 16454, 56768}, {2, 17548, 19333}, {2, 19284, 19278}, {2, 19337, 4188}, {2, 51668, 51594}, {2, 51674, 405}, {3, 14007, 2}, {20, 17688, 4195}, {405, 1010, 51674}, {405, 51674, 4195}, {443, 13725, 33829}, {474, 19280, 2}, {1010, 16458, 2}, {1010, 37035, 16394}, {1010, 51666, 16458}, {2049, 19332, 56766}, {2049, 56766, 2}, {9534, 25526, 17379}, {11110, 16456, 2}, {13740, 56767, 2}, {14005, 16454, 2}, {16342, 17551, 2}, {16456, 19276, 11110}, {16458, 51602, 1010}, {17529, 37036, 2}, {19277, 56767, 13740}, {51602, 51666, 2}, {51604, 51671, 2}


X(56989) = X(1)X(4704)∩X(2)X(3)

Barycentrics    4*a^4 + a^3*b - 2*a^2*b^2 + a*b^3 + a^3*c - 3*a^2*b*c - 3*a*b^2*c + b^3*c - 2*a^2*c^2 - 3*a*b*c^2 + 2*b^2*c^2 + a*c^3 + b*c^3 : :

X(56989) lies on these lines: {1, 4704}, {2, 3}, {8, 8616}, {35, 26029}, {56, 26111}, {145, 3915}, {165, 25965}, {192, 1104}, {238, 20036}, {346, 4426}, {894, 5436}, {983, 27549}, {1001, 20146}, {1043, 17349}, {1265, 4473}, {1278, 7283}, {1279, 17480}, {1453, 4393}, {1724, 20018}, {2899, 37764}, {3161, 54329}, {3952, 56276}, {4313, 26685}, {4352, 33955}, {4383, 52352}, {4699, 50054}, {4772, 16817}, {4821, 50044}, {4903, 8669}, {5204, 25531}, {5232, 33954}, {5267, 25492}, {7288, 26139}, {11036, 31300}, {16485, 25269}, {16948, 37684}, {16995, 19761}, {17238, 49728}, {17375, 20077}, {26103, 37608}, {37723, 56523}, {50582, 56078}

X(56989) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4195, 51674}, {21, 5192, 19278}, {21, 11346, 17697}, {21, 17697, 2}, {405, 4195, 2}, {405, 13735, 4195}, {405, 16394, 37035}, {405, 16458, 51595}, {405, 17524, 19238}, {4201, 13742, 2}, {4234, 11108, 56768}, {5192, 19278, 2}, {7283, 19851, 1278}, {11108, 56768, 2}, {11111, 13742, 4201}, {11115, 16859, 2}, {11319, 16865, 2}, {11354, 16866, 11110}, {13740, 16418, 56769}, {13740, 56769, 2}, {16058, 19532, 21}, {16845, 26051, 2}, {16845, 48817, 26051}, {16916, 17696, 2}, {17526, 26117, 2}, {17526, 31156, 26117}, {17570, 19284, 2}, {17691, 33821, 2}, {17697, 19278, 5192}, {17698, 37164, 2}, {17698, 48814, 37164}, {17698, 50243, 48814}, {22267, 33817, 2}, {37024, 37339, 2}, {37024, 50742, 37339}, {37162, 56781, 2}, {51594, 51672, 2}


X(56990) = X(1)X(4991)∩X(2)X(3)

Barycentrics    2*a^4 - a^3*b - 4*a^2*b^2 - a*b^3 - a^3*c - 9*a^2*b*c - 9*a*b^2*c - b^3*c - 4*a^2*c^2 - 9*a*b*c^2 - 2*b^2*c^2 - a*c^3 - b*c^3 : :

X(56990) lies on these lines: {1, 4991}, {2, 3}, {37, 19851}, {192, 16817}, {748, 3616}, {1043, 17259}, {1104, 4687}, {1453, 16826}, {1724, 17379}, {3217, 5296}, {3986, 54329}, {4292, 27147}, {4648, 20077}, {4699, 7283}, {4751, 50054}, {4772, 50044}, {5251, 27254}, {5259, 19853}, {5550, 32944}, {9710, 49746}, {16993, 19761}, {17234, 49728}, {17277, 20018}, {17375, 49716}, {19783, 37681}, {26038, 37573}, {28620, 48867}

X(56990) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21, 56768}, {2, 405, 4195}, {2, 452, 26051}, {2, 13736, 4201}, {2, 16859, 17697}, {2, 16931, 4209}, {2, 17544, 11319}, {2, 17588, 19278}, {2, 37314, 37164}, {2, 51674, 16458}, {405, 16458, 13735}, {405, 17682, 11106}, {405, 37035, 2}, {405, 51676, 37035}, {2049, 16860, 33309}, {4201, 13736, 51681}, {5047, 17557, 5192}, {5192, 17557, 2}, {11108, 11110, 2}, {11108, 11357, 11110}, {13725, 17552, 2}, {13735, 16458, 51674}, {13735, 51674, 4195}, {13740, 16844, 2}, {13741, 16343, 2}, {13745, 17590, 33833}, {16062, 50205, 2}, {16342, 17536, 2}, {16343, 17542, 13741}, {16817, 54287, 192}, {16842, 19270, 2}, {16844, 16857, 13740}, {16866, 56767, 4234}, {16913, 51673, 4195}, {16914, 37037, 4195}, {16929, 33817, 2}, {17514, 37036, 2}, {17588, 19278, 56769}, {17590, 33833, 2}, {31259, 37314, 2}, {37035, 51595, 405}, {51595, 51676, 2}


X(56991) = X(1)X(4732)∩X(2)X(3)

Barycentrics    a^4 + 3*a^3*b + 5*a^2*b^2 + 3*a*b^3 + 3*a^3*c + 13*a^2*b*c + 13*a*b^2*c + 3*b^3*c + 5*a^2*c^2 + 13*a*b*c^2 + 6*b^2*c^2 + 3*a*c^3 + 3*b*c^3 : :

X(56991) lies on these lines: {1, 4732}, {2, 3}, {10, 4038}, {386, 25507}, {1125, 33132}, {1698, 14829}, {3634, 5247}, {3826, 19865}, {4256, 19862}, {4698, 7283}, {5258, 16828}, {5263, 25512}, {9534, 15668}, {9780, 37633}, {12513, 19853}, {16817, 31238}, {17277, 25526}, {27268, 50044}

X(56991) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 443, 37039}, {2, 1010, 37035}, {2, 2049, 13741}, {2, 4188, 19334}, {2, 4201, 17514}, {2, 14005, 13740}, {2, 14007, 19280}, {2, 16454, 11110}, {2, 16458, 1010}, {2, 17589, 5047}, {2, 19278, 16457}, {2, 19284, 17557}, {2, 33829, 16900}, {2, 37153, 52258}, {2, 51602, 51595}, {2, 51666, 13735}, {2, 51671, 51680}, {2, 56766, 19270}, {2, 56768, 16343}, {1010, 16458, 51666}, {1010, 37035, 13735}, {1010, 51595, 4195}, {4195, 51602, 1010}, {4201, 17514, 51680}, {16456, 56767, 2}, {17514, 51671, 4201}, {17524, 17589, 1010}, {37035, 51666, 1010}


X(56992) = X(1)X(4681)∩X(2)X(3)

Barycentrics    5*a^4 + 2*a^3*b - a^2*b^2 + 2*a*b^3 + 2*a^3*c + 2*b^3*c - a^2*c^2 + 4*b^2*c^2 + 2*a*c^3 + 2*b*c^3 : :
X(56992) = 3 X[2] - 5 X[17526], 6 X[2] - 5 X[56780]

X(56992) lies on these lines: {1, 4681}, {2, 3}, {355, 35263}, {1104, 4686}, {1384, 27040}, {1975, 33955}, {3244, 37542}, {3632, 5247}, {3644, 7283}, {3746, 48832}, {4330, 48829}, {4676, 5730}, {4739, 50054}, {5258, 48805}, {15888, 48833}, {19765, 48866}, {26770, 43136}

X(56992) = reflection of X(56780) in X(17526)
X(56992) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17571, 19289}, {405, 4195, 16394}, {405, 16394, 16458}, {405, 16458, 51676}, {405, 51602, 37035}, {964, 16418, 16343}, {4195, 13735, 405}, {4234, 17697, 474}, {5192, 17539, 3}, {6872, 17698, 50056}, {11106, 37037, 13745}, {11106, 51675, 37037}, {11108, 11115, 19290}, {11115, 11346, 11108}, {11319, 17539, 5192}, {16859, 51669, 56767}, {37035, 51674, 51602}, {50059, 50243, 37314}


X(56993) = X(1)X(4698)∩X(2)X(3)

Barycentrics    a^4 - 2*a^3*b - 5*a^2*b^2 - 2*a*b^3 - 2*a^3*c - 12*a^2*b*c - 12*a*b^2*c - 2*b^3*c - 5*a^2*c^2 - 12*a*b*c^2 - 4*b^2*c^2 - 2*a*c^3 - 2*b*c^3 : :

X(56993) lies on these lines: {1, 4698}, {2, 3}, {6, 28619}, {218, 5257}, {958, 25512}, {1001, 16828}, {1125, 4104}, {1724, 15668}, {3295, 19874}, {3624, 5247}, {3739, 50044}, {3913, 19870}, {4309, 49725}, {4423, 19858}, {4648, 49716}, {4658, 19723}, {4687, 16817}, {4751, 7283}, {4755, 50072}, {8167, 19863}, {10479, 19744}, {17279, 19857}, {19722, 28620}, {19853, 37502}, {41812, 41872}, {46897, 51572}

X(56993) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21, 56767}, {2, 405, 16458}, {2, 964, 16456}, {2, 4205, 56780}, {2, 5047, 2049}, {2, 5051, 50726}, {2, 11110, 474}, {2, 11357, 19290}, {2, 13725, 17529}, {2, 16062, 50207}, {2, 16342, 16408}, {2, 16844, 16343}, {2, 16859, 14005}, {2, 16927, 33035}, {2, 17554, 37037}, {2, 17557, 19273}, {2, 17697, 14007}, {2, 19270, 16862}, {2, 31259, 17698}, {2, 37035, 405}, {2, 37314, 8728}, {2, 50202, 51590}, {2, 51595, 51602}, {2, 51599, 51598}, {2, 51676, 16394}, {21, 56767, 19290}, {404, 19289, 16402}, {405, 474, 17524}, {405, 16458, 16394}, {405, 37035, 51676}, {405, 51602, 4195}, {474, 11110, 16351}, {3739, 54287, 50044}, {4195, 51595, 405}, {4205, 56780, 51593}, {5192, 19278, 16058}, {8728, 37314, 50056}, {11357, 56767, 21}, {14005, 16859, 11354}, {16370, 56766, 19331}, {16456, 16857, 964}, {16457, 16853, 2}, {16458, 51676, 405}, {16842, 19239, 11108}, {16844, 19273, 17557}, {16860, 19277, 11319}, {16866, 19332, 11115}, {17514, 17590, 2}, {17529, 51679, 13725}, {17554, 17682, 405}, {17557, 19273, 16343}, {17571, 19284, 16401}


X(56994) = X(1)X(315)∩X(2)X(3)

Barycentrics    a^6 - a^4*b^2 - 2*a^3*b^3 - 3*a^2*b^4 - 2*a*b^5 - b^6 - 2*a^4*b*c - 4*a^3*b^2*c - 4*a^2*b^3*c - 4*a*b^4*c - 2*b^5*c - a^4*c^2 - 4*a^3*b*c^2 - 4*a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 - 2*a^3*c^3 - 4*a^2*b*c^3 - 2*a*b^2*c^3 - 3*a^2*c^4 - 4*a*b*c^4 - b^2*c^4 - 2*a*c^5 - 2*b*c^5 - c^6 : :

X(56994) lies on these lines: {1, 315}, {2, 3}, {75, 23690}, {141, 19768}, {325, 19758}, {1724, 7803}, {4362, 13161}, {4388, 19785}, {5015, 33088}, {5254, 49728}, {5309, 50220}, {7283, 9598}, {7748, 50164}, {7750, 19761}, {7754, 49716}, {11648, 50224}, {16825, 23537}, {19786, 26098}, {19810, 26034}, {48894, 54393}

X(56994) = anticomplement of X(33745)
X(56994) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 13725, 1008}, {21, 33736, 56765}, {5051, 19271, 2}, {13723, 37025, 2}, {16062, 37100, 2}


X(56995) = X(1)X(3620)∩X(2)X(3)

Barycentrics    a^4 - 6*a^3*b - 10*a^2*b^2 - 6*a*b^3 - 3*b^4 - 6*a^3*c - 14*a^2*b*c - 14*a*b^2*c - 6*b^3*c - 10*a^2*c^2 - 14*a*b*c^2 - 6*b^2*c^2 - 6*a*c^3 - 6*b*c^3 - 3*c^4 : :

X(56995) lies on these lines: {1, 3620}, {2, 3}, {69, 19783}, {193, 19766}, {1265, 4364}, {3618, 49728}, {4026, 12513}, {4293, 19865}, {4357, 11523}, {4869, 25499}, {5232, 20018}, {11036, 17236}, {17321, 20009}, {30561, 46934}, {33168, 46933}, {40330, 48894}, {48837, 52782}, {49716, 51170}

X(56995) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13725, 13736}, {2, 17676, 50408}, {2, 50431, 2049}, {443, 37039, 2}, {2049, 48813, 50431}, {4205, 56737, 2}, {11359, 50409, 37153}, {13725, 13728, 2}, {13725, 13742, 13745}, {13728, 51677, 13725}, {37153, 50409, 2}, {51598, 51668, 2}


X(56996) = X(1)X(17267)∩X(2)X(3)

Barycentrics    3*a^4 + 4*a^3*b + 3*a^2*b^2 + 4*a*b^3 + 2*b^4 + 4*a^3*c + 2*a^2*b*c + 2*a*b^2*c + 4*b^3*c + 3*a^2*c^2 + 2*a*b*c^2 + 4*b^2*c^2 + 4*a*c^3 + 4*b*c^3 + 2*c^4 : :

X(56996) lies on these lines: {1, 17267}, {2, 3}, {956, 19836}, {958, 19881}, {1125, 32920}, {1724, 3763}, {3619, 49716}, {3624, 52541}, {4309, 48821}, {5283, 39798}, {5730, 19869}, {5750, 56536}, {7283, 17370}, {7859, 19768}, {7889, 19761}, {9657, 48826}, {16483, 19879}, {16706, 50044}, {16817, 17371}, {17265, 25526}, {17327, 25497}, {17384, 54287}, {19782, 38317}, {49728, 51128}

X(56996) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21, 56736}, {2, 2049, 50207}, {2, 13740, 56780}, {2, 13742, 13728}, {2, 17526, 56734}, {2, 17552, 17514}, {2, 17698, 474}, {2, 25963, 19520}, {2, 31259, 50409}, {2, 37036, 16458}, {2, 37037, 17529}, {405, 474, 20833}, {4202, 11354, 50239}, {11319, 11359, 50242}, {13728, 13742, 405}, {13740, 56780, 17532}, {16298, 50717, 37058}, {16458, 37036, 51603}, {17526, 56734, 16370}, {17529, 37037, 51602}, {51553, 51672, 405}


X(56997) = X(2)X(3)∩X(10)X(9657)

Barycentrics    3*a^4 - a^2*b^2 - 2*b^4 + 6*a^2*b*c + 6*a*b^2*c - a^2*c^2 + 6*a*b*c^2 + 4*b^2*c^2 - 2*c^4 : :
X(56997) = 6 X[2] - 5 X[16842], 3 X[2] - 5 X[37462], 11 X[3855] - 15 X[6896]

X(56997) lies on these lines: {2, 3}, {10, 9657}, {100, 31480}, {392, 9589}, {956, 4317}, {958, 4325}, {960, 4338}, {1001, 4330}, {1125, 9670}, {1376, 37719}, {1478, 9711}, {2975, 31494}, {3419, 12436}, {3555, 3632}, {3626, 4031}, {3631, 5820}, {3634, 12943}, {3753, 5881}, {3812, 37721}, {3824, 4855}, {3826, 4299}, {3841, 5204}, {3876, 18541}, {3916, 31446}, {3925, 31458}, {4002, 9613}, {4314, 11376}, {4333, 15254}, {4413, 9656}, {5123, 5131}, {5275, 7765}, {5439, 37723}, {5550, 9668}, {5687, 15888}, {5730, 5880}, {5734, 20330}, {5790, 26877}, {7354, 34501}, {7373, 33110}, {9624, 17614}, {9655, 9780}, {9708, 26060}, {9782, 11037}, {10085, 37714}, {10609, 28629}, {10827, 37524}, {12953, 19862}, {17647, 37724}, {17757, 31410}, {24390, 31420}, {25466, 31452}, {25524, 37720}, {26062, 38058}, {31450, 37661}, {41862, 45036}, {43193, 54378}, {43194, 54379}

X(56997) = reflection of X(16842) in X(37462)
X(56997) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 550, 19526}, {2, 17563, 19537}, {2, 50241, 17545}, {20, 443, 17529}, {20, 17529, 405}, {377, 474, 17532}, {442, 6904, 16371}, {442, 17583, 631}, {443, 11112, 405}, {631, 6904, 17583}, {631, 17583, 16371}, {2475, 16408, 17556}, {4190, 8728, 16370}, {4201, 16458, 51677}, {4317, 9710, 956}, {6175, 17572, 1656}, {6897, 37281, 7580}, {11108, 17579, 50242}, {11111, 17590, 405}, {11112, 17529, 20}, {11113, 17582, 16854}, {16371, 50713, 442}, {16454, 17690, 11359}, {16862, 50397, 4}, {17563, 50238, 2}, {17567, 37161, 17530}, {17582, 37435, 11113}


X(56998) = X(2)X(3)∩X(79)X(56177)

Barycentrics    5*a^4 - 3*a^2*b^2 - 2*b^4 + 2*a^2*b*c + 2*a*b^2*c - 3*a^2*c^2 + 2*a*b*c^2 + 4*b^2*c^2 - 2*c^4 : :
X(56998) = 6 X[2] - 7 X[474], 9 X[2] - 7 X[2478], 3 X[2] - 7 X[4190], 15 X[2] - 14 X[17527], 9 X[2] - 14 X[17563], 3 X[474] - 2 X[2478], 5 X[474] - 4 X[17527], 3 X[474] - 4 X[17563], X[2478] - 3 X[4190], 5 X[2478] - 6 X[17527], 5 X[4190] - 2 X[17527], 3 X[4190] - 2 X[17563], 7 X[6899] - 11 X[21735], 3 X[17527] - 5 X[17563]

X(56998) lies on these lines: {2, 3}, {79, 56177}, {100, 9655}, {484, 4668}, {528, 4317}, {956, 4299}, {958, 4316}, {960, 4333}, {1001, 4324}, {1376, 10483}, {1770, 5730}, {2099, 3635}, {2932, 13272}, {3555, 3633}, {3625, 36972}, {3746, 34626}, {3870, 31776}, {4287, 16783}, {4292, 12437}, {4295, 10609}, {4314, 34471}, {4325, 12513}, {4351, 9640}, {4421, 5270}, {4857, 40726}, {4881, 18493}, {5036, 16552}, {5253, 9668}, {5258, 34620}, {5275, 7756}, {5277, 44526}, {5283, 44519}, {5303, 31493}, {5362, 42131}, {5367, 42130}, {5440, 9579}, {5554, 28186}, {5687, 7354}, {5692, 17653}, {5734, 50843}, {6224, 25416}, {6767, 20066}, {8227, 35271}, {8582, 28172}, {8715, 9657}, {9671, 10199}, {11015, 15934}, {11929, 33814}, {12943, 25440}, {17614, 41869}, {17616, 37585}, {18517, 38761}, {18541, 34772}, {18544, 38602}, {19861, 28146}, {22793, 35262}, {24466, 26332}, {31473, 42266}, {34706, 37720}

X(56998) = reflection of X(i) in X(j) for these {i,j}: {474, 4190}, {2478, 17563}
X(56998) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1657, 50242}, {3, 17579, 50239}, {3, 50239, 17532}, {4, 37267, 13747}, {20, 11112, 405}, {376, 442, 19535}, {376, 37435, 442}, {377, 550, 16370}, {382, 404, 17556}, {442, 37435, 50397}, {443, 11106, 17590}, {443, 11111, 17554}, {443, 17554, 17529}, {548, 50240, 2}, {2476, 36004, 3}, {2478, 4190, 17563}, {2478, 17563, 474}, {3522, 7483, 19704}, {3528, 5177, 37298}, {3529, 6904, 11113}, {3830, 17573, 4193}, {3853, 17564, 5187}, {4189, 36005, 15696}, {4197, 37299, 17571}, {5073, 16417, 5046}, {6904, 11113, 16862}, {6934, 31775, 7580}, {6948, 37468, 37022}, {10304, 50725, 6856}, {11106, 17590, 405}, {11108, 15681, 15680}, {11111, 17529, 405}, {13747, 37267, 16371}, {15696, 17528, 4189}, {16408, 17800, 11114}, {17577, 37307, 3526}, {17579, 37256, 3}, {19535, 50397, 442}, {37462, 50241, 17542}


X(56999) = X(1)X(7613)∩X(2)X(3)

Barycentrics    5*a^4 - 2*a^2*b^2 - 3*b^4 + 8*a^2*b*c + 8*a*b^2*c - 2*a^2*c^2 + 8*a*b*c^2 + 6*b^2*c^2 - 3*c^4 : :
X(56999) = 9 X[2] - 8 X[16853], 3 X[2] - 4 X[17582], 3 X[5129] - 4 X[16853], 2 X[16853] - 3 X[17582]

X(56999) lies on these lines: {1, 7613}, {2, 3}, {7, 11523}, {8, 3339}, {10, 53056}, {72, 10861}, {142, 4313}, {144, 4292}, {145, 8000}, {515, 11024}, {938, 12436}, {942, 20008}, {958, 40333}, {1043, 4869}, {1155, 18231}, {1219, 32850}, {1265, 4454}, {1376, 5261}, {2550, 3600}, {2886, 5265}, {2996, 16999}, {3189, 11038}, {3218, 3617}, {3306, 5175}, {3555, 3621}, {3616, 4314}, {3622, 27186}, {3646, 28150}, {4293, 5258}, {4297, 38052}, {4299, 19855}, {4308, 30379}, {4312, 12447}, {4339, 24178}, {4355, 6743}, {4413, 5229}, {4452, 20009}, {4461, 54433}, {4652, 5234}, {4900, 20050}, {5226, 5438}, {5274, 25524}, {5281, 25466}, {5728, 9859}, {5731, 38123}, {5756, 9534}, {5836, 9850}, {5853, 10390}, {6173, 12437}, {7354, 26040}, {8236, 51723}, {8583, 9812}, {9579, 18228}, {9612, 46873}, {9710, 34610}, {9797, 12577}, {10914, 11035}, {11518, 12536}, {12573, 42015}, {12632, 34612}, {12651, 19861}, {12848, 45039}, {14829, 43533}, {17063, 28092}, {17768, 45085}, {18221, 44669}, {20013, 26842}, {24982, 54448}, {26062, 46933}, {31420, 45700}, {35262, 46934}, {37537, 37659}, {37544, 41228}, {41826, 43983}
X(56999) = reflection of X(5129) in X(17582)
X(56999) = anticomplement of X(5129)
X(56999) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 11106}, {2, 377, 37161}, {2, 2475, 3832}, {2, 3854, 4193}, {2, 4190, 3522}, {2, 5059, 452}, {2, 6871, 15022}, {2, 17578, 2478}, {2, 17693, 33205}, {2, 32997, 33051}, {2, 33019, 33050}, {2, 33823, 33025}, {2, 37256, 17576}, {2, 37267, 15717}, {2, 37435, 3146}, {2, 50689, 6919}, {2, 50693, 21}, {2, 50725, 4}, {2, 54097, 33057}, {3, 4208, 2}, {4, 17580, 2}, {4, 50725, 50737}, {20, 443, 2}, {20, 11106, 50738}, {20, 17554, 11111}, {21, 37436, 2}, {376, 8728, 17558}, {377, 404, 5177}, {377, 6904, 2}, {377, 6921, 6175}, {404, 5177, 2}, {405, 6835, 5187}, {442, 3523, 2}, {443, 11111, 17529}, {443, 11112, 20}, {452, 17579, 5059}, {452, 37462, 2}, {474, 3091, 2}, {548, 50726, 50739}, {550, 16845, 50742}, {1376, 5261, 27525}, {4189, 50237, 2}, {4190, 50237, 4189}, {4413, 5229, 8165}, {5056, 17567, 2}, {5084, 50239, 3543}, {5129, 17582, 2}, {5177, 6904, 404}, {6856, 10303, 2}, {6856, 16371, 10303}, {6871, 17572, 2}, {6897, 50701, 37108}, {6901, 6955, 6847}, {6904, 37436, 37270}, {6916, 37281, 50700}, {6919, 17531, 2}, {7486, 13747, 2}, {7791, 33039, 2}, {7824, 33037, 2}, {8728, 17558, 2}, {10304, 44217, 2}, {11111, 17529, 17554}, {11321, 33202, 2}, {16408, 50240, 4}, {16917, 32974, 2}, {17528, 17563, 631}, {17529, 17554, 2}, {17532, 17567, 5056}, {17536, 17579, 50244}, {17536, 50244, 452}, {17565, 33058, 2}, {17579, 37462, 452}, {17670, 33198, 2}, {17694, 33199, 2}, {26051, 37339, 2}, {32972, 33054, 2}, {32990, 33028, 2}, {37462, 50244, 17536}


X(57000) = X(2)X(3)∩X(145)X(24470)

Barycentrics    7*a^4 - 4*a^2*b^2 - 3*b^4 + 4*a^2*b*c + 4*a*b^2*c - 4*a^2*c^2 + 4*a*b*c^2 + 6*b^2*c^2 - 3*c^4 : :
X(57000) = 6 X[2] - 5 X[5084], 3 X[2] - 5 X[6904], 9 X[2] - 10 X[16408], 21 X[2] - 20 X[51559], 3 X[5084] - 4 X[16408], 7 X[5084] - 8 X[51559], 3 X[6904] - 2 X[16408], 7 X[6904] - 4 X[51559], 7 X[16408] - 6 X[51559]

X(57000) lies on these lines: {2, 3}, {145, 24470}, {388, 3256}, {1320, 5551}, {2093, 3632}, {2550, 4299}, {2551, 10483}, {3244, 3340}, {3421, 7354}, {3474, 17647}, {3555, 14923}, {3626, 5128}, {3636, 4314}, {3753, 31805}, {4292, 11523}, {4293, 5082}, {4305, 5880}, {4325, 34610}, {4330, 47357}, {4333, 5698}, {4855, 5714}, {5175, 37582}, {5204, 31418}, {5229, 25440}, {5550, 35271}, {6174, 9656}, {7080, 9655}, {8583, 28150}, {9647, 31413}, {9657, 34619}, {9710, 34620}, {9812, 17614}, {9859, 14054}, {10597, 13199}, {10599, 34474}, {11037, 20057}, {12536, 24473}, {15326, 19843}, {17784, 18990}, {18480, 26062}, {31473, 43408}

X(57000) = reflection of X(5084) in X(6904)
X(57000) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 50240, 5177}, {20, 443, 11111}, {20, 11112, 443}, {20, 17554, 50738}, {376, 377, 6857}, {377, 37256, 376}, {382, 17563, 2}, {404, 17579, 31295}, {404, 31295, 4}, {443, 11111, 17552}, {546, 17573, 2}, {550, 50238, 17571}, {2475, 37307, 6933}, {3523, 50725, 17532}, {3534, 8728, 17576}, {3627, 16417, 6919}, {4190, 17579, 4}, {4190, 31295, 404}, {4190, 37435, 35990}, {4201, 51668, 37037}, {4208, 50693, 16370}, {5059, 17580, 11113}, {5073, 19706, 17527}, {5129, 15683, 50242}, {5177, 37435, 50240}, {6871, 13587, 3525}, {6910, 36004, 21735}, {6933, 37307, 631}, {7483, 50397, 37161}, {8728, 17576, 17561}, {10304, 37161, 7483}, {11001, 17582, 6872}, {17559, 49138, 11114}, {17571, 50238, 2}, {21735, 50741, 6910}


X(57001) = X(2)X(3)∩X(956)X(4325)

Barycentrics    9*a^4 - 5*a^2*b^2 - 4*b^4 + 6*a^2*b*c + 6*a*b^2*c - 5*a^2*c^2 + 6*a*b*c^2 + 8*b^2*c^2 - 4*c^4 : :
X(57001) = 12 X[2] - 13 X[16862]

X(57001) lies on these lines: {2, 3}, {956, 4325}, {4298, 37738}, {4299, 9710}, {4338, 5730}, {4816, 37708}, {5687, 9657}, {9647, 31486}, {9656, 25440}, {9802, 11037}, {15326, 31458}

X(57001) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4190, 50239, 16371}, {4197, 15696, 16370}, {4197, 37256, 15696}, {5046, 19706, 474}, {6904, 33703, 17575}, {17563, 31295, 17556}, {37299, 50726, 19539}


X(57002) = X(1)X(3255)∩X(2)X(3)

Barycentrics    4*a^4 - 3*a^2*b^2 - b^4 - 2*a^2*b*c - 2*a*b^2*c - 3*a^2*c^2 - 2*a*b*c^2 + 2*b^2*c^2 - c^4 : :
X(57002) = 3 X[2] - 5 X[21], 6 X[2] - 5 X[442], 9 X[2] - 5 X[2475], 7 X[2] - 5 X[6175], 9 X[2] - 10 X[6675], 4 X[2] - 5 X[15670], 13 X[2] - 15 X[15671], 11 X[2] - 15 X[15672], 7 X[2] - 10 X[15673], 21 X[2] - 25 X[15674], 19 X[2] - 25 X[15675], 27 X[2] - 35 X[15676], X[2] - 5 X[15677], X[2] + 5 X[15678], 11 X[2] - 5 X[15679], and many more

X(57002) lies on these lines: {1, 3255}, {2, 3}, {10, 15338}, {11, 5267}, {35, 17757}, {65, 41549}, {72, 4304}, {79, 5426}, {119, 33862}, {145, 10386}, {191, 2136}, {355, 35258}, {392, 4297}, {528, 4330}, {529, 3746}, {535, 15888}, {758, 3057}, {946, 30264}, {950, 3916}, {952, 19919}, {956, 4294}, {958, 4302}, {960, 10609}, {993, 6284}, {1001, 4299}, {1043, 49716}, {1125, 15326}, {1145, 3626}, {1319, 3636}, {1329, 5010}, {1330, 52352}, {1621, 18990}, {1834, 52680}, {2646, 51409}, {2771, 24981}, {2829, 10902}, {2975, 15171}, {3058, 8666}, {3193, 51340}, {3218, 12433}, {3219, 11015}, {3241, 10032}, {3419, 31424}, {3576, 49178}, {3583, 4999}, {3585, 6690}, {3600, 16133}, {3612, 16154}, {3629, 37516}, {3648, 15174}, {3683, 17647}, {3712, 36974}, {3753, 31730}, {3814, 52793}, {3816, 7280}, {3877, 34773}, {3897, 22791}, {4031, 37566}, {4268, 16783}, {4271, 16552}, {4305, 5698}, {4309, 12513}, {4316, 5259}, {4317, 34620}, {4324, 5251}, {4333, 5880}, {4640, 10572}, {4652, 5722}, {4653, 49745}, {4658, 49739}, {4720, 49718}, {5057, 37737}, {5180, 51683}, {5234, 18253}, {5248, 7354}, {5250, 16138}, {5303, 15325}, {5362, 42122}, {5367, 42123}, {5427, 34880}, {5440, 12572}, {5563, 49736}, {5731, 12246}, {6161, 28217}, {6246, 6684}, {6329, 51729}, {6734, 12690}, {6767, 20076}, {6781, 16589}, {7700, 31672}, {7701, 10864}, {7747, 37661}, {7802, 37664}, {7987, 52860}, {8715, 34606}, {9668, 10527}, {9670, 45700}, {10058, 13272}, {10106, 41546}, {10164, 17619}, {10167, 40249}, {10198, 12943}, {10222, 51112}, {10483, 25466}, {11037, 14450}, {11236, 31452}, {11246, 30143}, {11263, 15808}, {11684, 20050}, {12120, 12651}, {12611, 13624}, {12953, 26363}, {13257, 33597}, {15172, 54391}, {16006, 39778}, {16118, 26725}, {17194, 52524}, {17614, 40998}, {18480, 38058}, {18857, 49107}, {21616, 37600}, {22793, 24541}, {24387, 31157}, {24929, 41571}, {24982, 31663}, {24987, 28160}, {26015, 31795}, {26543, 29012}, {29150, 48329}, {30513, 35251}, {31140, 31458}, {31272, 32633}, {31473, 42261}, {31660, 48698}, {31938, 51379}, {32760, 33961}, {35023, 35204}, {35342, 38930}, {37563, 38455}, {37730, 56288}, {37817, 50065}, {37829, 38098}, {40908, 47287}, {42087, 54378}, {42088, 54379}, {48903, 54356}, {50588, 50594}

X(57002) = midpoint of X(i) and X(j) for these {i,j}: {21, 15680}, {191, 5441}, {3241, 10032}, {3648, 34195}, {4330, 5258}, {15677, 15678}, {16138, 18481}
X(57002) = reflection of X(i) in X(j) for these {i,j}: {79, 11281}, {442, 21}, {2475, 6675}, {3649, 35016}, {5499, 12104}, {6175, 15673}, {6841, 31649}, {14450, 16137}, {15670, 17525}, {17525, 15677}, {21677, 3647}, {34195, 15174}, {37230, 16617}, {37401, 5428}, {37447, 13743}, {41571, 24929}, {47033, 18253}
X(57002) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3528, 19537}, {2, 3529, 50239}, {2, 50244, 382}, {3, 2478, 13747}, {3, 6872, 11113}, {3, 11113, 4187}, {3, 37290, 1532}, {4, 7483, 17530}, {4, 16370, 7483}, {4, 17576, 16370}, {5, 4189, 37298}, {20, 405, 11112}, {20, 6912, 20420}, {20, 11106, 443}, {20, 11111, 405}, {21, 442, 15670}, {21, 2475, 6675}, {21, 3651, 37308}, {21, 6175, 15674}, {21, 15674, 15673}, {21, 15678, 15680}, {21, 31254, 15676}, {21, 35989, 3}, {79, 5426, 11281}, {140, 5046, 17533}, {376, 452, 474}, {376, 17559, 37267}, {382, 17571, 2}, {404, 37299, 548}, {405, 443, 17590}, {405, 11112, 17529}, {442, 17525, 21}, {443, 11106, 405}, {443, 11111, 11106}, {443, 17590, 17529}, {452, 37267, 17559}, {550, 50241, 2}, {993, 6284, 24390}, {1010, 13745, 17514}, {1010, 17514, 51667}, {1657, 16418, 377}, {2475, 6675, 442}, {2475, 15676, 31254}, {2475, 37267, 35990}, {2478, 13747, 4187}, {3146, 6857, 17532}, {3146, 50742, 6857}, {3522, 5084, 16371}, {3534, 11108, 4190}, {3560, 37468, 8226}, {4189, 11114, 5}, {4190, 31156, 11108}, {4193, 17548, 549}, {4195, 13728, 51672}, {4195, 37038, 13728}, {4221, 28029, 2915}, {4305, 5698, 5730}, {5046, 17549, 140}, {5499, 12104, 28465}, {6906, 31789, 37374}, {6914, 7491, 6831}, {7833, 16914, 17670}, {8598, 33034, 17693}, {8703, 17527, 4188}, {8728, 15704, 17579}, {11001, 16845, 37435}, {11112, 17590, 443}, {11113, 13747, 2478}, {11115, 49735, 4205}, {13586, 17685, 17694}, {13587, 37162, 52264}, {13624, 41012, 34123}, {13736, 16458, 51679}, {13736, 51668, 16458}, {13743, 37292, 21}, {13744, 17524, 9840}, {15676, 31254, 6675}, {15677, 15680, 21}, {15683, 17561, 50397}, {16049, 20831, 51635}, {16342, 50322, 37150}, {16370, 50242, 4}, {16845, 37435, 44217}, {16865, 17579, 8728}, {17528, 17800, 31295}, {17533, 28463, 15670}, {17539, 50165, 5051}, {17559, 37267, 474}, {17564, 46853, 37307}, {17576, 50242, 7483}, {19526, 50239, 2}, {19538, 44217, 16845}, {28453, 37230, 16617}, {33007, 33059, 11321}, {33703, 50739, 5177}, {33923, 52264, 13587}, {37291, 37375, 3628}, {51674, 51681, 37039}


X(57003) = X(1)X(5852)∩X(2)X(3)

Barycentrics    6*a^4 - 5*a^2*b^2 - b^4 - 6*a^2*b*c - 6*a*b^2*c - 5*a^2*c^2 - 6*a*b*c^2 + 2*b^2*c^2 - c^4 : :
X(57003) = 9 X[2] - 7 X[4197], 3 X[2] - 7 X[16865], X[4197] - 3 X[16865]

X(57003) lies on these lines: {1, 5852}, {2, 3}, {35, 9711}, {392, 12680}, {958, 4309}, {993, 37722}, {1001, 4317}, {3419, 31446}, {3434, 31494}, {3436, 31480}, {3555, 3635}, {3576, 18243}, {3625, 4314}, {3826, 4324}, {4298, 15950}, {4325, 5259}, {4330, 5251}, {4512, 5881}, {4668, 5234}, {5248, 15888}, {5250, 37727}, {5791, 12690}, {9656, 10198}, {9670, 24390}, {9671, 26363}, {12514, 37724}, {15338, 34501}, {16128, 34123}, {17757, 31452}, {24982, 31447}, {31424, 37723}, {42147, 54378}, {42148, 54379}

X(57003) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 548, 17583}, {4, 19526, 15670}, {20, 405, 17529}, {20, 17529, 11112}, {21, 11113, 7483}, {21, 50241, 11113}, {405, 11112, 17590}, {452, 16370, 4187}, {2478, 17571, 37298}, {3534, 16860, 37462}, {4330, 5251, 9710}, {5047, 15677, 550}, {5084, 50742, 19535}, {6872, 16418, 442}, {9670, 31458, 24390}, {11106, 11111, 405}, {13736, 16394, 17514}, {15680, 16858, 8728}, {17536, 37299, 17563}, {17574, 37162, 549}, {19538, 50242, 2}


X(57004) = X(2)X(3)∩X(528)X(4325)

Barycentrics    8*a^4 - 5*a^2*b^2 - 3*b^4 + 2*a^2*b*c + 2*a*b^2*c - 5*a^2*c^2 + 2*a*b*c^2 + 6*b^2*c^2 - 3*c^4 : :
X(57004) = 9 X[2] - 11 X[404], 12 X[2] - 11 X[4187], 15 X[2] - 11 X[5046], 3 X[2] - 11 X[37256], 21 X[2] - 22 X[52264], 4 X[404] - 3 X[4187], 5 X[404] - 3 X[5046], X[404] - 3 X[37256], 7 X[404] - 6 X[52264], 5 X[4187] - 4 X[5046], X[4187] - 4 X[37256], 7 X[4187] - 8 X[52264], X[5046] - 5 X[37256], 7 X[5046] - 10 X[52264], 7 X[37256] - 2 X[52264]

X(57004) lies on these lines: {2, 3}, {528, 4325}, {1770, 10609}, {2802, 3555}, {4298, 11011}, {4299, 12513}, {4301, 50843}, {4316, 5258}, {4701, 5183}, {4881, 40273}, {5330, 28216}, {5362, 42584}, {5367, 42585}, {7354, 8715}, {10483, 17757}, {11015, 24470}, {12690, 37582}, {15326, 24390}, {17614, 28150}, {18483, 35271}, {22793, 34123}, {24982, 28168}, {26543, 48885}, {28154, 41012}, {31663, 38058}, {31673, 34122}

X(57004) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 50239, 7483}, {548, 2475, 37298}, {550, 17579, 442}, {550, 50240, 4189}, {1657, 4190, 11113}, {1657, 16408, 50244}, {2475, 36005, 548}, {3627, 4188, 17533}, {4189, 17579, 50240}, {4189, 50240, 442}, {4190, 50244, 16408}, {6904, 11001, 50242}, {11114, 17563, 17575}, {16408, 50244, 11113}, {17538, 37435, 16370}, {33703, 37267, 17556}


X(57005) = X(1)X(38093)∩X(2)X(3)

Barycentrics    a^4 + a^2*b^2 - 2*b^4 + 10*a^2*b*c + 10*a*b^2*c + a^2*c^2 + 10*a*b*c^2 + 4*b^2*c^2 - 2*c^4 : :
X(57005) = X[20] + 5 X[6835], 7 X[3090] + 5 X[6897]

X(56705) lies on these lines: {1, 38093}, {2, 3}, {10, 4860}, {72, 6173}, {392, 38052}, {956, 3826}, {962, 38073}, {975, 50103}, {1125, 31140}, {1621, 34707}, {1698, 11236}, {3019, 25878}, {3295, 26060}, {3337, 19875}, {3555, 3679}, {3617, 27791}, {3671, 38094}, {3828, 4298}, {3841, 10199}, {3925, 45700}, {3940, 27186}, {4289, 16783}, {4294, 38025}, {4314, 11238}, {4677, 11530}, {5043, 16552}, {5044, 31164}, {5082, 38092}, {5234, 19876}, {5251, 34620}, {5275, 5355}, {5440, 41867}, {5550, 10707}, {6051, 50080}, {6174, 10198}, {7958, 34630}, {8167, 34706}, {9342, 31479}, {9534, 17297}, {9654, 19877}, {9708, 34605}, {10895, 51073}, {10896, 19878}, {11037, 53620}, {11240, 31419}, {12651, 38021}, {16466, 50301}, {17264, 50044}, {17330, 56527}, {18541, 27065}, {19855, 34610}, {19870, 48801}, {20195, 34701}, {24178, 50291}, {25055, 33595}, {25524, 41859}, {26040, 34619}, {37756, 50072}, {38024, 41863}, {41310, 50049}

X(57005) = reflection of X(17542) in X(2)
X(57005) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 443, 11112}, {2, 4197, 50740}, {2, 6904, 50739}, {2, 11112, 405}, {2, 11113, 19536}, {2, 11114, 11108}, {2, 16418, 50714}, {2, 16458, 51601}, {2, 17528, 17556}, {2, 17579, 16857}, {2, 17679, 54367}, {2, 36006, 5054}, {2, 37038, 51676}, {2, 44217, 17532}, {2, 50736, 5084}, {2, 50738, 17554}, {2, 50741, 17533}, {2, 51602, 51603}, {2, 51604, 51600}, {2, 51665, 51679}, {2, 51671, 51602}, {2, 51677, 51599}, {2, 51681, 37035}, {20, 17590, 405}, {442, 17582, 16862}, {443, 17529, 405}, {550, 31259, 19538}, {4190, 50205, 19526}, {8728, 37462, 474}, {11112, 17529, 2}, {16408, 50740, 2}, {16854, 50713, 4}, {17528, 17556, 17532}, {17556, 44217, 17528}, {17582, 37436, 442}, {19536, 50397, 11113}


X(57006) = X(1)X(28534)∩X(2)X(3)

Barycentrics    7*a^4 - 5*a^2*b^2 - 2*b^4 - 2*a^2*b*c - 2*a*b^2*c - 5*a^2*c^2 - 2*a*b*c^2 + 4*b^2*c^2 - 2*c^4 : :
X(57006) = 2 X[2] - 3 X[16370], 4 X[2] - 3 X[17532], 3 X[3524] - 2 X[6907], X[3830] - 3 X[28444], 3 X[3839] - 5 X[6974], 3 X[5054] - 4 X[7508], X[6925] - 3 X[10304], 2 X[6938] + X[7580], X[956] + 2 X[4302], 3 X[38314] - 2 X[39542]

X(57006) lies on these lines: {1, 28534}, {2, 3}, {8, 34707}, {35, 11236}, {55, 535}, {72, 34701}, {392, 15726}, {519, 32934}, {527, 4304}, {528, 956}, {543, 47037}, {551, 1836}, {940, 48841}, {958, 4324}, {993, 31140}, {1001, 4316}, {1388, 4298}, {1709, 34628}, {2094, 3488}, {2098, 4314}, {3241, 34740}, {3295, 34605}, {3555, 3901}, {3584, 34739}, {3679, 4640}, {3897, 48661}, {3927, 11015}, {4293, 47357}, {4294, 34610}, {4330, 12513}, {4677, 11010}, {4908, 17742}, {5010, 31160}, {5057, 37606}, {5204, 10199}, {5234, 51066}, {5267, 12953}, {5275, 6781}, {5303, 9669}, {5440, 31142}, {5687, 15338}, {5698, 10609}, {5731, 50843}, {5744, 12690}, {6001, 50811}, {6284, 45700}, {6767, 20067}, {8666, 34649}, {9668, 10707}, {9945, 31018}, {10386, 20076}, {10391, 24473}, {11014, 12651}, {11240, 15171}, {16192, 17619}, {21842, 51105}, {22770, 34629}, {24929, 31164}, {28160, 35258}, {28609, 33595}, {37661, 43618}, {37817, 50103}, {38314, 39542}, {42871, 54342}

X(57006) = midpoint of X(i) and X(j) for these {i,j}: {376, 6938}, {1709, 34628}, {3241, 44447}, {10431, 15683}
X(57006) = reflection of X(i) in X(j) for these {i,j}: {381, 6914}, {1836, 551}, {3543, 8727}, {3679, 4640}, {6923, 549}, {7580, 376}, {17532, 16370}, {24473, 10391}, {31140, 993}, {31164, 24929}, {44217, 20835}
X(57006) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8703, 19705}, {3, 11114, 17556}, {3, 15680, 50242}, {20, 11111, 11112}, {20, 50738, 11111}, {21, 1657, 50239}, {376, 11113, 16371}, {548, 2478, 19537}, {550, 6872, 474}, {3529, 17576, 442}, {4190, 50241, 16842}, {6914, 17549, 16370}, {7580, 11113, 17532}, {7580, 16370, 16371}, {11001, 17525, 50397}, {11106, 17529, 405}, {11111, 11112, 405}, {11114, 37299, 3}, {12103, 50241, 4190}, {13745, 51602, 51599}, {13745, 51668, 51602}, {15677, 15681, 44217}, {15677, 17579, 16418}, {15680, 37299, 11114}, {15681, 16418, 17579}, {15689, 16417, 36004}, {16370, 16371, 19525}, {16393, 50165, 54367}, {16394, 37038, 51677}, {16394, 51598, 51605}, {16394, 51677, 51603}, {16418, 17579, 44217}, {16418, 20835, 16370}, {17556, 50242, 11114}, {17571, 17800, 2475}, {37038, 51678, 16394}, {37462, 50243, 17545}


X(57007) = X(1)X(966)∩X(2)X(3)

Barycentrics    a^4 - 4*a^3*b - 8*a^2*b^2 - 4*a*b^3 - b^4 - 4*a^3*c - 16*a^2*b*c - 16*a*b^2*c - 4*b^3*c - 8*a^2*c^2 - 16*a*b*c^2 - 6*b^2*c^2 - 4*a*c^3 - 4*b*c^3 - c^4 : :

X(57007) lies on these lines: {1, 966}, {2, 3}, {10, 37553}, {72, 5296}, {387, 19732}, {388, 16878}, {392, 31779}, {497, 19858}, {573, 31435}, {581, 8583}, {941, 6051}, {950, 19859}, {1001, 19866}, {1125, 1453}, {1834, 19744}, {2345, 19857}, {2550, 16828}, {3616, 5739}, {3924, 8040}, {3945, 49716}, {4026, 19855}, {4340, 15668}, {4687, 54433}, {5082, 19853}, {5234, 40869}, {5802, 19753}, {7758, 50174}, {10449, 37870}, {14023, 50161}, {16817, 17321}, {17277, 19766}, {19863, 26105}, {26242, 39581}, {28620, 48839}, {31034, 46934}

X(57007) = anticomplement of X(16456)
X(57007) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 16458}, {2, 405, 37037}, {2, 452, 2049}, {2, 6872, 14005}, {2, 6904, 56767}, {2, 11110, 6857}, {2, 13725, 443}, {2, 13736, 1010}, {2, 14035, 16928}, {2, 16342, 631}, {2, 16914, 16903}, {2, 16927, 14001}, {2, 19270, 17567}, {2, 26117, 37153}, {2, 37035, 17552}, {2, 37314, 4}, {2, 50408, 14007}, {2, 51594, 51668}, {2, 51606, 51604}, {2, 52258, 6856}, {5, 16457, 2}, {405, 17514, 2}, {405, 19285, 37399}, {405, 19309, 28}, {405, 37037, 51673}, {405, 51599, 17514}, {443, 13725, 51665}, {1010, 13736, 11111}, {4205, 16844, 2}, {6353, 16845, 6857}, {11108, 50409, 2}, {13745, 16458, 20}, {14007, 48814, 50408}, {15668, 49728, 4340}, {16900, 16912, 2}, {17514, 51679, 405}, {19857, 54287, 2345}, {37035, 37039, 2}, {37035, 51597, 37039}, {51599, 51679, 2}


X(57008) = X(2)X(9290)∩X(4)X(69)

Barycentrics    (a^2 - b^2 - c^2)*(a^6*b^2 - 2*a^4*b^4 + a^2*b^6 + a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 - b^6*c^2 - 2*a^4*c^4 - a^2*b^2*c^4 + 2*b^4*c^4 + a^2*c^6 - b^2*c^6) : :

X(57008) lies on the cubics K1010 and K1335 and on these lines: {2, 9290}, {3, 43711}, {4, 69}, {99, 1092}, {194, 3289}, {248, 43714}, {339, 18436}, {343, 52247}, {394, 401}, {1498, 20477}, {1568, 7752}, {3148, 37894}, {3164, 32445}, {3926, 14941}, {3933, 44231}, {6337, 6509}, {7782, 51394}, {8788, 28419}, {8798, 34403}, {11444, 26166}, {12111, 30737}, {12215, 20806}, {12233, 45198}, {13754, 41009}, {14585, 35952}, {15013, 23128}, {15075, 30227}, {24730, 52162}, {33523, 39998}

X(57008) = reflection of X(9289) in X(22401)
X(57008) = isotomic conjugate of X(43710)
X(57008) = isotomic conjugate of the isogonal conjugate of X(6638)
X(57008) = isotomic conjugate of the polar conjugate of X(3164)
X(57008) = X(i)-Ceva conjugate of X(j) for these (i,j): {394, 69}, {1975, 6337}
X(57008) = X(i)-isoconjugate of X(j) for these (i,j): {19, 1988}, {31, 43710}, {1096, 40800}, {1973, 54114}
X(57008) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 43710}, {6, 1988}, {264, 2052}, {6337, 54114}, {6503, 40800}
X(57008) = barycentric product X(i)*X(j) for these {i,j}: {69, 3164}, {76, 6638}, {305, 32445}, {3168, 3926}, {26887, 28706}, {34386, 42453}
X(57008) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 43710}, {3, 1988}, {69, 54114}, {394, 40800}, {3164, 4}, {3168, 393}, {4558, 44828}, {6638, 6}, {26887, 8882}, {32445, 25}, {42453, 53}
X(57008) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 5562, 69}, {315, 44141, 69}


X(57009) = X(2)X(47406)∩X(4)X(99)

Barycentrics    (a^2 - b^2 - c^2)*(a^10 - 4*a^8*b^2 + 5*a^6*b^4 - 3*a^4*b^6 + 2*a^2*b^8 - b^10 - 4*a^8*c^2 + 3*a^6*b^2*c^2 - a^2*b^6*c^2 + 2*b^8*c^2 + 5*a^6*c^4 - 2*a^2*b^4*c^4 - b^6*c^4 - 3*a^4*c^6 - a^2*b^2*c^6 - b^4*c^6 + 2*a^2*c^8 + 2*b^2*c^8 - c^10) : :

X(57009) lies on the cubics K779 and K1135 and these lines: {2, 47406}, {4, 99}, {69, 248}, {325, 401}, {684, 53331}, {2450, 19599}, {3148, 8788}, {3926, 14941}, {5866, 52279}, {6390, 44231}, {14060, 41256}, {20975, 40680}, {22143, 41005}, {25332, 40697}, {34803, 51389}, {35926, 54124}, {36212, 46841}, {36214, 43711}, {39099, 47526}, {39127, 50572}, {45198, 53420}

X(57009) = isotomic conjugate of the isogonal conjugate of X(52170)
X(57009) = isotomic conjugate of the polar conjugate of X(40867)
X(57009) = X(325)-Ceva conjugate of X(69)
X(57009) = X(287)-Dao conjugate of X(98)
X(57009) = barycentric product X(i)*X(j) for these {i,j}: {69, 40867}, {76, 52170}
X(57009) = barycentric quotient X(i)/X(j) for these {i,j}: {40867, 4}, {52170, 6}


X(57010) = X(2)X(95)∩X(30)X(18831)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^8 - 3*a^6*b^2 + 2*a^4*b^4 + a^2*b^6 - b^8 - 3*a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + 3*b^6*c^2 + 2*a^4*c^4 - a^2*b^2*c^4 - 4*b^4*c^4 + a^2*c^6 + 3*b^2*c^6 - c^8) : :

X(57010) lies on the cubics K953 and K1335 and these lines: {2, 95}, {30, 18831}, {511, 1298}, {1971, 18315}, {3078, 54105}, {3628, 31617}, {6368, 23061}, {13409, 46724}, {14587, 52887}, {14941, 41208}, {16084, 55218}, {16089, 42405}, {16239, 55080}

X(57010) = reflection of X(18831) in X(52984)
X(57010) = antitomic conjugate of X(40853)
X(57010) = X(401)-Dao conjugate of X(32428)
X(57010) = barycentric product X(95)*X(40853)
X(57010) = barycentric quotient X(i)/X(j) for these {i,j}: {34576, 21354}, {39081, 32428}, {40853, 5}, {45259, 12077}


X(57011) = X(2)X(98)∩X(99)X(1092)

Barycentrics    a^2*(a^12 - 4*a^10*b^2 + 7*a^8*b^4 - 7*a^6*b^6 + 4*a^4*b^8 - a^2*b^10 - 4*a^10*c^2 + 9*a^8*b^2*c^2 - 6*a^6*b^4*c^2 + a^4*b^6*c^2 + 7*a^8*c^4 - 6*a^6*b^2*c^4 + a^2*b^6*c^4 - 2*b^8*c^4 - 7*a^6*c^6 + a^4*b^2*c^6 + a^2*b^4*c^6 + 4*b^6*c^6 + 4*a^4*c^8 - 2*b^4*c^8 - a^2*c^10) : :
X(57011) = 3 X[154] - X[9861], 3 X[3167] - X[39820], 3 X[11202] - 2 X[39854], 3 X[23042] - 2 X[39840]

X(57011) lies on the cubic K1335 and these lines: {2, 98}, {3, 35324}, {24, 39846}, {49, 12188}, {54, 14651}, {99, 1092}, {115, 578}, {148, 34148}, {154, 9861}, {186, 39837}, {275, 39120}, {323, 39807}, {389, 39839}, {394, 39803}, {511, 1971}, {569, 38224}, {576, 2967}, {577, 14941}, {692, 12178}, {1147, 2782}, {1297, 52987}, {1298, 18315}, {1614, 9862}, {1660, 2790}, {1974, 10753}, {1993, 39817}, {2794, 6759}, {3043, 22265}, {3044, 38664}, {3167, 39820}, {3357, 39860}, {5609, 38608}, {6000, 39841}, {6033, 10539}, {6321, 13352}, {7488, 39836}, {9604, 44531}, {9676, 35878}, {9833, 39842}, {9876, 52771}, {10282, 39857}, {10540, 38744}, {10722, 26883}, {10984, 34473}, {11202, 39854}, {11424, 14639}, {11623, 39834}, {12131, 44080}, {12228, 33511}, {12974, 26936}, {13172, 43574}, {13175, 37498}, {13188, 22115}, {13336, 38739}, {13346, 23698}, {14966, 43935}, {15463, 16278}, {18350, 38743}, {18381, 39845}, {19357, 39832}, {21166, 43652}, {22463, 51458}, {22505, 46261}, {23042, 39840}, {32545, 39355}, {34383, 42065}, {34786, 39847}, {34788, 39848}, {34986, 39810}, {37472, 38732}, {37480, 38738}, {37495, 38733}, {37515, 38737}, {39808, 56292}, {39825, 46730}, {41672, 44489}

X(57011) = midpoint of X(i) and X(j) for these {i,j}: {3, 39849}, {9833, 39842}, {13175, 37498}
X(57011) = reflection of X(i) in X(j) for these {i,j}: {3357, 39860}, {18381, 39845}, {34786, 39847}, {34788, 39848}, {39857, 10282}, {46730, 39825}
X(57011) = X(401)-Ceva conjugate of X(577)
X(57011) = crossdifference of every pair of points on line {3569, 45259}
X(57011) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 17974, 52128}, {6036, 39805, 182}, {17974, 52128, 182}


X(57012) = X(3)X(1625)∩X(6)X(264)

Barycentrics    a^2*(a^12*b^4 - 4*a^10*b^6 + 6*a^8*b^8 - 4*a^6*b^10 + a^4*b^12 + a^12*b^2*c^2 - 3*a^10*b^4*c^2 + 2*a^8*b^6*c^2 + 2*a^6*b^8*c^2 - 3*a^4*b^10*c^2 + a^2*b^12*c^2 + a^12*c^4 - 3*a^10*b^2*c^4 + 3*a^8*b^4*c^4 - 2*a^6*b^6*c^4 + a^4*b^8*c^4 + a^2*b^10*c^4 - b^12*c^4 - 4*a^10*c^6 + 2*a^8*b^2*c^6 - 2*a^6*b^4*c^6 + 2*a^4*b^6*c^6 - 2*a^2*b^8*c^6 + 4*b^10*c^6 + 6*a^8*c^8 + 2*a^6*b^2*c^8 + a^4*b^4*c^8 - 2*a^2*b^6*c^8 - 6*b^8*c^8 - 4*a^6*c^10 - 3*a^4*b^2*c^10 + a^2*b^4*c^10 + 4*b^6*c^10 + a^4*c^12 + a^2*b^2*c^12 - b^4*c^12) : :

X(57012) lies on the Feuerbach circumhyperbola of the tangential triangle, the cubic K1335, and these lines: {3, 1625}, {6, 264}, {155, 2782}, {159, 41373}, {195, 15093}, {217, 37124}, {401, 3289}, {1503, 8925}, {1971, 3511}, {1988, 3167}, {2917, 19165}, {2931, 54082}, {3331, 35474}, {3360, 44532}, {9431, 32654}, {15047, 41334}, {19588, 34383}, {35941, 54976}, {37200, 38297}, {52066, 52703}

X(57012) = reflection of X(1987) in X(11672)
X(57012) = X(i)-Ceva conjugate of X(j) for these (i,j): {401, 3}, {3289, 6}, {39355, 3511}
X(57012) = X(14941)-Dao conjugate of X(1972)
X(57012) = crossdifference of every pair of points on line {6130, 39469}
X(57012) = {X(39683),X(52128)}-harmonic conjugate of X(3)


X(57013) = X(2)X(3)∩X(107)X(1380)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4 + (a^2 - b^2 - c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]) : :

X(57013) lies on these lines: {2, 3}, {107, 1380}, {275, 14633}, {340, 6190}, {394, 52096}, {648, 6189}, {685, 13636}, {1341, 52147}, {1348, 43462}, {1990, 39023}, {2039, 14165}, {2052, 6177}, {2501, 30509}, {2542, 37648}, {2543, 13394}, {3413, 16080}, {5638, 16081}, {6110, 47362}, {6111, 47364}, {35260, 35914}, {35913, 37643}, {39366, 56021}, {43530, 46024}

X(57013) = anticomplement of X(50532)
X(57013) = polar conjugate of X(3414)
X(57013) = polar conjugate of the isotomic conjugate of X(6189)
X(57013) = polar conjugate of the isogonal conjugate of X(1380)
X(57013) = X(i)-isoconjugate of X(j) for these (i,j): {48, 3414}, {63, 5639}, {656, 1379}, {810, 6190}, {4575, 13722}, {36060, 52723}
X(57013) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 13722}, {1249, 3414}, {1560, 52723}, {3162, 5639}, {13722, 125}, {39023, 525}, {39062, 6190}, {39068, 647}, {40596, 1379}, {48317, 46463}
X(57013) = cevapoint of X(5638) and X(13636)
X(57013) = trilinear pole of line {4, 3413}
X(57013) = barycentric product X(i)*X(j) for these {i,j}: {4, 6189}, {264, 1380}, {648, 3413}, {5638, 6331}, {13636, 18020}
X(57013) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 3414}, {25, 5639}, {112, 1379}, {468, 52723}, {648, 6190}, {1380, 3}, {2501, 13722}, {3413, 525}, {5638, 647}, {6189, 69}, {13636, 125}, {14273, 46463}, {52722, 14417}
X(57013) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5000, 5001, 6040}


X(57014) = X(2)X(3)∩X(107)X(1379)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4 - (a^2 - b^2 - c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]) : :

X(57014) lies on these lines: {2, 3}, {107, 1379}, {275, 14632}, {340, 6189}, {394, 52095}, {648, 6190}, {685, 13722}, {1340, 52147}, {1349, 43462}, {1990, 39022}, {2040, 14165}, {2052, 6178}, {2501, 30508}, {2542, 13394}, {2543, 37648}, {3414, 16080}, {5639, 16081}, {6110, 47361}, {6111, 47363}, {35260, 35913}, {35914, 37643}, {39365, 56021}, {43530, 46023}

X(57014) = polar conjugate of X(3413)
X(57014) = polar conjugate of the isotomic conjugate of X(6190)
X(57014) = polar conjugate of the isogonal conjugate of X(1379)
X(57014) = X(i)-isoconjugate of X(j) for these (i,j): {48, 3413}, {63, 5638}, {656, 1380}, {810, 6189}, {4575, 13636}, {36060, 52722}
X(57014) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 13636}, {1249, 3413}, {1560, 52722}, {3162, 5638}, {13636, 125}, {39022, 525}, {39062, 6189}, {39067, 647}, {40596, 1380}, {48317, 46462}
X(57014) = cevapoint of X(5639) and X(13722)
X(57014) = trilinear pole of line {4, 3414}
X(57014) = barycentric product X(i)*X(j) for these {i,j}: {4, 6190}, {264, 1379}, {648, 3414}, {5639, 6331}, {13722, 18020}
X(57014) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 3413}, {25, 5638}, {112, 1380}, {468, 52722}, {648, 6189}, {1379, 3}, {2501, 13636}, {3414, 525}, {5639, 647}, {6190, 69}, {13722, 125}, {14273, 46462}, {52723, 14417}
X(57014) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5000, 5001, 6039}, {44334, 50532, 2}


X(57015) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(31)X(513)

Barycentrics    a*(a*b^2 - b^3 + a*c^2 - c^3) : :
X(57015) = 2 X[43037] - 3 X[46894]

X(57015) lies on these lines: {1, 6}, {3, 1759}, {5, 40997}, {8, 4006}, {10, 17451}, {35, 3496}, {36, 3509}, {39, 3670}, {41, 22836}, {56, 17736}, {65, 16549}, {76, 18055}, {78, 169}, {80, 4876}, {100, 5011}, {101, 4511}, {116, 33864}, {141, 18726}, {150, 56555}, {187, 2243}, {214, 1055}, {257, 27020}, {304, 18137}, {312, 10478}, {320, 24484}, {350, 18061}, {385, 30113}, {514, 661}, {517, 1018}, {519, 2170}, {572, 5279}, {573, 27396}, {574, 36283}, {594, 17443}, {668, 49755}, {672, 758}, {726, 20706}, {728, 7982}, {730, 43534}, {740, 20593}, {760, 8299}, {899, 16611}, {910, 5440}, {946, 21073}, {993, 5282}, {995, 26242}, {997, 40131}, {1015, 3726}, {1111, 20335}, {1125, 21808}, {1146, 17757}, {1193, 16600}, {1213, 19867}, {1229, 24220}, {1259, 1729}, {1334, 3878}, {1400, 25078}, {1447, 25532}, {1475, 3874}, {1478, 24247}, {1482, 4513}, {1486, 4149}, {1500, 3727}, {1565, 51384}, {1572, 37610}, {1573, 21332}, {1574, 21951}, {1575, 1739}, {1730, 3998}, {1735, 13006}, {1826, 17442}, {1930, 17760}, {1953, 2321}, {2082, 3811}, {2085, 23414}, {2140, 20880}, {2171, 17355}, {2172, 52159}, {2223, 20715}, {2224, 15397}, {2225, 14964}, {2238, 49758}, {2262, 3694}, {2275, 3953}, {2276, 3735}, {2292, 25092}, {2294, 5750}, {2309, 7237}, {2325, 21801}, {2344, 15175}, {2641, 17799}, {2653, 16589}, {2887, 24255}, {3002, 23988}, {3006, 5513}, {3009, 20703}, {3057, 3991}, {3119, 5199}, {3208, 5697}, {3216, 16583}, {3218, 5030}, {3245, 41322}, {3263, 4568}, {3290, 49997}, {3293, 41015}, {3329, 30111}, {3501, 5903}, {3632, 4051}, {3634, 21921}, {3674, 21617}, {3675, 24496}, {3678, 3691}, {3684, 5540}, {3686, 3949}, {3702, 21070}, {3730, 3869}, {3753, 44798}, {3782, 15048}, {3812, 25068}, {3814, 21044}, {3831, 45208}, {3868, 4253}, {3881, 17474}, {3940, 21373}, {3943, 17444}, {3950, 4342}, {3959, 3987}, {4071, 49781}, {4103, 4723}, {4136, 30171}, {4187, 21049}, {4251, 33950}, {4431, 17868}, {4515, 10914}, {4692, 21101}, {4696, 21067}, {4799, 7761}, {4875, 34790}, {4950, 7759}, {4968, 22011}, {4986, 49774}, {4987, 20729}, {5024, 17595}, {5044, 46196}, {5057, 5134}, {5195, 20533}, {5209, 36800}, {5219, 7146}, {5244, 37326}, {5264, 54382}, {5276, 30115}, {5778, 19782}, {5816, 54433}, {5902, 17754}, {6205, 36279}, {6326, 16550}, {6656, 17211}, {6685, 22230}, {6745, 8074}, {7202, 17374}, {7792, 30886}, {7951, 21057}, {8053, 20713}, {8620, 56805}, {9310, 30144}, {9605, 37549}, {10026, 20982}, {10459, 28594}, {11415, 17732}, {11682, 55337}, {11813, 21090}, {12053, 21096}, {16547, 54316}, {16720, 21240}, {17023, 54357}, {17057, 19584}, {17233, 18041}, {17289, 18714}, {17296, 18161}, {17316, 31018}, {17353, 46899}, {17464, 34587}, {17743, 30136}, {17747, 51409}, {17748, 23637}, {17753, 25242}, {18050, 27801}, {18184, 30941}, {18596, 52676}, {18717, 18747}, {18788, 44425}, {18904, 20861}, {19557, 35204}, {19935, 29633}, {20367, 25083}, {20602, 20769}, {20684, 29671}, {20693, 50014}, {20924, 33946}, {21029, 25639}, {21075, 41006}, {21403, 25002}, {21764, 49480}, {21965, 31460}, {22014, 56082}, {22180, 45216}, {23636, 33064}, {24047, 56288}, {24170, 26562}, {24222, 50027}, {26770, 56318}, {27248, 27252}, {27492, 49528}, {27950, 56513}, {29573, 31142}, {29637, 37701}, {29966, 33942}, {30036, 33937}, {30117, 33854}, {30178, 31090}, {31138, 53546}, {33838, 33949}, {33839, 40690}, {34179, 40910}, {34591, 40869}, {37522, 54317}, {37691, 43291}, {37998, 48324}, {38345, 45269}

X(57015) = midpoint of X(2170) and X(3930)
X(57015) = reflection of X(i) in X(j) for these {i,j}: {672, 24036}, {1018, 3693}, {1111, 20335}, {45751, 43065}
X(57015) = isogonal conjugate of X(2224)
X(57015) = isotomic conjugate of X(37130)
X(57015) = isotomic conjugate of the isogonal conjugate of X(2225)
X(57015) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2224}, {6, 675}, {31, 37130}, {32, 43093}, {251, 46158}, {513, 36087}, {514, 32682}, {1086, 52941}, {3011, 15397}
X(57015) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 37130}, {3, 2224}, {9, 675}, {674, 2225}, {6376, 43093}, {38990, 513}, {39026, 36087}, {40585, 46158}, {53980, 19}
X(57015) = crossdifference of every pair of points on line {31, 513}
X(57015) = barycentric product X(i)*X(j) for these {i,j}: {1, 3006}, {75, 674}, {76, 2225}, {100, 23887}, {312, 43039}, {321, 14964}, {514, 42723}, {561, 8618}, {3596, 51657}, {4249, 14208}
X(57015) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 675}, {2, 37130}, {6, 2224}, {38, 46158}, {75, 43093}, {101, 36087}, {674, 1}, {692, 32682}, {1110, 52941}, {2225, 6}, {3006, 75}, {4249, 162}, {8618, 31}, {14964, 81}, {23887, 693}, {42723, 190}, {43039, 57}, {51657, 56}
X(57015) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 9, 16788}, {1, 5525, 56530}, {1, 17744, 2329}, {1, 56532, 16503}, {39, 3721, 3670}, {65, 25066, 16549}, {72, 1212, 16552}, {72, 16552, 17746}, {910, 5440, 35342}, {946, 51972, 21073}, {960, 16601, 3294}, {1015, 3726, 4694}, {1575, 3125, 1739}, {1575, 21331, 3125}, {2276, 3735, 4424}, {3868, 26690, 4253}, {3869, 25082, 3730}, {4568, 30109, 3263}, {5730, 56536, 220}, {6603, 41391, 1023}, {16968, 54406, 1724}, {17451, 33299, 10}, {17760, 29960, 1930}, {18061, 49753, 350}, {21372, 35342, 910}, {21808, 39244, 1125}, {33950, 34772, 4251}, {34522, 50995, 956}


X(57016) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(2)X(688)

Barycentrics    a^2*(a^4*b^4 + a^4*c^4 - 2*b^4*c^4) : :

X(57016) lies on these lines: {6, 76}, {99, 51983}, {187, 237}, {385, 9427}, {538, 32748}, {729, 51326}, {755, 783}, {827, 51320}, {1613, 3972}, {3051, 7804}, {3124, 14962}, {3224, 6179}, {3291, 35060}, {3360, 7782}, {3491, 41413}, {3734, 18899}, {5092, 6310}, {6704, 14822}, {7771, 21001}, {7805, 9490}, {7813, 45914}, {9463, 52083}, {38382, 52067}, {48262, 49112}

X(57016) = isogonal conjugate of X(43094)
X(57016) = isogonal conjugate of the isotomic conjugate of X(702)
X(57016) = X(703)-Ceva conjugate of X(6)
X(57016) = X(i)-isoconjugate of X(j) for these (i,j): {1, 43094}, {75, 703}
X(57016) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 43094}, {206, 703}, {702, 35526}
X(57016) = crossdifference of every pair of points on line {2, 688}
X(57016) = barycentric product X(i)*X(j) for these {i,j}: {6, 702}, {32, 35526}
X(57016) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 43094}, {32, 703}, {702, 76}, {35526, 1502}
X(57016) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 33786, 44164}, {83, 3499, 42548}


X(57017) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(42)X(834)

Barycentrics    2*a^4 + 2*a^3*b + a^2*b^2 - a*b^3 + 2*a^3*c - a*b^2*c - b^3*c + a^2*c^2 - a*b*c^2 - 2*b^2*c^2 - a*c^3 - b*c^3 : :

X(57017) lies on these lines: {6, 10}, {239, 514}, {519, 1914}, {595, 21070}, {1015, 50252}, {1150, 17023}, {3032, 50361}, {3735, 49683}, {4974, 16611}, {16784, 32919}, {16788, 49476}, {16975, 49477}, {30109, 33295}, {37652, 41232}

X(57017) = crossdifference of every pair of points on line {42, 834}


X(57018) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(926)X(1015)

Barycentrics    (a - b)*(a - c)*(a^4 - a^3*b + 2*a^2*b^2 - a^3*c - 3*a^2*b*c - b^3*c + 2*a^2*c^2 + 2*b^2*c^2 - b*c^3) : :
X(57018) = 2 X[4422] - 3 X[51406]

X(57018) lies on these lines: {6, 7}, {100, 190}, {101, 812}, {513, 666}, {664, 6084}, {692, 5377}, {918, 3732}, {1252, 4380}, {4251, 24404}, {4394, 4998}, {4422, 51406}, {4473, 31020}, {5375, 20295}, {6008, 52985}, {14513, 31150}, {37143, 47755}, {47771, 51562}, {53214, 53607}

X(57018) = reflection of X(40865) in X(101)
X(57018) = crossdifference of every pair of points on line {926, 1015}


X(57019) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(55)X(6371)

Barycentrics    2*a^4 + 3*a^2*b^2 - 2*a*b^3 + b^4 - 4*a^2*b*c + 3*a^2*c^2 - 2*b^2*c^2 - 2*a*c^3 + c^4 : :

X(57019) lies on these lines: {6, 8}, {241, 514}, {1146, 33854}, {1743, 5252}, {5718, 17284}, {10944, 54329}, {16502, 40997}, {24597, 24599}, {31187, 31189}, {37715, 56532}, {40937, 52528}, {49771, 50027}

X(57019) = crossdifference of every pair of points on line {55, 6371}


X(57020) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(2)X(46386)

Barycentrics    a^2*(a^3*b^4 - b^4*c^3 + a^3*c^4 - b^3*c^4) : :

X(57020) lies on these lines: {1, 76}, {187, 237}, {213, 44164}, {726, 51907}, {731, 8709}, {1964, 49482}, {2176, 33786}, {3741, 45232}, {5255, 56800}, {6382, 33782}, {8022, 38846}, {23493, 51864}, {38986, 50023}

X(57020) = isogonal conjugate of the isotomic conjugate of X(700)
X(57020) = X(701)-Ceva conjugate of X(6)
X(57020) = X(75)-isoconjugate of X(701)
X(57020) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 701}, {700, 35525}
X(57020) = crossdifference of every pair of points on line {2, 46386}
X(57020) = barycentric product X(i)*X(j) for these {i,j}: {6, 700}, {32, 35525}
X(57020) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 701}, {700, 76}, {35525, 1502}


X(57021) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(1015)X(22108)

Barycentrics    (a - b)*(a - c)*(2*a^3 - 2*a^2*b + 4*a*b^2 - b^3 - 2*a^2*c - 6*a*b*c + b^2*c + 4*a*c^2 + b*c^2 - c^3) : :
X(57021) = 3 X[11] - 4 X[40480], 3 X[100] - X[190], 5 X[100] - X[36237], 5 X[190] - 3 X[36237], 2 X[4422] - 3 X[6174], 3 X[10707] - 5 X[27191]

X(57021) lies on these lines: {1, 528}, {11, 40480}, {100, 190}, {673, 16494}, {765, 28217}, {1317, 40617}, {3667, 46973}, {3887, 4553}, {4422, 6174}, {4432, 6789}, {4879, 46162}, {5845, 16504}, {6163, 39386}, {9041, 13996}, {10707, 27191}, {10993, 29243}, {16686, 46409}, {24813, 38665}, {26795, 27012}, {28209, 36236}, {28221, 39185}

X(57021) = midpoint of X(24813) and X(38665)
X(57021) = crossdifference of every pair of points on line {1015, 22108}


X(57022) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(41)X(513)

Barycentrics    a*(a^2*b^2 - 2*a*b^3 + b^4 + a*b^2*c - b^3*c + a^2*c^2 + a*b*c^2 - 2*a*c^3 - b*c^3 + c^4) : :
X(57022) = 3 X[1736] - 2 X[24433]

X(57022) lies on these lines: {1, 6}, {105, 1731}, {142, 21346}, {241, 15733}, {244, 17067}, {307, 24388}, {522, 693}, {527, 2310}, {674, 17463}, {774, 24391}, {1070, 10916}, {1086, 41555}, {1418, 17668}, {1486, 16551}, {2173, 5144}, {2183, 2809}, {2325, 4712}, {2340, 16578}, {3254, 9442}, {3663, 41573}, {3668, 24389}, {3939, 37787}, {3942, 29353}, {4073, 17296}, {4475, 23633}, {4516, 20358}, {4684, 44694}, {4965, 49759}, {5709, 12442}, {6173, 24341}, {6666, 21039}, {7004, 45275}, {7671, 24635}, {8257, 28043}, {9004, 21362}, {11025, 24554}, {11712, 22356}, {12530, 29747}, {16560, 40910}, {17092, 25722}, {17245, 41548}, {17447, 18726}, {18252, 29812}, {20367, 44670}, {21629, 49627}, {25001, 55076}, {25065, 41577}, {25067, 40659}, {26669, 34784}, {29571, 41570}, {45272, 54391}, {52015, 54324}

X(57022) = reflection of X(i) in X(j) for these {i,j}: {2340, 16578}, {35338, 241}
X(57022) = X(i)-isoconjugate of X(j) for these (i,j): {55, 2369}, {57, 26722}
X(57022) = X(i)-Dao conjugate of X(j) for these (i,j): {223, 2369}, {5452, 26722}
X(57022) = cevapoint of X(2389) and X(43046)
X(57022) = crossdifference of every pair of points on line {41, 513}
X(57022) = barycentric product X(i)*X(j) for these {i,j}: {75, 43046}, {85, 2389}
X(57022) = barycentric quotient X(i)/X(j) for these {i,j}: {55, 26722}, {57, 2369}, {2389, 9}, {43046, 1}
X(57022) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5572, 40937, 55340}, {17447, 21746, 18726}


X(57023) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(44)X(667)

Barycentrics    a*(a^2*b^2 + a*b^3 - 3*a*b^2*c - b^3*c + a^2*c^2 - 3*a*b*c^2 + 4*b^2*c^2 + a*c^3 - b*c^3) : :
X(57023) = 5 X[3616] - X[36222], 3 X[25055] - X[35043]

X(57023) lies on these lines: {1, 513}, {2, 37}, {190, 24625}, {545, 1015}, {646, 25534}, {650, 24408}, {1125, 25382}, {1266, 8610}, {1500, 45214}, {1573, 4364}, {2226, 37633}, {3123, 4553}, {3306, 52206}, {3616, 36222}, {3663, 5662}, {4440, 16726}, {4670, 24502}, {4777, 24427}, {6129, 24409}, {7459, 41230}, {9025, 49465}, {9508, 24419}, {16482, 27846}, {16507, 24482}, {16666, 36275}, {16696, 17246}, {16777, 24289}, {16975, 24441}, {17045, 36232}, {17318, 23891}, {17395, 35119}, {17487, 39982}, {18140, 31625}, {18822, 39974}, {24487, 53340}, {24762, 27499}, {25055, 35043}, {26844, 39698}, {28309, 52959}, {35121, 39011}, {36816, 55261}

X(57023) = midpoint of X(1) and X(24338)
X(57023) = reflection of X(i) in X(j) for these {i,j}: {4506, 20530}, {25382, 1125}
X(57023) = crossdifference of every pair of points on line {44, 667}
X(57023) = barycentric product X(75)*X(46126)
X(57023) = barycentric quotient X(46126)/X(1)
X(57023) = {X(2),X(192)}-harmonic conjugate of X(24004)


X(57024) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(213)X(513)

Barycentrics    a*(a^2*b^2 - a*b^3 + a*b^2*c - b^3*c + a^2*c^2 + a*b*c^2 - a*c^3 - b*c^3) : :
X(57024) = 2 X[44] - 3 X[16482], X[3888] - 3 X[17297], 3 X[17264] - 2 X[40521], X[20072] - 3 X[24482]

X(57024) lies on these lines: {1, 6}, {65, 49484}, {141, 21746}, {239, 44671}, {244, 2234}, {320, 350}, {354, 4670}, {373, 4023}, {511, 4966}, {517, 4702}, {524, 3271}, {536, 20358}, {594, 17049}, {674, 3912}, {742, 46149}, {758, 4432}, {894, 13476}, {982, 24696}, {1086, 6007}, {1621, 22275}, {1959, 17463}, {1964, 21330}, {2228, 23633}, {2235, 3726}, {2245, 8299}, {2309, 4022}, {2388, 30109}, {3001, 23646}, {3056, 4851}, {3589, 52020}, {3681, 17335}, {3685, 20718}, {3688, 17243}, {3704, 12109}, {3717, 9049}, {3741, 18165}, {3750, 22325}, {3757, 14973}, {3758, 3873}, {3779, 17279}, {3834, 21264}, {3836, 3841}, {3868, 4676}, {3874, 4672}, {3888, 17297}, {3932, 9052}, {3943, 14839}, {3996, 22278}, {4014, 7238}, {4026, 39543}, {4033, 20352}, {4043, 17142}, {4422, 9054}, {4436, 20367}, {4517, 41313}, {4645, 24523}, {4684, 8679}, {4749, 37676}, {4890, 17045}, {4891, 21334}, {5178, 17751}, {5208, 32942}, {6542, 25048}, {8053, 16574}, {9025, 17374}, {10452, 41582}, {11263, 49676}, {15310, 22793}, {15624, 21371}, {15733, 53591}, {16597, 38989}, {17065, 46838}, {17231, 17792}, {17241, 25279}, {17260, 40607}, {17264, 40521}, {17277, 22271}, {17280, 21865}, {17289, 22279}, {17353, 22277}, {17376, 49537}, {17445, 22167}, {18040, 21278}, {18144, 21299}, {18178, 35633}, {18191, 32919}, {20072, 24482}, {20961, 33081}, {21252, 37796}, {21858, 24478}, {23374, 40600}, {24487, 26975}, {24593, 34583}, {24688, 30982}, {25466, 50623}, {29827, 31243}, {31137, 31138}, {35206, 56176}, {41246, 43915}

X(57024) = midpoint of X(i) and X(j) for these {i,j}: {238, 38485}, {6542, 25048}
X(57024) = reflection of X(i) in X(j) for these {i,j}: {4014, 7238}, {4553, 3912}, {20683, 4422}
X(57024) = X(42)-isoconjugate of X(2368)
X(57024) = X(40592)-Dao conjugate of X(2368)
X(57024) = crossdifference of every pair of points on line {213, 513}
X(57024) = X(i)-line conjugate of X(j) for these (i,j): {1, 213}, {320, 513}
X(57024) = barycentric product X(i)*X(j) for these {i,j}: {1, 30109}, {274, 2388}
X(57024) = barycentric quotient X(i)/X(j) for these {i,j}: {81, 2368}, {2388, 37}, {30109, 75}
X(57024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2309, 4022, 16696}, {21061, 55340, 16684}


X(57025) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(523)X(1312)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4 + a^2*(a^2 - b^2 - c^2)*J) : :

X(57025) lies on the curve Q053 and these lines: {3, 6}, {112, 1114}, {115, 10750}, {230, 1313}, {237, 44123}, {248, 2574}, {647, 52132}, {906, 1823}, {1113, 10313}, {1344, 10311}, {1415, 2577}, {1576, 42667}, {1914, 34592}, {2966, 15165}, {4558, 8116}, {8105, 14910}, {10312, 14709}, {13509, 32617}, {14908, 42668}, {16310, 45995}, {16813, 46812}, {18876, 46814}, {31954, 52279}, {44126, 52144}

X(57025) = isogonal conjugate of X(2593)
X(57025) = isogonal conjugate of the anticomplement of X(46811)
X(57025) = isogonal conjugate of the isotomic conjugate of X(8116)
X(57025) = isotomic conjugate of the polar conjugate of X(44124)
X(57025) = isogonal conjugate of the polar conjugate of X(1114)
X(57025) = X(i)-Ceva conjugate of X(j) for these (i,j): {112, 52132}, {250, 44123}, {1114, 44124}, {4558, 53385}, {15460, 184}, {39298, 110}, {39299, 2574}, {41942, 6}
X(57025) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2593}, {2, 2589}, {4, 2583}, {19, 22340}, {75, 8106}, {92, 2575}, {158, 46811}, {264, 2579}, {523, 2580}, {525, 2586}, {656, 46815}, {661, 15164}, {662, 39241}, {850, 2576}, {1109, 39298}, {1113, 1577}, {1312, 2581}, {1822, 14618}, {1969, 42667}, {2052, 2585}, {2582, 53154}, {2588, 50944}, {8115, 24006}, {18070, 46166}, {20948, 44123}
X(57025) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 2593}, {6, 22340}, {206, 8106}, {1084, 39241}, {1147, 46811}, {1313, 14618}, {15166, 850}, {22391, 2575}, {32664, 2589}, {36033, 2583}, {36830, 15164}, {40596, 46815}
X(57025) = cevapoint of X(i) and X(j) for these (i,j): {32, 42667}, {647, 15166}
X(57025) = trilinear pole of line {184, 42668}
X(57025) = crossdifference of every pair of points on line {523, 1312}
X(57025) = barycentric product X(i)*X(j) for these {i,j}: {1, 1823}, {3, 1114}, {6, 8116}, {32, 46810}, {48, 2581}, {63, 2577}, {69, 44124}, {99, 42668}, {110, 2574}, {112, 46814}, {162, 2584}, {163, 2582}, {184, 15165}, {255, 2587}, {265, 44068}, {577, 46812}, {647, 39299}, {662, 2578}, {1113, 53385}, {1176, 46167}, {1576, 22339}, {2575, 15460}, {2588, 4575}, {2592, 32661}, {4558, 8105}, {8115, 52132}, {15166, 39298}, {39240, 47390}, {41942, 46811}
X(57025) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 22340}, {6, 2593}, {31, 2589}, {32, 8106}, {48, 2583}, {110, 15164}, {112, 46815}, {163, 2580}, {184, 2575}, {512, 39241}, {577, 46811}, {1114, 264}, {1576, 1113}, {1823, 75}, {2574, 850}, {2577, 92}, {2578, 1577}, {2581, 1969}, {2582, 20948}, {2584, 14208}, {4558, 46813}, {8105, 14618}, {8116, 76}, {9247, 2579}, {14574, 44123}, {14575, 42667}, {15165, 18022}, {15460, 15165}, {22339, 44173}, {23357, 39298}, {32661, 8115}, {32676, 2586}, {39299, 6331}, {41942, 46812}, {42667, 1312}, {42668, 523}, {44068, 340}, {44123, 53154}, {44124, 4}, {44126, 39240}, {46167, 1235}, {46810, 1502}, {46812, 18027}, {46814, 3267}, {52132, 2592}, {52430, 2585}, {53385, 22339}
X(57025) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {187, 15166, 3}, {3284, 15166, 6}


X(57026) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(523)X(1313)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4 - a^2*(a^2 - b^2 - c^2)*J) : :

X(57026) lies on the curve Q053 and these lines: {3, 6}, {112, 1113}, {115, 10751}, {230, 1312}, {237, 44124}, {248, 2575}, {647, 52131}, {906, 1822}, {1114, 10313}, {1345, 10311}, {1415, 2576}, {1576, 42668}, {1914, 34593}, {2966, 15164}, {4558, 8115}, {8106, 14910}, {10312, 14710}, {13509, 32616}, {14908, 42667}, {16310, 45994}, {16813, 46815}, {18876, 46811}, {31955, 52279}, {44125, 52144}

X(57026) = isogonal conjugate of X(2592)
X(57026) = isogonal conjugate of the anticomplement of X(46814)
X(57026) = isogonal conjugate of the isotomic conjugate of X(8115)
X(57026) = isotomic conjugate of the polar conjugate of X(44123)
X(57026) = isogonal conjugate of the polar conjugate of X(1113)
X(57026) = X(i)-Ceva conjugate of X(j) for these (i,j): {112, 52131}, {250, 44124}, {1113, 44123}, {4558, 53384}, {15461, 184}, {39298, 2575}, {39299, 110}, {41941, 6}
X(57026) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2592}, {2, 2588}, {4, 2582}, {19, 22339}, {75, 8105}, {92, 2574}, {158, 46814}, {264, 2578}, {523, 2581}, {525, 2587}, {656, 46812}, {661, 15165}, {662, 39240}, {850, 2577}, {1109, 39299}, {1114, 1577}, {1313, 2580}, {1823, 14618}, {1969, 42668}, {2052, 2584}, {2583, 53153}, {2589, 50945}, {8116, 24006}, {18070, 46167}, {20948, 44124}
X(57026) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 2592}, {6, 22339}, {206, 8105}, {1084, 39240}, {1147, 46814}, {1312, 14618}, {15167, 850}, {22391, 2574}, {32664, 2588}, {36033, 2582}, {36830, 15165}, {40596, 46812}
X(57026) = cevapoint of X(i) and X(j) for these (i,j): {32, 42668}, {647, 15167}
X(57026) = trilinear pole of line {184, 42667}
X(57026) = crossdifference of every pair of points on line {523, 1313}
X(57026) = barycentric product X(i)*X(j) for these {i,j}: {1, 1822}, {3, 1113}, {6, 8115}, {32, 46813}, {48, 2580}, {63, 2576}, {69, 44123}, {99, 42667}, {110, 2575}, {112, 46811}, {162, 2585}, {163, 2583}, {184, 15164}, {255, 2586}, {265, 44067}, {577, 46815}, {647, 39298}, {662, 2579}, {1114, 53384}, {1176, 46166}, {1576, 22340}, {2574, 15461}, {2589, 4575}, {2593, 32661}, {4558, 8106}, {8116, 52131}, {15167, 39299}, {39241, 47390}, {41941, 46814}
X(57026) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 22339}, {6, 2592}, {31, 2588}, {32, 8105}, {48, 2582}, {110, 15165}, {112, 46812}, {163, 2581}, {184, 2574}, {512, 39240}, {577, 46814}, {1113, 264}, {1576, 1114}, {1822, 75}, {2575, 850}, {2576, 92}, {2579, 1577}, {2580, 1969}, {2583, 20948}, {2585, 14208}, {4558, 46810}, {8106, 14618}, {8115, 76}, {9247, 2578}, {14574, 44124}, {14575, 42668}, {15164, 18022}, {15461, 15164}, {22340, 44173}, {23357, 39299}, {32661, 8116}, {32676, 2587}, {39298, 6331}, {41941, 46815}, {42667, 523}, {42668, 1313}, {44067, 340}, {44123, 4}, {44124, 53153}, {44125, 39241}, {46166, 1235}, {46811, 3267}, {46813, 1502}, {46815, 18027}, {52131, 2593}, {52430, 2584}, {53384, 22340}
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {187, 15167, 3}, {3284, 15167, 6}


X(57027) = CEVAPOINT OF X(523) AND X(5000)

Barycentrics    a^2*(a^2 - b^2)*(a^2 - c^2)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4)*((a^2 - b^2 - c^2)*Sqrt[-a^8 + 2*a^4*b^4 - b^8 + 2*a^4*c^4 + 2*b^4*c^4 - c^8] + 2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*S) : :

X(57027) lies on the circumcircle and these lines: {30, 34239}, {74, 32618}, {98, 5000}, {111, 41200}, {250, 523}, {477, 40895}, {842, 5001}, {1297, 5002}, {1316, 41195}, {2373, 42811}, {2697, 5003}, {2698, 44779}, {2710, 41199}, {2857, 44781}

X(57027) = reflection of X(34240) in X(5000)
X(57027) = Collings transform of X(5000)
X(57027) = X(i)-isoconjugate of X(j) for these (i,j): {656, 5000}, {661, 41198}, {810, 44780}, {1577, 41196}, {14208, 44778}
X(57027) = X(i)-Dao conjugate of X(j) for these (i,j): {36830, 41198}, {39062, 44780}, {40596, 5000}
X(57027) = cevapoint of X(523) and X(5000)
X(57027) = trilinear pole of line {6, 5001}
X(57027) = barycentric product X(i)*X(j) for these {i,j}: {99, 41200}, {110, 41194}, {112, 42811}, {648, 32618}, {685, 41199}, {2715, 44781}, {2966, 5001}, {22456, 41197}, {43187, 44779}
X(57027) = barycentric quotient X(i)/X(j) for these {i,j}: {110, 41198}, {112, 5000}, {648, 44780}, {685, 41195}, {1576, 41196}, {2715, 32619}, {2966, 42812}, {5001, 2799}, {32618, 525}, {32696, 41201}, {41194, 850}, {41197, 684}, {41199, 6333}, {41200, 523}, {42811, 3267}, {44779, 3569}


X(57028) = CEVAPOINT OF X(523) AND X(5001)

Barycentrics    a^2*(a^2 - b^2)*(a^2 - c^2)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4)*((a^2 - b^2 - c^2)*Sqrt[-a^8 + 2*a^4*b^4 - b^8 + 2*a^4*c^4 + 2*b^4*c^4 - c^8] - 2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*S) : :

X(57028) lies on the circumcircle and these lines: {30, 34240}, {74, 32619}, {98, 5001}, {111, 41201}, {250, 523}, {477, 40894}, {842, 5000}, {1297, 5003}, {1316, 41194}, {2373, 42812}, {2697, 5002}, {2698, 44778}, {2710, 41198}, {2857, 44780}

X(57028) = reflection of X(34239) in X(5001)
X(57028) = Collings transform of X(5001)
X(57028) = X(i)-isoconjugate of X(j) for these (i,j): {656, 5001}, {661, 41199}, {810, 44781}, {1577, 41197}, {14208, 44779}
X(57028) = X(i)-Dao conjugate of X(j) for these (i,j): {36830, 41199}, {39062, 44781}, {40596, 5001}
X(57028) = cevapoint of X(523) and X(5001)
X(57028) = trilinear pole of line {6, 5000}
X(57028) = barycentric product X(i)*X(j) for these {i,j}: {99, 41201}, {110, 41195}, {112, 42812}, {648, 32619}, {685, 41198}, {2715, 44780}, {2966, 5000}, {22456, 41196}, {43187, 44778}
X(57028) = barycentric quotient X(i)/X(j) for these {i,j}: {110, 41199}, {112, 5001}, {648, 44781}, {685, 41194}, {1576, 41197}, {2715, 32618}, {2966, 42811}, {5000, 2799}, {32619, 525}, {32696, 41200}, {41195, 850}, {41196, 684}, {41198, 6333}, {41201, 523}, {42812, 3267}, {44778, 3569}


X(57029) = X(10)X(75)∩X(239)X(514)

Barycentrics    a^2*b^2 + a*b^3 - a*b^2*c - b^3*c + a^2*c^2 - a*b*c^2 + a*c^3 - b*c^3 : :

X(57029) lies on these lines: {1, 24166}, {10, 75}, {239, 514}, {244, 14210}, {274, 24176}, {304, 24046}, {314, 24219}, {350, 21208}, {538, 21138}, {596, 1909}, {712, 1575}, {982, 33936}, {995, 24282}, {1015, 35101}, {1739, 3263}, {1930, 24170}, {3125, 30109}, {3159, 18140}, {3210, 41232}, {3293, 17141}, {3294, 25248}, {3670, 16887}, {3761, 17155}, {3875, 54286}, {3905, 25440}, {4253, 21216}, {4424, 26234}, {4495, 21210}, {4583, 40093}, {4674, 32847}, {4695, 4986}, {4850, 17023}, {5134, 41842}, {5195, 5211}, {5262, 17200}, {9055, 52959}, {16549, 17489}, {16611, 17755}, {17034, 19565}, {17205, 20924}, {17761, 33891}, {18148, 40034}, {19856, 46895}, {20651, 24192}, {20947, 49993}, {21067, 26752}, {22011, 27020}, {22013, 27035}, {22024, 40087}, {24174, 33942}, {24254, 30106}, {24427, 36531}, {25250, 41240}, {29610, 31025}, {33854, 33952}, {33935, 50605}, {49997, 53332}, {52564, 54308}

X(57029) = reflection of X(i) in X(j) for these {i,j}: {350, 21208}, {4568, 1575}
X(57029) = crossdifference of every pair of points on line {42, 1919}
X(57029) = barycentric product X(304)*X(52461)
X(57029) = barycentric quotient X(52461)/X(19)
X(57029) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1930, 24443, 24170}, {3670, 20911, 16887}


X(57030) = X(75)X(141)∩X(100)X(190)

Barycentrics    (a - b)*(a - c)*(-(a*b^3) + b^4 + 2*a^2*b*c - a*b^2*c - a*b*c^2 - a*c^3 + c^4) : :
X(57030) = X[190] - 3 X[3807]

X(57030) lies on these lines: {75, 141}, {100, 190}, {523, 4562}, {668, 918}, {812, 4568}, {2786, 4103}, {3700, 7035}, {4422, 26629}, {4467, 61406}, {4553, 30665}, {4561, 40865}, {4607, 47767}, {6084, 33946}, {44449, 54099}

X(57030) = X(i)-isoconjugate of X(j) for these (i,j): {244, 53971}, {43671, 57129}
X(57030) = pole of line {649, 2210} with respect to the Kiepert circumhyperbola of the excentral triangle
X(57030) = pole of line {513, 1914} with respect to the Jerabek circumhyperbola of the excentral triangle
X(57030) = pole of line {190, 46403} with respect to the Steiner circumellipse
X(57030) = pole of line {3837, 4422} with respect to the Steiner inellipse
X(57030) = pole of line {1018, 21391} with respect to the Mandart circumellipse
X(57030) = barycentric product X(i)*X(j) for these {i,j}: {3110, 27808}, {5098, 31625}, {42720, 56855}
X(57030) = barycentric quotient X(i)/X(j) for these {i,j}: {1252, 53971}, {3110, 3733}, {3952, 43671}, {5098, 1015}, {56855, 62635}


X(57031) = X(7)X(8)∩X(230)X(231)

Barycentrics    a^4*b - a^3*b^2 + a^2*b^3 - a*b^4 + a^4*c - a^2*b^2*c + 2*b^4*c - a^3*c^2 - a^2*b*c^2 + 2*a*b^2*c^2 - 2*b^3*c^2 + a^2*c^3 - 2*b^2*c^3 - a*c^4 + 2*b*c^4 : :

X(57031) lies on these lines: {7, 8}, {230, 231}, {241, 23772}, {536, 4433}, {1733, 34381}, {2809, 24209}, {3000, 21139}, {3739, 17447}, {4459, 34371}, {7778, 29857}, {11997, 53510}, {13576, 17895}, {15726, 23774}, {16732, 44670}, {17441, 17871}, {17860, 40961}, {17861, 40965}, {26245, 26274}, {41762, 42385}

X(57031) = crossdifference of every pair of points on line {3, 3063}


X(57032) = X(6)X(10)∩X(325)X(523)

Barycentrics    a^3*b^2 - b^5 + a^2*b^2*c - b^4*c + a^3*c^2 + a^2*b*c^2 - b*c^4 - c^5 : :

X(57032) lies on these lines: {6, 10}, {325, 523}, {902, 4156}, {2278, 4769}, {2309, 16894}, {4150, 8053}, {7774, 31079}, {7778, 29639}, {7792, 26251}, {20336, 44412}, {21045, 30059}

X(57032) = crossdifference of every pair of points on line {32, 834}
X(57032) = pole of line {3124, 4205} with respect to the Kiepert circumhyperbola
X(57032) = pole of line {4657, 21208} with respect to {{A,B,C,X(2),X(7)}}
X(57032) = pole of line {386, 32739} with respect to the Kiepert circumhyperbola of the excentral triangle
X(57032) = pole of line {692, 28606} with respect to the Jerabek circumhyperbola of the excentral triangle
X(57032) = pole of line {69, 47659} with respect to the Steiner circumellipse
X(57032) = pole of line {23128, 23874} with respect to the MacBeath circumconic
X(57032) = pole of line {141, 6590} with respect to the Steiner inellipse
X(57032) = pole of line {8637, 20859} with respect to the Brocard inellipse
X(57032) = pole of line {22, 8637} with respect to the circumcircle
X(57032) = pole of line {28478, 44415} with respect to the 2nd Lemoine circle
X(57032) = pole of line {28478, 44419} with respect to the Spieker circle


X(57033) = X(2)X(37)∩X(513)X(676)

Barycentrics    a^3*b + 2*a^2*b^2 + a*b^3 + a^3*c - 6*a^2*b*c - a*b^2*c - 2*b^3*c + 2*a^2*c^2 - a*b*c^2 + 4*b^2*c^2 + a*c^3 - 2*b*c^3 : :
X(57033) = 3 X[2] + X[41794]

X(57033) lies on these lines: {2, 37}, {7, 45252}, {513, 676}, {517, 21208}, {910, 26273}, {960, 24172}, {1015, 44664}, {1149, 43037}, {1279, 1447}, {3212, 45219}, {3445, 9312}, {3663, 3816}, {3665, 28018}, {3673, 52541}, {3744, 26229}, {3756, 9436}, {3999, 20347}, {4562, 53645}, {4859, 30825}, {7195, 28016}, {17158, 21896}, {17480, 33780}, {21342, 30946}, {23304, 24162}, {23972, 35119}, {28074, 30617}

X(57033) = midpoint of X(40883) and X(41794)
X(57033) = complement of X(40883)
X(57033) = X(i)-complementary conjugate of X(j) for these (i,j): {1919, 48315}, {6169, 1329}, {9309, 20540}, {9315, 120}, {14727, 21262}, {51845, 141}
X(57033) = X(14727)-Ceva conjugate of X(513)
X(57033) = crossdifference of every pair of points on line {220, 667}
X(57033) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 41794, 40883}, {28022, 28087, 3739}, {28023, 28090, 37}


X(57034) = X(10)X(37)∩X(320)X(350)

Barycentrics    (b + c)*(-(a^3*b) + a^2*b^2 - a^3*c - 4*a^2*b*c + a*b^2*c + a^2*c^2 + a*b*c^2 + 2*b^2*c^2) : :

X(57034) lies on these lines: {10, 37}, {44, 4368}, {320, 350}, {536, 3122}, {2234, 21264}, {2486, 3912}, {3120, 3834}, {3175, 4735}, {3706, 4708}, {3948, 44671}, {4043, 22279}, {4425, 17237}, {4436, 29456}, {4890, 53478}, {18792, 45223}, {21865, 22016}, {31136, 49717}

X(57034) = crossdifference of every pair of points on line {213, 3733}
X(57034) = pole of line {3739, 17205} with respect to the {{A,B,C,X(2),X(7)}}
X(57034) = pole of line {1125, 3121} with respect to the {{A,B,C,X(1),X(2)}}
X(57034) = pole of line {100, 1509} with respect to the Steiner-Wallace right hyperbola
X(57034) = pole of line {593, 692} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(57034) = pole of line {81, 4557} with respect to the Jerabek circumhyperbola of the excentral triangle
X(57034) = pole of line {100, 1509} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(57034) = pole of line {75, 31290} with respect to the Steiner circumellipse
X(57034) = pole of line {661, 3739} with respect to the Steiner inellipse
X(57034) = pole of line {23632, 50493} with respect to the Brocard inellipse
X(57034) = pole of line {41015, 50329} with respect to the orthic inconic
X(57034) = pole of line {4086, 4875} with respect to the Mandart inellipse
X(57034) = pole of line {4115, 17494} with respect to the Yff parabola
X(57034) = pole of line {1107, 4132} with respect to the Hofstadter inellipse
X(57034) = pole of line {2, 22320} with respect to the circumellipse of the medial and incentral triangles (see X(34585))
X(57034) = pole of line {4041, 17197} with respect to the Mandart parabola
X(57034) = pole of line {3666, 4170} with respect to the incircle
X(57034) = pole of line {1824, 17925} with respect to the polar circle


X(57035) = X(10)X(190)∩X(11)X(244)

Barycentrics    (b - c)^2*(-2*a^3 + 4*a^2*b - 2*a*b^2 + b^3 + 4*a^2*c - 6*a*b*c + b^2*c - 2*a*c^2 + b*c^2 + c^3) : :
X(57035) = 2 X[1086] - 3 X[3120], 4 X[1086] - 3 X[46458], 3 X[4427] - 5 X[4473], X[4440] - 3 X[53372]

X(57035) lies on these lines: {10, 190}, {11, 244}, {115, 2642}, {149, 24416}, {690, 2643}, {764, 4516}, {3882, 5541}, {4427, 4473}, {4440, 53372}, {6547, 42084}, {24813, 31679}, {25377, 27191}

X(57035) = reflection of X(46458) in X(3120)
X(57035) = pole of line {661, 53426} with respect to the Kiepert circumhyperbola
X(57035) = pole of line {514, 37756} with respect to the {{A,B,C,X(2),X(7)}}
X(57035) = pole of line {4600, 6629} with respect to the Steiner / Wallace right hyperbola
X(57035) = pole of line {187, 1252} with respect to the Kiepert circumhyperbola of the excentral triangle
X(57035) = pole of line {765, 896} with respect to the Jerabek circumhyperbola of the excentral triangle
X(57035) = pole of line {4600, 6629} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(57035) = pole of line {4440, 53339} with respect to the Steiner circumellipse
X(57035) = pole of line {1086, 45661} with respect to the Steiner inellipse
X(57035) = pole of line {5540, 46457} with respect to the Mandart circumellipse, CC9


X(57036) = X(9)X(75)∩X(522)X(693)

Barycentrics    b*c*(2*a^4 - 2*a^3*b + a^2*b^2 - 2*a*b^3 + b^4 - 2*a^3*c + 2*a*b^2*c - 2*b^3*c + a^2*c^2 + 2*a*b*c^2 + 2*b^2*c^2 - 2*a*c^3 - 2*b*c^3 + c^4) : :

X(57036) lies on these lines: {9, 75}, {55, 21436}, {522, 693}, {1086, 17060}, {1111, 24715}, {1930, 5695}, {2325, 3263}, {3158, 21609}, {3254, 42697}, {3663, 17446}, {3875, 8271}, {4554, 4939}, {4569, 23062}, {4702, 14210}, {5853, 40704}, {7182, 24392}, {7264, 33149}, {17321, 25582}, {17863, 24195}, {18216, 44735}, {18698, 21254}, {21629, 53594}, {24775, 28743}, {25586, 26031}, {28850, 56381}, {35338, 39775}

X(57036) = X(2725)-anticomplementary conjugate of X(329)
X(57036) = X(26007)-Dao conjugate of X(2809)
X(57036) = barycentric product X(75)*X(26007)
X(57036) = barycentric quotient X(26007)/X(1)
X(57036) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 2481, 4858}, {190, 31638, 9}


X(57037) = X(1)X(4503)∩X(2)X(37)

Barycentrics    a*(a^2*b^2 + a*b^3 - 2*a*b^2*c - b^3*c + a^2*c^2 - 2*a*b*c^2 + 2*b^2*c^2 + a*c^3 - b*c^3) : : ?br> X(57037) = X[1575] + 2 X[57023]

X(57037) lies on these lines: {1, 4503}, {2, 37}, {513, 663}, {527, 1015}, {730, 50290}, {742, 20363}, {1001, 24338}, {1086, 8610}, {1107, 4364}, {1423, 21769}, {1486, 20473}, {1740, 4941}, {2092, 4021}, {2275, 4419}, {3009, 3123}, {3122, 20358}, {3257, 9456}, {3663, 17053}, {3875, 21857}, {3946, 21796}, {4361, 21892}, {4363, 16604}, {4389, 37596}, {4488, 39956}, {4643, 17448}, {4713, 16606}, {4887, 53543}, {6631, 10027}, {6666, 21826}, {7292, 36238}, {16592, 53501}, {16726, 17139}, {16742, 52897}, {16781, 24328}, {17133, 52959}, {17318, 20691}, {18904, 49774}, {23980, 35119}, {24358, 33681}, {33845, 49997}, {35110, 39011}, {40862, 43062}

X(57037) = midpoint of X(40862) and X(53208)
X(57037) = reflection of X(17790) in X(20530)
X(57037) = complement of X(40875)
X(57037) = X(i)-complementary conjugate of X(j) for these (i,j): {9365, 21244}, {9432, 141}, {53208, 21262}
X(57037) = X(i)-Ceva conjugate of X(j) for these (i,j): {40862, 34371}, {53208, 513}
X(57037) = crossdifference of every pair of points on line {9, 667}
X(57037) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 28023, 28087}, {75, 28366, 28244}, {192, 28395, 27633}


X(57038) = X(1)X(2)∩X(75)X(514)

Barycentrics    a^2*b^2 - a*b^3 - 4*a^2*b*c + 3*a*b^2*c - b^3*c + a^2*c^2 + 3*a*b*c^2 - a*c^3 - b*c^3 : :
X(57038) = 2 X[3912] - 3 X[30109], X[3912] - 3 X[49774], 3 X[10027] - 7 X[29607], 5 X[29590] - 3 X[40859]

X(57038) lies on these lines: {1, 2}, {9, 32094}, {75, 514}, {141, 6547}, {594, 36230}, {668, 17761}, {673, 4482}, {996, 20172}, {1016, 17277}, {1086, 33908}, {1573, 4364}, {1654, 54102}, {2087, 46914}, {2140, 24524}, {2170, 4568}, {2802, 17755}, {3729, 32106}, {3739, 36226}, {4051, 33937}, {4103, 18061}, {4361, 24281}, {4643, 52900}, {4665, 35092}, {6005, 36294}, {9263, 17205}, {17117, 49751}, {17335, 53582}, {17338, 36954}, {17448, 24170}, {25381, 40878}, {30225, 42696}, {31323, 42285}, {31647, 48627}

X(57038) = midpoint of X(75) and X(35957)
X(57038) = reflection of X(i) in X(j) for these {i,j}: {30109, 49774}, {36226, 3739}
X(57038) = barycentric product X(75)*X(16482)
X(57038) = barycentric quotient X(16482)/X(1)
X(57038) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8, 23891}, {594, 45213, 36230}, {2170, 4986, 4568}, {3632, 30036, 40006}


X(57039) = X(2)X(37)∩X(36)X(238)

Barycentrics    a*(a^2*b^2 + a*b^3 - a*b^2*c - b^3*c + a^2*c^2 - a*b*c^2 + a*c^3 - b*c^3) : :
X(57039) = 2 X[1575] + X[57023]

X(57039) lies on these lines: {2, 37}, {10, 25347}, {36, 238}, {38, 46905}, {39, 4364}, {141, 17053}, {320, 16726}, {524, 1015}, {714, 17793}, {730, 50298}, {894, 39798}, {980, 17325}, {995, 1386}, {1107, 4708}, {1193, 16744}, {1574, 4665}, {1716, 3941}, {2092, 17045}, {2228, 3009}, {2229, 4465}, {2234, 3123}, {2245, 28283}, {2275, 4643}, {2482, 39011}, {3122, 57024}, {3589, 21796}, {3778, 56537}, {3783, 44671}, {3912, 8610}, {4033, 27044}, {4277, 26626}, {4357, 16696}, {4360, 21858}, {4389, 24598}, {4484, 56542}, {4562, 53650}, {4670, 16604}, {4690, 17448}, {4852, 21857}, {4971, 52959}, {5069, 17257}, {5249, 16736}, {6541, 49993}, {6547, 30109}, {6610, 43062}, {7238, 53543}, {8299, 39688}, {9055, 21830}, {15254, 37599}, {16589, 25358}, {16700, 17184}, {16745, 24178}, {16975, 17251}, {17148, 18133}, {17237, 37596}, {17348, 21892}, {18040, 27095}, {18150, 27106}, {18904, 25357}, {19623, 35147}, {22128, 40153}, {22271, 24575}, {24295, 25382}, {24456, 24696}, {26746, 27184}, {27166, 30939}, {29069, 34460}, {31198, 34824}, {32455, 46189}, {35069, 35119}, {35079, 44378}, {40603, 46720}, {49760, 56531}

X(57039) = midpoint of X(19623) and X(35147)
X(57039) = reflection of X(35079) in X(44378)
X(57039) = complement of X(17790)
X(57039) = complement of the isogonal conjugate of X(17961)
X(57039) = complement of the isotomic conjugate of X(17946)
X(57039) = isotomic conjugate of the polar conjugate of X(52461)
X(57039) = X(i)-complementary conjugate of X(j) for these (i,j): {649, 46671}, {798, 41179}, {1919, 35079}, {2703, 3835}, {11609, 21244}, {17929, 42327}, {17939, 4369}, {17946, 2887}, {17954, 141}, {17961, 10}, {17971, 18589}, {17981, 20305}, {18002, 8287}, {18015, 21253}, {35147, 21262}, {53689, 3831}
X(57039) = X(35147)-Ceva conjugate of X(513)
X(57039) = crossdifference of every pair of points on line {37, 667}
X(57039) = X(i)-line conjugate of X(j) for these (i,j): {2, 37}, {36, 667}
X(57039) = barycentric product X(69)*X(52461)
X(57039) = barycentric quotient X(52461)/X(4)
X(57039) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 27641, 46838}, {2228, 3009, 4553}, {17184, 26747, 16700}, {27633, 28366, 37}, {27641, 28395, 75}, {28244, 28358, 3739}


X(57040) = X(1)X(75)∩X(141)X(23928)

Barycentrics    (b + c)*(-(a^3*b) - a^3*c - 2*a^2*b*c + a*b^2*c + b^3*c + a*b*c^2 + b*c^3) : :

X(57040) lies on these lines: {1, 75}, {141, 23928}, {239, 21254}, {523, 661}, {536, 53559}, {742, 4094}, {2611, 32848}, {2643, 3912}, {3932, 20653}, {4075, 6541}, {4966, 20360}, {6542, 21295}, {13174, 56935}, {17234, 23944}, {17245, 23913}, {21043, 23947}, {24369, 29559}, {24931, 24944}, {39356, 39367}

X(57040) = midpoint of X(6542) and X(21295)
X(57040) = reflection of X(i) in X(j) for these {i,j}: {239, 21254}, {2643, 3912}, {20360, 4966}
X(57040) = X(81)-isoconjugate of X(2375)
X(57040) = X(40586)-Dao conjugate of X(2375)
X(57040) = crossdifference of every pair of points on line {58, 798}
X(57040) = barycentric product X(10)*X(8682)
X(57040) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 2375}, {8682, 86}


X(57041) = X(9)X(75)∩X(11)X(244)

Barycentrics    (b - c)^2*(-a^4 + a^3*b + a^3*c + a^2*b*c - 2*a*b^2*c + b^3*c - 2*a*b*c^2 + b*c^3) : :
X(57041) = 4 X[4422] - 3 X[14439], X[4440] - 3 X[53381]

X(57041) lies on these lines: {9, 75}, {11, 244}, {812, 1111}, {876, 17463}, {918, 2170}, {2786, 17761}, {2796, 19962}, {3798, 24192}, {3942, 21143}, {4422, 14439}, {4440, 53381}, {6084, 21139}, {7264, 24404}, {9317, 40865}, {9318, 57018}, {16732, 21832}, {17197, 23829}, {19950, 24715}, {21211, 24237}, {24140, 48046}, {24198, 48269}, {35094, 55376}, {43042, 53538}

X(57041) = X(i)-isoconjugate of X(j) for these (i,j): {692, 53213}, {1252, 54977}
X(57041) = X(i)-Dao conjugate of X(j) for these (i,j): {661, 54977}, {1086, 53213}
X(57041) = barycentric product X(1083)*X(1111)
X(57041) = barycentric quotient X(i)/X(j) for these {i,j}: {244, 54977}, {514, 53213}, {1083, 765}



leftri

Triaxial points: X(57042)-X(57252)

rightri

This preamble and centers X(57042)-X(57252) were contributed by Ivan Pavlov, August 26, 2023.

Triaxial points are defined in the preamble just before X(14272).

"Let F1, F2, F3 be three figures in perspective two and two in the same plane, show that if they have a common centre of perspective, their three perspectrix are concurrent." (Quoted from Lachlan, R.: An Elementary Treatise on Modern Pure Geometry, McMillan & Co., 1893, pp. 123).
Let T(P,Q) denote the triaxial point of ABC, the P-circumconcevian triangle of X={u,v,w}, and the Q-circumconcevian triangle of X. Ten T(P,Q) depends only on the line PQ and coincides with
(1) the cevian quotient of the tripole of line PQ and X, and
(2) the pole of line PQ wrt the circumconic with perspector X

In barycentrics, if P = p1 : q1 : r1 and p2 = p2 : q2 : r2, then

T(P,Q) = u ((q2 r1 - q1 r2) u + (p2 r1 - p1 r2) v + (p1 q2 - p2 q1) w) : v ((q1 r2 - q2 r1) u + (p1 r2 - p2 r1) v + (p1 q2 - p2 q1) w) : w ((q1 r2 - q2 r1) u + (p2 r1 - p1 r2) v + (p2 q1 - p1 q2) w).


X(57042) = X(3)X(38355)∩X(6)X(3239)

Barycentrics    a^2*(a-b-c)*(b-c)*(a^2-b^2-c^2)*(a^3+b*c*(b+c)-a*(b^2-b*c+c^2)) : :

X(57042) lies on these lines: {3, 38355}, {6, 3239}, {190, 40518}, {219, 652}, {323, 401}, {394, 4025}, {521, 650}, {649, 32475}, {822, 23187}, {1459, 57057}, {1993, 25259}, {2423, 56003}, {6332, 20808}, {7123, 56294}, {7658, 17811}, {22139, 23093}, {22383, 23146}, {23874, 57169}, {25604, 25878}, {37543, 46396}, {39470, 47652}, {48387, 57212}, {57133, 57176}, {57156, 57168}

X(57042) = reflection of X(i) in X(j) for these {i,j}: {23090, 36054}
X(57042) = perspector of circumconic {{A, B, C, X(21), X(95)}}
X(57042) = X(i)-isoconjugate-of-X(j) for these {i, j}: {34, 56248}, {158, 40518}, {32714, 44040}
X(57042) = X(i)-Dao conjugate of X(j) for these {i, j}: {1147, 40518}, {1459, 514}, {11517, 56248}, {44311, 324}
X(57042) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 3}, {2985, 2968}, {20293, 48387}
X(57042) = pole of line {160, 3185} with respect to the circumcircle
X(57042) = pole of line {53, 40149} with respect to the polar circle
X(57042) = pole of line {1, 2} with respect to the MacBeath circumconic
X(57042) = pole of line {1858, 11245} with respect to the orthic inconic
X(57042) = pole of line {651, 1625} with respect to the Stammler hyperbola
X(57042) = pole of line {140, 8756} with respect to the Steiner inellipse
X(57042) = pole of line {4554, 14570} with respect to the Wallace hyperbola
X(57042) = pole of line X(i)X(j) wrt the circumconic with perspector X(k) for these {i,j,k}: {3, 21361, 1}, {1, 2, 3}, {3, 22002, 10}, {5044, 35194, 35}, {22274, 52139, 37}, {1394, 5438, 56}
X(57042) = pole of line X(i)X(j) wrt the inconic with perspector X(k) for these {i,j,k}: {2646, 21319, 1}, {1, 18676, 29}, {3, 48, 97}
X(57042) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(3), and the X(2)-circumconcevian triangle of X(3)
X(57042) = intersection, other than A, B, C, of circumconics {{A, B, C, X(404), X(52889)}}, {{A, B, C, X(521), X(20293)}}, {{A, B, C, X(650), X(15412)}}, {{A, B, C, X(652), X(39006)}}, {{A, B, C, X(2623), X(3063)}}, {{A, B, C, X(3737), X(48281)}}, {{A, B, C, X(4025), X(44311)}}, {{A, B, C, X(43768), X(52949)}}
X(57042) = barycentric product X(i)*X(j) for these (i, j): {190, 39006}, {219, 47796}, {306, 57212}, {404, 521}, {1331, 44311}, {1946, 44139}, {20293, 3}, {23189, 56318}, {32939, 652}, {35518, 44085}, {42705, 7252}, {48281, 78}, {48387, 69}, {57103, 75}
X(57042) = barycentric quotient X(i)/X(j) for these (i, j): {219, 56248}, {404, 18026}, {577, 40518}, {20293, 264}, {32939, 46404}, {39006, 514}, {44085, 108}, {44311, 46107}, {47796, 331}, {48281, 273}, {48387, 4}, {57103, 1}, {57108, 44040}, {57212, 27}
X(57042) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {521, 36054, 23090}


X(57043) = X(4)X(38360)∩X(243)X(522)

Barycentrics    (a-b-c)*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(-b^3+a*b*c-c^3+a^2*(b+c)) : :

X(57043) lies on these lines: {4, 38360}, {243, 522}, {297, 525}, {650, 44428}, {1249, 23757}, {1252, 1897}, {3239, 4064}, {3700, 44426}, {3798, 7490}, {4024, 57208}, {6332, 17925}, {6591, 47695}, {7003, 23838}, {14321, 39534}, {17922, 57245}, {20294, 57072}, {23595, 23875}

X(57043) = reflection of X(i) in X(j) for these {i,j}: {17926, 3064}
X(57043) = polar conjugate of X(1305)
X(57043) = perspector of circumconic {{A, B, C, X(29), X(264)}}
X(57043) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 1305}, {163, 28786}, {1751, 36059}, {1813, 2218}, {2997, 32660}, {51566, 52411}
X(57043) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 28786}, {1249, 1305}, {6741, 40161}, {7649, 514}, {20620, 1751}
X(57043) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 4}, {1897, 3190}, {57072, 57092}
X(57043) = X(i)-cross conjugate of X(j) for these {i, j}: {8676, 20294}
X(57043) = pole of line {9028, 36851} with respect to the anticomplementary circle
X(57043) = pole of line {40960, 41007} with respect to the Incircle
X(57043) = pole of line {9028, 18382} with respect to the circumcircle of the Johnson Triangle
X(57043) = pole of line {6, 226} with respect to the polar circle
X(57043) = pole of line {338, 21666} with respect to the Kiepert hyperbola
X(57043) = pole of line {427, 3011} with respect to the orthic inconic
X(57043) = pole of line {1813, 32661} with respect to the Stammler hyperbola
X(57043) = pole of line {5, 40942} with respect to the Steiner inellipse
X(57043) = pole of line X(i)X(j) wrt the circumconic with perspector X(k) for these {i,j,k}: {4, 1726, 1}, {1, 2, 4}, {4, 17776, 8}, {3190, 56316, 9}, {4, 3190, 10}, {3190, 3192, 19}, {3194, 5081, 28}, {281, 1731, 33}, {1788, 44696, 34}
X(57043) = pole of line X(i)X(j) wrt the inconic with perspector X(k) for these {i,j,k}: {2654, 21318, 1}, {1, 22130, 21}, {22021, 41013, 92}
X(57043) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(4), and the X(2)-circumconcevian triangle of X(4)
X(57043) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(522), X(850)}}, {{A, B, C, X(525), X(652)}}, {{A, B, C, X(1021), X(4391)}}, {{A, B, C, X(1172), X(1731)}}, {{A, B, C, X(1252), X(2052)}}, {{A, B, C, X(2352), X(45266)}}, {{A, B, C, X(3064), X(14618)}}, {{A, B, C, X(4064), X(23289)}}, {{A, B, C, X(5125), X(52891)}}, {{A, B, C, X(7003), X(46109)}}, {{A, B, C, X(10015), X(43060)}}, {{A, B, C, X(14400), X(41079)}}, {{A, B, C, X(17896), X(23800)}}, {{A, B, C, X(17924), X(36107)}}, {{A, B, C, X(17926), X(46110)}}, {{A, B, C, X(21388), X(21438)}}, {{A, B, C, X(27396), X(48380)}}, {{A, B, C, X(41320), X(43678)}}, {{A, B, C, X(46106), X(52956)}}
X(57043) = barycentric product X(i)*X(j) for these (i, j): {10, 57072}, {190, 5190}, {264, 8676}, {312, 57173}, {1783, 17878}, {3190, 46107}, {3261, 41320}, {3868, 44426}, {5125, 522}, {14618, 56000}, {17924, 27396}, {18134, 3064}, {20294, 4}, {22021, 57215}, {23800, 318}, {43060, 7017}, {46110, 579}, {57092, 75}
X(57043) = barycentric quotient X(i)/X(j) for these (i, j): {4, 1305}, {209, 23067}, {318, 51566}, {523, 28786}, {579, 1813}, {2352, 36059}, {3064, 1751}, {3190, 1331}, {3700, 40161}, {3868, 6516}, {5125, 664}, {5190, 514}, {8676, 3}, {17878, 15413}, {18344, 2218}, {20294, 69}, {23800, 77}, {27396, 1332}, {41320, 101}, {42069, 23289}, {43060, 222}, {44426, 2997}, {46107, 15467}, {46110, 40011}, {51658, 1439}, {56000, 4558}, {57072, 86}, {57092, 1}, {57173, 57}, {57217, 44717}
X(57043) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {522, 3064, 17926}


X(57044) = X(33)X(38360)∩X(240)X(522)

Barycentrics    (b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+b^3+b^2*c+b*c^2+c^3-a^2*(b+c)-a*(b+c)^2) : :

X(57044) lies on these lines: {33, 38360}, {240, 522}, {514, 54244}, {523, 18344}, {657, 3064}, {765, 1897}, {900, 43923}, {2509, 3700}, {4064, 21831}, {6129, 14342}, {7253, 14954}, {15313, 57230}, {20954, 46107}, {23757, 36103}, {28623, 54229}, {48269, 57173}, {57072, 57083}

X(57044) = perspector of circumconic {{A, B, C, X(92), X(40411)}}
X(57044) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 13397}, {110, 28787}, {651, 56269}, {906, 15474}, {1813, 39943}, {4575, 23604}, {32661, 43675}, {36059, 43740}
X(57044) = X(i)-Dao conjugate of X(j) for these {i, j}: {136, 23604}, {244, 28787}, {5190, 15474}, {6591, 514}, {20620, 43740}, {36103, 13397}, {38991, 56269}
X(57044) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 19}, {1897, 3811}, {57073, 57094}
X(57044) = X(i)-cross conjugate of X(j) for these {i, j}: {57094, 57230}
X(57044) = pole of line {1, 224} with respect to the polar circle
X(57044) = pole of line {607, 1826} with respect to the orthic inconic
X(57044) = pole of line {19, 5905} with respect to the Steiner circumellipse
X(57044) = pole of line {226, 34176} with respect to the Steiner inellipse
X(57044) = pole of line X(i)X(j) wrt the circumconic with perspector X(k) for these {i,j,k}: {19, 1770, 1}, {281, 3811, 4}, {19, 3811, 10}, {1, 2, 19}, {2322, 31631, 27}, {92, 914, 92}
X(57044) = pole of line X(i)X(j) wrt the inconic with perspector X(k) for these {i,j,k}: {1848, 33129, 27}, {26153, 53510, 76}, {4228, 12047, 86}, {92, 914, 92}
X(57044) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(19), and the X(2)-circumconcevian triangle of X(19)
X(57044) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(1738)}}, {{A, B, C, X(158), X(765)}}, {{A, B, C, X(513), X(21185)}}, {{A, B, C, X(522), X(15313)}}, {{A, B, C, X(860), X(30733)}}, {{A, B, C, X(1577), X(48070)}}, {{A, B, C, X(1725), X(1780)}}, {{A, B, C, X(1735), X(37579)}}, {{A, B, C, X(1736), X(2911)}}, {{A, B, C, X(2517), X(56321)}}, {{A, B, C, X(3676), X(21179)}}, {{A, B, C, X(7649), X(36106)}}, {{A, B, C, X(14775), X(17924)}}
X(57044) = barycentric product X(i)*X(j) for these (i, j): {10, 57073}, {190, 5521}, {1577, 30733}, {1708, 44426}, {1783, 17877}, {2911, 46107}, {14618, 1780}, {15313, 92}, {17776, 7649}, {17924, 3811}, {24006, 40571}, {37579, 46110}, {41538, 57215}, {57094, 75}, {57230, 8}
X(57044) = barycentric quotient X(i)/X(j) for these (i, j): {19, 13397}, {661, 28787}, {663, 56269}, {1708, 6516}, {1780, 4558}, {2501, 23604}, {2911, 1331}, {3064, 43740}, {3173, 6517}, {3811, 1332}, {5521, 514}, {7649, 15474}, {15313, 63}, {17776, 4561}, {17877, 15413}, {18344, 39943}, {24006, 43675}, {30733, 662}, {37579, 1813}, {40571, 4592}, {41332, 4575}, {41609, 3882}, {57073, 86}, {57094, 1}, {57102, 6505}, {57230, 7}


X(57045) = X(441)X(525)∩X(657)X(1021)

Barycentrics    (b-c)*(-a+b+c)^2*(a^2-b^2-c^2)*(3*a^4-(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(57045) lies on these lines: {190, 55346}, {441, 525}, {657, 1021}, {57049, 57197}, {57064, 57199}

X(57045) = perspector of circumconic {{A, B, C, X(69), X(1043)}}
X(57045) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 36079}, {64, 32714}, {934, 41489}, {1301, 1427}, {1398, 56235}, {1426, 46639}, {2155, 36118}, {8809, 32674}, {13149, 33581}
X(57045) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 36079}, {2968, 459}, {7358, 2184}, {14714, 41489}, {21172, 514}, {35072, 8809}, {39020, 3668}, {40616, 1119}, {45245, 36118}, {45248, 1461}, {55058, 278}, {57101, 14837}
X(57045) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 20}, {44327, 78}
X(57045) = X(i)-cross conjugate of X(j) for these {i, j}: {55063, 27382}
X(57045) = pole of line {159, 45739} with respect to the circumcircle
X(57045) = pole of line {253, 3668} with respect to the DeLongchamps circle
X(57045) = pole of line {112, 1461} with respect to the Stammler hyperbola
X(57045) = pole of line {20, 45738} with respect to the Steiner circumellipse
X(57045) = pole of line {648, 658} with respect to the Wallace hyperbola
X(57045) = pole of line X(i)X(j) wrt the circumconic with perspector X(k) for these {i,j,k}: {20, 1763, 1}, {20, 45738, 2}, {159, 45739, 6}, {5932, 45742, 7}, {20, 78, 8}, {20, 22001, 10}, {1, 2, 20}, {69, 19611, 69}, {306, 45200, 72}, {8, 20, 78}
X(57045) = pole of line X(i)X(j) wrt the inconic with perspector X(k) for these {i,j,k}: {5930, 6737, 8}, {69, 19611, 69}
X(57045) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(20), and the X(2)-circumconcevian triangle of X(20)
X(57045) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(1265)}}, {{A, B, C, X(525), X(3239)}}, {{A, B, C, X(647), X(657)}}, {{A, B, C, X(905), X(1021)}}, {{A, B, C, X(4025), X(7253)}}, {{A, B, C, X(26006), X(37669)}}, {{A, B, C, X(44695), X(45271)}}
X(57045) = barycentric product X(i)*X(j) for these (i, j): {190, 40616}, {521, 52346}, {1021, 42699}, {1043, 8057}, {1265, 21172}, {3239, 37669}, {14308, 332}, {14331, 345}, {14615, 57108}, {15411, 8804}, {15416, 610}, {15466, 57057}, {15905, 52622}, {17898, 1792}, {18750, 57055}, {20580, 2322}, {27382, 6332}, {35518, 7070}, {44327, 55063}, {44695, 52616}, {52345, 57081}
X(57045) = barycentric quotient X(i)/X(j) for these (i, j): {3, 36079}, {20, 36118}, {521, 8809}, {610, 32714}, {657, 41489}, {1043, 53639}, {2327, 46639}, {2328, 1301}, {3239, 459}, {3692, 56235}, {7070, 108}, {8057, 3668}, {8804, 52607}, {14308, 225}, {14331, 278}, {15905, 1461}, {18750, 13149}, {21172, 1119}, {27382, 653}, {37669, 658}, {40616, 514}, {42658, 1042}, {44695, 36127}, {52346, 18026}, {52622, 52581}, {55063, 14837}, {57055, 2184}, {57057, 1073}, {57108, 64}, {57201, 36908}


X(57046) = X(2)X(525)∩X(9)X(1021)

Barycentrics    (a-b-c)*(b-c)*(2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2))*(a^3+2*b^3+b^2*c+b*c^2+2*c^3-2*a^2*(b+c)-a*(b^2+b*c+c^2)) : :

X(57046) lies on circumconic {{A, B, C, X(34767), X(53342)}} and on these lines: {2, 525}, {9, 1021}, {37, 16612}, {113, 5513}, {440, 514}, {1213, 3239}, {3161, 57197}, {3163, 4370}, {35122, 39008}, {40586, 57208}, {47874, 52087}

X(57046) = perspector of circumconic {{A, B, C, X(1494), X(6740)}}
X(57046) = center of circumconic {{A, B, C, X(190), X(49274)}}
X(57046) = X(i)-Dao conjugate of X(j) for these {i, j}: {11125, 514}
X(57046) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 30}
X(57046) = X(i)-complementary conjugate of X(j) for these {i, j}: {30, 21252}, {228, 1650}, {692, 30}, {1415, 18644}, {1495, 11}, {2173, 116}, {2407, 21240}, {2420, 3739}, {9406, 1086}, {9407, 1015}, {23347, 942}, {32739, 18593}, {42716, 626}, {51420, 53564}, {51654, 17059}
X(57046) = pole of line {1990, 18688} with respect to the polar circle
X(57046) = pole of line {30, 2173} with respect to the Steiner inellipse
X(57046) = pole of line X(i)X(j) wrt the circumconic with perspector X(k) for these {i,j,k}: {30, 3936, 8}, {1, 2, 30}
X(57046) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(30), and the X(2)-circumconcevian triangle of X(30)
X(57046) = barycentric product X(i)*X(j) for these (i, j): {30, 53342}, {3260, 53249}, {49274, 7359}
X(57046) = barycentric quotient X(i)/X(j) for these (i, j): {53249, 74}, {53342, 1494}


X(57047) = X(661)X(830)∩X(663)X(1919)

Barycentrics    a^3*(b-c)*(a^3-b*c*(b+c)+a*(b^2+b*c+c^2)) : :

X(57047) lies on these lines: {41, 38367}, {205, 8643}, {661, 830}, {663, 1919}, {667, 52589}, {824, 4560}, {1468, 23572}, {2276, 23867}, {2509, 48329}, {3250, 57129}, {3915, 57050}, {20981, 48131}, {21173, 57048}, {30912, 40495}

X(57047) = perspector of circumconic {{A, B, C, X(82), X(40415)}}
X(57047) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 54458}
X(57047) = X(i)-Dao conjugate of X(j) for these {i, j}: {667, 514}, {32664, 54458}
X(57047) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 31}
X(57047) = pole of line {172, 20990} with respect to the circumcircle
X(57047) = pole of line {31, 17489} with respect to the Steiner circumellipse
X(57047) = pole of line {6679, 16600} with respect to the Steiner inellipse
X(57047) = pole of line {21099, 21301} with respect to the Yff parabola
X(57047) = pole of line {33946, 55239} with respect to the Wallace hyperbola
X(57047) = pole of line {1, 2} with respect to the circumconic with perspector X(31)
X(57047) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(31), and the X(2)-circumconcevian triangle of X(31)
X(57047) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(32926)}}, {{A, B, C, X(661), X(20952)}}, {{A, B, C, X(7255), X(18108)}}, {{A, B, C, X(21389), X(55240)}}
X(57047) = barycentric product X(i)*X(j) for these (i, j): {1, 21005}, {19, 22157}, {190, 55053}, {1333, 21099}, {1973, 28423}, {20952, 32}, {21210, 692}, {21301, 31}, {21389, 6}, {32926, 667}, {57097, 75}
X(57047) = barycentric quotient X(i)/X(j) for these (i, j): {31, 54458}, {20952, 1502}, {21005, 75}, {21099, 27801}, {21210, 40495}, {21301, 561}, {21389, 76}, {22157, 304}, {28423, 40364}, {32926, 6386}, {55053, 514}, {57097, 1}
X(57047) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57096, 57171, 1924}


X(57048) = X(39)X(2530)∩X(514)X(1930)

Barycentrics    a*(b-c)*(b^2+c^2)*(a^3+b*c*(b+c)+a*(b^2-b*c+c^2)) : :

X(57048) lies on these lines: {39, 2530}, {514, 1930}, {661, 16546}, {663, 1964}, {812, 4481}, {3250, 8714}, {21123, 48278}, {21173, 57047}

X(57048) = perspector of circumconic {{A, B, C, X(32010), X(46149)}}
X(57048) = X(i)-Dao conjugate of X(j) for these {i, j}: {2530, 514}
X(57048) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 38}
X(57048) = pole of line {38, 28598} with respect to the Steiner circumellipse
X(57048) = pole of line {6682, 28594} with respect to the Steiner inellipse
X(57048) = pole of line {18047, 18062} with respect to the Wallace hyperbola
X(57048) = pole of line X(i)X(j) wrt the circumconic with perspector X(k) for these {i,j,k}: {1, 2, 38}, {16720, 18183, 141}
X(57048) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(38), and the X(2)-circumconcevian triangle of X(38)
X(57048) = intersection, other than A, B, C, of circumconics {{A, B, C, X(38), X(32942)}}, {{A, B, C, X(17493), X(27040)}}
X(57048) = barycentric product X(i)*X(j) for these (i, j): {2530, 32942}, {18071, 39}
X(57048) = barycentric quotient X(i)/X(j) for these (i, j): {18071, 308}


X(57049) = X(9)X(14331)∩X(522)X(650)

Barycentrics    (b-c)*(-a+b+c)^2*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2) : :

X(57049) lies on these lines: {9, 14331}, {37, 52587}, {190, 7045}, {312, 52616}, {522, 650}, {2324, 10397}, {2910, 38360}, {3676, 29005}, {4024, 57176}, {4025, 26695}, {4064, 57169}, {4391, 48268}, {4656, 21174}, {6332, 17496}, {8058, 14298}, {8804, 57186}, {14309, 30201}, {14837, 17896}, {40137, 42337}, {56084, 57242}, {57045, 57197}

X(57049) = perspector of circumconic {{A, B, C, X(8), X(322)}}
X(57049) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 37141}, {57, 8059}, {84, 1461}, {100, 6612}, {108, 55117}, {109, 1422}, {269, 36049}, {279, 32652}, {282, 6614}, {604, 53642}, {651, 1413}, {658, 2208}, {934, 1436}, {1106, 44327}, {1407, 13138}, {1415, 1440}, {1433, 32714}, {2192, 4617}, {2357, 4637}, {4565, 52384}, {4626, 7118}, {7053, 40117}, {36059, 55110}
X(57049) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 37141}, {11, 1422}, {57, 4617}, {281, 36118}, {1146, 1440}, {2968, 189}, {3161, 53642}, {5452, 8059}, {5514, 269}, {6129, 514}, {6552, 44327}, {6600, 36049}, {6741, 8808}, {7358, 41081}, {8054, 6612}, {8058, 14837}, {14714, 1436}, {16596, 279}, {20620, 55110}, {23050, 40117}, {24771, 13138}, {35508, 84}, {38966, 7129}, {38983, 55117}, {38991, 1413}, {40626, 34400}, {55044, 57}, {55063, 77}, {55064, 52384}, {55065, 13853}, {57055, 4025}
X(57049) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 40}, {329, 7358}, {651, 6736}, {1897, 200}, {36624, 4081}, {44327, 8}, {56235, 10}
X(57049) = X(i)-complementary conjugate of X(j) for these {i, j}: {692, 49171}, {8602, 116}, {10309, 21252}, {30239, 2886}
X(57049) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {53086, 150}, {55030, 21293}
X(57049) = X(i)-cross conjugate of X(j) for these {i, j}: {14298, 3239}
X(57049) = pole of line {269, 278} with respect to the polar circle
X(57049) = pole of line {6736, 56293} with respect to the MacBeath circumconic
X(57049) = pole of line {40, 144} with respect to the Steiner circumellipse
X(57049) = pole of line {9, 1158} with respect to the Steiner inellipse
X(57049) = pole of line {3239, 4171} with respect to the Yff parabola
X(57049) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(40), and the X(2)-circumconcevian triangle of X(40)
X(57049) = intersection, other than A, B, C, of circumconics {{A, B, C, X(40), X(341)}}, {{A, B, C, X(329), X(40869)}}, {{A, B, C, X(346), X(55116)}}, {{A, B, C, X(347), X(45275)}}, {{A, B, C, X(522), X(8058)}}, {{A, B, C, X(650), X(14298)}}, {{A, B, C, X(1639), X(5514)}}, {{A, B, C, X(6745), X(7080)}}, {{A, B, C, X(7952), X(16870)}}, {{A, B, C, X(10397), X(52307)}}, {{A, B, C, X(14942), X(48357)}}
X(57049) = barycentric product X(i)*X(j) for these (i, j): {8, 8058}, {40, 4397}, {190, 5514}, {198, 52622}, {281, 57245}, {318, 57101}, {322, 3900}, {341, 6129}, {347, 4163}, {522, 7080}, {1265, 54239}, {1897, 7358}, {2324, 4391}, {3064, 55112}, {3239, 329}, {3261, 7368}, {3699, 38357}, {10397, 7017}, {14298, 312}, {14837, 346}, {15411, 53009}, {15416, 2331}, {17896, 200}, {21075, 7253}, {27398, 3700}, {35518, 40971}, {35519, 7074}, {36197, 55241}, {40702, 4130}, {46110, 55111}, {55116, 6332}
X(57049) = barycentric quotient X(i)/X(j) for these (i, j): {8, 53642}, {9, 37141}, {40, 934}, {55, 8059}, {198, 1461}, {200, 13138}, {220, 36049}, {221, 6614}, {223, 4617}, {322, 4569}, {329, 658}, {346, 44327}, {347, 4626}, {522, 1440}, {649, 6612}, {650, 1422}, {652, 55117}, {657, 1436}, {663, 1413}, {1253, 32652}, {1817, 4637}, {2324, 651}, {2331, 32714}, {3064, 55110}, {3239, 189}, {3700, 8808}, {3900, 84}, {4024, 13853}, {4041, 52384}, {4064, 6355}, {4105, 2192}, {4130, 282}, {4163, 280}, {4171, 1903}, {4397, 309}, {4524, 2357}, {5514, 514}, {6129, 269}, {6332, 34400}, {7074, 109}, {7079, 40117}, {7080, 664}, {7358, 4025}, {7368, 101}, {7952, 36118}, {8058, 7}, {8611, 52037}, {8641, 2208}, {8822, 4616}, {10397, 222}, {14298, 57}, {14308, 52078}, {14837, 279}, {17896, 1088}, {21075, 4566}, {21871, 1020}, {27398, 4573}, {36197, 55242}, {38357, 3676}, {40702, 36838}, {40971, 108}, {41088, 36079}, {47432, 1459}, {52622, 44190}, {53009, 52607}, {54239, 1119}, {55111, 1813}, {55116, 653}, {55206, 2358}, {55212, 1427}, {57055, 41081}, {57101, 77}, {57108, 1433}, {57118, 7339}, {57180, 7118}, {57245, 348}
X(57049) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3239, 57064, 57055}, {3700, 4130, 3239}


X(57050) = X(1)X(23572)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(b*c-a*(b+c))^2 : :

X(57050) lies on the Yff parabola and on these lines: {1, 23572}, {75, 25127}, {187, 237}, {192, 25300}, {514, 10027}, {1500, 23657}, {3239, 21832}, {3768, 29226}, {3835, 26776}, {3915, 57047}, {4024, 47707}, {4083, 14408}, {4375, 4498}, {4879, 46386}, {6545, 40171}, {21763, 48333}, {23472, 23562}, {23503, 23506}, {29350, 53581}, {45882, 48136}

X(57050) = midpoint of X(i) and X(j) for these {i,j}: {192, 25300}
X(57050) = reflection of X(i) in X(j) for these {i,j}: {75, 25127}
X(57050) = isogonal conjugate of X(32039)
X(57050) = perspector of circumconic {{A, B, C, X(6), X(43)}}
X(57050) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 32039}, {87, 4598}, {100, 53677}, {190, 53678}, {330, 932}, {668, 53146}, {2162, 18830}, {5383, 43931}, {6384, 34071}, {16606, 56053}
X(57050) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 32039}, {798, 43931}, {1015, 53679}, {4083, 514}, {6377, 6383}, {8054, 53677}, {25142, 21191}, {40610, 6384}, {55053, 53678}, {55062, 27424}
X(57050) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 43}, {932, 20971}, {3903, 45216}, {4595, 53675}, {8640, 20979}, {40171, 3123}, {53145, 40610}
X(57050) = X(i)-cross conjugate of X(j) for these {i, j}: {25142, 20979}, {40610, 53145}
X(57050) = pole of line {6, 7121} with respect to the circumcircle
X(57050) = pole of line {6, 7121} with respect to the Brocard inellipse
X(57050) = pole of line {99, 32039} with respect to the Stammler hyperbola
X(57050) = pole of line {43, 194} with respect to the Steiner circumellipse
X(57050) = pole of line {39, 6686} with respect to the Steiner inellipse
X(57050) = pole of line {4083, 14408} with respect to the Yff parabola
X(57050) = pole of line {670, 32039} with respect to the Wallace hyperbola
X(57050) = pole of line X(i)X(j) wrt the circumconic with perspector X(k) for these {i,j,k}: {43, 17350, 1}, {43, 194, 2}, {6, 7121, 6}, {43, 56080, 8}, {3169, 45216, 9}, {43, 22024, 10}, {31, 20667, 41}, {43, 213, 42}, {1, 2, 43}, {15966, 20971, 87}
X(57050) = pole of line X(i)X(j) wrt the inconic with perspector X(k) for these {i,j,k}: {42, 192, 1}, {39, 6686, 2}, {6, 7121, 6}, {1, 2, 43}, {14823, 22343, 87}
X(57050) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(43), and the X(2)-circumconcevian triangle of X(43)
X(57050) = intersection, other than A, B, C, of circumconics {{A, B, C, X(43), X(52895)}}, {{A, B, C, X(512), X(21834)}}, {{A, B, C, X(649), X(4083)}}, {{A, B, C, X(667), X(20979)}}, {{A, B, C, X(902), X(52964)}}, {{A, B, C, X(1960), X(14408)}}, {{A, B, C, X(2176), X(3009)}}, {{A, B, C, X(3224), X(43115)}}, {{A, B, C, X(3230), X(53676)}}, {{A, B, C, X(3835), X(50510)}}, {{A, B, C, X(8026), X(8620)}}, {{A, B, C, X(20971), X(56011)}}
X(57050) = barycentric product X(i)*X(j) for these (i, j): {1, 25142}, {190, 40610}, {192, 20979}, {513, 53676}, {514, 53145}, {667, 8026}, {1403, 4147}, {2176, 3835}, {3123, 52923}, {3208, 43051}, {4083, 43}, {4595, 6377}, {6376, 8640}, {16695, 3971}, {18197, 20691}, {20287, 24749}, {20906, 2209}, {21051, 38832}, {21834, 27644}, {21835, 36860}, {23886, 6}, {33296, 50491}, {36863, 38986}, {53675, 649}
X(57050) = barycentric quotient X(i)/X(j) for these (i, j): {6, 32039}, {43, 18830}, {513, 53679}, {649, 53677}, {667, 53678}, {1919, 53146}, {2176, 4598}, {2209, 932}, {3835, 6383}, {4083, 6384}, {8026, 6386}, {8640, 87}, {20979, 330}, {23886, 76}, {25142, 75}, {38832, 56053}, {38986, 43931}, {40610, 514}, {43051, 7209}, {50491, 42027}, {53145, 190}, {53675, 1978}, {53676, 668}


X(57051) = X(1)X(513)∩X(37)X(649)

Barycentrics    a*(2*a-b-c)*(b-c)*(a^2-3*b*c+a*(b+c)) : :
X(57051) = -3*X[4040]+X[57052]

X(57051) lies on these lines: {1, 513}, {35, 4057}, {37, 649}, {44, 14437}, {190, 40522}, {192, 4777}, {214, 900}, {522, 3159}, {523, 4065}, {536, 4375}, {659, 678}, {1319, 39771}, {1385, 3667}, {2292, 4132}, {2320, 23836}, {2516, 57055}, {2827, 19907}, {3057, 42312}, {3723, 21143}, {3768, 17475}, {3825, 44316}, {3835, 17382}, {4040, 57052}, {4083, 17461}, {4145, 4491}, {4448, 17780}, {4526, 8658}, {4926, 19582}, {6006, 42819}, {8640, 15624}, {8656, 37600}, {8674, 12746}, {9002, 49465}, {9458, 45666}, {16507, 38348}, {16706, 27138}, {17302, 26798}, {17320, 20295}, {17460, 21343}, {17464, 17465}, {21211, 28639}, {23757, 40472}, {26086, 39225}, {28217, 35016}, {30198, 40257}, {41847, 53376}

X(57051) = midpoint of X(i) and X(j) for these {i,j}: {6161, 24457}
X(57051) = perspector of circumconic {{A, B, C, X(88), X(16704)}}
X(57051) = X(i)-isoconjugate-of-X(j) for these {i, j}: {679, 40522}, {901, 39697}, {3257, 39982}, {32665, 39994}
X(57051) = X(i)-Dao conjugate of X(j) for these {i, j}: {1635, 514}, {3943, 4033}, {35092, 39994}, {38979, 39697}, {55055, 39982}
X(57051) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 31855}, {190, 44}, {1019, 1635}, {1255, 2087}
X(57051) = pole of line {36, 31855} with respect to the circumcircle
X(57051) = pole of line {517, 17449} with respect to the De Longchamps ellipse
X(57051) = pole of line {44, 17495} with respect to the Steiner circumellipse
X(57051) = pole of line {6687, 16610} with respect to the Steiner inellipse
X(57051) = pole of line {21297, 21385} with respect to the Yff parabola
X(57051) = pole of line {4555, 55243} with respect to the Wallace hyperbola
X(57051) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(44), and the X(2)-circumconcevian triangle of X(44)
X(57051) = intersection, other than A, B, C, of circumconics {{A, B, C, X(37), X(34587)}}, {{A, B, C, X(44), X(17160)}}, {{A, B, C, X(513), X(38979)}}, {{A, B, C, X(1022), X(21385)}}, {{A, B, C, X(1319), X(40091)}}, {{A, B, C, X(2320), X(45247)}}, {{A, B, C, X(4491), X(17780)}}, {{A, B, C, X(21297), X(23352)}}, {{A, B, C, X(24457), X(39771)}}, {{A, B, C, X(31855), X(52680)}}, {{A, B, C, X(36814), X(36872)}}, {{A, B, C, X(37680), X(51908)}}
X(57051) = barycentric product X(i)*X(j) for these (i, j): {190, 38979}, {1019, 52872}, {1635, 17160}, {3762, 40091}, {4358, 4491}, {16704, 4145}, {18145, 1960}, {21297, 44}, {21385, 519}, {21606, 902}, {21714, 30576}, {23141, 38462}, {37680, 900}
X(57051) = barycentric quotient X(i)/X(j) for these (i, j): {900, 39994}, {1017, 40522}, {1635, 39697}, {1960, 39982}, {4145, 4080}, {4491, 88}, {21297, 20568}, {21385, 903}, {33882, 901}, {37680, 4555}, {38979, 514}, {40091, 3257}, {52872, 4033}
X(57051) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6161, 24457, 513}


X(57052) = X(45)X(4893)∩X(514)X(996)

Barycentrics    a*(b-c)*(a-2*(b+c))*(a^2+3*b*c+a*(b+c)) : :
X(57052) = -2*X[1960]+3*X[50349], -3*X[4040]+2*X[57051], -3*X[14288]+2*X[49289], -2*X[14315]+3*X[47827], -2*X[23809]+3*X[48225], -3*X[48244]+2*X[55246], -2*X[48344]+3*X[55969]

X(57052) lies on these lines: {45, 4893}, {190, 47775}, {513, 3245}, {514, 996}, {522, 22037}, {523, 3904}, {900, 17494}, {1960, 50349}, {4040, 57051}, {4057, 50346}, {4491, 8640}, {4693, 4775}, {4724, 38349}, {14288, 49289}, {14315, 47827}, {23809, 48225}, {27014, 48168}, {48244, 55246}, {48344, 55969}

X(57052) = reflection of X(i) in X(j) for these {i,j}: {23352, 4893}, {4057, 50346}
X(57052) = perspector of circumconic {{A, B, C, X(4792), X(5235)}}
X(57052) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2364, 46480}, {4588, 42285}, {4604, 39974}
X(57052) = X(i)-Dao conjugate of X(j) for these {i, j}: {4893, 514}, {55045, 42285}
X(57052) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 56191}, {190, 45}
X(57052) = pole of line {4216, 5010} with respect to the circumcircle
X(57052) = pole of line {45, 1150} with respect to the Steiner circumellipse
X(57052) = pole of line {47780, 48320} with respect to the Yff parabola
X(57052) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(45), and the X(2)-circumconcevian triangle of X(45)
X(57052) = intersection, other than A, B, C, of circumconics {{A, B, C, X(45), X(996)}}, {{A, B, C, X(4893), X(47780)}}, {{A, B, C, X(23352), X(47683)}}
X(57052) = barycentric product X(i)*X(j) for these (i, j): {45, 47780}, {190, 55045}, {2177, 4828}, {3679, 48320}, {31025, 4833}, {37633, 4777}, {47683, 56191}
X(57052) = barycentric quotient X(i)/X(j) for these (i, j): {2099, 46480}, {4775, 39974}, {4893, 42285}, {5035, 4588}, {37633, 4597}, {47780, 20569}, {48320, 39704}, {55045, 514}


X(57053) = X(6)X(4449)∩X(218)X(514)

Barycentrics    a^2*(a-b-c)*(b-c)*(a^3-2*a^2*(b+c)-b*c*(b+c)+a*(b^2+b*c+c^2)) : :

X(57053) lies on circumconic {{A, B, C, X(24225), X(26721)}} and on these lines: {6, 4449}, {41, 48387}, {190, 40523}, {218, 514}, {220, 663}, {238, 57177}, {650, 1734}, {657, 4079}, {672, 44408}, {918, 3287}, {3063, 4130}, {3700, 4435}, {4147, 37658}, {5280, 22154}, {17745, 48282}, {20996, 38367}, {21390, 23146}, {23865, 57171}, {26721, 40141}

X(57053) = perspector of circumconic {{A, B, C, X(1261), X(2346)}}
X(57053) = X(i)-isoconjugate-of-X(j) for these {i, j}: {658, 40505}, {1088, 40523}
X(57053) = X(i)-Dao conjugate of X(j) for these {i, j}: {663, 514}
X(57053) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 55}, {21390, 23865}
X(57053) = pole of line {55, 25237} with respect to the Steiner circumellipse
X(57053) = pole of line {6690, 16601} with respect to the Steiner inellipse
X(57053) = pole of line {21302, 21390} with respect to the Yff parabola
X(57053) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(55), and the X(2)-circumconcevian triangle of X(55)
X(57053) = barycentric product X(i)*X(j) for these (i, j): {190, 38991}, {312, 57171}, {21302, 55}, {21390, 9}, {21611, 41}, {23146, 281}, {23865, 8}, {24225, 3939}
X(57053) = barycentric quotient X(i)/X(j) for these (i, j): {8641, 40505}, {14827, 40523}, {21302, 6063}, {21390, 85}, {21611, 20567}, {23146, 348}, {23865, 7}, {24225, 52621}, {38991, 514}, {57171, 57}


X(57054) = X(2)X(21178)∩X(325)X(523)

Barycentrics    (b-c)*(-a^2+b^2+c^2)*(b^2+b*c+c^2-a*(b+c)) : :

X(57054) lies on these lines: {2, 21178}, {69, 30805}, {325, 523}, {1019, 2484}, {4025, 4064}, {4130, 28898}, {6586, 16751}, {8058, 42696}, {15413, 52355}, {15419, 23874}, {22041, 22042}, {23785, 48272}, {46402, 53342}

X(57054) = perspector of circumconic {{A, B, C, X(76), X(33297)}}
X(57054) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 26705}, {910, 32701}, {1973, 43190}, {6591, 15378}, {15320, 32676}
X(57054) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 26705}, {116, 25}, {4025, 514}, {6337, 43190}, {6586, 7649}, {15526, 15320}, {40618, 14377}
X(57054) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 69}
X(57054) = pole of line {25, 52577} with respect to the polar circle
X(57054) = pole of line {525, 15419} with respect to the Kiepert parabola
X(57054) = pole of line {69, 20291} with respect to the Steiner circumellipse
X(57054) = pole of line {141, 4640} with respect to the Steiner inellipse
X(57054) = pole of line {1734, 25259} with respect to the Yff parabola
X(57054) = pole of line {110, 3732} with respect to the Wallace hyperbola
X(57054) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(69), and the X(2)-circumconcevian triangle of X(69)
X(57054) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(17233)}}, {{A, B, C, X(305), X(3006)}}, {{A, B, C, X(523), X(6586)}}, {{A, B, C, X(693), X(16751)}}, {{A, B, C, X(850), X(25259)}}, {{A, B, C, X(858), X(4184)}}, {{A, B, C, X(1734), X(2517)}}, {{A, B, C, X(3005), X(22388)}}, {{A, B, C, X(3260), X(33297)}}, {{A, B, C, X(3262), X(33932)}}, {{A, B, C, X(3837), X(22084)}}, {{A, B, C, X(17463), X(23770)}}, {{A, B, C, X(33298), X(35516)}}
X(57054) = barycentric product X(i)*X(j) for these (i, j): {116, 4561}, {190, 40618}, {305, 6586}, {306, 57214}, {312, 57188}, {1332, 20901}, {1502, 22388}, {1734, 304}, {1978, 22084}, {3267, 4184}, {15413, 3681}, {16751, 20336}, {17198, 52609}, {17233, 4025}, {21045, 4563}, {25259, 69}, {33297, 525}, {33298, 6332}, {33932, 905}, {57106, 75}
X(57054) = barycentric quotient X(i)/X(j) for these (i, j): {2, 26705}, {69, 43190}, {103, 32701}, {116, 7649}, {305, 31624}, {525, 15320}, {1331, 15378}, {1734, 19}, {1815, 35184}, {3681, 1783}, {3730, 8750}, {4025, 14377}, {4184, 112}, {6586, 25}, {16751, 28}, {17198, 17925}, {17233, 1897}, {17463, 6591}, {18184, 57200}, {20901, 17924}, {21045, 2501}, {21133, 2969}, {22084, 649}, {22388, 32}, {25259, 4}, {33297, 648}, {33298, 653}, {33932, 6335}, {36101, 36109}, {38358, 18344}, {40618, 514}, {55123, 1886}, {57106, 1}, {57188, 57}, {57214, 27}
X(57054) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3265, 35518, 57242}


X(57055) = X(2)X(17896)∩X(9)X(2432)

Barycentrics    a*(b-c)*(-a+b+c)^2*(a^2-b^2-c^2) : :
X(57055) = -3*X[2]+X[17896]

X(57055) lies on these lines: {2, 17896}, {9, 2432}, {37, 6588}, {63, 4131}, {72, 52222}, {100, 40116}, {101, 2765}, {190, 53211}, {219, 36054}, {345, 35518}, {441, 525}, {513, 57109}, {521, 652}, {522, 650}, {644, 906}, {649, 3309}, {918, 28984}, {968, 23687}, {1021, 3900}, {1635, 13165}, {2509, 6589}, {2516, 57051}, {2804, 3064}, {3161, 57168}, {3904, 47676}, {4057, 4394}, {4077, 4885}, {4370, 47408}, {4391, 17494}, {4397, 17926}, {5227, 9051}, {6129, 16612}, {6587, 21186}, {6591, 47695}, {7658, 25925}, {8058, 14331}, {8640, 50501}, {10397, 46391}, {10582, 17427}, {15411, 15416}, {16757, 28606}, {17924, 25009}, {20296, 57184}, {22383, 23146}, {23067, 35341}, {23090, 57081}, {25259, 26641}, {27486, 57066}, {32714, 56235}, {43060, 50357}, {50356, 57091}, {55232, 57111}

X(57055) = midpoint of X(i) and X(j) for these {i,j}: {652, 8611}, {6332, 57245}
X(57055) = reflection of X(i) in X(j) for these {i,j}: {4077, 4885}, {43049, 28984}
X(57055) = isogonal conjugate of X(32714)
X(57055) = isotomic conjugate of X(13149)
X(57055) = complement of X(17896)
X(57055) = trilinear pole of line {3270, 34591}
X(57055) = perspector of circumconic {{A, B, C, X(8), X(69)}}
X(57055) = center of circumconic {{A, B, C, X(2417), X(4397)}}
X(57055) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 32714}, {4, 1461}, {6, 36118}, {7, 32674}, {19, 934}, {25, 658}, {27, 53321}, {28, 1020}, {31, 13149}, {33, 4617}, {34, 651}, {56, 653}, {57, 108}, {58, 52607}, {100, 1435}, {101, 1119}, {107, 52373}, {109, 278}, {112, 3668}, {162, 1427}, {190, 1398}, {196, 8059}, {208, 37141}, {222, 36127}, {225, 4565}, {269, 1783}, {273, 1415}, {279, 8750}, {281, 6614}, {513, 7128}, {603, 54240}, {604, 18026}, {607, 4626}, {608, 664}, {648, 1042}, {649, 55346}, {662, 1426}, {692, 1847}, {738, 56183}, {823, 1410}, {905, 24033}, {1106, 6335}, {1118, 1813}, {1249, 36079}, {1262, 7649}, {1301, 36908}, {1395, 4554}, {1396, 4551}, {1397, 46404}, {1407, 1897}, {1414, 1880}, {1425, 52919}, {1439, 24019}, {1446, 32676}, {1459, 23984}, {1465, 36110}, {1474, 4566}, {1767, 30239}, {1824, 4637}, {1838, 32651}, {1841, 36048}, {1848, 52928}, {1875, 37136}, {1876, 36146}, {1886, 24016}, {1973, 4569}, {1974, 46406}, {2212, 36838}, {2333, 4616}, {2969, 4619}, {3064, 7339}, {3209, 53642}, {3669, 7012}, {3676, 7115}, {4025, 23985}, {4320, 36099}, {4564, 43923}, {5236, 32735}, {5379, 7216}, {6591, 7045}, {7147, 52914}, {7365, 32691}, {8747, 52610}, {8751, 41353}, {8809, 57193}, {17924, 24027}, {22383, 24032}, {22464, 32702}, {23706, 34051}, {23979, 46107}, {26934, 52775}, {34050, 36067}, {36044, 43058}, {36141, 38461}, {37755, 52920}, {43924, 46102}, {52411, 52938}, {55110, 57118}
X(57055) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 653}, {2, 13149}, {3, 32714}, {6, 934}, {9, 36118}, {10, 52607}, {11, 278}, {125, 1427}, {521, 905}, {522, 17924}, {656, 514}, {905, 24002}, {1015, 1119}, {1084, 1426}, {1086, 1847}, {1146, 273}, {2968, 92}, {3161, 18026}, {3239, 693}, {5375, 55346}, {5452, 108}, {6337, 4569}, {6505, 658}, {6552, 6335}, {6600, 1783}, {6608, 3064}, {6741, 40149}, {7358, 2}, {7952, 54240}, {8054, 1435}, {11517, 651}, {12640, 17906}, {13612, 40837}, {14714, 19}, {14936, 1851}, {15526, 1446}, {15607, 1841}, {17115, 6591}, {17421, 7365}, {24771, 1897}, {26932, 279}, {34467, 1407}, {34591, 3668}, {35071, 1439}, {35072, 7}, {35091, 38461}, {35508, 4}, {35580, 43058}, {36033, 1461}, {38957, 54366}, {38966, 393}, {38983, 57}, {38985, 52373}, {38991, 34}, {39004, 1465}, {39006, 269}, {39014, 1876}, {39025, 608}, {39026, 7128}, {40591, 1020}, {40608, 1880}, {40618, 1088}, {40624, 331}, {40626, 85}, {40628, 3676}, {51402, 37790}, {51574, 4566}, {55044, 196}, {55046, 7103}, {55053, 1398}, {55058, 44697}, {55063, 347}, {55064, 225}, {55066, 1042}, {55068, 27}
X(57055) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 7358}, {63, 24031}, {100, 200}, {190, 72}, {345, 2968}, {644, 219}, {1265, 3270}, {1332, 78}, {2417, 39471}, {3692, 34591}, {4397, 3900}, {4552, 6737}, {4571, 1260}, {4587, 3694}, {5546, 3965}, {6332, 521}, {6335, 8}, {6574, 5227}, {36626, 4081}, {54970, 20007}, {56112, 210}, {56235, 1}, {56248, 6736}, {56277, 3271}, {57081, 57108}
X(57055) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 7358}, {48, 53833}, {55, 46663}, {84, 21252}, {109, 20307}, {184, 55058}, {692, 6260}, {1413, 17059}, {1415, 20206}, {1436, 116}, {1903, 21253}, {2149, 20314}, {2187, 13612}, {2188, 123}, {2192, 124}, {2208, 11}, {2357, 125}, {7118, 26932}, {8059, 2886}, {13138, 2887}, {32652, 10}, {32739, 223}, {36049, 141}, {37141, 17046}, {39130, 53575}, {40117, 20305}, {41087, 127}, {44327, 626}, {53642, 17047}
X(57055) = X(i)-cross conjugate of X(j) for these {i, j}: {3270, 1265}, {8611, 3239}, {34591, 3692}, {35072, 219}, {47432, 3}, {57108, 521}
X(57055) = pole of line {159, 197} with respect to the circumcircle
X(57055) = pole of line {75, 253} with respect to the DeLongchamps circle
X(57055) = pole of line {497, 14523} with respect to the Incircle
X(57055) = pole of line {2551, 7710} with respect to the orthoptic circle of the Steiner inellipse
X(57055) = pole of line {278, 393} with respect to the polar circle
X(57055) = pole of line {6467, 23638} with respect to the Brocard inellipse
X(57055) = pole of line {7358, 8286} with respect to the Kiepert hyperbola
X(57055) = pole of line {78, 271} with respect to the MacBeath circumconic
X(57055) = pole of line {1837, 1899} with respect to the orthic inconic
X(57055) = pole of line {112, 934} with respect to the Stammler hyperbola
X(57055) = pole of line {20, 72} with respect to the Steiner circumellipse
X(57055) = pole of line {3, 9} with respect to the Steiner inellipse
X(57055) = pole of line {657, 1021} with respect to the Yff parabola
X(57055) = pole of line {648, 4569} with respect to the Wallace hyperbola
X(57055) = pole of line X(i)X(j) wrt the circumconic with perspector X(k) for these {i,j,k}: {40, 64, 1}, {20, 72, 2}, {78, 271, 3}, {8, 1034, 4}, {159, 197, 6}, {5932, 31527, 7}, {4, 8, 8}, {200, 219, 9}, {72, 515, 10}, {6737, 56327, 12}, {2138, 22131, 25}, {6734, 7358, 30}, {8899, 17658, 34}, {200, 22273, 37}, {72, 3588, 42}, {200, 692, 44}, {219, 3965, 55}, {78, 20765, 63}, {1, 40221, 64}, {5930, 6737, 65}, {69, 1439, 69}, {1, 2, 72}, {319, 16090, 75}, {3, 63, 78}, {936, 3341, 84}, {3313, 34371, 141}, {72, 5658, 145}
X(57055) = pole of line X(i)X(j) wrt the inconic with perspector X(k) for these {i,j,k}: {3057, 3938, 1}, {3, 9, 2}, {3917, 22072, 3}, {1837, 1899, 4}, {6467, 23638, 6}, {497, 14523, 7}, {4, 8, 8}, {210, 212, 9}, {960, 2328, 21}, {1, 6, 63}, {69, 1439, 69}, {307, 4847, 75}, {343, 40997, 76}, {3, 63, 78}, {18650, 40998, 86}, {521, 656, 100}
X(57055) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(72), and the X(2)-circumconcevian triangle of X(72)
X(57055) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(16870)}}, {{A, B, C, X(3), X(9371)}}, {{A, B, C, X(21), X(33305)}}, {{A, B, C, X(33), X(45271)}}, {{A, B, C, X(63), X(200)}}, {{A, B, C, X(72), X(1043)}}, {{A, B, C, X(77), X(45275)}}, {{A, B, C, X(78), X(6745)}}, {{A, B, C, X(100), X(4131)}}, {{A, B, C, X(219), X(346)}}, {{A, B, C, X(268), X(281)}}, {{A, B, C, X(293), X(7281)}}, {{A, B, C, X(345), X(1260)}}, {{A, B, C, X(441), X(4183)}}, {{A, B, C, X(521), X(522)}}, {{A, B, C, X(525), X(3700)}}, {{A, B, C, X(647), X(3709)}}, {{A, B, C, X(650), X(652)}}, {{A, B, C, X(657), X(2522)}}, {{A, B, C, X(906), X(35072)}}, {{A, B, C, X(1067), X(1071)}}, {{A, B, C, X(1214), X(2328)}}, {{A, B, C, X(1259), X(36626)}}, {{A, B, C, X(1265), X(4009)}}, {{A, B, C, X(1639), X(14418)}}, {{A, B, C, X(1783), X(14298)}}, {{A, B, C, X(1792), X(3712)}}, {{A, B, C, X(1946), X(52326)}}, {{A, B, C, X(2287), X(7359)}}, {{A, B, C, X(2310), X(2504)}}, {{A, B, C, X(2325), X(3692)}}, {{A, B, C, X(2968), X(4571)}}, {{A, B, C, X(3239), X(6332)}}, {{A, B, C, X(3265), X(4397)}}, {{A, B, C, X(3270), X(4526)}}, {{A, B, C, X(4944), X(49280)}}, {{A, B, C, X(6588), X(32653)}}, {{A, B, C, X(7046), X(44189)}}, {{A, B, C, X(7358), X(13138)}}, {{A, B, C, X(7367), X(14376)}}, {{A, B, C, X(17924), X(40628)}}, {{A, B, C, X(19605), X(41081)}}, {{A, B, C, X(20580), X(24018)}}, {{A, B, C, X(24562), X(28132)}}, {{A, B, C, X(40117), X(40616)}}, {{A, B, C, X(47965), X(52306)}}
X(57055) = barycentric product X(i)*X(j) for these (i, j): {3, 4397}, {10, 57081}, {11, 4571}, {21, 52355}, {33, 52616}, {48, 52622}, {72, 7253}, {100, 2968}, {190, 34591}, {200, 4025}, {212, 35519}, {219, 4391}, {271, 8058}, {280, 57101}, {282, 57245}, {283, 4086}, {304, 657}, {305, 8641}, {312, 652}, {313, 57134}, {318, 57241}, {332, 4041}, {333, 8611}, {345, 650}, {346, 905}, {348, 4130}, {521, 8}, {522, 78}, {646, 7117}, {1021, 306}, {1043, 656}, {1098, 4064}, {1146, 1332}, {1259, 44426}, {1260, 693}, {1264, 18344}, {1265, 513}, {1331, 24026}, {1459, 341}, {1565, 4578}, {1577, 2327}, {1783, 23983}, {1791, 57158}, {1792, 523}, {1802, 3261}, {1809, 2804}, {1812, 3700}, {1897, 24031}, {1946, 3596}, {2184, 57045}, {2287, 525}, {2289, 46110}, {2310, 4561}, {2322, 24018}, {3064, 3719}, {3239, 63}, {3265, 4183}, {3270, 668}, {3692, 514}, {3694, 4560}, {3699, 7004}, {3710, 3737}, {3718, 663}, {3900, 69}, {3942, 6558}, {4081, 6516}, {4091, 7101}, {4105, 7182}, {4131, 7046}, {4163, 77}, {4466, 7259}, {4477, 7019}, {4587, 4858}, {4592, 52335}, {6332, 9}, {10397, 34404}, {10570, 57111}, {13138, 7358}, {14208, 2328}, {14298, 44189}, {14418, 4997}, {15411, 37}, {15413, 220}, {15416, 6}, {15419, 4515}, {15420, 3965}, {17094, 56182}, {17206, 4171}, {17219, 4069}, {17880, 3939}, {17926, 3998}, {18155, 2318}, {18210, 7256}, {20336, 21789}, {23090, 321}, {23189, 3701}, {23696, 3717}, {23978, 906}, {25083, 28132}, {26932, 644}, {30681, 3669}, {30805, 7079}, {34588, 56112}, {35072, 6335}, {35518, 55}, {36054, 7017}, {36197, 4563}, {36795, 52307}, {37628, 6735}, {40616, 56235}, {41081, 57049}, {43728, 51379}, {52406, 649}, {52914, 7068}, {53560, 645}, {55232, 7058}, {57057, 92}, {57108, 75}
X(57055) = barycentric quotient X(i)/X(j) for these (i, j): {1, 36118}, {2, 13149}, {3, 934}, {6, 32714}, {8, 18026}, {9, 653}, {33, 36127}, {37, 52607}, {41, 32674}, {48, 1461}, {55, 108}, {63, 658}, {69, 4569}, {71, 1020}, {72, 4566}, {77, 4626}, {78, 664}, {100, 55346}, {101, 7128}, {200, 1897}, {212, 109}, {219, 651}, {220, 1783}, {222, 4617}, {228, 53321}, {268, 37141}, {271, 53642}, {281, 54240}, {283, 1414}, {304, 46406}, {312, 46404}, {318, 52938}, {332, 4625}, {345, 4554}, {346, 6335}, {348, 36838}, {480, 56183}, {512, 1426}, {513, 1119}, {514, 1847}, {520, 1439}, {521, 7}, {522, 273}, {525, 1446}, {603, 6614}, {644, 46102}, {647, 1427}, {649, 1435}, {650, 278}, {652, 57}, {656, 3668}, {657, 19}, {663, 34}, {667, 1398}, {810, 1042}, {822, 52373}, {905, 279}, {906, 1262}, {926, 1876}, {1021, 27}, {1043, 811}, {1146, 17924}, {1253, 8750}, {1259, 6516}, {1260, 100}, {1265, 668}, {1331, 7045}, {1332, 1275}, {1444, 4616}, {1459, 269}, {1639, 37790}, {1783, 23984}, {1790, 4637}, {1792, 99}, {1794, 36048}, {1802, 101}, {1809, 54953}, {1812, 4573}, {1818, 41353}, {1897, 24032}, {1946, 56}, {2188, 8059}, {2193, 4565}, {2287, 648}, {2289, 1813}, {2310, 7649}, {2318, 4551}, {2322, 823}, {2326, 52919}, {2327, 662}, {2328, 162}, {2332, 24019}, {2342, 36110}, {2522, 7365}, {2638, 1459}, {2968, 693}, {3022, 18344}, {3063, 608}, {3119, 3064}, {3239, 92}, {3270, 513}, {3271, 43923}, {3688, 46152}, {3692, 190}, {3694, 4552}, {3700, 40149}, {3709, 1880}, {3718, 4572}, {3900, 4}, {3937, 43932}, {3939, 7012}, {3949, 4605}, {3990, 52610}, {4025, 1088}, {4041, 225}, {4081, 44426}, {4091, 7177}, {4105, 33}, {4130, 281}, {4131, 7056}, {4163, 318}, {4171, 1826}, {4183, 107}, {4391, 331}, {4397, 264}, {4477, 7009}, {4524, 1824}, {4528, 38462}, {4571, 4998}, {4578, 15742}, {4587, 4564}, {4895, 1877}, {6056, 36059}, {6061, 52914}, {6332, 85}, {6362, 53237}, {6366, 38461}, {6607, 1827}, {7004, 3676}, {7058, 55231}, {7117, 3669}, {7182, 52937}, {7252, 1396}, {7253, 286}, {7358, 17896}, {7367, 40117}, {8058, 342}, {8606, 26700}, {8611, 226}, {8641, 25}, {8678, 7103}, {8750, 24033}, {10397, 223}, {14298, 196}, {14331, 44697}, {14392, 23710}, {14395, 6357}, {14414, 1323}, {14418, 3911}, {14427, 8756}, {14936, 6591}, {15411, 274}, {15416, 76}, {16731, 15419}, {17115, 1851}, {17206, 4635}, {17880, 52621}, {18344, 1118}, {19614, 36079}, {21789, 28}, {22160, 38859}, {22383, 1407}, {23090, 81}, {23189, 1014}, {23224, 7053}, {23614, 1364}, {23983, 15413}, {24026, 46107}, {24031, 4025}, {24562, 17093}, {26006, 24015}, {26932, 24002}, {28132, 54235}, {30681, 646}, {32656, 24027}, {32657, 32668}, {33525, 1841}, {34406, 54948}, {34591, 514}, {34975, 38877}, {35057, 7282}, {35072, 905}, {35518, 6063}, {36054, 222}, {36056, 24016}, {36059, 7339}, {36197, 2501}, {39201, 1410}, {39687, 22383}, {41215, 42757}, {42455, 2973}, {42658, 40933}, {46391, 34050}, {46392, 1886}, {47432, 6129}, {51361, 23987}, {51380, 53151}, {51418, 41321}, {51644, 7197}, {52307, 1465}, {52335, 24006}, {52355, 1441}, {52370, 4559}, {52406, 1978}, {52425, 1415}, {52614, 5089}, {52616, 7182}, {52622, 1969}, {53285, 1870}, {53549, 1875}, {53550, 34855}, {53560, 7178}, {53562, 1835}, {55230, 1254}, {55232, 6354}, {55234, 7147}, {56182, 36797}, {56305, 52775}, {57045, 18750}, {57057, 63}, {57081, 86}, {57101, 347}, {57108, 1}, {57109, 6356}, {57134, 58}, {57158, 54314}, {57180, 607}, {57241, 77}, {57245, 40702}
X(57055) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63, 57106, 4131}, {650, 4130, 3239}, {652, 8611, 521}, {918, 28984, 43049}, {3239, 57064, 57049}, {4025, 24562, 905}, {6332, 57245, 525}, {8611, 14418, 652}


X(57056) = X(76)X(25259)∩X(316)X(512)

Barycentrics    b^2*(b-c)*c^2*(b^2*c^2-a^3*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(57056) lies on these lines: {76, 25259}, {316, 512}, {514, 23469}, {661, 35560}, {693, 21350}, {802, 18197}, {1920, 57244}, {3250, 52619}, {3261, 3835}, {4374, 50510}, {6382, 35519}, {21438, 24290}

X(57056) = X(i)-Dao conjugate of X(j) for these {i, j}: {3261, 514}, {44312, 3051}
X(57056) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 76}
X(57056) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(76), and the X(2)-circumconcevian triangle of X(76)
X(57056) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(21791)}}, {{A, B, C, X(20352), X(40016)}}
X(57056) = barycentric product X(i)*X(j) for these (i, j): {312, 57190}, {313, 57149}, {1502, 21791}, {1978, 44312}, {18022, 23093}, {21225, 76}, {21901, 6385}, {57110, 75}
X(57056) = barycentric quotient X(i)/X(j) for these (i, j): {21225, 6}, {21791, 32}, {21901, 213}, {23093, 184}, {44312, 649}, {57110, 1}, {57149, 58}, {57190, 57}


X(57057) = X(9)X(14331)∩X(521)X(652)

Barycentrics    a^2*(b-c)*(-a+b+c)^2*(-a^2+b^2+c^2)^2 : :

X(57057) lies on the Yff parabola and on these lines: {9, 14331}, {71, 57186}, {101, 6081}, {219, 10397}, {514, 40863}, {521, 652}, {649, 6003}, {657, 1021}, {677, 1252}, {822, 4091}, {1459, 57042}, {3234, 35341}, {3719, 52616}, {4130, 9404}, {23090, 57108}, {36054, 57241}, {52613, 57233}

X(57057) = inverse of X(57057) in Yff parabola
X(57057) = trilinear pole of line {2638, 35072}
X(57057) = perspector of circumconic {{A, B, C, X(78), X(326)}}
X(57057) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 32714}, {19, 36118}, {25, 13149}, {28, 52607}, {34, 653}, {56, 54240}, {57, 36127}, {107, 1427}, {108, 278}, {158, 1461}, {273, 32674}, {393, 934}, {513, 23984}, {604, 52938}, {608, 18026}, {648, 1426}, {649, 24032}, {651, 1118}, {658, 1096}, {693, 23985}, {823, 1042}, {1020, 8747}, {1119, 1783}, {1254, 52919}, {1395, 46404}, {1398, 6335}, {1410, 15352}, {1435, 1897}, {1439, 6529}, {1446, 32713}, {1847, 8750}, {1857, 4617}, {2207, 4569}, {3668, 24019}, {3772, 52775}, {4554, 7337}, {4566, 5317}, {6059, 36838}, {6354, 52920}, {6591, 55346}, {7103, 36099}, {7128, 7649}, {7147, 52921}, {36126, 52373}, {43923, 46102}
X(57057) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 54240}, {6, 36118}, {521, 514}, {656, 17924}, {1147, 1461}, {2968, 2052}, {3161, 52938}, {3239, 46107}, {5375, 24032}, {5452, 36127}, {6338, 46406}, {6503, 658}, {6505, 13149}, {7358, 92}, {11517, 653}, {14390, 36079}, {14714, 393}, {26932, 1847}, {34467, 1435}, {35071, 3668}, {35072, 273}, {35508, 158}, {36033, 32714}, {38966, 6520}, {38983, 278}, {38985, 1427}, {38991, 1118}, {39006, 1119}, {39026, 23984}, {40591, 52607}, {40626, 331}, {46093, 52373}, {55063, 342}, {55066, 1426}
X(57057) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 78}, {1331, 1260}, {1332, 3682}, {3719, 24031}, {4587, 2289}
X(57057) = pole of line {1073, 1260} with respect to the MacBeath circumconic
X(57057) = pole of line {1461, 24019} with respect to the Stammler hyperbola
X(57057) = pole of line {78, 25252} with respect to the Steiner circumellipse
X(57057) = pole of line {6700, 25078} with respect to the Steiner inellipse
X(57057) = pole of line {521, 652} with respect to the Yff parabola
X(57057) = pole of line {658, 823} with respect to the Wallace hyperbola
X(57057) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(78), and the X(2)-circumconcevian triangle of X(78)
X(57057) = intersection, other than A, B, C, of circumconics {{A, B, C, X(101), X(10397)}}, {{A, B, C, X(394), X(1252)}}, {{A, B, C, X(514), X(40628)}}, {{A, B, C, X(521), X(677)}}, {{A, B, C, X(652), X(1021)}}, {{A, B, C, X(657), X(822)}}, {{A, B, C, X(1792), X(3682)}}, {{A, B, C, X(2289), X(3692)}}, {{A, B, C, X(3239), X(8611)}}, {{A, B, C, X(4397), X(35521)}}, {{A, B, C, X(14331), X(36049)}}, {{A, B, C, X(14418), X(35072)}}, {{A, B, C, X(24031), X(52616)}}
X(57057) = barycentric product X(i)*X(j) for these (i, j): {100, 24031}, {101, 23983}, {190, 35072}, {200, 4131}, {212, 35518}, {219, 6332}, {220, 30805}, {255, 4397}, {268, 57245}, {271, 57101}, {283, 52355}, {312, 36054}, {326, 3900}, {345, 652}, {346, 4091}, {521, 78}, {1018, 16731}, {1021, 3998}, {1043, 520}, {1073, 57045}, {1098, 57109}, {1259, 522}, {1260, 4025}, {1264, 663}, {1265, 1459}, {1331, 2968}, {1332, 34591}, {1364, 3699}, {1792, 656}, {1804, 4163}, {1812, 8611}, {1946, 3718}, {1978, 39687}, {2287, 24018}, {2289, 4391}, {2322, 52613}, {2327, 525}, {2328, 3265}, {2332, 4143}, {2638, 668}, {3239, 394}, {3270, 4561}, {3682, 7253}, {3692, 905}, {3700, 6514}, {3719, 650}, {3926, 657}, {4081, 6517}, {4105, 7055}, {4130, 7183}, {4571, 7004}, {4636, 7068}, {10397, 44189}, {15411, 71}, {15413, 1802}, {15416, 48}, {20336, 57134}, {21789, 52396}, {22383, 52406}, {23090, 306}, {23189, 3710}, {23224, 341}, {26932, 4587}, {35519, 6056}, {37628, 51379}, {52616, 55}, {52622, 577}, {57055, 63}, {57081, 72}, {57108, 69}, {57241, 8}
X(57057) = barycentric quotient X(i)/X(j) for these (i, j): {3, 36118}, {8, 52938}, {9, 54240}, {48, 32714}, {55, 36127}, {63, 13149}, {71, 52607}, {78, 18026}, {100, 24032}, {101, 23984}, {212, 108}, {219, 653}, {255, 934}, {326, 4569}, {345, 46404}, {394, 658}, {520, 3668}, {521, 273}, {577, 1461}, {652, 278}, {657, 393}, {663, 1118}, {692, 24033}, {810, 1426}, {822, 1427}, {905, 1847}, {906, 7128}, {1043, 6528}, {1259, 664}, {1260, 1897}, {1264, 4572}, {1331, 55346}, {1364, 3676}, {1459, 1119}, {1792, 811}, {1802, 1783}, {1804, 4626}, {1946, 34}, {2287, 823}, {2289, 651}, {2322, 15352}, {2327, 648}, {2328, 107}, {2332, 6529}, {2638, 513}, {2968, 46107}, {3239, 2052}, {3270, 7649}, {3682, 4566}, {3692, 6335}, {3719, 4554}, {3900, 158}, {3926, 46406}, {3990, 1020}, {4055, 53321}, {4091, 279}, {4105, 1857}, {4131, 1088}, {4183, 36126}, {4587, 46102}, {6056, 109}, {6061, 52921}, {6332, 331}, {6514, 4573}, {7054, 52919}, {7055, 52937}, {7125, 4617}, {7183, 36838}, {7335, 6614}, {8611, 40149}, {8641, 1096}, {10397, 196}, {14379, 36079}, {14414, 38461}, {14418, 37790}, {15411, 44129}, {15416, 1969}, {16731, 7199}, {18604, 4637}, {21789, 8747}, {22383, 1435}, {23090, 27}, {23224, 269}, {23614, 7004}, {23983, 3261}, {24018, 1446}, {24031, 693}, {32320, 52373}, {32739, 23985}, {34591, 17924}, {35072, 514}, {36054, 57}, {39201, 1042}, {39687, 649}, {40436, 54948}, {47432, 54239}, {52386, 4605}, {52425, 32674}, {52616, 6063}, {52622, 18027}, {55994, 42381}, {57045, 15466}, {57055, 92}, {57081, 286}, {57101, 342}, {57108, 4}, {57134, 28}, {57233, 14256}, {57241, 7}, {57245, 40701}


X(57058) = X(21)X(667)∩X(81)X(4063)

Barycentrics    a*(a+b)*(b-c)*(a+c)*(a^3+2*a^2*(b+c)-b*c*(b+c)+a*(b^2+3*b*c+c^2)) : :

X(57058) lies on these lines: {21, 667}, {81, 4063}, {523, 1325}, {661, 1019}, {1010, 31291}, {1014, 3669}, {3309, 37402}, {3737, 4822}, {4498, 18200}, {4801, 17212}, {7192, 48402}, {8045, 57068}, {14005, 21301}, {14014, 17924}, {17551, 21260}, {40214, 57239}, {47784, 48580}, {50456, 57078}, {53339, 57066}, {57182, 57227}

X(57058) = perspector of circumconic {{A, B, C, X(14534), X(40438)}}
X(57058) = X(i)-Dao conjugate of X(j) for these {i, j}: {1019, 514}
X(57058) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 81}
X(57058) = pole of line {21, 4068} with respect to the circumcircle
X(57058) = pole of line {35342, 53280} with respect to the Stammler hyperbola
X(57058) = pole of line {81, 41813} with respect to the Steiner circumellipse
X(57058) = pole of line {3743, 6703} with respect to the Steiner inellipse
X(57058) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(81), and the X(2)-circumconcevian triangle of X(81)
X(57058) = intersection, other than A, B, C, of circumconics {{A, B, C, X(81), X(34064)}}, {{A, B, C, X(4581), X(47947)}}
X(57058) = barycentric product X(i)*X(j) for these (i, j): {1019, 34064}, {24195, 662}, {57104, 75}
X(57058) = barycentric quotient X(i)/X(j) for these (i, j): {24195, 1577}, {34064, 4033}, {57104, 1}
X(57058) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57112, 57189, 1019}


X(57059) = X(86)X(513)∩X(798)X(1019)

Barycentrics    (a+b)*(b-c)*(a+c)*(a^2+b*c+3*a*(b+c)) : :

X(57059) lies on circumconic {{A, B, C, X(4608), X(31290)}} and on these lines: {86, 513}, {333, 47763}, {523, 4467}, {798, 1019}, {1434, 57167}, {2786, 22044}, {3733, 23467}, {4778, 16755}, {4815, 7199}, {4932, 47129}, {18200, 48071}, {25507, 47759}, {31290, 57112}, {33296, 48320}, {48580, 57066}

X(57059) = trilinear pole of line {24185, 40620}
X(57059) = perspector of circumconic {{A, B, C, X(32014), X(33770)}}
X(57059) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4557, 34585}
X(57059) = X(i)-Dao conjugate of X(j) for these {i, j}: {7192, 514}, {24185, 8013}
X(57059) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 86}, {33770, 40620}
X(57059) = X(i)-cross conjugate of X(j) for these {i, j}: {40620, 33770}
X(57059) = pole of line {514, 16755} with respect to the Kiepert parabola
X(57059) = pole of line {86, 27804} with respect to the Steiner circumellipse
X(57059) = pole of line {6707, 10180} with respect to the Steiner inellipse
X(57059) = pole of line {4427, 24074} with respect to the Wallace hyperbola
X(57059) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(86), and the X(2)-circumconcevian triangle of X(86)
X(57059) = barycentric product X(i)*X(j) for these (i, j): {190, 40620}, {3261, 33774}, {24185, 99}, {31290, 86}, {33766, 693}, {33770, 514}, {33779, 513}, {57112, 75}
X(57059) = barycentric quotient X(i)/X(j) for these (i, j): {1019, 34585}, {24185, 523}, {31290, 10}, {33766, 100}, {33770, 190}, {33774, 101}, {33779, 668}, {40620, 514}, {57112, 1}


X(57060) = X(81)X(6651)∩X(99)X(110)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(a^2-b^2-b*c-c^2-a*(b+c)) : :

X(57060) lies on these lines: {81, 6651}, {86, 52068}, {99, 110}, {100, 17934}, {190, 22033}, {319, 21098}, {643, 51614}, {645, 3570}, {662, 45679}, {693, 799}, {813, 53631}, {846, 51867}, {874, 4631}, {1331, 33948}, {1654, 6627}, {2651, 52137}, {3952, 4600}, {4154, 7304}, {4554, 17933}, {20538, 21381}, {22139, 51857}, {26860, 33770}, {36483, 36800}

X(57060) = trilinear pole of line {1654, 6626}
X(57060) = X(i)-isoconjugate-of-X(j) for these {i, j}: {512, 13610}, {523, 18757}, {649, 52208}, {661, 2248}, {669, 51865}, {798, 6625}, {2643, 53628}, {6591, 15377}, {40164, 50487}
X(57060) = X(i)-Dao conjugate of X(j) for these {i, j}: {86, 514}, {5375, 52208}, {6627, 3120}, {21196, 8029}, {31998, 6625}, {36830, 2248}, {39054, 13610}
X(57060) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 99}, {4600, 21085}, {4601, 27954}
X(57060) = pole of line {2, 23897} with respect to the Kiepert parabola
X(57060) = pole of line {512, 20981} with respect to the Stammler hyperbola
X(57060) = pole of line {846, 1654} with respect to the Yff parabola
X(57060) = pole of line {523, 2487} with respect to the Wallace hyperbola
X(57060) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(99), and the X(2)-circumconcevian triangle of X(99)
X(57060) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(27805)}}, {{A, B, C, X(110), X(37135)}}, {{A, B, C, X(690), X(6627)}}, {{A, B, C, X(693), X(21196)}}, {{A, B, C, X(799), X(37880)}}, {{A, B, C, X(846), X(3573)}}, {{A, B, C, X(1654), X(5468)}}, {{A, B, C, X(2396), X(51857)}}, {{A, B, C, X(3570), X(17941)}}, {{A, B, C, X(3903), X(21383)}}, {{A, B, C, X(3952), X(21085)}}, {{A, B, C, X(4213), X(4226)}}, {{A, B, C, X(4594), X(4610)}}, {{A, B, C, X(4603), X(17930)}}, {{A, B, C, X(5027), X(46390)}}, {{A, B, C, X(5118), X(18755)}}
X(57060) = barycentric product X(i)*X(j) for these (i, j): {110, 51857}, {190, 6626}, {799, 846}, {1654, 99}, {2905, 4561}, {3570, 52207}, {4213, 4563}, {4567, 50451}, {14844, 55235}, {17084, 645}, {17762, 662}, {17934, 39921}, {18755, 670}, {21085, 4610}, {21196, 4600}, {21879, 4623}, {22139, 6331}, {27569, 52935}, {27853, 51867}, {27954, 4594}, {31614, 6627}, {38814, 668}, {45783, 874}
X(57060) = barycentric quotient X(i)/X(j) for these (i, j): {99, 6625}, {100, 52208}, {110, 2248}, {163, 18757}, {249, 53628}, {662, 13610}, {799, 51865}, {846, 661}, {1331, 15377}, {1654, 523}, {2905, 7649}, {4213, 2501}, {4590, 53655}, {4610, 40164}, {6626, 514}, {6627, 8029}, {14844, 55236}, {17084, 7178}, {17762, 1577}, {18755, 512}, {21085, 4024}, {21196, 3120}, {21879, 4705}, {22139, 647}, {27569, 4036}, {27954, 2533}, {38814, 513}, {39921, 18014}, {45783, 876}, {50451, 16732}, {51332, 18001}, {51857, 850}, {51867, 3572}, {52207, 4444}
X(57060) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 55235, 17934}, {4427, 4610, 99}, {4427, 5468, 4610}


X(57061) = X(56)X(13006)∩X(101)X(108)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^4+2*a^2*b*c-2*a*b*c*(b+c)-(b^2-c^2)^2) : :

X(57061) lies on these lines: {56, 13006}, {101, 108}, {109, 8687}, {205, 21147}, {604, 17439}, {906, 2425}, {1415, 23981}, {1813, 2406}, {2178, 47408}, {4559, 36059}, {4561, 4564}, {14594, 36147}, {17464, 34489}

X(57061) = trilinear pole of line {197, 478}
X(57061) = X(i)-isoconjugate-of-X(j) for these {i, j}: {11, 46640}, {513, 34277}, {522, 42467}, {650, 8048}, {905, 43742}, {3435, 4391}, {3910, 40454}, {4560, 43703}, {17924, 39167}, {26932, 40097}
X(57061) = X(i)-Dao conjugate of X(j) for these {i, j}: {56, 514}, {123, 4858}, {39026, 34277}
X(57061) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 109}
X(57061) = pole of line {1766, 3436} with respect to the Yff parabola
X(57061) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(109), and the X(2)-circumconcevian triangle of X(109)
X(57061) = intersection, other than A, B, C, of circumconics {{A, B, C, X(108), X(52928)}}, {{A, B, C, X(1305), X(4250)}}, {{A, B, C, X(1783), X(8687)}}
X(57061) = barycentric product X(i)*X(j) for these (i, j): {100, 21147}, {109, 3436}, {190, 478}, {197, 664}, {205, 4554}, {1331, 14257}, {1415, 20928}, {1766, 651}, {4564, 6588}, {16049, 4551}, {17408, 4561}, {21074, 4565}, {21186, 59}, {22132, 653}, {36098, 41600}
X(57061) = barycentric quotient X(i)/X(j) for these (i, j): {101, 34277}, {109, 8048}, {197, 522}, {205, 650}, {478, 514}, {1415, 42467}, {1766, 4391}, {2149, 46640}, {3436, 35519}, {6588, 4858}, {8750, 43742}, {14257, 46107}, {16049, 18155}, {17408, 7649}, {21147, 693}, {21186, 34387}, {22132, 6332}, {32656, 39167}, {41364, 57215}, {52143, 3737}


X(57062) = X(99)X(112)∩X(1983)X(2610)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^4+a^2*b*c+a^3*(b+c)-(b+c)^2*(b^2-b*c+c^2)-a*(b^3+b^2*c+b*c^2+c^3)) : :

X(57062) lies on these lines: {99, 112}, {101, 53628}, {163, 34076}, {1983, 2610}, {4570, 4574}, {5467, 53290}

X(57062) = trilinear pole of line {199, 22133}
X(57062) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 8044}, {1577, 3437}, {4036, 40142}
X(57062) = X(i)-Dao conjugate of X(j) for these {i, j}: {58, 514}, {36830, 8044}
X(57062) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 110}
X(57062) = pole of line {647, 8045} with respect to the Stammler hyperbola
X(57062) = pole of line {1330, 1761} with respect to the Yff parabola
X(57062) = pole of line {525, 18160} with respect to the Wallace hyperbola
X(57062) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(110), and the X(2)-circumconcevian triangle of X(110)
X(57062) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(199), X(4235)}}, {{A, B, C, X(648), X(34076)}}, {{A, B, C, X(877), X(1330)}}, {{A, B, C, X(1983), X(14590)}}, {{A, B, C, X(2407), X(22133)}}, {{A, B, C, X(2610), X(44427)}}, {{A, B, C, X(4574), X(47443)}}
X(57062) = barycentric product X(i)*X(j) for these (i, j): {110, 1330}, {163, 20929}, {190, 40589}, {199, 99}, {1761, 662}, {21076, 4556}, {21187, 4570}, {22133, 648}
X(57062) = barycentric quotient X(i)/X(j) for these (i, j): {110, 8044}, {199, 523}, {1330, 850}, {1576, 3437}, {1761, 1577}, {20929, 20948}, {21076, 52623}, {21187, 21207}, {22133, 525}, {40589, 514}
X(57062) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57119, 57194, 5546}


X(57063) = X(39)X(6586)∩X(918)X(1019)

Barycentrics    (b-c)*(b^2+c^2)*(a^2+2*b^2+b*c+2*c^2-a*(b+c)) : :

X(57063) lies on these lines: {39, 6586}, {523, 2528}, {824, 22007}, {918, 1019}, {3261, 8024}, {3313, 9000}, {17398, 21194}

X(57063) = X(i)-Dao conjugate of X(j) for these {i, j}: {16892, 514}
X(57063) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 141}
X(57063) = pole of line {141, 4450} with respect to the Steiner circumellipse
X(57063) = pole of line {902, 32781} with respect to the Steiner inellipse
X(57063) = pole of line {10330, 33951} with respect to the Wallace hyperbola
X(57063) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(141), and the X(2)-circumconcevian triangle of X(141)
X(57063) = intersection, other than A, B, C, of circumconics {{A, B, C, X(141), X(17285)}}, {{A, B, C, X(31065), X(49273)}}
X(57063) = barycentric product X(i)*X(j) for these (i, j): {141, 49273}, {16892, 17285}, {18072, 38}, {57100, 75}
X(57063) = barycentric quotient X(i)/X(j) for these (i, j): {18072, 3112}, {49273, 83}, {57100, 1}


X(57064) = X(9)X(8058)∩X(190)X(1275)

Barycentrics    (b-c)*(-a+b+c)^2*(3*a^2-(b-c)^2-2*a*(b+c)) : :

X(57064) lies on these lines: {9, 8058}, {37, 21172}, {190, 1275}, {514, 40872}, {522, 650}, {918, 30719}, {2324, 57241}, {3309, 14280}, {3731, 21186}, {3798, 57235}, {4081, 31648}, {4962, 38371}, {6332, 44550}, {8804, 57109}, {14330, 42337}, {53045, 55337}, {57045, 57199}

X(57064) = reflection of X(i) in X(j) for these {i,j}: {3239, 4130}, {4765, 14282}
X(57064) = perspector of circumconic {{A, B, C, X(8), X(16284)}}
X(57064) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 53622}, {604, 53640}, {934, 11051}, {1415, 36620}, {1461, 3062}, {6614, 19605}, {8059, 42872}
X(57064) = X(i)-Dao conjugate of X(j) for these {i, j}: {7, 4626}, {1146, 36620}, {2968, 10405}, {3161, 53640}, {4081, 24856}, {4130, 522}, {5452, 53622}, {7658, 514}, {13609, 279}, {14714, 11051}, {35508, 3062}, {55044, 42872}
X(57064) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 144}, {644, 45203}, {664, 200}, {4163, 3239}, {30610, 6736}, {36625, 4081}, {42303, 4847}
X(57064) = X(i)-complementary conjugate of X(j) for these {i, j}: {10307, 21252}
X(57064) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2125, 33650}, {8917, 150}, {42483, 21293}
X(57064) = pole of line {144, 200} with respect to the Steiner circumellipse
X(57064) = pole of line {9, 2272} with respect to the Steiner inellipse
X(57064) = pole of line {3239, 3900} with respect to the Yff parabola
X(57064) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(144), and the X(2)-circumconcevian triangle of X(144)
X(57064) = intersection, other than A, B, C, of circumconics {{A, B, C, X(144), X(346)}}, {{A, B, C, X(165), X(9371)}}, {{A, B, C, X(200), X(31627)}}, {{A, B, C, X(650), X(7658)}}, {{A, B, C, X(1639), X(13609)}}, {{A, B, C, X(3160), X(45275)}}, {{A, B, C, X(4521), X(28132)}}
X(57064) = barycentric product X(i)*X(j) for these (i, j): {144, 3239}, {165, 4397}, {346, 7658}, {1043, 55285}, {3160, 4163}, {3207, 52622}, {4105, 50560}, {13609, 190}, {16284, 3900}, {21060, 7253}, {31627, 4130}, {40137, 44797}
X(57064) = barycentric quotient X(i)/X(j) for these (i, j): {8, 53640}, {55, 53622}, {144, 658}, {165, 934}, {522, 36620}, {657, 11051}, {1043, 55284}, {1419, 4617}, {3160, 4626}, {3207, 1461}, {3239, 10405}, {3900, 3062}, {4130, 19605}, {4397, 44186}, {7658, 279}, {13609, 514}, {14298, 42872}, {16284, 4569}, {21060, 4566}, {21872, 1020}, {31627, 36838}, {50560, 52937}, {55285, 3668}
X(57064) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {522, 14282, 4765}, {522, 4130, 3239}


X(57065) = X(2)X(38380)∩X(4)X(3566)

Barycentrics    (b-c)*(b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4+c^4-2*a^2*(b^2+c^2)) : :
X(57065) = -3*X[1637]+2*X[52585], -5*X[3091]+4*X[44932]

X(57065) lies on these lines: {2, 38380}, {4, 3566}, {24, 34952}, {99, 32697}, {186, 523}, {249, 648}, {297, 525}, {317, 55278}, {459, 2394}, {512, 16230}, {690, 16229}, {924, 52000}, {1249, 18311}, {1499, 44705}, {1637, 52585}, {2052, 35361}, {2489, 2799}, {3091, 44932}, {5664, 56296}, {6563, 6753}, {7468, 35360}, {8743, 50437}, {9137, 47627}, {9308, 21397}, {12514, 57124}, {13400, 20580}, {15328, 18532}, {15421, 56361}, {35297, 57071}, {43665, 43678}, {43673, 52583}, {45681, 56297}, {52076, 53769}

X(57065) = midpoint of X(i) and X(j) for these {i,j}: {14618, 44427}
X(57065) = reflection of X(i) in X(j) for these {i,j}: {14618, 2501}, {16229, 51513}, {6563, 52584}, {57070, 6753}
X(57065) = polar conjugate of X(925)
X(57065) = trilinear pole of line {135, 136}
X(57065) = perspector of circumconic {{A, B, C, X(264), X(275)}}
X(57065) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 36145}, {48, 925}, {63, 32734}, {68, 163}, {91, 32661}, {110, 1820}, {162, 55549}, {661, 44174}, {662, 2351}, {2165, 4575}, {2168, 23181}, {2180, 52932}, {2314, 46969}, {9247, 46134}, {14575, 55215}, {16391, 24019}, {30450, 52430}, {32676, 52350}, {32692, 44706}, {47390, 55250}
X(57065) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 68}, {125, 55549}, {135, 6}, {136, 2165}, {139, 5}, {244, 1820}, {924, 30451}, {1084, 2351}, {1249, 925}, {2501, 523}, {3162, 32734}, {15526, 52350}, {34116, 32661}, {35071, 16391}, {36103, 36145}, {36830, 44174}, {36901, 20563}, {39013, 3}, {47421, 5562}, {52584, 525}, {55072, 42445}
X(57065) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 4}, {107, 41770}, {264, 34338}, {317, 136}, {648, 1993}, {6331, 39113}, {18315, 52280}, {32697, 297}, {41679, 467}, {55227, 317}
X(57065) = X(i)-complementary conjugate of X(j) for these {i, j}: {163, 23702}, {22261, 21253}
X(57065) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {254, 21294}, {921, 13219}, {13398, 4329}, {39109, 21221}
X(57065) = X(i)-cross conjugate of X(j) for these {i, j}: {136, 317}, {924, 6563}, {14397, 43088}, {30451, 523}, {34338, 264}, {47421, 24}, {52317, 924}, {55072, 39113}, {55278, 136}
X(57065) = pole of line {3564, 12318} with respect to the anticomplementary circle
X(57065) = pole of line {4, 157} with respect to the circumcircle
X(57065) = pole of line {6527, 37444} with respect to the DeLongchamps circle
X(57065) = pole of line {3564, 13371} with respect to the 1st DrozFarny circle
X(57065) = pole of line {5877, 18560} with respect to the 2nd DrozFarny circle
X(57065) = pole of line {3564, 18377} with respect to the circumcircle of the Johnson Triangle
X(57065) = pole of line {1594, 34845} with respect to the nine-point circle
X(57065) = pole of line {427, 9756} with respect to the orthoptic circle of the Steiner inellipse
X(57065) = pole of line {5, 6} with respect to the polar circle
X(57065) = pole of line {924, 6563} with respect to the Kiepert parabola
X(57065) = pole of line {1993, 27377} with respect to the MacBeath circumconic
X(57065) = pole of line {264, 847} with respect to the MacBeath Inconic
X(57065) = pole of line {230, 427} with respect to the orthic inconic
X(57065) = pole of line {686, 23181} with respect to the Stammler hyperbola
X(57065) = pole of line {4, 155} with respect to the Steiner circumellipse
X(57065) = pole of line {5, 578} with respect to the Steiner inellipse
X(57065) = pole of line {4558, 6334} with respect to the Wallace hyperbola
X(57065) = pole of line X(i)X(j) wrt the circumconic with perspector X(k) for these {i,j,k}: {4, 155, 2}, {1993, 27377, 3}, {2, 6, 4}, {324, 1993, 5}, {4, 157, 6}, {317, 467, 24}, {297, 1993, 25}, {1993, 17555, 27}, {1993, 14920, 30}, {7505, 41371, 53}, {8882, 45832, 54}, {4, 8905, 69}, {6563, 6753, 136}
X(57065) = pole of line X(i)X(j) wrt the inconic with perspector X(k) for these {i,j,k}: {5, 578, 2}, {230, 427, 4}, {6, 22391, 54}, {6146, 41005, 69}, {1441, 23518, 75}, {2, 6503, 76}, {5133, 53485, 83}, {21077, 41013, 92}, {30, 5961, 94}, {54, 45198, 95}, {1971, 2450, 98}, {924, 6563, 99}
X(57065) = triaxial point of ABC, the circumcevian triangle of X(4), and the X(2)-circumconcevian triangle of X(4)
X(57065) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7763)}}, {{A, B, C, X(24), X(297)}}, {{A, B, C, X(74), X(51776)}}, {{A, B, C, X(76), X(34756)}}, {{A, B, C, X(94), X(52505)}}, {{A, B, C, X(136), X(52476)}}, {{A, B, C, X(186), X(467)}}, {{A, B, C, X(249), X(1993)}}, {{A, B, C, X(275), X(40631)}}, {{A, B, C, X(317), X(44146)}}, {{A, B, C, X(459), X(11547)}}, {{A, B, C, X(523), X(18314)}}, {{A, B, C, X(525), X(924)}}, {{A, B, C, X(671), X(47108)}}, {{A, B, C, X(687), X(14618)}}, {{A, B, C, X(850), X(6563)}}, {{A, B, C, X(2501), X(6753)}}, {{A, B, C, X(3569), X(34952)}}, {{A, B, C, X(5523), X(8745)}}, {{A, B, C, X(8795), X(39113)}}, {{A, B, C, X(9979), X(52917)}}, {{A, B, C, X(14517), X(52582)}}, {{A, B, C, X(15423), X(32697)}}, {{A, B, C, X(16080), X(18883)}}, {{A, B, C, X(17434), X(30451)}}, {{A, B, C, X(33294), X(43665)}}, {{A, B, C, X(40149), X(42700)}}, {{A, B, C, X(41679), X(44427)}}
X(57065) = barycentric product X(i)*X(j) for these (i, j): {4, 6563}, {24, 850}, {115, 55227}, {136, 99}, {162, 17881}, {264, 924}, {276, 52317}, {317, 523}, {338, 41679}, {339, 52917}, {340, 43088}, {1577, 1748}, {1585, 54028}, {1586, 54029}, {1969, 55216}, {2052, 52584}, {2501, 7763}, {3267, 8745}, {3268, 52415}, {4590, 55278}, {6753, 76}, {11547, 525}, {14111, 41298}, {14618, 1993}, {15412, 467}, {15423, 5392}, {16230, 31635}, {17924, 42700}, {18022, 34952}, {18027, 30451}, {18817, 44808}, {18883, 44427}, {24006, 44179}, {34338, 46134}, {35142, 57154}, {44077, 44173}, {47421, 6331}, {57070, 6504}
X(57065) = barycentric quotient X(i)/X(j) for these (i, j): {4, 925}, {19, 36145}, {24, 110}, {25, 32734}, {47, 4575}, {52, 23181}, {96, 52932}, {110, 44174}, {136, 523}, {264, 46134}, {317, 99}, {467, 14570}, {512, 2351}, {520, 16391}, {523, 68}, {525, 52350}, {571, 32661}, {647, 55549}, {661, 1820}, {850, 20563}, {924, 3}, {1299, 46969}, {1585, 54030}, {1586, 54031}, {1748, 662}, {1969, 55215}, {1993, 4558}, {2052, 30450}, {2501, 2165}, {4590, 55277}, {5412, 39383}, {5413, 39384}, {6563, 69}, {6753, 6}, {6754, 34952}, {7763, 4563}, {8745, 112}, {8882, 32692}, {11547, 648}, {14111, 930}, {14397, 3284}, {14576, 1625}, {14618, 5392}, {15423, 1993}, {17881, 14208}, {23290, 56272}, {24006, 91}, {30451, 577}, {31635, 17932}, {34338, 924}, {34756, 13398}, {34948, 1437}, {34952, 184}, {39013, 30451}, {41679, 249}, {42700, 1332}, {43088, 265}, {44077, 1576}, {44179, 4592}, {44427, 37802}, {44808, 22115}, {47421, 647}, {52000, 15329}, {52317, 216}, {52415, 476}, {52416, 52603}, {52505, 43755}, {52584, 394}, {52742, 52975}, {52917, 250}, {52952, 2420}, {54028, 11090}, {54029, 11091}, {55136, 44665}, {55216, 48}, {55227, 4590}, {55278, 115}, {57070, 6515}, {57154, 3564}
X(57065) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {525, 2501, 14618}, {690, 51513, 16229}, {6753, 52584, 15423}, {14618, 44427, 525}


X(57066) = X(2)X(525)∩X(514)X(661)

Barycentrics    (a-b-c)*(b-c)*(a^2-b^2-b*c-c^2) : :
X(57066) = -7*X[9780]+4*X[55285], -X[21124]+4*X[25666], -4*X[23815]+X[49301], -X[44550]+4*X[45683], -X[44553]+4*X[45664]

X(57066) lies on these lines: {2, 525}, {321, 17899}, {512, 47809}, {514, 661}, {523, 47840}, {644, 3807}, {649, 28493}, {663, 4522}, {690, 47837}, {826, 47797}, {900, 4057}, {905, 25259}, {918, 28779}, {1019, 44449}, {1639, 3910}, {1734, 49288}, {2530, 49275}, {2785, 21052}, {3309, 47808}, {3566, 47807}, {3700, 4560}, {3716, 48278}, {3800, 48208}, {3907, 14432}, {4025, 25594}, {4040, 47687}, {4064, 8062}, {4083, 48185}, {4086, 55182}, {4120, 6002}, {4130, 28898}, {4367, 18004}, {4453, 23875}, {4467, 7265}, {4705, 49290}, {4944, 23880}, {4951, 29074}, {4983, 49283}, {4990, 50333}, {4992, 48103}, {5250, 57121}, {6004, 31131}, {6005, 48252}, {7178, 49274}, {7253, 15776}, {8712, 47770}, {9780, 55285}, {14419, 29090}, {14431, 29094}, {16451, 22089}, {16452, 39201}, {17147, 55193}, {17166, 48047}, {21124, 25666}, {21222, 30726}, {21260, 49279}, {21301, 48299}, {23815, 49301}, {23876, 47794}, {23877, 47832}, {23879, 47782}, {23882, 47790}, {25662, 45801}, {27486, 57055}, {28473, 53334}, {28478, 47766}, {28481, 47805}, {28832, 45326}, {28846, 48570}, {29017, 47822}, {29021, 47838}, {29142, 47821}, {29146, 48177}, {29200, 47823}, {29202, 48197}, {29208, 48188}, {29252, 48569}, {29264, 56311}, {29268, 30580}, {29280, 48227}, {29284, 47835}, {29288, 48171}, {29302, 47892}, {29312, 48553}, {44550, 45683}, {44553, 45664}, {46919, 57245}, {47690, 48099}, {47695, 48272}, {47696, 48092}, {47707, 48136}, {47715, 48058}, {47718, 48006}, {47719, 48029}, {47720, 48088}, {48056, 48279}, {48083, 48406}, {48091, 49282}, {48123, 48405}, {48144, 48270}, {48273, 48408}, {48410, 49286}, {48580, 57059}, {49276, 50337}, {53339, 57058}, {55180, 55184}

X(57066) = midpoint of X(i) and X(j) for these {i,j}: {4064, 11125}, {7253, 53342}
X(57066) = reflection of X(i) in X(j) for these {i,j}: {11125, 8062}, {21222, 30726}, {4453, 47795}, {47793, 1639}, {47797, 47839}, {47835, 48199}, {47836, 47807}, {48161, 47838}, {48565, 47766}, {53342, 52355}
X(57066) = isotomic conjugate of X(38340)
X(57066) = anticomplement of X(41800)
X(57066) = trilinear pole of line {6741, 53524}
X(57066) = perspector of circumconic {{A, B, C, X(75), X(319)}}
X(57066) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 26700}, {31, 38340}, {79, 1415}, {101, 52372}, {109, 2160}, {112, 52390}, {163, 52382}, {604, 6742}, {651, 6186}, {692, 52374}, {1397, 15455}, {1400, 13486}, {1412, 56193}, {1461, 7073}, {1464, 32678}, {1576, 43682}, {1835, 32662}, {2173, 36064}, {2306, 36073}, {4559, 52375}, {7100, 32674}, {8606, 32714}, {11076, 34921}, {14560, 18593}, {22383, 34922}, {33654, 36072}
X(57066) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 38340}, {9, 26700}, {11, 2160}, {115, 52382}, {1015, 52372}, {1086, 52374}, {1146, 79}, {2968, 7110}, {3161, 6742}, {3700, 523}, {4858, 43682}, {6741, 8818}, {8287, 57}, {9404, 48382}, {14838, 7178}, {18334, 1464}, {20982, 17114}, {34591, 52390}, {35057, 9404}, {35072, 7100}, {35508, 7073}, {36896, 36064}, {38991, 6186}, {39054, 35049}, {40582, 13486}, {40599, 56193}, {40624, 30690}, {40625, 52393}, {40626, 52381}, {41800, 41800}, {55042, 6}, {55067, 52375}
X(57066) = X(i)-Ceva conjugate of X(j) for these {i, j}: {95, 2968}, {99, 8}, {190, 3578}, {13136, 323}, {18160, 4467}, {46750, 24026}
X(57066) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {10308, 150}, {55185, 69}
X(57066) = X(i)-cross conjugate of X(j) for these {i, j}: {35057, 4467}
X(57066) = pole of line {8, 1631} with respect to the circumcircle
X(57066) = pole of line {347, 33298} with respect to the DeLongchamps circle
X(57066) = pole of line {1503, 9746} with respect to the orthoptic circle of the Steiner inellipse
X(57066) = pole of line {19, 1990} with respect to the polar circle
X(57066) = pole of line {2605, 3268} with respect to the Kiepert parabola
X(57066) = pole of line {323, 20017} with respect to the MacBeath circumconic
X(57066) = pole of line {163, 2420} with respect to the Stammler hyperbola
X(57066) = pole of line {8, 30} with respect to the Steiner circumellipse
X(57066) = pole of line {10, 30} with respect to the Steiner inellipse
X(57066) = pole of line {522, 27545} with respect to the Yff parabola
X(57066) = pole of line {662, 2407} with respect to the Wallace hyperbola
X(57066) = triaxial point of ABC, the circumcevian triangle of X(8), and the X(2)-circumconcevian triangle of X(8)
X(57066) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(14206)}}, {{A, B, C, X(8), X(34016)}}, {{A, B, C, X(312), X(3936)}}, {{A, B, C, X(319), X(30806)}}, {{A, B, C, X(445), X(15776)}}, {{A, B, C, X(514), X(14838)}}, {{A, B, C, X(522), X(4823)}}, {{A, B, C, X(650), X(30600)}}, {{A, B, C, X(661), X(2433)}}, {{A, B, C, X(693), X(4467)}}, {{A, B, C, X(857), X(11107)}}, {{A, B, C, X(908), X(3219)}}, {{A, B, C, X(1016), X(7799)}}, {{A, B, C, X(1577), X(2394)}}, {{A, B, C, X(1959), X(35193)}}, {{A, B, C, X(2605), X(48131)}}, {{A, B, C, X(3578), X(4102)}}, {{A, B, C, X(3912), X(4420)}}, {{A, B, C, X(4358), X(42033)}}, {{A, B, C, X(4391), X(18160)}}, {{A, B, C, X(4560), X(4978)}}, {{A, B, C, X(4801), X(16755)}}, {{A, B, C, X(6740), X(51227)}}, {{A, B, C, X(14208), X(34767)}}, {{A, B, C, X(14210), X(36890)}}, {{A, B, C, X(14963), X(35192)}}, {{A, B, C, X(17095), X(30807)}}, {{A, B, C, X(18669), X(41502)}}, {{A, B, C, X(38340), X(41800)}}, {{A, B, C, X(40999), X(44150)}}
X(57066) = barycentric product X(i)*X(j) for these (i, j): {35, 35519}, {76, 9404}, {314, 57099}, {319, 522}, {333, 7265}, {645, 8287}, {646, 7202}, {1442, 4397}, {2003, 52622}, {2605, 3596}, {2611, 7257}, {3219, 4391}, {3261, 52405}, {3267, 41502}, {3268, 6740}, {3718, 54244}, {3900, 52421}, {3904, 41226}, {3969, 4560}, {4420, 693}, {4467, 8}, {6741, 99}, {11107, 14208}, {14838, 312}, {16755, 2321}, {17095, 3239}, {17886, 643}, {18155, 3678}, {18160, 9}, {20948, 35192}, {21044, 55235}, {21824, 4631}, {23883, 42030}, {28660, 55210}, {33939, 650}, {34016, 3700}, {35057, 75}, {35193, 850}, {35518, 6198}, {40713, 54014}, {40714, 54015}, {40999, 7253}, {42033, 514}, {52412, 6332}, {53524, 668}
X(57066) = barycentric quotient X(i)/X(j) for these (i, j): {1, 26700}, {2, 38340}, {8, 6742}, {21, 13486}, {35, 109}, {74, 36064}, {210, 56193}, {312, 15455}, {319, 664}, {513, 52372}, {514, 52374}, {521, 7100}, {522, 79}, {523, 52382}, {526, 1464}, {650, 2160}, {656, 52390}, {662, 35049}, {663, 6186}, {1250, 36073}, {1442, 934}, {1577, 43682}, {1793, 36061}, {1897, 34922}, {2003, 1461}, {2174, 1415}, {2341, 32678}, {2594, 53321}, {2605, 56}, {2611, 4017}, {3024, 2605}, {3219, 651}, {3239, 7110}, {3268, 41804}, {3678, 4551}, {3700, 8818}, {3737, 52375}, {3900, 7073}, {3969, 4552}, {4086, 6757}, {4391, 30690}, {4397, 52344}, {4420, 100}, {4467, 7}, {4560, 52393}, {4985, 52569}, {6198, 108}, {6332, 52381}, {6740, 476}, {6741, 523}, {6742, 55017}, {7202, 3669}, {7253, 3615}, {7265, 226}, {7282, 36118}, {7343, 34921}, {8287, 7178}, {9404, 6}, {10638, 36072}, {11107, 162}, {14838, 57}, {16577, 1020}, {16755, 1434}, {17095, 658}, {17454, 36075}, {17886, 4077}, {18160, 85}, {20982, 7180}, {21044, 55236}, {21141, 53545}, {21824, 57185}, {23226, 603}, {23883, 4654}, {28660, 55209}, {32679, 18593}, {33939, 4554}, {34016, 4573}, {34234, 47317}, {35055, 14158}, {35057, 1}, {35192, 163}, {35193, 110}, {35519, 20565}, {40214, 4565}, {40999, 4566}, {41226, 655}, {41502, 112}, {42033, 190}, {51452, 44409}, {52355, 52388}, {52356, 2166}, {52405, 101}, {52408, 36059}, {52412, 653}, {52421, 4569}, {53524, 513}, {53542, 43924}, {53554, 1458}, {53563, 1284}, {54014, 1081}, {54015, 554}, {54244, 34}, {55042, 48382}, {55210, 1400}, {55235, 4620}, {57081, 1789}, {57099, 65}, {57108, 8606}
X(57066) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {826, 47839, 47797}, {1639, 3910, 47793}, {3239, 6332, 4391}, {3566, 47807, 47836}, {4391, 6332, 3904}, {7265, 14838, 4467}, {23875, 47795, 4453}, {28478, 47766, 48565}, {29021, 47838, 48161}, {29284, 48199, 47835}


X(57067) = X(1)X(17069)∩X(9)X(4524)

Barycentrics    a*(a-b-c)*(b-c)*(a^3-2*a^2*(b+c)+b*c*(b+c)+a*(b^2+3*b*c+c^2)) : :
X(57067) = -3*X[3158]+2*X[4477]

X(57067) lies on these lines: {1, 17069}, {9, 4524}, {55, 1021}, {200, 3700}, {521, 7659}, {522, 3935}, {647, 37553}, {667, 3900}, {1734, 28984}, {3158, 4477}, {3737, 4913}, {3755, 26146}, {3870, 4467}, {3907, 57113}, {3996, 18155}, {4458, 48293}, {4512, 9404}, {27805, 36802}, {35057, 57112}, {35338, 54110}

X(57067) = perspector of circumconic {{A, B, C, X(23617), X(32008)}}
X(57067) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4616, 53110}
X(57067) = X(i)-Dao conjugate of X(j) for these {i, j}: {4041, 523}
X(57067) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 9}
X(57067) = pole of line {6666, 7181} with respect to the Steiner inellipse
X(57067) = triaxial point of ABC, the circumcevian triangle of X(9), and the X(2)-circumconcevian triangle of X(9)
X(57067) = barycentric product X(i)*X(j) for these (i, j): {21, 22042}, {314, 57176}, {333, 57232}, {23821, 644}, {26845, 4069}, {55064, 99}
X(57067) = barycentric quotient X(i)/X(j) for these (i, j): {22042, 1441}, {23821, 24002}, {55064, 523}, {57176, 65}, {57232, 226}


X(57068) = X(37)X(14838)∩X(321)X(1577)

Barycentrics    (b-c)*(b+c)*(-a^2+2*b^2+3*b*c+2*c^2+a*(b+c)) : :
X(57068) = -X[4063]+3*X[47870], -3*X[4120]+X[47679], -X[4960]+3*X[47792]

X(57068) lies on these lines: {37, 14838}, {321, 1577}, {514, 4024}, {522, 1324}, {523, 48053}, {824, 22007}, {2786, 22044}, {2901, 3907}, {3159, 4122}, {3700, 4129}, {3730, 57208}, {3743, 57131}, {3995, 4560}, {4063, 47870}, {4064, 28161}, {4079, 23657}, {4115, 32094}, {4120, 47679}, {4369, 23883}, {4500, 23875}, {4791, 52622}, {4807, 48395}, {4820, 29013}, {4838, 50449}, {4960, 47792}, {6367, 18004}, {6590, 29216}, {7662, 29294}, {8045, 57058}, {9237, 21070}, {14349, 47665}, {17161, 57133}, {21192, 37759}, {21196, 32849}, {21212, 24084}, {21831, 48294}, {22041, 22042}, {24083, 45746}, {29190, 49286}, {29302, 48271}, {29358, 48394}, {48064, 57234}

X(57068) = midpoint of X(i) and X(j) for these {i,j}: {14349, 47665}, {22037, 31010}, {4024, 7265}, {4838, 50449}, {47659, 48085}
X(57068) = reflection of X(i) in X(j) for these {i,j}: {22037, 7265}, {31010, 4024}, {4129, 3700}, {4807, 48395}, {57160, 23282}
X(57068) = inverse of X(31010) in Yff parabola
X(57068) = perspector of circumconic {{A, B, C, X(1268), X(32025)}}
X(57068) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 43972}
X(57068) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 43972}, {4024, 523}
X(57068) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 10}, {32025, 55065}
X(57068) = X(i)-cross conjugate of X(j) for these {i, j}: {55065, 32025}
X(57068) = pole of line {1839, 43972} with respect to the polar circle
X(57068) = pole of line {10, 31301} with respect to the Steiner circumellipse
X(57068) = pole of line {896, 3634} with respect to the Steiner inellipse
X(57068) = pole of line {523, 4129} with respect to the Yff parabola
X(57068) = triaxial point of ABC, the circumcevian triangle of X(10), and the X(2)-circumconcevian triangle of X(10)
X(57068) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(31064)}}, {{A, B, C, X(321), X(31011)}}, {{A, B, C, X(4049), X(18158)}}, {{A, B, C, X(4608), X(17161)}}, {{A, B, C, X(31013), X(32025)}}
X(57068) = barycentric product X(i)*X(j) for these (i, j): {10, 17161}, {1577, 33761}, {18158, 37}, {32025, 523}, {33771, 850}, {33775, 661}, {55065, 99}, {57133, 76}
X(57068) = barycentric quotient X(i)/X(j) for these (i, j): {523, 43972}, {17161, 86}, {18158, 274}, {32025, 99}, {33761, 662}, {33771, 110}, {33775, 799}, {55065, 523}, {57133, 6}
X(57068) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 4024, 31010}, {514, 7265, 22037}, {522, 23282, 57160}, {3700, 23879, 4129}, {22037, 31010, 514}


X(57069) = X(2)X(47125)∩X(99)X(250)

Barycentrics    (b-c)*(b+c)*(-a^2+b^2+c^2)*(-a^4+b^4+c^4) : :
X(57069) = -3*X[2]+2*X[47125], -2*X[2501]+3*X[55190], -3*X[14417]+2*X[52598]

X(57069) lies on these lines: {2, 47125}, {69, 2419}, {99, 250}, {325, 523}, {339, 34978}, {520, 6333}, {525, 3049}, {647, 28714}, {648, 44183}, {2485, 16757}, {2489, 2799}, {2501, 55190}, {4558, 14588}, {5664, 6337}, {6340, 14977}, {9007, 45792}, {14417, 52598}, {34254, 55273}, {55974, 57222}

X(57069) = midpoint of X(i) and X(j) for these {i,j}: {55974, 57222}
X(57069) = reflection of X(i) in X(j) for these {i,j}: {3267, 3265}, {33294, 2485}, {69, 4143}
X(57069) = isotomic conjugate of X(1289)
X(57069) = inverse of X(3267) in Kiepert parabola
X(57069) = anticomplement of X(47125)
X(57069) = trilinear pole of line {127, 18187}
X(57069) = perspector of circumconic {{A, B, C, X(76), X(315)}}
X(57069) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 1289}, {66, 32676}, {112, 2156}, {162, 2353}, {163, 13854}, {661, 15388}, {798, 44183}, {811, 40146}, {1973, 44766}
X(57069) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 1289}, {115, 13854}, {125, 2353}, {127, 25}, {2485, 523}, {2972, 27372}, {3265, 525}, {6337, 44766}, {15526, 66}, {17423, 40146}, {31998, 44183}, {34591, 2156}, {36830, 15388}, {36901, 43678}, {47125, 47125}, {47413, 1843}, {53569, 41762}, {53822, 17407}, {55047, 6}, {55070, 27369}
X(57069) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 22}, {648, 69}, {827, 45201}, {4563, 28405}, {34254, 127}, {55225, 20806}
X(57069) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {13575, 21294}, {34207, 21221}, {39417, 5905}, {56008, 8}
X(57069) = X(i)-cross conjugate of X(j) for these {i, j}: {127, 34254}, {8673, 33294}, {23881, 3267}, {47413, 20806}, {53822, 2}, {55273, 127}
X(57069) = pole of line {1370, 3926} with respect to the anticomplementary circle
X(57069) = pole of line {22, 7750} with respect to the circumcircle
X(57069) = pole of line {6776, 44415} with respect to the cosine circle
X(57069) = pole of line {2, 2138} with respect to the DeLongchamps circle
X(57069) = pole of line {9863, 44440} with respect to the 2nd DrozFarny circle
X(57069) = pole of line {39466, 40643} with respect to the 1st Lemoine circle
X(57069) = pole of line {25, 2353} with respect to the polar circle
X(57069) = pole of line {525, 3267} with respect to the Kiepert parabola
X(57069) = pole of line {69, 23128} with respect to the MacBeath circumconic
X(57069) = pole of line {2, 2138} with respect to the MacBeath Inconic
X(57069) = pole of line {5254, 26926} with respect to the orthic inconic
X(57069) = pole of line {1576, 2445} with respect to the Stammler hyperbola
X(57069) = pole of line {22, 69} with respect to the Steiner circumellipse
X(57069) = pole of line {141, 206} with respect to the Steiner inellipse
X(57069) = pole of line {110, 1289} with respect to the Wallace hyperbola
X(57069) = pole of line X(i)X(j) wrt the circumconic with perspector X(k) for these {i,j,k}: {1759, 21377, 1}, {22, 69, 2}, {69, 23128, 3}, {69, 19595, 4}, {69, 41480, 5}, {22, 7750, 6}, {21070, 22023, 10}, {2, 6, 22}, {69, 8879, 25}, {18796, 39466, 32}, {22275, 22302, 37}, {2, 3, 69}, {76, 5523, 76}, {22, 1975, 141}
X(57069) = pole of line X(i)X(j) wrt the inconic with perspector X(k) for these {i,j,k}: {3721, 21335, 1}, {141, 206, 2}, {22062, 22416, 3}, {5254, 26926, 4}, {343, 441, 69}, {76, 5523, 76}, {1176, 6656, 83}, {525, 3267, 99}
X(57069) = triaxial point of ABC, the circumcevian triangle of X(22), and the X(2)-circumconcevian triangle of X(22)
X(57069) = intersection, other than A, B, C, of circumconics {{A, B, C, X(22), X(250)}}, {{A, B, C, X(69), X(17907)}}, {{A, B, C, X(127), X(35522)}}, {{A, B, C, X(315), X(3260)}}, {{A, B, C, X(325), X(20563)}}, {{A, B, C, X(523), X(2435)}}, {{A, B, C, X(525), X(23285)}}, {{A, B, C, X(647), X(50552)}}, {{A, B, C, X(684), X(47413)}}, {{A, B, C, X(693), X(16757)}}, {{A, B, C, X(850), X(2419)}}, {{A, B, C, X(895), X(11610)}}, {{A, B, C, X(1176), X(34137)}}, {{A, B, C, X(1289), X(47125)}}, {{A, B, C, X(3001), X(10316)}}, {{A, B, C, X(3005), X(3049)}}, {{A, B, C, X(3261), X(21178)}}, {{A, B, C, X(3266), X(6340)}}, {{A, B, C, X(3313), X(14965)}}, {{A, B, C, X(4150), X(35517)}}, {{A, B, C, X(8057), X(55129)}}, {{A, B, C, X(8743), X(45279)}}, {{A, B, C, X(9148), X(38356)}}, {{A, B, C, X(12215), X(35540)}}, {{A, B, C, X(18018), X(40358)}}, {{A, B, C, X(18019), X(52513)}}, {{A, B, C, X(19613), X(40009)}}
X(57069) = barycentric product X(i)*X(j) for these (i, j): {22, 3267}, {76, 8673}, {125, 55225}, {127, 99}, {315, 525}, {339, 4611}, {1799, 23881}, {2485, 305}, {4025, 4150}, {4143, 52448}, {4563, 53569}, {4590, 55273}, {10316, 44173}, {14208, 1760}, {15413, 4463}, {16757, 20336}, {17076, 52355}, {17907, 3265}, {18187, 668}, {20641, 656}, {20806, 850}, {21178, 306}, {31636, 6333}, {33294, 69}, {34254, 523}, {36793, 52915}, {38356, 670}, {40073, 647}, {40421, 57202}, {47413, 6331}, {52617, 8743}
X(57069) = barycentric quotient X(i)/X(j) for these (i, j): {2, 1289}, {22, 112}, {69, 44766}, {99, 44183}, {110, 15388}, {127, 523}, {315, 648}, {523, 13854}, {525, 66}, {647, 2353}, {656, 2156}, {850, 43678}, {1760, 162}, {1799, 53657}, {2172, 32676}, {2485, 25}, {3049, 40146}, {3265, 14376}, {3267, 18018}, {3313, 35325}, {4150, 1897}, {4456, 8750}, {4463, 1783}, {4580, 16277}, {4590, 55272}, {4611, 250}, {6333, 34138}, {8673, 6}, {8743, 32713}, {10316, 1576}, {11610, 32696}, {14396, 1495}, {16757, 28}, {17434, 27372}, {17907, 107}, {18187, 513}, {20641, 811}, {20806, 110}, {21178, 27}, {22075, 14574}, {23881, 427}, {26217, 30733}, {28405, 1632}, {31636, 685}, {33294, 4}, {34254, 99}, {38356, 512}, {40073, 6331}, {40358, 39417}, {47125, 17407}, {47413, 647}, {52448, 6529}, {52513, 10423}, {52915, 23964}, {52950, 23347}, {53569, 2501}, {53822, 47125}, {55129, 16318}, {55225, 18020}, {55273, 115}, {57126, 39575}, {57202, 206}
X(57069) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {523, 3265, 3267}, {2485, 23881, 33294}, {4143, 8057, 69}


X(57070) = X(403)X(523)∩X(525)X(44328)

Barycentrics    (b-c)*(b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4+c^4-2*a^2*(b^2+c^2))*(a^6-3*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(3*b^4-2*b^2*c^2+3*c^4)) : :

X(57070) lies on these lines: {403, 523}, {525, 44328}, {2501, 20577}, {2904, 38359}, {6563, 6753}, {20580, 44427}

X(57070) = reflection of X(i) in X(j) for these {i,j}: {57065, 6753}
X(57070) = perspector of circumconic {{A, B, C, X(317), X(2052)}}
X(57070) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 32132}, {255, 39416}, {1820, 13398}, {15316, 36145}
X(57070) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 32132}, {139, 8800}, {6523, 39416}, {6753, 523}, {39013, 15316}
X(57070) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 24}, {648, 6515}, {30450, 467}
X(57070) = pole of line {3, 2165} with respect to the polar circle
X(57070) = pole of line {4, 8905} with respect to the MacBeath Inconic
X(57070) = pole of line {24, 6193} with respect to the Steiner circumellipse
X(57070) = pole of line {1147, 13292} with respect to the Steiner inellipse
X(57070) = triaxial point of ABC, the circumcevian triangle of X(24), and the X(2)-circumconcevian triangle of X(24)
X(57070) = intersection, other than A, B, C, of circumconics {{A, B, C, X(523), X(52584)}}, {{A, B, C, X(1993), X(39116)}}, {{A, B, C, X(3542), X(44145)}}, {{A, B, C, X(6515), X(11547)}}, {{A, B, C, X(6530), X(35603)}}, {{A, B, C, X(6563), X(14618)}}
X(57070) = barycentric product X(i)*X(j) for these (i, j): {135, 99}, {3542, 6563}, {15423, 39116}, {35603, 850}, {57065, 6515}
X(57070) = barycentric quotient X(i)/X(j) for these (i, j): {24, 13398}, {135, 523}, {393, 39416}, {523, 32132}, {924, 15316}, {3542, 925}, {35603, 110}, {57065, 6504}


X(57071) = X(6)X(38359)∩X(230)X(231)

Barycentrics    (b-c)*(b+c)*(-a^2+b^2-c^2)*(a^2+b^2-c^2)*(-3*a^2+b^2+c^2) : :

X(57071) lies on these lines: {6, 38359}, {112, 7472}, {230, 231}, {525, 2451}, {648, 4590}, {1249, 55267}, {2395, 41489}, {2799, 20580}, {3162, 18311}, {3569, 8057}, {4143, 9035}, {5664, 51579}, {8430, 40234}, {8754, 31644}, {9178, 13854}, {15423, 44817}, {15470, 52166}, {17994, 44705}, {19912, 39533}, {35297, 57065}, {37453, 55271}

X(57071) = midpoint of X(i) and X(j) for these {i,j}: {2489, 14273}
X(57071) = reflection of X(i) in X(j) for these {i,j}: {2501, 2489}, {44705, 17994}, {47125, 2492}
X(57071) = polar conjugate of X(35136)
X(57071) = trilinear pole of line {5139, 6388}
X(57071) = perspector of circumconic {{A, B, C, X(4), X(6353)}}
X(57071) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 35136}, {63, 3565}, {163, 6340}, {662, 6391}, {799, 40319}, {2996, 4575}, {4558, 8769}, {4563, 38252}, {4592, 8770}, {53059, 55202}
X(57071) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 6340}, {136, 2996}, {1084, 6391}, {1249, 35136}, {2489, 523}, {3162, 3565}, {5139, 8770}, {6388, 3926}, {15525, 69}, {38996, 40319}, {51579, 4563}
X(57071) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 25}, {112, 40326}, {648, 193}, {6353, 5139}, {6531, 51613}, {30610, 431}, {36611, 8754}, {43188, 235}
X(57071) = X(i)-complementary conjugate of X(j) for these {i, j}: {4575, 15261}, {40323, 21253}
X(57071) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2129, 3448}, {15369, 21221}, {55023, 21294}
X(57071) = X(i)-cross conjugate of X(j) for these {i, j}: {3566, 2501}, {5139, 6353}, {8651, 3566}, {15525, 193}, {47430, 19118}
X(57071) = pole of line {25, 15591} with respect to the circumcircle
X(57071) = pole of line {4, 155} with respect to the cosine circle
X(57071) = pole of line {2, 1975} with respect to the polar circle
X(57071) = pole of line {51, 11326} with respect to the Brocard inellipse
X(57071) = pole of line {3566, 51374} with respect to the Kiepert parabola
X(57071) = pole of line {155, 193} with respect to the MacBeath circumconic
X(57071) = pole of line {427, 7752} with respect to the MacBeath Inconic
X(57071) = pole of line {4, 193} with respect to the orthic inconic
X(57071) = pole of line {25, 193} with respect to the Steiner circumellipse
X(57071) = pole of line {6, 6387} with respect to the Steiner inellipse
X(57071) = triaxial point of ABC, the circumcevian triangle of X(25), and the X(2)-circumconcevian triangle of X(25)
X(57071) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(3291)}}, {{A, B, C, X(193), X(230)}}, {{A, B, C, X(232), X(19118)}}, {{A, B, C, X(468), X(6353)}}, {{A, B, C, X(523), X(3566)}}, {{A, B, C, X(647), X(8651)}}, {{A, B, C, X(1637), X(6388)}}, {{A, B, C, X(1880), X(3290)}}, {{A, B, C, X(2395), X(6587)}}, {{A, B, C, X(2485), X(9178)}}, {{A, B, C, X(2489), X(32697)}}, {{A, B, C, X(2491), X(47430)}}, {{A, B, C, X(2493), X(8749)}}, {{A, B, C, X(3003), X(3053)}}, {{A, B, C, X(3011), X(4028)}}, {{A, B, C, X(3167), X(47195)}}, {{A, B, C, X(3798), X(45745)}}, {{A, B, C, X(5139), X(14273)}}, {{A, B, C, X(6337), X(44556)}}, {{A, B, C, X(8609), X(21874)}}, {{A, B, C, X(8791), X(10418)}}, {{A, B, C, X(14580), X(40144)}}, {{A, B, C, X(14998), X(46425)}}, {{A, B, C, X(15525), X(55122)}}, {{A, B, C, X(16310), X(34288)}}, {{A, B, C, X(17983), X(41360)}}, {{A, B, C, X(23287), X(47139)}}, {{A, B, C, X(37784), X(40326)}}, {{A, B, C, X(39645), X(47200)}}
X(57071) = barycentric product X(i)*X(j) for these (i, j): {162, 17876}, {193, 2501}, {264, 8651}, {512, 54412}, {523, 6353}, {1707, 24006}, {1826, 3798}, {2374, 57087}, {3566, 4}, {4028, 7649}, {5139, 99}, {6388, 648}, {14618, 3053}, {17924, 21874}, {19118, 850}, {21447, 647}, {47430, 6331}, {51374, 53149}, {57216, 8754}
X(57071) = barycentric quotient X(i)/X(j) for these (i, j): {4, 35136}, {25, 3565}, {193, 4563}, {512, 6391}, {523, 6340}, {669, 40319}, {1707, 4592}, {2489, 8770}, {2501, 2996}, {3053, 4558}, {3566, 69}, {3798, 17206}, {4028, 4561}, {5139, 523}, {6353, 99}, {6388, 525}, {8651, 3}, {17876, 14208}, {18156, 55202}, {19118, 110}, {21447, 6331}, {21874, 1332}, {41584, 4576}, {47430, 647}, {51513, 27364}, {54412, 670}, {57204, 53059}, {57216, 47389}
X(57071) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {523, 2489, 2501}, {523, 2492, 47125}, {2489, 14273, 523}, {2501, 47230, 9209}


X(57072) = X(27)X(35365)∩X(447)X(525)

Barycentrics    (a+b)*(a-b-c)*(b-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(-b^3+a*b*c-c^3+a^2*(b+c)) : :

X(57072) lies on these lines: {27, 35365}, {447, 525}, {469, 50329}, {522, 57215}, {523, 2073}, {648, 4570}, {2905, 38359}, {3261, 4025}, {4560, 14024}, {20294, 57043}, {57044, 57083}, {57081, 57200}

X(57072) = reflection of X(i) in X(j) for these {i,j}: {46107, 7649}
X(57072) = perspector of circumconic {{A, B, C, X(40414), X(44129)}}
X(57072) = X(i)-isoconjugate-of-X(j) for these {i, j}: {228, 1305}, {692, 28786}, {1415, 40161}, {2218, 23067}, {36059, 41506}
X(57072) = X(i)-Dao conjugate of X(j) for these {i, j}: {1086, 28786}, {1146, 40161}, {7649, 523}, {20620, 41506}
X(57072) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 27}, {648, 56000}, {811, 18134}
X(57072) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {39944, 13219}
X(57072) = pole of line {27, 23339} with respect to the circumcircle
X(57072) = pole of line {12, 42} with respect to the polar circle
X(57072) = pole of line {8676, 20294} with respect to the Kiepert parabola
X(57072) = pole of line {23067, 32656} with respect to the Stammler hyperbola
X(57072) = pole of line {27, 17220} with respect to the Steiner circumellipse
X(57072) = pole of line {6678, 34830} with respect to the Steiner inellipse
X(57072) = triaxial point of ABC, the circumcevian triangle of X(27), and the X(2)-circumconcevian triangle of X(27)
X(57072) = intersection, other than A, B, C, of circumconics {{A, B, C, X(273), X(27396)}}, {{A, B, C, X(3261), X(4560)}}, {{A, B, C, X(4025), X(23189)}}, {{A, B, C, X(5125), X(17515)}}, {{A, B, C, X(7649), X(32699)}}, {{A, B, C, X(8676), X(28623)}}, {{A, B, C, X(14024), X(40717)}}
X(57072) = barycentric product X(i)*X(j) for these (i, j): {162, 17878}, {274, 57092}, {314, 57173}, {3868, 57215}, {4560, 5125}, {5190, 99}, {20294, 27}, {23800, 31623}, {41320, 52619}, {43060, 44130}, {44129, 8676}, {46107, 56000}, {57043, 86}
X(57072) = barycentric quotient X(i)/X(j) for these (i, j): {27, 1305}, {514, 28786}, {522, 40161}, {579, 23067}, {3064, 41506}, {3190, 4574}, {4306, 52610}, {5125, 4552}, {5190, 523}, {8676, 71}, {17878, 14208}, {17926, 56146}, {20294, 306}, {23800, 1214}, {31623, 51566}, {41320, 4557}, {43060, 73}, {51658, 37755}, {56000, 1331}, {57043, 10}, {57092, 37}, {57173, 65}, {57215, 2997}
X(57072) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7649, 28623, 46107}


X(57073) = X(523)X(2074)∩X(693)X(905)

Barycentrics    (a+b)*(b-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+b^3+b^2*c+b*c^2+c^3-a^2*(b+c)-a*(b+c)^2) : :

X(57073) lies on these lines: {522, 57200}, {523, 2074}, {525, 17498}, {648, 4567}, {693, 905}, {1019, 26721}, {2906, 38359}, {26217, 57094}, {29013, 57173}, {50449, 54244}

X(57073) = reflection of X(i) in X(j) for these {i,j}: {17924, 6591}
X(57073) = perspector of circumconic {{A, B, C, X(286), X(40395)}}
X(57073) = X(i)-isoconjugate-of-X(j) for these {i, j}: {71, 13397}, {101, 28787}, {906, 23604}, {4551, 56269}, {4575, 41508}, {23067, 39943}, {32656, 43675}
X(57073) = X(i)-Dao conjugate of X(j) for these {i, j}: {136, 41508}, {1015, 28787}, {5190, 23604}, {6591, 523}
X(57073) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 28}, {648, 40571}
X(57073) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {39945, 13219}
X(57073) = pole of line {28, 18610} with respect to the circumcircle
X(57073) = pole of line {37, 442} with respect to the polar circle
X(57073) = pole of line {906, 35350} with respect to the Stammler hyperbola
X(57073) = pole of line {28, 3868} with respect to the Steiner circumellipse
X(57073) = pole of line {942, 52259} with respect to the Steiner inellipse
X(57073) = triaxial point of ABC, the circumcevian triangle of X(28), and the X(2)-circumconcevian triangle of X(28)
X(57073) = intersection, other than A, B, C, of circumconics {{A, B, C, X(28), X(16752)}}, {{A, B, C, X(278), X(17776)}}, {{A, B, C, X(693), X(26721)}}, {{A, B, C, X(4567), X(40571)}}, {{A, B, C, X(6591), X(32698)}}, {{A, B, C, X(14775), X(17924)}}, {{A, B, C, X(15149), X(30733)}}, {{A, B, C, X(15313), X(23882)}}, {{A, B, C, X(16757), X(26217)}}, {{A, B, C, X(44358), X(51875)}}
X(57073) = barycentric product X(i)*X(j) for these (i, j): {162, 17877}, {274, 57094}, {333, 57230}, {1708, 57215}, {1780, 46107}, {5521, 99}, {15313, 286}, {17776, 17925}, {17924, 40571}, {30733, 693}, {57044, 86}
X(57073) = barycentric quotient X(i)/X(j) for these (i, j): {28, 13397}, {513, 28787}, {1780, 1331}, {2501, 41508}, {2911, 4574}, {5521, 523}, {7252, 56269}, {7649, 23604}, {15313, 72}, {17776, 52609}, {17877, 14208}, {17924, 43675}, {17925, 15474}, {30733, 100}, {37579, 23067}, {40571, 1332}, {41332, 906}, {57044, 10}, {57094, 37}, {57230, 226}
X(57073) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17925, 17926, 17924}


X(57074) = X(31)X(9426)∩X(99)X(5383)

Barycentrics    a^3*(a+b)*(b-c)*(a+c)*(-(b*c)+a*(b+c)) : :

X(57074) lies on these lines: {31, 9426}, {48, 38348}, {99, 5383}, {649, 834}, {662, 4601}, {824, 4560}, {1019, 1924}, {3737, 8632}, {16695, 20979}, {21393, 40773}, {22382, 57081}

X(57074) = perspector of circumconic {{A, B, C, X(58), X(38832)}}
X(57074) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 4598}, {37, 18830}, {87, 4033}, {190, 42027}, {313, 34071}, {321, 932}, {330, 3952}, {523, 5383}, {594, 56053}, {668, 16606}, {670, 6378}, {799, 7148}, {1018, 6384}, {1978, 23493}, {2162, 27808}, {3971, 32039}, {4069, 7209}, {4551, 27424}, {4552, 7155}, {4557, 6383}, {4613, 51837}, {6386, 21759}
X(57074) = X(i)-Dao conjugate of X(j) for these {i, j}: {798, 523}, {3835, 1577}, {6377, 27801}, {21191, 20910}, {38996, 7148}, {40589, 18830}, {40610, 313}, {55053, 42027}, {55062, 30713}
X(57074) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 31}, {662, 27644}
X(57074) = X(i)-cross conjugate of X(j) for these {i, j}: {6377, 41526}, {8640, 16695}, {16695, 57129}, {21762, 2209}
X(57074) = pole of line {2308, 23525} with respect to the Brocard inellipse
X(57074) = pole of line {4992, 16695} with respect to the Kiepert parabola
X(57074) = pole of line {190, 4598} with respect to the Stammler hyperbola
X(57074) = pole of line {31, 17148} with respect to the Steiner circumellipse
X(57074) = pole of line {1978, 33946} with respect to the Wallace hyperbola
X(57074) = triaxial point of ABC, the circumcevian triangle of X(31), and the X(2)-circumconcevian triangle of X(31)
X(57074) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(5383)}}, {{A, B, C, X(604), X(1914)}}, {{A, B, C, X(649), X(8640)}}, {{A, B, C, X(834), X(4083)}}, {{A, B, C, X(1333), X(4601)}}, {{A, B, C, X(1459), X(22090)}}, {{A, B, C, X(2176), X(28607)}}, {{A, B, C, X(3733), X(7255)}}, {{A, B, C, X(6377), X(21828)}}, {{A, B, C, X(7113), X(41526)}}, {{A, B, C, X(21007), X(23349)}}, {{A, B, C, X(43051), X(43060)}}
X(57074) = barycentric product X(i)*X(j) for these (i, j): {1, 16695}, {19, 23092}, {86, 8640}, {101, 16742}, {110, 3123}, {163, 21138}, {192, 57129}, {284, 43051}, {1019, 2176}, {1178, 24533}, {1333, 3835}, {1403, 3737}, {1408, 4147}, {1423, 7252}, {1474, 25098}, {1919, 31008}, {1977, 36860}, {2209, 7192}, {3733, 43}, {4083, 58}, {6377, 662}, {7304, 798}, {17217, 31}, {17921, 48}, {18197, 6}, {20760, 57200}, {20906, 2206}, {20979, 81}, {21051, 849}, {21762, 799}, {21834, 593}, {21835, 4610}, {22090, 28}, {22370, 43925}, {22386, 811}, {23824, 692}, {27527, 604}, {27644, 649}, {33296, 667}, {38832, 513}, {38986, 99}, {41526, 4560}, {43924, 56181}, {50456, 51973}, {50491, 757}
X(57074) = barycentric quotient X(i)/X(j) for these (i, j): {43, 27808}, {58, 18830}, {163, 5383}, {667, 42027}, {669, 7148}, {849, 56053}, {1019, 6383}, {1333, 4598}, {1919, 16606}, {1924, 6378}, {1980, 23493}, {2176, 4033}, {2206, 932}, {2209, 3952}, {3123, 850}, {3733, 6384}, {3835, 27801}, {4083, 313}, {6377, 1577}, {7252, 27424}, {7304, 4602}, {8640, 10}, {16695, 75}, {16742, 3261}, {17217, 561}, {17921, 1969}, {18197, 76}, {20979, 321}, {21138, 20948}, {21762, 661}, {21834, 28654}, {21835, 4024}, {22090, 20336}, {22386, 656}, {23092, 304}, {23824, 40495}, {24533, 1237}, {25098, 40071}, {27527, 28659}, {27644, 1978}, {33296, 6386}, {38832, 668}, {38986, 523}, {41526, 4552}, {43051, 349}, {50491, 1089}, {57129, 330}, {57157, 45197}
X(57074) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1919, 3733, 57129}


X(57075) = X(32)X(9491)∩X(206)X(3566)

Barycentrics    a^4*(b-c)*(b+c)*(a^4-b^2*c^2+a^2*(b^2+c^2)) : :

X(57075) lies on these lines: {32, 9491}, {182, 30217}, {184, 38366}, {206, 3566}, {512, 1691}, {669, 2531}, {690, 57146}, {826, 5027}, {1974, 57204}, {8711, 21006}, {8723, 18796}, {10131, 40643}

X(57075) = midpoint of X(i) and X(j) for these {i,j}: {21006, 22159}
X(57075) = perspector of circumconic {{A, B, C, X(251), X(1627)}}
X(57075) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 55034}, {799, 6664}, {1930, 6573}
X(57075) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 55034}, {669, 523}, {38996, 6664}
X(57075) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 32}
X(57075) = pole of line {76, 141} with respect to the 1st Brocard circle
X(57075) = pole of line {6, 194} with respect to the 1st Lemoine circle
X(57075) = pole of line {21006, 44445} with respect to the Kiepert parabola
X(57075) = pole of line {4576, 55034} with respect to the Stammler hyperbola
X(57075) = pole of line {32, 8267} with respect to the Steiner circumellipse
X(57075) = pole of line {1194, 6680} with respect to the Steiner inellipse
X(57075) = triaxial point of ABC, the circumcevian triangle of X(32), and the X(2)-circumconcevian triangle of X(32)
X(57075) = intersection, other than A, B, C, of circumconics {{A, B, C, X(32), X(7760)}}, {{A, B, C, X(512), X(8711)}}, {{A, B, C, X(18105), X(21006)}}
X(57075) = barycentric product X(i)*X(j) for these (i, j): {32, 44445}, {251, 8711}, {669, 7760}, {1333, 22322}, {1627, 512}, {18064, 1924}, {20953, 560}, {21006, 6}, {22159, 25}, {33760, 798}, {38996, 99}, {41297, 9494}
X(57075) = barycentric quotient X(i)/X(j) for these (i, j): {32, 55034}, {669, 6664}, {1627, 670}, {7760, 4609}, {8711, 8024}, {20953, 1928}, {21006, 76}, {22159, 305}, {22322, 27801}, {33760, 4602}, {38996, 523}, {44445, 1502}, {46288, 6573}
X(57075) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21006, 22159, 8711}


X(57076) = X(1)X(513)∩X(81)X(514)

Barycentrics    a*(b-c)*(a^2-b^2+b*c-c^2)*(a^3+a*b*c+a^2*(b+c)-2*b*c*(b+c)) : :

X(57076) lies on circumconic {{A, B, C, X(4585), X(23345)}} and on these lines: {1, 513}, {81, 514}, {523, 16474}, {690, 6126}, {918, 40584}, {1019, 3666}, {2610, 3960}, {3287, 5280}, {3669, 47057}, {4049, 37633}, {4063, 18163}, {4560, 45222}, {5315, 30580}, {14838, 17020}, {17147, 17496}, {20963, 47683}, {21758, 23884}, {33296, 48321}, {41806, 47794}, {41878, 47795}

X(57076) = reflection of X(i) in X(j) for these {i,j}: {2610, 3960}
X(57076) = X(i)-Dao conjugate of X(j) for these {i, j}: {21828, 523}
X(57076) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 36}
X(57076) = pole of line {36, 17495} with respect to the Steiner circumellipse
X(57076) = pole of line {6681, 16610} with respect to the Steiner inellipse
X(57076) = triaxial point of ABC, the circumcevian triangle of X(36), and the X(2)-circumconcevian triangle of X(36)


X(57077) = X(10)X(4160)∩X(42)X(661)

Barycentrics    a*(b-c)*(b+c)*(a^3+b*c*(b+c)+a*(b^2+3*b*c+c^2)) : :

X(57077) lies on these lines: {10, 4160}, {42, 661}, {209, 9256}, {210, 9279}, {512, 4841}, {513, 4380}, {514, 22284}, {523, 50494}, {649, 21727}, {650, 667}, {830, 48000}, {1962, 57133}, {2512, 7180}, {2533, 22318}, {3805, 22275}, {4036, 7662}, {4155, 40502}, {4524, 8672}, {4651, 7192}, {4685, 28840}, {4770, 50544}, {4778, 50513}, {4802, 22322}, {4988, 50496}, {6157, 9508}, {6542, 24381}, {7199, 25299}, {9013, 22277}, {17166, 18154}, {17989, 50538}, {21301, 29771}, {22320, 57113}, {23864, 52139}, {23954, 54277}, {24755, 47761}, {25511, 47814}, {25666, 43223}, {26115, 27527}, {50336, 57099}

X(57077) = midpoint of X(i) and X(j) for these {i,j}: {4988, 50496}, {50487, 50489}, {661, 50484}
X(57077) = reflection of X(i) in X(j) for these {i,j}: {50487, 57232}, {57162, 4705}
X(57077) = perspector of circumconic {{A, B, C, X(2298), X(18785)}}
X(57077) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 42363}
X(57077) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 42363}, {4705, 523}
X(57077) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 37}, {17166, 22044}
X(57077) = pole of line {16874, 17166} with respect to the Kiepert parabola
X(57077) = pole of line {37, 26759} with respect to the Steiner circumellipse
X(57077) = pole of line {4698, 14210} with respect to the Steiner inellipse
X(57077) = triaxial point of ABC, the circumcevian triangle of X(37), and the X(2)-circumconcevian triangle of X(37)
X(57077) = intersection, other than A, B, C, of circumconics {{A, B, C, X(16874), X(17166)}}, {{A, B, C, X(18154), X(22044)}}
X(57077) = barycentric product X(i)*X(j) for these (i, j): {1, 22044}, {1018, 23823}, {16874, 321}, {17166, 37}, {18154, 42}
X(57077) = barycentric quotient X(i)/X(j) for these (i, j): {37, 42363}, {16874, 81}, {17166, 274}, {18154, 310}, {22044, 75}, {23823, 7199}
X(57077) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 57232, 50487}, {4705, 7234, 650}, {4705, 8678, 57162}, {50487, 50489, 513}, {50487, 57232, 22314}


X(57078) = X(2)X(22046)∩X(37)X(798)

Barycentrics    a^2*(b-c)*(b+c)*(b^2*c^2+a^3*(b+c)+a^2*(b^2+3*b*c+c^2)) : :

X(57078) lies on circumconic {{A, B, C, X(17159), X(22320)}} and on these lines: {2, 22046}, {37, 798}, {213, 20981}, {514, 19565}, {649, 4057}, {4024, 47129}, {4063, 22043}, {21832, 22044}, {24083, 29807}, {47130, 57169}, {50456, 57058}

X(57078) = perspector of circumconic {{A, B, C, X(1126), X(18793)}}
X(57078) = X(i)-Dao conjugate of X(j) for these {i, j}: {4079, 523}
X(57078) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 42}
X(57078) = triaxial point of ABC, the circumcevian triangle of X(42), and the X(2)-circumconcevian triangle of X(42)
X(57078) = barycentric product X(i)*X(j) for these (i, j): {1, 22320}, {17159, 42}
X(57078) = barycentric quotient X(i)/X(j) for these (i, j): {17159, 310}, {22320, 75}
X(57078) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {53581, 57234, 20979}


X(57079) = X(221)X(3566)∩X(513)X(663)

Barycentrics    a*(b-c)*(a+b-c)*(a-b+c)*(a^3+a*b*c+a^2*(b+c)-b*c*(b+c)) : :

X(57079) lies on these lines: {221, 3566}, {222, 38370}, {513, 663}, {514, 57181}, {1019, 7180}, {3910, 4467}, {4383, 57088}, {4391, 28983}, {4560, 57191}, {4573, 24037}, {5711, 28533}, {7178, 7192}, {7254, 29126}, {15309, 57185}, {21120, 21786}, {28478, 30719}, {30724, 48550}

X(57079) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8, 6010}, {55, 54986}, {5546, 43677}
X(57079) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 54986}, {7180, 523}, {16613, 341}
X(57079) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 56}
X(57079) = pole of line {12435, 35104} with respect to the Conway circle
X(57079) = pole of line {65, 3879} with respect to the Incircle
X(57079) = pole of line {56, 3210} with respect to the Steiner circumellipse
X(57079) = pole of line {3752, 6691} with respect to the Steiner inellipse
X(57079) = triaxial point of ABC, the circumcevian triangle of X(56), and the X(2)-circumconcevian triangle of X(56)
X(57079) = intersection, other than A, B, C, of circumconics {{A, B, C, X(34), X(1284)}}, {{A, B, C, X(269), X(24037)}}, {{A, B, C, X(513), X(6002)}}, {{A, B, C, X(1149), X(1999)}}, {{A, B, C, X(1279), X(5247)}}, {{A, B, C, X(1413), X(51651)}}, {{A, B, C, X(7192), X(48131)}}
X(57079) = barycentric product X(i)*X(j) for these (i, j): {57, 6002}, {1413, 25022}, {1999, 3669}, {3676, 5247}, {16613, 4573}, {24560, 34}, {43932, 56311}, {55060, 99}
X(57079) = barycentric quotient X(i)/X(j) for these (i, j): {57, 54986}, {604, 6010}, {1999, 646}, {4017, 43677}, {5247, 3699}, {6002, 312}, {16613, 3700}, {24560, 3718}, {55060, 523}
X(57079) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {43924, 48144, 3669}


X(57080) = X(512)X(1326)∩X(662)X(1016)

Barycentrics    a^2*(a+b)*(b-c)*(a+c)*(a^2-b*c+a*(b+c)) : :

X(57080) lies on these lines: {58, 16695}, {501, 38348}, {512, 1326}, {514, 1919}, {572, 6002}, {649, 52597}, {662, 1016}, {830, 3737}, {1019, 3960}, {1474, 17925}, {1924, 4251}, {3887, 57081}, {4057, 22154}, {4063, 57096}, {4560, 17161}, {4960, 47916}, {7252, 52615}, {15309, 20981}, {23875, 50458}

X(57080) = perspector of circumconic {{A, B, C, X(757), X(1171)}}
X(57080) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 8050}, {100, 40085}, {321, 40519}, {594, 34594}, {596, 1018}, {756, 37205}, {3952, 39798}, {4033, 40148}, {4103, 39949}, {4557, 40013}, {20615, 30730}, {39747, 40521}
X(57080) = X(i)-Dao conjugate of X(j) for these {i, j}: {649, 523}, {4129, 1577}, {8054, 40085}, {40589, 8050}
X(57080) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 58}, {662, 32911}
X(57080) = pole of line {58, 16679} with respect to the circumcircle
X(57080) = pole of line {21016, 44143} with respect to the polar circle
X(57080) = pole of line {4057, 20295} with respect to the Kiepert parabola
X(57080) = pole of line {1018, 4427} with respect to the Stammler hyperbola
X(57080) = pole of line {58, 17150} with respect to the Steiner circumellipse
X(57080) = pole of line {6693, 29654} with respect to the Steiner inellipse
X(57080) = pole of line {4033, 4568} with respect to the Wallace hyperbola
X(57080) = triaxial point of ABC, the circumcevian triangle of X(58), and the X(2)-circumconcevian triangle of X(58)
X(57080) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(4979)}}, {{A, B, C, X(593), X(1016)}}, {{A, B, C, X(1019), X(4057)}}, {{A, B, C, X(1412), X(30576)}}, {{A, B, C, X(4129), X(48131)}}, {{A, B, C, X(4222), X(46502)}}, {{A, B, C, X(16754), X(17922)}}, {{A, B, C, X(18140), X(40432)}}
X(57080) = barycentric product X(i)*X(j) for these (i, j): {110, 21208}, {261, 51650}, {274, 57096}, {333, 57238}, {595, 7192}, {1014, 48307}, {1019, 32911}, {1333, 20949}, {1412, 47793}, {1790, 17922}, {2220, 7199}, {3733, 4360}, {3871, 7203}, {4057, 86}, {4063, 81}, {4129, 593}, {4132, 757}, {8054, 99}, {18140, 57129}, {20295, 58}, {22154, 27}
X(57080) = barycentric quotient X(i)/X(j) for these (i, j): {58, 8050}, {593, 37205}, {595, 3952}, {649, 40085}, {849, 34594}, {1019, 40013}, {2206, 40519}, {2220, 1018}, {3733, 596}, {4057, 10}, {4063, 321}, {4129, 28654}, {4132, 1089}, {4360, 27808}, {8054, 523}, {20295, 313}, {20949, 27801}, {21208, 850}, {22154, 306}, {32911, 4033}, {47793, 30713}, {48307, 3701}, {51650, 12}, {57096, 37}, {57129, 39798}, {57238, 226}


X(57081) = X(63)X(520)∩X(99)X(1275)

Barycentrics    a*(a+b)*(b-c)*(a+c)*(-a+b+c)^2*(a^2-b^2-c^2) : :

X(57081) lies on these lines: {8, 57198}, {63, 520}, {78, 52355}, {99, 1275}, {110, 2765}, {283, 37628}, {332, 23696}, {513, 57184}, {521, 1946}, {522, 663}, {643, 4570}, {662, 5379}, {1019, 6003}, {1459, 4025}, {1813, 54440}, {2617, 36797}, {3733, 8646}, {3872, 56092}, {3887, 57080}, {4040, 4811}, {8062, 24006}, {14208, 18155}, {15411, 57108}, {17218, 24002}, {22382, 57074}, {23090, 57055}, {53045, 54356}, {53285, 57158}, {57072, 57200}

X(57081) = reflection of X(i) in X(j) for these {i,j}: {24006, 8062}
X(57081) = trilinear pole of line {24031, 34591}
X(57081) = perspector of circumconic {{A, B, C, X(333), X(1098)}}
X(57081) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 53321}, {6, 52607}, {19, 1020}, {25, 4566}, {34, 4551}, {37, 32714}, {42, 36118}, {65, 108}, {73, 36127}, {100, 1426}, {107, 1425}, {109, 225}, {112, 6354}, {162, 1254}, {213, 13149}, {226, 32674}, {278, 4559}, {393, 52610}, {429, 52928}, {512, 55346}, {525, 23985}, {608, 4552}, {647, 23984}, {651, 1880}, {653, 1400}, {656, 24033}, {658, 2333}, {661, 7128}, {810, 24032}, {934, 1824}, {1018, 1435}, {1042, 1897}, {1118, 23067}, {1119, 4557}, {1262, 2501}, {1275, 2489}, {1396, 21859}, {1398, 3952}, {1402, 18026}, {1409, 54240}, {1415, 40149}, {1427, 1783}, {1461, 1826}, {1474, 4605}, {1825, 26700}, {1835, 2222}, {1865, 32651}, {3668, 8750}, {4017, 7012}, {4185, 52931}, {4564, 55208}, {4565, 8736}, {6356, 32713}, {6614, 53008}, {7115, 7178}, {7138, 36126}, {7143, 36797}, {7180, 46102}, {7250, 15742}, {8811, 57117}, {8898, 36099}, {14618, 23979}, {24006, 24027}, {24019, 37755}, {32647, 51365}, {36067, 51421}, {36079, 53011}, {40160, 57220}, {52560, 53323}
X(57081) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 1020}, {9, 52607}, {11, 225}, {125, 1254}, {521, 656}, {522, 24006}, {656, 523}, {905, 4077}, {1146, 40149}, {2968, 41013}, {3239, 1577}, {6505, 4566}, {6626, 13149}, {6741, 56285}, {7358, 10}, {8054, 1426}, {11517, 4551}, {14714, 1824}, {14936, 52577}, {21172, 17898}, {26932, 3668}, {34467, 1042}, {34591, 6354}, {34961, 7012}, {35071, 37755}, {35072, 226}, {35508, 1826}, {36033, 53321}, {36830, 7128}, {38983, 65}, {38984, 1835}, {38985, 1425}, {38991, 1880}, {39006, 1427}, {39052, 23984}, {39054, 55346}, {39062, 24032}, {40582, 653}, {40589, 32714}, {40592, 36118}, {40596, 24033}, {40602, 108}, {40605, 18026}, {40618, 1446}, {40620, 1847}, {40625, 273}, {40626, 1441}, {40628, 7178}, {46093, 7138}, {51574, 4605}, {55042, 1825}, {55064, 8736}, {55067, 278}, {55068, 4}
X(57081) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 63}, {643, 283}, {662, 2287}, {811, 333}, {1098, 24031}, {1444, 16731}, {4592, 1812}, {4636, 46877}
X(57081) = X(i)-cross conjugate of X(j) for these {i, j}: {521, 7253}, {1146, 6513}, {2968, 78}, {3270, 3692}, {24031, 1098}, {35072, 63}, {40616, 41081}, {57055, 15411}, {57108, 23090}, {57134, 1021}
X(57081) = pole of line {63, 23359} with respect to the circumcircle
X(57081) = pole of line {225, 1254} with respect to the polar circle
X(57081) = pole of line {4990, 7253} with respect to the Kiepert parabola
X(57081) = pole of line {22126, 22134} with respect to the MacBeath circumconic
X(57081) = pole of line {108, 109} with respect to the Stammler hyperbola
X(57081) = pole of line {63, 17134} with respect to the Steiner circumellipse
X(57081) = pole of line {5745, 53042} with respect to the Steiner inellipse
X(57081) = pole of line {664, 1897} with respect to the Wallace hyperbola
X(57081) = triaxial point of ABC, the circumcevian triangle of X(63), and the X(2)-circumconcevian triangle of X(63)
X(57081) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(45272)}}, {{A, B, C, X(63), X(801)}}, {{A, B, C, X(77), X(3100)}}, {{A, B, C, X(78), X(4511)}}, {{A, B, C, X(271), X(10538)}}, {{A, B, C, X(283), X(1043)}}, {{A, B, C, X(520), X(35072)}}, {{A, B, C, X(521), X(522)}}, {{A, B, C, X(652), X(17418)}}, {{A, B, C, X(662), X(16731)}}, {{A, B, C, X(663), X(1459)}}, {{A, B, C, X(1069), X(56146)}}, {{A, B, C, X(1098), X(1789)}}, {{A, B, C, X(1444), X(2287)}}, {{A, B, C, X(2359), X(46889)}}, {{A, B, C, X(2968), X(52355)}}, {{A, B, C, X(3685), X(3692)}}, {{A, B, C, X(3737), X(23090)}}, {{A, B, C, X(4560), X(15411)}}, {{A, B, C, X(6332), X(30805)}}, {{A, B, C, X(10570), X(39167)}}, {{A, B, C, X(14432), X(34591)}}, {{A, B, C, X(20294), X(35518)}}
X(57081) = barycentric product X(i)*X(j) for these (i, j): {1, 15411}, {21, 6332}, {63, 7253}, {162, 23983}, {261, 8611}, {274, 57108}, {280, 57213}, {283, 4391}, {284, 35518}, {285, 57245}, {286, 57057}, {314, 652}, {332, 650}, {333, 521}, {341, 7254}, {345, 3737}, {645, 7004}, {656, 7058}, {1019, 1265}, {1021, 69}, {1043, 905}, {1098, 525}, {1146, 4592}, {1172, 52616}, {1259, 57215}, {1260, 7199}, {1437, 52622}, {1444, 3239}, {1565, 7259}, {1789, 57066}, {1790, 4397}, {1792, 514}, {1793, 3904}, {1802, 52619}, {1812, 522}, {1946, 28660}, {2185, 52355}, {2193, 35519}, {2287, 4025}, {2310, 4563}, {2322, 4131}, {2326, 3265}, {2327, 693}, {2638, 6331}, {2968, 662}, {3022, 55205}, {3270, 799}, {3271, 55207}, {3692, 7192}, {3718, 7252}, {3733, 52406}, {3937, 7258}, {3942, 7256}, {4560, 78}, {7117, 7257}, {14208, 7054}, {14936, 55202}, {15413, 2328}, {15416, 58}, {15419, 200}, {15420, 46877}, {16731, 1897}, {17197, 4571}, {17206, 3900}, {17219, 644}, {17880, 5546}, {17926, 326}, {18155, 219}, {19607, 57111}, {21789, 304}, {23090, 75}, {23189, 312}, {23978, 4575}, {24026, 4558}, {24031, 648}, {26932, 643}, {30681, 7203}, {30805, 4183}, {31623, 57241}, {34591, 99}, {35072, 811}, {36054, 44130}, {44426, 6514}, {47432, 55211}, {57055, 86}, {57083, 6512}, {57134, 76}
X(57081) = barycentric quotient X(i)/X(j) for these (i, j): {1, 52607}, {3, 1020}, {21, 653}, {29, 54240}, {48, 53321}, {58, 32714}, {63, 4566}, {72, 4605}, {78, 4552}, {81, 36118}, {86, 13149}, {110, 7128}, {112, 24033}, {162, 23984}, {212, 4559}, {219, 4551}, {255, 52610}, {283, 651}, {284, 108}, {314, 46404}, {332, 4554}, {333, 18026}, {520, 37755}, {521, 226}, {522, 40149}, {643, 46102}, {647, 1254}, {648, 24032}, {649, 1426}, {650, 225}, {652, 65}, {654, 1835}, {656, 6354}, {657, 1824}, {662, 55346}, {663, 1880}, {822, 1425}, {905, 3668}, {1019, 1119}, {1021, 4}, {1043, 6335}, {1098, 648}, {1146, 24006}, {1172, 36127}, {1260, 1018}, {1265, 4033}, {1364, 51664}, {1437, 1461}, {1444, 658}, {1459, 1427}, {1789, 38340}, {1790, 934}, {1792, 190}, {1793, 655}, {1802, 4557}, {1812, 664}, {1946, 1400}, {2193, 109}, {2194, 32674}, {2287, 1897}, {2289, 23067}, {2310, 2501}, {2318, 21859}, {2326, 107}, {2327, 100}, {2328, 1783}, {2638, 647}, {2968, 1577}, {3022, 55206}, {3239, 41013}, {3270, 661}, {3271, 55208}, {3692, 3952}, {3700, 56285}, {3733, 1435}, {3737, 278}, {3900, 1826}, {3937, 7216}, {4025, 1446}, {4041, 8736}, {4091, 1439}, {4130, 53008}, {4171, 7140}, {4435, 1874}, {4477, 1840}, {4558, 7045}, {4560, 273}, {4575, 1262}, {4592, 1275}, {5546, 7012}, {6332, 1441}, {6514, 6516}, {7004, 7178}, {7054, 162}, {7058, 811}, {7117, 4017}, {7192, 1847}, {7252, 34}, {7253, 92}, {7254, 269}, {7259, 15742}, {8611, 12}, {8641, 2333}, {9404, 1825}, {10397, 227}, {14418, 40663}, {15411, 75}, {15416, 313}, {15419, 1088}, {16731, 4025}, {17115, 52577}, {17206, 4569}, {17219, 24002}, {17926, 158}, {18155, 331}, {21789, 19}, {22383, 1042}, {23090, 1}, {23189, 57}, {23224, 52373}, {23983, 14208}, {24018, 6356}, {24026, 14618}, {24031, 525}, {26932, 4077}, {31623, 52938}, {32320, 7138}, {32661, 24027}, {32676, 23985}, {34591, 523}, {35072, 656}, {35518, 349}, {35519, 52575}, {36054, 73}, {36421, 36126}, {38344, 51662}, {38353, 42768}, {39687, 810}, {40213, 2973}, {40616, 17898}, {44707, 35307}, {45755, 1893}, {46391, 51421}, {47432, 55212}, {51664, 6046}, {52355, 6358}, {52406, 27808}, {52616, 1231}, {57045, 52345}, {57055, 10}, {57057, 72}, {57108, 37}, {57129, 1398}, {57134, 6}, {57213, 347}, {57241, 1214}
X(57081) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3737, 57241, 57213}


X(57082) = X(76)X(525)∩X(316)X(512)

Barycentrics    b^2*(b-c)*c^2*(b+c)*(-a^4+b^2*c^2+a^2*(b^2+c^2)) : :
X(57082) = -5*X[7786]+4*X[52590], -3*X[9148]+2*X[42291]

X(57082) lies on these lines: {76, 525}, {99, 53701}, {249, 43187}, {316, 512}, {523, 2531}, {804, 5152}, {826, 14295}, {3267, 7799}, {7771, 39201}, {7782, 22089}, {7786, 52590}, {9148, 42291}, {20948, 55184}, {24733, 25423}, {30474, 38380}, {31296, 52591}

X(57082) = reflection of X(i) in X(j) for these {i,j}: {31296, 52591}, {52618, 850}, {76, 44173}
X(57082) = trilinear pole of line {7668, 36901}
X(57082) = perspector of circumconic {{A, B, C, X(308), X(18024)}}
X(57082) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 27375}, {560, 11794}, {798, 27867}, {9417, 53701}
X(57082) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 27375}, {850, 523}, {6374, 11794}, {7668, 3051}, {31998, 27867}, {36901, 3613}, {39058, 53701}, {52591, 512}
X(57082) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 76}, {33769, 36901}
X(57082) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {55028, 21221}
X(57082) = X(i)-cross conjugate of X(j) for these {i, j}: {36901, 33769}
X(57082) = pole of line {384, 40643} with respect to the 1st Brocard circle
X(57082) = pole of line {76, 8266} with respect to the circumcircle
X(57082) = pole of line {3164, 31276} with respect to the DeLongchamps circle
X(57082) = pole of line {8891, 15819} with respect to the orthoptic circle of the Steiner inellipse
X(57082) = pole of line {1843, 2211} with respect to the polar circle
X(57082) = pole of line {3050, 31296} with respect to the Kiepert parabola
X(57082) = pole of line {76, 2979} with respect to the Steiner circumellipse
X(57082) = pole of line {3819, 3934} with respect to the Steiner inellipse
X(57082) = pole of line {1625, 1634} with respect to the Wallace hyperbola
X(57082) = triaxial point of ABC, the circumcevian triangle of X(76), and the X(2)-circumconcevian triangle of X(76)
X(57082) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(1078)}}, {{A, B, C, X(83), X(14957)}}, {{A, B, C, X(316), X(41296)}}, {{A, B, C, X(512), X(3050)}}, {{A, B, C, X(598), X(36794)}}, {{A, B, C, X(695), X(3203)}}, {{A, B, C, X(14962), X(41328)}}, {{A, B, C, X(15412), X(31296)}}
X(57082) = barycentric product X(i)*X(j) for these (i, j): {670, 7668}, {1078, 850}, {1502, 3050}, {1577, 33764}, {1629, 52617}, {3265, 54100}, {3267, 36794}, {18042, 20948}, {23285, 41296}, {31296, 76}, {33769, 523}, {33778, 661}, {36901, 99}, {40016, 52591}, {44173, 5012}
X(57082) = barycentric quotient X(i)/X(j) for these (i, j): {76, 11794}, {99, 27867}, {290, 53701}, {523, 27375}, {850, 3613}, {1078, 110}, {1629, 32713}, {3050, 32}, {3265, 42487}, {3267, 36952}, {5012, 1576}, {7668, 512}, {18042, 163}, {27010, 7252}, {30506, 52604}, {31296, 6}, {33764, 662}, {33769, 99}, {33778, 799}, {36794, 112}, {36901, 523}, {37125, 35325}, {38352, 3049}, {41296, 827}, {52591, 3051}, {52618, 30505}, {54100, 107}
X(57082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 850, 52618}, {525, 44173, 76}


X(57083) = X(521)X(1948)∩X(811)X(4620)

Barycentrics    b*(a+b)*(b-c)*c*(a+c)*(-a+b+c)^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b^2+c^2)) : :

X(57083) lies on these lines: {521, 1948}, {643, 36106}, {811, 4620}, {3869, 57120}, {4874, 23864}, {8062, 24006}, {17924, 48173}, {57044, 57072}

X(57083) = X(i)-isoconjugate-of-X(j) for these {i, j}: {73, 36082}, {1069, 53321}, {2164, 52610}, {7363, 32661}
X(57083) = X(i)-Dao conjugate of X(j) for these {i, j}: {6506, 40152}, {24006, 523}, {55068, 1069}
X(57083) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 92}, {811, 31631}
X(57083) = pole of line {65, 21318} with respect to the polar circle
X(57083) = triaxial point of ABC, the circumcevian triangle of X(92), and the X(2)-circumconcevian triangle of X(92)
X(57083) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(1948), X(40165)}}, {{A, B, C, X(4620), X(31631)}}, {{A, B, C, X(5081), X(7020)}}
X(57083) = barycentric product X(i)*X(j) for these (i, j): {3193, 46110}, {3559, 4391}, {5552, 57215}, {6506, 811}, {17926, 20930}, {31631, 44426}, {42069, 55247}, {44130, 46389}, {57124, 76}
X(57083) = barycentric quotient X(i)/X(j) for these (i, j): {46, 52610}, {1021, 1069}, {1068, 1020}, {1172, 36082}, {3193, 1813}, {3559, 651}, {6506, 656}, {7253, 6513}, {17926, 90}, {21188, 1439}, {24006, 7363}, {31631, 6516}, {42069, 55248}, {46389, 73}, {51648, 52373}, {52033, 53321}, {55214, 1425}, {57081, 6512}, {57124, 6}, {57215, 7318}


X(57084) = X(99)X(6577)∩X(101)X(692)

Barycentrics    a^2*(a-b)*(a-c)*(a^2*(b+c)-b*c*(b+c)-a*(b^2+c^2)) : :

X(57084) lies on these lines: {99, 6577}, {100, 43076}, {101, 692}, {109, 6013}, {595, 3802}, {993, 1253}, {1018, 54325}, {1331, 2398}, {1918, 49685}, {2809, 20778}, {3573, 57151}, {4600, 52612}, {4653, 51506}

X(57084) = trilinear pole of line {8053, 40586}
X(57084) = X(i)-isoconjugate-of-X(j) for these {i, j}: {244, 53651}, {513, 8049}, {514, 39797}, {649, 39735}, {667, 40005}, {693, 34444}, {1019, 40515}, {1111, 6577}, {7192, 40504}, {7199, 40147}
X(57084) = X(i)-Dao conjugate of X(j) for these {i, j}: {42, 523}, {5375, 39735}, {6631, 40005}, {39026, 8049}, {52592, 23100}, {53564, 3120}
X(57084) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 101}, {4600, 29767}
X(57084) = pole of line {8053, 17135} with respect to the Kiepert parabola
X(57084) = pole of line {4040, 7192} with respect to the Stammler hyperbola
X(57084) = pole of line {101, 46725} with respect to the Steiner circumellipse
X(57084) = pole of line {6710, 23988} with respect to the Steiner inellipse
X(57084) = pole of line {69, 3730} with respect to the Yff parabola
X(57084) = pole of line {8714, 20954} with respect to the Wallace hyperbola
X(57084) = triaxial point of ABC, the circumcevian triangle of X(101), and the X(2)-circumconcevian triangle of X(101)
X(57084) = intersection, other than A, B, C, of circumconics {{A, B, C, X(101), X(43190)}}, {{A, B, C, X(692), X(43076)}}, {{A, B, C, X(926), X(8714)}}, {{A, B, C, X(2284), X(16552)}}, {{A, B, C, X(3939), X(6013)}}, {{A, B, C, X(8053), X(23344)}}, {{A, B, C, X(17990), X(52592)}}, {{A, B, C, X(29767), X(52612)}}, {{A, B, C, X(31624), X(46725)}}, {{A, B, C, X(50518), X(53285)}}
X(57084) = barycentric product X(i)*X(j) for these (i, j): {100, 16552}, {101, 17135}, {110, 21070}, {190, 8053}, {1252, 8714}, {1331, 17911}, {1897, 22126}, {4564, 50518}, {4600, 52592}, {17077, 3939}, {18137, 692}, {22271, 662}, {29767, 4557}, {40586, 99}, {52024, 645}
X(57084) = barycentric quotient X(i)/X(j) for these (i, j): {100, 39735}, {101, 8049}, {190, 40005}, {692, 39797}, {1252, 53651}, {4557, 40515}, {8053, 514}, {8714, 23989}, {16552, 693}, {17077, 52621}, {17135, 3261}, {17911, 46107}, {18137, 40495}, {21070, 850}, {22126, 4025}, {22271, 1577}, {23990, 6577}, {29767, 52619}, {32739, 34444}, {40586, 523}, {50518, 4858}, {52024, 7178}, {52592, 3120}, {53564, 23100}


X(57085) = X(111)X(351)∩X(690)X(895)

Barycentrics    a^2*(b-c)*(b+c)*(a^2+b^2-2*c^2)*(a^2-2*b^2+c^2)*(a^6+2*a^4*(b^2+c^2)+3*b^2*c^2*(b^2+c^2)+a^2*(b^4-13*b^2*c^2+c^4)) : :

X(57085) lies on these lines: {111, 351}, {523, 15899}, {690, 895}, {5466, 47139}, {5653, 22260}, {8753, 14273}, {14977, 57087}

X(57085) = perspector of circumconic {{A, B, C, X(10630), X(44182)}}
X(57085) = X(i)-Dao conjugate of X(j) for these {i, j}: {9178, 523}
X(57085) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 111}
X(57085) = triaxial point of ABC, the circumcevian triangle of X(111), and the X(2)-circumconcevian triangle of X(111)
X(57085) = intersection, other than A, B, C, of circumconics {{A, B, C, X(111), X(41909)}}, {{A, B, C, X(6088), X(22105)}}


X(57086) = X(3)X(12145)∩X(110)X(1289)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)-a^2*(b^2+c^2)^2) : :

X(57086) lies on these lines: {3, 12145}, {24, 28710}, {25, 16983}, {99, 39417}, {110, 1289}, {112, 1576}, {114, 3542}, {162, 4244}, {250, 4611}, {827, 39382}, {907, 1301}, {1370, 53822}, {1974, 15462}, {2445, 32661}, {3565, 7482}, {4226, 52918}, {6353, 7664}, {18020, 52608}, {35278, 52917}, {37951, 44099}, {40596, 46619}

X(57086) = trilinear pole of line {159, 3162}
X(57086) = perspector of circumconic {{A, B, C, X(23964), X(44183)}}
X(57086) = X(i)-isoconjugate-of-X(j) for these {i, j}: {647, 39733}, {656, 13575}, {810, 40009}, {1577, 52041}, {14208, 34207}, {17879, 39417}, {20902, 56008}, {24018, 52583}
X(57086) = X(i)-Dao conjugate of X(j) for these {i, j}: {25, 523}, {39052, 39733}, {39062, 40009}, {40596, 13575}, {52588, 23107}, {53822, 339}, {55069, 125}
X(57086) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 112}, {18020, 28419}, {52915, 110}
X(57086) = X(i)-cross conjugate of X(j) for these {i, j}: {47125, 8793}, {52588, 41361}
X(57086) = pole of line {339, 53569} with respect to the polar circle
X(57086) = pole of line {159, 1370} with respect to the Kiepert parabola
X(57086) = pole of line {3265, 8673} with respect to the Stammler hyperbola
X(57086) = triaxial point of ABC, the circumcevian triangle of X(112), and the X(2)-circumconcevian triangle of X(112)
X(57086) = intersection, other than A, B, C, of circumconics {{A, B, C, X(112), X(44766)}}, {{A, B, C, X(159), X(23347)}}, {{A, B, C, X(1289), X(32713)}}, {{A, B, C, X(1370), X(3565)}}, {{A, B, C, X(2492), X(47125)}}, {{A, B, C, X(17994), X(52588)}}, {{A, B, C, X(28419), X(52608)}}
X(57086) = barycentric product X(i)*X(j) for these (i, j): {107, 23115}, {110, 41361}, {112, 1370}, {159, 648}, {162, 18596}, {250, 47125}, {3162, 99}, {17407, 4611}, {18020, 52588}, {21582, 32676}, {28419, 32713}, {33584, 36841}, {41676, 8793}, {41766, 4558}
X(57086) = barycentric quotient X(i)/X(j) for these (i, j): {112, 13575}, {159, 525}, {162, 39733}, {455, 47125}, {648, 40009}, {1370, 3267}, {1576, 52041}, {3162, 523}, {8793, 4580}, {18596, 14208}, {23115, 3265}, {28419, 52617}, {32713, 52583}, {35325, 39129}, {41361, 850}, {41766, 14618}, {41937, 39417}, {47125, 339}, {52588, 125}, {55069, 23107}
X(57086) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2409, 41676, 1289}


X(57087) = X(99)X(3565)∩X(230)X(231)

Barycentrics    (b-c)*(b+c)*(-3*a^2+b^2+c^2)*(b^4-4*b^2*c^2+c^4+a^2*(b^2+c^2)) : :

X(57087) lies on these lines: {99, 3565}, {126, 9134}, {230, 231}, {2793, 10992}, {7665, 9131}, {9033, 32121}, {14977, 57085}, {32114, 55121}, {53272, 54066}

X(57087) = reflection of X(i) in X(j) for these {i,j}: {14273, 6131}, {9134, 55271}
X(57087) = perspector of circumconic {{A, B, C, X(4), X(47286)}}
X(57087) = X(i)-Dao conjugate of X(j) for these {i, j}: {126, 3565}, {15525, 41909}, {55271, 523}
X(57087) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 126}, {892, 193}
X(57087) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56007, 21221}
X(57087) = pole of line {25, 126} with respect to the circumcircle
X(57087) = pole of line {148, 7396} with respect to the DeLongchamps circle
X(57087) = pole of line {2, 2374} with respect to the polar circle
X(57087) = pole of line {193, 3566} with respect to the Kiepert parabola
X(57087) = pole of line {4558, 8651} with respect to the Stammler hyperbola
X(57087) = pole of line {126, 193} with respect to the Steiner circumellipse
X(57087) = pole of line {6, 52881} with respect to the Steiner inellipse
X(57087) = pole of line {3566, 4563} with respect to the Wallace hyperbola
X(57087) = triaxial point of ABC, the circumcevian triangle of X(126), and the X(2)-circumconcevian triangle of X(126)
X(57087) = intersection, other than A, B, C, of circumconics {{A, B, C, X(126), X(468)}}, {{A, B, C, X(193), X(41360)}}, {{A, B, C, X(2489), X(3565)}}, {{A, B, C, X(2501), X(9134)}}, {{A, B, C, X(6353), X(10418)}}, {{A, B, C, X(21447), X(47211)}}
X(57087) = barycentric product X(i)*X(j) for these (i, j): {193, 9134}, {3566, 47286}, {53367, 6388}
X(57087) = barycentric quotient X(i)/X(j) for these (i, j): {3291, 3565}, {3566, 41909}, {9134, 2996}, {47286, 35136}, {57071, 2374}
X(57087) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {523, 6131, 14273}, {41360, 57154, 45687}, {55140, 55271, 9134}


X(57088) = X(241)X(514)∩X(4925)X(8643)

Barycentrics    (3*a-b-c)*(b-c)*(2*a^2-b^2-c^2+a*(b+c)) : :
X(57088) = 4*X[2490]+X[17496], -X[4462]+6*X[14425], 2*X[4504]+3*X[44729], 2*X[4560]+3*X[47788], X[4808]+9*X[14419], 2*X[4925]+3*X[8643], 9*X[45671]+X[47678]

X(57088) lies on these lines: {241, 514}, {1698, 28533}, {2490, 17496}, {4057, 27086}, {4383, 57079}, {4462, 14425}, {4504, 44729}, {4560, 47788}, {4808, 14419}, {4925, 8643}, {45671, 47678}

X(57088) = perspector of circumconic {{A, B, C, X(7), X(3879)}}
X(57088) = X(i)-Dao conjugate of X(j) for these {i, j}: {14321, 523}, {17058, 6557}
X(57088) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 145}
X(57088) = pole of line {145, 1486} with respect to the circumcircle
X(57088) = triaxial point of ABC, the circumcevian triangle of X(145), and the X(2)-circumconcevian triangle of X(145)
X(57088) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1743), X(16611)}}, {{A, B, C, X(3676), X(4897)}}, {{A, B, C, X(4462), X(43052)}}, {{A, B, C, X(4641), X(16610)}}, {{A, B, C, X(5435), X(35466)}}
X(57088) = barycentric product X(i)*X(j) for these (i, j): {145, 4897}, {3667, 3879}, {4462, 4641}, {17213, 43290}, {27820, 31182}, {30719, 56078}
X(57088) = barycentric quotient X(i)/X(j) for these (i, j): {3879, 53647}, {4641, 27834}, {4897, 4373}, {56176, 31343}


X(57089) = X(4)X(3657)∩X(186)X(523)

Barycentrics    (a-b-c)*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^5-a^2*b*c*(b+c)+b*(b-c)^2*c*(b+c)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c+b*c^3+c^4)) : :

X(57089) lies on these lines: {4, 3657}, {186, 523}, {196, 43923}, {243, 522}, {278, 23800}, {521, 17924}, {885, 7003}, {1148, 57209}, {3900, 4036}, {6591, 57101}, {7049, 43728}, {7149, 43737}, {7253, 46110}, {7477, 35360}, {7501, 34948}, {7649, 8058}, {7952, 57170}, {17925, 57241}, {28292, 54239}

X(57089) = perspector of circumconic {{A, B, C, X(29), X(275)}}
X(57089) = X(i)-isoconjugate-of-X(j) for these {i, j}: {43729, 52610}
X(57089) = X(i)-Dao conjugate of X(j) for these {i, j}: {17924, 693}, {38966, 41509}
X(57089) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 4}, {1897, 3191}
X(57089) = pole of line {912, 14790} with respect to the anticomplementary circle
X(57089) = pole of line {912, 13371} with respect to the 1st DrozFarny circle
X(57089) = pole of line {912, 18377} with respect to the circumcircle of the Johnson triangle
X(57089) = pole of line {5, 226} with respect to the polar circle
X(57089) = pole of line {6748, 8609} with respect to the orthic inconic
X(57089) = pole of line {1813, 23181} with respect to the Stammler hyperbola
X(57089) = pole of line {23292, 40942} with respect to the Steiner inellipse
X(57089) = triaxial point of ABC, the circumcevian triangle of X(4), and the X(1)-circumconcevian triangle of X(4)
X(57089) = intersection, other than A, B, C, of circumconics {{A, B, C, X(522), X(15412)}}, {{A, B, C, X(652), X(3657)}}, {{A, B, C, X(1896), X(3191)}}, {{A, B, C, X(7049), X(41227)}}, {{A, B, C, X(8558), X(52673)}}, {{A, B, C, X(37279), X(52891)}}
X(57089) = barycentric product X(i)*X(j) for these (i, j): {3191, 57215}, {17926, 52673}, {37279, 522}, {41227, 4391}, {46110, 580}
X(57089) = barycentric quotient X(i)/X(j) for these (i, j): {580, 1813}, {37279, 664}, {41227, 651}


X(57090) = X(7)X(3309)∩X(514)X(657)

Barycentrics    (b-c)*(-a+b-c)*(a+b-c)*(-a^4+b*(b-c)^2*c+3*a^3*(b+c)-a^2*(3*b^2+5*b*c+3*c^2)+a*(b^3+b^2*c+b*c^2+c^3)) : :

X(57090) lies on these lines: {7, 3309}, {279, 4905}, {514, 657}, {885, 43750}, {2533, 57232}, {3160, 3669}, {3676, 4105}, {3887, 23599}, {3900, 24002}, {4083, 43930}, {4162, 5543}, {4367, 8638}, {4462, 31994}, {7185, 35355}, {31526, 57236}, {48304, 57247}

X(57090) = perspector of circumconic {{A, B, C, X(21453), X(23618)}}
X(57090) = X(i)-Dao conjugate of X(j) for these {i, j}: {24002, 693}
X(57090) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 7}
X(57090) = pole of line {3870, 9312} with respect to the Steiner circumellipse
X(57090) = triaxial point of ABC, the circumcevian triangle of X(7), and the X(1)-circumconcevian triangle of X(7)


X(57091) = X(2)X(21189)∩X(8)X(521)

Barycentrics    (a-b-c)*(b-c)*(a^3-b*c*(b+c)-a*(b^2-b*c+c^2)) : :
X(57091) = -3*X[2]+2*X[21189], -2*X[656]+3*X[48243], -5*X[3616]+4*X[6129],-2*X[4017]+3*X[47796], -2*X[14315]+3*X[48207], -2*X[17420]+3*X[47793], -3*X[26078]+2*X[50350], -3*X[48246]+2*X[53527]

X(57091) lies on these lines: {2, 21189}, {7, 15413}, {8, 521}, {59, 13136}, {100, 53702}, {109, 56112}, {190, 53644}, {513, 2517}, {522, 663}, {523, 3904}, {649, 3239}, {656, 48243}, {885, 7155}, {900, 4057}, {1734, 57111}, {1769, 8062}, {2254, 27345}, {2509, 5749}, {2975, 23187}, {3161, 4130}, {3261, 57167}, {3616, 6129}, {3716, 6615}, {3738, 4086}, {4017, 47796}, {4064, 56318}, {4477, 50333}, {4522, 53336}, {4768, 35057}, {4926, 19582}, {6003, 21302}, {8640, 50343}, {8672, 41299}, {10436, 23785}, {14208, 46400}, {14315, 48207}, {17420, 47793}, {17494, 50346}, {17496, 21173}, {20907, 53357}, {21222, 43924}, {23836, 56276}, {25259, 26652}, {26078, 50350}, {29839, 42758}, {44409, 47695}, {47687, 57197}, {47694, 50510}, {48246, 53527}, {50356, 57055}, {51662, 57244}

X(57091) = midpoint of X(i) and X(j) for these {i,j}: {53343, 56323}
X(57091) = reflection of X(i) in X(j) for these {i,j}: {1769, 8062}, {17494, 50346}, {17496, 21173}, {20293, 4086}, {21222, 43924}, {4560, 17418}, {47695, 44409}, {6615, 3716}, {8, 4397}
X(57091) = anticomplement of X(21189)
X(57091) = trilinear pole of line {11998, 34589}
X(57091) = perspector of circumconic {{A, B, C, X(333), X(1222)}}
X(57091) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 56194}, {109, 34434}, {604, 56188}, {1397, 56252}, {1415, 2051}, {1457, 53702}, {4551, 52150}, {4559, 53083}
X(57091) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 56194}, {11, 34434}, {1146, 2051}, {3161, 56188}, {4391, 693}, {6741, 51870}, {11998, 37646}, {21189, 21189}, {24237, 1122}, {34589, 65}, {40624, 54121}, {40625, 20028}, {55067, 53083}
X(57091) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 8}, {190, 21061}, {645, 46879}, {57244, 17496}
X(57091) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2217, 149}, {2995, 21293}, {10570, 33650}, {13478, 150}, {15232, 3448}, {15386, 522}, {26704, 4}, {32653, 2}, {35183, 515}, {36050, 8}, {36108, 5081}, {44765, 69}, {54951, 17135}, {56112, 3436}
X(57091) = pole of line {8, 4216} with respect to the circumcircle
X(57091) = pole of line {10453, 10454} with respect to the Conway circle
X(57091) = pole of line {8, 20222} with respect to the DeLongchamps circle
X(57091) = pole of line {225, 1829} with respect to the polar circle
X(57091) = pole of line {1764, 3869} with respect to the excentral-hexyl ellipse
X(57091) = pole of line {18191, 40528} with respect to the Feuerbach hyperbola
X(57091) = pole of line {2605, 7253} with respect to the Kiepert parabola
X(57091) = pole of line {63, 321} with respect to the Steiner circumellipse
X(57091) = pole of line {5745, 17355} with respect to the Steiner inellipse
X(57091) = pole of line {650, 3975} with respect to the Yff parabola
X(57091) = triaxial point of ABC, the circumcevian triangle of X(8), and the X(1)-circumconcevian triangle of X(8)
X(57091) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(2975)}}, {{A, B, C, X(21), X(37558)}}, {{A, B, C, X(314), X(21061)}}, {{A, B, C, X(521), X(23187)}}, {{A, B, C, X(572), X(37741)}}, {{A, B, C, X(663), X(51662)}}, {{A, B, C, X(1944), X(52358)}}, {{A, B, C, X(3737), X(4581)}}, {{A, B, C, X(4511), X(17751)}}, {{A, B, C, X(4560), X(17496)}}, {{A, B, C, X(11109), X(56099)}}, {{A, B, C, X(23289), X(42312)}}
X(57091) = barycentric product X(i)*X(j) for these (i, j): {100, 40624}, {190, 34589}, {321, 57125}, {2975, 4391}, {11109, 6332}, {11998, 668}, {14829, 522}, {17074, 4397}, {17496, 8}, {17751, 4560}, {18155, 21061}, {21173, 312}, {23187, 7017}, {24237, 3699}, {27346, 7155}, {35519, 572}, {52358, 7253}, {53566, 645}, {57244, 9}
X(57091) = barycentric quotient X(i)/X(j) for these (i, j): {8, 56188}, {9, 56194}, {312, 56252}, {522, 2051}, {572, 109}, {650, 34434}, {2975, 651}, {3700, 51870}, {3737, 53083}, {4391, 54121}, {4560, 20028}, {7252, 52150}, {7253, 46880}, {11109, 653}, {11998, 513}, {14829, 664}, {14973, 21859}, {17074, 934}, {17496, 7}, {17751, 4552}, {20986, 1415}, {21061, 4551}, {21173, 57}, {22118, 36059}, {23187, 222}, {24237, 3676}, {26847, 57167}, {27346, 3212}, {34589, 514}, {37558, 1020}, {38344, 1459}, {40624, 693}, {46879, 53280}, {51662, 1427}, {52139, 4559}, {52357, 4605}, {52358, 4566}, {52663, 53702}, {53566, 7178}, {55323, 53321}, {57125, 81}, {57244, 85}
X(57091) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {521, 4397, 8}, {522, 17418, 4560}, {1769, 8062, 48173}, {53343, 56323, 3667}


X(57092) = X(4)X(29013)∩X(240)X(522)

Barycentrics    a*(a-b-c)*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(-b^3+a*b*c-c^3+a^2*(b+c)) : :

X(57092) lies on these lines: {4, 29013}, {19, 50501}, {240, 522}, {521, 57200}, {649, 54247}, {650, 1946}, {1110, 1783}, {3064, 4041}, {3900, 6591}, {7655, 43923}, {8676, 57173}, {39534, 44705}, {42662, 57108}, {46385, 54244}

X(57092) = perspector of circumconic {{A, B, C, X(92), X(1172)}}
X(57092) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 1305}, {110, 28786}, {272, 23067}, {603, 51566}, {1751, 1813}, {2218, 6516}, {2997, 36059}, {4565, 40161}, {15467, 32656}, {32660, 40011}
X(57092) = X(i)-Dao conjugate of X(j) for these {i, j}: {244, 28786}, {7649, 693}, {7952, 51566}, {20620, 2997}, {36103, 1305}, {38966, 56146}, {55064, 40161}
X(57092) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 19}, {1897, 22021}, {5125, 5190}, {57072, 57043}
X(57092) = pole of line {19, 23843} with respect to the circumcircle
X(57092) = pole of line {1, 1441} with respect to the polar circle
X(57092) = pole of line {209, 1826} with respect to the orthic inconic
X(57092) = pole of line {4575, 6516} with respect to the Stammler hyperbola
X(57092) = triaxial point of ABC, the circumcevian triangle of X(19), and the X(1)-circumconcevian triangle of X(19)
X(57092) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(27396)}}, {{A, B, C, X(158), X(1110)}}, {{A, B, C, X(522), X(8676)}}, {{A, B, C, X(650), X(1577)}}, {{A, B, C, X(656), X(1946)}}, {{A, B, C, X(860), X(52427)}}, {{A, B, C, X(1735), X(2352)}}, {{A, B, C, X(1737), X(3190)}}, {{A, B, C, X(1861), X(5125)}}, {{A, B, C, X(2517), X(20294)}}, {{A, B, C, X(7008), X(38462)}}, {{A, B, C, X(7649), X(32699)}}, {{A, B, C, X(8748), X(22021)}}, {{A, B, C, X(14837), X(43060)}}, {{A, B, C, X(17072), X(23864)}}, {{A, B, C, X(17898), X(51658)}}, {{A, B, C, X(17924), X(36107)}}, {{A, B, C, X(18344), X(24006)}}
X(57092) = barycentric product X(i)*X(j) for these (i, j): {1, 57043}, {19, 20294}, {37, 57072}, {100, 5190}, {209, 57215}, {318, 43060}, {2322, 51658}, {2352, 46110}, {3064, 3868}, {5125, 650}, {8676, 92}, {17878, 8750}, {17924, 3190}, {18134, 18344}, {23800, 281}, {24006, 56000}, {27396, 7649}, {41320, 693}, {44426, 579}, {57173, 8}
X(57092) = barycentric quotient X(i)/X(j) for these (i, j): {19, 1305}, {281, 51566}, {579, 6516}, {661, 28786}, {2198, 23067}, {2352, 1813}, {3064, 2997}, {3190, 1332}, {4041, 40161}, {5125, 4554}, {5190, 693}, {8676, 63}, {17924, 15467}, {18344, 1751}, {20294, 304}, {23800, 348}, {27396, 4561}, {41320, 100}, {43060, 77}, {44426, 40011}, {55206, 41506}, {56000, 4592}, {57043, 75}, {57072, 274}, {57173, 7}


X(57093) = X(21)X(522)∩X(661)X(1021)

Barycentrics    a*(a+b)*(a-b-c)*(b-c)*(a+c)*(a^3-3*b*c*(b+c)-a*(b^2+b*c+c^2)) : :

X(57093) lies on these lines: {21, 522}, {81, 21173}, {523, 1325}, {661, 1021}, {1014, 16755}, {1817, 27486}, {3737, 4041}, {4228, 48239}, {7253, 15776}, {8674, 57207}, {8702, 57209}, {13588, 48242}, {14005, 48243}, {17551, 48228}, {17557, 48173}, {21225, 56019}, {28183, 42741}, {50346, 57189}, {53390, 57104}

X(57093) = perspector of circumconic {{A, B, C, X(14534), X(40430)}}
X(57093) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4559, 55090}, {53321, 55091}
X(57093) = X(i)-Dao conjugate of X(j) for these {i, j}: {4560, 693}, {55067, 55090}, {55068, 55091}
X(57093) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 21}, {57248, 57189}
X(57093) = pole of line {81, 25255} with respect to the Steiner circumellipse
X(57093) = pole of line {6703, 25081} with respect to the Steiner inellipse
X(57093) = triaxial point of ABC, the circumcevian triangle of X(21), and the X(1)-circumconcevian triangle of X(21)
X(57093) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(5260)}}, {{A, B, C, X(2346), X(55100)}}, {{A, B, C, X(4581), X(50346)}}
X(57093) = barycentric product X(i)*X(j) for these (i, j): {100, 40625}, {333, 50346}, {1021, 55096}, {3737, 55095}, {4560, 5260}, {18155, 55100}, {24224, 643}, {57189, 8}, {57248, 9}
X(57093) = barycentric quotient X(i)/X(j) for these (i, j): {1021, 55091}, {3737, 55090}, {5260, 4552}, {24224, 4077}, {40625, 693}, {50346, 226}, {55100, 4551}, {55101, 1020}, {57189, 7}, {57248, 85}


X(57094) = X(112)X(7475)∩X(230)X(231)

Barycentrics    a*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+b^3+b^2*c+b*c^2+c^3-a^2*(b+c)-a*(b+c)^2) : :

X(57094) lies on these lines: {19, 57173}, {112, 7475}, {230, 231}, {1021, 1734}, {1252, 1783}, {2509, 55232}, {4041, 46380}, {4705, 8641}, {13854, 55261}, {17494, 17924}, {21148, 57209}, {26217, 57073}, {41489, 55259}, {43923, 53551}, {51663, 55208}

X(57094) = perspector of circumconic {{A, B, C, X(4), X(30733)}}
X(57094) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 13397}, {662, 28787}, {664, 56269}, {1331, 15474}, {1813, 43740}, {4558, 23604}, {4575, 43675}, {6516, 39943}
X(57094) = X(i)-Dao conjugate of X(j) for these {i, j}: {136, 43675}, {1084, 28787}, {3162, 13397}, {5521, 15474}, {6591, 693}, {39025, 56269}
X(57094) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 25}, {648, 14054}, {1783, 2911}, {57073, 57044}
X(57094) = X(i)-complementary conjugate of X(j) for these {i, j}: {32656, 51473}
X(57094) = pole of line {2, 15474} with respect to the polar circle
X(57094) = pole of line {155, 14054} with respect to the MacBeath circumconic
X(57094) = pole of line {4, 912} with respect to the orthic inconic
X(57094) = pole of line {193, 14054} with respect to the Steiner circumellipse
X(57094) = triaxial point of ABC, the circumcevian triangle of X(25), and the X(1)-circumconcevian triangle of X(25)
X(57094) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(3290)}}, {{A, B, C, X(230), X(40571)}}, {{A, B, C, X(393), X(1252)}}, {{A, B, C, X(468), X(30733)}}, {{A, B, C, X(523), X(15313)}}, {{A, B, C, X(661), X(47124)}}, {{A, B, C, X(2485), X(26217)}}, {{A, B, C, X(3003), X(41332)}}, {{A, B, C, X(3011), X(3811)}}, {{A, B, C, X(3012), X(4341)}}, {{A, B, C, X(5089), X(13854)}}, {{A, B, C, X(6591), X(32698)}}, {{A, B, C, X(7649), X(36106)}}, {{A, B, C, X(8641), X(33525)}}, {{A, B, C, X(8758), X(37579)}}, {{A, B, C, X(8791), X(47231)}}, {{A, B, C, X(14571), X(41489)}}, {{A, B, C, X(41608), X(47195)}}
X(57094) = barycentric product X(i)*X(j) for these (i, j): {1, 57044}, {37, 57073}, {100, 5521}, {1708, 3064}, {1780, 24006}, {2501, 40571}, {3811, 7649}, {13854, 26217}, {14054, 14775}, {14618, 41332}, {15313, 4}, {17776, 6591}, {17877, 8750}, {17924, 2911}, {30733, 523}, {37579, 44426}, {41609, 4581}, {57102, 7040}, {57230, 9}
X(57094) = barycentric quotient X(i)/X(j) for these (i, j): {25, 13397}, {512, 28787}, {1780, 4592}, {2501, 43675}, {2911, 1332}, {3063, 56269}, {3215, 6517}, {3811, 4561}, {5521, 693}, {6591, 15474}, {15313, 69}, {18344, 43740}, {26217, 34254}, {30733, 99}, {37579, 6516}, {40571, 4563}, {41332, 4558}, {41609, 53332}, {57044, 75}, {57073, 274}, {57230, 85}
X(57094) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6591, 47235, 650}


X(57095) = X(3)X(523)∩X(9)X(1021)

Barycentrics    (a-b-c)*(b-c)*(2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2))*(a^5-a^2*b*c*(b+c)+b*(b-c)^2*c*(b+c)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c+2*b^2*c^2+b*c^3+c^4)) : :

X(57095) lies on circumconic {{A, B, C, X(9404), X(15470)}} and on these lines: {1, 56092}, {3, 523}, {9, 1021}, {10, 8062}, {100, 14224}, {113, 119}, {214, 57209}, {442, 521}, {522, 3647}, {2092, 6588}, {2804, 35204}, {2845, 3184}, {3163, 6184}, {3738, 51569}, {4885, 18642}, {6003, 6260}

X(57095) = midpoint of X(i) and X(j) for these {i,j}: {100, 14224}
X(57095) = perspector of circumconic {{A, B, C, X(2986), X(6740)}}
X(57095) = center of circumconic {{A, B, C, X(100), X(14224)}}
X(57095) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 30}
X(57095) = X(i)-complementary conjugate of X(j) for these {i, j}: {30, 124}, {73, 1650}, {109, 30}, {1415, 18593}, {1461, 18644}, {1495, 1146}, {2173, 26932}, {2407, 21246}, {2420, 5745}, {3284, 16596}, {4240, 34831}, {6357, 116}, {11125, 46100}, {23347, 40942}, {32660, 44436}, {32674, 47296}, {42716, 21244}, {51420, 34589}, {51654, 11}, {52948, 55063}
X(57095) = pole of line {6357, 7359} with respect to the Steiner inellipse
X(57095) = triaxial point of ABC, the circumcevian triangle of X(30), and the X(1)-circumconcevian triangle of X(30)


X(57096) = X(31)X(1980)∩X(48)X(4394)

Barycentrics    a^3*(b-c)*(a^2-b*c+a*(b+c)) : :

X(57096) lies on these lines: {31, 1980}, {41, 8657}, {42, 21005}, {48, 4394}, {101, 53685}, {604, 57181}, {649, 834}, {661, 830}, {663, 50496}, {667, 18266}, {890, 56242}, {1635, 13256}, {1973, 6591}, {2187, 8642}, {2483, 42664}, {4063, 57080}, {4979, 20981}, {6590, 29192}, {8631, 17166}, {8643, 53286}, {8662, 22383}, {17494, 50456}, {18200, 47763}, {19684, 23803}, {21392, 28606}, {30909, 35519}, {45755, 57205}, {47969, 48105}, {48094, 50458}

X(57096) = perspector of circumconic {{A, B, C, X(58), X(82)}}
X(57096) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 8050}, {10, 37205}, {76, 40519}, {99, 40085}, {100, 40013}, {190, 596}, {321, 34594}, {646, 20615}, {668, 39798}, {1016, 40086}, {1978, 40148}, {3952, 39747}, {4033, 39949}
X(57096) = X(i)-Dao conjugate of X(j) for these {i, j}: {649, 693}, {4129, 3261}, {8054, 40013}, {32664, 8050}, {38986, 40085}, {55053, 596}
X(57096) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 31}, {57080, 4057}
X(57096) = pole of line {31, 20990} with respect to the circumcircle
X(57096) = pole of line {2308, 20964} with respect to the Brocard inellipse
X(57096) = pole of line {190, 37205} with respect to the Stammler hyperbola
X(57096) = pole of line {17148, 17489} with respect to the Steiner circumellipse
X(57096) = pole of line {1978, 55239} with respect to the Wallace hyperbola
X(57096) = triaxial point of ABC, the circumcevian triangle of X(31), and the X(1)-circumconcevian triangle of X(31)
X(57096) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(32911)}}, {{A, B, C, X(604), X(2220)}}, {{A, B, C, X(649), X(4063)}}, {{A, B, C, X(661), X(20949)}}, {{A, B, C, X(834), X(4132)}}, {{A, B, C, X(893), X(3995)}}, {{A, B, C, X(1459), X(51650)}}, {{A, B, C, X(3733), X(4057)}}, {{A, B, C, X(4222), X(46513)}}, {{A, B, C, X(20295), X(50520)}}
X(57096) = barycentric product X(i)*X(j) for these (i, j): {1, 4057}, {19, 22154}, {21, 51650}, {37, 57080}, {100, 8054}, {513, 595}, {1333, 4129}, {1459, 4222}, {1980, 40087}, {2220, 514}, {3293, 3733}, {3871, 43924}, {3995, 57129}, {4063, 6}, {4132, 58}, {4360, 667}, {17922, 48}, {18140, 1919}, {20295, 31}, {20949, 32}, {21208, 692}, {32911, 649}, {47793, 604}, {48307, 56}, {57238, 9}
X(57096) = barycentric quotient X(i)/X(j) for these (i, j): {31, 8050}, {560, 40519}, {595, 668}, {649, 40013}, {667, 596}, {798, 40085}, {1333, 37205}, {1919, 39798}, {1980, 40148}, {2206, 34594}, {2220, 190}, {3248, 40086}, {3293, 27808}, {4057, 75}, {4063, 76}, {4129, 27801}, {4132, 313}, {4360, 6386}, {8054, 693}, {17922, 1969}, {20295, 561}, {20949, 1502}, {21208, 40495}, {22154, 304}, {32911, 1978}, {47793, 28659}, {48307, 3596}, {51650, 1441}, {57080, 274}, {57129, 39747}, {57238, 85}
X(57096) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 1919, 57129}, {1924, 57047, 57171}


X(57097) = X(512)X(1691)∩X(832)X(1491)

Barycentrics    a^4*(b-c)*(a^3-b*c*(b+c)+a*(b^2+b*c+c^2)) : :

X(57097) lies on these lines: {206, 15313}, {512, 1691}, {832, 1491}, {1980, 3063}, {6371, 56242}, {21005, 22157}

X(57097) = midpoint of X(i) and X(j) for these {i,j}: {21005, 22157}, {3063, 8646}
X(57097) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 54458}
X(57097) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 54458}, {667, 693}
X(57097) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 32}
X(57097) = pole of line {712, 3094} with respect to the 1st Brocard circle
X(57097) = pole of line {6, 712} with respect to the 1st Lemoine circle
X(57097) = pole of line {3888, 4576} with respect to the Stammler hyperbola
X(57097) = triaxial point of ABC, the circumcevian triangle of X(32), and the X(1)-circumconcevian triangle of X(32)
X(57097) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(21301)}}, {{A, B, C, X(18105), X(21005)}}
X(57097) = barycentric product X(i)*X(j) for these (i, j): {1, 57047}, {100, 55053}, {1919, 32926}, {1974, 28423}, {20952, 560}, {21005, 6}, {21099, 2206}, {21210, 32739}, {21301, 32}, {21389, 31}, {22157, 25}
X(57097) = barycentric quotient X(i)/X(j) for these (i, j): {32, 54458}, {20952, 1928}, {21005, 76}, {21301, 1502}, {21389, 561}, {22157, 305}, {28423, 40050}, {55053, 693}, {57047, 75}


X(57098) = X(19)X(46389)∩X(652)X(1734)

Barycentrics    a*(a-b-c)*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(b^5-a^3*b*c-b^3*c^2-b^2*c^3+c^5+a^4*(b+c)+a*b*c*(b+c)^2-a^2*(2*b^3+b^2*c+b*c^2+2*c^3)) : :

X(57098) lies on these lines: {19, 46389}, {281, 57166}, {650, 39199}, {652, 1734}, {1783, 2149}, {2331, 6591}, {3064, 3239}, {14298, 55232}

X(57098) = perspector of circumconic {{A, B, C, X(318), X(40396)}}
X(57098) = X(i)-isoconjugate-of-X(j) for these {i, j}: {222, 41906}, {4565, 28788}
X(57098) = X(i)-Dao conjugate of X(j) for these {i, j}: {3064, 693}, {55064, 28788}
X(57098) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 33}, {57224, 57170}
X(57098) = pole of line {1887, 18838} with respect to the orthic inconic
X(57098) = pole of line {5942, 25239} with respect to the Steiner circumellipse
X(57098) = pole of line {20262, 25063} with respect to the Steiner inellipse
X(57098) = triaxial point of ABC, the circumcevian triangle of X(33), and the X(1)-circumconcevian triangle of X(33)
X(57098) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3064), X(32707)}}, {{A, B, C, X(36113), X(44426)}}
X(57098) = barycentric product X(i)*X(j) for these (i, j): {100, 20620}, {57170, 8}, {57224, 9}
X(57098) = barycentric quotient X(i)/X(j) for these (i, j): {33, 41906}, {4041, 28788}, {20620, 693}, {57170, 7}, {57224, 85}


X(57099) = X(1)X(8702)∩X(10)X(522)

Barycentrics    a*(b-c)*(b+c)*(a^2-b^2-b*c-c^2) : :
X(57099) = -X[7253]+3*X[48204], -2*X[8062]+3*X[48205], -3*X[36848]+2*X[40086], -X[39547]+3*X[47837], -3*X[47836]+X[47844]

X(57099) lies on these lines: {1, 8702}, {10, 522}, {37, 35347}, {42, 1459}, {65, 14380}, {71, 657}, {100, 4570}, {109, 35056}, {306, 47785}, {319, 16755}, {484, 513}, {512, 47842}, {514, 11795}, {520, 4524}, {521, 34975}, {523, 656}, {594, 4140}, {650, 15313}, {651, 56193}, {652, 50367}, {662, 2612}, {832, 50504}, {834, 1491}, {900, 17420}, {905, 48283}, {1021, 57186}, {1213, 21960}, {1510, 53562}, {1769, 28183}, {1869, 54239}, {2254, 4824}, {2486, 55382}, {2605, 14838}, {2614, 4053}, {2640, 39137}, {2642, 57234}, {3122, 23943}, {3126, 22279}, {3293, 21173}, {3700, 55248}, {3733, 7234}, {3737, 8043}, {3882, 22311}, {3887, 48306}, {3900, 48302}, {4010, 31946}, {4132, 4730}, {4139, 48350}, {4147, 28623}, {4151, 30591}, {4467, 18160}, {4651, 20293}, {4729, 50332}, {4770, 8672}, {4777, 21189}, {4778, 48018}, {4784, 50489}, {4802, 23800}, {4814, 48303}, {4905, 28195}, {4976, 21721}, {4985, 53574}, {5224, 50451}, {5257, 22042}, {6003, 50349}, {6615, 21714}, {6741, 22094}, {7253, 48204}, {7662, 23687}, {8061, 21832}, {8062, 48205}, {9000, 22277}, {9001, 51656}, {9404, 54244}, {10015, 21111}, {14077, 51648}, {14315, 28187}, {16828, 48186}, {17072, 50334}, {18004, 23954}, {19874, 48173}, {21012, 42462}, {21051, 50329}, {21054, 53524}, {21672, 56283}, {21891, 35338}, {22318, 23880}, {23189, 48391}, {23226, 48389}, {23282, 53424}, {24381, 53521}, {26115, 48243}, {28175, 50354}, {28213, 48151}, {28229, 48075}, {29362, 35352}, {30200, 44824}, {36848, 40086}, {39547, 47837}, {43049, 52089}, {43223, 47830}, {47836, 47844}, {50336, 57077}, {53563, 55210}, {55244, 56135}

X(57099) = midpoint of X(i) and X(j) for these {i,j}: {17420, 50338}, {4729, 50332}, {4730, 50330}, {4814, 48303}, {656, 4041}
X(57099) = reflection of X(i) in X(j) for these {i,j}: {1, 31947}, {2605, 14838}, {21111, 10015}, {3733, 9508}, {3737, 8043}, {4010, 31946}, {4036, 10}, {4985, 53574}, {48283, 905}, {48297, 650}, {50327, 20316}, {50329, 21051}, {50334, 17072}, {53527, 656}, {53535, 21173}
X(57099) = isogonal conjugate of X(13486)
X(57099) = trilinear pole of line {2611, 20982}
X(57099) = perspector of circumconic {{A, B, C, X(226), X(502)}}
X(57099) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 13486}, {21, 26700}, {32, 55209}, {36, 476}, {58, 6742}, {79, 110}, {99, 6186}, {100, 52375}, {108, 1789}, {109, 3615}, {112, 52381}, {162, 7100}, {163, 30690}, {249, 55236}, {284, 38340}, {320, 14560}, {643, 52372}, {650, 35049}, {662, 2160}, {757, 56193}, {1333, 15455}, {1414, 7073}, {1576, 20565}, {1870, 36061}, {3218, 32678}, {4556, 8818}, {4565, 7110}, {4636, 52382}, {5546, 52374}, {7113, 32680}, {11060, 55237}, {14844, 53628}, {17923, 32662}, {21828, 39295}, {23189, 34922}, {30602, 57119}, {35139, 52434}, {36064, 51382}, {36129, 52407}, {52390, 52914}
X(57099) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 13486}, {10, 6742}, {11, 3615}, {37, 15455}, {115, 30690}, {125, 7100}, {244, 79}, {1015, 52393}, {1084, 2160}, {2611, 36250}, {3120, 52569}, {3700, 4391}, {4858, 20565}, {6376, 55209}, {6741, 52344}, {7202, 16714}, {8054, 52375}, {8287, 86}, {14838, 693}, {15898, 476}, {16221, 1870}, {18334, 3218}, {20982, 16700}, {34591, 52381}, {38983, 1789}, {38986, 6186}, {38993, 39152}, {38994, 39153}, {40590, 38340}, {40607, 56193}, {40608, 7073}, {40611, 26700}, {55042, 21}, {55060, 52372}, {55064, 7110}, {55065, 6757}
X(57099) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10, 21054}, {35, 53524}, {100, 35}, {319, 7202}, {651, 37}, {3219, 21824}, {3678, 2611}, {3969, 20982}, {4467, 7265}, {14838, 55210}, {31010, 661}, {40999, 8287}, {47318, 4053}
X(57099) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {55179, 69}
X(57099) = X(i)-cross conjugate of X(j) for these {i, j}: {2611, 3678}, {20982, 3969}, {21824, 3219}, {22094, 2594}
X(57099) = pole of line {1, 20831} with respect to the Bevan circle
X(57099) = pole of line {35, 228} with respect to the circumcircle
X(57099) = pole of line {16124, 35631} with respect to the Conway circle
X(57099) = pole of line {500, 515} with respect to the excircles-radical circle
X(57099) = pole of line {3649, 5045} with respect to the Incircle
X(57099) = pole of line {2635, 3142} with respect to the nine-point circle
X(57099) = pole of line {29, 1870} with respect to the polar circle
X(57099) = pole of line {515, 49734} with respect to the Spieker circle
X(57099) = pole of line {5045, 51698} with respect to the De Longchamps ellipse
X(57099) = pole of line {21044, 21046} with respect to the Kiepert hyperbola
X(57099) = pole of line {37, 9724} with respect to the MacBeath circumconic
X(57099) = pole of line {1844, 1901} with respect to the orthic inconic
X(57099) = pole of line {4636, 13486} with respect to the Stammler hyperbola
X(57099) = pole of line {3995, 17484} with respect to the Steiner circumellipse
X(57099) = pole of line {908, 16585} with respect to the Steiner inellipse
X(57099) = triaxial point of ABC, the circumcevian triangle of X(35), and the X(1)-circumconcevian triangle of X(35)
X(57099) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(39751)}}, {{A, B, C, X(10), X(35)}}, {{A, B, C, X(37), X(1442)}}, {{A, B, C, X(65), X(6198)}}, {{A, B, C, X(100), X(4036)}}, {{A, B, C, X(319), X(7235)}}, {{A, B, C, X(522), X(526)}}, {{A, B, C, X(523), X(35056)}}, {{A, B, C, X(650), X(23752)}}, {{A, B, C, X(656), X(9404)}}, {{A, B, C, X(1825), X(51421)}}, {{A, B, C, X(2457), X(3657)}}, {{A, B, C, X(2605), X(4017)}}, {{A, B, C, X(2611), X(30572)}}, {{A, B, C, X(2614), X(7178)}}, {{A, B, C, X(3678), X(40663)}}, {{A, B, C, X(4420), X(56174)}}, {{A, B, C, X(4791), X(32679)}}, {{A, B, C, X(4977), X(47970)}}, {{A, B, C, X(5620), X(7343)}}, {{A, B, C, X(7164), X(40669)}}, {{A, B, C, X(7202), X(7212)}}, {{A, B, C, X(7282), X(15320)}}, {{A, B, C, X(11107), X(36195)}}, {{A, B, C, X(13486), X(31947)}}, {{A, B, C, X(17924), X(48297)}}, {{A, B, C, X(30600), X(47842)}}, {{A, B, C, X(35193), X(41501)}}
X(57099) = barycentric product X(i)*X(j) for these (i, j): {1, 7265}, {10, 14838}, {37, 4467}, {100, 8287}, {101, 17886}, {190, 2611}, {226, 35057}, {306, 54244}, {319, 661}, {335, 53563}, {525, 6198}, {651, 6741}, {1019, 7206}, {1441, 9404}, {1442, 3700}, {1577, 35}, {1807, 44427}, {1825, 6332}, {2003, 4086}, {2161, 3268}, {2174, 850}, {2594, 4391}, {2605, 321}, {2643, 55235}, {3219, 523}, {3678, 514}, {3709, 52421}, {3952, 7202}, {3969, 513}, {4017, 42033}, {4033, 53542}, {4077, 52405}, {4420, 7178}, {4552, 53524}, {7282, 8611}, {11107, 57243}, {14618, 52408}, {14975, 3267}, {15412, 35194}, {16577, 522}, {16755, 756}, {17095, 4041}, {17104, 52623}, {18155, 21794}, {18160, 42}, {18359, 526}, {20566, 2624}, {20982, 668}, {21054, 662}, {21141, 765}, {21741, 35519}, {21824, 99}, {22094, 6335}, {22342, 46110}, {23870, 46073}, {23871, 46077}, {23883, 56221}, {31010, 3647}, {32679, 80}, {33939, 512}, {34016, 4705}, {40214, 4036}, {40999, 650}, {41226, 53527}, {52412, 656}, {55210, 75}, {57066, 65}
X(57099) = barycentric quotient X(i)/X(j) for these (i, j): {6, 13486}, {10, 15455}, {35, 662}, {37, 6742}, {65, 38340}, {75, 55209}, {80, 32680}, {109, 35049}, {319, 799}, {512, 2160}, {513, 52393}, {523, 30690}, {526, 3218}, {647, 7100}, {649, 52375}, {650, 3615}, {652, 1789}, {656, 52381}, {661, 79}, {798, 6186}, {1399, 4565}, {1400, 26700}, {1442, 4573}, {1500, 56193}, {1577, 20565}, {1825, 653}, {2003, 1414}, {2088, 53527}, {2161, 476}, {2174, 110}, {2594, 651}, {2605, 81}, {2611, 514}, {2624, 36}, {2643, 55236}, {3219, 99}, {3268, 20924}, {3678, 190}, {3700, 52344}, {3709, 7073}, {3969, 668}, {4017, 52374}, {4024, 6757}, {4041, 7110}, {4420, 645}, {4467, 274}, {4705, 8818}, {4988, 52569}, {6137, 39152}, {6138, 39153}, {6187, 32678}, {6198, 648}, {6741, 4391}, {7180, 52372}, {7202, 7192}, {7206, 4033}, {7265, 75}, {7266, 16755}, {8287, 693}, {9404, 21}, {14270, 7113}, {14838, 86}, {14975, 112}, {16577, 664}, {16755, 873}, {17095, 4625}, {17104, 4556}, {17886, 3261}, {18160, 310}, {18359, 35139}, {20982, 513}, {21054, 1577}, {21141, 1111}, {21741, 109}, {21794, 4551}, {21824, 523}, {22094, 905}, {22342, 1813}, {23226, 1790}, {30600, 25526}, {32679, 320}, {33939, 670}, {34016, 4623}, {35057, 333}, {35192, 4636}, {35193, 4612}, {35194, 14570}, {40214, 52935}, {40999, 4554}, {41502, 52914}, {42033, 7257}, {46073, 23895}, {46077, 23896}, {47230, 1870}, {48053, 43261}, {52405, 643}, {52408, 4558}, {52412, 811}, {52431, 36061}, {53524, 4560}, {53542, 1019}, {53554, 18206}, {53563, 239}, {54244, 27}, {55210, 1}, {55232, 52388}, {55234, 52390}, {55235, 24037}, {55238, 2166}, {57066, 314}, {57185, 52382}
X(57099) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 522, 4036}, {522, 20316, 50327}, {523, 656, 53527}, {650, 15313, 48297}, {656, 4041, 523}, {2254, 21727, 4824}, {4730, 50330, 4132}, {8043, 8674, 3737}, {8702, 31947, 1}, {9508, 38469, 3733}, {14838, 35057, 2605}


X(57100) = X(693)X(1930)∩X(2254)X(3733)

Barycentrics    a*(b-c)*(b^2+c^2)*(a^2+2*b^2+b*c+2*c^2-a*(b+c)) : :

X(57100) lies on these lines: {661, 16546}, {693, 1930}, {1491, 21727}, {1964, 50335}, {2254, 3733}, {3703, 16892}, {18139, 23805}, {21125, 48278}, {40585, 50454}

X(57100) = X(i)-Dao conjugate of X(j) for these {i, j}: {16892, 693}
X(57100) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 38}
X(57100) = triaxial point of ABC, the circumcevian triangle of X(38), and the X(1)-circumconcevian triangle of X(38)
X(57100) = barycentric product X(i)*X(j) for these (i, j): {1, 57063}, {38, 49273}, {17285, 2530}, {18072, 39}
X(57100) = barycentric quotient X(i)/X(j) for these (i, j): {18072, 308}, {49273, 3112}, {57063, 75}


X(57101) = X(1)X(30201)∩X(522)X(650)

Barycentrics    a*(a-b-c)*(b-c)*(a^2-b^2-c^2)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2) : :
X(57101) = X[4017]+3*X[14392]

X(57101) lies on these lines: {1, 30201}, {78, 57111}, {100, 7012}, {513, 2077}, {521, 656}, {522, 650}, {2803, 16228}, {2804, 7649}, {3738, 7655}, {3900, 48302}, {3939, 39189}, {4017, 14392}, {4131, 57188}, {6129, 8058}, {6366, 51648}, {6591, 57089}, {7358, 55044}, {8057, 52613}, {9051, 23224}, {15313, 53285}, {16596, 47432}, {22091, 51644}, {23800, 43049}, {25009, 48173}, {31947, 57178}, {33969, 47136}, {53527, 57102}

X(57101) = midpoint of X(i) and X(j) for these {i,j}: {656, 57108}
X(57101) = perspector of circumconic {{A, B, C, X(8), X(63)}}
X(57101) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 8059}, {19, 37141}, {25, 53642}, {34, 13138}, {57, 40117}, {84, 108}, {101, 55110}, {109, 40836}, {112, 8808}, {162, 52384}, {189, 32674}, {273, 32652}, {278, 36049}, {282, 32714}, {608, 44327}, {651, 7129}, {653, 1436}, {658, 7154}, {662, 2358}, {664, 7151}, {934, 7008}, {1301, 52078}, {1413, 1897}, {1422, 1783}, {1433, 36127}, {1440, 8750}, {1461, 7003}, {2192, 36118}, {2208, 18026}, {7118, 13149}, {8064, 40837}, {24019, 52037}
X(57101) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 37141}, {11, 40836}, {57, 36118}, {125, 52384}, {281, 54240}, {1015, 55110}, {1084, 2358}, {2968, 7020}, {5452, 40117}, {5514, 278}, {6129, 44426}, {6505, 53642}, {7004, 52571}, {7358, 280}, {11517, 13138}, {14298, 905}, {14714, 7008}, {14837, 693}, {16596, 273}, {24018, 4025}, {26932, 1440}, {34467, 1413}, {34591, 8808}, {35071, 52037}, {35072, 189}, {35508, 7003}, {36033, 8059}, {38983, 84}, {38991, 7129}, {39006, 1422}, {39025, 7151}, {40626, 309}, {55044, 4}, {55063, 2}, {57055, 4391}
X(57101) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 55063}, {100, 40}, {651, 219}, {1897, 72}, {6335, 55116}, {6516, 7011}, {7080, 7358}, {56235, 9}, {57213, 10397}
X(57101) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 55063}, {64, 124}, {73, 35968}, {108, 20308}, {109, 2883}, {1301, 34831}, {1415, 36908}, {2155, 26932}, {8809, 21252}, {14642, 16596}, {19614, 123}, {32674, 20207}, {33581, 1146}, {36079, 2886}, {41088, 46663}, {46639, 21246}, {56235, 21244}
X(57101) = X(i)-cross conjugate of X(j) for these {i, j}: {34591, 52063}, {47432, 55111}, {55044, 7078}
X(57101) = pole of line {40, 197} with respect to the circumcircle
X(57101) = pole of line {497, 1071} with respect to the Incircle
X(57101) = pole of line {158, 278} with respect to the polar circle
X(57101) = pole of line {23620, 23638} with respect to the Brocard inellipse
X(57101) = pole of line {6506, 8286} with respect to the Kiepert hyperbola
X(57101) = pole of line {219, 56293} with respect to the MacBeath circumconic
X(57101) = pole of line {1837, 54009} with respect to the orthic inconic
X(57101) = pole of line {162, 4565} with respect to the Stammler hyperbola
X(57101) = pole of line {144, 6360} with respect to the Steiner circumellipse
X(57101) = pole of line {9, 223} with respect to the Steiner inellipse
X(57101) = pole of line {811, 4573} with respect to the Wallace hyperbola
X(57101) = triaxial point of ABC, the circumcevian triangle of X(40), and the X(1)-circumconcevian triangle of X(40)
X(57101) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(15524)}}, {{A, B, C, X(3), X(7952)}}, {{A, B, C, X(40), X(78)}}, {{A, B, C, X(69), X(55116)}}, {{A, B, C, X(72), X(856)}}, {{A, B, C, X(219), X(347)}}, {{A, B, C, X(223), X(16870)}}, {{A, B, C, X(345), X(7011)}}, {{A, B, C, X(521), X(3239)}}, {{A, B, C, X(522), X(905)}}, {{A, B, C, X(650), X(1459)}}, {{A, B, C, X(656), X(3700)}}, {{A, B, C, X(810), X(3709)}}, {{A, B, C, X(1807), X(15501)}}, {{A, B, C, X(1817), X(33305)}}, {{A, B, C, X(1818), X(3693)}}, {{A, B, C, X(2324), X(7013)}}, {{A, B, C, X(2325), X(5440)}}, {{A, B, C, X(3342), X(44692)}}, {{A, B, C, X(4131), X(4397)}}, {{A, B, C, X(4521), X(37628)}}, {{A, B, C, X(6510), X(6745)}}, {{A, B, C, X(7078), X(7080)}}, {{A, B, C, X(8805), X(41080)}}, {{A, B, C, X(16596), X(50333)}}, {{A, B, C, X(24018), X(52355)}}, {{A, B, C, X(40838), X(52559)}}, {{A, B, C, X(43724), X(47372)}}, {{A, B, C, X(47432), X(52614)}}, {{A, B, C, X(48357), X(52392)}}
X(57101) = barycentric product X(i)*X(j) for these (i, j): {1, 57245}, {10, 57213}, {40, 6332}, {63, 8058}, {100, 16596}, {190, 53557}, {198, 35518}, {318, 57233}, {322, 652}, {329, 521}, {332, 55212}, {342, 57057}, {345, 6129}, {347, 57055}, {513, 55112}, {651, 7358}, {1332, 38357}, {1577, 1819}, {1817, 52355}, {2324, 4025}, {2331, 52616}, {3239, 7013}, {3719, 54239}, {4131, 55116}, {4391, 7078}, {4397, 7011}, {4554, 47432}, {5514, 6516}, {7080, 905}, {8611, 8822}, {10397, 75}, {14298, 69}, {14837, 78}, {15411, 227}, {15413, 7074}, {15416, 221}, {17896, 219}, {27398, 656}, {30805, 40971}, {40702, 57108}, {52622, 7114}, {55044, 6335}, {55058, 56235}, {55111, 693}, {57049, 77}
X(57101) = barycentric quotient X(i)/X(j) for these (i, j): {3, 37141}, {40, 653}, {48, 8059}, {55, 40117}, {63, 53642}, {78, 44327}, {198, 108}, {212, 36049}, {219, 13138}, {221, 32714}, {223, 36118}, {227, 52607}, {322, 46404}, {329, 18026}, {332, 55211}, {347, 13149}, {512, 2358}, {513, 55110}, {520, 52037}, {521, 189}, {647, 52384}, {650, 40836}, {652, 84}, {656, 8808}, {657, 7008}, {663, 7129}, {905, 1440}, {1459, 1422}, {1819, 662}, {1946, 1436}, {2187, 32674}, {2324, 1897}, {2331, 36127}, {3063, 7151}, {3239, 7020}, {3900, 7003}, {4131, 34400}, {5514, 44426}, {6129, 278}, {6332, 309}, {7011, 934}, {7013, 658}, {7074, 1783}, {7078, 651}, {7080, 6335}, {7114, 1461}, {7358, 4391}, {7368, 56183}, {7952, 54240}, {8058, 92}, {8611, 39130}, {8641, 7154}, {10397, 1}, {14298, 4}, {14837, 273}, {16596, 693}, {17896, 331}, {22383, 1413}, {23090, 285}, {23224, 55117}, {27398, 811}, {35518, 44190}, {36054, 1433}, {38357, 17924}, {40628, 52571}, {47432, 650}, {51375, 24035}, {52425, 32652}, {53557, 514}, {55044, 905}, {55111, 100}, {55112, 668}, {55212, 225}, {57049, 318}, {57055, 280}, {57057, 271}, {57108, 282}, {57118, 7128}, {57213, 86}, {57233, 77}, {57241, 41081}, {57245, 75}
X(57101) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {656, 57108, 521}


X(57102) = X(1)X(30202)∩X(230)X(231)

Barycentrics    a*(b-c)*(a^3+b^3+b^2*c+b*c^2+c^3-a^2*(b+c)-a*(b+c)^2)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b^2+c^2)) : :

X(57102) lies on these lines: {1, 30202}, {230, 231}, {513, 32760}, {521, 7629}, {905, 48283}, {21111, 47965}, {21188, 51648}, {53527, 57101}

X(57102) = perspector of circumconic {{A, B, C, X(4), X(1708)}}
X(57102) = X(i)-isoconjugate-of-X(j) for these {i, j}: {90, 13397}, {36082, 43740}
X(57102) = X(i)-Dao conjugate of X(j) for these {i, j}: {21188, 693}
X(57102) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 46}, {651, 2911}, {6742, 14054}, {57044, 15313}
X(57102) = pole of line {25, 46} with respect to the circumcircle
X(57102) = pole of line {44438, 52860} with respect to the 2nd DrozFarny circle
X(57102) = pole of line {1836, 10052} with respect to the Incircle
X(57102) = pole of line {2, 7040} with respect to the polar circle
X(57102) = pole of line {41727, 42463} with respect to the De Longchamps ellipse
X(57102) = pole of line {155, 2911} with respect to the MacBeath circumconic
X(57102) = pole of line {6, 6505} with respect to the Steiner inellipse
X(57102) = triaxial point of ABC, the circumcevian triangle of X(46), and the X(1)-circumconcevian triangle of X(46)
X(57102) = intersection, other than A, B, C, of circumconics {{A, B, C, X(46), X(3811)}}, {{A, B, C, X(1068), X(8609)}}, {{A, B, C, X(2178), X(3290)}}, {{A, B, C, X(3064), X(15313)}}, {{A, B, C, X(6591), X(51648)}}, {{A, B, C, X(7649), X(21188)}}
X(57102) = barycentric product X(i)*X(j) for these (i, j): {15313, 5905}, {17776, 51648}, {21188, 3811}, {57044, 6505}
X(57102) = barycentric quotient X(i)/X(j) for these (i, j): {2178, 13397}, {15313, 2994}, {46389, 43740}, {51648, 15474}, {55214, 23604}, {57094, 7040}


X(57103) = X(31)X(3900)∩X(47)X(1734)

Barycentrics    a^3*(a-b-c)*(b-c)*(a^2-b^2-c^2)*(a^3+b*c*(b+c)-a*(b^2-b*c+c^2)) : :

X(57103) lies on these lines: {31, 3900}, {47, 1734}, {212, 1946}, {255, 905}, {603, 22091}, {652, 663}, {656, 1955}, {14414, 22093}, {21105, 57243}, {22160, 52408}

X(57103) = perspector of circumconic {{A, B, C, X(284), X(2167)}}
X(57103) = X(i)-isoconjugate-of-X(j) for these {i, j}: {278, 56248}, {2052, 40518}, {36118, 44040}
X(57103) = X(i)-Dao conjugate of X(j) for these {i, j}: {1459, 693}
X(57103) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 48}, {55991, 34591}
X(57103) = pole of line {48, 23844} with respect to the circumcircle
X(57103) = pole of line {21748, 23621} with respect to the Brocard inellipse
X(57103) = pole of line {664, 2617} with respect to the Stammler hyperbola
X(57103) = triaxial point of ABC, the circumcevian triangle of X(48), and the X(1)-circumconcevian triangle of X(48)
X(57103) = intersection, other than A, B, C, of circumconics {{A, B, C, X(663), X(2616)}}, {{A, B, C, X(21789), X(48387)}}
X(57103) = barycentric product X(i)*X(j) for these (i, j): {1, 57042}, {100, 39006}, {212, 47796}, {219, 48281}, {404, 652}, {1946, 32939}, {20293, 48}, {44085, 6332}, {44311, 906}, {48387, 63}, {57212, 72}
X(57103) = barycentric quotient X(i)/X(j) for these (i, j): {212, 56248}, {404, 46404}, {20293, 1969}, {39006, 693}, {44085, 653}, {48281, 331}, {48387, 92}, {52430, 40518}, {57042, 75}, {57212, 286}


X(57104) = X(58)X(4057)∩X(284)X(1919)

Barycentrics    a^2*(a+b)*(b-c)*(a+c)*(a^3+2*a^2*(b+c)-b*c*(b+c)+a*(b^2+3*b*c+c^2)) : :

X(57104) lies on these lines: {58, 4057}, {284, 1919}, {512, 1326}, {661, 3737}, {1019, 50332}, {1412, 43924}, {4778, 18200}, {4832, 7252}, {8043, 38469}, {25526, 44444}, {35057, 57121}, {53390, 57093}

X(57104) = perspector of circumconic {{A, B, C, X(1171), X(2363)}}
X(57104) = X(i)-Dao conjugate of X(j) for these {i, j}: {1019, 693}
X(57104) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 58}
X(57104) = pole of line {3882, 4427} with respect to the Stammler hyperbola
X(57104) = triaxial point of ABC, the circumcevian triangle of X(58), and the X(1)-circumconcevian triangle of X(58)
X(57104) = barycentric product X(i)*X(j) for these (i, j): {1, 57058}, {110, 24195}, {34064, 3733}
X(57104) = barycentric quotient X(i)/X(j) for these (i, j): {24195, 850}, {34064, 27808}, {57058, 75}


X(57105) = X(1)X(1262)∩X(3)X(59)

Barycentrics    a^2*(a-b)^2*(a-c)^2*(a+b-c)*(a-b+c)*(a^5-b^5+b^4*c+b*c^4-c^5-a^4*(b+c)+2*a^2*(b-c)^2*(b+c)+a^3*(-2*b^2+5*b*c-2*c^2)+a*(b-c)^2*(b^2-b*c+c^2)) : :

X(57105) lies on these lines: {1, 1262}, {3, 59}, {84, 52377}, {1259, 6065}, {1983, 46384}, {2283, 57141}, {4564, 56288}, {6198, 7012}, {23703, 57240}, {27529, 46102}

X(57105) = inverse of X(59) in circumcircle
X(57105) = X(i)-isoconjugate-of-X(j) for these {i, j}: {11, 29374}
X(57105) = X(i)-Dao conjugate of X(j) for these {i, j}: {651, 693}
X(57105) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 59}
X(57105) = triaxial point of ABC, the circumcevian triangle of X(59), and the X(1)-circumconcevian triangle of X(59)
X(57105) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(34345)}}, {{A, B, C, X(84), X(1768)}}
X(57105) = barycentric product X(i)*X(j) for these (i, j): {1768, 4564}, {37781, 59}
X(57105) = barycentric quotient X(i)/X(j) for these (i, j): {1768, 4858}, {2149, 29374}, {37781, 34387}


X(57106) = X(1)X(16757)∩X(63)X(4131)

Barycentrics    a*(b-c)*(a^2-b^2-c^2)*(-b^2-b*c-c^2+a*(b+c)) : :

X(57106) lies on these lines: {1, 16757}, {63, 4131}, {100, 35184}, {306, 35518}, {514, 661}, {521, 24562}, {905, 55232}, {1734, 16751}, {3305, 14298}, {3733, 8646}, {4025, 8611}, {4105, 35057}, {5249, 17896}, {5287, 6588}, {22383, 23147}, {25900, 47785}, {36038, 46396}

X(57106) = perspector of circumconic {{A, B, C, X(75), X(33298)}}
X(57106) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 26705}, {25, 43190}, {112, 15320}, {516, 32701}, {910, 36109}, {1886, 35184}, {1974, 31624}, {2969, 31616}, {7649, 15378}, {8750, 14377}
X(57106) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 26705}, {116, 19}, {4025, 693}, {6505, 43190}, {6586, 17924}, {17463, 52577}, {26932, 14377}, {34591, 15320}
X(57106) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 63}, {662, 17746}
X(57106) = pole of line {63, 1631} with respect to the circumcircle
X(57106) = pole of line {1158, 9746} with respect to the orthoptic circle of the Steiner inellipse
X(57106) = pole of line {4467, 21789} with respect to the Kiepert parabola
X(57106) = pole of line {163, 1633} with respect to the Stammler hyperbola
X(57106) = triaxial point of ABC, the circumcevian triangle of X(63), and the X(1)-circumconcevian triangle of X(63)
X(57106) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(5074)}}, {{A, B, C, X(63), X(3681)}}, {{A, B, C, X(514), X(35184)}}, {{A, B, C, X(693), X(16751)}}, {{A, B, C, X(857), X(4184)}}, {{A, B, C, X(905), X(4978)}}, {{A, B, C, X(908), X(17233)}}, {{A, B, C, X(1459), X(47958)}}, {{A, B, C, X(1577), X(1734)}}, {{A, B, C, X(3250), X(22388)}}, {{A, B, C, X(3730), X(5179)}}, {{A, B, C, X(3733), X(48398)}}, {{A, B, C, X(4391), X(25259)}}, {{A, B, C, X(4728), X(22084)}}, {{A, B, C, X(6586), X(6590)}}, {{A, B, C, X(18184), X(47680)}}, {{A, B, C, X(33297), X(44150)}}
X(57106) = barycentric product X(i)*X(j) for these (i, j): {1, 57054}, {100, 40618}, {116, 1332}, {304, 6586}, {1331, 20901}, {1459, 33932}, {1734, 69}, {3681, 4025}, {14208, 4184}, {15413, 3730}, {15419, 4006}, {16751, 306}, {17233, 905}, {17463, 4561}, {17916, 30805}, {18184, 52609}, {21045, 4592}, {22084, 668}, {22388, 561}, {25259, 63}, {33297, 656}, {33298, 521}, {57188, 8}, {57214, 72}
X(57106) = barycentric quotient X(i)/X(j) for these (i, j): {1, 26705}, {63, 43190}, {103, 36109}, {116, 17924}, {304, 31624}, {656, 15320}, {905, 14377}, {906, 15378}, {911, 32701}, {1734, 4}, {3681, 1897}, {3730, 1783}, {4184, 162}, {6586, 19}, {15624, 8750}, {16751, 27}, {17233, 6335}, {17463, 7649}, {18184, 17925}, {20901, 46107}, {20974, 6591}, {21045, 24006}, {21837, 2333}, {22084, 513}, {22388, 31}, {25259, 92}, {33297, 811}, {33298, 18026}, {36056, 35184}, {38358, 3064}, {40618, 693}, {57054, 75}, {57188, 7}, {57214, 286}
X(57106) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4131, 57055, 63}, {6332, 24018, 57184}


X(57107) = X(1)X(30200)∩X(523)X(656)

Barycentrics    a*(b-c)*(a+b-c)*(a-b+c)*(b+c)*(a^3+b^3+c^3-a^2*(b+c)-a*(b^2+b*c+c^2)) : :

X(57107) lies on these lines: {1, 30200}, {73, 43924}, {109, 53936}, {225, 7649}, {226, 3667}, {307, 31605}, {513, 1946}, {521, 3669}, {523, 656}, {650, 1758}, {651, 4570}, {3733, 51643}, {4905, 51656}, {6003, 57139}, {6587, 55214}, {7180, 57186}, {7234, 51662}, {21103, 30725}

X(57107) = perspector of circumconic {{A, B, C, X(226), X(2982)}}
X(57107) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 6011}, {110, 6598}, {4636, 41501}, {5546, 37887}, {43708, 52914}
X(57107) = X(i)-Dao conjugate of X(j) for these {i, j}: {244, 6598}, {7178, 693}, {8286, 1043}, {35583, 4511}, {40611, 6011}
X(57107) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 65}
X(57107) = pole of line {65, 3145} with respect to the circumcircle
X(57107) = pole of line {3649, 10957} with respect to the Incircle
X(57107) = pole of line {29, 4511} with respect to the polar circle
X(57107) = triaxial point of ABC, the circumcevian triangle of X(65), and the X(1)-circumconcevian triangle of X(65)
X(57107) = intersection, other than A, B, C, of circumconics {{A, B, C, X(65), X(34772)}}, {{A, B, C, X(225), X(37583)}}, {{A, B, C, X(513), X(23752)}}, {{A, B, C, X(523), X(6003)}}, {{A, B, C, X(3668), X(4570)}}, {{A, B, C, X(4017), X(31603)}}, {{A, B, C, X(13739), X(36195)}}, {{A, B, C, X(15556), X(40663)}}
X(57107) = barycentric product X(i)*X(j) for these (i, j): {100, 40622}, {226, 6003}, {321, 57139}, {651, 8286}, {1414, 21961}, {1577, 37583}, {13739, 57243}, {15556, 514}, {23775, 4564}, {31010, 41547}, {31603, 37}, {33116, 4017}, {34772, 7178}, {51664, 5174}
X(57107) = barycentric quotient X(i)/X(j) for these (i, j): {661, 6598}, {1400, 6011}, {4017, 37887}, {6003, 333}, {8286, 4391}, {15556, 190}, {21961, 4086}, {23775, 4858}, {31603, 274}, {33116, 7257}, {34772, 645}, {37583, 662}, {40622, 693}, {55234, 43708}, {57139, 81}, {57185, 41501}
X(57107) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {656, 4017, 7178}


X(57108) = X(1)X(14837)∩X(3)X(4091)

Barycentrics    a^2*(b-c)*(-a+b+c)^2*(a^2-b^2-c^2) : :
X(57108) = -3*X[8643]+2*X[53286], -3*X[11124]+2*X[50504], -2*X[15280]+3*X[47839]

X(57108) lies on these lines: {1, 14837}, {3, 4091}, {7, 30185}, {55, 2432}, {71, 52222}, {74, 2738}, {78, 6332}, {101, 40116}, {200, 4163}, {512, 52310}, {514, 44827}, {520, 11589}, {521, 656}, {522, 3465}, {649, 8676}, {650, 663}, {652, 1946}, {657, 21789}, {667, 926}, {677, 1262}, {1043, 52622}, {1110, 3939}, {1146, 14714}, {1331, 44717}, {2254, 51652}, {2774, 48386}, {3239, 17926}, {3270, 38353}, {3738, 4905}, {4255, 52595}, {4401, 53395}, {4449, 6366}, {4490, 9397}, {4724, 6362}, {4879, 9366}, {6182, 48099}, {6184, 47407}, {7078, 57223}, {7649, 8058}, {7654, 57121}, {7655, 43924}, {8643, 53286}, {8999, 53277}, {9000, 44408}, {11124, 50504}, {15280, 47839}, {15411, 57081}, {15584, 50352}, {18344, 46393}, {22091, 53550}, {23090, 57057}, {23614, 40945}, {27486, 30182}, {30201, 30235}, {30723, 48281}, {37569, 42756}, {38599, 46095}, {40591, 56176}, {42312, 42337}, {42662, 57092}, {52614, 57180}

X(57108) = midpoint of X(i) and X(j) for these {i,j}: {48387, 53249}, {663, 4105}
X(57108) = reflection of X(i) in X(j) for these {i,j}: {1459, 57241}, {4091, 3}, {50352, 15584}, {53395, 4401}, {649, 48387}, {656, 57101}, {663, 53285}
X(57108) = isogonal conjugate of X(36118)
X(57108) = perspector of circumconic {{A, B, C, X(9), X(63)}}
X(57108) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 36118}, {2, 32714}, {4, 934}, {6, 13149}, {7, 108}, {19, 658}, {25, 4569}, {27, 1020}, {28, 4566}, {33, 4626}, {34, 664}, {56, 18026}, {57, 653}, {77, 36127}, {81, 52607}, {85, 32674}, {92, 1461}, {99, 1426}, {100, 1119}, {101, 1847}, {107, 1439}, {109, 273}, {112, 1446}, {162, 3668}, {190, 1435}, {196, 37141}, {208, 53642}, {222, 54240}, {225, 1414}, {269, 1897}, {278, 651}, {279, 1783}, {281, 4617}, {286, 53321}, {318, 6614}, {331, 1415}, {342, 8059}, {479, 56183}, {513, 55346}, {514, 7128}, {603, 52938}, {604, 46404}, {607, 36838}, {608, 4554}, {648, 1427}, {668, 1398}, {811, 1042}, {823, 52373}, {905, 23984}, {927, 1876}, {1088, 8750}, {1118, 6516}, {1262, 17924}, {1275, 6591}, {1310, 7103}, {1395, 4572}, {1396, 4552}, {1407, 6335}, {1410, 6528}, {1430, 53211}, {1459, 24032}, {1824, 4616}, {1826, 4637}, {1828, 6613}, {1838, 36048}, {1851, 8269}, {1875, 54953}, {1880, 4573}, {1895, 36079}, {1973, 46406}, {2212, 52937}, {2333, 4635}, {3669, 46102}, {3676, 7012}, {4025, 24033}, {4565, 40149}, {4620, 55208}, {4998, 43923}, {5236, 36146}, {6046, 52914}, {6356, 52920}, {7045, 7649}, {7115, 24002}, {7282, 26700}, {7339, 44426}, {7365, 36099}, {14256, 40117}, {14733, 38461}, {15413, 23985}, {15742, 43932}, {22464, 36110}, {23973, 36122}, {24027, 46107}, {36124, 41353}, {37755, 52919}, {40933, 53639}, {41004, 52775}, {41207, 51645}, {52928, 54314}, {53237, 53243}
X(57108) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 18026}, {3, 36118}, {6, 658}, {9, 13149}, {11, 273}, {125, 3668}, {521, 4025}, {522, 46107}, {656, 693}, {905, 52621}, {1015, 1847}, {1146, 331}, {2968, 264}, {3161, 46404}, {3239, 3261}, {5452, 653}, {6337, 46406}, {6505, 4569}, {6600, 1897}, {6608, 44426}, {7358, 75}, {7952, 52938}, {8054, 1119}, {11517, 664}, {14714, 4}, {15607, 1838}, {17115, 7649}, {17423, 1042}, {22391, 1461}, {24771, 6335}, {26932, 1088}, {32664, 32714}, {34467, 269}, {34591, 1446}, {35072, 85}, {35508, 92}, {36033, 934}, {38966, 158}, {38983, 7}, {38985, 1439}, {38986, 1426}, {38991, 278}, {39004, 22464}, {39006, 279}, {39014, 5236}, {39025, 34}, {39026, 55346}, {40586, 52607}, {40591, 4566}, {40608, 225}, {40626, 6063}, {40628, 24002}, {46095, 23973}, {55042, 7282}, {55044, 342}, {55053, 1435}, {55063, 40702}, {55064, 40149}, {55066, 1427}, {55068, 286}
X(57108) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3, 35072}, {78, 34591}, {100, 71}, {101, 220}, {521, 652}, {1260, 3270}, {1331, 219}, {1897, 9}, {3239, 657}, {3939, 212}, {4587, 1802}, {37628, 14418}, {56146, 1146}, {56183, 40945}, {56278, 2170}, {57081, 57055}, {57241, 10397}
X(57108) = X(i)-cross conjugate of X(j) for these {i, j}: {2638, 212}, {3270, 1260}, {47432, 55}
X(57108) = pole of line {64, 71} with respect to the circumcircle
X(57108) = pole of line {1071, 14100} with respect to the Incircle
X(57108) = pole of line {158, 273} with respect to the polar circle
X(57108) = pole of line {2347, 23620} with respect to the Brocard inellipse
X(57108) = pole of line {2972, 3937} with respect to the Jerabek hyperbola
X(57108) = pole of line {219, 22117} with respect to the MacBeath circumconic
X(57108) = pole of line {1864, 17832} with respect to the orthic inconic
X(57108) = pole of line {162, 658} with respect to the Stammler hyperbola
X(57108) = pole of line {3177, 3219} with respect to the Steiner circumellipse
X(57108) = pole of line {1212, 1214} with respect to the Steiner inellipse
X(57108) = pole of line {811, 4625} with respect to the Wallace hyperbola
X(57108) = triaxial point of ABC, the circumcevian triangle of X(71), and the X(1)-circumconcevian triangle of X(71)
X(57108) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(220)}}, {{A, B, C, X(21), X(861)}}, {{A, B, C, X(33), X(2188)}}, {{A, B, C, X(55), X(46974)}}, {{A, B, C, X(63), X(52888)}}, {{A, B, C, X(71), X(2287)}}, {{A, B, C, X(78), X(1802)}}, {{A, B, C, X(101), X(4091)}}, {{A, B, C, X(200), X(212)}}, {{A, B, C, X(219), X(6510)}}, {{A, B, C, X(271), X(7079)}}, {{A, B, C, X(281), X(44360)}}, {{A, B, C, X(521), X(3900)}}, {{A, B, C, X(603), X(9439)}}, {{A, B, C, X(650), X(652)}}, {{A, B, C, X(656), X(657)}}, {{A, B, C, X(663), X(1459)}}, {{A, B, C, X(856), X(4183)}}, {{A, B, C, X(1260), X(3689)}}, {{A, B, C, X(1265), X(43698)}}, {{A, B, C, X(1331), X(14392)}}, {{A, B, C, X(1792), X(4433)}}, {{A, B, C, X(1795), X(4845)}}, {{A, B, C, X(1807), X(42064)}}, {{A, B, C, X(1809), X(28071)}}, {{A, B, C, X(2192), X(15524)}}, {{A, B, C, X(2328), X(2738)}}, {{A, B, C, X(2332), X(8766)}}, {{A, B, C, X(2638), X(32656)}}, {{A, B, C, X(3239), X(8611)}}, {{A, B, C, X(3270), X(4895)}}, {{A, B, C, X(3465), X(14547)}}, {{A, B, C, X(3939), X(4163)}}, {{A, B, C, X(4025), X(6608)}}, {{A, B, C, X(4587), X(6332)}}, {{A, B, C, X(8750), X(47432)}}, {{A, B, C, X(10397), X(36054)}}, {{A, B, C, X(14837), X(36049)}}, {{A, B, C, X(14943), X(40843)}}
X(57108) = barycentric product X(i)*X(j) for these (i, j): {1, 57055}, {3, 3239}, {4, 57057}, {10, 23090}, {11, 4587}, {21, 8611}, {37, 57081}, {55, 6332}, {71, 7253}, {100, 34591}, {101, 2968}, {184, 52622}, {190, 3270}, {200, 905}, {212, 4391}, {219, 522}, {220, 4025}, {222, 4163}, {268, 8058}, {281, 57241}, {282, 57101}, {283, 3700}, {284, 52355}, {295, 4148}, {304, 8641}, {318, 36054}, {321, 57134}, {332, 3709}, {345, 663}, {348, 4105}, {521, 9}, {644, 7004}, {650, 78}, {652, 8}, {657, 69}, {1021, 72}, {1043, 647}, {1098, 55232}, {1146, 1331}, {1253, 15413}, {1259, 3064}, {1260, 514}, {1265, 649}, {1320, 14418}, {1332, 2310}, {1433, 57049}, {1444, 4171}, {1459, 346}, {1783, 24031}, {1792, 661}, {1796, 4990}, {1797, 4528}, {1802, 693}, {1809, 46393}, {1812, 4041}, {1813, 4081}, {1818, 28132}, {1897, 35072}, {1946, 312}, {2170, 4571}, {2192, 57245}, {2193, 4086}, {2287, 656}, {2289, 44426}, {2318, 4560}, {2322, 520}, {2326, 57109}, {2327, 523}, {2328, 525}, {2332, 3265}, {2359, 57158}, {2638, 6335}, {3063, 3718}, {3119, 6516}, {3692, 513}, {3694, 3737}, {3699, 7117}, {3710, 7252}, {3900, 63}, {3937, 6558}, {3942, 4578}, {4064, 7054}, {4082, 7254}, {4091, 7046}, {4130, 77}, {4131, 7079}, {4397, 48}, {4529, 7015}, {4558, 52335}, {6061, 57243}, {10397, 280}, {14298, 271}, {14395, 44693}, {14414, 41798}, {14936, 4561}, {15411, 42}, {15416, 31}, {15629, 39471}, {17206, 4524}, {17926, 3682}, {18155, 52370}, {18210, 7259}, {18344, 3719}, {21789, 306}, {22383, 341}, {23189, 2321}, {23224, 7101}, {23615, 44717}, {23696, 3693}, {23838, 52978}, {23978, 32656}, {23983, 8750}, {24018, 4183}, {24026, 906}, {26932, 3939}, {30681, 43924}, {30805, 7071}, {31637, 52614}, {35518, 41}, {35519, 52425}, {36049, 7358}, {36197, 4592}, {44040, 57042}, {44327, 47432}, {46110, 6056}, {47411, 56112}, {51565, 52307}, {51664, 56182}, {52222, 7360}, {52351, 53285}, {52406, 667}, {52616, 607}, {53013, 57213}, {53550, 6559}, {53560, 643}, {55230, 7058}, {57045, 64}, {57066, 8606}, {57180, 7182}
X(57108) = barycentric quotient X(i)/X(j) for these (i, j): {1, 13149}, {3, 658}, {6, 36118}, {8, 46404}, {9, 18026}, {31, 32714}, {33, 54240}, {41, 108}, {42, 52607}, {48, 934}, {55, 653}, {63, 4569}, {69, 46406}, {71, 4566}, {77, 36838}, {78, 4554}, {101, 55346}, {184, 1461}, {200, 6335}, {212, 651}, {219, 664}, {220, 1897}, {222, 4626}, {228, 1020}, {268, 53642}, {281, 52938}, {283, 4573}, {345, 4572}, {348, 52937}, {513, 1847}, {521, 85}, {522, 331}, {603, 4617}, {607, 36127}, {647, 3668}, {649, 1119}, {650, 273}, {652, 7}, {656, 1446}, {657, 4}, {663, 278}, {667, 1435}, {692, 7128}, {798, 1426}, {810, 1427}, {822, 1439}, {905, 1088}, {906, 7045}, {926, 5236}, {1021, 286}, {1043, 6331}, {1098, 55231}, {1146, 46107}, {1253, 1783}, {1260, 190}, {1265, 1978}, {1331, 1275}, {1437, 4637}, {1444, 4635}, {1459, 279}, {1783, 24032}, {1790, 4616}, {1792, 799}, {1802, 100}, {1812, 4625}, {1919, 1398}, {1946, 57}, {2175, 32674}, {2188, 37141}, {2193, 1414}, {2200, 53321}, {2287, 811}, {2289, 6516}, {2310, 17924}, {2318, 4552}, {2322, 6528}, {2327, 99}, {2328, 648}, {2332, 107}, {2484, 7103}, {2638, 905}, {2968, 3261}, {3022, 3064}, {3049, 1042}, {3063, 34}, {3119, 44426}, {3239, 264}, {3270, 514}, {3690, 4605}, {3692, 668}, {3709, 225}, {3900, 92}, {3939, 46102}, {4041, 40149}, {4055, 52610}, {4081, 46110}, {4086, 52575}, {4091, 7056}, {4105, 281}, {4130, 318}, {4148, 40717}, {4163, 7017}, {4171, 41013}, {4183, 823}, {4397, 1969}, {4524, 1826}, {4528, 46109}, {4587, 4998}, {4827, 5342}, {4895, 37790}, {6056, 1813}, {6332, 6063}, {6602, 56183}, {6607, 1855}, {7004, 24002}, {7058, 55229}, {7117, 3676}, {7253, 44129}, {8058, 40701}, {8606, 38340}, {8611, 1441}, {8641, 19}, {8750, 23984}, {9404, 7282}, {10397, 347}, {14298, 342}, {14392, 37805}, {14414, 37780}, {14427, 38462}, {14642, 36079}, {14827, 8750}, {14936, 7649}, {15411, 310}, {15416, 561}, {20752, 41353}, {21127, 53237}, {21789, 27}, {22160, 33765}, {22382, 6359}, {22383, 269}, {23090, 86}, {23189, 1434}, {23224, 7177}, {23696, 34018}, {24031, 15413}, {26932, 52621}, {30692, 52982}, {32656, 1262}, {32657, 24016}, {32660, 7339}, {33525, 1838}, {34591, 693}, {35072, 4025}, {35518, 20567}, {36054, 77}, {36197, 24006}, {39201, 52373}, {39687, 1459}, {40972, 46152}, {42462, 2973}, {42658, 36908}, {46388, 1876}, {47432, 14837}, {51361, 24035}, {52307, 22464}, {52335, 14618}, {52355, 349}, {52370, 4551}, {52406, 6386}, {52411, 6614}, {52425, 109}, {52614, 1861}, {52622, 18022}, {53285, 17923}, {53560, 4077}, {55230, 6354}, {55234, 6046}, {55994, 54948}, {57045, 14615}, {57055, 75}, {57057, 69}, {57081, 274}, {57101, 40702}, {57134, 81}, {57180, 33}, {57241, 348}
X(57108) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {521, 57101, 656}, {521, 57241, 1459}, {663, 4105, 3900}, {3900, 53285, 663}, {8676, 48387, 649}, {48387, 53249, 8676}


X(57109) = X(10)X(8058)∩X(100)X(1304)

Barycentrics    a*(b-c)*(b+c)^2*(-a^2+b^2+c^2)^2 : :

X(57109) lies on these lines: {10, 8058}, {37, 34212}, {72, 14380}, {100, 1304}, {513, 57055}, {520, 24018}, {521, 22160}, {523, 1577}, {647, 656}, {667, 15313}, {906, 3908}, {1332, 43754}, {2972, 7068}, {3126, 50350}, {3682, 57241}, {3900, 48302}, {4064, 57243}, {4516, 21947}, {8804, 57064}, {17420, 52307}, {23289, 40161}, {30805, 52396}

X(57109) = midpoint of X(i) and X(j) for these {i,j}: {4064, 57243}, {656, 8611}
X(57109) = isogonal conjugate of X(52920)
X(57109) = trilinear pole of line {2632, 3269}
X(57109) = perspector of circumconic {{A, B, C, X(72), X(321)}}
X(57109) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52920}, {6, 52919}, {27, 112}, {28, 162}, {34, 52914}, {56, 52921}, {58, 107}, {60, 36127}, {81, 24019}, {86, 32713}, {101, 36419}, {108, 270}, {110, 8747}, {190, 36420}, {250, 7649}, {286, 32676}, {393, 4556}, {513, 24000}, {514, 23964}, {648, 1474}, {649, 23582}, {653, 2189}, {662, 5317}, {667, 23999}, {811, 2203}, {823, 1333}, {1096, 52935}, {1118, 4636}, {1301, 44698}, {1304, 52954}, {1437, 36126}, {1459, 32230}, {1461, 36421}, {1790, 6529}, {1973, 55231}, {1974, 55229}, {2150, 54240}, {2206, 6528}, {2207, 4610}, {2326, 32714}, {3261, 41937}, {4091, 23590}, {4131, 24022}, {4565, 8748}, {5379, 57200}, {15384, 21172}, {17209, 20031}, {18653, 32695}, {23224, 24021}, {23975, 30805}, {32674, 46103}, {36417, 52612}
X(57109) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 52921}, {3, 52920}, {9, 52919}, {10, 107}, {37, 823}, {125, 28}, {244, 8747}, {520, 23224}, {525, 693}, {647, 17924}, {1015, 36419}, {1084, 5317}, {2972, 18180}, {3269, 18603}, {5375, 23582}, {6337, 55231}, {6338, 4623}, {6503, 52935}, {6631, 23999}, {6741, 1896}, {11517, 52914}, {15526, 286}, {17423, 2203}, {17434, 905}, {34591, 27}, {35071, 81}, {35072, 46103}, {35508, 36421}, {38983, 270}, {38985, 58}, {38999, 51420}, {39026, 24000}, {40586, 24019}, {40591, 162}, {40600, 32713}, {40603, 6528}, {46093, 1437}, {51574, 648}, {55053, 36420}, {55064, 8748}, {55065, 158}, {55066, 1474}, {56325, 54240}
X(57109) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 72}, {1332, 3990}, {3695, 7068}, {40161, 53560}, {52355, 4064}, {52387, 2632}, {56235, 37}
X(57109) = X(i)-cross conjugate of X(j) for these {i, j}: {2632, 52387}, {2972, 7066}
X(57109) = pole of line {72, 2915} with respect to the circumcircle
X(57109) = pole of line {3990, 22136} with respect to the MacBeath circumconic
X(57109) = pole of line {2895, 18666} with respect to the Steiner circumellipse
X(57109) = pole of line {1211, 18591} with respect to the Steiner inellipse
X(57109) = pole of line {1021, 7265} with respect to the Yff parabola
X(57109) = pole of line {52920, 52935} with respect to the Wallace hyperbola
X(57109) = triaxial point of ABC, the circumcevian triangle of X(72), and the X(1)-circumconcevian triangle of X(72)
X(57109) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(30447)}}, {{A, B, C, X(72), X(5379)}}, {{A, B, C, X(394), X(44396)}}, {{A, B, C, X(520), X(523)}}, {{A, B, C, X(656), X(1577)}}, {{A, B, C, X(822), X(47842)}}, {{A, B, C, X(879), X(14775)}}, {{A, B, C, X(1650), X(37966)}}, {{A, B, C, X(3269), X(14431)}}, {{A, B, C, X(3695), X(7066)}}, {{A, B, C, X(3932), X(52386)}}, {{A, B, C, X(3990), X(20336)}}, {{A, B, C, X(3992), X(52387)}}, {{A, B, C, X(3998), X(42713)}}, {{A, B, C, X(4064), X(4086)}}, {{A, B, C, X(4091), X(47679)}}, {{A, B, C, X(4131), X(30591)}}, {{A, B, C, X(23224), X(50330)}}, {{A, B, C, X(48350), X(51640)}}, {{A, B, C, X(48395), X(55230)}}
X(57109) = barycentric product X(i)*X(j) for these (i, j): {10, 24018}, {100, 15526}, {101, 17879}, {122, 56235}, {125, 1332}, {190, 2632}, {201, 6332}, {213, 52617}, {228, 3267}, {255, 52623}, {304, 55230}, {306, 656}, {307, 8611}, {313, 822}, {321, 520}, {326, 4024}, {339, 906}, {394, 4036}, {514, 52387}, {525, 72}, {651, 7068}, {1018, 17216}, {1089, 4091}, {1214, 52355}, {1264, 57185}, {1331, 20902}, {1367, 644}, {1425, 15416}, {1459, 52369}, {1577, 3682}, {1824, 4143}, {2171, 52616}, {2197, 35518}, {2972, 6335}, {3265, 37}, {3269, 668}, {3695, 905}, {3700, 52385}, {3708, 4561}, {3710, 51664}, {3718, 55234}, {3926, 4705}, {3949, 4025}, {3990, 850}, {3998, 523}, {4041, 52565}, {4064, 63}, {4131, 594}, {4391, 7066}, {4567, 5489}, {14208, 71}, {14638, 3198}, {15413, 3690}, {15414, 21807}, {17094, 3694}, {17434, 56189}, {17924, 4158}, {18210, 52609}, {20336, 647}, {20948, 4055}, {21046, 4592}, {23224, 28654}, {23286, 42698}, {23616, 5379}, {24031, 4605}, {26942, 521}, {27801, 39201}, {30713, 51640}, {30805, 756}, {34388, 36054}, {36793, 692}, {40071, 810}, {40152, 4086}, {41013, 52613}, {42701, 43083}, {52386, 693}, {52396, 661}, {52622, 7138}, {55232, 69}, {57055, 6356}, {57241, 6358}, {57243, 78}
X(57109) = barycentric quotient X(i)/X(j) for these (i, j): {1, 52919}, {6, 52920}, {9, 52921}, {10, 823}, {12, 54240}, {37, 107}, {42, 24019}, {69, 55231}, {71, 162}, {72, 648}, {100, 23582}, {101, 24000}, {125, 17924}, {190, 23999}, {201, 653}, {213, 32713}, {219, 52914}, {228, 112}, {255, 4556}, {304, 55229}, {306, 811}, {321, 6528}, {326, 4610}, {394, 52935}, {512, 5317}, {513, 36419}, {520, 81}, {521, 46103}, {525, 286}, {647, 28}, {652, 270}, {656, 27}, {661, 8747}, {667, 36420}, {692, 23964}, {810, 1474}, {822, 58}, {906, 250}, {1259, 4612}, {1264, 4631}, {1332, 18020}, {1367, 24002}, {1425, 32714}, {1636, 51420}, {1783, 32230}, {1824, 6529}, {1826, 36126}, {1946, 2189}, {2171, 36127}, {2197, 108}, {2200, 32676}, {2289, 4636}, {2525, 16747}, {2631, 52954}, {2632, 514}, {2972, 905}, {3049, 2203}, {3198, 57219}, {3265, 274}, {3269, 513}, {3682, 662}, {3690, 1783}, {3694, 36797}, {3695, 6335}, {3700, 1896}, {3708, 7649}, {3718, 55233}, {3900, 36421}, {3926, 4623}, {3949, 1897}, {3954, 46151}, {3990, 110}, {3998, 99}, {4024, 158}, {4036, 2052}, {4041, 8748}, {4055, 163}, {4064, 92}, {4079, 1096}, {4091, 757}, {4131, 1509}, {4158, 1332}, {4561, 46254}, {4574, 5379}, {4605, 24032}, {4705, 393}, {5489, 16732}, {6356, 13149}, {6358, 52938}, {7065, 36054}, {7066, 651}, {7068, 4391}, {7138, 1461}, {8611, 29}, {9409, 52955}, {14208, 44129}, {15526, 693}, {17216, 7199}, {17434, 18180}, {17879, 3261}, {18210, 17925}, {20336, 6331}, {20902, 46107}, {20975, 6591}, {21046, 24006}, {21832, 34856}, {22341, 4565}, {23103, 16730}, {23224, 593}, {24018, 86}, {24020, 30805}, {26942, 18026}, {30805, 873}, {32320, 1437}, {34980, 22383}, {35071, 23224}, {36054, 60}, {36793, 40495}, {37754, 1459}, {37755, 36118}, {39201, 1333}, {40152, 1414}, {41013, 15352}, {42702, 4230}, {47413, 16757}, {50487, 2207}, {51640, 1412}, {52355, 31623}, {52385, 4573}, {52386, 100}, {52387, 190}, {52396, 799}, {52565, 4625}, {52613, 1444}, {52616, 52379}, {52617, 6385}, {53556, 31905}, {55230, 19}, {55232, 4}, {55234, 34}, {56189, 42405}, {56235, 44181}, {56254, 16813}, {57057, 1098}, {57108, 2326}, {57185, 1118}, {57241, 2185}, {57243, 273}


X(57110) = X(75)X(1734)∩X(798)X(812)

Barycentrics    b*(b-c)*c*(b^2*c^2-a^3*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(57110) lies on these lines: {75, 1734}, {76, 8714}, {514, 23657}, {693, 2533}, {788, 7199}, {798, 812}, {814, 7255}, {905, 31997}, {1909, 17496}, {3126, 33943}, {3261, 17072}, {3766, 21051}, {3835, 40627}, {3900, 17144}, {3907, 57244}, {4391, 6376}, {4705, 20949}, {15413, 54271}, {16737, 47824}, {17149, 29236}, {18832, 48090}, {21225, 21901}, {21611, 24290}, {23807, 50335}, {50337, 52619}

X(57110) = reflection of X(i) in X(j) for these {i,j}: {18081, 693}
X(57110) = perspector of circumconic {{A, B, C, X(1221), X(3112)}}
X(57110) = X(i)-Dao conjugate of X(j) for these {i, j}: {3261, 693}, {44312, 1964}
X(57110) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 75}
X(57110) = X(i)-cross conjugate of X(j) for these {i, j}: {21225, 57190}
X(57110) = pole of line {75, 23851} with respect to the circumcircle
X(57110) = pole of line {1909, 17165} with respect to the Steiner circumellipse
X(57110) = pole of line {1215, 25111} with respect to the Steiner inellipse
X(57110) = triaxial point of ABC, the circumcevian triangle of X(75), and the X(1)-circumconcevian triangle of X(75)
X(57110) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7255), X(10566)}}, {{A, B, C, X(18833), X(20372)}}, {{A, B, C, X(21901), X(55240)}}
X(57110) = barycentric product X(i)*X(j) for these (i, j): {1, 57056}, {321, 57149}, {1969, 23093}, {21225, 75}, {21791, 561}, {21901, 310}, {44312, 668}, {57190, 8}
X(57110) = barycentric quotient X(i)/X(j) for these (i, j): {21225, 1}, {21791, 31}, {21901, 42}, {23093, 48}, {44312, 513}, {57056, 75}, {57149, 81}, {57190, 7}
X(57110) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 4083, 18081}, {1734, 40495, 75}


X(57111) = X(521)X(1946)∩X(522)X(3717)

Barycentrics    a*(a-b-c)*(b-c)*(a^2-b^2-c^2)*(-b^3-a*b*c-c^3+a^2*(b+c)) : :

X(57111) lies on these lines: {78, 57101}, {100, 35183}, {521, 1946}, {522, 3717}, {649, 6003}, {656, 6332}, {1734, 57091}, {3872, 30201}, {3904, 23800}, {4057, 15313}, {20316, 24006}, {21173, 26641}, {30805, 57188}, {55232, 57055}

X(57111) = reflection of X(i) in X(j) for these {i,j}: {24006, 20316}
X(57111) = trilinear pole of line {34588, 47411}
X(57111) = perspector of circumconic {{A, B, C, X(312), X(1812)}}
X(57111) = X(i)-isoconjugate-of-X(j) for these {i, j}: {34, 36050}, {56, 26704}, {108, 2217}, {112, 40160}, {278, 32653}, {608, 44765}, {1398, 56112}, {1455, 36108}, {7649, 15386}, {13478, 32674}, {32700, 34050}
X(57111) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 26704}, {124, 34}, {6332, 693}, {6589, 17924}, {7358, 10570}, {11517, 36050}, {34588, 225}, {34591, 40160}, {35072, 13478}, {38983, 2217}, {40626, 2995}
X(57111) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 78}, {190, 21078}, {1332, 22134}, {51612, 40626}, {56252, 306}, {57242, 57184}
X(57111) = X(i)-cross conjugate of X(j) for these {i, j}: {52310, 6332}
X(57111) = pole of line {78, 2933} with respect to the circumcircle
X(57111) = pole of line {3436, 22020} with respect to the excircles-radical circle
X(57111) = pole of line {329, 21078} with respect to the Steiner circumellipse
X(57111) = pole of line {3452, 25078} with respect to the Steiner inellipse
X(57111) = pole of line {652, 6332} with respect to the Yff parabola
X(57111) = pole of line {1414, 18026} with respect to the Wallace hyperbola
X(57111) = triaxial point of ABC, the circumcevian triangle of X(78), and the X(1)-circumconcevian triangle of X(78)
X(57111) = intersection, other than A, B, C, of circumconics {{A, B, C, X(78), X(3869)}}, {{A, B, C, X(332), X(21078)}}, {{A, B, C, X(521), X(4086)}}, {{A, B, C, X(522), X(21189)}}, {{A, B, C, X(656), X(52310)}}, {{A, B, C, X(1946), X(4041)}}, {{A, B, C, X(3717), X(51612)}}, {{A, B, C, X(3718), X(22134)}}, {{A, B, C, X(4768), X(34588)}}, {{A, B, C, X(6589), X(47136)}}, {{A, B, C, X(14430), X(47411)}}
X(57111) = barycentric product X(i)*X(j) for these (i, j): {100, 40626}, {124, 1332}, {190, 34588}, {314, 52310}, {3718, 6589}, {3869, 6332}, {4417, 521}, {10571, 15416}, {16754, 3710}, {21189, 345}, {22134, 35519}, {35518, 573}, {38345, 4561}, {47411, 668}, {51612, 650}, {57184, 8}, {57242, 9}
X(57111) = barycentric quotient X(i)/X(j) for these (i, j): {9, 26704}, {78, 44765}, {124, 17924}, {212, 32653}, {219, 36050}, {521, 13478}, {573, 108}, {652, 2217}, {656, 40160}, {906, 15386}, {1812, 54951}, {3185, 32674}, {3692, 56112}, {3869, 653}, {4417, 18026}, {6332, 2995}, {6589, 34}, {8611, 15232}, {10571, 32714}, {15629, 36108}, {17080, 36118}, {17555, 54240}, {21189, 278}, {22134, 109}, {34588, 514}, {38345, 7649}, {40626, 693}, {47411, 513}, {51612, 4554}, {52310, 65}, {57055, 10570}, {57081, 19607}, {57184, 7}, {57220, 24033}, {57242, 85}


X(57112) = X(81)X(649)∩X(661)X(1019)

Barycentrics    a*(a+b)*(b-c)*(a+c)*(a^2+b*c+3*a*(b+c)) : :

X(57112) lies on circumconic {{A, B, C, X(31290), X(47947)}} and on these lines: {81, 649}, {86, 26853}, {661, 1019}, {669, 2106}, {4380, 17212}, {4521, 56204}, {4789, 26732}, {4841, 7192}, {5235, 27013}, {5333, 20295}, {6157, 9508}, {16755, 49282}, {25507, 26798}, {31290, 57059}, {35057, 57067}, {40214, 57182}

X(57112) = perspector of circumconic {{A, B, C, X(33766), X(33770)}}
X(57112) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1018, 34585}
X(57112) = X(i)-Dao conjugate of X(j) for these {i, j}: {7192, 693}
X(57112) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 81}
X(57112) = pole of line {81, 4068} with respect to the circumcircle
X(57112) = pole of line {667, 48107} with respect to the Kiepert parabola
X(57112) = pole of line {4436, 35342} with respect to the Stammler hyperbola
X(57112) = triaxial point of ABC, the circumcevian triangle of X(81), and the X(1)-circumconcevian triangle of X(81)
X(57112) = barycentric product X(i)*X(j) for these (i, j): {1, 57059}, {100, 40620}, {24185, 662}, {31290, 81}, {33766, 514}, {33770, 513}, {33774, 693}, {33779, 649}
X(57112) = barycentric quotient X(i)/X(j) for these (i, j): {3733, 34585}, {24185, 1577}, {31290, 321}, {33766, 190}, {33770, 668}, {33774, 100}, {33779, 1978}, {40620, 693}, {57059, 75}
X(57112) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1019, 57058, 57189}


X(57113) = X(86)X(4040)∩X(798)X(1019)

Barycentrics    (a+b)*(b-c)*(a+c)*(-(b^2*c^2)+a^3*(b+c)-2*a*b*c*(b+c)-a^2*(b^2+3*b*c+c^2)) : :

X(57113) lies on these lines: {86, 4040}, {274, 47970}, {514, 33296}, {669, 4367}, {798, 1019}, {3907, 57067}, {4724, 16737}, {6626, 32008}, {17103, 57189}, {17212, 48331}, {22320, 57077}

X(57113) = perspector of circumconic {{A, B, C, X(40409), X(40439)}}
X(57113) = X(i)-Dao conjugate of X(j) for these {i, j}: {7199, 693}
X(57113) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 86}
X(57113) = pole of line {649, 18196} with respect to the Kiepert parabola
X(57113) = pole of line {27804, 33296} with respect to the Steiner circumellipse
X(57113) = triaxial point of ABC, the circumcevian triangle of X(86), and the X(1)-circumconcevian triangle of X(86)


X(57114) = X(87)X(48331)∩X(932)X(1016)

Barycentrics    a^3*(b-c)*(a*(b-c)-b*c)*(a*(b-c)+b*c)*(-3*b*c+a*(b+c)) : :

X(57114) lies on these lines: {87, 48331}, {667, 6373}, {932, 1016}, {8640, 43931}

X(57114) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4595, 38247}, {6376, 29227}, {36598, 36863}, {40027, 52923}
X(57114) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 87}, {932, 16969}
X(57114) = pole of line {87, 16969} with respect to the circumcircle
X(57114) = triaxial point of ABC, the circumcevian triangle of X(87), and the X(1)-circumconcevian triangle of X(87)
X(57114) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(1016), X(16969)}}, {{A, B, C, X(6373), X(9267)}}, {{A, B, C, X(23572), X(23892)}}
X(57114) = barycentric product X(i)*X(j) for these (i, j): {2162, 29226}, {16969, 43931}, {18830, 23560}, {22227, 56053}
X(57114) = barycentric quotient X(i)/X(j) for these (i, j): {16969, 36863}, {22227, 21051}, {23560, 4083}, {29226, 6382}


X(57115) = X(99)X(670)∩X(261)X(4154)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(-(b^2*c^2)+a*b*c*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(57115) lies on these lines: {99, 670}, {100, 53631}, {261, 4154}, {645, 3570}, {662, 1919}, {931, 3222}, {4553, 17934}, {4557, 4601}, {4562, 53655}, {4579, 4600}, {4589, 35338}, {4612, 17941}

X(57115) = trilinear pole of line {1655, 21779}
X(57115) = X(i)-isoconjugate-of-X(j) for these {i, j}: {512, 40737}, {661, 40770}, {669, 18298}, {798, 54117}, {875, 39926}, {1924, 43684}
X(57115) = X(i)-Dao conjugate of X(j) for these {i, j}: {274, 693}, {9428, 43684}, {31998, 54117}, {36830, 40770}, {39054, 40737}
X(57115) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 99}
X(57115) = pole of line {6, 17692} with respect to the Kiepert parabola
X(57115) = pole of line {669, 20981} with respect to the Stammler hyperbola
X(57115) = pole of line {846, 17499} with respect to the Yff parabola
X(57115) = pole of line {512, 4369} with respect to the Wallace hyperbola
X(57115) = triaxial point of ABC, the circumcevian triangle of X(99), and the X(1)-circumconcevian triangle of X(99)
X(57115) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(670), X(27805)}}, {{A, B, C, X(804), X(9402)}}, {{A, B, C, X(874), X(1045)}}, {{A, B, C, X(880), X(3570)}}, {{A, B, C, X(4594), X(52612)}}, {{A, B, C, X(4603), X(4623)}}, {{A, B, C, X(21779), X(23342)}}
X(57115) = barycentric product X(i)*X(j) for these (i, j): {100, 34021}, {190, 39915}, {1045, 799}, {1655, 99}, {1978, 51330}, {18756, 4602}, {21779, 670}, {21883, 4623}, {23079, 6331}, {27890, 4603}, {34537, 9402}, {51863, 662}
X(57115) = barycentric quotient X(i)/X(j) for these (i, j): {99, 54117}, {110, 40770}, {662, 40737}, {670, 43684}, {799, 18298}, {1045, 661}, {1655, 523}, {3570, 39926}, {4590, 53631}, {9402, 3124}, {18756, 798}, {21779, 512}, {21883, 4705}, {23079, 647}, {34021, 693}, {39915, 514}, {51330, 649}, {51863, 1577}
X(57115) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4436, 23342, 4623}, {4436, 4623, 99}


X(57116) = X(105)X(659)∩X(294)X(1027)

Barycentrics    a*(b-c)*(a^2+b*(b-c)-a*c)*(a^2-a*b+c*(-b+c))*(a^4-3*a^3*(b+c)+b*c*(-3*b^2+2*b*c-3*c^2)+a^2*(3*b^2-b*c+3*c^2)-a*(b^3-3*b^2*c-3*b*c^2+c^3)) : :

X(57116) lies on circumconic {{A, B, C, X(2254), X(6084)}} and on these lines: {105, 659}, {294, 1027}, {885, 48408}, {1024, 48032}, {2402, 47695}, {28071, 53523}

X(57116) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 105}
X(57116) = triaxial point of ABC, the circumcevian triangle of X(105), and the X(1)-circumconcevian triangle of X(105)


X(57117) = X(108)X(676)∩X(109)X(1783)

Barycentrics    a*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6-2*a^5*(b+c)-a^4*(b+c)^2+(b-c)^2*(b+c)^4-a^2*(b^2-c^2)^2+4*a^3*(b^3+c^3)-2*a*(b^5-b^4*c-b*c^4+c^5)) : :

X(57117) lies on these lines: {108, 676}, {109, 1783}, {278, 15252}, {1035, 3176}, {1897, 2405}, {4551, 31511}, {4571, 46102}, {10306, 41227}

X(57117) = trilinear pole of line {207, 3197}
X(57117) = X(i)-isoconjugate-of-X(j) for these {i, j}: {521, 3345}, {652, 41514}, {905, 47850}, {1034, 1459}, {4025, 7037}, {4091, 40838}, {4131, 7007}, {6332, 7152}, {7149, 57241}, {8064, 16596}, {8806, 23189}, {8811, 57081}
X(57117) = X(i)-Dao conjugate of X(j) for these {i, j}: {278, 693}, {13612, 2968}
X(57117) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 108}
X(57117) = triaxial point of ABC, the circumcevian triangle of X(108), and the X(1)-circumconcevian triangle of X(108)
X(57117) = intersection, other than A, B, C, of circumconics {{A, B, C, X(108), X(36049)}}, {{A, B, C, X(1490), X(23987)}}, {{A, B, C, X(6087), X(46391)}}, {{A, B, C, X(13614), X(46588)}}, {{A, B, C, X(36127), X(40117)}}
X(57117) = barycentric product X(i)*X(j) for these (i, j): {100, 40837}, {190, 207}, {1035, 6335}, {1490, 653}, {1783, 5932}, {1897, 47848}, {3176, 651}, {4552, 8885}, {13614, 52607}, {14302, 7128}, {18026, 3197}, {32674, 33672}
X(57117) = barycentric quotient X(i)/X(j) for these (i, j): {108, 41514}, {207, 514}, {1035, 905}, {1490, 6332}, {1783, 1034}, {3176, 4391}, {3197, 521}, {5932, 15413}, {8750, 47850}, {8885, 4560}, {13614, 15411}, {32674, 3345}, {40837, 693}, {47848, 4025}


X(57118) = X(101)X(108)∩X(109)X(692)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2) : :

X(57118) lies on these lines: {40, 7114}, {56, 10964}, {57, 24025}, {59, 1331}, {100, 1813}, {101, 108}, {109, 692}, {165, 7125}, {214, 1420}, {223, 2187}, {227, 2360}, {604, 23622}, {947, 17102}, {1293, 2720}, {1617, 3190}, {2222, 36082}, {3699, 4564}, {3939, 23067}, {7011, 7074}, {8694, 53622}, {15803, 52218}, {34051, 53389}

X(57118) = trilinear pole of line {198, 221}
X(57118) = perspector of circumconic {{A, B, C, X(1262), X(7012)}}
X(57118) = X(i)-isoconjugate-of-X(j) for these {i, j}: {11, 13138}, {84, 522}, {189, 650}, {268, 17924}, {271, 7649}, {280, 513}, {282, 514}, {285, 523}, {309, 663}, {333, 55242}, {521, 40836}, {649, 34404}, {693, 2192}, {905, 7003}, {1021, 8808}, {1146, 37141}, {1256, 8058}, {1413, 4397}, {1422, 3239}, {1433, 44426}, {1436, 4391}, {1440, 3900}, {1459, 7020}, {1903, 4560}, {2170, 44327}, {2188, 46107}, {2208, 35519}, {2310, 53642}, {2357, 18155}, {2358, 15411}, {3063, 44190}, {3064, 41081}, {3261, 7118}, {3737, 39130}, {4025, 7008}, {4858, 36049}, {6129, 46355}, {6332, 7129}, {6591, 44189}, {7151, 35518}, {7154, 15413}, {7192, 53013}, {7253, 52384}, {7367, 24002}, {8059, 24026}, {17926, 52037}, {26932, 40117}, {32652, 34387}, {41087, 57215}, {55110, 57055}
X(57118) = X(i)-Dao conjugate of X(j) for these {i, j}: {57, 693}, {281, 46110}, {5375, 34404}, {5514, 4858}, {6129, 23104}, {10001, 44190}, {16596, 34387}, {39026, 280}, {55044, 24026}
X(57118) = X(i)-Ceva conjugate of X(j) for these {i, j}: {59, 7078}, {100, 109}, {1813, 101}, {4564, 2324}
X(57118) = X(i)-cross conjugate of X(j) for these {i, j}: {6129, 2360}, {10397, 7011}
X(57118) = pole of line {109, 53288} with respect to the circumcircle
X(57118) = pole of line {4858, 21666} with respect to the polar circle
X(57118) = triaxial point of ABC, the circumcevian triangle of X(109), and the X(1)-circumconcevian triangle of X(109)
X(57118) = intersection, other than A, B, C, of circumconics {{A, B, C, X(40), X(1293)}}, {{A, B, C, X(101), X(36059)}}, {{A, B, C, X(108), X(1461)}}, {{A, B, C, X(109), X(1783)}}, {{A, B, C, X(198), X(23346)}}, {{A, B, C, X(1331), X(7078)}}, {{A, B, C, X(1817), X(4250)}}, {{A, B, C, X(2324), X(3699)}}, {{A, B, C, X(2360), X(36082)}}, {{A, B, C, X(2426), X(7074)}}, {{A, B, C, X(4551), X(52610)}}, {{A, B, C, X(6129), X(53314)}}, {{A, B, C, X(6614), X(30239)}}, {{A, B, C, X(8058), X(8677)}}, {{A, B, C, X(8059), X(32674)}}, {{A, B, C, X(8750), X(53325)}}, {{A, B, C, X(14298), X(53300)}}, {{A, B, C, X(36079), X(36127)}}
X(57118) = barycentric product X(i)*X(j) for these (i, j): {40, 651}, {100, 223}, {101, 347}, {109, 329}, {190, 221}, {198, 664}, {227, 662}, {342, 906}, {653, 7078}, {658, 7074}, {1103, 37141}, {1262, 8058}, {1331, 196}, {1332, 208}, {1402, 55241}, {1414, 21871}, {1415, 322}, {1461, 7080}, {1783, 7013}, {1813, 7952}, {1817, 4551}, {1819, 52607}, {1897, 7011}, {2187, 4554}, {2199, 668}, {2324, 934}, {2331, 6516}, {2360, 4552}, {3209, 4561}, {3699, 6611}, {4559, 8822}, {4564, 6129}, {4626, 7368}, {6335, 7114}, {10397, 55346}, {13138, 40212}, {14256, 3939}, {14298, 7045}, {14837, 59}, {15501, 24029}, {17896, 2149}, {21075, 4565}, {23067, 41083}, {27398, 53321}, {32656, 40701}, {36049, 55015}, {36118, 55111}, {38357, 4619}, {40702, 692}, {44717, 54239}, {57049, 7339}, {57101, 7128}
X(57118) = barycentric quotient X(i)/X(j) for these (i, j): {40, 4391}, {59, 44327}, {100, 34404}, {101, 280}, {109, 189}, {163, 285}, {196, 46107}, {198, 522}, {208, 17924}, {221, 514}, {223, 693}, {227, 1577}, {329, 35519}, {347, 3261}, {651, 309}, {664, 44190}, {692, 282}, {906, 271}, {1262, 53642}, {1331, 44189}, {1402, 55242}, {1415, 84}, {1461, 1440}, {1783, 7020}, {1817, 18155}, {1819, 15411}, {2149, 13138}, {2187, 650}, {2199, 513}, {2324, 4397}, {2331, 44426}, {2360, 4560}, {3194, 57215}, {3195, 3064}, {3209, 7649}, {4559, 39130}, {5514, 23104}, {6129, 4858}, {6611, 3676}, {7011, 4025}, {7013, 15413}, {7074, 3239}, {7078, 6332}, {7080, 52622}, {7114, 905}, {7368, 4163}, {7952, 46110}, {8058, 23978}, {8750, 7003}, {10397, 2968}, {14256, 52621}, {14298, 24026}, {14837, 34387}, {21871, 4086}, {23979, 8059}, {24027, 37141}, {32656, 268}, {32660, 1433}, {32674, 40836}, {32739, 2192}, {36049, 46355}, {36059, 41081}, {38374, 23100}, {40212, 17896}, {40702, 40495}, {53321, 8808}, {55241, 40072}
X(57118) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23981, 36059, 109}


X(57119) = X(58)X(35204)∩X(110)X(351)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^3-b^3-b^2*c-b*c^2-c^3+a^2*(b+c)-a*(b^2+b*c+c^2)) : :

X(57119) lies on these lines: {58, 35204}, {81, 34977}, {100, 21891}, {110, 351}, {112, 43356}, {901, 53633}, {1793, 56195}, {1983, 2610}, {3952, 4567}, {4226, 53349}, {4427, 4612}, {4575, 57241}, {8701, 53628}, {14590, 52914}, {17944, 57151}, {53388, 57251}

X(57119) = trilinear pole of line {501, 1030}
X(57119) = X(i)-isoconjugate-of-X(j) for these {i, j}: {267, 523}, {502, 513}, {514, 21353}, {661, 1029}, {1577, 3444}, {4024, 40143}, {30602, 57099}
X(57119) = X(i)-Dao conjugate of X(j) for these {i, j}: {81, 693}, {31947, 23105}, {36830, 1029}, {39026, 502}, {39054, 44188}
X(57119) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 110}, {4567, 21873}
X(57119) = X(i)-cross conjugate of X(j) for these {i, j}: {42653, 1030}
X(57119) = pole of line {3, 32863} with respect to the Kiepert parabola
X(57119) = pole of line {523, 8043} with respect to the Stammler hyperbola
X(57119) = pole of line {850, 18160} with respect to the Wallace hyperbola
X(57119) = triaxial point of ABC, the circumcevian triangle of X(110), and the X(1)-circumconcevian triangle of X(110)
X(57119) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(351), X(42653)}}, {{A, B, C, X(451), X(15329)}}, {{A, B, C, X(526), X(2610)}}, {{A, B, C, X(1030), X(5467)}}, {{A, B, C, X(1983), X(52603)}}, {{A, B, C, X(2421), X(2895)}}, {{A, B, C, X(3952), X(21873)}}, {{A, B, C, X(4556), X(13486)}}, {{A, B, C, X(4558), X(43356)}}, {{A, B, C, X(21192), X(42744)}}, {{A, B, C, X(31947), X(42741)}}
X(57119) = barycentric product X(i)*X(j) for these (i, j): {100, 40592}, {110, 2895}, {163, 20932}, {190, 501}, {191, 662}, {451, 4558}, {645, 8614}, {1030, 99}, {1332, 2906}, {21081, 4556}, {21192, 4570}, {21873, 52935}, {22136, 648}, {31947, 4567}, {41808, 5546}, {42653, 4590}, {44097, 4563}, {47057, 643}
X(57119) = barycentric quotient X(i)/X(j) for these (i, j): {101, 502}, {110, 1029}, {163, 267}, {191, 1577}, {451, 14618}, {501, 514}, {662, 44188}, {692, 21353}, {1030, 523}, {1576, 3444}, {1983, 39149}, {2895, 850}, {2906, 17924}, {8614, 7178}, {20932, 20948}, {21081, 52623}, {21192, 21207}, {21873, 4036}, {22136, 525}, {31947, 16732}, {40592, 693}, {42653, 115}, {44097, 2501}, {47057, 4077}
X(57119) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5546, 57062, 57194}


X(57120) = X(4)X(924)∩X(186)X(523)

Barycentrics    (b-c)*(b+c)*(-a^2+b^2-c^2)*(a^2+b^2-c^2)*(-a^8+b^2*c^2*(b^2-c^2)^2+3*a^6*(b^2+c^2)-a^4*(3*b^4+5*b^2*c^2+3*c^4)+a^2*(b^6+b^4*c^2+b^2*c^4+c^6)) : :

X(57120) lies on these lines: {4, 924}, {186, 523}, {450, 2451}, {520, 6761}, {526, 23290}, {687, 47390}, {879, 43710}, {1249, 2489}, {2797, 14329}, {3221, 53149}, {3869, 57083}, {6368, 44427}, {7471, 35360}, {15422, 30451}, {16230, 57206}, {43701, 56271}, {47844, 57212}, {52675, 57211}, {56297, 57127}, {56298, 57128}

X(57120) = perspector of circumconic {{A, B, C, X(275), X(1105)}}
X(57120) = X(i)-Dao conjugate of X(j) for these {i, j}: {14618, 850}, {53577, 5562}
X(57120) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 4}
X(57120) = pole of line {13754, 14216} with respect to the anticomplementary circle
X(57120) = pole of line {13371, 13754} with respect to the 1st DrozFarny circle
X(57120) = pole of line {13754, 18356} with respect to the circumcircle of the Johnson triangle
X(57120) = pole of line {5, 389} with respect to the polar circle
X(57120) = pole of line {4, 31353} with respect to the MacBeath circumconic
X(57120) = pole of line {1885, 3003} with respect to the orthic inconic
X(57120) = pole of line {324, 1993} with respect to the Steiner circumellipse
X(57120) = triaxial point of ABC, the circumcevian triangle of X(4), and the X(3)-circumconcevian triangle of X(4)
X(57120) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(34148)}}, {{A, B, C, X(15328), X(23286)}}, {{A, B, C, X(19189), X(43710)}}
X(57120) = barycentric product X(i)*X(j) for these (i, j): {14618, 34148}, {53577, 648}
X(57120) = barycentric quotient X(i)/X(j) for these (i, j): {34148, 4558}, {53577, 525}


X(57121) = X(40)X(525)∩X(521)X(1734)

Barycentrics    a*(a-b-c)*(b-c)*(a^4+a^3*(b+c)-a*(b-c)^2*(b+c)-b*c*(b+c)^2-a^2*(b^2+b*c+c^2)) : :

X(57121) lies on these lines: {40, 525}, {512, 4477}, {521, 1734}, {522, 4063}, {652, 4163}, {667, 3900}, {1018, 1110}, {1019, 3907}, {1021, 4041}, {1706, 55285}, {3810, 21385}, {4834, 54271}, {5250, 57066}, {7654, 57108}, {9404, 44729}, {10434, 39201}, {35057, 57104}, {40608, 55067}

X(57121) = reflection of X(i) in X(j) for these {i,j}: {57159, 48387}
X(57121) = perspector of circumconic {{A, B, C, X(23617), X(55987)}}
X(57121) = X(i)-Dao conjugate of X(j) for these {i, j}: {4086, 850}
X(57121) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 9}
X(57121) = pole of line {1503, 48883} with respect to the Bevan circle
X(57121) = triaxial point of ABC, the circumcevian triangle of X(9), and the X(3)-circumconcevian triangle of X(9)
X(57121) = barycentric product X(i)*X(j) for these (i, j): {21, 57169}
X(57121) = barycentric quotient X(i)/X(j) for these (i, j): {57169, 1441}
X(57121) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3900, 48387, 57159}


X(57122) = X(6)X(647)∩X(16)X(512)

Barycentrics    a^2*(b-c)*(b+c)*(a^4-2*a^2*b^2+b^4-2*a^2*c^2+4*b^2*c^2+c^4-sqrt(3)*a^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))+sqrt(3)*b^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))+sqrt(3)*c^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))) : :
Barycentrics    a^2*(b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4 - 2*Sqrt[3]*(a^2 - b^2 - c^2)*S) : : (Peter Moses, August 27, 2023)

X(57122) lies on these lines: {6, 647}, {15, 44814}, {16, 512}, {18, 23105}, {302, 850}, {395, 523}, {526, 6137}, {618, 5664}, {924, 11244}, {3106, 3906}, {3170, 54274}, {3200, 57136}, {5608, 27551}, {8740, 47221}, {9761, 23878}, {16645, 53266}, {22260, 53031}, {36900, 37785}, {38993, 52342}, {40580, 41167}, {42154, 53275}

X(57122) = reflection of X(i) in X(j) for these {i,j}: {57123, 647}
X(57122) = isogonal conjugate of X(36839)
X(57122) = perspector of circumconic {{A, B, C, X(13), X(15)}}
X(57122) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 36839}, {162, 10217}, {476, 51805}, {662, 11080}, {2153, 23895}, {11078, 32678}, {11081, 32680}, {24001, 39380}, {36129, 50465}
X(57122) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 36839}, {125, 10217}, {526, 57123}, {1084, 11080}, {11127, 99}, {15609, 8838}, {18334, 11078}, {23870, 850}, {30465, 43085}, {38993, 13}, {38994, 36211}, {40580, 23895}, {43961, 300}
X(57122) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18, 30465}, {110, 15}, {6151, 2088}, {36209, 52343}, {36839, 14816}
X(57122) = X(i)-cross conjugate of X(j) for these {i, j}: {52343, 36209}
X(57122) = triaxial point of ABC, the circumcevian triangle of X(15), and the X(3)-circumconcevian triangle of X(15)
X(57122) = intersection, other than A, B, C, of circumconics {{A, B, C, X(15), X(11537)}}, {{A, B, C, X(16), X(618)}}, {{A, B, C, X(526), X(17402)}}, {{A, B, C, X(2433), X(6137)}}, {{A, B, C, X(5649), X(5664)}}, {{A, B, C, X(9717), X(11131)}}, {{A, B, C, X(11086), X(48451)}}
X(57122) = barycentric product X(i)*X(j) for these (i, j): {15, 23870}, {110, 43961}, {298, 6137}, {1094, 1577}, {11086, 3268}, {11092, 526}, {11129, 512}, {11131, 523}, {17402, 30465}, {17403, 30463}, {23284, 323}, {23871, 36209}, {23872, 37848}, {23896, 52343}, {32679, 51806}, {35443, 38403}, {44427, 50466}
X(57122) = barycentric quotient X(i)/X(j) for these (i, j): {6, 36839}, {15, 23895}, {512, 11080}, {526, 11078}, {647, 10217}, {1094, 662}, {2088, 23283}, {2624, 51805}, {3200, 52606}, {3457, 5618}, {6137, 13}, {6138, 36211}, {8739, 36306}, {11086, 476}, {11092, 35139}, {11129, 670}, {11131, 99}, {11618, 21469}, {14270, 11081}, {18334, 57123}, {23284, 94}, {23870, 300}, {34394, 5995}, {35443, 43085}, {36209, 23896}, {37848, 32036}, {43961, 850}, {46112, 38414}, {51806, 32680}, {52343, 23871}, {55221, 11581}
X(57122) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 34291, 57123}


X(57123) = X(6)X(647)∩X(15)X(512)

Barycentrics    a^2*(b-c)*(b+c)*(a^4-2*a^2*b^2+b^4-2*a^2*c^2+4*b^2*c^2+c^4+sqrt(3)*a^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))-sqrt(3)*b^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))-sqrt(3)*c^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))) : :
Barycentrics    a^2*(b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4 + 2*Sqrt[3]*(a^2 - b^2 - c^2)*S) : : (Peter Moses, August 27, 2023)

X(57123) lies on these lines: {6, 647}, {15, 512}, {16, 44814}, {17, 23105}, {303, 850}, {396, 523}, {526, 6138}, {619, 5664}, {924, 11243}, {3107, 3906}, {3171, 54274}, {3201, 57136}, {5607, 27550}, {8739, 47221}, {9763, 23878}, {16644, 53266}, {22260, 53032}, {36900, 37786}, {38994, 52343}, {40581, 41167}, {42155, 53275}

X(57123) = reflection of X(i) in X(j) for these {i,j}: {57122, 647}
X(57123) = isogonal conjugate of X(36840)
X(57123) = perspector of circumconic {{A, B, C, X(14), X(16)}}
X(57123) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 36840}, {162, 10218}, {476, 51806}, {662, 11085}, {2154, 23896}, {11086, 32680}, {11092, 32678}, {24001, 39381}, {36129, 50466}
X(57123) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 36840}, {125, 10218}, {526, 57122}, {1084, 11085}, {11126, 99}, {15610, 8836}, {18334, 11092}, {23871, 850}, {30468, 43086}, {38993, 36210}, {38994, 14}, {40581, 23896}, {43962, 301}
X(57123) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17, 30468}, {110, 16}, {2981, 2088}, {36208, 52342}, {36840, 14817}
X(57123) = X(i)-cross conjugate of X(j) for these {i, j}: {52342, 36208}
X(57123) = triaxial point of ABC, the circumcevian triangle of X(16), and the X(3)-circumconcevian triangle of X(16)
X(57123) = intersection, other than A, B, C, of circumconics {{A, B, C, X(15), X(619)}}, {{A, B, C, X(16), X(11549)}}, {{A, B, C, X(526), X(17403)}}, {{A, B, C, X(2433), X(6138)}}, {{A, B, C, X(5649), X(5664)}}, {{A, B, C, X(9717), X(11130)}}, {{A, B, C, X(11081), X(48451)}}
X(57123) = barycentric product X(i)*X(j) for these (i, j): {16, 23871}, {110, 43962}, {299, 6138}, {1095, 1577}, {11078, 526}, {11081, 3268}, {11128, 512}, {11130, 523}, {17402, 30460}, {17403, 30468}, {23283, 323}, {23870, 36208}, {23873, 37850}, {23895, 52342}, {32679, 51805}, {35444, 38404}, {44427, 50465}
X(57123) = barycentric quotient X(i)/X(j) for these (i, j): {6, 36840}, {16, 23896}, {512, 11085}, {526, 11092}, {647, 10218}, {1095, 662}, {2088, 23284}, {2624, 51806}, {3201, 52605}, {3458, 5619}, {6137, 36210}, {6138, 14}, {8740, 36309}, {11078, 35139}, {11081, 476}, {11128, 670}, {11130, 99}, {11617, 21468}, {14270, 11086}, {18334, 57122}, {23283, 94}, {23871, 301}, {34395, 5994}, {35444, 43086}, {36208, 23895}, {37850, 32037}, {43962, 850}, {46113, 38413}, {51805, 32680}, {52342, 23870}, {55223, 11582}
X(57123) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 34291, 57122}


X(57124) = X(162)X(52378)∩X(650)X(1946)

Barycentrics    a*(a+b)*(b-c)*(a+c)*(-a+b+c)^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b^2+c^2)) : :

X(57124) lies on these lines: {162, 52378}, {650, 1946}, {3737, 54244}, {12514, 57065}, {21761, 57134}, {34975, 57170}

X(57124) = X(i)-isoconjugate-of-X(j) for these {i, j}: {307, 36082}, {1020, 6513}, {1069, 4566}, {2994, 52610}, {4558, 7363}, {6512, 52607}, {7318, 23067}
X(57124) = X(i)-Dao conjugate of X(j) for these {i, j}: {6506, 52565}, {24006, 850}
X(57124) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 19}
X(57124) = pole of line {1441, 12609} with respect to the polar circle
X(57124) = triaxial point of ABC, the circumcevian triangle of X(19), and the X(3)-circumconcevian triangle of X(19)
X(57124) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(650), X(21188)}}, {{A, B, C, X(2202), X(52033)}}, {{A, B, C, X(3559), X(37908)}}, {{A, B, C, X(7008), X(52427)}}, {{A, B, C, X(8748), X(52378)}}
X(57124) = barycentric product X(i)*X(j) for these (i, j): {6, 57083}, {29, 46389}, {162, 6506}, {1021, 1068}, {2322, 51648}, {3064, 3193}, {3559, 650}, {17926, 46}, {18344, 31631}, {21188, 4183}, {52033, 7253}
X(57124) = barycentric quotient X(i)/X(j) for these (i, j): {2204, 36082}, {3559, 4554}, {6506, 14208}, {17926, 20570}, {21789, 6513}, {46389, 307}, {52033, 4566}, {55214, 6356}, {57083, 76}, {57134, 6512}


X(57125) = X(21)X(7253)∩X(59)X(662)

Barycentrics    a*(a+b)*(a-b-c)*(b-c)*(a+c)*(a^3-b*c*(b+c)-a*(b^2-b*c+c^2)) : :
X(57125) = -3*X[17549]+4*X[23226]

X(57125) lies on these lines: {21, 7253}, {59, 662}, {110, 36037}, {404, 656}, {411, 30212}, {416, 23090}, {521, 39177}, {523, 1325}, {1014, 15419}, {1021, 1635}, {1444, 57214}, {3737, 3738}, {3871, 35057}, {5047, 8062}, {16751, 57144}, {16858, 45686}, {17496, 23187}, {17549, 23226}

X(57125) = perspector of circumconic {{A, B, C, X(2185), X(14534)}}
X(57125) = X(i)-isoconjugate-of-X(j) for these {i, j}: {65, 56194}, {109, 51870}, {1400, 56188}, {1402, 56252}, {2051, 4559}, {4551, 34434}, {21859, 53083}
X(57125) = X(i)-Dao conjugate of X(j) for these {i, j}: {11, 51870}, {4391, 850}, {34589, 12}, {40582, 56188}, {40602, 56194}, {40605, 56252}, {40625, 54121}, {53566, 52567}, {55067, 2051}
X(57125) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 21}, {662, 572}, {54951, 81}
X(57125) = X(i)-cross conjugate of X(j) for these {i, j}: {34589, 2975}, {38344, 17074}
X(57125) = pole of line {21, 23846} with respect to the circumcircle
X(57125) = pole of line {429, 51870} with respect to the polar circle
X(57125) = pole of line {4551, 21362} with respect to the Stammler hyperbola
X(57125) = pole of line {81, 18662} with respect to the Steiner circumellipse
X(57125) = pole of line {6703, 16579} with respect to the Steiner inellipse
X(57125) = pole of line {21580, 53332} with respect to the Wallace hyperbola
X(57125) = triaxial point of ABC, the circumcevian triangle of X(21), and the X(3)-circumconcevian triangle of X(21)
X(57125) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(59), X(261)}}, {{A, B, C, X(60), X(15386)}}, {{A, B, C, X(523), X(17420)}}, {{A, B, C, X(3615), X(11109)}}, {{A, B, C, X(3737), X(4581)}}, {{A, B, C, X(3738), X(34589)}}, {{A, B, C, X(15420), X(17496)}}
X(57125) = barycentric product X(i)*X(j) for these (i, j): {110, 40624}, {284, 57244}, {2975, 4560}, {4612, 53566}, {11998, 99}, {14829, 3737}, {17074, 7253}, {17496, 21}, {18155, 572}, {21173, 333}, {23187, 31623}, {24237, 643}, {34589, 662}, {38344, 811}, {51662, 7058}, {57091, 81}
X(57125) = barycentric quotient X(i)/X(j) for these (i, j): {21, 56188}, {284, 56194}, {333, 56252}, {572, 4551}, {650, 51870}, {2975, 4552}, {3737, 2051}, {4560, 54121}, {7252, 34434}, {11998, 523}, {17074, 4566}, {17496, 1441}, {20986, 4559}, {21173, 226}, {22118, 23067}, {23187, 1214}, {24237, 4077}, {34589, 1577}, {37558, 4605}, {38344, 656}, {40624, 850}, {51662, 6354}, {52139, 21859}, {57091, 321}, {57244, 349}
X(57125) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3733, 47844, 57246}, {7253, 23189, 21}


X(57126) = X(325)X(523)∩X(7503)X(30213)

Barycentrics    a^2*(b-c)*(b+c)*(a^4-b^4-c^4)*(-b^4-b^2*c^2-c^4+a^2*(b^2+c^2)) : :

X(57126) lies on these lines: {325, 523}, {7503, 30213}, {9210, 32320}, {50550, 57206}

X(57126) = X(i)-Dao conjugate of X(j) for these {i, j}: {127, 2980}, {33294, 850}, {47413, 27366}, {53575, 2353}
X(57126) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 22}, {648, 41480}
X(57126) = pole of line {25, 2980} with respect to the polar circle
X(57126) = pole of line {22, 23128} with respect to the MacBeath circumconic
X(57126) = pole of line {69, 41480} with respect to the Steiner circumellipse
X(57126) = triaxial point of ABC, the circumcevian triangle of X(22), and the X(3)-circumconcevian triangle of X(22)
X(57126) = intersection, other than A, B, C, of circumconics {{A, B, C, X(22), X(2979)}}, {{A, B, C, X(858), X(7796)}}, {{A, B, C, X(3001), X(40073)}}, {{A, B, C, X(50552), X(52590)}}
X(57126) = barycentric product X(i)*X(j) for these (i, j): {2485, 7796}, {2979, 33294}, {4611, 53575}, {39575, 57069}, {40073, 52590}
X(57126) = barycentric quotient X(i)/X(j) for these (i, j): {2485, 2980}, {2979, 44766}, {33294, 44176}, {39575, 1289}, {52590, 2353}


X(57127) = X(2)X(523)∩X(5)X(31296)

Barycentrics    a^2*(b-c)*(b+c)*(a^4-b^4+b^2*c^2-c^4)*(a^4+2*b^4+b^2*c^2+2*c^4-3*a^2*(b^2+c^2)) : :

X(57127) lies on these lines: {2, 523}, {5, 31296}, {23, 33752}, {323, 41167}, {520, 1994}, {647, 16042}, {2485, 5354}, {3850, 47260}, {5133, 47256}, {7527, 30209}, {7533, 47258}, {7570, 18312}, {7711, 13114}, {9716, 32320}, {13595, 47263}, {37918, 54087}, {40643, 57206}, {56297, 57120}

X(57127) = X(i)-Dao conjugate of X(j) for these {i, j}: {9979, 850}, {39233, 67}
X(57127) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 23}
X(57127) = pole of line {5467, 53232} with respect to the Stammler hyperbola
X(57127) = triaxial point of ABC, the circumcevian triangle of X(23), and the X(3)-circumconcevian triangle of X(23)
X(57127) = intersection, other than A, B, C, of circumconics {{A, B, C, X(23), X(16092)}}, {{A, B, C, X(523), X(10562)}}, {{A, B, C, X(5466), X(53177)}}, {{A, B, C, X(23288), X(39232)}}, {{A, B, C, X(46127), X(52551)}}
X(57127) = barycentric product X(i)*X(j) for these (i, j): {316, 39232}, {10562, 7664}, {23061, 9979}
X(57127) = barycentric quotient X(i)/X(j) for these (i, j): {10562, 10415}, {23061, 17708}, {39232, 67}


X(57128) = X(3)X(523)∩X(5)X(520)

Barycentrics    (b-c)*(b+c)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))*(-a^8+b^2*c^2*(b^2-c^2)^2+3*a^6*(b^2+c^2)+a^2*(b^2+c^2)^3-a^4*(3*b^4+7*b^2*c^2+3*c^4)) : :
X(57128) = -3*X[2]+X[14380]

X(57128) lies on these lines: {2, 14380}, {3, 523}, {5, 520}, {6, 2430}, {20, 53320}, {30, 53178}, {110, 14220}, {113, 526}, {141, 8675}, {206, 57206}, {525, 4550}, {684, 14920}, {924, 2883}, {1147, 8057}, {1510, 44866}, {1511, 9033}, {2407, 3233}, {2492, 3163}, {3184, 6086}, {5181, 6130}, {6593, 9003}, {8562, 31378}, {11597, 57210}, {11598, 55121}, {14611, 53233}, {15116, 53567}, {24975, 31945}, {31296, 56290}, {38610, 55141}, {40589, 57212}, {56298, 57120}

X(57128) = midpoint of X(i) and X(j) for these {i,j}: {110, 14220}, {20, 53320}
X(57128) = complement of X(14380)
X(57128) = perspector of circumconic {{A, B, C, X(1294), X(2986)}}
X(57128) = center of circumconic {{A, B, C, X(110), X(14220)}}
X(57128) = X(i)-isoconjugate-of-X(j) for these {i, j}: {36034, 43917}
X(57128) = X(i)-Dao conjugate of X(j) for these {i, j}: {3134, 14264}, {3258, 43917}, {41079, 850}
X(57128) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 30}, {40448, 1650}
X(57128) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 1650}, {30, 34846}, {112, 18593}, {162, 30}, {163, 44436}, {1099, 16177}, {1495, 16573}, {1784, 125}, {1990, 8287}, {2173, 15526}, {2407, 18589}, {2420, 1214}, {3284, 16595}, {4240, 10}, {14206, 127}, {14581, 16592}, {23347, 37}, {24000, 9033}, {24001, 141}, {24019, 47296}, {32676, 3003}, {35201, 3258}, {36114, 6699}, {36117, 55319}, {36129, 20304}, {42074, 39008}, {46106, 21253}, {51382, 123}, {51420, 2968}, {52948, 39020}, {52949, 16596}, {52954, 11}, {52955, 1086}, {52956, 26932}
X(57128) = pole of line {30, 43919} with respect to the circumcircle
X(57128) = pole of line {113, 2072} with respect to the nine-point circle
X(57128) = pole of line {403, 12079} with respect to the polar circle
X(57128) = pole of line {526, 16163} with respect to the Kiepert parabola
X(57128) = pole of line {14380, 15329} with respect to the Stammler hyperbola
X(57128) = pole of line {1990, 3260} with respect to the Steiner inellipse
X(57128) = triaxial point of ABC, the circumcevian triangle of X(30), and the X(3)-circumconcevian triangle of X(30)
X(57128) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(52552)}}, {{A, B, C, X(6), X(51895)}}, {{A, B, C, X(30), X(39986)}}, {{A, B, C, X(113), X(52010)}}, {{A, B, C, X(2407), X(15421)}}, {{A, B, C, X(2430), X(53235)}}, {{A, B, C, X(3134), X(4240)}}
X(57128) = barycentric product X(i)*X(j) for these (i, j): {2407, 3134}, {41079, 43574}
X(57128) = barycentric quotient X(i)/X(j) for these (i, j): {1637, 43917}, {3134, 2394}, {43574, 44769}
X(57128) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15328, 40879, 38401}


X(57129) = X(31)X(669)∩X(110)X(813)

Barycentrics    a^3*(a+b)*(b-c)*(a+c) : :

X(57129) lies on these lines: {31, 669}, {58, 23892}, {81, 18197}, {110, 813}, {163, 32665}, {251, 3572}, {604, 7180}, {649, 834}, {661, 3737}, {662, 4600}, {667, 838}, {741, 9111}, {748, 15373}, {750, 24533}, {798, 33882}, {822, 57134}, {832, 2523}, {1019, 3960}, {1021, 1635}, {1412, 7203}, {2267, 14321}, {2605, 42664}, {3250, 57047}, {3776, 4817}, {4560, 48277}, {4813, 4833}, {4838, 5214}, {4840, 50525}, {5029, 55210}, {5040, 7234}, {5098, 19554}, {7199, 39179}, {7253, 48266}, {8643, 21789}, {14208, 30911}, {16695, 51321}, {17498, 48094}, {22382, 24018}, {23090, 57171}, {26148, 32772}, {43924, 43925}, {44445, 50302}, {46383, 50353}, {47669, 47683}, {47844, 48275}, {47845, 47874}, {47971, 50458}, {50497, 54279}, {51646, 55234}

X(57129) = isogonal conjugate of X(4033)
X(57129) = perspector of circumconic {{A, B, C, X(58), X(757)}}
X(57129) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4033}, {2, 3952}, {4, 52609}, {6, 27808}, {7, 30730}, {8, 4552}, {10, 190}, {12, 645}, {37, 668}, {42, 1978}, {65, 646}, {72, 6335}, {75, 1018}, {76, 4557}, {85, 4069}, {86, 4103}, {99, 594}, {100, 321}, {101, 313}, {109, 30713}, {110, 28654}, {162, 52369}, {210, 4554}, {213, 6386}, {226, 3699}, {264, 4574}, {274, 40521}, {306, 1897}, {312, 4551}, {314, 21859}, {341, 1020}, {346, 4566}, {349, 3939}, {512, 31625}, {523, 1016}, {525, 15742}, {643, 6358}, {644, 1441}, {648, 3695}, {651, 3701}, {653, 3710}, {658, 4082}, {660, 3948}, {661, 7035}, {662, 1089}, {664, 2321}, {666, 3932}, {670, 1500}, {692, 27801}, {740, 4562}, {756, 799}, {758, 36804}, {762, 4623}, {765, 1577}, {811, 3949}, {813, 35544}, {823, 52387}, {850, 1252}, {872, 4602}, {889, 52959}, {903, 4169}, {1043, 4605}, {1110, 20948}, {1211, 8707}, {1213, 6540}, {1215, 27805}, {1228, 32736}, {1230, 8701}, {1231, 56183}, {1254, 7258}, {1265, 52607}, {1268, 4115}, {1309, 51367}, {1332, 41013}, {1334, 4572}, {1446, 4578}, {1783, 20336}, {1826, 4561}, {1909, 56257}, {2171, 7257}, {2238, 4583}, {2295, 56241}, {2318, 46404}, {2397, 38955}, {2887, 4621}, {3112, 35309}, {3120, 6632}, {3257, 3992}, {3570, 43534}, {3596, 4559}, {3661, 4613}, {3668, 6558}, {3678, 15455}, {3690, 6331}, {3694, 18026}, {3696, 32041}, {3700, 4998}, {3704, 6648}, {3714, 32038}, {3773, 4586}, {3774, 46132}, {3807, 40718}, {3903, 3963}, {3930, 51560}, {3936, 51562}, {3943, 4555}, {3950, 53647}, {3967, 30610}, {3969, 6742}, {3971, 4598}, {3991, 54987}, {3993, 53648}, {3994, 4607}, {3995, 8050}, {4024, 4600}, {4029, 53659}, {4036, 4567}, {4037, 4589}, {4044, 37138}, {4052, 43290}, {4054, 51564}, {4061, 4624}, {4066, 37211}, {4071, 51614}, {4075, 37205}, {4076, 7178}, {4080, 17780}, {4086, 4564}, {4092, 55194}, {4125, 4604}, {4158, 15352}, {4404, 5382}, {4415, 8706}, {4427, 6539}, {4505, 40747}, {4515, 4569}, {4535, 35180}, {4553, 56186}, {4558, 7141}, {4563, 7140}, {4568, 18082}, {4570, 52623}, {4571, 40149}, {4573, 6057}, {4582, 40663}, {4585, 15065}, {4594, 21021}, {4595, 42027}, {4601, 4705}, {4609, 7109}, {4610, 6535}, {4629, 52576}, {4632, 8013}, {4647, 37212}, {4651, 54118}, {4674, 24004}, {4767, 30588}, {4781, 27797}, {5257, 53658}, {5295, 54970}, {5380, 42713}, {5381, 14431}, {5383, 21051}, {5546, 34388}, {6058, 55196}, {6064, 55197}, {6354, 7256}, {6528, 52386}, {6541, 35148}, {6543, 17934}, {7017, 23067}, {7033, 7239}, {7148, 36860}, {7260, 21803}, {8708, 53478}, {8750, 40071}, {9059, 26580}, {13136, 17757}, {13576, 42720}, {14624, 53332}, {16583, 54967}, {16606, 36863}, {16609, 36801}, {17441, 42384}, {17751, 56188}, {18697, 36147}, {18830, 20691}, {20683, 36803}, {21040, 35572}, {21061, 56252}, {21070, 53651}, {21075, 44327}, {21096, 53653}, {21272, 56258}, {21295, 39722}, {21383, 40033}, {21580, 56190}, {21604, 39977}, {21830, 54985}, {21897, 53216}, {21956, 35574}, {22021, 51566}, {23354, 27809}, {23891, 41683}, {23990, 44173}, {25268, 56173}, {26942, 36797}, {27834, 52353}, {33939, 56193}, {33946, 56196}, {35338, 56127}, {40603, 53627}, {46102, 52355}, {46148, 56251}, {52345, 56235}, {52778, 53510}, {56248, 56318}
X(57129) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 4033}, {9, 27808}, {11, 30713}, {125, 52369}, {206, 1018}, {244, 28654}, {513, 1577}, {514, 20948}, {661, 850}, {667, 21099}, {798, 21051}, {1015, 313}, {1084, 1089}, {1086, 27801}, {3271, 4136}, {6626, 6386}, {8054, 321}, {17423, 3949}, {21260, 21055}, {26932, 40071}, {32664, 3952}, {34452, 35309}, {34467, 306}, {36033, 52609}, {36830, 7035}, {38986, 594}, {38991, 3701}, {38996, 756}, {39006, 20336}, {39015, 18697}, {39016, 42714}, {39025, 2321}, {39054, 31625}, {40589, 668}, {40592, 1978}, {40600, 4103}, {40602, 646}, {40617, 349}, {40620, 561}, {40623, 35544}, {40625, 28659}, {40627, 4036}, {50330, 52623}, {50497, 4024}, {55049, 3773}, {55053, 10}, {55055, 3992}, {55060, 6358}, {55066, 3695}, {55067, 3596}
X(57129) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 31}, {163, 1333}, {662, 58}, {849, 3248}, {39179, 1019}, {40142, 53542}, {56053, 7121}
X(57129) = X(i)-cross conjugate of X(j) for these {i, j}: {667, 3733}, {1015, 604}, {1977, 31}, {3248, 849}, {16695, 57074}, {22096, 1106}, {38986, 1178}, {50514, 7192}, {57181, 43925}
X(57129) = pole of line {31, 16679} with respect to the circumcircle
X(57129) = pole of line {30713, 52369} with respect to the polar circle
X(57129) = pole of line {2300, 2308} with respect to the Brocard inellipse
X(57129) = pole of line {31, 42463} with respect to the MacBeath circumconic
X(57129) = pole of line {190, 646} with respect to the Stammler hyperbola
X(57129) = pole of line {1468, 17148} with respect to the Steiner circumellipse
X(57129) = pole of line {1978, 3807} with respect to the Wallace hyperbola
X(57129) = triaxial point of ABC, the circumcevian triangle of X(31), and the X(3)-circumconcevian triangle of X(31)
X(57129) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(25), X(46502)}}, {{A, B, C, X(28), X(46513)}}, {{A, B, C, X(31), X(251)}}, {{A, B, C, X(58), X(4600)}}, {{A, B, C, X(513), X(834)}}, {{A, B, C, X(514), X(838)}}, {{A, B, C, X(604), X(7113)}}, {{A, B, C, X(649), X(667)}}, {{A, B, C, X(661), X(48131)}}, {{A, B, C, X(669), X(1977)}}, {{A, B, C, X(739), X(34077)}}, {{A, B, C, X(788), X(28859)}}, {{A, B, C, X(798), X(4979)}}, {{A, B, C, X(799), X(18197)}}, {{A, B, C, X(1015), X(3960)}}, {{A, B, C, X(1106), X(26884)}}, {{A, B, C, X(1333), X(3285)}}, {{A, B, C, X(1412), X(2206)}}, {{A, B, C, X(1415), X(21786)}}, {{A, B, C, X(1459), X(22383)}}, {{A, B, C, X(1472), X(5161)}}, {{A, B, C, X(1474), X(16947)}}, {{A, B, C, X(1509), X(7121)}}, {{A, B, C, X(1919), X(1980)}}, {{A, B, C, X(2208), X(7366)}}, {{A, B, C, X(3250), X(47958)}}, {{A, B, C, X(3572), X(7199)}}, {{A, B, C, X(3669), X(43060)}}, {{A, B, C, X(3776), X(30671)}}, {{A, B, C, X(5009), X(24041)}}, {{A, B, C, X(6589), X(6591)}}, {{A, B, C, X(7252), X(43925)}}, {{A, B, C, X(8643), X(8662)}}, {{A, B, C, X(17961), X(17962)}}, {{A, B, C, X(18108), X(23355)}}, {{A, B, C, X(21007), X(43929)}}, {{A, B, C, X(28615), X(33882)}}, {{A, B, C, X(33854), X(40153)}}
X(57129) = barycentric product X(i)*X(j) for these (i, j): {1, 3733}, {3, 57200}, {19, 7254}, {21, 43924}, {31, 7192}, {32, 7199}, {39, 39179}, {55, 7203}, {57, 7252}, {101, 16726}, {109, 18191}, {110, 244}, {112, 3942}, {162, 3937}, {261, 51641}, {283, 43923}, {284, 3669}, {292, 50456}, {330, 57074}, {333, 57181}, {512, 757}, {513, 58}, {523, 849}, {593, 661}, {649, 81}, {659, 741}, {667, 86}, {669, 873}, {1014, 663}, {1015, 662}, {1019, 6}, {1021, 1407}, {1022, 3285}, {1027, 3286}, {1086, 163}, {1098, 7250}, {1106, 7253}, {1111, 1576}, {1119, 57134}, {1169, 48131}, {1171, 4979}, {1175, 50354}, {1178, 4367}, {1252, 8042}, {1293, 18211}, {1333, 514}, {1357, 643}, {1396, 652}, {1397, 18155}, {1398, 57081}, {1408, 522}, {1412, 650}, {1414, 3271}, {1415, 17197}, {1434, 3063}, {1435, 23090}, {1437, 7649}, {1459, 28}, {1472, 47844}, {1474, 905}, {1509, 798}, {1565, 32676}, {1790, 6591}, {1919, 274}, {1977, 799}, {1980, 310}, {2087, 4591}, {2150, 7178}, {2163, 4833}, {2170, 4565}, {2185, 7180}, {2189, 51664}, {2194, 3676}, {2203, 4025}, {2206, 693}, {2214, 52615}, {2328, 43932}, {2350, 57148}, {2363, 6371}, {2605, 52375}, {2969, 4575}, {3121, 4610}, {3122, 52935}, {3125, 4556}, {3248, 99}, {3249, 4601}, {3737, 56}, {3777, 38813}, {4017, 60}, {4041, 7341}, {4079, 763}, {4086, 7342}, {4091, 5317}, {4560, 604}, {4570, 764}, {4600, 8027}, {4636, 53540}, {4724, 51443}, {4782, 51449}, {4840, 56343}, {4983, 52558}, {5009, 876}, {7032, 7255}, {7054, 7216}, {7234, 7303}, {13486, 53542}, {14936, 4637}, {15373, 17921}, {15419, 1973}, {16695, 87}, {16727, 32739}, {16737, 7104}, {16742, 34071}, {16947, 4391}, {17096, 41}, {17187, 18108}, {17205, 692}, {17212, 904}, {17217, 7121}, {17477, 8690}, {17925, 48}, {17926, 7099}, {18197, 2162}, {18199, 9315}, {18200, 893}, {18206, 43929}, {18268, 812}, {18792, 23355}, {20981, 40432}, {21007, 39950}, {21123, 52376}, {21143, 4567}, {21173, 52150}, {21758, 24624}, {21789, 269}, {22096, 811}, {22383, 27}, {23189, 34}, {23224, 8747}, {23345, 52680}, {23788, 34858}, {23892, 52897}, {23979, 40213}, {23997, 43920}, {24018, 36420}, {24027, 56283}, {24041, 8034}, {28607, 47683}, {30576, 55263}, {32010, 56242}, {33295, 875}, {34079, 3960}, {34594, 8054}, {34819, 4960}, {36419, 822}, {37128, 8632}, {38832, 43931}, {38986, 56053}, {39276, 46387}, {39747, 57096}, {39798, 57080}, {39949, 4057}, {40415, 50514}, {40438, 50512}, {40746, 4481}, {42067, 4592}, {43921, 54353}, {43925, 63}, {43926, 896}, {50487, 6628}, {50521, 52394}, {51561, 8650}, {52411, 57215}, {52619, 560}, {53314, 759}, {53538, 5546}
X(57129) = barycentric quotient X(i)/X(j) for these (i, j): {1, 27808}, {6, 4033}, {31, 3952}, {32, 1018}, {41, 30730}, {48, 52609}, {58, 668}, {60, 7257}, {81, 1978}, {86, 6386}, {110, 7035}, {163, 1016}, {213, 4103}, {244, 850}, {284, 646}, {512, 1089}, {513, 313}, {514, 27801}, {552, 55213}, {560, 4557}, {593, 799}, {604, 4552}, {647, 52369}, {649, 321}, {650, 30713}, {659, 35544}, {661, 28654}, {662, 31625}, {663, 3701}, {667, 10}, {669, 756}, {741, 4583}, {757, 670}, {763, 52612}, {764, 21207}, {788, 3773}, {798, 594}, {810, 3695}, {834, 42714}, {849, 99}, {873, 4609}, {875, 43534}, {890, 3994}, {905, 40071}, {1014, 4572}, {1015, 1577}, {1019, 76}, {1086, 20948}, {1106, 4566}, {1111, 44173}, {1178, 56241}, {1333, 190}, {1357, 4077}, {1396, 46404}, {1397, 4551}, {1408, 664}, {1412, 4554}, {1437, 4561}, {1459, 20336}, {1474, 6335}, {1509, 4602}, {1576, 765}, {1918, 40521}, {1919, 37}, {1924, 1500}, {1946, 3710}, {1960, 3992}, {1977, 661}, {1980, 42}, {2150, 645}, {2175, 4069}, {2194, 3699}, {2203, 1897}, {2206, 100}, {2251, 4169}, {3049, 3949}, {3051, 35309}, {3063, 2321}, {3121, 4024}, {3122, 4036}, {3125, 52623}, {3248, 523}, {3249, 3125}, {3271, 4086}, {3285, 24004}, {3669, 349}, {3733, 75}, {3736, 4505}, {3737, 3596}, {3937, 14208}, {3942, 3267}, {4017, 34388}, {4057, 56249}, {4367, 1237}, {4507, 48644}, {4556, 4601}, {4560, 28659}, {4775, 4125}, {4834, 4066}, {4840, 30596}, {4979, 1230}, {4983, 52576}, {5009, 874}, {6371, 18697}, {7054, 7258}, {7104, 56257}, {7180, 6358}, {7192, 561}, {7199, 1502}, {7203, 6063}, {7252, 312}, {7254, 304}, {7255, 7034}, {7341, 4625}, {7342, 1414}, {8027, 3120}, {8034, 1109}, {8042, 23989}, {8632, 3948}, {8640, 3971}, {8641, 4082}, {8643, 52353}, {8650, 4442}, {8660, 4695}, {8662, 4656}, {9247, 4574}, {9426, 872}, {14574, 1110}, {15419, 40364}, {16695, 6376}, {16726, 3261}, {16947, 651}, {17096, 20567}, {17205, 40495}, {17925, 1969}, {18108, 56251}, {18155, 40363}, {18191, 35519}, {18197, 6382}, {18200, 1920}, {18268, 4562}, {20981, 3963}, {21007, 4043}, {21122, 4463}, {21143, 16732}, {21758, 3936}, {21762, 21834}, {21789, 341}, {22096, 656}, {22383, 306}, {23090, 52406}, {23189, 3718}, {23224, 52396}, {23349, 41683}, {23572, 22028}, {30576, 55262}, {32676, 15742}, {34079, 36804}, {36420, 823}, {38832, 36863}, {38986, 21051}, {39179, 308}, {39201, 52387}, {42067, 24006}, {43924, 1441}, {43925, 92}, {43926, 46277}, {48131, 1228}, {50354, 1234}, {50456, 1921}, {50487, 6535}, {50512, 4647}, {50514, 2887}, {50521, 15523}, {51641, 12}, {52150, 56252}, {52410, 1020}, {52615, 33935}, {52619, 1928}, {53314, 35550}, {53521, 42703}, {53581, 762}, {54275, 21101}, {55053, 21099}, {56242, 1215}, {57074, 192}, {57080, 18140}, {57096, 3995}, {57134, 1265}, {57148, 18152}, {57157, 2292}, {57181, 226}, {57200, 264}
X(57129) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 1919, 57096}, {1919, 3733, 57074}, {3733, 7252, 649}, {18200, 50456, 7192}


X(57130) = X(1)X(513)∩X(58)X(1459)

Barycentrics    a^2*(b-c)*(a^2-b^2+b*c-c^2)*(a^3+2*b^3+b^2*c+b*c^2+2*c^3-2*a^2*(b+c)-a*(b^2+b*c+c^2)) : :

X(57130) lies on these lines: {1, 513}, {58, 1459}, {284, 649}, {522, 34195}, {526, 6126}, {942, 3737}, {2773, 42657}, {3738, 39778}, {5497, 53532}, {5541, 57209}, {5902, 53406}, {6089, 21343}, {11011, 48293}, {23087, 42741}, {36054, 57174}

X(57130) = X(i)-Dao conjugate of X(j) for these {i, j}: {4707, 850}
X(57130) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 36}
X(57130) = triaxial point of ABC, the circumcevian triangle of X(36), and the X(3)-circumconcevian triangle of X(36)
X(57130) = barycentric product X(i)*X(j) for these (i, j): {36, 49274}, {17078, 53249}
X(57130) = barycentric quotient X(i)/X(j) for these (i, j): {49274, 20566}, {53249, 36910}


X(57131) = X(10)X(3907)∩X(42)X(810)

Barycentrics    a*(b-c)*(b+c)*(a^4+a^3*(b+c)-b*c*(b+c)^2-a^2*(b^2+b*c+c^2)-a*(b^3+b^2*c+b*c^2+c^3)) : :

X(57131) lies on these lines: {10, 3907}, {37, 42653}, {42, 810}, {521, 34975}, {647, 48395}, {650, 667}, {788, 50504}, {905, 2533}, {3743, 57068}, {4036, 48181}, {4560, 26115}, {4651, 21300}, {4824, 47965}, {4983, 21894}, {8043, 38469}, {9508, 22320}, {16751, 47836}, {17166, 24900}, {17734, 31947}, {17989, 42661}, {21727, 23655}, {21789, 52139}, {27648, 47814}, {29232, 52326}, {40978, 57208}, {47956, 50489}, {50487, 50501}

X(57131) = midpoint of X(i) and X(j) for these {i,j}: {4705, 7234}, {810, 4041}
X(57131) = perspector of circumconic {{A, B, C, X(2250), X(2298)}}
X(57131) = X(i)-Dao conjugate of X(j) for these {i, j}: {4036, 850}
X(57131) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 37}
X(57131) = triaxial point of ABC, the circumcevian triangle of X(37), and the X(3)-circumconcevian triangle of X(37)
X(57131) = barycentric product X(i)*X(j) for these (i, j): {38871, 523}
X(57131) = barycentric quotient X(i)/X(j) for these (i, j): {38871, 99}
X(57131) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {667, 4705, 57162}, {4705, 7234, 8678}


X(57132) = X(141)X(523)∩X(512)X(2076)

Barycentrics    a^2*(b-c)*(b+c)*(b^2+c^2)^2 : :
X(57132) = -5*X[3763]+2*X[54263]

X(57132) lies on these lines: {141, 523}, {211, 18117}, {512, 2076}, {647, 9426}, {670, 18828}, {688, 3005}, {826, 23285}, {888, 2514}, {3049, 3051}, {3203, 57136}, {3763, 54263}, {5113, 18105}, {9012, 14428}, {9044, 39520}, {23208, 42660}, {34983, 39469}

X(57132) = reflection of X(i) in X(j) for these {i,j}: {18105, 5113}, {9426, 647}
X(57132) = isogonal conjugate of X(52936)
X(57132) = perspector of circumconic {{A, B, C, X(39), X(1916)}}
X(57132) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52936}, {82, 4577}, {83, 4599}, {251, 4593}, {308, 34072}, {643, 41284}, {662, 52395}, {689, 46289}, {827, 3112}, {4630, 18833}, {34055, 42396}, {37204, 46288}
X(57132) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52936}, {39, 689}, {141, 4577}, {339, 40016}, {688, 9426}, {826, 850}, {1084, 52395}, {3124, 83}, {6665, 670}, {7668, 41296}, {15449, 308}, {34452, 827}, {39691, 52570}, {40585, 4593}, {52042, 110}, {53983, 46104}, {55043, 3112}, {55050, 251}, {55060, 41284}
X(57132) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 39}, {826, 2528}, {3005, 2531}, {55033, 41172}
X(57132) = pole of line {39, 1915} with respect to the circumcircle
X(57132) = pole of line {419, 44142} with respect to the polar circle
X(57132) = pole of line {5041, 11205} with respect to the Brocard inellipse
X(57132) = pole of line {9479, 18105} with respect to the Kiepert parabola
X(57132) = pole of line {39, 15372} with respect to the MacBeath circumconic
X(57132) = pole of line {4577, 4630} with respect to the Stammler hyperbola
X(57132) = pole of line {1369, 7779} with respect to the Steiner circumellipse
X(57132) = pole of line {325, 21248} with respect to the Steiner inellipse
X(57132) = pole of line {689, 827} with respect to the Wallace hyperbola
X(57132) = triaxial point of ABC, the circumcevian triangle of X(39), and the X(3)-circumconcevian triangle of X(39)
X(57132) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(9482)}}, {{A, B, C, X(688), X(826)}}, {{A, B, C, X(1502), X(9496)}}, {{A, B, C, X(2076), X(52554)}}, {{A, B, C, X(2528), X(3005)}}, {{A, B, C, X(7794), X(52961)}}, {{A, B, C, X(8061), X(46387)}}, {{A, B, C, X(40810), X(51371)}}, {{A, B, C, X(48084), X(50521)}}
X(57132) = barycentric product X(i)*X(j) for these (i, j): {38, 8061}, {39, 826}, {110, 15449}, {141, 3005}, {512, 7794}, {523, 8041}, {688, 8024}, {1634, 39691}, {1843, 2525}, {1930, 2084}, {2489, 4175}, {2528, 6}, {2530, 3954}, {2531, 76}, {3709, 41285}, {11205, 31067}, {14424, 46154}, {15523, 21123}, {16892, 21035}, {21814, 48084}, {23285, 3051}, {35366, 52961}, {52568, 9494}
X(57132) = barycentric quotient X(i)/X(j) for these (i, j): {6, 52936}, {38, 4593}, {39, 4577}, {141, 689}, {512, 52395}, {688, 251}, {826, 308}, {1843, 42396}, {1923, 34072}, {1930, 37204}, {1964, 4599}, {2084, 82}, {2528, 76}, {2531, 6}, {3005, 83}, {3051, 827}, {4175, 52608}, {7180, 41284}, {7794, 670}, {8024, 42371}, {8041, 99}, {8061, 3112}, {9494, 46288}, {15449, 850}, {21123, 52394}, {23285, 40016}, {39691, 52618}, {41267, 4628}, {41331, 4630}, {50521, 52376}, {52591, 41296}, {55050, 9426}


X(57133) = X(37)X(661)∩X(649)X(4057)

Barycentrics    a^2*(b-c)*(b+c)*(a^2-2*b^2-3*b*c-2*c^2-a*(b+c)) : :

X(57133) lies on circumconic {{A, B, C, X(17161), X(50344)}} and on these lines: {37, 661}, {321, 25666}, {649, 4057}, {1962, 57077}, {3239, 4024}, {3709, 42664}, {4129, 31296}, {4813, 57234}, {4988, 22044}, {8663, 17990}, {17161, 57068}, {17494, 22043}, {20295, 24083}, {24084, 48416}, {40147, 55257}, {47765, 57169}, {48338, 55230}, {52745, 53587}, {57042, 57176}

X(57133) = perspector of circumconic {{A, B, C, X(1126), X(4674)}}
X(57133) = X(i)-isoconjugate-of-X(j) for these {i, j}: {662, 43972}
X(57133) = X(i)-Dao conjugate of X(j) for these {i, j}: {1084, 43972}, {4024, 850}
X(57133) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 42}
X(57133) = triaxial point of ABC, the circumcevian triangle of X(42), and the X(3)-circumconcevian triangle of X(42)
X(57133) = barycentric product X(i)*X(j) for these (i, j): {6, 57068}, {110, 55065}, {17161, 42}, {18158, 213}, {32025, 512}, {33761, 661}, {33771, 523}, {33775, 798}
X(57133) = barycentric quotient X(i)/X(j) for these (i, j): {512, 43972}, {17161, 310}, {18158, 6385}, {32025, 670}, {33761, 799}, {33771, 99}, {33775, 4602}, {55065, 850}, {57068, 76}
X(57133) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4079, 55210, 649}, {22042, 45745, 4024}


X(57134) = X(110)X(1262)∩X(652)X(663)

Barycentrics    a^3*(a+b)*(b-c)*(a+c)*(-a+b+c)^2*(a^2-b^2-c^2) : :

X(57134) lies on these lines: {48, 39201}, {110, 1262}, {163, 36039}, {283, 23696}, {652, 663}, {656, 3737}, {822, 57129}, {1459, 4091}, {1769, 57200}, {1946, 36054}, {14414, 57213}, {21761, 57124}, {23090, 57057}, {48387, 57237}

X(57134) = perspector of circumconic {{A, B, C, X(284), X(1790)}}
X(57134) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 52607}, {4, 4566}, {10, 36118}, {27, 4605}, {37, 13149}, {65, 18026}, {73, 52938}, {92, 1020}, {107, 6356}, {108, 1441}, {225, 664}, {226, 653}, {264, 53321}, {273, 4551}, {278, 4552}, {307, 36127}, {321, 32714}, {331, 4559}, {349, 32674}, {523, 55346}, {525, 23984}, {648, 6354}, {651, 40149}, {656, 24032}, {658, 1826}, {668, 1426}, {811, 1254}, {823, 37755}, {934, 41013}, {1018, 1847}, {1119, 3952}, {1214, 54240}, {1262, 14618}, {1275, 2501}, {1398, 27808}, {1400, 46404}, {1414, 56285}, {1415, 52575}, {1425, 6528}, {1427, 6335}, {1435, 4033}, {1446, 1783}, {1577, 7128}, {1824, 4569}, {1835, 35174}, {1880, 4554}, {1897, 3668}, {2052, 52610}, {2333, 46406}, {3267, 23985}, {4077, 7012}, {4573, 8736}, {4616, 7140}, {4626, 53008}, {6046, 36797}, {7045, 24006}, {7178, 46102}, {14208, 24033}
X(57134) = X(i)-Dao conjugate of X(j) for these {i, j}: {521, 14208}, {656, 850}, {1146, 52575}, {3239, 20948}, {7358, 313}, {14714, 41013}, {17115, 24006}, {17423, 1254}, {22391, 1020}, {32664, 52607}, {34467, 3668}, {35072, 349}, {36033, 4566}, {38983, 1441}, {38985, 6356}, {38991, 40149}, {39006, 1446}, {39025, 225}, {40582, 46404}, {40589, 13149}, {40596, 24032}, {40602, 18026}, {40608, 56285}, {55066, 6354}, {55067, 331}, {55068, 264}
X(57134) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 48}, {162, 284}, {1098, 34591}, {4575, 2193}, {36034, 4282}, {36134, 35192}
X(57134) = X(i)-cross conjugate of X(j) for these {i, j}: {1946, 21789}, {3270, 212}, {39687, 48}
X(57134) = pole of line {48, 14529} with respect to the circumcircle
X(57134) = pole of line {48, 23171} with respect to the MacBeath circumconic
X(57134) = pole of line {664, 1897} with respect to the Stammler hyperbola
X(57134) = triaxial point of ABC, the circumcevian triangle of X(48), and the X(3)-circumconcevian triangle of X(48)
X(57134) = intersection, other than A, B, C, of circumconics {{A, B, C, X(48), X(1262)}}, {{A, B, C, X(212), X(2361)}}, {{A, B, C, X(521), X(8676)}}, {{A, B, C, X(652), X(1021)}}, {{A, B, C, X(663), X(1459)}}, {{A, B, C, X(1260), X(23169)}}, {{A, B, C, X(1794), X(13329)}}, {{A, B, C, X(1802), X(7193)}}, {{A, B, C, X(2188), X(10535)}}, {{A, B, C, X(6905), X(8021)}}, {{A, B, C, X(7252), X(7254)}}, {{A, B, C, X(14838), X(52306)}}, {{A, B, C, X(21789), X(23189)}}, {{A, B, C, X(23087), X(53286)}}, {{A, B, C, X(39201), X(39687)}}
X(57134) = barycentric product X(i)*X(j) for these (i, j): {1, 23090}, {6, 57081}, {21, 652}, {28, 57057}, {29, 36054}, {48, 7253}, {58, 57055}, {60, 8611}, {110, 34591}, {112, 24031}, {162, 35072}, {163, 2968}, {200, 7254}, {212, 4560}, {219, 3737}, {283, 650}, {284, 521}, {643, 7117}, {656, 7054}, {1019, 1260}, {1021, 3}, {1043, 22383}, {1098, 647}, {1146, 4575}, {1172, 57241}, {1253, 15419}, {1265, 57129}, {1437, 3239}, {1444, 657}, {1459, 2287}, {1789, 9404}, {1790, 3900}, {1792, 649}, {1793, 654}, {1802, 7192}, {1808, 4435}, {1812, 663}, {1946, 333}, {2150, 52355}, {2192, 57213}, {2193, 522}, {2194, 6332}, {2204, 52616}, {2310, 4558}, {2322, 23224}, {2326, 520}, {2327, 513}, {2328, 905}, {2332, 4131}, {2638, 648}, {3063, 332}, {3270, 662}, {3692, 3733}, {3937, 7259}, {4091, 4183}, {4636, 53560}, {5546, 7004}, {6056, 57215}, {7058, 810}, {7252, 78}, {10397, 285}, {14936, 4592}, {15411, 31}, {15416, 2206}, {16731, 8750}, {17206, 8641}, {17926, 255}, {18155, 52425}, {18191, 4587}, {18344, 6514}, {21789, 63}, {22074, 57161}, {22096, 7258}, {23189, 9}, {23609, 57243}, {23983, 32676}, {24026, 32661}, {39177, 44707}, {39687, 811}, {51664, 6061}, {57108, 81}, {57124, 6512}
X(57134) = barycentric quotient X(i)/X(j) for these (i, j): {21, 46404}, {31, 52607}, {48, 4566}, {58, 13149}, {112, 24032}, {163, 55346}, {184, 1020}, {212, 4552}, {228, 4605}, {283, 4554}, {284, 18026}, {521, 349}, {522, 52575}, {652, 1441}, {657, 41013}, {663, 40149}, {810, 6354}, {822, 6356}, {1021, 264}, {1098, 6331}, {1172, 52938}, {1260, 4033}, {1333, 36118}, {1437, 658}, {1444, 46406}, {1459, 1446}, {1576, 7128}, {1790, 4569}, {1792, 1978}, {1793, 46405}, {1802, 3952}, {1812, 4572}, {1919, 1426}, {1946, 226}, {2193, 664}, {2194, 653}, {2204, 36127}, {2206, 32714}, {2299, 54240}, {2310, 14618}, {2326, 6528}, {2327, 668}, {2328, 6335}, {2638, 525}, {2968, 20948}, {3049, 1254}, {3063, 225}, {3270, 1577}, {3692, 27808}, {3709, 56285}, {3733, 1847}, {3737, 331}, {4171, 7141}, {4575, 1275}, {7054, 811}, {7117, 4077}, {7252, 273}, {7253, 1969}, {7254, 1088}, {8611, 34388}, {8641, 1826}, {9247, 53321}, {14936, 24006}, {15411, 561}, {21789, 92}, {22096, 7216}, {22383, 3668}, {23090, 75}, {23189, 85}, {24031, 3267}, {32661, 7045}, {32676, 23984}, {34591, 850}, {35072, 14208}, {36054, 307}, {39201, 37755}, {39687, 656}, {51640, 20618}, {52425, 4551}, {52430, 52610}, {57055, 313}, {57057, 20336}, {57081, 76}, {57108, 321}, {57129, 1119}, {57180, 53008}, {57241, 1231}


X(57135) = X(3)X(30210)∩X(5)X(523)

Barycentrics    a^2*(b-c)*(b+c)*(a^2-b^2-c^2)*(a^4+b^4-b^2*c^2+c^4-2*a^2*(b^2+c^2))*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :
X(57135) = -X[20577]+3*X[57211]

X(57135) lies on these lines: {3, 30210}, {5, 523}, {110, 14587}, {512, 32762}, {520, 34983}, {647, 9380}, {924, 14889}, {1510, 6150}, {1568, 6368}, {2120, 43598}, {9033, 34979}, {20577, 57211}

X(57135) = reflection of X(i) in X(j) for these {i,j}: {34983, 34987}
X(57135) = perspector of circumconic {{A, B, C, X(94), X(143)}}
X(57135) = X(i)-isoconjugate-of-X(j) for these {i, j}: {93, 36134}, {162, 252}, {275, 36148}, {930, 2190}, {933, 2962}, {1973, 55283}, {2148, 38342}, {32737, 40440}
X(57135) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 930}, {125, 252}, {130, 51477}, {137, 93}, {216, 38342}, {338, 20572}, {2972, 3519}, {6337, 55283}, {12077, 14618}, {15450, 2963}, {17433, 562}, {35591, 186}, {39018, 275}, {39019, 11140}, {52032, 46139}, {53986, 8884}
X(57135) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 49}, {4558, 216}, {20577, 57137}, {41298, 20577}, {46963, 52}
X(57135) = pole of line {49, 52} with respect to the circumcircle
X(57135) = pole of line {13598, 15800} with respect to the 2nd DrozFarny circle
X(57135) = pole of line {30, 8146} with respect to the nine-point circle
X(57135) = pole of line {93, 186} with respect to the polar circle
X(57135) = pole of line {1498, 37949} with respect to the Stammler circle
X(57135) = pole of line {3, 49} with respect to the Johnson circumconic
X(57135) = pole of line {49, 216} with respect to the MacBeath circumconic
X(57135) = pole of line {30, 42441} with respect to the MacBeath Inconic
X(57135) = pole of line {930, 933} with respect to the Stammler hyperbola
X(57135) = pole of line {37779, 56302} with respect to the Steiner circumellipse
X(57135) = pole of line {3, 42059} with respect to the Yff hyperbola
X(57135) = pole of line {10411, 18831} with respect to the Wallace hyperbola
X(57135) = triaxial point of ABC, the circumcevian triangle of X(49), and the X(3)-circumconcevian triangle of X(49)
X(57135) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(6150)}}, {{A, B, C, X(5), X(49)}}, {{A, B, C, X(143), X(1568)}}, {{A, B, C, X(216), X(44180)}}, {{A, B, C, X(523), X(44809)}}, {{A, B, C, X(1510), X(6368)}}, {{A, B, C, X(2965), X(41168)}}, {{A, B, C, X(3518), X(8798)}}, {{A, B, C, X(5562), X(45083)}}, {{A, B, C, X(14356), X(44716)}}, {{A, B, C, X(14577), X(43089)}}, {{A, B, C, X(14592), X(20577)}}, {{A, B, C, X(15451), X(15475)}}, {{A, B, C, X(37084), X(41298)}}, {{A, B, C, X(38896), X(44715)}}, {{A, B, C, X(47424), X(51479)}}
X(57135) = barycentric product X(i)*X(j) for these (i, j): {137, 4558}, {143, 525}, {216, 41298}, {324, 37084}, {394, 57211}, {1510, 343}, {1994, 6368}, {12077, 44180}, {14129, 520}, {14577, 3265}, {15451, 7769}, {17434, 32002}, {18314, 49}, {20577, 3}, {47424, 99}, {57137, 69}
X(57135) = barycentric quotient X(i)/X(j) for these (i, j): {5, 38342}, {49, 18315}, {69, 55283}, {137, 14618}, {143, 648}, {216, 930}, {217, 32737}, {311, 55217}, {343, 46139}, {647, 252}, {1510, 275}, {1994, 18831}, {2081, 562}, {2965, 933}, {3518, 16813}, {6368, 11140}, {12077, 93}, {14129, 6528}, {14577, 107}, {15451, 2963}, {17434, 3519}, {18314, 20572}, {20577, 264}, {32002, 42405}, {37084, 97}, {41221, 55251}, {41298, 276}, {42293, 51477}, {47424, 523}, {52317, 14111}, {57137, 4}, {57195, 25043}, {57211, 2052}
X(57135) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {520, 34987, 34983}


X(57136) = X(184)X(512)∩X(520)X(1147)

Barycentrics    a^6*(b-c)*(b+c)*(a^4+b^4+b^2*c^2+c^4-2*a^2*(b^2+c^2))^2 : :

X(57136) lies on these lines: {54, 23105}, {110, 32731}, {184, 512}, {520, 1147}, {2436, 34397}, {3200, 57122}, {3201, 57123}, {3202, 9426}, {3203, 57132}, {3205, 57142}, {3206, 57143}, {3733, 9563}, {3906, 8723}, {9703, 34291}, {11597, 14675}, {22115, 44814}

X(57136) = perspector of circumconic {{A, B, C, X(50), X(14910)}}
X(57136) = X(i)-isoconjugate-of-X(j) for these {i, j}: {94, 32680}, {328, 36129}, {2166, 35139}, {18817, 36061}, {20573, 32678}, {20948, 23588}
X(57136) = X(i)-Dao conjugate of X(j) for these {i, j}: {526, 850}, {11597, 35139}, {16221, 18817}, {18334, 20573}
X(57136) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54, 2088}, {110, 50}, {3043, 18334}
X(57136) = pole of line {381, 2088} with respect to the 1st Brocard circle
X(57136) = pole of line {50, 10540} with respect to the circumcircle
X(57136) = pole of line {18817, 44138} with respect to the polar circle
X(57136) = pole of line {35139, 35316} with respect to the Stammler hyperbola
X(57136) = triaxial point of ABC, the circumcevian triangle of X(50), and the X(3)-circumconcevian triangle of X(50)
X(57136) = intersection, other than A, B, C, of circumconics {{A, B, C, X(50), X(39295)}}, {{A, B, C, X(32761), X(52557)}}
X(57136) = barycentric product X(i)*X(j) for these (i, j): {50, 526}, {110, 18334}, {2088, 52603}, {2624, 6149}, {3043, 647}, {14270, 323}, {14385, 52743}, {14574, 23965}, {14591, 16186}, {19627, 3268}, {22115, 47230}, {34397, 8552}, {36423, 520}, {44814, 52668}
X(57136) = barycentric quotient X(i)/X(j) for these (i, j): {50, 35139}, {526, 20573}, {3043, 6331}, {14270, 94}, {14574, 23588}, {18334, 850}, {19627, 476}, {34397, 46456}, {36423, 6528}, {47230, 18817}


X(57137) = X(53)X(2501)∩X(112)X(46966)

Barycentrics    a^2*(b-c)*(b+c)*(a^4+b^4-b^2*c^2+c^4-2*a^2*(b^2+c^2))*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :

X(57137) lies on these lines: {53, 2501}, {112, 46966}, {217, 30451}, {512, 55204}, {647, 11063}, {1499, 45089}, {2081, 2600}, {3569, 7927}, {11450, 33752}, {33569, 40588}

X(57137) = isotomic conjugate of X(55283)
X(57137) = perspector of circumconic {{A, B, C, X(5), X(143)}}
X(57137) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 55283}, {95, 36148}, {252, 662}, {930, 2167}, {2148, 46139}, {2169, 38342}, {2962, 18315}, {11140, 36134}
X(57137) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 55283}, {137, 11140}, {216, 46139}, {1084, 252}, {12077, 850}, {14363, 38342}, {15450, 3519}, {35591, 323}, {39018, 95}, {40588, 930}, {53986, 275}
X(57137) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 51}, {112, 2965}, {14129, 137}, {14577, 47424}, {20577, 57135}
X(57137) = X(i)-cross conjugate of X(j) for these {i, j}: {47424, 14577}
X(57137) = pole of line {51, 2965} with respect to the circumcircle
X(57137) = pole of line {275, 323} with respect to the polar circle
X(57137) = pole of line {23200, 34565} with respect to the Brocard inellipse
X(57137) = pole of line {51, 195} with respect to the MacBeath circumconic
X(57137) = pole of line {403, 3574} with respect to the orthic inconic
X(57137) = pole of line {13571, 17035} with respect to the Steiner circumellipse
X(57137) = pole of line {233, 5421} with respect to the Steiner inellipse
X(57137) = triaxial point of ABC, the circumcevian triangle of X(51), and the X(3)-circumconcevian triangle of X(51)
X(57137) = intersection, other than A, B, C, of circumconics {{A, B, C, X(51), X(1994)}}, {{A, B, C, X(53), X(2965)}}, {{A, B, C, X(143), X(41586)}}, {{A, B, C, X(647), X(35441)}}, {{A, B, C, X(1510), X(6368)}}, {{A, B, C, X(2081), X(2501)}}, {{A, B, C, X(3518), X(52887)}}, {{A, B, C, X(12077), X(20577)}}, {{A, B, C, X(14391), X(47424)}}, {{A, B, C, X(14577), X(52945)}}, {{A, B, C, X(14582), X(17434)}}
X(57137) = barycentric product X(i)*X(j) for these (i, j): {3, 57211}, {4, 57135}, {110, 137}, {143, 523}, {1510, 5}, {2081, 30529}, {2618, 2964}, {3518, 6368}, {12077, 1994}, {13450, 37084}, {14129, 647}, {14577, 525}, {15451, 32002}, {18314, 2965}, {20577, 6}, {23290, 49}, {41298, 51}, {44180, 51513}, {47424, 648}, {55219, 7769}
X(57137) = barycentric quotient X(i)/X(j) for these (i, j): {2, 55283}, {5, 46139}, {51, 930}, {53, 38342}, {137, 850}, {143, 99}, {324, 55217}, {512, 252}, {1510, 95}, {2179, 36148}, {2965, 18315}, {3518, 18831}, {7769, 55218}, {12077, 11140}, {14129, 6331}, {14577, 648}, {15451, 3519}, {20577, 76}, {23290, 20572}, {40981, 32737}, {41298, 34384}, {42650, 21975}, {47424, 525}, {51513, 93}, {55219, 2963}, {57135, 69}, {57211, 264}
X(57137) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12077, 52317, 2081}, {52317, 55219, 12077}


X(57138) = X(54)X(523)∩X(1157)X(1510)

Barycentrics    a^2*(b-c)*(b+c)*(a^4+b^4-b^2*c^2-a^2*(2*b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^8-3*b^2*c^2*(b^2-c^2)^2-3*a^6*(b^2+c^2)+3*a^4*(b^4+b^2*c^2+c^4)-a^2*(b^6-3*b^4*c^2-3*b^2*c^4+c^6)) : :

X(57138) lies on cubic K316 and on these lines: {54, 523}, {1157, 1510}, {1176, 39182}, {2120, 43598}, {2616, 4551}, {2623, 10313}, {3050, 8882}, {3288, 33629}, {3484, 6368}, {8718, 30210}, {19128, 50946}, {43391, 45147}

X(57138) = X(i)-Dao conjugate of X(j) for these {i, j}: {15412, 850}
X(57138) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 54}
X(57138) = X(i)-cross conjugate of X(j) for these {i, j}: {8902, 13434}
X(57138) = pole of line {1209, 6750} with respect to the polar circle
X(57138) = triaxial point of ABC, the circumcevian triangle of X(54), and the X(3)-circumconcevian triangle of X(54)
X(57138) = intersection, other than A, B, C, of circumconics {{A, B, C, X(54), X(13434)}}, {{A, B, C, X(523), X(8902)}}, {{A, B, C, X(14979), X(36161)}}, {{A, B, C, X(39180), X(50946)}}
X(57138) = barycentric product X(i)*X(j) for these (i, j): {13434, 15412}, {18315, 8902}
X(57138) = barycentric quotient X(i)/X(j) for these (i, j): {8902, 18314}, {13434, 14570}


X(57139) = X(1)X(34496)∩X(221)X(924)

Barycentrics    a^2*(b-c)*(a+b-c)*(a-b+c)*(a^3+b^3+c^3-a^2*(b+c)-a*(b^2+b*c+c^2)) : :

X(57139) lies on these lines: {1, 34496}, {34, 57200}, {56, 7250}, {221, 924}, {513, 663}, {654, 36054}, {665, 57237}, {1101, 4565}, {2099, 4139}, {3737, 7178}, {6003, 57107}, {7180, 7252}, {7655, 57241}, {30572, 48292}, {30725, 48281}, {43052, 46385}, {53539, 56242}

X(57139) = perspector of circumconic {{A, B, C, X(57), X(37583)}}
X(57139) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8, 6011}, {100, 6598}, {643, 41501}, {644, 37887}, {5546, 43683}, {36797, 43708}
X(57139) = X(i)-Dao conjugate of X(j) for these {i, j}: {7178, 850}, {8054, 6598}, {8286, 341}, {35193, 7256}, {55060, 41501}
X(57139) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 56}
X(57139) = pole of line {12435, 44669} with respect to the Conway circle
X(57139) = pole of line {65, 16465} with respect to the Incircle
X(57139) = pole of line {56, 3211} with respect to the MacBeath circumconic
X(57139) = triaxial point of ABC, the circumcevian triangle of X(56), and the X(3)-circumconcevian triangle of X(56)
X(57139) = intersection, other than A, B, C, of circumconics {{A, B, C, X(34), X(1464)}}, {{A, B, C, X(269), X(1101)}}, {{A, B, C, X(513), X(6003)}}, {{A, B, C, X(1149), X(34772)}}, {{A, B, C, X(1319), X(37583)}}, {{A, B, C, X(1413), X(51654)}}, {{A, B, C, X(3733), X(50354)}}, {{A, B, C, X(4017), X(31603)}}
X(57139) = barycentric product X(i)*X(j) for these (i, j): {57, 6003}, {110, 40622}, {1019, 15556}, {4565, 8286}, {13739, 51664}, {23775, 52378}, {31603, 6}, {33116, 43924}, {34772, 3669}, {37583, 514}, {41547, 47947}, {57107, 81}
X(57139) = barycentric quotient X(i)/X(j) for these (i, j): {604, 6011}, {649, 6598}, {4017, 43683}, {6003, 312}, {7180, 41501}, {15556, 4033}, {31603, 76}, {34772, 646}, {37583, 190}, {40622, 850}, {43924, 37887}, {57107, 321}
X(57139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1459, 43924, 3669}, {4017, 51646, 2605}, {43924, 51646, 4017}, {43924, 51652, 51656}


X(57140) = X(57)X(2487)∩X(513)X(2078)

Barycentrics    a*(b-c)*(a+b-c)*(a-b+c)*(a^5+a^3*b*c-2*a^4*(b+c)-b*(b-c)^2*c*(b+c)+a^2*(2*b^3+3*b^2*c+3*b*c^2+2*c^3)-a*(b^4+b^3*c+b*c^3+c^4)) : :

X(57140) lies on these lines: {57, 2487}, {63, 31603}, {222, 7203}, {223, 7180}, {513, 2078}, {652, 3676}, {1019, 51664}, {1020, 2149}, {1021, 4077}, {3669, 36054}, {7178, 9404}, {8545, 44449}, {30719, 48320}

X(57140) = X(i)-Dao conjugate of X(j) for these {i, j}: {4077, 850}
X(57140) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 57}
X(57140) = triaxial point of ABC, the circumcevian triangle of X(57), and the X(3)-circumconcevian triangle of X(57)


X(57141) = X(1)X(59)∩X(21)X(4564)

Barycentrics    a^2*(a-b)^2*(a-c)^2*(a+b-c)*(a-b+c)*(a^4*(b+c)-3*b*(b-c)^2*c*(b+c)-a^3*(b+c)^2+a*(b-c)^2*(b^2+4*b*c+c^2)-a^2*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(57141) lies on these lines: {1, 59}, {21, 4564}, {28, 7012}, {655, 56283}, {2283, 57105}, {2427, 57183}, {4998, 17152}

X(57141) = X(i)-Dao conjugate of X(j) for these {i, j}: {4552, 850}
X(57141) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 59}
X(57141) = triaxial point of ABC, the circumcevian triangle of X(59), and the X(3)-circumconcevian triangle of X(59)
X(57141) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5400)}}, {{A, B, C, X(1318), X(37815)}}
X(57141) = barycentric product X(i)*X(j) for these (i, j): {4564, 5400}
X(57141) = barycentric quotient X(i)/X(j) for these (i, j): {5400, 4858}


X(57142) = X(396)X(523)∩X(647)X(11063)

Barycentrics    a^2*(b-c)*(b+c)*(a^4-2*a^2*b^2+b^4-2*a^2*c^2-4*b^2*c^2+c^4+sqrt(3)*a^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))-sqrt(3)*b^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))-sqrt(3)*c^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))) : :
Barycentrics    a^2*(b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^2 + b^2 - c^2 - 2*Sqrt[3]*S)*(a^2 - b^2 + c^2 - 2*Sqrt[3]*S)*(-a^2 + b^2 + c^2 + 2*Sqrt[3]*S) : : (Peter Moses, August 27, 2023)

X(57142) lies on these lines: {396, 523}, {512, 39554}, {647, 11063}, {924, 11244}, {1510, 52971}, {3205, 57136}, {6138, 20188}, {10640, 41167}

X(57142) = reflection of X(i) in X(j) for these {i,j}: {57143, 647}
X(57142) = perspector of circumconic {{A, B, C, X(14), X(61)}}
X(57142) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2962, 52930}, {11144, 36148}
X(57142) = X(i)-Dao conjugate of X(j) for these {i, j}: {1510, 57143}, {10640, 32036}, {23872, 850}, {39018, 11144}
X(57142) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 61}
X(57142) = triaxial point of ABC, the circumcevian triangle of X(61), and the X(3)-circumconcevian triangle of X(61)
X(57142) = intersection, other than A, B, C, of circumconics {{A, B, C, X(61), X(396)}}, {{A, B, C, X(1510), X(23872)}}, {{A, B, C, X(20579), X(55221)}}
X(57142) = barycentric product X(i)*X(j) for these (i, j): {302, 55221}, {11143, 1510}, {17402, 41999}, {23872, 61}, {41298, 51546}
X(57142) = barycentric quotient X(i)/X(j) for these (i, j): {61, 32036}, {302, 55220}, {1510, 11144}, {2965, 52930}, {11143, 46139}, {23872, 34389}, {39018, 57143}, {51546, 930}, {55221, 17}


X(57143) = X(395)X(523)∩X(647)X(11063)

Barycentrics    a^2*(b-c)*(b+c)*(a^4-2*a^2*b^2+b^4-2*a^2*c^2-4*b^2*c^2+c^4-sqrt(3)*a^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))+sqrt(3)*b^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))+sqrt(3)*c^2*sqrt((a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c))) : : Barycentrics    a^2*(b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4)*(-a^2 + b^2 + c^2 - 2*Sqrt[3]*S)*(a^2 + b^2 - c^2 + 2*Sqrt[3]*S)*(a^2 - b^2 + c^2 + 2*Sqrt[3]*S): : (Peter Moses, August 27, 2023)

X(57143) lies on these lines: {395, 523}, {512, 39555}, {647, 11063}, {924, 11243}, {1510, 52972}, {3206, 57136}, {6137, 20188}, {10639, 41167}

X(57143) = reflection of X(i) in X(j) for these {i,j}: {57142, 647}
X(57143) = perspector of circumconic {{A, B, C, X(13), X(62)}}
X(57143) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2962, 52929}, {11143, 36148}
X(57143) = X(i)-Dao conjugate of X(j) for these {i, j}: {1510, 57142}, {10639, 32037}, {23873, 850}, {39018, 11143}
X(57143) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 62}
X(57143) = triaxial point of ABC, the circumcevian triangle of X(62), and the X(3)-circumconcevian triangle of X(62)
X(57143) = intersection, other than A, B, C, of circumconics {{A, B, C, X(62), X(395)}}, {{A, B, C, X(1510), X(23873)}}, {{A, B, C, X(20578), X(55223)}}
X(57143) = barycentric product X(i)*X(j) for these (i, j): {303, 55223}, {11144, 1510}, {17403, 42000}, {23873, 62}, {41298, 51547}
X(57143) = barycentric quotient X(i)/X(j) for these (i, j): {62, 32037}, {303, 55222}, {1510, 11143}, {2965, 52929}, {11144, 46139}, {23873, 34390}, {39018, 57142}, {51547, 930}, {55223, 18}


X(57144) = X(63)X(3265)∩X(905)X(4131)

Barycentrics    a*(a+b)*(b-c)*(a+c)*(a^2-b^2-c^2)*(a^3-b^3-b^2*c-b*c^2-c^3-a^2*(b+c)+a*(b+c)^2) : :

X(57144) lies on circumconic {{A, B, C, X(6513), X(20769)}} and on these lines: {63, 3265}, {905, 4131}, {1019, 6332}, {1021, 47785}, {3733, 8646}, {4369, 14208}, {16751, 57125}, {22382, 24018}, {23189, 24562}, {33294, 54405}

X(57144) = perspector of circumconic {{A, B, C, X(1444), X(40403)}}
X(57144) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2333, 53643}, {8750, 36907}
X(57144) = X(i)-Dao conjugate of X(j) for these {i, j}: {2509, 1577}, {14208, 850}, {26932, 36907}
X(57144) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 63}
X(57144) = pole of line {63, 18611} with respect to the circumcircle
X(57144) = pole of line {1633, 1783} with respect to the Stammler hyperbola
X(57144) = pole of line {20222, 54289} with respect to the Steiner circumellipse
X(57144) = triaxial point of ABC, the circumcevian triangle of X(63), and the X(3)-circumconcevian triangle of X(63)
X(57144) = barycentric product X(i)*X(j) for these (i, j): {1801, 693}, {15419, 17742}, {17206, 2509}, {17498, 63}, {46738, 7254}
X(57144) = barycentric quotient X(i)/X(j) for these (i, j): {905, 36907}, {1444, 53643}, {1801, 100}, {2509, 1826}, {7254, 40188}, {15419, 46740}, {17498, 92}


X(57145) = X(250)X(46639)∩X(520)X(11589)

Barycentrics    a^2*(b-c)*(b+c)*(-a^2+b^2+c^2)^2*(a^4+b^4+2*b^2*c^2-3*c^4-2*a^2*(b^2-c^2))*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b^2-c^2))*(5*a^4-3*(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(57145) lies on these lines: {250, 46639}, {520, 11589}, {15748, 28785}, {30211, 46425}, {41085, 45010}

X(57145) = perspector of circumconic {{A, B, C, X(1073), X(14572)}}
X(57145) = X(i)-isoconjugate-of-X(j) for these {i, j}: {162, 33893}, {1895, 44060}, {24019, 40170}
X(57145) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 33893}, {13611, 52578}, {15748, 52913}, {35071, 40170}
X(57145) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 64}, {46639, 38292}
X(57145) = pole of line {14249, 15005} with respect to the polar circle
X(57145) = pole of line {64, 38292} with respect to the MacBeath circumconic
X(57145) = triaxial point of ABC, the circumcevian triangle of X(64), and the X(3)-circumconcevian triangle of X(64)
X(57145) = intersection, other than A, B, C, of circumconics {{A, B, C, X(64), X(21663)}}, {{A, B, C, X(250), X(38292)}}
X(57145) = barycentric product X(i)*X(j) for these (i, j): {13611, 46639}, {14572, 520}
X(57145) = barycentric quotient X(i)/X(j) for these (i, j): {520, 40170}, {647, 33893}, {14572, 6528}, {14642, 44060}, {38292, 52913}


X(57146) = X(69)X(8673)∩X(525)X(3049)

Barycentrics    (b-c)*(b+c)*(-a^2+b^2+c^2)*(-a^6+b^2*c^2*(b^2+c^2)+a^2*(b^4-b^2*c^2+c^4)) : :
X(57146) = -5*X[3618]+4*X[52588]

X(57146) lies on circumconic {{A, B, C, X(69), X(19121)}} and on these lines: {69, 8673}, {512, 3267}, {525, 3049}, {669, 3265}, {690, 57075}, {879, 43714}, {3618, 52588}, {6337, 52613}, {26225, 33294}

X(57146) = reflection of X(i) in X(j) for these {i,j}: {69, 52617}
X(57146) = perspector of circumconic {{A, B, C, X(1241), X(1799)}}
X(57146) = X(i)-Dao conjugate of X(j) for these {i, j}: {3267, 850}, {53570, 40325}
X(57146) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 69}
X(57146) = pole of line {315, 12220} with respect to the anticomplementary circle
X(57146) = pole of line {69, 15270} with respect to the circumcircle
X(57146) = pole of line {7791, 51884} with respect to the DeLongchamps circle
X(57146) = pole of line {39141, 40643} with respect to the 1st Lemoine circle
X(57146) = pole of line {647, 3267} with respect to the Kiepert parabola
X(57146) = pole of line {35325, 53273} with respect to the Stammler hyperbola
X(57146) = pole of line {22, 1975} with respect to the Steiner circumellipse
X(57146) = pole of line {6676, 7789} with respect to the Steiner inellipse
X(57146) = pole of line {41676, 46592} with respect to the Wallace hyperbola
X(57146) = triaxial point of ABC, the circumcevian triangle of X(69), and the X(3)-circumconcevian triangle of X(69)
X(57146) = barycentric product X(i)*X(j) for these (i, j): {4563, 53570}, {14208, 34065}, {19121, 3267}, {33651, 525}
X(57146) = barycentric quotient X(i)/X(j) for these (i, j): {19121, 112}, {33651, 648}, {34065, 162}, {53570, 2501}
X(57146) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8673, 52617, 69}


X(57147) = X(74)X(526)∩X(1636)X(2433)

Barycentrics    a^2*(b-c)*(b+c)*(a^4-2*b^4+b^2*c^2+c^4+a^2*(b^2-2*c^2))*(a^4+b^4+b^2*c^2-2*c^4+a^2*(-2*b^2+c^2))*(5*a^8-11*a^6*(b^2+c^2)+a^4*(3*b^4+23*b^2*c^2+3*c^4)-(b^2-c^2)^2*(4*b^4+7*b^2*c^2+4*c^4)+a^2*(7*b^6-13*b^4*c^2-13*b^2*c^4+7*c^6)) : :

X(57147) lies on circumconic {{A, B, C, X(74), X(15051)}} and on these lines: {74, 526}, {520, 15035}, {1636, 2433}, {2132, 14094}, {2394, 9033}, {10091, 35200}

X(57147) = isogonal conjugate of X(43941)
X(57147) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 43941}, {2394, 850}
X(57147) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 74}
X(57147) = pole of line {3233, 43941} with respect to the Stammler hyperbola
X(57147) = triaxial point of ABC, the circumcevian triangle of X(74), and the X(3)-circumconcevian triangle of X(74)
X(57147) = barycentric product X(i)*X(j) for these (i, j): {15051, 2394}
X(57147) = barycentric quotient X(i)/X(j) for these (i, j): {6, 43941}, {15051, 2407}


X(57148) = X(1)X(40471)∩X(6)X(31290)

Barycentrics    a*(a+b)*(b-c)*(a+c)*(a^2-b*c-a*(b+c)) : :

X(57148) lies on these lines: {1, 40471}, {6, 31290}, {81, 6654}, {86, 26822}, {110, 36086}, {333, 26775}, {448, 525}, {513, 1980}, {649, 50456}, {661, 32911}, {662, 1252}, {669, 2106}, {1019, 3960}, {2254, 3737}, {3063, 47666}, {3287, 44449}, {4164, 50497}, {4369, 37633}, {4435, 47661}, {4833, 27644}, {5235, 27527}, {7253, 47687}, {7254, 48580}, {17494, 21007}, {18074, 18155}, {20980, 47939}, {22383, 48107}, {25666, 37687}, {27648, 48297}, {40214, 57212}, {47673, 47683}, {47844, 49283}

X(57148) = perspector of circumconic {{A, B, C, X(757), X(40408)}}
X(57148) = X(i)-isoconjugate-of-X(j) for these {i, j}: {42, 54118}, {594, 43076}, {1018, 13476}, {1500, 53649}, {2350, 3952}, {4557, 17758}, {4559, 55076}, {39950, 40521}
X(57148) = X(i)-vertex conjugate of X(j) for these {i, j}: {81, 16693}
X(57148) = X(i)-Dao conjugate of X(j) for these {i, j}: {693, 850}, {2486, 52579}, {17761, 594}, {40592, 54118}, {40620, 40216}, {55067, 55076}
X(57148) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 81}, {662, 4251}
X(57148) = X(i)-cross conjugate of X(j) for these {i, j}: {38346, 1621}
X(57148) = pole of line {81, 16679} with respect to the circumcircle
X(57148) = pole of line {667, 693} with respect to the Kiepert parabola
X(57148) = pole of line {1018, 2284} with respect to the Stammler hyperbola
X(57148) = pole of line {21, 16684} with respect to the Steiner circumellipse
X(57148) = pole of line {4033, 42720} with respect to the Wallace hyperbola
X(57148) = triaxial point of ABC, the circumcevian triangle of X(81), and the X(3)-circumconcevian triangle of X(81)
X(57148) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(593), X(6185)}}, {{A, B, C, X(1019), X(4040)}}, {{A, B, C, X(1252), X(1509)}}, {{A, B, C, X(1621), X(6654)}}, {{A, B, C, X(2254), X(21104)}}, {{A, B, C, X(3960), X(17761)}}, {{A, B, C, X(8632), X(38346)}}, {{A, B, C, X(14004), X(46502)}}, {{A, B, C, X(16694), X(18166)}}, {{A, B, C, X(21007), X(43929)}}, {{A, B, C, X(33765), X(52393)}}
X(57148) = barycentric product X(i)*X(j) for these (i, j): {21, 57167}, {110, 40619}, {284, 57247}, {1019, 17277}, {1021, 33765}, {1621, 7192}, {2486, 52935}, {3737, 55082}, {3996, 7203}, {4040, 86}, {4151, 757}, {4251, 7199}, {17143, 3733}, {17494, 81}, {17761, 662}, {18152, 57129}, {18155, 55086}, {20954, 58}, {21007, 274}, {21727, 6628}, {22160, 286}, {38346, 799}, {38347, 4573}, {38365, 4625}, {38859, 7253}
X(57148) = barycentric quotient X(i)/X(j) for these (i, j): {81, 54118}, {757, 53649}, {849, 43076}, {1019, 17758}, {1621, 3952}, {2486, 4036}, {3294, 4103}, {3733, 13476}, {3737, 55076}, {4040, 10}, {4151, 1089}, {4251, 1018}, {7192, 40216}, {17143, 27808}, {17277, 4033}, {17494, 321}, {17761, 1577}, {20954, 313}, {21007, 37}, {21727, 6535}, {22160, 72}, {27168, 22028}, {38346, 661}, {38347, 3700}, {38365, 4041}, {38859, 4566}, {40619, 850}, {55086, 4551}, {57129, 2350}, {57167, 1441}, {57247, 349}
X(57148) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7192, 7252, 81}


X(57149) = X(99)X(20696)∩X(514)X(1919)

Barycentrics    (a+b)*(b-c)*(a+c)*(-(b^2*c^2)+a^3*(b+c)-a^2*(b^2+b*c+c^2)) : :

X(57149) lies on these lines: {86, 52619}, {99, 20696}, {514, 1919}, {525, 23145}, {669, 4367}, {3907, 18077}, {4107, 40627}, {4151, 4360}, {4560, 33296}, {7199, 29051}, {17277, 52592}, {21225, 21791}, {23807, 55969}, {26775, 27016}, {26822, 27077}

X(57149) = perspector of circumconic {{A, B, C, X(40409), X(52394)}}
X(57149) = X(i)-Dao conjugate of X(j) for these {i, j}: {3261, 850}, {44312, 21035}
X(57149) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 86}
X(57149) = pole of line {86, 16683} with respect to the circumcircle
X(57149) = pole of line {649, 3261} with respect to the Kiepert parabola
X(57149) = pole of line {46148, 46177} with respect to the Stammler hyperbola
X(57149) = pole of line {4184, 17150} with respect to the Steiner circumellipse
X(57149) = pole of line {4568, 20525} with respect to the Wallace hyperbola
X(57149) = triaxial point of ABC, the circumcevian triangle of X(86), and the X(3)-circumconcevian triangle of X(86)
X(57149) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7255), X(10566)}}, {{A, B, C, X(20696), X(21791)}}
X(57149) = barycentric product X(i)*X(j) for these (i, j): {21, 57190}, {58, 57056}, {21225, 86}, {21791, 310}, {21901, 873}, {23093, 44129}, {44312, 99}, {57110, 81}
X(57149) = barycentric quotient X(i)/X(j) for these (i, j): {21225, 10}, {21791, 42}, {21901, 756}, {23093, 71}, {44312, 523}, {57056, 313}, {57110, 321}, {57190, 1441}


X(57150) = X(6)X(31639)∩X(99)X(670)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(-(b^2*c^2)+a^2*(b^2+c^2)) : :

X(57150) lies on these lines: {6, 31639}, {69, 25314}, {99, 670}, {110, 3222}, {599, 1078}, {648, 2489}, {662, 4598}, {931, 53631}, {1576, 4590}, {2142, 15342}, {2396, 53350}, {2421, 36841}, {3229, 44371}, {4558, 17941}, {5106, 25054}, {5181, 7796}, {6374, 20794}, {7788, 33651}, {14570, 53367}, {26714, 53621}

X(57150) = trilinear pole of line {194, 1613}
X(57150) = X(i)-isoconjugate-of-X(j) for these {i, j}: {512, 3223}, {523, 34248}, {661, 3224}, {669, 18832}, {798, 2998}, {1577, 51951}, {1924, 40162}, {4117, 53654}, {15389, 24006}, {18070, 19606}, {20910, 53148}
X(57150) = X(i)-Dao conjugate of X(j) for these {i, j}: {76, 850}, {9428, 40162}, {9494, 23610}, {23301, 23099}, {31998, 2998}, {32746, 523}, {36830, 3224}, {39054, 3223}
X(57150) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 99}
X(57150) = X(i)-cross conjugate of X(j) for these {i, j}: {9491, 1613}, {23301, 194}
X(57150) = pole of line {6, 3552} with respect to the Kiepert parabola
X(57150) = pole of line {669, 2451} with respect to the Stammler hyperbola
X(57150) = pole of line {512, 625} with respect to the Wallace hyperbola
X(57150) = triaxial point of ABC, the circumcevian triangle of X(99), and the X(3)-circumconcevian triangle of X(99)
X(57150) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(34071)}}, {{A, B, C, X(648), X(880)}}, {{A, B, C, X(670), X(3222)}}, {{A, B, C, X(804), X(2489)}}, {{A, B, C, X(874), X(1740)}}, {{A, B, C, X(887), X(9491)}}, {{A, B, C, X(1576), X(41337)}}, {{A, B, C, X(1613), X(23342)}}, {{A, B, C, X(11325), X(11634)}}, {{A, B, C, X(11636), X(38834)}}, {{A, B, C, X(18829), X(52608)}}, {{A, B, C, X(23301), X(35522)}}, {{A, B, C, X(52612), X(56053)}}
X(57150) = barycentric product X(i)*X(j) for these (i, j): {110, 6374}, {163, 18837}, {194, 99}, {1424, 7257}, {1613, 670}, {1740, 799}, {3186, 4563}, {3221, 34537}, {3222, 53147}, {4558, 51843}, {4601, 50516}, {4625, 7075}, {11325, 52608}, {17082, 645}, {17149, 662}, {20794, 6331}, {20910, 24041}, {21080, 4610}, {21191, 4600}, {21877, 4623}, {22028, 52935}, {23301, 4590}, {23807, 4567}, {25128, 4620}, {43187, 51427}, {44168, 9491}, {47642, 880}, {51913, 55202}
X(57150) = barycentric quotient X(i)/X(j) for these (i, j): {99, 2998}, {110, 3224}, {163, 34248}, {194, 523}, {662, 3223}, {670, 40162}, {799, 18832}, {1424, 4017}, {1576, 51951}, {1613, 512}, {1740, 661}, {2524, 20975}, {3186, 2501}, {3221, 3124}, {4558, 3504}, {4563, 43714}, {4576, 42551}, {4590, 3222}, {6374, 850}, {7075, 4041}, {9491, 1084}, {11325, 2489}, {17082, 7178}, {17149, 1577}, {17941, 39927}, {18837, 20948}, {20794, 647}, {20910, 1109}, {21056, 21043}, {21080, 4024}, {21144, 21131}, {21191, 3120}, {21877, 4705}, {22028, 4036}, {23301, 115}, {23572, 3122}, {23807, 16732}, {25128, 21044}, {27168, 2486}, {32661, 15389}, {34537, 53654}, {35278, 40821}, {38834, 18105}, {47642, 882}, {50516, 3125}, {51427, 3569}, {51843, 14618}, {53147, 23301}, {57216, 47733}
X(57150) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {670, 1634, 99}, {1634, 23342, 670}


X(57151) = X(100)X(190)∩X(984)X(1621)

Barycentrics    a*(a-b)*(a-c)*(a^2*(b+c)-b*c*(b+c)+a*(b^2+c^2)) : :

X(57151) lies on these lines: {100, 190}, {101, 34594}, {109, 53685}, {110, 53627}, {932, 8652}, {984, 1621}, {1897, 50039}, {2397, 53349}, {2427, 57192}, {2975, 5692}, {3573, 57084}, {3909, 21362}, {3980, 32931}, {4588, 53625}, {4641, 18211}, {5163, 21893}, {8701, 53637}, {17154, 54333}, {17334, 35984}, {17944, 57119}, {21320, 24542}, {28152, 53635}, {28166, 53636}, {28196, 43350}

X(57151) = trilinear pole of line {3216, 16685}
X(57151) = X(i)-isoconjugate-of-X(j) for these {i, j}: {244, 53627}, {513, 39748}, {514, 39964}, {649, 35058}, {667, 40010}, {3733, 42471}, {15409, 24006}
X(57151) = X(i)-Dao conjugate of X(j) for these {i, j}: {321, 850}, {5375, 35058}, {6631, 40010}, {31946, 764}, {39026, 39748}
X(57151) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 100}
X(57151) = pole of line {1, 18601} with respect to the Kiepert parabola
X(57151) = pole of line {3733, 4063} with respect to the Stammler hyperbola
X(57151) = pole of line {7192, 20949} with respect to the Wallace hyperbola
X(57151) = triaxial point of ABC, the circumcevian triangle of X(100), and the X(3)-circumconcevian triangle of X(100)
X(57151) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(190), X(34594)}}, {{A, B, C, X(932), X(4756)}}, {{A, B, C, X(3216), X(17780)}}, {{A, B, C, X(8652), X(52923)}}, {{A, B, C, X(16685), X(23343)}}, {{A, B, C, X(17147), X(42720)}}, {{A, B, C, X(17989), X(50493)}}, {{A, B, C, X(50039), X(52609)}}
X(57151) = barycentric product X(i)*X(j) for these (i, j): {100, 17147}, {101, 18133}, {110, 40603}, {190, 3216}, {3159, 662}, {4601, 50493}, {16685, 668}, {21720, 24041}, {21858, 99}, {22458, 6335}, {31946, 4567}, {40034, 692}
X(57151) = barycentric quotient X(i)/X(j) for these (i, j): {100, 35058}, {101, 39748}, {190, 40010}, {692, 39964}, {1018, 42471}, {1252, 53627}, {3159, 1577}, {3216, 514}, {16685, 513}, {17147, 693}, {18133, 3261}, {21720, 1109}, {21858, 523}, {22458, 905}, {31946, 16732}, {32661, 15409}, {40034, 40495}, {40603, 850}, {50493, 3125}
X(57151) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17780, 23845, 100}, {23343, 53280, 3952}


X(57152) = X(111)X(351)∩X(512)X(10562)

Barycentrics    a^2*(b-c)*(b+c)*(a^2+b^2-2*c^2)*(a^2-2*b^2+c^2)*(7*a^4+4*b^4-b^2*c^2+4*c^4-7*a^2*(b^2+c^2)) : :

X(57152) lies on these lines: {111, 351}, {512, 10562}, {2408, 9979}, {2444, 9517}, {5466, 9125}, {5653, 54246}, {8644, 10561}, {9171, 39024}, {9213, 15899}, {42008, 53365}

X(57152) = X(i)-Dao conjugate of X(j) for these {i, j}: {5466, 850}
X(57152) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 111}
X(57152) = triaxial point of ABC, the circumcevian triangle of X(111), and the X(3)-circumconcevian triangle of X(111)
X(57152) = intersection, other than A, B, C, of circumconics {{A, B, C, X(111), X(10153)}}, {{A, B, C, X(9178), X(44010)}}
X(57152) = barycentric product X(i)*X(j) for these (i, j): {111, 44010}
X(57152) = barycentric quotient X(i)/X(j) for these (i, j): {44010, 3266}


X(57153) = X(4)X(23583)∩X(110)X(1301)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^4-(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(57153) lies on these lines: {4, 23583}, {6, 38867}, {24, 6593}, {25, 34570}, {110, 1301}, {112, 1576}, {154, 15291}, {163, 36049}, {250, 4558}, {648, 2409}, {907, 39417}, {1296, 10423}, {1461, 32676}, {3233, 22239}, {6622, 38745}, {7669, 8749}, {9407, 44096}, {10312, 19136}, {10735, 53569}, {15262, 42671}, {19118, 51335}, {19153, 39575}, {32715, 32734}, {35278, 41678}, {36841, 52913}, {38717, 47413}, {41679, 52916}, {53958, 53962}

X(57153) = trilinear pole of line {154, 3172}
X(57153) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 14638}, {64, 14208}, {253, 656}, {459, 24018}, {523, 19611}, {525, 2184}, {661, 34403}, {693, 53012}, {810, 41530}, {822, 52581}, {850, 19614}, {1073, 1577}, {1301, 17879}, {2155, 3267}, {2632, 53639}, {3708, 44326}, {4466, 56235}, {8809, 52355}, {14642, 20948}, {15394, 24006}, {17094, 44692}, {17898, 52559}, {20902, 46639}
X(57153) = X(i)-Dao conjugate of X(j) for these {i, j}: {4, 850}, {6, 14638}, {122, 339}, {6587, 23107}, {36830, 34403}, {39020, 36793}, {39062, 41530}, {40596, 253}, {45245, 3267}, {45248, 3265}
X(57153) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 112}, {250, 15905}
X(57153) = X(i)-cross conjugate of X(j) for these {i, j}: {6587, 51508}, {42658, 154}
X(57153) = pole of line {112, 44060} with respect to the circumcircle
X(57153) = pole of line {159, 11413} with respect to the Kiepert parabola
X(57153) = pole of line {3265, 8057} with respect to the Stammler hyperbola
X(57153) = triaxial point of ABC, the circumcevian triangle of X(112), and the X(3)-circumconcevian triangle of X(112)
X(57153) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(1296)}}, {{A, B, C, X(112), X(1461)}}, {{A, B, C, X(154), X(23347)}}, {{A, B, C, X(1301), X(32713)}}, {{A, B, C, X(2492), X(6587)}}, {{A, B, C, X(2881), X(8057)}}, {{A, B, C, X(3079), X(46587)}}, {{A, B, C, X(4558), X(15905)}}, {{A, B, C, X(9409), X(42658)}}, {{A, B, C, X(32738), X(52604)}}
X(57153) = barycentric product X(i)*X(j) for these (i, j): {3, 57219}, {21, 57193}, {25, 36841}, {101, 44698}, {107, 15905}, {110, 1249}, {112, 20}, {154, 648}, {162, 610}, {163, 1895}, {204, 662}, {249, 44705}, {250, 6587}, {1301, 36413}, {1414, 7156}, {1625, 38808}, {1974, 55224}, {2715, 44704}, {3079, 46639}, {3172, 99}, {3213, 643}, {4556, 53011}, {4558, 6525}, {10152, 2420}, {14249, 32661}, {15291, 4240}, {15384, 57201}, {15466, 1576}, {18750, 32676}, {23582, 42658}, {23964, 8057}, {30456, 52914}, {32713, 37669}, {33629, 35360}, {35602, 6529}, {41676, 51508}, {42459, 933}, {44060, 45245}, {44695, 4565}, {44696, 5546}, {44699, 7252}, {44700, 5995}, {44701, 5994}, {52913, 6}
X(57153) = barycentric quotient X(i)/X(j) for these (i, j): {3, 14638}, {20, 3267}, {107, 52581}, {110, 34403}, {112, 253}, {122, 23107}, {154, 525}, {163, 19611}, {204, 1577}, {250, 44326}, {610, 14208}, {648, 41530}, {1249, 850}, {1576, 1073}, {1895, 20948}, {3172, 523}, {3213, 4077}, {6525, 14618}, {6587, 339}, {7156, 4086}, {8057, 36793}, {14574, 14642}, {15291, 34767}, {15466, 44173}, {15905, 3265}, {23964, 53639}, {32661, 15394}, {32676, 2184}, {32713, 459}, {32739, 53012}, {35602, 4143}, {36841, 305}, {37669, 52617}, {41937, 1301}, {42658, 15526}, {44698, 3261}, {44705, 338}, {51508, 4580}, {52604, 13157}, {52913, 76}, {53011, 52623}, {55224, 40050}, {57193, 1441}, {57219, 264}
X(57153) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1576, 23347, 32713}, {1576, 32713, 112}


X(57154) = X(135)X(136)∩X(230)X(231)

Barycentrics    (b-c)*(b+c)*(a^4+b^4+c^4-2*a^2*(b^2+c^2))*(2*a^4+(b^2-c^2)^2-a^2*(b^2+c^2)) : :
X(57154) = -X[684]+3*X[11123], -3*X[14417]+2*X[53567], -4*X[39477]+3*X[44202], -4*X[39509]+3*X[44203]

X(57154) lies on these lines: {110, 925}, {114, 2974}, {135, 136}, {230, 231}, {526, 36739}, {684, 11123}, {690, 10992}, {924, 6563}, {2799, 11616}, {3563, 40120}, {8151, 9517}, {8552, 32204}, {9003, 44010}, {9033, 32263}, {14417, 53567}, {14769, 55150}, {15366, 44816}, {18883, 43088}, {39477, 44202}, {39509, 44203}, {47324, 55130}

X(57154) = reflection of X(i) in X(j) for these {i,j}: {16230, 6132}, {8552, 32204}
X(57154) = inverse of X(32734) in Stammler hyperbola
X(57154) = perspector of circumconic {{A, B, C, X(4), X(7763)}}
X(57154) = X(i)-isoconjugate-of-X(j) for these {i, j}: {925, 36051}, {1820, 32697}, {2351, 36105}, {2987, 36145}, {8773, 32734}
X(57154) = X(i)-vertex conjugate of X(j) for these {i, j}: {114, 39828}, {135, 54069}
X(57154) = X(i)-Dao conjugate of X(j) for these {i, j}: {114, 925}, {135, 3563}, {39001, 2351}, {39013, 2987}, {39069, 36145}, {39072, 32734}, {41181, 52350}, {55152, 2165}
X(57154) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 114}, {2966, 571}, {40120, 135}
X(57154) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56006, 21294}
X(57154) = pole of line {25, 114} with respect to the circumcircle
X(57154) = pole of line {3448, 7396} with respect to the DeLongchamps circle
X(57154) = pole of line {15928, 39809} with respect to the 2nd DrozFarny circle
X(57154) = pole of line {2, 136} with respect to the polar circle
X(57154) = pole of line {38744, 44454} with respect to the Stammler circle
X(57154) = pole of line {4, 3566} with respect to the Kiepert parabola
X(57154) = pole of line {114, 155} with respect to the MacBeath circumconic
X(57154) = pole of line {427, 2974} with respect to the MacBeath Inconic
X(57154) = pole of line {924, 4558} with respect to the Stammler hyperbola
X(57154) = pole of line {193, 571} with respect to the Steiner circumellipse
X(57154) = pole of line {6, 46184} with respect to the Steiner inellipse
X(57154) = pole of line {925, 4563} with respect to the Wallace hyperbola
X(57154) = triaxial point of ABC, the circumcevian triangle of X(114), and the X(3)-circumconcevian triangle of X(114)
X(57154) = intersection, other than A, B, C, of circumconics {{A, B, C, X(24), X(2493)}}, {{A, B, C, X(110), X(6753)}}, {{A, B, C, X(114), X(232)}}, {{A, B, C, X(136), X(925)}}, {{A, B, C, X(230), X(2974)}}, {{A, B, C, X(468), X(18883)}}, {{A, B, C, X(924), X(2489)}}, {{A, B, C, X(3003), X(44145)}}, {{A, B, C, X(3018), X(36875)}}, {{A, B, C, X(3563), X(31842)}}, {{A, B, C, X(3564), X(16310)}}, {{A, B, C, X(4226), X(47236)}}, {{A, B, C, X(7763), X(41360)}}, {{A, B, C, X(11547), X(47200)}}, {{A, B, C, X(14273), X(43088)}}, {{A, B, C, X(36955), X(47421)}}, {{A, B, C, X(46953), X(52584)}}
X(57154) = barycentric product X(i)*X(j) for these (i, j): {230, 6563}, {3564, 57065}, {31635, 55267}, {44145, 52584}, {51481, 924}, {55122, 7763}
X(57154) = barycentric quotient X(i)/X(j) for these (i, j): {24, 32697}, {230, 925}, {924, 2987}, {1692, 32734}, {1748, 36105}, {1993, 10425}, {6563, 8781}, {6753, 3563}, {8772, 36145}, {30451, 42065}, {31635, 55266}, {34952, 32654}, {44145, 30450}, {47421, 35364}, {51481, 46134}, {52584, 43705}, {55122, 2165}, {55216, 36051}, {57065, 35142}
X(57154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {523, 6132, 16230}, {14325, 14326, 6753}, {16230, 45687, 6132}, {45687, 57087, 41360}


X(57155) = X(1)X(6371)∩X(36)X(238)

Barycentrics    a*(b-c)*(a^3+2*a^2*(b+c)+b*c*(b+c)+a*(b^2-b*c+c^2)) : :

X(57155) lies on these lines: {1, 6371}, {9, 2483}, {36, 238}, {521, 48324}, {522, 4063}, {523, 21385}, {649, 3239}, {659, 50346}, {830, 17420}, {834, 48307}, {900, 21391}, {1021, 47697}, {3716, 29487}, {4367, 6363}, {4401, 17418}, {4498, 28161}, {4579, 6163}, {4778, 48320}, {4811, 29013}, {4962, 48011}, {4977, 53392}, {5214, 18197}, {6003, 48150}, {6129, 48335}, {6615, 29545}, {7253, 52615}, {8672, 47970}, {9002, 48281}, {13245, 48032}, {21389, 50455}, {28183, 53411}, {28225, 48144}, {28398, 48042}, {28481, 57158}, {29350, 42312}, {29426, 48050}, {29807, 48080}, {48340, 48352}

X(57155) = reflection of X(i) in X(j) for these {i,j}: {1, 50353}, {17418, 4401}, {21173, 667}, {3737, 4057}, {48086, 50330}, {48335, 6129}, {48337, 48307}, {48352, 48340}, {5214, 47694}, {50346, 659}
X(57155) = perspector of circumconic {{A, B, C, X(81), X(1222)}}
X(57155) = X(i)-Dao conjugate of X(j) for these {i, j}: {48131, 3004}
X(57155) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8707, 1}
X(57155) = pole of line {46, 529} with respect to the Bevan circle
X(57155) = pole of line {1, 15621} with respect to the circumcircle
X(57155) = pole of line {962, 10441} with respect to the Conway circle
X(57155) = pole of line {3687, 4696} with respect to the excircles-radical circle
X(57155) = pole of line {8, 1764} with respect to the excentral-hexyl ellipse
X(57155) = pole of line {40528, 53524} with respect to the Feuerbach hyperbola
X(57155) = pole of line {3729, 5256} with respect to the Steiner circumellipse
X(57155) = pole of line {3666, 17355} with respect to the Steiner inellipse
X(57155) = pole of line {650, 4063} with respect to the Yff parabola
X(57155) = triaxial point of ABC, the circumcevian triangle of X(1), and the X(8)-circumconcevian triangle of X(1)
X(57155) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1019), X(56323)}}, {{A, B, C, X(18108), X(21173)}}
X(57155) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 4057, 3737}, {513, 50330, 48086}, {513, 667, 21173}, {834, 48307, 48337}


X(57156) = X(30)X(511)∩X(1257)X(2401)

Barycentrics    (b-c)*(-a^2+b^2+c^2)*(2*a^2-a*(b+c)+(b+c)^2) : :

X(57156) lies on these lines: {1, 57158}, {30, 511}, {1257, 2401}, {1459, 52355}, {3700, 20980}, {4064, 53532}, {4086, 53522}, {4391, 44409}, {10015, 20293}, {21173, 50333}, {57042, 57168}

X(57156) = complement of X(57156)
X(57156) = anticomplement of X(57156)
X(57156) = perspector of circumconic {{A, B, C, X(2), X(11115)}}
X(57156) = X(i)-Dao conjugate of X(j) for these {i, j}: {15611, 4}, {17355, 17906}
X(57156) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1222, 2968}, {8707, 3}
X(57156) = pole of line {6, 8} with respect to the MacBeath circumconic
X(57156) = pole of line {2, 41007} with respect to the Steiner circumellipse
X(57156) = pole of line {2, 41007} with respect to the Steiner inellipse
X(57156) = triaxial point of ABC, the circumcevian triangle of X(3), and the X(8)-circumconcevian triangle of X(3)
X(57156) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(30), X(11115)}}, {{A, B, C, X(69), X(5846)}}, {{A, B, C, X(515), X(10106)}}, {{A, B, C, X(516), X(17355)}}, {{A, B, C, X(517), X(1257)}}, {{A, B, C, X(656), X(4132)}}, {{A, B, C, X(905), X(8712)}}, {{A, B, C, X(1459), X(9002)}}, {{A, B, C, X(2401), X(29162)}}, {{A, B, C, X(3667), X(4025)}}, {{A, B, C, X(8678), X(48322)}}, {{A, B, C, X(15413), X(30520)}}
X(57156) = barycentric product X(i)*X(j) for these (i, j): {304, 48322}, {4696, 905}, {10106, 6332}, {11115, 525}, {17355, 4025}
X(57156) = barycentric quotient X(i)/X(j) for these (i, j): {4696, 6335}, {10106, 653}, {11115, 648}, {17355, 1897}, {48322, 19}
X(57156) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {521, 23874, 525}, {525, 9031, 39472}, {9031, 23874, 521}


X(57157) = X(3)X(28481)∩X(187)X(237)

Barycentrics    a^4*(b-c)*(b^2+c^2+a*(b+c)) : :

X(57157) lies on these lines: {3, 28481}, {187, 237}, {249, 17939}, {659, 4560}, {810, 50521}, {900, 4057}, {1333, 18002}, {3835, 28255}, {3837, 55187}, {4367, 48298}, {4401, 8714}, {4477, 21005}, {4581, 50353}, {7234, 50523}, {9297, 23225}, {14838, 27675}, {16692, 53287}, {17072, 28373}, {17989, 29232}, {20295, 27677}, {20979, 23466}, {21301, 24533}, {21789, 33720}, {23394, 48323}, {24626, 27168}, {25537, 27345}, {27293, 28286}

X(57157) = perspector of circumconic {{A, B, C, X(6), X(1397)}}
X(57157) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 8707}, {76, 36147}, {100, 1240}, {190, 30710}, {308, 35334}, {312, 6648}, {561, 32736}, {668, 1220}, {799, 14624}, {1018, 40827}, {1978, 2298}, {2363, 27808}, {3596, 36098}, {3699, 31643}, {4033, 14534}, {4581, 7035}, {8687, 28659}
X(57157) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 8707}, {960, 27808}, {1211, 6386}, {3125, 27801}, {6371, 3004}, {8054, 1240}, {17197, 40072}, {17419, 28659}, {38992, 3596}, {38996, 14624}, {39015, 76}, {40368, 32736}, {52087, 1978}, {55053, 30710}
X(57157) = X(i)-Ceva conjugate of X(j) for these {i, j}: {893, 21762}, {1333, 1977}, {1397, 41224}, {1402, 3248}, {3435, 35506}, {7087, 38364}, {8707, 6}, {52150, 1015}, {53280, 2300}
X(57157) = X(i)-cross conjugate of X(j) for these {i, j}: {41224, 1397}
X(57157) = pole of line {5846, 44453} with respect to the 2nd Brocard circle
X(57157) = pole of line {6, 8} with respect to the circumcircle
X(57157) = pole of line {5846, 44439} with respect to the 2nd DrozFarny circle
X(57157) = pole of line {5846, 44456} with respect to the Stammler circle
X(57157) = pole of line {6, 8} with respect to the Brocard inellipse
X(57157) = pole of line {13476, 24349} with respect to the De Longchamps ellipse
X(57157) = pole of line {669, 2605} with respect to the Kiepert parabola
X(57157) = pole of line {99, 8707} with respect to the Stammler hyperbola
X(57157) = pole of line {194, 32933} with respect to the Steiner circumellipse
X(57157) = pole of line {39, 44416} with respect to the Steiner inellipse
X(57157) = pole of line {20979, 47793} with respect to the Yff parabola
X(57157) = triaxial point of ABC, the circumcevian triangle of X(6), and the X(8)-circumconcevian triangle of X(6)
X(57157) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(512), X(6371)}}, {{A, B, C, X(663), X(1919)}}, {{A, B, C, X(875), X(50510)}}, {{A, B, C, X(890), X(53280)}}, {{A, B, C, X(1193), X(3009)}}, {{A, B, C, X(1977), X(5040)}}, {{A, B, C, X(1980), X(8646)}}, {{A, B, C, X(2300), X(3230)}}, {{A, B, C, X(3004), X(3005)}}, {{A, B, C, X(3229), X(16705)}}, {{A, B, C, X(3231), X(40153)}}, {{A, B, C, X(3250), X(48131)}}, {{A, B, C, X(3666), X(8620)}}, {{A, B, C, X(3733), X(8639)}}, {{A, B, C, X(4357), X(8619)}}, {{A, B, C, X(18002), X(42661)}}
X(57157) = barycentric product X(i)*X(j) for these (i, j): {6, 6371}, {31, 48131}, {1015, 53280}, {1019, 3725}, {1193, 649}, {1333, 50330}, {1397, 3910}, {1459, 2354}, {1829, 22383}, {1919, 4357}, {1977, 53332}, {1980, 20911}, {2092, 3733}, {2269, 43924}, {2292, 57129}, {2300, 513}, {3004, 32}, {3248, 3882}, {3666, 667}, {4267, 7180}, {4509, 560}, {14412, 38882}, {16695, 45218}, {16705, 669}, {16739, 1924}, {17108, 8635}, {17185, 51641}, {17420, 604}, {20967, 3669}, {21124, 2206}, {22074, 43923}, {22076, 43925}, {22345, 6591}, {24471, 3063}, {27455, 8640}, {35506, 52928}, {39015, 8707}, {40153, 512}, {41224, 6648}, {42661, 593}, {44092, 7254}, {45197, 57074}, {46889, 7250}, {52326, 56}, {52410, 57158}, {54308, 798}, {57181, 960}
X(57157) = barycentric quotient X(i)/X(j) for these (i, j): {32, 8707}, {560, 36147}, {649, 1240}, {667, 30710}, {669, 14624}, {1193, 1978}, {1397, 6648}, {1501, 32736}, {1919, 1220}, {1923, 35334}, {1977, 4581}, {1980, 2298}, {2092, 27808}, {2300, 668}, {3004, 1502}, {3666, 6386}, {3725, 4033}, {3733, 40827}, {3910, 40363}, {4509, 1928}, {6371, 76}, {16705, 4609}, {17420, 28659}, {20967, 646}, {22096, 15420}, {39015, 3004}, {40153, 670}, {41224, 3910}, {41280, 8687}, {42661, 28654}, {48131, 561}, {50330, 27801}, {52326, 3596}, {53280, 31625}, {54308, 4602}, {57181, 31643}
X(57157) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 667, 8639}, {667, 1946, 8636}, {667, 8637, 669}, {667, 8640, 663}, {669, 8630, 8638}


X(57158) = X(1)X(57156)∩X(522)X(650)

Barycentrics    (b-c)*(-a+b+c)^2*(b^2+c^2+a*(b+c)) : :
X(57158) = -2*X[676]+3*X[48173],-3*X[14429]+X[50338], -3*X[48243]+4*X[53573]

X(57158) lies on these lines: {1, 57156}, {513, 6332}, {521, 14312}, {522, 650}, {523, 4391}, {525, 21189}, {676, 48173}, {900, 4057}, {918, 4017}, {1769, 4064}, {2804, 4086}, {3004, 4509}, {3667, 3803}, {3904, 4977}, {3910, 17420}, {4079, 48022}, {4397, 42337}, {4811, 6362}, {4990, 7253}, {6129, 23874}, {6366, 20293}, {6615, 48278}, {8062, 53522}, {8672, 48046}, {14429, 50338}, {15413, 43042}, {20317, 47136}, {21960, 47134}, {23800, 50357}, {25259, 25902}, {28481, 57155}, {47694, 57197}, {48243, 53573}, {53285, 57081}

X(57158) = midpoint of X(i) and X(j) for these {i,j}: {1769, 4064}, {4811, 20294}, {6615, 48278}
X(57158) = reflection of X(i) in X(j) for these {i,j}: {3004, 50330}, {47136, 20317}, {50333, 52355}, {50357, 23800}, {53522, 8062}, {7253, 4990}
X(57158) = isogonal conjugate of X(52928)
X(57158) = perspector of circumconic {{A, B, C, X(8), X(2985)}}
X(57158) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52928}, {56, 36098}, {57, 8687}, {109, 961}, {269, 32736}, {604, 6648}, {1020, 1169}, {1106, 8707}, {1407, 36147}, {1461, 2298}, {2359, 32714}, {2363, 53321}, {4581, 24027}
X(57158) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 36098}, {3, 52928}, {11, 961}, {522, 4581}, {960, 53321}, {1211, 934}, {2092, 651}, {2968, 1220}, {3125, 1427}, {3161, 6648}, {3239, 15420}, {3666, 4566}, {3910, 3004}, {5452, 8687}, {6552, 8707}, {6600, 32736}, {7358, 1791}, {17197, 1014}, {17419, 57}, {24771, 36147}, {35508, 2298}, {38992, 56}, {39015, 1407}, {40624, 31643}, {52087, 1461}, {55068, 2363}
X(57158) = X(i)-Ceva conjugate of X(j) for these {i, j}: {21, 2968}, {3701, 24026}, {4451, 4081}, {8707, 8}, {53332, 3687}, {56276, 38992}
X(57158) = pole of line {8, 197} with respect to the circumcircle
X(57158) = pole of line {497, 1854} with respect to the Incircle
X(57158) = pole of line {1220, 2476} with respect to the nine-point circle
X(57158) = pole of line {9708, 19544} with respect to the orthoptic circle of the Steiner inellipse
X(57158) = pole of line {278, 961} with respect to the polar circle
X(57158) = pole of line {2968, 3271} with respect to the Feuerbach hyperbola
X(57158) = pole of line {4565, 52928} with respect to the Stammler hyperbola
X(57158) = pole of line {144, 5739} with respect to the Steiner circumellipse
X(57158) = pole of line {9, 5743} with respect to the Steiner inellipse
X(57158) = pole of line {3239, 27526} with respect to the Yff parabola
X(57158) = pole of line {4566, 4573} with respect to the Wallace hyperbola
X(57158) = triaxial point of ABC, the circumcevian triangle of X(8), and the X(8)-circumconcevian triangle of X(8)
X(57158) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(522), X(3910)}}, {{A, B, C, X(650), X(3004)}}, {{A, B, C, X(1848), X(16870)}}, {{A, B, C, X(3666), X(9371)}}, {{A, B, C, X(3674), X(45275)}}, {{A, B, C, X(3687), X(6745)}}, {{A, B, C, X(3693), X(3965)}}, {{A, B, C, X(3700), X(7253)}}, {{A, B, C, X(3704), X(46877)}}, {{A, B, C, X(3709), X(21789)}}, {{A, B, C, X(4357), X(40869)}}, {{A, B, C, X(6371), X(42337)}}, {{A, B, C, X(15411), X(52355)}}, {{A, B, C, X(19608), X(50366)}}, {{A, B, C, X(52307), X(53280)}}
X(57158) = barycentric product X(i)*X(j) for these (i, j): {200, 4509}, {341, 48131}, {1021, 18697}, {1043, 21124}, {1146, 53332}, {1193, 52622}, {1211, 7253}, {1228, 21789}, {1577, 46877}, {2269, 35519}, {3004, 346}, {3239, 4357}, {3596, 52326}, {3666, 4397}, {3674, 4163}, {3687, 522}, {3704, 4560}, {3910, 8}, {3965, 693}, {4391, 960}, {15411, 429}, {15416, 1829}, {16739, 4171}, {17185, 4086}, {17420, 312}, {18155, 21033}, {20911, 3900}, {23978, 53280}, {24026, 3882}, {43728, 51407}, {46878, 6332}, {46889, 850}, {54314, 57055}
X(57158) = barycentric quotient X(i)/X(j) for these (i, j): {6, 52928}, {8, 6648}, {9, 36098}, {55, 8687}, {200, 36147}, {220, 32736}, {346, 8707}, {429, 52607}, {650, 961}, {960, 651}, {1021, 2363}, {1146, 4581}, {1193, 1461}, {1211, 4566}, {1829, 32714}, {1848, 36118}, {2092, 53321}, {2269, 109}, {2292, 1020}, {2968, 15420}, {3004, 279}, {3239, 1220}, {3666, 934}, {3674, 4626}, {3687, 664}, {3704, 4552}, {3882, 7045}, {3900, 2298}, {3910, 7}, {3965, 100}, {4267, 4565}, {4357, 658}, {4391, 31643}, {4397, 30710}, {4509, 1088}, {6371, 1407}, {7253, 14534}, {16705, 4616}, {16739, 4635}, {17185, 1414}, {17420, 57}, {20653, 4605}, {20911, 4569}, {20967, 1415}, {21033, 4551}, {21124, 3668}, {21789, 1169}, {22074, 36059}, {22076, 52610}, {23090, 1798}, {24471, 4617}, {35506, 6371}, {36197, 57162}, {40966, 4559}, {40976, 32674}, {46877, 662}, {46878, 653}, {46889, 110}, {48131, 269}, {50330, 1427}, {52326, 56}, {52622, 1240}, {53280, 1262}, {53332, 1275}, {54308, 4637}, {54314, 13149}, {57055, 1791}, {57108, 2359}, {57157, 52410}
X(57158) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {522, 52355, 50333}, {4811, 20294, 6362}


X(57159) = X(1)X(3910)∩X(522)X(663)

Barycentrics    a*(a-b-c)*(b-c)*(a^4-a^3*(b+c)+b*c*(b+c)^2-a^2*(b^2-3*b*c+c^2)+a*(b^3+b^2*c+b*c^2+c^3)) : :

X(57159) lies on these lines: {1, 3910}, {521, 50517}, {522, 663}, {667, 3900}, {3738, 50523}, {4040, 23880}, {4105, 8710}, {6362, 48288}, {29278, 53285}

X(57159) = reflection of X(i) in X(j) for these {i,j}: {57121, 48387}
X(57159) = perspector of circumconic {{A, B, C, X(333), X(23617)}}
X(57159) = X(i)-Dao conjugate of X(j) for these {i, j}: {17420, 3004}
X(57159) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8707, 9}
X(57159) = pole of line {9, 10882} with respect to the circumcircle
X(57159) = pole of line {6284, 10454} with respect to the Conway circle
X(57159) = pole of line {950, 29207} with respect to the Incircle
X(57159) = pole of line {63, 26621} with respect to the Steiner circumellipse
X(57159) = pole of line {5745, 43053} with respect to the Steiner inellipse
X(57159) = triaxial point of ABC, the circumcevian triangle of X(9), and the X(8)-circumconcevian triangle of X(9)
X(57159) = barycentric product X(i)*X(j) for these (i, j): {17419, 8707}
X(57159) = barycentric quotient X(i)/X(j) for these (i, j): {17419, 3004}
X(57159) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3900, 48387, 57121}


X(57160) = X(514)X(4064)∩X(522)X(1324)

Barycentrics    (b-c)*(b+c)*(a^3+2*b^3+3*b^2*c+3*b*c^2+2*c^3+a*(b^2+3*b*c+c^2)) : :
X(57160) = -3*X[4049]+2*X[21121]

X(57160) lies on circumconic {{A, B, C, X(31010), X(56321)}} and on these lines: {513, 22037}, {514, 4064}, {522, 1324}, {523, 4129}, {3239, 4024}, {3667, 7265}, {4049, 21121}, {4509, 20336}, {6129, 29196}, {6590, 57199}, {22003, 39185}, {23879, 52355}, {24083, 47701}, {28155, 47678}

X(57160) = reflection of X(i) in X(j) for these {i,j}: {57068, 23282}
X(57160) = perspector of circumconic {{A, B, C, X(6539), X(40394)}}
X(57160) = X(i)-Dao conjugate of X(j) for these {i, j}: {21124, 3004}
X(57160) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8707, 10}
X(57160) = pole of line {35203, 39566} with respect to the excircles-radical circle
X(57160) = pole of line {4416, 43990} with respect to the Steiner circumellipse
X(57160) = pole of line {5294, 41809} with respect to the Steiner inellipse
X(57160) = pole of line {3700, 4129} with respect to the Yff parabola
X(57160) = triaxial point of ABC, the circumcevian triangle of X(10), and the X(8)-circumconcevian triangle of X(10)
X(57160) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {522, 23282, 57068}


X(57161) = X(523)X(1325)∩X(798)X(1021)

Barycentrics    (a+b)*(a-b-c)*(b-c)*(a+c)*(a^2+a*c+b*(b+c))*(a^2+a*b+c*(b+c)) : :

X(57161) lies on these lines: {333, 17420}, {523, 1325}, {765, 8707}, {798, 1021}, {1919, 47129}, {3287, 3700}, {3737, 3907}, {4077, 7199}, {17418, 35519}, {24006, 54229}, {38469, 57162}

X(57161) = trilinear pole of line {21044, 55067}
X(57161) = X(i)-isoconjugate-of-X(j) for these {i, j}: {59, 50330}, {65, 53280}, {108, 22076}, {109, 2292}, {110, 52567}, {429, 36059}, {651, 2092}, {664, 3725}, {692, 41003}, {934, 40966}, {960, 53321}, {1020, 2269}, {1193, 4551}, {1211, 1415}, {1400, 3882}, {1402, 53332}, {1461, 21033}, {1829, 23067}, {2149, 21124}, {2300, 4552}, {3666, 4559}, {4557, 24471}, {4565, 21810}, {4566, 20967}, {6516, 44092}, {21859, 40153}, {22074, 52607}, {32739, 45196}
X(57161) = X(i)-Dao conjugate of X(j) for these {i, j}: {11, 2292}, {244, 52567}, {650, 21124}, {1086, 41003}, {1146, 1211}, {2968, 3704}, {3756, 4918}, {6615, 50330}, {6741, 20653}, {14714, 40966}, {20620, 429}, {35508, 21033}, {38983, 22076}, {38991, 2092}, {39025, 3725}, {40582, 3882}, {40602, 53280}, {40605, 53332}, {40619, 45196}, {40620, 3674}, {40624, 18697}, {40625, 4357}, {55064, 21810}, {55067, 3666}, {55068, 960}
X(57161) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8707, 21}
X(57161) = X(i)-cross conjugate of X(j) for these {i, j}: {2170, 333}, {24026, 29}
X(57161) = pole of line {429, 2292} with respect to the polar circle
X(57161) = pole of line {81, 11683} with respect to the Steiner circumellipse
X(57161) = triaxial point of ABC, the circumcevian triangle of X(21), and the X(8)-circumconcevian triangle of X(21)
X(57161) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(39766)}}, {{A, B, C, X(21), X(765)}}, {{A, B, C, X(29), X(1325)}}, {{A, B, C, X(190), X(53336)}}, {{A, B, C, X(314), X(32922)}}, {{A, B, C, X(333), X(19623)}}, {{A, B, C, X(513), X(3287)}}, {{A, B, C, X(522), X(523)}}, {{A, B, C, X(663), X(798)}}, {{A, B, C, X(885), X(17166)}}, {{A, B, C, X(1897), X(56321)}}, {{A, B, C, X(2170), X(17420)}}, {{A, B, C, X(3733), X(3737)}}, {{A, B, C, X(4560), X(7199)}}, {{A, B, C, X(4636), X(53306)}}, {{A, B, C, X(18155), X(47844)}}, {{A, B, C, X(51565), X(52380)}}
X(57161) = barycentric product X(i)*X(j) for these (i, j): {333, 4581}, {1021, 31643}, {1169, 35519}, {1220, 4560}, {1240, 7252}, {1791, 57215}, {1798, 46110}, {2363, 4391}, {14534, 522}, {15420, 29}, {17197, 8707}, {18155, 2298}, {30710, 3737}, {40827, 663}, {52379, 57162}, {52550, 661}
X(57161) = barycentric quotient X(i)/X(j) for these (i, j): {11, 21124}, {21, 3882}, {284, 53280}, {333, 53332}, {514, 41003}, {522, 1211}, {650, 2292}, {652, 22076}, {657, 40966}, {661, 52567}, {663, 2092}, {693, 45196}, {961, 1020}, {1019, 24471}, {1021, 960}, {1169, 109}, {1220, 4552}, {1798, 1813}, {2170, 50330}, {2298, 4551}, {2359, 23067}, {2363, 651}, {3063, 3725}, {3064, 429}, {3239, 3704}, {3700, 20653}, {3737, 3666}, {3900, 21033}, {3907, 27697}, {4041, 21810}, {4391, 18697}, {4521, 4918}, {4560, 4357}, {4581, 226}, {7192, 3674}, {7252, 1193}, {7253, 3687}, {14534, 664}, {15420, 307}, {17197, 3004}, {17926, 46878}, {18155, 20911}, {18191, 48131}, {21789, 2269}, {23189, 22097}, {35519, 1228}, {40827, 4572}, {52550, 799}, {57134, 22074}, {57162, 2171}, {57215, 54314}


X(57162) = X(10)X(830)∩X(650)X(667)

Barycentrics    a*(b-c)*(b+c)*(a^2+a*c+b*(b+c))*(a^2+a*b+c*(b+c)) : :

X(57162) lies on these lines: {10, 830}, {37, 18002}, {42, 48322}, {512, 3700}, {513, 2517}, {650, 667}, {661, 51641}, {798, 4041}, {1016, 2703}, {1220, 35352}, {3900, 50487}, {4160, 4504}, {4824, 15420}, {7178, 7250}, {8687, 9090}, {16828, 47816}, {17166, 25667}, {22280, 36147}, {38469, 57161}, {47912, 54251}, {47915, 51656}, {48086, 56191}, {48607, 55969}

X(57162) = reflection of X(i) in X(j) for these {i,j}: {57077, 4705}
X(57162) = trilinear pole of line {3121, 4516}
X(57162) = perspector of circumconic {{A, B, C, X(2298), X(14624)}}
X(57162) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 53332}, {81, 3882}, {86, 53280}, {99, 1193}, {100, 54308}, {101, 16705}, {110, 4357}, {163, 20911}, {190, 40153}, {249, 21124}, {643, 24471}, {648, 22097}, {651, 17185}, {658, 46889}, {662, 3666}, {664, 4267}, {692, 16739}, {799, 2300}, {811, 22345}, {934, 46877}, {960, 1414}, {1211, 4556}, {1829, 4592}, {1848, 4558}, {2092, 4610}, {2269, 4573}, {2292, 52935}, {2354, 4563}, {3004, 4570}, {3674, 5546}, {3687, 4565}, {3725, 4623}, {3910, 52378}, {3965, 4637}, {4567, 48131}, {4575, 54314}, {4600, 6371}, {4603, 28369}, {4614, 4719}, {4620, 52326}, {4625, 20967}, {4636, 41003}, {24041, 50330}
X(57162) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 53332}, {115, 20911}, {136, 54314}, {244, 4357}, {1015, 16705}, {1084, 3666}, {1086, 16739}, {3005, 50330}, {4988, 4509}, {5139, 1829}, {8054, 54308}, {14714, 46877}, {17423, 22345}, {38986, 1193}, {38991, 17185}, {38996, 2300}, {39025, 4267}, {40586, 3882}, {40600, 53280}, {40608, 960}, {40627, 48131}, {50330, 3004}, {50497, 6371}, {55053, 40153}, {55060, 24471}, {55064, 3687}, {55065, 18697}, {55066, 22097}
X(57162) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8707, 37}
X(57162) = X(i)-cross conjugate of X(j) for these {i, j}: {1146, 40516}, {3124, 37}, {3271, 42}, {4092, 1824}, {21755, 16606}, {40608, 65}
X(57162) = pole of line {1829, 20911} with respect to the polar circle
X(57162) = pole of line {44417, 52538} with respect to the Steiner inellipse
X(57162) = triaxial point of ABC, the circumcevian triangle of X(37), and the X(8)-circumconcevian triangle of X(37)
X(57162) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(20857)}}, {{A, B, C, X(37), X(1016)}}, {{A, B, C, X(65), X(4645)}}, {{A, B, C, X(210), X(36926)}}, {{A, B, C, X(512), X(513)}}, {{A, B, C, X(514), X(55240)}}, {{A, B, C, X(523), X(2517)}}, {{A, B, C, X(650), X(661)}}, {{A, B, C, X(663), X(51662)}}, {{A, B, C, X(1018), X(47947)}}, {{A, B, C, X(1500), X(46187)}}, {{A, B, C, X(1824), X(5080)}}, {{A, B, C, X(2333), X(15232)}}, {{A, B, C, X(2533), X(4589)}}, {{A, B, C, X(3124), X(5040)}}, {{A, B, C, X(3709), X(3900)}}, {{A, B, C, X(3952), X(30709)}}, {{A, B, C, X(4017), X(50517)}}, {{A, B, C, X(4036), X(4705)}}, {{A, B, C, X(4455), X(40627)}}, {{A, B, C, X(4729), X(4822)}}, {{A, B, C, X(4730), X(4983)}}, {{A, B, C, X(4770), X(48005)}}, {{A, B, C, X(10630), X(21353)}}, {{A, B, C, X(18105), X(43927)}}, {{A, B, C, X(21005), X(21301)}}, {{A, B, C, X(23894), X(31010)}}, {{A, B, C, X(48099), X(55969)}}
X(57162) = barycentric product X(i)*X(j) for these (i, j): {37, 4581}, {1169, 4036}, {1220, 661}, {1240, 798}, {1791, 2501}, {2171, 57161}, {2298, 523}, {2359, 24006}, {2363, 4024}, {3120, 36147}, {3125, 8707}, {3700, 961}, {4516, 6648}, {14534, 4705}, {14624, 513}, {15420, 1824}, {16732, 32736}, {18003, 53689}, {21044, 36098}, {30710, 512}, {31643, 3709}, {40827, 50487}
X(57162) = barycentric quotient X(i)/X(j) for these (i, j): {37, 53332}, {42, 3882}, {213, 53280}, {512, 3666}, {513, 16705}, {514, 16739}, {523, 20911}, {649, 54308}, {657, 46877}, {661, 4357}, {663, 17185}, {667, 40153}, {669, 2300}, {798, 1193}, {810, 22097}, {961, 4573}, {1169, 52935}, {1220, 799}, {1240, 4602}, {1791, 4563}, {2298, 99}, {2359, 4592}, {2363, 4610}, {2489, 1829}, {2501, 54314}, {2643, 21124}, {3049, 22345}, {3063, 4267}, {3120, 4509}, {3121, 6371}, {3122, 48131}, {3124, 50330}, {3125, 3004}, {3709, 960}, {4017, 3674}, {4024, 18697}, {4036, 1228}, {4041, 3687}, {4079, 2292}, {4516, 3910}, {4524, 3965}, {4581, 274}, {4705, 1211}, {4832, 4719}, {7180, 24471}, {7234, 28369}, {8641, 46889}, {8707, 4601}, {14534, 4623}, {14624, 668}, {30710, 670}, {32736, 4567}, {36098, 4620}, {36147, 4600}, {36197, 57158}, {50487, 2092}, {53581, 3725}, {53689, 17929}, {55206, 46878}, {57161, 52379}, {57185, 41003}
X(57162) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {667, 4705, 57131}, {4705, 8678, 57077}


X(57163) = X(649)X(4057)∩X(661)X(21901)

Barycentrics    a^2*(b-c)*(b+c)*(-(a*b^2*c^2)+a^4*(b+c)+b^2*c^2*(b+c)+a^3*(2*b^2+3*b*c+2*c^2)+a^2*(b^3+2*b^2*c+2*b*c^2+c^3)) : :

X(57163) lies on these lines: {649, 4057}, {661, 21901}, {813, 38470}, {3239, 53581}, {4024, 20979}, {18197, 22043}, {21832, 24089}, {22046, 27293}, {24083, 29487}, {49293, 57234}

X(57163) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8707, 42}
X(57163) = pole of line {3709, 42664} with respect to the Yff parabola
X(57163) = triaxial point of ABC, the circumcevian triangle of X(42), and the X(8)-circumconcevian triangle of X(42)


X(57164) = X(9)X(52326)∩X(44)X(513)

Barycentrics    a*(a-b-c)*(b-c)*(a^3-a*b*c+a^2*(b+c)+b*c*(b+c)) : :

X(57164) lies on these lines: {9, 52326}, {44, 513}, {693, 26694}, {1639, 7252}, {3004, 4383}, {3063, 3239}, {3700, 4435}, {7180, 21390}, {9031, 36054}, {14321, 21007}, {14997, 47653}, {22383, 47766}, {26017, 28116}, {32911, 47660}, {43061, 57181}

X(57164) = perspector of circumconic {{A, B, C, X(1), X(5255)}}
X(57164) = X(i)-isoconjugate-of-X(j) for these {i, j}: {651, 45989}
X(57164) = X(i)-Dao conjugate of X(j) for these {i, j}: {38991, 45989}, {52326, 3004}
X(57164) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8707, 55}
X(57164) = pole of line {92, 3662} with respect to the polar circle
X(57164) = triaxial point of ABC, the circumcevian triangle of X(55), and the X(8)-circumconcevian triangle of X(55)
X(57164) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(50353)}}, {{A, B, C, X(672), X(27064)}}, {{A, B, C, X(899), X(32635)}}, {{A, B, C, X(1155), X(5255)}}, {{A, B, C, X(3700), X(8061)}}, {{A, B, C, X(4435), X(46387)}}
X(57164) = barycentric product X(i)*X(j) for these (i, j): {522, 5255}, {27064, 650}, {38992, 8707}, {50353, 8}
X(57164) = barycentric quotient X(i)/X(j) for these (i, j): {663, 45989}, {5255, 664}, {27064, 4554}, {38992, 3004}, {50353, 7}


X(57165) = X(101)X(692)∩X(645)X(765)

Barycentrics    a^2*(a-b)*(a-c)*(b+c)*(a^3-b*c*(b+c)-a*(b^2-b*c+c^2)) : :

X(57165) lies on these lines: {101, 692}, {163, 32736}, {595, 4432}, {643, 8707}, {645, 765}, {1331, 3952}, {1918, 3950}, {4055, 4082}, {4579, 54353}

X(57165) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 20028}, {514, 53083}, {1019, 2051}, {3004, 40453}, {3669, 46880}, {3733, 54121}, {7192, 34434}, {16726, 56188}, {17205, 56194}
X(57165) = X(i)-Dao conjugate of X(j) for these {i, j}: {12, 4077}, {1193, 3004}, {34589, 1111}, {39026, 20028}
X(57165) = X(i)-Ceva conjugate of X(j) for these {i, j}: {643, 1018}, {8707, 101}
X(57165) = pole of line {345, 3730} with respect to the Yff parabola
X(57165) = pole of line {20520, 52619} with respect to the Wallace hyperbola
X(57165) = triaxial point of ABC, the circumcevian triangle of X(101), and the X(8)-circumconcevian triangle of X(101)
X(57165) = intersection, other than A, B, C, of circumconics {{A, B, C, X(101), X(44765)}}, {{A, B, C, X(692), X(36050)}}, {{A, B, C, X(2284), X(21061)}}, {{A, B, C, X(11109), X(46595)}}, {{A, B, C, X(21173), X(53287)}}, {{A, B, C, X(23344), X(52139)}}
X(57165) = barycentric product X(i)*X(j) for these (i, j): {100, 21061}, {101, 17751}, {190, 52139}, {1018, 2975}, {3699, 55323}, {3939, 52358}, {3952, 572}, {11109, 4574}, {14829, 4557}, {14973, 662}, {17074, 4069}, {20617, 7259}, {20986, 4033}, {37558, 644}, {52087, 8707}, {52357, 5546}, {56325, 643}
X(57165) = barycentric quotient X(i)/X(j) for these (i, j): {101, 20028}, {572, 7192}, {692, 53083}, {1018, 54121}, {2975, 7199}, {3939, 46880}, {4557, 2051}, {14829, 52619}, {14973, 1577}, {17751, 3261}, {20986, 1019}, {21061, 693}, {21173, 16727}, {32739, 52150}, {37558, 24002}, {52087, 3004}, {52139, 514}, {52358, 52621}, {53566, 23100}, {55323, 3676}, {56325, 4077}


X(57166) = X(4)X(46389)∩X(243)X(522)

Barycentrics    (a-b-c)*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+a^5*(b+c)+b*c*(b^2-c^2)^2+a^2*(b^2+c^2)^2-a^4*(2*b^2+b*c+2*c^2)-2*a^3*(b^3+c^3)+a*(b^5-b^4*c-b*c^4+c^5)) : :

X(57166) lies on these lines: {4, 46389}, {243, 522}, {281, 57098}, {450, 2451}, {514, 57224}, {1249, 6591}, {4394, 43933}, {7003, 43728}, {14298, 44426}

X(57166) = perspector of circumconic {{A, B, C, X(29), X(412)}}
X(57166) = X(i)-Dao conjugate of X(j) for these {i, j}: {44426, 4391}
X(57166) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 4}
X(57166) = pole of line {226, 6708} with respect to the polar circle
X(57166) = pole of line {1885, 8758} with respect to the orthic inconic
X(57166) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(4), and the X(3)-circumconcevian triangle of X(4)
X(57166) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3562)}}, {{A, B, C, X(412), X(52891)}}, {{A, B, C, X(7003), X(38860)}}
X(57166) = barycentric product X(i)*X(j) for these (i, j): {412, 522}, {3562, 44426}, {38860, 4391}
X(57166) = barycentric quotient X(i)/X(j) for these (i, j): {412, 664}, {3562, 6516}, {38860, 651}
X(57166) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {652, 3064, 17926}


X(57167) = X(1)X(23798)∩X(7)X(513)

Barycentrics    (b-c)*(-a+b-c)*(a+b-c)*(-a^2+b*c+a*(b+c)) : :

X(57167) lies on these lines: {1, 23798}, {7, 513}, {57, 47763}, {59, 927}, {226, 47759}, {307, 23790}, {514, 657}, {521, 693}, {522, 53357}, {1434, 57059}, {1441, 20949}, {1442, 48281}, {1443, 1447}, {3004, 31603}, {3212, 43052}, {3261, 57091}, {3287, 20507}, {3309, 23819}, {3667, 30181}, {3738, 46402}, {4017, 43041}, {4077, 20295}, {4435, 23744}, {4762, 4827}, {4776, 5226}, {4905, 57188}, {4977, 43042}, {5435, 47762}, {7176, 48320}, {7178, 10566}, {7179, 48164}, {7269, 23810}, {7279, 48390}, {14505, 55359}, {17496, 23785}, {20520, 21173}, {20954, 57247}, {20980, 31604}, {21102, 21202}, {21104, 57237}, {21611, 57168}, {23794, 53335}, {28537, 55920}, {28840, 53544}, {33765, 42454}, {34057, 54249}, {39470, 57196}, {43049, 47666}, {43050, 47775}, {47945, 53551}

X(57167) = reflection of X(i) in X(j) for these {i,j}: {56322, 657}, {7, 24002}
X(57167) = trilinear pole of line {17761, 38347}
X(57167) = perspector of circumconic {{A, B, C, X(1434), X(21453)}}
X(57167) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 54118}, {210, 43076}, {644, 2350}, {692, 55076}, {3939, 13476}
X(57167) = X(i)-Dao conjugate of X(j) for these {i, j}: {693, 4391}, {1086, 55076}, {2486, 4111}, {3160, 54118}, {17761, 210}, {40615, 17758}, {40617, 13476}
X(57167) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 7}, {33765, 17761}, {57247, 17494}
X(57167) = X(i)-cross conjugate of X(j) for these {i, j}: {4040, 17494}, {17761, 33765}, {42454, 17761}
X(57167) = pole of line {241, 553} with respect to the Incircle
X(57167) = pole of line {1763, 20367} with respect to the Longuet-Higgins circle
X(57167) = pole of line {1855, 1859} with respect to the polar circle
X(57167) = pole of line {1441, 3870} with respect to the Steiner circumellipse
X(57167) = pole of line {3946, 13405} with respect to the Steiner inellipse
X(57167) = pole of line {3309, 4380} with respect to the Yff parabola
X(57167) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(7), and the X(3)-circumconcevian triangle of X(7)
X(57167) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(513), X(21007)}}, {{A, B, C, X(521), X(22160)}}, {{A, B, C, X(885), X(3737)}}, {{A, B, C, X(1621), X(54128)}}, {{A, B, C, X(4151), X(4778)}}, {{A, B, C, X(4651), X(7292)}}, {{A, B, C, X(7192), X(10566)}}, {{A, B, C, X(7203), X(43930)}}, {{A, B, C, X(17212), X(18111)}}, {{A, B, C, X(21104), X(23748)}}, {{A, B, C, X(23788), X(40619)}}
X(57167) = barycentric product X(i)*X(j) for these (i, j): {1, 57247}, {514, 55082}, {1275, 42454}, {1434, 4151}, {1441, 57148}, {1621, 24002}, {2486, 4573}, {3261, 55086}, {4040, 85}, {4043, 7203}, {4251, 52621}, {17096, 4651}, {17143, 3669}, {17277, 3676}, {17494, 7}, {17761, 664}, {18152, 43924}, {20954, 57}, {21007, 6063}, {22160, 331}, {33765, 522}, {38346, 4572}, {38347, 4569}, {38365, 46406}, {38859, 4391}, {40088, 57181}, {40619, 651}
X(57167) = barycentric quotient X(i)/X(j) for these (i, j): {7, 54118}, {514, 55076}, {1412, 43076}, {1434, 53649}, {1621, 644}, {2486, 3700}, {3294, 4069}, {3669, 13476}, {3676, 17758}, {3996, 6558}, {4040, 9}, {4151, 2321}, {4251, 3939}, {4651, 30730}, {7203, 39950}, {17096, 39734}, {17143, 646}, {17277, 3699}, {17494, 8}, {17761, 522}, {20616, 40521}, {20954, 312}, {21007, 55}, {22160, 219}, {24002, 40216}, {26847, 57091}, {33765, 664}, {38346, 663}, {38347, 3900}, {38365, 657}, {38859, 651}, {40619, 4391}, {42454, 1146}, {43915, 35310}, {43924, 2350}, {55082, 190}, {55086, 101}, {55340, 35341}, {57148, 21}, {57247, 75}
X(57167) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 24002, 7}, {514, 657, 56322}, {3676, 43924, 17096}


X(57168) = X(8)X(14298)∩X(649)X(3239)

Barycentrics    (a-b-c)*(b-c)*(a^4+a^3*(b+c)-b*c*(b+c)^2-a^2*(b^2+3*b*c+c^2)-a*(b^3-3*b^2*c-3*b*c^2+c^3)) : :

X(57168) lies on these lines: {8, 14298}, {649, 3239}, {3161, 57055}, {3700, 4435}, {4106, 4391}, {5749, 6588}, {6332, 21222}, {18228, 35518}, {21611, 57167}, {23836, 56076}, {25259, 26694}, {57042, 57156}

X(57168) = X(i)-Dao conjugate of X(j) for these {i, j}: {4397, 4391}
X(57168) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 8}
X(57168) = pole of line {3729, 4696} with respect to the Steiner circumellipse
X(57168) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(8), and the X(3)-circumconcevian triangle of X(8)
X(57168) = barycentric product X(i)*X(j) for these (i, j): {38869, 4391}
X(57168) = barycentric quotient X(i)/X(j) for these (i, j): {38869, 651}


X(57169) = X(37)X(3239)∩X(522)X(649)

Barycentrics    (b-c)*(b+c)*(-a^4-a^3*(b+c)+a*(b-c)^2*(b+c)+b*c*(b+c)^2+a^2*(b^2+b*c+c^2)) : :

X(57169) lies on these lines: {37, 3239}, {321, 4025}, {522, 649}, {652, 21061}, {2321, 55232}, {3159, 29212}, {3700, 7180}, {3995, 25259}, {4064, 57049}, {4086, 55212}, {4140, 57185}, {4163, 55230}, {4521, 55210}, {4529, 16612}, {4820, 8714}, {6006, 50498}, {7265, 30719}, {7658, 31993}, {14837, 52623}, {21438, 23785}, {23874, 57042}, {47130, 57078}, {47765, 57133}

X(57169) = perspector of circumconic {{A, B, C, X(1220), X(56173)}}
X(57169) = X(i)-Dao conjugate of X(j) for these {i, j}: {4086, 4391}
X(57169) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 10}
X(57169) = pole of line {2183, 5750} with respect to the Steiner inellipse
X(57169) = pole of line {661, 4404} with respect to the Yff parabola
X(57169) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(10), and the X(3)-circumconcevian triangle of X(10)
X(57169) = barycentric product X(i)*X(j) for these (i, j): {1441, 57121}
X(57169) = barycentric quotient X(i)/X(j) for these (i, j): {57121, 21}


X(57170) = X(4)X(23800)∩X(240)X(522)

Barycentrics    a*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(b^5-a^3*b*c-b^3*c^2-b^2*c^3+c^5+a^4*(b+c)+a*b*c*(b+c)^2-a^2*(2*b^3+b^2*c+b*c^2+2*c^3)) : :

X(57170) lies on these lines: {4, 23800}, {33, 15313}, {34, 51648}, {108, 24027}, {208, 43923}, {240, 522}, {1459, 54244}, {3064, 55212}, {4017, 54239}, {6129, 18344}, {6591, 14298}, {7952, 57089}, {16228, 53527}, {34975, 57124}

X(57170) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 41906}, {110, 28788}
X(57170) = X(i)-Dao conjugate of X(j) for these {i, j}: {244, 28788}, {3064, 4391}, {36103, 41906}
X(57170) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 19}, {57224, 57098}
X(57170) = pole of line {1, 17860} with respect to the polar circle
X(57170) = pole of line {1826, 1902} with respect to the orthic inconic
X(57170) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(19), and the X(3)-circumconcevian triangle of X(19)
X(57170) = intersection, other than A, B, C, of circumconics {{A, B, C, X(158), X(1735)}}, {{A, B, C, X(522), X(35187)}}, {{A, B, C, X(1737), X(52186)}}, {{A, B, C, X(36113), X(44426)}}
X(57170) = barycentric product X(i)*X(j) for these (i, j): {1, 57224}, {20620, 651}, {24006, 56001}, {57098, 7}
X(57170) = barycentric quotient X(i)/X(j) for these (i, j): {19, 41906}, {661, 28788}, {20620, 4391}, {56001, 4592}, {57098, 8}, {57224, 75}


X(57171) = X(41)X(667)∩X(661)X(830)

Barycentrics    a^3*(b-c)*(a^3-2*a^2*(b+c)-b*c*(b+c)+a*(b^2+b*c+c^2)) : :

X(57171) lies on these lines: {41, 667}, {649, 51652}, {657, 1919}, {661, 830}, {1428, 23472}, {1973, 18344}, {2280, 4083}, {4063, 4251}, {8642, 57180}, {9310, 48330}, {20981, 53544}, {21301, 41239}, {23090, 57129}, {23865, 57053}, {24601, 54419}

X(57171) = perspector of circumconic {{A, B, C, X(82), X(51476)}}
X(57171) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4554, 40505}, {6063, 40523}
X(57171) = X(i)-Dao conjugate of X(j) for these {i, j}: {663, 4391}
X(57171) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 31}
X(57171) = pole of line {9310, 20990} with respect to the circumcircle
X(57171) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(31), and the X(3)-circumconcevian triangle of X(31)
X(57171) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(661), X(21611)}}, {{A, B, C, X(18108), X(23865)}}, {{A, B, C, X(21390), X(55240)}}
X(57171) = barycentric product X(i)*X(j) for these (i, j): {1, 23865}, {19, 23146}, {57, 57053}, {21302, 31}, {21390, 6}, {21611, 32}, {24225, 692}, {38991, 651}
X(57171) = barycentric quotient X(i)/X(j) for these (i, j): {9447, 40523}, {21302, 561}, {21390, 76}, {21611, 1502}, {23146, 304}, {23865, 75}, {24225, 40495}, {38991, 4391}, {57053, 312}
X(57171) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1924, 57047, 57096}


X(57172) = X(184)X(1980)∩X(832)X(1491)

Barycentrics    a^4*(b-c)*(a^4-a^3*(b+c)-b*c*(b^2+c^2)-a^2*(b^2+b*c+c^2)+a*(b^3+b^2*c+b*c^2+c^3)) : :

X(57172) lies on these lines: {184, 1980}, {520, 8651}, {832, 1491}, {1960, 9404}, {2175, 8640}, {2194, 21005}, {5138, 50516}, {5320, 20983}, {53539, 56242}

X(57172) = X(i)-Dao conjugate of X(j) for these {i, j}: {3063, 4391}
X(57172) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 32}
X(57172) = pole of line {3888, 53350} with respect to the Stammler hyperbola
X(57172) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(32), and the X(3)-circumconcevian triangle of X(32)
X(57172) = barycentric product X(i)*X(j) for these (i, j): {1, 57229}, {39025, 651}
X(57172) = barycentric quotient X(i)/X(j) for these (i, j): {39025, 4391}, {57229, 75}


X(57173) = X(108)X(2149)∩X(513)X(1430)

Barycentrics    a*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(-b^3+a*b*c-c^3+a^2*(b+c)) : :

X(57173) lies on these lines: {19, 57094}, {108, 2149}, {513, 1430}, {514, 3064}, {650, 43923}, {652, 16612}, {661, 7649}, {4813, 54244}, {7129, 23345}, {8676, 57092}, {14208, 46396}, {14349, 17925}, {17498, 46400}, {18344, 48026}, {29013, 57073}, {36054, 51643}, {43060, 51658}, {48269, 57044}

X(57173) = midpoint of X(i) and X(j) for these {i,j}: {17498, 46400}
X(57173) = reflection of X(i) in X(j) for these {i,j}: {14208, 46396}, {652, 16612}
X(57173) = polar conjugate of X(51566)
X(57173) = perspector of circumconic {{A, B, C, X(28), X(273)}}
X(57173) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 51566}, {110, 40161}, {219, 1305}, {272, 4574}, {906, 2997}, {1331, 1751}, {1332, 2218}, {1813, 56146}, {4558, 41506}, {5546, 28786}, {23289, 44717}, {32656, 40011}
X(57173) = X(i)-Dao conjugate of X(j) for these {i, j}: {244, 40161}, {1249, 51566}, {5190, 2997}, {5521, 1751}, {7649, 4391}
X(57173) = X(i)-Ceva conjugate of X(j) for these {i, j}: {108, 2352}, {651, 34}
X(57173) = pole of line {3668, 40959} with respect to the Incircle
X(57173) = pole of line {9, 321} with respect to the polar circle
X(57173) = pole of line {209, 1829} with respect to the orthic inconic
X(57173) = pole of line {1210, 40941} with respect to the Steiner inellipse
X(57173) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(34), and the X(3)-circumconcevian triangle of X(34)
X(57173) = intersection, other than A, B, C, of circumconics {{A, B, C, X(34), X(3868)}}, {{A, B, C, X(513), X(4077)}}, {{A, B, C, X(514), X(7252)}}, {{A, B, C, X(1474), X(22021)}}, {{A, B, C, X(2149), X(2352)}}, {{A, B, C, X(5125), X(52890)}}, {{A, B, C, X(5137), X(8747)}}, {{A, B, C, X(7129), X(37790)}}, {{A, B, C, X(17924), X(36107)}}, {{A, B, C, X(22383), X(51664)}}
X(57173) = barycentric product X(i)*X(j) for these (i, j): {29, 51658}, {57, 57043}, {273, 8676}, {2352, 46107}, {3868, 7649}, {4306, 44426}, {5125, 513}, {5190, 651}, {17878, 32674}, {17924, 579}, {17925, 22021}, {18134, 6591}, {20294, 34}, {23595, 40572}, {23800, 4}, {24002, 41320}, {43060, 92}, {57072, 65}, {57092, 7}
X(57173) = barycentric quotient X(i)/X(j) for these (i, j): {4, 51566}, {34, 1305}, {579, 1332}, {661, 40161}, {2198, 4574}, {2352, 1331}, {3190, 4571}, {3868, 4561}, {4017, 28786}, {4306, 6516}, {5125, 668}, {5190, 4391}, {6591, 1751}, {7649, 2997}, {8676, 78}, {17924, 40011}, {18344, 56146}, {20294, 3718}, {22021, 52609}, {23800, 69}, {41320, 644}, {43060, 63}, {51658, 307}, {57043, 312}, {57072, 314}, {57092, 8}, {57200, 272}


X(57174) = X(6)X(650)∩X(222)X(3669)

Barycentrics    a^3*(a-b-c)*(b-c)*(-a^2+b^2-b*c+c^2)^2 : :

X(57174) lies on these lines: {6, 650}, {81, 40166}, {222, 3669}, {649, 2317}, {654, 17455}, {2364, 3063}, {7252, 46882}, {7254, 40153}, {16473, 35100}, {27780, 57180}, {36054, 57130}, {55323, 57185}

X(57174) = perspector of circumconic {{A, B, C, X(36), X(104)}}
X(57174) = X(i)-isoconjugate-of-X(j) for these {i, j}: {80, 655}, {100, 34535}, {514, 46649}, {522, 23592}, {1411, 36804}, {2006, 51562}, {2161, 35174}, {2222, 18359}, {5219, 52934}, {6187, 46405}, {20566, 32675}, {47318, 52383}
X(57174) = X(i)-Dao conjugate of X(j) for these {i, j}: {3738, 4391}, {6149, 190}, {8054, 34535}, {35128, 20566}, {35204, 36804}, {38984, 18359}, {40584, 35174}, {40612, 46405}
X(57174) = X(i)-Ceva conjugate of X(j) for these {i, j}: {81, 53525}, {651, 36}
X(57174) = pole of line {36, 912} with respect to the MacBeath circumconic
X(57174) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(36), and the X(3)-circumconcevian triangle of X(36)
X(57174) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(52059)}}, {{A, B, C, X(650), X(35128)}}, {{A, B, C, X(654), X(1983)}}, {{A, B, C, X(2364), X(17455)}}, {{A, B, C, X(2423), X(21758)}}, {{A, B, C, X(4996), X(45145)}}
X(57174) = barycentric product X(i)*X(j) for these (i, j): {36, 3738}, {100, 3025}, {215, 693}, {320, 8648}, {1443, 53285}, {2323, 3960}, {2361, 4453}, {3218, 654}, {3904, 7113}, {4282, 4707}, {4391, 52059}, {4511, 53314}, {4996, 513}, {21758, 32851}, {22379, 5081}, {34544, 514}, {35128, 651}, {41282, 4397}, {44428, 52407}
X(57174) = barycentric quotient X(i)/X(j) for these (i, j): {36, 35174}, {215, 100}, {649, 34535}, {654, 18359}, {692, 46649}, {1415, 23592}, {2323, 36804}, {2361, 51562}, {3025, 693}, {3218, 46405}, {3738, 20566}, {4282, 47318}, {4996, 668}, {7113, 655}, {8648, 80}, {21758, 2006}, {22379, 52392}, {34544, 190}, {35128, 4391}, {41282, 934}, {52059, 651}, {52303, 42455}, {52434, 2222}, {53285, 52409}, {53314, 18815}, {53562, 15065}


X(57175) = X(31)X(8641)∩X(212)X(650)

Barycentrics    a^3*(a-b-c)*(b-c)*(a^4-b*(b-c)^2*c-a^3*(b+c)-a^2*(b^2-b*c+c^2)+a*(b^3+b^2*c+b*c^2+c^3)) : :

X(57175) lies on circumconic {{A, B, C, X(21789), X(44408)}} and on these lines: {31, 8641}, {212, 650}, {652, 663}, {748, 15283}, {1754, 23806}, {1936, 28834}, {1946, 57181}, {2254, 6003}, {8638, 56242}, {43924, 53308}

X(57175) = perspector of circumconic {{A, B, C, X(284), X(911)}}
X(57175) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1441, 53683}
X(57175) = X(i)-Dao conjugate of X(j) for these {i, j}: {657, 4391}
X(57175) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 41}
X(57175) = pole of line {48, 9316} with respect to the circumcircle
X(57175) = pole of line {21748, 52635} with respect to the Brocard inellipse
X(57175) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(41), and the X(3)-circumconcevian triangle of X(41)
X(57175) = barycentric product X(i)*X(j) for these (i, j): {1, 57237}, {41, 46402}, {4219, 652}, {14714, 651}, {37659, 663}, {44408, 9}
X(57175) = barycentric quotient X(i)/X(j) for these (i, j): {4219, 46404}, {14714, 4391}, {37659, 4572}, {44408, 85}, {46402, 20567}, {57237, 75}


X(57176) = X(37)X(4449)∩X(213)X(663)

Barycentrics    a^2*(b-c)*(b+c)*(a^3-2*a^2*(b+c)+b*c*(b+c)+a*(b^2+3*b*c+c^2)) : :

X(57176) lies on these lines: {37, 4449}, {213, 663}, {514, 3294}, {649, 2664}, {657, 4079}, {1334, 4705}, {3691, 29298}, {4024, 57049}, {4893, 40586}, {28391, 54278}, {28878, 30719}, {51652, 51871}, {57042, 57133}

X(57176) = X(i)-Dao conjugate of X(j) for these {i, j}: {4041, 4391}
X(57176) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 42}
X(57176) = pole of line {798, 4171} with respect to the Yff parabola
X(57176) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(42), and the X(3)-circumconcevian triangle of X(42)
X(57176) = barycentric product X(i)*X(j) for these (i, j): {1, 57232}, {22042, 6}, {23821, 4557}, {55064, 651}, {57067, 65}
X(57176) = barycentric quotient X(i)/X(j) for these (i, j): {22042, 76}, {23821, 52619}, {55064, 4391}, {57067, 314}, {57232, 75}


X(57177) = X(187)X(237)∩X(213)X(21836)

Barycentrics    a^2*(b-c)*(a^2+2*b*c-a*(b+c))*(-(b*c)+a*(b+c)) : :

X(57177) lies on these lines: {187, 237}, {213, 21836}, {238, 57053}, {1016, 36863}, {2176, 4083}, {2295, 47841}, {3063, 4879}, {4449, 20980}, {4782, 36647}, {16969, 48330}, {25576, 28846}

X(57177) = perspector of circumconic {{A, B, C, X(6), X(1376)}}
X(57177) = X(i)-isoconjugate-of-X(j) for these {i, j}: {87, 30610}, {100, 27498}, {932, 9311}, {4598, 9309}, {9315, 18830}, {20287, 32039}, {32023, 34071}
X(57177) = X(i)-Dao conjugate of X(j) for these {i, j}: {4147, 4391}, {8054, 27498}, {40610, 32023}
X(57177) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 43}
X(57177) = X(i)-cross conjugate of X(j) for these {i, j}: {24749, 20980}
X(57177) = pole of line {43, 3167} with respect to the MacBeath circumconic
X(57177) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(43), and the X(3)-circumconcevian triangle of X(43)
X(57177) = intersection, other than A, B, C, of circumconics {{A, B, C, X(43), X(9316)}}, {{A, B, C, X(649), X(4449)}}, {{A, B, C, X(663), X(25576)}}, {{A, B, C, X(665), X(4083)}}, {{A, B, C, X(667), X(20980)}}, {{A, B, C, X(2176), X(2223)}}, {{A, B, C, X(3009), X(9310)}}, {{A, B, C, X(4885), X(50510)}}, {{A, B, C, X(6180), X(9265)}}, {{A, B, C, X(8643), X(20979)}}, {{A, B, C, X(8651), X(50491)}}, {{A, B, C, X(8657), X(16695)}}
X(57177) = barycentric product X(i)*X(j) for these (i, j): {1, 24749}, {43, 4449}, {192, 20980}, {1376, 4083}, {2176, 4885}, {3835, 9310}, {4014, 52923}, {4147, 9316}, {16695, 3967}, {18199, 20691}, {20907, 2209}, {20979, 3729}, {21052, 38832}, {43051, 4513}
X(57177) = barycentric quotient X(i)/X(j) for these (i, j): {649, 27498}, {1376, 18830}, {2176, 30610}, {4083, 32023}, {4449, 6384}, {4885, 6383}, {8640, 9309}, {9310, 4598}, {20979, 9311}, {20980, 330}, {24749, 75}


X(57178) = X(513)X(3245)∩X(650)X(8674)

Barycentrics    a*(b-c)*(2*a^2-2*b^2-b*c-2*c^2)*(a-2*(b+c)) : :
X(57178) = -3*X[1734]+X[53535], -X[50767]+3*X[53527]

X(57178) lies on these lines: {513, 3245}, {519, 23809}, {650, 8674}, {1734, 53535}, {3900, 40587}, {4690, 28898}, {4774, 4777}, {7627, 51656}, {28220, 48145}, {31947, 57101}, {50328, 50481}, {50767, 53527}

X(57178) = perspector of circumconic {{A, B, C, X(5219), X(15175)}}
X(57178) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4588, 5561}
X(57178) = X(i)-Dao conjugate of X(j) for these {i, j}: {4944, 4391}, {55045, 5561}
X(57178) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 5010}, {651, 45}
X(57178) = pole of line {5049, 39782} with respect to the Incircle
X(57178) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(45), and the X(3)-circumconcevian triangle of X(45)
X(57178) = intersection, other than A, B, C, of circumconics {{A, B, C, X(650), X(23758)}}, {{A, B, C, X(3679), X(5010)}}, {{A, B, C, X(17360), X(36920)}}
X(57178) = barycentric product X(i)*X(j) for these (i, j): {4134, 47683}, {4791, 5010}, {17360, 4893}
X(57178) = barycentric quotient X(i)/X(j) for these (i, j): {4893, 5561}, {5010, 4604}


X(57179) = X(31)X(6129)∩X(255)X(521)

Barycentrics    a^3*(b-c)*(a^2-b^2-c^2)*(a^5+a^2*b*c*(b+c)-b*(b-c)^2*c*(b+c)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c+b*c^3+c^4)) : :

X(57179) lies on these lines: {31, 6129}, {47, 21189}, {255, 521}, {603, 23224}, {652, 6586}, {656, 1955}, {822, 21758}, {1459, 4091}, {43924, 53305}

X(57179) = perspector of circumconic {{A, B, C, X(947), X(1790)}}
X(57179) = X(i)-Dao conjugate of X(j) for these {i, j}: {652, 4391}
X(57179) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 48}
X(57179) = pole of line {2187, 14529} with respect to the circumcircle
X(57179) = pole of line {48, 47371} with respect to the MacBeath circumconic
X(57179) = pole of line {1897, 2617} with respect to the Stammler hyperbola
X(57179) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(48), and the X(3)-circumconcevian triangle of X(48)
X(57179) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1459), X(2616)}}, {{A, B, C, X(23189), X(39199)}}
X(57179) = barycentric product X(i)*X(j) for these (i, j): {1, 57223}, {4091, 7412}, {38983, 651}, {39199, 63}, {46400, 48}
X(57179) = barycentric quotient X(i)/X(j) for these (i, j): {38983, 4391}, {39199, 92}, {46400, 1969}, {57223, 75}


X(57180) = X(41)X(1946)∩X(218)X(905)

Barycentrics    a^3*(a-b-c)^3*(b-c) : :

X(57180) lies on these lines: {41, 1946}, {213, 55230}, {218, 905}, {220, 3900}, {650, 1734}, {652, 665}, {657, 663}, {667, 46388}, {672, 22091}, {1415, 36039}, {1643, 5452}, {3287, 28846}, {3669, 20980}, {4041, 46392}, {4435, 14330}, {8642, 57171}, {9404, 34975}, {14298, 57185}, {27780, 57174}, {52594, 53285}, {52614, 57108}

X(57180) = isogonal conjugate of X(36838)
X(57180) = perspector of circumconic {{A, B, C, X(55), X(480)}}
X(57180) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 36838}, {2, 4626}, {6, 52937}, {7, 658}, {56, 46406}, {57, 4569}, {65, 4635}, {75, 4617}, {76, 6614}, {77, 13149}, {85, 934}, {100, 23062}, {190, 479}, {226, 4616}, {269, 4554}, {279, 664}, {348, 36118}, {522, 23586}, {552, 4605}, {650, 24011}, {651, 1088}, {653, 7056}, {668, 738}, {1262, 52621}, {1275, 3676}, {1407, 4572}, {1414, 1446}, {1426, 55205}, {1427, 4625}, {1434, 4566}, {1441, 4637}, {1461, 6063}, {1847, 6516}, {1897, 30682}, {1978, 7023}, {3261, 7339}, {3668, 4573}, {3945, 50392}, {4336, 42388}, {4391, 24013}, {4610, 6046}, {4623, 7147}, {6386, 7366}, {6613, 52563}, {6632, 41292}, {7045, 24002}, {7053, 46404}, {7143, 52612}, {7177, 18026}, {7182, 32714}, {7197, 37215}, {9533, 53640}, {10509, 35312}, {14256, 53642}, {23971, 35519}, {23973, 52156}, {24015, 43736}, {34018, 41353}, {34085, 34855}, {40593, 53632}
X(57180) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 46406}, {3, 36838}, {9, 52937}, {206, 4617}, {2968, 20567}, {3022, 26531}, {3900, 4391}, {5452, 4569}, {6600, 4554}, {6608, 3261}, {8054, 23062}, {14714, 85}, {17115, 24002}, {23050, 46404}, {24771, 4572}, {32664, 4626}, {34467, 30682}, {35508, 6063}, {38966, 331}, {38991, 1088}, {39025, 279}, {40602, 4635}, {40608, 1446}, {55053, 479}
X(57180) = X(i)-Ceva conjugate of X(j) for these {i, j}: {220, 3022}, {651, 55}, {657, 8641}, {1253, 24012}, {40141, 3270}
X(57180) = X(i)-cross conjugate of X(j) for these {i, j}: {24012, 1253}
X(57180) = pole of line {3207, 15624} with respect to the circumcircle
X(57180) = pole of line {5572, 39789} with respect to the Incircle
X(57180) = pole of line {55, 15374} with respect to the MacBeath circumconic
X(57180) = pole of line {4573, 4617} with respect to the Stammler hyperbola
X(57180) = pole of line {21218, 25237} with respect to the Steiner circumellipse
X(57180) = pole of line {16588, 16601} with respect to the Steiner inellipse
X(57180) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(55), and the X(3)-circumconcevian triangle of X(55)
X(57180) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(650), X(10581)}}, {{A, B, C, X(663), X(4105)}}, {{A, B, C, X(853), X(4183)}}, {{A, B, C, X(926), X(3022)}}, {{A, B, C, X(1110), X(1253)}}, {{A, B, C, X(3309), X(6607)}}, {{A, B, C, X(3709), X(4130)}}, {{A, B, C, X(5526), X(8551)}}, {{A, B, C, X(9441), X(10482)}}
X(57180) = barycentric product X(i)*X(j) for these (i, j): {1, 4105}, {8, 8641}, {21, 4524}, {31, 4163}, {33, 57108}, {100, 3022}, {101, 3119}, {109, 24010}, {200, 663}, {210, 21789}, {220, 650}, {284, 4171}, {294, 52614}, {480, 513}, {512, 56182}, {514, 6602}, {521, 7071}, {607, 57055}, {649, 728}, {652, 7079}, {657, 9}, {1021, 1334}, {1110, 23615}, {1253, 522}, {1260, 18344}, {1415, 23970}, {1802, 3064}, {1919, 30693}, {1946, 7046}, {2175, 4397}, {2287, 3709}, {2310, 3939}, {2327, 55206}, {2328, 4041}, {2332, 8611}, {2338, 46392}, {2346, 6607}, {3063, 346}, {3239, 41}, {3270, 56183}, {3271, 4578}, {3900, 55}, {4081, 692}, {4130, 6}, {4148, 51858}, {4515, 7252}, {4705, 6061}, {5423, 667}, {10482, 6608}, {10581, 6605}, {14298, 7367}, {14392, 4845}, {14427, 2316}, {14827, 4391}, {14936, 644}, {17926, 52370}, {24012, 664}, {28071, 926}, {34820, 4827}, {35508, 651}, {36197, 5546}, {42455, 6066}, {46388, 6559}, {52064, 658}, {52371, 53285}, {52622, 9447}, {53008, 57134}, {56322, 8551}, {57049, 7118}
X(57180) = barycentric quotient X(i)/X(j) for these (i, j): {1, 52937}, {6, 36838}, {9, 46406}, {31, 4626}, {32, 4617}, {41, 658}, {55, 4569}, {109, 24011}, {200, 4572}, {220, 4554}, {284, 4635}, {480, 668}, {560, 6614}, {607, 13149}, {649, 23062}, {657, 85}, {663, 1088}, {667, 479}, {728, 1978}, {1043, 55213}, {1253, 664}, {1415, 23586}, {1919, 738}, {1946, 7056}, {1980, 7023}, {2175, 934}, {2194, 4616}, {2212, 36118}, {2310, 52621}, {2327, 55205}, {2328, 4625}, {2488, 53242}, {3022, 693}, {3063, 279}, {3119, 3261}, {3239, 20567}, {3709, 1446}, {3900, 6063}, {4081, 40495}, {4105, 75}, {4130, 76}, {4163, 561}, {4171, 349}, {4397, 41283}, {4477, 7205}, {4524, 1441}, {5423, 6386}, {6061, 4623}, {6602, 190}, {6607, 20880}, {7071, 18026}, {7079, 46404}, {8027, 41292}, {8638, 34855}, {8641, 7}, {8646, 7197}, {9447, 1461}, {14827, 651}, {14936, 24002}, {22383, 30682}, {24010, 35519}, {24012, 522}, {28071, 46135}, {35508, 4391}, {50487, 6046}, {52064, 3239}, {52614, 40704}, {53581, 7147}, {56005, 42388}, {56182, 670}, {57108, 7182}
X(57180) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {657, 663, 10581}, {663, 10581, 17425}


X(57181) = X(6)X(4394)∩X(109)X(813)

Barycentrics    a^3*(b-c)*(a+b-c)*(a-b+c) : :

X(57181) lies on these lines: {6, 4394}, {31, 8642}, {56, 8657}, {57, 43051}, {81, 4380}, {109, 813}, {181, 20983}, {222, 43049}, {226, 23803}, {478, 46389}, {513, 5061}, {514, 57079}, {604, 57096}, {608, 2423}, {649, 854}, {650, 9364}, {651, 4607}, {652, 665}, {654, 36054}, {661, 53528}, {667, 50514}, {875, 1402}, {940, 4106}, {1019, 1429}, {1357, 1977}, {1397, 1980}, {1407, 43929}, {1415, 2149}, {1459, 52326}, {1460, 21005}, {1919, 8662}, {1946, 57175}, {2516, 39521}, {3676, 4817}, {4017, 4979}, {4164, 43931}, {4435, 30719}, {4762, 18199}, {4976, 30725}, {5711, 28475}, {6589, 53314}, {6590, 46383}, {8646, 50521}, {10473, 50516}, {16466, 30234}, {21123, 55234}, {23724, 28116}, {30199, 36746}, {43061, 57164}, {43923, 43925}, {48275, 55197}

X(57181) = isogonal conjugate of X(646)
X(57181) = trilinear pole of line {3248, 8660}
X(57181) = perspector of circumconic {{A, B, C, X(56), X(604)}}
X(57181) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 646}, {2, 3699}, {7, 6558}, {8, 190}, {9, 668}, {10, 645}, {11, 6632}, {21, 4033}, {29, 52609}, {37, 7257}, {41, 6386}, {55, 1978}, {59, 52622}, {65, 7258}, {75, 644}, {76, 3939}, {78, 6335}, {85, 4578}, {86, 30730}, {92, 4571}, {99, 2321}, {100, 312}, {101, 3596}, {108, 52406}, {110, 30713}, {200, 4554}, {210, 799}, {220, 4572}, {226, 7256}, {239, 36801}, {261, 4103}, {264, 4587}, {274, 4069}, {281, 4561}, {284, 27808}, {304, 56183}, {306, 36797}, {313, 5546}, {314, 1018}, {318, 1332}, {321, 643}, {333, 3952}, {341, 651}, {345, 1897}, {346, 664}, {391, 53658}, {480, 46406}, {514, 4076}, {519, 4582}, {522, 1016}, {648, 3710}, {650, 7035}, {653, 1265}, {658, 5423}, {660, 3975}, {662, 3701}, {663, 31625}, {666, 3717}, {670, 1334}, {692, 28659}, {728, 4569}, {756, 4631}, {765, 4391}, {811, 3694}, {813, 4087}, {874, 4876}, {883, 6559}, {903, 30731}, {932, 4110}, {934, 30693}, {1026, 36796}, {1040, 42384}, {1043, 4552}, {1089, 4612}, {1222, 25268}, {1252, 35519}, {1260, 46404}, {1261, 21580}, {1268, 30729}, {1275, 4163}, {1293, 44723}, {1320, 24004}, {1331, 7017}, {1441, 7259}, {1783, 3718}, {1824, 55207}, {2082, 54967}, {2318, 6331}, {2319, 36863}, {2325, 4555}, {2329, 56241}, {2340, 36803}, {2344, 4505}, {2397, 51565}, {3161, 53647}, {3208, 18830}, {3239, 4998}, {3257, 4723}, {3261, 6065}, {3264, 5548}, {3452, 8706}, {3570, 4518}, {3684, 4583}, {3685, 4562}, {3686, 6540}, {3687, 8707}, {3690, 55233}, {3692, 18026}, {3693, 51560}, {3700, 4600}, {3702, 37212}, {3705, 4621}, {3790, 4586}, {3799, 52652}, {3807, 52133}, {3876, 37218}, {3886, 32041}, {3903, 17787}, {3912, 36802}, {3924, 42380}, {3974, 37215}, {3985, 4589}, {3996, 54118}, {4007, 32042}, {4009, 4607}, {4024, 6064}, {4041, 4601}, {4046, 4632}, {4061, 4633}, {4082, 4573}, {4086, 4567}, {4095, 4594}, {4102, 4427}, {4147, 5383}, {4373, 30720}, {4397, 4564}, {4417, 56112}, {4420, 15455}, {4433, 4639}, {4451, 18047}, {4511, 36804}, {4515, 4625}, {4517, 37133}, {4530, 6635}, {4557, 28660}, {4563, 53008}, {4574, 44130}, {4585, 52409}, {4595, 7155}, {4597, 4873}, {4598, 27538}, {4606, 4673}, {4610, 6057}, {4614, 42712}, {4636, 28654}, {4756, 42030}, {4767, 30608}, {4768, 5376}, {4997, 17780}, {5233, 9059}, {5381, 14430}, {5936, 30728}, {6332, 15742}, {6516, 7101}, {6535, 55196}, {6557, 43290}, {6606, 51972}, {6735, 13136}, {6742, 42033}, {7012, 15416}, {7064, 52612}, {7077, 27853}, {7080, 44327}, {7081, 27805}, {14942, 42720}, {18743, 31343}, {21272, 52549}, {23354, 36799}, {23705, 36805}, {23891, 36798}, {24026, 31615}, {27396, 51566}, {27424, 52923}, {27834, 44720}, {28808, 51564}, {28809, 37138}, {30681, 36118}, {30727, 55955}, {30732, 39710}, {30854, 37223}, {32739, 40363}, {32851, 51562}, {33946, 56180}, {40521, 52379}, {42372, 52338}, {42716, 44693}, {52335, 55194}, {52346, 56235}, {52369, 52914}, {53013, 55241}, {54986, 56311}, {54987, 55337}
X(57181) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 646}, {206, 644}, {223, 1978}, {244, 30713}, {478, 668}, {513, 4391}, {661, 35519}, {798, 4147}, {1015, 3596}, {1084, 3701}, {1086, 28659}, {3160, 6386}, {5521, 7017}, {6609, 4554}, {6615, 52622}, {8054, 312}, {14714, 30693}, {17423, 3694}, {22391, 4571}, {32664, 3699}, {34467, 345}, {38983, 52406}, {38986, 2321}, {38991, 341}, {38996, 210}, {39006, 3718}, {39025, 346}, {40589, 7257}, {40590, 27808}, {40600, 30730}, {40602, 7258}, {40611, 4033}, {40615, 561}, {40617, 76}, {40619, 40363}, {40620, 40072}, {40622, 27801}, {40623, 4087}, {40627, 4086}, {50497, 3700}, {55049, 3790}, {55053, 8}, {55055, 4723}, {55060, 321}, {55066, 3710}
X(57181) = X(i)-Ceva conjugate of X(j) for these {i, j}: {109, 1402}, {608, 1015}, {651, 56}, {1106, 3248}, {1396, 53540}, {1398, 22096}, {1407, 1357}, {1413, 3271}, {1415, 604}, {6648, 10475}, {43924, 667}
X(57181) = X(i)-cross conjugate of X(j) for these {i, j}: {1919, 667}, {1977, 1397}, {3248, 1106}, {8027, 1357}, {22096, 1398}, {51641, 43924}, {57157, 3733}
X(57181) = pole of line {1402, 3052} with respect to the circumcircle
X(57181) = pole of line {1401, 9025} with respect to the Incircle
X(57181) = pole of line {31, 5042} with respect to the Brocard inellipse
X(57181) = pole of line {56, 4641} with respect to the MacBeath circumconic
X(57181) = pole of line {42448, 44545} with respect to the orthic inconic
X(57181) = pole of line {644, 645} with respect to the Stammler hyperbola
X(57181) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(56), and the X(3)-circumconcevian triangle of X(56)
X(57181) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(41935)}}, {{A, B, C, X(56), X(4998)}}, {{A, B, C, X(213), X(16784)}}, {{A, B, C, X(512), X(50492)}}, {{A, B, C, X(513), X(6371)}}, {{A, B, C, X(604), X(1404)}}, {{A, B, C, X(608), X(52410)}}, {{A, B, C, X(649), X(667)}}, {{A, B, C, X(661), X(48335)}}, {{A, B, C, X(663), X(8662)}}, {{A, B, C, X(798), X(4790)}}, {{A, B, C, X(890), X(8657)}}, {{A, B, C, X(1015), X(3310)}}, {{A, B, C, X(1357), X(43932)}}, {{A, B, C, X(1395), X(7366)}}, {{A, B, C, X(1397), X(1407)}}, {{A, B, C, X(1402), X(1412)}}, {{A, B, C, X(1919), X(3063)}}, {{A, B, C, X(1977), X(1980)}}, {{A, B, C, X(2423), X(7254)}}, {{A, B, C, X(3572), X(50514)}}, {{A, B, C, X(3669), X(7180)}}, {{A, B, C, X(4394), X(34080)}}, {{A, B, C, X(4554), X(43051)}}, {{A, B, C, X(6085), X(9048)}}, {{A, B, C, X(6612), X(7337)}}, {{A, B, C, X(7203), X(37627)}}, {{A, B, C, X(7250), X(43923)}}, {{A, B, C, X(8632), X(8640)}}, {{A, B, C, X(8642), X(8659)}}, {{A, B, C, X(18200), X(20981)}}, {{A, B, C, X(42336), X(51656)}}
X(57181) = barycentric product X(i)*X(j) for these (i, j): {1, 43924}, {3, 43923}, {21, 7250}, {31, 3676}, {42, 7203}, {57, 649}, {59, 764}, {100, 1357}, {101, 53538}, {105, 53539}, {106, 53528}, {108, 3937}, {109, 244}, {110, 53540}, {163, 53545}, {222, 6591}, {226, 57129}, {241, 43929}, {269, 663}, {279, 3063}, {284, 7216}, {479, 8641}, {513, 56}, {514, 604}, {593, 57185}, {603, 7649}, {608, 905}, {657, 738}, {667, 7}, {1014, 512}, {1015, 651}, {1019, 1400}, {1022, 1404}, {1027, 1458}, {1042, 3737}, {1086, 1415}, {1106, 522}, {1118, 23224}, {1119, 1946}, {1149, 37627}, {1214, 43925}, {1222, 42336}, {1319, 23345}, {1333, 7178}, {1356, 4623}, {1358, 692}, {1395, 4025}, {1396, 647}, {1397, 693}, {1398, 521}, {1401, 18108}, {1402, 7192}, {1403, 43931}, {1407, 650}, {1408, 523}, {1409, 17925}, {1411, 53314}, {1412, 661}, {1413, 6129}, {1414, 3122}, {1416, 2254}, {1417, 900}, {1426, 23189}, {1427, 7252}, {1428, 876}, {1429, 3572}, {1431, 4367}, {1432, 20981}, {1434, 798}, {1435, 652}, {1438, 53544}, {1447, 875}, {1456, 2424}, {1459, 34}, {1461, 2170}, {1462, 665}, {1463, 23355}, {1465, 2423}, {1474, 51664}, {1476, 6363}, {1477, 48032}, {1577, 16947}, {1790, 55208}, {1880, 7254}, {1911, 43041}, {1919, 85}, {1960, 56049}, {1977, 4554}, {1980, 6063}, {2006, 21758}, {2149, 6545}, {2162, 43051}, {2191, 51652}, {2206, 4077}, {2223, 43930}, {2283, 43921}, {2310, 6614}, {2605, 52372}, {2720, 42753}, {2969, 36059}, {3064, 7099}, {3121, 4573}, {3125, 4565}, {3239, 7366}, {3248, 664}, {3271, 934}, {3310, 34051}, {3445, 51656}, {3451, 48334}, {3669, 6}, {3733, 65}, {3900, 7023}, {4017, 58}, {4036, 7342}, {4131, 7337}, {4391, 52410}, {4705, 7341}, {4998, 8027}, {6085, 8686}, {6371, 961}, {6729, 7370}, {7180, 81}, {14298, 6612}, {14419, 7316}, {14936, 4617}, {15635, 23981}, {16726, 4559}, {16945, 3667}, {17094, 2203}, {17096, 213}, {17924, 52411}, {18026, 22096}, {18191, 53321}, {18268, 7212}, {18344, 7053}, {19604, 8643}, {20615, 4057}, {20979, 7153}, {21132, 24027}, {21143, 4564}, {22383, 278}, {23349, 43037}, {23703, 43922}, {23892, 52896}, {23979, 40166}, {24002, 32}, {26700, 53542}, {28607, 43052}, {28615, 30724}, {29055, 53541}, {30719, 38266}, {30725, 9456}, {31643, 57157}, {32636, 50344}, {32652, 38374}, {32669, 42754}, {32674, 3942}, {32675, 53546}, {32693, 53543}, {32714, 7117}, {32735, 3675}, {34080, 40617}, {34855, 884}, {39798, 57238}, {39949, 51650}, {40151, 4394}, {40154, 8642}, {40495, 41280}, {42067, 6516}, {43760, 8659}, {43932, 55}, {50487, 552}, {50514, 56358}, {51640, 8747}, {51641, 86}, {51644, 51686}, {51662, 52150}, {52621, 560}, {56242, 7249}, {57200, 73}
X(57181) = barycentric quotient X(i)/X(j) for these (i, j): {6, 646}, {7, 6386}, {31, 3699}, {32, 644}, {41, 6558}, {56, 668}, {57, 1978}, {58, 7257}, {65, 27808}, {109, 7035}, {184, 4571}, {213, 30730}, {244, 35519}, {269, 4572}, {284, 7258}, {512, 3701}, {513, 3596}, {514, 28659}, {560, 3939}, {593, 4631}, {603, 4561}, {604, 190}, {608, 6335}, {649, 312}, {651, 31625}, {652, 52406}, {657, 30693}, {659, 4087}, {661, 30713}, {663, 341}, {667, 8}, {669, 210}, {692, 4076}, {693, 40363}, {738, 46406}, {764, 34387}, {788, 3790}, {798, 2321}, {810, 3710}, {875, 4518}, {890, 4009}, {1014, 670}, {1015, 4391}, {1019, 28660}, {1037, 54967}, {1106, 664}, {1333, 645}, {1356, 4705}, {1357, 693}, {1358, 40495}, {1395, 1897}, {1396, 6331}, {1397, 100}, {1398, 18026}, {1400, 4033}, {1402, 3952}, {1403, 36863}, {1404, 24004}, {1407, 4554}, {1408, 99}, {1409, 52609}, {1412, 799}, {1415, 1016}, {1416, 51560}, {1417, 4555}, {1428, 874}, {1429, 27853}, {1431, 56241}, {1434, 4602}, {1435, 46404}, {1459, 3718}, {1462, 36803}, {1469, 4505}, {1790, 55207}, {1911, 36801}, {1918, 4069}, {1919, 9}, {1924, 1334}, {1946, 1265}, {1960, 4723}, {1974, 56183}, {1977, 650}, {1980, 55}, {2149, 6632}, {2170, 52622}, {2175, 4578}, {2194, 7256}, {2203, 36797}, {2206, 643}, {2251, 30731}, {2423, 36795}, {3049, 3694}, {3063, 346}, {3121, 3700}, {3122, 4086}, {3248, 522}, {3249, 2170}, {3271, 4397}, {3669, 76}, {3676, 561}, {3733, 314}, {3937, 35518}, {4017, 313}, {4394, 44723}, {4565, 4601}, {4832, 42712}, {6363, 20895}, {6591, 7017}, {7023, 4569}, {7117, 15416}, {7178, 27801}, {7180, 321}, {7192, 40072}, {7203, 310}, {7216, 349}, {7250, 1441}, {7341, 4623}, {7342, 52935}, {7366, 658}, {8027, 11}, {8630, 4517}, {8632, 3975}, {8637, 3876}, {8639, 3714}, {8640, 27538}, {8641, 5423}, {8643, 44720}, {8646, 3974}, {8654, 30615}, {8660, 3880}, {8662, 18228}, {9247, 4587}, {9456, 4582}, {16945, 53647}, {16947, 662}, {17096, 6385}, {20228, 25268}, {20979, 4110}, {20981, 17787}, {21122, 4123}, {21143, 4858}, {21755, 4140}, {21758, 32851}, {22096, 521}, {22383, 345}, {23220, 51379}, {23224, 1264}, {23349, 36798}, {23751, 20237}, {23979, 31615}, {24002, 1502}, {38986, 4147}, {40495, 44159}, {41280, 692}, {41526, 4595}, {42067, 44426}, {42336, 3663}, {43041, 18891}, {43051, 6382}, {43923, 264}, {43924, 75}, {43925, 31623}, {43929, 36796}, {43932, 6063}, {50487, 6057}, {50512, 3702}, {50514, 3705}, {50521, 3703}, {51640, 52396}, {51641, 10}, {51650, 56249}, {51664, 40071}, {52410, 651}, {52411, 1332}, {52621, 1928}, {52635, 42720}, {52865, 55373}, {53528, 3264}, {53538, 3261}, {53539, 3263}, {53540, 850}, {53545, 20948}, {55234, 52369}, {56003, 42380}, {56242, 7081}, {57129, 333}, {57157, 960}, {57167, 40088}, {57185, 28654}, {57200, 44130}, {57238, 18140}
X(57181) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 21758, 22383}, {649, 22383, 3063}, {649, 3310, 17424}, {649, 43924, 7180}, {50514, 56242, 667}


X(57182) = X(284)X(649)∩X(520)X(3733)

Barycentrics    a^2*(a+b)*(b-c)*(a+c)*(a^4-a^3*(b+c)+a*(b-c)^2*(b+c)-b*c*(b+c)^2-a^2*(b^2+b*c+c^2)) : :

X(57182) lies on circumconic {{A, B, C, X(3676), X(24235)}} and on these lines: {284, 649}, {520, 3733}, {661, 3737}, {1019, 51664}, {1412, 3676}, {2328, 23865}, {7180, 7252}, {40214, 57112}, {57058, 57227}

X(57182) = X(i)-Dao conjugate of X(j) for these {i, j}: {3737, 4391}
X(57182) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 58}
X(57182) = pole of line {3882, 14543} with respect to the Stammler hyperbola
X(57182) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(58), and the X(3)-circumconcevian triangle of X(58)
X(57182) = barycentric product X(i)*X(j) for these (i, j): {1, 57246}, {110, 24235}, {55067, 651}
X(57182) = barycentric quotient X(i)/X(j) for these (i, j): {24235, 850}, {55067, 4391}, {57246, 75}


X(57183) = X(6)X(59)∩X(9)X(1252)

Barycentrics    a^2*(a-b)^2*(a-c)^2*(a+b-c)*(a-b+c)*(a^3-a^2*(b+c)-(b-c)^2*(b+c)+a*(b^2-b*c+c^2)) : :

X(57183) lies on these lines: {6, 59}, {9, 1252}, {269, 1262}, {608, 7115}, {1110, 2293}, {1400, 2149}, {1442, 4564}, {1983, 46384}, {2427, 57141}, {4998, 28780}, {24029, 57240}

X(57183) = inverse of X(59) in MacBeath circumconic
X(57183) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 34896}, {514, 42552}, {2170, 8047}, {3446, 4858}
X(57183) = X(i)-Dao conjugate of X(j) for these {i, j}: {100, 4391}, {5452, 34896}
X(57183) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 59}
X(57183) = X(i)-cross conjugate of X(j) for these {i, j}: {16686, 40577}, {22144, 5375}
X(57183) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(59), and the X(3)-circumconcevian triangle of X(59)
X(57183) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(16686)}}, {{A, B, C, X(7), X(51682)}}, {{A, B, C, X(9), X(5540)}}, {{A, B, C, X(59), X(40577)}}, {{A, B, C, X(149), X(52442)}}, {{A, B, C, X(513), X(38863)}}
X(57183) = barycentric product X(i)*X(j) for these (i, j): {100, 40577}, {149, 59}, {1252, 37771}, {1421, 765}, {4564, 5540}, {5375, 651}, {11607, 56}, {16686, 4998}, {18151, 2149}, {21090, 52378}, {22144, 46102}, {31633, 6}
X(57183) = barycentric quotient X(i)/X(j) for these (i, j): {55, 34896}, {59, 8047}, {149, 34387}, {692, 42552}, {1421, 1111}, {5375, 4391}, {5540, 4858}, {11193, 42455}, {11607, 3596}, {16686, 11}, {22144, 26932}, {31633, 76}, {37771, 23989}, {40577, 693}


X(57184) = X(1)X(23782)∩X(514)X(661)

Barycentrics    a*(b-c)*(a^2-b^2-c^2)*(-b^3-a*b*c-c^3+a^2*(b+c)) : :

X(57184) lies on these lines: {1, 23782}, {306, 15416}, {513, 57081}, {514, 661}, {905, 4131}, {3738, 23800}, {4025, 51664}, {4560, 46400}, {16754, 21189}, {20296, 57055}, {29013, 46401}, {29302, 43991}, {52310, 57242}

X(57184) = perspector of circumconic {{A, B, C, X(75), X(1444)}}
X(57184) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 32653}, {6, 26704}, {19, 36050}, {25, 44765}, {112, 15232}, {515, 32700}, {608, 56112}, {1783, 2217}, {2182, 36108}, {2333, 54951}, {3064, 15386}, {8750, 13478}, {8755, 35183}, {10570, 32674}
X(57184) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 36050}, {9, 26704}, {124, 19}, {6332, 4391}, {6505, 44765}, {6589, 44426}, {26932, 13478}, {34588, 1826}, {34591, 15232}, {35072, 10570}, {36033, 32653}, {39006, 2217}, {40618, 2995}
X(57184) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 63}, {4417, 40626}, {57242, 57111}
X(57184) = pole of line {1631, 18611} with respect to the circumcircle
X(57184) = pole of line {63, 22130} with respect to the MacBeath circumconic
X(57184) = pole of line {163, 1783} with respect to the Stammler hyperbola
X(57184) = pole of line {8, 20222} with respect to the Steiner circumellipse
X(57184) = pole of line {10, 37565} with respect to the Steiner inellipse
X(57184) = pole of line {662, 6335} with respect to the Wallace hyperbola
X(57184) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(63), and the X(3)-circumconcevian triangle of X(63)
X(57184) = intersection, other than A, B, C, of circumconics {{A, B, C, X(63), X(17080)}}, {{A, B, C, X(514), X(7254)}}, {{A, B, C, X(573), X(5179)}}, {{A, B, C, X(661), X(22383)}}, {{A, B, C, X(693), X(16754)}}, {{A, B, C, X(857), X(4225)}}, {{A, B, C, X(905), X(1577)}}, {{A, B, C, X(908), X(4417)}}, {{A, B, C, X(3239), X(23090)}}, {{A, B, C, X(3835), X(23092)}}, {{A, B, C, X(3869), X(30807)}}, {{A, B, C, X(3936), X(22128)}}, {{A, B, C, X(3948), X(20769)}}, {{A, B, C, X(4129), X(22154)}}, {{A, B, C, X(4131), X(14208)}}, {{A, B, C, X(4358), X(6513)}}, {{A, B, C, X(6381), X(51612)}}, {{A, B, C, X(6589), X(6590)}}, {{A, B, C, X(50457), X(51664)}}
X(57184) = barycentric product X(i)*X(j) for these (i, j): {1, 57242}, {124, 6516}, {274, 52310}, {304, 6589}, {513, 51612}, {3869, 4025}, {4417, 905}, {4554, 47411}, {10571, 35518}, {14208, 4225}, {15413, 573}, {15419, 21078}, {16754, 306}, {17080, 6332}, {17555, 4131}, {21189, 69}, {22134, 3261}, {34588, 664}, {40626, 651}, {57111, 7}
X(57184) = barycentric quotient X(i)/X(j) for these (i, j): {1, 26704}, {3, 36050}, {48, 32653}, {63, 44765}, {78, 56112}, {102, 36108}, {124, 44426}, {521, 10570}, {573, 1783}, {656, 15232}, {905, 13478}, {1444, 54951}, {1459, 2217}, {3185, 8750}, {3869, 1897}, {4025, 2995}, {4225, 162}, {4417, 6335}, {6589, 19}, {10571, 108}, {16754, 27}, {17080, 653}, {21189, 4}, {22134, 101}, {32677, 32700}, {34588, 522}, {36055, 35183}, {36059, 15386}, {38345, 3064}, {40626, 4391}, {47411, 650}, {51612, 668}, {51664, 40160}, {52310, 37}, {57111, 8}, {57242, 75}
X(57184) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6332, 24018, 57106}


X(57185) = X(108)X(2715)∩X(225)X(770)

Barycentrics    a*(b-c)*(a+b-c)*(a-b+c)*(b+c)^2 : :

X(57185) lies on these lines: {37, 35354}, {57, 29487}, {65, 10097}, {108, 2715}, {181, 50487}, {225, 770}, {226, 3676}, {512, 55208}, {513, 5061}, {514, 23801}, {525, 1577}, {647, 661}, {649, 1400}, {650, 1758}, {651, 36085}, {764, 23751}, {878, 1402}, {1365, 3124}, {1415, 32662}, {1460, 16874}, {1769, 52326}, {1880, 2433}, {2610, 4024}, {3063, 6591}, {3239, 21960}, {3287, 16612}, {3669, 14349}, {4079, 55234}, {4140, 57169}, {4521, 5257}, {4554, 4639}, {4705, 42666}, {4813, 43924}, {4983, 51641}, {4988, 30572}, {7252, 47227}, {9034, 18199}, {10015, 47135}, {14298, 57180}, {14582, 55236}, {15309, 57079}, {18026, 53202}, {20980, 36054}, {21611, 57187}, {23723, 28116}, {26580, 26596}, {28387, 28398}, {40149, 43665}, {43052, 47681}, {48019, 53528}, {48269, 50331}, {55323, 57174}

X(57185) = isogonal conjugate of X(4612)
X(57185) = isotomic conjugate of X(4631)
X(57185) = trilinear pole of line {2643, 20975}
X(57185) = perspector of circumconic {{A, B, C, X(12), X(65)}}
X(57185) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4612}, {2, 4636}, {8, 4556}, {9, 52935}, {21, 662}, {29, 4558}, {31, 4631}, {41, 4623}, {42, 55196}, {55, 4610}, {58, 645}, {60, 190}, {63, 52914}, {81, 643}, {86, 5546}, {99, 284}, {100, 2185}, {101, 261}, {107, 6514}, {109, 7058}, {110, 333}, {112, 332}, {162, 1812}, {163, 314}, {184, 55233}, {212, 55231}, {249, 522}, {250, 6332}, {270, 1332}, {283, 648}, {394, 52921}, {593, 3699}, {644, 757}, {646, 849}, {650, 24041}, {651, 1098}, {652, 18020}, {657, 7340}, {658, 6061}, {663, 4590}, {664, 7054}, {668, 2150}, {692, 52379}, {763, 4069}, {799, 2194}, {811, 2193}, {901, 30606}, {1014, 7259}, {1043, 4565}, {1101, 4391}, {1172, 4592}, {1259, 52919}, {1331, 46103}, {1333, 7257}, {1408, 7258}, {1412, 7256}, {1414, 2287}, {1509, 3939}, {1576, 28660}, {1790, 36797}, {1946, 46254}, {2175, 52612}, {2189, 4561}, {2203, 55207}, {2204, 55202}, {2210, 36806}, {2299, 4563}, {2326, 6516}, {2328, 4573}, {3063, 24037}, {3684, 36066}, {3686, 6578}, {3719, 52920}, {3737, 4567}, {4511, 37140}, {4560, 4570}, {4575, 31623}, {4585, 52380}, {4600, 7252}, {4620, 21789}, {4637, 56182}, {5060, 17931}, {6517, 36421}, {6558, 7341}, {7253, 52378}, {14570, 35196}, {18021, 32739}, {23357, 35519}, {23582, 57241}, {23964, 52616}, {23999, 36054}, {30729, 52558}, {32661, 44130}, {32851, 36069}, {36841, 52158}, {40605, 53633}, {44769, 51382}, {46110, 47390}, {52425, 55229}
X(57185) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4631}, {3, 4612}, {10, 645}, {11, 7058}, {37, 7257}, {115, 314}, {125, 1812}, {136, 31623}, {223, 4610}, {226, 4563}, {244, 333}, {478, 52935}, {512, 3063}, {523, 4391}, {647, 35518}, {1015, 261}, {1084, 21}, {1086, 52379}, {1214, 799}, {3005, 650}, {3160, 4623}, {3162, 52914}, {4075, 646}, {4858, 28660}, {4988, 18155}, {5139, 1172}, {5375, 6064}, {5521, 46103}, {8054, 2185}, {10001, 24037}, {15267, 651}, {17423, 2193}, {32664, 4636}, {34591, 332}, {36901, 40072}, {36908, 4573}, {38978, 3684}, {38979, 30606}, {38982, 32851}, {38985, 6514}, {38986, 284}, {38991, 1098}, {38996, 2194}, {39025, 7054}, {39053, 46254}, {40586, 643}, {40590, 99}, {40592, 55196}, {40593, 52612}, {40599, 7256}, {40600, 5546}, {40607, 644}, {40608, 2287}, {40611, 662}, {40615, 873}, {40617, 1509}, {40619, 18021}, {40622, 274}, {40627, 3737}, {40837, 55231}, {47345, 811}, {50330, 4560}, {50497, 7252}, {55053, 60}, {55060, 81}, {55064, 1043}, {55065, 312}, {55066, 283}, {56325, 668}
X(57185) = X(i)-Ceva conjugate of X(j) for these {i, j}: {108, 1402}, {225, 4516}, {226, 53540}, {651, 65}, {661, 55234}, {1254, 2643}, {1400, 3125}, {4552, 52567}, {6354, 1365}, {8736, 115}, {21859, 2171}, {40160, 18210}
X(57185) = X(i)-cross conjugate of X(j) for these {i, j}: {2643, 1254}, {3124, 181}, {4079, 4705}, {21131, 3125}, {42661, 523}
X(57185) = pole of line {9436, 39793} with respect to the Incircle
X(57185) = pole of line {314, 1172} with respect to the polar circle
X(57185) = pole of line {16732, 53540} with respect to the Kiepert hyperbola
X(57185) = pole of line {431, 44092} with respect to the orthic inconic
X(57185) = pole of line {2475, 56291} with respect to the Steiner circumellipse
X(57185) = pole of line {442, 1738} with respect to the Steiner inellipse
X(57185) = pole of line {4612, 4631} with respect to the Wallace hyperbola
X(57185) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(65), and the X(3)-circumconcevian triangle of X(65)
X(57185) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(181), X(6354)}}, {{A, B, C, X(512), X(525)}}, {{A, B, C, X(513), X(4036)}}, {{A, B, C, X(523), X(8672)}}, {{A, B, C, X(649), X(2610)}}, {{A, B, C, X(661), X(1577)}}, {{A, B, C, X(1402), X(40149)}}, {{A, B, C, X(2489), X(47124)}}, {{A, B, C, X(3064), X(4516)}}, {{A, B, C, X(3124), X(24290)}}, {{A, B, C, X(3700), X(3709)}}, {{A, B, C, X(4017), X(4077)}}, {{A, B, C, X(4155), X(28846)}}, {{A, B, C, X(4391), X(42661)}}, {{A, B, C, X(4983), X(14349)}}, {{A, B, C, X(4988), X(48320)}}, {{A, B, C, X(5061), X(52567)}}, {{A, B, C, X(5466), X(50520)}}, {{A, B, C, X(7178), X(7180)}}, {{A, B, C, X(7192), X(18015)}}, {{A, B, C, X(7265), X(55210)}}, {{A, B, C, X(23947), X(52651)}}
X(57185) = barycentric product X(i)*X(j) for these (i, j): {10, 4017}, {12, 513}, {19, 57243}, {34, 4064}, {37, 7178}, {100, 1365}, {108, 125}, {109, 1109}, {115, 651}, {181, 693}, {201, 7649}, {225, 656}, {226, 661}, {273, 55230}, {278, 55232}, {306, 55208}, {313, 51641}, {321, 7180}, {349, 798}, {523, 65}, {1018, 53545}, {1020, 21044}, {1042, 4086}, {1086, 21859}, {1089, 43924}, {1118, 57109}, {1214, 2501}, {1231, 2489}, {1254, 522}, {1284, 35352}, {1356, 6386}, {1358, 40521}, {1400, 1577}, {1402, 850}, {1409, 14618}, {1411, 6370}, {1414, 21043}, {1415, 338}, {1425, 44426}, {1426, 52355}, {1427, 3700}, {1441, 512}, {1446, 3709}, {1459, 56285}, {1500, 24002}, {1826, 51664}, {1880, 525}, {2006, 2610}, {2170, 4605}, {2171, 514}, {2321, 7216}, {2632, 36127}, {2643, 664}, {2970, 36059}, {3049, 52575}, {3064, 37755}, {3120, 4551}, {3124, 4554}, {3125, 4552}, {3239, 7147}, {3269, 54240}, {3668, 4041}, {3669, 594}, {3676, 756}, {3695, 43923}, {3701, 7250}, {3708, 653}, {3900, 6046}, {3952, 53540}, {4013, 53528}, {4024, 57}, {4036, 56}, {4077, 42}, {4079, 85}, {4092, 934}, {4103, 53538}, {4155, 7233}, {4397, 7143}, {4516, 4566}, {4581, 52567}, {4705, 7}, {6354, 650}, {6358, 649}, {6516, 8754}, {6535, 7203}, {7235, 876}, {8736, 905}, {13576, 53551}, {13853, 14298}, {14775, 41393}, {16577, 55236}, {16732, 4559}, {17094, 1824}, {17096, 762}, {17924, 2197}, {18006, 2652}, {18026, 20975}, {18097, 8061}, {18344, 6356}, {18593, 55238}, {18815, 42666}, {20567, 53581}, {20902, 32674}, {21054, 26700}, {21131, 4564}, {21134, 7012}, {21824, 38340}, {21833, 4573}, {24006, 73}, {26942, 6591}, {28654, 57181}, {30572, 4674}, {31643, 42661}, {34388, 667}, {40149, 647}, {40663, 55244}, {41003, 57162}, {41501, 57107}, {41506, 51658}, {43682, 55210}, {43932, 6057}, {45095, 51659}, {46389, 7363}, {50487, 6063}, {51662, 51870}, {51663, 80}, {52382, 57099}, {52383, 53527}, {52607, 53560}, {52621, 872}, {52623, 604}, {55197, 81}, {55212, 8808}, {55234, 92}
X(57185) = barycentric quotient X(i)/X(j) for these (i, j): {2, 4631}, {6, 4612}, {7, 4623}, {10, 7257}, {12, 668}, {25, 52914}, {31, 4636}, {37, 645}, {42, 643}, {56, 52935}, {57, 4610}, {65, 99}, {73, 4592}, {81, 55196}, {85, 52612}, {92, 55233}, {100, 6064}, {108, 18020}, {109, 24041}, {115, 4391}, {125, 35518}, {181, 100}, {201, 4561}, {210, 7256}, {213, 5546}, {225, 811}, {226, 799}, {273, 55229}, {278, 55231}, {306, 55207}, {307, 55202}, {335, 36806}, {349, 4602}, {512, 21}, {513, 261}, {514, 52379}, {523, 314}, {594, 646}, {604, 4556}, {647, 1812}, {649, 2185}, {650, 7058}, {651, 4590}, {653, 46254}, {656, 332}, {661, 333}, {663, 1098}, {664, 24037}, {667, 60}, {669, 2194}, {693, 18021}, {756, 3699}, {762, 30730}, {798, 284}, {810, 283}, {822, 6514}, {850, 40072}, {872, 3939}, {934, 7340}, {1020, 4620}, {1042, 1414}, {1084, 3063}, {1096, 52921}, {1109, 35519}, {1214, 4563}, {1231, 52608}, {1254, 664}, {1334, 7259}, {1356, 667}, {1365, 693}, {1400, 662}, {1402, 110}, {1409, 4558}, {1415, 249}, {1425, 6516}, {1427, 4573}, {1441, 670}, {1500, 644}, {1577, 28660}, {1635, 30606}, {1824, 36797}, {1880, 648}, {1919, 2150}, {2171, 190}, {2197, 1332}, {2321, 7258}, {2489, 1172}, {2501, 31623}, {2610, 32851}, {2632, 52616}, {2643, 522}, {2652, 17931}, {2971, 18344}, {3049, 2193}, {3063, 7054}, {3120, 18155}, {3121, 7252}, {3122, 3737}, {3124, 650}, {3125, 4560}, {3668, 4625}, {3669, 1509}, {3676, 873}, {3690, 4571}, {3708, 6332}, {3709, 2287}, {4017, 86}, {4024, 312}, {4036, 3596}, {4041, 1043}, {4064, 3718}, {4077, 310}, {4079, 9}, {4092, 4397}, {4155, 3685}, {4516, 7253}, {4524, 56182}, {4551, 4600}, {4552, 4601}, {4554, 34537}, {4559, 4567}, {4581, 52550}, {4705, 8}, {4729, 52352}, {4770, 4720}, {4826, 4877}, {6046, 4569}, {6354, 4554}, {6358, 1978}, {6367, 3702}, {6516, 47389}, {6591, 46103}, {7063, 8641}, {7064, 4578}, {7138, 6517}, {7143, 934}, {7147, 658}, {7178, 274}, {7180, 81}, {7203, 6628}, {7212, 30940}, {7216, 1434}, {7235, 874}, {7250, 1014}, {7337, 52920}, {8034, 18191}, {8639, 54417}, {8641, 6061}, {8663, 3683}, {8736, 6335}, {8754, 44426}, {8808, 55211}, {14398, 52949}, {16577, 55235}, {17992, 2651}, {18097, 4593}, {18593, 55237}, {20975, 521}, {21043, 4086}, {21131, 4858}, {21134, 17880}, {21725, 3907}, {21727, 3996}, {21816, 30729}, {21823, 3287}, {21824, 57066}, {21833, 3700}, {21859, 1016}, {22260, 4516}, {24006, 44130}, {30456, 36841}, {30572, 30939}, {34388, 6386}, {36127, 23999}, {40149, 6331}, {40521, 4076}, {40663, 55243}, {42661, 960}, {42666, 4511}, {43051, 7304}, {43682, 55209}, {43924, 757}, {43932, 552}, {46390, 3684}, {50487, 55}, {50490, 5324}, {50491, 56181}, {50538, 3706}, {51641, 58}, {51663, 320}, {51664, 17206}, {52567, 53332}, {52623, 28659}, {53540, 7192}, {53545, 7199}, {53551, 30941}, {53560, 15411}, {53581, 41}, {55197, 321}, {55206, 2322}, {55208, 27}, {55212, 27398}, {55214, 31631}, {55230, 78}, {55232, 345}, {55234, 63}, {57109, 1264}, {57181, 593}, {57204, 2204}, {57234, 27958}, {57243, 304}
X(57185) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {661, 4017, 7180}, {661, 55212, 3709}, {661, 55214, 647}, {2610, 4024, 55232}


X(57186) = X(10)X(14331)∩X(521)X(2522)

Barycentrics    a*(b-c)*(b+c)*(a^2-b^2-c^2)*(a^4+a^2*b*c-(b+c)^2*(b^2-b*c+c^2)) : :

X(57186) lies on these lines: {10, 14331}, {71, 57057}, {100, 36071}, {513, 57055}, {521, 2522}, {525, 8611}, {661, 52355}, {1021, 57099}, {3682, 10397}, {7180, 57107}, {7234, 23864}, {7239, 23067}, {8804, 57049}

X(57186) = perspector of circumconic {{A, B, C, X(307), X(1257)}}
X(57186) = X(i)-isoconjugate-of-X(j) for these {i, j}: {112, 15314}, {648, 8615}
X(57186) = X(i)-Dao conjugate of X(j) for these {i, j}: {16612, 693}, {34591, 15314}, {34846, 27}, {52355, 4391}, {55066, 8615}
X(57186) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 5285}, {651, 72}
X(57186) = pole of line {1761, 5285} with respect to the circumcircle
X(57186) = pole of line {3152, 45744} with respect to the Steiner circumellipse
X(57186) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(72), and the X(3)-circumconcevian triangle of X(72)
X(57186) = intersection, other than A, B, C, of circumconics {{A, B, C, X(72), X(4296)}}, {{A, B, C, X(306), X(5285)}}, {{A, B, C, X(16612), X(17094)}}, {{A, B, C, X(36071), X(51664)}}
X(57186) = barycentric product X(i)*X(j) for these (i, j): {100, 34846}, {525, 5279}, {656, 7270}, {1214, 57197}, {2064, 647}, {4296, 52355}, {14208, 5285}, {16612, 306}, {52396, 54247}
X(57186) = barycentric quotient X(i)/X(j) for these (i, j): {656, 15314}, {810, 8615}, {2064, 6331}, {5279, 648}, {5285, 162}, {7270, 811}, {16612, 27}, {34846, 693}, {54247, 8747}, {57197, 31623}


X(57187) = X(75)X(21189)∩X(798)X(812)

Barycentrics    b*(b-c)*c*(a^3*b*c-a*b^2*c^2-a^4*(b+c)+b^2*c^2*(b+c)+a^2*(b^3+c^3)) : :

X(57187) lies on these lines: {75, 21189}, {76, 23785}, {798, 812}, {3733, 4874}, {3835, 21123}, {4391, 21348}, {18160, 57244}, {20316, 35519}, {20949, 50330}, {21611, 57185}

X(57187) = X(i)-Dao conjugate of X(j) for these {i, j}: {35519, 4391}
X(57187) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 75}
X(57187) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(75), and the X(3)-circumconcevian triangle of X(75)


X(57188) = X(7)X(21189)∩X(77)X(521)

Barycentrics    a*(b-c)*(a+b-c)*(a-b+c)*(a^2-b^2-c^2)*(-b^2-b*c-c^2+a*(b+c)) : :

X(57188) lies on these lines: {7, 21189}, {77, 521}, {307, 15413}, {522, 693}, {657, 4091}, {905, 23146}, {1445, 2509}, {1734, 55123}, {1804, 23187}, {4131, 57101}, {4905, 57167}, {6129, 7190}, {30805, 57111}, {43042, 50350}

X(57188) = perspector of circumconic {{A, B, C, X(85), X(40443)}}
X(57188) = X(i)-isoconjugate-of-X(j) for these {i, j}: {55, 26705}, {607, 43190}, {3064, 15378}, {8735, 31616}, {32701, 40869}, {36109, 41339}
X(57188) = X(i)-Dao conjugate of X(j) for these {i, j}: {116, 33}, {223, 26705}, {4025, 4391}, {6586, 44426}
X(57188) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 77}, {33298, 40618}
X(57188) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(77), and the X(3)-circumconcevian triangle of X(77)
X(57188) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(521), X(55123)}}, {{A, B, C, X(522), X(1734)}}, {{A, B, C, X(656), X(4804)}}, {{A, B, C, X(693), X(16751)}}, {{A, B, C, X(1459), X(47887)}}, {{A, B, C, X(2254), X(22084)}}, {{A, B, C, X(3730), X(45281)}}, {{A, B, C, X(6586), X(47123)}}, {{A, B, C, X(17896), X(25259)}}, {{A, B, C, X(22464), X(33298)}}, {{A, B, C, X(36038), X(40618)}}
X(57188) = barycentric product X(i)*X(j) for these (i, j): {57, 57054}, {116, 6516}, {1214, 57214}, {1734, 348}, {1813, 20901}, {6586, 7182}, {16751, 307}, {20567, 22388}, {22084, 4554}, {25259, 77}, {33297, 51664}, {33298, 905}, {40618, 651}, {57106, 7}
X(57188) = barycentric quotient X(i)/X(j) for these (i, j): {57, 26705}, {77, 43190}, {116, 44426}, {1734, 281}, {3730, 56183}, {6586, 33}, {7182, 31624}, {16751, 29}, {17198, 57215}, {17463, 3064}, {20901, 46110}, {20974, 18344}, {22084, 650}, {22388, 41}, {25259, 318}, {33298, 6335}, {36059, 15378}, {40618, 4391}, {51664, 15320}, {57054, 312}, {57106, 8}, {57214, 31623}


X(57189) = X(21)X(4040)∩X(81)X(514)

Barycentrics    a*(a+b)*(b-c)*(a+c)*(a^3-3*b*c*(b+c)-a*(b^2+b*c+c^2)) : :

X(57189) lies on these lines: {21, 4040}, {58, 47970}, {81, 514}, {448, 525}, {661, 1019}, {3737, 4017}, {4724, 16948}, {5235, 47793}, {5333, 47796}, {7178, 7192}, {14005, 50337}, {17103, 57113}, {18200, 48341}, {23789, 25526}, {41800, 48580}, {50346, 57093}

X(57189) = perspector of circumconic {{A, B, C, X(40412), X(40438)}}
X(57189) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4557, 55090}, {4559, 55091}
X(57189) = X(i)-Dao conjugate of X(j) for these {i, j}: {4560, 4391}, {24224, 42708}, {55067, 55091}
X(57189) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 81}, {57248, 57093}
X(57189) = X(i)-cross conjugate of X(j) for these {i, j}: {50346, 57248}
X(57189) = pole of line {693, 17212} with respect to the Kiepert parabola
X(57189) = pole of line {35342, 53388} with respect to the Stammler hyperbola
X(57189) = pole of line {21, 39766} with respect to the Steiner circumellipse
X(57189) = pole of line {3743, 6675} with respect to the Steiner inellipse
X(57189) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(81), and the X(3)-circumconcevian triangle of X(81)
X(57189) = intersection, other than A, B, C, of circumconics {{A, B, C, X(514), X(24224)}}, {{A, B, C, X(1170), X(55101)}}, {{A, B, C, X(23617), X(55100)}}, {{A, B, C, X(47947), X(50346)}}
X(57189) = barycentric product X(i)*X(j) for these (i, j): {1, 57248}, {1019, 55095}, {3737, 55096}, {5260, 7192}, {18155, 55101}, {24224, 662}, {40625, 651}, {50346, 86}, {55100, 7199}, {57093, 7}
X(57189) = barycentric quotient X(i)/X(j) for these (i, j): {1019, 55090}, {3737, 55091}, {5260, 3952}, {24224, 1577}, {40625, 4391}, {50346, 10}, {55095, 4033}, {55100, 1018}, {55101, 4551}, {57093, 8}, {57248, 75}
X(57189) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1019, 57058, 57112}


X(57190) = X(693)X(3873)∩X(4369)X(21390)

Barycentrics    b*(b-c)*(-a+b-c)*(a+b-c)*c*(b^2*c^2-a^3*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(57190) lies on these lines: {693, 3873}, {3261, 46396}, {4077, 29051}, {4369, 21390}, {7199, 18199}, {7209, 43931}, {10030, 17494}, {24002, 43051}

X(57190) = X(i)-Dao conjugate of X(j) for these {i, j}: {3261, 4391}, {44312, 40972}
X(57190) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 85}
X(57190) = X(i)-cross conjugate of X(j) for these {i, j}: {21225, 57110}
X(57190) = pole of line {10030, 20247} with respect to the Steiner circumellipse
X(57190) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(85), and the X(3)-circumconcevian triangle of X(85)
X(57190) = barycentric product X(i)*X(j) for these (i, j): {57, 57056}, {1441, 57149}, {20567, 21791}, {21225, 85}, {44312, 4554}, {57110, 7}
X(57190) = barycentric quotient X(i)/X(j) for these (i, j): {21225, 9}, {21791, 41}, {21901, 1334}, {23093, 212}, {44312, 650}, {57056, 312}, {57110, 8}, {57149, 21}


X(57191) = X(86)X(20954)∩X(798)X(1019)

Barycentrics    (a+b)*(b-c)*(a+c)*(a^3*b*c+a^4*(b+c)-b^2*c^2*(b+c)-a*b*c*(2*b^2+3*b*c+2*c^2)-a^2*(b^3+c^3)) : :

X(57191) lies on these lines: {86, 20954}, {525, 23145}, {798, 1019}, {4077, 7199}, {4560, 57079}, {8062, 18155}, {16751, 26545}, {33296, 48321}

X(57191) = X(i)-Dao conjugate of X(j) for these {i, j}: {18155, 4391}
X(57191) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 86}
X(57191) = pole of line {3261, 16737} with respect to the Kiepert parabola
X(57191) = pole of line {4184, 27804} with respect to the Steiner circumellipse
X(57191) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(86), and the X(3)-circumconcevian triangle of X(86)


X(57192) = X(9)X(14151)∩X(100)X(101)

Barycentrics    a*(a-b)*(a-c)*(3*a-b-c) : :

X(57192) lies on these lines: {9, 14151}, {63, 15730}, {100, 101}, {109, 53630}, {110, 6574}, {145, 4534}, {150, 30857}, {190, 17136}, {219, 38869}, {220, 2975}, {651, 23704}, {664, 53337}, {692, 4578}, {813, 29227}, {932, 8693}, {934, 4564}, {1146, 12531}, {1252, 1415}, {1317, 3039}, {1320, 5540}, {1385, 56244}, {1419, 25731}, {1783, 5375}, {2246, 4919}, {2284, 52923}, {2329, 5260}, {2348, 38460}, {2427, 57151}, {3161, 20818}, {3730, 5303}, {3869, 9502}, {3952, 30728}, {4511, 41391}, {4756, 30727}, {4767, 30729}, {4855, 4936}, {4904, 31226}, {5176, 40869}, {5253, 9310}, {5284, 16788}, {5526, 54391}, {6163, 52985}, {6506, 11681}, {6558, 17780}, {8687, 53629}, {10944, 26793}, {16601, 51683}, {26074, 31272}, {26140, 40534}, {26658, 30616}, {26796, 28743}, {30555, 52778}, {32693, 53625}, {32722, 53685}, {34074, 36147}, {36080, 53627}, {51433, 53579}

X(57192) = trilinear pole of line {1743, 3052}
X(57192) = perspector of circumconic {{A, B, C, X(765), X(44724)}}
X(57192) = X(i)-isoconjugate-of-X(j) for these {i, j}: {11, 38828}, {244, 27834}, {514, 3445}, {522, 40151}, {650, 19604}, {663, 27818}, {667, 40014}, {693, 38266}, {764, 5382}, {884, 10029}, {1015, 53647}, {1019, 56174}, {1086, 1293}, {1111, 34080}, {1431, 27831}, {2415, 43922}, {2429, 6549}, {3669, 3680}, {3733, 4052}, {4391, 16945}, {4521, 16079}, {6187, 27836}, {6557, 43924}, {9309, 27837}, {18344, 27832}, {30719, 33963}, {31343, 53538}, {35355, 51839}
X(57192) = X(i)-vertex conjugate of X(j) for these {i, j}: {27834, 34080}
X(57192) = X(i)-Dao conjugate of X(j) for these {i, j}: {8, 4391}, {3756, 4858}, {5375, 4373}, {6631, 40014}, {39026, 8056}, {40612, 27836}, {40621, 1111}, {45036, 514}
X(57192) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 100}, {4564, 1420}, {44724, 3052}
X(57192) = X(i)-cross conjugate of X(j) for these {i, j}: {3052, 44724}, {4162, 145}, {4394, 1743}, {8643, 16948}
X(57192) = pole of line {1621, 10436} with respect to the Kiepert parabola
X(57192) = pole of line {1019, 8712} with respect to the Stammler hyperbola
X(57192) = pole of line {9, 3617} with respect to the Yff parabola
X(57192) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(100), and the X(3)-circumconcevian triangle of X(100)
X(57192) = intersection, other than A, B, C, of circumconics {{A, B, C, X(100), X(43290)}}, {{A, B, C, X(101), X(38828)}}, {{A, B, C, X(145), X(1026)}}, {{A, B, C, X(644), X(27834)}}, {{A, B, C, X(934), X(1420)}}, {{A, B, C, X(1018), X(6574)}}, {{A, B, C, X(1023), X(1743)}}, {{A, B, C, X(1635), X(4394)}}, {{A, B, C, X(3573), X(16948)}}, {{A, B, C, X(3667), X(3887)}}, {{A, B, C, X(3756), X(38325)}}, {{A, B, C, X(4162), X(4462)}}, {{A, B, C, X(4248), X(7437)}}, {{A, B, C, X(4587), X(5548)}}, {{A, B, C, X(8632), X(8643)}}, {{A, B, C, X(18743), X(42723)}}, {{A, B, C, X(32722), X(33628)}}
X(57192) = barycentric product X(i)*X(j) for these (i, j): {1, 43290}, {100, 145}, {101, 18743}, {108, 44722}, {109, 44720}, {110, 52353}, {162, 52354}, {1016, 4394}, {1018, 41629}, {1023, 31227}, {1252, 4462}, {1415, 44723}, {1420, 3699}, {1743, 190}, {1897, 4855}, {3052, 668}, {3158, 664}, {3161, 651}, {3667, 765}, {3950, 662}, {4076, 51656}, {4162, 4998}, {4404, 4570}, {4487, 901}, {4521, 4564}, {4546, 7045}, {4551, 52352}, {4600, 4729}, {4848, 643}, {4849, 99}, {4881, 51562}, {4891, 8708}, {4925, 5377}, {4936, 658}, {4952, 6012}, {5435, 644}, {6555, 934}, {7035, 8643}, {14321, 4567}, {14425, 5376}, {16948, 3952}, {20818, 6335}, {25737, 55989}, {28218, 4935}, {30720, 57}, {31182, 5382}, {31343, 6049}, {31615, 4534}, {33628, 4033}, {36037, 51433}, {36059, 44721}, {36086, 4899}, {37211, 4898}, {37212, 4856}, {39126, 3939}, {44724, 513}, {45219, 8706}, {53580, 5378}
X(57192) = barycentric quotient X(i)/X(j) for these (i, j): {100, 4373}, {101, 8056}, {109, 19604}, {145, 693}, {190, 40014}, {644, 6557}, {651, 27818}, {692, 3445}, {765, 53647}, {1018, 4052}, {1025, 10029}, {1110, 1293}, {1252, 27834}, {1415, 40151}, {1420, 3676}, {1743, 514}, {1813, 27832}, {2149, 38828}, {2329, 27831}, {3052, 513}, {3158, 522}, {3161, 4391}, {3218, 27836}, {3667, 1111}, {3939, 3680}, {3950, 1577}, {4162, 11}, {4394, 1086}, {4404, 21207}, {4462, 23989}, {4521, 4858}, {4534, 40166}, {4546, 24026}, {4557, 56174}, {4578, 6556}, {4729, 3120}, {4848, 4077}, {4849, 523}, {4855, 4025}, {4856, 4978}, {4881, 4453}, {4884, 48084}, {4898, 4823}, {4917, 48268}, {4936, 3239}, {4943, 4939}, {4953, 42455}, {5435, 24002}, {6065, 31343}, {6555, 4397}, {8643, 244}, {9310, 27837}, {14321, 16732}, {16948, 7192}, {18743, 3261}, {20818, 905}, {23990, 34080}, {30720, 312}, {32739, 38266}, {33628, 1019}, {39126, 52621}, {41629, 7199}, {43290, 75}, {44720, 35519}, {44722, 35518}, {44724, 668}, {51433, 36038}, {51656, 1358}, {52352, 18155}, {52353, 850}, {52354, 14208}
X(57192) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {101, 1023, 644}, {101, 4752, 35342}, {101, 644, 100}


X(57193) = X(108)X(112)∩X(109)X(1783)

Barycentrics    a*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^4-(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(57193) lies on these lines: {108, 112}, {109, 1783}, {608, 22124}, {644, 7012}, {651, 46639}, {906, 7115}, {1292, 32688}, {1394, 7156}, {1461, 32674}, {1880, 34570}, {2443, 57220}, {3172, 44696}, {15291, 30456}, {38715, 47410}

X(57193) = trilinear pole of line {154, 204}
X(57193) = X(i)-isoconjugate-of-X(j) for these {i, j}: {64, 6332}, {253, 652}, {459, 57241}, {521, 2184}, {522, 1073}, {525, 52158}, {647, 5931}, {650, 19611}, {663, 34403}, {905, 44692}, {2155, 35518}, {2299, 14638}, {3064, 15394}, {4025, 30457}, {4391, 19614}, {4560, 53012}, {7004, 56235}, {8809, 57055}, {14331, 52559}, {14379, 46110}, {14642, 35519}, {41489, 52616}
X(57193) = X(i)-Dao conjugate of X(j) for these {i, j}: {4, 4391}, {226, 14638}, {39052, 5931}, {39060, 41530}, {40616, 17880}, {45245, 35518}
X(57193) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 108}, {7012, 7070}
X(57193) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(108), and the X(3)-circumconcevian triangle of X(108)
X(57193) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(1292)}}, {{A, B, C, X(112), X(1461)}}, {{A, B, C, X(644), X(7070)}}, {{A, B, C, X(906), X(15905)}}, {{A, B, C, X(6587), X(47227)}}, {{A, B, C, X(24019), X(32714)}}
X(57193) = barycentric product X(i)*X(j) for these (i, j): {100, 44696}, {101, 44697}, {108, 20}, {109, 1895}, {154, 18026}, {162, 5930}, {190, 3213}, {204, 664}, {610, 653}, {658, 7156}, {1214, 57219}, {1249, 651}, {1394, 1897}, {1414, 53011}, {1415, 15466}, {1441, 57153}, {1783, 18623}, {1880, 36841}, {3172, 4554}, {6516, 6525}, {14249, 36059}, {14331, 7128}, {15905, 54240}, {18750, 32674}, {21172, 7012}, {27382, 32714}, {30456, 648}, {33673, 8750}, {36118, 7070}, {36797, 40933}, {44695, 934}, {44698, 4551}, {44699, 513}, {52913, 65}
X(57193) = barycentric quotient X(i)/X(j) for these (i, j): {20, 35518}, {108, 253}, {109, 19611}, {154, 521}, {162, 5931}, {204, 522}, {610, 6332}, {651, 34403}, {1214, 14638}, {1249, 4391}, {1394, 4025}, {1415, 1073}, {1895, 35519}, {3172, 650}, {3198, 52355}, {3213, 514}, {5930, 14208}, {6525, 44426}, {7115, 56235}, {7156, 3239}, {8750, 44692}, {18026, 41530}, {18623, 15413}, {21172, 17880}, {27382, 15416}, {30456, 525}, {32674, 2184}, {32676, 52158}, {36059, 15394}, {40933, 17094}, {44695, 4397}, {44696, 693}, {44697, 3261}, {44698, 18155}, {44699, 668}, {52913, 314}, {53011, 4086}, {54240, 52581}, {57153, 21}, {57219, 31623}


X(57194) = X(110)X(112)∩X(163)X(649)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^4+a^2*b*c+a*b*c*(b+c)-(b^2-c^2)^2) : :

X(57194) lies on these lines: {110, 112}, {163, 649}, {172, 21890}, {284, 40584}, {919, 53628}, {1983, 2610}, {2341, 40979}, {4565, 57251}, {8687, 53633}, {52630, 52935}

X(57194) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 54454}, {1577, 34435}, {7178, 56280}
X(57194) = X(i)-Dao conjugate of X(j) for these {i, j}: {21, 4391}, {36830, 54454}
X(57194) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 110}
X(57194) = pole of line {525, 14838} with respect to the Stammler hyperbola
X(57194) = pole of line {3267, 18160} with respect to the Wallace hyperbola
X(57194) = triaxial point of ABC, the X(1)-circumconcevian triangle of X(110), and the X(3)-circumconcevian triangle of X(110)
X(57194) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(1983), X(14591)}}, {{A, B, C, X(2475), X(4230)}}, {{A, B, C, X(2610), X(47230)}}
X(57194) = barycentric product X(i)*X(j) for these (i, j): {100, 229}, {101, 52361}, {109, 52360}, {110, 2475}, {112, 28754}, {162, 52362}, {1414, 56317}, {1781, 662}, {18625, 5546}, {40582, 651}
X(57194) = barycentric quotient X(i)/X(j) for these (i, j): {110, 54454}, {229, 693}, {1576, 34435}, {1781, 1577}, {2475, 850}, {28754, 3267}, {40582, 4391}, {52360, 35519}, {52361, 3261}, {52362, 14208}, {56317, 4086}
X(57194) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5546, 57062, 57119}


X(57195) = X(216)X(647)∩X(324)X(850)

Barycentrics    (b-c)*(b+c)*(-a^2+b^2+c^2)*((b^2-c^2)^2-a^2*(b^2+c^2))^2 : :
X(57195) = -3*X[1636]+2*X[55280], -10*X[31072]+9*X[52720], -3*X[47122]+4*X[57201]

X(57195) lies on these lines: {52, 30209}, {216, 647}, {324, 850}, {523, 32320}, {525, 15340}, {1636, 55280}, {1640, 41334}, {2081, 2600}, {2501, 41203}, {3288, 57202}, {31072, 52720}, {31296, 56302}, {47122, 57201}, {55267, 56304}

X(57195) = reflection of X(i) in X(j) for these {i,j}: {17434, 12077}, {35441, 17434}
X(57195) = isotomic conjugate of X(52939)
X(57195) = trilinear pole of line {24862, 39019}
X(57195) = perspector of circumconic {{A, B, C, X(5), X(265)}}
X(57195) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 52939}, {275, 36134}, {823, 46089}, {933, 2167}, {2148, 18831}, {2169, 16813}, {2190, 18315}, {14586, 40440}, {46966, 52414}
X(57195) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 52939}, {5, 18315}, {130, 14533}, {137, 275}, {216, 18831}, {338, 276}, {2972, 97}, {6368, 525}, {6663, 648}, {14363, 16813}, {15450, 54}, {35592, 46064}, {39019, 95}, {40588, 933}
X(57195) = X(i)-Ceva conjugate of X(j) for these {i, j}: {324, 35442}, {525, 34979}, {648, 5}, {925, 418}, {6368, 34983}, {35360, 3078}, {36412, 39019}, {42466, 41219}, {56272, 41221}
X(57195) = X(i)-cross conjugate of X(j) for these {i, j}: {39019, 36412}
X(57195) = pole of line {418, 56308} with respect to the circumcircle
X(57195) = pole of line {1853, 20477} with respect to the DeLongchamps circle
X(57195) = pole of line {275, 1971} with respect to the polar circle
X(57195) = pole of line {51, 3078} with respect to the Johnson circumconic
X(57195) = pole of line {5, 195} with respect to the MacBeath circumconic
X(57195) = pole of line {11197, 34965} with respect to the MacBeath Inconic
X(57195) = pole of line {3574, 12241} with respect to the orthic inconic
X(57195) = pole of line {14590, 18315} with respect to the Stammler hyperbola
X(57195) = pole of line {5, 17035} with respect to the Steiner circumellipse
X(57195) = pole of line {233, 3284} with respect to the Steiner inellipse
X(57195) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(5), and the X(3)-circumconcevian triangle of X(5)
X(57195) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(52887)}}, {{A, B, C, X(324), X(23607)}}, {{A, B, C, X(525), X(35441)}}, {{A, B, C, X(647), X(2081)}}, {{A, B, C, X(850), X(35442)}}, {{A, B, C, X(3078), X(31610)}}, {{A, B, C, X(6368), X(43083)}}, {{A, B, C, X(12077), X(14582)}}, {{A, B, C, X(14391), X(18558)}}, {{A, B, C, X(15451), X(52317)}}, {{A, B, C, X(17434), X(18314)}}, {{A, B, C, X(36412), X(52945)}}
X(57195) = barycentric product X(i)*X(j) for these (i, j): {5, 6368}, {264, 34983}, {265, 55132}, {1087, 656}, {2618, 44706}, {12077, 343}, {15415, 217}, {15451, 311}, {17434, 324}, {18314, 216}, {23290, 5562}, {24862, 99}, {25043, 57135}, {28706, 55219}, {31610, 35441}, {34979, 6662}, {35360, 35442}, {36412, 525}, {39019, 648}, {41212, 6528}, {41279, 52355}, {45793, 647}, {51513, 52347}, {55073, 925}
X(57195) = barycentric quotient X(i)/X(j) for these (i, j): {2, 52939}, {5, 18831}, {51, 933}, {53, 16813}, {216, 18315}, {217, 14586}, {324, 42405}, {418, 15958}, {1087, 811}, {2618, 40440}, {3078, 35311}, {6368, 95}, {12077, 275}, {13450, 52779}, {14391, 43768}, {15451, 54}, {17434, 97}, {18314, 276}, {23290, 8795}, {23607, 35360}, {24862, 523}, {28706, 55218}, {34979, 46724}, {34983, 3}, {36412, 648}, {39019, 525}, {39201, 46089}, {41212, 520}, {41222, 15423}, {42293, 14533}, {45793, 6331}, {46394, 32661}, {51513, 8884}, {52153, 46966}, {55073, 6563}, {55132, 340}, {55219, 8882}
X(57195) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6368, 17434, 35441}, {12077, 17434, 14391}, {14391, 35441, 17434}


X(57196) = X(77)X(3737)∩X(347)X(523)

Barycentrics    (b-c)*(a+b-c)*(a-b+c)*(a^5+b^5+a^3*b*c-b^3*c^2-b^2*c^3+c^5-a^4*(b+c)+a^2*b*c*(b+c)-a*(b^4+b^3*c+b*c^3+c^4)) : :

X(57196) lies on circumconic {{A, B, C, X(1088), X(24000)}} and on these lines: {7, 44409}, {77, 3737}, {347, 523}, {522, 693}, {905, 57224}, {3160, 57228}, {3669, 21114}, {7178, 57227}, {7199, 33673}, {14294, 43042}, {17080, 47782}, {39470, 57167}

X(57196) = perspector of circumconic {{A, B, C, X(85), X(34398)}}
X(57196) = X(i)-Dao conjugate of X(j) for these {i, j}: {17094, 525}
X(57196) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 7}
X(57196) = pole of line {226, 1375} with respect to the Incircle
X(57196) = pole of line {14953, 20211} with respect to the Longuet-Higgins circle
X(57196) = pole of line {33, 46835} with respect to the polar circle
X(57196) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(7), and the X(3)-circumconcevian triangle of X(7)


X(57197) = X(2)X(2419)∩X(514)X(661)

Barycentrics    (a-b-c)*(b-c)*(a^4+a^2*b*c-(b+c)^2*(b^2-b*c+c^2)) : :

X(57197) lies on these lines: {2, 2419}, {321, 23683}, {514, 661}, {525, 26146}, {650, 20294}, {1637, 24960}, {2501, 26080}, {3064, 4397}, {3161, 57046}, {3287, 3700}, {4024, 4529}, {6591, 47695}, {28800, 28835}, {47687, 57091}, {47694, 57158}, {57042, 57156}, {57045, 57049}

X(57197) = perspector of circumconic {{A, B, C, X(75), X(7270)}}
X(57197) = X(i)-isoconjugate-of-X(j) for these {i, j}: {651, 8615}, {1415, 15314}
X(57197) = X(i)-Dao conjugate of X(j) for these {i, j}: {1146, 15314}, {16612, 17094}, {34846, 57}, {38991, 8615}, {52355, 525}
X(57197) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 48890}, {648, 8}
X(57197) = X(i)-complementary conjugate of X(j) for these {i, j}: {3429, 21252}
X(57197) = pole of line {19, 3772} with respect to the polar circle
X(57197) = pole of line {4467, 6333} with respect to the Kiepert parabola
X(57197) = pole of line {8, 22130} with respect to the MacBeath circumconic
X(57197) = pole of line {8, 1503} with respect to the Steiner circumellipse
X(57197) = pole of line {10, 1503} with respect to the Steiner inellipse
X(57197) = pole of line {662, 34211} with respect to the Wallace hyperbola
X(57197) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(8), and the X(3)-circumconcevian triangle of X(8)
X(57197) = intersection, other than A, B, C, of circumconics {{A, B, C, X(312), X(857)}}, {{A, B, C, X(514), X(16612)}}, {{A, B, C, X(650), X(48300)}}, {{A, B, C, X(661), X(34212)}}, {{A, B, C, X(908), X(5279)}}, {{A, B, C, X(1577), X(43673)}}, {{A, B, C, X(2064), X(3912)}}, {{A, B, C, X(2419), X(14208)}}, {{A, B, C, X(7252), X(48131)}}, {{A, B, C, X(7270), X(30806)}}
X(57197) = barycentric product X(i)*X(j) for these (i, j): {522, 7270}, {2064, 650}, {3718, 54247}, {4296, 4397}, {4391, 5279}, {16612, 312}, {31623, 57186}, {34846, 36797}, {35519, 5285}
X(57197) = barycentric quotient X(i)/X(j) for these (i, j): {522, 15314}, {663, 8615}, {2064, 4554}, {4296, 934}, {5279, 651}, {5285, 109}, {7270, 664}, {16612, 57}, {34846, 17094}, {54247, 34}, {57186, 1214}


X(57198) = X(1)X(56092)∩X(40)X(520)

Barycentrics    a*(a-b-c)*(b-c)*(a^5-a^2*b*c*(b+c)+b*(b-c)^2*c*(b+c)+a*(b+c)^2*(b^2+b*c+c^2)-a^3*(2*b^2+3*b*c+2*c^2)) : :

X(57198) lies on these lines: {1, 56092}, {8, 57081}, {40, 520}, {200, 52355}, {521, 1734}, {522, 3935}, {677, 35338}, {3737, 4041}, {3900, 48297}, {4132, 53249}, {4551, 7012}, {6741, 55068}, {7629, 34496}, {7649, 8058}, {23838, 56120}, {47136, 48307}

X(57198) = perspector of circumconic {{A, B, C, X(32008), X(40444)}}
X(57198) = X(i)-Dao conjugate of X(j) for these {i, j}: {8611, 525}
X(57198) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 9}
X(57198) = pole of line {6000, 48917} with respect to the Bevan circle
X(57198) = pole of line {6357, 6666} with respect to the Steiner inellipse
X(57198) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(9), and the X(3)-circumconcevian triangle of X(9)


X(57199) = X(37)X(16612)∩X(514)X(4024)

Barycentrics    (b-c)*(b+c)*(a^4+a^3*(b+c)+a^2*(b^2+3*b*c+c^2)-(b+c)^2*(2*b^2-b*c+2*c^2)-a*(b^3+b^2*c+b*c^2+c^3)) : :

X(57199) lies on these lines: {37, 16612}, {321, 14208}, {514, 4024}, {3239, 4064}, {3995, 17498}, {6590, 57160}, {8611, 22021}, {23874, 57042}, {46107, 52623}, {57045, 57064}

X(57199) = perspector of circumconic {{A, B, C, X(1268), X(40445)}}
X(57199) = X(i)-Dao conjugate of X(j) for these {i, j}: {4064, 525}
X(57199) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 10}
X(57199) = pole of line {1839, 18688} with respect to the polar circle
X(57199) = pole of line {2173, 3634} with respect to the Steiner inellipse
X(57199) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(10), and the X(3)-circumconcevian triangle of X(10)


X(57200) = X(19)X(876)∩X(28)X(1022)

Barycentrics    a*(a+b)*(b-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(57200) lies on these lines: {19, 876}, {28, 1022}, {34, 57139}, {112, 1308}, {162, 3257}, {242, 514}, {278, 34496}, {513, 1430}, {521, 57092}, {522, 57073}, {648, 4562}, {656, 1021}, {924, 54421}, {1019, 50354}, {1027, 1474}, {1172, 35355}, {1435, 7250}, {1769, 57134}, {2501, 50349}, {3064, 17418}, {3669, 3733}, {4211, 8042}, {4833, 18344}, {6129, 21789}, {7253, 14954}, {8043, 47235}, {8062, 14208}, {17924, 21173}, {24006, 54229}, {32676, 36146}, {34975, 57124}, {47947, 54244}, {57072, 57081}

X(57200) = midpoint of X(i) and X(j) for these {i,j}: {7253, 17498}
X(57200) = reflection of X(i) in X(j) for these {i,j}: {14208, 8062}, {656, 16612}
X(57200) = polar conjugate of X(4033)
X(57200) = perspector of circumconic {{A, B, C, X(27), X(28)}}
X(57200) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 4574}, {3, 3952}, {6, 52609}, {8, 23067}, {10, 1331}, {37, 1332}, {42, 4561}, {48, 4033}, {59, 52355}, {63, 1018}, {65, 4571}, {69, 4557}, {71, 190}, {72, 100}, {73, 3699}, {77, 4069}, {78, 4551}, {99, 3690}, {101, 306}, {107, 4158}, {109, 3710}, {110, 3695}, {162, 52387}, {163, 52369}, {184, 27808}, {201, 643}, {210, 6516}, {219, 4552}, {222, 30730}, {226, 4587}, {228, 668}, {307, 3939}, {313, 32656}, {321, 906}, {345, 4559}, {346, 52610}, {440, 29163}, {520, 15742}, {525, 1252}, {594, 4558}, {644, 1214}, {645, 2197}, {646, 1409}, {647, 1016}, {648, 52386}, {651, 3694}, {656, 765}, {662, 3949}, {664, 2318}, {677, 51366}, {692, 20336}, {756, 4592}, {810, 7035}, {872, 55202}, {1020, 3692}, {1089, 4575}, {1110, 14208}, {1260, 4566}, {1265, 53321}, {1293, 52354}, {1425, 7256}, {1439, 4578}, {1444, 40521}, {1500, 4563}, {1783, 3998}, {1790, 4103}, {1796, 4115}, {1797, 4169}, {1812, 21859}, {1813, 2321}, {1897, 3682}, {1978, 2200}, {2327, 4605}, {3049, 31625}, {3267, 23990}, {3700, 44717}, {3701, 36059}, {3781, 4613}, {3958, 37212}, {3990, 6335}, {4047, 4606}, {4064, 4570}, {4101, 8694}, {4554, 52370}, {4564, 8611}, {4567, 55232}, {4600, 55230}, {4621, 20727}, {5378, 53556}, {5379, 57109}, {5546, 26942}, {6065, 17094}, {6517, 53008}, {6540, 22080}, {6558, 52373}, {7066, 36797}, {7109, 52608}, {7259, 37755}, {8701, 41014}, {8707, 22076}, {8750, 52396}, {9268, 14429}, {14543, 52561}, {17441, 52778}, {22061, 27805}, {22363, 54967}, {22381, 36863}, {23113, 56258}, {23139, 39722}, {28654, 32661}, {30713, 32660}, {31615, 53560}, {32641, 51367}, {32739, 40071}, {34055, 35309}, {36080, 42706}, {40161, 57217}, {52385, 56183}
X(57200) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 52609}, {11, 3710}, {115, 52369}, {125, 52387}, {136, 1089}, {244, 3695}, {513, 656}, {514, 14208}, {661, 525}, {1015, 306}, {1084, 3949}, {1086, 20336}, {1249, 4033}, {3162, 1018}, {5139, 756}, {5190, 321}, {5521, 10}, {6615, 52355}, {8054, 72}, {20620, 3701}, {26932, 52396}, {32664, 4574}, {34467, 3682}, {36103, 3952}, {38966, 4082}, {38985, 4158}, {38986, 3690}, {38991, 3694}, {39006, 3998}, {39025, 2318}, {39052, 1016}, {39062, 7035}, {40589, 1332}, {40592, 4561}, {40596, 765}, {40602, 4571}, {40615, 1231}, {40616, 42699}, {40617, 307}, {40619, 40071}, {40620, 304}, {40625, 3718}, {40627, 55232}, {50330, 4064}, {50497, 55230}, {53985, 3992}, {55046, 3610}, {55053, 71}, {55060, 201}, {55066, 52386}, {55067, 345}, {55068, 1265}
X(57200) = X(i)-Ceva conjugate of X(j) for these {i, j}: {162, 28}, {648, 19}, {811, 27}, {1897, 31900}, {24019, 4211}, {32714, 46890}
X(57200) = X(i)-cross conjugate of X(j) for these {i, j}: {1015, 1435}, {2969, 34}, {6591, 17925}, {42067, 19}, {43924, 3733}, {57129, 1019}
X(57200) = pole of line {2352, 23383} with respect to the circumcircle
X(57200) = pole of line {4292, 40959} with respect to the Incircle
X(57200) = pole of line {10, 321} with respect to the polar circle
X(57200) = pole of line {40955, 40956} with respect to the Brocard inellipse
X(57200) = pole of line {19, 45038} with respect to the MacBeath circumconic
X(57200) = pole of line {1829, 1839} with respect to the orthic inconic
X(57200) = pole of line {1331, 1332} with respect to the Stammler hyperbola
X(57200) = pole of line {19, 3187} with respect to the Steiner circumellipse
X(57200) = pole of line {40530, 40940} with respect to the Steiner inellipse
X(57200) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(19), and the X(3)-circumconcevian triangle of X(19)
X(57200) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(30117)}}, {{A, B, C, X(19), X(242)}}, {{A, B, C, X(27), X(52890)}}, {{A, B, C, X(28), X(5379)}}, {{A, B, C, X(34), X(1063)}}, {{A, B, C, X(57), X(5137)}}, {{A, B, C, X(92), X(52461)}}, {{A, B, C, X(244), X(11125)}}, {{A, B, C, X(513), X(514)}}, {{A, B, C, X(614), X(37782)}}, {{A, B, C, X(649), X(46385)}}, {{A, B, C, X(656), X(7216)}}, {{A, B, C, X(1015), X(7250)}}, {{A, B, C, X(1024), X(23289)}}, {{A, B, C, X(1111), X(21109)}}, {{A, B, C, X(1430), X(1435)}}, {{A, B, C, X(1459), X(22383)}}, {{A, B, C, X(2489), X(42067)}}, {{A, B, C, X(2616), X(7180)}}, {{A, B, C, X(3733), X(3737)}}, {{A, B, C, X(4017), X(23752)}}, {{A, B, C, X(4211), X(14954)}}, {{A, B, C, X(4581), X(18108)}}, {{A, B, C, X(6591), X(7649)}}, {{A, B, C, X(7129), X(36420)}}, {{A, B, C, X(7192), X(47844)}}, {{A, B, C, X(8752), X(36124)}}, {{A, B, C, X(16099), X(16100)}}, {{A, B, C, X(17981), X(17982)}}, {{A, B, C, X(21172), X(43932)}}, {{A, B, C, X(23345), X(48281)}}, {{A, B, C, X(31905), X(46254)}}, {{A, B, C, X(52954), X(52955)}}
X(57200) = barycentric product X(i)*X(j) for these (i, j): {1, 17925}, {19, 7192}, {25, 7199}, {27, 513}, {28, 514}, {29, 3669}, {34, 4560}, {56, 57215}, {107, 3942}, {108, 17197}, {158, 7254}, {163, 2973}, {244, 648}, {261, 55208}, {264, 57129}, {270, 7178}, {272, 57173}, {273, 7252}, {278, 3737}, {281, 7203}, {286, 649}, {333, 43923}, {552, 55206}, {1014, 3064}, {1015, 811}, {1019, 4}, {1021, 1119}, {1022, 37168}, {1027, 15149}, {1086, 162}, {1096, 15419}, {1111, 112}, {1172, 3676}, {1175, 23595}, {1255, 46542}, {1333, 46107}, {1396, 522}, {1408, 46110}, {1412, 44426}, {1414, 8735}, {1434, 18344}, {1435, 7253}, {1474, 693}, {1565, 24019}, {1847, 21789}, {1973, 52619}, {2189, 4077}, {2203, 3261}, {2204, 52621}, {2299, 24002}, {2322, 43932}, {2489, 873}, {2501, 757}, {2969, 662}, {3121, 55229}, {3122, 55231}, {3248, 6331}, {3733, 92}, {3937, 823}, {4017, 46103}, {4025, 5317}, {4211, 48070}, {4466, 52920}, {5379, 6545}, {6591, 86}, {7649, 81}, {8747, 905}, {14208, 36420}, {14618, 849}, {15742, 8042}, {16726, 1897}, {16727, 8750}, {17096, 33}, {17171, 18108}, {17205, 1783}, {17921, 87}, {17922, 39949}, {17924, 58}, {17926, 269}, {18155, 608}, {18184, 26705}, {18191, 653}, {18210, 52919}, {21108, 52376}, {23800, 40574}, {23829, 8751}, {23989, 32676}, {24006, 593}, {29162, 40431}, {31623, 43924}, {31900, 47947}, {31901, 48587}, {31902, 48074}, {31903, 47915}, {31905, 876}, {36419, 656}, {36797, 53538}, {39179, 427}, {39439, 47680}, {40395, 50354}, {40432, 54229}, {42067, 799}, {42069, 4637}, {43925, 75}, {44129, 667}, {44130, 57181}, {46254, 8034}, {46883, 56320}, {52393, 54244}, {52914, 53545}, {56283, 7128}
X(57200) = barycentric quotient X(i)/X(j) for these (i, j): {1, 52609}, {4, 4033}, {19, 3952}, {25, 1018}, {27, 668}, {28, 190}, {29, 646}, {31, 4574}, {33, 30730}, {34, 4552}, {58, 1332}, {81, 4561}, {92, 27808}, {112, 765}, {162, 1016}, {244, 525}, {261, 55207}, {270, 645}, {284, 4571}, {286, 1978}, {512, 3949}, {513, 306}, {514, 20336}, {523, 52369}, {552, 55205}, {593, 4592}, {604, 23067}, {607, 4069}, {608, 4551}, {647, 52387}, {648, 7035}, {649, 72}, {650, 3710}, {661, 3695}, {663, 3694}, {667, 71}, {693, 40071}, {757, 4563}, {764, 4466}, {798, 3690}, {810, 52386}, {811, 31625}, {822, 4158}, {849, 4558}, {873, 52608}, {905, 52396}, {1015, 656}, {1019, 69}, {1021, 1265}, {1086, 14208}, {1106, 52610}, {1111, 3267}, {1172, 3699}, {1333, 1331}, {1357, 51664}, {1395, 4559}, {1396, 664}, {1398, 1020}, {1408, 1813}, {1412, 6516}, {1426, 4605}, {1435, 4566}, {1459, 3998}, {1474, 100}, {1509, 55202}, {1769, 51367}, {1824, 4103}, {1843, 35309}, {1919, 228}, {1973, 4557}, {1977, 810}, {1980, 2200}, {2087, 14429}, {2170, 52355}, {2189, 643}, {2194, 4587}, {2203, 101}, {2204, 3939}, {2206, 906}, {2299, 644}, {2326, 7256}, {2332, 4578}, {2333, 40521}, {2355, 4115}, {2489, 756}, {2501, 1089}, {2969, 1577}, {2973, 20948}, {3063, 2318}, {3064, 3701}, {3121, 55230}, {3122, 55232}, {3125, 4064}, {3248, 647}, {3271, 8611}, {3669, 307}, {3676, 1231}, {3733, 63}, {3737, 345}, {3937, 24018}, {3942, 3265}, {4017, 26942}, {4183, 6558}, {4211, 3732}, {4367, 4019}, {4394, 52354}, {4560, 3718}, {4790, 4101}, {4979, 41014}, {5317, 1897}, {5379, 6632}, {6591, 10}, {7180, 201}, {7192, 304}, {7199, 305}, {7203, 348}, {7216, 6356}, {7250, 37755}, {7252, 78}, {7253, 52406}, {7254, 326}, {7649, 321}, {8034, 3708}, {8042, 1565}, {8678, 3610}, {8735, 4086}, {8747, 6335}, {16695, 22370}, {16726, 4025}, {16754, 51612}, {16947, 36059}, {17096, 7182}, {17197, 35518}, {17205, 15413}, {17921, 6376}, {17922, 56249}, {17924, 313}, {17925, 75}, {17926, 341}, {18184, 57054}, {18191, 6332}, {18344, 2321}, {21102, 42698}, {21143, 18210}, {21172, 42699}, {21789, 3692}, {22096, 822}, {22383, 3682}, {23189, 3719}, {23595, 1234}, {24006, 28654}, {24019, 15742}, {27846, 24459}, {31905, 874}, {31909, 4505}, {32676, 1252}, {36419, 811}, {36420, 162}, {37168, 24004}, {39179, 1799}, {40411, 54967}, {40574, 51566}, {40983, 35310}, {40985, 22003}, {42067, 661}, {43923, 226}, {43924, 1214}, {43925, 1}, {44129, 6386}, {44426, 30713}, {46103, 7257}, {46107, 27801}, {46385, 42706}, {46542, 4359}, {47844, 19799}, {48281, 42705}, {48398, 20235}, {50512, 3958}, {50514, 20727}, {51641, 2197}, {52619, 40364}, {52890, 23891}, {52954, 42716}, {53538, 17094}, {53540, 57243}, {54229, 3963}, {54244, 3969}, {54407, 42720}, {55206, 6057}, {55208, 12}, {56242, 22061}, {57074, 20760}, {57129, 3}, {57181, 73}, {57204, 872}, {57215, 3596}
X(57200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7253, 17498, 23874}, {7649, 46542, 17925}


X(57201) = X(110)X(15639)∩X(441)X(525)

Barycentrics    (b-c)*(b+c)*(-a^2+b^2+c^2)*(-3*a^4+(b^2-c^2)^2+2*a^2*(b^2+c^2))^2 : :
X(57201) = 3*X[1636]+X[2501], 3*X[9209]+X[32320], 3*X[47122]+X[57195]

X(57201) lies on these lines: {110, 15639}, {441, 525}, {648, 44181}, {1636, 2501}, {2430, 46375}, {6587, 8057}, {9209, 32320}, {14401, 45245}, {17926, 44409}, {23616, 40170}, {23964, 32646}, {47122, 57195}

X(57201) = perspector of circumconic {{A, B, C, X(20), X(69)}}
X(57201) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 53886}, {662, 31942}, {1301, 2184}, {2155, 53639}, {24019, 52559}
X(57201) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 53886}, {122, 459}, {1084, 31942}, {8057, 525}, {13611, 14572}, {35071, 52559}, {39020, 253}, {45245, 53639}, {45248, 46639}, {52613, 14638}
X(57201) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 20}, {20580, 8057}, {36413, 39020}, {40170, 122}, {43188, 45200}, {52913, 3079}, {57219, 15905}
X(57201) = X(i)-complementary conjugate of X(j) for these {i, j}: {32676, 6523}, {47849, 55069}
X(57201) = X(i)-cross conjugate of X(j) for these {i, j}: {13613, 1249}, {39020, 36413}
X(57201) = pole of line {159, 1661} with respect to the circumcircle
X(57201) = pole of line {253, 1853} with respect to the DeLongchamps circle
X(57201) = pole of line {2883, 7710} with respect to the orthoptic circle of the Steiner inellipse
X(57201) = pole of line {393, 459} with respect to the polar circle
X(57201) = pole of line {20, 394} with respect to the MacBeath circumconic
X(57201) = pole of line {1899, 5895} with respect to the orthic inconic
X(57201) = pole of line {112, 46639} with respect to the Stammler hyperbola
X(57201) = pole of line {20, 15312} with respect to the Steiner circumellipse
X(57201) = pole of line {3, 1033} with respect to the Steiner inellipse
X(57201) = pole of line {648, 44326} with respect to the Wallace hyperbola
X(57201) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(20), and the X(3)-circumconcevian triangle of X(20)
X(57201) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(44181)}}, {{A, B, C, X(441), X(3079)}}, {{A, B, C, X(525), X(6587)}}, {{A, B, C, X(3265), X(8057)}}, {{A, B, C, X(4025), X(21172)}}, {{A, B, C, X(6332), X(14331)}}, {{A, B, C, X(6390), X(53050)}}, {{A, B, C, X(6529), X(13613)}}, {{A, B, C, X(11064), X(36413)}}, {{A, B, C, X(14345), X(39020)}}, {{A, B, C, X(15905), X(23964)}}, {{A, B, C, X(23608), X(40170)}}
X(57201) = barycentric product X(i)*X(j) for these (i, j): {20, 8057}, {122, 52913}, {520, 52578}, {523, 53050}, {1097, 656}, {1249, 20580}, {1562, 36841}, {3079, 3265}, {14615, 42658}, {17094, 6060}, {36413, 525}, {36908, 57045}, {37669, 6587}, {39020, 648}, {52355, 7338}
X(57201) = barycentric quotient X(i)/X(j) for these (i, j): {3, 53886}, {20, 53639}, {154, 1301}, {512, 31942}, {520, 52559}, {1097, 811}, {3079, 107}, {6060, 36797}, {6587, 459}, {8057, 253}, {15905, 46639}, {20580, 34403}, {23608, 52913}, {36413, 648}, {37669, 44326}, {39020, 525}, {42658, 64}, {44705, 6526}, {52578, 6528}, {52913, 44181}, {53050, 99}, {57153, 15384}


X(57202) = X(520)X(37085)∩X(525)X(3049)

Barycentrics    a^4*(b-c)*(b+c)*(a^2-b^2-c^2)*(-a^4+b^4+c^4)^2 : :

X(57202) lies on these lines: {520, 37085}, {525, 3049}, {1625, 15639}, {2485, 8673}, {3288, 57195}, {9210, 32320}, {9517, 57204}, {20580, 23115}, {30213, 52588}, {32649, 32661}

X(57202) = perspector of circumconic {{A, B, C, X(22), X(1799)}}
X(57202) = X(i)-Dao conjugate of X(j) for these {i, j}: {32, 1289}, {127, 43678}, {8673, 525}, {55047, 18018}
X(57202) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 22}, {36414, 55047}
X(57202) = X(i)-cross conjugate of X(j) for these {i, j}: {55047, 36414}
X(57202) = pole of line {15270, 20993} with respect to the circumcircle
X(57202) = pole of line {6776, 18560} with respect to the cosine circle
X(57202) = pole of line {27376, 43678} with respect to the polar circle
X(57202) = pole of line {22, 69} with respect to the MacBeath circumconic
X(57202) = pole of line {35325, 44766} with respect to the Stammler hyperbola
X(57202) = pole of line {22, 56015} with respect to the Steiner circumellipse
X(57202) = pole of line {6676, 40938} with respect to the Steiner inellipse
X(57202) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(22), and the X(3)-circumconcevian triangle of X(22)
X(57202) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2485), X(4580)}}, {{A, B, C, X(36414), X(52950)}}
X(57202) = barycentric product X(i)*X(j) for these (i, j): {22, 8673}, {206, 57069}, {10316, 33294}, {20806, 2485}, {36414, 525}, {38356, 4611}, {47413, 52915}, {55047, 648}
X(57202) = barycentric quotient X(i)/X(j) for these (i, j): {206, 1289}, {2485, 43678}, {8673, 18018}, {10316, 44766}, {36414, 648}, {55047, 525}, {57069, 40421}


X(57203) = X(6)X(525)∩X(2492)X(6593)

Barycentrics    a^4*(b-c)*(b+c)*(a^2-b^2-c^2)*(-a^4+b^4-b^2*c^2+c^4)^2 : :

X(57203) lies on these lines: {6, 525}, {512, 41593}, {575, 30209}, {1499, 34117}, {1640, 41334}, {2492, 6593}, {2501, 8743}, {3049, 10097}, {5664, 52058}, {9716, 32320}, {14401, 40583}, {32661, 51478}, {37085, 39500}

X(57203) = perspector of circumconic {{A, B, C, X(23), X(2373)}}
X(57203) = X(i)-Dao conjugate of X(j) for these {i, j}: {5099, 46105}, {9517, 525}, {55048, 18019}
X(57203) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 23}, {36415, 55048}
X(57203) = X(i)-cross conjugate of X(j) for these {i, j}: {55048, 36415}
X(57203) = pole of line {5523, 46105} with respect to the polar circle
X(57203) = pole of line {23, 524} with respect to the MacBeath circumconic
X(57203) = pole of line {23, 56016} with respect to the Steiner circumellipse
X(57203) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(23), and the X(3)-circumconcevian triangle of X(23)
X(57203) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6593), X(43697)}}, {{A, B, C, X(10097), X(42659)}}, {{A, B, C, X(36415), X(52951)}}
X(57203) = barycentric product X(i)*X(j) for these (i, j): {23, 9517}, {316, 42659}, {10317, 9979}, {22151, 2492}, {36415, 525}, {55048, 648}
X(57203) = barycentric quotient X(i)/X(j) for these (i, j): {2492, 46105}, {9517, 18019}, {10317, 17708}, {18374, 935}, {36415, 648}, {42659, 67}, {55048, 525}


X(57204) = X(6)X(3566)∩X(112)X(805)

Barycentrics    a^4*(b-c)*(b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(57204) lies on these lines: {4, 30217}, {6, 3566}, {32, 34347}, {112, 805}, {419, 2501}, {512, 1692}, {523, 37912}, {525, 2451}, {648, 886}, {729, 36898}, {826, 14273}, {875, 1973}, {881, 9491}, {1499, 22159}, {1974, 57075}, {2207, 2422}, {2491, 39201}, {2519, 20186}, {2971, 9427}, {3053, 44680}, {3080, 23610}, {3124, 34982}, {3162, 14401}, {3569, 6753}, {5027, 54273}, {8743, 50437}, {9035, 52617}, {9210, 47230}, {9517, 57202}, {13400, 30442}, {15147, 17925}, {15148, 43925}, {23099, 44162}, {23616, 40144}, {35325, 39195}, {38996, 42068}, {40601, 52951}, {42660, 52590}

X(57204) = isogonal conjugate of X(52608)
X(57204) = polar conjugate of X(4609)
X(57204) = trilinear pole of line {1084, 23216}
X(57204) = perspector of circumconic {{A, B, C, X(25), X(1974)}}
X(57204) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52608}, {2, 55202}, {3, 4602}, {7, 55207}, {8, 55205}, {48, 4609}, {63, 670}, {69, 799}, {72, 52612}, {75, 4563}, {76, 4592}, {99, 304}, {110, 40364}, {163, 40050}, {219, 55213}, {274, 4561}, {305, 662}, {306, 4623}, {307, 4631}, {310, 1332}, {326, 6331}, {332, 4554}, {336, 2396}, {345, 4625}, {348, 7257}, {525, 24037}, {561, 4558}, {645, 7182}, {656, 34537}, {668, 17206}, {810, 44168}, {811, 3926}, {823, 4176}, {873, 52609}, {1102, 6528}, {1265, 4635}, {1331, 6385}, {1444, 1978}, {1502, 4575}, {1577, 47389}, {1790, 6386}, {1792, 46406}, {1799, 55239}, {1812, 4572}, {1813, 40072}, {1928, 32661}, {2128, 54956}, {3265, 46254}, {3267, 24041}, {3718, 4573}, {3917, 37204}, {3933, 4593}, {3977, 4634}, {3998, 55229}, {4020, 42371}, {4025, 4601}, {4143, 23999}, {4590, 14208}, {4600, 15413}, {4610, 20336}, {4616, 52406}, {4620, 35518}, {6393, 36036}, {6516, 28660}, {7035, 15419}, {7056, 7258}, {9723, 55215}, {17875, 55274}, {17879, 55270}, {17880, 55194}, {17881, 55277}, {17932, 46238}, {19611, 55224}, {20563, 55249}, {20902, 31614}, {24039, 30786}, {31637, 55260}, {35567, 45220}, {40071, 52935}, {44706, 55218}, {52385, 55233}, {52396, 55231}
X(57204) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52608}, {115, 40050}, {136, 1502}, {206, 4563}, {244, 40364}, {512, 525}, {1084, 305}, {1249, 4609}, {2679, 6393}, {3005, 3267}, {3162, 670}, {5139, 76}, {5521, 6385}, {9494, 2524}, {15259, 6331}, {17423, 3926}, {21905, 45807}, {32664, 55202}, {36103, 4602}, {36901, 40360}, {38986, 304}, {38996, 69}, {39062, 44168}, {40368, 4558}, {40369, 32661}, {40596, 34537}, {50497, 15413}, {53983, 52568}, {55050, 3933}
X(57204) = X(i)-Ceva conjugate of X(j) for these {i, j}: {112, 27369}, {648, 25}, {1974, 42068}, {2207, 2971}, {2489, 669}, {32697, 237}, {32713, 3080}, {35325, 44091}, {36417, 1084}, {40144, 20975}, {52439, 23216}
X(57204) = X(i)-cross conjugate of X(j) for these {i, j}: {1084, 36417}, {9426, 669}, {9427, 44162}, {23099, 2971}, {23216, 52439}, {42068, 1974}
X(57204) = pole of line {3053, 27369} with respect to the circumcircle
X(57204) = pole of line {4, 193} with respect to the cosine circle
X(57204) = pole of line {32, 11326} with respect to the 1st Lemoine circle
X(57204) = pole of line {76, 141} with respect to the polar circle
X(57204) = pole of line {32, 11326} with respect to the Brocard inellipse
X(57204) = pole of line {25, 193} with respect to the MacBeath circumconic
X(57204) = pole of line {428, 524} with respect to the orthic inconic
X(57204) = pole of line {4563, 24284} with respect to the Stammler hyperbola
X(57204) = pole of line {25, 7754} with respect to the Steiner circumellipse
X(57204) = pole of line {1196, 5305} with respect to the Steiner inellipse
X(57204) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(25), and the X(3)-circumconcevian triangle of X(25)
X(57204) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(52460)}}, {{A, B, C, X(25), X(46522)}}, {{A, B, C, X(32), X(1692)}}, {{A, B, C, X(419), X(27369)}}, {{A, B, C, X(512), X(669)}}, {{A, B, C, X(523), X(2514)}}, {{A, B, C, X(688), X(3800)}}, {{A, B, C, X(798), X(2484)}}, {{A, B, C, X(1084), X(14398)}}, {{A, B, C, X(1924), X(3063)}}, {{A, B, C, X(1974), X(44102)}}, {{A, B, C, X(2207), X(2211)}}, {{A, B, C, X(2422), X(3049)}}, {{A, B, C, X(2495), X(7250)}}, {{A, B, C, X(2971), X(17994)}}, {{A, B, C, X(3080), X(15014)}}, {{A, B, C, X(3288), X(9494)}}, {{A, B, C, X(5027), X(9491)}}, {{A, B, C, X(9429), X(30217)}}, {{A, B, C, X(11060), X(19626)}}, {{A, B, C, X(14581), X(36417)}}, {{A, B, C, X(34952), X(42663)}}, {{A, B, C, X(52631), X(55219)}}
X(57204) = barycentric product X(i)*X(j) for these (i, j): {4, 669}, {19, 798}, {25, 512}, {27, 53581}, {28, 50487}, {33, 51641}, {41, 55208}, {110, 2971}, {112, 3124}, {213, 6591}, {232, 2422}, {237, 53149}, {264, 9426}, {351, 8753}, {419, 881}, {520, 52439}, {607, 7180}, {862, 875}, {1084, 648}, {1096, 810}, {1356, 36797}, {1395, 4041}, {1398, 4524}, {1402, 18344}, {1426, 8641}, {1474, 4079}, {1500, 43925}, {1576, 8754}, {1637, 40354}, {1783, 3121}, {1824, 667}, {1826, 1919}, {1880, 3063}, {1918, 7649}, {1924, 92}, {1973, 661}, {1974, 523}, {1980, 41013}, {2203, 4705}, {2204, 57185}, {2207, 647}, {2211, 2395}, {2212, 4017}, {2333, 649}, {2489, 6}, {2491, 6531}, {2501, 32}, {2623, 3199}, {2643, 32676}, {3049, 393}, {3122, 8750}, {3563, 42663}, {3709, 608}, {4117, 811}, {6331, 9427}, {7071, 7250}, {10311, 52631}, {11060, 47230}, {13400, 46680}, {14248, 8651}, {14270, 18384}, {14273, 32740}, {14398, 8749}, {14407, 8752}, {14573, 23290}, {14574, 2970}, {14581, 2433}, {14593, 34952}, {14601, 16230}, {14618, 1501}, {14776, 42752}, {15422, 217}, {15475, 34397}, {15630, 4230}, {17924, 2205}, {17925, 7109}, {17980, 5027}, {17994, 1976}, {18020, 23099}, {18105, 1843}, {18808, 9407}, {20975, 32713}, {22260, 250}, {23216, 6528}, {24006, 560}, {32085, 688}, {32320, 36434}, {32696, 44114}, {33581, 44705}, {34212, 51437}, {34854, 878}, {34859, 51404}, {35325, 51906}, {35364, 44099}, {36417, 525}, {39201, 6524}, {40144, 52588}, {40351, 41079}, {42067, 4557}, {42068, 99}, {44089, 882}, {44102, 9178}, {44162, 850}, {46001, 8541}, {46104, 9494}, {47643, 54273}, {50494, 51686}, {51513, 54034}, {52065, 55231}, {53059, 57071}, {55206, 604}, {55219, 8882}, {57200, 872}
X(57204) = barycentric quotient X(i)/X(j) for these (i, j): {4, 4609}, {6, 52608}, {19, 4602}, {25, 670}, {31, 55202}, {32, 4563}, {34, 55213}, {41, 55207}, {112, 34537}, {512, 305}, {523, 40050}, {560, 4592}, {604, 55205}, {648, 44168}, {661, 40364}, {669, 69}, {688, 3933}, {798, 304}, {850, 40360}, {881, 40708}, {1084, 525}, {1356, 17094}, {1395, 4625}, {1474, 52612}, {1501, 4558}, {1576, 47389}, {1824, 6386}, {1917, 4575}, {1918, 4561}, {1919, 17206}, {1924, 63}, {1973, 799}, {1974, 99}, {1977, 15419}, {1980, 1444}, {2203, 4623}, {2204, 4631}, {2205, 1332}, {2207, 6331}, {2211, 2396}, {2212, 7257}, {2333, 1978}, {2489, 76}, {2491, 6393}, {2501, 1502}, {2531, 4175}, {2971, 850}, {3049, 3926}, {3080, 53350}, {3121, 15413}, {3124, 3267}, {3172, 55224}, {4079, 40071}, {4117, 656}, {6591, 6385}, {7063, 52355}, {7109, 52609}, {8753, 53080}, {8754, 44173}, {8882, 55218}, {9233, 32661}, {9426, 3}, {9427, 647}, {9494, 3917}, {14601, 17932}, {14618, 40362}, {15369, 54956}, {17409, 55225}, {18344, 40072}, {20975, 52617}, {21906, 45807}, {22260, 339}, {23099, 125}, {23216, 520}, {23610, 20975}, {24006, 1928}, {27369, 4576}, {32085, 42371}, {32676, 24037}, {36417, 648}, {39201, 4176}, {40351, 44769}, {41937, 55270}, {42067, 52619}, {42068, 523}, {44089, 880}, {44162, 110}, {50487, 20336}, {51641, 7182}, {52065, 55232}, {52439, 6528}, {53149, 18024}, {53581, 306}, {55206, 28659}, {55208, 20567}, {55219, 28706}


X(57205) = X(48)X(4367)∩X(512)X(2304)

Barycentrics    a^3*(a+b)*(a-b-c)*(b-c)*(a+c)*(a^2*(b+c)+b*c*(b+c)-a*(b^2+b*c+c^2)) : :

X(57205) lies on these lines: {48, 4367}, {512, 2304}, {663, 51726}, {824, 4560}, {1021, 1924}, {20981, 57213}, {22229, 51949}, {23090, 57129}, {45755, 57096}

X(57205) = perspector of circumconic {{A, B, C, X(2299), X(40415)}}
X(57205) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4552, 54128}
X(57205) = X(i)-Dao conjugate of X(j) for these {i, j}: {810, 525}, {5518, 349}, {17072, 1577}, {25128, 20910}
X(57205) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 31}, {662, 13588}
X(57205) = pole of line {349, 20305} with respect to the polar circle
X(57205) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(31), and the X(3)-circumconcevian triangle of X(31)
X(57205) = intersection, other than A, B, C, of circumconics {{A, B, C, X(41), X(51956)}}, {{A, B, C, X(663), X(23655)}}, {{A, B, C, X(2194), X(13588)}}, {{A, B, C, X(7255), X(23864)}}
X(57205) = barycentric product X(i)*X(j) for these (i, j): {1, 23864}, {19, 23145}, {21, 23655}, {1172, 22443}, {2150, 21958}, {2185, 22229}, {3501, 7252}, {4560, 51949}, {13588, 663}, {17072, 2194}, {21300, 31}, {21348, 284}, {21388, 6}, {21610, 32}, {34247, 3737}, {55066, 648}
X(57205) = barycentric quotient X(i)/X(j) for these (i, j): {13588, 4572}, {21300, 561}, {21348, 349}, {21388, 76}, {21610, 1502}, {22229, 6358}, {22443, 1231}, {23145, 304}, {23655, 1441}, {23864, 75}, {51949, 4552}, {55066, 525}


X(57206) = X(184)X(669)∩X(512)X(2623)

Barycentrics    a^4*(-(b^6*c^2)+b^2*c^6+a^6*(b^2-c^2)-2*a^4*(b^4-c^4)+a^2*(b^6-c^6)) : :

X(57206) lies on these lines: {182, 23301}, {184, 669}, {206, 57128}, {512, 2623}, {520, 8651}, {826, 5027}, {1147, 5926}, {2501, 44077}, {5012, 44445}, {6563, 8723}, {9306, 44451}, {11003, 31299}, {16230, 57120}, {31279, 43650}, {32320, 34952}, {40643, 57127}, {50550, 57126}

X(57206) = midpoint of X(i) and X(j) for these {i,j}: {669, 30451}
X(57206) = perspector of circumconic {{A, B, C, X(8882), X(32654)}}
X(57206) = X(i)-Dao conjugate of X(j) for these {i, j}: {3049, 525}
X(57206) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 32}
X(57206) = pole of line {3580, 7790} with respect to the 1st Brocard circle
X(57206) = pole of line {571, 9306} with respect to the circumcircle
X(57206) = pole of line {311, 21243} with respect to the polar circle
X(57206) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(32), and the X(3)-circumconcevian triangle of X(32)
X(57206) = barycentric product X(i)*X(j) for these (i, j): {17423, 648}
X(57206) = barycentric quotient X(i)/X(j) for these (i, j): {17423, 525}


X(57207) = X(10)X(8062)∩X(42)X(656)

Barycentrics    a*(b-c)*(b+c)*(a^5-a^2*b*c*(b+c)+a*(b+c)^2*(b^2+b*c+c^2)-a^3*(2*b^2+3*b*c+2*c^2)+b*c*(b^3+b^2*c+b*c^2+c^3)) : :

X(57207) lies on circumconic {{A, B, C, X(14775), X(50520)}} and on these lines: {10, 8062}, {42, 656}, {513, 4380}, {521, 34975}, {2509, 55232}, {3900, 4036}, {4651, 7253}, {4705, 15313}, {8674, 57093}, {9249, 22272}, {9253, 22273}, {21727, 46385}, {22320, 38469}, {22324, 30665}

X(57207) = perspector of circumconic {{A, B, C, X(32009), X(40447)}}
X(57207) = X(i)-Dao conjugate of X(j) for these {i, j}: {55232, 525}
X(57207) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 37}
X(57207) = pole of line {4698, 14206} with respect to the Steiner inellipse
X(57207) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(37), and the X(3)-circumconcevian triangle of X(37)


X(57208) = X(37)X(17478)∩X(213)X(21761)

Barycentrics    a^2*(b-c)*(b+c)*(a^5*(b+c)+2*a*b^2*c^2*(b+c)+b^2*c^2*(b+c)^2-a^4*(b^2+b*c+c^2)-a^3*(b^3+b^2*c+b*c^2+c^3)+a^2*(b^4+b^3*c+b^2*c^2+b*c^3+c^4)) : :

X(57208) lies on these lines: {37, 17478}, {213, 21761}, {514, 19565}, {657, 55230}, {2198, 4041}, {3730, 57068}, {4024, 57043}, {4079, 8676}, {40586, 57046}, {40978, 57131}, {57042, 57133}

X(57208) = X(i)-Dao conjugate of X(j) for these {i, j}: {55230, 525}
X(57208) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 42}
X(57208) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(42), and the X(3)-circumconcevian triangle of X(42)
X(57208) = barycentric product X(i)*X(j) for these (i, j): {22041, 6}, {23820, 4557}
X(57208) = barycentric quotient X(i)/X(j) for these (i, j): {22041, 76}, {23820, 52619}


X(57209) = X(192)X(4777)∩X(521)X(3157)

Barycentrics    a*(2*a-b-c)*(b-c)*(a^5-a^2*b*c*(b+c)+a*(b+c)^2*(b^2+b*c+c^2)-a^3*(2*b^2+3*b*c+2*c^2)+b*c*(b^3-3*b^2*c-3*b*c^2+c^3)) : :

X(57209) lies on these lines: {192, 4777}, {214, 57095}, {513, 3871}, {521, 3157}, {1148, 57089}, {3555, 46611}, {5541, 57130}, {8702, 57093}, {21148, 57094}

X(57209) = perspector of circumconic {{A, B, C, X(32012), X(55995)}}
X(57209) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 44}
X(57209) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(44), and the X(3)-circumconcevian triangle of X(44)


X(57210) = X(49)X(523)∩X(520)X(1147)

Barycentrics    a^4*(b-c)*(b+c)*(a^2-b^2-b*c-c^2)*(a^2-b^2+b*c-c^2)*(a^10-4*a^8*(b^2+c^2)-b^2*c^2*(b^2-c^2)^2*(b^2+c^2)+a^6*(6*b^4+7*b^2*c^2+6*c^4)-a^4*(4*b^6+3*b^4*c^2+3*b^2*c^4+4*c^6)+a^2*(b^8+b^6*c^2-2*b^4*c^4+b^2*c^6+c^8)) : :

X(57210) lies on these lines: {49, 523}, {184, 46608}, {520, 1147}, {526, 3043}, {6753, 51936}, {11597, 57128}, {18882, 31296}, {22115, 53234}

X(57210) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 50}
X(57210) = pole of line {10540, 11751} with respect to the circumcircle
X(57210) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(50), and the X(3)-circumconcevian triangle of X(50)


X(57211) = X(4)X(13152)∩X(51)X(924)

Barycentrics    (b-c)*(b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-b^2*c^2+c^4-2*a^2*(b^2+c^2))*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :
X(57211) = -X[23286]+4*X[45259]

X(57211) lies on these lines: {4, 13152}, {51, 924}, {107, 46966}, {523, 37943}, {2413, 3518}, {2489, 14576}, {2501, 3050}, {6368, 18314}, {10412, 13450}, {20577, 57135}, {23286, 45259}, {52675, 57120}

X(57211) = trilinear pole of line {137, 47424}
X(57211) = perspector of circumconic {{A, B, C, X(324), X(1179)}}
X(57211) = X(i)-isoconjugate-of-X(j) for these {i, j}: {97, 36148}, {252, 4575}, {930, 2169}, {2962, 15958}, {3519, 36134}, {9247, 55283}
X(57211) = X(i)-Dao conjugate of X(j) for these {i, j}: {136, 252}, {137, 3519}, {12077, 525}, {14363, 930}, {35591, 22115}, {39018, 97}, {53986, 54}
X(57211) = X(i)-Ceva conjugate of X(j) for these {i, j}: {107, 3518}, {648, 53}
X(57211) = X(i)-cross conjugate of X(j) for these {i, j}: {57137, 20577}
X(57211) = pole of line {15559, 31867} with respect to the nine-point circle
X(57211) = pole of line {54, 140} with respect to the polar circle
X(57211) = pole of line {14978, 15559} with respect to the MacBeath Inconic
X(57211) = pole of line {187, 6756} with respect to the orthic inconic
X(57211) = pole of line {53, 41628} with respect to the Steiner circumellipse
X(57211) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(53), and the X(3)-circumconcevian triangle of X(53)
X(57211) = intersection, other than A, B, C, of circumconics {{A, B, C, X(53), X(32002)}}, {{A, B, C, X(137), X(14225)}}, {{A, B, C, X(1510), X(6368)}}, {{A, B, C, X(2413), X(18314)}}, {{A, B, C, X(3518), X(13450)}}, {{A, B, C, X(14577), X(39569)}}, {{A, B, C, X(25043), X(27357)}}
X(57211) = barycentric product X(i)*X(j) for these (i, j): {137, 648}, {143, 14618}, {264, 57137}, {1510, 324}, {1994, 23290}, {2052, 57135}, {12077, 32002}, {14129, 523}, {14577, 850}, {18314, 3518}, {20577, 4}, {23872, 52670}, {23873, 52671}, {41298, 53}, {47424, 6528}, {51513, 7769}
X(57211) = barycentric quotient X(i)/X(j) for these (i, j): {53, 930}, {137, 525}, {143, 4558}, {264, 55283}, {324, 46139}, {1510, 97}, {2181, 36148}, {2501, 252}, {2965, 15958}, {3199, 32737}, {3518, 18315}, {12077, 3519}, {13450, 38342}, {14129, 99}, {14577, 110}, {20577, 69}, {23290, 11140}, {41298, 34386}, {47424, 520}, {51513, 2963}, {52670, 32036}, {52671, 32037}, {55219, 51477}, {57135, 394}, {57137, 3}


X(57212) = X(572)X(661)∩X(1021)X(1635)

Barycentrics    a^2*(a+b)*(a-b-c)*(b-c)*(a+c)*(a^3+b*c*(b+c)-a*(b^2-b*c+c^2)) : :

X(57212) lies on these lines: {284, 7252}, {514, 39177}, {520, 3733}, {572, 661}, {662, 4998}, {822, 39210}, {1019, 57213}, {1021, 1635}, {1412, 18199}, {1474, 17926}, {1790, 7192}, {1919, 4765}, {2328, 23864}, {4560, 17161}, {5546, 32665}, {6003, 22382}, {40214, 57148}, {40589, 57128}, {47844, 57120}, {48387, 57042}

X(57212) = X(i)-isoconjugate-of-X(j) for these {i, j}: {65, 56248}, {1020, 44040}, {40518, 41013}
X(57212) = X(i)-Dao conjugate of X(j) for these {i, j}: {1459, 525}, {40602, 56248}
X(57212) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 58}, {662, 404}, {8690, 2328}
X(57212) = pole of line {6358, 21011} with respect to the polar circle
X(57212) = pole of line {20295, 44408} with respect to the Kiepert parabola
X(57212) = pole of line {14543, 21362} with respect to the Stammler hyperbola
X(57212) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(58), and the X(3)-circumconcevian triangle of X(58)
X(57212) = intersection, other than A, B, C, of circumconics {{A, B, C, X(60), X(404)}}, {{A, B, C, X(3737), X(48281)}}
X(57212) = barycentric product X(i)*X(j) for these (i, j): {21, 48281}, {27, 57042}, {110, 44311}, {284, 47796}, {286, 57103}, {3737, 404}, {18155, 44085}, {20293, 58}, {32939, 7252}, {39006, 648}, {48387, 86}
X(57212) = barycentric quotient X(i)/X(j) for these (i, j): {284, 56248}, {20293, 313}, {21789, 44040}, {39006, 525}, {44085, 4551}, {44311, 850}, {47796, 349}, {48281, 1441}, {48387, 10}, {57042, 306}, {57103, 72}


X(57213) = X(63)X(52613)∩X(522)X(663)

Barycentrics    a*(a+b)*(a-b-c)*(b-c)*(a+c)*(a^2-b^2-c^2)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2) : :

X(57213) lies on these lines: {63, 52613}, {522, 663}, {662, 32667}, {905, 4131}, {1019, 57212}, {1021, 14838}, {1262, 5546}, {6505, 57228}, {10397, 57245}, {14414, 57134}, {14837, 57233}, {17925, 57224}, {20981, 57205}

X(57213) = perspector of circumconic {{A, B, C, X(333), X(1444)}}
X(57213) = X(i)-isoconjugate-of-X(j) for these {i, j}: {65, 40117}, {100, 2358}, {108, 1903}, {225, 36049}, {653, 2357}, {1020, 7008}, {1783, 52384}, {1824, 37141}, {1826, 8059}, {1880, 13138}, {2192, 52607}, {2333, 53642}, {4551, 7129}, {4552, 7151}, {4557, 55110}, {4559, 40836}, {4566, 7154}, {7003, 53321}, {7012, 55242}, {8750, 8808}, {32652, 40149}, {32674, 39130}, {32714, 53013}, {36127, 41087}
X(57213) = X(i)-Dao conjugate of X(j) for these {i, j}: {57, 52607}, {5514, 225}, {8054, 2358}, {14298, 656}, {14331, 17898}, {14837, 1577}, {16596, 40149}, {24018, 525}, {26932, 8808}, {35072, 39130}, {38983, 1903}, {39006, 52384}, {40602, 40117}, {55044, 1826}, {55063, 10}, {55067, 40836}, {55068, 7003}, {57055, 4086}
X(57213) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 63}, {662, 1817}, {1414, 283}
X(57213) = X(i)-cross conjugate of X(j) for these {i, j}: {55044, 7013}, {55058, 77}
X(57213) = pole of line {18611, 23361} with respect to the circumcircle
X(57213) = pole of line {225, 24005} with respect to the polar circle
X(57213) = pole of line {109, 1783} with respect to the Stammler hyperbola
X(57213) = pole of line {63, 20222} with respect to the Steiner circumellipse
X(57213) = pole of line {5745, 37565} with respect to the Steiner inellipse
X(57213) = pole of line {664, 6335} with respect to the Wallace hyperbola
X(57213) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(63), and the X(3)-circumconcevian triangle of X(63)
X(57213) = intersection, other than A, B, C, of circumconics {{A, B, C, X(63), X(10538)}}, {{A, B, C, X(78), X(1262)}}, {{A, B, C, X(223), X(45272)}}, {{A, B, C, X(522), X(905)}}, {{A, B, C, X(663), X(10397)}}, {{A, B, C, X(1790), X(41083)}}, {{A, B, C, X(1812), X(1817)}}, {{A, B, C, X(1944), X(7013)}}, {{A, B, C, X(3685), X(20769)}}, {{A, B, C, X(3737), X(7254)}}, {{A, B, C, X(4131), X(6332)}}, {{A, B, C, X(4511), X(6513)}}, {{A, B, C, X(7078), X(20744)}}, {{A, B, C, X(22154), X(48307)}}
X(57213) = barycentric product X(i)*X(j) for these (i, j): {332, 6129}, {347, 57081}, {521, 8822}, {1019, 55112}, {1414, 7358}, {1444, 8058}, {1817, 6332}, {1819, 693}, {2360, 35518}, {3194, 52616}, {4625, 47432}, {7013, 7253}, {10397, 274}, {14298, 17206}, {14837, 1812}, {15411, 223}, {15419, 2324}, {16596, 662}, {17896, 283}, {18155, 7078}, {23090, 40702}, {23189, 322}, {27398, 905}, {31623, 57233}, {38357, 4592}, {53557, 99}, {55044, 811}, {55111, 7199}, {55241, 7117}, {57101, 86}, {57245, 81}
X(57213) = barycentric quotient X(i)/X(j) for these (i, j): {223, 52607}, {283, 13138}, {284, 40117}, {521, 39130}, {649, 2358}, {652, 1903}, {905, 8808}, {1019, 55110}, {1021, 7003}, {1437, 8059}, {1444, 53642}, {1459, 52384}, {1790, 37141}, {1812, 44327}, {1817, 653}, {1819, 100}, {1946, 2357}, {2193, 36049}, {2360, 108}, {3194, 36127}, {3737, 40836}, {4091, 52037}, {6129, 225}, {7011, 1020}, {7013, 4566}, {7078, 4551}, {7114, 53321}, {7117, 55242}, {7252, 7129}, {7253, 7020}, {7254, 1422}, {7358, 4086}, {8058, 41013}, {8822, 18026}, {10397, 37}, {14298, 1826}, {14837, 40149}, {15411, 34404}, {16596, 1577}, {21789, 7008}, {23090, 282}, {23189, 84}, {27398, 6335}, {36054, 41087}, {38357, 24006}, {41083, 54240}, {47432, 4041}, {51664, 13853}, {53557, 523}, {55044, 656}, {55058, 17898}, {55111, 1018}, {55112, 4033}, {55212, 8736}, {57081, 280}, {57101, 10}, {57108, 53013}, {57134, 2192}, {57233, 1214}, {57241, 52389}, {57245, 321}
X(57213) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3737, 57241, 57081}


X(57214) = X(86)X(2400)∩X(99)X(4570)

Barycentrics    (a+b)*(b-c)*(a+c)*(-b^2-b*c-c^2+a*(b+c)) : :
X(57214) = -3*X[4750]+2*X[52602]

X(57214) lies on these lines: {86, 2400}, {99, 4570}, {522, 4406}, {523, 4467}, {525, 23145}, {648, 32701}, {649, 768}, {656, 5224}, {669, 23405}, {824, 1019}, {900, 17217}, {918, 4560}, {1414, 7012}, {1444, 57125}, {2786, 4079}, {3261, 4025}, {3737, 16755}, {3798, 47129}, {4552, 53644}, {4750, 52602}, {5664, 6626}, {6586, 16751}, {8061, 24287}, {8714, 20954}, {14616, 53209}, {15411, 20580}, {17069, 27527}, {17377, 35057}, {18077, 29037}, {21189, 50450}, {21348, 28898}, {23399, 53326}, {28221, 53376}, {28851, 47683}, {50451, 53527}

X(57214) = reflection of X(i) in X(j) for these {i,j}: {20954, 23785}, {25259, 6586}, {3261, 4025}, {47129, 3798}, {7199, 23829}
X(57214) = trilinear pole of line {116, 17198}
X(57214) = perspector of circumconic {{A, B, C, X(32014), X(33297)}}
X(57214) = X(i)-isoconjugate-of-X(j) for these {i, j}: {213, 43190}, {228, 26705}, {661, 15378}, {692, 15320}, {2205, 31624}, {3125, 31616}
X(57214) = X(i)-Dao conjugate of X(j) for these {i, j}: {116, 42}, {1086, 15320}, {4025, 525}, {6586, 523}, {6626, 43190}, {21045, 21698}, {36830, 15378}, {40620, 14377}
X(57214) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 4184}, {648, 86}, {799, 17671}, {33297, 17198}
X(57214) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {6577, 2895}, {8049, 21294}, {34444, 21221}, {39797, 3448}, {53651, 21287}
X(57214) = X(i)-cross conjugate of X(j) for these {i, j}: {1734, 16751}, {17198, 33297}, {17463, 17233}, {20901, 33298}
X(57214) = pole of line {4184, 23339} with respect to the circumcircle
X(57214) = pole of line {42, 430} with respect to the polar circle
X(57214) = pole of line {514, 1921} with respect to the Kiepert parabola
X(57214) = pole of line {2426, 32656} with respect to the Stammler hyperbola
X(57214) = pole of line {86, 1621} with respect to the Steiner circumellipse
X(57214) = pole of line {6707, 34830} with respect to the Steiner inellipse
X(57214) = pole of line {31290, 47948} with respect to the Yff parabola
X(57214) = pole of line {1331, 2398} with respect to the Wallace hyperbola
X(57214) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(86), and the X(3)-circumconcevian triangle of X(86)
X(57214) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(310), X(4184)}}, {{A, B, C, X(1734), X(2424)}}, {{A, B, C, X(2400), X(4608)}}, {{A, B, C, X(17233), X(40717)}}, {{A, B, C, X(33298), X(53209)}}
X(57214) = barycentric product X(i)*X(j) for these (i, j): {27, 57054}, {116, 99}, {286, 57106}, {310, 6586}, {1019, 33932}, {1734, 274}, {3261, 4184}, {3681, 7199}, {3730, 52619}, {16751, 75}, {17198, 190}, {17233, 7192}, {17463, 799}, {18184, 668}, {20901, 662}, {20974, 670}, {21045, 4610}, {21133, 4600}, {22084, 6331}, {25259, 86}, {31623, 57188}, {33297, 514}, {33298, 4560}, {38358, 4625}, {40618, 648}
X(57214) = barycentric quotient X(i)/X(j) for these (i, j): {27, 26705}, {86, 43190}, {110, 15378}, {116, 523}, {310, 31624}, {514, 15320}, {1734, 37}, {3681, 1018}, {3730, 4557}, {4006, 40521}, {4184, 101}, {4570, 31616}, {6586, 42}, {7192, 14377}, {16751, 1}, {17198, 514}, {17233, 3952}, {17463, 661}, {18184, 513}, {20901, 1577}, {20974, 512}, {21045, 4024}, {21133, 3120}, {21837, 872}, {22084, 647}, {22388, 2200}, {25259, 10}, {33297, 190}, {33298, 4552}, {33932, 4033}, {38358, 4041}, {40618, 525}, {55123, 17747}, {57054, 306}, {57106, 72}, {57188, 1214}
X(57214) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {522, 23829, 7199}, {656, 18160, 5224}, {4025, 28623, 3261}, {7253, 15419, 86}, {8714, 23785, 20954}


X(57215) = X(27)X(1019)∩X(107)X(2728)

Barycentrics    b*(a+b)*(b-c)*c*(a+c)*(-a+b+c)*(-a^2+b^2-c^2)*(a^2+b^2-c^2) : :

X(57215) lies on these lines: {27, 1019}, {29, 23696}, {92, 14618}, {107, 2728}, {273, 7178}, {469, 4129}, {514, 46107}, {521, 1948}, {522, 57072}, {525, 23683}, {648, 35174}, {693, 905}, {811, 51560}, {823, 37136}, {1021, 1577}, {3064, 6332}, {3265, 17899}, {4978, 23595}, {7199, 52621}, {24006, 54229}

X(57215) = polar conjugate of X(4551)
X(57215) = trilinear pole of line {4858, 7004}
X(57215) = perspector of circumconic {{A, B, C, X(286), X(31623)}}
X(57215) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 4559}, {6, 23067}, {10, 32660}, {12, 32661}, {37, 36059}, {42, 1813}, {48, 4551}, {55, 52610}, {56, 4574}, {59, 647}, {65, 906}, {71, 109}, {72, 1415}, {73, 101}, {100, 1409}, {108, 3990}, {110, 2197}, {112, 7066}, {163, 201}, {181, 4558}, {184, 4552}, {212, 1020}, {213, 6516}, {219, 53321}, {222, 4557}, {226, 32656}, {228, 651}, {307, 32739}, {512, 44717}, {520, 7115}, {603, 1018}, {644, 1410}, {653, 4055}, {656, 2149}, {664, 2200}, {692, 1214}, {810, 4564}, {822, 7012}, {934, 52370}, {1042, 4587}, {1110, 51664}, {1331, 1400}, {1332, 1402}, {1397, 52609}, {1425, 5546}, {1437, 21859}, {1461, 2318}, {1576, 26942}, {1783, 22341}, {1983, 52391}, {2169, 35307}, {2171, 4575}, {2333, 6517}, {2623, 44710}, {3049, 4998}, {3682, 32674}, {3690, 4565}, {3939, 52373}, {3952, 52411}, {4069, 7099}, {4566, 52425}, {4570, 55234}, {6056, 52607}, {8611, 24027}, {8685, 20727}, {8687, 22076}, {8750, 40152}, {15386, 52310}, {15439, 18591}, {17094, 23990}, {22061, 29055}, {23979, 52355}, {39201, 46102}, {41087, 57118}, {47390, 55197}, {52378, 55230}
X(57215) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4574}, {9, 23067}, {11, 71}, {115, 201}, {136, 2171}, {223, 52610}, {244, 2197}, {514, 51664}, {522, 8611}, {650, 656}, {905, 24018}, {1015, 73}, {1086, 1214}, {1146, 72}, {1249, 4551}, {1577, 525}, {2968, 3694}, {4858, 26942}, {5190, 65}, {5521, 1400}, {6615, 647}, {6626, 6516}, {6741, 3949}, {7952, 1018}, {8054, 1409}, {13089, 23084}, {13999, 2245}, {14363, 35307}, {14714, 52370}, {17197, 22097}, {17419, 22076}, {20620, 37}, {26932, 40152}, {34591, 7066}, {35072, 3682}, {35508, 2318}, {36103, 4559}, {38966, 1334}, {38983, 3990}, {38991, 228}, {39006, 22341}, {39025, 2200}, {39052, 59}, {39054, 44717}, {39062, 4564}, {40582, 1331}, {40589, 36059}, {40592, 1813}, {40596, 2149}, {40602, 906}, {40605, 1332}, {40615, 1439}, {40617, 52373}, {40618, 52385}, {40619, 307}, {40620, 77}, {40622, 37755}, {40624, 306}, {40625, 63}, {40626, 3998}, {40628, 520}, {40837, 1020}, {50330, 55234}, {55064, 3690}, {55067, 3}, {55068, 219}
X(57215) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 92}, {811, 29}, {823, 27}
X(57215) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {112, 52676}, {43729, 34188}
X(57215) = X(i)-cross conjugate of X(j) for these {i, j}: {11, 273}, {514, 4560}, {2170, 270}, {3737, 18155}, {8735, 318}, {17197, 27}
X(57215) = pole of line {37, 65} with respect to the polar circle
X(57215) = pole of line {906, 32660} with respect to the Stammler hyperbola
X(57215) = pole of line {92, 3868} with respect to the Steiner circumellipse
X(57215) = pole of line {942, 6708} with respect to the Steiner inellipse
X(57215) = pole of line {1332, 1813} with respect to the Wallace hyperbola
X(57215) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(92), and the X(3)-circumconcevian triangle of X(92)
X(57215) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(11), X(7178)}}, {{A, B, C, X(27), X(837)}}, {{A, B, C, X(29), X(15149)}}, {{A, B, C, X(60), X(9311)}}, {{A, B, C, X(85), X(3615)}}, {{A, B, C, X(92), X(275)}}, {{A, B, C, X(273), X(1948)}}, {{A, B, C, X(312), X(33129)}}, {{A, B, C, X(514), X(521)}}, {{A, B, C, X(522), X(23882)}}, {{A, B, C, X(693), X(4391)}}, {{A, B, C, X(1019), X(17197)}}, {{A, B, C, X(1847), X(7020)}}, {{A, B, C, X(2185), X(18609)}}, {{A, B, C, X(3064), X(6591)}}, {{A, B, C, X(4560), X(7199)}}, {{A, B, C, X(8611), X(46382)}}, {{A, B, C, X(16752), X(28660)}}, {{A, B, C, X(17924), X(44426)}}, {{A, B, C, X(20293), X(47796)}}, {{A, B, C, X(21300), X(21610)}}, {{A, B, C, X(40011), X(43740)}}
X(57215) = barycentric product X(i)*X(j) for these (i, j): {11, 811}, {21, 46107}, {27, 4391}, {28, 35519}, {29, 693}, {33, 52619}, {107, 17880}, {162, 34387}, {264, 3737}, {270, 850}, {273, 7253}, {274, 3064}, {281, 7199}, {286, 522}, {314, 7649}, {318, 7192}, {324, 39177}, {799, 8735}, {1019, 7017}, {1021, 331}, {1111, 36797}, {1172, 3261}, {1396, 52622}, {1414, 21666}, {1577, 46103}, {1896, 4025}, {1969, 7252}, {2170, 6331}, {2299, 40495}, {2322, 24002}, {2501, 52379}, {2969, 7257}, {2973, 643}, {2997, 57072}, {3125, 55233}, {3596, 57200}, {4183, 52621}, {4516, 55229}, {4560, 92}, {4858, 648}, {6528, 7004}, {14616, 44428}, {14618, 2185}, {15413, 8748}, {17096, 7101}, {17197, 6335}, {17921, 27424}, {17924, 333}, {17925, 312}, {17926, 85}, {18155, 4}, {18344, 310}, {20948, 2189}, {21044, 55231}, {21207, 52914}, {24006, 261}, {26932, 823}, {28659, 43925}, {28660, 6591}, {31623, 514}, {35518, 8747}, {40213, 46102}, {42069, 4625}, {44129, 650}, {44130, 513}, {44426, 86}, {46110, 81}, {46254, 55195}, {54314, 57161}, {57083, 7318}
X(57215) = barycentric quotient X(i)/X(j) for these (i, j): {1, 23067}, {4, 4551}, {9, 4574}, {11, 656}, {19, 4559}, {21, 1331}, {27, 651}, {28, 109}, {29, 100}, {33, 4557}, {34, 53321}, {53, 35307}, {57, 52610}, {58, 36059}, {60, 4575}, {81, 1813}, {86, 6516}, {92, 4552}, {107, 7012}, {112, 2149}, {162, 59}, {261, 4592}, {270, 110}, {273, 4566}, {278, 1020}, {281, 1018}, {284, 906}, {286, 664}, {312, 52609}, {314, 4561}, {318, 3952}, {333, 1332}, {513, 73}, {514, 1214}, {521, 3682}, {522, 72}, {523, 201}, {648, 4564}, {649, 1409}, {650, 71}, {652, 3990}, {656, 7066}, {657, 52370}, {661, 2197}, {662, 44717}, {663, 228}, {693, 307}, {811, 4998}, {823, 46102}, {905, 40152}, {1019, 222}, {1021, 219}, {1043, 4571}, {1086, 51664}, {1111, 17094}, {1146, 8611}, {1172, 101}, {1333, 32660}, {1396, 1461}, {1444, 6517}, {1459, 22341}, {1474, 1415}, {1577, 26942}, {1826, 21859}, {1855, 35310}, {1896, 1897}, {1946, 4055}, {2150, 32661}, {2170, 647}, {2185, 4558}, {2189, 163}, {2194, 32656}, {2204, 32739}, {2287, 4587}, {2299, 692}, {2322, 644}, {2326, 5546}, {2501, 2171}, {2605, 22342}, {2617, 44710}, {2969, 4017}, {2973, 4077}, {3063, 2200}, {3064, 37}, {3125, 55234}, {3194, 57118}, {3239, 3694}, {3261, 1231}, {3271, 810}, {3287, 22061}, {3669, 52373}, {3676, 1439}, {3700, 3949}, {3733, 603}, {3737, 3}, {3900, 2318}, {3937, 51640}, {4017, 1425}, {4025, 52385}, {4041, 3690}, {4077, 6356}, {4086, 3695}, {4124, 53556}, {4183, 3939}, {4391, 306}, {4397, 3710}, {4516, 55230}, {4560, 63}, {4765, 4047}, {4811, 4101}, {4858, 525}, {4976, 3958}, {4985, 41014}, {5317, 32674}, {6332, 3998}, {6591, 1400}, {6728, 7591}, {7004, 520}, {7017, 4033}, {7046, 4069}, {7101, 30730}, {7117, 822}, {7178, 37755}, {7192, 77}, {7199, 348}, {7203, 7053}, {7252, 48}, {7253, 78}, {7254, 7125}, {7649, 65}, {8611, 52386}, {8735, 661}, {8747, 108}, {8748, 1783}, {14006, 4579}, {14024, 3573}, {14618, 6358}, {15149, 1025}, {15411, 3719}, {15413, 52565}, {15419, 7183}, {16228, 56198}, {16732, 57243}, {17096, 7177}, {17197, 905}, {17198, 57188}, {17219, 4131}, {17420, 22076}, {17519, 35281}, {17880, 3265}, {17921, 1423}, {17924, 226}, {17925, 57}, {17926, 9}, {18021, 55202}, {18155, 69}, {18163, 23113}, {18191, 1459}, {18344, 42}, {21044, 55232}, {21132, 18210}, {21666, 4086}, {21789, 212}, {23090, 2289}, {23189, 255}, {23595, 55010}, {23752, 41393}, {24006, 12}, {24019, 7115}, {24026, 52355}, {26932, 24018}, {27527, 22370}, {31623, 190}, {34387, 14208}, {35055, 23071}, {35518, 52396}, {35519, 20336}, {36797, 765}, {37168, 23703}, {37908, 54325}, {38345, 52310}, {39177, 97}, {40149, 4605}, {40166, 4466}, {40213, 26932}, {41364, 57061}, {42067, 51641}, {42069, 4041}, {42462, 53560}, {43923, 1042}, {43924, 1410}, {43925, 604}, {44129, 4554}, {44130, 668}, {44426, 10}, {44428, 758}, {46103, 662}, {46107, 1441}, {46110, 321}, {46254, 55194}, {46542, 32636}, {47844, 1038}, {50354, 39791}, {52355, 52387}, {52379, 4563}, {52619, 7182}, {52914, 4570}, {52921, 5379}, {53008, 40521}, {54239, 227}, {54244, 2594}, {54407, 2283}, {55195, 3708}, {55206, 1500}, {55231, 4620}, {55233, 4601}, {56283, 7004}, {57043, 22021}, {57044, 41538}, {57072, 3868}, {57073, 1708}, {57081, 1259}, {57083, 5552}, {57089, 3191}, {57092, 209}, {57129, 52411}, {57134, 6056}, {57161, 1791}, {57200, 56}
X(57215) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17925, 17926, 4560}


X(57216) = X(2)X(39764)∩X(99)X(110)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(3*a^2-b^2-c^2) : :

X(57216) lies on these lines: {2, 39764}, {69, 5095}, {76, 6090}, {99, 110}, {107, 10425}, {193, 6388}, {315, 14920}, {394, 9419}, {648, 35136}, {877, 52913}, {1078, 15066}, {1613, 48444}, {2056, 32449}, {2421, 36841}, {3124, 35279}, {3222, 26714}, {3448, 30786}, {3564, 37803}, {3926, 35282}, {5033, 35288}, {5108, 20976}, {6719, 51170}, {7256, 17934}, {7752, 37645}, {7782, 26864}, {7809, 40112}, {7998, 43459}, {8593, 38239}, {8781, 47200}, {9166, 40915}, {9306, 18906}, {10553, 24981}, {10754, 20998}, {14994, 37894}, {14999, 31998}, {15448, 51438}, {15595, 37669}, {17932, 44326}, {21444, 23180}, {36792, 52697}, {36883, 38020}, {52035, 52940}

X(57216) = trilinear pole of line {193, 439}
X(57216) = X(i)-isoconjugate-of-X(j) for these {i, j}: {512, 8769}, {523, 38252}, {656, 14248}, {661, 8770}, {798, 2996}, {810, 34208}, {1577, 53059}, {2643, 3565}, {24006, 40319}
X(57216) = X(i)-Dao conjugate of X(j) for these {i, j}: {69, 525}, {6388, 125}, {15525, 115}, {31998, 2996}, {36830, 8770}, {39054, 8769}, {39062, 34208}, {40596, 14248}, {51579, 523}
X(57216) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 99}, {4590, 439}, {18020, 6353}
X(57216) = X(i)-cross conjugate of X(j) for these {i, j}: {439, 4590}, {3566, 193}, {19118, 249}
X(57216) = pole of line {6388, 8754} with respect to the polar circle
X(57216) = pole of line {2, 15815} with respect to the Kiepert parabola
X(57216) = pole of line {512, 1570} with respect to the Stammler hyperbola
X(57216) = pole of line {523, 4885} with respect to the Wallace hyperbola
X(57216) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(99), and the X(3)-circumconcevian triangle of X(99)
X(57216) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(30610)}}, {{A, B, C, X(107), X(4226)}}, {{A, B, C, X(193), X(5468)}}, {{A, B, C, X(690), X(3566)}}, {{A, B, C, X(1707), X(3573)}}, {{A, B, C, X(2396), X(37880)}}, {{A, B, C, X(3053), X(5118)}}, {{A, B, C, X(4563), X(35136)}}, {{A, B, C, X(5027), X(8651)}}
X(57216) = barycentric product X(i)*X(j) for these (i, j): {193, 99}, {1707, 799}, {2966, 51374}, {3053, 670}, {3167, 6331}, {3566, 4590}, {3787, 689}, {3798, 4600}, {4028, 4610}, {4558, 54412}, {4563, 6353}, {6337, 648}, {10607, 6528}, {17081, 645}, {18156, 662}, {19118, 52608}, {21874, 4623}, {31614, 6388}, {32459, 892}, {34537, 8651}, {35136, 439}, {47389, 57071}, {47733, 57150}
X(57216) = barycentric quotient X(i)/X(j) for these (i, j): {99, 2996}, {110, 8770}, {112, 14248}, {163, 38252}, {193, 523}, {249, 3565}, {439, 3566}, {648, 34208}, {662, 8769}, {1576, 53059}, {1707, 661}, {3053, 512}, {3167, 647}, {3566, 115}, {3787, 3005}, {3798, 3120}, {4028, 4024}, {4235, 5203}, {4558, 6391}, {4563, 6340}, {4590, 35136}, {6091, 10097}, {6337, 525}, {6353, 2501}, {6388, 8029}, {8651, 3124}, {10607, 520}, {14570, 27364}, {17081, 7178}, {18156, 1577}, {19118, 2489}, {21874, 4705}, {32459, 690}, {32661, 40319}, {33632, 18105}, {37199, 16229}, {40326, 12075}, {41588, 12077}, {41676, 47730}, {47430, 22260}, {51374, 2799}, {54412, 14618}, {57071, 8754}
X(57216) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 4563, 99}, {110, 5468, 4563}, {110, 9146, 10330}, {18020, 55227, 107}


X(57217) = X(101)X(110)∩X(190)X(644)

Barycentrics    a^2*(a-b)*(a-c)*(-b^3+a*b*c-c^3+a^2*(b+c)) : :

X(57217) lies on these lines: {8, 17920}, {9, 21742}, {59, 32674}, {100, 4574}, {101, 110}, {109, 4587}, {190, 644}, {813, 815}, {825, 29026}, {1310, 8693}, {1783, 53358}, {2295, 26131}, {2427, 57151}, {2975, 22164}, {3990, 5279}, {4511, 20752}, {5548, 36049}, {12532, 53560}, {22021, 56000}, {22132, 38875}, {26140, 34253}, {28864, 29175}, {28883, 29075}, {33761, 55400}, {46102, 52938}, {52370, 56288}

X(57217) = trilinear pole of line {209, 579}
X(57217) = perspector of circumconic {{A, B, C, X(4570), X(4998)}}
X(57217) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 23289}, {272, 661}, {513, 1751}, {514, 2218}, {649, 2997}, {656, 40574}, {667, 40011}, {1015, 51566}, {1019, 41506}, {1305, 2170}, {3063, 15467}, {3669, 56146}, {40161, 57200}
X(57217) = X(i)-Dao conjugate of X(j) for these {i, j}: {72, 525}, {5375, 2997}, {5452, 23289}, {6631, 40011}, {10001, 15467}, {36830, 272}, {39026, 1751}, {40596, 40574}
X(57217) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 100}, {46102, 5125}
X(57217) = X(i)-cross conjugate of X(j) for these {i, j}: {8676, 3868}, {43060, 579}
X(57217) = pole of line {75, 4184} with respect to the Kiepert parabola
X(57217) = pole of line {514, 7252} with respect to the Stammler hyperbola
X(57217) = pole of line {8, 71} with respect to the Yff parabola
X(57217) = pole of line {3261, 4560} with respect to the Wallace hyperbola
X(57217) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(100), and the X(3)-circumconcevian triangle of X(100)
X(57217) = intersection, other than A, B, C, of circumconics {{A, B, C, X(101), X(4552)}}, {{A, B, C, X(110), X(664)}}, {{A, B, C, X(163), X(651)}}, {{A, B, C, X(190), X(5546)}}, {{A, B, C, X(579), X(36049)}}, {{A, B, C, X(883), X(3868)}}, {{A, B, C, X(918), X(8676)}}, {{A, B, C, X(2397), X(27396)}}, {{A, B, C, X(4243), X(5125)}}, {{A, B, C, X(4559), X(32739)}}, {{A, B, C, X(30725), X(43060)}}
X(57217) = barycentric product X(i)*X(j) for these (i, j): {100, 3868}, {101, 18134}, {190, 579}, {209, 99}, {1016, 43060}, {1331, 5125}, {2198, 799}, {2352, 668}, {3190, 664}, {3699, 4306}, {4552, 56000}, {4998, 8676}, {19367, 56112}, {20294, 59}, {22021, 662}, {23800, 765}, {27396, 651}, {44717, 57043}, {51574, 648}
X(57217) = barycentric quotient X(i)/X(j) for these (i, j): {55, 23289}, {59, 1305}, {100, 2997}, {101, 1751}, {110, 272}, {112, 40574}, {190, 40011}, {209, 523}, {579, 514}, {664, 15467}, {692, 2218}, {765, 51566}, {2198, 661}, {2352, 513}, {3190, 522}, {3868, 693}, {3939, 56146}, {4306, 3676}, {4557, 41506}, {4574, 40161}, {5125, 46107}, {8676, 11}, {18134, 3261}, {20294, 34387}, {22021, 1577}, {23067, 28786}, {23800, 1111}, {27396, 4391}, {40572, 56320}, {41320, 3064}, {43060, 1086}, {51574, 525}, {56000, 4560}
X(57217) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {101, 1331, 5546}, {2284, 4559, 644}


X(57218) = X(100)X(2617)∩X(109)X(692)

Barycentrics    a^2*(a-b)*(a-c)*(a^4*(b+c)-b*(b-c)^2*c*(b+c)-a*(b^2-c^2)^2+a^3*(b^2+c^2)-a^2*(b^3+c^3)) : :

X(57218) lies on these lines: {35, 44709}, {58, 10058}, {100, 2617}, {101, 28624}, {109, 692}, {110, 6577}, {595, 3924}, {1331, 2398}, {3923, 17860}, {20696, 29079}

X(57218) = trilinear pole of line {23383, 40591}
X(57218) = X(i)-isoconjugate-of-X(j) for these {i, j}: {693, 34429}
X(57218) = X(i)-Dao conjugate of X(j) for these {i, j}: {71, 525}
X(57218) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 101}
X(57218) = pole of line {17135, 23361} with respect to the Kiepert parabola
X(57218) = pole of line {7253, 8714} with respect to the Stammler hyperbola
X(57218) = pole of line {6710, 23585} with respect to the Steiner inellipse
X(57218) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(101), and the X(3)-circumconcevian triangle of X(101)
X(57218) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(1461), X(28624)}}, {{A, B, C, X(6577), X(53321)}}, {{A, B, C, X(23723), X(53539)}}
X(57218) = barycentric product X(i)*X(j) for these (i, j): {100, 1730}, {101, 17220}, {110, 22000}, {190, 23383}, {1252, 23723}, {22300, 662}, {34969, 4619}, {40591, 648}
X(57218) = barycentric quotient X(i)/X(j) for these (i, j): {1730, 693}, {17220, 3261}, {22000, 850}, {22300, 1577}, {23383, 514}, {23723, 23989}, {32739, 34429}, {40591, 525}


X(57219) = X(20)X(14944)∩X(107)X(112)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(a^4-(b^2-c^2)^2)^2*(3*a^4-(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(57219) lies on these lines: {20, 14944}, {99, 20580}, {107, 112}, {162, 36049}, {393, 3163}, {648, 2404}, {1249, 1562}, {1461, 24019}, {1625, 2442}, {1968, 45255}, {2207, 9419}, {2777, 52011}, {3172, 14249}, {6330, 13219}, {6524, 51431}, {6530, 10722}, {8747, 51118}, {10002, 53016}, {13202, 33630}, {14165, 44216}, {14345, 52913}, {14581, 41368}, {14618, 39194}, {15341, 51892}, {16318, 34170}, {23964, 32646}, {35907, 39191}, {38714, 47409}

X(57219) = isotomic conjugate of X(14638)
X(57219) = inverse of X(20580) in Wallace hyperbola
X(57219) = trilinear pole of line {154, 1249}
X(57219) = perspector of circumconic {{A, B, C, X(32230), X(44181)}}
X(57219) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 14638}, {64, 24018}, {253, 822}, {520, 2184}, {525, 19614}, {647, 19611}, {656, 1073}, {661, 15394}, {810, 34403}, {905, 53012}, {1577, 14379}, {2155, 3265}, {2632, 46639}, {14208, 14642}, {37754, 53639}
X(57219) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 14638}, {4, 525}, {122, 15526}, {36830, 15394}, {39052, 19611}, {39062, 34403}, {40596, 1073}, {40616, 17216}, {45245, 3265}, {45248, 52613}, {52874, 41077}
X(57219) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 107}, {23582, 20}, {32230, 3079}
X(57219) = X(i)-cross conjugate of X(j) for these {i, j}: {3079, 32230}, {6587, 1249}, {15905, 23964}, {42658, 38808}, {44705, 14249}, {57153, 52913}
X(57219) = pole of line {1562, 15526} with respect to the polar circle
X(57219) = pole of line {6527, 11206} with respect to the Kiepert parabola
X(57219) = pole of line {4143, 14638} with respect to the Wallace hyperbola
X(57219) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(107), and the X(3)-circumconcevian triangle of X(107)
X(57219) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(99)}}, {{A, B, C, X(107), X(10152)}}, {{A, B, C, X(112), X(1461)}}, {{A, B, C, X(1562), X(1637)}}, {{A, B, C, X(2848), X(8057)}}, {{A, B, C, X(3172), X(34859)}}, {{A, B, C, X(6529), X(32646)}}, {{A, B, C, X(15905), X(32661)}}, {{A, B, C, X(20580), X(39020)}}, {{A, B, C, X(33897), X(39447)}}
X(57219) = barycentric product X(i)*X(j) for these (i, j): {4, 52913}, {107, 20}, {110, 14249}, {112, 15466}, {154, 6528}, {162, 1895}, {204, 811}, {264, 57153}, {610, 823}, {1249, 648}, {1301, 52578}, {1897, 44698}, {2207, 55224}, {3079, 53639}, {3172, 6331}, {6525, 99}, {10152, 4240}, {14615, 32713}, {14944, 2409}, {15352, 15905}, {16813, 42459}, {17898, 24000}, {18020, 44705}, {18750, 24019}, {20580, 23590}, {23582, 6587}, {31623, 57193}, {32230, 8057}, {35360, 38808}, {36306, 44700}, {36309, 44701}, {36797, 44696}, {36841, 393}, {37669, 6529}, {44704, 685}, {52345, 52920}, {52919, 8804}, {52921, 5930}
X(57219) = barycentric quotient X(i)/X(j) for these (i, j): {2, 14638}, {20, 3265}, {107, 253}, {110, 15394}, {112, 1073}, {154, 520}, {162, 19611}, {204, 656}, {610, 24018}, {648, 34403}, {1249, 525}, {1301, 52559}, {1562, 23616}, {1576, 14379}, {1895, 14208}, {2409, 16096}, {3079, 8057}, {3172, 647}, {3198, 57109}, {3213, 51664}, {6525, 523}, {6528, 41530}, {6529, 459}, {6587, 15526}, {7156, 8611}, {8750, 53012}, {10152, 34767}, {14249, 850}, {14308, 7068}, {14615, 52617}, {14944, 2419}, {15352, 52581}, {15384, 53886}, {15466, 3267}, {15905, 52613}, {17898, 17879}, {20580, 23974}, {21172, 17216}, {23347, 11589}, {23582, 44326}, {23964, 46639}, {24019, 2184}, {32230, 53639}, {32676, 19614}, {32713, 64}, {36413, 20580}, {36841, 3926}, {37669, 4143}, {42658, 2972}, {44060, 15400}, {44695, 52355}, {44696, 17094}, {44698, 4025}, {44704, 6333}, {44705, 125}, {52604, 8798}, {52913, 69}, {52921, 5931}, {53011, 4064}, {57153, 3}, {57193, 1214}
X(57219) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {112, 6529, 107}


X(57220) = X(101)X(7115)∩X(109)X(112)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(-b^3-a*b*c-c^3+a^2*(b+c)) : :

X(57220) lies on these lines: {101, 7115}, {108, 32693}, {109, 112}, {607, 34040}, {651, 2405}, {1783, 4559}, {2443, 57193}, {8687, 36076}, {10571, 47411}

X(57220) = trilinear pole of line {3185, 3192}
X(57220) = X(i)-isoconjugate-of-X(j) for these {i, j}: {521, 13478}, {652, 2995}, {656, 19607}, {905, 10570}, {2217, 6332}, {3942, 56112}, {7004, 44765}, {17880, 32653}, {26932, 36050}, {40160, 57081}, {53560, 54951}
X(57220) = X(i)-Dao conjugate of X(j) for these {i, j}: {65, 525}, {124, 26932}, {40596, 19607}
X(57220) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 108}, {46102, 17555}
X(57220) = X(i)-cross conjugate of X(j) for these {i, j}: {573, 7115}
X(57220) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(108), and the X(3)-circumconcevian triangle of X(108)
X(57220) = intersection, other than A, B, C, of circumconics {{A, B, C, X(101), X(573)}}, {{A, B, C, X(109), X(34242)}}, {{A, B, C, X(163), X(1783)}}, {{A, B, C, X(4225), X(52935)}}, {{A, B, C, X(4559), X(32660)}}, {{A, B, C, X(6589), X(38345)}}, {{A, B, C, X(7463), X(17555)}}, {{A, B, C, X(36067), X(36127)}}
X(57220) = barycentric product X(i)*X(j) for these (i, j): {108, 3869}, {109, 17555}, {573, 653}, {3192, 664}, {10571, 1897}, {17080, 1783}, {18026, 3185}, {21189, 7012}, {22134, 54240}, {24033, 57111}, {32674, 4417}, {34242, 4242}, {40590, 648}, {46102, 6589}
X(57220) = barycentric quotient X(i)/X(j) for these (i, j): {108, 2995}, {112, 19607}, {573, 6332}, {3185, 521}, {3192, 522}, {3869, 35518}, {6589, 26932}, {7115, 44765}, {8750, 10570}, {10571, 4025}, {17080, 15413}, {17555, 35519}, {21189, 17880}, {22276, 52355}, {32674, 13478}, {40590, 525}


X(57221) = X(3)X(55383)∩X(148)X(690)

Barycentrics    (b-c)^3*(b+c)^3*(a^6+2*b^6-b^4*c^2-b^2*c^4+2*c^6-3*a^2*(b^4-b^2*c^2+c^4)) : :
X(57221) = -X[125]+3*X[8029], -9*X[5466]+5*X[15059], -2*X[6723]+3*X[10278], -X[8151]+2*X[12900], -3*X[13291]+X[24981], -X[16111]+3*X[16220]

X(57221) lies on circumconic {{A, B, C, X(12065), X(42345)}} and on these lines: {3, 55383}, {125, 8029}, {148, 690}, {512, 1112}, {523, 5972}, {2970, 23105}, {5466, 15059}, {6699, 10279}, {6723, 10278}, {8151, 12900}, {13291, 24981}, {16111, 16220}, {16278, 42553}

X(57221) = midpoint of X(i) and X(j) for these {i,j}: {16278, 42553}
X(57221) = reflection of X(i) in X(j) for these {i,j}: {12068, 12065}, {36739, 6723}, {5972, 12064}, {6699, 10279}, {8151, 12900}
X(57221) = perspector of circumconic {{A, B, C, X(12066), X(40429)}}
X(57221) = X(i)-Ceva conjugate of X(j) for these {i, j}: {648, 115}
X(57221) = pole of line {31644, 34988} with respect to the Kiepert hyperbola
X(57221) = pole of line {2407, 6722} with respect to the Steiner inellipse
X(57221) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(115), and the X(3)-circumconcevian triangle of X(115)
X(57221) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {523, 12064, 5972}, {523, 12065, 12068}, {10278, 36739, 6723}


X(57222) = X(39)X(2485)∩X(523)X(2528)

Barycentrics    (b-c)*(b+c)*(b^2+c^2)*(-a^4+b^4+b^2*c^2+c^4) : :
X(57222) = -3*X[9979]+4*X[55192]

X(57222) lies on circumconic {{A, B, C, X(6636), X(8024)}} and on these lines: {39, 2485}, {520, 3313}, {523, 2528}, {525, 3050}, {2525, 23285}, {2799, 20577}, {3267, 8024}, {9479, 18105}, {9979, 55192}, {55974, 57069}

X(57222) = reflection of X(i) in X(j) for these {i,j}: {23285, 2525}, {55974, 57069}
X(57222) = perspector of circumconic {{A, B, C, X(1235), X(7768)}}
X(57222) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3456, 4599}, {15321, 34072}
X(57222) = X(i)-Dao conjugate of X(j) for these {i, j}: {2525, 525}, {3124, 3456}, {15449, 15321}, {46654, 251}
X(57222) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 6636}, {648, 141}
X(57222) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {41513, 21294}
X(57222) = pole of line {2896, 6636} with respect to the circumcircle
X(57222) = pole of line {251, 428} with respect to the polar circle
X(57222) = pole of line {826, 23285} with respect to the Kiepert parabola
X(57222) = pole of line {37990, 52787} with respect to the MacBeath Inconic
X(57222) = pole of line {141, 2916} with respect to the Steiner circumellipse
X(57222) = pole of line {1495, 7499} with respect to the Steiner inellipse
X(57222) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(141), and the X(3)-circumconcevian triangle of X(141)
X(57222) = barycentric product X(i)*X(j) for these (i, j): {7768, 826}, {18076, 38}, {23285, 6636}, {31067, 42052}, {37085, 52568}, {46654, 99}
X(57222) = barycentric quotient X(i)/X(j) for these (i, j): {826, 15321}, {2528, 14378}, {3005, 3456}, {6636, 827}, {7768, 4577}, {18076, 3112}, {37085, 46288}, {46654, 523}


X(57223) = X(6)X(14837)∩X(323)X(401)

Barycentrics    a^2*(b-c)*(a^2-b^2-c^2)*(a^5+a^2*b*c*(b+c)-b*(b-c)^2*c*(b+c)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c+b*c^3+c^4)) : :

X(57223) lies on these lines: {6, 14837}, {222, 4091}, {323, 401}, {394, 6332}, {520, 53314}, {521, 1734}, {652, 57233}, {905, 4131}, {3669, 36054}, {7078, 57108}, {23187, 51640}, {39470, 57167}, {40518, 56248}

X(57223) = perspector of circumconic {{A, B, C, X(95), X(1444)}}
X(57223) = X(i)-Dao conjugate of X(j) for these {i, j}: {652, 522}
X(57223) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 3}, {46400, 39199}
X(57223) = pole of line {160, 18611} with respect to the circumcircle
X(57223) = pole of line {2, 7} with respect to the MacBeath circumconic
X(57223) = pole of line {1625, 1783} with respect to the Stammler hyperbola
X(57223) = pole of line {3, 20222} with respect to the Steiner circumellipse
X(57223) = pole of line {140, 23710} with respect to the Steiner inellipse
X(57223) = pole of line {6335, 14570} with respect to the Wallace hyperbola
X(57223) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(3), and the X(7)-circumconcevian triangle of X(3)
X(57223) = intersection, other than A, B, C, of circumconics {{A, B, C, X(905), X(15412)}}, {{A, B, C, X(2623), X(22383)}}, {{A, B, C, X(4131), X(46400)}}
X(57223) = barycentric product X(i)*X(j) for these (i, j): {3, 46400}, {4131, 7412}, {38983, 664}, {39199, 69}, {56187, 7254}, {57179, 75}
X(57223) = barycentric quotient X(i)/X(j) for these (i, j): {23224, 43724}, {38983, 522}, {39199, 4}, {46400, 264}, {57179, 1}


X(57224) = X(297)X(525)∩X(653)X(1262)

Barycentrics    (b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(b^5-a^3*b*c-b^3*c^2-b^2*c^3+c^5+a^4*(b+c)+a*b*c*(b+c)^2-a^2*(2*b^3+b^2*c+b*c^2+2*c^3)) : :

X(57224) lies on circumconic {{A, B, C, X(1262), X(2052)}} and on these lines: {278, 21188}, {297, 525}, {514, 57166}, {653, 1262}, {663, 47210}, {905, 57196}, {3064, 14837}, {7649, 8058}, {17903, 17922}, {17925, 57213}, {29304, 39585}

X(57224) = polar conjugate of X(41906)
X(57224) = perspector of circumconic {{A, B, C, X(264), X(34398)}}
X(57224) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 41906}, {163, 28788}
X(57224) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 28788}, {1249, 41906}, {3064, 522}
X(57224) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 4}
X(57224) = pole of line {6, 1210} with respect to the polar circle
X(57224) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(4), and the X(7)-circumconcevian triangle of X(4)
X(57224) = barycentric product X(i)*X(j) for these (i, j): {14618, 56001}, {20620, 664}, {57098, 85}, {57170, 75}
X(57224) = barycentric quotient X(i)/X(j) for these (i, j): {4, 41906}, {523, 28788}, {20620, 522}, {56001, 4558}, {57098, 9}, {57170, 1}


X(57225) = X(650)X(16578)∩X(918)X(4440)

Barycentrics    (a-b-c)*(b-c)^3*(a^4-3*a^3*(b+c)+a^2*(b^2+7*b*c+c^2)-(b-c)^2*(2*b^2+3*b*c+2*c^2)+a*(3*b^3-5*b^2*c-5*b*c^2+3*c^3)) : :

X(57225) lies on these lines: {650, 16578}, {654, 53408}, {918, 4440}, {1086, 21133}, {1638, 37771}, {2804, 15914}, {4858, 40166}, {10015, 55125}

X(57225) = perspector of circumconic {{A, B, C, X(15634), X(56365)}}
X(57225) = X(i)-Dao conjugate of X(j) for these {i, j}: {42462, 522}
X(57225) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 11}
X(57225) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(11), and the X(7)-circumconcevian triangle of X(11)


X(57226) = X(25)X(43060)∩X(33)X(48269)

Barycentrics    a^2*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^5+b^5+2*a^3*b*c+b^4*c+b*c^4+c^5-a^4*(b+c)-a*(b^4+2*b^3*c+2*b*c^3+c^4)) : :

X(57226) lies on these lines: {25, 43060}, {33, 48269}, {1459, 54244}, {2149, 8750}, {6588, 18344}, {6591, 11934}, {7253, 14954}, {42662, 57092}

X(57226) = perspector of circumconic {{A, B, C, X(40411), X(55994)}}
X(57226) = X(i)-Dao conjugate of X(j) for these {i, j}: {18344, 522}
X(57226) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 19}
X(57226) = pole of line {3914, 17860} with respect to the polar circle
X(57226) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(19), and the X(7)-circumconcevian triangle of X(19)


X(57227) = X(81)X(905)∩X(448)X(525)

Barycentrics    a*(a+b)*(a-b-c)*(b-c)*(a+c)*(a^5+a^2*b*c*(b+c)-b*(b-c)^2*c*(b+c)+a*(b+c)^2*(b^2+b*c+c^2)-a^3*(2*b^2+3*b*c+2*c^2)) : :

X(57227) lies on these lines: {81, 905}, {448, 525}, {1021, 14838}, {2287, 4391}, {3737, 4041}, {7178, 57196}, {17496, 40571}, {57058, 57182}

X(57227) = X(i)-Dao conjugate of X(j) for these {i, j}: {1021, 522}
X(57227) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 21}
X(57227) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(21), and the X(7)-circumconcevian triangle of X(21)
X(57227) = barycentric product X(i)*X(j) for these (i, j): {55068, 664}
X(57227) = barycentric quotient X(i)/X(j) for these (i, j): {55068, 522}


X(57228) = X(1)X(56092)∩X(2)X(525)

Barycentrics    (b-c)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))*(a^5+2*a^4*(b+c)+a*(b+c)^2*(b^2+b*c+c^2)-a^3*(2*b^2+3*b*c+2*c^2)+(b-c)^2*(2*b^3+3*b^2*c+3*b*c^2+2*c^3)-a^2*(4*b^3+b^2*c+b*c^2+4*c^3)) : :

X(57228) lies on these lines: {1, 56092}, {2, 525}, {113, 53839}, {223, 7178}, {522, 18641}, {905, 16585}, {1214, 14838}, {3160, 57196}, {3163, 35110}, {6505, 57213}, {10015, 40612}, {14837, 17056}

X(57228) = X(i)-Dao conjugate of X(j) for these {i, j}: {14400, 522}
X(57228) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 30}
X(57228) = X(i)-complementary conjugate of X(j) for these {i, j}: {1409, 1650}, {1415, 30}, {1495, 26932}, {2173, 124}, {2420, 960}, {3284, 123}, {6357, 21252}, {9406, 1146}, {14399, 46100}, {14581, 6506}, {23347, 6708}, {51654, 116}
X(57228) = pole of line {30, 6357} with respect to the Steiner inellipse
X(57228) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(30), and the X(7)-circumconcevian triangle of X(30)
X(57228) = barycentric product X(i)*X(j) for these (i, j): {3260, 53256}
X(57228) = barycentric quotient X(i)/X(j) for these (i, j): {53256, 74}


X(57229) = X(41)X(20979)∩X(48)X(1919)

Barycentrics    a^3*(b-c)*(a^4-a^3*(b+c)-b*c*(b^2+c^2)-a^2*(b^2+b*c+c^2)+a*(b^3+b^2*c+b*c^2+c^3)) : :

X(57229) lies on these lines: {41, 20979}, {48, 1919}, {284, 21389}, {604, 23472}, {649, 55234}, {824, 4560}, {1635, 13256}, {1924, 24018}, {2174, 4057}, {8632, 21127}, {20981, 53544}, {21191, 54419}

X(57229) = perspector of circumconic {{A, B, C, X(40415), X(55991)}}
X(57229) = X(i)-Dao conjugate of X(j) for these {i, j}: {3063, 522}
X(57229) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 31}
X(57229) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(31), and the X(7)-circumconcevian triangle of X(31)
X(57229) = barycentric product X(i)*X(j) for these (i, j): {39025, 664}, {57172, 75}
X(57229) = barycentric quotient X(i)/X(j) for these (i, j): {39025, 522}, {57172, 1}


X(57230) = X(514)X(3064)∩X(653)X(4564)

Barycentrics    (b-c)*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+b^3+b^2*c+b*c^2+c^3-a^2*(b+c)-a*(b+c)^2) : :

X(57230) lies on these lines: {514, 3064}, {523, 43923}, {653, 4564}, {663, 7649}, {1891, 28529}, {6591, 7178}, {8058, 44428}, {15313, 57044}

X(57230) = perspector of circumconic {{A, B, C, X(273), X(40573)}}
X(57230) = X(i)-isoconjugate-of-X(j) for these {i, j}: {100, 56269}, {219, 13397}, {906, 43740}, {1331, 39943}, {5546, 28787}
X(57230) = X(i)-Dao conjugate of X(j) for these {i, j}: {5190, 43740}, {5521, 39943}, {6591, 522}, {8054, 56269}
X(57230) = X(i)-Ceva conjugate of X(j) for these {i, j}: {653, 1708}, {664, 34}
X(57230) = X(i)-cross conjugate of X(j) for these {i, j}: {57094, 57044}
X(57230) = pole of line {9, 2478} with respect to the polar circle
X(57230) = pole of line {34, 12649} with respect to the Steiner circumellipse
X(57230) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(34), and the X(7)-circumconcevian triangle of X(34)
X(57230) = intersection, other than A, B, C, of circumconics {{A, B, C, X(514), X(15313)}}, {{A, B, C, X(1708), X(4564)}}, {{A, B, C, X(7649), X(23595)}}, {{A, B, C, X(14775), X(17924)}}, {{A, B, C, X(17776), X(42360)}}
X(57230) = barycentric product X(i)*X(j) for these (i, j): {108, 17877}, {226, 57073}, {1708, 17924}, {4341, 44426}, {5521, 664}, {15313, 273}, {30733, 4077}, {37579, 46107}, {57044, 7}, {57094, 85}
X(57230) = barycentric quotient X(i)/X(j) for these (i, j): {34, 13397}, {649, 56269}, {1708, 1332}, {2911, 4587}, {3811, 4571}, {4017, 28787}, {4341, 6516}, {5521, 522}, {6591, 39943}, {7649, 43740}, {15313, 78}, {17877, 35518}, {30733, 643}, {37579, 1331}, {57044, 8}, {57073, 333}, {57094, 9}


X(57231) = X(222)X(3669)∩X(514)X(2003)

Barycentrics    a^2*(b-c)*(a^2-b^2+b*c-c^2)*(a^5+a^2*b*c*(b+c)-b*(b-c)^2*c*(b+c)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c-2*b^2*c^2+b*c^3+c^4)) : :

X(57231) lies on these lines: {222, 3669}, {514, 2003}, {521, 3157}, {2774, 6126}, {3752, 22154}, {3960, 17191}, {17147, 17496}, {34043, 43924}

X(57231) = X(i)-Dao conjugate of X(j) for these {i, j}: {654, 522}
X(57231) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 36}
X(57231) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(36), and the X(7)-circumconcevian triangle of X(36)
X(57231) = barycentric product X(i)*X(j) for these (i, j): {36, 46401}, {320, 39200}, {38984, 664}
X(57231) = barycentric quotient X(i)/X(j) for these (i, j): {38984, 522}, {39200, 80}, {46401, 20566}


X(57232) = X(10)X(4885)∩X(42)X(650)

Barycentrics    a*(b-c)*(b+c)*(a^3-2*a^2*(b+c)+b*c*(b+c)+a*(b^2+3*b*c+c^2)) : :
X(57232) = -3*X[210]+X[4024], 3*X[3681]+X[17161], -3*X[4893]+X[50518]

X(57232) lies on these lines: {8, 25667}, {10, 4885}, {42, 650}, {210, 4024}, {513, 4380}, {518, 21196}, {523, 4524}, {693, 4651}, {824, 22325}, {1938, 22300}, {2533, 57090}, {3240, 24900}, {3681, 17161}, {3900, 4705}, {3935, 8702}, {4041, 51641}, {4132, 47998}, {4145, 48349}, {4394, 7234}, {4685, 4762}, {4765, 9029}, {4777, 22271}, {4893, 50518}, {6182, 22276}, {9001, 22277}, {9366, 22299}, {9443, 22278}, {15280, 44411}, {16892, 22313}, {17018, 24948}, {22294, 47894}, {22295, 47754}, {22319, 29226}, {22327, 50335}, {26038, 29488}, {29808, 48304}, {29822, 31209}, {31287, 43223}, {37593, 55210}, {43049, 52089}, {44319, 47926}, {48007, 50506}, {50767, 56191}

X(57232) = midpoint of X(i) and X(j) for these {i,j}: {44319, 47926}, {50487, 57077}
X(57232) = X(i)-Dao conjugate of X(j) for these {i, j}: {4041, 522}
X(57232) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 37}
X(57232) = pole of line {4698, 30806} with respect to the Steiner inellipse
X(57232) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(37), and the X(7)-circumconcevian triangle of X(37)
X(57232) = barycentric product X(i)*X(j) for these (i, j): {1, 22042}, {226, 57067}, {1018, 23821}, {26845, 40521}, {55064, 664}, {57176, 75}
X(57232) = barycentric quotient X(i)/X(j) for these (i, j): {22042, 75}, {23821, 7199}, {55064, 522}, {57067, 333}, {57176, 1}
X(57232) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42, 21727, 650}, {22314, 57077, 50487}, {50487, 57077, 513}


X(57233) = X(521)X(656)∩X(1262)X(1813)

Barycentrics    a^2*(b-c)*(-a^2+b^2+c^2)^2*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2) : :

X(57233) lies on these lines: {521, 656}, {652, 57223}, {1262, 1813}, {3669, 46389}, {4091, 36054}, {6332, 17496}, {14837, 57213}, {43060, 57238}, {52613, 57057}

X(57233) = perspector of circumconic {{A, B, C, X(63), X(1804)}}
X(57233) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 40117}, {107, 1903}, {108, 7003}, {158, 36049}, {282, 36127}, {393, 13138}, {653, 7008}, {823, 2357}, {1096, 44327}, {1783, 40836}, {1857, 37141}, {1897, 7129}, {2052, 32652}, {2192, 54240}, {2358, 36797}, {6335, 7151}, {6529, 52389}, {7020, 32674}, {7118, 52938}, {7154, 18026}, {24019, 39130}, {36126, 41087}, {55110, 56183}
X(57233) = X(i)-Dao conjugate of X(j) for these {i, j}: {57, 54240}, {1147, 36049}, {5514, 158}, {6503, 44327}, {14298, 522}, {14837, 46110}, {16596, 2052}, {24018, 4391}, {34467, 7129}, {35071, 39130}, {35072, 7020}, {36033, 40117}, {38983, 7003}, {38985, 1903}, {39006, 40836}, {46093, 41087}, {55063, 318}
X(57233) = X(i)-Ceva conjugate of X(j) for these {i, j}: {651, 40152}, {664, 40}, {1813, 7011}, {44327, 63}
X(57233) = X(i)-cross conjugate of X(j) for these {i, j}: {10397, 57241}
X(57233) = pole of line {219, 1073} with respect to the MacBeath circumconic
X(57233) = pole of line {162, 36049} with respect to the Stammler hyperbola
X(57233) = pole of line {40, 6360} with respect to the Steiner circumellipse
X(57233) = pole of line {1214, 6684} with respect to the Steiner inellipse
X(57233) = pole of line {811, 44327} with respect to the Wallace hyperbola
X(57233) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(40), and the X(7)-circumconcevian triangle of X(40)
X(57233) = intersection, other than A, B, C, of circumconics {{A, B, C, X(40), X(7183)}}, {{A, B, C, X(222), X(15524)}}, {{A, B, C, X(223), X(7125)}}, {{A, B, C, X(347), X(44360)}}, {{A, B, C, X(394), X(1262)}}, {{A, B, C, X(521), X(4091)}}, {{A, B, C, X(656), X(14837)}}, {{A, B, C, X(856), X(1817)}}, {{A, B, C, X(2360), X(8766)}}, {{A, B, C, X(10397), X(36054)}}
X(57233) = barycentric product X(i)*X(j) for these (i, j): {40, 4131}, {198, 30805}, {221, 52616}, {222, 57245}, {326, 6129}, {329, 4091}, {347, 57241}, {520, 8822}, {521, 7013}, {1214, 57213}, {1804, 8058}, {1817, 24018}, {2360, 3265}, {3964, 54239}, {4025, 7078}, {6332, 7011}, {10397, 348}, {14256, 57057}, {14298, 7183}, {14837, 394}, {16596, 1813}, {17094, 1819}, {17896, 255}, {23224, 322}, {35518, 7114}, {36054, 40702}, {38357, 6517}, {41083, 52613}, {53557, 6516}, {55044, 664}, {57101, 77}
X(57233) = barycentric quotient X(i)/X(j) for these (i, j): {48, 40117}, {221, 36127}, {223, 54240}, {255, 13138}, {347, 52938}, {394, 44327}, {520, 39130}, {521, 7020}, {577, 36049}, {652, 7003}, {822, 1903}, {1459, 40836}, {1804, 53642}, {1817, 823}, {1819, 36797}, {1946, 7008}, {2360, 107}, {3194, 36126}, {4091, 189}, {4131, 309}, {6129, 158}, {7011, 653}, {7013, 18026}, {7078, 1897}, {7114, 108}, {7125, 37141}, {7335, 8059}, {8822, 6528}, {10397, 281}, {14837, 2052}, {16596, 46110}, {22383, 7129}, {23224, 84}, {30805, 44190}, {32320, 41087}, {36054, 282}, {39201, 2357}, {41083, 15352}, {51640, 52384}, {52117, 16231}, {52430, 32652}, {53557, 44426}, {54239, 1093}, {55044, 522}, {57101, 318}, {57213, 31623}, {57241, 280}, {57245, 7017}


X(57234) = X(37)X(513)∩X(522)X(649)

Barycentrics    a*(b-c)*(b+c)*(a^2+b*c) : :
X(57234) = -3*X[14433]+2*X[20949], -4*X[17066]+5*X[24924], -2*X[21206]+3*X[47779]

X(57234) lies on these lines: {9, 54253}, {37, 513}, {75, 52602}, {163, 2612}, {190, 4584}, {192, 17159}, {213, 4378}, {321, 47762}, {512, 20688}, {514, 19565}, {522, 649}, {523, 798}, {647, 661}, {693, 802}, {764, 21802}, {804, 2533}, {813, 39185}, {830, 24462}, {834, 17458}, {894, 17212}, {926, 48322}, {1019, 2786}, {1400, 2395}, {1769, 48022}, {2484, 4064}, {2642, 57099}, {3249, 22011}, {3287, 3805}, {3294, 16820}, {3667, 22042}, {3737, 5029}, {3768, 4977}, {3888, 56257}, {3970, 48324}, {3995, 47763}, {4063, 47678}, {4139, 4832}, {4369, 4374}, {4526, 4979}, {4705, 9279}, {4785, 22043}, {4813, 57133}, {4824, 46390}, {4932, 57235}, {6332, 28846}, {6372, 14408}, {7192, 25258}, {8061, 53527}, {8632, 50353}, {8678, 55230}, {9402, 50487}, {14433, 20949}, {16562, 39137}, {16892, 23785}, {17066, 24924}, {17072, 21056}, {17166, 24727}, {17797, 21061}, {18004, 54277}, {21053, 21099}, {21191, 22046}, {21206, 47779}, {21823, 53541}, {22037, 28906}, {23282, 29078}, {23650, 48323}, {23800, 50454}, {24083, 48041}, {24085, 24719}, {24287, 50451}, {27673, 45746}, {28398, 47995}, {28878, 30719}, {31010, 48011}, {31605, 49296}, {31993, 47761}, {39928, 56185}, {40471, 50486}, {47712, 55240}, {48033, 50354}, {48064, 57068}, {49293, 57163}, {50517, 54271}

X(57234) = midpoint of X(i) and X(j) for these {i,j}: {192, 17159}, {4932, 57235}
X(57234) = reflection of X(i) in X(j) for these {i,j}: {16892, 23785}, {21832, 798}, {3250, 21348}, {4024, 22044}, {4079, 37}, {4374, 4369}, {4705, 17990}, {53553, 4367}, {661, 3709}, {75, 52602}
X(57234) = isogonal conjugate of X(4603)
X(57234) = isotomic conjugate of X(7260)
X(57234) = trilinear pole of line {4128, 16592}
X(57234) = perspector of circumconic {{A, B, C, X(65), X(171)}}
X(57234) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4603}, {6, 4594}, {21, 37137}, {31, 7260}, {58, 27805}, {81, 3903}, {99, 893}, {100, 40432}, {101, 32010}, {110, 257}, {112, 7019}, {163, 7018}, {190, 1178}, {238, 37134}, {239, 805}, {256, 662}, {333, 29055}, {643, 1432}, {645, 1431}, {648, 7015}, {670, 7104}, {757, 56257}, {799, 904}, {811, 7116}, {1018, 7303}, {1333, 56241}, {1576, 44187}, {1914, 18829}, {1921, 17938}, {4451, 4565}, {4455, 39292}, {4584, 18786}, {4623, 40729}, {4627, 4835}, {5546, 7249}, {30670, 40773}, {52651, 52935}
X(57234) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 7260}, {3, 4603}, {9, 4594}, {10, 27805}, {37, 56241}, {115, 7018}, {244, 257}, {1015, 32010}, {1084, 256}, {1215, 4568}, {2533, 25667}, {3709, 522}, {4369, 514}, {4858, 44187}, {8054, 40432}, {9470, 37134}, {16587, 668}, {16592, 274}, {17423, 7116}, {19564, 33946}, {21051, 3835}, {34591, 7019}, {35078, 350}, {36906, 18829}, {38986, 893}, {38996, 904}, {40586, 3903}, {40597, 99}, {40607, 56257}, {40611, 37137}, {55053, 1178}, {55060, 1432}, {55064, 4451}, {55066, 7015}
X(57234) = X(i)-Ceva conjugate of X(j) for these {i, j}: {37, 21823}, {171, 21725}, {190, 894}, {664, 42}, {894, 53541}, {1215, 4128}, {2295, 16592}, {4032, 53559}, {4367, 7234}, {4369, 2533}, {4598, 10}, {18097, 3120}, {57162, 661}
X(57234) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {40737, 150}, {40770, 149}, {53631, 17137}, {54117, 21293}
X(57234) = X(i)-cross conjugate of X(j) for these {i, j}: {4128, 1215}, {16592, 2295}, {21725, 171}, {21823, 21803}
X(57234) = pole of line {16372, 17798} with respect to the circumcircle
X(57234) = pole of line {20358, 39793} with respect to the Incircle
X(57234) = pole of line {1848, 7018} with respect to the polar circle
X(57234) = pole of line {2653, 20456} with respect to the Brocard inellipse
X(57234) = pole of line {2669, 17159} with respect to the Kiepert parabola
X(57234) = pole of line {4603, 4612} with respect to the Stammler hyperbola
X(57234) = pole of line {42, 894} with respect to the Steiner circumellipse
X(57234) = pole of line {1575, 2092} with respect to the Steiner inellipse
X(57234) = pole of line {512, 661} with respect to the Yff parabola
X(57234) = pole of line {4603, 4631} with respect to the Wallace hyperbola
X(57234) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(42), and the X(7)-circumconcevian triangle of X(42)
X(57234) = intersection, other than A, B, C, of circumconics {{A, B, C, X(37), X(894)}}, {{A, B, C, X(42), X(7196)}}, {{A, B, C, X(190), X(4079)}}, {{A, B, C, X(419), X(46568)}}, {{A, B, C, X(513), X(804)}}, {{A, B, C, X(522), X(50330)}}, {{A, B, C, X(523), X(3805)}}, {{A, B, C, X(661), X(2395)}}, {{A, B, C, X(798), X(881)}}, {{A, B, C, X(876), X(2533)}}, {{A, B, C, X(1400), X(7122)}}, {{A, B, C, X(2054), X(40846)}}, {{A, B, C, X(2652), X(7061)}}, {{A, B, C, X(3122), X(10566)}}, {{A, B, C, X(3250), X(5027)}}, {{A, B, C, X(3252), X(4032)}}, {{A, B, C, X(3572), X(4369)}}, {{A, B, C, X(3709), X(4529)}}, {{A, B, C, X(3907), X(8672)}}, {{A, B, C, X(3963), X(52656)}}, {{A, B, C, X(4502), X(25576)}}, {{A, B, C, X(27880), X(40859)}}
X(57234) = barycentric product X(i)*X(j) for these (i, j): {1, 2533}, {10, 4367}, {37, 4369}, {42, 4374}, {100, 53559}, {171, 523}, {226, 3287}, {291, 804}, {313, 56242}, {334, 5027}, {525, 7119}, {656, 7009}, {661, 894}, {1018, 7200}, {1019, 21021}, {1215, 513}, {1237, 667}, {1427, 4529}, {1500, 16737}, {1577, 172}, {1580, 35352}, {1840, 905}, {1909, 512}, {1920, 798}, {1978, 21755}, {2086, 4639}, {2295, 514}, {2329, 7178}, {2330, 4077}, {3120, 4579}, {3668, 4477}, {3669, 4095}, {3700, 7175}, {3709, 7196}, {3737, 7211}, {3805, 40718}, {3907, 65}, {3952, 53541}, {3963, 649}, {4017, 7081}, {4019, 6591}, {4032, 650}, {4039, 876}, {4041, 7176}, {4079, 8033}, {4128, 668}, {4140, 57}, {4164, 43534}, {4434, 55244}, {4459, 4551}, {4504, 56174}, {4516, 6649}, {4674, 4922}, {4774, 53114}, {7122, 850}, {7234, 75}, {10566, 16587}, {13576, 53553}, {13610, 24381}, {14295, 1911}, {16592, 190}, {16720, 55240}, {17103, 4705}, {17212, 756}, {17787, 7180}, {17924, 22061}, {18047, 3125}, {18099, 2530}, {18111, 3954}, {18200, 594}, {18787, 4010}, {20964, 693}, {20981, 321}, {21725, 99}, {21803, 7192}, {21823, 799}, {21832, 30669}, {22093, 41013}, {23894, 7267}, {24006, 3955}, {24533, 42027}, {27958, 57185}, {27970, 35354}, {28625, 4842}, {40608, 664}, {54229, 72}
X(57234) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4594}, {2, 7260}, {6, 4603}, {10, 56241}, {37, 27805}, {42, 3903}, {171, 99}, {172, 662}, {291, 18829}, {292, 37134}, {512, 256}, {513, 32010}, {523, 7018}, {649, 40432}, {656, 7019}, {661, 257}, {667, 1178}, {669, 904}, {798, 893}, {804, 350}, {810, 7015}, {894, 799}, {1215, 668}, {1237, 6386}, {1400, 37137}, {1402, 29055}, {1500, 56257}, {1577, 44187}, {1840, 6335}, {1909, 670}, {1911, 805}, {1920, 4602}, {1924, 7104}, {2086, 21832}, {2295, 190}, {2329, 645}, {2330, 643}, {2533, 75}, {3049, 7116}, {3287, 333}, {3733, 7303}, {3805, 30966}, {3907, 314}, {3955, 4592}, {3963, 1978}, {4017, 7249}, {4032, 4554}, {4039, 874}, {4041, 4451}, {4079, 52651}, {4095, 646}, {4107, 30940}, {4128, 513}, {4140, 312}, {4164, 33295}, {4367, 86}, {4369, 274}, {4374, 310}, {4434, 55243}, {4455, 18786}, {4459, 18155}, {4477, 1043}, {4579, 4600}, {4584, 39292}, {4822, 4835}, {4922, 30939}, {5027, 238}, {7009, 811}, {7081, 7257}, {7119, 648}, {7122, 110}, {7175, 4573}, {7176, 4625}, {7180, 1432}, {7200, 7199}, {7205, 55213}, {7207, 17212}, {7234, 1}, {7267, 24039}, {8033, 52612}, {14295, 18891}, {14598, 17938}, {16587, 4568}, {16592, 514}, {16720, 55239}, {17103, 4623}, {17212, 873}, {17752, 36860}, {18047, 4601}, {18200, 1509}, {18787, 4589}, {18905, 33946}, {20964, 100}, {20981, 81}, {21021, 4033}, {21725, 523}, {21752, 46148}, {21755, 649}, {21803, 3952}, {21818, 35309}, {21823, 661}, {21832, 17493}, {22061, 1332}, {22093, 1444}, {22373, 1459}, {24381, 17762}, {24533, 33296}, {27880, 53338}, {27958, 4631}, {30669, 4639}, {35352, 1934}, {40608, 522}, {40936, 4553}, {45882, 40773}, {51641, 1431}, {53541, 7192}, {53553, 30941}, {53559, 693}, {53581, 40729}, {54229, 286}, {56242, 58}
X(57234) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 513, 4079}, {513, 21348, 3250}, {522, 22044, 4024}, {523, 798, 21832}, {3287, 4367, 20981}, {3709, 8672, 661}, {3805, 4367, 53553}, {9279, 17990, 4705}, {20979, 57078, 53581}


X(57235) = X(1)X(23465)∩X(522)X(659)

Barycentrics    (b-c)*(2*a^2+b*c-a*(b+c))*(-(b*c)+a*(b+c)) : :
X(57235) = -4*X[3709]+3*X[47778], -2*X[4374]+3*X[47779], -3*X[4664]+X[17458], -3*X[14408]+X[20906]

X(57235) lies on these lines: {1, 23465}, {37, 21191}, {190, 1919}, {192, 20979}, {514, 10027}, {522, 659}, {802, 4526}, {1742, 3667}, {2786, 6332}, {3709, 47778}, {3798, 57064}, {3835, 25098}, {4057, 17262}, {4364, 21262}, {4374, 47779}, {4502, 48041}, {4664, 17458}, {4932, 57234}, {8672, 47984}, {9296, 36863}, {14408, 20906}, {17350, 23472}, {25271, 28398}, {25576, 28846}, {28906, 49277}

X(57235) = midpoint of X(i) and X(j) for these {i,j}: {192, 20979}
X(57235) = reflection of X(i) in X(j) for these {i,j}: {21191, 37}, {4932, 57234}, {48041, 4502}
X(57235) = perspector of circumconic {{A, B, C, X(3212), X(17743)}}
X(57235) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3551, 34071}
X(57235) = X(i)-Dao conjugate of X(j) for these {i, j}: {31286, 514}, {40610, 3551}
X(57235) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 17350}, {664, 43}, {48330, 31286}
X(57235) = pole of line {1376, 20473} with respect to the circumcircle
X(57235) = pole of line {43, 17350} with respect to the Steiner circumellipse
X(57235) = pole of line {6686, 17353} with respect to the Steiner inellipse
X(57235) = pole of line {3835, 4083} with respect to the Yff parabola
X(57235) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(43), and the X(7)-circumconcevian triangle of X(43)
X(57235) = intersection, other than A, B, C, of circumconics {{A, B, C, X(190), X(23886)}}, {{A, B, C, X(192), X(5383)}}, {{A, B, C, X(3835), X(25576)}}, {{A, B, C, X(20979), X(23472)}}, {{A, B, C, X(31286), X(43051)}}
X(57235) = barycentric product X(i)*X(j) for these (i, j): {192, 31286}, {17217, 4090}, {17350, 3835}, {20906, 3550}, {23472, 6382}, {24524, 4083}, {48330, 6376}, {55062, 664}
X(57235) = barycentric quotient X(i)/X(j) for these (i, j): {3550, 932}, {4083, 3551}, {17350, 4598}, {23472, 2162}, {24524, 18830}, {31286, 330}, {48330, 87}, {55062, 522}
X(57235) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {192, 20979, 23886}


X(57236) = X(192)X(4777)∩X(3158)X(3251)

Barycentrics    a*(2*a-b-c)*(b-c)*(3*a^3-6*a^2*(b+c)-b*c*(b+c)+a*(3*b^2+5*b*c+3*c^2)) : :

X(57236) lies on these lines: {192, 4777}, {678, 42079}, {900, 41553}, {1419, 43049}, {3158, 3251}, {3689, 6544}, {3748, 14475}, {31526, 57090}

X(57236) = perspector of circumconic {{A, B, C, X(32012), X(55992)}}
X(57236) = X(i)-Dao conjugate of X(j) for these {i, j}: {4895, 522}
X(57236) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 44}
X(57236) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(44), and the X(7)-circumconcevian triangle of X(44)


X(57237) = X(6)X(657)∩X(219)X(522)

Barycentrics    a^2*(a-b-c)*(b-c)*(a^4-b*(b-c)^2*c-a^3*(b+c)-a^2*(b^2-b*c+c^2)+a*(b^3+b^2*c+b*c^2+c^3)) : :

X(57237) lies on these lines: {6, 657}, {48, 39199}, {219, 522}, {521, 650}, {652, 43060}, {665, 57139}, {918, 3287}, {965, 20316}, {2256, 48303}, {2287, 20293}, {2605, 33525}, {3669, 20980}, {5228, 21195}, {9404, 52306}, {20981, 46388}, {21007, 21127}, {21104, 57167}, {21173, 23146}, {25878, 46399}, {37659, 46402}, {40134, 40137}, {40523, 46163}, {43929, 56003}, {46919, 52424}, {47785, 55399}, {48387, 57134}

X(57237) = perspector of circumconic {{A, B, C, X(21), X(103)}}
X(57237) = X(i)-isoconjugate-of-X(j) for these {i, j}: {226, 53683}
X(57237) = X(i)-Dao conjugate of X(j) for these {i, j}: {657, 522}
X(57237) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 55}
X(57237) = X(i)-cross conjugate of X(j) for these {i, j}: {57175, 44408}
X(57237) = pole of line {4374, 53269} with respect to the Kiepert parabola
X(57237) = pole of line {1, 916} with respect to the MacBeath circumconic
X(57237) = pole of line {6690, 8608} with respect to the Steiner inellipse
X(57237) = pole of line {4554, 55256} with respect to the Wallace hyperbola
X(57237) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(55), and the X(7)-circumconcevian triangle of X(55)
X(57237) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2424), X(3737)}}, {{A, B, C, X(4219), X(52889)}}, {{A, B, C, X(37659), X(56003)}}
X(57237) = barycentric product X(i)*X(j) for these (i, j): {4219, 521}, {14714, 664}, {37659, 650}, {44408, 8}, {45744, 7252}, {46402, 55}, {57175, 75}
X(57237) = barycentric quotient X(i)/X(j) for these (i, j): {2194, 53683}, {4219, 18026}, {14714, 522}, {37659, 4554}, {44408, 7}, {46402, 6063}, {57175, 1}
X(57237) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {650, 36054, 7252}


X(57238) = X(6)X(4498)∩X(56)X(23355)

Barycentrics    a^2*(b-c)*(a+b-c)*(a-b+c)*(a^2-b*c+a*(b+c)) : :

X(57238) lies on these lines: {6, 4498}, {56, 23355}, {221, 8676}, {222, 30719}, {513, 28026}, {521, 51656}, {649, 52595}, {834, 43924}, {905, 21786}, {1019, 1429}, {1191, 8643}, {3910, 4467}, {4057, 51650}, {4063, 22154}, {4391, 28985}, {4401, 16466}, {4801, 18199}, {5710, 28470}, {7178, 10566}, {8712, 22383}, {9013, 53528}, {20980, 47921}, {21007, 47935}, {21758, 48334}, {30724, 47763}, {43060, 57233}

X(57238) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 8050}, {210, 37205}, {312, 40519}, {596, 644}, {643, 40085}, {646, 40148}, {2321, 34594}, {3699, 39798}, {3939, 40013}, {4069, 39747}, {6558, 20615}, {30730, 39949}
X(57238) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 8050}, {649, 522}, {4129, 4391}, {40617, 40013}, {55060, 40085}
X(57238) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 56}
X(57238) = X(i)-cross conjugate of X(j) for these {i, j}: {57096, 4057}
X(57238) = pole of line {3941, 20780} with respect to the circumcircle
X(57238) = pole of line {7198, 24471} with respect to the Incircle
X(57238) = pole of line {56, 3891} with respect to the Steiner circumellipse
X(57238) = pole of line {6691, 17061} with respect to the Steiner inellipse
X(57238) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(56), and the X(7)-circumconcevian triangle of X(56)
X(57238) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1019), X(4057)}}, {{A, B, C, X(3669), X(51650)}}, {{A, B, C, X(4129), X(48335)}}, {{A, B, C, X(7254), X(22154)}}, {{A, B, C, X(18111), X(18200)}}
X(57238) = barycentric product X(i)*X(j) for these (i, j): {109, 21208}, {226, 57080}, {269, 48307}, {664, 8054}, {1014, 4132}, {1407, 47793}, {1412, 4129}, {2220, 24002}, {3293, 7203}, {3676, 595}, {3871, 43932}, {4057, 7}, {4063, 57}, {4360, 43924}, {17922, 222}, {18140, 57181}, {20295, 56}, {20949, 604}, {22154, 278}, {32911, 3669}, {51650, 86}, {57096, 85}
X(57238) = barycentric quotient X(i)/X(j) for these (i, j): {56, 8050}, {595, 3699}, {1357, 40086}, {1397, 40519}, {1408, 34594}, {1412, 37205}, {2220, 644}, {3669, 40013}, {4057, 8}, {4063, 312}, {4129, 30713}, {4132, 3701}, {7180, 40085}, {8054, 522}, {17922, 7017}, {20295, 3596}, {20949, 28659}, {21208, 35519}, {22154, 345}, {32911, 646}, {43924, 596}, {48307, 341}, {51650, 10}, {57080, 333}, {57096, 9}, {57181, 39798}


X(57239) = X(284)X(4063)∩X(1474)X(17924)

Barycentrics    a^2*(a+b)*(b-c)*(a+c)*(a^5-a^2*b*c*(b+c)-a^3*(2*b^2+3*b*c+2*c^2)-b*c*(b^3+b^2*c+b*c^2+c^3)+a*(b^4+b^3*c+b*c^3+c^4)) : :

X(57239) lies on these lines: {284, 4063}, {1019, 51664}, {1474, 17924}, {3733, 44410}, {4560, 17161}, {22382, 24018}, {35057, 57104}, {40214, 57058}

X(57239) = X(i)-Dao conjugate of X(j) for these {i, j}: {7252, 522}
X(57239) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 58}
X(57239) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(58), and the X(7)-circumconcevian triangle of X(58)
X(57239) = barycentric product X(i)*X(j) for these (i, j): {110, 24226}
X(57239) = barycentric quotient X(i)/X(j) for these (i, j): {24226, 850}


X(57240) = X(57)X(1262)∩X(63)X(1252)

Barycentrics    a^2*(a-b)^2*(a-c)^2*(a+b-c)*(a-b+c)*(a^4+a^2*b*c-a^3*(b+c)+a*(b-c)^2*(b+c)-(b-c)^2*(b^2+b*c+c^2)) : :

X(57240) lies on these lines: {57, 1262}, {59, 5012}, {63, 1252}, {222, 4619}, {278, 7115}, {345, 1016}, {1110, 15931}, {1214, 4564}, {2003, 2149}, {23703, 57105}, {24029, 57183}

X(57240) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2170, 44184}, {4858, 34179}, {40150, 40166}
X(57240) = X(i)-Dao conjugate of X(j) for these {i, j}: {101, 522}
X(57240) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 59}
X(57240) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(59), and the X(7)-circumconcevian triangle of X(59)
X(57240) = intersection, other than A, B, C, of circumconics {{A, B, C, X(57), X(16560)}}, {{A, B, C, X(150), X(13577)}}, {{A, B, C, X(278), X(20999)}}, {{A, B, C, X(345), X(22145)}}, {{A, B, C, X(14887), X(52941)}}
X(57240) = barycentric product X(i)*X(j) for these (i, j): {150, 59}, {14887, 7}, {16560, 4564}, {20940, 2149}, {20999, 4998}, {21091, 52378}, {22145, 46102}, {39026, 664}
X(57240) = barycentric quotient X(i)/X(j) for these (i, j): {59, 44184}, {150, 34387}, {8578, 21132}, {14887, 8}, {16560, 4858}, {20999, 11}, {22145, 26932}, {39026, 522}


X(57241) = X(1)X(8058)∩X(59)X(677)

Barycentrics    a^2*(a-b-c)*(b-c)*(-a^2+b^2+c^2)^2 : :

X(57241) lies on these lines: {1, 8058}, {59, 677}, {78, 37628}, {109, 6081}, {110, 2762}, {224, 39771}, {326, 30805}, {513, 50371}, {514, 14294}, {520, 4091}, {521, 656}, {522, 663}, {649, 22382}, {652, 23090}, {834, 48387}, {2324, 57064}, {2605, 3900}, {2804, 44409}, {2968, 38983}, {3676, 48281}, {3682, 57109}, {3733, 8676}, {3738, 23800}, {4105, 35057}, {4131, 51640}, {4575, 57119}, {4724, 57252}, {6362, 48297}, {6366, 48283}, {6513, 23615}, {7655, 57139}, {8062, 44426}, {8999, 39199}, {10397, 46391}, {17412, 45755}, {17925, 57089}, {23289, 56283}, {23614, 40152}, {23838, 56106}, {36054, 57057}, {39471, 52355}, {42337, 48302}

X(57241) = midpoint of X(i) and X(j) for these {i,j}: {1459, 57108}
X(57241) = reflection of X(i) in X(j) for these {i,j}: {4091, 23224}, {44426, 8062}
X(57241) = isogonal conjugate of X(36127)
X(57241) = isotomic conjugate of X(52938)
X(57241) = trilinear pole of line {1364, 35072}
X(57241) = perspector of circumconic {{A, B, C, X(63), X(271)}}
X(57241) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 36127}, {4, 108}, {6, 54240}, {12, 52920}, {19, 653}, {25, 18026}, {31, 52938}, {33, 36118}, {34, 1897}, {65, 107}, {73, 36126}, {92, 32674}, {100, 1118}, {109, 158}, {112, 40149}, {162, 225}, {196, 40117}, {226, 24019}, {273, 8750}, {278, 1783}, {281, 32714}, {393, 651}, {459, 57193}, {522, 24033}, {607, 13149}, {608, 6335}, {648, 1880}, {650, 23984}, {663, 24032}, {664, 1096}, {668, 7337}, {681, 19366}, {823, 1400}, {934, 1857}, {1020, 8748}, {1093, 36059}, {1119, 56183}, {1172, 52607}, {1214, 6529}, {1254, 52921}, {1309, 1875}, {1402, 6528}, {1409, 15352}, {1415, 2052}, {1426, 36797}, {1441, 32713}, {1785, 36110}, {1813, 6520}, {1836, 52776}, {1837, 52775}, {1882, 36077}, {1896, 53321}, {1973, 46404}, {2171, 52919}, {2207, 4554}, {3064, 7128}, {4391, 23985}, {4551, 8747}, {4552, 5317}, {4569, 6059}, {6135, 13459}, {6136, 13437}, {6516, 6524}, {6521, 32660}, {6591, 46102}, {7012, 7649}, {7115, 17924}, {7149, 57117}, {8059, 47372}, {14257, 40097}, {15742, 43923}, {18344, 55346}, {21859, 36419}, {23582, 57185}, {23706, 36123}, {23987, 36121}, {32085, 46152}, {34922, 54244}, {36044, 51359}, {36140, 52982}
X(57241) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 52938}, {3, 36127}, {6, 653}, {9, 54240}, {11, 158}, {125, 225}, {521, 522}, {656, 44426}, {905, 46107}, {1146, 2052}, {1147, 109}, {3239, 46110}, {6337, 46404}, {6338, 4572}, {6503, 664}, {6505, 18026}, {7358, 318}, {8054, 1118}, {11517, 1897}, {14298, 14837}, {14714, 1857}, {17434, 57243}, {20620, 1093}, {22391, 32674}, {24018, 17896}, {26932, 273}, {34467, 34}, {34591, 40149}, {35071, 226}, {35072, 92}, {35580, 51359}, {36033, 108}, {37867, 1813}, {38983, 4}, {38985, 65}, {38991, 393}, {39004, 1785}, {39006, 278}, {39007, 1838}, {39025, 1096}, {40582, 823}, {40602, 107}, {40605, 6528}, {40618, 331}, {40626, 264}, {40628, 17924}, {46093, 73}, {55044, 47372}, {55058, 14249}, {55066, 1880}, {55068, 1896}
X(57241) = X(i)-Ceva conjugate of X(j) for these {i, j}: {78, 24031}, {394, 35072}, {664, 63}, {1259, 1364}, {1331, 255}, {1813, 219}, {4131, 4091}, {4636, 283}, {6332, 652}, {6513, 34591}, {6516, 40152}, {6517, 394}, {44327, 9}, {57081, 521}
X(57241) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3362, 33650}, {8761, 37781}
X(57241) = X(i)-cross conjugate of X(j) for these {i, j}: {520, 521}, {1364, 1259}, {2638, 2289}, {10397, 57233}, {35072, 394}, {36054, 4091}, {55044, 3}
X(57241) = pole of line {1498, 3428} with respect to the circumcircle
X(57241) = pole of line {10454, 12547} with respect to the Conway circle
X(57241) = pole of line {950, 1071} with respect to the Incircle
X(57241) = pole of line {158, 225} with respect to the polar circle
X(57241) = pole of line {23620, 23640} with respect to the Brocard inellipse
X(57241) = pole of line {3937, 52308} with respect to the Jerabek hyperbola
X(57241) = pole of line {219, 255} with respect to the MacBeath circumconic
X(57241) = pole of line {107, 109} with respect to the Stammler hyperbola
X(57241) = pole of line {63, 1943} with respect to the Steiner circumellipse
X(57241) = pole of line {1214, 5745} with respect to the Steiner inellipse
X(57241) = pole of line {664, 811} with respect to the Wallace hyperbola
X(57241) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(63), and the X(7)-circumconcevian triangle of X(63)
X(57241) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(44360)}}, {{A, B, C, X(3), X(46974)}}, {{A, B, C, X(21), X(856)}}, {{A, B, C, X(59), X(219)}}, {{A, B, C, X(73), X(45272)}}, {{A, B, C, X(78), X(255)}}, {{A, B, C, X(109), X(46391)}}, {{A, B, C, X(268), X(15394)}}, {{A, B, C, X(283), X(51382)}}, {{A, B, C, X(284), X(8766)}}, {{A, B, C, X(296), X(52663)}}, {{A, B, C, X(326), X(1818)}}, {{A, B, C, X(394), X(6510)}}, {{A, B, C, X(520), X(522)}}, {{A, B, C, X(521), X(677)}}, {{A, B, C, X(663), X(810)}}, {{A, B, C, X(822), X(17418)}}, {{A, B, C, X(905), X(4091)}}, {{A, B, C, X(1259), X(5440)}}, {{A, B, C, X(1331), X(24031)}}, {{A, B, C, X(1433), X(15405)}}, {{A, B, C, X(1459), X(3737)}}, {{A, B, C, X(1812), X(1944)}}, {{A, B, C, X(2193), X(3100)}}, {{A, B, C, X(3265), X(20294)}}, {{A, B, C, X(3682), X(4511)}}, {{A, B, C, X(4620), X(6518)}}, {{A, B, C, X(6332), X(24018)}}, {{A, B, C, X(6507), X(6513)}}, {{A, B, C, X(6517), X(14414)}}, {{A, B, C, X(8059), X(21172)}}, {{A, B, C, X(10570), X(14379)}}, {{A, B, C, X(12096), X(52158)}}, {{A, B, C, X(17973), X(17974)}}, {{A, B, C, X(40081), X(40082)}}
X(57241) = barycentric product X(i)*X(j) for these (i, j): {3, 6332}, {21, 24018}, {29, 52613}, {78, 905}, {109, 23983}, {219, 4025}, {255, 4391}, {280, 57233}, {283, 525}, {284, 3265}, {314, 822}, {326, 650}, {332, 647}, {333, 520}, {348, 57108}, {394, 522}, {521, 63}, {523, 6514}, {652, 69}, {657, 7055}, {1021, 52385}, {1092, 46110}, {1102, 18344}, {1146, 6517}, {1214, 57081}, {1231, 57134}, {1259, 514}, {1264, 649}, {1331, 26932}, {1332, 7004}, {1364, 190}, {1433, 57245}, {1444, 8611}, {1459, 345}, {1565, 4587}, {1790, 52355}, {1792, 51664}, {1804, 3239}, {1808, 24459}, {1812, 656}, {1813, 2968}, {1946, 304}, {2185, 57109}, {2289, 693}, {2299, 4143}, {2632, 4612}, {2638, 4554}, {3064, 3964}, {3261, 6056}, {3682, 4560}, {3710, 7254}, {3719, 513}, {3737, 3998}, {3900, 7183}, {3926, 663}, {3942, 4571}, {4091, 8}, {4131, 9}, {4397, 7125}, {4556, 7068}, {4561, 7117}, {4592, 53560}, {14208, 2193}, {14331, 15394}, {15411, 73}, {15413, 212}, {15416, 603}, {15419, 2318}, {15526, 4636}, {16731, 4551}, {17094, 2327}, {17216, 5546}, {17219, 4574}, {17880, 906}, {18155, 3990}, {18604, 4086}, {20580, 52158}, {21789, 52565}, {22383, 3718}, {23090, 307}, {23189, 306}, {23224, 312}, {23696, 25083}, {24031, 651}, {28660, 39201}, {28724, 48278}, {30805, 55}, {32320, 44130}, {34591, 6516}, {34980, 55233}, {35072, 664}, {35518, 48}, {35519, 577}, {36054, 75}, {39687, 4572}, {40152, 7253}, {41081, 57101}, {44327, 55044}, {44426, 6507}, {52389, 57213}, {52396, 7252}, {52616, 6}, {52622, 7335}, {57055, 77}, {57057, 7}
X(57241) = barycentric quotient X(i)/X(j) for these (i, j): {1, 54240}, {2, 52938}, {3, 653}, {6, 36127}, {21, 823}, {29, 15352}, {48, 108}, {60, 52919}, {63, 18026}, {69, 46404}, {73, 52607}, {77, 13149}, {78, 6335}, {109, 23984}, {184, 32674}, {212, 1783}, {219, 1897}, {222, 36118}, {255, 651}, {283, 648}, {284, 107}, {326, 4554}, {332, 6331}, {333, 6528}, {394, 664}, {520, 226}, {521, 92}, {522, 2052}, {577, 109}, {603, 32714}, {647, 225}, {649, 1118}, {650, 158}, {651, 24032}, {652, 4}, {656, 40149}, {657, 1857}, {663, 393}, {810, 1880}, {822, 65}, {905, 273}, {906, 7012}, {1021, 1896}, {1092, 1813}, {1172, 36126}, {1259, 190}, {1264, 1978}, {1331, 46102}, {1364, 514}, {1415, 24033}, {1459, 278}, {1802, 56183}, {1804, 658}, {1812, 811}, {1813, 55346}, {1919, 7337}, {1946, 19}, {2150, 52920}, {2188, 40117}, {2193, 162}, {2194, 24019}, {2289, 100}, {2299, 6529}, {2327, 36797}, {2638, 650}, {2968, 46110}, {2972, 57243}, {3063, 1096}, {3064, 1093}, {3265, 349}, {3270, 3064}, {3682, 4552}, {3719, 668}, {3926, 4572}, {3990, 4551}, {4020, 46152}, {4025, 331}, {4055, 4559}, {4091, 7}, {4100, 36059}, {4131, 85}, {4587, 15742}, {4612, 23999}, {4636, 23582}, {6056, 101}, {6332, 264}, {6507, 6516}, {6514, 99}, {6517, 1275}, {7004, 17924}, {7054, 52921}, {7055, 46406}, {7066, 4605}, {7068, 52623}, {7117, 7649}, {7125, 934}, {7183, 4569}, {7252, 8747}, {7335, 1461}, {8611, 41013}, {10397, 7952}, {14208, 52575}, {14298, 47372}, {14331, 14249}, {14395, 1784}, {14400, 52661}, {14414, 37805}, {14418, 38462}, {14432, 37778}, {14578, 36110}, {15411, 44130}, {16731, 18155}, {18344, 6520}, {18604, 1414}, {21789, 8748}, {22072, 17906}, {22086, 1877}, {22341, 1020}, {22382, 1940}, {22383, 34}, {23090, 29}, {23189, 27}, {23224, 57}, {23606, 32660}, {23614, 34591}, {23696, 54235}, {23983, 35519}, {24018, 1441}, {24031, 4391}, {26932, 46107}, {30805, 6063}, {32320, 73}, {32656, 7115}, {34591, 44426}, {34980, 55234}, {35072, 522}, {35196, 16813}, {35518, 1969}, {35519, 18027}, {36054, 1}, {36059, 7128}, {37628, 16082}, {38353, 53047}, {39201, 1400}, {39687, 663}, {40152, 4566}, {44426, 6521}, {46382, 1882}, {46974, 24035}, {47410, 21186}, {51640, 1427}, {52306, 1838}, {52307, 1785}, {52425, 8750}, {52430, 1415}, {52613, 307}, {52616, 76}, {52921, 34538}, {53532, 37790}, {53550, 5236}, {53560, 24006}, {55044, 14837}, {55230, 8736}, {55232, 56285}, {55965, 54968}, {57055, 318}, {57057, 8}, {57081, 31623}, {57108, 281}, {57109, 6358}, {57134, 1172}, {57233, 347}
X(57241) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {520, 23224, 4091}, {1459, 57108, 521}, {57081, 57213, 3737}


X(57242) = X(69)X(52616)∩X(325)X(523)

Barycentrics    (b-c)*(-a^2+b^2+c^2)*(b^3+a*b*c+c^3-a^2*(b+c)) : :

X(57242) lies on these lines: {69, 52616}, {99, 53965}, {325, 523}, {514, 15411}, {1459, 4025}, {3669, 3904}, {6332, 57243}, {6589, 16754}, {15413, 17094}, {17321, 21174}, {52310, 57184}, {56084, 57049}

X(57242) = isotomic conjugate of X(26704)
X(57242) = perspector of circumconic {{A, B, C, X(76), X(17206)}}
X(57242) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 32653}, {25, 36050}, {31, 26704}, {1395, 56112}, {1973, 44765}, {2182, 32700}, {2217, 8750}, {15232, 32676}, {15386, 18344}
X(57242) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 26704}, {6, 32653}, {124, 25}, {6332, 522}, {6337, 44765}, {6505, 36050}, {6589, 3064}, {15526, 15232}, {26932, 2217}, {34588, 1824}, {40618, 13478}, {40626, 10570}
X(57242) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 69}
X(57242) = X(i)-cross conjugate of X(j) for these {i, j}: {38977, 2}
X(57242) = pole of line {22, 23359} with respect to the circumcircle
X(57242) = pole of line {525, 15411} with respect to the Kiepert parabola
X(57242) = pole of line {22126, 23128} with respect to the MacBeath circumconic
X(57242) = pole of line {1576, 8750} with respect to the Stammler hyperbola
X(57242) = pole of line {69, 17134} with respect to the Steiner circumellipse
X(57242) = pole of line {141, 37836} with respect to the Steiner inellipse
X(57242) = pole of line {110, 1897} with respect to the Wallace hyperbola
X(57242) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(69), and the X(7)-circumconcevian triangle of X(69)
X(57242) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(35516)}}, {{A, B, C, X(305), X(33864)}}, {{A, B, C, X(523), X(1459)}}, {{A, B, C, X(693), X(16754)}}, {{A, B, C, X(850), X(4025)}}, {{A, B, C, X(858), X(4225)}}, {{A, B, C, X(2517), X(21189)}}, {{A, B, C, X(3261), X(15419)}}, {{A, B, C, X(3264), X(51612)}}, {{A, B, C, X(3267), X(30805)}}, {{A, B, C, X(4417), X(35517)}}, {{A, B, C, X(10571), X(45917)}}, {{A, B, C, X(22134), X(35552)}}, {{A, B, C, X(26704), X(38977)}}, {{A, B, C, X(34588), X(50333)}}
X(57242) = barycentric product X(i)*X(j) for these (i, j): {305, 6589}, {310, 52310}, {514, 51612}, {3267, 4225}, {4025, 4417}, {4572, 47411}, {15413, 3869}, {16754, 20336}, {17080, 35518}, {17555, 30805}, {21189, 304}, {22134, 40495}, {34588, 4554}, {40626, 664}, {57111, 85}, {57184, 75}
X(57242) = barycentric quotient X(i)/X(j) for these (i, j): {2, 26704}, {3, 32653}, {63, 36050}, {69, 44765}, {102, 32700}, {124, 3064}, {345, 56112}, {525, 15232}, {573, 8750}, {905, 2217}, {1813, 15386}, {3869, 1783}, {4025, 13478}, {4225, 112}, {4417, 1897}, {6332, 10570}, {6589, 25}, {10571, 32674}, {15413, 2995}, {16754, 28}, {17080, 108}, {17094, 40160}, {17206, 54951}, {21189, 19}, {22134, 692}, {34588, 650}, {36100, 36108}, {38345, 18344}, {40626, 522}, {47411, 663}, {51612, 190}, {52310, 42}, {55128, 8755}, {57111, 9}, {57184, 1}
X(57242) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3265, 35518, 57054}


X(57243) = X(73)X(879)∩X(109)X(935)

Barycentrics    (b-c)*(-a+b-c)*(a+b-c)*(b+c)^2*(-a^2+b^2+c^2) : :

X(57243) lies on these lines: {57, 21192}, {65, 3900}, {73, 879}, {109, 935}, {201, 21134}, {226, 2394}, {307, 14977}, {388, 29037}, {514, 652}, {523, 656}, {525, 8611}, {653, 15459}, {664, 2966}, {822, 23755}, {826, 53551}, {905, 1214}, {1441, 4391}, {1577, 14618}, {2522, 3669}, {3064, 14837}, {3676, 47681}, {4025, 15420}, {4064, 57109}, {4077, 23879}, {4707, 15412}, {4988, 46382}, {6332, 57242}, {6358, 52623}, {7180, 50539}, {8768, 54247}, {15421, 40152}, {21105, 57103}, {22091, 22341}, {23737, 46391}

X(57243) = reflection of X(i) in X(j) for these {i,j}: {14308, 55285}, {3064, 14837}, {4064, 57109}, {51664, 17094}
X(57243) = trilinear pole of line {125, 2632}
X(57243) = perspector of circumconic {{A, B, C, X(226), X(307)}}
X(57243) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 52914}, {19, 4636}, {21, 112}, {25, 4612}, {28, 5546}, {29, 163}, {33, 4556}, {48, 52921}, {60, 1783}, {99, 2204}, {100, 2189}, {101, 270}, {107, 2193}, {108, 7054}, {109, 2326}, {110, 1172}, {162, 284}, {212, 52919}, {219, 52920}, {249, 18344}, {250, 650}, {283, 24019}, {333, 32676}, {521, 23964}, {560, 55233}, {593, 56183}, {607, 52935}, {643, 1474}, {645, 2203}, {648, 2194}, {652, 24000}, {662, 2299}, {692, 46103}, {1098, 32674}, {1101, 3064}, {1304, 52949}, {1333, 36797}, {1414, 2332}, {1576, 31623}, {1812, 32713}, {1896, 32661}, {1897, 2150}, {1946, 23582}, {1974, 4631}, {2175, 55231}, {2185, 8750}, {2212, 4610}, {3063, 18020}, {3100, 36071}, {4183, 4565}, {4516, 47443}, {4571, 36420}, {4575, 8748}, {5081, 32671}, {5379, 7252}, {6061, 32714}, {9447, 55229}, {13486, 41502}, {23357, 44426}, {23609, 52607}, {23995, 46110}, {32230, 36054}, {32673, 37774}, {35518, 41937}, {36034, 52956}, {36059, 36421}, {36131, 51382}, {37140, 52427}
X(57243) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 4636}, {9, 52914}, {11, 2326}, {37, 36797}, {115, 29}, {125, 284}, {136, 8748}, {226, 662}, {244, 1172}, {523, 3064}, {525, 6332}, {647, 522}, {1015, 270}, {1084, 2299}, {1086, 46103}, {1214, 648}, {1249, 52921}, {3258, 52956}, {4858, 31623}, {6374, 55233}, {6505, 4612}, {6741, 2322}, {8054, 2189}, {10001, 18020}, {15267, 32674}, {15526, 333}, {17434, 57241}, {18314, 46110}, {20620, 36421}, {23285, 35519}, {26932, 2185}, {34467, 2150}, {34591, 21}, {35071, 283}, {35072, 1098}, {36901, 44130}, {38983, 7054}, {38985, 2193}, {38986, 2204}, {39006, 60}, {39008, 51382}, {39053, 23582}, {39060, 23999}, {40590, 162}, {40591, 5546}, {40593, 55231}, {40608, 2332}, {40611, 112}, {40618, 261}, {40622, 27}, {40626, 7058}, {40837, 52919}, {47345, 107}, {51574, 643}, {55060, 1474}, {55064, 4183}, {55065, 281}, {55066, 2194}, {56325, 1897}
X(57243) = X(i)-Ceva conjugate of X(j) for these {i, j}: {653, 226}, {664, 73}, {1214, 4466}, {4605, 37755}, {6356, 125}, {6358, 20902}, {20618, 1367}
X(57243) = X(i)-cross conjugate of X(j) for these {i, j}: {125, 6356}, {3708, 201}, {55232, 4064}
X(57243) = pole of line {19, 9579} with respect to the Bevan circle
X(57243) = pole of line {1456, 3649} with respect to the Incircle
X(57243) = pole of line {29, 284} with respect to the polar circle
X(57243) = pole of line {73, 3152} with respect to the Steiner circumellipse
X(57243) = pole of line {13411, 17056} with respect to the Steiner inellipse
X(57243) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(73), and the X(7)-circumconcevian triangle of X(73)
X(57243) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(36195)}}, {{A, B, C, X(12), X(20618)}}, {{A, B, C, X(73), X(349)}}, {{A, B, C, X(125), X(30574)}}, {{A, B, C, X(514), X(23752)}}, {{A, B, C, X(523), X(525)}}, {{A, B, C, X(656), X(1577)}}, {{A, B, C, X(905), X(4466)}}, {{A, B, C, X(1231), X(7235)}}, {{A, B, C, X(2457), X(4049)}}, {{A, B, C, X(3700), X(14308)}}, {{A, B, C, X(3708), X(55230)}}, {{A, B, C, X(4017), X(51664)}}, {{A, B, C, X(4024), X(4041)}}, {{A, B, C, X(4025), X(21124)}}, {{A, B, C, X(4605), X(20902)}}, {{A, B, C, X(4695), X(52369)}}, {{A, B, C, X(6354), X(51368)}}, {{A, B, C, X(6358), X(37755)}}, {{A, B, C, X(7178), X(17094)}}, {{A, B, C, X(14208), X(50457)}}, {{A, B, C, X(26942), X(40663)}}
X(57243) = barycentric product X(i)*X(j) for these (i, j): {10, 17094}, {12, 4025}, {73, 850}, {108, 17879}, {109, 339}, {125, 664}, {201, 693}, {222, 52623}, {225, 3265}, {226, 525}, {273, 57109}, {304, 57185}, {306, 7178}, {307, 523}, {321, 51664}, {348, 4024}, {349, 647}, {522, 6356}, {1109, 6516}, {1214, 1577}, {1231, 661}, {1254, 35518}, {1365, 4561}, {1367, 1897}, {1400, 3267}, {1409, 20948}, {1425, 35519}, {1439, 4086}, {1441, 656}, {1446, 8611}, {1459, 34388}, {1813, 338}, {2197, 3261}, {2501, 52565}, {2970, 6517}, {2972, 52938}, {3269, 46404}, {3668, 52355}, {3669, 52369}, {3676, 3695}, {3690, 52621}, {3708, 4554}, {4036, 77}, {4064, 7}, {4077, 72}, {4131, 56285}, {4466, 4552}, {4705, 7182}, {6332, 6354}, {6355, 8058}, {6358, 905}, {13853, 57245}, {14208, 65}, {14618, 40152}, {15413, 2171}, {15416, 7147}, {15526, 653}, {17206, 55197}, {18026, 2632}, {18097, 2525}, {20336, 4017}, {20618, 3239}, {20902, 651}, {20975, 4572}, {21046, 4573}, {21134, 4998}, {21207, 23067}, {21833, 55205}, {23962, 32660}, {23994, 36059}, {24002, 3949}, {24006, 52385}, {24018, 40149}, {26932, 4605}, {26942, 514}, {30805, 8736}, {32674, 36793}, {36118, 7068}, {37755, 4391}, {40071, 7180}, {46107, 7066}, {52392, 6370}, {52575, 822}, {52609, 53545}, {55230, 6063}, {55232, 85}, {55234, 76}
X(57243) = barycentric quotient X(i)/X(j) for these (i, j): {1, 52914}, {3, 4636}, {4, 52921}, {10, 36797}, {12, 1897}, {34, 52920}, {63, 4612}, {65, 162}, {71, 5546}, {72, 643}, {73, 110}, {76, 55233}, {77, 52935}, {85, 55231}, {108, 24000}, {109, 250}, {115, 3064}, {125, 522}, {181, 8750}, {201, 100}, {222, 4556}, {225, 107}, {226, 648}, {278, 52919}, {304, 4631}, {306, 645}, {307, 99}, {338, 46110}, {339, 35519}, {348, 4610}, {349, 6331}, {512, 2299}, {513, 270}, {514, 46103}, {520, 283}, {521, 1098}, {523, 29}, {525, 333}, {647, 284}, {649, 2189}, {650, 2326}, {652, 7054}, {653, 23582}, {656, 21}, {661, 1172}, {664, 18020}, {756, 56183}, {798, 2204}, {810, 2194}, {822, 2193}, {850, 44130}, {905, 2185}, {1109, 44426}, {1214, 662}, {1231, 799}, {1254, 108}, {1365, 7649}, {1367, 4025}, {1400, 112}, {1402, 32676}, {1409, 163}, {1425, 109}, {1439, 1414}, {1441, 811}, {1459, 60}, {1562, 14331}, {1577, 31623}, {1637, 52956}, {1813, 249}, {1880, 24019}, {2171, 1783}, {2197, 101}, {2501, 8748}, {2533, 14006}, {2631, 52949}, {2632, 521}, {2643, 18344}, {2972, 57241}, {3064, 36421}, {3265, 332}, {3267, 28660}, {3269, 652}, {3690, 3939}, {3694, 7259}, {3695, 3699}, {3700, 2322}, {3708, 650}, {3709, 2332}, {3710, 7256}, {3949, 644}, {4010, 14024}, {4017, 28}, {4024, 281}, {4025, 261}, {4036, 318}, {4041, 4183}, {4064, 8}, {4077, 286}, {4079, 607}, {4466, 4560}, {4551, 5379}, {4554, 46254}, {4561, 6064}, {4605, 46102}, {4620, 55270}, {4705, 33}, {5930, 52913}, {6046, 36118}, {6063, 55229}, {6332, 7058}, {6354, 653}, {6355, 53642}, {6356, 664}, {6358, 6335}, {6370, 5081}, {6516, 24041}, {7066, 1331}, {7138, 36059}, {7147, 32714}, {7178, 27}, {7180, 1474}, {7182, 4623}, {7212, 31905}, {7216, 1396}, {8611, 2287}, {9033, 51382}, {9391, 1936}, {14208, 314}, {15413, 52379}, {15526, 6332}, {16732, 57215}, {17094, 86}, {17206, 55196}, {17879, 35518}, {18006, 415}, {18026, 23999}, {18097, 42396}, {18210, 3737}, {20336, 7257}, {20618, 658}, {20902, 4391}, {20975, 663}, {21044, 17926}, {21046, 3700}, {21131, 8735}, {21134, 11}, {21833, 55206}, {22341, 4575}, {22383, 2150}, {23067, 4570}, {23286, 35196}, {24006, 1896}, {24018, 1812}, {26942, 190}, {30572, 37168}, {30574, 52891}, {32660, 23357}, {32674, 23964}, {36059, 1101}, {36127, 32230}, {37754, 36054}, {37755, 651}, {40149, 823}, {40152, 4558}, {40663, 46541}, {42661, 40976}, {42666, 52427}, {50457, 44734}, {50487, 2212}, {51421, 7452}, {51640, 1437}, {51641, 2203}, {51663, 1870}, {51664, 81}, {52355, 1043}, {52369, 646}, {52373, 4565}, {52378, 47443}, {52385, 4592}, {52386, 4587}, {52387, 4571}, {52390, 13486}, {52565, 4563}, {52610, 52378}, {52613, 6514}, {52623, 7017}, {53527, 17515}, {53540, 57200}, {53545, 17925}, {53551, 54407}, {53560, 1021}, {55197, 1826}, {55208, 5317}, {55210, 41502}, {55230, 55}, {55232, 9}, {55234, 6}, {57099, 11107}, {57107, 13739}, {57108, 6061}, {57109, 78}, {57134, 23609}, {57185, 19}
X(57243) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {523, 55285, 14308}, {525, 17094, 51664}


X(57244) = X(75)X(4025)∩X(320)X(350)

Barycentrics    b*(b-c)*c*(-a^3+b*c*(b+c)+a*(b^2-b*c+c^2)) : :

X(57244) lies on these lines: {75, 4025}, {312, 25259}, {320, 350}, {514, 25667}, {649, 18071}, {664, 56252}, {812, 29739}, {814, 23394}, {850, 4453}, {870, 2424}, {918, 21611}, {1577, 29808}, {1638, 24622}, {1920, 57056}, {2616, 14208}, {3004, 20949}, {3239, 18743}, {3261, 3676}, {3669, 4391}, {3762, 25666}, {3776, 20950}, {3835, 29427}, {3907, 57110}, {4086, 25380}, {4357, 23801}, {4379, 18154}, {4385, 29212}, {4828, 47891}, {6548, 40010}, {7178, 41299}, {10453, 50518}, {16892, 20952}, {17496, 27346}, {17788, 21133}, {18074, 18739}, {18160, 57187}, {19821, 40213}, {21606, 47754}, {23785, 23799}, {29404, 31286}, {29488, 47779}, {29771, 47672}, {30061, 47761}, {51662, 57091}

X(57244) = isotomic conjugate of X(56194)
X(57244) = trilinear pole of line {24237, 40624}
X(57244) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 56194}, {32, 56188}, {560, 56252}, {692, 34434}, {1576, 51870}, {2051, 32739}, {4557, 52150}
X(57244) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 56194}, {1086, 34434}, {4391, 522}, {4858, 51870}, {6374, 56252}, {6376, 56188}, {24237, 1201}, {34589, 42}, {40619, 2051}, {40620, 53083}, {53566, 3725}
X(57244) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 75}, {4554, 52358}
X(57244) = X(i)-cross conjugate of X(j) for these {i, j}: {34589, 14829}
X(57244) = pole of line {312, 1764} with respect to the Conway circle
X(57244) = pole of line {4671, 6360} with respect to the DeLongchamps circle
X(57244) = pole of line {1824, 2181} with respect to the polar circle
X(57244) = pole of line {75, 14923} with respect to the Steiner circumellipse
X(57244) = pole of line {3739, 5836} with respect to the Steiner inellipse
X(57244) = pole of line {100, 2617} with respect to the Wallace hyperbola
X(57244) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(75), and the X(7)-circumconcevian triangle of X(75)
X(57244) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(17139)}}, {{A, B, C, X(310), X(20347)}}, {{A, B, C, X(513), X(2616)}}, {{A, B, C, X(2975), X(40436)}}, {{A, B, C, X(6384), X(14829)}}, {{A, B, C, X(7192), X(17496)}}, {{A, B, C, X(11109), X(14956)}}, {{A, B, C, X(17217), X(27346)}}, {{A, B, C, X(17751), X(29824)}}, {{A, B, C, X(30939), X(40010)}}, {{A, B, C, X(37558), X(50362)}}
X(57244) = barycentric product X(i)*X(j) for these (i, j): {349, 57125}, {1969, 23187}, {2975, 3261}, {11109, 15413}, {11998, 4572}, {14829, 693}, {17074, 35519}, {17496, 75}, {17751, 7199}, {18155, 52358}, {21061, 52619}, {21173, 76}, {24237, 668}, {27346, 6384}, {28660, 51662}, {34589, 4554}, {40495, 572}, {40624, 664}, {53566, 799}, {57091, 85}
X(57244) = barycentric quotient X(i)/X(j) for these (i, j): {2, 56194}, {75, 56188}, {76, 56252}, {514, 34434}, {572, 692}, {693, 2051}, {1019, 52150}, {1577, 51870}, {2975, 101}, {3261, 54121}, {7192, 53083}, {7199, 20028}, {11109, 1783}, {11998, 663}, {14829, 100}, {17074, 109}, {17496, 1}, {17751, 1018}, {18155, 46880}, {20986, 32739}, {21061, 4557}, {21173, 6}, {22118, 32656}, {23187, 48}, {24237, 513}, {26847, 4040}, {27346, 43}, {34234, 53702}, {34589, 650}, {37558, 4559}, {38344, 1946}, {40624, 522}, {51662, 1400}, {52322, 21807}, {52357, 21859}, {52358, 4551}, {53566, 661}, {57091, 9}, {57125, 284}
X(57244) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 18155, 20954}, {693, 23794, 23813}, {693, 43067, 7199}, {4025, 35519, 75}


X(57245) = X(63)X(2417)∩X(441)X(525)

Barycentrics    (a-b-c)*(b-c)*(a^2-b^2-c^2)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2) : :

X(57245) lies on these lines: {63, 2417}, {190, 46102}, {441, 525}, {514, 40863}, {522, 3717}, {3239, 7265}, {3904, 30719}, {10397, 57213}, {14837, 17896}, {15416, 52616}, {17894, 46110}, {17922, 57043}, {46919, 57066}

X(57245) = reflection of X(i) in X(j) for these {i,j}: {17896, 14837}, {6332, 57055}
X(57245) = trilinear pole of line {7358, 16596}
X(57245) = perspector of circumconic {{A, B, C, X(69), X(312)}}
X(57245) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 8059}, {25, 37141}, {34, 36049}, {56, 40117}, {84, 32674}, {108, 1436}, {109, 7129}, {110, 2358}, {112, 52384}, {207, 8064}, {278, 32652}, {608, 13138}, {651, 7151}, {653, 2208}, {692, 55110}, {934, 7154}, {1395, 44327}, {1413, 1783}, {1415, 40836}, {1422, 8750}, {1461, 7008}, {1973, 53642}, {2192, 32714}, {6612, 56183}, {7118, 36118}, {8808, 32676}, {32713, 52037}
X(57245) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 40117}, {6, 8059}, {11, 7129}, {57, 32714}, {244, 2358}, {281, 36127}, {1086, 55110}, {1146, 40836}, {2968, 7003}, {5514, 34}, {6129, 3064}, {6337, 53642}, {6505, 37141}, {7358, 282}, {11517, 36049}, {14298, 1459}, {14331, 21172}, {14714, 7154}, {14837, 514}, {15526, 8808}, {16596, 278}, {24018, 905}, {26932, 1422}, {34591, 52384}, {35072, 84}, {35508, 7008}, {38983, 1436}, {38991, 7151}, {39006, 1413}, {39020, 52078}, {40618, 1440}, {40626, 189}, {55044, 19}, {55063, 1}, {57055, 522}, {57101, 14331}
X(57245) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 329}, {664, 78}, {6335, 306}, {15416, 6332}, {55112, 16596}
X(57245) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3345, 150}, {7037, 37781}, {7152, 149}, {8064, 962}, {8806, 21294}, {36049, 34162}, {41514, 21293}, {47850, 33650}
X(57245) = X(i)-cross conjugate of X(j) for these {i, j}: {10397, 8058}, {16596, 55112}, {55058, 347}, {55063, 8}
X(57245) = pole of line {159, 2933} with respect to the circumcircle
X(57245) = pole of line {7, 253} with respect to the DeLongchamps circle
X(57245) = pole of line {12053, 41004} with respect to the Incircle
X(57245) = pole of line {34, 393} with respect to the polar circle
X(57245) = pole of line {6467, 23637} with respect to the Brocard inellipse
X(57245) = pole of line {112, 8059} with respect to the Stammler hyperbola
X(57245) = pole of line {20, 78} with respect to the Steiner circumellipse
X(57245) = pole of line {3, 3452} with respect to the Steiner inellipse
X(57245) = pole of line {521, 6332} with respect to the Yff parabola
X(57245) = pole of line {648, 1414} with respect to the Wallace hyperbola
X(57245) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(78), and the X(7)-circumconcevian triangle of X(78)
X(57245) = intersection, other than A, B, C, of circumconics {{A, B, C, X(78), X(40702)}}, {{A, B, C, X(329), X(345)}}, {{A, B, C, X(522), X(905)}}, {{A, B, C, X(525), X(4086)}}, {{A, B, C, X(647), X(4041)}}, {{A, B, C, X(1819), X(36212)}}, {{A, B, C, X(2417), X(4397)}}, {{A, B, C, X(2504), X(38357)}}, {{A, B, C, X(2522), X(14298)}}, {{A, B, C, X(3717), X(25083)}}, {{A, B, C, X(3718), X(7013)}}, {{A, B, C, X(3977), X(4723)}}, {{A, B, C, X(4025), X(4391)}}, {{A, B, C, X(4147), X(25098)}}, {{A, B, C, X(4768), X(16596)}}, {{A, B, C, X(6129), X(47136)}}, {{A, B, C, X(7011), X(45269)}}, {{A, B, C, X(7080), X(26006)}}, {{A, B, C, X(7952), X(45271)}}, {{A, B, C, X(11064), X(27398)}}, {{A, B, C, X(24560), X(25022)}}, {{A, B, C, X(24562), X(44448)}}, {{A, B, C, X(30805), X(52622)}}
X(57245) = barycentric product X(i)*X(j) for these (i, j): {69, 8058}, {321, 57213}, {322, 521}, {329, 6332}, {348, 57049}, {514, 55112}, {664, 7358}, {1264, 54239}, {1819, 850}, {3261, 55111}, {3718, 6129}, {4025, 7080}, {4397, 7013}, {4572, 47432}, {10397, 76}, {14298, 304}, {14837, 345}, {15413, 2324}, {15416, 223}, {16596, 190}, {17896, 78}, {27398, 525}, {30805, 55116}, {35518, 40}, {35519, 7078}, {38357, 4561}, {40701, 57057}, {40702, 57055}, {52355, 8822}, {52616, 7952}, {52622, 7011}, {53557, 668}, {53560, 55241}, {57101, 75}, {57233, 7017}
X(57245) = barycentric quotient X(i)/X(j) for these (i, j): {3, 8059}, {9, 40117}, {40, 108}, {63, 37141}, {69, 53642}, {78, 13138}, {198, 32674}, {212, 32652}, {219, 36049}, {223, 32714}, {322, 18026}, {329, 653}, {345, 44327}, {347, 36118}, {514, 55110}, {521, 84}, {522, 40836}, {525, 8808}, {650, 7129}, {652, 1436}, {656, 52384}, {657, 7154}, {661, 2358}, {663, 7151}, {905, 1422}, {1459, 1413}, {1819, 110}, {1946, 2208}, {2324, 1783}, {3239, 7003}, {3318, 54239}, {3900, 7008}, {4025, 1440}, {4091, 55117}, {4397, 7020}, {5514, 3064}, {6129, 34}, {6332, 189}, {7011, 1461}, {7013, 934}, {7074, 8750}, {7078, 109}, {7080, 1897}, {7358, 522}, {7952, 36127}, {8057, 52078}, {8058, 4}, {8063, 40837}, {8611, 1903}, {10397, 6}, {14298, 19}, {14837, 278}, {15416, 34404}, {15501, 36110}, {16596, 514}, {17896, 273}, {24018, 52037}, {27398, 648}, {30805, 34400}, {35518, 309}, {38357, 7649}, {40702, 13149}, {47432, 663}, {51375, 23987}, {52355, 39130}, {53557, 513}, {53560, 55242}, {54239, 1118}, {55044, 1459}, {55058, 21172}, {55063, 14331}, {55111, 101}, {55112, 190}, {55212, 1880}, {57049, 281}, {57055, 282}, {57057, 268}, {57081, 285}, {57101, 1}, {57108, 2192}, {57213, 81}, {57233, 222}, {57241, 1433}, {57243, 13853}
X(57245) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {525, 57055, 6332}


X(57246) = X(21)X(513)∩X(229)X(1476)

Barycentrics    a*(a+b)*(b-c)*(a+c)*(a^4-a^3*(b+c)+a*(b-c)^2*(b+c)-b*c*(b+c)^2-a^2*(b^2+b*c+c^2)) : :

X(57246) lies on these lines: {21, 513}, {81, 48281}, {229, 1476}, {523, 1325}, {1014, 17212}, {1019, 6003}, {1817, 47762}, {2287, 21390}, {2346, 38814}, {3737, 4017}, {4228, 47805}, {4977, 42741}, {7192, 17094}, {13588, 47824}, {14005, 48246}, {17551, 48230}, {17557, 48165}, {23224, 48570}, {27174, 47763}, {35057, 57067}, {39210, 48568}, {44426, 54340}

X(57246) = X(i)-Dao conjugate of X(j) for these {i, j}: {3737, 522}
X(57246) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 81}
X(57246) = pole of line {53280, 53388} with respect to the Stammler hyperbola
X(57246) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(81), and the X(7)-circumconcevian triangle of X(81)
X(57246) = barycentric product X(i)*X(j) for these (i, j): {24235, 662}, {55067, 664}, {57182, 75}
X(57246) = barycentric quotient X(i)/X(j) for these (i, j): {24235, 1577}, {55067, 522}, {57182, 1}
X(57246) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3733, 47844, 57125}


X(57247) = X(1)X(19594)∩X(85)X(514)

Barycentrics    b*(b-c)*(-a+b-c)*(a+b-c)*c*(-a^2+b*c+a*(b+c)) : :
X(57247) = -5*X[31269]+4*X[52594]

X(57247) lies on these lines: {1, 19594}, {85, 514}, {664, 48282}, {693, 3900}, {3261, 6332}, {3669, 4560}, {4040, 55082}, {4077, 29051}, {4406, 30181}, {4564, 34085}, {7196, 47780}, {9436, 23789}, {17095, 47796}, {17166, 43930}, {20954, 57167}, {21183, 31627}, {30804, 50508}, {31269, 52594}, {33298, 50337}, {40719, 47970}, {48304, 57090}

X(57247) = reflection of X(i) in X(j) for these {i,j}: {85, 52621}
X(57247) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1334, 43076}, {2175, 54118}, {2350, 3939}, {32739, 55076}
X(57247) = X(i)-Dao conjugate of X(j) for these {i, j}: {693, 522}, {17761, 1334}, {40593, 54118}, {40615, 13476}, {40617, 2350}, {40619, 55076}
X(57247) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 85}
X(57247) = X(i)-cross conjugate of X(j) for these {i, j}: {17494, 20954}, {17761, 55082}
X(57247) = pole of line {4032, 4059} with respect to the Incircle
X(57247) = pole of line {85, 3873} with respect to the Steiner circumellipse
X(57247) = pole of line {3742, 6706} with respect to the Steiner inellipse
X(57247) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(85), and the X(7)-circumconcevian triangle of X(85)
X(57247) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2140)}}, {{A, B, C, X(514), X(4040)}}, {{A, B, C, X(4043), X(37756)}}, {{A, B, C, X(4151), X(4762)}}, {{A, B, C, X(4251), X(9311)}}, {{A, B, C, X(4560), X(17494)}}, {{A, B, C, X(7199), X(20954)}}, {{A, B, C, X(16711), X(18152)}}, {{A, B, C, X(17277), X(55954)}}
X(57247) = barycentric product X(i)*X(j) for these (i, j): {349, 57148}, {1621, 52621}, {2486, 4625}, {4040, 6063}, {17096, 4043}, {17143, 3676}, {17277, 24002}, {17494, 85}, {17761, 4554}, {18152, 3669}, {20567, 21007}, {20954, 7}, {33765, 4391}, {35519, 38859}, {38347, 46406}, {40088, 43924}, {40094, 43041}, {40495, 55086}, {40619, 664}, {55082, 693}, {57167, 75}
X(57247) = barycentric quotient X(i)/X(j) for these (i, j): {85, 54118}, {693, 55076}, {1014, 43076}, {1621, 3939}, {2486, 4041}, {3669, 2350}, {3676, 13476}, {3996, 4578}, {4040, 55}, {4043, 30730}, {4151, 210}, {4651, 4069}, {14004, 56183}, {17096, 39950}, {17143, 3699}, {17277, 644}, {17494, 9}, {17761, 650}, {18152, 646}, {20954, 8}, {21007, 41}, {21727, 7064}, {22160, 212}, {24002, 17758}, {27168, 7075}, {33765, 651}, {38346, 3063}, {38347, 657}, {38365, 8641}, {38859, 109}, {40094, 36801}, {40619, 522}, {42454, 2310}, {52621, 40216}, {55082, 100}, {55086, 692}, {57148, 284}, {57167, 1}
X(57247) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 52621, 85}, {4406, 30181, 39126}


X(57248) = X(81)X(26824)∩X(86)X(693)

Barycentrics    (a+b)*(b-c)*(a+c)*(a^3-3*b*c*(b+c)-a*(b^2+b*c+c^2)) : :

X(57248) lies on these lines: {81, 26824}, {86, 693}, {333, 17494}, {523, 4467}, {1010, 47724}, {1043, 29066}, {3676, 16755}, {3907, 57067}, {4077, 7199}, {4560, 7178}, {4762, 41629}, {5235, 26777}, {11110, 48284}, {14208, 18155}, {18200, 48399}, {25507, 26985}, {42028, 47869}

X(57248) = trilinear pole of line {24224, 40625}
X(57248) = X(i)-Dao conjugate of X(j) for these {i, j}: {4560, 522}, {24224, 21674}, {40620, 55090}, {40625, 55091}
X(57248) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 86}
X(57248) = X(i)-cross conjugate of X(j) for these {i, j}: {50346, 57189}
X(57248) = pole of line {86, 34195} with respect to the Steiner circumellipse
X(57248) = pole of line {6707, 11281} with respect to the Steiner inellipse
X(57248) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(86), and the X(7)-circumconcevian triangle of X(86)
X(57248) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1222), X(5260)}}, {{A, B, C, X(1268), X(39765)}}, {{A, B, C, X(50344), X(50346)}}
X(57248) = barycentric product X(i)*X(j) for these (i, j): {274, 50346}, {4560, 55096}, {5260, 7199}, {24224, 99}, {40625, 664}, {52619, 55100}, {55095, 7192}, {57093, 85}, {57189, 75}
X(57248) = barycentric quotient X(i)/X(j) for these (i, j): {4560, 55091}, {5260, 1018}, {7192, 55090}, {24224, 523}, {40625, 522}, {50346, 37}, {55095, 3952}, {55096, 4552}, {55100, 4557}, {55101, 4559}, {57093, 9}, {57189, 1}


X(57249) = X(99)X(110)∩X(662)X(8052)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(a^3-b^3+a*b*c-c^3+2*a^2*(b+c)) : :

X(57249) lies on these lines: {99, 110}, {662, 8052}, {668, 17934}, {811, 17931}, {1509, 41805}, {1812, 39035}, {4566, 4620}, {6516, 17933}, {29052, 53631}, {33770, 33955}

X(57249) = trilinear pole of line {2305, 17778}
X(57249) = X(i)-isoconjugate-of-X(j) for these {i, j}: {512, 1247}, {667, 36934}, {798, 54119}, {2643, 53633}
X(57249) = X(i)-Dao conjugate of X(j) for these {i, j}: {333, 522}, {6631, 36934}, {31998, 54119}, {39054, 1247}
X(57249) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 99}
X(57249) = pole of line {512, 21761} with respect to the Stammler hyperbola
X(57249) = pole of line {523, 8045} with respect to the Wallace hyperbola
X(57249) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(99), and the X(7)-circumconcevian triangle of X(99)
X(57249) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(8052)}}, {{A, B, C, X(110), X(34076)}}, {{A, B, C, X(811), X(37880)}}, {{A, B, C, X(1046), X(3573)}}, {{A, B, C, X(2305), X(5118)}}, {{A, B, C, X(3144), X(4226)}}, {{A, B, C, X(4566), X(31614)}}, {{A, B, C, X(5468), X(17778)}}
X(57249) = barycentric product X(i)*X(j) for these (i, j): {1046, 799}, {2305, 670}, {3144, 4563}, {3178, 4610}, {4573, 56313}, {17778, 99}, {40605, 664}
X(57249) = barycentric quotient X(i)/X(j) for these (i, j): {99, 54119}, {190, 36934}, {249, 53633}, {662, 1247}, {1046, 661}, {2305, 512}, {2907, 3064}, {3144, 2501}, {3178, 4024}, {17778, 523}, {40605, 522}, {56313, 3700}
X(57249) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4610, 53332, 99}


X(57250) = X(1)X(1416)∩X(101)X(663)

Barycentrics    a^2*(a-b)*(a-c)*(a^3-a^2*(b+c)-(b-c)^2*(b+c)+a*(b^2+c^2)) : :

X(57250) lies on these lines: {1, 1416}, {55, 13006}, {101, 663}, {109, 1292}, {664, 26721}, {692, 53282}, {906, 2426}, {1018, 1783}, {1253, 1718}, {1331, 2398}, {2195, 5540}, {2809, 36057}, {3732, 36086}, {6577, 43349}, {18391, 37610}, {21105, 54231}, {21302, 29000}, {28590, 39026}, {39293, 46406}

X(57250) = isogonal conjugate of X(26721)
X(57250) = trilinear pole of line {1486, 5452}
X(57250) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 26721}, {513, 13577}, {514, 44178}, {693, 3433}, {1565, 26706}, {24002, 40141}
X(57250) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 26721}, {55, 522}, {5511, 1111}, {39026, 13577}
X(57250) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 101}
X(57250) = pole of line {17135, 18610} with respect to the Kiepert parabola
X(57250) = pole of line {23829, 26721} with respect to the Stammler hyperbola
X(57250) = pole of line {69, 17742} with respect to the Yff parabola
X(57250) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(101), and the X(7)-circumconcevian triangle of X(101)
X(57250) = intersection, other than A, B, C, of circumconics {{A, B, C, X(101), X(169)}}, {{A, B, C, X(663), X(21185)}}, {{A, B, C, X(919), X(1783)}}, {{A, B, C, X(1292), X(40576)}}, {{A, B, C, X(8750), X(32666)}}
X(57250) = barycentric product X(i)*X(j) for these (i, j): {100, 169}, {101, 3434}, {110, 21073}, {1018, 4228}, {1110, 26546}, {1252, 21185}, {1331, 17905}, {1486, 190}, {1897, 22131}, {5452, 664}, {11934, 4564}, {20927, 692}, {21867, 662}, {28420, 8750}, {34036, 644}, {36147, 41581}, {37800, 3939}, {40576, 9}
X(57250) = barycentric quotient X(i)/X(j) for these (i, j): {6, 26721}, {101, 13577}, {169, 693}, {692, 44178}, {1486, 514}, {1633, 41788}, {3434, 3261}, {4228, 7199}, {5452, 522}, {11934, 4858}, {17905, 46107}, {20927, 40495}, {21073, 850}, {21185, 23989}, {21867, 1577}, {22131, 4025}, {32739, 3433}, {34036, 24002}, {37800, 52621}, {40576, 85}, {41581, 4509}


X(57251) = X(99)X(112)∩X(662)X(905)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^5-b^5+b^3*c^2+b^2*c^3-c^5+a*b*c*(b+c)^2-a^3*(b^2+b*c+c^2)+a^2*(b^3+c^3)) : :

X(57251) lies on these lines: {99, 112}, {109, 53633}, {662, 905}, {3882, 5546}, {4565, 57194}, {5467, 53325}, {52378, 52610}, {53388, 57119}

X(57251) = trilinear pole of line {3145, 40602}
X(57251) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 54125}
X(57251) = X(i)-Dao conjugate of X(j) for these {i, j}: {284, 522}, {36830, 54125}
X(57251) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 110}
X(57251) = pole of line {647, 4458} with respect to the Stammler hyperbola
X(57251) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(110), and the X(7)-circumconcevian triangle of X(110)
X(57251) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3145), X(4235)}}, {{A, B, C, X(16237), X(18679)}}, {{A, B, C, X(47443), X(52610)}}
X(57251) = barycentric product X(i)*X(j) for these (i, j): {110, 2893}, {1762, 662}, {3145, 99}, {18679, 4558}, {40602, 664}
X(57251) = barycentric quotient X(i)/X(j) for these (i, j): {110, 54125}, {1762, 1577}, {2893, 850}, {3145, 523}, {18679, 14618}, {40602, 522}


X(57252) = X(514)X(4105)∩X(650)X(1212)

Barycentrics    (a-b-c)*(b-c)*((b-c)^2-a*(b+c))^2 : :
X(57252) = -4*X[693]+3*X[23615], -3*X[6546]+4*X[15584], -9*X[14476]+10*X[26985], -4*X[15280]+5*X[48414]

X(57252) lies on circumconic {{A, B, C, X(6067), X(51463)}} and on these lines: {514, 4105}, {522, 26824}, {650, 1212}, {693, 23615}, {3676, 21118}, {4024, 52305}, {4724, 57241}, {6362, 6608}, {6546, 15584}, {14476, 26985}, {15185, 39771}, {15280, 48414}, {43924, 47123}

X(57252) = reflection of X(i) in X(j) for these {i,j}: {6608, 21104}
X(57252) = perspector of circumconic {{A, B, C, X(142), X(1223)}}
X(57252) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2346, 53243}
X(57252) = X(i)-Dao conjugate of X(j) for these {i, j}: {1111, 31618}, {1212, 6606}, {3119, 6605}, {6362, 522}
X(57252) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 142}, {37206, 8012}
X(57252) = triaxial point of ABC, the X(2)-circumconcevian triangle of X(142), and the X(7)-circumconcevian triangle of X(142)
X(57252) = barycentric product X(i)*X(j) for these (i, j): {142, 6362}, {514, 6067}, {1229, 48151}, {1233, 2488}, {16713, 55282}, {20880, 21127}, {21104, 4847}, {23599, 3059}
X(57252) = barycentric quotient X(i)/X(j) for these (i, j): {142, 6606}, {1475, 53243}, {2488, 1174}, {6067, 190}, {6362, 32008}, {6608, 6605}, {10581, 10482}, {16713, 55281}, {21104, 21453}, {21127, 2346}, {23599, 42311}, {48151, 1170}
X(57252) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6362, 21104, 6608}


X(57253) = X(230)X(6530)∩X(232)X(52144)

Barycentrics    a^2*(a^10 - 2*a^8*b^2 + a^6*b^4 + a^4*b^6 - 2*a^2*b^8 + b^10 - 2*a^8*c^2 + a^6*b^2*c^2 + 2*a^4*b^4*c^2 + a^2*b^6*c^2 - 2*b^8*c^2 + 3*a^6*c^4 + 3*b^6*c^4 - 5*a^4*c^6 - 3*a^2*b^2*c^6 - 5*b^4*c^6 + 4*a^2*c^8 + 4*b^2*c^8 - c^10)*(a^10 - 2*a^8*b^2 + 3*a^6*b^4 - 5*a^4*b^6 + 4*a^2*b^8 - b^10 - 2*a^8*c^2 + a^6*b^2*c^2 - 3*a^2*b^6*c^2 + 4*b^8*c^2 + a^6*c^4 + 2*a^4*b^2*c^4 - 5*b^6*c^4 + a^4*c^6 + a^2*b^2*c^6 + 3*b^4*c^6 - 2*a^2*c^8 - 2*b^2*c^8 + c^10) : :

X(57253) lies on the cubics K786 and K1335 and these lines: {230, 6530}, {232, 52144}, {262, 36899}, {325, 401}, {394, 52091}, {511, 1971}, {19165, 19189}, {34130, 51542}, {40805, 40810}, {51543, 52162}

X(57253) = isogonal conjugate of X(40867)
X(57253) = isogonal conjugate of the anticomplement of X(287)
X(57253) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40867}, {19, 57009}, {92, 52170}
X(57253) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 40867}, {6, 57009}, {22391, 52170}
X(57253) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 57009}, {6, 40867}, {184, 52170}
X(57253) = pole of line {40867, 57009} with respect to the Feuerbach circumhyperbola of the tangential triangle


X(57254) = X(2)X(1972)∩X(3)X(39081)

Barycentrics    a^14*b^2 - 3*a^12*b^4 + a^10*b^6 + 6*a^8*b^8 - 9*a^6*b^10 + 5*a^4*b^12 - a^2*b^14 + a^14*c^2 - 5*a^12*b^2*c^2 + 7*a^10*b^4*c^2 - 5*a^8*b^6*c^2 + 7*a^6*b^8*c^2 - 7*a^4*b^10*c^2 + a^2*b^12*c^2 + b^14*c^2 - 3*a^12*c^4 + 7*a^10*b^2*c^4 - 9*a^8*b^4*c^4 + 2*a^6*b^6*c^4 + 5*a^4*b^8*c^4 + 3*a^2*b^10*c^4 - 5*b^12*c^4 + a^10*c^6 - 5*a^8*b^2*c^6 + 2*a^6*b^4*c^6 - 6*a^4*b^6*c^6 - 3*a^2*b^8*c^6 + 11*b^10*c^6 + 6*a^8*c^8 + 7*a^6*b^2*c^8 + 5*a^4*b^4*c^8 - 3*a^2*b^6*c^8 - 14*b^8*c^8 - 9*a^6*c^10 - 7*a^4*b^2*c^10 + 3*a^2*b^4*c^10 + 11*b^6*c^10 + 5*a^4*c^12 + a^2*b^2*c^12 - 5*b^4*c^12 - a^2*c^14 + b^2*c^14 : :
X(57254) = 2 X[287] - 3 X[47740]

X(57254) lies on the cubic K1335 and these lines: {2, 1972}, {3, 39081}, {193, 40896}, {264, 17035}, {287, 576}, {511, 40853}, {577, 648}, {1988, 1993}, {36849, 40870}, {39358, 44651}

X(57254) = reflection of X(i) in X(j) for these {i,j}: {3164, 648}, {39352, 264}
X(57254) = anticomplement of X(1972)
X(57254) = anticomplement of the isogonal conjugate of X(1971)
X(57254) = anticomplement of the isotomic conjugate of X(401)
X(57254) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {31, 40853}, {163, 684}, {401, 6327}, {1910, 53174}, {1955, 69}, {1971, 8}, {2148, 32428}, {2313, 2888}, {6130, 21294}, {41204, 21270}, {44137, 21275}
X(57254) = X(401)-Ceva conjugate of X(2)
X(57254) = pole of line {46841, 57011} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(57254) = pole of line {6130, 52128} with respect to the Steiner circumellipse


X(57255) = X(13)X(523)∩X(14)X(476)

Barycentrics    (a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4 + 2*Sqrt[3]*a^2*S)*(Sqrt[3]*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4) + 2*(a^2 + b^2 - 2*c^2)*S)*(Sqrt[3]*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) - 2*(2*a^2 - b^2 - c^2)*S)*(Sqrt[3]*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4) + 2*(a^2 - 2*b^2 + c^2)*S) : :

X(57255) lies on the cubics K061a and K064 and these lines: {13, 523}, {14, 476}, {30, 16256}, {530, 43091}, {531, 30466}, {30470, 52749}, {36211, 36307}

X(57255) = reflection of X(11586) in X(52039)
X(57255) = trilinear pole of line {9201, 18777}
X(57255) = barycentric product X(i)*X(j) for these {i,j}: {531, 36316}, {18777, 43091}
X(57255) = barycentric quotient X(i)/X(j) for these {i,j}: {18777, 530}, {30466, 45331}, {36316, 43092}


X(57256) = X(13)X(476)∩X(14)X(523)

Barycentrics    (a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4 - 2*Sqrt[3]*a^2*S)*(Sqrt[3]*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4) - 2*(a^2 + b^2 - 2*c^2)*S)*(Sqrt[3]*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) + 2*(2*a^2 - b^2 - c^2)*S)*(Sqrt[3]*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4) - 2*(a^2 - 2*b^2 + c^2)*S) : :

X(57256) lies on the cubics K061b and K064 and these lines: {13, 476}, {14, 523}, {30, 16255}, {530, 30469}, {531, 43092}, {30467, 52748}, {36210, 36310}

X(57256) = reflection of X(15743) in X(52040)
X(57256) = trilinear pole of line {9200, 18776}
X(57256) = barycentric product X(i)*X(j) for these {i,j}: {530, 36317}, {18776, 43092}
X(57256) = barycentric quotient X(i)/X(j) for these {i,j}: {18776, 531}, {30469, 45331}, {36317, 43091}


X(57257) = X(2)X(694)∩X(25)X(110)

Barycentrics    a^2*(a^4*b^4 - 2*a^2*b^6 + b^8 - 2*b^6*c^2 + a^4*c^4 + 4*b^4*c^4 - 2*a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(57257) lies on these lines: {2, 694}, {22, 1976}, {25, 110}, {51, 36213}, {99, 47421}, {111, 15066}, {148, 3269}, {246, 9140}, {247, 12827}, {287, 38356}, {297, 525}, {323, 2502}, {394, 20998}, {511, 44420}, {524, 53494}, {543, 2088}, {1180, 5422}, {1599, 7598}, {1600, 7599}, {1915, 1994}, {2054, 25941}, {2421, 2493}, {2782, 51229}, {2871, 9149}, {5024, 9486}, {5106, 36212}, {5191, 6660}, {5640, 9155}, {6515, 40867}, {7664, 14389}, {7665, 37645}, {10733, 38551}, {11004, 39689}, {11205, 34545}, {13558, 51776}, {18911, 39906}, {20975, 46303}, {33586, 52162}, {33927, 40283}, {34095, 46316}, {34383, 44114}, {37636, 39998}, {38650, 56957}, {38880, 42295}, {39087, 39101}, {39817, 52128}, {40814, 53375}, {44527, 56004}, {45237, 46130}, {47211, 53371}

X(57257) = reflection of X(i) in X(j) for these {i,j}: {2421, 2493}, {53371, 47211}
X(57257) = X(2698)-anticomplementary conjugate of X(4329)
X(57257) = X(33330)-Dao conjugate of X(6)
X(57257) = trilinear pole of line {33330, 34347}
X(57257) = crossdifference of every pair of points on line {184, 5027}
X(57257) = barycentric product X(i)*X(j) for these {i,j}: {325, 13137}, {523, 12833}, {670, 34347}, {33330, 46142}
X(57257) = barycentric quotient X(i)/X(j) for these {i,j}: {12833, 99}, {13137, 98}, {33330, 2782}, {34347, 512}
X(57257) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 2987, 1993}, {110, 3060, 51335}, {694, 3981, 3124}, {3124, 36790, 2}


X(57258) = X(6)X(694)∩X(25)X(110)

Barycentrics    a^2*(a^8 - a^6*b^2 + 2*a^4*b^4 - 3*a^2*b^6 + b^8 - a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 - b^6*c^2 + 2*a^4*c^4 - a^2*b^2*c^4 + 4*b^4*c^4 - 3*a^2*c^6 - b^2*c^6 + c^8) : :

X(57258) lies on the cubic K785 and these lines: {3, 1976}, {6, 694}, {25, 110}, {69, 9512}, {287, 2782}, {297, 3564}, {511, 3506}, {1469, 19561}, {1915, 5052}, {2004, 14705}, {2005, 14704}, {2088, 2936}, {2456, 36212}, {3124, 5020}, {3981, 5028}, {5017, 51318}, {5050, 9155}, {5107, 46276}, {5191, 33878}, {5967, 13188}, {5989, 40820}, {6090, 44420}, {6391, 43717}, {8840, 39093}, {10104, 42313}, {10754, 51430}, {12017, 54439}, {12188, 20021}, {15143, 41363}, {18440, 54395}, {18906, 19571}, {35383, 52144}, {35456, 37183}, {38880, 40825}, {39562, 46130}, {39820, 52128}

X(57258) = reflection of X(i) in X(j) for these {i,j}: {22143, 6}, {52162, 3506}
X(57258) = isogonal conjugate of the isotomic conjugate of X(46236)
X(57258) = X(232)-Ceva conjugate of X(3)
X(57258) = X(1910)-isoconjugate of X(46235)
X(57258) = X(11672)-Dao conjugate of X(46235)
X(57258) = barycentric product X(i)*X(j) for these {i,j}: {6, 46236}, {325, 46237}
X(57258) = barycentric quotient X(i)/X(j) for these {i,j}: {511, 46235}, {46236, 76}, {46237, 98}
X(57258) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 2987, 51335}, {694, 36213, 11328}, {1976, 36790, 3}, {2987, 51335, 1351}


X(57259) = X(3)X(40803)∩X(6)X(46317)

Barycentrics    a^2*(a^2*b^2 - b^4 + 2*a^2*c^2 + b^2*c^2)*(2*a^2*b^2 + a^2*c^2 + b^2*c^2 - c^4)*(a^8 + a^4*b^4 - 2*a^2*b^6 + a^4*b^2*c^2 - b^6*c^2 + a^4*c^4 + 2*b^4*c^4 - 2*a^2*c^6 - b^2*c^6) : :

X(57259) lies on the cubics K532 and K785 and these lines: {3, 40803}, {6, 46317}, {25, 263}, {182, 14252}, {511, 26714}, {1692, 9468}, {2076, 34130}, {5017, 51338}, {41204, 43717}, {43718, 50659}

X(57259) = X(3403)-isoconjugate of X(43702)
X(57259) = barycentric product X(i)*X(j) for these {i,j}: {263, 5999}, {26714, 54267}, {47737, 51543}
X(57259) = barycentric quotient X(i)/X(j) for these {i,j}: {5999, 20023}, {46319, 43702}


X(57260) = X(4)X(32)∩X(25)X(1501)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4) : :

X(57260) lies on these lines: {2, 34405}, {4, 32}, {6, 2967}, {25, 1501}, {186, 2021}, {232, 1692}, {251, 324}, {287, 11433}, {384, 683}, {385, 44132}, {419, 51327}, {699, 22456}, {877, 36849}, {878, 2508}, {1084, 32713}, {1297, 41172}, {1824, 2205}, {2032, 15630}, {2207, 2971}, {2211, 8789}, {2395, 47236}, {2422, 40354}, {2966, 15014}, {3162, 39109}, {3168, 40820}, {3172, 14248}, {3199, 51906}, {3291, 43754}, {4558, 46236}, {5052, 11653}, {5967, 52905}, {5976, 50437}, {5999, 10313}, {6394, 14001}, {6524, 36417}, {8749, 21906}, {8753, 14581}, {8882, 41331}, {10317, 15980}, {14355, 39764}, {14486, 51542}, {14593, 17409}, {20031, 41932}, {23347, 32740}, {34131, 47421}, {37930, 38652}, {39803, 47406}, {44534, 54380}, {50938, 51963}

X(57260) = isogonal conjugate of X(6393)
X(57260) = isogonal conjugate of the isotomic conjugate of X(6531)
X(57260) = polar conjugate of the isotomic conjugate of X(1976)
X(57260) = polar conjugate of the isogonal conjugate of X(14601)
X(57260) = X(i)-Ceva conjugate of X(j) for these (i,j): {6531, 1976}, {20031, 53149}, {41174, 685}
X(57260) = X(i)-isoconjugate of X(j) for these (i,j): {1, 6393}, {3, 46238}, {63, 325}, {69, 1959}, {72, 51370}, {75, 36212}, {92, 51386}, {237, 40364}, {240, 3926}, {255, 44132}, {293, 32458}, {297, 326}, {304, 511}, {305, 1755}, {306, 51369}, {310, 42702}, {336, 36790}, {348, 44694}, {394, 40703}, {561, 3289}, {656, 2396}, {662, 6333}, {684, 799}, {877, 24018}, {1102, 6530}, {1790, 42703}, {2421, 14208}, {2799, 4592}, {3267, 23997}, {3405, 3933}, {3569, 55202}, {3718, 43034}, {4025, 42717}, {4602, 39469}, {9417, 40050}, {17209, 20336}, {24037, 41172}, {27832, 44728}, {34055, 51371}
X(57260) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 6393}, {132, 32458}, {206, 36212}, {512, 41172}, {1084, 6333}, {3162, 325}, {5139, 2799}, {6523, 44132}, {15259, 297}, {22391, 51386}, {36103, 46238}, {36899, 305}, {38996, 684}, {39058, 40050}, {39085, 3926}, {40368, 3289}, {40596, 2396}
X(57260) = cevapoint of X(i) and X(j) for these (i,j): {25, 44089}, {32, 1692}
X(57260) = trilinear pole of line {1974, 2422}
X(57260) = crossdifference of every pair of points on line {684, 6333}
X(57260) = barycentric product X(i)*X(j) for these {i,j}: {4, 1976}, {6, 6531}, {19, 1910}, {25, 98}, {31, 36120}, {32, 16081}, {107, 878}, {110, 53149}, {112, 2395}, {232, 41932}, {248, 393}, {250, 51441}, {264, 14601}, {287, 2207}, {290, 1974}, {293, 1096}, {419, 34238}, {460, 2065}, {512, 685}, {523, 32696}, {608, 15628}, {647, 20031}, {648, 2422}, {661, 36104}, {669, 22456}, {879, 32713}, {1084, 41174}, {1821, 1973}, {2052, 14600}, {2211, 34536}, {2489, 2966}, {2501, 2715}, {3563, 51820}, {5967, 8753}, {6394, 52439}, {6524, 17974}, {8749, 35906}, {9154, 44102}, {9476, 51437}, {11610, 13854}, {14355, 18384}, {15630, 18020}, {17980, 40820}, {17994, 41173}, {18024, 44162}, {23964, 51404}, {32085, 51869}, {34854, 47388}, {36897, 44089}, {40428, 44099}, {41200, 41201}, {43187, 57204}, {43717, 51963}
X(57260) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 6393}, {19, 46238}, {25, 325}, {32, 36212}, {98, 305}, {112, 2396}, {184, 51386}, {232, 32458}, {248, 3926}, {290, 40050}, {393, 44132}, {512, 6333}, {669, 684}, {685, 670}, {878, 3265}, {879, 52617}, {1084, 41172}, {1096, 40703}, {1474, 51370}, {1501, 3289}, {1821, 40364}, {1824, 42703}, {1843, 51371}, {1910, 304}, {1973, 1959}, {1974, 511}, {1976, 69}, {2203, 51369}, {2205, 42702}, {2207, 297}, {2211, 36790}, {2212, 44694}, {2395, 3267}, {2422, 525}, {2489, 2799}, {2715, 4563}, {2966, 52608}, {2971, 868}, {6531, 76}, {8541, 51397}, {9426, 39469}, {10311, 51373}, {11610, 34254}, {14581, 51389}, {14600, 394}, {14601, 3}, {15630, 125}, {16081, 1502}, {17974, 4176}, {18024, 40360}, {19118, 51374}, {20031, 6331}, {22456, 4609}, {32696, 99}, {32713, 877}, {34238, 40708}, {34397, 51383}, {36084, 55202}, {36104, 799}, {36120, 561}, {36417, 232}, {40354, 35910}, {40981, 44716}, {41174, 44168}, {42068, 44114}, {44077, 51439}, {44089, 5976}, {44099, 114}, {44102, 50567}, {44162, 237}, {51404, 36793}, {51437, 15595}, {51441, 339}, {51869, 3933}, {52038, 45807}, {52439, 6530}, {53149, 850}, {57204, 3569}
X(57260) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {98, 11610, 248}, {2715, 13137, 46237}, {41200, 41201, 248}


X(57261) = X(6)X(157)∩X(24)X(112)

Barycentrics    a^2*(a^10 - 4*a^8*b^2 + 5*a^6*b^4 - 3*a^4*b^6 + 2*a^2*b^8 - b^10 - 4*a^8*c^2 + 3*a^6*b^2*c^2 - a^2*b^6*c^2 + 2*b^8*c^2 + 5*a^6*c^4 - 2*a^2*b^4*c^4 - b^6*c^4 - 3*a^4*c^6 - a^2*b^2*c^6 - b^4*c^6 + 2*a^2*c^8 + 2*b^2*c^8 - c^10) : :

X(57261) lies on the cubic K785 and these lines: {3, 1625}, {6, 157}, {24, 112}, {32, 39045}, {39, 39839}, {74, 53095}, {110, 47406}, {187, 9412}, {230, 419}, {232, 52144}, {1084, 8573}, {1181, 3269}, {1624, 20998}, {1971, 42671}, {2076, 34130}, {2492, 52166}, {3289, 37183}, {3331, 52279}, {3569, 6132}, {3815, 9862}, {5210, 41376}, {5502, 46276}, {6531, 35278}, {6593, 52703}, {8553, 56597}, {8925, 50659}, {11646, 53568}, {13860, 55006}, {31635, 39931}, {34990, 36751}, {37457, 43718}, {40080, 52199}, {40867, 57009}, {47188, 47322}, {52967, 54091}

X(57261) = isogonal conjugate of the isotomic conjugate of X(40867)
X(57261) = polar conjugate of the isotomic conjugate of X(52170)
X(57261) = X(i)-Ceva conjugate of X(j) for these (i,j): {232, 6}, {40867, 52170}, {52144, 3053}
X(57261) = crossdifference of every pair of points on line {2799, 6036}
X(57261) = barycentric product X(i)*X(j) for these {i,j}: {4, 52170}, {6, 40867}, {25, 57009}
X(57261) = barycentric quotient X(i)/X(j) for these {i,j}: {40867, 76}, {52170, 69}, {57009, 305}
X(57261) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {112, 38867, 51334}, {248, 9475, 6}, {5191, 8429, 46253}, {5191, 9475, 248}


X(57262) = X(3)X(112)∩X(25)X(1501)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^8 + a^6*b^2 - 2*a^4*b^4 + a^2*b^6 - b^8 + a^6*c^2 - 3*a^4*b^2*c^2 + a^2*b^4*c^2 + b^6*c^2 - 2*a^4*c^4 + a^2*b^2*c^4 + a^2*c^6 + b^2*c^6 - c^8) : :

X(57262) lies on the cubics K785 and K789 and these lines: {2, 56867}, {3, 112}, {6, 43702}, {24, 38905}, {25, 1501}, {32, 39857}, {232, 1691}, {648, 5976}, {1249, 37182}, {1513, 16318}, {1692, 44089}, {1973, 41526}, {2021, 14581}, {2207, 9468}, {2211, 32748}, {2491, 53265}, {3162, 20885}, {6103, 44534}, {6531, 12131}, {9861, 11610}, {10352, 39931}, {15639, 41175}, {37242, 41370}, {40126, 40352}, {43765, 52462}

X(57262) = polar conjugate of the isotomic conjugate of X(52162)
X(57262) = X(i)-Ceva conjugate of X(j) for these (i,j): {232, 25}, {1691, 11325}, {51437, 3172}
X(57262) = X(i)-isoconjugate of X(j) for these (i,j): {63, 9473}, {304, 34130}
X(57262) = X(3162)-Dao conjugate of X(9473)
X(57262) = barycentric product X(i)*X(j) for these {i,j}: {4, 52162}, {19, 16559}, {25, 147}, {232, 36899}
X(57262) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 9473}, {147, 305}, {1974, 34130}, {16559, 304}, {52162, 69}


X(57263) = X(1)X(60)∩X(30)X(40)

Barycentrics    a*(a^6 + a^5*b - a^4*b^2 + a^2*b^4 - a*b^5 - b^6 + a^5*c - a^3*b^2*c + a^2*b^3*c - b^5*c - a^4*c^2 - a^3*b*c^2 + a^2*b^2*c^2 + 3*a*b^3*c^2 + b^4*c^2 + a^2*b*c^3 + 3*a*b^2*c^3 + 2*b^3*c^3 + a^2*c^4 + b^2*c^4 - a*c^5 - b*c^5 - c^6) : :
X(57263) = 5 X[1698] - 4 X[27687]

X(57263) lies on the cubic K853 and these lines: {1, 60}, {5, 14985}, {30, 40}, {46, 267}, {57, 56849}, {165, 2940}, {169, 16562}, {1698, 1726}, {1759, 20607}, {1768, 52010}, {1781, 8557}, {2607, 7741}, {2939, 37812}, {3219, 35468}, {3336, 21367}, {3460, 50346}, {4551, 56286}, {10620, 48668}, {11849, 53280}, {16551, 20369}, {21365, 24697}, {24342, 40476}, {33505, 52200}

X(57263) = reflection of X(1) in X(11101)
X(57263) = X(6757)-Ceva conjugate of X(1)
X(57263) = X(40214)-Dao conjugate of X(56934)
X(57263) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1710, 1762, 191}, {21381, 56289, 1}


X(57264) = X(1)X(20361)∩X(2)X(20547)

Barycentrics    a^3*(a - b - c)*(a*b - a*c - b*c)*(a*b - a*c + b*c) : :

X(57264) lies on the cubics K771 and K789 and these lines: {1, 20361}, {2, 20547}, {6, 20667}, {31, 7104}, {32, 2209}, {41, 2053}, {48, 34249}, {87, 572}, {284, 2319}, {560, 45209}, {604, 1403}, {983, 9310}, {1253, 18265}, {1501, 51949}, {1691, 41526}, {1958, 53681}, {1973, 3010}, {2175, 16283}, {2268, 2344}, {2280, 25834}, {2329, 56180}, {7032, 23561}, {27498, 39293}, {33628, 56837}

X(57264) = reflection of X(20559) in X(20547)
X(57264) = isogonal conjugate of X(30545)
X(57264) = complement of X(20559)
X(57264) = anticomplement of X(20547)
X(57264) = isogonal conjugate of the isotomic conjugate of X(2319)
X(57264) = X(2162)-Ceva conjugate of X(7121)
X(57264) = X(i)-isoconjugate of X(j) for these (i,j): {1, 30545}, {2, 3212}, {7, 192}, {12, 7304}, {43, 85}, {56, 6382}, {57, 6376}, {65, 31008}, {75, 1423}, {76, 1403}, {226, 33296}, {269, 4110}, {273, 22370}, {279, 27538}, {331, 20760}, {349, 38832}, {561, 41526}, {651, 20906}, {658, 4147}, {664, 3835}, {668, 43051}, {1088, 3208}, {1397, 40367}, {1432, 41318}, {1434, 3971}, {1441, 27644}, {1446, 56181}, {1447, 40848}, {1463, 40844}, {2176, 6063}, {2209, 20567}, {3669, 36863}, {3676, 4595}, {4017, 36860}, {4083, 4554}, {4552, 17217}, {4566, 27527}, {4572, 20979}, {4573, 21051}, {4625, 21834}, {4998, 21138}, {7153, 8026}, {7179, 52136}, {7209, 53676}, {7249, 17752}, {10030, 41531}, {18026, 25098}, {18033, 51973}, {22090, 46404}, {23773, 39293}, {24002, 52923}, {33890, 56358}
X(57264) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 6382}, {3, 30545}, {206, 1423}, {2053, 20451}, {5452, 6376}, {6600, 4110}, {20338, 20438}, {32664, 3212}, {34961, 36860}, {38991, 20906}, {39025, 3835}, {40368, 41526}, {40602, 31008}
X(57264) = cevapoint of X(55) and X(2053)
X(57264) = crossdifference of every pair of points on line {4147, 20906}
X(57264) = barycentric product X(i)*X(j) for these {i,j}: {1, 2053}, {6, 2319}, {8, 7121}, {9, 2162}, {21, 23493}, {29, 22381}, {31, 7155}, {32, 27424}, {33, 23086}, {41, 330}, {55, 87}, {60, 7148}, {220, 7153}, {281, 15373}, {284, 16606}, {333, 21759}, {650, 34071}, {663, 932}, {2175, 6384}, {2185, 6378}, {2194, 42027}, {2329, 51974}, {2344, 52655}, {3063, 4598}, {3208, 53146}, {3939, 43931}, {4876, 51321}, {6383, 9447}, {7077, 34252}, {7209, 14827}, {16283, 27498}, {36799, 51864}, {39914, 51858}, {40736, 52652}, {51476, 52195}
X(57264) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 30545}, {9, 6382}, {31, 3212}, {32, 1423}, {41, 192}, {55, 6376}, {87, 6063}, {220, 4110}, {284, 31008}, {312, 40367}, {330, 20567}, {560, 1403}, {663, 20906}, {932, 4572}, {1253, 27538}, {1501, 41526}, {1919, 43051}, {2053, 75}, {2150, 7304}, {2162, 85}, {2175, 43}, {2194, 33296}, {2319, 76}, {2330, 41318}, {3063, 3835}, {3939, 36863}, {5546, 36860}, {6378, 6358}, {6384, 41283}, {7121, 7}, {7148, 34388}, {7155, 561}, {8641, 4147}, {9447, 2176}, {9448, 2209}, {14827, 3208}, {15373, 348}, {16606, 349}, {18265, 41531}, {18269, 28391}, {20665, 33890}, {21759, 226}, {22381, 307}, {23086, 7182}, {23493, 1441}, {23522, 20528}, {23550, 20361}, {27424, 1502}, {34071, 4554}, {34252, 18033}, {40736, 7146}, {43931, 52621}, {45217, 45208}, {45218, 45196}, {51321, 10030}, {51858, 40848}, {51864, 43040}, {52425, 22370}, {53146, 7209}, {56053, 55213}
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 20370, 20361}, {2, 20559, 20547}, {6, 20676, 20667}


X(57265) = X(1)X(257)∩X(31)X(7104)

Barycentrics    a^3*(b^2 + a*c)*(a*b + c^2)*(a^3*b^3 - a^2*b^2*c^2 + a^3*c^3 - b^3*c^3) : :

X(57265) lies on the cubics K771 and K991 and these lines: {1, 257}, {31, 7104}, {727, 805}, {893, 1964}, {1178, 2106}, {1911, 41882}, {1914, 1927}, {2223, 9468}, {3510, 40849}, {6196, 39917}, {18170, 32010}, {41268, 45240}, {51907, 51931}

X(57265) = isogonal conjugate of X(52175)
X(57265) = X(i)-Ceva conjugate of X(j) for these (i,j): {1914, 41882}, {1927, 904}
X(57265) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52175}, {2, 39933}, {75, 51920}, {1580, 30633}, {1909, 7168}, {1920, 51919}, {1966, 24576}, {8868, 40846}
X(57265) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 52175}, {206, 51920}, {9467, 24576}, {32664, 39933}, {39092, 30633}
X(57265) = barycentric product X(i)*X(j) for these {i,j}: {1, 51979}, {31, 40849}, {256, 18278}, {694, 19580}, {893, 3510}, {904, 19565}, {1581, 18274}, {1916, 30634}, {1927, 18277}, {1967, 19579}, {7104, 19567}, {8875, 41532}, {9468, 19581}
X(57265) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 52175}, {31, 39933}, {32, 51920}, {694, 30633}, {3510, 1920}, {7104, 7168}, {9468, 24576}, {18274, 1966}, {18278, 1909}, {19579, 1926}, {19580, 3978}, {19581, 14603}, {30634, 385}, {40849, 561}, {51979, 75}


X(57266) = X(1)X(487)∩X(7)X(8)

Barycentrics    (a + b - c)*(a - b + c)*((a - b - c)*(a + b + c)*(a^2 - b^2 - c^2) + 4*a*(b + c)*S) : :

X(57266) lies on the cubic K170 and these lines: {1, 487}, {2, 175}, {4, 31551}, {7, 8}, {9, 31547}, {10, 481}, {12, 5391}, {40, 31549}, {46, 488}, {56, 1267}, {57, 56385}, {120, 30313}, {145, 176}, {193, 2362}, {220, 30413}, {225, 24244}, {226, 56386}, {239, 31408}, {348, 45713}, {482, 519}, {489, 3486}, {490, 3474}, {491, 3485}, {492, 1788}, {515, 31550}, {517, 31552}, {527, 31548}, {637, 18391}, {638, 4295}, {664, 45719}, {940, 3297}, {1086, 49232}, {1125, 31539}, {1336, 21909}, {1371, 3633}, {1372, 1698}, {1373, 3632}, {1374, 3679}, {1659, 30699}, {1738, 26300}, {1836, 12323}, {1837, 12322}, {3241, 17805}, {3244, 31538}, {3555, 39794}, {3600, 32793}, {3616, 17802}, {3621, 21169}, {3624, 17803}, {3625, 21171}, {3640, 9436}, {3753, 39795}, {3875, 31533}, {4000, 19066}, {4644, 19065}, {5261, 32794}, {5265, 32799}, {5433, 32795}, {5434, 32797}, {5853, 31566}, {5905, 13387}, {6554, 30412}, {7090, 30694}, {7131, 13460}, {7288, 32791}, {7362, 30962}, {9305, 30296}, {9780, 31602}, {9965, 46422}, {10436, 31532}, {10588, 32792}, {11237, 32798}, {11375, 32806}, {13425, 18141}, {13461, 32939}, {14942, 30333}, {17365, 49233}, {17801, 46933}, {17804, 20014}, {17806, 51093}, {18961, 38236}, {20050, 31601}, {20111, 30557}, {21170, 31145}, {24914, 32805}, {28849, 52805}, {31590, 44038}, {37161, 40699}, {37550, 55386}, {52811, 52812}

X(57266) = reflection of X(20111) in X(30557)
X(57266) = anticomplement of X(30556)
X(57266) = anticomplement of the isogonal conjugate of X(2362)
X(57266) = isotomic conjugate of the complement of X(52811)
X(57266) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {6, 46422}, {19, 13386}, {56, 176}, {1474, 55397}, {1659, 69}, {2067, 20}, {2362, 8}, {5414, 56943}, {7090, 3436}, {7133, 329}, {13388, 4329}, {16232, 31552}, {30557, 52366}, {32674, 54017}, {34121, 46421}, {53063, 6360}, {53064, 37881}, {54018, 514}
X(57266) = X(6)-isoconjugate of X(7347)
X(57266) = X(9)-Dao conjugate of X(7347)
X(57266) = cevapoint of X(2) and X(52811)
X(57266) = barycentric product X(i)*X(j) for these {i,j}: {75, 6204}, {40569, 46108}
X(57266) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 7347}, {6203, 8949}, {6204, 1}, {8938, 55500}, {8947, 7348}, {40569, 1814}, {53069, 53065}
X(57266) = {X(6604),X(13453)}-harmonic conjugate of X(7)


X(57267) = X(1)X(488)∩X(7)X(8)

Barycentrics    (a + b - c)*(a - b + c)*((a - b - c)*(a + b + c)*(a^2 - b^2 - c^2) - 4*a*(b + c)*S) : :

X(57267) lies on the cubic K170 and these lines: {1, 488}, {2, 176}, {4, 31552}, {7, 8}, {9, 31548}, {10, 482}, {12, 1267}, {40, 31550}, {46, 487}, {56, 5391}, {57, 56386}, {120, 30314}, {145, 175}, {193, 16232}, {220, 30412}, {225, 24243}, {226, 56385}, {348, 45714}, {481, 519}, {489, 3474}, {490, 3486}, {491, 1788}, {492, 3485}, {515, 31549}, {517, 31551}, {527, 31547}, {637, 4295}, {638, 18391}, {664, 45720}, {894, 31408}, {940, 3298}, {1086, 49233}, {1123, 21992}, {1125, 31538}, {1371, 1698}, {1372, 3633}, {1373, 3679}, {1374, 3632}, {1592, 40650}, {1738, 26301}, {1836, 12322}, {1837, 12323}, {3241, 17802}, {3244, 31539}, {3555, 39795}, {3600, 32794}, {3616, 17805}, {3617, 21169}, {3624, 17806}, {3626, 21171}, {3641, 9436}, {3753, 39794}, {3875, 31532}, {4000, 19065}, {4644, 19066}, {4678, 21170}, {5261, 32793}, {5265, 32800}, {5433, 32796}, {5434, 32798}, {5853, 31565}, {5905, 13386}, {6554, 30413}, {7131, 13438}, {7288, 32792}, {7353, 30962}, {9305, 30297}, {9780, 31601}, {9789, 41600}, {9965, 46421}, {10436, 31533}, {10588, 32791}, {11237, 32797}, {11375, 32805}, {13390, 30699}, {13458, 18141}, {13461, 18134}, {14121, 30694}, {14942, 30334}, {17365, 49232}, {17801, 20014}, {17803, 51093}, {17804, 46933}, {20050, 31602}, {20111, 30556}, {24914, 32806}, {28849, 52808}, {31413, 41246}, {37161, 40700}, {37550, 55385}, {52813, 52814}

X(57267) = reflection of X(20111) in X(30556)
X(57267) = anticomplement of X(30557)
X(57267) = anticomplement of the isogonal conjugate of X(16232)
X(57267) = isotomic conjugate of the complement of X(52813)
X(57267) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {6, 46421}, {19, 13387}, {56, 175}, {1474, 55398}, {2066, 56943}, {2362, 31551}, {6502, 20}, {13389, 4329}, {13390, 69}, {14121, 3436}, {16232, 8}, {30556, 52366}, {32674, 54019}, {34125, 46422}, {42013, 329}, {53064, 6360}, {54016, 514}
X(57267) = X(6)-isoconjugate of X(7348)
X(57267) = X(9)-Dao conjugate of X(7348)
X(57267) = cevapoint of X(2) and X(52813)
X(57267) = barycentric product X(i)*X(j) for these {i,j}: {75, 6203}, {40568, 46108}
X(57267) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 7348}, {6203, 1}, {6204, 8947}, {8942, 55499}, {8949, 7347}, {40568, 1814}, {53070, 53066}
X(57267) = {X(6604),X(13436)}-harmonic conjugate of X(7)


X(57268) = X(2)X(51)∩X(50)X(14355)

Barycentrics    a^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2*b^2 - b^4 + 2*a^2*c^2 + b^2*c^2)*(2*a^2*b^2 + a^2*c^2 + b^2*c^2 - c^4) : :
X(57268) = 2 X[6785] - 3 X[38227], 3 X[38227] - 4 X[47638], 3 X[26613] - 2 X[41330]

X(57268) lies on the cubics K394 and K473 and these lines: {2, 51}, {50, 14355}, {67, 51943}, {187, 3431}, {249, 2080}, {316, 327}, {512, 11674}, {842, 5104}, {1154, 7799}, {6037, 9161}, {6055, 13207}, {7186, 16577}, {9301, 46319}, {9879, 23698}, {11257, 35704}, {26613, 41330}, {34175, 56392}, {51444, 54034}

X(57268) = reflection of X(i) in X(j) for these {i,j}: {6785, 47638}, {13207, 6055}, {34175, 56392}
X(57268) = isogonal conjugate of X(56401)
X(57268) = reflection of X(6785) in the Lemoine axis
X(57268) = X(i)-isoconjugate of X(j) for these (i,j): {1, 56401}, {182, 2166}, {1989, 52134}, {3288, 32680}, {3403, 11060}, {23878, 32678}, {36096, 45321}, {50433, 51315}
X(57268) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 56401}, {3284, 51372}, {11597, 182}, {18334, 23878}, {18402, 39530}, {34544, 52134}, {40604, 183}
X(57268) = crossdifference of every pair of points on line {3288, 45321}
X(57268) = barycentric product X(i)*X(j) for these {i,j}: {50, 327}, {186, 42313}, {262, 323}, {263, 7799}, {340, 43718}, {1154, 42300}, {3268, 26714}, {14165, 54032}, {14355, 46807}, {14918, 51444}
X(57268) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 56401}, {50, 182}, {186, 458}, {262, 94}, {263, 1989}, {323, 183}, {327, 20573}, {340, 44144}, {526, 23878}, {1511, 51372}, {2186, 2166}, {6149, 52134}, {7799, 20023}, {11062, 39530}, {14270, 3288}, {14355, 46806}, {19627, 34396}, {26714, 476}, {34397, 10311}, {42300, 46138}, {42313, 328}, {42701, 42711}, {43718, 265}, {46319, 11060}, {51383, 51373}, {51543, 14356}, {52418, 33971}, {52631, 15475}
X(57268) = {X(6785),X(47638)}-harmonic conjugate of X(38227)


X(57269) = X(1)X(487)∩X(90)X(488)

Barycentrics    (a - b - c)*(a^4 + 2*a^3*b + 2*a^2*b^2 + 2*a*b^3 + b^4 + 2*a^3*c + 2*a^2*b*c - 2*a*b^2*c - 2*b^3*c + 2*a^2*c^2 - 2*a*b*c^2 + 2*b^2*c^2 + 2*a*c^3 - 2*b*c^3 + c^4) - 2*(a^3 - a^2*b + a*b^2 - b^3 - a^2*c - 4*a*b*c - b^2*c + a*c^2 - b*c^2 - c^3)*S : :

X(57269) lies on the the Feuerbach circumhyperbola, the cubic K170, and these lines: {1, 487}, {2, 7133}, {4, 31552}, {9, 7348}, {11, 5391}, {55, 1267}, {75, 497}, {84, 31549}, {90, 488}, {193, 13386}, {294, 30413}, {390, 32793}, {1584, 40650}, {3058, 32797}, {5218, 32791}, {5274, 32794}, {5275, 6352}, {5281, 32799}, {5432, 32795}, {10385, 32801}, {10589, 32792}, {11238, 32798}, {13427, 30676}, {13454, 54464}, {30223, 55385}, {54408, 55386}

X(57269) = complement of X(52813)
X(57269) = isotomic conjugate of the anticomplement of X(30557)
X(57269) = X(i)-isoconjugate of X(j) for these (i,j): {6, 6203}, {2356, 40568}, {13390, 53070}
X(57269) = X(9)-Dao conjugate of X(6203)
X(57269) = cevapoint of X(11) and X(54017)
X(57269) = trilinear pole of line {650, 54019}
X(57269) = barycentric product X(75)*X(7348)
X(57269) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 6203}, {1814, 40568}, {7347, 8949}, {7348, 1}, {8947, 6204}, {53066, 53070}, {55499, 8942}


X(57270) = X(1)X(488)∩X(90)X(487)

Barycentrics    (a - b - c)*(a^4 + 2*a^3*b + 2*a^2*b^2 + 2*a*b^3 + b^4 + 2*a^3*c + 2*a^2*b*c - 2*a*b^2*c - 2*b^3*c + 2*a^2*c^2 - 2*a*b*c^2 + 2*b^2*c^2 + 2*a*c^3 - 2*b*c^3 + c^4) + 2*(a^3 - a^2*b + a*b^2 - b^3 - a^2*c - 4*a*b*c - b^2*c + a*c^2 - b*c^2 - c^3)*S : :

X(57270) lies on the Feuerbafh circumhyperbola, the cubic K170, and these lines: {1, 488}, {2, 42013}, {4, 31551}, {9, 7347}, {11, 1267}, {55, 5391}, {75, 497}, {84, 31550}, {90, 487}, {193, 7133}, {294, 30412}, {390, 32794}, {3058, 32798}, {5218, 32792}, {5274, 32793}, {5275, 6351}, {5281, 32800}, {5432, 32796}, {7595, 11211}, {10385, 32802}, {10589, 32791}, {11238, 32797}, {13456, 30676}, {30223, 55386}, {54408, 55385}

X(57270) = complement of X(52811)
X(57270) = isotomic conjugate of the anticomplement of X(30556)
X(57270) = X(i)-isoconjugate of X(j) for these (i,j): {6, 6204}, {1659, 53069}, {2356, 40569}
X(57270) = X(9)-Dao conjugate of X(6204)
X(57270) = cevapoint of X(11) and X(54019)
X(57270) = trilinear pole of line {650, 54017}
X(57270) = barycentric product X(75)*X(7347)
X(57270) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 6204}, {1814, 40569}, {7347, 1}, {7348, 8947}, {8949, 6203}, {53065, 53069}, {55500, 8938}


X(57271) = X(2)X(67)∩X(23)X(110)

Barycentrics    a^2*(2*a^10 - 5*a^8*b^2 + 2*a^6*b^4 + 4*a^4*b^6 - 4*a^2*b^8 + b^10 - 5*a^8*c^2 + 5*a^6*b^2*c^2 - 2*a^4*b^4*c^2 + a^2*b^6*c^2 + b^8*c^2 + 2*a^6*c^4 - 2*a^4*b^2*c^4 + a^2*b^4*c^4 - 2*b^6*c^4 + 4*a^4*c^6 + a^2*b^2*c^6 - 2*b^4*c^6 - 4*a^2*c^8 + b^2*c^8 + c^10) : :

X(57271) lies on the cubic K473 and these lines: {2, 67}, {3, 19381}, {4, 5609}, {22, 48679}, {23, 110}, {26, 15039}, {54, 7527}, {94, 14559}, {182, 52171}, {184, 52098}, {399, 31861}, {542, 5169}, {575, 9140}, {895, 1994}, {1511, 33884}, {1993, 2930}, {1995, 15135}, {2781, 7492}, {2854, 11004}, {3410, 32272}, {3448, 14912}, {3580, 25329}, {5012, 32305}, {5189, 32233}, {5640, 25556}, {5642, 40107}, {5663, 11003}, {6101, 7556}, {6800, 51941}, {7488, 15034}, {7496, 15462}, {7578, 18332}, {7722, 34397}, {10296, 10706}, {11126, 13859}, {11127, 13858}, {12824, 14002}, {14118, 15054}, {14385, 14702}, {14683, 14982}, {15018, 52699}, {15019, 34155}, {15027, 43816}, {15066, 52697}, {15106, 40916}, {15137, 37924}, {17847, 23041}, {18323, 46818}, {25321, 37644}, {25331, 37638}, {32254, 52124}, {33927, 35357}, {35909, 57127}, {37077, 56567}, {41720, 44555}, {41724, 41731}, {51478, 53770}

X(57271) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11061, 52191}, {23, 51882, 9970}, {110, 9970, 23}, {110, 23061, 12584}, {25556, 32235, 5640}


X(57272) = X(2)X(476)∩X(67)X(265)

Barycentrics    (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^10 - a^8*b^2 - 2*a^6*b^4 + 2*a^4*b^6 + a^2*b^8 - b^10 - a^8*c^2 - 5*a^6*b^2*c^2 + 8*a^4*b^4*c^2 - 4*a^2*b^6*c^2 + 2*b^8*c^2 - 2*a^6*c^4 + 8*a^4*b^2*c^4 - 4*a^2*b^4*c^4 - b^6*c^4 + 2*a^4*c^6 - 4*a^2*b^2*c^6 - b^4*c^6 + a^2*c^8 + 2*b^2*c^8 - c^10) : :

X(57272) lies on the cubic K473 and these lines: {2, 476}, {30, 15364}, {67, 265}, {187, 1989}, {316, 328}, {691, 1141}, {5104, 56408}, {5961, 7575}, {7579, 14687}, {10412, 20403}, {43083, 55142}, {43084, 53793}, {43088, 55131}

X(57272) = X(6149)-isoconjugate of X(52192)
X(57272) = X(14993)-Dao conjugate of X(52192)
X(57272) = barycentric product X(94)*X(12584)
X(57272) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 52192}, {12584, 323}


X(57273) = X(3)X(35324)∩X(5)X(35318)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^8 - 3*a^6*b^2 + 4*a^4*b^4 - 3*a^2*b^6 + b^8 - a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 - b^6*c^2 - 2*a^4*c^4 - a^2*b^2*c^4 - 2*b^4*c^4 + 3*a^2*c^6 + 3*b^2*c^6 - c^8)*(a^8 - a^6*b^2 - 2*a^4*b^4 + 3*a^2*b^6 - b^8 - 3*a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + 3*b^6*c^2 + 4*a^4*c^4 + a^2*b^2*c^4 - 2*b^4*c^4 - 3*a^2*c^6 - b^2*c^6 + c^8) : :

X(57273) lies on the cubic K1335 and these lines: {3, 35324}, {5, 35318}, {216, 41212}, {264, 17035}, {401, 57010}, {6662, 35887}, {18315, 22052}

X(57273) = X(i)-isoconjugate of X(j) for these (i,j): {19, 57010}, {2190, 40853}
X(57273) = X(i)-Dao conjugate of X(j) for these (i,j): {5, 40853}, {6, 57010}, {15450, 45259}, {52128, 39081}
X(57273) = trilinear pole of line {17434, 32078}
X(57273) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 57010}, {216, 40853}, {15451, 45259}


X(57274) = X(3)X(95)∩X(852)X(42405)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^12*b^4 - 4*a^10*b^6 + 6*a^8*b^8 - 4*a^6*b^10 + a^4*b^12 + a^12*b^2*c^2 - a^10*b^4*c^2 - 2*a^8*b^6*c^2 + 2*a^6*b^8*c^2 + a^4*b^10*c^2 - a^2*b^12*c^2 + a^12*c^4 - a^10*b^2*c^4 - a^8*b^4*c^4 + 2*a^6*b^6*c^4 - 3*a^4*b^8*c^4 + 3*a^2*b^10*c^4 - b^12*c^4 - 4*a^10*c^6 - 2*a^8*b^2*c^6 + 2*a^6*b^4*c^6 + 2*a^4*b^6*c^6 - 2*a^2*b^8*c^6 + 4*b^10*c^6 + 6*a^8*c^8 + 2*a^6*b^2*c^8 - 3*a^4*b^4*c^8 - 2*a^2*b^6*c^8 - 6*b^8*c^8 - 4*a^6*c^10 + a^4*b^2*c^10 + 3*a^2*b^4*c^10 + 4*b^6*c^10 + a^4*c^12 - a^2*b^2*c^12 - b^4*c^12) : :

X(57274) lies on the cubic K1335 and these lines: {3, 95}, {852, 42405}, {14941, 41208}, {39814, 57011}

X(57274) = X(401)-Ceva conjugate of X(57010)
X(57274) = {X(276),X(43975)}-harmonic conjugate of X(95)


X(57275) = X(22)X(69)∩X(54)X(44142)

Barycentrics    a^10 - 3*a^8*b^2 + 3*a^6*b^4 - a^4*b^6 - 3*a^8*c^2 + a^6*b^2*c^2 + a^2*b^6*c^2 + b^8*c^2 + 3*a^6*c^4 - 2*a^2*b^4*c^4 - b^6*c^4 - a^4*c^6 + a^2*b^2*c^6 - b^4*c^6 + b^2*c^8 : :

X(57275) lies on these lines: {22, 69}, {54, 44142}, {76, 6759}, {95, 22352}, {99, 2706}, {110, 30737}, {147, 325}, {154, 183}, {184, 264}, {206, 2001}, {232, 287}, {290, 419}, {315, 9833}, {316, 18400}, {317, 31383}, {339, 10540}, {350, 10535}, {384, 32445}, {385, 1971}, {394, 8613}, {401, 3289}, {450, 16089}, {648, 8779}, {1007, 32064}, {1078, 10282}, {1235, 1614}, {1498, 1975}, {1625, 15013}, {1909, 26888}, {2393, 39099}, {2409, 36893}, {2781, 51440}, {2883, 32819}, {3260, 54108}, {3331, 15014}, {3357, 7782}, {3484, 18831}, {3917, 46724}, {3926, 34781}, {5656, 32815}, {6337, 12324}, {6394, 42671}, {6641, 14826}, {7750, 34782}, {7752, 18381}, {7763, 14216}, {7768, 45185}, {7769, 20299}, {7771, 11202}, {7802, 34785}, {10192, 37688}, {10539, 41009}, {11427, 52253}, {11441, 57008}, {11674, 11676}, {13509, 41676}, {14157, 44146}, {15644, 34386}, {17974, 41204}, {18906, 19149}, {23332, 37647}, {26166, 52525}, {26883, 54412}, {32820, 44762}, {34146, 51439}, {34229, 35260}, {35265, 53348}

X(57275) = reflection of X(385) in X(1971)
X(57275) = cevapoint of X(i) and X(j) for these (i,j): {147, 46717}, {159, 57012}
X(57275) = {X(1625),X(54076)}-harmonic conjugate of X(15013)


X(57276) = X(1)X(4)∩X(3)X(19)

Barycentrics    a*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 - a^4*c + 2*a^2*b^2*c - b^4*c - 2*a^3*c^2 + 2*a^2*b*c^2 + 6*a*b^2*c^2 + 2*b^3*c^2 + 2*a^2*c^3 + 2*b^2*c^3 + a*c^4 - b*c^4 - c^5) : :

X(57276) lies on these lines: {1, 4}, {3, 19}, {6, 12664}, {21, 55472}, {24, 5338}, {27, 10884}, {28, 3576}, {29, 19861}, {40, 4219}, {47, 1709}, {56, 1859}, {57, 207}, {58, 84}, {78, 92}, {81, 9960}, {165, 6197}, {204, 16466}, {208, 1905}, {219, 5777}, {240, 988}, {281, 936}, {286, 55391}, {347, 50700}, {377, 30687}, {386, 2331}, {392, 54299}, {404, 55478}, {443, 30686}, {517, 11471}, {578, 2261}, {580, 1723}, {602, 2299}, {607, 36745}, {608, 12671}, {612, 11500}, {614, 37362}, {940, 9942}, {942, 1435}, {962, 37104}, {971, 36742}, {975, 52026}, {997, 39585}, {1013, 5250}, {1038, 50701}, {1039, 3427}, {1040, 6847}, {1060, 20420}, {1062, 8727}, {1063, 15909}, {1071, 37543}, {1096, 1193}, {1108, 54431}, {1158, 1754}, {1214, 3149}, {1217, 1826}, {1385, 7497}, {1430, 5706}, {1452, 1831}, {1466, 1767}, {1468, 49170}, {1498, 12688}, {1593, 1753}, {1597, 1872}, {1617, 11399}, {1714, 12616}, {1748, 4652}, {1829, 14110}, {1839, 41854}, {1842, 37611}, {1844, 3338}, {1861, 3088}, {1865, 52544}, {1888, 2099}, {1890, 7487}, {1900, 37391}, {1907, 5101}, {1957, 54386}, {2182, 11425}, {2262, 9786}, {2355, 3515}, {2646, 54394}, {3100, 37434}, {3190, 17857}, {3541, 19854}, {3601, 41227}, {3612, 54368}, {3624, 7537}, {3811, 29016}, {3872, 5174}, {4183, 31435}, {4198, 5731}, {4207, 25941}, {4227, 5450}, {4255, 14571}, {4297, 37395}, {4319, 11496}, {4327, 12675}, {4847, 56876}, {5044, 7079}, {5125, 19860}, {5142, 5587}, {5396, 52033}, {5709, 56839}, {5721, 54418}, {5732, 37379}, {5886, 15763}, {5928, 12241}, {6245, 40940}, {6591, 30199}, {6765, 56316}, {6769, 56887}, {6831, 37695}, {6844, 19372}, {6848, 9817}, {7070, 12705}, {7149, 30500}, {7412, 7713}, {7436, 10882}, {7490, 8726}, {7498, 8583}, {7501, 7987}, {7511, 18481}, {7521, 10165}, {7549, 10319}, {7559, 18492}, {7982, 15954}, {8227, 37372}, {9643, 37447}, {9816, 37275}, {10306, 56178}, {10310, 11406}, {10902, 14017}, {11363, 37387}, {12699, 52840}, {15762, 37615}, {15975, 48893}, {16132, 31902}, {17582, 25993}, {17614, 37393}, {17923, 54392}, {19541, 37696}, {23052, 37592}, {30503, 37417}, {35262, 37253}, {36747, 40263}, {37381, 54318}, {37569, 39267}, {37732, 54369}, {39529, 45770}, {44425, 54401}

X(57276) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1750, 9121}, {1, 1838, 34}, {3, 1871, 19}, {4, 944, 1891}, {1593, 1824, 1753}


X(57277) = X(1)X(5)∩X(6)X(19)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^4 - b^4 - 2*a*b^2*c - 2*a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(57277) lies on these lines: {1, 5}, {2, 54292}, {4, 1061}, {6, 19}, {8, 28780}, {40, 2361}, {46, 1399}, {56, 998}, {57, 52440}, {58, 1454}, {73, 3924}, {77, 43037}, {222, 18838}, {223, 1464}, {225, 11391}, {227, 1104}, {388, 5262}, {431, 1834}, {603, 24443}, {614, 1319}, {651, 54315}, {976, 56198}, {986, 1935}, {990, 12943}, {1038, 1722}, {1060, 1737}, {1062, 10572}, {1214, 19728}, {1254, 1451}, {1393, 1468}, {1448, 5221}, {1453, 37550}, {1455, 1470}, {1457, 38008}, {1788, 4296}, {1828, 3556}, {1854, 1898}, {1870, 18391}, {1875, 7337}, {1877, 3914}, {2003, 5902}, {2099, 34036}, {2286, 40941}, {3212, 7210}, {3476, 7191}, {3485, 17016}, {4320, 32636}, {4347, 4848}, {4383, 41605}, {4559, 9620}, {5172, 37817}, {5247, 37591}, {5266, 11501}, {5336, 40590}, {5691, 33178}, {6284, 54295}, {7299, 12514}, {8270, 40663}, {9316, 51654}, {9370, 37549}, {9956, 54401}, {11502, 46974}, {13750, 36742}, {15852, 37601}, {17054, 34046}, {17102, 22760}, {18961, 23537}, {19701, 45126}, {21677, 54305}, {22759, 37592}, {34042, 37566}, {34880, 51236}, {37415, 41600}, {37625, 54301}

X(57277) = crossdifference of every pair of points on line {521, 654}
X(57277) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1718, 37697}, {1, 10826, 37696}, {1, 19372, 11375}, {34, 54418, 65}, {227, 1104, 37579}, {1038, 1722, 24914}, {1455, 3752, 1470}, {5725, 37695, 12}


X(57278) = X(1)X(6)∩X(4)X(11)

Barycentrics    a*(a^6 - a^5*b - 2*a^4*b^2 + 2*a^3*b^3 + a^2*b^4 - a*b^5 - a^5*c + 2*a^4*b*c - 2*a^3*b^2*c + 3*a*b^4*c - 2*b^5*c - 2*a^4*c^2 - 2*a^3*b*c^2 - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + 2*a^3*c^3 - 2*a*b^2*c^3 + 4*b^3*c^3 + a^2*c^4 + 3*a*b*c^4 - a*c^5 - 2*b*c^5) : :

X(57278) lies on these lines: {1, 6}, {3, 950}, {4, 11}, {7, 6912}, {10, 37244}, {12, 6832}, {20, 8732}, {21, 938}, {25, 51359}, {28, 1436}, {34, 1712}, {36, 3586}, {46, 17613}, {55, 1006}, {57, 1012}, {58, 41344}, {65, 11496}, {78, 25875}, {84, 1467}, {100, 37313}, {158, 54394}, {198, 5802}, {221, 3073}, {226, 999}, {329, 54391}, {355, 10395}, {388, 6846}, {404, 5175}, {442, 499}, {452, 2975}, {474, 31190}, {496, 11249}, {497, 3428}, {515, 1617}, {517, 1708}, {519, 1260}, {604, 5776}, {774, 3924}, {855, 1473}, {859, 15509}, {942, 3560}, {943, 1000}, {993, 11019}, {997, 25893}, {1066, 9370}, {1071, 34489}, {1074, 24789}, {1125, 37224}, {1145, 3913}, {1259, 12649}, {1319, 1864}, {1329, 10321}, {1376, 1737}, {1385, 10393}, {1398, 37818}, {1420, 1490}, {1451, 2654}, {1457, 34032}, {1466, 6906}, {1470, 17728}, {1478, 8226}, {1482, 15556}, {1497, 5710}, {1512, 1837}, {1604, 13737}, {1727, 5902}, {1750, 13462}, {1751, 4245}, {1785, 3772}, {1788, 10310}, {1893, 37387}, {1895, 54343}, {1905, 40959}, {2078, 5727}, {2202, 46345}, {2217, 3420}, {2900, 5440}, {2932, 10073}, {3057, 55104}, {3075, 4252}, {3085, 16845}, {3149, 9581}, {3176, 41227}, {3295, 54430}, {3304, 3487}, {3576, 10382}, {3582, 17532}, {3651, 5204}, {3811, 51380}, {4183, 34231}, {4195, 27334}, {4223, 38902}, {4292, 5805}, {4294, 5584}, {4302, 11495}, {4305, 8273}, {4313, 6986}, {4383, 22350}, {4421, 32760}, {4848, 10306}, {5047, 5703}, {5120, 8804}, {5172, 11502}, {5177, 5253}, {5248, 6738}, {5252, 33925}, {5260, 56879}, {5265, 37421}, {5316, 11108}, {5432, 6878}, {5433, 6889}, {5435, 6909}, {5563, 9612}, {5687, 12625}, {5708, 13743}, {5715, 50443}, {5731, 5809}, {5759, 30305}, {5771, 12433}, {5777, 24928}, {5812, 10680}, {6001, 30223}, {6245, 37252}, {6260, 41426}, {6265, 41554}, {6598, 37308}, {6734, 37248}, {6824, 15844}, {6843, 10589}, {6883, 24929}, {6907, 10269}, {6908, 7288}, {6932, 37797}, {6936, 10966}, {6990, 10895}, {7489, 15934}, {7686, 37550}, {7742, 10572}, {8071, 37284}, {8168, 41684}, {8256, 8668}, {8573, 24005}, {8666, 12572}, {9661, 22763}, {9708, 31397}, {9709, 44848}, {9844, 37618}, {10072, 11113}, {10074, 13257}, {10090, 12690}, {10267, 37730}, {10391, 18443}, {10392, 30283}, {10394, 18444}, {10523, 37359}, {10538, 54284}, {10950, 11510}, {11023, 21669}, {11111, 34742}, {11323, 40956}, {11376, 26437}, {11398, 30733}, {12019, 18491}, {12053, 22770}, {12332, 12832}, {12515, 12736}, {12589, 39883}, {12691, 12740}, {12848, 53055}, {14793, 37286}, {14798, 37721}, {15171, 35239}, {15803, 37022}, {15866, 37535}, {15933, 16858}, {16202, 37739}, {18761, 18990}, {21049, 32561}, {26358, 41687}, {26363, 47510}, {30286, 48696}, {30326, 53058}, {36152, 37702}, {36746, 37523}, {37228, 54392}, {37305, 44695}, {37549, 44706}, {37569, 41539}, {37581, 49128}, {37817, 46974}, {50195, 54318}, {54299, 54431}

X(57278) = isogonal conjugate of X(51497)
X(57278) = X(1)-isoconjugate of X(51497)
X(57278) = X(3)-Dao conjugate of X(51497)
X(57278) = crossdifference of every pair of points on line {513, 52307}
X(57278) = barycentric quotient X(6)/X(51497)
X(57278) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1724, 7078}, {1, 1728, 72}, {1, 10396, 44547}, {11, 56, 22753}, {36, 3586, 7580}, {56, 22760, 12114}, {405, 956, 9}, {499, 22766, 25524}, {956, 42884, 1}, {999, 6913, 226}, {1001, 12513, 5289}, {1006, 3488, 55}, {1319, 1864, 18446}, {1451, 2654, 5706}, {1737, 8069, 1376}, {1837, 37579, 11500}, {3419, 37249, 1376}, {9581, 37583, 3149}, {10573, 11508, 3913}


X(57279) = X(1)X(6)∩X(8)X(20)

Barycentrics    a*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c + 2*a*b*c - 3*b^2*c - a*c^2 - 3*b*c^2 - c^3) : :
X(57279) = 4 X[958] - X[41863], 3 X[3679] - 2 X[5794], 3 X[3679] - X[9613], 2 X[3927] + X[4853], X[1697] - 3 X[3929], 3 X[3929] - 2 X[12514], 2 X[4314] - 3 X[11111], 4 X[1125] - 3 X[3475], 5 X[1698] - 4 X[25466], 2 X[3295] - 3 X[4512], 3 X[4512] - 4 X[31445], 3 X[5587] - 2 X[26332], 3 X[4654] - 4 X[12609], 4 X[5248] - 3 X[10389]

X(57279) lies on these lines: {1, 6}, {2, 3333}, {3, 200}, {4, 4847}, {5, 5231}, {8, 20}, {10, 57}, {12, 5705}, {19, 10869}, {21, 3870}, {28, 7719}, {35, 3158}, {36, 5438}, {38, 54418}, {43, 988}, {46, 529}, {55, 6765}, {56, 210}, {58, 5269}, {65, 9623}, {78, 947}, {90, 3680}, {100, 4652}, {104, 14740}, {142, 19855}, {144, 962}, {145, 3219}, {165, 3916}, {190, 4673}, {191, 2136}, {223, 9370}, {226, 19843}, {239, 17691}, {306, 14021}, {319, 54404}, {329, 946}, {333, 10461}, {341, 14829}, {355, 5709}, {377, 25006}, {379, 4968}, {390, 6764}, {391, 1219}, {411, 12125}, {442, 5290}, {452, 36845}, {474, 3361}, {475, 5236}, {480, 8273}, {484, 4668}, {495, 5791}, {497, 12572}, {499, 30827}, {516, 5082}, {517, 3927}, {519, 1697}, {527, 4295}, {612, 1468}, {631, 6745}, {728, 3730}, {748, 28011}, {758, 3340}, {908, 6886}, {920, 12647}, {942, 9708}, {944, 6737}, {952, 26921}, {971, 12565}, {975, 7322}, {976, 36504}, {982, 1722}, {993, 3601}, {997, 1420}, {999, 5044}, {1010, 18206}, {1012, 6769}, {1043, 49450}, {1058, 40998}, {1071, 30503}, {1103, 17102}, {1125, 3475}, {1145, 1768}, {1150, 4696}, {1210, 2551}, {1245, 50614}, {1259, 10902}, {1319, 4005}, {1376, 4662}, {1377, 51842}, {1378, 51841}, {1385, 3940}, {1394, 8270}, {1445, 3600}, {1467, 17625}, {1469, 10822}, {1479, 24392}, {1490, 3428}, {1500, 31442}, {1503, 48883}, {1571, 52959}, {1698, 3338}, {1699, 24390}, {1707, 5255}, {1708, 10106}, {1709, 4915}, {1753, 7046}, {1763, 5814}, {1764, 5786}, {1773, 33169}, {1837, 34606}, {1891, 7713}, {1998, 11344}, {2057, 37561}, {2082, 5282}, {2093, 5836}, {2098, 7082}, {2099, 3962}, {2184, 9121}, {2270, 3686}, {2276, 31429}, {2287, 2360}, {2328, 15954}, {2334, 37593}, {2478, 26015}, {2550, 4292}, {2787, 53400}, {2801, 12520}, {2886, 9612}, {2887, 28039}, {2900, 40292}, {2999, 21514}, {3057, 12629}, {3059, 5584}, {3065, 31509}, {3085, 5745}, {3086, 3452}, {3149, 18908}, {3187, 37076}, {3189, 4304}, {3218, 3617}, {3220, 8193}, {3244, 37556}, {3295, 4512}, {3303, 3683}, {3304, 3715}, {3305, 3616}, {3306, 9780}, {3336, 56997}, {3337, 19875}, {3339, 3753}, {3358, 31793}, {3359, 5690}, {3416, 7289}, {3419, 5691}, {3434, 41869}, {3436, 5587}, {3577, 37625}, {3579, 7171}, {3587, 18481}, {3621, 3895}, {3622, 27065}, {3624, 17590}, {3626, 5128}, {3633, 57003}, {3635, 51779}, {3647, 25439}, {3671, 5850}, {3687, 9548}, {3689, 5217}, {3691, 39581}, {3698, 5221}, {3702, 56082}, {3703, 10319}, {3705, 7385}, {3711, 5204}, {3717, 54433}, {3729, 12717}, {3740, 25524}, {3749, 54354}, {3762, 53395}, {3813, 9614}, {3868, 11529}, {3869, 3872}, {3871, 35258}, {3873, 5260}, {3874, 11518}, {3876, 19861}, {3877, 36846}, {3878, 7962}, {3881, 44841}, {3886, 7283}, {3889, 4666}, {3899, 30323}, {3902, 25734}, {3913, 4640}, {3925, 10404}, {3935, 4189}, {3947, 6856}, {3953, 5573}, {3957, 16865}, {3961, 37552}, {3976, 5272}, {3983, 4413}, {3984, 4511}, {4018, 18421}, {4034, 54420}, {4042, 24310}, {4073, 42461}, {4091, 4163}, {4134, 30144}, {4253, 19868}, {4255, 4849}, {4293, 24393}, {4294, 5853}, {4297, 6743}, {4301, 36973}, {4305, 12437}, {4308, 37787}, {4311, 34610}, {4315, 12447}, {4323, 29007}, {4327, 21039}, {4333, 51102}, {4355, 38052}, {4384, 17682}, {4385, 6996}, {4416, 6210}, {4420, 4855}, {4423, 17609}, {4458, 53407}, {4515, 42316}, {4528, 53300}, {4533, 13462}, {4641, 5710}, {4642, 36263}, {4647, 4659}, {4654, 12609}, {4661, 34772}, {4669, 41348}, {4677, 11010}, {4679, 37722}, {4712, 37399}, {4737, 20368}, {4738, 53389}, {4816, 5541}, {4861, 11682}, {4863, 6284}, {4880, 11530}, {4899, 6211}, {4900, 7285}, {5016, 13532}, {5022, 44798}, {5045, 10582}, {5080, 18492}, {5084, 11019}, {5086, 24468}, {5129, 10580}, {5175, 31673}, {5176, 5535}, {5219, 21077}, {5248, 10389}, {5252, 21677}, {5257, 47299}, {5268, 19313}, {5285, 9798}, {5295, 49130}, {5307, 41013}, {5439, 10980}, {5440, 7987}, {5536, 37714}, {5552, 31423}, {5657, 6736}, {5693, 7971}, {5698, 10624}, {5704, 8165}, {5720, 11249}, {5727, 49168}, {5731, 9845}, {5744, 6684}, {5750, 19866}, {5777, 22770}, {5779, 8158}, {5785, 8581}, {5787, 31799}, {5790, 37532}, {5795, 18391}, {5828, 27003}, {5880, 9710}, {6067, 38150}, {6172, 9785}, {6244, 34862}, {6256, 15239}, {6264, 11920}, {6282, 12114}, {6326, 46685}, {6597, 56152}, {6666, 51723}, {6700, 7288}, {6735, 56879}, {6857, 13405}, {6985, 18528}, {7011, 52389}, {7079, 7498}, {7085, 8192}, {7162, 37571}, {7183, 33298}, {7226, 17016}, {7262, 37588}, {7284, 37524}, {7675, 34784}, {7701, 11525}, {7966, 36922}, {7967, 26878}, {8235, 44694}, {8715, 35445}, {8726, 12675}, {9534, 16574}, {9581, 10916}, {9589, 38454}, {9709, 37582}, {9797, 52653}, {9819, 11519}, {9864, 24469}, {9943, 30304}, {9947, 19541}, {10165, 27383}, {10200, 20196}, {10310, 52027}, {10384, 12575}, {10436, 19853}, {10453, 56311}, {10459, 32912}, {10528, 55868}, {10529, 31018}, {10572, 12625}, {10578, 17558}, {10591, 24386}, {10884, 41228}, {11012, 12687}, {11024, 21454}, {11355, 48812}, {11415, 17781}, {11491, 21165}, {11500, 49170}, {11512, 16569}, {11517, 15931}, {11522, 51409}, {11681, 54447}, {12047, 28609}, {12053, 34625}, {12127, 30337}, {12246, 35514}, {12329, 22654}, {12410, 24320}, {12516, 50696}, {12559, 30147}, {12607, 26066}, {12650, 14110}, {12688, 42014}, {12699, 18540}, {13161, 33137}, {13370, 52148}, {13384, 22836}, {13407, 19854}, {13411, 25568}, {13730, 40910}, {13737, 37658}, {14986, 18228}, {15888, 31446}, {16086, 56525}, {16132, 31938}, {16824, 24349}, {16859, 29817}, {16980, 26893}, {17054, 21342}, {17125, 46190}, {17185, 56018}, {17296, 26130}, {17306, 19784}, {17349, 17480}, {17437, 18395}, {17514, 46196}, {17527, 31249}, {17567, 20103}, {17576, 20015}, {17594, 50581}, {17606, 31141}, {17624, 25893}, {17681, 24600}, {17718, 24953}, {18164, 25526}, {18193, 24174}, {18519, 37585}, {18525, 37584}, {19286, 37522}, {19858, 22020}, {20053, 51786}, {20077, 50289}, {20683, 50626}, {20691, 31426}, {20805, 37619}, {21031, 24914}, {21147, 47848}, {21616, 31142}, {21627, 30305}, {22027, 24068}, {22758, 37531}, {22759, 41538}, {24611, 33089}, {25440, 46917}, {26364, 31231}, {26446, 37534}, {27626, 49511}, {28638, 31994}, {29659, 36540}, {30282, 56176}, {30567, 46937}, {31145, 50738}, {31330, 52245}, {31508, 51576}, {31837, 37611}, {32049, 54432}, {32864, 54373}, {33538, 56946}, {35239, 41854}, {35595, 46934}, {36480, 36483}, {36568, 36572}, {37080, 41711}, {37612, 51362}, {37679, 52541}, {37683, 41261}, {37736, 51506}, {40587, 50193}, {40836, 55116}, {41852, 51423}, {41867, 51706}, {43827, 43856}, {44421, 50314}, {44720, 51284}, {48882, 49718}, {50817, 52126}, {52684, 54203}

X(57279) = midpoint of X(4853) and X(12526)
X(57279) = reflection of X(i) in X(j) for these {i,j}: {1, 958}, {388, 10}, {1697, 12514}, {3295, 31445}, {9613, 5794}, {12526, 3927}, {12559, 30147}, {12705, 7330}, {37736, 51506}, {41854, 35239}, {41863, 1}
X(57279) = anticomplement of X(21620)
X(57279) = excentral-isogonal conjugate of X(8915)
X(57279) = X(i)-Ceva conjugate of X(j) for these (i,j): {391, 8580}, {1219, 1}
X(57279) = X(i)-isoconjugate of X(j) for these (i,j): {937, 14550}, {2334, 34244}
X(57279) = X(i)-Dao conjugate of X(j) for these (i,j): {2999, 3672}, {51576, 34244}
X(57279) = cevapoint of X(40) and X(3646)
X(57279) = barycentric product X(i)*X(j) for these {i,j}: {1, 34255}, {75, 54322}, {312, 34046}, {2297, 28616}
X(57279) = barycentric quotient X(i)/X(j) for these {i,j}: {1449, 34244}, {2256, 14550}, {34046, 57}, {34255, 75}, {54322, 1}
X(57279) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 9, 31435}, {1, 1724, 7290}, {1, 1743, 16466}, {1, 1757, 54386}, {1, 3731, 6051}, {1, 5223, 72}, {1, 5234, 405}, {1, 5247, 1453}, {1, 5251, 5436}, {1, 5259, 38316}, {1, 5692, 15829}, {1, 5904, 11523}, {1, 41229, 9}, {2, 5815, 21075}, {3, 34790, 200}, {8, 63, 40}, {9, 6762, 1}, {9, 21384, 16572}, {10, 4298, 443}, {10, 12436, 26040}, {40, 63, 54290}, {40, 84, 10860}, {40, 10864, 20}, {46, 3679, 1706}, {46, 6763, 3928}, {56, 210, 936}, {72, 956, 1}, {78, 2975, 3576}, {100, 4652, 35242}, {145, 3219, 5250}, {145, 5250, 31393}, {165, 4882, 5687}, {165, 10085, 9841}, {191, 3632, 5119}, {405, 3555, 1}, {474, 3697, 8580}, {612, 1468, 37554}, {908, 10527, 8227}, {960, 12513, 1}, {993, 3811, 3601}, {997, 8666, 1420}, {999, 5044, 8583}, {1001, 34791, 1}, {1104, 3242, 1}, {1158, 11362, 40}, {1697, 3929, 12514}, {1698, 3338, 5437}, {1706, 3928, 46}, {2551, 24477, 1210}, {2975, 3681, 78}, {3086, 3452, 25522}, {3243, 5436, 1}, {3295, 31445, 4512}, {3304, 3715, 25917}, {3305, 3616, 3646}, {3361, 4866, 8580}, {3361, 8580, 474}, {3428, 14872, 1490}, {3436, 6734, 5587}, {3632, 5119, 2136}, {3678, 8666, 997}, {3679, 6763, 46}, {3679, 9613, 5794}, {3813, 24703, 9614}, {3868, 19860, 11529}, {3869, 3872, 7982}, {3872, 3951, 3869}, {3873, 5260, 54392}, {3874, 54318, 11518}, {3876, 54391, 19861}, {3889, 5047, 4666}, {3916, 5687, 165}, {3983, 32636, 4413}, {4426, 16973, 16780}, {4847, 12527, 4}, {4861, 11682, 16200}, {4866, 8580, 3697}, {4915, 7991, 10914}, {5045, 11108, 10582}, {5220, 12513, 960}, {5258, 5904, 1}, {5288, 5692, 1}, {5289, 11260, 1}, {5302, 34791, 1001}, {5584, 12680, 5732}, {5690, 24467, 3359}, {5744, 7080, 6684}, {5779, 8158, 9856}, {5795, 24391, 18391}, {6762, 41229, 31435}, {6765, 31424, 55}, {6766, 11372, 962}, {9623, 54422, 65}, {10459, 32912, 54421}, {10529, 31018, 41012}, {10529, 41012, 37704}, {11012, 17857, 52026}, {11019, 18250, 5084}, {12526, 42012, 12705}, {12607, 26066, 31434}, {13407, 19854, 25525}, {16552, 17742, 9}, {16975, 54406, 9575}, {21077, 26363, 5219}, {21616, 45700, 50443}, {25568, 30478, 13411}, {30556, 30557, 2324}, {31142, 50443, 21616}, {42871, 51715, 1}


X(57280) = X(1)X(21)∩X(6)X(8)

Barycentrics    a*(a^3 + 2*a^2*b + a*b^2 + 2*a^2*c + a*b*c + b^2*c + a*c^2 + b*c^2) : :

X(57280) lies on these lines: {1, 21}, {2, 5711}, {3, 17126}, {5, 33107}, {6, 8}, {7, 221}, {10, 1203}, {29, 55036}, {36, 50604}, {40, 5256}, {42, 3871}, {46, 4850}, {55, 16452}, {56, 4216}, {60, 1610}, {65, 82}, {72, 3920}, {78, 5269}, {86, 17137}, {92, 3194}, {100, 386}, {105, 785}, {145, 4195}, {171, 404}, {182, 31785}, {213, 5276}, {218, 39587}, {222, 3600}, {238, 5047}, {320, 16796}, {377, 4307}, {387, 3434}, {388, 651}, {390, 54358}, {392, 37594}, {405, 17127}, {411, 1064}, {442, 33112}, {496, 37354}, {517, 17016}, {519, 54331}, {601, 6909}, {602, 6986}, {608, 4198}, {612, 3876}, {644, 54416}, {748, 17536}, {750, 978}, {894, 4968}, {902, 37573}, {938, 27378}, {940, 1191}, {942, 4224}, {944, 36742}, {952, 36750}, {959, 1036}, {960, 3745}, {961, 1397}, {962, 5706}, {975, 9347}, {976, 17716}, {985, 1258}, {986, 17017}, {987, 1320}, {990, 9961}, {994, 54336}, {995, 5253}, {999, 28348}, {1011, 3295}, {1056, 3157}, {1058, 30943}, {1089, 41242}, {1100, 5035}, {1125, 5315}, {1126, 39748}, {1155, 4719}, {1170, 39958}, {1201, 37607}, {1255, 27785}, {1449, 1697}, {1451, 24806}, {1453, 19860}, {1457, 54339}, {1482, 49128}, {1582, 35991}, {1616, 38314}, {1698, 21026}, {1714, 33108}, {1724, 5260}, {1834, 52367}, {1891, 52413}, {1963, 50293}, {1999, 3702}, {2003, 10106}, {2214, 2303}, {2308, 5247}, {2309, 4649}, {2323, 5837}, {2334, 4606}, {2476, 5230}, {2886, 24883}, {3052, 19765}, {3057, 17015}, {3073, 6912}, {3100, 12711}, {3195, 4194}, {3218, 37592}, {3240, 5687}, {3241, 37542}, {3244, 16474}, {3303, 20992}, {3304, 23404}, {3315, 18398}, {3487, 26228}, {3496, 21840}, {3622, 14996}, {3634, 37687}, {3649, 17061}, {3666, 56288}, {3695, 33093}, {3701, 27064}, {3710, 3997}, {3736, 35978}, {3782, 14450}, {3791, 27368}, {3831, 32944}, {3883, 16470}, {3895, 16667}, {3924, 16478}, {3927, 7226}, {3931, 17011}, {3951, 7174}, {4189, 30652}, {4201, 20101}, {4202, 4645}, {4255, 37540}, {4257, 5303}, {4275, 38871}, {4295, 19785}, {4298, 34043}, {4300, 7411}, {4308, 34046}, {4349, 37659}, {4360, 17141}, {4383, 9780}, {4385, 26223}, {4388, 5051}, {4511, 37539}, {4682, 25917}, {4848, 52423}, {4865, 36568}, {4868, 11010}, {5044, 5297}, {5046, 37715}, {5078, 54371}, {5091, 38512}, {5235, 19858}, {5261, 34048}, {5266, 34772}, {5278, 19853}, {5287, 31435}, {5292, 11680}, {5300, 50289}, {5312, 8715}, {5313, 25440}, {5396, 11491}, {5422, 5554}, {5434, 8614}, {5439, 7292}, {5484, 20077}, {5550, 37674}, {5603, 5707}, {5657, 36754}, {5690, 37509}, {5692, 30142}, {5717, 24987}, {5731, 36746}, {5791, 29664}, {5901, 45931}, {5904, 30145}, {6051, 17019}, {6147, 33148}, {6327, 16062}, {7078, 26872}, {7270, 16791}, {7290, 54392}, {7504, 17717}, {7677, 37523}, {7718, 44105}, {8192, 37492}, {8258, 33119}, {9342, 17749}, {9778, 37537}, {9782, 40688}, {10449, 24552}, {10527, 37642}, {10573, 16472}, {11036, 37103}, {11114, 50303}, {11115, 20040}, {11374, 29665}, {11551, 26729}, {12047, 33133}, {12245, 44414}, {12410, 44094}, {12573, 34028}, {12609, 33129}, {12647, 16473}, {12699, 33134}, {13161, 41011}, {13587, 37603}, {13728, 33083}, {13740, 17751}, {14005, 27644}, {14007, 27643}, {14012, 17150}, {14621, 17033}, {14986, 15501}, {14997, 46933}, {15954, 30628}, {16297, 27666}, {16408, 27625}, {16475, 54418}, {16679, 16691}, {16865, 30653}, {16972, 54382}, {17014, 20070}, {17025, 36279}, {17080, 37550}, {17103, 34063}, {17120, 17741}, {17122, 17535}, {17123, 17534}, {17125, 17546}, {17135, 56018}, {17277, 19874}, {17541, 41240}, {17577, 21935}, {17676, 20064}, {17723, 26066}, {17734, 37693}, {17750, 33854}, {18613, 40496}, {19836, 33172}, {19843, 24597}, {19861, 37554}, {19877, 37679}, {20292, 23537}, {20653, 32861}, {21214, 37604}, {21302, 22154}, {21764, 41239}, {22119, 37180}, {22383, 47729}, {22791, 45923}, {23493, 34252}, {23523, 23660}, {23536, 50307}, {24390, 33142}, {24443, 29821}, {25466, 26131}, {25591, 29649}, {25959, 56780}, {26364, 37651}, {27529, 37662}, {29473, 30106}, {30130, 46899}, {31254, 33111}, {31397, 54301}, {31419, 33139}, {31778, 37431}, {32693, 50040}, {32775, 56949}, {32914, 49598}, {32919, 50608}, {32926, 56318}, {32943, 35633}, {33086, 56734}, {33100, 50067}, {33175, 41014}, {33718, 37590}, {34040, 37543}, {34773, 51340}, {36604, 41434}, {37038, 42058}, {37520, 52541}, {37547, 51223}, {37549, 38315}, {37558, 55086}, {37702, 56133}, {39595, 41012}, {40455, 55098}, {41241, 52353}, {48696, 50587}, {48857, 49719}, {49490, 49530}, {50582, 50629}, {50594, 56878}, {56032, 56343}

X(57280) = X(56224)-anticomplementary conjugate of X(21287)
X(57280) = X(i)-isoconjugate of X(j) for these (i,j): {9, 46331}, {2051, 34278}
X(57280) = X(478)-Dao conjugate of X(46331)
X(57280) = crossdifference of every pair of points on line {661, 6371}
X(57280) = barycentric product X(i)*X(j) for these {i,j}: {63, 37390}, {75, 4264}, {81, 26115}, {2185, 10408}, {2975, 34262}
X(57280) = barycentric quotient X(i)/X(j) for these {i,j}: {56, 46331}, {4264, 1}, {10408, 6358}, {20986, 34278}, {26115, 321}, {34262, 54121}, {37390, 92}
X(57280) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 31, 21}, {1, 58, 2975}, {1, 595, 1621}, {1, 1046, 38}, {1, 1468, 54391}, {1, 12514, 28606}, {1, 54354, 10448}, {1, 54421, 3868}, {6, 5710, 8}, {10, 1203, 32911}, {31, 10448, 54354}, {42, 5255, 3871}, {65, 1386, 5262}, {65, 5262, 54315}, {145, 4195, 49492}, {171, 1193, 404}, {386, 5264, 100}, {612, 54386, 3876}, {750, 978, 17531}, {940, 1191, 3616}, {995, 37522, 5253}, {1036, 1460, 11337}, {1064, 3072, 411}, {1125, 37559, 37633}, {1724, 30116, 5260}, {2308, 10459, 5247}, {2650, 17469, 1}, {4300, 37570, 7411}, {4658, 40091, 1}, {5230, 26098, 2476}, {5315, 37559, 1125}, {5711, 16466, 2}, {10448, 54354, 21}, {14621, 17033, 17686}, {17122, 27627, 17535}, {18398, 30148, 3315}, {20986, 34434, 1610}, {27064, 41261, 3701}, {31339, 50302, 14005}, {33107, 54355, 5}


X(57281) = X(1)X(25)∩X(3)X(9)

Barycentrics    a^2*(a^5 + a^4*b - a*b^4 - b^5 + a^4*c + a^3*b*c - a^2*b^2*c - a*b^3*c - a^2*b*c^2 + b^3*c^2 - a*b*c^3 + b^2*c^3 - a*c^4 - c^5) : :

X(57281) lies on these lines: {1, 25}, {3, 9}, {8, 35988}, {10, 4220}, {20, 27540}, {22, 78}, {23, 34772}, {24, 18446}, {26, 37700}, {28, 226}, {35, 228}, {36, 978}, {37, 18598}, {40, 197}, {41, 386}, {48, 581}, {55, 39600}, {56, 223}, {57, 37034}, {58, 1169}, {63, 11337}, {65, 20989}, {72, 2915}, {73, 2299}, {100, 3710}, {101, 1297}, {108, 5930}, {154, 7078}, {163, 15796}, {165, 16389}, {184, 54301}, {190, 19842}, {200, 8193}, {201, 1782}, {208, 21147}, {329, 7520}, {404, 5294}, {407, 3585}, {499, 37367}, {515, 1610}, {580, 2183}, {603, 56549}, {859, 37583}, {908, 37231}, {946, 1890}, {950, 4222}, {958, 37320}, {970, 7193}, {975, 18596}, {976, 5310}, {1035, 7011}, {1047, 18754}, {1125, 4223}, {1158, 1603}, {1193, 5322}, {1203, 5320}, {1210, 33849}, {1319, 40964}, {1394, 40212}, {1425, 34043}, {1437, 2003}, {1473, 15803}, {1478, 37384}, {1479, 28076}, {1593, 1750}, {1615, 1620}, {1633, 31730}, {1699, 37387}, {1995, 54392}, {2077, 2933}, {2174, 52544}, {2178, 54431}, {2323, 5752}, {2664, 20845}, {2771, 35221}, {3074, 21361}, {3149, 15509}, {3185, 10902}, {3219, 54337}, {3333, 22769}, {3428, 9121}, {3452, 37431}, {3468, 5563}, {3487, 17562}, {3576, 22654}, {3579, 50530}, {3586, 4186}, {3601, 13730}, {3651, 38856}, {3670, 36572}, {3729, 19845}, {3811, 40910}, {3876, 5314}, {3955, 29958}, {4185, 9612}, {4224, 13411}, {4304, 28029}, {4384, 19844}, {5251, 37225}, {5257, 47512}, {5329, 54386}, {5440, 20833}, {5531, 9912}, {5691, 37194}, {5703, 37254}, {5705, 19544}, {5715, 7497}, {6198, 44661}, {6256, 37414}, {6260, 37305}, {6282, 11414}, {6326, 9626}, {6642, 18443}, {6700, 19649}, {6734, 35996}, {6765, 12410}, {6769, 9911}, {6906, 51637}, {7066, 10536}, {7280, 56824}, {7295, 37552}, {7387, 37531}, {7390, 19843}, {7420, 11012}, {7506, 37615}, {7517, 37533}, {7535, 25525}, {9579, 37241}, {9590, 20837}, {9895, 16547}, {10393, 14017}, {10535, 40944}, {10830, 15177}, {10884, 17928}, {10974, 44093}, {11015, 37919}, {11249, 55311}, {11523, 37547}, {12368, 53279}, {12514, 39582}, {12572, 37399}, {12667, 37410}, {14872, 51638}, {15494, 37579}, {15622, 45739}, {15931, 23850}, {16119, 16143}, {16466, 44098}, {17277, 19841}, {17521, 26580}, {18444, 44802}, {18669, 21808}, {19850, 26723}, {19858, 37149}, {20831, 24929}, {20842, 23206}, {20872, 56176}, {20986, 42450}, {20988, 37080}, {22076, 26885}, {22345, 37259}, {23154, 26884}, {23201, 54349}, {23846, 34486}, {24046, 36570}, {24159, 28081}, {25440, 36510}, {26927, 30304}, {27385, 37449}, {34937, 41230}, {36025, 41239}, {36740, 37554}, {37413, 56889}, {37581, 42461}, {37619, 38903}, {40658, 52097}

X(57281) = X(1791)-Ceva conjugate of X(1)
X(57281) = X(1848)-Dao conjugate of X(54314)
X(57281) = crossdifference of every pair of points on line {2522, 6129}
X(57281) = barycentric product X(1)*X(3101)
X(57281) = barycentric quotient X(3101)/X(75)
X(57281) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 24320, 31424}, {72, 2915, 5285}, {101, 3430, 3682}, {197, 3556, 40}, {228, 3145, 35}, {1473, 37257, 15803}, {3185, 23843, 10902}, {3487, 17562, 51687}, {3811, 49553, 40910}, {5752, 42463, 2323}, {9798, 26309, 8185}, {11363, 17441, 1}, {37581, 42461, 54422}


X(57282) = X(1)X(30)∩X(4)X(7)

Barycentrics    a^4 + a^3*b - a*b^3 - b^4 + a^3*c + 2*a^2*b*c + a*b^2*c + a*b*c^2 + 2*b^2*c^2 - a*c^3 - c^4 : :
X(57282) = X[1] - 3 X[4654], 3 X[4654] - 2 X[6147], 3 X[4654] + X[9579], 2 X[6147] + X[9579], 3 X[2] - 4 X[3824], 2 X[10] - 3 X[17528], X[3927] - 3 X[17528], 3 X[26446] - 2 X[26921], 3 X[26446] - 4 X[37438], 2 X[3560] - 3 X[5886], 2 X[3671] + X[9655], 4 X[3671] - X[37739], 2 X[9655] + X[37739], 4 X[1125] - 3 X[16418], 5 X[1698] - 3 X[3929], 3 X[3475] - X[4294], 5 X[3616] - 3 X[11111], 4 X[3634] - 3 X[5325], 11 X[5550] - 9 X[17561], X[6361] - 3 X[37427], 2 X[10386] - 3 X[10389]

X(57282) lies on these lines: {1, 30}, {2, 3824}, {3, 226}, {4, 7}, {5, 57}, {6, 8757}, {8, 4018}, {9, 8728}, {10, 527}, {11, 3338}, {12, 46}, {20, 3487}, {21, 31019}, {34, 7511}, {35, 17718}, {36, 11375}, {37, 17732}, {40, 495}, {55, 1770}, {56, 3560}, {58, 3772}, {63, 442}, {65, 68}, {69, 5295}, {72, 377}, {75, 1330}, {78, 11112}, {80, 43732}, {81, 31902}, {84, 5715}, {85, 16091}, {119, 24465}, {140, 5219}, {142, 11108}, {144, 4208}, {149, 3889}, {153, 6797}, {222, 225}, {229, 2074}, {306, 50044}, {320, 10449}, {329, 443}, {354, 1479}, {376, 5703}, {381, 553}, {382, 950}, {387, 4644}, {388, 517}, {392, 11415}, {404, 31053}, {405, 5249}, {474, 908}, {484, 37719}, {496, 1699}, {497, 5045}, {498, 1155}, {499, 17605}, {515, 3671}, {516, 3295}, {535, 30147}, {546, 9581}, {548, 30282}, {550, 3601}, {551, 34620}, {582, 3074}, {631, 5122}, {758, 5794}, {894, 16062}, {920, 3652}, {936, 28609}, {943, 7411}, {944, 50194}, {946, 999}, {952, 3340}, {954, 37426}, {958, 12609}, {962, 1056}, {964, 17184}, {975, 4415}, {976, 32856}, {978, 33096}, {986, 5725}, {990, 1062}, {993, 11263}, {1001, 51706}, {1004, 11517}, {1009, 30985}, {1010, 27184}, {1058, 5049}, {1060, 1448}, {1074, 7078}, {1104, 24159}, {1118, 39529}, {1125, 16418}, {1158, 7680}, {1159, 18525}, {1193, 24725}, {1319, 4317}, {1352, 24471}, {1376, 21077}, {1385, 3485}, {1387, 11522}, {1420, 5901}, {1423, 15973}, {1427, 5713}, {1434, 17181}, {1437, 14016}, {1445, 38108}, {1447, 7380}, {1453, 23681}, {1466, 6911}, {1468, 3120}, {1482, 10106}, {1490, 20420}, {1656, 3911}, {1657, 4304}, {1697, 28174}, {1698, 3929}, {1708, 6881}, {1714, 4641}, {1724, 24789}, {1737, 5221}, {1745, 5396}, {1754, 52408}, {1785, 41344}, {1788, 9956}, {1824, 18732}, {1834, 17365}, {1837, 3585}, {1838, 7534}, {1839, 54358}, {1901, 21530}, {1935, 5398}, {2049, 4357}, {2093, 5690}, {2096, 6847}, {2099, 9657}, {2292, 33098}, {2475, 2894}, {2476, 3218}, {2478, 5439}, {2550, 34790}, {2646, 4299}, {2901, 4851}, {3085, 3474}, {3086, 9955}, {3090, 5435}, {3091, 21454}, {3146, 3488}, {3157, 5706}, {3178, 32934}, {3219, 4197}, {3256, 32141}, {3296, 5556}, {3304, 30384}, {3305, 17529}, {3306, 4187}, {3336, 7951}, {3337, 7741}, {3339, 5587}, {3361, 8227}, {3434, 3555}, {3436, 3753}, {3452, 12436}, {3475, 4294}, {3476, 10222}, {3486, 28160}, {3529, 4313}, {3545, 5704}, {3576, 30264}, {3583, 18398}, {3584, 37572}, {3586, 3627}, {3598, 7407}, {3600, 5603}, {3612, 15326}, {3616, 5057}, {3624, 4679}, {3628, 31231}, {3634, 5325}, {3653, 4870}, {3654, 10039}, {3662, 13740}, {3663, 5717}, {3664, 48902}, {3695, 3729}, {3748, 4309}, {3771, 24850}, {3784, 37536}, {3822, 26066}, {3838, 26363}, {3843, 4114}, {3851, 4031}, {3853, 37723}, {3861, 51792}, {3869, 14450}, {3873, 52367}, {3874, 13159}, {3876, 17484}, {3890, 5180}, {3897, 20067}, {3901, 47033}, {3925, 41229}, {3928, 5705}, {3931, 24248}, {3944, 37607}, {3947, 6684}, {3953, 17721}, {3976, 33106}, {3980, 5955}, {4004, 5554}, {4032, 20430}, {4190, 5440}, {4193, 27003}, {4202, 26223}, {4205, 10436}, {4257, 24160}, {4302, 37080}, {4303, 50317}, {4308, 10595}, {4311, 10246}, {4314, 28150}, {4315, 13464}, {4316, 37571}, {4321, 20330}, {4323, 7967}, {4325, 37525}, {4333, 15338}, {4338, 5119}, {4340, 37594}, {4385, 4645}, {4640, 10198}, {4647, 10371}, {4652, 7483}, {4657, 43531}, {4659, 50042}, {4683, 31339}, {4754, 4799}, {4848, 5790}, {4857, 50190}, {4860, 10896}, {4861, 34605}, {4968, 6327}, {5010, 37731}, {5015, 24349}, {5046, 26842}, {5047, 27186}, {5083, 10738}, {5084, 9776}, {5087, 10200}, {5088, 33949}, {5128, 31434}, {5141, 23958}, {5173, 37820}, {5177, 9965}, {5204, 28466}, {5218, 31663}, {5225, 18527}, {5229, 18391}, {5234, 41865}, {5247, 17889}, {5248, 37292}, {5252, 5270}, {5255, 29085}, {5257, 16456}, {5261, 5657}, {5262, 33146}, {5266, 33144}, {5271, 49716}, {5293, 33101}, {5294, 56780}, {5300, 17165}, {5316, 16863}, {5399, 37529}, {5425, 37724}, {5433, 37692}, {5436, 50241}, {5437, 17527}, {5438, 17563}, {5530, 9553}, {5542, 9668}, {5550, 17561}, {5557, 5561}, {5563, 11376}, {5586, 12019}, {5658, 50700}, {5691, 11529}, {5693, 30290}, {5709, 6907}, {5711, 13161}, {5720, 37281}, {5733, 6610}, {5744, 6856}, {5748, 17567}, {5758, 6916}, {5759, 37108}, {5761, 6948}, {5763, 6282}, {5770, 6867}, {5777, 6826}, {5779, 52819}, {5800, 34381}, {5811, 6864}, {5832, 54422}, {5844, 37709}, {5881, 18421}, {5884, 12677}, {5906, 23661}, {5927, 6835}, {6001, 26332}, {6033, 24472}, {6256, 7686}, {6260, 19541}, {6361, 36976}, {6646, 26051}, {6675, 25525}, {6700, 16417}, {6734, 17532}, {6738, 31673}, {6744, 43180}, {6767, 10624}, {6769, 31777}, {6824, 54366}, {6825, 37623}, {6827, 9940}, {6830, 26877}, {6836, 10167}, {6839, 12528}, {6842, 15844}, {6851, 11018}, {6852, 37797}, {6865, 11227}, {6882, 37612}, {6895, 11220}, {6913, 55108}, {6914, 37583}, {6922, 37534}, {6923, 24474}, {6924, 37713}, {6925, 55109}, {6928, 10202}, {6929, 37566}, {6934, 33597}, {6975, 37789}, {6998, 7179}, {7091, 46435}, {7201, 29010}, {7247, 17753}, {7272, 30617}, {7280, 37701}, {7283, 18134}, {7288, 11230}, {7373, 12053}, {7491, 37615}, {7535, 24320}, {7583, 51841}, {7584, 51842}, {7743, 14986}, {7992, 9814}, {8232, 31658}, {8255, 43178}, {8544, 37428}, {8545, 55104}, {8558, 46835}, {8726, 31657}, {8762, 52412}, {8818, 14873}, {9318, 37165}, {9352, 27529}, {9370, 44414}, {9534, 33066}, {9589, 31393}, {9614, 40273}, {9624, 13462}, {9669, 11019}, {9708, 12527}, {9709, 21075}, {9779, 47743}, {10044, 10953}, {10056, 37568}, {10123, 16117}, {10368, 14216}, {10385, 28202}, {10386, 10389}, {10396, 18540}, {10401, 10441}, {10461, 29788}, {10523, 17700}, {10525, 17625}, {10526, 34339}, {10532, 12672}, {10572, 11551}, {10588, 11231}, {10629, 50195}, {10740, 12016}, {10741, 11028}, {10742, 12736}, {10827, 40663}, {10864, 15911}, {10894, 12616}, {10944, 25415}, {11009, 37738}, {11020, 37433}, {11113, 54392}, {11235, 49627}, {11362, 51782}, {11499, 37541}, {11520, 36867}, {11523, 50240}, {11545, 37714}, {11570, 13273}, {11826, 37569}, {12246, 37434}, {12514, 17768}, {12559, 44669}, {12563, 28164}, {12607, 54286}, {12608, 22753}, {12635, 17647}, {12649, 24473}, {12675, 45636}, {12702, 31397}, {12704, 15908}, {12710, 15726}, {12735, 14217}, {12738, 12831}, {12747, 41558}, {12858, 16125}, {13374, 26333}, {13405, 31730}, {13465, 41551}, {13747, 30852}, {13911, 35800}, {13973, 35801}, {14007, 17248}, {15682, 15933}, {15950, 37618}, {16371, 27385}, {16454, 26580}, {16455, 22060}, {16466, 23536}, {16478, 33147}, {16483, 23675}, {16608, 39585}, {16780, 18907}, {17023, 56963}, {17220, 48941}, {17257, 37153}, {17274, 37150}, {17306, 50318}, {17364, 56018}, {17531, 27131}, {17579, 34772}, {17582, 18228}, {17677, 50128}, {17698, 25527}, {17719, 37603}, {17720, 37522}, {17733, 48643}, {17781, 44217}, {17862, 56875}, {18180, 26892}, {18389, 37230}, {18406, 18412}, {18443, 31789}, {18446, 37468}, {18493, 44675}, {18513, 37702}, {18634, 52260}, {19548, 36503}, {19861, 51409}, {20008, 50737}, {20059, 37161}, {20347, 52245}, {20805, 47522}, {20831, 51687}, {21151, 37423}, {21578, 34471}, {21616, 25524}, {21617, 38122}, {23070, 45923}, {23206, 27622}, {24201, 40100}, {24310, 48882}, {24468, 54153}, {24477, 31418}, {24549, 56968}, {24715, 50581}, {24913, 24932}, {25017, 26651}, {25526, 37322}, {26098, 37592}, {26115, 32950}, {26131, 28606}, {26132, 37176}, {26267, 37050}, {26878, 29007}, {26932, 54396}, {27064, 33833}, {28610, 50741}, {30144, 34647}, {30305, 31792}, {30503, 31799}, {30827, 52264}, {31018, 37462}, {31423, 53056}, {31775, 37531}, {32940, 36568}, {33130, 54354}, {33645, 38954}, {34048, 36754}, {34489, 37290}, {34595, 53057}, {34830, 37507}, {35650, 37823}, {36477, 36482}, {36530, 36538}, {36561, 36570}, {36573, 37589}, {36674, 37597}, {37364, 37526}, {37401, 37584}, {37530, 52407}, {37587, 37735}, {37710, 41687}, {37722, 51816}, {38034, 50443}, {38140, 54361}, {38306, 51512}, {39571, 46017}, {40263, 44229}, {40270, 51783}, {41003, 46475}, {41312, 50226}, {41867, 50205}, {43821, 43855}, {49564, 50281}, {50093, 50427}, {50102, 50234}, {50116, 54367}, {50208, 55871}

X(57282) = midpoint of X(i) and X(j) for these {i,j}: {1, 9579}, {388, 4295}, {3340, 9613}
X(57282) = reflection of X(i) in X(j) for these {i,j}: {1, 6147}, {40, 37424}, {355, 6917}, {958, 12609}, {3295, 21620}, {3927, 10}, {6868, 1385}, {7330, 5}, {12514, 25466}, {26921, 37438}, {31445, 3824}
X(57282) = anticomplement of X(31445)
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 79, 1836}, {1, 1836, 12699}, {1, 4654, 6147}, {1, 7354, 18481}, {1, 9580, 15172}, {1, 41869, 15171}, {3, 226, 11374}, {3, 18541, 4292}, {3, 37826, 5812}, {4, 7, 942}, {4, 942, 5722}, {4, 1071, 5787}, {4, 36996, 9799}, {5, 24470, 57}, {11, 52783, 3338}, {12, 46, 26446}, {12, 11246, 46}, {20, 3487, 24929}, {40, 5290, 495}, {56, 12047, 5886}, {57, 9612, 5}, {63, 442, 5791}, {65, 1478, 355}, {75, 1330, 5814}, {79, 3649, 16159}, {79, 10404, 12699}, {84, 5715, 8727}, {142, 12572, 11108}, {226, 4292, 3}, {329, 443, 5044}, {377, 5905, 72}, {381, 5708, 1210}, {382, 15934, 950}, {550, 5719, 3601}, {553, 1210, 5708}, {946, 999, 11373}, {946, 4298, 999}, {962, 1056, 9957}, {993, 11263, 28628}, {1058, 11037, 5049}, {1385, 31776, 4293}, {1656, 37545, 3911}, {1699, 3333, 496}, {1699, 4355, 3333}, {1770, 13407, 55}, {1788, 10590, 9956}, {1836, 10404, 1}, {2093, 9578, 5690}, {2096, 6847, 34862}, {2099, 9657, 45287}, {2099, 45287, 37727}, {2475, 3868, 3419}, {2475, 17483, 3868}, {3085, 3474, 3579}, {3146, 11036, 3488}, {3296, 10580, 50191}, {3336, 7951, 24914}, {3337, 7741, 17728}, {3361, 8227, 15325}, {3452, 12436, 16408}, {3485, 4293, 1385}, {3585, 5902, 1837}, {3586, 11518, 12433}, {3600, 5603, 24928}, {3627, 12433, 3586}, {3649, 7354, 1}, {3671, 9655, 37739}, {3782, 49745, 1}, {3824, 31445, 2}, {3927, 17528, 10}, {3947, 6684, 31479}, {4308, 10595, 25405}, {4312, 5290, 40}, {4652, 31266, 7483}, {4654, 9579, 1}, {5045, 22793, 497}, {5219, 15803, 140}, {5221, 10895, 1737}, {5229, 18391, 18480}, {5270, 5903, 5252}, {5270, 11552, 5903}, {5563, 18393, 11376}, {5691, 11529, 37730}, {5706, 6180, 3157}, {5758, 6916, 31793}, {5805, 6259, 4}, {5806, 22792, 4}, {5811, 6864, 10157}, {6767, 48661, 10624}, {9654, 36279, 10}, {9812, 11037, 1058}, {10039, 37567, 3654}, {11019, 18483, 9669}, {11237, 37567, 10039}, {11544, 18990, 39542}, {13161, 50307, 5711}, {16159, 18481, 12699}, {17605, 32636, 499}, {18480, 31794, 18391}, {18990, 39542, 1}, {20059, 37161, 54398}, {23536, 41011, 16466}, {25525, 31424, 6675}, {26921, 37438, 26446}, {49743, 50067, 1}


X(57283) = X(2)X(12)∩X(3)X(7)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^4 - a^3*b - a^2*b^2 + a*b^3 - a^3*c - a^2*b*c - a*b^2*c - b^3*c - a^2*c^2 - a*b*c^2 - 2*b^2*c^2 + a*c^3 - b*c^3) : :

X(57283) lies on these lines: {1, 411}, {2, 12}, {3, 7}, {8, 37229}, {11, 6894}, {21, 226}, {29, 108}, {34, 7466}, {35, 3671}, {36, 4298}, {55, 20070}, {57, 78}, {58, 651}, {65, 100}, {73, 81}, {77, 37554}, {79, 10058}, {80, 1210}, {85, 37670}, {98, 934}, {104, 6831}, {171, 1042}, {172, 40129}, {198, 27649}, {207, 55478}, {208, 35973}, {221, 17126}, {225, 33133}, {227, 17016}, {291, 1170}, {307, 1014}, {329, 37248}, {377, 54366}, {405, 5226}, {442, 37797}, {474, 5435}, {497, 50695}, {499, 6991}, {553, 13587}, {758, 15932}, {936, 1445}, {938, 944}, {942, 6905}, {946, 53055}, {948, 54431}, {950, 36002}, {978, 1471}, {988, 4327}, {993, 5290}, {1006, 11374}, {1010, 52358}, {1056, 6988}, {1106, 4334}, {1125, 7677}, {1156, 31871}, {1159, 32141}, {1319, 51683}, {1376, 20007}, {1400, 2287}, {1420, 3897}, {1426, 4231}, {1427, 4296}, {1434, 6516}, {1442, 37594}, {1447, 56774}, {1451, 32911}, {1458, 37607}, {1465, 5262}, {1466, 4188}, {1467, 3306}, {1470, 37301}, {1478, 6828}, {1490, 10394}, {1617, 3616}, {1621, 3485}, {1708, 3876}, {1758, 2292}, {1770, 16153}, {1895, 37380}, {1935, 16948}, {2263, 37552}, {2285, 27396}, {3086, 6835}, {3295, 4323}, {3333, 52026}, {3337, 10090}, {3339, 12559}, {3340, 3871}, {3475, 26357}, {3476, 12649}, {3488, 6985}, {3560, 5714}, {3562, 37530}, {3585, 52269}, {3598, 56776}, {3601, 7411}, {3649, 5172}, {3651, 24929}, {3811, 7672}, {3869, 37550}, {3881, 14151}, {3911, 17531}, {3947, 5251}, {4252, 6180}, {4255, 5228}, {4292, 6909}, {4293, 6836}, {4295, 8069}, {4304, 33557}, {4306, 17074}, {4313, 7580}, {4317, 6943}, {4318, 5266}, {4355, 7280}, {4420, 41539}, {4551, 55101}, {4654, 17549}, {4855, 35977}, {5044, 37787}, {5047, 5219}, {5221, 18419}, {5229, 6870}, {5244, 54371}, {5248, 8543}, {5258, 51782}, {5281, 5584}, {5284, 11375}, {5303, 10404}, {5323, 56559}, {5440, 37544}, {5704, 6918}, {5705, 8666}, {5708, 6924}, {5748, 25875}, {6049, 7373}, {6223, 37252}, {6700, 13370}, {6734, 10106}, {6738, 44425}, {6796, 11529}, {6855, 22758}, {6865, 10269}, {6895, 7354}, {6912, 9612}, {6922, 37535}, {6927, 10805}, {6940, 37582}, {6962, 22767}, {7091, 32635}, {7098, 11684}, {7179, 56775}, {7247, 19841}, {7676, 12511}, {7952, 37258}, {8232, 17558}, {8544, 9841}, {8545, 31424}, {8715, 18421}, {8732, 17580}, {8814, 15276}, {9316, 37603}, {9342, 24914}, {9363, 54310}, {9963, 35982}, {10031, 13279}, {10393, 11020}, {11012, 21620}, {11491, 18467}, {11501, 20013}, {12436, 30379}, {12512, 30295}, {12709, 56288}, {14986, 22753}, {16158, 51642}, {16454, 27339}, {16862, 31188}, {17077, 56766}, {17100, 24465}, {17535, 31231}, {17698, 28780}, {18228, 37244}, {19767, 37543}, {19769, 37065}, {21669, 54441}, {22464, 34937}, {22765, 52265}, {24928, 45977}, {26062, 41824}, {26125, 56769}, {26842, 37293}, {27003, 37566}, {27383, 37282}, {28381, 46483}, {28606, 54320}, {28739, 37176}, {29007, 31445}, {31643, 55094}, {33148, 51236}, {34753, 45976}, {37141, 52389}, {37180, 56414}, {37253, 44696}, {37523, 37633}, {37573, 42289}, {37737, 41345}, {51421, 54355}

X(57283) = crossdifference of every pair of points on line {33525, 52326}
X(57283) = barycentric product X(i)*X(j) for these {i,j}: {4552, 57246}, {4564, 24235}
X(57283) = barycentric quotient X(i)/X(j) for these {i,j}: {24235, 4858}, {57182, 3737}, {57246, 4560}
X(57283) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5719, 943}, {36, 13411, 6986}, {56, 388, 2975}, {56, 25524, 5265}, {73, 54339, 81}, {226, 37583, 21}, {936, 3361, 1445}, {999, 3149, 938}, {1427, 37539, 4296}, {1451, 37694, 32911}, {3485, 37579, 1621}, {4188, 21454, 1466}, {4306, 37522, 17074}, {4315, 5563, 1476}, {4334, 37608, 1106}, {34772, 35979, 100}


X(57284) = X(3)X(10)∩X(9)X(20)

Barycentrics    2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c + 3*a*b^2*c - a^2*c^2 + 3*a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4 : :
X(57284) = X[5795] + 2 X[17647], X[72] + 3 X[11112], X[4292] - 3 X[11112], 3 X[210] + X[7354], 3 X[210] - X[12527], 3 X[392] - X[10624], X[5836] - 3 X[49732], 3 X[551] - 2 X[40270], 3 X[553] - X[3868], 5 X[1698] - X[10572], X[1770] + 3 X[5692], X[3057] + 3 X[34612], 3 X[3679] + X[45287], 5 X[3698] - X[10950], and many more

X(57284) lies on these lines: {1, 142}, {2, 950}, {3, 10}, {4, 936}, {5, 6700}, {7, 11523}, {8, 57}, {9, 20}, {12, 6745}, {28, 1861}, {30, 5044}, {35, 37306}, {40, 5837}, {55, 19520}, {56, 4847}, {63, 4190}, {65, 6737}, {72, 527}, {78, 226}, {100, 24987}, {145, 9776}, {169, 52528}, {200, 388}, {210, 7354}, {214, 24299}, {219, 37537}, {228, 47521}, {284, 1010}, {307, 3188}, {329, 9579}, {376, 5325}, {386, 5717}, {387, 37554}, {392, 10624}, {404, 3911}, {405, 4304}, {442, 5440}, {452, 7308}, {474, 1210}, {496, 1125}, {497, 8583}, {516, 960}, {517, 11793}, {518, 4298}, {519, 942}, {528, 12575}, {529, 4662}, {535, 4015}, {550, 31445}, {551, 40270}, {553, 3868}, {579, 3686}, {610, 2345}, {631, 5705}, {672, 56984}, {908, 2475}, {938, 5437}, {944, 8726}, {946, 997}, {952, 9940}, {956, 4311}, {962, 15829}, {965, 8804}, {975, 48837}, {976, 23536}, {1001, 4314}, {1038, 5930}, {1043, 3912}, {1056, 6765}, {1104, 3008}, {1155, 21677}, {1265, 3729}, {1329, 8727}, {1385, 31419}, {1466, 5252}, {1467, 3476}, {1478, 21075}, {1490, 6916}, {1621, 24564}, {1697, 17784}, {1698, 6857}, {1737, 47033}, {1751, 37065}, {1770, 5692}, {1819, 11103}, {1834, 39595}, {1837, 4413}, {1891, 7490}, {2049, 19764}, {2183, 48883}, {2223, 28265}, {2289, 40942}, {2321, 54405}, {2325, 7283}, {2476, 27385}, {2478, 5316}, {2551, 5691}, {2646, 3925}, {2784, 52821}, {2829, 46694}, {2975, 25006}, {2999, 5716}, {3035, 3634}, {3036, 13226}, {3040, 52824}, {3041, 52825}, {3042, 52830}, {3057, 34612}, {3059, 12573}, {3086, 24386}, {3091, 30827}, {3146, 18228}, {3219, 37256}, {3220, 37328}, {3243, 11037}, {3244, 15934}, {3304, 4863}, {3305, 6872}, {3306, 12649}, {3361, 24477}, {3421, 9613}, {3434, 12053}, {3474, 12526}, {3486, 10383}, {3488, 17582}, {3522, 5273}, {3528, 31446}, {3556, 24309}, {3576, 19843}, {3586, 5084}, {3587, 6869}, {3612, 19854}, {3616, 37436}, {3617, 5744}, {3625, 5708}, {3626, 8256}, {3661, 37274}, {3664, 50596}, {3671, 5880}, {3679, 15803}, {3683, 15338}, {3687, 7270}, {3689, 15888}, {3698, 10950}, {3711, 9657}, {3740, 18250}, {3741, 16056}, {3742, 6744}, {3811, 21620}, {3812, 6738}, {3814, 6841}, {3817, 25681}, {3820, 18480}, {3824, 5719}, {3825, 15842}, {3831, 28258}, {3832, 5328}, {3872, 34489}, {3875, 20009}, {3876, 17579}, {3878, 28194}, {3879, 20018}, {3880, 10855}, {3883, 27626}, {3890, 49719}, {3928, 54398}, {3938, 23675}, {3962, 11246}, {3983, 34606}, {3984, 5905}, {4061, 10371}, {4189, 54357}, {4195, 17353}, {4201, 4357}, {4208, 5703}, {4219, 46878}, {4224, 54331}, {4260, 5847}, {4293, 24393}, {4294, 31435}, {4296, 43035}, {4299, 41229}, {4300, 35338}, {4301, 5289}, {4305, 19855}, {4308, 8732}, {4315, 12513}, {4320, 28043}, {4323, 30275}, {4339, 7290}, {4340, 4667}, {4384, 37280}, {4640, 12512}, {4656, 50065}, {4669, 19706}, {4679, 12953}, {4691, 5122}, {4696, 49991}, {4758, 25526}, {4989, 16478}, {5047, 11015}, {5081, 37278}, {5086, 24982}, {5087, 12571}, {5090, 37245}, {5129, 51780}, {5177, 5219}, {5178, 5253}, {5226, 37161}, {5231, 7288}, {5234, 38057}, {5249, 34772}, {5257, 13725}, {5258, 21578}, {5290, 25568}, {5293, 13161}, {5294, 11115}, {5314, 16049}, {5587, 6847}, {5687, 31397}, {5690, 37623}, {5698, 45085}, {5704, 31190}, {5709, 6885}, {5720, 6260}, {5722, 9843}, {5731, 38200}, {5743, 50050}, {5755, 9568}, {5759, 5785}, {5768, 5881}, {5777, 31775}, {5780, 37822}, {5783, 10445}, {5818, 6935}, {5832, 56997}, {5833, 21151}, {5855, 10107}, {5882, 18443}, {5883, 17706}, {6173, 11036}, {6284, 25917}, {6358, 23661}, {6459, 31438}, {6678, 20106}, {6824, 10175}, {6851, 31673}, {6861, 10172}, {6871, 30852}, {6881, 25639}, {6892, 31399}, {6897, 18446}, {6908, 52026}, {6918, 7682}, {6919, 20196}, {6934, 55104}, {6948, 7330}, {6989, 10165}, {7046, 44696}, {7080, 9578}, {7535, 48863}, {7738, 16517}, {7987, 30478}, {8227, 31418}, {8257, 10396}, {8730, 22667}, {8983, 31484}, {9342, 25011}, {9592, 31405}, {9619, 31416}, {9624, 31420}, {9679, 13912}, {9780, 46916}, {9799, 9841}, {9859, 10394}, {9942, 31788}, {9956, 47742}, {9963, 17536}, {10176, 28150}, {10270, 14647}, {10395, 37248}, {10454, 18229}, {10479, 37264}, {10481, 47595}, {10527, 35262}, {10591, 25522}, {10896, 24954}, {10944, 17612}, {11019, 25524}, {11106, 18230}, {11227, 28236}, {11373, 35272}, {11374, 17528}, {11376, 31140}, {11512, 36574}, {11520, 20013}, {11551, 41696}, {12262, 20306}, {12545, 35628}, {12607, 51782}, {12609, 22836}, {12688, 17668}, {12690, 17575}, {12743, 31235}, {13151, 51111}, {13405, 25466}, {13464, 30144}, {13607, 37615}, {13727, 40869}, {14986, 24392}, {15680, 27065}, {16377, 25342}, {16415, 50605}, {16579, 37528}, {17010, 37308}, {17023, 37097}, {17052, 18641}, {17054, 24175}, {17184, 17690}, {17275, 37500}, {17303, 37504}, {17308, 24609}, {17338, 56989}, {17355, 30618}, {17368, 51674}, {17490, 50582}, {17614, 24390}, {18227, 23045}, {18483, 21616}, {18673, 18698}, {18990, 34790}, {18991, 31413}, {19287, 41507}, {19862, 50726}, {19868, 20540}, {20036, 50289}, {20262, 37046}, {22072, 40950}, {22300, 29311}, {23537, 30115}, {24177, 37549}, {24247, 41006}, {24474, 28234}, {24541, 33108}, {24604, 29611}, {24703, 51118}, {24953, 37600}, {24988, 25967}, {25005, 44848}, {25066, 49131}, {26036, 36706}, {26660, 31031}, {28458, 40263}, {28628, 56177}, {29353, 42450}, {29571, 37075}, {31018, 31295}, {31330, 37262}, {31871, 41871}, {32777, 37052}, {32933, 52354}, {34607, 53053}, {36871, 51223}, {37108, 54051}, {37228, 54430}, {37266, 37539}, {37462, 54392}, {37534, 47745}, {37556, 56936}, {37571, 41859}, {37594, 48847}, {37613, 44661}, {37727, 40587}, {38122, 38201}, {39589, 44416}, {40131, 51972}, {41012, 52367}, {41228, 52819}, {41826, 52563}, {44417, 49734}, {45036, 54445}, {46190, 49989}, {50115, 51668}, {54311, 56782}

X(57284) = midpoint of X(i) and X(j) for these {i,j}: {8, 10106}, {10, 17647}, {65, 6737}, {72, 4292}, {3059, 12573}, {4298, 6743}, {5777, 31775}, {7354, 12527}, {9856, 31777}, {18990, 34790}, {20420, 31793}, {41228, 52819}
X(57284) = reflection of X(i) in X(j) for these {i,j}: {942, 12436}, {960, 12447}, {5795, 10}, {6738, 3812}, {12572, 5044}, {15006, 1001}, {34791, 12577}
X(57284) = complement of X(950)
X(57284) = Spieker-circle inverse of X(50368)
X(57284) = complement of the isogonal conjugate of X(951)
X(57284) = X(i)-complementary conjugate of X(j) for these (i,j): {951, 10}, {1257, 1329}, {2983, 3452}, {29163, 20317}, {40431, 34831}
X(57284) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 443, 142}, {1, 5082, 21627}, {1, 38052, 28629}, {2, 4313, 5436}, {2, 5175, 9581}, {3, 10, 5745}, {3, 355, 6245}, {3, 51755, 6705}, {4, 936, 3452}, {7, 20007, 11523}, {8, 57, 24391}, {8, 3600, 6762}, {8, 6904, 57}, {10, 4297, 958}, {10, 10164, 26066}, {10, 25440, 6684}, {72, 11112, 4292}, {78, 377, 226}, {142, 12437, 1}, {145, 9776, 11518}, {210, 7354, 12527}, {329, 37435, 9579}, {355, 9709, 10}, {404, 6734, 3911}, {442, 5440, 13411}, {474, 1210, 6692}, {474, 3419, 1210}, {938, 17580, 5437}, {960, 15587, 18251}, {1376, 5794, 10}, {1698, 30282, 6857}, {1837, 4413, 8582}, {3434, 19861, 12053}, {3587, 6869, 31730}, {3616, 37436, 41867}, {3617, 37267, 5744}, {4208, 5703, 25525}, {5177, 27383, 5219}, {5178, 5253, 26015}, {5436, 34701, 4313}, {5437, 12625, 938}, {5691, 8580, 2551}, {5719, 50238, 3824}, {5720, 6850, 6260}, {5722, 16408, 9843}, {5880, 12635, 3671}, {5881, 37526, 5768}, {6284, 25917, 40998}, {6826, 37531, 946}, {8728, 24929, 1125}, {9578, 46917, 7080}, {12512, 18249, 4640}, {17614, 24390, 44675}, {19925, 20103, 1329}, {20007, 56999, 7}, {23537, 30115, 34937}, {25466, 56176, 13405}, {37533, 55108, 13464}


X(57285) = X(4)X(11)∩X(10)X(12)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c + 2*a^2*b*c + a*b^2*c - a^2*c^2 + a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :

X(57285) lies on these lines: {1, 6907}, {2, 1466}, {4, 11}, {5, 57}, {7, 2476}, {9, 24914}, {10, 12}, {21, 37797}, {30, 37583}, {34, 3772}, {36, 30264}, {37, 54346}, {46, 5812}, {55, 6908}, {73, 1834}, {79, 1727}, {119, 18397}, {201, 4415}, {208, 235}, {221, 5230}, {222, 5292}, {225, 1427}, {227, 3914}, {329, 1329}, {388, 2886}, {405, 1470}, {431, 1426}, {440, 22341}, {452, 3816}, {484, 16153}, {495, 3340}, {496, 1420}, {497, 37421}, {498, 37541}, {499, 6913}, {553, 17530}, {603, 37646}, {651, 24883}, {774, 38357}, {908, 25962}, {938, 6932}, {942, 6842}, {943, 4995}, {950, 1319}, {1038, 17720}, {1042, 21935}, {1071, 1210}, {1086, 1393}, {1104, 1877}, {1106, 29662}, {1118, 40837}, {1155, 50031}, {1254, 3120}, {1388, 3488}, {1400, 1901}, {1406, 34032}, {1454, 7702}, {1465, 23537}, {1467, 1750}, {1479, 1617}, {1490, 1837}, {1714, 34048}, {1737, 5777}, {1745, 5721}, {1758, 24851}, {1836, 5715}, {1887, 40959}, {1903, 24005}, {1935, 35466}, {2078, 15171}, {2099, 3487}, {2647, 24161}, {3058, 11510}, {3216, 52659}, {3336, 8068}, {3337, 8070}, {3339, 7951}, {3361, 7741}, {3419, 10944}, {3428, 10629}, {3476, 3813}, {3485, 5289}, {3582, 13370}, {3600, 11680}, {3601, 37424}, {3614, 5221}, {3651, 5172}, {3782, 37591}, {3826, 8232}, {3911, 3916}, {4193, 5435}, {4197, 5226}, {4292, 6705}, {4295, 7680}, {4296, 33133}, {4298, 25639}, {4315, 24387}, {4332, 33127}, {4853, 5252}, {5051, 52358}, {5137, 19365}, {5141, 21454}, {5173, 13407}, {5204, 6987}, {5219, 8728}, {5225, 50696}, {5231, 10404}, {5261, 33108}, {5298, 10199}, {5432, 6889}, {5434, 10957}, {5499, 5719}, {5704, 6945}, {5708, 6980}, {5722, 34489}, {5729, 45639}, {5758, 37567}, {5927, 10395}, {6067, 8581}, {6174, 11517}, {6284, 7580}, {6843, 10895}, {6881, 37544}, {6882, 37582}, {6919, 8732}, {6922, 15803}, {6971, 37545}, {6984, 18962}, {7098, 17768}, {7173, 8226}, {7743, 31822}, {7956, 50443}, {7958, 17605}, {8069, 11826}, {8583, 11375}, {8727, 9579}, {9370, 33137}, {9578, 31419}, {10039, 13601}, {10072, 41426}, {10106, 24390}, {10310, 10321}, {10396, 17728}, {10573, 37725}, {10916, 17625}, {10950, 18446}, {10956, 49169}, {10958, 18838}, {11237, 34689}, {11238, 51773}, {11269, 34046}, {11374, 37438}, {11501, 34612}, {11523, 26482}, {12515, 16159}, {12625, 37738}, {12679, 30223}, {12832, 13257}, {13462, 37720}, {14986, 15845}, {15669, 18635}, {16466, 34029}, {16732, 56285}, {17527, 31231}, {18242, 18391}, {18421, 37719}, {18990, 26470}, {19372, 24789}, {19877, 30312}, {21015, 28387}, {24929, 37401}, {24953, 37224}, {26011, 46878}, {27339, 52258}, {31266, 47516}, {33858, 37730}, {37086, 43053}, {37372, 44696}, {37388, 54394}, {37558, 37715}, {43043, 45939}, {49745, 54339}, {50065, 54320}, {52793, 54430}

X(57285) = X(i)-isoconjugate of X(j) for these (i,j): {21, 1167}, {60, 56259}, {284, 40399}, {2193, 40444}, {2194, 40424}, {2327, 40397}
X(57285) = X(i)-Dao conjugate of X(j) for these (i,j): {1108, 27398}, {1210, 1792}, {1214, 40424}, {6260, 21}, {7004, 57081}, {40590, 40399}, {40611, 1167}, {47345, 40444}
X(57285) = crossdifference of every pair of points on line {7252, 52307}
X(57285) = barycentric product X(i)*X(j) for these {i,j}: {7, 21933}, {65, 17862}, {226, 1210}, {321, 37566}, {331, 3611}, {349, 40958}, {1071, 40149}, {1108, 1441}, {1226, 1400}, {1446, 1864}, {6260, 8808}, {23204, 52575}, {41562, 43682}
X(57285) = barycentric quotient X(i)/X(j) for these {i,j}: {65, 40399}, {225, 40444}, {226, 40424}, {1071, 1812}, {1108, 21}, {1210, 333}, {1226, 28660}, {1400, 1167}, {1426, 40397}, {1864, 2287}, {2171, 56259}, {3611, 219}, {6260, 27398}, {17862, 314}, {18210, 40527}, {21933, 8}, {23204, 2193}, {37566, 81}, {40628, 57081}, {40958, 284}, {40979, 1098}, {41562, 56440}, {53288, 5546}
X(57285) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 54366, 56}, {7, 2476, 15844}, {12, 40663, 21031}, {56, 18961, 7354}, {226, 442, 12}, {1042, 21935, 51421}, {1210, 6260, 1864}, {1454, 7702, 11246}, {1728, 9612, 37822}, {3086, 7681, 11}, {3649, 40663, 45288}


X(57286) = X(6)X(20)∩X(7)X(37)

Barycentrics    a^5 + 5*a^4*b - 4*a^2*b^3 - a*b^4 - b^5 + 5*a^4*c + 4*a^3*b*c - b^4*c + 2*a*b^2*c^2 + 2*b^3*c^2 - 4*a^2*c^3 + 2*b^2*c^3 - a*c^4 - b*c^4 - c^5 : :

X(57286) lies on these lines: {2, 1901}, {3, 5746}, {4, 579}, {6, 20}, {7, 37}, {8, 21866}, {9, 443}, {19, 3474}, {21, 36743}, {27, 1778}, {30, 5802}, {46, 281}, {57, 8804}, {63, 2345}, {71, 388}, {84, 10445}, {198, 37262}, {219, 4293}, {284, 376}, {346, 9965}, {377, 966}, {379, 37650}, {380, 31730}, {391, 37435}, {393, 412}, {464, 5712}, {497, 2260}, {516, 2257}, {573, 6916}, {580, 37379}, {583, 10431}, {594, 54398}, {631, 5747}, {672, 6817}, {962, 1108}, {965, 6904}, {1012, 5120}, {1030, 37105}, {1100, 4313}, {1213, 4208}, {1249, 1754}, {1285, 5037}, {1409, 56821}, {1449, 4304}, {1723, 1770}, {1732, 1839}, {1788, 1826}, {2238, 37109}, {2256, 3600}, {2287, 4190}, {2305, 7735}, {2321, 54422}, {3522, 37504}, {3553, 10884}, {3868, 17314}, {4000, 18655}, {4188, 27395}, {4197, 50036}, {4253, 40979}, {4254, 37426}, {4261, 37419}, {4294, 54358}, {4295, 40937}, {4644, 18650}, {4877, 16845}, {5021, 37422}, {5022, 37434}, {5036, 37163}, {5043, 37433}, {5124, 37106}, {5177, 5742}, {5229, 26063}, {5273, 17303}, {5279, 54389}, {5286, 37088}, {5738, 31015}, {5740, 31042}, {5750, 31424}, {5755, 6850}, {5776, 50701}, {5778, 6885}, {5798, 6847}, {5905, 27396}, {7411, 36744}, {7736, 37443}, {8609, 55109}, {8814, 52819}, {11036, 16777}, {15803, 40942}, {17277, 50735}, {17281, 28610}, {17398, 17558}, {17579, 37654}, {19645, 37642}, {37108, 37499}, {37110, 37673}, {37392, 44103}, {40129, 50699}, {40963, 41869}, {55110, 56549}

X(57286) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 14021, 4648}, {1901, 37500, 2}


X(57287) = X(8)X(20)∩X(10)X(21)

Barycentrics    2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + a*b^2*c - a^2*c^2 + a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4 : :
X(57287) = 4 X[72] - 3 X[17781], 3 X[392] - 2 X[15171], X[3868] - 3 X[17579], 2 X[4292] - 3 X[17579], X[14923] - 3 X[49719], 2 X[942] - 3 X[11112], 5 X[3617] - 4 X[5795], 3 X[3681] - 4 X[6743], 3 X[3681] - 2 X[12527], 5 X[3698] - 6 X[49732], 3 X[3753] - 2 X[37730], 3 X[3873] - 4 X[4298], 5 X[3876] - 3 X[11114], ;and many others

X(57287) lies on these lines: {1, 224}, {2, 950}, {3, 3419}, {4, 78}, {5, 5440}, {7, 145}, {8, 20}, {9, 6872}, {10, 21}, {11, 25962}, {12, 56176}, {27, 306}, {29, 1819}, {30, 72}, {36, 10916}, {46, 49168}, {55, 5794}, {56, 1004}, {57, 4190}, {65, 16465}, {69, 18655}, {75, 18650}, {79, 41696}, {92, 52346}, {101, 21073}, {140, 9945}, {144, 5059}, {149, 12053}, {190, 52354}, {191, 4324}, {200, 3436}, {214, 5533}, {226, 2475}, {228, 9840}, {307, 2893}, {319, 8822}, {321, 3429}, {329, 3146}, {341, 49991}, {355, 1012}, {376, 4652}, {379, 3912}, {382, 3940}, {388, 3189}, {392, 15171}, {404, 1210}, {412, 5081}, {442, 24929}, {443, 3488}, {452, 3305}, {464, 5271}, {474, 5722}, {484, 54302}, {496, 17614}, {497, 19861}, {516, 3869}, {517, 5562}, {518, 7354}, {519, 3868}, {528, 3057}, {550, 3916}, {662, 52360}, {664, 56382}, {758, 1770}, {910, 40997}, {936, 2478}, {938, 3306}, {942, 11112}, {944, 3872}, {946, 4511}, {952, 1071}, {956, 18481}, {958, 20835}, {960, 6284}, {962, 11682}, {964, 19752}, {976, 13161}, {993, 37285}, {997, 1479}, {1001, 24564}, {1013, 46878}, {1038, 2000}, {1104, 26723}, {1125, 4197}, {1145, 10993}, {1211, 50050}, {1265, 56082}, {1317, 33895}, {1319, 3813}, {1329, 37358}, {1330, 4101}, {1331, 1935}, {1376, 1837}, {1385, 10609}, {1420, 10529}, {1441, 26737}, {1448, 15954}, {1478, 3811}, {1490, 6925}, {1512, 11499}, {1519, 10525}, {1621, 4314}, {1657, 3927}, {1697, 20075}, {1706, 5554}, {1714, 37817}, {1737, 25440}, {1738, 3924}, {1818, 2654}, {1826, 2327}, {1834, 37539}, {1836, 12635}, {1848, 4123}, {1861, 54343}, {1877, 37694}, {1958, 24537}, {2077, 12616}, {2082, 24247}, {2136, 12648}, {2287, 8804}, {2321, 5279}, {2476, 13411}, {2550, 3486}, {2646, 2886}, {2650, 50307}, {2829, 14872}, {2894, 4861}, {2975, 4297}, {3006, 50404}, {3035, 12743}, {3036, 37829}, {3086, 35262}, {3091, 27383}, {3158, 9578}, {3188, 9436}, {3191, 22010}, {3210, 50582}, {3218, 24391}, {3219, 15680}, {3220, 35998}, {3241, 11036}, {3244, 41702}, {3245, 3625}, {3338, 41709}, {3452, 5046}, {3476, 36846}, {3522, 5744}, {3529, 3951}, {3555, 18990}, {3560, 11517}, {3562, 22128}, {3576, 10527}, {3579, 44238}, {3583, 21616}, {3585, 21077}, {3600, 36845}, {3612, 26363}, {3616, 4208}, {3617, 5273}, {3621, 9965}, {3632, 54422}, {3671, 20292}, {3677, 36579}, {3679, 31424}, {3681, 6743}, {3687, 5016}, {3689, 12607}, {3698, 49732}, {3710, 7283}, {3714, 46553}, {3729, 30616}, {3741, 37467}, {3753, 37730}, {3754, 10122}, {3755, 17016}, {3757, 37107}, {3832, 5748}, {3841, 35016}, {3871, 31397}, {3873, 4298}, {3876, 11114}, {3877, 10624}, {3880, 10944}, {3883, 28287}, {3890, 12575}, {3893, 38455}, {3911, 4188}, {3913, 5252}, {3925, 10543}, {3935, 20060}, {3962, 17768}, {3998, 13442}, {4187, 12690}, {4189, 5745}, {4193, 6700}, {4195, 5294}, {4198, 49542}, {4201, 54311}, {4221, 54337}, {4294, 5250}, {4296, 5930}, {4302, 12514}, {4305, 19843}, {4311, 54391}, {4316, 6763}, {4357, 17676}, {4384, 14021}, {4413, 25011}, {4420, 5080}, {4429, 25904}, {4431, 29065}, {4513, 5781}, {4640, 15338}, {4642, 11031}, {4646, 5724}, {4662, 34606}, {4692, 50607}, {4853, 5732}, {4863, 12513}, {4881, 24386}, {4882, 56879}, {4999, 37600}, {5015, 37088}, {5044, 11113}, {5048, 13463}, {5057, 51118}, {5176, 5537}, {5177, 5703}, {5187, 30827}, {5217, 26066}, {5219, 6871}, {5229, 25568}, {5230, 37552}, {5231, 7987}, {5253, 11019}, {5256, 5716}, {5285, 16049}, {5288, 36975}, {5289, 12701}, {5300, 49492}, {5314, 37399}, {5316, 37162}, {5325, 15677}, {5434, 34791}, {5435, 37267}, {5437, 37723}, {5439, 12433}, {5443, 31159}, {5484, 20552}, {5534, 12115}, {5552, 5587}, {5563, 49627}, {5603, 56387}, {5693, 41703}, {5704, 31224}, {5705, 6910}, {5709, 6934}, {5717, 19767}, {5730, 12699}, {5731, 37108}, {5735, 11531}, {5777, 51379}, {5787, 37022}, {5791, 16370}, {5828, 7080}, {5832, 37740}, {5836, 10391}, {5837, 20066}, {5840, 5887}, {5842, 14110}, {5847, 25304}, {5854, 18976}, {5904, 10483}, {5905, 9579}, {6001, 11826}, {6060, 24565}, {6061, 7424}, {6147, 50240}, {6245, 6909}, {6256, 10522}, {6260, 37437}, {6282, 6836}, {6326, 12608}, {6598, 35979}, {6666, 16859}, {6684, 37106}, {6692, 17572}, {6738, 11020}, {6745, 10883}, {6762, 20076}, {6765, 9613}, {6838, 52026}, {6850, 18446}, {6868, 55104}, {6884, 10175}, {6897, 18443}, {6901, 55108}, {6906, 51755}, {6907, 33597}, {6915, 7682}, {6917, 37533}, {6923, 37700}, {6938, 7330}, {6955, 37534}, {6993, 8227}, {7081, 37443}, {7101, 34414}, {7293, 37328}, {7384, 27399}, {7491, 31837}, {7518, 27413}, {7677, 24389}, {7718, 37392}, {7737, 54406}, {7982, 55109}, {8270, 56819}, {8666, 21578}, {8715, 10039}, {9555, 24996}, {9580, 15829}, {9597, 16973}, {9657, 41711}, {9776, 56999}, {9780, 17558}, {9843, 17531}, {9947, 51380}, {10057, 25438}, {10265, 17100}, {10389, 10587}, {10396, 55871}, {10453, 37109}, {10454, 11679}, {10573, 54286}, {10826, 26364}, {10827, 45701}, {10896, 25681}, {10912, 37738}, {10915, 37710}, {11220, 28236}, {11235, 11376}, {11319, 17353}, {11374, 17532}, {11375, 56177}, {11415, 41869}, {11512, 28074}, {11552, 16126}, {11661, 28228}, {12019, 17619}, {12047, 22836}, {12116, 37611}, {12447, 40998}, {12526, 44447}, {12531, 13243}, {12545, 35614}, {12573, 30628}, {12629, 36977}, {12632, 51786}, {12709, 17668}, {12740, 13271}, {12953, 24703}, {13138, 52078}, {13151, 44222}, {13257, 22792}, {13369, 28458}, {13727, 20769}, {14206, 52345}, {14213, 23661}, {14956, 46877}, {15310, 42448}, {15556, 41572}, {15823, 37568}, {15842, 26476}, {15908, 37837}, {15971, 30076}, {16091, 50563}, {16586, 17102}, {17316, 50735}, {17539, 56520}, {17613, 33899}, {17732, 54330}, {17757, 18480}, {18525, 35448}, {18589, 24435}, {18689, 20880}, {20008, 21454}, {20242, 30078}, {20927, 54234}, {21272, 25719}, {21627, 38460}, {22345, 37331}, {22350, 56814}, {22758, 37287}, {22793, 51409}, {24178, 28082}, {24181, 26140}, {24299, 37438}, {24470, 24473}, {24927, 32214}, {25083, 49131}, {25466, 37080}, {25965, 26073}, {26006, 37448}, {26223, 50322}, {26332, 37569}, {26382, 26423}, {26399, 26406}, {26660, 31058}, {27505, 56456}, {27525, 54448}, {27692, 34194}, {28160, 34790}, {28204, 37429}, {28581, 54344}, {28610, 31145}, {29181, 43216}, {29641, 37103}, {29817, 51723}, {30144, 30384}, {30379, 34489}, {31140, 34471}, {31330, 37175}, {31445, 57002}, {31493, 37606}, {31937, 41389}, {31993, 49734}, {33116, 52352}, {34720, 34742}, {34932, 38668}, {35338, 37558}, {36011, 41507}, {37235, 40950}, {37241, 37547}, {37395, 56876}, {37421, 54051}, {37537, 55399}, {37561, 49176}, {37579, 54304}, {37618, 45700}, {37708, 49169}, {38314, 40270}, {41249, 50170}, {41600, 44670}, {41684, 54432}, {41867, 50237}, {44722, 56084}, {46873, 50689}, {46916, 46932}, {48842, 50070}, {49998, 56881}, {50093, 50165}, {50742, 53620}

X(57287) = midpoint of X(5904) and X(10483)
X(57287) = reflection of X(i) in X(j) for these {i,j}: {1, 17647}, {145, 10106}, {1071, 31775}, {3555, 18990}, {3868, 4292}, {3869, 6737}, {6284, 960}, {7491, 31837}, {10572, 10}, {10950, 5836}, {12527, 6743}, {12743, 3035}, {30628, 12573}, {41575, 65}
X(57287) = anticomplement of X(950)
X(57287) = anticomplement of the isogonal conjugate of X(951)
X(57287) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {951, 8}, {1257, 3436}, {2983, 329}, {29163, 4462}
X(57287) = X(52392)-Ceva conjugate of X(908)
X(57287) = cevapoint of X(145) and X(3152)
X(57287) = barycentric product X(i)*X(j) for these {i,j}: {85, 56178}, {190, 44409}, {21452, 51565}
X(57287) = barycentric quotient X(i)/X(j) for these {i,j}: {21452, 22464}, {44409, 514}, {56178, 9}
X(57287) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 377, 5249}, {3, 3419, 6734}, {4, 78, 908}, {5, 5440, 27385}, {7, 145, 11520}, {7, 12536, 145}, {8, 20, 63}, {10, 21, 54357}, {10, 4304, 21}, {21, 9963, 11015}, {21, 11015, 4304}, {35, 47033, 10}, {55, 5794, 24987}, {57, 12625, 12649}, {65, 16465, 39772}, {100, 5086, 10}, {145, 37435, 7}, {200, 5691, 3436}, {226, 12437, 34772}, {329, 20007, 3984}, {355, 5687, 6735}, {388, 3189, 3870}, {443, 3488, 54392}, {936, 3586, 2478}, {938, 6904, 3306}, {944, 5082, 3872}, {944, 6916, 10884}, {997, 1479, 41012}, {1012, 5687, 1259}, {1043, 7270, 306}, {1376, 1837, 24982}, {1420, 24392, 10529}, {1706, 5727, 5554}, {2136, 37709, 12648}, {2475, 34772, 226}, {2550, 3486, 19860}, {2646, 2886, 24541}, {2975, 5178, 4847}, {3091, 27383, 30852}, {3146, 20007, 329}, {3158, 9578, 10528}, {3617, 17576, 5273}, {3868, 17579, 4292}, {3869, 25722, 12529}, {3876, 11114, 12572}, {3890, 34611, 12575}, {4190, 12649, 57}, {4297, 4847, 2975}, {4420, 5080, 21075}, {4511, 52367, 946}, {4861, 6224, 5882}, {5177, 5703, 31266}, {5438, 9581, 2}, {5705, 30282, 6910}, {5730, 12699, 51423}, {5905, 20013, 11523}, {5905, 31295, 9579}, {6598, 35979, 41557}, {6743, 12527, 3681}, {6745, 19925, 11681}, {7283, 16086, 3710}, {9579, 11523, 5905}, {10525, 45770, 1519}, {10609, 24390, 1385}, {10950, 34612, 5836}, {12019, 47742, 17619}, {12536, 37435, 11520}, {15338, 21677, 4640}, {20013, 31295, 5905}, {20292, 34195, 3671}, {21075, 31673, 5080}, {37710, 48696, 10915}


X(57288) = X(10)X(30)∩X(12)X(21)

Barycentrics    2*a^4 - a^2*b^2 - b^4 - 2*a*b^2*c - a^2*c^2 - 2*a*b*c^2 + 2*b^2*c^2 - c^4 : :
X(57288) = X[1] - 3 X[11113], 7 X[1] - 3 X[34690], 2 X[1] - 3 X[49736], 7 X[11113] - X[34690], 2 X[34690] - 7 X[49736], X[8] + 3 X[11114], X[8] - 3 X[34606], 5 X[8] - 3 X[34720], X[6284] - 3 X[11114], X[6284] + 3 X[34606], 5 X[6284] + 3 X[34720], 5 X[11114] + X[34720], 5 X[34606] - X[34720], 4 X[10] - 3 X[49732], X[145] - 3 X[3058],and many others

X(57288) lies on these lines: {1, 529}, {2, 3614}, {3, 119}, {4, 958}, {5, 993}, {8, 190}, {9, 5691}, {10, 30}, {11, 2975}, {12, 21}, {20, 1376}, {35, 17757}, {36, 4187}, {40, 8256}, {55, 3436}, {56, 2478}, {58, 37715}, {63, 1837}, {65, 17768}, {72, 10572}, {75, 32819}, {80, 191}, {92, 1852}, {100, 15338}, {104, 6902}, {140, 3814}, {145, 3058}, {165, 37828}, {201, 24433}, {226, 11281}, {329, 3486}, {355, 5842}, {377, 3826}, {381, 26363}, {382, 9708}, {384, 26558}, {388, 452}, {392, 45287}, {404, 15326}, {405, 1478}, {442, 3585}, {474, 4299}, {485, 9678}, {495, 5248}, {496, 8666}, {497, 12513}, {498, 16370}, {499, 3847}, {511, 22299}, {515, 960}, {516, 5795}, {517, 5446}, {518, 950}, {519, 4127}, {524, 24705}, {527, 6738}, {535, 1125}, {546, 25639}, {548, 47742}, {550, 3820}, {758, 37730}, {908, 2646}, {936, 37428}, {938, 34695}, {944, 5289}, {952, 3878}, {956, 1479}, {997, 18481}, {1104, 13161}, {1107, 7745}, {1145, 11010}, {1146, 3496}, {1155, 24982}, {1211, 54331}, {1220, 4026}, {1317, 5330}, {1319, 41012}, {1324, 15952}, {1377, 6560}, {1378, 6561}, {1385, 21616}, {1532, 11012}, {1537, 11014}, {1573, 7747}, {1574, 7756}, {1614, 9701}, {1621, 15888}, {1626, 13732}, {1657, 9709}, {1697, 32049}, {1698, 10483}, {1737, 3916}, {1761, 21933}, {1770, 3753}, {1834, 5247}, {1836, 19860}, {1861, 1885}, {1868, 1891}, {1935, 51421}, {2099, 11415}, {2292, 5724}, {2328, 38945}, {2329, 17747}, {2475, 3925}, {2476, 24953}, {2548, 31449}, {2550, 3146}, {2647, 6354}, {3036, 5690}, {3057, 38455}, {3070, 31453}, {3074, 56825}, {3085, 11111}, {3086, 11194}, {3091, 30478}, {3189, 5815}, {3219, 5086}, {3244, 15172}, {3303, 42885}, {3304, 20076}, {3333, 17051}, {3419, 41229}, {3421, 3913}, {3434, 12953}, {3452, 4297}, {3509, 21049}, {3522, 8165}, {3560, 7680}, {3575, 46878}, {3576, 25681}, {3583, 5258}, {3584, 17525}, {3600, 26105}, {3616, 5434}, {3617, 34612}, {3621, 34611}, {3622, 34605}, {3623, 34749}, {3627, 31419}, {3635, 15170}, {3683, 24987}, {3695, 36974}, {3703, 5016}, {3704, 7283}, {3740, 18250}, {3742, 4298}, {3782, 3924}, {3812, 4292}, {3822, 6675}, {3825, 15325}, {3829, 10527}, {3843, 31458}, {3868, 5852}, {3869, 5855}, {3871, 56880}, {3872, 12701}, {3874, 12433}, {3877, 10944}, {3880, 10624}, {3885, 32426}, {3897, 15950}, {3899, 37706}, {3923, 5835}, {3927, 49168}, {3932, 7270}, {3962, 17781}, {4030, 4696}, {4189, 5432}, {4190, 4413}, {4192, 23361}, {4193, 5433}, {4202, 25992}, {4217, 48810}, {4293, 5084}, {4302, 5687}, {4304, 21075}, {4305, 56177}, {4313, 25568}, {4325, 17575}, {4330, 48696}, {4364, 24702}, {4420, 11015}, {4421, 7080}, {4423, 9657}, {4426, 5254}, {4472, 24700}, {4512, 9578}, {4514, 9369}, {4652, 24914}, {4660, 29291}, {4678, 49719}, {4679, 19861}, {4853, 9580}, {4854, 17016}, {4857, 5288}, {4918, 32936}, {4973, 34753}, {4995, 15677}, {5044, 17647}, {5123, 6684}, {5129, 8167}, {5217, 5552}, {5218, 17576}, {5223, 12625}, {5225, 11235}, {5250, 5252}, {5253, 20067}, {5259, 5270}, {5261, 11106}, {5282, 40997}, {5290, 5436}, {5326, 37291}, {5426, 37731}, {5445, 34122}, {5450, 6922}, {5475, 31456}, {5484, 32942}, {5554, 37567}, {5584, 6925}, {5587, 26066}, {5657, 11826}, {5697, 5854}, {5705, 18492}, {5718, 10448}, {5719, 35016}, {5727, 12526}, {5744, 54361}, {5745, 19925}, {5771, 6246}, {5787, 55869}, {5793, 50295}, {5837, 51090}, {5851, 15071}, {5880, 9579}, {5883, 24470}, {5894, 20307}, {5901, 11813}, {6147, 30143}, {6154, 20066}, {6174, 37299}, {6259, 12520}, {6261, 12677}, {6376, 7750}, {6381, 7767}, {6645, 17685}, {6655, 26582}, {6668, 7483}, {6714, 16048}, {6735, 32157}, {6763, 37702}, {6824, 10894}, {6827, 12114}, {6857, 10590}, {6868, 11500}, {6871, 31245}, {6893, 22753}, {6905, 30264}, {6909, 50031}, {6913, 26332}, {6919, 7288}, {6921, 31246}, {6928, 22758}, {6929, 7681}, {6930, 11496}, {6936, 12115}, {6938, 10310}, {6947, 37002}, {6976, 10532}, {6985, 18516}, {6987, 12667}, {6992, 8273}, {6996, 30847}, {7173, 31157}, {7280, 13747}, {7387, 9712}, {7504, 31260}, {7508, 31659}, {7511, 39585}, {7791, 26687}, {7823, 41838}, {7830, 27076}, {7987, 30827}, {8356, 27091}, {8370, 17030}, {9612, 28628}, {9613, 31435}, {9623, 41869}, {9654, 10198}, {9655, 11108}, {9669, 45700}, {9679, 42260}, {9702, 34148}, {9780, 17579}, {9798, 56960}, {9840, 52139}, {10106, 40998}, {10107, 28534}, {10175, 37281}, {10176, 28186}, {10386, 25439}, {10404, 25557}, {10454, 35628}, {10480, 37516}, {10529, 11238}, {10543, 34772}, {10570, 31832}, {10884, 12678}, {10912, 30305}, {10942, 32613}, {10953, 22760}, {10958, 37564}, {10966, 15845}, {11011, 51423}, {11237, 31156}, {11260, 12053}, {11344, 15844}, {11491, 37725}, {11509, 30513}, {11682, 37740}, {12362, 34823}, {12437, 21060}, {12743, 46685}, {13587, 44847}, {13724, 16678}, {13741, 25914}, {14035, 20172}, {14986, 34610}, {15446, 55160}, {15484, 31468}, {15489, 38472}, {15507, 23846}, {15654, 19543}, {15808, 34637}, {15817, 15849}, {15973, 44411}, {16049, 20989}, {16067, 51630}, {16132, 41543}, {16828, 50169}, {16916, 26561}, {16948, 54355}, {17355, 29024}, {17484, 34195}, {17512, 19839}, {17532, 19854}, {17549, 27529}, {17571, 31479}, {17605, 24541}, {17614, 21578}, {17637, 20612}, {17669, 26686}, {17690, 24988}, {17692, 26629}, {17792, 29181}, {18221, 20059}, {18231, 54448}, {18251, 41871}, {18527, 49627}, {19784, 50056}, {19858, 37150}, {19874, 50171}, {19875, 51576}, {20050, 34699}, {20075, 56879}, {20306, 41362}, {20418, 32153}, {20872, 28029}, {20943, 37671}, {21077, 24929}, {21620, 51715}, {21627, 51783}, {21635, 51717}, {21935, 35466}, {22300, 23841}, {22654, 37415}, {22770, 26333}, {23251, 31484}, {23843, 49128}, {24954, 35262}, {25875, 37578}, {26040, 37435}, {26060, 34501}, {26115, 49735}, {26590, 33824}, {27385, 37600}, {27525, 50738}, {29207, 44039}, {29311, 31782}, {29667, 34603}, {29679, 52397}, {30144, 34773}, {30147, 39542}, {30778, 33849}, {31160, 37298}, {31488, 39590}, {31777, 43174}, {31829, 34822}, {34048, 56819}, {35242, 37429}, {36985, 54305}, {37158, 40592}, {37256, 50038}, {37437, 52836}, {37716, 54354}, {37719, 57003}, {37722, 54391}, {40333, 50725}, {40587, 48661}, {40663, 56288}, {42378, 52354}, {48821, 50055}, {48826, 50058}, {48833, 54367}, {49447, 50582}, {50065, 54418}

X(57288) = midpoint of X(i) and X(j) for these {i,j}: {4, 11827}, {8, 6284}, {72, 10572}, {355, 7491}, {950, 12527}, {3869, 10950}, {3962, 41575}, {11114, 34606}, {12743, 46685}, {34611, 34689}
X(57288) = reflection of X(i) in X(j) for these {i,j}: {960, 12572}, {3244, 15172}, {3874, 12433}, {4292, 3812}, {5836, 5795}, {17647, 5044}, {18990, 1125}, {20420, 19925}, {22300, 23841}, {31775, 6684}, {31777, 43174}, {49736, 11113}
X(57288) = complement of X(7354)
X(57288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1329, 3035}, {3, 37821, 18242}, {4, 958, 2886}, {5, 993, 4999}, {8, 11114, 6284}, {9, 5691, 5794}, {10, 31445, 18253}, {12, 21, 6690}, {20, 2551, 1376}, {21, 5080, 12}, {36, 4187, 6691}, {55, 3436, 12607}, {56, 2478, 3816}, {100, 15680, 15338}, {329, 3486, 12635}, {388, 452, 1001}, {405, 1478, 25466}, {495, 50241, 5248}, {499, 3847, 45310}, {499, 17556, 3847}, {550, 3820, 25440}, {956, 1479, 3813}, {1104, 13161, 17061}, {1220, 26117, 4026}, {1376, 2551, 9711}, {1621, 20060, 15888}, {1698, 10483, 11112}, {2475, 5260, 3925}, {2975, 5046, 11}, {3219, 5086, 21677}, {3421, 4294, 3913}, {3436, 6872, 55}, {3560, 10526, 7680}, {3583, 5258, 24390}, {3585, 5251, 442}, {3814, 5267, 140}, {3872, 12701, 13463}, {4189, 11681, 5432}, {4193, 5433, 6667}, {4293, 5084, 25524}, {4304, 21075, 56176}, {5217, 31141, 5552}, {5475, 31456, 31466}, {5554, 44447, 37567}, {5584, 37001, 6925}, {5587, 31424, 26066}, {5687, 50242, 4302}, {6284, 34606, 8}, {6735, 37568, 32157}, {6929, 11249, 7681}, {7270, 56311, 3932}, {7483, 7951, 6668}, {9654, 16418, 10198}, {10404, 54392, 25557}, {10527, 10896, 3829}, {11813, 51111, 5901}, {15338, 21031, 100}, {17549, 27529, 52793}, {17757, 57002, 35}, {17781, 41575, 3962}, {18242, 37821, 38757}, {18480, 31445, 10}, {18516, 35250, 6985}, {20067, 37162, 5253}


X(57289) = MIDPOINT OF X(1) AND X(264)

Barycentrics    a^7*b^2 - 2*a^5*b^4 + a^3*b^6 + a^7*c^2 - 2*a^5*b^2*c^2 - a^4*b^3*c^2 - a^3*b^4*c^2 + 2*a*b^6*c^2 + b^7*c^2 - a^4*b^2*c^3 + b^6*c^3 - 2*a^5*c^4 - a^3*b^2*c^4 - 4*a*b^4*c^4 - 2*b^5*c^4 - 2*b^4*c^5 + a^3*c^6 + 2*a*b^2*c^6 + b^3*c^6 + b^2*c^7 : :
X(57289) = X[3164] - 5 X[3616], 3 X[3576] - X[42329], 7 X[3622] + X[40896], 3 X[3817] - 2 X[44924], 3 X[5886] - X[30258], 2 X[10003] - 3 X[11230], 3 X[25055] - X[47383], 3 X[26446] - 5 X[40329]

See X(56289).

X(57289) lies on these lines: {1, 264}, {10, 14767}, {216, 1125}, {511, 946}, {515, 39530}, {1385, 32428}, {3164, 3616}, {3576, 42329}, {3622, 40896}, {3817, 44924}, {5886, 30258}, {10003, 11230}, {11711, 51707}, {18480, 42862}, {22465, 24325}, {25055, 47383}, {26446, 40329}, {31737, 42487}

X(57289) = midpoint of X(1) and X(264)
X(57289) = reflection of X(i) in X(j) for these {i,j}: {10, 14767}, {216, 1125}, {18480, 42862}, {31737, 42487}


X(57290) = X(4)X(8057)∩X(6)X(2430)

Barycentrics    (b^2 - c^2)*(-a^2 + b^2 + c^2)^2*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)*(-2*a^10 + a^8*b^2 + 8*a^6*b^4 - 10*a^4*b^6 + 2*a^2*b^8 + b^10 + a^8*c^2 - 16*a^6*b^2*c^2 + 10*a^4*b^4*c^2 + 8*a^2*b^6*c^2 - 3*b^8*c^2 + 8*a^6*c^4 + 10*a^4*b^2*c^4 - 20*a^2*b^4*c^4 + 2*b^6*c^4 - 10*a^4*c^6 + 8*a^2*b^2*c^6 + 2*b^4*c^6 + 2*a^2*c^8 - 3*b^2*c^8 + c^10) : :
X(57290) = 9 X[14401] - 8 X[57128], 4 X[14380] - 3 X[23616]

X(57290) lies on Feuerbach circumhyperbola of the orthic triangle, the cubic K051, and these lines: {4, 8057}, {6, 2430}, {52, 30211}, {185, 520}, {523, 5895}, {525, 16251}, {9033, 13202}, {14380, 23616}}

X(57290) = orthic-isogonal conjugate of X(1650)
X(57290) = X(i)-Ceva conjugate of X(j) for these (i,j): {4, 1650}, {8057, 9033}}
X(57290) = X(38999)-Dao conjugate of X(5897)
X(57290) = crossdifference of every pair of points on line {6000, 15262}
X(57290) = barycentric product X(i)*X(j) for these {i,j}: {525, 3184}, {12096, 41079}, {14401, 56576}, {15311, 41077}}
X(57290) = barycentric quotient X(i)/X(j) for these {i,j}: {1636, 5897}, {3184, 648}, {12096, 44769}, {15311, 15459}}


X(57291) = X(1)X(4)∩X(11)X(13612)

Barycentrics    (a - b - c)*(b - c)^2*(a^2 - b^2 - c^2)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :

X(57291) lies on the cubic K051 and these lines: {1, 4}, {11, 13612}, {48, 46836}, {516, 31511}, {2968, 7004}, {3318, 6087}, {10017, 35580}, {19614, 54010}, {38957, 53833}}

X(57291) = X(i)-complementary conjugate of X(j) for these (i,j): {2432, 20205}, {6129, 117}, {15629, 20318}, {32667, 40535}}
X(57291) = X(i)-Ceva conjugate of X(j) for these (i,j): {515, 6087}, {7358, 35580}, {34050, 46391}, {51565, 8058}}
X(57291) = X(i)-isoconjugate of X(j) for these (i,j): {108, 6081}, {13138, 36067}, {32667, 44327}}
X(57291) = X(i)-Dao conjugate of X(j) for these (i,j): {14837, 34393}, {38983, 6081}}
X(57291) = crossdifference of every pair of points on line {652, 32674}
X(57291) = barycentric product X(i)*X(j) for these {i,j}: {515, 16596}, {6087, 6332}, {7358, 34050}, {14837, 39471}, {17896, 46391}, {26932, 51375}, {53522, 57245}}
X(57291) = barycentric quotient X(i)/X(j) for these {i,j}: {652, 6081}, {6087, 653}, {16596, 34393}, {38357, 52780}, {39471, 44327}, {46391, 13138}, {47432, 15629}, {51375, 46102}, {53557, 36100}}


X(57292) = X(2)X(23973)∩X(4)X(9)

Barycentrics    (a - b - c)^2*(b - c)^2*(a^2 - b^2 - c^2)*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3) : :

X(57292) lies on the cubic K051 and these lines: {2, 23973}, {4, 9}, {1146, 2310}, {1565, 3942}}

X(57292) = complement of X(23973)
X(57292) = X(i)-complementary conjugate of X(j) for these (i,j): {103, 3900}, {657, 39063}, {911, 7658}, {2338, 4885}, {2424, 11019}, {3900, 118}, {8641, 23972}, {24016, 24009}, {32642, 24025}, {32668, 23587}, {36039, 17044}, {36101, 46399}, {55257, 18635}}
X(57292) = X(14942)-Ceva conjugate of X(57108)
X(57292) = X(i)-isoconjugate of X(j) for these (i,j): {103, 7128}, {677, 32714}, {911, 55346}, {934, 40116}, {1262, 36122}, {1783, 24016}, {1815, 24033}, {1897, 32668}, {7115, 43736}, {13149, 32642}, {23984, 36056}, {24027, 52781}, {24032, 32657}, {36039, 36118}}
X(57292) = X(i)-Dao conjugate of X(j) for these (i,j): {521, 1815}, {522, 52781}, {656, 36101}, {676, 5236}, {905, 52156}, {1566, 36118}, {3239, 18025}, {14714, 40116}, {20622, 23984}, {23972, 55346}, {34467, 32668}, {39006, 24016}, {40628, 43736}, {46095, 1262}, {50441, 46102}}
X(57292) = crossdifference of every pair of points on line {1459, 1461}
X(57292) = barycentric product X(i)*X(j) for these {i,j}: {516, 2968}, {1146, 26006}, {1886, 23983}, {3239, 39470}, {3270, 35517}, {4858, 51376}, {15413, 46392}, {17880, 41339}, {26932, 40869}, {30807, 34591}}
X(57292) = barycentric quotient X(i)/X(j) for these {i,j}: {516, 55346}, {657, 40116}, {676, 36118}, {910, 7128}, {1146, 52781}, {1459, 24016}, {1566, 5236}, {1886, 23984}, {2310, 36122}, {2638, 36056}, {2968, 18025}, {3270, 103}, {7004, 43736}, {22383, 32668}, {26006, 1275}, {26932, 52156}, {34591, 36101}, {35072, 1815}, {39470, 658}, {39687, 32657}, {40869, 46102}, {41339, 7012}, {42462, 53150}, {46392, 1783}, {47422, 1458}, {51376, 4564}, {57108, 677}}
X(57292) = {X(9),X(23058)}-harmonic conjugate of X(45282)


X(57293) = X(4)X(8)∩X(1364)X(3270)

Barycentrics    a^2*(b - c)^2*(a^2 - b^2 - c^2)*(a^3 - a*b^2 - 2*a*b*c + 2*b^2*c - a*c^2 + 2*b*c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(57293) lies on the cubic K051 and these lines: {4, 8}, {1364, 3270}, {35015, 39004}, {38981, 42753}}

X(57293) = X(i)-complementary conjugate of X(j) for these (i,j): {2423, 24177}, {48303, 119}}
X(57293) = crossdifference of every pair of points on line {1783, 22383}
X(57293) = barycentric product X(34048)*X(35014)
X(57293) = barycentric quotient X(38389)/X(16082)


X(57294) = X(4)X(69)∩X(3269)X(9409)

Barycentrics    a^4*(b - c)^2*(b + c)^2*(a^2 - b^2 - c^2)*(a^4 - a^2*b^2 - a^2*c^2 + 2*b^2*c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(57294) lies on the cubic K051 and these lines: {4, 69}, {3269, 9409}, {39000, 44114}, {39009, 48316}}

X(57294) = X(i)-complementary conjugate of X(j) for these (i,j): {1957, 41167}, {2451, 16591}, {17478, 114}}
X(57294) = X(11595)-Ceva conjugate of X(11672)
X(57294) = X(9258)-isoconjugate of X(41174)
X(57294) = X(i)-Dao conjugate of X(j) for these (i,j): {30476, 290}, {48316, 6331}}
X(57294) = crossdifference of every pair of points on line {648, 3049}
X(57294) = barycentric product X(i)*X(j) for these {i,j}: {684, 2451}, {3269, 15143}, {3569, 22089}, {5360, 16758}, {9306, 41172}, {20975, 56437}, {30476, 39469}, {34980, 40887}}
X(57294) = barycentric quotient X(i)/X(j) for these {i,j}: {2451, 22456}, {9306, 41174}, {22089, 43187}, {39469, 43188}}


X(57295) = X(4)X(523)∩X(402)X(31945)

Barycentrics    (b^2 - c^2)*(-a^2 + b^2 + c^2)*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)*(2*a^6 - a^4*b^2 - 4*a^2*b^4 + 3*b^6 - a^4*c^2 + 8*a^2*b^2*c^2 - 3*b^4*c^2 - 4*a^2*c^4 - 3*b^2*c^4 + 3*c^6) : :
3 X[5489] - 4 X[14380], 2 X[18808] - 3 X[42733]

X(57295) lies on the cubic K051 and these lines: {4, 523}, {402, 31945}, {647, 800}, {1649, 42736}, {3184, 9033}, {11845, 57128}, {20208, 40920}}

X(57295) = complement of the isogonal conjugate of X(5502)
X(57295) = X(i)-complementary conjugate of X(j) for these (i,j): {4575, 16976}, {5502, 10}, {18699, 53575}, {21663, 34846}, {36034, 37853}, {40135, 8287}, {47296, 21253}}
X(57295) = X(51346)-Ceva conjugate of X(1650)
X(57295) = X(36131)-isoconjugate of X(44877)
X(57295) = X(i)-Dao conjugate of X(j) for these (i,j): {11598, 1304}, {39008, 44877}, {47296, 99}}
X(57295) = crossdifference of every pair of points on line {2071, 3284}
X(57295) = barycentric product X(i)*X(j) for these {i,j}: {525, 13202}, {1637, 40996}, {2631, 18699}, {9033, 47296}, {10151, 41077}, {21663, 41079}}
X(57295) = barycentric quotient X(i)/X(j) for these {i,j}: {9033, 44877}, {9409, 34570}, {10151, 15459}, {13202, 648}, {21663, 44769}, {40135, 1304}, {47296, 16077}, {52874, 36841}}


X(57296) = X(4)X(6)∩X(115)X(13613)

Barycentrics    (b - c)^2*(b + c)^2*(-a^2 + b^2 + c^2)^2*(-3*a^4 + 2*a^2*b^2 + b^4 + 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(-2*a^6 + a^4*b^2 + b^6 + a^4*c^2 - b^4*c^2 - b^2*c^4 + c^6) : :

X(57296) lies on the cubic K051 and these lines: {4, 6}, {115, 13613}, {1899, 20313}, {3269, 15526}}

X(57296) = X(i)-complementary conjugate of X(j) for these (i,j): {2435, 20309}, {14944, 21259}}
X(57296) = X(i)-Ceva conjugate of X(j) for these (i,j): {287, 8057}, {34168, 39201}}
X(57296) = X(i)-isoconjugate of X(j) for these (i,j): {36046, 53639}, {36092, 46639}}
X(57296) = X(i)-Dao conjugate of X(j) for these (i,j): {6587, 35140}, {23976, 44181}, {33504, 53639}}
X(57296) = crossdifference of every pair of points on line {520, 15384}
X(57296) = barycentric product X(i)*X(j) for these {i,j}: {122, 1503}, {441, 1562}, {6587, 39473}, {34211, 55269}}
X(57296) = barycentric quotient X(i)/X(j) for these {i,j}: {122, 35140}, {1503, 44181}, {1562, 6330}, {34211, 55268}, {39473, 44326}, {42658, 44770}, {42671, 15384}, {55269, 43673}}



leftri

Homothetic centers involving nine-point centers: X(57297)-X(57449)

rightri

This preamble and centers X(57297)-X(57449) were contributed by Ivan Pavlov on August 30, 2023.

Let P= u : v : w be a point upon the circumcircle of ABC and let P' be the antipoade of P. Let Oa, Ob, Oc be the nine-point centers of BPC, ACP, ABP resp.
Triangle OaObOc is homothetic to ABC. The center of homothety is PX(5)∩P'X(140), given by the following first barycentric:

a^4*u+(b^2-c^2)^2*(2*u+v+w)-a^2*(b^2+c^2)*(3*u+v+w).


X(57297) = X(3)X(116)∩X(5)X(103)

Barycentrics    a^8-a^7*(b+c)-a*(b-c)^4*(b+c)^3+3*a^3*(b-c)^2*(b+c)*(b^2+c^2)-a^5*(b+c)*(b^2-4*b*c+c^2)-a^6*(b^2-b*c+c^2)+(b-c)^4*(b+c)^2*(b^2+b*c+c^2)-3*a^2*(b-c)^2*(b^2+c^2)*(b^2+b*c+c^2)+a^4*(2*b^4-3*b^3*c-3*b*c^3+2*c^4) : :
X(57297) = X[3]+2*X[116], X[4]+2*X[38601], 2*X[5]+X[103], -X[101]+4*X[140], -2*X[118]+5*X[1656], X[150]+5*X[631], -X[152]+7*X[3090], X[265]+2*X[53751], X[355]+2*X[11714], X[382]+2*X[38773], -4*X[546]+X[10727], -4*X[547]+X[10710] and many others

X(57297) lies on circumconic {{A, B, C, X(38764), X(53228)}} and on these lines: {2, 2808}, {3, 116}, {4, 38601}, {5, 103}, {30, 38692}, {101, 140}, {118, 1656}, {150, 631}, {152, 3090}, {265, 53751}, {355, 11714}, {382, 38773}, {498, 1362}, {499, 3022}, {514, 57353}, {516, 57315}, {544, 5054}, {546, 10727}, {547, 10710}, {549, 10708}, {550, 10725}, {632, 38666}, {928, 38776}, {1282, 31423}, {1385, 50896}, {1482, 11726}, {1657, 38771}, {2772, 14643}, {2774, 15061}, {2784, 10165}, {2786, 38224}, {2801, 38122}, {2807, 57303}, {2809, 26446}, {2810, 57328}, {2811, 57329}, {2812, 57330}, {2813, 57331}, {2820, 57299}, {2821, 57300}, {2822, 57301}, {2823, 57302}, {2824, 38796}, {2825, 57304}, {3041, 26364}, {3525, 51526}, {3526, 6710}, {3541, 5185}, {3628, 38668}, {3851, 33521}, {3887, 57298}, {5055, 38767}, {5079, 38769}, {5326, 34931}, {5690, 10695}, {5886, 57318}, {5901, 10697}, {6321, 53732}, {6824, 52825}, {6989, 52823}, {7728, 53714}, {8227, 39156}, {9518, 57332}, {9956, 50903}, {10303, 20096}, {10738, 53741}, {10742, 53750}, {10756, 48876}, {10758, 18583}, {10770, 33814}, {15720, 33520}, {18413, 24914}, {19921, 30795}, {20401, 55857}, {37466, 38645}, {38728, 53712}, {38739, 53721}, {38750, 53730}, {38762, 53739}, {38775, 55858}, {38794, 53747}, {50821, 50898}, {50824, 50897}, {50828, 50895}, {51633, 56746}

X(57297) = midpoint of X(i) and X(j) for these {i,j}: {10708, 38690}
X(57297) = reflection of X(i) in X(j) for these {i,j}: {38690, 549}, {38764, 2}, {38766, 38692}
X(57297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2808, 38764}, {3, 116, 10739}, {4, 38601, 38765}, {5, 103, 10741}, {30, 38692, 38766}, {103, 31273, 5}, {116, 6712, 3}, {1656, 38574, 118}, {3526, 38572, 6710}


X(57298) = X(3)X(11)∩X(5)X(104)

Barycentrics    a^7-a^6*(b+c)-a*(b-c)^4*(b+c)^2+(b-c)^4*(b+c)^3+a^5*(-3*b^2+5*b*c-3*c^2)-3*a^2*(b-c)^2*(b+c)*(b^2+c^2)+a^3*(b^2+c^2)*(3*b^2-7*b*c+3*c^2)+a^4*(b+c)*(3*b^2-4*b*c+3*c^2) : :
X(57298) = X[1]+2*X[12619], X[3]+2*X[11], -X[4]+2*X[38141], 2*X[5]+X[104], 2*X[10]+X[12737], X[20]+2*X[22938], X[79]+2*X[33856], X[80]+2*X[1385], -X[100]+4*X[140], -2*X[119]+5*X[1656], X[149]+5*X[631], -X[153]+7*X[3090] and many others

X(57298) lies on circumconic {{A, B, C, X(38752), X(46136)}} and on these lines: {1, 12619}, {2, 952}, {3, 11}, {4, 38141}, {5, 104}, {10, 12737}, {12, 10074}, {20, 22938}, {30, 38693}, {35, 13274}, {36, 13273}, {55, 5533}, {56, 6971}, {79, 33856}, {80, 1385}, {100, 140}, {119, 1656}, {149, 631}, {153, 3090}, {214, 5794}, {265, 53753}, {355, 6702}, {381, 2829}, {382, 38761}, {404, 38722}, {485, 48701}, {486, 48700}, {496, 11849}, {498, 1317}, {513, 57320}, {515, 57342}, {517, 3582}, {522, 57351}, {523, 57343}, {528, 5054}, {546, 10728}, {547, 10711}, {549, 10707}, {550, 10724}, {632, 38665}, {946, 12515}, {1125, 6265}, {1145, 10527}, {1156, 31657}, {1319, 10057}, {1320, 5690}, {1387, 1482}, {1483, 12531}, {1511, 10778}, {1537, 6833}, {1657, 38759}, {1698, 6264}, {1768, 8227}, {1862, 3541}, {2646, 10073}, {2771, 10202}, {2783, 15561}, {2787, 38224}, {2800, 5883}, {2801, 38030}, {2802, 26446}, {2803, 57329}, {2804, 57330}, {2805, 57331}, {2806, 57332}, {2826, 57299}, {2827, 57300}, {2828, 57301}, {2830, 38796}, {2831, 57304}, {3035, 3526}, {3036, 12645}, {3065, 35010}, {3085, 12735}, {3091, 12248}, {3254, 31658}, {3307, 57341}, {3308, 57340}, {3311, 13913}, {3312, 13977}, {3523, 13199}, {3525, 51525}, {3542, 12138}, {3545, 38084}, {3576, 37718}, {3579, 14217}, {3583, 23961}, {3612, 12743}, {3616, 12247}, {3624, 6326}, {3628, 11698}, {3667, 57352}, {3738, 38776}, {3813, 25438}, {3816, 7489}, {3830, 38637}, {3837, 19916}, {3843, 52836}, {3851, 38756}, {3887, 57297}, {4193, 32153}, {4857, 26086}, {4999, 51506}, {5050, 5848}, {5055, 38319}, {5070, 37725}, {5079, 38757}, {5083, 11374}, {5298, 5841}, {5418, 48714}, {5420, 48715}, {5428, 11604}, {5432, 10087}, {5434, 51518}, {5443, 5885}, {5450, 12761}, {5531, 34595}, {5541, 31423}, {5550, 9803}, {5587, 38182}, {5603, 32558}, {5789, 6861}, {5817, 38180}, {5851, 38124}, {5854, 38128}, {5856, 38131}, {5882, 20107}, {5901, 6952}, {5902, 38063}, {6033, 53722}, {6154, 55863}, {6174, 15694}, {6246, 18481}, {6321, 53733}, {6366, 57321}, {6595, 49113}, {6684, 21630}, {6691, 26470}, {6824, 13226}, {6832, 13257}, {6862, 11729}, {6863, 12019}, {6882, 15325}, {6884, 13243}, {6889, 12690}, {6890, 48661}, {6891, 12702}, {6914, 18861}, {6923, 10589}, {6928, 7288}, {6929, 10584}, {6949, 34773}, {6954, 45043}, {6959, 10785}, {6961, 47743}, {6972, 22791}, {6980, 10269}, {6989, 9945}, {7294, 31659}, {7506, 54065}, {7529, 9913}, {7583, 19081}, {7584, 19082}, {7728, 53715}, {7741, 12764}, {7951, 12763}, {7972, 15178}, {8226, 54441}, {8674, 15061}, {8981, 19113}, {9624, 13253}, {9955, 34789}, {9956, 12751}, {10035, 48907}, {10039, 20586}, {10072, 10247}, {10104, 12199}, {10165, 57360}, {10273, 51709}, {10303, 20095}, {10529, 25416}, {10576, 35857}, {10577, 35856}, {10679, 55297}, {10680, 32554}, {10739, 53746}, {10740, 53748}, {10741, 53750}, {10747, 53752}, {10748, 53754}, {10749, 53755}, {10755, 48876}, {10759, 18583}, {10767, 12041}, {10768, 12042}, {10769, 33813}, {10770, 38599}, {10771, 38600}, {10772, 38601}, {10773, 38603}, {10774, 38604}, {10775, 38605}, {10776, 38606}, {10777, 38607}, {10779, 14650}, {10780, 38608}, {10781, 35231}, {10782, 35232}, {10915, 11256}, {10943, 13747}, {10956, 31479}, {10993, 15720}, {11373, 15558}, {11375, 11570}, {11376, 12758}, {11680, 17100}, {12005, 47320}, {12114, 33898}, {12119, 13624}, {12532, 24475}, {12699, 16174}, {12738, 19862}, {12750, 41541}, {13271, 24387}, {13373, 17660}, {13743, 48695}, {13966, 19112}, {14269, 38077}, {14848, 38090}, {14853, 38168}, {15701, 38636}, {15863, 37727}, {17566, 32141}, {17638, 34339}, {18254, 25681}, {18976, 37618}, {19854, 31235}, {19863, 35638}, {20104, 33812}, {20400, 55857}, {22935, 24299}, {24465, 37545}, {26095, 56756}, {26285, 37720}, {26287, 37702}, {31512, 38614}, {31775, 47744}, {31841, 55314}, {32454, 49111}, {33593, 41697}, {33594, 55108}, {33970, 38575}, {34862, 46435}, {35000, 53055}, {35004, 37735}, {37466, 38646}, {37525, 53616}, {37561, 46816}, {38037, 38107}, {38578, 56890}, {38631, 46936}, {38728, 53711}, {38739, 53720}, {38750, 53729}, {38763, 55858}, {38774, 53739}, {38786, 53740}, {38794, 53743}, {38806, 53744}, {46636, 47399}, {50821, 50891}, {50823, 50894}, {50828, 50889}, {50829, 50892}, {50893, 51087}, {51198, 53091}

X(57298) = midpoint of X(i) and X(j) for these {i,j}: {11, 21154}, {10707, 34474}, {3, 51517}, {3576, 37718}, {38141, 38602}
X(57298) = reflection of X(i) in X(j) for these {i,j}: {10246, 38032}, {10738, 51517}, {14269, 38077}, {14848, 38090}, {14853, 38168}, {2, 34126}, {21154, 6713}, {23513, 45310}, {26446, 38133}, {3, 21154}, {381, 23513}, {3545, 38084}, {34474, 549}, {38107, 38205}, {38752, 2}, {38754, 38693}, {4, 38141}, {5050, 38119}, {5054, 38069}, {5587, 38182}, {5603, 38044}, {5790, 34122}, {5817, 38180}, {5886, 32557}, {51517, 11}
X(57298) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12619, 19914}, {2, 952, 38752}, {3, 11, 10738}, {3, 48680, 24466}, {4, 38602, 38753}, {5, 104, 10742}, {11, 21154, 5840}, {11, 5433, 10090}, {11, 5840, 51517}, {11, 6713, 3}, {30, 38693, 38754}, {100, 140, 38762}, {104, 31272, 5}, {119, 20418, 12773}, {119, 6667, 1656}, {140, 1484, 100}, {528, 38069, 5054}, {952, 34122, 5790}, {952, 34126, 2}, {952, 38032, 10246}, {1125, 10265, 6265}, {1656, 12773, 119}, {1768, 8227, 12611}, {2800, 32557, 5886}, {2802, 38133, 26446}, {2829, 23513, 381}, {2829, 45310, 23513}, {3035, 37726, 12331}, {3086, 6958, 1482}, {3091, 12248, 22799}, {3526, 12331, 3035}, {3616, 12247, 19907}, {5603, 32558, 38044}, {5840, 6713, 21154}, {6691, 26470, 45976}, {6702, 11715, 355}, {6882, 15325, 22765}, {6959, 10785, 18525}, {16174, 46684, 12699}, {34126, 38032, 38135}


X(57299) = X(3)X(5511)∩X(5)X(105)

Barycentrics    a^8+3*a^6*b*c-2*a^7*(b+c)+(b-c)^4*(b+c)^2*(b^2+c^2)+a^5*(b+c)*(2*b^2-b*c+2*c^2)+2*a^2*b*(b-c)^2*c*(3*b^2+2*b*c+3*c^2)+a^4*(-2*b^4+b^3*c-8*b^2*c^2+b*c^3-2*c^4)-2*a*(b-c)^2*(b+c)*(b^4+b^3*c-2*b^2*c^2+b*c^3+c^4)+a^3*(b+c)*(2*b^4-9*b^3*c+16*b^2*c^2-9*b*c^3+2*c^4) : :
X(57299) = X[3]+2*X[5511], X[4]+2*X[38603], 2*X[5]+X[105], X[119]+2*X[33970], -2*X[120]+5*X[1656], -4*X[140]+X[1292], X[265]+2*X[53756], X[355]+2*X[11716], -4*X[546]+X[10729], -4*X[547]+X[10712], 2*X[550]+X[44983], 5*X[631]+X[34547] and many others

X(57299) lies on these lines: {2, 28915}, {3, 5511}, {4, 38603}, {5, 105}, {30, 38694}, {119, 33970}, {120, 1656}, {140, 1292}, {265, 53756}, {355, 11716}, {498, 3021}, {499, 1358}, {528, 5055}, {546, 10729}, {547, 10712}, {549, 38712}, {550, 44983}, {631, 34547}, {632, 38684}, {2775, 15061}, {2788, 38224}, {2795, 15561}, {2809, 5886}, {2814, 38776}, {2820, 57297}, {2826, 57298}, {2832, 57300}, {2833, 57301}, {2834, 57302}, {2835, 57303}, {2836, 14643}, {2837, 38796}, {2838, 57304}, {3039, 26363}, {3090, 20344}, {3526, 38589}, {3628, 38670}, {4904, 14661}, {5056, 20097}, {5540, 8227}, {5901, 10699}, {6824, 52826}, {9519, 57328}, {9520, 57329}, {9521, 57330}, {9522, 57331}, {9523, 57332}, {9956, 50911}, {10738, 46409}, {10760, 18583}, {37466, 38647}

X(57299) = reflection of X(i) in X(j) for these {i,j}: {38712, 549}, {57327, 2}
X(57299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 28915, 57327}, {3, 5511, 15521}, {5, 105, 10743}, {1656, 38575, 120}


X(57300) = X(3)X(5510)∩X(5)X(106)

Barycentrics    a^7-2*a^6*(b+c)-3*a^5*(b^2-3*b*c+c^2)+(b-c)^2*(b+c)^3*(b^2-3*b*c+c^2)-a*(b^2-c^2)^2*(2*b^2-9*b*c+2*c^2)+3*a^4*(b+c)*(2*b^2-3*b*c+2*c^2)+2*a^3*(2*b^4-9*b^3*c+9*b^2*c^2-9*b*c^3+2*c^4)+a^2*(-5*b^5+7*b^4*c+7*b*c^4-5*c^5) : :
X(57300) = X[3]+2*X[5510], X[4]+2*X[38604], 2*X[5]+X[106], -2*X[121]+5*X[1656], -4*X[140]+X[1293], X[355]+2*X[11717], -4*X[546]+X[10730], -4*X[547]+X[10713], 2*X[550]+X[44984], 5*X[631]+X[34548], -10*X[632]+X[38685], X[1054]+5*X[8227] and many others

X(57300) lies on these lines: {2, 53790}, {3, 5510}, {4, 38604}, {5, 106}, {30, 38695}, {121, 1656}, {140, 1293}, {355, 11717}, {498, 6018}, {499, 1357}, {513, 57352}, {546, 10730}, {547, 10713}, {549, 38713}, {550, 44984}, {631, 34548}, {632, 38685}, {1054, 8227}, {2776, 15061}, {2789, 38224}, {2796, 15561}, {2802, 5886}, {2810, 14561}, {2815, 38776}, {2821, 57297}, {2827, 57298}, {2832, 57299}, {2839, 57301}, {2840, 57302}, {2841, 57303}, {2842, 14643}, {2843, 38796}, {2844, 57304}, {3038, 26363}, {3090, 21290}, {3526, 38590}, {3628, 38671}, {5056, 20098}, {5654, 37999}, {5901, 10700}, {6824, 52827}, {9519, 57327}, {9524, 57329}, {9525, 57330}, {9526, 57331}, {9527, 57332}, {9624, 13541}, {9956, 50914}, {10761, 18583}, {11230, 57360}, {12699, 14664}, {37466, 38648}

X(57300) = reflection of X(i) in X(j) for these {i,j}: {38713, 549}, {57328, 2}
X(57300) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53790, 57328}, {3, 5510, 15522}, {5, 106, 10744}, {631, 34548, 38620}, {1656, 38576, 121}, {5510, 6715, 3}


X(57301) = X(3)X(133)∩X(5)X(107)

Barycentrics    a^16-4*a^14*(b^2+c^2)+(b^2-c^2)^6*(b^4+4*b^2*c^2+c^4)+3*a^10*(b^2+c^2)*(3*b^4-7*b^2*c^2+3*c^4)-a^2*(b-c)^4*(b+c)^4*(b^2+c^2)*(3*b^4-7*b^2*c^2+3*c^4)+a^12*(3*b^4+7*b^2*c^2+3*c^4)-4*a^8*(b^2-c^2)^2*(5*b^4+4*b^2*c^2+5*c^4)+2*a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(7*b^4+3*b^2*c^2+7*c^4)-a^4*(b^2-c^2)^2*(b^8+23*b^6*c^2-16*b^4*c^4+23*b^2*c^6+c^8) : :
X(57301) = X[3]+2*X[133], 2*X[4]+X[23240], 2*X[5]+X[107], X[113]+2*X[24930], -2*X[122]+5*X[1656], -4*X[140]+X[1294], X[265]+2*X[53757], X[355]+2*X[11718], X[382]+2*X[3184], -4*X[546]+X[10152], -4*X[547]+X[10714], 2*X[550]+X[44985] and many others

X(57301) lies on these lines: {2, 53803}, {3, 133}, {4, 23240}, {5, 107}, {30, 23239}, {113, 24930}, {122, 1656}, {140, 1294}, {265, 53757}, {355, 11718}, {381, 2777}, {382, 3184}, {498, 7158}, {499, 3324}, {523, 57336}, {546, 10152}, {547, 10714}, {549, 38714}, {550, 44985}, {631, 34549}, {632, 38686}, {1651, 15035}, {1657, 38956}, {2790, 38224}, {2797, 15561}, {2803, 38752}, {2811, 38764}, {2816, 3817}, {2822, 57297}, {2828, 57298}, {2833, 57299}, {2839, 57300}, {2845, 57302}, {2846, 57303}, {2847, 38796}, {2848, 57304}, {3090, 34186}, {3091, 5667}, {3526, 34842}, {3628, 38672}, {3851, 52057}, {3861, 23241}, {5055, 9530}, {5901, 10701}, {6033, 53723}, {6760, 51385}, {6824, 52828}, {7506, 14703}, {7529, 14673}, {7728, 53716}, {9033, 11911}, {9520, 57327}, {9524, 57328}, {9528, 57330}, {9529, 57331}, {9956, 50916}, {10762, 18583}, {14845, 57333}, {14847, 36518}, {32162, 47111}, {37466, 38649}, {37943, 57381}, {40082, 43809}

X(57301) = midpoint of X(i) and X(j) for these {i,j}: {14847, 36518}
X(57301) = reflection of X(i) in X(j) for these {i,j}: {38714, 549}, {57329, 2}
X(57301) = inverse of X(23329) in the orthocentroidal circle
X(57301) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53803, 57329}, {3, 133, 22337}, {4, 38605, 23240}, {5, 107, 10745}, {133, 6716, 3}, {631, 34549, 38621}, {3091, 5667, 49117}, {3526, 38591, 34842}


X(57302) = X(3)X(6717)∩X(5)X(108)

Barycentrics    a^13-a^12*(b+c)+a^11*(-4*b^2+3*b*c-4*c^2)+(b-c)^6*(b+c)^5*(b^2+c^2)+2*a^10*(b+c)*(2*b^2-b*c+2*c^2)-a^8*(b-c)^2*(b+c)*(5*b^2+2*b*c+5*c^2)-2*a^6*b*(b-c)^2*c*(b+c)*(5*b^2+4*b*c+5*c^2)+2*a^7*b*(b-c)^2*c*(6*b^2+5*b*c+6*c^2)-a*(b^2-c^2)^4*(b^4-6*b^3*c+6*b^2*c^2-6*b*c^3+c^4)-4*a^2*(b-c)^4*(b+c)^3*(b^4+b^3*c-b^2*c^2+b*c^3+c^4)+a^9*(5*b^4-12*b^3*c+8*b^2*c^2-12*b*c^3+5*c^4)+a^3*(b^2-c^2)^2*(4*b^6-15*b^5*c+2*b^4*c^2+10*b^3*c^3+2*b^2*c^4-15*b*c^5+4*c^6)-a^5*(b-c)^2*(5*b^6+4*b^5*c-15*b^4*c^2-20*b^3*c^3-15*b^2*c^4+4*b*c^5+5*c^6)+a^4*(b-c)^2*(b+c)*(5*b^6+12*b^5*c-5*b^4*c^2-8*b^3*c^3-5*b^2*c^4+12*b*c^5+5*c^6) : :
X(57302) = -2*X[2]+X[57330], -X[3]+4*X[6717], X[4]+2*X[38606], 2*X[5]+X[108], X[119]+2*X[56890], -2*X[123]+5*X[1656], -4*X[140]+X[1295], X[355]+2*X[11719], -4*X[546]+X[10731], -4*X[547]+X[10715], 2*X[550]+X[44986], 5*X[631]+X[34550] and many others

X(57302) lies on these lines: {2, 57330}, {3, 6717}, {4, 38606}, {5, 108}, {30, 38696}, {119, 56890}, {123, 1656}, {140, 1295}, {355, 11719}, {381, 2829}, {498, 3318}, {499, 1359}, {546, 10731}, {547, 10715}, {549, 38715}, {550, 44986}, {631, 34550}, {632, 38687}, {2778, 15061}, {2791, 38224}, {2798, 15561}, {2804, 38752}, {2812, 38764}, {2817, 5886}, {2823, 57297}, {2834, 57299}, {2840, 57300}, {2845, 57301}, {2849, 57303}, {2850, 14643}, {2851, 38796}, {3090, 34188}, {3526, 38592}, {3628, 38673}, {5901, 10702}, {6824, 52829}, {7506, 54064}, {9521, 57327}, {9525, 57328}, {9528, 57329}, {9531, 57331}, {9956, 50917}, {10763, 18583}

X(57302) = reflection of X(i) in X(j) for these {i,j}: {38715, 549}, {57330, 2}
X(57302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 25640, 33566}, {5, 108, 10746}, {631, 34550, 38622}, {6717, 25640, 3}


X(57303) = X(3)X(117)∩X(5)X(109)

Barycentrics    a^10-a^9*(b+c)-a*(b-c)^6*(b+c)^3+a^8*(-4*b^2+3*b*c-4*c^2)+(b^2-c^2)^4*(b^2-b*c+c^2)+2*a^7*(b+c)*(2*b^2-b*c+2*c^2)+2*a^3*(b-c)^4*(b+c)*(2*b^2+3*b*c+2*c^2)-2*a^5*(b-c)^2*(b+c)*(3*b^2+2*b*c+3*c^2)-a^4*(b-c)^2*(b^4-8*b^3*c-10*b^2*c^2-8*b*c^3+c^4)-2*a^2*(b^2-c^2)^2*(b^4+b^3*c-3*b^2*c^2+b*c^3+c^4)+a^6*(5*b^4-10*b^3*c+4*b^2*c^2-10*b*c^3+5*c^4) : :
X(57303) = X[3]+2*X[117], X[4]+2*X[38607], 2*X[5]+X[109], -X[102]+4*X[140], -2*X[124]+5*X[1656], X[151]+5*X[631], X[265]+2*X[53758], X[355]+2*X[11700], X[382]+2*X[38785], -4*X[546]+X[10732], -4*X[547]+X[10716], 2*X[549]+X[10709] and many others

X(57303) lies on these lines: {2, 2818}, {3, 117}, {4, 38607}, {5, 109}, {12, 1795}, {30, 38697}, {102, 140}, {124, 1656}, {151, 631}, {265, 53758}, {355, 11700}, {382, 38785}, {498, 1364}, {499, 1361}, {513, 57342}, {515, 57354}, {517, 57351}, {522, 57337}, {546, 10732}, {547, 10716}, {549, 10709}, {550, 10726}, {632, 38667}, {928, 38764}, {952, 51408}, {1385, 50899}, {1482, 11727}, {1657, 38783}, {1845, 24914}, {2773, 14643}, {2779, 15061}, {2785, 15561}, {2792, 38224}, {2800, 5883}, {2807, 57297}, {2814, 57327}, {2815, 57328}, {2816, 10164}, {2817, 26446}, {2819, 57331}, {2835, 57299}, {2841, 57300}, {2846, 57301}, {2849, 57302}, {2852, 38796}, {2853, 57304}, {3040, 26363}, {3042, 26364}, {3090, 33650}, {3525, 51527}, {3526, 6711}, {3628, 38674}, {3738, 38752}, {3851, 38780}, {5054, 38784}, {5055, 38779}, {5079, 38781}, {5690, 10696}, {5901, 10703}, {6033, 53724}, {6321, 53734}, {6824, 52830}, {6989, 52824}, {7728, 53717}, {9532, 57332}, {9956, 13532}, {10738, 53742}, {10742, 53752}, {10748, 53759}, {10757, 48876}, {10764, 18583}, {10771, 33814}, {11374, 12016}, {12699, 14690}, {12737, 29008}, {34030, 56973}, {37727, 47115}, {38728, 53713}, {38750, 53731}, {38762, 53740}, {38787, 55858}, {38794, 53749}, {39535, 55315}, {50821, 50901}, {50824, 50900}, {51421, 56863}

X(57303) = midpoint of X(i) and X(j) for these {i,j}: {10709, 38691}
X(57303) = reflection of X(i) in X(j) for these {i,j}: {38691, 549}, {38776, 2}, {38778, 38697}
X(57303) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2818, 38776}, {3, 117, 10740}, {4, 38607, 38777}, {30, 38697, 38778}, {102, 140, 38786}, {117, 6718, 3}, {151, 631, 38600}, {3526, 38573, 6711}


X(57304) = X(3)X(132)∩X(5)X(112)

Barycentrics    a^14-4*a^12*(b^2+c^2)+(b-c)^4*(b+c)^4*(b^2+c^2)*(b^4+c^4)+a^8*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)-2*a^2*(b^4-c^4)^2*(b^4-b^2*c^2+c^4)+a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(2*b^4+b^2*c^2+2*c^4)-a^6*(b^2-c^2)^2*(3*b^4+b^2*c^2+3*c^4)+a^10*(4*b^4+5*b^2*c^2+4*c^4) : :
X(57304) = X[3]+2*X[132], X[4]+2*X[38608], 2*X[5]+X[112], X[20]+2*X[19160], -2*X[127]+5*X[1656], -4*X[140]+X[1297], X[265]+2*X[53760], X[355]+2*X[11722], X[382]+2*X[14689], -4*X[546]+X[10735], -4*X[547]+X[10718], 2*X[550]+X[44988] and many others

X(57304) lies on these lines: {2, 53795}, {3, 132}, {4, 38608}, {5, 112}, {11, 13311}, {12, 13312}, {20, 19160}, {30, 38699}, {35, 12955}, {36, 12945}, {127, 1656}, {140, 1297}, {265, 53760}, {355, 11722}, {381, 2794}, {382, 14689}, {485, 49271}, {486, 49270}, {498, 6020}, {499, 3320}, {511, 57349}, {512, 57350}, {523, 57319}, {546, 10735}, {547, 10718}, {549, 38717}, {550, 44988}, {568, 16224}, {631, 12384}, {632, 38689}, {1352, 28343}, {1385, 12784}, {2070, 39569}, {2781, 14561}, {2799, 15561}, {2806, 38752}, {2825, 57297}, {2831, 57298}, {2838, 57299}, {2844, 57300}, {2848, 57301}, {2853, 57303}, {3090, 13219}, {3091, 13200}, {3311, 13923}, {3312, 13992}, {3523, 12253}, {3526, 13115}, {3541, 12145}, {3542, 13166}, {3628, 38676}, {3830, 38639}, {3851, 14900}, {5054, 9530}, {5418, 49218}, {5420, 49219}, {5432, 13116}, {5433, 13117}, {5576, 53767}, {5690, 13099}, {5901, 10705}, {6321, 53737}, {6824, 52833}, {7403, 19164}, {7506, 19165}, {7528, 40121}, {7529, 11641}, {7583, 19114}, {7584, 19115}, {7728, 53719}, {7741, 13297}, {7951, 13296}, {8227, 13221}, {8981, 19094}, {9517, 14643}, {9518, 38764}, {9523, 57327}, {9527, 57328}, {9532, 38776}, {9956, 13280}, {10104, 13195}, {10201, 20410}, {10358, 14676}, {10576, 35881}, {10577, 35880}, {10738, 53745}, {10742, 53755}, {10748, 50381}, {10766, 18583}, {11605, 39504}, {11610, 20576}, {12408, 31423}, {13754, 16225}, {13966, 19093}, {14649, 38321}, {14983, 18570}, {15562, 18369}, {18876, 37347}, {34217, 45735}, {37466, 38652}, {44214, 57306}

X(57304) = reflection of X(i) in X(j) for these {i,j}: {38717, 549}, {568, 16224}, {57332, 2}
X(57304) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53795, 57332}, {3, 132, 12918}, {5, 112, 10749}, {132, 6720, 3}, {631, 12384, 38624}, {3091, 13200, 19163}, {3526, 13115, 34841}


X(57305) = X(2)X(16168)∩X(5)X(476)

Barycentrics    a^16-5*a^14*(b^2+c^2)+(b^2-c^2)^6*(b^4+3*b^2*c^2+c^4)+3*a^12*(3*b^4+4*b^2*c^2+3*c^4)-2*a^10*(b^2+c^2)*(3*b^4+4*b^2*c^2+3*c^4)+a^4*(b-c)^2*(b+c)^2*(b^4+c^4)*(5*b^4-9*b^2*c^2+5*c^4)-a^2*(b^2-c^2)^4*(4*b^6+b^4*c^2+b^2*c^4+4*c^6)+a^8*(14*b^6*c^2-3*b^4*c^4+14*b^2*c^6)-a^6*(b^10+2*b^6*c^4+2*b^4*c^6+c^10) : :
X(57305) = X[4]+2*X[38609], 2*X[5]+X[476], 5*X[110]+X[31874], 2*X[125]+X[36193], -4*X[140]+X[477], X[265]+2*X[7471], X[399]+2*X[6070], -4*X[546]+X[44967], -4*X[547]+X[34312], 2*X[550]+X[14989], 5*X[631]+X[34193], -10*X[632]+X[38678] and many others

X(57305) lies on these lines: {2, 16168}, {3, 16177}, {4, 38609}, {5, 476}, {30, 14644}, {110, 31874}, {125, 36193}, {140, 477}, {265, 7471}, {381, 57374}, {399, 6070}, {498, 33965}, {499, 33964}, {523, 14643}, {546, 44967}, {547, 34312}, {549, 38701}, {550, 14989}, {631, 34193}, {632, 38678}, {804, 57371}, {1553, 10620}, {1656, 3258}, {2072, 57332}, {2782, 57378}, {3090, 14731}, {3233, 23236}, {3526, 31379}, {3581, 11657}, {3628, 38677}, {5055, 57311}, {5627, 32423}, {6033, 53728}, {6321, 53738}, {6639, 12091}, {7574, 47327}, {7728, 36169}, {9159, 44262}, {9179, 10748}, {10272, 14480}, {10733, 21316}, {11594, 57364}, {11749, 55856}, {11911, 55141}, {12041, 36172}, {12068, 14934}, {12121, 34150}, {15059, 16340}, {15122, 47323}, {17511, 20304}, {20403, 57310}, {26451, 38719}, {32417, 38789}, {36159, 43821}, {36164, 38728}, {36184, 52056}, {37943, 57324}, {46451, 57367}, {53793, 57347}, {53805, 57362}, {53809, 57320}, {55130, 57366}, {55142, 57350}

X(57305) = midpoint of X(i) and X(j) for these {i,j}: {14643, 14993}
X(57305) = reflection of X(i) in X(j) for these {i,j}: {14644, 21315}, {15055, 47852}, {38701, 549}, {57306, 2}
X(57305) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 16168, 57306}, {5, 476, 20957}, {30, 21315, 14644}, {30, 47852, 15055}, {140, 18319, 477}, {631, 34193, 38610}, {3526, 38581, 31379}, {12068, 14934, 38794}, {22104, 25641, 3}, {36169, 46632, 7728}


X(57306) = X(3)X(3258)∩X(5)X(477)

Barycentrics    a^16-3*a^14*(b^2+c^2)-a^12*(b^4-16*b^2*c^2+c^4)+(b^2-c^2)^6*(b^4+b^2*c^2+c^4)+2*a^10*(b^2+c^2)*(7*b^4-18*b^2*c^2+7*c^4)-a^2*(b^2-c^2)^4*(4*b^6+3*b^4*c^2+3*b^2*c^4+4*c^6)+a^8*(-20*b^8+2*b^6*c^2+45*b^4*c^4+2*b^2*c^6-20*c^8)+a^4*(b^2-c^2)^2*(3*b^8-11*b^6*c^2-16*b^4*c^4-11*b^2*c^6+3*c^8)+a^6*(b^2+c^2)*(9*b^8+7*b^6*c^2-33*b^4*c^4+7*b^2*c^6+9*c^8) : :
X(57306) = X[3]+2*X[3258], X[4]+2*X[38610], 2*X[5]+X[477], X[110]+2*X[16340], -4*X[140]+X[476], -X[265]+4*X[3154], -X[399]+4*X[55308], -4*X[546]+X[14989], 2*X[549]+X[34312], 2*X[550]+X[44967], 5*X[631]+X[14731], 5*X[632]+X[11749] and many others

X(57306) lies on these lines: {2, 16168}, {3, 3258}, {4, 38610}, {5, 477}, {30, 14643}, {110, 16340}, {140, 476}, {265, 3154}, {381, 57336}, {399, 55308}, {498, 33964}, {499, 33965}, {523, 15061}, {546, 14989}, {549, 34312}, {550, 44967}, {631, 14731}, {632, 11749}, {804, 57378}, {1511, 17511}, {1656, 25641}, {2782, 57371}, {3090, 34193}, {3526, 22104}, {3628, 18319}, {5054, 57307}, {5055, 57365}, {5627, 33855}, {5663, 45694}, {5972, 36193}, {6640, 12091}, {7471, 38794}, {7728, 36164}, {9179, 38806}, {10256, 57331}, {10257, 30717}, {10264, 14480}, {10620, 55319}, {11594, 57363}, {12121, 36184}, {14094, 33505}, {15041, 32417}, {15059, 34209}, {15122, 47324}, {16978, 37484}, {20127, 46045}, {20403, 57347}, {31378, 32609}, {37477, 47348}, {37955, 57317}, {38728, 46632}, {38739, 53728}, {38750, 53738}, {44214, 57304}, {44450, 57370}, {53793, 57310}, {53805, 57361}, {53809, 57313}, {55130, 57374}, {55131, 57372}, {55141, 57344}, {55142, 57349}

X(57306) = midpoint of X(i) and X(j) for these {i,j}: {14643, 14851}, {34312, 38700}
X(57306) = reflection of X(i) in X(j) for these {i,j}: {32609, 31378}, {38700, 549}, {57305, 2}
X(57306) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 16168, 57305}, {3, 3258, 20957}, {631, 14731, 38609}, {1656, 38581, 25641}, {3154, 14934, 265}, {3258, 31379, 3}, {3526, 38580, 22104}, {14643, 14851, 30}, {36184, 47084, 12121}


X(57307) = X(3)X(16188)∩X(5)X(691)

Barycentrics    a^14-5*a^12*(b^2+c^2)-a^8*(b^2+c^2)*(b^4+18*b^2*c^2+c^4)+a^10*(7*b^4+16*b^2*c^2+7*c^4)+(b^2-c^2)^4*(b^6+c^6)+a^6*(-5*b^8+16*b^6*c^2+3*b^4*c^4+16*b^2*c^6-5*c^8)-a^2*(b^2-c^2)^2*(3*b^8-b^6*c^2-2*b^4*c^4-b^2*c^6+3*c^8)+a^4*(b^2+c^2)*(5*b^8-16*b^6*c^2+19*b^4*c^4-16*b^2*c^6+5*c^8) : :
X(57307) = X[3]+2*X[16188], X[4]+2*X[38611], 2*X[5]+X[691], -X[23]+4*X[14693], -4*X[140]+X[842], 2*X[187]+X[7574], X[265]+2*X[9181], -4*X[546]+X[44969], 2*X[550]+X[44972], -5*X[631]+2*X[38613], -10*X[632]+X[38680], 2*X[858]+X[2080] and many others

X(57307) lies on these lines: {2, 53793}, {3, 16188}, {4, 38611}, {5, 691}, {23, 14693}, {30, 9166}, {140, 842}, {187, 7574}, {249, 32423}, {265, 9181}, {381, 57375}, {498, 6027}, {499, 6023}, {511, 15061}, {512, 14643}, {523, 15561}, {542, 57378}, {546, 44969}, {549, 38704}, {550, 44972}, {631, 38613}, {632, 38680}, {690, 57371}, {858, 2080}, {1551, 14830}, {1656, 5099}, {2070, 32762}, {3526, 16760}, {3628, 38679}, {3849, 57364}, {3906, 14850}, {5054, 57306}, {5055, 57355}, {6033, 36170}, {6321, 7472}, {8371, 34367}, {8704, 57363}, {8724, 16092}, {9218, 14644}, {10257, 57329}, {11632, 46980}, {12042, 36173}, {14561, 57312}, {14848, 57362}, {14853, 57372}, {14999, 15545}, {15122, 35002}, {36166, 38739}, {37943, 57358}, {38317, 57347}, {38741, 46981}, {38750, 46634}, {44214, 57334}, {55131, 57379}, {55142, 57319}

X(57307) = midpoint of X(i) and X(j) for these {i,j}: {9218, 14644}
X(57307) = reflection of X(i) in X(j) for these {i,j}: {38704, 549}, {57311, 2}
X(57307) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 16188, 38953}, {3526, 38583, 16760}, {16188, 40544, 3}, {36170, 46633, 6033}


X(57308) = X(2)X(57359)∩X(5)X(741)

Barycentrics    a^9*b*c-b^3*(b-c)^2*c^3*(b+c)^3+a^7*b*c*(-3*b^2+2*b*c-3*c^2)+a^6*(b+c)*(b^2+c^2)*(3*b^2-4*b*c+3*c^2)-a^8*(b^3+c^3)+a*b*c*(b^2-c^2)^2*(b^4-b^2*c^2+c^4)+2*a^2*b^2*c^2*(b+c)*(b^4+b^3*c-3*b^2*c^2+b*c^3+c^4)+a^5*(b^6+4*b^5*c-3*b^4*c^2+b^3*c^3-3*b^2*c^4+4*b*c^5+c^6)-a^4*(b+c)*(2*b^6-3*b^5*c+2*b^4*c^2+3*b^3*c^3+2*b^2*c^4-3*b*c^5+2*c^6)-a^3*(b^8+3*b^7*c-6*b^6*c^2-b^5*c^3+8*b^4*c^4-b^3*c^5-6*b^2*c^6+3*b*c^7+c^8) : :
X(57308) = -2*X[2]+X[57359], X[3]+2*X[44950], 2*X[5]+X[741], -4*X[140]+X[6010], -4*X[546]+X[44940], 2*X[550]+X[45152], -5*X[1656]+2*X[45162], X[5539]+5*X[8227]

X(57308) lies on these lines: {2, 57359}, {3, 44950}, {5, 741}, {140, 6010}, {499, 1356}, {546, 44940}, {550, 45152}, {1656, 45162}, {3037, 26363}, {5539, 8227}, {5886, 15561}

X(57308) = reflection of X(i) in X(j) for these {i,j}: {57359, 2}


X(57309) = X(2)X(53794)∩X(5)X(759)

Barycentrics    a^10-a^9*(b+c)+a^8*(-3*b^2+2*b*c-3*c^2)+(b^2-c^2)^4*(b^2-b*c+c^2)+2*a^4*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2-b*c+c^2)+4*a^7*(b^3+c^3)-a*(b-c)^2*(b+c)^3*(b^4-b^2*c^2+c^4)+a^6*(2*b^4-2*b^3*c+5*b^2*c^2-2*b*c^3+2*c^4)-a^2*(b^2-c^2)^2*(3*b^4-3*b^3*c+b^2*c^2-3*b*c^3+3*c^4)-a^5*(b+c)*(6*b^4-9*b^3*c+11*b^2*c^2-9*b*c^3+6*c^4)+a^3*(4*b^7-b^6*c-b^5*c^2-b^2*c^5-b*c^6+4*c^7) : :
X(57309) = X[3]+2*X[42425], X[4]+2*X[38612], 2*X[5]+X[759], -4*X[140]+X[6011], -4*X[546]+X[44970], 5*X[1656]+X[14663], 5*X[8227]+X[21381], -7*X[31423]+X[34196]

X(57309) lies on these lines: {2, 53794}, {3, 42425}, {4, 38612}, {5, 759}, {140, 6011}, {498, 34194}, {499, 1365}, {546, 44970}, {1656, 14663}, {5886, 14643}, {6824, 52834}, {6852, 56951}, {6884, 19642}, {8227, 21381}, {10175, 38752}, {11231, 57328}, {31423, 34196}

X(57309) = reflection of X(i) in X(j) for these {i,j}: {57360, 2}
X(57309) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53794, 57360}, {1656, 14663, 31845}


X(57310) = X(3)X(22103)∩X(5)X(805)

Barycentrics    a^2*(a^12*b^2*c^2-a^10*(b^2+c^2)*(b^4+3*b^2*c^2+c^4)+3*a^8*(b^4+c^4)*(b^4+3*b^2*c^2+c^4)+b^2*c^2*(b^2-c^2)^2*(b^8-2*b^6*c^2+4*b^4*c^4-2*b^2*c^6+c^8)-a^6*(b^2+c^2)*(3*b^8+6*b^6*c^2+2*b^4*c^4+6*b^2*c^6+3*c^8)-a^2*b^2*c^2*(4*b^10-6*b^8*c^2+5*b^6*c^4+5*b^4*c^6-6*b^2*c^8+4*c^10)+a^4*(b^12+6*b^10*c^2+b^8*c^4+9*b^6*c^6+b^4*c^8+6*b^2*c^10+c^12)) : :
X(57310) = -X[3]+4*X[22103], 2*X[5]+X[805], -4*X[140]+X[2698], -4*X[546]+X[44971], -5*X[1656]+2*X[2679], 2*X[6071]+X[13188], 2*X[6072]+X[12188]

X(57310) lies on these lines: {2, 53797}, {3, 22103}, {5, 805}, {30, 38703}, {140, 2698}, {498, 44042}, {511, 6034}, {512, 15561}, {526, 57371}, {546, 44971}, {1656, 2679}, {3788, 18321}, {5663, 57378}, {6071, 13188}, {6072, 12188}, {20403, 57305}, {41330, 57372}, {53793, 57306}, {53798, 57362}

X(57310) = reflection of X(i) in X(j) for these {i,j}: {57347, 2}
X(57310) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53797, 57347}, {22103, 33330, 3}


X(57311) = X(3)X(5099)∩X(5)X(842)

Barycentrics    a^14-3*a^12*(b^2+c^2)-a^2*(b-c)^2*(b+c)^2*(b^4-b^2*c^2+c^4)*(5*b^4+2*b^2*c^2+5*c^4)+a^10*(5*b^4+4*b^2*c^2+5*c^4)+(b^2-c^2)^4*(b^6+c^6)-a^8*(5*b^6+3*b^4*c^2+3*b^2*c^4+5*c^6)-a^6*(b^8-4*b^6*c^2-3*b^4*c^4-4*b^2*c^6+c^8)+a^4*(b^2+c^2)*(7*b^8-18*b^6*c^2+21*b^4*c^4-18*b^2*c^6+7*c^8) : :
X(57311) = X[3]+2*X[5099], X[4]+2*X[38613], 2*X[5]+X[842], -4*X[140]+X[691], X[316]+2*X[7575], -4*X[468]+X[2080], -4*X[546]+X[44972], -2*X[549]+X[38702], 2*X[550]+X[44969], -4*X[625]+X[7574], -5*X[631]+2*X[38611], -10*X[632]+X[38679] and many others

X(57311) lies on these lines: {2, 53793}, {3, 5099}, {4, 38613}, {5, 842}, {30, 10242}, {140, 691}, {316, 7575}, {381, 57319}, {468, 2080}, {498, 6023}, {499, 6027}, {511, 14643}, {512, 15061}, {523, 38224}, {542, 57371}, {546, 44972}, {549, 38702}, {550, 44969}, {625, 7574}, {631, 38611}, {632, 38679}, {690, 57378}, {1656, 16188}, {2072, 57314}, {3526, 38582}, {3628, 38680}, {3849, 57363}, {5054, 57345}, {5055, 57305}, {5899, 57370}, {6033, 36166}, {6321, 14120}, {7472, 38750}, {8704, 57364}, {8724, 46986}, {9181, 38794}, {11632, 53136}, {11799, 35002}, {14561, 57350}, {15980, 16320}, {18325, 18860}, {18332, 51429}, {33813, 36174}, {38225, 44214}, {38227, 44282}, {38230, 44234}, {38730, 46987}, {38739, 46633}, {55131, 57375}, {55142, 57346}

X(57311) = reflection of X(i) in X(j) for these {i,j}: {38225, 44214}, {38227, 44282}, {38230, 44234}, {38702, 549}, {57307, 2}
X(57311) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53793, 57307}, {5, 842, 38953}, {1656, 38583, 16188}, {3526, 38582, 40544}, {5099, 16760, 3}, {11799, 47570, 35002}, {14120, 46634, 6321}


X(57312) = X(2)X(53798)∩X(5)X(843)

Barycentrics    a^14-5*a^12*(b^2+c^2)+(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)*(b^4-b^2*c^2+c^4)+a^10*(b^4+36*b^2*c^2+c^4)+3*a^8*(b^2+c^2)*(7*b^4-26*b^2*c^2+7*c^4)+a^6*(-31*b^8+76*b^6*c^2-17*b^4*c^4+76*b^2*c^6-31*c^8)+19*a^4*(b^10-3*b^8*c^2+b^6*c^4+b^4*c^6-3*b^2*c^8+c^10)+a^2*(-7*b^12+33*b^10*c^2-45*b^8*c^4+46*b^6*c^6-45*b^4*c^8+33*b^2*c^10-7*c^12) : :
X(57312) = X[3]+2*X[46659], 2*X[5]+X[843], -4*X[140]+X[2709], -X[352]+4*X[14693], 2*X[550]+X[44946], -5*X[1656]+2*X[44956], X[8724]+2*X[16341], -4*X[18583]+X[52198]

X(57312) lies on these lines: {2, 53798}, {3, 46659}, {5, 843}, {140, 2709}, {352, 14693}, {499, 47020}, {511, 57331}, {512, 38796}, {524, 15561}, {550, 44946}, {1499, 38224}, {1656, 44956}, {8724, 16341}, {14561, 57307}, {18583, 52198}, {47352, 57345}

X(57312) = reflection of X(i) in X(j) for these {i,j}: {57348, 2}
X(57312) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53798, 57348}


X(57313) = X(3)X(2222)∩X(5)X(901)

Barycentrics    a^10-4*a^8*(b-c)^2-2*a^9*(b+c)+(b-c)^6*(b+c)^4-2*a*(b-c)^4*(b+c)^3*(b^2-3*b*c+c^2)+2*a^7*(b+c)*(4*b^2-3*b*c+4*c^2)-2*a^2*(b^2-c^2)^2*(b^4+3*b^3*c-9*b^2*c^2+3*b*c^3+c^4)+2*a^3*(b-c)^2*(b+c)*(4*b^4-5*b^3*c-8*b^2*c^2-5*b*c^3+4*c^4)+a^6*(5*b^4-26*b^3*c+7*b^2*c^2-26*b*c^3+5*c^4)-2*a^5*(b+c)*(6*b^4-11*b^3*c+4*b^2*c^2-11*b*c^3+6*c^4)-a^4*(b^6-26*b^5*c+22*b^4*c^2+12*b^3*c^3+22*b^2*c^4-26*b*c^5+c^6) : :
X(57313) = X[4]+2*X[38614], 2*X[5]+X[901], -4*X[140]+X[953], -4*X[546]+X[44973], 2*X[550]+X[44979], -5*X[631]+2*X[38617], -10*X[632]+X[38682], -5*X[1656]+2*X[3259], -7*X[3526]+X[38586], 2*X[6073]+X[12773], 2*X[6075]+X[12331], -7*X[31423]+X[34464]

X(57313) lies on these lines: {2, 53800}, {3, 2222}, {4, 38614}, {5, 901}, {30, 38705}, {140, 953}, {498, 3025}, {499, 13756}, {513, 38752}, {517, 3582}, {546, 44973}, {549, 38707}, {550, 44979}, {631, 38617}, {632, 38682}, {1656, 3259}, {3526, 38586}, {5445, 56691}, {5886, 57352}, {5957, 57370}, {6073, 12773}, {6075, 12331}, {10247, 53799}, {11231, 57343}, {11374, 33645}, {26446, 57351}, {31423, 34464}, {35013, 57337}, {38224, 53792}, {53801, 57353}, {53809, 57306}

X(57313) = reflection of X(i) in X(j) for these {i,j}: {38707, 549}, {57320, 2}
X(57313) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 31841, 38954}, {5, 901, 40100}, {1656, 38584, 3259}, {22102, 31841, 3}


X(57314) = X(3)X(125)∩X(5)X(925)

Barycentrics    (a^2-b^2-c^2)*(a^14-5*a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)+a^2*(b^2-c^2)^4*(4*b^4+b^2*c^2+4*c^4)+a^10*(10*b^4+9*b^2*c^2+10*c^4)-a^4*(b^2-c^2)^2*(7*b^6+b^4*c^2+b^2*c^4+7*c^6)-a^8*(11*b^6+5*b^4*c^2+5*b^2*c^4+11*c^6)+a^6*(9*b^8-2*b^6*c^2-2*b^4*c^4-2*b^2*c^6+9*c^8)) : :
X(57314) = 2*X[5]+X[925], -2*X[136]+5*X[1656], -4*X[140]+X[1300], -4*X[546]+X[44974], 2*X[550]+X[44990], -7*X[3526]+4*X[34840], -11*X[5070]+2*X[21667]

X(57314) lies on circumconic {{A, B, C, X(2383), X(5961)}} and on these lines: {2, 53802}, {3, 125}, {5, 925}, {30, 57374}, {136, 1656}, {140, 1300}, {523, 57366}, {546, 44974}, {549, 38718}, {550, 44990}, {2072, 57311}, {3526, 34840}, {3549, 52125}, {3564, 13557}, {5055, 57356}, {5070, 21667}, {5654, 34757}, {14643, 55121}, {14993, 57326}, {38225, 57372}

X(57314) = reflection of X(i) in X(j) for these {i,j}: {38718, 549}, {57334, 2}
X(57314) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53802, 57334}, {5, 925, 13556}, {131, 34844, 3}


X(57315) = X(3)X(33331)∩X(5)X(927)

Barycentrics    a^12-2*a^10*(b-c)^2-2*a^11*(b+c)-4*a^7*b*c*(b+c)*(b^2-5*b*c+c^2)-2*a*(b-c)^6*(b+c)^3*(b^2+b*c+c^2)+2*a^9*(b+c)*(3*b^2-b*c+3*c^2)+2*a^3*(b-c)^4*(b+c)*(b^4-2*b^3*c-4*b^2*c^2-2*b*c^3+c^4)+(b-c)^6*(b+c)^2*(b^4+2*b^3*c+4*b^2*c^2+2*b*c^3+c^4)-a^8*(2*b^4+10*b^3*c+11*b^2*c^2+10*b*c^3+2*c^4)-4*a^5*(b-c)^2*(b^5+b^3*c^2+b^2*c^3+c^5)-a^2*(b-c)^4*(b^6+2*b^4*c^2+2*b^2*c^4+c^6)-a^6*(b^6-8*b^5*c+20*b^3*c^3-8*b*c^5+c^6)+a^4*(b-c)^2*(4*b^6+4*b^5*c+b^4*c^2-14*b^3*c^3+b^2*c^4+4*b*c^5+4*c^6) : :
X(57315) = -2*X[2]+X[57353], X[3]+2*X[33331], 2*X[5]+X[927], -4*X[140]+X[2724], -4*X[546]+X[44975], -2*X[1566]+5*X[1656], -7*X[3090]+X[14732], 2*X[6074]+X[38574], 2*X[14505]+X[38572]

X(57315) lies on these lines: {2, 57353}, {3, 33331}, {5, 927}, {140, 2724}, {498, 44043}, {514, 38764}, {516, 57297}, {546, 44975}, {1566, 1656}, {3090, 14732}, {6074, 38574}, {14505, 38572}, {53801, 57320}

X(57315) = reflection of X(i) in X(j) for these {i,j}: {57353, 2}
X(57315) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {33331, 40554, 3}


X(57316) = X(3)X(128)∩X(5)X(930)

Barycentrics    a^16-7*a^14*(b^2+c^2)+(b^2-c^2)^6*(b^4+b^2*c^2+c^4)+7*a^12*(3*b^4+4*b^2*c^2+3*c^4)-6*a^10*(b^2+c^2)*(6*b^4+b^2*c^2+6*c^4)-a^2*(b^2-c^2)^4*(6*b^6+5*b^4*c^2+5*b^2*c^4+6*c^6)+a^4*(b^2-c^2)^2*(17*b^8+7*b^6*c^2+10*b^4*c^4+7*b^2*c^6+17*c^8)-a^6*(b^2+c^2)*(31*b^8-41*b^6*c^2+47*b^4*c^4-41*b^2*c^6+31*c^8)+a^8*(40*b^8+24*b^6*c^2+25*b^4*c^4+24*b^2*c^6+40*c^8) : :
X(57316) = X[3]+2*X[128], X[4]+2*X[38615], 2*X[5]+X[930], -2*X[137]+5*X[1656], -4*X[140]+X[1141], -4*X[546]+X[44976], 2*X[550]+X[44981], -5*X[631]+2*X[38618], -5*X[632]+2*X[12026], -X[1263]+4*X[3628], X[2888]+2*X[14071], -7*X[3090]+X[11671] and many others

X(57316) lies on these lines: {2, 25150}, {3, 128}, {4, 38615}, {5, 930}, {30, 23237}, {137, 1656}, {140, 1141}, {498, 3327}, {499, 7159}, {523, 57326}, {546, 44976}, {547, 25147}, {549, 9140}, {550, 44981}, {631, 38618}, {632, 12026}, {1263, 3628}, {2888, 14071}, {3090, 11671}, {3519, 27423}, {3526, 34837}, {3830, 38640}, {5055, 23516}, {7399, 15367}, {7999, 13504}, {10615, 19553}, {11444, 13505}, {13371, 14769}, {13856, 38899}, {14643, 45147}, {16239, 23238}, {18807, 25043}, {23319, 37452}, {27090, 35729}, {34418, 37126}, {37955, 57374}, {44299, 54045}, {53346, 57367}, {55132, 57317}

X(57316) = reflection of X(i) in X(j) for these {i,j}: {25147, 547}, {38710, 549}, {57324, 2}
X(57316) = complement of X(47065)
X(57316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25150, 57324}, {3, 128, 31656}, {5, 6592, 930}, {128, 13372, 3}, {140, 14072, 1141}, {549, 32423, 38710}, {632, 14073, 12026}, {1656, 13512, 137}, {3526, 38587, 34837}, {12026, 14073, 38683}


X(57317) = X(3)X(18284)∩X(5)X(933)

Barycentrics    a^22-7*a^20*(b^2+c^2)+a^4*(b-c)^4*(b+c)^4*(b^2+c^2)*(b^4-b^2*c^2+c^4)*(9*b^4+7*b^2*c^2+9*c^4)-a^10*(b^4-c^4)^2*(14*b^4-3*b^2*c^2+14*c^4)+a^18*(19*b^4+32*b^2*c^2+19*c^4)-a^16*(b^2+c^2)*(23*b^4+32*b^2*c^2+23*c^4)+(b^2-c^2)^8*(b^6+2*b^4*c^2+2*b^2*c^4+c^6)-a^2*(b^2-c^2)^6*(5*b^8+7*b^6*c^2+6*b^4*c^4+7*b^2*c^6+5*c^8)+a^8*(b-c)^2*(b+c)^2*(b^2+c^2)*(6*b^8+9*b^6*c^2+4*b^4*c^4+9*b^2*c^6+6*c^8)+a^14*(6*b^8+44*b^6*c^2+53*b^4*c^4+44*b^2*c^6+6*c^8)+a^12*(b^2+c^2)*(14*b^8-32*b^6*c^2+9*b^4*c^4-32*b^2*c^6+14*c^8)-a^6*(b^2-c^2)^2*(7*b^12+4*b^10*c^2+8*b^8*c^4-6*b^6*c^6+8*b^4*c^8+4*b^2*c^10+7*c^12) : :
X(57317) = X[4]+2*X[38616], 2*X[5]+X[933], -4*X[140]+X[18401], -4*X[546]+X[44977], -5*X[1656]+2*X[20625]

X(57317) lies on these lines: {2, 53808}, {3, 18284}, {4, 38616}, {5, 933}, {30, 57381}, {140, 18401}, {381, 23516}, {523, 57377}, {546, 44977}, {549, 10714}, {1656, 20625}, {7399, 41253}, {7506, 54067}, {9730, 10628}, {11587, 22467}, {11701, 45735}, {37955, 57306}, {38321, 57334}, {55132, 57316}

X(57317) = reflection of X(i) in X(j) for these {i,j}: {57369, 2}
X(57317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53808, 57369}, {1656, 38585, 20625}


X(57318) = X(2)X(53804)∩X(5)X(934)

Barycentrics    a^11-a^10*(b+c)+(b-c)^6*(b+c)^5-5*a^9*(b^2-b*c+c^2)+a^8*(b+c)*(5*b^2-4*b*c+5*c^2)-2*a^6*(b-c)^2*(b+c)*(5*b^2+b*c+5*c^2)-a^2*(b-c)^4*(b+c)^3*(5*b^2+4*b*c+5*c^2)+a^7*(b^2+c^2)*(10*b^2-23*b*c+10*c^2)-a*(b-c)^4*(b+c)^2*(b^4-6*b^3*c-6*b^2*c^2-6*b*c^3+c^4)+2*a^4*(b-c)^2*(b+c)*(5*b^4+b^3*c+b*c^3+5*c^4)-a^5*(b-c)^2*(10*b^4-11*b^3*c-2*b^2*c^2-11*b*c^3+10*c^4)+a^3*(b-c)^2*(5*b^6-11*b^5*c-7*b^4*c^2-6*b^3*c^3-7*b^2*c^4-11*b*c^5+5*c^6) : :
X(57318) = -X[3]+4*X[40555], 2*X[5]+X[934], -4*X[140]+X[972], -4*X[546]+X[44978], 2*X[550]+X[44980], -5*X[1656]+2*X[5514], X[5779]+2*X[28344], -4*X[9955]+X[48357], X[37822]+2*X[52879]

X(57318) lies on these lines: {2, 53804}, {3, 40555}, {5, 934}, {140, 972}, {499, 1360}, {546, 44978}, {550, 44980}, {1656, 5514}, {5779, 28344}, {5886, 57297}, {6366, 38752}, {6862, 15725}, {9955, 48357}, {37822, 52879}, {38037, 38107}

X(57318) = reflection of X(i) in X(j) for these {i,j}: {57321, 2}
X(57318) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53804, 57321}, {40555, 44993, 3}


X(57319) = X(2)X(57346)∩X(5)X(935)

Barycentrics    a^20-5*a^18*(b^2+c^2)+(b^2-c^2)^6*(b^2+c^2)^2*(b^4+b^2*c^2+c^4)-a^14*(b^2+c^2)*(b^4+18*b^2*c^2+c^4)+2*a^16*(4*b^4+7*b^2*c^2+4*c^4)+a^12*(-11*b^8+16*b^6*c^2+15*b^4*c^4+16*b^2*c^6-11*c^8)-a^2*(b-c)^4*(b+c)^4*(b^2+c^2)*(4*b^8+b^6*c^2+4*b^4*c^4+b^2*c^6+4*c^8)-a^8*(b^2-c^2)^2*(5*b^8+23*b^6*c^2+27*b^4*c^4+23*b^2*c^6+5*c^8)+a^10*(13*b^10-16*b^6*c^4-16*b^4*c^6+13*c^10)+2*a^4*(b^2-c^2)^2*(3*b^12-b^10*c^2-2*b^8*c^4-4*b^6*c^6-2*b^4*c^8-b^2*c^10+3*c^12)-a^6*(3*b^14-13*b^12*c^2+10*b^8*c^6+10*b^6*c^8-13*b^2*c^12+3*c^14) : :
X(57319) = -2*X[2]+X[57346], X[3]+2*X[42426], 2*X[5]+X[935], -4*X[140]+X[2697], -5*X[1656]+2*X[38971], X[10749]+2*X[46619], X[11799]+2*X[54075], X[12918]+2*X[46631], 2*X[47335]+X[51940]

X(57319) lies on these lines: {2, 57346}, {3, 42426}, {5, 935}, {30, 38717}, {140, 2697}, {381, 57311}, {523, 57304}, {525, 14643}, {1503, 15061}, {1656, 38971}, {2070, 57369}, {5054, 57344}, {5055, 57380}, {10516, 57349}, {10749, 46619}, {11799, 54075}, {11911, 57365}, {12918, 46631}, {47335, 51940}, {55142, 57307}

X(57319) = reflection of X(i) in X(j) for these {i,j}: {57346, 2}


X(57320) = X(3)X(3259)∩X(5)X(953)

Barycentrics    a^10-2*a^9*(b+c)+(b-c)^6*(b+c)^4-2*a^8*(b^2-4*b*c+c^2)-2*a*(b-c)^4*(b+c)^3*(b^2-3*b*c+c^2)-2*a^2*(b-c)^4*(b+c)^2*(2*b^2+3*b*c+2*c^2)+2*a^7*(b+c)*(4*b^2-7*b*c+4*c^2)-a^6*(b^4+18*b^3*c-27*b^2*c^2+18*b*c^3+c^4)-2*a^5*(b+c)*(6*b^4-19*b^3*c+24*b^2*c^2-19*b*c^3+6*c^4)+a^4*(5*b^6+10*b^5*c-34*b^4*c^2+36*b^3*c^3-34*b^2*c^4+10*b*c^5+5*c^6)+2*a^3*(4*b^7-13*b^6*c+9*b^5*c^2+9*b^2*c^5-13*b*c^6+4*c^7) : :
X(57320) = X[3]+2*X[3259], X[4]+2*X[38617], 2*X[5]+X[953], -4*X[140]+X[901], -4*X[546]+X[44979], 2*X[550]+X[44973], -5*X[631]+2*X[38614], 2*X[1484]+X[14513], -5*X[1656]+2*X[31841], -7*X[3526]+4*X[22102], 8*X[3628]+X[38682], 5*X[8227]+X[34464] and many others

X(57320) lies on these lines: {2, 53800}, {3, 3259}, {4, 38617}, {5, 953}, {30, 38707}, {140, 901}, {381, 57337}, {498, 13756}, {499, 3025}, {513, 57298}, {517, 38752}, {546, 44979}, {549, 38705}, {550, 44973}, {631, 38614}, {1484, 14513}, {1656, 31841}, {3526, 22102}, {3628, 38682}, {5443, 56691}, {5886, 57342}, {5957, 57367}, {7506, 10016}, {8227, 34464}, {11230, 57325}, {11374, 24201}, {11698, 14511}, {12331, 55317}, {12773, 55314}, {15561, 53792}, {17101, 32612}, {18342, 51402}, {31512, 33814}, {35013, 57354}, {39479, 45735}, {53801, 57315}, {53809, 57305}

X(57320) = reflection of X(i) in X(j) for these {i,j}: {38705, 549}, {57313, 2}
X(57320) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53800, 57313}, {3, 3259, 40100}, {5, 953, 38954}, {1656, 38586, 31841}, {3526, 38584, 22102}


X(57321) = X(3)X(5514)∩X(5)X(972)

Barycentrics    a^11-a^10*(b+c)+(b-c)^6*(b+c)^5+a^9*(-5*b^2+9*b*c-5*c^2)-a*(b^2-c^2)^4*(b^2-6*b*c+c^2)+a^8*(b+c)*(5*b^2-8*b*c+5*c^2)-2*a^6*(b-c)^2*(b+c)*(5*b^2+7*b*c+5*c^2)-a^2*(b-c)^4*(b+c)^3*(5*b^2+8*b*c+5*c^2)+2*a^4*(b-c)^2*(b+c)*(5*b^4+11*b^3*c+4*b^2*c^2+11*b*c^3+5*c^4)+a^7*(10*b^4-17*b^3*c+12*b^2*c^2-17*b*c^3+10*c^4)-a^5*(b-c)^2*(10*b^4-b^3*c-6*b^2*c^2-b*c^3+10*c^4)+a^3*(b-c)^2*(5*b^6-9*b^5*c-27*b^4*c^2-34*b^3*c^3-27*b^2*c^4-9*b*c^5+5*c^6) : :
X(57321) = X[3]+2*X[5514], 2*X[5]+X[972], -4*X[140]+X[934], -4*X[546]+X[44980], 2*X[550]+X[44978], -5*X[1656]+2*X[44993], -7*X[3526]+4*X[40555], 2*X[3579]+X[48357]

X(57321) lies on these lines: {2, 53804}, {3, 5514}, {5, 972}, {140, 934}, {498, 1360}, {546, 44980}, {550, 44978}, {1656, 44993}, {3526, 40555}, {3579, 48357}, {6366, 57298}, {26446, 38764}

X(57321) = reflection of X(i) in X(j) for these {i,j}: {57318, 2}
X(57321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53804, 57318}


X(57322) = X(2)X(3)∩X(2103)X(5690)

Barycentrics    2*(1+J)*S^2-3*a^2*SA : :

X(57322) lies on circumconic {{A, B, C, X(1114), X(15392)}} and on these lines: {2, 3}, {498, 51874}, {499, 51873}, {2100, 8227}, {2101, 31423}, {2102, 5901}, {2103, 5690}, {2104, 18583}, {2105, 48876}, {2574, 14643}, {2575, 15061}, {3582, 34593}, {6699, 14500}, {8115, 50461}, {10540, 13415}, {10782, 33814}, {12900, 14499}, {13414, 22115}

X(57322) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1312, 10751}, {5, 1113, 10750}, {1656, 15154, 1313}, {15765, 18585, 14710}


X(57323) = X(2)X(3)∩X(2102)X(5690)

Barycentrics    2*(-1+J)*S^2+3*a^2*SA : :

X(57323) lies on circumconic {{A, B, C, X(1113), X(15392)}} and on these lines: {2, 3}, {498, 51873}, {499, 51874}, {2100, 31423}, {2101, 8227}, {2102, 5690}, {2103, 5901}, {2104, 48876}, {2105, 18583}, {2574, 15061}, {2575, 14643}, {3582, 34592}, {6699, 14499}, {8116, 50461}, {10540, 13414}, {10781, 33814}, {12900, 14500}, {13415, 22115}

X(57323) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1313, 10750}, {5, 1114, 10751}, {1656, 15155, 1312}, {15765, 18585, 14709}


X(57324) = X(3)X(137)∩X(5)X(49)

Barycentrics    a^16-5*a^14*(b^2+c^2)+(b^2-c^2)^6*(b^4-b^2*c^2+c^4)-a^2*(b-c)^4*(b+c)^4*(b^2+c^2)*(6*b^4-7*b^2*c^2+6*c^4)-2*a^10*(b^2+c^2)*(8*b^4+b^2*c^2+8*c^4)+a^12*(11*b^4+16*b^2*c^2+11*c^4)+3*a^4*(b^2-c^2)^2*(5*b^8-b^6*c^2-b^2*c^6+5*c^8)+a^8*(20*b^8+4*b^6*c^2+9*b^4*c^4+4*b^2*c^6+20*c^8)-3*a^6*(7*b^10-6*b^8*c^2+2*b^6*c^4+2*b^4*c^6-6*b^2*c^8+7*c^10) : :
X(57324) = X[3]+2*X[137], X[4]+2*X[38618], X[74]+2*X[43966], -2*X[128]+5*X[1656], -4*X[140]+X[930], -4*X[546]+X[44981], 2*X[550]+X[44976], 5*X[631]+X[11671], -5*X[632]+2*X[6592], -7*X[3526]+4*X[13372], 5*X[3567]+X[13504], -4*X[3628]+X[14072] and many others

X(57324) lies on circumconic {{A, B, C, X(523), X(27423)}} and on these lines: {2, 25150}, {3, 137}, {4, 38618}, {5, 49}, {30, 25147}, {74, 43966}, {128, 1656}, {140, 930}, {381, 23516}, {498, 7159}, {499, 3327}, {523, 15392}, {546, 44981}, {547, 23237}, {549, 38706}, {550, 44976}, {631, 11671}, {632, 6592}, {1624, 18369}, {2070, 32762}, {3459, 38899}, {3518, 14652}, {3526, 13372}, {3567, 13504}, {3628, 14072}, {5433, 14101}, {5576, 23319}, {5965, 16336}, {7506, 15959}, {7529, 15960}, {10205, 25148}, {11016, 32551}, {11451, 54045}, {13505, 15043}, {14050, 45622}, {14073, 55856}, {14140, 24385}, {15018, 47064}, {15061, 45147}, {15307, 36842}, {15560, 57331}, {15565, 57357}, {15701, 38640}, {19552, 40631}, {20413, 36837}, {21975, 35720}, {23238, 48154}, {23320, 45735}, {24306, 35729}, {24573, 25044}, {34418, 44802}, {37943, 57305}, {55132, 57369}

X(57324) = midpoint of X(i) and X(j) for these {i,j}: {15392, 57368}, {2, 47065}
X(57324) = reflection of X(i) in X(j) for these {i,j}: {23237, 547}, {381, 23516}, {38706, 549}, {57316, 2}
X(57324) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25150, 57316}, {2, 47065, 25150}, {5, 1141, 31656}, {5, 12026, 1141}, {5, 7604, 34596}, {5, 8254, 7604}, {137, 34837, 3}, {140, 1263, 930}, {631, 11671, 38615}, {3526, 13512, 13372}


X(57325) = X(2)X(53809)∩X(5)X(1290)

Barycentrics    a^13-a^12*(b+c)+a^11*(-4*b^2+b*c-4*c^2)+4*a^10*(b+c)*(b^2+c^2)+(b-c)^6*(b+c)^5*(b^2+c^2)+a^4*(b-c)^2*(b+c)*(5*b^2+4*b*c+5*c^2)*(b^4-b^2*c^2+c^4)-a*(b^2-c^2)^4*(b^4-4*b^3*c+4*b^2*c^2-4*b*c^3+c^4)+a^6*b*c*(b+c)*(2*b^4-3*b^3*c+8*b^2*c^2-3*b*c^3+2*c^4)-a^2*(b-c)^4*(b+c)^3*(4*b^4+2*b^3*c+b^2*c^2+2*b*c^3+4*c^4)-a^8*(b+c)*(5*b^4+3*b^2*c^2+5*c^4)+a^9*(5*b^4-6*b^3*c+7*b^2*c^2-6*b*c^3+5*c^4)+a^7*b*c*(8*b^4-7*b^3*c+5*b^2*c^2-7*b*c^3+8*c^4)+a^3*(b^2-c^2)^2*(4*b^6-9*b^5*c+3*b^4*c^2+2*b^3*c^3+3*b^2*c^4-9*b*c^5+4*c^6)+a^5*(-5*b^8+2*b^7*c+9*b^6*c^2-7*b^5*c^3-4*b^4*c^4-7*b^3*c^5+9*b^2*c^6+2*b*c^7-5*c^8) : :
X(57325) = X[3]+2*X[42422], 2*X[5]+X[1290], -4*X[140]+X[2687], -4*X[546]+X[44982], -5*X[1656]+2*X[5520], 2*X[10225]+X[51883], X[10738]+2*X[36167], X[10742]+2*X[46636], X[22765]+2*X[30447], -5*X[38762]+2*X[46635]

X(57325) lies on these lines: {2, 53809}, {3, 42422}, {5, 1290}, {30, 38693}, {140, 2687}, {498, 31522}, {499, 31524}, {513, 14643}, {517, 15061}, {523, 38752}, {546, 44982}, {1656, 5520}, {5959, 57370}, {10225, 51883}, {10738, 36167}, {10742, 46636}, {11230, 57320}, {22765, 30447}, {38762, 46635}

X(57325) = reflection of X(i) in X(j) for these {i,j}: {57343, 2}


X(57326) = X(3)X(14980)∩X(5)X(1291)

Barycentrics    a^22-8*a^20*(b^2+c^2)+(b-c)^8*(b+c)^8*(b^2+c^2)*(b^4+c^4)+a^18*(26*b^4+47*b^2*c^2+26*c^4)-3*a^12*b^2*c^2*(b^2+c^2)*(39*b^4+8*b^2*c^2+39*c^4)-a^16*(b^2+c^2)*(43*b^4+69*b^2*c^2+43*c^4)-2*a^2*(b^2-c^2)^6*(3*b^8+2*b^6*c^2+b^4*c^4+2*b^2*c^6+3*c^8)+a^14*(34*b^8+143*b^6*c^2+181*b^4*c^4+143*b^2*c^6+34*c^8)+a^4*(b^2-c^2)^4*(16*b^10+b^8*c^2+2*b^6*c^4+2*b^4*c^6+b^2*c^8+16*c^10)+a^10*(-28*b^12+85*b^10*c^2+51*b^8*c^4+45*b^6*c^6+51*b^4*c^8+85*b^2*c^10-28*c^12)-a^6*(b^2-c^2)^2*(27*b^12-23*b^10*c^2+b^8*c^4-8*b^6*c^6+b^4*c^8-23*b^2*c^10+27*c^12)+a^8*(34*b^14-77*b^12*c^2+22*b^10*c^4-6*b^8*c^6-6*b^6*c^8+22*b^4*c^10-77*b^2*c^12+34*c^14) : :
X(57326) = -2*X[2]+X[57368], 2*X[3]+X[14980], 2*X[5]+X[1291], -4*X[140]+X[14979], -5*X[1656]+2*X[46439], -X[2070]+4*X[10615], -4*X[2072]+X[19552], X[3153]+2*X[6150], 2*X[16337]+X[18859], -X[23236]+4*X[43969]

X(57326) lies on these lines: {2, 57368}, {3, 14980}, {5, 1291}, {30, 25147}, {140, 14979}, {523, 57316}, {549, 34312}, {1154, 15061}, {1157, 37938}, {1510, 14643}, {1656, 46439}, {2070, 10615}, {2072, 19552}, {3153, 6150}, {14993, 57314}, {15392, 25150}, {16337, 18859}, {23236, 43969}, {37955, 57334}

X(57326) = reflection of X(i) in X(j) for these {i,j}: {57368, 2}
X(57326) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 45180, 14980}


X(57327) = X(3)X(120)∩X(5)X(1292)

Barycentrics    a^8-a^6*b*c-2*a^7*(b+c)+4*a^2*b*(b-c)^2*c*(b^2+c^2)+(b-c)^4*(b+c)^2*(b^2+c^2)-a^4*(b^2+4*b*c+c^2)*(2*b^2+b*c+2*c^2)+a^5*(b+c)*(2*b^2+7*b*c+2*c^2)-2*a*(b-c)^2*(b+c)*(b^4+c^4)+a^3*(b+c)*(2*b^4-3*b^3*c+8*b^2*c^2-3*b*c^3+2*c^4) : :
X(57327) = X[3]+2*X[120], X[4]+2*X[38619], 2*X[5]+X[1292], -X[105]+4*X[140], -4*X[546]+X[44983], 2*X[549]+X[10712], 2*X[550]+X[10729], 5*X[631]+X[20344], -10*X[632]+X[38670], 2*X[1385]+X[50911], -X[1482]+4*X[11730], -5*X[1656]+2*X[5511] and many others

X(57327) lies on these lines: {2, 28915}, {3, 120}, {4, 38619}, {5, 1292}, {30, 38712}, {105, 140}, {498, 1358}, {499, 3021}, {528, 5054}, {546, 44983}, {549, 10712}, {550, 10729}, {631, 20344}, {632, 38670}, {1385, 50911}, {1482, 11730}, {1656, 5511}, {2775, 14643}, {2788, 15561}, {2795, 38224}, {2809, 26446}, {2814, 57303}, {2820, 38764}, {2826, 38752}, {2832, 57328}, {2833, 57329}, {2834, 57330}, {2835, 38776}, {2836, 15061}, {2837, 57331}, {2838, 57332}, {3039, 26364}, {3090, 34547}, {3525, 51530}, {3526, 6714}, {3628, 38684}, {3837, 19915}, {5540, 31423}, {5690, 10699}, {6989, 52826}, {9519, 57300}, {9520, 57301}, {9521, 57302}, {9522, 38796}, {9523, 57304}, {10303, 20097}, {10760, 48876}, {10773, 33814}, {14661, 40534}, {38762, 46409}, {38794, 53756}, {50821, 50913}, {50824, 50912}

X(57327) = midpoint of X(i) and X(j) for these {i,j}: {10712, 38694}
X(57327) = reflection of X(i) in X(j) for these {i,j}: {38694, 549}, {57299, 2}
X(57327) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 28915, 57299}, {3, 120, 10743}, {5, 1292, 15521}, {631, 20344, 38603}, {1656, 38589, 5511}, {3526, 38575, 6714}


X(57328) = X(3)X(121)∩X(5)X(1293)

Barycentrics    a^7-2*a^6*(b+c)+a^5*(-5*b^2+9*b*c-5*c^2)+(b-c)^2*(b+c)^3*(b^2-3*b*c+c^2)-a*(b^2-c^2)^2*(2*b^2-9*b*c+2*c^2)+a^4*(b+c)*(4*b^2+3*b*c+4*c^2)-3*a^2*(b+c)*(b^4-4*b^2*c^2+c^4)+6*a^3*(b^4-3*b^3*c-b^2*c^2-3*b*c^3+c^4) : :
X(57328) = X[3]+2*X[121], X[4]+2*X[38620], 2*X[5]+X[1293], -X[106]+4*X[140], -4*X[546]+X[44984], 2*X[549]+X[10713], 2*X[550]+X[10730], 5*X[631]+X[21290], -10*X[632]+X[38671], -X[1054]+7*X[31423], 2*X[1385]+X[50914], -X[1482]+4*X[11731] and many others

X(57328) lies on these lines: {2, 53790}, {3, 121}, {4, 38620}, {5, 1293}, {30, 38713}, {106, 140}, {498, 1357}, {499, 6018}, {517, 57352}, {546, 44984}, {549, 10713}, {550, 10730}, {631, 21290}, {632, 38671}, {993, 51626}, {1054, 31423}, {1385, 50914}, {1482, 11731}, {1656, 5510}, {2776, 14643}, {2789, 15561}, {2796, 38068}, {2802, 26446}, {2810, 57297}, {2815, 57303}, {2821, 38764}, {2827, 38752}, {2832, 57327}, {2839, 57329}, {2840, 57330}, {2841, 38776}, {2842, 15061}, {2843, 57331}, {2844, 57332}, {3038, 26364}, {3090, 34548}, {3525, 51531}, {3526, 6715}, {3628, 38685}, {5690, 10700}, {6684, 11814}, {6989, 52827}, {9519, 57299}, {9524, 57301}, {9525, 57302}, {9526, 38796}, {9527, 57304}, {10303, 20098}, {10761, 48876}, {10774, 33814}, {11231, 57309}, {50821, 50915}

X(57328) = midpoint of X(i) and X(j) for these {i,j}: {10713, 38695}
X(57328) = reflection of X(i) in X(j) for these {i,j}: {38695, 549}, {57300, 2}
X(57328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53790, 57300}, {3, 121, 10744}, {5, 1293, 15522}, {631, 21290, 38604}, {1656, 38590, 5510}, {3526, 38576, 6715}


X(57329) = X(3)X(113)∩X(5)X(1294)

Barycentrics    (a^2-b^2-c^2)*(a^14-a^12*(b^2+c^2)+21*a^8*(b^2-c^2)^2*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)+a^10*(-8*b^4+17*b^2*c^2-8*c^4)+a^2*(b^2-c^2)^4*(2*b^4+b^2*c^2+2*c^4)+a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4+14*b^2*c^2+5*c^4)-a^6*(b^2-c^2)^2*(19*b^4+40*b^2*c^2+19*c^4)) : :
X(57329) = X[4]+2*X[38621], 2*X[5]+X[1294], X[20]+2*X[49117], -X[107]+4*X[140], -2*X[133]+5*X[1656], -X[381]+2*X[36520], -4*X[546]+X[44985], 2*X[549]+X[10714], 2*X[550]+X[10152], 5*X[631]+X[34186], -10*X[632]+X[38672], 2*X[1385]+X[50916] and many others

X(57329) lies on these lines: {2, 53803}, {3, 113}, {4, 38621}, {5, 1294}, {20, 49117}, {30, 38714}, {107, 140}, {133, 1656}, {381, 36520}, {498, 3324}, {499, 7158}, {523, 57344}, {546, 44985}, {549, 10714}, {550, 10152}, {631, 34186}, {632, 38672}, {1385, 50916}, {1482, 11732}, {1503, 6760}, {1650, 14644}, {2072, 57365}, {2790, 15561}, {2797, 38224}, {2803, 57298}, {2811, 57297}, {2816, 10164}, {2822, 38764}, {2828, 38752}, {2833, 57327}, {2839, 57328}, {2845, 57330}, {2846, 38776}, {2847, 57331}, {2848, 57332}, {3090, 34549}, {3523, 5667}, {3525, 51532}, {3526, 6716}, {3628, 38686}, {3843, 38956}, {5054, 9530}, {5690, 10701}, {6794, 47409}, {6989, 52828}, {9033, 15061}, {9520, 57299}, {9524, 57300}, {9528, 57302}, {9529, 38796}, {10257, 57307}, {10762, 48876}, {10775, 33814}, {14379, 23325}, {15720, 52057}, {23241, 46853}, {38728, 53716}, {38739, 53723}

X(57329) = midpoint of X(i) and X(j) for these {i,j}: {10714, 23239}
X(57329) = reflection of X(i) in X(j) for these {i,j}: {23239, 549}, {381, 36520}, {57301, 2}
X(57329) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53803, 57301}, {3, 10745, 23240}, {3, 122, 10745}, {5, 1294, 22337}, {122, 34842, 3}, {1656, 38591, 133}, {3526, 38577, 6716}


X(57330) = X(3)X(119)∩X(5)X(1295)

Barycentrics    (a^2-b^2-c^2)*(a^11-a^10*(b+c)+3*a^8*(b-c)^2*(b+c)-(b-c)^6*(b+c)^5+a^9*(-3*b^2+7*b*c-3*c^2)-2*a^6*(b-c)^2*(b+c)*(b^2-5*b*c+c^2)+a*(b^2-c^2)^4*(b^2-4*b*c+c^2)+a^7*(b-c)^2*(2*b^2-7*b*c+2*c^2)+a^2*(b-c)^4*(b+c)^3*(3*b^2+4*b*c+3*c^2)-2*a^4*(b-c)^2*(b+c)*(b^4+6*b^3*c-2*b^2*c^2+6*b*c^3+c^4)+a^5*(b-c)^2*(2*b^4+b^3*c-14*b^2*c^2+b*c^3+2*c^4)-a^3*(b^2-c^2)^2*(3*b^4-11*b^3*c+4*b^2*c^2-11*b*c^3+3*c^4)) : :
X(57330) = -2*X[2]+X[57302], X[4]+2*X[38622], 2*X[5]+X[1295], -X[108]+4*X[140], -4*X[546]+X[44986], 2*X[549]+X[10715], 2*X[550]+X[10731], 5*X[631]+X[34188], -10*X[632]+X[38673], 2*X[1385]+X[50917], -X[1482]+4*X[11733], -5*X[1656]+2*X[25640] and many others

X(57330) lies on these lines: {2, 57302}, {3, 119}, {4, 38622}, {5, 1295}, {30, 38715}, {108, 140}, {498, 1359}, {499, 3318}, {546, 44986}, {549, 10715}, {550, 10731}, {631, 34188}, {632, 38673}, {1385, 50917}, {1482, 11733}, {1656, 25640}, {2778, 14643}, {2791, 15561}, {2798, 38224}, {2804, 57298}, {2812, 57297}, {2817, 26446}, {2823, 38764}, {2834, 57327}, {2840, 57328}, {2845, 57329}, {2849, 38776}, {2850, 15061}, {2851, 57331}, {3090, 34550}, {3525, 51533}, {3526, 6717}, {3628, 38687}, {5690, 10702}, {6989, 52829}, {9521, 57299}, {9525, 57300}, {9528, 57301}, {9531, 38796}, {10763, 48876}, {10776, 33814}, {26492, 52112}

X(57330) = midpoint of X(i) and X(j) for these {i,j}: {10715, 38696}
X(57330) = reflection of X(i) in X(j) for these {i,j}: {38696, 549}, {57302, 2}
X(57330) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 123, 10746}, {5, 1295, 33566}, {631, 34188, 38606}, {1656, 38592, 25640}, {3526, 38578, 6717}


X(57331) = X(3)X(126)∩X(5)X(1296)

Barycentrics    a^10-6*a^8*(b^2+c^2)+(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)+3*a^6*(b^4+13*b^2*c^2+c^4)+a^4*(b^2+c^2)*(5*b^4-39*b^2*c^2+5*c^4)-2*a^2*(2*b^8-9*b^6*c^2+2*b^4*c^4-9*b^2*c^6+2*c^8) : :
X(57331) = X[3]+2*X[126], X[4]+2*X[38623], 2*X[5]+X[1296], -X[111]+4*X[140], 2*X[113]+X[35447], 2*X[182]+X[36883], X[382]+2*X[38805], -4*X[546]+X[44987], 2*X[549]+X[10717], 2*X[550]+X[10734], 5*X[631]+X[14360], -10*X[632]+X[38675] and many others

X(57331) lies on these lines: {2, 33962}, {3, 126}, {4, 38623}, {5, 1296}, {30, 38716}, {111, 140}, {113, 35447}, {182, 36883}, {382, 38805}, {498, 3325}, {499, 6019}, {511, 57312}, {512, 57348}, {523, 57345}, {524, 57362}, {543, 5054}, {546, 44987}, {549, 10717}, {550, 10734}, {631, 14360}, {632, 38675}, {1352, 14688}, {1385, 50924}, {1499, 57361}, {1656, 5512}, {1657, 38803}, {2780, 14643}, {2793, 15561}, {2805, 57298}, {2813, 57297}, {2819, 57303}, {2824, 38764}, {2830, 38752}, {2837, 57327}, {2843, 57328}, {2847, 57329}, {2851, 57330}, {2852, 38776}, {2854, 15061}, {3054, 45012}, {3070, 11836}, {3071, 11835}, {3523, 14654}, {3524, 32424}, {3525, 51535}, {3526, 6719}, {3628, 38688}, {3851, 38800}, {5055, 38799}, {5071, 37749}, {5079, 38801}, {5690, 10704}, {6989, 52832}, {9129, 38794}, {9172, 15694}, {9522, 57299}, {9526, 57300}, {9529, 57301}, {9531, 57302}, {10256, 57306}, {10257, 57346}, {10303, 20099}, {10765, 48876}, {10779, 33814}, {14850, 57371}, {15122, 47325}, {15560, 57324}, {19901, 45689}, {32233, 36832}, {36696, 38110}, {38728, 53718}, {38739, 53726}, {38750, 53736}, {38762, 53744}, {38807, 55858}, {44214, 57375}, {44574, 56435}, {50821, 50926}, {50824, 50925}, {55135, 57373}

X(57331) = midpoint of X(i) and X(j) for these {i,j}: {10717, 38698}
X(57331) = reflection of X(i) in X(j) for these {i,j}: {14666, 38698}, {36696, 38110}, {38698, 549}, {38796, 2}, {38798, 38716}, {52698, 38804}
X(57331) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33962, 38796}, {3, 126, 10748}, {4, 38623, 38797}, {5, 1296, 22338}, {30, 38716, 38798}, {111, 140, 38806}, {126, 40556, 3}, {543, 38804, 52698}, {549, 10717, 14666}, {631, 14360, 14650}, {1656, 38593, 5512}, {3526, 11258, 6719}, {5054, 52698, 38804}, {38623, 40340, 4}


X(57332) = X(3)X(114)∩X(5)X(1297)

Barycentrics    (a^2-b^2-c^2)*(a^12-a^10*(b^2+c^2)-2*a^6*(b^2-c^2)^2*(b^2+c^2)-(b^2-c^2)^4*(b^4+c^4)+a^8*(b^4-b^2*c^2+c^4)-a^4*(b^2-c^2)^2*(b^4+3*b^2*c^2+c^4)+3*a^2*(b^10-b^8*c^2-b^2*c^8+c^10)) : :
X(57332) = X[4]+2*X[38624], 2*X[5]+X[1297], X[20]+2*X[19163], -X[112]+4*X[140], -2*X[132]+5*X[1656], X[355]+2*X[12265], -4*X[546]+X[44988], 2*X[549]+X[10718], 2*X[550]+X[10735], 5*X[631]+X[13219], -10*X[632]+X[38676], 2*X[1385]+X[13280] and many others

X(57332) lies on these lines: {2, 53795}, {3, 114}, {4, 38624}, {5, 1297}, {11, 13116}, {12, 13117}, {20, 19163}, {30, 38717}, {35, 13297}, {36, 13296}, {112, 140}, {132, 1656}, {339, 14651}, {355, 12265}, {485, 49219}, {486, 49218}, {498, 3320}, {499, 6020}, {511, 57350}, {512, 57349}, {523, 57346}, {546, 44988}, {549, 10718}, {550, 10735}, {631, 13219}, {632, 38676}, {1385, 13280}, {2072, 57305}, {2781, 14643}, {2782, 34897}, {2799, 38224}, {2806, 57298}, {2825, 38764}, {2831, 38752}, {2838, 57327}, {2844, 57328}, {2848, 57329}, {2853, 38776}, {3090, 12384}, {3091, 12253}, {3311, 13918}, {3312, 13985}, {3523, 13200}, {3525, 51536}, {3526, 6720}, {3541, 13166}, {3542, 12145}, {3628, 38689}, {3851, 48658}, {5054, 57373}, {5055, 9530}, {5418, 49270}, {5420, 49271}, {5432, 13311}, {5433, 13312}, {5690, 10705}, {5892, 16225}, {5901, 13099}, {6989, 52833}, {7502, 11605}, {7529, 12413}, {7583, 19093}, {7584, 19094}, {7741, 12955}, {7951, 12945}, {8227, 12408}, {8981, 19115}, {9517, 15061}, {9518, 57297}, {9523, 57299}, {9527, 57300}, {9532, 57303}, {9956, 12784}, {10104, 12207}, {10256, 57379}, {10257, 57345}, {10576, 35829}, {10577, 35828}, {10766, 48876}, {10780, 33814}, {13221, 31423}, {13966, 19114}, {14900, 15720}, {14983, 46029}, {15701, 38639}, {19164, 34002}, {38728, 53719}, {38762, 53745}, {38794, 53760}, {38806, 50381}, {40121, 47525}

X(57332) = midpoint of X(i) and X(j) for these {i,j}: {10718, 38699}
X(57332) = reflection of X(i) in X(j) for these {i,j}: {16225, 5892}, {38699, 549}, {57304, 2}
X(57332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53795, 57304}, {3, 127, 10749}, {3, 48681, 14689}, {5, 1297, 12918}, {127, 34841, 3}, {631, 13219, 38608}, {1656, 13115, 132}, {3091, 12253, 19160}, {3526, 13310, 6720}


X(57333) = X(3)X(130)∩X(5)X(1298)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^18*b^2*c^2-b^2*c^2*(b^2-c^2)^8*(b^2+c^2)+a^16*(b^6-5*b^4*c^2-5*b^2*c^4+c^6)+a^14*(-6*b^8+9*b^6*c^2+16*b^4*c^4+9*b^2*c^6-6*c^8)+a^4*(b-c)^4*(b+c)^4*(b^2+c^2)*(b^8-9*b^6*c^2-9*b^2*c^6+c^8)+a^2*b^2*c^2*(b^2-c^2)^4*(5*b^8-4*b^6*c^2-b^4*c^4-4*b^2*c^6+5*c^8)+a^12*(b^2+c^2)*(15*b^8-23*b^6*c^2+4*b^4*c^4-23*b^2*c^6+15*c^8)+a^8*(b-c)^2*(b+c)^2*(b^2+c^2)*(15*b^8+b^6*c^2+12*b^4*c^4+b^2*c^6+15*c^8)+a^10*(-20*b^12+8*b^10*c^2+12*b^8*c^4+9*b^6*c^6+12*b^4*c^8+8*b^2*c^10-20*c^12)-a^6*(b^2-c^2)^2*(6*b^12-5*b^10*c^2-4*b^8*c^4-4*b^4*c^8-5*b^2*c^10+6*c^12)) : :
X(57333) = -2*X[2]+X[57335], X[3]+2*X[130], 2*X[5]+X[1298], -2*X[129]+5*X[1656], -4*X[140]+X[1303], -4*X[546]+X[44989], 2*X[550]+X[44991], -7*X[3526]+4*X[34839], -4*X[5462]+X[21661]

X(57333) lies on these lines: {2, 57335}, {3, 130}, {5, 1298}, {129, 1656}, {140, 1303}, {546, 44989}, {550, 44991}, {3526, 34839}, {5462, 21661}, {5891, 15561}, {7529, 22551}, {14643, 32438}, {14845, 57301}, {22552, 36752}

X(57333) = reflection of X(i) in X(j) for these {i,j}: {57335, 2}
X(57333) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {130, 34838, 3}


X(57334) = X(3)X(136)∩X(5)X(1300)

Barycentrics    a^16-4*a^14*(b^2+c^2)+(b^2-c^2)^6*(b^4+c^4)+5*a^12*(b^4+3*b^2*c^2+c^4)+4*a^8*b^2*c^2*(b^4+5*b^2*c^2+c^4)-a^10*(b^2+c^2)*(b^4+17*b^2*c^2+c^4)-a^2*(b^2-c^2)^4*(5*b^6+2*b^4*c^2+2*b^2*c^4+5*c^6)-2*a^6*(b^2+c^2)*(3*b^8-9*b^6*c^2+14*b^4*c^4-9*b^2*c^6+3*c^8)+a^4*(b^2-c^2)^2*(9*b^8-3*b^6*c^2-4*b^4*c^4-3*b^2*c^6+9*c^8) : :
X(57334) = X[3]+2*X[136], 2*X[5]+X[1300], -2*X[131]+5*X[1656], -4*X[140]+X[925], -4*X[546]+X[44990], 2*X[550]+X[44974], 7*X[3526]+2*X[21667]

X(57334) lies on these lines: {2, 53802}, {3, 136}, {5, 1300}, {30, 38718}, {131, 1656}, {140, 925}, {381, 5642}, {523, 57374}, {546, 44990}, {550, 44974}, {3526, 21667}, {5054, 57357}, {5961, 45735}, {7506, 13558}, {9155, 52125}, {13496, 14130}, {15061, 55121}, {37955, 57326}, {38321, 57317}, {44214, 57307}

X(57334) = reflection of X(i) in X(j) for these {i,j}: {57314, 2}
X(57334) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53802, 57314}, {3, 136, 13556}, {136, 34840, 3}


X(57335) = X(3)X(129)∩X(5)X(1303)

Barycentrics    a^2*(a^20*b^2*c^2-a^18*(b^2+c^2)*(b^4+5*b^2*c^2+c^4)+b^2*c^2*(b^2-c^2)^6*(b^8+c^8)-a^2*b^2*(b-c)^4*c^2*(b+c)^4*(b^2+c^2)*(6*b^8-8*b^6*c^2+7*b^4*c^4-8*b^2*c^6+6*c^8)+a^16*(7*b^8+15*b^6*c^2+26*b^4*c^4+15*b^2*c^6+7*c^8)+a^8*(b^4-c^4)^2*(21*b^8-14*b^6*c^2+20*b^4*c^4-14*b^2*c^6+21*c^8)-a^14*(b^2+c^2)*(21*b^8-4*b^6*c^2+44*b^4*c^4-4*b^2*c^6+21*c^8)+a^4*(b^2-c^2)^4*(b^12+16*b^10*c^2+15*b^8*c^4+13*b^6*c^6+15*b^4*c^8+16*b^2*c^10+c^12)-a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(7*b^12+12*b^10*c^2-17*b^8*c^4+14*b^6*c^6-17*b^4*c^8+12*b^2*c^10+7*c^12)-a^10*(b^2+c^2)*(35*b^12-53*b^10*c^2+45*b^8*c^4-27*b^6*c^6+45*b^4*c^8-53*b^2*c^10+35*c^12)+a^12*(35*b^12+b^10*c^2+21*b^8*c^4+39*b^6*c^6+21*b^4*c^8+b^2*c^10+35*c^12)) : :
X(57335) = -2*X[2]+X[57333], X[3]+2*X[129], 2*X[5]+X[1303], -2*X[130]+5*X[1656], -4*X[140]+X[1298], -4*X[546]+X[44991], 2*X[550]+X[44989], 2*X[1216]+X[21661], -7*X[3526]+4*X[34838]

X(57335) lies on these lines: {2, 57333}, {3, 129}, {5, 1303}, {130, 1656}, {140, 1298}, {546, 44991}, {550, 44989}, {1216, 21661}, {3526, 34838}, {9730, 38224}, {15061, 32438}

X(57335) = reflection of X(i) in X(j) for these {i,j}: {57333, 2}
X(57335) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {129, 34839, 3}, {3526, 38594, 34838}


X(57336) = X(3)X(18809)∩X(5)X(1304)

Barycentrics    a^22-5*a^20*(b^2+c^2)+(b-c)^8*(b+c)^8*(b^2+c^2)*(b^4+3*b^2*c^2+c^4)+5*a^18*(b^4+4*b^2*c^2+c^4)-a^2*(b-c)^6*(b+c)^6*(b^4-4*b^2*c^2+c^4)*(3*b^4+7*b^2*c^2+3*c^4)+a^16*(b^2+c^2)*(17*b^4-54*b^2*c^2+17*c^4)+a^14*(-50*b^8+32*b^6*c^2+61*b^4*c^4+32*b^2*c^6-50*c^8)-a^4*(b-c)^4*(b+c)^4*(b^2+c^2)*(5*b^8+42*b^6*c^2-47*b^4*c^4+42*b^2*c^6+5*c^8)+3*a^12*(b^2+c^2)*(14*b^8-29*b^4*c^4+14*c^8)+a^10*(b^2-c^2)^2*(14*b^8-133*b^6*c^2-94*b^4*c^4-133*b^2*c^6+14*c^8)-a^8*(b-c)^2*(b+c)^2*(b^2+c^2)*(50*b^8-125*b^6*c^2+68*b^4*c^4-125*b^2*c^6+50*c^8)+a^6*(b^2-c^2)^2*(33*b^12+8*b^10*c^2-112*b^8*c^4+110*b^6*c^6-112*b^4*c^8+8*b^2*c^10+33*c^12) : :
X(57336) = -2*X[2]+X[57344], X[3]+2*X[18809], X[4]+2*X[38625], 2*X[5]+X[1304], -4*X[140]+X[2693], 2*X[403]+X[6760], -4*X[546]+X[44992], 2*X[1552]+X[23240], -5*X[1656]+2*X[16177], X[10745]+2*X[31510], 2*X[12096]+X[31726], 2*X[15646]+X[51892] and many others

X(57336) lies on these lines: {2, 57344}, {3, 18809}, {4, 38625}, {5, 1304}, {30, 38714}, {140, 2693}, {381, 57306}, {403, 6760}, {520, 14643}, {523, 57301}, {546, 44992}, {1552, 23240}, {1651, 38700}, {1656, 16177}, {5055, 57346}, {6000, 15061}, {10745, 31510}, {11911, 55141}, {12096, 31726}, {15646, 51892}, {34170, 46031}, {37943, 57369}, {44214, 57376}

X(57336) = reflection of X(i) in X(j) for these {i,j}: {57344, 2}
X(57336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {18809, 40557, 3}


X(57337) = X(3)X(39535)∩X(5)X(1309)

Barycentrics    a^16-4*a^14*(b-c)^2-2*a^15*(b+c)+10*a^13*(b^3+c^3)-2*a*(b-c)^6*(b+c)^5*(b^4-3*b^3*c+6*b^2*c^2-3*b*c^3+c^4)+(b^2-c^2)^6*(b^4-2*b^3*c+4*b^2*c^2-2*b*c^3+c^4)+a^12*(3*b^4-30*b^3*c+19*b^2*c^2-30*b*c^3+3*c^4)+2*a^9*(b-c)^2*(b+c)*(5*b^4-23*b^3*c-2*b^2*c^2-23*b*c^3+5*c^4)+2*a^3*(b-c)^4*(b+c)^5*(5*b^4-18*b^3*c+28*b^2*c^2-18*b*c^3+5*c^4)-2*a^11*(b+c)*(9*b^4-22*b^3*c+20*b^2*c^2-22*b*c^3+9*c^4)-2*a^5*(b-c)^6*(b+c)*(9*b^4+37*b^3*c+52*b^2*c^2+37*b*c^3+9*c^4)-a^4*(b-c)^4*(b+c)^2*(b^6-36*b^5*c+10*b^4*c^2+38*b^3*c^3+10*b^2*c^4-36*b*c^5+c^6)-a^2*(b^2-c^2)^4*(3*b^6+4*b^5*c-28*b^4*c^2+48*b^3*c^3-28*b^2*c^4+4*b*c^5+3*c^6)+a^10*(9*b^6+28*b^5*c-60*b^4*c^2+40*b^3*c^3-60*b^2*c^4+28*b*c^5+9*c^6)-2*a^8*(b-c)^2*(10*b^6+7*b^5*c-32*b^4*c^2-30*b^3*c^3-32*b^2*c^4+7*b*c^5+10*c^6)+2*a^6*(b-c)^2*(7*b^8-18*b^7*c-35*b^6*c^2+24*b^5*c^3+52*b^4*c^4+24*b^3*c^5-35*b^2*c^6-18*b*c^7+7*c^8)+2*a^7*(5*b^9+17*b^8*c-56*b^7*c^2+34*b^5*c^4+34*b^4*c^5-56*b^2*c^7+17*b*c^8+5*c^9) : :
X(57337) = -2*X[2]+X[57354], X[3]+2*X[39535], 2*X[5]+X[1309], -4*X[140]+X[2734], -5*X[1656]+2*X[10017], -7*X[3851]+4*X[44927], X[38573]+2*X[52109], X[38579]+2*X[52108]

X(57337) lies on these lines: {2, 57354}, {3, 39535}, {5, 1309}, {140, 2734}, {381, 57320}, {498, 44044}, {515, 38776}, {522, 57303}, {1656, 10017}, {3851, 44927}, {35013, 57313}, {38573, 52109}, {38579, 52108}

X(57337) = reflection of X(i) in X(j) for these {i,j}: {57354, 2}
X(57337) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39535, 40558, 3}


X(57338) = X(2)X(51)∩X(3)X(1348)

Barycentrics    a^2*(b^4+c^4-a^2*(b^2+c^2))-4*sqrt(a^4+b^4-b^2*c^2+c^4-a^2*(b^2+c^2))*S^2 : :

X(57338) lies on these lines: {2, 51}, {3, 1348}, {5, 1379}, {140, 1380}, {547, 51826}, {549, 51825}, {590, 1666}, {615, 1667}, {1503, 47366}, {1656, 2039}, {2028, 31455}, {2029, 7746}, {2543, 7828}, {3413, 15561}, {3414, 38224}, {3526, 38597}, {3564, 39022}, {5965, 6190}, {6036, 14501}, {6039, 29317}, {6040, 29012}, {6721, 14502}, {34380, 39023}, {39569, 57014}

X(57338) = reflection of X(i) in X(j) for these {i,j}: {57339, 2}
X(57338) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 511, 57339}


X(57339) = X(2)X(51)∩X(3)X(1349)

Barycentrics    a^2*(b^4+c^4-a^2*(b^2+c^2))+4*sqrt(a^4+b^4-b^2*c^2+c^4-a^2*(b^2+c^2))*S^2 : :

X(57339) lies on these lines: {2, 51}, {3, 1349}, {5, 1380}, {140, 1379}, {547, 51825}, {549, 51826}, {590, 1667}, {615, 1666}, {1503, 47365}, {1656, 2040}, {2028, 7746}, {2029, 31455}, {2542, 7828}, {3413, 38224}, {3414, 15561}, {3526, 38596}, {3564, 39023}, {5965, 6189}, {6036, 14502}, {6039, 29012}, {6040, 29317}, {6721, 14501}, {34380, 39022}, {39569, 57013}

X(57339) = reflection of X(i) in X(j) for these {i,j}: {57338, 2}
X(57339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 511, 57338}, {1656, 38597, 2040}


X(57340) = X(2)X(392)∩X(5)X(1381)

Barycentrics    a^2*b*c*(2*a*b*c-a^2*(b+c)+(b-c)^2*(b+c))-4*sqrt(a*b*c*(a^3-a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2-3*b*c+c^2)))*S^2 : :

X(57340) lies on these lines: {2, 392}, {5, 1381}, {140, 1382}, {498, 2446}, {499, 2447}, {2448, 8227}, {2449, 31423}, {3307, 38752}, {3308, 57298}, {6713, 14503}

X(57340) = reflection of X(i) in X(j) for these {i,j}: {57341, 2}
X(57340) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 517, 57341}


X(57341) = X(2)X(392)∩X(5)X(1382)

Barycentrics    a^2*b*c*(2*a*b*c-a^2*(b+c)+(b-c)^2*(b+c))+4*sqrt(a*b*c*(a^3-a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2-3*b*c+c^2)))*S^2 : :

X(57341) lies on these lines: {2, 392}, {5, 1382}, {140, 1381}, {498, 2447}, {499, 2446}, {2448, 31423}, {2449, 8227}, {3307, 57298}, {3308, 38752}, {6713, 14504}

X(57341) = reflection of X(i) in X(j) for these {i,j}: {57340, 2}
X(57341) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 517, 57340}


X(57342) = X(2)X(38707)∩X(5)X(2222)

Barycentrics    a^13-3*a^11*(b-c)^2-2*a^12*(b+c)+a^9*b*c*(-22*b^2+9*b*c-22*c^2)+(b-c)^6*(b+c)^5*(b^2-b*c+c^2)-a*(b-c)^4*(b+c)^4*(b^2-3*b*c+c^2)*(2*b^2-3*b*c+2*c^2)+a^10*(b+c)*(9*b^2-8*b*c+9*c^2)-a^2*(b-c)^4*(b+c)^3*(3*b^4+8*b^3*c-16*b^2*c^2+8*b*c^3+3*c^4)+8*a^4*b*(b-c)^2*c*(b+c)*(4*b^4-2*b^3*c-3*b^2*c^2-2*b*c^3+4*c^4)+2*a^6*(b-c)^2*(b+c)*(5*b^4-17*b^3*c-7*b^2*c^2-17*b*c^3+5*c^4)-a^8*(b+c)*(15*b^4-35*b^3*c+28*b^2*c^2-35*b*c^3+15*c^4)+a^3*(b^2-c^2)^2*(9*b^6-23*b^5*c-b^4*c^2+28*b^3*c^3-b^2*c^4-23*b*c^5+9*c^6)+a^7*(10*b^6+21*b^5*c-38*b^4*c^2+8*b^3*c^3-38*b^2*c^4+21*b*c^5+10*c^6)-a^5*(b-c)^2*(15*b^6+21*b^5*c-29*b^4*c^2-46*b^3*c^3-29*b^2*c^4+21*b*c^5+15*c^6) : :
X(57342) = 2*X[5]+X[2222], -4*X[140]+X[2716]

X(57342) lies on these lines: {2, 38707}, {5, 2222}, {140, 2716}, {498, 3326}, {499, 3319}, {513, 57303}, {515, 57298}, {517, 38776}, {522, 38752}, {952, 14629}, {3085, 39546}, {5886, 57320}, {6949, 56690}

X(57342) = reflection of X(i) in X(j) for these {i,j}: {57351, 2}


X(57343) = X(3)X(5520)∩X(5)X(2687)

Barycentrics    a^13-a^12*(b+c)+a^11*(-4*b^2+5*b*c-4*c^2)+(b-c)^6*(b+c)^5*(b^2+c^2)+4*a^10*(b^3+c^3)-a*(b^2-c^2)^4*(b^4-2*b^3*c-2*b*c^3+c^4)+a^7*b*c*(4*b^4-15*b^3*c+25*b^2*c^2-15*b*c^3+4*c^4)-a^2*(b-c)^4*(b+c)^3*(4*b^4+2*b^3*c+5*b^2*c^2+2*b*c^3+4*c^4)+a^9*(5*b^4-12*b^3*c+15*b^2*c^2-12*b*c^3+5*c^4)-a^8*(b+c)*(5*b^4-12*b^3*c+19*b^2*c^2-12*b*c^3+5*c^4)-a^6*b*c*(b+c)*(10*b^4-25*b^3*c+28*b^2*c^2-25*b*c^3+10*c^4)+a^3*(b^2-c^2)^2*(4*b^6-9*b^5*c+3*b^4*c^2-8*b^3*c^3+3*b^2*c^4-9*b*c^5+4*c^6)+a^4*(b-c)^2*(b+c)*(5*b^6+8*b^5*c+8*b^3*c^3+8*b*c^5+5*c^6)+a^5*(-5*b^8+10*b^7*c+5*b^6*c^2-17*b^5*c^3+12*b^4*c^4-17*b^3*c^5+5*b^2*c^6+10*b*c^7-5*c^8) : :
X(57343) = X[3]+2*X[5520], 2*X[5]+X[2687], -4*X[140]+X[1290], 2*X[550]+X[44982], -5*X[1656]+2*X[42422], -7*X[3526]+X[38588], X[10738]+2*X[46635], X[10742]+2*X[46618], -X[22765]+4*X[44898], 2*X[33814]+X[36175], -2*X[36167]+5*X[38762]

X(57343) lies on these lines: {2, 53809}, {3, 5520}, {5, 2687}, {30, 34474}, {140, 1290}, {498, 31524}, {499, 31522}, {513, 15061}, {517, 14643}, {523, 57298}, {549, 38711}, {550, 44982}, {1656, 42422}, {3526, 38588}, {5959, 57367}, {10738, 46635}, {10742, 46618}, {11231, 57313}, {22765, 44898}, {33814, 36175}, {36167, 38762}

X(57343) = reflection of X(i) in X(j) for these {i,j}: {38711, 549}, {57325, 2}
X(57343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53809, 57325}, {46635, 47399, 10738}


X(57344) = X(3)X(16177)∩X(5)X(2693)

Barycentrics    (a^2-b^2-c^2)*(a^20-2*a^18*(b^2+c^2)+a^16*(-7*b^4+20*b^2*c^2-7*c^4)+4*a^2*(b-c)^6*(b+c)^6*(b^2+c^2)*(b^4+c^4)-(b^2-c^2)^8*(b^4+3*b^2*c^2+c^4)-2*a^10*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4-62*b^2*c^2+5*c^4)+2*a^14*(b^2+c^2)*(13*b^4-27*b^2*c^2+13*c^4)-a^4*(b^2-c^2)^4*(b^8-28*b^6*c^2-31*b^4*c^4-28*b^2*c^6+c^8)-2*a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(9*b^8+7*b^6*c^2-44*b^4*c^4+7*b^2*c^6+9*c^8)-a^12*(24*b^8+46*b^6*c^2-141*b^4*c^4+46*b^2*c^6+24*c^8)+a^8*(b^2-c^2)^2*(32*b^8-35*b^6*c^2-152*b^4*c^4-35*b^2*c^6+32*c^8)) : :
X(57344) = -2*X[2]+X[57336], X[3]+2*X[16177], 2*X[5]+X[2693], -4*X[140]+X[1304], 2*X[550]+X[44992], -5*X[631]+2*X[38625], -5*X[1656]+2*X[18809], -7*X[3526]+X[38595], -X[6760]+4*X[10257], 2*X[11589]+X[18403], -X[13997]+4*X[25563], 2*X[34152]+X[34170]

X(57344) lies on these lines: {2, 57336}, {3, 16177}, {5, 2693}, {30, 23239}, {140, 1304}, {520, 15061}, {523, 57329}, {549, 38719}, {550, 44992}, {631, 38625}, {1656, 18809}, {3526, 38595}, {5054, 57319}, {6000, 14643}, {6760, 10257}, {11589, 18403}, {13997, 25563}, {34152, 34170}, {55141, 57306}

X(57344) = reflection of X(i) in X(j) for these {i,j}: {38719, 549}, {57336, 2}
X(57344) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3526, 38595, 40557}


X(57345) = X(3)X(31655)∩X(5)X(2696)

Barycentrics    a^16-7*a^14*(b^2+c^2)+8*a^10*(b^2+c^2)*(b^4-12*b^2*c^2+c^4)+(b^2-c^2)^4*(b^2+c^2)^2*(b^4-3*b^2*c^2+c^4)+a^12*(9*b^4+52*b^2*c^2+9*c^4)+a^8*(-20*b^8+14*b^6*c^2+197*b^4*c^4+14*b^2*c^6-20*c^8)+a^6*(b^2+c^2)*(5*b^8+59*b^6*c^2-181*b^4*c^4+59*b^2*c^6+5*c^8)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(6*b^8-25*b^6*c^2+24*b^4*c^4-25*b^2*c^6+6*c^8)+a^4*(9*b^12-61*b^10*c^2+53*b^8*c^4+22*b^6*c^6+53*b^4*c^8-61*b^2*c^10+9*c^12) : :
X(57345) = X[3]+2*X[31655], 2*X[5]+X[2696], -4*X[140]+X[2770], 2*X[549]+X[34320], 5*X[1656]+X[38598], X[5913]+2*X[15122], -2*X[36168]+5*X[38806]

X(57345) lies on these lines: {2, 53805}, {3, 31655}, {5, 2696}, {30, 38698}, {140, 2770}, {523, 57331}, {524, 15061}, {549, 34320}, {1499, 14643}, {1656, 38598}, {2070, 57358}, {5054, 57311}, {5913, 15122}, {10257, 57332}, {36168, 38806}, {44214, 57356}, {47352, 57312}

X(57345) = reflection of X(i) in X(j) for these {i,j}: {57355, 2}
X(57345) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53805, 57355}


X(57346) = X(3)X(16188)∩X(5)X(2697)

Barycentrics    (a^2-b^2-c^2)*(a^18+6*a^14*b^2*c^2-2*a^16*(b^2+c^2)+a^12*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)+3*a^8*(b^2-c^2)^2*(b^6+c^6)-(b^2-c^2)^6*(b^6+c^6)+a^10*(2*b^6*c^2-3*b^4*c^4+2*b^2*c^6)-a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^8-4*b^6*c^2-4*b^2*c^6+c^8)+a^2*(b^2-c^2)^4*(3*b^8+2*b^6*c^2+4*b^4*c^4+2*b^2*c^6+3*c^8)-a^6*(b^2-c^2)^2*(4*b^8+6*b^6*c^2+b^4*c^4+6*b^2*c^6+4*c^8)) : :
X(57346) = -2*X[2]+X[57319], 2*X[5]+X[2697], -4*X[140]+X[935], -5*X[1656]+2*X[42426], X[5523]+2*X[15122], X[10749]+2*X[46637], X[12918]+2*X[46620], 5*X[30745]+X[41377]

X(57346) lies on these lines: {2, 57319}, {3, 16188}, {5, 2697}, {30, 38699}, {140, 935}, {523, 57332}, {525, 15061}, {1503, 2072}, {1656, 42426}, {5055, 57336}, {5085, 57350}, {5523, 15122}, {10257, 57331}, {10749, 46637}, {12918, 46620}, {30745, 41377}, {55142, 57311}

X(57346) = reflection of X(i) in X(j) for these {i,j}: {57319, 2}


X(57347) = X(3)X(2679)∩X(5)X(2698)

Barycentrics    a^2*(a^12*b^2*c^2+b^2*c^2*(b^2-c^2)^4*(b^4+c^4)+a^10*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)+a^8*(-3*b^8+7*b^6*c^2+6*b^4*c^4+7*b^2*c^6-3*c^8)+a^6*(3*b^10-11*b^8*c^2-11*b^2*c^8+3*c^10)-a^2*b^2*c^2*(4*b^10-6*b^8*c^2+3*b^6*c^4+3*b^4*c^6-6*b^2*c^8+4*c^10)-a^4*(b^12-10*b^10*c^2+9*b^8*c^4-9*b^6*c^6+9*b^4*c^8-10*b^2*c^10+c^12)) : :
X(57347) = X[3]+2*X[2679], 2*X[5]+X[2698], -4*X[140]+X[805], 2*X[550]+X[44971], -5*X[1656]+2*X[33330], -7*X[3526]+4*X[22103], -X[12188]+4*X[55313], -X[13188]+4*X[55312], 2*X[13335]+X[37841], X[14510]+2*X[51872], 2*X[16979]+X[37484], X[31513]+2*X[33813] and many others

X(57347) lies on these lines: {2, 53797}, {3, 2679}, {5, 2698}, {140, 805}, {499, 44042}, {511, 15561}, {512, 38224}, {526, 57378}, {549, 38703}, {550, 44971}, {1656, 33330}, {3526, 22103}, {5663, 57371}, {7746, 18321}, {12188, 55313}, {13188, 55312}, {13335, 37841}, {14113, 44534}, {14510, 51872}, {14643, 38227}, {16979, 37484}, {20403, 57306}, {31513, 33813}, {38317, 57307}, {41330, 57350}, {44221, 52446}, {53793, 57305}, {53798, 57361}

X(57347) = reflection of X(i) in X(j) for these {i,j}: {38703, 549}, {57310, 2}
X(57347) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53797, 57310}


X(57348) = X(2)X(53798)∩X(5)X(2709)

Barycentrics    a^14-7*a^12*(b^2+c^2)+(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)*(b^4-b^2*c^2+c^4)+a^10*(19*b^4+32*b^2*c^2+19*c^4)-a^8*(b^2+c^2)*(31*b^4+18*b^2*c^2+31*c^4)+a^4*(b^2+c^2)*(b^8-50*b^6*c^2+45*b^4*c^4-50*b^2*c^6+c^8)-a^2*(b^4-b^2*c^2+c^4)*(5*b^8-30*b^6*c^2+26*b^4*c^4-30*b^2*c^6+5*c^8)+a^6*(21*b^8+56*b^6*c^2+31*b^4*c^4+56*b^2*c^6+21*c^8) : :
X(57348) = X[3]+2*X[44956], 2*X[5]+X[2709], -4*X[140]+X[843], -4*X[546]+X[44946], -5*X[1656]+2*X[46659], 2*X[48876]+X[52198]

X(57348) lies on these lines: {2, 53798}, {3, 44956}, {5, 2709}, {140, 843}, {498, 47020}, {511, 38796}, {512, 57331}, {524, 38224}, {546, 44946}, {1499, 15561}, {1656, 46659}, {21358, 57355}, {48876, 52198}

X(57348) = reflection of X(i) in X(j) for these {i,j}: {57312, 2}
X(57348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53798, 57312}


X(57349) = X(3)X(36471)∩X(5)X(2710)

Barycentrics    a^18-3*a^16*(b^2+c^2)-2*a^12*(b^2+c^2)^3+a^14*(4*b^4+6*b^2*c^2+4*c^4)+a^10*(-4*b^8+6*b^6*c^2+5*b^4*c^4+6*b^2*c^6-4*c^8)+a^8*(b^2+c^2)*(10*b^8-16*b^6*c^2+11*b^4*c^4-16*b^2*c^6+10*c^8)+a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(10*b^8+b^6*c^2+13*b^4*c^4+b^2*c^6+10*c^8)-a^6*(b^2-c^2)^2*(12*b^8+17*b^6*c^2+23*b^4*c^4+17*b^2*c^6+12*c^8)+(b^2-c^2)^4*(b^10+b^6*c^4+b^4*c^6+c^10)-a^2*(b^2-c^2)^2*(5*b^12+b^10*c^2+3*b^8*c^4+6*b^6*c^6+3*b^4*c^8+b^2*c^10+5*c^12) : :
X(57349) = -2*X[2]+X[57350], X[3]+2*X[36471], 2*X[5]+X[2710], -4*X[140]+X[2715], 2*X[550]+X[45148], -5*X[1656]+2*X[45158], X[2456]+2*X[34138], -5*X[38739]+2*X[41175]

X(57349) lies on these lines: {2, 57350}, {3, 36471}, {5, 2710}, {140, 2715}, {511, 57304}, {512, 57332}, {525, 38224}, {550, 45148}, {1503, 10256}, {1656, 45158}, {2456, 34138}, {10516, 57319}, {38739, 41175}, {55142, 57306}

X(57349) = reflection of X(i) in X(j) for these {i,j}: {57350, 2}


X(57350) = X(2)X(57349)∩X(5)X(2715)

Barycentrics    a^18-5*a^16*(b^2+c^2)+10*a^14*(b^4+b^2*c^2+c^4)-4*a^12*(3*b^6+2*b^4*c^2+2*b^2*c^4+3*c^6)-a^6*(b^2-c^2)^2*(2*b^8+3*b^6*c^2+9*b^4*c^4+3*b^2*c^6+2*c^8)-a^2*(b-c)^2*(b+c)^2*(b^4+c^4)*(3*b^8-b^6*c^2-b^2*c^6+3*c^8)-a^8*(b^2+c^2)*(4*b^8-6*b^6*c^2+7*b^4*c^4-6*b^2*c^6+4*c^8)+a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(4*b^8-b^6*c^2+7*b^4*c^4-b^2*c^6+4*c^8)+a^10*(10*b^8+2*b^6*c^2+b^4*c^4+2*b^2*c^6+10*c^8)+(b^2-c^2)^4*(b^10+b^6*c^4+b^4*c^6+c^10) : :
X(57350) = -2*X[2]+X[57349], X[3]+2*X[45158], 2*X[5]+X[2715], -4*X[140]+X[2710], -4*X[546]+X[45148], -5*X[1656]+2*X[36471], X[6033]+2*X[41175]

X(57350) lies on these lines: {2, 57349}, {3, 45158}, {5, 2715}, {140, 2710}, {511, 57332}, {512, 57304}, {525, 15561}, {546, 45148}, {1503, 38224}, {1656, 36471}, {5085, 57346}, {6033, 41175}, {14561, 57311}, {41330, 57347}, {55142, 57305}

X(57350) = reflection of X(i) in X(j) for these {i,j}: {57349, 2}


X(57351) = X(2)X(38707)∩X(5)X(2716)

Barycentrics    a^13-a^11*(b-3*c)*(3*b-c)-2*a^12*(b+c)+a^9*b*c*(-26*b^2+41*b*c-26*c^2)-a*(b-2*c)*(b-c)^4*(2*b-c)*(b+c)^4*(b^2-b*c+c^2)+(b-c)^6*(b+c)^5*(b^2-b*c+c^2)+a^10*(b+c)*(9*b^2-16*b*c+9*c^2)-a^5*(b-c)^4*(b^2+c^2)*(15*b^2+37*b*c+15*c^2)-a^2*(b-c)^4*(b+c)^3*(3*b^4+4*b^3*c-4*b^2*c^2+4*b*c^3+3*c^4)+2*a^6*(b-c)^2*(b+c)*(5*b^4-23*b^3*c+19*b^2*c^2-23*b*c^3+5*c^4)+a^3*(b-c)^2*(b+c)^2*(b^2+b*c+c^2)*(9*b^4-34*b^3*c+48*b^2*c^2-34*b*c^3+9*c^4)-a^8*(b+c)*(15*b^4-55*b^3*c+76*b^2*c^2-55*b*c^3+15*c^4)+4*a^4*b*(b-c)^2*c*(7*b^5-b^4*c-b*c^4+7*c^5)+a^7*(10*b^6+11*b^5*c-70*b^4*c^2+96*b^3*c^3-70*b^2*c^4+11*b*c^5+10*c^6) : :
X(57351) = 2*X[5]+X[2716], -4*X[140]+X[2222]

X(57351) lies on these lines: {2, 38707}, {5, 2716}, {140, 2222}, {498, 3319}, {499, 3326}, {513, 38776}, {515, 38752}, {517, 57303}, {522, 57298}, {3086, 39546}, {6952, 56690}, {26446, 57313}

X(57351) = reflection of X(i) in X(j) for these {i,j}: {57342, 2}


X(57352) = X(2)X(53799)∩X(5)X(2718)

Barycentrics    a^10-3*a^9*(b+c)+2*a^7*(2*b-3*c)*(3*b-2*c)*(b+c)-3*a^8*(b^2-6*b*c+c^2)+(b^2-c^2)^4*(b^2-3*b*c+c^2)+a^6*(2*b^4-44*b^3*c+65*b^2*c^2-44*b*c^3+2*c^4)-a*(b-c)^2*(b+c)^3*(3*b^4-18*b^3*c+31*b^2*c^2-18*b*c^3+3*c^4)-a^2*(b^2-c^2)^2*(3*b^4+3*b^3*c-23*b^2*c^2+3*b*c^3+3*c^4)-a^5*(b+c)*(18*b^4-71*b^3*c+91*b^2*c^2-71*b*c^3+18*c^4)+2*a^4*(b^6+16*b^5*c-44*b^4*c^2+45*b^3*c^3-44*b^2*c^4+16*b*c^5+c^6)+a^3*(12*b^7-51*b^6*c+41*b^5*c^2+41*b^2*c^5-51*b*c^6+12*c^7) : :
X(57352) = 2*X[5]+X[2718], -4*X[140]+X[2743], X[6265]+2*X[16338]

X(57352) lies on these lines: {2, 53799}, {5, 2718}, {140, 2743}, {499, 14027}, {513, 57300}, {517, 57328}, {519, 38752}, {3667, 57298}, {5886, 57313}, {6265, 16338}


X(57353) = X(3)X(1566)∩X(5)X(2724)

Barycentrics    a^12+4*a^10*b*c-2*a^11*(b+c)+(b-c)^6*(b+c)^4*(b^2+c^2)-2*a^9*(b+c)*(b^2-3*b*c+c^2)-4*a^7*b*c*(b+c)*(b^2-3*b*c+c^2)-2*a*(b-c)^6*(b+c)^3*(b^2+b*c+c^2)+2*a^3*(b-c)^4*(b+c)*(b^4-2*b^3*c-2*b*c^3+c^4)+4*a^5*(b-c)^2*(b+c)*(b^4+3*b^3*c+6*b^2*c^2+3*b*c^3+c^4)+a^8*(8*b^4-10*b^3*c-7*b^2*c^2-10*b*c^3+8*c^4)+a^6*(-11*b^6+8*b^5*c-12*b^4*c^2+28*b^3*c^3-12*b^2*c^4+8*b*c^5-11*c^6)-a^2*(b-c)^4*(b^6+4*b^4*c^2+8*b^3*c^3+4*b^2*c^4+c^6)+a^4*(b-c)^2*(2*b^6-11*b^4*c^2-26*b^3*c^3-11*b^2*c^4+2*c^6) : :
X(57353) = -2*X[2]+X[57315], X[3]+2*X[1566], 2*X[5]+X[2724], -4*X[140]+X[927], 2*X[550]+X[44975], 5*X[631]+X[14732], -5*X[1656]+2*X[33331], -7*X[3526]+4*X[40554], -X[38572]+4*X[55316]

X(57353) lies on these lines: {2, 57315}, {3, 1566}, {5, 2724}, {140, 927}, {499, 44043}, {514, 57297}, {516, 38764}, {550, 44975}, {631, 14732}, {1656, 33331}, {3526, 40554}, {38572, 55316}, {53801, 57313}

X(57353) = reflection of X(i) in X(j) for these {i,j}: {57315, 2}


X(57354) = X(3)X(2222)∩X(5)X(2734)

Barycentrics    (a^2-b^2-c^2)*(a^14-2*a^13*(b+c)-(b-c)^8*(b+c)^6-a^12*(b^2-8*b*c+c^2)+2*a*(b-c)^6*(b+c)^5*(b^2-3*b*c+c^2)+2*a^11*(b+c)*(4*b^2-9*b*c+4*c^2)-2*a^9*(b-c)^2*(b+c)*(5*b^2-19*b*c+5*c^2)-8*a^7*b*(b-c)^2*c*(b+c)*(7*b^2-8*b*c+7*c^2)+a^2*(b^2-c^2)^4*(2*b^4+6*b^3*c-15*b^2*c^2+6*b*c^3+2*c^4)-2*a^3*(b-c)^4*(b+c)^3*(4*b^4-5*b^3*c-2*b^2*c^2-5*b*c^3+4*c^4)+a^4*(b-c)^4*(b+c)^2*(5*b^4-30*b^3*c-2*b^2*c^2-30*b*c^3+5*c^4)+2*a^5*(b-c)^4*(b+c)*(5*b^4+20*b^3*c+6*b^2*c^2+20*b*c^3+5*c^4)-a^10*(8*b^4+14*b^3*c-45*b^2*c^2+14*b*c^3+8*c^4)+a^8*(b-c)^2*(21*b^4+24*b^3*c-38*b^2*c^2+24*b*c^3+21*c^4)-a^6*(b-c)^2*(19*b^6-18*b^5*c-41*b^4*c^2+40*b^3*c^3-41*b^2*c^4-18*b*c^5+19*c^6)) : :
X(57354) = -2*X[2]+X[57337], 2*X[5]+X[2734], -4*X[140]+X[1309], -X[382]+4*X[44927], -5*X[1656]+2*X[39535], -7*X[3526]+4*X[40558], -X[38573]+4*X[55318], -X[38579]+4*X[55315]

X(57354) lies on these lines: {2, 57337}, {3, 2222}, {5, 2734}, {140, 1309}, {382, 44927}, {499, 44044}, {515, 57303}, {522, 38776}, {1656, 39535}, {3526, 40558}, {35013, 57320}, {38573, 55318}, {38579, 55315}

X(57354) = reflection of X(i) in X(j) for these {i,j}: {57337, 2}


X(57355) = X(2)X(53805)∩X(5)X(2770)

Barycentrics    a^16-5*a^14*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)^2*(b^4-5*b^2*c^2+c^4)+a^12*(7*b^4+24*b^2*c^2+7*c^4)+4*a^10*(b^6-10*b^4*c^2-10*b^2*c^4+c^6)+a^8*(-16*b^8+50*b^6*c^2+5*b^4*c^4+50*b^2*c^6-16*c^8)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(6*b^8-39*b^6*c^2+52*b^4*c^4-39*b^2*c^6+6*c^8)+a^6*(7*b^10-26*b^6*c^4-26*b^4*c^6+7*c^10)+a^4*(7*b^12-67*b^10*c^2+149*b^8*c^4-170*b^6*c^6+149*b^4*c^8-67*b^2*c^10+7*c^12) : :
X(57355) = 2*X[5]+X[2770], -4*X[140]+X[2696], -4*X[547]+X[34320], -5*X[1656]+2*X[31655], 2*X[2686]+X[35447], -7*X[3526]+X[38598], X[9970]+2*X[16339], X[10748]+2*X[36168], 2*X[18579]+X[38951]

X(57355) lies on these lines: {2, 53805}, {5, 2770}, {30, 38716}, {140, 2696}, {523, 38796}, {524, 14643}, {547, 34320}, {1499, 15061}, {1656, 31655}, {2072, 57357}, {2686, 35447}, {3526, 38598}, {5055, 57307}, {9970, 16339}, {10748, 36168}, {18579, 38951}, {21358, 57348}, {44282, 57363}, {55148, 57380}

X(57355) = reflection of X(i) in X(j) for these {i,j}: {57345, 2}
X(57355) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53805, 57345}


X(57356) = X(3)X(5139)∩X(5)X(3563)

Barycentrics    a^14-4*a^12*(b^2+c^2)+(b^2-c^2)^6*(b^2+c^2)-6*a^2*(b^2-c^2)^4*(b^4+c^4)+a^4*(b^2-2*c^2)*(2*b^2-c^2)*(b^2+c^2)*(5*b^4-6*b^2*c^2+5*c^4)-a^8*(b^2+c^2)*(7*b^4+5*b^2*c^2+7*c^4)+a^10*(8*b^4+9*b^2*c^2+8*c^4)+a^6*(-3*b^8+15*b^6*c^2+4*b^4*c^4+15*b^2*c^6-3*c^8) : :
X(57356) = X[3]+2*X[5139], 2*X[5]+X[3563], -4*X[140]+X[3565], -5*X[1656]+2*X[31842], 2*X[6644]+X[41521]

X(57356) lies on these lines: {2, 53796}, {3, 5139}, {5, 3563}, {30, 57379}, {140, 3565}, {381, 2482}, {512, 57372}, {523, 57375}, {1656, 31842}, {2079, 7506}, {5055, 57314}, {5576, 14669}, {6091, 44211}, {6644, 41521}, {14643, 14853}, {38224, 55122}, {44214, 57345}, {45735, 51460}

X(57356) = reflection of X(i) in X(j) for these {i,j}: {57357, 2}
X(57356) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53796, 57357}


X(57357) = X(3)X(115)∩X(5)X(3565)

Barycentrics    (a^2-b^2-c^2)*(a^12-(b^2-c^2)^6-5*a^10*(b^2+c^2)+2*a^6*(b^2+c^2)*(b^4-10*b^2*c^2+c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(3*b^4-8*b^2*c^2+3*c^4)+a^8*(5*b^4+19*b^2*c^2+5*c^4)+a^4*(-5*b^8+21*b^6*c^2-20*b^4*c^4+21*b^2*c^6-5*c^8)) : :
X(57357) = 2*X[5]+X[3565], -4*X[140]+X[3563], -5*X[1656]+2*X[5139]

X(57357) lies on these lines: {2, 53796}, {3, 115}, {5, 3565}, {30, 57375}, {140, 3563}, {511, 57372}, {523, 57379}, {1656, 5139}, {2072, 57355}, {5054, 57334}, {10257, 30717}, {10519, 14984}, {15561, 55122}, {15565, 57324}, {18449, 57362}, {43934, 57367}

X(57357) = reflection of X(i) in X(j) for these {i,j}: {57356, 2}
X(57357) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53796, 57356}


X(57358) = X(3)X(45161)∩X(5)X(99)

Barycentrics    a^14-5*a^12*(b^2+c^2)-a^8*(b^2+c^2)*(9*b^4+16*b^2*c^2+9*c^4)+a^10*(11*b^4+16*b^2*c^2+11*c^4)+(b^2-c^2)^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^6*(-5*b^8+32*b^6*c^2+3*b^4*c^4+32*b^2*c^6-5*c^8)-a^2*(b^2-c^2)^2*(7*b^8-23*b^6*c^2+20*b^4*c^4-23*b^2*c^6+7*c^8)+a^4*(b^2+c^2)*(13*b^8-62*b^6*c^2+89*b^4*c^4-62*b^2*c^6+13*c^8) : :
X(57358) = X[3]+2*X[45161], -4*X[140]+X[53884], -4*X[546]+X[45151], -5*X[1656]+2*X[31843]

X(57358) lies on these lines: {3, 45161}, {5, 99}, {140, 53884}, {546, 45151}, {1656, 31843}, {2070, 57345}, {3518, 54072}, {5055, 23516}, {14643, 14845}, {15567, 18369}, {37943, 57307}


X(57359) = X(5)X(6010)∩X(140)X(741)

Barycentrics    a^9*b*c-b^3*(b-c)^2*c^3*(b+c)^3-a^8*(b^3+c^3)+a*b*c*(b^2-c^2)^2*(b^4-b^2*c^2+c^4)+a^6*(b+c)*(b^4+6*b^2*c^2+c^4)+a^5*(3*b^2+7*b*c+3*c^2)*(b^4-b^3*c+b^2*c^2-b*c^3+c^4)-a^4*b*c*(b+c)*(b^4+4*b^3*c+3*b^2*c^2+4*b*c^3+c^4)-a^7*(2*b^4+3*b^3*c-2*b^2*c^2+3*b*c^3+2*c^4)+2*a^2*b^2*c^2*(b^5+2*b^4*c+2*b*c^4+c^5)-a^3*(b^8+3*b^7*c-2*b^6*c^2-b^5*c^3+4*b^4*c^4-b^3*c^5-2*b^2*c^6+3*b*c^7+c^8) : :
X(57359) = -2*X[2]+X[57308], X[3]+2*X[45162], 2*X[5]+X[6010], -4*X[140]+X[741], -4*X[546]+X[45152], 2*X[550]+X[44940], -5*X[1656]+2*X[44950], -X[5539]+7*X[31423]

X(57359) lies on these lines: {2, 57308}, {3, 45162}, {5, 6010}, {140, 741}, {498, 1356}, {546, 45152}, {550, 44940}, {1656, 44950}, {3037, 26364}, {5539, 31423}, {26446, 38224}

X(57359) = reflection of X(i) in X(j) for these {i,j}: {57308, 2}


X(57360) = X(3)X(31845)∩X(5)X(6011)

Barycentrics    a^10-a^9*(b+c)+4*a^7*(b+c)*(b^2+c^2)+(b^2-c^2)^4*(b^2-b*c+c^2)-a*(b-c)^2*(b+c)^3*(b^2-b*c+c^2)^2-a^8*(3*b^2+2*b*c+3*c^2)+a^6*(2*b^4+2*b^3*c+5*b^2*c^2+2*b*c^3+2*c^4)-a^2*(b^2-c^2)^2*(3*b^4-b^3*c+b^2*c^2-b*c^3+3*c^4)-a^5*(b+c)*(6*b^4-b^3*c+3*b^2*c^2-b*c^3+6*c^4)+2*a^4*(b^6-2*b^4*c^2-b^3*c^3-2*b^2*c^4+c^6)+a^3*(b+c)*(4*b^6-3*b^5*c+4*b^3*c^3-3*b*c^5+4*c^6) : :
X(57360) = X[3]+2*X[31845], 2*X[5]+X[6011], -4*X[140]+X[759], 2*X[550]+X[44970], -5*X[631]+2*X[38612], -5*X[1656]+2*X[42425], -7*X[3526]+X[14663], 5*X[8227]+X[34196], -X[21381]+7*X[31423]

X(57360) lies on these lines: {2, 53794}, {3, 31845}, {5, 6011}, {140, 759}, {498, 1365}, {499, 34194}, {550, 44970}, {631, 38612}, {1656, 42425}, {1793, 27687}, {3526, 14663}, {6853, 56951}, {6989, 52834}, {8227, 34196}, {10165, 57298}, {11230, 57300}, {15061, 26446}, {21381, 31423}

X(57360) = reflection of X(i) in X(j) for these {i,j}: {57309, 2}
X(57360) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53794, 57309}


X(57361) = X(3)X(6092)∩X(5)X(6082)

Barycentrics    a^16-9*a^14*(b^2+c^2)+2*a^10*(b^2+c^2)*(3*b^4-116*b^2*c^2+3*c^4)+a^12*(13*b^4+100*b^2*c^2+13*c^4)+a^8*(-32*b^8+310*b^6*c^2+269*b^4*c^4+310*b^2*c^6-32*c^8)+(b^4-c^4)^2*(b^8-7*b^6*c^2+20*b^4*c^4-7*b^2*c^6+c^8)+a^6*(b^2+c^2)*(11*b^8-179*b^6*c^2-87*b^4*c^4-179*b^2*c^6+11*c^8)-a^2*(b^2+c^2)*(8*b^12-63*b^10*c^2+256*b^8*c^4-354*b^6*c^6+256*b^4*c^8-63*b^2*c^10+8*c^12)+a^4*(17*b^12-103*b^10*c^2+617*b^8*c^4-614*b^6*c^6+617*b^4*c^8-103*b^2*c^10+17*c^12) : :
X(57361) = -2*X[2]+X[57362], X[3]+2*X[6092], 2*X[5]+X[6082], -4*X[140]+X[6093], -5*X[1656]+2*X[31654], 2*X[6076]+X[38593], 2*X[6077]+X[11258]

X(57361) lies on these lines: {2, 57362}, {3, 6092}, {5, 6082}, {140, 6093}, {498, 44048}, {524, 38796}, {1499, 57331}, {1656, 31654}, {6076, 38593}, {6077, 11258}, {53798, 57347}, {53805, 57306}

X(57361) = reflection of X(i) in X(j) for these {i,j}: {57362, 2}


X(57362) = X(3)X(31654)∩X(5)X(6093)

Barycentrics    a^16-7*a^14*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)^2*(b^4-7*b^2*c^2+c^4)+2*a^10*(b^2+c^2)*(5*b^4-66*b^2*c^2+5*c^4)+a^12*(19*b^4+40*b^2*c^2+19*c^4)+a^6*(b^2+c^2)*(5*b^8+323*b^6*c^2-821*b^4*c^4+323*b^2*c^6+5*c^8)-a^8*(36*b^8+150*b^6*c^2-733*b^4*c^4+150*b^2*c^6+36*c^8)+5*a^4*(3*b^12-49*b^10*c^2+77*b^8*c^4-30*b^6*c^6+77*b^4*c^8-49*b^2*c^10+3*c^12)-a^2*(b^2+c^2)*(8*b^12-93*b^10*c^2+248*b^8*c^4-310*b^6*c^6+248*b^4*c^8-93*b^2*c^10+8*c^12) : :
X(57362) = -2*X[2]+X[57361], X[3]+2*X[31654], 2*X[5]+X[6093], -4*X[140]+X[6082], -5*X[1656]+2*X[6092]

X(57362) lies on these lines: {2, 57361}, {3, 31654}, {5, 6093}, {140, 6082}, {499, 44048}, {524, 57331}, {1499, 38796}, {1656, 6092}, {14848, 57307}, {18449, 57357}, {53798, 57310}, {53805, 57305}

X(57362) = reflection of X(i) in X(j) for these {i,j}: {57361, 2}


X(57363) = X(2)X(57364)∩X(5)X(6236)

Barycentrics    4*a^16-22*a^14*(b^2+c^2)+2*(b^2-c^2)^4*(b^2+c^2)^2*(2*b^4-3*b^2*c^2+2*c^4)+2*a^10*(b^2+c^2)*(13*b^4-42*b^2*c^2+13*c^4)+a^12*(24*b^4+85*b^2*c^2+24*c^4)+a^6*(b^2+c^2)*(14*b^8+29*b^6*c^2-67*b^4*c^4+29*b^2*c^6+14*c^8)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(18*b^8-19*b^6*c^2+12*b^4*c^4-19*b^2*c^6+18*c^8)-a^8*(56*b^8+31*b^6*c^2-83*b^4*c^4+31*b^2*c^6+56*c^8)+2*a^4*(12*b^12-20*b^10*c^2+b^8*c^4+26*b^6*c^6+b^4*c^8-20*b^2*c^10+12*c^12) : :
X(57363) = -2*X[2]+X[57364], X[3]+2*X[45163], 2*X[5]+X[6236], -4*X[140]+X[6325], -4*X[546]+X[45153], -5*X[1656]+2*X[34113]

X(57363) lies on these lines: {2, 57364}, {3, 45163}, {5, 6236}, {140, 6325}, {546, 45153}, {1656, 34113}, {3545, 32424}, {3849, 57311}, {8704, 57307}, {11594, 57306}, {14643, 32228}, {15061, 38064}, {18403, 57380}, {44282, 57355}

X(57363) = reflection of X(i) in X(j) for these {i,j}: {57364, 2}


X(57364) = X(3)X(34113)∩X(5)X(6325)

Barycentrics    4*a^16-14*a^14*(b^2+c^2)+2*(b^2-c^2)^4*(b^2+c^2)^2*(2*b^4-7*b^2*c^2+2*c^4)+2*a^10*(b^2+c^2)*(5*b^4-13*b^2*c^2+5*c^4)+a^12*(16*b^4+21*b^2*c^2+16*c^4)+a^6*(b^2+c^2)*(b^4-b^2*c^2+c^4)*(22*b^4-39*b^2*c^2+22*c^4)+2*a^4*(b^4+c^4)*(8*b^8-17*b^6*c^2+20*b^4*c^4-17*b^2*c^6+8*c^8)-5*a^8*(8*b^8-7*b^6*c^2+5*b^4*c^4-7*b^2*c^6+8*c^8)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(18*b^8-51*b^6*c^2+28*b^4*c^4-51*b^2*c^6+18*c^8) : :
X(57364) = -2*X[2]+X[57363], X[3]+2*X[34113], 2*X[5]+X[6325], -4*X[140]+X[6236], 2*X[550]+X[45153], -5*X[1656]+2*X[45163]

X(57364) lies on these lines: {2, 57363}, {3, 34113}, {5, 6325}, {140, 6236}, {550, 45153}, {1656, 45163}, {3524, 32424}, {3849, 57307}, {8704, 57311}, {11594, 57305}, {15061, 32228}

X(57364) = reflection of X(i) in X(j) for these {i,j}: {57363, 2}


X(57365) = X(5)X(9060)∩X(140)X(841)

Barycentrics    a^22-3*a^20*(b^2+c^2)+(b-c)^8*(b+c)^8*(b^2+c^2)*(b^4+5*b^2*c^2+c^4)-3*a^18*(3*b^4-4*b^2*c^2+3*c^4)+a^16*(b^2+c^2)*(57*b^4-94*b^2*c^2+57*c^4)+a^14*(-106*b^8+48*b^6*c^2+101*b^4*c^4+48*b^2*c^6-106*c^8)-a^2*(b^2-c^2)^6*(b^8-21*b^6*c^2-68*b^4*c^4-21*b^2*c^6+c^8)-a^4*(b-c)^4*(b+c)^4*(b^2+c^2)*(19*b^8+100*b^6*c^2-97*b^4*c^4+100*b^2*c^6+19*c^8)+a^12*(b^2+c^2)*(70*b^8+18*b^6*c^2-209*b^4*c^4+18*b^2*c^6+70*c^8)+a^10*(42*b^12-325*b^10*c^2+416*b^8*c^4-190*b^6*c^6+416*b^4*c^8-325*b^2*c^10+42*c^12)+a^6*(b^2-c^2)^2*(73*b^12+48*b^10*c^2-276*b^8*c^4+278*b^6*c^6-276*b^4*c^8+48*b^2*c^10+73*c^12)-a^8*(b^2+c^2)*(106*b^12-439*b^10*c^2+692*b^8*c^4-706*b^6*c^6+692*b^4*c^8-439*b^2*c^10+106*c^12) : :
X(57365) = 2*X[5]+X[9060], -4*X[140]+X[841], -5*X[1656]+2*X[46436], -4*X[44961]+X[47103]

X(57365) lies on these lines: {5, 9060}, {30, 57376}, {140, 841}, {498, 47019}, {1656, 46436}, {2072, 57329}, {5055, 57306}, {8675, 14643}, {11911, 57319}, {14915, 15061}, {44961, 47103}


X(57366) = X(3)X(3258)∩X(5)X(10420)

Barycentrics    (a^2-b^2-c^2)*(a^20-6*a^18*(b^2+c^2)-(b^2-c^2)^8*(b^4+b^2*c^2+c^4)-10*a^14*(b^2+c^2)*(b^4+3*b^2*c^2+c^4)+a^16*(13*b^4+24*b^2*c^2+13*c^4)+4*a^2*(b^2-c^2)^6*(b^6+c^6)+a^12*(-4*b^8+38*b^6*c^2+37*b^4*c^4+38*b^2*c^6-4*c^8)+2*a^10*(b^2+c^2)*(5*b^8-14*b^6*c^2+4*b^4*c^4-14*b^2*c^6+5*c^8)-a^4*(b^2-c^2)^4*(5*b^8-4*b^6*c^2+5*b^4*c^4-4*b^2*c^6+5*c^8)-a^8*(4*b^12+5*b^10*c^2-30*b^8*c^4+30*b^6*c^6-30*b^4*c^8+5*b^2*c^10+4*c^12)+2*a^6*(b^14-4*b^10*c^4+3*b^8*c^6+3*b^6*c^8-4*b^4*c^10+c^14)) : :
X(57366) = -2*X[2]+X[57374], 2*X[5]+X[10420], -4*X[140]+X[32710], -5*X[1656]+2*X[16221], 2*X[2072]+X[13557], 2*X[12095]+X[18403]

X(57366) lies on these lines: {2, 57374}, {3, 3258}, {5, 10420}, {30, 38718}, {140, 32710}, {523, 57314}, {924, 14643}, {1656, 16221}, {2072, 13557}, {5055, 57375}, {10257, 57376}, {12095, 18403}, {13754, 15061}, {55130, 57305}

X(57366) = reflection of X(i) in X(j) for these {i,j}: {57374, 2}
X(57366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 10420, 50472}


X(57367) = X(3)X(11792)∩X(5)X(13597)

Barycentrics    a^16-7*a^14*(b^2+c^2)+(b^2-c^2)^6*(b^4-3*b^2*c^2+c^4)-a^2*(b-c)^4*(b+c)^4*(b^2+c^2)*(8*b^4-21*b^2*c^2+8*c^4)-2*a^10*(b^2+c^2)*(23*b^4-8*b^2*c^2+23*c^4)+a^12*(23*b^4+24*b^2*c^2+23*c^4)+a^4*(b^2-c^2)^2*(27*b^8-27*b^6*c^2-16*b^4*c^4-27*b^2*c^6+27*c^8)-a^6*(b^2+c^2)*(51*b^8-111*b^6*c^2+145*b^4*c^4-111*b^2*c^6+51*c^8)+a^8*(60*b^8-2*b^6*c^2+29*b^4*c^4-2*b^2*c^6+60*c^8) : :
X(57367) = -2*X[2]+X[57370], X[3]+2*X[11792], 2*X[5]+X[13597], -4*X[140]+X[20189], 2*X[3530]+X[11703]

X(57367) lies on these lines: {2, 57370}, {3, 11792}, {5, 13597}, {140, 20189}, {547, 9140}, {3530, 11703}, {5957, 57320}, {5959, 57343}, {7528, 13508}, {7529, 13507}, {10277, 33332}, {15478, 37452}, {43934, 57357}, {46451, 57305}, {53346, 57316}

X(57367) = reflection of X(i) in X(j) for these {i,j}: {57370, 2}


X(57368) = X(2)X(57326)∩X(5)X(476)

Barycentrics    a^22-6*a^20*(b^2+c^2)+(b-c)^8*(b+c)^8*(b^2+c^2)*(b^4+c^4)+a^18*(16*b^4+27*b^2*c^2+16*c^4)-a^16*(b^2+c^2)*(27*b^4+23*b^2*c^2+27*c^4)-2*a^2*(b^2-c^2)^6*(4*b^8+3*b^6*c^2+5*b^4*c^4+3*b^2*c^6+4*c^8)+a^10*b^2*c^2*(23*b^8+9*b^6*c^2+29*b^4*c^4+9*b^2*c^6+23*c^8)-a^12*(b^2+c^2)*(28*b^8-b^6*c^2+46*b^4*c^4-b^2*c^6+28*c^8)+a^14*(34*b^8+49*b^6*c^2+65*b^4*c^4+49*b^2*c^6+34*c^8)+a^4*(b^2-c^2)^4*(26*b^10+5*b^8*c^2+16*b^6*c^4+16*b^4*c^6+5*b^2*c^8+26*c^10)-a^6*(b^2-c^2)^2*(43*b^12-29*b^10*c^2+11*b^8*c^4+10*b^6*c^6+11*b^4*c^8-29*b^2*c^10+43*c^12)+a^8*(34*b^14-67*b^12*c^2+38*b^10*c^4-14*b^8*c^6-14*b^6*c^8+38*b^4*c^10-67*b^2*c^12+34*c^14) : :
X(57368) = -2*X[2]+X[57326], X[3]+2*X[46439], -4*X[140]+X[1291], 2*X[186]+X[19552], -5*X[1656]+2*X[45180], 2*X[10096]+X[14140]

X(57368) lies on these lines: {2, 57326}, {3, 46439}, {5, 476}, {30, 23237}, {140, 1291}, {186, 19552}, {381, 57377}, {523, 15392}, {1154, 14643}, {1157, 44234}, {1510, 15061}, {1656, 45180}, {2070, 15561}, {3519, 53930}, {10096, 14140}, {16532, 32744}

X(57368) = reflection of X(i) in X(j) for these {i,j}: {15392, 57324}, {57326, 2}
X(57368) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 14979, 14980}, {523, 57324, 15392}


X(57369) = X(3)X(128)∩X(5)X(107)

Barycentrics    (a^2-b^2-c^2)*(a^20-4*a^18*(b^2+c^2)-(b^2-c^2)^8*(b^4+b^2*c^2+c^4)-2*a^14*(b^2+c^2)*(b^4+4*b^2*c^2+c^4)+a^12*(2*b^4-b^2*c^2+2*c^4)^2+2*a^2*(b-c)^6*(b+c)^6*(b^2+c^2)*(3*b^4+b^2*c^2+3*c^4)+a^16*(5*b^4+12*b^2*c^2+5*c^4)-2*a^10*(b^2-c^2)^2*(5*b^6+2*b^4*c^2+2*b^2*c^4+5*c^6)+a^8*(b^2-c^2)^2*(4*b^8-5*b^6*c^2-12*b^4*c^4-5*b^2*c^6+4*c^8)+2*a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^8-2*b^6*c^2+6*b^4*c^4-2*b^2*c^6+5*c^8)-a^4*(b^2-c^2)^4*(13*b^8+14*b^6*c^2+13*b^4*c^4+14*b^2*c^6+13*c^8)) : :
X(57369) = -4*X[140]+X[933], 2*X[550]+X[44977], -5*X[631]+2*X[38616], -5*X[1656]+2*X[18402], -7*X[3526]+X[38585]

X(57369) lies on these lines: {2, 53808}, {3, 128}, {5, 107}, {30, 57377}, {140, 933}, {523, 57381}, {550, 44977}, {631, 38616}, {1141, 35442}, {1656, 18402}, {2070, 57319}, {3526, 38585}, {5891, 10628}, {37943, 57336}, {55132, 57324}

X(57369) = reflection of X(i) in X(j) for these {i,j}: {57317, 2}
X(57369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53808, 57317}


X(57370) = X(3)X(13507)∩X(110)X(140)

Barycentrics    a^16-9*a^14*(b^2+c^2)+(b^2-c^2)^6*(b^4-b^2*c^2+c^4)-6*a^10*(b^2+c^2)*(11*b^4+6*b^2*c^2+11*c^4)+a^12*(33*b^4+52*b^2*c^2+33*c^4)-a^2*(b^2-c^2)^4*(8*b^6+b^4*c^2+b^2*c^4+8*c^6)+a^4*(b^2-c^2)^2*(29*b^8+7*b^6*c^2+26*b^4*c^4+7*b^2*c^6+29*c^8)-a^6*(b^2+c^2)*(61*b^8-73*b^6*c^2+99*b^4*c^4-73*b^2*c^6+61*c^8)+a^8*(80*b^8+74*b^6*c^2+77*b^4*c^4+74*b^2*c^6+80*c^8) : :
X(57370) = -2*X[2]+X[57367], 2*X[5]+X[20189], -5*X[1656]+2*X[11792], -X[11703]+4*X[35018]

X(57370) lies on these lines: {2, 57367}, {3, 13507}, {5, 20189}, {110, 140}, {1656, 11792}, {5899, 57311}, {5957, 57313}, {5959, 57325}, {11703, 35018}, {18369, 23181}, {44450, 57306}

X(57370) = reflection of X(i) in X(j) for these {i,j}: {57367, 2}


X(57371) = X(2)X(57378)∩X(5)X(20404)

Barycentrics    a^24-7*a^22*(b^2+c^2)-14*a^18*(b^2+c^2)*(b^4+6*b^2*c^2+c^4)+4*a^20*(4*b^4+11*b^2*c^2+4*c^4)+2*a^14*(b^2+c^2)*(b^4-9*b^2*c^2+c^4)*(9*b^4-b^2*c^2+9*c^4)-a^16*(b^8-128*b^6*c^2-152*b^4*c^4-128*b^2*c^6+c^8)+(b^2-c^2)^6*(b^2+c^2)^2*(b^8-b^6*c^2+5*b^4*c^4-b^2*c^6+c^8)+2*a^12*(-16*b^12+79*b^10*c^2+37*b^8*c^4-18*b^6*c^6+37*b^4*c^8+79*b^2*c^10-16*c^12)+2*a^10*(b^2+c^2)*(14*b^12-78*b^10*c^2+65*b^8*c^4-46*b^6*c^6+65*b^4*c^8-78*b^2*c^10+14*c^12)-a^2*(b^2-c^2)^4*(6*b^14+b^12*c^2+21*b^10*c^4+10*b^8*c^6+10*b^6*c^8+21*b^4*c^10+b^2*c^12+6*c^14)-a^8*(b^16-46*b^14*c^2-10*b^12*c^4+62*b^10*c^6-63*b^8*c^8+62*b^6*c^10-10*b^4*c^12-46*b^2*c^14+c^16)+a^4*(b^2-c^2)^2*(16*b^16-15*b^14*c^2+58*b^12*c^4-55*b^10*c^6+18*b^8*c^8-55*b^6*c^10+58*b^4*c^12-15*b^2*c^14+16*c^16)-a^6*(b^2+c^2)*(19*b^16-51*b^14*c^2+133*b^12*c^4-301*b^10*c^6+403*b^8*c^8-301*b^6*c^10+133*b^4*c^12-51*b^2*c^14+19*c^16) : :
X(57371) = -2*X[2]+X[57378], 2*X[5]+X[20404], -4*X[140]+X[53605], -5*X[1656]+2*X[35582]

X(57371) lies on these lines: {2, 57378}, {5, 20404}, {140, 53605}, {498, 44051}, {526, 57310}, {542, 57311}, {690, 57307}, {804, 57305}, {1656, 35582}, {2782, 57306}, {5663, 57347}, {14850, 57331}

X(57371) = reflection of X(i) in X(j) for these {i,j}: {57378, 2}


X(57372) = X(3)X(36472)∩X(5)X(23700)

Barycentrics    a^18-5*a^16*(b^2+c^2)+2*a^12*(b^2+c^2)*(b^4-26*b^2*c^2+c^4)+a^14*(8*b^4+26*b^2*c^2+8*c^4)+(b^2-c^2)^6*(b^6+c^6)+a^10*(-26*b^8+66*b^6*c^2+49*b^4*c^4+66*b^2*c^6-26*c^8)-a^2*(b^2-c^2)^4*(7*b^8-b^6*c^2+4*b^4*c^4-b^2*c^6+7*c^8)+a^8*(b^2+c^2)*(44*b^8-126*b^6*c^2+113*b^4*c^4-126*b^2*c^6+44*c^8)+a^6*(-40*b^12+87*b^10*c^2-49*b^8*c^4+48*b^6*c^6-49*b^4*c^8+87*b^2*c^10-40*c^12)+a^4*(b^2+c^2)*(22*b^12-87*b^10*c^2+157*b^8*c^4-188*b^6*c^6+157*b^4*c^8-87*b^2*c^10+22*c^12) : :
X(57372) = X[3]+2*X[36472], 2*X[5]+X[23700], -4*X[140]+X[10425]

X(57372) lies on these lines: {3, 36472}, {5, 23700}, {140, 10425}, {511, 57357}, {512, 57356}, {3564, 5182}, {3566, 38224}, {5050, 57379}, {14853, 57307}, {38225, 57314}, {41330, 57310}, {55131, 57306}


X(57373) = X(3)X(1560)∩X(5)X(30247)

Barycentrics    a^16-6*a^14*(b^2+c^2)+(b^2-c^2)^6*(b^2+c^2)^2+2*a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(2*b^4+15*b^2*c^2+2*c^4)+a^10*(b^2+c^2)*(7*b^4-43*b^2*c^2+7*c^4)+a^12*(7*b^4+31*b^2*c^2+7*c^4)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^8-11*b^6*c^2+8*b^4*c^4-11*b^2*c^6+5*c^8)+a^4*(b^2-c^2)^2*(7*b^8-11*b^6*c^2-20*b^4*c^4-11*b^2*c^6+7*c^8)-2*a^8*(8*b^8+b^6*c^2-30*b^4*c^4+b^2*c^6+8*c^8) : :
X(57373) = X[3]+2*X[1560], 2*X[5]+X[30247], -4*X[140]+X[2373], -5*X[1656]+2*X[14672]

X(57373) lies on these lines: {3, 1560}, {5, 30247}, {30, 57380}, {140, 2373}, {381, 9172}, {1656, 14672}, {5050, 15061}, {5054, 57332}, {7506, 54066}, {14655, 45735}, {38225, 44214}, {55135, 57331}


X(57374) = X(2)X(57366)∩X(3)X(16221)

Barycentrics    a^22-5*a^20*(b^2+c^2)+3*a^18*(3*b^4+8*b^2*c^2+3*c^4)-a^16*(b^2+c^2)*(7*b^4+34*b^2*c^2+7*c^4)+(b^2-c^2)^8*(b^6+2*b^4*c^2+2*b^2*c^4+c^6)+a^14*(6*b^8+20*b^6*c^2+77*b^4*c^4+20*b^2*c^6+6*c^8)-a^2*(b^2-c^2)^6*(7*b^8+9*b^6*c^2+10*b^4*c^4+9*b^2*c^6+7*c^8)-a^12*(b^2+c^2)*(14*b^8-36*b^6*c^2+95*b^4*c^4-36*b^2*c^6+14*c^8)+a^4*(b^2-c^2)^4*(19*b^10+b^8*c^2-3*b^6*c^4-3*b^4*c^6+b^2*c^8+19*c^10)+a^8*(b^2+c^2)*(6*b^12-45*b^10*c^2+128*b^8*c^4-182*b^6*c^6+128*b^4*c^8-45*b^2*c^10+6*c^12)+a^10*(14*b^12-19*b^10*c^2-18*b^8*c^4+90*b^6*c^6-18*b^4*c^8-19*b^2*c^10+14*c^12)-a^6*(b^2-c^2)^2*(23*b^12-40*b^10*c^2+8*b^8*c^4+26*b^6*c^6+8*b^4*c^8-40*b^2*c^10+23*c^12) : :
X(57374) = -2*X[2]+X[57366], X[3]+2*X[16221], 2*X[5]+X[32710], -4*X[140]+X[10420], -5*X[1656]+2*X[42424], X[5962]+2*X[15646], -X[13557]+4*X[44452]

X(57374) lies on these lines: {2, 57366}, {3, 16221}, {5, 32710}, {30, 57314}, {140, 10420}, {381, 57305}, {523, 57334}, {924, 15061}, {1656, 42424}, {5054, 57379}, {5962, 15646}, {13557, 44452}, {13754, 14643}, {15561, 44214}, {37955, 57316}, {38321, 57377}, {55130, 57306}

X(57374) = reflection of X(i) in X(j) for these {i,j}: {57366, 2}
X(57374) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 16221, 50472}


X(57375) = X(2)X(57379)∩X(5)X(11635)

Barycentrics    a^20-5*a^18*(b^2+c^2)+(b^2-c^2)^6*(b^2+c^2)^2*(b^4-3*b^2*c^2+c^4)+2*a^16*(5*b^4+11*b^2*c^2+5*c^4)-a^14*(b^2+c^2)*(7*b^4+34*b^2*c^2+7*c^4)+a^12*(-9*b^8+48*b^6*c^2+51*b^4*c^4+48*b^2*c^6-9*c^8)-a^6*(b^2+c^2)*(b^4-b^2*c^2+c^4)*(5*b^8-51*b^6*c^2+96*b^4*c^4-51*b^2*c^6+5*c^8)-a^2*(b-c)^4*(b+c)^4*(b^2+c^2)*(6*b^8-19*b^6*c^2+18*b^4*c^4-19*b^2*c^6+6*c^8)+a^10*(b^2+c^2)*(23*b^8-65*b^6*c^2+33*b^4*c^4-65*b^2*c^6+23*c^8)+a^8*(-15*b^12+7*b^10*c^2+34*b^8*c^4-8*b^6*c^6+34*b^4*c^8+7*b^2*c^10-15*c^12)+2*a^4*(b^2-c^2)^2*(6*b^12-23*b^10*c^2+20*b^8*c^4-14*b^6*c^6+20*b^4*c^8-23*b^2*c^10+6*c^12) : :
X(57375) = -2*X[2]+X[57379], X[3]+2*X[48317], -4*X[140]+X[53895]

X(57375) lies on these lines: {2, 57379}, {3, 48317}, {5, 11635}, {30, 57357}, {140, 53895}, {381, 57307}, {523, 57356}, {3564, 14643}, {3566, 15061}, {5055, 57366}, {7506, 14729}, {44214, 57331}, {55131, 57311}

X(57375) = reflection of X(i) in X(j) for these {i,j}: {57379, 2}


X(57376) = X(3)X(53832)∩X(140)X(1302)

Barycentrics    a^16+a^12*(-19*b^4+31*b^2*c^2-19*c^4)+(b^2-c^2)^6*(b^4+4*b^2*c^2+c^4)+a^10*(b^2+c^2)*(59*b^4-117*b^2*c^2+59*c^4)-a^2*(b^2-c^2)^4*(b^6-6*b^4*c^2-6*b^2*c^4+c^6)-a^4*(b^2-c^2)^2*(15*b^8+83*b^6*c^2+100*b^4*c^4+83*b^2*c^6+15*c^8)-4*a^8*(20*b^8+4*b^6*c^2-51*b^4*c^4+4*b^2*c^6+20*c^8)+2*a^6*(b^2+c^2)*(27*b^8+17*b^6*c^2-90*b^4*c^4+17*b^2*c^6+27*c^8) : :
X(57376) = X[3]+2*X[53832], 2*X[5]+X[43660], -4*X[140]+X[1302], -5*X[1656]+2*X[50935], 2*X[8703]+X[52447]

X(57376) lies on these lines: {3, 53832}, {5, 43660}, {30, 57365}, {140, 1302}, {541, 5054}, {1656, 50935}, {8703, 52447}, {9003, 15061}, {10257, 57366}, {44214, 57336}


X(57377) = X(2)X(57381)∩X(5)X(52998)

Barycentrics    a^28-8*a^26*(b^2+c^2)+(b^2-c^2)^10*(b^2+c^2)^4+a^24*(26*b^4+47*b^2*c^2+26*c^4)-a^22*(b^2+c^2)*(41*b^4+73*b^2*c^2+41*c^4)-a^2*(b-c)^8*(b+c)^8*(b^2+c^2)*(7*b^8+11*b^6*c^2+10*b^4*c^4+11*b^2*c^6+7*c^8)+a^4*(b-c)^6*(b+c)^6*(b^4-b^2*c^2+c^4)*(20*b^8+45*b^6*c^2+52*b^4*c^4+45*b^2*c^6+20*c^8)+a^20*(22*b^8+145*b^6*c^2+201*b^4*c^4+145*b^2*c^6+22*c^8)+a^18*(b^2+c^2)*(29*b^8-123*b^6*c^2-70*b^4*c^4-123*b^2*c^6+29*c^8)+a^16*(-63*b^12+4*b^10*c^2+134*b^8*c^4+111*b^6*c^6+134*b^4*c^8+4*b^2*c^10-63*c^12)+2*a^10*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^12+9*b^10*c^2+24*b^8*c^4-11*b^6*c^6+24*b^4*c^8+9*b^2*c^10+c^12)-a^12*(b^2-c^2)^2*(27*b^12+88*b^10*c^2+137*b^8*c^4+96*b^6*c^6+137*b^4*c^8+88*b^2*c^10+27*c^12)+a^14*(b^2+c^2)*(54*b^12-6*b^10*c^2-77*b^8*c^4+31*b^6*c^6-77*b^4*c^8-6*b^2*c^10+54*c^12)-a^6*(b^2-c^2)^4*(29*b^14+2*b^12*c^2+23*b^10*c^4+b^8*c^6+b^6*c^8+23*b^4*c^10+2*b^2*c^12+29*c^14)+a^8*(b^2-c^2)^2*(20*b^16-21*b^14*c^2+b^12*c^4-42*b^10*c^6+52*b^8*c^8-42*b^6*c^10+b^4*c^12-21*b^2*c^14+20*c^16) : :
X(57377) = -2*X[2]+X[57381], 2*X[5]+X[52998], -4*X[140]+X[53959], -5*X[1656]+2*X[46664]

X(57377) lies on these lines: {2, 57381}, {5, 52998}, {30, 57369}, {140, 53959}, {381, 57368}, {523, 57317}, {549, 38719}, {1656, 46664}, {6368, 14643}, {15061, 18400}, {38321, 57374}

X(57377) = reflection of X(i) in X(j) for these {i,j}: {57381, 2}


X(57378) = X(2)X(57371)∩X(3)X(35582)

Barycentrics    a^24-5*a^22*(b^2+c^2)+2*a^20*(7*b^4+8*b^2*c^2+7*c^4)-2*a^18*(b^2+c^2)*(11*b^4+6*b^2*c^2+11*c^4)+(b^2-c^2)^6*(b^2+c^2)^2*(b^8-3*b^6*c^2+b^4*c^4-3*b^2*c^6+c^8)+a^16*(7*b^8+40*b^6*c^2+88*b^4*c^4+40*b^2*c^6+7*c^8)-2*a^12*(2*b^4+3*b^2*c^2+2*c^4)*(11*b^8+11*b^6*c^2-54*b^4*c^4+11*b^2*c^6+11*c^8)+2*a^14*(b^2+c^2)*(15*b^8-8*b^6*c^2-63*b^4*c^4-8*b^2*c^6+15*c^8)-a^2*(b-c)^4*(b+c)^4*(b^2+c^2)*(6*b^12-19*b^10*c^2+10*b^8*c^4-20*b^6*c^6+10*b^4*c^8-19*b^2*c^10+6*c^12)+2*a^10*(b^2+c^2)*(10*b^12+78*b^10*c^2-131*b^8*c^4+70*b^6*c^6-131*b^4*c^8+78*b^2*c^10+10*c^12)+a^8*(7*b^16-178*b^14*c^2+170*b^12*c^4-22*b^10*c^6+63*b^8*c^8-22*b^6*c^10+170*b^4*c^12-178*b^2*c^14+7*c^16)+a^4*(b^2-c^2)^2*(14*b^16-57*b^14*c^2+8*b^12*c^4+7*b^10*c^6+7*b^6*c^10+8*b^4*c^12-57*b^2*c^14+14*c^16)+a^6*(-17*b^18+136*b^16*c^2-170*b^14*c^4+32*b^12*c^6+18*b^10*c^8+18*b^8*c^10+32*b^6*c^12-170*b^4*c^14+136*b^2*c^16-17*c^18) : :
X(57378) = -2*X[2]+X[57371], X[3]+2*X[35582], 2*X[5]+X[53605], -4*X[140]+X[20404]

X(57378) lies on these lines: {2, 57371}, {3, 35582}, {5, 53605}, {140, 20404}, {499, 44051}, {526, 57347}, {542, 57307}, {690, 57311}, {804, 57306}, {2782, 57305}, {5663, 57310}, {14643, 23234}

X(57378) = reflection of X(i) in X(j) for these {i,j}: {57371, 2}


X(57379) = X(3)X(5099)∩X(5)X(23096)

Barycentrics    (a^2-b^2-c^2)*(a^18-6*a^16*(b^2+c^2)+a^12*(b^2+c^2)*(b^4-52*b^2*c^2+c^4)+10*a^14*(b^4+3*b^2*c^2+c^4)+a^2*(b^2-c^2)^6*(5*b^4+4*b^2*c^2+5*c^4)-(b^2-c^2)^6*(b^6+c^6)+a^10*(-18*b^8+34*b^6*c^2+73*b^4*c^4+34*b^2*c^6-18*c^8)-a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(9*b^8-36*b^6*c^2+44*b^4*c^4-36*b^2*c^6+9*c^8)+a^8*(b^2+c^2)*(15*b^8-9*b^6*c^2-40*b^4*c^4-9*b^2*c^6+15*c^8)+a^6*(2*b^12-38*b^10*c^2+59*b^8*c^4-34*b^6*c^6+59*b^4*c^8-38*b^2*c^10+2*c^12)) : :
X(57379) = -2*X[2]+X[57375], -4*X[140]+X[40118], -5*X[1656]+2*X[48317]

X(57379) lies on these lines: {2, 57375}, {3, 5099}, {5, 23096}, {30, 57356}, {140, 40118}, {523, 57357}, {1656, 48317}, {2072, 15560}, {3564, 5622}, {3566, 14643}, {5050, 57372}, {5054, 57374}, {10256, 57332}, {55131, 57307}

X(57379) = reflection of X(i) in X(j) for these {i,j}: {57375, 2}


X(57380) = X(3)X(31655)∩X(5)X(53929)

Barycentrics    (a^2-b^2-c^2)*(a^20-4*a^18*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)^2*(b^4-3*b^2*c^2+c^4)+2*a^14*(b^2+c^2)*(3*b^4-13*b^2*c^2+3*c^4)+a^16*(5*b^4+12*b^2*c^2+5*c^4)+a^12*(-20*b^8+22*b^6*c^2+13*b^4*c^4+22*b^2*c^6-20*c^8)+2*a^10*(b^2+c^2)*(3*b^8+3*b^6*c^2-13*b^4*c^4+3*b^2*c^6+3*c^8)-2*a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(7*b^8-19*b^6*c^2+22*b^4*c^4-19*b^2*c^6+7*c^8)+a^8*(b^2-c^2)^2*(20*b^8-33*b^6*c^2+16*b^4*c^4-33*b^2*c^6+20*c^8)+2*a^2*(b^2-c^2)^4*(3*b^10-8*b^8*c^2+4*b^6*c^4+4*b^4*c^6-8*b^2*c^8+3*c^10)-a^4*(b^2-c^2)^2*(5*b^12-22*b^10*c^2+54*b^8*c^4-62*b^6*c^6+54*b^4*c^8-22*b^2*c^10+5*c^12)) : :
X(57380) = 2*X[5]+X[53929], -4*X[140]+X[10098], X[7574]+2*X[56922]

X(57380) lies on these lines: {3, 31655}, {5, 53929}, {30, 57373}, {140, 10098}, {2072, 15561}, {2393, 14643}, {5055, 57319}, {7574, 56922}, {15061, 30209}, {18403, 57363}, {55148, 57355}


X(57381) = X(3)X(14980)∩X(5)X(1304)

Barycentrics    (a^2-b^2-c^2)*(a^26-5*a^24*(b^2+c^2)-(b-c)^10*(b+c)^10*(b^2+c^2)*(b^4+c^4)+2*a^20*(b^2+c^2)*(2*b^4-23*b^2*c^2+2*c^4)+a^22*(7*b^4+25*b^2*c^2+7*c^4)+a^18*(-16*b^8+13*b^6*c^2+85*b^4*c^4+13*b^2*c^6-16*c^8)+a^16*(b^2+c^2)*(b^8+40*b^6*c^2-103*b^4*c^4+40*b^2*c^6+c^8)+a^2*(b^2-c^2)^8*(6*b^8+7*b^6*c^2+8*b^4*c^4+7*b^2*c^6+6*c^8)-a^12*(b-c)^2*(b+c)^2*(b^2+c^2)*(8*b^8+22*b^6*c^2-49*b^4*c^4+22*b^2*c^6+8*c^8)-a^4*(b-c)^6*(b+c)^6*(b^2+c^2)*(12*b^8-4*b^6*c^2+9*b^4*c^4-4*b^2*c^6+12*c^8)+a^6*(b^2-c^2)^4*(3*b^12-9*b^10*c^2-5*b^8*c^4+3*b^6*c^6-5*b^4*c^8-9*b^2*c^10+3*c^12)+a^8*(b-c)^2*(b+c)^2*(b^2+c^2)*(21*b^12-32*b^10*c^2+20*b^8*c^4+6*b^6*c^6+20*b^4*c^8-32*b^2*c^10+21*c^12)+a^14*(22*b^12-44*b^10*c^2-22*b^8*c^4+97*b^6*c^6-22*b^4*c^8-44*b^2*c^10+22*c^12)-a^10*(b^2-c^2)^2*(23*b^12-22*b^10*c^2+4*b^8*c^4+52*b^6*c^6+4*b^4*c^8-22*b^2*c^10+23*c^12)) : :
X(57381) = -2*X[2]+X[57377], -4*X[140]+X[52998], X[18859]+2*X[44057]

X(57381) lies on these lines: {2, 57377}, {3, 14980}, {5, 1304}, {30, 57317}, {140, 52998}, {523, 57369}, {2070, 39569}, {6368, 15061}, {14643, 18400}, {18859, 44057}, {37943, 57301}

X(57381) = reflection of X(i) in X(j) for these {i,j}: {57377, 2}


X(57382) = X(6)X(1605)∩X(16)X(5012)

Barycentrics    a^2*((a^2+b^2)*S+sqrt(3)*(2*SA*SB+c^2*SC))*((a^2+c^2)*S+sqrt(3)*(b^2*SB+2*SA*SC)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(15).

X(57382) lies on these lines: {6, 1605}, {13, 14181}, {16, 5012}, {39, 8604}, {299, 618}, {1629, 35714}, {2058, 8016}, {5472, 16806}, {8740, 10312}, {11081, 19627}, {39834, 57383}

X(57382) = isogonal conjugate of X(623)
X(57382) = trilinear pole of line {3050, 6138}
X(57382) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 623}, {18070, 35336}
X(57382) = X(i)-vertex conjugate of X(j) for these {i, j}: {13, 57382}, {54, 54571}, {671, 57383}, {2981, 16459}, {34321, 34321}, {43538, 57413}
X(57382) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 623}
X(57382) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 41907}, {6104, 2380}, {14270, 5994}
X(57382) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(54569)}}, {{A, B, C, X(4), X(23716)}}, {{A, B, C, X(6), X(13)}}, {{A, B, C, X(14), X(3455)}}, {{A, B, C, X(15), X(618)}}, {{A, B, C, X(39), X(62)}}, {{A, B, C, X(54), X(98)}}, {{A, B, C, X(61), X(3442)}}, {{A, B, C, X(74), X(16459)}}, {{A, B, C, X(671), X(34322)}}, {{A, B, C, X(1173), X(54571)}}, {{A, B, C, X(1691), X(36759)}}, {{A, B, C, X(1989), X(8603)}}, {{A, B, C, X(2378), X(39410)}}, {{A, B, C, X(2381), X(2981)}}, {{A, B, C, X(3439), X(34533)}}, {{A, B, C, X(8446), X(11083)}}, {{A, B, C, X(9203), X(32717)}}, {{A, B, C, X(11086), X(37848)}}, {{A, B, C, X(14586), X(16806)}}, {{A, B, C, X(19627), X(34394)}}, {{A, B, C, X(34567), X(57385)}}
X(57382) = barycentric product X(i)*X(j) for these (i, j): {15, 41907}, {11126, 39432}
X(57382) = barycentric quotient X(i)/X(j) for these (i, j): {6, 623}, {5994, 35316}, {34394, 40695}, {41907, 300}


X(57383) = X(6)X(1606)∩X(15)X(5012)

Barycentrics    a^2*(-(a^2+b^2)*S+sqrt(3)*(2*SA*SB+c^2*SC))*(-(a^2+c^2)*S+sqrt(3)*(b^2*SB+2*SA*SC)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(16)

X(57383) lies on these lines: {6, 1606}, {14, 14177}, {15, 5012}, {39, 8603}, {298, 619}, {1629, 35715}, {2059, 8017}, {5471, 16807}, {8739, 10312}, {11086, 19627}, {39834, 57382}

X(57383) = isogonal conjugate of X(624)
X(57383) = trilinear pole of line {3050, 6137}
X(57383) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 624}, {18070, 35337}
X(57383) = X(i)-vertex conjugate of X(j) for these {i, j}: {14, 57383}, {54, 54572}, {671, 57382}, {6151, 16460}, {34322, 34322}, {43539, 57412}
X(57383) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 41908}, {6105, 2381}, {14270, 5995}
X(57383) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(54570)}}, {{A, B, C, X(4), X(23717)}}, {{A, B, C, X(6), X(14)}}, {{A, B, C, X(13), X(3455)}}, {{A, B, C, X(16), X(619)}}, {{A, B, C, X(39), X(61)}}, {{A, B, C, X(54), X(98)}}, {{A, B, C, X(62), X(3443)}}, {{A, B, C, X(74), X(16460)}}, {{A, B, C, X(671), X(34321)}}, {{A, B, C, X(1173), X(54572)}}, {{A, B, C, X(1691), X(36760)}}, {{A, B, C, X(1989), X(8604)}}, {{A, B, C, X(2379), X(39411)}}, {{A, B, C, X(2380), X(6151)}}, {{A, B, C, X(3438), X(34534)}}, {{A, B, C, X(8456), X(11088)}}, {{A, B, C, X(9202), X(32717)}}, {{A, B, C, X(11081), X(37850)}}, {{A, B, C, X(14586), X(16807)}}, {{A, B, C, X(19627), X(34395)}}, {{A, B, C, X(34567), X(57384)}}
X(57383) = barycentric product X(i)*X(j) for these (i, j): {16, 41908}, {11127, 39433}
X(57383) = barycentric quotient X(i)/X(j) for these (i, j): {6, 624}, {5995, 35317}, {34395, 40696}, {41908, 301}


X(57384) = X(17)X(302)∩X(18)X(36304)

Barycentrics    a^2*(sqrt(3)*(a^2+b^2)*S+6*SA*SB+7*c^2*SC)*(sqrt(3)*(a^2+c^2)*S+7*b^2*SB+6*SA*SC) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(17).

X(57384) lies on these lines: {17, 302}, {18, 36304}, {61, 21461}, {62, 34321}

X(57384) = isogonal conjugate of X(629)
X(57384) = X(i)-vertex conjugate of X(j) for these {i, j}: {61, 57384}
X(57384) = X(i)-cross conjugate of X(j) for these {i, j}: {512, 16806}
X(57384) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(23716)}}, {{A, B, C, X(6), X(18)}}, {{A, B, C, X(17), X(21461)}}, {{A, B, C, X(54), X(16459)}}, {{A, B, C, X(251), X(1487)}}, {{A, B, C, X(512), X(39554)}}, {{A, B, C, X(1173), X(16460)}}, {{A, B, C, X(2379), X(43546)}}, {{A, B, C, X(3438), X(43550)}}, {{A, B, C, X(34322), X(57421)}}, {{A, B, C, X(34567), X(57383)}}
X(57384) = barycentric quotient X(i)/X(j) for these (i, j): {6, 629}, {21461, 23302}, {34394, 34327}


X(57385) = X(17)X(36305)∩X(18)X(303)

Barycentrics    a^2*(-sqrt(3)*(a^2+b^2)*S+6*SA*SB+7*c^2*SC)*(-sqrt(3)*(a^2+c^2)*S+7*b^2*SB+6*SA*SC) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(18).

X(57385) lies on these lines: {17, 36305}, {18, 303}, {61, 34322}, {62, 21462}

X(57385) = isogonal conjugate of X(630)
X(57385) = X(i)-vertex conjugate of X(j) for these {i, j}: {62, 57385}
X(57385) = X(i)-cross conjugate of X(j) for these {i, j}: {512, 16807}
X(57385) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(23717)}}, {{A, B, C, X(6), X(17)}}, {{A, B, C, X(18), X(21462)}}, {{A, B, C, X(54), X(16460)}}, {{A, B, C, X(251), X(1487)}}, {{A, B, C, X(512), X(39555)}}, {{A, B, C, X(1173), X(16459)}}, {{A, B, C, X(2378), X(43547)}}, {{A, B, C, X(3439), X(43551)}}, {{A, B, C, X(34321), X(57421)}}, {{A, B, C, X(34567), X(57382)}}
X(57385) = barycentric quotient X(i)/X(j) for these (i, j): {6, 630}, {21462, 23303}, {34395, 34328}


X(57386) = X(6)X(1619)∩X(63)X(1973)

Barycentrics    a^2*(a+b)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^2-2*a*b+b^2+c^2)*(a^2+b^2-2*a*c+c^2) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(19).

X(57386) lies on these lines: {6, 1619}, {63, 1973}, {81, 2332}, {284, 1037}, {1041, 1172}, {1474, 2287}, {2203, 2328}, {4184, 7054}, {4251, 44105}, {7058, 14013}, {21750, 32691}

X(57386) = isogonal conjugate of X(18589)
X(57386) = trilinear pole of line {6586, 21789}
X(57386) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 18589}, {2, 17441}, {3, 53510}, {6, 20235}, {10, 7289}, {37, 17170}, {38, 18084}, {63, 3914}, {65, 27509}, {69, 16583}, {71, 3673}, {72, 4000}, {75, 23620}, {76, 22363}, {81, 21015}, {92, 22057}, {100, 21107}, {226, 1040}, {304, 40934}, {305, 21750}, {306, 614}, {307, 2082}, {321, 1473}, {326, 52577}, {345, 40961}, {348, 40965}, {497, 1214}, {525, 1633}, {656, 3732}, {1231, 7083}, {1332, 48403}, {1439, 6554}, {1441, 7124}, {1851, 3998}, {3690, 16750}, {3694, 7195}, {3710, 28017}, {4319, 56382}, {5324, 26942}, {7386, 56219}, {16502, 20336}, {40987, 52565}
X(57386) = X(i)-vertex conjugate of X(j) for these {i, j}: {58, 56153}, {63, 57386}
X(57386) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 18589}, {9, 20235}, {206, 23620}, {3162, 3914}, {8054, 21107}, {15259, 52577}, {22391, 22057}, {32664, 17441}, {36103, 53510}, {40586, 21015}, {40589, 17170}, {40596, 3732}, {40602, 27509}
X(57386) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 40403}, {3733, 112}, {8646, 32691}, {15313, 101}, {23864, 107}, {23865, 108}, {53278, 40116}
X(57386) = pole of line {7289, 17170} with respect to the Stammler hyperbola
X(57386) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(4), X(103)}}, {{A, B, C, X(6), X(63)}}, {{A, B, C, X(25), X(14013)}}, {{A, B, C, X(27), X(2299)}}, {{A, B, C, X(28), X(4233)}}, {{A, B, C, X(58), X(26702)}}, {{A, B, C, X(81), X(284)}}, {{A, B, C, X(251), X(961)}}, {{A, B, C, X(278), X(9085)}}, {{A, B, C, X(1037), X(1041)}}, {{A, B, C, X(1039), X(56098)}}, {{A, B, C, X(1063), X(38825)}}, {{A, B, C, X(1474), X(2203)}}, {{A, B, C, X(1780), X(7163)}}, {{A, B, C, X(1790), X(2194)}}, {{A, B, C, X(1896), X(56154)}}, {{A, B, C, X(1973), X(36417)}}, {{A, B, C, X(2365), X(56364)}}, {{A, B, C, X(3449), X(43363)}}, {{A, B, C, X(3451), X(56363)}}, {{A, B, C, X(8646), X(21750)}}, {{A, B, C, X(39696), X(56003)}}
X(57386) = barycentric product X(i)*X(j) for these (i, j): {19, 40403}, {27, 7123}, {28, 56179}, {112, 48070}, {286, 7084}, {1037, 29}, {1041, 21}, {1172, 7131}, {1396, 56243}, {1474, 30701}, {2299, 8817}, {2332, 30705}, {4183, 56359}, {40411, 6}
X(57386) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20235}, {6, 18589}, {19, 53510}, {25, 3914}, {28, 3673}, {31, 17441}, {32, 23620}, {42, 21015}, {58, 17170}, {112, 3732}, {184, 22057}, {251, 18084}, {284, 27509}, {560, 22363}, {649, 21107}, {1037, 307}, {1041, 1441}, {1333, 7289}, {1395, 40961}, {1474, 4000}, {1973, 16583}, {1974, 40934}, {2194, 1040}, {2203, 614}, {2204, 2082}, {2206, 1473}, {2207, 52577}, {2212, 40965}, {2299, 497}, {2332, 6554}, {7084, 72}, {7123, 306}, {7131, 1231}, {30701, 40071}, {32676, 1633}, {36417, 8020}, {40403, 304}, {40411, 76}, {43925, 48398}, {44119, 7386}, {48070, 3267}, {56179, 20336}, {56260, 52369}


X(57387) = X(3)X(35603)∩X(235)X(265)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^8-a^6*(b^2+4*c^2)+(b^2+c^2)*(-(b^2*c)+c^3)^2+a^4*(-b^4+b^2*c^2+6*c^4)+a^2*(b^6-2*b^4*c^2+b^2*c^4-4*c^6))*(a^8-a^6*(4*b^2+c^2)+(b^2+c^2)*(b^3-b*c^2)^2+a^4*(6*b^4+b^2*c^2-c^4)+a^2*(-4*b^6+b^4*c^2-2*b^2*c^4+c^6)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(24).

X(57387) lies on the Jerabek hyperbola and on these lines: {3, 35603}, {24, 15316}, {25, 38260}, {52, 5504}, {54, 52000}, {68, 3542}, {69, 3147}, {70, 26917}, {110, 46443}, {235, 265}, {468, 3519}, {569, 4846}, {895, 3518}, {973, 42059}, {1176, 44479}, {1885, 3521}, {2917, 42016}, {6146, 22466}, {11270, 43813}, {12111, 34801}, {12235, 37951}, {13383, 34397}, {13418, 52417}, {13622, 32344}, {14380, 47193}, {19142, 26879}, {21844, 56068}, {35486, 42021}, {37119, 43815}, {44879, 55976}

X(57387) = isogonal conjugate of X(11585)
X(57387) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 11585}, {2, 18670}, {37, 18647}
X(57387) = X(i)-vertex conjugate of X(j) for these {i, j}: {68, 57387}
X(57387) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 11585}, {32664, 18670}, {40589, 18647}
X(57387) = X(i)-cross conjugate of X(j) for these {i, j}: {34952, 112}
X(57387) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(24), X(393)}}, {{A, B, C, X(25), X(3147)}}, {{A, B, C, X(32), X(44470)}}, {{A, B, C, X(39), X(44479)}}, {{A, B, C, X(52), X(3003)}}, {{A, B, C, X(59), X(1063)}}, {{A, B, C, X(60), X(1061)}}, {{A, B, C, X(96), X(41890)}}, {{A, B, C, X(186), X(235)}}, {{A, B, C, X(250), X(8884)}}, {{A, B, C, X(251), X(1166)}}, {{A, B, C, X(254), X(56307)}}, {{A, B, C, X(403), X(45172)}}, {{A, B, C, X(468), X(3518)}}, {{A, B, C, X(523), X(34225)}}, {{A, B, C, X(569), X(5063)}}, {{A, B, C, X(847), X(8749)}}, {{A, B, C, X(1093), X(1299)}}, {{A, B, C, X(1179), X(8882)}}, {{A, B, C, X(1297), X(46199)}}, {{A, B, C, X(1885), X(3520)}}, {{A, B, C, X(1990), X(47193)}}, {{A, B, C, X(2052), X(56002)}}, {{A, B, C, X(2987), X(43678)}}, {{A, B, C, X(3563), X(13854)}}, {{A, B, C, X(8745), X(14517)}}, {{A, B, C, X(10419), X(57414)}}, {{A, B, C, X(10539), X(39110)}}, {{A, B, C, X(10594), X(35486)}}, {{A, B, C, X(14910), X(34449)}}, {{A, B, C, X(14979), X(48377)}}, {{A, B, C, X(15319), X(46426)}}, {{A, B, C, X(32344), X(40633)}}, {{A, B, C, X(34428), X(36612)}}, {{A, B, C, X(34756), X(56364)}}, {{A, B, C, X(35485), X(35502)}}, {{A, B, C, X(40352), X(41271)}}, {{A, B, C, X(44077), X(52432)}}, {{A, B, C, X(44681), X(51761)}}, {{A, B, C, X(45171), X(45177)}}, {{A, B, C, X(52583), X(56004)}}, {{A, B, C, X(57393), X(57395)}}, {{A, B, C, X(57394), X(57396)}}
X(57387) = barycentric quotient X(i)/X(j) for these (i, j): {6, 11585}, {31, 18670}, {58, 18647}, {44077, 40939}


X(57388) = X(3)X(19118)∩X(69)X(1974)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+a^2*(-2*b^2+c^2)+b^2*(b^2+c^2))*(a^4+a^2*(b^2-2*c^2)+c^2*(b^2+c^2)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(25).

X(57388) lies on the Jerabek hyperbola and on these lines: {3, 19118}, {6, 35219}, {25, 6391}, {54, 21637}, {66, 19136}, {67, 56918}, {68, 3089}, {69, 1974}, {110, 40316}, {182, 15740}, {184, 17040}, {185, 45302}, {193, 41619}, {206, 5486}, {248, 800}, {265, 1596}, {290, 44131}, {683, 44146}, {695, 2211}, {895, 1843}, {1176, 44102}, {1503, 22466}, {1968, 53059}, {3519, 21841}, {3521, 13488}, {3527, 39588}, {3532, 34778}, {3564, 22750}, {4846, 51171}, {5065, 43718}, {5504, 11557}, {5622, 11744}, {6403, 15316}, {6677, 26156}, {6776, 14457}, {8537, 15317}, {10565, 44077}, {12167, 38263}, {12294, 43815}, {13622, 15585}, {14542, 14853}, {14912, 45011}, {14913, 37777}, {15463, 55981}, {16774, 37643}, {18125, 32239}, {19123, 35603}, {19124, 31371}, {19142, 34146}, {19153, 43725}, {22538, 29012}, {41617, 44091}, {42016, 44668}, {43696, 50188}, {44080, 51170}

X(57388) = isogonal conjugate of X(1368)
X(57388) = trilinear pole of line {647, 41336}
X(57388) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 1368}, {2, 18671}, {6, 21406}, {37, 18648}, {63, 5254}, {69, 17872}, {75, 6467}, {92, 22401}, {304, 1196}, {306, 16716}, {561, 682}, {656, 53350}, {4592, 12075}, {14208, 53273}, {18750, 45207}
X(57388) = X(i)-vertex conjugate of X(j) for these {i, j}: {69, 57388}, {9307, 41890}, {18532, 55978}
X(57388) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 1368}, {9, 21406}, {206, 6467}, {3162, 5254}, {5139, 12075}, {22391, 22401}, {32664, 18671}, {40368, 682}, {40589, 18648}, {40596, 53350}
X(57388) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 40405}, {669, 112}, {3265, 39417}, {3566, 110}, {22089, 1301}, {37183, 3563}, {52545, 55023}, {53247, 1304}
X(57388) = pole of line {1368, 6467} with respect to the Stammler hyperbola
X(57388) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(26206)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(24), X(3089)}}, {{A, B, C, X(25), X(6353)}}, {{A, B, C, X(51), X(21637)}}, {{A, B, C, X(59), X(1041)}}, {{A, B, C, X(60), X(1039)}}, {{A, B, C, X(98), X(41890)}}, {{A, B, C, X(182), X(5065)}}, {{A, B, C, X(193), X(40318)}}, {{A, B, C, X(206), X(19136)}}, {{A, B, C, X(250), X(8882)}}, {{A, B, C, X(251), X(2373)}}, {{A, B, C, X(262), X(41891)}}, {{A, B, C, X(264), X(8749)}}, {{A, B, C, X(275), X(30535)}}, {{A, B, C, X(393), X(3563)}}, {{A, B, C, X(403), X(45173)}}, {{A, B, C, X(459), X(40802)}}, {{A, B, C, X(511), X(800)}}, {{A, B, C, X(669), X(56430)}}, {{A, B, C, X(1061), X(56328)}}, {{A, B, C, X(1063), X(56179)}}, {{A, B, C, X(1179), X(39437)}}, {{A, B, C, X(1297), X(9307)}}, {{A, B, C, X(1485), X(34288)}}, {{A, B, C, X(1843), X(44102)}}, {{A, B, C, X(1974), X(44162)}}, {{A, B, C, X(1976), X(9306)}}, {{A, B, C, X(2052), X(2987)}}, {{A, B, C, X(2065), X(2706)}}, {{A, B, C, X(2207), X(15369)}}, {{A, B, C, X(2366), X(38826)}}, {{A, B, C, X(2750), X(15382)}}, {{A, B, C, X(2868), X(51992)}}, {{A, B, C, X(2980), X(14910)}}, {{A, B, C, X(3087), X(39588)}}, {{A, B, C, X(3424), X(41894)}}, {{A, B, C, X(3425), X(52223)}}, {{A, B, C, X(3449), X(43363)}}, {{A, B, C, X(3450), X(57394)}}, {{A, B, C, X(3518), X(21841)}}, {{A, B, C, X(3520), X(13488)}}, {{A, B, C, X(3566), X(5866)}}, {{A, B, C, X(3629), X(41617)}}, {{A, B, C, X(4259), X(50653)}}, {{A, B, C, X(5481), X(45857)}}, {{A, B, C, X(6339), X(56004)}}, {{A, B, C, X(6664), X(46105)}}, {{A, B, C, X(8796), X(56002)}}, {{A, B, C, X(9969), X(41593)}}, {{A, B, C, X(10312), X(19171)}}, {{A, B, C, X(13380), X(45301)}}, {{A, B, C, X(14316), X(50188)}}, {{A, B, C, X(14458), X(34570)}}, {{A, B, C, X(14642), X(17974)}}, {{A, B, C, X(15066), X(51171)}}, {{A, B, C, X(15387), X(15388)}}, {{A, B, C, X(15389), X(40823)}}, {{A, B, C, X(18374), X(56918)}}, {{A, B, C, X(19154), X(45819)}}, {{A, B, C, X(32741), X(46288)}}, {{A, B, C, X(34208), X(40801)}}, {{A, B, C, X(34225), X(45195)}}, {{A, B, C, X(37784), X(40316)}}, {{A, B, C, X(37935), X(52294)}}, {{A, B, C, X(39434), X(57414)}}, {{A, B, C, X(40404), X(41511)}}, {{A, B, C, X(41768), X(44556)}}, {{A, B, C, X(57398), X(57399)}}, {{A, B, C, X(62050), X(62069)}}, {{A, B, C, X(62067), X(62070)}}
X(57388) = barycentric product X(i)*X(j) for these (i, j): {25, 40405}, {32, 683}, {40413, 6}
X(57388) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21406}, {6, 1368}, {25, 5254}, {31, 18671}, {32, 6467}, {58, 18648}, {112, 53350}, {184, 22401}, {683, 1502}, {1501, 682}, {1973, 17872}, {1974, 1196}, {2203, 16716}, {2489, 12075}, {19118, 40326}, {33581, 45207}, {36417, 40325}, {40320, 40337}, {40405, 305}, {40413, 76}
X(57388) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {19118, 19121, 19128}


X(57389) = X(26)X(15317)∩X(68)X(1614)

Barycentrics    a^2*(a^10+2*a^6*b^2*(b^2+c^2)+b^2*(b^2-c^2)^3*(b^2+c^2)-a^8*(3*b^2+2*c^2)+2*a^4*(b^6-b^2*c^4+c^6)-a^2*(3*b^8-2*b^6*c^2+2*b^4*c^4-4*b^2*c^6+c^8))*(a^10+2*a^6*c^2*(b^2+c^2)+c^2*(-b^2+c^2)^3*(b^2+c^2)-a^8*(2*b^2+3*c^2)+2*a^4*(b^6-b^4*c^2+c^6)-a^2*(b^8-4*b^6*c^2+2*b^4*c^4-2*b^2*c^6+3*c^8)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(26).

X(57389) lies on the Jerabek hyperbola and on these lines: {26, 15317}, {66, 19128}, {67, 10018}, {68, 1614}, {70, 7505}, {74, 41725}, {265, 15761}, {403, 6145}, {3521, 13353}, {5504, 7488}, {6152, 42059}, {6241, 45788}, {6243, 16867}, {11559, 17854}, {14157, 16000}, {14542, 15033}, {17505, 47336}, {19468, 42016}, {32379, 33565}, {34117, 34436}, {43704, 44515}, {43815, 45835}

X(57389) = isogonal conjugate of X(13371)
X(57389) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 13371}, {2, 18672}, {37, 18649}
X(57389) = X(i)-vertex conjugate of X(j) for these {i, j}: {54, 16000}, {70, 57389}
X(57389) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 13371}, {32664, 18672}, {40589, 18649}
X(57389) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(4)}}, {{A, B, C, X(23), X(10018)}}, {{A, B, C, X(26), X(2165)}}, {{A, B, C, X(93), X(34225)}}, {{A, B, C, X(94), X(56002)}}, {{A, B, C, X(96), X(250)}}, {{A, B, C, X(186), X(15761)}}, {{A, B, C, X(251), X(62073)}}, {{A, B, C, X(252), X(41890)}}, {{A, B, C, X(254), X(56306)}}, {{A, B, C, X(403), X(7488)}}, {{A, B, C, X(847), X(51761)}}, {{A, B, C, X(1166), X(32085)}}, {{A, B, C, X(3520), X(52070)}}, {{A, B, C, X(3563), X(18355)}}, {{A, B, C, X(7526), X(35481)}}, {{A, B, C, X(7527), X(35491)}}, {{A, B, C, X(8882), X(11816)}}, {{A, B, C, X(14118), X(18560)}}, {{A, B, C, X(14388), X(14863)}}, {{A, B, C, X(15424), X(15620)}}, {{A, B, C, X(16837), X(41891)}}, {{A, B, C, X(17506), X(47336)}}, {{A, B, C, X(20115), X(27361)}}, {{A, B, C, X(34224), X(52418)}}, {{A, B, C, X(41725), X(52661)}}
X(57389) = barycentric quotient X(i)/X(j) for these (i, j): {6, 13371}, {31, 18672}, {58, 18649}


X(57390) = X(28)X(72)∩X(73)X(284)

Barycentrics    a^2*(a+b)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+2*b^3-a^2*c+b^2*c+c^3+a*(b^2-c^2))*(a^3-a^2*b+b^3+b*c^2+2*c^3+a*(-b^2+c^2)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(27).

X(57390) lies on the Jerabek hyperbola and on these lines: {3, 7054}, {4, 36421}, {6, 36420}, {19, 43708}, {27, 28786}, {28, 72}, {65, 1172}, {69, 7058}, {71, 1474}, {73, 284}, {81, 1439}, {112, 43693}, {265, 15762}, {579, 2189}, {1839, 38535}, {2245, 40570}, {2326, 4219}, {2341, 46884}, {5504, 45174}, {6678, 26167}, {29163, 39439}, {40395, 52560}

X(57390) = isogonal conjugate of X(440)
X(57390) = trilinear pole of line {647, 21789}
X(57390) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 440}, {2, 18673}, {37, 18650}, {63, 1834}, {69, 40977}, {71, 17863}, {72, 40940}, {75, 44093}, {81, 21671}, {304, 40984}, {306, 1104}, {307, 2264}, {656, 14543}, {950, 1214}, {1842, 3998}, {14208, 53290}
X(57390) = X(i)-vertex conjugate of X(j) for these {i, j}: {71, 57390}
X(57390) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 440}, {206, 44093}, {3162, 1834}, {32664, 18673}, {40586, 21671}, {40589, 18650}, {40596, 14543}
X(57390) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 2983}, {649, 112}, {8676, 110}, {48387, 107}, {53249, 1304}
X(57390) = pole of line {440, 18650} with respect to the Stammler hyperbola
X(57390) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(4)}}, {{A, B, C, X(19), X(40570)}}, {{A, B, C, X(25), X(7490)}}, {{A, B, C, X(27), X(2189)}}, {{A, B, C, X(28), X(1474)}}, {{A, B, C, X(57), X(1169)}}, {{A, B, C, X(81), X(284)}}, {{A, B, C, X(186), X(15762)}}, {{A, B, C, X(403), X(45174)}}, {{A, B, C, X(951), X(1257)}}, {{A, B, C, X(1041), X(2297)}}, {{A, B, C, X(1171), X(36101)}}, {{A, B, C, X(1297), X(3668)}}, {{A, B, C, X(1436), X(34079)}}, {{A, B, C, X(1826), X(8749)}}, {{A, B, C, X(2051), X(41891)}}, {{A, B, C, X(2215), X(3418)}}, {{A, B, C, X(2226), X(23964)}}, {{A, B, C, X(2359), X(2982)}}, {{A, B, C, X(2738), X(15380)}}, {{A, B, C, X(3451), X(40397)}}, {{A, B, C, X(3453), X(38868)}}, {{A, B, C, X(7497), X(7501)}}, {{A, B, C, X(13478), X(41890)}}, {{A, B, C, X(14017), X(14018)}}, {{A, B, C, X(15388), X(15397)}}, {{A, B, C, X(24624), X(39943)}}, {{A, B, C, X(30705), X(37128)}}, {{A, B, C, X(37263), X(37386)}}, {{A, B, C, X(40085), X(46105)}}
X(57390) = barycentric product X(i)*X(j) for these (i, j): {1, 40431}, {27, 2983}, {29, 951}, {1257, 28}, {17925, 29163}, {36419, 52561}, {40414, 6}, {40445, 58}
X(57390) = barycentric quotient X(i)/X(j) for these (i, j): {6, 440}, {25, 1834}, {28, 17863}, {31, 18673}, {32, 44093}, {42, 21671}, {58, 18650}, {112, 14543}, {951, 307}, {1257, 20336}, {1474, 40940}, {1973, 40977}, {1974, 40984}, {2203, 1104}, {2204, 2264}, {2299, 950}, {2983, 306}, {29163, 52609}, {40414, 76}, {40431, 75}, {40445, 313}, {43925, 29162}
X(57390) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {71, 1474, 38852}


X(57391) = X(69)X(7521)∩X(72)X(2203)

Barycentrics    a^2*(a+b)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+a^3*c+a^2*(-2*b^2-b*c+c^2)+a*(-(b^2*c)+c^3)+b*(b^3+b^2*c+b*c^2+c^3))*(a^4+a^3*b+a^2*(b^2-b*c-2*c^2)+a*(b^3-b*c^2)+c*(b^3+b^2*c+b*c^2+c^3)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(28).

X(57391) lies on the Jerabek hyperbola and on these lines: {28, 28787}, {69, 7521}, {72, 2203}, {265, 15763}, {5504, 45175}

X(57391) = isogonal conjugate of X(21530)
X(57391) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 21530}, {2, 18674}, {10, 18732}, {37, 18651}, {38, 18709}, {63, 53417}, {69, 40973}, {72, 23537}, {81, 21678}, {304, 53387}, {306, 40941}, {656, 53349}, {14208, 53282}
X(57391) = X(i)-vertex conjugate of X(j) for these {i, j}: {72, 57391}
X(57391) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 21530}, {3162, 53417}, {32664, 18674}, {40586, 21678}, {40589, 18651}, {40596, 53349}
X(57391) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 40406}, {667, 112}, {15313, 110}, {48383, 107}, {53248, 1304}
X(57391) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(25), X(7521)}}, {{A, B, C, X(28), X(30733)}}, {{A, B, C, X(58), X(26702)}}, {{A, B, C, X(60), X(1172)}}, {{A, B, C, X(186), X(15763)}}, {{A, B, C, X(403), X(45175)}}, {{A, B, C, X(667), X(56529)}}, {{A, B, C, X(1039), X(2364)}}, {{A, B, C, X(1169), X(43659)}}, {{A, B, C, X(1171), X(44178)}}, {{A, B, C, X(2744), X(15381)}}, {{A, B, C, X(2754), X(15382)}}, {{A, B, C, X(3002), X(10974)}}, {{A, B, C, X(3451), X(3453)}}, {{A, B, C, X(7121), X(26885)}}, {{A, B, C, X(8749), X(41013)}}, {{A, B, C, X(11363), X(51686)}}, {{A, B, C, X(15313), X(51632)}}, {{A, B, C, X(31900), X(37908)}}, {{A, B, C, X(40395), X(40408)}}, {{A, B, C, X(51502), X(56306)}}
X(57391) = barycentric product X(i)*X(j) for these (i, j): {28, 40406}
X(57391) = barycentric quotient X(i)/X(j) for these (i, j): {6, 21530}, {25, 53417}, {31, 18674}, {42, 21678}, {58, 18651}, {112, 53349}, {251, 18709}, {1333, 18732}, {1474, 23537}, {1973, 40973}, {1974, 53387}, {2203, 40941}, {40406, 20336}


X(57392) = X(28)X(1439)∩X(71)X(2332)

Barycentrics    a^2*(a+b)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+a^3*b-2*b^4-b^3*c+b^2*c^2+b*c^3+c^4-a*b*(b+c)^2+a^2*(b^2-b*c-2*c^2))*(a^4+b^4+a^3*c+b^3*c+b^2*c^2-b*c^3-2*c^4-a*c*(b+c)^2+a^2*(-2*b^2-b*c+c^2)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(29).

X(57392) lies on the Jerabek hyperbola and on these lines: {28, 1439}, {29, 28788}, {34, 52390}, {65, 3194}, {69, 7498}, {71, 2332}, {72, 4183}, {73, 2299}, {112, 43694}, {265, 44225}, {270, 37380}, {1104, 43723}, {1172, 1903}, {5504, 45176}, {10118, 10693}, {32713, 42450}

X(57392) = isogonal conjugate of X(18641)
X(57392) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 18641}, {2, 18675}, {37, 18652}, {63, 1901}, {72, 4292}, {73, 23661}, {656, 14544}, {1214, 40942}, {14208, 53325}
X(57392) = X(i)-vertex conjugate of X(j) for these {i, j}: {73, 57392}
X(57392) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 18641}, {3162, 1901}, {32664, 18675}, {40589, 18652}, {40596, 14544}
X(57392) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 40407}, {663, 112}, {39199, 107}, {53256, 1304}
X(57392) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(4)}}, {{A, B, C, X(25), X(7498)}}, {{A, B, C, X(28), X(2299)}}, {{A, B, C, X(34), X(1061)}}, {{A, B, C, X(57), X(3347)}}, {{A, B, C, X(58), X(285)}}, {{A, B, C, X(60), X(1896)}}, {{A, B, C, X(186), X(44225)}}, {{A, B, C, X(225), X(8749)}}, {{A, B, C, X(282), X(937)}}, {{A, B, C, X(403), X(45176)}}, {{A, B, C, X(1036), X(7003)}}, {{A, B, C, X(1057), X(38272)}}, {{A, B, C, X(1167), X(23617)}}, {{A, B, C, X(1170), X(1171)}}, {{A, B, C, X(1297), X(39130)}}, {{A, B, C, X(2189), X(8747)}}, {{A, B, C, X(2732), X(15379)}}, {{A, B, C, X(6524), X(44086)}}, {{A, B, C, X(7151), X(51686)}}, {{A, B, C, X(7412), X(37380)}}, {{A, B, C, X(41890), X(54972)}}
X(57392) = barycentric product X(i)*X(j) for these (i, j): {29, 40407}
X(57392) = barycentric quotient X(i)/X(j) for these (i, j): {6, 18641}, {25, 1901}, {31, 18675}, {58, 18652}, {112, 14544}, {1172, 23661}, {1474, 4292}, {2299, 40942}, {40407, 307}


X(57393) = X(77)X(2212)∩X(10571)X(22479)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-a^3*c+a*c*(b^2-2*b*c-c^2)+a^2*(-2*b^2+b*c+c^2)+b*(b^3-b^2*c+b*c^2-c^3))*(a^4-a^3*b+a^2*(b^2+b*c-2*c^2)-a*b*(b^2+2*b*c-c^2)+c*(-b^3+b^2*c-b*c^2+c^3)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(33).

X(57393) lies on these lines: {77, 2212}, {10571, 22479}, {42450, 57394}

X(57393) = isogonal conjugate of X(34822)
X(57393) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34822}, {69, 12723}, {77, 23529}, {81, 21915}, {100, 23732}, {348, 20310}
X(57393) = X(i)-vertex conjugate of X(j) for these {i, j}: {77, 57393}
X(57393) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 34822}, {8054, 23732}, {40586, 21915}
X(57393) = X(i)-cross conjugate of X(j) for these {i, j}: {44408, 108}, {48136, 32691}
X(57393) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(4), X(58)}}, {{A, B, C, X(6), X(77)}}, {{A, B, C, X(19), X(43764)}}, {{A, B, C, X(34), X(22479)}}, {{A, B, C, X(56), X(1039)}}, {{A, B, C, X(106), X(1061)}}, {{A, B, C, X(275), X(20332)}}, {{A, B, C, X(961), X(57414)}}, {{A, B, C, X(1063), X(1126)}}, {{A, B, C, X(1167), X(23617)}}, {{A, B, C, X(1172), X(51443)}}, {{A, B, C, X(1474), X(36124)}}, {{A, B, C, X(2739), X(3451)}}, {{A, B, C, X(3449), X(43363)}}, {{A, B, C, X(7115), X(14493)}}, {{A, B, C, X(36101), X(57418)}}, {{A, B, C, X(56364), X(57399)}}, {{A, B, C, X(57387), X(57395)}}, {{A, B, C, X(57404), X(62044)}}
X(57393) = barycentric quotient X(i)/X(j) for these (i, j): {6, 34822}, {42, 21915}, {607, 23529}, {649, 23732}, {1973, 12723}, {2212, 20310}


X(57394) = X(78)X(1395)∩X(573)X(8193)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+a^3*c+a*c*(-b^2-2*b*c+c^2)+a^2*(-2*b^2-b*c+c^2)+b*(b^3+b^2*c+b*c^2+c^3))*(a^4+a^3*b+a^2*(b^2-b*c-2*c^2)+a*b*(b^2-2*b*c-c^2)+c*(b^3+b^2*c+b*c^2+c^3)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(34).

X(57394) lies on these lines: {78, 1395}, {573, 8193}, {42450, 57393}

X(57394) = isogonal conjugate of X(34823)
X(57394) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34823}, {69, 40962}, {78, 23536}, {304, 40969}, {345, 20227}
X(57394) = X(i)-vertex conjugate of X(j) for these {i, j}: {78, 57394}
X(57394) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 34823}
X(57394) = X(i)-cross conjugate of X(j) for these {i, j}: {4057, 108}, {15313, 109}, {53277, 36067}
X(57394) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(4), X(58)}}, {{A, B, C, X(6), X(78)}}, {{A, B, C, X(28), X(7115)}}, {{A, B, C, X(56), X(1041)}}, {{A, B, C, X(57), X(8193)}}, {{A, B, C, X(64), X(36057)}}, {{A, B, C, X(106), X(1063)}}, {{A, B, C, X(251), X(961)}}, {{A, B, C, X(275), X(1258)}}, {{A, B, C, X(283), X(32677)}}, {{A, B, C, X(1061), X(1126)}}, {{A, B, C, X(1167), X(1257)}}, {{A, B, C, X(1170), X(1171)}}, {{A, B, C, X(2316), X(43742)}}, {{A, B, C, X(2756), X(15383)}}, {{A, B, C, X(3423), X(43690)}}, {{A, B, C, X(3450), X(57388)}}, {{A, B, C, X(3451), X(3453)}}, {{A, B, C, X(15313), X(51629)}}, {{A, B, C, X(15386), X(57403)}}, {{A, B, C, X(32667), X(36093)}}, {{A, B, C, X(57387), X(57396)}}
X(57394) = barycentric quotient X(i)/X(j) for these (i, j): {6, 34823}, {608, 23536}, {1395, 20227}, {1973, 40962}, {1974, 40969}


X(57395) = X(6)X(35220)∩X(2975)X(5904)

Barycentrics    a^2*(a^4+b^4-a*b^2*c-b^2*c^2-a^2*(2*b^2+b*c+c^2))*(a^4-a*b*c^2-b^2*c^2+c^4-a^2*(b^2+b*c+2*c^2)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(35).

X(57395) lies on these lines: {6, 35220}, {2975, 5904}

X(57395) = isogonal conjugate of X(25639)
X(57395) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 25639}, {2, 17443}, {6, 20886}, {37, 17173}, {75, 20961}, {81, 21018}, {92, 22058}, {100, 21111}, {8818, 16718}
X(57395) = X(i)-vertex conjugate of X(j) for these {i, j}: {58, 17097}, {79, 57395}
X(57395) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 25639}, {9, 20886}, {206, 20961}, {8054, 21111}, {22391, 22058}, {32664, 17443}, {40586, 21018}, {40589, 17173}
X(57395) = X(i)-cross conjugate of X(j) for these {i, j}: {48382, 109}
X(57395) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(22836)}}, {{A, B, C, X(3), X(994)}}, {{A, B, C, X(6), X(79)}}, {{A, B, C, X(35), X(2161)}}, {{A, B, C, X(54), X(58)}}, {{A, B, C, X(56), X(37525)}}, {{A, B, C, X(59), X(951)}}, {{A, B, C, X(60), X(106)}}, {{A, B, C, X(74), X(18772)}}, {{A, B, C, X(80), X(34435)}}, {{A, B, C, X(249), X(1258)}}, {{A, B, C, X(251), X(9103)}}, {{A, B, C, X(759), X(52185)}}, {{A, B, C, X(909), X(52375)}}, {{A, B, C, X(959), X(3431)}}, {{A, B, C, X(1036), X(41487)}}, {{A, B, C, X(1174), X(62044)}}, {{A, B, C, X(2141), X(57398)}}, {{A, B, C, X(2163), X(11279)}}, {{A, B, C, X(2695), X(10419)}}, {{A, B, C, X(3422), X(38273)}}, {{A, B, C, X(3423), X(43908)}}, {{A, B, C, X(3446), X(5557)}}, {{A, B, C, X(3453), X(57399)}}, {{A, B, C, X(9309), X(13472)}}, {{A, B, C, X(15618), X(43070)}}, {{A, B, C, X(18771), X(34567)}}, {{A, B, C, X(36057), X(40441)}}, {{A, B, C, X(57387), X(57393)}}
X(57395) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20886}, {6, 25639}, {31, 17443}, {32, 20961}, {42, 21018}, {58, 17173}, {184, 22058}, {649, 21111}, {17104, 16718}


X(57396) = X(6)X(35221)∩X(80)X(52434)

Barycentrics    a^2*(a^4+b^4+a*b^2*c-b^2*c^2-a^2*(2*b^2-b*c+c^2))*(a^4+a*b*c^2-b^2*c^2+c^4-a^2*(b^2-b*c+2*c^2)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(36).

X(57396) lies on these lines: {6, 35221}, {80, 52434}, {572, 32613}, {1724, 3045}, {2975, 5692}, {4276, 14792}

X(57396) = isogonal conjugate of X(3814)
X(57396) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3814}, {2, 17444}, {6, 20887}, {37, 17174}, {75, 20962}, {81, 21019}, {92, 22059}, {100, 21112}
X(57396) = X(i)-vertex conjugate of X(j) for these {i, j}: {54, 23959}, {58, 1320}, {80, 57396}, {1168, 36052}
X(57396) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3814}, {9, 20887}, {206, 20962}, {8054, 21112}, {22391, 22059}, {32664, 17444}, {40586, 21019}, {40589, 17174}
X(57396) = X(i)-cross conjugate of X(j) for these {i, j}: {39200, 109}
X(57396) = pole of line {3814, 17174} with respect to the Stammler hyperbola
X(57396) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(30144)}}, {{A, B, C, X(3), X(46435)}}, {{A, B, C, X(6), X(80)}}, {{A, B, C, X(36), X(1411)}}, {{A, B, C, X(54), X(58)}}, {{A, B, C, X(56), X(21842)}}, {{A, B, C, X(57), X(32613)}}, {{A, B, C, X(59), X(106)}}, {{A, B, C, X(60), X(1126)}}, {{A, B, C, X(65), X(14792)}}, {{A, B, C, X(74), X(18771)}}, {{A, B, C, X(102), X(1168)}}, {{A, B, C, X(103), X(34256)}}, {{A, B, C, X(214), X(1404)}}, {{A, B, C, X(249), X(20332)}}, {{A, B, C, X(251), X(9093)}}, {{A, B, C, X(266), X(42614)}}, {{A, B, C, X(284), X(45393)}}, {{A, B, C, X(386), X(11609)}}, {{A, B, C, X(759), X(909)}}, {{A, B, C, X(959), X(13472)}}, {{A, B, C, X(1036), X(12641)}}, {{A, B, C, X(1037), X(41442)}}, {{A, B, C, X(1156), X(1175)}}, {{A, B, C, X(1166), X(57417)}}, {{A, B, C, X(1171), X(43757)}}, {{A, B, C, X(1173), X(23959)}}, {{A, B, C, X(1176), X(1811)}}, {{A, B, C, X(1391), X(38452)}}, {{A, B, C, X(2224), X(52378)}}, {{A, B, C, X(2334), X(24302)}}, {{A, B, C, X(2364), X(6596)}}, {{A, B, C, X(2372), X(3453)}}, {{A, B, C, X(2718), X(10074)}}, {{A, B, C, X(3065), X(56343)}}, {{A, B, C, X(3420), X(41487)}}, {{A, B, C, X(3431), X(9309)}}, {{A, B, C, X(3435), X(52186)}}, {{A, B, C, X(5504), X(36057)}}, {{A, B, C, X(7163), X(38269)}}, {{A, B, C, X(11604), X(51223)}}, {{A, B, C, X(15383), X(39445)}}, {{A, B, C, X(18772), X(34567)}}, {{A, B, C, X(29042), X(43974)}}, {{A, B, C, X(41434), X(56040)}}, {{A, B, C, X(57387), X(57394)}}, {{A, B, C, X(57422), X(62044)}}
X(57396) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20887}, {6, 3814}, {31, 17444}, {32, 20962}, {42, 21019}, {58, 17174}, {184, 22059}, {649, 21112}


X(57397) = X(6)X(1621)∩X(81)X(213)

Barycentrics    a^2*(b*c+a*(2*b+c))*(b*c+a*(b+2*c)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(37).

X(57397) lies on these lines: {6, 1621}, {31, 4251}, {81, 213}, {100, 21753}, {604, 16878}, {739, 1197}, {1185, 2162}, {1333, 2205}, {1407, 38859}, {1911, 2308}, {1914, 28615}, {1922, 30581}, {2214, 5276}, {3997, 32864}, {14621, 32911}, {43929, 50520}

X(57397) = isogonal conjugate of X(3739)
X(57397) = trilinear pole of line {667, 21007}
X(57397) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3739}, {2, 3720}, {6, 20888}, {7, 3691}, {9, 4059}, {10, 18166}, {37, 17175}, {38, 18089}, {42, 16748}, {57, 3706}, {58, 53478}, {69, 40975}, {75, 20963}, {81, 21020}, {86, 16589}, {92, 22060}, {100, 47672}, {190, 6372}, {256, 4754}, {274, 2667}, {310, 21753}, {333, 39793}, {514, 4436}, {649, 53363}, {651, 48264}, {662, 48393}, {757, 52579}, {799, 50497}, {873, 21820}, {1434, 4111}, {1509, 21699}, {4610, 50538}, {4891, 8056}, {13476, 29773}, {22369, 44129}
X(57397) = X(i)-vertex conjugate of X(j) for these {i, j}: {81, 57397}
X(57397) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3739}, {9, 20888}, {10, 53478}, {206, 20963}, {478, 4059}, {1084, 48393}, {5375, 53363}, {5452, 3706}, {8054, 47672}, {22391, 22060}, {32664, 3720}, {38991, 48264}, {38996, 50497}, {40586, 21020}, {40589, 17175}, {40592, 16748}, {40600, 16589}, {40607, 52579}, {55053, 6372}
X(57397) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40408, 40433}
X(57397) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 40408}, {669, 100}, {1206, 81}, {3733, 101}, {4784, 8693}, {16692, 99}, {16693, 105}, {16694, 106}, {16874, 110}, {18622, 74}, {53309, 919}
X(57397) = pole of line {3739, 17175} with respect to the Stammler hyperbola
X(57397) = pole of line {3739, 16748} with respect to the Wallace hyperbola
X(57397) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(16878)}}, {{A, B, C, X(2), X(2258)}}, {{A, B, C, X(6), X(31)}}, {{A, B, C, X(41), X(6605)}}, {{A, B, C, X(42), X(292)}}, {{A, B, C, X(54), X(45137)}}, {{A, B, C, X(55), X(967)}}, {{A, B, C, X(57), X(30650)}}, {{A, B, C, X(58), X(105)}}, {{A, B, C, X(59), X(2721)}}, {{A, B, C, X(88), X(893)}}, {{A, B, C, X(89), X(9315)}}, {{A, B, C, X(213), X(1258)}}, {{A, B, C, X(218), X(16466)}}, {{A, B, C, X(294), X(2194)}}, {{A, B, C, X(513), X(9054)}}, {{A, B, C, X(593), X(1438)}}, {{A, B, C, X(666), X(32718)}}, {{A, B, C, X(669), X(2106)}}, {{A, B, C, X(727), X(42346)}}, {{A, B, C, X(741), X(1126)}}, {{A, B, C, X(743), X(3108)}}, {{A, B, C, X(745), X(38831)}}, {{A, B, C, X(873), X(37129)}}, {{A, B, C, X(941), X(2215)}}, {{A, B, C, X(961), X(53707)}}, {{A, B, C, X(985), X(7031)}}, {{A, B, C, X(1169), X(2259)}}, {{A, B, C, X(1171), X(1252)}}, {{A, B, C, X(1173), X(29009)}}, {{A, B, C, X(1185), X(27644)}}, {{A, B, C, X(1203), X(5280)}}, {{A, B, C, X(1206), X(46368)}}, {{A, B, C, X(1245), X(1257)}}, {{A, B, C, X(1914), X(2308)}}, {{A, B, C, X(2149), X(2982)}}, {{A, B, C, X(2161), X(28658)}}, {{A, B, C, X(2248), X(6187)}}, {{A, B, C, X(3449), X(43363)}}, {{A, B, C, X(3681), X(56147)}}, {{A, B, C, X(5299), X(17745)}}, {{A, B, C, X(9111), X(34572)}}, {{A, B, C, X(25426), X(40148)}}, {{A, B, C, X(37132), X(40418)}}, {{A, B, C, X(38813), X(39395)}}, {{A, B, C, X(38877), X(56364)}}, {{A, B, C, X(39962), X(39966)}}, {{A, B, C, X(39967), X(40434)}}, {{A, B, C, X(40433), X(40439)}}, {{A, B, C, X(51951), X(56011)}}
X(57397) = barycentric product X(i)*X(j) for these (i, j): {1, 40433}, {37, 40408}, {100, 50520}, {513, 8708}, {32009, 6}, {40439, 42}
X(57397) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20888}, {6, 3739}, {31, 3720}, {32, 20963}, {37, 53478}, {41, 3691}, {42, 21020}, {55, 3706}, {56, 4059}, {58, 17175}, {81, 16748}, {100, 53363}, {172, 4754}, {184, 22060}, {213, 16589}, {251, 18089}, {512, 48393}, {649, 47672}, {663, 48264}, {667, 6372}, {669, 50497}, {692, 4436}, {872, 21699}, {1333, 18166}, {1402, 39793}, {1500, 52579}, {1918, 2667}, {1973, 40975}, {2205, 21753}, {3052, 4891}, {4251, 29773}, {7109, 21820}, {8708, 668}, {32009, 76}, {40408, 274}, {40433, 75}, {40439, 310}, {50487, 50538}, {50520, 693}
X(57397) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {81, 213, 38853}, {40408, 40439, 81}


X(57398) = ISOGONAL CONJUGATE OF X(17046)

Barycentrics    a^2*(a^4-a*b^3+b^3*(b-c)-a^3*(b+c))*(a^4-a*c^3+c^3*(-b+c)-a^3*(b+c)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(41).

X(57398) lies on these lines: {85, 9447}

X(57398) = isogonal conjugate of X(17046)
X(57398) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 17046}, {2, 17447}, {6, 20890}, {10, 18176}, {37, 17177}, {38, 18095}, {75, 23636}, {81, 21023}, {92, 22064}, {100, 21114}, {1441, 16721}
X(57398) = X(i)-vertex conjugate of X(j) for these {i, j}: {85, 57398}
X(57398) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 17046}, {9, 20890}, {206, 23636}, {8054, 21114}, {22391, 22064}, {32664, 17447}, {40586, 21023}, {40589, 17177}
X(57398) = X(i)-cross conjugate of X(j) for these {i, j}: {23400, 110}
X(57398) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(6), X(85)}}, {{A, B, C, X(58), X(2725)}}, {{A, B, C, X(251), X(1311)}}, {{A, B, C, X(767), X(38813)}}, {{A, B, C, X(1167), X(1174)}}, {{A, B, C, X(1432), X(34179)}}, {{A, B, C, X(2141), X(57395)}}, {{A, B, C, X(2369), X(3449)}}, {{A, B, C, X(28844), X(56147)}}, {{A, B, C, X(57388), X(57399)}}
X(57398) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20890}, {6, 17046}, {31, 17447}, {32, 23636}, {42, 21023}, {58, 17177}, {184, 22064}, {251, 18095}, {649, 21114}, {1333, 18176}


X(57399) = X(1)X(1258)∩X(31)X(87)

Barycentrics    a^2*(a*b^2+b^2*c+a^2*(b+c))*(a*c^2+b*c^2+a^2*(b+c)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(42).

X(57399) lies on these lines: {1, 1258}, {6, 22199}, {31, 87}, {56, 5156}, {58, 7122}, {86, 171}, {172, 7104}, {238, 1220}, {292, 2300}, {595, 43531}, {870, 1221}, {979, 16468}, {996, 17349}, {1240, 4039}, {1402, 1431}, {2176, 6378}, {4264, 40746}, {4649, 5331}, {16690, 25496}, {17962, 40525}, {42027, 51902}

X(57399) = isogonal conjugate of X(3741)
X(57399) = trilinear pole of line {649, 18278}
X(57399) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3741}, {2, 1107}, {6, 20891}, {9, 30097}, {10, 18169}, {37, 16738}, {38, 18091}, {75, 2309}, {76, 1197}, {81, 21024}, {86, 3728}, {92, 22065}, {104, 51411}, {256, 51575}, {264, 22389}, {274, 21838}, {314, 39780}, {333, 45208}, {513, 53338}, {668, 50510}, {693, 53268}, {757, 21713}, {799, 40627}, {873, 21700}, {1509, 22206}, {3666, 56901}, {6384, 45216}, {7033, 23473}, {27880, 32010}
X(57399) = X(i)-vertex conjugate of X(j) for these {i, j}: {86, 57399}, {1178, 2298}, {34071, 35008}
X(57399) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3741}, {9, 20891}, {206, 2309}, {478, 30097}, {22391, 22065}, {32664, 1107}, {38996, 40627}, {39026, 53338}, {40586, 21024}, {40589, 16738}, {40600, 3728}, {40607, 21713}, {40613, 51411}
X(57399) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 40409}, {669, 101}, {4367, 109}, {7192, 6577}, {16695, 100}, {23394, 901}, {53326, 32682}
X(57399) = pole of line {2309, 3741} with respect to the Stammler hyperbola
X(57399) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(31), X(983)}}, {{A, B, C, X(32), X(34248)}}, {{A, B, C, X(42), X(6378)}}, {{A, B, C, X(57), X(21371)}}, {{A, B, C, X(59), X(1169)}}, {{A, B, C, X(75), X(46018)}}, {{A, B, C, X(82), X(727)}}, {{A, B, C, X(103), X(43739)}}, {{A, B, C, X(105), X(1178)}}, {{A, B, C, X(171), X(1402)}}, {{A, B, C, X(238), X(2300)}}, {{A, B, C, X(251), X(675)}}, {{A, B, C, X(284), X(5156)}}, {{A, B, C, X(291), X(1400)}}, {{A, B, C, X(314), X(2316)}}, {{A, B, C, X(572), X(29310)}}, {{A, B, C, X(593), X(20332)}}, {{A, B, C, X(604), X(985)}}, {{A, B, C, X(673), X(53083)}}, {{A, B, C, X(741), X(2298)}}, {{A, B, C, X(749), X(40010)}}, {{A, B, C, X(757), X(9456)}}, {{A, B, C, X(765), X(28615)}}, {{A, B, C, X(789), X(34071)}}, {{A, B, C, X(961), X(57417)}}, {{A, B, C, X(994), X(1246)}}, {{A, B, C, X(1245), X(43073)}}, {{A, B, C, X(1258), X(40409)}}, {{A, B, C, X(1412), X(14621)}}, {{A, B, C, X(1918), X(14598)}}, {{A, B, C, X(2214), X(51449)}}, {{A, B, C, X(2221), X(40435)}}, {{A, B, C, X(2350), X(21330)}}, {{A, B, C, X(2729), X(15378)}}, {{A, B, C, X(3453), X(57395)}}, {{A, B, C, X(3736), X(4264)}}, {{A, B, C, X(5384), X(53967)}}, {{A, B, C, X(7015), X(36057)}}, {{A, B, C, X(16468), X(21769)}}, {{A, B, C, X(20696), X(32719)}}, {{A, B, C, X(23374), X(33792)}}, {{A, B, C, X(23617), X(51443)}}, {{A, B, C, X(28523), X(39964)}}, {{A, B, C, X(30710), X(37128)}}, {{A, B, C, X(34250), X(45987)}}, {{A, B, C, X(37870), X(39971)}}, {{A, B, C, X(39694), X(39952)}}, {{A, B, C, X(39743), X(39955)}}, {{A, B, C, X(40420), X(42302)}}, {{A, B, C, X(45988), X(52654)}}, {{A, B, C, X(56364), X(57393)}}, {{A, B, C, X(57388), X(57398)}}
X(57399) = barycentric product X(i)*X(j) for these (i, j): {1, 1258}, {1221, 31}, {40409, 42}, {40418, 6}, {40525, 4600}
X(57399) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20891}, {6, 3741}, {31, 1107}, {32, 2309}, {42, 21024}, {56, 30097}, {58, 16738}, {101, 53338}, {172, 51575}, {184, 22065}, {213, 3728}, {251, 18091}, {560, 1197}, {669, 40627}, {872, 22206}, {1221, 561}, {1258, 75}, {1333, 18169}, {1402, 45208}, {1500, 21713}, {1918, 21838}, {1919, 50510}, {2183, 51411}, {7109, 21700}, {9247, 22389}, {32739, 53268}, {40409, 310}, {40418, 76}, {40525, 3120}


X(57400) = X(1)X(22220)∩X(6)X(23433)

Barycentrics    a^2*(a*b*(b-2*c)+b^2*c+a^2*(b+c))*(b*c^2+a*c*(-2*b+c)+a^2*(b+c)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(43).

X(57400) lies on these lines: {1, 22220}, {6, 23433}, {31, 36598}, {32, 53146}, {56, 4279}, {58, 23579}, {86, 6685}, {87, 2209}, {238, 1222}, {292, 20228}, {595, 979}, {996, 40091}, {1120, 49685}, {1220, 37588}, {1918, 37129}, {1924, 23892}, {3226, 51902}, {16468, 39969}, {21760, 51974}, {43531, 56197}

X(57400) = isogonal conjugate of X(3840)
X(57400) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3840}, {2, 17448}, {6, 20892}, {10, 18192}, {37, 17178}, {38, 18102}, {75, 22343}, {81, 21025}, {86, 22167}, {92, 22066}, {16606, 16722}, {25312, 43931}
X(57400) = X(i)-vertex conjugate of X(j) for these {i, j}: {58, 996}, {87, 57400}
X(57400) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3840}, {9, 20892}, {206, 22343}, {22391, 22066}, {32664, 17448}, {40586, 21025}, {40589, 17178}, {40600, 22167}
X(57400) = X(i)-cross conjugate of X(j) for these {i, j}: {8640, 101}, {48330, 109}
X(57400) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(32), X(2209)}}, {{A, B, C, X(42), X(6685)}}, {{A, B, C, X(59), X(38813)}}, {{A, B, C, X(82), X(9456)}}, {{A, B, C, X(238), X(20228)}}, {{A, B, C, X(251), X(9082)}}, {{A, B, C, X(284), X(4279)}}, {{A, B, C, X(604), X(727)}}, {{A, B, C, X(673), X(42338)}}, {{A, B, C, X(741), X(23617)}}, {{A, B, C, X(749), X(40039)}}, {{A, B, C, X(765), X(1333)}}, {{A, B, C, X(985), X(38266)}}, {{A, B, C, X(1016), X(27644)}}, {{A, B, C, X(1174), X(6015)}}, {{A, B, C, X(1178), X(2346)}}, {{A, B, C, X(1400), X(22220)}}, {{A, B, C, X(1403), X(3550)}}, {{A, B, C, X(1412), X(2985)}}, {{A, B, C, X(1911), X(51476)}}, {{A, B, C, X(1918), X(1924)}}, {{A, B, C, X(2298), X(51449)}}, {{A, B, C, X(2316), X(7155)}}, {{A, B, C, X(2726), X(3451)}}, {{A, B, C, X(7122), X(21760)}}, {{A, B, C, X(14377), X(35223)}}, {{A, B, C, X(16468), X(21785)}}, {{A, B, C, X(32011), X(56256)}}, {{A, B, C, X(32017), X(37128)}}, {{A, B, C, X(39703), X(39952)}}
X(57400) = barycentric product X(i)*X(j) for these (i, j): {32011, 6}, {56197, 58}, {56256, 81}
X(57400) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20892}, {6, 3840}, {31, 17448}, {32, 22343}, {42, 21025}, {58, 17178}, {184, 22066}, {213, 22167}, {251, 18102}, {1333, 18192}, {32011, 76}, {38832, 16722}, {56197, 313}, {56256, 321}


X(57401) = X(6)X(1623)∩X(45)X(1621)

Barycentrics    a^2*(2*a^2+b*(2*b-c)-a*(2*b+c))*(2*a^2+c*(-b+2*c)-a*(b+2*c)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(44).

X(57401) lies on these lines: {6, 1623}, {45, 1621}, {88, 2251}, {1405, 55086}, {2177, 4251}, {5235, 17292}

X(57401) = isogonal conjugate of X(3834)
X(57401) = trilinear pole of line {2176, 4775}
X(57401) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3834}, {2, 17449}, {6, 20893}, {10, 18198}, {37, 17179}, {38, 18109}, {81, 21026}, {92, 22067}, {100, 21115}, {4674, 16723}
X(57401) = X(i)-vertex conjugate of X(j) for these {i, j}: {58, 55935}, {88, 57401}
X(57401) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3834}, {9, 20893}, {8054, 21115}, {22391, 22067}, {32664, 17449}, {40586, 21026}, {40589, 17179}
X(57401) = X(i)-cross conjugate of X(j) for these {i, j}: {4491, 101}
X(57401) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(6), X(45)}}, {{A, B, C, X(42), X(17292)}}, {{A, B, C, X(58), X(105)}}, {{A, B, C, X(100), X(34071)}}, {{A, B, C, X(291), X(28571)}}, {{A, B, C, X(292), X(28326)}}, {{A, B, C, X(649), X(8696)}}, {{A, B, C, X(739), X(1252)}}, {{A, B, C, X(753), X(1126)}}, {{A, B, C, X(909), X(62042)}}, {{A, B, C, X(1168), X(1623)}}, {{A, B, C, X(1280), X(2334)}}, {{A, B, C, X(1383), X(2279)}}, {{A, B, C, X(2161), X(43758)}}, {{A, B, C, X(2258), X(39955)}}, {{A, B, C, X(3285), X(9456)}}, {{A, B, C, X(3445), X(7123)}}, {{A, B, C, X(17962), X(28330)}}, {{A, B, C, X(34079), X(40400)}}
X(57401) = barycentric product X(i)*X(j) for these (i, j): {32012, 6}
X(57401) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20893}, {6, 3834}, {31, 17449}, {42, 21026}, {58, 17179}, {184, 22067}, {251, 18109}, {649, 21115}, {1333, 18198}, {3285, 16723}, {32012, 76}


X(57402) = X(6)X(35224)∩X(44)X(1621)

Barycentrics    a^2*(a^2+b*(b-2*c)-2*a*(2*b+c))*(a^2+c*(-2*b+c)-2*a*(b+2*c)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(45).

X(57402) lies on these lines: {6, 35224}, {44, 1621}, {902, 4251}, {1404, 55086}, {16704, 29569}

X(57402) = isogonal conjugate of X(34824)
X(57402) = trilinear pole of line {1960, 21007}
X(57402) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34824}, {2, 17450}, {6, 20894}, {37, 17180}, {81, 21027}, {92, 22068}, {100, 21116}, {16724, 53114}
X(57402) = X(i)-vertex conjugate of X(j) for these {i, j}: {89, 57402}
X(57402) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 34824}, {9, 20894}, {8054, 21116}, {22391, 22068}, {32664, 17450}, {40586, 21027}, {40589, 17180}
X(57402) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(6), X(44)}}, {{A, B, C, X(42), X(29569)}}, {{A, B, C, X(55), X(39965)}}, {{A, B, C, X(58), X(105)}}, {{A, B, C, X(111), X(2279)}}, {{A, B, C, X(2258), X(3108)}}, {{A, B, C, X(2334), X(7123)}}, {{A, B, C, X(3445), X(30651)}}, {{A, B, C, X(4273), X(5035)}}, {{A, B, C, X(39428), X(41434)}}
X(57402) = barycentric product X(i)*X(j) for these (i, j): {32013, 6}
X(57402) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20894}, {6, 34824}, {31, 17450}, {42, 21027}, {58, 17180}, {184, 22068}, {649, 21116}, {4273, 16724}, {32013, 76}


X(57403) = X(386)X(1470)∩X(997)X(2975)

Barycentrics    a^2*(a^4+a^3*c+b*(b-c)*(b+c)^2+a*c*(b^2+2*b*c-c^2)-a^2*(2*b^2-b*c+c^2))*(a^4+a^3*b-(b-c)*c*(b+c)^2+a*b*(-b^2+2*b*c+c^2)-a^2*(b^2-b*c+2*c^2)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(46).

X(57403) lies on these lines: {386, 1470}, {572, 10267}, {997, 2975}

X(57403) = isogonal conjugate of X(21616)
X(57403) = X(i)-vertex conjugate of X(j) for these {i, j}: {8, 58}, {90, 57403}
X(57403) = X(i)-cross conjugate of X(j) for these {i, j}: {30202, 36082}, {34948, 109}, {50501, 101}
X(57403) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(909)}}, {{A, B, C, X(3), X(998)}}, {{A, B, C, X(4), X(62044)}}, {{A, B, C, X(6), X(90)}}, {{A, B, C, X(8), X(284)}}, {{A, B, C, X(19), X(52186)}}, {{A, B, C, X(28), X(59)}}, {{A, B, C, X(34), X(7163)}}, {{A, B, C, X(54), X(58)}}, {{A, B, C, X(56), X(37618)}}, {{A, B, C, X(57), X(10267)}}, {{A, B, C, X(103), X(10309)}}, {{A, B, C, X(106), X(15617)}}, {{A, B, C, X(225), X(1737)}}, {{A, B, C, X(371), X(2362)}}, {{A, B, C, X(372), X(16232)}}, {{A, B, C, X(759), X(1167)}}, {{A, B, C, X(1168), X(2745)}}, {{A, B, C, X(1174), X(28471)}}, {{A, B, C, X(1436), X(42019)}}, {{A, B, C, X(1798), X(3453)}}, {{A, B, C, X(2164), X(7162)}}, {{A, B, C, X(2217), X(36052)}}, {{A, B, C, X(2334), X(38273)}}, {{A, B, C, X(3446), X(52372)}}, {{A, B, C, X(7091), X(41442)}}, {{A, B, C, X(9309), X(10623)}}, {{A, B, C, X(10308), X(18771)}}, {{A, B, C, X(15386), X(57394)}}, {{A, B, C, X(38882), X(41434)}}
X(57403) = barycentric quotient X(i)/X(j) for these (i, j): {6, 21616}


X(57404) = ISOGONAL CONJUGATE OF X(34825)

Barycentrics    a^2*(a+b)*(a+c)*(a^6-a^5*c-a*c*(b^2-c^2)^2+2*a^3*c*(b^2+c^2)-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4-2*b^2*c^2-c^4))*(a^6-a^5*b-a*b*(b^2-c^2)^2+2*a^3*b*(b^2+c^2)-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4-2*b^2*c^2+c^4)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(47).

X(57404) lies on these lines:

X(57404) = isogonal conjugate of X(34825)
X(57404) = X(i)-vertex conjugate of X(j) for these {i, j}: {91, 57404}
X(57404) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(6), X(91)}}, {{A, B, C, X(21), X(28)}}, {{A, B, C, X(15386), X(57394)}}, {{A, B, C, X(57393), X(62044)}}


X(57405) = X(6)X(35225)∩X(92)X(9247)

Barycentrics    a^2*(a+b)*(a+c)*(a^4-a^3*b-a*b^3+b^4-a^2*c^2+a*b*c^2-b^2*c^2)*(a^4-a^2*b^2-a^3*c-b^2*c^2+c^4+a*c*(b^2-c^2)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(48).

X(57405) lies on these lines: {6, 35225}, {92, 9247}, {163, 17188}

X(57405) = isogonal conjugate of X(20305)
X(57405) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20305}, {2, 21318}, {6, 17864}, {10, 18161}, {37, 17181}, {38, 18083}, {75, 23619}, {81, 21028}, {92, 22069}, {100, 21117}, {226, 24430}, {321, 26892}
X(57405) = X(i)-vertex conjugate of X(j) for these {i, j}: {92, 57405}
X(57405) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 20305}, {9, 17864}, {206, 23619}, {8054, 21117}, {22391, 22069}, {32664, 21318}, {40586, 21028}, {40589, 17181}
X(57405) = X(i)-cross conjugate of X(j) for these {i, j}: {4874, 825}, {23864, 110}, {48383, 101}
X(57405) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(6), X(92)}}, {{A, B, C, X(31), X(15373)}}, {{A, B, C, X(54), X(917)}}, {{A, B, C, X(58), X(26702)}}, {{A, B, C, X(251), X(1311)}}, {{A, B, C, X(1126), X(29218)}}, {{A, B, C, X(1174), X(2717)}}, {{A, B, C, X(1790), X(2249)}}, {{A, B, C, X(3737), X(17188)}}, {{A, B, C, X(7357), X(28844)}}, {{A, B, C, X(9085), X(40407)}}, {{A, B, C, X(38813), X(38827)}}
X(57405) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17864}, {6, 20305}, {31, 21318}, {32, 23619}, {42, 21028}, {58, 17181}, {184, 22069}, {251, 18083}, {649, 21117}, {1333, 18161}, {2194, 24430}, {2206, 26892}


X(57406) = ISOGONAL CONJUGATE OF X(34826)

Barycentrics    a^2*(a^10+3*a^2*c^6*(b^2-c^2)+c^4*(-b^2+c^2)^3-3*a^8*(b^2+c^2)+a^6*(3*b^4+3*b^2*c^2+2*c^4)-a^4*(b^6-2*c^6))*(a^10+b^4*(b^2-c^2)^3-3*a^8*(b^2+c^2)-3*a^2*(b^8-b^6*c^2)+a^6*(2*b^4+3*b^2*c^2+3*c^4)+a^4*(2*b^6-c^6)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(49).

X(57406) lies on these lines: {1658, 6243}

X(57406) = isogonal conjugate of X(34826)
X(57406) = X(i)-vertex conjugate of X(j) for these {i, j}: {54, 14860}, {93, 57406}
X(57406) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(18316)}}, {{A, B, C, X(4), X(1658)}}, {{A, B, C, X(6), X(93)}}, {{A, B, C, X(54), X(1300)}}, {{A, B, C, X(250), X(1166)}}, {{A, B, C, X(252), X(14910)}}, {{A, B, C, X(264), X(18355)}}, {{A, B, C, X(265), X(15620)}}, {{A, B, C, X(1141), X(40441)}}, {{A, B, C, X(1179), X(39431)}}, {{A, B, C, X(1487), X(41891)}}, {{A, B, C, X(1989), X(3518)}}, {{A, B, C, X(3432), X(6344)}}, {{A, B, C, X(8882), X(11816)}}, {{A, B, C, X(11815), X(38534)}}, {{A, B, C, X(15002), X(18349)}}, {{A, B, C, X(34567), X(45299)}}, {{A, B, C, X(39390), X(40410)}}, {{A, B, C, X(62045), X(62046)}}


X(57407) = X(94)X(19627)∩X(566)X(5012)

Barycentrics    a^2*(a^8+b^4*(b^2-c^2)^2-2*a^6*(b^2+c^2)+a^2*(-2*b^6+b^4*c^2)+a^4*(2*b^4+b^2*c^2+c^4))*(a^8+a^2*c^4*(b^2-2*c^2)+c^4*(b^2-c^2)^2-2*a^6*(b^2+c^2)+a^4*(b^4+b^2*c^2+2*c^4)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(50).

X(57407) lies on these lines: {94, 19627}, {566, 5012}, {10312, 39024}

X(57407) = isogonal conjugate of X(34827)
X(57407) = trilinear pole of line {3050, 18117}
X(57407) = X(i)-vertex conjugate of X(j) for these {i, j}: {94, 57407}
X(57407) = X(i)-cross conjugate of X(j) for these {i, j}: {53266, 2715}
X(57407) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(94)}}, {{A, B, C, X(54), X(98)}}, {{A, B, C, X(111), X(43756)}}, {{A, B, C, X(895), X(14060)}}, {{A, B, C, X(11564), X(62051)}}, {{A, B, C, X(15388), X(15396)}}, {{A, B, C, X(40352), X(52668)}}


X(57408) = X(6)X(35226)∩X(20)X(182)

Barycentrics    (a^4-b^2*c^2+c^4-a^2*(b^2-4*c^2))*(a^4+b^4-b^2*c^2+a^2*(4*b^2-c^2)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(51).

X(57408) lies on these lines: {6, 35226}, {20, 182}, {95, 40981}, {183, 5020}, {237, 45857}, {1249, 7714}, {5198, 14249}, {9307, 17810}, {9969, 11596}, {11169, 20775}, {38808, 42873}

X(57408) = isogonal conjugate of X(3819)
X(57408) = trilinear pole of line {3288, 6587}
X(57408) = X(i)-vertex conjugate of X(j) for these {i, j}: {6, 45857}, {95, 57408}
X(57408) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(7714)}}, {{A, B, C, X(3), X(5198)}}, {{A, B, C, X(4), X(20)}}, {{A, B, C, X(5), X(22454)}}, {{A, B, C, X(6), X(95)}}, {{A, B, C, X(25), X(5020)}}, {{A, B, C, X(53), X(42873)}}, {{A, B, C, X(54), X(45138)}}, {{A, B, C, X(66), X(21765)}}, {{A, B, C, X(69), X(14458)}}, {{A, B, C, X(83), X(2998)}}, {{A, B, C, X(111), X(45299)}}, {{A, B, C, X(251), X(2373)}}, {{A, B, C, X(262), X(393)}}, {{A, B, C, X(264), X(14492)}}, {{A, B, C, X(275), X(40815)}}, {{A, B, C, X(428), X(10691)}}, {{A, B, C, X(477), X(14487)}}, {{A, B, C, X(523), X(29317)}}, {{A, B, C, X(671), X(9229)}}, {{A, B, C, X(961), X(2370)}}, {{A, B, C, X(1014), X(2726)}}, {{A, B, C, X(1031), X(9227)}}, {{A, B, C, X(1105), X(52518)}}, {{A, B, C, X(1141), X(1173)}}, {{A, B, C, X(1300), X(14483)}}, {{A, B, C, X(1383), X(2374)}}, {{A, B, C, X(1494), X(15321)}}, {{A, B, C, X(1843), X(16098)}}, {{A, B, C, X(1972), X(39284)}}, {{A, B, C, X(1974), X(42288)}}, {{A, B, C, X(1989), X(40410)}}, {{A, B, C, X(2160), X(15742)}}, {{A, B, C, X(2165), X(7608)}}, {{A, B, C, X(2346), X(9108)}}, {{A, B, C, X(2697), X(46426)}}, {{A, B, C, X(2724), X(14493)}}, {{A, B, C, X(2963), X(53108)}}, {{A, B, C, X(3228), X(52395)}}, {{A, B, C, X(3407), X(38262)}}, {{A, B, C, X(3424), X(17040)}}, {{A, B, C, X(3527), X(8884)}}, {{A, B, C, X(3613), X(17983)}}, {{A, B, C, X(4846), X(40032)}}, {{A, B, C, X(5486), X(54857)}}, {{A, B, C, X(5896), X(45302)}}, {{A, B, C, X(5966), X(33631)}}, {{A, B, C, X(6394), X(43706)}}, {{A, B, C, X(6531), X(12110)}}, {{A, B, C, X(7607), X(46952)}}, {{A, B, C, X(7612), X(52224)}}, {{A, B, C, X(8741), X(54572)}}, {{A, B, C, X(8742), X(54571)}}, {{A, B, C, X(8801), X(14488)}}, {{A, B, C, X(10159), X(39999)}}, {{A, B, C, X(11815), X(20480)}}, {{A, B, C, X(13603), X(43660)}}, {{A, B, C, X(13622), X(54891)}}, {{A, B, C, X(14231), X(41515)}}, {{A, B, C, X(14245), X(41516)}}, {{A, B, C, X(14484), X(34208)}}, {{A, B, C, X(14494), X(51316)}}, {{A, B, C, X(14642), X(36608)}}, {{A, B, C, X(14860), X(38305)}}, {{A, B, C, X(16263), X(45088)}}, {{A, B, C, X(16277), X(39955)}}, {{A, B, C, X(16774), X(45833)}}, {{A, B, C, X(18361), X(54852)}}, {{A, B, C, X(29316), X(41435)}}, {{A, B, C, X(32230), X(39286)}}, {{A, B, C, X(34233), X(40413)}}, {{A, B, C, X(34285), X(53100)}}, {{A, B, C, X(35510), X(54519)}}, {{A, B, C, X(36889), X(54582)}}, {{A, B, C, X(36948), X(52188)}}, {{A, B, C, X(39972), X(40419)}}, {{A, B, C, X(39974), X(40412)}}, {{A, B, C, X(40416), X(41909)}}, {{A, B, C, X(41897), X(54562)}}, {{A, B, C, X(41898), X(54561)}}, {{A, B, C, X(45011), X(46729)}}, {{A, B, C, X(45090), X(54734)}}, {{A, B, C, X(46208), X(53099)}}, {{A, B, C, X(48879), X(54717)}}, {{A, B, C, X(52443), X(54815)}}, {{A, B, C, X(62064), X(62071)}}


X(57409) = X(22)X(14577)∩X(97)X(2984)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6-2*b^6+3*b^4*c^2-2*b^2*c^4+c^6-a^4*(2*b^2+c^2)+a^2*(3*b^4+4*b^2*c^2-c^4))*(a^6+b^6-2*b^4*c^2+3*b^2*c^4-2*c^6-a^4*(b^2+2*c^2)+a^2*(-b^4+4*b^2*c^2+3*c^4)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(53).

X(57409) lies on these lines: {22, 14577}, {97, 2984}, {315, 14129}, {3087, 52448}, {8743, 11402}, {8796, 56267}

X(57409) = isogonal conjugate of X(34828)
X(57409) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34828}, {63, 11245}
X(57409) = X(i)-vertex conjugate of X(j) for these {i, j}: {97, 57409}
X(57409) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 34828}, {3162, 11245}
X(57409) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 2984}, {1510, 112}
X(57409) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(4), X(22)}}, {{A, B, C, X(6), X(97)}}, {{A, B, C, X(25), X(8796)}}, {{A, B, C, X(53), X(14129)}}, {{A, B, C, X(111), X(2052)}}, {{A, B, C, X(275), X(3108)}}, {{A, B, C, X(393), X(39109)}}, {{A, B, C, X(1173), X(1298)}}, {{A, B, C, X(1179), X(23233)}}, {{A, B, C, X(1987), X(31626)}}, {{A, B, C, X(1988), X(14919)}}, {{A, B, C, X(2706), X(62051)}}, {{A, B, C, X(3527), X(54032)}}, {{A, B, C, X(6504), X(41890)}}, {{A, B, C, X(8795), X(55028)}}, {{A, B, C, X(15388), X(15401)}}, {{A, B, C, X(23964), X(39284)}}, {{A, B, C, X(34854), X(46807)}}, {{A, B, C, X(40144), X(47735)}}, {{A, B, C, X(40393), X(40402)}}
X(57409) = barycentric product X(i)*X(j) for these (i, j): {2984, 53}
X(57409) = barycentric quotient X(i)/X(j) for these (i, j): {6, 34828}, {25, 11245}, {2984, 34386}


X(57410) = ISOGONAL CONJUGATE OF X(46100)

Barycentrics    a^2*(a-b)^2*(a-c)^2*(a+b-c)*(a-b+c)*(a^5-a*b^2*(b-c)^2+a^3*(2*b-c)*c+a^2*c^2*(-b+c)-a^4*(b+c)+b^2*(b-c)^2*(b+c))*(a^5-a^3*b*(b-2*c)+a^2*b^2*(b-c)-a*(b-c)^2*c^2-a^4*(b+c)+(b-c)^2*c^2*(b+c)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(59).

X(57410) lies on these lines:

X(57410) = isogonal conjugate of X(46100)
X(57410) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46100}, {75, 55366}, {4858, 13006}, {16701, 21044}
X(57410) = X(i)-vertex conjugate of X(j) for these {i, j}: {11, 57410}
X(57410) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46100}, {206, 55366}
X(57410) = X(i)-cross conjugate of X(j) for these {i, j}: {14667, 108}, {20999, 109}, {54065, 100}
X(57410) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(11)}}, {{A, B, C, X(59), X(108)}}, {{A, B, C, X(100), X(7115)}}, {{A, B, C, X(105), X(36052)}}, {{A, B, C, X(2006), X(37128)}}, {{A, B, C, X(14667), X(55126)}}
X(57410) = barycentric quotient X(i)/X(j) for these (i, j): {6, 46100}, {32, 55366}


X(57411) = ISOGONAL CONJUGATE OF X(34829)

Barycentrics    a^2*(a+b)^2*(a+c)^2*(a^5+a^4*(-b+c)-a^2*c^2*(b+c)-a*b^2*(b+c)^2+b^2*(b-c)*(b+c)^2-a^3*c*(2*b+c))*(a^5+a^4*(b-c)-a^2*b^2*(b+c)-a*c^2*(b+c)^2-(b-c)*c^2*(b+c)^2-a^3*b*(b+2*c)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(60).

X(57411) lies on these lines:

X(57411) = isogonal conjugate of X(34829)
X(57411) = X(i)-vertex conjugate of X(j) for these {i, j}: {12, 57411}
X(57411) = X(i)-cross conjugate of X(j) for these {i, j}: {39200, 36069}
X(57411) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(12)}}, {{A, B, C, X(54), X(51760)}}, {{A, B, C, X(58), X(250)}}, {{A, B, C, X(961), X(43700)}}, {{A, B, C, X(1169), X(43659)}}, {{A, B, C, X(1175), X(36052)}}, {{A, B, C, X(2372), X(3453)}}


X(57412) = X(6)X(1607)∩X(303)X(636)

Barycentrics    a^2*(sqrt(3)*(a^2+b^2)*S+2*SA*SB+c^2*SC)*(sqrt(3)*(a^2+c^2)*S+b^2*SB+2*SA*SC) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(61).

X(57412) lies on these lines: {6, 1607}, {62, 5012}, {303, 636}, {5007, 11088}, {7755, 11082}, {10312, 10641}, {27375, 57413}

X(57412) = isogonal conjugate of X(635)
X(57412) = trilinear pole of line {3050, 55223}
X(57412) = X(i)-vertex conjugate of X(j) for these {i, j}: {17, 57412}, {10159, 57413}, {43539, 57383}
X(57412) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(16257)}}, {{A, B, C, X(6), X(17)}}, {{A, B, C, X(14), X(3489)}}, {{A, B, C, X(15), X(3443)}}, {{A, B, C, X(16), X(5007)}}, {{A, B, C, X(18), X(3456)}}, {{A, B, C, X(32), X(36759)}}, {{A, B, C, X(54), X(98)}}, {{A, B, C, X(61), X(3458)}}, {{A, B, C, X(636), X(21461)}}, {{A, B, C, X(1173), X(16460)}}, {{A, B, C, X(3438), X(46287)}}, {{A, B, C, X(3441), X(43546)}}, {{A, B, C, X(6151), X(10159)}}, {{A, B, C, X(11083), X(11138)}}, {{A, B, C, X(11086), X(55492)}}, {{A, B, C, X(34321), X(51447)}}


X(57413) = X(6)X(1608)∩X(302)X(635)

Barycentrics    a^2*(-sqrt(3)*(a^2+b^2)*S+2*SA*SB+c^2*SC)*(-sqrt(3)*(a^2+c^2)*S+b^2*SB+2*SA*SC) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(62).

X(57413) lies on these lines: {6, 1608}, {61, 5012}, {302, 635}, {5007, 11083}, {7755, 11087}, {10312, 10642}, {27375, 57412}

X(57413) = isogonal conjugate of X(636)
X(57413) = trilinear pole of line {3050, 55221}
X(57413) = X(i)-vertex conjugate of X(j) for these {i, j}: {18, 57413}, {10159, 57412}, {43538, 57382}
X(57413) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(16258)}}, {{A, B, C, X(6), X(18)}}, {{A, B, C, X(13), X(3490)}}, {{A, B, C, X(15), X(5007)}}, {{A, B, C, X(16), X(3442)}}, {{A, B, C, X(17), X(3456)}}, {{A, B, C, X(32), X(36760)}}, {{A, B, C, X(54), X(98)}}, {{A, B, C, X(62), X(3457)}}, {{A, B, C, X(635), X(21462)}}, {{A, B, C, X(1173), X(16459)}}, {{A, B, C, X(2981), X(10159)}}, {{A, B, C, X(3439), X(46287)}}, {{A, B, C, X(3440), X(43547)}}, {{A, B, C, X(11081), X(55493)}}, {{A, B, C, X(11088), X(11139)}}, {{A, B, C, X(34322), X(51446)}}


X(57414) = X(2)X(1105)∩X(20)X(801)

Barycentrics    a^2*(a^4+b^4+2*b^2*c^2-3*c^4-2*a^2*(b^2-c^2))*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b^2-c^2))*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+4*b^2*c^2-c^4))*(a^6-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4+4*b^2*c^2+c^4)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(64).

X(57414) lies on these lines: {2, 1105}, {3, 41489}, {4, 17510}, {20, 801}, {64, 394}, {97, 11589}, {235, 1301}, {253, 3926}, {1073, 1593}, {1297, 52543}, {8798, 12086}, {13346, 14642}, {17974, 45207}, {30737, 40830}, {36609, 54992}

X(57414) = isogonal conjugate of X(2883)
X(57414) = trilinear pole of line {520, 53500}
X(57414) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2883}, {19, 45200}, {20, 774}, {154, 17858}, {185, 1895}, {204, 41005}, {610, 13567}, {800, 18750}, {820, 14249}, {1097, 52566}, {1249, 6508}, {1624, 17898}, {8804, 18603}
X(57414) = X(i)-vertex conjugate of X(j) for these {i, j}: {20, 57414}
X(57414) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 2883}, {6, 45200}, {3343, 41005}, {14092, 13567}, {14379, 36982}, {14390, 6509}, {40839, 44131}
X(57414) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 801}, {523, 1301}, {2071, 5896}, {22089, 53886}, {31978, 4}, {44408, 36079}
X(57414) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(3)}}, {{A, B, C, X(4), X(5879)}}, {{A, B, C, X(6), X(20)}}, {{A, B, C, X(30), X(12086)}}, {{A, B, C, X(52), X(10564)}}, {{A, B, C, X(54), X(1294)}}, {{A, B, C, X(64), X(253)}}, {{A, B, C, X(74), X(847)}}, {{A, B, C, X(235), X(523)}}, {{A, B, C, X(251), X(34168)}}, {{A, B, C, X(280), X(1037)}}, {{A, B, C, X(347), X(1036)}}, {{A, B, C, X(378), X(37201)}}, {{A, B, C, X(578), X(37480)}}, {{A, B, C, X(801), X(51448)}}, {{A, B, C, X(895), X(18848)}}, {{A, B, C, X(943), X(947)}}, {{A, B, C, X(961), X(57393)}}, {{A, B, C, X(1063), X(40437)}}, {{A, B, C, X(1105), X(41890)}}, {{A, B, C, X(1192), X(41427)}}, {{A, B, C, X(1487), X(18401)}}, {{A, B, C, X(2693), X(5627)}}, {{A, B, C, X(2697), X(8884)}}, {{A, B, C, X(3172), X(52028)}}, {{A, B, C, X(3449), X(41904)}}, {{A, B, C, X(3522), X(11479)}}, {{A, B, C, X(3527), X(16251)}}, {{A, B, C, X(3565), X(41173)}}, {{A, B, C, X(6145), X(13573)}}, {{A, B, C, X(6823), X(14118)}}, {{A, B, C, X(7503), X(10996)}}, {{A, B, C, X(8749), X(43695)}}, {{A, B, C, X(8798), X(11589)}}, {{A, B, C, X(9307), X(45302)}}, {{A, B, C, X(10419), X(57387)}}, {{A, B, C, X(11430), X(15644)}}, {{A, B, C, X(13575), X(29180)}}, {{A, B, C, X(14091), X(31978)}}, {{A, B, C, X(14371), X(15404)}}, {{A, B, C, X(14528), X(51348)}}, {{A, B, C, X(15316), X(18850)}}, {{A, B, C, X(15740), X(41891)}}, {{A, B, C, X(16196), X(22467)}}, {{A, B, C, X(18846), X(38260)}}, {{A, B, C, X(18890), X(31377)}}, {{A, B, C, X(22466), X(22549)}}, {{A, B, C, X(28783), X(35602)}}, {{A, B, C, X(31361), X(52518)}}, {{A, B, C, X(34861), X(44073)}}, {{A, B, C, X(37477), X(37495)}}, {{A, B, C, X(37497), X(37498)}}, {{A, B, C, X(39434), X(57388)}}, {{A, B, C, X(40032), X(52441)}}, {{A, B, C, X(41905), X(57416)}}, {{A, B, C, X(43690), X(52223)}}, {{A, B, C, X(43719), X(50710)}}
X(57414) = barycentric product X(i)*X(j) for these (i, j): {64, 801}, {253, 41890}, {1073, 1105}, {2184, 775}, {33581, 40830}
X(57414) = barycentric quotient X(i)/X(j) for these (i, j): {3, 45200}, {6, 2883}, {64, 13567}, {459, 44131}, {775, 18750}, {801, 14615}, {1073, 41005}, {1105, 15466}, {1301, 41678}, {2155, 774}, {2184, 17858}, {14379, 6509}, {14390, 36982}, {14642, 185}, {17510, 14091}, {19614, 6508}, {33581, 800}, {41489, 235}, {41890, 20}


X(57415) = X(24)X(1288)∩X(68)X(70)

Barycentrics    b^2*c^2*(a^4-2*a^2*b^2+(b^2-c^2)^2)*(a^4-2*a^2*c^2+(b^2-c^2)^2)*(a^8+2*a^4*b^4-2*a^6*(b^2+c^2)+(b^2-c^2)^3*(b^2+c^2)-2*a^2*(b^6-c^6))*(a^8+2*a^4*c^4-2*a^6*(b^2+c^2)-(b^2-c^2)^3*(b^2+c^2)+2*a^2*(b^6-c^6)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(70).

X(57415) lies on these lines: {24, 1288}, {26, 5392}, {68, 70}, {96, 19185}, {2165, 7505}, {20563, 20564}

X(57415) = isogonal conjugate of X(34116)
X(57415) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34116}, {26, 47}, {44078, 44179}
X(57415) = X(i)-vertex conjugate of X(j) for these {i, j}: {26, 57415}
X(57415) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 34116}, {34853, 26}, {37864, 44078}
X(57415) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 5392}, {523, 1288}, {1594, 96}, {20303, 4}
X(57415) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(93)}}, {{A, B, C, X(4), X(37444)}}, {{A, B, C, X(6), X(26)}}, {{A, B, C, X(24), X(523)}}, {{A, B, C, X(54), X(264)}}, {{A, B, C, X(68), X(96)}}, {{A, B, C, X(70), X(20564)}}, {{A, B, C, X(254), X(328)}}, {{A, B, C, X(1093), X(5627)}}, {{A, B, C, X(1166), X(9307)}}, {{A, B, C, X(1225), X(25043)}}, {{A, B, C, X(10419), X(15318)}}, {{A, B, C, X(34536), X(43678)}}, {{A, B, C, X(46259), X(56071)}}
X(57415) = barycentric product X(i)*X(j) for these (i, j): {5392, 70}, {20564, 2165}, {20571, 2158}, {46134, 55228}
X(57415) = barycentric quotient X(i)/X(j) for these (i, j): {6, 34116}, {70, 1993}, {1288, 41679}, {2158, 47}, {2165, 26}, {5392, 44128}, {14593, 8746}, {20564, 7763}, {55228, 924}


X(57416) = X(27)X(2200)∩X(71)X(4184)

Barycentrics    a^2*(-(a^3*b^2)+a^4*(b+c)+b^2*c*(b^2-c^2)+a*(b^4-b^2*c^2)-a^2*(b^3+2*b^2*c+b*c^2+c^3))*(-(a^3*c^2)-b^3*c^2+b*c^4+a^4*(b+c)-a^2*(b^3+b^2*c+2*b*c^2+c^3)+a*(-(b^2*c^2)+c^4)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(71).

X(57416) lies on these lines: {27, 2200}, {71, 4184}, {101, 3136}, {306, 33297}, {579, 2197}, {672, 40572}, {1011, 3190}, {2171, 51949}, {3681, 3949}

X(57416) = isogonal conjugate of X(34830)
X(57416) = trilinear pole of line {6586, 8676}
X(57416) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34830}, {4, 18606}, {6, 17866}, {63, 1860}, {75, 40955}, {81, 3136}, {274, 40954}
X(57416) = X(i)-vertex conjugate of X(j) for these {i, j}: {27, 57416}
X(57416) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 34830}, {9, 17866}, {206, 40955}, {3162, 1860}, {36033, 18606}, {40586, 3136}
X(57416) = X(i)-cross conjugate of X(j) for these {i, j}: {523, 101}, {23399, 99}, {23864, 100}, {44546, 4}
X(57416) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(284)}}, {{A, B, C, X(4), X(103)}}, {{A, B, C, X(6), X(27)}}, {{A, B, C, X(41), X(51949)}}, {{A, B, C, X(42), X(71)}}, {{A, B, C, X(54), X(917)}}, {{A, B, C, X(55), X(40435)}}, {{A, B, C, X(251), X(675)}}, {{A, B, C, X(291), X(23604)}}, {{A, B, C, X(523), X(2073)}}, {{A, B, C, X(672), X(5236)}}, {{A, B, C, X(909), X(2350)}}, {{A, B, C, X(961), X(53707)}}, {{A, B, C, X(1037), X(21453)}}, {{A, B, C, X(1166), X(26708)}}, {{A, B, C, X(1220), X(7123)}}, {{A, B, C, X(1252), X(34536)}}, {{A, B, C, X(2167), X(2194)}}, {{A, B, C, X(2249), X(2982)}}, {{A, B, C, X(2276), X(26893)}}, {{A, B, C, X(2688), X(10419)}}, {{A, B, C, X(3451), X(39965)}}, {{A, B, C, X(4219), X(35981)}}, {{A, B, C, X(4251), X(4278)}}, {{A, B, C, X(4570), X(40418)}}, {{A, B, C, X(10415), X(53190)}}, {{A, B, C, X(13404), X(39734)}}, {{A, B, C, X(17754), X(27661)}}, {{A, B, C, X(37741), X(39741)}}, {{A, B, C, X(38825), X(40437)}}, {{A, B, C, X(41905), X(57414)}}
X(57416) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17866}, {6, 34830}, {25, 1860}, {32, 40955}, {42, 3136}, {48, 18606}, {1918, 40954}


X(57417) = X(73)X(4225)∩X(109)X(3142)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(a^4*c^2+a^5*(b+c)+b^2*(b-c)*c*(b+c)^2+a*(b^5-b^3*c^2)-a^2*c*(b^3+c^3)-a^3*(2*b^3+b^2*c+b*c^2+c^3))*(a^4*b^2+a^5*(b+c)-b*(b-c)*c^2*(b+c)^2-a^2*b*(b^3+c^3)-a^3*(b^3+b^2*c+b*c^2+2*c^3)+a*(-(b^2*c^3)+c^5)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(73).

X(57417) lies on these lines: {73, 4225}, {109, 3142}, {201, 3869}, {573, 2197}, {1425, 10571}

X(57417) = isogonal conjugate of X(34831)
X(57417) = trilinear pole of line {6589, 53262}
X(57417) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34831}, {21, 3142}, {281, 18608}
X(57417) = X(i)-vertex conjugate of X(j) for these {i, j}: {29, 57417}
X(57417) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 34831}, {40611, 3142}
X(57417) = X(i)-cross conjugate of X(j) for these {i, j}: {523, 109}, {44548, 4}
X(57417) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(1167)}}, {{A, B, C, X(4), X(58)}}, {{A, B, C, X(6), X(29)}}, {{A, B, C, X(54), X(32706)}}, {{A, B, C, X(56), X(24806)}}, {{A, B, C, X(73), X(201)}}, {{A, B, C, X(222), X(40573)}}, {{A, B, C, X(251), X(1311)}}, {{A, B, C, X(270), X(32677)}}, {{A, B, C, X(523), X(3142)}}, {{A, B, C, X(961), X(57399)}}, {{A, B, C, X(1126), X(40437)}}, {{A, B, C, X(1166), X(57396)}}, {{A, B, C, X(1175), X(7115)}}, {{A, B, C, X(1193), X(2183)}}, {{A, B, C, X(1258), X(1262)}}, {{A, B, C, X(1437), X(2190)}}, {{A, B, C, X(2695), X(10419)}}, {{A, B, C, X(3449), X(41904)}}, {{A, B, C, X(7412), X(27653)}}
X(57417) = barycentric quotient X(i)/X(j) for these (i, j): {6, 34831}, {603, 18608}, {1400, 3142}


X(57418) = X(3)X(947)∩X(33)X(84)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(a^4+a^3*c-a*(b-c)^2*c+b*(b-c)*(b+c)^2-a^2*(2*b^2+b*c+c^2))*(a^4+a^3*b-a*b*(b-c)^2-(b-c)*c*(b+c)^2-a^2*(b^2+b*c+2*c^2)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(77).

X(57418) lies on these lines: {3, 947}, {6, 55117}, {27, 34050}, {33, 84}, {57, 2331}, {63, 2324}, {198, 222}, {223, 7177}, {278, 14377}, {1422, 2199}, {1790, 56001}, {17206, 27398}, {20205, 34234}

X(57418) = isogonal conjugate of X(20262)
X(57418) = trilinear pole of line {1459, 53305}
X(57418) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20262}, {6, 23528}, {8, 2262}, {9, 946}, {63, 1856}, {75, 40957}, {92, 40945}, {280, 40943}, {281, 17102}, {318, 22063}, {7003, 52097}
X(57418) = X(i)-vertex conjugate of X(j) for these {i, j}: {33, 57418}
X(57418) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 20262}, {9, 23528}, {206, 40957}, {478, 946}, {3162, 1856}, {22391, 40945}
X(57418) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 40396}, {650, 109}, {39199, 934}, {53299, 24016}
X(57418) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(53995)}}, {{A, B, C, X(2), X(1167)}}, {{A, B, C, X(3), X(27)}}, {{A, B, C, X(6), X(33)}}, {{A, B, C, X(54), X(51762)}}, {{A, B, C, X(56), X(1422)}}, {{A, B, C, X(73), X(8808)}}, {{A, B, C, X(81), X(1262)}}, {{A, B, C, X(102), X(189)}}, {{A, B, C, X(106), X(7130)}}, {{A, B, C, X(278), X(42290)}}, {{A, B, C, X(284), X(20624)}}, {{A, B, C, X(911), X(2299)}}, {{A, B, C, X(947), X(55987)}}, {{A, B, C, X(1169), X(3451)}}, {{A, B, C, X(1170), X(1171)}}, {{A, B, C, X(1174), X(4183)}}, {{A, B, C, X(1412), X(17074)}}, {{A, B, C, X(1419), X(52424)}}, {{A, B, C, X(1433), X(7011)}}, {{A, B, C, X(1465), X(2003)}}, {{A, B, C, X(1795), X(7125)}}, {{A, B, C, X(1817), X(57422)}}, {{A, B, C, X(2006), X(5399)}}, {{A, B, C, X(2057), X(2999)}}, {{A, B, C, X(2123), X(34277)}}, {{A, B, C, X(2149), X(51476)}}, {{A, B, C, X(2982), X(19607)}}, {{A, B, C, X(8056), X(36052)}}, {{A, B, C, X(8810), X(51223)}}, {{A, B, C, X(32668), X(36110)}}, {{A, B, C, X(34050), X(52373)}}, {{A, B, C, X(36101), X(57393)}}, {{A, B, C, X(39797), X(40573)}}, {{A, B, C, X(40420), X(52378)}}
X(57418) = barycentric product X(i)*X(j) for these (i, j): {7, 947}, {1014, 56195}, {40396, 77}, {40417, 56}, {55987, 57}
X(57418) = barycentric quotient X(i)/X(j) for these (i, j): {1, 23528}, {6, 20262}, {25, 1856}, {32, 40957}, {56, 946}, {184, 40945}, {603, 17102}, {604, 2262}, {947, 8}, {2199, 40943}, {7114, 52097}, {40396, 318}, {40417, 3596}, {52411, 22063}, {55987, 312}, {56195, 3701}


X(57419) = X(1)X(2940)∩X(10)X(79)

Barycentrics    a*(a+2*b+c)*(a+b+2*c)*(a^2+a*b+b^2-c^2)*(a^2-b^2+a*c+c^2) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(79).

X(57419) lies on these lines: {1, 2940}, {6, 33669}, {10, 79}, {35, 1255}, {37, 2160}, {65, 1126}, {75, 6757}, {267, 1171}, {596, 52393}, {1268, 3841}, {1844, 36119}, {3017, 5221}, {3615, 42285}, {3647, 51748}, {5341, 28615}, {6537, 8818}, {6742, 39697}, {7100, 31503}, {12702, 56402}, {14844, 19862}, {15475, 50344}, {26700, 32636}, {35347, 47947}, {36279, 41501}

X(57419) = isogonal conjugate of X(3647)
X(57419) = trilinear pole of line {661, 11076}
X(57419) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3647}, {2, 17454}, {6, 3578}, {35, 1125}, {37, 17190}, {319, 2308}, {553, 52405}, {1100, 3219}, {1213, 40214}, {1399, 3702}, {1442, 3683}, {1962, 56934}, {2003, 3686}, {2174, 4359}, {2605, 4427}, {3649, 35193}, {3916, 6198}, {4420, 32636}, {4467, 35327}, {4647, 17104}, {4973, 56422}, {14838, 35342}, {16553, 19620}, {20970, 34016}, {22054, 52412}, {52408, 56875}
X(57419) = X(i)-vertex conjugate of X(j) for these {i, j}: {35, 57419}
X(57419) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3647}, {9, 3578}, {32664, 17454}, {40589, 17190}, {56847, 4647}
X(57419) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 1255}, {513, 26700}, {53256, 36064}
X(57419) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(4), X(37405)}}, {{A, B, C, X(6), X(35)}}, {{A, B, C, X(13), X(42677)}}, {{A, B, C, X(14), X(42680)}}, {{A, B, C, X(28), X(6175)}}, {{A, B, C, X(57), X(2349)}}, {{A, B, C, X(58), X(74)}}, {{A, B, C, X(79), X(2160)}}, {{A, B, C, X(88), X(14534)}}, {{A, B, C, X(89), X(34260)}}, {{A, B, C, X(484), X(513)}}, {{A, B, C, X(961), X(1168)}}, {{A, B, C, X(998), X(44835)}}, {{A, B, C, X(1126), X(32635)}}, {{A, B, C, X(1155), X(15932)}}, {{A, B, C, X(1156), X(1175)}}, {{A, B, C, X(1174), X(28471)}}, {{A, B, C, X(1255), X(43260)}}, {{A, B, C, X(1821), X(14377)}}, {{A, B, C, X(1844), X(2173)}}, {{A, B, C, X(1929), X(43972)}}, {{A, B, C, X(1961), X(3634)}}, {{A, B, C, X(1989), X(30602)}}, {{A, B, C, X(2159), X(17104)}}, {{A, B, C, X(2341), X(3017)}}, {{A, B, C, X(2940), X(21353)}}, {{A, B, C, X(3256), X(5708)}}, {{A, B, C, X(3451), X(62044)}}, {{A, B, C, X(5556), X(39267)}}, {{A, B, C, X(6757), X(15475)}}, {{A, B, C, X(11076), X(19658)}}, {{A, B, C, X(15386), X(15401)}}, {{A, B, C, X(17160), X(43993)}}, {{A, B, C, X(20292), X(40154)}}, {{A, B, C, X(32938), X(37132)}}, {{A, B, C, X(36279), X(37583)}}, {{A, B, C, X(51223), X(56203)}}
X(57419) = barycentric product X(i)*X(j) for these (i, j): {1126, 30690}, {1171, 6757}, {1255, 79}, {1268, 2160}, {4102, 52372}, {4596, 55236}, {13486, 31010}, {15455, 50344}, {20565, 28615}, {32018, 6186}, {32635, 52374}, {40438, 8818}, {47947, 6742}, {52375, 6539}
X(57419) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3578}, {6, 3647}, {31, 17454}, {58, 17190}, {79, 4359}, {1126, 3219}, {1171, 56934}, {1255, 319}, {1268, 33939}, {2160, 1125}, {4596, 55235}, {4608, 18160}, {6186, 1100}, {6757, 1230}, {7073, 3686}, {7100, 4001}, {7110, 3702}, {8818, 4647}, {28615, 35}, {30690, 1269}, {32635, 42033}, {33635, 4420}, {40438, 34016}, {47947, 4467}, {50344, 14838}, {52372, 553}, {52375, 8025}, {52393, 16709}, {52555, 3678}, {55236, 30591}, {56193, 4115}
X(57419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1255, 33670, 35}


X(57420) = X(6)X(35213)∩X(38)X(40398)

Barycentrics    a^2*(a+b)*(a^2+b^2)*(a+c)*(a^2+c^2)*(a^2-a*b+b^2+c^2)*(a^2+b^2-a*c+c^2) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(82).

X(57420) lies on these lines: {6, 35213}, {38, 40398}

X(57420) = isogonal conjugate of X(21249)
X(57420) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 21249}, {2, 17456}, {6, 21425}, {10, 18183}, {37, 17192}, {38, 4972}, {75, 20969}, {81, 21037}, {92, 22077}, {100, 21125}, {141, 16600}, {1235, 23203}, {3954, 16706}, {4553, 47712}, {7191, 15523}, {8061, 33951}, {21035, 33940}, {27712, 46148}, {35309, 47652}
X(57420) = X(i)-vertex conjugate of X(j) for these {i, j}: {38, 57420}
X(57420) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 21249}, {9, 21425}, {206, 20969}, {8054, 21125}, {22391, 22077}, {32664, 17456}, {40586, 21037}, {40589, 17192}
X(57420) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 40398}, {3733, 827}, {23403, 689}, {23848, 9076}, {23866, 36081}
X(57420) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(38)}}, {{A, B, C, X(58), X(38827)}}, {{A, B, C, X(81), X(745)}}, {{A, B, C, X(251), X(18108)}}, {{A, B, C, X(1126), X(1280)}}
X(57420) = barycentric product X(i)*X(j) for these (i, j): {40398, 82}
X(57420) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21425}, {6, 21249}, {31, 17456}, {32, 20969}, {42, 21037}, {58, 17192}, {184, 22077}, {251, 4972}, {649, 21125}, {827, 33951}, {1333, 18183}, {18108, 27712}, {40398, 1930}, {46289, 16600}, {52376, 33940}


X(57421) = X(39)X(251)∩X(83)X(141)

Barycentrics    a^2*(a^2+b^2)*(a^2+c^2)*(a^2+2*b^2+c^2)*(a^2+b^2+2*c^2) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(83).

X(57421) lies on these lines: {6, 14247}, {39, 251}, {83, 141}, {733, 7953}, {827, 5007}, {2076, 52554}, {3589, 40003}, {3954, 18098}, {4577, 25322}, {5008, 9481}, {5041, 46228}, {6664, 7760}, {7745, 52445}, {7772, 41295}, {7827, 9484}, {7859, 40850}, {7878, 31360}, {32085, 41366}, {41413, 41435}, {46154, 52580}

X(57421) = isogonal conjugate of X(6292)
X(57421) = isotomic conjugate of X(42554)
X(57421) = trilinear pole of line {3005, 18105}
X(57421) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6292}, {2, 17457}, {6, 20898}, {31, 42554}, {37, 17193}, {38, 3589}, {48, 52787}, {63, 46026}, {75, 11205}, {81, 21038}, {86, 21817}, {92, 22078}, {100, 21126}, {141, 17469}, {1930, 5007}, {1964, 39998}, {3005, 18062}, {3954, 17200}, {4020, 44142}, {4553, 48101}, {7198, 33299}, {7767, 17442}, {8061, 10330}, {8664, 55239}, {16707, 21035}, {16887, 21802}, {20883, 22352}, {28666, 34055}, {46148, 48152}
X(57421) = X(i)-vertex conjugate of X(j) for these {i, j}: {39, 57421}, {39397, 42346}
X(57421) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42554}, {3, 6292}, {9, 20898}, {206, 11205}, {1249, 52787}, {3162, 46026}, {8054, 21126}, {22391, 22078}, {32664, 17457}, {40586, 21038}, {40589, 17193}, {40600, 21817}, {41884, 39998}
X(57421) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 3108}, {512, 827}, {2076, 733}, {3108, 40425}, {19596, 9076}, {21003, 36081}, {21006, 689}, {38303, 39449}
X(57421) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(4), X(6636)}}, {{A, B, C, X(6), X(39)}}, {{A, B, C, X(25), X(43527)}}, {{A, B, C, X(32), X(12212)}}, {{A, B, C, X(79), X(52030)}}, {{A, B, C, X(83), X(251)}}, {{A, B, C, X(249), X(34238)}}, {{A, B, C, X(427), X(40036)}}, {{A, B, C, X(512), X(2076)}}, {{A, B, C, X(598), X(7762)}}, {{A, B, C, X(671), X(32027)}}, {{A, B, C, X(1126), X(1280)}}, {{A, B, C, X(1173), X(2065)}}, {{A, B, C, X(1383), X(18841)}}, {{A, B, C, X(1438), X(1509)}}, {{A, B, C, X(1976), X(39397)}}, {{A, B, C, X(2207), X(53102)}}, {{A, B, C, X(3108), X(10159)}}, {{A, B, C, X(3115), X(52395)}}, {{A, B, C, X(4577), X(12074)}}, {{A, B, C, X(7754), X(7894)}}, {{A, B, C, X(7770), X(7878)}}, {{A, B, C, X(7859), X(46226)}}, {{A, B, C, X(8601), X(41749)}}, {{A, B, C, X(10014), X(18898)}}, {{A, B, C, X(10630), X(53109)}}, {{A, B, C, X(14810), X(43136)}}, {{A, B, C, X(21355), X(35214)}}, {{A, B, C, X(30435), X(41413)}}, {{A, B, C, X(34321), X(57385)}}, {{A, B, C, X(34322), X(57384)}}, {{A, B, C, X(37841), X(62051)}}, {{A, B, C, X(38005), X(46701)}}, {{A, B, C, X(39389), X(56059)}}, {{A, B, C, X(40850), X(46227)}}, {{A, B, C, X(42548), X(56915)}}, {{A, B, C, X(46286), X(55075)}}
X(57421) = barycentric product X(i)*X(j) for these (i, j): {3108, 83}, {10159, 251}, {18105, 35137}, {31065, 827}, {32085, 41435}, {39676, 56059}, {40425, 6}, {52395, 52554}
X(57421) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20898}, {2, 42554}, {4, 52787}, {6, 6292}, {25, 46026}, {31, 17457}, {32, 11205}, {42, 21038}, {58, 17193}, {83, 39998}, {184, 22078}, {213, 21817}, {251, 3589}, {649, 21126}, {827, 10330}, {1176, 7767}, {1843, 28666}, {3108, 141}, {4599, 18062}, {7953, 4576}, {10159, 8024}, {10547, 22352}, {14247, 42052}, {18105, 7927}, {18108, 48152}, {31065, 23285}, {32085, 44142}, {39676, 51126}, {40425, 76}, {41435, 3933}, {46288, 5007}, {46289, 17469}, {52376, 16707}, {52395, 52570}, {52554, 7794}
X(57421) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 3108, 39675}, {83, 10159, 40425}, {3108, 39676, 251}, {5007, 46227, 827}


X(57422) = X(1)X(1767)∩X(3)X(1167)

Barycentrics    a^2*(a^3+a^2*(b-c)-a*(b-c)^2-(b-c)*(b+c)^2)*(a^3-a*(b-c)^2+a^2*(-b+c)+(b-c)*(b+c)^2)*(a^4-a^3*c+b*(b-c)^2*(b+c)+a*c*(b+c)^2-a^2*(2*b^2-b*c+c^2))*(a^4-a^3*b+(b-c)^2*c*(b+c)+a*b*(b+c)^2-a^2*(b^2-b*c+2*c^2)) : :

See X(18771) and Antreas Hatzipolakis and César Lozada, Hyacinthos 27654 for P=X(84).

X(57422) lies on these lines: {1, 1767}, {3, 1167}, {40, 2208}, {77, 37526}, {78, 84}, {219, 1436}, {1433, 1466}, {2192, 10306}, {3345, 40397}, {6260, 40444}, {6282, 56259}, {7100, 9940}, {8059, 37566}, {39130, 51565}, {39558, 47487}

X(57422) = isogonal conjugate of X(6260)
X(57422) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6260}, {40, 1210}, {198, 17862}, {322, 40958}, {329, 1108}, {347, 1864}, {1071, 7952}, {1103, 52571}, {1226, 2187}, {1532, 15501}, {1817, 21933}, {7080, 37566}, {17896, 53288}
X(57422) = X(i)-vertex conjugate of X(j) for these {i, j}: {40, 57422}, {947, 42464}
X(57422) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 6260}
X(57422) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 40399}, {513, 8059}, {48387, 40117}, {53277, 6081}
X(57422) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3)}}, {{A, B, C, X(4), X(3451)}}, {{A, B, C, X(6), X(40)}}, {{A, B, C, X(28), X(2716)}}, {{A, B, C, X(35), X(9940)}}, {{A, B, C, X(54), X(972)}}, {{A, B, C, X(55), X(37526)}}, {{A, B, C, X(57), X(1767)}}, {{A, B, C, X(58), X(1295)}}, {{A, B, C, X(64), X(909)}}, {{A, B, C, X(84), X(1413)}}, {{A, B, C, X(103), X(10305)}}, {{A, B, C, X(513), X(2077)}}, {{A, B, C, X(603), X(2360)}}, {{A, B, C, X(1168), X(2745)}}, {{A, B, C, X(1817), X(57418)}}, {{A, B, C, X(1819), X(36055)}}, {{A, B, C, X(2213), X(3577)}}, {{A, B, C, X(2259), X(14528)}}, {{A, B, C, X(5537), X(37582)}}, {{A, B, C, X(7080), X(15629)}}, {{A, B, C, X(10306), X(15803)}}, {{A, B, C, X(10309), X(12528)}}, {{A, B, C, X(10902), X(17603)}}, {{A, B, C, X(14534), X(29056)}}, {{A, B, C, X(34051), X(40574)}}, {{A, B, C, X(37531), X(40293)}}, {{A, B, C, X(37583), X(50371)}}, {{A, B, C, X(51497), X(56089)}}, {{A, B, C, X(54226), X(56343)}}, {{A, B, C, X(57396), X(62044)}}
X(57422) = barycentric product X(i)*X(j) for these (i, j): {271, 40397}, {1167, 189}, {1433, 40444}, {1436, 40424}, {40399, 84}
X(57422) = barycentric quotient X(i)/X(j) for these (i, j): {6, 6260}, {84, 17862}, {189, 1226}, {1167, 329}, {1436, 1210}, {2208, 1108}, {2357, 21933}, {7118, 1864}, {40397, 342}, {40399, 322}


X(57423) = RS(X(74), X(104))

Barycentrics    (b-c)^2*(b+c)*(a^5*(b+c)-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^3*(-2*b^3+b^2*c+b*c^2-2*c^3)+a*(b-c)^2*(b^3+c^3)+2*a^2*(b^4-b^2*c^2+c^4)) : :

X(57423) lies on these lines: {11, 513}, {125, 523}, {1290, 10778}, {1495, 47140}, {2771, 42422}, {6699, 46635}, {15325, 51420}, {17702, 46636}, {18210, 38982}, {23775, 42759}

X(57423) = midpoint of X(i) and X(j) for these {i,j}: {1290, 10778}
X(57423) = reflection of X(i) in X(j) for these {i,j}: {1495, 47140}, {2677, 125}, {46635, 6699}, {51420, 15325}
X(57423) = perspector of circumconic {{A, B, C, X(2394), X(2401)}}
X(57423) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2687, 4570}
X(57423) = X(i)-Dao conjugate of X(j) for these {i, j}: {50330, 2687}
X(57423) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(2677)}}, {{A, B, C, X(513), X(42759)}}
X(57423) = barycentric product X(i)*X(j) for these (i, j): {16732, 2771}, {42759, 52499}
X(57423) = barycentric quotient X(i)/X(j) for these (i, j): {2771, 4567}, {3125, 2687}, {16732, 46141}, {55195, 14224}
X(57423) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {125, 523, 2677}


X(57424) = RS(X(74), X(107))

Barycentrics    (b-c)^2*(b+c)^2*(-a^2+b^2+c^2)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))*(-(a^6*(b^2+c^2))-3*a^2*(b^2-c^2)^2*(b^2+c^2)+(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)+a^4*(3*b^4-4*b^2*c^2+3*c^4)) : :

X(57424) lies on these lines: {125, 523}, {133, 1515}, {459, 39464}, {1495, 47152}, {1503, 14847}, {1552, 7687}, {1562, 2501}, {9033, 16177}, {9409, 38999}, {12828, 13202}, {21663, 47146}, {23291, 52472}, {24930, 31510}, {25739, 40664}, {45960, 52000}

X(57424) = midpoint of X(i) and X(j) for these {i,j}: {25739, 40664}
X(57424) = reflection of X(i) in X(j) for these {i,j}: {1495, 47152}, {1552, 7687}, {31510, 24930}
X(57424) = perspector of circumconic {{A, B, C, X(2394), X(2404)}}
X(57424) = X(i)-isoconjugate-of-X(j) for these {i, j}: {15404, 24000}
X(57424) = X(i)-Dao conjugate of X(j) for these {i, j}: {1990, 23582}, {9033, 53789}, {14345, 37669}, {44436, 18020}
X(57424) = X(i)-Ceva conjugate of X(j) for these {i, j}: {459, 1637}
X(57424) = intersection, other than A, B, C, of circumconics {{A, B, C, X(125), X(133)}}, {{A, B, C, X(1559), X(1650)}}, {{A, B, C, X(1637), X(39464)}}, {{A, B, C, X(12079), X(51385)}}
X(57424) = barycentric product X(i)*X(j) for these (i, j): {133, 15526}, {338, 40948}, {339, 47433}, {1650, 51358}, {3265, 55276}
X(57424) = barycentric quotient X(i)/X(j) for these (i, j): {133, 23582}, {3269, 15404}, {39008, 53789}, {40948, 249}, {47433, 250}, {51358, 42308}, {55276, 107}


X(57425) = RS(X(74), X(111))

Barycentrics    (b-c)^2*(b+c)^2*(-5*a^2+b^2+c^2)*(b^6+4*a^2*b^2*c^2-2*b^4*c^2-2*b^2*c^4+c^6-a^4*(b^2+c^2)) : :

X(57425) lies on circumconic {{A, B, C, X(4), X(2686)}} and on these lines: {125, 523}, {542, 51938}, {1499, 2686}, {1503, 16317}, {2854, 31655}, {3124, 38395}, {47296, 47350}

X(57425) = reflection of X(i) in X(j) for these {i,j}: {2686, 5512}, {47350, 47296}
X(57425) = perspector of circumconic {{A, B, C, X(2394), X(2408)}}
X(57425) = barycentric quotient X(i)/X(j) for these (i, j): {6791, 2770}
X(57425) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1499, 5512, 2686}


X(57426) = RS(X(74), X(112))

Barycentrics    (b-c)^2*(b+c)^2*(-a^2+b^2+c^2)*(-a^4+b^4-b^2*c^2+c^4)*(-2*a^6+a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)) : :

X(57426) lies on these lines: {4, 32695}, {125, 523}, {132, 1503}, {1495, 47151}, {1499, 1562}, {5095, 21639}, {6699, 46631}, {9517, 35594}, {17702, 46637}, {38356, 55219}, {47177, 47296}

X(57426) = reflection of X(i) in X(j) for these {i,j}: {1495, 47151}, {1554, 132}, {46631, 6699}, {47177, 47296}
X(57426) = perspector of circumconic {{A, B, C, X(2394), X(2409)}}
X(57426) = X(i)-isoconjugate-of-X(j) for these {i, j}: {17708, 36046}
X(57426) = X(i)-Dao conjugate of X(j) for these {i, j}: {5099, 44770}, {18311, 35140}, {33504, 17708}
X(57426) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(1554)}}, {{A, B, C, X(125), X(6793)}}, {{A, B, C, X(9517), X(32695)}}, {{A, B, C, X(12079), X(16318)}}, {{A, B, C, X(15639), X(52076)}}
X(57426) = barycentric product X(i)*X(j) for these (i, j): {28343, 339}, {36894, 5099}
X(57426) = barycentric quotient X(i)/X(j) for these (i, j): {2492, 44770}, {28343, 250}
X(57426) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {132, 1503, 1554}


X(57427) = RS(X(98), X(103))

Barycentrics    (b-c)^2*(b+c)*(-2*a^5+b^5-b^3*c^2-b^2*c^3+c^5+a^4*(b+c)-a^2*b*c*(b+c)-a*(b^2-c^2)^2+a^3*(b^2+c^2)) : :

X(57427) lies on these lines: {115, 512}, {116, 514}, {2684, 2784}, {21131, 21134}, {21862, 44661}, {40627, 41180}

X(57427) = reflection of X(i) in X(j) for these {i,j}: {2681, 115}
X(57427) = perspector of circumconic {{A, B, C, X(2395), X(2400)}}
X(57427) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2700, 4567}
X(57427) = X(i)-Dao conjugate of X(j) for these {i, j}: {4988, 35150}, {35082, 4600}, {40627, 2700}
X(57427) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(2681)}}, {{A, B, C, X(21131), X(51441)}}, {{A, B, C, X(21134), X(51404)}}
X(57427) = barycentric product X(i)*X(j) for these (i, j): {2784, 3120}
X(57427) = barycentric quotient X(i)/X(j) for these (i, j): {2784, 4600}, {3120, 35150}, {3122, 2700}
X(57427) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {115, 512, 2681}


X(57428) = RS(X(98), X(104))

Barycentrics    a*(b-c)^2*(b+c)*(-2*a^4*b*c+a^5*(b+c)+a*b*(b-c)^2*c*(b+c)-b*c*(b^2-c^2)^2+a^2*b*c*(b^2+c^2)-a^3*(b^3+c^3)) : :

X(57428) lies on these lines: {11, 513}, {115, 512}, {2683, 2783}, {2703, 10769}, {8034, 42752}, {21956, 51377}, {41179, 50497}

X(57428) = midpoint of X(i) and X(j) for these {i,j}: {2703, 10769}
X(57428) = reflection of X(i) in X(j) for these {i,j}: {2680, 115}
X(57428) = perspector of circumconic {{A, B, C, X(2395), X(2401)}}
X(57428) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2699, 4600}, {4570, 35151}
X(57428) = X(i)-Dao conjugate of X(j) for these {i, j}: {35083, 4601}, {50330, 35151}, {50497, 2699}
X(57428) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(2680)}}, {{A, B, C, X(513), X(42752)}}, {{A, B, C, X(8034), X(15635)}}
X(57428) = barycentric product X(i)*X(j) for these (i, j): {2783, 3125}
X(57428) = barycentric quotient X(i)/X(j) for these (i, j): {2783, 4601}, {3121, 2699}, {3125, 35151}
X(57428) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {115, 512, 2680}


X(57429) = RS(X(98), X(111))

Barycentrics    (b-c)^2*(b+c)^2*(-5*a^2+b^2+c^2)*(-2*a^4+b^4-4*b^2*c^2+c^4+2*a^2*(b^2+c^2)) : :

X(57429) lies on these lines: {115, 512}, {542, 34169}, {543, 35586}, {1499, 2686}, {8352, 51396}, {9027, 53505}, {9144, 10630}, {24981, 44677}, {33921, 41177}

X(57429) = perspector of circumconic {{A, B, C, X(2395), X(2408)}}
X(57429) = X(i)-Dao conjugate of X(j) for these {i, j}: {35133, 9170}, {35586, 17937}
X(57429) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1499), X(33921)}}, {{A, B, C, X(1641), X(14858)}}
X(57429) = barycentric product X(i)*X(j) for these (i, j): {543, 6791}, {1499, 8371}, {2408, 33921}, {18007, 9125}
X(57429) = barycentric quotient X(i)/X(j) for these (i, j): {1499, 9170}, {2444, 53690}, {6791, 18823}, {8371, 35179}, {9171, 1296}, {33921, 2418}


X(57430) = RS(X(98), X(112))

Barycentrics    (b-c)^2*(b+c)^2*(b^4+c^4-a^2*(b^2+c^2))*(-2*a^6+a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)) : :

X(57430) lies on these lines: {4, 20031}, {115, 512}, {125, 2501}, {132, 1503}, {1562, 3566}, {2491, 38974}, {2799, 36471}, {3569, 39000}, {13202, 53419}, {36426, 51358}, {38356, 52317}, {39691, 55384}, {41181, 51429}, {55265, 57424}

X(57430) = perspector of circumconic {{A, B, C, X(868), X(2395)}}
X(57430) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1101, 9476}, {17932, 36046}, {32676, 55274}
X(57430) = X(i)-Dao conjugate of X(j) for these {i, j}: {232, 18020}, {441, 4590}, {523, 9476}, {2491, 51343}, {15526, 55274}, {33504, 17932}, {39073, 249}, {55267, 35140}
X(57430) = X(i)-Ceva conjugate of X(j) for these {i, j}: {125, 44114}, {459, 16230}, {13854, 2491}
X(57430) = intersection, other than A, B, C, of circumconics {{A, B, C, X(115), X(132)}}, {{A, B, C, X(868), X(1529)}}, {{A, B, C, X(1503), X(51404)}}, {{A, B, C, X(2501), X(15639)}}, {{A, B, C, X(2799), X(20031)}}, {{A, B, C, X(8779), X(44114)}}, {{A, B, C, X(15630), X(51437)}}, {{A, B, C, X(16318), X(51441)}}, {{A, B, C, X(35088), X(41932)}}, {{A, B, C, X(51428), X(51963)}}, {{A, B, C, X(51429), X(52038)}}
X(57430) = barycentric product X(i)*X(j) for these (i, j): {115, 15595}, {125, 132}, {338, 9475}, {525, 55275}, {1503, 868}, {17875, 2643}, {30737, 44114}, {35088, 51963}
X(57430) = barycentric quotient X(i)/X(j) for these (i, j): {115, 9476}, {132, 18020}, {525, 55274}, {868, 35140}, {2679, 51343}, {9475, 249}, {15595, 4590}, {17875, 24037}, {17994, 44770}, {20975, 15407}, {44114, 1297}, {55275, 648}


X(57431) = RS(X(99), X(110))

Barycentrics    (2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2))*(-b^4-c^4+a^2*(b^2+c^2))*(2*a^6-2*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4+c^4)) : :
X(57431) = -2*X[14120]+3*X[36518]

X(57431) lies on these lines: {4, 18020}, {30, 113}, {110, 36173}, {114, 325}, {125, 36170}, {147, 53379}, {542, 1550}, {1499, 15063}, {2777, 7472}, {2794, 9181}, {3906, 14981}, {5972, 36166}, {14120, 36518}, {14356, 47049}, {32110, 37459}, {33512, 46634}, {40544, 53709}

X(57431) = midpoint of X(i) and X(j) for these {i,j}: {110, 36173}, {147, 53379}
X(57431) = reflection of X(i) in X(j) for these {i,j}: {125, 36170}, {2682, 113}, {32110, 37459}, {36166, 5972}, {46634, 33512}, {51428, 16188}, {51429, 114}, {53709, 40544}
X(57431) = perspector of circumconic {{A, B, C, X(2396), X(2407)}}
X(57431) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 53866}
X(57431) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(2682)}}, {{A, B, C, X(30), X(325)}}, {{A, B, C, X(114), X(51431)}}, {{A, B, C, X(511), X(1495)}}, {{A, B, C, X(542), X(5642)}}, {{A, B, C, X(1511), X(51383)}}, {{A, B, C, X(1561), X(6103)}}, {{A, B, C, X(3258), X(14356)}}, {{A, B, C, X(5976), X(51430)}}, {{A, B, C, X(6393), X(11064)}}, {{A, B, C, X(13857), X(51397)}}, {{A, B, C, X(18653), X(51370)}}, {{A, B, C, X(32458), X(51389)}}, {{A, B, C, X(35266), X(51438)}}, {{A, B, C, X(42742), X(42743)}}, {{A, B, C, X(51360), X(51371)}}, {{A, B, C, X(51369), X(51420)}}, {{A, B, C, X(51372), X(51373)}}, {{A, B, C, X(51386), X(51394)}}, {{A, B, C, X(51393), X(51439)}}
X(57431) = barycentric product X(i)*X(j) for these (i, j): {11064, 54380}, {41079, 42743}, {51389, 542}
X(57431) = barycentric quotient X(i)/X(j) for these (i, j): {2420, 53691}, {3163, 53866}, {42743, 44769}, {51389, 5641}, {54380, 16080}
X(57431) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 113, 2682}, {114, 511, 51429}, {542, 16188, 51428}, {3233, 11064, 5642}, {5642, 51360, 3258}


X(57432) = RS(X(99), X(112))

Barycentrics    (-b^4-c^4+a^2*(b^2+c^2))*(2*a^6-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2))*(2*a^8-2*a^6*(b^2+c^2)+a^4*(b^4+c^4)-(b^2-c^2)^2*(b^4+c^4)) : :

X(57432) lies on these lines: {4, 23582}, {114, 325}, {132, 1503}, {2794, 41175}, {51428, 51943}

X(57432) = reflection of X(i) in X(j) for these {i,j}: {57430, 132}
X(57432) = perspector of circumconic {{A, B, C, X(2396), X(2409)}}
X(57432) = X(i)-Dao conjugate of X(j) for these {i, j}: {441, 46145}, {39073, 2710}, {46413, 43673}
X(57432) = intersection, other than A, B, C, of circumconics {{A, B, C, X(132), X(2794)}}, {{A, B, C, X(325), X(16318)}}, {{A, B, C, X(511), X(51437)}}, {{A, B, C, X(1503), X(6393)}}, {{A, B, C, X(8779), X(51386)}}, {{A, B, C, X(51371), X(51434)}}
X(57432) = barycentric product X(i)*X(j) for these (i, j): {15595, 2794}
X(57432) = barycentric quotient X(i)/X(j) for these (i, j): {2794, 9476}, {9475, 2710}, {15595, 46145}
X(57432) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {132, 1503, 57430}


X(57433) = RS(X(100), X(101))

Barycentrics    (2*a^3-a^2*(b+c)-(b-c)^2*(b+c))*(-2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c))*(-b^5+b^3*c^2+b^2*c^3-c^5+a^4*(b+c)+a^2*b*c*(b+c)-2*a^3*(b^2+c^2)+2*a*(b-c)^2*(b^2+b*c+c^2)) : :

X(57433) lies on these lines: {11, 30206}, {118, 516}, {119, 517}, {14077, 37725}

X(57433) = reflection of X(i) in X(j) for these {i,j}: {57435, 119}
X(57433) = perspector of circumconic {{A, B, C, X(2397), X(2398)}}
X(57433) = intersection, other than A, B, C, of circumconics {{A, B, C, X(516), X(908)}}, {{A, B, C, X(517), X(910)}}, {{A, B, C, X(1145), X(51406)}}, {{A, B, C, X(2801), X(28345)}}, {{A, B, C, X(6735), X(40869)}}, {{A, B, C, X(17747), X(17757)}}, {{A, B, C, X(50441), X(51390)}}, {{A, B, C, X(51366), X(51367)}}, {{A, B, C, X(51376), X(51379)}}, {{A, B, C, X(51377), X(51436)}}, {{A, B, C, X(51380), X(51418)}}, {{A, B, C, X(51381), X(51435)}}
X(57433) = barycentric product X(i)*X(j) for these (i, j): {42719, 45884}
X(57433) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 517, 57435}


X(57434) = RS(X(100), X(102))

Barycentrics    (b-c)^2*(-a+b+c)^2*(a^2-b^2+b*c-c^2)*(-2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c)) : :
X(57434) = -3*X[2]+X[36037]

X(57434) lies on these lines: {2, 36037}, {8, 51562}, {11, 521}, {78, 52005}, {119, 517}, {124, 522}, {519, 51616}, {765, 44184}, {860, 1870}, {1146, 3239}, {1259, 39173}, {1737, 26005}, {2804, 3326}, {3756, 21172}, {4086, 6741}, {4904, 24198}, {6745, 50441}, {27385, 33649}, {45950, 51402}

X(57434) = midpoint of X(i) and X(j) for these {i,j}: {4511, 5081}, {765, 44184}
X(57434) = reflection of X(i) in X(j) for these {i,j}: {57437, 119}
X(57434) = complement of X(36037)
X(57434) = perspector of circumconic {{A, B, C, X(2397), X(2399)}}
X(57434) = center of circumconic {{A, B, C, X(8), X(320)}}
X(57434) = X(i)-isoconjugate-of-X(j) for these {i, j}: {655, 32669}, {1415, 53811}, {2222, 2720}, {24027, 40437}, {32675, 37136}
X(57434) = X(i)-Dao conjugate of X(j) for these {i, j}: {522, 40437}, {908, 7045}, {1145, 52377}, {1146, 53811}, {1639, 40218}, {2245, 1262}, {10015, 7}, {13999, 36110}, {23757, 80}, {35128, 37136}, {38981, 2222}, {38984, 2720}, {42761, 4566}, {55153, 655}
X(57434) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8, 2804}, {44184, 517}, {54457, 8677}
X(57434) = X(i)-complementary conjugate of X(j) for these {i, j}: {4, 8677}, {56, 2804}, {512, 2245}, {513, 517}, {517, 513}, {649, 3911}, {667, 8609}, {859, 523}, {901, 22102}, {908, 3835}, {953, 35013}, {1457, 522}, {1465, 4885}, {1769, 10}, {1785, 20316}, {1875, 521}, {2183, 514}, {2397, 27076}, {2427, 4422}, {2680, 41179}, {2804, 1329}, {3259, 3259}, {3262, 21260}, {3310, 2}, {3733, 15325}, {3937, 35014}, {6085, 45247}, {6591, 26011}, {8677, 3}, {10015, 141}, {14260, 900}, {15635, 33646}, {17139, 512}, {17757, 31946}, {21801, 4129}, {22350, 20315}, {22464, 17072}, {23220, 216}, {23345, 1387}, {23757, 121}, {23788, 3741}, {23981, 3035}, {24029, 21232}, {32675, 40536}, {35012, 10017}, {35013, 31841}, {35014, 123}, {35015, 124}, {36038, 2887}, {36067, 40558}, {39173, 55126}, {39534, 5}, {42750, 113}, {42751, 114}, {42752, 115}, {42753, 11}, {42754, 116}, {42755, 117}, {42756, 118}, {42757, 119}, {42758, 120}, {42759, 125}, {42760, 126}, {42761, 127}, {42762, 31844}, {42766, 20551}, {42767, 45162}, {42768, 31845}, {42769, 42423}, {42771, 1566}, {42772, 44993}, {43728, 3040}, {43924, 44675}, {46393, 3452}, {51377, 661}, {51381, 27854}, {51987, 918}, {52031, 4928}, {52212, 46397}, {53548, 3126}, {53549, 9}, {54364, 3716}
X(57434) = intersection, other than A, B, C, of circumconics {{A, B, C, X(11), X(119)}}, {{A, B, C, X(517), X(1870)}}, {{A, B, C, X(522), X(53047)}}, {{A, B, C, X(860), X(14010)}}, {{A, B, C, X(908), X(17923)}}, {{A, B, C, X(1145), X(1146)}}, {{A, B, C, X(2804), X(51562)}}, {{A, B, C, X(3326), X(6073)}}, {{A, B, C, X(3936), X(51367)}}, {{A, B, C, X(4511), X(51379)}}, {{A, B, C, X(5081), X(6735)}}, {{A, B, C, X(36037), X(36038)}}, {{A, B, C, X(44113), X(51377)}}
X(57434) = barycentric product X(i)*X(j) for these (i, j): {264, 38353}, {522, 53045}, {2804, 3904}, {14010, 3936}, {16586, 24026}, {23978, 34586}, {32851, 35015}, {35519, 53046}, {46398, 8}, {53047, 6332}
X(57434) = barycentric quotient X(i)/X(j) for these (i, j): {522, 53811}, {654, 2720}, {1146, 40437}, {1845, 7128}, {2804, 655}, {3326, 52212}, {3738, 37136}, {3904, 54953}, {5081, 39294}, {8648, 32669}, {14010, 24624}, {16586, 7045}, {34586, 1262}, {35015, 2006}, {38353, 3}, {42768, 1020}, {45950, 43043}, {46393, 2222}, {46398, 7}, {51402, 40218}, {53045, 664}, {53046, 109}, {53047, 653}, {53285, 32641}, {53525, 34051}, {53549, 32675}
X(57434) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 517, 57437}, {1145, 17757, 6073}, {1532, 1537, 57436}


X(57435) = RS(X(100), X(103))

Barycentrics    (b-c)^2*(a^2+b^2+b*c+c^2-2*a*(b+c))*(-2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c)) : :

X(57435) lies on these lines: {11, 14077}, {116, 514}, {119, 517}, {527, 8074}, {824, 4957}, {10015, 42770}, {14330, 43960}, {28344, 30379}, {30206, 37725}, {42754, 46398}

X(57435) = reflection of X(i) in X(j) for these {i,j}: {57433, 119}
X(57435) = perspector of circumconic {{A, B, C, X(2397), X(2400)}}
X(57435) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1308, 32641}
X(57435) = X(i)-Dao conjugate of X(j) for these {i, j}: {35125, 36037}, {46398, 37143}
X(57435) = intersection, other than A, B, C, of circumconics {{A, B, C, X(517), X(42754)}}, {{A, B, C, X(908), X(15634)}}, {{A, B, C, X(37787), X(51379)}}
X(57435) = barycentric product X(i)*X(j) for these (i, j): {10015, 30565}, {17264, 42754}, {36038, 3887}
X(57435) = barycentric quotient X(i)/X(j) for these (i, j): {1769, 1308}, {3887, 36037}, {10015, 37143}, {22108, 32641}, {30565, 13136}, {35015, 3254}, {36038, 35171}, {42754, 34578}, {43050, 37136}
X(57435) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 517, 57433}


X(57436) = RS(X(100), X(108))

Barycentrics    (-2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c))*(a^5*(b+c)-2*a^3*(b-c)^2*(b+c)+a*(b-c)^4*(b+c)+2*a^2*(b^2-c^2)^2-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2))*(2*a^7-4*a^3*b*(b-c)^2*c-2*a^6*(b+c)+3*a^4*(b-c)^2*(b+c)+4*a^2*b*(b-c)^2*c*(b+c)-(b-c)^4*(b+c)^3+a^5*(-3*b^2+8*b*c-3*c^2)+a*(b^2-c^2)^2*(b^2-4*b*c+c^2)) : :

X(57436) lies on these lines: {4, 52109}, {119, 517}, {1528, 6001}, {2829, 28347}, {30201, 37725}

X(57436) = perspector of circumconic {{A, B, C, X(2397), X(2405)}}
X(57436) = intersection, other than A, B, C, of circumconics {{A, B, C, X(517), X(51399)}}, {{A, B, C, X(2829), X(25640)}}, {{A, B, C, X(6001), X(51379)}}, {{A, B, C, X(6735), X(51359)}}, {{A, B, C, X(51365), X(51367)}}
X(57436) = barycentric quotient X(i)/X(j) for these (i, j): {47434, 2745}
X(57436) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1532, 1537, 57434}


X(57437) = RS(X(100), X(109))

Barycentrics    (-2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c))*(2*a^4-a^2*(b-c)^2-a^3*(b+c)+a*(b-c)^2*(b+c)-(b^2-c^2)^2)*(a^5*(b+c)-a^4*(b+c)^2-(b^2-c^2)^2*(b^2-b*c+c^2)+a^2*(b-c)^2*(2*b^2+5*b*c+2*c^2)+a^3*(-2*b^3+3*b^2*c+3*b*c^2-2*c^3)+a*(b-c)^2*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(57437) lies on these lines: {4, 7012}, {117, 515}, {119, 517}, {153, 36037}, {521, 37725}, {17747, 55153}

X(57437) = midpoint of X(i) and X(j) for these {i,j}: {153, 36037}
X(57437) = reflection of X(i) in X(j) for these {i,j}: {57434, 119}
X(57437) = perspector of circumconic {{A, B, C, X(2397), X(2406)}}
X(57437) = intersection, other than A, B, C, of circumconics {{A, B, C, X(515), X(6735)}}, {{A, B, C, X(517), X(42755)}}, {{A, B, C, X(908), X(34050)}}, {{A, B, C, X(1145), X(51422)}}, {{A, B, C, X(2800), X(7012)}}, {{A, B, C, X(17757), X(51421)}}, {{A, B, C, X(46974), X(51379)}}, {{A, B, C, X(51361), X(51380)}}, {{A, B, C, X(51367), X(51368)}}, {{A, B, C, X(51407), X(51414)}}, {{A, B, C, X(51416), X(51424)}}
X(57437) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 517, 57434}, {1532, 1537, 3259}


X(57438) = RS(X(100), X(110))

Barycentrics    (-2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c))*(2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2))*(a^5*(b+c)-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^3*(-2*b^3+b^2*c+b*c^2-2*c^3)+a*(b-c)^2*(b^3+c^3)+2*a^2*(b^4-b^2*c^2+c^4)) : :
X(57438) = -3*X[36518]+2*X[47399]

X(57438) lies on these lines: {4, 5379}, {30, 113}, {119, 517}, {2771, 42422}, {2777, 36167}, {5972, 46618}, {6003, 15063}, {8702, 37725}, {36518, 47399}

X(57438) = reflection of X(i) in X(j) for these {i,j}: {2677, 119}, {46618, 5972}, {57423, 42422}
X(57438) = perspector of circumconic {{A, B, C, X(2397), X(2407)}}
X(57438) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(2677)}}, {{A, B, C, X(30), X(17757)}}, {{A, B, C, X(517), X(42750)}}, {{A, B, C, X(908), X(18653)}}, {{A, B, C, X(1495), X(51377)}}, {{A, B, C, X(2771), X(5379)}}, {{A, B, C, X(6735), X(51382)}}, {{A, B, C, X(11064), X(51367)}}, {{A, B, C, X(42742), X(42746)}}
X(57438) = barycentric product X(i)*X(j) for these (i, j): {41079, 42746}
X(57438) = barycentric quotient X(i)/X(j) for these (i, j): {42746, 44769}
X(57438) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 517, 2677}, {2771, 42422, 57423}


X(57439) = RS(X(101), X(104))

Barycentrics    (b-c)^2*(a^2+b^2+b*c+c^2-2*a*(b+c))*(-2*a^3+a^2*(b+c)+(b-c)^2*(b+c)) : :

X(57439) lies on these lines: {11, 513}, {118, 516}, {1146, 28292}, {2717, 10772}, {3887, 57435}, {5087, 10427}, {6506, 38386}, {35128, 38324}, {42770, 53523}

X(57439) = midpoint of X(i) and X(j) for these {i,j}: {2717, 10772}
X(57439) = reflection of X(i) in X(j) for these {i,j}: {57433, 118}
X(57439) = perspector of circumconic {{A, B, C, X(2398), X(2401)}}
X(57439) = X(i)-isoconjugate-of-X(j) for these {i, j}: {677, 1308}, {32642, 35171}, {36039, 37143}
X(57439) = X(i)-Dao conjugate of X(j) for these {i, j}: {1566, 37143}
X(57439) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(42756)}}, {{A, B, C, X(910), X(15635)}}
X(57439) = barycentric product X(i)*X(j) for these (i, j): {1111, 28345}, {30565, 676}
X(57439) = barycentric quotient X(i)/X(j) for these (i, j): {676, 37143}, {8645, 36039}, {22108, 677}, {28345, 765}
X(57439) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {118, 516, 57433}


X(57440) = RS(X(102), X(103))

Barycentrics    (a-b-c)*(b-c)^2*(a^5*(b^2+c^2)-(b+c)*(b^3-b^2*c+b*c^2-c^3)^2-a^4*(b^3+b^2*c+b*c^2+c^3)+a*(b-c)^2*(b^4+c^4)-2*a^3*(b^4-b^3*c-b^2*c^2-b*c^3+c^4)+2*a^2*(b^5-b^3*c^2-b^2*c^3+c^5)) : :

X(57440) lies on circumconic {{A, B, C, X(4), X(1521)}} and on these lines: {116, 514}, {124, 522}, {650, 26932}, {1465, 26005}, {1521, 2807}, {1944, 3936}, {4077, 4858}, {4791, 55153}, {5514, 45664}, {8558, 39690}, {40166, 55195}

X(57440) = reflection of X(i) in X(j) for these {i,j}: {1521, 50933}
X(57440) = perspector of circumconic {{A, B, C, X(2399), X(2400)}}
X(57440) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2149, 2723}
X(57440) = X(i)-Dao conjugate of X(j) for these {i, j}: {650, 2723}
X(57440) = barycentric product X(i)*X(j) for these (i, j): {2807, 34387}
X(57440) = barycentric quotient X(i)/X(j) for these (i, j): {11, 2723}, {2807, 59}
X(57440) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2807, 50933, 1521}


X(57441) = RS(X(102), X(104))

Barycentrics    (a-b-c)*(b-c)^2*(a^5*(b+c)-a^4*(b+c)^2-(b^2-c^2)^2*(b^2-b*c+c^2)+a^2*(b-c)^2*(2*b^2+5*b*c+2*c^2)+a^3*(-2*b^3+3*b^2*c+3*b*c^2-2*c^3)+a*(b-c)^2*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(57441) lies on these lines: {4, 40437}, {11, 513}, {124, 522}, {125, 8819}, {497, 47043}, {519, 16870}, {523, 3326}, {765, 27542}, {1090, 3120}, {1455, 44675}, {1532, 1737}, {1776, 8229}, {2222, 10777}, {2800, 57437}, {2970, 8286}, {3086, 52178}, {6615, 7004}, {17420, 38981}, {21132, 23615}, {24457, 45950}, {33650, 36037}

X(57441) = midpoint of X(i) and X(j) for these {i,j}: {2222, 10777}, {33650, 36037}
X(57441) = reflection of X(i) in X(j) for these {i,j}: {1455, 44675}, {57434, 124}
X(57441) = perspector of circumconic {{A, B, C, X(2399), X(2401)}}
X(57441) = X(i)-isoconjugate-of-X(j) for these {i, j}: {59, 2716}
X(57441) = X(i)-Dao conjugate of X(j) for these {i, j}: {6615, 2716}
X(57441) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(35015)}}, {{A, B, C, X(2968), X(40437)}}, {{A, B, C, X(15633), X(42455)}}, {{A, B, C, X(15635), X(21132)}}
X(57441) = barycentric product X(i)*X(j) for these (i, j): {2800, 4858}
X(57441) = barycentric quotient X(i)/X(j) for these (i, j): {2170, 2716}, {2800, 4564}
X(57441) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {124, 522, 57434}


X(57442) = RS(X(103), X(104))

Barycentrics    (b-c)^2*(-b^5+b^3*c^2+b^2*c^3-c^5+a^4*(b+c)+a^2*b*c*(b+c)-2*a^3*(b^2+c^2)+2*a*(b-c)^2*(b^2+b*c+c^2)) : :
X(57442) = -3*X[4564]+X[20096]

X(57442) lies on these lines: {11, 513}, {116, 514}, {527, 17747}, {661, 3942}, {908, 51384}, {910, 3911}, {1086, 3676}, {1308, 10770}, {2801, 57433}, {3218, 4872}, {4564, 20096}, {4885, 26932}, {6545, 23760}, {6610, 34050}, {15726, 41555}, {17463, 42771}, {21104, 42770}, {24318, 44798}, {30379, 51364}, {35116, 43047}

X(57442) = midpoint of X(i) and X(j) for these {i,j}: {1308, 10770}, {3218, 4872}
X(57442) = reflection of X(i) in X(j) for these {i,j}: {57435, 116}, {57439, 11}, {910, 3911}
X(57442) = perspector of circumconic {{A, B, C, X(1111), X(2400)}}
X(57442) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1252, 2717}, {23990, 35164}
X(57442) = X(i)-Dao conjugate of X(j) for these {i, j}: {661, 2717}, {35116, 765}
X(57442) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 52873}
X(57442) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(42754)}}, {{A, B, C, X(6545), X(15635)}}
X(57442) = barycentric product X(i)*X(j) for these (i, j): {1111, 2801}, {43047, 4858}
X(57442) = barycentric quotient X(i)/X(j) for these (i, j): {244, 2717}, {1111, 35164}, {2801, 765}, {43047, 4564}
X(57442) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 513, 57439}, {116, 514, 57435}


X(57443) = RS(X(104), X(105))

Barycentrics    (b-c)^2*(a^2+b^2+c^2-2*a*(b+c))*(2*a^3-2*a^2*(b+c)-(b-c)^2*(b+c)+a*(b^2+c^2)) : :

X(57443) lies on circumconic {{A, B, C, X(513), X(42763)}} and on these lines: {11, 513}, {528, 35585}, {908, 15733}, {2310, 42770}, {2348, 17747}, {3309, 4904}, {15726, 51400}, {31605, 40615}, {43960, 47765}

X(57443) = perspector of circumconic {{A, B, C, X(2401), X(2402)}}
X(57443) = X(i)-Dao conjugate of X(j) for these {i, j}: {52873, 6601}
X(57443) = barycentric product X(i)*X(j) for these (i, j): {4904, 528}, {52946, 6604}
X(57443) = barycentric quotient X(i)/X(j) for these (i, j): {1643, 1292}, {4904, 18821}, {52946, 6601}


X(57444) = RS(X(104), X(106))

Barycentrics    (3*a-b-c)*(b-c)^2*(-b^3-4*a*b*c+2*b^2*c+2*b*c^2-c^3+a^2*(b+c)) : :

X(57444) lies on circumconic {{A, B, C, X(15635), X(23764)}} and on these lines: {11, 513}, {244, 38385}, {3667, 3756}, {3880, 5087}, {4404, 4939}, {8286, 31946}, {14027, 28217}

X(57444) = perspector of circumconic {{A, B, C, X(2401), X(2403)}}
X(57444) = X(i)-Dao conjugate of X(j) for these {i, j}: {4521, 37222}, {35129, 5382}
X(57444) = barycentric product X(i)*X(j) for these (i, j): {24457, 4462}, {30566, 3756}, {43048, 4939}, {51442, 5435}
X(57444) = barycentric quotient X(i)/X(j) for these (i, j): {2802, 5382}, {3756, 37222}, {24457, 27834}, {51442, 6557}


X(57445) = RS(X(104), X(108))

Barycentrics    (a-b-c)*(b-c)^2*(-2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c))*(a^5*(b+c)-2*a^3*(b-c)^2*(b+c)+a*(b-c)^4*(b+c)+2*a^2*(b^2-c^2)^2-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)) : :

X(57445) lies on these lines: {11, 513}, {125, 24006}, {1146, 3064}, {1528, 6001}, {1769, 10017}, {7649, 38357}, {7661, 44014}, {39004, 53549}, {44426, 52108}

X(57445) = reflection of X(i) in X(j) for these {i,j}: {57436, 25640}
X(57445) = perspector of circumconic {{A, B, C, X(2401), X(2405)}}
X(57445) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7012, 15405}
X(57445) = X(i)-Dao conjugate of X(j) for these {i, j}: {14571, 46102}
X(57445) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17924, 52316}
X(57445) = intersection, other than A, B, C, of circumconics {{A, B, C, X(11), X(25640)}}, {{A, B, C, X(513), X(3326)}}, {{A, B, C, X(6001), X(52114)}}, {{A, B, C, X(15635), X(51399)}}
X(57445) = barycentric product X(i)*X(j) for these (i, j): {278, 52114}, {10015, 14312}, {14010, 51365}, {25640, 26932}, {34387, 47434}
X(57445) = barycentric quotient X(i)/X(j) for these (i, j): {7117, 15405}, {14312, 13136}, {25640, 46102}, {47434, 59}, {51359, 39294}, {52114, 345}, {52316, 43737}
X(57445) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6001, 25640, 57436}


X(57446) = RS(X(104), X(109))

Barycentrics    (a-b-c)*(b-c)^2*(a^2-b^2+b*c-c^2)*(2*a^4-a^2*(b-c)^2-a^3*(b+c)+a*(b-c)^2*(b+c)-(b^2-c^2)^2) : :

X(57446) lies on these lines: {4, 36110}, {11, 513}, {117, 515}, {900, 3326}, {1537, 5570}, {1565, 3676}, {2254, 38981}, {2716, 10771}, {3667, 38357}, {3738, 57434}, {4017, 7004}, {5274, 40215}, {35015, 38385}, {45950, 53535}

X(57446) = midpoint of X(i) and X(j) for these {i,j}: {2716, 10771}
X(57446) = reflection of X(i) in X(j) for these {i,j}: {57437, 117}, {57441, 11}
X(57446) = perspector of circumconic {{A, B, C, X(2401), X(2406)}}
X(57446) = X(i)-isoconjugate-of-X(j) for these {i, j}: {102, 52377}, {32643, 36804}, {36040, 51562}
X(57446) = X(i)-Dao conjugate of X(j) for these {i, j}: {860, 15742}, {10017, 51562}, {46974, 765}, {53522, 8}
X(57446) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1440, 3960}
X(57446) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(42755)}}, {{A, B, C, X(1565), X(38554)}}, {{A, B, C, X(3738), X(36110)}}, {{A, B, C, X(46974), X(53525)}}
X(57446) = barycentric product X(i)*X(j) for these (i, j): {3904, 53522}, {11700, 4858}, {14304, 3960}
X(57446) = barycentric quotient X(i)/X(j) for these (i, j): {2182, 52377}, {11700, 4564}, {14304, 36804}, {21758, 36040}, {53522, 655}, {53525, 36100}
X(57446) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 513, 57441}, {117, 515, 57437}, {6075, 55359, 11}


X(57447) = RS(X(104), X(110))

Barycentrics    (b-c)^2*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))*(a^3+b^3+b^2*c+b*c^2+c^3-a^2*(b+c)-a*(b^2+b*c+c^2)) : :

X(57447) lies on these lines: {11, 513}, {30, 113}, {110, 36175}, {125, 6003}, {2677, 5520}, {2687, 10767}, {2777, 46618}, {5972, 36167}

X(57447) = midpoint of X(i) and X(j) for these {i,j}: {110, 36175}, {2687, 10767}
X(57447) = reflection of X(i) in X(j) for these {i,j}: {125, 47399}, {2677, 5520}, {36167, 5972}, {57423, 11}, {57438, 113}
X(57447) = perspector of circumconic {{A, B, C, X(2401), X(2407)}}
X(57447) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(2677)}}, {{A, B, C, X(513), X(42750)}}, {{A, B, C, X(15635), X(51420)}}, {{A, B, C, X(42741), X(42742)}}
X(57447) = barycentric product X(i)*X(j) for these (i, j): {16164, 16732}, {41079, 42741}
X(57447) = barycentric quotient X(i)/X(j) for these (i, j): {14399, 1290}, {16164, 4567}, {42741, 44769}
X(57447) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 513, 57423}, {30, 113, 57438}, {5520, 8674, 2677}, {6003, 47399, 125}


X(57448) = RS(X(107), X(110))

Barycentrics    (2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2))*(a^6*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-3*b^4+4*b^2*c^2-3*c^4)-(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4))*(2*a^10-2*a^8*(b^2+c^2)+7*a^4*(b^2-c^2)^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+a^6*(-5*b^4+12*b^2*c^2-5*c^4)-a^2*(b^2-c^2)^2*(b^4+8*b^2*c^2+c^4)) : :

X(57448) lies on these lines: {4, 32230}, {30, 113}, {133, 1515}, {1552, 2777}, {8057, 15063}

X(57448) = reflection of X(i) in X(j) for these {i,j}: {57424, 133}
X(57448) = perspector of circumconic {{A, B, C, X(2404), X(2407)}}
X(57448) = intersection, other than A, B, C, of circumconics {{A, B, C, X(30), X(51385)}}, {{A, B, C, X(133), X(2777)}}, {{A, B, C, X(1553), X(18809)}}, {{A, B, C, X(1559), X(12113)}}, {{A, B, C, X(3233), X(31510)}}, {{A, B, C, X(6000), X(51394)}}, {{A, B, C, X(11064), X(51358)}}, {{A, B, C, X(12369), X(42742)}}
X(57448) = barycentric product X(i)*X(j) for these (i, j): {12113, 51358}
X(57448) = barycentric quotient X(i)/X(j) for these (i, j): {47433, 2693}
X(57448) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): {133, 6000, 57424}, {13202, 51403, 3258}


X(57449) = RS(X(107), X(112))

Barycentrics    (2*a^6-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2))*(a^6*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-3*b^4+4*b^2*c^2-3*c^4)-(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4))*(2*a^12-2*a^10*(b^2+c^2)-4*a^6*(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b^2-c^2)^2*(b^2+c^2)^3-(b^2-c^2)^4*(b^4+c^4)-a^8*(b^4-4*b^2*c^2+c^4)+8*a^4*(b^8-b^6*c^2-b^2*c^6+c^8)) : :

X(57449) lies on these lines: {4, 23590}, {132, 1503}, {133, 1515}

X(57449) = perspector of circumconic {{A, B, C, X(2404), X(2409)}}
X(57449) = intersection, other than A, B, C, of circumconics {{A, B, C, X(133), X(6793)}}, {{A, B, C, X(1503), X(51358)}}, {{A, B, C, X(6000), X(8779)}}, {{A, B, C, X(9530), X(23590)}}, {{A, B, C, X(16318), X(51385)}}


X(57450) = X(2)X(15265)∩X(3)X(194))

Barycentrics    a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a^8*b^2*c^2 - 4*a^6*b^4*c^2 + 6*a^4*b^6*c^2 + a^8*c^4 - 4*a^6*b^2*c^4 + 7*a^4*b^4*c^4 - b^8*c^4 - 2*a^6*c^6 + 6*a^4*b^2*c^6 + 2*b^6*c^6 + a^4*c^8 - b^4*c^8 : :
X(57450) = 4 X[14937] - 5 X[31276]

X(57450) lies on the cubic K1336 and these lines: {2, 15265}, {3, 194}, {20, 39682}, {99, 40870}, {148, 22735}, {376, 39355}, {401, 15066}, {458, 15433}, {1350, 40807}, {3098, 3164}, {14937, 31276}, {31296, 33884}, {34095, 40858}, {37337, 46226}
on K1336


X(57451) = X(2)X(3346)∩X(3)X(1075))

Barycentrics    a^14*b^2 - 6*a^12*b^4 + 15*a^10*b^6 - 20*a^8*b^8 + 15*a^6*b^10 - 6*a^4*b^12 + a^2*b^14 + a^14*c^2 + 7*a^12*b^2*c^2 - 13*a^10*b^4*c^2 - 7*a^8*b^6*c^2 + 15*a^6*b^8*c^2 + a^4*b^10*c^2 - 3*a^2*b^12*c^2 - b^14*c^2 - 6*a^12*c^4 - 13*a^10*b^2*c^4 + 54*a^8*b^4*c^4 - 30*a^6*b^6*c^4 - 14*a^4*b^8*c^4 + 3*a^2*b^10*c^4 + 6*b^12*c^4 + 15*a^10*c^6 - 7*a^8*b^2*c^6 - 30*a^6*b^4*c^6 + 38*a^4*b^6*c^6 - a^2*b^8*c^6 - 15*b^10*c^6 - 20*a^8*c^8 + 15*a^6*b^2*c^8 - 14*a^4*b^4*c^8 - a^2*b^6*c^8 + 20*b^8*c^8 + 15*a^6*c^10 + a^4*b^2*c^10 + 3*a^2*b^4*c^10 - 15*b^6*c^10 - 6*a^4*c^12 - 3*a^2*b^2*c^12 + 6*b^4*c^12 + a^2*c^14 - b^2*c^14 : :
X(57451) = 3 X[2] - 4 X[53844], X[20] + 2 X[15318], X[3146] - 4 X[8798], 7 X[3523] - 4 X[14363], 11 X[15717] - 6 X[51877], 13 X[21734] - 4 X[22257]

X(57451) lies on the cubic K1336 and these lines: {2, 3346}, {3, 1075}, {4, 2972}, {20, 2979}, {40, 6360}, {78, 25252}, {84, 7361}, {107, 14379}, {376, 31388}, {1294, 3357}, {1297, 54114}, {2052, 52543}, {3146, 8798}, {3164, 3522}, {3523, 14363}, {6527, 30698}, {14570, 27082}, {15717, 51877}, {21734, 22257}, {35061, 57414}, {35360, 45255}, {43988, 50693}, {44436, 52578}, {55304, 56297}

X(57451) = reflection of X(i) in X(j) for these {i,j}: {4, 14059}, {1075, 3}, {14249, 53844}
X(57451) = anticomplement of X(14249)
X(57451) = anticomplement of the isogonal conjugate of X(14379)
X(57451) = anticomplement of the isotomic conjugate of X(15394)
X(57451) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {48, 14361}, {64, 5906}, {255, 6225}, {1073, 21270}, {2155, 6515}, {2184, 317}, {14379, 8}, {14642, 5905}, {15394, 6327}, {19611, 11442}, {19614, 4}, {35200, 51892}, {52430, 17037}
X(57451) = X(15394)-Ceva conjugate of X(2)
X(57451) = {X(14249),X(53844)}-harmonic conjugate of X(2)


X(57452) = X(33)X(99)∩X(74)X(55009))

Barycentrics    (a^2 - b*c)*(a^2 + b*c)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 - b^4*c^2 + 2*a^2*c^4 + 2*b^2*c^4 - 2*c^6)*(a^6 - a^4*b^2 + 2*a^2*b^4 - 2*b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6) : :

X(57452) lies on the cubic K023 and these lines: {30, 99}, {74, 55009}, {76, 18332}, {83, 14223}, {1916, 39291}, {5026, 39931}, {5149, 5649}, {5976, 17941}, {6034, 41254}, {10754, 31636}, {14295, 14382}, {34765, 53331}, {40080, 54086}, {46157, 50640}, {54554, 54841}
on K023

X(57452) = X(i)-isoconjugate of X(j) for these (i,j): {542, 1967}, {694, 2247}, {1581, 5191}, {6041, 37134}
X(57452) = X(i)-Dao conjugate of X(j) for these (i,j): {8290, 542}, {19576, 5191}, {35078, 1640}, {39043, 2247}
X(57452) = barycentric product X(i)*X(j) for these {i,j}: {385, 5641}, {804, 6035}, {842, 3978}, {880, 14998}, {5649, 14295}, {14223, 17941}, {14382, 46787}, {46157, 56979}
X(57452) = barycentric quotient X(i)/X(j) for these {i,j}: {385, 542}, {419, 6103}, {804, 1640}, {842, 694}, {1580, 2247}, {1691, 5191}, {5026, 45662}, {5027, 6041}, {5641, 1916}, {5649, 805}, {6035, 18829}, {14295, 18312}, {14382, 46786}, {14998, 882}, {17941, 14999}, {34174, 47734}, {39681, 36885}, {39931, 54380}, {40820, 34369}, {46157, 56978}, {46787, 40810}, {52199, 14251}


X(57453) = X(30)X(805)∩X(39)X(512))

Barycentrics    a^2*(-b^2 + a*c)*(b^2 + a*c)*(a*b - c^2)*(a*b + c^2)*(a^12*b^4 - 3*a^10*b^6 + 3*a^8*b^8 - a^6*b^10 - a^10*b^4*c^2 + a^8*b^6*c^2 + a^12*c^4 - a^10*b^2*c^4 + 4*a^8*b^4*c^4 - 3*a^6*b^6*c^4 - 2*a^4*b^8*c^4 + a^2*b^10*c^4 - b^12*c^4 - 3*a^10*c^6 + a^8*b^2*c^6 - 3*a^6*b^4*c^6 + 6*a^4*b^6*c^6 - a^2*b^8*c^6 + 4*b^10*c^6 + 3*a^8*c^8 - 2*a^4*b^4*c^8 - a^2*b^6*c^8 - 6*b^8*c^8 - a^6*c^10 + a^2*b^4*c^10 + 4*b^6*c^10 - b^4*c^12) : :

X(57453) lies on the cubic K023 and these lines: {30, 805}, {39, 512}, {694, 56392}, {34238, 51441}


X(57454) = X(1)X(268)∩X(6)X(41088))

Barycentrics    a^2*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3)*(a^6 + 2*a^5*b - a^4*b^2 - 4*a^3*b^3 - a^2*b^4 + 2*a*b^5 + b^6 - 2*a^5*c + 2*a^4*b*c + 2*a*b^4*c - 2*b^5*c - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 + 4*a^3*c^3 + 4*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 - b^2*c^4 - 2*a*c^5 - 2*b*c^5 + c^6)*(a^6 - 2*a^5*b - a^4*b^2 + 4*a^3*b^3 - a^2*b^4 - 2*a*b^5 + b^6 + 2*a^5*c + 2*a^4*b*c - 2*a*b^4*c - 2*b^5*c - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 4*a^3*c^3 + 4*b^3*c^3 - a^2*c^4 + 2*a*b*c^4 - b^2*c^4 + 2*a*c^5 - 2*b*c^5 + c^6) : :

X(57454) lies on the cubic K175 and these lines: {1, 268}, {6, 41088}, {48, 221}, {55, 204}, {56, 28783}, {1103, 3342}, {2192, 31956}

X(57454) = X(47850)-Ceva conjugate of X(7152)
X(57454) = X(i)-isoconjugate of X(j) for these (i,j): {2, 3341}, {6, 47436}, {57, 46350}, {76, 47438}, {84, 56943}, {92, 46881}, {189, 1490}, {207, 44189}, {271, 40837}, {280, 47848}, {282, 5932}, {309, 3197}, {1035, 34404}, {1436, 33672}, {3176, 41081}, {3352, 34162}, {3353, 55836}, {8808, 13614}, {8885, 56944}, {14302, 37141}
X(57454) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 47436}, {3351, 75}, {5452, 46350}, {22391, 46881}, {32664, 3341}
X(57454) = barycentric product X(i)*X(j) for these {i,j}: {1, 3342}, {31, 47634}, {40, 3345}, {55, 46352}, {198, 41514}, {221, 1034}, {223, 47850}, {329, 7152}, {347, 7037}, {2187, 56596}, {2360, 8806}, {7007, 7013}, {7011, 40838}, {7078, 7149}
X(57454) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 47436}, {31, 3341}, {40, 33672}, {55, 46350}, {184, 46881}, {198, 56943}, {221, 5932}, {560, 47438}, {2187, 1490}, {2199, 47848}, {3195, 3176}, {3209, 40837}, {3342, 75}, {3345, 309}, {7007, 7020}, {7037, 280}, {7152, 189}, {41514, 44190}, {46352, 6063}, {47440, 47851}, {47634, 561}, {47850, 34404}


X(57455) = X(2)X(58)∩X(269)X(24411))

Barycentrics    (a - b)*(a - c)*(a + b - c)^2*(a - b + c)^2*(a^4*b - 2*a^3*b^2 + 2*a*b^4 - b^5 + a^4*c + 2*a^3*b*c - 2*a*b^3*c - b^4*c - 2*a^3*c^2 + 2*b^3*c^2 - 2*a*b*c^3 + 2*b^2*c^3 + 2*a*c^4 - b*c^4 - c^5) : :

X(57455) lies on the cubic K010 and these lines: {2, 85}, {269, 24411}, {664, 13138}, {1275, 2397}, {2398, 7045}, {2400, 23973}, {13149, 36838}

X(57455) = X(657)-isoconjugate of X(972)
X(57455) = X(35593)-Dao conjugate of X(35508)
X(57455) = trilinear pole of line {971, 1543}
X(57455) = barycentric product X(i)*X(j) for these {i,j}: {664, 51364}, {971, 4569}, {2272, 46406}, {4554, 43044}, {28344, 35157}
X(57455) = barycentric quotient X(i)/X(j) for these {i,j}: {934, 972}, {971, 3900}, {2272, 657}, {4569, 46137}, {28344, 6366}, {43044, 650}, {44993, 55145}, {51364, 522}, {55144, 5514}


X(57456) = X(2)X(45)∩X(655)X(3257))

Barycentrics    (a - b)*(a + b - 2*c)*(a - c)*(a - 2*b + c)*(2*a^4 - 2*a^3*b - a^2*b^2 + 2*a*b^3 - b^4 - 2*a^3*c + 4*a^2*b*c - 2*a*b^2*c - a^2*c^2 - 2*a*b*c^2 + 2*b^2*c^2 + 2*a*c^3 - c^4) : :

X(57456) lies on the cubic K010 and these lines: {2, 45}, {655, 3257}, {2397, 2401}, {2398, 9268}, {2403, 4638}, {4674, 24402}

X(57456) = isotomic conjugate of X(50943)
X(57456) = polar conjugate of X(53157)
X(57456) = X(i)-isoconjugate of X(j) for these (i,j): {31, 50943}, {48, 53157}, {649, 52479}, {953, 1635}, {1404, 46041}
X(57456) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 50943}, {1249, 53157}, {5375, 52479}, {35587, 35092}
X(57456) = trilinear pole of line {952, 6073}
X(57456) = barycentric product X(i)*X(j) for these {i,j}: {668, 52478}, {952, 4555}, {4582, 43043}, {6075, 6635}
X(57456) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 50943}, {4, 53157}, {100, 52479}, {901, 953}, {952, 900}, {1320, 46041}, {2265, 1635}, {4555, 46136}, {6075, 6550}, {35013, 3259}, {43043, 30725}, {52478, 513}
X(57456) = {X(4582),X(5376)}-harmonic conjugate of X(2397)


X(57457) = X(2)X(522)∩X(523)X(23351))

Barycentrics    (b - c)*(a^2 - 2*a*b + b^2 + a*c + b*c - 2*c^2)*(-a^2 - a*b + 2*b^2 + 2*a*c - b*c - c^2)*(3*a^3 - 5*a^2*b + a*b^2 + b^3 - 5*a^2*c + 2*a*b*c - b^2*c + a*c^2 - b*c^2 + c^3) : :

X(57457) lies on the cubic K010 and these lines: {2, 522}, {523, 23351}, {1156, 2826}, {2406, 14733}, {7671, 14077}, {12848, 28292}

X(57457) = X(1155)-isoconjugate of X(28291)
X(57457) = trilinear pole of line {28292, 38387}
X(57457) = barycentric product X(i)*X(j) for these {i,j}: {1121, 28292}, {35157, 43960}
X(57457) = barycentric quotient X(i)/X(j) for these {i,j}: {2291, 28291}, {12848, 56543}, {28292, 527}, {43960, 6366}


X(57458) = X(2)X(513)∩X(523)X(23349))

Barycentrics    (b - c)*(a*b - 2*a*c + b*c)*(-2*a*b + a*c + b*c)*(-3*a^3 - a*b^2 - 2*a*b*c + 2*b^2*c - a*c^2 + 2*b*c^2) : :

X(57458) lies on the cubic K010 and these lines: {2, 513}, {523, 23349}, {898, 2397}, {2398, 34075}, {28475, 41316}

X(57458) = X(899)-isoconjugate of X(28474)
X(57458) = barycentric product X(i)*X(j) for these {i,j}: {3227, 28475}, {41316, 43928}
X(57458) = barycentric quotient X(i)/X(j) for these {i,j}: {739, 28474}, {28475, 536}, {41316, 41314}


X(57459) = X(2)X(512)∩X(669)X(31859))

Barycentrics    (b^2 - c^2)*(a^2*b^2 - 2*a^2*c^2 + b^2*c^2)*(-2*a^2*b^2 + a^2*c^2 + b^2*c^2)*(-3*a^4 - a^2*b^2 - a^2*c^2 + 2*b^2*c^2) : :

X(57459) lies on the cubic K010 and these lines: {2, 512}, {669, 31859}, {2396, 9150}, {2407, 32717}, {3228, 34204}

X(57459) = X(2234)-isoconjugate of X(39639)
X(57459) = trilinear pole of line {32472, 44949}
X(57459) = barycentric product X(3228)*X(32472)
X(57459) = barycentric quotient X(i)/X(j) for these {i,j}: {729, 39639}, {14614, 23342}, {32472, 538}, {41412, 5118}


X(57460) = X(2)X(846)∩X(2395)X(2398))

Barycentrics    (a - b)*(a - c)*(a^2 + a*b + b^2 - a*c - b*c - c^2)*(a^2 - a*b - b^2 + a*c - b*c + c^2)*(2*a^5 - a^4*b - a^3*b^2 + a*b^4 - b^5 - a^4*c + a^2*b^2*c - a^3*c^2 + a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + b^2*c^3 + a*c^4 - c^5) : :

X(57460) lies on the cubic K010 and these lines: {2, 846}, {2395, 2398}, {2396, 2400}, {4226, 17940}, {35148, 53224}

X(57460) = X(2700)-isoconjugate of X(9508)
X(57460) = X(35082)-Dao conjugate of X(2786)
X(57460) = trilinear pole of line {2684, 2784}
X(57460) = barycentric product X(2784)*X(35148)
X(57460) = barycentric quotient X(i)/X(j) for these {i,j}: {2702, 2700}, {2784, 2786}, {35148, 35150}


X(57461) = X(2)X(17934)∩X(115)X(116))

Barycentrics    (b - c)^2*(b + c)*(2*a + b + c)*(-a^2 - a*b + b^2 - a*c + b*c + c^2) : :

X(57461) lies on the cubic K203 and these lines: {2, 17934}, {115, 116}, {244, 6627}, {1100, 1125}, {1647, 1648}, {6543, 53601}, {21131, 21134}, {23992, 35092}, {25358, 50773}, {27929, 41180}, {27949, 30860}, {41182, 46101}

X(57461) = complement of X(17934)
X(57461) = complement of the isogonal conjugate of X(18001)
X(57461) = complement of the isotomic conjugate of X(18014)
X(57461) = X(i)-complementary conjugate of X(j) for these (i,j): {513, 20339}, {514, 20548}, {649, 20529}, {667, 51578}, {798, 6651}, {1929, 512}, {2054, 513}, {3121, 35080}, {3125, 46668}, {6650, 42327}, {9278, 3835}, {11599, 21260}, {17940, 21254}, {17962, 4369}, {17982, 21259}, {18001, 10}, {18014, 2887}, {18032, 23301}
X(57461) = X(115)-Ceva conjugate of X(41180)
X(57461) = X(i)-isoconjugate of X(j) for these (i,j): {2702, 4596}, {4567, 53688}, {4629, 37135}, {17940, 37212}
X(57461) = X(i)-Dao conjugate of X(j) for these (i,j): {3120, 35148}, {27929, 32014}, {35076, 17930}, {35080, 4632}, {40627, 53688}
X(57461) = crossdifference of every pair of points on line {4570, 4629}
X(57461) = barycentric product X(i)*X(j) for these {i,j}: {2786, 4988}, {4977, 18004}, {9508, 30591}
X(57461) = barycentric quotient X(i)/X(j) for these {i,j}: {2786, 4632}, {3122, 53688}, {4977, 17930}, {4983, 37135}, {4988, 35148}, {5029, 4629}, {9508, 4596}, {17990, 8701}, {18004, 6540}, {41180, 31064}, {50512, 17940}


X(57462) = X(2)X(17935)∩X(11)X(115))

Barycentrics    a*(b - c)^2*(b + c)*(a*b + b^2 + a*c + c^2)*(a^3 + a*b*c - b^2*c - b*c^2) : :

X(57462) lies on the cubic K203 and these lines: {2, 17935}, {11, 115}, {1211, 2092}, {1646, 1648}, {8034, 42752}, {23992, 39011}, {35014, 41172}

X(57462) = complement of X(17935)
X(57462) = complement of the isogonal conjugate of X(18002)
X(57462) = complement of the isotomic conjugate of X(18015)
X(57462) = X(i)-complementary conjugate of X(j) for these (i,j): {3122, 46671}, {11611, 21262}, {17939, 21254}, {17946, 42327}, {17954, 512}, {17961, 4369}, {17981, 21259}, {18002, 10}, {18015, 2887}
X(57462) = X(115)-Ceva conjugate of X(41179)
X(57462) = X(i)-isoconjugate of X(j) for these (i,j): {4600, 53689}, {17929, 36147}
X(57462) = X(i)-Dao conjugate of X(j) for these (i,j): {3125, 35147}, {39015, 17929}, {50497, 53689}
X(57462) = crossdifference of every pair of points on line {4567, 17939}
X(57462) = barycentric product X(i)*X(j) for these {i,j}: {2787, 50330}, {3004, 17989}, {6371, 18003}
X(57462) = barycentric quotient X(i)/X(j) for these {i,j}: {3121, 53689}, {6371, 17929}, {17989, 8707}, {50330, 35147}, {57157, 17939}


X(57463) = X(2)X(17931)∩X(115)X(522))

Barycentrics    (a - b - c)*(b - c)^2*(b + c)*(a^3 - 2*a^2*b + b^3 - 2*a^2*c + a*b*c + c^3)*(2*a^4 + a^3*b - 2*a^2*b^2 + b^4 + a^3*c + 2*a^2*b*c - a*b^2*c - b^3*c - 2*a^2*c^2 - a*b*c^2 - b*c^3 + c^4) : :

X(57463) lies on the cubic K203 and these lines: {2, 17931}, {115, 522}, {521, 45212}, {3738, 41180}, {6129, 16613}, {6366, 23992}, {7658, 17058}, {39471, 41181}

X(57463) = complement of X(17931)
X(57463) = complement of the isogonal conjugate of X(17992)
X(57463) = complement of the isotomic conjugate of X(18006)
X(57463) = X(i)-complementary conjugate of X(j) for these (i,j): {798, 1944}, {1402, 2785}, {1758, 512}, {5075, 960}, {17942, 21254}, {17950, 42327}, {17966, 4369}, {17985, 21259}, {17992, 10}, {18006, 2887}, {51641, 33140}, {51642, 3741}
X(57463) = X(i)-Ceva conjugate of X(j) for these (i,j): {115, 41182}, {54119, 2785}


X(57464) = X(6)X(13)∩X(1648)X(14401))

Barycentrics    (b^2 - c^2)^2*(-a^2 + b^2 - b*c + c^2)*(-a^2 + b^2 + b*c + c^2)*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)*(-2*a^6 + 2*a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6) : :

X(57464) lies on the cubic K203 and these lines: {6, 13}, {1648, 14401}, {2088, 5664}, {3258, 52743}, {14920, 52668}, {23992, 39008}

X(57464) = X(i)-complementary conjugate of X(j) for these (i,j): {48453, 4369}, {51228, 42327}, {51263, 21254}
X(57464) = X(2697)-Ceva conjugate of X(14270)
X(57464) = X(36096)-isoconjugate of X(44769)
X(57464) = X(1637)-Dao conjugate of X(5641)
X(57464) = crossdifference of every pair of points on line {526, 14560}
X(57464) = barycentric product X(i)*X(j) for these {i,j}: {30, 53132}, {542, 3258}, {1640, 5664}, {6148, 51428}, {18312, 52743}
X(57464) = barycentric quotient X(i)/X(j) for these {i,j}: {1640, 39290}, {3258, 5641}, {5191, 15395}, {5664, 6035}, {14398, 23969}, {51428, 5627}, {52743, 5649}, {53132, 1494}


X(57465) = X(30)X(115)∩X(1550)X(48451))

Barycentrics    (b^2 - c^2)^2*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)*(-2*a^6 + 2*a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*(-a^6 + 4*a^4*b^2 - 5*a^2*b^4 + 2*b^6 + 4*a^4*c^2 - 3*a^2*b^2*c^2 + b^4*c^2 - 5*a^2*c^4 + b^2*c^4 + 2*c^6) : :

X(57465) lies on the cubic K203 and these lines: {30, 115}, {1550, 48451}, {1637, 3258}, {1648, 1650}, {2679, 9411}, {2682, 9409}, {9033, 23992}

X(57465) = X(i)-complementary conjugate of X(j) for these (i,j): {17986, 21259}, {48451, 4369}, {51227, 42327}, {51262, 21254}
X(57465) = X(12066)-Ceva conjugate of X(542)
X(57465) = X(1640)-Dao conjugate of X(1494)
X(57465) = crossdifference of every pair of points on line {5649, 34291}
X(57465) = barycentric quotient X(51428)/X(54495)


X(57466) = X(6)X(468)∩X(67)X(9872))

Barycentrics    (a^4 - 4*a^2*b^2 + b^4 - c^4)*(a^4 - b^4 - 4*a^2*c^2 + c^4)*(a^4*b^2 - b^6 + a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :

X(57466) llies on the cubic K1284, the curve Q101, and these lines: {6, 468}, {67, 9872}, {524, 2373}, {525, 35522}, {1503, 30247}, {1560, 2393}, {2930, 56868}, {5181, 14961}, {24855, 42007}, {34107, 34190}, {41370, 51831}, {46154, 49123}

X(57466) = X(i)-isoconjugate of X(j) for these (i,j): {10423, 14209}, {19136, 37220}, {30209, 36095}
X(57466) = X(i)-Dao conjugate of X(j) for these (i,j): {468, 37855}, {5181, 41614}
X(57466) = crossdifference of every pair of points on line {19136, 30209}
X(57466) = barycentric product X(858)*X(5486)
X(57466) = barycentric quotient X(i)/X(j) for these {i,j}: {858, 11185}, {1560, 37855}, {2393, 1995}, {5486, 2373}, {14961, 41614}, {42665, 30209}, {47426, 53777}


X(57467) = X(6)X(373)∩X(51)X(52174))

Barycentrics    a^2*(a^2 + b^2 - 5*c^2)*(2*a^2 - b^2 - c^2)*(a^2 - 5*b^2 + c^2) : : X(57467) = 3 X[6] - X[9872]

X(57467) llies on the curve Q101 and these lines: {6, 373}, {51, 52174}, {111, 8681}, {126, 524}, {184, 38532}, {249, 2030}, {323, 52496}, {511, 843}, {512, 5107}, {542, 38951}, {574, 40673}, {576, 14262}, {598, 1992}, {895, 10630}, {1495, 32741}, {2393, 10355}, {2418, 14608}, {5008, 9515}, {5095, 52477}, {5104, 9217}, {8586, 52678}, {9227, 41909}, {20423, 52484}, {21906, 51927}, {33921, 52038}, {35146, 35179}, {39689, 44102}

X(57467) = reflection of X(i) in X(j) for these {i,j}: {1296, 17979}, {52233, 44496}
X(57467) = isogonal conjugate of X(52141)
X(57467) = isogonal conjugate of the polar conjugate of X(52477)
X(57467) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52141}, {662, 2408}, {671, 36277}, {691, 14207}, {799, 2444}, {897, 1992}, {923, 11059}, {1384, 46277}, {1499, 36085}, {4786, 5380}
X(57467) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 52141}, {1084, 2408}, {2482, 11059}, {6593, 1992}, {10354, 11185}, {21905, 6791}, {21906, 55140}, {38988, 1499}, {38996, 2444}
X(57467) = trilinear pole of line {351, 21905}
X(57467) = crossdifference of every pair of points on line {1499, 1992}
X(57467) = X(598)-line conjugate of X(1992)
X(57467) = barycentric product X(i)*X(j) for these {i,j}: {3, 52477}, {187, 5485}, {351, 35179}, {468, 55977}, {512, 2418}, {523, 2434}, {524, 21448}, {690, 1296}, {896, 55923}, {2642, 37216}, {3266, 39238}, {10354, 34898}, {17952, 51927}, {32133, 53777}, {32648, 52629}
X(57467) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 52141}, {187, 1992}, {351, 1499}, {512, 2408}, {524, 11059}, {669, 2444}, {922, 36277}, {1296, 892}, {2418, 670}, {2434, 99}, {2642, 14207}, {5485, 18023}, {9155, 51438}, {10354, 11054}, {14567, 1384}, {21448, 671}, {21839, 42724}, {21905, 55140}, {21906, 6791}, {32648, 34574}, {35179, 53080}, {39238, 111}, {39689, 27088}, {44102, 4232}, {52477, 264}, {54274, 9125}, {55923, 46277}, {55977, 30786}
X(57467) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 21448, 39238}, {6, 55977, 21448}


X(57468) = X(6)X(650)∩X(11)X(513))

Barycentrics    a*(b - c)*(a*b - b^2 + a*c - c^2)*(a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3) : :

X(57468) llies on the curve Q101 and these lines: {6, 650}, {7, 693}, {11, 513}, {59, 100}, {104, 840}, {514, 12736}, {518, 50333}, {522, 5083}, {905, 34586}, {1002, 2401}, {1037, 37628}, {1317, 3900}, {1458, 2254}, {1876, 52305}, {3446, 15313}, {3738, 3911}, {4777, 13476}, {8674, 51881}, {9309, 33994}, {18344, 36123}, {18816, 53219}, {34230, 36819}, {34855, 43042}, {47043, 56638}, {51832, 52456}

X(57468) = X(i)-isoconjugate of X(j) for these (i,j): {100, 54364}, {190, 51987}, {294, 24029}, {517, 36086}, {666, 2183}, {673, 2427}, {908, 919}, {1438, 2397}, {1457, 36802}, {1769, 5377}, {3262, 32666}, {6735, 32735}, {14942, 23981}, {22464, 52927}, {36041, 51378}, {36057, 53151}, {39293, 53549}
X(57468) = X(i)-Dao conjugate of X(j) for these (i,j): {3126, 2804}, {5519, 51378}, {6184, 2397}, {8054, 54364}, {17435, 51390}, {20621, 53151}, {35094, 3262}, {38980, 908}, {38989, 517}, {55053, 51987}, {56761, 52456}
X(57468) = cevapoint of X(2254) and X(53555)
X(57468) = trilinear pole of line {665, 17435}
X(57468) = crossdifference of every pair of points on line {517, 2427}
X(57468) = barycentric product X(i)*X(j) for these {i,j}: {104, 918}, {241, 43728}, {513, 56753}, {514, 36819}, {518, 2401}, {665, 18816}, {2250, 23829}, {2254, 34234}, {2423, 3263}, {3126, 55943}, {3675, 13136}, {5236, 37628}, {15635, 42720}, {16082, 53550}, {17435, 54953}, {25083, 43933}, {30941, 55259}, {34051, 50333}, {36795, 53539}, {43042, 52663}, {51565, 53544}
X(57468) = barycentric quotient X(i)/X(j) for these {i,j}: {104, 666}, {518, 2397}, {649, 54364}, {665, 517}, {667, 51987}, {909, 36086}, {918, 3262}, {1458, 24029}, {2223, 2427}, {2254, 908}, {2401, 2481}, {2423, 105}, {3126, 51390}, {3675, 10015}, {5089, 53151}, {17435, 2804}, {18816, 36803}, {24290, 17757}, {30941, 55258}, {32641, 5377}, {34051, 927}, {34234, 51560}, {34858, 919}, {35505, 42758}, {36819, 190}, {37136, 39293}, {42758, 26611}, {43728, 36796}, {43933, 54235}, {52614, 51380}, {52635, 23981}, {52663, 36802}, {53539, 1465}, {53544, 22464}, {53555, 16586}, {55259, 13576}, {56753, 668}


X(57469) = X(1)X(3423)∩X(6)X(354))

Barycentrics    a*(a*b - b^2 + a*c - c^2)*(a^2 - 2*a*b + b^2 - 2*b*c + c^2)*(a^2 + b^2 - 2*a*c - 2*b*c + c^2) : :
X(57469) = 3 X[354] - X[2348]
<.p> X(57469) llies on the curve Q101 and these lines: {1, 3423}, {6, 354}, {7, 3434}, {55, 3433}, {57, 1037}, {59, 3660}, {65, 17107}, {105, 15382}, {120, 518}, {277, 942}, {295, 52030}, {513, 11934}, {517, 840}, {672, 17464}, {1155, 3446}, {1362, 1876}, {1458, 53552}, {1827, 55013}, {3449, 11018}, {3827, 34183}, {4319, 17642}, {5570, 18413}, {9309, 12915}, {9500, 20358}, {10025, 37206}, {36041, 36056}, {53219, 54987}

X(57469) = X(40154)-Ceva conjugate of X(56796)
X(57469) = X(i)-isoconjugate of X(j) for these (i,j): {6, 31638}, {101, 2402}, {105, 3870}, {190, 2440}, {218, 673}, {294, 1445}, {344, 1438}, {919, 4468}, {1462, 55337}, {1617, 14942}, {1814, 7719}, {2195, 6604}, {2481, 21059}, {3309, 36086}, {4350, 28071}, {6600, 56783}, {8642, 51560}, {18785, 41610}, {31605, 52927}, {32735, 44448}, {36802, 51652}
X(57469) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 31638}, {1015, 2402}, {3675, 55137}, {6184, 344}, {36905, 21609}, {38980, 4468}, {38989, 3309}, {39046, 3870}, {39063, 6604}, {55053, 2440}, {56796, 3434}
X(57469) = cevapoint of X(926) and X(3675)
X(57469) = crossdifference of every pair of points on line {218, 2440}
X(57469) = barycentric product X(i)*X(j) for these {i,j}: {241, 6601}, {277, 518}, {513, 2414}, {665, 54987}, {693, 2428}, {918, 1292}, {1280, 56796}, {2191, 3912}, {2254, 37206}, {3693, 40154}, {3717, 17107}, {36041, 53583}
X(57469) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 31638}, {241, 6604}, {277, 2481}, {513, 2402}, {518, 344}, {665, 3309}, {667, 2440}, {672, 3870}, {1292, 666}, {1458, 1445}, {2191, 673}, {2223, 218}, {2254, 4468}, {2340, 55337}, {2356, 7719}, {2414, 668}, {2428, 100}, {3286, 41610}, {3675, 4904}, {6601, 36796}, {9436, 21609}, {9454, 21059}, {17107, 56783}, {20683, 3991}, {34855, 17093}, {37206, 51560}, {39258, 4878}, {40154, 34018}, {52635, 1617}, {53539, 43049}, {53544, 31605}, {53550, 24562}, {54987, 36803}


X(57470) = X(6)X(110)∩X(323)X(526))

Barycentrics    a^2*(a^2 + b^2 - 2*c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2 - 2*b^2 + c^2)*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) : :

X(57470) llies on the curve Q101 and these lines: {6, 110}, {323, 526}, {542, 1550}, {671, 18332}, {691, 5663}, {842, 14984}, {1511, 14355}, {2871, 32729}, {5609, 14246}, {5655, 52483}, {9139, 15395}, {9143, 9214}, {9145, 33927}, {9976, 47049}, {10560, 57271}, {14609, 14901}, {19140, 51980}, {32423, 51258}, {36827, 52171}, {51383, 56792}

X(57470) = X(i)-isoconjugate of X(j) for these (i,j): {690, 36096}, {896, 54554}, {32678, 50942}, {36061, 53156}
X(57470) = X(i)-Dao conjugate of X(j) for these (i,j): {15899, 54554}, {16221, 53156}, {18334, 50942}, {23967, 43084}, {40604, 52094}
X(57470) = crossdifference of every pair of points on line {690, 56395}
X(57470) = barycentric product X(i)*X(j) for these {i,j}: {186, 51405}, {323, 16092}, {526, 50941}, {8552, 53155}, {9213, 14999}, {18312, 51478}
X(57470) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 54554}, {323, 52094}, {526, 50942}, {542, 43084}, {1640, 51479}, {5191, 56395}, {9213, 14223}, {16092, 94}, {32729, 23969}, {36142, 36096}, {47230, 53156}, {50941, 35139}, {51405, 328}, {51478, 5649}, {51980, 34370}, {52668, 842}, {53132, 52628}, {53155, 46456}
X(57470) = {X(110),X(895)}-harmonic conjugate of X(5968)


X(57471) = X(4)X(1138)∩X(30)X(74)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(5*a^8 - 5*a^6*b^2 - 3*a^4*b^4 + a^2*b^6 + 2*b^8 - 5*a^6*c^2 + 11*a^4*b^2*c^2 - a^2*b^4*c^2 - 8*b^6*c^2 - 3*a^4*c^4 - a^2*b^2*c^4 + 12*b^4*c^4 + a^2*c^6 - 8*b^2*c^6 + 2*c^8) : :
X(57471) = 3 X[4] - X[1138], 5 X[74] - 8 X[12079], X[74] + 2 X[14989], X[74] - 4 X[34150], 3 X[74] - 4 X[40630], 5 X[5627] - 4 X[12079], 3 X[5627] - 2 X[40630], X[10733] - 4 X[21269], 4 X[12079] + 5 X[14989], 2 X[12079] - 5 X[34150], 6 X[12079] - 5 X[40630], X[14989] + 2 X[34150], 3 X[14989] + 2 X[40630], 3 X[34150] - X[40630], 2 X[146] + X[31874], 3 X[381] - 2 X[45694], 2 X[12295] + X[34193], 5 X[15034] - 8 X[36169], 7 X[15044] - 4 X[16340], 5 X[15059] - 8 X[21316]

X(57471) lies on the cubic K427, the curve Q110, and these lines: {4, 1138}, {30, 74}, {146, 31874}, {381, 14385}, {382, 52130}, {523, 57147}, {546, 33855}, {1304, 20480}, {3543, 56686}, {3830, 14264}, {3861, 20393}, {6128, 36896}, {9717, 14269}, {10721, 32417}, {12295, 34193}, {13582, 52403}, {13619, 16080}, {14919, 18403}, {15034, 36169}, {15044, 16340}, {15059, 21316}, {38335, 39239}, {39563, 48451}, {50687, 52488}

X(57471) = midpoint of X(5627) and X(14989)
X(57471) = reflection of X(i) in X(j) for these {i,j}: {74, 5627}, {5627, 34150}, {20393, 3861}, {33855, 546}, {51345, 18319}
X(57471) = {X(14989),X(34150)}-harmonic conjugate of X(74)


X(57472) = X(4)X(74)∩X(110)X(49117)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(5*a^14 - 9*a^12*b^2 - 5*a^10*b^4 + 12*a^8*b^6 + 7*a^6*b^8 - 13*a^4*b^10 + a^2*b^12 + 2*b^14 - 9*a^12*c^2 + 31*a^10*b^2*c^2 - 16*a^8*b^4*c^2 - 38*a^6*b^6*c^2 + 35*a^4*b^8*c^2 + 7*a^2*b^10*c^2 - 10*b^12*c^2 - 5*a^10*c^4 - 16*a^8*b^2*c^4 + 62*a^6*b^4*c^4 - 22*a^4*b^6*c^4 - 37*a^2*b^8*c^4 + 18*b^10*c^4 + 12*a^8*c^6 - 38*a^6*b^2*c^6 - 22*a^4*b^4*c^6 + 58*a^2*b^6*c^6 - 10*b^8*c^6 + 7*a^6*c^8 + 35*a^4*b^2*c^8 - 37*a^2*b^4*c^8 - 10*b^6*c^8 - 13*a^4*c^10 + 7*a^2*b^2*c^10 + 18*b^4*c^10 + a^2*c^12 - 10*b^2*c^12 + 2*c^14) : :
X(57472) = X[74] + 2 X[10152], X[5667] - 4 X[7687], X[110] - 4 X[49117], X[10733] + 2 X[10745], 2 X[12295] + X[34186], 5 X[15059] - 2 X[23240]

X(57472) lies on the curve Q110 and these lines: {4, 74}, {110, 49117}, {265, 34297}, {1503, 1552}, {1531, 44769}, {2132, 10733}, {2394, 9033}, {3163, 6794}, {12295, 34186}, {15059, 23240}, {18405, 52646}

X(57472) = reflection of X(i) in X(j) for these {i,j}: {5667, 14847}, {14847, 7687}


X(57473) = X(4)X(54)∩X(30)X(11587)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^18 - 4*a^16*b^2 + 5*a^14*b^4 - a^12*b^6 - a^10*b^8 - a^8*b^10 - a^6*b^12 + 5*a^4*b^14 - 4*a^2*b^16 + b^18 - 4*a^16*c^2 + 16*a^14*b^2*c^2 - 23*a^12*b^4*c^2 + 10*a^10*b^6*c^2 + 6*a^8*b^8*c^2 - 15*a^4*b^12*c^2 + 14*a^2*b^14*c^2 - 4*b^16*c^2 + 5*a^14*c^4 - 23*a^12*b^2*c^4 + 35*a^10*b^4*c^4 - 17*a^8*b^6*c^4 - 9*a^6*b^8*c^4 + 19*a^4*b^10*c^4 - 15*a^2*b^12*c^4 + 5*b^14*c^4 - a^12*c^6 + 10*a^10*b^2*c^6 - 17*a^8*b^4*c^6 + 20*a^6*b^6*c^6 - 9*a^4*b^8*c^6 - 2*a^2*b^10*c^6 - b^12*c^6 - a^10*c^8 + 6*a^8*b^2*c^8 - 9*a^6*b^4*c^8 - 9*a^4*b^6*c^8 + 14*a^2*b^8*c^8 - b^10*c^8 - a^8*c^10 + 19*a^4*b^4*c^10 - 2*a^2*b^6*c^10 - b^8*c^10 - a^6*c^12 - 15*a^4*b^2*c^12 - 15*a^2*b^4*c^12 - b^6*c^12 + 5*a^4*c^14 + 14*a^2*b^2*c^14 + 5*b^4*c^14 - 4*a^2*c^16 - 4*b^2*c^16 + c^18) : :

X(57473) lies on the curve Q110 and these lines: {4, 54}, {30, 11587}, {265, 6761}, {3153, 57381}, {5667, 14918}, {14983, 43453}, {22337, 52403}, {34007, 42441}, {45970, 56298}

X(57473) = polar-circle-inverse of X(13403)


X(57474) = X(2)X(95)∩X(22)X(93)

Barycentrics    a^2*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 + 2*a^2*c^6 + b^2*c^6 - c^8) : :

X(57474) lies on the cubic K935 and these lines: {2, 95}, {22, 933}, {54, 46730}, {343, 46064}, {376, 1157}, {394, 18315}, {1658, 19185}, {2979, 15958}, {5392, 46138}, {7512, 25044}, {7763, 40140}, {11412, 46089}, {15466, 16813}, {18569, 19177}, {37444, 52677}, {40634, 44210}

X(57474) = X(1953)-isoconjugate of X(6145)
X(57474) = X(i)-Dao conjugate of X(j) for these (i,j): {20625, 12077}, {25044, 6}
X(57474) = barycentric product X(95)*X(7488)
X(57474) = barycentric quotient X(i)/X(j) for these {i,j}: {54, 6145}, {933, 20626}, {7488, 5}, {16040, 12077}, {18315, 16039}, {32391, 3574}, {41590, 1209}


X(57475) = X(2)X(98)∩X(22)X(2715)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4)*(a^6 - a^4*b^2 + a^2*b^4 - b^6 - a^4*c^2 + a^2*b^2*c^2 + a^2*c^4 - c^6) : :

X(57475) lies on the cubic K935 and these lines: {2, 98}, {22, 2715}, {305, 17932}, {343, 41175}, {394, 43754}, {685, 15466}, {8779, 56980}, {15407, 40802}

X(57475) = X(i)-isoconjugate of X(j) for these (i,j): {1959, 39645}, {39644, 40703}
X(57475) = X(36471)-Dao conjugate of X(16230)
X(57475) = barycentric product X(i)*X(j) for these {i,j}: {287, 37183}, {6394, 41363}
X(57475) = barycentric quotient X(i)/X(j) for these {i,j}: {1976, 39645}, {14600, 39644}, {17974, 51454}, {37183, 297}, {41363, 6530}, {43754, 44767}, {47429, 35088}


X(57476) = X(2)X(339)∩X(22)X(935)

Barycentrics    b^2*c^2*(a^4 - a^2*b^2 + b^4 - c^4)*(-a^4 + b^4 + a^2*c^2 - c^4)*(-(a^4*b^2) + b^6 - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - b^2*c^4 + c^6) : :

X(57476) lies on the cubic K935 and these lines: {2, 339}, {22, 935}, {67, 11442}, {69, 55839}, {394, 17708}, {858, 39269}, {1370, 13573}, {3267, 8024}, {7485, 46087}, {7495, 14357}, {18018, 44183}

X(57476) = isotomic conjugate of the polar conjugate of X(39269)
X(57476) = X(18019)-Ceva conjugate of X(858)
X(57476) = X(36095)-isoconjugate of X(42659)
X(57476) = X(i)-Dao conjugate of X(j) for these (i,j): {858, 36415}, {5181, 10317}, {14357, 6}, {14961, 6593}, {15900, 1177}, {38971, 2492}, {52628, 18311}
X(57476) = barycentric product X(i)*X(j) for these {i,j}: {67, 1236}, {69, 39269}, {858, 18019}, {10512, 19510}
X(57476) = barycentric quotient X(i)/X(j) for these {i,j}: {67, 1177}, {858, 23}, {935, 10423}, {1236, 316}, {2393, 18374}, {5181, 6593}, {5523, 8744}, {10415, 10422}, {12827, 12824}, {14961, 10317}, {15116, 40949}, {18019, 2373}, {19510, 10510}, {20884, 16568}, {34897, 18876}, {39269, 4}, {42665, 42659}, {47138, 2492}, {52512, 37801}


X(57477) = X(1)X(1076)∩X(2)X(92)

Barycentrics    (a + b - c)*(a - b + c)*(a^4 - b^4 + 2*a^2*b*c - 2*a*b^2*c - 2*a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(57477) lies on the cubic K935 and these lines: {1, 1076}, {2, 92}, {3, 1068}, {4, 1060}, {7, 940}, {8, 51421}, {12, 15832}, {20, 7952}, {22, 108}, {33, 10431}, {34, 2478}, {56, 17061}, {57, 16548}, {63, 34050}, {69, 56823}, {77, 226}, {78, 5930}, {85, 28791}, {109, 44447}, {171, 4331}, {184, 41349}, {196, 3101}, {198, 21452}, {221, 11415}, {222, 5905}, {223, 908}, {225, 377}, {227, 5552}, {241, 3772}, {279, 56218}, {305, 4554}, {307, 11679}, {312, 18629}, {321, 56367}, {329, 394}, {343, 51365}, {344, 28765}, {345, 4552}, {348, 349}, {497, 4318}, {653, 17903}, {664, 4417}, {837, 1817}, {857, 948}, {1020, 1764}, {1040, 23710}, {1062, 6899}, {1118, 11337}, {1398, 37415}, {1419, 28609}, {1425, 10441}, {1426, 37613}, {1427, 17720}, {1429, 28107}, {1442, 5712}, {1445, 40940}, {1456, 24703}, {1458, 33144}, {1479, 4347}, {1617, 26228}, {1708, 24597}, {1785, 6925}, {1788, 24883}, {1838, 6835}, {1851, 33849}, {1870, 6827}, {1897, 52365}, {1943, 5739}, {1997, 18044}, {1999, 56927}, {2000, 3434}, {2006, 15474}, {2050, 41007}, {2263, 24210}, {2969, 37366}, {3193, 19349}, {3436, 21147}, {3452, 25930}, {3474, 5348}, {3487, 50317}, {3562, 5758}, {3616, 27378}, {3668, 39595}, {3912, 34059}, {3944, 5018}, {4000, 5435}, {4320, 13161}, {4329, 23512}, {4334, 33152}, {4415, 6180}, {4511, 56821}, {4551, 56813}, {4641, 41563}, {4656, 8545}, {4789, 57196}, {5723, 37679}, {5932, 18632}, {5942, 41883}, {6198, 6851}, {6357, 31018}, {6358, 19822}, {6833, 37565}, {6840, 34231}, {6890, 17102}, {6910, 54320}, {6928, 32047}, {6947, 37697}, {7009, 26118}, {7013, 36908}, {7103, 37399}, {7520, 44696}, {7580, 15252}, {7718, 36496}, {9306, 56910}, {9316, 24248}, {9778, 51408}, {10327, 14594}, {11363, 28104}, {12848, 37666}, {14257, 16049}, {15466, 54240}, {16869, 50528}, {17022, 21617}, {17075, 28808}, {17555, 52366}, {17928, 41227}, {17950, 37683}, {17985, 30943}, {18228, 18624}, {18626, 28780}, {18743, 28736}, {18750, 27540}, {20921, 28794}, {21279, 21621}, {21454, 33155}, {23603, 50562}, {23681, 30379}, {26006, 27411}, {26591, 55910}, {27338, 43034}, {27539, 30807}, {28734, 28767}, {28795, 40702}, {28921, 54107}, {28950, 37669}, {28997, 56084}, {29841, 41246}, {30827, 36636}, {31224, 43068}, {31526, 41352}, {32774, 56460}, {32863, 36918}, {33133, 54366}, {33298, 55095}, {35645, 53548}, {36638, 49777}, {37269, 51410}, {37577, 40576}, {37578, 45946}, {37771, 43055}, {41344, 55109}, {55963, 55987}

X(57477) = isotomic conjugate of X(34277)
X(57477) = polar conjugate of X(43742)
X(57477) = isotomic conjugate of the isogonal conjugate of X(478)
X(57477) = isotomic conjugate of the polar conjugate of X(14257)
X(57477) = polar conjugate of the isogonal conjugate of X(56414)
X(57477) = X(i)-Ceva conjugate of X(j) for these (i,j): {76, 7}, {23984, 651}
X(57477) = X(i)-isoconjugate of X(j) for these (i,j): {9, 3435}, {19, 39167}, {31, 34277}, {41, 8048}, {48, 43742}, {55, 42467}, {284, 43703}, {652, 40097}, {663, 46640}, {2258, 34279}, {2269, 40454}, {15385, 34591}
X(57477) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 34277}, {6, 39167}, {56, 6}, {123, 650}, {223, 42467}, {478, 3435}, {1249, 43742}, {3160, 8048}, {6588, 2968}, {40590, 43703}
X(57477) = cevapoint of X(i) and X(j) for these (i,j): {478, 56414}, {1766, 21147}
X(57477) = barycentric product X(i)*X(j) for these {i,j}: {7, 3436}, {57, 20928}, {69, 14257}, {75, 21147}, {76, 478}, {85, 1766}, {123, 55346}, {197, 6063}, {205, 20567}, {264, 56414}, {305, 17408}, {331, 22132}, {664, 21186}, {1231, 41364}, {1434, 21074}, {1441, 16049}, {3261, 57061}, {4554, 6588}, {31643, 41600}, {34263, 34284}
X(57477) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 34277}, {3, 39167}, {4, 43742}, {7, 8048}, {56, 3435}, {57, 42467}, {65, 43703}, {108, 40097}, {123, 2968}, {197, 55}, {205, 41}, {478, 6}, {651, 46640}, {940, 34279}, {961, 40454}, {1766, 9}, {3436, 8}, {6588, 650}, {14257, 4}, {16049, 21}, {17408, 25}, {20928, 312}, {21074, 2321}, {21147, 1}, {21186, 522}, {22132, 219}, {34263, 941}, {41364, 1172}, {41600, 960}, {47410, 35072}, {52143, 2194}, {55139, 14312}, {56414, 3}, {57061, 101}
X(57477) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1076, 6836}, {2, 278, 37800}, {2, 347, 17080}, {2, 37798, 278}, {225, 1038, 377}, {329, 18623, 651}, {394, 34032, 651}, {940, 6354, 7}, {1020, 1764, 56553}, {1407, 3782, 7}, {3160, 36644, 2898}, {3782, 43036, 1407}, {4552, 28774, 345}, {5226, 18625, 948}, {6899, 38295, 1062}, {18228, 18624, 54425}


X(57478) = X(2)X(45)∩X(22)X(901)

Barycentrics    a^2*(a + b - 2*c)*(a - 2*b + c)*(a^2 - b^2 - c^2)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(57478) lies on the cubic K935 and these lines: {2, 45}, {22, 901}, {63, 905}, {106, 22767}, {222, 1797}, {859, 14260}, {1262, 1407}, {1465, 24029}, {1473, 36058}

X(57478) = isotomic conjugate of the polar conjugate of X(14260)
X(57478) = X(i)-isoconjugate of X(j) for these (i,j): {19, 36944}, {33, 40218}, {44, 36123}, {104, 8756}, {902, 16082}, {909, 38462}, {1023, 43933}, {1309, 1635}, {1639, 36110}, {1877, 52663}, {2250, 37168}, {2342, 37790}, {3762, 14776}, {4768, 32702}, {34858, 46109}, {46541, 55259}
X(57478) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 36944}, {8677, 47420}, {16586, 46109}, {23980, 38462}, {39004, 1639}, {40594, 16082}, {40595, 36123}, {40613, 8756}, {45247, 281}
X(57478) = cevapoint of X(8677) and X(47420)
X(57478) = trilinear pole of line {8677, 22350}
X(57478) = barycentric product X(i)*X(j) for these {i,j}: {63, 52031}, {69, 14260}, {903, 22350}, {908, 1797}, {3262, 36058}, {4555, 8677}, {7053, 51984}, {51379, 56049}
X(57478) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 36944}, {88, 16082}, {106, 36123}, {222, 40218}, {517, 38462}, {859, 37168}, {901, 1309}, {908, 46109}, {1361, 1846}, {1457, 1877}, {1465, 37790}, {1797, 34234}, {2183, 8756}, {3937, 56761}, {8677, 900}, {14260, 4}, {22350, 519}, {23220, 1960}, {23345, 43933}, {32659, 909}, {32719, 14776}, {35012, 3259}, {36058, 104}, {47420, 35092}, {51379, 4723}, {52031, 92}, {52307, 1639}, {56973, 51422}


X(57479) = X(2)X(85)∩X(22)X(934)

Barycentrics    (a + b - c)^2*(a - b + c)^2*(a^2 - b^2 - c^2)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c - a*c^2 + b*c^2 - c^3) : :

X(57479) lies on the cubic K935 and these lines: {2, 85}, {20, 34402}, {22, 934}, {69, 19611}, {77, 1040}, {394, 50559}, {464, 56382}, {479, 1804}, {658, 18623}, {1214, 23603}, {1817, 6611}, {3160, 7411}, {8822, 41082}, {13149, 15466}, {23973, 44447}
on K935

X(57479) = isotomic conjugate of the polar conjugate of X(14256)
X(57479) = X(7182)-Ceva conjugate of X(7056)
X(57479) = X(i)-isoconjugate of X(j) for these (i,j): {9, 7154}, {19, 7367}, {33, 2192}, {41, 7003}, {55, 7008}, {84, 7071}, {200, 7151}, {220, 7129}, {271, 6059}, {280, 2212}, {281, 7118}, {282, 607}, {657, 40117}, {1253, 40836}, {1436, 7079}, {1857, 2188}, {1903, 2332}, {2175, 7020}, {2208, 7046}, {2299, 53013}, {2357, 4183}, {6602, 55110}
X(57479) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 7367}, {57, 33}, {223, 7008}, {226, 53013}, {478, 7154}, {3160, 7003}, {6609, 7151}, {14837, 4081}, {17113, 40836}, {40593, 7020}, {55063, 4130}, {57055, 23970}
X(57479) = barycentric product X(i)*X(j) for these {i,j}: {69, 14256}, {77, 40702}, {85, 7013}, {196, 7055}, {223, 7182}, {305, 6611}, {322, 7177}, {329, 7056}, {342, 7183}, {347, 348}, {479, 55112}, {1804, 40701}, {4626, 57245}, {6063, 7011}, {7080, 30682}, {7114, 20567}, {7358, 23586}, {8822, 56382}, {10397, 52937}, {34400, 55015}, {36838, 57101}
X(57479) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 7367}, {7, 7003}, {40, 7079}, {56, 7154}, {57, 7008}, {77, 282}, {85, 7020}, {196, 1857}, {198, 7071}, {221, 607}, {222, 2192}, {223, 33}, {269, 7129}, {279, 40836}, {322, 7101}, {329, 7046}, {347, 281}, {348, 280}, {479, 55110}, {603, 7118}, {934, 40117}, {1214, 53013}, {1407, 7151}, {1439, 1903}, {1804, 268}, {1817, 4183}, {2199, 2212}, {2360, 2332}, {3209, 6059}, {6611, 25}, {7011, 55}, {7013, 9}, {7053, 1436}, {7055, 44189}, {7056, 189}, {7078, 220}, {7099, 2208}, {7114, 41}, {7125, 2188}, {7177, 84}, {7182, 34404}, {7183, 271}, {7358, 23970}, {8822, 2322}, {10397, 4105}, {14256, 4}, {16596, 4081}, {30682, 1440}, {34400, 46355}, {38374, 8735}, {40212, 40971}, {40702, 318}, {46352, 40838}, {47432, 35508}, {52373, 2357}, {53557, 3119}, {55015, 55116}, {55111, 480}, {55112, 5423}, {56382, 39130}, {57101, 4130}, {57233, 57108}, {57245, 4163}


X(57480) = X(2)X(32)∩X(22)X(827)

Barycentrics    a^2*(a^2 + b^2)*(a^2 - b^2 - c^2)*(a^2 + c^2)*(a^4 - b^4 - b^2*c^2 - c^4) : :

X(57480) lies on the cubic K935 and these lines: {2, 32}, {22, 827}, {1176, 56072}, {2979, 4630}, {6636, 14247}, {9076, 31101}, {9306, 56917}, {15466, 42396}, {20062, 38946}

X(57480) = isotomic conjugate of the polar conjugate of X(14247)
X(57480) = X(i)-isoconjugate of X(j) for these (i,j): {19, 14378}, {3456, 20883}, {15321, 17442}
X(57480) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 14378}, {5007, 46026}
X(57480) = crossdifference of every pair of points on line {3005, 14416}
X(57480) = barycentric product X(i)*X(j) for these {i,j}: {69, 14247}, {1176, 7768}, {1799, 6636}
X(57480) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 14378}, {1176, 15321}, {6636, 427}, {7768, 1235}, {10547, 3456}, {14247, 4}, {42052, 52787}


X(57481) = X(2)X(99)∩X(22)X(691)

Barycentrics    a^2*(a^2 + b^2 - 2*c^2)*(a^2 - b^2 - c^2)*(a^2 - 2*b^2 + c^2)*(a^4 - b^4 + b^2*c^2 - c^4) : :

X(57481) lies on the cubic K935 and these lines: {2, 99}, {3, 15398}, {22, 691}, {23, 14246}, {25, 250}, {51, 21460}, {184, 895}, {343, 51405}, {511, 10559}, {648, 51823}, {1799, 4580}, {1994, 52668}, {1995, 51253}, {2979, 32583}, {3060, 10558}, {3981, 32740}, {6636, 46783}, {6676, 51258}, {7485, 52152}, {7492, 15899}, {7493, 10416}, {8869, 19126}, {8877, 37913}, {10415, 52300}, {14263, 35936}, {14590, 56922}, {14908, 44260}, {16092, 44210}, {22329, 46070}, {26881, 32729}, {34158, 35923}, {35901, 41511}, {37765, 52551}
on K935

X(57481) = isotomic conjugate of the polar conjugate of X(14246)
X(57481) = isogonal conjugate of the polar conjugate of X(52551)
X(57481) = X(52551)-Ceva conjugate of X(14246)
X(57481) = X(i)-isoconjugate of X(j) for these (i,j): {19, 14357}, {468, 2157}, {896, 8791}, {922, 46105}, {935, 2642}
X(57481) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 14357}, {187, 5095}, {858, 1560}, {5099, 14273}, {9517, 47415}, {15899, 8791}, {18311, 52628}, {39061, 46105}, {39169, 6}, {40583, 468}, {55048, 690}
X(57481) = cevapoint of X(i) and X(j) for these (i,j): {111, 19330}, {9517, 47415}
X(57481) = trilinear pole of line {9517, 22151}
X(57481) = barycentric product X(i)*X(j) for these {i,j}: {3, 52551}, {23, 30786}, {69, 14246}, {111, 37804}, {305, 52142}, {316, 895}, {671, 22151}, {892, 9517}, {4563, 10561}, {7664, 15398}, {10097, 55226}, {10317, 18023}, {14908, 40074}, {14977, 52630}, {20944, 36060}, {42659, 53080}
X(57481) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 14357}, {23, 468}, {111, 8791}, {316, 44146}, {671, 46105}, {691, 935}, {895, 67}, {2492, 14273}, {6593, 5095}, {7664, 34336}, {9517, 690}, {10317, 187}, {10555, 2970}, {10561, 2501}, {12824, 12828}, {14246, 4}, {14908, 3455}, {15398, 10415}, {16165, 5642}, {18374, 44102}, {22151, 524}, {30786, 18019}, {36060, 2157}, {37765, 37778}, {37804, 3266}, {42659, 351}, {47415, 23992}, {52142, 25}, {52551, 264}, {52630, 4235}, {53177, 53156}, {55048, 47415}


X(57482) = X(2)X(94)∩X(22)X(476)

Barycentrics    b^2*c^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(-a^2 + b^2 + c^2)*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(57482) lies on the cubic K935 and these lines: {2, 94}, {3, 12028}, {22, 476}, {25, 53768}, {30, 14254}, {76, 31621}, {265, 974}, {343, 525}, {427, 14356}, {1368, 51847}, {1370, 53771}, {2052, 23582}, {2407, 43768}, {2781, 41512}, {2970, 52772}, {3260, 46809}, {6146, 53169}, {6344, 18850}, {7391, 52449}, {9306, 56397}, {10217, 40710}, {10218, 40709}, {10278, 10412}, {10688, 56400}, {11064, 56399}, {11585, 53168}, {15466, 46456}, {15760, 39170}, {16165, 35912}, {18022, 20573}, {19220, 56396}, {35139, 53201}, {37648, 56403}, {39375, 47050}, {40427, 40879}, {43087, 44210}, {44260, 52153}, {44440, 50480}

X(57482) = isotomic conjugate of the isogonal conjugate of X(56399)
X(57482) = isotomic conjugate of the polar conjugate of X(14254)
X(57482) = polar conjugate of the isogonal conjugate of X(51254)
X(57482) = X(20573)-Ceva conjugate of X(3260)
X(57482) = X(i)-isoconjugate of X(j) for these (i,j): {19, 14385}, {50, 36119}, {186, 2159}, {526, 36131}, {1304, 2624}, {2349, 34397}, {6149, 8749}, {32679, 32715}, {35200, 52418}, {35201, 40353}, {36034, 47230}, {40352, 52414}
X(57482) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 14385}, {30, 39176}, {133, 52418}, {647, 56792}, {1511, 50}, {1650, 52743}, {3003, 1986}, {3163, 186}, {3258, 47230}, {3284, 3043}, {9033, 47414}, {11064, 34834}, {14401, 16186}, {14993, 8749}, {15295, 40354}, {39008, 526}, {39170, 6}, {52869, 11062}, {56399, 14264}, {57295, 2088}
X(57482) = cevapoint of X(i) and X(j) for these (i,j): {9033, 47414}, {51254, 56399}
X(57482) = trilinear pole of line {1568, 9033}
X(57482) = crossdifference of every pair of points on line {14270, 34397}
X(57482) = barycentric product X(i)*X(j) for these {i,j}: {30, 328}, {69, 14254}, {76, 56399}, {94, 11064}, {264, 51254}, {265, 3260}, {305, 14583}, {648, 18557}, {1568, 46138}, {2407, 14592}, {3267, 41392}, {3284, 20573}, {6331, 18558}, {9033, 35139}, {18817, 51394}, {39170, 52552}, {39290, 52624}, {41077, 46456}
X(57482) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 14385}, {30, 186}, {94, 16080}, {113, 1986}, {125, 56792}, {265, 74}, {328, 1494}, {476, 1304}, {1099, 35201}, {1495, 34397}, {1511, 3043}, {1531, 3581}, {1568, 1154}, {1637, 47230}, {1650, 16186}, {1989, 8749}, {1990, 52418}, {2166, 36119}, {2407, 14590}, {2420, 14591}, {2631, 2624}, {3163, 39176}, {3260, 340}, {3284, 50}, {4240, 53176}, {9033, 526}, {9409, 14270}, {10272, 2914}, {10412, 18808}, {11060, 40354}, {11064, 323}, {11079, 40353}, {12028, 10419}, {12113, 7740}, {14206, 52414}, {14254, 4}, {14356, 35908}, {14391, 2081}, {14401, 52743}, {14560, 32715}, {14582, 2433}, {14583, 25}, {14592, 2394}, {14595, 40355}, {15454, 38936}, {16163, 1511}, {17702, 15468}, {18316, 22455}, {18557, 525}, {18558, 647}, {32650, 32712}, {32662, 32640}, {32678, 36131}, {34209, 52493}, {35139, 16077}, {35912, 14355}, {36047, 36117}, {36061, 36034}, {36298, 8739}, {36299, 8740}, {36789, 14920}, {39008, 47414}, {39170, 14264}, {39176, 36423}, {39290, 34568}, {39375, 1300}, {41077, 8552}, {41079, 44427}, {41392, 112}, {43083, 14380}, {43087, 17986}, {46106, 14165}, {46456, 15459}, {47414, 18334}, {50433, 18877}, {50463, 46090}, {51254, 3}, {51349, 32710}, {51393, 52416}, {51394, 22115}, {51479, 52475}, {52153, 40352}, {52624, 5664}, {52945, 11062}, {53178, 53158}, {56399, 6}


X(57483) = X(2)X(253)∩X(22)X(1301)

Barycentrics    a^2*(a^4 - 2*a^2*b^2 + b^4 + 2*a^2*c^2 + 2*b^2*c^2 - 3*c^4)*(a^4 + 2*a^2*b^2 - 3*b^4 - 2*a^2*c^2 + 2*b^2*c^2 + c^4)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 10*a^4*b^2*c^2 - 6*a^2*b^4*c^2 - 2*b^6*c^2 - 6*a^2*b^2*c^4 + 6*b^4*c^4 + 2*a^2*c^6 - 2*b^2*c^6 - c^8) : :

X(57483) lies on the cubic K935 and these lines: {2, 253}, {3, 31942}, {20, 41085}, {22, 1301}, {64, 15305}, {69, 40221}, {305, 44326}, {343, 46065}, {345, 56235}, {394, 3343}, {1968, 46831}, {2063, 14390}, {7503, 14379}, {11413, 17510}, {11589, 15078}, {15394, 17811}, {32830, 47435}, {33583, 36982}

X(57483) = isotomic conjugate of the isogonal conjugate of X(14390)
X(57483) = isotomic conjugate of the polar conjugate of X(39268)
X(57483) = X(i)-Ceva conjugate of X(j) for these (i,j): {76, 15394}, {34410, 64}
X(57483) = X(i)-isoconjugate of X(j) for these (i,j): {19, 51347}, {610, 43695}
X(57483) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 51347}, {14092, 43695}, {14379, 6}, {35968, 6587}, {46432, 5895}
X(57483) = cevapoint of X(1073) and X(40221)
X(57483) = barycentric product X(i)*X(j) for these {i,j}: {69, 39268}, {76, 14390}, {253, 11413}, {305, 17510}, {459, 2063}, {1073, 46927}, {1660, 41530}, {14615, 33583}, {30211, 53639}
X(57483) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 51347}, {64, 43695}, {1301, 30249}, {1660, 154}, {2063, 37669}, {11413, 20}, {14390, 6}, {17510, 25}, {30211, 8057}, {33583, 64}, {36982, 2883}, {39268, 4}, {46927, 15466}
X(57483) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 52514, 1073}, {394, 3343, 46639}


X(57484) = X(2)X(6503)∩X(22)X(3563)

Barycentrics    a^2*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 3*a^4*c^2 + 2*a^2*b^2*c^2 - 3*b^4*c^2 + 3*a^2*c^4 + 3*b^2*c^4 - c^6)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^4*c^2 + 2*a^2*b^2*c^2 + 3*b^4*c^2 - a^2*c^4 - 3*b^2*c^4 + c^6) : :

X(57484) lies on the cubics K646 and K935 and these lines: {2, 6503}, {3, 254}, {6, 56002}, {22, 3563}, {24, 12095}, {54, 9932}, {95, 46746}, {378, 16172}, {394, 43756}, {1599, 13429}, {1600, 13440}, {1993, 50647}, {1994, 55999}, {7503, 8800}, {7509, 32132}, {11441, 12004}, {11547, 39114}, {50671, 56347}

X(57484) = isogonal conjugate of X(47731)
X(57484) = isotomic conjugate of X(39116)
X(57484) = isotomic conjugate of the polar conjugate of X(34756)
X(57484) = X(46746)-Ceva conjugate of X(15316)
X(57484) = X(i)-isoconjugate of X(j) for these (i,j): {1, 47731}, {19, 34853}, {31, 39116}, {91, 1609}, {920, 2165}, {1820, 3542}, {2168, 41587}
X(57484) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 39116}, {3, 47731}, {6, 34853}, {577, 155}, {34116, 1609}
X(57484) = barycentric product X(i)*X(j) for these {i,j}: {69, 34756}, {95, 40678}, {97, 39114}, {254, 9723}, {317, 15316}, {921, 44179}, {1147, 46746}, {1993, 6504}, {6563, 13398}, {32132, 55551}, {34386, 47732}
X(57484) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 39116}, {3, 34853}, {6, 47731}, {24, 3542}, {47, 920}, {52, 41587}, {254, 847}, {571, 1609}, {921, 91}, {1147, 155}, {1993, 6515}, {6504, 5392}, {8800, 56272}, {9723, 40697}, {12095, 27087}, {13398, 925}, {15316, 68}, {15317, 15242}, {15423, 57070}, {34338, 135}, {34756, 4}, {39109, 14593}, {39114, 324}, {40678, 5}, {44179, 33808}, {44808, 44816}, {46746, 55553}, {47732, 53}, {51393, 51425}, {52432, 35603}


X(57485) = X(2)X(523)∩X(25)X(111)

Barycentrics    a^2*(a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(a^4*b^2 - b^6 + a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :

X(57485) lies on the cubic K555 and these lines: {2, 523}, {3, 15899}, {6, 10558}, {22, 691}, {25, 111}, {51, 51980}, {154, 32729}, {394, 32583}, {427, 51258}, {671, 31133}, {858, 51253}, {895, 1993}, {1194, 14609}, {1196, 51819}, {1613, 46154}, {1899, 51938}, {1994, 10560}, {1995, 10422}, {2052, 17983}, {2393, 51962}, {2979, 36827}, {3291, 46589}, {5094, 10415}, {5422, 21460}, {8267, 31074}, {9465, 14263}, {10097, 46128}, {11402, 52668}, {11442, 51405}, {14580, 34158}, {18018, 30744}, {31152, 34320}, {32064, 36894}, {32648, 38532}, {32740, 42295}, {40362, 53080}

X(57485) = isogonal conjugate of the complement of X(56569)
X(57485) = isotomic conjugate of the isogonal conjugate of X(51962)
X(57485) = polar conjugate of the isogonal conjugate of X(34158)
X(57485) = X(i)-Ceva conjugate of X(j) for these (i,j): {107, 10561}, {264, 14263}, {14246, 6}, {15398, 111}, {17983, 5523}
X(57485) = X(i)-isoconjugate of X(j) for these (i,j): {19, 53784}, {63, 51823}, {187, 37220}, {896, 2373}, {922, 46140}, {1177, 14210}, {10422, 24038}, {14417, 36095}
X(57485) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 53784}, {468, 34336}, {858, 7664}, {2393, 47426}, {3162, 51823}, {5181, 6390}, {14961, 36792}, {15477, 1177}, {15899, 2373}, {38971, 35522}, {39061, 46140}
X(57485) = cevapoint of X(i) and X(j) for these (i,j): {2393, 47426}, {34158, 51962}
X(57485) = crossdifference of every pair of points on line {187, 14417}
X(57485) = barycentric product X(i)*X(j) for these {i,j}: {76, 51962}, {111, 858}, {264, 34158}, {393, 51253}, {671, 2393}, {691, 47138}, {895, 5523}, {897, 18669}, {923, 20884}, {1236, 32740}, {1560, 15398}, {5181, 10630}, {5968, 52672}, {14263, 56579}, {14580, 30786}, {14961, 17983}, {14977, 46592}, {52142, 57476}
X(57485) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 53784}, {25, 51823}, {111, 2373}, {671, 46140}, {858, 3266}, {897, 37220}, {1560, 34336}, {2393, 524}, {5181, 36792}, {5523, 44146}, {14263, 56685}, {14580, 468}, {14908, 18876}, {14961, 6390}, {18669, 14210}, {32740, 1177}, {34158, 3}, {41936, 10422}, {42665, 14417}, {46154, 46165}, {46592, 4235}, {47138, 35522}, {47426, 2482}, {51253, 3926}, {51962, 6}, {51980, 36823}, {52672, 52145}
X(57485) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {111, 8877, 52142}, {111, 52142, 25}, {691, 57481, 22}, {895, 10559, 1993}, {5968, 46783, 52152}, {14246, 15398, 1995}


X(57486) = X(2)X(94)∩X(25)X(476)

Barycentrics    b^2*c^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(57486) lies on the cubic K555 and these lines: {2, 94}, {4, 54415}, {22, 53768}, {25, 476}, {184, 56397}, {264, 39290}, {265, 11442}, {324, 14592}, {378, 12028}, {381, 5627}, {403, 39170}, {427, 51847}, {1594, 53168}, {2052, 46456}, {3580, 56403}, {3818, 14595}, {5133, 14356}, {5392, 39295}, {6344, 52487}, {6515, 54453}, {7391, 53771}, {7394, 43089}, {8029, 10412}, {10254, 34333}, {12824, 41512}, {14389, 56399}, {14516, 53169}, {14583, 43087}, {14593, 52415}, {14993, 44275}, {34209, 46030}, {37644, 56404}, {51254, 52069}

X(57486) = isogonal conjugate of X(52557)
X(57486) = polar conjugate of X(38936)
X(57486) = isotomic conjugate of the isogonal conjugate of X(56403)
X(57486) = polar conjugate of the isogonal conjugate of X(39170)
X(57486) = X(i)-Ceva conjugate of X(j) for these (i,j): {94, 3580}, {264, 14254}, {39290, 14592}
X(57486) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52557}, {48, 38936}, {50, 36053}, {163, 15470}, {2159, 39371}, {2624, 10420}, {6149, 14910}
X(57486) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 52557}, {113, 50}, {115, 15470}, {1249, 38936}, {3003, 1511}, {3163, 39371}, {14993, 14910}, {16178, 47230}, {34834, 323}, {39021, 526}, {56399, 3}
X(57486) = cevapoint of X(i) and X(j) for these (i,j): {3003, 11557}, {39170, 56403}
X(57486) = barycentric product X(i)*X(j) for these {i,j}: {76, 56403}, {94, 3580}, {264, 39170}, {265, 44138}, {328, 403}, {850, 41512}, {3003, 20573}, {6334, 46456}, {13754, 18817}, {14592, 16237}, {18883, 52504}, {35139, 55121}
X(57486) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 38936}, {6, 52557}, {30, 39371}, {94, 2986}, {113, 1511}, {265, 5504}, {403, 186}, {476, 10420}, {523, 15470}, {1725, 6149}, {1986, 3043}, {1989, 14910}, {2166, 36053}, {3003, 50}, {3580, 323}, {5627, 10419}, {6334, 8552}, {6344, 1300}, {10412, 15328}, {11557, 11597}, {13754, 22115}, {14254, 15454}, {14264, 14385}, {14592, 15421}, {15329, 52603}, {16237, 14590}, {18883, 52505}, {20573, 40832}, {21731, 14270}, {34209, 39986}, {35139, 18878}, {36129, 36114}, {39170, 3}, {39295, 18879}, {39985, 34210}, {41512, 110}, {43087, 51456}, {44084, 34397}, {44138, 340}, {46456, 687}, {47236, 47230}, {52000, 52416}, {52451, 14355}, {52504, 37802}, {55121, 526}, {55265, 52743}, {56403, 6}
X(57486) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 94, 57482}, {43084, 57482, 2}


X(57487) = X(2)X(648)∩X(74)X(184)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4) : :

X(57487) lies on the cubic K555 and these lines: {2, 648}, {4, 1138}, {6, 34568}, {25, 842}, {74, 184}, {186, 7740}, {249, 394}, {250, 33927}, {264, 39290}, {275, 2394}, {323, 14590}, {378, 10419}, {427, 17986}, {470, 36210}, {471, 36211}, {578, 38933}, {1597, 52646}, {1993, 44769}, {1994, 46788}, {2052, 15459}, {2411, 44427}, {3520, 52130}, {5627, 7577}, {8889, 36875}, {10152, 52488}, {11079, 43530}, {11430, 34329}, {13596, 39239}, {14355, 56792}, {18593, 52414}, {37118, 40630}

X(57487) = isogonal conjugate of X(56399)
X(57487) = isotomic conjugate of X(57482)
X(57487) = polar conjugate of X(14254)
X(57487) = polar conjugate of the isogonal conjugate of X(14385)
X(57487) = X(i)-Ceva conjugate of X(j) for these (i,j): {264, 38937}, {15459, 44427}
X(57487) = X(i)-isoconjugate of X(j) for these (i,j): {1, 56399}, {19, 51254}, {31, 57482}, {48, 14254}, {63, 14583}, {162, 18558}, {265, 2173}, {328, 9406}, {476, 2631}, {656, 41392}, {1099, 11079}, {1636, 36129}, {1637, 36061}, {1784, 50433}, {2166, 3284}, {2315, 39375}, {9033, 32678}, {9409, 32680}, {14206, 52153}, {18557, 32676}, {32662, 36035}, {43083, 56829}
X(57487) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 57482}, {3, 56399}, {6, 51254}, {125, 18558}, {526, 47414}, {1249, 14254}, {3162, 14583}, {3284, 16163}, {9410, 328}, {11597, 3284}, {14918, 36789}, {15526, 18557}, {16221, 1637}, {17433, 14391}, {18334, 9033}, {18402, 52945}, {36896, 265}, {40596, 41392}, {40604, 11064}
X(57487) = cevapoint of X(i) and X(j) for these (i,j): {6, 14264}, {50, 3043}, {186, 39176}, {323, 34834}, {526, 47414}, {16186, 52743}
X(57487) = trilinear pole of line {186, 526}
X(57487) = crossdifference of every pair of points on line {9409, 18558}
X(57487) = barycentric product X(i)*X(j) for these {i,j}: {74, 340}, {186, 1494}, {264, 14385}, {323, 16080}, {526, 16077}, {1304, 3268}, {1986, 40423}, {2349, 52414}, {2394, 14590}, {5664, 34568}, {7799, 8749}, {8552, 15459}, {10411, 18808}, {14165, 14919}, {14920, 40384}, {16186, 42308}, {18020, 56792}, {22455, 52149}, {31621, 39176}, {32695, 45792}, {34767, 53176}, {44427, 44769}
X(57487) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 57482}, {3, 51254}, {4, 14254}, {6, 56399}, {25, 14583}, {50, 3284}, {74, 265}, {112, 41392}, {186, 30}, {323, 11064}, {340, 3260}, {525, 18557}, {526, 9033}, {647, 18558}, {1154, 1568}, {1300, 39375}, {1304, 476}, {1494, 328}, {1511, 16163}, {1986, 113}, {2081, 14391}, {2394, 14592}, {2433, 14582}, {2624, 2631}, {2914, 10272}, {3043, 1511}, {3581, 1531}, {5664, 52624}, {7740, 12113}, {8552, 41077}, {8739, 36298}, {8740, 36299}, {8749, 1989}, {10419, 12028}, {11062, 52945}, {14165, 46106}, {14264, 39170}, {14270, 9409}, {14355, 35912}, {14380, 43083}, {14385, 3}, {14590, 2407}, {14591, 2420}, {14920, 36789}, {15459, 46456}, {15468, 17702}, {16077, 35139}, {16080, 94}, {16186, 1650}, {17986, 43087}, {18334, 47414}, {18808, 10412}, {18877, 50433}, {22115, 51394}, {22455, 18316}, {32640, 32662}, {32710, 51349}, {32712, 32650}, {32715, 14560}, {34397, 1495}, {34568, 39290}, {35201, 1099}, {35908, 14356}, {36034, 36061}, {36117, 36047}, {36119, 2166}, {36131, 32678}, {36423, 39176}, {38936, 15454}, {39176, 3163}, {40352, 52153}, {40353, 11079}, {40354, 11060}, {40355, 14595}, {44427, 41079}, {46090, 50463}, {47230, 1637}, {47414, 39008}, {52414, 14206}, {52416, 51393}, {52418, 1990}, {52475, 51479}, {52493, 34209}, {52743, 14401}, {53158, 53178}, {53176, 4240}, {56792, 125}
{X(9717),X(35908)}-harmonic conjugate of X(1304)


X(57488) = X(2)X(525)∩X(25)X(74)

Barycentrics    a^2*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 + 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 2*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 + 6*b^4*c^4 + 3*a^2*c^6 - 2*b^2*c^6 - c^8) : : X(57488) = 2 X[39174] + X[52646]

X(57488) lies on the cubic K555 and these lines: {2, 525}, {3, 2132}, {6, 34568}, {25, 74}, {51, 35908}, {154, 1304}, {338, 2052}, {394, 44769}, {1073, 1993}, {1899, 17986}, {2404, 51358}, {2979, 36831}, {3470, 7592}, {3830, 57472}, {5627, 15111}, {5890, 14264}, {5891, 53785}, {6000, 39174}, {6644, 50464}, {9717, 11402}, {10421, 18396}, {10606, 38937}, {11438, 34329}, {12099, 56792}, {15353, 16186}, {15459, 56296}, {18950, 36875}, {38283, 44715}, {44436, 51964}

X(57488) = isogonal conjugate of the complement of X(56576)
X(57488) = isotomic conjugate of the isogonal conjugate of X(51964)
X(57488) = isotomic conjugate of the polar conjugate of X(52646)
X(57488) = polar conjugate of the isogonal conjugate of X(39174)
X(57488) = X(i)-Ceva conjugate of X(j) for these (i,j): {264, 14264}, {16080, 51358}
X(57488) = X(i)-isoconjugate of X(j) for these (i,j): {19, 53789}, {1294, 2173}, {1636, 36043}, {9406, 54988}, {43701, 56829}
X(57488) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 53789}, {1990, 34334}, {6000, 47433}, {9410, 54988}, {35579, 1636}, {36896, 1294}, {44436, 36789}, {50937, 1990}
X(57488) = cevapoint of X(i) and X(j) for these (i,j): {6000, 47433}, {39174, 51964}
X(57488) = barycentric product X(i)*X(j) for these {i,j}: {69, 52646}, {76, 51964}, {264, 39174}, {340, 39376}, {1494, 6000}, {14264, 56577}, {14919, 51358}, {16080, 44436}, {31621, 47433}, {34767, 46587}, {35908, 36893}
X(57488) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 53789}, {74, 1294}, {133, 34334}, {1494, 54988}, {6000, 30}, {14264, 56683}, {14380, 43701}, {32695, 32646}, {35908, 56605}, {39174, 3}, {39376, 265}, {40948, 16163}, {44436, 11064}, {46587, 4240}, {47433, 3163}, {51358, 46106}, {51385, 52661}, {51895, 15454}, {51964, 6}, {52646, 4}, {56577, 52552}


X(57489) = X(2)X(95)∩X(25)X(933)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4) : :

X(57489) lies on the cubic K555 and these lines: {2, 95}, {4, 1157}, {6, 288}, {24, 1166}, {25, 933}, {54, 11202}, {252, 52295}, {456, 16762}, {571, 45832}, {1141, 18559}, {1993, 18315}, {2052, 11077}, {3060, 15958}, {3484, 11438}, {3518, 25044}, {3567, 46089}, {7576, 40631}, {8883, 19169}, {10986, 14586}, {11423, 20574}, {11547, 40140}, {13567, 46064}, {14129, 30529}, {16030, 37920}, {30526, 46924}, {45735, 51887}

X(57489) = polar conjugate of X(25043)
X(57489) = polar conjugate of the isogonal conjugate of X(25044)
X(57489) = X(39286)-Ceva conjugate of X(54)
X(57489) = X(i)-isoconjugate of X(j) for these (i,j): {48, 25043}, {216, 2962}, {1953, 3519}, {2963, 44706}, {6368, 36148}, {14213, 51477}
X(57489) = X(i)-Dao conjugate of X(j) for these (i,j): {1249, 25043}, {1510, 47424}, {39018, 6368}, {53986, 12077}
X(57489) = cevapoint of X(i) and X(j) for these (i,j): {1510, 47424}, {2965, 3518}
X(57489) = trilinear pole of line {1510, 52417}
X(57489) = barycentric product X(i)*X(j) for these {i,j}: {49, 8795}, {54, 32002}, {95, 3518}, {264, 25044}, {275, 1994}, {276, 2965}, {933, 41298}, {1493, 39286}, {1510, 18831}, {2413, 14590}, {2964, 40440}, {7769, 8882}, {8884, 44180}, {37084, 52779}, {46138, 52417}, {52939, 57137}
X(57489) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 25043}, {49, 5562}, {54, 3519}, {275, 11140}, {933, 930}, {1510, 6368}, {1994, 343}, {2190, 2962}, {2413, 14592}, {2964, 44706}, {2965, 216}, {3518, 5}, {6152, 1209}, {7769, 28706}, {8795, 20572}, {8882, 2963}, {8884, 93}, {10641, 36300}, {10642, 36301}, {14129, 45793}, {14577, 36412}, {14591, 2439}, {15422, 55251}, {16813, 38342}, {18831, 46139}, {25044, 3}, {32002, 311}, {34418, 34900}, {39018, 47424}, {42405, 55217}, {44180, 52347}, {47424, 39019}, {52417, 1154}, {52939, 55283}, {54034, 51477}, {57137, 57195}


X(57490) = X(2)X(647)∩X(25)X(98)

Barycentrics    b^2*c^2*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(-a^4 + a^2*b^2 + b^2*c^2 - c^4)*(-2*a^6 + a^4*b^2 + b^6 + a^4*c^2 - b^4*c^2 - b^2*c^4 + c^6) : :

X(574) lies on the cubic K555 and these lines: {2, 647}, {25, 98}, {76, 8861}, {264, 47737}, {287, 1993}, {290, 14614}, {305, 43187}, {441, 51257}, {1073, 41530}, {1316, 14265}, {1899, 51943}, {2409, 34156}, {2715, 22075}, {5967, 13366}, {8779, 30737}, {9307, 36897}, {11433, 52451}, {11550, 20021}, {11610, 44176}, {13567, 51404}, {14458, 55006}, {15466, 22456}, {39116, 40358}, {41760, 41932}

X(57490) = polar conjugate of X(39265)
X(57490) = isogonal conjugate of the complement of X(56571)
X(57490) = isotomic conjugate of the isogonal conjugate of X(51963)
X(57490) = isogonal conjugate of the isotomic conjugate of X(51257)
X(57490) = isotomic conjugate of the polar conjugate of X(52641)
X(57490) = polar conjugate of the isogonal conjugate of X(34156)
X(57490) = X(264)-Ceva conjugate of X(14265)
X(57490) = X(i)-isoconjugate of X(j) for these (i,j): {48, 39265}, {63, 51822}, {684, 36046}, {1297, 1755}, {3289, 8767}, {9417, 35140}, {9476, 42075}, {23997, 34212}
X(57490) = X(i)-Dao conjugate of X(j) for these (i,j): {232, 2967}, {441, 36790}, {1249, 39265}, {1503, 9475}, {3162, 51822}, {15595, 36212}, {23976, 511}, {33504, 684}, {36899, 1297}, {39058, 35140}, {39071, 3289}, {39073, 11672}, {50938, 232}
X(57490) = cevapoint of X(i) and X(j) for these (i,j): {1503, 9475}, {34156, 51963}
X(57490) = trilinear pole of line {1503, 39073}
X(57490) = barycentric product X(i)*X(j) for these {i,j}: {6, 51257}, {69, 52641}, {76, 51963}, {98, 30737}, {264, 34156}, {290, 1503}, {441, 16081}, {2312, 46273}, {14265, 56572}, {15595, 34536}, {18024, 42671}, {34211, 43665}
X(57490) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 39265}, {25, 51822}, {98, 1297}, {132, 2967}, {290, 35140}, {441, 36212}, {685, 44770}, {879, 2435}, {1503, 511}, {2312, 1755}, {2395, 34212}, {2409, 4230}, {6531, 43717}, {8779, 3289}, {9475, 11672}, {14265, 56687}, {15595, 36790}, {16081, 6330}, {16318, 232}, {20021, 46164}, {20031, 32687}, {21458, 51862}, {23976, 9475}, {30737, 325}, {32696, 32649}, {34156, 3}, {34211, 2421}, {34536, 9476}, {35282, 9155}, {35906, 51937}, {36104, 36046}, {36120, 8767}, {40820, 51343}, {42671, 237}, {43045, 43034}, {43089, 14356}, {43665, 43673}, {47388, 15407}, {51257, 76}, {51437, 2211}, {51647, 51651}, {51960, 40804}, {51963, 6}, {52491, 47105}, {52641, 4}, {56572, 52091}
X(57490) = {X(34536),X(40814)}-harmonic conjugate of X(14265)


X(57491) = X(2)X(99)∩X(25)X(691)

Barycentrics    a^2*(a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 5*a^2*b^2*c^2 - 2*b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6) : :

X(57491) lies on the cubic K555 and these lines: {2, 99}, {22, 52152}, {25, 691}, {51, 10559}, {895, 9306}, {1974, 8869}, {1995, 10422}, {3060, 32583}, {3291, 52630}, {5020, 5968}, {5640, 10558}, {5943, 21460}, {6353, 30716}, {6677, 51258}, {13567, 51405}, {13595, 46783}, {14002, 15899}, {14977, 40413}, {16092, 44212}, {34545, 52668}, {37777, 39169}, {40890, 53782}

X(57491) = polar conjugate of the isogonal conjugate of X(39169)
X(57491) = X(264)-Ceva conjugate of X(14246)
X(57491) = X(i)-isoconjugate of X(j) for these (i,j): {896, 40347}, {2642, 53895}
X(57491) = X(15899)-Dao conjugate of X(40347)
X(57491) = barycentric product X(i)*X(j) for these {i,j}: {111, 37803}, {264, 39169}, {671, 37784}, {5866, 17983}, {18023, 41336}, {30786, 37777}, {41615, 46111}
X(57491) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 40347}, {691, 53895}, {5866, 6390}, {8753, 41521}, {20772, 5642}, {37777, 468}, {37784, 524}, {37803, 3266}, {39169, 3}, {41336, 187}, {41615, 3292}, {41616, 5095}
X(57491) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 111, 57481}, {1995, 15398, 14246}, {13595, 46783, 52142}


X(57492) = X(2)X(80)∩X(4)X(2184)

Barycentrics    (a - b - c)^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c + 2*a*b*c + b^2*c - a*c^2 - b*c^2 - c^3)*(a^3 + a^2*b - a*b^2 - b^3 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + b*c^2 + c^3) : :

X(57492) lies on the cubic K555 and these lines: {2, 280}, {4, 2184}, {9, 7003}, {25, 40117}, {33, 282}, {84, 1753}, {189, 36101}, {278, 24026}, {281, 53013}, {309, 30705}, {461, 19605}, {1433, 40396}, {1857, 4081}, {1861, 8808}, {1993, 13138}, {2192, 52663}, {2297, 7129}, {4183, 7367}, {7151, 23617}, {21446, 55110}, {45766, 56939}

X(57492) = isotomic conjugate of X(57479)
X(57492) = polar conjugate of X(14256)
X(57492) = polar conjugate of the isogonal conjugate of X(7367)
X(57492) = X(i)-Ceva conjugate of X(j) for these (i,j): {280, 281}, {7020, 7003}
X(57492) = X(i)-isoconjugate of X(j) for these (i,j): {7, 7114}, {31, 57479}, {40, 7053}, {48, 14256}, {56, 7013}, {57, 7011}, {63, 6611}, {77, 221}, {196, 7125}, {198, 7177}, {208, 1804}, {222, 223}, {269, 7078}, {329, 7099}, {342, 7335}, {347, 603}, {348, 2199}, {738, 55111}, {1410, 8822}, {1439, 2360}, {1817, 52373}, {2187, 7056}, {3209, 7183}, {4617, 10397}, {6614, 57101}, {7339, 53557}, {7366, 55112}, {24013, 47432}, {32714, 57233}, {40212, 55117}, {40702, 52411}
X(57492) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 7013}, {2, 57479}, {1249, 14256}, {3162, 6611}, {3341, 77}, {3900, 47432}, {5452, 7011}, {6600, 7078}, {6608, 53557}, {7952, 347}, {23050, 40}, {38966, 6129}
X(57492) = cevapoint of X(i) and X(j) for these (i,j): {33, 7008}, {3195, 20991}, {3900, 47432}
X(57492) = barycentric product X(i)*X(j) for these {i,j}: {8, 7003}, {9, 7020}, {33, 34404}, {84, 7101}, {189, 7046}, {264, 7367}, {280, 281}, {282, 318}, {309, 7079}, {312, 7008}, {341, 7129}, {346, 40836}, {1857, 44189}, {2192, 7017}, {2322, 39130}, {3596, 7154}, {4397, 40117}, {5423, 55110}, {7071, 44190}, {31623, 53013}, {40838, 46350}, {46355, 55116}
X(57492) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 57479}, {4, 14256}, {9, 7013}, {25, 6611}, {33, 223}, {41, 7114}, {55, 7011}, {84, 7177}, {189, 7056}, {220, 7078}, {268, 1804}, {271, 7183}, {280, 348}, {281, 347}, {282, 77}, {318, 40702}, {480, 55111}, {607, 221}, {1436, 7053}, {1440, 30682}, {1857, 196}, {1903, 1439}, {2188, 7125}, {2192, 222}, {2208, 7099}, {2212, 2199}, {2322, 8822}, {2332, 2360}, {2357, 52373}, {3119, 53557}, {4081, 16596}, {4105, 10397}, {4130, 57101}, {4163, 57245}, {4183, 1817}, {5423, 55112}, {6059, 3209}, {7003, 7}, {7008, 57}, {7020, 85}, {7046, 329}, {7071, 198}, {7079, 40}, {7101, 322}, {7118, 603}, {7129, 269}, {7151, 1407}, {7154, 56}, {7367, 3}, {8735, 38374}, {23970, 7358}, {34404, 7182}, {35508, 47432}, {39130, 56382}, {40117, 934}, {40836, 279}, {40838, 46352}, {40971, 40212}, {44189, 7055}, {46355, 34400}, {53013, 1214}, {55110, 479}, {55116, 55015}, {57108, 57233}
X(57492) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {280, 7020, 40836}, {280, 46350, 52389}


X(57493) = X(2)X(2501)∩X(25)X(110)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^4 - a^2*b^2 + 2*b^4 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + 2*c^4) : :

X(574) lies on the cubic K555 and these lines: {2, 2501}, {3, 40812}, {4, 46606}, {25, 110}, {232, 2421}, {297, 2396}, {394, 10425}, {458, 39291}, {2052, 6331}, {2065, 40801}, {4230, 34157}, {5649, 32697}, {9308, 40428}, {9475, 35302}, {9513, 35364}, {9766, 35142}, {18018, 39116}, {23964, 47443}, {36176, 39265}

X(57493) = polar conjugate of X(14265)
X(57493) = isogonal conjugate of the complement of X(56572)
X(57493) = polar conjugate of the isotomic conjugate of X(52091)
X(57493) = polar conjugate of the isogonal conjugate of X(34157)
X(57493) = X(i)-isoconjugate of X(j) for these (i,j): {19, 53783}, {48, 14265}, {63, 51820}, {230, 293}, {248, 1733}, {287, 8772}, {336, 1692}, {1821, 52144}, {1910, 3564}, {17462, 47388}
X(57493) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 53783}, {132, 230}, {230, 2974}, {511, 47406}, {1249, 14265}, {3162, 51820}, {11672, 3564}, {39039, 1733}, {40601, 52144}
X(57493) = cevapoint of X(i) and X(j) for these (i,j): {232, 2967}, {511, 47406}
X(57493) = trilinear pole of line {511, 17994}
X(57493) = barycentric product X(i)*X(j) for these {i,j}: {4, 52091}, {232, 8781}, {240, 8773}, {264, 34157}, {297, 2987}, {325, 3563}, {340, 39374}, {511, 35142}, {877, 35364}, {2799, 32697}, {2967, 40428}, {6530, 43705}, {10425, 16230}, {32654, 44132}, {35908, 36891}, {36051, 40703}, {39265, 56572}, {40810, 47736}
X(57493) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 53783}, {4, 14265}, {25, 51820}, {114, 2974}, {232, 230}, {237, 52144}, {240, 1733}, {297, 51481}, {511, 3564}, {2065, 47388}, {2211, 1692}, {2967, 114}, {2987, 287}, {3563, 98}, {4230, 4226}, {6530, 44145}, {8773, 336}, {10425, 17932}, {11672, 47406}, {14966, 56389}, {17994, 55122}, {32654, 248}, {32697, 2966}, {34157, 3}, {34854, 460}, {35142, 290}, {35364, 879}, {35908, 36875}, {36051, 293}, {36105, 36036}, {39265, 56687}, {39374, 265}, {42065, 17974}, {43705, 6394}, {47406, 35067}, {47736, 14382}, {51324, 12829}, {52091, 69}, {52492, 34174}


X(57494) = X(2)X(650)∩X(25)X(105)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^4*b - b^5 + a^4*c - 2*a^3*b*c + b^4*c + b*c^4 - c^5) : :

X(57494) lies on the cubic K555 and these lines: {2, 650}, {25, 105}, {226, 54364}, {673, 24584}, {919, 4548}, {927, 57477}, {948, 56639}, {1814, 1993}, {2052, 54235}, {4000, 52210}, {4244, 34160}, {6654, 19785}, {7191, 56850}, {14267, 56958}, {17776, 18018}, {28922, 31637}, {36086, 44447}, {36803, 40363}

X(57494) = isogonal conjugate of the complement of X(56573)
X(57494) = isotomic conjugate of the isogonal conjugate of X(51961)
X(57494) = polar conjugate of the isogonal conjugate of X(34160)
X(57494) = X(264)-Ceva conjugate of X(14267)
X(57494) = X(672)-isoconjugate of X(26703)
X(57494) = X(i)-Dao conjugate of X(j) for these (i,j): {3827, 47431}, {5089, 34337}, {38972, 50333}
X(57494) = cevapoint of X(i) and X(j) for these (i,j): {3827, 47431}, {34160, 51961}
X(57494) = barycentric product X(i)*X(j) for these {i,j}: {76, 51961}, {264, 34160}, {2481, 3827}
X(57494) = barycentric quotient X(i)/X(j) for these {i,j}: {105, 26703}, {3827, 518}, {4244, 4238}, {20621, 34337}, {34160, 3}, {47431, 6184}, {51655, 1458}, {51961, 6}


X(57495) = X(2)X(905)∩X(25)X(104)

Barycentrics    (a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3)*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + 2*a^3*b^2*c - 3*a*b^4*c - a^4*c^2 + 2*a^3*b*c^2 - 4*a^2*b^2*c^2 + 2*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a*b^2*c^3 + 2*a^2*c^4 - 3*a*b*c^4 + b^2*c^4 + a*c^5 - c^6) : :

X(57495) lies on the cubic K555 and these lines: {2, 905}, {25, 104}, {189, 5435}, {278, 2052}, {345, 13136}, {497, 14198}, {1073, 17776}, {1309, 44695}, {1993, 23122}, {1997, 36795}, {2405, 43058}, {3488, 36944}, {7435, 39175}, {14547, 36819}, {34231, 56638}, {36845, 51565}

X(57495) = polar conjugate of X(54241)
X(57495) = polar conjugate of the isogonal conjugate of X(39175)
X(57495) = X(264)-Ceva conjugate of X(14266)
X(57495) = X(i)-isoconjugate of X(j) for these (i,j): {48, 54241}, {1295, 2183}, {2431, 23706}, {36044, 52307}
X(57495) = X(i)-Dao conjugate of X(j) for these (i,j): {1249, 54241}, {6001, 47434}, {14571, 21664}, {35580, 52307}, {53991, 14571}
X(57495) = cevapoint of X(6001) and X(47434)
X(57495) = trilinear pole of line {6001, 14312}
X(57495) = barycentric product X(i)*X(j) for these {i,j}: {264, 39175}, {6001, 18816}, {14312, 54953}, {36795, 43058}
X(57495) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 54241}, {104, 1295}, {6001, 517}, {7435, 4246}, {14312, 2804}, {25640, 21664}, {32702, 32647}, {36110, 36044}, {39175, 3}, {43058, 1465}, {43728, 43737}, {47434, 23980}, {51359, 1785}, {51399, 1875}, {51660, 1457}, {57445, 3326}


X(57496) = X(2)X(339)∩X(25)X(935)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-2*a^2 + b^2 + c^2)*(a^4 - a^2*b^2 + b^4 - c^4)*(-a^4 + b^4 + a^2*c^2 - c^4) : :

X(57496) lies on the cubic K555 and these lines: {2, 339}, {4, 13574}, {25, 935}, {67, 1899}, {305, 4590}, {427, 523}, {468, 14357}, {1993, 17708}, {3455, 40102}, {4074, 9516}, {4235, 52898}, {5094, 10415}, {18022, 40826}, {44146, 51541}

X(57496) = isotomic conjugate of X(57481)
X(57496) = polar conjugate of X(14246)
X(57496) = polar conjugate of the isogonal conjugate of X(14357)
X(57496) = X(264)-Ceva conjugate of X(39269)
X(57496) = X(i)-isoconjugate of X(j) for these (i,j): {23, 36060}, {31, 57481}, {48, 14246}, {63, 52142}, {897, 10317}, {923, 22151}, {4575, 10561}, {9247, 52551}, {9517, 36142}, {14908, 16568}, {36085, 42659}
X(57496) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 57481}, {136, 10561}, {690, 47415}, {1249, 14246}, {1560, 23}, {2482, 22151}, {3162, 52142}, {6593, 10317}, {8791, 19330}, {15900, 895}, {23992, 9517}, {38988, 42659}, {48317, 2492}
X(57496) = cevapoint of X(690) and X(47415)
X(57496) = crossdifference of every pair of points on line {10317, 42659}
X(57496) = barycentric product X(i)*X(j) for these {i,j}: {67, 44146}, {264, 14357}, {468, 18019}, {524, 46105}, {935, 35522}, {3266, 8791}, {10415, 34336}, {34897, 37778}, {51823, 57476}
X(57496) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 57481}, {4, 14246}, {25, 52142}, {67, 895}, {187, 10317}, {264, 52551}, {351, 42659}, {468, 23}, {524, 22151}, {690, 9517}, {935, 691}, {2157, 36060}, {2501, 10561}, {2970, 10555}, {3266, 37804}, {3455, 14908}, {4235, 52630}, {5095, 6593}, {5642, 16165}, {8791, 111}, {10415, 15398}, {12828, 12824}, {14273, 2492}, {14357, 3}, {18019, 30786}, {23992, 47415}, {34336, 7664}, {37778, 37765}, {44102, 18374}, {44146, 316}, {46105, 671}, {47415, 55048}, {53156, 53177}
X(57496) = {X(2),X(18019)}-harmonic conjugate of X(57476)


X(57497) = X(2)X(17904)∩X(25)X(675)

Barycentrics    b^2*c^2*(a^2 + a*b + b^2 - a*c - b*c)*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-a^2 + a*b - a*c + b*c - c^2) : :

X(57497) lies on the circumconic {{A,B,C,X(2),X(7) }}, cubic K555, and these lines: {2, 17904}, {4, 8049}, {7, 20122}, {25, 675}, {27, 14377}, {92, 27475}, {264, 1268}, {331, 14004}, {1246, 15320}, {1993, 2989}, {2052, 52781}, {2400, 46107}, {31634, 39293}

X(57497) = isotomic conjugate of X(56813)
X(57497) = polar conjugate of X(3730)
X(57497) = polar conjugate of the isogonal conjugate of X(14377)
X(57497) = X(i)-isoconjugate of X(j) for these (i,j): {3, 15624}, {31, 56813}, {48, 3730}, {100, 22388}, {184, 3681}, {228, 4184}, {577, 17916}, {906, 6586}, {1110, 22084}, {1734, 32656}, {4558, 21837}, {9247, 17233}, {14575, 33932}, {32739, 57106}
X(57497) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 56813}, {514, 22084}, {1249, 3730}, {5190, 6586}, {8054, 22388}, {36103, 15624}, {40619, 57106}
X(57497) = cevapoint of X(i) and X(j) for these (i,j): {514, 22084}, {2973, 7649}
X(57497) = barycentric product X(i)*X(j) for these {i,j}: {264, 14377}, {3261, 26705}, {7649, 31624}, {15320, 44129}, {43190, 46107}
X(57497) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 56813}, {4, 3730}, {19, 15624}, {27, 4184}, {92, 3681}, {158, 17916}, {264, 17233}, {331, 33298}, {469, 26911}, {649, 22388}, {693, 57106}, {1086, 22084}, {1969, 33932}, {2969, 20974}, {2973, 116}, {3261, 57054}, {7649, 6586}, {14377, 3}, {15320, 71}, {17924, 1734}, {23989, 40618}, {24002, 57188}, {26705, 101}, {31624, 4561}, {32701, 32642}, {36109, 36039}, {41013, 4006}, {43190, 1331}, {44129, 33297}, {46107, 25259}, {56875, 17746}


X(57498) = X(2)X(85)∩X(25)X(934)

Barycentrics    (a + b - c)^2*(a - b + c)^2*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5 + a^4*c - 4*a^3*b*c + 4*a^2*b^2*c - b^4*c - 2*a^3*c^2 + 4*a^2*b*c^2 - 2*a*b^2*c^2 - 2*a^2*c^3 + a*c^4 - b*c^4 + c^5) : :

X(57448) lies on the cubic K555 and these lines: {2, 85}, {25, 934}, {347, 50562}, {910, 9533}, {1536, 31527}, {1763, 7177}, {2052, 13149}, {3160, 7580}, {3474, 23973}, {11347, 14256}, {17080, 23603}, {37419, 56382}

X(57498) = isotomic conjugate of the polar conjugate of X(56871)
X(57498) = X(264)-Ceva conjugate of X(14256)
X(57498) = X(657)-isoconjugate of X(46964)
X(57498) = barycentric product X(69)*X(56871)
X(57498) = barycentric quotient X(i)/X(j) for these {i,j}: {934, 46964}, {56871, 4}


X(57499) = X(2)X(6501)∩X(25)X(100)

Barycentrics    (a^2 + b^2 - c^2)*(a*b - b^2 + a*c - c^2)*(a^2 - b^2 + c^2)*(a^3 - a^2*b - a*b^2 + b^3 - 2*a*b*c + a*c^2 + b*c^2)*(a^3 + a*b^2 - a^2*c - 2*a*b*c + b^2*c - a*c^2 + c^3) : :

X(57499) lies on the cubic K555 and these lines: {2, 6591}, {25, 100}, {278, 4554}, {345, 35574}, {1026, 2356}, {1993, 2991}, {2414, 46108}, {4238, 34159}, {5089, 42720}, {7115, 31615}, {15149, 55260}

X(57499) = polar conjugate of X(14267)
X(57499) = polar conjugate of the isogonal conjugate of X(34159)
X(57499) = X(i)-isoconjugate of X(j) for these (i,j): {48, 14267}, {1438, 34381}, {1738, 32658}, {3290, 36057}, {20728, 51838}
X(57499) = X(i)-Dao conjugate of X(j) for these (i,j): {518, 20728}, {1249, 14267}, {6184, 34381}, {20621, 3290}
X(57499) = cevapoint of X(i) and X(j) for these (i,j): {518, 20728}, {5089, 34337}
X(57499) = barycentric product X(i)*X(j) for these {i,j}: {264, 34159}, {2991, 46108}, {3263, 15344}
X(57499) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 14267}, {518, 34381}, {1861, 1738}, {2991, 1814}, {4238, 4236}, {5089, 3290}, {6184, 20728}, {15149, 16752}, {15344, 105}, {34159, 3}, {34337, 120}, {42071, 20455}


X(57500) = X(2)X(1972)∩X(51)X(647)

Barycentrics    a^4*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^4*b^4 - 2*a^2*b^6 + b^8 + a^6*c^2 + a^2*b^4*c^2 - 2*b^6*c^2 - 2*a^4*c^4 + b^4*c^4 + a^2*c^6)*(a^6*b^2 - 2*a^4*b^4 + a^2*b^6 + a^4*c^4 + a^2*b^2*c^4 + b^4*c^4 - 2*a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(57500) lies on the cubics K555, K693, and K791, and also on these lines: {2, 1972}, {25, 53708}, {51, 647}, {184, 9419}, {1298, 16030}, {1987, 9475}, {3148, 14251}, {3289, 23611}, {23098, 36212}, {23357, 23606}, {51335, 51336}

X(57500) = isogonal conjugate of the isotomic conjugate of X(40804)
X(57500) = X(52177)-Ceva conjugate of X(237)
X(57500) = X(i)-isoconjugate of X(j) for these (i,j): {75, 32545}, {290, 1955}, {293, 16089}, {336, 41204}, {401, 1821}, {1910, 44137}, {1971, 46273}, {6130, 36036}
X(57500) = X(i)-Dao conjugate of X(j) for these (i,j): {132, 16089}, {206, 32545}, {2679, 6130}, {11672, 44137}, {40601, 401}, {52878, 32428}
X(57500) = cevapoint of X(6) and X(32542)
X(57500) = trilinear pole of line {39469, 52967}
X(57500) = barycentric product X(i)*X(j) for these {i,j}: {6, 40804}, {232, 14941}, {237, 1972}, {297, 52177}, {511, 1987}, {684, 53708}, {1755, 1956}, {32542, 40810}, {39469, 53205}, {39683, 51543}
X(57500) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 32545}, {232, 16089}, {237, 401}, {511, 44137}, {1956, 46273}, {1972, 18024}, {1987, 290}, {2211, 41204}, {2491, 6130}, {9417, 1955}, {9418, 1971}, {9419, 52128}, {32542, 14382}, {40804, 76}, {51960, 51257}, {52177, 287}, {52967, 32428}, {53175, 53173}, {53708, 22456}


X(57501) = X(3)X(48)∩X(4)X(101)

Barycentrics    a^4*(a - b - c)*(a^2 - b^2 - c^2)*(a^2*b - b^3 + a^2*c + a*b*c - c^3) : :

X(57501) lies on the cubic K009 and these lines: {2, 57416}, {3, 48}, {4, 101}, {6, 40591}, {32, 32656}, {41, 5452}, {56, 39046}, {220, 1011}, {284, 2335}, {579, 40572}, {958, 3789}, {1066, 2260}, {2198, 2352}, {3190, 41320}, {3730, 26915}, {6056, 52425}, {7139, 26893}, {20752, 22341}, {20805, 39006}, {23207, 52370}, {34544, 39166}

X(57501) = isogonal conjugate of the polar conjugate of X(3190)
X(57501) = X(i)-Ceva conjugate of X(j) for these (i,j): {101, 8676}, {284, 212}, {2983, 4055}, {57416, 71}
X(57501) = X(i)-isoconjugate of X(j) for these (i,j): {19, 15467}, {34, 40011}, {272, 40149}, {273, 1751}, {278, 2997}, {331, 2218}, {1305, 17924}, {1441, 40574}, {1847, 56146}, {13149, 23289}
X(57501) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 15467}, {72, 349}, {8676, 5190}, {11517, 40011}
X(57501) = crossdifference of every pair of points on line {7649, 21184}
X(57501) = barycentric product X(i)*X(j) for these {i,j}: {3, 3190}, {48, 27396}, {71, 56000}, {78, 2352}, {209, 283}, {212, 3868}, {219, 579}, {284, 51574}, {394, 41320}, {652, 57217}, {1260, 4306}, {1331, 8676}, {1812, 2198}, {2193, 22021}, {4587, 43060}, {5125, 6056}, {18134, 52425}, {20294, 32656}
X(57501) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15467}, {212, 2997}, {219, 40011}, {579, 331}, {2198, 40149}, {2352, 273}, {3190, 264}, {4055, 28786}, {8676, 46107}, {22021, 52575}, {27396, 1969}, {32656, 1305}, {41320, 2052}, {51574, 349}, {52425, 1751}, {56000, 44129}, {57217, 46404}


X(57502) = X(3)X(73)∩X(4)X(109)

Barycentrics    a^4*(a + b - c)*(a - b + c)*(a^2 - b^2 - c^2)*(a^4*b - 2*a^2*b^3 + b^5 + a^4*c - a^3*b*c - a^2*b^2*c + a*b^3*c - a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 - 2*a^2*c^3 + a*b*c^3 - b^2*c^3 + c^5) : :

X(57502) lies on the cubic K009 and these lines: {2, 57417}, {3, 73}, {4, 109}, {32, 32660}, {34, 1730}, {56, 40613}, {221, 13738}, {478, 2183}, {1399, 19366}, {1935, 24537}, {2654, 11496}, {3454, 26364}, {6337, 6517}, {10571, 19368}, {12514, 37558}, {52087, 54322}, {56549, 56818}

X(57502) = isogonal conjugate of the polar conjugate of X(56549)
X(57502) = X(i)-Ceva conjugate of X(j) for these (i,j): {1167, 7114}, {57417, 73}, {57418, 48}
X(57502) = X(i)-isoconjugate of X(j) for these (i,j): {1896, 28788}, {41906, 44426}
X(57502) = barycentric product X(i)*X(j) for these {i,j}: {3, 56549}, {73, 56001}, {394, 56818}
X(57502) = barycentric quotient X(i)/X(j) for these {i,j}: {32660, 41906}, {56001, 44130}, {56549, 264}, {56818, 2052}


X(57503) = X(3)X(695)∩X(4)X(35971)

Barycentrics    a^6*(b^2 + c^2)*(b^4 + a^2*c^2)*(a^2*b^2 + c^4) : :

X(57503) lies on the cubic K009 and these lines: {3, 695}, {4, 35971}, {32, 14946}, {880, 7836}, {1975, 9496}, {9236, 18900}, {9494, 44164}, {27369, 40377}

X(57503) = X(i)-isoconjugate of X(j) for these (i,j): {83, 1925}, {308, 1965}, {384, 18833}, {1582, 40016}, {3112, 9230}
X(57503) = X(i)-Dao conjugate of X(j) for these (i,j): {688, 35971}, {34452, 9230}
X(57503) = cevapoint of X(9494) and X(55050)
X(57503) = barycentric product X(i)*X(j) for these {i,j}: {38, 9236}, {39, 51948}, {695, 3051}, {1923, 9285}, {1964, 9288}, {8623, 14946}, {9229, 41331}, {51982, 56915}
X(57503) = barycentric quotient X(i)/X(j) for these {i,j}: {695, 40016}, {1923, 1965}, {1964, 1925}, {3051, 9230}, {9236, 3112}, {9288, 18833}, {41331, 384}, {51948, 308}, {55050, 35971}


X(57504) = X(3)X(114)∩X(4)X(2710)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^6 + b^6 - a^4*c^2 - a^2*b^2*c^2 - b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6)*(a^6 - a^4*b^2 + a^2*b^4 - b^6 - a^2*b^2*c^2 + b^4*c^2 - b^2*c^4 + c^6) : :

X(57504) lies on the cubic K009 and these lines: {3, 114}, {4, 2710}, {32, 35088}, {249, 315}, {525, 5254}, {6776, 15407}, {8743, 56004}, {15595, 39645}

X(57504) = X(i)-isoconjugate of X(j) for these (i,j): {19, 57475}, {293, 41363}, {1910, 37183}
X(57504) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 57475}, {132, 41363}, {2799, 36471}, {11672, 37183}
X(57504) = cevapoint of X(3569) and X(35088)
X(57504) = barycentric product X(i)*X(j) for these {i,j}: {297, 51454}, {2799, 44767}, {6393, 39645}
X(57504) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 57475}, {232, 41363}, {511, 37183}, {35088, 36471}, {39644, 1976}, {39645, 6531}, {44767, 2966}, {50732, 40820}, {51335, 39072}, {51454, 287}


X(57505) = X(3)X(238)∩X(4)X(5518)

Barycentrics    a^2*(a*b + a*c - b*c)*(a^2*b - a*b^2 - a^2*c + a*b*c - b^2*c - a*c^2 + b*c^2)*(a^2*b + a*b^2 - a^2*c - a*b*c - b^2*c + a*c^2 + b*c^2) : :

X(574) lies on the cubic K009 and these lines: {3, 238}, {4, 5518}, {32, 40610}, {55, 6376}, {56, 38986}, {2275, 15373}, {5248, 34832}

X(57505) = isogonal conjugate of the anticomplement of X(14823)
X(57505) = X(i)-isoconjugate of X(j) for these (i,j): {87, 32937}, {291, 14199}, {330, 3501}, {932, 17072}, {2162, 17786}, {4598, 21348}, {6383, 51949}, {6384, 34247}, {13588, 42027}, {18830, 23655}, {21438, 34071}
X(57505) = X(i)-Dao conjugate of X(j) for these (i,j): {3835, 23772}, {4083, 5518}, {39029, 14199}, {40610, 21438}
X(57505) = cevapoint of X(8640) and X(40610)
X(57505) = barycentric product X(i)*X(j) for these {i,j}: {43, 3500}, {2176, 54128}
X(57505) = barycentric quotient X(i)/X(j) for these {i,j}: {43, 17786}, {1914, 14199}, {2176, 32937}, {2209, 3501}, {3500, 6384}, {4083, 21438}, {6377, 23772}, {8640, 21348}, {20284, 51840}, {20979, 17072}, {40610, 5518}, {50491, 21958}, {54128, 6383}, {56806, 52657}


X(57506) = X(3)X(3667)∩X(4)X(121)

Barycentrics    (2*a - b - c)*(a^3 - 2*a^2*b - 2*a*b^2 + b^3 + a^2*c + b^2*c)*(a^3 + a^2*b - 2*a^2*c - 2*a*c^2 + b*c^2 + c^3) : :

X(57506) lies on the cubic K009 and these lines: {3, 3667}, {4, 121}, {32, 4370}, {56, 34587}, {145, 595}, {1147, 54237}, {14974, 53582}

X(57506) = isogonal conjugate of X(39264)
X(57506) = X(40101)-Ceva conjugate of X(519)
X(57506) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39264}, {88, 8610}, {106, 1739}, {679, 23644}, {2226, 17465}, {21427, 41935}, {36042, 55138}
X(57506) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39264}, {214, 1739}, {519, 121}, {5516, 55138}
X(57506) = cevapoint of X(902) and X(4370)
X(57506) = trilinear pole of line {14425, 22356}
X(57506) = barycentric product X(i)*X(j) for these {i,j}: {519, 46638}, {3977, 40101}, {15383, 36791}
X(57506) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 39264}, {44, 1739}, {678, 17465}, {902, 8610}, {1017, 23644}, {4370, 121}, {4738, 21427}, {14425, 55138}, {15383, 2226}, {22371, 22428}, {40101, 6336}, {46638, 903}, {52680, 16753}


X(57507) = X(3)X(217)∩X(4)X(26714)

Barycentrics    a^4*(a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + 2*a^2*c^2 + b^2*c^2)*(2*a^2*b^2 + a^2*c^2 + b^2*c^2 - c^4)*(2*a^6*b^2 - 4*a^4*b^4 + 2*a^2*b^6 + 2*a^6*c^2 - 3*a^4*b^2*c^2 + b^6*c^2 - 4*a^4*c^4 - 2*b^4*c^4 + 2*a^2*c^6 + b^2*c^6) : :

X(57507) lies on the cubic K009 and these lines: {3, 217}, {4, 26714}, {263, 40601}, {2211, 51338}, {9419, 51997}, {14252, 37114}, {39682, 41367}


X(57508) = X(111)X(524)∩X(597)X(1499)

Barycentrics    (a^2 - 3*a*b + b^2 + c^2)*(a^2 + 3*a*b + b^2 + c^2)*(a^2 + b^2 - 3*a*c + c^2)*(a^2 + b^2 + 3*a*c + c^2)*(4*a^6 - 3*a^4*b^2 - 6*a^2*b^4 + b^6 - 3*a^4*c^2 + 12*a^2*b^2*c^2 - 6*a^2*c^4 + c^6) : :

X(57508) lies on the cubic K018 and these lines: {111, 524}, {597, 1499}, {13493, 34011}, {32217, 34581}

X(57508) = midpoint of X(6082) and X(34898)
X(57508) = X(111)-line conjugate of X(9872)


X(57509) = X(1)X(10493)∩X(7707)X(10500)

Barycentrics    a*(b - c)*((a - b - c)*(a + b - c)*(a - b + c)*(a^2*b - a*b^2 + a^2*c - 4*a*b*c + b^2*c - a*c^2 + b*c^2) + 2*a*(2*b*(a - b - c)*c*(2*a^2 - 2*a*b - 2*a*c + b*c)*Sin[A/2] + c*(a - b + c)*(a^3 - 4*a^2*b + 3*a*b^2 - 2*a^2*c + 5*a*b*c - 5*b^2*c + a*c^2 - b*c^2)*Sin[B/2] + b*(a + b - c)*(a^3 - 2*a^2*b + a*b^2 - 4*a^2*c + 5*a*b*c - b^2*c + 3*a*c^2 - 5*b*c^2)*Sin[C/2])) : :

X(57509) lies on these lines: {1, 10493}, {7707, 10500}, {10501, 16012}


X(57510) = X(1)X(672)∩X(3)X(56527)

Barycentrics    a*(6*a^3*b^2 - 8*a^2*b^3 + 2*a*b^4 + 9*a^3*b*c - a^2*b^2*c - 9*a*b^3*c + b^4*c + 6*a^3*c^2 - a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 - 8*a^2*c^3 - 9*a*b*c^3 - b^2*c^3 + 2*a*c^4 + b*c^4) : :

X(57510) lies on the cubic K078 and these lines: {1, 672}, {3, 56527}, {5022, 5275}, {5222, 14482}, {5744, 24589}


X(57511) = X(1)X(1447)∩X(3)X(170)

Barycentrics    a*(a^6*b^2 - 4*a^5*b^3 + 6*a^4*b^4 - 4*a^3*b^5 + a^2*b^6 - 2*a^6*b*c + 4*a^5*b^2*c - 4*a^3*b^4*c + 2*a^2*b^5*c + a^6*c^2 + 4*a^5*b*c^2 + 3*a^4*b^2*c^2 - 4*a^3*b^3*c^2 - 7*a^2*b^4*c^2 + 4*a*b^5*c^2 - b^6*c^2 - 4*a^5*c^3 - 4*a^3*b^2*c^3 + 8*a^2*b^3*c^3 - 4*a*b^4*c^3 + 4*b^5*c^3 + 6*a^4*c^4 - 4*a^3*b*c^4 - 7*a^2*b^2*c^4 - 4*a*b^3*c^4 - 6*b^4*c^4 - 4*a^3*c^5 + 2*a^2*b*c^5 + 4*a*b^2*c^5 + 4*b^3*c^5 + a^2*c^6 - b^2*c^6) : :

X(57511) lies on the cubic K078 and these lines: {1, 1447}, {3, 170}, {1742, 15485}, {5527, 36489}, {9441, 56010}, {21214, 32462}

X(57511) = Thomson-isogonal conjugate of X(52155)


X(57512) = X(3)X(523)∩X(924)X(11806)

Barycentrics    (b^2 - c^2)*(-a^18 + 5*a^16*b^2 - 8*a^14*b^4 + 14*a^10*b^8 - 14*a^8*b^10 + 8*a^4*b^14 - 5*a^2*b^16 + b^18 + 5*a^16*c^2 - 20*a^14*b^2*c^2 + 31*a^12*b^4*c^2 - 22*a^10*b^6*c^2 - 2*a^8*b^8*c^2 + 28*a^6*b^10*c^2 - 37*a^4*b^12*c^2 + 22*a^2*b^14*c^2 - 5*b^16*c^2 - 8*a^14*c^4 + 31*a^12*b^2*c^4 - 39*a^10*b^4*c^4 + 28*a^8*b^6*c^4 - 38*a^6*b^8*c^4 + 51*a^4*b^10*c^4 - 35*a^2*b^12*c^4 + 10*b^14*c^4 - 22*a^10*b^2*c^6 + 28*a^8*b^4*c^6 + 16*a^6*b^6*c^6 - 22*a^4*b^8*c^6 + 22*a^2*b^10*c^6 - 10*b^12*c^6 + 14*a^10*c^8 - 2*a^8*b^2*c^8 - 38*a^6*b^4*c^8 - 22*a^4*b^6*c^8 - 8*a^2*b^8*c^8 + 4*b^10*c^8 - 14*a^8*c^10 + 28*a^6*b^2*c^10 + 51*a^4*b^4*c^10 + 22*a^2*b^6*c^10 + 4*b^8*c^10 - 37*a^4*b^2*c^12 - 35*a^2*b^4*c^12 - 10*b^6*c^12 + 8*a^4*c^14 + 22*a^2*b^2*c^14 + 10*b^4*c^14 - 5*a^2*c^16 - 5*b^2*c^16 + c^18) : :

X(57412) lies on the cubic K079 and these lines: {3, 523}, {924, 11806}, {974, 1510}, {20184, 36253}, {40630, 57065}


X(57513) = X(2)X(57222)∩X(23)X(385)

Barycentrics    (b - c)*(b + c)*(-a^6 - a^4*b^2 + a^2*b^4 + b^6 - a^4*c^2 + a^2*b^2*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 + c^6) : :
X(57513) = 3 X[14420] - X[18105], 3 X[1637] - 2 X[55192], 2 X[3267] - 3 X[18310]

X(57513) lies on the cubic K079 and these lines: {2, 57222}, {23, 385}, {520, 9969}, {1194, 2485}, {1510, 50547}, {1637, 55192}, {3267, 18310}, {3934, 14566}, {19570, 31067}, {50542, 57132}

X(57513) = midpoint of X(50542) and X(57132)
X(57513) = complement of X(57222)
X(57513) = X(23285)-Ceva conjugate of X(523)
X(57513) = X(i)-isoconjugate of X(j) for these (i,j): {163, 41513}, {1576, 39727}
X(57513) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 41513}, {251, 827}, {4858, 39727}, {36901, 40036}
X(57513) = crossdifference of every pair of points on line {39, 5938}
X(57513) = barycentric product X(i)*X(j) for these {i,j}: {523, 1369}, {661, 21598}, {850, 2916}, {1577, 21378}, {3267, 8792}, {14618, 23133}
X(57513) = barycentric quotient X(i)/X(j) for these {i,j}: {523, 41513}, {850, 40036}, {1369, 99}, {1577, 39727}, {2916, 110}, {8792, 112}, {21378, 662}, {21598, 799}, {23133, 4558}


X(57514) = X(9)X(798)∩X(523)X(661)

Barycentrics    (b - c)*(b + c)*(-a^3 - 2*a^2*b - 2*a^2*c - a*b*c + b^2*c + b*c^2) : :

X(57414) lies on the cubic K079 and these lines: {9, 798}, {523, 661}, {1213, 28217}, {1577, 4960}, {2642, 3667}, {2786, 4129}, {3716, 54277}, {4086, 4826}, {4132, 21873}, {4369, 57059}, {4404, 24048}, {4467, 27574}, {4813, 50334}, {4977, 54256}, {5949, 31946}, {6003, 32431}, {21055, 21675}, {21123, 48265}, {21221, 54104}, {27710, 44449}, {46390, 48080}, {47129, 48043}

X(57514) = reflection of X(57059) in X(4369)
X(57514) = X(81)-isoconjugate of X(29151)
X(57514) = X(40586)-Dao conjugate of X(29151)
X(57514) = barycentric product X(i)*X(j) for these {i,j}: {10, 29150}, {661, 25660}
X(57514) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 29151}, {25660, 799}, {29150, 86}


X(57515) = X(115)X(523)∩X(230)X(46517)

Barycentrics    (b - c)^2*(b + c)^2*(5*a^4 - 5*a^2*b^2 + 4*b^4 - 5*a^2*c^2 - 3*b^2*c^2 + 4*c^4) : :
X(57515) = 3 X[115] + X[23991], 11 X[115] + X[23992], 3 X[115] - X[31644], 5 X[115] + X[44398], 7 X[115] + X[45212], 11 X[23991] - 3 X[23992], 5 X[23991] - 3 X[44398], 7 X[23991] - 3 X[45212], 3 X[23992] + 11 X[31644], 5 X[23992] - 11 X[44398], 7 X[23992] - 11 X[45212], 5 X[31644] + 3 X[44398], 7 X[31644] + 3 X[45212], 7 X[44398] - 5 X[45212], X[671] + 2 X[9165], X[4590] - 9 X[9166], 4 X[5461] - X[9164], 3 X[5461] - 2 X[40511], 3 X[9164] - 8 X[40511], X[9182] - 5 X[40429], 5 X[14061] - X[14588], 3 X[44372] + 5 X[54104]

X(57515) lies on the cubic K079 and these lines: {115, 523}, {230, 46517}, {671, 9165}, {4590, 9166}, {5461, 9164}, {6722, 36953}, {7668, 56739}, {9182, 40429}, {10278, 40469}, {14061, 14588}, {44372, 54104}, {47239, 47298}

X(57515) = midpoint of X(23991) and X(31644)
X(57515) = reflection of X(36953) in X(6722)
X(57515) = X(i)-Ceva conjugate of X(j) for these (i,j): {6722, 10190}, {36953, 523}
X(57515) = {X(115),X(23991)}-harmonic conjugate of X(31644)


X(57516) = X(4)X(523)∩X(520)X(7687)

Barycentrics    (b - c)*(b + c)*(-4*a^18 + 15*a^16*b^2 - 11*a^14*b^4 - 25*a^12*b^6 + 45*a^10*b^8 - 11*a^8*b^10 - 25*a^6*b^12 + 21*a^4*b^14 - 5*a^2*b^16 + 15*a^16*c^2 - 60*a^14*b^2*c^2 + 78*a^12*b^4*c^2 - 102*a^8*b^8*c^2 + 108*a^6*b^10*c^2 - 42*a^4*b^12*c^2 + 3*b^16*c^2 - 11*a^14*c^4 + 78*a^12*b^2*c^4 - 156*a^10*b^4*c^4 + 121*a^8*b^6*c^4 - 27*a^6*b^8*c^4 - 24*a^4*b^10*c^4 + 34*a^2*b^12*c^4 - 15*b^14*c^4 - 25*a^12*c^6 + 121*a^8*b^4*c^6 - 112*a^6*b^6*c^6 + 45*a^4*b^8*c^6 - 56*a^2*b^10*c^6 + 27*b^12*c^6 + 45*a^10*c^8 - 102*a^8*b^2*c^8 - 27*a^6*b^4*c^8 + 45*a^4*b^6*c^8 + 54*a^2*b^8*c^8 - 15*b^10*c^8 - 11*a^8*c^10 + 108*a^6*b^2*c^10 - 24*a^4*b^4*c^10 - 56*a^2*b^6*c^10 - 15*b^8*c^10 - 25*a^6*c^12 - 42*a^4*b^2*c^12 + 34*a^2*b^4*c^12 + 27*b^6*c^12 + 21*a^4*c^14 - 15*b^4*c^14 - 5*a^2*c^16 + 3*b^2*c^16) : :

X(57516) lies on the cubic K079 and these lines: {4, 523}, {520, 7687}, {2485, 6128}, {6086, 13473}, {8057, 10113}, {37985, 38999}
on K079


X(57517) = X(2)X(8798)∩X(4)X(51)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^10*b^2 - 8*a^8*b^4 + 12*a^6*b^6 - 8*a^4*b^8 + 2*a^2*b^10 + 2*a^10*c^2 + a^8*b^2*c^2 - 6*a^6*b^4*c^2 + 4*a^2*b^8*c^2 - b^10*c^2 - 8*a^8*c^4 - 6*a^6*b^2*c^4 + 16*a^4*b^4*c^4 - 6*a^2*b^6*c^4 + 4*b^8*c^4 + 12*a^6*c^6 - 6*a^2*b^4*c^6 - 6*b^6*c^6 - 8*a^4*c^8 + 4*a^2*b^2*c^8 + 4*b^4*c^8 + 2*a^2*c^10 - b^2*c^10) : : X(57517) = X[4] - 3 X[1075], 2 X[4] - 3 X[14249], 4 X[4] - 9 X[51877], 3 X[1075] - 2 X[14363], 4 X[1075] - 3 X[51877], 3 X[14249] - 4 X[14363], 2 X[14249] - 3 X[51877], 8 X[14363] - 9 X[51877], X[20] + 2 X[22257], 4 X[140] - 3 X[14059], 5 X[3522] - 3 X[57451], 7 X[3523] - 6 X[53844]

X(57517) lies on the cubic K080 and these lines: {2, 8798}, {3, 14371}, {4, 51}, {20, 22257}, {64, 56296}, {107, 1498}, {140, 14059}, {264, 10574}, {648, 11413}, {1204, 41204}, {1629, 9786}, {1657, 53803}, {2883, 51358}, {3164, 3522}, {3183, 11206}, {3357, 56298}, {3462, 23329}, {3523, 46832}, {5667, 34785}, {5907, 52147}, {6696, 56297}, {6759, 40664}, {8567, 15576}, {10152, 48672}, {10193, 33549}, {11547, 18913}, {12111, 15466}, {12279, 35360}, {13093, 41372}, {13380, 16080}, {14165, 26937}, {15653, 32534}, {18917, 43995}, {41760, 52003}, {44003, 52441}, {44436, 45255}, {45185, 52057}

X(57517) = reflection of X(i) in X(j) for these {i,j}: {4, 14363}, {14249, 1075}, {15318, 3}
X(57517) = anticomplement of X(8798)
X(57517) = anticomplement of the isogonal conjugate of X(38808)
X(57517) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {204, 17035}, {1895, 2888}, {2167, 253}, {2169, 57451}, {2190, 3146}, {8882, 18663}, {33629, 6360}, {38808, 8}, {40440, 32064}
X(57517) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1075, 14363}, {4, 14363, 14249}, {1075, 14249, 51877}, {12279, 35360, 52578}


X(57518) = X(2)X(39)∩X(25)X(99)

Barycentrics    b^2*c^2*(-3*a^2 + b^2 + c^2) : :

X(57518) lies on the cubic K555 and these lines: {2, 39}, {3, 33651}, {4, 19583}, {6, 40405}, {22, 7782}, {25, 99}, {69, 3819}, {75, 24210}, {83, 11324}, {114, 43976}, {182, 37894}, {183, 16419}, {184, 56430}, {193, 3787}, {262, 40162}, {264, 1007}, {278, 4554}, {304, 3687}, {311, 34803}, {315, 7386}, {316, 1370}, {325, 1368}, {350, 5272}, {427, 7752}, {491, 46743}, {492, 46742}, {670, 9766}, {732, 21001}, {858, 7814}, {1073, 41530}, {1078, 7484}, {1184, 7760}, {1235, 8893}, {1239, 39389}, {1241, 39951}, {1502, 3815}, {1611, 7754}, {1613, 32451}, {1627, 4611}, {1799, 7485}, {1909, 5268}, {1920, 3596}, {1921, 6063}, {1975, 5020}, {1993, 4563}, {1995, 16276}, {2052, 6331}, {3051, 35275}, {3060, 4576}, {3167, 57216}, {3186, 51426}, {3190, 4561}, {3263, 3705}, {3452, 21590}, {3504, 50665}, {3972, 16951}, {3975, 7196}, {4028, 18156}, {4176, 11433}, {4417, 18157}, {5094, 52787}, {5233, 18138}, {5275, 8033}, {5359, 7894}, {5943, 18906}, {5971, 6636}, {6337, 6353}, {6383, 7179}, {6390, 6677}, {6393, 13567}, {7392, 11185}, {7394, 56435}, {7396, 32816}, {7398, 32815}, {7667, 7802}, {7734, 7767}, {7736, 9230}, {7750, 10691}, {7768, 40123}, {7773, 34609}, {7777, 35540}, {7778, 40073}, {7781, 34481}, {7796, 30739}, {7809, 31152}, {7811, 43957}, {7860, 16063}, {7868, 40035}, {7888, 30777}, {7922, 21248}, {7926, 8878}, {8920, 9744}, {9306, 12215}, {9737, 19599}, {9742, 9747}, {11123, 56740}, {11451, 33798}, {11548, 37647}, {14614, 36841}, {15246, 26233}, {15271, 33769}, {15466, 44132}, {15534, 36792}, {15820, 35524}, {18018, 30744}, {18022, 42298}, {19799, 33939}, {21415, 25960}, {21444, 23173}, {22110, 40074}, {26276, 37913}, {29655, 33937}, {29671, 33942}, {29857, 40365}, {30090, 30545}, {30474, 38380}, {30747, 40361}, {30771, 41009}, {31133, 48913}, {34229, 44149}, {34282, 45962}, {37668, 45833}, {37874, 40824}, {37880, 52145}, {38282, 44146}, {40009, 40185}, {41588, 51374}, {41760, 44377}, {47211, 57150}

X(57518) = isogonal conjugate of X(53059)
X(57518) = isotomic conjugate of X(8770)
X(57518) = polar conjugate of X(14248)
X(57518) = isotomic conjugate of the complement of X(19583)
X(57518) = isotomic conjugate of the isogonal conjugate of X(193)
X(57518) = isotomic conjugate of the polar conjugate of X(54412)
X(57518) = polar conjugate of the isogonal conjugate of X(6337)
X(57518) = X(i)-Ceva conjugate of X(j) for these (i,j): {264, 76}, {683, 69}, {8889, 8890}
X(57518) = X(i)-isoconjugate of X(j) for these (i,j): {1, 53059}, {6, 38252}, {19, 40319}, {31, 8770}, {32, 8769}, {48, 14248}, {560, 2996}, {798, 3565}, {1924, 35136}, {1973, 6391}, {2129, 53068}, {9247, 34208}
X(57518) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 8770}, {3, 53059}, {6, 40319}, {9, 38252}, {69, 3}, {193, 5023}, {1249, 14248}, {2489, 2971}, {3566, 47430}, {6337, 6391}, {6374, 2996}, {6376, 8769}, {6388, 647}, {9428, 35136}, {15525, 512}, {22401, 6467}, {30771, 34481}, {31998, 3565}, {51579, 6}
X(57518) = cevapoint of X(i) and X(j) for these (i,j): {2, 19583}, {193, 6337}, {3566, 47430}
X(57518) = trilinear pole of line {3566, 51374}
X(57518) = barycentric product X(i)*X(j) for these {i,j}: {69, 54412}, {75, 18156}, {76, 193}, {264, 6337}, {290, 51374}, {305, 6353}, {310, 4028}, {561, 1707}, {670, 3566}, {850, 57216}, {1502, 3053}, {1978, 3798}, {3167, 18022}, {3596, 17081}, {3787, 40016}, {3926, 21447}, {4609, 8651}, {6374, 47733}, {6385, 21874}, {6388, 34537}, {8940, 45806}, {8944, 45805}, {10607, 18027}, {17876, 24037}, {18023, 32459}, {19118, 40050}, {33632, 52568}, {34384, 41588}, {44168, 47430}, {52608, 57071}
X(57518) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 38252}, {2, 8770}, {3, 40319}, {4, 14248}, {6, 53059}, {69, 6391}, {75, 8769}, {76, 2996}, {99, 3565}, {193, 6}, {264, 34208}, {305, 6340}, {311, 27364}, {439, 3053}, {670, 35136}, {1007, 40809}, {1235, 47730}, {1707, 31}, {3053, 32}, {3167, 184}, {3566, 512}, {3787, 3051}, {3798, 649}, {4028, 42}, {5139, 2971}, {6091, 14908}, {6337, 3}, {6353, 25}, {6388, 3124}, {8651, 669}, {8940, 8576}, {8944, 8577}, {10607, 577}, {15525, 47430}, {17081, 56}, {17876, 2643}, {18156, 1}, {19118, 1974}, {19588, 53068}, {21447, 393}, {21874, 213}, {21970, 34417}, {30558, 40322}, {32459, 187}, {33632, 46288}, {37199, 1968}, {40326, 1196}, {41005, 45199}, {41584, 1843}, {41588, 51}, {44146, 5203}, {47430, 1084}, {47733, 3224}, {51374, 511}, {51579, 5023}, {54412, 4}, {57071, 2489}, {57216, 110}
X(57518) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 194, 1196}, {2, 305, 76}, {2, 3266, 305}, {2, 8024, 40022}, {2, 9464, 39998}, {2, 31088, 1180}, {305, 11059, 2}, {305, 40022, 8024}, {1007, 6340, 8889}, {1799, 7485, 7771}, {3266, 11059, 76}, {8024, 40022, 76}, {32451, 35294, 1613}, {46810, 46813, 37803}


X(57519) = X(2)X(3)∩X(6)X(292)

Barycentrics    a^2*(a^4*b^2 - a^2*b^4 + a^4*b*c + a^3*b^2*c - a^2*b^3*c - a*b^4*c + a^4*c^2 + a^3*b*c^2 + a^2*b^2*c^2 + a*b^3*c^2 + b^4*c^2 - a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 - a*b*c^4 + b^2*c^4) : :

X(57519) lies on these lines: {2, 3}, {6, 292}, {55, 16683}, {228, 41239}, {1724, 2664}, {1730, 18788}, {2352, 4426}, {5247, 40956}, {17379, 23079}, {19800, 19838}, {21814, 54416}

X(57519) = crossdifference of every pair of points on line {647, 812}
X(57519) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21, 16354}, {2, 33718, 16372}, {405, 11343, 37061}, {405, 11358, 19281}, {1011, 13738, 33714}


X(57520) = X(2)X(3)∩X(6)X(798)

Barycentrics    a^2*(a^4*b^2 - a^2*b^4 - a^4*b*c - a^3*b^2*c + a^2*b^3*c + a*b^4*c + a^4*c^2 - a^3*b*c^2 + a^2*b^2*c^2 - a*b^3*c^2 + b^4*c^2 + a^2*b*c^3 - a*b^2*c^3 - 2*b^3*c^3 - a^2*c^4 + a*b*c^4 + b^2*c^4) : :

X(57520) lies on these lines: {2, 3}, {6, 798}, {56, 27846}, {171, 51634}, {667, 5091}, {1975, 27853}, {4057, 38530}, {5687, 23354}, {23585, 42067}, {26657, 50686}, {35285, 37619}

X(57520) = crossdifference of every pair of points on line {647, 740}
X(57520) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 46597, 3}, {3, 25, 20839}, {3, 16375, 1011}


X(57521) = X(2)X(3)∩X(6)X(17205)

Barycentrics    3*a^4 - 2*a^3*b + a^2*b^2 - 2*a*b^3 - 2*a^3*c + 2*a^2*b*c + 2*a*b^2*c - 2*b^3*c + a^2*c^2 + 2*a*b*c^2 + 4*b^2*c^2 - 2*a*c^3 - 2*b*c^3 : :
X(57521) = X[220] + 2 X[14377]

X(57521) lies on these lines: {2, 3}, {6, 17205}, {7, 52826}, {169, 44664}, {220, 14377}, {673, 999}, {956, 24596}, {1478, 26007}, {1482, 27000}, {1565, 5819}, {2140, 3207}, {4258, 17758}, {5088, 31169}, {5540, 7223}, {5774, 24586}, {12943, 31203}, {17729, 42316}, {18525, 26531}, {18990, 41785}, {22791, 26658}, {27129, 48661}

X(57521) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4209, 17682, 3}


X(57522) = X(2)X(3)∩X(6)X(756)

Barycentrics    a*(a^5 + a^4*b - a^2*b^3 - a*b^4 + a^4*c - a^3*b*c - 7*a^2*b^2*c - 7*a*b^3*c - 2*b^4*c - 7*a^2*b*c^2 - 12*a*b^2*c^2 - 6*b^3*c^2 - a^2*c^3 - 7*a*b*c^3 - 6*b^2*c^3 - a*c^4 - 2*b*c^4) : :

X(57522) lies on these lines: {2, 3}, {6, 756}, {984, 19729}, {1001, 32914}, {1724, 1961}, {5251, 40956}, {9708, 33093}, {17017, 19737}, {19701, 32775}, {39983, 40750}

X(57522) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 405, 37061}, {2, 37316, 199}, {405, 16843, 13738}, {405, 37060, 1011}, {4204, 47511, 47523}, {5047, 47511, 4204}


X(57523) = X(2)X(3)∩X(6)X(595)

Barycentrics    a^2*(a^4*b + a^3*b^2 - a^2*b^3 - a*b^4 + a^4*c + 4*a^3*b*c - 4*a*b^3*c - b^4*c + a^3*c^2 - 6*a*b^2*c^2 - 5*b^3*c^2 - a^2*c^3 - 4*a*b*c^3 - 5*b^2*c^3 - a*c^4 - b*c^4) : :

X(57523) lies on these lines: {2, 3}, {6, 595}, {10, 8053}, {32, 52539}, {35, 56009}, {55, 1724}, {958, 48863}, {993, 55362}, {999, 19762}, {1001, 22006}, {1730, 3579}, {1975, 52572}, {2352, 54287}, {3693, 4006}, {3697, 54327}, {3871, 19742}, {3927, 10477}, {4043, 54410}, {4385, 23407}, {4428, 48867}, {4436, 28612}, {4653, 54300}, {5134, 51621}, {5248, 48866}, {5259, 16678}, {5264, 19731}, {5278, 5687}, {5283, 37590}, {5439, 22060}, {5711, 20992}, {9669, 19755}, {9709, 19732}, {10449, 29767}, {10679, 26938}, {12329, 51743}, {17194, 37536}, {18166, 37507}, {19754, 31479}, {19821, 19844}, {22139, 36750}, {22458, 31445}, {23169, 31424}, {37547, 54322}

X(57523) = crossdifference of every pair of points on line {647, 4977}
X(57523) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17524, 3}, {3, 405, 4245}, {3, 11108, 16414}, {3, 16058, 16286}, {3, 16286, 19261}, {3, 16291, 474}, {3, 16853, 16059}, {3, 16866, 28383}, {3, 19248, 404}, {3, 19250, 16453}, {4, 52241, 16290}, {21, 11319, 405}, {21, 16287, 3}, {21, 35992, 19270}, {404, 16296, 19248}, {405, 1011, 3}, {405, 2049, 11108}, {405, 11358, 16844}, {405, 37057, 13738}, {405, 37059, 16843}, {405, 37062, 7535}, {474, 16373, 16291}, {859, 16452, 3}, {1011, 13738, 37057}, {1011, 16373, 11322}, {4184, 5047, 16453}, {4184, 16453, 3}, {4189, 16374, 3}, {4195, 16289, 19259}, {4210, 17536, 16297}, {5047, 16453, 19250}, {6920, 37120, 7420}, {6986, 7416, 3}, {7420, 37120, 3}, {8021, 13726, 3}, {11108, 16414, 19253}, {11358, 16844, 16408}, {13735, 16300, 16418}, {13738, 37057, 3}, {13742, 37175, 16299}, {16451, 16859, 19241}, {16452, 16865, 859}, {16845, 37400, 16415}, {37246, 37284, 3}, {37247, 37286, 3}


X(57524) = X(2)X(3)∩X(8)X(19818)

Barycentrics    a^5*b - a*b^5 + a^5*c - 2*a^4*b*c - a^3*b^2*c - a^2*b^3*c - 4*a*b^4*c - b^5*c - a^3*b*c^2 + a*b^3*c^2 - a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 - 4*a*b*c^4 - a*c^5 - b*c^5 : :

X(57524) lies on these lines: {2, 3}, {8, 19818}, {75, 3952}, {899, 23537}, {3240, 19785}, {4651, 19787}, {7270, 19801}, {13576, 33175}, {17135, 19803}, {17165, 19805}, {19786, 29822}, {20242, 25527}, {20556, 26230}

X(57524) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 46519, 1009}, {7270, 19801, 29824}


X(57525) = ORTHOCENTROIDAL-CIRCLE-INVERSE OF X(199)

Barycentrics    a^4*b^2 + a^3*b^3 - a*b^5 - b^6 + a^3*b^2*c + a^2*b^3*c - a*b^4*c - b^5*c + a^4*c^2 + a^3*b*c^2 + 2*a^2*b^2*c^2 + 2*a*b^3*c^2 + b^4*c^2 + a^3*c^3 + a^2*b*c^3 + 2*a*b^2*c^3 + 2*b^3*c^3 - a*b*c^4 + b^2*c^4 - a*c^5 - b*c^5 - c^6 : :

X(57525) lies on these lines: {2, 3}, {11, 17017}, {12, 5311}, {1699, 39596}, {1724, 14873}, {1953, 21028}, {1961, 7951}, {3613, 15523}, {3925, 44412}, {7741, 29821}, {7752, 51857}, {10593, 17025}, {17167, 21243}, {20531, 29854}, {21318, 23635}, {29653, 39583}, {37636, 48934}

X(57525) = orthocentroidal-circle-inverse of X(199)
X(57525) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 199}, {5, 427, 3136}, {5, 34119, 2}, {5, 37355, 37990}, {469, 1011, 33329}, {469, 7380, 1011}, {5142, 37056, 27687}


X(57526) = ORTHOCENTROIDAL-CIRCLE-INVERSE OF X(402)

Barycentrics    (a^2 - b^2 - c^2)*(a^10 - a^8*b^2 - 4*a^6*b^4 + 5*a^4*b^6 + a^2*b^8 - 2*b^10 - a^8*c^2 + 9*a^6*b^2*c^2 - 5*a^4*b^4*c^2 - 9*a^2*b^6*c^2 + 6*b^8*c^2 - 4*a^6*c^4 - 5*a^4*b^2*c^4 + 16*a^2*b^4*c^4 - 4*b^6*c^4 + 5*a^4*c^6 - 9*a^2*b^2*c^6 - 4*b^4*c^6 + a^2*c^8 + 6*b^2*c^8 - 2*c^10) : :

X(5752) lies on these lines: {2, 3}, {6, 42306}, {122, 6723}, {1853, 5502}, {2972, 15059}, {5489, 38240}, {5972, 13611}, {6699, 10745}, {7740, 23325}, {14673, 23315}, {14703, 32743}, {15113, 53568}, {15526, 45311}, {15928, 16177}, {18318, 39170}, {18418, 51346}, {20208, 40920}, {23240, 46686}

orthocentroidal-circle-inverse of X(402)
X(53972)-complementary conjugate of X(8062)
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 402}, {2, 1650, 3}, {3, 3830, 18508}, {3, 38283, 15329}, {5, 15184, 2}, {402, 28144, 4}, {4240, 18870, 382}, {37926, 45289, 1657}


X(57527) = ORTHOCENTROIDAL-CIRCLE-INVERSE OF X(407)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^3 - a^2*b - 2*a*b^2 - a^2*c - 2*a*b*c - 2*b^2*c - 2*a*c^2 - 2*b*c^2) : :

X(57527) lies on these lines: {1, 1867}, {2, 3}, {6, 1826}, {8, 7140}, {34, 1882}, {92, 11396}, {184, 5786}, {225, 11375}, {283, 5788}, {960, 1824}, {1036, 1479}, {1068, 37737}, {1426, 46330}, {1724, 10826}, {1829, 39585}, {1868, 44547}, {2099, 56285}, {2905, 9308}, {3702, 5730}, {5090, 16471}, {5155, 56814}, {5307, 19701}, {7102, 12135}, {10454, 17188}, {12259, 37826}, {12953, 23868}, {21616, 39579}, {27388, 57287}

X(57527) = orthocentroidal-circle-inverse of X(407)
X(57527) = polar conjugate of the isotomic conjugate of X(5737)
X(57527) = barycentric product X(i)*X(j) for these {i,j}: {4, 5737}, {19, 10447}, {92, 10448}, {10474, 31623}
X(57527) = barycentric quotient X(i)/X(j) for these {i,j}: {5737, 69}, {10447, 304}, {10448, 63}, {10474, 1214}
X(57527) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 407}, {4, 29, 25}, {4, 406, 1894}, {4, 4185, 1889}, {4, 4207, 1904}, {4, 4213, 17555}, {4, 5136, 4185}, {4, 7498, 37384}, {4, 11109, 4214}, {4, 14004, 17516}, {4, 16066, 27}, {4, 28076, 428}, {4, 37055, 37390}, {4, 52248, 37197}, {29, 37390, 37055}, {405, 3149, 13738}, {405, 11358, 37248}, {429, 37368, 427}, {430, 37226, 4}, {964, 2478, 405}, {1826, 40950, 5130}, {2478, 6835, 7392}, {6928, 44229, 18420}, {7498, 37384, 468}, {7532, 56959, 13738}, {37055, 37390, 25}


X(57528) = ORTHOCENTROIDAL-CIRCLE-INVERSE OF X(418)

Barycentrics    a^8*b^4 - 3*a^6*b^6 + 3*a^4*b^8 - a^2*b^10 + a^8*b^2*c^2 - a^6*b^4*c^2 - 2*a^4*b^6*c^2 + 3*a^2*b^8*c^2 - b^10*c^2 + a^8*c^4 - a^6*b^2*c^4 - 2*a^4*b^4*c^4 - 2*a^2*b^6*c^4 + 4*b^8*c^4 - 3*a^6*c^6 - 2*a^4*b^2*c^6 - 2*a^2*b^4*c^6 - 6*b^6*c^6 + 3*a^4*c^8 + 3*a^2*b^2*c^8 + 4*b^4*c^8 - a^2*c^10 - b^2*c^10 : :

X(57528) lies on these lines: {2, 3}, {6, 31353}, {51, 44924}, {216, 42400}, {264, 11197}, {275, 23606}, {324, 30258}, {1853, 34845}, {2979, 10184}, {3613, 40805}, {3917, 14767}, {4993, 5012}, {5889, 45997}, {5890, 14635}, {6747, 36412}, {8901, 11402}, {12233, 31357}, {21243, 34836}, {23295, 33971}, {26905, 56341}, {32078, 42329}, {39530, 46832}, {48716, 52032}

X(57528) = complement of X(26874)
X(57528) = orthocentroidal-circle-inverse of X(418)
X(57528) = complement of the isogonal conjugate of X(56341)
X(57528) = X(56341)-complementary conjugate of X(10)
X(57528) = X(6570)-Ceva conjugate of X(523)
X(57528) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 418}, {2, 30506, 6638}, {4, 26876, 13322}, {5, 427, 34965}, {140, 13322, 26876}, {381, 6638, 30506}, {11197, 13409, 264}


X(57529) = ORTHOCENTROIDAL-CIRCLE-INVERSE OF X(426)

Barycentrics    a^10*b^2 - 3*a^8*b^4 + 4*a^6*b^6 - 4*a^4*b^8 + 3*a^2*b^10 - b^12 + a^10*c^2 - 5*a^2*b^8*c^2 + 4*b^10*c^2 - 3*a^8*c^4 + 8*a^4*b^4*c^4 + 2*a^2*b^6*c^4 - 7*b^8*c^4 + 4*a^6*c^6 + 2*a^2*b^4*c^6 + 8*b^6*c^6 - 4*a^4*c^8 - 5*a^2*b^2*c^8 - 7*b^4*c^8 + 3*a^2*c^10 + 4*b^2*c^10 - c^12 : :

X(57529) lies on these lines: {2, 3}, {6, 53848}, {154, 23333}, {5943, 34836}, {6509, 6747}, {6530, 13409}, {13366, 23583}, {14569, 41005}, {14725, 34138}, {23607, 56022}, {39569, 46832}, {39571, 52534}

X(57529) = orthocentroidal-circle-inverse of X(426)
X(57529) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 426}, {2, 5, 34965}, {2, 436, 44888}, {5, 52251, 2450}


X(57530) = ORTHOCENTROIDAL-CIRCLE-INVERSE OF X(426)

Barycentrics    a*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5 - 2*a^3*b^2 + a*b^4 + 2*a*b^3*c + 2*b^4*c - 2*a^3*c^2 + 6*a*b^2*c^2 + 2*b^3*c^2 + 2*a*b*c^3 + 2*b^2*c^3 + a*c^4 + 2*b*c^4) : :

X(57530) lies on these lines: {2, 3}, {6, 1854}, {33, 22760}, {34, 968}, {55, 5130}, {90, 1039}, {920, 1905}, {958, 1824}, {993, 26377}, {1001, 40985}, {1398, 3485}, {1826, 54285}, {1829, 12514}, {1848, 22479}, {2975, 11401}, {3486, 7071}, {3869, 11396}, {5090, 10572}, {5155, 11398}, {6261, 12136}, {11383, 46878}, {11391, 57288}, {19765, 44113}

X(57530) = orthocentroidal-circle-inverse of X(431)
X(57530) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 431}, {4, 21, 25}, {4, 378, 6985}, {4, 3541, 6842}, {4, 6824, 235}, {4, 6828, 37197}, {4, 6866, 10151}, {4, 6868, 3575}, {4, 8889, 6871}, {993, 39579, 26377}, {1593, 37318, 427}, {1595, 37290, 4}, {1597, 37234, 4}


X(57531) = ORTHOCENTROIDAL-CIRCLE-INVERSE OF X(445)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^5 - 2*a^3*b^2 + a*b^4 - 2*a^3*b*c - a^2*b^2*c + 2*a*b^3*c + b^4*c - 2*a^3*c^2 - a^2*b*c^2 - b^3*c^2 + 2*a*b*c^3 - b^2*c^3 + a*c^4 + b*c^4) : :

X(57531) lies on these lines: {2, 3}, {92, 27065}, {144, 40444}, {264, 5278}, {273, 3219}, {278, 31018}, {317, 18139}, {1119, 20078}, {1724, 52954}, {1748, 37805}, {1785, 26723}, {3578, 44134}, {5081, 32858}, {6749, 37631}, {7282, 27186}, {9308, 19742}, {16080, 54929}, {17776, 55393}, {17923, 31053}, {19684, 36794}

X(57531) = orthocentroidal-circle-inverse of X(445)
X(57531) = polar conjugate of the isogonal conjugate of X(582)
X(57531) = barycentric product X(264)*X(582)
X(57531) = barycentric quotient X(582)/X(3)
X(57531) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 445}, {26003, 37279, 2}


X(57532) = ORTHOCENTROIDAL-CIRCLE-INVERSE OF X(450)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4*b^4 - 2*a^2*b^6 + b^8 - 3*a^4*b^2*c^2 + 4*a^2*b^4*c^2 - b^6*c^2 + a^4*c^4 + 4*a^2*b^2*c^4 - 2*a^2*c^6 - b^2*c^6 + c^8) : :

X(57532) lies on these lines: {2, 3}, {6, 39034}, {125, 264}, {182, 14165}, {324, 26913}, {511, 43462}, {1941, 39571}, {3462, 36752}, {6530, 37648}, {6747, 15466}, {7998, 14918}, {9308, 26869}, {11422, 14920}, {13611, 36412}, {17907, 54012}, {18911, 41204}, {23293, 40684}, {23332, 37873}, {39569, 52147}, {45298, 56297}

X(57532) = orthocentroidal-circle-inverse of X(450)
X(57532) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 450}


X(57533) = ORTHOCENTROIDAL-CIRCLE-INVERSE OF X(460)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - a^2*b^2 + 2*b^4 - a^2*c^2 + 2*c^4) : :

X(57533) lies on these lines: {2, 3}, {6, 39645}, {141, 41762}, {264, 670}, {317, 12167}, {394, 54393}, {1249, 46444}, {1352, 40802}, {1853, 3981}, {1899, 5254}, {2501, 34290}, {3917, 7784}, {5286, 11245}, {10602, 45279}, {11470, 15274}, {14248, 34405}, {16080, 54713}, {17907, 19118}, {18384, 56409}, {18440, 54395}, {19459, 41761}, {19588, 41757}, {26869, 40814}, {36997, 42671}, {41770, 44200}, {43530, 54659}

X(57533) = orthocentroidal-circle-inverse of X(460)
X(57533) = polar conjugate of the isotomic conjugate of X(7778)
X(57533) = polar conjugate of the isogonal conjugate of X(5028)
X(57533) = X(7778)-Dao conjugate of X(6776)
X(57533) = barycentric product X(i)*X(j) for these {i,j}: {4, 7778}, {264, 5028}
X(57533) = barycentric quotient X(i)/X(j) for these {i,j}: {5028, 3}, {7778, 69}
X(57533) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 460}, {4, 297, 25}, {4, 5117, 458}, {4, 37200, 12173}, {4, 52283, 6620}, {419, 11331, 37453}, {458, 5117, 5094}, {868, 3148, 52251}, {3127, 3128, 8889}, {5000, 5001, 37071}, {6620, 52283, 468}, {32587, 32588, 25}, {33314, 41238, 30771}, {41761, 53477, 19459}


X(57534) = ORTHOCENTROIDAL-CIRCLE-INVERSE OF X(461)

Barycentrics    (a^2 + 2*a*b - 3*b^2 + 2*a*c + 2*b*c - 3*c^2)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) : :

X(57534) lies on these lines: {2, 3}, {33, 10582}, {34, 200}, {225, 5231}, {278, 1861}, {459, 43672}, {1068, 26015}, {1119, 9436}, {1828, 26047}, {1841, 44798}, {1870, 3870}, {2052, 45097}, {2550, 56366}, {3332, 23292}, {4666, 6198}, {5174, 10578}, {5342, 9780}, {7717, 17353}, {7952, 11019}, {10580, 17923}, {13405, 34231}, {16080, 54712}, {18153, 54412}, {23710, 31146}, {36845, 56876}, {43530, 54690}, {50441, 57117}, {56144, 56346}

X(57534) = orthocentroidal-circle-inverse of X(461)
X(57534) = polar conjugate of the isotomic conjugate of X(4869)
X(57534) = polar conjugate of the isogonal conjugate of X(5022)
X(57534) = barycentric product X(i)*X(j) for these {i,j}: {4, 4869}, {264, 5022}
X(57534) = barycentric quotient X(i)/X(j) for these {i,j}: {4869, 69}, {5022, 3}
X(57534) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 461}, {2, 50696, 33305}, {4, 4212, 7490}, {4, 52252, 7498}, {4, 52299, 4213}, {27, 7378, 4}, {278, 1861, 7046}, {427, 4196, 4}, {1883, 37384, 4}, {4200, 5125, 4}


X(57535) = X(1)X(3253)∩X(238)X(727)

Barycentrics    (a*b^2+a^2*(b-c)-b^2*c)^2*(a^2*(b-c)-a*c^2+b*c^2)^2 : :

X(57535) lies on the square of the Steiner circumellipse and on these lines: {1, 3253}, {238, 727}, {239, 20332}, {726, 3226}, {10009, 24343}, {23660, 40755}, {32020, 39914}

X(57535) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(83)}}, {{A, B, C, X(2), X(726)}}, {{A, B, C, X(6), X(20669)}}, {{A, B, C, X(32), X(23566)}}, {{A, B, C, X(86), X(31625)}}, {{A, B, C, X(87), X(33681)}}, {{A, B, C, X(593), X(4279)}}, {{A, B, C, X(649), X(24502)}}, {{A, B, C, X(667), X(3224)}}, {{A, B, C, X(727), X(20332)}}, {{A, B, C, X(1921), X(35958)}}, {{A, B, C, X(2162), X(21760)}}, {{A, B, C, X(2726), X(3407)}}, {{A, B, C, X(4590), X(35165)}}, {{A, B, C, X(32014), X(44168)}}, {{A, B, C, X(32020), X(33680)}}, {{A, B, C, X(51333), X(51856)}}
X(57535) = midpoint of X(i) and X(j) for these {i,j}: {3226, 33678}
X(57535) = isogonal conjugate of X(20671)
X(57535) = isotomic conjugate of X(20532)
X(57535) = trilinear pole of line {659, 3226}
X(57535) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20671}, {19, 20759}, {31, 20532}, {58, 20690}, {726, 21760}, {1575, 3009}, {17475, 40155}, {18792, 21830}, {20663, 52656}
X(57535) = X(32)-vertex conjugate of X(1016)
X(57535) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 20532}, {3, 20671}, {6, 20759}, {10, 20690}, {33678, 726}
X(57535) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 3226}, {1977, 23355}
X(57535) = pole of line {20671, 20759} with respect to the Stammler hyperbola
X(57535) = pole of line {20532, 20671} with respect to the Wallace hyperbola
X(57535) = barycentric product X(i)*X(j) for these (i, j): {3226, 3226}, {20332, 32020}
X(57535) = barycentric quotient X(i)/X(j) for these (i, j): {2, 20532}, {3, 20759}, {6, 20671}, {37, 20690}, {727, 3009}, {3226, 726}, {3253, 17793}, {8709, 23354}, {20332, 1575}, {23355, 6373}, {32020, 52043}, {34077, 21760}
X(57535) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3226, 33678, 726}


X(57536) = X(666)X(918)∩X(927)X(6084)

Barycentrics    (a-b)^2*(a-c)^2*(a^2+b*(b-c)-a*c)^2*(a^2-a*b+c*(-b+c))^2 : :

X(57536) lies on the square of the Steiner circumellipse and on these lines: {294, 53214}, {666, 918}, {673, 39293}, {765, 33676}, {812, 34906}, {927, 6084}, {1275, 5845}

X(57536) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(528)}}, {{A, B, C, X(55), X(40861)}}, {{A, B, C, X(100), X(40865)}}, {{A, B, C, X(149), X(23989)}}, {{A, B, C, X(190), X(1275)}}, {{A, B, C, X(279), X(6084)}}, {{A, B, C, X(346), X(5845)}}, {{A, B, C, X(662), X(765)}}, {{A, B, C, X(664), X(1016)}}, {{A, B, C, X(673), X(14942)}}, {{A, B, C, X(1262), X(34080)}}, {{A, B, C, X(2161), X(41932)}}, {{A, B, C, X(4366), X(8301)}}, {{A, B, C, X(4437), X(20533)}}, {{A, B, C, X(5376), X(39272)}}, {{A, B, C, X(6335), X(31625)}}, {{A, B, C, X(6653), X(20531)}}, {{A, B, C, X(16593), X(52164)}}, {{A, B, C, X(17947), X(23592)}}, {{A, B, C, X(20075), X(44355)}}, {{A, B, C, X(20539), X(26582)}}, {{A, B, C, X(30610), X(31619)}}, {{A, B, C, X(35094), X(40540)}}
X(57536) = trilinear pole of line {666, 885}
X(57536) = isogonal conjugate of X(35505)
X(57536) = isotomic conjugate of X(35094)
X(57536) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 35505}, {31, 35094}, {41, 3323}, {85, 15615}, {244, 6184}, {649, 3126}, {665, 2254}, {667, 53583}, {672, 3675}, {926, 53544}, {1015, 4712}, {1086, 42079}, {1088, 39014}, {1111, 39686}, {1362, 2170}, {1458, 17435}, {2149, 52304}, {3122, 16728}, {3248, 4437}, {3252, 38989}, {3942, 42071}, {43042, 46388}
X(57536) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35094}, {3, 35505}, {650, 52304}, {3160, 3323}, {5375, 3126}, {6631, 53583}
X(57536) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 666}, {149, 2481}, {497, 14727}, {1252, 5377}, {2550, 53227}, {3434, 46135}, {14827, 52927}, {20344, 668}, {20533, 190}, {40540, 2}, {52164, 664}
X(57536) = pole of line {35094, 35505} with respect to the Wallace hyperbola
X(57536) = barycentric product X(i)*X(j) for these (i, j): {666, 666}, {1016, 6185}, {2481, 5377}, {14942, 39293}, {31625, 41934}, {36086, 51560}, {36802, 927}, {36803, 919}, {46135, 52927}, {51838, 7035}
X(57536) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35094}, {6, 35505}, {7, 3323}, {11, 52304}, {59, 1362}, {100, 3126}, {105, 3675}, {190, 53583}, {294, 17435}, {666, 918}, {765, 4712}, {885, 52305}, {919, 665}, {927, 43042}, {1016, 4437}, {1110, 42079}, {1252, 6184}, {2175, 15615}, {4567, 16728}, {5377, 518}, {6185, 1086}, {14827, 39014}, {15742, 34337}, {23990, 39686}, {32735, 53539}, {36086, 2254}, {36146, 53544}, {36802, 50333}, {39293, 9436}, {41934, 1015}, {51838, 244}, {52927, 926}


X(57537) = X(75)X(33676)∩X(518)X(2481)

Barycentrics    b^2*c^2*(a^2+b*(b-c)-a*c)^2*(a^2-a*b+c*(-b+c))^2 : :

X(57537) lies on the square of the Steiner circumellipse and on these lines: {75, 33676}, {350, 14942}, {518, 2481}, {673, 10030}, {927, 20470}, {1921, 34852}, {6185, 30940}, {40704, 46135}, {52030, 53219}

X(57537) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(518)}}, {{A, B, C, X(6), X(20459)}}, {{A, B, C, X(11), X(40861)}}, {{A, B, C, X(75), X(308)}}, {{A, B, C, X(76), X(52621)}}, {{A, B, C, X(85), X(33677)}}, {{A, B, C, X(86), X(1275)}}, {{A, B, C, X(238), X(35026)}}, {{A, B, C, X(264), X(3261)}}, {{A, B, C, X(274), X(1016)}}, {{A, B, C, X(279), X(34434)}}, {{A, B, C, X(673), X(14942)}}, {{A, B, C, X(693), X(40704)}}, {{A, B, C, X(1252), X(5701)}}, {{A, B, C, X(1262), X(20470)}}, {{A, B, C, X(4590), X(35152)}}, {{A, B, C, X(4997), X(34084)}}, {{A, B, C, X(23582), X(53204)}}, {{A, B, C, X(32020), X(36807)}}, {{A, B, C, X(33674), X(52209)}}, {{A, B, C, X(34085), X(36803)}}, {{A, B, C, X(40827), X(44168)}}, {{A, B, C, X(46798), X(52030)}}, {{A, B, C, X(53226), X(54974)}}
X(57537) = midpoint of X(2481) and X(33675)
X(57537) = reflection of X(53227) in X(33675)
X(57537) = isogonal conjugate of X(39686)
X(57537) = isotomic conjugate of X(6184)
X(57537) = trilinear pole of line {885, 2481}
X(57537) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 39686}, {6, 42079}, {19, 20776}, {31, 6184}, {32, 4712}, {41, 1362}, {48, 42071}, {518, 9454}, {560, 4437}, {672, 2223}, {1025, 8638}, {1110, 35505}, {1438, 23612}, {1918, 16728}, {2283, 46388}, {2340, 52635}, {2356, 20752}, {3126, 32739}, {3286, 39258}, {3912, 9455}, {4564, 15615}, {7045, 39014}, {9247, 34337}
X(57537) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 6184}, {3, 39686}, {6, 20776}, {9, 42079}, {514, 35505}, {1249, 42071}, {3160, 1362}, {4762, 39012}, {6184, 23612}, {6374, 4437}, {6376, 4712}, {17115, 39014}, {33675, 518}, {34021, 16728}, {40619, 3126}
X(57537) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 2481}, {650, 14727}, {693, 46135}, {4762, 53227}, {14936, 885}, {17494, 666}
X(57537) = pole of line {20776, 39686} with respect to the Stammler hyperbola
X(57537) = pole of line {6184, 39686} with respect to the Wallace hyperbola
X(57537) = barycentric product X(i)*X(j) for these (i, j): {1502, 41934}, {2481, 2481}, {6185, 76}, {18031, 673}, {34018, 36796}, {46135, 885}, {51838, 561}
X(57537) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42079}, {2, 6184}, {3, 20776}, {4, 42071}, {6, 39686}, {7, 1362}, {75, 4712}, {76, 4437}, {105, 2223}, {264, 34337}, {274, 16728}, {518, 23612}, {666, 2284}, {673, 672}, {693, 3126}, {884, 8638}, {885, 926}, {927, 2283}, {1024, 46388}, {1086, 35505}, {1438, 9454}, {1462, 52635}, {1814, 20752}, {2481, 518}, {3261, 53583}, {3263, 23102}, {3271, 15615}, {4762, 33570}, {6185, 6}, {13576, 20683}, {14267, 20455}, {14936, 39014}, {14942, 2340}, {18031, 3912}, {18785, 39258}, {23989, 35094}, {28132, 52614}, {31637, 1818}, {34018, 241}, {34085, 1025}, {36124, 2356}, {36796, 3693}, {36803, 42720}, {41934, 32}, {43930, 53539}, {46135, 883}, {51560, 1026}, {51838, 31}, {52030, 40730}, {52209, 3252}, {52210, 20662}, {54235, 5089}
X(57537) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 33675, 53227}


X(57538) = X(521)X(18026)∩X(1275)X(23984)

Barycentrics    (a-b)^2*b^2*(a-c)^2*(a+b-c)^2*c^2*(a-b+c)^2*(a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2 : :

X(57538) lies on the square of the Steiner circumellipse and on these lines: {521, 18026}, {1275, 23984}, {6528, 53211}, {16090, 52889}, {24032, 35517}

X(57538) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(521)}}, {{A, B, C, X(76), X(40701)}}, {{A, B, C, X(85), X(276)}}, {{A, B, C, X(92), X(1948)}}, {{A, B, C, X(264), X(3261)}}, {{A, B, C, X(331), X(18027)}}, {{A, B, C, X(394), X(6360)}}, {{A, B, C, X(1214), X(44354)}}, {{A, B, C, X(1275), X(53211)}}, {{A, B, C, X(1441), X(16090)}}, {{A, B, C, X(4590), X(53191)}}, {{A, B, C, X(23582), X(46102)}}
X(57538) = midpoint of X(i) and X(j) for these {i,j}: {18026, 39060}
X(57538) = isogonal conjugate of X(39687)
X(57538) = isotomic conjugate of X(35072)
X(57538) = trilinear pole of line {4566, 18026}
X(57538) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 39687}, {6, 2638}, {31, 35072}, {32, 24031}, {41, 1364}, {48, 3270}, {184, 34591}, {212, 7117}, {255, 14936}, {560, 23983}, {577, 2310}, {652, 1946}, {657, 23224}, {663, 36054}, {810, 23090}, {822, 21789}, {1021, 39201}, {1146, 52430}, {1802, 3937}, {1918, 16731}, {2170, 6056}, {2289, 3271}, {2326, 34980}, {2968, 9247}, {3022, 7125}, {3119, 7335}, {3692, 22096}, {4091, 8641}, {4100, 42069}, {7004, 52425}, {14585, 24026}, {23614, 32674}, {33572, 34078}, {36421, 42080}
X(57538) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35072}, {3, 39687}, {9, 2638}, {281, 47432}, {1249, 3270}, {3160, 1364}, {6374, 23983}, {6376, 24031}, {6523, 14936}, {34021, 16731}, {35072, 23614}, {39053, 652}, {39060, 521}, {39062, 23090}, {40837, 7117}
X(57538) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 18026}, {92, 6528}, {347, 4569}, {2052, 52938}, {6360, 664}, {40701, 46404}, {44354, 53211}
X(57538) = pole of line {35072, 39687} with respect to the Wallace hyperbola
X(57538) = barycentric product X(i)*X(j) for these (i, j): {331, 46102}, {1262, 18027}, {1275, 2052}, {1502, 23985}, {1969, 7128}, {4554, 54240}, {4566, 6528}, {13149, 6335}, {18026, 18026}, {23984, 76}, {24032, 75}, {24033, 561}, {36127, 4572}, {46404, 653}, {52607, 6331}, {52938, 664}
X(57538) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2638}, {2, 35072}, {4, 3270}, {6, 39687}, {7, 1364}, {59, 6056}, {75, 24031}, {76, 23983}, {92, 34591}, {107, 21789}, {108, 1946}, {158, 2310}, {264, 2968}, {273, 7004}, {274, 16731}, {278, 7117}, {331, 26932}, {342, 53557}, {393, 14936}, {521, 23614}, {648, 23090}, {651, 36054}, {653, 652}, {658, 4091}, {823, 1021}, {934, 23224}, {1020, 822}, {1093, 42069}, {1118, 3271}, {1119, 3937}, {1262, 577}, {1275, 394}, {1361, 41220}, {1398, 22096}, {1425, 34980}, {1847, 3942}, {1857, 3022}, {2052, 1146}, {4564, 2289}, {4566, 520}, {4569, 4131}, {4572, 52616}, {4620, 6514}, {4998, 1259}, {6331, 15411}, {6354, 3269}, {6356, 2972}, {6528, 7253}, {7012, 212}, {7045, 255}, {7056, 7215}, {7066, 7065}, {7115, 52425}, {7128, 48}, {7138, 42080}, {7339, 7335}, {7952, 47432}, {13149, 905}, {15352, 17926}, {15466, 40616}, {15742, 1260}, {18026, 521}, {18027, 23978}, {21664, 41215}, {23582, 7054}, {23979, 14585}, {23984, 6}, {23985, 32}, {23999, 1098}, {24027, 52430}, {24032, 1}, {24033, 31}, {24035, 46391}, {32714, 22383}, {34388, 7068}, {34538, 36421}, {34922, 8606}, {36118, 1459}, {36127, 663}, {37755, 37754}, {37993, 15616}, {40149, 53560}, {40701, 16596}, {46102, 219}, {46404, 6332}, {46406, 30805}, {52607, 647}, {52610, 32320}, {52938, 522}, {53321, 39201}, {54240, 650}


X(57539) = X(2)X(52551)∩X(316)X(524)

Barycentrics    (a^2+b^2-2*c^2)^2*(a^2-2*b^2+c^2)^2 : :
X(57539) = -5*X[99]+8*X[9164], X[148]+2*X[35087], -X[8591]+4*X[40553]

X(57539) lies on the square of the Steiner circumellipse and on these lines: {2, 52551}, {99, 9164}, {111, 8859}, {115, 18823}, {148, 35087}, {316, 524}, {468, 10416}, {523, 9166}, {543, 4590}, {598, 14246}, {691, 39231}, {897, 20984}, {2770, 10555}, {3266, 18023}, {4062, 21094}, {5032, 52450}, {5466, 33919}, {5967, 9154}, {7617, 40826}, {8550, 8914}, {8591, 40553}, {9167, 42349}, {9855, 41404}, {11645, 48983}, {14971, 40429}, {14977, 50942}, {16103, 51258}, {17964, 32479}, {21358, 52756}, {23992, 46275}, {30786, 41133}, {31125, 41136}, {33799, 36953}, {35511, 41135}, {36307, 52039}, {36310, 52040}, {36523, 44373}, {41936, 52898}, {42713, 46799}, {48310, 52758}

X(57539) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(468)}}, {{A, B, C, X(4), X(8352)}}, {{A, B, C, X(6), X(8586)}}, {{A, B, C, X(67), X(8587)}}, {{A, B, C, X(76), X(9487)}}, {{A, B, C, X(98), X(11161)}}, {{A, B, C, X(99), X(9166)}}, {{A, B, C, X(111), X(42007)}}, {{A, B, C, X(115), X(543)}}, {{A, B, C, X(148), X(41135)}}, {{A, B, C, X(264), X(316)}}, {{A, B, C, X(308), X(10302)}}, {{A, B, C, X(385), X(21358)}}, {{A, B, C, X(393), X(41895)}}, {{A, B, C, X(574), X(7617)}}, {{A, B, C, X(597), X(41136)}}, {{A, B, C, X(599), X(8859)}}, {{A, B, C, X(620), X(14971)}}, {{A, B, C, X(671), X(9154)}}, {{A, B, C, X(892), X(53080)}}, {{A, B, C, X(1016), X(1268)}}, {{A, B, C, X(1275), X(53193)}}, {{A, B, C, X(1494), X(40428)}}, {{A, B, C, X(1502), X(5485)}}, {{A, B, C, X(1916), X(6094)}}, {{A, B, C, X(1989), X(9477)}}, {{A, B, C, X(1992), X(41133)}}, {{A, B, C, X(2482), X(5461)}}, {{A, B, C, X(2549), X(7615)}}, {{A, B, C, X(2966), X(31621)}}, {{A, B, C, X(3228), X(5503)}}, {{A, B, C, X(3407), X(13377)}}, {{A, B, C, X(5032), X(22110)}}, {{A, B, C, X(5466), X(17948)}}, {{A, B, C, X(5968), X(21460)}}, {{A, B, C, X(6722), X(9167)}}, {{A, B, C, X(7618), X(43620)}}, {{A, B, C, X(7620), X(43448)}}, {{A, B, C, X(7779), X(48310)}}, {{A, B, C, X(7840), X(47352)}}, {{A, B, C, X(9227), X(34898)}}, {{A, B, C, X(9307), X(42011)}}, {{A, B, C, X(9462), X(53231)}}, {{A, B, C, X(10555), X(23962)}}, {{A, B, C, X(10562), X(23357)}}, {{A, B, C, X(11160), X(41139)}}, {{A, B, C, X(11163), X(41137)}}, {{A, B, C, X(11648), X(18546)}}, {{A, B, C, X(13481), X(40416)}}, {{A, B, C, X(14061), X(41134)}}, {{A, B, C, X(14977), X(16092)}}, {{A, B, C, X(15387), X(52198)}}, {{A, B, C, X(16081), X(40427)}}, {{A, B, C, X(21356), X(22329)}}, {{A, B, C, X(30710), X(31625)}}, {{A, B, C, X(30786), X(52141)}}, {{A, B, C, X(32085), X(33698)}}, {{A, B, C, X(36889), X(46145)}}, {{A, B, C, X(39296), X(46144)}}, {{A, B, C, X(42035), X(53029)}}, {{A, B, C, X(42036), X(53030)}}, {{A, B, C, X(46245), X(53201)}}, {{A, B, C, X(46456), X(53199)}}, {{A, B, C, X(46645), X(54122)}}
X(57539) = midpoint of X(671) and X(39061)
X(57539) = reflection of X(i) in X(j) for these {i,j}: {33799, 41134}, {39061, 17948}, {46275, 23992}, {892, 39061}
X(57539) = isogonal conjugate of X(39689)
X(57539) = isotomic conjugate of X(2482)
X(57539) = trilinear pole of line {671, 5466}
X(57539) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 39689}, {6, 42081}, {31, 2482}, {32, 24038}, {41, 1366}, {48, 5095}, {163, 1649}, {187, 896}, {351, 23889}, {524, 922}, {560, 36792}, {604, 7067}, {923, 8030}, {1101, 23992}, {1333, 52068}, {1918, 16733}, {2151, 30454}, {2152, 30455}, {2642, 5467}, {9247, 34336}, {14210, 14567}, {33915, 36142}
X(57539) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 2482}, {3, 39689}, {9, 42081}, {37, 52068}, {115, 1649}, {523, 23992}, {671, 38239}, {1249, 5095}, {1649, 14444}, {2482, 8030}, {3160, 1366}, {3161, 7067}, {6374, 36792}, {6376, 24038}, {15477, 14567}, {15899, 187}, {23992, 33915}, {34021, 16733}, {36901, 52629}, {39061, 524}, {40578, 30454}, {40579, 30455}
X(57539) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 671}, {115, 5466}, {523, 892}, {5461, 2}, {6719, 2996}, {10555, 52632}, {10562, 691}, {14061, 52940}, {44010, 99}
X(57539) = pole of line {671, 14444} with respect to the Kiepert hyperbola
X(57539) = pole of line {5466, 33915} with respect to the Steiner circumellipse
X(57539) = pole of line {2482, 8030} with respect to the Wallace hyperbola
X(57539) = barycentric product X(i)*X(j) for these (i, j): {111, 18023}, {338, 34539}, {671, 671}, {1502, 41936}, {5466, 892}, {10415, 52551}, {10630, 76}, {15398, 264}, {17983, 30786}, {18818, 42008}, {34574, 850}, {46111, 895}, {46277, 897}, {52632, 691}, {53080, 9178}
X(57539) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42081}, {2, 2482}, {4, 5095}, {6, 39689}, {7, 1366}, {8, 7067}, {10, 52068}, {13, 30454}, {14, 30455}, {75, 24038}, {76, 36792}, {111, 187}, {115, 23992}, {264, 34336}, {274, 16733}, {523, 1649}, {524, 8030}, {598, 20380}, {671, 524}, {690, 33915}, {691, 5467}, {850, 52629}, {892, 5468}, {895, 3292}, {897, 896}, {923, 922}, {1648, 14444}, {2408, 9125}, {3266, 23106}, {5466, 690}, {5968, 9155}, {8029, 14443}, {8753, 44102}, {9139, 9717}, {9154, 5967}, {9178, 351}, {9213, 44814}, {9214, 5642}, {10415, 14357}, {10555, 5099}, {10630, 6}, {14246, 6593}, {14908, 23200}, {14977, 14417}, {15398, 3}, {16092, 45662}, {17948, 1641}, {17983, 468}, {18007, 33921}, {18023, 3266}, {18818, 51541}, {23894, 2642}, {30786, 6390}, {31125, 7813}, {32740, 14567}, {33919, 46049}, {34539, 249}, {34574, 110}, {36085, 23889}, {36307, 52039}, {36310, 52040}, {39061, 38239}, {41936, 32}, {42008, 39785}, {44182, 34161}, {46111, 44146}, {46277, 14210}, {46783, 9177}, {52141, 27088}, {52450, 5477}, {52483, 15303}, {52551, 7664}, {52632, 35522}, {52756, 45672}
X(57539) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {524, 17948, 39061}, {524, 39061, 892}, {671, 39061, 524}


X(57540) = X(538)X(886)∩X(729)X(3231)

Barycentrics    (b^2*c^2+a^2*(b^2-2*c^2))^2*(b^2*c^2+a^2*(-2*b^2+c^2))^2 : :

X(57540) lies on the square of the Steiner circumellipse and on these lines: {538, 886}, {729, 3231}, {14568, 38890}, {14608, 36881}, {14609, 51510}

X(57540) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(512)}}, {{A, B, C, X(83), X(4590)}}, {{A, B, C, X(98), X(35279)}}, {{A, B, C, X(598), X(53197)}}, {{A, B, C, X(691), X(39291)}}, {{A, B, C, X(729), X(3228)}}, {{A, B, C, X(733), X(41936)}}, {{A, B, C, X(886), X(9150)}}, {{A, B, C, X(1016), X(40418)}}, {{A, B, C, X(1084), X(33918)}}, {{A, B, C, X(2770), X(3407)}}, {{A, B, C, X(3224), X(9462)}}, {{A, B, C, X(10630), X(39292)}}, {{A, B, C, X(12150), X(52395)}}, {{A, B, C, X(14608), X(51510)}}, {{A, B, C, X(18842), X(41520)}}, {{A, B, C, X(23582), X(40413)}}, {{A, B, C, X(31621), X(53202)}}, {{A, B, C, X(31625), X(32009)}},{{A, B, C, X(53195), X(54974)}}
X(57540) = isogonal conjugate of X(52067)
X(57540) = isotomic conjugate of X(35073)
X(57540) = trilinear pole of line {3228, 9147}
X(57540) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52067}, {31, 35073}, {2234, 3231}, {24037, 39010}
X(57540) = X(32)-vertex conjugate of X(4590)
X(57540) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35073}, {3, 52067}, {512, 39010}
X(57540) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 3228}, {512, 886}, {44007, 670}
X(57540) = pole of line {35073, 52067} with respect to the Wallace hyperbola
X(57540) = barycentric product X(i)*X(j) for these (i, j): {3228, 3228}, {34087, 729}
X(57540) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35073}, {6, 52067}, {729, 3231}, {1084, 39010}, {3228, 538}, {9150, 23342}, {14608, 45672}, {32717, 5118}, {34087, 30736}, {37132, 2234}, {46156, 52961}, {52765, 6786}


X(57541) = X(76)X(34359)∩X(98)X(16083)

Barycentrics    b^4*c^4*(a^4+b^4-a^2*c^2-b^2*c^2)^2*(a^4-a^2*b^2-b^2*c^2+c^4)^2 : :

X(57541) lies on the square of the Steiner circumellipse and on these lines: {76, 34359}, {98, 16083}, {182, 14382}, {287, 3978}, {290, 511}, {14603, 51373}, {34238, 53197}, {39009, 46271}, {44132, 53229}

X(57541) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(182)}}, {{A, B, C, X(32), X(15391)}}, {{A, B, C, X(76), X(1237)}}, {{A, B, C, X(83), X(276)}}, {{A, B, C, X(95), X(308)}}, {{A, B, C, X(98), X(287)}}, {{A, B, C, X(264), X(16089)}}, {{A, B, C, X(691), X(39291)}}, {{A, B, C, X(850), X(44132)}}, {{A, B, C, X(1016), X(53194)}}, {{A, B, C, X(1221), X(1275)}}, {{A, B, C, X(1691), X(34359)}}, {{A, B, C, X(2395), X(34238)}}, {{A, B, C, X(2697), X(3407)}}, {{A, B, C, X(2698), X(15412)}}, {{A, B, C, X(3926), X(42373)}}, {{A, B, C, X(5661), X(23357)}}, {{A, B, C, X(18022), X(40822)}}, {{A, B, C, X(18027), X(40421)}}, {{A, B, C, X(22456), X(43187)}}, {{A, B, C, X(31625), X(40422)}}, {{A, B, C, X(36794), X(52395)}}, {{A, B, C, X(36897), X(39941)}}, {{A, B, C, X(46456), X(53199)}}
X(57541) = midpoint of X(290) and X(39058)
X(57541) = reflection of X(i) in X(j) for these {i,j}: {46271, 39009}, {53196, 39058}
X(57541) = isogonal conjugate of X(9419)
X(57541) = isotomic conjute of X(11672)
X(57541) = trilinear pole of line {290, 879}
X(57541) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 9419}, {6, 42075}, {31, 11672}, {32, 23996}, {41, 1355}, {75, 36425}, {237, 1755}, {511, 9417}, {560, 36790}, {604, 7062}, {1910, 23611}, {1917, 32458}, {1918, 16725}, {1924, 15631}, {1927, 46888}, {1959, 9418}, {2491, 23997}, {2967, 9247}, {51334, 52430}
X(57541) = X(i)-vertex conjugate of X(j) for these {i, j}: {32, 23582}
X(57541) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 11672}, {3, 9419}, {9, 42075}, {206, 36425}, {3160, 1355}, {3161, 7062}, {5976, 23098}, {6374, 36790}, {6376, 23996}, {9428, 15631}, {11672, 23611}, {14382, 52128}, {23878, 39009}, {34021, 16725}, {36899, 237}, {36901, 41167}, {39058, 511}
X(57541) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 290}, {23878, 53196}, {31296, 2966}
X(57541) = pole of line {9419, 23611} with respect to the Stammler hyperbola
X(57541) = pole of line {9419, 11672} with respect to the Wallace hyperbola
X(57541) = barycentric product X(i)*X(j) for these (i, j): {290, 290}, {1502, 41932}, {1821, 46273}, {18022, 47388}, {18024, 98}, {34536, 76}, {41173, 44173}, {43187, 43665}, {51257, 9476}
X(57541) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42075}, {2, 11672}, {6, 9419}, {7, 1355}, {8, 7062}, {32, 36425}, {75, 23996}, {76, 36790}, {98, 237}, {264, 2967}, {274, 16725}, {287, 3289}, {290, 511}, {325, 23098}, {511, 23611}, {670, 15631}, {850, 41167}, {879, 39469}, {1502, 32458}, {1821, 1755}, {1910, 9417}, {1976, 9418}, {2052, 51334}, {2395, 2491}, {2966, 14966}, {3978, 46888}, {6531, 2211}, {9154, 51980}, {14265, 51335}, {14382, 36213}, {16081, 232}, {18024, 325}, {18027, 36426}, {18858, 17938}, {20031, 34859}, {22456, 4230}, {23878, 33569}, {23962, 35088}, {34536, 6}, {36036, 23997}, {36897, 14251}, {40428, 34157}, {41173, 1576}, {41932, 32}, {43187, 2421}, {43665, 3569}, {46273, 1959}, {47388, 184}, {51257, 15595}, {52145, 9155}
X(57541) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {290, 39058, 511}, {511, 39058, 53196}


X(57542) = X(536)X(889)∩X(899)X(4607)

Barycentrics    (a*(b-2*c)+b*c)^2*(b*c+a*(-2*b+c))^2 : :
X(57542) = -X[39360]+4*X[40552]

X(57542) lies on the square of the Steiner circumellipse and on these lines: {536, 889}, {899, 4607}, {31625, 33908}, {33917, 43928}, {36817, 36872}, {39360, 40552}

X(57542) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(513)}}, {{A, B, C, X(86), X(1016)}}, {{A, B, C, X(87), X(1019)}}, {{A, B, C, X(350), X(51488)}}, {{A, B, C, X(598), X(53218)}}, {{A, B, C, X(889), X(4607)}}, {{A, B, C, X(4562), X(54974)}}, {{A, B, C, X(1015), X(33908)}}, {{A, B, C, X(1275), X(40420)}}, {{A, B, C, X(1509), X(46922)}}, {{A, B, C, X(2226), X(37128)}}, {{A, B, C, X(3227), X(37129)}}, {{A, B, C, X(4590), X(14534)}}, {{A, B, C, X(14621), X(37222)}}, {{A, B, C, X(16704), X(48577)}}, {{A, B, C, X(23582), X(53215)}}, {{A, B, C, X(31621), X(53203)}}, {{A, B, C, X(39704), X(53219)}}, {{A, B, C, X(39982), X(52205)}}, {{A, B, C, X(43928), X(46796)}}
X(57542) = isotomic conjugate of X(13466)
X(57542) = trilinear pole of line {3227, 30704}
X(57542) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 42083}, {31, 13466}, {101, 14434}, {765, 39011}, {890, 23891}, {899, 3230}, {3768, 23343}, {6632, 14441}
X(57542) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 13466}, {9, 42083}, {513, 39011}, {1015, 14434}, {13466, 8031}
X(57542) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 3227}, {513, 889}, {1015, 43928}, {44008, 668}
X(57542) = barycentric product X(i)*X(j) for these (i, j): {3227, 3227}, {31002, 37129}, {43928, 889}
X(57542) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42083}, {2, 13466}, {513, 14434}, {536, 8031}, {739, 3230}, {889, 41314}, {898, 23343}, {1015, 39011}, {1357, 47016}, {3227, 536}, {4607, 23891}, {8027, 14441}, {23349, 890}, {23892, 3768}, {31002, 6381}, {35353, 14431}, {36798, 4009}, {37129, 899}, {41683, 3994}, {43928, 891}, {46796, 36847}
X(57542) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3227, 46796, 889}


X(57543) = X(264)X(1344)∩X(290)X(15461)

Barycentrics    b^2*c^2*(-2*c^2+(a^2+b^2)*(1+J))*(2*b^2-(a^2+c^2)*(1+J)) : :

X(57543) lies on the square of the Steiner circumellipse and on these lines: {264, 1344}, {290, 15461}, {308, 41941}, {2574, 15164}, {4590, 15014}, {6331, 46813}

X(57543) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1344)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(1312), X(15014)}}, {{A, B, C, X(3228), X(16071)}}, {{A, B, C, X(8106), X(17980)}}, {{A, B, C, X(15461), X(50944)}}, {{A, B, C, X(15165), X(57541)}}
X(57543) = isotomic conjugate of X(15166)
X(57543) = trilinear pole of line {850, 15164}
X(57543) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 15166}, {48, 44126}, {798, 53385}, {810, 52132}, {1313, 9247}, {2578, 42668}
X(57543) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 15166}, {1249, 44126}, {8106, 20975}, {31998, 53385}, {39062, 52132}, {46811, 3269}
X(57543) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 15164}, {2593, 6528}, {22340, 670}
X(57543) = barycentric product X(i)*X(j) for these (i, j): {1502, 41941}, {15164, 15164}, {15461, 18022}, {46813, 46815}, {50944, 6331}, {53154, 670}
X(57543) = barycentric quotient X(i)/X(j) for these (i, j): {2, 15166}, {4, 44126}, {99, 53385}, {264, 1313}, {648, 52132}, {1113, 42668}, {1312, 20975}, {2580, 2578}, {3260, 14499}, {6331, 50945}, {6528, 53153}, {15164, 2574}, {15461, 184}, {18020, 15460}, {22339, 23109}, {23582, 41942}, {41941, 32}, {46813, 46814}, {46815, 8105}, {50944, 647}, {52131, 3049}, {53154, 512}, {53384, 39201}


X(57544) = X(264)X(1345)∩X(290)X(15460)

Barycentrics    b^2*c^2*(2*c^2+(a^2+b^2)*(-1+J))*(2*b^2+(a^2+c^2)*(-1+J)) : :

X(57544) lies on the square of the Steiner circumellipse and on these lines: {264, 1345}, {290, 15460}, {308, 41942}, {2575, 15165}, {4590, 15014}, {6331, 46810}

X(57544) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1345)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(1313), X(15014)}}, {{A, B, C, X(3228), X(16070)}}, {{A, B, C, X(8105), X(17980)}}, {{A, B, C, X(15460), X(50945)}}, {{A, B, C, X(15164), X(57541)}}
X(57544) = isotomic conjugate of X(15167)
X(57544) = trilinear pole of line {850, 15165}
X(57544) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 15167}, {48, 44125}, {798, 53384}, {810, 52131}, {1312, 9247}, {2579, 42667}
X(57544) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 15167}, {1249, 44125}, {8105, 20975}, {31998, 53384}, {39062, 52131}, {46814, 3269}
X(57544) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 15165}, {2592, 6528}, {22339, 670}
X(57544) = barycentric product X(i)*X(j) for these (i, j): {1502, 41942}, {15165, 15165}, {15460, 18022}, {46810, 46812}, {50945, 6331}, {53153, 670}
X(57544) = barycentric quotient X(i)/X(j) for these (i, j): {2, 15167}, {4, 44125}, {99, 53384}, {264, 1312}, {648, 52131}, {1114, 42667}, {1313, 20975}, {2581, 2579}, {3260, 14500}, {6331, 50944}, {6528, 53154}, {15165, 2575}, {15460, 184}, {18020, 15461}, {22340, 23110}, {23582, 41941}, {41942, 32}, {46810, 46811}, {46812, 8106}, {50945, 647}, {52132, 3049}, {53153, 512}, {53385, 39201}


X(57545) = X(826)X(4577)∩X(18828)X(33515)

Barycentrics    (b^4-c^4)^(-2) : :

X(57545) lies on the square of the Steiner circumellipse and on these lines: {826, 4577}, {18828, 33515}, {40850, 52906}

X(57545) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(754)}}, {{A, B, C, X(32), X(16985)}}, {{A, B, C, X(83), X(40850)}}, {{A, B, C, X(249), X(827)}}, {{A, B, C, X(315), X(40359)}}, {{A, B, C, X(671), X(9483)}}, {{A, B, C, X(733), X(5149)}}, {{A, B, C, X(1799), X(16095)}}, {{A, B, C, X(2896), X(7794)}}, {{A, B, C, X(9076), X(43535)}}, {{A, B, C, X(18020), X(44168)}}, {{A, B, C, X(31622), X(57541)}}
X(57545) = isotomic conjugate of X(15449)
X(57545) = trilinear pole of line {4577, 4630}
X(57545) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 15449}, {798, 2528}, {826, 2084}, {1577, 2531}, {1964, 39691}, {2643, 8041}, {3005, 8061}
X(57545) = X(3455)-vertex conjugate of X(9483)
X(57545) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 15449}, {31998, 2528}, {41884, 39691}
X(57545) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 4577}, {32, 33515}, {315, 42371}, {1369, 670}, {2896, 99}, {8878, 648}, {9233, 4630}, {20065, 53657}, {52083, 33514}, {52395, 52936}
X(57545) = barycentric product X(i)*X(j) for these (i, j): {689, 827}, {4577, 4577}, {4590, 52395}, {4593, 4599}, {34072, 37204}, {41284, 6064}, {42371, 4630}, {52936, 99}
X(57545) = barycentric quotient X(i)/X(j) for these (i, j): {2, 15449}, {83, 39691}, {99, 2528}, {249, 8041}, {689, 23285}, {827, 3005}, {1576, 2531}, {4577, 826}, {4590, 7794}, {4599, 8061}, {4630, 688}, {7340, 41285}, {34072, 2084}, {41284, 1365}, {47389, 4175}, {52395, 115}, {52936, 523}


X(57546) = X(526)X(35139)∩X(20573)X(48540)

Barycentrics    1/(a^4*(b^6-c^6+a^4*(b^2-c^2)-2*a^2*(b^4-c^4))^2) : :

X(57546) lies on the square of the Steiner circumellipse and on these lines: {526, 35139}, {20573, 48540}

X(57546) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(526)}}, {{A, B, C, X(4590), X(6331)}}, {{A, B, C, X(16081), X(40427)}}, {{A, B, C, X(18817), X(20573)}}, {{A, B, C, X(23582), X(30450)}}, {{A, B, C, X(31621), X(40832)}}
X(57546) = isotomic conjugate of X(18334)
X(57546) = trilinear pole of line {35139, 35316}
X(57546) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 18334}, {1917, 23965}, {2624, 14270}
X(57546) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 35139}, {1272, 670}, {18301, 99}
X(57546) = barycentric product X(i)*X(j) for these (i, j): {1502, 23588}, {20573, 39295}, {23966, 40362}, {35139, 35139}
X(57546) = barycentric quotient X(i)/X(j) for these (i, j): {2, 18334}, {94, 2088}, {300, 52342}, {301, 52343}, {328, 16186}, {476, 14270}, {1502, 23965}, {3268, 23108}, {18020, 3043}, {18817, 35235}, {23582, 36423}, {23588, 32}, {23966, 1501}, {32680, 2624}, {35139, 526}, {39295, 50}, {46456, 47230}


X(57547) = X(542)X(5641)∩X(6035)X(22254)

Barycentrics    (2*a^6-2*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4+c^4))^(-2) : :

X(57547) lies on the square of the Steiner circumellipse and on these lines: {542, 5641}, {6035, 22254}, {23234, 52094}

X(57547) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(542)}}, {{A, B, C, X(76), X(22254)}}, {{A, B, C, X(99), X(31621)}}, {{A, B, C, X(287), X(23234)}}, {{A, B, C, X(671), X(6330)}}, {{A, B, C, X(1494), X(4590)}}, {{A, B, C, X(1972), X(42010)}}, {{A, B, C, X(5503), X(53229)}}, {{A, B, C, X(6331), X(57541)}}, {{A, B, C, X(9141), X(44132)}}, {{A, B, C, X(14223), X(51228)}}, {{A, B, C, X(40832), X(44168)}}, {{A, B, C, X(52459), X(53201)}}
X(57547) = isotomic conjugate of X(23967)
X(57547) = trilinear pole of line {5641, 34765}
X(57547) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 23967}, {2247, 5191}, {9247, 38552}
X(57547) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23967}, {23967, 46048}
X(57547) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 5641}, {35088, 34765}
X(57547) = barycentric product X(i)*X(j) for these (i, j): {5641, 5641}, {14223, 6035}
X(57547) = barycentric quotient X(i)/X(j) for these (i, j): {2, 23967}, {264, 38552}, {542, 46048}, {842, 5191}, {5641, 542}, {6035, 14999}, {14223, 1640}, {14998, 6041}, {52094, 45662}


X(57548) = Isotomic conjugate of X(23972)

Barycentrics    (-2*a^3+a^2*(b+c)+(b-c)^2*(b+c))^(-2) : :

X(57548) lies on the square of the Steiner circumellipse and on these lines: {516, 18025}

X(57548) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(516)}}, {{A, B, C, X(8), X(76)}}, {{A, B, C, X(75), X(1275)}}, {{A, B, C, X(4025), X(23586)}}, {{A, B, C, X(4590), X(35150)}}, {{A, B, C, X(23582), X(32014)}}, {{A, B, C, X(25259), X(45282)}}, {{A, B, C, X(31625), X(53217)}}, {{A, B, C, X(53225), X(54974)}}
X(57548) = isotomic conjugate of X(23972)
X(57548) = trilinear pole of line {18025, 50333}
X(57548) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 42077}, {31, 23972}, {32, 24014}, {41, 1360}, {48, 42073}, {667, 3234}, {9247, 21665}
X(57548) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23972}, {9, 42077}, {1249, 42073}, {3160, 1360}, {6376, 24014}, {6631, 3234}
X(57548) = barycentric product X(i)*X(j) for these (i, j): {18025, 18025}
X(57548) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42077}, {2, 23972}, {4, 42073}, {7, 1360}, {75, 24014}, {190, 3234}, {264, 21665}, {677, 2426}, {2400, 676}, {18025, 516}, {36101, 910}, {43736, 1456}, {52156, 43035}, {52781, 1886}


X(57549) = X(325)X(1529)∩X(1503)X(35140)

Barycentrics    (-2*a^6+a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2))^(-2) : :

X(57549) lies on the square of the Steiner circumellipse and on these lines: {325, 1529}, {1503, 35140}, {34841, 47382}

X(57549) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1503)}}, {{A, B, C, X(69), X(325)}}, {{A, B, C, X(76), X(18848)}}, {{A, B, C, X(6330), X(14944)}}, {{A, B, C, X(23590), X(33294)}}, {{A, B, C, X(34841), X(36426)}}, {{A, B, C, X(40830), X(44168)}}
X(57549) = isotomic conjugate of X(23976)
X(57549) = trilinear pole of line {6333, 35140}
X(57549) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 23976}, {32, 24023}, {810, 15639}, {2312, 42671}, {8766, 51437}
X(57549) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23976}, {6376, 24023}, {39062, 15639}
X(57549) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 35140}
X(57549) = barycentric product X(i)*X(j) for these (i, j): {35140, 35140}
X(57549) = barycentric quotient X(i)/X(j) for these (i, j): {2, 23976}, {75, 24023}, {648, 15639}, {1297, 42671}, {6330, 16318}, {9476, 51963}, {35140, 1503}, {43717, 51437}, {44770, 2445}


X(57550) = X(517)X(18816)∩X(10428)X(53218)

Barycentrics    1/(a^2*(2*a*b*c-a^2*(b+c)+(b-c)^2*(b+c))^2) : :

X(57550) lies on the square of the Steiner circumellipse and on these lines: {517, 18816}, {10428, 53218}

X(57550) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(517)}}, {{A, B, C, X(76), X(3261)}}, {{A, B, C, X(85), X(276)}}, {{A, B, C, X(274), X(1275)}}, {{A, B, C, X(333), X(1016)}}, {{A, B, C, X(1262), X(5662)}}, {{A, B, C, X(2401), X(10428)}}, {{A, B, C, X(4590), X(35151)}}, {{A, B, C, X(14534), X(23582)}}, {{A, B, C, X(18027), X(44190)}}
X(57550) = isotomic conjugate of X(23980)
X(57550) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 42078}, {31, 23980}, {32, 24028}, {41, 1361}, {48, 42072}, {560, 26611}, {1919, 15632}, {9247, 21664}, {32739, 42757}
X(57550) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23980}, {9, 42078}, {1249, 42072}, {3160, 1361}, {3239, 41215}, {6374, 26611}, {6376, 24028}, {9296, 15632}, {40619, 42757}
X(57550) = X(2)-cross conjugate of X(18816)
X(57550) = barycentric product X(i)*X(j) for these (i, j): {1502, 41933}, {18816, 18816}
X(57550) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42078}, {2, 23980}, {4, 42072}, {7, 1361}, {75, 24028}, {76, 26611}, {264, 21664}, {668, 15632}, {693, 42757}, {1364, 41220}, {1565, 35012}, {2401, 3310}, {2968, 41215}, {3262, 23101}, {13136, 2427}, {16082, 14571}, {18816, 517}, {34234, 2183}, {34387, 3326}, {38955, 51377}, {41933, 32}, {43728, 53549}


X(57551) = Isotomic conjugate of X(23986)

Barycentrics    (-2*a^4+a^2*(b-c)^2+a^3*(b+c)-a*(b-c)^2*(b+c)+(b^2-c^2)^2)^(-2) : :

X(57551) lies on the square of the Steiner circumellipse and on these lines: {515, 34393}

X(57551) = isotomic conjugate of X(23986)
X(57551) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(515)}}, {{A, B, C, X(76), X(348)}}, {{A, B, C, X(312), X(1016)}}, {{A, B, C, X(4590), X(35149)}}, {{A, B, C, X(30805), X(34403)}}
X(57551) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 42076}, {31, 23986}, {32, 24034}, {41, 1359}, {1973, 38554}
X(57551) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23986}, {9, 42076}, {3160, 1359}, {6337, 38554}, {6376, 24034}
X(57551) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 34393}
X(57551) = barycentric product X(i)*X(j) for these (i, j): {34393, 34393}
X(57551) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42076}, {2, 23986}, {7, 1359}, {69, 38554}, {75, 24034}, {34393, 515}, {36100, 2182}, {52780, 8755}


X(57552) = X(99)X(8371)∩X(690)X(892)

Barycentrics    1/((b-c)^2*(b+c)^2*(-2*a^2+b^2+c^2)^2) : :

X(57552) lies on the square of the Steiner circumellipse and on these lines: {99, 8371}, {543, 4590}, {671, 1641}, {689, 39413}, {690, 892}, {16093, 17983}, {39450, 45773}

X(57552) = isotomic conjugate of X(23992)
X(57552) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(543)}}, {{A, B, C, X(76), X(22254)}}, {{A, B, C, X(98), X(35279)}}, {{A, B, C, X(99), X(4590)}}, {{A, B, C, X(115), X(148)}}, {{A, B, C, X(620), X(20094)}}, {{A, B, C, X(671), X(9154)}}, {{A, B, C, X(1502), X(52551)}}, {{A, B, C, X(1916), X(10415)}}, {{A, B, C, X(2482), X(8591)}}, {{A, B, C, X(3734), X(14931)}}, {{A, B, C, X(5461), X(8596)}}, {{A, B, C, X(6331), X(44168)}}, {{A, B, C, X(6722), X(35369)}}, {{A, B, C, X(8781), X(31621)}}, {{A, B, C, X(9180), X(40429)}}, {{A, B, C, X(9293), X(40511)}}, {{A, B, C, X(11606), X(23588)}}, {{A, B, C, X(15300), X(52695)}}, {{A, B, C, X(16093), X(30786)}}, {{A, B, C, X(23992), X(40553)}}, {{A, B, C, X(39291), X(39295)}}, {{A, B, C, X(39292), X(39296)}}
X(57552) = trilinear pole of line {892, 5466}
X(57552) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 23992}, {163, 14443}, {351, 2642}, {798, 1649}, {896, 21906}, {922, 1648}, {923, 14444}, {1084, 24038}, {1924, 52629}, {2643, 39689}, {3121, 52068}, {3124, 42081}, {4117, 36792}, {36142, 46049}
X(57552) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23992}, {115, 14443}, {2482, 14444}, {9428, 52629}, {15899, 21906}, {23992, 46049}, {31998, 1649}, {35087, 41176}, {39061, 1648}
X(57552) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 892}, {115, 14728}, {148, 671}, {4590, 52940}, {7665, 648}, {8591, 99}, {14360, 670}, {35087, 34760}, {40553, 2}, {41936, 34574}, {52551, 53080}
X(57552) = pole of line {14444, 23992} with respect to the Wallace hyperbola
X(57552) = barycentric product X(i)*X(j) for these (i, j): {892, 892}, {10630, 34537}, {34539, 76}, {34574, 670}, {41936, 44168}, {45773, 52632}, {52940, 671}, {53080, 691}
X(57552) = barycentric quotient X(i)/X(j) for these (i, j): {2, 23992}, {99, 1649}, {111, 21906}, {249, 39689}, {523, 14443}, {524, 14444}, {543, 41176}, {598, 20382}, {670, 52629}, {671, 1648}, {690, 46049}, {691, 351}, {892, 690}, {4590, 2482}, {4600, 52068}, {5466, 33919}, {5468, 33915}, {6064, 7067}, {7340, 1366}, {9214, 2682}, {10630, 3124}, {15398, 20975}, {18007, 14423}, {18020, 5095}, {18023, 52628}, {22256, 32312}, {24037, 24038}, {24041, 42081}, {34537, 36792}, {34539, 6}, {34574, 512}, {34760, 33921}, {36085, 2642}, {41936, 1084}, {45773, 5467}, {52551, 5099}, {52940, 524}, {53080, 35522}


X(57553) = X(3564)X(35142)∩X(6530)X(10011)

Barycentrics    1/((-a^2+b^2+c^2)^2*(2*a^4+(b^2-c^2)^2-a^2*(b^2+c^2))^2) : :

X(57553) lies on the square of the Steiner circumellipse and on these lines: {3564, 35142}, {6530, 10011}

X(57553) = isotomic conjugate of X(35067)
X(57553) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3564)}}, {{A, B, C, X(4), X(297)}}, {{A, B, C, X(264), X(4590)}}, {{A, B, C, X(276), X(44168)}}
X(57553) = trilinear pole of line {16230, 35142}
X(57553) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 35067}, {2974, 9247}
X(57553) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 35142}
X(57553) = barycentric product X(i)*X(j) for these (i, j): {35142, 35142}
X(57553) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35067}, {264, 2974}, {3563, 52144}, {35142, 3564}, {40428, 53783}


X(57554) = X(86)X(9505)∩X(291)X(2669)

Barycentrics    1/((b+c)^2*(a^2-b*c)^2) : :

X(57554) lies on the square of the Steiner circumellipse and on these lines: {86, 9505}, {274, 36225}, {291, 2669}, {335, 4639}, {740, 18827}, {1509, 3110}, {3286, 36066}, {3842, 30663}, {20142, 37128}, {24505, 51314}

X(57554) = isotomic conjugate of X(35068)
X(57554) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(740)}}, {{A, B, C, X(6), X(40031)}}, {{A, B, C, X(76), X(7178)}}, {{A, B, C, X(86), X(4590)}}, {{A, B, C, X(249), X(3110)}}, {{A, B, C, X(274), X(2669)}}, {{A, B, C, X(291), X(335)}}, {{A, B, C, X(661), X(24505)}}, {{A, B, C, X(1016), X(1220)}}, {{A, B, C, X(1221), X(1268)}}, {{A, B, C, X(1275), X(31643)}}, {{A, B, C, X(1509), X(7340)}}, {{A, B, C, X(4444), X(51225)}}, {{A, B, C, X(4589), X(4639)}}, {{A, B, C, X(6541), X(36218)}}, {{A, B, C, X(7192), X(30940)}}, {{A, B, C, X(21897), X(36225)}}, {{A, B, C, X(23582), X(40411)}}
X(57554) = trilinear pole of line {876, 18009}
X(57554) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 4094}, {31, 35068}, {41, 3027}, {213, 4368}, {740, 41333}, {756, 51328}, {872, 4366}, {1500, 8300}, {2210, 4037}, {2238, 3747}, {3573, 46390}, {4154, 40729}, {7109, 39044}
X(57554) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35068}, {9, 4094}, {3160, 3027}, {6626, 4368}
X(57554) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 18827}, {661, 18829}, {3124, 876}, {31290, 4562}
X(57554) = pole of line {4368, 35068} with respect to the Wallace hyperbola
X(57554) = barycentric product X(i)*X(j) for these (i, j): {1509, 40098}, {18827, 18827}, {30642, 7303}, {30663, 873}, {37128, 40017}
X(57554) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4094}, {2, 35068}, {7, 3027}, {86, 4368}, {335, 4037}, {593, 51328}, {741, 3747}, {757, 8300}, {873, 39044}, {876, 4155}, {1509, 4366}, {3572, 46390}, {7233, 7235}, {7341, 12835}, {17103, 4154}, {18268, 41333}, {18827, 740}, {30663, 756}, {36066, 3573}, {36800, 3985}, {37128, 2238}, {40017, 3948}, {40098, 594}, {46159, 4093}, {51856, 7109}, {52205, 1500}


X(57555) = Isotomic conjugate of X(35069)

Barycentrics    1/(a^2*(b+c)^2*(-a^2+b^2-b*c+c^2)^2) : :

X(57555) lies on the square of the Steiner circumellipse and on these lines: {758, 14616}

X(57555) = isotomic conjugate of X(35069)
X(57555) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(758)}}, {{A, B, C, X(249), X(4560)}}, {{A, B, C, X(274), X(4590)}}, {{A, B, C, X(1016), X(30710)}}, {{A, B, C, X(1275), X(32014)}}, {{A, B, C, X(23582), X(31623)}}, {{A, B, C, X(24624), X(40437)}}, {{A, B, C, X(31625), X(32018)}}
X(57555) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 35069}, {32, 4736}, {41, 3028}, {181, 34544}, {215, 2171}, {756, 52059}, {1983, 42666}, {2245, 3724}, {4053, 52434}
X(57555) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35069}, {3160, 3028}, {6376, 4736}
X(57555) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 14616}, {1577, 35139}
X(57555) = barycentric product X(i)*X(j) for these (i, j): {14616, 14616}, {34535, 52379}
X(57555) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35069}, {7, 3028}, {60, 215}, {75, 4736}, {261, 4996}, {593, 52059}, {759, 3724}, {2185, 34544}, {7341, 41282}, {14616, 758}, {18359, 4053}, {24624, 2245}, {26856, 35128}, {34535, 2171}, {37140, 1983}, {52380, 2361}


X(57556) = X(520)X(6528)∩X(852)X(16089)

Barycentrics    1/(a^4*(b-c)^2*(b+c)^2*(-a^2+b^2+c^2)^4) : :

X(57556) lies on the square of the Steiner circumellipse and on these lines: {520, 6528}, {852, 16089}, {34538, 44137}, {42401, 46456}

X(57556) = isotomic conjugate of X(35071)
X(57556) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(520)}}, {{A, B, C, X(264), X(16089)}}, {{A, B, C, X(276), X(31621)}}, {{A, B, C, X(393), X(40887)}}, {{A, B, C, X(577), X(3164)}}, {{A, B, C, X(4590), X(44181)}}, {{A, B, C, X(15352), X(32230)}}, {{A, B, C, X(23582), X(46456)}}, {{A, B, C, X(30450), X(44183)}}, {{A, B, C, X(41174), X(44168)}}
X(57556) = trilinear pole of line {6528, 35360}
X(57556) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 42080}, {31, 35071}, {41, 1363}, {48, 34980}, {184, 37754}, {604, 7065}, {810, 32320}, {822, 39201}, {1102, 23216}, {1109, 36433}, {1501, 24020}, {1917, 23974}, {1918, 16730}, {2148, 41219}, {2632, 14585}, {2972, 9247}, {3269, 52430}, {3708, 23606}, {4100, 20975}, {7138, 39687}, {23613, 24019}
X(57556) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35071}, {9, 42080}, {216, 41219}, {1249, 34980}, {3160, 1363}, {3161, 7065}, {34021, 16730}, {35071, 23613}, {39062, 32320}
X(57556) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 6528}, {3164, 648}, {6527, 670}, {18667, 18026}, {43988, 18831}, {46394, 35360}, {46717, 99}
X(57556) = barycentric product X(i)*X(j) for these (i, j): {1502, 23590}, {1625, 42369}, {1928, 24022}, {6528, 6528}, {14570, 42401}, {15352, 6331}, {18022, 32230}, {18027, 23582}, {23975, 40362}, {24021, 561}, {34538, 76}, {36434, 44168}, {46254, 6521}
X(57556) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42080}, {2, 35071}, {4, 34980}, {5, 41219}, {7, 1363}, {8, 7065}, {92, 37754}, {107, 39201}, {250, 23606}, {264, 2972}, {274, 16730}, {520, 23613}, {561, 24020}, {648, 32320}, {823, 822}, {1093, 20975}, {1502, 23974}, {2052, 3269}, {3265, 23103}, {6331, 52613}, {6521, 3708}, {6528, 520}, {6529, 3049}, {15352, 647}, {15466, 47409}, {16813, 46088}, {18020, 1092}, {18027, 15526}, {23357, 36433}, {23582, 577}, {23590, 32}, {23964, 14585}, {23975, 1501}, {23999, 255}, {24000, 52430}, {24021, 31}, {24022, 560}, {24032, 7138}, {32230, 184}, {34538, 6}, {36126, 810}, {36421, 39687}, {36434, 1084}, {42401, 15412}, {44181, 14379}, {46254, 6507}, {46724, 46093}, {52439, 23216}, {52779, 23286}


X(57557) = Isotomic conjugate of X(35075)

Barycentrics    1/((b+c)^2*(-a^4+b*(b-c)^2*c+a^2*(b^2-b*c+c^2))^2) : :

X(57557) lies on the square of the Steiner circumellipse and on these lines: {8680, 35145}, {40843, 40882}

X(57557) = isotomic conjugate of X(35075)
X(57557) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8680)}}, {{A, B, C, X(76), X(37796)}}, {{A, B, C, X(86), X(23582)}}, {{A, B, C, X(333), X(4590)}}, {{A, B, C, X(1016), X(40422)}}, {{A, B, C, X(1952), X(37142)}}
X(57557) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 35075}, {851, 42669}, {8680, 44112}
X(57557) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 35145}
X(57557) = barycentric product X(i)*X(j) for these (i, j): {35145, 35145}
X(57557) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35075}, {2249, 42669}, {35145, 8680}, {37142, 851}


X(57558) = X(694)X(10754)∩X(805)X(9429)

Barycentrics    1/((b-c)^2*(b+c)^2*(a^2-b*c)^2*(a^2+b*c)^2) : :

X(57558) lies on the square of the Steiner circumellipse and on these lines: {694, 10754}, {804, 18829}, {805, 9429}, {4590, 34238}, {5969, 41517}, {17980, 36898}, {18872, 51510}

X(57558) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(804)}}, {{A, B, C, X(32), X(9429)}}, {{A, B, C, X(99), X(44168)}}, {{A, B, C, X(194), X(39652)}}, {{A, B, C, X(670), X(4590)}}, {{A, B, C, X(694), X(733)}}, {{A, B, C, X(1502), X(2799)}}, {{A, B, C, X(3228), X(5503)}}, {{A, B, C, X(4027), X(8782)}}, {{A, B, C, X(5976), X(25332)}}, {{A, B, C, X(8781), X(57541)}}, {{A, B, C, X(35005), X(39939)}}
X(57558) = isotomic conjugate of X(35078)
X(57558) = trilinear pole of line {882, 2396}
X(57558) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 35078}, {1580, 2086}, {2643, 51318}, {3124, 51903}, {4154, 21755}, {23099, 46295}
X(57558) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35078}, {39092, 2086}, {47648, 2679}
X(57558) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 18829}, {8782, 99}, {18906, 41073}, {20859, 18828}, {25047, 14970}, {25332, 670}, {47648, 805}
X(57558) = barycentric product X(i)*X(j) for these (i, j): {1916, 39292}, {18829, 18829}, {34537, 41517}
X(57558) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35078}, {249, 51318}, {694, 2086}, {805, 5027}, {4590, 4027}, {18829, 804}, {24041, 51903}, {31614, 46294}, {39292, 385}, {40810, 2679}, {41517, 3124}


X(57559) = Isotomic conjugate of X(35079)

Barycentrics    1/((b-c)^2*(a^3+a*b*c-b*c*(b+c))^2) : :

X(57559) lies on the square of the Steiner circumellipse and on these lines: {2787, 35147}

X(57559) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(2787)}}, {{A, B, C, X(99), X(31625)}}, {{A, B, C, X(668), X(4590)}}, {{A, B, C, X(1016), X(27805)}}, {{A, B, C, X(4554), X(44168)}}, {{A, B, C, X(11611), X(17946)}}
X(57559) = trilinear pole of line {18015, 35147}
X(57559) = isotomic conjugate of X(35079)
X(57559) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 35147}
X(57559) = barycentric product X(i)*X(j) for these (i, j): {35147, 35147}
X(57559) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35079}, {2703, 5040}, {35147, 2787}


X(57560) = X(812)X(17930)∩X(2786)X(35148)

Barycentrics    1/((b-c)^2*(-a^2+b^2+b*c+c^2-a*(b+c))^2) : :

X(57560) lies on the square of the Steiner circumellipse and on these lines: {812, 17930}, {2786, 35148}, {6650, 24617}, {11599, 24715}

X(57560) = isotomic conjugate of X(35080)
X(57560) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(2786)}}, {{A, B, C, X(98), X(57535)}}, {{A, B, C, X(99), X(1016)}}, {{A, B, C, X(190), X(4590)}}, {{A, B, C, X(249), X(29151)}}, {{A, B, C, X(671), X(6185)}}, {{A, B, C, X(812), X(1509)}}, {{A, B, C, X(1281), X(17738)}}, {{A, B, C, X(5988), X(41842)}}, {{A, B, C, X(6650), X(11599)}}, {{A, B, C, X(6651), X(13174)}}, {{A, B, C, X(15455), X(31625)}}, {{A, B, C, X(31624), X(44168)}}
X(57560) = trilinear pole of line {3570, 18014}
X(57560) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 35080}, {5029, 9508}
X(57560) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 35148}, {13174, 99}, {20351, 670}, {24342, 41076}, {35085, 34766}
X(57560) = barycentric product X(i)*X(j) for these (i, j): {35148, 35148}
X(57560) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35080}, {2702, 5029}, {35148, 2786}, {37135, 9508}


X(57561) = X(543)X(18823)∩X(1641)X(9170)

Barycentrics    (-2*a^4+b^4-4*b^2*c^2+c^4+2*a^2*(b^2+c^2))^(-2) : :

X(57561) lies on the square of the Steiner circumellipse and on these lines: {543, 18823}, {1641, 9170}, {8371, 9166}

X(57561) = isotomic conjugate of X(35087)
X(57561) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(543)}}, {{A, B, C, X(99), X(9166)}}, {{A, B, C, X(115), X(46275)}}, {{A, B, C, X(148), X(9167)}}, {{A, B, C, X(523), X(9183)}}, {{A, B, C, X(524), X(9293)}}, {{A, B, C, X(620), X(31373)}}, {{A, B, C, X(671), X(4590)}}, {{A, B, C, X(2482), X(35511)}}, {{A, B, C, X(5503), X(44168)}}, {{A, B, C, X(8591), X(14971)}}, {{A, B, C, X(9076), X(43535)}}, {{A, B, C, X(9180), X(18823)}}
X(57561) = trilinear pole of line {9168, 18823}
X(57561) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 18823}, {23992, 34763}, {45294, 892}
X(57561) = barycentric product X(i)*X(j) for these (i, j): {9170, 9180}, {18823, 18823}
X(57561) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35087}, {843, 2502}, {9170, 9182}, {9180, 8371}, {18823, 543}, {34763, 33921}, {51226, 1641}, {53690, 23348}


X(57562) = X(249)X(5152)∩X(2799)X(2966)

Barycentrics    1/((b-c)^2*(b+c)^2*(b^4+c^4-a^2*(b^2+c^2))^2) : :

X(57562) lies on the square of the Steiner circumellipse and on these lines: {248, 53229}, {249, 5152}, {250, 47385}, {542, 47388}, {804, 43113}, {827, 18858}, {2794, 23582}, {2799, 2966}, {17932, 39473}, {18312, 40866}, {23357, 40870}, {41173, 52035}

X(57562) = isotomic conjugate of X(35088)
X(57562) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(542)}}, {{A, B, C, X(98), X(287)}}, {{A, B, C, X(99), X(23582)}}, {{A, B, C, X(110), X(40866)}}, {{A, B, C, X(114), X(36426)}}, {{A, B, C, X(147), X(15595)}}, {{A, B, C, X(182), X(40870)}}, {{A, B, C, X(249), X(827)}}, {{A, B, C, X(250), X(18315)}}, {{A, B, C, X(648), X(4590)}}, {{A, B, C, X(671), X(9476)}}, {{A, B, C, X(1494), X(40428)}}, {{A, B, C, X(2794), X(3926)}}, {{A, B, C, X(3448), X(23962)}}, {{A, B, C, X(3455), X(15391)}}, {{A, B, C, X(3506), X(4027)}}, {{A, B, C, X(5152), X(14382)}}, {{A, B, C, X(5986), X(41255)}}, {{A, B, C, X(9293), X(44549)}}, {{A, B, C, X(11177), X(41145)}}, {{A, B, C, X(15395), X(35191)}}, {{A, B, C, X(30450), X(44183)}}, {{A, B, C, X(39291), X(39295)}}, {{A, B, C, X(44168), X(53230)}}
X(57562) = trilinear pole of line {879, 2966}
X(57562) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 35088}, {115, 23996}, {240, 41172}, {338, 42075}, {661, 41167}, {868, 1755}, {1109, 11672}, {1959, 44114}, {2632, 51334}, {2643, 36790}, {2967, 3708}, {9419, 23994}, {16725, 21043}
X(57562) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35088}, {34156, 41181}, {35088, 46052}, {36830, 41167}, {36899, 868}, {39085, 41172}
X(57562) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 2966}, {147, 99}, {1352, 53196}, {3448, 290}, {5921, 41074}, {23967, 34761}, {25046, 4577}, {34156, 17932}, {40867, 648}, {41932, 41173}
X(57562) = barycentric product X(i)*X(j) for these (i, j): {248, 41174}, {249, 34536}, {2715, 43187}, {2966, 2966}, {17932, 685}, {17941, 18858}, {18020, 47388}, {22456, 43754}, {36036, 36084}, {41173, 99}, {41932, 4590}
X(57562) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35088}, {98, 868}, {110, 41167}, {248, 41172}, {249, 36790}, {250, 2967}, {685, 16230}, {1101, 23996}, {1976, 44114}, {2715, 3569}, {2799, 46052}, {2966, 2799}, {4590, 32458}, {5967, 51429}, {17932, 6333}, {23357, 11672}, {23582, 36426}, {23963, 9419}, {23964, 51334}, {23995, 42075}, {32696, 17994}, {34536, 338}, {41173, 523}, {41174, 44132}, {41932, 115}, {43113, 31953}, {43754, 684}, {47388, 125}, {53691, 23350}


X(57563) = X(664)X(14476)∩X(1121)X(14477)

Barycentrics    1/((b-c)^2*(-a+b+c)^2*(-2*a^2+(b-c)^2+a*(b+c))^2) : :

X(57563) lies on the square of the Steiner circumellipse and on these lines: {664, 14476}, {1121, 14477}, {6366, 35157}

X(57563) = isotomic conjugate of X(35091)
X(57563) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6366)}}, {{A, B, C, X(664), X(1275)}}, {{A, B, C, X(811), X(4590)}}, {{A, B, C, X(1016), X(31619)}}, {{A, B, C, X(1146), X(39351)}}, {{A, B, C, X(35110), X(39357)}}, {{A, B, C, X(52156), X(54974)}}
X(57563) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 35091}, {41, 3328}, {2149, 52333}, {14936, 42082}
X(57563) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35091}, {650, 52333}, {3160, 3328}
X(57563) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 35157}, {39351, 1121}, {39357, 664}
X(57563) = barycentric product X(i)*X(j) for these (i, j): {35157, 35157}
X(57563) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35091}, {7, 3328}, {11, 52333}, {1121, 33573}, {1275, 35110}, {4998, 6068}, {5532, 31891}, {7045, 42082}, {14733, 6139}, {35157, 6366}


X(57564) = X(545)X(1016)∩X(903)X(1644)

Barycentrics    1/((b-c)^2*(-2*a+b+c)^2) : :

X(57564) lies on the square of the Steiner circumellipse and on these lines: {190, 14475}, {545, 1016}, {900, 4555}, {903, 1644}, {3257, 23650}, {5376, 40833}, {24416, 27922}

X(57564) = isotomic conjugate of X(35092)
X(57564) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(545)}}, {{A, B, C, X(6), X(23650)}}, {{A, B, C, X(190), X(1016)}}, {{A, B, C, X(279), X(52574)}}, {{A, B, C, X(799), X(4590)}}, {{A, B, C, X(903), X(20568)}}, {{A, B, C, X(1086), X(4440)}}, {{A, B, C, X(1275), X(31619)}}, {{A, B, C, X(4370), X(17487)}}, {{A, B, C, X(4554), X(31625)}}, {{A, B, C, X(4601), X(4632)}}, {{A, B, C, X(30578), X(36791)}}, {{A, B, C, X(40509), X(42555)}}
X(57564) = trilinear pole of line {4555, 4618}
X(57564) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 42084}, {31, 35092}, {41, 14027}, {244, 1017}, {604, 4542}, {649, 3251}, {667, 6544}, {678, 1015}, {692, 14442}, {902, 2087}, {1023, 8661}, {1635, 1960}, {1647, 2251}, {1977, 4738}, {1980, 52627}, {2149, 52337}, {2226, 14835}, {3063, 39771}, {3248, 4370}, {3257, 14637}, {8027, 53582}, {32665, 46050}
X(57564) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35092}, {9, 42084}, {650, 52337}, {1086, 14442}, {3160, 14027}, {3161, 4542}, {5375, 3251}, {6631, 6544}, {9460, 1647}, {10001, 39771}, {35092, 46050}, {40594, 2087}
X(57564) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 4555}, {190, 6635}, {2226, 4618}, {4440, 903}, {17487, 190}, {20092, 53656}, {30577, 664}, {30578, 668}, {30579, 99}, {35121, 34762}
X(57564) = barycentric product X(i)*X(j) for these (i, j): {679, 7035}, {1978, 4638}, {2226, 31625}, {4555, 4555}, {4618, 668}, {6548, 6635}, {20568, 5376}, {30575, 4601}, {42372, 6549}
X(57564) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42084}, {2, 35092}, {7, 14027}, {8, 4542}, {11, 52337}, {88, 2087}, {100, 3251}, {190, 6544}, {514, 14442}, {664, 39771}, {678, 14835}, {679, 244}, {765, 678}, {900, 46050}, {901, 1960}, {903, 1647}, {1016, 4370}, {1252, 1017}, {1318, 3271}, {1960, 14637}, {1978, 52627}, {2226, 1015}, {3257, 1635}, {3699, 4543}, {4076, 4152}, {4555, 900}, {4582, 1639}, {4601, 16729}, {4618, 513}, {4638, 649}, {4997, 4530}, {4998, 1317}, {5376, 44}, {6548, 6550}, {6549, 24188}, {6551, 23344}, {6632, 53582}, {6635, 17780}, {7035, 4738}, {7336, 52336}, {9268, 902}, {15742, 42070}, {17780, 33922}, {23345, 8661}, {30575, 3125}, {31625, 36791}, {34762, 33920}, {39414, 23345}, {41935, 1977}


X(57565) = X(527)X(1121)∩X(1146)X(53212)

Barycentrics    (-2*a^2+(b-c)^2+a*(b+c))^(-2) : :

X(57565) lies on the square of the Steiner circumellipse and on these lines: {527, 1121}, {1146, 53212}, {6745, 17264}

X(57565) = isotomic conjugate of X(35110)
X(57565) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(522)}}, {{A, B, C, X(75), X(1016)}}, {{A, B, C, X(76), X(37788)}}, {{A, B, C, X(666), X(54974)}}, {{A, B, C, X(903), X(57536)}}, {{A, B, C, X(4590), X(53193)}}, {{A, B, C, X(10025), X(38093)}}, {{A, B, C, X(23582), X(53207)}}, {{A, B, C, X(31621), X(53206)}}, {{A, B, C, X(31625), X(32017)}}
X(57565) = trilinear pole of line {1121, 6366}
X(57565) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 42082}, {31, 35110}, {41, 3321}, {604, 6068}, {1055, 1155}, {2149, 3328}, {6139, 23890}, {24027, 35091}
X(57565) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35110}, {9, 42082}, {522, 35091}, {650, 3328}, {3160, 3321}, {3161, 6068}
X(57565) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 1121}, {522, 35157}, {45290, 664}
X(57565) = barycentric product X(i)*X(j) for these (i, j): {1121, 1121}
X(57565) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42082}, {2, 35110}, {7, 3321}, {8, 6068}, {11, 3328}, {1121, 527}, {1146, 35091}, {1156, 1155}, {2291, 1055}, {5532, 52333}, {14733, 23346}, {23351, 6139}, {34056, 6610}, {35348, 14413}, {37139, 23890}, {41798, 6603}, {52746, 6174}


X(57566) = X(660)X(6373)∩X(812)X(4562)

Barycentrics    1/((b-c)^2*(a^2-b*c)^2) : :

X(57566) lies on the square of the Steiner circumellipse and on these lines: {291, 24841}, {335, 30866}, {537, 30663}, {660, 6373}, {812, 4562}, {918, 4583}, {1016, 14839}, {5383, 51856}, {9055, 31625}

X(57566) = isotomic conjugate of X(35119)
X(57566) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(537)}}, {{A, B, C, X(6), X(6373)}}, {{A, B, C, X(38), X(40857)}}, {{A, B, C, X(76), X(918)}}, {{A, B, C, X(190), X(5383)}}, {{A, B, C, X(291), X(335)}}, {{A, B, C, X(668), X(1016)}}, {{A, B, C, X(982), X(44353)}}, {{A, B, C, X(3227), X(24841)}}, {{A, B, C, X(4366), X(17793)}}, {{A, B, C, X(4590), X(37205)}}, {{A, B, C, X(4728), X(24508)}}, {{A, B, C, X(17755), X(17794)}}, {{A, B, C, X(32020), X(36807)}}
X(57566) = trilinear pole of line {876, 4562}
X(57566) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 35119}, {244, 51328}, {659, 8632}, {667, 4375}, {1015, 8300}, {1914, 27846}, {1919, 27855}, {1977, 39044}, {2170, 12835}, {2210, 27918}, {3248, 4366}, {4455, 50456}, {5009, 39786}, {34067, 46051}
X(57566) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35119}, {6631, 4375}, {9296, 27855}, {35119, 46051}, {36906, 27846}, {52656, 38989}
X(57566) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 4562}, {38, 18829}, {8041, 52922}, {17154, 18827}, {17794, 668}, {22116, 4583}, {24349, 41072}, {33888, 190}, {52656, 660}
X(57566) = barycentric product X(i)*X(j) for these (i, j): {334, 5378}, {1016, 40098}, {4562, 4562}, {4583, 660}, {30663, 7035}, {31625, 52205}
X(57566) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35119}, {59, 12835}, {190, 4375}, {291, 27846}, {335, 27918}, {660, 659}, {668, 27855}, {765, 8300}, {812, 46051}, {813, 8632}, {1016, 4366}, {1252, 51328}, {4518, 4124}, {4562, 812}, {4583, 3766}, {4584, 50456}, {5378, 238}, {7035, 39044}, {22116, 38989}, {30663, 244}, {36801, 3716}, {37207, 23597}, {40098, 1086}, {51856, 1977}, {52205, 1015}


X(57567) = X(545)X(35168)∩X(1644)X(41138)

Barycentrics    (-2*a^2+b^2-4*b*c+c^2+2*a*(b+c))^(-2) : :

X(57567) lies on the square of the Steiner circumellipse and on these lines: {545, 35168}, {1644, 41138}

X(57567) = isotomic conjugate of X(35121)
X(57567) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(545)}}, {{A, B, C, X(519), X(42555)}}, {{A, B, C, X(903), X(1016)}}, {{A, B, C, X(4370), X(6630)}}, {{A, B, C, X(4590), X(24624)}}, {{A, B, C, X(31625), X(36805)}}
X(57567) = trilinear pole of line {30580, 31992}
X(57567) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 35168}, {35092, 34764}, {45295, 4555}
X(57567) = barycentric product X(i)*X(j) for these (i, j): {35168, 35168}
X(57567) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35121}, {2384, 8649}, {34764, 33920}, {35168, 545}


X(57568) = Isotomic conjugate of X(35128)

Barycentrics    1/(a^2*(b-c)^2*(-a+b+c)^2*(-a^2+b^2-b*c+c^2)^2) : :

X(57568) lies on the square of the Steiner circumellipse and on these lines: {3738, 35174}

X(57568) = isotomic conjugate of X(35128)
X(57568) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3738)}}, {{A, B, C, X(1016), X(6335)}}, {{A, B, C, X(1275), X(4554)}}, {{A, B, C, X(4590), X(31619)}}
X(57568) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 35128}, {41, 3025}, {215, 2170}, {654, 8648}, {2148, 41218}, {2149, 52303}, {2310, 52059}, {3119, 41282}, {3271, 34544}, {21758, 53285}, {52426, 53525}
X(57568) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35128}, {216, 41218}, {650, 52303}, {3160, 3025}
X(57568) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 35174}, {14213, 35139}, {41803, 4569}
X(57568) = barycentric product X(i)*X(j) for these (i, j): {23592, 76}, {35174, 35174}, {46405, 655}, {46649, 6063}
X(57568) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35128}, {5, 41218}, {7, 3025}, {11, 52303}, {59, 215}, {655, 654}, {1087, 41211}, {1090, 52302}, {1262, 52059}, {2222, 8648}, {4564, 34544}, {4998, 4996}, {7339, 41282}, {18815, 53525}, {23592, 6}, {34535, 2170}, {35174, 3738}, {46405, 3904}, {46649, 55}, {51562, 53285}, {52377, 2361}


X(57569) = X(1499)X(35179)∩X(11054)X(17952)

Barycentrics    1/((b-c)^2*(b+c)^2*(-5*a^2+b^2+c^2)^2) : :

X(57569) lies on the square of the Steiner circumellipse and on these lines: {1499, 35179}, {11054, 17952}

X(57569) = isotomic conjugate of X(35133)
X(57569) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1499)}}, {{A, B, C, X(76), X(9487)}}, {{A, B, C, X(4590), X(46144)}}, {{A, B, C, X(5485), X(17952)}}, {{A, B, C, X(23582), X(52940)}}, {{A, B, C, X(31621), X(40824)}}
X(57569) = trilinear pole of line {9146, 18012}
X(57569) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 35133}, {922, 15638}
X(57569) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35133}, {39061, 15638}
X(57569) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 35179}, {11148, 99}
X(57569) = barycentric product X(i)*X(j) for these (i, j): {35179, 35179}
X(57569) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35133}, {671, 15638}, {1296, 8644}, {2418, 9125}, {5485, 6791}, {11054, 35234}, {35179, 1499}


X(57570) = X(648)X(52720)∩X(1494)X(1651)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*(a^4-2*b^4+b^2*c^2+c^4+a^2*(b^2-2*c^2))^2*(a^4+b^4+b^2*c^2-2*c^4+a^2*(-2*b^2+c^2))^2 : :

X(57570) lies on the square of the Steiner circumellipse and on these lines: {648, 52720}, {1494, 1651}, {9033, 16077}, {23582, 31621}

X(57570) = isotomic conjugate of X(39008)
X(57570) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1651)}}, {{A, B, C, X(648), X(23582)}}, {{A, B, C, X(1494), X(31621)}}, {{A, B, C, X(3163), X(39358)}}, {{A, B, C, X(4590), X(44326)}}, {{A, B, C, X(15526), X(39352)}}
X(57570) = trilinear pole of line {4240, 16077}
X(57570) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 39008}, {810, 14401}, {1650, 9406}, {2631, 9409}, {2632, 9408}, {3269, 42074}, {16240, 37754}
X(57570) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39008}, {9410, 1650}, {39062, 14401}
X(57570) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 16077}, {23582, 42308}, {36435, 4240}, {39352, 1494}, {39358, 648}
X(57570) = barycentric product X(i)*X(j) for these (i, j): {1494, 42308}, {16077, 16077}, {23582, 31621}, {34568, 6331}
X(57570) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39008}, {648, 14401}, {1304, 9409}, {1494, 1650}, {6331, 52624}, {15459, 1637}, {16077, 9033}, {18020, 16163}, {23582, 3163}, {23964, 9408}, {23999, 1099}, {24000, 42074}, {31621, 15526}, {32230, 16240}, {32695, 14398}, {34568, 647}, {39290, 18558}, {39352, 42306}, {40384, 3269}, {42308, 30}, {44181, 38956}, {44769, 1636}


X(57571) = X(670)X(52721)∩X(886)X(888)

Barycentrics    (a-b)^2*b^4*(a+b)^2*(a-c)^2*c^4*(a+c)^2*(b^2*c^2+a^2*(b^2-2*c^2))^2*(b^2*c^2+a^2*(-2*b^2+c^2))^2 : :

X(57571) lies on the square of the Steiner circumellipse and on these lines: {670, 52721}, {886, 888}

X(57571) = isotomic conjugate of X(39010)
X(57571) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(888)}}, {{A, B, C, X(670), X(44168)}}, {{A, B, C, X(729), X(3228)}}, {{A, B, C, X(1084), X(25054)}}, {{A, B, C, X(3222), X(4590)}}, {{A, B, C, X(35073), X(39361)}}
X(57571) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 39010}, {4117, 52067}
X(57571) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 886}, {25054, 3228}, {39361, 670}
X(57571) = barycentric product X(i)*X(j) for these (i, j): {886, 886}
X(57571) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39010}, {886, 888}, {3228, 1645}, {9150, 887}, {34087, 52625}, {34537, 52067}, {44168, 35073}


X(57572) = X(668)X(14474)∩X(889)X(891)

Barycentrics    (a-b)^2*b^2*(a-c)^2*c^2*(a*(b-2*c)+b*c)^2*(b*c+a*(-2*b+c))^2 : :

X(57572) lies on the square of the Steiner circumellipse and on these lines: {668, 14474}, {889, 891}, {3227, 36847}, {31625, 33908}

X(57572) = isotomic conjugate of X(39011)
X(57572) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(891)}}, {{A, B, C, X(668), X(31625)}}, {{A, B, C, X(799), X(44168)}}, {{A, B, C, X(1015), X(9263)}}, {{A, B, C, X(1016), X(4598)}}, {{A, B, C, X(3227), X(37129)}}, {{A, B, C, X(9267), X(40508)}}, {{A, B, C, X(13466), X(39360)}}, {{A, B, C, X(27076), X(31298)}}, {{A, B, C, X(32020), X(54974)}}, {{A, B, C, X(39011), X(40552)}}
X(57572) = trilinear pole of line {889, 41314}
X(57572) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 39011}, {41, 47016}, {101, 14441}, {890, 3768}, {1919, 14434}, {1977, 42083}
X(57572) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39011}, {1015, 14441}, {3160, 47016}, {9296, 14434}
X(57572) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 889}, {9263, 3227}, {39360, 668}, {40552, 2}
X(57572) = barycentric product X(i)*X(j) for these (i, j): {889, 889}
X(57572) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39011}, {7, 47016}, {513, 14441}, {668, 14434}, {889, 891}, {898, 890}, {3227, 1646}, {4607, 3768}, {5381, 3230}, {7035, 42083}, {31002, 19945}, {31625, 13466}, {43928, 33917}


X(57573) = X(6368)X(18831)∩X(14587)X(52887)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*(a^4+b^4-b^2*c^2-a^2*(2*b^2+c^2))^2*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))^2 : :

X(57573) lies on the square of the Steiner circumellipse and on these lines: {6368, 18831}, {14587, 52887}

X(57573) = isotomic conjugate of X(39019)
X(57573) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6368)}}, {{A, B, C, X(250), X(18315)}}, {{A, B, C, X(17035), X(36412)}}, {{A, B, C, X(31617), X(31621)}}
X(57573) = trilinear pole of line {15958, 18831}
X(57573) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 41212}, {31, 39019}, {48, 24862}, {661, 34983}, {1109, 46394}, {2179, 35442}, {2618, 42293}
X(57573) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39019}, {6, 41212}, {1249, 24862}, {36830, 34983}
X(57573) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 18831}, {17035, 648}, {36433, 15958}
X(57573) = barycentric product X(i)*X(j) for these (i, j): {18315, 42405}, {18831, 18831}, {52939, 648}
X(57573) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39019}, {3, 41212}, {4, 24862}, {95, 35442}, {110, 34983}, {933, 15451}, {8884, 41221}, {14586, 42293}, {14587, 418}, {16813, 12077}, {18315, 17434}, {18831, 6368}, {19210, 41219}, {23357, 46394}, {23582, 36412}, {23999, 1087}, {42405, 18314}, {46089, 34980}, {52779, 23290}, {52939, 525}


X(57574) = X(8057)X(53639)∩X(16096)X(32230)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*(a^4+b^4+2*b^2*c^2-3*c^4-2*a^2*(b^2-c^2))^2*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b^2-c^2))^2 : :

X(57574) lies on the square of the Steiner circumellipse and on these lines: {8057, 53639}, {16096, 32230}

X(57574) = isotomic conjugate of X(39020)
X(57574) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8057)}}, {{A, B, C, X(253), X(14638)}}, {{A, B, C, X(3267), X(18027)}}, {{A, B, C, X(3926), X(47435)}}, {{A, B, C, X(4590), X(39297)}}, {{A, B, C, X(15459), X(23582)}}, {{A, B, C, X(17037), X(36413)}}
X(57574) = trilinear pole of line {107, 53639}
X(57574) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 39020}, {204, 47409}, {3079, 37754}
X(57574) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39020}, {3343, 47409}, {40839, 1562}
X(57574) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 53639}, {14361, 6528}, {17037, 648}, {47435, 44326}
X(57574) = barycentric product X(i)*X(j) for these (i, j): {253, 44181}, {15384, 41530}, {53639, 53639}, {53886, 6528}
X(57574) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39020}, {253, 122}, {459, 1562}, {1073, 47409}, {1301, 42658}, {14361, 13613}, {15384, 154}, {18020, 53050}, {23582, 36413}, {23999, 1097}, {31942, 20975}, {32230, 3079}, {44181, 20}, {44326, 20580}, {52559, 2972}, {53639, 8057}, {53886, 520}


X(57575) = X(4)X(14502)∩X(249)X(524)

Barycentrics    (-a^2+2*b^2-c^2+2*sqrt(a^4-a^2*b^2+b^4-(a^2+b^2)*c^2+c^4))*(-a^2-b^2+2*(c^2+sqrt(a^4-a^2*b^2+b^4-(a^2+b^2)*c^2+c^4))) : :

X(57575) lies on the square of the Steiner circumellipse and on these lines: {4, 14502}, {76, 51493}, {99, 1380}, {249, 524}, {620, 39365}, {671, 39023}, {1078, 2558}, {1916, 2028}, {2482, 39366}, {3413, 9166}, {5466, 30509}, {6177, 31863}, {6190, 22244}, {12150, 46024}, {14631, 14633}

X(57575) = isotomic conjugate of X(39022)
X(57575) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(249), X(1380)}}, {{A, B, C, X(729), X(5638)}}, {{A, B, C, X(1691), X(2028)}}, {{A, B, C, X(4590), X(6189)}}
X(57575) = trilinear pole of line {6189, 30509}
X(57575) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2029}, {31, 39022}, {661, 41881}, {798, 30508}
X(57575) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39022}, {3, 2029}, {3413, 115}, {5976, 14501}, {31998, 30508}, {36830, 41881}, {39023, 13722}
X(57575) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 6189}, {3413, 99}, {39023, 30509}, {45297, 6190}
X(57575) = barycentric product X(i)*X(j) for these (i, j): {2028, 34537}, {6189, 6189}, {30509, 99}, {39023, 4590}, {41880, 670}
X(57575) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39022}, {6, 2029}, {99, 30508}, {110, 41881}, {325, 14501}, {1380, 5639}, {2028, 3124}, {3413, 13722}, {6189, 3414}, {14502, 868}, {14631, 39067}, {30509, 523}, {39023, 115}, {41880, 512}, {52722, 46463}


X(57576) = X(4)X(14501)∩X(249)X(524)

Barycentrics    (a^2-2*b^2+c^2+2*sqrt(a^4-a^2*b^2+b^4-(a^2+b^2)*c^2+c^4))*(a^2+b^2-2*c^2+2*sqrt(a^4+b^4-b^2*c^2+c^4-a^2*(b^2+c^2))) : :

X(57576) lies on the square of the Steiner circumellipse and on these lines: {4, 14501}, {76, 51492}, {99, 1379}, {249, 524}, {620, 39366}, {671, 39022}, {1078, 2559}, {1916, 2029}, {2482, 39365}, {3414, 9166}, {5466, 30508}, {6178, 31862}, {6189, 22245}, {12150, 46023}, {14630, 14632}

X(57576) = isotomic conjugate of X(39023)
X(57576) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(249), X(1379)}}, {{A, B, C, X(729), X(5639)}}, {{A, B, C, X(1691), X(2029)}}, {{A, B, C, X(4590), X(6190)}}
X(57576) = trilinear pole of line {6190, 30508}
X(57576) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2028}, {31, 39023}, {661, 41880}, {798, 30509}
X(57576) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39023}, {3, 2028}, {3414, 115}, {5976, 14502}, {31998, 30509}, {36830, 41880}, {39022, 13636}
X(57576) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 6190}, {3414, 99}, {39022, 30508}, {45296, 6189}
X(57576) = barycentric product X(i)*X(j) for these (i, j): {2029, 34537}, {6190, 6190}, {30508, 99}, {39022, 4590}, {41881, 670}
X(57576) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39023}, {6, 2028}, {99, 30509}, {110, 41880}, {325, 14502}, {1379, 5638}, {2029, 3124}, {3414, 13636}, {6190, 3413}, {14501, 868}, {14630, 39068}, {30508, 523}, {39022, 115}, {41881, 512}, {52723, 46462}


X(57577) = X(4083)X(18830)∩X(4598)X(23572)

Barycentrics    (a-b)^2*b^2*(a-c)^2*c^2*(a*(b-c)-b*c)^2*(a*(b-c)+b*c)^2 : :

X(57577) lies on the square of the Steiner circumellipse and on these lines: {4083, 18830}, {4598, 23572}, {31625, 52895}, {36817, 53679}

X(57577) = isotomic conjugate of X(40610)
X(57577) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4083)}}, {{A, B, C, X(6), X(23572)}}, {{A, B, C, X(87), X(1019)}}, {{A, B, C, X(330), X(40881)}}, {{A, B, C, X(1909), X(19567)}}, {{A, B, C, X(5388), X(31625)}}, {{A, B, C, X(21219), X(53675)}}, {{A, B, C, X(41840), X(53145)}}
X(57577) = trilinear pole of line {1978, 18830}
X(57577) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 40610}, {43, 21762}, {1919, 25142}, {1977, 53676}, {1980, 23886}, {2176, 38986}, {2209, 6377}, {3248, 53145}, {8640, 20979}, {21835, 38832}
X(57577) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 40610}, {9296, 25142}
X(57577) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 18830}, {330, 32039}, {17149, 670}, {21219, 668}, {36857, 99}, {36858, 664}, {41840, 190}
X(57577) = barycentric product X(i)*X(j) for these (i, j): {1978, 32039}, {5383, 6383}, {18830, 18830}, {31625, 53677}, {53679, 7035}
X(57577) = barycentric quotient X(i)/X(j) for these (i, j): {2, 40610}, {87, 38986}, {330, 6377}, {668, 25142}, {932, 8640}, {1016, 53145}, {1978, 23886}, {2162, 21762}, {4598, 20979}, {5383, 2176}, {6383, 21138}, {6384, 3123}, {7035, 53676}, {16606, 21835}, {18830, 4083}, {23086, 22386}, {31625, 53675}, {32039, 649}, {53146, 1977}, {53677, 1015}, {53678, 3248}, {53679, 244}


X(57578) = X(1266)X(4076)∩X(3667)X(53647)

Barycentrics    (a-b)^2*(a+b-3*c)^2*(a-c)^2*(a-3*b+c)^2 : :

X(57578) lies on the square of the Steiner circumellipse and on these lines: {1266, 4076}, {3667, 53647}, {16711, 17951}

X(57578) = isotomic conjugate of X(40621)
X(57578) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3667)}}, {{A, B, C, X(76), X(1266)}}, {{A, B, C, X(1016), X(4076)}}, {{A, B, C, X(1509), X(27813)}}, {{A, B, C, X(4052), X(17951)}}, {{A, B, C, X(4590), X(46143)}}, {{A, B, C, X(6185), X(27830)}}
X(57578) = trilinear pole of line {3699, 4927}
X(57578) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 40621}, {667, 31182}, {2251, 15637}, {4394, 8643}
X(57578) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 40621}, {6631, 31182}, {9460, 15637}
X(57578) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 53647}, {8055, 668}
X(57578) = barycentric product X(i)*X(j) for these (i, j): {16078, 4076}, {40014, 5382}, {53647, 53647}
X(57578) = barycentric quotient X(i)/X(j) for these (i, j): {2, 40621}, {190, 31182}, {903, 15637}, {1293, 8643}, {2415, 14425}, {4052, 21950}, {4373, 3756}, {4998, 6049}, {5382, 1743}, {6556, 4953}, {6557, 4534}, {16078, 1358}, {16079, 1357}, {27818, 40617}, {27834, 4394}, {31343, 4162}, {33963, 3271}, {53647, 3667}


X(57579) = X(13)X(39295)∩X(249)X(530)

Barycentrics    (a^2-b^2)^2*(-a^2+c^2)^2*(sqrt(3)*(-a^2+b^2-c^2)-2*S)^2*(sqrt(3)*(-a^2-b^2+c^2)-2*S)^2 : :

X(57579) lies on the square of the Steiner circumellipse and on these lines: {13, 39295}, {249, 530}, {542, 5627}, {5472, 23357}, {5618, 10410}, {23870, 23895}

X(57579) = isotomic conjugate of X(43961)
X(57579) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(530)}}, {{A, B, C, X(13), X(5627)}}, {{A, B, C, X(99), X(18020)}}, {{A, B, C, X(4590), X(23896)}}, {{A, B, C, X(16806), X(23357)}}
X(57579) = trilinear pole of line {2407, 17402}
X(57579) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 43961}, {115, 1094}, {2088, 51806}, {2151, 30465}, {2152, 30463}, {2154, 52343}, {2624, 23284}, {2643, 11131}
X(57579) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43961}, {40578, 30465}, {40579, 30463}, {40581, 52343}
X(57579) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 23895}, {616, 99}, {622, 35139}, {11080, 36839}
X(57579) = barycentric product X(i)*X(j) for these (i, j): {10217, 18020}, {11078, 39295}, {11080, 4590}, {11128, 23588}, {23895, 23895}, {36839, 99}
X(57579) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43961}, {13, 30465}, {14, 30463}, {16, 52343}, {249, 11131}, {476, 23284}, {1101, 1094}, {4590, 11129}, {5618, 20578}, {5995, 6137}, {10217, 125}, {11080, 115}, {11081, 2088}, {11128, 23965}, {23588, 11085}, {23895, 23870}, {36208, 52342}, {36211, 30468}, {36839, 523}, {39295, 11092}, {42001, 30467}, {50465, 16186}


X(57580) = X(14)X(39295)∩X(249)X(531)

Barycentrics    (a^2-b^2)^2*(-a^2+c^2)^2*(sqrt(3)*(-a^2+b^2-c^2)+2*S)^2*(sqrt(3)*(-a^2-b^2+c^2)+2*S)^2 : :

X(57580) lies on the square of the Steiner circumellipse and on these lines: {14, 39295}, {249, 531}, {542, 5627}, {5471, 23357}, {5619, 10409}, {23871, 23896}

X(57580) = isotomic conjugate of X(43962)
X(57580) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(531)}}, {{A, B, C, X(14), X(5627)}}, {{A, B, C, X(99), X(18020)}}, {{A, B, C, X(4590), X(23895)}}, {{A, B, C, X(16807), X(23357)}}
X(57580) = trilinear pole of line {2407, 17403}
X(57580) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 43962}, {115, 1095}, {2088, 51805}, {2151, 30460}, {2152, 30468}, {2153, 52342}, {2624, 23283}, {2643, 11130}
X(57580) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43962}, {40578, 30460}, {40579, 30468}, {40580, 52342}
X(57580) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 23896}, {617, 99}, {621, 35139}, {11085, 36840}
X(57580) = barycentric product X(i)*X(j) for these (i, j): {10218, 18020}, {11085, 4590}, {11092, 39295}, {11129, 23588}, {23896, 23896}, {36840, 99}
X(57580) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43962}, {13, 30460}, {14, 30468}, {15, 52342}, {249, 11130}, {476, 23283}, {1101, 1095}, {4590, 11128}, {5619, 20579}, {5994, 6138}, {10218, 125}, {11085, 115}, {11086, 2088}, {11129, 23965}, {23588, 11080}, {23896, 23871}, {36209, 52343}, {36210, 30465}, {36840, 523}, {39295, 11078}, {42002, 30470}, {50466, 16186}


X(57581) = X(3900)X(4569)∩X(24011)X(33677)

Barycentrics    1/(a^2*(b-c)^2*(-a+b+c)^4) : :

X(57581) lies on the square of the Steiner circumellipse and on these lines: {3900, 4569}, {24011, 33677}, {40864, 52888}, {52621, 52937}

X(57581) = isotomic conjugate of X(35508)
X(57581) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3900)}}, {{A, B, C, X(85), X(33677)}}, {{A, B, C, X(220), X(3177)}}, {{A, B, C, X(241), X(44351)}}, {{A, B, C, X(279), X(41355)}}, {{A, B, C, X(346), X(34019)}}, {{A, B, C, X(14727), X(31625)}}
X(57581) = trilinear pole of line {4569, 30704}
X(57581) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 24012}, {31, 35508}, {32, 24010}, {41, 3022}, {56, 52064}, {560, 23970}, {657, 8641}, {1253, 14936}, {2175, 3119}, {2310, 14827}, {3063, 4105}, {3271, 6602}, {4081, 9447}
X(57581) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 52064}, {2, 35508}, {9, 24012}, {3160, 3022}, {6374, 23970}, {6376, 24010}, {10001, 4105}, {17113, 14936}, {40593, 3119}
X(57581) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 4569}, {3177, 664}, {18750, 670}, {30694, 18026}, {30695, 668}, {30807, 46135}, {34019, 4554}, {43989, 6606}
X(57581) = barycentric product X(i)*X(j) for these (i, j): {1502, 23971}, {4569, 4569}, {4572, 4626}, {23586, 76}, {24011, 75}, {24013, 561}, {36838, 4554}, {41283, 7339}, {46406, 658}, {52937, 664}
X(57581) = barycentric quotient X(i)/X(j) for these (i, j): {1, 24012}, {2, 35508}, {7, 3022}, {9, 52064}, {75, 24010}, {76, 23970}, {85, 3119}, {279, 14936}, {479, 3271}, {658, 657}, {664, 4105}, {934, 8641}, {1088, 2310}, {1262, 14827}, {1275, 220}, {1446, 36197}, {4554, 4130}, {4564, 6602}, {4566, 4524}, {4569, 3900}, {4572, 4163}, {4616, 21789}, {4617, 3063}, {4626, 663}, {4635, 1021}, {4998, 480}, {6063, 4081}, {7045, 1253}, {7056, 3270}, {7143, 7063}, {7339, 2175}, {7340, 6061}, {23062, 2170}, {23586, 6}, {23971, 32}, {24011, 1}, {24013, 31}, {24015, 46392}, {30682, 7117}, {30695, 17426}, {35312, 6607}, {36838, 650}, {46406, 3239}, {47374, 23056}, {52621, 23615}, {52937, 522}


X(57582) = POLAR-CIRCLE-INVERSE OF X(26)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^10*b^2 - 3*a^8*b^4 + 2*a^6*b^6 + 2*a^4*b^8 - 3*a^2*b^10 + b^12 + a^10*c^2 - 4*a^8*b^2*c^2 + 4*a^6*b^4*c^2 - 2*a^4*b^6*c^2 + 3*a^2*b^8*c^2 - 2*b^10*c^2 - 3*a^8*c^4 + 4*a^6*b^2*c^4 - 4*a^4*b^4*c^4 - b^8*c^4 + 2*a^6*c^6 - 2*a^4*b^2*c^6 + 4*b^6*c^6 + 2*a^4*c^8 + 3*a^2*b^2*c^8 - b^4*c^8 - 3*a^2*c^10 - 2*b^2*c^10 + c^12) : :
X(57582) = X[22] - 4 X[44911], X[378] + 2 X[10151], X[403] + 2 X[427], X[2072] - 4 X[39504], 2 X[10257] - 5 X[31236], X[16386] - 4 X[52262], X[31723] + 2 X[44452], 2 X[44236] + X[44283], X[44246] + 2 X[44288]

X(57582) lies on these lines: {2, 3}, {125, 52000}, {974, 32125}, {2904, 25738}, {3258, 50939}, {11441, 20302}, {11807, 32743}, {12140, 51393}, {14769, 16172}, {15463, 44665}, {15472, 50435}, {15473, 44673}, {16227, 23332}, {18381, 52432}, {20300, 51742}, {20303, 35603}, {23306, 51425}, {32113, 51994}, {44795, 52416}

X(57582) = midpoint of X(44795) and X(52416)
X(57582) = reflection of X(37932) in X(468)
X(57582) = anticomplement of X(44907)
X(57582) = reflection of X(37932) in the orthic axis
X(57582) = nine-point-circle-inverse of X(24)
X(57582) = polar-circle-inverse of X(26)
X(57582) = orthoptic-circle-of-Steiner-inellipse-inverse of X(21213)
X(57582) = 1st-Droz-Farney-circle-inverse of X(38450)
X(57582) = X(53923)-Ceva conjugate of X(523)
X(57582) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 427, 378}, {5, 10151, 403}, {5, 13371, 6640}, {5, 44279, 10024}, {186, 37119, 10257}, {186, 45181, 403}, {235, 46031, 403}, {378, 31236, 37119}, {403, 858, 186}, {403, 1594, 2072}, {427, 39504, 1594}, {427, 45179, 4}, {1312, 1313, 24}, {1594, 5133, 7577}, {1595, 11563, 13473}, {1885, 10151, 44283}, {1885, 44236, 378}, {2072, 37981, 403}, {7577, 52295, 8889}, {16868, 35481, 15760}, {45181, 52295, 858}, {46698, 46699, 4}


X(57583) = POLAR-CIRCLE-INVERSE OF X(237)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6*b^4 - 2*a^4*b^6 + a^2*b^8 - a^2*b^6*c^2 + b^8*c^2 + a^6*c^4 + 2*a^2*b^4*c^4 - b^6*c^4 - 2*a^4*c^6 - a^2*b^2*c^6 - b^4*c^6 + a^2*c^8 + b^2*c^8) : :

X(57583) lies on these lines: {2, 3}, {98, 41253}, {250, 3613}, {264, 523}, {648, 7668}, {2452, 9308}, {3001, 44138}, {6787, 45303}, {6795, 33971}, {7703, 32120}, {7792, 47151}, {8901, 14651}, {9159, 33885}, {11594, 16328}, {16080, 54743}, {16221, 33330}, {16237, 46127}, {21243, 31848}, {37765, 50147}, {41676, 53346}, {43530, 54600}, {43665, 47505}

X(57583) = complement of X(37918)
X(57583) = nine-point-circle-inverse of X(297)
X(57583) = orthocentroidal-circle-inverse of X(4230)
X(57583) = polar-circle-inverse of X(237)
X(57583) = polar conjugate of the isogonal conjugate of X(5661)
X(57583) = psi-transform of X(53174)
X(57583) = X(53699)-Ceva conjugate of X(523)
X(57583) = barycentric product X(264)*X(5661)
X(57583) = barycentric quotient X(5661)/X(3)
X(57583) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 4230}, {5, 3150, 2}, {186, 37124, 36177}, {458, 36176, 1316}, {1312, 1313, 297}, {1316, 36176, 7473}, {5000, 5001, 36183}, {36189, 37988, 36183}


X(57584) = POLAR-CIRCLE-INVERSE OF X(382)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(4*a^6 - 5*a^4*b^2 - 2*a^2*b^4 + 3*b^6 - 5*a^4*c^2 + 10*a^2*b^2*c^2 - 3*b^4*c^2 - 2*a^2*c^4 - 3*b^2*c^4 + 3*c^6) : :
X(57584) = 3 X[4] - X[186], 5 X[4] - 2 X[468], 3 X[4] - 2 X[10151], 4 X[4] - X[10295], 5 X[4] - X[13619], 11 X[4] - 3 X[35489], 7 X[4] - 2 X[37931], 13 X[4] - 4 X[37934], 11 X[4] - 4 X[37935], 9 X[4] - 4 X[37942], 7 X[4] - 3 X[37943], 7 X[4] - 4 X[37984], 7 X[4] - X[56369], 3 X[5] - 2 X[37968], X[23] - 7 X[50688], 2 X[186] - 3 X[403], and many others

X(57584) lies on these lines: {2, 3}, {112, 53419}, {185, 32411}, {477, 44060}, {847, 52578}, {1154, 12133}, {1498, 2904}, {1503, 47465}, {1514, 14157}, {1515, 52219}, {1531, 12140}, {1539, 30522}, {1552, 14989}, {1614, 5893}, {1699, 51713}, {1870, 9629}, {1986, 6000}, {2777, 13851}, {2883, 12289}, {3087, 16303}, {3564, 54168}, {4994, 19651}, {5203, 47291}, {5318, 56514}, {5321, 56515}, {5523, 14581}, {5894, 23294}, {5895, 11457}, {5962, 10152}, {6103, 39563}, {6241, 51491}, {6247, 18394}, {6403, 51163}, {6748, 47322}, {7687, 21663}, {7745, 53026}, {8541, 32220}, {8739, 19106}, {8740, 19107}, {10540, 15463}, {10632, 42108}, {10633, 42109}, {10721, 15311}, {10733, 44665}, {10880, 42271}, {10881, 42272}, {11455, 34751}, {11649, 12294}, {11809, 40950}, {12162, 27365}, {12290, 41362}, {12292, 12295}, {12300, 32340}, {12825, 45780}, {13366, 13403}, {13382, 34563}, {14915, 52000}, {16659, 34786}, {16881, 43846}, {17986, 57471}, {18400, 32111}, {18483, 51701}, {22802, 34224}, {22948, 46027}, {23956, 34209}, {28224, 31948}, {29012, 44102}, {31162, 47540}, {32062, 48914}, {34170, 46429}, {34782, 40242}, {38956, 47109}, {39119, 44967}, {39176, 53416}, {39838, 51940}, {41722, 51118}, {44795, 50435}, {44990, 44992}, {46686, 51393}, {47468, 51537}, {51733, 56918}, {51742, 53023}

X(57584) = midpoint of X(i) and X(j) for these {i,j}: {382, 18403}, {2071, 3146}, {10296, 52403}, {10721, 25739}, {44992, 51892}
X(57584) = reflection of X(i) in X(j) for these {i,j}: {3, 23323}, {4, 13473}, {20, 10257}, {185, 32411}, {186, 10151}, {403, 4}, {858, 18403}, {1514, 51998}, {2070, 47336}, {2071, 10297}, {10295, 403}, {11799, 44283}, {13619, 468}, {14157, 1514}, {15646, 546}, {16386, 2072}, {21663, 7687}, {35452, 47341}, {37931, 37984}, {37936, 11558}, {44214, 3845}, {44234, 3861}, {44246, 5}, {44280, 381}, {44282, 14893}, {44283, 3853}, {46450, 47339}, {47096, 31726}, {47308, 44911}, {51393, 46686}, {51701, 18483}, {52403, 47309}, {56369, 37931}
X(57584) = reflection of X(13619) in the orthic axis
X(57584) = circumcircle-inverse of X(32534)
X(57584) = nine-point-circle-inverse of X(16868)
X(57584) = polar-circle-inverse of X(382)
X(57584) = orthoptic-circle-of-Steiner-inellipse-inverse of X(37453)
X(57584) = 2nd Droz-Farney-circle-inverse of X(7505)
X(57584) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 20, 35488}, {4, 186, 10151}, {4, 382, 6240}, {4, 1885, 15559}, {4, 3146, 24}, {4, 3518, 44226}, {4, 3520, 546}, {4, 3543, 35480}, {4, 3575, 44803}, {4, 7577, 3845}, {4, 11541, 6622}, {4, 14865, 23047}, {4, 15682, 18533}, {4, 18559, 1596}, {4, 18560, 1594}, {4, 33703, 3542}, {4, 34797, 235}, {4, 35471, 37197}, {4, 35480, 7576}, {4, 35481, 381}, {4, 35490, 18560}, {4, 37119, 3843}, {4, 54001, 3861}, {4, 56369, 37984}, {20, 35488, 10018}, {25, 18859, 186}, {186, 10151, 403}, {186, 35473, 37968}, {378, 7547, 8889}, {381, 35481, 37118}, {382, 3830, 44276}, {382, 12085, 3146}, {382, 44276, 34603}, {427, 15687, 4}, {548, 10019, 14940}, {858, 6240, 10295}, {1113, 1114, 32534}, {1312, 1313, 16868}, {1593, 5076, 4}, {1597, 31726, 10151}, {1598, 35452, 37917}, {1885, 3853, 4}, {3091, 37941, 44911}, {3543, 7391, 382}, {3830, 44438, 4}, {5073, 37197, 35471}, {5189, 7408, 37962}, {6995, 10989, 468}, {10296, 17578, 47309}, {10297, 12085, 858}, {10736, 10737, 35490}, {11558, 37936, 11799}, {12102, 23047, 4}, {13488, 44267, 37981}, {14157, 15472, 52416}, {18386, 38335, 4}, {18533, 54995, 10295}, {37931, 37984, 37943}, {37936, 44281, 186}, {37936, 44283, 11558}, {37943, 37984, 403}, {37943, 56369, 37931}, {37969, 52285, 37981}, {42789, 42790, 37941}, {44309, 44310, 403}, {44911, 47308, 37941}


X(57585) = POLAR-CIRCLE-INVERSE OF X(383)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(Sqrt[3]*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) + 8*(2*a^2 - b^2 - c^2)*S^3) : :

X(57585) lies on these lines: {2, 3}, {232, 6110}, {340, 5979}, {6103, 6109}, {11549, 52464}, {16188, 47899}, {20428, 47570}, {31670, 47576}, {36514, 40118}, {42426, 46651}, {47611, 56515}

X(57585) = polar-circle-inverse of X(383)
X(57585) = orthoptic-circle-of-Steiner-inellipse-inverse of X(471)
X(57585) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5000, 5001, 32460}, {6109, 6111, 6103}


X(57586) = POLAR-CIRCLE-INVERSE OF X(401)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^8*b^2 - a^6*b^4 - 2*a^4*b^6 + 3*a^2*b^8 - b^10 + a^8*c^2 - 2*a^6*b^2*c^2 + 3*a^4*b^4*c^2 - 4*a^2*b^6*c^2 + 2*b^8*c^2 - a^6*c^4 + 3*a^4*b^2*c^4 + 2*a^2*b^4*c^4 - b^6*c^4 - 2*a^4*c^6 - 4*a^2*b^2*c^6 - b^4*c^6 + 3*a^2*c^8 + 2*b^2*c^8 - c^10) : :
X(57586) = X[36176] + 3 X[52282]

X(57586) lies on these lines: {2, 3}, {6, 47158}, {51, 43278}, {53, 523}, {107, 14639}, {115, 47202}, {247, 1112}, {250, 32002}, {393, 2452}, {2967, 54395}, {5099, 33842}, {10311, 47151}, {11245, 18338}, {12828, 16278}, {16178, 33330}, {16330, 32113}, {41221, 46151}, {41585, 47559}, {41586, 47616}, {44096, 53507}, {46444, 56572}, {47162, 47277}

X(57586) = polar-circle-inverse of X(401)
X(57586) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 868, 427}, {4, 36191, 1316}, {403, 5112, 468}, {1316, 36191, 468}


X(57587) = POLAR-CIRCLE-INVERSE OF X(402)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^14 - 2*a^12*b^2 - 3*a^10*b^4 + 11*a^8*b^6 - 9*a^6*b^8 + 3*a^2*b^12 - b^14 - 2*a^12*c^2 + 12*a^10*b^2*c^2 - 13*a^8*b^4*c^2 - 9*a^6*b^6*c^2 + 20*a^4*b^8*c^2 - 9*a^2*b^10*c^2 + b^12*c^2 - 3*a^10*c^4 - 13*a^8*b^2*c^4 + 37*a^6*b^4*c^4 - 20*a^4*b^6*c^4 - 4*a^2*b^8*c^4 + 3*b^10*c^4 + 11*a^8*c^6 - 9*a^6*b^2*c^6 - 20*a^4*b^4*c^6 + 20*a^2*b^6*c^6 - 3*b^8*c^6 - 9*a^6*c^8 + 20*a^4*b^2*c^8 - 4*a^2*b^4*c^8 - 3*b^6*c^8 - 9*a^2*b^2*c^10 + 3*b^4*c^10 + 3*a^2*c^12 + b^2*c^12 - c^14) : :

X(57587) lies on these lines: {2, 3}, {107, 3258}, {125, 1304}, {250, 5972}, {648, 55308}, {5667, 46045}, {6070, 16080}, {6530, 47152}, {16319, 41204}, {18809, 55319}, {22104, 30716}, {32710, 53881}, {34334, 57306}, {44673, 53716}, {47148, 51358}, {47166, 47296}

X(57587) = polar-circle-inverse of X(402)
X(57587) = X(57295)-Dao conjugate of X(13495)
X(57587) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {403, 36164, 4}, {468, 3154, 31510}, {468, 36166, 6353}, {3154, 31510, 4}


X(57588) = POLAR-CIRCLE-INVERSE OF X(420)

Barycentrics    2*a^8 - a^6*b^2 - 2*a^4*b^4 + b^8 - a^6*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 + b^6*c^2 - 2*a^4*c^4 + a^2*b^2*c^4 - 4*b^4*c^4 + b^2*c^6 + c^8 : : X(57588) = 3 X[2] + X[1316], 9 X[2] - X[36163], 15 X[2] + X[36181], 5 X[2] - X[36194], X[1316] - 3 X[34094], 3 X[1316] + X[36163], 5 X[1316] - X[36181], 5 X[1316] + 3 X[36194], X[11007] + 3 X[34094], 3 X[11007] - X[36163], 5 X[11007] + X[36181], 5 X[11007] - 3 X[36194], 9 X[34094] + X[36163], 15 X[34094] - X[36181], 5 X[34094] + X[36194], 5 X[36163] + 3 X[36181], 5 X[36163] - 9 X[36194], X[36181] + 3 X[36194], X[1561] + 3 X[38727], X[2452] - 5 X[3618], X[2453] + 7 X[47355], X[32224] - 5 X[47453], X[47284] + 3 X[50149], 3 X[47352] + X[50146], 3 X[48310] - X[50147]

X(57588) lies on these lines: {2, 3}, {125, 51430}, {264, 47158}, {373, 11657}, {523, 3589}, {1561, 38727}, {2452, 3618}, {2453, 47355}, {2782, 5972}, {2794, 6723}, {3055, 48721}, {3233, 35283}, {7767, 17941}, {7789, 11052}, {7792, 16315}, {7806, 47237}, {7808, 44058}, {7875, 47155}, {11064, 32515}, {11261, 47569}, {12042, 35282}, {15819, 47584}, {22104, 53793}, {22714, 47576}, {22715, 47575}, {31958, 47571}, {32224, 47453}, {33509, 52229}, {37688, 47240}, {47284, 50149}, {47352, 50146}, {48310, 50147}

X(57588) = midpoint of X(i) and X(j) for these {i,j}: {2, 34094}, {5, 36177}, {125, 51430}, {858, 37906}, {1316, 11007}
X(57588) = complement of X(11007)
X(57588) = circumcircle-inverse of X(20854)
X(57588) = nine-point-circle-inverse of X(21536)
X(57588) = polar-circle-inverse of X(420)
X(57588) = orthoptic-circle-of-Steiner-inellipse-inverse of X(40236)
X(57588) = ninepoint-circle-of-medial-triangle-inverse of X(52261)
X(57588) = psi-transform of X(5984)
X(57588) = crossdifference of every pair of points on line {647, 2076}
X(57588) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1316, 11007}, {2, 46512, 868}, {1113, 1114, 20854}, {1312, 1313, 21536}, {1316, 36194, 36181}, {11007, 34094, 1316}, {21531, 44887, 44347}, {53162, 53163, 20063}


X(57589) = POLAR-CIRCLE-INVERSE OF X(424)

Barycentrics    (a + b)*(a + c)*(a^7 - a^5*b^2 - a*b^5*c + b^6*c - a^5*c^2 + a^3*b^2*c^2 + b^5*c^2 + 2*a*b^3*c^3 - 2*b^4*c^3 - 2*b^3*c^4 - a*b*c^5 + b^2*c^5 + b*c^6) : :

X(57589) lies on these lines: {2, 3}, {58, 47270}, {81, 523}, {110, 2783}, {250, 31623}, {321, 17944}, {476, 2699}, {940, 2453}, {2452, 37685}, {4658, 47274}, {14996, 47285}, {41629, 50145}

X(57589) = polar-circle-inverse of X(424)
X(57589) = crossdifference of every pair of points on line {647, 5164}
X(57589) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {53162, 53163, 1325}


X(57590) = POLAR-CIRCLE-INVERSE OF X(431)

Barycentrics    a*(a + b)*(a + c)*(a^7 - a^6*b - a^5*b^2 + a^4*b^3 - a^3*b^4 + a^2*b^5 + a*b^6 - b^7 - a^6*c + a^5*b*c + a^4*b^2*c + a^2*b^4*c - a*b^5*c - b^6*c - a^5*c^2 + a^4*b*c^2 + 4*a^3*b^2*c^2 - 4*a^2*b^3*c^2 - a*b^4*c^2 + b^5*c^2 + a^4*c^3 - 4*a^2*b^2*c^3 + 2*a*b^3*c^3 + b^4*c^3 - a^3*c^4 + a^2*b*c^4 - a*b^2*c^4 + b^3*c^4 + a^2*c^5 - a*b*c^5 + b^2*c^5 + a*c^6 - b*c^6 - c^7) : :
X(57590) = 3 X[2] - 4 X[44906], 3 X[16370] - X[54095]

X(57590) lies on these lines: {2, 3}, {99, 53964}, {104, 10420}, {105, 53895}, {110, 2694}, {229, 1836}, {476, 1295}, {691, 26703}, {759, 53952}, {915, 53953}, {925, 2687}, {993, 20243}, {1290, 39435}, {1727, 5127}, {1789, 11012}, {1793, 2077}, {2693, 53684}, {2752, 3565}, {4329, 56934}, {4575, 45272}, {9060, 53917}, {9061, 53961}, {10693, 37783}, {12030, 13397}, {13398, 53921}, {16167, 53907}, {20187, 53943}, {26707, 53960}, {34594, 53928}, {52366, 56946}, {53707, 53925}

X(57590) = reflection of X(i) in X(j) for these {i,j}: {37979, 3}, {37982, 44906}
X(57590) = anticomplement of X(37982)
X(57590) = circumcircle-inverse of X(16049)
X(57590) = polar-circle-inverse of X(431)
X(57590) = de Longchamps-circle-inverse of X(2475)
X(57590) = antigonal image of X(38949)
X(57590) = X(51470)-Dao conjugate of X(10693)
X(57590) = barycentric product X(1812)*X(38949)
X(57590) = barycentric quotient X(38949)/X(40149)
X(57590) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 405, 24907}, {3, 25646, 404}, {21, 1325, 2074}, {21, 4227, 4228}, {21, 37960, 7469}, {1113, 1114, 16049}, {1325, 2074, 7469}, {1370, 17512, 16049}, {2074, 37960, 1325}, {5002, 5003, 37959}, {11101, 11413, 16049}, {13739, 30552, 16049}, {37982, 44906, 2}


X(57591) = POLAR-CIRCLE-INVERSE OF X(440)

Barycentrics    (a + b)*(a + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6 - a^5*b + a^3*b^3 - 2*a^2*b^4 + b^6 - a^5*c + a^4*b*c + a^3*b^2*c - a^2*b^3*c + a^3*b*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 + a^3*c^3 - a^2*b*c^3 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(57591) lies on these lines: {2, 3}, {103, 22239}, {107, 53922}, {112, 3011}, {162, 33129}, {393, 47163}, {523, 17926}, {675, 10423}, {917, 1304}, {935, 9085}, {1289, 53190}, {1301, 2688}, {1836, 41503}, {1839, 38852}, {2906, 6147}, {3120, 56919}, {14192, 37799}, {17718, 41502}, {23710, 52956}, {26708, 53962}

X(57591) =polar-circle-inverse of X(440)
X(57591) =X(656)-isoconjugate of X(53925)
X(57591) =X(40596)-Dao conjugate of X(53925)
X(57591) =barycentric quotient X(112)/X(53925)
X(57591) ={X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 186, 36026}, {27, 2073, 5196}, {27, 7474, 7431}, {415, 44331, 52891}


X(57592) = POLAR-CIRCLE-INVERSE OF X(450)

Barycentrics    a^10*b^2 - 4*a^8*b^4 + 5*a^6*b^6 - a^4*b^8 - 2*a^2*b^10 + b^12 + a^10*c^2 + 4*a^8*b^2*c^2 - 4*a^6*b^4*c^2 - 7*a^4*b^6*c^2 + 9*a^2*b^8*c^2 - 3*b^10*c^2 - 4*a^8*c^4 - 4*a^6*b^2*c^4 + 16*a^4*b^4*c^4 - 7*a^2*b^6*c^4 + 3*b^8*c^4 + 5*a^6*c^6 - 7*a^4*b^2*c^6 - 7*a^2*b^4*c^6 - 2*b^6*c^6 - a^4*c^8 + 9*a^2*b^2*c^8 + 3*b^4*c^8 - 2*a^2*c^10 - 3*b^2*c^10 + c^12 : :

X(57592) lies on these lines: {2, 3}, {51, 3258}, {125, 2790}, {184, 16319}, {523, 13567}, {878, 47173}, {2452, 11433}, {2453, 26958}, {11064, 44127}, {11245, 47148}, {11547, 47158}, {12079, 57488}, {14165, 44096}, {14611, 45968}, {15048, 46128}, {34986, 55308}, {37643, 47285}, {37648, 44114}, {42453, 47179}

X(57592) = complement of X(36192)
X(57592) = polar-circle-inverse of X(450)
X(57592) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 36190, 11007}, {2, 47348, 36190}, {427, 3154, 28144}, {3154, 34093, 427}, {35235, 44889, 5}, {53162, 53163, 52403}


X(57593) = POLAR-CIRCLE-INVERSE OF X(1080)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(Sqrt[3]*(a^2 - b^2 - c^2)*(a^2 + b^2 + c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) - 8*(2*a^2 - b^2 - c^2)*S^3) : :

X(57593) lies on these lines: {2, 3}, {232, 6111}, {340, 5978}, {6103, 6108}, {11537, 52464}, {16188, 47898}, {20429, 47570}, {31670, 47575}, {36515, 40118}, {42426, 46650}, {47610, 56514}
X(57593) = polar-circle-inverse of X(1080)
X(57593) = orthoptic-circle-of-Steiner-inellipse-inverse of X(470)
X(57593) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5000, 5001, 32461}, {6108, 6110, 6103}


X(57594) = X(2)X(3)∩X(6)X(1499)

Barycentrics    a^10 - 3*a^8*b^2 - a^6*b^4 + 3*a^4*b^6 - 3*a^8*c^2 + 11*a^6*b^2*c^2 - 5*a^4*b^4*c^2 - 8*a^2*b^6*c^2 + b^8*c^2 - a^6*c^4 - 5*a^4*b^2*c^4 + 16*a^2*b^4*c^4 - b^6*c^4 + 3*a^4*c^6 - 8*a^2*b^2*c^6 - b^4*c^6 + b^2*c^8 : :

X(57594) lies on these lnes: {2, 3}, {6, 1499}, {99, 12093}, {115, 23699}, {671, 32424}, {691, 53805}, {2408, 2452}, {2782, 48947}, {5026, 45722}, {5466, 45143}, {5512, 10418}, {5642, 14856}, {5663, 10753}, {5915, 9756}, {7664, 22338}, {7757, 14246}, {8704, 17964}, {9745, 34169}, {11163, 52483}, {22253, 53351}, {30209, 52471}, {30247, 44467}, {31128, 38593}

X(57594) = reflection of X(45722) in X(5026)
X(57594) = orthoptic-circle-of-Steiner-inellipse-inverse of X(47349)
X(57594) = crossdifference of every pair of points on line {647, 9027}
X(57594) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1316, 56967, 40856}, {56957, 56967, 1316}


X(57595) = X(2)X(3)∩X(6)X(1499)

Barycentrics    (b - c)^2*(-a^6 + 2*a^5*b - a^4*b^2 + a^2*b^4 - 2*a*b^5 + b^6 + 2*a^5*c - a^4*b*c - a^3*b^2*c + a^2*b^3*c - a*b^4*c - a^4*c^2 - a^3*b*c^2 + 2*a^2*b^2*c^2 + a*b^3*c^2 - b^4*c^2 + a^2*b*c^3 + a*b^2*c^3 + a^2*c^4 - a*b*c^4 - b^2*c^4 - 2*a*c^5 + c^6) : :

X(57595) lies on these lnes: {2, 3}, {11, 1111}, {100, 10743}, {115, 42425}, {123, 53990}, {149, 38575}, {2968, 5521}, {15521, 30787}

X(57595) = midpoint of X(4) and X(7427)
X(57595) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3140, 37986, 868}


X(57596) = X(2)X(3)∩X(13)X(5466)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6) - Sqrt[3]*(b^2 - c^2)^2*(3*a^8 - 4*a^6*b^2 - a^4*b^4 + 4*a^2*b^6 - 2*b^8 - 4*a^6*c^2 + 8*a^4*b^2*c^2 - 4*a^2*b^4*c^2 + 2*b^6*c^2 - a^4*c^4 - 4*a^2*b^2*c^4 - b^4*c^4 + 4*a^2*c^6 + 2*b^2*c^6 - 2*c^8)*S : :

X(57596) lies on these lnes: {2, 3}, {13, 5466}, {125, 41061}, {621, 5468}, {1648, 5318}, {3180, 53351}, {5321, 41939}, {5335, 6792}, {5478, 30468}, {5617, 35315}, {5642, 41060}, {7684, 52040}, {9214, 37786}, {30465, 41023}, {44667, 52039}

X(57596) = circumcircle-of-inner-Napoleon-triangle-inverse of X(16179)
X(57596) = circumcircle-of-outer-Napoleon-triangle-inverse of X(16182)
X(57596) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 44462, 4226}, {2, 46856, 53161}, {868, 32460, 2}, {45662, 46858, 2}


X(57597) = X(2)X(3)∩X(14)X(5466)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6) + Sqrt[3]*(b^2 - c^2)^2*(3*a^8 - 4*a^6*b^2 - a^4*b^4 + 4*a^2*b^6 - 2*b^8 - 4*a^6*c^2 + 8*a^4*b^2*c^2 - 4*a^2*b^4*c^2 + 2*b^6*c^2 - a^4*c^4 - 4*a^2*b^2*c^4 - b^4*c^4 + 4*a^2*c^6 + 2*b^2*c^6 - 2*c^8)*S : :

X(57597) lies on these lnes: {2, 3}, {14, 5466}, {125, 41060}, {622, 5468}, {1648, 5321}, {3181, 53351}, {5318, 41939}, {5334, 6792}, {5479, 30465}, {5613, 35314}, {5642, 41061}, {7685, 52039}, {9214, 37785}, {30468, 41022}, {44666, 52040}
X(57597) = circumcircle-of-inner-Napoleon-triangle-inverse of X(16181)
X(57597) = circumcircle-of-outer-Napoleon-triangle-inverse of X(16180)
X(57597) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 44466, 4226}, {2, 46857, 53161}, {868, 32461, 2}, {45662, 46859, 2}


X(57598) = X(2)X(3)∩X(51)X(512)

Barycentrics    2*a^8 - 2*a^6*b^2 + a^2*b^6 - b^8 - 2*a^6*c^2 + 2*a^4*b^2*c^2 - a^2*b^4*c^2 + 4*b^6*c^2 - a^2*b^2*c^4 - 6*b^4*c^4 + a^2*c^6 + 4*b^2*c^6 - c^8 : :
X[237] - 4 X[460]

X(57598) lies on these lines: {2, 3}, {6, 15356}, {51, 512}, {53, 23347}, {110, 6321}, {115, 5191}, {125, 39838}, {184, 11648}, {247, 5642}, {275, 54808}, {523, 15358}, {542, 51335}, {1495, 41939}, {1503, 46124}, {1576, 1989}, {1648, 34417}, {1976, 6034}, {2396, 32819}, {3163, 8754}, {3448, 38744}, {5306, 35906}, {5309, 34396}, {5480, 5967}, {6128, 20975}, {6794, 11402}, {9155, 23698}, {9407, 53416}, {9777, 14163}, {10722, 41254}, {10749, 35442}, {11123, 42733}, {13366, 39593}, {14639, 35278}, {17330, 23902}, {18122, 53274}, {18487, 44102}, {18907, 52450}, {22515, 51430}, {34175, 40820}, {35606, 53418}, {36969, 44122}, {36970, 44083}, {38730, 54439}, {39563, 42671}, {39809, 51389}, {40981, 53329}

X(57598) = reflection of X(i) in X(j) for these {i,j}: {237, 50707}, {20975, 6128}, {50706, 21531}, {50707, 460}
X(57598) = crossdifference of every pair of points on line {323, 647}
X(57598) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1316, 868}, {4, 2409, 57586}, {115, 51431, 5191}, {868, 1316, 15000}, {15687, 34094, 53161}, {22515, 51430, 54395}, {52286, 52287, 35235}


X(57599) = X(2)X(3)∩X(99)X(1296)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(2*a^6 - 5*a^4*b^2 - 6*a^2*b^4 + b^6 - 5*a^4*c^2 + 20*a^2*b^2*c^2 - b^4*c^2 - 6*a^2*c^4 - b^2*c^4 + c^6) : :
X(57599) = 3 X[3524] - 2 X[14694], 5 X[15692] - 4 X[46066], 13 X[21734] - 4 X[23720]

X(57599) lies on these lines: {2, 3}, {99, 1296}, {110, 30256}, {112, 20187}, {148, 14654}, {620, 38803}, {671, 53726}, {691, 2407}, {935, 53961}, {1499, 5468}, {3565, 30247}, {6236, 33638}, {7664, 38805}, {10098, 53895}, {16317, 36877}, {31128, 38623}, {34245, 43674}, {35356, 45722}, {43660, 53695}, {44061, 53884}, {47291, 53351}, {53698, 53903}

X(57599) = reflection of X(i) in X(j) for these {i,j}: {3543, 46067}, {7417, 3}, {46069, 376}
X(57599) = barycentric product X(i)*X(j) for these {i,j}: {99, 16317}, {5468, 36877}
X(57599) = barycentric quotient X(i)/X(j) for these {i,j}: {16317, 523}, {36877, 5466}
X(57599) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 57594, 2}, {376, 7464, 7422}, {4221, 37960, 7427}, {4226, 7472, 4235}, {4235, 7482, 2409}, {5004, 5005, 46589}, {7472, 11634, 4226}


X(57600) = X(2)X(3)∩X(99)X(6011)

Barycentrics    a*(a - b)*(a - c)*(a^5 - a^4*b - a*b^4 + b^5 - a^4*c - a^3*b*c + a^2*b^2*c - a*b^3*c - 2*b^4*c + a^2*b*c^2 + 4*a*b^2*c^2 + b^3*c^2 - a*b*c^3 + b^2*c^3 - a*c^4 - 2*b*c^4 + c^5) : :

X(57600) lies on these lines: {2, 3}, {98, 53698}, {99, 6011}, {100, 1292}, {110, 30257}, {112, 44065}, {691, 53936}, {833, 28477}, {1025, 5377}, {1290, 2691}, {1293, 6012}, {1296, 9070}, {1897, 13397}, {2222, 2737}, {2406, 40577}, {3309, 3573}, {3565, 30250}, {4585, 6003}, {9058, 53901}, {10101, 53952}, {28480, 43348}, {31073, 38619}, {33637, 53898}, {43660, 53697}

X(57600) = reflection of X(7427) in X(3)
X(57600) = anticomplement of X(57595)
X(57600) = crossdifference of every pair of points on line {647, 17476}
X(57600) = barycentric product X(i)*X(j) for these {i,j}: {100, 24781}, {4585, 51834}
X(57600) = barycentric quotient X(24781)/X(693)
X(57600) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3651, 36001, 7422}, {4220, 37959, 7417}, {4236, 4238, 4237}, {4236, 7475, 4226}, {4238, 7476, 2409}, {5004, 5005, 46586}, {13589, 53160, 7437}


X(57601) = X(2)X(3)∩X(108)X(26706)

Barycentrics    a*(a - b)*(a - c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^7 - a^6*b - a^5*b^2 + a^4*b^3 - a^3*b^4 + a^2*b^5 + a*b^6 - b^7 - a^6*c + a^5*b*c - a^2*b^4*c - a*b^5*c + 2*b^6*c - a^5*c^2 + 2*a^3*b^2*c^2 + a*b^4*c^2 - 2*b^5*c^2 + a^4*c^3 - 2*a*b^3*c^3 + b^4*c^3 - a^3*c^4 - a^2*b*c^4 + a*b^2*c^4 + b^3*c^4 + a^2*c^5 - a*b*c^5 - 2*b^2*c^5 + a*c^6 + 2*b*c^6 - c^7) : :

X(57601) lies on these lines: {2, 3}, {108, 26706}, {112, 30250}, {1289, 6011}, {1292, 40097}, {1301, 30257}, {2766, 10101}, {9070, 39382}, {10423, 53936}, {39417, 44065}, {40120, 53698}

X(57601) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 186, 7427}, {4238, 7476, 4226}, {4244, 37965, 2409}, {7414, 37979, 7422}


X(57602) = X(2)X(3)∩X(99)X(39382)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^8 - 5*a^6*b^2 - a^4*b^4 + 5*a^2*b^6 - b^8 - 5*a^6*c^2 + 10*a^4*b^2*c^2 - 5*a^2*b^4*c^2 - a^4*c^4 - 5*a^2*b^2*c^4 + 2*b^4*c^4 + 5*a^2*c^6 - c^8) : :

X(57602) lies on these lines: {2, 3}, {99, 39382}, {112, 30247}, {691, 16237}, {935, 10098}, {1289, 1296}, {1301, 30256}, {2696, 10423}, {3565, 30251}, {20187, 39417}, {41676, 53351}, {52916, 57086}

X(57602) = barycentric product X(99)*X(47187)
X(57602) = barycentric quotient X(47187)/X(523)
X(57602) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 186, 7417}, {25, 57594, 4}, {378, 10295, 7422}, {2409, 4235, 46619}, {4227, 37961, 7427}, {4230, 7472, 4235}, {4235, 7482, 4226}, {46592, 46619, 2409}


X(57603) = X(2)X(3)∩X(99)X(39382)

Barycentrics    2*a^10*b^2 - 5*a^8*b^4 + 4*a^6*b^6 - 2*a^4*b^8 + 2*a^2*b^10 - b^12 + 2*a^10*c^2 - 2*a^8*b^2*c^2 + 2*a^6*b^4*c^2 - a^4*b^6*c^2 - 4*a^2*b^8*c^2 + 3*b^10*c^2 - 5*a^8*c^4 + 2*a^6*b^2*c^4 + 2*a^4*b^4*c^4 + 2*a^2*b^6*c^4 - 3*b^8*c^4 + 4*a^6*c^6 - a^4*b^2*c^6 + 2*a^2*b^4*c^6 + 2*b^6*c^6 - 2*a^4*c^8 - 4*a^2*b^2*c^8 - 3*b^4*c^8 + 2*a^2*c^10 + 3*b^2*c^10 - c^12 : :
X(57603) = 3 X[3545] - X[53161]

X(57603) lies on these lines: {2, 3}, {74, 30789}, {98, 265}, {113, 114}, {126, 50935}, {128, 44953}, {131, 132}, {133, 31842}, {147, 399}, {230, 2420}, {542, 45331}, {842, 20957}, {1352, 40879}, {1503, 24975}, {2407, 3564}, {2410, 51847}, {2794, 47082}, {2967, 34333}, {5480, 18122}, {5649, 34174}, {5655, 6054}, {5663, 53132}, {6036, 7687}, {6055, 15359}, {6321, 48982}, {6530, 16237}, {7683, 18120}, {10264, 31127}, {14850, 23234}, {16188, 18556}, {17702, 47200}, {18305, 43460}, {18451, 43389}, {19165, 39118}, {34150, 51262}, {36875, 53351}, {39170, 47207}, {41626, 54162}, {42424, 42426}

X(57603) = midpoint of X(i) and X(j) for these {i,j}: {4, 4226}, {36875, 53351}
X(57603) = reflection of X(i) in X(j) for these {i,j}: {868, 5}, {52772, 24975}
X(57603) = complement of X(7422)
X(57603) = orthoptic-circle-of-the-Steiner-inellipse-inverse of X(7471)
X(57603) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5000, 5001, 35235}, {6039, 6040, 36173}, {47612, 47613, 1650}


X(57604) = X(2)X(3)∩X(99)X(10748)

Barycentrics    (b - c)^2*(b + c)^2*(3*a^6 - a^4*b^2 - 3*a^2*b^4 + b^6 - a^4*c^2 + 7*a^2*b^2*c^2 - 2*b^4*c^2 - 3*a^2*c^4 - 2*b^2*c^4 + c^6) : :
X(57604) = 7 X[3832] + 2 X[23720], 5 X[5071] - 4 X[46068]

X(57604) lies on these lines: {2, 3}, {99, 10748}, {115, 2793}, {125, 14856}, {127, 53992}, {148, 11258}, {339, 5139}, {1499, 1648}, {2088, 38395}, {2408, 51258}, {5466, 43674}, {5655, 10753}, {6033, 48947}, {9084, 52236}, {9176, 31655}, {10418, 23699}, {11632, 48983}, {14246, 14568}, {14666, 52141}, {16278, 44114}, {22329, 52483}, {22338, 30786}

X(57604) = midpoint of X(i) and X(j) for these {i,j}: {4, 7417}, {3543, 46069}
X(57604) = reflection of X(i) in X(j) for these {i,j}: {376, 46066}, {46067, 381}
X(57604) = orthocentroidal-circle-inverse of X(57594)
X(57604) = polar-circle-inverse of X(56368)
X(57604) = orthoptic-circle-of-the-Steiner-inellipse-inverse of X(36168)
X(57604) = X(9084)-Ceva conjugate of X(523)
X(57604) = X(1101)-isoconjugate of X(52236)
X(57604) = X(523)-Dao conjugate of X(52236)
X(57604) = crossdifference of every pair of points on line {647, 9145}
X(57604) = barycentric product X(338)*X(52238)
X(57604) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 52236}, {52238, 249}
X(57604) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 57594}, {3143, 14120, 868}


X(57605) = X(2)X(3)∩X(104)X(30787)

Barycentrics    a^7*b^2 - a^6*b^3 - a^5*b^4 + a^4*b^5 - a^3*b^6 + a^2*b^7 + a*b^8 - b^9 + 2*a^7*b*c - 3*a^6*b^2*c + a^5*b^3*c + 3*a^4*b^4*c - 2*a^3*b^5*c - a^2*b^6*c - a*b^7*c + b^8*c + a^7*c^2 - 3*a^6*b*c^2 + a^3*b^4*c^2 + a^2*b^5*c^2 - 2*a*b^6*c^2 + 2*b^7*c^2 - a^6*c^3 + a^5*b*c^3 - a^2*b^4*c^3 + a*b^5*c^3 - 2*b^6*c^3 - a^5*c^4 + 3*a^4*b*c^4 + a^3*b^2*c^4 - a^2*b^3*c^4 + 2*a*b^4*c^4 + a^4*c^5 - 2*a^3*b*c^5 + a^2*b^2*c^5 + a*b^3*c^5 - a^3*c^6 - a^2*b*c^6 - 2*a*b^2*c^6 - 2*b^3*c^6 + a^2*c^7 - a*b*c^7 + 2*b^2*c^7 + a*c^8 + b*c^8 - c^9 : :

X(57605) lies on these lines: {2, 3}, {104, 30787}, {105, 10738}, {114, 31845}, {119, 120}, {230, 1983}, {1484, 31126}, {3564, 4585}, {11698, 24808}, {12331, 20344}, {17757, 53358}, {19884, 25466}, {20621, 21664}, {22758, 30755}, {26231, 33814}, {31842, 53982}, {34332, 34337}

X(57605) = reflection of X(57595) in X(5)
X(57605) = complement of X(7427)
X(57605) = orthoptic-circle-of-the-Steiner-inellipse-inverse of X(36167)
X(57605) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {442, 30447, 868}


X(57606) = X(2)X(3)∩X(122)X(127)

Barycentrics    (b^2 - c^2)^2*(a^2 - b^2 - c^2)*(a^4 - b^4 + a^2*b*c - b^3*c - b*c^3 - c^4)*(a^4 - b^4 - a^2*b*c + b^3*c + b*c^3 - c^4) : :

X(57606) lies on these lines: {2, 3}, {107, 12918}, {115, 13611}, {122, 127}, {125, 339}, {1853, 43389}, {5664, 16177}, {13115, 34186}, {14689, 35282}, {15131, 53760}, {16318, 51937}, {47413, 53575}, {50188, 53795}, {53569, 55069}

X(57606) = isotomic conjugate of X(39297)
X(57606) = complement of X(2409)
X(57606) = orthoptic-circle-of-the-Steiner-inellipse-inverse of X(46620)
X(57606) = complement of the isogonal conjugate of X(2435)
X(57606) = complement of the isotomic conjugate of X(2419)
X(57606) = X(i)-complementary conjugate of X(j) for these (i,j): {656, 132}, {810, 23976}, {1297, 8062}, {2419, 2887}, {2435, 10}, {8767, 520}, {34212, 226}, {35140, 21259}, {36046, 23583}, {43673, 20305}, {44770, 23998}
X(57606) = X(i)-Ceva conjugate of X(j) for these (i,j): {30737, 2799}, {34168, 523}, {35140, 525}
X(57606) = X(i)-isoconjugate of X(j) for these (i,j): {31, 39297}, {2867, 32676}
X(57606) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 39297}, {15526, 2867}, {16612, 37202}
X(57606) = barycentric product X(i)*X(j) for these {i,j}: {339, 52058}, {857, 34846}, {2881, 3267}, {33504, 35140}
X(57606) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 39297}, {525, 2867}, {2881, 112}, {15292, 1304}, {33504, 1503}, {34846, 37202}, {52058, 250}, {56692, 53883}
X(57606) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {868, 1650, 3150}, {1368, 11007, 3}, {3150, 37987, 868}, {47612, 47613, 54380}


X(57607) = X(2)X(3)∩X(114)X(126)

Barycentrics    2*a^8*b^2 - 2*a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 + 2*a^8*c^2 - 8*a^6*b^2*c^2 + 7*a^4*b^4*c^2 - 6*a^2*b^6*c^2 + 3*b^8*c^2 - 2*a^6*c^4 + 7*a^4*b^2*c^4 + 4*a^2*b^4*c^4 - 2*b^6*c^4 - a^4*c^6 - 6*a^2*b^2*c^6 - 2*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10 : :
X(57607) = 3 X[3524] - X[46069], 3 X[5054] - 2 X[46066], 3 X[5055] - 4 X[46068], 11 X[5070] - 2 X[23720], 2 X[7417] - 3 X[14694]

X(57607) lies on these lines: {2, 3}, {98, 30786}, {111, 6321}, {114, 126}, {115, 9177}, {182, 41939}, {230, 5467}, {265, 52236}, {325, 53367}, {511, 1648}, {542, 1641}, {1351, 6792}, {1352, 5108}, {1503, 11053}, {1560, 2967}, {2407, 16315}, {2974, 34336}, {3564, 5468}, {3815, 46127}, {5480, 32525}, {5913, 52152}, {5967, 11064}, {6033, 9775}, {7664, 33813}, {7665, 13172}, {8371, 16188}, {8724, 9759}, {9169, 20423}, {9172, 9880}, {10418, 23698}, {11632, 42008}, {11898, 38940}, {13188, 14360}, {14916, 50955}, {14981, 45330}, {16317, 52450}, {16320, 53274}, {17941, 37803}, {22254, 38664}, {24855, 35606}, {34380, 45291}, {35345, 47239}, {37648, 46124}, {45331, 46980}, {47155, 53351}

X(57607) = reflection of X(14694) in X(2)
X(57607) = complement of X(7417)
X(57607) = orthoptic-circle-of-the-Steiner-inellipse-inverse of X(7472)
X(57607) = Hutson-Parry-circle-inverse of X(31655)
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 858, 868}, {2, 4226, 468}, {2, 16063, 9832}, {9759, 10717, 8724}


X(57608) = X(2)X(3)∩X(132)X(133)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^12*b^2 - 6*a^10*b^4 + 5*a^8*b^6 - 2*a^2*b^12 + b^14 + 2*a^12*c^2 + a^8*b^4*c^2 - 6*a^6*b^6*c^2 - 2*a^4*b^8*c^2 + 6*a^2*b^10*c^2 - b^12*c^2 - 6*a^10*c^4 + a^8*b^2*c^4 + 8*a^6*b^4*c^4 + 2*a^4*b^6*c^4 - 2*a^2*b^8*c^4 - 3*b^10*c^4 + 5*a^8*c^6 - 6*a^6*b^2*c^6 + 2*a^4*b^4*c^6 - 4*a^2*b^6*c^6 + 3*b^8*c^6 - 2*a^4*b^2*c^8 - 2*a^2*b^4*c^8 + 3*b^6*c^8 + 6*a^2*b^2*c^10 - 3*b^4*c^10 - 2*a^2*c^12 - b^2*c^12 + c^14) : :

X(57608) lies on these lines: {2, 3}, {113, 2967}, {114, 50937}, {132, 133}, {1297, 10745}, {1503, 23347}, {2404, 6530}, {3563, 13494}, {6103, 30497}, {6794, 45141}, {12384, 38577}, {18809, 42426}, {23324, 43280}, {25641, 38552}

X(57608) = midpoint of X(4) and X(2409)
X(57608) = orthoptic-circle-of-the-Steiner-inellipse-inverse of X(31510)
X(57608) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 403, 868}, {5000, 5001, 1650}


X(57609) = X(2)X(3)∩X(115)X(135)

Barycentrics    (b^2 - c^2)^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 + a^2*b^2*c^2 + 3*a^2*c^4 - c^6) : :

X(57609) lies on these lines: {2, 3}, {115, 135}, {136, 5139}, {2971, 34338}, {5099, 16178}, {16221, 48317}, {53983, 53986}, {53987, 53989}, {53992, 53993}

X(57609) = orthic-isogonal conjugate of X(38359)
X(57609) = X(i)-Ceva conjugate of X(j) for these (i,j): {4, 38359}, {40120, 523}, {44145, 16230}
X(57609) = X(4575)-isoconjugate of X(44768)
X(57609) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 44768}, {6132, 3564}, {36472, 4558}
X(57609) = barycentric product X(i)*X(j) for these {i,j}: {2970, 35296}, {6132, 14618}, {35142, 36472}
X(57609) = barycentric quotient X(i)/X(j) for these {i,j}: {2501, 44768}, {6132, 4558}, {36472, 3564}
X(57609) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 6353, 36181}, {235, 57586, 25}


X(57610) = X(2)X(3)∩X(115)X(33962)

Barycentrics    a^8*b^2 + 2*a^6*b^4 - 2*a^4*b^6 - 2*a^2*b^8 + b^10 + a^8*c^2 - 16*a^6*b^2*c^2 + 11*a^4*b^4*c^2 + 3*a^2*b^6*c^2 - 3*b^8*c^2 + 2*a^6*c^4 + 11*a^4*b^2*c^4 - 10*a^2*b^4*c^4 + 2*b^6*c^4 - 2*a^4*c^6 + 3*a^2*b^2*c^6 + 2*b^4*c^6 - 2*a^2*c^8 - 3*b^2*c^8 + c^10 : :

X(57610) lies on these lines: {2, 3}, {115, 33962}, {141, 1499}, {620, 23699}, {2482, 32424}, {2682, 5650}, {3815, 9177}, {5099, 53805}, {5467, 18907}, {10418, 14650}, {11646, 45722}, {15048, 46127}

X(57610) = midpoint of X(11646) and X(45722)
X(57610) = complement of X(57594)
X(57610) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {}


X(57611) = X(2)X(3)∩X(146)X(147)

Barycentrics    2*a^12 + a^10*b^2 - 10*a^8*b^4 + 6*a^6*b^6 + 2*a^4*b^8 + a^2*b^10 - 2*b^12 + a^10*c^2 + 2*a^8*b^2*c^2 + 5*a^6*b^4*c^2 - 7*a^4*b^6*c^2 - 6*a^2*b^8*c^2 + 5*b^10*c^2 - 10*a^8*c^4 + 5*a^6*b^2*c^4 + 2*a^4*b^4*c^4 + 5*a^2*b^6*c^4 - 2*b^8*c^4 + 6*a^6*c^6 - 7*a^4*b^2*c^6 + 5*a^2*b^4*c^6 - 2*b^6*c^6 + 2*a^4*c^8 - 6*a^2*b^2*c^8 - 2*b^4*c^8 + a^2*c^10 + 5*b^2*c^10 - 2*c^12 : :
X(57611) = 4 X[868] - 5 X[3091], 3 X[3839] - 2 X[53161], 3 X[10304] - 4 X[45662]

X(57611) lies on these lines: {2, 3}, {74, 31127}, {98, 10733}, {114, 13202}, {146, 147}, {842, 44967}, {1503, 2407}, {2410, 53771}, {3424, 54925}, {10723, 48982}, {15305, 31848}, {18122, 51163}, {29012, 52772}, {36990, 40879}

X(57611) = reflection of X(20) in X(4226)
X(57611) = anticomplement of X(7422)
X(57611) = orthoptic-circle-of-Steiner-inellipse-inverse of X(12068)
X(57611) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(7471)
X(57611) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5002, 5003, 45289}, {6039, 6040, 36170}


X(57612) = X(2)X(3)∩X(182)X(690)

Barycentrics    2*a^14 - 5*a^12*b^2 + 3*a^10*b^4 + 2*a^8*b^6 - 4*a^6*b^8 + 3*a^4*b^10 - a^2*b^12 - 5*a^12*c^2 + 8*a^10*b^2*c^2 - 3*a^8*b^4*c^2 + 5*a^4*b^8*c^2 - 6*a^2*b^10*c^2 + b^12*c^2 + 3*a^10*c^4 - 3*a^8*b^2*c^4 - 6*a^4*b^6*c^4 + 15*a^2*b^8*c^4 - 3*b^10*c^4 + 2*a^8*c^6 - 6*a^4*b^4*c^6 - 16*a^2*b^6*c^6 + 2*b^8*c^6 - 4*a^6*c^8 + 5*a^4*b^2*c^8 + 15*a^2*b^4*c^8 + 2*b^6*c^8 + 3*a^4*c^10 - 6*a^2*b^2*c^10 - 3*b^4*c^10 - a^2*c^12 + b^2*c^12 : :

X(57612) lies on these lines: {2, 3}, {182, 690}, {2407, 32515}, {2782, 52772}, {5663, 5967}, {5968, 46634}, {9828, 26316}, {13162, 38737}, {14355, 15342}, {18911, 53132}, {47049, 53735}

X(57612) = midpoint of X(3) and X(56967)
X(57612) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 49669, 37242}, {3, 381, 36166}


X(57613) = X(2)X(3)∩X(187)X(8704)

Barycentrics    4*a^10 - 9*a^8*b^2 - a^6*b^4 + 9*a^4*b^6 - 3*a^2*b^8 - 9*a^8*c^2 + 8*a^6*b^2*c^2 - 5*a^4*b^4*c^2 + a^2*b^6*c^2 + b^8*c^2 - a^6*c^4 - 5*a^4*b^2*c^4 + 4*a^2*b^4*c^4 - b^6*c^4 + 9*a^4*c^6 + a^2*b^2*c^6 - b^4*c^6 - 3*a^2*c^8 + b^2*c^8 : :

X(57613) lies on these lines: {2, 3}, {187, 8704}, {3581, 10753}, {5967, 32219}, {6232, 7737}, {12506, 14537}, {14653, 51224}, {14666, 26613}, {32424, 51541}

X(57613) = Brocard-circle-inverse of X(44848)


X(57614) = X(2)X(3)∩X(148)X(23699)

Barycentrics    3*a^10 - 10*a^8*b^2 - 5*a^6*b^4 + 11*a^4*b^6 + 2*a^2*b^8 - b^10 - 10*a^8*c^2 + 49*a^6*b^2*c^2 - 26*a^4*b^4*c^2 - 27*a^2*b^6*c^2 + 6*b^8*c^2 - 5*a^6*c^4 - 26*a^4*b^2*c^4 + 58*a^2*b^4*c^4 - 5*b^6*c^4 + 11*a^4*c^6 - 27*a^2*b^2*c^6 - 5*b^4*c^6 + 2*a^2*c^8 + 6*b^2*c^8 - c^10 : :
X(57614) = 3 X[2] - 4 X[57594]

X(57614) lies on these lines: {2, 3}, {148, 23699}, {193, 1499}, {7665, 44987}, {8596, 32424}, {14856, 35279}, {20094, 33962}, {23698, 48947}, {32815, 53367}

X(57614) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(47349)
X(57614) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 57599, 2}


X(57615) = X(2)X(3)∩X(263)X(512)

Barycentrics    3*a^10*b^2 - 4*a^8*b^4 + 2*a^6*b^6 - a^2*b^10 + 3*a^10*c^2 - 4*a^8*b^2*c^2 + a^6*b^4*c^2 + a^4*b^6*c^2 + 4*a^2*b^8*c^2 - b^10*c^2 - 4*a^8*c^4 + a^6*b^2*c^4 - 2*a^4*b^4*c^4 - 3*a^2*b^6*c^4 + 4*b^8*c^4 + 2*a^6*c^6 + a^4*b^2*c^6 - 3*a^2*b^4*c^6 - 6*b^6*c^6 + 4*a^2*b^2*c^8 + 4*b^4*c^8 - a^2*c^10 - b^2*c^10 : :

X(57615) lies on these lines: {2, 3}, {32, 51820}, {263, 512}, {2782, 25046}, {2794, 20021}, {7735, 51441}, {9147, 46040}, {9753, 34175}, {12110, 40820}, {23698, 36213}, {30226, 32815}, {34417, 35606}, {35906, 44127}, {36998, 57490}, {38368, 56920}, {44011, 47638}


X(57616) = X(2)X(3)∩X(323)X(1499)

Barycentrics    a^10 - 3*a^8*b^2 - a^6*b^4 + 3*a^4*b^6 - 3*a^8*c^2 + 14*a^6*b^2*c^2 - 8*a^4*b^4*c^2 - 5*a^2*b^6*c^2 + b^8*c^2 - a^6*c^4 - 8*a^4*b^2*c^4 + 13*a^2*b^4*c^4 - b^6*c^4 + 3*a^4*c^6 - 5*a^2*b^2*c^6 - b^4*c^6 + b^2*c^8 : :
X(57616) = 2 X[23] - 3 X[13586], 3 X[23] - 4 X[36180], 4 X[858] - 3 X[14041], 3 X[2071] - 2 X[36166], 4 X[7472] - 3 X[13586], 3 X[7472] - 2 X[36180], 9 X[13586] - 8 X[36180], 3 X[14041] - 2 X[36174], 4 X[14120] - 5 X[30745], X[20063] - 3 X[33265], 4 X[27088] - 3 X[37909], 6 X[35297] - 5 X[37760], 4 X[5099] - 5 X[7925], 3 X[19570] - 4 X[47242], 3 X[21445] - 4 X[38611]

X(57616) lies on these lines: {2, 3}, {323, 1499}, {385, 691}, {538, 47290}, {1975, 47284}, {5099, 7925}, {7783, 38526}, {14712, 54104}, {19570, 47242}, {21445, 38611}, {32515, 38582}

X(57616) = reflection of X(i) in X(j) for these {i,j}: {23, 7472}, {385, 691}, {5999, 7464}, {8597, 10989}, {36174, 858}, {37901, 8598}
X(57616) = reflection of X(36174) in the De Longchamps axis
X(57616) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23, 7472, 13586}, {858, 36174, 14041}


X(57617) = X(2)X(3)∩X(98)X(35606)

Barycentrics    4*a^12 - 11*a^10*b^2 + 14*a^8*b^4 - 10*a^6*b^6 + 6*a^4*b^8 - 3*a^2*b^10 - 11*a^10*c^2 + 14*a^8*b^2*c^2 - 7*a^6*b^4*c^2 + 5*a^4*b^6*c^2 + 2*a^2*b^8*c^2 + b^10*c^2 + 14*a^8*c^4 - 7*a^6*b^2*c^4 - 12*a^4*b^4*c^4 + a^2*b^6*c^4 - 6*b^8*c^4 - 10*a^6*c^6 + 5*a^4*b^2*c^6 + a^2*b^4*c^6 + 10*b^6*c^6 + 6*a^4*c^8 + 2*a^2*b^2*c^8 - 6*b^4*c^8 - 3*a^2*c^10 + b^2*c^10 : :

X(57617) lies on these lines: {2, 3}, {98, 35606}, {353, 7709}, {511, 34245}, {1352, 45772}, {5967, 10753}, {9168, 32120}, {14651, 52450}, {21166, 47047}, {48983, 50941}

X(57617) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4226, 7417, 11676}


X(57618) = X(2)X(3)∩X(110)X(11632)

Barycentrics    2*a^8 - 4*a^4*b^4 + 3*a^2*b^6 - b^8 + 2*a^4*b^2*c^2 - a^2*b^4*c^2 + 6*b^6*c^2 - 4*a^4*c^4 - a^2*b^2*c^4 - 10*b^4*c^4 + 3*a^2*c^6 + 6*b^2*c^6 - c^8 : :
X(57618) = 2 X[2] + X[57598], 2 X[8370] + X[45900], 4 X[21973] - X[50707]

X(57618 lies on these lines: {2, 3}, {110, 11632}, {115, 2502}, {373, 512}, {524, 46124}, {543, 9155}, {597, 5967}, {1641, 5651}, {1648, 5475}, {1992, 36207}, {3815, 35606}, {5191, 6055}, {5461, 47200}, {5652, 53266}, {6033, 7698}, {6054, 41254}, {6090, 40727}, {6792, 15484}, {7753, 13410}, {9143, 12188}, {9880, 51389}, {11179, 15928}, {14971, 35282}, {15048, 52450}, {17004, 40871}, {31173, 32225}, {32313, 42738}, {33752, 45329}, {34245, 37688}, {34312, 38953}, {34810, 50979}, {39482, 45693}, {49102, 51430}, {51737, 53267}

X(57618) = orthocentroidal-circle-inverse of X(36194)
X(57618) = Hutson-Parry-circle-inverse of X(373)
X(57618) = crossdifference of every pair of points on line {352, 647}
X(57618) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 36194}, {2, 381, 868}, {2, 1316, 45662}, {2, 1995, 14694}, {2, 3543, 35922}, {2, 4226, 549}, {2, 34094, 15000}, {2, 46512, 34094}, {2, 53161, 11007}, {5, 34094, 2}, {5, 46512, 15000}, {3845, 11007, 53161}


X(57619) = X(2)X(3)∩X(111)X(14653)

Barycentrics    4*a^10 - 11*a^8*b^2 - 2*a^6*b^4 + 10*a^4*b^6 - 2*a^2*b^8 + b^10 - 11*a^8*c^2 + 28*a^6*b^2*c^2 - 9*a^4*b^4*c^2 - 29*a^2*b^6*c^2 + b^8*c^2 - 2*a^6*c^4 - 9*a^4*b^2*c^4 + 54*a^2*b^4*c^4 - 2*b^6*c^4 + 10*a^4*c^6 - 29*a^2*b^2*c^6 - 2*b^4*c^6 - 2*a^2*c^8 + b^2*c^8 + c^10 : :

X(57619) lies on these lines: {2, 3}, {111, 14653}, {115, 32424}, {597, 1499}, {2482, 33962}, {5461, 23699}, {9465, 31961}, {10748, 42008}, {14995, 15048}, {30516, 57429}, {41939, 43964}

X(57619) = midpoint of X(2) and X(57594)
X(57619) = crossdifference of every pair of points on line {647, 9872}
X(57619) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 4, 23720}


X(57620) = X(2)X(3)∩X(99)X(32424)

Barycentrics    a^10 - 5*a^8*b^2 - 5*a^6*b^4 + 7*a^4*b^6 + 4*a^2*b^8 - 2*b^10 - 5*a^8*c^2 + 43*a^6*b^2*c^2 - 27*a^4*b^4*c^2 - 14*a^2*b^6*c^2 + 7*b^8*c^2 - 5*a^6*c^4 - 27*a^4*b^2*c^4 + 36*a^2*b^4*c^4 - 5*b^6*c^4 + 7*a^4*c^6 - 14*a^2*b^2*c^6 - 5*b^4*c^6 + 4*a^2*c^8 + 7*b^2*c^8 - 2*c^10 : :

X(57620) lies on these lines: {2, 3}, {99, 32424}, {599, 1499}, {671, 33962}, {1296, 42008}, {2482, 23699}, {7664, 14653}, {9168, 43674}, {9830, 45722}, {14650, 52141}, {20481, 34169}, {30786, 38623}, {31125, 38593}

X(57620) = reflection of X(57594) in X(2)


X(57622) = X(2)X(3)∩X(15)X(1648)

Barycentrics    Sqrt[3]*a^2*(a^2 - b^2 - c^2)*(a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4) - 2*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*S : :

X(57621) lies on these lines: {2, 3}, {15, 1648}, {16, 41939}, {395, 46127}, {396, 5467}, {511, 52039}, {618, 1649}, {1641, 5463}, {5468, 52194}, {5608, 42737}, {6771, 30468}, {6792, 11485}, {11092, 14185}, {13350, 52040}, {20425, 21466}

X(57622) = complement of X(57596)
X(57622) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4226, 32460}, {2, 36185, 868}, {2, 46824, 45662}, {2, 53161, 46858}, {2, 57597, 5}, {15768, 32460, 4226}


X(57622) = X(2)X(3)∩X(16)X(1648)

Barycentrics    Sqrt[3]*a^2*(a^2 - b^2 - c^2)*(a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4) + 2*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*S : :

X(57622) lies on these lines: {2, 3}, {15, 41939}, {16, 1648}, {395, 5467}, {396, 46127}, {511, 52040}, {619, 1649}, {1641, 5464}, {5468, 52193}, {5607, 42737}, {6774, 30465}, {6792, 11486}, {11078, 14187}, {13349, 52039}, {20426, 21467}

X(57622) = complement of X(57597)
X(57622) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4226, 32461}, {2, 36186, 868}, {2, 46825, 45662}, {2, 53161, 46859}, {2, 57596, 5}, {15769, 32461, 4226}


X(57623) = X(2)X(3)∩X(115)X(14650)

Barycentrics    2*a^10 - 7*a^8*b^2 + 2*a^6*b^4 + 6*a^4*b^6 - 4*a^2*b^8 + b^10 - 7*a^8*c^2 + 26*a^6*b^2*c^2 - 19*a^4*b^4*c^2 + 7*a^2*b^6*c^2 - 3*b^8*c^2 + 2*a^6*c^4 - 19*a^4*b^2*c^4 + 2*a^2*b^4*c^4 + 2*b^6*c^4 + 6*a^4*c^6 + 7*a^2*b^2*c^6 + 2*b^4*c^6 - 4*a^2*c^8 - 3*b^2*c^8 + c^10 : :
X(57623) = 3 X[2] + X[57599], 5 X[631] - X[7417], 10 X[631] - X[23720], 3 X[5054] - X[14694], 5 X[15692] - X[46069]

X(57623) lies on these lines: {2, 3}, {115, 14650}, {230, 9177}, {620, 2793}, {1499, 11053}, {10418, 33962}, {10717, 14653}, {14666, 42008}, {16317, 52152}, {24975, 40544}, {48947, 51872}

X(57623) = midpoint of X(i) and X(j) for these {i,j}: {3, 57607}, {376, 46067}, {57599, 57604}
X(57623) = reflection of X(i) in X(j) for these {i,j}: {381, 46068}, {23720, 7417}, {46066, 549}
X(57623) = complement of X(57604)
X(57623) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3, 57610}, {2, 57594, 5}, {2, 57599, 57604}


X(57624) = X(2)X(3)∩X(148)X(10787)

Barycentrics    2*a^10 - 7*a^8*b^2 - 13*a^6*b^4 + 11*a^4*b^6 + 11*a^2*b^8 - 4*b^10 - 7*a^8*c^2 + 56*a^6*b^2*c^2 - 24*a^4*b^4*c^2 - 58*a^2*b^6*c^2 + 17*b^8*c^2 - 13*a^6*c^4 - 24*a^4*b^2*c^4 + 102*a^2*b^4*c^4 - 13*b^6*c^4 + 11*a^4*c^6 - 58*a^2*b^2*c^6 - 13*b^4*c^6 + 11*a^2*c^8 + 17*b^2*c^8 - 4*c^10 : :
X(57624) = 3 X[3545] - 2 X[57607], 3 X[3839] - 2 X[46067], 3 X[10304] - 4 X[46066], 5 X[17578] + 4 X[23720], X[57599] - 4 X[57604]

X(57624) lies on these lines: {2, 3}, {148, 10787}, {325, 2418}, {671, 2408}, {2407, 52483}, {10557, 44203}, {15098, 15533}, {22338, 31125}, {30786, 44987}, {36523, 38801}

X(57624) = reflection of X(i) in X(j) for these {i,j}: {2, 57604}, {376, 14694}, {46069, 7417}, {57599, 2}
X(57624) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {381, 16281, 376}


X(57625) = X(2)X(3)∩X(99)X(13398)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(2*a^10 - 5*a^8*b^2 + 2*a^6*b^4 + 4*a^4*b^6 - 4*a^2*b^8 + b^10 - 5*a^8*c^2 + 12*a^6*b^2*c^2 - 8*a^4*b^4*c^2 + 12*a^2*b^6*c^2 - 3*b^8*c^2 + 2*a^6*c^4 - 8*a^4*b^2*c^4 - 16*a^2*b^4*c^4 + 2*b^6*c^4 + 4*a^4*c^6 + 12*a^2*b^2*c^6 + 2*b^4*c^6 - 4*a^2*c^8 - 3*b^2*c^8 + c^10) : :

X(57625) lies on these lines: {2, 3}, {99, 13398}, {112, 44064}, {691, 53953}, {925, 3565}, {10420, 53895}, {11635, 53960}, {16167, 53961}, {20185, 53949}, {20187, 53958}, {34168, 53695}

X(57625) = anticomplement of X(57609)
X(57625) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 2071, 7422}, {22, 858, 7417}, {4226, 7468, 2409}, {4236, 7475, 57601}, {7472, 11634, 57602}, {16049, 57590, 7427}


X(57626) = X(2)X(3)∩X(98)X(5897)

Barycentrics    2*a^18 - 3*a^16*b^2 - 7*a^14*b^4 + 13*a^12*b^6 + 5*a^10*b^8 - 17*a^8*b^10 + 3*a^6*b^12 + 7*a^4*b^14 - 3*a^2*b^16 - 3*a^16*c^2 + 20*a^14*b^2*c^2 - 14*a^12*b^4*c^2 - 24*a^10*b^6*c^2 + 4*a^8*b^8*c^2 + 36*a^6*b^10*c^2 - 18*a^4*b^12*c^2 - b^16*c^2 - 7*a^14*c^4 - 14*a^12*b^2*c^4 + 38*a^10*b^4*c^4 + 13*a^8*b^6*c^4 - 27*a^6*b^8*c^4 - 20*a^4*b^10*c^4 + 12*a^2*b^12*c^4 + 5*b^14*c^4 + 13*a^12*c^6 - 24*a^10*b^2*c^6 + 13*a^8*b^4*c^6 - 24*a^6*b^6*c^6 + 31*a^4*b^8*c^6 - 9*b^12*c^6 + 5*a^10*c^8 + 4*a^8*b^2*c^8 - 27*a^6*b^4*c^8 + 31*a^4*b^6*c^8 - 18*a^2*b^8*c^8 + 5*b^10*c^8 - 17*a^8*c^10 + 36*a^6*b^2*c^10 - 20*a^4*b^4*c^10 + 5*b^8*c^10 + 3*a^6*c^12 - 18*a^4*b^2*c^12 + 12*a^2*b^4*c^12 - 9*b^6*c^12 + 7*a^4*c^14 + 5*b^4*c^14 - 3*a^2*c^16 - b^2*c^16 : :

X(57626) lies on these lines: {2, 3}, {74, 34168}, {98, 5897}, {132, 3184}, {842, 53934}, {1294, 1297}, {2373, 53909}, {2693, 2697}, {3563, 39434}, {5667, 12384}

X(57626) = reflection of X(i) in X(j) for these {i,j}: {4, 57606}, {2409, 3}
X(57626) = anticomplement of X(57608)
X(57626) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 2071, 4226}, {376, 7464, 57602}, {3651, 36001, 57601}, {5002, 5003, 4240}, {5004, 5005, 46587}


X(57627) = X(2)X(3)∩X(110)X(1302)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(2*a^8 + a^6*b^2 - 7*a^4*b^4 + 3*a^2*b^6 + b^8 + a^6*c^2 + 10*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 4*b^6*c^2 - 7*a^4*c^4 - 3*a^2*b^2*c^4 + 6*b^4*c^4 + 3*a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(57627) lies on these lines: {2, 3}, {98, 53694}, {107, 16237}, {110, 1302}, {476, 2410}, {925, 9064}, {1304, 16167}, {1495, 52772}, {2420, 9209}, {3233, 5467}, {9058, 53684}, {9084, 53695}, {10420, 53944}, {14480, 30510}, {14590, 52913}, {14611, 53351}, {14915, 47050}, {15448, 24975}, {16111, 53832}, {33928, 35266}, {35259, 40879}, {47324, 52472}

X(57627) = orthoptic-circle-of-Steiner-inellipse-inverse of X(36169)
X(57627) = orthoptic-circle-of-Steiner-circumellipse-inverse of X(36172)
X(57627) = X(50935)-Dao conjugate of X(523)
X(57627) = barycentric product X(i)*X(j) for these {i,j}: {99, 16303}, {2407, 52488}
X(57627) = barycentric quotient X(i)/X(j) for these {i,j}: {16303, 523}, {52488, 2394}
X(57627) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 23, 7422}, {2, 57611, 858}, {468, 57603, 2}, {1995, 7426, 7417}, {3658, 7477, 57600}, {4226, 4240, 7471}, {4226, 7468, 57599}, {4226, 7471, 30512}, {4228, 7469, 7427}, {4230, 7473, 57602}, {4230, 15329, 40049}, {4230, 31510, 4240}, {4240, 7480, 2409}, {4240, 15329, 30512}, {4246, 37966, 57601}, {5004, 5005, 46585}, {7471, 15329, 4226}


X(57628) = X(2)X(3)∩X(1340)X(3413)

Barycentrics    (5*a^4 - 4*a^2*b^2 - b^4 - 4*a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4) - 4*(a^2 + b^2 + c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]*S^2 : :
X(57628) = X[4] - 4 X[19660]

X(57628) lies on these lines: {2, 3}, {99, 47366}, {1340, 3413}, {1352, 51899}, {1380, 10788}, {3431, 30509}, {7811, 52096}, {9862, 47368}, {11179, 51898}, {38749, 47370}


X(57629) = X(2)X(3)∩X(1341)X(3414)

Barycentrics    (5*a^4 - 4*a^2*b^2 - b^4 - 4*a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4) + 4*(a^2 + b^2 + c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]*S^2 : :
X(57629) = X[4] - 4 X[19659]

X(57629) lies on these lines: {2, 3}, {99, 47365}, {1341, 3414}, {1352, 51898}, {1379, 10788}, {3431, 30508}, {7811, 52095}, {9862, 47367}, {11179, 51899}, {38749, 47369}


X(57630) = X(2)X(3)∩X(1348)X(3414)

Barycentrics    (a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4)*(-a^4 - a^2*b^2 + 2*b^4 - a^2*c^2 - 4*b^2*c^2 + 2*c^4) - 2*(a^2 + b^2 + c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]*S^2 : :

X(57630) lies on these lines: {2, 3}, {115, 47365}, {1348, 3414}, {1352, 31863}, {2029, 5475}, {2039, 46023}, {3413, 7615}, {4846, 13636}, {6033, 47367}, {11179, 31862}, {11632, 47368}, {20423, 51826}, {32827, 38596}, {51825, 54173}

X(57630) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {18586, 18587, 19660}


X(57631) = X(2)X(3)∩X(1349)X(3413)

Barycentrics    (a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4)*(-a^4 - a^2*b^2 + 2*b^4 - a^2*c^2 - 4*b^2*c^2 + 2*c^4) + 2*(a^2 + b^2 + c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]*S^2 : :

X(57631) lies on these lines: {2, 3}, {115, 47366}, {1349, 3413}, {1352, 31862}, {2028, 5475}, {2040, 46024}, {3414, 7615}, {4846, 13722}, {6033, 47368}, {11179, 31863}, {11632, 47367}, {20423, 51825}, {32827, 38597}, {51826, 54173}

X(57631) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {18586, 18587, 19659}


X(57632) = X(2)X(3)∩X(98)X(8791)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^10*b^2 - 3*a^8*b^4 + 2*a^4*b^8 - 2*a^2*b^10 + b^12 + 2*a^10*c^2 - 6*a^8*b^2*c^2 + 6*a^6*b^4*c^2 - 3*a^4*b^6*c^2 + 2*a^2*b^8*c^2 - b^10*c^2 - 3*a^8*c^4 + 6*a^6*b^2*c^4 - 2*a^4*b^4*c^4 - b^8*c^4 - 3*a^4*b^2*c^6 + 2*b^6*c^6 + 2*a^4*c^8 + 2*a^2*b^2*c^8 - b^4*c^8 - 2*a^2*c^10 - b^2*c^10 + c^12) : :

X(57632) lies on these lines: {2, 3}, {98, 8791}, {114, 34336}, {126, 50938}, {132, 1560}, {2373, 10749}, {23347, 47151}, {30786, 39297}, {42426, 47219}, {43278, 46128}

X(57632) = midpoint of X(4) and X(57602)
X(57632) = orthoptic-circle-of-Steiner-inellipse-inverse of X(46619)
X(57632) = X(656)-isoconjugate of X(53883)
X(57632) = X(40596)-Dao conjugate of X(53883)
X(57632) = barycentric quotient X(i)/X(j) for these {i,j}: {112, 53883}, {2881, 56692}
X(57632) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 858, 57606}, {2, 2409, 468}, {4, 403, 57604}, {25, 37981, 57609}, {427, 468, 868}


X(57633) = X(2)X(3)∩X(99)X(11178)

Barycentrics    4*a^8 - 9*a^6*b^2 + 10*a^4*b^4 - 3*a^2*b^6 - 2*b^8 - 9*a^6*c^2 + 13*a^4*b^2*c^2 + 7*a^2*b^4*c^2 + 3*b^6*c^2 + 10*a^4*c^4 + 7*a^2*b^2*c^4 - 2*b^4*c^4 - 3*a^2*c^6 + 3*b^2*c^6 - 2*c^8 : :
X(57633) = X[4] + 2 X[7833], X[4] - 4 X[37345], X[376] - 4 X[8356], X[376] + 2 X[55008], 2 X[381] + X[33264], 5 X[631] - 8 X[8359], 7 X[3090] - 4 X[8370], 5 X[5071] - 2 X[11361], X[7833] + 2 X[37345], 4 X[8353] + 5 X[41099], 8 X[8354] + X[15682], 2 X[8356] + X[55008], 16 X[8358] - 7 X[15698], 2 X[3095] + X[9939], X[3095] + 2 X[34510], X[9939] - 4 X[34510], 2 X[7757] + X[34623], 4 X[7810] - X[12251], X[7812] + 2 X[32152], 2 X[8724] + X[9878], X[11057] + 2 X[44422], X[33706] - 4 X[40344]

X(57633) lies on these lines: {2, 3}, {99, 11178}, {262, 3849}, {511, 55164}, {530, 44464}, {531, 44460}, {542, 7709}, {543, 49788}, {574, 6054}, {2549, 12243}, {2782, 32480}, {3095, 9939}, {3734, 12117}, {5476, 10788}, {5569, 38227}, {6055, 7790}, {7606, 38072}, {7617, 14639}, {7619, 36519}, {7622, 23234}, {7757, 34623}, {7810, 12251}, {7812, 32152}, {7831, 50977}, {7883, 9737}, {8182, 9753}, {8724, 9878}, {9734, 41134}, {9774, 21163}, {9862, 11179}, {10168, 38749}, {10722, 15482}, {10796, 54487}, {11057, 44422}, {11261, 11645}, {14848, 22521}, {14907, 20423}, {15597, 39663}, {15810, 22712}, {19924, 31958}, {31859, 50955}, {33706, 40344}

X(57633) = reflection of X(i) in X(j) for these {i,j}: {7709, 52691}, {9774, 21163}, {22712, 15810}
X(57633) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 35925}, {2, 3543, 37348}, {376, 35951, 8598}, {381, 8597, 4}, {381, 35955, 11676}, {3095, 34510, 9939}, {5476, 51224, 10788}, {7833, 8597, 33264}, {7833, 37345, 4}, {8356, 55008, 376}, {11676, 35955, 376}, {26619, 26620, 33216}


X(57634) = X(2)X(3)∩X(115)X(11179)

Barycentrics    5*a^8 - 10*a^4*b^4 + 12*a^2*b^6 - 7*b^8 - 4*a^4*b^2*c^2 - 16*a^2*b^4*c^2 + 24*b^6*c^2 - 10*a^4*c^4 - 16*a^2*b^2*c^4 - 34*b^4*c^4 + 12*a^2*c^6 + 24*b^2*c^6 - 7*c^8 : :
X(57634) = 5 X[3091] + 4 X[40279], 3 X[3839] - 4 X[40277]

X(57634) lies on these lines: {2, 3}, {115, 11179}, {542, 7615}, {598, 9753}, {671, 9744}, {1503, 20112}, {2549, 9880}, {2782, 7620}, {2794, 7617}, {3564, 40727}, {5107, 5475}, {6033, 11180}, {6054, 11185}, {6055, 43620}, {6776, 11632}, {7610, 53017}, {7618, 23698}, {8724, 32815}, {9754, 26613}, {10722, 53127}, {14651, 43535}, {17131, 50961}, {18424, 46264}, {31173, 54173}, {31670, 43457}, {32827, 50967}

X(57634) = midpoint of X(i) and X(j) for these {i,j}: {7610, 53017}, {7615, 7694}
X(57634) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 381, 37350}, {4, 376, 8597}, {381, 37348, 2}, {5071, 35925, 2}, {36445, 36463, 14041}


X(57635) = ISOGONAL CONJUGATE OF X(130)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^2*b^2*(a^2-b^2)^2-(a^4+3*a^2*b^2+b^4)*c^4+2*(a^2+b^2)*c^6-c^8)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^6*c^2-b^4*(b^2-c^2)^2-a^4*(b^4+2*c^4)+a^2*(2*b^6-3*b^4*c^2+c^6)) : :

X(57635) lies on curve Q120 and on these lines: {1303, 18831}, {23582, 46394}

X(57635) = isogonal conjugate of X(130)
X(57635) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 130}, {27359, 37754}
X(57635) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 1303}, {6, 42405}, {6638, 18315}
X(57635) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(32428)}}, {{A, B, C, X(10419), X(32439)}}, {{A, B, C, X(18831), X(23582)}}
X(57635) = barycentric product X(i)*X(j) for these (i, j): {6, 57759}, {1303, 42405}
X(57635) = barycentric quotient X(i)/X(j) for these (i, j): {6, 130}, {1303, 17434}, {9290, 35442}, {32230, 27359}, {42405, 42331}, {57759, 76}


X(57636) = ISOGONAL CONJUGATE OF X(131)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^4-(a^2-b^2)^2*(a^2+b^2)*c^2+(a^2+b^2)^2*c^4-3*(a^2+b^2)*c^6+2*c^8)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+2*b^2*c^2-c^4))*(a^6-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4+2*b^2*c^2+c^4))*(a^8-a^6*(b^2+4*c^2)+(b^2-c^2)^2*(2*b^4+b^2*c^2+c^4)+a^4*(b^4+b^2*c^2+6*c^4)+a^2*(-3*b^6+2*b^4*c^2+b^2*c^4-4*c^6)) : :

X(57636) lies on curve Q120 and on these lines: {4, 53169}, {186, 1299}, {340, 18878}, {1300, 5962}, {12028, 16221}, {13754, 43756}, {32708, 52418}, {38936, 47391}

X(57636) = reflection of X(i) in X(j) for these {i,j}: {54415, 16221}
X(57636) = isogonal conjugate of X(131)
X(57636) = trilinear pole of line {14910, 47230}
X(57636) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 131}, {1725, 44665}, {2314, 3580}
X(57636) = X(i)-vertex conjugate of X(j) for these {i, j}: {4, 44174}, {13754, 57636}
X(57636) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 1300}, {6, 43756}, {924, 10420}
X(57636) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(924)}}, {{A, B, C, X(4), X(186)}}, {{A, B, C, X(6), X(13754)}}, {{A, B, C, X(54), X(44174)}}, {{A, B, C, X(249), X(275)}}, {{A, B, C, X(2501), X(16172)}}, {{A, B, C, X(5392), X(57484)}}, {{A, B, C, X(5504), X(15478)}}, {{A, B, C, X(10419), X(10420)}}, {{A, B, C, X(12004), X(35602)}}, {{A, B, C, X(12028), X(35373)}}, {{A, B, C, X(15384), X(57387)}}, {{A, B, C, X(15388), X(18532)}}, {{A, B, C, X(15395), X(38534)}}
X(57636) = barycentric product X(i)*X(j) for these (i, j): {6, 57760}, {1299, 2986}, {1300, 43756}, {43709, 687}
X(57636) = barycentric quotient X(i)/X(j) for these (i, j): {6, 131}, {1299, 3580}, {14910, 44665}, {32708, 30512}, {40388, 56686}, {43709, 6334}, {57760, 76}


X(57637) = ISOGONAL CONJUGATE OF X(134)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)^2*(a^4-2*a^2*b^2+(b^2-c^2)^2)^2*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^10*c^2-(b^3-b*c^2)^4-a^8*(b^4+2*b^2*c^2+4*c^4)+a^2*(b^2-c^2)^2*(4*b^6+3*b^4*c^2+c^6)+2*a^6*(2*b^6+2*b^4*c^2+b^2*c^4+3*c^6)-2*a^4*(3*b^8+b^6*c^2+b^4*c^4-b^2*c^6+2*c^8))*(a^10*b^2-(-(b^2*c)+c^3)^4-a^8*(4*b^4+2*b^2*c^2+c^4)+2*a^6*(3*b^6+b^4*c^2+2*b^2*c^4+2*c^6)+a^2*(b^2-c^2)^2*(b^6+3*b^2*c^4+4*c^6)-2*a^4*(2*b^8-b^6*c^2+b^4*c^4+b^2*c^6+3*c^8)) : :

X(57637) lies on curve Q120, circumconic {{A, B, C, X(96), X(15401)}}, and on these lines: {46965, 52932}

X(57637) = isogonal conjugate of X(134)
X(57637) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 46965}


X(57638) = ISOGONAL CONJUGATE OF X(135)

Barycentrics    a^2*(a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(a^2-b^2-c^2)*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)*((a^2-b^2)^3-(a^2-3*b^2)*(a^2+b^2)*c^2-(a^2+3*b^2)*c^4+c^6)*(a^4-2*a^2*b^2+(b^2-c^2)^2)*(a^6+(b^2-c^2)^3-a^2*(b^2-3*c^2)*(b^2+c^2)-a^4*(b^2+3*c^2)) : :

X(57638) lies on curve Q120 and on these lines: {249, 16172}, {924, 13398}, {12095, 44174}, {32132, 53169}

X(57638) = isogonal conjugate of X(135)
X(57638) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 135}, {136, 920}, {661, 57070}, {1109, 35603}
X(57638) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 135}, {36830, 57070}
X(57638) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 13398}, {2351, 39416}, {9937, 110}, {39111, 32692}
X(57638) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(924)}}, {{A, B, C, X(6), X(34382)}}, {{A, B, C, X(24), X(40698)}}, {{A, B, C, X(69), X(2065)}}, {{A, B, C, X(96), X(10419)}}, {{A, B, C, X(249), X(43755)}}, {{A, B, C, X(5392), X(41511)}}, {{A, B, C, X(9937), X(35603)}}, {{A, B, C, X(15316), X(16172)}}, {{A, B, C, X(44174), X(46969)}}
X(57638) = barycentric product X(i)*X(j) for these (i, j): {249, 32132}, {44174, 6504}
X(57638) = barycentric quotient X(i)/X(j) for these (i, j): {6, 135}, {110, 57070}, {13398, 57065}, {23357, 35603}, {32132, 338}, {44174, 6515}


X(57639) = ISOGONAL CONJUGATE OF X(137)

Barycentrics    a^2*(a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4+(b^2-c^2)^2-a^2*(2*b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^4+(b^2-c^2)^2-a^2*(b^2+2*c^2)) : :

X(57639) lies on curve Q120 and on these lines: {252, 47390}, {930, 6368}, {933, 43969}, {1157, 14587}, {1510, 18315}, {14643, 19552}

X(57639) = isogonal conjugate of X(137)
X(57639) = trilinear pole of line {2439, 14586}
X(57639) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 137}, {92, 47424}, {143, 1109}, {656, 57211}, {661, 20577}, {1510, 2618}, {1577, 57137}, {2643, 57805}, {3708, 14129}, {14577, 20902}, {24006, 57135}
X(57639) = X(i)-vertex conjugate of X(j) for these {i, j}: {4, 15401}, {1510, 57639}
X(57639) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 137}, {22391, 47424}, {36830, 20577}, {40596, 57211}, {46604, 41221}
X(57639) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 930}, {6, 18315}, {195, 110}, {45800, 4558}, {47423, 14590}
X(57639) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(1154)}}, {{A, B, C, X(6), X(1510)}}, {{A, B, C, X(54), X(1157)}}, {{A, B, C, X(67), X(46138)}}, {{A, B, C, X(74), X(25148)}}, {{A, B, C, X(143), X(195)}}, {{A, B, C, X(250), X(1291)}}, {{A, B, C, X(1487), X(10419)}}, {{A, B, C, X(1493), X(27357)}}, {{A, B, C, X(3519), X(19552)}}, {{A, B, C, X(6345), X(39390)}}, {{A, B, C, X(11082), X(23716)}}, {{A, B, C, X(11087), X(23717)}}, {{A, B, C, X(14587), X(46966)}}, {{A, B, C, X(14643), X(40082)}}, {{A, B, C, X(15407), X(41435)}}, {{A, B, C, X(15958), X(47390)}}, {{A, B, C, X(24144), X(32637)}}, {{A, B, C, X(24772), X(30536)}}, {{A, B, C, X(43965), X(54049)}}
X(57639) = barycentric product X(i)*X(j) for these (i, j): {6, 57764}, {249, 252}, {1576, 55283}, {11140, 14587}, {14586, 46139}, {15958, 38342}, {18315, 930}, {23357, 57765}
X(57639) = barycentric quotient X(i)/X(j) for these (i, j): {6, 137}, {110, 20577}, {112, 57211}, {184, 47424}, {249, 57805}, {250, 14129}, {252, 338}, {930, 18314}, {1576, 57137}, {2439, 55132}, {14586, 1510}, {14587, 1994}, {18315, 41298}, {23357, 143}, {32661, 57135}, {32737, 12077}, {36148, 2618}, {46139, 15415}, {46966, 2413}, {55283, 44173}, {57655, 14577}, {57764, 76}, {57765, 23962}


X(57640) = ISOGONAL CONJUGATE OF X(156)

Barycentrics    (b^2*(a^2-b^2)^3-(a^6+2*a^2*b^4-3*b^6)*c^2+(2*a^4-3*b^4)*c^4+(-a^2+b^2)*c^6)*(a^6*(b-c)*(b+c)+c^2*(-b^2+c^2)^3+a^4*(-2*b^4+3*c^4)+a^2*(b^6+2*b^2*c^4-3*c^6)) : :

X(57640) lies on these lines: {30, 11412}, {477, 3357}, {523, 23294}, {1990, 10018}, {3260, 57770}, {10255, 14254}, {11438, 11815}, {16868, 52661}, {19185, 21844}, {26917, 45195}, {38848, 45819}

X(57640) = isogonal conjugate of X(156)
X(57640) = X(i)-vertex conjugate of X(j) for these {i, j}: {847, 18355}
X(57640) = X(i)-cross conjugate of X(j) for these {i, j}: {1879, 2}, {20299, 4}
X(57640) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(10018)}}, {{A, B, C, X(3), X(93)}}, {{A, B, C, X(4), X(30)}}, {{A, B, C, X(5), X(3431)}}, {{A, B, C, X(6), X(18349)}}, {{A, B, C, X(54), X(264)}}, {{A, B, C, X(64), X(6344)}}, {{A, B, C, X(66), X(11816)}}, {{A, B, C, X(69), X(252)}}, {{A, B, C, X(70), X(253)}}, {{A, B, C, X(74), X(847)}}, {{A, B, C, X(96), X(1494)}}, {{A, B, C, X(98), X(14863)}}, {{A, B, C, X(107), X(23294)}}, {{A, B, C, X(186), X(10255)}}, {{A, B, C, X(262), X(34567)}}, {{A, B, C, X(328), X(15316)}}, {{A, B, C, X(376), X(10019)}}, {{A, B, C, X(393), X(16659)}}, {{A, B, C, X(842), X(18355)}}, {{A, B, C, X(1093), X(12290)}}, {{A, B, C, X(1173), X(9307)}}, {{A, B, C, X(1297), X(57389)}}, {{A, B, C, X(1300), X(12278)}}, {{A, B, C, X(1485), X(57406)}}, {{A, B, C, X(1487), X(42021)}}, {{A, B, C, X(2698), X(44185)}}, {{A, B, C, X(2963), X(34483)}}, {{A, B, C, X(3346), X(52487)}}, {{A, B, C, X(3426), X(15424)}}, {{A, B, C, X(3447), X(15002)}}, {{A, B, C, X(3459), X(45838)}}, {{A, B, C, X(3519), X(54969)}}, {{A, B, C, X(3563), X(18018)}}, {{A, B, C, X(3613), X(13472)}}, {{A, B, C, X(9221), X(14528)}}, {{A, B, C, X(11738), X(17703)}}, {{A, B, C, X(13139), X(43970)}}, {{A, B, C, X(13452), X(43917)}}, {{A, B, C, X(13530), X(46729)}}, {{A, B, C, X(13597), X(34208)}}, {{A, B, C, X(13599), X(46259)}}, {{A, B, C, X(13622), X(14938)}}, {{A, B, C, X(14379), X(43083)}}, {{A, B, C, X(14618), X(54114)}}, {{A, B, C, X(15412), X(18027)}}, {{A, B, C, X(18575), X(43908)}}, {{A, B, C, X(22261), X(33565)}}, {{A, B, C, X(25044), X(41298)}}, {{A, B, C, X(34225), X(38534)}}, {{A, B, C, X(40118), X(53172)}}, {{A, B, C, X(43662), X(47847)}}
X(57640) = barycentric product X(i)*X(j) for these (i, j): {6, 57770}
X(57640) = barycentric quotient X(i)/X(j) for these (i, j): {6, 156}, {57770, 76}


X(57641) = ISOGONAL CONJUGATE OF X(170)

Barycentrics    a*(a*(a-b)^4*b-(a-b)^2*(a+b)^3*c+2*(a-b)^2*(2*a^2+3*a*b+2*b^2)*c^2-2*(a+b)*(3*a^2-4*a*b+3*b^2)*c^3+(4*a^2+a*b+4*b^2)*c^4-(a+b)*c^5)*(a^5*(b-c)+b*(b-c)^4*c+a*(b-c)^3*(b+c)^2+2*a^3*(b-c)*(3*b^2+4*b*c+3*c^2)+a^4*(-4*b^2+b*c+4*c^2)-2*a^2*(b-c)*(2*b^3+3*b^2*c+b*c^2+2*c^3)) : :

X(57641) lies on these lines: {170, 220}, {200, 25242}, {1043, 57774}, {1742, 10482}, {39156, 52001}, {43158, 57511}

X(57641) = isogonal conjugate of X(170)
X(57641) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 170}, {55, 56310}
X(57641) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 170}, {223, 56310}
X(57641) = X(i)-cross conjugate of X(j) for these {i, j}: {279, 1}
X(57641) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(33)}}, {{A, B, C, X(84), X(2724)}}, {{A, B, C, X(87), X(277)}}, {{A, B, C, X(170), X(279)}}, {{A, B, C, X(1170), X(15731)}}, {{A, B, C, X(1742), X(10481)}}, {{A, B, C, X(3062), X(10509)}}, {{A, B, C, X(4350), X(5527)}}, {{A, B, C, X(9282), X(16572)}}, {{A, B, C, X(13610), X(53086)}}, {{A, B, C, X(39421), X(39970)}}
X(57641) = barycentric product X(i)*X(j) for these (i, j): {6, 57774}
X(57641) = barycentric quotient X(i)/X(j) for these (i, j): {6, 170}, {57, 56310}, {57774, 76}


X(57642) = ISOGONAL CONJUGATE OF X(205)

Barycentrics    b*c*((a^2-b^2)^2+2*a*b*(a+b)*c-2*a*b*c^2-c^4)*(a^4-b^4+2*a^2*(b-c)*c+c^4+2*a*b*c*(-b+c)) : :

X(57642) lies on these lines: {34, 17880}, {69, 3827}, {75, 21147}, {92, 57906}, {304, 4417}, {348, 17080}, {17206, 42467}, {18156, 31637}, {20928, 28659}

X(57642) = isogonal conjugate of X(205)
X(57642) = isotomic conjugate of X(1766)
X(57642) = trilinear pole of line {4025, 21174}
X(57642) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 205}, {6, 197}, {25, 22132}, {31, 1766}, {32, 3436}, {37, 52143}, {41, 21147}, {55, 478}, {213, 16049}, {219, 17408}, {228, 41364}, {560, 20928}, {607, 56414}, {663, 57061}, {692, 6588}, {2175, 57477}, {2206, 21074}, {14257, 52425}, {21186, 32739}
X(57642) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 1766}, {3, 205}, {9, 197}, {223, 478}, {1086, 6588}, {3160, 21147}, {6374, 20928}, {6376, 3436}, {6505, 22132}, {6626, 16049}, {40589, 52143}, {40593, 57477}, {40603, 21074}, {40619, 21186}
X(57642) = X(i)-cross conjugate of X(j) for these {i, j}: {57, 75}, {1848, 86}, {12610, 2}, {21621, 7}, {40626, 18155}, {41010, 1088}, {53596, 310}
X(57642) = pole of line {205, 52143} with respect to the Stammler hyperbola
X(57642) = pole of line {205, 1766} with respect to the Wallace hyperbola
X(57642) = intersection, other than A, B, C, of circumconics {{A, B, C, X(34), X(514)}}, {{A, B, C, X(57), X(1848)}}, {{A, B, C, X(69), X(85)}}, {{A, B, C, X(75), X(20911)}}, {{A, B, C, X(76), X(18816)}}, {{A, B, C, X(81), X(92)}}, {{A, B, C, X(189), X(40015)}}, {{A, B, C, X(190), X(34863)}}, {{A, B, C, X(253), X(279)}}, {{A, B, C, X(264), X(274)}}, {{A, B, C, X(312), X(1222)}}, {{A, B, C, X(1106), X(48131)}}, {{A, B, C, X(1434), X(34393)}}, {{A, B, C, X(1766), X(12610)}}, {{A, B, C, X(1847), X(7199)}}, {{A, B, C, X(3674), X(56328)}}, {{A, B, C, X(3868), X(20448)}}, {{A, B, C, X(7219), X(41791)}}, {{A, B, C, X(18156), X(18157)}}, {{A, B, C, X(20570), X(28660)}}, {{A, B, C, X(21605), X(21609)}}, {{A, B, C, X(42467), X(43703)}}, {{A, B, C, X(44186), X(51865)}}
X(57642) = barycentric product X(i)*X(j) for these (i, j): {1, 57777}, {6, 57781}, {57, 57879}, {75, 8048}, {310, 43703}, {3261, 46640}, {3435, 561}, {17880, 57756}, {34277, 85}, {39167, 57787}, {42467, 76}, {43742, 7182}
X(57642) = barycentric quotient X(i)/X(j) for these (i, j): {1, 197}, {2, 1766}, {6, 205}, {7, 21147}, {27, 41364}, {34, 17408}, {57, 478}, {58, 52143}, {63, 22132}, {75, 3436}, {76, 20928}, {77, 56414}, {85, 57477}, {86, 16049}, {273, 14257}, {321, 21074}, {514, 6588}, {651, 57061}, {693, 21186}, {1848, 56905}, {3435, 31}, {4357, 41600}, {8048, 1}, {17880, 123}, {34277, 9}, {34279, 2268}, {39167, 212}, {40097, 8750}, {42467, 6}, {43703, 42}, {43742, 33}, {44733, 34263}, {46640, 101}, {57756, 7012}, {57777, 75}, {57781, 76}, {57879, 312}


X(57643) = ISOGONAL CONJUGATE OF X(207)

Barycentrics    a*(a-b-c)*(a^2-b^2-c^2)*((a-b)^2*(a+b)^4-2*(a-b)^2*(a+b)*(a^2+b^2)*c-(a^2-b^2)^2*c^2+4*(a^3+b^3)*c^3-(a+b)^2*c^4-2*(a+b)*c^5+c^6)*(a^6-a^4*(b-c)^2+2*a^5*(-b+c)+(b-c)^4*(b+c)^2-a^2*(b^2-c^2)^2-2*a*(b-c)*(b+c)^2*(b^2+c^2)+4*a^3*(b^3-c^3)) : :

X(57643) lies on these lines: {20, 78}, {63, 46881}, {77, 15394}, {1032, 41081}, {1043, 7007}, {1259, 6617}, {2327, 47850}, {7149, 56101}, {16284, 56596}, {40424, 47634}

X(57643) = isogonal conjugate of X(207)
X(57643) = trilinear pole of line {57057, 57101}
X(57643) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 207}, {4, 1035}, {6, 40837}, {19, 47848}, {25, 5932}, {34, 1490}, {56, 3176}, {65, 8885}, {208, 3341}, {278, 3197}, {342, 47438}, {513, 57117}, {608, 56943}, {1395, 33672}, {1426, 13614}
X(57643) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3176}, {3, 207}, {6, 47848}, {9, 40837}, {3342, 42451}, {3351, 196}, {6505, 5932}, {7358, 14302}, {11517, 1490}, {36033, 1035}, {39026, 57117}, {40602, 8885}, {55063, 8063}
X(57643) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 78}, {268, 63}
X(57643) = pole of line {207, 8885} with respect to the Stammler hyperbola
X(57643) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(268)}}, {{A, B, C, X(3), X(6282)}}, {{A, B, C, X(7), X(6223)}}, {{A, B, C, X(8), X(63)}}, {{A, B, C, X(20), X(21)}}, {{A, B, C, X(29), X(6617)}}, {{A, B, C, X(34), X(652)}}, {{A, B, C, X(78), X(326)}}, {{A, B, C, X(84), X(521)}}, {{A, B, C, X(280), X(19611)}}, {{A, B, C, X(1295), X(47849)}}, {{A, B, C, X(1433), X(30500)}}, {{A, B, C, X(1804), X(1819)}}, {{A, B, C, X(1809), X(56106)}}, {{A, B, C, X(5924), X(38271)}}, {{A, B, C, X(6332), X(7020)}}, {{A, B, C, X(8806), X(47850)}}, {{A, B, C, X(10429), X(56972)}}, {{A, B, C, X(44692), X(57055)}}
X(57643) = barycentric product X(i)*X(j) for these (i, j): {6, 57782}, {219, 56596}, {268, 47634}, {304, 7037}, {326, 40838}, {1034, 63}, {1812, 8806}, {3342, 44189}, {3345, 345}, {3718, 7152}, {3719, 7149}, {3926, 7007}, {41514, 78}, {47850, 69}, {57454, 57783}
X(57643) = barycentric quotient X(i)/X(j) for these (i, j): {1, 40837}, {3, 47848}, {6, 207}, {9, 3176}, {48, 1035}, {63, 5932}, {78, 56943}, {101, 57117}, {212, 3197}, {219, 1490}, {268, 3341}, {284, 8885}, {345, 33672}, {1034, 92}, {2327, 13614}, {3342, 196}, {3345, 278}, {3351, 42451}, {7007, 393}, {7037, 19}, {7152, 34}, {8806, 40149}, {40838, 158}, {41514, 273}, {44189, 47436}, {47634, 40701}, {47850, 4}, {56596, 331}, {57055, 14302}, {57101, 8063}, {57454, 208}, {57782, 76}


X(57644) = ISOGONAL CONJUGATE OF X(211)

Barycentrics    b^2*(a^2+b^2)*c^2*(a^2+c^2)*(a^4+b^4-b^2*c^2-a^2*(b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+c^2)) : :

X(57644) lies on these lines: {76, 5012}, {83, 327}, {264, 6179}, {1078, 1502}, {1629, 18027}, {1799, 57904}, {7768, 18896}

X(57644) = isogonal conjugate of X(211)
X(57644) = trilinear pole of line {850, 3050}
X(57644) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 211}, {1923, 7752}, {1964, 3060}, {3051, 18041}
X(57644) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 211}, {41884, 3060}
X(57644) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 83}
X(57644) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(54), X(98)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(83), X(41488)}}, {{A, B, C, X(96), X(2065)}}, {{A, B, C, X(385), X(42292)}}, {{A, B, C, X(755), X(51246)}}, {{A, B, C, X(7768), X(17984)}}, {{A, B, C, X(18022), X(18797)}}, {{A, B, C, X(32085), X(57421)}}, {{A, B, C, X(42354), X(44185)}}
X(57644) = barycentric product X(i)*X(j) for these (i, j): {6, 57786}, {308, 45838}
X(57644) = barycentric quotient X(i)/X(j) for these (i, j): {6, 211}, {83, 3060}, {308, 7752}, {3112, 18041}, {45838, 39}, {57786, 76}


X(57645) = ISOGONAL CONJUGATE OF X(215)

Barycentrics    b^2*(a+b-c)*c^2*(a-b+c)*(a^2-a*b+b^2-c^2)^2*(a^2-b^2-a*c+c^2)^2 : :

X(57645) lies on these lines: {7, 14266}, {655, 2245}, {908, 18359}, {1737, 18815}, {3262, 20566}, {5080, 14616}, {34387, 46136}, {37770, 37799}

X(57645) = isogonal conjugate of X(215)
X(57645) = isotomic conjugate of X(4996)
X(57645) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 215}, {6, 34544}, {9, 52059}, {31, 4996}, {36, 2361}, {101, 57174}, {200, 41282}, {654, 1983}, {1110, 3025}, {2149, 35128}, {2150, 35069}, {2245, 4282}, {2323, 7113}, {3218, 52426}, {4511, 52434}, {52407, 52427}
X(57645) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4996}, {3, 215}, {9, 34544}, {478, 52059}, {514, 3025}, {650, 35128}, {1015, 57174}, {6609, 41282}, {15898, 2361}, {56325, 35069}
X(57645) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 94}, {5, 24624}, {523, 655}, {8068, 2}, {37691, 76}
X(57645) = pole of line {215, 4996} with respect to the Wallace hyperbola
X(57645) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(93)}}, {{A, B, C, X(5), X(60)}}, {{A, B, C, X(7), X(264)}}, {{A, B, C, X(8), X(847)}}, {{A, B, C, X(11), X(45885)}}, {{A, B, C, X(50), X(18116)}}, {{A, B, C, X(59), X(523)}}, {{A, B, C, X(80), X(6344)}}, {{A, B, C, X(261), X(56365)}}, {{A, B, C, X(328), X(52392)}}, {{A, B, C, X(502), X(5080)}}, {{A, B, C, X(1037), X(13481)}}, {{A, B, C, X(1093), X(7319)}}, {{A, B, C, X(1441), X(4998)}}, {{A, B, C, X(2597), X(2608)}}, {{A, B, C, X(3596), X(24209)}}, {{A, B, C, X(4996), X(8068)}}, {{A, B, C, X(5560), X(15424)}}, {{A, B, C, X(6063), X(14628)}}, {{A, B, C, X(7318), X(52442)}}, {{A, B, C, X(14616), X(18359)}}, {{A, B, C, X(15337), X(43917)}}, {{A, B, C, X(20565), X(35175)}}, {{A, B, C, X(21277), X(37770)}}, {{A, B, C, X(48379), X(55017)}}
X(57645) = barycentric product X(i)*X(j) for these (i, j): {6, 57789}, {2006, 20566}, {14628, 57788}, {18359, 18815}, {23592, 34387}, {23989, 46649}, {34535, 75}
X(57645) = barycentric quotient X(i)/X(j) for these (i, j): {1, 34544}, {2, 4996}, {6, 215}, {11, 35128}, {12, 35069}, {56, 52059}, {80, 2323}, {513, 57174}, {759, 4282}, {1086, 3025}, {1407, 41282}, {1411, 7113}, {2006, 36}, {2161, 2361}, {2222, 1983}, {6187, 52426}, {6354, 3028}, {6358, 4736}, {14584, 17455}, {14628, 214}, {18359, 4511}, {18815, 3218}, {20566, 32851}, {23592, 59}, {34535, 1}, {35174, 4585}, {46649, 1252}, {52212, 34586}, {52383, 2245}, {52392, 22128}, {52934, 5549}, {55238, 53562}, {57789, 76}


X(57646) = ISOGONAL CONJUGATE OF X(229)

Barycentrics    a*(b+c)*(a^4+b^4-c^4-a*b*c*(b+c)-a^2*b*(2*b+c))*(a^4-b^4+c^4-a*b*c*(b+c)-a^2*c*(b+2*c)) : :

X(57646) lies on these lines: {12, 1825}, {35, 72}, {37, 9627}, {201, 2594}, {319, 20336}, {1807, 40602}, {3057, 8702}, {3678, 3695}, {3949, 21873}, {6356, 15556}, {8818, 21353}, {41689, 54078}

X(57646) = isogonal conjugate of X(229)
X(57646) = trilinear pole of line {55210, 55232}
X(57646) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 229}, {6, 52361}, {28, 52362}, {56, 52360}, {57, 40582}, {58, 2475}, {81, 1781}, {284, 18625}, {514, 57194}, {1014, 56317}, {1474, 28754}, {41495, 56840}
X(57646) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 52360}, {3, 229}, {9, 52361}, {10, 2475}, {5452, 40582}, {40586, 1781}, {40590, 18625}, {40591, 52362}, {51574, 28754}
X(57646) = X(i)-cross conjugate of X(j) for these {i, j}: {55, 37}
X(57646) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(191)}}, {{A, B, C, X(4), X(37286)}}, {{A, B, C, X(9), X(41501)}}, {{A, B, C, X(10), X(765)}}, {{A, B, C, X(12), X(37)}}, {{A, B, C, X(21), X(523)}}, {{A, B, C, X(35), X(65)}}, {{A, B, C, X(55), X(43708)}}, {{A, B, C, X(90), X(52382)}}, {{A, B, C, X(210), X(15556)}}, {{A, B, C, X(518), X(21879)}}, {{A, B, C, X(594), X(1257)}}, {{A, B, C, X(758), X(5559)}}, {{A, B, C, X(1167), X(2245)}}, {{A, B, C, X(1214), X(9627)}}, {{A, B, C, X(1254), X(2161)}}, {{A, B, C, X(2608), X(9399)}}, {{A, B, C, X(3467), X(5620)}}, {{A, B, C, X(4640), X(17097)}}, {{A, B, C, X(5081), X(40602)}}, {{A, B, C, X(6596), X(44782)}}, {{A, B, C, X(6757), X(15175)}}, {{A, B, C, X(11604), X(16761)}}, {{A, B, C, X(32635), X(34893)}}, {{A, B, C, X(34920), X(55991)}}, {{A, B, C, X(52651), X(56153)}}
X(57646) = barycentric product X(i)*X(j) for these (i, j): {6, 57797}, {37, 54454}, {226, 56280}, {321, 34435}
X(57646) = barycentric quotient X(i)/X(j) for these (i, j): {1, 52361}, {6, 229}, {9, 52360}, {37, 2475}, {42, 1781}, {55, 40582}, {65, 18625}, {71, 52362}, {72, 28754}, {692, 57194}, {1334, 56317}, {34435, 81}, {54454, 274}, {56280, 333}, {57797, 76}


X(57647) = ISOGONAL CONJUGATE OF X(231)

Barycentrics    a^2*((a^2-b^2)^4-2*(a^2-b^2)^2*(a^2+b^2)*c^2+3*(a^4+b^4)*c^4-4*(a^2+b^2)*c^6+2*c^8)*(a^8-2*a^6*(b^2+2*c^2)+(b^2-c^2)^2*(2*b^4+c^4)+a^4*(3*b^4+2*b^2*c^2+6*c^4)+a^2*(-4*b^6+2*b^2*c^4-4*c^6)) : :

X(57647) lies on the MacBeath circumconic and on these lines: {52, 110}, {467, 648}, {1154, 15401}, {1166, 1493}, {1993, 18315}, {1994, 4558}, {2986, 24978}, {4563, 7769}, {5612, 38414}, {5616, 38413}, {6515, 16039}, {30529, 37779}, {33565, 34308}

X(57647) = isogonal conjugate of X(231)
X(57647) = trilinear pole of line {3, 8562}
X(57647) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 231}, {19, 539}, {162, 52742}, {1953, 40631}, {36148, 55150}
X(57647) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 231}, {6, 539}, {125, 52742}, {39018, 55150}
X(57647) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57890, 2383}
X(57647) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {15401, 4329}
X(57647) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 15401}, {11077, 18401}
X(57647) = pole of line {231, 539} with respect to the Stammler hyperbola
X(57647) = pole of line {1141, 2383} with respect to the Steiner circumellipse
X(57647) = pole of line {34837, 55150} with respect to the Steiner inellipse
X(57647) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(61)}}, {{A, B, C, X(3), X(52)}}, {{A, B, C, X(6), X(14389)}}, {{A, B, C, X(94), X(249)}}, {{A, B, C, X(97), X(15801)}}, {{A, B, C, X(110), X(287)}}, {{A, B, C, X(323), X(2914)}}, {{A, B, C, X(394), X(41597)}}, {{A, B, C, X(1173), X(40393)}}, {{A, B, C, X(3580), X(11557)}}, {{A, B, C, X(3629), X(15066)}}, {{A, B, C, X(6242), X(11140)}}, {{A, B, C, X(6515), X(15077)}}, {{A, B, C, X(16080), X(38534)}}, {{A, B, C, X(34289), X(56004)}}, {{A, B, C, X(40802), X(42286)}}, {{A, B, C, X(42410), X(55982)}}
X(57647) = barycentric product X(i)*X(j) for these (i, j): {3, 57890}, {6, 57798}, {1154, 57758}, {1273, 15401}, {2383, 69}
X(57647) = barycentric quotient X(i)/X(j) for these (i, j): {3, 539}, {6, 231}, {49, 45083}, {54, 40631}, {195, 10615}, {647, 52742}, {895, 52760}, {1154, 128}, {1157, 27423}, {1510, 55150}, {2383, 4}, {14533, 52968}, {15401, 1141}, {52603, 43969}, {55549, 52975}, {57758, 46138}, {57798, 76}, {57890, 264}


X(57648) = ISOGONAL CONJUGATE OF X(235)

Barycentrics    a^2*(a^2-b^2-c^2)*((a^2-b^2)^2*(a^2+b^2)-2*(a^2-b^2)^2*c^2+(a^2+b^2)*c^4)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+4*b^2*c^2-c^4)) : :
X(57648) = -5*X[3091]+4*X[22968], -3*X[9730]+2*X[22952]

X(57648) lies on the Jerabek hyperbola and on these lines: {2, 14457}, {3, 19460}, {4, 801}, {6, 2929}, {20, 1660}, {49, 14861}, {54, 9729}, {64, 394}, {65, 775}, {66, 5921}, {68, 3546}, {69, 18936}, {74, 5562}, {110, 2883}, {182, 17040}, {184, 15740}, {186, 57387}, {248, 22401}, {265, 11585}, {283, 57672}, {290, 40830}, {417, 1942}, {450, 57677}, {511, 57388}, {550, 10293}, {578, 18928}, {858, 6145}, {1147, 4846}, {1176, 13367}, {1177, 7488}, {1216, 43689}, {1503, 22662}, {1593, 2063}, {1899, 22953}, {1995, 52518}, {2071, 31978}, {2979, 34438}, {3091, 22968}, {3260, 8795}, {3426, 12085}, {3521, 22115}, {3523, 5486}, {3527, 6642}, {3531, 7529}, {5012, 14528}, {5504, 11806}, {6759, 25712}, {7464, 16835}, {7691, 41673}, {7723, 11559}, {8718, 16163}, {9730, 22952}, {9938, 34801}, {10297, 17505}, {11412, 18532}, {11424, 22973}, {11441, 36983}, {12038, 40441}, {12364, 40647}, {13352, 45088}, {13446, 37777}, {15035, 38534}, {15077, 16051}, {15232, 22957}, {19210, 43918}, {20424, 31833}, {20427, 35512}, {22334, 22972}, {22466, 23308}, {22497, 43690}, {22658, 34207}, {22954, 22959}, {26917, 49109}, {31985, 43816}, {41615, 44247}, {43614, 44686}, {43866, 43891}

X(57648) = midpoint of X(i) and X(j) for these {i,j}: {22555, 22647}
X(57648) = reflection of X(i) in X(j) for these {i,j}: {2929, 22966}, {22466, 23308}, {22528, 22549}, {22533, 22834}, {22750, 22955}, {43616, 3}
X(57648) = inverse of X(2883) in Stammler hyperbola
X(57648) = isogonal conjugate of X(235)
X(57648) = isotomic conjugate of X(44131)
X(57648) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 235}, {4, 774}, {19, 13567}, {25, 17858}, {31, 44131}, {75, 44079}, {92, 800}, {158, 185}, {393, 6508}, {661, 41678}, {820, 1093}, {1096, 41005}, {1624, 24006}, {1826, 18603}, {1895, 52566}, {2181, 19166}, {6509, 6520}, {36119, 51403}
X(57648) = X(i)-vertex conjugate of X(j) for these {i, j}: {4, 57387}, {43695, 57648}
X(57648) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 44131}, {3, 235}, {6, 13567}, {206, 44079}, {1147, 185}, {1511, 51403}, {5181, 41603}, {6503, 41005}, {6505, 17858}, {22391, 800}, {22966, 22970}, {36033, 774}, {36830, 41678}, {37867, 6509}, {45248, 2883}
X(57648) = X(i)-Ceva conjugate of X(j) for these {i, j}: {801, 41890}
X(57648) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 1105}, {8057, 110}, {21652, 22466}, {32320, 4558}
X(57648) = pole of line {21652, 57648} with respect to the Jerabek hyperbola
X(57648) = pole of line {41890, 53420} with respect to the Kiepert hyperbola
X(57648) = pole of line {185, 235} with respect to the Stammler hyperbola
X(57648) = pole of line {235, 41005} with respect to the Wallace hyperbola
X(57648) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(17928)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(20), X(11413)}}, {{A, B, C, X(24), X(3546)}}, {{A, B, C, X(39), X(52520)}}, {{A, B, C, X(59), X(78)}}, {{A, B, C, X(60), X(77)}}, {{A, B, C, X(63), X(56005)}}, {{A, B, C, X(83), X(43815)}}, {{A, B, C, X(96), X(10419)}}, {{A, B, C, X(97), X(2986)}}, {{A, B, C, X(184), X(43652)}}, {{A, B, C, X(185), X(22970)}}, {{A, B, C, X(186), X(11585)}}, {{A, B, C, X(216), X(9729)}}, {{A, B, C, X(249), X(28724)}}, {{A, B, C, X(264), X(45301)}}, {{A, B, C, X(283), X(3562)}}, {{A, B, C, X(305), X(1297)}}, {{A, B, C, X(328), X(6662)}}, {{A, B, C, X(376), X(12085)}}, {{A, B, C, X(394), X(35602)}}, {{A, B, C, X(417), X(450)}}, {{A, B, C, X(511), X(22401)}}, {{A, B, C, X(550), X(7464)}}, {{A, B, C, X(577), X(13346)}}, {{A, B, C, X(631), X(6642)}}, {{A, B, C, X(858), X(7488)}}, {{A, B, C, X(947), X(1791)}}, {{A, B, C, X(1105), X(41890)}}, {{A, B, C, X(1216), X(12038)}}, {{A, B, C, X(1265), X(42019)}}, {{A, B, C, X(1299), X(46199)}}, {{A, B, C, X(1568), X(3260)}}, {{A, B, C, X(1799), X(5481)}}, {{A, B, C, X(1976), X(40319)}}, {{A, B, C, X(1995), X(3523)}}, {{A, B, C, X(2071), X(52071)}}, {{A, B, C, X(2139), X(3926)}}, {{A, B, C, X(2351), X(26937)}}, {{A, B, C, X(2883), X(8057)}}, {{A, B, C, X(2987), X(9289)}}, {{A, B, C, X(3346), X(56307)}}, {{A, B, C, X(3450), X(36057)}}, {{A, B, C, X(3515), X(16051)}}, {{A, B, C, X(3524), X(7529)}}, {{A, B, C, X(3528), X(47527)}}, {{A, B, C, X(3563), X(34966)}}, {{A, B, C, X(3917), X(13367)}}, {{A, B, C, X(5447), X(18475)}}, {{A, B, C, X(5622), X(39169)}}, {{A, B, C, X(5879), X(18850)}}, {{A, B, C, X(5897), X(18848)}}, {{A, B, C, X(6340), X(40801)}}, {{A, B, C, X(7512), X(23335)}}, {{A, B, C, X(8749), X(13380)}}, {{A, B, C, X(9306), X(14379)}}, {{A, B, C, X(10297), X(17506)}}, {{A, B, C, X(14118), X(38323)}}, {{A, B, C, X(15043), X(31626)}}, {{A, B, C, X(15291), X(51347)}}, {{A, B, C, X(15318), X(20563)}}, {{A, B, C, X(15404), X(44174)}}, {{A, B, C, X(15905), X(53050)}}, {{A, B, C, X(16934), X(46423)}}, {{A, B, C, X(19210), X(43574)}}, {{A, B, C, X(22261), X(44156)}}, {{A, B, C, X(23964), X(38808)}}, {{A, B, C, X(31833), X(35921)}}, {{A, B, C, X(34403), X(40802)}}, {{A, B, C, X(40032), X(41891)}}, {{A, B, C, X(41614), X(53021)}}, {{A, B, C, X(43584), X(55982)}}, {{A, B, C, X(43598), X(50463)}}
X(57648) = barycentric product X(i)*X(j) for these (i, j): {3, 801}, {6, 57800}, {48, 57955}, {63, 775}, {184, 40830}, {577, 57775}, {1105, 394}, {4100, 57972}, {6507, 821}, {37669, 57414}, {41890, 69}
X(57648) = barycentric quotient X(i)/X(j) for these (i, j): {2, 44131}, {3, 13567}, {6, 235}, {32, 44079}, {48, 774}, {63, 17858}, {97, 19166}, {110, 41678}, {184, 800}, {255, 6508}, {394, 41005}, {577, 185}, {775, 92}, {801, 264}, {821, 6521}, {1092, 6509}, {1105, 2052}, {1437, 18603}, {1660, 14091}, {3284, 51403}, {4100, 820}, {10316, 41580}, {14533, 16035}, {14642, 52566}, {14961, 41603}, {15905, 2883}, {19210, 19180}, {22089, 17773}, {23115, 41602}, {32661, 1624}, {35602, 45200}, {40830, 18022}, {41890, 4}, {44079, 36424}, {57414, 459}, {57775, 18027}, {57800, 76}, {57955, 1969}
X(57648) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1092, 13346, 37669}, {2929, 22529, 19142}, {22530, 22966, 17928}, {22647, 37669, 22970}, {22816, 22955, 43598}


X(57649) = ISOGONAL CONJUGATE OF X(245)

Barycentrics    a*(a-b)^2*(a+b)*(a-c)^2*(a+c)*(a^7+a^6*b+a*b^6+b^7-a^2*b^2*(a^2+a*b+b^2)*c-2*(a+b)*(a^4+b^4)*c^2+(a^4+a^3*b+3*a^2*b^2+a*b^3+b^4)*c^3+(a+b)*(a^2+b^2)*c^4-(2*a^2+a*b+2*b^2)*c^5+c^7)*(a^7-2*a^5*b^2+a^6*c+a^4*b*(b^2-2*b*c-c^2)+(b-c)^2*(b+c)^3*(b^2-b*c+c^2)-a*(b-c)*c*(b+c)*(b^3-b^2*c+c^3)+a^3*(b^4+b^3*c-b*c^3)+a^2*(-2*b^5+b^4*c+3*b^3*c^2-b*c^4)) : :

X(57649) lies on these lines: {1, 9273}, {249, 758}, {523, 37140}, {1101, 39137}, {2613, 2614}, {4053, 4570}, {4590, 35550}, {6757, 39295}

X(57649) = isogonal conjugate of X(245)
X(57649) = trilinear pole of line {110, 2610}
X(57649) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(12)}}, {{A, B, C, X(249), X(250)}}, {{A, B, C, X(1290), X(24041)}}
X(57649) = barycentric product X(i)*X(j) for these (i, j): {6, 57802}
X(57649) = barycentric quotient X(i)/X(j) for these (i, j): {6, 245}, {57802, 76}


X(57650) = ISOGONAL CONJUGATE OF X(246)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(a^8+2*a^6*(b^2-2*c^2)+(b^2-c^2)^4+a^4*(-5*b^2*c^2+6*c^4)+a^2*(2*b^6-5*b^4*c^2+7*b^2*c^4-4*c^6))*(a^8+(b^2-c^2)^4+2*a^6*(-2*b^2+c^2)+a^4*(6*b^4-5*b^2*c^2)+a^2*(-4*b^6+7*b^4*c^2-5*b^2*c^4+2*c^6)) : :

X(57650) lies on these lines: {30, 249}, {250, 1990}, {523, 44769}, {3260, 4590}, {3471, 14366}, {4226, 5649}, {7473, 32697}, {9273, 56645}, {14254, 39295}, {15454, 18879}, {23582, 52661}, {30528, 53178}, {35906, 36181}

X(57650) = isogonal conjugate of X(246)
X(57650) = trilinear pole of line {110, 1637}
X(57650) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 246}, {656, 47221}
X(57650) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 246}, {40596, 47221}
X(57650) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(30)}}, {{A, B, C, X(110), X(23588)}}, {{A, B, C, X(249), X(250)}}, {{A, B, C, X(297), X(36181)}}, {{A, B, C, X(401), X(36176)}}, {{A, B, C, X(476), X(18020)}}, {{A, B, C, X(525), X(40511)}}, {{A, B, C, X(842), X(41932)}}, {{A, B, C, X(1291), X(23357)}}, {{A, B, C, X(2697), X(40428)}}, {{A, B, C, X(2698), X(3447)}}, {{A, B, C, X(4226), X(7473)}}, {{A, B, C, X(15014), X(37915)}}, {{A, B, C, X(15351), X(46245)}}, {{A, B, C, X(32662), X(47390)}}, {{A, B, C, X(40429), X(53201)}}
X(57650) = barycentric product X(i)*X(j) for these (i, j): {6, 57803}
X(57650) = barycentric quotient X(i)/X(j) for these (i, j): {6, 246}, {112, 47221}, {57803, 76}


X(57651) = ISOGONAL CONJUGATE OF X(247)

Barycentrics    a^2*(a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*((a^2-b^2)^2*(a^6+b^6)+(-2*a^8+5*a^6*b^2-2*a^4*b^4+5*a^2*b^6-2*b^8)*c^2-(a^2+b^2)*(a^4+5*a^2*b^2+b^4)*c^4+(5*a^4+7*a^2*b^2+5*b^4)*c^6-4*(a^2+b^2)*c^8+c^10)*((a^2-b^2)^3*(a^4+a^2*b^2-b^4)+(-2*a^8+5*a^6*b^2-6*a^4*b^4+7*a^2*b^6-4*b^8)*c^2+(a^6-2*a^4*b^2-6*a^2*b^4+5*b^6)*c^4+(a^4+5*a^2*b^2-b^4)*c^6-2*(a^2+b^2)*c^8+c^10) : :

X(57651) lies on these lines: {3, 18879}, {249, 13754}, {250, 3003}, {403, 23582}, {523, 687}, {4590, 57804}, {39170, 39295}

X(57651) = isogonal conjugate of X(247)
X(57651) = trilinear pole of line {110, 686}
X(57651) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(403)}}, {{A, B, C, X(249), X(250)}}, {{A, B, C, X(9513), X(23700)}}, {{A, B, C, X(32640), X(47390)}}, {{A, B, C, X(37918), X(44328)}}
X(57651) = barycentric product X(i)*X(j) for these (i, j): {6, 57804}
X(57651) = barycentric quotient X(i)/X(j) for these (i, j): {6, 247}, {57804, 76}


X(57652) = ISOGONAL CONJUGATE OF X(332)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(57652) lies on these lines: {1, 4}, {6, 10537}, {11, 40160}, {19, 2258}, {25, 31}, {28, 43071}, {42, 1824}, {55, 40590}, {65, 1245}, {108, 741}, {109, 3563}, {171, 4231}, {181, 213}, {199, 1950}, {209, 4559}, {256, 34027}, {273, 2296}, {307, 1041}, {407, 40611}, {427, 33105}, {430, 8736}, {431, 21935}, {478, 37538}, {604, 17408}, {653, 37132}, {851, 22057}, {860, 2887}, {862, 23493}, {923, 8753}, {1038, 13725}, {1042, 1426}, {1096, 6524}, {1193, 4185}, {1201, 40985}, {1214, 4199}, {1215, 41013}, {1402, 40934}, {1409, 40952}, {1465, 4192}, {1468, 26377}, {1716, 55023}, {1861, 3687}, {1874, 40149}, {1967, 17980}, {1973, 2207}, {2285, 54426}, {2318, 21078}, {2520, 57185}, {2594, 53861}, {2708, 36067}, {3112, 46104}, {4028, 4551}, {4296, 26117}, {4300, 37194}, {4306, 28039}, {4318, 4388}, {5130, 10459}, {5136, 25496}, {7714, 50303}, {8270, 50295}, {14248, 38252}, {17923, 24550}, {17992, 17994}, {18026, 18826}, {21101, 56319}, {28266, 37079}, {28356, 28387}, {36120, 36127}, {37193, 57477}, {37581, 40152}, {40148, 51657}, {53008, 53663}

X(57652) = isogonal conjugate of X(332)
X(57652) = trilinear pole of line {798, 2489}
X(57652) = perspector of circumconic {{A, B, C, X(653), X(32674)}}
X(57652) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 332}, {2, 1812}, {3, 314}, {7, 1792}, {8, 1444}, {9, 17206}, {21, 69}, {27, 3719}, {28, 1264}, {29, 326}, {48, 28660}, {58, 3718}, {60, 20336}, {63, 333}, {71, 52379}, {72, 261}, {75, 283}, {76, 2193}, {77, 1043}, {78, 86}, {81, 345}, {85, 2327}, {92, 6514}, {99, 521}, {110, 35518}, {162, 52616}, {184, 40072}, {212, 310}, {219, 274}, {228, 18021}, {255, 44130}, {270, 52396}, {271, 8822}, {284, 304}, {286, 1259}, {305, 2194}, {306, 2185}, {307, 1098}, {309, 1819}, {312, 1790}, {319, 1789}, {320, 1793}, {348, 2287}, {350, 1808}, {394, 31623}, {522, 4592}, {525, 4612}, {643, 4025}, {644, 15419}, {645, 905}, {646, 7254}, {647, 4631}, {649, 55207}, {650, 4563}, {651, 15411}, {652, 799}, {657, 55205}, {662, 6332}, {663, 55202}, {664, 57081}, {668, 23189}, {670, 1946}, {757, 3710}, {765, 17219}, {811, 57241}, {822, 55233}, {873, 2318}, {960, 57853}, {1014, 1265}, {1102, 8748}, {1172, 3926}, {1214, 7058}, {1231, 7054}, {1260, 57785}, {1331, 18155}, {1332, 4560}, {1333, 57919}, {1412, 52406}, {1434, 3692}, {1437, 3596}, {1459, 7257}, {1509, 3694}, {1800, 20570}, {1809, 17139}, {1817, 44189}, {1896, 3964}, {2150, 40071}, {2289, 44129}, {2322, 7183}, {2326, 52565}, {2328, 7182}, {2360, 57783}, {2646, 57833}, {3063, 52608}, {3265, 52914}, {3682, 57779}, {3683, 57854}, {3685, 57738}, {3702, 57685}, {3737, 4561}, {3998, 46103}, {4131, 36797}, {4183, 7055}, {4391, 4558}, {4511, 57985}, {4516, 47389}, {4554, 23090}, {4565, 15416}, {4567, 26932}, {4570, 17880}, {4571, 7192}, {4572, 57134}, {4573, 57055}, {4575, 35519}, {4587, 7199}, {4590, 53560}, {4600, 7004}, {4601, 7117}, {4610, 8611}, {4615, 14418}, {4620, 34591}, {4625, 57108}, {4636, 14208}, {5546, 15413}, {6056, 57796}, {6064, 18210}, {6331, 36054}, {6385, 52425}, {6513, 31631}, {6516, 7253}, {6518, 35145}, {7017, 18604}, {7056, 56182}, {7078, 57795}, {10397, 55211}, {16731, 46102}, {18695, 35196}, {20769, 36800}, {22074, 40827}, {22076, 52550}, {27398, 41081}, {27509, 40403}, {40364, 57657}, {44327, 57213}, {52355, 52935}, {52381, 56440}, {54951, 57111}, {55196, 55232}
X(57652) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 332}, {10, 3718}, {37, 57919}, {65, 51612}, {125, 52616}, {136, 35519}, {206, 283}, {244, 35518}, {478, 17206}, {513, 17219}, {1084, 6332}, {1214, 305}, {1249, 28660}, {3162, 333}, {5139, 522}, {5375, 55207}, {5521, 18155}, {6523, 44130}, {10001, 52608}, {15259, 29}, {15267, 307}, {17423, 57241}, {22391, 6514}, {32664, 1812}, {36103, 314}, {36908, 7182}, {38986, 521}, {38991, 15411}, {38996, 652}, {39025, 57081}, {39052, 4631}, {39053, 670}, {39060, 4602}, {40586, 345}, {40590, 304}, {40591, 1264}, {40599, 52406}, {40600, 78}, {40607, 3710}, {40611, 69}, {40627, 26932}, {40837, 310}, {47345, 76}, {50330, 17880}, {50497, 7004}, {55060, 4025}, {55064, 15416}, {56325, 40071}
X(57652) = X(i)-Ceva conjugate of X(j) for these {i, j}: {25, 1402}, {34, 1880}, {225, 1400}, {1041, 65}, {1880, 2333}
X(57652) = pole of line {6589, 39199} with respect to the circumcircle
X(57652) = pole of line {522, 4087} with respect to the polar circle
X(57652) = pole of line {283, 332} with respect to the Stammler hyperbola
X(57652) = pole of line {332, 22421} with respect to the Wallace hyperbola
X(57652) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(31)}}, {{A, B, C, X(4), X(25)}}, {{A, B, C, X(6), X(5712)}}, {{A, B, C, X(10), X(13161)}}, {{A, B, C, X(19), X(5307)}}, {{A, B, C, X(29), X(40976)}}, {{A, B, C, X(32), X(581)}}, {{A, B, C, X(33), X(2212)}}, {{A, B, C, X(34), X(1395)}}, {{A, B, C, X(41), X(10393)}}, {{A, B, C, X(55), X(3486)}}, {{A, B, C, X(65), X(388)}}, {{A, B, C, X(84), X(35635)}}, {{A, B, C, X(111), X(54119)}}, {{A, B, C, X(181), X(226)}}, {{A, B, C, X(210), X(497)}}, {{A, B, C, X(223), X(2199)}}, {{A, B, C, X(228), X(18446)}}, {{A, B, C, X(243), X(51726)}}, {{A, B, C, X(256), X(23668)}}, {{A, B, C, X(278), X(608)}}, {{A, B, C, X(512), X(515)}}, {{A, B, C, X(523), X(45917)}}, {{A, B, C, X(604), X(45126)}}, {{A, B, C, X(647), X(45271)}}, {{A, B, C, X(663), X(45272)}}, {{A, B, C, X(669), X(45932)}}, {{A, B, C, X(798), X(2635)}}, {{A, B, C, X(881), X(45904)}}, {{A, B, C, X(948), X(1427)}}, {{A, B, C, X(950), X(1334)}}, {{A, B, C, X(1397), X(10571)}}, {{A, B, C, X(1457), X(51641)}}, {{A, B, C, X(1474), X(1826)}}, {{A, B, C, X(1479), X(34857)}}, {{A, B, C, X(1495), X(1558)}}, {{A, B, C, X(1519), X(51377)}}, {{A, B, C, X(1541), X(51436)}}, {{A, B, C, X(1870), X(2203)}}, {{A, B, C, X(1918), X(14547)}}, {{A, B, C, X(2054), X(3944)}}, {{A, B, C, X(2187), X(15836)}}, {{A, B, C, X(2194), X(45230)}}, {{A, B, C, X(2208), X(6261)}}, {{A, B, C, X(2299), X(40950)}}, {{A, B, C, X(2489), X(23710)}}, {{A, B, C, X(3049), X(8763)}}, {{A, B, C, X(3122), X(35015)}}, {{A, B, C, X(3195), X(7952)}}, {{A, B, C, X(3709), X(16870)}}, {{A, B, C, X(5930), X(7143)}}, {{A, B, C, X(6059), X(44695)}}, {{A, B, C, X(6186), X(12047)}}, {{A, B, C, X(6187), X(10572)}}, {{A, B, C, X(6198), X(14975)}}, {{A, B, C, X(7151), X(34231)}}, {{A, B, C, X(7180), X(43035)}}, {{A, B, C, X(11060), X(45924)}}, {{A, B, C, X(15475), X(45934)}}, {{A, B, C, X(21740), X(34858)}}, {{A, B, C, X(40982), X(53008)}}, {{A, B, C, X(51650), X(51657)}}
X(57652) = barycentric product X(i)*X(j) for these (i, j): {1, 1880}, {10, 608}, {12, 1474}, {19, 65}, {31, 40149}, {32, 57809}, {34, 37}, {58, 8736}, {100, 55208}, {107, 55234}, {108, 661}, {109, 2501}, {162, 57185}, {181, 27}, {196, 2357}, {201, 5317}, {213, 273}, {225, 6}, {226, 25}, {227, 7129}, {278, 42}, {306, 7337}, {393, 73}, {512, 653}, {1018, 43923}, {1020, 18344}, {1037, 52577}, {1039, 8898}, {1041, 16583}, {1042, 281}, {1096, 1214}, {1118, 71}, {1119, 1334}, {1172, 1254}, {1333, 56285}, {1395, 321}, {1396, 756}, {1398, 2321}, {1400, 4}, {1402, 92}, {1407, 53008}, {1409, 158}, {1412, 7140}, {1413, 53009}, {1415, 24006}, {1425, 8748}, {1426, 9}, {1427, 33}, {1431, 1840}, {1435, 210}, {1441, 1973}, {1446, 2212}, {1783, 4017}, {1824, 57}, {1825, 2160}, {1826, 56}, {1835, 2161}, {1857, 52373}, {1874, 292}, {1875, 2250}, {1876, 18785}, {1882, 2215}, {1893, 2279}, {1897, 7180}, {1903, 208}, {1918, 331}, {1974, 349}, {2006, 44113}, {2171, 28}, {2197, 8747}, {2203, 6358}, {2205, 57787}, {2207, 307}, {2299, 6354}, {2322, 7143}, {2331, 52384}, {2332, 6046}, {2333, 7}, {2358, 40}, {2489, 664}, {2971, 4620}, {3049, 52938}, {3064, 53321}, {3120, 7115}, {3122, 46102}, {3125, 7012}, {3192, 40160}, {3195, 8808}, {3209, 39130}, {3668, 607}, {4183, 7147}, {4516, 7128}, {4551, 6591}, {4559, 7649}, {4572, 57204}, {5236, 56853}, {7178, 8750}, {8020, 8817}, {14975, 43682}, {16947, 7141}, {18026, 798}, {18097, 1843}, {20982, 34922}, {21796, 40446}, {21859, 57200}, {22341, 6520}, {23706, 55259}, {23987, 55255}, {24033, 53560}, {32674, 523}, {32713, 57243}, {32714, 4041}, {36118, 3709}, {36127, 647}, {39294, 42752}, {40152, 6524}, {40573, 40952}, {40663, 8752}, {41013, 604}, {41489, 5930}, {41538, 46886}, {46152, 55240}, {46404, 669}, {51641, 6335}, {52378, 8754}, {52383, 52413}, {52439, 52565}, {52575, 560}, {52607, 663}, {54240, 810}, {55206, 934}, {56183, 7216}, {56382, 6059}
X(57652) = barycentric quotient X(i)/X(j) for these (i, j): {4, 28660}, {6, 332}, {10, 57919}, {12, 40071}, {19, 314}, {25, 333}, {27, 18021}, {28, 52379}, {31, 1812}, {32, 283}, {34, 274}, {37, 3718}, {41, 1792}, {42, 345}, {56, 17206}, {65, 304}, {71, 1264}, {73, 3926}, {92, 40072}, {100, 55207}, {107, 55233}, {108, 799}, {109, 4563}, {162, 4631}, {181, 306}, {184, 6514}, {210, 52406}, {213, 78}, {225, 76}, {226, 305}, {228, 3719}, {273, 6385}, {278, 310}, {349, 40050}, {393, 44130}, {512, 6332}, {560, 2193}, {604, 1444}, {607, 1043}, {608, 86}, {647, 52616}, {651, 55202}, {653, 670}, {661, 35518}, {663, 15411}, {664, 52608}, {669, 652}, {798, 521}, {862, 3975}, {872, 3694}, {934, 55205}, {1015, 17219}, {1042, 348}, {1096, 31623}, {1118, 44129}, {1254, 1231}, {1334, 1265}, {1395, 81}, {1396, 873}, {1397, 1790}, {1398, 1434}, {1400, 69}, {1402, 63}, {1409, 326}, {1410, 7183}, {1415, 4592}, {1425, 52565}, {1426, 85}, {1427, 7182}, {1435, 57785}, {1441, 40364}, {1474, 261}, {1500, 3710}, {1783, 7257}, {1824, 312}, {1825, 33939}, {1826, 3596}, {1835, 20924}, {1874, 1921}, {1876, 18157}, {1880, 75}, {1893, 21615}, {1903, 57783}, {1918, 219}, {1919, 23189}, {1922, 1808}, {1924, 1946}, {1973, 21}, {1974, 284}, {2171, 20336}, {2175, 2327}, {2197, 52396}, {2200, 1259}, {2203, 2185}, {2204, 1098}, {2205, 212}, {2207, 29}, {2212, 2287}, {2299, 7058}, {2333, 8}, {2357, 44189}, {2358, 309}, {2489, 522}, {2501, 35519}, {2971, 21044}, {3049, 57241}, {3063, 57081}, {3121, 7004}, {3122, 26932}, {3125, 17880}, {3195, 27398}, {3209, 8822}, {3668, 57918}, {4017, 15413}, {4041, 15416}, {4079, 52355}, {4559, 4561}, {5317, 57779}, {6059, 2322}, {6591, 18155}, {7012, 4601}, {7109, 2318}, {7115, 4600}, {7129, 57795}, {7140, 30713}, {7143, 56382}, {7180, 4025}, {7337, 27}, {8020, 497}, {8736, 313}, {8750, 645}, {13149, 55213}, {14581, 51382}, {14975, 56440}, {18026, 4602}, {21750, 1040}, {21751, 20753}, {22341, 1102}, {23706, 55258}, {23987, 55254}, {32674, 99}, {32676, 4612}, {32714, 4625}, {36127, 6331}, {36417, 2299}, {40149, 561}, {40152, 4176}, {40590, 51612}, {40934, 27509}, {40983, 16713}, {41013, 28659}, {41489, 5931}, {42067, 17197}, {43923, 7199}, {43924, 15419}, {44092, 3687}, {44112, 6518}, {44113, 32851}, {44162, 57657}, {46152, 55239}, {46404, 4609}, {50487, 8611}, {51641, 905}, {52373, 7055}, {52378, 47389}, {52439, 8748}, {52575, 1928}, {52607, 4572}, {54240, 57968}, {55206, 4397}, {55208, 693}, {55234, 3265}, {56183, 7258}, {56285, 27801}, {57185, 14208}, {57204, 663}, {57243, 52617}, {57809, 1502}
X(57652) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {19, 3192, 40976}, {25, 3195, 2212}, {25, 608, 1395}, {1824, 44113, 42}, {40982, 40983, 25}


X(57653) = ISOGONAL CONJUGATE OF X(336)

Barycentrics    a^3*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(-b^4-c^4+a^2*(b^2+c^2)) : :

X(57653) lies on cubic K991 and on these lines: {1, 29}, {19, 1964}, {25, 904}, {31, 1932}, {162, 1580}, {204, 9258}, {240, 1959}, {607, 869}, {608, 7032}, {661, 663}, {922, 32676}, {923, 36131}, {1429, 1430}, {1927, 56828}, {1957, 52134}, {2172, 52430}, {2181, 17442}, {2211, 5360}, {2299, 3725}, {2329, 7076}, {3009, 5089}, {3248, 52413}, {3747, 37908}, {17445, 20883}, {17799, 52414}, {17923, 56805}, {40790, 52412}, {40910, 42078}

X(57653) = isogonal conjugate of X(336)
X(57653) = perspector of circumconic {{A, B, C, X(19), X(823)}}
X(57653) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 336}, {2, 287}, {3, 290}, {4, 6394}, {6, 57799}, {48, 46273}, {63, 1821}, {68, 31635}, {69, 98}, {75, 293}, {76, 248}, {95, 53174}, {97, 53245}, {99, 879}, {125, 57991}, {184, 18024}, {264, 17974}, {304, 1910}, {305, 1976}, {325, 47388}, {326, 36120}, {328, 14355}, {339, 57742}, {348, 15628}, {394, 16081}, {441, 9476}, {520, 22456}, {523, 17932}, {525, 2966}, {647, 43187}, {648, 53173}, {656, 36036}, {670, 878}, {685, 3265}, {850, 43754}, {895, 52145}, {1294, 36893}, {1494, 35912}, {1502, 14600}, {1503, 57761}, {1799, 20021}, {2395, 4563}, {2422, 52608}, {2715, 3267}, {3269, 41174}, {3564, 40428}, {3926, 6531}, {3978, 15391}, {4143, 20031}, {4558, 43665}, {4590, 51404}, {5392, 51776}, {5967, 30786}, {6333, 41173}, {6390, 9154}, {6393, 41932}, {11653, 57819}, {12215, 36897}, {14208, 36084}, {14265, 43705}, {14376, 31636}, {14382, 36214}, {14601, 40050}, {15407, 30737}, {24284, 39291}, {32696, 52617}, {34156, 35140}, {34168, 56571}, {34536, 36212}, {35142, 53783}, {40708, 40820}, {41074, 47194}, {41175, 46145}, {42313, 46806}, {47389, 51441}, {51820, 57872}, {52451, 57829}
X(57653) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 336}, {9, 57799}, {132, 75}, {206, 293}, {1249, 46273}, {2679, 656}, {3162, 1821}, {5976, 40364}, {11672, 304}, {15259, 36120}, {32664, 287}, {36033, 6394}, {36103, 290}, {38970, 20948}, {38986, 879}, {38987, 14208}, {39039, 76}, {39040, 305}, {39052, 43187}, {40596, 36036}, {40601, 63}, {41167, 17879}, {46094, 326}, {50440, 3718}, {52878, 44706}, {55066, 53173}
X(57653) = X(i)-Ceva conjugate of X(j) for these {i, j}: {240, 1755}, {36092, 822}, {36104, 798}, {36120, 19}
X(57653) = X(i)-cross conjugate of X(j) for these {i, j}: {9417, 1755}
X(57653) = pole of line {75, 656} with respect to the polar circle
X(57653) = pole of line {255, 293} with respect to the Stammler hyperbola
X(57653) = pole of line {326, 336} with respect to the Wallace hyperbola
X(57653) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(810)}}, {{A, B, C, X(19), X(51315)}}, {{A, B, C, X(29), X(237)}}, {{A, B, C, X(31), X(92)}}, {{A, B, C, X(158), X(240)}}, {{A, B, C, X(232), X(2203)}}, {{A, B, C, X(297), X(46503)}}, {{A, B, C, X(511), X(8678)}}, {{A, B, C, X(798), X(24000)}}, {{A, B, C, X(862), X(4230)}}, {{A, B, C, X(923), X(1784)}}, {{A, B, C, X(1895), X(38252)}}, {{A, B, C, X(1896), X(2204)}}, {{A, B, C, X(1927), X(42075)}}, {{A, B, C, X(1964), X(40440)}}, {{A, B, C, X(1967), X(8767)}}, {{A, B, C, X(2179), X(46289)}}, {{A, B, C, X(2211), X(8747)}}, {{A, B, C, X(8772), X(23997)}}
X(57653) = barycentric product X(i)*X(j) for these (i, j): {1, 232}, {19, 511}, {27, 5360}, {32, 40703}, {33, 43034}, {48, 6530}, {158, 3289}, {162, 3569}, {237, 92}, {240, 6}, {264, 9417}, {281, 51651}, {293, 51334}, {297, 31}, {798, 877}, {1096, 36212}, {1581, 51324}, {1755, 4}, {1783, 53521}, {1843, 3405}, {1910, 2967}, {1959, 25}, {1967, 39931}, {1969, 9418}, {1973, 325}, {1974, 46238}, {2129, 51426}, {2148, 39569}, {2155, 44704}, {2173, 35908}, {2211, 75}, {2247, 52492}, {2312, 39265}, {2333, 51369}, {2491, 811}, {2799, 32676}, {4230, 661}, {8767, 9475}, {11672, 36120}, {14208, 34859}, {14966, 24006}, {15143, 9258}, {16081, 42075}, {16230, 163}, {17209, 1824}, {17442, 51862}, {17462, 3563}, {17994, 662}, {19189, 1953}, {23996, 6531}, {23997, 2501}, {24000, 41172}, {24019, 684}, {32112, 56829}, {34854, 63}, {36104, 41167}, {36128, 9155}, {39469, 823}, {40440, 52967}, {40810, 56828}, {42702, 8747}, {44132, 560}, {44694, 608}, {56679, 694}, {57493, 8772}
X(57653) = barycentric quotient X(i)/X(j) for these (i, j): {1, 57799}, {4, 46273}, {6, 336}, {19, 290}, {25, 1821}, {31, 287}, {32, 293}, {48, 6394}, {92, 18024}, {112, 36036}, {162, 43187}, {163, 17932}, {232, 75}, {237, 63}, {240, 76}, {297, 561}, {325, 40364}, {511, 304}, {560, 248}, {798, 879}, {810, 53173}, {877, 4602}, {1096, 16081}, {1755, 69}, {1917, 14600}, {1924, 878}, {1927, 15391}, {1959, 305}, {1973, 98}, {1974, 1910}, {2179, 53174}, {2181, 53245}, {2207, 36120}, {2211, 1}, {2212, 15628}, {2421, 55202}, {2491, 656}, {2967, 46238}, {3289, 326}, {3569, 14208}, {4230, 799}, {5360, 306}, {6530, 1969}, {9247, 17974}, {9406, 35912}, {9417, 3}, {9418, 48}, {14966, 4592}, {16230, 20948}, {17994, 1577}, {23996, 6393}, {23997, 4563}, {24000, 41174}, {24019, 22456}, {27369, 3404}, {32676, 2966}, {34854, 92}, {34859, 162}, {35908, 33805}, {39469, 24018}, {39931, 1926}, {40703, 1502}, {41172, 17879}, {42075, 36212}, {42702, 52396}, {43034, 7182}, {44114, 20902}, {44132, 1928}, {44694, 57919}, {46238, 40050}, {51324, 1966}, {51334, 40703}, {51651, 348}, {52967, 44706}, {53521, 15413}, {56679, 3978}, {56828, 14382}


X(57654) = ISOGONAL CONJUGATE OF X(337)

Barycentrics    a^2*(a^2-b*c)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(57654) lies on these lines: {8, 26885}, {19, 1974}, {25, 41}, {28, 60}, {31, 11325}, {43, 36571}, {162, 15148}, {184, 2082}, {237, 1951}, {239, 242}, {427, 29850}, {460, 8735}, {468, 29632}, {608, 19118}, {649, 21122}, {862, 2201}, {893, 2299}, {987, 1039}, {1395, 7121}, {1474, 25426}, {1824, 18098}, {1851, 5222}, {1876, 15382}, {2175, 40987}, {2194, 41015}, {2210, 44089}, {4000, 26923}, {5185, 40910}, {5320, 54418}, {5341, 56918}, {6065, 41391}, {6353, 29839}, {7297, 18374}, {14936, 42671}, {19121, 26998}, {19561, 56828}, {26890, 33950}, {28099, 33137}, {29869, 37453}, {42067, 44102}

X(57654) = isogonal conjugate of X(337)
X(57654) = perspector of circumconic {{A, B, C, X(1474), X(8750)}}
X(57654) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 337}, {3, 334}, {10, 57738}, {42, 57987}, {48, 18895}, {63, 335}, {69, 291}, {71, 40017}, {72, 18827}, {75, 295}, {76, 2196}, {77, 4518}, {78, 7233}, {171, 40708}, {184, 44172}, {292, 304}, {305, 1911}, {306, 37128}, {307, 56154}, {348, 4876}, {525, 4584}, {647, 4639}, {656, 4589}, {660, 4025}, {741, 20336}, {813, 15413}, {876, 4561}, {905, 4562}, {1214, 36800}, {1231, 2311}, {1332, 4444}, {1441, 1808}, {1444, 43534}, {1459, 4583}, {1565, 5378}, {1814, 40217}, {1909, 36214}, {1922, 40364}, {1934, 3955}, {4064, 36066}, {4592, 35352}, {7019, 18787}, {7077, 7182}, {9247, 44170}, {14598, 40050}, {18268, 40071}, {18893, 40360}, {20727, 40834}, {20769, 40098}, {22116, 31637}, {23186, 30633}, {25083, 52209}, {36806, 55234}, {51858, 57918}
X(57654) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 337}, {206, 295}, {1249, 18895}, {3162, 335}, {5139, 35352}, {6651, 305}, {8299, 20336}, {18277, 40050}, {19557, 304}, {35068, 40071}, {36103, 334}, {38978, 4064}, {39028, 40364}, {39029, 69}, {39052, 4639}, {40592, 57987}, {40596, 4589}, {40623, 15413}
X(57654) = X(i)-Ceva conjugate of X(j) for these {i, j}: {242, 1914}
X(57654) = X(i)-cross conjugate of X(j) for these {i, j}: {14599, 1914}
X(57654) = pole of line {5301, 6586} with respect to the circumcircle
X(57654) = pole of line {313, 3261} with respect to the polar circle
X(57654) = pole of line {72, 295} with respect to the Stammler hyperbola
X(57654) = pole of line {337, 20336} with respect to the Wallace hyperbola
X(57654) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(25), X(2201)}}, {{A, B, C, X(28), X(242)}}, {{A, B, C, X(31), X(51949)}}, {{A, B, C, X(41), X(60)}}, {{A, B, C, X(42), X(81)}}, {{A, B, C, X(238), X(987)}}, {{A, B, C, X(270), X(607)}}, {{A, B, C, X(294), X(51995)}}, {{A, B, C, X(419), X(46503)}}, {{A, B, C, X(1429), X(37580)}}, {{A, B, C, X(1437), X(2200)}}, {{A, B, C, X(1824), X(40717)}}, {{A, B, C, X(1921), X(16735)}}, {{A, B, C, X(2271), X(5009)}}, {{A, B, C, X(2299), X(44089)}}, {{A, B, C, X(2356), X(8751)}}, {{A, B, C, X(3573), X(32735)}}, {{A, B, C, X(4455), X(51420)}}, {{A, B, C, X(7291), X(21832)}}, {{A, B, C, X(16514), X(16972)}}, {{A, B, C, X(21034), X(21122)}}
X(57654) = barycentric product X(i)*X(j) for these (i, j): {1, 2201}, {19, 238}, {27, 3747}, {32, 40717}, {34, 3684}, {81, 862}, {108, 4435}, {112, 4010}, {162, 21832}, {239, 25}, {242, 6}, {256, 56828}, {257, 44089}, {286, 41333}, {393, 7193}, {419, 893}, {812, 8750}, {1096, 20769}, {1172, 1284}, {1395, 3975}, {1396, 4433}, {1400, 14024}, {1428, 281}, {1429, 33}, {1447, 607}, {1474, 740}, {1783, 659}, {1826, 5009}, {1874, 284}, {1897, 8632}, {1914, 4}, {1921, 1974}, {1973, 350}, {2189, 7235}, {2203, 3948}, {2210, 92}, {2238, 28}, {2333, 33295}, {2356, 6654}, {3573, 6591}, {3685, 608}, {4124, 7115}, {4432, 8752}, {4455, 648}, {4760, 8753}, {8299, 8751}, {10030, 2212}, {14599, 264}, {16609, 2299}, {17569, 40747}, {17962, 52468}, {17980, 53681}, {17984, 7104}, {18022, 18894}, {18786, 7119}, {18892, 1969}, {24019, 53556}, {24459, 32713}, {31905, 42}, {32674, 3716}, {34856, 71}, {36815, 52413}, {39786, 5379}, {44162, 44169}
X(57654) = barycentric quotient X(i)/X(j) for these (i, j): {4, 18895}, {6, 337}, {19, 334}, {25, 335}, {28, 40017}, {32, 295}, {81, 57987}, {92, 44172}, {112, 4589}, {162, 4639}, {238, 304}, {239, 305}, {242, 76}, {264, 44170}, {350, 40364}, {419, 1920}, {560, 2196}, {607, 4518}, {608, 7233}, {659, 15413}, {740, 40071}, {862, 321}, {893, 40708}, {1284, 1231}, {1333, 57738}, {1428, 348}, {1429, 7182}, {1447, 57918}, {1474, 18827}, {1783, 4583}, {1874, 349}, {1914, 69}, {1921, 40050}, {1973, 291}, {1974, 292}, {2201, 75}, {2203, 37128}, {2204, 56154}, {2210, 63}, {2212, 4876}, {2238, 20336}, {2299, 36800}, {2333, 43534}, {2356, 40217}, {2489, 35352}, {3684, 3718}, {3685, 57919}, {3747, 306}, {4010, 3267}, {4435, 35518}, {4455, 525}, {5009, 17206}, {7104, 36214}, {7193, 3926}, {8632, 4025}, {8750, 4562}, {14024, 28660}, {14599, 3}, {14602, 3955}, {18892, 48}, {18894, 184}, {21832, 14208}, {22384, 30805}, {24459, 52617}, {31905, 310}, {32676, 4584}, {34856, 44129}, {40717, 1502}, {40983, 53239}, {41333, 72}, {44089, 894}, {44162, 1922}, {44169, 40360}, {46390, 4064}, {52914, 36806}, {56828, 1909}, {57657, 1808}
X(57654) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42067, 44102, 52413}


X(57655) = ISOGONAL CONJUGATE OF X(339)

Barycentrics    a^4*(a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(a^4-(b^2-c^2)^2) : :

X(57655) lies on these lines: {4, 23582}, {110, 8673}, {112, 512}, {163, 32673}, {186, 249}, {237, 10317}, {420, 18020}, {525, 46619}, {826, 935}, {1495, 8744}, {1576, 32640}, {1974, 51980}, {1976, 34982}, {2211, 18374}, {2393, 15388}, {2420, 2445}, {3520, 54057}, {4235, 56980}, {4630, 35325}, {7482, 9218}, {9292, 40373}, {10312, 27375}, {14251, 44162}, {14560, 52604}, {15472, 50401}, {32649, 32661}, {32671, 32676}, {32708, 32713}, {32729, 57204}, {34157, 52432}, {35260, 51831}, {37841, 51324}, {40079, 53767}, {44089, 52446}, {47427, 51240}, {47443, 52765}

X(57655) = isogonal conjugate of X(339)
X(57655) = trilinear pole of line {1576, 2491}
X(57655) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 339}, {2, 20902}, {3, 23994}, {4, 17879}, {11, 57807}, {12, 17880}, {19, 36793}, {48, 23962}, {63, 338}, {68, 17881}, {69, 1109}, {72, 21207}, {75, 125}, {76, 3708}, {92, 15526}, {115, 304}, {201, 34387}, {264, 2632}, {273, 7068}, {274, 21046}, {305, 2643}, {306, 16732}, {313, 18210}, {318, 1367}, {321, 4466}, {326, 2970}, {336, 868}, {349, 53560}, {523, 14208}, {525, 1577}, {561, 20975}, {647, 20948}, {656, 850}, {661, 3267}, {668, 21134}, {693, 4064}, {810, 44173}, {811, 5489}, {823, 23616}, {905, 52623}, {1086, 52369}, {1089, 1565}, {1093, 24020}, {1111, 3695}, {1231, 21044}, {1365, 3718}, {1562, 57921}, {1969, 3269}, {2525, 18070}, {2972, 57806}, {2973, 52387}, {3120, 20336}, {3124, 40364}, {3125, 40071}, {3261, 55232}, {3265, 24006}, {3942, 28654}, {3949, 23989}, {4024, 15413}, {4025, 4036}, {4077, 52355}, {4086, 17094}, {4092, 7182}, {4117, 40360}, {4391, 57243}, {4592, 23105}, {4858, 26942}, {6340, 17876}, {6356, 24026}, {6358, 26932}, {6520, 23974}, {7004, 34388}, {8029, 55202}, {8901, 18695}, {14210, 51258}, {14213, 53576}, {14592, 32679}, {14618, 24018}, {17216, 41013}, {17886, 52388}, {18027, 37754}, {23107, 24019}, {23894, 45807}, {23978, 37755}, {34767, 36035}, {35442, 40440}, {38356, 46244}, {40495, 55230}, {41172, 46273}, {46107, 57109}, {46238, 51404}
X(57655) = X(i)-vertex conjugate of X(j) for these {i, j}: {4, 47388}, {15412, 23582}
X(57655) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 339}, {6, 36793}, {32, 127}, {206, 125}, {1249, 23962}, {3162, 338}, {5139, 23105}, {15259, 2970}, {15477, 51258}, {17423, 5489}, {22391, 15526}, {32664, 20902}, {35071, 23107}, {36033, 17879}, {36103, 23994}, {36830, 3267}, {37867, 23974}, {39052, 20948}, {39062, 44173}, {40368, 20975}, {40596, 850}
X(57655) = X(i)-Ceva conjugate of X(j) for these {i, j}: {250, 23357}, {23964, 41937}
X(57655) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 4630}, {32, 112}, {184, 1576}, {206, 110}, {237, 32649}, {3852, 805}, {14585, 14586}, {15257, 827}, {15270, 99}, {18374, 32729}, {19558, 17938}, {20960, 1289}, {23963, 23357}, {34397, 32715}, {44077, 32713}, {44078, 32734}, {52967, 53708}
X(57655) = pole of line {125, 339} with respect to the Stammler hyperbola
X(57655) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(34190)}}, {{A, B, C, X(4), X(32)}}, {{A, B, C, X(6), X(8744)}}, {{A, B, C, X(25), X(186)}}, {{A, B, C, X(30), X(46005)}}, {{A, B, C, X(51), X(14595)}}, {{A, B, C, X(54), X(10547)}}, {{A, B, C, X(69), X(206)}}, {{A, B, C, X(74), X(14908)}}, {{A, B, C, X(112), X(23582)}}, {{A, B, C, X(184), X(1495)}}, {{A, B, C, X(249), X(2715)}}, {{A, B, C, X(250), X(10423)}}, {{A, B, C, X(420), X(27369)}}, {{A, B, C, X(694), X(46105)}}, {{A, B, C, X(1974), X(44102)}}, {{A, B, C, X(1976), X(15462)}}, {{A, B, C, X(6524), X(44077)}}, {{A, B, C, X(8743), X(41363)}}, {{A, B, C, X(8753), X(40354)}}, {{A, B, C, X(9418), X(44127)}}, {{A, B, C, X(10318), X(38253)}}, {{A, B, C, X(11060), X(34155)}}, {{A, B, C, X(11270), X(40319)}}, {{A, B, C, X(13472), X(46680)}}, {{A, B, C, X(14560), X(32230)}}, {{A, B, C, X(14585), X(46089)}}, {{A, B, C, X(15035), X(40352)}}, {{A, B, C, X(15270), X(40050)}}, {{A, B, C, X(15460), X(44124)}}, {{A, B, C, X(15461), X(44123)}}, {{A, B, C, X(16774), X(22262)}}, {{A, B, C, X(19128), X(57387)}}, {{A, B, C, X(19153), X(41613)}}, {{A, B, C, X(22109), X(52153)}}, {{A, B, C, X(23963), X(47390)}}, {{A, B, C, X(26864), X(40114)}}, {{A, B, C, X(30491), X(44549)}}, {{A, B, C, X(32654), X(43717)}}, {{A, B, C, X(32740), X(52699)}}, {{A, B, C, X(32741), X(46288)}}, {{A, B, C, X(37937), X(46592)}}, {{A, B, C, X(43574), X(54034)}}
X(57655) = barycentric product X(i)*X(j) for these (i, j): {60, 7115}, {107, 32661}, {110, 112}, {162, 163}, {184, 23582}, {206, 44183}, {232, 57742}, {249, 25}, {250, 6}, {393, 47390}, {1092, 23590}, {1101, 19}, {1304, 2420}, {1333, 5379}, {1415, 52914}, {1474, 4570}, {1576, 648}, {1625, 933}, {1973, 24041}, {1974, 4590}, {2149, 270}, {2150, 7012}, {2189, 59}, {2203, 4567}, {2211, 57991}, {2299, 52378}, {2326, 24027}, {2407, 32715}, {2421, 32696}, {2715, 4230}, {4556, 8750}, {10312, 27867}, {14560, 14590}, {14574, 6331}, {14577, 57639}, {14586, 35360}, {14587, 53}, {14591, 476}, {14966, 685}, {15329, 32708}, {15384, 15905}, {15388, 22}, {15395, 39176}, {15460, 41941}, {15461, 41942}, {17932, 34859}, {18020, 32}, {18315, 52604}, {18879, 44084}, {23347, 44769}, {23357, 4}, {23588, 3043}, {23606, 34538}, {23963, 264}, {23964, 3}, {23975, 3964}, {23995, 92}, {23997, 36104}, {23999, 9247}, {24000, 48}, {24019, 4575}, {24021, 4100}, {24022, 6507}, {31614, 57204}, {32230, 577}, {32640, 4240}, {32649, 34211}, {32656, 52919}, {32660, 52921}, {32662, 53176}, {32671, 4242}, {32674, 4636}, {32676, 662}, {32712, 42742}, {32713, 4558}, {32729, 4235}, {32734, 41679}, {34397, 39295}, {34537, 44162}, {35325, 827}, {36034, 56829}, {36417, 47389}, {39298, 44124}, {39299, 44123}, {41174, 9418}, {41676, 4630}, {41937, 69}, {44113, 9273}, {44174, 8745}, {46249, 53699}, {46254, 560}, {46639, 57153}, {47443, 512}, {52920, 906}, {55270, 669}, {56008, 57086}
X(57655) = barycentric quotient X(i)/X(j) for these (i, j): {3, 36793}, {4, 23962}, {6, 339}, {19, 23994}, {25, 338}, {31, 20902}, {32, 125}, {48, 17879}, {110, 3267}, {112, 850}, {162, 20948}, {163, 14208}, {184, 15526}, {206, 127}, {217, 35442}, {249, 305}, {250, 76}, {520, 23107}, {560, 3708}, {648, 44173}, {1092, 23974}, {1101, 304}, {1110, 52369}, {1474, 21207}, {1501, 20975}, {1576, 525}, {1918, 21046}, {1919, 21134}, {1973, 1109}, {1974, 115}, {2149, 57807}, {2150, 17880}, {2189, 34387}, {2203, 16732}, {2206, 4466}, {2207, 2970}, {2211, 868}, {2489, 23105}, {3043, 23965}, {3049, 5489}, {4100, 24020}, {4558, 52617}, {4570, 40071}, {4590, 40050}, {4630, 4580}, {5379, 27801}, {5467, 45807}, {7115, 34388}, {8750, 52623}, {9247, 2632}, {9418, 41172}, {10312, 36901}, {14560, 14592}, {14574, 647}, {14575, 3269}, {14585, 2972}, {14587, 34386}, {14591, 3268}, {14601, 51404}, {14966, 6333}, {15384, 52581}, {15388, 18018}, {15958, 15414}, {17409, 53569}, {18020, 1502}, {19627, 16186}, {20968, 38356}, {22075, 47413}, {23347, 41079}, {23357, 69}, {23582, 18022}, {23963, 3}, {23964, 264}, {23975, 1093}, {23979, 6356}, {23990, 3695}, {23995, 63}, {24000, 1969}, {24022, 6521}, {24041, 40364}, {27369, 39691}, {32230, 18027}, {32640, 34767}, {32649, 43673}, {32661, 3265}, {32676, 1577}, {32696, 43665}, {32713, 14618}, {32715, 2394}, {32729, 14977}, {32739, 4064}, {32740, 51258}, {34537, 40360}, {34859, 16230}, {35325, 23285}, {35360, 15415}, {36417, 8754}, {36420, 2973}, {39201, 23616}, {40354, 12079}, {41937, 4}, {44102, 52628}, {44162, 3124}, {44183, 40421}, {46254, 1928}, {47390, 3926}, {47443, 670}, {52411, 1367}, {52425, 7068}, {52603, 45792}, {52604, 18314}, {54034, 53576}, {55270, 4609}, {57204, 8029}, {57742, 57799}
X(57655) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2420, 2445, 46592}


X(57656) = ISOGONAL CONJUGATE OF X(344)

Barycentrics    a^2*(a^2-2*a*b+(b-c)^2)*(a^2+(b-c)^2-2*a*c) : :

X(57656) lies on these lines: {1, 7123}, {2, 2991}, {6, 354}, {31, 1475}, {81, 277}, {218, 3873}, {222, 1462}, {244, 30706}, {608, 52635}, {739, 1292}, {940, 38186}, {1015, 14827}, {1407, 17107}, {1438, 1473}, {1643, 2423}, {2221, 5299}, {2298, 6601}, {4904, 13577}, {5063, 32655}, {7151, 44105}, {10580, 23617}, {16466, 57397}, {18825, 54987}, {20332, 37206}, {21748, 38266}, {22383, 43929}, {32644, 51987}, {40400, 55432}

X(57656) = isogonal conjugate of X(344)
X(57656) = trilinear pole of line {667, 23225}
X(57656) = perspector of circumconic {{A, B, C, X(1292), X(32644)}}
X(57656) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 344}, {2, 3870}, {7, 55337}, {8, 1445}, {9, 6604}, {10, 41610}, {55, 21609}, {69, 7719}, {75, 218}, {76, 21059}, {85, 6600}, {86, 3991}, {100, 4468}, {145, 27819}, {190, 3309}, {200, 17093}, {274, 4878}, {306, 4233}, {312, 1617}, {318, 23144}, {333, 41539}, {346, 4350}, {518, 31638}, {644, 31605}, {646, 51652}, {651, 44448}, {765, 4904}, {1026, 2402}, {1897, 24562}, {1978, 8642}, {3699, 43049}, {4567, 21945}, {4998, 38375}, {15185, 32008}, {20927, 54236}, {23760, 57731}, {34234, 51378}, {41785, 56179}
X(57656) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 344}, {206, 218}, {223, 21609}, {478, 6604}, {513, 4904}, {6609, 17093}, {8054, 4468}, {32664, 3870}, {34467, 24562}, {38991, 44448}, {40600, 3991}, {40627, 21945}, {55053, 3309}
X(57656) = X(i)-cross conjugate of X(j) for these {i, j}: {1357, 649}, {2175, 56}, {20229, 31}
X(57656) = pole of line {8642, 43924} with respect to the Brocard inellipse
X(57656) = pole of line {218, 344} with respect to the Stammler hyperbola
X(57656) = pole of line {34958, 55137} with respect to the Steiner inellipse
X(57656) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(614)}}, {{A, B, C, X(2), X(3290)}}, {{A, B, C, X(6), X(31)}}, {{A, B, C, X(25), X(57)}}, {{A, B, C, X(42), X(5222)}}, {{A, B, C, X(55), X(649)}}, {{A, B, C, X(56), X(354)}}, {{A, B, C, X(58), X(5021)}}, {{A, B, C, X(60), X(15375)}}, {{A, B, C, X(65), X(41826)}}, {{A, B, C, X(88), X(8770)}}, {{A, B, C, X(89), X(251)}}, {{A, B, C, X(111), X(26745)}}, {{A, B, C, X(184), X(222)}}, {{A, B, C, X(262), X(16100)}}, {{A, B, C, X(513), X(5486)}}, {{A, B, C, X(593), X(39965)}}, {{A, B, C, X(607), X(5452)}}, {{A, B, C, X(909), X(57386)}}, {{A, B, C, X(967), X(40746)}}, {{A, B, C, X(1170), X(38252)}}, {{A, B, C, X(1174), X(9315)}}, {{A, B, C, X(1201), X(10580)}}, {{A, B, C, X(1280), X(3445)}}, {{A, B, C, X(1400), X(9776)}}, {{A, B, C, X(1412), X(2279)}}, {{A, B, C, X(1473), X(1876)}}, {{A, B, C, X(1474), X(44094)}}, {{A, B, C, X(1643), X(3310)}}, {{A, B, C, X(2175), X(20229)}}, {{A, B, C, X(2195), X(42315)}}, {{A, B, C, X(2213), X(8615)}}, {{A, B, C, X(3063), X(14827)}}, {{A, B, C, X(3108), X(25417)}}, {{A, B, C, X(3195), X(6611)}}, {{A, B, C, X(5299), X(54416)}}, {{A, B, C, X(6063), X(54977)}}, {{A, B, C, X(6187), X(11051)}}, {{A, B, C, X(7023), X(10579)}}, {{A, B, C, X(7252), X(40141)}}, {{A, B, C, X(16466), X(20963)}}, {{A, B, C, X(17962), X(39966)}}, {{A, B, C, X(21453), X(51845)}}, {{A, B, C, X(24596), X(56853)}}, {{A, B, C, X(27789), X(39389)}}, {{A, B, C, X(38251), X(56154)}}, {{A, B, C, X(39696), X(39956)}}, {{A, B, C, X(51223), X(51686)}}, {{A, B, C, X(52030), X(54128)}}
X(57656) = barycentric product X(i)*X(j) for these (i, j): {1, 2191}, {32, 57791}, {56, 6601}, {105, 57469}, {277, 6}, {1292, 513}, {1617, 55013}, {2254, 36041}, {2414, 43929}, {14268, 3433}, {17107, 9}, {21104, 53244}, {32644, 918}, {37206, 649}, {40154, 55}, {54987, 667}
X(57656) = barycentric quotient X(i)/X(j) for these (i, j): {6, 344}, {31, 3870}, {32, 218}, {41, 55337}, {56, 6604}, {57, 21609}, {213, 3991}, {277, 76}, {560, 21059}, {604, 1445}, {649, 4468}, {663, 44448}, {667, 3309}, {1015, 4904}, {1106, 4350}, {1292, 668}, {1333, 41610}, {1357, 40615}, {1397, 1617}, {1402, 41539}, {1407, 17093}, {1438, 31638}, {1918, 4878}, {1973, 7719}, {1980, 8642}, {2175, 6600}, {2191, 75}, {2203, 4233}, {2428, 42720}, {3122, 21945}, {6601, 3596}, {16502, 41785}, {17107, 85}, {21143, 23760}, {22383, 24562}, {32644, 666}, {36041, 51560}, {37206, 1978}, {38266, 27819}, {40154, 6063}, {43924, 31605}, {43929, 2402}, {52411, 23144}, {54987, 6386}, {57181, 43049}, {57469, 3263}, {57791, 1502}


X(57657) = ISOGONAL CONJUGATE OF X(349)

Barycentrics    a^4*(a+b)*(a-b-c)*(a+c) : :

X(57657) lies on these lines: {6, 3145}, {21, 2344}, {29, 21044}, {31, 1932}, {32, 184}, {41, 212}, {48, 41332}, {58, 163}, {60, 283}, {71, 4280}, {81, 16787}, {213, 32739}, {603, 604}, {672, 1780}, {1055, 2360}, {1172, 40968}, {1334, 2328}, {1399, 32660}, {1400, 1474}, {1933, 18756}, {2112, 36015}, {2170, 40980}, {2175, 9448}, {2312, 17520}, {2332, 2342}, {3212, 14955}, {3496, 17521}, {4215, 51947}, {4225, 5060}, {7104, 14599}, {16609, 36022}, {17451, 36011}, {32676, 34078}

X(57657) = isogonal conjugate of X(349)
X(57657) = perspector of circumconic {{A, B, C, X(1576), X(4636)}}
X(57657) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 349}, {2, 1441}, {3, 52575}, {4, 1231}, {7, 321}, {8, 1446}, {10, 85}, {12, 274}, {27, 57807}, {34, 40071}, {37, 6063}, {42, 20567}, {56, 27801}, {57, 313}, {63, 57809}, {65, 76}, {69, 40149}, {71, 57787}, {72, 331}, {73, 1969}, {75, 226}, {81, 34388}, {86, 6358}, {92, 307}, {108, 3267}, {109, 20948}, {158, 52565}, {181, 6385}, {189, 57810}, {190, 4077}, {201, 44129}, {210, 57792}, {213, 41283}, {225, 304}, {227, 44190}, {264, 1214}, {269, 30713}, {273, 306}, {278, 20336}, {279, 3701}, {286, 26942}, {305, 1880}, {310, 2171}, {312, 3668}, {314, 6354}, {318, 56382}, {319, 43682}, {322, 8808}, {334, 16609}, {342, 56944}, {348, 41013}, {523, 4554}, {525, 18026}, {561, 1400}, {594, 57785}, {651, 850}, {653, 14208}, {656, 46404}, {658, 4086}, {661, 4572}, {664, 1577}, {668, 7178}, {670, 57185}, {693, 4552}, {811, 57243}, {870, 16603}, {961, 1228}, {1014, 28654}, {1018, 52621}, {1020, 35519}, {1042, 28659}, {1088, 2321}, {1089, 1434}, {1109, 4620}, {1211, 31643}, {1220, 45196}, {1234, 2982}, {1237, 1432}, {1254, 28660}, {1284, 18895}, {1365, 4601}, {1402, 1502}, {1409, 18022}, {1414, 52623}, {1415, 44173}, {1426, 57919}, {1427, 3596}, {1439, 7017}, {1465, 57984}, {1824, 57918}, {1826, 7182}, {1847, 3710}, {1930, 18097}, {1952, 44150}, {1978, 4017}, {2006, 35550}, {2052, 52385}, {2197, 57796}, {2205, 41287}, {2997, 56559}, {3261, 4551}, {3265, 54240}, {3649, 32018}, {3665, 56186}, {3669, 27808}, {3671, 40023}, {3676, 4033}, {3700, 4569}, {3925, 31618}, {3932, 34018}, {3936, 18815}, {3948, 7233}, {3952, 24002}, {3963, 7249}, {3971, 7209}, {4024, 4625}, {4032, 7018}, {4036, 4573}, {4041, 46406}, {4052, 39126}, {4079, 55213}, {4082, 23062}, {4088, 34085}, {4171, 52937}, {4391, 4566}, {4515, 57880}, {4559, 40495}, {4564, 21207}, {4583, 7212}, {4605, 18155}, {4623, 55197}, {4624, 4815}, {4707, 35174}, {4848, 40014}, {4998, 16732}, {5930, 57921}, {6058, 57949}, {6335, 17094}, {6356, 31623}, {6386, 7180}, {6516, 14618}, {6757, 17095}, {7033, 16888}, {7035, 53545}, {7205, 52651}, {7235, 40017}, {8817, 53510}, {8818, 52421}, {10030, 43534}, {10481, 56127}, {13149, 52355}, {13576, 40704}, {15065, 17078}, {15467, 22021}, {16090, 57862}, {16577, 20565}, {17206, 56285}, {17869, 34401}, {18027, 22341}, {18359, 41804}, {18593, 20566}, {18625, 57797}, {20234, 56358}, {20568, 40663}, {20924, 52383}, {21859, 52619}, {23994, 52378}, {24018, 52938}, {24290, 46135}, {26563, 56173}, {27691, 51865}, {27818, 52353}, {30456, 41530}, {30545, 42027}, {30690, 40999}, {30710, 41003}, {31625, 53540}, {31993, 58008}, {33939, 52382}, {35518, 52607}, {36803, 53551}, {37558, 57905}, {37755, 44130}, {39130, 40702}, {40152, 57806}, {40364, 57652}, {40422, 55010}, {40701, 52389}, {40827, 52567}, {41342, 57910}, {41539, 57791}, {42304, 56253}, {43675, 56927}, {43687, 56932}, {44354, 57842}, {46405, 53527}, {47057, 57886}, {52023, 57815}, {52358, 54121}, {55234, 57968}
X(57657) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 27801}, {3, 349}, {11, 20948}, {206, 226}, {1146, 44173}, {1147, 52565}, {3162, 57809}, {5452, 313}, {6600, 30713}, {6626, 41283}, {11517, 40071}, {17047, 21918}, {17423, 57243}, {22391, 307}, {32664, 1441}, {34961, 1978}, {36033, 1231}, {36103, 52575}, {36830, 4572}, {38983, 3267}, {38991, 850}, {39025, 1577}, {40368, 1400}, {40582, 561}, {40586, 34388}, {40589, 6063}, {40592, 20567}, {40596, 46404}, {40600, 6358}, {40602, 76}, {40605, 1502}, {40608, 52623}, {55053, 4077}, {55067, 40495}
X(57657) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1333, 2206}, {2150, 2194}
X(57657) = X(i)-cross conjugate of X(j) for these {i, j}: {32, 2204}, {2175, 2194}, {3063, 32739}
X(57657) = pole of line {76, 85} with respect to the Stammler hyperbola
X(57657) = pole of line {349, 1502} with respect to the Wallace hyperbola
X(57657) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(21), X(46503)}}, {{A, B, C, X(28), X(36020)}}, {{A, B, C, X(29), X(237)}}, {{A, B, C, X(31), X(184)}}, {{A, B, C, X(32), X(41)}}, {{A, B, C, X(60), X(1408)}}, {{A, B, C, X(213), X(2323)}}, {{A, B, C, X(217), X(2179)}}, {{A, B, C, X(333), X(3051)}}, {{A, B, C, X(522), X(2387)}}, {{A, B, C, X(1333), X(2204)}}, {{A, B, C, X(1334), X(1918)}}, {{A, B, C, X(1400), X(2200)}}, {{A, B, C, X(1410), X(1946)}}, {{A, B, C, X(1475), X(9454)}}, {{A, B, C, X(1501), X(9447)}}, {{A, B, C, X(2150), X(16947)}}, {{A, B, C, X(3061), X(3117)}}, {{A, B, C, X(6186), X(40956)}}, {{A, B, C, X(9247), X(14585)}}, {{A, B, C, X(14599), X(14602)}}, {{A, B, C, X(17453), X(22075)}}, {{A, B, C, X(23990), X(41933)}}, {{A, B, C, X(34396), X(35196)}}
X(57657) = barycentric product X(i)*X(j) for these (i, j): {1, 2194}, {19, 2193}, {21, 31}, {25, 283}, {27, 52425}, {32, 333}, {41, 81}, {42, 60}, {55, 58}, {101, 7252}, {108, 57134}, {109, 21789}, {110, 663}, {112, 652}, {154, 52158}, {162, 1946}, {163, 650}, {184, 29}, {210, 849}, {212, 28}, {213, 2185}, {222, 2332}, {228, 270}, {274, 9447}, {284, 6}, {310, 9448}, {314, 560}, {577, 8748}, {643, 667}, {1014, 1253}, {1021, 1415}, {1036, 44119}, {1042, 6061}, {1043, 1397}, {1098, 1402}, {1101, 4516}, {1106, 56182}, {1110, 18191}, {1169, 2269}, {1172, 48}, {1175, 14547}, {1178, 2330}, {1254, 23609}, {1333, 9}, {1334, 593}, {1395, 1792}, {1396, 1802}, {1400, 7054}, {1408, 200}, {1409, 2326}, {1412, 220}, {1414, 8641}, {1434, 14827}, {1437, 33}, {1444, 2212}, {1474, 219}, {1501, 28660}, {1576, 522}, {1790, 607}, {1798, 40976}, {1808, 57654}, {1812, 1973}, {1817, 7118}, {1819, 7151}, {1896, 52430}, {1914, 2311}, {1917, 40072}, {1918, 261}, {1919, 645}, {1924, 4631}, {1951, 2249}, {1974, 332}, {1980, 7257}, {2053, 38832}, {2150, 37}, {2159, 52949}, {2160, 35192}, {2161, 4282}, {2175, 86}, {2187, 285}, {2188, 3194}, {2189, 71}, {2192, 2360}, {2195, 3286}, {2200, 46103}, {2203, 78}, {2204, 63}, {2205, 52379}, {2206, 8}, {2207, 6514}, {2210, 56154}, {2258, 54417}, {2259, 46882}, {2287, 604}, {2289, 5317}, {2299, 3}, {2316, 3285}, {2322, 52411}, {2323, 34079}, {2327, 608}, {2328, 56}, {2341, 7113}, {2342, 859}, {2361, 759}, {2364, 4273}, {3056, 38813}, {3063, 662}, {3064, 32661}, {3271, 4570}, {3709, 4556}, {3724, 52380}, {3733, 3939}, {3737, 692}, {4082, 7342}, {4183, 603}, {4531, 7305}, {4565, 657}, {4612, 798}, {4630, 48278}, {4636, 512}, {4637, 57180}, {5009, 7077}, {5324, 7084}, {5546, 649}, {6056, 8747}, {10535, 26701}, {14395, 36131}, {14400, 32640}, {14432, 32729}, {14574, 35519}, {14575, 44130}, {14599, 36800}, {14936, 52378}, {14975, 1789}, {16721, 57398}, {16947, 346}, {17104, 7073}, {17197, 23990}, {17205, 6066}, {17926, 32660}, {17963, 5060}, {18265, 33295}, {18268, 3684}, {18344, 4575}, {18877, 52956}, {20967, 2363}, {21044, 23357}, {23090, 32674}, {23189, 8750}, {24019, 36054}, {24624, 52426}, {27644, 57264}, {27958, 7104}, {31623, 9247}, {32676, 521}, {32713, 57241}, {32739, 4560}, {34078, 52889}, {34819, 4877}, {35193, 6186}, {35196, 51}, {36057, 37908}, {36069, 53562}, {39201, 52921}, {39943, 41332}, {40352, 51382}, {40574, 57501}, {40972, 52376}, {43925, 4587}, {52427, 57736}, {52434, 6740}, {52914, 810}, {53581, 55196}, {53683, 57175}, {54353, 884}, {56181, 7121}, {57129, 644}, {57181, 7259}, {57386, 7124}
X(57657) = barycentric quotient X(i)/X(j) for these (i, j): {6, 349}, {9, 27801}, {19, 52575}, {21, 561}, {25, 57809}, {28, 57787}, {29, 18022}, {31, 1441}, {32, 226}, {41, 321}, {42, 34388}, {48, 1231}, {55, 313}, {58, 6063}, {60, 310}, {81, 20567}, {86, 41283}, {110, 4572}, {112, 46404}, {163, 4554}, {184, 307}, {212, 20336}, {213, 6358}, {219, 40071}, {220, 30713}, {228, 57807}, {270, 57796}, {283, 305}, {284, 76}, {310, 41287}, {314, 1928}, {332, 40050}, {333, 1502}, {522, 44173}, {560, 65}, {577, 52565}, {604, 1446}, {643, 6386}, {650, 20948}, {652, 3267}, {663, 850}, {667, 4077}, {849, 57785}, {1043, 40363}, {1098, 40072}, {1172, 1969}, {1253, 3701}, {1333, 85}, {1334, 28654}, {1397, 3668}, {1408, 1088}, {1412, 57792}, {1437, 7182}, {1474, 331}, {1501, 1400}, {1576, 664}, {1790, 57918}, {1812, 40364}, {1917, 1402}, {1918, 12}, {1919, 7178}, {1924, 57185}, {1946, 14208}, {1973, 40149}, {1974, 225}, {1977, 53545}, {1980, 4017}, {2150, 274}, {2175, 10}, {2185, 6385}, {2187, 57810}, {2189, 44129}, {2193, 304}, {2194, 75}, {2200, 26942}, {2203, 273}, {2204, 92}, {2205, 2171}, {2206, 7}, {2212, 41013}, {2269, 1228}, {2287, 28659}, {2299, 264}, {2300, 45196}, {2311, 18895}, {2327, 57919}, {2328, 3596}, {2330, 1237}, {2332, 7017}, {2342, 57984}, {2361, 35550}, {3049, 57243}, {3063, 1577}, {3271, 21207}, {3709, 52623}, {3733, 52621}, {3737, 40495}, {3939, 27808}, {4282, 20924}, {4516, 23994}, {4548, 4150}, {4565, 46406}, {4612, 4602}, {4636, 670}, {5009, 18033}, {5546, 1978}, {6056, 52396}, {7054, 28660}, {7063, 21043}, {7252, 3261}, {8638, 4088}, {8641, 4086}, {8748, 18027}, {9247, 1214}, {9447, 37}, {9448, 42}, {9449, 21029}, {9459, 40663}, {14547, 1234}, {14574, 109}, {14575, 73}, {14585, 40152}, {14599, 16609}, {14827, 2321}, {16947, 279}, {17104, 52421}, {17186, 17076}, {18265, 43534}, {18892, 1284}, {20665, 20234}, {20967, 18697}, {21044, 23962}, {21789, 35519}, {23357, 4620}, {23963, 52378}, {28660, 40362}, {32676, 18026}, {32713, 52938}, {32739, 4552}, {35192, 33939}, {35196, 34384}, {36800, 44170}, {40728, 16603}, {41280, 1042}, {44130, 44161}, {44162, 57652}, {46288, 18097}, {52158, 41530}, {52370, 52369}, {52411, 56382}, {52425, 306}, {52426, 3936}, {52430, 52385}, {52434, 41804}, {52914, 57968}, {52935, 55213}, {52949, 46234}, {53581, 55197}, {56154, 44172}, {57129, 24002}, {57134, 35518}, {57205, 21438}, {57241, 52617}


X(57658) = ISOGONAL CONJUGATE OF X(374)

Barycentrics    a*(a*(a-b)*(a+b)^2-b*(-5*a+b)*(-a+b)*c-(2*a^2+5*a*b+b^2)*c^2+b*c^3+c^4)*(a^4+a^3*c+b*(b-c)*(b+c)^2-a*c*(5*b^2-6*b*c+c^2)-a^2*(2*b^2+5*b*c+c^2)) : :

X(57658) lies on these lines: {344, 5744}, {3576, 3870}

X(57658) = isogonal conjugate of X(374)
X(57658) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(344)}}, {{A, B, C, X(21), X(88)}}, {{A, B, C, X(57), X(104)}}, {{A, B, C, X(63), X(44794)}}, {{A, B, C, X(81), X(4564)}}, {{A, B, C, X(89), X(1476)}}, {{A, B, C, X(95), X(675)}}, {{A, B, C, X(189), X(3577)}}, {{A, B, C, X(329), X(38308)}}, {{A, B, C, X(943), X(39963)}}, {{A, B, C, X(1170), X(34234)}}, {{A, B, C, X(1817), X(4219)}}, {{A, B, C, X(6336), X(32015)}}, {{A, B, C, X(8056), X(15175)}}, {{A, B, C, X(15180), X(39980)}}, {{A, B, C, X(15379), X(57418)}}, {{A, B, C, X(31992), X(52031)}}, {{A, B, C, X(36100), X(44178)}}, {{A, B, C, X(41790), X(50442)}}


X(57659) = ISOGONAL CONJUGATE OF X(377)

Barycentrics    a^2*(a^4+b^4-c^4-2*a^2*b*(b+c)-2*a*b*c*(b+c))*(a^4-b^4+c^4-2*a^2*c*(b+c)-2*a*b*c*(b+c)) : :

X(57659) lies on the Jerabek hyperbola and on these lines: {1, 28787}, {3, 1779}, {4, 18687}, {6, 2204}, {21, 69}, {25, 65}, {31, 73}, {41, 71}, {55, 72}, {56, 1439}, {58, 57667}, {64, 44098}, {68, 3560}, {105, 3485}, {154, 2213}, {209, 8193}, {265, 37234}, {386, 57706}, {411, 15740}, {884, 10099}, {1176, 36741}, {1242, 37245}, {1243, 5706}, {1246, 5327}, {1470, 2208}, {1593, 57671}, {1798, 56840}, {1836, 37377}, {1837, 54299}, {1898, 1903}, {2175, 7066}, {2218, 7083}, {2292, 43708}, {4265, 34817}, {4846, 6985}, {5090, 15232}, {5324, 6837}, {6186, 52390}, {6187, 52391}, {6391, 37492}, {6912, 15077}, {11415, 41230}, {14017, 37538}, {15316, 36742}, {15317, 36750}, {20846, 34259}, {22760, 28788}, {31371, 36002}, {36743, 57704}, {37302, 43724}, {43723, 53253}, {52561, 55111}, {54125, 54343}

X(57659) = isogonal conjugate of X(377)
X(57659) = trilinear pole of line {647, 3063}
X(57659) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 377}, {2, 54405}, {4, 54289}, {8, 1448}, {75, 37538}, {86, 43214}, {581, 56727}, {662, 47124}, {5905, 46038}, {28606, 45999}
X(57659) = X(i)-vertex conjugate of X(j) for these {i, j}: {51223, 51223}
X(57659) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 377}, {206, 37538}, {1084, 47124}, {32664, 54405}, {36033, 54289}, {40600, 43214}
X(57659) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57818, 45127}
X(57659) = X(i)-cross conjugate of X(j) for these {i, j}: {5320, 6}
X(57659) = pole of line {405, 45127} with respect to the Feuerbach hyperbola
X(57659) = pole of line {5320, 57659} with respect to the Jerabek hyperbola
X(57659) = pole of line {377, 37538} with respect to the Stammler hyperbola
X(57659) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1780)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(8), X(3449)}}, {{A, B, C, X(10), X(39945)}}, {{A, B, C, X(19), X(58)}}, {{A, B, C, X(21), X(25)}}, {{A, B, C, X(24), X(3560)}}, {{A, B, C, X(28), X(2164)}}, {{A, B, C, X(32), X(36740)}}, {{A, B, C, X(33), X(52158)}}, {{A, B, C, X(34), X(284)}}, {{A, B, C, X(37), X(16471)}}, {{A, B, C, X(39), X(36741)}}, {{A, B, C, X(40), X(1470)}}, {{A, B, C, X(57), X(37601)}}, {{A, B, C, X(60), X(1118)}}, {{A, B, C, X(78), X(40141)}}, {{A, B, C, X(154), X(44098)}}, {{A, B, C, X(186), X(37234)}}, {{A, B, C, X(196), X(1898)}}, {{A, B, C, X(213), X(2353)}}, {{A, B, C, X(221), X(2264)}}, {{A, B, C, X(283), X(1039)}}, {{A, B, C, X(378), X(6985)}}, {{A, B, C, X(386), X(36743)}}, {{A, B, C, X(405), X(14017)}}, {{A, B, C, X(411), X(1593)}}, {{A, B, C, X(603), X(3556)}}, {{A, B, C, X(840), X(5558)}}, {{A, B, C, X(909), X(937)}}, {{A, B, C, X(943), X(3418)}}, {{A, B, C, X(951), X(1174)}}, {{A, B, C, X(957), X(38273)}}, {{A, B, C, X(961), X(34447)}}, {{A, B, C, X(967), X(24624)}}, {{A, B, C, X(998), X(52185)}}, {{A, B, C, X(1005), X(37245)}}, {{A, B, C, X(1013), X(13738)}}, {{A, B, C, X(1037), X(2334)}}, {{A, B, C, X(1041), X(40442)}}, {{A, B, C, X(1057), X(3445)}}, {{A, B, C, X(1059), X(1391)}}, {{A, B, C, X(1061), X(1069)}}, {{A, B, C, X(1073), X(18687)}}, {{A, B, C, X(1126), X(7163)}}, {{A, B, C, X(1156), X(34442)}}, {{A, B, C, X(1193), X(10327)}}, {{A, B, C, X(1333), X(51686)}}, {{A, B, C, X(1413), X(12711)}}, {{A, B, C, X(1597), X(6876)}}, {{A, B, C, X(1609), X(36742)}}, {{A, B, C, X(1617), X(37080)}}, {{A, B, C, X(2271), X(2356)}}, {{A, B, C, X(2292), X(56840)}}, {{A, B, C, X(2332), X(9439)}}, {{A, B, C, X(2354), X(4267)}}, {{A, B, C, X(3053), X(37492)}}, {{A, B, C, X(3296), X(38269)}}, {{A, B, C, X(3420), X(55918)}}, {{A, B, C, X(3437), X(46010)}}, {{A, B, C, X(3478), X(56100)}}, {{A, B, C, X(3515), X(6912)}}, {{A, B, C, X(3516), X(36002)}}, {{A, B, C, X(3869), X(5090)}}, {{A, B, C, X(4185), X(20846)}}, {{A, B, C, X(4252), X(4254)}}, {{A, B, C, X(4255), X(5120)}}, {{A, B, C, X(4257), X(37503)}}, {{A, B, C, X(4265), X(30435)}}, {{A, B, C, X(5021), X(5132)}}, {{A, B, C, X(5096), X(9605)}}, {{A, B, C, X(5320), X(37538)}}, {{A, B, C, X(5559), X(41487)}}, {{A, B, C, X(7246), X(52150)}}, {{A, B, C, X(7319), X(18772)}}, {{A, B, C, X(7412), X(37302)}}, {{A, B, C, X(7466), X(37246)}}, {{A, B, C, X(8553), X(36750)}}, {{A, B, C, X(8573), X(36746)}}, {{A, B, C, X(10306), X(34880)}}, {{A, B, C, X(10831), X(40959)}}, {{A, B, C, X(10902), X(26437)}}, {{A, B, C, X(14642), X(22341)}}, {{A, B, C, X(18755), X(37507)}}, {{A, B, C, X(26357), X(37550)}}, {{A, B, C, X(33863), X(37502)}}, {{A, B, C, X(35993), X(37282)}}, {{A, B, C, X(36599), X(56343)}}, {{A, B, C, X(37195), X(37258)}}, {{A, B, C, X(39951), X(45964)}}, {{A, B, C, X(42019), X(46187)}}, {{A, B, C, X(51512), X(52013)}}, {{A, B, C, X(52186), X(57395)}}
X(57659) = barycentric product X(i)*X(j) for these (i, j): {4, 45127}, {6, 57818}, {13395, 650}
X(57659) = barycentric quotient X(i)/X(j) for these (i, j): {6, 377}, {31, 54405}, {32, 37538}, {48, 54289}, {213, 43214}, {512, 47124}, {604, 1448}, {2219, 56727}, {13395, 4554}, {37538, 36428}, {45127, 69}, {57818, 76}
X(57659) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {38879, 51223, 37538}


X(57660) = ISOGONAL CONJUGATE OF X(379)

Barycentrics    a^2*(a*(a-b)^2*b*(a+b)+(a^2-b^2)^2*c-a*b*(a+b)*c^2-c^5)*(-b^5-a^3*c^2+b*c^4+a^4*(b+c)-a^2*c*(b+c)^2+a*(-(b^2*c^2)+c^4)) : :

X(57660) lies on the Jerabek hyperbola and on these lines: {4, 39690}, {6, 37908}, {9, 28786}, {19, 15320}, {65, 5089}, {69, 14021}, {71, 2340}, {72, 3693}, {73, 672}, {184, 57735}, {241, 579}, {650, 10099}, {949, 5132}, {5746, 52560}, {16290, 28787}, {38535, 54324}

X(57660) = isogonal conjugate of X(379)
X(57660) = trilinear pole of line {647, 926}
X(57660) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 379}, {2, 51687}, {75, 44081}
X(57660) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 379}, {206, 44081}, {32664, 51687}
X(57660) = pole of line {379, 44081} with respect to the Stammler hyperbola
X(57660) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(55)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(9), X(579)}}, {{A, B, C, X(19), X(911)}}, {{A, B, C, X(25), X(14021)}}, {{A, B, C, X(63), X(2194)}}, {{A, B, C, X(85), X(284)}}, {{A, B, C, X(92), X(57416)}}, {{A, B, C, X(184), X(822)}}, {{A, B, C, X(209), X(321)}}, {{A, B, C, X(219), X(18734)}}, {{A, B, C, X(257), X(56003)}}, {{A, B, C, X(278), X(34429)}}, {{A, B, C, X(292), X(2218)}}, {{A, B, C, X(963), X(51502)}}, {{A, B, C, X(1333), X(40188)}}, {{A, B, C, X(1796), X(57386)}}, {{A, B, C, X(2141), X(2259)}}, {{A, B, C, X(2278), X(3002)}}, {{A, B, C, X(2332), X(2338)}}, {{A, B, C, X(2344), X(9322)}}, {{A, B, C, X(2350), X(2357)}}, {{A, B, C, X(2550), X(5132)}}, {{A, B, C, X(2983), X(31359)}}, {{A, B, C, X(3449), X(56147)}}, {{A, B, C, X(4261), X(46738)}}, {{A, B, C, X(4876), X(40011)}}, {{A, B, C, X(7233), X(37741)}}, {{A, B, C, X(16290), X(30733)}}
X(57660) = barycentric product X(i)*X(j) for these (i, j): {1, 56153}, {6, 57820}
X(57660) = barycentric quotient X(i)/X(j) for these (i, j): {6, 379}, {31, 51687}, {32, 44081}, {56153, 75}, {57820, 76}


X(57661) = ISOGONAL CONJUGATE OF X(380)

Barycentrics    a*(a+b-c)*(a-b+c)*((a-b)^2*(a+b)+(a+b)^2*c+3*(a+b)*c^2+3*c^3)*(a^3+a^2*(b-c)+a*(3*b-c)*(b+c)+(b+c)*(3*b^2+c^2)) : :

X(57661) lies on these lines: {1, 1396}, {7, 306}, {57, 72}, {63, 1014}, {92, 54424}, {223, 56219}, {226, 1119}, {269, 1214}, {304, 57785}, {388, 39130}, {479, 56382}, {553, 8814}, {2184, 54405}, {3666, 14550}

X(57661) = isogonal conjugate of X(380)
X(57661) = trilinear pole of line {656, 3669}
X(57661) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 380}, {2, 44098}, {6, 452}, {9, 1453}
X(57661) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 380}, {9, 452}, {478, 1453}, {32664, 44098}
X(57661) = X(i)-cross conjugate of X(j) for these {i, j}: {54385, 1}
X(57661) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(63)}}, {{A, B, C, X(2), X(84)}}, {{A, B, C, X(7), X(57)}}, {{A, B, C, X(19), X(8605)}}, {{A, B, C, X(21), X(6557)}}, {{A, B, C, X(27), X(474)}}, {{A, B, C, X(75), X(8808)}}, {{A, B, C, X(79), X(39947)}}, {{A, B, C, X(81), X(41790)}}, {{A, B, C, X(85), X(1422)}}, {{A, B, C, X(222), X(951)}}, {{A, B, C, X(223), X(388)}}, {{A, B, C, X(278), X(7091)}}, {{A, B, C, X(282), X(345)}}, {{A, B, C, X(1037), X(40407)}}, {{A, B, C, X(1435), X(20615)}}, {{A, B, C, X(1751), X(3062)}}, {{A, B, C, X(2051), X(30500)}}, {{A, B, C, X(2339), X(27475)}}, {{A, B, C, X(2982), X(5665)}}, {{A, B, C, X(3577), X(40399)}}, {{A, B, C, X(5290), X(45126)}}, {{A, B, C, X(7131), X(44733)}}, {{A, B, C, X(7284), X(37887)}}, {{A, B, C, X(8769), X(40737)}}, {{A, B, C, X(14554), X(34991)}}, {{A, B, C, X(17758), X(42467)}}, {{A, B, C, X(28606), X(31424)}}, {{A, B, C, X(38271), X(40435)}}, {{A, B, C, X(39948), X(55948)}}, {{A, B, C, X(44178), X(55090)}}
X(57661) = barycentric product X(i)*X(j) for these (i, j): {1, 57866}, {6, 57821}, {2213, 75}, {2336, 85}
X(57661) = barycentric quotient X(i)/X(j) for these (i, j): {1, 452}, {6, 380}, {31, 44098}, {56, 1453}, {2213, 1}, {2336, 9}, {57821, 76}, {57866, 75}


X(57662) = ISOGONAL CONJUGATE OF X(387)

Barycentrics    a^2*((a^2-b^2)^2+2*(a+b)^2*c^2+4*(a+b)*c^3+c^4)*(a^4+b^4+4*b^3*c+2*b^2*c^2+c^4+4*a*b^2*(b+c)+2*a^2*(b-c)*(b+c)) : :

X(57662) lies on these lines: {1, 3998}, {2, 8747}, {3, 1474}, {6, 3682}, {34, 405}, {56, 40152}, {58, 394}, {86, 3926}, {219, 2215}, {269, 31424}, {937, 1724}, {964, 36123}, {1073, 37244}, {1126, 3190}, {1438, 19763}, {2191, 37592}, {7129, 52389}, {8813, 17558}, {13738, 51686}, {14376, 17698}, {16843, 40937}, {37249, 45127}, {54369, 57748}

X(57662) = isogonal conjugate of X(387)
X(57662) = trilinear pole of line {649, 520}
X(57662) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 387}, {19, 464}, {92, 44101}
X(57662) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 387}, {6, 464}, {22391, 44101}
X(57662) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57874, 57702}
X(57662) = pole of line {387, 464} with respect to the Stammler hyperbola
X(57662) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(2), X(3)}}, {{A, B, C, X(4), X(37248)}}, {{A, B, C, X(9), X(52158)}}, {{A, B, C, X(10), X(64)}}, {{A, B, C, X(20), X(37244)}}, {{A, B, C, X(21), X(219)}}, {{A, B, C, X(22), X(17698)}}, {{A, B, C, X(25), X(37176)}}, {{A, B, C, X(28), X(37065)}}, {{A, B, C, X(37), X(16471)}}, {{A, B, C, X(60), X(28626)}}, {{A, B, C, X(81), X(19716)}}, {{A, B, C, X(84), X(1751)}}, {{A, B, C, X(377), X(37249)}}, {{A, B, C, X(386), X(4252)}}, {{A, B, C, X(404), X(474)}}, {{A, B, C, X(442), X(37300)}}, {{A, B, C, X(443), X(37282)}}, {{A, B, C, X(580), X(36746)}}, {{A, B, C, X(596), X(15467)}}, {{A, B, C, X(859), X(964)}}, {{A, B, C, X(943), X(7123)}}, {{A, B, C, X(951), X(8809)}}, {{A, B, C, X(1006), X(37228)}}, {{A, B, C, X(1009), X(19310)}}, {{A, B, C, X(1010), X(13738)}}, {{A, B, C, X(1011), X(11110)}}, {{A, B, C, X(1036), X(2335)}}, {{A, B, C, X(1059), X(1219)}}, {{A, B, C, X(1125), X(3190)}}, {{A, B, C, X(1224), X(7163)}}, {{A, B, C, X(1407), X(15376)}}, {{A, B, C, X(1617), X(37592)}}, {{A, B, C, X(1724), X(2256)}}, {{A, B, C, X(2049), X(4225)}}, {{A, B, C, X(2207), X(23493)}}, {{A, B, C, X(2213), X(3668)}}, {{A, B, C, X(2328), X(7367)}}, {{A, B, C, X(2476), X(37308)}}, {{A, B, C, X(3286), X(19763)}}, {{A, B, C, X(3426), X(43533)}}, {{A, B, C, X(3437), X(8770)}}, {{A, B, C, X(3526), X(37293)}}, {{A, B, C, X(4184), X(16844)}}, {{A, B, C, X(4188), X(16408)}}, {{A, B, C, X(4189), X(11108)}}, {{A, B, C, X(4190), X(50204)}}, {{A, B, C, X(4193), X(19525)}}, {{A, B, C, X(4195), X(28383)}}, {{A, B, C, X(4245), X(11115)}}, {{A, B, C, X(4255), X(4257)}}, {{A, B, C, X(4267), X(19762)}}, {{A, B, C, X(4276), X(19759)}}, {{A, B, C, X(4278), X(19760)}}, {{A, B, C, X(5047), X(16370)}}, {{A, B, C, X(5192), X(7428)}}, {{A, B, C, X(5398), X(36742)}}, {{A, B, C, X(6464), X(6625)}}, {{A, B, C, X(6675), X(20846)}}, {{A, B, C, X(6857), X(11344)}}, {{A, B, C, X(6904), X(16410)}}, {{A, B, C, X(6906), X(25875)}}, {{A, B, C, X(6986), X(19520)}}, {{A, B, C, X(7078), X(41082)}}, {{A, B, C, X(7395), X(25876)}}, {{A, B, C, X(7419), X(11354)}}, {{A, B, C, X(8728), X(37301)}}, {{A, B, C, X(11358), X(37442)}}, {{A, B, C, X(13329), X(37501)}}, {{A, B, C, X(13587), X(16862)}}, {{A, B, C, X(13615), X(17558)}}, {{A, B, C, X(13725), X(37246)}}, {{A, B, C, X(13726), X(16346)}}, {{A, B, C, X(13730), X(17526)}}, {{A, B, C, X(13740), X(28348)}}, {{A, B, C, X(14005), X(37058)}}, {{A, B, C, X(16062), X(37247)}}, {{A, B, C, X(16286), X(16347)}}, {{A, B, C, X(16287), X(16342)}}, {{A, B, C, X(16297), X(19336)}}, {{A, B, C, X(16343), X(16452)}}, {{A, B, C, X(16367), X(16850)}}, {{A, B, C, X(16368), X(47512)}}, {{A, B, C, X(16371), X(17531)}}, {{A, B, C, X(16376), X(16449)}}, {{A, B, C, X(16377), X(16447)}}, {{A, B, C, X(16393), X(19241)}}, {{A, B, C, X(16394), X(19245)}}, {{A, B, C, X(16397), X(19253)}}, {{A, B, C, X(16414), X(19284)}}, {{A, B, C, X(16416), X(37297)}}, {{A, B, C, X(16417), X(17572)}}, {{A, B, C, X(16418), X(16865)}}, {{A, B, C, X(16419), X(37339)}}, {{A, B, C, X(16451), X(16458)}}, {{A, B, C, X(16453), X(16454)}}, {{A, B, C, X(16842), X(17549)}}, {{A, B, C, X(16843), X(27174)}}, {{A, B, C, X(16845), X(20835)}}, {{A, B, C, X(16849), X(21511)}}, {{A, B, C, X(16852), X(21495)}}, {{A, B, C, X(16853), X(17548)}}, {{A, B, C, X(16858), X(19526)}}, {{A, B, C, X(16859), X(17571)}}, {{A, B, C, X(16863), X(37307)}}, {{A, B, C, X(17535), X(19537)}}, {{A, B, C, X(17536), X(19535)}}, {{A, B, C, X(17542), X(17574)}}, {{A, B, C, X(17546), X(19704)}}, {{A, B, C, X(17557), X(37057)}}, {{A, B, C, X(17582), X(37309)}}, {{A, B, C, X(19281), X(36015)}}, {{A, B, C, X(19285), X(36000)}}, {{A, B, C, X(19843), X(25941)}}, {{A, B, C, X(32014), X(56004)}}, {{A, B, C, X(34435), X(39983)}}, {{A, B, C, X(35977), X(50203)}}, {{A, B, C, X(36745), X(37469)}}, {{A, B, C, X(37037), X(37250)}}, {{A, B, C, X(37106), X(37224)}}, {{A, B, C, X(37543), X(56047)}}, {{A, B, C, X(39798), X(52384)}}, {{A, B, C, X(39956), X(51502)}}, {{A, B, C, X(42285), X(53089)}}, {{A, B, C, X(52258), X(52273)}}
X(57662) = barycentric product X(i)*X(j) for these (i, j): {3, 57874}, {6, 57825}, {57702, 69}
X(57662) = barycentric quotient X(i)/X(j) for these (i, j): {3, 464}, {6, 387}, {184, 44101}, {57702, 4}, {57825, 76}, {57874, 264}


X(57663) = ISOGONAL CONJUGATE OF X(391)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(a+3*b+c)*(a+b+3*c) : :

X(57663) lies on these lines: {2, 1434}, {6, 1412}, {7, 21471}, {25, 4252}, {37, 57}, {42, 56}, {111, 5545}, {222, 28658}, {241, 56219}, {393, 7490}, {474, 3361}, {738, 1427}, {940, 941}, {951, 56809}, {1014, 4383}, {1400, 1407}, {1416, 1460}, {1435, 1880}, {1477, 8694}, {4258, 11350}, {4298, 56767}, {4624, 27809}, {5013, 39967}, {5435, 5936}, {7131, 56260}, {7146, 9281}, {7153, 16606}, {8770, 33863}, {14556, 52188}, {14626, 52013}, {28625, 52424}, {32636, 56237}, {32911, 39975}, {37504, 45129}, {37642, 52223}, {37662, 46952}, {37679, 39798}, {37682, 39983}, {40420, 56086}, {47915, 55259}

X(57663) = isogonal conjugate of X(391)
X(57663) = trilinear pole of line {43924, 512}
X(57663) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 391}, {2, 4512}, {6, 4673}, {8, 1449}, {9, 3616}, {21, 5257}, {29, 4047}, {55, 19804}, {58, 42712}, {63, 461}, {75, 4258}, {81, 4061}, {100, 4765}, {101, 4811}, {200, 21454}, {210, 42028}, {219, 5342}, {281, 4652}, {294, 4684}, {304, 44100}, {333, 37593}, {345, 5338}, {346, 3361}, {513, 30728}, {643, 4841}, {644, 4778}, {645, 4822}, {662, 4843}, {664, 4827}, {799, 8653}, {1172, 4101}, {1320, 4700}, {2287, 3671}, {2316, 4742}, {2319, 4734}, {2329, 4835}, {3694, 31903}, {3699, 4790}, {3939, 4801}, {4069, 48580}, {4578, 30723}, {4771, 56154}, {4815, 5546}, {4832, 7257}, {51423, 52663}
X(57663) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 391}, {9, 4673}, {10, 42712}, {206, 4258}, {223, 19804}, {478, 3616}, {1015, 4811}, {1084, 4843}, {3162, 461}, {6609, 21454}, {8054, 4765}, {32664, 4512}, {38996, 8653}, {39025, 4827}, {39026, 30728}, {40586, 4061}, {40611, 5257}, {40617, 4801}, {55060, 4841}
X(57663) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57826, 57701}
X(57663) = X(i)-cross conjugate of X(j) for these {i, j}: {5021, 6}, {50626, 7}
X(57663) = pole of line {8653, 48340} with respect to the circumcircle
X(57663) = pole of line {4648, 57701} with respect to the Kiepert hyperbola
X(57663) = pole of line {391, 4258} with respect to the Stammler hyperbola
X(57663) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(17022)}}, {{A, B, C, X(2), X(6)}}, {{A, B, C, X(3), X(4252)}}, {{A, B, C, X(4), X(37269)}}, {{A, B, C, X(27), X(4191)}}, {{A, B, C, X(28), X(21483)}}, {{A, B, C, X(31), X(911)}}, {{A, B, C, X(32), X(5022)}}, {{A, B, C, X(55), X(2279)}}, {{A, B, C, X(56), X(57)}}, {{A, B, C, X(58), X(4255)}}, {{A, B, C, X(64), X(13478)}}, {{A, B, C, X(81), X(3445)}}, {{A, B, C, X(85), X(43071)}}, {{A, B, C, X(88), X(2221)}}, {{A, B, C, X(106), X(39980)}}, {{A, B, C, X(154), X(36908)}}, {{A, B, C, X(189), X(34434)}}, {{A, B, C, X(241), X(1460)}}, {{A, B, C, X(269), X(4328)}}, {{A, B, C, X(279), X(4322)}}, {{A, B, C, X(292), X(7050)}}, {{A, B, C, X(306), X(55977)}}, {{A, B, C, X(333), X(39970)}}, {{A, B, C, X(394), X(37646)}}, {{A, B, C, X(593), X(26745)}}, {{A, B, C, X(959), X(46331)}}, {{A, B, C, X(1014), X(56358)}}, {{A, B, C, X(1333), X(37500)}}, {{A, B, C, X(1432), X(42304)}}, {{A, B, C, X(1436), X(2215)}}, {{A, B, C, X(1462), X(34821)}}, {{A, B, C, X(2051), X(22014)}}, {{A, B, C, X(2163), X(36603)}}, {{A, B, C, X(2217), X(55987)}}, {{A, B, C, X(2334), X(25430)}}, {{A, B, C, X(2999), X(8580)}}, {{A, B, C, X(3053), X(33863)}}, {{A, B, C, X(3527), X(45098)}}, {{A, B, C, X(3697), X(14556)}}, {{A, B, C, X(4196), X(11350)}}, {{A, B, C, X(4219), X(11347)}}, {{A, B, C, X(4258), X(5021)}}, {{A, B, C, X(5019), X(37499)}}, {{A, B, C, X(5256), X(34916)}}, {{A, B, C, X(7201), X(44733)}}, {{A, B, C, X(10601), X(37662)}}, {{A, B, C, X(16438), X(35993)}}, {{A, B, C, X(17811), X(37642)}}, {{A, B, C, X(20156), X(21753)}}, {{A, B, C, X(21471), X(50626)}}, {{A, B, C, X(32911), X(37679)}}, {{A, B, C, X(34445), X(42302)}}, {{A, B, C, X(37660), X(40153)}}, {{A, B, C, X(37682), X(37685)}}, {{A, B, C, X(39948), X(41436)}}, {{A, B, C, X(40414), X(40801)}}
X(57663) = barycentric product X(i)*X(j) for these (i, j): {4, 57701}, {6, 57826}, {25, 57873}, {56, 5936}, {269, 4866}, {279, 34820}, {523, 5545}, {1014, 56237}, {1407, 56086}, {1427, 56204}, {2334, 7}, {3669, 4606}, {3676, 8694}, {4017, 4614}, {4624, 649}, {4627, 7178}, {4633, 7180}, {14626, 56783}, {24002, 34074}, {25430, 57}, {40023, 604}, {43924, 53658}, {47915, 651}, {56048, 65}
X(57663) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4673}, {6, 391}, {25, 461}, {31, 4512}, {32, 4258}, {34, 5342}, {37, 42712}, {42, 4061}, {56, 3616}, {57, 19804}, {73, 4101}, {101, 30728}, {512, 4843}, {513, 4811}, {603, 4652}, {604, 1449}, {649, 4765}, {669, 8653}, {1042, 3671}, {1106, 3361}, {1319, 4742}, {1395, 5338}, {1400, 5257}, {1402, 37593}, {1403, 4734}, {1404, 4700}, {1407, 21454}, {1409, 4047}, {1412, 42028}, {1431, 4835}, {1457, 51423}, {1458, 4684}, {1974, 44100}, {2334, 8}, {3063, 4827}, {3669, 4801}, {4017, 4815}, {4606, 646}, {4614, 7257}, {4624, 1978}, {4627, 645}, {4866, 341}, {5545, 99}, {5936, 3596}, {7180, 4841}, {8694, 3699}, {14626, 3717}, {25430, 312}, {34074, 644}, {34820, 346}, {40023, 28659}, {43924, 4778}, {47915, 4391}, {51641, 4822}, {53539, 50357}, {56048, 314}, {56237, 3701}, {57181, 4790}, {57701, 69}, {57826, 76}, {57873, 305}


X(57664) = ISOGONAL CONJUGATE OF X(392)

Barycentrics    a*(a^3+a^2*b+a*b^2+b^3+4*a*b*c-(a+b)*c^2)*(a^3+a^2*c-b^2*c+c^3+a*(-b^2+4*b*c+c^2)) : :

X(57664) lies on these lines: {1, 2267}, {2, 495}, {6, 957}, {28, 14571}, {65, 34051}, {81, 517}, {89, 36279}, {104, 54933}, {274, 3262}, {279, 37241}, {523, 2401}, {527, 34914}, {1224, 5288}, {1255, 51788}, {1257, 3555}, {2093, 39980}, {2810, 17946}, {2835, 7313}, {4160, 35348}, {5323, 15955}, {7962, 39948}, {7967, 44094}, {16082, 41013}, {24928, 56234}, {34791, 56137}, {37887, 50759}

X(57664) = isogonal conjugate of X(392)
X(57664) = trilinear pole of line {21786, 40134}
X(57664) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 392}, {8, 1450}
X(57664) = X(i)-vertex conjugate of X(j) for these {i, j}: {1014, 15175}, {2163, 2346}
X(57664) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(3421)}}, {{A, B, C, X(6), X(104)}}, {{A, B, C, X(7), X(998)}}, {{A, B, C, X(10), X(17015)}}, {{A, B, C, X(19), X(1000)}}, {{A, B, C, X(21), X(1126)}}, {{A, B, C, X(34), X(1056)}}, {{A, B, C, X(42), X(16821)}}, {{A, B, C, X(56), X(999)}}, {{A, B, C, X(58), X(59)}}, {{A, B, C, X(60), X(57403)}}, {{A, B, C, X(65), X(517)}}, {{A, B, C, X(82), X(1120)}}, {{A, B, C, X(106), X(1014)}}, {{A, B, C, X(253), X(1295)}}, {{A, B, C, X(267), X(5559)}}, {{A, B, C, X(495), X(1411)}}, {{A, B, C, X(518), X(29126)}}, {{A, B, C, X(527), X(4160)}}, {{A, B, C, X(759), X(2346)}}, {{A, B, C, X(915), X(14497)}}, {{A, B, C, X(937), X(7091)}}, {{A, B, C, X(943), X(2217)}}, {{A, B, C, X(945), X(2213)}}, {{A, B, C, X(947), X(1175)}}, {{A, B, C, X(977), X(39702)}}, {{A, B, C, X(983), X(56150)}}, {{A, B, C, X(987), X(39969)}}, {{A, B, C, X(994), X(1320)}}, {{A, B, C, X(996), X(2298)}}, {{A, B, C, X(1037), X(3418)}}, {{A, B, C, X(1057), X(1436)}}, {{A, B, C, X(1104), X(3555)}}, {{A, B, C, X(1168), X(18821)}}, {{A, B, C, X(1172), X(51565)}}, {{A, B, C, X(1203), X(5288)}}, {{A, B, C, X(1222), X(2363)}}, {{A, B, C, X(1453), X(6762)}}, {{A, B, C, X(2093), X(3340)}}, {{A, B, C, X(2099), X(36279)}}, {{A, B, C, X(2191), X(18490)}}, {{A, B, C, X(2787), X(2810)}}, {{A, B, C, X(3243), X(16485)}}, {{A, B, C, X(3820), X(34434)}}, {{A, B, C, X(4183), X(37241)}}, {{A, B, C, X(4385), X(4389)}}, {{A, B, C, X(4564), X(42302)}}, {{A, B, C, X(5193), X(5563)}}, {{A, B, C, X(5251), X(16474)}}, {{A, B, C, X(7284), X(9309)}}, {{A, B, C, X(10269), X(26437)}}, {{A, B, C, X(11058), X(16615)}}, {{A, B, C, X(12513), X(16466)}}, {{A, B, C, X(17642), X(37544)}}, {{A, B, C, X(23711), X(47227)}}, {{A, B, C, X(32085), X(45136)}}, {{A, B, C, X(32636), X(51788)}}, {{A, B, C, X(34485), X(47645)}}, {{A, B, C, X(34772), X(50759)}}, {{A, B, C, X(40453), X(56032)}}
X(57664) = barycentric product X(i)*X(j) for these (i, j): {6, 57827}
X(57664) = barycentric quotient X(i)/X(j) for these (i, j): {6, 392}, {604, 1450}, {57827, 76}


X(57665) = ISOGONAL CONJUGATE OF X(402)

Barycentrics    a^2*((a^2-b^2)^2+(a^2+b^2)*c^2-2*c^4)*((a^2-b^2)^2*(a^4+3*a^2*b^2+b^4)-3*(a^2-b^2)^2*(a^2+b^2)*c^2+(2*a^4-5*a^2*b^2+2*b^4)*c^4+(a^2+b^2)*c^6-c^8)*(a^4-2*b^4+b^2*c^2+c^4+a^2*(b^2-2*c^2))*(a^8+a^6*(-3*b^2+c^2)+a^4*(2*b^4+3*b^2*c^2-4*c^4)-(b^2-c^2)^2*(b^4+b^2*c^2-c^4)+a^2*(b^6-5*b^4*c^2+3*b^2*c^4+c^6)) : :

X(57665) lies on the Jerabek hyperbola and on these lines: {64, 35908}, {69, 57828}, {248, 15291}, {1987, 8749}, {4846, 15351}, {9390, 52390}

X(57665) = isogonal conjugate of X(402)
X(57665) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 402}, {30, 2629}, {2173, 39352}, {2631, 39062}, {2633, 9033}, {38240, 56829}
X(57665) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 402}, {36896, 39352}
X(57665) = X(i)-cross conjugate of X(j) for these {i, j}: {1304, 74}
X(57665) = pole of line {1304, 57665} with respect to the Jerabek hyperbola
X(57665) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(4)}}, {{A, B, C, X(1304), X(46426)}}, {{A, B, C, X(15291), X(35908)}}, {{A, B, C, X(46428), X(52493)}}
X(57665) = barycentric product X(i)*X(j) for these (i, j): {6, 57828}, {2349, 9390}, {15351, 74}
X(57665) = barycentric quotient X(i)/X(j) for these (i, j): {6, 402}, {74, 39352}, {1304, 39062}, {2159, 2629}, {9390, 14206}, {14380, 38240}, {15351, 3260}, {36131, 2633}, {57828, 76}


X(57666) = ISOGONAL CONJUGATE OF X(404)

Barycentrics    a*(a*b*(a+b)-(a^2-a*b+b^2)*c+c^3)*(-b^3+a^2*(b-c)+b*c^2-a*c*(b+c)) : :

X(57666) lies on the Jerabek hyperbola and on these lines: {1, 56885}, {3, 1724}, {5, 18191}, {6, 4186}, {9, 52561}, {12, 3271}, {44, 71}, {51, 65}, {54, 2194}, {64, 37391}, {68, 6929}, {69, 2478}, {72, 519}, {73, 1104}, {100, 55991}, {244, 20615}, {387, 57705}, {513, 24443}, {765, 3871}, {1122, 1439}, {1243, 10110}, {1408, 33849}, {1532, 43724}, {1788, 9309}, {1798, 35996}, {1837, 38955}, {1896, 8795}, {1898, 43703}, {2213, 17810}, {3454, 4187}, {3478, 12513}, {3527, 5706}, {3698, 37150}, {3909, 56983}, {3983, 17330}, {4222, 44085}, {4268, 57704}, {5016, 28599}, {5046, 18178}, {5777, 40964}, {5883, 43972}, {5943, 49745}, {6004, 10099}, {6284, 23638}, {6872, 34259}, {6925, 15740}, {14528, 44098}, {14584, 52391}, {14923, 17537}, {20962, 22300}, {24482, 56313}, {27432, 52195}, {28018, 41682}, {32911, 35998}, {34800, 37406}, {36872, 37828}

X(57666) = isogonal conjugate of X(404)
X(57666) = isotomic conjugate of X(44139)
X(57666) = trilinear pole of line {647, 1635}
X(57666) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 404}, {6, 32939}, {31, 44139}, {58, 56318}, {59, 44311}, {75, 44085}, {100, 48281}, {101, 47796}, {109, 20293}, {653, 57042}, {664, 48387}, {1474, 42705}, {1790, 56319}, {4552, 57212}, {4556, 21721}, {18026, 57103}, {39006, 46102}
X(57666) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 44139}, {3, 404}, {9, 32939}, {10, 56318}, {11, 20293}, {206, 44085}, {1015, 47796}, {6615, 44311}, {8054, 48281}, {39025, 48387}, {51574, 42705}
X(57666) = X(i)-cross conjugate of X(j) for these {i, j}: {201, 2218}, {1834, 65}, {4642, 1}, {20966, 37}
X(57666) = pole of line {10, 7069} with respect to the Feuerbach hyperbola
X(57666) = pole of line {1834, 57666} with respect to the Jerabek hyperbola
X(57666) = pole of line {1883, 39798} with respect to the Kiepert hyperbola
X(57666) = pole of line {649, 3726} with respect to the Orthic inconic
X(57666) = pole of line {404, 44085} with respect to the Stammler hyperbola
X(57666) = pole of line {404, 44139} with respect to the Wallace hyperbola
X(57666) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(44)}}, {{A, B, C, X(2), X(3175)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(7), X(2334)}}, {{A, B, C, X(8), X(56)}}, {{A, B, C, X(9), X(34)}}, {{A, B, C, X(10), X(3159)}}, {{A, B, C, X(12), X(661)}}, {{A, B, C, X(19), X(937)}}, {{A, B, C, X(20), X(37391)}}, {{A, B, C, X(21), X(1411)}}, {{A, B, C, X(24), X(6929)}}, {{A, B, C, X(25), X(210)}}, {{A, B, C, X(28), X(2161)}}, {{A, B, C, X(29), X(13724)}}, {{A, B, C, X(32), X(37516)}}, {{A, B, C, X(37), X(1724)}}, {{A, B, C, X(41), X(18344)}}, {{A, B, C, X(51), X(1896)}}, {{A, B, C, X(55), X(1118)}}, {{A, B, C, X(57), X(33576)}}, {{A, B, C, X(58), X(80)}}, {{A, B, C, X(59), X(17101)}}, {{A, B, C, X(60), X(18771)}}, {{A, B, C, X(75), X(979)}}, {{A, B, C, X(76), X(39979)}}, {{A, B, C, X(79), X(1126)}}, {{A, B, C, X(83), X(39957)}}, {{A, B, C, X(85), X(47915)}}, {{A, B, C, X(86), X(43073)}}, {{A, B, C, X(87), X(28389)}}, {{A, B, C, X(90), X(998)}}, {{A, B, C, X(100), X(24443)}}, {{A, B, C, X(105), X(3058)}}, {{A, B, C, X(106), X(5559)}}, {{A, B, C, X(184), X(43218)}}, {{A, B, C, X(208), X(14298)}}, {{A, B, C, X(213), X(27375)}}, {{A, B, C, X(225), X(18738)}}, {{A, B, C, X(244), X(3871)}}, {{A, B, C, X(256), X(1220)}}, {{A, B, C, X(257), X(20332)}}, {{A, B, C, X(269), X(4866)}}, {{A, B, C, X(286), X(50623)}}, {{A, B, C, X(291), X(42054)}}, {{A, B, C, X(314), X(43070)}}, {{A, B, C, X(318), X(650)}}, {{A, B, C, X(335), X(56011)}}, {{A, B, C, X(354), X(11510)}}, {{A, B, C, X(386), X(4268)}}, {{A, B, C, X(404), X(4642)}}, {{A, B, C, X(429), X(35996)}}, {{A, B, C, X(497), X(46677)}}, {{A, B, C, X(517), X(3417)}}, {{A, B, C, X(518), X(6004)}}, {{A, B, C, X(521), X(603)}}, {{A, B, C, X(759), X(3467)}}, {{A, B, C, X(943), X(36125)}}, {{A, B, C, X(947), X(46435)}}, {{A, B, C, X(957), X(43734)}}, {{A, B, C, X(959), X(7319)}}, {{A, B, C, X(961), X(1156)}}, {{A, B, C, X(963), X(10309)}}, {{A, B, C, X(977), X(983)}}, {{A, B, C, X(989), X(56328)}}, {{A, B, C, X(994), X(5560)}}, {{A, B, C, X(996), X(15315)}}, {{A, B, C, X(1000), X(3445)}}, {{A, B, C, X(1002), X(5556)}}, {{A, B, C, X(1036), X(30513)}}, {{A, B, C, X(1037), X(5555)}}, {{A, B, C, X(1043), X(9365)}}, {{A, B, C, X(1059), X(38269)}}, {{A, B, C, X(1089), X(3454)}}, {{A, B, C, X(1119), X(9844)}}, {{A, B, C, X(1121), X(1432)}}, {{A, B, C, X(1171), X(55027)}}, {{A, B, C, X(1193), X(55036)}}, {{A, B, C, X(1219), X(50078)}}, {{A, B, C, X(1222), X(45989)}}, {{A, B, C, X(1257), X(40400)}}, {{A, B, C, X(1333), X(50594)}}, {{A, B, C, X(1376), X(1788)}}, {{A, B, C, X(1400), X(41506)}}, {{A, B, C, X(1408), X(9432)}}, {{A, B, C, X(1413), X(53089)}}, {{A, B, C, X(1417), X(9435)}}, {{A, B, C, X(1427), X(1751)}}, {{A, B, C, X(1431), X(50621)}}, {{A, B, C, X(1463), X(48329)}}, {{A, B, C, X(1532), X(7412)}}, {{A, B, C, X(1593), X(6925)}}, {{A, B, C, X(1829), X(5016)}}, {{A, B, C, X(1836), X(1887)}}, {{A, B, C, X(1837), X(1875)}}, {{A, B, C, X(1882), X(5320)}}, {{A, B, C, X(1883), X(35998)}}, {{A, B, C, X(1898), X(14257)}}, {{A, B, C, X(1937), X(40446)}}, {{A, B, C, X(1989), X(51500)}}, {{A, B, C, X(2051), X(21363)}}, {{A, B, C, X(2099), X(37605)}}, {{A, B, C, X(2163), X(43731)}}, {{A, B, C, X(2191), X(7160)}}, {{A, B, C, X(2221), X(2994)}}, {{A, B, C, X(2299), X(41509)}}, {{A, B, C, X(2316), X(6598)}}, {{A, B, C, X(2350), X(13576)}}, {{A, B, C, X(2842), X(8674)}}, {{A, B, C, X(3087), X(5706)}}, {{A, B, C, X(3309), X(9026)}}, {{A, B, C, X(3345), X(38308)}}, {{A, B, C, X(3420), X(38273)}}, {{A, B, C, X(3423), X(43740)}}, {{A, B, C, X(3433), X(42019)}}, {{A, B, C, X(3435), X(38008)}}, {{A, B, C, X(3449), X(11604)}}, {{A, B, C, X(3450), X(34442)}}, {{A, B, C, X(3476), X(12513)}}, {{A, B, C, X(3500), X(3669)}}, {{A, B, C, X(3551), X(34860)}}, {{A, B, C, X(3613), X(41013)}}, {{A, B, C, X(3666), X(56046)}}, {{A, B, C, X(3714), X(5019)}}, {{A, B, C, X(3754), X(4256)}}, {{A, B, C, X(3885), X(32577)}}, {{A, B, C, X(3900), X(9439)}}, {{A, B, C, X(4185), X(6872)}}, {{A, B, C, X(4187), X(4222)}}, {{A, B, C, X(4194), X(37366)}}, {{A, B, C, X(4674), X(39984)}}, {{A, B, C, X(5119), X(32636)}}, {{A, B, C, X(5557), X(41434)}}, {{A, B, C, X(5558), X(41439)}}, {{A, B, C, X(5883), X(33771)}}, {{A, B, C, X(5919), X(41426)}}, {{A, B, C, X(6625), X(39971)}}, {{A, B, C, X(6838), X(37194)}}, {{A, B, C, X(6921), X(17516)}}, {{A, B, C, X(6936), X(7497)}}, {{A, B, C, X(6992), X(37387)}}, {{A, B, C, X(7320), X(41436)}}, {{A, B, C, X(7414), X(37406)}}, {{A, B, C, X(8601), X(40770)}}, {{A, B, C, X(8715), X(24046)}}, {{A, B, C, X(9025), X(9433)}}, {{A, B, C, X(9328), X(48074)}}, {{A, B, C, X(11011), X(37618)}}, {{A, B, C, X(11109), X(51662)}}, {{A, B, C, X(14004), X(28238)}}, {{A, B, C, X(14942), X(28364)}}, {{A, B, C, X(16005), X(28193)}}, {{A, B, C, X(16606), X(34265)}}, {{A, B, C, X(17555), X(28077)}}, {{A, B, C, X(17758), X(47947)}}, {{A, B, C, X(17810), X(44098)}}, {{A, B, C, X(19366), X(42385)}}, {{A, B, C, X(21860), X(37732)}}, {{A, B, C, X(25875), X(28076)}}, {{A, B, C, X(30598), X(55093)}}, {{A, B, C, X(32022), X(39981)}}, {{A, B, C, X(32911), X(40013)}}, {{A, B, C, X(34466), X(45108)}}, {{A, B, C, X(34489), X(37080)}}, {{A, B, C, X(34699), X(56049)}}, {{A, B, C, X(34893), X(56137)}}, {{A, B, C, X(36123), X(45131)}}, {{A, B, C, X(37117), X(37290)}}, {{A, B, C, X(37828), X(43946)}}, {{A, B, C, X(38462), X(56885)}}, {{A, B, C, X(39702), X(56150)}}, {{A, B, C, X(39949), X(42285)}}, {{A, B, C, X(39956), X(43533)}}, {{A, B, C, X(39966), X(56161)}}, {{A, B, C, X(39982), X(56174)}}, {{A, B, C, X(40408), X(53109)}}, {{A, B, C, X(40432), X(54120)}}, {{A, B, C, X(40944), X(42448)}}, {{A, B, C, X(44720), X(51656)}}, {{A, B, C, X(48897), X(52382)}}, {{A, B, C, X(50122), X(55919)}}, {{A, B, C, X(51502), X(52187)}}, {{A, B, C, X(56587), X(57403)}}
X(57666) = barycentric product X(i)*X(j) for these (i, j): {6, 57830}, {513, 56248}, {40518, 44426}, {44040, 57}
X(57666) = barycentric quotient X(i)/X(j) for these (i, j): {1, 32939}, {2, 44139}, {6, 404}, {32, 44085}, {37, 56318}, {72, 42705}, {513, 47796}, {649, 48281}, {650, 20293}, {1824, 56319}, {1946, 57042}, {2170, 44311}, {3063, 48387}, {4705, 21721}, {40518, 6516}, {44040, 312}, {56248, 668}, {57830, 76}
X(57666) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11113, 50594, 3057}


X(57667) = ISOGONAL CONJUGATE OF X(406)

Barycentrics    a^2*(a^2-b^2-c^2)*((a-b)*(a+b)^2+(a^2+2*a*b-b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2+2*b*c-c^2)) : :

X(57667) lies on these lines: {1, 43703}, {3, 18604}, {4, 81}, {6, 1437}, {54, 36754}, {58, 57659}, {60, 57391}, {64, 36746}, {65, 222}, {66, 5820}, {69, 57832}, {71, 255}, {72, 394}, {73, 7125}, {181, 7335}, {184, 57706}, {940, 20029}, {1071, 7986}, {1245, 1468}, {1433, 1903}, {3426, 51340}, {3527, 36750}, {3532, 37501}, {4252, 34435}, {4265, 34436}, {5554, 24537}, {8251, 51490}, {14528, 36745}, {19471, 28787}, {33849, 57705}, {34207, 36740}, {36741, 43725}, {37509, 43908}, {46882, 57702}

X(57667) = isogonal conjugate of X(406)
X(57667) = trilinear pole of line {647, 23224}
X(57667) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 406}, {4, 12514}, {8, 1452}, {19, 5739}, {75, 44086}, {92, 36744}, {281, 45126}, {1474, 42707}, {1826, 27174}
X(57667) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 406}, {6, 5739}, {206, 44086}, {22391, 36744}, {36033, 12514}, {51574, 42707}
X(57667) = pole of line {406, 5739} with respect to the Stammler hyperbola
X(57667) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(21147)}}, {{A, B, C, X(2), X(37034)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(21), X(37241)}}, {{A, B, C, X(48), X(1069)}}, {{A, B, C, X(56), X(1060)}}, {{A, B, C, X(58), X(77)}}, {{A, B, C, X(60), X(1264)}}, {{A, B, C, X(78), X(1126)}}, {{A, B, C, X(81), X(222)}}, {{A, B, C, X(181), X(2351)}}, {{A, B, C, X(184), X(44105)}}, {{A, B, C, X(213), X(40319)}}, {{A, B, C, X(216), X(36754)}}, {{A, B, C, X(271), X(284)}}, {{A, B, C, X(474), X(33849)}}, {{A, B, C, X(521), X(1036)}}, {{A, B, C, X(577), X(36742)}}, {{A, B, C, X(603), X(1406)}}, {{A, B, C, X(859), X(24537)}}, {{A, B, C, X(967), X(1214)}}, {{A, B, C, X(1012), X(37404)}}, {{A, B, C, X(1169), X(51502)}}, {{A, B, C, X(1254), X(52388)}}, {{A, B, C, X(1257), X(42019)}}, {{A, B, C, X(1413), X(7053)}}, {{A, B, C, X(1807), X(2334)}}, {{A, B, C, X(3751), X(22131)}}, {{A, B, C, X(4025), X(15315)}}, {{A, B, C, X(4265), X(22120)}}, {{A, B, C, X(5554), X(22350)}}, {{A, B, C, X(5707), X(22341)}}, {{A, B, C, X(7016), X(39167)}}, {{A, B, C, X(7177), X(40188)}}, {{A, B, C, X(9372), X(36058)}}, {{A, B, C, X(13478), X(46000)}}, {{A, B, C, X(14376), X(39957)}}, {{A, B, C, X(15905), X(36746)}}, {{A, B, C, X(20563), X(51503)}}, {{A, B, C, X(20842), X(24983)}}, {{A, B, C, X(23115), X(36740)}}, {{A, B, C, X(24300), X(34442)}}, {{A, B, C, X(28348), X(37157)}}, {{A, B, C, X(34386), X(40408)}}, {{A, B, C, X(36057), X(56343)}}, {{A, B, C, X(36748), X(36750)}}, {{A, B, C, X(36751), X(37509)}}, {{A, B, C, X(37501), X(38292)}}, {{A, B, C, X(40407), X(47849)}}
X(57667) = barycentric product X(i)*X(j) for these (i, j): {6, 57832}, {46010, 69}, {56225, 77}
X(57667) = barycentric quotient X(i)/X(j) for these (i, j): {3, 5739}, {6, 406}, {32, 44086}, {48, 12514}, {72, 42707}, {184, 36744}, {603, 45126}, {604, 1452}, {1437, 27174}, {46010, 4}, {56225, 318}, {57832, 76}


X(57668) = ISOGONAL CONJUGATE OF X(407)

Barycentrics    a^2*(a+b)*(a+c)*((a-b)^2-(a+b)*c-2*c^2)*(a^2-b^2-c^2)*(a^2-(2*b-c)*(b+c)-a*(b+2*c)) : :

X(57668) lies on the Jerabek hyperbola and on these lines: {4, 25446}, {6, 7054}, {21, 65}, {63, 43708}, {69, 57833}, {71, 2327}, {72, 1792}, {73, 283}, {110, 37836}, {333, 5086}, {411, 1098}, {1245, 1780}, {1439, 1444}, {1789, 4652}, {1793, 52391}, {2651, 9399}, {3869, 56946}, {4558, 22361}, {15328, 56321}, {17139, 40412}, {27083, 34435}, {38955, 51978}

X(57668) = inverse of X(37836) in Stammler hyperbola
X(57668) = isogonal conjugate of X(407)
X(57668) = trilinear pole of line {647, 23090}
X(57668) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 407}, {4, 2650}, {10, 40985}, {19, 17056}, {25, 18698}, {28, 21674}, {34, 21677}, {65, 40950}, {225, 2646}, {278, 21811}, {1426, 6737}, {1474, 42708}, {1783, 23755}, {1824, 3664}, {1880, 5745}, {6591, 22003}, {21748, 40149}, {24006, 53324}
X(57668) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 407}, {6, 17056}, {6505, 18698}, {11517, 21677}, {36033, 2650}, {39006, 23755}, {40591, 21674}, {40602, 40950}, {51574, 42708}
X(57668) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 40442}, {652, 4558}, {23146, 4563}, {40442, 40430}
X(57668) = pole of line {40430, 45230} with respect to the Feuerbach hyperbola
X(57668) = pole of line {407, 2646} with respect to the Stammler hyperbola
X(57668) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(20846)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(21), X(283)}}, {{A, B, C, X(58), X(4288)}}, {{A, B, C, X(60), X(286)}}, {{A, B, C, X(63), X(24624)}}, {{A, B, C, X(90), X(7092)}}, {{A, B, C, X(255), X(51290)}}, {{A, B, C, X(652), X(17975)}}, {{A, B, C, X(1171), X(1790)}}, {{A, B, C, X(1791), X(1794)}}, {{A, B, C, X(1812), X(14534)}}, {{A, B, C, X(2647), X(9398)}}, {{A, B, C, X(3560), X(6875)}}, {{A, B, C, X(3682), X(25446)}}, {{A, B, C, X(3869), X(5086)}}, {{A, B, C, X(3916), X(41542)}}, {{A, B, C, X(4640), X(39167)}}, {{A, B, C, X(6857), X(37284)}}, {{A, B, C, X(6868), X(52270)}}, {{A, B, C, X(6876), X(6985)}}, {{A, B, C, X(15379), X(44174)}}, {{A, B, C, X(17097), X(40442)}}, {{A, B, C, X(17139), X(51978)}}, {{A, B, C, X(22341), X(46623)}}, {{A, B, C, X(27653), X(35981)}}, {{A, B, C, X(36100), X(40414)}}, {{A, B, C, X(37741), X(40457)}}
X(57668) = barycentric product X(i)*X(j) for these (i, j): {6, 57833}, {333, 40442}, {4558, 56321}, {17097, 1812}, {40430, 63}
X(57668) = barycentric quotient X(i)/X(j) for these (i, j): {3, 17056}, {6, 407}, {48, 2650}, {63, 18698}, {71, 21674}, {72, 42708}, {212, 21811}, {219, 21677}, {283, 5745}, {284, 40950}, {1331, 22003}, {1333, 40985}, {1459, 23755}, {1790, 3664}, {2193, 2646}, {2327, 6737}, {4558, 17136}, {17097, 40149}, {32661, 53324}, {40430, 92}, {40442, 226}, {56321, 14618}, {57833, 76}
X(57668) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 17097, 40430}


X(57669) = ISOGONAL CONJUGATE OF X(408)

Barycentrics    -(b*(a+b)*c*(a+c)*(2*a*(a-b)^2*b*(a+b)+(a^2-b^2)^2*c+(a-b)^2*(a+b)*c^2-(a^2+b^2)*c^3-(a+b)*c^4)*(a^4-(b^2-c^2)^2)^2*(b*(b-c)*c*(b+c)^2-a^4*(b+2*c)-a^3*(b^2-2*c^2)+a^2*(b+c)*(b^2+2*c^2)+a*(b^4+b^2*c^2-2*c^4))) : :

X(57669) lies on the Jerabek hyperbola and on these lines: {6, 36421}, {29, 73}, {65, 1896}, {69, 57834}, {71, 2322}, {286, 1439}, {412, 57672}, {2659, 57670}, {15352, 42385}

X(57669) = isogonal conjugate of X(408)
X(57669) = trilinear pole of line {647, 17926}
X(57669) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 408}, {3, 2658}, {48, 18592}, {73, 40946}, {577, 53036}, {2654, 22341}
X(57669) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 408}, {1249, 18592}, {36103, 2658}
X(57669) = X(i)-cross conjugate of X(j) for these {i, j}: {650, 15352}, {21645, 112}, {57166, 648}
X(57669) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(29), X(286)}}, {{A, B, C, X(650), X(42385)}}, {{A, B, C, X(1013), X(37235)}}, {{A, B, C, X(7524), X(7531)}}, {{A, B, C, X(34234), X(40395)}}, {{A, B, C, X(40414), X(40444)}}
X(57669) = barycentric product X(i)*X(j) for these (i, j): {6, 57834}, {53044, 92}
X(57669) = barycentric quotient X(i)/X(j) for these (i, j): {4, 18592}, {6, 408}, {19, 2658}, {158, 53036}, {1172, 40946}, {1896, 6708}, {6529, 53317}, {8748, 2654}, {53044, 63}, {57834, 76}


X(57670) = ISOGONAL CONJUGATE OF X(410)

Barycentrics    a^2*(b+c)*(a^2-b^2-c^2)*(a^2*b^2*(a^2-b^2)^3+a*b*(a^2-b^2)^2*(a^3-a^2*b+a*b^2-3*b^3)*c+(a^2-b^2)^2*(a^4+a^3*b+a^2*b^2+a*b^3-b^4)*c^2+a*(a^2-b^2)^2*(2*a^2-a*b+5*b^2)*c^3-(a^6+a^5*b-2*a^3*b^3+2*a^2*b^4+a*b^5-3*b^6)*c^4-a*(4*a^4+a^3*b-a^2*b^2+a*b^3+b^4)*c^5-(a^4+a^3*b+a^2*b^2+a*b^3+3*b^4)*c^6+a*(2*a-b)*(a+b)*c^7+(a^2+a*b+b^2)*c^8)*(a^2*(a-b)^2*b^2*(a+b)^4+a*(a-b)^2*b*(a+b)^3*(a^2+b^2)*c+(a^2-b^2)^2*(a^4-a^3*b+a^2*b^2-a*b^3+b^4)*c^2-a*(a-b)^2*b*(a+b)^3*c^3-(a+b)^2*(3*a^4-5*a^3*b+9*a^2*b^2-5*a*b^3+3*b^4)*c^4-a*b*(a+b)*(a^2+b^2)*c^5+(3*a^4+5*a^3*b+3*a^2*b^2+5*a*b^3+3*b^4)*c^6+a*b*(a+b)*c^7-(a^2+3*a*b+b^2)*c^8) : :

X(57670) lies on the Jerabek hyperbola and on these lines: {4, 1047}, {69, 57836}, {1425, 57674}, {2658, 57676}, {2659, 57669}, {2660, 2662}

X(57670) = isogonal conjugate of X(410)
X(57670) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 410}, {29, 2662}
X(57670) = X(i)-cross conjugate of X(j) for these {i, j}: {2655, 2660}
X(57670) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1047)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(29), X(2660)}}, {{A, B, C, X(822), X(2658)}}, {{A, B, C, X(1425), X(7105)}}, {{A, B, C, X(2655), X(2662)}}
X(57670) = barycentric product X(i)*X(j) for these (i, j): {6, 57836}
X(57670) = barycentric quotient X(i)/X(j) for these (i, j): {6, 410}, {1409, 2662}, {57836, 76}


X(57671) = ISOGONAL CONJUGATE OF X(411)

Barycentrics    a*(a^5*(b-c)-a^4*b*(b+c)+2*a^2*b^2*(b-c)*(b+c)-b*(b-c)^3*(b+c)^2+a*(b-c)*(b+c)^2*(b^2+c^2)+2*a^3*(-b^3+c^3))*(a^5*(b-c)+a^4*c*(b+c)+2*a^2*(b-c)*c^2*(b+c)-(b-c)^3*c*(b+c)^2+a*(b-c)*(b+c)^2*(b^2+c^2)+2*a^3*(-b^3+c^3)) : :

X(57671) lies on the Jerabek hyperbola and on these lines: {5, 34800}, {6, 37194}, {20, 34259}, {54, 7414}, {64, 4185}, {65, 185}, {69, 6836}, {71, 2182}, {72, 515}, {73, 820}, {74, 37117}, {377, 15740}, {389, 1243}, {411, 1098}, {412, 37142}, {580, 34462}, {851, 57672}, {1175, 4219}, {1192, 37236}, {1204, 37238}, {1439, 3664}, {1593, 57659}, {1896, 57677}, {3521, 37230}, {4846, 6917}, {6285, 54010}, {6831, 43724}, {6840, 18123}, {7412, 44087}, {11381, 37226}, {12688, 43703}, {15443, 52391}

X(57671) = isogonal conjugate of X(411)
X(57671) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 411}, {2, 1630}, {4, 3561}, {6, 54107}, {9, 34035}, {60, 56327}, {75, 44087}
X(57671) = X(i)-vertex conjugate of X(j) for these {i, j}: {79, 20419}
X(57671) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 411}, {9, 54107}, {206, 44087}, {478, 34035}, {32664, 1630}, {36033, 3561}
X(57671) = X(i)-cross conjugate of X(j) for these {i, j}: {407, 65}, {1254, 1}, {2638, 650}
X(57671) = pole of line {225, 774} with respect to the Feuerbach hyperbola
X(57671) = pole of line {407, 57671} with respect to the Jerabek hyperbola
X(57671) = pole of line {411, 44087} with respect to the Stammler hyperbola
X(57671) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1098)}}, {{A, B, C, X(2), X(37194)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(5), X(7414)}}, {{A, B, C, X(7), X(963)}}, {{A, B, C, X(8), X(939)}}, {{A, B, C, X(19), X(3345)}}, {{A, B, C, X(20), X(4185)}}, {{A, B, C, X(21), X(37239)}}, {{A, B, C, X(25), X(6836)}}, {{A, B, C, X(27), X(37409)}}, {{A, B, C, X(29), X(1937)}}, {{A, B, C, X(30), X(37117)}}, {{A, B, C, X(34), X(84)}}, {{A, B, C, X(37), X(54972)}}, {{A, B, C, X(46), X(1155)}}, {{A, B, C, X(56), X(3427)}}, {{A, B, C, X(79), X(103)}}, {{A, B, C, X(80), X(1167)}}, {{A, B, C, X(102), X(31806)}}, {{A, B, C, X(104), X(20615)}}, {{A, B, C, X(158), X(650)}}, {{A, B, C, X(185), X(296)}}, {{A, B, C, X(377), X(1593)}}, {{A, B, C, X(378), X(6917)}}, {{A, B, C, X(407), X(411)}}, {{A, B, C, X(412), X(851)}}, {{A, B, C, X(442), X(4219)}}, {{A, B, C, X(521), X(19614)}}, {{A, B, C, X(572), X(20617)}}, {{A, B, C, X(580), X(2245)}}, {{A, B, C, X(581), X(2278)}}, {{A, B, C, X(775), X(2648)}}, {{A, B, C, X(921), X(36599)}}, {{A, B, C, X(937), X(3062)}}, {{A, B, C, X(945), X(34430)}}, {{A, B, C, X(947), X(13476)}}, {{A, B, C, X(951), X(6598)}}, {{A, B, C, X(1034), X(30457)}}, {{A, B, C, X(1037), X(43740)}}, {{A, B, C, X(1105), X(2652)}}, {{A, B, C, X(1118), X(1436)}}, {{A, B, C, X(1126), X(15909)}}, {{A, B, C, X(1295), X(11827)}}, {{A, B, C, X(1427), X(13478)}}, {{A, B, C, X(1597), X(6897)}}, {{A, B, C, X(1857), X(7037)}}, {{A, B, C, X(2190), X(3466)}}, {{A, B, C, X(2192), X(7149)}}, {{A, B, C, X(2262), X(19349)}}, {{A, B, C, X(2779), X(8674)}}, {{A, B, C, X(3057), X(22766)}}, {{A, B, C, X(3149), X(37414)}}, {{A, B, C, X(3215), X(15313)}}, {{A, B, C, X(3309), X(8679)}}, {{A, B, C, X(3342), X(14298)}}, {{A, B, C, X(3429), X(43739)}}, {{A, B, C, X(3469), X(36119)}}, {{A, B, C, X(3520), X(37230)}}, {{A, B, C, X(3577), X(46187)}}, {{A, B, C, X(4186), X(6890)}}, {{A, B, C, X(4190), X(37391)}}, {{A, B, C, X(4222), X(37374)}}, {{A, B, C, X(6831), X(7412)}}, {{A, B, C, X(6840), X(20832)}}, {{A, B, C, X(6895), X(20837)}}, {{A, B, C, X(6909), X(37226)}}, {{A, B, C, X(6966), X(17516)}}, {{A, B, C, X(7105), X(23707)}}, {{A, B, C, X(7118), X(18344)}}, {{A, B, C, X(7513), X(37225)}}, {{A, B, C, X(7580), X(14018)}}, {{A, B, C, X(9309), X(10429)}}, {{A, B, C, X(10309), X(14872)}}, {{A, B, C, X(12688), X(14257)}}, {{A, B, C, X(14547), X(34429)}}, {{A, B, C, X(15310), X(29324)}}, {{A, B, C, X(20419), X(57395)}}, {{A, B, C, X(23604), X(39748)}}, {{A, B, C, X(27622), X(37420)}}, {{A, B, C, X(37195), X(37235)}}, {{A, B, C, X(37305), X(37468)}}, {{A, B, C, X(39798), X(41501)}}, {{A, B, C, X(43732), X(44760)}}
X(57671) = barycentric product X(i)*X(j) for these (i, j): {6, 57837}
X(57671) = barycentric quotient X(i)/X(j) for these (i, j): {1, 54107}, {6, 411}, {31, 1630}, {32, 44087}, {48, 3561}, {56, 34035}, {2171, 56327}, {57837, 76}
X(57671) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {185, 37239, 65}


X(57672) = ISOGONAL CONJUGATE OF X(412)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^4*c*(-b+c)+a^5*(b+c)+2*a^2*(b-c)*c^2*(b+c)+(b-c)^2*c*(b+c)^3+a*(b-c)^2*(b+c)*(b^2+c^2)-2*a^3*(b^3+c^3))*(a^4*b*(b-c)+a^5*(b+c)+b*(b-c)^2*(b+c)^3+2*a^2*b^2*(-b^2+c^2)+a*(b-c)^2*(b+c)*(b^2+c^2)-2*a^3*(b^3+c^3)) : :

X(57672) lies on the Jerabek hyperbola and on these lines: {4, 1715}, {6, 37195}, {40, 38955}, {54, 7421}, {55, 57502}, {64, 13738}, {65, 774}, {69, 57838}, {73, 185}, {74, 37115}, {283, 57648}, {411, 37142}, {412, 57669}, {580, 57392}, {851, 57671}, {1439, 17102}, {1903, 2183}, {6253, 15232}, {15740, 37180}

X(57672) = isogonal conjugate of X(412)
X(57672) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 412}, {2, 38860}, {4, 3562}, {651, 57166}
X(57672) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 412}, {32664, 38860}, {36033, 3562}, {38991, 57166}
X(57672) = X(i)-cross conjugate of X(j) for these {i, j}: {408, 73}, {2310, 652}, {7138, 1}
X(57672) = pole of line {408, 57672} with respect to the Jerabek hyperbola
X(57672) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2654)}}, {{A, B, C, X(2), X(37195)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(5), X(7421)}}, {{A, B, C, X(9), X(19614)}}, {{A, B, C, X(19), X(603)}}, {{A, B, C, X(20), X(13738)}}, {{A, B, C, X(21), X(296)}}, {{A, B, C, X(30), X(37115)}}, {{A, B, C, X(40), X(2183)}}, {{A, B, C, X(48), X(84)}}, {{A, B, C, X(55), X(1433)}}, {{A, B, C, X(90), X(255)}}, {{A, B, C, X(103), X(1794)}}, {{A, B, C, X(184), X(2357)}}, {{A, B, C, X(185), X(283)}}, {{A, B, C, X(212), X(7008)}}, {{A, B, C, X(219), X(963)}}, {{A, B, C, X(408), X(412)}}, {{A, B, C, X(411), X(851)}}, {{A, B, C, X(656), X(7066)}}, {{A, B, C, X(821), X(2656)}}, {{A, B, C, X(947), X(52431)}}, {{A, B, C, X(1105), X(2660)}}, {{A, B, C, X(1156), X(7016)}}, {{A, B, C, X(1459), X(2218)}}, {{A, B, C, X(1593), X(37180)}}, {{A, B, C, X(1715), X(22341)}}, {{A, B, C, X(1745), X(2635)}}, {{A, B, C, X(1751), X(40152)}}, {{A, B, C, X(1795), X(40944)}}, {{A, B, C, X(1820), X(42464)}}, {{A, B, C, X(2051), X(37755)}}, {{A, B, C, X(2252), X(53815)}}, {{A, B, C, X(3467), X(35200)}}, {{A, B, C, X(6909), X(13724)}}, {{A, B, C, X(7580), X(37264)}}, {{A, B, C, X(19256), X(37022)}}, {{A, B, C, X(27653), X(37409)}}, {{A, B, C, X(28381), X(37399)}}, {{A, B, C, X(36057), X(57417)}}
X(57672) = barycentric product X(i)*X(j) for these (i, j): {6, 57838}
X(57672) = barycentric quotient X(i)/X(j) for these (i, j): {6, 412}, {31, 38860}, {48, 3562}, {663, 57166}, {57838, 76}


X(57673) = ISOGONAL CONJUGATE OF X(413)

Barycentrics    a*(a+b-c)^3*(a-b+c)^3*(b+c)*((a-b)^2*(a^2+a*b+b^2)+(a-b)^2*(a+b)*c+a*b*c^2+(a+b)*c^3+c^4)*(a^4+b^4+a^3*(b-c)-a^2*b*c+b^3*c+b*c^3+c^4+a*(b-c)*(b+c)^2) : :

X(57673) lies on these lines: {69, 7197}, {72, 10376}, {1254, 57675}, {1425, 9399}

X(57673) = isogonal conjugate of X(413)
X(57673) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(7197), X(10376)}}
X(57673) = barycentric product X(i)*X(j) for these (i, j): {6, 57839}
X(57673) = barycentric quotient X(i)/X(j) for these (i, j): {6, 413}, {57839, 76}


X(57674) = ISOGONAL CONJUGATE OF X(414)

Barycentrics    a^2*(a+b-c)^3*(a-b+c)^3*(b+c)*(a^2-b^2-c^2)*(-(a*b*(b-c)^3*c*(b+c)^4)+b^2*(b-c)^2*c^2*(b+c)^4+a^8*(b^2+b*c+c^2)+a^7*(b-c)*(2*b^2+3*b*c+2*c^2)-a^5*(b-c)*(b+c)^2*(4*b^2-b*c+4*c^2)-a^4*(b+c)^2*(b^4-5*b^3*c+5*b^2*c^2-5*b*c^3+c^4)+a^2*(b^2-c^2)^2*(b^4-b^3*c-b^2*c^2-b*c^3+c^4)-a^6*(b^4+3*b^3*c+3*b^2*c^2+3*b*c^3+c^4)+a^3*(b-c)*(b+c)^2*(2*b^4+b^3*c+2*b^2*c^2+b*c^3+2*c^4))*(a*b*(b-c)^3*c*(b+c)^4+b^2*(b-c)^2*c^2*(b+c)^4+a^8*(b^2+b*c+c^2)-a^7*(b-c)*(2*b^2+3*b*c+2*c^2)+a^5*(b-c)*(b+c)^2*(4*b^2-b*c+4*c^2)-a^4*(b+c)^2*(b^4-5*b^3*c+5*b^2*c^2-5*b*c^3+c^4)+a^2*(b^2-c^2)^2*(b^4-b^3*c-b^2*c^2-b*c^3+c^4)-a^6*(b^4+3*b^3*c+3*b^2*c^2+3*b*c^3+c^4)+a^3*(-2*b^7-3*b^6*c-b^5*c^2+b^2*c^5+3*b*c^6+2*c^7)) : :

X(57674) lies on the Jerabek hyperbola and on these lines: {69, 57840}, {1425, 57670}, {7138, 57676}

X(57674) = isogonal conjugate of X(414)
X(57674) = barycentric product X(i)*X(j) for these (i, j): {6, 57840}
X(57674) = barycentric quotient X(i)/X(j) for these (i, j): {6, 414}, {57840, 76}


X(57675) = ISOGONAL CONJUGATE OF X(415)

Barycentrics    a^2*(b+c)*(a^2-b^2-c^2)*(a^3+b^3+a*b*c-2*(a+b)*c^2+c^3)*(a^3+b^3-2*b^2*c+c^3+a*b*(-2*b+c)) : :

X(57675) lies on the Jerabek hyperbola and on these lines: {3, 17973}, {4, 1046}, {6, 17963}, {65, 2643}, {69, 57841}, {73, 20975}, {74, 2701}, {255, 22143}, {290, 35154}, {1254, 57673}, {1936, 2651}, {1942, 8763}, {2650, 9399}, {4558, 22361}, {7105, 35991}

X(57675) = isogonal conjugate of X(415)
X(57675) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 415}, {4, 2651}, {19, 40882}, {21, 17985}, {29, 1758}, {92, 5060}, {162, 2785}, {811, 5075}, {1172, 17950}, {1896, 17975}, {17933, 18344}, {17942, 44426}, {17966, 31623}, {18006, 52914}, {36797, 51642}, {37142, 41499}
X(57675) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 415}, {6, 40882}, {125, 2785}, {17423, 5075}, {22391, 5060}, {36033, 2651}, {40611, 17985}
X(57675) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2648, 2652}
X(57675) = X(i)-cross conjugate of X(j) for these {i, j}: {296, 2660}
X(57675) = pole of line {415, 40882} with respect to the Stammler hyperbola
X(57675) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(4)}}, {{A, B, C, X(255), X(1046)}}, {{A, B, C, X(283), X(1425)}}, {{A, B, C, X(291), X(656)}}, {{A, B, C, X(296), X(2651)}}, {{A, B, C, X(520), X(2792)}}, {{A, B, C, X(684), X(35516)}}, {{A, B, C, X(1254), X(7105)}}, {{A, B, C, X(1936), X(2660)}}, {{A, B, C, X(2643), X(20975)}}, {{A, B, C, X(2652), X(17963)}}, {{A, B, C, X(4558), X(52610)}}
X(57675) = barycentric product X(i)*X(j) for these (i, j): {6, 57841}, {1214, 2648}, {2652, 63}, {2701, 525}, {11608, 3}, {17931, 55234}, {17947, 73}, {17963, 307}, {17973, 226}, {18013, 1813}, {35154, 647}
X(57675) = barycentric quotient X(i)/X(j) for these (i, j): {3, 40882}, {6, 415}, {48, 2651}, {73, 17950}, {184, 5060}, {647, 2785}, {1400, 17985}, {1409, 1758}, {1813, 17933}, {2648, 31623}, {2652, 92}, {2701, 648}, {3049, 5075}, {11608, 264}, {17931, 55233}, {17947, 44130}, {17963, 29}, {17973, 333}, {18000, 3064}, {18013, 46110}, {32660, 17942}, {35154, 6331}, {42669, 41499}, {55234, 18006}, {57841, 76}


X(57676) = ISOGONAL CONJUGATE OF X(416)

Barycentrics    a*(b+c)*(a^2*(a-b)^2*b^2*(a+b)^3+a*b*(a^2-b^2)^2*(a^2-a*b+b^2)*c-(a-b)^2*(a+b)^3*(a^2+b^2)*c^2+(a^2-b^2)^2*(a^2-a*b+b^2)*c^3+(a+b)*(2*a^4-a^2*b^2+2*b^4)*c^4-(2*a^4+a^3*b-a^2*b^2+a*b^3+2*b^4)*c^5-(a+b)*(a^2+b^2)*c^6+(a^2+a*b+b^2)*c^7)*(-(a^6*(b-c)^2*(b+c))-b^2*(b-c)^3*c^2*(b+c)^2+a^7*(b^2-b*c-c^2)-a^2*(b-c)^2*(b+c)*(b^2+c^2)^2-a*b*c*(b^2-c^2)^2*(b^2-b*c+c^2)+a^4*(b-c)*(2*b^4+b^2*c^2-2*c^4)+a^3*(b-c)*(b+c)*(b^4+b^3*c+2*b^2*c^2-b*c^3+c^4)+a^5*(-2*b^4+b^3*c-b^2*c^2+b*c^3+2*c^4)) : :

X(57676) lies on the Jerabek hyperbola and on these lines: {3, 1047}, {6, 53317}, {65, 34980}, {69, 57842}, {72, 7065}, {73, 2660}, {243, 2659}, {1363, 1439}, {1942, 8758}, {1987, 14571}, {2658, 57670}, {7138, 57674}, {15352, 42385}

X(57676) = isogonal conjugate of X(416)
X(57676) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 416}, {3, 2659}, {21, 2655}, {284, 44354}
X(57676) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 416}, {36103, 2659}, {40590, 44354}, {40611, 2655}
X(57676) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2656, 2660}
X(57676) = X(i)-cross conjugate of X(j) for these {i, j}: {1937, 2652}
X(57676) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(158), X(1047)}}, {{A, B, C, X(243), X(2652)}}, {{A, B, C, X(851), X(43764)}}, {{A, B, C, X(1425), X(1896)}}, {{A, B, C, X(1937), X(2659)}}, {{A, B, C, X(6130), X(14571)}}, {{A, B, C, X(7016), X(7138)}}, {{A, B, C, X(7065), X(34980)}}, {{A, B, C, X(15352), X(52607)}}
X(57676) = barycentric product X(i)*X(j) for these (i, j): {6, 57842}, {226, 2656}, {2660, 92}
X(57676) = barycentric quotient X(i)/X(j) for these (i, j): {6, 416}, {19, 2659}, {65, 44354}, {1400, 2655}, {2656, 333}, {2660, 63}, {57842, 76}


X(57677) = ISOGONAL CONJUGATE OF X(417)

Barycentrics    b^2*c^2*((a^2-b^2)^2*(a^2+b^2)-2*(a^2-b^2)^2*c^2+(a^2+b^2)*c^4)*(a^4-(b^2-c^2)^2)^3*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+4*b^2*c^2-c^4)) : :

X(57677) lies on the Jerabek hyperbola and on these lines: {3, 1093}, {6, 14249}, {54, 52661}, {64, 2052}, {69, 57775}, {73, 821}, {74, 13450}, {235, 1942}, {450, 57648}, {1896, 57671}, {3527, 47392}, {6524, 15740}, {6530, 57686}, {8884, 43918}, {14380, 23290}, {14528, 37070}, {14542, 52448}, {16835, 44732}, {22466, 34170}, {36296, 44702}, {36297, 44703}, {36876, 45011}, {52559, 52581}

X(57677) = isogonal conjugate of X(417)
X(57677) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 417}, {3, 820}, {48, 6509}, {185, 255}, {577, 6508}, {774, 1092}, {800, 6507}, {4100, 13567}, {17858, 23606}, {41005, 52430}
X(57677) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 417}, {1249, 6509}, {6523, 185}, {36103, 820}
X(57677) = X(i)-cross conjugate of X(j) for these {i, j}: {4, 1105}, {2501, 15352}, {57120, 107}, {57166, 54240}
X(57677) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(235), X(450)}}, {{A, B, C, X(275), X(51031)}}, {{A, B, C, X(1896), X(8764)}}, {{A, B, C, X(2052), X(14249)}}, {{A, B, C, X(3091), X(37070)}}, {{A, B, C, X(8884), X(32230)}}, {{A, B, C, X(8887), X(10110)}}, {{A, B, C, X(13450), X(15424)}}, {{A, B, C, X(14860), X(46104)}}, {{A, B, C, X(40402), X(45300)}}
X(57677) = barycentric product X(i)*X(j) for these (i, j): {6, 57843}, {19, 57972}, {393, 57775}, {821, 92}, {1093, 801}, {1105, 2052}, {6521, 775}, {40830, 6524}, {57955, 6520}
X(57677) = barycentric quotient X(i)/X(j) for these (i, j): {4, 6509}, {6, 417}, {19, 820}, {158, 6508}, {393, 185}, {775, 6507}, {801, 3964}, {821, 63}, {1093, 13567}, {1105, 394}, {2052, 41005}, {6520, 774}, {6521, 17858}, {6524, 800}, {6529, 1624}, {8794, 19166}, {8884, 19180}, {14249, 45200}, {36434, 44079}, {40830, 4176}, {41890, 1092}, {57775, 3926}, {57843, 76}, {57955, 1102}, {57972, 304}


X(57678) = ISOGONAL CONJUGATE OF X(420)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^4+a^2*b^2+b^4-(a^2+b^2)*c^2-c^4)*(a^4-b^4-b^2*c^2+c^4+a^2*(-b^2+c^2)) : :

X(57678) lies on the Jerabek hyperbola and on these lines: {4, 5984}, {6, 3506}, {66, 17949}, {69, 22138}, {74, 9301}, {290, 39093}, {385, 21536}, {695, 51322}, {1176, 20975}, {3511, 9513}, {4558, 22078}, {5201, 34437}, {30496, 43183}, {51869, 57742}

X(57678) = isogonal conjugate of X(420)
X(57678) = trilinear pole of line {647, 22352}
X(57678) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 420}, {4, 17799}, {19, 7779}, {75, 44090}, {92, 2076}, {162, 9479}, {427, 34054}, {811, 5113}, {17442, 40850}, {20883, 46228}
X(57678) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 420}, {6, 7779}, {125, 9479}, {206, 44090}, {17423, 5113}, {22391, 2076}, {36033, 17799}
X(57678) = X(i)-Ceva conjugate of X(j) for these {i, j}: {11606, 46286}
X(57678) = pole of line {21536, 46286} with respect to the Kiepert hyperbola
X(57678) = pole of line {420, 7779} with respect to the Stammler hyperbola
X(57678) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(287), X(3225)}}, {{A, B, C, X(293), X(17972)}}, {{A, B, C, X(339), X(20975)}}, {{A, B, C, X(385), X(19576)}}, {{A, B, C, X(394), X(7766)}}, {{A, B, C, X(525), X(14970)}}, {{A, B, C, X(684), X(51862)}}, {{A, B, C, X(2998), X(14376)}}, {{A, B, C, X(3228), X(34897)}}, {{A, B, C, X(3284), X(9301)}}, {{A, B, C, X(3289), X(39093)}}, {{A, B, C, X(3926), X(38262)}}, {{A, B, C, X(5201), X(22121)}}, {{A, B, C, X(5984), X(17974)}}, {{A, B, C, X(6394), X(12188)}}, {{A, B, C, X(6660), X(21536)}}, {{A, B, C, X(7100), X(40763)}}, {{A, B, C, X(9468), X(14908)}}, {{A, B, C, X(10547), X(22138)}}, {{A, B, C, X(14919), X(38279)}}, {{A, B, C, X(20088), X(28724)}}, {{A, B, C, X(23150), X(51902)}}, {{A, B, C, X(30786), X(41273)}}
X(57678) = barycentric product X(i)*X(j) for these (i, j): {6, 57845}, {1176, 17949}, {11606, 3}, {17957, 34055}, {46286, 69}, {46970, 525}, {51248, 8858}
X(57678) = barycentric quotient X(i)/X(j) for these (i, j): {3, 7779}, {6, 420}, {32, 44090}, {48, 17799}, {184, 2076}, {647, 9479}, {1176, 40850}, {3049, 5113}, {10547, 46228}, {11606, 264}, {17949, 1235}, {17957, 20883}, {46286, 4}, {46970, 648}, {52144, 12830}, {57845, 76}


X(57679) = ISOGONAL CONJUGATE OF X(421)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^2*b^2*(a^2-b^2)^2-(a^4+a^2*b^2+b^4)*c^4+2*(a^2+b^2)*c^6-c^8)*(a^6*c^2-b^4*(b^2-c^2)^2-a^4*(b^4+2*c^4)+a^2*(2*b^6-b^4*c^2+c^6)) : :

X(57679) lies on the Jerabek hyperbola and on these lines: {4, 14570}, {6, 23181}, {54, 4558}, {68, 20975}, {69, 57846}, {684, 15328}, {6331, 8795}, {15317, 22143}, {22085, 56071}

X(57679) = isogonal conjugate of X(421)
X(57679) = trilinear pole of line {647, 5562}
X(57679) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 421}, {19, 44375}, {158, 51458}
X(57679) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 421}, {6, 44375}, {1147, 51458}
X(57679) = pole of line {421, 44375} with respect to the Stammler hyperbola
X(57679) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(328), X(14941)}}, {{A, B, C, X(523), X(42065)}}, {{A, B, C, X(577), X(20563)}}, {{A, B, C, X(4558), X(6331)}}, {{A, B, C, X(9723), X(55549)}}, {{A, B, C, X(18024), X(23584)}}, {{A, B, C, X(44174), X(50433)}}
X(57679) = barycentric product X(i)*X(j) for these (i, j): {6, 57846}
X(57679) = barycentric quotient X(i)/X(j) for these (i, j): {3, 44375}, {6, 421}, {577, 51458}, {57846, 76}


X(57680) = ISOGONAL CONJUGATE OF X(422)

Barycentrics    a^2*(b+c)*(a^2-b^2-c^2)*(a*b*(a+b)-a*b*c-c^3)*(-b^3-a*b*c+a*c*(a+c)) : :

X(57680) lies on the Jerabek hyperbola and on these lines: {3, 17971}, {4, 2783}, {6, 3121}, {67, 45916}, {69, 18210}, {72, 20975}, {74, 2703}, {290, 3262}, {1798, 4558}, {3657, 18015}, {7193, 57736}, {17939, 43700}, {17946, 51223}, {22143, 22458}

X(57680) = isogonal conjugate of X(422)
X(57680) = trilinear pole of line {647, 22076}
X(57680) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 422}, {19, 19623}, {25, 5209}, {27, 5291}, {28, 17763}, {29, 5061}, {58, 17987}, {92, 5006}, {162, 2787}, {811, 5040}, {1474, 17790}, {7649, 17944}, {8747, 17977}
X(57680) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 422}, {6, 19623}, {10, 17987}, {125, 2787}, {6505, 5209}, {17423, 5040}, {22391, 5006}, {40591, 17763}, {51574, 17790}
X(57680) = pole of line {422, 19623} with respect to the Stammler hyperbola
X(57680) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(295), X(656)}}, {{A, B, C, X(520), X(2783)}}, {{A, B, C, X(523), X(32655)}}, {{A, B, C, X(647), X(5163)}}, {{A, B, C, X(684), X(3262)}}, {{A, B, C, X(1409), X(20336)}}, {{A, B, C, X(1437), X(3695)}}, {{A, B, C, X(1444), X(2197)}}, {{A, B, C, X(3121), X(18210)}}, {{A, B, C, X(3949), X(7015)}}, {{A, B, C, X(4558), X(23067)}}, {{A, B, C, X(17961), X(17971)}}
X(57680) = barycentric product X(i)*X(j) for these (i, j): {6, 57847}, {1332, 18015}, {2703, 525}, {11609, 1214}, {11611, 3}, {17929, 55232}, {17946, 72}, {17954, 306}, {17961, 20336}, {17971, 321}, {17981, 3998}, {35147, 647}
X(57680) = barycentric quotient X(i)/X(j) for these (i, j): {3, 19623}, {6, 422}, {37, 17987}, {63, 5209}, {71, 17763}, {72, 17790}, {184, 5006}, {228, 5291}, {647, 2787}, {906, 17944}, {1332, 17935}, {1409, 5061}, {2703, 648}, {3049, 5040}, {3990, 17977}, {11609, 31623}, {11611, 264}, {17929, 55231}, {17946, 286}, {17954, 27}, {17961, 28}, {17971, 81}, {18002, 6591}, {18015, 17924}, {35147, 6331}, {55232, 18003}, {57847, 76}


X(57681) = ISOGONAL CONJUGATE OF X(423)

Barycentrics    a^2*(b+c)*(a^2-b^2-c^2)*(a^2+a*b+b^2-(a+b)*c-c^2)*(a^2-b^2-b*c+c^2+a*(-b+c)) : :

X(57681) lies on the Jerabek hyperbola and on these lines: {3, 17972}, {4, 2784}, {6, 2054}, {48, 22143}, {65, 9278}, {69, 4466}, {71, 20975}, {72, 3708}, {74, 2702}, {290, 35148}, {895, 22356}, {1244, 40767}, {1246, 6650}, {1929, 51223}, {4558, 22054}, {6543, 15232}, {8044, 21221}, {20766, 20813}, {20769, 57738}, {20785, 36214}, {22144, 57695}, {31001, 41851}, {37135, 37142}

X(57681) = isogonal conjugate of X(423)
X(57681) = trilinear pole of line {647, 22080}
X(57681) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 423}, {4, 1931}, {19, 17731}, {25, 52137}, {27, 1757}, {28, 6542}, {81, 17927}, {92, 1326}, {162, 2786}, {286, 17735}, {648, 9508}, {811, 5029}, {1474, 20947}, {6591, 17934}, {17569, 40740}, {17924, 17943}, {17990, 55231}, {18266, 44129}, {31059, 36125}, {31905, 40794}, {37128, 52468}
X(57681) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 423}, {6, 17731}, {125, 2786}, {6505, 52137}, {17423, 5029}, {22391, 1326}, {36033, 1931}, {40586, 17927}, {40591, 6542}, {51574, 20947}, {55066, 9508}
X(57681) = X(i)-Ceva conjugate of X(j) for these {i, j}: {11599, 2054}
X(57681) = X(i)-cross conjugate of X(j) for these {i, j}: {20754, 3}
X(57681) = pole of line {20754, 57681} with respect to the Jerabek hyperbola
X(57681) = pole of line {423, 17731} with respect to the Stammler hyperbola
X(57681) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(63), X(15377)}}, {{A, B, C, X(295), X(52468)}}, {{A, B, C, X(520), X(2784)}}, {{A, B, C, X(647), X(1797)}}, {{A, B, C, X(684), X(35517)}}, {{A, B, C, X(1400), X(22169)}}, {{A, B, C, X(1790), X(3690)}}, {{A, B, C, X(1814), X(19561)}}, {{A, B, C, X(2318), X(21904)}}, {{A, B, C, X(3122), X(3708)}}, {{A, B, C, X(3682), X(49488)}}, {{A, B, C, X(4010), X(47416)}}, {{A, B, C, X(4558), X(4574)}}, {{A, B, C, X(17962), X(17972)}}, {{A, B, C, X(20463), X(20735)}}, {{A, B, C, X(20536), X(20813)}}, {{A, B, C, X(20754), X(20784)}}
X(57681) = barycentric product X(i)*X(j) for these (i, j): {6, 57848}, {10, 17972}, {63, 9278}, {1331, 18014}, {1790, 6543}, {1929, 72}, {2054, 69}, {2702, 525}, {6650, 71}, {11599, 3}, {15377, 39921}, {17930, 55230}, {17940, 4064}, {17962, 306}, {17982, 3682}, {18001, 4561}, {18032, 228}, {20766, 30586}, {35148, 647}, {37135, 656}, {41014, 53688}
X(57681) = barycentric quotient X(i)/X(j) for these (i, j): {3, 17731}, {6, 423}, {42, 17927}, {48, 1931}, {63, 52137}, {71, 6542}, {72, 20947}, {184, 1326}, {228, 1757}, {647, 2786}, {810, 9508}, {1331, 17934}, {1929, 286}, {2054, 4}, {2200, 17735}, {2702, 648}, {3049, 5029}, {3690, 6541}, {3747, 52468}, {4055, 17976}, {6650, 44129}, {9278, 92}, {11599, 264}, {17930, 55229}, {17962, 27}, {17972, 86}, {18001, 7649}, {18014, 46107}, {18032, 57796}, {20754, 51578}, {22356, 31059}, {32656, 17943}, {35148, 6331}, {37135, 811}, {51332, 2905}, {55230, 18004}, {57848, 76}
X(57681) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 20802, 20784}


X(57682) = ISOGONAL CONJUGATE OF X(424)

Barycentrics    a^2*(a+b)*(a+c)*(a^2-b^2-c^2)*(a*(a-b)*(a+b)^2-b^3*c-b^2*c^2+b*c^3+c^4)*(a^4+a^3*c-a^2*c^2-a*c^3+b*(b-c)*(b+c)^2) : :

X(57682) lies on the Jerabek hyperbola and on these lines: {65, 4565}, {69, 57849}, {71, 4575}, {72, 4558}, {1798, 14060}, {20975, 57695}, {35364, 53306}

X(57682) = isogonal conjugate of X(424)
X(57682) = trilinear pole of line {647, 1437}
X(57682) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 424}, {19, 44396}, {92, 5164}
X(57682) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 424}, {6, 44396}, {22391, 5164}
X(57682) = pole of line {424, 44396} with respect to the Stammler hyperbola
X(57682) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(4558), X(4565)}}, {{A, B, C, X(14578), X(47390)}}
X(57682) = barycentric product X(i)*X(j) for these (i, j): {6, 57849}, {1444, 53686}
X(57682) = barycentric quotient X(i)/X(j) for these (i, j): {3, 44396}, {6, 424}, {184, 5164}, {53686, 41013}, {57849, 76}


X(57683) = ISOGONAL CONJUGATE OF X(425)

Barycentrics    a^2*(b+c)*(a^2-b^2-c^2)*(a*b*(a^2-b^2)^2+2*a^2*b^2*(a+b)*c-2*a^2*b^2*c^2-(a+b)*(a^2+b^2)*c^3+(a^2-a*b+b^2)*c^4+(a+b)*c^5-c^6)*(a^5*c-b^3*(b-c)^2*(b+c)+a^2*b*(b-c)*(b^2-2*c^2)-a^3*(b^3-2*b*c^2+2*c^3)+a*(b^5-b^4*c-b^3*c^2+c^5)) : :

X(57683) lies on the Jerabek hyperbola and on these lines: {4, 2791}, {6, 53322}, {65, 20975}, {69, 57850}, {74, 2714}, {290, 53191}, {1776, 37142}

X(57683) = isogonal conjugate of X(425)
X(57683) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 425}, {4, 23695}, {21, 56822}, {29, 41349}, {162, 2798}
X(57683) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 425}, {125, 2798}, {36033, 23695}, {40611, 56822}
X(57683) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(296), X(661)}}, {{A, B, C, X(520), X(2791)}}, {{A, B, C, X(523), X(14578)}}, {{A, B, C, X(652), X(2652)}}, {{A, B, C, X(1254), X(7016)}}, {{A, B, C, X(4516), X(20975)}}, {{A, B, C, X(4558), X(52607)}}
X(57683) = barycentric product X(i)*X(j) for these (i, j): {6, 57850}, {1214, 43746}, {2714, 525}, {53191, 647}
X(57683) = barycentric quotient X(i)/X(j) for these (i, j): {6, 425}, {48, 23695}, {647, 2798}, {1400, 56822}, {1409, 41349}, {2714, 648}, {43746, 31623}, {53191, 6331}, {57850, 76}


X(57684) = ISOGONAL CONJUGATE OF X(426)

Barycentrics    ((a^2-b^2)^2+c^4)*(b^4+(a^2-c^2)^2)*(a^4-(b^2-c^2)^2)^3 : :

X(57684) lies on the Jerabek hyperbola and on these lines: {3, 6530}, {6, 52448}, {54, 41371}, {66, 2052}, {68, 1093}, {69, 6524}, {70, 13450}, {107, 41770}, {248, 393}, {1896, 20029}, {14249, 14457}, {14528, 15274}, {15352, 41762}, {32085, 46765}, {32230, 57742}, {34854, 54124}, {42873, 43908}, {45088, 47392}

X(57684) = isogonal conjugate of X(426)
X(57684) = isotomic conjugate of X(44141)
X(57684) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 426}, {31, 44141}, {48, 6389}, {63, 39643}, {255, 1899}, {326, 40947}, {394, 2083}, {1092, 17871}, {1102, 42295}, {3767, 6507}, {4100, 41760}, {41009, 52430}
X(57684) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 44141}, {3, 426}, {1249, 6389}, {3162, 39643}, {6523, 1899}, {15259, 40947}
X(57684) = X(i)-cross conjugate of X(j) for these {i, j}: {4, 34405}, {2489, 15352}, {57065, 107}
X(57684) = pole of line {426, 44141} with respect to the Wallace hyperbola
X(57684) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(4)}}, {{A, B, C, X(53), X(41371)}}, {{A, B, C, X(250), X(317)}}, {{A, B, C, X(262), X(40402)}}, {{A, B, C, X(393), X(6530)}}, {{A, B, C, X(1249), X(44556)}}, {{A, B, C, X(1974), X(34854)}}, {{A, B, C, X(2052), X(6330)}}, {{A, B, C, X(2489), X(41762)}}, {{A, B, C, X(6524), X(52439)}}, {{A, B, C, X(8796), X(42352)}}, {{A, B, C, X(31363), X(45198)}}, {{A, B, C, X(34405), X(56307)}}, {{A, B, C, X(44175), X(56306)}}, {{A, B, C, X(51965), X(52661)}}
X(57684) = barycentric product X(i)*X(j) for these (i, j): {6, 57851}, {264, 56364}, {1093, 56004}, {2052, 56307}, {34405, 393}, {42407, 6524}
X(57684) = barycentric quotient X(i)/X(j) for these (i, j): {2, 44141}, {4, 6389}, {6, 426}, {25, 39643}, {393, 1899}, {1093, 41760}, {1096, 2083}, {2052, 41009}, {2207, 40947}, {3199, 6751}, {6520, 17871}, {6524, 3767}, {6529, 1632}, {34405, 3926}, {36434, 41762}, {42407, 4176}, {52439, 42295}, {52448, 28405}, {56004, 3964}, {56307, 394}, {56364, 3}, {57851, 76}


X(57685) = ISOGONAL CONJUGATE OF X(430)

Barycentrics    a^2*(a+b)*(a+c)*(a+2*b+c)*(a+b+2*c)*(a^2-b^2-c^2) : :

X(57685) lies on the Jerabek hyperbola and on these lines: {4, 32014}, {6, 593}, {54, 48886}, {65, 1014}, {69, 57854}, {71, 1790}, {72, 1444}, {74, 6578}, {77, 52390}, {86, 15320}, {265, 57985}, {1245, 4337}, {1268, 15232}, {1798, 20733}, {4558, 22054}, {4596, 38955}, {4608, 15328}, {6707, 38819}, {18650, 38535}, {35364, 50344}

X(57685) = isogonal conjugate of X(430)
X(57685) = isotomic conjugate of X(44143)
X(57685) = trilinear pole of line {647, 7254}
X(57685) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 430}, {4, 1962}, {10, 2355}, {19, 1213}, {25, 4647}, {27, 21816}, {28, 8013}, {31, 44143}, {33, 3649}, {34, 4046}, {37, 1839}, {42, 56875}, {92, 20970}, {158, 22080}, {162, 6367}, {225, 3683}, {393, 3958}, {756, 31900}, {811, 8663}, {1096, 41014}, {1100, 1826}, {1125, 1824}, {1230, 1973}, {1783, 4988}, {1880, 3686}, {1897, 4983}, {2203, 52576}, {2308, 41013}, {2333, 4359}, {2501, 35342}, {3702, 57652}, {4115, 6591}, {8750, 30591}, {24006, 35327}, {30729, 55208}, {32636, 53008}, {40521, 46542}
X(57685) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 44143}, {3, 430}, {6, 1213}, {125, 6367}, {1147, 22080}, {6337, 1230}, {6503, 41014}, {6505, 4647}, {11517, 4046}, {17423, 8663}, {22391, 20970}, {26932, 30591}, {34467, 4983}, {36033, 1962}, {39006, 4988}, {40589, 1839}, {40591, 8013}, {40592, 56875}
X(57685) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32014, 1171}
X(57685) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 1796}, {1459, 4558}, {22154, 4563}
X(57685) = pole of line {430, 1213} with respect to the Stammler hyperbola
X(57685) = pole of line {430, 1230} with respect to the Wallace hyperbola
X(57685) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11340)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(59), X(40422)}}, {{A, B, C, X(77), X(1442)}}, {{A, B, C, X(216), X(48886)}}, {{A, B, C, X(593), X(1014)}}, {{A, B, C, X(1171), X(1796)}}, {{A, B, C, X(1459), X(17976)}}, {{A, B, C, X(1803), X(38811)}}, {{A, B, C, X(14868), X(15376)}}, {{A, B, C, X(15377), X(35216)}}, {{A, B, C, X(15380), X(44174)}}, {{A, B, C, X(40412), X(40443)}}
X(57685) = barycentric product X(i)*X(j) for these (i, j): {3, 32014}, {6, 57854}, {306, 52558}, {525, 6578}, {1126, 17206}, {1171, 69}, {1255, 1444}, {1268, 1790}, {1437, 32018}, {1459, 4632}, {1796, 86}, {4025, 4629}, {4558, 4608}, {4563, 50344}, {4592, 47947}, {4596, 905}, {6540, 7254}, {15419, 8701}, {40438, 63}
X(57685) = barycentric quotient X(i)/X(j) for these (i, j): {2, 44143}, {3, 1213}, {6, 430}, {48, 1962}, {58, 1839}, {63, 4647}, {69, 1230}, {71, 8013}, {81, 56875}, {184, 20970}, {219, 4046}, {222, 3649}, {228, 21816}, {255, 3958}, {283, 3686}, {306, 52576}, {394, 41014}, {577, 22080}, {593, 31900}, {647, 6367}, {905, 30591}, {1126, 1826}, {1171, 4}, {1255, 41013}, {1331, 4115}, {1333, 2355}, {1437, 1100}, {1444, 4359}, {1459, 4988}, {1790, 1125}, {1796, 10}, {1812, 3702}, {2193, 3683}, {3049, 8663}, {4558, 4427}, {4575, 35342}, {4596, 6335}, {4608, 14618}, {4629, 1897}, {6539, 7141}, {6578, 648}, {7254, 4977}, {17206, 1269}, {18604, 3916}, {22054, 8040}, {22383, 4983}, {23090, 4990}, {23092, 4992}, {23189, 4976}, {28615, 1824}, {32014, 264}, {32661, 35327}, {33635, 53008}, {36212, 51417}, {40438, 92}, {47947, 24006}, {50344, 2501}, {52555, 7140}, {52558, 27}, {57854, 76}


X(57686) = ISOGONAL CONJUGATE OF X(436)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^2*b^2*(a^2-b^2)^2-(a^4+3*a^2*b^2+b^4)*c^4+2*(a^2+b^2)*c^6-c^8)*(a^6*c^2-b^4*(b^2-c^2)^2-a^4*(b^4+2*c^4)+a^2*(2*b^6-3*b^4*c^2+c^6)) : :

X(57686) lies on the Jerabek hyperbola and on these lines: {2, 43710}, {4, 3164}, {6, 6638}, {54, 43975}, {65, 9251}, {69, 57855}, {74, 1303}, {95, 41219}, {216, 1987}, {290, 41005}, {3462, 56271}, {6530, 57677}, {8795, 16089}, {14941, 56290}, {15740, 26870}, {40680, 43711}, {50666, 54124}

X(57686) = isogonal conjugate of X(436)
X(57686) = isotomic conjugate of X(9291)
X(57686) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 436}, {4, 1954}, {6, 9252}, {19, 56290}, {31, 9291}, {92, 1970}, {1953, 21449}, {2167, 27359}, {32676, 42331}
X(57686) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 9291}, {3, 436}, {6, 56290}, {9, 9252}, {15526, 42331}, {22391, 1970}, {36033, 1954}, {40588, 27359}
X(57686) = X(i)-cross conjugate of X(j) for these {i, j}: {401, 14941}, {46832, 3}
X(57686) = pole of line {46832, 57686} with respect to the Jerabek hyperbola
X(57686) = pole of line {436, 56290} with respect to the Stammler hyperbola
X(57686) = pole of line {436, 9291} with respect to the Wallace hyperbola
X(57686) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3164)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(5), X(19210)}}, {{A, B, C, X(93), X(46089)}}, {{A, B, C, X(95), X(216)}}, {{A, B, C, X(97), X(17035)}}, {{A, B, C, X(184), X(9307)}}, {{A, B, C, X(253), X(54032)}}, {{A, B, C, X(262), X(14642)}}, {{A, B, C, X(264), X(577)}}, {{A, B, C, X(275), X(46832)}}, {{A, B, C, X(523), X(14533)}}, {{A, B, C, X(1092), X(13599)}}, {{A, B, C, X(1105), X(51030)}}, {{A, B, C, X(1494), X(42487)}}, {{A, B, C, X(2055), X(19179)}}, {{A, B, C, X(2963), X(23286)}}, {{A, B, C, X(3613), X(18877)}}, {{A, B, C, X(5562), X(15319)}}, {{A, B, C, X(6368), X(20572)}}, {{A, B, C, X(6530), X(41005)}}, {{A, B, C, X(8797), X(18890)}}, {{A, B, C, X(9033), X(32438)}}, {{A, B, C, X(9221), X(46090)}}, {{A, B, C, X(14489), X(28783)}}, {{A, B, C, X(17500), X(43767)}}, {{A, B, C, X(17974), X(41891)}}, {{A, B, C, X(18024), X(23295)}}, {{A, B, C, X(18349), X(20574)}}, {{A, B, C, X(34208), X(51336)}}, {{A, B, C, X(36212), X(40405)}}, {{A, B, C, X(40680), X(46952)}}
X(57686) = barycentric product X(i)*X(j) for these (i, j): {3, 9290}, {6, 57855}, {63, 9251}, {1303, 525}
X(57686) = barycentric quotient X(i)/X(j) for these (i, j): {1, 9252}, {2, 9291}, {3, 56290}, {6, 436}, {48, 1954}, {51, 27359}, {54, 21449}, {184, 1970}, {525, 42331}, {1303, 648}, {9251, 92}, {9290, 264}, {57855, 76}


X(57687) = ISOGONAL CONJUGATE OF X(438)

Barycentrics    a^2*(a^2-b^2-c^2)*((a^2-b^2)^3*(2*a^6+a^4*b^2+8*a^2*b^4+5*b^6)+(a^2-b^2)^2*(2*a^6-13*a^4*b^2-12*a^2*b^4+7*b^6)*c^2+2*(a^2-b^2)^2*(3*a^4+17*a^2*b^2+4*b^4)*c^4-2*(a^2-b^2)^2*(10*a^2+9*b^2)*c^6+(6*a^4-17*a^2*b^2+11*b^4)*c^8+(2*a^2-5*b^2)*c^10+2*c^12)*(2*a^12+a^10*(2*b^2-5*c^2)-2*a^6*(b^2-c^2)^2*(10*b^2+9*c^2)+2*a^4*(b^2-c^2)^2*(3*b^4+17*b^2*c^2+4*c^4)+a^8*(6*b^4-17*b^2*c^2+11*c^4)+(b^2-c^2)^3*(2*b^6+b^4*c^2+8*b^2*c^4+5*c^6)+a^2*(b^2-c^2)^2*(2*b^6-13*b^4*c^2-12*b^2*c^4+7*c^6)) : :

X(57687) lies on the Jerabek hyperbola and on these lines: {4, 20313}, {69, 57856}

X(57687) = isogonal conjugate of X(438)
X(57687) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(20313), X(51336)}}
X(57687) = barycentric product X(i)*X(j) for these (i, j): {6, 57856}
X(57687) = barycentric quotient X(i)/X(j) for these (i, j): {6, 438}, {57856, 76}


X(57688) = ISOGONAL CONJUGATE OF X(439)

Barycentrics    a^2*(a^2+b^2-3*c^2)^2*(a^2-3*b^2+c^2)^2 : :

X(57688) lies on the Jerabek hyperbola and on these lines: {3, 8770}, {6, 14248}, {66, 5203}, {69, 2996}, {1570, 38263}, {3565, 5023}, {5013, 40809}, {5254, 17040}, {5486, 47730}, {6340, 6342}, {8769, 16605}, {16774, 53419}

X(57688) = isogonal conjugate of X(439)
X(57688) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 439}, {193, 1707}, {3053, 18156}, {15525, 24041}
X(57688) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 439}, {3005, 15525}, {15261, 3053}
X(57688) = X(i)-cross conjugate of X(j) for these {i, j}: {6391, 8770}
X(57688) = pole of line {2996, 6339} with respect to the Kiepert hyperbola
X(57688) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(16605)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(25), X(32982)}}, {{A, B, C, X(249), X(1570)}}, {{A, B, C, X(338), X(14263)}}, {{A, B, C, X(512), X(6464)}}, {{A, B, C, X(671), X(2207)}}, {{A, B, C, X(2031), X(53097)}}, {{A, B, C, X(2052), X(5254)}}, {{A, B, C, X(2987), X(3053)}}, {{A, B, C, X(2996), X(8770)}}, {{A, B, C, X(5013), X(30535)}}, {{A, B, C, X(6339), X(6342)}}, {{A, B, C, X(6504), X(15591)}}, {{A, B, C, X(15815), X(39764)}}, {{A, B, C, X(18845), X(39951)}}, {{A, B, C, X(21448), X(43681)}}, {{A, B, C, X(53106), X(56344)}}
X(57688) = barycentric product X(i)*X(j) for these (i, j): {6, 57857}, {2996, 8770}, {8769, 8769}, {14248, 6340}, {34208, 6391}
X(57688) = barycentric quotient X(i)/X(j) for these (i, j): {6, 439}, {3124, 15525}, {3565, 57216}, {6391, 6337}, {8769, 18156}, {8770, 193}, {14248, 6353}, {34208, 54412}, {38252, 1707}, {40319, 3167}, {53059, 3053}, {57857, 76}
X(57688) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55513, 55514, 3}


X(57689) = ISOGONAL CONJUGATE OF X(443)

Barycentrics    a^2*(a^4-b^4+c^4-4*a*b*c*(b+c)-2*a^2*c*(2*b+c))*(a^4+b^4-c^4-4*a*b*c*(b+c)-2*a^2*b*(b+2*c)) : :

X(57689) lies on the Jerabek hyperbola and on these lines: {3, 5320}, {25, 51223}, {28, 8814}, {65, 7713}, {68, 6913}, {69, 405}, {71, 218}, {72, 3295}, {73, 1617}, {112, 57694}, {1243, 1598}, {1246, 37377}, {1439, 4350}, {2213, 44098}, {4846, 37411}, {5120, 57704}, {7580, 15740}, {15316, 36750}, {15934, 28787}, {34259, 37284}, {34817, 36740}, {37318, 43712}

X(57689) = isogonal conjugate of X(443)
X(57689) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 443}, {2, 54385}, {75, 44094}
X(57689) = X(i)-vertex conjugate of X(j) for these {i, j}: {2213, 57689}
X(57689) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 443}, {206, 44094}, {32664, 54385}
X(57689) = pole of line {443, 44094} with respect to the Stammler hyperbola
X(57689) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(218)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(9), X(58)}}, {{A, B, C, X(24), X(6913)}}, {{A, B, C, X(25), X(213)}}, {{A, B, C, X(28), X(55)}}, {{A, B, C, X(31), X(51686)}}, {{A, B, C, X(32), X(37492)}}, {{A, B, C, X(34), X(2259)}}, {{A, B, C, X(56), X(943)}}, {{A, B, C, X(219), X(1039)}}, {{A, B, C, X(222), X(57394)}}, {{A, B, C, X(284), X(937)}}, {{A, B, C, X(378), X(37411)}}, {{A, B, C, X(386), X(5120)}}, {{A, B, C, X(939), X(3418)}}, {{A, B, C, X(947), X(56273)}}, {{A, B, C, X(957), X(53089)}}, {{A, B, C, X(967), X(1751)}}, {{A, B, C, X(999), X(11510)}}, {{A, B, C, X(1011), X(37377)}}, {{A, B, C, X(1037), X(1126)}}, {{A, B, C, X(1059), X(2334)}}, {{A, B, C, X(1260), X(2194)}}, {{A, B, C, X(1398), X(34446)}}, {{A, B, C, X(1470), X(12702)}}, {{A, B, C, X(1593), X(7580)}}, {{A, B, C, X(1597), X(3651)}}, {{A, B, C, X(1609), X(36750)}}, {{A, B, C, X(2221), X(40188)}}, {{A, B, C, X(2271), X(37507)}}, {{A, B, C, X(2915), X(37318)}}, {{A, B, C, X(3194), X(55111)}}, {{A, B, C, X(3347), X(57418)}}, {{A, B, C, X(3417), X(44861)}}, {{A, B, C, X(3422), X(38271)}}, {{A, B, C, X(3449), X(42019)}}, {{A, B, C, X(3478), X(56278)}}, {{A, B, C, X(3517), X(6920)}}, {{A, B, C, X(4183), X(13737)}}, {{A, B, C, X(4185), X(37284)}}, {{A, B, C, X(4186), X(37249)}}, {{A, B, C, X(4214), X(37286)}}, {{A, B, C, X(4222), X(37244)}}, {{A, B, C, X(4265), X(43136)}}, {{A, B, C, X(5021), X(37502)}}, {{A, B, C, X(8573), X(36742)}}, {{A, B, C, X(9605), X(36741)}}, {{A, B, C, X(11517), X(42461)}}, {{A, B, C, X(13404), X(45818)}}, {{A, B, C, X(14017), X(37224)}}, {{A, B, C, X(15934), X(37579)}}, {{A, B, C, X(22131), X(44547)}}, {{A, B, C, X(22341), X(51990)}}, {{A, B, C, X(30435), X(36740)}}, {{A, B, C, X(34880), X(44455)}}
X(57689) = barycentric product X(i)*X(j) for these (i, j): {6, 57858}
X(57689) = barycentric quotient X(i)/X(j) for these (i, j): {6, 443}, {31, 54385}, {32, 44094}, {57858, 76}


X(57690) = ISOGONAL CONJUGATE OF X(444)

Barycentrics    a*(b^2+a*c)*(a^2-b^2-c^2)*(a*b+c^2)*(a^2+a*c+b*(b+c))*(a^2+a*b+c*(b+c)) : :

X(57690) lies on the Jerabek hyperbola and on these lines: {6, 6043}, {65, 257}, {69, 57859}, {71, 7116}, {72, 7015}, {73, 1791}, {256, 1245}, {518, 9399}, {3903, 10693}, {4451, 43703}, {40432, 57743}, {40708, 57738}

X(57690) = isogonal conjugate of X(444)
X(57690) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 444}, {19, 28369}, {34, 18235}, {171, 1829}, {172, 1848}, {894, 2354}, {1193, 7009}, {1474, 27697}, {1840, 40153}, {3666, 7119}, {7122, 54314}, {7176, 40976}, {17103, 44092}, {53280, 54229}
X(57690) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 444}, {6, 28369}, {11517, 18235}, {51574, 27697}
X(57690) = X(i)-cross conjugate of X(j) for these {i, j}: {63, 1791}
X(57690) = pole of line {444, 28369} with respect to the Stammler hyperbola
X(57690) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(63), X(287)}}, {{A, B, C, X(256), X(7019)}}, {{A, B, C, X(293), X(1444)}}, {{A, B, C, X(333), X(11683)}}, {{A, B, C, X(521), X(20741)}}, {{A, B, C, X(1220), X(1791)}}, {{A, B, C, X(1431), X(7015)}}, {{A, B, C, X(1812), X(25898)}}, {{A, B, C, X(2987), X(2994)}}, {{A, B, C, X(5227), X(5247)}}, {{A, B, C, X(30676), X(41909)}}, {{A, B, C, X(40708), X(52651)}}, {{A, B, C, X(43216), X(44189)}}
X(57690) = barycentric product X(i)*X(j) for these (i, j): {6, 57859}, {1240, 7116}, {1791, 257}, {2298, 7019}, {2359, 7018}, {15420, 3903}, {30710, 7015}, {52651, 57853}
X(57690) = barycentric quotient X(i)/X(j) for these (i, j): {3, 28369}, {6, 444}, {72, 27697}, {219, 18235}, {256, 1848}, {257, 54314}, {893, 1829}, {904, 2354}, {1791, 894}, {2298, 7009}, {2359, 171}, {7015, 3666}, {7019, 20911}, {7116, 1193}, {15420, 4374}, {40729, 44092}, {52651, 429}, {57853, 8033}, {57859, 76}


X(57691) = ISOGONAL CONJUGATE OF X(445)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^2+a*b+b^2-c^2)*(a^2-b^2+a*c+c^2)*((a-b)^2*(a+b)-2*a*b*c-(a+b)*c^2)*(a^3-a^2*c-b^2*c+c^3-a*(b+c)^2) : :

X(57691) lies on these lines: {4, 584}, {48, 52390}, {54, 583}, {65, 2160}, {69, 57860}, {71, 8606}, {74, 17454}, {290, 57885}, {7100, 28787}, {40570, 57392}, {44093, 52153}, {50433, 57736}

X(57691) = isogonal conjugate of X(445)
X(57691) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 445}, {2, 1844}, {4, 16585}, {75, 44095}, {92, 500}, {278, 31938}, {319, 1841}, {942, 52412}, {1838, 3219}, {1859, 17095}, {1865, 56934}, {3969, 46883}, {5249, 6198}, {7282, 40937}, {11107, 55010}, {18160, 53323}, {40999, 46884}, {45926, 52414}
X(57691) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 445}, {206, 44095}, {22391, 500}, {32664, 1844}, {36033, 16585}
X(57691) = pole of line {445, 44095} with respect to the Stammler hyperbola
X(57691) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(48), X(2174)}}, {{A, B, C, X(216), X(583)}}, {{A, B, C, X(222), X(2164)}}, {{A, B, C, X(394), X(45129)}}, {{A, B, C, X(577), X(584)}}, {{A, B, C, X(1409), X(34079)}}, {{A, B, C, X(1946), X(14597)}}, {{A, B, C, X(2160), X(8606)}}, {{A, B, C, X(3284), X(17454)}}, {{A, B, C, X(3444), X(52373)}}, {{A, B, C, X(8818), X(50433)}}, {{A, B, C, X(39791), X(44095)}}
X(57691) = barycentric product X(i)*X(j) for these (i, j): {3, 57710}, {6, 57860}, {184, 57885}, {1175, 52388}, {1794, 79}, {2259, 52381}, {7100, 943}
X(57691) = barycentric quotient X(i)/X(j) for these (i, j): {6, 445}, {31, 1844}, {32, 44095}, {48, 16585}, {184, 500}, {212, 31938}, {1794, 319}, {2259, 52412}, {6186, 1838}, {8606, 6734}, {52153, 45926}, {52388, 1234}, {57710, 264}, {57860, 76}, {57885, 18022}


X(57692) = ISOGONAL CONJUGATE OF X(446)

Barycentrics    (a^4+b^4-(a^2+b^2)*c^2)*(a^4-a^2*b^2-b^2*c^2+c^4)*(a^2*b^2*(a^2-b^2)^2*(a^2+b^2)+2*a^2*b^2*(a^2-b^2)^2*c^2+(a^6+b^6)*c^4-2*(a^4+b^4)*c^6+(a^2+b^2)*c^8)*(a^8*c^2+b^4*c^2*(b^2-c^2)^2+a^6*(b^4+2*b^2*c^2-c^4)-a^4*(2*b^6+4*b^2*c^4+c^6)+a^2*(b^8+2*b^2*c^6+c^8)) : :

X(57692) lies on the Jerabek hyperbola and on these lines: {3, 40820}, {69, 14382}, {98, 23098}, {287, 43702}, {446, 39291}, {879, 14510}, {43696, 53174}, {43705, 54086}

X(57692) = isogonal conjugate of X(446)
X(57692) = trilinear pole of line {647, 36899}
X(57692) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(9414)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(76), X(53229)}}, {{A, B, C, X(98), X(14382)}}, {{A, B, C, X(385), X(5999)}}, {{A, B, C, X(511), X(23098)}}, {{A, B, C, X(694), X(32542)}}, {{A, B, C, X(805), X(14510)}}, {{A, B, C, X(1105), X(41174)}}, {{A, B, C, X(2710), X(53197)}}, {{A, B, C, X(14265), X(54086)}}, {{A, B, C, X(34130), X(41520)}}
X(57692) = barycentric product X(i)*X(j) for these (i, j): {6, 57861}
X(57692) = barycentric quotient X(i)/X(j) for these (i, j): {6, 446}, {6531, 12131}, {57861, 76}


X(57693) = ISOGONAL CONJUGATE OF X(448)

Barycentrics    a^2*(b+c)*(a*b*(a^2-b^2)^2+(a+b)*(a^2+b^2)*c^3-(a^2+a*b+b^2)*c^4-(a+b)*c^5+c^6)*(a^5*c+a^2*b^3*(-b+c)+b^3*(b-c)^2*(b+c)+a^3*(b^3-2*c^3)-a*(b-c)*(b+c)*(b^3+b^2*c+c^3)) : :

X(57693) lies on the Jerabek hyperbola and on these lines: {4, 53560}, {6, 53323}, {65, 3269}, {69, 25252}, {73, 37754}, {112, 1175}, {248, 2223}, {290, 46108}, {879, 24290}, {1951, 57736}, {3569, 10099}, {52222, 53562}, {52560, 52607}

X(57693) = isogonal conjugate of X(448)
X(57693) = trilinear pole of line {647, 40952}
X(57693) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 448}, {2, 23692}, {284, 16090}, {333, 56910}, {662, 47203}
X(57693) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 448}, {1084, 47203}, {32664, 23692}, {40590, 16090}
X(57693) = pole of line {2878, 47203} with respect to the Orthic inconic
X(57693) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(112), X(4559)}}, {{A, B, C, X(228), X(40149)}}, {{A, B, C, X(512), X(8751)}}, {{A, B, C, X(647), X(32726)}}, {{A, B, C, X(661), X(1945)}}, {{A, B, C, X(911), X(7178)}}, {{A, B, C, X(1172), X(2197)}}, {{A, B, C, X(2194), X(6354)}}, {{A, B, C, X(2223), X(3569)}}, {{A, B, C, X(2311), X(11608)}}, {{A, B, C, X(3269), X(37754)}}, {{A, B, C, X(23493), X(25252)}}
X(57693) = barycentric product X(i)*X(j) for these (i, j): {6, 57862}
X(57693) = barycentric quotient X(i)/X(j) for these (i, j): {6, 448}, {31, 23692}, {65, 16090}, {512, 47203}, {1402, 56910}, {57862, 76}


X(57694) = ISOGONAL CONJUGATE OF X(449)

Barycentrics    a^2*((a^4-b^4)^2+4*a*(a-b)^2*b*(a+b)^3*c-(a^2-b^2)^2*(a^2-4*a*b+b^2)*c^2+4*a*b*(a+b)*(a^2+b^2)*c^3+(a^2+b^2)*(a^2+4*a*b+b^2)*c^4-8*a*b*(a+b)*c^5-(3*a^2+8*a*b+3*b^2)*c^6+2*c^8)*(a^8-a^6*b*(b-4*c)+4*a^5*b*c*(b+c)+4*a^3*b*c*(b+c)*(b^2-2*c^2)-4*a*b*(b-c)*c*(b+c)^2*(2*b^2+c^2)-a^2*b*(b-c)*(b+c)*(3*b^3+8*b^2*c+b*c^2+4*c^3)+a^4*(b^4+4*b^3*c+b^2*c^2-8*b*c^3-2*c^4)+(b^2-c^2)^2*(2*b^4+b^2*c^2+c^4)) : :

X(57694) lies on the Jerabek hyperbola and on these lines: {69, 57863}, {112, 57689}, {2213, 3269}

X(57694) = isogonal conjugate of X(449)
X(57694) = trilinear pole of line {647, 44094}
X(57694) = barycentric product X(i)*X(j) for these (i, j): {6, 57863}
X(57694) = barycentric quotient X(i)/X(j) for these (i, j): {6, 449}, {57863, 76}


X(57695) = ISOGONAL CONJUGATE OF X(451)

Barycentrics    a^2*(a^2-b^2-c^2)*((a-b)*(a+b)^2+(a^2+a*b-b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2+b*c-c^2)) : :

X(57695) lies on the Jerabek hyperbola and on these lines: {1, 10693}, {4, 1029}, {6, 3444}, {54, 37509}, {58, 34435}, {60, 43700}, {64, 36742}, {65, 267}, {69, 20746}, {71, 22123}, {72, 18447}, {74, 51340}, {81, 43712}, {222, 52390}, {502, 15232}, {3157, 43708}, {3532, 36746}, {14528, 36754}, {18631, 52560}, {20813, 22164}, {20975, 57682}, {22143, 22458}, {22144, 57681}, {22156, 23070}, {34207, 37492}, {34436, 36740}, {34440, 46882}, {35197, 52062}, {40143, 51223}, {52391, 56295}

X(57695) = isogonal conjugate of X(451)
X(57695) = trilinear pole of line {647, 23226}
X(57695) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 451}, {4, 191}, {10, 2906}, {19, 2895}, {25, 20932}, {27, 21873}, {28, 21081}, {33, 41808}, {75, 44097}, {92, 1030}, {158, 22136}, {281, 47057}, {318, 8614}, {501, 41013}, {811, 42653}, {860, 56405}, {1474, 42710}, {1783, 21192}, {1826, 40592}, {1897, 31947}, {24006, 57119}
X(57695) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 451}, {6, 2895}, {206, 44097}, {1147, 22136}, {6505, 20932}, {17423, 42653}, {22391, 1030}, {34467, 31947}, {36033, 191}, {39006, 21192}, {40591, 21081}, {51574, 42710}
X(57695) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1029, 3444}
X(57695) = X(i)-cross conjugate of X(j) for these {i, j}: {1437, 3}
X(57695) = pole of line {1437, 57695} with respect to the Jerabek hyperbola
X(57695) = pole of line {3444, 53421} with respect to the Kiepert hyperbola
X(57695) = pole of line {451, 2895} with respect to the Stammler hyperbola
X(57695) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(22123)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(25), X(34120)}}, {{A, B, C, X(56), X(18447)}}, {{A, B, C, X(58), X(7100)}}, {{A, B, C, X(60), X(521)}}, {{A, B, C, X(77), X(56343)}}, {{A, B, C, X(81), X(23130)}}, {{A, B, C, X(213), X(14908)}}, {{A, B, C, X(216), X(37509)}}, {{A, B, C, X(222), X(1069)}}, {{A, B, C, X(255), X(46441)}}, {{A, B, C, X(271), X(2364)}}, {{A, B, C, X(287), X(40408)}}, {{A, B, C, X(394), X(37685)}}, {{A, B, C, X(577), X(36750)}}, {{A, B, C, X(603), X(23071)}}, {{A, B, C, X(1126), X(1807)}}, {{A, B, C, X(1171), X(1214)}}, {{A, B, C, X(1433), X(34043)}}, {{A, B, C, X(1437), X(8614)}}, {{A, B, C, X(3284), X(51340)}}, {{A, B, C, X(4663), X(22131)}}, {{A, B, C, X(15409), X(17971)}}, {{A, B, C, X(15851), X(36745)}}, {{A, B, C, X(15905), X(36742)}}, {{A, B, C, X(17977), X(22458)}}, {{A, B, C, X(18631), X(46882)}}, {{A, B, C, X(22120), X(36740)}}, {{A, B, C, X(22341), X(45923)}}, {{A, B, C, X(23115), X(37492)}}, {{A, B, C, X(36746), X(38292)}}
X(57695) = barycentric product X(i)*X(j) for these (i, j): {6, 57865}, {267, 63}, {1029, 3}, {1444, 21353}, {1790, 502}, {3444, 69}, {40143, 72}, {44188, 48}
X(57695) = barycentric quotient X(i)/X(j) for these (i, j): {3, 2895}, {6, 451}, {32, 44097}, {48, 191}, {63, 20932}, {71, 21081}, {72, 42710}, {184, 1030}, {222, 41808}, {228, 21873}, {267, 92}, {577, 22136}, {603, 47057}, {1029, 264}, {1333, 2906}, {1437, 40592}, {1459, 21192}, {3049, 42653}, {3444, 4}, {21353, 41013}, {22383, 31947}, {32661, 57119}, {40143, 286}, {44188, 1969}, {52411, 8614}, {57865, 76}


X(57696) = ISOGONAL CONJUGATE OF X(453)

Barycentrics    a*(a+b-c)*(a-b+c)*(b+c)*(a^3+a^2*(b-c)-(b-c)*(b+c)^2-a*(b^2+c^2))^2*(a^3+a^2*(-b+c)+(b-c)*(b+c)^2-a*(b^2+c^2))^2 : :

X(57696) lies on the Jerabek hyperbola and on these lines: {3, 90}, {69, 20570}, {1069, 9931}, {1858, 7040}

X(57696) = isogonal conjugate of X(453)
X(57696) = trilinear pole of line {647, 55248}
X(57696) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 453}, {21, 1079}, {46, 3193}, {1068, 1800}, {2178, 31631}, {3157, 3559}
X(57696) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 453}, {40611, 1079}
X(57696) = X(i)-cross conjugate of X(j) for these {i, j}: {4516, 55248}
X(57696) = pole of line {90, 921} with respect to the Feuerbach hyperbola
X(57696) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(90), X(20570)}}, {{A, B, C, X(210), X(7082)}}, {{A, B, C, X(225), X(36599)}}, {{A, B, C, X(1156), X(1898)}}, {{A, B, C, X(1858), X(1896)}}
X(57696) = barycentric product X(i)*X(j) for these (i, j): {6, 57867}, {226, 7042}
X(57696) = barycentric quotient X(i)/X(j) for these (i, j): {6, 453}, {90, 31631}, {1400, 1079}, {2164, 3193}, {7042, 333}, {57867, 76}
X(57696) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {90, 55495, 3}


X(57697) = ISOGONAL CONJUGATE OF X(454)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^3-(a^2-3*b^2)*(a^2+b^2)*c^2-(a^2+3*b^2)*c^4+c^6)^2*(a^6+(b^2-c^2)^3-a^2*(b^2-3*c^2)*(b^2+c^2)-a^4*(b^2+3*c^2))^2 : :

X(57697) lies on the Jerabek hyperbola and on these lines: {3, 254}, {6, 34756}, {64, 16172}, {68, 6504}, {69, 46746}, {8800, 34801}, {21268, 32533}

X(57697) = isogonal conjugate of X(454)
X(57697) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 454}, {155, 920}
X(57697) = X(i)-cross conjugate of X(j) for these {i, j}: {15316, 254}
X(57697) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(254), X(46746)}}, {{A, B, C, X(3147), X(18020)}}, {{A, B, C, X(6504), X(34756)}}, {{A, B, C, X(11411), X(44174)}}
X(57697) = barycentric product X(i)*X(j) for these (i, j): {6, 57868}, {254, 6504}, {52582, 57484}
X(57697) = barycentric quotient X(i)/X(j) for these (i, j): {6, 454}, {254, 6515}, {6504, 40697}, {15316, 6503}, {39109, 1609}, {41536, 41587}, {52582, 39116}, {57868, 76}
X(57697) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {254, 55568, 3}


X(57698) = ISOGONAL CONJUGATE OF X(455)

Barycentrics    (a^2-b^2-c^2)*(a^12-3*a^8*(b^2-c^2)^2-(b^2-c^2)^2*(b^2+c^2)^4+a^4*(b^2-c^2)^2*(3*b^4+2*b^2*c^2+3*c^4))^2 : :

X(57698) lies on the Jerabek hyperbola and on these lines: {4, 40009}, {6, 40358}, {66, 13575}, {69, 57869}

X(57698) = isogonal conjugate of X(455)
X(57698) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 455}, {3162, 18596}
X(57698) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(2366), X(28419)}}, {{A, B, C, X(13575), X(40358)}}, {{A, B, C, X(15388), X(36851)}}, {{A, B, C, X(18020), X(28708)}}
X(57698) = barycentric product X(i)*X(j) for these (i, j): {6, 57869}, {40009, 52041}
X(57698) = barycentric quotient X(i)/X(j) for these (i, j): {6, 455}, {13575, 41361}, {34207, 3162}, {52041, 159}, {52583, 41766}, {56008, 57086}, {57869, 76}


X(57699) = ISOGONAL CONJUGATE OF X(456)

Barycentrics    (a^2-b^2-c^2)*(a^8+(b^2-c^2)^4-2*a^6*(b^2+2*c^2)+a^4*(2*b^4+b^2*c^2+6*c^4)+a^2*(-2*b^6+b^4*c^2+5*b^2*c^4-4*c^6))^2*(a^8+(b^2-c^2)^4-2*a^6*(2*b^2+c^2)+a^4*(6*b^4+b^2*c^2+2*c^4)+a^2*(-4*b^6+5*b^4*c^2+b^2*c^4-2*c^6))^2 : :

X(57699) lies on the Jerabek hyperbola and on these lines: {4, 11584}, {54, 3459}, {69, 57870}, {74, 3482}

X(57699) = isogonal conjugate of X(456)
X(57699) = barycentric product X(i)*X(j) for these (i, j): {6, 57870}, {34433, 57776}
X(57699) = barycentric quotient X(i)/X(j) for these (i, j): {6, 456}, {34433, 195}, {57870, 76}


X(57700) = ISOGONAL CONJUGATE OF X(457)

Barycentrics    (a^2-b^2-c^2)*(a^8+2*a^6*(b^2-2*c^2)+(b^2-c^2)^4+a^4*(-6*b^4+b^2*c^2+6*c^4)+a^2*(2*b^6+b^4*c^2+b^2*c^4-4*c^6))^2*(a^8+(b^2-c^2)^4+2*a^6*(-2*b^2+c^2)+a^4*(6*b^4+b^2*c^2-6*c^4)+a^2*(-4*b^6+b^4*c^2+b^2*c^4+2*c^6))^2 : :

X(57700) lies on the Jerabek hyperbola and on these lines: {3, 20123}, {4, 14451}, {6, 11070}, {54, 46035}, {69, 57871}, {74, 1138}, {3426, 18781}, {15081, 54837}

X(57700) = isogonal conjugate of X(457)
X(57700) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(1138), X(11070)}}, {{A, B, C, X(12317), X(15395)}}, {{A, B, C, X(12383), X(40423)}}
X(57700) = barycentric product X(i)*X(j) for these (i, j): {6, 57871}, {20123, 54837}
X(57700) = barycentric quotient X(i)/X(j) for these (i, j): {6, 457}, {57871, 76}


X(57701) = ISOGONAL CONJUGATE OF X(461)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(a+3*b+c)*(a+b+3*c)*(a^2-b^2-c^2) : :

X(57701) lies on the Jerabek hyperbola and on these lines: {4, 3945}, {6, 1412}, {64, 991}, {65, 269}, {69, 57873}, {71, 222}, {72, 77}, {73, 7053}, {74, 5545}, {1245, 1458}, {1419, 1422}, {3532, 50677}, {4866, 43744}, {5936, 38955}, {10099, 51644}, {13329, 14528}, {37273, 51223}, {37659, 56204}

X(57701) = isogonal conjugate of X(461)
X(57701) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 461}, {4, 4512}, {8, 5338}, {19, 391}, {25, 4673}, {28, 4061}, {29, 37593}, {33, 3616}, {55, 5342}, {75, 44100}, {92, 4258}, {162, 4843}, {210, 31903}, {281, 1449}, {607, 19804}, {653, 4827}, {811, 8653}, {1172, 5257}, {1474, 42712}, {1783, 4765}, {1857, 4652}, {3361, 7046}, {3671, 4183}, {4047, 8748}, {4778, 56183}, {4811, 8750}, {4822, 36797}, {6591, 30728}, {7079, 21454}
X(57701) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 461}, {6, 391}, {125, 4843}, {206, 44100}, {223, 5342}, {6505, 4673}, {17423, 8653}, {22391, 4258}, {26932, 4811}, {36033, 4512}, {39006, 4765}, {40591, 4061}, {51574, 42712}
X(57701) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57826, 57663}
X(57701) = pole of line {391, 461} with respect to the Stammler hyperbola
X(57701) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37269)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(48), X(10579)}}, {{A, B, C, X(77), X(222)}}, {{A, B, C, X(394), X(3945)}}, {{A, B, C, X(405), X(37273)}}, {{A, B, C, X(967), X(3668)}}, {{A, B, C, X(991), X(15905)}}, {{A, B, C, X(1214), X(42290)}}, {{A, B, C, X(1433), X(13404)}}, {{A, B, C, X(1458), X(51644)}}, {{A, B, C, X(2191), X(7100)}}, {{A, B, C, X(3296), X(34046)}}, {{A, B, C, X(8809), X(57418)}}, {{A, B, C, X(38292), X(50677)}}
X(57701) = barycentric product X(i)*X(j) for these (i, j): {3, 57826}, {6, 57873}, {222, 5936}, {525, 5545}, {1214, 56048}, {1439, 56204}, {1459, 4624}, {2334, 348}, {4614, 51664}, {4866, 7177}, {17094, 4627}, {25430, 77}, {34820, 7056}, {40023, 603}, {47915, 6516}, {56086, 7053}, {57663, 69}
X(57701) = barycentric quotient X(i)/X(j) for these (i, j): {3, 391}, {6, 461}, {32, 44100}, {48, 4512}, {57, 5342}, {63, 4673}, {71, 4061}, {72, 42712}, {73, 5257}, {77, 19804}, {184, 4258}, {222, 3616}, {603, 1449}, {604, 5338}, {647, 4843}, {905, 4811}, {1331, 30728}, {1409, 37593}, {1412, 31903}, {1459, 4765}, {1946, 4827}, {2334, 281}, {3049, 8653}, {4627, 36797}, {4866, 7101}, {5545, 648}, {5936, 7017}, {7053, 21454}, {7099, 3361}, {7125, 4652}, {22341, 4047}, {25430, 318}, {34074, 56183}, {34820, 7046}, {40152, 4101}, {47915, 44426}, {51664, 4815}, {52373, 3671}, {56048, 31623}, {57663, 4}, {57826, 264}, {57873, 76}


X(57702) = ISOGONAL CONJUGATE OF X(464)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2+2*(a+b)^2*c^2+4*(a+b)*c^3+c^4)*(a^4+b^4+4*b^3*c+2*b^2*c^2+c^4+4*a*b^2*(b+c)+2*a^2*(b-c)*(b+c)) : :

X(57702) lies on the Jerabek hyperbola and on these lines: {3, 1474}, {19, 72}, {25, 71}, {27, 69}, {68, 7534}, {73, 608}, {1172, 51223}, {1435, 1439}, {1839, 28786}, {7513, 15740}, {28787, 46886}, {46882, 57667}

X(57702) = isogonal conjugate of X(464)
X(57702) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 464}, {63, 387}, {75, 44101}
X(57702) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 464}, {206, 44101}, {3162, 387}
X(57702) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57874, 57662}
X(57702) = pole of line {464, 44101} with respect to the Stammler hyperbola
X(57702) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(19), X(25)}}, {{A, B, C, X(24), X(7534)}}, {{A, B, C, X(28), X(37377)}}, {{A, B, C, X(37), X(19793)}}, {{A, B, C, X(55), X(1172)}}, {{A, B, C, X(1460), X(24310)}}, {{A, B, C, X(1593), X(7513)}}, {{A, B, C, X(1826), X(41489)}}, {{A, B, C, X(1839), X(41320)}}, {{A, B, C, X(1869), X(44103)}}, {{A, B, C, X(2259), X(57386)}}, {{A, B, C, X(2266), X(54322)}}, {{A, B, C, X(2983), X(56136)}}, {{A, B, C, X(36744), X(46882)}}, {{A, B, C, X(40085), X(43678)}}, {{A, B, C, X(41891), X(45100)}}
X(57702) = barycentric product X(i)*X(j) for these (i, j): {4, 57662}, {6, 57874}, {25, 57825}
X(57702) = barycentric quotient X(i)/X(j) for these (i, j): {6, 464}, {25, 387}, {32, 44101}, {57662, 69}, {57825, 305}, {57874, 76}


X(57703) = ISOGONAL CONJUGATE OF X(467)

Barycentrics    a^2*(a^2-b^2-c^2)*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-2*a^2*b^2+(b^2-c^2)^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(57703) lies on the Jerabek hyperbola and on these lines: {3, 14533}, {4, 96}, {6, 2351}, {50, 6145}, {54, 570}, {65, 2168}, {66, 41270}, {68, 577}, {69, 97}, {74, 15664}, {95, 54124}, {216, 40441}, {265, 11077}, {275, 41770}, {290, 34385}, {1820, 52391}, {1971, 8612}, {1987, 32734}, {2623, 43709}, {3003, 57387}, {3431, 14806}, {8553, 34438}, {8795, 44375}, {14457, 47731}, {14573, 52144}, {14586, 38534}, {15316, 19210}, {15328, 46088}, {15905, 38260}, {16030, 43725}, {16032, 55021}, {16037, 55020}, {16391, 36748}, {23286, 35364}, {45011, 56891}

X(57703) = isogonal conjugate of X(467)
X(57703) = perspector of circumconic {{A, B, C, X(32692), X(52932)}}
X(57703) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 467}, {5, 1748}, {19, 39113}, {24, 14213}, {47, 324}, {52, 92}, {53, 44179}, {75, 14576}, {158, 52032}, {264, 2180}, {317, 1953}, {811, 52317}, {920, 39114}, {2181, 7763}, {2617, 57065}, {2618, 41679}, {3133, 57716}, {8745, 18695}, {11547, 44706}, {18883, 51801}, {33808, 47732}, {51513, 55249}
X(57703) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 467}, {6, 39113}, {206, 14576}, {1147, 52032}, {17423, 52317}, {22391, 52}, {34853, 324}, {37864, 53}
X(57703) = X(i)-Ceva conjugate of X(j) for these {i, j}: {96, 41271}
X(57703) = X(i)-cross conjugate of X(j) for these {i, j}: {577, 14533}, {2351, 96}, {39643, 275}
X(57703) = pole of line {6146, 41271} with respect to the Kiepert hyperbola
X(57703) = pole of line {467, 14576} with respect to the Stammler hyperbola
X(57703) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(97), X(8882)}}, {{A, B, C, X(216), X(570)}}, {{A, B, C, X(231), X(647)}}, {{A, B, C, X(523), X(27352)}}, {{A, B, C, X(571), X(577)}}, {{A, B, C, X(1485), X(54032)}}, {{A, B, C, X(1879), X(50433)}}, {{A, B, C, X(2165), X(2351)}}, {{A, B, C, X(2963), X(34433)}}, {{A, B, C, X(5158), X(14806)}}, {{A, B, C, X(5562), X(10600)}}, {{A, B, C, X(8883), X(19210)}}, {{A, B, C, X(17974), X(45838)}}, {{A, B, C, X(18877), X(41890)}}, {{A, B, C, X(28724), X(32654)}}, {{A, B, C, X(39201), X(44375)}}, {{A, B, C, X(39643), X(41770)}}
X(57703) = barycentric product X(i)*X(j) for these (i, j): {3, 96}, {6, 57875}, {54, 68}, {184, 34385}, {275, 55549}, {1820, 2167}, {2165, 97}, {2168, 63}, {2169, 91}, {2351, 95}, {4558, 55253}, {11077, 37802}, {14533, 5392}, {16032, 6414}, {16037, 6413}, {16391, 8884}, {19210, 847}, {20563, 54034}, {23286, 925}, {30450, 46088}, {32132, 8883}, {32692, 525}, {41271, 69}, {44174, 8901}, {46089, 56272}, {50463, 5962}, {52350, 8882}, {52932, 924}
X(57703) = barycentric quotient X(i)/X(j) for these (i, j): {3, 39113}, {6, 467}, {32, 14576}, {54, 317}, {68, 311}, {96, 264}, {97, 7763}, {184, 52}, {577, 52032}, {1820, 14213}, {2148, 1748}, {2165, 324}, {2168, 92}, {2169, 44179}, {2351, 5}, {2623, 57065}, {3049, 52317}, {4558, 55252}, {8882, 11547}, {9247, 2180}, {11077, 18883}, {14533, 1993}, {14573, 44077}, {14586, 41679}, {14593, 13450}, {16391, 52347}, {18315, 55227}, {19210, 9723}, {23286, 6563}, {32692, 648}, {32734, 35360}, {34385, 18022}, {40947, 27362}, {41271, 4}, {46088, 52584}, {52350, 28706}, {52435, 3133}, {52932, 46134}, {54034, 24}, {55253, 14618}, {55549, 343}, {57875, 76}
X(57703) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8882, 8883, 571}


X(57704) = ISOGONAL CONJUGATE OF X(469)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^2+a*(b+c)+b*(b+c))*(a^2+a*(b+c)+c*(b+c)) : :

X(57704) lies on the Jerabek hyperbola and on these lines: {2, 8044}, {3, 22073}, {4, 572}, {6, 199}, {48, 72}, {54, 573}, {65, 604}, {69, 1790}, {71, 184}, {73, 22054}, {284, 51223}, {290, 57824}, {579, 1175}, {909, 38955}, {1245, 5019}, {1246, 7560}, {1333, 57743}, {1439, 7099}, {1903, 2208}, {2213, 37504}, {3431, 37508}, {4268, 57666}, {5053, 57705}, {5120, 57689}, {5124, 34435}, {14528, 37499}, {15232, 21011}, {36743, 57659}, {43703, 52159}

X(57704) = isogonal conjugate of X(469)
X(57704) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 469}, {4, 28606}, {19, 5224}, {25, 33935}, {28, 56810}, {33, 33949}, {75, 44103}, {92, 386}, {162, 23879}, {278, 3876}, {286, 56926}, {648, 47842}, {811, 42664}, {834, 6335}, {1474, 42714}, {1783, 45746}, {1897, 14349}, {6331, 50488}, {6591, 33948}, {17555, 53082}
X(57704) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 469}, {6, 5224}, {125, 23879}, {206, 44103}, {6505, 33935}, {17423, 42664}, {22391, 386}, {34467, 14349}, {36033, 28606}, {39006, 45746}, {40591, 56810}, {51574, 42714}, {55066, 47842}, {57501, 26911}
X(57704) = pole of line {469, 5224} with respect to the Stammler hyperbola
X(57704) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(199)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(9), X(8606)}}, {{A, B, C, X(48), X(184)}}, {{A, B, C, X(212), X(284)}}, {{A, B, C, X(216), X(573)}}, {{A, B, C, X(219), X(1100)}}, {{A, B, C, X(572), X(577)}}, {{A, B, C, X(579), X(18591)}}, {{A, B, C, X(1011), X(7560)}}, {{A, B, C, X(1214), X(39798)}}, {{A, B, C, X(1791), X(40746)}}, {{A, B, C, X(2155), X(38258)}}, {{A, B, C, X(2193), X(2278)}}, {{A, B, C, X(2197), X(20966)}}, {{A, B, C, X(2221), X(7085)}}, {{A, B, C, X(2318), X(45129)}}, {{A, B, C, X(3694), X(39974)}}, {{A, B, C, X(4303), X(7163)}}, {{A, B, C, X(5158), X(37508)}}, {{A, B, C, X(20818), X(22357)}}, {{A, B, C, X(25426), X(43072)}}, {{A, B, C, X(32656), X(34071)}}, {{A, B, C, X(36952), X(40085)}}, {{A, B, C, X(40518), X(40519)}}, {{A, B, C, X(41087), X(45127)}}, {{A, B, C, X(45126), X(56225)}}
X(57704) = barycentric product X(i)*X(j) for these (i, j): {3, 43531}, {6, 57876}, {184, 57824}, {1331, 43927}, {1459, 835}, {2214, 63}, {22383, 37218}, {45127, 45999}, {56047, 71}
X(57704) = barycentric quotient X(i)/X(j) for these (i, j): {3, 5224}, {6, 469}, {32, 44103}, {48, 28606}, {63, 33935}, {71, 56810}, {72, 42714}, {184, 386}, {212, 3876}, {222, 33949}, {647, 23879}, {810, 47842}, {1331, 33948}, {1459, 45746}, {2200, 56926}, {2214, 92}, {3049, 42664}, {22383, 14349}, {43531, 264}, {43927, 46107}, {55230, 23282}, {56047, 44129}, {57824, 18022}, {57876, 76}


X(57705) = ISOGONAL CONJUGATE OF X(474)

Barycentrics    a*(2*a*b*(a+b)-(a-b)^2*c+c^3)*(-b^3+a^2*(b-2*c)+b*c^2-2*a*c*(b+c)) : :

X(57705) lies on the Jerabek hyperbola and on these lines: {2, 49557}, {3, 16948}, {6, 4222}, {28, 2213}, {51, 51223}, {54, 5320}, {68, 6893}, {69, 5084}, {71, 380}, {72, 145}, {73, 995}, {387, 57666}, {391, 3697}, {1242, 14018}, {1697, 50575}, {1903, 5802}, {2316, 5264}, {5053, 57704}, {5439, 30712}, {5687, 23617}, {5706, 52518}, {5800, 43726}, {6848, 43724}, {11111, 34259}, {17527, 33172}, {28029, 57706}, {33849, 57667}, {35650, 52390}, {41435, 47038}

X(57705) = isogonal conjugate of X(474)
X(57705) = isotomic conjugate of X(44147)
X(57705) = trilinear pole of line {647, 4394}
X(57705) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 474}, {31, 44147}, {75, 44104}, {100, 48342}
X(57705) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 44147}, {3, 474}, {206, 44104}, {8054, 48342}
X(57705) = X(i)-cross conjugate of X(j) for these {i, j}: {4646, 1}, {5069, 2}
X(57705) = pole of line {474, 44104} with respect to the Stammler hyperbola
X(57705) = pole of line {474, 44147} with respect to the Wallace hyperbola
X(57705) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(145)}}, {{A, B, C, X(2), X(3293)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(7), X(1126)}}, {{A, B, C, X(8), X(58)}}, {{A, B, C, X(9), X(28)}}, {{A, B, C, X(10), X(39956)}}, {{A, B, C, X(21), X(998)}}, {{A, B, C, X(24), X(6893)}}, {{A, B, C, X(25), X(5084)}}, {{A, B, C, X(29), X(19256)}}, {{A, B, C, X(34), X(943)}}, {{A, B, C, X(40), X(38308)}}, {{A, B, C, X(43), X(26029)}}, {{A, B, C, X(51), X(5320)}}, {{A, B, C, X(56), X(1000)}}, {{A, B, C, X(57), X(38271)}}, {{A, B, C, X(59), X(5555)}}, {{A, B, C, X(60), X(30513)}}, {{A, B, C, X(79), X(1002)}}, {{A, B, C, X(80), X(959)}}, {{A, B, C, X(87), X(43073)}}, {{A, B, C, X(90), X(961)}}, {{A, B, C, X(105), X(7162)}}, {{A, B, C, X(106), X(7320)}}, {{A, B, C, X(213), X(263)}}, {{A, B, C, X(256), X(979)}}, {{A, B, C, X(262), X(41013)}}, {{A, B, C, X(269), X(7160)}}, {{A, B, C, X(386), X(5053)}}, {{A, B, C, X(391), X(1697)}}, {{A, B, C, X(393), X(51500)}}, {{A, B, C, X(406), X(33849)}}, {{A, B, C, X(474), X(4646)}}, {{A, B, C, X(475), X(28029)}}, {{A, B, C, X(513), X(1391)}}, {{A, B, C, X(598), X(40408)}}, {{A, B, C, X(751), X(1220)}}, {{A, B, C, X(759), X(56203)}}, {{A, B, C, X(765), X(977)}}, {{A, B, C, X(941), X(43531)}}, {{A, B, C, X(947), X(10309)}}, {{A, B, C, X(955), X(1174)}}, {{A, B, C, X(963), X(10307)}}, {{A, B, C, X(987), X(9282)}}, {{A, B, C, X(994), X(7319)}}, {{A, B, C, X(1005), X(14018)}}, {{A, B, C, X(1014), X(32635)}}, {{A, B, C, X(1039), X(52663)}}, {{A, B, C, X(1057), X(1413)}}, {{A, B, C, X(1118), X(2259)}}, {{A, B, C, X(1167), X(3418)}}, {{A, B, C, X(1219), X(15315)}}, {{A, B, C, X(1388), X(24928)}}, {{A, B, C, X(1411), X(37739)}}, {{A, B, C, X(1472), X(9432)}}, {{A, B, C, X(1937), X(11546)}}, {{A, B, C, X(2078), X(18398)}}, {{A, B, C, X(2163), X(5559)}}, {{A, B, C, X(2217), X(55918)}}, {{A, B, C, X(2335), X(8747)}}, {{A, B, C, X(2350), X(56161)}}, {{A, B, C, X(3194), X(5802)}}, {{A, B, C, X(3345), X(14493)}}, {{A, B, C, X(3420), X(53089)}}, {{A, B, C, X(3422), X(3450)}}, {{A, B, C, X(3423), X(42019)}}, {{A, B, C, X(3449), X(52186)}}, {{A, B, C, X(3478), X(56089)}}, {{A, B, C, X(3616), X(50575)}}, {{A, B, C, X(3678), X(35650)}}, {{A, B, C, X(3697), X(14556)}}, {{A, B, C, X(3752), X(5687)}}, {{A, B, C, X(3753), X(4255)}}, {{A, B, C, X(4185), X(11111)}}, {{A, B, C, X(4186), X(17567)}}, {{A, B, C, X(4219), X(37421)}}, {{A, B, C, X(5007), X(47038)}}, {{A, B, C, X(5069), X(44147)}}, {{A, B, C, X(5136), X(28376)}}, {{A, B, C, X(5142), X(35988)}}, {{A, B, C, X(5264), X(16704)}}, {{A, B, C, X(5557), X(41439)}}, {{A, B, C, X(5558), X(41434)}}, {{A, B, C, X(5706), X(40065)}}, {{A, B, C, X(6848), X(7412)}}, {{A, B, C, X(6930), X(37117)}}, {{A, B, C, X(9343), X(34434)}}, {{A, B, C, X(13476), X(43733)}}, {{A, B, C, X(13576), X(39965)}}, {{A, B, C, X(15998), X(40505)}}, {{A, B, C, X(18490), X(20615)}}, {{A, B, C, X(18840), X(39979)}}, {{A, B, C, X(18841), X(39957)}}, {{A, B, C, X(26093), X(50581)}}, {{A, B, C, X(27375), X(45966)}}, {{A, B, C, X(28658), X(41506)}}, {{A, B, C, X(30701), X(56011)}}, {{A, B, C, X(30711), X(53083)}}, {{A, B, C, X(31359), X(37129)}}, {{A, B, C, X(32022), X(37128)}}, {{A, B, C, X(34260), X(56046)}}, {{A, B, C, X(37741), X(57403)}}, {{A, B, C, X(39950), X(55937)}}, {{A, B, C, X(39969), X(45989)}}, {{A, B, C, X(39975), X(43533)}}, {{A, B, C, X(39984), X(56174)}}, {{A, B, C, X(41446), X(43731)}}, {{A, B, C, X(48927), X(52382)}}
X(57705) = barycentric product X(i)*X(j) for these (i, j): {6, 57877}
X(57705) = barycentric quotient X(i)/X(j) for these (i, j): {2, 44147}, {6, 474}, {32, 44104}, {649, 48342}, {57877, 76}


X(57706) = ISOGONAL CONJUGATE OF X(475)

Barycentrics    a^2*(a^2-b^2-c^2)*((a-b)*(a+b)^2+(a^2-2*a*b-b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2-2*b*c-c^2)) : :

X(57706) lies on the Jerabek hyperbola and on these lines: {4, 32911}, {6, 13730}, {54, 36742}, {64, 36745}, {65, 16466}, {66, 16471}, {69, 57878}, {71, 22131}, {72, 1062}, {184, 57667}, {218, 1903}, {386, 57659}, {1181, 43724}, {3527, 37509}, {4224, 51223}, {4255, 34435}, {5096, 34436}, {12649, 27378}, {14528, 36746}, {28029, 57705}, {34207, 36741}, {36740, 43725}, {36750, 43908}, {43703, 54386}

X(57706) = isogonal conjugate of X(475)
X(57706) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 475}, {75, 44105}, {92, 36743}, {1474, 42715}
X(57706) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 475}, {206, 44105}, {22391, 36743}, {51574, 42715}
X(57706) = pole of line {475, 44105} with respect to the Stammler hyperbola
X(57706) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(22131)}}, {{A, B, C, X(2), X(13730)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(56), X(1062)}}, {{A, B, C, X(58), X(78)}}, {{A, B, C, X(77), X(1126)}}, {{A, B, C, X(184), X(213)}}, {{A, B, C, X(216), X(36742)}}, {{A, B, C, X(218), X(7078)}}, {{A, B, C, X(219), X(1437)}}, {{A, B, C, X(222), X(1170)}}, {{A, B, C, X(271), X(2316)}}, {{A, B, C, X(394), X(32911)}}, {{A, B, C, X(405), X(4224)}}, {{A, B, C, X(474), X(28029)}}, {{A, B, C, X(577), X(36754)}}, {{A, B, C, X(603), X(1069)}}, {{A, B, C, X(859), X(27378)}}, {{A, B, C, X(957), X(1265)}}, {{A, B, C, X(1433), X(34040)}}, {{A, B, C, X(1459), X(38248)}}, {{A, B, C, X(1471), X(7124)}}, {{A, B, C, X(1795), X(52186)}}, {{A, B, C, X(2334), X(7100)}}, {{A, B, C, X(2338), X(2360)}}, {{A, B, C, X(2350), X(23620)}}, {{A, B, C, X(5096), X(22120)}}, {{A, B, C, X(5247), X(20812)}}, {{A, B, C, X(5440), X(42461)}}, {{A, B, C, X(11334), X(24984)}}, {{A, B, C, X(12649), X(22350)}}, {{A, B, C, X(13733), X(25540)}}, {{A, B, C, X(14376), X(39979)}}, {{A, B, C, X(15851), X(37501)}}, {{A, B, C, X(15905), X(36745)}}, {{A, B, C, X(22132), X(54386)}}, {{A, B, C, X(23115), X(36741)}}, {{A, B, C, X(27505), X(37034)}}, {{A, B, C, X(28104), X(37249)}}, {{A, B, C, X(36748), X(37509)}}, {{A, B, C, X(36750), X(36751)}}, {{A, B, C, X(51340), X(52703)}}
X(57706) = barycentric product X(i)*X(j) for these (i, j): {6, 57878}
X(57706) = barycentric quotient X(i)/X(j) for these (i, j): {6, 475}, {32, 44105}, {72, 42715}, {184, 36743}, {57878, 76}


X(57707) = ISOGONAL CONJUGATE OF X(495)

Barycentrics    a^2*((a^2-b^2)^2-(a^2+4*a*b+b^2)*c^2)*(a^4-4*a*b^2*c-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(57707) lies on these lines: {1, 43598}, {11, 5397}, {36, 1064}, {59, 5396}, {354, 1870}, {392, 1621}, {496, 3615}, {1443, 38859}, {2323, 4251}, {2594, 57708}, {3737, 9275}, {37730, 56143}

X(57707) = isogonal conjugate of X(495)
X(57707) = trilinear pole of line {654, 21007}
X(57707) = X(i)-vertex conjugate of X(j) for these {i, j}: {957, 57707}, {994, 3449}
X(57707) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36)}}, {{A, B, C, X(3), X(354)}}, {{A, B, C, X(4), X(1036)}}, {{A, B, C, X(6), X(392)}}, {{A, B, C, X(7), X(74)}}, {{A, B, C, X(8), X(1173)}}, {{A, B, C, X(11), X(5396)}}, {{A, B, C, X(21), X(36009)}}, {{A, B, C, X(28), X(37306)}}, {{A, B, C, X(55), X(55918)}}, {{A, B, C, X(56), X(1175)}}, {{A, B, C, X(58), X(105)}}, {{A, B, C, X(64), X(43733)}}, {{A, B, C, X(79), X(16835)}}, {{A, B, C, X(80), X(14483)}}, {{A, B, C, X(102), X(13404)}}, {{A, B, C, X(104), X(284)}}, {{A, B, C, X(106), X(3449)}}, {{A, B, C, X(110), X(1983)}}, {{A, B, C, X(496), X(2594)}}, {{A, B, C, X(947), X(15179)}}, {{A, B, C, X(994), X(38882)}}, {{A, B, C, X(999), X(37600)}}, {{A, B, C, X(1016), X(30535)}}, {{A, B, C, X(1037), X(3431)}}, {{A, B, C, X(1059), X(14528)}}, {{A, B, C, X(1061), X(56328)}}, {{A, B, C, X(1067), X(5331)}}, {{A, B, C, X(1069), X(1798)}}, {{A, B, C, X(1126), X(3450)}}, {{A, B, C, X(1176), X(1807)}}, {{A, B, C, X(1243), X(24298)}}, {{A, B, C, X(1476), X(52185)}}, {{A, B, C, X(2191), X(3418)}}, {{A, B, C, X(2320), X(28219)}}, {{A, B, C, X(2346), X(36052)}}, {{A, B, C, X(2717), X(39391)}}, {{A, B, C, X(2981), X(14359)}}, {{A, B, C, X(3304), X(17502)}}, {{A, B, C, X(3435), X(51223)}}, {{A, B, C, X(3478), X(14497)}}, {{A, B, C, X(3527), X(43734)}}, {{A, B, C, X(3563), X(7040)}}, {{A, B, C, X(5347), X(37592)}}, {{A, B, C, X(5399), X(37722)}}, {{A, B, C, X(5551), X(11270)}}, {{A, B, C, X(5558), X(7163)}}, {{A, B, C, X(5560), X(52792)}}, {{A, B, C, X(5561), X(13603)}}, {{A, B, C, X(5563), X(11279)}}, {{A, B, C, X(6151), X(14358)}}, {{A, B, C, X(7049), X(57392)}}, {{A, B, C, X(7091), X(10623)}}, {{A, B, C, X(7160), X(56343)}}, {{A, B, C, X(7284), X(28173)}}, {{A, B, C, X(7320), X(34567)}}, {{A, B, C, X(9309), X(41442)}}, {{A, B, C, X(11376), X(37698)}}, {{A, B, C, X(13472), X(42019)}}, {{A, B, C, X(13476), X(34442)}}, {{A, B, C, X(15339), X(43732)}}, {{A, B, C, X(20615), X(34435)}}, {{A, B, C, X(41434), X(56040)}}, {{A, B, C, X(52392), X(55978)}}
X(57707) = barycentric product X(i)*X(j) for these (i, j): {6, 57881}
X(57707) = barycentric quotient X(i)/X(j) for these (i, j): {6, 495}, {57881, 76}


X(57708) = ISOGONAL CONJUGATE OF X(496)

Barycentrics    a^2*((a^2-b^2)^2-(a^2-4*a*b+b^2)*c^2)*(a^4+4*a*b^2*c-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(57708) lies on these lines: {5, 40450}, {36, 1066}, {60, 5399}, {495, 3615}, {1443, 3579}, {1870, 3057}, {2594, 57707}, {3555, 4511}, {5397, 15888}, {10944, 40437}, {11010, 56844}

X(57708) = isogonal conjugate of X(496)
X(57708) = X(i)-cross conjugate of X(j) for these {i, j}: {48390, 100}
X(57708) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36)}}, {{A, B, C, X(3), X(1000)}}, {{A, B, C, X(4), X(1037)}}, {{A, B, C, X(6), X(1059)}}, {{A, B, C, X(7), X(1173)}}, {{A, B, C, X(8), X(74)}}, {{A, B, C, X(9), X(10623)}}, {{A, B, C, X(12), X(5399)}}, {{A, B, C, X(35), X(11010)}}, {{A, B, C, X(55), X(3579)}}, {{A, B, C, X(56), X(24928)}}, {{A, B, C, X(58), X(8686)}}, {{A, B, C, X(64), X(43734)}}, {{A, B, C, X(79), X(14483)}}, {{A, B, C, X(80), X(16835)}}, {{A, B, C, X(90), X(28173)}}, {{A, B, C, X(104), X(1167)}}, {{A, B, C, X(105), X(57403)}}, {{A, B, C, X(106), X(3450)}}, {{A, B, C, X(495), X(2594)}}, {{A, B, C, X(943), X(947)}}, {{A, B, C, X(945), X(33963)}}, {{A, B, C, X(951), X(1389)}}, {{A, B, C, X(959), X(41487)}}, {{A, B, C, X(963), X(55918)}}, {{A, B, C, X(1036), X(3431)}}, {{A, B, C, X(1057), X(14528)}}, {{A, B, C, X(1063), X(56179)}}, {{A, B, C, X(1068), X(3563)}}, {{A, B, C, X(1126), X(3449)}}, {{A, B, C, X(1175), X(2334)}}, {{A, B, C, X(1176), X(7100)}}, {{A, B, C, X(1476), X(36052)}}, {{A, B, C, X(1509), X(30535)}}, {{A, B, C, X(2316), X(10308)}}, {{A, B, C, X(2346), X(52185)}}, {{A, B, C, X(2718), X(39392)}}, {{A, B, C, X(3422), X(7320)}}, {{A, B, C, X(3527), X(43733)}}, {{A, B, C, X(5396), X(15888)}}, {{A, B, C, X(5558), X(34567)}}, {{A, B, C, X(5560), X(13603)}}, {{A, B, C, X(7074), X(11578)}}, {{A, B, C, X(7162), X(37741)}}, {{A, B, C, X(7317), X(11270)}}, {{A, B, C, X(9268), X(55991)}}, {{A, B, C, X(10944), X(34586)}}, {{A, B, C, X(13472), X(18490)}}, {{A, B, C, X(13606), X(41432)}}, {{A, B, C, X(15337), X(43731)}}, {{A, B, C, X(17501), X(46851)}}, {{A, B, C, X(17718), X(37698)}}, {{A, B, C, X(32635), X(56587)}}, {{A, B, C, X(34441), X(46187)}}, {{A, B, C, X(41434), X(57395)}}, {{A, B, C, X(43732), X(52792)}}, {{A, B, C, X(54123), X(56004)}}, {{A, B, C, X(56003), X(56140)}}
X(57708) = barycentric product X(i)*X(j) for these (i, j): {6, 57882}
X(57708) = barycentric quotient X(i)/X(j) for these (i, j): {6, 496}, {57882, 76}


X(57709) = ISOGONAL CONJUGATE OF X(498)

Barycentrics    a^2*((a^2-b^2)^2-2*(a^2+a*b+b^2)*c^2+c^4)*(a^4-2*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(57709) lies on these lines: {1, 1993}, {6, 47}, {34, 5902}, {42, 52186}, {56, 20122}, {58, 14793}, {86, 499}, {269, 3337}, {386, 36052}, {581, 36152}, {998, 54421}, {1126, 16473}, {1220, 10573}, {1411, 36750}, {1497, 41487}, {1737, 43531}, {5708, 52372}, {10267, 36747}, {11072, 54402}, {11073, 54403}

X(57709) = isogonal conjugate of X(498)
X(57709) = trilinear pole of line {649, 34948}
X(57709) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 498}, {4, 26921}, {8, 1454}, {72, 14016}, {7162, 10044}
X(57709) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 498}, {36033, 26921}
X(57709) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56041, 2337}
X(57709) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(3), X(79)}}, {{A, B, C, X(4), X(60)}}, {{A, B, C, X(7), X(54)}}, {{A, B, C, X(8), X(1173)}}, {{A, B, C, X(33), X(7042)}}, {{A, B, C, X(35), X(5708)}}, {{A, B, C, X(36), X(15173)}}, {{A, B, C, X(37), X(16472)}}, {{A, B, C, X(42), X(499)}}, {{A, B, C, X(47), X(81)}}, {{A, B, C, X(55), X(3337)}}, {{A, B, C, X(57), X(921)}}, {{A, B, C, X(59), X(3296)}}, {{A, B, C, X(64), X(5561)}}, {{A, B, C, X(65), X(14793)}}, {{A, B, C, X(74), X(5556)}}, {{A, B, C, X(77), X(15316)}}, {{A, B, C, X(80), X(1036)}}, {{A, B, C, X(84), X(2364)}}, {{A, B, C, X(90), X(284)}}, {{A, B, C, X(91), X(256)}}, {{A, B, C, X(102), X(17098)}}, {{A, B, C, X(158), X(751)}}, {{A, B, C, X(267), X(1436)}}, {{A, B, C, X(371), X(13390)}}, {{A, B, C, X(372), X(1659)}}, {{A, B, C, X(386), X(1737)}}, {{A, B, C, X(493), X(3302)}}, {{A, B, C, X(494), X(3300)}}, {{A, B, C, X(581), X(1838)}}, {{A, B, C, X(588), X(1336)}}, {{A, B, C, X(589), X(1123)}}, {{A, B, C, X(608), X(849)}}, {{A, B, C, X(611), X(5299)}}, {{A, B, C, X(613), X(5280)}}, {{A, B, C, X(757), X(2190)}}, {{A, B, C, X(942), X(36152)}}, {{A, B, C, X(947), X(7284)}}, {{A, B, C, X(957), X(18772)}}, {{A, B, C, X(994), X(3435)}}, {{A, B, C, X(999), X(21842)}}, {{A, B, C, X(1037), X(5557)}}, {{A, B, C, X(1057), X(5559)}}, {{A, B, C, X(1100), X(16473)}}, {{A, B, C, X(1124), X(3301)}}, {{A, B, C, X(1175), X(9309)}}, {{A, B, C, X(1193), X(10573)}}, {{A, B, C, X(1335), X(3299)}}, {{A, B, C, X(1433), X(34043)}}, {{A, B, C, X(2221), X(36051)}}, {{A, B, C, X(2316), X(7162)}}, {{A, B, C, X(2962), X(4492)}}, {{A, B, C, X(3062), X(56587)}}, {{A, B, C, X(3338), X(10267)}}, {{A, B, C, X(3417), X(17097)}}, {{A, B, C, X(3425), X(7249)}}, {{A, B, C, X(3431), X(43733)}}, {{A, B, C, X(3433), X(57395)}}, {{A, B, C, X(3450), X(51223)}}, {{A, B, C, X(3463), X(20764)}}, {{A, B, C, X(3478), X(21398)}}, {{A, B, C, X(3531), X(17501)}}, {{A, B, C, X(4282), X(36750)}}, {{A, B, C, X(5417), X(14121)}}, {{A, B, C, X(5419), X(7090)}}, {{A, B, C, X(5551), X(41431)}}, {{A, B, C, X(5555), X(15381)}}, {{A, B, C, X(5558), X(34567)}}, {{A, B, C, X(5560), X(52518)}}, {{A, B, C, X(5563), X(10246)}}, {{A, B, C, X(7100), X(15317)}}, {{A, B, C, X(7319), X(14483)}}, {{A, B, C, X(10308), X(37741)}}, {{A, B, C, X(10399), X(22122)}}, {{A, B, C, X(11270), X(15339)}}, {{A, B, C, X(14491), X(41432)}}, {{A, B, C, X(14495), X(52133)}}, {{A, B, C, X(14528), X(43732)}}, {{A, B, C, X(14621), X(56004)}}, {{A, B, C, X(15291), X(41084)}}, {{A, B, C, X(18398), X(41345)}}, {{A, B, C, X(30535), X(30701)}}, {{A, B, C, X(43731), X(53089)}}, {{A, B, C, X(46427), X(55017)}}
X(57709) = barycentric product X(i)*X(j) for these (i, j): {1, 56041}, {6, 57883}, {2337, 7}
X(57709) = barycentric quotient X(i)/X(j) for these (i, j): {6, 498}, {48, 26921}, {604, 1454}, {1474, 14016}, {2337, 8}, {56041, 75}, {57883, 76}


X(57710) = ISOGONAL CONJUGATE OF X(500)

Barycentrics    (a^2+a*b+b^2-c^2)*(a^2-b^2+a*c+c^2)*((a-b)^2*(a+b)-2*a*b*c-(a+b)*c^2)*(a^3-a^2*c-b^2*c+c^3-a*(b+c)^2) : :

X(57710) lies on these lines: {1, 43682}, {2, 582}, {3, 52393}, {4, 584}, {5, 57721}, {6, 57720}, {10, 7110}, {35, 79}, {58, 54700}, {74, 3649}, {76, 57885}, {94, 6740}, {265, 1175}, {321, 4420}, {381, 54929}, {942, 38340}, {1029, 37433}, {1141, 15439}, {1442, 1446}, {1751, 6990}, {1834, 1989}, {2166, 35320}, {2259, 18406}, {3811, 6757}, {4294, 41504}, {6198, 7073}, {6845, 13478}, {6985, 56845}, {10404, 10623}, {13407, 36001}, {17758, 52375}, {22791, 41432}, {30690, 34772}, {32014, 40412}, {36026, 37080}, {37741, 57282}

X(57710) = isogonal conjugate of X(500)
X(57710) = trilinear pole of line {9404, 52002}
X(57710) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 500}, {3, 1844}, {6, 16585}, {35, 942}, {48, 445}, {56, 31938}, {63, 44095}, {319, 40956}, {442, 17104}, {1399, 6734}, {1442, 14547}, {1838, 52408}, {2003, 40937}, {2174, 5249}, {2260, 3219}, {2294, 40214}, {2594, 54356}, {4303, 6198}, {6149, 45926}, {7282, 23207}, {11107, 39791}, {14597, 52412}, {16577, 46882}, {34016, 40978}, {35192, 55010}, {40952, 56934}
X(57710) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 31938}, {3, 500}, {9, 16585}, {1249, 445}, {3162, 44095}, {14993, 45926}, {36103, 1844}, {56847, 442}
X(57710) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57885, 57860}
X(57710) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 943}, {650, 38340}, {11553, 1}, {57691, 57860}
X(57710) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(35)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(584)}}, {{A, B, C, X(6), X(582)}}, {{A, B, C, X(7), X(1300)}}, {{A, B, C, X(8), X(45138)}}, {{A, B, C, X(12), X(43917)}}, {{A, B, C, X(29), X(3651)}}, {{A, B, C, X(30), X(3649)}}, {{A, B, C, X(79), X(1141)}}, {{A, B, C, X(80), X(13597)}}, {{A, B, C, X(86), X(10308)}}, {{A, B, C, X(104), X(40430)}}, {{A, B, C, X(265), X(8818)}}, {{A, B, C, X(280), X(1294)}}, {{A, B, C, X(406), X(6851)}}, {{A, B, C, X(451), X(37433)}}, {{A, B, C, X(475), X(6849)}}, {{A, B, C, X(477), X(5557)}}, {{A, B, C, X(500), X(11553)}}, {{A, B, C, X(502), X(33565)}}, {{A, B, C, X(650), X(942)}}, {{A, B, C, X(757), X(34419)}}, {{A, B, C, X(860), X(6841)}}, {{A, B, C, X(1063), X(56225)}}, {{A, B, C, X(1065), X(1222)}}, {{A, B, C, X(1067), X(21453)}}, {{A, B, C, X(1220), X(16615)}}, {{A, B, C, X(1464), X(48903)}}, {{A, B, C, X(1826), X(43712)}}, {{A, B, C, X(1989), X(52382)}}, {{A, B, C, X(2363), X(2687)}}, {{A, B, C, X(3811), X(34772)}}, {{A, B, C, X(4194), X(6899)}}, {{A, B, C, X(4200), X(6896)}}, {{A, B, C, X(4654), X(41869)}}, {{A, B, C, X(4854), X(49743)}}, {{A, B, C, X(5125), X(6990)}}, {{A, B, C, X(5136), X(6985)}}, {{A, B, C, X(5434), X(22791)}}, {{A, B, C, X(5558), X(43660)}}, {{A, B, C, X(5951), X(40438)}}, {{A, B, C, X(6147), X(6284)}}, {{A, B, C, X(6344), X(6757)}}, {{A, B, C, X(6845), X(17555)}}, {{A, B, C, X(6998), X(31926)}}, {{A, B, C, X(7073), X(7100)}}, {{A, B, C, X(7354), X(39542)}}, {{A, B, C, X(7414), X(17584)}}, {{A, B, C, X(9503), X(35049)}}, {{A, B, C, X(10404), X(12699)}}, {{A, B, C, X(10543), X(16137)}}, {{A, B, C, X(11105), X(37356)}}, {{A, B, C, X(11604), X(14526)}}, {{A, B, C, X(13530), X(43732)}}, {{A, B, C, X(14483), X(39748)}}, {{A, B, C, X(15439), X(35320)}}, {{A, B, C, X(16152), X(16153)}}, {{A, B, C, X(17097), X(40437)}}, {{A, B, C, X(19605), X(41853)}}, {{A, B, C, X(24851), X(33097)}}, {{A, B, C, X(30257), X(39272)}}, {{A, B, C, X(37142), X(56254)}}, {{A, B, C, X(40431), X(43659)}}, {{A, B, C, X(41013), X(54125)}}, {{A, B, C, X(41864), X(41870)}}, {{A, B, C, X(44835), X(56174)}}, {{A, B, C, X(52500), X(55090)}}
X(57710) = barycentric product X(i)*X(j) for these (i, j): {4, 57860}, {6, 57885}, {264, 57691}, {2160, 40422}, {2982, 52344}, {20565, 2259}, {30690, 943}, {40395, 52388}, {40412, 8818}, {40435, 79}, {40447, 7100}, {56320, 6742}
X(57710) = barycentric quotient X(i)/X(j) for these (i, j): {1, 16585}, {4, 445}, {6, 500}, {9, 31938}, {19, 1844}, {25, 44095}, {79, 5249}, {943, 3219}, {1175, 40214}, {1989, 45926}, {2160, 942}, {2259, 35}, {2982, 1442}, {6186, 2260}, {7073, 40937}, {7100, 18607}, {7110, 6734}, {8818, 442}, {40412, 34016}, {40422, 33939}, {40435, 319}, {40573, 7282}, {52382, 55010}, {55236, 23752}, {56320, 4467}, {57691, 3}, {57860, 69}, {57885, 76}


X(57711) = ISOGONAL CONJUGATE OF X(535)

Barycentrics    a^2*((a^2-b^2)^2+a*b*(a+b)*c+(a-b)^2*c^2-2*c^4)*(a^4-2*b^4+b^2*c^2+c^4+a*b*c*(-2*b+c)+a^2*(b-c)*(b+2*c)) : :

X(57711) lies on the circumcircle and on these lines: {3, 39638}, {6, 29044}, {56, 47014}, {99, 57889}, {100, 5692}, {109, 4256}, {110, 4276}, {214, 13396}, {573, 28467}, {825, 4262}, {1308, 33844}, {4588, 5197}

X(57711) = reflection of X(i) in X(j) for these {i,j}: {39638, 3}
X(57711) = isogonal conjugate of X(535)
X(57711) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(41487)}}, {{A, B, C, X(6), X(80)}}, {{A, B, C, X(19), X(2163)}}, {{A, B, C, X(36), X(2161)}}, {{A, B, C, X(56), X(55929)}}, {{A, B, C, X(58), X(1156)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(214), X(902)}}, {{A, B, C, X(284), X(1320)}}, {{A, B, C, X(909), X(1168)}}, {{A, B, C, X(1036), X(3254)}}, {{A, B, C, X(1126), X(24297)}}, {{A, B, C, X(1811), X(41435)}}, {{A, B, C, X(2164), X(41436)}}, {{A, B, C, X(3417), X(48360)}}, {{A, B, C, X(3426), X(41442)}}, {{A, B, C, X(3431), X(41446)}}, {{A, B, C, X(3736), X(4262)}}, {{A, B, C, X(7163), X(38273)}}, {{A, B, C, X(11738), X(41439)}}, {{A, B, C, X(13452), X(56155)}}, {{A, B, C, X(14483), X(23959)}}, {{A, B, C, X(19302), X(34431)}}, {{A, B, C, X(33635), X(45393)}}, {{A, B, C, X(34434), X(57395)}}
X(57711) = barycentric product X(i)*X(j) for these (i, j): {6, 57889}
X(57711) = barycentric quotient X(i)/X(j) for these (i, j): {6, 535}, {57889, 76}


X(57712) = ISOGONAL CONJUGATE OF X(540)

Barycentrics    a^2*(a^4+a^2*b*c+a^3*(b+c)+a*(b+c)*(b^2-2*c^2)+(b+c)*(b^3-2*c^3))*(a^4+a^2*b*c+a^3*(b+c)-a*(b+c)*(2*b^2-c^2)-(b+c)*(2*b^3-c^3)) : :

X(57712) lies on the circumcircle and on these lines: {6, 52327}, {10, 835}, {56, 47018}, {99, 5224}, {101, 56926}, {106, 9142}, {110, 386}, {112, 44103}, {612, 9070}, {691, 51619}, {1310, 30115}, {28477, 37508}

X(57712) = isogonal conjugate of X(540)
X(57712) = trilinear pole of line {6, 42664}
X(57712) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(6), X(10)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(187), X(51619)}}, {{A, B, C, X(612), X(30115)}}, {{A, B, C, X(1247), X(2163)}}, {{A, B, C, X(2054), X(3455)}}, {{A, B, C, X(3426), X(3429)}}, {{A, B, C, X(3531), X(38309)}}, {{A, B, C, X(4256), X(4264)}}, {{A, B, C, X(4257), X(36744)}}, {{A, B, C, X(4674), X(34079)}}, {{A, B, C, X(34250), X(42285)}}, {{A, B, C, X(41434), X(56137)}}, {{A, B, C, X(43693), X(52153)}}
X(57712) = barycentric product X(i)*X(j) for these (i, j): {6, 57891}
X(57712) = barycentric quotient X(i)/X(j) for these (i, j): {6, 540}, {57891, 76}


X(57713) = ISOGONAL CONJUGATE OF X(546)

Barycentrics    a^2*(3*(a^2-b^2)^2-(a^2+b^2)*c^2-2*c^4)*(3*a^4-2*b^4-b^2*c^2+3*c^4-a^2*(b^2+6*c^2)) : :

X(57713) lies on the Jerabek hyperbola and on these lines: {2, 32533}, {3, 9706}, {4, 11202}, {5, 17505}, {6, 32534}, {24, 52518}, {54, 17506}, {64, 1614}, {68, 3523}, {69, 10299}, {72, 5303}, {74, 13367}, {110, 11559}, {140, 265}, {184, 11270}, {186, 1173}, {248, 37512}, {376, 31371}, {378, 22334}, {389, 34567}, {550, 3521}, {631, 15077}, {895, 20190}, {1176, 14810}, {1181, 43713}, {1199, 57714}, {1204, 20421}, {1656, 18392}, {1657, 18550}, {3090, 18296}, {3426, 3516}, {3515, 3527}, {3517, 3531}, {3519, 15712}, {3520, 16835}, {3522, 4846}, {3532, 19357}, {3533, 15749}, {3567, 55574}, {3917, 56069}, {5012, 16867}, {5056, 39242}, {5131, 52390}, {5206, 43718}, {5237, 36296}, {5238, 36297}, {5504, 15036}, {5890, 14528}, {5900, 20417}, {5944, 52100}, {6145, 37118}, {6241, 43719}, {6415, 6450}, {6416, 6449}, {7666, 11591}, {8550, 13622}, {10018, 22466}, {10212, 15057}, {10282, 13603}, {10610, 15051}, {10619, 33565}, {11430, 14483}, {11468, 44763}, {11744, 35491}, {12002, 37940}, {12038, 43689}, {12289, 38443}, {13421, 43394}, {13452, 35473}, {13472, 21844}, {13619, 18363}, {14094, 43720}, {14118, 15034}, {14157, 35478}, {14457, 35486}, {14490, 26882}, {14861, 33923}, {14865, 46848}, {15002, 43597}, {15020, 34864}, {15058, 51933}, {15646, 43600}, {15740, 21735}, {16665, 43601}, {18434, 52296}, {32171, 43613}, {34817, 55671}, {35485, 43695}, {37616, 52391}, {38263, 55697}, {40441, 43574}, {41435, 55668}, {43697, 52987}, {43706, 53096}, {43804, 55706}, {43918, 51255}, {44106, 47486}, {55658, 56072}

X(57713) = isogonal conjugate of X(546)
X(57713) = trilinear pole of line {647, 18365}
X(57713) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 546}, {75, 44106}
X(57713) = X(i)-vertex conjugate of X(j) for these {i, j}: {4, 1173}, {54, 57715}, {592, 54858}, {13603, 57714}, {14483, 14487}, {16835, 57713}, {34567, 46848}
X(57713) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 546}, {206, 44106}
X(57713) = X(i)-cross conjugate of X(j) for these {i, j}: {13382, 4}
X(57713) = pole of line {13382, 57713} with respect to the Jerabek hyperbola
X(57713) = pole of line {546, 44106} with respect to the Stammler hyperbola
X(57713) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(32534)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(5), X(17506)}}, {{A, B, C, X(15), X(5237)}}, {{A, B, C, X(16), X(5238)}}, {{A, B, C, X(20), X(35477)}}, {{A, B, C, X(24), X(3523)}}, {{A, B, C, X(25), X(10299)}}, {{A, B, C, X(32), X(17508)}}, {{A, B, C, X(35), X(5131)}}, {{A, B, C, X(36), X(37616)}}, {{A, B, C, X(39), X(14810)}}, {{A, B, C, X(56), X(17502)}}, {{A, B, C, X(58), X(28173)}}, {{A, B, C, X(59), X(5559)}}, {{A, B, C, X(60), X(5557)}}, {{A, B, C, X(84), X(28215)}}, {{A, B, C, X(95), X(20480)}}, {{A, B, C, X(96), X(13530)}}, {{A, B, C, X(97), X(43530)}}, {{A, B, C, X(98), X(11815)}}, {{A, B, C, X(104), X(5303)}}, {{A, B, C, X(140), X(186)}}, {{A, B, C, X(182), X(5206)}}, {{A, B, C, X(184), X(44082)}}, {{A, B, C, X(187), X(20190)}}, {{A, B, C, X(249), X(10159)}}, {{A, B, C, X(251), X(53100)}}, {{A, B, C, X(252), X(1300)}}, {{A, B, C, X(371), X(3590)}}, {{A, B, C, X(372), X(3591)}}, {{A, B, C, X(376), X(3516)}}, {{A, B, C, X(378), X(3522)}}, {{A, B, C, X(477), X(40448)}}, {{A, B, C, X(511), X(37512)}}, {{A, B, C, X(548), X(35478)}}, {{A, B, C, X(550), X(3520)}}, {{A, B, C, X(574), X(52987)}}, {{A, B, C, X(588), X(43570)}}, {{A, B, C, X(589), X(43571)}}, {{A, B, C, X(631), X(3515)}}, {{A, B, C, X(842), X(10185)}}, {{A, B, C, X(947), X(953)}}, {{A, B, C, X(1092), X(46091)}}, {{A, B, C, X(1126), X(28159)}}, {{A, B, C, X(1138), X(43666)}}, {{A, B, C, X(1141), X(9706)}}, {{A, B, C, X(1151), X(6450)}}, {{A, B, C, X(1152), X(6449)}}, {{A, B, C, X(1154), X(25042)}}, {{A, B, C, X(1157), X(10610)}}, {{A, B, C, X(1179), X(13597)}}, {{A, B, C, X(1297), X(7608)}}, {{A, B, C, X(1389), X(28185)}}, {{A, B, C, X(1487), X(10419)}}, {{A, B, C, X(1593), X(21735)}}, {{A, B, C, X(1614), X(38808)}}, {{A, B, C, X(1656), X(21844)}}, {{A, B, C, X(1657), X(35473)}}, {{A, B, C, X(2071), X(35491)}}, {{A, B, C, X(3098), X(53096)}}, {{A, B, C, X(3108), X(29011)}}, {{A, B, C, X(3417), X(28219)}}, {{A, B, C, X(3422), X(7320)}}, {{A, B, C, X(3425), X(43537)}}, {{A, B, C, X(3470), X(15051)}}, {{A, B, C, X(3471), X(15469)}}, {{A, B, C, X(3517), X(3524)}}, {{A, B, C, X(3518), X(15712)}}, {{A, B, C, X(3530), X(47486)}}, {{A, B, C, X(3533), X(15750)}}, {{A, B, C, X(3563), X(5481)}}, {{A, B, C, X(5007), X(55668)}}, {{A, B, C, X(5013), X(55610)}}, {{A, B, C, X(5056), X(35472)}}, {{A, B, C, X(5073), X(23040)}}, {{A, B, C, X(5092), X(35007)}}, {{A, B, C, X(5558), X(7163)}}, {{A, B, C, X(5879), X(56306)}}, {{A, B, C, X(5961), X(20191)}}, {{A, B, C, X(6200), X(6454)}}, {{A, B, C, X(6396), X(6453)}}, {{A, B, C, X(6662), X(9221)}}, {{A, B, C, X(6905), X(37289)}}, {{A, B, C, X(7488), X(37118)}}, {{A, B, C, X(7509), X(37460)}}, {{A, B, C, X(7550), X(37934)}}, {{A, B, C, X(10018), X(22467)}}, {{A, B, C, X(10295), X(14118)}}, {{A, B, C, X(10298), X(52296)}}, {{A, B, C, X(10308), X(28177)}}, {{A, B, C, X(10623), X(28211)}}, {{A, B, C, X(11202), X(14379)}}, {{A, B, C, X(11413), X(35485)}}, {{A, B, C, X(13367), X(51394)}}, {{A, B, C, X(13381), X(15424)}}, {{A, B, C, X(13599), X(46259)}}, {{A, B, C, X(13619), X(18364)}}, {{A, B, C, X(14264), X(15036)}}, {{A, B, C, X(14355), X(15059)}}, {{A, B, C, X(14385), X(15035)}}, {{A, B, C, X(14863), X(18401)}}, {{A, B, C, X(14865), X(33923)}}, {{A, B, C, X(15318), X(16837)}}, {{A, B, C, X(15513), X(55706)}}, {{A, B, C, X(15620), X(33643)}}, {{A, B, C, X(15720), X(44879)}}, {{A, B, C, X(16080), X(31626)}}, {{A, B, C, X(16615), X(28163)}}, {{A, B, C, X(17928), X(35486)}}, {{A, B, C, X(18212), X(36966)}}, {{A, B, C, X(18851), X(34233)}}, {{A, B, C, X(20419), X(34485)}}, {{A, B, C, X(22270), X(46223)}}, {{A, B, C, X(22751), X(41891)}}, {{A, B, C, X(26201), X(34441)}}, {{A, B, C, X(29180), X(54857)}}, {{A, B, C, X(30535), X(53102)}}, {{A, B, C, X(30541), X(43681)}}, {{A, B, C, X(31652), X(55601)}}, {{A, B, C, X(34153), X(34210)}}, {{A, B, C, X(35487), X(37941)}}, {{A, B, C, X(40082), X(48361)}}, {{A, B, C, X(40801), X(53098)}}, {{A, B, C, X(43574), X(51255)}}, {{A, B, C, X(43660), X(45300)}}, {{A, B, C, X(44681), X(45299)}}, {{A, B, C, X(45301), X(51761)}}, {{A, B, C, X(46081), X(46427)}}
X(57713) = barycentric product X(i)*X(j) for these (i, j): {6, 57894}
X(57713) = barycentric quotient X(i)/X(j) for these (i, j): {6, 546}, {32, 44106}, {57894, 76}
X(57713) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3520, 44110, 16835}


X(57714) = ISOGONAL CONJUGATE OF X(547)

Barycentrics    a^2*(5*(a^2-b^2)^2-7*(a^2+b^2)*c^2+2*c^4)*(5*a^4+2*b^4-7*b^2*c^2+5*c^4-a^2*(7*b^2+10*c^2)) : :

X(57714) lies on the Jerabek hyperbola and on these lines: {6, 41448}, {54, 44880}, {64, 43602}, {67, 12007}, {68, 7486}, {69, 10168}, {74, 13366}, {184, 14491}, {265, 5066}, {578, 13452}, {895, 15516}, {1173, 1495}, {1176, 55716}, {1199, 57713}, {1614, 52518}, {3426, 15033}, {3519, 55859}, {3531, 11402}, {3855, 15749}, {4846, 15683}, {5890, 43713}, {7592, 43719}, {10752, 34437}, {11423, 22334}, {11464, 43908}, {14157, 14487}, {14483, 44109}, {15032, 16835}, {15520, 43697}, {22233, 31860}, {26864, 46928}, {34567, 47486}, {34802, 51882}, {38848, 57730}, {41435, 55696}, {44731, 55572}, {55585, 56072}

X(57714) = isogonal conjugate of X(547)
X(57714) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 547}, {75, 44107}
X(57714) = X(i)-vertex conjugate of X(j) for these {i, j}: {6, 1173}, {54, 14487}, {13603, 57713}, {14483, 57714}
X(57714) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 547}, {206, 44107}
X(57714) = pole of line {547, 44107} with respect to the Stammler hyperbola
X(57714) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(4)}}, {{A, B, C, X(5), X(44880)}}, {{A, B, C, X(15), X(33606)}}, {{A, B, C, X(16), X(33607)}}, {{A, B, C, X(24), X(7486)}}, {{A, B, C, X(25), X(15709)}}, {{A, B, C, X(32), X(55710)}}, {{A, B, C, X(39), X(55716)}}, {{A, B, C, X(60), X(13606)}}, {{A, B, C, X(111), X(53104)}}, {{A, B, C, X(184), X(46091)}}, {{A, B, C, X(186), X(5066)}}, {{A, B, C, X(187), X(15516)}}, {{A, B, C, X(288), X(40384)}}, {{A, B, C, X(378), X(15683)}}, {{A, B, C, X(549), X(52294)}}, {{A, B, C, X(574), X(15520)}}, {{A, B, C, X(592), X(729)}}, {{A, B, C, X(842), X(3108)}}, {{A, B, C, X(953), X(41434)}}, {{A, B, C, X(1126), X(28203)}}, {{A, B, C, X(1131), X(6396)}}, {{A, B, C, X(1132), X(6200)}}, {{A, B, C, X(1141), X(45857)}}, {{A, B, C, X(1166), X(43657)}}, {{A, B, C, X(1383), X(43662)}}, {{A, B, C, X(1495), X(13366)}}, {{A, B, C, X(1976), X(10168)}}, {{A, B, C, X(2163), X(28219)}}, {{A, B, C, X(2383), X(39390)}}, {{A, B, C, X(2987), X(10302)}}, {{A, B, C, X(3311), X(34089)}}, {{A, B, C, X(3312), X(34091)}}, {{A, B, C, X(3563), X(11669)}}, {{A, B, C, X(3590), X(6419)}}, {{A, B, C, X(3591), X(6420)}}, {{A, B, C, X(3628), X(47486)}}, {{A, B, C, X(3839), X(35472)}}, {{A, B, C, X(3855), X(15750)}}, {{A, B, C, X(5007), X(55696)}}, {{A, B, C, X(5008), X(55706)}}, {{A, B, C, X(5041), X(55601)}}, {{A, B, C, X(5068), X(35479)}}, {{A, B, C, X(6199), X(6471)}}, {{A, B, C, X(6395), X(6470)}}, {{A, B, C, X(6417), X(6469)}}, {{A, B, C, X(6418), X(6468)}}, {{A, B, C, X(7772), X(55585)}}, {{A, B, C, X(8744), X(12007)}}, {{A, B, C, X(8753), X(51140)}}, {{A, B, C, X(9139), X(14979)}}, {{A, B, C, X(11169), X(13530)}}, {{A, B, C, X(11181), X(14494)}}, {{A, B, C, X(11410), X(15682)}}, {{A, B, C, X(13597), X(57408)}}, {{A, B, C, X(14496), X(28189)}}, {{A, B, C, X(34572), X(54608)}}, {{A, B, C, X(38848), X(39667)}}, {{A, B, C, X(39955), X(54866)}}, {{A, B, C, X(53890), X(54891)}}
X(57714) = barycentric product X(i)*X(j) for these (i, j): {6, 57895}
X(57714) = barycentric quotient X(i)/X(j) for these (i, j): {6, 547}, {32, 44107}, {57895, 76}


X(57715) = ISOGONAL CONJUGATE OF X(548)

Barycentrics    a^2*((a^2-b^2)^2+5*(a^2+b^2)*c^2-6*c^4)*(a^4-6*b^4+5*b^2*c^2+c^4+a^2*(5*b^2-2*c^2)) : :
X(57715) = -5*X[3843]+4*X[13566], -8*X[3850]+5*X[14861], -35*X[41435]+32*X[55636]

X(57715) lies on the Jerabek hyperbola and on these lines: {3, 11439}, {5, 13623}, {6, 12290}, {24, 43713}, {25, 44763}, {30, 34483}, {54, 11381}, {68, 3543}, {69, 29317}, {74, 13474}, {185, 14483}, {265, 3853}, {546, 43899}, {1173, 6000}, {1176, 55695}, {1614, 14528}, {2777, 5900}, {3431, 6759}, {3521, 3845}, {3527, 6241}, {3531, 3567}, {3545, 15740}, {3832, 4846}, {3843, 13566}, {3850, 14861}, {3861, 43611}, {5059, 42021}, {5486, 12289}, {5890, 52518}, {5895, 38433}, {6145, 51491}, {7576, 16623}, {10110, 14487}, {10594, 43691}, {10721, 32340}, {11270, 47485}, {11424, 13472}, {11456, 44731}, {11457, 45088}, {12315, 15033}, {13603, 43806}, {13622, 18560}, {14157, 35478}, {14380, 20188}, {14865, 44108}, {15321, 43599}, {15811, 44878}, {16835, 32062}, {18368, 18400}, {21400, 38335}, {34817, 55618}, {41435, 55636}, {43580, 43704}

X(57715) = isogonal conjugate of X(548)
X(57715) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 548}, {75, 44108}
X(57715) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 1173}, {54, 57713}
X(57715) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 548}, {206, 44108}
X(57715) = pole of line {548, 44108} with respect to the Stammler hyperbola
X(57715) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(28211)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(5), X(13596)}}, {{A, B, C, X(24), X(3543)}}, {{A, B, C, X(25), X(33703)}}, {{A, B, C, X(30), X(20188)}}, {{A, B, C, X(58), X(28185)}}, {{A, B, C, X(59), X(17501)}}, {{A, B, C, X(79), X(15337)}}, {{A, B, C, X(80), X(15339)}}, {{A, B, C, X(84), X(28219)}}, {{A, B, C, X(93), X(17703)}}, {{A, B, C, X(103), X(16615)}}, {{A, B, C, X(111), X(54857)}}, {{A, B, C, X(186), X(3853)}}, {{A, B, C, X(252), X(45138)}}, {{A, B, C, X(262), X(44299)}}, {{A, B, C, X(371), X(43566)}}, {{A, B, C, X(372), X(43567)}}, {{A, B, C, X(378), X(3832)}}, {{A, B, C, X(382), X(47485)}}, {{A, B, C, X(477), X(1179)}}, {{A, B, C, X(512), X(29317)}}, {{A, B, C, X(546), X(35478)}}, {{A, B, C, X(575), X(15602)}}, {{A, B, C, X(847), X(11439)}}, {{A, B, C, X(947), X(14496)}}, {{A, B, C, X(953), X(10308)}}, {{A, B, C, X(1093), X(11455)}}, {{A, B, C, X(1105), X(11816)}}, {{A, B, C, X(1126), X(28145)}}, {{A, B, C, X(1141), X(43614)}}, {{A, B, C, X(1154), X(17507)}}, {{A, B, C, X(1294), X(11815)}}, {{A, B, C, X(1389), X(28173)}}, {{A, B, C, X(1593), X(3545)}}, {{A, B, C, X(1597), X(5067)}}, {{A, B, C, X(1614), X(19169)}}, {{A, B, C, X(2052), X(12290)}}, {{A, B, C, X(2981), X(43550)}}, {{A, B, C, X(2987), X(53106)}}, {{A, B, C, X(3062), X(28223)}}, {{A, B, C, X(3108), X(29316)}}, {{A, B, C, X(3424), X(43662)}}, {{A, B, C, X(3425), X(54519)}}, {{A, B, C, X(3520), X(3845)}}, {{A, B, C, X(3533), X(11403)}}, {{A, B, C, X(3563), X(14458)}}, {{A, B, C, X(3577), X(28215)}}, {{A, B, C, X(4994), X(11424)}}, {{A, B, C, X(5007), X(55636)}}, {{A, B, C, X(5008), X(55606)}}, {{A, B, C, X(5041), X(55674)}}, {{A, B, C, X(5056), X(35502)}}, {{A, B, C, X(5059), X(10594)}}, {{A, B, C, X(5097), X(15513)}}, {{A, B, C, X(5481), X(14488)}}, {{A, B, C, X(5551), X(53089)}}, {{A, B, C, X(5627), X(46429)}}, {{A, B, C, X(5897), X(15319)}}, {{A, B, C, X(5966), X(54891)}}, {{A, B, C, X(6000), X(44732)}}, {{A, B, C, X(6151), X(43551)}}, {{A, B, C, X(6344), X(32137)}}, {{A, B, C, X(6431), X(6455)}}, {{A, B, C, X(6432), X(6456)}}, {{A, B, C, X(6437), X(6447)}}, {{A, B, C, X(6438), X(6448)}}, {{A, B, C, X(6464), X(32532)}}, {{A, B, C, X(6662), X(15424)}}, {{A, B, C, X(7317), X(52013)}}, {{A, B, C, X(7408), X(35446)}}, {{A, B, C, X(7576), X(12087)}}, {{A, B, C, X(8884), X(13489)}}, {{A, B, C, X(9221), X(13381)}}, {{A, B, C, X(11381), X(13450)}}, {{A, B, C, X(11741), X(54896)}}, {{A, B, C, X(13380), X(16837)}}, {{A, B, C, X(13474), X(52661)}}, {{A, B, C, X(13595), X(18560)}}, {{A, B, C, X(13597), X(40448)}}, {{A, B, C, X(14094), X(39239)}}, {{A, B, C, X(14492), X(29180)}}, {{A, B, C, X(14860), X(43613)}}, {{A, B, C, X(15515), X(39561)}}, {{A, B, C, X(15619), X(33643)}}, {{A, B, C, X(16251), X(44761)}}, {{A, B, C, X(17578), X(44878)}}, {{A, B, C, X(18349), X(50531)}}, {{A, B, C, X(18845), X(30541)}}, {{A, B, C, X(18849), X(40801)}}, {{A, B, C, X(21399), X(56362)}}, {{A, B, C, X(21844), X(38335)}}, {{A, B, C, X(29011), X(54477)}}, {{A, B, C, X(30535), X(53107)}}, {{A, B, C, X(31652), X(50664)}}, {{A, B, C, X(39284), X(43602)}}, {{A, B, C, X(41431), X(43731)}}, {{A, B, C, X(41432), X(43732)}}, {{A, B, C, X(41895), X(56004)}}, {{A, B, C, X(43917), X(45958)}}, {{A, B, C, X(53098), X(54172)}}, {{A, B, C, X(55924), X(56587)}}
X(57715) = barycentric product X(i)*X(j) for these (i, j): {6, 57896}
X(57715) = barycentric quotient X(i)/X(j) for these (i, j): {6, 548}, {32, 44108}, {57896, 76}
X(57715) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16835, 32062, 38848}


X(57716) = ISOGONAL CONJUGATE OF X(563)

Barycentrics    b^3*c^3*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-2*a^2*b^2+(b^2-c^2)^2) : :

X(57716) lies on these lines: {91, 158}, {92, 18041}, {561, 55215}, {847, 11681}, {1748, 1820}, {1969, 57898}, {2165, 37770}, {5392, 40149}

X(57716) = isogonal conjugate of X(563)
X(57716) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 563}, {2, 52435}, {3, 571}, {6, 1147}, {24, 577}, {32, 9723}, {47, 48}, {50, 5961}, {52, 14533}, {69, 52436}, {110, 30451}, {184, 1993}, {228, 18605}, {237, 51776}, {317, 14585}, {371, 26920}, {372, 8911}, {394, 44077}, {906, 34948}, {924, 32661}, {1092, 8745}, {1576, 52584}, {1748, 52430}, {2169, 2180}, {3133, 57703}, {4558, 34952}, {4575, 55216}, {7763, 14575}, {9247, 44179}, {11547, 23606}, {14576, 19210}, {14600, 51439}, {15958, 52317}, {16391, 36416}, {18877, 51393}, {32320, 52917}, {32662, 44808}, {39013, 44174}, {39201, 41679}, {47390, 47421}, {50433, 52416}, {52032, 54034}, {52432, 55549}
X(57716) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 563}, {9, 1147}, {136, 55216}, {244, 30451}, {1249, 47}, {4858, 52584}, {5190, 34948}, {6376, 9723}, {14363, 2180}, {32664, 52435}, {34853, 48}, {36103, 571}, {37864, 9247}
X(57716) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57898, 20571}
X(57716) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 57806}, {91, 20571}, {14213, 92}, {17890, 561}, {23555, 57809}
X(57716) = pole of line {34948, 55216} with respect to the polar circle
X(57716) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1748)}}, {{A, B, C, X(63), X(1577)}}, {{A, B, C, X(75), X(33808)}}, {{A, B, C, X(82), X(18041)}}, {{A, B, C, X(92), X(158)}}, {{A, B, C, X(312), X(46110)}}, {{A, B, C, X(1821), X(21593)}}, {{A, B, C, X(11681), X(37203)}}
X(57716) = barycentric product X(i)*X(j) for these (i, j): {1, 55553}, {6, 57898}, {19, 57904}, {75, 847}, {158, 20563}, {264, 91}, {1577, 30450}, {1969, 2165}, {2501, 55215}, {5392, 92}, {14593, 561}, {18027, 1820}, {20571, 4}, {24006, 46134}, {33808, 52582}, {40440, 56272}, {52350, 6521}, {55250, 6331}, {57806, 68}
X(57716) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1147}, {4, 47}, {6, 563}, {19, 571}, {27, 18605}, {31, 52435}, {53, 2180}, {68, 255}, {75, 9723}, {91, 3}, {92, 1993}, {96, 2169}, {158, 24}, {264, 44179}, {661, 30451}, {823, 41679}, {847, 1}, {925, 4575}, {1096, 44077}, {1577, 52584}, {1784, 51393}, {1820, 577}, {1821, 51776}, {1969, 7763}, {1973, 52436}, {2052, 1748}, {2165, 48}, {2166, 5961}, {2168, 14533}, {2351, 52430}, {2501, 55216}, {5392, 63}, {5962, 6149}, {6331, 55249}, {6520, 8745}, {6521, 11547}, {7649, 34948}, {14213, 52032}, {14593, 31}, {20563, 326}, {20571, 69}, {24006, 924}, {27367, 1923}, {30450, 662}, {36126, 52917}, {36145, 32661}, {40703, 51439}, {46134, 4592}, {52350, 6507}, {52582, 921}, {55215, 4563}, {55250, 647}, {55549, 4100}, {55553, 75}, {56272, 44706}, {57806, 317}, {57898, 76}, {57904, 304}, {57973, 55227}


X(57717) = ISOGONAL CONJUGATE OF X(564)

Barycentrics    a^3*((a^2-b^2)^4-2*(a^2-b^2)^2*(a^2+b^2)*c^2+(a^4+b^4)*c^4)*(a^8+2*a^2*c^4*(b^2-2*c^2)+c^4*(b^2-c^2)^2-2*a^6*(b^2+2*c^2)+a^4*(b^4+2*b^2*c^2+6*c^4)) : :

X(57717) lies on these lines: {564, 36134}

X(57717) = isogonal conjugate of X(564)
X(57717) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 564}, {2, 1879}, {4, 5449}, {252, 15226}
X(57717) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 564}, {32664, 1879}, {36033, 5449}
X(57717) = X(i)-cross conjugate of X(j) for these {i, j}: {2618, 36134}
X(57717) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1101)}}, {{A, B, C, X(47), X(48)}}, {{A, B, C, X(564), X(2618)}}, {{A, B, C, X(1087), X(2290)}}
X(57717) = barycentric quotient X(i)/X(j) for these (i, j): {6, 564}, {31, 1879}, {48, 5449}


X(57718) = ISOGONAL CONJUGATE OF X(569)

Barycentrics    (c^2*(b^2-c^2)^3+a^2*(b-c)*(b+c)*(2*b^2-3*c^2)*(b^2+c^2)+a^6*(2*b^2+c^2)-a^4*(4*b^4+3*b^2*c^2+3*c^4))*(-(b^2*(b^2-c^2)^3)+a^2*(b-c)*(b+c)*(3*b^2-2*c^2)*(b^2+c^2)+a^6*(b^2+2*c^2)-a^4*(3*b^4+3*b^2*c^2+4*c^4)) : :

X(57718) lies on the Kiepert hyperbola and on these lines: {2, 52}, {3, 40393}, {4, 570}, {5, 5392}, {6, 96}, {24, 275}, {76, 1238}, {83, 7509}, {98, 7592}, {376, 54772}, {381, 54666}, {1166, 52435}, {1594, 2052}, {2986, 6642}, {3147, 56346}, {3545, 54930}, {3839, 54781}, {6504, 7401}, {7488, 7578}, {7544, 13579}, {7565, 54927}, {10018, 43530}, {11585, 34289}, {12022, 46729}, {13860, 16277}, {14458, 16659}, {16080, 52296}, {16621, 54909}, {31180, 54629}, {34224, 46727}, {34351, 54803}, {34664, 54684}, {41536, 52582}

X(57718) = isogonal conjugate of X(569)
X(57718) = trilinear pole of line {52317, 523}
X(57718) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 569}, {48, 52253}
X(57718) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 569}, {1249, 52253}
X(57718) = X(i)-cross conjugate of X(j) for these {i, j}: {45089, 4}
X(57718) = pole of line {45089, 57718} with respect to the Kiepert hyperbola
X(57718) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(570)}}, {{A, B, C, X(5), X(6)}}, {{A, B, C, X(25), X(14788)}}, {{A, B, C, X(30), X(52296)}}, {{A, B, C, X(54), X(264)}}, {{A, B, C, X(64), X(45090)}}, {{A, B, C, X(66), X(22270)}}, {{A, B, C, X(70), X(95)}}, {{A, B, C, X(74), X(7999)}}, {{A, B, C, X(93), X(9307)}}, {{A, B, C, X(140), X(30542)}}, {{A, B, C, X(254), X(8797)}}, {{A, B, C, X(378), X(11585)}}, {{A, B, C, X(381), X(10018)}}, {{A, B, C, X(403), X(6642)}}, {{A, B, C, X(427), X(7509)}}, {{A, B, C, X(523), X(43908)}}, {{A, B, C, X(631), X(16774)}}, {{A, B, C, X(1093), X(1173)}}, {{A, B, C, X(1179), X(2165)}}, {{A, B, C, X(1300), X(14542)}}, {{A, B, C, X(1352), X(2548)}}, {{A, B, C, X(1656), X(7576)}}, {{A, B, C, X(1885), X(31282)}}, {{A, B, C, X(2351), X(27372)}}, {{A, B, C, X(2963), X(34449)}}, {{A, B, C, X(3090), X(7487)}}, {{A, B, C, X(3091), X(3147)}}, {{A, B, C, X(3431), X(15318)}}, {{A, B, C, X(3527), X(5462)}}, {{A, B, C, X(3531), X(17703)}}, {{A, B, C, X(3541), X(6643)}}, {{A, B, C, X(3542), X(7401)}}, {{A, B, C, X(3767), X(14561)}}, {{A, B, C, X(4846), X(32132)}}, {{A, B, C, X(6530), X(7592)}}, {{A, B, C, X(6662), X(14528)}}, {{A, B, C, X(7393), X(15559)}}, {{A, B, C, X(7405), X(10594)}}, {{A, B, C, X(7488), X(7577)}}, {{A, B, C, X(7505), X(7544)}}, {{A, B, C, X(7542), X(7547)}}, {{A, B, C, X(8884), X(40410)}}, {{A, B, C, X(13381), X(22334)}}, {{A, B, C, X(13477), X(14490)}}, {{A, B, C, X(13881), X(18583)}}, {{A, B, C, X(14356), X(39839)}}, {{A, B, C, X(14483), X(15024)}}, {{A, B, C, X(14491), X(15424)}}, {{A, B, C, X(14938), X(22261)}}, {{A, B, C, X(15319), X(44177)}}, {{A, B, C, X(16238), X(35488)}}, {{A, B, C, X(16263), X(34110)}}, {{A, B, C, X(16868), X(44802)}}, {{A, B, C, X(17040), X(18854)}}, {{A, B, C, X(17928), X(45179)}}, {{A, B, C, X(18027), X(42300)}}, {{A, B, C, X(18855), X(46952)}}, {{A, B, C, X(21400), X(51032)}}, {{A, B, C, X(22268), X(45838)}}, {{A, B, C, X(28706), X(42313)}}, {{A, B, C, X(31846), X(52154)}}, {{A, B, C, X(35603), X(39116)}}, {{A, B, C, X(36612), X(52223)}}, {{A, B, C, X(36948), X(38442)}}, {{A, B, C, X(37119), X(37444)}}, {{A, B, C, X(37126), X(52295)}}, {{A, B, C, X(41891), X(57387)}}, {{A, B, C, X(43917), X(52518)}}, {{A, B, C, X(45011), X(52487)}}
X(57718) = barycentric product X(i)*X(j) for these (i, j): {6, 57902}
X(57718) = barycentric quotient X(i)/X(j) for these (i, j): {4, 52253}, {6, 569}, {57902, 76}


X(57719) = ISOGONAL CONJUGATE OF X(580)

Barycentrics    (a^3*(b-c)*c+a^4*(b+c)-a*(b-c)*c*(b+c)^2+b*(b^2-c^2)^2-a^2*(2*b^3+b^2*c+c^3))*(a^3*b*(-b+c)+a^4*(b+c)+a*b*(b-c)*(b+c)^2+c*(b^2-c^2)^2-a^2*(b^3+b*c^2+2*c^3)) : :

X(57719) lies on the Kiepert hyperbola and on these lines: {2, 581}, {3, 1751}, {4, 579}, {5, 226}, {6, 54972}, {10, 5721}, {11, 7066}, {12, 37993}, {29, 275}, {30, 54676}, {40, 13576}, {76, 57910}, {241, 8808}, {270, 580}, {321, 6734}, {381, 54928}, {411, 24624}, {970, 37865}, {1029, 6894}, {1243, 15556}, {1446, 5740}, {1708, 55105}, {1737, 1838}, {1745, 5400}, {2051, 6831}, {2052, 5125}, {3149, 13478}, {5396, 13411}, {5562, 17197}, {5657, 56172}, {5706, 56144}, {5753, 57282}, {5797, 54933}, {6245, 19542}, {6865, 21363}, {6895, 55027}, {6922, 14554}, {6956, 45098}, {6986, 57721}, {6988, 55962}, {6991, 57722}, {7498, 56346}, {7532, 56216}, {9843, 56226}, {17758, 18635}, {21628, 54668}, {27659, 51558}, {39943, 55104}, {40942, 56227}, {43531, 48888}, {45926, 56327}, {50695, 55944}, {52269, 54648}

X(57719) = isogonal conjugate of X(580)
X(57719) = complement of X(52676)
X(57719) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 580}, {3, 41227}, {48, 37279}, {58, 3191}, {60, 15443}, {284, 41342}, {943, 46887}, {1175, 45038}, {2194, 52673}, {36059, 57089}
X(57719) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 580}, {10, 3191}, {1214, 52673}, {1249, 37279}, {20620, 57089}, {36103, 41227}, {40590, 41342}
X(57719) = X(i)-complementary conjugate of X(j) for these {i, j}: {39944, 18589}
X(57719) = X(i)-cross conjugate of X(j) for these {i, j}: {201, 1}, {18591, 226}
X(57719) = pole of line {6284, 44707} with respect to the Feuerbach hyperbola
X(57719) = pole of line {18591, 57719} with respect to the Kiepert hyperbola
X(57719) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(270)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(307)}}, {{A, B, C, X(5), X(29)}}, {{A, B, C, X(6), X(225)}}, {{A, B, C, X(8), X(1210)}}, {{A, B, C, X(9), X(158)}}, {{A, B, C, X(21), X(18389)}}, {{A, B, C, X(40), X(241)}}, {{A, B, C, X(54), X(5620)}}, {{A, B, C, X(57), X(37528)}}, {{A, B, C, X(72), X(1713)}}, {{A, B, C, X(75), X(84)}}, {{A, B, C, X(78), X(90)}}, {{A, B, C, X(79), X(6147)}}, {{A, B, C, X(86), X(5742)}}, {{A, B, C, X(95), X(54125)}}, {{A, B, C, X(104), X(596)}}, {{A, B, C, X(201), X(580)}}, {{A, B, C, X(264), X(39130)}}, {{A, B, C, X(282), X(318)}}, {{A, B, C, X(291), X(947)}}, {{A, B, C, X(406), X(6835)}}, {{A, B, C, X(411), X(860)}}, {{A, B, C, X(412), X(18641)}}, {{A, B, C, X(442), X(7513)}}, {{A, B, C, X(451), X(6894)}}, {{A, B, C, X(475), X(6836)}}, {{A, B, C, X(514), X(29016)}}, {{A, B, C, X(516), X(23875)}}, {{A, B, C, X(572), X(10974)}}, {{A, B, C, X(573), X(19762)}}, {{A, B, C, X(656), X(7066)}}, {{A, B, C, X(936), X(24982)}}, {{A, B, C, X(938), X(4847)}}, {{A, B, C, X(963), X(7241)}}, {{A, B, C, X(986), X(37609)}}, {{A, B, C, X(1006), X(15556)}}, {{A, B, C, X(1065), X(1224)}}, {{A, B, C, X(1093), X(2321)}}, {{A, B, C, X(1156), X(52344)}}, {{A, B, C, X(1167), X(1937)}}, {{A, B, C, X(1214), X(39944)}}, {{A, B, C, X(1220), X(15844)}}, {{A, B, C, X(1254), X(2350)}}, {{A, B, C, X(1389), X(42285)}}, {{A, B, C, X(1577), X(3695)}}, {{A, B, C, X(1708), X(55104)}}, {{A, B, C, X(1738), X(17072)}}, {{A, B, C, X(1745), X(1785)}}, {{A, B, C, X(1765), X(52389)}}, {{A, B, C, X(1895), X(14331)}}, {{A, B, C, X(2006), X(5721)}}, {{A, B, C, X(2166), X(3467)}}, {{A, B, C, X(2218), X(7649)}}, {{A, B, C, X(2287), X(5740)}}, {{A, B, C, X(2335), X(51496)}}, {{A, B, C, X(2341), X(3469)}}, {{A, B, C, X(2588), X(14375)}}, {{A, B, C, X(2589), X(14374)}}, {{A, B, C, X(2962), X(3065)}}, {{A, B, C, X(3062), X(39708)}}, {{A, B, C, X(3090), X(7518)}}, {{A, B, C, X(3091), X(7498)}}, {{A, B, C, X(3149), X(17555)}}, {{A, B, C, X(3341), X(14302)}}, {{A, B, C, X(3345), X(8056)}}, {{A, B, C, X(3577), X(31359)}}, {{A, B, C, X(3613), X(15232)}}, {{A, B, C, X(3617), X(9843)}}, {{A, B, C, X(3668), X(51223)}}, {{A, B, C, X(4194), X(6864)}}, {{A, B, C, X(4200), X(6865)}}, {{A, B, C, X(4219), X(25015)}}, {{A, B, C, X(4373), X(10305)}}, {{A, B, C, X(4572), X(28291)}}, {{A, B, C, X(5046), X(7537)}}, {{A, B, C, X(5136), X(6828)}}, {{A, B, C, X(5553), X(39695)}}, {{A, B, C, X(5587), X(46878)}}, {{A, B, C, X(5704), X(6736)}}, {{A, B, C, X(5705), X(24987)}}, {{A, B, C, X(5936), X(10429)}}, {{A, B, C, X(6598), X(36123)}}, {{A, B, C, X(6700), X(25005)}}, {{A, B, C, X(6825), X(37189)}}, {{A, B, C, X(6831), X(11109)}}, {{A, B, C, X(6895), X(52252)}}, {{A, B, C, X(6915), X(11105)}}, {{A, B, C, X(7040), X(10395)}}, {{A, B, C, X(7318), X(43740)}}, {{A, B, C, X(7380), X(11341)}}, {{A, B, C, X(7515), X(7541)}}, {{A, B, C, X(7532), X(52248)}}, {{A, B, C, X(8769), X(42464)}}, {{A, B, C, X(8809), X(51498)}}, {{A, B, C, X(10570), X(51755)}}, {{A, B, C, X(10623), X(29104)}}, {{A, B, C, X(10916), X(12649)}}, {{A, B, C, X(13740), X(37362)}}, {{A, B, C, X(15446), X(24475)}}, {{A, B, C, X(17277), X(18635)}}, {{A, B, C, X(18395), X(27385)}}, {{A, B, C, X(18833), X(43738)}}, {{A, B, C, X(21186), X(50368)}}, {{A, B, C, X(21860), X(37732)}}, {{A, B, C, X(24983), X(37380)}}, {{A, B, C, X(34234), X(40445)}}, {{A, B, C, X(36049), X(52938)}}, {{A, B, C, X(36052), X(40442)}}, {{A, B, C, X(39798), X(41501)}}, {{A, B, C, X(40424), X(46435)}}, {{A, B, C, X(40450), X(43741)}}, {{A, B, C, X(41891), X(57392)}}, {{A, B, C, X(43730), X(46218)}}, {{A, B, C, X(47487), X(56587)}}, {{A, B, C, X(55035), X(55089)}}
X(57719) = barycentric product X(i)*X(j) for these (i, j): {6, 57910}, {1441, 43729}, {41509, 85}
X(57719) = barycentric quotient X(i)/X(j) for these (i, j): {4, 37279}, {6, 580}, {19, 41227}, {37, 3191}, {65, 41342}, {226, 52673}, {2171, 15443}, {2260, 46887}, {2294, 45038}, {3064, 57089}, {41509, 9}, {43729, 21}, {57910, 76}


X(57720) = ISOGONAL CONJUGATE OF X(582)

Barycentrics    (a*(a-b)^2*b*(a+b)+(a^4+2*a^3*b+2*a*b^3+b^4)*c-a*b*(a+b)*c^2-2*(a^2+a*b+b^2)*c^3+c^5)*(a^3*(2*b-c)*c+a^4*(b+c)-a*(b-c)*c*(b+c)*(2*b+c)+b*(b^2-c^2)^2-a^2*(2*b^3+b^2*c+c^3)) : :

X(57720) lies on the Kiepert hyperbola and on these lines: {2, 500}, {3, 57721}, {4, 583}, {5, 57722}, {6, 57710}, {30, 54929}, {76, 57912}, {94, 45926}, {226, 6990}, {387, 54758}, {1751, 3651}, {2051, 6845}, {4052, 10916}, {6361, 13576}, {6985, 24624}, {37433, 55027}

X(57720) = isogonal conjugate of X(582)
X(57720) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(18398)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(583)}}, {{A, B, C, X(6), X(500)}}, {{A, B, C, X(9), X(10399)}}, {{A, B, C, X(29), X(6990)}}, {{A, B, C, X(75), X(10308)}}, {{A, B, C, X(80), X(7741)}}, {{A, B, C, X(84), X(39711)}}, {{A, B, C, X(90), X(18815)}}, {{A, B, C, X(91), X(1156)}}, {{A, B, C, X(104), X(34860)}}, {{A, B, C, X(105), X(5358)}}, {{A, B, C, X(145), X(10916)}}, {{A, B, C, X(264), X(48877)}}, {{A, B, C, X(273), X(943)}}, {{A, B, C, X(291), X(10623)}}, {{A, B, C, X(346), X(36610)}}, {{A, B, C, X(406), X(6849)}}, {{A, B, C, X(475), X(6851)}}, {{A, B, C, X(860), X(6985)}}, {{A, B, C, X(1063), X(39943)}}, {{A, B, C, X(1243), X(31503)}}, {{A, B, C, X(1838), X(2335)}}, {{A, B, C, X(1861), X(6361)}}, {{A, B, C, X(2166), X(4420)}}, {{A, B, C, X(3296), X(55076)}}, {{A, B, C, X(3527), X(45129)}}, {{A, B, C, X(3613), X(48887)}}, {{A, B, C, X(3651), X(5125)}}, {{A, B, C, X(4194), X(6896)}}, {{A, B, C, X(4200), X(6899)}}, {{A, B, C, X(5136), X(6841)}}, {{A, B, C, X(6845), X(11109)}}, {{A, B, C, X(7380), X(31926)}}, {{A, B, C, X(16615), X(31359)}}, {{A, B, C, X(23604), X(39956)}}, {{A, B, C, X(36599), X(52344)}}, {{A, B, C, X(37284), X(37381)}}, {{A, B, C, X(37433), X(52252)}}, {{A, B, C, X(39945), X(41804)}}
X(57720) = barycentric product X(i)*X(j) for these (i, j): {6, 57912}
X(57720) = barycentric quotient X(i)/X(j) for these (i, j): {6, 582}, {57912, 76}


X(57721) = ISOGONAL CONJUGATE OF X(583)

Barycentrics    (a^3+b^3-2*a*b*c-(a+b)*c^2)*(a^3-b^2*c+c^3-a*b*(b+2*c)) : :

X(57721) lies on the Kiepert hyperbola and on these lines: {2, 584}, {3, 57720}, {4, 582}, {5, 57710}, {6, 57722}, {10, 1621}, {76, 5278}, {81, 17758}, {226, 26723}, {275, 445}, {321, 17277}, {333, 40013}, {572, 54700}, {583, 52393}, {1150, 40012}, {1446, 33765}, {2051, 37680}, {3681, 32914}, {4080, 26792}, {4197, 43531}, {4444, 16751}, {5361, 40021}, {5397, 6881}, {6539, 17280}, {6986, 57719}, {6991, 54972}, {7411, 43672}, {7474, 45964}, {14554, 37687}, {14829, 39994}, {16547, 21367}, {24880, 43680}, {28459, 54528}, {29850, 40718}, {37787, 40149}

X(57721) = isogonal conjugate of X(583)
X(57721) = isotomic conjugate of X(18139)
X(57721) = trilinear pole of line {4040, 48305}
X(57721) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 583}, {6, 3874}, {31, 18139}, {1964, 29568}
X(57721) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 18139}, {3, 583}, {9, 3874}, {41884, 29568}
X(57721) = X(i)-cross conjugate of X(j) for these {i, j}: {15171, 7}
X(57721) = pole of line {583, 18139} with respect to the Wallace hyperbola
X(57721) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5259)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(582)}}, {{A, B, C, X(5), X(445)}}, {{A, B, C, X(6), X(584)}}, {{A, B, C, X(8), X(15474)}}, {{A, B, C, X(27), X(1255)}}, {{A, B, C, X(54), X(40214)}}, {{A, B, C, X(57), X(3746)}}, {{A, B, C, X(63), X(37787)}}, {{A, B, C, X(75), X(33157)}}, {{A, B, C, X(80), X(30690)}}, {{A, B, C, X(81), X(82)}}, {{A, B, C, X(88), X(333)}}, {{A, B, C, X(92), X(5178)}}, {{A, B, C, X(105), X(1244)}}, {{A, B, C, X(189), X(42318)}}, {{A, B, C, X(239), X(32914)}}, {{A, B, C, X(251), X(18785)}}, {{A, B, C, X(272), X(40422)}}, {{A, B, C, X(274), X(40394)}}, {{A, B, C, X(277), X(2994)}}, {{A, B, C, X(312), X(33129)}}, {{A, B, C, X(469), X(4197)}}, {{A, B, C, X(523), X(3969)}}, {{A, B, C, X(1016), X(35058)}}, {{A, B, C, X(1150), X(4383)}}, {{A, B, C, X(1170), X(40573)}}, {{A, B, C, X(1171), X(39797)}}, {{A, B, C, X(1890), X(38057)}}, {{A, B, C, X(2006), X(37702)}}, {{A, B, C, X(2985), X(39747)}}, {{A, B, C, X(3008), X(33091)}}, {{A, B, C, X(3219), X(3467)}}, {{A, B, C, X(3661), X(29850)}}, {{A, B, C, X(3681), X(16751)}}, {{A, B, C, X(3911), X(26792)}}, {{A, B, C, X(3920), X(4384)}}, {{A, B, C, X(4102), X(6336)}}, {{A, B, C, X(4233), X(31638)}}, {{A, B, C, X(4359), X(17280)}}, {{A, B, C, X(5262), X(5271)}}, {{A, B, C, X(5361), X(14997)}}, {{A, B, C, X(5559), X(52374)}}, {{A, B, C, X(5741), X(35466)}}, {{A, B, C, X(6986), X(37279)}}, {{A, B, C, X(6994), X(17552)}}, {{A, B, C, X(7261), X(40216)}}, {{A, B, C, X(7411), X(26003)}}, {{A, B, C, X(8056), X(37222)}}, {{A, B, C, X(14377), X(25417)}}, {{A, B, C, X(14552), X(37681)}}, {{A, B, C, X(14555), X(24597)}}, {{A, B, C, X(14621), X(20174)}}, {{A, B, C, X(14829), X(37680)}}, {{A, B, C, X(17349), X(37652)}}, {{A, B, C, X(17352), X(33172)}}, {{A, B, C, X(18359), X(37887)}}, {{A, B, C, X(19684), X(19732)}}, {{A, B, C, X(23292), X(25000)}}, {{A, B, C, X(30710), X(32012)}}, {{A, B, C, X(32009), X(56047)}}, {{A, B, C, X(32945), X(56046)}}, {{A, B, C, X(34234), X(39962)}}, {{A, B, C, X(36101), X(40444)}}, {{A, B, C, X(37203), X(55987)}}, {{A, B, C, X(39717), X(52394)}}, {{A, B, C, X(40215), X(53391)}}, {{A, B, C, X(40420), X(43757)}}, {{A, B, C, X(42304), X(55956)}}, {{A, B, C, X(44707), X(52306)}}
X(57721) = barycentric product X(i)*X(j) for these (i, j): {6, 57913}, {56132, 86}
X(57721) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3874}, {2, 18139}, {6, 583}, {83, 29568}, {56132, 10}, {57913, 76}


X(57722) = ISOGONAL CONJUGATE OF X(584)

Barycentrics    (a*b*(a+b)+(a+b)^2*c-c^3)*(-b^3+b*c^2+a^2*(b+c)+a*c*(2*b+c)) : :

X(57722) lies on the Kiepert hyperbola and on these lines: {2, 583}, {3, 52393}, {4, 500}, {5, 57720}, {6, 57721}, {10, 3681}, {76, 18139}, {81, 1751}, {83, 19684}, {226, 56232}, {321, 17233}, {445, 2052}, {908, 56226}, {940, 24624}, {1764, 54699}, {3475, 13576}, {3487, 15474}, {3936, 34258}, {4080, 41839}, {4850, 37865}, {5047, 5333}, {5224, 27186}, {5397, 6883}, {5736, 40214}, {5739, 32022}, {6539, 31017}, {6986, 54972}, {6991, 57719}, {7411, 56144}, {8808, 21617}, {9221, 45944}, {10478, 54586}, {11263, 32915}, {13478, 37633}, {17167, 54676}, {17173, 17378}, {17234, 40013}, {17300, 54119}, {17392, 54735}, {24553, 56346}, {26128, 30985}, {26724, 30949}, {28459, 54679}, {29854, 43534}, {30588, 31053}, {32774, 37632}, {33151, 40515}, {37522, 43680}, {37631, 54929}, {37635, 55027}, {37701, 52381}

X(57722) = isogonal conjugate of X(584)
X(57722) = isotomic conjugate of X(5278)
X(57722) = trilinear pole of line {1734, 23800}
X(57722) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 584}, {6, 5248}, {31, 5278}, {101, 48297}
X(57722) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 5278}, {3, 584}, {9, 5248}, {1015, 48297}
X(57722) = X(i)-cross conjugate of X(j) for these {i, j}: {6147, 7}
X(57722) = pole of line {584, 5278} with respect to the Wallace hyperbola
X(57722) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5904)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(445)}}, {{A, B, C, X(6), X(583)}}, {{A, B, C, X(7), X(5249)}}, {{A, B, C, X(27), X(4197)}}, {{A, B, C, X(57), X(5902)}}, {{A, B, C, X(79), X(41859)}}, {{A, B, C, X(81), X(85)}}, {{A, B, C, X(86), X(561)}}, {{A, B, C, X(88), X(44733)}}, {{A, B, C, X(89), X(55090)}}, {{A, B, C, X(92), X(1255)}}, {{A, B, C, X(141), X(19684)}}, {{A, B, C, X(142), X(55937)}}, {{A, B, C, X(239), X(29854)}}, {{A, B, C, X(274), X(39700)}}, {{A, B, C, X(278), X(13407)}}, {{A, B, C, X(312), X(32635)}}, {{A, B, C, X(329), X(21617)}}, {{A, B, C, X(334), X(2296)}}, {{A, B, C, X(335), X(1218)}}, {{A, B, C, X(469), X(5047)}}, {{A, B, C, X(514), X(25417)}}, {{A, B, C, X(661), X(39967)}}, {{A, B, C, X(756), X(8818)}}, {{A, B, C, X(908), X(5226)}}, {{A, B, C, X(940), X(3936)}}, {{A, B, C, X(1150), X(17056)}}, {{A, B, C, X(1214), X(50317)}}, {{A, B, C, X(2006), X(37719)}}, {{A, B, C, X(2171), X(45988)}}, {{A, B, C, X(3219), X(15175)}}, {{A, B, C, X(3263), X(19785)}}, {{A, B, C, X(3475), X(5236)}}, {{A, B, C, X(3912), X(17018)}}, {{A, B, C, X(4233), X(21609)}}, {{A, B, C, X(4358), X(41839)}}, {{A, B, C, X(4359), X(39736)}}, {{A, B, C, X(4417), X(37633)}}, {{A, B, C, X(4648), X(5739)}}, {{A, B, C, X(4654), X(27186)}}, {{A, B, C, X(5219), X(31053)}}, {{A, B, C, X(5224), X(5333)}}, {{A, B, C, X(5557), X(52374)}}, {{A, B, C, X(5736), X(6356)}}, {{A, B, C, X(5741), X(37674)}}, {{A, B, C, X(6063), X(39734)}}, {{A, B, C, X(6991), X(37279)}}, {{A, B, C, X(7162), X(18359)}}, {{A, B, C, X(7179), X(30985)}}, {{A, B, C, X(7411), X(37448)}}, {{A, B, C, X(8025), X(31017)}}, {{A, B, C, X(9289), X(48923)}}, {{A, B, C, X(14621), X(25957)}}, {{A, B, C, X(15668), X(41809)}}, {{A, B, C, X(17234), X(32911)}}, {{A, B, C, X(17300), X(17778)}}, {{A, B, C, X(18895), X(56047)}}, {{A, B, C, X(19645), X(25987)}}, {{A, B, C, X(20048), X(29600)}}, {{A, B, C, X(20568), X(37870)}}, {{A, B, C, X(20569), X(39747)}}, {{A, B, C, X(26109), X(37653)}}, {{A, B, C, X(26745), X(33815)}}, {{A, B, C, X(30636), X(39712)}}, {{A, B, C, X(30834), X(37646)}}, {{A, B, C, X(30965), X(37632)}}, {{A, B, C, X(31006), X(37676)}}, {{A, B, C, X(32863), X(37635)}}, {{A, B, C, X(33148), X(40217)}}, {{A, B, C, X(36952), X(48931)}}, {{A, B, C, X(45965), X(55971)}}, {{A, B, C, X(52381), X(52392)}}
X(57722) = barycentric product X(i)*X(j) for these (i, j): {6, 57914}, {56232, 85}
X(57722) = barycentric quotient X(i)/X(j) for these (i, j): {1, 5248}, {2, 5278}, {6, 584}, {513, 48297}, {51223, 45128}, {56232, 9}, {57914, 76}


X(57723) = ISOGONAL CONJUGATE OF X(601)

Barycentrics    b*c*(a^4-2*a^3*c+2*a*(b-c)*c*(b+c)+(b^2-c^2)^2-2*a^2*(b^2+c^2))*(a^4-2*a^3*b+(b^2-c^2)^2+2*a*b*(-b^2+c^2)-2*a^2*(b^2+c^2)) : :

X(57723) lies on these lines: {388, 517}, {986, 1785}, {1010, 19861}, {1070, 22464}, {2345, 5955}, {3914, 57724}, {4385, 6735}, {44154, 57916}

X(57723) = isogonal conjugate of X(601)
X(57723) = isotomic conjugate of X(55392)
X(57723) = trilinear pole of line {6590, 46393}
X(57723) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 601}, {3, 11399}, {6, 55400}, {31, 55392}, {48, 55478}, {184, 55394}, {2289, 55463}
X(57723) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 55392}, {3, 601}, {9, 55400}, {1249, 55478}, {36103, 11399}
X(57723) = pole of line {601, 55392} with respect to the Wallace hyperbola
X(57723) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(318)}}, {{A, B, C, X(2), X(10309)}}, {{A, B, C, X(3), X(256)}}, {{A, B, C, X(4), X(75)}}, {{A, B, C, X(5), X(15150)}}, {{A, B, C, X(7), X(158)}}, {{A, B, C, X(10), X(84)}}, {{A, B, C, X(29), X(6850)}}, {{A, B, C, X(33), X(1070)}}, {{A, B, C, X(40), X(37592)}}, {{A, B, C, X(54), X(751)}}, {{A, B, C, X(64), X(4492)}}, {{A, B, C, X(68), X(7182)}}, {{A, B, C, X(79), X(91)}}, {{A, B, C, X(85), X(17924)}}, {{A, B, C, X(86), X(5553)}}, {{A, B, C, X(102), X(15315)}}, {{A, B, C, X(104), X(31359)}}, {{A, B, C, X(270), X(921)}}, {{A, B, C, X(281), X(1067)}}, {{A, B, C, X(291), X(3527)}}, {{A, B, C, X(309), X(41013)}}, {{A, B, C, X(341), X(1000)}}, {{A, B, C, X(525), X(29057)}}, {{A, B, C, X(596), X(3577)}}, {{A, B, C, X(726), X(3309)}}, {{A, B, C, X(749), X(1173)}}, {{A, B, C, X(775), X(1061)}}, {{A, B, C, X(847), X(20565)}}, {{A, B, C, X(915), X(977)}}, {{A, B, C, X(945), X(45989)}}, {{A, B, C, X(1088), X(43733)}}, {{A, B, C, X(1093), X(6063)}}, {{A, B, C, X(1389), X(34860)}}, {{A, B, C, X(2166), X(43732)}}, {{A, B, C, X(2962), X(5561)}}, {{A, B, C, X(3062), X(39708)}}, {{A, B, C, X(3427), X(43533)}}, {{A, B, C, X(3579), X(17591)}}, {{A, B, C, X(3673), X(40724)}}, {{A, B, C, X(3931), X(10476)}}, {{A, B, C, X(4077), X(6757)}}, {{A, B, C, X(5555), X(36123)}}, {{A, B, C, X(5556), X(18815)}}, {{A, B, C, X(5955), X(13478)}}, {{A, B, C, X(7160), X(44040)}}, {{A, B, C, X(7241), X(52518)}}, {{A, B, C, X(7320), X(52409)}}, {{A, B, C, X(8769), X(55105)}}, {{A, B, C, X(8817), X(45011)}}, {{A, B, C, X(14497), X(39702)}}, {{A, B, C, X(17896), X(47372)}}, {{A, B, C, X(23877), X(29327)}}, {{A, B, C, X(24545), X(40718)}}, {{A, B, C, X(28557), X(28569)}}, {{A, B, C, X(38271), X(55076)}}, {{A, B, C, X(43531), X(46435)}}, {{A, B, C, X(44861), X(56137)}}
X(57723) = barycentric product X(i)*X(j) for these (i, j): {6, 57916}
X(57723) = barycentric quotient X(i)/X(j) for these (i, j): {1, 55400}, {2, 55392}, {4, 55478}, {6, 601}, {19, 11399}, {92, 55394}, {1118, 55463}, {57916, 76}


X(57724) = ISOGONAL CONJUGATE OF X(602)

Barycentrics    b*c*(a^4+2*a^3*b-2*a^2*b^2+2*a*b^3+b^4-2*(a^2+a*b+b^2)*c^2+c^4)*((a^2-b^2)^2+2*a*(a-b)*(a+b)*c-2*(a^2+b^2)*c^2+2*a*c^3+c^4) : :

X(57724) lies on these lines: {355, 388}, {1010, 19860}, {1065, 54418}, {1072, 4385}, {2345, 5831}, {3914, 57723}, {44154, 57917}

X(57724) = isogonal conjugate of X(602)
X(57724) = isotomic conjugate of X(55391)
X(57724) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 602}, {3, 11398}, {6, 55399}, {31, 55391}, {48, 55472}, {184, 55393}, {7125, 55462}
X(57724) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 55391}, {3, 602}, {9, 55399}, {1249, 55472}, {36103, 11398}
X(57724) = pole of line {602, 55391} with respect to the Wallace hyperbola
X(57724) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(270)}}, {{A, B, C, X(2), X(19843)}}, {{A, B, C, X(3), X(291)}}, {{A, B, C, X(4), X(75)}}, {{A, B, C, X(8), X(158)}}, {{A, B, C, X(10), X(3577)}}, {{A, B, C, X(29), X(6826)}}, {{A, B, C, X(34), X(1072)}}, {{A, B, C, X(54), X(749)}}, {{A, B, C, X(64), X(7241)}}, {{A, B, C, X(68), X(3718)}}, {{A, B, C, X(80), X(91)}}, {{A, B, C, X(84), X(596)}}, {{A, B, C, X(90), X(44687)}}, {{A, B, C, X(104), X(34860)}}, {{A, B, C, X(256), X(3527)}}, {{A, B, C, X(341), X(43734)}}, {{A, B, C, X(522), X(38271)}}, {{A, B, C, X(751), X(1173)}}, {{A, B, C, X(775), X(1063)}}, {{A, B, C, X(847), X(20566)}}, {{A, B, C, X(903), X(5553)}}, {{A, B, C, X(921), X(7012)}}, {{A, B, C, X(946), X(14554)}}, {{A, B, C, X(1067), X(6601)}}, {{A, B, C, X(1088), X(3296)}}, {{A, B, C, X(1093), X(3596)}}, {{A, B, C, X(1219), X(3427)}}, {{A, B, C, X(1224), X(15909)}}, {{A, B, C, X(1389), X(31359)}}, {{A, B, C, X(1937), X(42019)}}, {{A, B, C, X(2166), X(43731)}}, {{A, B, C, X(2962), X(5560)}}, {{A, B, C, X(3062), X(39711)}}, {{A, B, C, X(4373), X(10309)}}, {{A, B, C, X(4492), X(52518)}}, {{A, B, C, X(5831), X(43531)}}, {{A, B, C, X(7040), X(14942)}}, {{A, B, C, X(7319), X(52344)}}, {{A, B, C, X(23604), X(56148)}}, {{A, B, C, X(30479), X(45011)}}, {{A, B, C, X(33696), X(46224)}}, {{A, B, C, X(36123), X(43740)}}
X(57724) = barycentric product X(i)*X(j) for these (i, j): {6, 57917}
X(57724) = barycentric quotient X(i)/X(j) for these (i, j): {1, 55399}, {2, 55391}, {4, 55472}, {6, 602}, {19, 11398}, {92, 55393}, {1857, 55462}, {57917, 76}


X(57725) = ISOGONAL CONJUGATE OF X(609)

Barycentrics    (2*b^2+a*c)*(a*b+2*c^2) : :

X(57725) lies on these lines: {1, 4396}, {80, 4643}, {214, 8695}, {244, 36871}, {257, 3760}, {335, 3761}, {514, 30942}, {536, 984}, {609, 24291}, {1759, 3497}, {2802, 36816}, {3496, 7096}, {3661, 4044}, {3899, 4713}, {4384, 4850}, {4659, 4674}, {4799, 18513}, {4945, 52755}, {5219, 7146}, {5561, 24724}, {7031, 17739}, {17227, 20568}, {17335, 32012}, {18417, 54245}, {18822, 35957}, {21443, 51837}, {21615, 33934}, {21921, 56051}, {24593, 40426}, {25690, 27921}, {31029, 39705}, {32631, 50311}

X(57725) = isogonal conjugate of X(609)
X(57725) = isotomic conjugate of X(3758)
X(57725) = trilinear pole of line {1491, 4728}
X(57725) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 609}, {6, 17126}, {31, 3758}, {58, 3997}, {163, 4761}, {692, 47762}, {1110, 7208}, {1333, 46897}, {1415, 47729}, {2150, 7276}, {2210, 43262}, {3809, 40746}, {4406, 32739}, {4844, 34073}
X(57725) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 3758}, {3, 609}, {9, 17126}, {10, 3997}, {37, 46897}, {115, 4761}, {514, 7208}, {1086, 47762}, {1146, 47729}, {19584, 3809}, {40619, 4406}, {56325, 7276}
X(57725) = X(i)-cross conjugate of X(j) for these {i, j}: {3735, 1}, {17237, 2}
X(57725) = pole of line {4844, 47759} with respect to the Steiner circumellipse
X(57725) = pole of line {4844, 47760} with respect to the Steiner inellipse
X(57725) = pole of line {609, 3758} with respect to the Wallace hyperbola
X(57725) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(76)}}, {{A, B, C, X(2), X(80)}}, {{A, B, C, X(4), X(39716)}}, {{A, B, C, X(7), X(5485)}}, {{A, B, C, X(8), X(4901)}}, {{A, B, C, X(9), X(4391)}}, {{A, B, C, X(10), X(85)}}, {{A, B, C, X(27), X(50056)}}, {{A, B, C, X(44), X(17227)}}, {{A, B, C, X(57), X(321)}}, {{A, B, C, X(63), X(18417)}}, {{A, B, C, X(75), X(514)}}, {{A, B, C, X(77), X(525)}}, {{A, B, C, X(78), X(36952)}}, {{A, B, C, X(79), X(2996)}}, {{A, B, C, X(83), X(5560)}}, {{A, B, C, X(86), X(17251)}}, {{A, B, C, X(87), X(47947)}}, {{A, B, C, X(141), X(56179)}}, {{A, B, C, X(244), X(52626)}}, {{A, B, C, X(274), X(31060)}}, {{A, B, C, X(277), X(43533)}}, {{A, B, C, X(312), X(30818)}}, {{A, B, C, X(320), X(4643)}}, {{A, B, C, X(330), X(32018)}}, {{A, B, C, X(333), X(30811)}}, {{A, B, C, X(350), X(3761)}}, {{A, B, C, X(594), X(7178)}}, {{A, B, C, X(596), X(9311)}}, {{A, B, C, X(609), X(3735)}}, {{A, B, C, X(671), X(5561)}}, {{A, B, C, X(673), X(48829)}}, {{A, B, C, X(903), X(24441)}}, {{A, B, C, X(918), X(2802)}}, {{A, B, C, X(994), X(39957)}}, {{A, B, C, X(996), X(1121)}}, {{A, B, C, X(1000), X(34892)}}, {{A, B, C, X(1016), X(10302)}}, {{A, B, C, X(1019), X(3551)}}, {{A, B, C, X(1022), X(24338)}}, {{A, B, C, X(1039), X(43678)}}, {{A, B, C, X(1061), X(46105)}}, {{A, B, C, X(1211), X(43683)}}, {{A, B, C, X(1432), X(15315)}}, {{A, B, C, X(1577), X(20567)}}, {{A, B, C, X(1659), X(42024)}}, {{A, B, C, X(1759), X(3496)}}, {{A, B, C, X(1909), X(3760)}}, {{A, B, C, X(1911), X(30495)}}, {{A, B, C, X(1934), X(23596)}}, {{A, B, C, X(1952), X(21446)}}, {{A, B, C, X(1978), X(23891)}}, {{A, B, C, X(2163), X(17946)}}, {{A, B, C, X(3227), X(27494)}}, {{A, B, C, X(3300), X(5491)}}, {{A, B, C, X(3302), X(5490)}}, {{A, B, C, X(3422), X(40802)}}, {{A, B, C, X(3617), X(31183)}}, {{A, B, C, X(3624), X(51353)}}, {{A, B, C, X(3632), X(29587)}}, {{A, B, C, X(3662), X(7349)}}, {{A, B, C, X(3721), X(7031)}}, {{A, B, C, X(3758), X(17237)}}, {{A, B, C, X(3834), X(17335)}}, {{A, B, C, X(4052), X(44733)}}, {{A, B, C, X(4357), X(10435)}}, {{A, B, C, X(4518), X(30869)}}, {{A, B, C, X(4668), X(29629)}}, {{A, B, C, X(4670), X(17250)}}, {{A, B, C, X(4675), X(17256)}}, {{A, B, C, X(4708), X(41847)}}, {{A, B, C, X(4900), X(52517)}}, {{A, B, C, X(4997), X(30824)}}, {{A, B, C, X(5395), X(17501)}}, {{A, B, C, X(5557), X(43681)}}, {{A, B, C, X(5559), X(30701)}}, {{A, B, C, X(5936), X(55948)}}, {{A, B, C, X(6376), X(18833)}}, {{A, B, C, X(6385), X(17038)}}, {{A, B, C, X(6598), X(41791)}}, {{A, B, C, X(6664), X(56328)}}, {{A, B, C, X(7319), X(18841)}}, {{A, B, C, X(8056), X(34258)}}, {{A, B, C, X(9328), X(39702)}}, {{A, B, C, X(10015), X(54364)}}, {{A, B, C, X(10159), X(17743)}}, {{A, B, C, X(13390), X(42023)}}, {{A, B, C, X(13606), X(54123)}}, {{A, B, C, X(17272), X(34399)}}, {{A, B, C, X(17294), X(50311)}}, {{A, B, C, X(17758), X(31359)}}, {{A, B, C, X(18786), X(44169)}}, {{A, B, C, X(18845), X(33696)}}, {{A, B, C, X(20569), X(27483)}}, {{A, B, C, X(20911), X(40188)}}, {{A, B, C, X(24616), X(30991)}}, {{A, B, C, X(25430), X(40013)}}, {{A, B, C, X(27475), X(40029)}}, {{A, B, C, X(27797), X(39706)}}, {{A, B, C, X(27921), X(40878)}}, {{A, B, C, X(30564), X(31029)}}, {{A, B, C, X(30571), X(40030)}}, {{A, B, C, X(30598), X(55949)}}, {{A, B, C, X(30608), X(30823)}}, {{A, B, C, X(30837), X(52133)}}, {{A, B, C, X(31055), X(53678)}}, {{A, B, C, X(31630), X(56357)}}, {{A, B, C, X(32022), X(42326)}}, {{A, B, C, X(34578), X(39721)}}, {{A, B, C, X(36588), X(44559)}}, {{A, B, C, X(36954), X(55954)}}, {{A, B, C, X(39273), X(56136)}}, {{A, B, C, X(39700), X(39948)}}, {{A, B, C, X(39704), X(44572)}}, {{A, B, C, X(39712), X(40028)}}, {{A, B, C, X(39798), X(47915)}}, {{A, B, C, X(40021), X(40434)}}, {{A, B, C, X(40024), X(52654)}}, {{A, B, C, X(40738), X(43688)}}, {{A, B, C, X(40763), X(42359)}}, {{A, B, C, X(50066), X(52374)}}
X(57725) = barycentric product X(i)*X(j) for these (i, j): {1, 30635}, {6, 57920}, {4492, 75}
X(57725) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17126}, {2, 3758}, {6, 609}, {10, 46897}, {12, 7276}, {37, 3997}, {335, 43262}, {514, 47762}, {522, 47729}, {523, 4761}, {693, 4406}, {984, 3809}, {1086, 7208}, {4492, 1}, {4777, 4844}, {8695, 4588}, {30635, 75}, {57920, 76}


X(57726) = ISOGONAL CONJUGATE OF X(611)

Barycentrics    (a^4-2*a^3*b+(b^2-c^2)^2-2*a^2*(b^2+c^2)-2*a*b*(b^2+c^2))*(a^4-2*a^3*c+(b^2-c^2)^2-2*a^2*(b^2+c^2)-2*a*c*(b^2+c^2)) : :

X(57726) lies on these lines: {1, 7735}, {2, 4008}, {37, 57727}, {57, 6210}, {81, 613}, {274, 57922}, {612, 56354}, {3085, 30701}, {3920, 56352}, {5268, 56230}, {7191, 56041}, {10056, 34892}, {10072, 34914}, {39587, 56355}

X(57726) = isogonal conjugate of X(611)
X(57726) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(7249)}}, {{A, B, C, X(7), X(98)}}, {{A, B, C, X(8), X(262)}}, {{A, B, C, X(37), X(613)}}, {{A, B, C, X(60), X(3425)}}, {{A, B, C, X(79), X(3424)}}, {{A, B, C, X(80), X(14484)}}, {{A, B, C, X(86), X(4008)}}, {{A, B, C, X(256), X(281)}}, {{A, B, C, X(257), X(40824)}}, {{A, B, C, X(293), X(348)}}, {{A, B, C, X(393), X(56328)}}, {{A, B, C, X(498), X(7191)}}, {{A, B, C, X(499), X(3920)}}, {{A, B, C, X(612), X(3086)}}, {{A, B, C, X(614), X(3085)}}, {{A, B, C, X(870), X(36120)}}, {{A, B, C, X(1000), X(4518)}}, {{A, B, C, X(1036), X(40801)}}, {{A, B, C, X(1057), X(14489)}}, {{A, B, C, X(1297), X(3422)}}, {{A, B, C, X(2298), X(7318)}}, {{A, B, C, X(2344), X(7351)}}, {{A, B, C, X(3108), X(52186)}}, {{A, B, C, X(3296), X(7612)}}, {{A, B, C, X(3563), X(7040)}}, {{A, B, C, X(5268), X(14986)}}, {{A, B, C, X(5297), X(10072)}}, {{A, B, C, X(5481), X(7163)}}, {{A, B, C, X(5556), X(14458)}}, {{A, B, C, X(5557), X(43537)}}, {{A, B, C, X(5558), X(7607)}}, {{A, B, C, X(5559), X(53099)}}, {{A, B, C, X(5560), X(43951)}}, {{A, B, C, X(7292), X(10056)}}, {{A, B, C, X(7317), X(54523)}}, {{A, B, C, X(7319), X(14492)}}, {{A, B, C, X(7320), X(7608)}}, {{A, B, C, X(10573), X(29680)}}, {{A, B, C, X(13405), X(16020)}}, {{A, B, C, X(17501), X(54520)}}, {{A, B, C, X(17982), X(47647)}}, {{A, B, C, X(18391), X(29639)}}, {{A, B, C, X(18490), X(53103)}}, {{A, B, C, X(29641), X(36574)}}, {{A, B, C, X(30650), X(36051)}}, {{A, B, C, X(34288), X(34916)}}, {{A, B, C, X(39951), X(42019)}}, {{A, B, C, X(43732), X(47586)}}, {{A, B, C, X(46952), X(56179)}}
X(57726) = barycentric product X(i)*X(j) for these (i, j): {6, 57922}
X(57726) = barycentric quotient X(i)/X(j) for these (i, j): {6, 611}, {57922, 76}


X(57727) = ISOGONAL CONJUGATE OF X(613)

Barycentrics    (a^4+2*a^3*b+(b^2-c^2)^2-2*a^2*(b^2+c^2)+2*a*b*(b^2+c^2))*(a^4+2*a^3*c+(b^2-c^2)^2-2*a^2*(b^2+c^2)+2*a*c*(b^2+c^2)) : :

X(57727) lies on these lines: {1, 7736}, {37, 57726}, {57, 6211}, {81, 611}, {274, 25583}, {614, 56354}, {2990, 26228}, {3086, 30701}, {3920, 56041}, {5272, 56230}, {7191, 56352}, {10056, 34914}, {10072, 34892}, {14986, 54123}, {24239, 25430}

X(57727) = isogonal conjugate of X(613)
X(57727) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(4518)}}, {{A, B, C, X(7), X(262)}}, {{A, B, C, X(8), X(98)}}, {{A, B, C, X(25), X(42019)}}, {{A, B, C, X(37), X(611)}}, {{A, B, C, X(59), X(3425)}}, {{A, B, C, X(79), X(14484)}}, {{A, B, C, X(80), X(3424)}}, {{A, B, C, X(86), X(7736)}}, {{A, B, C, X(251), X(52186)}}, {{A, B, C, X(281), X(983)}}, {{A, B, C, X(293), X(345)}}, {{A, B, C, X(335), X(40824)}}, {{A, B, C, X(393), X(56179)}}, {{A, B, C, X(498), X(3920)}}, {{A, B, C, X(499), X(7191)}}, {{A, B, C, X(612), X(3085)}}, {{A, B, C, X(614), X(3086)}}, {{A, B, C, X(1000), X(7612)}}, {{A, B, C, X(1037), X(40801)}}, {{A, B, C, X(1059), X(14489)}}, {{A, B, C, X(1068), X(3563)}}, {{A, B, C, X(1167), X(28476)}}, {{A, B, C, X(1297), X(7163)}}, {{A, B, C, X(1737), X(26228)}}, {{A, B, C, X(3011), X(18391)}}, {{A, B, C, X(3296), X(7249)}}, {{A, B, C, X(3415), X(36052)}}, {{A, B, C, X(3422), X(5481)}}, {{A, B, C, X(3616), X(24239)}}, {{A, B, C, X(4876), X(7350)}}, {{A, B, C, X(5272), X(14986)}}, {{A, B, C, X(5297), X(10056)}}, {{A, B, C, X(5551), X(54523)}}, {{A, B, C, X(5556), X(14492)}}, {{A, B, C, X(5557), X(53099)}}, {{A, B, C, X(5558), X(7608)}}, {{A, B, C, X(5559), X(43537)}}, {{A, B, C, X(5561), X(43951)}}, {{A, B, C, X(5968), X(48209)}}, {{A, B, C, X(7033), X(36120)}}, {{A, B, C, X(7292), X(10072)}}, {{A, B, C, X(7319), X(14458)}}, {{A, B, C, X(7320), X(7607)}}, {{A, B, C, X(10155), X(18490)}}, {{A, B, C, X(10573), X(29665)}}, {{A, B, C, X(11019), X(16020)}}, {{A, B, C, X(17501), X(54519)}}, {{A, B, C, X(29641), X(36573)}}, {{A, B, C, X(30651), X(36051)}}, {{A, B, C, X(30663), X(30705)}}, {{A, B, C, X(34288), X(34893)}}, {{A, B, C, X(39581), X(39595)}}, {{A, B, C, X(43731), X(47586)}}, {{A, B, C, X(46952), X(56328)}}
X(57727) = barycentric product X(i)*X(j) for these (i, j): {6, 57924}
X(57727) = barycentric quotient X(i)/X(j) for these (i, j): {6, 613}, {57924, 76}


X(57728) = ISOGONAL CONJUGATE OF X(620)

Barycentrics    a^2*(a^4-2*a^2*b^2+2*b^4-2*b^2*c^2+c^4)*(a^4+b^4-2*(a^2+b^2)*c^2+2*c^4) : :

X(57728) lies on these lines: {6, 33803}, {187, 9218}, {249, 3124}, {512, 39024}, {524, 5103}, {691, 9217}, {3800, 42345}, {5640, 9515}, {6792, 35605}, {7772, 18872}, {14701, 35006}, {14728, 35146}, {15019, 43950}, {36696, 41363}

X(57728) = isogonal conjugate of X(620)
X(57728) = trilinear pole of line {351, 7600}
X(57728) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 620}, {2, 17467}, {6, 20903}, {37, 17199}, {75, 20976}, {81, 21047}, {92, 22085}, {100, 21135}, {661, 14588}, {662, 11123}, {23991, 24041}, {33906, 36085}
X(57728) = X(i)-vertex conjugate of X(j) for these {i, j}: {249, 57728}, {2987, 57729}
X(57728) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 620}, {9, 20903}, {206, 20976}, {1084, 11123}, {3005, 23991}, {8054, 21135}, {22391, 22085}, {32664, 17467}, {36830, 14588}, {38988, 33906}, {40586, 21047}, {40589, 17199}
X(57728) = X(i)-cross conjugate of X(j) for these {i, j}: {5467, 111}
X(57728) = pole of line {620, 17199} with respect to the Stammler hyperbola
X(57728) = pole of line {8574, 10278} with respect to the Steiner inellipse
X(57728) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(14568)}}, {{A, B, C, X(4), X(2065)}}, {{A, B, C, X(6), X(187)}}, {{A, B, C, X(25), X(21399)}}, {{A, B, C, X(32), X(5111)}}, {{A, B, C, X(39), X(35006)}}, {{A, B, C, X(54), X(23700)}}, {{A, B, C, X(83), X(34238)}}, {{A, B, C, X(110), X(33803)}}, {{A, B, C, X(111), X(5503)}}, {{A, B, C, X(250), X(50712)}}, {{A, B, C, X(251), X(842)}}, {{A, B, C, X(316), X(43726)}}, {{A, B, C, X(427), X(37902)}}, {{A, B, C, X(511), X(3527)}}, {{A, B, C, X(671), X(755)}}, {{A, B, C, X(691), X(9218)}}, {{A, B, C, X(694), X(6034)}}, {{A, B, C, X(729), X(2987)}}, {{A, B, C, X(895), X(36696)}}, {{A, B, C, X(1126), X(12031)}}, {{A, B, C, X(1173), X(2698)}}, {{A, B, C, X(1383), X(13192)}}, {{A, B, C, X(1570), X(22331)}}, {{A, B, C, X(1691), X(7772)}}, {{A, B, C, X(1692), X(5013)}}, {{A, B, C, X(2353), X(53105)}}, {{A, B, C, X(2703), X(18771)}}, {{A, B, C, X(2706), X(57409)}}, {{A, B, C, X(2715), X(17708)}}, {{A, B, C, X(3108), X(5970)}}, {{A, B, C, X(3124), X(42344)}}, {{A, B, C, X(5103), X(27375)}}, {{A, B, C, X(5104), X(14075)}}, {{A, B, C, X(5640), X(9465)}}, {{A, B, C, X(8781), X(57260)}}, {{A, B, C, X(9136), X(39389)}}, {{A, B, C, X(9139), X(14948)}}, {{A, B, C, X(11564), X(57407)}}, {{A, B, C, X(14248), X(56004)}}, {{A, B, C, X(14701), X(17949)}}, {{A, B, C, X(14906), X(17503)}}, {{A, B, C, X(15544), X(18365)}}, {{A, B, C, X(18333), X(46428)}}, {{A, B, C, X(34130), X(52518)}}, {{A, B, C, X(36897), X(52618)}}, {{A, B, C, X(37841), X(57421)}}
X(57728) = barycentric product X(i)*X(j) for these (i, j): {110, 42345}, {14728, 351}, {40429, 6}
X(57728) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20903}, {6, 620}, {31, 17467}, {32, 20976}, {42, 21047}, {58, 17199}, {110, 14588}, {184, 22085}, {351, 33906}, {512, 11123}, {649, 21135}, {3124, 23991}, {14728, 53080}, {22260, 42553}, {40429, 76}, {42345, 850}


X(57729) = ISOGONAL CONJUGATE OF X(625)

Barycentrics    a^2*(2*(a^4-a^2*b^2+b^4)-(a^2+b^2)*c^2)*(2*a^4-b^2*c^2+2*c^4-a^2*(b^2+2*c^2)) : :

X(57729) lies on these lines: {251, 39834}, {574, 5012}, {599, 1078}, {671, 14567}, {1383, 30498}, {8541, 10312}, {11003, 30495}

X(57729) = isogonal conjugate of X(625)
X(57729) = trilinear pole of line {1613, 3050}
X(57729) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 625}, {2, 17472}, {6, 20904}, {37, 17204}, {75, 20977}, {81, 21048}, {92, 22087}, {100, 21136}
X(57729) = X(i)-vertex conjugate of X(j) for these {i, j}: {251, 5503}, {671, 57729}, {2987, 57728}, {34321, 34322}
X(57729) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 625}, {9, 20904}, {206, 20977}, {8054, 21136}, {22391, 22087}, {32664, 17472}, {40586, 21048}, {40589, 17204}
X(57729) = X(i)-cross conjugate of X(j) for these {i, j}: {44823, 2715}, {46599, 843}, {53272, 110}
X(57729) = pole of line {625, 17204} with respect to the Stammler hyperbola
X(57729) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7870)}}, {{A, B, C, X(6), X(574)}}, {{A, B, C, X(32), X(39560)}}, {{A, B, C, X(39), X(10290)}}, {{A, B, C, X(54), X(98)}}, {{A, B, C, X(83), X(9515)}}, {{A, B, C, X(99), X(34071)}}, {{A, B, C, X(111), X(10153)}}, {{A, B, C, X(187), X(8787)}}, {{A, B, C, X(249), X(729)}}, {{A, B, C, X(512), X(32901)}}, {{A, B, C, X(755), X(2987)}}, {{A, B, C, X(843), X(8753)}}, {{A, B, C, X(1177), X(15387)}}, {{A, B, C, X(1383), X(8587)}}, {{A, B, C, X(2021), X(35378)}}, {{A, B, C, X(3108), X(5503)}}, {{A, B, C, X(3431), X(44557)}}, {{A, B, C, X(7881), X(8781)}}, {{A, B, C, X(8770), X(39644)}}, {{A, B, C, X(9217), X(11060)}}, {{A, B, C, X(13472), X(43532)}}, {{A, B, C, X(14528), X(56344)}}, {{A, B, C, X(14602), X(47646)}}, {{A, B, C, X(15388), X(38534)}}, {{A, B, C, X(15390), X(44102)}}, {{A, B, C, X(21845), X(57385)}}, {{A, B, C, X(21846), X(57384)}}, {{A, B, C, X(34154), X(45103)}}, {{A, B, C, X(38829), X(45857)}}, {{A, B, C, X(39955), X(43535)}}
X(57729) = barycentric product X(i)*X(j) for these (i, j): {6, 57926}
X(57729) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20904}, {6, 625}, {31, 17472}, {32, 20977}, {42, 21048}, {58, 17204}, {184, 22087}, {649, 21136}, {57926, 76}


X(57730) = ISOGONAL CONJUGATE OF X(632)

Barycentrics    a^2*(3*(a^2-b^2)^2-7*(a^2+b^2)*c^2+4*c^4)*(3*a^4+4*b^4-7*b^2*c^2+3*c^4-a^2*(7*b^2+6*c^2)) : :

X(57730) lies on the Jerabek hyperbola and on these lines: {3, 13421}, {51, 34567}, {54, 13433}, {68, 5068}, {69, 15520}, {265, 3858}, {1173, 52294}, {1176, 15516}, {1199, 14483}, {3426, 43596}, {3517, 44731}, {3519, 22051}, {3527, 14157}, {3531, 7592}, {3567, 14528}, {3839, 10116}, {3855, 15077}, {3861, 17505}, {4846, 49135}, {5890, 43719}, {9707, 43908}, {10619, 38006}, {10982, 14490}, {11270, 15033}, {11432, 44763}, {12242, 13418}, {13452, 43806}, {13472, 15004}, {14156, 42021}, {14487, 15032}, {14491, 22233}, {15682, 31371}, {34483, 55859}, {37505, 44880}, {38848, 57714}, {41435, 55716}, {43602, 46848}, {43704, 47117}, {55710, 56072}

X(57730) = isogonal conjugate of X(632)
X(57730) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 632}, {75, 44111}
X(57730) = X(i)-vertex conjugate of X(j) for these {i, j}: {54, 3527}, {13472, 57730}
X(57730) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 632}, {206, 44111}
X(57730) = pole of line {632, 44111} with respect to the Stammler hyperbola
X(57730) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(4)}}, {{A, B, C, X(5), X(46864)}}, {{A, B, C, X(24), X(5068)}}, {{A, B, C, X(25), X(53098)}}, {{A, B, C, X(32), X(15520)}}, {{A, B, C, X(39), X(15516)}}, {{A, B, C, X(51), X(34565)}}, {{A, B, C, X(59), X(43732)}}, {{A, B, C, X(60), X(43731)}}, {{A, B, C, X(83), X(11588)}}, {{A, B, C, X(93), X(13421)}}, {{A, B, C, X(140), X(52294)}}, {{A, B, C, X(186), X(3858)}}, {{A, B, C, X(251), X(1487)}}, {{A, B, C, X(252), X(32085)}}, {{A, B, C, X(262), X(34572)}}, {{A, B, C, X(378), X(49135)}}, {{A, B, C, X(493), X(43565)}}, {{A, B, C, X(494), X(43564)}}, {{A, B, C, X(588), X(10194)}}, {{A, B, C, X(589), X(10195)}}, {{A, B, C, X(953), X(56343)}}, {{A, B, C, X(1126), X(28233)}}, {{A, B, C, X(1199), X(6749)}}, {{A, B, C, X(1389), X(28235)}}, {{A, B, C, X(2334), X(28219)}}, {{A, B, C, X(2987), X(43527)}}, {{A, B, C, X(3108), X(7607)}}, {{A, B, C, X(3515), X(3855)}}, {{A, B, C, X(3516), X(15682)}}, {{A, B, C, X(3517), X(5071)}}, {{A, B, C, X(3518), X(35018)}}, {{A, B, C, X(3563), X(39955)}}, {{A, B, C, X(3590), X(5417)}}, {{A, B, C, X(3591), X(5419)}}, {{A, B, C, X(3839), X(32534)}}, {{A, B, C, X(3861), X(17506)}}, {{A, B, C, X(5007), X(55716)}}, {{A, B, C, X(5041), X(55706)}}, {{A, B, C, X(5481), X(54857)}}, {{A, B, C, X(5558), X(52186)}}, {{A, B, C, X(5702), X(10982)}}, {{A, B, C, X(6417), X(6470)}}, {{A, B, C, X(6418), X(6471)}}, {{A, B, C, X(7772), X(55710)}}, {{A, B, C, X(10159), X(30535)}}, {{A, B, C, X(10185), X(39389)}}, {{A, B, C, X(10308), X(28231)}}, {{A, B, C, X(11815), X(13482)}}, {{A, B, C, X(11816), X(57408)}}, {{A, B, C, X(13599), X(34570)}}, {{A, B, C, X(14495), X(43537)}}, {{A, B, C, X(14536), X(46426)}}, {{A, B, C, X(14979), X(46081)}}, {{A, B, C, X(17578), X(35477)}}, {{A, B, C, X(18854), X(34233)}}, {{A, B, C, X(20115), X(30536)}}, {{A, B, C, X(21845), X(57382)}}, {{A, B, C, X(21846), X(57383)}}, {{A, B, C, X(30537), X(43666)}}, {{A, B, C, X(32769), X(34225)}}, {{A, B, C, X(39951), X(43662)}}, {{A, B, C, X(41940), X(55696)}}
X(57730) = barycentric product X(i)*X(j) for these (i, j): {6, 57927}
X(57730) = barycentric quotient X(i)/X(j) for these (i, j): {6, 632}, {32, 44111}, {57927, 76}


X(57731) = ISOGONAL CONJUGATE OF X(764)

Barycentrics    a*(a-b)^3*(a-c)^3 : :

X(57731) lies on these lines: {1, 765}, {8, 1016}, {32, 1252}, {58, 4567}, {59, 6049}, {100, 6161}, {764, 6162}, {1026, 23703}, {1043, 7206}, {1265, 4076}, {1420, 4564}, {3573, 6632}, {4597, 6635}, {4998, 6604}, {5091, 6634}, {7035, 33932}, {14191, 23102}, {15742, 56876}, {39185, 50351}, {55243, 57950}

X(57731) = isogonal conjugate of X(764)
X(57731) = trilinear pole of line {44, 765}
X(57731) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 764}, {2, 21143}, {6, 6545}, {11, 43924}, {32, 23100}, {37, 8042}, {56, 21132}, {75, 8027}, {76, 3249}, {86, 8034}, {106, 6550}, {109, 7336}, {244, 513}, {512, 17205}, {522, 1357}, {593, 21131}, {604, 40166}, {649, 1086}, {650, 53538}, {660, 24193}, {661, 16726}, {663, 1358}, {667, 1111}, {693, 3248}, {798, 16727}, {876, 27846}, {900, 43922}, {901, 24188}, {903, 8661}, {1019, 3125}, {1022, 2087}, {1027, 3675}, {1042, 56283}, {1106, 42455}, {1407, 42462}, {1412, 55195}, {1416, 52305}, {1459, 2969}, {1647, 23345}, {1769, 15635}, {1919, 23989}, {1960, 6549}, {1977, 3261}, {2170, 3669}, {2226, 14442}, {2254, 43921}, {2310, 43932}, {2423, 42754}, {3120, 3733}, {3121, 7199}, {3122, 7192}, {3123, 43931}, {3250, 43266}, {3271, 3676}, {3445, 23764}, {3572, 27918}, {3737, 53540}, {3937, 7649}, {3942, 6591}, {4017, 18191}, {4025, 42067}, {4105, 41292}, {4466, 43925}, {4516, 7203}, {4858, 57181}, {5532, 6614}, {6363, 40451}, {6628, 22260}, {7004, 43923}, {7023, 23615}, {7180, 17197}, {7252, 53545}, {8054, 40086}, {16732, 57129}, {18210, 57200}, {19945, 43928}, {21140, 23355}, {22096, 46107}, {23760, 57656}, {23777, 39956}, {23892, 52626}, {31002, 33917}, {43920, 53521}
X(57731) = X(i)-vertex conjugate of X(j) for these {i, j}: {660, 32665}, {668, 34080}
X(57731) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 21132}, {3, 764}, {9, 6545}, {11, 7336}, {206, 8027}, {214, 6550}, {2968, 1090}, {3161, 40166}, {5375, 1086}, {6376, 23100}, {6552, 42455}, {6631, 1111}, {9296, 23989}, {24771, 42462}, {31998, 16727}, {32664, 21143}, {34961, 18191}, {36830, 16726}, {38979, 24188}, {39026, 244}, {39054, 17205}, {40589, 8042}, {40599, 55195}, {40600, 8034}, {40609, 52305}, {45036, 23764}
X(57731) = X(i)-cross conjugate of X(j) for these {i, j}: {100, 765}, {101, 4567}, {644, 1016}, {692, 1252}, {1023, 5376}, {3573, 5377}, {4571, 4076}, {46973, 100}, {57192, 4564}
X(57731) = pole of line {764, 8027} with respect to the Stammler hyperbola
X(57731) = pole of line {32028, 54110} with respect to the Steiner circumellipse
X(57731) = pole of line {764, 4089} with respect to the Wallace hyperbola
X(57731) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(100)}}, {{A, B, C, X(8), X(644)}}, {{A, B, C, X(28), X(33310)}}, {{A, B, C, X(32), X(692)}}, {{A, B, C, X(58), X(101)}}, {{A, B, C, X(99), X(39272)}}, {{A, B, C, X(190), X(32008)}}, {{A, B, C, X(513), X(6161)}}, {{A, B, C, X(643), X(8706)}}, {{A, B, C, X(660), X(2748)}}, {{A, B, C, X(662), X(40408)}}, {{A, B, C, X(728), X(4578)}}, {{A, B, C, X(762), X(40521)}}, {{A, B, C, X(764), X(6164)}}, {{A, B, C, X(785), X(34074)}}, {{A, B, C, X(898), X(4622)}}, {{A, B, C, X(932), X(15446)}}, {{A, B, C, X(934), X(1420)}}, {{A, B, C, X(1018), X(40794)}}, {{A, B, C, X(1043), X(3699)}}, {{A, B, C, X(1052), X(9282)}}, {{A, B, C, X(1083), X(2284)}}, {{A, B, C, X(1265), X(4571)}}, {{A, B, C, X(3445), X(39443)}}, {{A, B, C, X(4554), X(32019)}}, {{A, B, C, X(4569), X(6604)}}, {{A, B, C, X(4596), X(8708)}}, {{A, B, C, X(4628), X(29313)}}, {{A, B, C, X(5376), X(6632)}}, {{A, B, C, X(5377), X(6551)}}, {{A, B, C, X(5548), X(29241)}}, {{A, B, C, X(6079), X(36037)}}, {{A, B, C, X(6386), X(33932)}}, {{A, B, C, X(6574), X(32042)}}, {{A, B, C, X(29103), X(32675)}}, {{A, B, C, X(30701), X(42720)}}, {{A, B, C, X(34896), X(50333)}}, {{A, B, C, X(37017), X(46541)}}
X(57731) = barycentric product X(i)*X(j) for these (i, j): {1, 6632}, {6, 57950}, {44, 6635}, {59, 646}, {100, 1016}, {101, 7035}, {190, 765}, {210, 55194}, {341, 4619}, {1018, 4600}, {1110, 1978}, {1252, 668}, {1275, 4578}, {1332, 15742}, {1635, 42372}, {3570, 5378}, {3699, 4564}, {3807, 5384}, {3952, 4567}, {4033, 4570}, {4069, 4620}, {4076, 651}, {4358, 6551}, {4554, 6065}, {4557, 4601}, {4571, 46102}, {4767, 5385}, {4998, 644}, {6558, 7045}, {17780, 5376}, {21859, 6064}, {23343, 5381}, {23990, 6386}, {24004, 9268}, {24041, 4103}, {27834, 44724}, {31614, 762}, {31615, 8}, {31616, 33932}, {31625, 692}, {40521, 4590}, {42720, 5377}, {43290, 5382}, {52609, 5379}, {52923, 5383}
X(57731) = barycentric quotient X(i)/X(j) for these (i, j): {1, 6545}, {6, 764}, {8, 40166}, {9, 21132}, {31, 21143}, {32, 8027}, {44, 6550}, {58, 8042}, {59, 3669}, {75, 23100}, {99, 16727}, {100, 1086}, {101, 244}, {109, 53538}, {110, 16726}, {190, 1111}, {200, 42462}, {210, 55195}, {213, 8034}, {346, 42455}, {560, 3249}, {643, 17197}, {644, 11}, {646, 34387}, {650, 7336}, {651, 1358}, {662, 17205}, {668, 23989}, {678, 14442}, {692, 1015}, {728, 23615}, {756, 21131}, {762, 8029}, {765, 514}, {906, 3937}, {919, 43921}, {1016, 693}, {1018, 3120}, {1023, 1647}, {1043, 40213}, {1110, 649}, {1252, 513}, {1262, 43932}, {1331, 3942}, {1332, 1565}, {1415, 1357}, {1492, 43266}, {1635, 24188}, {1743, 23764}, {1783, 2969}, {2149, 43924}, {2251, 8661}, {2284, 3675}, {2287, 56283}, {2427, 42753}, {3239, 1090}, {3257, 6549}, {3573, 27918}, {3678, 21141}, {3681, 21133}, {3689, 52338}, {3693, 52305}, {3699, 4858}, {3870, 23760}, {3915, 23777}, {3939, 2170}, {3949, 21134}, {3952, 16732}, {4033, 21207}, {4069, 21044}, {4076, 4391}, {4103, 1109}, {4130, 5532}, {4551, 53545}, {4557, 3125}, {4559, 53540}, {4564, 3676}, {4567, 7192}, {4570, 1019}, {4571, 26932}, {4574, 18210}, {4578, 1146}, {4579, 7200}, {4585, 4089}, {4587, 7004}, {4600, 7199}, {4601, 52619}, {4617, 41292}, {4619, 269}, {4767, 4957}, {4998, 24002}, {5376, 6548}, {5378, 4444}, {5379, 17925}, {5384, 4817}, {5385, 52620}, {5546, 18191}, {6065, 650}, {6066, 3063}, {6335, 2973}, {6551, 88}, {6558, 24026}, {6605, 56284}, {6632, 75}, {6635, 20568}, {7035, 3261}, {7115, 43923}, {8632, 24193}, {9268, 1022}, {14589, 43909}, {15742, 17924}, {21859, 1365}, {23343, 52626}, {23344, 2087}, {23990, 667}, {25082, 23761}, {30693, 23104}, {30720, 4939}, {31614, 57949}, {31615, 7}, {31625, 40495}, {32641, 15635}, {32665, 43922}, {32739, 3248}, {40521, 115}, {44724, 4462}, {46973, 6547}, {51380, 52316}, {52378, 7203}, {52923, 21138}, {55194, 57785}, {56183, 8735}, {57192, 3756}, {57950, 76}
X(57731) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 54230, 6161}, {6162, 6163, 764}


X(57732) = ISOGONAL CONJUGATE OF X(852)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^2*b^2*(a^2-b^2)^2-(a^2-b^2)^2*(a^2+b^2)*c^2+2*(a^4-a^2*b^2+b^4)*c^4-(a^2+b^2)*c^6)*(a^6*(b^2-2*c^2)+b^2*c^2*(b^2-c^2)^2+a^2*(b-c)*(b+c)*(b^2+c^2)*(b^2+2*c^2)-a^4*(2*b^4+b^2*c^2-4*c^4)) : :

X(57732) lies on the Jerabek hyperbola and on these lines: {3, 648}, {4, 15352}, {6, 107}, {54, 16813}, {65, 54240}, {67, 51939}, {68, 30450}, {69, 6331}, {71, 1897}, {72, 6335}, {73, 653}, {74, 15459}, {248, 685}, {265, 46456}, {450, 895}, {468, 1942}, {687, 5504}, {879, 16081}, {1176, 42396}, {1177, 32725}, {1439, 13149}, {1987, 1990}, {2435, 6330}, {2574, 46812}, {2575, 46815}, {3426, 33971}, {3519, 38342}, {3532, 57517}, {6130, 14380}, {8795, 42401}, {10097, 17983}, {10099, 54235}, {15077, 25051}, {15576, 43713}, {19189, 43918}, {36139, 57735}, {36296, 36306}, {36297, 36309}, {40138, 43718}, {43701, 53345}

X(57732) = isogonal conjugate of X(852)
X(57732) = trilinear pole of line {4, 647}
X(57732) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 852}, {63, 3331}, {163, 52744}
X(57732) = X(i)-vertex conjugate of X(j) for these {i, j}: {18877, 32230}
X(57732) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 852}, {115, 52744}, {3162, 3331}
X(57732) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57981, 54973}
X(57732) = X(i)-cross conjugate of X(j) for these {i, j}: {26717, 54973}
X(57732) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37070)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(98), X(32230)}}, {{A, B, C, X(107), X(648)}}, {{A, B, C, X(275), X(11169)}}, {{A, B, C, X(450), X(468)}}, {{A, B, C, X(459), X(44556)}}, {{A, B, C, X(1298), X(18877)}}, {{A, B, C, X(1990), X(6130)}}, {{A, B, C, X(2052), X(47383)}}, {{A, B, C, X(33971), X(40138)}}, {{A, B, C, X(34384), X(56364)}}, {{A, B, C, X(34570), X(35098)}}, {{A, B, C, X(34980), X(52177)}}, {{A, B, C, X(40402), X(45857)}}, {{A, B, C, X(40815), X(42352)}}, {{A, B, C, X(41522), X(48361)}}, {{A, B, C, X(41890), X(42333)}}, {{A, B, C, X(41894), X(42355)}}, {{A, B, C, X(42300), X(43530)}}
X(57732) = barycentric product X(i)*X(j) for these (i, j): {4, 54973}, {6, 57981}, {264, 26717}, {3267, 32725}, {14208, 36139}
X(57732) = barycentric quotient X(i)/X(j) for these (i, j): {6, 852}, {25, 3331}, {523, 52744}, {3331, 52066}, {16080, 52766}, {26717, 3}, {32725, 112}, {34980, 33571}, {36139, 162}, {54973, 69}, {57981, 76}


X(57733) = ISOGONAL CONJUGATE OF X(853)

Barycentrics    (a+b-c)*(a-b+c)*(2*a^2*(a-b)^2*b^2*(a+b)-(a-b)^2*(a+b)*(a^2+b^2)*c^2+(a^4+b^4)*c^3+(a-b)^2*(a+b)*c^4-(a^2+b^2)*c^5)*(a*b^2*(b-c)*c^2*(b+c)+b^2*(b-c)^2*c^2*(b+c)+a^5*(b^2-2*c^2)-a^4*(b^3+b^2*c-2*c^3)-a^3*(b^4-2*c^4)+a^2*(b^5+b^4*c-2*c^5)) : :

X(57733) lies on these lines: {3, 4573}, {65, 13149}, {69, 57982}, {71, 664}, {72, 4554}, {73, 658}, {1439, 36838}, {10099, 34018}

X(57733) = isogonal conjugate of X(853)
X(57733) = trilinear pole of line {7, 647}
X(57733) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(102), X(53228)}}, {{A, B, C, X(658), X(664)}}
X(57733) = barycentric product X(i)*X(j) for these (i, j): {6, 57982}
X(57733) = barycentric quotient X(i)/X(j) for these (i, j): {6, 853}, {57982, 76}


X(57734) = ISOGONAL CONJUGATE OF X(856)

Barycentrics    a*(a+b)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a*b*(a^2-b^2)^2-(a-b)^2*(a^2+b^2)*c^2+(2*a^2-3*a*b+2*b^2)*c^4-c^6)*(-(a^4*b^2)+a^5*c+2*a^2*b^2*(b-c)*(b+c)+2*a^3*(b-c)*c*(b+c)-(b^3-b*c^2)^2+a*(-3*b^4*c+2*b^2*c^3+c^5)) : :

X(57734) lies on the Jerabek hyperbola and on these lines: {3, 162}, {4, 36126}, {6, 24019}, {65, 36127}, {69, 811}, {71, 1783}, {72, 1897}, {73, 108}, {74, 36068}, {248, 36104}, {265, 36129}, {879, 36120}, {1439, 36118}, {1903, 8748}, {2202, 43694}, {2435, 8767}, {2574, 2587}, {2575, 2586}, {5504, 36114}, {10097, 36128}, {10099, 36124}, {14220, 36130}, {14380, 36119}, {32670, 57735}, {36105, 43705}

X(57734) = isogonal conjugate of X(856)
X(57734) = trilinear pole of line {19, 647}
X(57734) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 856}, {63, 3330}, {73, 10538}, {307, 10535}
X(57734) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 856}, {3162, 3330}
X(57734) = X(i)-cross conjugate of X(j) for these {i, j}: {53304, 107}, {53549, 112}
X(57734) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(28), X(3194)}}, {{A, B, C, X(56), X(7049)}}, {{A, B, C, X(58), X(1896)}}, {{A, B, C, X(80), X(57410)}}, {{A, B, C, X(108), X(162)}}, {{A, B, C, X(957), X(7003)}}, {{A, B, C, X(1039), X(15628)}}, {{A, B, C, X(1875), X(34079)}}, {{A, B, C, X(3445), X(38249)}}, {{A, B, C, X(15384), X(46435)}}
X(57734) = barycentric product X(i)*X(j) for these (i, j): {6, 57983}, {14208, 32670}, {26701, 92}, {36068, 525}
X(57734) = barycentric quotient X(i)/X(j) for these (i, j): {6, 856}, {25, 3330}, {1172, 10538}, {2204, 10535}, {26701, 63}, {32670, 162}, {36068, 648}, {57983, 76}


X(57735) = ISOGONAL CONJUGATE OF X(857)

Barycentrics    a^2*(a+b)*(a+c)*((a-b)^2*(a^2+a*b+b^2)+a*b*c^2-c^4)*(a^4-b^4-a^3*c+c^4+a*(b-c)*c*(b+c)) : :

X(57735) lies on the Jerabek hyperbola and on these lines: {3, 163}, {4, 24019}, {6, 32676}, {65, 2332}, {68, 36145}, {69, 662}, {71, 692}, {72, 101}, {73, 1415}, {74, 36071}, {184, 57660}, {265, 32678}, {284, 1439}, {879, 1910}, {895, 36142}, {913, 3657}, {923, 10097}, {1176, 34072}, {1438, 10099}, {1474, 1903}, {2159, 14380}, {2280, 52390}, {2574, 2577}, {2575, 2576}, {3002, 32671}, {3519, 36148}, {4846, 36149}, {7113, 43723}, {7119, 15232}, {14220, 36151}, {14953, 36146}, {17798, 32666}, {28787, 52012}, {32670, 57734}, {32675, 52391}, {36139, 57732}, {38955, 45748}

X(57735) = isogonal conjugate of X(857)
X(57735) = trilinear pole of line {31, 647}
X(57735) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 857}, {2, 44661}, {10, 7291}, {37, 4872}, {42, 7112}, {65, 37774}, {75, 39690}, {226, 3100}, {321, 3220}
X(57735) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 857}, {206, 39690}, {32664, 44661}, {40589, 4872}, {40592, 7112}, {40602, 37774}
X(57735) = X(i)-cross conjugate of X(j) for these {i, j}: {926, 110}, {8554, 55}, {42671, 56}
X(57735) = pole of line {32673, 57735} with respect to the Jerabek hyperbola
X(57735) = pole of line {857, 4872} with respect to the Stammler hyperbola
X(57735) = pole of line {857, 7112} with respect to the Wallace hyperbola
X(57735) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(25), X(24580)}}, {{A, B, C, X(27), X(57405)}}, {{A, B, C, X(28), X(36017)}}, {{A, B, C, X(101), X(163)}}, {{A, B, C, X(184), X(44081)}}, {{A, B, C, X(222), X(7169)}}, {{A, B, C, X(241), X(17798)}}, {{A, B, C, X(284), X(2332)}}, {{A, B, C, X(604), X(7139)}}, {{A, B, C, X(949), X(15374)}}, {{A, B, C, X(1169), X(38811)}}, {{A, B, C, X(1408), X(1474)}}, {{A, B, C, X(1436), X(40570)}}, {{A, B, C, X(1790), X(2194)}}, {{A, B, C, X(1797), X(38883)}}, {{A, B, C, X(2245), X(3002)}}, {{A, B, C, X(2280), X(40214)}}, {{A, B, C, X(2311), X(52378)}}, {{A, B, C, X(14953), X(37908)}}, {{A, B, C, X(18025), X(28844)}}, {{A, B, C, X(30733), X(52012)}}, {{A, B, C, X(38258), X(38266)}}
X(57735) = barycentric product X(i)*X(j) for these (i, j): {1, 26702}, {14208, 32673}, {36071, 525}, {37202, 6}
X(57735) = barycentric quotient X(i)/X(j) for these (i, j): {6, 857}, {31, 44661}, {32, 39690}, {58, 4872}, {81, 7112}, {284, 37774}, {1333, 7291}, {2194, 3100}, {2206, 3220}, {26702, 75}, {32673, 162}, {36071, 648}, {37202, 76}


X(57736) = ISOGONAL CONJUGATE OF X(860)

Barycentrics    a^2*(a+b)*(a+c)*(a^2-b^2-c^2)*(a^2-a*b+b^2-c^2)*(a^2-b^2-a*c+c^2) : :

X(57736) lies on the Jerabek hyperbola and on these lines: {3, 4575}, {4, 162}, {6, 163}, {54, 60}, {58, 65}, {69, 4592}, {71, 906}, {72, 283}, {73, 1437}, {74, 36034}, {80, 5247}, {110, 34586}, {255, 43708}, {265, 36061}, {290, 36036}, {293, 879}, {580, 34462}, {603, 52390}, {859, 36040}, {1465, 51420}, {1727, 52680}, {1757, 56422}, {1780, 43703}, {1822, 2575}, {1823, 2574}, {1903, 2341}, {1951, 57693}, {2361, 5127}, {2605, 10091}, {2617, 34465}, {3002, 32671}, {3431, 40214}, {3657, 36052}, {6740, 16704}, {7117, 32661}, {7193, 57680}, {8795, 39277}, {9273, 57742}, {10097, 36060}, {10099, 36057}, {14220, 36062}, {14380, 35200}, {15328, 36053}, {23071, 23166}, {28786, 52392}, {31001, 39054}, {35364, 36051}, {36046, 43717}, {36047, 43707}, {36048, 52560}, {37140, 37142}, {45235, 49203}, {50433, 57691}

X(57736) = inverse of X(34586) in Stammler hyperbola
X(57736) = isogonal conjugate of X(860)
X(57736) = trilinear pole of line {48, 647}
X(57736) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 860}, {4, 758}, {8, 1835}, {10, 1870}, {12, 17515}, {19, 3936}, {25, 35550}, {27, 4053}, {33, 41804}, {36, 41013}, {37, 17923}, {65, 5081}, {75, 44113}, {92, 2245}, {162, 6370}, {186, 6757}, {225, 4511}, {264, 3724}, {281, 18593}, {318, 1464}, {320, 1824}, {321, 52413}, {451, 39149}, {523, 4242}, {648, 2610}, {811, 42666}, {1309, 42768}, {1441, 52427}, {1443, 53008}, {1783, 4707}, {1826, 3218}, {1832, 5239}, {1833, 5240}, {1845, 38955}, {1880, 32851}, {1897, 53527}, {1983, 14618}, {2323, 40149}, {2333, 20924}, {2361, 57809}, {2501, 4585}, {4551, 44428}, {6335, 21828}, {6336, 40988}, {6739, 36119}, {8818, 52414}, {15455, 47230}, {18026, 53562}, {30250, 55149}, {31845, 39439}, {36797, 51663}, {39435, 53982}, {52426, 52575}
X(57736) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 860}, {6, 3936}, {125, 6370}, {206, 44113}, {1511, 6739}, {6505, 35550}, {15898, 41013}, {17423, 42666}, {22391, 2245}, {34467, 53527}, {36033, 758}, {39006, 4707}, {40589, 17923}, {40602, 5081}, {55066, 2610}
X(57736) = X(i)-Ceva conjugate of X(j) for these {i, j}: {24624, 34079}, {39277, 24624}, {52380, 759}
X(57736) = X(i)-cross conjugate of X(j) for these {i, j}: {3284, 222}, {8677, 110}, {22086, 4558}
X(57736) = pole of line {759, 45272} with respect to the Feuerbach hyperbola
X(57736) = pole of line {860, 1870} with respect to the Stammler hyperbola
X(57736) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(11334)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(5), X(37116)}}, {{A, B, C, X(21), X(37227)}}, {{A, B, C, X(28), X(1792)}}, {{A, B, C, X(56), X(1069)}}, {{A, B, C, X(58), X(270)}}, {{A, B, C, X(60), X(18180)}}, {{A, B, C, X(78), X(998)}}, {{A, B, C, X(80), X(34242)}}, {{A, B, C, X(109), X(162)}}, {{A, B, C, X(216), X(5396)}}, {{A, B, C, X(219), X(1169)}}, {{A, B, C, X(222), X(1171)}}, {{A, B, C, X(255), X(56840)}}, {{A, B, C, X(271), X(1782)}}, {{A, B, C, X(305), X(30904)}}, {{A, B, C, X(332), X(38813)}}, {{A, B, C, X(394), X(24597)}}, {{A, B, C, X(577), X(5398)}}, {{A, B, C, X(603), X(1399)}}, {{A, B, C, X(759), X(1793)}}, {{A, B, C, X(905), X(37128)}}, {{A, B, C, X(967), X(45127)}}, {{A, B, C, X(1126), X(40442)}}, {{A, B, C, X(1411), X(1807)}}, {{A, B, C, X(1794), X(55101)}}, {{A, B, C, X(1880), X(3437)}}, {{A, B, C, X(3445), X(38248)}}, {{A, B, C, X(3682), X(24883)}}, {{A, B, C, X(5247), X(22134)}}, {{A, B, C, X(8677), X(34586)}}, {{A, B, C, X(13730), X(24538)}}, {{A, B, C, X(18268), X(32658)}}, {{A, B, C, X(20842), X(27504)}}, {{A, B, C, X(20982), X(22094)}}, {{A, B, C, X(21004), X(22156)}}, {{A, B, C, X(27379), X(37034)}}, {{A, B, C, X(45926), X(50433)}}
X(57736) = barycentric product X(i)*X(j) for these (i, j): {6, 57985}, {63, 759}, {125, 9273}, {216, 39277}, {222, 6740}, {265, 40214}, {284, 52392}, {1214, 52380}, {1411, 1812}, {1437, 18359}, {1444, 2161}, {1459, 47318}, {1790, 80}, {1793, 57}, {1797, 56950}, {1807, 81}, {2006, 283}, {2185, 52391}, {2341, 77}, {14208, 32671}, {14616, 48}, {14838, 36061}, {14919, 56645}, {17206, 6187}, {18815, 2193}, {20902, 9274}, {22094, 39295}, {23189, 655}, {23226, 32680}, {24624, 3}, {32662, 4467}, {34016, 52153}, {34055, 46160}, {34079, 69}, {36069, 525}, {37140, 656}, {51562, 7254}, {52351, 58}, {52431, 86}
X(57736) = barycentric quotient X(i)/X(j) for these (i, j): {3, 3936}, {6, 860}, {32, 44113}, {48, 758}, {58, 17923}, {63, 35550}, {163, 4242}, {184, 2245}, {222, 41804}, {228, 4053}, {283, 32851}, {284, 5081}, {603, 18593}, {604, 1835}, {647, 6370}, {759, 92}, {810, 2610}, {1333, 1870}, {1411, 40149}, {1437, 3218}, {1444, 20924}, {1459, 4707}, {1790, 320}, {1793, 312}, {1807, 321}, {2006, 57809}, {2150, 17515}, {2161, 41013}, {2193, 4511}, {2206, 52413}, {2341, 318}, {2605, 44427}, {3049, 42666}, {3284, 6739}, {4575, 4585}, {6187, 1826}, {6740, 7017}, {7252, 44428}, {7254, 4453}, {9247, 3724}, {9273, 18020}, {14616, 1969}, {17104, 52414}, {17206, 40075}, {18815, 52575}, {20982, 35235}, {22383, 53527}, {23154, 51465}, {23189, 3904}, {23202, 40988}, {23226, 32679}, {24624, 264}, {32662, 6742}, {32671, 162}, {34079, 4}, {36061, 15455}, {36069, 648}, {37140, 811}, {39277, 276}, {40214, 340}, {46160, 20883}, {50433, 52388}, {52153, 8818}, {52351, 313}, {52380, 31623}, {52391, 6358}, {52392, 349}, {52408, 42701}, {52411, 1464}, {52431, 10}, {56645, 46106}, {56950, 46109}, {57657, 52427}, {57985, 76}


X(57737) = ISOGONAL CONJUGATE OF X(861)

Barycentrics    a*(a+b-c)*(a-b+c)*(a*b*(a^2-b^2)^2+a*(a-b)^2*b*(a+b)*c-(a-b)^2*(a^2+a*b+b^2)*c^2+(a^3+b^3)*c^3+(a-b)^2*c^4-(a+b)*c^5)*(a^5*c+a^4*b*(-b+c)-b^2*(b-c)^2*c*(b+c)+a^3*(b^3+b^2*c-b*c^2-2*c^3)+a^2*(b^4-b*c^3)+a*(-b^5-2*b^4*c+b^2*c^3+b*c^4+c^5)) : :

X(57737) lies on the Jerabek hyperbola and on these lines: {3, 1414}, {65, 36118}, {69, 4625}, {71, 651}, {72, 664}, {73, 934}, {1439, 4626}, {7282, 15320}, {10099, 56783}, {14828, 43724}

X(57737) = isogonal conjugate of X(861)
X(57737) = trilinear pole of line {57, 647}
X(57737) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(102), X(46137)}}, {{A, B, C, X(651), X(664)}}, {{A, B, C, X(11349), X(26003)}}, {{A, B, C, X(40397), X(40443)}}
X(57737) = barycentric product X(i)*X(j) for these (i, j): {6, 57986}
X(57737) = barycentric quotient X(i)/X(j) for these (i, j): {6, 861}, {57986, 76}


X(57738) = ISOGONAL CONJUGATE OF X(862)

Barycentrics    a*(a+b)*(a+c)*(-b^2+a*c)*(a*b-c^2)*(a^2-b^2-c^2) : :

X(57738) lies on the Jerabek hyperbola and on these lines: {3, 4592}, {4, 811}, {6, 662}, {65, 664}, {69, 55202}, {71, 1332}, {72, 295}, {73, 1808}, {74, 36066}, {86, 49537}, {334, 15232}, {336, 879}, {741, 1245}, {876, 8773}, {1244, 1509}, {1903, 36800}, {3926, 43698}, {3937, 4563}, {4589, 38955}, {6626, 25917}, {8033, 19222}, {10099, 31637}, {20337, 26019}, {20741, 20808}, {20769, 57681}, {40708, 57690}

X(57738) = isogonal conjugate of X(862)
X(57738) = trilinear pole of line {63, 647}
X(57738) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 862}, {4, 3747}, {10, 57654}, {19, 2238}, {25, 740}, {33, 1284}, {34, 4433}, {37, 2201}, {42, 242}, {55, 1874}, {92, 41333}, {162, 4155}, {181, 14024}, {238, 1824}, {239, 2333}, {607, 16609}, {608, 3985}, {648, 46390}, {1428, 53008}, {1474, 4037}, {1500, 31905}, {1783, 21832}, {1826, 1914}, {1880, 3684}, {1897, 4455}, {1918, 40717}, {1973, 3948}, {1974, 35544}, {2054, 52468}, {2210, 41013}, {2299, 7235}, {2489, 3570}, {3685, 57652}, {3690, 34856}, {4010, 8750}, {4093, 32085}, {4154, 17980}, {5009, 7140}, {14776, 42767}, {27853, 57204}, {36815, 44113}, {52651, 56828}
X(57738) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 862}, {6, 2238}, {125, 4155}, {223, 1874}, {226, 7235}, {6337, 3948}, {6505, 740}, {9470, 1824}, {11517, 4433}, {22391, 41333}, {26932, 4010}, {34021, 40717}, {34467, 4455}, {36033, 3747}, {36906, 1826}, {39006, 21832}, {39042, 52468}, {40589, 2201}, {40592, 242}, {51574, 4037}, {55066, 46390}
X(57738) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40017, 37128}
X(57738) = X(i)-cross conjugate of X(j) for these {i, j}: {20733, 1214}, {22092, 52608}, {36212, 348}, {53550, 4558}
X(57738) = pole of line {26019, 37128} with respect to the Kiepert hyperbola
X(57738) = pole of line {862, 2201} with respect to the Stammler hyperbola
X(57738) = pole of line {242, 862} with respect to the Wallace hyperbola
X(57738) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11329)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(63), X(51311)}}, {{A, B, C, X(77), X(7176)}}, {{A, B, C, X(295), X(18268)}}, {{A, B, C, X(305), X(24598)}}, {{A, B, C, X(332), X(33296)}}, {{A, B, C, X(336), X(662)}}, {{A, B, C, X(337), X(7233)}}, {{A, B, C, X(394), X(30962)}}, {{A, B, C, X(757), X(1434)}}, {{A, B, C, X(1808), X(56154)}}, {{A, B, C, X(19308), X(26019)}}, {{A, B, C, X(20336), X(24530)}}, {{A, B, C, X(21755), X(22373)}}, {{A, B, C, X(21783), X(23083)}}
X(57738) = barycentric product X(i)*X(j) for these (i, j): {3, 40017}, {6, 57987}, {274, 295}, {304, 741}, {337, 81}, {348, 56154}, {1437, 18895}, {1444, 335}, {1459, 4639}, {1790, 334}, {1808, 85}, {1812, 7233}, {2196, 310}, {2311, 7182}, {3572, 55202}, {3784, 40834}, {4025, 4584}, {4444, 4592}, {4563, 876}, {4583, 7254}, {4589, 905}, {15419, 660}, {17206, 291}, {18268, 305}, {18827, 63}, {36066, 525}, {36214, 8033}, {36800, 77}, {37128, 69}, {39276, 3933}, {52608, 875}
X(57738) = barycentric quotient X(i)/X(j) for these (i, j): {3, 2238}, {6, 862}, {48, 3747}, {57, 1874}, {58, 2201}, {63, 740}, {69, 3948}, {72, 4037}, {77, 16609}, {78, 3985}, {81, 242}, {184, 41333}, {219, 4433}, {222, 1284}, {274, 40717}, {283, 3684}, {291, 1826}, {292, 1824}, {295, 37}, {304, 35544}, {332, 3975}, {335, 41013}, {337, 321}, {647, 4155}, {741, 19}, {757, 31905}, {810, 46390}, {875, 2489}, {876, 2501}, {905, 4010}, {1214, 7235}, {1333, 57654}, {1437, 1914}, {1444, 239}, {1459, 21832}, {1790, 238}, {1808, 9}, {1812, 3685}, {1911, 2333}, {1931, 52468}, {2185, 14024}, {2196, 42}, {2311, 33}, {3784, 18904}, {3937, 39786}, {3977, 4783}, {4020, 4093}, {4047, 4829}, {4091, 53556}, {4131, 24459}, {4444, 24006}, {4558, 3573}, {4563, 874}, {4584, 1897}, {4589, 6335}, {4592, 3570}, {4652, 4771}, {4876, 53008}, {7233, 40149}, {7254, 659}, {8033, 17984}, {15419, 3766}, {17206, 350}, {17970, 40729}, {18268, 25}, {18604, 7193}, {18787, 1840}, {18827, 92}, {20769, 4368}, {20785, 20681}, {22070, 51464}, {22373, 2086}, {22383, 4455}, {23189, 4435}, {36066, 648}, {36212, 50440}, {36214, 52651}, {36800, 318}, {37128, 4}, {39276, 32085}, {40017, 264}, {45783, 4213}, {46159, 17442}, {55202, 27853}, {56154, 281}, {57081, 4148}, {57987, 76}


X(57739) = ISOGONAL CONJUGATE OF X(865)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(-b^6+a^4*c^2+b^4*c^2+a^2*(b^4-3*b^2*c^2+c^4))*(a^4*b^2+(b-c)*c^4*(b+c)+a^2*(b^4-3*b^2*c^2+c^4)) : :

X(57739) lies on the Jerabek hyperbola and on these lines: {3, 4590}, {6, 18020}, {69, 34537}, {71, 4600}, {72, 4601}, {73, 4620}, {248, 57991}, {879, 43187}, {892, 10097}, {895, 52940}, {2407, 9091}, {6035, 35909}, {14380, 23342}, {15328, 57932}, {16098, 36214}

X(57739) = isogonal conjugate of X(865)
X(57739) = trilinear pole of line {99, 647}
X(57739) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 865}, {798, 9035}, {810, 47206}, {4117, 16084}
X(57739) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 865}, {31998, 9035}, {39062, 47206}
X(57739) = X(i)-cross conjugate of X(j) for these {i, j}: {56430, 99}
X(57739) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(877), X(53367)}}, {{A, B, C, X(892), X(4590)}}, {{A, B, C, X(2407), X(23342)}}, {{A, B, C, X(8681), X(34854)}}
X(57739) = barycentric product X(i)*X(j) for these (i, j): {6, 57988}, {670, 9091}, {16098, 34537}, {53202, 99}
X(57739) = barycentric quotient X(i)/X(j) for these (i, j): {6, 865}, {99, 9035}, {648, 47206}, {4590, 56430}, {9091, 512}, {16098, 3124}, {18020, 15014}, {34537, 16084}, {53202, 523}, {57988, 76}


X(57740) = ISOGONAL CONJUGATE OF X(866)

Barycentrics    a*(a-b)^2*(a-c)^2*(a*b*(a+b)*(a^2+b^2)-a*b*(a+b)^2*c-a*b*(a+b)*c^2+(a^2+a*b+b^2)*c^3-c^5)*(-b^5+a^4*c+b^3*c^2+a^3*c*(-b+c)+a*(b-c)^2*c*(b+c)+a^2*(b^3-b^2*c-2*b*c^2+c^3)) : :

X(57740) lies on the Jerabek hyperbola and on these lines: {3, 4567}, {6, 5379}, {65, 46102}, {69, 4601}, {71, 765}, {72, 1016}, {73, 4564}, {666, 10099}, {879, 53358}, {1275, 1439}, {5376, 16100}, {5380, 10097}, {14380, 23343}

X(57740) = isogonal conjugate of X(866)
X(57740) = trilinear pole of line {100, 647}
X(57740) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 866}, {244, 56529}, {3248, 16085}
X(57740) = X(i)-cross conjugate of X(j) for these {i, j}: {56529, 100}
X(57740) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(666), X(765)}}
X(57740) = barycentric product X(i)*X(j) for these (i, j): {6, 57989}, {100, 53203}, {1016, 16100}
X(57740) = barycentric quotient X(i)/X(j) for these (i, j): {6, 866}, {1016, 16085}, {1252, 56529}, {5379, 44330}, {16100, 1086}, {53203, 693}, {57989, 76}


X(57741) = ISOGONAL CONJUGATE OF X(867)

Barycentrics    a^2*(a-b)^2*(a-c)^2*(a^4+b^4+a^3*(b-c)-a^2*b*c-b^3*c+b*c^3-c^4+a*(b-c)^2*(b+c))*(a^4-b^4-a^2*b*c+b^3*c-b*c^3+c^4+a^3*(-b+c)+a*(b-c)^2*(b+c)) : :

X(57741) lies on the Jerabek hyperbola and on these lines: {3, 4570}, {59, 73}, {65, 7012}, {69, 4600}, {71, 1252}, {72, 765}, {1439, 7045}, {3657, 36106}, {5379, 54125}, {10099, 36086}, {14380, 23344}, {16099, 39293}, {52377, 52391}

X(57741) = isogonal conjugate of X(867)
X(57741) = trilinear pole of line {101, 647}
X(57741) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 867}, {244, 16086}, {447, 18210}, {522, 51643}, {693, 42662}, {1015, 42709}, {4466, 56830}
X(57741) = X(i)-cross conjugate of X(j) for these {i, j}: {758, 110}
X(57741) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(59), X(677)}}, {{A, B, C, X(110), X(9274)}}, {{A, B, C, X(4242), X(13589)}}, {{A, B, C, X(6185), X(15397)}}
X(57741) = barycentric product X(i)*X(j) for these (i, j): {6, 57990}, {101, 35169}, {1252, 16099}
X(57741) = barycentric quotient X(i)/X(j) for these (i, j): {6, 867}, {765, 42709}, {1252, 16086}, {1415, 51643}, {16099, 23989}, {32739, 42662}, {35169, 3261}, {43693, 4466}, {57990, 76}


X(57742) = ISOGONAL CONJUGATE OF X(868)

Barycentrics    a^2*(a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(a^4+b^4-(a^2+b^2)*c^2)*(a^4-a^2*b^2-b^2*c^2+c^4) : :

X(57742) lies on the Jerabek hyperbola and on these lines: {3, 249}, {4, 23582}, {6, 250}, {64, 54057}, {66, 44183}, {67, 287}, {68, 52451}, {69, 4590}, {71, 4570}, {72, 4567}, {73, 52378}, {74, 17974}, {98, 265}, {110, 5649}, {184, 9513}, {290, 41174}, {685, 687}, {691, 2420}, {879, 2966}, {895, 1976}, {2421, 2435}, {2574, 39299}, {2575, 39298}, {4230, 32696}, {5467, 14380}, {5504, 18879}, {9273, 57736}, {9274, 36084}, {11003, 23357}, {11653, 34802}, {14220, 30528}, {14498, 57260}, {14601, 36214}, {15321, 52081}, {15342, 53760}, {18020, 54124}, {18125, 20021}, {32230, 57684}, {33565, 53174}, {35049, 52390}, {35906, 36181}, {38359, 51480}, {51869, 57678}

X(57742) = inverse of X(41167) in Stammler hyperbola
X(57742) = isogonal conjugate of X(868)
X(57742) = trilinear pole of line {110, 647}
X(57742) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 868}, {75, 44114}, {92, 41172}, {115, 1959}, {125, 240}, {232, 20902}, {237, 23994}, {297, 3708}, {325, 2643}, {338, 1755}, {339, 57653}, {511, 1109}, {656, 16230}, {661, 2799}, {684, 24006}, {897, 51429}, {1365, 44694}, {1577, 3569}, {1910, 35088}, {1934, 2679}, {2491, 20948}, {2632, 6530}, {3122, 42703}, {3124, 46238}, {3405, 39691}, {4036, 53521}, {5360, 21207}, {9417, 23962}, {14208, 17994}, {17879, 34854}, {20975, 40703}, {21043, 51369}, {21131, 42717}, {21833, 51370}, {23105, 23997}, {32112, 36035}
X(57742) = X(i)-vertex conjugate of X(j) for these {i, j}: {35364, 57742}
X(57742) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 868}, {206, 44114}, {6593, 51429}, {11672, 35088}, {22391, 41172}, {36830, 2799}, {36899, 338}, {39058, 23962}, {39085, 125}, {40596, 16230}, {41172, 46052}
X(57742) = X(i)-cross conjugate of X(j) for these {i, j}: {39, 39291}, {248, 2966}, {511, 110}, {1976, 2715}, {8779, 4558}, {10313, 18315}, {13198, 47388}, {14060, 40428}, {14966, 47443}, {17974, 43754}, {34137, 4563}, {34218, 476}, {34349, 2}, {37183, 99}, {38873, 10425}, {47635, 98}, {52144, 112}
X(57742) = pole of line {147, 19165} with respect to the Kiepert parabola
X(57742) = pole of line {868, 35088} with respect to the Stammler hyperbola
X(57742) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(36176)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(23), X(323)}}, {{A, B, C, X(98), X(14355)}}, {{A, B, C, X(110), X(34761)}}, {{A, B, C, X(184), X(44127)}}, {{A, B, C, X(249), X(250)}}, {{A, B, C, X(511), X(41167)}}, {{A, B, C, X(805), X(53379)}}, {{A, B, C, X(882), X(3455)}}, {{A, B, C, X(1297), X(5968)}}, {{A, B, C, X(1495), X(3292)}}, {{A, B, C, X(1976), X(2422)}}, {{A, B, C, X(2065), X(9154)}}, {{A, B, C, X(2420), X(5467)}}, {{A, B, C, X(2421), X(34211)}}, {{A, B, C, X(2710), X(5641)}}, {{A, B, C, X(2987), X(35910)}}, {{A, B, C, X(3447), X(34365)}}, {{A, B, C, X(4226), X(4230)}}, {{A, B, C, X(8779), X(51386)}}, {{A, B, C, X(11003), X(46806)}}, {{A, B, C, X(12584), X(19140)}}, {{A, B, C, X(15107), X(23061)}}, {{A, B, C, X(15388), X(32230)}}, {{A, B, C, X(15395), X(34574)}}, {{A, B, C, X(15398), X(40384)}}, {{A, B, C, X(17974), X(35912)}}, {{A, B, C, X(18873), X(39374)}}, {{A, B, C, X(23963), X(47390)}}, {{A, B, C, X(34854), X(52144)}}, {{A, B, C, X(35362), X(46155)}}
X(57742) = barycentric product X(i)*X(j) for these (i, j): {6, 57991}, {110, 2966}, {112, 17932}, {163, 36036}, {184, 41174}, {249, 98}, {250, 287}, {1101, 1821}, {1576, 43187}, {1910, 24041}, {1976, 4590}, {2421, 41173}, {2422, 31614}, {2445, 55274}, {2715, 99}, {4558, 685}, {14355, 39295}, {14587, 53245}, {14601, 34537}, {14999, 53691}, {16081, 47390}, {17974, 23582}, {18020, 248}, {18024, 23963}, {18879, 52451}, {22456, 32661}, {23357, 290}, {23964, 6394}, {23995, 46273}, {32696, 4563}, {34761, 5649}, {36084, 662}, {36104, 4592}, {39291, 56980}, {43754, 648}, {45773, 52038}, {47389, 57260}, {47443, 879}, {55270, 878}, {57655, 57799}
X(57742) = barycentric quotient X(i)/X(j) for these (i, j): {6, 868}, {32, 44114}, {98, 338}, {110, 2799}, {112, 16230}, {184, 41172}, {187, 51429}, {248, 125}, {249, 325}, {250, 297}, {287, 339}, {290, 23962}, {293, 20902}, {511, 35088}, {685, 14618}, {1101, 1959}, {1576, 3569}, {1821, 23994}, {1910, 1109}, {1976, 115}, {2395, 23105}, {2422, 8029}, {2445, 55275}, {2715, 523}, {2966, 850}, {4558, 6333}, {4567, 42703}, {5649, 34765}, {5967, 52628}, {6394, 36793}, {6531, 2970}, {11610, 53569}, {14574, 2491}, {14600, 20975}, {14601, 3124}, {14602, 2679}, {14966, 41167}, {17932, 3267}, {17974, 15526}, {18020, 44132}, {23357, 511}, {23963, 237}, {23964, 6530}, {23995, 1755}, {24041, 46238}, {32640, 32112}, {32661, 684}, {32696, 2501}, {32729, 8430}, {34761, 18312}, {36036, 20948}, {36084, 1577}, {36104, 24006}, {37183, 36471}, {39291, 56981}, {41167, 46052}, {41173, 43665}, {41174, 18022}, {41937, 34854}, {42671, 57430}, {43187, 44173}, {43754, 525}, {46249, 31953}, {47390, 36212}, {47443, 877}, {51869, 39691}, {52144, 41181}, {53691, 14223}, {57260, 8754}, {57655, 232}, {57991, 76}


X(57743) = ISOGONAL CONJUGATE OF X(964)

Barycentrics    a^2*(a*b*(a+b)^2+(a+b)*(a^2+a*b+b^2)*c+(a+b)^2*c^2+(a+b)*c^3+c^4)*(a^3*(b+c)+b*(b+c)*(b^2+c^2)+a*(b+c)*(b^2+b*c+c^2)+a^2*(b^2+2*b*c+2*c^2)) : :

X(57743) lies on the Jerabek hyperbola and on these lines: {3, 40153}, {65, 54426}, {69, 16705}, {71, 1193}, {72, 386}, {387, 38955}, {593, 1798}, {1333, 57704}, {2221, 54300}, {10099, 48128}, {15232, 54418}, {27455, 37539}, {40432, 57690}

X(57743) = isogonal conjugate of X(964)
X(57743) = trilinear pole of line {647, 6371}
X(57743) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 964}, {75, 44115}
X(57743) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 964}, {206, 44115}
X(57743) = pole of line {964, 44115} with respect to the Stammler hyperbola
X(57743) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(386)}}, {{A, B, C, X(2), X(56)}}, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(10), X(46018)}}, {{A, B, C, X(42), X(19767)}}, {{A, B, C, X(58), X(75)}}, {{A, B, C, X(78), X(2194)}}, {{A, B, C, X(387), X(22350)}}, {{A, B, C, X(893), X(2218)}}, {{A, B, C, X(951), X(44733)}}, {{A, B, C, X(977), X(1178)}}, {{A, B, C, X(995), X(3216)}}, {{A, B, C, X(1403), X(37539)}}, {{A, B, C, X(1408), X(56328)}}, {{A, B, C, X(1432), X(40011)}}, {{A, B, C, X(1458), X(48128)}}, {{A, B, C, X(4227), X(19543)}}, {{A, B, C, X(4267), X(30479)}}, {{A, B, C, X(5331), X(40418)}}, {{A, B, C, X(31359), X(57399)}}, {{A, B, C, X(36000), X(52890)}}
X(57743) = barycentric product X(i)*X(j) for these (i, j): {6, 58010}
X(57743) = barycentric quotient X(i)/X(j) for these (i, j): {6, 964}, {32, 44115}, {58010, 76}


X(57744) = ISOGONAL CONJUGATE OF X(965)

Barycentrics    a*(2*a*b*(a+b)^2+(a+b)^3*c-(a^2+b^2)*c^2-(a+b)*c^3+c^4)*(-(a^2*(b-4*c)*(b+c))+b*(b-c)^2*(b+c)-a*(b-2*c)*(b+c)^2+a^3*(b+2*c)) : :

X(57744) lies on these lines: {2, 58011}, {6, 1817}, {25, 3194}, {37, 329}, {40, 42}, {196, 1880}, {223, 1400}, {1427, 14256}, {17056, 39983}

X(57744) = isogonal conjugate of X(965)
X(57744) = trilinear pole of line {6129, 512}
X(57744) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 965}, {63, 11323}
X(57744) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 965}, {3162, 11323}
X(57744) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(6)}}, {{A, B, C, X(4), X(40)}}, {{A, B, C, X(27), X(9309)}}, {{A, B, C, X(34), X(81)}}, {{A, B, C, X(58), X(278)}}, {{A, B, C, X(63), X(961)}}, {{A, B, C, X(92), X(959)}}, {{A, B, C, X(226), X(51223)}}, {{A, B, C, X(274), X(34260)}}, {{A, B, C, X(279), X(2221)}}, {{A, B, C, X(998), X(2982)}}, {{A, B, C, X(1005), X(7490)}}, {{A, B, C, X(1214), X(51502)}}, {{A, B, C, X(5739), X(52082)}}, {{A, B, C, X(17056), X(37685)}}, {{A, B, C, X(37887), X(56343)}}, {{A, B, C, X(40779), X(57397)}}, {{A, B, C, X(42302), X(44733)}}, {{A, B, C, X(43071), X(50442)}}
X(57744) = barycentric product X(i)*X(j) for these (i, j): {6, 58011}
X(57744) = barycentric quotient X(i)/X(j) for these (i, j): {6, 965}, {25, 11323}, {58011, 76}


X(57745) = ISOGONAL CONJUGATE OF X(970)

Barycentrics    (a^5+a^4*b+a*b^4+b^5+(a^4+2*a^3*b+2*a*b^3+b^4)*c-(a+b)*(a^2+b^2)*c^2-(a+b)^2*c^3)*(a^2*(a-b)*(a+b)^2+a*(a-b)*(a+b)*(a+2*b)*c-b^2*(a+b)*c^2+(2*a-b)*b*c^3+(a+b)*c^4+c^5) : :

X(57745) lies on the Kiepert hyperbola and on these lines: {2, 13323}, {3, 34258}, {4, 5019}, {5, 14534}, {6, 3597}, {10, 572}, {30, 54686}, {58, 2051}, {76, 37415}, {226, 37607}, {261, 13731}, {275, 429}, {321, 2975}, {381, 54549}, {580, 37865}, {970, 56974}, {2052, 4185}, {4052, 34646}, {5799, 54510}, {13478, 45939}

X(57745) = isogonal conjugate of X(970)
X(57745) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(261)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(1409)}}, {{A, B, C, X(5), X(429)}}, {{A, B, C, X(6), X(13323)}}, {{A, B, C, X(25), X(37415)}}, {{A, B, C, X(28), X(37399)}}, {{A, B, C, X(54), X(58)}}, {{A, B, C, X(56), X(37620)}}, {{A, B, C, X(65), X(95)}}, {{A, B, C, X(84), X(87)}}, {{A, B, C, X(93), X(2127)}}, {{A, B, C, X(181), X(13731)}}, {{A, B, C, X(264), X(20029)}}, {{A, B, C, X(989), X(52133)}}, {{A, B, C, X(1105), X(2652)}}, {{A, B, C, X(1126), X(29310)}}, {{A, B, C, X(1722), X(5205)}}, {{A, B, C, X(1880), X(8884)}}, {{A, B, C, X(2111), X(2724)}}, {{A, B, C, X(2285), X(55105)}}, {{A, B, C, X(2734), X(40457)}}, {{A, B, C, X(2963), X(51870)}}, {{A, B, C, X(3615), X(55035)}}, {{A, B, C, X(7318), X(45104)}}, {{A, B, C, X(7497), X(37246)}}, {{A, B, C, X(10308), X(45136)}}, {{A, B, C, X(10623), X(29308)}}, {{A, B, C, X(16049), X(37117)}}, {{A, B, C, X(17040), X(51502)}}, {{A, B, C, X(36602), X(44873)}}, {{A, B, C, X(39748), X(43739)}}, {{A, B, C, X(41013), X(51500)}}, {{A, B, C, X(45857), X(51223)}}
X(57745) = barycentric product X(i)*X(j) for these (i, j): {6, 58014}
X(57745) = barycentric quotient X(i)/X(j) for these (i, j): {6, 970}, {58014, 76}


X(57746) = ISOGONAL CONJUGATE OF X(973)

Barycentrics    ((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^10+(b^2-c^2)^4*(b^2+c^2)-a^8*(3*b^2+2*c^2)+a^6*(2*b^4+b^2*c^2+c^4)-a^2*(b^2-c^2)^2*(3*b^4+3*b^2*c^2+2*c^4)+a^4*(2*b^6+b^4*c^2+4*b^2*c^4+c^6))*(a^10+(b^2-c^2)^4*(b^2+c^2)-a^8*(2*b^2+3*c^2)+a^6*(b^4+b^2*c^2+2*c^4)-a^2*(b^2-c^2)^2*(2*b^4+3*b^2*c^2+3*c^4)+a^4*(b^6+4*b^4*c^2+b^2*c^4+2*c^6)) : :

X(57746) lies on these lines: {5, 8882}, {54, 343}, {95, 28706}, {96, 35921}, {252, 7509}, {324, 7488}, {42698, 56254}

X(57746) = isogonal conjugate of X(973)
X(57746) = trilinear pole of line {2623, 6368}
X(57746) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5)}}, {{A, B, C, X(3), X(7488)}}, {{A, B, C, X(24), X(15620)}}, {{A, B, C, X(54), X(95)}}, {{A, B, C, X(631), X(7576)}}, {{A, B, C, X(895), X(39431)}}, {{A, B, C, X(1487), X(57415)}}, {{A, B, C, X(1594), X(33565)}}, {{A, B, C, X(2070), X(37126)}}, {{A, B, C, X(3153), X(7542)}}, {{A, B, C, X(3459), X(13139)}}, {{A, B, C, X(3518), X(7509)}}, {{A, B, C, X(7393), X(13595)}}, {{A, B, C, X(11595), X(11793)}}, {{A, B, C, X(14542), X(15619)}}, {{A, B, C, X(18315), X(44061)}}, {{A, B, C, X(18400), X(32348)}}, {{A, B, C, X(18401), X(40448)}}, {{A, B, C, X(34864), X(44802)}}, {{A, B, C, X(38305), X(38443)}}, {{A, B, C, X(46087), X(53959)}}
X(57746) = barycentric product X(i)*X(j) for these (i, j): {6, 58015}
X(57746) = barycentric quotient X(i)/X(j) for these (i, j): {6, 973}, {58015, 76}


X(57747) = ISOGONAL CONJUGATE OF X(974)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^4*(a^4+a^2*b^2+b^4)-3*(a^2-b^2)^2*(a^6-2*a^4*b^2-2*a^2*b^4+b^6)*c^2+(a^2-b^2)^2*(2*a^4-7*a^2*b^2+2*b^4)*c^4+(a^2+b^2)*(2*a^4-3*a^2*b^2+2*b^4)*c^6+(-3*a^4+2*a^2*b^2-3*b^4)*c^8+(a^2+b^2)*c^10)*(a^12-3*a^10*(b^2+c^2)+c^2*(b^2-c^2)^4*(b^2+c^2)+a^8*(2*b^4+12*b^2*c^2+3*c^4)+a^2*(b^2-c^2)^2*(b^6+4*b^4*c^2+6*b^2*c^4-3*c^6)+a^6*(2*b^6-11*b^4*c^2-9*b^2*c^4-2*c^6)-a^4*(3*b^8+b^6*c^2-18*b^4*c^4+9*b^2*c^6-3*c^8)) : :

X(57747) lies on these lines: {378, 57482}, {403, 11064}, {2071, 46106}, {32695, 50480}, {43768, 52403}, {44138, 58016}

X(57747) = isogonal conjugate of X(974)
X(57747) = trilinear pole of line {9033, 47236}
X(57747) = X(i)-vertex conjugate of X(j) for these {i, j}: {8884, 46087}
X(57747) = X(i)-cross conjugate of X(j) for these {i, j}: {2433, 648}
X(57747) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(30)}}, {{A, B, C, X(3), X(2071)}}, {{A, B, C, X(4), X(403)}}, {{A, B, C, X(5), X(52403)}}, {{A, B, C, X(20), X(10257)}}, {{A, B, C, X(23), X(9818)}}, {{A, B, C, X(54), X(250)}}, {{A, B, C, X(96), X(46429)}}, {{A, B, C, X(186), X(378)}}, {{A, B, C, X(264), X(5627)}}, {{A, B, C, X(265), X(51967)}}, {{A, B, C, X(523), X(1217)}}, {{A, B, C, X(1138), X(18852)}}, {{A, B, C, X(1300), X(8749)}}, {{A, B, C, X(1597), X(37962)}}, {{A, B, C, X(2070), X(7527)}}, {{A, B, C, X(2072), X(44440)}}, {{A, B, C, X(2693), X(40448)}}, {{A, B, C, X(2696), X(32697)}}, {{A, B, C, X(2770), X(35372)}}, {{A, B, C, X(2777), X(5972)}}, {{A, B, C, X(3146), X(44911)}}, {{A, B, C, X(3153), X(15760)}}, {{A, B, C, X(3839), X(47332)}}, {{A, B, C, X(6000), X(11595)}}, {{A, B, C, X(6623), X(10151)}}, {{A, B, C, X(7728), X(14643)}}, {{A, B, C, X(13573), X(16934)}}, {{A, B, C, X(13619), X(37118)}}, {{A, B, C, X(16111), X(38793)}}, {{A, B, C, X(18537), X(47096)}}, {{A, B, C, X(18846), X(22261)}}, {{A, B, C, X(20127), X(38794)}}, {{A, B, C, X(22239), X(32695)}}, {{A, B, C, X(22466), X(48379)}}, {{A, B, C, X(37853), X(48378)}}, {{A, B, C, X(40118), X(40413)}}, {{A, B, C, X(45300), X(46426)}}
X(57747) = barycentric product X(i)*X(j) for these (i, j): {6, 58016}
X(57747) = barycentric quotient X(i)/X(j) for these (i, j): {6, 974}, {58016, 76}


X(57748) = ISOGONAL CONJUGATE OF X(975)

Barycentrics    a*((a+b)^3+(a^2+4*a*b+b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+3*c)+a*(b+c)*(b+3*c)+(b+c)*(b^2+c^2)) : :

X(57748) lies on these lines: {1, 4101}, {6, 3931}, {34, 3671}, {42, 56220}, {56, 45126}, {58, 4652}, {72, 2334}, {86, 58017}, {573, 2215}, {996, 2901}, {998, 11415}, {1449, 1474}, {1707, 56343}, {3872, 56032}, {5342, 8747}, {14258, 56328}, {36742, 42467}, {39977, 50581}, {43070, 50594}, {43531, 54418}, {54369, 57662}

X(57748) = isogonal conjugate of X(975)
X(57748) = trilinear pole of line {649, 50332}
X(57748) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 975}, {6, 19822}
X(57748) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 975}, {9, 19822}
X(57748) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(4), X(81)}}, {{A, B, C, X(9), X(270)}}, {{A, B, C, X(10), X(57)}}, {{A, B, C, X(28), X(941)}}, {{A, B, C, X(42), X(1395)}}, {{A, B, C, X(72), X(77)}}, {{A, B, C, X(78), X(2364)}}, {{A, B, C, X(79), X(969)}}, {{A, B, C, X(82), X(7162)}}, {{A, B, C, X(89), X(43533)}}, {{A, B, C, X(90), X(751)}}, {{A, B, C, X(284), X(1039)}}, {{A, B, C, X(573), X(39585)}}, {{A, B, C, X(604), X(1245)}}, {{A, B, C, X(757), X(31359)}}, {{A, B, C, X(985), X(43073)}}, {{A, B, C, X(994), X(1829)}}, {{A, B, C, X(997), X(3450)}}, {{A, B, C, X(1061), X(57391)}}, {{A, B, C, X(1707), X(4658)}}, {{A, B, C, X(2203), X(2258)}}, {{A, B, C, X(2218), X(39974)}}, {{A, B, C, X(3340), X(37599)}}, {{A, B, C, X(3345), X(56144)}}, {{A, B, C, X(3811), X(5262)}}, {{A, B, C, X(3872), X(50604)}}, {{A, B, C, X(7160), X(39958)}}, {{A, B, C, X(17185), X(45032)}}, {{A, B, C, X(25417), X(40406)}}, {{A, B, C, X(29821), X(50581)}}, {{A, B, C, X(36121), X(51496)}}, {{A, B, C, X(39954), X(52375)}}, {{A, B, C, X(43972), X(45818)}}, {{A, B, C, X(51223), X(56136)}}
X(57748) = barycentric product X(i)*X(j) for these (i, j): {6, 58017}
X(57748) = barycentric quotient X(i)/X(j) for these (i, j): {1, 19822}, {6, 975}, {58017, 76}


X(57749) = ISOGONAL CONJUGATE OF X(992)

Barycentrics    a*(a*b*(a+b)^2+a*b*(a+b)*c-(a^2+b^2)*c^2-(a+b)*c^3)*(a^3*c-a^2*(b-2*c)*(b+c)-b^2*c*(b+c)+a*(-b^3+b*c^2+c^3)) : :

X(57749) lies on these lines: {2, 58025}, {37, 27064}, {42, 3871}, {333, 39798}, {967, 24598}, {1400, 32911}, {4383, 45988}, {23447, 56229}, {37652, 39956}

X(57749) = isogonal conjugate of X(992)
X(57749) = trilinear pole of line {48307, 50353}
X(57749) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6)}}, {{A, B, C, X(27), X(4203)}}, {{A, B, C, X(56), X(39694)}}, {{A, B, C, X(57), X(83)}}, {{A, B, C, X(58), X(30710)}}, {{A, B, C, X(81), X(1220)}}, {{A, B, C, X(88), X(333)}}, {{A, B, C, X(291), X(1244)}}, {{A, B, C, X(330), X(2221)}}, {{A, B, C, X(502), X(2051)}}, {{A, B, C, X(593), X(35058)}}, {{A, B, C, X(749), X(44733)}}, {{A, B, C, X(1126), X(37870)}}, {{A, B, C, X(1255), X(5331)}}, {{A, B, C, X(1412), X(3227)}}, {{A, B, C, X(2985), X(53083)}}, {{A, B, C, X(4383), X(37652)}}, {{A, B, C, X(5256), X(16830)}}, {{A, B, C, X(7490), X(11345)}}, {{A, B, C, X(14534), X(39748)}}, {{A, B, C, X(15232), X(55027)}}, {{A, B, C, X(34434), X(34527)}}, {{A, B, C, X(39698), X(52150)}}, {{A, B, C, X(40435), X(56011)}}
X(57749) = barycentric product X(i)*X(j) for these (i, j): {6, 58025}
X(57749) = barycentric quotient X(i)/X(j) for these (i, j): {6, 992}, {58025, 76}


X(57750) = ISOTOMIC CONJUGATE OF X(116)

Barycentrics    (a-b)^2*(a-c)^2*(a^2+a*b+b^2-(a+b)*c)*(a^2+a*(-b+c)+c*(-b+c)) : :

X(57750) lies on these lines: {2, 23990}, {59, 17277}, {101, 3261}, {190, 57054}, {1275, 17347}, {3234, 30805}, {4570, 41324}, {15742, 17233}, {26705, 29241}, {43979, 44184}

X(57750) = isogonal conjugate of X(20974)
X(57750) = isotomic conjugate of X(116)
X(57750) = trilinear pole of line {1331, 2398}
X(57750) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20974}, {6, 17463}, {19, 22084}, {31, 116}, {32, 20901}, {42, 18184}, {56, 38358}, {213, 17198}, {244, 3730}, {512, 16751}, {513, 6586}, {649, 1734}, {667, 25259}, {692, 21133}, {798, 57214}, {1015, 3681}, {1086, 15624}, {1333, 21045}, {1973, 40618}, {1977, 33932}, {3121, 33297}, {3125, 4184}, {3248, 17233}, {3937, 17916}, {7192, 21837}, {17924, 22388}
X(57750) = X(i)-vertex conjugate of X(j) for these {i, j}: {10566, 23990}
X(57750) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 38358}, {2, 116}, {3, 20974}, {6, 22084}, {9, 17463}, {37, 21045}, {1086, 21133}, {5375, 1734}, {6337, 40618}, {6376, 20901}, {6626, 17198}, {6631, 25259}, {31998, 57214}, {39026, 6586}, {39054, 16751}, {40592, 18184}
X(57750) = X(i)-Ceva conjugate of X(j) for these {i, j}: {31624, 31634}
X(57750) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 31624}, {69, 190}, {101, 31616}, {3434, 664}, {4441, 4586}, {6327, 668}, {6710, 2}, {14377, 43190}, {17135, 99}, {17138, 670}, {17142, 4577}, {17220, 648}, {20290, 6540}, {20347, 666}, {20553, 4562}, {21282, 4555}, {21283, 4597}, {28734, 4554}, {29473, 799}
X(57750) = pole of line {20974, 22084} with respect to the Stammler hyperbola
X(57750) = pole of line {116, 17198} with respect to the Wallace hyperbola
X(57750) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3006)}}, {{A, B, C, X(59), X(662)}}, {{A, B, C, X(69), X(17233)}}, {{A, B, C, X(83), X(53218)}}, {{A, B, C, X(95), X(53228)}}, {{A, B, C, X(101), X(23990)}}, {{A, B, C, X(116), X(6710)}}, {{A, B, C, X(190), X(1275)}}, {{A, B, C, X(261), X(17277)}}, {{A, B, C, X(313), X(41324)}}, {{A, B, C, X(346), X(17347)}}, {{A, B, C, X(674), X(6586)}}, {{A, B, C, X(765), X(4620)}}, {{A, B, C, X(1016), X(4590)}}, {{A, B, C, X(1268), X(35150)}}, {{A, B, C, X(1311), X(37130)}}, {{A, B, C, X(2726), X(10566)}}, {{A, B, C, X(4564), X(4570)}}, {{A, B, C, X(4998), X(35171)}}, {{A, B, C, X(7199), X(40450)}}, {{A, B, C, X(14942), X(37214)}}, {{A, B, C, X(18816), X(37213)}}, {{A, B, C, X(26006), X(30805)}}, {{A, B, C, X(32008), X(35164)}}, {{A, B, C, X(36956), X(48070)}}, {{A, B, C, X(39026), X(43979)}}, {{A, B, C, X(40418), X(44182)}}, {{A, B, C, X(44181), X(55346)}}
X(57750) = barycentric product X(i)*X(j) for these (i, j): {101, 31624}, {190, 43190}, {1016, 14377}, {15320, 4600}, {15378, 76}, {26705, 4561}, {31616, 3261}, {31634, 44184}
X(57750) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17463}, {2, 116}, {3, 22084}, {6, 20974}, {9, 38358}, {10, 21045}, {69, 40618}, {75, 20901}, {81, 18184}, {86, 17198}, {99, 57214}, {100, 1734}, {101, 6586}, {190, 25259}, {514, 21133}, {662, 16751}, {765, 3681}, {1016, 17233}, {1110, 15624}, {1252, 3730}, {1332, 57106}, {2398, 55123}, {4561, 57054}, {4570, 4184}, {4600, 33297}, {4998, 33298}, {6516, 57188}, {7035, 33932}, {14377, 1086}, {15320, 3120}, {15378, 6}, {26705, 7649}, {31616, 101}, {31624, 3261}, {31634, 150}, {32656, 22388}, {35184, 2424}, {43190, 514}, {57497, 2973}
X(57750) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 31616, 31634}, {2, 43987, 23990}


X(57751) = ISOTOMIC CONJUGATE OF X(117)

Barycentrics    ((a^2-b^2)^2-(a-b)^2*(a+b)*c+(a-b)^2*c^2+(a+b)*c^3-2*c^4)*((a^2-b^2)^2*(a^2-a*b+b^2)+a*(a-b)^2*b*(a+b)*c-(a-b)^2*(2*a^2+3*a*b+2*b^2)*c^2-a*b*(a+b)*c^3+(a^2+b^2)*c^4)*(a^4-a^3*b+a*b*(b-c)^2+a^2*(b-c)*(b+2*c)-(b-c)*(b+c)*(2*b^2-b*c+c^2))*(a^6-a^5*c-a*(b-c)^2*c^2*(b+c)-a^4*(2*b^2-b*c+c^2)+a^3*c*(b^2-b*c+2*c^2)+(-(b^2*c)+c^3)^2+a^2*(b-c)*(b^3+2*b*c^2+c^3)) : :

X(57751) lies on these lines: {102, 35516}

X(57751) = isotomic conjugate of X(117)
X(57751) = trilinear pole of line {2399, 2988}
X(57751) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 117}, {2182, 8607}, {42076, 54242}
X(57751) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 34393}, {6711, 2}, {54243, 2988}
X(57751) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(35516)}}, {{A, B, C, X(69), X(35519)}}, {{A, B, C, X(117), X(6711)}}, {{A, B, C, X(314), X(4998)}}, {{A, B, C, X(4590), X(35149)}}, {{A, B, C, X(8607), X(8999)}}, {{A, B, C, X(35154), X(40428)}}
X(57751) = barycentric product X(i)*X(j) for these (i, j): {2988, 34393}, {15379, 76}
X(57751) = barycentric quotient X(i)/X(j) for these (i, j): {2, 117}, {102, 8607}, {2399, 55124}, {2988, 515}, {15379, 6}, {32706, 8755}, {35187, 2425}, {36100, 1735}, {54243, 23986}


X(57752) = ISOTOMIC CONJUGATE OF X(118)

Barycentrics    ((a-b)^2*(a+b)+(a+b)*c^2-2*c^3)*(a^3-2*b^3-a^2*c+b^2*c+c^3+a*(b-c)*(b+c))*(a^5-a^4*b+(b-c)^2*c^2*(b+c)-a^3*(b^2+c^2)+a^2*(b^3+2*b*c^2-c^3))*(a^5-a^4*c+b^2*(b-c)^2*(b+c)-a^3*(b^2+c^2)+a^2*(-b^3+2*b^2*c+c^3)) : :

X(57752) lies on these lines: {103, 35517}, {52156, 56110}

X(57752) = isotomic conjugate of X(118)
X(57752) = trilinear pole of line {1815, 2400}
X(57752) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 47407}, {31, 118}, {910, 8608}, {1886, 2253}, {42077, 54232}
X(57752) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 118}, {6, 47407}
X(57752) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 18025}, {6712, 2}, {54233, 2989}
X(57752) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(35517)}}, {{A, B, C, X(69), X(3261)}}, {{A, B, C, X(95), X(53228)}}, {{A, B, C, X(118), X(6712)}}, {{A, B, C, X(333), X(4998)}}, {{A, B, C, X(4590), X(35150)}}, {{A, B, C, X(7182), X(18155)}}, {{A, B, C, X(8608), X(9000)}}, {{A, B, C, X(18025), X(52156)}}, {{A, B, C, X(35148), X(40428)}}, {{A, B, C, X(40414), X(44181)}}
X(57752) = barycentric product X(i)*X(j) for these (i, j): {1815, 57997}, {15380, 76}, {18025, 2989}, {52156, 56110}
X(57752) = barycentric quotient X(i)/X(j) for these (i, j): {2, 118}, {3, 47407}, {103, 8608}, {677, 56742}, {917, 1886}, {1815, 916}, {2400, 55125}, {2989, 516}, {15380, 6}, {18025, 48381}, {35182, 2426}, {36056, 2253}, {36101, 1736}, {54233, 23972}, {56110, 40869}


X(57753) = ISOTOMIC CONJUGATE OF X(119)

Barycentrics    ((a-b)^2*(a+b)+2*a*b*c-(a+b)*c^2)*(a^3-a*(b-c)^2-a^2*c-b^2*c+c^3)*((a^2-b^2)^2-(a-b)^2*(a+b)*c-(a^2+b^2)*c^2+(a+b)*c^3)*(a^4-a^3*b+(b-c)^2*c*(b+c)+a*b*(b^2+c^2)-a^2*(b^2-b*c+2*c^2)) : :

X(57753) lies on these lines: {2, 41933}, {75, 56757}, {104, 3262}, {914, 32851}, {46133, 54953}

X(57753) = isotomic conjugate of X(119)
X(57753) = trilinear pole of line {2401, 2990}
X(57753) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 47408}, {31, 119}, {2183, 8609}, {2252, 14571}, {8750, 42769}, {14266, 42078}, {24028, 51824}
X(57753) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 119}, {6, 47408}, {26932, 42769}
X(57753) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 18816}, {693, 54953}, {6713, 2}, {39173, 2990}
X(57753) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3262)}}, {{A, B, C, X(69), X(693)}}, {{A, B, C, X(75), X(95)}}, {{A, B, C, X(104), X(41933)}}, {{A, B, C, X(119), X(6713)}}, {{A, B, C, X(264), X(56365)}}, {{A, B, C, X(1443), X(2861)}}, {{A, B, C, X(4590), X(35151)}}, {{A, B, C, X(8609), X(9001)}}, {{A, B, C, X(10269), X(22758)}}, {{A, B, C, X(18020), X(40412)}}, {{A, B, C, X(18816), X(34234)}}, {{A, B, C, X(32008), X(35164)}}, {{A, B, C, X(35147), X(40428)}}, {{A, B, C, X(35156), X(40423)}}, {{A, B, C, X(35175), X(40417)}}
X(57753) = barycentric product X(i)*X(j) for these (i, j): {15381, 76}, {18816, 2990}
X(57753) = barycentric quotient X(i)/X(j) for these (i, j): {2, 119}, {3, 47408}, {104, 8609}, {905, 42769}, {915, 14571}, {1795, 2252}, {2401, 55126}, {2990, 517}, {6099, 2427}, {13136, 56881}, {15381, 6}, {18816, 48380}, {34051, 18838}, {34234, 1737}, {36052, 2183}, {37203, 1785}, {39173, 23980}, {40218, 12832}, {41933, 51824}, {55943, 52456}


X(57754) = ISOTOMIC CONJUGATE OF X(120)

Barycentrics    (a^2+b^2-(a+b)*c)*((a-b)^2*(a+b)-2*a*b*c+(a+b)*c^2)*(a^2-a*b+c*(-b+c))*(a^3-a^2*c+a*(b^2-2*b*c-c^2)+c*(b^2+c^2)) : :

X(57754) lies on these lines: {2, 41934}, {9, 40217}, {105, 3263}, {238, 1416}, {242, 927}, {666, 3290}, {1438, 3684}, {15382, 30941}

X(57754) = isogonal conjugate of X(20455)
X(57754) = isotomic conjugate of X(120)
X(57754) = trilinear pole of line {1814, 2402}
X(57754) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20455}, {6, 17464}, {19, 20728}, {31, 120}, {32, 20431}, {58, 20702}, {672, 3290}, {692, 20504}, {1333, 20482}, {1738, 2223}, {2356, 34381}, {14267, 42079}, {16752, 39258}, {23770, 54325}
X(57754) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 4998}
X(57754) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 120}, {3, 20455}, {6, 20728}, {9, 17464}, {10, 20702}, {37, 20482}, {1086, 20504}, {6376, 20431}
X(57754) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 2481}, {513, 666}, {6714, 2}, {34159, 2991}
X(57754) = pole of line {20455, 20728} with respect to the Stammler hyperbola
X(57754) = pole of line {120, 20455} with respect to the Wallace hyperbola
X(57754) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(693)}}, {{A, B, C, X(9), X(87)}}, {{A, B, C, X(98), X(9442)}}, {{A, B, C, X(105), X(1416)}}, {{A, B, C, X(120), X(6714)}}, {{A, B, C, X(513), X(3290)}}, {{A, B, C, X(1751), X(3676)}}, {{A, B, C, X(2481), X(31638)}}, {{A, B, C, X(4590), X(35152)}}, {{A, B, C, X(5089), X(14947)}}, {{A, B, C, X(6079), X(39272)}}, {{A, B, C, X(14534), X(18020)}}, {{A, B, C, X(32016), X(40415)}}
X(57754) = barycentric product X(i)*X(j) for these (i, j): {2481, 2991}, {15382, 76}, {34018, 56111}
X(57754) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17464}, {2, 120}, {3, 20728}, {6, 20455}, {10, 20482}, {37, 20702}, {75, 20431}, {105, 3290}, {514, 20504}, {666, 53358}, {673, 1738}, {1814, 34381}, {2402, 55137}, {2991, 518}, {6185, 14267}, {13576, 21956}, {15344, 5089}, {15382, 6}, {34159, 6184}, {35574, 42720}, {55943, 51832}, {56111, 3693}, {57499, 34337}


X(57755) = ISOTOMIC CONJUGATE OF X(121)

Barycentrics    (a+b-2*c)*(a-2*b+c)*(a^3-2*a*b^2+a^2*(-2*b+c)+b^2*(b+c))*(a^3+a^2*(b-2*c)-2*a*c^2+c^2*(b+c)) : :

X(57755) lies on these lines: {2, 41935}, {106, 3264}, {4389, 57506}, {31227, 46638}

X(57755) = isogonal conjugate of X(23644)
X(57755) = isotomic conjugate of X(121)
X(57755) = trilinear pole of line {1797, 2403}
X(57755) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23644}, {6, 17465}, {19, 22428}, {31, 121}, {32, 21427}, {44, 8610}, {678, 39264}, {902, 1739}, {16753, 52963}
X(57755) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 121}, {3, 23644}, {6, 22428}, {9, 17465}, {6376, 21427}, {40594, 1739}, {40595, 8610}
X(57755) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 903}, {6715, 2}, {20295, 4555}, {57506, 46638}
X(57755) = pole of line {22428, 23644} with respect to the Stammler hyperbola
X(57755) = pole of line {121, 23644} with respect to the Wallace hyperbola
X(57755) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3264)}}, {{A, B, C, X(83), X(53218)}}, {{A, B, C, X(86), X(4998)}}, {{A, B, C, X(106), X(41935)}}, {{A, B, C, X(121), X(6715)}}, {{A, B, C, X(903), X(31227)}}, {{A, B, C, X(4590), X(32014)}}, {{A, B, C, X(8610), X(9002)}}, {{A, B, C, X(30939), X(37222)}}, {{A, B, C, X(40428), X(46143)}}
X(57755) = barycentric product X(i)*X(j) for these (i, j): {15383, 76}, {46638, 903}, {54974, 57506}
X(57755) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17465}, {2, 121}, {3, 22428}, {6, 23644}, {75, 21427}, {88, 1739}, {106, 8610}, {2226, 39264}, {2403, 55138}, {15383, 6}, {40101, 8756}, {46638, 519}, {57506, 4370}


X(57756) = ISOTOMIC CONJUGATE OF X(123)

Barycentrics    (a-b)^2*(a-c)^2*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2+2*a*b*(a+b)*c-2*a*b*c^2-c^4)*(a^4-b^4+2*a^2*(b-c)*c+c^4+2*a*b*c*(-b+c)) : :

X(57756) lies on these lines: {2, 23985}, {108, 35518}, {927, 40097}

X(57756) = isotomic conjugate of X(123)
X(57756) = trilinear pole of line {651, 2405}
X(57756) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 47410}, {31, 123}, {197, 7004}, {205, 26932}, {478, 34591}, {652, 6588}, {1766, 7117}, {1946, 21186}, {2170, 22132}, {2310, 56414}, {2638, 14257}, {3270, 21147}, {17408, 24031}
X(57756) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 123}, {6, 47410}, {39053, 21186}
X(57756) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 18026}, {3869, 648}, {4329, 664}, {6717, 2}, {39167, 46640}, {52366, 190}, {56414, 651}
X(57756) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(35518)}}, {{A, B, C, X(108), X(23985)}}, {{A, B, C, X(123), X(6717)}}, {{A, B, C, X(264), X(56365)}}, {{A, B, C, X(927), X(4564)}}, {{A, B, C, X(3827), X(6588)}}, {{A, B, C, X(4590), X(53191)}}, {{A, B, C, X(18020), X(46102)}}, {{A, B, C, X(31643), X(40423)}}
X(57756) = barycentric product X(i)*X(j) for these (i, j): {1275, 43742}, {15385, 76}, {18026, 46640}, {34277, 55346}, {40097, 4554}, {46102, 8048}, {57642, 7012}, {57777, 7115}
X(57756) = barycentric quotient X(i)/X(j) for these (i, j): {2, 123}, {3, 47410}, {59, 22132}, {108, 6588}, {653, 21186}, {1262, 56414}, {2405, 55139}, {3435, 7117}, {7012, 1766}, {7115, 197}, {7128, 21147}, {8048, 26932}, {15385, 6}, {23984, 14257}, {23985, 17408}, {34277, 2968}, {39167, 35072}, {40097, 650}, {42467, 7004}, {43703, 53560}, {43742, 1146}, {46102, 3436}, {46640, 521}, {55346, 57477}, {57642, 17880}


X(57757) = ISOTOMIC CONJUGATE OF X(124)

Barycentrics    (a-b)^2*(a-c)^2*(a+b-c)*(a-b+c)*(a^3+b^3+a*b*c-(a+b)*c^2)*(a^3-b^2*c+c^3+a*b*(-b+c)) : :

X(57757) lies on these lines: {2, 23979}, {109, 35519}, {333, 7115}, {664, 57242}, {4998, 15386}, {35174, 54951}, {46102, 52378}

X(57757) = isotomic conjugate of X(124)
X(57757) = trilinear pole of line {1813, 2406}
X(57757) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 38345}, {11, 3185}, {19, 47411}, {25, 34588}, {31, 124}, {573, 2170}, {650, 6589}, {663, 21189}, {1973, 40626}, {2310, 10571}, {3192, 7004}, {3271, 3869}, {3709, 16754}, {4225, 4516}, {8735, 22134}, {14936, 17080}, {18191, 22276}
X(57757) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 124}, {6, 47411}, {9, 38345}, {6337, 40626}, {6505, 34588}
X(57757) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 664}, {2995, 54951}, {3436, 190}, {6718, 2}, {10570, 44765}, {17751, 6648}, {20245, 99}, {21270, 18026}, {21277, 35174}, {21279, 53642}, {21285, 4569}, {21286, 668}, {28774, 4554}, {34030, 653}
X(57757) = pole of line {124, 40626} with respect to the Wallace hyperbola
X(57757) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(33864)}}, {{A, B, C, X(69), X(35516)}}, {{A, B, C, X(109), X(23979)}}, {{A, B, C, X(124), X(6718)}}, {{A, B, C, X(313), X(21277)}}, {{A, B, C, X(664), X(55346)}}, {{A, B, C, X(1275), X(4590)}}, {{A, B, C, X(1414), X(7339)}}, {{A, B, C, X(4564), X(4600)}}, {{A, B, C, X(4998), X(35174)}}, {{A, B, C, X(6589), X(8679)}}, {{A, B, C, X(7045), X(44717)}}, {{A, B, C, X(7115), X(36098)}}, {{A, B, C, X(32016), X(40415)}}, {{A, B, C, X(35149), X(40428)}}
X(57757) = barycentric product X(i)*X(j) for these (i, j): {59, 57906}, {2995, 4564}, {4552, 54951}, {10570, 1275}, {13478, 4998}, {15232, 4620}, {15386, 76}, {32653, 4572}, {36050, 4554}, {40160, 4600}, {44765, 664}, {56112, 658}
X(57757) = barycentric quotient X(i)/X(j) for these (i, j): {1, 38345}, {2, 124}, {3, 47411}, {59, 573}, {63, 34588}, {69, 40626}, {109, 6589}, {651, 21189}, {1262, 10571}, {1332, 57111}, {1414, 16754}, {2149, 3185}, {2217, 2170}, {2406, 55128}, {2995, 4858}, {4564, 3869}, {4998, 4417}, {6516, 57184}, {7045, 17080}, {7115, 3192}, {10570, 1146}, {13478, 11}, {15232, 21044}, {15386, 6}, {23067, 52310}, {26704, 3064}, {32653, 663}, {35183, 2432}, {36050, 650}, {40160, 3120}, {44765, 522}, {46102, 17555}, {52378, 4225}, {54951, 4560}, {56112, 3239}, {57906, 34387}


X(57758) = ISOTOMIC CONJUGATE OF X(128)

Barycentrics    (a^2-a*b+b^2-c^2)*(a^2+a*b+b^2-c^2)*(a^2-b^2-a*c+c^2)*(a^2-b^2+a*c+c^2)*((a^2-b^2)^2-(a^2+b^2)*c^2)*((a^2-b^2)^4-2*(a^2-b^2)^2*(a^2+b^2)*c^2+3*(a^4+b^4)*c^4-4*(a^2+b^2)*c^6+2*c^8)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^8-2*a^6*(b^2+2*c^2)+(b^2-c^2)^2*(2*b^4+c^4)+a^4*(3*b^4+2*b^2*c^2+6*c^4)+a^2*(-4*b^6+2*b^2*c^4-4*c^6)) : :

X(57758) lies on these lines: {1141, 1273}

X(57758) = isotomic conjugate of X(128)
X(57758) = trilinear pole of line {2413, 57647}
X(57758) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 47423}, {31, 128}, {231, 2290}
X(57758) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 128}, {6, 47423}
X(57758) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 57798}, {69, 46138}, {34837, 2}
X(57758) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1273)}}, {{A, B, C, X(69), X(41298)}}, {{A, B, C, X(128), X(34837)}}, {{A, B, C, X(328), X(18883)}}, {{A, B, C, X(4590), X(31617)}}, {{A, B, C, X(18020), X(40410)}}
X(57758) = barycentric product X(i)*X(j) for these (i, j): {1141, 57798}, {15401, 76}, {46138, 57647}
X(57758) = barycentric quotient X(i)/X(j) for these (i, j): {2, 128}, {3, 47423}, {1141, 231}, {2383, 11062}, {2413, 55150}, {15401, 6}, {18315, 43969}, {57647, 1154}, {57798, 1273}, {57890, 14918}


X(57759) = ISOTOMIC CONJUGATE OF X(130)

Barycentrics    b^2*(a^2-b^2)^2*(a-c)^2*c^2*(a+c)^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^2*b^2*(a^2-b^2)^2-(a^4+3*a^2*b^2+b^4)*c^4+2*(a^2+b^2)*c^6-c^8)*(a^4-(b^2-c^2)^2)^2*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^6*c^2-b^4*(b^2-c^2)^2-a^4*(b^4+2*c^4)+a^2*(2*b^6-3*b^4*c^2+c^6)) : :

X(57759) lies on these lines: {1303, 42331}

X(57759) = isotomic conjugate of X(130)
X(57759) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(42331)}}, {{A, B, C, X(130), X(34839)}}
X(57759) = barycentric product X(i)*X(j) for these (i, j): {57635, 76}
X(57759) = barycentric quotient X(i)/X(j) for these (i, j): {2, 130}, {1303, 42293}, {57635, 6}


X(57760) = ISOTOMIC CONJUGATE OF X(131)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^4-(a^2-b^2)^2*(a^2+b^2)*c^2+(a^2+b^2)^2*c^4-3*(a^2+b^2)*c^6+2*c^8)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+2*b^2*c^2-c^4))*(a^6-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4+2*b^2*c^2+c^4))*(a^8-a^6*(b^2+4*c^2)+(b^2-c^2)^2*(2*b^4+b^2*c^2+c^4)+a^4*(b^4+b^2*c^2+6*c^4)+a^2*(-3*b^6+2*b^4*c^2+b^2*c^4-4*c^6)) : :

X(57760) lies on these lines: {340, 18878}, {687, 14165}, {6563, 14222}

X(57760) = isotomic conjugate of X(131)
X(57760) = trilinear pole of line {2986, 43756}
X(57760) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 131}, {2314, 3003}, {2315, 16310}
X(57760) = X(i)-cross conjugate of X(j) for these {i, j}: {6563, 18878}, {14222, 687}, {34840, 2}, {53788, 2986}
X(57760) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(6563)}}, {{A, B, C, X(131), X(34840)}}, {{A, B, C, X(264), X(340)}}, {{A, B, C, X(276), X(4590)}}, {{A, B, C, X(687), X(18878)}}
X(57760) = barycentric product X(i)*X(j) for these (i, j): {1299, 40832}, {43709, 57932}, {57636, 76}
X(57760) = barycentric quotient X(i)/X(j) for these (i, j): {2, 131}, {687, 30512}, {1299, 3003}, {1300, 16310}, {2986, 44665}, {36053, 2314}, {43709, 686}, {43756, 13754}, {52505, 12095}, {57636, 6}


X(57761) = ISOTOMIC CONJUGATE OF X(132)

Barycentrics    (a^2-b^2-c^2)*(a^4+b^4-(a^2+b^2)*c^2)*(a^4-a^2*b^2-b^2*c^2+c^4)*((a^2-b^2)^2*(a^2+b^2)+(a^2+b^2)*c^4-2*c^6)*(a^6-2*b^6-a^4*c^2+b^4*c^2+c^6+a^2*(b^4-c^4)) : :

X(57761) lies on these lines: {98, 16096}, {325, 441}, {1297, 5999}, {6393, 15407}, {15526, 41932}, {20208, 47737}, {34841, 47382}, {40428, 54260}, {40820, 40995}

X(57761) = isotomic conjugate of X(132)
X(57761) = trilinear pole of line {287, 2419}
X(57761) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 9475}, {31, 132}, {163, 55275}, {232, 2312}, {240, 42671}, {1503, 57653}, {1755, 16318}, {1959, 51437}, {1973, 15595}, {1974, 17875}, {8766, 34854}, {24023, 51822}, {24024, 39469}, {42075, 52641}
X(57761) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 44181}
X(57761) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 132}, {6, 9475}, {115, 55275}, {647, 57430}, {6337, 15595}, {36899, 16318}, {39085, 42671}
X(57761) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 57799}, {69, 35140}, {122, 53173}, {3265, 17932}, {15407, 9476}, {34156, 287}, {34841, 2}, {53852, 17974}, {56571, 290}
X(57761) = pole of line {132, 15595} with respect to the Wallace hyperbola
X(57761) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(441)}}, {{A, B, C, X(3), X(5999)}}, {{A, B, C, X(69), X(325)}}, {{A, B, C, X(95), X(44183)}}, {{A, B, C, X(132), X(34841)}}, {{A, B, C, X(232), X(520)}}, {{A, B, C, X(290), X(31636)}}, {{A, B, C, X(525), X(9473)}}, {{A, B, C, X(801), X(1799)}}, {{A, B, C, X(879), X(41175)}}, {{A, B, C, X(2966), X(17932)}}, {{A, B, C, X(11064), X(15589)}}, {{A, B, C, X(15394), X(40800)}}, {{A, B, C, X(34156), X(47382)}}, {{A, B, C, X(36897), X(36899)}}
X(57761) = barycentric product X(i)*X(j) for these (i, j): {69, 9476}, {287, 35140}, {523, 55274}, {1297, 57799}, {2419, 2966}, {2435, 43187}, {6330, 6394}, {15407, 76}, {17932, 43673}
X(57761) = barycentric quotient X(i)/X(j) for these (i, j): {2, 132}, {3, 9475}, {69, 15595}, {98, 16318}, {125, 57430}, {248, 42671}, {287, 1503}, {293, 2312}, {304, 17875}, {523, 55275}, {685, 23977}, {1297, 232}, {1976, 51437}, {2419, 2799}, {2435, 3569}, {2715, 2445}, {2966, 2409}, {6330, 6530}, {6394, 441}, {9476, 4}, {15407, 6}, {17932, 34211}, {17974, 8779}, {20021, 51434}, {32649, 34859}, {34156, 23976}, {34212, 17994}, {34536, 52641}, {35140, 297}, {35912, 6793}, {39265, 51334}, {43673, 16230}, {43717, 34854}, {47388, 51963}, {51343, 51324}, {53174, 51363}, {55274, 99}, {57799, 30737}


X(57762) = ISOTOMIC CONJUGATE OF X(133)

Barycentrics    (a^2-b^2-c^2)*((a^2-b^2)^2+(a^2+b^2)*c^2-2*c^4)*(a^4-2*b^4+b^2*c^2+c^4+a^2*(b^2-2*c^2))*(a^8+a^6*(2*b^2-3*c^2)+b^2*(b^2-c^2)^3+3*a^4*(-2*b^4+b^2*c^2+c^4)+a^2*(b-c)*(b+c)*(2*b^4+5*b^2*c^2+c^4))*(a^8+c^2*(-b^2+c^2)^3+a^6*(-3*b^2+2*c^2)+3*a^4*(b^4+b^2*c^2-2*c^4)-a^2*(b-c)*(b+c)*(b^4+5*b^2*c^2+2*c^4)) : :

X(57762) lies on these lines: {69, 53789}, {3260, 16077}, {11064, 44769}

X(57762) = isotomic conjugate of X(133)
X(57762) = trilinear pole of line {2416, 14919}
X(57762) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 47433}, {31, 133}, {163, 55276}, {1096, 40948}, {2442, 2631}, {9406, 51358}, {42074, 52646}
X(57762) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 133}, {6, 47433}, {115, 55276}, {525, 57424}, {6503, 40948}, {9410, 51358}
X(57762) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 54988}, {34842, 2}, {39174, 14919}, {56576, 1494}
X(57762) = pole of line {133, 40948} with respect to the Wallace hyperbola
X(57762) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(3260)}}, {{A, B, C, X(95), X(44181)}}, {{A, B, C, X(133), X(34842)}}, {{A, B, C, X(1990), X(9007)}}, {{A, B, C, X(4143), X(34403)}}, {{A, B, C, X(4590), X(34386)}}, {{A, B, C, X(16077), X(40423)}}
X(57762) = barycentric product X(i)*X(j) for these (i, j): {14919, 54988}, {15404, 76}, {16077, 2416}, {31621, 53789}
X(57762) = barycentric quotient X(i)/X(j) for these (i, j): {2, 133}, {3, 47433}, {394, 40948}, {523, 55276}, {1294, 1990}, {1304, 2442}, {1494, 51358}, {2416, 9033}, {2430, 9409}, {14919, 6000}, {15404, 6}, {15526, 57424}, {16077, 2404}, {16080, 51385}, {40384, 52646}, {43701, 1637}, {44769, 46587}, {53789, 3163}, {54988, 46106}


X(57763) = ISOTOMIC CONJUGATE OF X(136)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(a^2-b^2-c^2)*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-2*a^2*b^2+(b^2-c^2)^2) : :

X(57763) lies on these lines: {68, 55277}, {99, 46969}, {249, 3580}, {421, 18020}, {850, 18878}, {925, 4563}, {14325, 54030}, {14326, 54031}, {44174, 51458}

X(57763) = isotomic conjugate of X(136)
X(57763) = trilinear pole of line {4558, 6334}
X(57763) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 47421}, {24, 2643}, {31, 136}, {47, 8754}, {91, 6754}, {163, 55278}, {661, 6753}, {798, 57065}, {1109, 44077}, {1748, 3124}, {1974, 17881}, {2501, 55216}, {2971, 44179}, {3708, 8745}, {24006, 34952}
X(57763) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 136}, {6, 47421}, {115, 55278}, {343, 55072}, {577, 39013}, {31998, 57065}, {34116, 6754}, {34853, 8754}, {36830, 6753}, {37864, 2971}
X(57763) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 4563}, {69, 46134}, {487, 54031}, {488, 54030}, {1147, 4558}, {6193, 648}, {12095, 687}, {34844, 2}, {34853, 30450}, {40697, 99}
X(57763) = pole of line {6754, 47421} with respect to the Stammler hyperbola
X(57763) = pole of line {135, 136} with respect to the Wallace hyperbola
X(57763) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6563)}}, {{A, B, C, X(3), X(421)}}, {{A, B, C, X(69), X(850)}}, {{A, B, C, X(136), X(34844)}}, {{A, B, C, X(249), X(10425)}}, {{A, B, C, X(317), X(40697)}}, {{A, B, C, X(487), X(13440)}}, {{A, B, C, X(488), X(13429)}}, {{A, B, C, X(1799), X(40428)}}, {{A, B, C, X(2501), X(3564)}}, {{A, B, C, X(20563), X(37802)}}, {{A, B, C, X(27867), X(47390)}}, {{A, B, C, X(44174), X(46969)}}
X(57763) = barycentric product X(i)*X(j) for these (i, j): {523, 55277}, {1820, 24037}, {2165, 47389}, {2351, 34537}, {4558, 46134}, {4563, 925}, {4575, 55215}, {4590, 68}, {18020, 52350}, {20563, 249}, {32734, 52608}, {36145, 55202}, {44174, 76}, {47390, 57904}, {52932, 55252}
X(57763) = barycentric quotient X(i)/X(j) for these (i, j): {2, 136}, {3, 47421}, {68, 115}, {99, 57065}, {110, 6753}, {249, 24}, {250, 8745}, {304, 17881}, {523, 55278}, {571, 6754}, {925, 2501}, {1147, 39013}, {1820, 2643}, {1993, 34338}, {2165, 8754}, {2351, 3124}, {4558, 924}, {4563, 6563}, {4575, 55216}, {4590, 317}, {5392, 2970}, {6515, 135}, {16391, 3269}, {18020, 11547}, {20563, 338}, {23181, 52317}, {23357, 44077}, {24041, 1748}, {31614, 55227}, {32661, 34952}, {32734, 2489}, {37802, 35235}, {39295, 52415}, {44174, 6}, {46134, 14618}, {47389, 7763}, {47390, 571}, {47443, 52917}, {52032, 55072}, {52350, 125}, {52932, 55253}, {55277, 99}, {55549, 20975}, {56891, 5139}, {57875, 8901}


X(57764) = ISOTOMIC CONJUGATE OF X(137)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4+(b^2-c^2)^2-a^2*(2*b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^4+(b^2-c^2)^2-a^2*(b^2+2*c^2)) : :

X(57764) lies on these lines: {930, 41298}

X(57764) = isotomic conjugate of X(137)
X(57764) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 47424}, {31, 137}, {143, 2643}, {661, 57137}, {798, 20577}, {810, 57211}, {2964, 41221}, {3708, 14577}
X(57764) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 137}, {6, 47424}, {21975, 41221}, {31998, 20577}, {36830, 57137}, {39062, 57211}, {39171, 24862}
X(57764) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 46139}, {627, 32037}, {628, 32036}, {11271, 648}, {13372, 2}, {25044, 18315}, {45799, 99}
X(57764) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(41298)}}, {{A, B, C, X(69), X(1273)}}, {{A, B, C, X(137), X(13372)}}, {{A, B, C, X(5965), X(12077)}}
X(57764) = barycentric product X(i)*X(j) for these (i, j): {110, 55283}, {249, 57765}, {252, 4590}, {15958, 55217}, {18315, 46139}, {32737, 55218}, {57639, 76}
X(57764) = barycentric quotient X(i)/X(j) for these (i, j): {2, 137}, {3, 47424}, {99, 20577}, {110, 57137}, {249, 143}, {250, 14577}, {252, 115}, {648, 57211}, {930, 12077}, {2963, 41221}, {4558, 57135}, {4590, 57805}, {14587, 2965}, {18020, 14129}, {18315, 1510}, {25044, 39018}, {32737, 55219}, {38342, 23290}, {46139, 18314}, {55283, 850}, {57639, 6}, {57765, 338}


X(57765) = ISOTOMIC CONJUGATE OF X(143)

Barycentrics    b^2*c^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4+(b^2-c^2)^2-a^2*(2*b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^4+(b^2-c^2)^2-a^2*(b^2+2*c^2)) : :

X(57765) lies on these lines: {69, 46138}, {95, 252}, {264, 25043}, {275, 323}, {340, 3519}, {930, 46724}, {2963, 42300}, {19552, 32002}, {20564, 57474}, {34389, 44719}, {34390, 44718}

X(57765) = isotomic conjugate of X(143)
X(57765) = trilinear pole of line {8552, 15412}
X(57765) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 143}, {48, 14577}, {49, 2181}, {51, 2964}, {137, 23995}, {163, 57137}, {560, 57805}, {1953, 2965}, {1994, 2179}, {9247, 14129}, {32676, 57135}
X(57765) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 143}, {97, 15787}, {115, 57137}, {647, 47424}, {1249, 14577}, {6374, 57805}, {15526, 57135}, {18314, 137}, {21975, 51}, {36901, 20577}, {46604, 40981}
X(57765) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57764, 46139}
X(57765) = X(i)-cross conjugate of X(j) for these {i, j}: {32142, 2}, {54461, 7799}
X(57765) = pole of line {143, 15345} with respect to the Wallace hyperbola
X(57765) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(323)}}, {{A, B, C, X(76), X(20564)}}, {{A, B, C, X(95), X(275)}}, {{A, B, C, X(143), X(32142)}}, {{A, B, C, X(264), X(1232)}}, {{A, B, C, X(290), X(10159)}}, {{A, B, C, X(1494), X(42333)}}, {{A, B, C, X(11140), X(20572)}}, {{A, B, C, X(13582), X(32002)}}, {{A, B, C, X(17295), X(53228)}}, {{A, B, C, X(19207), X(46089)}}, {{A, B, C, X(33769), X(46142)}}
X(57765) = barycentric product X(i)*X(j) for these (i, j): {252, 76}, {276, 3519}, {338, 57764}, {523, 55283}, {2963, 34384}, {11140, 95}, {15412, 46139}, {20572, 97}, {23286, 55217}, {23962, 57639}, {34386, 93}, {51477, 57790}
X(57765) = barycentric quotient X(i)/X(j) for these (i, j): {2, 143}, {4, 14577}, {54, 2965}, {76, 57805}, {93, 53}, {95, 1994}, {97, 49}, {125, 47424}, {252, 6}, {264, 14129}, {275, 3518}, {276, 32002}, {338, 137}, {523, 57137}, {525, 57135}, {562, 11062}, {850, 20577}, {930, 1625}, {2167, 2964}, {2962, 1953}, {2963, 51}, {3519, 216}, {11140, 5}, {14111, 14576}, {14618, 57211}, {15108, 15345}, {15412, 1510}, {20572, 324}, {25043, 36412}, {34384, 7769}, {34386, 44180}, {38342, 35360}, {45793, 10216}, {46138, 30529}, {46139, 14570}, {51477, 217}, {55251, 51513}, {55283, 99}, {57639, 23357}, {57764, 249}


X(57766) = ISOTOMIC CONJUGATE OF X(146)

Barycentrics    ((a^2-b^2)^4*(a^2+b^2)+(a^2-b^2)^2*(a^4+9*a^2*b^2+b^4)*c^2-2*(a^2+b^2)*(4*a^4-7*a^2*b^2+4*b^4)*c^4+(8*a^4-9*a^2*b^2+8*b^4)*c^6-(a^2+b^2)*c^8-c^10)*(a^10+a^8*(b^2-3*c^2)-(b^2-c^2)^3*(b^4+4*b^2*c^2+c^4)+a^6*(-8*b^4+7*b^2*c^2+2*c^4)+2*a^4*(4*b^6+3*b^4*c^2-8*b^2*c^4+c^6)-a^2*(b^8+9*b^6*c^2-6*b^4*c^4-7*b^2*c^6+3*c^8)) : :
X(57766) = -3*X[2]+2*X[36896]

X(57766) lies on cubic K279 and on these lines: {2, 36896}, {146, 3260}, {323, 15262}, {340, 34170}, {1272, 2071}, {38937, 44134}, {50480, 51967}

X(57766) = isotomic conjugate of X(146)
X(57766) = anticomplement of X(36896)
X(57766) = trilinear pole of line {8552, 14566}
X(57766) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 146}, {2173, 36896}
X(57766) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 146}, {36896, 36896}
X(57766) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34178, 18668}
X(57766) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3260)}}, {{A, B, C, X(4), X(2071)}}, {{A, B, C, X(66), X(14634)}}, {{A, B, C, X(67), X(34191)}}, {{A, B, C, X(69), X(323)}}, {{A, B, C, X(74), X(146)}}, {{A, B, C, X(94), X(1272)}}, {{A, B, C, X(253), X(850)}}, {{A, B, C, X(892), X(9473)}}, {{A, B, C, X(1990), X(2697)}}, {{A, B, C, X(2996), X(5641)}}, {{A, B, C, X(2997), X(8047)}}, {{A, B, C, X(4846), X(45821)}}, {{A, B, C, X(8675), X(40353)}}, {{A, B, C, X(9060), X(13574)}}, {{A, B, C, X(14364), X(35140)}}, {{A, B, C, X(16080), X(51967)}}, {{A, B, C, X(39988), X(46788)}}, {{A, B, C, X(43741), X(44184)}}, {{A, B, C, X(52497), X(52710)}}
X(57766) = barycentric product X(i)*X(j) for these (i, j): {34178, 76}
X(57766) = barycentric quotient X(i)/X(j) for these (i, j): {2, 146}, {74, 36896}, {2986, 14911}, {34178, 6}


X(57767) = ISOTOMIC CONJUGATE OF X(151)

Barycentrics    ((a^2-b^2)^4*(a^2-a*b+b^2)-(a-b)^6*(a+b)^3*c+(a^2-b^2)^2*(a^4-6*a^3*b+14*a^2*b^2-6*a*b^3+b^4)*c^2+2*(a-b)^4*(a+b)*(a^2+4*a*b+b^2)*c^3-4*(a^2-b^2)^2*(2*a^2-3*a*b+2*b^2)*c^4-12*a*(a-b)^2*b*(a+b)*c^5+2*(4*a^4-a^3*b-8*a^2*b^2-a*b^3+4*b^4)*c^6-2*(a+b)*(a^2-4*a*b+b^2)*c^7-(a^2+3*a*b+b^2)*c^8+(a+b)*c^9-c^10)*(a^10-a^9*(b+c)+a^8*(b^2+3*b*c-3*c^2)+6*a^5*(b-c)*c*(2*b^3-b^2*c+c^3)+2*a^7*(b^3-3*b^2*c+2*c^3)+2*a^6*(-4*b^4+b^3*c+6*b^2*c^2-4*b*c^3+c^4)+a*(b-c)^3*(b+c)^2*(b^4-2*b^3*c+6*b^2*c^2-2*b*c^3+c^4)-(b^2-c^2)^3*(b^4-b^3*c+4*b^2*c^2-b*c^3+c^4)-a^2*(b-c)^2*(b+c)*(b^5-5*b^4*c+12*b^3*c^2-6*b^2*c^3+3*b*c^4+3*c^5)+2*a^4*(4*b^6-6*b^5*c+4*b^4*c^2+7*b^3*c^3-13*b^2*c^4+3*b*c^5+c^6)-2*a^3*(b-c)*(b^6+2*b^5*c-4*b^4*c^2+8*b^3*c^3+b^2*c^4-2*b*c^5+2*c^6)) : :

X(57767) lies on these lines: {151, 35516}

X(57767) = isotomic conjugate of X(151)
X(57767) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(35516)}}, {{A, B, C, X(69), X(1804)}}, {{A, B, C, X(102), X(151)}}, {{A, B, C, X(253), X(35519)}}, {{A, B, C, X(1034), X(7219)}}, {{A, B, C, X(8047), X(39695)}}, {{A, B, C, X(9473), X(35154)}}, {{A, B, C, X(13573), X(54125)}}, {{A, B, C, X(35149), X(35511)}}, {{A, B, C, X(43740), X(44184)}}
X(57767) = barycentric product X(i)*X(j) for these (i, j): {34180, 76}
X(57767) = barycentric quotient X(i)/X(j) for these (i, j): {2, 151}, {34180, 6}


X(57768) = ISOTOMIC CONJUGATE OF X(152)

Barycentrics    ((a-b)^4*(a+b)^2*(a^2+a*b+b^2)-(a-b)^4*(a+b)^3*c+(a-b)^2*(2*a^4+5*a^3*b+10*a^2*b^2+5*a*b^3+2*b^4)*c^2-(a-b)^2*(a+b)*(5*a^2+6*a*b+5*b^2)*c^3+a*b*(a^2-6*a*b+b^2)*c^4+(a+b)*(5*a^2-6*a*b+5*b^2)*c^5-(2*a^2+a*b+2*b^2)*c^6+(a+b)*c^7-c^8)*(a^8-a^7*(b+c)+a^6*(2*b^2+b*c-2*c^2)+a*(b-c)^3*(b+c)^2*(b^2+c^2)-a^4*(b-c)*c*(b^2-b*c+2*c^2)+a^5*(-5*b^3+b^2*c+3*b*c^2+c^3)-(b-c)^3*(b+c)*(b^4+b^3*c+4*b^2*c^2+b*c^3+c^4)-a^2*(b-c)*(2*b^5+3*b^4*c+9*b^3*c^2+3*b^2*c^3+b*c^4-2*c^5)+a^3*(5*b^5+b^4*c+6*b^3*c^2-10*b^2*c^3-3*b*c^4+c^5)) : :

X(57768) lies on these lines: {152, 35517}

X(57768) = isotomic conjugate of X(152)
X(57768) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(35517)}}, {{A, B, C, X(69), X(219)}}, {{A, B, C, X(103), X(152)}}, {{A, B, C, X(189), X(9503)}}, {{A, B, C, X(253), X(3261)}}, {{A, B, C, X(2994), X(8047)}}, {{A, B, C, X(8044), X(13573)}}, {{A, B, C, X(9473), X(35148)}}, {{A, B, C, X(35150), X(35511)}}
X(57768) = barycentric product X(i)*X(j) for these (i, j): {34181, 76}
X(57768) = barycentric quotient X(i)/X(j) for these (i, j): {2, 152}, {34181, 6}


X(57769) = ISOTOMIC CONJUGATE OF X(153)

Barycentrics    ((a-b)^4*(a+b)^3-(a^2-b^2)^2*(a^2-5*a*b+b^2)*c-(a-b)^2*(a+b)*(a^2+6*a*b+b^2)*c^2+(a^4+2*a^3*b-10*a^2*b^2+2*a*b^3+b^4)*c^3-(a+b)*(a^2-6*a*b+b^2)*c^4+(a^2-7*a*b+b^2)*c^5+(a+b)*c^6-c^7)*(a^7-a^6*(b+c)-a^3*(b-3*c)*(b-c)*(b^2+2*b*c-c^2)-(b-c)^3*(b+c)^2*(b^2+c^2)-a^5*(b^2-5*b*c+3*c^2)+a^4*(b^3-5*b^2*c+b*c^2+3*c^3)+a*(b-c)*(b+c)*(b^4-7*b^3*c+6*b^2*c^2-5*b*c^3+c^4)+a^2*(b-c)*(b^4+6*b^3*c-4*b^2*c^2+2*b*c^3+3*c^4)) : :

X(57769) lies on these lines: {153, 3262}, {4511, 36918}, {5081, 56869}

X(57769) = isotomic conjugate of X(153)
X(57769) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {34182, 3218}
X(57769) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3262)}}, {{A, B, C, X(7), X(34413)}}, {{A, B, C, X(8), X(320)}}, {{A, B, C, X(69), X(3977)}}, {{A, B, C, X(84), X(2694)}}, {{A, B, C, X(104), X(153)}}, {{A, B, C, X(253), X(693)}}, {{A, B, C, X(3257), X(54452)}}, {{A, B, C, X(4998), X(30479)}}, {{A, B, C, X(9001), X(41933)}}, {{A, B, C, X(9473), X(35147)}}, {{A, B, C, X(10405), X(48070)}}, {{A, B, C, X(13485), X(46141)}}, {{A, B, C, X(18815), X(34234)}}, {{A, B, C, X(18816), X(21739)}}, {{A, B, C, X(35151), X(35511)}}
X(57769) = barycentric product X(i)*X(j) for these (i, j): {34182, 76}
X(57769) = barycentric quotient X(i)/X(j) for these (i, j): {2, 153}, {34182, 6}


X(57770) = ISOTOMIC CONJUGATE OF X(156)

Barycentrics    b^2*c^2*(c^2*(b^2-c^2)^3+a^6*(-b^2+c^2)+a^4*(2*b^4-3*c^4)-a^2*(b^6+2*b^2*c^4-3*c^6))*(b^2*(b^2-c^2)^3+a^6*(-b^2+c^2)+a^4*(3*b^4-2*c^4)+a^2*(-3*b^6+2*b^4*c^2+c^6)) : :

X(57770) lies on these lines: {3260, 57640}

X(57770) = isotomic conjugate of X(156)
X(57770) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(20572)}}, {{A, B, C, X(95), X(18022)}}, {{A, B, C, X(156), X(13561)}}, {{A, B, C, X(253), X(18817)}}, {{A, B, C, X(264), X(850)}}, {{A, B, C, X(327), X(56059)}}, {{A, B, C, X(1494), X(55553)}}, {{A, B, C, X(20564), X(41530)}}, {{A, B, C, X(35142), X(40421)}}
X(57770) = barycentric product X(i)*X(j) for these (i, j): {57640, 76}
X(57770) = barycentric quotient X(i)/X(j) for these (i, j): {2, 156}, {57640, 6}


X(57771) = ISOTOMIC CONJUGATE OF X(157)

Barycentrics    b^2*c^2*(a^6-a^4*(b^2+c^2)+a^2*(b^4-c^4)-(b-c)*(b+c)*(b^4+c^4))*(a^6-a^4*(b^2+c^2)+a^2*(-b^4+c^4)+(b-c)*(b+c)*(b^4+c^4)) : :

X(57771) lies on these lines: {76, 23128}, {315, 2979}, {7763, 17907}, {7796, 40073}, {18018, 44185}, {41009, 44173}

X(57771) = isogonal conjugate of X(2909)
X(57771) = isotomic conjugate of X(157)
X(57771) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2909}, {19, 22391}, {31, 157}, {32, 21374}, {560, 11442}, {1501, 21593}, {1973, 23128}
X(57771) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 157}, {3, 2909}, {6, 22391}, {6337, 23128}, {6374, 11442}, {6376, 21374}
X(57771) = X(i)-cross conjugate of X(j) for these {i, j}: {3, 76}, {23333, 2}
X(57771) = pole of line {2909, 22391} with respect to the Stammler hyperbola
X(57771) = pole of line {157, 2909} with respect to the Wallace hyperbola
X(57771) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(3), X(23128)}}, {{A, B, C, X(54), X(262)}}, {{A, B, C, X(76), X(41488)}}, {{A, B, C, X(83), X(264)}}, {{A, B, C, X(99), X(9289)}}, {{A, B, C, X(157), X(23333)}}, {{A, B, C, X(276), X(40421)}}, {{A, B, C, X(305), X(7763)}}, {{A, B, C, X(325), X(56004)}}, {{A, B, C, X(523), X(45921)}}, {{A, B, C, X(684), X(14585)}}, {{A, B, C, X(847), X(52618)}}, {{A, B, C, X(2065), X(46199)}}, {{A, B, C, X(2367), X(43678)}}, {{A, B, C, X(7752), X(20563)}}, {{A, B, C, X(18027), X(46140)}}, {{A, B, C, X(40050), X(40832)}}
X(57771) = barycentric product X(i)*X(j) for these (i, j): {1485, 1502}, {41765, 42407}, {44175, 76}
X(57771) = barycentric quotient X(i)/X(j) for these (i, j): {2, 157}, {3, 22391}, {6, 2909}, {69, 23128}, {75, 21374}, {76, 11442}, {561, 21593}, {1485, 32}, {41765, 3767}, {44175, 6}


X(57772) = ISOTOMIC CONJUGATE OF X(161)

Barycentrics    b^2*c^2*((a^2-b^2)^4*(a^2+b^2)-(a^2-b^2)^2*(a^4+b^4)*c^2-2*(a^2+b^2)*(a^4+b^4)*c^4+2*(a^4+a^2*b^2+b^4)*c^6+(a^2+b^2)*c^8-c^10)*(a^10+2*a^4*(b^2-c^2)^2*(b^2+c^2)-(b^2-c^2)^3*(b^2+c^2)^2-a^8*(b^2+3*c^2)+a^2*(b-c)*(b+c)*(b^2+3*c^2)*(b^4+c^4)+2*a^6*(-b^4+b^2*c^2+c^4)) : :

X(57772) lies on these lines: {305, 44177}

X(57772) = isotomic conjugate of X(161)
X(57772) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 161}, {32, 18595}, {560, 37444}, {9447, 18628}
X(57772) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 161}, {6374, 37444}, {6376, 18595}
X(57772) = X(i)-cross conjugate of X(j) for these {i, j}: {317, 76}
X(57772) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(305)}}, {{A, B, C, X(264), X(34412)}}, {{A, B, C, X(275), X(18018)}}, {{A, B, C, X(317), X(20564)}}, {{A, B, C, X(801), X(20563)}}, {{A, B, C, X(6504), X(18019)}}
X(57772) = barycentric product X(i)*X(j) for these (i, j): {1502, 34438}, {44177, 76}
X(57772) = barycentric quotient X(i)/X(j) for these (i, j): {2, 161}, {75, 18595}, {76, 37444}, {6063, 18628}, {7763, 8907}, {34438, 32}, {44177, 6}


X(57773) = ISOTOMIC CONJUGATE OF X(169)

Barycentrics    b*c*((a-b)^2*(a+b)-(a^2+b^2)*c+(a+b)*c^2-c^3)*(a^3-a^2*(b+c)+a*(b-c)*(b+c)-(b-c)*(b^2+c^2)) : :

X(57773) lies on these lines: {69, 3263}, {75, 31637}, {304, 17233}, {344, 348}, {7182, 28738}, {17206, 18157}, {17234, 21609}, {20567, 20927}, {21588, 44129}

X(57773) = isotomic conjugate of X(169)
X(57773) = trilinear pole of line {1734, 4025}
X(57773) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1486}, {25, 22131}, {31, 169}, {32, 3434}, {41, 34036}, {55, 56913}, {56, 5452}, {184, 17905}, {213, 4228}, {560, 20927}, {1333, 21867}, {1415, 11934}, {1974, 28420}, {2175, 37800}, {2206, 21073}, {3063, 40576}, {21185, 32739}
X(57773) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 5452}, {2, 169}, {9, 1486}, {37, 21867}, {223, 56913}, {1146, 11934}, {3160, 34036}, {5375, 57250}, {6374, 20927}, {6376, 3434}, {6505, 22131}, {6626, 4228}, {10001, 40576}, {40593, 37800}, {40603, 21073}, {40619, 21185}
X(57773) = X(i)-cross conjugate of X(j) for these {i, j}: {9, 75}, {34847, 2}, {48070, 190}
X(57773) = pole of line {169, 4228} with respect to the Wallace hyperbola
X(57773) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(10327)}}, {{A, B, C, X(7), X(46740)}}, {{A, B, C, X(8), X(28740)}}, {{A, B, C, X(9), X(20927)}}, {{A, B, C, X(29), X(28769)}}, {{A, B, C, X(69), X(85)}}, {{A, B, C, X(75), X(3261)}}, {{A, B, C, X(76), X(40422)}}, {{A, B, C, X(77), X(30805)}}, {{A, B, C, X(92), X(1255)}}, {{A, B, C, X(169), X(34847)}}, {{A, B, C, X(264), X(31618)}}, {{A, B, C, X(273), X(37130)}}, {{A, B, C, X(312), X(344)}}, {{A, B, C, X(333), X(28753)}}, {{A, B, C, X(514), X(2191)}}, {{A, B, C, X(2287), X(17234)}}, {{A, B, C, X(3912), X(56179)}}, {{A, B, C, X(7097), X(17758)}}, {{A, B, C, X(17336), X(18151)}}, {{A, B, C, X(17913), X(18138)}}, {{A, B, C, X(18031), X(20570)}}, {{A, B, C, X(21588), X(56382)}}, {{A, B, C, X(23618), X(34393)}}, {{A, B, C, X(27958), X(37796)}}, {{A, B, C, X(28777), X(31359)}}, {{A, B, C, X(30598), X(40044)}}, {{A, B, C, X(33078), X(37202)}}, {{A, B, C, X(40025), X(40845)}}, {{A, B, C, X(40417), X(52156)}}
X(57773) = barycentric product X(i)*X(j) for these (i, j): {3433, 561}, {13577, 75}, {20567, 40141}, {26721, 668}, {30701, 41788}, {44178, 76}
X(57773) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1486}, {2, 169}, {7, 34036}, {9, 5452}, {10, 21867}, {57, 56913}, {63, 22131}, {75, 3434}, {76, 20927}, {85, 37800}, {86, 4228}, {92, 17905}, {100, 57250}, {304, 28420}, {321, 21073}, {522, 11934}, {664, 40576}, {693, 21185}, {3261, 26546}, {3433, 31}, {4357, 41581}, {13577, 1}, {16887, 41582}, {26706, 8750}, {26721, 513}, {35185, 32666}, {40014, 27826}, {40141, 41}, {41788, 4000}, {44178, 6}, {54236, 21059}


X(57774) = ISOTOMIC CONJUGATE OF X(170)

Barycentrics    -(b*c*(-(a*(a-b)^4*b)+(a-b)^2*(a+b)^3*c-2*(a-b)^2*(2*a^2+3*a*b+2*b^2)*c^2+2*(a+b)*(3*a^2-4*a*b+3*b^2)*c^3-(4*a^2+a*b+4*b^2)*c^4+(a+b)*c^5)*(a^5*(b-c)+b*(b-c)^4*c+a*(b-c)^3*(b+c)^2+2*a^3*(b-c)*(3*b^2+4*b*c+3*c^2)+a^4*(-4*b^2+b*c+4*c^2)-2*a^2*(b-c)*(2*b^3+3*b^2*c+b*c^2+2*c^3))) : :

X(57774) lies on these lines: {8, 34019}, {1043, 57641}, {20935, 56118}

X(57774) = isotomic conjugate of X(170)
X(57774) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 170}, {2175, 56310}
X(57774) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 170}, {40593, 56310}
X(57774) = X(i)-cross conjugate of X(j) for these {i, j}: {34848, 2}, {57792, 75}
X(57774) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(75)}}, {{A, B, C, X(170), X(34848)}}, {{A, B, C, X(309), X(53228)}}, {{A, B, C, X(34019), X(44186)}}
X(57774) = barycentric product X(i)*X(j) for these (i, j): {57641, 76}
X(57774) = barycentric quotient X(i)/X(j) for these (i, j): {2, 170}, {85, 56310}, {57641, 6}


X(57775) = ISOTOMIC CONJUGATE OF X(185)

Barycentrics    b^2*c^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2*(a^2+b^2)-2*(a^2-b^2)^2*c^2+(a^2+b^2)*c^4)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+4*b^2*c^2-c^4)) : :

X(57775) lies on these lines: {69, 57677}, {76, 15394}, {264, 1105}, {394, 801}, {648, 55345}, {3260, 8795}, {4176, 18022}, {6331, 41005}, {6528, 22468}, {15466, 40032}, {16081, 41890}, {44134, 55553}, {52385, 57812}, {57809, 57955}

X(57775) = isotomic conjugate of X(185)
X(57775) = trilinear pole of line {14618, 30476}
X(57775) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 820}, {31, 185}, {32, 6508}, {48, 800}, {184, 774}, {235, 52430}, {255, 44079}, {417, 1096}, {560, 41005}, {810, 1624}, {1973, 6509}, {2179, 19180}, {2200, 18603}, {9247, 13567}, {14575, 17858}
X(57775) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 185}, {1249, 800}, {6337, 6509}, {6374, 41005}, {6376, 6508}, {6503, 417}, {6505, 820}, {6523, 44079}, {39062, 1624}, {40839, 52566}
X(57775) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 57800}, {264, 57843}, {525, 6331}, {801, 40830}, {5907, 2}
X(57775) = pole of line {185, 417} with respect to the Wallace hyperbola
X(57775) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(1593)}}, {{A, B, C, X(69), X(394)}}, {{A, B, C, X(76), X(14615)}}, {{A, B, C, X(95), X(18020)}}, {{A, B, C, X(185), X(5907)}}, {{A, B, C, X(253), X(290)}}, {{A, B, C, X(264), X(2052)}}, {{A, B, C, X(297), X(9229)}}, {{A, B, C, X(311), X(3260)}}, {{A, B, C, X(317), X(44134)}}, {{A, B, C, X(325), X(42331)}}, {{A, B, C, X(525), X(41005)}}, {{A, B, C, X(1494), X(34385)}}, {{A, B, C, X(6356), X(44150)}}, {{A, B, C, X(9473), X(43715)}}, {{A, B, C, X(10574), X(15056)}}, {{A, B, C, X(19198), X(22466)}}, {{A, B, C, X(34233), X(38264)}}, {{A, B, C, X(40801), X(43710)}}, {{A, B, C, X(44133), X(44149)}}, {{A, B, C, X(44135), X(44136)}}
X(57775) = barycentric product X(i)*X(j) for these (i, j): {4, 40830}, {264, 801}, {304, 821}, {394, 57843}, {1105, 76}, {1969, 775}, {2052, 57800}, {3926, 57677}, {18022, 41890}, {18027, 57648}, {57955, 92}, {57972, 63}
X(57775) = barycentric quotient X(i)/X(j) for these (i, j): {2, 185}, {4, 800}, {63, 820}, {69, 6509}, {75, 6508}, {76, 41005}, {92, 774}, {95, 19180}, {264, 13567}, {275, 16035}, {276, 19166}, {286, 18603}, {393, 44079}, {394, 417}, {459, 52566}, {648, 1624}, {775, 48}, {801, 3}, {821, 19}, {1105, 6}, {1969, 17858}, {2052, 235}, {2996, 45199}, {6528, 41678}, {14615, 45200}, {15466, 2883}, {17907, 41580}, {18027, 44131}, {40830, 69}, {41890, 184}, {46106, 51403}, {46927, 36982}, {57414, 14642}, {57648, 577}, {57677, 393}, {57800, 394}, {57843, 2052}, {57955, 63}, {57972, 92}


X(57776) = ISOTOMIC CONJUGATE OF X(195)

Barycentrics    b^2*c^2*(a^8+(b^2-c^2)^4-2*a^6*(b^2+2*c^2)+a^4*(2*b^4+b^2*c^2+6*c^4)+a^2*(-2*b^6+b^4*c^2+5*b^2*c^4-4*c^6))*(a^8+(b^2-c^2)^4-2*a^6*(2*b^2+c^2)+a^4*(6*b^4+b^2*c^2+2*c^4)+a^2*(-4*b^6+5*b^4*c^2+b^2*c^4-2*c^6)) : :

X(57776) lies on these lines: {95, 57870}, {311, 3459}, {324, 32002}, {34433, 53245}

X(57776) = isotomic conjugate of X(195)
X(57776) = trilinear pole of line {18314, 41298}
X(57776) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 195}, {560, 45799}, {36134, 42650}
X(57776) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 195}, {137, 42650}, {6374, 45799}
X(57776) = X(i)-cross conjugate of X(j) for these {i, j}: {95, 264}, {11140, 76}, {21230, 2}
X(57776) = pole of line {195, 15770} with respect to the Wallace hyperbola
X(57776) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(69), X(37779)}}, {{A, B, C, X(75), X(46749)}}, {{A, B, C, X(76), X(302)}}, {{A, B, C, X(94), X(40410)}}, {{A, B, C, X(95), X(11140)}}, {{A, B, C, X(195), X(21230)}}, {{A, B, C, X(264), X(311)}}, {{A, B, C, X(290), X(40036)}}, {{A, B, C, X(327), X(40045)}}, {{A, B, C, X(2052), X(39286)}}, {{A, B, C, X(8795), X(9381)}}, {{A, B, C, X(18401), X(27353)}}, {{A, B, C, X(18817), X(42333)}}, {{A, B, C, X(20572), X(34385)}}
X(57776) = barycentric product X(i)*X(j) for these (i, j): {3459, 76}, {18022, 34433}, {53028, 95}
X(57776) = barycentric quotient X(i)/X(j) for these (i, j): {2, 195}, {76, 45799}, {1994, 15787}, {3459, 6}, {11140, 21975}, {11584, 11063}, {12077, 42650}, {13582, 14367}, {34433, 184}, {37779, 15770}, {39419, 32737}, {53028, 5}, {57699, 34433}


X(57777) = ISOTOMIC CONJUGATE OF X(197)

Barycentrics    b^2*c^2*((a^2-b^2)^2+2*a*b*(a+b)*c-2*a*b*c^2-c^4)*(a^4-b^4+2*a^2*(b-c)*c+c^4+2*a*b*c*(-b+c)) : :

X(57777) lies on these lines: {76, 57477}, {304, 4417}, {305, 57781}, {34277, 57494}

X(57777) = isotomic conjugate of X(197)
X(57777) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 205}, {31, 197}, {32, 1766}, {41, 478}, {42, 52143}, {212, 17408}, {560, 3436}, {1501, 20928}, {1918, 16049}, {1973, 22132}, {2175, 21147}, {2200, 41364}, {2212, 56414}, {3063, 57061}, {6588, 32739}, {9447, 57477}
X(57777) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 197}, {9, 205}, {3160, 478}, {6337, 22132}, {6374, 3436}, {6376, 1766}, {10001, 57061}, {34021, 16049}, {40592, 52143}, {40593, 21147}, {40619, 6588}, {40837, 17408}
X(57777) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57781, 57879}
X(57777) = X(i)-cross conjugate of X(j) for these {i, j}: {7, 76}, {23304, 2}, {54314, 274}
X(57777) = pole of line {197, 22132} with respect to the Wallace hyperbola
X(57777) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(18021)}}, {{A, B, C, X(86), X(264)}}, {{A, B, C, X(197), X(23304)}}, {{A, B, C, X(274), X(304)}}, {{A, B, C, X(278), X(693)}}, {{A, B, C, X(310), X(1969)}}, {{A, B, C, X(1088), X(20914)}}, {{A, B, C, X(1407), X(3004)}}, {{A, B, C, X(3596), X(32017)}}, {{A, B, C, X(40495), X(41530)}}
X(57777) = barycentric product X(i)*X(j) for these (i, j): {1, 57781}, {76, 8048}, {1502, 3435}, {34277, 6063}, {40495, 46640}, {42467, 561}, {43703, 6385}, {43742, 57918}, {57642, 75}, {57879, 7}
X(57777) = barycentric quotient X(i)/X(j) for these (i, j): {1, 205}, {2, 197}, {7, 478}, {69, 22132}, {75, 1766}, {76, 3436}, {81, 52143}, {85, 21147}, {274, 16049}, {278, 17408}, {286, 41364}, {313, 21074}, {331, 14257}, {348, 56414}, {561, 20928}, {664, 57061}, {693, 6588}, {3261, 21186}, {3435, 32}, {6063, 57477}, {8048, 6}, {20911, 41600}, {34277, 55}, {39167, 52425}, {42467, 31}, {43703, 213}, {43742, 607}, {46640, 692}, {54314, 56905}, {57642, 1}, {57756, 7115}, {57781, 75}, {57879, 8}, {58008, 34263}


X(57778) = ISOTOMIC CONJUGATE OF X(199)

Barycentrics    b^2*c^2*(a^4+a^3*b-a*b^3-b^4+(a-b)*(a+b)^2*c+a*b*c^2+(a+b)*c^3+c^4)*(a^4+a^2*b*c+a^3*(b+c)+a*(b-c)*(b+c)^2+(b-c)*(b+c)*(b^2+b*c+c^2)) : :

X(57778) lies on these lines: {69, 8044}, {76, 57876}, {306, 21587}, {307, 52421}, {1799, 3437}

X(57778) = isotomic conjugate of X(199)
X(57778) = trilinear pole of line {18160, 525}
X(57778) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 199}, {32, 1761}, {213, 40589}, {560, 1330}, {798, 57062}, {1501, 20929}, {1973, 22133}
X(57778) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 199}, {6337, 22133}, {6374, 1330}, {6376, 1761}, {6626, 40589}, {31998, 57062}
X(57778) = X(i)-cross conjugate of X(j) for these {i, j}: {86, 76}, {34119, 2}
X(57778) = pole of line {199, 22133} with respect to the Wallace hyperbola
X(57778) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(199), X(34119)}}, {{A, B, C, X(310), X(18036)}}, {{A, B, C, X(523), X(2248)}}, {{A, B, C, X(561), X(18836)}}, {{A, B, C, X(593), X(45746)}}, {{A, B, C, X(693), X(52393)}}, {{A, B, C, X(6063), X(33939)}}, {{A, B, C, X(19810), X(33931)}}, {{A, B, C, X(20566), X(40033)}}, {{A, B, C, X(40020), X(40036)}}
X(57778) = barycentric product X(i)*X(j) for these (i, j): {76, 8044}, {1502, 3437}
X(57778) = barycentric quotient X(i)/X(j) for these (i, j): {2, 199}, {69, 22133}, {75, 1761}, {76, 1330}, {86, 40589}, {99, 57062}, {313, 21076}, {561, 20929}, {3261, 21187}, {3437, 32}, {8044, 6}, {40142, 2206}


X(57779) = ISOTOMIC CONJUGATE OF X(201)

Barycentrics    b*(a+b)^2*c*(a+c)^2*(-a+b+c)*(-a^2+b^2-c^2)*(a^2+b^2-c^2) : :

X(57779) lies on these lines: {27, 2354}, {28, 242}, {29, 332}, {75, 1098}, {86, 8747}, {264, 811}, {270, 14024}, {314, 1172}, {409, 1441}, {2150, 4858}, {2212, 14006}, {10471, 56831}, {14616, 18831}, {37306, 40412}

X(57779) = isotomic conjugate of X(201)
X(57779) = trilinear pole of line {18155, 57215}
X(57779) = perspector of circumconic {{A, B, C, X(55231), X(55233)}}
X(57779) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 181}, {6, 2197}, {12, 184}, {25, 7066}, {31, 201}, {32, 26942}, {33, 7138}, {37, 1409}, {41, 37755}, {42, 73}, {48, 2171}, {55, 1425}, {56, 3690}, {59, 20975}, {65, 228}, {71, 1400}, {72, 1402}, {77, 872}, {101, 55234}, {109, 55230}, {210, 1410}, {212, 1254}, {213, 1214}, {222, 1500}, {225, 4055}, {226, 2200}, {307, 1918}, {348, 7109}, {512, 23067}, {560, 57807}, {577, 8736}, {594, 52411}, {603, 756}, {604, 3949}, {608, 52386}, {647, 4559}, {810, 4551}, {906, 57185}, {1042, 2318}, {1231, 2205}, {1260, 7143}, {1334, 52373}, {1395, 52387}, {1397, 3695}, {1415, 55232}, {1427, 52370}, {1802, 7147}, {1813, 4079}, {1824, 22341}, {1880, 3990}, {2149, 3708}, {2175, 6356}, {2199, 53010}, {2333, 40152}, {3049, 4552}, {3124, 44717}, {3269, 7115}, {3682, 57652}, {3709, 52610}, {3724, 52391}, {4024, 32660}, {4158, 7337}, {4574, 7180}, {4705, 36059}, {6354, 52425}, {6358, 9247}, {6516, 50487}, {7053, 7064}, {7140, 7335}, {14575, 34388}, {14827, 20618}, {21859, 22383}, {32661, 55197}, {32739, 57243}, {52430, 56285}
X(57779) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3690}, {2, 201}, {9, 2197}, {11, 55230}, {223, 1425}, {650, 3708}, {905, 2632}, {1015, 55234}, {1146, 55232}, {1249, 2171}, {1577, 125}, {3160, 37755}, {3161, 3949}, {5190, 57185}, {6374, 57807}, {6376, 26942}, {6505, 7066}, {6615, 20975}, {6626, 1214}, {7952, 756}, {13999, 42666}, {16585, 41393}, {20620, 4705}, {23050, 7064}, {34021, 307}, {36103, 181}, {39052, 4559}, {39054, 23067}, {39060, 4605}, {39062, 4551}, {40582, 71}, {40589, 1409}, {40592, 73}, {40593, 6356}, {40602, 228}, {40605, 72}, {40619, 57243}, {40620, 51664}, {40624, 4064}, {40625, 656}, {40626, 57109}, {40628, 3269}, {40837, 1254}, {55067, 647}
X(57779) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18020, 811}
X(57779) = X(i)-cross conjugate of X(j) for these {i, j}: {29, 46103}, {86, 261}, {2185, 52379}, {17880, 18155}, {18690, 75}, {54356, 333}
X(57779) = pole of line {4705, 42666} with respect to the polar circle
X(57779) = pole of line {228, 1409} with respect to the Stammler hyperbola
X(57779) = pole of line {72, 73} with respect to the Wallace hyperbola
X(57779) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(7), X(1944)}}, {{A, B, C, X(8), X(16817)}}, {{A, B, C, X(27), X(44734)}}, {{A, B, C, X(28), X(29)}}, {{A, B, C, X(34), X(2354)}}, {{A, B, C, X(85), X(3718)}}, {{A, B, C, X(86), X(332)}}, {{A, B, C, X(242), X(281)}}, {{A, B, C, X(261), X(873)}}, {{A, B, C, X(264), X(40440)}}, {{A, B, C, X(272), X(19607)}}, {{A, B, C, X(274), X(314)}}, {{A, B, C, X(286), X(31623)}}, {{A, B, C, X(309), X(7182)}}, {{A, B, C, X(811), X(18831)}}, {{A, B, C, X(870), X(30479)}}, {{A, B, C, X(985), X(27401)}}, {{A, B, C, X(1178), X(2150)}}, {{A, B, C, X(2997), X(17866)}}, {{A, B, C, X(3112), X(3596)}}, {{A, B, C, X(5136), X(17515)}}, {{A, B, C, X(10436), X(28287)}}, {{A, B, C, X(18021), X(52550)}}, {{A, B, C, X(35519), X(44188)}}
X(57779) = barycentric product X(i)*X(j) for these (i, j): {4, 52379}, {11, 46254}, {21, 44129}, {27, 314}, {28, 28660}, {261, 92}, {270, 76}, {273, 7058}, {274, 29}, {281, 873}, {284, 57796}, {286, 333}, {513, 55233}, {522, 55231}, {552, 7101}, {607, 57992}, {1098, 331}, {1172, 310}, {1474, 40072}, {1509, 318}, {1848, 52550}, {1969, 60}, {2185, 264}, {2189, 561}, {2299, 6385}, {2322, 57785}, {2326, 6063}, {3064, 4623}, {3261, 52914}, {3737, 6331}, {4560, 811}, {4631, 7649}, {7017, 757}, {14024, 40017}, {15413, 52921}, {17206, 1896}, {17880, 23582}, {17925, 7257}, {17926, 4625}, {18020, 4858}, {18021, 19}, {18022, 2150}, {18155, 648}, {18344, 52612}, {23189, 57973}, {23999, 26932}, {24006, 55196}, {24037, 8735}, {31623, 86}, {35518, 52919}, {36419, 3718}, {36421, 7182}, {36797, 7199}, {41083, 57795}, {44130, 81}, {44426, 4610}, {46103, 75}, {46107, 4612}, {46110, 52935}, {53008, 57949}, {55229, 650}, {57215, 99}, {57787, 7054}, {57968, 7252}
X(57779) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2197}, {2, 201}, {4, 2171}, {7, 37755}, {8, 3949}, {9, 3690}, {11, 3708}, {19, 181}, {21, 71}, {27, 65}, {28, 1400}, {29, 37}, {33, 1500}, {57, 1425}, {58, 1409}, {60, 48}, {63, 7066}, {75, 26942}, {76, 57807}, {78, 52386}, {81, 73}, {85, 6356}, {86, 1214}, {92, 12}, {158, 8736}, {162, 4559}, {222, 7138}, {250, 2149}, {261, 63}, {264, 6358}, {270, 6}, {273, 6354}, {274, 307}, {278, 1254}, {280, 53010}, {281, 756}, {283, 3990}, {284, 228}, {285, 41087}, {286, 226}, {310, 1231}, {312, 3695}, {314, 306}, {318, 594}, {332, 3998}, {333, 72}, {345, 52387}, {513, 55234}, {522, 55232}, {552, 7177}, {593, 603}, {607, 872}, {643, 4574}, {648, 4551}, {650, 55230}, {662, 23067}, {693, 57243}, {757, 222}, {811, 4552}, {849, 52411}, {873, 348}, {1014, 52373}, {1043, 3694}, {1088, 20618}, {1098, 219}, {1119, 7147}, {1172, 42}, {1364, 37754}, {1396, 1042}, {1412, 1410}, {1414, 52610}, {1434, 1439}, {1435, 7143}, {1444, 40152}, {1474, 1402}, {1509, 77}, {1790, 22341}, {1812, 3682}, {1847, 6046}, {1848, 52567}, {1896, 1826}, {1897, 21859}, {1969, 34388}, {2052, 56285}, {2150, 184}, {2170, 20975}, {2185, 3}, {2189, 31}, {2193, 4055}, {2194, 2200}, {2204, 1918}, {2212, 7109}, {2287, 2318}, {2299, 213}, {2322, 210}, {2326, 55}, {2328, 52370}, {3064, 4705}, {3559, 21853}, {3596, 52369}, {3719, 4158}, {3737, 647}, {3794, 20727}, {4183, 1334}, {4391, 4064}, {4556, 36059}, {4560, 656}, {4610, 6516}, {4612, 1331}, {4631, 4561}, {4636, 906}, {4858, 125}, {5081, 4053}, {5249, 41393}, {5317, 57652}, {5324, 23620}, {6061, 1802}, {6198, 21794}, {6332, 57109}, {7004, 3269}, {7017, 1089}, {7054, 212}, {7058, 78}, {7079, 7064}, {7101, 6057}, {7192, 51664}, {7199, 17094}, {7252, 810}, {7253, 8611}, {7254, 51640}, {7257, 52609}, {7341, 7099}, {7649, 57185}, {8735, 2643}, {8747, 1880}, {8748, 1824}, {11109, 56325}, {11393, 21799}, {14004, 20616}, {14006, 2295}, {14024, 2238}, {17185, 22076}, {17197, 18210}, {17206, 52385}, {17515, 2245}, {17880, 15526}, {17925, 4017}, {17926, 4041}, {18020, 4564}, {18021, 304}, {18026, 4605}, {18155, 525}, {18344, 4079}, {23189, 822}, {23582, 7012}, {23999, 46102}, {24000, 7115}, {24006, 55197}, {24041, 44717}, {24624, 52391}, {26856, 7004}, {26932, 2632}, {28660, 20336}, {30606, 5440}, {31623, 10}, {31905, 1284}, {31926, 42289}, {34387, 20902}, {35360, 35307}, {36419, 34}, {36420, 1395}, {36421, 33}, {36797, 1018}, {37279, 15443}, {37908, 39258}, {39177, 23286}, {40072, 40071}, {40166, 21134}, {40214, 22342}, {40979, 3611}, {40987, 21813}, {41083, 227}, {43925, 51641}, {44129, 1441}, {44130, 321}, {44426, 4024}, {44428, 2610}, {44698, 30456}, {46103, 1}, {46110, 4036}, {46254, 4998}, {46878, 21810}, {46884, 40952}, {52379, 69}, {52380, 52431}, {52393, 52390}, {52914, 101}, {52919, 108}, {52920, 32674}, {52921, 1783}, {52935, 1813}, {53008, 762}, {54284, 26955}, {54356, 18591}, {55196, 4592}, {55229, 4554}, {55231, 664}, {55233, 668}, {57200, 7180}, {57215, 523}, {57785, 56382}, {57795, 56944}, {57796, 349}, {57992, 57918}


X(57780) = ISOTOMIC CONJUGATE OF X(204)

Barycentrics    b*c*(a^2-b^2-c^2)*((a^2-b^2)^2+2*(a^2+b^2)*c^2-3*c^4)*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b-c)*(b+c)) : :

X(57780) lies on these lines: {75, 20322}, {304, 2184}, {3596, 41530}, {7182, 57783}, {34403, 42699}

X(57780) = isotomic conjugate of X(204)
X(57780) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3172}, {20, 1974}, {25, 154}, {31, 204}, {32, 1249}, {41, 3213}, {184, 6525}, {560, 1895}, {604, 7156}, {610, 1973}, {669, 52913}, {1033, 47439}, {1394, 2212}, {1395, 7070}, {1397, 44695}, {1501, 15466}, {1562, 41937}, {1576, 44705}, {1843, 51508}, {1918, 44698}, {2175, 44696}, {2203, 3198}, {2204, 30456}, {2206, 53011}, {2207, 15905}, {3049, 57219}, {3063, 57193}, {3079, 33581}, {3199, 33629}, {9407, 10152}, {9447, 44697}, {14249, 14575}, {14581, 15291}, {14601, 44704}, {14615, 44162}, {20232, 56363}, {23975, 47409}, {32713, 42658}, {35602, 52439}, {36417, 37669}, {36841, 57204}, {38808, 40981}
X(57780) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 204}, {9, 3172}, {3160, 3213}, {3161, 7156}, {3343, 31}, {4858, 44705}, {6337, 610}, {6374, 1895}, {6376, 1249}, {6505, 154}, {10001, 57193}, {14092, 1973}, {14390, 9247}, {34021, 44698}, {39054, 57153}, {40593, 44696}, {40603, 53011}, {40839, 1096}
X(57780) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 304}, {19611, 57921}, {20309, 2}
X(57780) = pole of line {204, 610} with respect to the Wallace hyperbola
X(57780) = intersection, other than A, B, C, of circumconics {{A, B, C, X(63), X(51304)}}, {{A, B, C, X(75), X(18750)}}, {{A, B, C, X(76), X(7182)}}, {{A, B, C, X(92), X(14208)}}, {{A, B, C, X(204), X(20309)}}, {{A, B, C, X(304), X(561)}}, {{A, B, C, X(305), X(3596)}}, {{A, B, C, X(656), X(9258)}}, {{A, B, C, X(1088), X(15413)}}, {{A, B, C, X(1895), X(20322)}}, {{A, B, C, X(2184), X(19611)}}, {{A, B, C, X(9255), X(9285)}}, {{A, B, C, X(34404), X(35518)}}
X(57780) = barycentric product X(i)*X(j) for these (i, j): {253, 304}, {326, 52581}, {1073, 561}, {1231, 5931}, {1502, 19614}, {2155, 40050}, {2184, 305}, {14208, 44326}, {14638, 811}, {14642, 1928}, {15394, 1969}, {19611, 76}, {34403, 75}, {40364, 64}, {41530, 63}, {44692, 57918}, {53012, 6385}, {57919, 8809}, {57921, 69}
X(57780) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3172}, {2, 204}, {7, 3213}, {8, 7156}, {63, 154}, {64, 1973}, {69, 610}, {75, 1249}, {76, 1895}, {85, 44696}, {92, 6525}, {253, 19}, {274, 44698}, {304, 20}, {305, 18750}, {306, 3198}, {307, 30456}, {312, 44695}, {321, 53011}, {326, 15905}, {345, 7070}, {348, 1394}, {459, 1096}, {561, 15466}, {662, 57153}, {664, 57193}, {799, 52913}, {811, 57219}, {1073, 31}, {1102, 35602}, {1231, 5930}, {1577, 44705}, {1969, 14249}, {2155, 1974}, {2184, 25}, {3267, 17898}, {3718, 27382}, {5931, 1172}, {6063, 44697}, {7182, 18623}, {8798, 2179}, {8809, 608}, {11064, 52948}, {11589, 9406}, {13157, 2181}, {14208, 6587}, {14379, 9247}, {14638, 656}, {14642, 560}, {15394, 48}, {15413, 21172}, {16096, 2312}, {17879, 1562}, {18695, 42459}, {18750, 3079}, {19611, 6}, {19614, 32}, {20336, 8804}, {24018, 42658}, {24020, 47409}, {30457, 2212}, {33805, 10152}, {34055, 51508}, {34403, 1}, {35518, 14331}, {40071, 52345}, {40364, 14615}, {41530, 92}, {44326, 162}, {44692, 607}, {46238, 44704}, {46639, 32676}, {47435, 1712}, {47849, 47439}, {52158, 2204}, {52559, 2155}, {52581, 158}, {53012, 213}, {53639, 24019}, {55202, 36841}, {56235, 8750}, {56382, 40933}, {56944, 41086}, {57918, 33673}, {57919, 52346}, {57921, 4}


X(57781) = ISOTOMIC CONJUGATE OF X(205)

Barycentrics    b^3*c^3*((a^2-b^2)^2+2*a*b*(a+b)*c-2*a*b*c^2-c^4)*(a^4-b^4+2*a^2*(b-c)*c+c^4+2*a*b*c*(-b+c)) : :

X(57781) lies on these lines: {305, 57777}, {57879, 57918}

X(57781) = isotomic conjugate of X(205)
X(57781) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 205}, {32, 197}, {213, 52143}, {478, 2175}, {560, 1766}, {1501, 3436}, {1917, 20928}, {1974, 22132}, {2205, 16049}, {9447, 21147}, {9448, 57477}, {17408, 52425}
X(57781) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 205}, {6374, 1766}, {6376, 197}, {6626, 52143}, {40593, 478}
X(57781) = X(i)-cross conjugate of X(j) for these {i, j}: {85, 561}
X(57781) = pole of line {205, 52143} with respect to the Wallace hyperbola
X(57781) = intersection, other than A, B, C, of circumconics {{A, B, C, X(269), X(4509)}}, {{A, B, C, X(273), X(3261)}}, {{A, B, C, X(274), X(1969)}}, {{A, B, C, X(305), X(310)}}, {{A, B, C, X(6385), X(18022)}}
X(57781) = barycentric product X(i)*X(j) for these (i, j): {561, 8048}, {1502, 42467}, {1928, 3435}, {20567, 34277}, {57642, 76}, {57777, 75}, {57879, 85}
X(57781) = barycentric quotient X(i)/X(j) for these (i, j): {2, 205}, {75, 197}, {76, 1766}, {85, 478}, {86, 52143}, {273, 17408}, {304, 22132}, {310, 16049}, {561, 3436}, {1502, 20928}, {3261, 6588}, {3435, 560}, {4554, 57061}, {6063, 21147}, {7182, 56414}, {8048, 31}, {20567, 57477}, {27801, 21074}, {34277, 41}, {40495, 21186}, {42467, 32}, {43703, 1918}, {43742, 2212}, {44129, 41364}, {46640, 32739}, {57642, 6}, {57777, 1}, {57787, 14257}, {57879, 9}


X(57782) = ISOTOMIC CONJUGATE OF X(207)

Barycentrics    b*c*(-a+b+c)*(-a^2+b^2+c^2)*((a-b)^2*(a+b)^4-2*(a-b)^2*(a+b)*(a^2+b^2)*c-(a^2-b^2)^2*c^2+4*(a^3+b^3)*c^3-(a+b)^2*c^4-2*(a+b)*c^5+c^6)*(a^6-a^4*(b-c)^2+2*a^5*(-b+c)+(b-c)^4*(b+c)^2-a^2*(b^2-c^2)^2-2*a*(b-c)*(b+c)^2*(b^2+c^2)+4*a^3*(b^3-c^3)) : :

X(57782) lies on these lines: {3718, 8806}

X(57782) = isotomic conjugate of X(207)
X(57782) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 1035}, {31, 207}, {32, 40837}, {208, 47438}, {608, 3197}, {667, 57117}, {1395, 1490}, {1397, 3176}, {1402, 8885}, {1973, 47848}, {1974, 5932}
X(57782) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 207}, {3351, 3209}, {6337, 47848}, {6376, 40837}, {6505, 1035}, {6631, 57117}, {40605, 8885}
X(57782) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 3718}, {44189, 304}
X(57782) = pole of line {207, 8885} with respect to the Wallace hyperbola
X(57782) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(33672)}}, {{A, B, C, X(273), X(6332)}}, {{A, B, C, X(304), X(3596)}}, {{A, B, C, X(309), X(35518)}}, {{A, B, C, X(314), X(7182)}}, {{A, B, C, X(1264), X(3718)}}, {{A, B, C, X(8806), X(47850)}}
X(57782) = barycentric product X(i)*X(j) for these (i, j): {305, 47850}, {345, 56596}, {1034, 304}, {3345, 57919}, {3718, 41514}, {40364, 7037}, {44189, 47634}, {57643, 76}
X(57782) = barycentric quotient X(i)/X(j) for these (i, j): {2, 207}, {63, 1035}, {69, 47848}, {75, 40837}, {78, 3197}, {190, 57117}, {268, 47438}, {304, 5932}, {312, 3176}, {333, 8885}, {345, 1490}, {1034, 19}, {3342, 3209}, {3345, 608}, {3718, 56943}, {7007, 2207}, {7037, 1973}, {7152, 1395}, {8806, 1880}, {15416, 14302}, {40838, 1096}, {41514, 34}, {44189, 3341}, {47634, 196}, {47850, 25}, {56596, 278}, {57643, 6}, {57919, 33672}


X(57783) = ISOTOMIC CONJUGATE OF X(208)

Barycentrics    -(b*c*(-a+b+c)*(-a^2+b^2+c^2)*((a-b)^2*(a+b)+(a+b)^2*c-(a+b)*c^2-c^3)*(-a^3+a*(b-c)^2+a^2*(-b+c)+(b-c)*(b+c)^2)) : :
X(57783) = -3*X[2]+2*X[20312]

X(57783) lies on these lines: {2, 20312}, {76, 47436}, {282, 332}, {304, 309}, {326, 341}, {1264, 44189}, {1440, 57925}, {3718, 3926}, {7020, 28660}, {7182, 57780}

X(57783) = isotomic conjugate of X(208)
X(57783) = anticomplement of X(20312)
X(57783) = trilinear pole of line {15416, 52616}
X(57783) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3209}, {19, 2199}, {25, 221}, {31, 208}, {32, 196}, {34, 2187}, {40, 1395}, {56, 3195}, {198, 608}, {223, 1973}, {227, 2203}, {342, 560}, {347, 1974}, {604, 2331}, {607, 6611}, {1096, 7114}, {1106, 40971}, {1397, 7952}, {1398, 7074}, {1402, 3194}, {1501, 40701}, {2207, 7011}, {2360, 57652}, {7078, 7337}, {16947, 53009}, {52410, 55116}
X(57783) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 3195}, {2, 208}, {6, 2199}, {9, 3209}, {1577, 38362}, {3161, 2331}, {3341, 25}, {6337, 223}, {6338, 7013}, {6374, 342}, {6376, 196}, {6503, 7114}, {6505, 221}, {6552, 40971}, {11517, 2187}, {20312, 20312}, {40605, 3194}, {40624, 54239}, {40626, 6129}
X(57783) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 3718}, {271, 34404}, {312, 304}
X(57783) = pole of line {208, 223} with respect to the Wallace hyperbola
X(57783) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(49653)}}, {{A, B, C, X(69), X(312)}}, {{A, B, C, X(75), X(35516)}}, {{A, B, C, X(77), X(6332)}}, {{A, B, C, X(208), X(20312)}}, {{A, B, C, X(261), X(7112)}}, {{A, B, C, X(271), X(282)}}, {{A, B, C, X(304), X(332)}}, {{A, B, C, X(305), X(3596)}}, {{A, B, C, X(307), X(27411)}}, {{A, B, C, X(309), X(44189)}}, {{A, B, C, X(314), X(7182)}}, {{A, B, C, X(521), X(9255)}}, {{A, B, C, X(5931), X(40015)}}
X(57783) = barycentric product X(i)*X(j) for these (i, j): {189, 3718}, {268, 561}, {271, 76}, {280, 304}, {282, 305}, {285, 40071}, {306, 57795}, {309, 345}, {314, 56944}, {341, 34400}, {1433, 28659}, {1440, 52406}, {1502, 2188}, {2192, 40364}, {3596, 41081}, {3926, 7020}, {15416, 53642}, {18021, 53010}, {28660, 52389}, {34404, 69}, {35518, 44327}, {40050, 7118}, {40072, 41087}, {44189, 75}, {44190, 78}, {52355, 55211}, {57793, 63}, {57919, 84}
X(57783) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3209}, {2, 208}, {3, 2199}, {8, 2331}, {9, 3195}, {63, 221}, {69, 223}, {75, 196}, {76, 342}, {77, 6611}, {78, 198}, {84, 608}, {189, 34}, {219, 2187}, {268, 31}, {271, 6}, {280, 19}, {282, 25}, {285, 1474}, {304, 347}, {305, 40702}, {306, 227}, {309, 278}, {312, 7952}, {314, 41083}, {326, 7011}, {332, 1817}, {333, 3194}, {341, 55116}, {345, 40}, {346, 40971}, {394, 7114}, {561, 40701}, {1265, 2324}, {1332, 57118}, {1422, 1398}, {1433, 604}, {1436, 1395}, {1440, 1435}, {1812, 2360}, {1903, 57652}, {2188, 32}, {2192, 1973}, {3692, 7074}, {3701, 53009}, {3710, 21871}, {3718, 329}, {3719, 7078}, {3926, 7013}, {4391, 54239}, {4858, 38362}, {6081, 32667}, {6332, 6129}, {6355, 7147}, {7003, 1096}, {7008, 2207}, {7017, 47372}, {7020, 393}, {7118, 1974}, {7129, 7337}, {7182, 14256}, {7367, 2212}, {8808, 1426}, {13138, 32674}, {15416, 8058}, {23983, 53557}, {34400, 269}, {34404, 4}, {35518, 14837}, {39130, 1880}, {40071, 57810}, {41081, 56}, {41084, 3213}, {41087, 1402}, {44189, 1}, {44190, 273}, {44327, 108}, {46355, 7129}, {47436, 40837}, {52037, 1042}, {52355, 55212}, {52389, 1400}, {52406, 7080}, {53010, 181}, {53013, 2333}, {53642, 32714}, {55112, 1103}, {55117, 1106}, {56944, 65}, {56972, 1407}, {57643, 57454}, {57793, 92}, {57795, 27}, {57919, 322}


X(57784) = ISOTOMIC CONJUGATE OF X(209)

Barycentrics    b^2*(a+b)*c^2*(a+c)*(a^3-b^2*c+c^3-a*b*(b+c))*(b^3+(a+c)*(a^2-(a+b)*c)) : :

X(57784) lies on these lines: {76, 333}, {86, 6063}, {261, 272}, {286, 57787}, {314, 561}, {2064, 18895}, {40574, 44129}

X(57784) = isotomic conjugate of X(209)
X(57784) = trilinear pole of line {3261, 4560}
X(57784) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2198}, {31, 209}, {32, 22021}, {42, 2352}, {213, 579}, {560, 57808}, {798, 57217}, {1402, 3190}, {1409, 41320}, {1880, 57501}, {1918, 3868}, {1973, 51574}, {2205, 18134}, {9447, 56559}, {40572, 40978}
X(57784) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 209}, {9, 2198}, {6337, 51574}, {6374, 57808}, {6376, 22021}, {6626, 579}, {31998, 57217}, {34021, 3868}, {40592, 2352}, {40605, 3190}, {40620, 43060}, {40625, 8676}
X(57784) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 274}
X(57784) = pole of line {209, 579} with respect to the Wallace hyperbola
X(57784) = intersection, other than A, B, C, of circumconics {{A, B, C, X(27), X(2481)}}, {{A, B, C, X(58), X(54128)}}, {{A, B, C, X(75), X(19792)}}, {{A, B, C, X(76), X(310)}}, {{A, B, C, X(86), X(261)}}, {{A, B, C, X(272), X(1751)}}, {{A, B, C, X(693), X(43675)}}, {{A, B, C, X(2064), X(18033)}}, {{A, B, C, X(6385), X(7307)}}, {{A, B, C, X(7357), X(39734)}}, {{A, B, C, X(15467), X(40011)}}, {{A, B, C, X(20568), X(34384)}}
X(57784) = barycentric product X(i)*X(j) for these (i, j): {272, 76}, {274, 2997}, {305, 40574}, {1751, 310}, {2218, 6385}, {15467, 333}, {40011, 86}, {51566, 7199}
X(57784) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2198}, {2, 209}, {29, 41320}, {69, 51574}, {75, 22021}, {76, 57808}, {81, 2352}, {86, 579}, {99, 57217}, {261, 56000}, {272, 6}, {274, 3868}, {283, 57501}, {310, 18134}, {314, 27396}, {333, 3190}, {1305, 4559}, {1434, 4306}, {1751, 42}, {2218, 213}, {2997, 37}, {4560, 8676}, {6063, 56559}, {7192, 43060}, {7199, 23800}, {15467, 226}, {23289, 3709}, {24002, 51658}, {28786, 2197}, {40011, 10}, {40161, 3690}, {40412, 40572}, {40574, 25}, {41506, 1500}, {44129, 5125}, {51566, 1018}, {56146, 1334}, {57215, 57092}


X(57785) = ISOTOMIC CONJUGATE OF X(210)

Barycentrics    b*(a+b)*(a+b-c)*c*(a+c)*(a-b+c) : :

X(57785) lies on these lines: {2, 42290}, {7, 310}, {21, 42311}, {57, 85}, {69, 8814}, {76, 18141}, {81, 1462}, {86, 269}, {99, 15728}, {226, 4554}, {261, 552}, {279, 16705}, {286, 1119}, {304, 57661}, {305, 44139}, {354, 2481}, {388, 8817}, {479, 17169}, {518, 57815}, {553, 10030}, {799, 43760}, {893, 7200}, {1396, 1509}, {1402, 7176}, {1403, 7223}, {1412, 36538}, {1418, 27164}, {1441, 52421}, {1444, 40412}, {1446, 14534}, {3729, 40493}, {3736, 52161}, {4059, 18021}, {4569, 14616}, {4625, 56049}, {4654, 30545}, {5333, 37780}, {6385, 7205}, {6604, 33297}, {7146, 40874}, {7192, 43930}, {7199, 40213}, {7249, 53540}, {7271, 10455}, {9312, 33296}, {9436, 30966}, {9446, 13588}, {10401, 34399}, {10481, 16887}, {13436, 13437}, {13453, 13459}, {14008, 17198}, {14009, 17177}, {16703, 40704}, {16712, 17079}, {16748, 21454}, {17088, 18625}, {17103, 40415}, {17185, 42309}, {17219, 36838}, {17753, 35645}, {18135, 40012}, {18157, 21446}, {18600, 25059}, {23989, 26842}, {25467, 38930}, {25507, 31627}, {25525, 30988}, {30097, 34021}, {31618, 40004}, {32010, 33947}, {32041, 40599}, {34284, 37655}, {34400, 44129}, {39775, 39915}, {41246, 52635}, {41629, 42315}

X(57785) = isotomic conjugate of X(210)
X(57785) = trilinear pole of line {3669, 4560}
X(57785) = perspector of circumconic {{A, B, C, X(4625), X(4635)}}
X(57785) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1334}, {8, 1918}, {9, 213}, {10, 2175}, {19, 52370}, {21, 872}, {25, 2318}, {31, 210}, {32, 2321}, {33, 228}, {37, 41}, {42, 55}, {58, 7064}, {65, 1253}, {71, 607}, {72, 2212}, {73, 7071}, {101, 3709}, {109, 4524}, {181, 2328}, {184, 53008}, {200, 1402}, {212, 1824}, {219, 2333}, {220, 1400}, {226, 14827}, {281, 2200}, {284, 1500}, {294, 39258}, {312, 2205}, {313, 9448}, {321, 9447}, {333, 7109}, {480, 1042}, {512, 3939}, {560, 3701}, {594, 57657}, {604, 4515}, {643, 50487}, {644, 798}, {645, 53581}, {646, 1924}, {657, 4559}, {663, 4557}, {667, 4069}, {669, 3699}, {692, 4041}, {740, 18265}, {756, 2194}, {762, 2150}, {810, 56183}, {906, 55206}, {983, 4531}, {1018, 3063}, {1020, 57180}, {1110, 4516}, {1174, 21795}, {1260, 57652}, {1397, 4082}, {1409, 7079}, {1415, 4171}, {1427, 6602}, {1501, 30713}, {1802, 1880}, {1826, 52425}, {1857, 4055}, {1911, 4433}, {1919, 30730}, {1922, 3985}, {1973, 3694}, {1974, 3710}, {2149, 36197}, {2187, 53013}, {2195, 20683}, {2197, 2332}, {2204, 3949}, {2206, 6057}, {2238, 51858}, {2299, 3690}, {2316, 52963}, {2329, 40729}, {2338, 51436}, {2340, 56853}, {2342, 51377}, {2344, 3774}, {2357, 7074}, {2361, 34857}, {2489, 4587}, {3120, 6066}, {3122, 6065}, {3208, 21759}, {3682, 6059}, {3700, 32739}, {3724, 52371}, {3747, 7077}, {4079, 5546}, {4095, 7104}, {4105, 53321}, {4551, 8641}, {4578, 51641}, {4600, 7063}, {4876, 41333}, {5548, 14407}, {7084, 40965}, {7118, 21871}, {8653, 8694}, {10482, 52020}, {18098, 40972}, {20229, 56255}, {20691, 57264}, {20970, 33635}, {21044, 23990}, {21750, 56243}, {21814, 56245}, {40935, 56180}
X(57785) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 210}, {6, 52370}, {7, 21872}, {9, 1334}, {10, 7064}, {11, 4524}, {85, 21084}, {223, 42}, {226, 3690}, {478, 213}, {514, 4516}, {650, 36197}, {1015, 3709}, {1086, 4041}, {1146, 4171}, {1211, 40966}, {1212, 21039}, {1214, 756}, {1434, 2938}, {1577, 52335}, {3160, 37}, {3161, 4515}, {5190, 55206}, {6337, 3694}, {6374, 3701}, {6376, 2321}, {6505, 2318}, {6554, 40965}, {6609, 1402}, {6626, 9}, {6631, 4069}, {6651, 4433}, {9296, 30730}, {9428, 646}, {10001, 1018}, {16585, 40967}, {16589, 4111}, {17113, 65}, {31998, 644}, {34021, 8}, {36905, 3930}, {36908, 181}, {38930, 42446}, {39028, 3985}, {39054, 3939}, {39062, 56183}, {39063, 20683}, {40582, 220}, {40589, 41}, {40590, 1500}, {40592, 55}, {40593, 10}, {40602, 1253}, {40603, 6057}, {40605, 200}, {40606, 21795}, {40611, 872}, {40615, 661}, {40617, 512}, {40618, 8611}, {40619, 3700}, {40620, 650}, {40622, 4705}, {40625, 3900}, {40837, 1824}, {50497, 7063}, {52657, 20684}, {52659, 21805}, {55060, 50487}, {55067, 657}, {55068, 4105}, {56325, 762}, {56846, 1962}
X(57785) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4635, 7199}
X(57785) = X(i)-cross conjugate of X(j) for these {i, j}: {7, 1434}, {86, 274}, {1447, 34018}, {3676, 4554}, {3742, 2}, {4059, 7}, {7192, 4573}, {7199, 4635}, {7248, 1412}, {17169, 86}, {18165, 81}, {23774, 514}, {24471, 279}, {52621, 4569}, {57167, 664}
X(57785) = pole of line {4524, 55206} with respect to the polar circle
X(57785) = pole of line {41, 1253} with respect to the Stammler hyperbola
X(57785) = pole of line {9, 55} with respect to the Wallace hyperbola
X(57785) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10453)}}, {{A, B, C, X(2), X(2481)}}, {{A, B, C, X(4), X(39954)}}, {{A, B, C, X(6), X(35892)}}, {{A, B, C, X(7), X(57)}}, {{A, B, C, X(8), X(10582)}}, {{A, B, C, X(21), X(17169)}}, {{A, B, C, X(27), X(16054)}}, {{A, B, C, X(56), X(10473)}}, {{A, B, C, X(58), X(5208)}}, {{A, B, C, X(65), X(4059)}}, {{A, B, C, X(75), X(19804)}}, {{A, B, C, X(79), X(1929)}}, {{A, B, C, X(81), X(7192)}}, {{A, B, C, X(85), X(1088)}}, {{A, B, C, X(86), X(261)}}, {{A, B, C, X(88), X(8049)}}, {{A, B, C, X(92), X(32023)}}, {{A, B, C, X(189), X(34409)}}, {{A, B, C, X(210), X(3742)}}, {{A, B, C, X(226), X(1447)}}, {{A, B, C, X(256), X(9401)}}, {{A, B, C, X(274), X(310)}}, {{A, B, C, X(334), X(40038)}}, {{A, B, C, X(335), X(24631)}}, {{A, B, C, X(354), X(518)}}, {{A, B, C, X(388), X(7195)}}, {{A, B, C, X(513), X(893)}}, {{A, B, C, X(514), X(35102)}}, {{A, B, C, X(552), X(1434)}}, {{A, B, C, X(561), X(20568)}}, {{A, B, C, X(693), X(30690)}}, {{A, B, C, X(870), X(6384)}}, {{A, B, C, X(871), X(1221)}}, {{A, B, C, X(1255), X(55026)}}, {{A, B, C, X(1401), X(1408)}}, {{A, B, C, X(1402), X(1431)}}, {{A, B, C, X(1509), X(17206)}}, {{A, B, C, X(1896), X(3615)}}, {{A, B, C, X(2194), X(18165)}}, {{A, B, C, X(2258), X(9309)}}, {{A, B, C, X(2995), X(30712)}}, {{A, B, C, X(2997), X(28626)}}, {{A, B, C, X(3112), X(31002)}}, {{A, B, C, X(3475), X(24477)}}, {{A, B, C, X(3766), X(40725)}}, {{A, B, C, X(4516), X(23774)}}, {{A, B, C, X(4817), X(53222)}}, {{A, B, C, X(4998), X(21453)}}, {{A, B, C, X(6385), X(16739)}}, {{A, B, C, X(6625), X(17739)}}, {{A, B, C, X(7018), X(18032)}}, {{A, B, C, X(7033), X(36805)}}, {{A, B, C, X(7055), X(7056)}}, {{A, B, C, X(7153), X(17082)}}, {{A, B, C, X(7179), X(36538)}}, {{A, B, C, X(8056), X(39741)}}, {{A, B, C, X(14621), X(24586)}}, {{A, B, C, X(16708), X(40004)}}, {{A, B, C, X(17103), X(33947)}}, {{A, B, C, X(18155), X(31623)}}, {{A, B, C, X(18816), X(39704)}}, {{A, B, C, X(18822), X(55997)}}, {{A, B, C, X(24632), X(56047)}}, {{A, B, C, X(24796), X(30617)}}, {{A, B, C, X(25430), X(41527)}}, {{A, B, C, X(27807), X(40434)}}, {{A, B, C, X(30479), X(30501)}}, {{A, B, C, X(30598), X(40422)}}, {{A, B, C, X(32011), X(32016)}}, {{A, B, C, X(32020), X(46281)}}, {{A, B, C, X(33121), X(33124)}}, {{A, B, C, X(34234), X(40419)}}, {{A, B, C, X(34258), X(40028)}}, {{A, B, C, X(34384), X(43093)}}, {{A, B, C, X(36798), X(56243)}}, {{A, B, C, X(41245), X(56783)}}, {{A, B, C, X(42321), X(42324)}}, {{A, B, C, X(44186), X(46137)}}
X(57785) = barycentric product X(i)*X(j) for these (i, j): {12, 57949}, {21, 57792}, {27, 7182}, {28, 57918}, {56, 6385}, {85, 86}, {222, 57796}, {226, 873}, {269, 28660}, {274, 7}, {279, 314}, {286, 348}, {310, 57}, {321, 552}, {349, 757}, {664, 7199}, {1014, 76}, {1019, 4572}, {1021, 52937}, {1043, 23062}, {1088, 333}, {1111, 4620}, {1170, 53236}, {1333, 41283}, {1358, 4601}, {1396, 305}, {1400, 57992}, {1407, 40072}, {1408, 1502}, {1412, 561}, {1414, 3261}, {1427, 18021}, {1434, 75}, {1441, 1509}, {1444, 331}, {1446, 261}, {1447, 40017}, {1790, 57787}, {1847, 332}, {1978, 7203}, {2287, 57880}, {3668, 52379}, {3669, 670}, {3676, 799}, {3737, 46406}, {4017, 52612}, {4077, 4610}, {4391, 4616}, {4554, 7192}, {4560, 4569}, {4573, 693}, {4609, 57181}, {4623, 7178}, {4625, 514}, {4635, 522}, {6063, 81}, {6358, 6628}, {7249, 8033}, {10030, 18827}, {14256, 57795}, {14616, 17078}, {15419, 18026}, {16705, 31643}, {16708, 21453}, {16713, 42311}, {16727, 4998}, {16732, 7340}, {16749, 34399}, {16750, 8817}, {16947, 1928}, {17094, 55231}, {17096, 668}, {17169, 31618}, {17206, 273}, {18033, 37128}, {18155, 658}, {18157, 56783}, {20567, 58}, {23599, 55281}, {23829, 34085}, {24002, 99}, {24037, 53545}, {24471, 40827}, {27801, 7341}, {30725, 4634}, {30940, 7233}, {30941, 34018}, {31623, 7056}, {32010, 7196}, {33296, 7209}, {34388, 763}, {34537, 53540}, {35519, 4637}, {36838, 7253}, {38810, 7185}, {40004, 55082}, {40432, 7205}, {40495, 4565}, {43041, 4639}, {43923, 52608}, {43924, 4602}, {43930, 55260}, {44129, 77}, {44130, 7177}, {51664, 55229}, {52393, 52421}, {52619, 651}, {52621, 662}, {53649, 57247}, {55205, 7649}, {55213, 649}, {56382, 57779}
X(57785) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1334}, {2, 210}, {3, 52370}, {7, 37}, {8, 4515}, {11, 36197}, {12, 762}, {21, 220}, {27, 33}, {28, 607}, {29, 7079}, {34, 2333}, {37, 7064}, {56, 213}, {57, 42}, {58, 41}, {63, 2318}, {65, 1500}, {69, 3694}, {75, 2321}, {76, 3701}, {77, 71}, {81, 55}, {85, 10}, {86, 9}, {92, 53008}, {99, 644}, {142, 21039}, {189, 53013}, {190, 4069}, {222, 228}, {226, 756}, {239, 4433}, {241, 20683}, {261, 2287}, {269, 1400}, {270, 2332}, {273, 1826}, {274, 8}, {278, 1824}, {279, 65}, {283, 1802}, {284, 1253}, {285, 7367}, {286, 281}, {304, 3710}, {307, 3949}, {310, 312}, {312, 4082}, {314, 346}, {321, 6057}, {331, 41013}, {332, 3692}, {333, 200}, {342, 53009}, {347, 21871}, {348, 72}, {349, 1089}, {350, 3985}, {354, 21795}, {479, 1427}, {513, 3709}, {514, 4041}, {522, 4171}, {552, 81}, {553, 1962}, {555, 6724}, {561, 30713}, {593, 2194}, {603, 2200}, {604, 1918}, {645, 4578}, {648, 56183}, {650, 4524}, {651, 4557}, {658, 4551}, {662, 3939}, {664, 1018}, {668, 30730}, {670, 646}, {693, 3700}, {738, 1042}, {741, 51858}, {757, 284}, {763, 60}, {799, 3699}, {849, 57657}, {873, 333}, {934, 4559}, {982, 20684}, {1014, 6}, {1019, 663}, {1021, 4105}, {1043, 728}, {1086, 4516}, {1088, 226}, {1111, 21044}, {1119, 1880}, {1122, 21796}, {1172, 7071}, {1214, 3690}, {1231, 3695}, {1317, 21821}, {1319, 52963}, {1333, 2175}, {1356, 52065}, {1357, 3121}, {1358, 3125}, {1365, 21833}, {1396, 25}, {1397, 2205}, {1400, 872}, {1401, 21814}, {1402, 7109}, {1407, 1402}, {1408, 32}, {1412, 31}, {1414, 101}, {1418, 52020}, {1422, 2357}, {1427, 181}, {1428, 41333}, {1429, 3747}, {1431, 40729}, {1434, 1}, {1435, 57652}, {1437, 52425}, {1439, 2197}, {1440, 1903}, {1441, 594}, {1443, 2245}, {1444, 219}, {1445, 4878}, {1446, 12}, {1447, 2238}, {1456, 51436}, {1458, 39258}, {1462, 56853}, {1463, 21830}, {1465, 51377}, {1469, 3774}, {1474, 2212}, {1509, 21}, {1565, 53560}, {1790, 212}, {1804, 3990}, {1812, 1260}, {1817, 7074}, {1847, 225}, {1909, 4095}, {2006, 34857}, {2185, 2328}, {2194, 14827}, {2206, 9447}, {2275, 4531}, {2287, 480}, {2328, 6602}, {3121, 7063}, {3160, 21872}, {3212, 20691}, {3261, 4086}, {3649, 21816}, {3663, 21809}, {3664, 21811}, {3665, 3954}, {3666, 40966}, {3668, 2171}, {3669, 512}, {3674, 2292}, {3676, 661}, {3733, 3063}, {3737, 657}, {3739, 4111}, {3759, 4097}, {3873, 40599}, {3911, 21805}, {3946, 42446}, {3960, 53562}, {4000, 40965}, {4017, 4079}, {4025, 8611}, {4031, 21806}, {4032, 21803}, {4059, 16589}, {4077, 4024}, {4146, 6725}, {4228, 5452}, {4306, 2198}, {4357, 21033}, {4359, 4046}, {4374, 4140}, {4462, 44729}, {4552, 40521}, {4554, 3952}, {4560, 3900}, {4563, 4571}, {4565, 692}, {4566, 21859}, {4567, 6065}, {4569, 4552}, {4572, 4033}, {4573, 100}, {4592, 4587}, {4601, 4076}, {4610, 643}, {4616, 651}, {4617, 53321}, {4620, 765}, {4622, 5548}, {4623, 645}, {4625, 190}, {4626, 1020}, {4631, 7256}, {4634, 4582}, {4635, 664}, {4637, 109}, {4639, 36801}, {4790, 8653}, {4801, 4843}, {4858, 52335}, {5235, 3711}, {5249, 40967}, {5317, 6059}, {5323, 54416}, {5324, 30706}, {5333, 3715}, {5435, 4849}, {5545, 34074}, {6063, 321}, {6358, 6535}, {6385, 3596}, {6516, 4574}, {6604, 3991}, {6628, 2185}, {7053, 1409}, {7055, 3998}, {7056, 1214}, {7058, 56182}, {7125, 4055}, {7153, 23493}, {7175, 20964}, {7176, 2295}, {7177, 73}, {7178, 4705}, {7180, 50487}, {7181, 21839}, {7182, 306}, {7183, 3682}, {7185, 3721}, {7192, 650}, {7195, 16583}, {7196, 1215}, {7197, 8898}, {7198, 21802}, {7199, 522}, {7200, 40608}, {7203, 649}, {7205, 3963}, {7209, 42027}, {7210, 4456}, {7212, 4155}, {7243, 4365}, {7247, 28594}, {7248, 16584}, {7249, 52651}, {7252, 8641}, {7253, 4130}, {7254, 1946}, {7257, 6558}, {7304, 56181}, {7340, 4567}, {7341, 1333}, {7649, 55206}, {8025, 3683}, {8033, 7081}, {8817, 56260}, {8822, 2324}, {9436, 3930}, {10030, 740}, {10481, 21808}, {14256, 227}, {14616, 36910}, {14953, 41339}, {15413, 52355}, {15419, 521}, {16054, 28043}, {16696, 3688}, {16697, 44707}, {16699, 52562}, {16700, 23638}, {16703, 3703}, {16704, 3689}, {16705, 960}, {16707, 4030}, {16708, 4847}, {16709, 3686}, {16711, 3880}, {16712, 3877}, {16713, 3059}, {16725, 7062}, {16726, 3271}, {16727, 11}, {16729, 4152}, {16730, 7065}, {16732, 4092}, {16733, 7067}, {16737, 3907}, {16739, 3687}, {16741, 3712}, {16748, 3706}, {16749, 1837}, {16750, 497}, {16755, 35057}, {16887, 33299}, {16888, 7237}, {16947, 560}, {17074, 52139}, {17075, 20713}, {17076, 4463}, {17077, 22271}, {17078, 758}, {17079, 3753}, {17080, 22276}, {17081, 21874}, {17082, 21877}, {17083, 21880}, {17084, 21879}, {17085, 21899}, {17089, 21888}, {17090, 21868}, {17092, 22277}, {17093, 41539}, {17094, 55232}, {17095, 3678}, {17096, 513}, {17103, 2329}, {17167, 7069}, {17169, 1212}, {17175, 3691}, {17187, 40972}, {17189, 40968}, {17194, 8012}, {17197, 2310}, {17198, 38358}, {17205, 2170}, {17206, 78}, {17212, 3287}, {17219, 34591}, {17289, 4538}, {17925, 18344}, {18033, 3948}, {18155, 3239}, {18157, 3717}, {18164, 2293}, {18165, 16588}, {18191, 14936}, {18206, 2340}, {18268, 18265}, {18600, 3057}, {18604, 6056}, {18623, 3198}, {18827, 4876}, {19804, 4061}, {20567, 313}, {20911, 3704}, {21453, 56255}, {21454, 37593}, {21746, 21819}, {21789, 57180}, {21921, 21704}, {22464, 21801}, {23062, 3668}, {23599, 55282}, {23788, 46393}, {23821, 55064}, {24002, 523}, {24215, 20707}, {24471, 2092}, {24624, 52371}, {26563, 21031}, {26818, 14100}, {26827, 10939}, {27818, 56174}, {28017, 40934}, {28660, 341}, {30097, 3728}, {30545, 3971}, {30682, 1439}, {30719, 4729}, {30723, 4822}, {30724, 4983}, {30725, 4730}, {30939, 2325}, {30940, 3685}, {30941, 3693}, {31008, 27538}, {31526, 21856}, {31604, 21882}, {31618, 56157}, {31623, 7046}, {31627, 21060}, {31643, 14624}, {31926, 28044}, {32014, 32635}, {32636, 20970}, {33295, 3684}, {33296, 3208}, {33298, 4006}, {33673, 8804}, {33930, 4136}, {33947, 3061}, {33955, 33950}, {34016, 4420}, {34018, 13576}, {34284, 3714}, {34400, 52389}, {35312, 35310}, {36838, 4566}, {37128, 7077}, {37756, 24394}, {37771, 21889}, {37800, 21867}, {38340, 56193}, {38810, 56180}, {39126, 3950}, {39782, 21822}, {39793, 21820}, {40004, 55076}, {40017, 4518}, {40149, 7140}, {40153, 20967}, {40213, 23615}, {40420, 56190}, {40438, 33635}, {40593, 21084}, {40702, 21075}, {40704, 3932}, {40773, 4517}, {40961, 21813}, {41003, 21810}, {41083, 40971}, {41283, 27801}, {41610, 6600}, {41629, 3158}, {41777, 3778}, {41801, 40988}, {41804, 4053}, {41808, 21873}, {42028, 4512}, {42304, 56192}, {42309, 42289}, {43034, 5360}, {43037, 52959}, {43041, 21832}, {43042, 24290}, {43051, 50491}, {43052, 4770}, {43923, 2489}, {43924, 798}, {43930, 55261}, {43932, 7180}, {43983, 3698}, {44129, 318}, {44130, 7101}, {44697, 53011}, {44698, 7156}, {45196, 20653}, {45208, 21700}, {46103, 4183}, {47683, 4814}, {49537, 22205}, {51370, 44694}, {51641, 53581}, {51664, 55230}, {52160, 20692}, {52352, 4936}, {52358, 14973}, {52361, 56317}, {52378, 1110}, {52379, 1043}, {52385, 52386}, {52393, 7073}, {52394, 56245}, {52421, 3969}, {52422, 3697}, {52563, 4642}, {52565, 52387}, {52572, 3702}, {52575, 7141}, {52612, 7257}, {52619, 4391}, {52621, 1577}, {52935, 5546}, {53236, 1229}, {53238, 1827}, {53242, 52023}, {53528, 14407}, {53538, 3122}, {53540, 3124}, {53545, 2643}, {54308, 2269}, {55082, 3294}, {55194, 57731}, {55205, 4561}, {55213, 1978}, {55231, 36797}, {55243, 30731}, {56048, 34820}, {56382, 201}, {56783, 18785}, {56934, 52405}, {56972, 41087}, {57181, 669}, {57247, 4151}, {57779, 2322}, {57792, 1441}, {57796, 7017}, {57826, 56237}, {57880, 1446}, {57918, 20336}, {57949, 261}, {57992, 28660}
X(57785) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 17082, 10473}, {81, 16727, 16750}, {333, 16708, 274}


X(57786) = ISOTOMIC CONJUGATE OF X(211)

Barycentrics    b^4*(a^2+b^2)*c^4*(a^2+c^2)*(a^4+b^4-b^2*c^2-a^2*(b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+c^2)) : :

X(57786) lies on these lines: {1078, 1502}, {18022, 36794}, {33769, 40362}, {40016, 41296}

X(57786) = isotomic conjugate of X(211)
X(57786) = trilinear pole of line {31296, 44173}
X(57786) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 211}, {1923, 3060}, {18041, 41331}
X(57786) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 308}
X(57786) = intersection, other than A, B, C, of circumconics {{A, B, C, X(66), X(11175)}}, {{A, B, C, X(83), X(95)}}, {{A, B, C, X(1502), X(18022)}}, {{A, B, C, X(34385), X(40428)}}, {{A, B, C, X(40425), X(46104)}}, {{A, B, C, X(43098), X(43715)}}
X(57786) = barycentric product X(i)*X(j) for these (i, j): {40016, 45838}, {57644, 76}
X(57786) = barycentric quotient X(i)/X(j) for these (i, j): {2, 211}, {308, 3060}, {18833, 18041}, {40016, 7752}, {45838, 3051}, {57644, 6}


X(57787) = ISOTOMIC CONJUGATE OF X(212)

Barycentrics    b^3*(a+b-c)*c^3*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(57787) lies on these lines: {4, 18033}, {76, 331}, {85, 44129}, {92, 18031}, {264, 6063}, {273, 310}, {286, 57784}, {324, 23989}, {561, 18022}, {1119, 7205}, {1226, 57806}, {1920, 44144}, {1947, 10030}, {18026, 43093}, {45797, 57911}

X(57787) = isotomic conjugate of X(212)
X(57787) = trilinear pole of line {3261, 46110}
X(57787) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 2175}, {6, 52425}, {8, 14575}, {9, 9247}, {25, 6056}, {31, 212}, {32, 219}, {33, 52430}, {41, 48}, {55, 184}, {63, 9447}, {69, 9448}, {71, 57657}, {78, 560}, {213, 2193}, {220, 52411}, {222, 14827}, {228, 2194}, {255, 2212}, {281, 14585}, {283, 1918}, {284, 2200}, {345, 1501}, {577, 607}, {603, 1253}, {604, 1802}, {652, 32739}, {657, 32660}, {663, 32656}, {692, 1946}, {906, 3063}, {1092, 6059}, {1259, 1974}, {1260, 1397}, {1264, 44162}, {1265, 41280}, {1333, 52370}, {1812, 2205}, {1857, 23606}, {1917, 3718}, {1919, 4587}, {1973, 2289}, {1980, 4571}, {2187, 2188}, {2204, 3990}, {2206, 2318}, {2299, 4055}, {3049, 5546}, {3449, 22368}, {3596, 40373}, {3688, 10547}, {3709, 32661}, {3937, 6066}, {5547, 23200}, {6064, 23216}, {6065, 22096}, {6602, 7099}, {7071, 7335}, {7115, 39687}, {7117, 23990}, {7193, 18265}, {8641, 36059}, {9233, 57919}, {14574, 52355}, {23225, 52927}, {44707, 54034}, {52426, 52431}, {53065, 53066}
X(57787) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 212}, {9, 52425}, {37, 52370}, {85, 20793}, {223, 184}, {226, 4055}, {478, 9247}, {905, 2638}, {1086, 1946}, {1212, 22079}, {1214, 228}, {1249, 41}, {1577, 3270}, {3160, 48}, {3161, 1802}, {3162, 9447}, {5190, 3063}, {6337, 2289}, {6374, 78}, {6376, 219}, {6505, 6056}, {6523, 2212}, {6626, 2193}, {7952, 1253}, {9296, 4587}, {10001, 906}, {16585, 23207}, {17113, 603}, {20620, 8641}, {34021, 283}, {36103, 2175}, {36901, 8611}, {36905, 20752}, {39053, 692}, {39060, 101}, {40590, 2200}, {40593, 3}, {40603, 2318}, {40615, 22383}, {40618, 36054}, {40619, 652}, {40622, 810}, {40624, 57108}, {40625, 57134}, {40628, 39687}, {40837, 31}, {40938, 40972}, {41771, 20753}, {47345, 213}, {52659, 23202}, {56846, 23201}
X(57787) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57796, 6063}
X(57787) = X(i)-cross conjugate of X(j) for these {i, j}: {85, 20567}, {264, 1969}, {1226, 76}, {17880, 3261}, {23581, 75}, {46107, 46404}, {57809, 331}
X(57787) = pole of line {3063, 8641} with respect to the polar circle
X(57787) = pole of line {212, 2193} with respect to the Wallace hyperbola
X(57787) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(57), X(4077)}}, {{A, B, C, X(76), X(310)}}, {{A, B, C, X(77), X(44708)}}, {{A, B, C, X(78), X(23581)}}, {{A, B, C, X(85), X(1231)}}, {{A, B, C, X(92), X(46107)}}, {{A, B, C, X(201), X(37523)}}, {{A, B, C, X(264), X(7017)}}, {{A, B, C, X(273), X(40149)}}, {{A, B, C, X(309), X(1226)}}, {{A, B, C, X(334), X(8817)}}, {{A, B, C, X(1088), X(52621)}}, {{A, B, C, X(1969), X(18022)}}, {{A, B, C, X(9436), X(30985)}}, {{A, B, C, X(20565), X(20571)}}, {{A, B, C, X(34404), X(35519)}}, {{A, B, C, X(41530), X(44190)}}
X(57787) = barycentric product X(i)*X(j) for these (i, j): {19, 41283}, {158, 57918}, {225, 6385}, {226, 57796}, {264, 85}, {273, 76}, {274, 57809}, {278, 561}, {286, 349}, {309, 40701}, {310, 40149}, {318, 57792}, {331, 75}, {342, 44190}, {348, 57806}, {1088, 7017}, {1118, 40364}, {1119, 28659}, {1393, 57790}, {1395, 40362}, {1435, 40363}, {1441, 44129}, {1446, 44130}, {1502, 34}, {1847, 3596}, {1928, 608}, {1969, 7}, {1973, 41287}, {2052, 7182}, {2501, 55213}, {4077, 6331}, {4554, 46107}, {4569, 46110}, {4609, 55208}, {6063, 92}, {6521, 7055}, {13149, 35519}, {14257, 57781}, {14618, 4625}, {15413, 52938}, {17094, 57973}, {17924, 4572}, {18022, 57}, {18026, 3261}, {18027, 77}, {20567, 4}, {33673, 52581}, {37790, 57995}, {40495, 653}, {41530, 44697}, {44161, 604}, {44426, 46406}, {44708, 57844}, {46404, 693}, {52575, 86}, {52621, 6335}, {57880, 7101}, {57968, 7178}, {57992, 8736}
X(57787) = barycentric quotient X(i)/X(j) for these (i, j): {1, 52425}, {2, 212}, {4, 41}, {7, 48}, {8, 1802}, {10, 52370}, {19, 2175}, {25, 9447}, {27, 2194}, {28, 57657}, {33, 14827}, {34, 32}, {56, 9247}, {57, 184}, {63, 6056}, {65, 2200}, {69, 2289}, {75, 219}, {76, 78}, {77, 577}, {85, 3}, {86, 2193}, {92, 55}, {108, 32739}, {142, 22079}, {158, 607}, {189, 2188}, {196, 2187}, {222, 52430}, {225, 213}, {226, 228}, {264, 9}, {269, 52411}, {273, 6}, {274, 283}, {276, 44687}, {278, 31}, {279, 603}, {281, 1253}, {286, 284}, {304, 1259}, {305, 3719}, {307, 3990}, {309, 268}, {310, 1812}, {312, 1260}, {313, 3694}, {314, 2327}, {318, 220}, {321, 2318}, {322, 55111}, {324, 7069}, {331, 1}, {342, 198}, {348, 255}, {349, 72}, {393, 2212}, {427, 40972}, {479, 7099}, {514, 1946}, {553, 23201}, {561, 345}, {603, 14585}, {604, 14575}, {608, 560}, {651, 32656}, {653, 692}, {658, 36059}, {664, 906}, {668, 4587}, {693, 652}, {811, 5546}, {850, 8611}, {934, 32660}, {1088, 222}, {1111, 7117}, {1118, 1973}, {1119, 604}, {1214, 4055}, {1231, 3682}, {1235, 33299}, {1367, 37754}, {1393, 217}, {1395, 1501}, {1396, 2206}, {1414, 32661}, {1434, 1437}, {1435, 1397}, {1441, 71}, {1446, 73}, {1502, 3718}, {1659, 53066}, {1804, 4100}, {1847, 56}, {1848, 20967}, {1870, 52426}, {1874, 41333}, {1876, 9454}, {1877, 2251}, {1880, 1918}, {1896, 2332}, {1928, 57919}, {1947, 26885}, {1969, 8}, {1973, 9448}, {1978, 4571}, {2052, 33}, {2973, 2170}, {3064, 8641}, {3261, 521}, {3264, 52978}, {3596, 3692}, {3662, 20753}, {3665, 4020}, {3668, 1409}, {3673, 7124}, {3674, 22345}, {3676, 22383}, {3868, 57501}, {3911, 23202}, {4017, 3049}, {4025, 36054}, {4077, 647}, {4357, 22074}, {4391, 57108}, {4554, 1331}, {4560, 57134}, {4569, 1813}, {4572, 1332}, {4573, 4575}, {4609, 55207}, {4625, 4558}, {4858, 3270}, {5236, 2223}, {5249, 23207}, {5342, 4258}, {6063, 63}, {6331, 643}, {6335, 3939}, {6358, 3690}, {6385, 332}, {6520, 6059}, {6521, 1857}, {7004, 39687}, {7012, 23990}, {7017, 200}, {7020, 7367}, {7046, 6602}, {7055, 6507}, {7056, 7125}, {7101, 480}, {7125, 23606}, {7177, 7335}, {7178, 810}, {7182, 394}, {7183, 1092}, {7196, 3955}, {7199, 23189}, {7209, 23086}, {7210, 10316}, {7233, 2196}, {7249, 7116}, {7282, 2174}, {7649, 3063}, {8736, 872}, {8747, 2204}, {8809, 14642}, {9436, 20752}, {10030, 7193}, {13149, 109}, {13390, 53065}, {14213, 44707}, {14249, 7156}, {14256, 7114}, {14257, 205}, {14618, 4041}, {15413, 57241}, {15466, 7070}, {16082, 2342}, {17078, 52407}, {17094, 822}, {17095, 52408}, {17451, 22368}, {17880, 35072}, {17896, 10397}, {17923, 2361}, {17924, 663}, {18022, 312}, {18026, 101}, {18027, 318}, {18033, 20769}, {18155, 23090}, {18815, 52431}, {20567, 69}, {20618, 7138}, {20883, 3688}, {20948, 52355}, {21207, 53560}, {21666, 3119}, {23062, 7053}, {23636, 23211}, {23772, 55066}, {23989, 7004}, {24002, 1459}, {24006, 3709}, {24032, 7115}, {26563, 22072}, {26932, 2638}, {27801, 3710}, {28659, 1265}, {28660, 1792}, {30097, 22389}, {30545, 20760}, {30690, 8606}, {31618, 47487}, {31623, 2328}, {31627, 22117}, {31643, 2359}, {33673, 15905}, {34018, 36057}, {34387, 34591}, {34388, 3949}, {35517, 51376}, {35518, 57057}, {35519, 57055}, {36038, 52307}, {36118, 1415}, {37790, 902}, {38461, 1055}, {39126, 20818}, {40017, 1808}, {40149, 42}, {40363, 52406}, {40364, 1264}, {40495, 6332}, {40593, 20793}, {40701, 40}, {40702, 7078}, {40704, 1818}, {40717, 3684}, {40836, 7118}, {41013, 1334}, {41283, 304}, {41287, 40364}, {42311, 1803}, {43040, 20777}, {43736, 32657}, {43923, 1919}, {44129, 21}, {44130, 2287}, {44132, 44694}, {44161, 28659}, {44190, 271}, {44426, 657}, {44697, 154}, {44708, 418}, {44721, 4936}, {45196, 22076}, {45208, 23212}, {46102, 1110}, {46104, 56245}, {46107, 650}, {46108, 2340}, {46109, 3689}, {46110, 3900}, {46404, 100}, {46406, 6516}, {47796, 57103}, {51653, 23200}, {51664, 39201}, {51843, 7075}, {52156, 36056}, {52563, 22344}, {52575, 10}, {52581, 44692}, {52621, 905}, {52938, 1783}, {53237, 1475}, {53538, 22096}, {53544, 23225}, {54235, 2195}, {54240, 8750}, {54284, 19354}, {54314, 2269}, {55110, 2208}, {55208, 669}, {55213, 4563}, {55229, 4612}, {55231, 4636}, {55346, 2149}, {56049, 32659}, {56285, 1500}, {56382, 22341}, {56783, 32658}, {57190, 23093}, {57215, 21789}, {57247, 22160}, {57642, 39167}, {57652, 2205}, {57779, 7054}, {57785, 1790}, {57792, 77}, {57796, 333}, {57806, 281}, {57807, 52386}, {57809, 37}, {57880, 7177}, {57918, 326}, {57968, 645}, {57973, 36797}
X(57787) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {331, 52575, 1969}


X(57788) = ISOTOMIC CONJUGATE OF X(214)

Barycentrics    b*(a+b-2*c)*c*(a-2*b+c)*(a^2-a*b+b^2-c^2)*(a^2-b^2-a*c+c^2) : :

X(57788) lies on these lines: {75, 51975}, {80, 320}, {85, 52553}, {679, 1111}, {903, 18815}, {1168, 4555}, {3262, 4358}, {3264, 20566}, {4389, 56416}, {14584, 17378}, {17160, 51562}, {52031, 58026}

X(57788) = isotomic conjugate of X(214)
X(57788) = trilinear pole of line {3762, 4080}
X(57788) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 17455}, {31, 214}, {32, 51583}, {36, 902}, {44, 7113}, {213, 17191}, {215, 14584}, {320, 9459}, {519, 52434}, {560, 1227}, {678, 16944}, {692, 53535}, {1017, 40215}, {1023, 21758}, {1319, 2361}, {1333, 40988}, {1404, 2323}, {1635, 1983}, {1870, 23202}, {2175, 41801}, {2194, 53537}, {2245, 3285}, {2251, 3218}, {3689, 52440}, {3724, 52680}, {3911, 52426}, {8648, 23703}, {22356, 52413}, {23344, 53314}
X(57788) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 214}, {9, 17455}, {37, 40988}, {1086, 53535}, {1214, 53537}, {1577, 51402}, {6374, 1227}, {6376, 51583}, {6626, 17191}, {9460, 3218}, {15898, 902}, {36909, 3689}, {40593, 41801}, {40594, 36}, {40595, 7113}, {56416, 678}
X(57788) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 20568}, {75, 14616}, {693, 35174}, {6702, 2}, {17057, 4945}, {51975, 18359}
X(57788) = pole of line {214, 17191} with respect to the Wallace hyperbola
X(57788) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(320)}}, {{A, B, C, X(44), X(4777)}}, {{A, B, C, X(75), X(693)}}, {{A, B, C, X(85), X(1969)}}, {{A, B, C, X(86), X(40410)}}, {{A, B, C, X(214), X(6702)}}, {{A, B, C, X(679), X(6548)}}, {{A, B, C, X(765), X(56321)}}, {{A, B, C, X(903), X(4997)}}, {{A, B, C, X(1268), X(4998)}}, {{A, B, C, X(1441), X(17791)}}, {{A, B, C, X(1577), X(35550)}}, {{A, B, C, X(5936), X(8047)}}, {{A, B, C, X(14616), X(18359)}}, {{A, B, C, X(17227), X(26239)}}, {{A, B, C, X(17250), X(24593)}}, {{A, B, C, X(18821), X(32008)}}, {{A, B, C, X(31625), X(32018)}}, {{A, B, C, X(31643), X(46141)}}, {{A, B, C, X(32012), X(32032)}}, {{A, B, C, X(35174), X(36804)}}
X(57788) = barycentric product X(i)*X(j) for these (i, j): {1168, 76}, {2161, 57995}, {4634, 55238}, {14616, 4080}, {18359, 903}, {18815, 4997}, {20566, 88}, {20568, 80}, {23838, 46405}, {36590, 85}, {36804, 6548}, {51975, 54974}
X(57788) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17455}, {2, 214}, {10, 40988}, {75, 51583}, {76, 1227}, {80, 44}, {85, 41801}, {86, 17191}, {88, 36}, {106, 7113}, {226, 53537}, {514, 53535}, {655, 23703}, {679, 40215}, {759, 3285}, {901, 1983}, {903, 3218}, {1022, 53314}, {1168, 6}, {1320, 2323}, {1411, 1404}, {1797, 52407}, {1807, 22356}, {2006, 1319}, {2161, 902}, {2226, 16944}, {2316, 2361}, {4013, 4053}, {4049, 53527}, {4080, 758}, {4555, 4585}, {4634, 55237}, {4671, 36923}, {4674, 2245}, {4858, 51402}, {4945, 4867}, {4997, 4511}, {6187, 2251}, {6336, 1870}, {6548, 3960}, {6549, 53546}, {9456, 52434}, {14616, 16704}, {14628, 1317}, {15065, 3943}, {16944, 52059}, {18359, 519}, {18815, 3911}, {20566, 4358}, {20568, 320}, {23345, 21758}, {23838, 654}, {24624, 52680}, {27922, 27950}, {31227, 4881}, {34535, 14584}, {34857, 52963}, {36125, 52413}, {36590, 9}, {36804, 17780}, {36910, 3689}, {36917, 19618}, {40172, 1017}, {47058, 6126}, {51562, 1023}, {51975, 4370}, {52031, 34586}, {52212, 53530}, {52351, 5440}, {52356, 1639}, {52409, 2325}, {52431, 23202}, {54974, 52553}, {55238, 4730}, {55244, 21828}, {57645, 14628}, {57995, 20924}


X(57789) = ISOTOMIC CONJUGATE OF X(215)

Barycentrics    b^4*(a+b-c)*c^4*(a-b+c)*(a^2-a*b+b^2-c^2)^2*(a^2-b^2-a*c+c^2)^2 : :

X(57789) lies on these lines: {3936, 46405}

X(57789) = isotomic conjugate of X(215)
X(57789) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 215}, {32, 34544}, {41, 52059}, {560, 4996}, {1253, 41282}, {2361, 52434}, {7113, 52426}, {32739, 57174}
X(57789) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 215}, {3160, 52059}, {6374, 4996}, {6376, 34544}, {17113, 41282}, {40619, 57174}
X(57789) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 20573}, {850, 46405}
X(57789) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(20572)}}, {{A, B, C, X(261), X(311)}}, {{A, B, C, X(850), X(3936)}}, {{A, B, C, X(3596), X(55553)}}, {{A, B, C, X(6063), X(18022)}}, {{A, B, C, X(18817), X(20566)}}
X(57789) = barycentric product X(i)*X(j) for these (i, j): {34535, 561}, {57645, 76}
X(57789) = barycentric quotient X(i)/X(j) for these (i, j): {2, 215}, {7, 52059}, {75, 34544}, {76, 4996}, {80, 52426}, {279, 41282}, {693, 57174}, {2006, 52434}, {14616, 4282}, {18359, 2361}, {18815, 7113}, {20566, 2323}, {23989, 3025}, {34387, 35128}, {34388, 35069}, {34535, 31}, {35174, 1983}, {46649, 23990}, {57645, 6}


X(57790) = ISOTOMIC CONJUGATE OF X(217)

Barycentrics    b^4*c^4*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(57790) lies on these lines: {69, 8795}, {95, 6394}, {275, 40016}, {276, 1502}, {2366, 52779}, {34386, 44137}, {35140, 54950}

X(57790) = isotomic conjugate of X(217)
X(57790) = trilinear pole of line {3265, 44173}
X(57790) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 44088}, {31, 217}, {48, 40981}, {51, 9247}, {184, 2179}, {216, 560}, {343, 1917}, {418, 1973}, {1501, 44706}, {1924, 23181}, {1953, 14575}, {2181, 14585}, {2205, 44709}, {3199, 52430}, {9233, 18695}, {9447, 30493}, {9448, 44708}, {14213, 40373}, {17453, 27372}, {32676, 42293}
X(57790) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 217}, {6, 44088}, {1249, 40981}, {6337, 418}, {6374, 216}, {9428, 23181}, {15526, 42293}, {36901, 15451}, {40938, 27374}, {52032, 46394}
X(57790) = X(i)-cross conjugate of X(j) for these {i, j}: {76, 34384}, {276, 57844}, {34850, 2}, {44137, 18024}, {57082, 6331}
X(57790) = pole of line {217, 418} with respect to the Wallace hyperbola
X(57790) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(37337)}}, {{A, B, C, X(54), X(19197)}}, {{A, B, C, X(69), X(76)}}, {{A, B, C, X(141), X(297)}}, {{A, B, C, X(217), X(34850)}}, {{A, B, C, X(264), X(44144)}}, {{A, B, C, X(275), X(19174)}}, {{A, B, C, X(276), X(8795)}}, {{A, B, C, X(311), X(3267)}}, {{A, B, C, X(458), X(56341)}}, {{A, B, C, X(1176), X(53200)}}, {{A, B, C, X(1502), X(18022)}}, {{A, B, C, X(2052), X(8801)}}, {{A, B, C, X(9229), X(46271)}}, {{A, B, C, X(9308), X(9462)}}, {{A, B, C, X(31630), X(34405)}}
X(57790) = barycentric product X(i)*X(j) for these (i, j): {264, 34384}, {276, 76}, {305, 8795}, {1235, 41488}, {1502, 275}, {1928, 2190}, {3265, 54950}, {3267, 42405}, {4143, 42401}, {14618, 55218}, {15415, 52939}, {18022, 95}, {18027, 34386}, {18831, 44173}, {40050, 8884}, {40362, 8882}, {40440, 561}, {42369, 52613}, {44161, 54}, {52617, 52779}, {56189, 57796}, {57844, 69}
X(57790) = barycentric quotient X(i)/X(j) for these (i, j): {2, 217}, {3, 44088}, {4, 40981}, {54, 14575}, {69, 418}, {76, 216}, {92, 2179}, {95, 184}, {97, 14585}, {264, 51}, {275, 32}, {276, 6}, {297, 52967}, {305, 5562}, {310, 44709}, {343, 46394}, {427, 27374}, {525, 42293}, {561, 44706}, {670, 23181}, {850, 15451}, {933, 14574}, {1232, 32078}, {1502, 343}, {1928, 18695}, {1969, 1953}, {2052, 3199}, {2167, 9247}, {2190, 560}, {3267, 17434}, {3596, 44707}, {6063, 30493}, {6331, 1625}, {6385, 16697}, {6528, 52604}, {8794, 2207}, {8795, 25}, {8882, 1501}, {8884, 1974}, {14618, 55219}, {15412, 3049}, {15414, 32320}, {15415, 57195}, {15422, 57204}, {18018, 27372}, {18022, 5}, {18024, 53174}, {18027, 53}, {18831, 1576}, {19169, 33578}, {19174, 27369}, {19189, 9418}, {19197, 33728}, {20567, 44708}, {23295, 40951}, {34384, 3}, {34385, 2351}, {34386, 577}, {39287, 10547}, {40050, 52347}, {40362, 28706}, {40421, 41168}, {40440, 31}, {41009, 6751}, {41488, 1176}, {41530, 8798}, {42369, 15352}, {42401, 6529}, {42405, 112}, {43752, 1495}, {44149, 26907}, {44161, 311}, {44173, 6368}, {46138, 52153}, {52779, 32713}, {52939, 14586}, {54034, 40373}, {54950, 107}, {55218, 4558}, {56189, 228}, {56246, 2200}, {57765, 51477}, {57787, 1393}, {57796, 18180}, {57806, 2181}, {57844, 4}, {57968, 2617}
X(57790) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {18022, 34384, 57844}


X(57791) = ISOTOMIC CONJUGATE OF X(218)

Barycentrics    b^2*(a^2-2*a*b+(b-c)^2)*c^2*(a^2+(b-c)^2-2*a*c) : :

X(57791) lies on these lines: {69, 2481}, {75, 1233}, {85, 17234}, {274, 277}, {286, 30941}, {331, 40704}, {344, 6063}, {346, 23989}, {767, 1292}, {870, 2191}, {18134, 39735}, {28420, 34018}, {31643, 40154}, {37130, 37206}, {37788, 57792}

X(57791) = isotomic conjugate of X(218)
X(57791) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 21059}, {31, 218}, {32, 3870}, {41, 1617}, {101, 8642}, {184, 7719}, {344, 560}, {604, 6600}, {1333, 4878}, {1397, 55337}, {1445, 2175}, {1918, 41610}, {2200, 4233}, {2206, 3991}, {2212, 23144}, {2440, 54325}, {3309, 32739}, {4350, 14827}, {6604, 9447}, {9448, 21609}, {9455, 31638}, {41539, 57657}
X(57791) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 218}, {9, 21059}, {37, 4878}, {1015, 8642}, {1577, 38375}, {3160, 1617}, {3161, 6600}, {6374, 344}, {6376, 3870}, {34021, 41610}, {40593, 1445}, {40603, 3991}, {40615, 51652}, {40619, 3309}
X(57791) = X(i)-cross conjugate of X(j) for these {i, j}: {8, 6063}, {1229, 75}, {4904, 693}
X(57791) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(21617)}}, {{A, B, C, X(8), X(344)}}, {{A, B, C, X(69), X(15413)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(189), X(39749)}}, {{A, B, C, X(264), X(18031)}}, {{A, B, C, X(312), X(20946)}}, {{A, B, C, X(333), X(17234)}}, {{A, B, C, X(335), X(39273)}}, {{A, B, C, X(346), X(4391)}}, {{A, B, C, X(903), X(10509)}}, {{A, B, C, X(1233), X(6063)}}, {{A, B, C, X(1280), X(41610)}}, {{A, B, C, X(3261), X(3596)}}, {{A, B, C, X(4373), X(24002)}}, {{A, B, C, X(5485), X(17924)}}, {{A, B, C, X(7017), X(20927)}}, {{A, B, C, X(7155), X(48070)}}, {{A, B, C, X(17093), X(42361)}}, {{A, B, C, X(18134), X(29767)}}, {{A, B, C, X(20905), X(50107)}}, {{A, B, C, X(34399), X(37214)}}, {{A, B, C, X(40011), X(44190)}}, {{A, B, C, X(40017), X(40412)}}, {{A, B, C, X(40424), X(52156)}}
X(57791) = barycentric product X(i)*X(j) for these (i, j): {277, 76}, {1292, 40495}, {1502, 57656}, {2191, 561}, {3261, 37206}, {3596, 40154}, {6063, 6601}, {17107, 28659}, {54987, 693}
X(57791) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21059}, {2, 218}, {7, 1617}, {8, 6600}, {10, 4878}, {75, 3870}, {76, 344}, {85, 1445}, {92, 7719}, {274, 41610}, {277, 6}, {286, 4233}, {312, 55337}, {321, 3991}, {348, 23144}, {513, 8642}, {693, 3309}, {1088, 4350}, {1292, 692}, {1441, 41539}, {2191, 31}, {2414, 2284}, {3261, 4468}, {3262, 51378}, {3676, 51652}, {4858, 38375}, {6063, 6604}, {6601, 55}, {13577, 54236}, {14268, 1486}, {15413, 24562}, {17107, 604}, {18031, 31638}, {20567, 21609}, {20880, 15185}, {21207, 21945}, {23100, 23760}, {23989, 4904}, {24002, 43049}, {35519, 44448}, {36041, 32666}, {37206, 101}, {40014, 27819}, {40154, 56}, {52621, 31605}, {54314, 41611}, {54987, 100}, {56796, 20662}, {57469, 2223}, {57656, 32}, {57792, 17093}


X(57792) = ISOTOMIC CONJUGATE OF X(220)

Barycentrics    b^2*(a+b-c)^2*c^2*(a-b+c)^2 : :

X(57792) lies on these lines: {2, 31618}, {7, 2481}, {9, 40864}, {75, 1088}, {76, 1229}, {85, 142}, {226, 40025}, {269, 870}, {274, 279}, {286, 1119}, {344, 1996}, {349, 40023}, {479, 31643}, {658, 37130}, {767, 934}, {927, 1486}, {948, 30705}, {1106, 14623}, {1218, 1427}, {1275, 6180}, {1441, 53242}, {4000, 34018}, {4616, 7053}, {6600, 6606}, {6601, 6604}, {7196, 17754}, {9312, 33677}, {10029, 40014}, {10030, 42309}, {17079, 30682}, {18033, 40028}, {18153, 20946}, {20568, 46406}, {23989, 52937}, {25001, 34521}, {33298, 55076}, {35508, 56265}, {37788, 57791}, {50561, 55983}

X(57792) = isogonal conjugate of X(14827)
X(57792) = isotomic conjugate of X(220)
X(57792) = complement of X(46706)
X(57792) = trilinear pole of line {693, 6362}
X(57792) = perspector of circumconic {{A, B, C, X(46406), X(52937)}}
X(57792) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 14827}, {6, 1253}, {8, 9447}, {9, 2175}, {25, 1802}, {31, 220}, {32, 200}, {33, 52425}, {41, 55}, {48, 7071}, {56, 6602}, {101, 8641}, {109, 57180}, {163, 4524}, {184, 7079}, {210, 57657}, {212, 607}, {213, 2328}, {219, 2212}, {228, 2332}, {312, 9448}, {341, 1501}, {346, 560}, {480, 604}, {657, 692}, {669, 7259}, {728, 1397}, {872, 7054}, {1043, 2205}, {1098, 7109}, {1110, 14936}, {1260, 1973}, {1262, 24012}, {1334, 2194}, {1415, 4105}, {1576, 4171}, {1918, 2287}, {1919, 4578}, {1924, 7256}, {1974, 3692}, {1980, 6558}, {2149, 3022}, {2150, 7064}, {2170, 6066}, {2187, 7367}, {2200, 4183}, {2204, 2318}, {2206, 4515}, {2208, 7368}, {2289, 6059}, {2299, 52370}, {2310, 23990}, {3063, 3939}, {3684, 18265}, {3900, 32739}, {6559, 9455}, {7046, 9247}, {7074, 7118}, {7084, 30706}, {7101, 14575}, {7258, 9426}, {7339, 52064}, {9439, 16283}, {9454, 28071}, {10482, 20229}, {14427, 32719}, {23979, 24010}, {24027, 35508}, {30693, 41280}, {32642, 46392}, {32666, 52614}, {44162, 52406}, {46388, 52927}, {52371, 52426}
X(57792) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 6602}, {2, 220}, {3, 14827}, {9, 1253}, {11, 57180}, {115, 4524}, {142, 8551}, {223, 41}, {226, 52370}, {241, 56785}, {279, 1615}, {478, 2175}, {514, 14936}, {522, 35508}, {650, 3022}, {1015, 8641}, {1086, 657}, {1088, 170}, {1111, 6608}, {1146, 4105}, {1212, 8012}, {1214, 1334}, {1249, 7071}, {1577, 3119}, {3160, 55}, {3161, 480}, {4858, 4171}, {6337, 1260}, {6374, 346}, {6376, 200}, {6505, 1802}, {6554, 30706}, {6608, 52064}, {6609, 32}, {6626, 2328}, {9296, 4578}, {9428, 7256}, {10001, 3939}, {15267, 7109}, {16588, 52562}, {17113, 6}, {33675, 28071}, {34021, 2287}, {35094, 52614}, {36905, 2340}, {36908, 213}, {39060, 56183}, {40593, 9}, {40603, 4515}, {40615, 663}, {40617, 3063}, {40618, 57108}, {40619, 3900}, {40620, 21789}, {40622, 3709}, {40624, 4130}, {40837, 607}, {56325, 7064}
X(57792) = X(i)-Ceva conjugate of X(j) for these {i, j}: {52937, 52621}
X(57792) = X(i)-cross conjugate of X(j) for these {i, j}: {85, 6063}, {1088, 57880}, {1146, 693}, {1446, 1088}, {20905, 75}, {21258, 2}, {23989, 52621}, {24002, 4569}, {26531, 32023}, {26546, 18026}, {35505, 43042}, {45226, 20880}, {47676, 664}, {52621, 52937}
X(57792) = pole of line {4524, 57180} with respect to the polar circle
X(57792) = pole of line {6607, 46402} with respect to the Steiner circumellipse
X(57792) = pole of line {6607, 46399} with respect to the Steiner inellipse
X(57792) = pole of line {220, 1260} with respect to the Wallace hyperbola
X(57792) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(142)}}, {{A, B, C, X(6), X(21746)}}, {{A, B, C, X(7), X(1275)}}, {{A, B, C, X(10), X(27304)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(86), X(52156)}}, {{A, B, C, X(92), X(36796)}}, {{A, B, C, X(189), X(7058)}}, {{A, B, C, X(220), X(21258)}}, {{A, B, C, X(241), X(13476)}}, {{A, B, C, X(264), X(3261)}}, {{A, B, C, X(269), X(7204)}}, {{A, B, C, X(273), X(34018)}}, {{A, B, C, X(279), X(1119)}}, {{A, B, C, X(335), X(21446)}}, {{A, B, C, X(344), X(1016)}}, {{A, B, C, X(346), X(10405)}}, {{A, B, C, X(348), X(1509)}}, {{A, B, C, X(514), X(9307)}}, {{A, B, C, X(522), X(43971)}}, {{A, B, C, X(598), X(46102)}}, {{A, B, C, X(693), X(52980)}}, {{A, B, C, X(903), X(23618)}}, {{A, B, C, X(948), X(4000)}}, {{A, B, C, X(1086), X(4014)}}, {{A, B, C, X(1088), X(23062)}}, {{A, B, C, X(1252), X(47676)}}, {{A, B, C, X(2052), X(17860)}}, {{A, B, C, X(3596), X(18031)}}, {{A, B, C, X(3662), X(17754)}}, {{A, B, C, X(3926), X(34400)}}, {{A, B, C, X(4391), X(55948)}}, {{A, B, C, X(5228), X(52023)}}, {{A, B, C, X(6063), X(20567)}}, {{A, B, C, X(7178), X(43059)}}, {{A, B, C, X(14615), X(44129)}}, {{A, B, C, X(17079), X(54974)}}, {{A, B, C, X(18027), X(40701)}}, {{A, B, C, X(20935), X(32023)}}, {{A, B, C, X(23586), X(30682)}}, {{A, B, C, X(25353), X(26806)}}, {{A, B, C, X(26563), X(43983)}}, {{A, B, C, X(36807), X(40420)}}, {{A, B, C, X(39749), X(40012)}}
X(57792) = barycentric product X(i)*X(j) for these (i, j): {85, 85}, {264, 7056}, {269, 561}, {273, 7182}, {278, 57918}, {279, 76}, {310, 3668}, {331, 348}, {522, 52937}, {1088, 75}, {1106, 1928}, {1119, 305}, {1254, 57992}, {1275, 23989}, {1397, 41287}, {1398, 40050}, {1407, 1502}, {1427, 6385}, {1434, 349}, {1435, 40364}, {1439, 57796}, {1441, 57785}, {1446, 274}, {1577, 4635}, {1847, 304}, {1969, 7177}, {3261, 658}, {3596, 479}, {3676, 4572}, {4017, 55213}, {4077, 4625}, {4566, 52619}, {4569, 693}, {4602, 7216}, {4609, 7250}, {4616, 850}, {6063, 7}, {7204, 871}, {7205, 7249}, {10509, 1233}, {13149, 15413}, {14256, 44190}, {17093, 57791}, {18021, 6046}, {18022, 7053}, {18033, 7233}, {20567, 57}, {20880, 42311}, {20948, 4637}, {23062, 312}, {23586, 23978}, {24002, 4554}, {24011, 24026}, {28659, 738}, {30545, 7209}, {30682, 7017}, {34018, 40704}, {34388, 552}, {34400, 40701}, {35519, 4626}, {36620, 50560}, {36838, 4391}, {40362, 52410}, {40363, 7023}, {40495, 934}, {41280, 41289}, {41281, 41290}, {41283, 56}, {43042, 46135}, {43932, 6386}, {44129, 56382}, {44186, 50561}, {46406, 514}, {52621, 664}, {53242, 57815}, {57787, 77}, {57880, 8}
X(57792) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1253}, {2, 220}, {4, 7071}, {6, 14827}, {7, 55}, {8, 480}, {9, 6602}, {11, 3022}, {12, 7064}, {27, 2332}, {34, 2212}, {56, 2175}, {57, 41}, {59, 6066}, {63, 1802}, {69, 1260}, {75, 200}, {76, 346}, {77, 212}, {85, 9}, {86, 2328}, {92, 7079}, {142, 8012}, {189, 7367}, {222, 52425}, {226, 1334}, {261, 6061}, {264, 7046}, {269, 31}, {273, 33}, {274, 2287}, {278, 607}, {279, 6}, {286, 4183}, {304, 3692}, {305, 1265}, {307, 2318}, {310, 1043}, {312, 728}, {313, 4082}, {314, 56182}, {321, 4515}, {329, 7368}, {331, 281}, {342, 40971}, {347, 7074}, {348, 219}, {349, 2321}, {479, 56}, {513, 8641}, {514, 657}, {522, 4105}, {523, 4524}, {552, 60}, {555, 259}, {561, 341}, {604, 9447}, {650, 57180}, {658, 101}, {664, 3939}, {668, 4578}, {670, 7256}, {693, 3900}, {738, 604}, {799, 7259}, {873, 1098}, {918, 52614}, {927, 52927}, {934, 692}, {1014, 2194}, {1042, 1918}, {1086, 14936}, {1088, 1}, {1106, 560}, {1111, 2310}, {1118, 6059}, {1119, 25}, {1146, 35508}, {1212, 8551}, {1214, 52370}, {1229, 45791}, {1231, 3694}, {1233, 51972}, {1254, 872}, {1262, 23990}, {1275, 1252}, {1358, 3271}, {1396, 2204}, {1397, 9448}, {1398, 1974}, {1407, 32}, {1412, 57657}, {1418, 20229}, {1422, 7118}, {1427, 213}, {1434, 284}, {1435, 1973}, {1439, 228}, {1440, 2192}, {1441, 210}, {1443, 2361}, {1446, 37}, {1461, 32739}, {1509, 7054}, {1565, 3270}, {1577, 4171}, {1804, 6056}, {1847, 19}, {1969, 7101}, {1978, 6558}, {2310, 24012}, {2481, 28071}, {2886, 52562}, {2973, 42069}, {3119, 52064}, {3261, 3239}, {3262, 51380}, {3596, 5423}, {3665, 3688}, {3668, 42}, {3669, 3063}, {3673, 4319}, {3674, 2269}, {3676, 663}, {3762, 14427}, {4000, 30706}, {4025, 57108}, {4077, 4041}, {4146, 6726}, {4350, 21059}, {4374, 4477}, {4391, 4130}, {4453, 53285}, {4554, 644}, {4566, 4557}, {4569, 100}, {4572, 3699}, {4573, 5546}, {4602, 7258}, {4616, 110}, {4617, 1415}, {4625, 643}, {4626, 109}, {4635, 662}, {4637, 163}, {4801, 4827}, {4858, 3119}, {4998, 6065}, {5723, 52969}, {6046, 181}, {6063, 8}, {6173, 32578}, {6180, 16283}, {6354, 1500}, {6356, 3690}, {6359, 26885}, {6362, 6607}, {6604, 6600}, {7023, 1397}, {7045, 1110}, {7053, 184}, {7055, 1259}, {7056, 3}, {7099, 9247}, {7153, 57264}, {7176, 2330}, {7177, 48}, {7178, 3709}, {7179, 4517}, {7182, 78}, {7183, 2289}, {7185, 3056}, {7192, 21789}, {7195, 7083}, {7196, 2329}, {7197, 1460}, {7199, 1021}, {7204, 869}, {7205, 7081}, {7209, 2319}, {7216, 798}, {7233, 7077}, {7250, 669}, {7318, 7072}, {7365, 54416}, {9436, 2340}, {9533, 3207}, {10004, 42316}, {10030, 3684}, {10481, 2293}, {10509, 1174}, {13149, 1783}, {14256, 198}, {15413, 57055}, {15419, 23090}, {15467, 56146}, {16078, 33963}, {16705, 46889}, {16732, 36197}, {16739, 46877}, {16888, 20684}, {17078, 2323}, {17079, 55432}, {17093, 218}, {17095, 52405}, {17096, 7252}, {17113, 1615}, {17206, 2327}, {18026, 56183}, {18031, 6559}, {18033, 3685}, {18743, 4936}, {18810, 55920}, {18815, 52371}, {20567, 312}, {20618, 2197}, {20880, 3059}, {20911, 3965}, {20946, 24771}, {21104, 10581}, {21207, 52335}, {21453, 10482}, {21454, 4258}, {21609, 55337}, {23062, 57}, {23100, 42462}, {23586, 1262}, {23599, 21127}, {23971, 23979}, {23973, 2426}, {23978, 23970}, {23989, 1146}, {24002, 650}, {24011, 7045}, {24013, 24027}, {24016, 32642}, {24026, 24010}, {24471, 20967}, {28659, 30693}, {30545, 3208}, {30682, 222}, {30705, 7123}, {30805, 57057}, {30807, 51418}, {31618, 6605}, {33673, 7070}, {33765, 4251}, {33930, 4073}, {34018, 294}, {34056, 18889}, {34084, 30627}, {34284, 3713}, {34387, 4081}, {34388, 6057}, {34400, 268}, {34855, 2223}, {35505, 39014}, {35519, 4163}, {36118, 8750}, {36838, 651}, {37757, 5526}, {37780, 6603}, {37800, 5452}, {38459, 19624}, {38468, 15733}, {39063, 56785}, {39126, 3158}, {40364, 52406}, {40495, 4397}, {40701, 55116}, {40702, 2324}, {40704, 3693}, {41003, 40966}, {41283, 3596}, {41287, 40363}, {41289, 44159}, {41292, 1357}, {41353, 54325}, {41777, 20665}, {42309, 2280}, {42311, 2346}, {43042, 926}, {43930, 884}, {43932, 667}, {44129, 2322}, {44697, 7156}, {45196, 21033}, {46135, 36802}, {46406, 190}, {47374, 35445}, {47386, 37541}, {47676, 52594}, {50561, 165}, {50562, 21872}, {52023, 21795}, {52156, 2338}, {52373, 2200}, {52410, 1501}, {52421, 4420}, {52563, 2347}, {52619, 7253}, {52621, 522}, {52937, 664}, {52980, 52888}, {53237, 1827}, {53242, 354}, {53539, 8638}, {53544, 46388}, {55110, 7154}, {55213, 7257}, {56359, 7084}, {56382, 71}, {56783, 2195}, {56972, 2188}, {57479, 7078}, {57785, 21}, {57787, 318}, {57809, 53008}, {57826, 34820}, {57880, 7}, {57918, 345}, {57919, 30681}
X(57792) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 31604, 21746}, {85, 40593, 142}, {142, 52980, 40593}, {6063, 50560, 75}, {20567, 57918, 76}


X(57793) = ISOTOMIC CONJUGATE OF X(221)

Barycentrics    b^2*c^2*(-a+b+c)*((a-b)^2*(a+b)+(a+b)^2*c-(a+b)*c^2-c^3)*(-a^3+a*(b-c)^2+a^2*(-b+c)+(b-c)*(b+c)^2) : :

X(57793) lies on these lines: {75, 20321}, {189, 20348}, {280, 57795}, {304, 309}, {314, 7003}, {561, 57918}, {3718, 34404}, {6063, 41530}

X(57793) = isotomic conjugate of X(221)
X(57793) = trilinear pole of line {35518, 52622}
X(57793) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2199}, {25, 7114}, {31, 221}, {32, 223}, {40, 1397}, {41, 6611}, {48, 3209}, {56, 2187}, {184, 208}, {196, 9247}, {198, 604}, {227, 2206}, {322, 41280}, {342, 14575}, {347, 560}, {603, 3195}, {667, 57118}, {1106, 7074}, {1395, 7078}, {1402, 2360}, {1501, 40702}, {1973, 7011}, {1974, 7013}, {2324, 52410}, {2331, 52411}, {7366, 7368}, {9447, 14256}, {16947, 21871}
X(57793) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 2187}, {2, 221}, {9, 2199}, {1249, 3209}, {3160, 6611}, {3161, 198}, {3341, 31}, {6337, 7011}, {6374, 347}, {6376, 223}, {6505, 7114}, {6552, 7074}, {6631, 57118}, {7952, 3195}, {40603, 227}, {40605, 2360}, {40624, 6129}
X(57793) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 3596}, {7017, 76}, {20306, 2}, {23528, 312}, {34404, 44190}
X(57793) = pole of line {221, 2360} with respect to the Wallace hyperbola
X(57793) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(4391)}}, {{A, B, C, X(75), X(322)}}, {{A, B, C, X(76), X(304)}}, {{A, B, C, X(221), X(20306)}}, {{A, B, C, X(261), X(34412)}}, {{A, B, C, X(264), X(35516)}}, {{A, B, C, X(280), X(7003)}}, {{A, B, C, X(281), X(49653)}}, {{A, B, C, X(309), X(34404)}}, {{A, B, C, X(332), X(34409)}}, {{A, B, C, X(522), X(9307)}}, {{A, B, C, X(561), X(3596)}}, {{A, B, C, X(969), X(7108)}}, {{A, B, C, X(2052), X(2995)}}, {{A, B, C, X(4357), X(20348)}}, {{A, B, C, X(5931), X(18025)}}, {{A, B, C, X(6063), X(14615)}}, {{A, B, C, X(7080), X(23528)}}, {{A, B, C, X(20570), X(36795)}}, {{A, B, C, X(30479), X(35140)}}, {{A, B, C, X(31643), X(37874)}}
X(57793) = barycentric product X(i)*X(j) for these (i, j): {189, 3596}, {264, 44189}, {280, 76}, {282, 561}, {304, 7020}, {305, 7003}, {309, 312}, {321, 57795}, {1436, 40363}, {1502, 2192}, {1903, 40072}, {1928, 7118}, {1969, 271}, {4086, 55211}, {18022, 268}, {27801, 285}, {28659, 84}, {28660, 39130}, {34404, 75}, {35519, 44327}, {40050, 7154}, {40364, 7008}, {40836, 57919}, {41283, 7367}, {44130, 56944}, {44190, 8}, {52622, 53642}, {53013, 6385}, {57492, 57918}, {57783, 92}
X(57793) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2199}, {2, 221}, {4, 3209}, {7, 6611}, {8, 198}, {9, 2187}, {63, 7114}, {69, 7011}, {75, 223}, {76, 347}, {84, 604}, {92, 208}, {189, 56}, {190, 57118}, {264, 196}, {268, 184}, {271, 48}, {280, 6}, {281, 3195}, {282, 31}, {285, 1333}, {304, 7013}, {309, 57}, {312, 40}, {314, 1817}, {318, 2331}, {321, 227}, {322, 40212}, {333, 2360}, {341, 2324}, {345, 7078}, {346, 7074}, {561, 40702}, {1034, 57454}, {1265, 55111}, {1413, 52410}, {1422, 1106}, {1433, 52411}, {1436, 1397}, {1440, 1407}, {1903, 1402}, {1969, 342}, {2188, 9247}, {2192, 32}, {3596, 329}, {3701, 21871}, {4086, 55212}, {4391, 6129}, {4397, 14298}, {5423, 7368}, {6063, 14256}, {6081, 32643}, {7003, 25}, {7008, 1973}, {7017, 7952}, {7020, 19}, {7101, 40971}, {7118, 560}, {7129, 1395}, {7154, 1974}, {7367, 2175}, {8808, 1042}, {13138, 1415}, {13853, 7143}, {15416, 57101}, {18022, 40701}, {23528, 40943}, {23978, 38357}, {23983, 55044}, {23989, 38374}, {27801, 57810}, {28659, 322}, {28660, 8822}, {30713, 21075}, {31623, 3194}, {34400, 7053}, {34404, 1}, {34413, 53995}, {35519, 14837}, {36795, 15501}, {39130, 1400}, {40836, 608}, {41081, 603}, {44130, 41083}, {44186, 42872}, {44189, 3}, {44190, 7}, {44327, 109}, {46110, 54239}, {46350, 3197}, {46355, 1436}, {47436, 47848}, {52037, 1410}, {52389, 1409}, {52616, 57233}, {52622, 8058}, {53013, 213}, {53642, 1461}, {55110, 1398}, {55211, 1414}, {55242, 51641}, {56939, 1404}, {56944, 73}, {56972, 7099}, {57492, 607}, {57783, 63}, {57795, 81}, {57918, 57479}


X(57794) = ISOTOMIC CONJUGATE OF X(224)

Barycentrics    b*c*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a-b)^3*(a+b)+2*b^2*(a+b)*c-2*a^2*c^2-2*b*c^3+c^4)*(a^4-2*a^2*b^2-2*a^3*c+(b-c)^3*(b+c)+2*a*c^2*(b+c)) : :

X(57794) lies on these lines: {92, 17776}, {273, 5174}, {286, 20930}, {322, 46133}

X(57794) = isotomic conjugate of X(224)
X(57794) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3211}, {31, 224}, {48, 1723}, {184, 12649}, {212, 34489}, {603, 2900}
X(57794) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 224}, {9, 3211}, {1249, 1723}, {7952, 2900}, {40837, 34489}
X(57794) = X(i)-cross conjugate of X(j) for these {i, j}: {8, 92}, {10395, 2}
X(57794) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(37203)}}, {{A, B, C, X(8), X(12649)}}, {{A, B, C, X(75), X(13577)}}, {{A, B, C, X(92), X(264)}}, {{A, B, C, X(158), X(40445)}}, {{A, B, C, X(224), X(10395)}}, {{A, B, C, X(253), X(18815)}}, {{A, B, C, X(318), X(5174)}}, {{A, B, C, X(522), X(3692)}}, {{A, B, C, X(693), X(2997)}}, {{A, B, C, X(1441), X(20930)}}, {{A, B, C, X(5125), X(31359)}}
X(57794) = barycentric product X(i)*X(j) for these (i, j): {264, 39947}, {331, 56278}, {1969, 34430}, {17924, 53652}, {39695, 92}, {41505, 76}
X(57794) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3211}, {2, 224}, {4, 1723}, {92, 12649}, {278, 34489}, {281, 2900}, {34430, 48}, {39695, 63}, {39947, 3}, {41505, 6}, {53652, 1332}, {56278, 219}


X(57795) = ISOTOMIC CONJUGATE OF X(227)

Barycentrics    b*(a+b)*c*(a+c)*(-a+b+c)*((a-b)^2*(a+b)+(a+b)^2*c-(a+b)*c^2-c^3)*(-a^3+a*(b-c)^2+a^2*(-b+c)+(b-c)*(b+c)^2) : :

X(57795) lies on these lines: {84, 309}, {86, 1256}, {274, 40836}, {280, 57793}, {282, 332}, {310, 1440}

X(57795) = isotomic conjugate of X(227)
X(57795) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 227}, {37, 2199}, {40, 1402}, {42, 221}, {65, 2187}, {71, 3209}, {73, 3195}, {181, 2360}, {196, 2200}, {198, 1400}, {208, 228}, {213, 223}, {347, 1918}, {512, 57118}, {560, 57810}, {604, 21871}, {1042, 7074}, {1334, 6611}, {1397, 21075}, {1409, 2331}, {1410, 40971}, {1415, 55212}, {1824, 7114}, {2205, 40702}, {2333, 7011}, {7078, 57652}, {52411, 53009}
X(57795) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 227}, {1146, 55212}, {3161, 21871}, {3341, 42}, {6374, 57810}, {6626, 223}, {34021, 347}, {39054, 57118}, {40582, 198}, {40589, 2199}, {40592, 221}, {40602, 2187}, {40605, 40}, {40625, 6129}
X(57795) = X(i)-cross conjugate of X(j) for these {i, j}: {86, 314}, {31623, 274}
X(57795) = pole of line {2187, 2199} with respect to the Stammler hyperbola
X(57795) = pole of line {40, 221} with respect to the Wallace hyperbola
X(57795) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10476)}}, {{A, B, C, X(4), X(35635)}}, {{A, B, C, X(7), X(10444)}}, {{A, B, C, X(21), X(10461)}}, {{A, B, C, X(29), X(37422)}}, {{A, B, C, X(75), X(36795)}}, {{A, B, C, X(84), X(280)}}, {{A, B, C, X(86), X(5931)}}, {{A, B, C, X(261), X(274)}}, {{A, B, C, X(281), X(12717)}}, {{A, B, C, X(286), X(18155)}}, {{A, B, C, X(309), X(34404)}}, {{A, B, C, X(310), X(314)}}, {{A, B, C, X(522), X(29057)}}, {{A, B, C, X(1014), X(4560)}}, {{A, B, C, X(3596), X(32017)}}, {{A, B, C, X(3718), X(6063)}}, {{A, B, C, X(7017), X(20570)}}, {{A, B, C, X(7318), X(34277)}}, {{A, B, C, X(8048), X(16082)}}, {{A, B, C, X(10570), X(15486)}}, {{A, B, C, X(30479), X(30710)}}, {{A, B, C, X(46880), X(56048)}}
X(57795) = barycentric product X(i)*X(j) for these (i, j): {21, 44190}, {27, 57783}, {189, 314}, {268, 57796}, {271, 44129}, {274, 280}, {282, 310}, {285, 76}, {286, 44189}, {309, 333}, {522, 55211}, {1436, 40072}, {2192, 6385}, {17206, 7020}, {18021, 1903}, {18155, 44327}, {28660, 84}, {34404, 86}, {39130, 52379}, {41081, 44130}, {56944, 57779}, {57793, 81}
X(57795) = barycentric quotient X(i)/X(j) for these (i, j): {2, 227}, {8, 21871}, {21, 198}, {27, 208}, {28, 3209}, {29, 2331}, {58, 2199}, {76, 57810}, {81, 221}, {84, 1400}, {86, 223}, {189, 65}, {261, 1817}, {268, 228}, {271, 71}, {274, 347}, {280, 37}, {282, 42}, {284, 2187}, {285, 6}, {286, 196}, {309, 226}, {310, 40702}, {312, 21075}, {314, 329}, {318, 53009}, {333, 40}, {522, 55212}, {662, 57118}, {1014, 6611}, {1043, 2324}, {1172, 3195}, {1422, 1042}, {1433, 1409}, {1436, 1402}, {1440, 1427}, {1444, 7011}, {1790, 7114}, {1792, 55111}, {1812, 7078}, {1903, 181}, {2185, 2360}, {2188, 2200}, {2192, 213}, {2287, 7074}, {2322, 40971}, {4560, 6129}, {7003, 1824}, {7008, 2333}, {7020, 1826}, {7118, 1918}, {7129, 57652}, {7253, 14298}, {8808, 1254}, {8822, 40212}, {13138, 4559}, {15411, 57101}, {16727, 38374}, {16731, 55044}, {17206, 7013}, {18155, 14837}, {27398, 1103}, {28660, 322}, {31623, 7952}, {34400, 1439}, {34404, 10}, {37141, 53321}, {39130, 2171}, {40836, 1880}, {41081, 73}, {41084, 30456}, {44129, 342}, {44189, 72}, {44190, 1441}, {44327, 4551}, {46103, 3194}, {46355, 1903}, {52037, 1425}, {52379, 8822}, {52389, 2197}, {53013, 1500}, {53642, 1020}, {55110, 1426}, {55117, 1410}, {55211, 664}, {56182, 7368}, {56944, 201}, {56972, 52373}, {57081, 10397}, {57215, 54239}, {57779, 41083}, {57783, 306}, {57785, 14256}, {57793, 321}, {57796, 40701}


X(57796) = ISOTOMIC CONJUGATE OF X(228)

Barycentrics    -(b^3*(a+b)*c^3*(a+c)*(-a^4+(b^2-c^2)^2)) : :

X(57796) lies on these lines: {27, 871}, {81, 55231}, {92, 304}, {264, 305}, {273, 310}, {274, 16697}, {286, 6385}, {648, 57951}, {670, 46133}, {2856, 22456}, {6331, 31623}, {40827, 52575}, {57806, 58013}, {57973, 57996}

X(57796) = isotomic conjugate of X(228)
X(57796) = trilinear pole of line {15413, 17924}
X(57796) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 1918}, {6, 2200}, {10, 14575}, {25, 4055}, {31, 228}, {32, 71}, {37, 9247}, {41, 1409}, {42, 184}, {48, 213}, {63, 2205}, {72, 560}, {73, 2175}, {212, 1402}, {306, 1501}, {307, 9448}, {313, 40373}, {512, 32656}, {577, 2333}, {604, 52370}, {647, 32739}, {669, 1331}, {692, 810}, {798, 906}, {872, 1437}, {983, 22364}, {1176, 41267}, {1214, 9447}, {1253, 1410}, {1332, 1924}, {1334, 52411}, {1397, 2318}, {1400, 52425}, {1576, 55230}, {1790, 7109}, {1824, 52430}, {1826, 14585}, {1917, 20336}, {1919, 4574}, {1973, 3990}, {1974, 3682}, {2196, 41333}, {2197, 57657}, {2206, 3690}, {2209, 22381}, {2212, 22341}, {3709, 32660}, {3710, 41280}, {4064, 14574}, {4079, 32661}, {4558, 53581}, {4561, 9426}, {4575, 50487}, {4600, 23216}, {6056, 57652}, {7084, 22363}, {7104, 22061}, {8750, 39201}, {9233, 40071}, {10547, 21035}, {14827, 52373}, {21046, 23963}, {23212, 57399}, {32657, 51436}, {32658, 39258}, {32659, 52963}, {44162, 52396}
X(57796) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 228}, {9, 2200}, {136, 50487}, {274, 23079}, {1015, 3049}, {1086, 810}, {1249, 213}, {3160, 1409}, {3161, 52370}, {3162, 2205}, {4858, 55230}, {5190, 798}, {5521, 669}, {5976, 42702}, {6337, 3990}, {6374, 72}, {6376, 71}, {6505, 4055}, {6554, 22363}, {6626, 48}, {9296, 4574}, {9428, 1332}, {16589, 22369}, {17113, 1410}, {26932, 39201}, {31998, 906}, {34021, 3}, {36103, 1918}, {36901, 55232}, {39052, 32739}, {39054, 32656}, {39060, 4559}, {39062, 692}, {40582, 52425}, {40589, 9247}, {40592, 184}, {40593, 73}, {40603, 3690}, {40605, 212}, {40618, 822}, {40619, 647}, {40620, 22383}, {40625, 1946}, {40837, 1402}, {40938, 21814}, {50497, 23216}, {51575, 23212}
X(57796) = X(i)-cross conjugate of X(j) for these {i, j}: {264, 44129}, {274, 6385}, {693, 55231}, {6063, 310}, {16747, 286}, {17181, 86}, {17866, 75}, {18175, 81}, {54314, 331}
X(57796) = pole of line {669, 798} with respect to the polar circle
X(57796) = pole of line {9247, 14575} with respect to the Stammler hyperbola
X(57796) = pole of line {48, 184} with respect to the Wallace hyperbola
X(57796) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(27), X(31909)}}, {{A, B, C, X(28), X(427)}}, {{A, B, C, X(72), X(17866)}}, {{A, B, C, X(81), X(325)}}, {{A, B, C, X(92), X(264)}}, {{A, B, C, X(274), X(304)}}, {{A, B, C, X(310), X(18021)}}, {{A, B, C, X(561), X(871)}}, {{A, B, C, X(1333), X(50645)}}, {{A, B, C, X(1437), X(17181)}}, {{A, B, C, X(1444), X(16697)}}, {{A, B, C, X(1969), X(18022)}}, {{A, B, C, X(2203), X(56920)}}, {{A, B, C, X(18049), X(52376)}}, {{A, B, C, X(19800), X(33931)}}, {{A, B, C, X(20565), X(20929)}}, {{A, B, C, X(20641), X(40073)}}, {{A, B, C, X(20944), X(40074)}}, {{A, B, C, X(32023), X(37870)}}, {{A, B, C, X(40495), X(46234)}}, {{A, B, C, X(40717), X(46107)}}
X(57796) = barycentric product X(i)*X(j) for these (i, j): {4, 6385}, {27, 561}, {261, 52575}, {264, 274}, {273, 28660}, {278, 40072}, {286, 76}, {310, 92}, {314, 331}, {333, 57787}, {349, 57779}, {514, 57968}, {1172, 41283}, {1333, 44161}, {1396, 40363}, {1444, 18027}, {1474, 1928}, {1502, 28}, {1577, 55229}, {1826, 57992}, {1896, 57918}, {1969, 86}, {2203, 40362}, {2204, 41287}, {2973, 4601}, {3064, 55213}, {3261, 811}, {4025, 57973}, {4077, 55233}, {4572, 57215}, {4602, 7649}, {4609, 6591}, {6331, 693}, {14618, 4623}, {15413, 6528}, {16697, 57844}, {16703, 46104}, {16716, 57931}, {16741, 46111}, {16747, 308}, {17171, 18833}, {17206, 57806}, {17924, 670}, {17925, 6386}, {18021, 40149}, {18022, 81}, {18155, 46404}, {18180, 57790}, {20567, 29}, {21108, 37204}, {21207, 46254}, {24006, 52612}, {31623, 6063}, {31905, 44172}, {31909, 871}, {31917, 7034}, {40017, 40717}, {40050, 5317}, {40364, 8747}, {40495, 648}, {40701, 57795}, {40827, 54314}, {42395, 50521}, {44129, 75}, {44130, 85}, {46107, 799}, {46110, 4625}, {52379, 57809}, {52619, 6335}, {55231, 850}, {57785, 7017}, {57949, 7141}
X(57796) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2200}, {2, 228}, {4, 213}, {7, 1409}, {8, 52370}, {19, 1918}, {21, 52425}, {25, 2205}, {27, 31}, {28, 32}, {29, 41}, {58, 9247}, {63, 4055}, {69, 3990}, {75, 71}, {76, 72}, {81, 184}, {85, 73}, {86, 48}, {92, 42}, {99, 906}, {158, 2333}, {162, 32739}, {242, 41333}, {261, 2193}, {264, 37}, {270, 57657}, {273, 1400}, {274, 3}, {276, 56254}, {278, 1402}, {279, 1410}, {286, 6}, {297, 5360}, {304, 3682}, {305, 3998}, {309, 41087}, {310, 63}, {312, 2318}, {313, 3949}, {314, 219}, {318, 1334}, {321, 3690}, {324, 21807}, {325, 42702}, {330, 22381}, {331, 65}, {332, 2289}, {333, 212}, {348, 22341}, {349, 201}, {423, 18266}, {427, 21814}, {513, 3049}, {514, 810}, {561, 306}, {648, 692}, {662, 32656}, {668, 4574}, {670, 1332}, {693, 647}, {799, 1331}, {811, 101}, {823, 8750}, {850, 55232}, {873, 1790}, {905, 39201}, {1014, 52411}, {1043, 1802}, {1088, 52373}, {1107, 23212}, {1172, 2175}, {1231, 7066}, {1235, 3954}, {1269, 3958}, {1333, 14575}, {1396, 1397}, {1414, 32660}, {1434, 603}, {1437, 14585}, {1441, 2197}, {1444, 577}, {1446, 1425}, {1474, 560}, {1502, 20336}, {1509, 1437}, {1577, 55230}, {1790, 52430}, {1812, 6056}, {1824, 7109}, {1826, 872}, {1838, 40978}, {1847, 1042}, {1848, 3725}, {1851, 21750}, {1861, 39258}, {1896, 607}, {1909, 22061}, {1928, 40071}, {1969, 10}, {2052, 1824}, {2203, 1501}, {2204, 9448}, {2275, 22364}, {2299, 9447}, {2322, 1253}, {2501, 50487}, {2969, 3121}, {2970, 21833}, {2971, 52065}, {2973, 3125}, {3121, 23216}, {3261, 656}, {3267, 57109}, {3596, 3694}, {3673, 23620}, {3739, 22369}, {4000, 22363}, {4025, 822}, {4077, 55234}, {4131, 32320}, {4183, 14827}, {4359, 22080}, {4554, 23067}, {4560, 1946}, {4569, 52610}, {4573, 36059}, {4602, 4561}, {4610, 4575}, {4623, 4558}, {4625, 1813}, {5125, 2198}, {5317, 1974}, {5379, 23990}, {6063, 1214}, {6331, 100}, {6335, 4557}, {6385, 69}, {6386, 52609}, {6528, 1783}, {6591, 669}, {7017, 210}, {7141, 762}, {7182, 40152}, {7192, 22383}, {7199, 1459}, {7200, 22373}, {7257, 4587}, {7282, 21741}, {7649, 798}, {8025, 23201}, {8033, 3955}, {8747, 1973}, {8748, 2212}, {13149, 53321}, {14616, 52431}, {14618, 4705}, {15149, 2223}, {15413, 520}, {15419, 23224}, {15466, 3198}, {16696, 20775}, {16697, 418}, {16698, 23195}, {16699, 22368}, {16700, 23196}, {16701, 23198}, {16702, 23200}, {16703, 3917}, {16704, 23202}, {16705, 22345}, {16706, 23203}, {16707, 22352}, {16708, 22053}, {16709, 22054}, {16710, 22378}, {16711, 23205}, {16712, 23206}, {16713, 22079}, {16715, 23208}, {16716, 682}, {16717, 23209}, {16720, 22367}, {16721, 23211}, {16722, 23213}, {16723, 23214}, {16724, 23215}, {16726, 22096}, {16727, 3937}, {16728, 20776}, {16729, 22371}, {16732, 20975}, {16734, 23217}, {16736, 23218}, {16737, 22093}, {16738, 22389}, {16739, 22097}, {16741, 3292}, {16742, 22386}, {16744, 23219}, {16746, 23221}, {16747, 39}, {16748, 22060}, {16750, 1473}, {16751, 22388}, {16755, 23226}, {16887, 4020}, {17095, 22342}, {17171, 1964}, {17206, 255}, {17216, 37754}, {17442, 41267}, {17515, 52426}, {17862, 3611}, {17863, 44093}, {17913, 40600}, {17921, 8640}, {17923, 3724}, {17924, 512}, {17925, 667}, {17926, 8641}, {18021, 1812}, {18022, 321}, {18026, 4559}, {18027, 41013}, {18032, 57681}, {18155, 652}, {18157, 1818}, {18167, 4173}, {18180, 217}, {18600, 22344}, {18601, 23197}, {18602, 23199}, {18604, 23606}, {18605, 52435}, {18827, 2196}, {20336, 52386}, {20567, 307}, {20883, 21035}, {20911, 22076}, {20948, 4064}, {21108, 2084}, {21207, 3708}, {21666, 36197}, {23807, 2524}, {23989, 18210}, {23994, 21046}, {24006, 4079}, {27801, 3695}, {28659, 3710}, {28660, 78}, {30939, 22356}, {30940, 7193}, {30941, 20752}, {31008, 20760}, {31623, 55}, {31905, 2210}, {31909, 869}, {31917, 7032}, {32010, 7116}, {33146, 43218}, {33930, 20727}, {34016, 52408}, {34021, 23079}, {34387, 53560}, {35519, 8611}, {36419, 2203}, {37168, 2251}, {37756, 23230}, {38462, 52963}, {40017, 295}, {40071, 52387}, {40072, 345}, {40149, 181}, {40364, 52396}, {40411, 7084}, {40495, 525}, {40701, 227}, {40717, 2238}, {40827, 1791}, {40874, 20796}, {41013, 1500}, {41083, 2187}, {41283, 1231}, {43925, 1980}, {44129, 1}, {44130, 9}, {44142, 21802}, {44143, 21816}, {44146, 21839}, {44154, 5227}, {44161, 27801}, {44190, 52389}, {44426, 3709}, {46103, 2194}, {46104, 18098}, {46107, 661}, {46108, 20683}, {46109, 21805}, {46110, 4041}, {46254, 4570}, {46404, 4551}, {46506, 14620}, {51369, 3289}, {51843, 21877}, {51865, 15377}, {52137, 17976}, {52376, 10547}, {52379, 283}, {52572, 3916}, {52575, 12}, {52612, 4592}, {52619, 905}, {52621, 51664}, {52787, 21817}, {52919, 32676}, {52935, 32661}, {52954, 9406}, {52955, 9407}, {54235, 56853}, {54314, 2092}, {54407, 9454}, {54412, 21874}, {55205, 6517}, {55229, 662}, {55231, 110}, {55233, 643}, {56382, 7138}, {56875, 20970}, {57200, 1919}, {57215, 663}, {57779, 284}, {57785, 222}, {57787, 226}, {57790, 56189}, {57792, 1439}, {57795, 268}, {57806, 1826}, {57809, 2171}, {57918, 52385}, {57921, 53012}, {57968, 190}, {57973, 1897}, {57992, 17206}


X(57797) = ISOTOMIC CONJUGATE OF X(229)

Barycentrics    -(b*c*(b+c)*(a^4+b^4-c^4-a*b*c*(b+c)-a^2*b*(2*b+c))*(-a^4+b^4-c^4+a*b*c*(b+c)+a^2*c*(b+2*c))) : :

X(57797) lies on these lines: {319, 20336}, {321, 52412}, {3969, 42710}, {40999, 57807}

X(57797) = isotomic conjugate of X(229)
X(57797) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 229}, {32, 52361}, {604, 40582}, {1333, 1781}, {1397, 52360}, {1408, 56317}, {2203, 52362}, {2206, 2475}, {18625, 57657}
X(57797) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 229}, {37, 1781}, {3161, 40582}, {5375, 57194}, {6376, 52361}, {40603, 2475}
X(57797) = X(i)-cross conjugate of X(j) for these {i, j}: {8, 321}
X(57797) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(20932)}}, {{A, B, C, X(313), X(7035)}}, {{A, B, C, X(314), X(850)}}, {{A, B, C, X(319), X(1268)}}, {{A, B, C, X(321), X(20336)}}, {{A, B, C, X(1257), X(3695)}}, {{A, B, C, X(2287), X(52355)}}, {{A, B, C, X(3263), X(27569)}}, {{A, B, C, X(3936), X(40424)}}, {{A, B, C, X(39717), X(54121)}}
X(57797) = barycentric product X(i)*X(j) for these (i, j): {321, 54454}, {349, 56280}, {27801, 34435}, {57646, 76}
X(57797) = barycentric quotient X(i)/X(j) for these (i, j): {2, 229}, {8, 40582}, {10, 1781}, {75, 52361}, {100, 57194}, {306, 52362}, {312, 52360}, {321, 2475}, {1441, 18625}, {2321, 56317}, {20336, 28754}, {34435, 1333}, {43683, 41495}, {54454, 81}, {56280, 284}, {57646, 6}


X(57798) = ISOTOMIC CONJUGATE OF X(231)

Barycentrics    ((a^2-b^2)^4-2*(a^2-b^2)^2*(a^2+b^2)*c^2+3*(a^4+b^4)*c^4-4*(a^2+b^2)*c^6+2*c^8)*(a^8-2*a^6*(b^2+2*c^2)+(b^2-c^2)^2*(2*b^4+c^4)+a^4*(3*b^4+2*b^2*c^2+6*c^4)+a^2*(-4*b^6+2*b^2*c^4-4*c^6)) : :

X(57798) lies on these lines: {99, 2383}, {1141, 1273}, {4563, 7769}

X(57798) = isotomic conjugate of X(231)
X(57798) = trilinear pole of line {69, 41298}
X(57798) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 231}, {539, 1973}, {2179, 40631}, {2181, 52968}, {32676, 52742}
X(57798) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 231}, {6337, 539}, {15526, 52742}
X(57798) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 57758}, {57647, 57890}
X(57798) = pole of line {231, 539} with respect to the Wallace hyperbola
X(57798) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1141)}}, {{A, B, C, X(69), X(7763)}}, {{A, B, C, X(76), X(302)}}, {{A, B, C, X(99), X(4554)}}, {{A, B, C, X(4590), X(20573)}}
X(57798) = barycentric product X(i)*X(j) for these (i, j): {1273, 57758}, {2383, 305}, {57647, 76}, {57890, 69}
X(57798) = barycentric quotient X(i)/X(j) for these (i, j): {2, 231}, {69, 539}, {95, 40631}, {97, 52968}, {525, 52742}, {1273, 128}, {2383, 25}, {10411, 43969}, {30786, 52760}, {41298, 55150}, {44180, 45083}, {45799, 10615}, {52350, 52975}, {57647, 6}, {57758, 1141}, {57890, 4}


X(57799) = ISOTOMIC CONJUGATE OF X(232)

Barycentrics    b^2*c^2*(-a^2+b^2+c^2)*(a^4+b^4-(a^2+b^2)*c^2)*(-a^4+a^2*b^2+(b-c)*c^2*(b+c)) : :

X(57799) lies on these lines: {2, 6331}, {3, 76}, {69, 53174}, {97, 8024}, {114, 44155}, {132, 6528}, {216, 308}, {248, 28706}, {264, 13860}, {287, 305}, {311, 46318}, {316, 10749}, {325, 14941}, {336, 3682}, {338, 44531}, {384, 683}, {441, 3978}, {577, 33769}, {670, 15526}, {850, 30789}, {852, 56442}, {878, 8858}, {1003, 10604}, {1073, 41530}, {1214, 1920}, {1235, 37334}, {1241, 1976}, {1297, 5999}, {1502, 6389}, {1513, 17984}, {1821, 19810}, {1916, 41172}, {2966, 11610}, {2968, 56660}, {3266, 14919}, {3267, 35911}, {3552, 56362}, {3926, 28438}, {5481, 37455}, {6374, 20208}, {6393, 51404}, {6531, 7770}, {7386, 20021}, {7750, 55006}, {7763, 14376}, {7799, 34897}, {7824, 26166}, {8781, 43665}, {9230, 41005}, {9464, 56266}, {10684, 51324}, {11676, 44146}, {12215, 17932}, {14603, 51373}, {15421, 40832}, {18019, 57991}, {20023, 37188}, {26235, 55982}, {28695, 31636}, {31626, 39998}, {32828, 37186}, {32830, 56339}, {34254, 52350}, {40022, 53245}, {41174, 50436}, {46247, 47200}, {46810, 46814}, {46811, 46813}

X(57799) = isogonal conjugate of X(2211)
X(57799) = isotomic conjugate of X(232)
X(57799) = trilinear pole of line {69, 879}
X(57799) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2211}, {4, 9417}, {6, 57653}, {19, 237}, {25, 1755}, {31, 232}, {32, 240}, {48, 34854}, {92, 9418}, {162, 2491}, {163, 17994}, {297, 560}, {511, 1973}, {607, 51651}, {656, 34859}, {798, 4230}, {877, 1924}, {1096, 3289}, {1474, 5360}, {1501, 40703}, {1917, 44132}, {1927, 39931}, {1959, 1974}, {1967, 51324}, {2179, 19189}, {2181, 41270}, {2190, 52967}, {2212, 43034}, {2312, 51822}, {2489, 23997}, {3405, 27369}, {3569, 32676}, {6530, 9247}, {6531, 42075}, {9406, 35908}, {9419, 36120}, {9468, 56679}, {14251, 56828}, {23996, 57260}, {24019, 39469}, {44162, 46238}
X(57799) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 232}, {3, 2211}, {5, 52967}, {6, 237}, {9, 57653}, {98, 57262}, {115, 17994}, {125, 2491}, {287, 57261}, {525, 41172}, {647, 44114}, {1249, 34854}, {5976, 2967}, {6337, 511}, {6338, 36212}, {6374, 297}, {6376, 240}, {6394, 57258}, {6503, 3289}, {6505, 1755}, {8290, 51324}, {9410, 35908}, {9428, 877}, {14382, 41204}, {15526, 3569}, {15595, 9475}, {22391, 9418}, {23285, 868}, {31998, 4230}, {34156, 1692}, {35067, 51335}, {35071, 39469}, {36033, 9417}, {36899, 25}, {36901, 16230}, {39044, 56679}, {39058, 4}, {39085, 32}, {40179, 51412}, {40596, 34859}, {40618, 53521}, {46094, 9419}, {51574, 5360}, {52881, 9155}
X(57799) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18024, 290}, {41174, 43187}, {57861, 3978}
X(57799) = X(i)-complementary conjugate of X(j) for these {i, j}: {48, 39092}, {41520, 20305}
X(57799) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 57761}, {287, 290}, {6333, 670}, {36212, 69}, {39473, 6528}, {53173, 17932}
X(57799) = pole of line {2491, 17994} with respect to the polar circle
X(57799) = pole of line {14295, 46235} with respect to the MacBeath inconic
X(57799) = pole of line {237, 2211} with respect to the Stammler hyperbola
X(57799) = pole of line {39469, 53331} with respect to the Steiner circumellipse
X(57799) = pole of line {24284, 39469} with respect to the Steiner inellipse
X(57799) = pole of line {232, 511} with respect to the Wallace hyperbola
X(57799) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3)}}, {{A, B, C, X(4), X(39646)}}, {{A, B, C, X(22), X(28407)}}, {{A, B, C, X(68), X(54122)}}, {{A, B, C, X(69), X(183)}}, {{A, B, C, X(76), X(305)}}, {{A, B, C, X(83), X(12203)}}, {{A, B, C, X(98), X(287)}}, {{A, B, C, X(99), X(4554)}}, {{A, B, C, X(111), X(28438)}}, {{A, B, C, X(132), X(39473)}}, {{A, B, C, X(248), X(51869)}}, {{A, B, C, X(262), X(9289)}}, {{A, B, C, X(264), X(40822)}}, {{A, B, C, X(265), X(11606)}}, {{A, B, C, X(304), X(1920)}}, {{A, B, C, X(328), X(3267)}}, {{A, B, C, X(339), X(18019)}}, {{A, B, C, X(384), X(1368)}}, {{A, B, C, X(427), X(28723)}}, {{A, B, C, X(441), X(5999)}}, {{A, B, C, X(523), X(47211)}}, {{A, B, C, X(525), X(1916)}}, {{A, B, C, X(647), X(17970)}}, {{A, B, C, X(671), X(38664)}}, {{A, B, C, X(733), X(14908)}}, {{A, B, C, X(858), X(15013)}}, {{A, B, C, X(878), X(32540)}}, {{A, B, C, X(879), X(36822)}}, {{A, B, C, X(895), X(3228)}}, {{A, B, C, X(1003), X(16051)}}, {{A, B, C, X(1078), X(1799)}}, {{A, B, C, X(1176), X(39968)}}, {{A, B, C, X(1231), X(40827)}}, {{A, B, C, X(1370), X(28695)}}, {{A, B, C, X(1502), X(20563)}}, {{A, B, C, X(1650), X(50436)}}, {{A, B, C, X(1975), X(6340)}}, {{A, B, C, X(2998), X(6391)}}, {{A, B, C, X(3266), X(45807)}}, {{A, B, C, X(3407), X(14880)}}, {{A, B, C, X(3511), X(36214)}}, {{A, B, C, X(3552), X(30771)}}, {{A, B, C, X(3563), X(15412)}}, {{A, B, C, X(5094), X(35952)}}, {{A, B, C, X(5159), X(13586)}}, {{A, B, C, X(5503), X(23235)}}, {{A, B, C, X(5976), X(6393)}}, {{A, B, C, X(6333), X(32458)}}, {{A, B, C, X(6676), X(7824)}}, {{A, B, C, X(7100), X(40738)}}, {{A, B, C, X(7386), X(7770)}}, {{A, B, C, X(7484), X(37186)}}, {{A, B, C, X(7494), X(11285)}}, {{A, B, C, X(7763), X(34254)}}, {{A, B, C, X(7799), X(37804)}}, {{A, B, C, X(8024), X(28706)}}, {{A, B, C, X(8791), X(39832)}}, {{A, B, C, X(9462), X(55977)}}, {{A, B, C, X(11610), X(52672)}}, {{A, B, C, X(13108), X(43688)}}, {{A, B, C, X(13188), X(35005)}}, {{A, B, C, X(13860), X(37188)}}, {{A, B, C, X(14265), X(43665)}}, {{A, B, C, X(14486), X(40815)}}, {{A, B, C, X(14600), X(15391)}}, {{A, B, C, X(18018), X(18027)}}, {{A, B, C, X(19799), X(19810)}}, {{A, B, C, X(22712), X(42313)}}, {{A, B, C, X(23582), X(34168)}}, {{A, B, C, X(28725), X(31125)}}, {{A, B, C, X(30739), X(35928)}}, {{A, B, C, X(31635), X(40428)}}, {{A, B, C, X(31637), X(32020)}}, {{A, B, C, X(34816), X(34817)}}, {{A, B, C, X(36212), X(51373)}}, {{A, B, C, X(36952), X(42006)}}, {{A, B, C, X(38262), X(38263)}}, {{A, B, C, X(38642), X(54978)}}, {{A, B, C, X(39469), X(52009)}}, {{A, B, C, X(40404), X(40416)}}, {{A, B, C, X(40800), X(40807)}}, {{A, B, C, X(42010), X(51524)}}, {{A, B, C, X(43535), X(51523)}}, {{A, B, C, X(46806), X(53174)}}
X(57799) = barycentric product X(i)*X(j) for these (i, j): {264, 6394}, {287, 76}, {290, 69}, {293, 561}, {305, 98}, {336, 75}, {339, 57991}, {670, 879}, {1502, 248}, {1821, 304}, {1910, 40364}, {1976, 40050}, {2395, 52608}, {2966, 3267}, {4609, 878}, {14208, 36036}, {14265, 57872}, {14382, 40708}, {14600, 40362}, {14601, 40360}, {14603, 15391}, {15526, 41174}, {15628, 57918}, {16081, 3926}, {17932, 850}, {17974, 18022}, {18024, 3}, {20563, 31635}, {22456, 3265}, {30737, 57761}, {30786, 52145}, {34384, 53174}, {34386, 53245}, {34536, 6393}, {34537, 51404}, {36893, 54988}, {43187, 525}, {43665, 4563}, {43754, 44173}, {46273, 63}, {51776, 57904}, {52617, 685}, {53173, 6331}
X(57799) = barycentric quotient X(i)/X(j) for these (i, j): {1, 57653}, {2, 232}, {3, 237}, {4, 34854}, {6, 2211}, {48, 9417}, {63, 1755}, {69, 511}, {72, 5360}, {75, 240}, {76, 297}, {77, 51651}, {95, 19189}, {97, 41270}, {98, 25}, {99, 4230}, {112, 34859}, {125, 44114}, {184, 9418}, {216, 52967}, {248, 32}, {264, 6530}, {287, 6}, {290, 4}, {293, 31}, {297, 51334}, {304, 1959}, {305, 325}, {311, 39569}, {325, 2967}, {328, 14356}, {336, 1}, {339, 868}, {348, 43034}, {385, 51324}, {394, 3289}, {441, 9475}, {520, 39469}, {523, 17994}, {525, 3569}, {561, 40703}, {647, 2491}, {670, 877}, {685, 32713}, {850, 16230}, {878, 669}, {879, 512}, {895, 51980}, {1297, 51822}, {1494, 35908}, {1502, 44132}, {1799, 51862}, {1821, 19}, {1910, 1973}, {1966, 56679}, {1975, 15143}, {1976, 1974}, {2395, 2489}, {2422, 57204}, {2966, 112}, {3150, 38368}, {3265, 684}, {3267, 2799}, {3289, 9419}, {3564, 51335}, {3718, 44694}, {3926, 36212}, {3978, 39931}, {3998, 42702}, {4025, 53521}, {4176, 51386}, {4558, 14966}, {4563, 2421}, {4592, 23997}, {5641, 52492}, {5967, 44102}, {6333, 41167}, {6390, 9155}, {6393, 36790}, {6394, 3}, {6531, 2207}, {7386, 51412}, {8781, 57493}, {9154, 8753}, {9476, 43717}, {11610, 17409}, {11653, 44080}, {12215, 36213}, {14265, 460}, {14355, 34397}, {14382, 419}, {14600, 1501}, {14601, 44162}, {14615, 44704}, {14941, 57500}, {14965, 40601}, {14977, 8430}, {15391, 9468}, {15526, 41172}, {15628, 607}, {15630, 42068}, {16081, 393}, {16083, 47202}, {17206, 17209}, {17932, 110}, {17974, 184}, {18024, 264}, {19583, 51426}, {19599, 51337}, {20021, 1843}, {22456, 107}, {30737, 132}, {30786, 5968}, {31635, 24}, {31636, 8743}, {34156, 42671}, {34536, 6531}, {34767, 32112}, {35140, 39265}, {35906, 14581}, {35912, 1495}, {36036, 162}, {36084, 32676}, {36120, 1096}, {36212, 11672}, {36214, 14251}, {36822, 46522}, {36874, 5140}, {36893, 6000}, {36897, 17980}, {36899, 57262}, {37858, 44467}, {40364, 46238}, {40428, 3563}, {40708, 40810}, {40820, 44089}, {41009, 2450}, {41173, 32696}, {41174, 23582}, {41932, 57260}, {42313, 51543}, {43187, 648}, {43665, 2501}, {43705, 34157}, {43754, 1576}, {43920, 42067}, {44132, 36426}, {46140, 52486}, {46273, 92}, {46786, 6103}, {46806, 10311}, {47388, 1976}, {51404, 3124}, {51441, 2971}, {51776, 571}, {51820, 44099}, {51869, 27369}, {51963, 51437}, {52145, 468}, {52347, 44716}, {52451, 44084}, {52608, 2396}, {52617, 6333}, {52672, 14580}, {53173, 647}, {53174, 51}, {53245, 53}, {53783, 52144}, {54086, 54094}, {54988, 56605}, {55266, 32697}, {56571, 34146}, {57260, 36417}, {57490, 16318}, {57742, 57655}, {57761, 1297}, {57819, 56925}, {57872, 52091}, {57991, 250}
X(57799) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3266, 46786, 43187}, {51259, 52145, 14382}


X(57800) = ISOTOMIC CONJUGATE OF X(235)

Barycentrics    (a^2-b^2-c^2)*((a^2-b^2)^2*(a^2+b^2)-2*(a^2-b^2)^2*c^2+(a^2+b^2)*c^4)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+4*b^2*c^2-c^4)) : :

X(57800) lies on these lines: {2, 801}, {3, 40032}, {69, 18936}, {99, 51967}, {253, 3926}, {264, 1105}, {325, 40413}, {332, 57838}, {648, 14091}, {1441, 57955}, {1494, 52347}, {1799, 41008}, {4563, 57864}, {7796, 44177}, {9723, 57819}, {10603, 32001}, {11413, 14615}, {14642, 37669}, {51386, 57855}

X(57800) = isogonal conjugate of X(44079)
X(57800) = isotomic conjugate of X(235)
X(57800) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44079}, {19, 800}, {25, 774}, {31, 235}, {185, 1096}, {204, 52566}, {560, 44131}, {798, 41678}, {820, 6524}, {1973, 13567}, {1974, 17858}, {2181, 16035}, {2207, 6508}, {2333, 18603}
X(57800) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 235}, {3, 44079}, {6, 800}, {3343, 52566}, {6337, 13567}, {6338, 41005}, {6374, 44131}, {6503, 185}, {6505, 774}, {14091, 36424}, {31998, 41678}
X(57800) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40830, 801}
X(57800) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 57775}, {16196, 2}, {30211, 648}, {52613, 4563}, {57648, 801}
X(57800) = pole of line {800, 44079} with respect to the Stammler hyperbola
X(57800) = pole of line {185, 235} with respect to the Wallace hyperbola
X(57800) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(1593)}}, {{A, B, C, X(68), X(13380)}}, {{A, B, C, X(98), X(6391)}}, {{A, B, C, X(235), X(16196)}}, {{A, B, C, X(261), X(7182)}}, {{A, B, C, X(895), X(32085)}}, {{A, B, C, X(1105), X(41890)}}, {{A, B, C, X(1176), X(11169)}}, {{A, B, C, X(1294), X(34233)}}, {{A, B, C, X(1975), X(6394)}}, {{A, B, C, X(3718), X(4998)}}, {{A, B, C, X(3933), X(41008)}}, {{A, B, C, X(8884), X(15316)}}, {{A, B, C, X(9139), X(46087)}}, {{A, B, C, X(14091), X(30211)}}, {{A, B, C, X(15740), X(52224)}}, {{A, B, C, X(22466), X(22581)}}, {{A, B, C, X(34168), X(41894)}}, {{A, B, C, X(34385), X(40423)}}, {{A, B, C, X(34386), X(40832)}}, {{A, B, C, X(35140), X(40050)}}, {{A, B, C, X(38263), X(57408)}}, {{A, B, C, X(45838), X(55977)}}
X(57800) = barycentric product X(i)*X(j) for these (i, j): {3, 40830}, {69, 801}, {304, 775}, {305, 41890}, {394, 57775}, {1102, 821}, {1105, 3926}, {57648, 76}, {57955, 63}, {57972, 6507}
X(57800) = barycentric quotient X(i)/X(j) for these (i, j): {2, 235}, {3, 800}, {6, 44079}, {63, 774}, {69, 13567}, {76, 44131}, {97, 16035}, {99, 41678}, {235, 36424}, {304, 17858}, {326, 6508}, {394, 185}, {775, 19}, {801, 4}, {821, 6520}, {1073, 52566}, {1105, 393}, {1444, 18603}, {2063, 36982}, {3926, 41005}, {3964, 6509}, {4558, 1624}, {6507, 820}, {11064, 51403}, {11413, 14091}, {20806, 41580}, {28419, 41602}, {34386, 19166}, {37669, 2883}, {40830, 264}, {41890, 25}, {53415, 22970}, {57414, 41489}, {57648, 6}, {57775, 2052}, {57955, 92}, {57972, 6521}


X(57801) = ISOTOMIC CONJUGATE OF X(243)

Barycentrics    (a+b-c)*(a-b+c)*(a^2-b^2-c^2)*(a*(a-b)^2*b+(a^2-a*b+b^2)*c^2-c^4)*(-b^4+a^3*c+b^2*c^2+a^2*(b^2-2*c^2)+a*(-(b^2*c)+c^3)) : :

X(57801) lies on these lines: {69, 24031}, {75, 2968}, {296, 332}, {333, 664}, {345, 40843}, {1441, 14009}, {1937, 30479}, {2481, 35014}, {6350, 58004}, {34393, 53211}

X(57801) = isogonal conjugate of X(51726)
X(57801) = isotomic conjugate of X(243)
X(57801) = trilinear pole of line {307, 6332}
X(57801) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 51726}, {6, 2202}, {19, 1951}, {25, 1936}, {29, 44112}, {31, 243}, {32, 1948}, {33, 26884}, {55, 1430}, {560, 57812}, {663, 23353}, {851, 2299}, {1172, 42669}, {1395, 7360}, {1402, 15146}, {1944, 1973}, {1981, 3063}, {2204, 8680}, {2207, 6518}, {2212, 5088}, {2332, 51645}, {7105, 44096}, {7107, 41368}
X(57801) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 243}, {3, 51726}, {6, 1951}, {9, 2202}, {223, 1430}, {226, 851}, {6337, 1944}, {6374, 57812}, {6376, 1948}, {6505, 1936}, {10001, 1981}, {39036, 41500}, {40605, 15146}
X(57801) = X(i)-cross conjugate of X(j) for these {i, j}: {296, 1952}
X(57801) = pole of line {1951, 51726} with respect to the Stammler hyperbola
X(57801) = pole of line {243, 1944} with respect to the Wallace hyperbola
X(57801) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7055)}}, {{A, B, C, X(3), X(14009)}}, {{A, B, C, X(63), X(6063)}}, {{A, B, C, X(69), X(75)}}, {{A, B, C, X(222), X(7249)}}, {{A, B, C, X(253), X(1264)}}, {{A, B, C, X(264), X(326)}}, {{A, B, C, X(296), X(1945)}}, {{A, B, C, X(664), X(46404)}}, {{A, B, C, X(1214), X(1441)}}, {{A, B, C, X(1809), X(2968)}}, {{A, B, C, X(2481), X(4025)}}, {{A, B, C, X(3596), X(19611)}}, {{A, B, C, X(4998), X(52351)}}, {{A, B, C, X(7233), X(17094)}}, {{A, B, C, X(32023), X(41081)}}, {{A, B, C, X(36795), X(52616)}}
X(57801) = barycentric product X(i)*X(j) for these (i, j): {296, 76}, {307, 35145}, {1214, 57980}, {1231, 37142}, {1937, 304}, {1943, 57864}, {1945, 305}, {1949, 561}, {1952, 69}, {3265, 41207}, {4572, 52222}, {14208, 41206}, {40843, 75}, {53211, 6332}
X(57801) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2202}, {2, 243}, {3, 1951}, {6, 51726}, {57, 1430}, {63, 1936}, {69, 1944}, {73, 42669}, {75, 1948}, {76, 57812}, {222, 26884}, {296, 6}, {307, 8680}, {326, 6518}, {333, 15146}, {345, 7360}, {348, 5088}, {651, 23353}, {664, 1981}, {1214, 851}, {1231, 44150}, {1409, 44112}, {1439, 51645}, {1937, 19}, {1940, 41368}, {1942, 7106}, {1943, 450}, {1945, 25}, {1947, 41497}, {1948, 41500}, {1949, 31}, {1950, 44096}, {1952, 4}, {2249, 2299}, {17950, 41499}, {35145, 29}, {37142, 1172}, {40843, 1}, {41206, 162}, {41207, 107}, {52222, 663}, {53211, 653}, {57864, 7108}, {57980, 31623}


X(57802) = ISOTOMIC CONJUGATE OF X(245)

Barycentrics    (a-b)^2*b*(a+b)*(a-c)^2*c*(a+c)*(a^7+a^6*b+a*b^6+b^7-a^2*b^2*(a^2+a*b+b^2)*c-2*(a+b)*(a^4+b^4)*c^2+(a^4+a^3*b+3*a^2*b^2+a*b^3+b^4)*c^3+(a+b)*(a^2+b^2)*c^4-(2*a^2+a*b+2*b^2)*c^5+c^7)*(a^7-2*a^5*b^2+a^6*c+a^4*b*(b^2-2*b*c-c^2)+(b-c)^2*(b+c)^3*(b^2-b*c+c^2)-a*(b-c)*c*(b+c)*(b^3-b^2*c+c^3)+a^3*(b^4+b^3*c-b*c^3)+a^2*(-2*b^5+b^4*c+3*b^3*c^2-b*c^4)) : :

X(57802) lies on these lines: {4590, 35550}

X(57802) = isotomic conjugate of X(245)
X(57802) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(850)}}, {{A, B, C, X(892), X(4590)}}, {{A, B, C, X(24037), X(35156)}}
X(57802) = barycentric product X(i)*X(j) for these (i, j): {57649, 76}
X(57802) = barycentric quotient X(i)/X(j) for these (i, j): {2, 245}, {57649, 6}


X(57803) = ISOTOMIC CONJUGATE OF X(246)

Barycentrics    (a-b)^2*b^2*(a+b)^2*(a-c)^2*c^2*(a+c)^2*(a^8+2*a^6*(b^2-2*c^2)+(b^2-c^2)^4+a^4*(-5*b^2*c^2+6*c^4)+a^2*(2*b^6-5*b^4*c^2+7*b^2*c^4-4*c^6))*(a^8+(b^2-c^2)^4+2*a^6*(-2*b^2+c^2)+a^4*(6*b^4-5*b^2*c^2)+a^2*(-4*b^6+7*b^4*c^2-5*b^2*c^4+2*c^6)) : :

X(57803) lies on these lines: {3260, 4590}, {18020, 46106}

X(57803) = isotomic conjugate of X(246)
X(57803) = trilinear pole of line {99, 41079}
X(57803) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 246}, {810, 47221}
X(57803) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 246}, {39062, 47221}
X(57803) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(250), X(44768)}}, {{A, B, C, X(264), X(850)}}, {{A, B, C, X(892), X(4590)}}, {{A, B, C, X(5641), X(34536)}}, {{A, B, C, X(13485), X(46142)}}
X(57803) = barycentric product X(i)*X(j) for these (i, j): {57650, 76}
X(57803) = barycentric quotient X(i)/X(j) for these (i, j): {2, 246}, {648, 47221}, {57650, 6}


X(57804) = ISOTOMIC CONJUGATE OF X(247)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*((a^2-b^2)^2*(a^6+b^6)+(-2*a^8+5*a^6*b^2-2*a^4*b^4+5*a^2*b^6-2*b^8)*c^2-(a^2+b^2)*(a^4+5*a^2*b^2+b^4)*c^4+(5*a^4+7*a^2*b^2+5*b^4)*c^6-4*(a^2+b^2)*c^8+c^10)*((a^2-b^2)^3*(a^4+a^2*b^2-b^4)+(-2*a^8+5*a^6*b^2-6*a^4*b^4+7*a^2*b^6-4*b^8)*c^2+(a^6-2*a^4*b^2-6*a^2*b^4+5*b^6)*c^4+(a^4+5*a^2*b^2-b^4)*c^6-2*(a^2+b^2)*c^8+c^10) : :

X(57804) lies on these lines: {850, 57932}, {3580, 18020}, {4590, 57651}

X(57804) = isotomic conjugate of X(247)
X(57804) = trilinear pole of line {99, 6334}
X(57804) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(850)}}, {{A, B, C, X(892), X(4590)}}, {{A, B, C, X(16077), X(47389)}}
X(57804) = barycentric product X(i)*X(j) for these (i, j): {57651, 76}
X(57804) = barycentric quotient X(i)/X(j) for these (i, j): {2, 247}, {57651, 6}


X(57805) = ISOTOMIC CONJUGATE OF X(252)

Barycentrics    ((a^2-b^2)^2-(2*a^2+b^2)*c^2+c^4)*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :

X(57805) lies on these lines: {2, 571}, {5, 311}, {69, 576}, {99, 33643}, {183, 7571}, {264, 328}, {302, 8838}, {303, 8836}, {316, 7550}, {317, 7505}, {325, 1232}, {1007, 7392}, {1995, 7664}, {2963, 44376}, {3091, 40697}, {3260, 45198}, {3518, 7769}, {4558, 17035}, {6353, 34803}, {7814, 44149}, {13430, 55886}, {13441, 55891}, {14129, 14577}, {14570, 36412}, {16837, 57904}, {35345, 37647}, {37668, 40002}, {44131, 45177}, {45793, 53028}

X(57805) = isotomic conjugate of X(252)
X(57805) = trilinear pole of line {20577, 57137}
X(57805) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 252}, {560, 57765}, {1924, 55283}, {2148, 2963}, {2190, 51477}, {2616, 32737}, {2623, 36148}, {2643, 57639}, {2962, 54034}
X(57805) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 252}, {5, 51477}, {216, 2963}, {6374, 57765}, {9428, 55283}, {12077, 115}, {14920, 562}, {33529, 37848}, {33530, 37850}, {34520, 15109}, {35591, 14270}, {37636, 51255}, {39018, 2623}, {52032, 3519}
X(57805) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4590, 14570}
X(57805) = X(i)-cross conjugate of X(j) for these {i, j}: {137, 20577}, {143, 14129}, {31376, 2}
X(57805) = pole of line {8041, 37649} with respect to the Kiepert hyperbola
X(57805) = pole of line {570, 8603} with respect to the Stammler hyperbola
X(57805) = pole of line {54, 140} with respect to the Wallace hyperbola
X(57805) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1225)}}, {{A, B, C, X(5), X(143)}}, {{A, B, C, X(93), X(22101)}}, {{A, B, C, X(233), X(24206)}}, {{A, B, C, X(252), X(31376)}}, {{A, B, C, X(264), X(1273)}}, {{A, B, C, X(311), X(8836)}}, {{A, B, C, X(328), X(44180)}}, {{A, B, C, X(571), X(16837)}}, {{A, B, C, X(1510), X(3613)}}, {{A, B, C, X(1994), X(39113)}}, {{A, B, C, X(2965), X(41169)}}, {{A, B, C, X(7769), X(20573)}}, {{A, B, C, X(9221), X(34418)}}, {{A, B, C, X(14356), X(44716)}}
X(57805) = barycentric product X(i)*X(j) for these (i, j): {5, 7769}, {137, 4590}, {143, 76}, {324, 44180}, {1273, 30529}, {1994, 311}, {4563, 57211}, {14129, 69}, {14570, 41298}, {14577, 305}, {20577, 99}, {28706, 3518}, {32002, 343}, {51440, 53245}, {57135, 6331}, {57137, 670}
X(57805) = barycentric quotient X(i)/X(j) for these (i, j): {2, 252}, {5, 2963}, {49, 14533}, {76, 57765}, {137, 115}, {143, 6}, {216, 51477}, {249, 57639}, {311, 11140}, {324, 93}, {343, 3519}, {467, 14111}, {670, 55283}, {1510, 2623}, {1625, 32737}, {1994, 54}, {2617, 36148}, {2964, 2148}, {2965, 54034}, {3518, 8882}, {4590, 57764}, {7769, 95}, {10216, 36412}, {14129, 4}, {14213, 2962}, {14570, 930}, {14577, 25}, {14918, 562}, {15226, 1879}, {15345, 15109}, {20577, 523}, {23290, 55251}, {30529, 1141}, {31610, 1487}, {32002, 275}, {37084, 46088}, {41298, 15412}, {44180, 97}, {45083, 52968}, {45793, 25043}, {47424, 20975}, {52670, 8741}, {52671, 8742}, {57135, 647}, {57137, 512}, {57211, 2501}
X(57805) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 39113, 311}, {311, 39113, 1273}, {7769, 32002, 44180}


X(57806) = ISOTOMIC CONJUGATE OF X(255)

Barycentrics    b^3*c^3*(a^4-(b^2-c^2)^2)^2 : :
X(57806) = -3*X[2]+2*X[828]

X(57806) lies on these lines: {1, 40440}, {2, 828}, {19, 823}, {48, 9252}, {69, 57812}, {75, 158}, {92, 1953}, {255, 57974}, {264, 1441}, {273, 52938}, {286, 2995}, {313, 18027}, {321, 2052}, {326, 821}, {561, 18695}, {811, 44179}, {1096, 3112}, {1118, 55394}, {1226, 57787}, {1748, 1820}, {1784, 17859}, {1857, 40717}, {1896, 2997}, {5906, 7331}, {6335, 27396}, {6528, 14616}, {8795, 52391}, {18691, 23994}, {20571, 57898}, {20930, 46404}, {21666, 44131}, {33808, 57998}, {46277, 57973}, {57796, 58013}

X(57806) = isogonal conjugate of X(52430)
X(57806) = isotomic conjugate of X(255)
X(57806) = anticomplement of X(828)
X(57806) = trilinear pole of line {1577, 46110}
X(57806) = perspector of circumconic {{A, B, C, X(57930), X(57973)}}
X(57806) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52430}, {2, 14585}, {3, 184}, {4, 23606}, {6, 577}, {19, 4100}, {25, 1092}, {31, 255}, {32, 394}, {41, 7125}, {48, 48}, {49, 51477}, {50, 50433}, {51, 19210}, {54, 418}, {55, 7335}, {56, 6056}, {58, 4055}, {63, 9247}, {68, 52435}, {69, 14575}, {95, 44088}, {97, 217}, {110, 39201}, {112, 32320}, {154, 14379}, {163, 822}, {212, 603}, {213, 18604}, {216, 14533}, {219, 52411}, {222, 52425}, {228, 1437}, {237, 17974}, {248, 3289}, {250, 34980}, {305, 40373}, {326, 560}, {520, 1576}, {563, 1820}, {571, 55549}, {604, 2289}, {605, 606}, {647, 32661}, {652, 32660}, {692, 23224}, {810, 4575}, {895, 23200}, {906, 22383}, {1147, 2351}, {1176, 20775}, {1259, 1397}, {1262, 39687}, {1264, 41280}, {1333, 3990}, {1409, 2193}, {1415, 36054}, {1459, 32656}, {1501, 3926}, {1625, 46088}, {1636, 32640}, {1790, 2200}, {1802, 7099}, {1804, 2175}, {1946, 36059}, {1973, 6507}, {1974, 3964}, {2052, 36433}, {2188, 7114}, {2194, 22341}, {2206, 3682}, {2632, 23995}, {2638, 24027}, {2972, 57655}, {3049, 4558}, {3051, 28724}, {3167, 40319}, {3265, 14574}, {3269, 23357}, {3284, 18877}, {3292, 14908}, {3917, 10547}, {4091, 32739}, {4176, 44162}, {5562, 54034}, {6394, 9418}, {6413, 8911}, {6414, 26920}, {7055, 9448}, {7183, 9447}, {10607, 53059}, {14376, 22075}, {14528, 26880}, {14573, 52347}, {14586, 17434}, {14600, 36212}, {14601, 51386}, {14642, 15905}, {15389, 20794}, {15451, 15958}, {15526, 23963}, {16391, 44077}, {18315, 42293}, {20574, 32078}, {20752, 32658}, {20975, 47390}, {22115, 52153}, {22356, 32659}, {23195, 40441}, {23202, 36058}, {23216, 47389}, {23964, 35071}, {23979, 35072}, {24000, 42080}, {26454, 51946}, {26461, 51905}, {32737, 37084}, {33581, 35602}, {34396, 54032}, {36296, 46112}, {36297, 46113}, {37188, 40823}, {39469, 43754}, {40152, 57657}, {40352, 51394}, {42065, 52144}, {52350, 52436}
X(57806) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 6056}, {2, 255}, {3, 52430}, {6, 4100}, {9, 577}, {10, 4055}, {37, 3990}, {92, 20764}, {115, 822}, {136, 810}, {223, 7335}, {244, 39201}, {522, 2638}, {647, 37754}, {828, 828}, {1086, 23224}, {1146, 36054}, {1214, 22341}, {1249, 48}, {1577, 1364}, {3160, 7125}, {3161, 2289}, {3162, 9247}, {4858, 520}, {5190, 22383}, {6337, 6507}, {6374, 326}, {6376, 394}, {6505, 1092}, {6509, 820}, {6523, 31}, {6626, 18604}, {7952, 212}, {15259, 560}, {18314, 2632}, {20619, 23202}, {20620, 1946}, {32664, 14585}, {34591, 32320}, {36033, 23606}, {36103, 184}, {36901, 24018}, {39039, 3289}, {39052, 32661}, {39053, 36059}, {39060, 1813}, {39062, 4575}, {40593, 1804}, {40603, 3682}, {40619, 4091}, {40622, 51640}, {40624, 57241}, {40837, 603}, {40839, 19614}, {40938, 4020}, {47345, 1409}
X(57806) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57972, 75}, {57974, 2}
X(57806) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {829, 8}, {57974, 6327}
X(57806) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 57716}, {92, 1969}, {158, 6521}, {2632, 1577}, {17858, 75}, {24006, 823}, {24026, 46110}, {46107, 52938}, {57809, 264}
X(57806) = pole of line {810, 822} with respect to the polar circle
X(57806) = pole of line {4100, 52430} with respect to the Stammler hyperbola
X(57806) = pole of line {255, 820} with respect to the Wallace hyperbola
X(57806) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1820)}}, {{A, B, C, X(19), X(240)}}, {{A, B, C, X(29), X(2476)}}, {{A, B, C, X(48), X(1956)}}, {{A, B, C, X(63), X(45224)}}, {{A, B, C, X(75), X(92)}}, {{A, B, C, X(82), X(8767)}}, {{A, B, C, X(86), X(52780)}}, {{A, B, C, X(158), X(821)}}, {{A, B, C, X(255), X(828)}}, {{A, B, C, X(264), X(7017)}}, {{A, B, C, X(273), X(24032)}}, {{A, B, C, X(309), X(35519)}}, {{A, B, C, X(326), X(2184)}}, {{A, B, C, X(331), X(40701)}}, {{A, B, C, X(341), X(1226)}}, {{A, B, C, X(342), X(1088)}}, {{A, B, C, X(765), X(27396)}}, {{A, B, C, X(1089), X(21675)}}, {{A, B, C, X(1784), X(18486)}}, {{A, B, C, X(1969), X(52575)}}, {{A, B, C, X(14208), X(19611)}}, {{A, B, C, X(20948), X(46244)}}, {{A, B, C, X(24041), X(44179)}}, {{A, B, C, X(31359), X(53044)}}, {{A, B, C, X(40364), X(46273)}}
X(57806) = barycentric product X(i)*X(j) for these (i, j): {1, 18027}, {24, 57898}, {29, 52575}, {107, 20948}, {158, 76}, {264, 92}, {273, 7017}, {281, 57787}, {305, 6520}, {317, 57716}, {318, 331}, {324, 40440}, {327, 51315}, {393, 561}, {523, 57973}, {823, 850}, {1093, 304}, {1096, 1502}, {1118, 28659}, {1577, 6528}, {1748, 55553}, {1826, 57796}, {1857, 20567}, {1895, 52581}, {1896, 349}, {1928, 2207}, {1953, 57844}, {1969, 4}, {1973, 44161}, {2052, 75}, {2181, 57790}, {2501, 57968}, {2618, 42405}, {2970, 46254}, {3267, 36126}, {4391, 52938}, {6521, 69}, {11547, 20571}, {13567, 57972}, {14208, 15352}, {14213, 8795}, {14249, 57921}, {14618, 811}, {16081, 40703}, {17869, 57978}, {17879, 34538}, {18022, 19}, {18026, 46110}, {18695, 8794}, {18817, 52414}, {18833, 27376}, {20883, 46104}, {23582, 23994}, {23962, 24000}, {23978, 24032}, {23999, 338}, {24006, 6331}, {24019, 44173}, {24021, 36793}, {27801, 8747}, {31623, 57809}, {33805, 52661}, {35519, 54240}, {36120, 44132}, {37778, 46277}, {40149, 44130}, {40364, 6524}, {40701, 7020}, {41013, 44129}, {44190, 47372}, {44426, 46404}, {46107, 6335}, {46244, 52448}, {46273, 6530}, {53036, 57834}, {57843, 6508}
X(57806) = barycentric quotient X(i)/X(j) for these (i, j): {1, 577}, {2, 255}, {3, 4100}, {4, 48}, {6, 52430}, {7, 7125}, {8, 2289}, {9, 6056}, {10, 3990}, {19, 184}, {24, 563}, {25, 9247}, {27, 1437}, {29, 2193}, {31, 14585}, {33, 52425}, {34, 52411}, {37, 4055}, {48, 23606}, {57, 7335}, {63, 1092}, {69, 6507}, {75, 394}, {76, 326}, {85, 1804}, {86, 18604}, {91, 55549}, {92, 3}, {107, 163}, {108, 32660}, {125, 37754}, {158, 6}, {162, 32661}, {196, 7114}, {225, 1409}, {226, 22341}, {240, 3289}, {264, 63}, {273, 222}, {275, 2169}, {278, 603}, {281, 212}, {286, 1790}, {304, 3964}, {305, 1102}, {312, 1259}, {313, 3998}, {314, 6514}, {318, 219}, {321, 3682}, {324, 44706}, {331, 77}, {338, 2632}, {342, 7011}, {349, 52385}, {393, 31}, {403, 2315}, {427, 4020}, {459, 19614}, {514, 23224}, {522, 36054}, {523, 822}, {561, 3926}, {648, 4575}, {653, 36059}, {656, 32320}, {661, 39201}, {693, 4091}, {811, 4558}, {821, 41890}, {823, 110}, {847, 1820}, {850, 24018}, {1089, 52386}, {1093, 19}, {1096, 32}, {1109, 3269}, {1118, 604}, {1119, 7099}, {1123, 606}, {1146, 2638}, {1336, 605}, {1441, 40152}, {1577, 520}, {1748, 1147}, {1783, 32656}, {1784, 3284}, {1821, 17974}, {1824, 2200}, {1826, 228}, {1838, 14597}, {1839, 23201}, {1847, 7053}, {1848, 22345}, {1855, 22079}, {1857, 41}, {1861, 20752}, {1895, 15905}, {1896, 284}, {1897, 906}, {1953, 418}, {1969, 69}, {1973, 14575}, {2052, 1}, {2166, 50433}, {2167, 19210}, {2179, 44088}, {2181, 217}, {2184, 14379}, {2190, 14533}, {2207, 560}, {2310, 39687}, {2501, 810}, {2586, 57026}, {2587, 57025}, {2592, 2584}, {2593, 2585}, {2616, 46088}, {2618, 17434}, {2632, 35071}, {2970, 3708}, {2973, 3942}, {3064, 1946}, {3112, 28724}, {3261, 4131}, {3269, 42080}, {3596, 3719}, {3708, 34980}, {4391, 57241}, {4397, 57057}, {4554, 6517}, {4858, 1364}, {5317, 2206}, {6059, 9447}, {6063, 7183}, {6331, 4592}, {6335, 1331}, {6336, 36058}, {6354, 7138}, {6358, 7066}, {6508, 417}, {6520, 25}, {6521, 4}, {6524, 1973}, {6526, 2155}, {6528, 662}, {6529, 32676}, {6530, 1755}, {7003, 2188}, {7017, 78}, {7020, 268}, {7046, 1802}, {7101, 1260}, {7141, 3949}, {7178, 51640}, {7649, 22383}, {8747, 1333}, {8748, 2194}, {8756, 23202}, {8794, 2190}, {8795, 2167}, {8884, 2148}, {11109, 22118}, {11547, 47}, {13450, 1953}, {13567, 820}, {14165, 6149}, {14206, 51394}, {14208, 52613}, {14213, 5562}, {14249, 610}, {14569, 2179}, {14618, 656}, {15352, 162}, {15459, 36034}, {16080, 35200}, {16081, 293}, {16082, 1795}, {16813, 36134}, {17216, 16730}, {17442, 20775}, {17555, 22134}, {17858, 6509}, {17869, 836}, {17871, 39643}, {17896, 57233}, {17902, 36033}, {17923, 52407}, {17924, 1459}, {17926, 57134}, {17983, 36060}, {18022, 304}, {18026, 1813}, {18027, 75}, {18156, 10607}, {18750, 35602}, {20567, 7055}, {20570, 6512}, {20571, 52350}, {20883, 3917}, {20902, 2972}, {20930, 6511}, {20948, 3265}, {21447, 1707}, {21666, 34591}, {23582, 1101}, {23962, 17879}, {23964, 23995}, {23978, 24031}, {23984, 24027}, {23994, 15526}, {23999, 249}, {24000, 23357}, {24006, 647}, {24019, 1576}, {24021, 23964}, {24022, 41937}, {24026, 35072}, {24032, 1262}, {24033, 23979}, {27376, 1964}, {27801, 52396}, {28654, 52387}, {28659, 1264}, {31623, 283}, {33787, 6461}, {33808, 6503}, {34538, 24000}, {34854, 9417}, {36035, 1636}, {36119, 18877}, {36120, 248}, {36122, 32657}, {36123, 14578}, {36124, 32658}, {36125, 32659}, {36126, 112}, {36127, 1415}, {36128, 14908}, {36129, 32662}, {36130, 32663}, {36417, 1917}, {36419, 849}, {36426, 23996}, {36793, 24020}, {37778, 896}, {38462, 22356}, {40149, 73}, {40364, 4176}, {40440, 97}, {40447, 1794}, {40495, 30805}, {40701, 7013}, {40703, 36212}, {40717, 20769}, {41013, 71}, {44129, 1444}, {44130, 1812}, {44131, 6508}, {44143, 3958}, {44161, 40364}, {44426, 652}, {44732, 17438}, {46104, 34055}, {46107, 905}, {46108, 1818}, {46109, 5440}, {46110, 521}, {46238, 51386}, {46273, 6394}, {46404, 6516}, {46456, 36061}, {46812, 1823}, {46815, 1822}, {46878, 22074}, {47372, 198}, {51315, 182}, {51334, 42075}, {52369, 4158}, {52412, 52408}, {52414, 22115}, {52430, 36433}, {52448, 2172}, {52575, 307}, {52577, 22363}, {52581, 19611}, {52623, 57109}, {52661, 2173}, {52780, 36055}, {52781, 36056}, {52938, 651}, {53008, 52370}, {53036, 408}, {53510, 22057}, {54100, 18042}, {54235, 36057}, {54240, 109}, {54314, 22097}, {56285, 2197}, {56875, 22054}, {57215, 23189}, {57716, 68}, {57787, 348}, {57796, 17206}, {57809, 1214}, {57812, 6518}, {57898, 20563}, {57921, 15394}, {57968, 4563}, {57972, 801}, {57973, 99}


X(57807) = ISOTOMIC CONJUGATE OF X(270)

Barycentrics    b*(-a+b-c)*(a+b-c)*c*(b+c)^2*(-a^2+b^2+c^2) : :

X(57807) lies on these lines: {7, 1930}, {8, 17858}, {10, 18692}, {69, 17880}, {72, 28786}, {75, 78}, {77, 304}, {200, 18691}, {201, 307}, {226, 306}, {273, 312}, {313, 52575}, {318, 322}, {346, 347}, {349, 42714}, {664, 20932}, {908, 54314}, {1089, 34388}, {1214, 42706}, {1442, 14210}, {2285, 4032}, {3682, 18698}, {3695, 6356}, {3701, 57810}, {3783, 17900}, {3912, 26165}, {3949, 20902}, {4420, 18699}, {4511, 17859}, {4647, 42289}, {5750, 25001}, {6046, 6057}, {7270, 7282}, {15556, 56927}, {16577, 17776}, {17863, 34937}, {21801, 22006}, {26942, 52369}, {33808, 55392}, {35550, 56189}, {40999, 57797}, {52673, 56318}, {56559, 56564}

X(57807) = isotomic conjugate of X(270)
X(57807) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2189}, {11, 57655}, {19, 2150}, {21, 2203}, {25, 60}, {27, 57657}, {28, 2194}, {29, 2206}, {31, 270}, {32, 46103}, {33, 849}, {58, 2299}, {81, 2204}, {112, 7252}, {219, 36420}, {250, 3271}, {261, 1974}, {284, 1474}, {560, 57779}, {593, 607}, {604, 2326}, {608, 7054}, {667, 52914}, {757, 2212}, {1098, 1395}, {1172, 1333}, {1398, 6061}, {1408, 4183}, {1412, 2332}, {1426, 23609}, {1946, 52920}, {1973, 2185}, {2193, 5317}, {2322, 16947}, {3737, 32676}, {5546, 43925}, {7046, 7342}, {7071, 7341}, {7117, 23964}, {8735, 23357}, {18021, 44162}, {23189, 32713}, {26932, 41937}, {36419, 52425}, {36421, 52411}, {40570, 46882}, {55196, 57204}
X(57807) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 270}, {6, 2150}, {9, 2189}, {10, 2299}, {37, 1172}, {226, 58}, {525, 7004}, {647, 2170}, {1214, 28}, {3161, 2326}, {4075, 33}, {6337, 2185}, {6374, 57779}, {6376, 46103}, {6505, 60}, {6631, 52914}, {15267, 1395}, {15526, 3737}, {16579, 1831}, {16583, 5324}, {23285, 4858}, {26942, 580}, {34591, 7252}, {36901, 57215}, {39053, 52920}, {39060, 52919}, {40586, 2204}, {40590, 1474}, {40591, 2194}, {40599, 2332}, {40603, 29}, {40607, 2212}, {40611, 2203}, {40622, 57200}, {40937, 46884}, {47345, 5317}, {51574, 284}, {51583, 17515}, {55065, 18344}, {56325, 19}
X(57807) = X(i)-Ceva conjugate of X(j) for these {i, j}: {313, 34388}, {1231, 26942}
X(57807) = X(i)-cross conjugate of X(j) for these {i, j}: {201, 6358}, {339, 14208}, {3695, 52369}
X(57807) = pole of line {270, 2185} with respect to the Wallace hyperbola
X(57807) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(3936)}}, {{A, B, C, X(72), X(22021)}}, {{A, B, C, X(77), X(37755)}}, {{A, B, C, X(78), X(52387)}}, {{A, B, C, X(201), X(2171)}}, {{A, B, C, X(226), X(307)}}, {{A, B, C, X(304), X(18697)}}, {{A, B, C, X(306), X(313)}}, {{A, B, C, X(321), X(20336)}}, {{A, B, C, X(339), X(17880)}}, {{A, B, C, X(1089), X(2321)}}, {{A, B, C, X(1231), X(1441)}}, {{A, B, C, X(3930), X(3949)}}, {{A, B, C, X(18695), X(35550)}}, {{A, B, C, X(42706), X(42714)}}, {{A, B, C, X(43531), X(52388)}}
X(57807) = barycentric product X(i)*X(j) for these (i, j): {10, 1231}, {12, 304}, {181, 40364}, {201, 76}, {307, 321}, {312, 6356}, {331, 52387}, {339, 4564}, {349, 72}, {594, 7182}, {1089, 348}, {1214, 313}, {1254, 57919}, {1425, 28659}, {1439, 30713}, {1441, 306}, {1446, 3710}, {1969, 7066}, {2171, 305}, {2197, 561}, {3267, 4551}, {3596, 37755}, {3682, 52575}, {3695, 85}, {3701, 56382}, {3718, 6354}, {3926, 56285}, {3949, 6063}, {3998, 57809}, {4064, 4554}, {4077, 52609}, {4572, 55232}, {6358, 69}, {7141, 7183}, {14208, 4552}, {17094, 4033}, {17879, 46102}, {20336, 226}, {20567, 3690}, {20618, 341}, {20902, 4998}, {20948, 23067}, {23994, 44717}, {26942, 75}, {27801, 73}, {27808, 51664}, {28654, 77}, {34388, 63}, {35518, 4605}, {36793, 7012}, {40071, 65}, {40149, 52396}, {41013, 52565}, {46404, 57109}, {52369, 7}, {52386, 57787}, {52406, 6046}, {52623, 6516}, {55197, 55202}, {55234, 6386}, {56944, 57810}, {57243, 668}, {57918, 756}
X(57807) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2189}, {2, 270}, {3, 2150}, {8, 2326}, {10, 1172}, {12, 19}, {34, 36420}, {37, 2299}, {42, 2204}, {63, 60}, {65, 1474}, {69, 2185}, {71, 2194}, {72, 284}, {73, 1333}, {75, 46103}, {76, 57779}, {77, 593}, {78, 7054}, {125, 2170}, {181, 1973}, {190, 52914}, {201, 6}, {210, 2332}, {222, 849}, {225, 5317}, {226, 28}, {228, 57657}, {273, 36419}, {304, 261}, {305, 52379}, {306, 21}, {307, 81}, {313, 31623}, {318, 36421}, {321, 29}, {339, 4858}, {345, 1098}, {348, 757}, {349, 286}, {442, 46884}, {525, 3737}, {594, 33}, {653, 52920}, {656, 7252}, {756, 607}, {850, 57215}, {1089, 281}, {1091, 8736}, {1109, 8735}, {1214, 58}, {1231, 86}, {1254, 608}, {1332, 4636}, {1367, 3942}, {1400, 2203}, {1409, 2206}, {1410, 16947}, {1425, 604}, {1439, 1412}, {1441, 27}, {1500, 2212}, {2149, 57655}, {2171, 25}, {2197, 31}, {2321, 4183}, {2327, 23609}, {2632, 7117}, {3267, 18155}, {3668, 1396}, {3678, 41502}, {3682, 2193}, {3690, 41}, {3692, 6061}, {3694, 2328}, {3695, 9}, {3701, 2322}, {3708, 3271}, {3710, 2287}, {3718, 7058}, {3930, 37908}, {3936, 17515}, {3948, 14024}, {3949, 55}, {3963, 14006}, {3969, 11107}, {3998, 283}, {4017, 43925}, {4024, 18344}, {4033, 36797}, {4036, 3064}, {4053, 52427}, {4054, 17519}, {4064, 650}, {4077, 17925}, {4086, 17926}, {4103, 56183}, {4158, 2289}, {4466, 18191}, {4551, 112}, {4552, 162}, {4559, 32676}, {4561, 4612}, {4564, 250}, {4572, 55231}, {4605, 108}, {6046, 1435}, {6057, 7079}, {6335, 52921}, {6354, 34}, {6355, 1422}, {6356, 57}, {6358, 4}, {6386, 55233}, {6516, 4556}, {7012, 23964}, {7066, 48}, {7068, 34591}, {7099, 7342}, {7138, 52411}, {7147, 1398}, {7177, 7341}, {7178, 57200}, {7182, 1509}, {7211, 7119}, {7235, 2201}, {8611, 21789}, {8736, 1096}, {14208, 4560}, {15526, 7004}, {17094, 1019}, {17879, 26932}, {17880, 26856}, {18026, 52919}, {18588, 5358}, {18589, 5324}, {20336, 333}, {20618, 269}, {20902, 11}, {21015, 2082}, {21046, 4516}, {21671, 2264}, {21675, 1859}, {21794, 14975}, {21810, 40976}, {21859, 8750}, {23067, 163}, {24018, 23189}, {26942, 1}, {26955, 3554}, {27801, 44130}, {28654, 318}, {34388, 92}, {35307, 52604}, {36793, 17880}, {37755, 56}, {40071, 314}, {40149, 8747}, {40152, 1437}, {40364, 18021}, {41013, 8748}, {41393, 2260}, {42708, 40950}, {44717, 1101}, {46102, 24000}, {51664, 3733}, {52351, 52380}, {52355, 1021}, {52369, 8}, {52373, 1408}, {52385, 1790}, {52386, 212}, {52387, 219}, {52391, 34079}, {52396, 1812}, {52565, 1444}, {52567, 2354}, {52609, 643}, {52623, 44426}, {53010, 2192}, {55010, 46883}, {55202, 55196}, {55230, 3063}, {55232, 663}, {55234, 667}, {56285, 393}, {56326, 4222}, {56382, 1014}, {56839, 46882}, {56944, 285}, {57109, 652}, {57243, 513}, {57810, 41083}, {57918, 873}
X(57807) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 18695, 17880}, {1231, 20336, 307}


X(57808) = ISOTOMIC CONJUGATE OF X(272)

Barycentrics    (b+c)*(-b^3+a*b*c-c^3+a^2*(b+c)) : :

X(57808) lies on these lines: {1, 2}, {3, 33113}, {4, 17776}, {5, 4358}, {7, 52396}, {12, 313}, {21, 7270}, {28, 100}, {29, 40161}, {34, 28776}, {35, 17521}, {37, 5051}, {55, 5300}, {58, 56520}, {71, 1761}, {72, 3936}, {75, 4197}, {92, 5142}, {209, 3868}, {225, 4552}, {226, 3710}, {312, 2476}, {321, 442}, {322, 18738}, {344, 2478}, {345, 377}, {346, 5177}, {404, 32851}, {405, 5016}, {443, 17740}, {495, 4696}, {858, 19839}, {860, 42700}, {894, 26131}, {942, 18139}, {964, 32777}, {986, 25957}, {1010, 32779}, {1038, 28774}, {1046, 32949}, {1089, 3822}, {1150, 5791}, {1175, 33078}, {1265, 30828}, {1325, 19842}, {1330, 3219}, {1332, 3193}, {1334, 4071}, {1468, 4438}, {1621, 5015}, {1770, 4427}, {1788, 56927}, {1826, 2899}, {1869, 4198}, {1896, 6335}, {1997, 6931}, {2292, 2887}, {2475, 7283}, {2533, 47728}, {2886, 3702}, {2907, 5546}, {2975, 7523}, {2997, 18147}, {3161, 8804}, {3263, 40071}, {3294, 4153}, {3295, 5014}, {3416, 19133}, {3436, 6350}, {3454, 26580}, {3666, 4202}, {3685, 7557}, {3690, 10381}, {3692, 54405}, {3703, 4968}, {3704, 3925}, {3752, 17674}, {3781, 29981}, {3797, 33841}, {3813, 4742}, {3823, 21858}, {3836, 24443}, {3841, 4647}, {3871, 32850}, {3876, 4417}, {3915, 4865}, {3927, 32859}, {3931, 4972}, {3947, 4082}, {3952, 21077}, {3969, 5295}, {3977, 4292}, {3998, 25015}, {4035, 4101}, {4066, 7206}, {4078, 25255}, {4136, 21808}, {4193, 18743}, {4359, 8728}, {4385, 32862}, {4429, 56926}, {4463, 41340}, {4642, 21026}, {4680, 5248}, {4705, 47691}, {4723, 12607}, {4850, 33833}, {4975, 24387}, {4980, 50042}, {5044, 5741}, {5080, 52364}, {5086, 25516}, {5125, 27396}, {5154, 46938}, {5192, 17279}, {5247, 33115}, {5251, 36974}, {5255, 33072}, {5260, 47512}, {5273, 54429}, {5278, 5814}, {5283, 34542}, {5294, 5717}, {5325, 50215}, {5687, 7535}, {5716, 17526}, {5794, 49492}, {5827, 16843}, {6175, 42033}, {6327, 12514}, {6933, 28808}, {9612, 56082}, {9708, 19523}, {9709, 19285}, {11015, 52352}, {11374, 30834}, {12047, 25253}, {12609, 17164}, {13407, 17165}, {13740, 33157}, {14005, 19808}, {15232, 56112}, {16062, 28606}, {16466, 33070}, {17140, 51706}, {17147, 23537}, {17263, 17536}, {17264, 17577}, {17528, 50044}, {17529, 24589}, {17551, 28653}, {17717, 25591}, {17757, 21530}, {17862, 25962}, {19372, 28741}, {19822, 37153}, {20482, 30730}, {20483, 20691}, {20911, 37664}, {20930, 56729}, {21029, 21071}, {21671, 27538}, {24174, 25961}, {24851, 32936}, {25001, 47510}, {25017, 25091}, {25248, 31041}, {25984, 26665}, {26028, 28803}, {26050, 27544}, {26120, 36926}, {26446, 37151}, {27521, 54295}, {27754, 37038}, {28612, 41859}, {32774, 56780}, {32933, 57282}, {33073, 57280}, {33119, 37607}, {33864, 33942}, {37113, 57287}, {37346, 42710}, {37539, 56778}, {37582, 51583}, {37983, 44411}, {42757, 57109}, {44416, 49745}, {49735, 50050}, {50054, 50104}, {52358, 54346}

X(57808) = isotomic conjugate of X(272)
X(57808) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 272}, {48, 40574}, {58, 2218}, {560, 57784}, {849, 41506}, {1333, 1751}, {1408, 56146}, {2206, 2997}
X(57808) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 272}, {10, 2218}, {37, 1751}, {72, 3}, {1249, 40574}, {4075, 41506}, {6374, 57784}, {6741, 23289}, {40603, 2997}
X(57808) = X(i)-Ceva conjugate of X(j) for these {i, j}: {29, 56318}, {264, 321}, {6335, 57043}, {18134, 22021}, {34406, 72}, {40445, 8}
X(57808) = X(i)-cross conjugate of X(j) for these {i, j}: {22021, 56559}
X(57808) = pole of line {20294, 47796} with respect to the DeLongchamps circle
X(57808) = pole of line {1213, 3721} with respect to the Kiepert hyperbola
X(57808) = pole of line {190, 5546} with respect to the Yff parabola
X(57808) = pole of line {60, 86} with respect to the Wallace hyperbola
X(57808) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1441)}}, {{A, B, C, X(2), X(349)}}, {{A, B, C, X(4), X(1714)}}, {{A, B, C, X(8), X(313)}}, {{A, B, C, X(10), X(34388)}}, {{A, B, C, X(12), X(42)}}, {{A, B, C, X(28), X(30117)}}, {{A, B, C, X(37), X(976)}}, {{A, B, C, X(65), X(3924)}}, {{A, B, C, X(78), X(20336)}}, {{A, B, C, X(92), X(3187)}}, {{A, B, C, X(200), X(3701)}}, {{A, B, C, X(225), X(3011)}}, {{A, B, C, X(226), X(40574)}}, {{A, B, C, X(272), X(23604)}}, {{A, B, C, X(321), X(5271)}}, {{A, B, C, X(386), X(579)}}, {{A, B, C, X(519), X(39130)}}, {{A, B, C, X(869), X(2198)}}, {{A, B, C, X(995), X(4306)}}, {{A, B, C, X(1149), X(51658)}}, {{A, B, C, X(1193), X(41003)}}, {{A, B, C, X(1228), X(3687)}}, {{A, B, C, X(1234), X(6734)}}, {{A, B, C, X(1237), X(7081)}}, {{A, B, C, X(2321), X(6743)}}, {{A, B, C, X(2340), X(3932)}}, {{A, B, C, X(3008), X(36907)}}, {{A, B, C, X(3214), X(51870)}}, {{A, B, C, X(3293), X(45095)}}, {{A, B, C, X(3682), X(51574)}}, {{A, B, C, X(3811), X(41013)}}, {{A, B, C, X(4362), X(43534)}}, {{A, B, C, X(4511), X(20294)}}, {{A, B, C, X(20083), X(43531)}}, {{A, B, C, X(23800), X(49997)}}, {{A, B, C, X(25453), X(40718)}}, {{A, B, C, X(38955), X(49168)}}
X(57808) = barycentric product X(i)*X(j) for these (i, j): {10, 18134}, {209, 76}, {264, 51574}, {306, 5125}, {313, 579}, {321, 3868}, {1234, 40572}, {1441, 27396}, {2198, 561}, {2352, 27801}, {3190, 349}, {20294, 4552}, {22021, 75}, {23800, 4033}, {27808, 43060}, {30713, 4306}, {34388, 56000}, {51658, 646}, {56559, 8}, {57217, 850}
X(57808) = barycentric quotient X(i)/X(j) for these (i, j): {2, 272}, {4, 40574}, {10, 1751}, {37, 2218}, {76, 57784}, {209, 6}, {313, 40011}, {321, 2997}, {349, 15467}, {579, 58}, {594, 41506}, {2198, 31}, {2321, 56146}, {2352, 1333}, {3190, 284}, {3695, 40161}, {3700, 23289}, {3868, 81}, {4033, 51566}, {4306, 1412}, {4552, 1305}, {5125, 27}, {8676, 7252}, {18134, 86}, {20294, 4560}, {22021, 1}, {23800, 1019}, {26942, 28786}, {27396, 21}, {40572, 1175}, {41320, 2299}, {43060, 3733}, {51574, 3}, {51658, 3669}, {56000, 60}, {56559, 7}, {57173, 57200}, {57217, 110}
X(57808) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1698, 20083}, {1, 20083, 29833}, {1, 29858, 36505}, {1, 30172, 3006}, {1, 36499, 29631}, {10, 306, 8}, {10, 3178, 42}, {10, 34747, 27690}, {12, 3932, 3701}, {226, 3710, 56318}, {442, 3695, 321}, {2475, 32849, 7283}, {3703, 25466, 4968}, {4645, 56313, 56288}, {7270, 33116, 21}, {15523, 21674, 10}, {16086, 25650, 34772}, {29830, 36500, 1}


X(57809) = ISOTOMIC CONJUGATE OF X(283)

Barycentrics    b^2*(a+b-c)*c^2*(a-b+c)*(b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(57809) lies on these lines: {4, 916}, {7, 2995}, {27, 1947}, {73, 8795}, {75, 225}, {92, 226}, {278, 17075}, {286, 7282}, {313, 52575}, {321, 8736}, {324, 48380}, {347, 26027}, {442, 1441}, {561, 18022}, {651, 56014}, {653, 1400}, {860, 40999}, {1226, 23581}, {1231, 1234}, {1446, 6355}, {1826, 21091}, {1881, 20305}, {2973, 21664}, {3112, 46104}, {3668, 21207}, {4044, 7101}, {4552, 51574}, {5174, 6598}, {6063, 58013}, {7110, 40447}, {20571, 55553}, {20930, 46746}, {25001, 37805}, {44150, 52385}, {46111, 46277}, {54121, 54314}, {57775, 57955}

X(57809) = isotomic conjugate of X(283)
X(57809) = trilinear pole of line {1577, 14618}
X(57809) = perspector of circumconic {{A, B, C, X(46404), X(52938)}}
X(57809) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 2194}, {6, 2193}, {21, 184}, {28, 6056}, {29, 52430}, {31, 283}, {32, 1812}, {41, 1790}, {48, 284}, {55, 1437}, {58, 212}, {60, 228}, {63, 57657}, {71, 2150}, {78, 2206}, {81, 52425}, {109, 57134}, {110, 1946}, {112, 36054}, {163, 652}, {219, 1333}, {255, 2299}, {270, 4055}, {314, 14575}, {332, 560}, {333, 9247}, {394, 2204}, {521, 1576}, {577, 1172}, {593, 52370}, {603, 2328}, {604, 2327}, {607, 18604}, {650, 32661}, {663, 4575}, {692, 23189}, {810, 4636}, {849, 2318}, {906, 7252}, {1021, 32660}, {1169, 22074}, {1175, 23207}, {1259, 2203}, {1260, 1408}, {1397, 1792}, {1409, 7054}, {1410, 6061}, {1412, 1802}, {1415, 23090}, {1425, 23609}, {1444, 2175}, {1474, 2289}, {1793, 52434}, {1798, 20967}, {1805, 53065}, {1806, 53066}, {1808, 2210}, {1819, 2208}, {1896, 23606}, {1973, 6514}, {2185, 2200}, {2188, 2360}, {2189, 3990}, {2287, 52411}, {2332, 7125}, {2361, 57736}, {3049, 4612}, {3063, 4558}, {3692, 16947}, {3737, 32656}, {4100, 8748}, {4183, 7335}, {4282, 52431}, {4516, 47390}, {4587, 57129}, {5546, 22383}, {8606, 17104}, {9447, 17206}, {14395, 32640}, {14574, 35518}, {14585, 31623}, {18877, 52949}, {20753, 38813}, {21789, 36059}, {23357, 53560}, {32676, 57241}, {39167, 52143}, {39201, 52914}, {40072, 40373}, {41332, 56269}
X(57809) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 283}, {9, 2193}, {10, 212}, {11, 57134}, {37, 219}, {92, 1816}, {115, 652}, {136, 663}, {223, 1437}, {225, 10537}, {226, 255}, {244, 1946}, {1086, 23189}, {1146, 23090}, {1214, 3}, {1249, 284}, {3160, 1790}, {3161, 2327}, {3162, 57657}, {4075, 2318}, {4858, 521}, {4988, 7117}, {5190, 7252}, {5745, 22361}, {6337, 6514}, {6374, 332}, {6376, 1812}, {6523, 2299}, {6741, 57108}, {7952, 2328}, {10001, 4558}, {15526, 57241}, {16591, 7193}, {20620, 21789}, {34591, 36054}, {36103, 2194}, {36901, 6332}, {36908, 603}, {39053, 110}, {39060, 662}, {39062, 4636}, {40586, 52425}, {40590, 48}, {40591, 6056}, {40593, 1444}, {40599, 1802}, {40603, 78}, {40611, 184}, {40615, 7254}, {40622, 1459}, {40624, 57081}, {40837, 58}, {40839, 52158}, {47345, 6}, {51574, 2289}, {53982, 2361}, {56325, 71}, {56847, 8606}, {56905, 2269}
X(57809) = X(i)-Ceva conjugate of X(j) for these {i, j}: {264, 1441}, {331, 40149}, {18026, 46107}, {57787, 52575}
X(57809) = X(i)-cross conjugate of X(j) for these {i, j}: {226, 349}, {18692, 75}, {21911, 10}, {23555, 57716}, {56285, 40149}
X(57809) = pole of line {652, 663} with respect to the polar circle
X(57809) = pole of line {1577, 46110} with respect to the MacBeath inconic
X(57809) = pole of line {46107, 46400} with respect to the Steiner circumellipse
X(57809) = pole of line {283, 6514} with respect to the Wallace hyperbola
X(57809) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(5125)}}, {{A, B, C, X(10), X(29)}}, {{A, B, C, X(65), X(19175)}}, {{A, B, C, X(72), X(56104)}}, {{A, B, C, X(75), X(92)}}, {{A, B, C, X(209), X(14053)}}, {{A, B, C, X(225), X(8736)}}, {{A, B, C, X(226), X(307)}}, {{A, B, C, X(264), X(2052)}}, {{A, B, C, X(273), X(40149)}}, {{A, B, C, X(286), X(46107)}}, {{A, B, C, X(318), X(41013)}}, {{A, B, C, X(331), X(52575)}}, {{A, B, C, X(332), X(18692)}}, {{A, B, C, X(342), X(40702)}}, {{A, B, C, X(349), X(34388)}}, {{A, B, C, X(850), X(35516)}}, {{A, B, C, X(916), X(51574)}}, {{A, B, C, X(1577), X(52982)}}, {{A, B, C, X(1826), X(1861)}}, {{A, B, C, X(2318), X(21911)}}, {{A, B, C, X(3668), X(4077)}}, {{A, B, C, X(3701), X(7020)}}, {{A, B, C, X(3710), X(39130)}}, {{A, B, C, X(4080), X(39695)}}, {{A, B, C, X(17555), X(37235)}}, {{A, B, C, X(26027), X(52248)}}, {{A, B, C, X(30687), X(52780)}}, {{A, B, C, X(30690), X(45797)}}
X(57809) = barycentric product X(i)*X(j) for these (i, j): {1, 52575}, {10, 331}, {12, 44129}, {27, 34388}, {37, 57787}, {108, 20948}, {225, 76}, {226, 264}, {273, 321}, {274, 56285}, {278, 313}, {286, 6358}, {310, 8736}, {349, 4}, {525, 52938}, {653, 850}, {1093, 52565}, {1118, 40071}, {1119, 30713}, {1214, 57806}, {1231, 158}, {1234, 40573}, {1235, 18097}, {1400, 18022}, {1426, 28659}, {1434, 7141}, {1441, 92}, {1446, 318}, {1502, 57652}, {1577, 18026}, {1824, 20567}, {1826, 6063}, {1847, 3701}, {1874, 18895}, {1880, 561}, {1969, 65}, {2052, 307}, {2171, 57796}, {2333, 41283}, {2501, 4572}, {2970, 4620}, {3267, 36127}, {3668, 7017}, {4077, 6335}, {4552, 46107}, {4566, 46110}, {13149, 4086}, {14208, 54240}, {14618, 664}, {18027, 73}, {21207, 46102}, {24006, 4554}, {26955, 57978}, {27801, 34}, {32674, 44173}, {35519, 52607}, {39130, 40701}, {40149, 75}, {41013, 85}, {44130, 6354}, {46404, 523}, {52385, 6521}, {52581, 5930}, {53008, 57792}, {53237, 56127}, {55197, 55229}, {55208, 6386}, {56827, 57906}, {57185, 57968}, {57243, 6528}
X(57809) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2193}, {2, 283}, {4, 284}, {7, 1790}, {8, 2327}, {10, 219}, {12, 71}, {19, 2194}, {25, 57657}, {27, 60}, {28, 2150}, {29, 7054}, {34, 1333}, {37, 212}, {42, 52425}, {57, 1437}, {65, 48}, {69, 6514}, {71, 6056}, {72, 2289}, {73, 577}, {75, 1812}, {76, 332}, {77, 18604}, {85, 1444}, {92, 21}, {108, 163}, {109, 32661}, {158, 1172}, {181, 2200}, {196, 2360}, {201, 3990}, {209, 57501}, {210, 1802}, {225, 6}, {226, 3}, {264, 333}, {273, 81}, {275, 35196}, {278, 58}, {281, 2328}, {286, 2185}, {306, 1259}, {307, 394}, {312, 1792}, {313, 345}, {318, 2287}, {321, 78}, {329, 1819}, {331, 86}, {335, 1808}, {342, 1817}, {349, 69}, {393, 2299}, {407, 21748}, {429, 2269}, {431, 1195}, {459, 52158}, {514, 23189}, {522, 23090}, {523, 652}, {525, 57241}, {594, 2318}, {608, 2206}, {648, 4636}, {650, 57134}, {651, 4575}, {653, 110}, {656, 36054}, {661, 1946}, {664, 4558}, {756, 52370}, {811, 4612}, {823, 52914}, {850, 6332}, {860, 2323}, {1020, 36059}, {1042, 52411}, {1089, 3694}, {1093, 8748}, {1096, 2204}, {1109, 53560}, {1118, 1474}, {1119, 1412}, {1214, 255}, {1231, 326}, {1254, 1409}, {1396, 849}, {1398, 16947}, {1400, 184}, {1402, 9247}, {1409, 52430}, {1426, 604}, {1427, 603}, {1435, 1408}, {1439, 7125}, {1441, 63}, {1446, 77}, {1577, 521}, {1659, 1805}, {1708, 41608}, {1784, 52949}, {1824, 41}, {1825, 2174}, {1826, 55}, {1833, 7127}, {1835, 7113}, {1838, 46882}, {1840, 2330}, {1847, 1014}, {1848, 4267}, {1857, 2332}, {1865, 14547}, {1867, 2268}, {1870, 4282}, {1874, 1914}, {1877, 3285}, {1880, 31}, {1881, 11436}, {1893, 2280}, {1896, 2326}, {1897, 5546}, {1903, 2188}, {1969, 314}, {2006, 57736}, {2052, 29}, {2171, 228}, {2197, 4055}, {2292, 22074}, {2294, 23207}, {2321, 1260}, {2322, 6061}, {2326, 23609}, {2333, 2175}, {2358, 2208}, {2501, 663}, {2970, 21044}, {2973, 17197}, {3064, 21789}, {3120, 7117}, {3267, 52616}, {3485, 4288}, {3649, 22054}, {3668, 222}, {3676, 7254}, {3700, 57108}, {3701, 3692}, {3721, 20753}, {3914, 7124}, {3952, 4587}, {3992, 52978}, {4017, 22383}, {4032, 3955}, {4033, 4571}, {4036, 8611}, {4077, 905}, {4086, 57055}, {4391, 57081}, {4415, 22072}, {4466, 1364}, {4551, 906}, {4552, 1331}, {4554, 4592}, {4559, 32656}, {4566, 1813}, {4572, 4563}, {4605, 23067}, {4848, 20818}, {5125, 56000}, {5174, 56948}, {5236, 3286}, {5244, 22390}, {5307, 54417}, {5905, 1800}, {5930, 15905}, {6046, 52373}, {6063, 17206}, {6198, 35192}, {6335, 643}, {6354, 73}, {6356, 40152}, {6358, 72}, {6386, 55207}, {6521, 1896}, {7017, 1043}, {7101, 56182}, {7140, 1334}, {7141, 2321}, {7147, 1410}, {7178, 1459}, {7211, 22061}, {7212, 22384}, {7282, 40214}, {7649, 7252}, {8736, 42}, {8747, 2189}, {8808, 1433}, {8818, 8606}, {11392, 4280}, {11608, 17973}, {13149, 1414}, {13390, 1806}, {14618, 522}, {15352, 52921}, {16577, 52408}, {16603, 3781}, {16609, 7193}, {16732, 7004}, {16888, 3784}, {17056, 22361}, {17072, 23145}, {17094, 4091}, {17880, 16731}, {17896, 57213}, {17924, 3737}, {17985, 5060}, {18022, 28660}, {18026, 662}, {18027, 44130}, {18097, 1176}, {18359, 1793}, {18593, 52407}, {18679, 40602}, {20336, 3719}, {20948, 35518}, {21011, 44707}, {21016, 3688}, {21044, 3270}, {21075, 55111}, {21207, 26932}, {21808, 22079}, {22341, 4100}, {23604, 56269}, {23752, 52306}, {23989, 17219}, {24005, 19354}, {24006, 650}, {26942, 3682}, {26955, 836}, {27691, 22139}, {27801, 3718}, {28654, 3710}, {28739, 1801}, {30572, 22086}, {30690, 1789}, {30713, 1265}, {31623, 1098}, {32674, 1576}, {34388, 306}, {35519, 15411}, {36035, 14395}, {36118, 4565}, {36127, 112}, {37558, 22118}, {37755, 22341}, {37790, 52680}, {37799, 5127}, {39130, 268}, {39579, 4254}, {40071, 1264}, {40149, 1}, {40152, 1092}, {40573, 1175}, {40663, 22356}, {40701, 8822}, {41003, 22097}, {41013, 9}, {41804, 22128}, {43682, 7100}, {43923, 57129}, {44113, 52426}, {44129, 261}, {44130, 7058}, {44143, 3686}, {44150, 6518}, {44426, 1021}, {45208, 22389}, {46102, 4570}, {46106, 51382}, {46107, 4560}, {46110, 7253}, {46404, 99}, {46878, 46889}, {47345, 10537}, {51664, 23224}, {52023, 22053}, {52355, 57057}, {52373, 7335}, {52378, 47390}, {52383, 52431}, {52385, 6507}, {52412, 35193}, {52565, 3964}, {52575, 75}, {52577, 7083}, {52581, 5931}, {52607, 109}, {52621, 15419}, {52623, 52355}, {52661, 52956}, {52938, 648}, {52982, 52889}, {53008, 220}, {53009, 7074}, {53036, 40946}, {53237, 18164}, {53321, 32660}, {53476, 22421}, {53510, 1040}, {53545, 3937}, {53560, 2638}, {53566, 38344}, {54240, 162}, {54314, 17185}, {55010, 4303}, {55197, 55230}, {55206, 8641}, {55208, 667}, {55229, 55196}, {55234, 39201}, {55346, 52378}, {56285, 37}, {56382, 1804}, {56827, 573}, {57185, 810}, {57243, 520}, {57652, 32}, {57787, 274}, {57796, 52379}, {57806, 31623}, {57807, 3998}, {57968, 4631}
X(57809) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {264, 331, 273}


X(57810) = ISOTOMIC CONJUGATE OF X(285)

Barycentrics    b*(a+b-c)*c*(a-b+c)*(b+c)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2) : :

X(57810) lies on these lines: {7, 3436}, {8, 273}, {10, 307}, {65, 21922}, {77, 30806}, {196, 329}, {219, 37805}, {227, 322}, {264, 23528}, {281, 28739}, {313, 1231}, {321, 8736}, {348, 20930}, {653, 5279}, {1119, 3421}, {1847, 5815}, {3694, 4552}, {3701, 57807}, {4463, 22294}, {4566, 52385}, {4605, 21078}, {4862, 17861}, {5080, 7282}, {6046, 21031}, {6356, 17757}, {7686, 17220}, {11500, 17134}, {11681, 53821}, {16284, 33673}, {16608, 20905}, {17863, 18391}, {17950, 26665}, {20895, 22464}, {21933, 53510}, {23600, 57477}, {34790, 53237}

X(57810) = isotomic conjugate of X(285)
X(57810) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 2208}, {28, 2188}, {31, 285}, {58, 2192}, {60, 2357}, {81, 7118}, {84, 2194}, {189, 57657}, {268, 1474}, {271, 2203}, {280, 2206}, {282, 1333}, {283, 7151}, {284, 1436}, {560, 57795}, {849, 53013}, {1412, 7367}, {1413, 2328}, {1433, 2299}, {1437, 7008}, {1790, 7154}, {1903, 2150}, {2189, 41087}, {2193, 7129}, {2204, 41081}, {2332, 55117}, {3737, 32652}, {7252, 36049}, {8059, 21789}
X(57810) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 285}, {10, 2192}, {37, 282}, {57, 58}, {226, 1433}, {281, 1172}, {1108, 40979}, {1214, 84}, {4075, 53013}, {5514, 7252}, {6374, 57795}, {16596, 3737}, {36908, 1413}, {40586, 7118}, {40590, 1436}, {40591, 2188}, {40599, 7367}, {40603, 280}, {40611, 2208}, {47345, 7129}, {51574, 268}, {55044, 21789}, {55063, 23090}, {56325, 1903}
X(57810) = X(i)-Ceva conjugate of X(j) for these {i, j}: {313, 1441}, {1231, 321}
X(57810) = pole of line {285, 1098} with respect to the Wallace hyperbola
X(57810) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(7080)}}, {{A, B, C, X(40), X(4674)}}, {{A, B, C, X(196), X(347)}}, {{A, B, C, X(227), X(1254)}}, {{A, B, C, X(307), X(321)}}, {{A, B, C, X(322), X(1441)}}, {{A, B, C, X(342), X(40702)}}, {{A, B, C, X(3701), X(52345)}}, {{A, B, C, X(8822), X(17896)}}
X(57810) = barycentric product X(i)*X(j) for these (i, j): {10, 40702}, {196, 20336}, {208, 40071}, {221, 27801}, {223, 313}, {226, 322}, {227, 76}, {306, 342}, {321, 347}, {349, 40}, {1231, 7952}, {1441, 329}, {1446, 7080}, {1817, 34388}, {4572, 55212}, {6358, 8822}, {14256, 3701}, {17896, 4552}, {20948, 57118}, {21075, 85}, {21871, 6063}, {40701, 72}, {41083, 57807}, {47372, 52565}, {52575, 7078}, {53009, 7182}
X(57810) = barycentric quotient X(i)/X(j) for these (i, j): {2, 285}, {10, 282}, {12, 1903}, {37, 2192}, {40, 284}, {42, 7118}, {65, 1436}, {71, 2188}, {72, 268}, {76, 57795}, {196, 28}, {198, 2194}, {201, 41087}, {208, 1474}, {210, 7367}, {221, 1333}, {223, 58}, {225, 7129}, {226, 84}, {227, 6}, {306, 271}, {307, 41081}, {313, 34404}, {321, 280}, {322, 333}, {329, 21}, {342, 27}, {347, 81}, {349, 309}, {594, 53013}, {1020, 8059}, {1214, 1433}, {1400, 2208}, {1427, 1413}, {1439, 55117}, {1441, 189}, {1446, 1440}, {1817, 60}, {1824, 7154}, {1826, 7008}, {1880, 7151}, {2171, 2357}, {2187, 57657}, {2199, 2206}, {2324, 2328}, {2331, 2299}, {2360, 2150}, {3194, 2189}, {3195, 2204}, {3209, 2203}, {3668, 1422}, {4551, 36049}, {4552, 13138}, {4559, 32652}, {4566, 37141}, {4572, 55211}, {6129, 7252}, {6260, 40979}, {6354, 52384}, {6356, 52037}, {6358, 39130}, {6611, 1408}, {7011, 1437}, {7013, 1790}, {7078, 2193}, {7080, 2287}, {7952, 1172}, {8058, 1021}, {8807, 8886}, {8808, 1256}, {8822, 2185}, {10397, 57134}, {14256, 1014}, {14298, 21789}, {14837, 3737}, {17896, 4560}, {20336, 44189}, {21075, 9}, {21871, 55}, {26942, 52389}, {27398, 1098}, {27801, 57793}, {38374, 16726}, {40071, 57783}, {40149, 40836}, {40212, 2360}, {40701, 286}, {40702, 86}, {40971, 2332}, {41013, 7003}, {41083, 270}, {47372, 8748}, {53009, 33}, {55015, 1817}, {55112, 1792}, {55116, 4183}, {55212, 663}, {56382, 56972}, {57101, 23090}, {57118, 163}, {57245, 57081}, {57807, 56944}
X(57810) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {322, 40702, 347}, {16284, 33673, 53997}, {26942, 40149, 321}


X(57811) = ISOTOMIC CONJUGATE OF X(288)

Barycentrics    b^2*c^2*(2*a^4+(b^2-c^2)^2-3*a^2*(b^2+c^2))*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :

X(57811) lies on these lines: {2, 1225}, {53, 311}, {76, 275}, {338, 37636}, {339, 46832}, {1232, 6748}, {5254, 8041}, {11205, 37649}, {14978, 53386}, {15466, 37638}

X(57811) = isotomic conjugate of X(288)
X(57811) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 20574}, {31, 288}, {560, 31617}, {1173, 2148}, {2169, 33631}, {9247, 39286}, {19306, 43657}, {32676, 39181}
X(57811) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 288}, {6, 20574}, {140, 6}, {216, 1173}, {233, 54}, {338, 39183}, {1493, 14533}, {6374, 31617}, {11792, 2623}, {14363, 33631}, {15526, 39181}, {22052, 25044}, {33549, 8882}, {35442, 647}, {39019, 39180}, {52032, 31626}
X(57811) = X(i)-Ceva conjugate of X(j) for these {i, j}: {76, 1232}
X(57811) = X(i)-cross conjugate of X(j) for these {i, j}: {233, 14978}
X(57811) = pole of line {2623, 55219} with respect to the polar circle
X(57811) = pole of line {1232, 37636} with respect to the Kiepert hyperbola
X(57811) = pole of line {217, 2965} with respect to the Stammler hyperbola
X(57811) = pole of line {1510, 16336} with respect to the Steiner inellipse
X(57811) = pole of line {97, 216} with respect to the Wallace hyperbola
X(57811) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(14129)}}, {{A, B, C, X(53), X(233)}}, {{A, B, C, X(76), X(45793)}}, {{A, B, C, X(140), X(467)}}, {{A, B, C, X(276), X(324)}}, {{A, B, C, X(311), X(1232)}}, {{A, B, C, X(343), X(34386)}}, {{A, B, C, X(458), X(3078)}}, {{A, B, C, X(32078), X(35441)}}
X(57811) = barycentric product X(i)*X(j) for these (i, j): {140, 311}, {233, 76}, {305, 53386}, {343, 40684}, {1232, 5}, {3078, 34384}, {3267, 35318}, {14213, 20879}, {14978, 69}, {15415, 35324}, {18022, 32078}, {28706, 6748}, {31505, 44149}, {35441, 6331}, {44732, 52347}
X(57811) = barycentric quotient X(i)/X(j) for these (i, j): {2, 288}, {3, 20574}, {5, 1173}, {53, 33631}, {76, 31617}, {140, 54}, {233, 6}, {264, 39286}, {311, 40410}, {324, 39284}, {343, 31626}, {525, 39181}, {632, 39667}, {1232, 95}, {1263, 43657}, {1493, 25044}, {3078, 51}, {6368, 39180}, {6748, 8882}, {10095, 39168}, {13366, 54034}, {14978, 4}, {17438, 2148}, {18314, 39183}, {20879, 2167}, {22052, 14533}, {25043, 1487}, {31389, 10110}, {31505, 3527}, {32078, 184}, {35311, 933}, {35318, 112}, {35324, 14586}, {35441, 647}, {40684, 275}, {44732, 8884}, {45793, 31610}, {53386, 25}, {55280, 2623}
X(57811) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {311, 343, 45793}


X(57812) = ISOTOMIC CONJUGATE OF X(296)

Barycentrics    -(b^2*c^2*(-a+b+c)*(-a^2+b^2-c^2)*(a^2+b^2-c^2)*(-a^4+b*(b-c)^2*c+a^2*(b^2-b*c+c^2))) : :

X(57812) lies on these lines: {8, 1969}, {69, 57806}, {75, 225}, {314, 1896}, {811, 4511}, {3064, 6332}, {5081, 40717}, {17880, 40703}, {21666, 44146}, {30806, 46404}, {35174, 57997}, {52385, 57775}, {57842, 57980}

X(57812) = isotomic conjugate of X(296)
X(57812) = perspector of circumconic {{A, B, C, X(44130), X(46404)}}
X(57812) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1949}, {31, 296}, {32, 40843}, {48, 1945}, {184, 1937}, {560, 57801}, {1409, 2249}, {1415, 52222}, {1952, 9247}, {3049, 41206}
X(57812) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 296}, {9, 1949}, {1146, 52222}, {1249, 1945}, {1944, 17975}, {1948, 2655}, {6374, 57801}, {6376, 40843}, {35075, 73}, {39032, 48}, {39033, 6}, {39034, 1950}, {39035, 3}, {39036, 1}, {39037, 184}, {44360, 8763}
X(57812) = pole of line {663, 1400} with respect to the polar circle
X(57812) = pole of line {9240, 46400} with respect to the Steiner circumellipse
X(57812) = pole of line {9240, 34831} with respect to the Steiner inellipse
X(57812) = pole of line {283, 296} with respect to the Wallace hyperbola
X(57812) = intersection, other than A, B, C, of circumconics {{A, B, C, X(225), X(243)}}, {{A, B, C, X(273), X(1948)}}, {{A, B, C, X(307), X(314)}}, {{A, B, C, X(349), X(35519)}}, {{A, B, C, X(450), X(14011)}}, {{A, B, C, X(1936), X(37591)}}, {{A, B, C, X(2481), X(5088)}}, {{A, B, C, X(5125), X(15146)}}, {{A, B, C, X(6734), X(7360)}}, {{A, B, C, X(18749), X(20570)}}
X(57812) = barycentric product X(i)*X(j) for these (i, j): {243, 76}, {331, 7360}, {1430, 28659}, {1502, 51726}, {1936, 1969}, {1944, 264}, {1948, 75}, {1981, 35519}, {2202, 561}, {5088, 7017}, {15146, 349}, {15418, 44426}, {18022, 1951}, {31623, 44150}, {44130, 8680}, {57806, 6518}
X(57812) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1949}, {2, 296}, {4, 1945}, {29, 2249}, {75, 40843}, {76, 57801}, {92, 1937}, {243, 6}, {264, 1952}, {450, 1950}, {522, 52222}, {811, 41206}, {851, 1409}, {1430, 604}, {1936, 48}, {1944, 3}, {1948, 1}, {1951, 184}, {1981, 109}, {2202, 31}, {5088, 222}, {6518, 255}, {6528, 41207}, {7108, 1942}, {7360, 219}, {8680, 73}, {15146, 284}, {15418, 6516}, {23353, 1415}, {26884, 52411}, {31623, 37142}, {39035, 17975}, {39036, 2655}, {41497, 7120}, {41499, 17966}, {41500, 2202}, {44130, 35145}, {44150, 1214}, {46404, 53211}, {51645, 1410}, {51726, 32}


X(57813) = ISOTOMIC CONJUGATE OF X(352)

Barycentrics    b^2*c^2*(a^4+5*a^2*b^2+b^4-4*(a^2+b^2)*c^2+c^4)*(a^4+b^4-4*b^2*c^2+c^4+a^2*(-4*b^2+5*c^2)) : :

X(57813) lies on the Kiepert hyperbola and on these lines: {2, 6094}, {4, 14255}, {98, 9080}, {850, 9180}, {3266, 5503}

X(57813) = isotomic conjugate of X(352)
X(57813) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 352}, {163, 9023}
X(57813) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 352}, {115, 9023}, {36901, 9191}
X(57813) = X(i)-cross conjugate of X(j) for these {i, j}: {37350, 264}
X(57813) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(290), X(3266)}}, {{A, B, C, X(850), X(18023)}}, {{A, B, C, X(2501), X(25322)}}, {{A, B, C, X(3228), X(8599)}}
X(57813) = barycentric product X(i)*X(j) for these (i, j): {850, 9080}, {6094, 76}, {44173, 9192}
X(57813) = barycentric quotient X(i)/X(j) for these (i, j): {2, 352}, {523, 9023}, {850, 9191}, {6094, 6}, {9080, 110}, {9192, 1576}, {14255, 8598}


X(57814) = ISOTOMIC CONJUGATE OF X(353)

Barycentrics    b^2*c^2*(2*a^4+a^2*b^2+2*b^4+4*(a^2+b^2)*c^2-4*c^4)*(2*a^4-4*b^4+4*b^2*c^2+2*c^4+a^2*(4*b^2+c^2)) : :

X(57814) lies on these lines: {7840, 9464}

X(57814) = isotomic conjugate of X(353)
X(57814) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 353}, {560, 55164}
X(57814) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 353}, {6374, 55164}
X(57814) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7840)}}, {{A, B, C, X(76), X(9464)}}, {{A, B, C, X(327), X(3266)}}, {{A, B, C, X(353), X(34512)}}, {{A, B, C, X(671), X(34213)}}, {{A, B, C, X(850), X(40826)}}, {{A, B, C, X(34289), X(42298)}}
X(57814) = barycentric product X(i)*X(j) for these (i, j): {13377, 76}
X(57814) = barycentric quotient X(i)/X(j) for these (i, j): {2, 353}, {76, 55164}, {13377, 6}


X(57815) = ISOTOMIC CONJUGATE OF X(354)

Barycentrics    b*c*((a-b)^2-(a+b)*c)*(a^2+c*(-b+c)-a*(b+2*c)) : :

X(57815) lies on these lines: {2, 42310}, {8, 6063}, {75, 200}, {210, 2481}, {264, 7046}, {312, 728}, {314, 2346}, {321, 6605}, {354, 32021}, {518, 57785}, {668, 1233}, {850, 17163}, {1170, 30710}, {1174, 52652}, {3596, 4441}, {4554, 4847}, {4651, 18031}, {5564, 20565}, {6606, 18816}, {7182, 39959}, {10482, 33937}, {30620, 34409}, {31623, 31926}, {32041, 40606}, {40493, 49451}

X(57815) = isotomic conjugate of X(354)
X(57815) = trilinear pole of line {4130, 4391}
X(57815) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 40983}, {6, 1475}, {25, 22053}, {31, 354}, {32, 142}, {34, 22079}, {41, 1418}, {56, 2293}, {57, 20229}, {58, 52020}, {109, 2488}, {213, 18164}, {560, 20880}, {603, 1827}, {604, 1212}, {649, 35326}, {667, 35338}, {692, 48151}, {738, 8551}, {1106, 3059}, {1233, 1501}, {1333, 21808}, {1397, 4847}, {1402, 17194}, {1407, 8012}, {1408, 21039}, {1412, 21795}, {1415, 21127}, {1461, 10581}, {1576, 55282}, {1855, 52411}, {1918, 17169}, {2175, 10481}, {2200, 53238}, {2205, 16708}, {2206, 3925}, {3051, 18087}, {6607, 6614}, {7366, 45791}, {9454, 53241}, {9459, 53240}, {14599, 53239}, {21104, 32739}, {35310, 57129}, {35341, 57181}, {51972, 52410}, {52023, 57657}
X(57815) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 2293}, {2, 354}, {9, 1475}, {10, 52020}, {11, 2488}, {37, 21808}, {1086, 48151}, {1146, 21127}, {2968, 6608}, {3160, 1418}, {3161, 1212}, {4858, 55282}, {5375, 35326}, {5452, 20229}, {6374, 20880}, {6376, 142}, {6505, 22053}, {6552, 3059}, {6626, 18164}, {6631, 35338}, {7952, 1827}, {11517, 22079}, {24771, 8012}, {33675, 53241}, {34021, 17169}, {35508, 10581}, {36103, 40983}, {40593, 10481}, {40599, 21795}, {40603, 3925}, {40605, 17194}, {40619, 21104}, {40624, 6362}
X(57815) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {32021, 2890}
X(57815) = X(i)-cross conjugate of X(j) for these {i, j}: {8, 56118}, {3239, 4554}, {3261, 668}, {3740, 2}, {21611, 1978}, {28058, 36796}, {32008, 31618}, {44448, 646}, {56157, 32008}
X(57815) = pole of line {354, 17194} with respect to the Wallace hyperbola
X(57815) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(39741)}}, {{A, B, C, X(2), X(2481)}}, {{A, B, C, X(7), X(4328)}}, {{A, B, C, X(8), X(200)}}, {{A, B, C, X(10), X(3757)}}, {{A, B, C, X(57), X(41527)}}, {{A, B, C, X(69), X(42696)}}, {{A, B, C, X(75), X(264)}}, {{A, B, C, X(76), X(21609)}}, {{A, B, C, X(80), X(7224)}}, {{A, B, C, X(81), X(27807)}}, {{A, B, C, X(88), X(55026)}}, {{A, B, C, X(210), X(518)}}, {{A, B, C, X(261), X(40424)}}, {{A, B, C, X(274), X(3112)}}, {{A, B, C, X(286), X(1268)}}, {{A, B, C, X(310), X(7035)}}, {{A, B, C, X(319), X(5564)}}, {{A, B, C, X(321), X(850)}}, {{A, B, C, X(333), X(4998)}}, {{A, B, C, X(354), X(3740)}}, {{A, B, C, X(668), X(6632)}}, {{A, B, C, X(1233), X(3261)}}, {{A, B, C, X(1244), X(28476)}}, {{A, B, C, X(1255), X(8049)}}, {{A, B, C, X(1390), X(13576)}}, {{A, B, C, X(1751), X(56358)}}, {{A, B, C, X(1969), X(32018)}}, {{A, B, C, X(2296), X(32009)}}, {{A, B, C, X(2346), X(56255)}}, {{A, B, C, X(2997), X(5936)}}, {{A, B, C, X(3239), X(4847)}}, {{A, B, C, X(3475), X(38057)}}, {{A, B, C, X(3952), X(17163)}}, {{A, B, C, X(4102), X(18025)}}, {{A, B, C, X(4373), X(39703)}}, {{A, B, C, X(4981), X(46897)}}, {{A, B, C, X(6384), X(36805)}}, {{A, B, C, X(7182), X(52406)}}, {{A, B, C, X(7192), X(39962)}}, {{A, B, C, X(7249), X(14554)}}, {{A, B, C, X(8056), X(54128)}}, {{A, B, C, X(14616), X(55955)}}, {{A, B, C, X(18359), X(40216)}}, {{A, B, C, X(18827), X(55997)}}, {{A, B, C, X(21453), X(32008)}}, {{A, B, C, X(30479), X(34399)}}, {{A, B, C, X(32010), X(32011)}}, {{A, B, C, X(33118), X(33126)}}, {{A, B, C, X(33676), X(39924)}}, {{A, B, C, X(33941), X(40071)}}, {{A, B, C, X(35517), X(52421)}}, {{A, B, C, X(36588), X(55952)}}, {{A, B, C, X(37870), X(39717)}}, {{A, B, C, X(39734), X(39744)}}, {{A, B, C, X(40012), X(40028)}}, {{A, B, C, X(40419), X(40435)}}, {{A, B, C, X(42030), X(46137)}}, {{A, B, C, X(43093), X(46104)}}
X(57815) = barycentric product X(i)*X(j) for these (i, j): {274, 56157}, {310, 56255}, {346, 42311}, {1170, 3596}, {1174, 561}, {1577, 55281}, {1969, 47487}, {2346, 76}, {4391, 6606}, {6063, 6605}, {10482, 20567}, {10509, 341}, {21453, 312}, {31618, 8}, {32008, 75}, {40443, 7017}, {42310, 4441}, {56118, 85}, {56127, 86}, {56322, 668}
X(57815) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1475}, {2, 354}, {7, 1418}, {8, 1212}, {9, 2293}, {10, 21808}, {19, 40983}, {37, 52020}, {55, 20229}, {63, 22053}, {75, 142}, {76, 20880}, {85, 10481}, {86, 18164}, {100, 35326}, {190, 35338}, {200, 8012}, {210, 21795}, {219, 22079}, {274, 17169}, {281, 1827}, {286, 53238}, {309, 13156}, {310, 16708}, {312, 4847}, {314, 16713}, {318, 1855}, {321, 3925}, {331, 53237}, {333, 17194}, {334, 53239}, {341, 51972}, {344, 15185}, {346, 3059}, {480, 8551}, {514, 48151}, {522, 21127}, {561, 1233}, {650, 2488}, {693, 21104}, {1170, 56}, {1174, 31}, {1229, 6067}, {1441, 52023}, {1577, 55282}, {1803, 603}, {2321, 21039}, {2346, 6}, {2481, 53241}, {3112, 18087}, {3239, 6608}, {3263, 51384}, {3596, 1229}, {3681, 40606}, {3699, 35341}, {3900, 10581}, {3952, 35310}, {4130, 6607}, {4358, 51463}, {4391, 6362}, {4554, 35312}, {4568, 35335}, {5423, 45791}, {6385, 53236}, {6605, 55}, {6606, 651}, {6706, 39790}, {10482, 41}, {10509, 269}, {17277, 55340}, {20568, 53240}, {20946, 41573}, {21453, 57}, {28974, 41548}, {31169, 14519}, {31618, 7}, {32008, 1}, {33941, 17672}, {37788, 41555}, {40443, 222}, {42310, 1002}, {42311, 279}, {47487, 48}, {52621, 23599}, {53243, 1415}, {55281, 662}, {56118, 9}, {56127, 10}, {56157, 37}, {56255, 42}, {56322, 513}, {57792, 53242}
X(57815) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 56118, 31618}


X(57816) = ISOTOMIC CONJUGATE OF X(355)

Barycentrics    ((a^2-b^2)^2-(a-b)^2*(a+b)*c-2*a*b*c^2+(a+b)*c^3-c^4)*(a^4-a^3*b-b^4+a*b*(b-c)^2+b^3*c+a^2*(b-2*c)*c-b*c^3+c^4) : :

X(57816) lies on these lines: {7, 317}, {63, 4417}, {75, 52392}, {77, 320}, {264, 2995}, {944, 58003}, {1444, 3417}, {18816, 41004}

X(57816) = isotomic conjugate of X(355)
X(57816) = trilinear pole of line {905, 3904}
X(57816) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 355}, {42, 37227}
X(57816) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 355}, {40592, 37227}
X(57816) = pole of line {355, 37227} with respect to the Wallace hyperbola
X(57816) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(7), X(63)}}, {{A, B, C, X(9), X(44184)}}, {{A, B, C, X(21), X(34406)}}, {{A, B, C, X(75), X(95)}}, {{A, B, C, X(84), X(54125)}}, {{A, B, C, X(85), X(34411)}}, {{A, B, C, X(86), X(264)}}, {{A, B, C, X(253), X(30712)}}, {{A, B, C, X(269), X(16099)}}, {{A, B, C, X(290), X(26751)}}, {{A, B, C, X(309), X(1494)}}, {{A, B, C, X(314), X(317)}}, {{A, B, C, X(331), X(17206)}}, {{A, B, C, X(355), X(1385)}}, {{A, B, C, X(903), X(40417)}}, {{A, B, C, X(2481), X(54124)}}, {{A, B, C, X(2997), X(52442)}}, {{A, B, C, X(3655), X(28204)}}, {{A, B, C, X(5936), X(36948)}}, {{A, B, C, X(7321), X(17361)}}, {{A, B, C, X(8044), X(10435)}}, {{A, B, C, X(8797), X(28626)}}, {{A, B, C, X(10785), X(10786)}}, {{A, B, C, X(13485), X(46141)}}, {{A, B, C, X(17139), X(34408)}}, {{A, B, C, X(17347), X(18025)}}, {{A, B, C, X(19604), X(54452)}}, {{A, B, C, X(21296), X(42697)}}, {{A, B, C, X(30479), X(40422)}}, {{A, B, C, X(30598), X(40410)}}, {{A, B, C, X(35142), X(40028)}}, {{A, B, C, X(43749), X(56179)}}
X(57816) = barycentric product X(i)*X(j) for these (i, j): {3417, 76}
X(57816) = barycentric quotient X(i)/X(j) for these (i, j): {2, 355}, {81, 37227}, {3417, 6}


X(57817) = ISOTOMIC CONJUGATE OF X(373)

Barycentrics    b^2*c^2*(a^4-6*a^2*b^2+b^4-(a^2+b^2)*c^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+6*c^2)) : :

X(57817) lies on these lines: {183, 11059}, {290, 5650}, {3819, 46104}, {44833, 46328}

X(57817) = isotomic conjugate of X(373)
X(57817) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 373}, {48, 33842}
X(57817) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 373}, {1249, 33842}
X(57817) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(183)}}, {{A, B, C, X(4), X(54172)}}, {{A, B, C, X(69), X(52710)}}, {{A, B, C, X(76), X(11059)}}, {{A, B, C, X(95), X(18020)}}, {{A, B, C, X(141), X(56430)}}, {{A, B, C, X(308), X(34537)}}, {{A, B, C, X(373), X(15082)}}, {{A, B, C, X(511), X(5650)}}, {{A, B, C, X(670), X(9170)}}, {{A, B, C, X(683), X(18840)}}, {{A, B, C, X(801), X(39287)}}, {{A, B, C, X(3060), X(44299)}}, {{A, B, C, X(3819), X(3917)}}, {{A, B, C, X(5640), X(33879)}}, {{A, B, C, X(8795), X(43530)}}, {{A, B, C, X(10159), X(30786)}}, {{A, B, C, X(19222), X(21448)}}, {{A, B, C, X(34289), X(46326)}}, {{A, B, C, X(36948), X(42333)}}, {{A, B, C, X(39389), X(42299)}}
X(57817) = barycentric product X(i)*X(j) for these (i, j): {11169, 76}
X(57817) = barycentric quotient X(i)/X(j) for these (i, j): {2, 373}, {4, 33842}, {11169, 6}


X(57818) = ISOTOMIC CONJUGATE OF X(377)

Barycentrics    (a^4+b^4-c^4-2*a^2*b*(b+c)-2*a*b*c*(b+c))*(a^4-b^4+c^4-2*a^2*c*(b+c)-2*a*b*c*(b+c)) : :

X(57818) lies on the Feuerbach hyperbola and on these lines: {1, 307}, {2, 1172}, {4, 1441}, {7, 40959}, {8, 20336}, {9, 306}, {20, 57866}, {21, 69}, {75, 43740}, {84, 18650}, {86, 57832}, {95, 6910}, {104, 13395}, {253, 452}, {264, 1896}, {294, 966}, {305, 314}, {317, 37155}, {322, 30513}, {377, 57831}, {497, 2997}, {885, 7650}, {1039, 37314}, {1474, 24580}, {1494, 31156}, {2298, 5712}, {2335, 26872}, {2373, 26256}, {2648, 57841}, {4193, 8797}, {5047, 57858}, {5084, 57830}, {5224, 57878}, {6598, 18697}, {6931, 40410}, {10319, 37419}, {11106, 35510}, {11344, 41005}, {11609, 57847}, {13575, 37325}, {13615, 40995}, {13725, 58010}, {14548, 56048}, {16865, 54454}, {18019, 31106}, {18674, 24316}, {24609, 37202}, {30776, 30786}, {30977, 57980}, {32000, 57837}, {33050, 57857}, {36844, 55035}, {37169, 57820}, {43729, 52025}, {43746, 57850}, {52380, 57985}

X(57818) = isogonal conjugate of X(37538)
X(57818) = isotomic conjugate of X(377)
X(57818) = trilinear pole of line {650, 50539}
X(57818) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 37538}, {6, 54405}, {25, 54289}, {31, 377}, {55, 1448}, {58, 43214}, {163, 47124}, {2178, 46038}
X(57818) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 377}, {3, 37538}, {9, 54405}, {10, 43214}, {115, 47124}, {223, 1448}, {6505, 54289}
X(57818) = X(i)-cross conjugate of X(j) for these {i, j}: {405, 2}, {26956, 4391}
X(57818) = pole of line {377, 37538} with respect to the Wallace hyperbola
X(57818) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(2478)}}, {{A, B, C, X(5), X(6910)}}, {{A, B, C, X(6), X(36740)}}, {{A, B, C, X(20), X(452)}}, {{A, B, C, X(23), X(31106)}}, {{A, B, C, X(30), X(31156)}}, {{A, B, C, X(37), X(66)}}, {{A, B, C, X(55), X(40959)}}, {{A, B, C, X(67), X(39983)}}, {{A, B, C, X(75), X(13577)}}, {{A, B, C, X(77), X(2339)}}, {{A, B, C, X(86), X(92)}}, {{A, B, C, X(140), X(6931)}}, {{A, B, C, X(261), X(7318)}}, {{A, B, C, X(272), X(278)}}, {{A, B, C, X(273), X(333)}}, {{A, B, C, X(286), X(2994)}}, {{A, B, C, X(318), X(5931)}}, {{A, B, C, X(329), X(41082)}}, {{A, B, C, X(332), X(34277)}}, {{A, B, C, X(347), X(18650)}}, {{A, B, C, X(377), X(405)}}, {{A, B, C, X(379), X(37169)}}, {{A, B, C, X(391), X(14548)}}, {{A, B, C, X(404), X(5084)}}, {{A, B, C, X(439), X(33050)}}, {{A, B, C, X(443), X(5047)}}, {{A, B, C, X(468), X(30776)}}, {{A, B, C, X(631), X(4193)}}, {{A, B, C, X(851), X(30977)}}, {{A, B, C, X(857), X(24609)}}, {{A, B, C, X(858), X(26256)}}, {{A, B, C, X(964), X(13725)}}, {{A, B, C, X(966), X(1861)}}, {{A, B, C, X(1010), X(37314)}}, {{A, B, C, X(1011), X(37193)}}, {{A, B, C, X(1073), X(52385)}}, {{A, B, C, X(1246), X(39971)}}, {{A, B, C, X(1370), X(37325)}}, {{A, B, C, X(1375), X(30845)}}, {{A, B, C, X(1474), X(9309)}}, {{A, B, C, X(1654), X(30962)}}, {{A, B, C, X(1751), X(3668)}}, {{A, B, C, X(1848), X(5712)}}, {{A, B, C, X(2321), X(56144)}}, {{A, B, C, X(2359), X(37741)}}, {{A, B, C, X(2475), X(16865)}}, {{A, B, C, X(2476), X(6857)}}, {{A, B, C, X(2983), X(56153)}}, {{A, B, C, X(3146), X(11106)}}, {{A, B, C, X(3523), X(6919)}}, {{A, B, C, X(3552), X(17685)}}, {{A, B, C, X(3560), X(37155)}}, {{A, B, C, X(3596), X(40419)}}, {{A, B, C, X(3692), X(56098)}}, {{A, B, C, X(3757), X(33088)}}, {{A, B, C, X(3945), X(14555)}}, {{A, B, C, X(4187), X(6921)}}, {{A, B, C, X(4188), X(37162)}}, {{A, B, C, X(4189), X(5046)}}, {{A, B, C, X(4195), X(26117)}}, {{A, B, C, X(4197), X(16845)}}, {{A, B, C, X(4201), X(17697)}}, {{A, B, C, X(4202), X(13742)}}, {{A, B, C, X(4217), X(37038)}}, {{A, B, C, X(4357), X(28739)}}, {{A, B, C, X(5051), X(37176)}}, {{A, B, C, X(5129), X(6904)}}, {{A, B, C, X(5154), X(37291)}}, {{A, B, C, X(5177), X(17558)}}, {{A, B, C, X(5232), X(18141)}}, {{A, B, C, X(5486), X(39798)}}, {{A, B, C, X(5936), X(8817)}}, {{A, B, C, X(6175), X(17561)}}, {{A, B, C, X(6655), X(16914)}}, {{A, B, C, X(6836), X(11344)}}, {{A, B, C, X(6933), X(7483)}}, {{A, B, C, X(7791), X(16916)}}, {{A, B, C, X(8728), X(31259)}}, {{A, B, C, X(8801), X(45964)}}, {{A, B, C, X(10431), X(13615)}}, {{A, B, C, X(11108), X(37462)}}, {{A, B, C, X(11111), X(11114)}}, {{A, B, C, X(11319), X(17676)}}, {{A, B, C, X(11346), X(48813)}}, {{A, B, C, X(13735), X(50055)}}, {{A, B, C, X(13736), X(50408)}}, {{A, B, C, X(14001), X(17550)}}, {{A, B, C, X(14020), X(51668)}}, {{A, B, C, X(14021), X(37086)}}, {{A, B, C, X(14035), X(33059)}}, {{A, B, C, X(14376), X(18642)}}, {{A, B, C, X(14953), X(31049)}}, {{A, B, C, X(16043), X(17541)}}, {{A, B, C, X(16044), X(33063)}}, {{A, B, C, X(16062), X(17526)}}, {{A, B, C, X(16368), X(37185)}}, {{A, B, C, X(16915), X(33029)}}, {{A, B, C, X(16924), X(17684)}}, {{A, B, C, X(16925), X(17669)}}, {{A, B, C, X(17040), X(39956)}}, {{A, B, C, X(17274), X(28966)}}, {{A, B, C, X(17531), X(17559)}}, {{A, B, C, X(17536), X(17582)}}, {{A, B, C, X(17554), X(37436)}}, {{A, B, C, X(17555), X(24538)}}, {{A, B, C, X(17577), X(50739)}}, {{A, B, C, X(17692), X(33824)}}, {{A, B, C, X(24570), X(25017)}}, {{A, B, C, X(24907), X(25677)}}, {{A, B, C, X(25490), X(26028)}}, {{A, B, C, X(25494), X(26052)}}, {{A, B, C, X(25513), X(26027)}}, {{A, B, C, X(25766), X(25830)}}, {{A, B, C, X(25798), X(25871)}}, {{A, B, C, X(25912), X(25990)}}, {{A, B, C, X(25952), X(26025)}}, {{A, B, C, X(26057), X(26123)}}, {{A, B, C, X(26529), X(26655)}}, {{A, B, C, X(26556), X(26683)}}, {{A, B, C, X(26576), X(26623)}}, {{A, B, C, X(26607), X(26649)}}, {{A, B, C, X(26787), X(26834)}}, {{A, B, C, X(26995), X(27125)}}, {{A, B, C, X(27056), X(27178)}}, {{A, B, C, X(27280), X(27332)}}, {{A, B, C, X(28626), X(55022)}}, {{A, B, C, X(29641), X(33171)}}, {{A, B, C, X(29839), X(32778)}}, {{A, B, C, X(30712), X(52442)}}, {{A, B, C, X(30923), X(33313)}}, {{A, B, C, X(31015), X(37076)}}, {{A, B, C, X(31359), X(40445)}}, {{A, B, C, X(31643), X(34409)}}, {{A, B, C, X(32964), X(33057)}}, {{A, B, C, X(32981), X(33051)}}, {{A, B, C, X(33061), X(33259)}}, {{A, B, C, X(33536), X(55116)}}, {{A, B, C, X(37282), X(50399)}}, {{A, B, C, X(39130), X(43531)}}, {{A, B, C, X(39695), X(40422)}}, {{A, B, C, X(39732), X(56328)}}, {{A, B, C, X(39974), X(43726)}}, {{A, B, C, X(48814), X(50061)}}, {{A, B, C, X(48817), X(49735)}}, {{A, B, C, X(50171), X(50430)}}, {{A, B, C, X(50202), X(50793)}}, {{A, B, C, X(50205), X(50393)}}, {{A, B, C, X(50237), X(50398)}}, {{A, B, C, X(50241), X(50244)}}
X(57818) = barycentric product X(i)*X(j) for these (i, j): {264, 45127}, {13395, 4391}, {57659, 76}
X(57818) = barycentric quotient X(i)/X(j) for these (i, j): {1, 54405}, {2, 377}, {6, 37538}, {37, 43214}, {57, 1448}, {63, 54289}, {90, 46038}, {377, 36428}, {523, 47124}, {13395, 651}, {26956, 31653}, {43531, 45999}, {45127, 3}, {57659, 6}


X(57819) = ISOTOMIC CONJUGATE OF X(378)

Barycentrics    -(b^2*c^2*(-a^2+b^2+c^2)*(a^4+4*a^2*b^2+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-2*a^2*(b^2-2*c^2)+(b^2-c^2)^2)) : :

X(57819) lies on these lines: {2, 3003}, {3, 57829}, {69, 4846}, {76, 1494}, {95, 7771}, {183, 1302}, {253, 311}, {264, 403}, {287, 41614}, {328, 39170}, {1232, 35510}, {3267, 34767}, {3785, 51471}, {6795, 10419}, {7811, 44133}, {8797, 44136}, {9723, 57800}, {10603, 34229}, {11079, 57482}, {11185, 47103}, {13575, 39998}, {18019, 35520}, {19180, 57875}, {20563, 41005}, {36889, 44135}, {44149, 57823}, {46239, 51260}, {53021, 56267}, {57487, 58016}

X(57819) = isogonal conjugate of X(44080)
X(57819) = isotomic conjugate of X(378)
X(57819) = trilinear pole of line {686, 525}
X(57819) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44080}, {19, 5063}, {31, 378}, {92, 52438}, {162, 42660}, {560, 44134}, {1973, 15066}, {8675, 32676}, {11653, 57653}
X(57819) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 378}, {3, 44080}, {6, 5063}, {125, 42660}, {6337, 15066}, {6374, 44134}, {15526, 8675}, {22391, 52438}, {51471, 26864}, {52032, 5891}
X(57819) = X(i)-cross conjugate of X(j) for these {i, j}: {4846, 34289}, {10605, 2052}, {15760, 2}, {37638, 76}
X(57819) = pole of line {5063, 44080} with respect to the Stammler hyperbola
X(57819) = pole of line {378, 4550} with respect to the Wallace hyperbola
X(57819) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(403)}}, {{A, B, C, X(6), X(37511)}}, {{A, B, C, X(76), X(3260)}}, {{A, B, C, X(262), X(895)}}, {{A, B, C, X(311), X(14615)}}, {{A, B, C, X(325), X(41614)}}, {{A, B, C, X(378), X(15760)}}, {{A, B, C, X(525), X(9462)}}, {{A, B, C, X(1007), X(53021)}}, {{A, B, C, X(1093), X(15740)}}, {{A, B, C, X(1176), X(8749)}}, {{A, B, C, X(2963), X(44156)}}, {{A, B, C, X(3521), X(45819)}}, {{A, B, C, X(3613), X(6391)}}, {{A, B, C, X(3718), X(20565)}}, {{A, B, C, X(4580), X(9289)}}, {{A, B, C, X(4846), X(34288)}}, {{A, B, C, X(7182), X(20566)}}, {{A, B, C, X(7607), X(46087)}}, {{A, B, C, X(9516), X(51454)}}, {{A, B, C, X(9723), X(19180)}}, {{A, B, C, X(13481), X(34817)}}, {{A, B, C, X(14458), X(45835)}}, {{A, B, C, X(16097), X(51260)}}, {{A, B, C, X(18575), X(55977)}}, {{A, B, C, X(22263), X(40144)}}, {{A, B, C, X(30542), X(48379)}}, {{A, B, C, X(36952), X(44558)}}, {{A, B, C, X(37778), X(52145)}}, {{A, B, C, X(38263), X(45108)}}, {{A, B, C, X(40074), X(46145)}}, {{A, B, C, X(40680), X(40697)}}, {{A, B, C, X(41511), X(46142)}}, {{A, B, C, X(44133), X(44135)}}, {{A, B, C, X(44136), X(44149)}}
X(57819) = barycentric product X(i)*X(j) for these (i, j): {305, 34288}, {1302, 3267}, {4846, 76}, {34289, 69}, {56925, 57799}
X(57819) = barycentric quotient X(i)/X(j) for these (i, j): {2, 378}, {3, 5063}, {6, 44080}, {69, 15066}, {76, 44134}, {184, 52438}, {287, 11653}, {305, 32833}, {343, 5891}, {378, 36429}, {525, 8675}, {647, 42660}, {1302, 112}, {3267, 30474}, {3426, 47649}, {4846, 6}, {5392, 51833}, {11064, 10564}, {20336, 42704}, {32681, 32715}, {34288, 25}, {34289, 4}, {36083, 36131}, {36149, 32676}, {37638, 4550}, {39263, 40138}, {56925, 232}


X(57820) = ISOTOMIC CONJUGATE OF X(379)

Barycentrics    (a*(a-b)^2*b*(a+b)+(a^2-b^2)^2*c-a*b*(a+b)*c^2-c^5)*(-b^5-a^3*c^2+b*c^4+a^4*(b+c)-a^2*c*(b+c)^2+a*(-(b^2*c^2)+c^4)) : :

X(57820) lies on these lines: {3, 37202}, {69, 14021}, {264, 857}, {306, 3681}, {307, 3912}, {1441, 26165}, {17233, 20336}, {18134, 40704}, {19645, 40414}, {26167, 58010}, {28753, 57832}, {37169, 57818}, {37185, 57874}

X(57820) = isogonal conjugate of X(44081)
X(57820) = isotomic conjugate of X(379)
X(57820) = trilinear pole of line {1734, 48272}
X(57820) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44081}, {6, 51687}, {31, 379}
X(57820) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 379}, {3, 44081}, {9, 51687}
X(57820) = pole of line {379, 44081} with respect to the Wallace hyperbola
X(57820) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(857)}}, {{A, B, C, X(4), X(14021)}}, {{A, B, C, X(8), X(76)}}, {{A, B, C, X(21), X(304)}}, {{A, B, C, X(81), X(46740)}}, {{A, B, C, X(92), X(1255)}}, {{A, B, C, X(226), X(941)}}, {{A, B, C, X(312), X(2287)}}, {{A, B, C, X(333), X(20567)}}, {{A, B, C, X(335), X(2997)}}, {{A, B, C, X(345), X(26165)}}, {{A, B, C, X(377), X(37169)}}, {{A, B, C, X(379), X(30810)}}, {{A, B, C, X(440), X(19645)}}, {{A, B, C, X(464), X(37185)}}, {{A, B, C, X(1150), X(37796)}}, {{A, B, C, X(2478), X(37280)}}, {{A, B, C, X(4197), X(16053)}}, {{A, B, C, X(4417), X(37659)}}, {{A, B, C, X(5047), X(37097)}}, {{A, B, C, X(5271), X(32858)}}, {{A, B, C, X(5739), X(28753)}}, {{A, B, C, X(5741), X(28965)}}, {{A, B, C, X(7097), X(25430)}}, {{A, B, C, X(11342), X(37096)}}, {{A, B, C, X(11343), X(33839)}}, {{A, B, C, X(11349), X(17671)}}, {{A, B, C, X(14829), X(26540)}}, {{A, B, C, X(16050), X(33736)}}, {{A, B, C, X(17230), X(30059)}}, {{A, B, C, X(17758), X(39130)}}, {{A, B, C, X(24580), X(30809)}}, {{A, B, C, X(24581), X(30808)}}, {{A, B, C, X(25935), X(29616)}}, {{A, B, C, X(31014), X(31016)}}, {{A, B, C, X(32008), X(40445)}}, {{A, B, C, X(32862), X(40435)}}, {{A, B, C, X(36907), X(51223)}}, {{A, B, C, X(37142), X(39971)}}, {{A, B, C, X(37214), X(42335)}}, {{A, B, C, X(40417), X(52781)}}
X(57820) = barycentric product X(i)*X(j) for these (i, j): {56153, 75}, {57660, 76}
X(57820) = barycentric quotient X(i)/X(j) for these (i, j): {1, 51687}, {2, 379}, {6, 44081}, {56153, 1}, {57660, 6}


X(57821) = ISOTOMIC CONJUGATE OF X(380)

Barycentrics    b*(a+b-c)*c*(a-b+c)*((a-b)^2*(a+b)+(a+b)^2*c+3*(a+b)*c^2+3*c^3)*(a^3+a^2*(b-c)+a*(3*b-c)*(b+c)+(b+c)*(3*b^2+c^2)) : :

X(57821) lies on these lines: {85, 20336}, {304, 57661}, {1088, 1231}, {6063, 40071}

X(57821) = isotomic conjugate of X(380)
X(57821) = trilinear pole of line {14208, 24002}
X(57821) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 44098}, {31, 380}, {32, 452}, {41, 1453}
X(57821) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 380}, {9, 44098}, {3160, 1453}, {6376, 452}
X(57821) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(304)}}, {{A, B, C, X(76), X(309)}}, {{A, B, C, X(85), X(1088)}}, {{A, B, C, X(314), X(40023)}}, {{A, B, C, X(40011), X(44186)}}, {{A, B, C, X(40014), X(44129)}}
X(57821) = barycentric product X(i)*X(j) for these (i, j): {2213, 561}, {20567, 2336}, {57661, 76}, {57866, 75}
X(57821) = barycentric quotient X(i)/X(j) for these (i, j): {1, 44098}, {2, 380}, {7, 1453}, {75, 452}, {2213, 31}, {2336, 41}, {57661, 6}, {57866, 1}


X(57822) = ISOTOMIC CONJUGATE OF X(381)

Barycentrics    (2*(a^2-b^2)^2-(a^2+b^2)*c^2-c^4)*(2*a^4-b^4-b^2*c^2+2*c^4-a^2*(b^2+4*c^2)) : :

X(57822) lies on these lines: {2, 340}, {3, 1494}, {30, 264}, {69, 3431}, {76, 328}, {95, 5054}, {141, 44578}, {183, 30786}, {250, 42308}, {253, 10304}, {287, 599}, {298, 40710}, {299, 40709}, {305, 37671}, {307, 17361}, {317, 3545}, {376, 36889}, {381, 55958}, {520, 7998}, {524, 42313}, {577, 44575}, {1078, 49672}, {1272, 7782}, {1799, 7788}, {1972, 47383}, {2373, 47596}, {3260, 11057}, {3839, 32002}, {5055, 40410}, {5641, 40879}, {6330, 51937}, {7811, 44133}, {8431, 9410}, {11001, 52710}, {11090, 32809}, {11091, 32808}, {11539, 45198}, {12100, 40996}, {14558, 52437}, {14977, 23878}, {15688, 46724}, {15689, 20477}, {15694, 57895}, {15705, 35510}, {15706, 40995}, {15707, 57894}, {15709, 36948}, {17504, 41005}, {17561, 57858}, {20563, 44149}, {21356, 42287}, {31621, 33533}, {34016, 57985}, {36430, 40885}, {43752, 57844}, {44579, 56290}, {51346, 51967}

X(57822) = isogonal conjugate of X(34417)
X(57822) = isotomic conjugate of X(381)
X(57822) = trilinear pole of line {1636, 3268}
X(57822) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34417}, {19, 5158}, {25, 18477}, {31, 381}, {75, 34416}, {560, 44135}, {923, 32225}, {1973, 37638}, {2159, 18487}, {2173, 51544}, {2179, 4993}, {9406, 46808}, {18486, 40352}, {21970, 38252}
X(57822) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 381}, {3, 34417}, {6, 5158}, {206, 34416}, {2482, 32225}, {3163, 18487}, {6337, 37638}, {6374, 44135}, {6505, 18477}, {9410, 46808}, {36896, 51544}, {40604, 3581}, {51579, 21970}
X(57822) = X(i)-cross conjugate of X(j) for these {i, j}: {549, 2}, {3431, 43530}, {9007, 648}, {30474, 99}
X(57822) = pole of line {5158, 34416} with respect to the Stammler hyperbola
X(57822) = pole of line {381, 1531} with respect to the Wallace hyperbola
X(57822) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(30)}}, {{A, B, C, X(4), X(3524)}}, {{A, B, C, X(5), X(5054)}}, {{A, B, C, X(6), X(5092)}}, {{A, B, C, X(13), X(2993)}}, {{A, B, C, X(14), X(2992)}}, {{A, B, C, X(20), X(10304)}}, {{A, B, C, X(25), X(43957)}}, {{A, B, C, X(66), X(14492)}}, {{A, B, C, X(67), X(262)}}, {{A, B, C, X(68), X(46412)}}, {{A, B, C, X(75), X(17361)}}, {{A, B, C, X(76), X(298)}}, {{A, B, C, X(98), X(5486)}}, {{A, B, C, X(99), X(30528)}}, {{A, B, C, X(110), X(7998)}}, {{A, B, C, X(140), X(5055)}}, {{A, B, C, X(141), X(7788)}}, {{A, B, C, X(183), X(524)}}, {{A, B, C, X(252), X(46199)}}, {{A, B, C, X(276), X(52712)}}, {{A, B, C, X(290), X(598)}}, {{A, B, C, X(317), X(44149)}}, {{A, B, C, X(325), X(599)}}, {{A, B, C, X(376), X(18850)}}, {{A, B, C, X(381), X(549)}}, {{A, B, C, X(382), X(17504)}}, {{A, B, C, X(403), X(49672)}}, {{A, B, C, X(443), X(17561)}}, {{A, B, C, X(468), X(32216)}}, {{A, B, C, X(523), X(7607)}}, {{A, B, C, X(546), X(15707)}}, {{A, B, C, X(547), X(15694)}}, {{A, B, C, X(548), X(15689)}}, {{A, B, C, X(550), X(15688)}}, {{A, B, C, X(631), X(3545)}}, {{A, B, C, X(647), X(16330)}}, {{A, B, C, X(671), X(54124)}}, {{A, B, C, X(847), X(13418)}}, {{A, B, C, X(858), X(47596)}}, {{A, B, C, X(895), X(5481)}}, {{A, B, C, X(903), X(40417)}}, {{A, B, C, X(1003), X(8356)}}, {{A, B, C, X(1138), X(46259)}}, {{A, B, C, X(1176), X(34570)}}, {{A, B, C, X(1327), X(55020)}}, {{A, B, C, X(1328), X(55021)}}, {{A, B, C, X(1502), X(40829)}}, {{A, B, C, X(1511), X(33533)}}, {{A, B, C, X(1656), X(11539)}}, {{A, B, C, X(1657), X(45759)}}, {{A, B, C, X(1989), X(9307)}}, {{A, B, C, X(1992), X(15589)}}, {{A, B, C, X(2165), X(54644)}}, {{A, B, C, X(2980), X(54851)}}, {{A, B, C, X(3090), X(15709)}}, {{A, B, C, X(3091), X(15708)}}, {{A, B, C, X(3146), X(15705)}}, {{A, B, C, X(3153), X(50007)}}, {{A, B, C, X(3431), X(16263)}}, {{A, B, C, X(3519), X(13599)}}, {{A, B, C, X(3523), X(3839)}}, {{A, B, C, X(3526), X(15699)}}, {{A, B, C, X(3529), X(15710)}}, {{A, B, C, X(3530), X(14269)}}, {{A, B, C, X(3534), X(8703)}}, {{A, B, C, X(3543), X(15692)}}, {{A, B, C, X(3613), X(11058)}}, {{A, B, C, X(3627), X(15706)}}, {{A, B, C, X(3830), X(12100)}}, {{A, B, C, X(3843), X(41983)}}, {{A, B, C, X(3845), X(15693)}}, {{A, B, C, X(3860), X(15722)}}, {{A, B, C, X(3964), X(41008)}}, {{A, B, C, X(4102), X(40424)}}, {{A, B, C, X(4197), X(15671)}}, {{A, B, C, X(4417), X(17271)}}, {{A, B, C, X(4846), X(36437)}}, {{A, B, C, X(5066), X(15701)}}, {{A, B, C, X(5070), X(47598)}}, {{A, B, C, X(5071), X(15702)}}, {{A, B, C, X(5077), X(27088)}}, {{A, B, C, X(5485), X(35142)}}, {{A, B, C, X(6148), X(11130)}}, {{A, B, C, X(6656), X(33220)}}, {{A, B, C, X(6800), X(21766)}}, {{A, B, C, X(6901), X(31669)}}, {{A, B, C, X(7387), X(43934)}}, {{A, B, C, X(7608), X(44658)}}, {{A, B, C, X(7610), X(44369)}}, {{A, B, C, X(7612), X(17983)}}, {{A, B, C, X(7791), X(33255)}}, {{A, B, C, X(7807), X(33219)}}, {{A, B, C, X(7833), X(13586)}}, {{A, B, C, X(7841), X(35297)}}, {{A, B, C, X(7924), X(33246)}}, {{A, B, C, X(8359), X(11286)}}, {{A, B, C, X(8369), X(11287)}}, {{A, B, C, X(8598), X(35955)}}, {{A, B, C, X(8801), X(54523)}}, {{A, B, C, X(9170), X(35179)}}, {{A, B, C, X(9289), X(46270)}}, {{A, B, C, X(9909), X(10691)}}, {{A, B, C, X(10124), X(15703)}}, {{A, B, C, X(10302), X(35140)}}, {{A, B, C, X(11001), X(19708)}}, {{A, B, C, X(11080), X(54848)}}, {{A, B, C, X(11085), X(54847)}}, {{A, B, C, X(11112), X(16370)}}, {{A, B, C, X(11113), X(16371)}}, {{A, B, C, X(11114), X(13587)}}, {{A, B, C, X(11160), X(34229)}}, {{A, B, C, X(11288), X(33184)}}, {{A, B, C, X(11331), X(44578)}}, {{A, B, C, X(11361), X(33273)}}, {{A, B, C, X(11669), X(15464)}}, {{A, B, C, X(11812), X(19709)}}, {{A, B, C, X(12816), X(41897)}}, {{A, B, C, X(12817), X(41898)}}, {{A, B, C, X(13380), X(44157)}}, {{A, B, C, X(13481), X(53864)}}, {{A, B, C, X(13728), X(51590)}}, {{A, B, C, X(13745), X(19290)}}, {{A, B, C, X(14021), X(24608)}}, {{A, B, C, X(14033), X(33215)}}, {{A, B, C, X(14041), X(33274)}}, {{A, B, C, X(14093), X(15686)}}, {{A, B, C, X(14387), X(43527)}}, {{A, B, C, X(14528), X(46729)}}, {{A, B, C, X(14829), X(17378)}}, {{A, B, C, X(14891), X(15684)}}, {{A, B, C, X(14893), X(15718)}}, {{A, B, C, X(15078), X(52069)}}, {{A, B, C, X(15080), X(41462)}}, {{A, B, C, X(15318), X(34483)}}, {{A, B, C, X(15319), X(22270)}}, {{A, B, C, X(15321), X(54582)}}, {{A, B, C, X(15533), X(37688)}}, {{A, B, C, X(15670), X(44217)}}, {{A, B, C, X(15681), X(34200)}}, {{A, B, C, X(15682), X(15698)}}, {{A, B, C, X(15685), X(15759)}}, {{A, B, C, X(15687), X(15700)}}, {{A, B, C, X(15690), X(15695)}}, {{A, B, C, X(15712), X(38335)}}, {{A, B, C, X(15716), X(33699)}}, {{A, B, C, X(15717), X(50687)}}, {{A, B, C, X(15719), X(41099)}}, {{A, B, C, X(15720), X(38071)}}, {{A, B, C, X(15742), X(36916)}}, {{A, B, C, X(16041), X(33216)}}, {{A, B, C, X(16075), X(35912)}}, {{A, B, C, X(16089), X(47383)}}, {{A, B, C, X(16351), X(50169)}}, {{A, B, C, X(16774), X(46952)}}, {{A, B, C, X(16925), X(33251)}}, {{A, B, C, X(17039), X(55074)}}, {{A, B, C, X(17040), X(32085)}}, {{A, B, C, X(17529), X(50714)}}, {{A, B, C, X(17532), X(37298)}}, {{A, B, C, X(17549), X(17579)}}, {{A, B, C, X(17711), X(26862)}}, {{A, B, C, X(18816), X(39704)}}, {{A, B, C, X(18823), X(40428)}}, {{A, B, C, X(19222), X(55009)}}, {{A, B, C, X(19279), X(37150)}}, {{A, B, C, X(19336), X(49735)}}, {{A, B, C, X(21356), X(37668)}}, {{A, B, C, X(21735), X(46333)}}, {{A, B, C, X(21765), X(54857)}}, {{A, B, C, X(22263), X(36616)}}, {{A, B, C, X(24243), X(54597)}}, {{A, B, C, X(24244), X(43536)}}, {{A, B, C, X(26255), X(46336)}}, {{A, B, C, X(26994), X(27055)}}, {{A, B, C, X(28451), X(37281)}}, {{A, B, C, X(28452), X(28466)}}, {{A, B, C, X(30541), X(53221)}}, {{A, B, C, X(30739), X(47597)}}, {{A, B, C, X(31152), X(44210)}}, {{A, B, C, X(32964), X(33278)}}, {{A, B, C, X(32965), X(33187)}}, {{A, B, C, X(32985), X(32986)}}, {{A, B, C, X(33007), X(33008)}}, {{A, B, C, X(33190), X(33191)}}, {{A, B, C, X(33196), X(33197)}}, {{A, B, C, X(33207), X(33208)}}, {{A, B, C, X(33223), X(33224)}}, {{A, B, C, X(33263), X(33266)}}, {{A, B, C, X(33272), X(35287)}}, {{A, B, C, X(34393), X(55955)}}, {{A, B, C, X(34817), X(56307)}}, {{A, B, C, X(35937), X(35941)}}, {{A, B, C, X(36004), X(37299)}}, {{A, B, C, X(36194), X(45662)}}, {{A, B, C, X(36588), X(46136)}}, {{A, B, C, X(36611), X(46212)}}, {{A, B, C, X(36882), X(42011)}}, {{A, B, C, X(36953), X(44558)}}, {{A, B, C, X(40422), X(42030)}}, {{A, B, C, X(40448), X(42021)}}, {{A, B, C, X(40800), X(42487)}}, {{A, B, C, X(41435), X(41890)}}, {{A, B, C, X(41894), X(56072)}}, {{A, B, C, X(41909), X(54122)}}, {{A, B, C, X(43535), X(43664)}}, {{A, B, C, X(43537), X(44556)}}, {{A, B, C, X(43726), X(54477)}}, {{A, B, C, X(43908), X(46727)}}, {{A, B, C, X(44133), X(44134)}}, {{A, B, C, X(45108), X(54643)}}, {{A, B, C, X(45819), X(53100)}}, {{A, B, C, X(46133), X(55956)}}, {{A, B, C, X(46137), X(55954)}}, {{A, B, C, X(46219), X(47599)}}, {{A, B, C, X(50961), X(53104)}}, {{A, B, C, X(52223), X(54866)}}, {{A, B, C, X(52224), X(54520)}}, {{A, B, C, X(54608), X(57408)}}
X(57822) = barycentric product X(i)*X(j) for these (i, j): {264, 56266}, {1494, 46809}, {3268, 54959}, {3431, 76}, {16263, 3926}, {18316, 7799}, {43530, 69}
X(57822) = barycentric quotient X(i)/X(j) for these (i, j): {2, 381}, {3, 5158}, {6, 34417}, {30, 18487}, {32, 34416}, {63, 18477}, {69, 37638}, {74, 51544}, {76, 44135}, {95, 4993}, {193, 21970}, {323, 3581}, {381, 36430}, {524, 32225}, {1494, 46808}, {3431, 6}, {7799, 52149}, {8552, 14314}, {11064, 1531}, {14206, 18486}, {15066, 4550}, {16263, 393}, {18316, 1989}, {18487, 18485}, {22455, 8749}, {37645, 40909}, {43530, 4}, {44555, 15362}, {46091, 14533}, {46809, 30}, {50433, 18479}, {51545, 1495}, {54959, 476}, {55957, 52173}, {56063, 22451}, {56266, 3}
X(57822) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 46809, 43530}, {2, 56266, 46809}


X(57823) = ISOTOMIC CONJUGATE OF X(382)

Barycentrics    (2*(a^2-b^2)^2+(a^2+b^2)*c^2-3*c^4)*(2*a^4-3*b^4+b^2*c^2+2*c^4+a^2*(b^2-4*c^2)) : :

X(57823) lies on these lines: {3, 57894}, {69, 3528}, {95, 15720}, {253, 340}, {264, 546}, {287, 40341}, {306, 17347}, {307, 17360}, {317, 36889}, {328, 14615}, {382, 57897}, {1494, 15681}, {1799, 56916}, {2373, 33640}, {3631, 42313}, {6527, 52443}, {8797, 44134}, {11008, 42287}, {17504, 41005}, {20563, 44133}, {36948, 52712}, {44149, 57819}

X(57823) = isogonal conjugate of X(44082)
X(57823) = isotomic conjugate of X(382)
X(57823) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44082}, {31, 382}, {32, 14212}, {560, 44136}
X(57823) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 382}, {3, 44082}, {6374, 44136}, {6376, 14212}
X(57823) = pole of line {382, 33556} with respect to the Wallace hyperbola
X(57823) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(546)}}, {{A, B, C, X(4), X(3528)}}, {{A, B, C, X(5), X(15720)}}, {{A, B, C, X(6), X(14488)}}, {{A, B, C, X(20), X(49135)}}, {{A, B, C, X(30), X(15681)}}, {{A, B, C, X(66), X(21765)}}, {{A, B, C, X(67), X(2980)}}, {{A, B, C, X(68), X(1294)}}, {{A, B, C, X(75), X(17360)}}, {{A, B, C, X(183), X(3631)}}, {{A, B, C, X(250), X(6391)}}, {{A, B, C, X(262), X(13622)}}, {{A, B, C, X(290), X(7782)}}, {{A, B, C, X(317), X(44133)}}, {{A, B, C, X(325), X(40341)}}, {{A, B, C, X(340), X(14615)}}, {{A, B, C, X(381), X(17504)}}, {{A, B, C, X(382), X(550)}}, {{A, B, C, X(520), X(36608)}}, {{A, B, C, X(1093), X(45138)}}, {{A, B, C, X(1141), X(46199)}}, {{A, B, C, X(2992), X(43546)}}, {{A, B, C, X(2993), X(43547)}}, {{A, B, C, X(3519), X(15318)}}, {{A, B, C, X(3529), X(14843)}}, {{A, B, C, X(3530), X(3851)}}, {{A, B, C, X(3629), X(7788)}}, {{A, B, C, X(3855), X(10299)}}, {{A, B, C, X(3964), X(15400)}}, {{A, B, C, X(5079), X(14869)}}, {{A, B, C, X(7607), X(13481)}}, {{A, B, C, X(8801), X(11169)}}, {{A, B, C, X(11008), X(37668)}}, {{A, B, C, X(11058), X(45108)}}, {{A, B, C, X(11669), X(43458)}}, {{A, B, C, X(11737), X(15707)}}, {{A, B, C, X(13599), X(34483)}}, {{A, B, C, X(14042), X(33275)}}, {{A, B, C, X(14062), X(33276)}}, {{A, B, C, X(14269), X(34200)}}, {{A, B, C, X(14528), X(38305)}}, {{A, B, C, X(14842), X(34208)}}, {{A, B, C, X(15077), X(16251)}}, {{A, B, C, X(15319), X(42021)}}, {{A, B, C, X(15321), X(18361)}}, {{A, B, C, X(15687), X(15688)}}, {{A, B, C, X(15700), X(38071)}}, {{A, B, C, X(16263), X(33565)}}, {{A, B, C, X(16774), X(32085)}}, {{A, B, C, X(16866), X(50238)}}, {{A, B, C, X(17040), X(52519)}}, {{A, B, C, X(17347), X(18025)}}, {{A, B, C, X(17983), X(34285)}}, {{A, B, C, X(18816), X(39707)}}, {{A, B, C, X(19687), X(33234)}}, {{A, B, C, X(20477), X(43752)}}, {{A, B, C, X(33229), X(33235)}}, {{A, B, C, X(33238), X(33239)}}, {{A, B, C, X(33253), X(33280)}}, {{A, B, C, X(33254), X(33279)}}, {{A, B, C, X(33256), X(33257)}}, {{A, B, C, X(34288), X(54934)}}, {{A, B, C, X(34385), X(34410)}}, {{A, B, C, X(34386), X(52581)}}, {{A, B, C, X(34393), X(39710)}}, {{A, B, C, X(34436), X(46426)}}, {{A, B, C, X(35179), X(42297)}}, {{A, B, C, X(39709), X(46136)}}, {{A, B, C, X(40705), X(46746)}}, {{A, B, C, X(40995), X(52347)}}, {{A, B, C, X(43726), X(54717)}}, {{A, B, C, X(44134), X(44149)}}, {{A, B, C, X(45857), X(54920)}}, {{A, B, C, X(53109), X(54124)}}, {{A, B, C, X(55977), X(56307)}}
X(57823) = barycentric product X(i)*X(j) for these (i, j): {3267, 33640}, {11270, 76}
X(57823) = barycentric quotient X(i)/X(j) for these (i, j): {2, 382}, {6, 44082}, {75, 14212}, {76, 44136}, {382, 36431}, {11270, 6}, {33640, 112}


X(57824) = ISOTOMIC CONJUGATE OF X(386)

Barycentrics    b^2*c^2*(a^2+a*(b+c)+b*(b+c))*(a^2+a*(b+c)+c*(b+c)) : :

X(57824) lies on these lines: {2, 313}, {7, 349}, {27, 264}, {56, 34388}, {69, 20028}, {75, 3670}, {76, 86}, {272, 1234}, {273, 52575}, {290, 57704}, {308, 52394}, {310, 1502}, {311, 57906}, {321, 39700}, {350, 2296}, {673, 37218}, {675, 835}, {903, 57977}, {940, 56047}, {1230, 19701}, {1233, 39732}, {1246, 10449}, {1268, 3596}, {2214, 14621}, {3264, 5936}, {3963, 4261}, {4360, 40418}, {4377, 46838}, {4441, 8049}, {5224, 34265}, {16574, 53081}, {16992, 39998}, {17277, 55968}, {18082, 54426}, {18137, 27475}, {20917, 45965}, {27445, 27447}, {27482, 27483}, {30596, 30598}, {30962, 39734}, {44147, 56433}

X(57824) = isotomic conjugate of X(386)
X(57824) = trilinear pole of line {850, 23803}
X(57824) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 386}, {32, 28606}, {48, 44103}, {100, 8637}, {110, 50488}, {163, 42664}, {469, 9247}, {560, 5224}, {692, 834}, {1333, 56926}, {1397, 3876}, {1501, 33935}, {1576, 47842}, {1980, 33948}, {2258, 34281}, {9447, 33949}, {14349, 32739}
X(57824) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 386}, {37, 56926}, {115, 42664}, {244, 50488}, {1086, 834}, {1249, 44103}, {4858, 47842}, {6374, 5224}, {6376, 28606}, {8054, 8637}, {36901, 23879}, {40619, 14349}, {40620, 52615}
X(57824) = X(i)-cross conjugate of X(j) for these {i, j}: {940, 57906}, {3741, 28621}, {4823, 1978}, {28623, 190}, {50605, 2}, {54311, 85}
X(57824) = pole of line {386, 34281} with respect to the Wallace hyperbola
X(57824) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10479)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(13740)}}, {{A, B, C, X(6), X(5145)}}, {{A, B, C, X(10), X(39983)}}, {{A, B, C, X(56), X(596)}}, {{A, B, C, X(69), X(14829)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(286), X(30710)}}, {{A, B, C, X(312), X(44130)}}, {{A, B, C, X(314), X(36795)}}, {{A, B, C, X(321), X(18147)}}, {{A, B, C, X(330), X(17148)}}, {{A, B, C, X(386), X(15315)}}, {{A, B, C, X(561), X(20565)}}, {{A, B, C, X(940), X(5224)}}, {{A, B, C, X(941), X(41683)}}, {{A, B, C, X(1218), X(40017)}}, {{A, B, C, X(1269), X(3596)}}, {{A, B, C, X(1441), X(40013)}}, {{A, B, C, X(3613), X(40085)}}, {{A, B, C, X(4360), X(41527)}}, {{A, B, C, X(4441), X(18137)}}, {{A, B, C, X(10468), X(56328)}}, {{A, B, C, X(16992), X(17234)}}, {{A, B, C, X(17271), X(37684)}}, {{A, B, C, X(17277), X(30962)}}, {{A, B, C, X(17378), X(37660)}}, {{A, B, C, X(18155), X(30479)}}, {{A, B, C, X(18575), X(34475)}}, {{A, B, C, X(19792), X(20336)}}, {{A, B, C, X(20567), X(46244)}}, {{A, B, C, X(29484), X(31130)}}, {{A, B, C, X(29558), X(52196)}}, {{A, B, C, X(32017), X(40422)}}, {{A, B, C, X(34265), X(43531)}}, {{A, B, C, X(34860), X(51223)}}, {{A, B, C, X(39693), X(54128)}}, {{A, B, C, X(39735), X(40030)}}, {{A, B, C, X(42471), X(52555)}}
X(57824) = barycentric product X(i)*X(j) for these (i, j): {264, 57876}, {313, 56047}, {514, 57977}, {1978, 43927}, {2214, 561}, {3261, 835}, {18022, 57704}, {34265, 34284}, {37218, 693}, {43531, 76}
X(57824) = barycentric quotient X(i)/X(j) for these (i, j): {2, 386}, {4, 44103}, {10, 56926}, {75, 28606}, {76, 5224}, {264, 469}, {312, 3876}, {313, 56810}, {514, 834}, {523, 42664}, {561, 33935}, {649, 8637}, {661, 50488}, {693, 14349}, {835, 101}, {850, 23879}, {940, 34281}, {1577, 47842}, {1978, 33948}, {2214, 31}, {2995, 53082}, {3261, 45746}, {6063, 33949}, {7192, 52615}, {17233, 26911}, {27801, 42714}, {34265, 941}, {37218, 100}, {43223, 28622}, {43531, 6}, {43927, 649}, {45999, 37538}, {52623, 23282}, {53081, 3185}, {56047, 58}, {57704, 184}, {57876, 3}, {57977, 190}


X(57825) = ISOTOMIC CONJUGATE OF X(387)

Barycentrics    ((a^2-b^2)^2+2*(a+b)^2*c^2+4*(a+b)*c^3+c^4)*(a^4+b^4+4*b^3*c+2*b^2*c^2+c^4+4*a*b^2*(b+c)+2*a^2*(b-c)*(b+c)) : :

X(57825) lies on these lines: {2, 52396}, {7, 52565}, {27, 69}, {86, 3926}, {273, 1231}, {1269, 15467}, {3945, 56047}, {18147, 58001}

X(57825) = isotomic conjugate of X(387)
X(57825) = trilinear pole of line {3265, 514}
X(57825) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 44101}, {31, 387}, {464, 1973}
X(57825) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 387}, {6, 44101}, {6337, 464}
X(57825) = X(i)-cross conjugate of X(j) for these {i, j}: {57662, 57874}
X(57825) = pole of line {387, 464} with respect to the Wallace hyperbola
X(57825) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(37176)}}, {{A, B, C, X(66), X(40085)}}, {{A, B, C, X(69), X(76)}}, {{A, B, C, X(253), X(313)}}, {{A, B, C, X(309), X(40011)}}, {{A, B, C, X(312), X(5931)}}, {{A, B, C, X(314), X(345)}}, {{A, B, C, X(393), X(42027)}}, {{A, B, C, X(2996), X(8044)}}, {{A, B, C, X(3945), X(5224)}}, {{A, B, C, X(5232), X(17378)}}, {{A, B, C, X(8814), X(18840)}}, {{A, B, C, X(14376), X(28786)}}, {{A, B, C, X(19793), X(20336)}}, {{A, B, C, X(30701), X(40422)}}, {{A, B, C, X(34860), X(51502)}}, {{A, B, C, X(44139), X(44147)}}, {{A, B, C, X(51223), X(56328)}}
X(57825) = barycentric product X(i)*X(j) for these (i, j): {305, 57702}, {57662, 76}, {57874, 69}
X(57825) = barycentric quotient X(i)/X(j) for these (i, j): {2, 387}, {3, 44101}, {69, 464}, {57662, 6}, {57702, 25}, {57874, 4}


X(57826) = ISOTOMIC CONJUGATE OF X(391)

Barycentrics    (a+b-c)*(a-b+c)*(a+3*b+c)*(a+b+3*c) : :

X(57826) lies on the Kiepert hyperbola and on these lines: {1, 54668}, {2, 1434}, {4, 3945}, {5, 45097}, {7, 10}, {20, 56144}, {30, 54690}, {69, 37161}, {76, 4869}, {85, 321}, {98, 5545}, {226, 279}, {348, 30588}, {381, 54712}, {388, 2334}, {391, 32022}, {440, 8813}, {452, 17201}, {459, 37448}, {1014, 11108}, {1446, 10004}, {1751, 37666}, {1847, 40149}, {2051, 4352}, {2052, 26541}, {2369, 8694}, {2996, 17300}, {3091, 43672}, {3146, 14828}, {3543, 54517}, {3598, 10404}, {3600, 40718}, {3616, 7268}, {3620, 56210}, {3671, 31994}, {3672, 21620}, {3674, 4052}, {3832, 14548}, {3839, 54687}, {4059, 24797}, {4080, 4624}, {4190, 4614}, {4346, 54933}, {4606, 43762}, {5129, 43531}, {5226, 56226}, {5395, 17379}, {5712, 45100}, {6919, 17169}, {7233, 43534}, {7612, 21554}, {8808, 9533}, {10436, 53004}, {10509, 34820}, {14996, 55944}, {16589, 42290}, {17528, 54786}, {17681, 18841}, {18135, 40012}, {18840, 33838}, {21454, 52422}, {26003, 56346}, {29606, 36621}, {30828, 32840}, {32003, 51782}, {32086, 56264}, {34258, 34284}, {35160, 53658}, {36728, 54587}, {36731, 54689}, {37423, 54972}, {37427, 54758}, {37428, 54790}

X(57826) = isogonal conjugate of X(4258)
X(57826) = isotomic conjugate of X(391)
X(57826) = trilinear pole of line {3676, 523}
X(57826) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4258}, {6, 4512}, {31, 391}, {32, 4673}, {41, 3616}, {48, 461}, {55, 1449}, {63, 44100}, {109, 4827}, {163, 4843}, {219, 5338}, {220, 3361}, {284, 37593}, {607, 4652}, {643, 4832}, {662, 8653}, {667, 30728}, {692, 4765}, {1253, 21454}, {1333, 4061}, {2175, 19804}, {2194, 5257}, {2204, 4101}, {2206, 42712}, {2299, 4047}, {3939, 4790}, {4734, 57264}, {4811, 32739}, {4822, 5546}, {5342, 52425}, {31903, 52370}
X(57826) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 391}, {3, 4258}, {9, 4512}, {11, 4827}, {37, 4061}, {115, 4843}, {223, 1449}, {226, 4047}, {1084, 8653}, {1086, 4765}, {1214, 5257}, {1249, 461}, {3160, 3616}, {3162, 44100}, {6376, 4673}, {6631, 30728}, {16591, 4771}, {17113, 21454}, {36905, 4684}, {40590, 37593}, {40593, 19804}, {40603, 42712}, {40615, 4778}, {40617, 4790}, {40619, 4811}, {40622, 4841}, {52659, 4700}, {55060, 4832}
X(57826) = X(i)-cross conjugate of X(j) for these {i, j}: {4648, 2}, {4654, 7}, {4656, 75}, {25430, 5936}, {50457, 4566}, {57701, 57873}
X(57826) = pole of line {4827, 4843} with respect to the polar circle
X(57826) = pole of line {4648, 57826} with respect to the Kiepert hyperbola
X(57826) = pole of line {4843, 48268} with respect to the Steiner circumellipse
X(57826) = pole of line {391, 4258} with respect to the Wallace hyperbola
X(57826) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5223)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(4869)}}, {{A, B, C, X(7), X(85)}}, {{A, B, C, X(8), X(5308)}}, {{A, B, C, X(20), X(37448)}}, {{A, B, C, X(27), X(4208)}}, {{A, B, C, X(58), X(5756)}}, {{A, B, C, X(65), X(42290)}}, {{A, B, C, X(69), X(3945)}}, {{A, B, C, X(79), X(277)}}, {{A, B, C, X(81), X(41790)}}, {{A, B, C, X(84), X(5785)}}, {{A, B, C, X(86), X(5232)}}, {{A, B, C, X(92), X(5815)}}, {{A, B, C, X(145), X(29573)}}, {{A, B, C, X(193), X(17300)}}, {{A, B, C, X(253), X(39735)}}, {{A, B, C, X(274), X(4373)}}, {{A, B, C, X(278), X(5290)}}, {{A, B, C, X(335), X(1219)}}, {{A, B, C, X(348), X(52392)}}, {{A, B, C, X(377), X(37102)}}, {{A, B, C, X(388), X(5236)}}, {{A, B, C, X(391), X(4648)}}, {{A, B, C, X(469), X(5129)}}, {{A, B, C, X(514), X(3296)}}, {{A, B, C, X(673), X(5556)}}, {{A, B, C, X(951), X(56005)}}, {{A, B, C, X(1000), X(36605)}}, {{A, B, C, X(1121), X(7320)}}, {{A, B, C, X(1170), X(5665)}}, {{A, B, C, X(1218), X(34284)}}, {{A, B, C, X(1220), X(5772)}}, {{A, B, C, X(1255), X(7160)}}, {{A, B, C, X(1432), X(56155)}}, {{A, B, C, X(1855), X(41325)}}, {{A, B, C, X(2006), X(5726)}}, {{A, B, C, X(2213), X(38811)}}, {{A, B, C, X(2334), X(14626)}}, {{A, B, C, X(2475), X(37382)}}, {{A, B, C, X(3091), X(26003)}}, {{A, B, C, X(3500), X(41439)}}, {{A, B, C, X(3620), X(17379)}}, {{A, B, C, X(3621), X(29606)}}, {{A, B, C, X(3672), X(28616)}}, {{A, B, C, X(3926), X(26541)}}, {{A, B, C, X(4654), X(5586)}}, {{A, B, C, X(4866), X(25430)}}, {{A, B, C, X(5177), X(37389)}}, {{A, B, C, X(5555), X(34529)}}, {{A, B, C, X(5558), X(9311)}}, {{A, B, C, X(5561), X(42326)}}, {{A, B, C, X(5712), X(37655)}}, {{A, B, C, X(5775), X(34234)}}, {{A, B, C, X(5801), X(8747)}}, {{A, B, C, X(5936), X(40023)}}, {{A, B, C, X(6994), X(8728)}}, {{A, B, C, X(6995), X(33838)}}, {{A, B, C, X(7091), X(34056)}}, {{A, B, C, X(7131), X(17097)}}, {{A, B, C, X(7319), X(32008)}}, {{A, B, C, X(7378), X(17681)}}, {{A, B, C, X(7490), X(37161)}}, {{A, B, C, X(7518), X(30810)}}, {{A, B, C, X(8232), X(21617)}}, {{A, B, C, X(8545), X(30275)}}, {{A, B, C, X(8732), X(41857)}}, {{A, B, C, X(8818), X(21673)}}, {{A, B, C, X(9533), X(14256)}}, {{A, B, C, X(10521), X(40154)}}, {{A, B, C, X(14377), X(43733)}}, {{A, B, C, X(17230), X(48830)}}, {{A, B, C, X(17232), X(51171)}}, {{A, B, C, X(17234), X(37681)}}, {{A, B, C, X(17272), X(20568)}}, {{A, B, C, X(17375), X(20090)}}, {{A, B, C, X(18134), X(37666)}}, {{A, B, C, X(20569), X(36606)}}, {{A, B, C, X(21554), X(37174)}}, {{A, B, C, X(28626), X(40029)}}, {{A, B, C, X(28660), X(40025)}}, {{A, B, C, X(30494), X(34018)}}, {{A, B, C, X(32015), X(42318)}}, {{A, B, C, X(34578), X(43732)}}, {{A, B, C, X(39704), X(40026)}}, {{A, B, C, X(39734), X(44129)}}, {{A, B, C, X(44190), X(54121)}}, {{A, B, C, X(44733), X(44794)}}, {{A, B, C, X(54120), X(54123)}}
X(57826) = barycentric product X(i)*X(j) for these (i, j): {4, 57873}, {264, 57701}, {279, 56086}, {1088, 4866}, {1441, 56048}, {1446, 56204}, {2334, 6063}, {3676, 53658}, {4077, 4614}, {4554, 47915}, {4624, 514}, {4633, 7178}, {5545, 850}, {5936, 7}, {24002, 4606}, {25430, 85}, {34820, 57792}, {40023, 57}, {52621, 8694}, {56237, 57785}, {57663, 76}
X(57826) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4512}, {2, 391}, {4, 461}, {6, 4258}, {7, 3616}, {10, 4061}, {25, 44100}, {34, 5338}, {57, 1449}, {65, 37593}, {75, 4673}, {77, 4652}, {85, 19804}, {190, 30728}, {226, 5257}, {269, 3361}, {273, 5342}, {279, 21454}, {307, 4101}, {321, 42712}, {512, 8653}, {514, 4765}, {523, 4843}, {650, 4827}, {693, 4811}, {1214, 4047}, {1434, 42028}, {2334, 55}, {3212, 4734}, {3668, 3671}, {3669, 4790}, {3676, 4778}, {3911, 4700}, {4017, 4822}, {4077, 4815}, {4606, 644}, {4614, 643}, {4624, 190}, {4627, 5546}, {4633, 645}, {4866, 200}, {5545, 110}, {5936, 8}, {7178, 4841}, {7180, 4832}, {7181, 4831}, {7212, 4839}, {7235, 4829}, {7249, 4835}, {8694, 3939}, {9436, 4684}, {14626, 2340}, {16609, 4771}, {17096, 48580}, {22464, 51423}, {24002, 4801}, {24471, 4719}, {25430, 9}, {30723, 53586}, {30725, 4773}, {34820, 220}, {40023, 312}, {40663, 4819}, {43037, 4706}, {43041, 4830}, {43042, 50357}, {47915, 650}, {53658, 3699}, {56048, 21}, {56086, 346}, {56204, 2287}, {56237, 210}, {57663, 6}, {57701, 3}, {57873, 69}


X(57827) = ISOTOMIC CONJUGATE OF X(392)

Barycentrics    b*c*(a^3+a^2*b+a*b^2+b^3+4*a*b*c-(a+b)*c^2)*(a^3+a^2*c-b^2*c+c^3+a*(-b^2+4*b*c+c^2)) : :

X(57827) lies on these lines: {2, 58007}, {75, 3306}, {76, 42697}, {274, 3262}, {286, 24993}, {1056, 58029}, {3753, 18816}, {26240, 56129}

X(57827) = isotomic conjugate of X(392)
X(57827) = trilinear pole of line {693, 21222}
X(57827) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 392}, {55, 1450}
X(57827) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 392}, {223, 1450}
X(57827) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(18816)}}, {{A, B, C, X(4), X(55923)}}, {{A, B, C, X(7), X(88)}}, {{A, B, C, X(10), X(16821)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(86), X(4998)}}, {{A, B, C, X(314), X(1268)}}, {{A, B, C, X(517), X(3753)}}, {{A, B, C, X(850), X(1441)}}, {{A, B, C, X(969), X(1258)}}, {{A, B, C, X(1390), X(4581)}}, {{A, B, C, X(2995), X(5936)}}, {{A, B, C, X(4373), X(39706)}}, {{A, B, C, X(14616), X(55955)}}, {{A, B, C, X(18815), X(40216)}}, {{A, B, C, X(20336), X(24993)}}, {{A, B, C, X(32017), X(40039)}}, {{A, B, C, X(40412), X(40417)}}
X(57827) = barycentric product X(i)*X(j) for these (i, j): {57664, 76}
X(57827) = barycentric quotient X(i)/X(j) for these (i, j): {2, 392}, {57, 1450}, {57664, 6}


X(57828) = ISOTOMIC CONJUGATE OF X(402)

Barycentrics    ((a^2-b^2)^2+(a^2+b^2)*c^2-2*c^4)*((a^2-b^2)^2*(a^4+3*a^2*b^2+b^4)-3*(a^2-b^2)^2*(a^2+b^2)*c^2+(2*a^4-5*a^2*b^2+2*b^4)*c^4+(a^2+b^2)*c^6-c^8)*(a^4-2*b^4+b^2*c^2+c^4+a^2*(b^2-2*c^2))*(a^8+a^6*(-3*b^2+c^2)+a^4*(2*b^4+3*b^2*c^2-4*c^4)-(b^2-c^2)^2*(b^4+b^2*c^2-c^4)+a^2*(b^6-5*b^4*c^2+3*b^2*c^4+c^6)) : :

X(57828) lies on these lines: {2, 15351}, {69, 57665}, {648, 42306}, {1494, 11049}, {1650, 42308}, {1972, 16080}, {14401, 42307}, {15184, 16077}

X(57828) = isotomic conjugate of X(402)
X(57828) = anticomplement of X(32750)
X(57828) = trilinear pole of line {15351, 39352}
X(57828) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 402}, {1495, 2629}, {2633, 9409}, {9406, 39352}
X(57828) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 402}, {9410, 39352}, {14401, 42306}, {32750, 32750}
X(57828) = X(i)-cross conjugate of X(j) for these {i, j}: {15184, 2}, {16077, 1494}
X(57828) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(30), X(11049)}}, {{A, B, C, X(402), X(15184)}}, {{A, B, C, X(9410), X(16076)}}, {{A, B, C, X(14401), X(16075)}}, {{A, B, C, X(16077), X(39062)}}
X(57828) = barycentric product X(i)*X(j) for these (i, j): {1494, 15351}, {33805, 9390}, {57665, 76}
X(57828) = barycentric quotient X(i)/X(j) for these (i, j): {2, 402}, {1494, 39352}, {1650, 42306}, {2349, 2629}, {9390, 2173}, {9392, 2631}, {15184, 32750}, {15351, 30}, {16077, 39062}, {34767, 38240}, {57665, 6}


X(57829) = ISOTOMIC CONJUGATE OF X(403)

Barycentrics    (a^2-b^2-c^2)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+2*b^2*c^2-c^4))*(a^6-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4+2*b^2*c^2+c^4)) : :

X(57829) lies on these lines: {2, 2986}, {3, 57819}, {69, 5504}, {95, 22468}, {99, 264}, {253, 35520}, {287, 43755}, {307, 6517}, {325, 2373}, {328, 12028}, {339, 3964}, {687, 6330}, {1007, 10603}, {1078, 49672}, {1272, 6337}, {1441, 6516}, {1494, 7799}, {1972, 40888}, {2071, 3260}, {2407, 8749}, {3267, 15470}, {3926, 53788}, {5866, 39986}, {7763, 38936}, {8797, 18537}, {11064, 18877}, {14977, 15421}, {15328, 43705}, {31635, 57991}, {34767, 45792}, {39371, 52149}, {41614, 42313}, {51386, 57846}, {53576, 57875}, {57932, 57981}

X(57829) = isogonal conjugate of X(44084)
X(57829) = isotomic conjugate of X(403)
X(57829) = trilinear pole of line {394, 15421}
X(57829) = perspector of circumconic {{A, B, C, X(18878), X(55264)}}
X(57829) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44084}, {19, 3003}, {25, 1725}, {31, 403}, {162, 21731}, {163, 47236}, {393, 2315}, {560, 44138}, {686, 24019}, {798, 16237}, {923, 12828}, {1096, 13754}, {1784, 51821}, {1973, 3580}, {2333, 18609}, {32676, 55121}, {36131, 55265}, {52451, 57653}
X(57829) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 403}, {3, 44084}, {6, 3003}, {115, 47236}, {125, 21731}, {2482, 12828}, {5664, 16221}, {6337, 3580}, {6374, 44138}, {6503, 13754}, {6505, 1725}, {11064, 34104}, {15526, 55121}, {15595, 53568}, {31998, 16237}, {35071, 686}, {39008, 55265}, {40604, 1986}
X(57829) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40423, 69}, {40832, 2986}
X(57829) = X(i)-cross conjugate of X(j) for these {i, j}: {5504, 2986}, {8552, 4563}, {10257, 2}
X(57829) = pole of line {21731, 47236} with respect to the polar circle
X(57829) = pole of line {3003, 44084} with respect to the Stammler hyperbola
X(57829) = pole of line {113, 403} with respect to the Wallace hyperbola
X(57829) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(378)}}, {{A, B, C, X(6), X(44156)}}, {{A, B, C, X(96), X(15316)}}, {{A, B, C, X(98), X(895)}}, {{A, B, C, X(99), X(4558)}}, {{A, B, C, X(125), X(34310)}}, {{A, B, C, X(183), X(41614)}}, {{A, B, C, X(250), X(34168)}}, {{A, B, C, X(265), X(6128)}}, {{A, B, C, X(304), X(17095)}}, {{A, B, C, X(311), X(22468)}}, {{A, B, C, X(339), X(31635)}}, {{A, B, C, X(381), X(49672)}}, {{A, B, C, X(403), X(10257)}}, {{A, B, C, X(477), X(55981)}}, {{A, B, C, X(523), X(40120)}}, {{A, B, C, X(631), X(18537)}}, {{A, B, C, X(858), X(16387)}}, {{A, B, C, X(1176), X(45857)}}, {{A, B, C, X(1179), X(15317)}}, {{A, B, C, X(1238), X(41008)}}, {{A, B, C, X(1300), X(5504)}}, {{A, B, C, X(2071), X(39434)}}, {{A, B, C, X(2697), X(34570)}}, {{A, B, C, X(2980), X(38263)}}, {{A, B, C, X(2986), X(40423)}}, {{A, B, C, X(3260), X(44877)}}, {{A, B, C, X(3267), X(8781)}}, {{A, B, C, X(3964), X(9723)}}, {{A, B, C, X(4580), X(41909)}}, {{A, B, C, X(6148), X(7799)}}, {{A, B, C, X(6344), X(18932)}}, {{A, B, C, X(6391), X(45838)}}, {{A, B, C, X(9084), X(15398)}}, {{A, B, C, X(9164), X(34897)}}, {{A, B, C, X(11169), X(43697)}}, {{A, B, C, X(14380), X(53266)}}, {{A, B, C, X(14388), X(41435)}}, {{A, B, C, X(14492), X(45835)}}, {{A, B, C, X(15364), X(43704)}}, {{A, B, C, X(15760), X(37118)}}, {{A, B, C, X(15928), X(50433)}}, {{A, B, C, X(17974), X(44174)}}, {{A, B, C, X(23286), X(42065)}}, {{A, B, C, X(30542), X(55977)}}, {{A, B, C, X(32132), X(46199)}}, {{A, B, C, X(34229), X(53021)}}, {{A, B, C, X(36953), X(51454)}}
X(57829) = barycentric product X(i)*X(j) for these (i, j): {3, 40832}, {304, 36053}, {348, 56103}, {520, 57932}, {1300, 3926}, {2986, 69}, {3265, 687}, {5504, 76}, {10420, 3267}, {11064, 40423}, {12028, 7799}, {14910, 305}, {14919, 52552}, {15328, 4563}, {15421, 99}, {18878, 525}, {18879, 339}, {20563, 52505}, {32708, 52617}, {40427, 52437}, {43755, 850}, {55264, 9033}
X(57829) = barycentric quotient X(i)/X(j) for these (i, j): {2, 403}, {3, 3003}, {6, 44084}, {63, 1725}, {69, 3580}, {76, 44138}, {99, 16237}, {255, 2315}, {265, 56403}, {287, 52451}, {323, 1986}, {328, 57486}, {394, 13754}, {441, 53568}, {520, 686}, {523, 47236}, {524, 12828}, {525, 55121}, {647, 21731}, {687, 107}, {1300, 393}, {1444, 18609}, {1993, 52000}, {2986, 4}, {3265, 6334}, {4558, 15329}, {5504, 6}, {6504, 16172}, {9033, 55265}, {10419, 8749}, {10420, 112}, {11064, 113}, {12028, 1989}, {14910, 25}, {14919, 14264}, {15328, 2501}, {15421, 523}, {15454, 1990}, {15470, 47230}, {15478, 1609}, {18877, 51821}, {18878, 648}, {18879, 250}, {20563, 52504}, {22151, 12824}, {32708, 32713}, {35361, 51513}, {36053, 19}, {36114, 24019}, {38936, 52418}, {39371, 39176}, {39379, 40388}, {39986, 47228}, {40423, 16080}, {40427, 6344}, {40832, 264}, {43755, 110}, {51394, 47405}, {51456, 6103}, {52437, 34834}, {52505, 24}, {52552, 46106}, {52557, 34397}, {53788, 16310}, {55264, 16077}, {56103, 281}, {56577, 51358}, {57932, 6528}
X(57829) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {18878, 40423, 39988}


X(57830) = ISOTOMIC CONJUGATE OF X(404)

Barycentrics    b*c*(-(a*b*(a+b))+(a^2-a*b+b^2)*c-c^3)*(b^3-b*c^2+a^2*(-b+c)+a*c*(b+c)) : :

X(57830) lies on these lines: {5, 1441}, {11, 34388}, {21, 95}, {69, 2478}, {253, 6919}, {264, 4193}, {286, 37375}, {306, 3452}, {307, 1210}, {2476, 57831}, {2997, 9581}, {3091, 57866}, {3264, 20336}, {5047, 40412}, {5084, 57818}, {6910, 36948}, {6931, 8797}, {9229, 17669}, {17134, 19648}, {17279, 56248}, {17550, 31360}, {21271, 34466}, {24983, 24986}, {37086, 37202}, {37162, 54454}, {37822, 41004}, {52258, 58010}

X(57830) = isogonal conjugate of X(44085)
X(57830) = isotomic conjugate of X(404)
X(57830) = trilinear pole of line {3762, 21120}
X(57830) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44085}, {31, 404}, {32, 32939}, {108, 57103}, {109, 48387}, {560, 44139}, {692, 48281}, {2206, 56318}, {4559, 57212}, {7115, 39006}, {32674, 57042}, {32739, 47796}
X(57830) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 404}, {3, 44085}, {11, 48387}, {1086, 48281}, {1577, 44311}, {6374, 44139}, {6376, 32939}, {35072, 57042}, {38983, 57103}, {40603, 56318}, {40619, 47796}, {40624, 20293}, {40628, 39006}, {55067, 57212}
X(57830) = X(i)-cross conjugate of X(j) for these {i, j}: {3454, 321}, {4187, 2}, {7004, 4391}, {57807, 2997}
X(57830) = pole of line {514, 17894} with respect to the MacBeath inconic
X(57830) = pole of line {404, 44085} with respect to the Wallace hyperbola
X(57830) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3670)}}, {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(4193)}}, {{A, B, C, X(4), X(2478)}}, {{A, B, C, X(5), X(21)}}, {{A, B, C, X(6), X(37516)}}, {{A, B, C, X(7), X(2051)}}, {{A, B, C, X(8), X(1210)}}, {{A, B, C, X(9), X(1736)}}, {{A, B, C, X(11), X(40505)}}, {{A, B, C, X(20), X(6919)}}, {{A, B, C, X(37), X(3613)}}, {{A, B, C, X(75), X(693)}}, {{A, B, C, X(76), X(18135)}}, {{A, B, C, X(77), X(3007)}}, {{A, B, C, X(86), X(5741)}}, {{A, B, C, X(261), X(56365)}}, {{A, B, C, X(262), X(941)}}, {{A, B, C, X(272), X(2006)}}, {{A, B, C, X(273), X(312)}}, {{A, B, C, X(281), X(12618)}}, {{A, B, C, X(286), X(18359)}}, {{A, B, C, X(313), X(18133)}}, {{A, B, C, X(314), X(18815)}}, {{A, B, C, X(321), X(18147)}}, {{A, B, C, X(333), X(5740)}}, {{A, B, C, X(377), X(5084)}}, {{A, B, C, X(384), X(17669)}}, {{A, B, C, X(404), X(4187)}}, {{A, B, C, X(405), X(2476)}}, {{A, B, C, X(442), X(5047)}}, {{A, B, C, X(452), X(3091)}}, {{A, B, C, X(523), X(39798)}}, {{A, B, C, X(631), X(6931)}}, {{A, B, C, X(857), X(37086)}}, {{A, B, C, X(964), X(52258)}}, {{A, B, C, X(1005), X(52254)}}, {{A, B, C, X(1156), X(4451)}}, {{A, B, C, X(1218), X(40826)}}, {{A, B, C, X(1243), X(1320)}}, {{A, B, C, X(1268), X(20565)}}, {{A, B, C, X(1577), X(34388)}}, {{A, B, C, X(2321), X(43672)}}, {{A, B, C, X(2346), X(4518)}}, {{A, B, C, X(2475), X(37162)}}, {{A, B, C, X(2481), X(7264)}}, {{A, B, C, X(2995), X(20570)}}, {{A, B, C, X(3090), X(6910)}}, {{A, B, C, X(3263), X(17279)}}, {{A, B, C, X(3545), X(31156)}}, {{A, B, C, X(3552), X(33061)}}, {{A, B, C, X(3668), X(14554)}}, {{A, B, C, X(4189), X(5154)}}, {{A, B, C, X(4192), X(37373)}}, {{A, B, C, X(4197), X(11108)}}, {{A, B, C, X(4202), X(13741)}}, {{A, B, C, X(4417), X(24540)}}, {{A, B, C, X(5025), X(16916)}}, {{A, B, C, X(5051), X(13740)}}, {{A, B, C, X(5068), X(11106)}}, {{A, B, C, X(5129), X(5177)}}, {{A, B, C, X(5133), X(37325)}}, {{A, B, C, X(5141), X(16865)}}, {{A, B, C, X(5187), X(6872)}}, {{A, B, C, X(5192), X(16062)}}, {{A, B, C, X(5722), X(45926)}}, {{A, B, C, X(5936), X(6063)}}, {{A, B, C, X(6656), X(17541)}}, {{A, B, C, X(6818), X(37193)}}, {{A, B, C, X(6828), X(11344)}}, {{A, B, C, X(6857), X(6933)}}, {{A, B, C, X(6898), X(37155)}}, {{A, B, C, X(7261), X(24211)}}, {{A, B, C, X(7318), X(30479)}}, {{A, B, C, X(7483), X(7504)}}, {{A, B, C, X(7770), X(17550)}}, {{A, B, C, X(8728), X(17536)}}, {{A, B, C, X(9307), X(39956)}}, {{A, B, C, X(11109), X(24983)}}, {{A, B, C, X(11113), X(37375)}}, {{A, B, C, X(11114), X(17556)}}, {{A, B, C, X(13731), X(14011)}}, {{A, B, C, X(14022), X(36002)}}, {{A, B, C, X(14035), X(33057)}}, {{A, B, C, X(14616), X(46750)}}, {{A, B, C, X(14829), X(24986)}}, {{A, B, C, X(16044), X(17685)}}, {{A, B, C, X(16067), X(33849)}}, {{A, B, C, X(16858), X(17530)}}, {{A, B, C, X(16906), X(33817)}}, {{A, B, C, X(16914), X(32966)}}, {{A, B, C, X(16915), X(33046)}}, {{A, B, C, X(16918), X(33841)}}, {{A, B, C, X(16921), X(17684)}}, {{A, B, C, X(17527), X(17531)}}, {{A, B, C, X(17529), X(17534)}}, {{A, B, C, X(17533), X(17549)}}, {{A, B, C, X(17535), X(17575)}}, {{A, B, C, X(17559), X(37462)}}, {{A, B, C, X(17681), X(33839)}}, {{A, B, C, X(18575), X(39983)}}, {{A, B, C, X(21511), X(26019)}}, {{A, B, C, X(24172), X(41527)}}, {{A, B, C, X(26528), X(26654)}}, {{A, B, C, X(27142), X(27251)}}, {{A, B, C, X(30776), X(40132)}}, {{A, B, C, X(31014), X(37076)}}, {{A, B, C, X(32020), X(44187)}}, {{A, B, C, X(32962), X(33059)}}, {{A, B, C, X(32979), X(33050)}}, {{A, B, C, X(32991), X(33051)}}, {{A, B, C, X(33002), X(33063)}}, {{A, B, C, X(33816), X(33834)}}, {{A, B, C, X(33826), X(33837)}}, {{A, B, C, X(33827), X(33836)}}, {{A, B, C, X(39746), X(40099)}}, {{A, B, C, X(39974), X(45108)}}, {{A, B, C, X(40072), X(56048)}}, {{A, B, C, X(40450), X(43749)}}, {{A, B, C, X(41013), X(43531)}}
X(57830) = barycentric product X(i)*X(j) for these (i, j): {44040, 85}, {56248, 693}, {57666, 76}
X(57830) = barycentric quotient X(i)/X(j) for these (i, j): {2, 404}, {6, 44085}, {75, 32939}, {76, 44139}, {321, 56318}, {514, 48281}, {521, 57042}, {650, 48387}, {652, 57103}, {693, 47796}, {3737, 57212}, {4036, 21721}, {4391, 20293}, {4858, 44311}, {7004, 39006}, {20336, 42705}, {40518, 36059}, {41013, 56319}, {44040, 9}, {56248, 100}, {57666, 6}


X(57831) = ISOTOMIC CONJUGATE OF X(405)

Barycentrics    b*c*(2*a*b*(a+b)+(a+b)^2*c-c^3)*(-b^3+b*c^2+2*a*c*(b+c)+a^2*(b+2*c)) : :

X(57831) lies on these lines: {2, 286}, {3, 40412}, {4, 57858}, {5, 57877}, {7, 7066}, {69, 274}, {75, 306}, {76, 20336}, {85, 307}, {95, 474}, {253, 4208}, {264, 442}, {273, 54346}, {305, 6385}, {331, 1441}, {333, 57876}, {377, 57818}, {767, 36080}, {870, 2215}, {1246, 22076}, {1494, 44217}, {1799, 16992}, {2335, 2481}, {2373, 36077}, {2476, 57830}, {3487, 40422}, {4202, 58010}, {6856, 8797}, {17567, 36948}, {17670, 31360}, {18032, 57848}, {18133, 40014}, {24547, 58007}, {26543, 42313}, {27339, 31643}, {31623, 57874}, {37436, 57866}, {52393, 57860}

X(57831) = isogonal conjugate of X(5320)
X(57831) = isotomic conjugate of X(405)
X(57831) = trilinear pole of line {693, 525}
X(57831) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 5320}, {31, 405}, {32, 5271}, {41, 37543}, {55, 1451}, {112, 46382}, {184, 39585}, {212, 54394}, {228, 56831}, {560, 44140}, {692, 46385}, {2206, 5295}, {23882, 32739}
X(57831) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 405}, {3, 5320}, {223, 1451}, {1086, 46385}, {3160, 37543}, {6374, 44140}, {6376, 5271}, {34591, 46382}, {40603, 5295}, {40619, 23882}, {40837, 54394}
X(57831) = X(i)-cross conjugate of X(j) for these {i, j}: {8728, 2}, {32782, 76}
X(57831) = pole of line {405, 5320} with respect to the Wallace hyperbola
X(57831) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(442)}}, {{A, B, C, X(4), X(443)}}, {{A, B, C, X(5), X(474)}}, {{A, B, C, X(6), X(4260)}}, {{A, B, C, X(7), X(5249)}}, {{A, B, C, X(10), X(9534)}}, {{A, B, C, X(12), X(3597)}}, {{A, B, C, X(20), X(4208)}}, {{A, B, C, X(21), X(4197)}}, {{A, B, C, X(30), X(44217)}}, {{A, B, C, X(37), X(9307)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(86), X(6063)}}, {{A, B, C, X(92), X(40422)}}, {{A, B, C, X(141), X(16992)}}, {{A, B, C, X(183), X(26543)}}, {{A, B, C, X(189), X(5936)}}, {{A, B, C, X(226), X(1246)}}, {{A, B, C, X(262), X(39798)}}, {{A, B, C, X(313), X(34258)}}, {{A, B, C, X(333), X(1268)}}, {{A, B, C, X(377), X(36428)}}, {{A, B, C, X(404), X(2476)}}, {{A, B, C, X(405), X(8728)}}, {{A, B, C, X(452), X(37436)}}, {{A, B, C, X(523), X(39983)}}, {{A, B, C, X(631), X(6856)}}, {{A, B, C, X(693), X(28626)}}, {{A, B, C, X(964), X(4202)}}, {{A, B, C, X(969), X(7233)}}, {{A, B, C, X(1010), X(16062)}}, {{A, B, C, X(1220), X(34406)}}, {{A, B, C, X(1656), X(13747)}}, {{A, B, C, X(1751), X(8044)}}, {{A, B, C, X(1826), X(56161)}}, {{A, B, C, X(2049), X(13728)}}, {{A, B, C, X(2478), X(37462)}}, {{A, B, C, X(2997), X(30690)}}, {{A, B, C, X(3090), X(17567)}}, {{A, B, C, X(3091), X(17580)}}, {{A, B, C, X(3263), X(17321)}}, {{A, B, C, X(3668), X(17758)}}, {{A, B, C, X(3718), X(31623)}}, {{A, B, C, X(4187), X(16408)}}, {{A, B, C, X(4193), X(17531)}}, {{A, B, C, X(4201), X(26051)}}, {{A, B, C, X(4205), X(16458)}}, {{A, B, C, X(4357), X(27339)}}, {{A, B, C, X(5025), X(16917)}}, {{A, B, C, X(5051), X(16454)}}, {{A, B, C, X(5084), X(17582)}}, {{A, B, C, X(5141), X(17572)}}, {{A, B, C, X(5177), X(6904)}}, {{A, B, C, X(5192), X(17674)}}, {{A, B, C, X(6656), X(11321)}}, {{A, B, C, X(6872), X(50237)}}, {{A, B, C, X(6881), X(37249)}}, {{A, B, C, X(6921), X(6933)}}, {{A, B, C, X(7504), X(17566)}}, {{A, B, C, X(7522), X(37266)}}, {{A, B, C, X(7770), X(17670)}}, {{A, B, C, X(7791), X(33028)}}, {{A, B, C, X(7824), X(33045)}}, {{A, B, C, X(7887), X(17694)}}, {{A, B, C, X(8226), X(37271)}}, {{A, B, C, X(8822), X(23618)}}, {{A, B, C, X(9289), X(18666)}}, {{A, B, C, X(9436), X(25521)}}, {{A, B, C, X(11108), X(17529)}}, {{A, B, C, X(11112), X(17528)}}, {{A, B, C, X(11358), X(47514)}}, {{A, B, C, X(11359), X(50169)}}, {{A, B, C, X(13599), X(43724)}}, {{A, B, C, X(13725), X(37153)}}, {{A, B, C, X(13740), X(33833)}}, {{A, B, C, X(13745), X(50427)}}, {{A, B, C, X(14007), X(37039)}}, {{A, B, C, X(14828), X(17234)}}, {{A, B, C, X(16052), X(19290)}}, {{A, B, C, X(16054), X(37445)}}, {{A, B, C, X(16377), X(37165)}}, {{A, B, C, X(16417), X(17530)}}, {{A, B, C, X(16429), X(37346)}}, {{A, B, C, X(16456), X(17514)}}, {{A, B, C, X(16862), X(17527)}}, {{A, B, C, X(16863), X(17575)}}, {{A, B, C, X(16864), X(51559)}}, {{A, B, C, X(16915), X(33841)}}, {{A, B, C, X(17561), X(50727)}}, {{A, B, C, X(17565), X(33030)}}, {{A, B, C, X(17673), X(17688)}}, {{A, B, C, X(17678), X(48816)}}, {{A, B, C, X(17679), X(50171)}}, {{A, B, C, X(17682), X(33838)}}, {{A, B, C, X(17683), X(33839)}}, {{A, B, C, X(17686), X(33840)}}, {{A, B, C, X(19258), X(47515)}}, {{A, B, C, X(19281), X(37096)}}, {{A, B, C, X(19285), X(21530)}}, {{A, B, C, X(19520), X(47510)}}, {{A, B, C, X(20565), X(30598)}}, {{A, B, C, X(20566), X(28650)}}, {{A, B, C, X(24537), X(24984)}}, {{A, B, C, X(25962), X(37248)}}, {{A, B, C, X(26578), X(26622)}}, {{A, B, C, X(26643), X(33736)}}, {{A, B, C, X(26995), X(27056)}}, {{A, B, C, X(30810), X(37075)}}, {{A, B, C, X(31156), X(50793)}}, {{A, B, C, X(31259), X(50393)}}, {{A, B, C, X(31295), X(50794)}}, {{A, B, C, X(32961), X(33054)}}, {{A, B, C, X(32974), X(33039)}}, {{A, B, C, X(32990), X(33037)}}, {{A, B, C, X(33001), X(33052)}}, {{A, B, C, X(33825), X(33835)}}, {{A, B, C, X(35985), X(52255)}}, {{A, B, C, X(37056), X(37255)}}, {{A, B, C, X(37086), X(37097)}}, {{A, B, C, X(37228), X(47516)}}, {{A, B, C, X(37240), X(37363)}}, {{A, B, C, X(37298), X(50740)}}, {{A, B, C, X(39956), X(45964)}}, {{A, B, C, X(39960), X(45108)}}, {{A, B, C, X(39981), X(41003)}}, {{A, B, C, X(43531), X(54125)}}, {{A, B, C, X(48813), X(50428)}}, {{A, B, C, X(50058), X(51602)}}, {{A, B, C, X(50203), X(50206)}}, {{A, B, C, X(50204), X(50208)}}, {{A, B, C, X(50205), X(50207)}}, {{A, B, C, X(50238), X(50239)}}, {{A, B, C, X(50240), X(50713)}}, {{A, B, C, X(50394), X(50795)}}, {{A, B, C, X(50395), X(50714)}}, {{A, B, C, X(50396), X(50397)}}
X(57831) = barycentric product X(i)*X(j) for these (i, j): {2215, 561}, {2335, 6063}, {3267, 36077}, {36080, 40495}, {45128, 57914}, {51223, 76}, {54970, 693}
X(57831) = barycentric quotient X(i)/X(j) for these (i, j): {2, 405}, {6, 5320}, {7, 37543}, {27, 56831}, {57, 1451}, {75, 5271}, {76, 44140}, {92, 39585}, {278, 54394}, {321, 5295}, {514, 46385}, {656, 46382}, {693, 23882}, {2215, 31}, {2335, 55}, {17758, 14549}, {20336, 42706}, {36077, 112}, {36080, 692}, {40149, 1882}, {45128, 584}, {51223, 6}, {51875, 2911}, {52619, 15417}, {54970, 100}


X(57832) = ISOTOMIC CONJUGATE OF X(406)

Barycentrics    (a^2-b^2-c^2)*((a-b)*(a+b)^2+(a^2+2*a*b-b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2+2*b*c-c^2)) : :

X(57832) lies on these lines: {2, 1444}, {3, 57878}, {12, 1804}, {69, 57667}, {86, 57818}, {264, 274}, {306, 326}, {307, 7183}, {348, 1441}, {3926, 20336}, {3945, 54454}, {3964, 18641}, {7318, 57867}, {10436, 12609}, {13575, 45962}, {16831, 56225}, {28426, 41769}, {28753, 57820}, {35510, 54303}

X(57832) = isogonal conjugate of X(44086)
X(57832) = isotomic conjugate of X(406)
X(57832) = trilinear pole of line {4131, 525}
X(57832) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44086}, {19, 36744}, {25, 12514}, {31, 406}, {55, 1452}, {607, 45126}, {1973, 5739}, {2333, 27174}
X(57832) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 406}, {3, 44086}, {6, 36744}, {223, 1452}, {6337, 5739}, {6505, 12514}
X(57832) = pole of line {36744, 44086} with respect to the Stammler hyperbola
X(57832) = pole of line {406, 5739} with respect to the Wallace hyperbola
X(57832) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(475)}}, {{A, B, C, X(12), X(68)}}, {{A, B, C, X(37), X(6391)}}, {{A, B, C, X(77), X(6505)}}, {{A, B, C, X(86), X(7182)}}, {{A, B, C, X(274), X(326)}}, {{A, B, C, X(406), X(34120)}}, {{A, B, C, X(895), X(941)}}, {{A, B, C, X(1176), X(39956)}}, {{A, B, C, X(1214), X(39981)}}, {{A, B, C, X(1268), X(3718)}}, {{A, B, C, X(1439), X(40160)}}, {{A, B, C, X(1440), X(7056)}}, {{A, B, C, X(3157), X(37565)}}, {{A, B, C, X(3945), X(28754)}}, {{A, B, C, X(6824), X(37154)}}, {{A, B, C, X(8777), X(20570)}}, {{A, B, C, X(12609), X(43531)}}, {{A, B, C, X(28419), X(45962)}}, {{A, B, C, X(28420), X(30758)}}, {{A, B, C, X(30479), X(35518)}}, {{A, B, C, X(30598), X(31637)}}, {{A, B, C, X(38263), X(39974)}}, {{A, B, C, X(39975), X(43697)}}, {{A, B, C, X(39983), X(55977)}}, {{A, B, C, X(46740), X(52156)}}, {{A, B, C, X(52350), X(52385)}}
X(57832) = barycentric product X(i)*X(j) for these (i, j): {305, 46010}, {56225, 7182}, {57667, 76}
X(57832) = barycentric quotient X(i)/X(j) for these (i, j): {2, 406}, {3, 36744}, {6, 44086}, {57, 1452}, {63, 12514}, {69, 5739}, {77, 45126}, {1444, 27174}, {20336, 42707}, {26933, 5517}, {46010, 25}, {56225, 33}, {57667, 6}


X(57833) = ISOTOMIC CONJUGATE OF X(407)

Barycentrics    (a+b)*(a+c)*((a-b)^2-(a+b)*c-2*c^2)*(a^2-b^2-c^2)*(a^2-(2*b-c)*(b+c)-a*(b+2*c)) : :

X(57833) lies on these lines: {2, 7058}, {69, 57668}, {307, 332}, {314, 1441}, {4563, 57841}

X(57833) = isotomic conjugate of X(407)
X(57833) = trilinear pole of line {15411, 525}
X(57833) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 2650}, {31, 407}, {42, 40985}, {608, 21811}, {1395, 21677}, {1402, 40950}, {1880, 21748}, {1973, 17056}, {1974, 18698}, {2203, 21674}, {2646, 57652}
X(57833) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 407}, {6337, 17056}, {6505, 2650}, {40592, 40985}, {40605, 40950}, {40618, 23755}
X(57833) = X(i)-cross conjugate of X(j) for these {i, j}: {6332, 4563}, {57242, 99}
X(57833) = pole of line {407, 2646} with respect to the Wallace hyperbola
X(57833) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(10474)}}, {{A, B, C, X(314), X(332)}}, {{A, B, C, X(1041), X(37142)}}, {{A, B, C, X(1444), X(56048)}}, {{A, B, C, X(17097), X(40442)}}, {{A, B, C, X(17206), X(32014)}}
X(57833) = barycentric product X(i)*X(j) for these (i, j): {304, 40430}, {4563, 56321}, {28660, 40442}, {57668, 76}
X(57833) = barycentric quotient X(i)/X(j) for these (i, j): {2, 407}, {63, 2650}, {69, 17056}, {78, 21811}, {81, 40985}, {283, 21748}, {304, 18698}, {306, 21674}, {332, 5745}, {333, 40950}, {345, 21677}, {1812, 2646}, {4025, 23755}, {4558, 53324}, {4561, 22003}, {4563, 17136}, {6514, 22361}, {17097, 1880}, {17206, 3664}, {20336, 42708}, {40430, 19}, {40442, 1400}, {49280, 30604}, {56321, 2501}, {57668, 6}


X(57834) = ISOTOMIC CONJUGATE OF X(408)

Barycentrics    -(b^3*(a+b)*c^3*(a+c)*(2*a*(a-b)^2*b*(a+b)+(a^2-b^2)^2*c+(a-b)^2*(a+b)*c^2-(a^2+b^2)*c^3-(a+b)*c^4)*(a^4-(b^2-c^2)^2)^2*(b*(b-c)*c*(b+c)^2-a^4*(b+2*c)-a^3*(b^2-2*c^2)+a^2*(b+c)*(b^2+2*c^2)+a*(b^4+b^2*c^2-2*c^4))) : :

X(57834) lies on circumconic {{A, B, C, X(2), X(69)}} and on these lines: {69, 57669}, {307, 44130}

X(57834) = isotomic conjugate of X(408)
X(57834) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 408}, {184, 2658}, {9247, 18592}, {14585, 53036}
X(57834) = barycentric product X(i)*X(j) for these (i, j): {1969, 53044}, {57669, 76}
X(57834) = barycentric quotient X(i)/X(j) for these (i, j): {2, 408}, {92, 2658}, {264, 18592}, {15352, 53317}, {31623, 40946}, {53044, 48}, {57669, 6}, {57806, 53036}


X(57835) = ISOTOMIC CONJUGATE OF X(409)

Barycentrics    -(b*c*(b+c)*((a+b)^2*(a^2-3*a*b+b^2)-(a+b)*(a^2+b^2)*c-a*b*c^2+(a+b)*c^3-c^4)*(-a^4+b^4-b^3*c+b*c^3-c^4+a^3*(b+c)+a^2*c*(b+4*c)+a*(-b^3+b^2*c+b*c^2+c^3))) : :

X(57835) lies on these lines: {69, 9399}, {1441, 27687}, {3263, 57859}, {6356, 57839}, {18698, 57841}

X(57835) = isotomic conjugate of X(409)
X(57835) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 409}, {2194, 2647}
X(57835) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 409}, {1214, 2647}
X(57835) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(7), X(41874)}}, {{A, B, C, X(21), X(201)}}, {{A, B, C, X(1268), X(35550)}}, {{A, B, C, X(1577), X(18698)}}, {{A, B, C, X(3263), X(27697)}}, {{A, B, C, X(27705), X(33931)}}, {{A, B, C, X(27716), X(37152)}}, {{A, B, C, X(39717), X(54121)}}
X(57835) = barycentric product X(i)*X(j) for these (i, j): {76, 9399}, {349, 9398}
X(57835) = barycentric quotient X(i)/X(j) for these (i, j): {2, 409}, {226, 2647}, {9398, 284}, {9399, 6}


X(57836) = ISOTOMIC CONJUGATE OF X(410)

Barycentrics    (b+c)*(-a^2+b^2+c^2)*(a^2*(a-b)^2*b^2*(a+b)^4+a*(a-b)^2*b*(a+b)^3*(a^2+b^2)*c+(a^2-b^2)^2*(a^4-a^3*b+a^2*b^2-a*b^3+b^4)*c^2-a*(a-b)^2*b*(a+b)^3*c^3-(a+b)^2*(3*a^4-5*a^3*b+9*a^2*b^2-5*a*b^3+3*b^4)*c^4-a*b*(a+b)*(a^2+b^2)*c^5+(3*a^4+5*a^3*b+3*a^2*b^2+5*a*b^3+3*b^4)*c^6+a*b*(a+b)*c^7-(a^2+3*a*b+b^2)*c^8)*(a^7*(b-2*c)*c*(b+c)+b^2*c^2*(b^2-c^2)^3-a^8*(b^2+b*c+c^2)-a^3*c*(b^2-c^2)^2*(5*b^2-b*c+2*c^2)+a*b*c*(b^2-c^2)^2*(3*b^3-b^2*c+b*c^2-c^3)+a^2*(b^2-c^2)^2*(b^4-b^3*c-b^2*c^2-b*c^3-c^4)+a^6*(3*b^4+b^3*c+b^2*c^2+b*c^3+c^4)+a^5*c*(b^4+b^3*c-b^2*c^2+b*c^3+4*c^4)+a^4*(-3*b^6+b^5*c+2*b^4*c^2-2*b^3*c^3+b*c^5+c^6)) : :

X(57836) lies on circumconic {{A, B, C, X(2), X(69)}} and on these lines: {69, 57670}, {6356, 57840}

X(57836) = isotomic conjugate of X(410)
X(57836) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 410}, {2299, 2662}
X(57836) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 410}, {226, 2662}
X(57836) = barycentric product X(i)*X(j) for these (i, j): {57670, 76}
X(57836) = barycentric quotient X(i)/X(j) for these (i, j): {2, 410}, {1214, 2662}, {57670, 6}


X(57837) = ISOTOMIC CONJUGATE OF X(411)

Barycentrics    b*c*(a^5*(-b+c)+a^4*b*(b+c)+b*(b-c)^3*(b+c)^2+2*a^2*b^2*(-b^2+c^2)-a*(b-c)*(b+c)^2*(b^2+c^2)+2*a^3*(b^3-c^3))*(a^5*(-b+c)-a^4*c*(b+c)+(b-c)^3*c*(b+c)^2+2*a^2*c^2*(-b^2+c^2)-a*(b-c)*(b+c)^2*(b^2+c^2)+2*a^3*(b^3-c^3)) : :

X(57837) lies on these lines: {69, 6836}, {95, 6986}, {264, 6828}, {1441, 41005}, {20336, 35516}, {32000, 57818}, {37202, 37389}, {44150, 57838}

X(57837) = isogonal conjugate of X(44087)
X(57837) = isotomic conjugate of X(411)
X(57837) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44087}, {6, 1630}, {25, 3561}, {31, 411}, {32, 54107}, {41, 34035}
X(57837) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 411}, {3, 44087}, {9, 1630}, {3160, 34035}, {6376, 54107}, {6505, 3561}
X(57837) = X(i)-cross conjugate of X(j) for these {i, j}: {6831, 2}, {24031, 4391}
X(57837) = pole of line {411, 44087} with respect to the Wallace hyperbola
X(57837) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(6828)}}, {{A, B, C, X(4), X(6836)}}, {{A, B, C, X(5), X(6986)}}, {{A, B, C, X(273), X(309)}}, {{A, B, C, X(282), X(44426)}}, {{A, B, C, X(411), X(6831)}}, {{A, B, C, X(857), X(37389)}}, {{A, B, C, X(1445), X(33864)}}, {{A, B, C, X(2051), X(52560)}}, {{A, B, C, X(3091), X(37423)}}, {{A, B, C, X(3149), X(6943)}}, {{A, B, C, X(4193), X(37282)}}, {{A, B, C, X(4417), X(5736)}}, {{A, B, C, X(5125), X(27378)}}, {{A, B, C, X(6835), X(6865)}}, {{A, B, C, X(6860), X(6988)}}, {{A, B, C, X(6915), X(6922)}}, {{A, B, C, X(6956), X(6962)}}, {{A, B, C, X(18025), X(20565)}}, {{A, B, C, X(19611), X(35518)}}, {{A, B, C, X(20566), X(40424)}}, {{A, B, C, X(20930), X(30806)}}, {{A, B, C, X(34393), X(54121)}}, {{A, B, C, X(37428), X(52269)}}, {{A, B, C, X(40216), X(40417)}}, {{A, B, C, X(41013), X(54972)}}, {{A, B, C, X(42355), X(43675)}}
X(57837) = barycentric product X(i)*X(j) for these (i, j): {57671, 76}
X(57837) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1630}, {2, 411}, {6, 44087}, {7, 34035}, {63, 3561}, {75, 54107}, {6358, 56327}, {57671, 6}


X(57838) = ISOTOMIC CONJUGATE OF X(412)

Barycentrics    (a^2-b^2-c^2)*(a^4*c*(-b+c)+a^5*(b+c)+2*a^2*(b-c)*c^2*(b+c)+(b-c)^2*c*(b+c)^3+a*(b-c)^2*(b+c)*(b^2+c^2)-2*a^3*(b^3+c^3))*(a^4*b*(b-c)+a^5*(b+c)+b*(b-c)^2*(b+c)^3+2*a^2*b^2*(-b^2+c^2)+a*(b-c)^2*(b+c)*(b^2+c^2)-2*a^3*(b^3+c^3)) : :

X(57838) lies on these lines: {69, 57672}, {264, 52248}, {307, 41005}, {322, 57984}, {332, 57800}, {1441, 17858}, {44150, 57837}

X(57838) = isotomic conjugate of X(412)
X(57838) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 38860}, {25, 3562}, {31, 412}, {1415, 57166}
X(57838) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 412}, {9, 38860}, {1146, 57166}, {6505, 3562}
X(57838) = X(i)-cross conjugate of X(j) for these {i, j}: {24026, 6332}
X(57838) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(39130)}}, {{A, B, C, X(8), X(23528)}}, {{A, B, C, X(63), X(309)}}, {{A, B, C, X(77), X(92)}}, {{A, B, C, X(78), X(7020)}}, {{A, B, C, X(312), X(19611)}}, {{A, B, C, X(322), X(908)}}, {{A, B, C, X(326), X(6332)}}, {{A, B, C, X(332), X(17858)}}, {{A, B, C, X(1439), X(2051)}}, {{A, B, C, X(2997), X(4025)}}, {{A, B, C, X(18025), X(23581)}}, {{A, B, C, X(40011), X(52565)}}, {{A, B, C, X(40417), X(52351)}}
X(57838) = barycentric product X(i)*X(j) for these (i, j): {57672, 76}
X(57838) = barycentric quotient X(i)/X(j) for these (i, j): {1, 38860}, {2, 412}, {63, 3562}, {522, 57166}, {57672, 6}


X(57839) = ISOTOMIC CONJUGATE OF X(413)

Barycentrics    b*(a+b-c)^3*c*(a-b+c)^3*(b+c)*((a-b)^2*(a^2+a*b+b^2)+(a-b)^2*(a+b)*c+a*b*c^2+(a+b)*c^3+c^4)*(a^4+b^4+a^3*(b-c)-a^2*b*c+b^3*c+b*c^3+c^4+a*(b-c)*(b+c)^2) : :

X(57839) lies on circumconic {{A, B, C, X(2), X(69)}} and on these lines: {69, 7197}, {6356, 57835}

X(57839) = isotomic conjugate of X(413)
X(57839) = barycentric product X(i)*X(j) for these (i, j): {57673, 76}
X(57839) = barycentric quotient X(i)/X(j) for these (i, j): {2, 413}, {57673, 6}


X(57840) = ISOTOMIC CONJUGATE OF X(414)

Barycentrics    (a+b-c)^3*(a-b+c)^3*(b+c)*(a^2-b^2-c^2)*(-(a*b*(b-c)^3*c*(b+c)^4)+b^2*(b-c)^2*c^2*(b+c)^4+a^8*(b^2+b*c+c^2)+a^7*(b-c)*(2*b^2+3*b*c+2*c^2)-a^5*(b-c)*(b+c)^2*(4*b^2-b*c+4*c^2)-a^4*(b+c)^2*(b^4-5*b^3*c+5*b^2*c^2-5*b*c^3+c^4)+a^2*(b^2-c^2)^2*(b^4-b^3*c-b^2*c^2-b*c^3+c^4)-a^6*(b^4+3*b^3*c+3*b^2*c^2+3*b*c^3+c^4)+a^3*(b-c)*(b+c)^2*(2*b^4+b^3*c+2*b^2*c^2+b*c^3+2*c^4))*(a*b*(b-c)^3*c*(b+c)^4+b^2*(b-c)^2*c^2*(b+c)^4+a^8*(b^2+b*c+c^2)-a^7*(b-c)*(2*b^2+3*b*c+2*c^2)+a^5*(b-c)*(b+c)^2*(4*b^2-b*c+4*c^2)-a^4*(b+c)^2*(b^4-5*b^3*c+5*b^2*c^2-5*b*c^3+c^4)+a^2*(b^2-c^2)^2*(b^4-b^3*c-b^2*c^2-b*c^3+c^4)-a^6*(b^4+3*b^3*c+3*b^2*c^2+3*b*c^3+c^4)+a^3*(-2*b^7-3*b^6*c-b^5*c^2+b^2*c^5+3*b*c^6+2*c^7)) : :

X(57840) lies on circumconic {{A, B, C, X(2), X(69)}} and on these lines: {69, 57674}, {6356, 57836}

X(57840) = isotomic conjugate of X(414)
X(57840) = barycentric product X(i)*X(j) for these (i, j): {57674, 76}
X(57840) = barycentric quotient X(i)/X(j) for these (i, j): {2, 414}, {57674, 6}


X(57841) = ISOTOMIC CONJUGATE OF X(415)

Barycentrics    -((b+c)*(-a^2+b^2+c^2)*(a^3+b^3+a*b*c-2*(a+b)*c^2+c^3)*(a^3+b^3-2*b^2*c+c^3+a*b*(-2*b+c))) : :

X(57841) lies on these lines: {2, 9317}, {69, 57675}, {125, 307}, {1109, 1441}, {1494, 35154}, {2373, 2701}, {2648, 57818}, {4563, 57833}, {18698, 57835}, {24602, 37202}

X(57841) = isotomic conjugate of X(415)
X(57841) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 5060}, {25, 2651}, {31, 415}, {162, 5075}, {1172, 17966}, {1758, 2299}, {1973, 40882}, {2194, 17985}, {2204, 17950}, {2785, 32676}, {17942, 18344}, {17992, 52914}
X(57841) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 415}, {6, 5060}, {125, 5075}, {226, 1758}, {1214, 17985}, {6337, 40882}, {6505, 2651}, {15526, 2785}, {35075, 41499}
X(57841) = X(i)-cross conjugate of X(j) for these {i, j}: {57675, 11608}
X(57841) = pole of line {415, 40882} with respect to the Wallace hyperbola
X(57841) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(125), X(1109)}}, {{A, B, C, X(226), X(24268)}}, {{A, B, C, X(332), X(6356)}}, {{A, B, C, X(334), X(14208)}}, {{A, B, C, X(850), X(2988)}}, {{A, B, C, X(4563), X(17136)}}, {{A, B, C, X(17094), X(31637)}}
X(57841) = barycentric product X(i)*X(j) for these (i, j): {1231, 2648}, {2652, 304}, {2701, 3267}, {11608, 69}, {17931, 57243}, {17947, 307}, {17973, 349}, {35154, 525}, {57675, 76}
X(57841) = barycentric quotient X(i)/X(j) for these (i, j): {2, 415}, {3, 5060}, {63, 2651}, {69, 40882}, {73, 17966}, {226, 17985}, {307, 17950}, {525, 2785}, {647, 5075}, {1214, 1758}, {1813, 17942}, {2648, 1172}, {2652, 19}, {2701, 112}, {8680, 41499}, {11608, 4}, {17947, 29}, {17963, 2299}, {17973, 284}, {18013, 3064}, {35154, 648}, {40152, 17975}, {51664, 51642}, {55234, 17992}, {57243, 18006}, {57675, 6}


X(57842) = ISOTOMIC CONJUGATE OF X(416)

Barycentrics    b*c*(b+c)*(-(a^2*(a-b)^2*b^2*(a+b)^3)-a*b*(a^2-b^2)^2*(a^2-a*b+b^2)*c+(a-b)^2*(a+b)^3*(a^2+b^2)*c^2-(a^2-b^2)^2*(a^2-a*b+b^2)*c^3-(a+b)*(2*a^4-a^2*b^2+2*b^4)*c^4+(2*a^4+a^3*b-a^2*b^2+a*b^3+2*b^4)*c^5+(a+b)*(a^2+b^2)*c^6-(a^2+a*b+b^2)*c^7)*(a^6*(b-c)^2*(b+c)+b^2*(b-c)^3*c^2*(b+c)^2+a^2*(b-c)^2*(b+c)*(b^2+c^2)^2+a*b*c*(b^2-c^2)^2*(b^2-b*c+c^2)+a^7*(-b^2+b*c+c^2)-a^4*(b-c)*(2*b^4+b^2*c^2-2*c^4)+a^5*(2*b^4-b^3*c+b^2*c^2-b*c^3-2*c^4)-a^3*(b-c)*(b+c)*(b^4+b^3*c+2*b^2*c^2-b*c^3+c^4)) : :

X(57842) lies on circumconic {{A, B, C, X(2), X(69)}} and on these lines: {2, 39036}, {69, 57676}, {1441, 2972}, {57812, 57980}

X(57842) = isotomic conjugate of X(416)
X(57842) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 416}, {184, 2659}, {2194, 2655}, {44354, 57657}
X(57842) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 416}, {1214, 2655}
X(57842) = barycentric product X(i)*X(j) for these (i, j): {1969, 2660}, {2656, 349}, {57676, 76}
X(57842) = barycentric quotient X(i)/X(j) for these (i, j): {2, 416}, {92, 2659}, {226, 2655}, {1441, 44354}, {2656, 284}, {2660, 48}, {57676, 6}


X(57843) = ISOTOMIC CONJUGATE OF X(417)

Barycentrics    b^4*c^4*((a^2-b^2)^2*(a^2+b^2)-2*(a^2-b^2)^2*c^2+(a^2+b^2)*c^4)*(a^4-(b^2-c^2)^2)^3*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+4*b^2*c^2-c^4)) : :

X(57843) lies on these lines: {69, 57677}, {95, 1105}, {253, 18027}, {307, 57972}, {1093, 40032}, {8795, 43767}, {44131, 57864}

X(57843) = isotomic conjugate of X(417)
X(57843) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 417}, {184, 820}, {185, 52430}, {774, 23606}, {800, 4100}, {6508, 14585}, {6509, 9247}
X(57843) = X(i)-cross conjugate of X(j) for these {i, j}: {264, 57775}
X(57843) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(5), X(26897)}}, {{A, B, C, X(14618), X(44131)}}
X(57843) = barycentric product X(i)*X(j) for these (i, j): {1093, 40830}, {1105, 18027}, {1969, 821}, {2052, 57775}, {57677, 76}, {57955, 6521}, {57972, 92}
X(57843) = barycentric quotient X(i)/X(j) for these (i, j): {2, 417}, {92, 820}, {264, 6509}, {775, 4100}, {801, 1092}, {821, 48}, {1093, 800}, {1105, 577}, {2052, 185}, {6521, 774}, {8794, 16035}, {8795, 19180}, {15352, 1624}, {18027, 41005}, {40830, 3964}, {41890, 23606}, {57677, 6}, {57775, 394}, {57806, 6508}, {57955, 6507}, {57972, 63}


X(57844) = ISOTOMIC CONJUGATE OF X(418)

Barycentrics    b^4*c^4*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4-(b^2-c^2)^2)^2*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(57844) lies on these lines: {2, 276}, {69, 8795}, {95, 16089}, {264, 11197}, {275, 287}, {305, 44161}, {324, 1972}, {418, 9291}, {1494, 54950}, {1799, 8884}, {2052, 42313}, {2373, 52779}, {6330, 42401}, {6528, 30506}, {18024, 23295}, {19188, 42330}, {42369, 57981}, {43752, 57822}

X(57844) = isogonal conjugate of X(44088)
X(57844) = isotomic conjugate of X(418)
X(57844) = perspector of circumconic {{A, B, C, X(42369), X(54950)}}
X(57844) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44088}, {31, 418}, {48, 217}, {51, 52430}, {163, 42293}, {216, 9247}, {255, 40981}, {560, 5562}, {577, 2179}, {1917, 52347}, {1953, 14585}, {2148, 46394}, {2181, 23606}, {3199, 4100}, {14575, 44706}, {18695, 40373}
X(57844) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 418}, {3, 44088}, {115, 42293}, {216, 46394}, {338, 34983}, {525, 41219}, {1249, 217}, {6374, 5562}, {6523, 40981}, {36901, 17434}
X(57844) = X(i)-cross conjugate of X(j) for these {i, j}: {264, 276}, {276, 57790}, {6563, 52939}, {23295, 275}, {41009, 34385}, {41219, 525}, {42368, 264}, {45198, 76}
X(57844) = pole of line {17434, 42331} with respect to the MacBeath inconic
X(57844) = pole of line {418, 31353} with respect to the Wallace hyperbola
X(57844) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(5), X(11197)}}, {{A, B, C, X(276), X(34384)}}, {{A, B, C, X(324), X(850)}}, {{A, B, C, X(427), X(6530)}}, {{A, B, C, X(1105), X(35098)}}, {{A, B, C, X(6662), X(13409)}}, {{A, B, C, X(8794), X(8795)}}, {{A, B, C, X(8882), X(19197)}}, {{A, B, C, X(8884), X(19174)}}, {{A, B, C, X(15318), X(54032)}}, {{A, B, C, X(15319), X(53174)}}, {{A, B, C, X(18022), X(18027)}}, {{A, B, C, X(23295), X(54034)}}, {{A, B, C, X(34287), X(43711)}}, {{A, B, C, X(41530), X(44185)}}, {{A, B, C, X(45198), X(52347)}}
X(57844) = barycentric product X(i)*X(j) for these (i, j): {4, 57790}, {76, 8795}, {264, 276}, {305, 8794}, {525, 54950}, {1502, 8884}, {1969, 40440}, {2052, 34384}, {3265, 42401}, {3267, 52779}, {15422, 4609}, {16813, 44173}, {18022, 275}, {18027, 95}, {19174, 40016}, {42369, 520}, {42405, 850}, {44161, 8882}
X(57844) = barycentric quotient X(i)/X(j) for these (i, j): {2, 418}, {4, 217}, {5, 46394}, {6, 44088}, {54, 14585}, {76, 5562}, {95, 577}, {97, 23606}, {158, 2179}, {264, 216}, {275, 184}, {276, 3}, {331, 30493}, {393, 40981}, {523, 42293}, {850, 17434}, {1093, 3199}, {1502, 52347}, {1969, 44706}, {2052, 51}, {2167, 52430}, {2190, 9247}, {6331, 23181}, {6521, 2181}, {6528, 1625}, {6530, 52967}, {7017, 44707}, {8794, 25}, {8795, 6}, {8882, 14575}, {8884, 32}, {14618, 15451}, {14767, 42556}, {15352, 52604}, {15412, 39201}, {15422, 669}, {15526, 41219}, {16813, 1576}, {18022, 343}, {18027, 5}, {18314, 34983}, {18831, 32661}, {19174, 3051}, {19188, 26880}, {19210, 36433}, {23962, 35442}, {26166, 31388}, {27376, 27374}, {34384, 394}, {34385, 55549}, {34386, 1092}, {40440, 48}, {40684, 32078}, {40822, 42353}, {41488, 28724}, {41760, 6751}, {42369, 6528}, {42401, 107}, {42405, 110}, {43678, 27372}, {43752, 3284}, {44129, 44709}, {44132, 44716}, {44161, 28706}, {46138, 50433}, {52581, 8798}, {52677, 8565}, {52779, 112}, {52939, 15958}, {53576, 34980}, {54100, 41334}, {54950, 648}, {56189, 3990}, {56246, 4055}, {57787, 44708}, {57790, 69}, {57796, 16697}, {57806, 1953}, {57973, 2617}
X(57844) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {18022, 34384, 57790}


X(57845) = ISOTOMIC CONJUGATE OF X(420)

Barycentrics    (a^2-b^2-c^2)*(a^4+a^2*b^2+b^4-(a^2+b^2)*c^2-c^4)*(a^4-b^4-b^2*c^2+c^4+a^2*(-b^2+c^2)) : :

X(57845) lies on these lines: {2, 4048}, {69, 22138}, {125, 1799}, {264, 41259}, {2373, 46970}, {3589, 14950}, {4563, 57852}, {9229, 39080}, {20021, 57991}

X(57845) = isogonal conjugate of X(44090)
X(57845) = isotomic conjugate of X(420)
X(57845) = trilinear pole of line {7767, 525}
X(57845) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44090}, {19, 2076}, {25, 17799}, {31, 420}, {162, 5113}, {1843, 34054}, {1973, 7779}, {9479, 32676}, {17442, 46228}
X(57845) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 420}, {3, 44090}, {6, 2076}, {125, 5113}, {6337, 7779}, {6505, 17799}, {15526, 9479}, {35067, 12830}
X(57845) = X(i)-cross conjugate of X(j) for these {i, j}: {12215, 69}, {57678, 11606}
X(57845) = pole of line {2076, 44090} with respect to the Stammler hyperbola
X(57845) = pole of line {420, 7779} with respect to the Wallace hyperbola
X(57845) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5116)}}, {{A, B, C, X(125), X(18125)}}, {{A, B, C, X(248), X(46322)}}, {{A, B, C, X(265), X(9302)}}, {{A, B, C, X(684), X(36213)}}, {{A, B, C, X(694), X(895)}}, {{A, B, C, X(1176), X(10329)}}, {{A, B, C, X(3926), X(41259)}}, {{A, B, C, X(3978), X(19571)}}, {{A, B, C, X(4048), X(14376)}}, {{A, B, C, X(4563), X(9211)}}, {{A, B, C, X(4580), X(39939)}}, {{A, B, C, X(6333), X(20022)}}, {{A, B, C, X(6391), X(52660)}}, {{A, B, C, X(8290), X(12215)}}, {{A, B, C, X(11175), X(43697)}}, {{A, B, C, X(14003), X(37190)}}, {{A, B, C, X(36214), X(46284)}}, {{A, B, C, X(40050), X(51848)}}
X(57845) = barycentric product X(i)*X(j) for these (i, j): {305, 46286}, {3267, 46970}, {11606, 69}, {12215, 9477}, {17949, 1799}, {57678, 76}
X(57845) = barycentric quotient X(i)/X(j) for these (i, j): {2, 420}, {3, 2076}, {6, 44090}, {63, 17799}, {69, 7779}, {525, 9479}, {647, 5113}, {1176, 46228}, {1799, 40850}, {3564, 12830}, {4580, 18010}, {8858, 8864}, {11606, 4}, {12215, 8290}, {17949, 427}, {17957, 17442}, {34055, 34054}, {46286, 25}, {46970, 112}, {51248, 52460}, {57678, 6}
X(57845) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17949, 46286, 11606}


X(57846) = ISOTOMIC CONJUGATE OF X(421)

Barycentrics    (a^2-b^2-c^2)*(a^2*b^2*(a^2-b^2)^2-(a^4+a^2*b^2+b^4)*c^4+2*(a^2+b^2)*c^6-c^8)*(a^6*c^2-b^4*(b^2-c^2)^2-a^4*(b^4+2*c^4)+a^2*(2*b^6-b^4*c^2+c^6)) : :

X(57846) lies on these lines: {2, 47421}, {69, 57679}, {95, 4563}, {125, 20563}, {136, 264}, {51386, 57829}

X(57846) = isotomic conjugate of X(421)
X(57846) = trilinear pole of line {52347, 525}
X(57846) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 421}, {1096, 51458}, {1973, 44375}
X(57846) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 421}, {6337, 44375}, {6503, 51458}
X(57846) = pole of line {421, 44375} with respect to the Wallace hyperbola
X(57846) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(125), X(136)}}, {{A, B, C, X(850), X(43705)}}, {{A, B, C, X(6333), X(51386)}}
X(57846) = barycentric product X(i)*X(j) for these (i, j): {57679, 76}
X(57846) = barycentric quotient X(i)/X(j) for these (i, j): {2, 421}, {69, 44375}, {394, 51458}, {57679, 6}


X(57847) = ISOTOMIC CONJUGATE OF X(422)

Barycentrics    (b+c)*(-a^2+b^2+c^2)*(a*b*(a+b)-a*b*c-c^3)*(b^3+a*b*c-a*c*(a+c)) : :

X(57847) lies on these lines: {2, 3125}, {69, 18210}, {125, 20336}, {306, 3708}, {1365, 1441}, {1494, 35147}, {2373, 2703}, {4563, 57853}, {11609, 57818}, {42703, 57984}

X(57847) = isotomic conjugate of X(422)
X(57847) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 5006}, {31, 422}, {162, 5040}, {1474, 5291}, {1973, 19623}, {1974, 5209}, {2203, 17763}, {2206, 17987}, {2299, 5061}, {2787, 32676}
X(57847) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 422}, {6, 5006}, {125, 5040}, {226, 5061}, {6337, 19623}, {15526, 2787}, {40603, 17987}, {51574, 5291}
X(57847) = X(i)-cross conjugate of X(j) for these {i, j}: {57680, 11611}
X(57847) = pole of line {422, 19623} with respect to the Wallace hyperbola
X(57847) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(125), X(3125)}}, {{A, B, C, X(337), X(14208)}}, {{A, B, C, X(525), X(35103)}}, {{A, B, C, X(850), X(2990)}}, {{A, B, C, X(4563), X(53332)}}, {{A, B, C, X(6333), X(42703)}}, {{A, B, C, X(7019), X(52369)}}
X(57847) = barycentric product X(i)*X(j) for these (i, j): {2703, 3267}, {11609, 1231}, {11611, 69}, {17946, 20336}, {17954, 40071}, {17971, 27801}, {35147, 525}, {57680, 76}
X(57847) = barycentric quotient X(i)/X(j) for these (i, j): {2, 422}, {3, 5006}, {69, 19623}, {72, 5291}, {304, 5209}, {306, 17763}, {321, 17987}, {525, 2787}, {647, 5040}, {1214, 5061}, {1332, 17944}, {2703, 112}, {3998, 17977}, {11609, 1172}, {11611, 4}, {17946, 28}, {17954, 1474}, {17961, 2203}, {17971, 1333}, {17981, 5317}, {18015, 6591}, {20336, 17790}, {35147, 648}, {55232, 17989}, {57680, 6}


X(57848) = ISOTOMIC CONJUGATE OF X(423)

Barycentrics    (b+c)*(-a^2+b^2+a*(b-c)+b*c-c^2)*(a^2+a*b+b^2-(a+b)*c-c^2)*(-a^2+b^2+c^2) : :

X(57848) lies on these lines: {2, 846}, {10, 27723}, {69, 4466}, {125, 306}, {287, 26006}, {1441, 27691}, {1494, 35148}, {2373, 2702}, {3977, 30786}, {4001, 4563}, {14429, 14977}, {17972, 57876}, {17982, 57874}, {18014, 27728}, {18032, 57831}, {20336, 20902}, {37135, 37202}

X(57848) = isotomic conjugate of X(423)
X(57848) = trilinear pole of line {21134, 41014}
X(57848) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 1326}, {25, 1931}, {27, 18266}, {28, 17735}, {31, 423}, {112, 9508}, {162, 5029}, {1333, 17927}, {1474, 1757}, {1973, 17731}, {1974, 52137}, {2203, 6542}, {2786, 32676}, {5317, 17976}, {6591, 17943}, {18268, 52468}
X(57848) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 423}, {6, 1326}, {37, 17927}, {125, 5029}, {6337, 17731}, {6505, 1931}, {15526, 2786}, {34591, 9508}, {35068, 52468}, {40591, 17735}, {51574, 1757}
X(57848) = X(i)-cross conjugate of X(j) for these {i, j}: {20825, 3}, {57681, 11599}
X(57848) = pole of line {423, 17731} with respect to the Wallace hyperbola
X(57848) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(10), X(3923)}}, {{A, B, C, X(63), X(846)}}, {{A, B, C, X(125), X(3120)}}, {{A, B, C, X(226), X(3944)}}, {{A, B, C, X(304), X(24342)}}, {{A, B, C, X(337), X(6651)}}, {{A, B, C, X(345), X(27705)}}, {{A, B, C, X(348), X(9791)}}, {{A, B, C, X(525), X(2796)}}, {{A, B, C, X(850), X(2989)}}, {{A, B, C, X(1214), X(17596)}}, {{A, B, C, X(1790), X(2197)}}, {{A, B, C, X(3695), X(17206)}}, {{A, B, C, X(3821), X(40071)}}, {{A, B, C, X(3977), X(14417)}}, {{A, B, C, X(4001), X(8040)}}, {{A, B, C, X(4368), X(24459)}}, {{A, B, C, X(4425), X(52369)}}, {{A, B, C, X(4427), X(4563)}}, {{A, B, C, X(6333), X(26006)}}, {{A, B, C, X(24248), X(56382)}}, {{A, B, C, X(27685), X(37089)}}
X(57848) = barycentric product X(i)*X(j) for these (i, j): {304, 9278}, {306, 6650}, {1929, 20336}, {2054, 305}, {2702, 3267}, {11599, 69}, {14208, 37135}, {17206, 6543}, {17930, 4064}, {17962, 40071}, {17972, 313}, {17982, 52396}, {18014, 4561}, {18032, 72}, {35148, 525}, {57681, 76}
X(57848) = barycentric quotient X(i)/X(j) for these (i, j): {2, 423}, {3, 1326}, {10, 17927}, {63, 1931}, {69, 17731}, {71, 17735}, {72, 1757}, {228, 18266}, {304, 52137}, {306, 6542}, {525, 2786}, {647, 5029}, {656, 9508}, {740, 52468}, {1331, 17943}, {1929, 28}, {2054, 25}, {2702, 112}, {3682, 17976}, {3695, 6541}, {3949, 20693}, {3977, 31059}, {4064, 18004}, {4561, 17934}, {6543, 1826}, {6650, 27}, {9278, 19}, {11599, 4}, {14429, 28602}, {17962, 1474}, {17972, 58}, {17982, 8747}, {18014, 7649}, {18032, 286}, {20336, 20947}, {24459, 27929}, {35148, 648}, {37135, 162}, {39921, 2905}, {40725, 31905}, {40793, 17569}, {51366, 28346}, {53556, 38348}, {55230, 17990}, {57681, 6}


X(57849) = ISOTOMIC CONJUGATE OF X(424)

Barycentrics    (a+b)*(a+c)*(a^2-b^2-c^2)*(a*(a-b)*(a+b)^2-b^3*c-b^2*c^2+b*c^3+c^4)*(a^4+a^3*c-a^2*c^2-a*c^3+b*(b-c)*(b+c)^2) : :

X(57849) lies on these lines: {2, 52935}, {69, 57682}, {125, 57865}, {264, 55231}, {306, 4592}, {1441, 4573}, {4563, 20336}

X(57849) = isotomic conjugate of X(424)
X(57849) = trilinear pole of line {1444, 525}
X(57849) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 5164}, {31, 424}, {1973, 44396}
X(57849) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 424}, {6, 5164}, {6337, 44396}
X(57849) = pole of line {424, 44396} with respect to the Wallace hyperbola
X(57849) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(4563), X(4573)}}
X(57849) = barycentric product X(i)*X(j) for these (i, j): {57682, 76}
X(57849) = barycentric quotient X(i)/X(j) for these (i, j): {2, 424}, {3, 5164}, {69, 44396}, {53686, 1824}, {57682, 6}


X(57850) = ISOTOMIC CONJUGATE OF X(425)

Barycentrics    (b+c)*(-a^2+b^2+c^2)*(a*b*(a^2-b^2)^2+2*a^2*b^2*(a+b)*c-2*a^2*b^2*c^2-(a+b)*(a^2+b^2)*c^3+(a^2-a*b+b^2)*c^4+(a+b)*c^5-c^6)*(-(a^5*c)+b^3*(b-c)^2*(b+c)-a^2*b*(b-c)*(b^2-2*c^2)+a^3*(b^3-2*b*c^2+2*c^3)-a*(b^5-b^4*c-b^3*c^2+c^5)) : :

X(57850) lies on these lines: {2, 53560}, {69, 57683}, {125, 1441}, {307, 2632}, {1494, 53191}, {2373, 2714}, {7068, 20336}, {43746, 57818}

X(57850) = isotomic conjugate of X(425)
X(57850) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 23695}, {31, 425}, {2194, 56822}, {2299, 41349}, {2798, 32676}
X(57850) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 425}, {226, 41349}, {1214, 56822}, {6505, 23695}, {15526, 2798}
X(57850) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(125), X(2632)}}
X(57850) = barycentric product X(i)*X(j) for these (i, j): {525, 53191}, {1231, 43746}, {2714, 3267}, {57683, 76}
X(57850) = barycentric quotient X(i)/X(j) for these (i, j): {2, 425}, {63, 23695}, {226, 56822}, {525, 2798}, {1214, 41349}, {2714, 112}, {43746, 1172}, {53191, 648}, {57683, 6}


X(57851) = ISOTOMIC CONJUGATE OF X(426)

Barycentrics    b^2*c^2*((a^2-b^2)^2+c^4)*(b^4+(a^2-c^2)^2)*(a^4-(b^2-c^2)^2)^3 : :

X(57851) lies on these lines: {2, 36434}, {69, 6524}, {95, 6641}, {287, 2052}, {305, 1093}, {648, 53848}, {8794, 57875}, {18018, 18027}, {40404, 46104}, {52249, 57864}

X(57851) = isotomic conjugate of X(426)
X(57851) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 426}, {48, 39643}, {255, 40947}, {560, 44141}, {577, 2083}, {1899, 52430}, {2169, 6751}, {3767, 4100}, {6389, 9247}, {6507, 42295}, {17871, 23606}
X(57851) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 426}, {1249, 39643}, {6374, 44141}, {6523, 40947}, {14363, 6751}
X(57851) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(5), X(6641)}}, {{A, B, C, X(25), X(6530)}}, {{A, B, C, X(450), X(52249)}}, {{A, B, C, X(1093), X(6524)}}, {{A, B, C, X(15318), X(17974)}}, {{A, B, C, X(18027), X(46104)}}
X(57851) = barycentric product X(i)*X(j) for these (i, j): {1093, 42407}, {2052, 34405}, {18022, 56364}, {18027, 56307}, {57684, 76}
X(57851) = barycentric quotient X(i)/X(j) for these (i, j): {2, 426}, {4, 39643}, {53, 6751}, {76, 44141}, {158, 2083}, {264, 6389}, {393, 40947}, {1093, 3767}, {2052, 1899}, {6521, 17871}, {6524, 42295}, {15352, 1632}, {18027, 41009}, {34405, 394}, {42407, 3964}, {56004, 1092}, {56307, 577}, {56364, 184}, {57684, 6}


X(57852) = ISOTOMIC CONJUGATE OF X(428)

Barycentrics    (a^2-b^2-c^2)*(a^2+2*b^2+c^2)*(a^2+b^2+2*c^2) : :

X(57852) lies on these lines: {2, 3108}, {69, 4175}, {95, 37671}, {99, 42052}, {264, 5064}, {325, 40410}, {599, 31360}, {1494, 7667}, {1799, 3933}, {2373, 7953}, {4563, 57845}, {7768, 52397}, {7896, 40904}, {9229, 19568}, {13575, 32833}, {16275, 57897}, {16276, 41896}, {30786, 45201}, {36889, 44442}, {40425, 41624}, {42037, 57421}

X(57852) = isogonal conjugate of X(44091)
X(57852) = isotomic conjugate of X(428)
X(57852) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44091}, {19, 5007}, {25, 17469}, {31, 428}, {162, 8664}, {560, 44142}, {1096, 22352}, {1395, 4030}, {1474, 21802}, {1973, 3589}, {2212, 7198}, {7927, 32676}, {18062, 57204}, {46026, 46289}
X(57852) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 428}, {3, 44091}, {6, 5007}, {39, 46026}, {125, 8664}, {6337, 3589}, {6338, 7767}, {6374, 44142}, {6503, 22352}, {6505, 17469}, {6665, 28666}, {15526, 7927}, {40618, 48101}, {51574, 21802}
X(57852) = X(i)-cross conjugate of X(j) for these {i, j}: {2525, 4563}, {4580, 52608}, {10691, 2}, {41435, 10159}
X(57852) = pole of line {5007, 44091} with respect to the Stammler hyperbola
X(57852) = pole of line {428, 3589} with respect to the Wallace hyperbola
X(57852) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5064)}}, {{A, B, C, X(30), X(7667)}}, {{A, B, C, X(68), X(5319)}}, {{A, B, C, X(98), X(3519)}}, {{A, B, C, X(262), X(42021)}}, {{A, B, C, X(265), X(54477)}}, {{A, B, C, X(290), X(39284)}}, {{A, B, C, X(304), X(33955)}}, {{A, B, C, X(343), X(37671)}}, {{A, B, C, X(376), X(44442)}}, {{A, B, C, X(394), X(7788)}}, {{A, B, C, X(427), X(45857)}}, {{A, B, C, X(428), X(10691)}}, {{A, B, C, X(524), X(45201)}}, {{A, B, C, X(671), X(7760)}}, {{A, B, C, X(895), X(34572)}}, {{A, B, C, X(1916), X(13571)}}, {{A, B, C, X(3108), X(41435)}}, {{A, B, C, X(3521), X(54717)}}, {{A, B, C, X(3917), X(21355)}}, {{A, B, C, X(3933), X(4175)}}, {{A, B, C, X(4846), X(54582)}}, {{A, B, C, X(5481), X(14860)}}, {{A, B, C, X(5503), X(7764)}}, {{A, B, C, X(7386), X(7714)}}, {{A, B, C, X(7796), X(34386)}}, {{A, B, C, X(9698), X(34483)}}, {{A, B, C, X(9909), X(31152)}}, {{A, B, C, X(10302), X(40050)}}, {{A, B, C, X(14841), X(54857)}}, {{A, B, C, X(14861), X(54890)}}, {{A, B, C, X(15077), X(54519)}}, {{A, B, C, X(15740), X(54520)}}, {{A, B, C, X(15749), X(54815)}}, {{A, B, C, X(17320), X(19799)}}, {{A, B, C, X(18361), X(55977)}}, {{A, B, C, X(32825), X(40824)}}, {{A, B, C, X(34384), X(35140)}}
X(57852) = barycentric product X(i)*X(j) for these (i, j): {305, 3108}, {3267, 7953}, {3933, 40425}, {10159, 69}, {30786, 31068}, {31065, 4563}, {35137, 525}, {41435, 76}
X(57852) = barycentric quotient X(i)/X(j) for these (i, j): {2, 428}, {3, 5007}, {6, 44091}, {63, 17469}, {69, 3589}, {72, 21802}, {76, 44142}, {141, 46026}, {305, 39998}, {345, 4030}, {348, 7198}, {394, 22352}, {525, 7927}, {647, 8664}, {3108, 25}, {3917, 11205}, {3926, 7767}, {3933, 6292}, {4025, 48101}, {4563, 10330}, {7794, 28666}, {7953, 112}, {8024, 52787}, {10159, 4}, {15413, 48152}, {17206, 17200}, {31065, 2501}, {31068, 468}, {35137, 648}, {40425, 32085}, {41435, 6}, {52554, 1843}, {55202, 18062}


X(57853) = ISOTOMIC CONJUGATE OF X(429)

Barycentrics    (a+b)*(a+c)*(a^2-b^2-c^2)*(a^2+a*c+b*(b+c))*(a^2+a*b+c*(b+c)) : :

X(57853) lies on these lines: {2, 261}, {69, 1798}, {86, 2363}, {264, 4185}, {274, 961}, {306, 332}, {307, 17206}, {314, 16049}, {648, 56905}, {1220, 28653}, {1409, 1812}, {1444, 1791}, {1509, 58010}, {2285, 27958}, {2298, 16826}, {4563, 57847}, {14977, 15420}, {40708, 57690}

X(57853) = isogonal conjugate of X(44092)
X(57853) = isotomic conjugate of X(429)
X(57853) = trilinear pole of line {7254, 15420}
X(57853) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44092}, {4, 3725}, {19, 2092}, {25, 2292}, {31, 429}, {34, 40966}, {37, 2354}, {42, 1829}, {65, 40976}, {162, 42661}, {213, 1848}, {225, 20967}, {608, 21033}, {960, 57652}, {1096, 22076}, {1193, 1824}, {1211, 1973}, {1395, 3704}, {1402, 46878}, {1474, 21810}, {1826, 2300}, {1880, 2269}, {1918, 54314}, {1974, 18697}, {2203, 20653}, {2212, 41003}, {2299, 52567}, {2333, 3666}, {2489, 3882}, {3192, 42550}, {8750, 50330}
X(57853) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 429}, {3, 44092}, {6, 2092}, {125, 42661}, {226, 52567}, {6337, 1211}, {6503, 22076}, {6505, 2292}, {6626, 1848}, {11517, 40966}, {26932, 50330}, {34021, 54314}, {36033, 3725}, {40589, 2354}, {40592, 1829}, {40602, 40976}, {40605, 46878}, {40618, 21124}, {51574, 21810}
X(57853) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40827, 14534}
X(57853) = X(i)-cross conjugate of X(j) for these {i, j}: {905, 4563}, {1798, 14534}, {23187, 4558}, {28423, 52608}, {35518, 99}
X(57853) = pole of line {2092, 2354} with respect to the Stammler hyperbola
X(57853) = pole of line {429, 960} with respect to the Wallace hyperbola
X(57853) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(1409)}}, {{A, B, C, X(21), X(17518)}}, {{A, B, C, X(63), X(37128)}}, {{A, B, C, X(68), X(3597)}}, {{A, B, C, X(77), X(7176)}}, {{A, B, C, X(78), X(16824)}}, {{A, B, C, X(98), X(1880)}}, {{A, B, C, X(261), X(274)}}, {{A, B, C, X(304), X(32014)}}, {{A, B, C, X(593), X(1014)}}, {{A, B, C, X(961), X(1169)}}, {{A, B, C, X(6394), X(52385)}}, {{A, B, C, X(7182), X(34399)}}, {{A, B, C, X(14534), X(31643)}}, {{A, B, C, X(23086), X(52411)}}, {{A, B, C, X(26942), X(46828)}}, {{A, B, C, X(34055), X(40408)}}, {{A, B, C, X(34259), X(39956)}}, {{A, B, C, X(37257), X(37415)}}
X(57853) = barycentric product X(i)*X(j) for these (i, j): {3, 40827}, {1169, 305}, {1214, 52550}, {1220, 17206}, {1240, 1790}, {1444, 30710}, {1791, 274}, {1798, 76}, {1812, 31643}, {2359, 310}, {2363, 304}, {4563, 4581}, {14534, 69}, {15419, 8707}, {15420, 99}, {57690, 8033}
X(57853) = barycentric quotient X(i)/X(j) for these (i, j): {2, 429}, {3, 2092}, {6, 44092}, {48, 3725}, {58, 2354}, {63, 2292}, {69, 1211}, {72, 21810}, {78, 21033}, {81, 1829}, {86, 1848}, {219, 40966}, {274, 54314}, {283, 2269}, {284, 40976}, {304, 18697}, {305, 1228}, {306, 20653}, {332, 3687}, {333, 46878}, {345, 3704}, {348, 41003}, {394, 22076}, {647, 42661}, {905, 50330}, {961, 1880}, {1169, 25}, {1214, 52567}, {1220, 1826}, {1437, 2300}, {1444, 3666}, {1790, 1193}, {1791, 37}, {1792, 3965}, {1798, 6}, {1799, 27067}, {1812, 960}, {2193, 20967}, {2298, 1824}, {2359, 42}, {2363, 19}, {4025, 21124}, {4558, 53280}, {4563, 53332}, {4581, 2501}, {4592, 3882}, {7182, 45196}, {7254, 6371}, {14534, 4}, {14624, 7140}, {15411, 57158}, {15419, 3004}, {15420, 523}, {16049, 56905}, {17206, 4357}, {18604, 22345}, {23086, 45218}, {23189, 52326}, {30710, 41013}, {31643, 40149}, {34259, 56914}, {40571, 41609}, {40827, 264}, {41610, 41611}, {52550, 31623}, {57161, 3064}, {57690, 52651}


X(57854) = ISOTOMIC CONJUGATE OF X(430)

Barycentrics    (a+b)*(a+c)*(a+2*b+c)*(a+b+2*c)*(a^2-b^2-c^2) : :

X(57854) lies on these lines: {2, 1171}, {69, 57685}, {264, 1889}, {306, 1796}, {1268, 33118}, {1441, 52421}, {2373, 6578}, {4001, 4563}, {4028, 31013}

X(57854) = isotomic conjugate of X(430)
X(57854) = trilinear pole of line {15419, 525}
X(57854) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 20970}, {25, 1962}, {31, 430}, {42, 2355}, {162, 8663}, {213, 1839}, {560, 44143}, {872, 31900}, {1096, 22080}, {1100, 2333}, {1213, 1973}, {1395, 4046}, {1474, 21816}, {1824, 2308}, {1918, 56875}, {1974, 4647}, {2203, 8013}, {2207, 3958}, {2212, 3649}, {2489, 35342}, {3683, 57652}, {4983, 8750}, {6367, 32676}, {36075, 55206}
X(57854) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 430}, {6, 20970}, {125, 8663}, {6337, 1213}, {6338, 41014}, {6374, 44143}, {6503, 22080}, {6505, 1962}, {6626, 1839}, {15526, 6367}, {26932, 4983}, {34021, 56875}, {40592, 2355}, {40618, 4988}, {51574, 21816}
X(57854) = X(i)-cross conjugate of X(j) for these {i, j}: {4025, 4563}, {57054, 99}, {57685, 32014}
X(57854) = pole of line {430, 1213} with respect to the Wallace hyperbola
X(57854) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(1889)}}, {{A, B, C, X(63), X(51311)}}, {{A, B, C, X(1171), X(1796)}}, {{A, B, C, X(1509), X(17206)}}, {{A, B, C, X(4001), X(4025)}}, {{A, B, C, X(7182), X(34016)}}, {{A, B, C, X(41014), X(51586)}}
X(57854) = barycentric product X(i)*X(j) for these (i, j): {304, 40438}, {1171, 305}, {1268, 17206}, {1444, 32018}, {1796, 310}, {3267, 6578}, {4025, 4632}, {4563, 4608}, {15413, 4596}, {15419, 6540}, {32014, 69}, {40071, 52558}, {47947, 55202}, {50344, 52608}, {57685, 76}
X(57854) = barycentric quotient X(i)/X(j) for these (i, j): {2, 430}, {3, 20970}, {63, 1962}, {69, 1213}, {72, 21816}, {76, 44143}, {81, 2355}, {86, 1839}, {274, 56875}, {304, 4647}, {305, 1230}, {306, 8013}, {326, 3958}, {332, 3686}, {345, 4046}, {348, 3649}, {394, 22080}, {525, 6367}, {647, 8663}, {905, 4983}, {1126, 2333}, {1171, 25}, {1255, 1824}, {1268, 1826}, {1444, 1100}, {1509, 31900}, {1790, 2308}, {1796, 42}, {1812, 3683}, {3926, 41014}, {4001, 8040}, {4025, 4988}, {4102, 53008}, {4558, 35327}, {4561, 4115}, {4563, 4427}, {4592, 35342}, {4596, 1783}, {4608, 2501}, {4629, 8750}, {4632, 1897}, {6393, 51417}, {6539, 7140}, {6578, 112}, {7254, 50512}, {15411, 4990}, {15413, 30591}, {15419, 4977}, {17206, 1125}, {18604, 23201}, {32014, 4}, {32018, 41013}, {40071, 52576}, {40438, 19}, {50344, 2489}, {52558, 1474}, {57685, 6}


X(57855) = ISOTOMIC CONJUGATE OF X(436)

Barycentrics    (a^2-b^2-c^2)*(a^2*b^2*(a^2-b^2)^2-(a^4+3*a^2*b^2+b^4)*c^4+2*(a^2+b^2)*c^6-c^8)*(a^6*c^2-b^4*(b^2-c^2)^2-a^4*(b^4+2*c^4)+a^2*(2*b^6-3*b^4*c^2+c^6)) : :

X(57855) lies on these lines: {2, 9290}, {69, 57686}, {95, 3819}, {264, 21243}, {287, 6509}, {343, 1972}, {1303, 2373}, {5907, 40413}, {8797, 10184}, {51386, 57800}

X(57855) = isotomic conjugate of X(436)
X(57855) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 1970}, {25, 1954}, {31, 436}, {32, 9252}, {560, 9291}, {1973, 56290}, {2148, 27359}, {2179, 21449}
X(57855) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 436}, {6, 1970}, {216, 27359}, {6337, 56290}, {6374, 9291}, {6376, 9252}, {6505, 1954}
X(57855) = X(i)-cross conjugate of X(j) for these {i, j}: {57686, 9290}
X(57855) = pole of line {436, 56290} with respect to the Wallace hyperbola
X(57855) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(19209)}}, {{A, B, C, X(97), X(850)}}, {{A, B, C, X(125), X(51477)}}, {{A, B, C, X(248), X(37892)}}, {{A, B, C, X(327), X(1073)}}, {{A, B, C, X(343), X(3265)}}, {{A, B, C, X(394), X(18022)}}, {{A, B, C, X(2052), X(43711)}}, {{A, B, C, X(3819), X(8798)}}, {{A, B, C, X(6509), X(51386)}}, {{A, B, C, X(17974), X(21243)}}
X(57855) = barycentric product X(i)*X(j) for these (i, j): {69, 9290}, {304, 9251}, {1303, 3267}, {57686, 76}
X(57855) = barycentric quotient X(i)/X(j) for these (i, j): {2, 436}, {3, 1970}, {5, 27359}, {63, 1954}, {69, 56290}, {75, 9252}, {76, 9291}, {95, 21449}, {1303, 112}, {3267, 42331}, {9251, 19}, {9290, 4}, {57686, 6}


X(57856) = ISOTOMIC CONJUGATE OF X(438)

Barycentrics    (a^2-b^2-c^2)*((a^2-b^2)^3*(2*a^6+a^4*b^2+8*a^2*b^4+5*b^6)+(a^2-b^2)^2*(2*a^6-13*a^4*b^2-12*a^2*b^4+7*b^6)*c^2+2*(a^2-b^2)^2*(3*a^4+17*a^2*b^2+4*b^4)*c^4-2*(a^2-b^2)^2*(10*a^2+9*b^2)*c^6+(6*a^4-17*a^2*b^2+11*b^4)*c^8+(2*a^2-5*b^2)*c^10+2*c^12)*(2*a^12+a^10*(2*b^2-5*c^2)-2*a^6*(b^2-c^2)^2*(10*b^2+9*c^2)+2*a^4*(b^2-c^2)^2*(3*b^4+17*b^2*c^2+4*c^4)+a^8*(6*b^4-17*b^2*c^2+11*c^4)+(b^2-c^2)^3*(2*b^6+b^4*c^2+8*b^2*c^4+5*c^6)+a^2*(b^2-c^2)^2*(2*b^6-13*b^4*c^2-12*b^2*c^4+7*c^6)) : :

X(57856) lies on these lines: {69, 57687}

X(57856) = isotomic conjugate of X(438)
X(57856) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(441), X(34410)}}, {{A, B, C, X(8057), X(20208)}}
X(57856) = barycentric product X(i)*X(j) for these (i, j): {57687, 76}
X(57856) = barycentric quotient X(i)/X(j) for these (i, j): {2, 438}, {57687, 6}


X(57857) = ISOTOMIC CONJUGATE OF X(439)

Barycentrics    (a^2+b^2-3*c^2)^2*(a^2-3*b^2+c^2)^2 : :

X(57857) lies on these lines: {2, 34208}, {69, 2996}, {253, 32980}, {264, 52250}, {439, 56360}, {6391, 56267}, {14063, 35510}, {14248, 32979}, {20080, 35136}, {33050, 57818}, {40413, 43981}

X(57857) = isotomic conjugate of X(439)
X(57857) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 439}, {1101, 15525}, {1707, 3053}
X(57857) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 439}, {523, 15525}
X(57857) = X(i)-cross conjugate of X(j) for these {i, j}: {6340, 2996}, {32972, 2}
X(57857) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(52250)}}, {{A, B, C, X(4), X(32982)}}, {{A, B, C, X(20), X(32980)}}, {{A, B, C, X(193), X(8781)}}, {{A, B, C, X(377), X(33050)}}, {{A, B, C, X(393), X(18023)}}, {{A, B, C, X(439), X(32972)}}, {{A, B, C, X(523), X(6339)}}, {{A, B, C, X(671), X(36611)}}, {{A, B, C, X(1502), X(43681)}}, {{A, B, C, X(2996), X(34208)}}, {{A, B, C, X(3091), X(33023)}}, {{A, B, C, X(3146), X(14063)}}, {{A, B, C, X(3522), X(32966)}}, {{A, B, C, X(3832), X(6655)}}, {{A, B, C, X(4590), X(20080)}}, {{A, B, C, X(5025), X(32981)}}, {{A, B, C, X(5068), X(32965)}}, {{A, B, C, X(5177), X(33051)}}, {{A, B, C, X(6391), X(40809)}}, {{A, B, C, X(6658), X(33290)}}, {{A, B, C, X(7791), X(32991)}}, {{A, B, C, X(8801), X(18845)}}, {{A, B, C, X(11606), X(46208)}}, {{A, B, C, X(14035), X(33200)}}, {{A, B, C, X(15022), X(33004)}}, {{A, B, C, X(15717), X(32963)}}, {{A, B, C, X(16044), X(33025)}}, {{A, B, C, X(17685), X(37161)}}, {{A, B, C, X(18027), X(43981)}}, {{A, B, C, X(32974), X(32979)}}, {{A, B, C, X(32993), X(32997)}}, {{A, B, C, X(32996), X(33019)}}, {{A, B, C, X(33201), X(33283)}}, {{A, B, C, X(34285), X(40429)}}, {{A, B, C, X(37637), X(46217)}}, {{A, B, C, X(41932), X(51316)}}
X(57857) = barycentric product X(i)*X(j) for these (i, j): {2996, 2996}, {34208, 6340}, {57688, 76}
X(57857) = barycentric quotient X(i)/X(j) for these (i, j): {2, 439}, {115, 15525}, {2996, 193}, {6340, 6337}, {6391, 3167}, {8769, 1707}, {8770, 3053}, {14248, 19118}, {27364, 41588}, {34208, 6353}, {35136, 57216}, {47730, 41584}, {57688, 6}


X(57858) = ISOTOMIC CONJUGATE OF X(443)

Barycentrics    (a^4-b^4+c^4-4*a*b*c*(b+c)-2*a^2*c*(2*b+c))*(a^4+b^4-c^4-4*a*b*c*(b+c)-2*a^2*b*(b+2*c)) : :

X(57858) lies on these lines: {4, 57831}, {69, 405}, {95, 6857}, {253, 5129}, {264, 5084}, {305, 44140}, {306, 344}, {307, 6604}, {452, 57866}, {648, 57863}, {1058, 40422}, {1441, 1882}, {2897, 17554}, {4187, 8797}, {5047, 57818}, {5295, 5722}, {7483, 36948}, {9229, 33029}, {14548, 14549}, {16293, 40680}, {16845, 40412}, {16859, 54454}, {17559, 57877}, {17561, 57822}, {18141, 57876}, {33038, 56334}, {37314, 58010}

X(57858) = isogonal conjugate of X(44094)
X(57858) = isotomic conjugate of X(443)
X(57858) = trilinear pole of line {449, 4468}
X(57858) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44094}, {6, 54385}, {31, 443}
X(57858) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 443}, {3, 44094}, {9, 54385}
X(57858) = pole of line {443, 44094} with respect to the Wallace hyperbola
X(57858) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5084)}}, {{A, B, C, X(4), X(37)}}, {{A, B, C, X(5), X(6857)}}, {{A, B, C, X(6), X(37492)}}, {{A, B, C, X(7), X(1255)}}, {{A, B, C, X(8), X(286)}}, {{A, B, C, X(20), X(5129)}}, {{A, B, C, X(21), X(1265)}}, {{A, B, C, X(66), X(39983)}}, {{A, B, C, X(75), X(344)}}, {{A, B, C, X(86), X(312)}}, {{A, B, C, X(273), X(40435)}}, {{A, B, C, X(377), X(5047)}}, {{A, B, C, X(381), X(17561)}}, {{A, B, C, X(384), X(33029)}}, {{A, B, C, X(442), X(16845)}}, {{A, B, C, X(443), X(11108)}}, {{A, B, C, X(474), X(17559)}}, {{A, B, C, X(631), X(4187)}}, {{A, B, C, X(964), X(37314)}}, {{A, B, C, X(966), X(30962)}}, {{A, B, C, X(1000), X(1119)}}, {{A, B, C, X(1001), X(6601)}}, {{A, B, C, X(1268), X(8817)}}, {{A, B, C, X(1444), X(2339)}}, {{A, B, C, X(2475), X(16859)}}, {{A, B, C, X(3090), X(7483)}}, {{A, B, C, X(3091), X(17558)}}, {{A, B, C, X(3545), X(15670)}}, {{A, B, C, X(3618), X(45962)}}, {{A, B, C, X(4189), X(37162)}}, {{A, B, C, X(4193), X(6910)}}, {{A, B, C, X(4197), X(31259)}}, {{A, B, C, X(4205), X(37037)}}, {{A, B, C, X(4208), X(17554)}}, {{A, B, C, X(4217), X(14020)}}, {{A, B, C, X(5046), X(16865)}}, {{A, B, C, X(5051), X(17526)}}, {{A, B, C, X(5141), X(15674)}}, {{A, B, C, X(5224), X(18141)}}, {{A, B, C, X(5936), X(13577)}}, {{A, B, C, X(6675), X(6856)}}, {{A, B, C, X(6827), X(37306)}}, {{A, B, C, X(6865), X(16293)}}, {{A, B, C, X(6986), X(50399)}}, {{A, B, C, X(7791), X(16918)}}, {{A, B, C, X(7907), X(33053)}}, {{A, B, C, X(8048), X(28626)}}, {{A, B, C, X(8728), X(17552)}}, {{A, B, C, X(13725), X(13740)}}, {{A, B, C, X(13742), X(16062)}}, {{A, B, C, X(14548), X(17277)}}, {{A, B, C, X(15314), X(25430)}}, {{A, B, C, X(16842), X(17582)}}, {{A, B, C, X(16912), X(33028)}}, {{A, B, C, X(16914), X(17685)}}, {{A, B, C, X(16921), X(33055)}}, {{A, B, C, X(16924), X(33047)}}, {{A, B, C, X(16925), X(33046)}}, {{A, B, C, X(17040), X(39798)}}, {{A, B, C, X(17314), X(56138)}}, {{A, B, C, X(17527), X(17567)}}, {{A, B, C, X(17536), X(37462)}}, {{A, B, C, X(17540), X(32956)}}, {{A, B, C, X(17556), X(50739)}}, {{A, B, C, X(17694), X(33042)}}, {{A, B, C, X(17697), X(26117)}}, {{A, B, C, X(24538), X(24983)}}, {{A, B, C, X(31049), X(37076)}}, {{A, B, C, X(32971), X(33040)}}, {{A, B, C, X(32973), X(33038)}}, {{A, B, C, X(37035), X(37153)}}, {{A, B, C, X(37086), X(37169)}}, {{A, B, C, X(37176), X(52258)}}, {{A, B, C, X(39735), X(40011)}}, {{A, B, C, X(50714), X(50727)}}
X(57858) = barycentric product X(i)*X(j) for these (i, j): {57689, 76}
X(57858) = barycentric quotient X(i)/X(j) for these (i, j): {1, 54385}, {2, 443}, {6, 44094}, {57689, 6}


X(57859) = ISOTOMIC CONJUGATE OF X(444)

Barycentrics    -(b*c*(b^2+a*c)*(a*b+c^2)*(-a^2+b^2+c^2)*(a^2+a*c+b*(b+c))*(a^2+a*b+c*(b+c))) : :

X(57859) lies on these lines: {2, 40432}, {69, 57690}, {1240, 1441}, {3263, 57835}, {7019, 20336}

X(57859) = isotomic conjugate of X(444)
X(57859) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 444}, {172, 2354}, {1395, 18235}, {1829, 7122}, {1973, 28369}, {2300, 7119}
X(57859) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 444}, {6337, 28369}
X(57859) = pole of line {444, 28369} with respect to the Wallace hyperbola
X(57859) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(304), X(1920)}}, {{A, B, C, X(7019), X(7249)}}
X(57859) = barycentric product X(i)*X(j) for these (i, j): {1791, 44187}, {15420, 56241}, {30710, 7019}, {57690, 76}
X(57859) = barycentric quotient X(i)/X(j) for these (i, j): {2, 444}, {69, 28369}, {256, 2354}, {257, 1829}, {345, 18235}, {1220, 7119}, {1791, 172}, {2359, 7122}, {7015, 2300}, {7018, 1848}, {7019, 3666}, {15420, 4367}, {20336, 27697}, {30710, 7009}, {44187, 54314}, {52651, 44092}, {57690, 6}


X(57860) = ISOTOMIC CONJUGATE OF X(445)

Barycentrics    (a^2-b^2-c^2)*(a^2+a*b+b^2-c^2)*(a^2-b^2+a*c+c^2)*((a-b)^2*(a+b)-2*a*b*c-(a+b)*c^2)*(a^3-a^2*c-b^2*c+c^3-a*(b+c)^2) : :

X(57860) lies on these lines: {2, 582}, {69, 57691}, {95, 18139}, {264, 5278}, {265, 440}, {307, 52381}, {1441, 3219}, {1494, 3578}, {6742, 57862}, {7522, 56845}, {52393, 57831}

X(57860) = isogonal conjugate of X(44095)
X(57860) = isotomic conjugate of X(445)
X(57860) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44095}, {6, 1844}, {19, 500}, {25, 16585}, {31, 445}, {35, 1841}, {608, 31938}, {1825, 46882}, {1838, 2174}, {1859, 2003}, {1865, 17104}, {2260, 6198}, {2594, 46884}, {3678, 46890}, {5249, 14975}, {14838, 53323}, {40956, 52412}
X(57860) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 445}, {3, 44095}, {6, 500}, {9, 1844}, {6505, 16585}, {56847, 1865}
X(57860) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57885, 57710}
X(57860) = X(i)-cross conjugate of X(j) for these {i, j}: {57691, 57710}
X(57860) = pole of line {500, 44095} with respect to the Stammler hyperbola
X(57860) = pole of line {445, 44095} with respect to the Wallace hyperbola
X(57860) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(582)}}, {{A, B, C, X(63), X(3219)}}, {{A, B, C, X(343), X(18139)}}, {{A, B, C, X(348), X(2986)}}, {{A, B, C, X(394), X(5278)}}, {{A, B, C, X(521), X(18607)}}, {{A, B, C, X(1029), X(56382)}}, {{A, B, C, X(1214), X(24624)}}, {{A, B, C, X(2987), X(30676)}}, {{A, B, C, X(3578), X(11064)}}, {{A, B, C, X(3615), X(30690)}}, {{A, B, C, X(5504), X(40214)}}, {{A, B, C, X(7100), X(52393)}}, {{A, B, C, X(30679), X(30711)}}
X(57860) = barycentric product X(i)*X(j) for these (i, j): {3, 57885}, {1794, 20565}, {40412, 52388}, {40422, 7100}, {40435, 52381}, {57691, 76}, {57710, 69}
X(57860) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1844}, {2, 445}, {3, 500}, {6, 44095}, {63, 16585}, {78, 31938}, {79, 1838}, {265, 45926}, {943, 6198}, {1789, 54356}, {1794, 35}, {2160, 1841}, {7073, 1859}, {7100, 942}, {8606, 14547}, {8818, 1865}, {40435, 52412}, {52375, 46883}, {52381, 5249}, {52388, 442}, {56402, 15762}, {57691, 6}, {57710, 4}, {57885, 264}


X(57861) = ISOTOMIC CONJUGATE OF X(446)

Barycentrics    b^2*c^2*(a^4+b^4-(a^2+b^2)*c^2)*(a^4-a^2*b^2-b^2*c^2+c^4)*(a^2*b^2*(a^2-b^2)^2*(a^2+b^2)+2*a^2*b^2*(a^2-b^2)^2*c^2+(a^6+b^6)*c^4-2*(a^4+b^4)*c^6+(a^2+b^2)*c^8)*(a^8*c^2+b^4*c^2*(b^2-c^2)^2+a^6*(b^4+2*b^2*c^2-c^4)-a^4*(2*b^6+4*b^2*c^4+c^6)+a^2*(b^8+2*b^2*c^6+c^8)) : :

X(57861) lies on these lines: {69, 14382}, {287, 46888}, {290, 40708}

X(57861) = isotomic conjugate of X(446)
X(57861) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(290), X(14382)}}, {{A, B, C, X(325), X(46888)}}
X(57861) = barycentric product X(i)*X(j) for these (i, j): {57692, 76}
X(57861) = barycentric quotient X(i)/X(j) for these (i, j): {2, 446}, {16081, 12131}, {57692, 6}


X(57862) = ISOTOMIC CONJUGATE OF X(448)

Barycentrics    (b+c)*(a*b*(a^2-b^2)^2+(a+b)*(a^2+b^2)*c^3-(a^2+a*b+b^2)*c^4-(a+b)*c^5+c^6)*(a^5*c+a^2*b^3*(-b+c)+b^3*(b-c)^2*(b+c)+a^3*(b^3-2*c^3)-a*(b-c)*(b+c)*(b^3+b^2*c+c^3)) : :

X(57862) lies on these lines: {2, 47212}, {69, 25252}, {287, 518}, {648, 40412}, {1441, 15526}, {1944, 57985}, {6742, 57860}, {39352, 54454}

X(57862) = reflection of X(i) in X(j) for these {i,j}: {1441, 15526}, {648, 40937}
X(57862) = isotomic conjugate of X(448)
X(57862) = trilinear pole of line {442, 525}
X(57862) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 23692}, {31, 448}, {163, 47203}, {284, 56910}, {16090, 57657}
X(57862) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 448}, {9, 23692}, {115, 47203}, {40590, 56910}
X(57862) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(72), X(52575)}}, {{A, B, C, X(518), X(2799)}}, {{A, B, C, X(523), X(47212)}}, {{A, B, C, X(648), X(4552)}}, {{A, B, C, X(1577), X(1952)}}, {{A, B, C, X(2989), X(41804)}}, {{A, B, C, X(25252), X(42027)}}, {{A, B, C, X(26942), X(31623)}}
X(57862) = barycentric product X(i)*X(j) for these (i, j): {57693, 76}
X(57862) = barycentric quotient X(i)/X(j) for these (i, j): {1, 23692}, {2, 448}, {65, 56910}, {523, 47203}, {1441, 16090}, {57693, 6}


X(57863) = ISOTOMIC CONJUGATE OF X(449)

Barycentrics    ((a^4-b^4)^2+4*a*(a-b)^2*b*(a+b)^3*c-(a^2-b^2)^2*(a^2-4*a*b+b^2)*c^2+4*a*b*(a+b)*(a^2+b^2)*c^3+(a^2+b^2)*(a^2+4*a*b+b^2)*c^4-8*a*b*(a+b)*c^5-(3*a^2+8*a*b+3*b^2)*c^6+2*c^8)*(a^8-a^6*b*(b-4*c)+4*a^5*b*c*(b+c)+4*a^3*b*c*(b+c)*(b^2-2*c^2)-4*a*b*(b-c)*c*(b+c)^2*(2*b^2+c^2)-a^2*b*(b-c)*(b+c)*(3*b^3+8*b^2*c+b*c^2+4*c^3)+a^4*(b^4+4*b^3*c+b^2*c^2-8*b*c^3-2*c^4)+(b^2-c^2)^2*(2*b^4+b^2*c^2+c^4)) : :

X(57863) lies on these lines: {69, 57694}, {648, 57858}, {15526, 57866}

X(57863) = reflection of X(i) in X(j) for these {i,j}: {57866, 15526}
X(57863) = isotomic conjugate of X(449)
X(57863) = trilinear pole of line {443, 525}
X(57863) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(648), X(37206)}}
X(57863) = barycentric product X(i)*X(j) for these (i, j): {57694, 76}
X(57863) = barycentric quotient X(i)/X(j) for these (i, j): {2, 449}, {57694, 6}


X(57864) = ISOTOMIC CONJUGATE OF X(450)

Barycentrics    (a^2-b^2-c^2)*(a*(a-b)^2*b+(a^2-a*b+b^2)*c^2-c^4)*(a*b*(a+b)^2-(a^2+a*b+b^2)*c^2+c^4)*(b^4+a^3*c-b^2*c^2-a^2*(b^2-2*c^2)+a*(-(b^2*c)+c^3))*(-b^4+a^3*c+b^2*c^2+a^2*(b^2-2*c^2)+a*(-(b^2*c)+c^3)) : :

X(57864) lies on these lines: {2, 3269}, {69, 1942}, {74, 42308}, {95, 5650}, {125, 264}, {253, 53348}, {287, 44436}, {648, 39034}, {1972, 3580}, {2373, 2713}, {4563, 57800}, {10603, 18931}, {14977, 52744}, {17974, 57991}, {44131, 57843}, {44146, 57981}, {52249, 57851}

X(57864) = isogonal conjugate of X(44096)
X(57864) = isotomic conjugate of X(450)
X(57864) = trilinear pole of line {41005, 525}
X(57864) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44096}, {31, 450}, {48, 41368}, {184, 41497}, {1430, 26885}, {1935, 51726}, {1950, 2202}, {1951, 7120}, {1973, 40888}, {2797, 32676}, {7076, 26884}, {21761, 23353}, {24000, 35236}
X(57864) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 450}, {3, 44096}, {1249, 41368}, {6337, 40888}, {15526, 2797}
X(57864) = pole of line {450, 40888} with respect to the Wallace hyperbola
X(57864) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(74), X(125)}}, {{A, B, C, X(290), X(3265)}}, {{A, B, C, X(426), X(52249)}}, {{A, B, C, X(459), X(4176)}}, {{A, B, C, X(525), X(46111)}}, {{A, B, C, X(850), X(14919)}}, {{A, B, C, X(1073), X(18022)}}, {{A, B, C, X(2706), X(14941)}}, {{A, B, C, X(4563), X(53639)}}, {{A, B, C, X(6333), X(44436)}}, {{A, B, C, X(6394), X(16080)}}, {{A, B, C, X(8791), X(47388)}}, {{A, B, C, X(14417), X(44146)}}, {{A, B, C, X(34289), X(43711)}}
X(57864) = barycentric product X(i)*X(j) for these (i, j): {1942, 76}, {2713, 3267}, {57801, 7108}
X(57864) = barycentric quotient X(i)/X(j) for these (i, j): {2, 450}, {4, 41368}, {6, 44096}, {69, 40888}, {92, 41497}, {296, 1950}, {525, 2797}, {1937, 7120}, {1942, 6}, {1952, 1940}, {2713, 112}, {3269, 35236}, {7016, 1951}, {7105, 2202}, {7106, 51726}, {7108, 243}, {40843, 1935}, {52222, 21761}, {57801, 1943}


X(57865) = ISOTOMIC CONJUGATE OF X(451)

Barycentrics    (a^2-b^2-c^2)*((a-b)*(a+b)^2+(a^2+a*b-b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2+b*c-c^2)) : :

X(57865) lies on these lines: {2, 1029}, {69, 20746}, {86, 54454}, {125, 57849}, {264, 52252}, {306, 28754}, {1441, 17095}

X(57865) = isogonal conjugate of X(44097)
X(57865) = isotomic conjugate of X(451)
X(57865) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44097}, {19, 1030}, {25, 191}, {31, 451}, {33, 8614}, {42, 2906}, {162, 42653}, {501, 1824}, {607, 47057}, {1096, 22136}, {1474, 21873}, {1973, 2895}, {1974, 20932}, {2203, 21081}, {2212, 41808}, {2333, 40592}, {8750, 31947}, {44113, 56405}
X(57865) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 451}, {3, 44097}, {6, 1030}, {125, 42653}, {6337, 2895}, {6503, 22136}, {6505, 191}, {26932, 31947}, {40592, 2906}, {40618, 21192}, {51574, 21873}
X(57865) = X(i)-cross conjugate of X(j) for these {i, j}: {1444, 69}, {52381, 348}, {57695, 1029}
X(57865) = pole of line {1030, 44097} with respect to the Stammler hyperbola
X(57865) = pole of line {451, 2895} with respect to the Wallace hyperbola
X(57865) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5124)}}, {{A, B, C, X(4), X(34120)}}, {{A, B, C, X(37), X(895)}}, {{A, B, C, X(86), X(28754)}}, {{A, B, C, X(261), X(35518)}}, {{A, B, C, X(345), X(28653)}}, {{A, B, C, X(348), X(17095)}}, {{A, B, C, X(1176), X(39798)}}, {{A, B, C, X(1224), X(1791)}}, {{A, B, C, X(1231), X(32014)}}, {{A, B, C, X(1444), X(40592)}}, {{A, B, C, X(1798), X(51501)}}, {{A, B, C, X(3718), X(28650)}}, {{A, B, C, X(4580), X(54117)}}, {{A, B, C, X(5949), X(18123)}}, {{A, B, C, X(6391), X(39983)}}, {{A, B, C, X(7056), X(7318)}}, {{A, B, C, X(7182), X(30598)}}, {{A, B, C, X(20472), X(20746)}}, {{A, B, C, X(28408), X(45962)}}, {{A, B, C, X(39956), X(43697)}}
X(57865) = barycentric product X(i)*X(j) for these (i, j): {267, 304}, {305, 3444}, {1029, 69}, {1790, 57886}, {17206, 502}, {20336, 40143}, {44188, 63}, {57695, 76}
X(57865) = barycentric quotient X(i)/X(j) for these (i, j): {2, 451}, {3, 1030}, {6, 44097}, {63, 191}, {69, 2895}, {72, 21873}, {77, 47057}, {81, 2906}, {222, 8614}, {267, 19}, {304, 20932}, {306, 21081}, {348, 41808}, {394, 22136}, {502, 1826}, {647, 42653}, {905, 31947}, {1029, 4}, {1444, 40592}, {1790, 501}, {3444, 25}, {4025, 21192}, {4558, 57119}, {20336, 42710}, {21046, 21723}, {21353, 1824}, {40143, 28}, {41493, 1865}, {41910, 1845}, {44188, 92}, {57695, 6}


X(57866) = ISOTOMIC CONJUGATE OF X(452)

Barycentrics    (a+b-c)*(a-b+c)*((a-b)^2*(a+b)+(a+b)^2*c+3*(a+b)*c^2+3*c^3)*(a^3+a^2*(b-c)+a*(3*b-c)*(b+c)+(b+c)*(3*b^2+c^2)) : :

X(57866) lies on these lines: {7, 306}, {20, 57818}, {69, 1434}, {85, 20336}, {253, 377}, {264, 5177}, {279, 307}, {286, 6919}, {452, 57858}, {1441, 1847}, {2336, 56783}, {3091, 57830}, {4190, 54454}, {6340, 37664}, {8814, 41014}, {14552, 57876}, {15526, 57863}, {33841, 56334}, {35510, 56999}, {37436, 57831}

X(57866) = reflection of X(i) in X(j) for these {i,j}: {57863, 15526}
X(57866) = isogonal conjugate of X(44098)
X(57866) = isotomic conjugate of X(452)
X(57866) = trilinear pole of line {3676, 525}
X(57866) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44098}, {6, 380}, {31, 452}, {55, 1453}
X(57866) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 452}, {3, 44098}, {9, 380}, {223, 1453}
X(57866) = pole of line {452, 44098} with respect to the Wallace hyperbola
X(57866) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5177)}}, {{A, B, C, X(4), X(6904)}}, {{A, B, C, X(7), X(85)}}, {{A, B, C, X(20), X(377)}}, {{A, B, C, X(21), X(4208)}}, {{A, B, C, X(75), X(189)}}, {{A, B, C, X(193), X(37664)}}, {{A, B, C, X(226), X(8814)}}, {{A, B, C, X(277), X(15314)}}, {{A, B, C, X(280), X(3718)}}, {{A, B, C, X(286), X(4373)}}, {{A, B, C, X(333), X(5232)}}, {{A, B, C, X(404), X(3091)}}, {{A, B, C, X(405), X(37436)}}, {{A, B, C, X(443), X(452)}}, {{A, B, C, X(474), X(6919)}}, {{A, B, C, X(941), X(45833)}}, {{A, B, C, X(1440), X(6063)}}, {{A, B, C, X(2475), X(4190)}}, {{A, B, C, X(2476), X(3523)}}, {{A, B, C, X(2478), X(17580)}}, {{A, B, C, X(2996), X(54117)}}, {{A, B, C, X(2997), X(10405)}}, {{A, B, C, X(3522), X(37161)}}, {{A, B, C, X(3620), X(16992)}}, {{A, B, C, X(3945), X(18134)}}, {{A, B, C, X(4188), X(6871)}}, {{A, B, C, X(4197), X(17558)}}, {{A, B, C, X(4201), X(50408)}}, {{A, B, C, X(4869), X(14828)}}, {{A, B, C, X(5056), X(6921)}}, {{A, B, C, X(5129), X(37462)}}, {{A, B, C, X(5187), X(17572)}}, {{A, B, C, X(5224), X(14552)}}, {{A, B, C, X(6175), X(10304)}}, {{A, B, C, X(6655), X(33058)}}, {{A, B, C, X(6933), X(10303)}}, {{A, B, C, X(6993), X(37300)}}, {{A, B, C, X(7486), X(17566)}}, {{A, B, C, X(8048), X(40216)}}, {{A, B, C, X(8801), X(39798)}}, {{A, B, C, X(8809), X(21446)}}, {{A, B, C, X(8813), X(52565)}}, {{A, B, C, X(14035), X(17565)}}, {{A, B, C, X(14063), X(33062)}}, {{A, B, C, X(14484), X(39956)}}, {{A, B, C, X(15589), X(26543)}}, {{A, B, C, X(16865), X(50237)}}, {{A, B, C, X(16915), X(32974)}}, {{A, B, C, X(17674), X(37024)}}, {{A, B, C, X(17684), X(33037)}}, {{A, B, C, X(17686), X(33202)}}, {{A, B, C, X(17690), X(50322)}}, {{A, B, C, X(24565), X(24984)}}, {{A, B, C, X(24604), X(37445)}}, {{A, B, C, X(25015), X(27402)}}, {{A, B, C, X(27022), X(27301)}}, {{A, B, C, X(30690), X(39695)}}, {{A, B, C, X(31363), X(43724)}}, {{A, B, C, X(32965), X(33030)}}, {{A, B, C, X(32973), X(33841)}}, {{A, B, C, X(33004), X(33056)}}, {{A, B, C, X(33012), X(33060)}}, {{A, B, C, X(33198), X(33840)}}, {{A, B, C, X(34265), X(43533)}}, {{A, B, C, X(40424), X(50442)}}, {{A, B, C, X(45964), X(52224)}}
X(57866) = barycentric product X(i)*X(j) for these (i, j): {1, 57821}, {2213, 76}, {2336, 6063}, {57661, 75}
X(57866) = barycentric quotient X(i)/X(j) for these (i, j): {1, 380}, {2, 452}, {6, 44098}, {57, 1453}, {2213, 6}, {2336, 55}, {57661, 1}, {57821, 75}


X(57867) = ISOTOMIC CONJUGATE OF X(453)

Barycentrics    b*(a+b-c)*c*(a-b+c)*(b+c)*(a^3+a^2*(b-c)-(b-c)*(b+c)^2-a*(b^2+c^2))^2*(a^3+a^2*(-b+c)+(b-c)*(b+c)^2-a*(b^2+c^2))^2 : :

X(57867) lies on circumconic {{A, B, C, X(2), X(69)}} and on these lines: {69, 20570}, {7318, 57832}

X(57867) = isotomic conjugate of X(453)
X(57867) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 453}, {1079, 2194}
X(57867) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 453}, {1214, 1079}
X(57867) = barycentric product X(i)*X(j) for these (i, j): {349, 7042}, {57696, 76}
X(57867) = barycentric quotient X(i)/X(j) for these (i, j): {2, 453}, {226, 1079}, {2994, 3193}, {6513, 1800}, {7042, 284}, {20570, 31631}, {57696, 6}


X(57868) = ISOTOMIC CONJUGATE OF X(454)

Barycentrics    b^2*c^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^3-(a^2-3*b^2)*(a^2+b^2)*c^2-(a^2+3*b^2)*c^4+c^6)^2*(a^6+(b^2-c^2)^3-a^2*(b^2-3*c^2)*(b^2+c^2)-a^4*(b^2+3*c^2))^2 : :

X(57868) lies on circumconic {{A, B, C, X(2), X(69)}} and on these lines: {69, 46746}

X(57868) = isotomic conjugate of X(454)
X(57868) = barycentric product X(i)*X(j) for these (i, j): {46746, 6504}, {57697, 76}
X(57868) = barycentric quotient X(i)/X(j) for these (i, j): {2, 454}, {254, 1609}, {6504, 155}, {46746, 6515}, {52582, 47731}, {57697, 6}


X(57869) = ISOTOMIC CONJUGATE OF X(455)

Barycentrics    -(b^2*c^2*(-a^2+b^2+c^2)*(-((a^2-b^2)^2*(a^2+b^2))-(a^2+b^2)^2*c^2+(a^2+b^2)*c^4+c^6)^2*(-a^6+a^2*(b^2-c^2)^2+a^4*(-b^2+c^2)+(b-c)*(b+c)*(b^2+c^2)^2)^2) : :

X(57869) lies on circumconic {{A, B, C, X(2), X(69)}} and on these lines: {69, 57698}, {18018, 40009}

X(57869) = isotomic conjugate of X(455)
X(57869) = barycentric product X(i)*X(j) for these (i, j): {57698, 76}
X(57869) = barycentric quotient X(i)/X(j) for these (i, j): {2, 455}, {13575, 3162}, {40009, 41361}, {57698, 6}


X(57870) = ISOTOMIC CONJUGATE OF X(456)

Barycentrics    -(b^2*c^2*(-a^2+b^2+c^2)*(a^8+(b^2-c^2)^4-2*a^6*(b^2+2*c^2)+a^4*(2*b^4+b^2*c^2+6*c^4)+a^2*(-2*b^6+b^4*c^2+5*b^2*c^4-4*c^6))^2*(a^8+(b^2-c^2)^4-2*a^6*(2*b^2+c^2)+a^4*(6*b^4+b^2*c^2+2*c^4)+a^2*(-4*b^6+5*b^4*c^2+b^2*c^4-2*c^6))^2) : :

X(57870) lies on circumconic {{A, B, C, X(2), X(69)}} and on these lines: {2, 53028}, {69, 57699}, {95, 57776}

X(57870) = isotomic conjugate of X(456)
X(57870) = barycentric product X(i)*X(j) for these (i, j): {57699, 76}
X(57870) = barycentric quotient X(i)/X(j) for these (i, j): {2, 456}, {57699, 6}


X(57871) = ISOTOMIC CONJUGATE OF X(457)

Barycentrics    -(b^2*c^2*(-a^2+b^2+c^2)*(a^8+2*a^6*(b^2-2*c^2)+(b^2-c^2)^4+a^4*(-6*b^4+b^2*c^2+6*c^4)+a^2*(2*b^6+b^4*c^2+b^2*c^4-4*c^6))^2*(a^8+(b^2-c^2)^4+2*a^6*(-2*b^2+c^2)+a^4*(6*b^4+b^2*c^2-6*c^4)+a^2*(-4*b^6+b^4*c^2+b^2*c^4+2*c^6))^2) : :

X(57871) lies on circumconic {{A, B, C, X(2), X(69)}} and on these lines: {69, 57700}, {1494, 40705}

X(57871) = isotomic conjugate of X(457)
X(57871) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 457}, {19303, 52166}
X(57871) = barycentric product X(i)*X(j) for these (i, j): {57700, 76}
X(57871) = barycentric quotient X(i)/X(j) for these (i, j): {2, 457}, {1138, 52166}, {57700, 6}


X(57872) = ISOTOMIC CONJUGATE OF X(460)

Barycentrics    (a^2-b^2-c^2)*((a^2-b^2)^2-(a^2+b^2)*c^2+2*c^4)*(a^4+2*b^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(57872) lies on these lines: {2, 2987}, {69, 14060}, {125, 4176}, {193, 56360}, {253, 56572}, {264, 670}, {287, 6393}, {460, 51374}, {1799, 42065}, {2373, 10425}, {3620, 56334}, {3926, 56267}, {6333, 34290}, {14977, 45792}, {36889, 36891}

X(57872) = isogonal conjugate of X(44099)
X(57872) = isotomic conjugate of X(460)
X(57872) = trilinear pole of line {3926, 525}
X(57872) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44099}, {19, 1692}, {25, 8772}, {31, 460}, {162, 42663}, {230, 1973}, {560, 44145}, {1096, 52144}, {1733, 1974}, {17462, 57260}, {32676, 55122}, {51820, 57653}
X(57872) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 460}, {3, 44099}, {6, 1692}, {125, 42663}, {6337, 230}, {6338, 3564}, {6374, 44145}, {6503, 52144}, {6505, 8772}, {15526, 55122}, {52881, 5477}
X(57872) = X(i)-cross conjugate of X(j) for these {i, j}: {6333, 4563}, {43705, 8781}
X(57872) = pole of line {1692, 44099} with respect to the Stammler hyperbola
X(57872) = pole of line {54103, 55122} with respect to the Steiner circumellipse
X(57872) = pole of line {230, 460} with respect to the Wallace hyperbola
X(57872) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5028)}}, {{A, B, C, X(98), X(39645)}}, {{A, B, C, X(125), X(6388)}}, {{A, B, C, X(525), X(14645)}}, {{A, B, C, X(670), X(4563)}}, {{A, B, C, X(879), X(34290)}}, {{A, B, C, X(895), X(14060)}}, {{A, B, C, X(2351), X(6391)}}, {{A, B, C, X(2987), X(35142)}}, {{A, B, C, X(3926), X(10008)}}, {{A, B, C, X(3933), X(34483)}}, {{A, B, C, X(6333), X(6394)}}, {{A, B, C, X(6393), X(32458)}}, {{A, B, C, X(8858), X(36849)}}, {{A, B, C, X(18022), X(40405)}}, {{A, B, C, X(34386), X(40050)}}
X(57872) = barycentric product X(i)*X(j) for these (i, j): {69, 8781}, {304, 8773}, {1502, 42065}, {2987, 305}, {10425, 3267}, {32654, 40050}, {32697, 52617}, {35142, 3926}, {35364, 52608}, {36051, 40364}, {40428, 6393}, {43705, 76}, {52091, 57799}, {55266, 6333}, {56109, 57918}
X(57872) = barycentric quotient X(i)/X(j) for these (i, j): {2, 460}, {3, 1692}, {6, 44099}, {63, 8772}, {69, 230}, {76, 44145}, {287, 51820}, {304, 1733}, {305, 51481}, {394, 52144}, {525, 55122}, {647, 42663}, {2065, 57260}, {2987, 25}, {3563, 2207}, {3926, 3564}, {4563, 4226}, {6333, 55267}, {6390, 5477}, {6393, 114}, {8773, 19}, {8781, 4}, {10008, 10011}, {10425, 112}, {11064, 51431}, {12215, 12829}, {30786, 52450}, {32654, 1974}, {32697, 32713}, {34157, 2211}, {35142, 393}, {35364, 2489}, {36051, 1973}, {36105, 24019}, {36212, 51335}, {36891, 1990}, {40428, 6531}, {40708, 47734}, {42065, 32}, {43705, 6}, {51386, 47406}, {52091, 232}, {55266, 685}, {56109, 607}, {56572, 16318}, {57493, 34854}, {57799, 14265}


X(57873) = ISOTOMIC CONJUGATE OF X(461)

Barycentrics    (a+b-c)*(a-b+c)*(a+3*b+c)*(a+b+3*c)*(a^2-b^2-c^2) : :

X(57873) lies on these lines: {2, 1434}, {69, 57701}, {306, 348}, {307, 7056}, {1088, 1441}, {2373, 5545}, {4624, 52156}, {7182, 20336}, {14548, 56048}, {31627, 40023}

X(57873) = isogonal conjugate of X(44100)
X(57873) = isotomic conjugate of X(461)
X(57873) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44100}, {19, 4258}, {25, 4512}, {31, 461}, {55, 5338}, {162, 8653}, {391, 1973}, {607, 1449}, {1974, 4673}, {2175, 5342}, {2203, 4061}, {2204, 5257}, {2212, 3616}, {2299, 37593}, {3361, 7071}, {4652, 6059}, {4827, 32674}, {4843, 32676}
X(57873) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 461}, {3, 44100}, {6, 4258}, {125, 8653}, {223, 5338}, {226, 37593}, {6337, 391}, {6505, 4512}, {15526, 4843}, {35072, 4827}, {40593, 5342}, {40618, 4765}
X(57873) = X(i)-cross conjugate of X(j) for these {i, j}: {57701, 57826}
X(57873) = pole of line {4258, 44100} with respect to the Stammler hyperbola
X(57873) = pole of line {391, 461} with respect to the Wallace hyperbola
X(57873) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5022)}}, {{A, B, C, X(77), X(36620)}}, {{A, B, C, X(348), X(1088)}}, {{A, B, C, X(1791), X(39959)}}, {{A, B, C, X(4025), X(30679)}}, {{A, B, C, X(15077), X(56144)}}, {{A, B, C, X(15740), X(43672)}}, {{A, B, C, X(38930), X(52388)}}
X(57873) = barycentric product X(i)*X(j) for these (i, j): {305, 57663}, {348, 5936}, {1231, 56048}, {2334, 57918}, {3267, 5545}, {4025, 4624}, {17094, 4633}, {25430, 7182}, {40023, 77}, {56086, 7056}, {57701, 76}, {57826, 69}
X(57873) = barycentric quotient X(i)/X(j) for these (i, j): {2, 461}, {3, 4258}, {6, 44100}, {57, 5338}, {63, 4512}, {69, 391}, {77, 1449}, {85, 5342}, {304, 4673}, {306, 4061}, {307, 5257}, {348, 3616}, {521, 4827}, {525, 4843}, {647, 8653}, {1214, 37593}, {1434, 31903}, {2334, 607}, {4025, 4765}, {4561, 30728}, {4606, 56183}, {4624, 1897}, {4633, 36797}, {4866, 7079}, {5545, 112}, {5936, 281}, {7056, 21454}, {7177, 3361}, {7182, 19804}, {7183, 4652}, {15413, 4811}, {17094, 4841}, {20336, 42712}, {25430, 33}, {34820, 7071}, {40023, 318}, {47915, 18344}, {51664, 4822}, {52385, 4047}, {52565, 4101}, {56048, 1172}, {56086, 7046}, {56204, 4183}, {56382, 3671}, {57663, 25}, {57701, 6}, {57826, 4}


X(57874) = ISOTOMIC CONJUGATE OF X(464)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2+2*(a+b)^2*c^2+4*(a+b)*c^3+c^4)*(a^4+b^4+4*b^3*c+2*b^2*c^2+c^4+4*a*b^2*(b+c)+2*a^2*(b-c)*(b+c)) : :

X(57874) lies on these lines: {2, 8747}, {4, 306}, {27, 69}, {92, 20336}, {278, 307}, {305, 44129}, {5739, 40573}, {7490, 57876}, {17982, 57848}, {31623, 57831}, {36419, 37176}, {37185, 57820}, {37419, 53813}

X(57874) = isogonal conjugate of X(44101)
X(57874) = isotomic conjugate of X(464)
X(57874) = trilinear pole of line {7649, 525}
X(57874) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44101}, {31, 464}, {48, 387}
X(57874) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 464}, {3, 44101}, {1249, 387}
X(57874) = X(i)-cross conjugate of X(j) for these {i, j}: {7522, 2}, {57662, 57825}
X(57874) = pole of line {464, 44101} with respect to the Wallace hyperbola
X(57874) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(4), X(27)}}, {{A, B, C, X(8), X(5271)}}, {{A, B, C, X(321), X(19793)}}, {{A, B, C, X(379), X(37185)}}, {{A, B, C, X(464), X(7522)}}, {{A, B, C, X(469), X(7490)}}, {{A, B, C, X(967), X(40801)}}, {{A, B, C, X(1171), X(56307)}}, {{A, B, C, X(1217), X(13478)}}, {{A, B, C, X(1751), X(39130)}}, {{A, B, C, X(2051), X(18855)}}, {{A, B, C, X(11350), X(36662)}}, {{A, B, C, X(14860), X(45100)}}, {{A, B, C, X(18854), X(45098)}}, {{A, B, C, X(26003), X(37276)}}, {{A, B, C, X(40411), X(40435)}}, {{A, B, C, X(52485), X(52753)}}
X(57874) = barycentric product X(i)*X(j) for these (i, j): {4, 57825}, {264, 57662}, {57702, 76}
X(57874) = barycentric quotient X(i)/X(j) for these (i, j): {2, 464}, {4, 387}, {6, 44101}, {57662, 3}, {57702, 6}, {57825, 69}


X(57875) = ISOTOMIC CONJUGATE OF X(467)

Barycentrics    (a^2-b^2-c^2)*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-2*a^2*b^2+(b^2-c^2)^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(57875) lies on these lines: {2, 54}, {69, 97}, {95, 37636}, {253, 43768}, {264, 275}, {288, 14389}, {305, 34386}, {343, 14533}, {394, 20563}, {467, 8884}, {925, 1298}, {2165, 4993}, {2351, 37068}, {2373, 32692}, {3564, 54034}, {5962, 52280}, {6515, 8882}, {8794, 57851}, {8883, 11411}, {8901, 42065}, {8907, 19185}, {19174, 37192}, {19180, 57819}, {44177, 45794}, {53576, 57829}

X(57875) = isogonal conjugate of X(14576)
X(57875) = isotomic conjugate of X(467)
X(57875) = trilinear pole of line {23286, 525}
X(57875) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 14576}, {4, 2180}, {19, 52}, {24, 1953}, {31, 467}, {47, 53}, {51, 1748}, {162, 52317}, {317, 2179}, {563, 13450}, {920, 47732}, {1096, 52032}, {1973, 39113}, {1993, 2181}, {2290, 52415}, {2617, 6753}, {3199, 44179}, {8745, 44706}, {14213, 44077}, {35360, 55216}
X(57875) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 467}, {3, 14576}, {6, 52}, {68, 41523}, {125, 52317}, {577, 3133}, {2165, 41587}, {6337, 39113}, {6503, 52032}, {34853, 53}, {35441, 55073}, {36033, 2180}, {37864, 3199}
X(57875) = X(i)-Ceva conjugate of X(j) for these {i, j}: {34385, 96}
X(57875) = X(i)-cross conjugate of X(j) for these {i, j}: {68, 34385}, {394, 97}, {6389, 276}, {19210, 95}, {55253, 52932}, {57703, 96}
X(57875) = pole of line {2623, 18314} with respect to the MacBeath circumconic
X(57875) = pole of line {52, 14576} with respect to the Stammler hyperbola
X(57875) = pole of line {467, 14576} with respect to the Wallace hyperbola
X(57875) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(569)}}, {{A, B, C, X(54), X(97)}}, {{A, B, C, X(68), X(5392)}}, {{A, B, C, X(70), X(2052)}}, {{A, B, C, X(83), X(31626)}}, {{A, B, C, X(276), X(19179)}}, {{A, B, C, X(324), X(15319)}}, {{A, B, C, X(343), X(1209)}}, {{A, B, C, X(394), X(1147)}}, {{A, B, C, X(401), X(8613)}}, {{A, B, C, X(458), X(37068)}}, {{A, B, C, X(467), X(52347)}}, {{A, B, C, X(525), X(539)}}, {{A, B, C, X(801), X(14371)}}, {{A, B, C, X(2888), X(11140)}}, {{A, B, C, X(3926), X(6193)}}, {{A, B, C, X(5449), X(42410)}}, {{A, B, C, X(6756), X(31804)}}, {{A, B, C, X(6776), X(40178)}}, {{A, B, C, X(8796), X(38442)}}, {{A, B, C, X(9289), X(13579)}}, {{A, B, C, X(11538), X(43838)}}, {{A, B, C, X(11547), X(46199)}}, {{A, B, C, X(16080), X(26917)}}, {{A, B, C, X(28724), X(56002)}}, {{A, B, C, X(34900), X(45793)}}, {{A, B, C, X(37188), X(37192)}}
X(57875) = barycentric product X(i)*X(j) for these (i, j): {3, 34385}, {68, 95}, {69, 96}, {275, 52350}, {276, 55549}, {305, 41271}, {2165, 34386}, {2168, 304}, {2351, 34384}, {3267, 32692}, {4563, 55253}, {5392, 97}, {11090, 16037}, {11091, 16032}, {14533, 57904}, {16391, 8795}, {19210, 55553}, {20563, 54}, {20571, 2169}, {23286, 46134}, {52932, 6563}, {57703, 76}, {57763, 8901}
X(57875) = barycentric quotient X(i)/X(j) for these (i, j): {2, 467}, {3, 52}, {6, 14576}, {48, 2180}, {54, 24}, {68, 5}, {69, 39113}, {95, 317}, {96, 4}, {97, 1993}, {252, 14111}, {275, 11547}, {394, 52032}, {647, 52317}, {847, 13450}, {925, 35360}, {933, 52917}, {1141, 52415}, {1147, 3133}, {1820, 1953}, {1899, 27362}, {2165, 53}, {2167, 1748}, {2168, 19}, {2169, 47}, {2351, 51}, {2623, 6753}, {4563, 55252}, {5392, 324}, {6504, 39114}, {8882, 8745}, {8883, 35603}, {8901, 136}, {13599, 14149}, {14533, 571}, {14593, 14569}, {15316, 40678}, {15412, 57065}, {16032, 1586}, {16037, 1585}, {16391, 5562}, {18315, 41679}, {19210, 1147}, {20563, 311}, {23286, 924}, {32132, 8800}, {32692, 112}, {32734, 52604}, {34385, 264}, {34386, 7763}, {34853, 41587}, {35442, 55073}, {37802, 14918}, {41271, 25}, {46088, 30451}, {50463, 5961}, {52350, 343}, {52932, 925}, {54034, 44077}, {55253, 2501}, {55549, 216}, {57703, 6}
X(57875) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16032, 16037, 96}


X(57876) = ISOTOMIC CONJUGATE OF X(469)

Barycentrics    (a^2-b^2-c^2)*(a^2+a*(b+c)+b*(b+c))*(a^2+a*(b+c)+c*(b+c)) : :

X(57876) lies on these lines: {2, 58}, {3, 306}, {27, 264}, {57, 1150}, {63, 20336}, {69, 1790}, {76, 57778}, {81, 58010}, {84, 19645}, {95, 4417}, {103, 835}, {222, 307}, {253, 37655}, {305, 17206}, {333, 57831}, {345, 1796}, {940, 2214}, {967, 5737}, {1764, 42467}, {3187, 3670}, {3423, 37323}, {3916, 42706}, {7490, 57874}, {7560, 10449}, {10479, 37095}, {14552, 57866}, {16342, 37554}, {17587, 48863}, {17972, 57848}, {18134, 40412}, {18141, 57858}, {24586, 26723}, {26942, 52411}, {30882, 33066}, {32863, 54454}, {34234, 37218}, {35365, 43927}

X(57876) = isogonal conjugate of X(44103)
X(57876) = isotomic conjugate of X(469)
X(57876) = trilinear pole of line {1459, 525}
X(57876) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44103}, {19, 386}, {25, 28606}, {28, 56926}, {31, 469}, {112, 47842}, {162, 42664}, {608, 3876}, {648, 50488}, {834, 1783}, {1973, 5224}, {1974, 33935}, {2203, 56810}, {2212, 33949}, {3192, 53082}, {6335, 8637}, {8750, 14349}, {23879, 32676}
X(57876) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 469}, {3, 44103}, {6, 386}, {125, 42664}, {6337, 5224}, {6505, 28606}, {15526, 23879}, {26932, 14349}, {34591, 47842}, {39006, 834}, {40591, 56926}, {40618, 45746}, {55066, 50488}
X(57876) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57824, 43531}
X(57876) = X(i)-cross conjugate of X(j) for these {i, j}: {7536, 2}, {26933, 4025}, {57704, 43531}
X(57876) = pole of line {386, 44103} with respect to the Stammler hyperbola
X(57876) = pole of line {469, 5224} with respect to the Wallace hyperbola
X(57876) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(27)}}, {{A, B, C, X(68), X(2051)}}, {{A, B, C, X(71), X(2350)}}, {{A, B, C, X(72), X(1724)}}, {{A, B, C, X(76), X(1330)}}, {{A, B, C, X(78), X(333)}}, {{A, B, C, X(81), X(1791)}}, {{A, B, C, X(92), X(54972)}}, {{A, B, C, X(304), X(25526)}}, {{A, B, C, X(312), X(27412)}}, {{A, B, C, X(343), X(4417)}}, {{A, B, C, X(345), X(4001)}}, {{A, B, C, X(394), X(14829)}}, {{A, B, C, X(464), X(7490)}}, {{A, B, C, X(469), X(7536)}}, {{A, B, C, X(525), X(540)}}, {{A, B, C, X(940), X(1038)}}, {{A, B, C, X(1010), X(16350)}}, {{A, B, C, X(1150), X(1809)}}, {{A, B, C, X(1171), X(1176)}}, {{A, B, C, X(1214), X(37522)}}, {{A, B, C, X(1231), X(40013)}}, {{A, B, C, X(1265), X(30711)}}, {{A, B, C, X(1331), X(4598)}}, {{A, B, C, X(1764), X(56414)}}, {{A, B, C, X(1811), X(43757)}}, {{A, B, C, X(1817), X(19645)}}, {{A, B, C, X(3454), X(26942)}}, {{A, B, C, X(3998), X(19792)}}, {{A, B, C, X(4340), X(56382)}}, {{A, B, C, X(4657), X(19799)}}, {{A, B, C, X(4846), X(48870)}}, {{A, B, C, X(5227), X(40184)}}, {{A, B, C, X(6516), X(37209)}}, {{A, B, C, X(6996), X(11350)}}, {{A, B, C, X(7182), X(24632)}}, {{A, B, C, X(7289), X(40193)}}, {{A, B, C, X(7522), X(7573)}}, {{A, B, C, X(9289), X(20077)}}, {{A, B, C, X(11329), X(50400)}}, {{A, B, C, X(15077), X(45100)}}, {{A, B, C, X(16054), X(37323)}}, {{A, B, C, X(16368), X(37092)}}, {{A, B, C, X(16439), X(17682)}}, {{A, B, C, X(23086), X(23160)}}, {{A, B, C, X(23197), X(52411)}}, {{A, B, C, X(24580), X(37185)}}, {{A, B, C, X(24624), X(34259)}}, {{A, B, C, X(26006), X(34255)}}, {{A, B, C, X(28754), X(32863)}}, {{A, B, C, X(30759), X(44558)}}, {{A, B, C, X(35912), X(52753)}}, {{A, B, C, X(37655), X(37669)}}, {{A, B, C, X(44733), X(52392)}}, {{A, B, C, X(52369), X(52388)}}
X(57876) = barycentric product X(i)*X(j) for these (i, j): {3, 57824}, {306, 56047}, {1459, 57977}, {2214, 304}, {4025, 835}, {37218, 905}, {43531, 69}, {43927, 4561}, {57704, 76}
X(57876) = barycentric quotient X(i)/X(j) for these (i, j): {2, 469}, {3, 386}, {6, 44103}, {63, 28606}, {69, 5224}, {71, 56926}, {78, 3876}, {304, 33935}, {306, 56810}, {348, 33949}, {525, 23879}, {647, 42664}, {656, 47842}, {810, 50488}, {835, 1897}, {905, 14349}, {1459, 834}, {2214, 19}, {4025, 45746}, {4064, 23282}, {4561, 33948}, {7254, 52615}, {20336, 42714}, {26933, 5515}, {37218, 6335}, {43531, 4}, {43927, 7649}, {56047, 27}, {56813, 26911}, {57704, 6}, {57824, 264}
X(57876) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 56047, 43531}


X(57877) = ISOTOMIC CONJUGATE OF X(474)

Barycentrics    b*c*(-2*a*b*(a+b)+(a-b)^2*c-c^3)*(b^3-a^2*(b-2*c)-b*c^2+2*a*c*(b+c)) : :

X(57877) lies on these lines: {5, 57831}, {69, 5084}, {95, 405}, {264, 4187}, {286, 6919}, {306, 5233}, {307, 4389}, {1441, 4193}, {6857, 36948}, {9229, 33046}, {11108, 40412}, {17559, 57858}

X(57877) = isogonal conjugate of X(44104)
X(57877) = isotomic conjugate of X(474)
X(57877) = trilinear pole of line {4462, 49272}
X(57877) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44104}, {31, 474}, {560, 44147}, {692, 48342}
X(57877) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 474}, {3, 44104}, {1086, 48342}, {6374, 44147}
X(57877) = X(i)-cross conjugate of X(j) for these {i, j}: {17527, 2}, {33172, 76}
X(57877) = pole of line {474, 44104} with respect to the Wallace hyperbola
X(57877) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(4187)}}, {{A, B, C, X(4), X(5084)}}, {{A, B, C, X(5), X(405)}}, {{A, B, C, X(21), X(4193)}}, {{A, B, C, X(37), X(262)}}, {{A, B, C, X(75), X(18743)}}, {{A, B, C, X(76), X(18140)}}, {{A, B, C, X(86), X(3596)}}, {{A, B, C, X(273), X(40422)}}, {{A, B, C, X(286), X(312)}}, {{A, B, C, X(313), X(40012)}}, {{A, B, C, X(384), X(33046)}}, {{A, B, C, X(442), X(11108)}}, {{A, B, C, X(443), X(17559)}}, {{A, B, C, X(452), X(6919)}}, {{A, B, C, X(474), X(17527)}}, {{A, B, C, X(693), X(5936)}}, {{A, B, C, X(1246), X(14554)}}, {{A, B, C, X(1268), X(6063)}}, {{A, B, C, X(1656), X(7483)}}, {{A, B, C, X(2476), X(5047)}}, {{A, B, C, X(3090), X(6857)}}, {{A, B, C, X(3091), X(5129)}}, {{A, B, C, X(3613), X(39983)}}, {{A, B, C, X(4197), X(17536)}}, {{A, B, C, X(5025), X(16918)}}, {{A, B, C, X(5046), X(37162)}}, {{A, B, C, X(5051), X(5192)}}, {{A, B, C, X(5055), X(15670)}}, {{A, B, C, X(5056), X(17558)}}, {{A, B, C, X(5071), X(17561)}}, {{A, B, C, X(5141), X(16859)}}, {{A, B, C, X(5154), X(16865)}}, {{A, B, C, X(6830), X(37306)}}, {{A, B, C, X(6831), X(16293)}}, {{A, B, C, X(6836), X(50399)}}, {{A, B, C, X(6856), X(16845)}}, {{A, B, C, X(6910), X(6931)}}, {{A, B, C, X(7866), X(17540)}}, {{A, B, C, X(8728), X(16842)}}, {{A, B, C, X(9307), X(39798)}}, {{A, B, C, X(11321), X(33034)}}, {{A, B, C, X(13740), X(52258)}}, {{A, B, C, X(13741), X(16062)}}, {{A, B, C, X(15065), X(43531)}}, {{A, B, C, X(16408), X(17575)}}, {{A, B, C, X(16418), X(17533)}}, {{A, B, C, X(16853), X(17529)}}, {{A, B, C, X(16857), X(17530)}}, {{A, B, C, X(16862), X(51559)}}, {{A, B, C, X(16912), X(33045)}}, {{A, B, C, X(16914), X(33061)}}, {{A, B, C, X(16916), X(17669)}}, {{A, B, C, X(16921), X(33047)}}, {{A, B, C, X(16924), X(33029)}}, {{A, B, C, X(16925), X(33053)}}, {{A, B, C, X(17240), X(20565)}}, {{A, B, C, X(17541), X(17550)}}, {{A, B, C, X(17590), X(50726)}}, {{A, B, C, X(17671), X(17681)}}, {{A, B, C, X(20566), X(30598)}}, {{A, B, C, X(20570), X(31643)}}, {{A, B, C, X(26529), X(26654)}}, {{A, B, C, X(28626), X(54121)}}, {{A, B, C, X(32971), X(33038)}}, {{A, B, C, X(32987), X(33040)}}, {{A, B, C, X(32999), X(33055)}}, {{A, B, C, X(33817), X(33834)}}, {{A, B, C, X(33827), X(33837)}}, {{A, B, C, X(40424), X(42339)}}
X(57877) = barycentric product X(i)*X(j) for these (i, j): {57705, 76}
X(57877) = barycentric quotient X(i)/X(j) for these (i, j): {2, 474}, {6, 44104}, {76, 44147}, {514, 48342}, {57705, 6}


X(57878) = ISOTOMIC CONJUGATE OF X(475)

Barycentrics    (a^2-b^2-c^2)*((a-b)*(a+b)^2+(a^2-2*a*b-b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2-2*b*c-c^2)) : :

X(57878) lies on these lines: {2, 36744}, {3, 57832}, {69, 57706}, {264, 406}, {306, 28420}, {307, 54404}, {1441, 17321}, {5224, 57818}, {5232, 54454}, {28753, 37202}

X(57878) = isogonal conjugate of X(44105)
X(57878) = isotomic conjugate of X(475)
X(57878) = trilinear pole of line {20296, 525}
X(57878) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44105}, {19, 36743}, {31, 475}
X(57878) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 475}, {3, 44105}, {6, 36743}
X(57878) = pole of line {36743, 44105} with respect to the Stammler hyperbola
X(57878) = pole of line {475, 44105} with respect to the Wallace hyperbola
X(57878) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(37)}}, {{A, B, C, X(75), X(28420)}}, {{A, B, C, X(77), X(52351)}}, {{A, B, C, X(86), X(3718)}}, {{A, B, C, X(286), X(41791)}}, {{A, B, C, X(345), X(1444)}}, {{A, B, C, X(348), X(31618)}}, {{A, B, C, X(895), X(39956)}}, {{A, B, C, X(941), X(1176)}}, {{A, B, C, X(1268), X(7182)}}, {{A, B, C, X(3926), X(18140)}}, {{A, B, C, X(5232), X(28754)}}, {{A, B, C, X(6391), X(39798)}}, {{A, B, C, X(6889), X(25490)}}, {{A, B, C, X(7318), X(52392)}}, {{A, B, C, X(17758), X(18589)}}, {{A, B, C, X(26091), X(27531)}}, {{A, B, C, X(27402), X(27535)}}, {{A, B, C, X(27504), X(27506)}}, {{A, B, C, X(27509), X(40719)}}, {{A, B, C, X(34817), X(39983)}}, {{A, B, C, X(38263), X(39982)}}
X(57878) = barycentric product X(i)*X(j) for these (i, j): {57706, 76}
X(57878) = barycentric quotient X(i)/X(j) for these (i, j): {2, 475}, {3, 36743}, {6, 44105}, {20336, 42715}, {57706, 6}


X(57879) = ISOTOMIC CONJUGATE OF X(478)

Barycentrics    b^2*c^2*(-a+b+c)*((a^2-b^2)^2+2*a*b*(a+b)*c-2*a*b*c^2-c^4)*(-a^4+b^4+2*a*b*(b-c)*c-c^4+2*a^2*c*(-b+c)) : :

X(57879) lies on these lines: {304, 4417}, {314, 43742}, {3436, 3596}, {20606, 42467}, {57781, 57918}

X(57879) = isotomic conjugate of X(478)
X(57879) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 478}, {32, 21147}, {48, 17408}, {56, 205}, {197, 604}, {560, 57477}, {667, 57061}, {1395, 22132}, {1397, 1766}, {1400, 52143}, {1973, 56414}, {9247, 14257}, {20928, 41280}
X(57879) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 205}, {2, 478}, {1249, 17408}, {3161, 197}, {6337, 56414}, {6374, 57477}, {6376, 21147}, {6631, 57061}, {40582, 52143}, {40624, 6588}
X(57879) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57781, 57777}
X(57879) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 3596}
X(57879) = pole of line {478, 56414} with respect to the Wallace hyperbola
X(57879) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3436)}}, {{A, B, C, X(4), X(4391)}}, {{A, B, C, X(56), X(3910)}}, {{A, B, C, X(76), X(304)}}, {{A, B, C, X(85), X(20914)}}, {{A, B, C, X(333), X(4417)}}, {{A, B, C, X(3596), X(40828)}}, {{A, B, C, X(18027), X(44190)}}, {{A, B, C, X(20911), X(30479)}}, {{A, B, C, X(34277), X(43742)}}
X(57879) = barycentric product X(i)*X(j) for these (i, j): {305, 43742}, {312, 57642}, {3435, 40363}, {3596, 8048}, {18022, 39167}, {28659, 42467}, {34277, 76}, {34279, 40828}, {40072, 43703}, {57777, 8}, {57781, 9}
X(57879) = barycentric quotient X(i)/X(j) for these (i, j): {2, 478}, {4, 17408}, {8, 197}, {9, 205}, {21, 52143}, {69, 56414}, {75, 21147}, {76, 57477}, {190, 57061}, {264, 14257}, {312, 1766}, {314, 16049}, {345, 22132}, {3435, 1397}, {3596, 3436}, {4391, 6588}, {8048, 56}, {23983, 47410}, {28659, 20928}, {30713, 21074}, {31623, 41364}, {34258, 34263}, {34277, 6}, {34279, 5019}, {35519, 21186}, {39167, 184}, {42467, 604}, {43703, 1402}, {43742, 25}, {46640, 1415}, {57642, 57}, {57777, 7}, {57781, 85}


X(57880) = ISOTOMIC CONJUGATE OF X(480)

Barycentrics    b^2*(a+b-c)^3*c^2*(a-b+c)^3 : :

X(57880) lies on these lines: {7, 39789}, {8, 50560}, {65, 47393}, {85, 142}, {277, 17093}, {279, 34018}, {479, 17169}, {658, 4253}, {1088, 3673}, {1323, 43158}, {3022, 43750}, {4554, 56937}, {4569, 6604}, {5542, 50561}, {6063, 20880}, {13149, 17905}, {14377, 33765}, {30625, 40864}, {30682, 53238}, {52937, 53240}

X(57880) = isotomic conjugate of X(480)
X(57880) = trilinear pole of line {21104, 24002}
X(57880) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 6602}, {9, 14827}, {31, 480}, {32, 728}, {41, 220}, {55, 1253}, {59, 24012}, {101, 57180}, {200, 2175}, {212, 7071}, {341, 9448}, {346, 9447}, {560, 5423}, {607, 1802}, {692, 4105}, {872, 6061}, {1110, 3022}, {1174, 8551}, {1260, 2212}, {1262, 52064}, {1501, 30693}, {1918, 56182}, {2149, 35508}, {2310, 6066}, {2332, 52370}, {3119, 23990}, {3939, 8641}, {4130, 32739}, {4515, 57657}, {7079, 52425}, {7118, 7368}
X(57880) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 480}, {9, 6602}, {223, 1253}, {478, 14827}, {514, 3022}, {650, 35508}, {1015, 57180}, {1086, 4105}, {1577, 24010}, {3160, 220}, {6374, 5423}, {6376, 728}, {6609, 2175}, {6615, 24012}, {17113, 55}, {34021, 56182}, {40593, 200}, {40606, 8551}, {40615, 657}, {40617, 8641}, {40619, 4130}, {40622, 4524}, {40837, 7071}
X(57880) = X(i)-cross conjugate of X(j) for these {i, j}: {11, 24002}, {1088, 57792}, {53242, 1088}
X(57880) = pole of line {10581, 21195} with respect to the incircle
X(57880) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(7), X(142)}}, {{A, B, C, X(8), X(11019)}}, {{A, B, C, X(55), X(39789)}}, {{A, B, C, X(59), X(4253)}}, {{A, B, C, X(60), X(991)}}, {{A, B, C, X(85), X(1088)}}, {{A, B, C, X(261), X(1440)}}, {{A, B, C, X(273), X(2481)}}, {{A, B, C, X(331), X(52621)}}, {{A, B, C, X(514), X(43750)}}, {{A, B, C, X(552), X(7056)}}, {{A, B, C, X(693), X(10405)}}, {{A, B, C, X(1441), X(32086)}}, {{A, B, C, X(4076), X(39457)}}, {{A, B, C, X(4334), X(7185)}}, {{A, B, C, X(4998), X(6604)}}, {{A, B, C, X(5665), X(7249)}}, {{A, B, C, X(7112), X(44190)}}, {{A, B, C, X(21453), X(32015)}}, {{A, B, C, X(24002), X(52980)}}, {{A, B, C, X(34399), X(35160)}}
X(57880) = barycentric product X(i)*X(j) for these (i, j): {264, 30682}, {279, 6063}, {331, 7056}, {479, 76}, {514, 52937}, {561, 738}, {1088, 85}, {1119, 57918}, {1407, 41283}, {1446, 57785}, {1502, 7023}, {1847, 7182}, {1928, 7366}, {3261, 4626}, {3676, 46406}, {4077, 4635}, {20567, 269}, {23062, 75}, {23586, 34387}, {24002, 4569}, {24011, 4858}, {31618, 53242}, {31625, 41292}, {36838, 693}, {40495, 4617}, {41287, 52410}, {52621, 658}, {55213, 7216}, {57787, 7177}, {57792, 7}, {57992, 7147}
X(57880) = barycentric quotient X(i)/X(j) for these (i, j): {1, 6602}, {2, 480}, {7, 220}, {11, 35508}, {56, 14827}, {57, 1253}, {75, 728}, {76, 5423}, {77, 1802}, {85, 200}, {269, 41}, {273, 7079}, {274, 56182}, {278, 7071}, {279, 55}, {305, 30681}, {331, 7046}, {347, 7368}, {348, 1260}, {349, 4082}, {354, 8551}, {479, 6}, {513, 57180}, {514, 4105}, {552, 7054}, {555, 6726}, {561, 30693}, {658, 3939}, {693, 4130}, {738, 31}, {763, 23609}, {1086, 3022}, {1088, 9}, {1106, 9447}, {1111, 3119}, {1119, 607}, {1262, 6066}, {1275, 6065}, {1358, 14936}, {1407, 2175}, {1434, 2328}, {1435, 2212}, {1439, 52370}, {1440, 7367}, {1441, 4515}, {1446, 210}, {1509, 6061}, {1847, 33}, {2170, 24012}, {2310, 52064}, {3261, 4163}, {3668, 1334}, {3669, 8641}, {3673, 28070}, {3676, 657}, {4077, 4171}, {4554, 4578}, {4569, 644}, {4572, 6558}, {4616, 5546}, {4617, 692}, {4625, 7259}, {4626, 101}, {4635, 643}, {4858, 24010}, {6046, 1500}, {6063, 346}, {6354, 7064}, {6614, 32739}, {7023, 32}, {7053, 52425}, {7056, 219}, {7143, 7109}, {7147, 872}, {7177, 212}, {7178, 4524}, {7182, 3692}, {7195, 30706}, {7197, 54416}, {7339, 23990}, {7366, 560}, {10481, 8012}, {10509, 10482}, {13149, 56183}, {14256, 7074}, {17093, 6600}, {17096, 21789}, {20567, 341}, {20618, 3690}, {20880, 45791}, {21104, 6607}, {21314, 32578}, {23062, 1}, {23100, 23615}, {23586, 59}, {23599, 6608}, {23989, 4081}, {24002, 3900}, {24011, 4564}, {24013, 2149}, {30682, 3}, {34018, 28071}, {34387, 23970}, {34521, 55920}, {36838, 100}, {39126, 4936}, {41292, 1015}, {42311, 6605}, {43042, 52614}, {43932, 3063}, {46406, 3699}, {52410, 9448}, {52621, 3239}, {52937, 190}, {53242, 1212}, {55213, 7258}, {56382, 2318}, {57479, 55111}, {57785, 2287}, {57787, 7101}, {57792, 8}, {57918, 1265}


X(57881) = ISOTOMIC CONJUGATE OF X(495)

Barycentrics    ((a^2-b^2)^2-(a^2+4*a*b+b^2)*c^2)*(a^4-4*a*b^2*c-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(57881) lies on these lines: {320, 55082}, {956, 58007}, {9708, 58029}, {16821, 17143}, {17277, 32851}, {40999, 57882}

X(57881) = isotomic conjugate of X(495)
X(57881) = trilinear pole of line {3904, 17494}
X(57881) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(16821)}}, {{A, B, C, X(7), X(24624)}}, {{A, B, C, X(69), X(16713)}}, {{A, B, C, X(75), X(95)}}, {{A, B, C, X(83), X(86)}}, {{A, B, C, X(98), X(4492)}}, {{A, B, C, X(99), X(4585)}}, {{A, B, C, X(256), X(32085)}}, {{A, B, C, X(264), X(30479)}}, {{A, B, C, X(274), X(37214)}}, {{A, B, C, X(291), X(11169)}}, {{A, B, C, X(330), X(41909)}}, {{A, B, C, X(333), X(18816)}}, {{A, B, C, X(903), X(40419)}}, {{A, B, C, X(999), X(9708)}}, {{A, B, C, X(1441), X(52442)}}, {{A, B, C, X(1494), X(6063)}}, {{A, B, C, X(3596), X(40410)}}, {{A, B, C, X(3820), X(15325)}}, {{A, B, C, X(7241), X(45857)}}, {{A, B, C, X(15742), X(52133)}}, {{A, B, C, X(20566), X(55958)}}, {{A, B, C, X(40216), X(55022)}}, {{A, B, C, X(40432), X(56328)}}
X(57881) = barycentric product X(i)*X(j) for these (i, j): {57707, 76}
X(57881) = barycentric quotient X(i)/X(j) for these (i, j): {2, 495}, {57707, 6}


X(57882) = ISOTOMIC CONJUGATE OF X(496)

Barycentrics    ((a^2-b^2)^2-(a^2-4*a*b+b^2)*c^2)*(a^4+4*a*b^2*c-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(57882) lies on these lines: {40999, 57881}

X(57882) = isotomic conjugate of X(496)
X(57882) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(20895)}}, {{A, B, C, X(75), X(95)}}, {{A, B, C, X(83), X(40093)}}, {{A, B, C, X(98), X(7241)}}, {{A, B, C, X(192), X(41909)}}, {{A, B, C, X(256), X(11169)}}, {{A, B, C, X(264), X(8817)}}, {{A, B, C, X(286), X(51567)}}, {{A, B, C, X(291), X(32085)}}, {{A, B, C, X(496), X(47742)}}, {{A, B, C, X(1268), X(40419)}}, {{A, B, C, X(1494), X(3596)}}, {{A, B, C, X(3295), X(9709)}}, {{A, B, C, X(3927), X(50044)}}, {{A, B, C, X(4492), X(45857)}}, {{A, B, C, X(5936), X(40412)}}, {{A, B, C, X(6063), X(40410)}}, {{A, B, C, X(15742), X(56179)}}, {{A, B, C, X(18816), X(40424)}}, {{A, B, C, X(20565), X(55958)}}, {{A, B, C, X(30711), X(42696)}}, {{A, B, C, X(30712), X(42697)}}, {{A, B, C, X(31625), X(40405)}}, {{A, B, C, X(40417), X(40422)}}, {{A, B, C, X(49716), X(50042)}}, {{A, B, C, X(55346), X(56287)}}
X(57882) = barycentric product X(i)*X(j) for these (i, j): {57708, 76}
X(57882) = barycentric quotient X(i)/X(j) for these (i, j): {2, 496}, {57708, 6}


X(57883) = ISOTOMIC CONJUGATE OF X(498)

Barycentrics    ((a^2-b^2)^2-2*(a^2+a*b+b^2)*c^2+c^4)*(a^4-2*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(57883) lies on these lines: {2, 44179}, {10, 57884}, {27, 19794}, {75, 7763}, {86, 499}, {673, 2337}, {1268, 19854}, {10200, 30598}, {27475, 28738}

X(57883) = isotomic conjugate of X(498)
X(57883) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 26921}, {31, 498}, {55, 1454}, {228, 14016}
X(57883) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 498}, {223, 1454}, {6505, 26921}
X(57883) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(26363)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(8), X(46750)}}, {{A, B, C, X(10), X(499)}}, {{A, B, C, X(69), X(20565)}}, {{A, B, C, X(95), X(6063)}}, {{A, B, C, X(189), X(44188)}}, {{A, B, C, X(256), X(2165)}}, {{A, B, C, X(261), X(264)}}, {{A, B, C, X(274), X(7763)}}, {{A, B, C, X(278), X(757)}}, {{A, B, C, X(309), X(30608)}}, {{A, B, C, X(326), X(52381)}}, {{A, B, C, X(333), X(20570)}}, {{A, B, C, X(393), X(751)}}, {{A, B, C, X(749), X(46952)}}, {{A, B, C, X(873), X(40440)}}, {{A, B, C, X(1125), X(19854)}}, {{A, B, C, X(1698), X(10200)}}, {{A, B, C, X(2006), X(56328)}}, {{A, B, C, X(2963), X(4492)}}, {{A, B, C, X(3086), X(19843)}}, {{A, B, C, X(3596), X(40410)}}, {{A, B, C, X(7018), X(20571)}}, {{A, B, C, X(8797), X(20566)}}, {{A, B, C, X(8817), X(36948)}}, {{A, B, C, X(19794), X(20336)}}, {{A, B, C, X(31359), X(36123)}}, {{A, B, C, X(32023), X(40412)}}, {{A, B, C, X(40430), X(40836)}}, {{A, B, C, X(43680), X(45132)}}
X(57883) = barycentric product X(i)*X(j) for these (i, j): {2337, 6063}, {56041, 75}, {57709, 76}
X(57883) = barycentric quotient X(i)/X(j) for these (i, j): {2, 498}, {27, 14016}, {57, 1454}, {63, 26921}, {2337, 55}, {56041, 1}, {57709, 6}


X(57884) = ISOTOMIC CONJUGATE OF X(499)

Barycentrics    ((a^2-b^2)^2-2*(a^2-a*b+b^2)*c^2+c^4)*(a^4+2*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(57884) lies on these lines: {2, 56352}, {7, 27529}, {10, 57883}, {27, 19795}, {75, 26364}, {86, 498}, {1088, 46749}, {5552, 7318}, {10198, 30598}

X(57884) = isotomic conjugate of X(499)
X(57884) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 24467}, {31, 499}, {56, 7082}
X(57884) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 7082}, {2, 499}, {6505, 24467}
X(57884) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(26364)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(8), X(27529)}}, {{A, B, C, X(10), X(498)}}, {{A, B, C, X(69), X(20566)}}, {{A, B, C, X(95), X(3596)}}, {{A, B, C, X(264), X(4998)}}, {{A, B, C, X(274), X(32832)}}, {{A, B, C, X(281), X(765)}}, {{A, B, C, X(291), X(2165)}}, {{A, B, C, X(318), X(5552)}}, {{A, B, C, X(326), X(52351)}}, {{A, B, C, X(334), X(20571)}}, {{A, B, C, X(393), X(749)}}, {{A, B, C, X(406), X(46937)}}, {{A, B, C, X(751), X(46952)}}, {{A, B, C, X(1698), X(10198)}}, {{A, B, C, X(2963), X(7241)}}, {{A, B, C, X(4997), X(20570)}}, {{A, B, C, X(6063), X(40410)}}, {{A, B, C, X(6557), X(46750)}}, {{A, B, C, X(7035), X(40440)}}, {{A, B, C, X(7110), X(56179)}}, {{A, B, C, X(8773), X(30701)}}, {{A, B, C, X(8797), X(8817)}}, {{A, B, C, X(17776), X(52412)}}, {{A, B, C, X(19795), X(20336)}}, {{A, B, C, X(30479), X(36948)}}, {{A, B, C, X(38255), X(40716)}}, {{A, B, C, X(44188), X(50442)}}
X(57884) = barycentric product X(i)*X(j) for these (i, j): {3596, 7130}, {52186, 76}, {56352, 75}
X(57884) = barycentric quotient X(i)/X(j) for these (i, j): {2, 499}, {9, 7082}, {63, 24467}, {5905, 10052}, {7130, 56}, {52186, 6}, {56352, 1}


X(57885) = ISOTOMIC CONJUGATE OF X(500)

Barycentrics    b^2*c^2*(a^2+a*b+b^2-c^2)*(a^2-b^2+a*c+c^2)*((a-b)^2*(a+b)-2*a*b*c-(a+b)*c^2)*(a^3-a^2*c-b^2*c+c^3-a*(b+c)^2) : :

X(57885) lies on these lines: {2, 57912}, {69, 57914}, {76, 57710}, {264, 5278}, {290, 57691}, {311, 57913}, {313, 42033}, {319, 349}, {328, 40412}, {46138, 54952}, {52344, 52575}

X(57885) = isotomic conjugate of X(500)
X(57885) = trilinear pole of line {850, 57066}
X(57885) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 500}, {32, 16585}, {35, 40956}, {48, 44095}, {184, 1844}, {445, 9247}, {1397, 31938}, {1399, 14547}, {2174, 2260}, {4303, 14975}, {17104, 40952}, {21741, 46882}, {23226, 53323}, {40214, 40978}
X(57885) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 500}, {1249, 44095}, {6376, 16585}, {56847, 40952}
X(57885) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 40422}, {48887, 2}
X(57885) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(5278)}}, {{A, B, C, X(75), X(319)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(500), X(48887)}}, {{A, B, C, X(20565), X(46138)}}, {{A, B, C, X(40010), X(55958)}}
X(57885) = barycentric product X(i)*X(j) for these (i, j): {264, 57860}, {18022, 57691}, {20565, 40435}, {30690, 40422}, {57710, 76}
X(57885) = barycentric quotient X(i)/X(j) for these (i, j): {2, 500}, {4, 44095}, {75, 16585}, {79, 2260}, {92, 1844}, {94, 45926}, {264, 445}, {312, 31938}, {943, 2174}, {2160, 40956}, {2982, 1399}, {3615, 46882}, {6757, 2294}, {7100, 14597}, {7110, 14547}, {8818, 40952}, {20565, 5249}, {30690, 942}, {40412, 40214}, {40422, 3219}, {40435, 35}, {40447, 6198}, {52344, 40937}, {52381, 4303}, {52388, 18591}, {56320, 2605}, {57691, 184}, {57710, 6}, {57860, 3}


X(57886) = ISOTOMIC CONJUGATE OF X(501)

Barycentrics    b^2*c^2*(b+c)*((a-b)*(a+b)^2+(a^2+a*b-b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2+b*c-c^2)) : :

X(57886) lies on these lines: {313, 502}, {28654, 42710}

X(57886) = isotomic conjugate of X(501)
X(57886) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 501}, {32, 40592}, {184, 2906}, {191, 2206}, {667, 57119}, {1030, 1333}, {1437, 44097}, {1576, 31947}, {2194, 8614}, {2203, 22136}, {47057, 57657}, {52434, 56405}
X(57886) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 501}, {37, 1030}, {1214, 8614}, {4858, 31947}, {6376, 40592}, {6631, 57119}, {36901, 21192}, {40603, 191}, {55065, 42653}
X(57886) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 313}, {42005, 321}
X(57886) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(20932)}}, {{A, B, C, X(86), X(1577)}}, {{A, B, C, X(313), X(20566)}}, {{A, B, C, X(349), X(32018)}}, {{A, B, C, X(850), X(20565)}}, {{A, B, C, X(1268), X(6358)}}, {{A, B, C, X(1441), X(17791)}}, {{A, B, C, X(1969), X(21595)}}, {{A, B, C, X(21081), X(42005)}}
X(57886) = barycentric product X(i)*X(j) for these (i, j): {267, 27801}, {321, 44188}, {502, 76}, {1029, 313}, {21353, 561}
X(57886) = barycentric quotient X(i)/X(j) for these (i, j): {2, 501}, {10, 1030}, {75, 40592}, {92, 2906}, {190, 57119}, {226, 8614}, {267, 1333}, {306, 22136}, {313, 2895}, {321, 191}, {349, 41808}, {502, 6}, {850, 21192}, {1029, 58}, {1089, 21873}, {1441, 47057}, {1577, 31947}, {1826, 44097}, {3444, 2206}, {4024, 42653}, {18359, 56405}, {21353, 31}, {27801, 20932}, {28654, 21081}, {39149, 7113}, {40143, 849}, {41493, 2260}, {44188, 81}, {57865, 1790}


X(57887) = ISOTOMIC CONJUGATE OF X(529)

Barycentrics    ((a^2-b^2)^2+2*a*b*(a+b)*c+(a^2-4*a*b+b^2)*c^2-2*c^4)*(a^4-2*b^4+b^2*c^2+c^4+2*a*b*c*(-2*b+c)+a^2*(b^2+2*b*c-2*c^2)) : :

X(57887) lies on the Steiner circumellipse and on these lines: {2, 6648}, {99, 38882}, {190, 3687}, {261, 31157}, {664, 4357}, {903, 10716}, {3596, 31141}, {18026, 54314}, {18821, 53380}

X(57887) = reflection of X(i) in X(j) for these {i,j}: {6648, 2}
X(57887) = isotomic conjugate of X(529)
X(57887) = trilinear pole of line {2, 3910}
X(57887) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 52970}, {31, 529}, {41, 43036}, {14412, 36147}
X(57887) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 529}, {478, 52970}, {3160, 43036}, {39015, 14412}
X(57887) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(261)}}, {{A, B, C, X(12), X(31157)}}, {{A, B, C, X(56), X(31141)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(1275), X(40845)}}, {{A, B, C, X(4998), X(55022)}}, {{A, B, C, X(5434), X(34606)}}, {{A, B, C, X(11194), X(11236)}}, {{A, B, C, X(17274), X(27064)}}, {{A, B, C, X(18811), X(36588)}}, {{A, B, C, X(20566), X(56365)}}, {{A, B, C, X(20570), X(39704)}}, {{A, B, C, X(48801), X(48832)}}
X(57887) = barycentric product X(i)*X(j) for these (i, j): {38882, 76}
X(57887) = barycentric quotient X(i)/X(j) for these (i, j): {2, 529}, {7, 43036}, {56, 52970}, {6371, 14412}, {38882, 6}


X(57888) = ISOTOMIC CONJUGATE OF X(534)

Barycentrics    (a^5-2*b^5+a^4*(2*b-c)-b^4*c+2*a^2*b*(b-2*c)*c+2*b*c^4+c^5-a*(b^2-c^2)^2)*(a^5-a^4*(b-2*c)+2*a^2*b*c*(-2*b+c)-a*(b^2-c^2)^2+(b-c)*(b+c)*(b+2*c)*(b^2+c^2)) : :

X(57888) lies on the Steiner circumellipse and on these lines: {99, 38883}, {190, 54433}, {304, 31158}, {648, 1010}, {664, 56367}, {668, 19799}, {1121, 10715}, {4569, 33935}

X(57888) = isotomic conjugate of X(534)
X(57888) = trilinear pole of line {2, 23874}
X(57888) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 52947}, {31, 534}
X(57888) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 534}, {36103, 52947}
X(57888) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(304)}}, {{A, B, C, X(19), X(31158)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(1043), X(4102)}}, {{A, B, C, X(4234), X(33736)}}, {{A, B, C, X(33805), X(52781)}}
X(57888) = barycentric product X(i)*X(j) for these (i, j): {38883, 76}
X(57888) = barycentric quotient X(i)/X(j) for these (i, j): {2, 534}, {19, 52947}, {38883, 6}


X(57889) = ISOTOMIC CONJUGATE OF X(535)

Barycentrics    ((a^2-b^2)^2+a*b*(a+b)*c+(a-b)^2*c^2-2*c^4)*(a^4-2*b^4+b^2*c^2+c^4+a*b*c*(-2*b+c)+a^2*(b-c)*(b+2*c)) : :

X(57889) lies on the Steiner circumellipse and on these lines: {99, 57711}, {190, 33077}, {664, 17271}, {4586, 17346}, {10707, 14616}, {20566, 31160}

X(57889) = isotomic conjugate of X(535)
X(57889) = trilinear pole of line {2, 23876}
X(57889) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(20566)}}, {{A, B, C, X(36), X(31160)}}, {{A, B, C, X(75), X(50105)}}, {{A, B, C, X(92), X(39704)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(320), X(18359)}}, {{A, B, C, X(333), X(17271)}}, {{A, B, C, X(519), X(1227)}}, {{A, B, C, X(2994), X(36588)}}, {{A, B, C, X(17346), X(30966)}}, {{A, B, C, X(20565), X(52442)}}, {{A, B, C, X(21739), X(36917)}}, {{A, B, C, X(48799), X(48833)}}, {{A, B, C, X(48808), X(48826)}}
X(57889) = barycentric product X(i)*X(j) for these (i, j): {57711, 76}
X(57889) = barycentric quotient X(i)/X(j) for these (i, j): {2, 535}, {57711, 6}


X(57890) = ISOTOMIC CONJUGATE OF X(539)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^4-2*(a^2-b^2)^2*(a^2+b^2)*c^2+3*(a^4+b^4)*c^4-4*(a^2+b^2)*c^6+2*c^8)*(a^8-2*a^6*(b^2+2*c^2)+(b^2-c^2)^2*(2*b^4+c^4)+a^4*(3*b^4+2*b^2*c^2+6*c^4)+a^2*(-4*b^6+2*b^2*c^4-4*c^6)) : :

X(57890) lies on the Steiner circumellipse and on these lines: {99, 2383}, {264, 46139}, {311, 46134}, {317, 18831}, {340, 14106}, {467, 648}, {472, 32036}, {473, 32037}, {55031, 55552}

X(57890) = isotomic conjugate of X(539)
X(57890) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 539}, {48, 231}, {163, 52742}, {922, 52760}, {1953, 52968}
X(57890) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 539}, {115, 52742}, {1249, 231}, {14920, 128}, {39061, 52760}
X(57890) = X(i)-cross conjugate of X(j) for these {i, j}: {539, 2}, {1273, 264}, {16336, 324}, {43088, 687}, {57647, 57798}
X(57890) = pole of line {539, 45083} with respect to the Wallace hyperbola
X(57890) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(311)}}, {{A, B, C, X(4), X(7576)}}, {{A, B, C, X(69), X(41628)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(264), X(472)}}, {{A, B, C, X(340), X(9381)}}, {{A, B, C, X(9141), X(44138)}}, {{A, B, C, X(14106), X(37943)}}, {{A, B, C, X(18020), X(18817)}}, {{A, B, C, X(18855), X(36809)}}
X(57890) = barycentric product X(i)*X(j) for these (i, j): {4, 57798}, {264, 57647}, {2383, 76}, {14918, 57758}
X(57890) = barycentric quotient X(i)/X(j) for these (i, j): {2, 539}, {4, 231}, {54, 52968}, {68, 52975}, {275, 40631}, {523, 52742}, {671, 52760}, {1154, 47423}, {1994, 45083}, {2383, 6}, {14590, 43969}, {14918, 128}, {15401, 11077}, {57647, 3}, {57798, 69}


X(57891) = ISOTOMIC CONJUGATE OF X(540)

Barycentrics    (a^4+a^2*b*c+a^3*(b+c)+a*(b+c)*(b^2-2*c^2)+(b+c)*(b^3-2*c^3))*(a^4+a^2*b*c+a^3*(b+c)-a*(b+c)*(2*b^2-c^2)-(b+c)*(2*b^3-c^3)) : :

X(57891) lies on the Steiner circumellipse and on these lines: {99, 5224}, {190, 41816}, {313, 57977}, {469, 648}, {668, 42714}, {903, 9140}, {3227, 31175}

X(57891) = isotomic conjugate of X(540)
X(57891) = trilinear pole of line {2, 23879}
X(57891) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(313)}}, {{A, B, C, X(67), X(11599)}}, {{A, B, C, X(86), X(41816)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(265), X(40715)}}, {{A, B, C, X(5739), X(17378)}}, {{A, B, C, X(15232), X(34265)}}, {{A, B, C, X(18812), X(55955)}}, {{A, B, C, X(26751), X(39704)}}, {{A, B, C, X(48834), X(48870)}}, {{A, B, C, X(48839), X(48868)}}, {{A, B, C, X(49723), X(49744)}}, {{A, B, C, X(49729), X(50226)}}, {{A, B, C, X(50215), X(50234)}}
X(57891) = barycentric product X(i)*X(j) for these (i, j): {57712, 76}
X(57891) = barycentric quotient X(i)/X(j) for these (i, j): {2, 540}, {57712, 6}


X(57892) = ISOTOMIC CONJUGATE OF X(541)

Barycentrics    ((a^2-b^2)^4*(a^2+b^2)+(a^2-b^2)^2*(3*a^4+14*a^2*b^2+3*b^4)*c^2-(a^2+b^2)*(13*a^4-24*a^2*b^2+13*b^4)*c^4+(11*a^4-16*a^2*b^2+11*b^4)*c^6-2*c^10)*(a^10+3*a^8*(b-c)*(b+c)-(b^2-c^2)^3*(2*b^4+6*b^2*c^2+c^4)+a^6*(-13*b^4+8*b^2*c^2+2*c^4)+a^4*(11*b^6+11*b^4*c^2-22*b^2*c^4+2*c^6)+a^2*(-16*b^6*c^2+11*b^4*c^4+8*b^2*c^6-3*c^8)) : :

X(57892) lies on the Steiner circumellipse and on these lines: {99, 841}, {648, 40112}, {1494, 30474}, {3260, 10706}, {16077, 44134}, {35139, 44133}

X(57892) = isotomic conjugate of X(541)
X(57892) = trilinear pole of line {2, 46229}
X(57892) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 541}, {2173, 52976}
X(57892) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 541}, {36896, 52976}
X(57892) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3260)}}, {{A, B, C, X(69), X(9141)}}, {{A, B, C, X(74), X(10706)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(340), X(44133)}}, {{A, B, C, X(850), X(36889)}}, {{A, B, C, X(2052), X(40705)}}, {{A, B, C, X(2697), X(9214)}}
X(57892) = barycentric product X(i)*X(j) for these (i, j): {76, 841}
X(57892) = barycentric quotient X(i)/X(j) for these (i, j): {2, 541}, {74, 52976}, {841, 6}


X(57893) = ISOTOMIC CONJUGATE OF X(544)

Barycentrics    (a^4+a^2*b*c-a^3*(b+c)+a*(b-c)*(2*b^2+c^2)-(b-c)*(2*b^3+c^3))*(a^4+a^2*b*c-a^3*(b+c)-a*(b-c)*(b^2+2*c^2)+(b-c)*(b^3+2*c^3)) : :

X(57893) lies on the Steiner circumellipse and on these lines: {99, 38884}, {190, 3006}, {664, 17297}, {666, 17346}, {2481, 50450}, {3261, 10708}, {4555, 50024}, {35157, 49722}

X(57893) = isotomic conjugate of X(544)
X(57893) = trilinear pole of line {2, 23887}
X(57893) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 544}, {513, 52986}
X(57893) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 544}, {39026, 52986}
X(57893) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3006)}}, {{A, B, C, X(92), X(5057)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(101), X(10708)}}, {{A, B, C, X(333), X(17297)}}, {{A, B, C, X(519), X(50024)}}, {{A, B, C, X(527), X(48070)}}, {{A, B, C, X(6601), X(17233)}}, {{A, B, C, X(17346), X(30941)}}, {{A, B, C, X(35517), X(36889)}}
X(57893) = barycentric product X(i)*X(j) for these (i, j): {38884, 76}
X(57893) = barycentric quotient X(i)/X(j) for these (i, j): {2, 544}, {101, 52986}, {38884, 6}


X(57894) = ISOTOMIC CONJUGATE OF X(546)

Barycentrics    (3*(a^2-b^2)^2-(a^2+b^2)*c^2-2*c^4)*(3*a^4-2*b^4-b^2*c^2+3*c^4-a^2*(b^2+6*c^2)) : :

X(57894) lies on these lines: {3, 57823}, {69, 10299}, {95, 14869}, {253, 46724}, {264, 382}, {287, 3631}, {328, 1232}, {340, 35018}, {550, 57897}, {1494, 34200}, {3544, 8797}, {15707, 57822}, {38071, 54105}, {40341, 42313}

X(57894) = isogonal conjugate of X(44106)
X(57894) = isotomic conjugate of X(546)
X(57894) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44106}, {31, 546}
X(57894) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 546}, {3, 44106}
X(57894) = pole of line {546, 44106} with respect to the Wallace hyperbola
X(57894) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(382)}}, {{A, B, C, X(4), X(10299)}}, {{A, B, C, X(5), X(14869)}}, {{A, B, C, X(6), X(17508)}}, {{A, B, C, X(30), X(34200)}}, {{A, B, C, X(66), X(11169)}}, {{A, B, C, X(67), X(45108)}}, {{A, B, C, X(98), X(13622)}}, {{A, B, C, X(140), X(35018)}}, {{A, B, C, X(183), X(40341)}}, {{A, B, C, X(250), X(41435)}}, {{A, B, C, X(290), X(43459)}}, {{A, B, C, X(325), X(3631)}}, {{A, B, C, X(340), X(1232)}}, {{A, B, C, X(381), X(15707)}}, {{A, B, C, X(546), X(3530)}}, {{A, B, C, X(549), X(38071)}}, {{A, B, C, X(550), X(26861)}}, {{A, B, C, X(631), X(3544)}}, {{A, B, C, X(1105), X(42021)}}, {{A, B, C, X(1179), X(18368)}}, {{A, B, C, X(2980), X(48911)}}, {{A, B, C, X(2992), X(43547)}}, {{A, B, C, X(2993), X(43546)}}, {{A, B, C, X(3519), X(14860)}}, {{A, B, C, X(3528), X(3529)}}, {{A, B, C, X(3629), X(37671)}}, {{A, B, C, X(3851), X(15720)}}, {{A, B, C, X(5486), X(32085)}}, {{A, B, C, X(6344), X(13418)}}, {{A, B, C, X(7612), X(14842)}}, {{A, B, C, X(10300), X(37897)}}, {{A, B, C, X(11008), X(15589)}}, {{A, B, C, X(13481), X(53104)}}, {{A, B, C, X(14269), X(15700)}}, {{A, B, C, X(14863), X(14938)}}, {{A, B, C, X(15321), X(54717)}}, {{A, B, C, X(15681), X(15688)}}, {{A, B, C, X(15687), X(17504)}}, {{A, B, C, X(16774), X(52519)}}, {{A, B, C, X(17040), X(54845)}}, {{A, B, C, X(17563), X(50241)}}, {{A, B, C, X(17983), X(45838)}}, {{A, B, C, X(18852), X(52441)}}, {{A, B, C, X(19535), X(50239)}}, {{A, B, C, X(32001), X(44149)}}, {{A, B, C, X(33226), X(33239)}}, {{A, B, C, X(33234), X(33235)}}, {{A, B, C, X(33243), X(33252)}}, {{A, B, C, X(33253), X(33254)}}, {{A, B, C, X(33256), X(33276)}}, {{A, B, C, X(33257), X(33275)}}, {{A, B, C, X(34233), X(34817)}}, {{A, B, C, X(34483), X(40448)}}, {{A, B, C, X(39710), X(40417)}}, {{A, B, C, X(40111), X(44324)}}, {{A, B, C, X(43458), X(53108)}}, {{A, B, C, X(45090), X(54920)}}, {{A, B, C, X(45138), X(45972)}}, {{A, B, C, X(53105), X(54124)}}, {{A, B, C, X(54934), X(57408)}}
X(57894) = barycentric product X(i)*X(j) for these (i, j): {57713, 76}
X(57894) = barycentric quotient X(i)/X(j) for these (i, j): {2, 546}, {6, 44106}, {57713, 6}


X(57895) = ISOTOMIC CONJUGATE OF X(547)

Barycentrics    (5*(a^2-b^2)^2-7*(a^2+b^2)*c^2+2*c^4)*(5*a^4+2*b^4-7*b^2*c^2+5*c^4-a^2*(7*b^2+10*c^2)) : :

X(57895) lies on these lines: {30, 40410}, {69, 10168}, {95, 11539}, {140, 1494}, {264, 5054}, {287, 20582}, {340, 11540}, {549, 55958}, {3524, 8797}, {14890, 57896}, {15694, 57822}, {15699, 54105}, {15702, 36889}, {15708, 46724}, {42313, 47352}

X(57895) = isogonal conjugate of X(44107)
X(57895) = isotomic conjugate of X(547)
X(57895) = trilinear pole of line {44651, 525}
X(57895) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44107}, {31, 547}
X(57895) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 547}, {3, 44107}
X(57895) = pole of line {547, 44107} with respect to the Wallace hyperbola
X(57895) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5054)}}, {{A, B, C, X(4), X(15709)}}, {{A, B, C, X(5), X(11539)}}, {{A, B, C, X(6), X(54644)}}, {{A, B, C, X(30), X(140)}}, {{A, B, C, X(66), X(54645)}}, {{A, B, C, X(67), X(53108)}}, {{A, B, C, X(98), X(10168)}}, {{A, B, C, X(183), X(47352)}}, {{A, B, C, X(325), X(20582)}}, {{A, B, C, X(376), X(15702)}}, {{A, B, C, X(381), X(15694)}}, {{A, B, C, X(523), X(10185)}}, {{A, B, C, X(547), X(10124)}}, {{A, B, C, X(548), X(14890)}}, {{A, B, C, X(549), X(18317)}}, {{A, B, C, X(631), X(3524)}}, {{A, B, C, X(632), X(15699)}}, {{A, B, C, X(1105), X(46412)}}, {{A, B, C, X(1989), X(45857)}}, {{A, B, C, X(3519), X(31846)}}, {{A, B, C, X(3523), X(15708)}}, {{A, B, C, X(3525), X(3545)}}, {{A, B, C, X(3526), X(5055)}}, {{A, B, C, X(3628), X(47598)}}, {{A, B, C, X(3839), X(15749)}}, {{A, B, C, X(4846), X(46921)}}, {{A, B, C, X(5066), X(11540)}}, {{A, B, C, X(5486), X(11668)}}, {{A, B, C, X(5641), X(10159)}}, {{A, B, C, X(6094), X(8584)}}, {{A, B, C, X(7499), X(43957)}}, {{A, B, C, X(7607), X(11169)}}, {{A, B, C, X(7608), X(30542)}}, {{A, B, C, X(7612), X(52188)}}, {{A, B, C, X(8703), X(15713)}}, {{A, B, C, X(10302), X(35142)}}, {{A, B, C, X(10303), X(10304)}}, {{A, B, C, X(11285), X(33220)}}, {{A, B, C, X(11812), X(12100)}}, {{A, B, C, X(12108), X(41983)}}, {{A, B, C, X(12812), X(45758)}}, {{A, B, C, X(14492), X(45838)}}, {{A, B, C, X(14860), X(22268)}}, {{A, B, C, X(14869), X(17504)}}, {{A, B, C, X(14892), X(45760)}}, {{A, B, C, X(15321), X(54734)}}, {{A, B, C, X(15671), X(17531)}}, {{A, B, C, X(15692), X(15721)}}, {{A, B, C, X(15693), X(15701)}}, {{A, B, C, X(15703), X(15723)}}, {{A, B, C, X(15707), X(15720)}}, {{A, B, C, X(16239), X(47599)}}, {{A, B, C, X(16862), X(50714)}}, {{A, B, C, X(17561), X(17567)}}, {{A, B, C, X(17983), X(51140)}}, {{A, B, C, X(31617), X(31621)}}, {{A, B, C, X(33000), X(33251)}}, {{A, B, C, X(33001), X(33255)}}, {{A, B, C, X(33187), X(33188)}}, {{A, B, C, X(33204), X(33278)}}, {{A, B, C, X(33219), X(33233)}}, {{A, B, C, X(34285), X(54523)}}, {{A, B, C, X(37671), X(51126)}}, {{A, B, C, X(40916), X(47596)}}, {{A, B, C, X(41984), X(48154)}}, {{A, B, C, X(43726), X(54851)}}, {{A, B, C, X(44556), X(53859)}}, {{A, B, C, X(45108), X(54477)}}, {{A, B, C, X(46136), X(55955)}}
X(57895) = barycentric product X(i)*X(j) for these (i, j): {57714, 76}
X(57895) = barycentric quotient X(i)/X(j) for these (i, j): {2, 547}, {6, 44107}, {57714, 6}


X(57896) = ISOTOMIC CONJUGATE OF X(548)

Barycentrics    ((a^2-b^2)^2+5*(a^2+b^2)*c^2-6*c^4)*(a^4-6*b^4+5*b^2*c^2+c^4+a^2*(5*b^2-2*c^2)) : :

X(57896) lies on these lines: {69, 29317}, {95, 15712}, {264, 5072}, {287, 32455}, {1494, 14893}, {14890, 57895}, {15689, 20477}, {41005, 55958}, {54105, 57897}

X(57896) = isogonal conjugate of X(44108)
X(57896) = isotomic conjugate of X(548)
X(57896) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44108}, {31, 548}
X(57896) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 548}, {3, 44108}
X(57896) = pole of line {548, 44108} with respect to the Wallace hyperbola
X(57896) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5072)}}, {{A, B, C, X(4), X(33703)}}, {{A, B, C, X(5), X(14863)}}, {{A, B, C, X(30), X(14893)}}, {{A, B, C, X(93), X(45138)}}, {{A, B, C, X(325), X(32455)}}, {{A, B, C, X(381), X(15689)}}, {{A, B, C, X(523), X(29317)}}, {{A, B, C, X(547), X(14890)}}, {{A, B, C, X(548), X(14861)}}, {{A, B, C, X(1105), X(32533)}}, {{A, B, C, X(1294), X(3521)}}, {{A, B, C, X(1657), X(3843)}}, {{A, B, C, X(2980), X(13481)}}, {{A, B, C, X(3630), X(37647)}}, {{A, B, C, X(5066), X(46332)}}, {{A, B, C, X(8703), X(41990)}}, {{A, B, C, X(9307), X(38005)}}, {{A, B, C, X(12108), X(12812)}}, {{A, B, C, X(14044), X(19696)}}, {{A, B, C, X(14387), X(35142)}}, {{A, B, C, X(14843), X(18853)}}, {{A, B, C, X(14891), X(14892)}}, {{A, B, C, X(15321), X(54852)}}, {{A, B, C, X(15684), X(38335)}}, {{A, B, C, X(15686), X(23046)}}, {{A, B, C, X(18854), X(52441)}}, {{A, B, C, X(43458), X(45857)}}
X(57896) = barycentric product X(i)*X(j) for these (i, j): {57715, 76}
X(57896) = barycentric quotient X(i)/X(j) for these (i, j): {2, 548}, {6, 44108}, {57715, 6}


X(57897) = ISOTOMIC CONJUGATE OF X(550)

Barycentrics    ((a^2-b^2)^2+3*(a^2+b^2)*c^2-4*c^4)*(a^4-4*b^4+3*b^2*c^2+c^4+a^2*(3*b^2-2*c^2)) : :

X(57897) lies on these lines: {2, 36431}, {69, 3529}, {95, 3530}, {264, 3851}, {287, 3629}, {307, 5564}, {317, 35510}, {382, 57823}, {550, 57894}, {1494, 15687}, {15688, 46724}, {16275, 57852}, {32000, 36948}, {34767, 41298}, {40410, 41005}, {45198, 47478}, {54105, 57896}

X(57897) = isogonal conjugate of X(44110)
X(57897) = isotomic conjugate of X(550)
X(57897) = trilinear pole of line {31072, 525}
X(57897) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44110}, {31, 550}
X(57897) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 550}, {3, 44110}
X(57897) = X(i)-cross conjugate of X(j) for these {i, j}: {546, 2}, {3521, 42410}
X(57897) = pole of line {550, 44110} with respect to the Wallace hyperbola
X(57897) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(3851)}}, {{A, B, C, X(4), X(3529)}}, {{A, B, C, X(5), X(3530)}}, {{A, B, C, X(6), X(52987)}}, {{A, B, C, X(30), X(15687)}}, {{A, B, C, X(66), X(17983)}}, {{A, B, C, X(75), X(5564)}}, {{A, B, C, X(93), X(5900)}}, {{A, B, C, X(98), X(13481)}}, {{A, B, C, X(265), X(1105)}}, {{A, B, C, X(309), X(39707)}}, {{A, B, C, X(325), X(3629)}}, {{A, B, C, X(381), X(15688)}}, {{A, B, C, X(382), X(36431)}}, {{A, B, C, X(393), X(54845)}}, {{A, B, C, X(523), X(15321)}}, {{A, B, C, X(546), X(550)}}, {{A, B, C, X(549), X(47478)}}, {{A, B, C, X(1294), X(18550)}}, {{A, B, C, X(2980), X(11058)}}, {{A, B, C, X(3260), X(32002)}}, {{A, B, C, X(3528), X(3855)}}, {{A, B, C, X(3544), X(10299)}}, {{A, B, C, X(3545), X(15715)}}, {{A, B, C, X(3613), X(11169)}}, {{A, B, C, X(3631), X(37688)}}, {{A, B, C, X(4846), X(14860)}}, {{A, B, C, X(5079), X(15720)}}, {{A, B, C, X(5641), X(33698)}}, {{A, B, C, X(6664), X(36882)}}, {{A, B, C, X(7608), X(13622)}}, {{A, B, C, X(7802), X(14387)}}, {{A, B, C, X(8801), X(52519)}}, {{A, B, C, X(9139), X(57388)}}, {{A, B, C, X(9307), X(14488)}}, {{A, B, C, X(10301), X(46517)}}, {{A, B, C, X(11737), X(17504)}}, {{A, B, C, X(14042), X(33256)}}, {{A, B, C, X(14062), X(33257)}}, {{A, B, C, X(14269), X(15681)}}, {{A, B, C, X(14842), X(16774)}}, {{A, B, C, X(14869), X(35018)}}, {{A, B, C, X(14938), X(46168)}}, {{A, B, C, X(18023), X(40405)}}, {{A, B, C, X(18361), X(45090)}}, {{A, B, C, X(18575), X(45857)}}, {{A, B, C, X(18816), X(39710)}}, {{A, B, C, X(18848), X(43699)}}, {{A, B, C, X(18855), X(52441)}}, {{A, B, C, X(19687), X(33229)}}, {{A, B, C, X(33241), X(33242)}}, {{A, B, C, X(33279), X(33280)}}, {{A, B, C, X(34200), X(38071)}}, {{A, B, C, X(35142), X(53105)}}, {{A, B, C, X(35520), X(46751)}}, {{A, B, C, X(38263), X(56307)}}, {{A, B, C, X(41897), X(43547)}}, {{A, B, C, X(41898), X(43546)}}, {{A, B, C, X(43570), X(55021)}}, {{A, B, C, X(43571), X(55020)}}, {{A, B, C, X(48879), X(54717)}}, {{A, B, C, X(49135), X(50688)}}, {{A, B, C, X(53102), X(54124)}}
X(57897) = barycentric product X(i)*X(j) for these (i, j): {16835, 76}
X(57897) = barycentric quotient X(i)/X(j) for these (i, j): {2, 550}, {6, 44110}, {16835, 6}


X(57898) = ISOTOMIC CONJUGATE OF X(563)

Barycentrics    b^5*c^5*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-2*a^2*b^2+(b^2-c^2)^2) : :

X(57898) lies on these lines: {304, 55215}, {1969, 57716}, {20571, 57806}, {52575, 57904}

X(57898) = isotomic conjugate of X(563)
X(57898) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 52436}, {6, 52435}, {24, 14585}, {31, 563}, {32, 1147}, {47, 9247}, {184, 571}, {577, 44077}, {1501, 9723}, {1576, 30451}, {1993, 14575}, {5961, 19627}, {7763, 40373}, {8745, 23606}, {9418, 51776}, {14573, 52032}, {14574, 52584}, {32661, 34952}
X(57898) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 563}, {9, 52435}, {4858, 30451}, {6376, 1147}, {34853, 9247}, {36103, 52436}
X(57898) = X(i)-cross conjugate of X(j) for these {i, j}: {20948, 55215}
X(57898) = intersection, other than A, B, C, of circumconics {{A, B, C, X(304), X(20948)}}, {{A, B, C, X(1969), X(52575)}}
X(57898) = barycentric product X(i)*X(j) for these (i, j): {561, 847}, {1969, 5392}, {14593, 1928}, {14618, 55215}, {18022, 91}, {20563, 57806}, {20571, 264}, {20948, 30450}, {55553, 75}, {57716, 76}, {57904, 92}
X(57898) = barycentric quotient X(i)/X(j) for these (i, j): {1, 52435}, {2, 563}, {19, 52436}, {68, 52430}, {75, 1147}, {91, 184}, {92, 571}, {158, 44077}, {264, 47}, {324, 2180}, {561, 9723}, {847, 31}, {1577, 30451}, {1820, 14585}, {1969, 1993}, {2165, 9247}, {5392, 48}, {6521, 8745}, {14593, 560}, {14618, 55216}, {18022, 44179}, {18027, 1748}, {20563, 255}, {20571, 3}, {20948, 52584}, {24006, 34952}, {30450, 163}, {34385, 2169}, {44129, 18605}, {46107, 34948}, {46134, 4575}, {46273, 51776}, {52350, 4100}, {52504, 2315}, {55215, 4558}, {55250, 3049}, {55553, 1}, {57716, 6}, {57806, 24}, {57904, 63}, {57973, 41679}


X(57899) = ISOTOMIC CONJUGATE OF X(566)

Barycentrics    b^2*c^2*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4-b^2*c^2-c^4))*(a^6-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2-a^2*(b^4+b^2*c^2-c^4)) : :

X(57899) lies on these lines: {2, 20573}, {15, 301}, {16, 300}, {69, 57900}, {76, 323}, {186, 264}, {290, 14355}, {311, 57901}, {316, 327}, {1502, 7799}, {3431, 44135}, {7769, 37802}, {9213, 52632}, {14165, 18027}, {27801, 42701}

X(57899) = isotomic conjugate of X(566)
X(57899) = trilinear pole of line {850, 45285}
X(57899) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 566}, {163, 18117}, {798, 36829}, {1973, 23039}, {7577, 9247}, {9417, 52190}
X(57899) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 566}, {115, 18117}, {6337, 23039}, {31998, 36829}, {39058, 52190}
X(57899) = pole of line {566, 23039} with respect to the Wallace hyperbola
X(57899) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(15)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(83), X(1300)}}, {{A, B, C, X(262), X(18372)}}, {{A, B, C, X(316), X(44144)}}, {{A, B, C, X(598), X(16081)}}, {{A, B, C, X(671), X(42354)}}, {{A, B, C, X(755), X(2165)}}, {{A, B, C, X(1989), X(41443)}}, {{A, B, C, X(7763), X(7769)}}, {{A, B, C, X(18401), X(54114)}}
X(57899) = barycentric product X(i)*X(j) for these (i, j): {7578, 76}
X(57899) = barycentric quotient X(i)/X(j) for these (i, j): {2, 566}, {69, 23039}, {94, 56408}, {99, 36829}, {264, 7577}, {290, 52190}, {523, 18117}, {3260, 51391}, {7578, 6}, {8795, 19177}


X(57900) = ISOTOMIC CONJUGATE OF X(567)

Barycentrics    b^2*c^2*(c^2*(b^2-c^2)^3+a^6*(2*b^2+c^2)+a^2*(b-c)*(b+c)*(2*b^4-3*c^4)-a^4*(4*b^4+2*b^2*c^2+3*c^4))*(-(b^2*(b^2-c^2)^3)+a^6*(b^2+2*c^2)+a^2*(b-c)*(b+c)*(3*b^4-2*c^4)-a^4*(3*b^4+2*b^2*c^2+4*c^4)) : :

X(57900) lies on these lines: {2, 57901}, {69, 57899}, {76, 1273}, {264, 14918}, {276, 340}, {300, 33530}, {301, 33529}, {311, 20573}, {34385, 37802}

X(57900) = isotomic conjugate of X(567)
X(57900) = trilinear pole of line {850, 41078}
X(57900) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(18817)}}, {{A, B, C, X(4), X(14789)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(95), X(311)}}, {{A, B, C, X(2963), X(10412)}}, {{A, B, C, X(2986), X(40410)}}, {{A, B, C, X(8795), X(9381)}}, {{A, B, C, X(11140), X(46138)}}, {{A, B, C, X(22268), X(25043)}}
X(57900) = barycentric product X(i)*X(j) for these (i, j): {76, 9221}
X(57900) = barycentric quotient X(i)/X(j) for these (i, j): {2, 567}, {94, 56407}, {9221, 6}


X(57901) = ISOTOMIC CONJUGATE OF X(568)

Barycentrics    b^2*c^2*(a^8+c^2*(-b^2+c^2)^3-a^6*(3*b^2+2*c^2)-a^2*(b-c)*(b+c)*(b^4-2*c^4)+a^4*(3*b^4+2*b^2*c^2+2*c^4))*(a^8+b^2*(b^2-c^2)^3-a^6*(2*b^2+3*c^2)-a^2*(b-c)*(b+c)*(2*b^4-c^4)+a^4*(2*b^4+2*b^2*c^2+3*c^4)) : :

X(57901) lies on these lines: {2, 57900}, {69, 20573}, {76, 7550}, {264, 323}, {300, 44719}, {301, 44718}, {311, 57899}, {340, 18027}, {23039, 46138}

X(57901) = isotomic conjugate of X(568)
X(57901) = trilinear pole of line {850, 8552}
X(57901) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(46138)}}, {{A, B, C, X(4), X(7550)}}, {{A, B, C, X(69), X(323)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(95), X(2986)}}, {{A, B, C, X(328), X(11140)}}, {{A, B, C, X(568), X(15067)}}, {{A, B, C, X(1154), X(23039)}}, {{A, B, C, X(5392), X(18817)}}, {{A, B, C, X(8795), X(43530)}}, {{A, B, C, X(20563), X(20572)}}, {{A, B, C, X(44176), X(55958)}}
X(57901) = barycentric product X(i)*X(j) for these (i, j): {54969, 76}
X(57901) = barycentric quotient X(i)/X(j) for these (i, j): {2, 568}, {54969, 6}


X(57902) = ISOTOMIC CONJUGATE OF X(569)

Barycentrics    b^2*c^2*(c^2*(b^2-c^2)^3+a^2*(b-c)*(b+c)*(2*b^2-3*c^2)*(b^2+c^2)+a^6*(2*b^2+c^2)-a^4*(4*b^4+3*b^2*c^2+3*c^4))*(-(b^2*(b^2-c^2)^3)+a^2*(b-c)*(b+c)*(3*b^2-2*c^2)*(b^2+c^2)+a^6*(b^2+2*c^2)-a^4*(3*b^4+3*b^2*c^2+4*c^4)) : :

X(57902) lies on these lines: {2, 34385}, {69, 57903}, {76, 1238}, {264, 467}, {276, 317}, {311, 57904}, {1209, 55553}

X(57902) = isotomic conjugate of X(569)
X(57902) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 569}, {9247, 52253}
X(57902) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(311)}}, {{A, B, C, X(4), X(14788)}}, {{A, B, C, X(68), X(41168)}}, {{A, B, C, X(69), X(1238)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(95), X(18022)}}, {{A, B, C, X(275), X(40410)}}, {{A, B, C, X(850), X(36948)}}, {{A, B, C, X(1147), X(1209)}}, {{A, B, C, X(6504), X(8797)}}, {{A, B, C, X(20564), X(34384)}}, {{A, B, C, X(36952), X(52347)}}
X(57902) = barycentric product X(i)*X(j) for these (i, j): {57718, 76}
X(57902) = barycentric quotient X(i)/X(j) for these (i, j): {2, 569}, {264, 52253}, {57718, 6}


X(57903) = ISOTOMIC CONJUGATE OF X(570)

Barycentrics    b^2*c^2*((a^2-b^2)^2*(a^2+b^2)-2*(a^4+a^2*b^2+b^4)*c^2+(a^2+b^2)*c^4)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4-2*b^2*c^2-c^4)) : :

X(57903) lies on these lines: {2, 57904}, {24, 264}, {54, 311}, {69, 57902}, {76, 1993}, {99, 51255}, {290, 40441}, {315, 327}, {371, 34392}, {372, 34391}, {1209, 46134}, {1502, 7763}, {11547, 18027}, {18883, 20573}, {26166, 40832}, {27801, 42700}

X(57903) = isotomic conjugate of X(570)
X(57903) = trilinear pole of line {850, 46401}
X(57903) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 23195}, {31, 570}, {48, 47328}, {560, 37636}, {798, 50947}, {1216, 1973}, {1594, 9247}, {1918, 16698}, {2179, 51255}
X(57903) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 570}, {6, 23195}, {1249, 47328}, {6337, 1216}, {6374, 37636}, {31998, 50947}, {34021, 16698}, {52032, 42445}
X(57903) = X(i)-cross conjugate of X(j) for these {i, j}: {15412, 99}, {15415, 6331}, {41298, 670}
X(57903) = pole of line {570, 1216} with respect to the Wallace hyperbola
X(57903) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(24)}}, {{A, B, C, X(4), X(41231)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(83), X(8884)}}, {{A, B, C, X(315), X(44144)}}, {{A, B, C, X(328), X(28706)}}, {{A, B, C, X(1078), X(1799)}}, {{A, B, C, X(1179), X(40393)}}, {{A, B, C, X(1239), X(40824)}}, {{A, B, C, X(1989), X(14370)}}, {{A, B, C, X(2165), X(2353)}}, {{A, B, C, X(3926), X(32832)}}, {{A, B, C, X(4590), X(31617)}}, {{A, B, C, X(6464), X(9462)}}, {{A, B, C, X(7769), X(42332)}}, {{A, B, C, X(15412), X(51255)}}, {{A, B, C, X(18024), X(41488)}}, {{A, B, C, X(30541), X(54114)}}, {{A, B, C, X(32828), X(32833)}}, {{A, B, C, X(34816), X(41768)}}
X(57903) = barycentric product X(i)*X(j) for these (i, j): {1179, 305}, {2216, 561}, {18022, 40441}, {34384, 40449}, {40393, 76}, {50946, 670}
X(57903) = barycentric quotient X(i)/X(j) for these (i, j): {2, 570}, {3, 23195}, {4, 47328}, {69, 1216}, {76, 37636}, {95, 51255}, {99, 50947}, {264, 1594}, {274, 16698}, {305, 1238}, {311, 1209}, {343, 42445}, {1166, 54034}, {1179, 25}, {2216, 31}, {3260, 51392}, {6331, 41677}, {32002, 6152}, {40393, 6}, {40441, 184}, {40449, 51}, {46104, 10550}, {50946, 512}


X(57904) = ISOTOMIC CONJUGATE OF X(571)

Barycentrics    b^4*c^4*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-2*a^2*b^2+(b^2-c^2)^2) : :

X(57904) lies on these lines: {2, 57903}, {68, 290}, {69, 34385}, {70, 44128}, {76, 5392}, {96, 1078}, {264, 847}, {276, 7763}, {308, 2165}, {311, 57902}, {313, 20571}, {327, 56272}, {639, 34391}, {640, 34392}, {925, 2367}, {1799, 57644}, {3926, 23962}, {7769, 37802}, {16837, 57805}, {32833, 40830}, {44137, 55549}, {52575, 57898}

X(57904) = isogonal conjugate of X(52436)
X(57904) = isotomic conjugate of X(571)
X(57904) = trilinear pole of line {850, 15415}
X(57904) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52436}, {19, 52435}, {24, 9247}, {25, 563}, {31, 571}, {32, 47}, {48, 44077}, {163, 34952}, {560, 1993}, {1147, 1973}, {1501, 44179}, {1576, 55216}, {1748, 14575}, {1917, 7763}, {1918, 18605}, {2180, 54034}, {8745, 52430}, {9426, 55249}, {23995, 47421}, {30451, 32676}, {32739, 34948}
X(57904) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 571}, {3, 52436}, {6, 52435}, {115, 34952}, {338, 52317}, {1249, 44077}, {2501, 6754}, {4858, 55216}, {6337, 1147}, {6374, 1993}, {6376, 47}, {6505, 563}, {15526, 30451}, {18314, 47421}, {34021, 18605}, {34853, 32}, {36901, 924}, {37864, 1501}, {40619, 34948}, {52584, 39013}
X(57904) = X(i)-cross conjugate of X(j) for these {i, j}: {69, 18022}, {5392, 55553}, {28706, 76}, {41009, 40421}
X(57904) = pole of line {52435, 52436} with respect to the Stammler hyperbola
X(57904) = pole of line {571, 1147} with respect to the Wallace hyperbola
X(57904) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(70)}}, {{A, B, C, X(4), X(41237)}}, {{A, B, C, X(69), X(7763)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(93), X(42354)}}, {{A, B, C, X(254), X(2996)}}, {{A, B, C, X(315), X(20022)}}, {{A, B, C, X(324), X(18854)}}, {{A, B, C, X(671), X(8884)}}, {{A, B, C, X(847), X(5392)}}, {{A, B, C, X(1799), X(7752)}}, {{A, B, C, X(1916), X(3425)}}, {{A, B, C, X(1972), X(56004)}}, {{A, B, C, X(2799), X(34157)}}, {{A, B, C, X(3267), X(3926)}}, {{A, B, C, X(5490), X(13428)}}, {{A, B, C, X(5491), X(13439)}}, {{A, B, C, X(6464), X(41768)}}, {{A, B, C, X(6504), X(11547)}}, {{A, B, C, X(8024), X(32832)}}, {{A, B, C, X(9290), X(30541)}}, {{A, B, C, X(13575), X(40824)}}, {{A, B, C, X(18022), X(44185)}}, {{A, B, C, X(18024), X(40421)}}, {{A, B, C, X(40050), X(44173)}}, {{A, B, C, X(40822), X(52568)}}
X(57904) = barycentric product X(i)*X(j) for these (i, j): {304, 57716}, {305, 847}, {311, 34385}, {561, 91}, {1502, 2165}, {1577, 55215}, {2351, 44161}, {4602, 55250}, {5392, 76}, {14593, 40050}, {18022, 68}, {18027, 52350}, {20563, 264}, {20571, 75}, {20573, 37802}, {30450, 3267}, {34384, 56272}, {34391, 34392}, {40832, 52504}, {44173, 925}, {46134, 850}, {55553, 69}, {57898, 63}
X(57904) = barycentric quotient X(i)/X(j) for these (i, j): {2, 571}, {3, 52435}, {4, 44077}, {6, 52436}, {63, 563}, {68, 184}, {69, 1147}, {75, 47}, {76, 1993}, {91, 31}, {96, 54034}, {136, 6754}, {264, 24}, {274, 18605}, {305, 9723}, {311, 52}, {317, 52432}, {324, 14576}, {328, 5961}, {338, 47421}, {340, 52416}, {523, 34952}, {525, 30451}, {561, 44179}, {693, 34948}, {847, 25}, {850, 924}, {925, 1576}, {1502, 7763}, {1577, 55216}, {1820, 9247}, {1969, 1748}, {2052, 8745}, {2165, 32}, {2351, 14575}, {3260, 51393}, {3267, 52584}, {3268, 44808}, {4602, 55249}, {5392, 6}, {5962, 34397}, {6331, 41679}, {6528, 52917}, {11090, 26920}, {11091, 8911}, {11547, 36416}, {14213, 2180}, {14593, 1974}, {14618, 6753}, {16391, 23606}, {18022, 317}, {18024, 31635}, {18027, 11547}, {18314, 52317}, {18817, 52415}, {20563, 3}, {20571, 1}, {20572, 14111}, {20573, 18883}, {27801, 42700}, {28706, 52032}, {30450, 112}, {32734, 14574}, {34385, 54}, {34391, 372}, {34392, 371}, {37802, 50}, {39113, 3133}, {39116, 1609}, {40832, 52505}, {41079, 14397}, {41271, 14573}, {44128, 34116}, {44138, 52000}, {44173, 6563}, {46106, 52952}, {46134, 110}, {46746, 34756}, {51833, 44080}, {52350, 577}, {52504, 3003}, {52582, 39109}, {55031, 39110}, {55215, 662}, {55250, 798}, {55549, 14585}, {55553, 4}, {56272, 51}, {57716, 19}, {57763, 47390}, {57799, 51776}, {57875, 14533}, {57898, 92}


X(57905) = ISOTOMIC CONJUGATE OF X(572)

Barycentrics    b^2*c^2*(a*b*(a+b)+(a^2-a*b+b^2)*c-c^3)*(-b^3+b*c^2+a*c*(-b+c)+a^2*(b+c)) : :

X(57905) lies on these lines: {2, 57906}, {12, 34387}, {69, 20028}, {75, 52357}, {76, 2051}, {86, 58014}, {183, 52150}, {264, 5224}, {276, 44129}, {290, 37678}, {311, 313}, {349, 20911}, {5718, 26541}, {6376, 56252}, {14829, 40827}, {18135, 40011}, {18145, 57913}, {34434, 35517}

X(57905) = isotomic conjugate of X(572)
X(57905) = trilinear pole of line {850, 36038}
X(57905) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 20986}, {25, 22118}, {31, 572}, {32, 2975}, {560, 14829}, {1333, 52139}, {2175, 17074}, {2194, 55323}, {2206, 21061}, {9247, 11109}, {21173, 32739}, {37558, 57657}, {57129, 57165}
X(57905) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 572}, {9, 20986}, {37, 52139}, {338, 52322}, {905, 38344}, {1214, 55323}, {1577, 11998}, {2051, 52159}, {3666, 52087}, {6374, 14829}, {6376, 2975}, {6505, 22118}, {40593, 17074}, {40603, 21061}, {40618, 23187}, {40619, 21173}, {40943, 55349}
X(57905) = X(i)-cross conjugate of X(j) for these {i, j}: {1211, 313}, {6358, 75}
X(57905) = pole of line {572, 52087} with respect to the Wallace hyperbola
X(57905) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4417)}}, {{A, B, C, X(4), X(7377)}}, {{A, B, C, X(12), X(1577)}}, {{A, B, C, X(69), X(5224)}}, {{A, B, C, X(75), X(20911)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(85), X(1969)}}, {{A, B, C, X(309), X(40023)}}, {{A, B, C, X(311), X(44129)}}, {{A, B, C, X(318), X(52622)}}, {{A, B, C, X(325), X(37678)}}, {{A, B, C, X(1211), X(6358)}}, {{A, B, C, X(1441), X(21596)}}, {{A, B, C, X(1509), X(46136)}}, {{A, B, C, X(2051), X(51870)}}, {{A, B, C, X(6063), X(40363)}}, {{A, B, C, X(18816), X(32018)}}, {{A, B, C, X(20566), X(28660)}}, {{A, B, C, X(20567), X(40014)}}, {{A, B, C, X(27792), X(40013)}}, {{A, B, C, X(30713), X(34258)}}, {{A, B, C, X(32014), X(40410)}}, {{A, B, C, X(40005), X(40495)}}
X(57905) = barycentric product X(i)*X(j) for these (i, j): {310, 51870}, {349, 46880}, {2051, 76}, {3261, 56188}, {20028, 313}, {27801, 53083}, {34434, 561}, {40495, 56194}, {54121, 75}, {56252, 693}
X(57905) = barycentric quotient X(i)/X(j) for these (i, j): {1, 20986}, {2, 572}, {10, 52139}, {63, 22118}, {75, 2975}, {76, 14829}, {85, 17074}, {226, 55323}, {264, 11109}, {313, 17751}, {321, 21061}, {349, 52358}, {693, 21173}, {946, 55349}, {1089, 14973}, {1211, 52087}, {1441, 37558}, {2051, 6}, {3261, 17496}, {3663, 55362}, {3687, 46879}, {3952, 57165}, {4025, 23187}, {4077, 51662}, {4858, 11998}, {6358, 56325}, {18155, 57125}, {18314, 52322}, {20028, 58}, {21207, 53566}, {23989, 24237}, {26932, 38344}, {34262, 4264}, {34387, 34589}, {34388, 52357}, {34434, 31}, {35519, 57091}, {40495, 57244}, {46880, 284}, {51870, 42}, {52150, 2206}, {53083, 1333}, {54121, 1}, {56188, 101}, {56194, 692}, {56252, 100}


X(57906) = ISOTOMIC CONJUGATE OF X(573)

Barycentrics    b^2*c^2*(a^3+b^3+a*b*c-(a+b)*c^2)*(a^3-b^2*c+c^3+a*b*(-b+c)) : :

X(57906) lies on these lines: {2, 57905}, {56, 34387}, {69, 313}, {76, 6996}, {85, 52575}, {86, 264}, {92, 57642}, {290, 54951}, {304, 20922}, {311, 57824}, {348, 349}, {940, 26541}, {4417, 28660}, {10570, 31637}, {16992, 30737}, {17880, 56285}, {18027, 44129}, {19607, 28917}, {20566, 39270}

X(57906) = isotomic conjugate of X(573)
X(57906) = trilinear pole of line {850, 4025}
X(57906) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3185}, {25, 22134}, {31, 573}, {32, 3869}, {41, 10571}, {48, 3192}, {213, 4225}, {560, 4417}, {692, 6589}, {1333, 22276}, {1946, 57220}, {2175, 17080}, {2194, 40590}, {2206, 21078}, {2212, 56553}, {9247, 17555}, {21189, 32739}, {32676, 52310}, {34242, 52426}
X(57906) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 573}, {9, 3185}, {37, 22276}, {905, 47411}, {1086, 6589}, {1214, 40590}, {1249, 3192}, {1577, 38345}, {3160, 10571}, {6374, 4417}, {6376, 3869}, {6505, 22134}, {6626, 4225}, {15526, 52310}, {39053, 57220}, {40593, 17080}, {40603, 21078}, {40619, 21189}
X(57906) = X(i)-cross conjugate of X(j) for these {i, j}: {226, 75}, {940, 57824}, {3664, 310}, {17720, 58027}, {21621, 273}, {24220, 2}, {24241, 871}, {26541, 76}, {39595, 1240}, {41004, 15467}
X(57906) = pole of line {573, 4225} with respect to the Wallace hyperbola
X(57906) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11109)}}, {{A, B, C, X(4), X(6996)}}, {{A, B, C, X(7), X(20245)}}, {{A, B, C, X(8), X(28797)}}, {{A, B, C, X(27), X(37191)}}, {{A, B, C, X(56), X(514)}}, {{A, B, C, X(69), X(85)}}, {{A, B, C, X(75), X(28660)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(92), X(837)}}, {{A, B, C, X(95), X(32014)}}, {{A, B, C, X(226), X(940)}}, {{A, B, C, X(253), X(39735)}}, {{A, B, C, X(274), X(18816)}}, {{A, B, C, X(279), X(7199)}}, {{A, B, C, X(331), X(3261)}}, {{A, B, C, X(573), X(24220)}}, {{A, B, C, X(801), X(40414)}}, {{A, B, C, X(1222), X(27424)}}, {{A, B, C, X(1254), X(50457)}}, {{A, B, C, X(1764), X(10478)}}, {{A, B, C, X(1847), X(21279)}}, {{A, B, C, X(5125), X(28917)}}, {{A, B, C, X(6063), X(18021)}}, {{A, B, C, X(6384), X(18031)}}, {{A, B, C, X(8777), X(40411)}}, {{A, B, C, X(13478), X(15232)}}, {{A, B, C, X(17087), X(40037)}}, {{A, B, C, X(18836), X(41283)}}, {{A, B, C, X(20563), X(40071)}}, {{A, B, C, X(20566), X(28659)}}, {{A, B, C, X(20922), X(21285)}}, {{A, B, C, X(20926), X(21270)}}, {{A, B, C, X(21276), X(21586)}}, {{A, B, C, X(21277), X(21587)}}, {{A, B, C, X(21286), X(21594)}}, {{A, B, C, X(26735), X(54235)}}, {{A, B, C, X(34535), X(39270)}}, {{A, B, C, X(36800), X(40436)}}
X(57906) = barycentric product X(i)*X(j) for these (i, j): {2217, 561}, {2995, 75}, {3261, 44765}, {10570, 6063}, {13478, 76}, {15232, 310}, {19607, 349}, {28660, 40160}, {34387, 57757}, {36050, 40495}, {52621, 56112}, {54951, 850}
X(57906) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3185}, {2, 573}, {4, 3192}, {7, 10571}, {10, 22276}, {63, 22134}, {75, 3869}, {76, 4417}, {85, 17080}, {86, 4225}, {226, 40590}, {264, 17555}, {305, 51612}, {321, 21078}, {348, 56553}, {514, 6589}, {525, 52310}, {653, 57220}, {693, 21189}, {2217, 31}, {2995, 1}, {3664, 37836}, {4858, 38345}, {7199, 16754}, {10570, 55}, {13478, 6}, {15232, 42}, {15413, 57184}, {17880, 34588}, {18815, 34242}, {19607, 284}, {19608, 2269}, {26704, 8750}, {26932, 47411}, {32653, 32739}, {34387, 124}, {35518, 57111}, {36050, 692}, {40160, 1400}, {42550, 3725}, {44765, 101}, {54951, 110}, {56112, 3939}, {57757, 59}, {57809, 56827}


X(57907) = ISOTOMIC CONJUGATE OF X(575)

Barycentrics    b^2*c^2*(a^4-4*a^2*b^2+b^4-3*(a^2+b^2)*c^2+2*c^4)*(a^4+2*b^4-3*b^2*c^2+c^4-a^2*(3*b^2+4*c^2)) : :

X(57907) lies on these lines: {2, 57908}, {69, 40826}, {76, 1656}, {264, 599}, {276, 4994}, {290, 54439}, {308, 1232}, {311, 18023}, {327, 7897}, {8827, 37688}, {10512, 34897}, {18314, 52632}

X(57907) = isotomic conjugate of X(575)
X(57907) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 575}, {48, 10985}, {560, 37688}, {9247, 52281}
X(57907) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 575}, {1249, 10985}, {6374, 37688}
X(57907) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8827)}}, {{A, B, C, X(4), X(1656)}}, {{A, B, C, X(6), X(32447)}}, {{A, B, C, X(69), X(599)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(95), X(5641)}}, {{A, B, C, X(141), X(39099)}}, {{A, B, C, X(183), X(7897)}}, {{A, B, C, X(311), X(18314)}}, {{A, B, C, X(325), X(42006)}}, {{A, B, C, X(671), X(40410)}}, {{A, B, C, X(1232), X(1235)}}, {{A, B, C, X(3399), X(11272)}}, {{A, B, C, X(3613), X(43532)}}, {{A, B, C, X(5485), X(8797)}}, {{A, B, C, X(8795), X(46105)}}, {{A, B, C, X(9302), X(15321)}}, {{A, B, C, X(10159), X(35142)}}, {{A, B, C, X(11140), X(46104)}}, {{A, B, C, X(18019), X(34384)}}, {{A, B, C, X(18840), X(36948)}}, {{A, B, C, X(19222), X(32520)}}, {{A, B, C, X(35910), X(52091)}}, {{A, B, C, X(44715), X(55978)}}
X(57907) = barycentric product X(i)*X(j) for these (i, j): {76, 7608}
X(57907) = barycentric quotient X(i)/X(j) for these (i, j): {2, 575}, {4, 10985}, {76, 37688}, {264, 52281}, {7608, 6}


X(57908) = ISOTOMIC CONJUGATE OF X(576)

Barycentrics    b^2*c^2*(2*(a^4-a^2*b^2+b^4)-3*(a^2+b^2)*c^2+c^4)*(2*a^4+b^4-3*b^2*c^2+2*c^4-a^2*(3*b^2+2*c^2)) : :

X(57908) lies on these lines: {2, 57907}, {69, 18023}, {76, 140}, {264, 524}, {290, 35178}, {311, 40826}, {313, 21012}, {327, 7777}, {525, 52632}, {1232, 1502}, {3055, 40814}, {15004, 39289}, {18027, 44146}

X(57908) = isotomic conjugate of X(576)
X(57908) = trilinear pole of line {850, 14417}
X(57908) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 576}, {9247, 52282}
X(57908) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37688)}}, {{A, B, C, X(4), X(140)}}, {{A, B, C, X(6), X(11171)}}, {{A, B, C, X(69), X(524)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(95), X(671)}}, {{A, B, C, X(183), X(1916)}}, {{A, B, C, X(297), X(51350)}}, {{A, B, C, X(325), X(43688)}}, {{A, B, C, X(576), X(40107)}}, {{A, B, C, X(2165), X(9154)}}, {{A, B, C, X(2980), X(9302)}}, {{A, B, C, X(2996), X(27377)}}, {{A, B, C, X(3055), X(10155)}}, {{A, B, C, X(3399), X(45090)}}, {{A, B, C, X(5392), X(34384)}}, {{A, B, C, X(8599), X(40103)}}, {{A, B, C, X(10302), X(40410)}}, {{A, B, C, X(11140), X(18019)}}, {{A, B, C, X(13579), X(39287)}}, {{A, B, C, X(19222), X(32448)}}, {{A, B, C, X(20023), X(51481)}}, {{A, B, C, X(32820), X(35510)}}, {{A, B, C, X(34289), X(46326)}}, {{A, B, C, X(36952), X(43711)}}, {{A, B, C, X(40428), X(54122)}}
X(57908) = barycentric product X(i)*X(j) for these (i, j): {76, 7607}, {35178, 850}
X(57908) = barycentric quotient X(i)/X(j) for these (i, j): {2, 576}, {264, 52282}, {7607, 6}, {35178, 110}


X(57909) = ISOTOMIC CONJUGATE OF X(578)

Barycentrics    -(b^2*c^2*(c^2*(b^2-c^2)^3+a^6*(2*b^2+c^2)+a^2*(b^2-c^2)^2*(2*b^2+3*c^2)-a^4*(4*b^4+b^2*c^2+3*c^4))*(b^2*(b^2-c^2)^3-a^6*(b^2+2*c^2)-a^2*(b^2-c^2)^2*(3*b^2+2*c^2)+a^4*(3*b^4+b^2*c^2+4*c^4))) : :

X(57909) lies on these lines: {2, 42333}, {69, 276}, {76, 7399}, {264, 343}, {290, 40680}, {311, 18027}, {2367, 6570}, {34385, 37872}

X(57909) = isotomic conjugate of X(578)
X(57909) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 578}, {41365, 52430}
X(57909) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(45198)}}, {{A, B, C, X(4), X(7399)}}, {{A, B, C, X(69), X(311)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(95), X(55553)}}, {{A, B, C, X(801), X(40410)}}, {{A, B, C, X(1232), X(44135)}}, {{A, B, C, X(5392), X(8795)}}, {{A, B, C, X(6393), X(40680)}}, {{A, B, C, X(11140), X(42355)}}, {{A, B, C, X(13579), X(39286)}}, {{A, B, C, X(20563), X(34384)}}
X(57909) = barycentric product X(i)*X(j) for these (i, j): {311, 37872}, {13599, 76}, {44173, 6570}
X(57909) = barycentric quotient X(i)/X(j) for these (i, j): {2, 578}, {324, 8887}, {2052, 41365}, {6570, 1576}, {13599, 6}, {14149, 14576}, {37872, 54}


X(57910) = ISOTOMIC CONJUGATE OF X(580)

Barycentrics    b^2*c^2*(a^3*(b-c)*c+a^4*(b+c)-a*(b-c)*c*(b+c)^2+b*(b^2-c^2)^2-a^2*(2*b^3+b^2*c+c^3))*(a^3*b*(-b+c)+a^4*(b+c)+a*b*(b-c)*(b+c)^2+c*(b^2-c^2)^2-a^2*(b^3+b*c^2+2*c^3)) : :

X(57910) lies on these lines: {2, 57911}, {69, 40011}, {76, 57719}, {264, 18134}, {276, 44130}, {311, 349}

X(57910) = isotomic conjugate of X(580)
X(57910) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 580}, {184, 41227}, {2206, 3191}, {9247, 37279}, {41342, 57657}
X(57910) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 580}, {16585, 46887}, {40603, 3191}
X(57910) = X(i)-cross conjugate of X(j) for these {i, j}: {17878, 3261}, {57807, 75}
X(57910) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(18134)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(309), X(561)}}, {{A, B, C, X(311), X(20566)}}, {{A, B, C, X(322), X(40704)}}, {{A, B, C, X(334), X(40417)}}, {{A, B, C, X(1226), X(3596)}}, {{A, B, C, X(1268), X(8777)}}, {{A, B, C, X(2997), X(46107)}}, {{A, B, C, X(3718), X(20570)}}
X(57910) = barycentric product X(i)*X(j) for these (i, j): {20567, 41509}, {57719, 76}
X(57910) = barycentric quotient X(i)/X(j) for these (i, j): {2, 580}, {92, 41227}, {264, 37279}, {321, 3191}, {349, 52673}, {1441, 41342}, {5249, 46887}, {6358, 15443}, {41509, 41}, {43729, 2194}, {46110, 57089}, {57719, 6}


X(57911) = ISOTOMIC CONJUGATE OF X(581)

Barycentrics    b^2*c^2*(a^5+a*b*(b-c)*(b+c)^2-a^2*c*(b+c)^2+c*(b^2-c^2)^2-a^3*(2*b^2+b*c+c^2))*(a^5-a^2*b*(b+c)^2-a*(b-c)*c*(b+c)^2+b*(b^2-c^2)^2-a^3*(b^2+b*c+2*c^2)) : :

X(57911) lies on these lines: {2, 57910}, {69, 349}, {75, 52575}, {76, 332}, {264, 333}, {311, 40011}, {313, 345}, {1259, 34388}, {3718, 27801}, {5931, 52581}, {18027, 44130}, {45797, 57787}

X(57911) = isotomic conjugate of X(581)
X(57911) = trilinear pole of line {850, 6332}
X(57911) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 581}, {604, 15830}
X(57911) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 581}, {3161, 15830}
X(57911) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37279)}}, {{A, B, C, X(69), X(75)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(286), X(15467)}}, {{A, B, C, X(309), X(310)}}, {{A, B, C, X(322), X(34284)}}, {{A, B, C, X(5906), X(52344)}}, {{A, B, C, X(8797), X(40010)}}, {{A, B, C, X(20565), X(20571)}}
X(57911) = barycentric product X(i)*X(j) for these (i, j): {2219, 561}, {54972, 76}
X(57911) = barycentric quotient X(i)/X(j) for these (i, j): {2, 581}, {8, 15830}, {2219, 31}, {54972, 6}, {56727, 54405}


X(57912) = ISOTOMIC CONJUGATE OF X(582)

Barycentrics    b^2*c^2*(a*(a-b)^2*b*(a+b)+(a^4+2*a^3*b+2*a*b^3+b^4)*c-a*b*(a+b)*c^2-2*(a^2+a*b+b^2)*c^3+c^5)*(a^3*(2*b-c)*c+a^4*(b+c)-a*(b-c)*c*(b+c)*(2*b+c)+b*(b^2-c^2)^2-a^2*(2*b^3+b^2*c+c^3)) : :

X(57912) lies on these lines: {2, 57885}, {69, 57913}, {76, 57720}, {264, 445}, {311, 57914}

X(57912) = isotomic conjugate of X(582)
X(57912) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(445)}}, {{A, B, C, X(69), X(18139)}}, {{A, B, C, X(76), X(264)}}
X(57912) = barycentric product X(i)*X(j) for these (i, j): {57720, 76}
X(57912) = barycentric quotient X(i)/X(j) for these (i, j): {2, 582}, {57720, 6}


X(57913) = ISOTOMIC CONJUGATE OF X(583)

Barycentrics    b^2*c^2*(a^3+b^3-2*a*b*c-(a+b)*c^2)*(a^3-b^2*c+c^3-a*b*(b+2*c)) : :

X(57913) lies on these lines: {2, 57914}, {69, 57912}, {76, 5278}, {311, 57885}, {313, 5564}, {349, 18140}, {18145, 57905}, {18152, 27801}, {20919, 21586}, {30893, 40827}, {33932, 40094}

X(57913) = isotomic conjugate of X(583)
X(57913) = trilinear pole of line {850, 20954}
X(57913) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 583}, {32, 3874}, {560, 18139}, {1923, 29568}
X(57913) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 583}, {6374, 18139}, {6376, 3874}
X(57913) = X(i)-cross conjugate of X(j) for these {i, j}: {3969, 75}
X(57913) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5278)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(85), X(5564)}}, {{A, B, C, X(95), X(34016)}}, {{A, B, C, X(274), X(3112)}}, {{A, B, C, X(312), X(32019)}}, {{A, B, C, X(502), X(17758)}}, {{A, B, C, X(1224), X(30690)}}, {{A, B, C, X(1228), X(30893)}}, {{A, B, C, X(3969), X(18139)}}, {{A, B, C, X(18140), X(20568)}}, {{A, B, C, X(21615), X(33941)}}, {{A, B, C, X(32014), X(39735)}}, {{A, B, C, X(32018), X(44129)}}, {{A, B, C, X(33939), X(46750)}}
X(57913) = barycentric product X(i)*X(j) for these (i, j): {310, 56132}, {57721, 76}
X(57913) = barycentric quotient X(i)/X(j) for these (i, j): {2, 583}, {75, 3874}, {76, 18139}, {308, 29568}, {56132, 42}, {57721, 6}


X(57914) = ISOTOMIC CONJUGATE OF X(584)

Barycentrics    b^2*c^2*(a*b*(a+b)+(a+b)^2*c-c^3)*(-b^3+b*c^2+a^2*(b+c)+a*c*(2*b+c)) : :

X(57914) lies on these lines: {2, 57913}, {69, 57885}, {76, 18139}, {274, 40011}, {308, 29568}, {311, 57912}, {313, 33932}

X(57914) = isotomic conjugate of X(584)
X(57914) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 584}, {32, 5248}, {560, 5278}, {32739, 48297}
X(57914) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 584}, {6374, 5278}, {6376, 5248}, {40619, 48297}
X(57914) = X(i)-cross conjugate of X(j) for these {i, j}: {42714, 561}
X(57914) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(18139)}}, {{A, B, C, X(69), X(34016)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(274), X(20567)}}, {{A, B, C, X(310), X(1928)}}, {{A, B, C, X(1969), X(32018)}}, {{A, B, C, X(20886), X(32933)}}
X(57914) = barycentric product X(i)*X(j) for these (i, j): {20567, 56232}, {57722, 76}
X(57914) = barycentric quotient X(i)/X(j) for these (i, j): {2, 584}, {75, 5248}, {76, 5278}, {693, 48297}, {56232, 41}, {57722, 6}, {57831, 45128}


X(57915) = ISOTOMIC CONJUGATE OF X(595)

Barycentrics    -(b^2*c^2*(a*(b-c)+b*(b+c))*(a*(-b+c)+c*(b+c))) : :

X(57915) lies on these lines: {69, 8050}, {75, 596}, {86, 3112}, {92, 17171}, {141, 321}, {313, 1930}, {1441, 3264}, {1821, 37205}, {3261, 35367}, {3739, 39798}, {4075, 18133}, {8054, 39693}, {10436, 39949}, {16738, 39747}, {21208, 40010}, {35544, 40216}, {35550, 54121}

X(57915) = isotomic conjugate of X(595)
X(57915) = trilinear pole of line {1577, 16892}
X(57915) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2220}, {31, 595}, {32, 32911}, {101, 57096}, {184, 4222}, {560, 4360}, {692, 4057}, {1110, 8054}, {1397, 3871}, {1501, 18140}, {1576, 4132}, {1917, 40087}, {2206, 3293}, {4063, 32739}, {18892, 40093}
X(57915) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 595}, {9, 2220}, {514, 8054}, {1015, 57096}, {1086, 4057}, {4858, 4132}, {6374, 4360}, {6376, 32911}, {36901, 4129}, {39798, 16685}, {40603, 3293}, {40615, 57238}, {40618, 22154}, {40619, 4063}, {40620, 57080}, {40622, 51650}, {40624, 48307}
X(57915) = X(i)-cross conjugate of X(j) for these {i, j}: {1086, 3261}, {20896, 349}, {28654, 76}
X(57915) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(17184)}}, {{A, B, C, X(27), X(50320)}}, {{A, B, C, X(75), X(92)}}, {{A, B, C, X(76), X(1269)}}, {{A, B, C, X(86), X(141)}}, {{A, B, C, X(514), X(6664)}}, {{A, B, C, X(596), X(40085)}}, {{A, B, C, X(693), X(40010)}}, {{A, B, C, X(903), X(3782)}}, {{A, B, C, X(1268), X(7018)}}, {{A, B, C, X(1502), X(3261)}}, {{A, B, C, X(1847), X(40014)}}, {{A, B, C, X(3123), X(21142)}}, {{A, B, C, X(3263), X(18137)}}, {{A, B, C, X(3264), X(3596)}}, {{A, B, C, X(3739), X(33931)}}, {{A, B, C, X(4373), X(46107)}}, {{A, B, C, X(5224), X(16738)}}, {{A, B, C, X(5936), X(30635)}}, {{A, B, C, X(6385), X(18895)}}, {{A, B, C, X(7035), X(46750)}}, {{A, B, C, X(13476), X(43534)}}, {{A, B, C, X(21140), X(21143)}}, {{A, B, C, X(24471), X(33930)}}, {{A, B, C, X(27801), X(40034)}}, {{A, B, C, X(28654), X(40087)}}, {{A, B, C, X(35544), X(40088)}}
X(57915) = barycentric product X(i)*X(j) for these (i, j): {310, 40085}, {313, 39747}, {596, 76}, {1502, 40148}, {1978, 40086}, {3261, 8050}, {20615, 28659}, {20948, 34594}, {27801, 39949}, {37205, 850}, {39798, 561}, {40013, 75}
X(57915) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2220}, {2, 595}, {75, 32911}, {76, 4360}, {92, 4222}, {312, 3871}, {313, 3995}, {321, 3293}, {513, 57096}, {514, 4057}, {561, 18140}, {596, 6}, {693, 4063}, {850, 4129}, {1086, 8054}, {1230, 4065}, {1269, 45222}, {1502, 40087}, {1577, 4132}, {3261, 20295}, {3676, 57238}, {4025, 22154}, {4391, 48307}, {7178, 51650}, {7192, 57080}, {8050, 101}, {18895, 40093}, {20615, 604}, {23989, 21208}, {27801, 56249}, {28654, 4075}, {34388, 56326}, {34594, 163}, {35519, 47793}, {35538, 27044}, {37205, 110}, {39747, 58}, {39798, 31}, {39949, 1333}, {40013, 1}, {40085, 42}, {40086, 649}, {40148, 32}, {40495, 20949}, {40519, 32739}, {46107, 17922}


X(57916) = ISOTOMIC CONJUGATE OF X(601)

Barycentrics    b^3*c^3*(a^4-2*a^3*c+2*a*(b-c)*c*(b+c)+(b^2-c^2)^2-2*a^2*(b^2+c^2))*(a^4-2*a^3*b+(b^2-c^2)^2+2*a*b*(-b^2+c^2)-2*a^2*(b^2+c^2)) : :

X(57916) lies on these lines: {44154, 57723}

X(57916) = isotomic conjugate of X(601)
X(57916) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 601}, {32, 55400}, {184, 11399}, {560, 55392}, {9247, 55478}, {14575, 55394}
X(57916) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 601}, {6374, 55392}, {6376, 55400}
X(57916) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(7018)}}, {{A, B, C, X(75), X(3262)}}, {{A, B, C, X(253), X(30635)}}, {{A, B, C, X(264), X(561)}}, {{A, B, C, X(309), X(313)}}, {{A, B, C, X(334), X(8797)}}, {{A, B, C, X(20565), X(20571)}}
X(57916) = barycentric product X(i)*X(j) for these (i, j): {57723, 76}
X(57916) = barycentric quotient X(i)/X(j) for these (i, j): {2, 601}, {75, 55400}, {76, 55392}, {92, 11399}, {264, 55478}, {1969, 55394}, {57723, 6}


X(57917) = ISOTOMIC CONJUGATE OF X(602)

Barycentrics    b^3*c^3*(a^4+2*a^3*b-2*a^2*b^2+2*a*b^3+b^4-2*(a^2+a*b+b^2)*c^2+c^4)*((a^2-b^2)^2+2*a*(a-b)*(a+b)*c-2*(a^2+b^2)*c^2+2*a*c^3+c^4) : :

X(57917) lies on these lines: {44154, 57724}

X(57917) = isotomic conjugate of X(602)
X(57917) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 602}, {32, 55399}, {184, 11398}, {560, 55391}, {9247, 55472}, {14575, 55393}
X(57917) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 602}, {6374, 55391}, {6376, 55399}
X(57917) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(334)}}, {{A, B, C, X(253), X(30636)}}, {{A, B, C, X(264), X(561)}}, {{A, B, C, X(7018), X(8797)}}, {{A, B, C, X(20566), X(20571)}}
X(57917) = barycentric product X(i)*X(j) for these (i, j): {57724, 76}
X(57917) = barycentric quotient X(i)/X(j) for these (i, j): {2, 602}, {75, 55399}, {76, 55391}, {92, 11398}, {264, 55472}, {1969, 55393}, {57724, 6}


X(57918) = ISOTOMIC CONJUGATE OF X(607)

Barycentrics    b^2*(-a+b-c)*(a+b-c)*c^2*(-a^2+b^2+c^2) : :

X(57918) lies on these lines: {7, 310}, {75, 23529}, {76, 1229}, {85, 17788}, {304, 56382}, {305, 307}, {312, 23062}, {331, 6385}, {561, 57793}, {1231, 40364}, {2285, 7196}, {3596, 4572}, {4554, 28739}, {10030, 28017}, {17076, 18629}, {17088, 18626}, {20923, 40593}, {21299, 31604}, {21609, 21617}, {28809, 34019}, {57781, 57879}

X(57918) = isotomic conjugate of X(607)
X(57918) = trilinear pole of line {17094, 35518}
X(57918) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 9447}, {6, 2212}, {9, 1974}, {19, 2175}, {25, 41}, {29, 2205}, {31, 607}, {32, 33}, {34, 14827}, {42, 2204}, {48, 6059}, {55, 1973}, {78, 36417}, {92, 9448}, {212, 2207}, {213, 2299}, {220, 1395}, {270, 7109}, {281, 560}, {312, 44162}, {318, 1501}, {604, 7071}, {608, 1253}, {643, 57204}, {872, 2189}, {1096, 52425}, {1172, 1918}, {1334, 2203}, {1397, 7079}, {1398, 6602}, {1402, 2332}, {1576, 55206}, {1802, 7337}, {1824, 57657}, {1857, 9247}, {1917, 7017}, {1919, 56183}, {1924, 36797}, {2187, 7154}, {2194, 2333}, {2201, 18265}, {2289, 52439}, {3063, 8750}, {3195, 7118}, {3709, 32676}, {7101, 41280}, {7156, 33581}, {8641, 32674}, {18344, 32739}, {27369, 56245}, {51858, 57654}, {52914, 53581}
X(57918) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 607}, {6, 2175}, {9, 2212}, {223, 1973}, {226, 213}, {478, 1974}, {905, 14936}, {1214, 2333}, {1249, 6059}, {3160, 25}, {3161, 7071}, {3239, 3022}, {4858, 55206}, {6337, 55}, {6338, 219}, {6374, 281}, {6376, 33}, {6503, 52425}, {6505, 41}, {6626, 2299}, {7358, 57180}, {9296, 56183}, {9428, 36797}, {10001, 8750}, {11517, 14827}, {15526, 3709}, {17113, 608}, {22391, 9448}, {23285, 4092}, {26932, 3063}, {34021, 1172}, {35072, 8641}, {36033, 9447}, {36905, 2356}, {40592, 2204}, {40593, 19}, {40605, 2332}, {40618, 663}, {40619, 18344}, {40622, 2489}, {40626, 657}, {40837, 2207}, {55060, 57204}
X(57918) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6385, 20567}, {41283, 6063}
X(57918) = X(i)-cross conjugate of X(j) for these {i, j}: {304, 305}, {348, 6063}, {1231, 7182}, {6393, 57987}, {18639, 2}, {22411, 3}
X(57918) = pole of line {55, 607} with respect to the Wallace hyperbola
X(57918) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(307)}}, {{A, B, C, X(63), X(335)}}, {{A, B, C, X(69), X(15413)}}, {{A, B, C, X(72), X(35892)}}, {{A, B, C, X(76), X(304)}}, {{A, B, C, X(222), X(1401)}}, {{A, B, C, X(281), X(23529)}}, {{A, B, C, X(305), X(310)}}, {{A, B, C, X(306), X(10453)}}, {{A, B, C, X(345), X(1229)}}, {{A, B, C, X(525), X(6007)}}, {{A, B, C, X(607), X(18639)}}, {{A, B, C, X(1041), X(1952)}}, {{A, B, C, X(1214), X(10473)}}, {{A, B, C, X(2197), X(39780)}}, {{A, B, C, X(4441), X(20336)}}, {{A, B, C, X(6332), X(7155)}}, {{A, B, C, X(6601), X(27509)}}, {{A, B, C, X(14621), X(52381)}}, {{A, B, C, X(18031), X(40032)}}, {{A, B, C, X(26942), X(39793)}}, {{A, B, C, X(28739), X(46102)}}
X(57918) = barycentric product X(i)*X(j) for these (i, j): {3, 41283}, {184, 41287}, {201, 57992}, {264, 7055}, {279, 57919}, {304, 85}, {305, 7}, {307, 310}, {326, 57787}, {331, 3926}, {339, 7340}, {345, 57792}, {348, 76}, {561, 77}, {1088, 3718}, {1214, 6385}, {1231, 274}, {1265, 57880}, {1397, 40360}, {1434, 40071}, {1439, 40072}, {1502, 222}, {1577, 55205}, {1928, 603}, {1969, 7183}, {3267, 4573}, {3596, 7056}, {4025, 4572}, {4077, 55202}, {4561, 52621}, {4602, 51664}, {6063, 69}, {7019, 7205}, {7182, 75}, {14208, 4625}, {14575, 41289}, {15413, 4554}, {15416, 36838}, {17094, 670}, {17206, 349}, {18021, 6356}, {18022, 1804}, {18033, 337}, {20336, 57785}, {20567, 63}, {23062, 52406}, {28659, 7177}, {28660, 56382}, {30805, 46404}, {33673, 57780}, {35518, 4569}, {40050, 56}, {40075, 52392}, {40362, 52411}, {40363, 7053}, {40364, 57}, {40373, 41290}, {40495, 6516}, {44129, 52565}, {44161, 7335}, {46406, 6332}, {52385, 57796}, {52608, 7178}, {52612, 57243}, {55213, 656}, {57479, 57793}, {57807, 873}
X(57918) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2212}, {2, 607}, {3, 2175}, {4, 6059}, {7, 25}, {8, 7071}, {48, 9447}, {56, 1974}, {57, 1973}, {63, 41}, {69, 55}, {73, 1918}, {75, 33}, {76, 281}, {77, 31}, {78, 1253}, {81, 2204}, {85, 19}, {86, 2299}, {184, 9448}, {189, 7154}, {201, 872}, {219, 14827}, {222, 32}, {226, 2333}, {264, 1857}, {269, 1395}, {273, 1096}, {274, 1172}, {278, 2207}, {279, 608}, {295, 18265}, {304, 9}, {305, 8}, {306, 1334}, {307, 42}, {309, 7008}, {310, 29}, {312, 7079}, {313, 53008}, {314, 4183}, {320, 52427}, {322, 40971}, {326, 212}, {331, 393}, {332, 2328}, {333, 2332}, {337, 7077}, {339, 4092}, {345, 220}, {347, 3195}, {348, 6}, {349, 1826}, {394, 52425}, {479, 1398}, {521, 8641}, {525, 3709}, {561, 318}, {603, 560}, {608, 36417}, {658, 32674}, {664, 8750}, {668, 56183}, {670, 36797}, {693, 18344}, {873, 270}, {905, 3063}, {1014, 2203}, {1088, 34}, {1102, 2289}, {1118, 52439}, {1119, 7337}, {1214, 213}, {1231, 37}, {1233, 1855}, {1264, 1260}, {1265, 480}, {1275, 7115}, {1358, 42067}, {1365, 2971}, {1367, 20975}, {1397, 44162}, {1401, 27369}, {1409, 2205}, {1414, 32676}, {1434, 1474}, {1439, 1402}, {1440, 7151}, {1441, 1824}, {1442, 14975}, {1444, 2194}, {1446, 1880}, {1447, 57654}, {1502, 7017}, {1509, 2189}, {1565, 3271}, {1577, 55206}, {1790, 57657}, {1804, 184}, {1813, 32739}, {2197, 7109}, {2968, 3022}, {3261, 3064}, {3267, 3700}, {3596, 7046}, {3616, 44100}, {3663, 40982}, {3665, 1843}, {3668, 57652}, {3673, 40987}, {3674, 2354}, {3692, 6602}, {3695, 7064}, {3718, 200}, {3719, 1802}, {3926, 219}, {3933, 3688}, {3964, 6056}, {3998, 52370}, {4025, 663}, {4131, 1946}, {4176, 1259}, {4357, 40976}, {4441, 28044}, {4554, 1783}, {4561, 3939}, {4563, 5546}, {4569, 108}, {4572, 1897}, {4573, 112}, {4623, 52914}, {4625, 162}, {5088, 51726}, {6063, 4}, {6332, 657}, {6356, 181}, {6357, 14581}, {6385, 31623}, {6516, 692}, {6517, 32656}, {7013, 2187}, {7053, 1397}, {7055, 3}, {7056, 56}, {7125, 9247}, {7177, 604}, {7178, 2489}, {7180, 57204}, {7181, 44102}, {7182, 1}, {7183, 48}, {7196, 7119}, {7198, 44091}, {7205, 7009}, {7335, 14575}, {7340, 250}, {9436, 2356}, {10030, 2201}, {10481, 40983}, {13436, 34121}, {13453, 34125}, {14208, 4041}, {14256, 3209}, {14615, 44695}, {15413, 650}, {15416, 4130}, {15419, 7252}, {17076, 8743}, {17078, 52413}, {17081, 19118}, {17082, 11325}, {17088, 8744}, {17094, 512}, {17096, 43925}, {17170, 7083}, {17206, 284}, {17880, 2310}, {18033, 242}, {18134, 41320}, {18623, 3172}, {18629, 3162}, {18695, 7069}, {18750, 7156}, {20235, 40965}, {20336, 210}, {20567, 92}, {20806, 4548}, {20880, 1827}, {20975, 7063}, {21609, 7719}, {22070, 9449}, {22128, 52426}, {23062, 1435}, {23989, 8735}, {24002, 6591}, {26932, 14936}, {26942, 1500}, {27509, 30706}, {27832, 38266}, {28420, 5452}, {28659, 7101}, {28660, 2322}, {30493, 40981}, {30682, 1407}, {30786, 5547}, {30805, 652}, {30941, 37908}, {31637, 2195}, {33673, 204}, {33949, 44103}, {34016, 41502}, {34018, 8751}, {34387, 42069}, {34388, 7140}, {34399, 56305}, {34400, 1436}, {34403, 30457}, {35518, 3900}, {36838, 32714}, {40050, 3596}, {40071, 2321}, {40075, 5081}, {40152, 2200}, {40360, 40363}, {40364, 312}, {40495, 44426}, {40702, 2331}, {40704, 5089}, {41003, 44092}, {41081, 7118}, {41283, 264}, {41287, 18022}, {41289, 44161}, {41804, 44113}, {41808, 44097}, {43034, 2211}, {43045, 51437}, {44129, 8748}, {44189, 7367}, {44190, 7003}, {44708, 2179}, {44717, 23990}, {46406, 653}, {46744, 13427}, {46745, 13456}, {50559, 3207}, {51644, 8646}, {51664, 798}, {52347, 44707}, {52355, 4524}, {52379, 2326}, {52385, 228}, {52392, 6187}, {52396, 2318}, {52406, 728}, {52411, 1501}, {52421, 6198}, {52565, 71}, {52608, 645}, {52616, 57108}, {52617, 52355}, {52621, 7649}, {52937, 36118}, {53550, 8638}, {54953, 14776}, {55112, 7368}, {55202, 643}, {55205, 662}, {55207, 7259}, {55213, 811}, {55229, 52921}, {55234, 53581}, {56367, 54416}, {56382, 1400}, {56595, 8802}, {56596, 7007}, {56972, 2208}, {57055, 57180}, {57243, 4079}, {57479, 221}, {57777, 43742}, {57780, 44692}, {57785, 28}, {57787, 158}, {57792, 278}, {57793, 57492}, {57796, 1896}, {57799, 15628}, {57807, 756}, {57872, 56109}, {57873, 2334}, {57880, 1119}, {57919, 346}, {57923, 1039}, {57987, 56154}, {57992, 57779}
X(57918) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 57792, 20567}, {3596, 50560, 4572}


X(57919) = ISOTOMIC CONJUGATE OF X(608)

Barycentrics    b^2*c^2*(-a+b+c)*(-a^2+b^2+c^2) : :

X(57919) lies on these lines: {8, 314}, {69, 23154}, {75, 23536}, {76, 321}, {85, 17786}, {239, 30022}, {274, 19822}, {304, 305}, {315, 668}, {1231, 40364}, {1921, 20171}, {1975, 16085}, {2082, 3975}, {3178, 33942}, {3710, 3718}, {3948, 21216}, {3963, 34284}, {4033, 21596}, {7017, 40363}, {10009, 30177}, {17752, 30092}, {41826, 44139}

X(57919) = isotomic conjugate of X(608)
X(57919) = trilinear pole of line {35518, 52355}
X(57919) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1395}, {19, 1397}, {25, 604}, {31, 608}, {32, 34}, {33, 52410}, {41, 1398}, {48, 7337}, {56, 1973}, {57, 1974}, {77, 36417}, {85, 44162}, {92, 41280}, {108, 1919}, {112, 51641}, {273, 1501}, {278, 560}, {331, 1917}, {603, 2207}, {607, 1106}, {653, 1980}, {667, 32674}, {1042, 2204}, {1096, 52411}, {1118, 9247}, {1119, 9447}, {1333, 57652}, {1396, 1918}, {1400, 2203}, {1402, 1474}, {1407, 2212}, {1408, 2333}, {1414, 57204}, {1426, 57657}, {1435, 2175}, {1576, 55208}, {1824, 16947}, {1847, 9448}, {1880, 2206}, {1969, 41281}, {1977, 7012}, {2149, 42067}, {2199, 7151}, {2208, 3209}, {3213, 33581}, {3248, 7115}, {6059, 7099}, {7071, 7366}, {7125, 52439}, {7180, 32676}, {8750, 57181}, {9233, 57787}, {32739, 43923}, {40354, 51654}, {51651, 57260}
X(57919) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1973}, {2, 608}, {6, 1397}, {9, 1395}, {37, 57652}, {650, 42067}, {905, 1015}, {1249, 7337}, {3160, 1398}, {3161, 25}, {3239, 3271}, {4858, 55208}, {5452, 1974}, {6337, 56}, {6338, 222}, {6374, 278}, {6376, 34}, {6503, 52411}, {6505, 604}, {6552, 607}, {6631, 32674}, {6739, 14581}, {6741, 2489}, {7358, 3063}, {7952, 2207}, {9296, 108}, {11517, 32}, {15526, 7180}, {22391, 41280}, {23285, 1365}, {24771, 2212}, {26932, 57181}, {34021, 1396}, {34591, 51641}, {35072, 667}, {38983, 1919}, {40582, 2203}, {40593, 1435}, {40603, 1880}, {40605, 1474}, {40608, 57204}, {40618, 43924}, {40619, 43923}, {40624, 6591}, {40625, 43925}, {40626, 649}, {40628, 3248}, {50440, 2211}, {51574, 1402}
X(57919) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40363, 3596}, {40364, 305}
X(57919) = X(i)-cross conjugate of X(j) for these {i, j}: {345, 3596}, {3718, 305}, {26932, 35518}, {40071, 28659}
X(57919) = pole of line {56, 608} with respect to the Wallace hyperbola
X(57919) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(306)}}, {{A, B, C, X(21), X(33736)}}, {{A, B, C, X(63), X(257)}}, {{A, B, C, X(69), X(20911)}}, {{A, B, C, X(72), X(35628)}}, {{A, B, C, X(76), X(304)}}, {{A, B, C, X(78), X(3661)}}, {{A, B, C, X(219), X(3688)}}, {{A, B, C, X(222), X(23154)}}, {{A, B, C, X(278), X(23536)}}, {{A, B, C, X(305), X(561)}}, {{A, B, C, X(312), X(19799)}}, {{A, B, C, X(331), X(2995)}}, {{A, B, C, X(332), X(33935)}}, {{A, B, C, X(348), X(17183)}}, {{A, B, C, X(521), X(712)}}, {{A, B, C, X(525), X(35104)}}, {{A, B, C, X(1039), X(7108)}}, {{A, B, C, X(1214), X(10480)}}, {{A, B, C, X(1265), X(15416)}}, {{A, B, C, X(1812), X(32782)}}, {{A, B, C, X(2996), X(4391)}}, {{A, B, C, X(3436), X(46102)}}, {{A, B, C, X(3596), X(27801)}}, {{A, B, C, X(4111), X(52579)}}, {{A, B, C, X(6332), X(52043)}}, {{A, B, C, X(9555), X(40161)}}, {{A, B, C, X(17206), X(33934)}}, {{A, B, C, X(17743), X(52351)}}, {{A, B, C, X(18651), X(41791)}}, {{A, B, C, X(22370), X(33890)}}, {{A, B, C, X(26932), X(52626)}}, {{A, B, C, X(28659), X(40364)}}, {{A, B, C, X(35518), X(35543)}}, {{A, B, C, X(35519), X(40011)}}
X(57919) = barycentric product X(i)*X(j) for these (i, j): {3, 40363}, {184, 44159}, {304, 312}, {305, 8}, {310, 3710}, {313, 332}, {322, 57783}, {333, 40071}, {337, 4087}, {339, 6064}, {341, 7182}, {345, 76}, {346, 57918}, {521, 6386}, {561, 78}, {1259, 18022}, {1260, 41283}, {1264, 264}, {1265, 6063}, {1502, 219}, {1577, 55207}, {1812, 27801}, {1928, 212}, {1969, 3719}, {1978, 6332}, {2175, 40360}, {3267, 645}, {3596, 69}, {3694, 6385}, {3700, 52608}, {3718, 75}, {3926, 7017}, {4086, 55202}, {4602, 8611}, {14208, 7257}, {15413, 646}, {15416, 4554}, {17206, 30713}, {17880, 7035}, {18021, 3695}, {20336, 314}, {20567, 3692}, {26932, 31625}, {28659, 63}, {28660, 306}, {30681, 57792}, {33672, 57782}, {35518, 668}, {35519, 4561}, {36797, 52617}, {40050, 55}, {40072, 72}, {40362, 52425}, {40364, 9}, {40495, 4571}, {44130, 52396}, {44161, 6056}, {44190, 55112}, {52346, 57780}, {52355, 670}, {52369, 52379}, {52406, 85}
X(57919) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1395}, {2, 608}, {3, 1397}, {4, 7337}, {7, 1398}, {8, 25}, {9, 1973}, {10, 57652}, {11, 42067}, {21, 2203}, {55, 1974}, {63, 604}, {69, 56}, {72, 1402}, {75, 34}, {76, 278}, {77, 1106}, {78, 31}, {85, 1435}, {184, 41280}, {190, 32674}, {200, 2212}, {212, 560}, {219, 32}, {222, 52410}, {264, 1118}, {271, 2208}, {274, 1396}, {280, 7151}, {281, 2207}, {283, 2206}, {304, 57}, {305, 7}, {306, 1400}, {307, 1042}, {312, 19}, {313, 225}, {314, 28}, {318, 1096}, {321, 1880}, {322, 208}, {326, 603}, {329, 3209}, {332, 58}, {333, 1474}, {339, 1365}, {341, 33}, {345, 6}, {346, 607}, {348, 1407}, {394, 52411}, {521, 667}, {525, 7180}, {561, 273}, {607, 36417}, {643, 32676}, {645, 112}, {646, 1783}, {652, 1919}, {656, 51641}, {668, 108}, {693, 43923}, {905, 57181}, {1016, 7115}, {1043, 2299}, {1102, 7125}, {1231, 1427}, {1259, 184}, {1260, 2175}, {1264, 3}, {1265, 55}, {1332, 1415}, {1364, 22096}, {1441, 1426}, {1444, 1408}, {1502, 331}, {1565, 1357}, {1577, 55208}, {1790, 16947}, {1792, 2194}, {1802, 9447}, {1809, 34858}, {1812, 1333}, {1857, 52439}, {1928, 57787}, {1946, 1980}, {1978, 653}, {2175, 44162}, {2287, 2204}, {2289, 9247}, {2318, 1918}, {2321, 2333}, {2327, 57657}, {2968, 3271}, {3262, 1875}, {3263, 1876}, {3264, 1877}, {3267, 7178}, {3436, 17408}, {3596, 4}, {3685, 57654}, {3687, 2354}, {3688, 27369}, {3692, 41}, {3694, 213}, {3695, 181}, {3699, 8750}, {3700, 2489}, {3701, 1824}, {3702, 2355}, {3703, 1843}, {3704, 44092}, {3709, 57204}, {3710, 42}, {3712, 44102}, {3717, 2356}, {3718, 1}, {3719, 48}, {3786, 46503}, {3926, 222}, {3933, 1401}, {3964, 7335}, {3975, 2201}, {3977, 1404}, {3998, 1409}, {4025, 43924}, {4030, 44091}, {4087, 242}, {4092, 2971}, {4176, 1804}, {4391, 6591}, {4397, 18344}, {4420, 14975}, {4554, 32714}, {4560, 43925}, {4561, 109}, {4563, 4565}, {4571, 692}, {4572, 36118}, {4587, 32739}, {4673, 5338}, {4847, 40983}, {4997, 8752}, {5423, 7071}, {6056, 14575}, {6063, 1119}, {6064, 250}, {6332, 649}, {6356, 7143}, {6386, 18026}, {6393, 43034}, {6736, 40982}, {7004, 3248}, {7017, 393}, {7019, 1431}, {7035, 7012}, {7046, 6059}, {7055, 7053}, {7056, 7023}, {7058, 2189}, {7068, 20975}, {7080, 3195}, {7117, 1977}, {7177, 7366}, {7182, 269}, {7183, 7099}, {7257, 162}, {7359, 14581}, {7360, 51726}, {8611, 798}, {10978, 5217}, {13136, 32702}, {13425, 34125}, {13458, 34121}, {13461, 5412}, {14208, 4017}, {14575, 41281}, {14615, 44696}, {15411, 7252}, {15413, 3669}, {15416, 650}, {15627, 40354}, {15628, 57260}, {17094, 7250}, {17206, 1412}, {17787, 7119}, {17880, 244}, {18155, 57200}, {18695, 1393}, {18750, 3213}, {19799, 2285}, {20235, 40961}, {20336, 65}, {20567, 1847}, {20806, 7251}, {20895, 1828}, {20975, 1356}, {22370, 41526}, {23978, 8735}, {23983, 7117}, {25083, 52635}, {26932, 1015}, {27382, 3172}, {27509, 16502}, {27540, 21148}, {27801, 40149}, {28420, 56913}, {28654, 8736}, {28659, 92}, {28660, 27}, {30479, 51686}, {30681, 220}, {30693, 7079}, {30713, 1826}, {30786, 7316}, {31623, 5317}, {31625, 46102}, {31637, 1416}, {32851, 52413}, {33672, 207}, {34387, 2969}, {34400, 6612}, {34404, 7129}, {35518, 513}, {35519, 7649}, {35544, 1874}, {35550, 1835}, {36796, 8751}, {36797, 32713}, {40050, 6063}, {40071, 226}, {40072, 286}, {40360, 41283}, {40363, 264}, {40364, 85}, {40373, 41286}, {42699, 30456}, {44130, 8747}, {44140, 54394}, {44159, 18022}, {44189, 1436}, {44190, 55110}, {44694, 57653}, {44707, 40981}, {44717, 23979}, {44722, 3052}, {46102, 23985}, {46103, 36420}, {46738, 20613}, {46744, 13460}, {46745, 13438}, {51612, 10571}, {52346, 204}, {52347, 30493}, {52355, 512}, {52369, 2171}, {52370, 2205}, {52385, 1410}, {52396, 73}, {52406, 9}, {52425, 1501}, {52565, 52373}, {52608, 4573}, {52609, 4559}, {52616, 1459}, {52617, 17094}, {52622, 3064}, {52978, 2251}, {53560, 3121}, {54433, 1460}, {55016, 42072}, {55019, 42073}, {55112, 198}, {55202, 1414}, {55205, 4637}, {55207, 662}, {55233, 52919}, {57055, 3063}, {57780, 8809}, {57782, 3345}, {57783, 84}, {57793, 40836}, {57807, 1254}, {57918, 279}, {57925, 1041}
X(57919) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {304, 40071, 305}


X(57920) = ISOTOMIC CONJUGATE OF X(609)

Barycentrics    b^2*c^2*(2*b^2+a*c)*(a*b+2*c^2) : :

X(57920) lies on these lines: {75, 4492}, {3759, 38810}, {21615, 33934}, {30635, 33931}

X(57920) = isotomic conjugate of X(609)
X(57920) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 609}, {32, 17126}, {560, 3758}, {2206, 3997}, {18892, 43262}
X(57920) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 609}, {6374, 3758}, {6376, 17126}, {36901, 4761}, {40603, 3997}
X(57920) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(1502)}}, {{A, B, C, X(76), X(20566)}}, {{A, B, C, X(85), X(27801)}}, {{A, B, C, X(291), X(44558)}}, {{A, B, C, X(313), X(20567)}}, {{A, B, C, X(561), X(3261)}}, {{A, B, C, X(749), X(9229)}}, {{A, B, C, X(751), X(1916)}}, {{A, B, C, X(3267), X(7182)}}, {{A, B, C, X(3759), X(20234)}}, {{A, B, C, X(17788), X(20444)}}, {{A, B, C, X(40014), X(40828)}}
X(57920) = barycentric product X(i)*X(j) for these (i, j): {4492, 561}, {30635, 75}, {57725, 76}
X(57920) = barycentric quotient X(i)/X(j) for these (i, j): {2, 609}, {75, 17126}, {76, 3758}, {313, 46897}, {321, 3997}, {850, 4761}, {3261, 47762}, {4492, 31}, {18895, 43262}, {23989, 7208}, {30635, 1}, {33931, 3809}, {34388, 7276}, {35519, 47729}, {40495, 4406}, {57725, 6}


X(57921) = ISOTOMIC CONJUGATE OF X(610)

Barycentrics    b*c*((a^2-b^2)^2+2*(a^2+b^2)*c^2-3*c^4)*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b-c)*(b+c)) : :

X(57921) lies on these lines: {75, 1895}, {85, 34404}, {158, 17879}, {253, 322}, {304, 2184}, {309, 56592}, {312, 1231}, {336, 18156}, {349, 7017}, {1088, 40015}, {40071, 41530}

X(57921) = isotomic conjugate of X(610)
X(57921) = trilinear pole of line {4397, 14208}
X(57921) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 3172}, {6, 154}, {20, 32}, {25, 15905}, {31, 610}, {39, 51508}, {41, 1394}, {48, 204}, {51, 33629}, {112, 42658}, {122, 41937}, {184, 1249}, {212, 3213}, {217, 38808}, {560, 18750}, {577, 6525}, {603, 7156}, {604, 7070}, {647, 57153}, {669, 36841}, {1333, 3198}, {1397, 27382}, {1495, 15291}, {1498, 47439}, {1501, 14615}, {1562, 57655}, {1576, 6587}, {1895, 9247}, {1946, 57193}, {1974, 37669}, {2159, 52948}, {2175, 18623}, {2194, 30456}, {2200, 44698}, {2206, 8804}, {2207, 35602}, {3049, 52913}, {3079, 14642}, {5065, 40174}, {5930, 57657}, {9426, 55224}, {9447, 33673}, {14249, 14585}, {14345, 32715}, {14575, 15466}, {14600, 44704}, {20232, 56306}, {21172, 32739}, {32661, 44705}, {33581, 36413}, {39201, 57219}, {42459, 54034}, {44695, 52411}, {44696, 52425}
X(57921) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 610}, {9, 154}, {37, 3198}, {1214, 30456}, {1249, 204}, {3160, 1394}, {3161, 7070}, {3163, 52948}, {3343, 48}, {4858, 6587}, {6374, 18750}, {6376, 20}, {6505, 15905}, {7952, 7156}, {14092, 31}, {14390, 52430}, {34591, 42658}, {36103, 3172}, {36901, 17898}, {39052, 57153}, {39053, 57193}, {40593, 18623}, {40603, 8804}, {40619, 21172}, {40624, 14331}, {40837, 3213}, {40839, 19}
X(57921) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57780, 75}
X(57921) = X(i)-cross conjugate of X(j) for these {i, j}: {92, 75}, {1446, 76}, {17858, 561}, {19611, 57780}
X(57921) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(23052)}}, {{A, B, C, X(2), X(40445)}}, {{A, B, C, X(75), X(304)}}, {{A, B, C, X(76), X(312)}}, {{A, B, C, X(85), X(264)}}, {{A, B, C, X(92), X(821)}}, {{A, B, C, X(158), X(1577)}}, {{A, B, C, X(309), X(331)}}, {{A, B, C, X(348), X(34393)}}, {{A, B, C, X(693), X(1847)}}, {{A, B, C, X(1088), X(20914)}}, {{A, B, C, X(4391), X(7020)}}, {{A, B, C, X(5931), X(34403)}}, {{A, B, C, X(7219), X(52781)}}, {{A, B, C, X(18156), X(46238)}}, {{A, B, C, X(18832), X(46273)}}, {{A, B, C, X(34863), X(48070)}}, {{A, B, C, X(35158), X(37774)}}, {{A, B, C, X(40010), X(40011)}}, {{A, B, C, X(40023), X(40422)}}, {{A, B, C, X(40026), X(40040)}}, {{A, B, C, X(44129), X(44186)}}
X(57921) = barycentric product X(i)*X(j) for these (i, j): {1, 41530}, {4, 57780}, {253, 75}, {304, 459}, {561, 64}, {1073, 1969}, {1441, 5931}, {1502, 2155}, {1577, 44326}, {1928, 33581}, {2184, 76}, {3261, 56235}, {3596, 8809}, {14208, 53639}, {14638, 823}, {15394, 57806}, {17879, 44181}, {18022, 19614}, {18691, 34410}, {19611, 264}, {20567, 30457}, {20948, 46639}, {34403, 92}, {40364, 41489}, {44692, 6063}, {52581, 63}, {53012, 57796}
X(57921) = barycentric quotient X(i)/X(j) for these (i, j): {1, 154}, {2, 610}, {4, 204}, {7, 1394}, {8, 7070}, {10, 3198}, {19, 3172}, {30, 52948}, {63, 15905}, {64, 31}, {75, 20}, {76, 18750}, {82, 51508}, {85, 18623}, {92, 1249}, {158, 6525}, {162, 57153}, {226, 30456}, {253, 1}, {264, 1895}, {273, 44696}, {278, 3213}, {281, 7156}, {286, 44698}, {304, 37669}, {309, 41084}, {312, 27382}, {313, 52345}, {318, 44695}, {321, 8804}, {326, 35602}, {331, 44697}, {459, 19}, {561, 14615}, {653, 57193}, {656, 42658}, {693, 21172}, {799, 36841}, {811, 52913}, {823, 57219}, {850, 17898}, {1073, 48}, {1097, 23608}, {1301, 32676}, {1441, 5930}, {1446, 36908}, {1577, 6587}, {1895, 3079}, {1969, 15466}, {2155, 32}, {2167, 33629}, {2184, 6}, {2349, 15291}, {3596, 52346}, {3668, 40933}, {4086, 14308}, {4391, 14331}, {4602, 55224}, {5931, 21}, {6063, 33673}, {6526, 1096}, {8809, 56}, {10375, 1460}, {13157, 1953}, {14208, 8057}, {14213, 42459}, {14379, 52430}, {14572, 18594}, {14615, 1097}, {14638, 24018}, {14642, 9247}, {15394, 255}, {15416, 57045}, {16096, 8766}, {17858, 2883}, {17879, 122}, {18691, 5895}, {18750, 36413}, {19611, 3}, {19614, 184}, {20902, 1562}, {24006, 44705}, {30457, 41}, {33581, 560}, {33673, 7338}, {34403, 63}, {38956, 42074}, {39130, 41086}, {40071, 42699}, {40440, 38808}, {40703, 44704}, {41013, 53011}, {41082, 2360}, {41088, 2187}, {41489, 1973}, {41530, 75}, {44181, 24000}, {44326, 662}, {44692, 55}, {46639, 163}, {52158, 2194}, {52346, 6060}, {52559, 19614}, {52581, 92}, {53012, 228}, {53639, 162}, {56235, 101}, {57780, 69}, {57806, 14249}


X(57922) = ISOTOMIC CONJUGATE OF X(611)

Barycentrics    b^2*c^2*(a^4-2*a^3*b+(b^2-c^2)^2-2*a^2*(b^2+c^2)-2*a*b*(b^2+c^2))*(a^4-2*a^3*c+(b^2-c^2)^2-2*a^2*(b^2+c^2)-2*a*c*(b^2+c^2)) : :

X(57922) lies on these lines: {75, 40814}, {274, 57726}, {321, 57924}

X(57922) = isotomic conjugate of X(611)
X(57922) = trilinear pole of line {693, 28959}
X(57922) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(76)}}, {{A, B, C, X(261), X(54124)}}, {{A, B, C, X(290), X(6063)}}, {{A, B, C, X(310), X(40814)}}, {{A, B, C, X(327), X(3596)}}, {{A, B, C, X(7017), X(7018)}}
X(57922) = barycentric product X(i)*X(j) for these (i, j): {57726, 76}
X(57922) = barycentric quotient X(i)/X(j) for these (i, j): {2, 611}, {57726, 6}


X(57923) = ISOTOMIC CONJUGATE OF X(612)

Barycentrics    b*c*((a+b)^2+c^2)*(b^2+(a+c)^2) : :

X(57923) lies on these lines: {2, 304}, {7, 4388}, {10, 40831}, {27, 274}, {69, 11213}, {75, 305}, {86, 614}, {190, 40181}, {273, 6063}, {310, 3673}, {318, 18836}, {335, 27184}, {561, 1240}, {673, 2339}, {675, 1310}, {903, 54982}, {1036, 16823}, {1245, 2296}, {1268, 30758}, {1472, 52394}, {2221, 14621}, {3263, 5936}, {3757, 56358}, {4359, 39721}, {6376, 40033}, {6384, 33944}, {16817, 51686}, {18134, 27475}, {19799, 33935}, {31997, 56065}, {33891, 56332}, {33949, 44733}, {39731, 40123}, {40075, 58018}, {51861, 56124}, {52781, 57996}

X(57923) = isotomic conjugate of X(612)
X(57923) = trilinear pole of line {4509, 15413}
X(57923) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 54416}, {25, 7085}, {31, 612}, {32, 2345}, {41, 2285}, {42, 44119}, {55, 1460}, {100, 8646}, {101, 2484}, {110, 50494}, {184, 7102}, {213, 2303}, {228, 4206}, {388, 2175}, {560, 4385}, {607, 2286}, {692, 8678}, {1010, 1918}, {1038, 2212}, {1184, 7123}, {1253, 4320}, {1397, 3974}, {1576, 48395}, {1973, 5227}, {1974, 54433}, {6590, 32739}, {7365, 14827}
X(57923) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 612}, {9, 54416}, {223, 1460}, {244, 50494}, {1015, 2484}, {1086, 8678}, {3160, 2285}, {4858, 48395}, {6337, 5227}, {6374, 4385}, {6376, 2345}, {6505, 7085}, {6626, 2303}, {8054, 8646}, {15487, 1184}, {17113, 4320}, {34021, 1010}, {40592, 44119}, {40593, 388}, {40618, 2522}, {40619, 6590}
X(57923) = X(i)-cross conjugate of X(j) for these {i, j}: {10436, 85}, {26098, 92}, {33945, 75}, {48109, 668}
X(57923) = pole of line {8678, 48044} with respect to the Steiner inellipse
X(57923) = pole of line {612, 2303} with respect to the Wallace hyperbola
X(57923) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(614)}}, {{A, B, C, X(25), X(256)}}, {{A, B, C, X(57), X(39712)}}, {{A, B, C, X(85), X(561)}}, {{A, B, C, X(87), X(9285)}}, {{A, B, C, X(92), X(870)}}, {{A, B, C, X(105), X(977)}}, {{A, B, C, X(251), X(751)}}, {{A, B, C, X(257), X(21216)}}, {{A, B, C, X(261), X(1799)}}, {{A, B, C, X(269), X(4357)}}, {{A, B, C, X(274), X(304)}}, {{A, B, C, X(291), X(39951)}}, {{A, B, C, X(312), X(3112)}}, {{A, B, C, X(318), X(4388)}}, {{A, B, C, X(321), X(40028)}}, {{A, B, C, X(333), X(45962)}}, {{A, B, C, X(749), X(3108)}}, {{A, B, C, X(1390), X(34860)}}, {{A, B, C, X(1447), X(18891)}}, {{A, B, C, X(2481), X(34258)}}, {{A, B, C, X(3263), X(19804)}}, {{A, B, C, X(3705), X(3757)}}, {{A, B, C, X(4359), X(30758)}}, {{A, B, C, X(4385), X(33945)}}, {{A, B, C, X(4492), X(8770)}}, {{A, B, C, X(6376), X(33944)}}, {{A, B, C, X(7191), X(29667)}}, {{A, B, C, X(7261), X(56046)}}, {{A, B, C, X(7292), X(29679)}}, {{A, B, C, X(9281), X(9348)}}, {{A, B, C, X(9311), X(39713)}}, {{A, B, C, X(15315), X(28476)}}, {{A, B, C, X(16823), X(29641)}}, {{A, B, C, X(18018), X(20565)}}, {{A, B, C, X(18298), X(28630)}}, {{A, B, C, X(18832), X(40738)}}, {{A, B, C, X(19798), X(20336)}}, {{A, B, C, X(24239), X(29828)}}, {{A, B, C, X(25430), X(39714)}}, {{A, B, C, X(29681), X(29872)}}, {{A, B, C, X(30635), X(30690)}}, {{A, B, C, X(30710), X(32023)}}, {{A, B, C, X(32021), X(40012)}}, {{A, B, C, X(56219), X(56328)}}
X(57923) = barycentric product X(i)*X(j) for these (i, j): {310, 56219}, {514, 54982}, {1036, 20567}, {1039, 57918}, {1245, 6385}, {1310, 3261}, {1472, 1502}, {2221, 561}, {2339, 6063}, {30479, 85}, {37215, 693}, {40364, 51686}, {40831, 614}, {56328, 76}
X(57923) = barycentric quotient X(i)/X(j) for these (i, j): {1, 54416}, {2, 612}, {7, 2285}, {27, 4206}, {57, 1460}, {63, 7085}, {69, 5227}, {75, 2345}, {76, 4385}, {77, 2286}, {81, 44119}, {85, 388}, {86, 2303}, {92, 7102}, {274, 1010}, {279, 4320}, {304, 54433}, {305, 19799}, {312, 3974}, {348, 1038}, {513, 2484}, {514, 8678}, {614, 1184}, {649, 8646}, {661, 50494}, {693, 6590}, {1036, 41}, {1039, 607}, {1088, 7365}, {1245, 213}, {1310, 101}, {1434, 5323}, {1472, 32}, {1577, 48395}, {1847, 7103}, {2221, 31}, {2281, 1918}, {2339, 55}, {3261, 2517}, {3668, 8898}, {3673, 5286}, {4025, 2522}, {4554, 14594}, {6385, 44154}, {7182, 56367}, {7199, 47844}, {7289, 19459}, {10436, 34261}, {14258, 12514}, {15413, 23874}, {20336, 3610}, {23062, 7197}, {30479, 9}, {34260, 2258}, {36099, 8750}, {37215, 100}, {39732, 40184}, {40831, 57925}, {51686, 1973}, {54982, 190}, {56219, 42}, {56328, 6}, {56841, 40976}


X(57924) = ISOTOMIC CONJUGATE OF X(613)

Barycentrics    b^2*c^2*(a^4+2*a^3*b+(b^2-c^2)^2-2*a^2*(b^2+c^2)+2*a*b*(b^2+c^2))*(a^4+2*a^3*c+(b^2-c^2)^2-2*a^2*(b^2+c^2)+2*a*c*(b^2+c^2)) : :

X(57924) lies on these lines: {75, 25007}, {274, 25583}, {321, 57922}

X(57924) = isotomic conjugate of X(613)
X(57924) = trilinear pole of line {693, 29003}
X(57924) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(25007)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(290), X(3596)}}, {{A, B, C, X(327), X(6063)}}, {{A, B, C, X(4998), X(54124)}}, {{A, B, C, X(7017), X(7033)}}
X(57924) = barycentric product X(i)*X(j) for these (i, j): {57727, 76}
X(57924) = barycentric quotient X(i)/X(j) for these (i, j): {2, 613}, {57727, 6}


X(57925) = ISOTOMIC CONJUGATE OF X(614)

Barycentrics    b*(b^2+(a-c)^2)*c*((a-b)^2+c^2) : :

X(57925) lies on these lines: {2, 30701}, {7, 3263}, {10, 40831}, {27, 19799}, {75, 40022}, {86, 612}, {190, 15487}, {273, 3596}, {304, 10327}, {305, 341}, {310, 4385}, {312, 673}, {321, 39721}, {675, 52778}, {903, 54967}, {1440, 57783}, {1824, 20336}, {3264, 58028}, {3757, 55967}, {4373, 31130}, {4986, 5272}, {5205, 56358}, {5936, 26234}, {6376, 40038}, {6384, 33938}, {7035, 39293}, {7084, 52394}, {7123, 14621}, {7249, 29641}, {11059, 56074}, {15497, 49773}, {20947, 55970}, {27801, 57497}, {33891, 56247}, {40403, 56047}, {42384, 52781}

X(57925) = isotomic conjugate of X(614)
X(57925) = trilinear pole of line {15416, 48033}
X(57925) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 16502}, {25, 1473}, {28, 22363}, {31, 614}, {32, 4000}, {41, 28017}, {56, 7083}, {58, 40934}, {81, 21750}, {110, 50490}, {184, 1851}, {228, 4211}, {497, 1397}, {560, 3673}, {593, 21813}, {603, 40987}, {604, 2082}, {608, 7124}, {667, 1633}, {1040, 1395}, {1106, 4319}, {1184, 2221}, {1333, 16583}, {1402, 5324}, {1407, 30706}, {1408, 40965}, {1474, 23620}, {1576, 48403}, {1790, 8020}, {1919, 3732}, {1973, 7289}, {1974, 17170}, {2175, 7195}, {2194, 40961}, {2203, 17441}, {2205, 16750}, {2206, 3914}, {6554, 52410}, {7366, 28070}, {19459, 51686}, {32739, 48398}
X(57925) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 7083}, {2, 614}, {9, 16502}, {10, 40934}, {37, 16583}, {244, 50490}, {1214, 40961}, {2968, 17115}, {3160, 28017}, {3161, 2082}, {4858, 48403}, {6337, 7289}, {6374, 3673}, {6376, 4000}, {6505, 1473}, {6552, 4319}, {6631, 1633}, {7952, 40987}, {9296, 3732}, {24771, 30706}, {40181, 1184}, {40586, 21750}, {40591, 22363}, {40593, 7195}, {40603, 3914}, {40605, 5324}, {40619, 48398}, {51574, 23620}
X(57925) = X(i)-cross conjugate of X(j) for these {i, j}: {3239, 1978}, {15413, 668}, {17282, 85}, {28420, 304}, {33144, 92}, {33937, 75}
X(57925) = pole of line {614, 5324} with respect to the Wallace hyperbola
X(57925) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(612)}}, {{A, B, C, X(25), X(291)}}, {{A, B, C, X(43), X(9285)}}, {{A, B, C, X(57), X(39714)}}, {{A, B, C, X(76), X(21609)}}, {{A, B, C, X(85), X(3112)}}, {{A, B, C, X(92), X(334)}}, {{A, B, C, X(105), X(34860)}}, {{A, B, C, X(200), X(3717)}}, {{A, B, C, X(251), X(749)}}, {{A, B, C, X(256), X(39951)}}, {{A, B, C, X(274), X(39731)}}, {{A, B, C, X(305), X(3596)}}, {{A, B, C, X(312), X(561)}}, {{A, B, C, X(318), X(4518)}}, {{A, B, C, X(321), X(30758)}}, {{A, B, C, X(341), X(5423)}}, {{A, B, C, X(596), X(39954)}}, {{A, B, C, X(751), X(3108)}}, {{A, B, C, X(1016), X(34409)}}, {{A, B, C, X(1390), X(31359)}}, {{A, B, C, X(1581), X(56357)}}, {{A, B, C, X(1799), X(4998)}}, {{A, B, C, X(2481), X(40012)}}, {{A, B, C, X(3223), X(30663)}}, {{A, B, C, X(3673), X(33937)}}, {{A, B, C, X(3705), X(5205)}}, {{A, B, C, X(3920), X(29679)}}, {{A, B, C, X(5297), X(29667)}}, {{A, B, C, X(6063), X(32017)}}, {{A, B, C, X(6376), X(33938)}}, {{A, B, C, X(7081), X(29641)}}, {{A, B, C, X(7172), X(39570)}}, {{A, B, C, X(7179), X(27064)}}, {{A, B, C, X(7224), X(17743)}}, {{A, B, C, X(7233), X(39694)}}, {{A, B, C, X(7241), X(8770)}}, {{A, B, C, X(8817), X(30701)}}, {{A, B, C, X(15344), X(56137)}}, {{A, B, C, X(18018), X(20566)}}, {{A, B, C, X(18152), X(21615)}}, {{A, B, C, X(18359), X(30636)}}, {{A, B, C, X(18743), X(31130)}}, {{A, B, C, X(19799), X(20336)}}, {{A, B, C, X(19804), X(26234)}}, {{A, B, C, X(25430), X(39712)}}, {{A, B, C, X(26703), X(40436)}}, {{A, B, C, X(27801), X(33932)}}, {{A, B, C, X(28997), X(33864)}}, {{A, B, C, X(29665), X(29873)}}, {{A, B, C, X(32023), X(36805)}}, {{A, B, C, X(40013), X(40028)}}
X(57925) = barycentric product X(i)*X(j) for these (i, j): {310, 56260}, {312, 8817}, {313, 40403}, {514, 54967}, {561, 7123}, {1037, 28659}, {1041, 57919}, {1502, 7084}, {3261, 52778}, {3596, 7131}, {4025, 42384}, {20336, 40411}, {30701, 75}, {30705, 341}, {40831, 612}, {48070, 668}, {52622, 8269}, {56179, 76}, {56243, 6063}
X(57925) = barycentric quotient X(i)/X(j) for these (i, j): {1, 16502}, {2, 614}, {7, 28017}, {8, 2082}, {9, 7083}, {10, 16583}, {27, 4211}, {37, 40934}, {42, 21750}, {63, 1473}, {69, 7289}, {71, 22363}, {72, 23620}, {75, 4000}, {76, 3673}, {78, 7124}, {85, 7195}, {92, 1851}, {190, 1633}, {200, 30706}, {226, 40961}, {281, 40987}, {304, 17170}, {306, 17441}, {310, 16750}, {312, 497}, {313, 53510}, {321, 3914}, {333, 5324}, {341, 6554}, {345, 1040}, {346, 4319}, {612, 1184}, {661, 50490}, {668, 3732}, {693, 48398}, {756, 21813}, {1037, 604}, {1041, 608}, {1577, 48403}, {1824, 8020}, {2321, 40965}, {3239, 17115}, {3263, 51400}, {3718, 27509}, {3998, 22057}, {4385, 5286}, {5227, 19459}, {5423, 28070}, {7084, 32}, {7101, 1863}, {7123, 31}, {7131, 56}, {8269, 1461}, {8816, 4320}, {8817, 57}, {10327, 15487}, {14208, 21107}, {19799, 7386}, {20336, 18589}, {30693, 4012}, {30701, 1}, {30705, 269}, {33932, 17671}, {39749, 21450}, {40071, 20235}, {40403, 58}, {40411, 28}, {40831, 57923}, {41013, 52577}, {42384, 1897}, {46738, 11677}, {48070, 513}, {52369, 21015}, {52778, 101}, {54967, 190}, {56179, 6}, {56243, 55}, {56260, 42}, {56359, 1407}, {57386, 2203}


X(57926) = ISOTOMIC CONJUGATE OF X(625)

Barycentrics    (2*(a^4-a^2*b^2+b^4)-(a^2+b^2)*c^2)*(2*a^4-b^2*c^2+2*c^4-a^2*(b^2+2*c^2)) : :

X(57926) lies on these lines: {187, 18023}, {316, 56057}, {599, 1078}, {670, 7793}, {3972, 18575}, {5094, 36794}, {7771, 44558}, {7931, 10130}, {8859, 42008}, {9464, 31128}, {11643, 23288}, {26613, 36882}

X(57926) = isogonal conjugate of X(20977)
X(57926) = isotomic conjugate of X(625)
X(57926) = trilinear pole of line {194, 5652}
X(57926) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20977}, {6, 17472}, {19, 22087}, {31, 625}, {32, 20904}, {213, 17204}, {692, 21136}, {1333, 21048}
X(57926) = X(i)-vertex conjugate of X(j) for these {i, j}: {3228, 18105}
X(57926) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 625}, {3, 20977}, {6, 22087}, {9, 17472}, {37, 21048}, {1086, 21136}, {6376, 20904}, {6626, 17204}
X(57926) = X(i)-cross conjugate of X(j) for these {i, j}: {53347, 2966}, {53365, 99}
X(57926) = pole of line {20977, 22087} with respect to the Stammler hyperbola
X(57926) = pole of line {625, 17204} with respect to the Wallace hyperbola
X(57926) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(67)}}, {{A, B, C, X(6), X(39560)}}, {{A, B, C, X(76), X(7870)}}, {{A, B, C, X(83), X(95)}}, {{A, B, C, X(98), X(3228)}}, {{A, B, C, X(111), X(31128)}}, {{A, B, C, X(141), X(7931)}}, {{A, B, C, X(308), X(9516)}}, {{A, B, C, X(524), X(8587)}}, {{A, B, C, X(670), X(3222)}}, {{A, B, C, X(1177), X(44823)}}, {{A, B, C, X(1494), X(40429)}}, {{A, B, C, X(1916), X(36953)}}, {{A, B, C, X(1989), X(35511)}}, {{A, B, C, X(2373), X(44182)}}, {{A, B, C, X(2996), X(34285)}}, {{A, B, C, X(3266), X(10511)}}, {{A, B, C, X(3613), X(42332)}}, {{A, B, C, X(3972), X(7771)}}, {{A, B, C, X(4235), X(46599)}}, {{A, B, C, X(5215), X(31173)}}, {{A, B, C, X(5970), X(32740)}}, {{A, B, C, X(7578), X(42300)}}, {{A, B, C, X(7607), X(40826)}}, {{A, B, C, X(7737), X(21843)}}, {{A, B, C, X(7793), X(36615)}}, {{A, B, C, X(7881), X(18840)}}, {{A, B, C, X(8182), X(37809)}}, {{A, B, C, X(8781), X(42349)}}, {{A, B, C, X(9164), X(25322)}}, {{A, B, C, X(11643), X(32901)}}, {{A, B, C, X(17983), X(18823)}}, {{A, B, C, X(18845), X(46952)}}, {{A, B, C, X(26613), X(51224)}}, {{A, B, C, X(36792), X(51541)}}, {{A, B, C, X(42286), X(43528)}}, {{A, B, C, X(45857), X(52395)}}, {{A, B, C, X(51237), X(53109)}}
X(57926) = barycentric product X(i)*X(j) for these (i, j): {57729, 76}
X(57926) = barycentric quotient X(i)/X(j) for these (i, j): {1, 17472}, {2, 625}, {3, 22087}, {6, 20977}, {10, 21048}, {75, 20904}, {86, 17204}, {514, 21136}, {44102, 41911}, {57729, 6}


X(57927) = ISOTOMIC CONJUGATE OF X(632)

Barycentrics    (3*(a^2-b^2)^2-7*(a^2+b^2)*c^2+4*c^4)*(3*a^4+4*b^4-7*b^2*c^2+3*c^4-a^2*(7*b^2+6*c^2)) : :

X(57927) lies on these lines: {69, 15520}, {95, 3628}, {264, 5070}, {287, 51126}, {5067, 36948}, {15699, 54105}, {40410, 55856}, {46724, 55857}, {47599, 55958}

X(57927) = isogonal conjugate of X(44111)
X(57927) = isotomic conjugate of X(632)
X(57927) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44111}, {31, 632}
X(57927) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 632}, {3, 44111}
X(57927) = pole of line {632, 44111} with respect to the Wallace hyperbola
X(57927) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5070)}}, {{A, B, C, X(5), X(3628)}}, {{A, B, C, X(6), X(15520)}}, {{A, B, C, X(66), X(11668)}}, {{A, B, C, X(98), X(45090)}}, {{A, B, C, X(265), X(31846)}}, {{A, B, C, X(290), X(56059)}}, {{A, B, C, X(325), X(51126)}}, {{A, B, C, X(393), X(53098)}}, {{A, B, C, X(547), X(15699)}}, {{A, B, C, X(549), X(47599)}}, {{A, B, C, X(632), X(48154)}}, {{A, B, C, X(1105), X(14813)}}, {{A, B, C, X(1656), X(14841)}}, {{A, B, C, X(2165), X(11669)}}, {{A, B, C, X(2963), X(7608)}}, {{A, B, C, X(3090), X(5067)}}, {{A, B, C, X(3613), X(53104)}}, {{A, B, C, X(5055), X(15703)}}, {{A, B, C, X(5056), X(46935)}}, {{A, B, C, X(6329), X(37647)}}, {{A, B, C, X(6368), X(17041)}}, {{A, B, C, X(7486), X(46936)}}, {{A, B, C, X(7607), X(46223)}}, {{A, B, C, X(10185), X(45838)}}, {{A, B, C, X(14494), X(46217)}}, {{A, B, C, X(15321), X(54644)}}, {{A, B, C, X(16045), X(32958)}}, {{A, B, C, X(16922), X(32967)}}, {{A, B, C, X(18840), X(52718)}}, {{A, B, C, X(20582), X(37688)}}, {{A, B, C, X(21400), X(40448)}}, {{A, B, C, X(24243), X(43564)}}, {{A, B, C, X(24244), X(43565)}}, {{A, B, C, X(30598), X(46136)}}, {{A, B, C, X(32955), X(32957)}}, {{A, B, C, X(32968), X(32976)}}, {{A, B, C, X(32969), X(32975)}}, {{A, B, C, X(32992), X(33249)}}, {{A, B, C, X(32998), X(32999)}}, {{A, B, C, X(33041), X(33048)}}, {{A, B, C, X(34816), X(43664)}}, {{A, B, C, X(35142), X(43527)}}, {{A, B, C, X(36611), X(46952)}}, {{A, B, C, X(40405), X(42332)}}, {{A, B, C, X(42021), X(46921)}}, {{A, B, C, X(43726), X(54645)}}, {{A, B, C, X(52154), X(57408)}}, {{A, B, C, X(52223), X(52717)}}
X(57927) = barycentric product X(i)*X(j) for these (i, j): {57730, 76}
X(57927) = barycentric quotient X(i)/X(j) for these (i, j): {2, 632}, {6, 44111}, {288, 39667}, {57730, 6}


X(57928) = ISOTOMIC CONJUGATE OF X(676)

Barycentrics    (a-b)*(a-c)*((a-b)^2*(a+b)+(a+b)*c^2-2*c^3)*(a^3-2*b^3-a^2*c+b^2*c+c^3+a*(b-c)*(b+c)) : :

X(57928) lies on these lines: {99, 15411}, {103, 8709}, {190, 3234}, {664, 4163}, {677, 4563}, {927, 50333}, {1016, 4561}, {1566, 35158}, {3263, 51560}, {3699, 4998}, {4554, 35518}, {4555, 15634}, {4607, 36101}, {8706, 24016}, {15742, 57054}, {17932, 17934}

X(57928) = isotomic conjugate of X(676)
X(57928) = trilinear pole of line {69, 144}
X(57928) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 676}, {244, 2426}, {516, 667}, {649, 910}, {663, 1456}, {798, 14953}, {875, 51435}, {884, 53547}, {1019, 51436}, {1407, 46392}, {1886, 22383}, {1919, 30807}, {1973, 39470}, {1977, 42719}, {1980, 35517}, {2398, 3248}, {2424, 42077}, {3063, 43035}, {9502, 43929}, {17747, 57129}, {34858, 42756}, {40869, 57181}, {41339, 43924}
X(57928) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 676}, {5375, 910}, {6337, 39470}, {6631, 516}, {9296, 30807}, {10001, 43035}, {16586, 42756}, {24771, 46392}, {31998, 14953}, {45250, 665}
X(57928) = X(i)-cross conjugate of X(j) for these {i, j}: {883, 668}, {2398, 190}, {2400, 18025}, {2424, 36101}, {3717, 1016}, {26006, 1275}, {53573, 2}
X(57928) = pole of line {676, 39470} with respect to the Wallace hyperbola
X(57928) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(927)}}, {{A, B, C, X(75), X(13136)}}, {{A, B, C, X(99), X(4554)}}, {{A, B, C, X(645), X(4572)}}, {{A, B, C, X(655), X(5936)}}, {{A, B, C, X(664), X(30610)}}, {{A, B, C, X(666), X(51614)}}, {{A, B, C, X(668), X(3699)}}, {{A, B, C, X(677), X(40116)}}, {{A, B, C, X(883), X(3717)}}, {{A, B, C, X(919), X(1390)}}, {{A, B, C, X(1016), X(4555)}}, {{A, B, C, X(2400), X(15634)}}, {{A, B, C, X(3263), X(4583)}}, {{A, B, C, X(4569), X(44327)}}, {{A, B, C, X(6335), X(6606)}}, {{A, B, C, X(15411), X(35518)}}, {{A, B, C, X(54953), X(56365)}}
X(57928) = barycentric product X(i)*X(j) for these (i, j): {100, 57996}, {103, 1978}, {305, 40116}, {677, 76}, {1016, 2400}, {1502, 32642}, {2338, 4572}, {2424, 31625}, {3699, 52156}, {4561, 52781}, {6386, 911}, {15634, 6632}, {18025, 190}, {36039, 561}, {36101, 668}, {36802, 56668}, {43736, 646}, {53133, 54979}
X(57928) = barycentric quotient X(i)/X(j) for these (i, j): {2, 676}, {69, 39470}, {99, 14953}, {100, 910}, {103, 649}, {190, 516}, {200, 46392}, {644, 41339}, {651, 1456}, {664, 43035}, {666, 56639}, {668, 30807}, {677, 6}, {883, 39063}, {908, 42756}, {911, 667}, {1016, 2398}, {1025, 53547}, {1026, 9502}, {1252, 2426}, {1275, 23973}, {1815, 1459}, {1897, 1886}, {1978, 35517}, {2338, 663}, {2398, 23972}, {2400, 1086}, {2424, 1015}, {3570, 51435}, {3699, 40869}, {3952, 17747}, {4557, 51436}, {4561, 26006}, {4571, 51376}, {4578, 51418}, {7035, 42719}, {9503, 1027}, {15634, 6545}, {15742, 41321}, {17233, 55123}, {17780, 51406}, {18004, 2681}, {18025, 514}, {24016, 1407}, {30565, 57439}, {32642, 32}, {32668, 1106}, {36039, 31}, {36056, 22383}, {36101, 513}, {36122, 6591}, {36802, 56900}, {39293, 56786}, {40116, 25}, {41321, 42073}, {42719, 24014}, {42720, 50441}, {43290, 53579}, {43736, 3669}, {45144, 1960}, {50333, 1566}, {52156, 3676}, {52213, 53539}, {52609, 51366}, {52781, 7649}, {53133, 29240}, {53150, 2969}, {55257, 3122}, {56668, 43042}, {57996, 693}


X(57929) = ISOTOMIC CONJUGATE OF X(678)

Barycentrics    b*(a+b-2*c)^2*c*(a-2*b+c)^2 : :

X(57929) lies on these lines: {75, 36594}, {679, 4634}, {903, 17449}, {2863, 39414}, {3264, 40075}, {4358, 4945}

X(57929) = isotomic conjugate of X(678)
X(57929) = trilinear pole of line {3762, 20568}
X(57929) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1017}, {25, 22371}, {31, 678}, {32, 4370}, {44, 2251}, {184, 42070}, {519, 9459}, {560, 4738}, {692, 3251}, {902, 902}, {1110, 42084}, {1317, 2175}, {1333, 21821}, {1397, 4152}, {1501, 36791}, {1919, 53582}, {1960, 23344}, {2205, 16729}, {3285, 52963}, {6066, 14027}, {6544, 32739}, {6551, 14637}, {23990, 35092}, {32719, 33922}
X(57929) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 678}, {9, 1017}, {37, 21821}, {514, 42084}, {900, 14835}, {1086, 3251}, {1577, 4542}, {6374, 4738}, {6376, 4370}, {6505, 22371}, {9296, 53582}, {9460, 44}, {40593, 1317}, {40594, 902}, {40595, 2251}, {40619, 6544}, {40624, 4543}
X(57929) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 20568}
X(57929) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(17449)}}, {{A, B, C, X(75), X(693)}}, {{A, B, C, X(310), X(18145)}}, {{A, B, C, X(561), X(40029)}}, {{A, B, C, X(679), X(30575)}}, {{A, B, C, X(873), X(6063)}}, {{A, B, C, X(903), X(4945)}}, {{A, B, C, X(6548), X(46795)}}, {{A, B, C, X(18822), X(39699)}}, {{A, B, C, X(30866), X(31002)}}
X(57929) = barycentric product X(i)*X(j) for these (i, j): {679, 76}, {1318, 20567}, {1928, 41935}, {2226, 561}, {3261, 4618}, {4049, 4634}, {20568, 903}, {20569, 36594}, {30575, 310}, {40495, 4638}, {54974, 75}, {57995, 88}
X(57929) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1017}, {2, 678}, {10, 21821}, {63, 22371}, {75, 4370}, {76, 4738}, {85, 1317}, {88, 902}, {92, 42070}, {106, 2251}, {310, 16729}, {312, 4152}, {514, 3251}, {561, 36791}, {668, 53582}, {679, 6}, {693, 6544}, {903, 44}, {1022, 1960}, {1086, 42084}, {1111, 35092}, {1318, 41}, {1797, 23202}, {2226, 31}, {3257, 23344}, {3762, 33922}, {4049, 4730}, {4080, 21805}, {4358, 8028}, {4391, 4543}, {4555, 1023}, {4618, 101}, {4638, 692}, {4674, 52963}, {4858, 4542}, {4997, 3689}, {6548, 1635}, {6549, 2087}, {9456, 9459}, {20568, 519}, {24002, 39771}, {30575, 42}, {35092, 14835}, {36594, 45}, {39414, 32665}, {40029, 36924}, {40495, 52627}, {41935, 560}, {52553, 17455}, {52574, 17460}, {54974, 1}, {55244, 14407}, {56049, 1404}, {57995, 4358}


X(57930) = ISOTOMIC CONJUGATE OF X(680)

Barycentrics    (a-b)*b^3*(a-c)*c^3*((a^2-b^2)^2*(a^2+a*b+b^2)-2*(a+b)^2*(a^2-a*b+b^2)*c^2+(a^2+a*b+b^2)*c^4)*(a^4-(b^2-c^2)^2)^2*(a^6+a^5*c+a*c*(b^2-c^2)^2-2*a^3*c*(b^2+c^2)-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4-c^4)) : :

X(57930) lies on the Steiner circumellipse and on these lines: {99, 681}

X(57930) = isotomic conjugate of X(680)
X(57930) = trilinear pole of line {2, 828}
X(57930) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 680}, {560, 35521}
X(57930) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 680}, {6374, 35521}, {39060, 53819}
X(57930) = barycentric product X(i)*X(j) for these (i, j): {681, 76}, {56227, 57973}
X(57930) = barycentric quotient X(i)/X(j) for these (i, j): {2, 680}, {76, 35521}, {681, 6}, {18026, 53819}, {53817, 1946}, {54240, 19366}, {56227, 822}


X(57931) = ISOTOMIC CONJUGATE OF X(682)

Barycentrics    b^4*c^4*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2+(a^2+b^2)*c^2)*(a^4+a^2*(b^2-2*c^2)+c^2*(b^2+c^2)) : :

X(57931) lies on these lines: {4, 683}, {264, 40360}, {393, 1502}, {1093, 44161}, {6531, 9230}, {18022, 34208}, {32085, 40413}

X(57931) = isotomic conjugate of X(682)
X(57931) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 682}, {255, 3080}, {560, 6467}, {1196, 9247}, {1368, 1917}, {1501, 18671}, {9233, 21406}, {14575, 17872}, {40325, 52430}
X(57931) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 682}, {6374, 6467}, {6523, 3080}
X(57931) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(93)}}, {{A, B, C, X(1502), X(40050)}}, {{A, B, C, X(9230), X(44132)}}, {{A, B, C, X(18024), X(40162)}}
X(57931) = barycentric product X(i)*X(j) for these (i, j): {683, 76}, {1502, 40413}, {18022, 40405}, {40362, 57388}
X(57931) = barycentric quotient X(i)/X(j) for these (i, j): {2, 682}, {76, 6467}, {264, 1196}, {305, 22401}, {393, 3080}, {561, 18671}, {683, 6}, {1502, 1368}, {1928, 21406}, {1969, 17872}, {2052, 40325}, {6331, 53273}, {18022, 5254}, {40405, 184}, {40413, 32}, {41530, 45207}, {57388, 1501}, {57796, 16716}


X(57932) = ISOTOMIC CONJUGATE OF X(686)

Barycentrics    (a-b)*b^2*(a+b)*(a-c)*c^2*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+2*b^2*c^2-c^4))*(a^6-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4+2*b^2*c^2+c^4)) : :

X(57932) lies on these lines: {687, 4590}, {850, 57804}, {892, 46111}, {1300, 9150}, {2986, 43187}, {4620, 46404}, {6528, 18020}, {10420, 22456}, {15328, 57739}, {42405, 43755}, {44132, 52498}, {57829, 57981}

X(57932) = isotomic conjugate of X(686)
X(57932) = trilinear pole of line {99, 264}
X(57932) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 686}, {48, 21731}, {512, 2315}, {560, 6334}, {798, 13754}, {810, 3003}, {822, 44084}, {1725, 3049}, {2631, 51821}, {9247, 55121}, {47236, 52430}
X(57932) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 686}, {1249, 21731}, {6374, 6334}, {31998, 13754}, {39054, 2315}, {39062, 3003}
X(57932) = pole of line {686, 47405} with respect to the Wallace hyperbola
X(57932) = intersection, other than A, B, C, of circumconics {{A, B, C, X(275), X(32697)}}, {{A, B, C, X(648), X(1304)}}, {{A, B, C, X(892), X(4590)}}, {{A, B, C, X(2986), X(10420)}}, {{A, B, C, X(4563), X(10425)}}, {{A, B, C, X(6331), X(6528)}}, {{A, B, C, X(18022), X(53080)}}, {{A, B, C, X(18829), X(34405)}}
X(57932) = barycentric product X(i)*X(j) for these (i, j): {687, 76}, {1300, 670}, {1502, 32708}, {2986, 6331}, {10420, 18022}, {16077, 52552}, {18027, 43755}, {18878, 264}, {36053, 57968}, {36114, 561}, {40832, 648}, {46106, 55264}, {57829, 6528}
X(57932) = barycentric quotient X(i)/X(j) for these (i, j): {2, 686}, {4, 21731}, {76, 6334}, {99, 13754}, {107, 44084}, {264, 55121}, {648, 3003}, {662, 2315}, {687, 6}, {811, 1725}, {1300, 512}, {1304, 51821}, {2052, 47236}, {2407, 47405}, {2986, 647}, {5504, 39201}, {6331, 3580}, {6528, 403}, {10420, 184}, {14910, 3049}, {15328, 20975}, {15421, 3269}, {15454, 9409}, {16077, 14264}, {18020, 15329}, {18878, 3}, {18879, 32661}, {22456, 52451}, {32708, 32}, {35139, 39170}, {36053, 810}, {36114, 31}, {38936, 14270}, {40423, 14380}, {40427, 14582}, {40832, 525}, {43755, 577}, {46106, 55265}, {46456, 56403}, {51965, 14398}, {52505, 30451}, {52552, 9033}, {55231, 18609}, {55264, 14919}, {57760, 43709}, {57829, 520}


X(57933) = ISOTOMIC CONJUGATE OF X(700)

Barycentrics    (a^3*b^3*(a+b)-(a^4+b^4)*c^3)*(-(a^3*c^4)+b^3*c^4+a^4*(b^3-c^3)) : :

X(57933) lies on the Steiner circumellipse and on these lines: {1, 46132}, {32, 4586}, {99, 701}, {190, 32453}, {668, 869}, {670, 3736}, {730, 54985}, {1911, 41072}, {6373, 43096}

X(57933) = isogonal conjugate of X(57020)
X(57933) = isotomic conjugate of X(700)
X(57933) = trilinear pole of line {2, 46386}
X(57933) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 57020}, {31, 700}, {560, 35525}
X(57933) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 700}, {3, 57020}, {6374, 35525}
X(57933) = pole of line {700, 57020} with respect to the Wallace hyperbola
X(57933) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(274), X(44165)}}, {{A, B, C, X(330), X(32453)}}, {{A, B, C, X(730), X(6373)}}, {{A, B, C, X(33296), X(40844)}}
X(57933) = barycentric product X(i)*X(j) for these (i, j): {701, 76}
X(57933) = barycentric quotient X(i)/X(j) for these (i, j): {2, 700}, {6, 57020}, {76, 35525}, {701, 6}


X(57934) = ISOTOMIC CONJUGATE OF X(704)

Barycentrics    (a^4*b^4*(a+b)-(a^4+b^4)*c^5)*(a^5*c^4-b^5*c^4+a^4*(-b^5+c^5)) : :

X(57934) lies on the Steiner circumellipse and on these lines: {99, 705}, {668, 14620}

X(57934) = isotomic conjugate of X(704)
X(57934) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 704}, {560, 35527}
X(57934) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 704}, {6374, 35527}
X(57934) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(42486)}}, {{A, B, C, X(32), X(75)}}, {{A, B, C, X(86), X(44165)}}, {{A, B, C, X(99), X(190)}}
X(57934) = barycentric product X(i)*X(j) for these (i, j): {705, 76}
X(57934) = barycentric quotient X(i)/X(j) for these (i, j): {2, 704}, {76, 35527}, {705, 6}


X(57935) = ISOTOMIC CONJUGATE OF X(706)

Barycentrics    (a^4*b^4*(a^2+b^2)-(a^4+b^4)*c^6)*(a^6*c^4-b^6*c^4+a^4*(-b^6+c^6)) : :

X(57935) lies on the Steiner circumellipse and on these lines: {32, 33514}, {99, 707}, {670, 3094}, {694, 41073}, {736, 18829}, {804, 57943}, {3721, 46132}, {4577, 43977}, {4586, 40935}, {53197, 53375}

X(57935) = isotomic conjugate of X(706)
X(57935) = trilinear pole of line {2, 17415}
X(57935) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 706}, {560, 35528}
X(57935) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 706}, {6374, 35528}
X(57935) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(39939)}}, {{A, B, C, X(32), X(76)}}, {{A, B, C, X(83), X(44165)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(736), X(804)}}, {{A, B, C, X(2367), X(56976)}}, {{A, B, C, X(16985), X(37888)}}, {{A, B, C, X(44163), X(46288)}}
X(57935) = barycentric product X(i)*X(j) for these (i, j): {707, 76}
X(57935) = barycentric quotient X(i)/X(j) for these (i, j): {2, 706}, {76, 35528}, {707, 6}


X(57936) = ISOTOMIC CONJUGATE OF X(708)

Barycentrics    (a^4*b^4*(a^3+b^3)-(a^4+b^4)*c^7)*(a^7*c^4-b^7*c^4+a^4*(-b^7+c^7)) : :

X(57936) lies on the Steiner circumellipse and on these lines: {99, 709}

X(57936) = isotomic conjugate of X(708)
X(57936) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 708}, {560, 35529}
X(57936) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 708}, {6374, 35529}
X(57936) = intersection, other than A, B, C, of circumconics {{A, B, C, X(32), X(561)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(7357), X(42486)}}, {{A, B, C, X(40415), X(44165)}}
X(57936) = barycentric product X(i)*X(j) for these (i, j): {709, 76}
X(57936) = barycentric quotient X(i)/X(j) for these (i, j): {2, 708}, {76, 35529}, {709, 6}


X(57937) = ISOTOMIC CONJUGATE OF X(710)

Barycentrics    (a^4+b^4)*(-b^2+a*c)*(b^2+a*c)*(a*b-c^2)*(a*b+c^2)*(b^4+a^2*c^2)*(a^4+c^4)*(a^2*b^2+c^4) : :

X(57937) lies on the Steiner circumellipse and on these lines: {32, 33515}, {99, 695}, {626, 14946}, {670, 9229}, {4577, 8265}, {18829, 51982}

X(57937) = isotomic conjugate of X(710)
X(57937) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 710}, {560, 35530}, {2085, 16985}, {4118, 51320}, {20859, 51904}
X(57937) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 710}, {6374, 35530}
X(57937) = X(i)-cross conjugate of X(j) for these {i, j}: {710, 2}, {56978, 51982}
X(57937) = intersection, other than A, B, C, of circumconics {{A, B, C, X(32), X(626)}}, {{A, B, C, X(66), X(42486)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(695), X(9229)}}, {{A, B, C, X(40416), X(44165)}}
X(57937) = barycentric product X(i)*X(j) for these (i, j): {711, 76}, {14946, 44165}, {38830, 51982}, {40416, 40847}
X(57937) = barycentric quotient X(i)/X(j) for these (i, j): {2, 710}, {76, 35530}, {711, 6}, {14946, 8265}, {38826, 51320}, {40416, 16985}, {40847, 626}, {51982, 20859}


X(57938) = ISOTOMIC CONJUGATE OF X(718)

Barycentrics    (a+b)*(a+c)*(-(a^2*b^4)+a*b^4*c-b^4*c^2+a^3*c^3)*(a^3*b^3-(a^2-a*b+b^2)*c^4) : :

X(57938) lies on the Steiner circumellipse and on these lines: {31, 4577}, {38, 670}, {75, 42371}, {99, 719}, {190, 21814}, {668, 21035}

X(57938) = isotomic conjugate of X(718)
X(57938) = trilinear pole of line {2, 2084}
X(57938) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2231}, {31, 718}, {560, 35534}
X(57938) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 718}, {9, 2231}, {6374, 35534}
X(57938) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(31), X(38)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(4373), X(38276)}}
X(57938) = barycentric product X(i)*X(j) for these (i, j): {719, 76}
X(57938) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2231}, {2, 718}, {76, 35534}, {719, 6}


X(57939) = ISOTOMIC CONJUGATE OF X(720)

Barycentrics    (a^3*b^3*(a^2+b^2)-(a^3+b^3)*c^5)*(a^5*c^3-b^5*c^3+a^3*(-b^5+c^5)) : :

X(57939) lies on the Steiner circumellipse and on these lines: {99, 721}, {190, 14620}

X(57939) = isotomic conjugate of X(720)
X(57939) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2232}, {31, 720}, {560, 35535}
X(57939) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 720}, {9, 2232}, {6374, 35535}
X(57939) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(31), X(76)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(2996), X(38276)}}
X(57939) = barycentric product X(i)*X(j) for these (i, j): {721, 76}
X(57939) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2232}, {2, 720}, {76, 35535}, {721, 6}


X(57940) = ISOTOMIC CONJUGATE OF X(722)

Barycentrics    (a+b)*(a^2-a*b+b^2)*(a+c)*(-b^2+a*c)*(a*b-c^2)*(a^2-a*c+c^2)*(b^4+a*b^2*c+a^2*c^2)*(a^2*b^2+a*b*c^2+c^4) : :

X(57940) lies on the Steiner circumellipse and on these lines: {31, 33514}, {99, 723}, {670, 51836}, {1581, 41073}, {2887, 14945}, {4586, 16584}, {40834, 41072}

X(57940) = isotomic conjugate of X(722)
X(57940) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2233}, {31, 722}, {560, 35536}
X(57940) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 722}, {9, 2233}, {6374, 35536}
X(57940) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(561)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(7357), X(30669)}}, {{A, B, C, X(40415), X(40834)}}
X(57940) = barycentric product X(i)*X(j) for these (i, j): {723, 76}
X(57940) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2233}, {2, 722}, {76, 35536}, {723, 6}, {14945, 16584}


X(57941) = ISOTOMIC CONJUGATE OF X(724)

Barycentrics    (a^3*b^3*(a^4+b^4)-(a^3+b^3)*c^7)*(a^7*c^3-b^7*c^3+a^3*(-b^7+c^7)) : :

X(57941) lies on the Steiner circumellipse and on these lines: {99, 725}

X(57941) = isotomic conjugate of X(724)
X(57941) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 724}, {560, 35537}
X(57941) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 724}, {6374, 35537}
X(57941) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(1502)}}, {{A, B, C, X(99), X(190)}}
X(57941) = barycentric product X(i)*X(j) for these (i, j): {725, 76}
X(57941) = barycentric quotient X(i)/X(j) for these (i, j): {2, 724}, {76, 35537}, {725, 6}


X(57942) = ISOTOMIC CONJUGATE OF X(734)

Barycentrics    (a^2*b^2*(a^3+b^3)-(a^2+b^2)*c^5)*(a^5*c^2-b^5*c^2+a^2*(-b^5+c^5)) : :

X(57942) lies on the Steiner circumellipse and on these lines: {99, 735}, {33516, 38827}

X(57942) = isotomic conjugate of X(734)
X(57942) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2237}, {31, 734}, {560, 35541}
X(57942) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 734}, {9, 2237}, {6374, 35541}
X(57942) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(561)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(308), X(40415)}}, {{A, B, C, X(2998), X(7357)}}
X(57942) = barycentric product X(i)*X(j) for these (i, j): {735, 76}
X(57942) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2237}, {2, 734}, {76, 35541}, {735, 6}


X(57943) = ISOTOMIC CONJUGATE OF X(736)

Barycentrics    (a^2*b^2*(a^4+b^4)-(a^2+b^2)*c^6)*(a^6*c^2-b^6*c^2+a^2*(-b^6+c^6)) : :

X(57943) lies on the Steiner circumellipse and on these lines: {6, 33514}, {99, 737}, {648, 56920}, {670, 3314}, {706, 18829}, {804, 57935}, {1916, 41073}, {3778, 4586}, {20234, 46132}, {46303, 53231}

X(57943) = isotomic conjugate of X(736)
X(57943) = trilinear pole of line {2, 50549}
X(57943) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 736}, {560, 35542}, {1580, 51511}
X(57943) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 736}, {6374, 35542}, {39092, 51511}
X(57943) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(6), X(1502)}}, {{A, B, C, X(66), X(2998)}}, {{A, B, C, X(67), X(385)}}, {{A, B, C, X(83), X(10347)}}, {{A, B, C, X(98), X(308)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(694), X(707)}}, {{A, B, C, X(706), X(804)}}, {{A, B, C, X(3114), X(10000)}}, {{A, B, C, X(8781), X(39968)}}, {{A, B, C, X(9462), X(43535)}}, {{A, B, C, X(18023), X(36897)}}, {{A, B, C, X(42359), X(43532)}}
X(57943) = barycentric product X(i)*X(j) for these (i, j): {737, 76}
X(57943) = barycentric quotient X(i)/X(j) for these (i, j): {2, 736}, {76, 35542}, {694, 51511}, {737, 6}


X(57944) = ISOTOMIC CONJUGATE OF X(742)

Barycentrics    (a*b*(a^2+b^2)-(a+b)*c^3)*(a^3*c-b^3*c+a*(-b^3+c^3)) : :

X(57944) lies on the Steiner circumellipse and on these lines: {1, 4586}, {76, 46132}, {99, 743}, {190, 984}, {335, 41072}, {664, 7146}, {666, 760}, {668, 3661}, {730, 3864}, {812, 43096}, {918, 43099}, {18830, 51837}, {32041, 50286}

X(57944) = isogonal conjugate of X(8624)
X(57944) = isotomic conjugate of X(742)
X(57944) = trilinear pole of line {2, 1491}
X(57944) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8624}, {6, 2239}, {31, 742}, {560, 35545}
X(57944) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 742}, {3, 8624}, {9, 2239}, {6374, 35545}
X(57944) = pole of line {742, 8624} with respect to the Wallace hyperbola
X(57944) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(76)}}, {{A, B, C, X(2), X(36480)}}, {{A, B, C, X(4), X(330)}}, {{A, B, C, X(19), X(6383)}}, {{A, B, C, X(80), X(239)}}, {{A, B, C, X(82), X(6385)}}, {{A, B, C, X(83), X(274)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(105), X(40017)}}, {{A, B, C, X(292), X(17946)}}, {{A, B, C, X(598), X(36871)}}, {{A, B, C, X(730), X(812)}}, {{A, B, C, X(760), X(918)}}, {{A, B, C, X(981), X(2161)}}, {{A, B, C, X(1390), X(40024)}}, {{A, B, C, X(2996), X(38247)}}, {{A, B, C, X(4384), X(50286)}}, {{A, B, C, X(5395), X(39740)}}, {{A, B, C, X(10159), X(32009)}}, {{A, B, C, X(14621), X(36554)}}, {{A, B, C, X(18840), X(39738)}}, {{A, B, C, X(18841), X(39736)}}, {{A, B, C, X(20568), X(52209)}}, {{A, B, C, X(38810), X(55035)}}, {{A, B, C, X(39954), X(40031)}}
X(57944) = barycentric product X(i)*X(j) for these (i, j): {743, 76}
X(57944) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2239}, {2, 742}, {6, 8624}, {76, 35545}, {743, 6}


X(57945) = ISOTOMIC CONJUGATE OF X(744)

Barycentrics    (a+b)*(a+c)*(a*b*(a^2-a*b+b^2)-c^4)*(-b^4+a*c*(a^2-a*c+c^2)) : :

X(57945) lies on the Steiner circumellipse and on these lines: {1, 4577}, {38, 99}, {190, 3954}, {561, 42371}, {648, 17442}, {668, 15523}, {670, 1930}, {2156, 53657}, {2966, 3404}, {4593, 55043}

X(57945) = isogonal conjugate of X(8625)
X(57945) = isotomic conjugate of X(744)
X(57945) = trilinear pole of line {2, 8060}
X(57945) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8625}, {6, 2240}, {31, 744}, {560, 35546}
X(57945) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 744}, {3, 8625}, {9, 2240}, {6374, 35546}
X(57945) = pole of line {744, 8625} with respect to the Wallace hyperbola
X(57945) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(38)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(274), X(33954)}}, {{A, B, C, X(330), X(7357)}}, {{A, B, C, X(719), X(46159)}}, {{A, B, C, X(24037), X(55025)}}, {{A, B, C, X(34914), X(40439)}}
X(57945) = barycentric product X(i)*X(j) for these (i, j): {745, 76}
X(57945) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2240}, {2, 744}, {6, 8625}, {76, 35546}, {745, 6}


X(57946) = ISOTOMIC CONJUGATE OF X(746)

Barycentrics    (a*b*(a^4+b^4)-(a+b)*c^5)*(a^5*c-b^5*c+a*(-b^5+c^5)) : :

X(57946) lies on the Steiner circumellipse and on these lines: {99, 747}, {668, 30149}

X(57946) = isotomic conjugate of X(746)
X(57946) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 746}, {560, 35547}
X(57946) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 746}, {6374, 35547}
X(57946) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1502)}}, {{A, B, C, X(66), X(330)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(274), X(40416)}}
X(57946) = barycentric product X(i)*X(j) for these (i, j): {747, 76}
X(57946) = barycentric quotient X(i)/X(j) for these (i, j): {2, 746}, {76, 35547}, {747, 6}


X(57947) = ISOTOMIC CONJUGATE OF X(748)

Barycentrics    -(b*c*(b^2-2*a*c)*(2*a*b-c^2)) : :

X(57947) lies on these lines: {2, 30645}, {334, 25961}, {561, 3836}, {749, 16709}, {750, 40415}, {873, 1698}, {1269, 21415}, {1920, 30635}, {1921, 30636}, {2887, 57948}, {3112, 17282}, {3661, 4359}, {6384, 21026}, {7018, 25957}, {33932, 40013}

X(57947) = isotomic conjugate of X(748)
X(57947) = trilinear pole of line {4978, 46530}
X(57947) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2241}, {31, 748}, {32, 4361}, {41, 7225}, {560, 3760}, {1397, 4387}, {1415, 4501}, {2206, 4365}, {4382, 32739}, {4400, 7104}, {7243, 9447}
X(57947) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 748}, {9, 2241}, {1146, 4501}, {3160, 7225}, {6374, 3760}, {6376, 4361}, {40603, 4365}, {40619, 4382}
X(57947) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(29687)}}, {{A, B, C, X(2), X(334)}}, {{A, B, C, X(10), X(26037)}}, {{A, B, C, X(31), X(3836)}}, {{A, B, C, X(43), X(661)}}, {{A, B, C, X(75), X(873)}}, {{A, B, C, X(85), X(3112)}}, {{A, B, C, X(86), X(33172)}}, {{A, B, C, X(92), X(7035)}}, {{A, B, C, X(171), X(25957)}}, {{A, B, C, X(238), X(25961)}}, {{A, B, C, X(310), X(40012)}}, {{A, B, C, X(312), X(46277)}}, {{A, B, C, X(313), X(28650)}}, {{A, B, C, X(693), X(40027)}}, {{A, B, C, X(750), X(2887)}}, {{A, B, C, X(1089), X(1698)}}, {{A, B, C, X(2296), X(17208)}}, {{A, B, C, X(3846), X(17124)}}, {{A, B, C, X(6063), X(31002)}}, {{A, B, C, X(6376), X(27438)}}, {{A, B, C, X(6384), X(39994)}}, {{A, B, C, X(7033), X(30690)}}, {{A, B, C, X(17122), X(25760)}}, {{A, B, C, X(18140), X(33932)}}, {{A, B, C, X(18895), X(40031)}}, {{A, B, C, X(27475), X(40439)}}, {{A, B, C, X(32019), X(34409)}}, {{A, B, C, X(32772), X(33174)}}, {{A, B, C, X(32781), X(50302)}}, {{A, B, C, X(32918), X(33111)}}, {{A, B, C, X(34398), X(39293)}}, {{A, B, C, X(43534), X(52654)}}
X(57947) = barycentric product X(i)*X(j) for these (i, j): {749, 76}, {30651, 561}
X(57947) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2241}, {2, 748}, {7, 7225}, {75, 4361}, {76, 3760}, {312, 4387}, {314, 4483}, {321, 4365}, {522, 4501}, {693, 4382}, {749, 6}, {1089, 7230}, {1909, 4400}, {1920, 7244}, {3261, 4408}, {3761, 17131}, {6063, 7243}, {7018, 4496}, {30651, 31}


X(57948) = ISOTOMIC CONJUGATE OF X(750)

Barycentrics    b*c*(b^2+2*a*c)*(2*a*b+c^2) : :

X(57948) lies on these lines: {2, 1908}, {274, 10129}, {334, 25760}, {350, 25378}, {561, 3846}, {693, 33934}, {748, 40415}, {751, 17250}, {1920, 30636}, {1921, 30635}, {2887, 57947}, {3264, 33931}, {3661, 4358}, {3679, 7035}, {7018, 25960}, {7179, 26234}, {17227, 31002}, {35175, 40878}, {39044, 43097}

X(57948) = isotomic conjugate of X(750)
X(57948) = trilinear pole of line {3762, 46529}
X(57948) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2242}, {31, 750}, {32, 4363}, {560, 3761}, {604, 4390}, {692, 4378}, {1919, 4482}, {1922, 4396}, {2175, 7223}, {4379, 32739}, {4403, 23990}, {4495, 14598}, {4510, 9459}, {7245, 14599}
X(57948) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 750}, {9, 2242}, {1086, 4378}, {3161, 4390}, {6374, 3761}, {6376, 4363}, {9296, 4482}, {18277, 4495}, {39028, 4396}, {40593, 7223}, {40619, 4379}, {40624, 4474}
X(57948) = X(i)-cross conjugate of X(j) for these {i, j}: {30632, 561}, {49278, 190}
X(57948) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(334)}}, {{A, B, C, X(10), X(30942)}}, {{A, B, C, X(31), X(3846)}}, {{A, B, C, X(38), X(56357)}}, {{A, B, C, X(75), X(693)}}, {{A, B, C, X(76), X(31002)}}, {{A, B, C, X(85), X(46277)}}, {{A, B, C, X(87), X(661)}}, {{A, B, C, X(92), X(873)}}, {{A, B, C, X(171), X(25960)}}, {{A, B, C, X(238), X(25760)}}, {{A, B, C, X(310), X(30830)}}, {{A, B, C, X(312), X(3112)}}, {{A, B, C, X(313), X(17250)}}, {{A, B, C, X(321), X(6384)}}, {{A, B, C, X(668), X(33934)}}, {{A, B, C, X(748), X(2887)}}, {{A, B, C, X(870), X(18359)}}, {{A, B, C, X(1111), X(1647)}}, {{A, B, C, X(1581), X(1908)}}, {{A, B, C, X(2051), X(2296)}}, {{A, B, C, X(3836), X(17125)}}, {{A, B, C, X(4608), X(39706)}}, {{A, B, C, X(14554), X(39712)}}, {{A, B, C, X(17123), X(25957)}}, {{A, B, C, X(17717), X(32917)}}, {{A, B, C, X(18021), X(46104)}}, {{A, B, C, X(24517), X(35353)}}, {{A, B, C, X(30608), X(35519)}}, {{A, B, C, X(31359), X(45964)}}, {{A, B, C, X(32784), X(32944)}}, {{A, B, C, X(40013), X(40027)}}, {{A, B, C, X(40439), X(44733)}}
X(57948) = barycentric product X(i)*X(j) for these (i, j): {751, 76}, {30650, 561}
X(57948) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2242}, {2, 750}, {8, 4390}, {75, 4363}, {76, 3761}, {85, 7223}, {313, 4377}, {334, 7245}, {350, 4396}, {514, 4378}, {668, 4482}, {693, 4379}, {751, 6}, {1111, 4403}, {1269, 4410}, {1921, 4495}, {3261, 4411}, {3264, 4506}, {3596, 4494}, {3760, 17131}, {3766, 4508}, {4357, 4503}, {4391, 4474}, {20568, 4510}, {30650, 31}, {43264, 17125}


X(57949) = ISOTOMIC CONJUGATE OF X(762)

Barycentrics    b*(a+b)^3*c*(a+c)^3 : :

X(57949) lies on these lines: {86, 4623}, {99, 4068}, {757, 873}, {894, 4601}, {1509, 18166}, {3770, 8033}, {4589, 22279}, {17103, 18756}, {17499, 46197}

X(57949) = isotomic conjugate of X(762)
X(57949) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 7109}, {31, 762}, {32, 6535}, {37, 872}, {42, 1500}, {181, 1334}, {213, 756}, {594, 1918}, {669, 4103}, {798, 40521}, {1018, 50487}, {1089, 2205}, {1110, 21833}, {1400, 7064}, {2200, 7140}, {2333, 3690}, {3952, 53581}, {4079, 4557}, {6058, 57657}, {6632, 23099}, {7035, 52065}, {21043, 23990}, {21803, 40729}, {21815, 56196}, {40935, 43265}
X(57949) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 762}, {514, 21833}, {6376, 6535}, {6626, 756}, {17205, 50538}, {31998, 40521}, {34021, 594}, {40582, 7064}, {40589, 872}, {40592, 1500}, {40620, 4705}
X(57949) = X(i)-cross conjugate of X(j) for these {i, j}: {1509, 6628}
X(57949) = pole of line {872, 7109} with respect to the Stammler hyperbola
X(57949) = pole of line {756, 762} with respect to the Wallace hyperbola
X(57949) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(81), X(18166)}}, {{A, B, C, X(86), X(4601)}}, {{A, B, C, X(239), X(34585)}}, {{A, B, C, X(274), X(16709)}}, {{A, B, C, X(757), X(763)}}, {{A, B, C, X(894), X(16726)}}, {{A, B, C, X(3770), X(6625)}}, {{A, B, C, X(6385), X(16739)}}, {{A, B, C, X(40769), X(50456)}}
X(57949) = barycentric product X(i)*X(j) for these (i, j): {58, 57992}, {76, 763}, {86, 873}, {261, 57785}, {310, 757}, {314, 552}, {593, 6385}, {1014, 18021}, {1019, 52612}, {1434, 52379}, {1509, 274}, {4610, 7199}, {4623, 7192}, {6628, 75}, {15419, 55231}, {16726, 34537}, {16727, 4590}, {17096, 4631}, {17205, 24037}, {24002, 55196}, {40072, 7341}, {52619, 52935}
X(57949) = barycentric quotient X(i)/X(j) for these (i, j): {2, 762}, {21, 7064}, {58, 872}, {75, 6535}, {81, 1500}, {86, 756}, {99, 40521}, {261, 210}, {274, 594}, {286, 7140}, {310, 1089}, {314, 6057}, {552, 65}, {593, 213}, {757, 42}, {763, 6}, {764, 22260}, {799, 4103}, {849, 1918}, {873, 10}, {1014, 181}, {1019, 4079}, {1086, 21833}, {1111, 21043}, {1333, 7109}, {1434, 2171}, {1441, 6058}, {1444, 3690}, {1509, 37}, {1977, 52065}, {2185, 1334}, {3733, 50487}, {4573, 21859}, {4610, 1018}, {4623, 3952}, {4631, 30730}, {4635, 4605}, {6385, 28654}, {6628, 1}, {7058, 4515}, {7192, 4705}, {7199, 4024}, {7304, 20691}, {7341, 1402}, {8025, 21816}, {8027, 23099}, {8033, 21021}, {15419, 55232}, {16705, 21810}, {16709, 8013}, {16726, 3124}, {16727, 115}, {16738, 22206}, {16739, 20653}, {16748, 52579}, {17096, 57185}, {17103, 21803}, {17175, 21699}, {17205, 2643}, {17206, 3949}, {18021, 3701}, {18166, 21820}, {18169, 21700}, {24002, 55197}, {26856, 36197}, {30576, 52963}, {30581, 20970}, {30593, 1962}, {30940, 4037}, {31614, 57731}, {33944, 21728}, {33947, 7237}, {38810, 43265}, {50456, 46390}, {52379, 2321}, {52612, 4033}, {52619, 4036}, {52935, 4557}, {55196, 644}, {57129, 53581}, {57779, 53008}, {57785, 12}, {57796, 7141}, {57992, 313}


X(57950) = ISOTOMIC CONJUGATE OF X(764)

Barycentrics    (a-b)^3*b*(a-c)^3*c : :

X(57950) lies on these lines: {6, 1016}, {75, 7035}, {86, 4601}, {668, 6635}, {765, 2209}, {874, 23343}, {3570, 6632}, {3596, 4076}, {3799, 35008}, {4594, 40521}, {55243, 57731}

X(57950) = isogonal conjugate of X(8027)
X(57950) = isotomic conjugate of X(764)
X(57950) = trilinear pole of line {239, 1016}
X(57950) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8027}, {2, 3249}, {6, 21143}, {31, 764}, {32, 6545}, {58, 8034}, {106, 8661}, {213, 8042}, {244, 667}, {513, 3248}, {514, 1977}, {649, 1015}, {663, 1357}, {669, 17205}, {798, 16726}, {875, 27846}, {1019, 3121}, {1086, 1919}, {1111, 1980}, {1397, 21132}, {1459, 42067}, {1501, 23100}, {1646, 23892}, {1924, 16727}, {1960, 43922}, {2170, 57181}, {3063, 53538}, {3122, 3733}, {3125, 57129}, {3271, 43924}, {6628, 23099}, {7649, 22096}, {14442, 41935}, {16947, 55195}, {18191, 51641}, {19945, 23349}, {23355, 52633}, {24188, 32719}, {24193, 34067}, {33917, 37129}, {38986, 43931}, {40528, 42336}, {42462, 52410}, {43266, 46386}
X(57950) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 764}, {3, 8027}, {9, 21143}, {10, 8034}, {214, 8661}, {5375, 1015}, {6376, 6545}, {6626, 8042}, {6631, 244}, {9296, 1086}, {9428, 16727}, {10001, 53538}, {31998, 16726}, {32664, 3249}, {35119, 24193}, {39026, 3248}, {40624, 7336}
X(57950) = X(i)-cross conjugate of X(j) for these {i, j}: {100, 1016}, {190, 4601}, {646, 31625}, {668, 7035}, {23343, 5381}, {52923, 765}, {57151, 4567}
X(57950) = pole of line {764, 8027} with respect to the Wallace hyperbola
X(57950) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(100)}}, {{A, B, C, X(75), X(668)}}, {{A, B, C, X(86), X(190)}}, {{A, B, C, X(99), X(4618)}}, {{A, B, C, X(644), X(56180)}}, {{A, B, C, X(646), X(3596)}}, {{A, B, C, X(692), X(2209)}}, {{A, B, C, X(889), X(4634)}}, {{A, B, C, X(3257), X(8709)}}, {{A, B, C, X(3699), X(52549)}}, {{A, B, C, X(3952), X(14624)}}, {{A, B, C, X(4569), X(39126)}}, {{A, B, C, X(4583), X(36804)}}, {{A, B, C, X(5381), X(6632)}}, {{A, B, C, X(9458), X(17780)}}, {{A, B, C, X(21803), X(40521)}}, {{A, B, C, X(35147), X(50039)}}, {{A, B, C, X(52442), X(54458)}}
X(57950) = barycentric product X(i)*X(j) for these (i, j): {100, 31625}, {190, 7035}, {1016, 668}, {1252, 6386}, {1978, 765}, {3701, 55194}, {3762, 42372}, {3799, 5388}, {3952, 4601}, {4033, 4600}, {4076, 4554}, {4358, 6635}, {4998, 646}, {6632, 75}, {24037, 4103}, {27808, 4567}, {27853, 5378}, {31615, 3596}, {34537, 40521}, {36863, 5383}, {41314, 5381}, {57731, 76}
X(57950) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21143}, {2, 764}, {6, 8027}, {31, 3249}, {37, 8034}, {44, 8661}, {59, 57181}, {75, 6545}, {86, 8042}, {99, 16726}, {100, 1015}, {101, 3248}, {190, 244}, {312, 21132}, {341, 42462}, {561, 23100}, {644, 3271}, {645, 18191}, {646, 11}, {651, 1357}, {664, 53538}, {666, 43921}, {668, 1086}, {670, 16727}, {692, 1977}, {762, 22260}, {765, 649}, {789, 43266}, {799, 17205}, {812, 24193}, {874, 27918}, {906, 22096}, {1016, 513}, {1018, 3122}, {1089, 21131}, {1110, 1919}, {1252, 667}, {1275, 43932}, {1332, 3937}, {1783, 42067}, {1978, 1111}, {2397, 42753}, {3230, 33917}, {3257, 43922}, {3570, 27846}, {3596, 40166}, {3699, 2170}, {3701, 55195}, {3762, 24188}, {3807, 4475}, {3875, 23777}, {3952, 3125}, {4033, 3120}, {4076, 650}, {4103, 2643}, {4358, 6550}, {4391, 7336}, {4552, 53540}, {4554, 1358}, {4557, 3121}, {4561, 3942}, {4564, 43924}, {4567, 3733}, {4570, 57129}, {4571, 7117}, {4578, 14936}, {4595, 3123}, {4600, 1019}, {4601, 7192}, {4619, 1106}, {4620, 7203}, {4723, 52338}, {4738, 14442}, {4998, 3669}, {5376, 23345}, {5377, 43929}, {5378, 3572}, {5379, 43925}, {5381, 43928}, {5383, 43931}, {6065, 3063}, {6335, 2969}, {6386, 23989}, {6551, 9456}, {6558, 2310}, {6632, 1}, {6635, 88}, {7035, 514}, {7257, 17197}, {13136, 15635}, {15742, 6591}, {17780, 2087}, {18047, 53541}, {18743, 23764}, {23343, 1646}, {23891, 19945}, {23990, 1980}, {24004, 1647}, {27808, 16732}, {30693, 23615}, {30730, 4516}, {31614, 763}, {31615, 56}, {31625, 693}, {33932, 21133}, {36838, 41292}, {36860, 23824}, {36863, 21138}, {40521, 3124}, {41314, 52626}, {42372, 3257}, {42720, 3675}, {44724, 4394}, {46102, 43923}, {52369, 21134}, {52609, 18210}, {52622, 1090}, {52923, 6377}, {53582, 42084}, {55194, 1014}, {55207, 17219}, {57731, 6}


X(57951) = ISOTOMIC CONJUGATE OF X(766)

Barycentrics    b^3*c^3*(a^4+b^4-(a^3+b^3)*c)*(a^4-a^3*b+c^3*(-b+c)) : :

X(57951) lies on the Steiner circumellipse and on these lines: {99, 767}, {190, 561}, {648, 57796}, {664, 20567}, {668, 1502}, {871, 4586}, {4562, 44172}

X(57951) = isogonal conjugate of X(8629)
X(57951) = isotomic conjugate of X(766)
X(57951) = trilinear pole of line {2, 40495}
X(57951) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8629}, {31, 766}, {560, 35552}, {9447, 45267}
X(57951) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 766}, {3, 8629}, {6374, 35552}
X(57951) = pole of line {766, 8629} with respect to the Wallace hyperbola
X(57951) = intersection, other than A, B, C, of circumconics {{A, B, C, X(66), X(7357)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(561), X(871)}}, {{A, B, C, X(1333), X(38845)}}, {{A, B, C, X(40415), X(40416)}}
X(57951) = barycentric product X(i)*X(j) for these (i, j): {76, 767}
X(57951) = barycentric quotient X(i)/X(j) for these (i, j): {2, 766}, {6, 8629}, {76, 35552}, {767, 6}, {6063, 45267}


X(57952) = ISOTOMIC CONJUGATE OF X(768)

Barycentrics    (a-b)*(a-c)*(b^3*c+a^3*(b+c)+a^2*b*(b+c)+a*b^2*(b+c))*(b*c^3+a^3*(b+c)+a^2*c*(b+c)+a*c^2*(b+c)) : :

X(57952) lies on the Steiner circumellipse and on these lines: {99, 769}, {101, 670}, {1922, 18827}, {4579, 57954}

X(57952) = isotomic conjugate of X(768)
X(57952) = trilinear pole of line {2, 1918}
X(57952) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 768}, {560, 35553}
X(57952) = X(i)-vertex conjugate of X(j) for these {i, j}: {32739, 52612}
X(57952) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 768}, {6374, 35553}
X(57952) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(101), X(1922)}}, {{A, B, C, X(839), X(37207)}}, {{A, B, C, X(1492), X(4593)}}, {{A, B, C, X(4610), X(6013)}}, {{A, B, C, X(4621), X(8708)}}, {{A, B, C, X(43190), X(52612)}}
X(57952) = barycentric product X(i)*X(j) for these (i, j): {76, 769}
X(57952) = barycentric quotient X(i)/X(j) for these (i, j): {2, 768}, {76, 35553}, {769, 6}


X(57953) = ISOTOMIC CONJUGATE OF X(770)

Barycentrics    (a-b)*b*(a-c)*(a+b-c)*c*(a-b+c)*((a^2-b^2)^2*(a^2-a*b+b^2)-2*(a^2-b^2)^2*c^2+(a^2+a*b+b^2)*c^4)*(a^6-a^5*c+2*a^3*c^3-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a*c*(b^4-c^4)+a^2*(b^4+4*b^2*c^2-c^4)) : :

X(57953) lies on these lines: {332, 57980}, {771, 799}, {4563, 57973}, {15418, 46404}

X(57953) = isotomic conjugate of X(770)
X(57953) = trilinear pole of line {75, 3964}
X(57953) = X(i)-cross conjugate of X(j) for these {i, j}: {28920, 4998}
X(57953) = intersection, other than A, B, C, of circumconics {{A, B, C, X(332), X(4631)}}, {{A, B, C, X(668), X(789)}}, {{A, B, C, X(4563), X(35575)}}
X(57953) = barycentric product X(i)*X(j) for these (i, j): {76, 771}
X(57953) = barycentric quotient X(i)/X(j) for these (i, j): {2, 770}, {771, 6}, {56261, 18344}


X(57954) = ISOTOMIC CONJUGATE OF X(772)

Barycentrics    (a-b)*(a-c)*(a^3*b^3+(a+b)*(a^2+b^2)*c^3)*(a^2*b^3*c+a*b^3*c^2+b^3*c^3+a^3*(b^3+c^3)) : :

X(57954) lies on the Steiner circumellipse and on these lines: {99, 773}, {903, 56333}, {4579, 57952}

X(57954) = isotomic conjugate of X(772)
X(57954) = trilinear pole of line {2, 40935}
X(57954) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 772}, {560, 35554}
X(57954) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 772}, {6374, 35554}
X(57954) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(692), X(37204)}}, {{A, B, C, X(799), X(34071)}}, {{A, B, C, X(803), X(37133)}}
X(57954) = barycentric product X(i)*X(j) for these (i, j): {76, 773}, {190, 56333}
X(57954) = barycentric quotient X(i)/X(j) for these (i, j): {2, 772}, {76, 35554}, {773, 6}, {56333, 514}


X(57955) = ISOTOMIC CONJUGATE OF X(774)

Barycentrics    b*c*((a^2-b^2)^2*(a^2+b^2)-2*(a^2-b^2)^2*c^2+(a^2+b^2)*c^4)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+4*b^2*c^2-c^4)) : :

X(57955) lies on these lines: {75, 775}, {92, 1958}, {313, 40830}, {321, 801}, {326, 821}, {1441, 57800}, {1821, 21406}, {2155, 18750}, {3112, 17859}, {57775, 57809}

X(57955) = isotomic conjugate of X(774)
X(57955) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 44079}, {6, 800}, {25, 185}, {31, 774}, {32, 13567}, {51, 16035}, {154, 52566}, {184, 235}, {213, 18603}, {417, 6524}, {512, 1624}, {560, 17858}, {820, 1096}, {1973, 6508}, {1974, 41005}, {2207, 6509}, {2353, 41580}, {2883, 33581}, {3049, 41678}, {3199, 19180}, {14575, 44131}, {19118, 45199}, {19166, 40981}, {40352, 51403}
X(57955) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 774}, {9, 800}, {6337, 6508}, {6374, 17858}, {6376, 13567}, {6503, 820}, {6505, 185}, {6626, 18603}, {36103, 44079}, {39054, 1624}
X(57955) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 57972}, {24018, 799}
X(57955) = pole of line {774, 820} with respect to the Wallace hyperbola
X(57955) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1496)}}, {{A, B, C, X(69), X(15411)}}, {{A, B, C, X(75), X(92)}}, {{A, B, C, X(86), X(37659)}}, {{A, B, C, X(326), X(6507)}}, {{A, B, C, X(336), X(1958)}}, {{A, B, C, X(775), X(821)}}, {{A, B, C, X(1930), X(17859)}}, {{A, B, C, X(8769), X(36120)}}, {{A, B, C, X(21406), X(40703)}}
X(57955) = barycentric product X(i)*X(j) for these (i, j): {1, 40830}, {75, 801}, {76, 775}, {394, 57972}, {1102, 57677}, {1105, 304}, {1969, 57648}, {3926, 821}, {41890, 561}, {57775, 63}, {57800, 92}, {57843, 6507}
X(57955) = barycentric quotient X(i)/X(j) for these (i, j): {1, 800}, {2, 774}, {19, 44079}, {63, 185}, {69, 6508}, {75, 13567}, {76, 17858}, {86, 18603}, {92, 235}, {304, 41005}, {326, 6509}, {394, 820}, {662, 1624}, {775, 6}, {801, 1}, {811, 41678}, {821, 393}, {1105, 19}, {1760, 41580}, {1969, 44131}, {2167, 16035}, {2184, 52566}, {6507, 417}, {14206, 51403}, {17893, 17773}, {18750, 2883}, {20884, 41603}, {21582, 41602}, {40830, 75}, {41890, 31}, {57414, 2155}, {57648, 48}, {57677, 6520}, {57775, 92}, {57800, 63}, {57843, 6521}, {57972, 2052}


X(57956) = ISOTOMIC CONJUGATE OF X(776)

Barycentrics    (a-b)*(a-c)*(-(a^3*b^5)-a^2*b^5*c-a*b^5*c^2-b^5*c^3+a^4*c^4)*(a^4*b^4-(a+b)*(a^2+b^2)*c^5) : :

X(57956) lies on the Steiner circumellipse and on these lines: {99, 777}

X(57956) = isotomic conjugate of X(776)
X(57956) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 776}, {560, 35555}
X(57956) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 776}, {6374, 35555}
X(57956) = barycentric product X(i)*X(j) for these (i, j): {76, 777}
X(57956) = barycentric quotient X(i)/X(j) for these (i, j): {2, 776}, {76, 35555}, {777, 6}


X(57957) = ISOTOMIC CONJUGATE OF X(778)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(-(a^2*b^6)-b^6*c^2+a^4*c^4)*(a^4*b^4-(a^2+b^2)*c^6) : :

X(57957) lies on the Steiner circumellipse and on these lines: {99, 779}

X(57957) = isotomic conjugate of X(778)
X(57957) = trilinear pole of line {2, 14820}
X(57957) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 778}, {560, 35556}
X(57957) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 778}, {6374, 35556}
X(57957) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(809), X(46161)}}
X(57957) = barycentric product X(i)*X(j) for these (i, j): {76, 779}
X(57957) = barycentric quotient X(i)/X(j) for these (i, j): {2, 778}, {76, 35556}, {779, 6}


X(57958) = ISOTOMIC CONJUGATE OF X(780)

Barycentrics    (a-b)*(a-c)*(-(a^3*b^7)-a^2*b^7*c-a*b^7*c^2-b^7*c^3+a^6*c^4+a^5*c^5+a^4*c^6)*(a^4*b^4*(a^2+a*b+b^2)-(a+b)*(a^2+b^2)*c^7) : :

X(57958) lies on the Steiner circumellipse and on these lines: {99, 781}

X(57958) = isotomic conjugate of X(780)
X(57958) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 780}, {560, 35557}
X(57958) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 780}, {6374, 35557}
X(57958) = barycentric product X(i)*X(j) for these (i, j): {76, 781}
X(57958) = barycentric quotient X(i)/X(j) for these (i, j): {2, 780}, {76, 35557}, {781, 6}


X(57959) = ISOTOMIC CONJUGATE OF X(784)

Barycentrics    (a-b)*(a-c)*(b^2*c+a^2*(b+c)+a*b*(b+c))*(b*c^2+a^2*(b+c)+a*c*(b+c)) : :

X(57959) lies on the Steiner circumellipse and on these lines: {99, 692}, {100, 670}, {668, 4557}, {835, 14613}, {874, 57977}, {903, 2296}, {1218, 2481}, {1911, 18827}, {4436, 18830}, {4569, 53321}, {4613, 46132}, {6187, 14616}, {6385, 40600}, {18047, 57965}

X(57959) = isogonal conjugate of X(2978)
X(57959) = isotomic conjugate of X(784)
X(57959) = trilinear pole of line {2, 213}
X(57959) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2978}, {31, 784}, {512, 10458}, {514, 1185}, {560, 35559}, {649, 5283}, {663, 10473}, {667, 31330}, {669, 10471}, {798, 27164}, {2205, 23594}
X(57959) = X(i)-vertex conjugate of X(j) for these {i, j}: {692, 4623}
X(57959) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 784}, {3, 2978}, {5375, 5283}, {6374, 35559}, {6631, 31330}, {31998, 27164}, {39054, 10458}
X(57959) = X(i)-cross conjugate of X(j) for these {i, j}: {784, 2}, {17018, 1016}, {26110, 4590}, {34284, 4998}
X(57959) = pole of line {784, 2978} with respect to the Wallace hyperbola
X(57959) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(692)}}, {{A, B, C, X(651), X(4623)}}, {{A, B, C, X(660), X(835)}}, {{A, B, C, X(662), X(789)}}, {{A, B, C, X(839), X(4596)}}, {{A, B, C, X(4436), X(52923)}}, {{A, B, C, X(4552), X(6386)}}, {{A, B, C, X(4589), X(37218)}}, {{A, B, C, X(4604), X(56053)}}, {{A, B, C, X(4610), X(37133)}}, {{A, B, C, X(4625), X(35008)}}, {{A, B, C, X(8707), X(37138)}}, {{A, B, C, X(8709), X(37211)}}, {{A, B, C, X(36803), X(37215)}}, {{A, B, C, X(47875), X(47888)}}
X(57959) = barycentric product X(i)*X(j) for these (i, j): {76, 785}, {100, 1218}, {190, 2296}
X(57959) = barycentric quotient X(i)/X(j) for these (i, j): {2, 784}, {6, 2978}, {76, 35559}, {99, 27164}, {100, 5283}, {190, 31330}, {310, 23594}, {651, 10473}, {662, 10458}, {692, 1185}, {785, 6}, {799, 10471}, {1218, 693}, {2296, 514}


X(57960) = ISOTOMIC CONJUGATE OF X(786)

Barycentrics    (a-b)*(a-c)*(a^2*b^2+(a^2+a*b+b^2)*c^2)*(a*b^2*c+b^2*c^2+a^2*(b^2+c^2)) : :

X(57960) lies on the Steiner circumellipse and on these lines: {99, 787}, {163, 4577}, {290, 3404}, {668, 46148}, {799, 42371}, {1967, 14970}, {2663, 3228}, {3226, 20963}, {18171, 18827}, {24727, 53219}

X(57960) = isotomic conjugate of X(786)
X(57960) = trilinear pole of line {2, 1964}
X(57960) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 786}, {560, 35560}, {667, 27020}, {830, 14619}, {28593, 57129}
X(57960) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 786}, {6374, 35560}, {6631, 27020}
X(57960) = X(i)-cross conjugate of X(j) for these {i, j}: {786, 2}, {17445, 7035}, {26801, 1016}
X(57960) = pole of line {2309, 27020} with respect to the Yff parabola
X(57960) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(101), X(37133)}}, {{A, B, C, X(163), X(799)}}, {{A, B, C, X(660), X(52612)}}, {{A, B, C, X(29071), X(37218)}}, {{A, B, C, X(37207), X(52935)}}
X(57960) = barycentric product X(i)*X(j) for these (i, j): {76, 787}
X(57960) = barycentric quotient X(i)/X(j) for these (i, j): {2, 786}, {76, 35560}, {190, 27020}, {787, 6}, {3952, 28593}, {14622, 47660}


X(57961) = ISOTOMIC CONJUGATE OF X(790)

Barycentrics    (a-b)*(a-c)*(-(a^2*b^4)-a*b^4*c-b^4*c^2+a^3*c^3)*(a^3*b^3-(a^2+a*b+b^2)*c^4) : :

X(57961) lies on the Steiner circumellipse and on these lines: {99, 791}, {33515, 34072}

X(57961) = isotomic conjugate of X(790)
X(57961) = trilinear pole of line {2, 2085}
X(57961) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 790}, {560, 35561}
X(57961) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 790}, {6374, 35561}
X(57961) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(692), X(52611)}}, {{A, B, C, X(817), X(34072)}}
X(57961) = barycentric product X(i)*X(j) for these (i, j): {76, 791}
X(57961) = barycentric quotient X(i)/X(j) for these (i, j): {2, 790}, {76, 35561}, {791, 6}


X(57962) = ISOTOMIC CONJUGATE OF X(792)

Barycentrics    (a-b)*(a-c)*(-(a^2*b^5)-a*b^5*c-b^5*c^2+a^4*c^3+a^3*c^4)*(a^3*b^3*(a+b)-(a^2+a*b+b^2)*c^5) : :

X(57962) lies on the Steiner circumellipse and on these lines: {99, 793}

X(57962) = isotomic conjugate of X(792)
X(57962) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 792}, {560, 35562}
X(57962) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 792}, {6374, 35562}
X(57962) = barycentric product X(i)*X(j) for these (i, j): {76, 793}
X(57962) = barycentric quotient X(i)/X(j) for these (i, j): {2, 792}, {76, 35562}, {793, 6}


X(57963) = ISOTOMIC CONJUGATE OF X(794)

Barycentrics    (a-b)*(a^2+a*b+b^2)*(a-c)*(-b^2+a*c)*(a*b-c^2)*(a^2+a*c+c^2)*(b^4+a*b^2*c+a^2*c^2)*(a^2*b^2+a*b*c^2+c^4) : :

X(57963) lies on the Steiner circumellipse and on these lines: {99, 795}, {716, 43097}, {752, 14945}, {788, 4586}, {824, 46132}, {30671, 41072}

X(57963) = isotomic conjugate of X(794)
X(57963) = trilinear pole of line {2, 14945}
X(57963) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 794}, {560, 35563}
X(57963) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 794}, {6374, 35563}
X(57963) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(716), X(752)}}, {{A, B, C, X(788), X(824)}}
X(57963) = barycentric product X(i)*X(j) for these (i, j): {76, 795}, {14945, 46132}
X(57963) = barycentric quotient X(i)/X(j) for these (i, j): {2, 794}, {76, 35563}, {795, 6}, {14945, 788}


X(57964) = ISOTOMIC CONJUGATE OF X(796)

Barycentrics    (a-b)*(a-c)*(-(a^2*b^7)-a*b^7*c-b^7*c^2+a^6*c^3+a^5*c^4+a^4*c^5+a^3*c^6)*(a^3*b^3*(a+b)*(a^2+b^2)-(a^2+a*b+b^2)*c^7) : :

X(57964) lies on the Steiner circumellipse and on these lines: {99, 797}

X(57964) = isotomic conjugate of X(796)
X(57964) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 796}, {560, 35564}
X(57964) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 796}, {6374, 35564}
X(57964) = barycentric product X(i)*X(j) for these (i, j): {76, 797}
X(57964) = barycentric quotient X(i)/X(j) for these (i, j): {2, 796}, {76, 35564}, {797, 6}


X(57965) = ISOTOMIC CONJUGATE OF X(802)

Barycentrics    (a-b)*(a-c)*(-(a*b^3)-b^3*c+a^2*c^2)*(a^2*b^2-(a+b)*c^3) : :

X(57965) lies on the Steiner circumellipse and on these lines: {99, 803}, {668, 7239}, {670, 33946}, {825, 33514}, {4586, 53268}, {18047, 57959}

X(57965) = isogonal conjugate of X(8631)
X(57965) = isotomic conjugate of X(802)
X(57965) = trilinear pole of line {2, 3778}
X(57965) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8631}, {31, 802}, {667, 17033}
X(57965) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 802}, {3, 8631}, {6631, 17033}
X(57965) = pole of line {802, 8631} with respect to the Wallace hyperbola
X(57965) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(7260)}}, {{A, B, C, X(101), X(4602)}}, {{A, B, C, X(825), X(4559)}}, {{A, B, C, X(932), X(4639)}}, {{A, B, C, X(1415), X(37134)}}, {{A, B, C, X(1978), X(3903)}}, {{A, B, C, X(3570), X(51566)}}
X(57965) = barycentric product X(i)*X(j) for these (i, j): {76, 803}
X(57965) = barycentric quotient X(i)/X(j) for these (i, j): {2, 802}, {6, 8631}, {190, 17033}, {803, 6}


X(57966) = ISOTOMIC CONJUGATE OF X(806)

Barycentrics    (a-b)*(a-c)*(-(a*b^5)-b^5*c+a^4*c^2+a^3*c^3+a^2*c^4)*(a^2*b^2*(a^2+a*b+b^2)-(a+b)*c^5) : :

X(57966) lies on the Steiner circumellipse and on these lines: {99, 807}

X(57966) = isotomic conjugate of X(806)
X(57966) = trilinear pole of line {2, 23626}
X(57966) = barycentric product X(i)*X(j) for these (i, j): {76, 807}
X(57966) = barycentric quotient X(i)/X(j) for these (i, j): {2, 806}, {807, 6}


X(57967) = ISOTOMIC CONJUGATE OF X(808)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(a^4*b^2+a^2*b^4-c^6)*(-b^6+a^2*c^2*(a^2+c^2)) : :

X(57967) lies on the Steiner circumellipse and on these lines: {99, 809}

X(57967) = isotomic conjugate of X(808)
X(57967) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(779), X(46161)}}
X(57967) = barycentric product X(i)*X(j) for these (i, j): {76, 809}
X(57967) = barycentric quotient X(i)/X(j) for these (i, j): {2, 808}, {809, 6}


X(57968) = ISOTOMIC CONJUGATE OF X(810)

Barycentrics    b^3*(-a^2+b^2)*(a-c)*c^3*(a+c)*(-a^4+(b^2-c^2)^2) : :

X(57968) lies on these lines: {112, 9065}, {162, 37204}, {264, 57987}, {305, 57983}, {648, 46132}, {662, 20948}, {670, 18026}, {799, 823}, {811, 4602}, {1926, 40703}, {1969, 57999}, {4572, 52938}, {6331, 6335}, {6528, 54982}, {18062, 24001}, {20902, 46273}, {55215, 55249}

X(57968) = isotomic conjugate of X(810)
X(57968) = trilinear pole of line {92, 304}
X(57968) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 669}, {6, 3049}, {25, 39201}, {31, 810}, {32, 647}, {48, 798}, {63, 1924}, {69, 9426}, {71, 1919}, {72, 1980}, {99, 23216}, {125, 14574}, {184, 512}, {212, 51641}, {213, 22383}, {217, 2623}, {228, 667}, {237, 878}, {248, 2491}, {351, 14908}, {394, 57204}, {520, 1974}, {523, 14575}, {525, 1501}, {560, 656}, {577, 2489}, {649, 2200}, {661, 9247}, {684, 14601}, {688, 1176}, {822, 1973}, {850, 40373}, {879, 9418}, {905, 2205}, {906, 3121}, {1084, 4558}, {1402, 1946}, {1409, 3063}, {1410, 8641}, {1437, 50487}, {1459, 1918}, {1576, 20975}, {1636, 40354}, {1790, 53581}, {1799, 9494}, {1917, 14208}, {1976, 39469}, {1977, 4574}, {2206, 55230}, {2207, 32320}, {2212, 51640}, {2351, 34952}, {2422, 3289}, {2501, 14585}, {2524, 51951}, {3005, 10547}, {3122, 32656}, {3124, 32661}, {3199, 46088}, {3221, 15389}, {3265, 44162}, {3267, 9233}, {3455, 42659}, {3504, 9491}, {3569, 14600}, {3709, 52411}, {4117, 4592}, {4557, 22096}, {4563, 9427}, {4580, 41331}, {5027, 17970}, {6368, 14573}, {7109, 7254}, {7180, 52425}, {8640, 22381}, {8651, 40319}, {8673, 40146}, {8789, 24284}, {8882, 42293}, {9178, 23200}, {9407, 14380}, {9409, 40352}, {9447, 51664}, {9448, 17094}, {9455, 10099}, {10097, 14567}, {14270, 52153}, {14398, 18877}, {14407, 32659}, {14417, 19626}, {14533, 55219}, {14582, 19627}, {14595, 57136}, {14598, 53556}, {15451, 54034}, {17415, 43722}, {18105, 20775}, {18897, 24459}, {22260, 47390}, {23225, 56853}, {23286, 40981}, {23610, 47389}, {32713, 34980}, {33581, 42658}, {36417, 52613}, {40351, 41077}, {41280, 52355}, {42065, 42663}, {42667, 42668}, {52370, 57181}, {55234, 57657}
X(57968) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 810}, {9, 3049}, {799, 23083}, {1249, 798}, {3162, 1924}, {4858, 20975}, {5139, 4117}, {5190, 3121}, {5375, 2200}, {6337, 822}, {6374, 656}, {6376, 647}, {6505, 39201}, {6626, 22383}, {6631, 228}, {9296, 71}, {9428, 63}, {10001, 1409}, {16592, 22373}, {18277, 53556}, {31998, 48}, {34021, 1459}, {36103, 669}, {36830, 9247}, {36901, 3708}, {38986, 23216}, {39030, 24284}, {39039, 2491}, {39040, 39469}, {39052, 32}, {39053, 1402}, {39054, 184}, {39060, 1400}, {39062, 31}, {40596, 560}, {40603, 55230}, {40605, 1946}, {40837, 51641}, {40938, 2084}
X(57968) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 46254}, {799, 4602}, {811, 57973}, {4572, 670}, {4592, 55215}, {17893, 75}, {21259, 2}, {25008, 85}
X(57968) = pole of line {3121, 4117} with respect to the polar circle
X(57968) = pole of line {810, 822} with respect to the Wallace hyperbola
X(57968) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(75), X(662)}}, {{A, B, C, X(162), X(46152)}}, {{A, B, C, X(310), X(4625)}}, {{A, B, C, X(656), X(17893)}}, {{A, B, C, X(799), X(4572)}}, {{A, B, C, X(810), X(21259)}}, {{A, B, C, X(811), X(823)}}, {{A, B, C, X(4602), X(6386)}}
X(57968) = barycentric product X(i)*X(j) for these (i, j): {4, 4602}, {19, 4609}, {27, 6386}, {76, 811}, {107, 40364}, {112, 1928}, {158, 52608}, {163, 44161}, {190, 57796}, {264, 799}, {281, 55213}, {304, 6528}, {305, 823}, {310, 6335}, {313, 55231}, {314, 46404}, {317, 55215}, {321, 55229}, {331, 7257}, {561, 648}, {670, 92}, {1235, 4593}, {1441, 55233}, {1502, 162}, {1897, 6385}, {1964, 42395}, {1969, 99}, {1978, 286}, {2052, 55202}, {2617, 57790}, {4235, 57999}, {4563, 57806}, {4601, 46107}, {4625, 7017}, {4631, 57809}, {6331, 75}, {14618, 24037}, {16077, 46234}, {17442, 42371}, {18020, 20948}, {18022, 662}, {18026, 28660}, {18027, 4592}, {18695, 42405}, {18833, 41676}, {20567, 36797}, {20571, 55227}, {20883, 689}, {22456, 46238}, {23994, 55270}, {23999, 3267}, {24006, 34537}, {24019, 40050}, {24039, 46111}, {31623, 4572}, {31909, 46132}, {32676, 40362}, {36036, 44132}, {37204, 427}, {40072, 653}, {40703, 43187}, {40717, 4639}, {41013, 52612}, {44129, 668}, {44130, 4554}, {46104, 55239}, {46109, 4634}, {46254, 850}, {46273, 877}, {46506, 9065}, {46507, 9063}, {55249, 55553}, {57787, 645}, {57973, 69}
X(57968) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3049}, {2, 810}, {4, 798}, {19, 669}, {25, 1924}, {27, 667}, {28, 1919}, {29, 3063}, {63, 39201}, {69, 822}, {75, 647}, {76, 656}, {86, 22383}, {92, 512}, {99, 48}, {100, 2200}, {107, 1973}, {110, 9247}, {112, 560}, {158, 2489}, {162, 32}, {163, 14575}, {190, 228}, {240, 2491}, {264, 661}, {273, 7180}, {274, 1459}, {276, 2616}, {278, 51641}, {286, 649}, {304, 520}, {305, 24018}, {310, 905}, {313, 55232}, {314, 652}, {317, 55216}, {318, 3709}, {321, 55230}, {326, 32320}, {331, 4017}, {332, 36054}, {333, 1946}, {340, 2624}, {348, 51640}, {427, 2084}, {469, 50488}, {561, 525}, {643, 52425}, {645, 212}, {646, 2318}, {648, 31}, {653, 1402}, {658, 1410}, {662, 184}, {664, 1409}, {668, 71}, {670, 63}, {689, 34055}, {798, 23216}, {799, 3}, {811, 6}, {823, 25}, {850, 3708}, {873, 7254}, {877, 1755}, {892, 36060}, {1019, 22096}, {1096, 57204}, {1235, 8061}, {1332, 4055}, {1414, 52411}, {1441, 55234}, {1474, 1980}, {1502, 14208}, {1577, 20975}, {1748, 34952}, {1783, 1918}, {1784, 14398}, {1821, 878}, {1824, 53581}, {1826, 50487}, {1847, 7250}, {1897, 213}, {1921, 53556}, {1926, 24284}, {1928, 3267}, {1959, 39469}, {1969, 523}, {1973, 9426}, {1978, 72}, {1981, 44112}, {2322, 8641}, {2489, 4117}, {2580, 42667}, {2581, 42668}, {2617, 217}, {3186, 23503}, {3260, 2631}, {3261, 18210}, {3265, 37754}, {3267, 2632}, {3596, 8611}, {3699, 52370}, {3732, 22363}, {4033, 3690}, {4230, 9417}, {4235, 922}, {4238, 9454}, {4240, 9406}, {4369, 22373}, {4554, 73}, {4558, 52430}, {4561, 3990}, {4563, 255}, {4567, 32656}, {4569, 52373}, {4572, 1214}, {4573, 603}, {4575, 14585}, {4576, 4020}, {4589, 2196}, {4590, 4575}, {4592, 577}, {4593, 1176}, {4594, 7116}, {4598, 22381}, {4599, 10547}, {4600, 906}, {4601, 1331}, {4602, 69}, {4609, 304}, {4610, 1437}, {4615, 36058}, {4616, 7099}, {4620, 36059}, {4622, 32659}, {4623, 1790}, {4625, 222}, {4631, 283}, {4634, 1797}, {4635, 7053}, {4639, 295}, {5307, 8639}, {5342, 4832}, {5379, 32739}, {6063, 51664}, {6331, 1}, {6335, 42}, {6385, 4025}, {6386, 306}, {6528, 19}, {7017, 4041}, {7035, 4574}, {7058, 57134}, {7101, 4524}, {7199, 3937}, {7256, 1802}, {7257, 219}, {7258, 1260}, {7260, 7015}, {7649, 3121}, {8033, 22093}, {8750, 2205}, {13149, 1042}, {14206, 9409}, {14208, 3269}, {14213, 15451}, {14618, 2643}, {15164, 2579}, {15165, 2578}, {15352, 1096}, {15411, 2638}, {16077, 2159}, {16568, 42659}, {16747, 21123}, {17149, 2524}, {17171, 50521}, {17206, 23224}, {17442, 688}, {17921, 38986}, {17924, 3122}, {17925, 3248}, {18020, 163}, {18022, 1577}, {18026, 1400}, {18027, 24006}, {18031, 10099}, {18062, 22352}, {18063, 21637}, {18064, 22159}, {18155, 7117}, {18157, 53550}, {18160, 22094}, {18197, 22386}, {18206, 23225}, {18695, 17434}, {18750, 42658}, {18831, 2148}, {18833, 4580}, {18891, 24459}, {20567, 17094}, {20641, 8673}, {20883, 3005}, {20884, 42665}, {20944, 9517}, {20948, 125}, {21300, 55066}, {22456, 1910}, {23582, 32676}, {23889, 23200}, {23999, 112}, {24001, 1495}, {24006, 3124}, {24018, 34980}, {24019, 1974}, {24024, 51437}, {24037, 4558}, {24039, 3292}, {24041, 32661}, {27801, 4064}, {27808, 3949}, {28659, 52355}, {28660, 521}, {30939, 22086}, {30940, 22384}, {31008, 22090}, {31623, 663}, {31909, 788}, {31917, 50514}, {32676, 1501}, {32680, 52153}, {33787, 2519}, {33805, 14380}, {33809, 14060}, {33951, 23203}, {34016, 23226}, {34022, 22387}, {34537, 4592}, {35325, 1923}, {35360, 2179}, {35519, 53560}, {36036, 248}, {36084, 14600}, {36085, 14908}, {36104, 14601}, {36105, 32654}, {36120, 2422}, {36126, 2207}, {36129, 11060}, {36797, 41}, {36806, 1808}, {36860, 20760}, {37134, 17970}, {37204, 1799}, {38462, 14407}, {40071, 57109}, {40072, 6332}, {40364, 3265}, {40440, 2623}, {40495, 4466}, {40703, 3569}, {40717, 21832}, {41013, 4079}, {41174, 36084}, {41676, 1964}, {42308, 36131}, {42395, 18833}, {42396, 46289}, {42405, 2190}, {43187, 293}, {44129, 513}, {44130, 650}, {44140, 46382}, {44146, 2642}, {44154, 2522}, {44161, 20948}, {44168, 55202}, {44173, 20902}, {44179, 30451}, {44326, 19614}, {44706, 42293}, {46104, 55240}, {46107, 3125}, {46109, 4730}, {46110, 4516}, {46111, 23894}, {46134, 1820}, {46234, 9033}, {46238, 684}, {46254, 110}, {46273, 879}, {46277, 10097}, {46404, 65}, {46405, 52391}, {46406, 1439}, {46507, 17415}, {46541, 2251}, {46810, 2584}, {46813, 2585}, {47443, 23995}, {51913, 9491}, {52379, 23189}, {52414, 14270}, {52608, 326}, {52612, 1444}, {52613, 42080}, {52619, 3942}, {52914, 57657}, {52915, 17453}, {52919, 2203}, {52921, 2204}, {52938, 1880}, {53639, 2155}, {54229, 21755}, {54240, 57652}, {55202, 394}, {55205, 1804}, {55206, 7063}, {55207, 1259}, {55208, 1356}, {55209, 7100}, {55211, 1433}, {55213, 348}, {55215, 68}, {55217, 2962}, {55227, 47}, {55229, 81}, {55231, 58}, {55233, 21}, {55235, 52408}, {55237, 52407}, {55239, 3917}, {55241, 7078}, {55243, 22356}, {55247, 3157}, {55249, 1147}, {55254, 46974}, {55258, 22350}, {55260, 1818}, {55262, 5440}, {55270, 1101}, {55553, 55250}, {56053, 15373}, {56829, 9407}, {57081, 39687}, {57200, 1977}, {57215, 3271}, {57779, 7252}, {57787, 7178}, {57796, 514}, {57806, 2501}, {57809, 57185}, {57932, 36053}, {57973, 4}, {57980, 52222}, {57992, 15419}, {57999, 14977}


X(57969) = ISOTOMIC CONJUGATE OF X(814)

Barycentrics    (a-b)*(a-c)*(a*b*(a+b)-c^3)*(-b^3+a*c*(a+c)) : :

X(57969) lies on the Steiner circumellipse and on these lines: {99, 815}, {190, 7239}, {1492, 33514}, {3882, 4586}

X(57969) = isogonal conjugate of X(8633)
X(57969) = isotomic conjugate of X(814)
X(57969) = trilinear pole of line {2, 3721}
X(57969) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8633}, {31, 814}, {649, 4426}, {667, 4362}, {5509, 15440}
X(57969) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 814}, {3, 8633}, {5375, 4426}, {6631, 4362}
X(57969) = X(i)-cross conjugate of X(j) for these {i, j}: {814, 2}, {33088, 1016}
X(57969) = pole of line {814, 8633} with respect to the Wallace hyperbola
X(57969) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(56241)}}, {{A, B, C, X(651), X(4583)}}, {{A, B, C, X(662), X(6386)}}, {{A, B, C, X(789), X(4552)}}, {{A, B, C, X(819), X(32676)}}, {{A, B, C, X(833), X(1492)}}, {{A, B, C, X(1978), X(4594)}}, {{A, B, C, X(3882), X(4505)}}, {{A, B, C, X(4554), X(56053)}}, {{A, B, C, X(4572), X(4589)}}, {{A, B, C, X(6335), X(8709)}}, {{A, B, C, X(13397), X(37135)}}
X(57969) = barycentric product X(i)*X(j) for these (i, j): {76, 815}
X(57969) = barycentric quotient X(i)/X(j) for these (i, j): {2, 814}, {6, 8633}, {100, 4426}, {190, 4362}, {815, 6}


X(57970) = ISOTOMIC CONJUGATE OF X(816)

Barycentrics    (a-b)*(a-c)*(a*b*(a^2+a*b+b^2)-c^4)*(-b^4+a*c*(a^2+a*c+c^2)) : :

X(57970) lies on the Steiner circumellipse and on these lines: {99, 817}, {4599, 33515}

X(57970) = isogonal conjugate of X(8634)
X(57970) = isotomic conjugate of X(816)
X(57970) = trilinear pole of line {2, 4118}
X(57970) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8634}, {31, 816}, {667, 30167}
X(57970) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 816}, {3, 8634}, {6631, 30167}
X(57970) = pole of line {816, 8634} with respect to the Wallace hyperbola
X(57970) = barycentric product X(i)*X(j) for these (i, j): {76, 817}
X(57970) = barycentric quotient X(i)/X(j) for these (i, j): {2, 816}, {6, 8634}, {190, 30167}, {817, 6}


X(57971) = ISOTOMIC CONJUGATE OF X(818)

Barycentrics    (a-b)*(a-c)*(a*b*(a+b)*(a^2+b^2)-c^5)*(-b^5+a*c*(a+c)*(a^2+c^2)) : :

X(57971) lies on the Steiner circumellipse and on these lines: {99, 819}

X(57971) = isotomic conjugate of X(818)
X(57971) = trilinear pole of line {2, 21324}
X(57971) = barycentric product X(i)*X(j) for these (i, j): {76, 819}
X(57971) = barycentric quotient X(i)/X(j) for these (i, j): {2, 818}, {819, 6}


X(57972) = ISOTOMIC CONJUGATE OF X(820)

Barycentrics    b^3*c^3*((a^2-b^2)^2*(a^2+b^2)-2*(a^2-b^2)^2*c^2+(a^2+b^2)*c^4)*(a^4-(b^2-c^2)^2)^2*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+4*b^2*c^2-c^4)) : :

X(57972) lies on these lines: {63, 6521}, {307, 57843}, {326, 821}, {1969, 19611}, {17858, 57973}, {52385, 57775}

X(57972) = isotomic conjugate of X(820)
X(57972) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 417}, {31, 820}, {32, 6509}, {184, 185}, {217, 19180}, {235, 23606}, {418, 16035}, {577, 800}, {774, 52430}, {1092, 44079}, {1624, 39201}, {6508, 9247}, {13567, 14585}, {14575, 41005}, {19166, 44088}
X(57972) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 820}, {6376, 6509}, {6505, 417}
X(57972) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 57955}, {1577, 57973}
X(57972) = intersection, other than A, B, C, of circumconics {{A, B, C, X(63), X(75)}}, {{A, B, C, X(1577), X(17858)}}, {{A, B, C, X(9252), X(40703)}}, {{A, B, C, X(23999), X(40440)}}
X(57972) = barycentric product X(i)*X(j) for these (i, j): {76, 821}, {158, 40830}, {304, 57677}, {1105, 1969}, {2052, 57955}, {18027, 775}, {57775, 92}, {57800, 6521}, {57806, 801}, {57843, 63}
X(57972) = barycentric quotient X(i)/X(j) for these (i, j): {2, 820}, {63, 417}, {75, 6509}, {92, 185}, {158, 800}, {264, 6508}, {775, 577}, {801, 255}, {821, 6}, {823, 1624}, {1105, 48}, {1969, 41005}, {2052, 774}, {6520, 44079}, {6521, 235}, {18027, 17858}, {40440, 19180}, {40830, 326}, {41890, 52430}, {57648, 4100}, {57677, 19}, {57775, 63}, {57800, 6507}, {57806, 13567}, {57843, 92}, {57955, 394}


X(57973) = ISOTOMIC CONJUGATE OF X(822)

Barycentrics    (a-b)*b^3*(a+b)*(a-c)*c^3*(a+c)*(a^4-(b^2-c^2)^2)^2 : :

X(57973) lies on these lines: {92, 46273}, {99, 681}, {107, 789}, {162, 23999}, {264, 1985}, {668, 6528}, {799, 823}, {811, 2617}, {1966, 41497}, {1969, 33805}, {2052, 40017}, {4554, 6331}, {4563, 57953}, {4593, 24019}, {17858, 57972}, {46254, 55249}, {46277, 57806}, {57796, 57996}

X(57973) = isotomic conjugate of X(822)
X(57973) = trilinear pole of line {75, 158}
X(57973) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 3049}, {6, 39201}, {25, 32320}, {31, 822}, {32, 520}, {41, 51640}, {48, 810}, {51, 46088}, {54, 42293}, {112, 34980}, {184, 647}, {213, 23224}, {217, 23286}, {228, 22383}, {248, 39469}, {255, 798}, {326, 1924}, {394, 669}, {418, 2623}, {512, 577}, {523, 14585}, {525, 14575}, {560, 24018}, {656, 9247}, {661, 52430}, {667, 3990}, {684, 14600}, {688, 28724}, {878, 3289}, {1092, 2489}, {1402, 36054}, {1409, 1946}, {1459, 2200}, {1501, 3265}, {1576, 3269}, {1636, 40352}, {1918, 4091}, {1919, 3682}, {1971, 53175}, {1974, 52613}, {1980, 3998}, {2205, 4131}, {2289, 51641}, {2351, 30451}, {2491, 17974}, {2501, 23606}, {2524, 15389}, {3063, 22341}, {3267, 40373}, {3709, 7335}, {3926, 9426}, {3964, 57204}, {4143, 44162}, {4563, 23216}, {4574, 22096}, {5489, 23963}, {6056, 7180}, {9233, 52617}, {9409, 18877}, {9418, 53173}, {10097, 23200}, {14270, 50433}, {14533, 15451}, {14574, 15526}, {14642, 42658}, {15412, 44088}, {17434, 54034}, {18604, 50487}, {19210, 55219}, {19627, 43083}, {20975, 32661}, {23103, 23975}, {23590, 23613}, {24019, 42080}, {32676, 37754}, {32713, 35071}, {32725, 33571}, {34952, 55549}, {39687, 53321}, {40823, 47194}
X(57973) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 822}, {9, 39201}, {1249, 810}, {3160, 51640}, {4858, 3269}, {5375, 4055}, {6374, 24018}, {6376, 520}, {6505, 32320}, {6523, 798}, {6626, 23224}, {6631, 3990}, {9296, 3682}, {9428, 326}, {10001, 22341}, {15259, 1924}, {15526, 37754}, {31998, 255}, {34021, 4091}, {34591, 34980}, {35071, 42080}, {36103, 3049}, {36830, 52430}, {36901, 2632}, {39039, 39469}, {39052, 184}, {39053, 1409}, {39054, 577}, {39060, 73}, {39062, 48}, {40596, 9247}, {40605, 36054}, {55068, 39687}
X(57973) = X(i)-cross conjugate of X(j) for these {i, j}: {92, 23999}, {811, 57968}, {1577, 57972}, {7199, 57978}, {20948, 1969}, {24018, 75}, {33808, 24037}, {46404, 6331}
X(57973) = pole of line {680, 822} with respect to the Wallace hyperbola
X(57973) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(92), X(162)}}, {{A, B, C, X(662), X(2617)}}, {{A, B, C, X(668), X(789)}}, {{A, B, C, X(681), X(823)}}, {{A, B, C, X(1981), X(1985)}}
X(57973) = barycentric product X(i)*X(j) for these (i, j): {4, 57968}, {76, 823}, {107, 561}, {158, 670}, {162, 18022}, {264, 811}, {305, 36126}, {314, 52938}, {393, 4602}, {1093, 55202}, {1096, 4609}, {1502, 24019}, {1857, 55213}, {1896, 4572}, {1897, 57796}, {1928, 32713}, {1969, 648}, {2052, 799}, {2617, 57844}, {4563, 6521}, {6331, 92}, {6386, 8747}, {6528, 75}, {11547, 55215}, {14213, 42405}, {14618, 46254}, {15352, 304}, {15459, 46234}, {18026, 44130}, {18027, 662}, {18695, 52779}, {18833, 46151}, {20948, 23582}, {22456, 40703}, {23999, 850}, {24000, 44173}, {24021, 52617}, {27376, 37204}, {27801, 52919}, {28660, 54240}, {31623, 46404}, {32676, 44161}, {36127, 40072}, {36797, 57787}, {40149, 55233}, {40364, 6529}, {41013, 55229}, {41679, 57898}, {44129, 6335}, {44706, 54950}, {52608, 6520}, {55227, 57716}, {57806, 99}
X(57973) = barycentric quotient X(i)/X(j) for these (i, j): {1, 39201}, {2, 822}, {4, 810}, {7, 51640}, {19, 3049}, {27, 22383}, {29, 1946}, {63, 32320}, {75, 520}, {76, 24018}, {86, 23224}, {92, 647}, {99, 255}, {100, 4055}, {107, 31}, {110, 52430}, {112, 9247}, {158, 512}, {162, 184}, {163, 14585}, {190, 3990}, {240, 39469}, {264, 656}, {274, 4091}, {286, 1459}, {304, 52613}, {310, 4131}, {313, 57109}, {314, 57241}, {331, 51664}, {333, 36054}, {393, 798}, {520, 42080}, {525, 37754}, {561, 3265}, {643, 6056}, {645, 2289}, {648, 48}, {653, 1409}, {656, 34980}, {662, 577}, {664, 22341}, {668, 3682}, {670, 326}, {799, 394}, {811, 3}, {823, 6}, {850, 2632}, {1021, 39687}, {1087, 34983}, {1096, 669}, {1118, 51641}, {1414, 7335}, {1577, 3269}, {1748, 30451}, {1783, 2200}, {1784, 9409}, {1895, 42658}, {1896, 663}, {1897, 228}, {1928, 52617}, {1953, 42293}, {1956, 53175}, {1969, 525}, {1978, 3998}, {2052, 661}, {2167, 46088}, {2207, 1924}, {2586, 42667}, {2587, 42668}, {2617, 418}, {4033, 52386}, {4554, 40152}, {4558, 4100}, {4563, 6507}, {4566, 7138}, {4572, 52385}, {4573, 7125}, {4575, 23606}, {4592, 1092}, {4593, 28724}, {4602, 3926}, {4610, 18604}, {4625, 1804}, {4631, 6514}, {5317, 1919}, {5379, 32656}, {6331, 63}, {6335, 71}, {6385, 30805}, {6386, 52396}, {6520, 2489}, {6521, 2501}, {6528, 1}, {6529, 1973}, {7017, 8611}, {7253, 2638}, {7257, 1259}, {8747, 667}, {8748, 3063}, {8795, 2616}, {11547, 55216}, {13149, 52373}, {14165, 2624}, {14206, 1636}, {14208, 2972}, {14213, 17434}, {14618, 3708}, {15164, 2585}, {15165, 2584}, {15352, 19}, {15459, 2159}, {16077, 35200}, {16237, 2315}, {16813, 2148}, {18020, 4575}, {18022, 14208}, {18026, 73}, {18027, 1577}, {18155, 1364}, {18831, 2169}, {20948, 15526}, {22456, 293}, {23582, 163}, {23994, 5489}, {23999, 110}, {24000, 1576}, {24001, 3284}, {24006, 20975}, {24018, 35071}, {24019, 32}, {24020, 23103}, {24021, 32713}, {24024, 42671}, {24032, 53321}, {27376, 2084}, {27808, 52387}, {30450, 1820}, {30805, 16730}, {31623, 652}, {32230, 32676}, {32676, 14575}, {32680, 50433}, {32713, 560}, {34538, 24019}, {36036, 17974}, {36104, 14600}, {36105, 42065}, {36118, 1410}, {36120, 878}, {36126, 25}, {36127, 1402}, {36129, 52153}, {36419, 57129}, {36797, 212}, {37778, 2642}, {40072, 52616}, {40149, 55234}, {40364, 4143}, {40440, 23286}, {40495, 17216}, {40703, 684}, {40717, 53556}, {41013, 55230}, {41207, 1949}, {41676, 4020}, {41679, 563}, {42308, 36034}, {42405, 2167}, {44129, 905}, {44130, 521}, {44173, 17879}, {46106, 2631}, {46107, 18210}, {46110, 53560}, {46151, 1964}, {46234, 41077}, {46254, 4558}, {46273, 53173}, {46404, 1214}, {46541, 23202}, {46812, 2578}, {46815, 2579}, {51315, 3288}, {52575, 57243}, {52608, 1102}, {52617, 24020}, {52779, 2190}, {52919, 1333}, {52920, 2206}, {52921, 2194}, {52938, 65}, {53639, 19614}, {54229, 22373}, {54240, 1400}, {54407, 23225}, {54950, 40440}, {55202, 3964}, {55213, 7055}, {55215, 52350}, {55229, 1444}, {55231, 1790}, {55233, 1812}, {55247, 6511}, {57200, 22096}, {57215, 7117}, {57779, 23189}, {57787, 17094}, {57796, 4025}, {57806, 523}, {57930, 56227}, {57968, 69}


X(57974) = ISOTOMIC CONJUGATE OF X(828)

Barycentrics    b^3*(a+b)*c^3*(a+c)*((a^2-b^2)^2*(a^2-a*b+b^2)-2*(a-b)^2*(a^2+a*b+b^2)*c^2+(a^2-a*b+b^2)*c^4)*(a^4-(b^2-c^2)^2)^2*(a^6-a^5*c-a*c*(b^2-c^2)^2+2*a^3*c*(b^2+c^2)-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4-c^4)) : :

X(57974) lies on circumconic {{A, B, C, X(2), X(255)}} and on these lines: {255, 57806}

X(57974) = isotomic conjugate of X(828)
X(57974) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 828}, {1881, 23606}
X(57974) = X(i)-cross conjugate of X(j) for these {i, j}: {4560, 6528}
X(57974) = barycentric product X(i)*X(j) for these (i, j): {76, 829}
X(57974) = barycentric quotient X(i)/X(j) for these (i, j): {2, 828}, {829, 6}, {1896, 11436}, {6521, 1881}


X(57975) = ISOTOMIC CONJUGATE OF X(830)

Barycentrics    (a-b)*b*(a-c)*c*(a^2+a*b+b^2+c^2)*(a^2+b^2+a*c+c^2) : :

X(57975) lies on the Steiner circumellipse and on these lines: {99, 831}, {799, 4577}, {1269, 2481}, {1930, 31167}, {1934, 14970}, {24731, 35172}

X(57975) = isogonal conjugate of X(8635)
X(57975) = isotomic conjugate of X(830)
X(57975) = trilinear pole of line {2, 1930}
X(57975) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8635}, {6, 2483}, {31, 830}, {32, 47660}, {58, 50496}, {649, 5280}, {667, 3920}, {1919, 17289}, {1980, 33941}, {2206, 47711}, {8687, 38364}, {23885, 46288}, {28594, 57129}, {32736, 55054}
X(57975) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 830}, {3, 8635}, {9, 2483}, {10, 50496}, {5375, 5280}, {6376, 47660}, {6631, 3920}, {9296, 17289}, {17419, 38364}, {40603, 47711}
X(57975) = X(i)-cross conjugate of X(j) for these {i, j}: {830, 2}, {4509, 75}, {17302, 31625}, {33090, 1016}, {47653, 274}
X(57975) = pole of line {830, 8635} with respect to the Wallace hyperbola
X(57975) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(662), X(54458)}}, {{A, B, C, X(789), X(6386)}}, {{A, B, C, X(799), X(1934)}}, {{A, B, C, X(813), X(4553)}}, {{A, B, C, X(3903), X(4628)}}, {{A, B, C, X(3952), X(36086)}}, {{A, B, C, X(4033), X(51560)}}, {{A, B, C, X(4572), X(37218)}}, {{A, B, C, X(4583), X(4623)}}, {{A, B, C, X(36804), X(56241)}}, {{A, B, C, X(37212), X(42363)}}, {{A, B, C, X(47816), X(47818)}}
X(57975) = barycentric product X(i)*X(j) for these (i, j): {76, 831}
X(57975) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2483}, {2, 830}, {6, 8635}, {37, 50496}, {75, 47660}, {100, 5280}, {190, 3920}, {321, 47711}, {668, 17289}, {831, 6}, {1269, 27610}, {1332, 5314}, {1930, 23885}, {1978, 33941}, {3952, 28594}, {4554, 7247}, {17108, 6371}, {17420, 38364}, {30730, 4538}, {48131, 55054}


X(57976) = ISOTOMIC CONJUGATE OF X(832)

Barycentrics    (a-b)*b*(a-c)*c*((a+b)*(a^2+b^2)+c^3)*(b^3+(a+c)*(a^2+c^2)) : :

X(57976) lies on the Steiner circumellipse and on these lines: {99, 833}, {789, 33514}, {903, 58018}, {977, 3226}, {14616, 44154}, {18825, 56342}

X(57976) = isogonal conjugate of X(8636)
X(57976) = isotomic conjugate of X(832)
X(57976) = trilinear pole of line {2, 2064}
X(57976) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8636}, {31, 832}, {32, 48300}, {649, 2273}, {667, 976}, {810, 17520}, {1919, 32777}
X(57976) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 832}, {3, 8636}, {5375, 2273}, {6376, 48300}, {6631, 976}, {9296, 32777}, {39062, 17520}
X(57976) = X(i)-cross conjugate of X(j) for these {i, j}: {832, 2}, {19785, 31625}, {36500, 1016}
X(57976) = pole of line {832, 8636} with respect to the Wallace hyperbola
X(57976) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(660), X(29026)}}, {{A, B, C, X(811), X(6386)}}, {{A, B, C, X(3903), X(29083)}}, {{A, B, C, X(4566), X(54458)}}, {{A, B, C, X(7257), X(42380)}}, {{A, B, C, X(51566), X(56241)}}
X(57976) = barycentric product X(i)*X(j) for these (i, j): {76, 833}, {190, 58018}, {1978, 977}, {56342, 6386}
X(57976) = barycentric quotient X(i)/X(j) for these (i, j): {2, 832}, {6, 8636}, {75, 48300}, {100, 2273}, {190, 976}, {648, 17520}, {668, 32777}, {833, 6}, {977, 649}, {3888, 22398}, {6335, 5090}, {56342, 667}, {58018, 514}


X(57977) = ISOTOMIC CONJUGATE OF X(834)

Barycentrics    (a-b)*b^2*(a-c)*c^2*(a^2+a*(b+c)+b*(b+c))*(a^2+a*(b+c)+c*(b+c)) : :
X(57977) = -3*X[2]+2*X[39016]

X(57977) lies on the Steiner circumellipse and on these lines: {2, 39016}, {99, 835}, {190, 27808}, {313, 57891}, {646, 54970}, {668, 3909}, {874, 57959}, {889, 43927}, {903, 57824}, {2214, 18825}, {3226, 43531}, {6386, 54957}, {10471, 18827}

X(57977) = isogonal conjugate of X(8637)
X(57977) = isotomic conjugate of X(834)
X(57977) = anticomplement of X(39016)
X(57977) = trilinear pole of line {2, 313}
X(57977) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8637}, {31, 834}, {32, 14349}, {58, 50488}, {213, 52615}, {386, 667}, {560, 45746}, {1333, 42664}, {1919, 28606}, {1980, 5224}, {2206, 47842}, {22383, 44103}, {56926, 57129}
X(57977) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 834}, {3, 8637}, {10, 50488}, {37, 42664}, {6374, 45746}, {6376, 14349}, {6626, 52615}, {6631, 386}, {9296, 28606}, {39016, 39016}, {40603, 47842}
X(57977) = X(i)-cross conjugate of X(j) for these {i, j}: {834, 2}, {10449, 1016}, {28605, 31625}, {33952, 31624}, {47659, 308}, {47844, 30710}
X(57977) = pole of line {834, 8637} with respect to the Wallace hyperbola
X(57977) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(28477)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(109), X(3909)}}, {{A, B, C, X(660), X(785)}}, {{A, B, C, X(811), X(839)}}, {{A, B, C, X(834), X(39016)}}, {{A, B, C, X(874), X(10471)}}, {{A, B, C, X(1978), X(18895)}}, {{A, B, C, X(4602), X(31624)}}, {{A, B, C, X(35008), X(52935)}}
X(57977) = barycentric product X(i)*X(j) for these (i, j): {76, 835}, {190, 57824}, {1978, 43531}, {2214, 6386}, {27808, 56047}, {31625, 43927}, {37218, 75}
X(57977) = barycentric quotient X(i)/X(j) for these (i, j): {2, 834}, {6, 8637}, {10, 42664}, {37, 50488}, {75, 14349}, {76, 45746}, {86, 52615}, {190, 386}, {313, 23879}, {321, 47842}, {646, 3876}, {668, 28606}, {834, 39016}, {835, 6}, {1897, 44103}, {1978, 5224}, {2214, 667}, {3952, 56926}, {4572, 33949}, {6386, 33935}, {23282, 52327}, {27808, 56810}, {28654, 23282}, {31625, 33948}, {37218, 1}, {42664, 52328}, {43531, 649}, {43927, 1015}, {56047, 3733}, {57824, 514}, {57876, 1459}


X(57978) = ISOTOMIC CONJUGATE OF X(836)

Barycentrics    b^2*(a+b)*c^2*(a+c)*((a^2-b^2)^2-2*(a-b)^2*c^2+c^4)*(a^4-(b^2-c^2)^2)^2*(a^4+4*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(57978) lies on these lines: {2052, 3926}

X(57978) = isotomic conjugate of X(836)
X(57978) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 836}, {1409, 19354}, {3554, 4055}, {14585, 17869}, {24005, 52430}
X(57978) = X(i)-cross conjugate of X(j) for these {i, j}: {7199, 57973}
X(57978) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(3926)}}, {{A, B, C, X(274), X(44130)}}
X(57978) = barycentric product X(i)*X(j) for these (i, j): {76, 837}
X(57978) = barycentric quotient X(i)/X(j) for these (i, j): {2, 836}, {29, 19354}, {837, 6}, {1896, 30223}, {2052, 24005}, {34401, 40152}, {42019, 4055}, {44129, 26871}, {56287, 22341}, {56354, 3990}, {57806, 17869}, {57809, 26955}


X(57979) = ISOTOMIC CONJUGATE OF X(838)

Barycentrics    (a-b)*b^3*(a-c)*c^3*(a^3+a^2*(b+c)+a*b*(b+c)+b^2*(b+c))*(a^3+a^2*(b+c)+a*c*(b+c)+c^2*(b+c)) : :

X(57979) lies on the Steiner circumellipse and on these lines: {99, 839}, {18824, 54336}, {18827, 44172}

X(57979) = isotomic conjugate of X(838)
X(57979) = trilinear pole of line {2, 27801}
X(57979) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 838}, {1919, 4261}
X(57979) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 838}, {9296, 4261}
X(57979) = X(i)-cross conjugate of X(j) for these {i, j}: {838, 2}, {44140, 31625}
X(57979) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(6386), X(44172)}}, {{A, B, C, X(37204), X(52611)}}
X(57979) = barycentric product X(i)*X(j) for these (i, j): {76, 839}
X(57979) = barycentric quotient X(i)/X(j) for these (i, j): {2, 838}, {668, 4261}, {839, 6}, {6386, 32782}, {27808, 56541}, {54336, 1919}


X(57980) = ISOTOMIC CONJUGATE OF X(851)

Barycentrics    b*(a+b)*c*(a+c)*(a*(a-b)^2*b+(a^2-a*b+b^2)*c^2-c^4)*(-b^4+a^3*c+b^2*c^2+a^2*(b^2-2*c^2)+a*(-(b^2*c)+c^3)) : :

X(57980) lies on these lines: {2, 811}, {69, 799}, {95, 30944}, {253, 30971}, {264, 1985}, {287, 36036}, {305, 4602}, {306, 668}, {307, 314}, {310, 46406}, {332, 57953}, {350, 40715}, {789, 2249}, {1441, 14009}, {1494, 46521}, {1799, 4593}, {1978, 20336}, {2968, 6331}, {4583, 42709}, {9229, 30978}, {14977, 46277}, {18018, 30951}, {18019, 30952}, {18031, 30992}, {20563, 55215}, {20564, 31007}, {30976, 36889}, {30977, 57818}, {33805, 34767}, {37202, 46574}, {57812, 57842}

X(57980) = isogonal conjugate of X(44112)
X(57980) = isotomic conjugate of X(851)
X(57980) = trilinear pole of line {75, 17899}
X(57980) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44112}, {6, 42669}, {31, 851}, {32, 8680}, {41, 51645}, {42, 26884}, {73, 51726}, {228, 1430}, {560, 44150}, {810, 23353}, {1400, 1951}, {1402, 1936}, {1409, 2202}, {1918, 5088}, {1924, 15418}, {1981, 3049}, {9391, 32676}
X(57980) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 851}, {3, 44112}, {9, 42669}, {3160, 51645}, {6374, 44150}, {6376, 8680}, {8062, 35236}, {9428, 15418}, {15526, 9391}, {34021, 5088}, {39062, 23353}, {40582, 1951}, {40592, 26884}, {40605, 1936}
X(57980) = X(i)-cross conjugate of X(j) for these {i, j}: {31001, 40017}, {37370, 2}, {37796, 76}, {44150, 75}
X(57980) = pole of line {851, 1936} with respect to the Wallace hyperbola
X(57980) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(1985)}}, {{A, B, C, X(4), X(30943)}}, {{A, B, C, X(5), X(30944)}}, {{A, B, C, X(20), X(30971)}}, {{A, B, C, X(21), X(14009)}}, {{A, B, C, X(22), X(30951)}}, {{A, B, C, X(23), X(30952)}}, {{A, B, C, X(25), X(30972)}}, {{A, B, C, X(26), X(31007)}}, {{A, B, C, X(27), X(30973)}}, {{A, B, C, X(28), X(30974)}}, {{A, B, C, X(29), X(30975)}}, {{A, B, C, X(30), X(46521)}}, {{A, B, C, X(310), X(314)}}, {{A, B, C, X(350), X(42709)}}, {{A, B, C, X(376), X(30976)}}, {{A, B, C, X(377), X(30977)}}, {{A, B, C, X(384), X(30978)}}, {{A, B, C, X(668), X(789)}}, {{A, B, C, X(693), X(7261)}}, {{A, B, C, X(851), X(37370)}}, {{A, B, C, X(857), X(46574)}}, {{A, B, C, X(1937), X(37142)}}, {{A, B, C, X(3136), X(8731)}}, {{A, B, C, X(4184), X(14008)}}, {{A, B, C, X(4192), X(37354)}}, {{A, B, C, X(6384), X(20570)}}, {{A, B, C, X(13588), X(37373)}}, {{A, B, C, X(14534), X(32023)}}, {{A, B, C, X(37319), X(47514)}}
X(57980) = barycentric product X(i)*X(j) for these (i, j): {1937, 28660}, {1945, 40072}, {1952, 314}, {2249, 561}, {31623, 57801}, {35145, 75}, {35518, 41207}, {35519, 41206}, {37142, 76}, {40843, 44130}, {52222, 57968}
X(57980) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42669}, {2, 851}, {6, 44112}, {7, 51645}, {21, 1951}, {27, 1430}, {29, 2202}, {75, 8680}, {76, 44150}, {81, 26884}, {274, 5088}, {296, 1409}, {314, 1944}, {332, 6518}, {333, 1936}, {525, 9391}, {648, 23353}, {670, 15418}, {811, 1981}, {1172, 51726}, {1937, 1400}, {1945, 1402}, {1952, 65}, {2249, 31}, {16573, 35236}, {17899, 2797}, {31623, 243}, {35145, 1}, {37142, 6}, {40843, 73}, {41206, 109}, {41207, 108}, {44130, 1948}, {44150, 35075}, {52222, 810}, {53211, 1020}, {57801, 1214}


X(57981) = ISOTOMIC CONJUGATE OF X(852)

Barycentrics    b^2*c^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^2*b^2*(a^2-b^2)^2-(a^2-b^2)^2*(a^2+b^2)*c^2+2*(a^4-a^2*b^2+b^4)*c^4-(a^2+b^2)*c^6)*(a^6*(b^2-2*c^2)+b^2*c^2*(b^2-c^2)^2+a^2*(b-c)*(b+c)*(b^2+c^2)*(b^2+2*c^2)-a^4*(2*b^4+b^2*c^2-4*c^4)) : :

X(57981) lies on these lines: {2, 6528}, {69, 6331}, {95, 42405}, {264, 2972}, {287, 22456}, {307, 46404}, {1494, 16089}, {1972, 46106}, {14977, 46111}, {42313, 52147}, {42369, 57844}, {44146, 57864}, {57829, 57932}

X(57981) = isotomic conjugate of X(852)
X(57981) = trilinear pole of line {264, 525}
X(57981) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 852}, {48, 3331}
X(57981) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 852}, {1249, 3331}, {17434, 33571}, {36901, 52744}
X(57981) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(2972), X(14941)}}, {{A, B, C, X(6331), X(6528)}}, {{A, B, C, X(16089), X(46106)}}, {{A, B, C, X(43752), X(46789)}}
X(57981) = barycentric product X(i)*X(j) for these (i, j): {264, 54973}, {18022, 26717}, {57732, 76}
X(57981) = barycentric quotient X(i)/X(j) for these (i, j): {2, 852}, {4, 3331}, {850, 52744}, {2972, 33571}, {26717, 184}, {36139, 32676}, {54973, 3}, {57732, 6}


X(57982) = ISOTOMIC CONJUGATE OF X(853)

Barycentrics    b^2*(a+b-c)*c^2*(a-b+c)*(2*a^2*(a-b)^2*b^2*(a+b)-(a-b)^2*(a+b)*(a^2+b^2)*c^2+(a^4+b^4)*c^3+(a-b)^2*(a+b)*c^4-(a^2+b^2)*c^5)*(a*b^2*(b-c)*c^2*(b+c)+b^2*(b-c)^2*c^2*(b+c)+a^5*(b^2-2*c^2)-a^4*(b^3+b^2*c-2*c^3)-a^3*(b^4-2*c^4)+a^2*(b^5+b^4*c-2*c^5)) : :

X(57982) lies on these lines: {69, 57733}, {306, 4572}, {307, 46406}

X(57982) = isotomic conjugate of X(853)
X(57982) = trilinear pole of line {6063, 525}
X(57982) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(4572), X(46135)}}
X(57982) = barycentric product X(i)*X(j) for these (i, j): {57733, 76}
X(57982) = barycentric quotient X(i)/X(j) for these (i, j): {2, 853}, {57733, 6}


X(57983) = ISOTOMIC CONJUGATE OF X(856)

Barycentrics    b*(a+b)*c*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a*b*(a^2-b^2)^2-(a-b)^2*(a^2+b^2)*c^2+(2*a^2-3*a*b+2*b^2)*c^4-c^6)*(-(a^4*b^2)+a^5*c+2*a^2*b^2*(b-c)*(b+c)+2*a^3*(b-c)*c*(b+c)-(b^3-b*c^2)^2+a*(-3*b^4*c+2*b^2*c^3+c^5)) : :

X(57983) lies on these lines: {2, 823}, {69, 811}, {305, 57968}, {306, 6335}, {307, 18026}, {1441, 52938}, {2373, 36068}, {15352, 16596}

X(57983) = isotomic conjugate of X(856)
X(57983) = trilinear pole of line {92, 525}
X(57983) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 856}, {48, 3330}, {73, 10535}
X(57983) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 856}, {1249, 3330}
X(57983) = X(i)-cross conjugate of X(j) for these {i, j}: {2804, 648}, {51358, 331}
X(57983) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(273), X(40165)}}, {{A, B, C, X(811), X(823)}}
X(57983) = barycentric product X(i)*X(j) for these (i, j): {1969, 26701}, {3267, 36068}, {57734, 76}
X(57983) = barycentric quotient X(i)/X(j) for these (i, j): {2, 856}, {4, 3330}, {1172, 10535}, {26701, 48}, {31623, 10538}, {32670, 32676}, {36068, 112}, {57734, 6}


X(57984) = ISOTOMIC CONJUGATE OF X(859)

Barycentrics    b^2*c^2*(b+c)*((a-b)^2*(a+b)+2*a*b*c-(a+b)*c^2)*(a^3-a*(b-c)^2-a^2*c-b^2*c+c^3) : :

X(57984) lies on these lines: {2, 6335}, {69, 150}, {75, 56252}, {95, 16374}, {104, 839}, {264, 41007}, {287, 13136}, {305, 6386}, {306, 4033}, {307, 313}, {322, 57838}, {1309, 2373}, {3264, 6735}, {19259, 40412}, {20336, 27808}, {34234, 37218}, {40437, 57985}, {41316, 42287}, {42703, 57847}, {51565, 51566}

X(57984) = isotomic conjugate of X(859)
X(57984) = trilinear pole of line {321, 525}
X(57984) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 859}, {162, 23220}, {163, 3310}, {517, 2206}, {560, 17139}, {849, 51377}, {1101, 42752}, {1333, 2183}, {1457, 2194}, {1465, 57657}, {1576, 1769}, {2203, 22350}, {2427, 57129}, {8677, 32676}, {14574, 36038}, {23995, 42759}
X(57984) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 859}, {37, 2183}, {115, 3310}, {125, 23220}, {523, 42752}, {1214, 1457}, {4075, 51377}, {4858, 1769}, {6374, 17139}, {6741, 53549}, {15526, 8677}, {18314, 42759}, {23285, 42761}, {35088, 42751}, {36901, 10015}, {40603, 517}, {51583, 34586}
X(57984) = X(i)-cross conjugate of X(j) for these {i, j}: {3936, 76}, {17757, 321}
X(57984) = pole of line {3310, 23220} with respect to the polar circle
X(57984) = pole of line {859, 34586} with respect to the Wallace hyperbola
X(57984) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(5), X(16374)}}, {{A, B, C, X(150), X(21091)}}, {{A, B, C, X(313), X(3596)}}, {{A, B, C, X(334), X(668)}}, {{A, B, C, X(349), X(44190)}}, {{A, B, C, X(442), X(19259)}}, {{A, B, C, X(523), X(2810)}}, {{A, B, C, X(3142), X(22076)}}, {{A, B, C, X(3421), X(41013)}}, {{A, B, C, X(3701), X(6556)}}, {{A, B, C, X(9307), X(46018)}}, {{A, B, C, X(15065), X(21290)}}, {{A, B, C, X(16082), X(18816)}}, {{A, B, C, X(17790), X(42703)}}, {{A, B, C, X(38955), X(40437)}}, {{A, B, C, X(40071), X(52575)}}, {{A, B, C, X(46497), X(46514)}}
X(57984) = barycentric product X(i)*X(j) for these (i, j): {104, 27801}, {313, 34234}, {349, 51565}, {1309, 3267}, {1441, 36795}, {1809, 52575}, {2250, 561}, {2401, 27808}, {13136, 850}, {16082, 20336}, {18816, 321}, {20948, 36037}, {32641, 44173}, {36123, 40071}, {38955, 76}, {55259, 6386}
X(57984) = barycentric quotient X(i)/X(j) for these (i, j): {2, 859}, {10, 2183}, {76, 17139}, {104, 1333}, {115, 42752}, {226, 1457}, {306, 22350}, {313, 908}, {321, 517}, {338, 42759}, {339, 42761}, {349, 22464}, {523, 3310}, {525, 8677}, {594, 51377}, {647, 23220}, {850, 10015}, {909, 2206}, {1089, 21801}, {1230, 51409}, {1309, 112}, {1441, 1465}, {1577, 1769}, {1809, 2193}, {2250, 31}, {2342, 57657}, {2401, 3733}, {2799, 42751}, {3261, 23788}, {3700, 53549}, {3936, 34586}, {3948, 15507}, {3952, 2427}, {4080, 14260}, {4086, 46393}, {4552, 23981}, {6335, 4246}, {6386, 55258}, {13136, 110}, {13576, 51987}, {14618, 39534}, {16082, 28}, {16732, 42753}, {17757, 23980}, {18816, 81}, {20948, 36038}, {21207, 42754}, {21801, 42078}, {23978, 14010}, {27801, 3262}, {27808, 2397}, {28654, 17757}, {30713, 6735}, {32641, 1576}, {34051, 1408}, {34234, 58}, {35522, 42760}, {35544, 51381}, {35550, 16586}, {36037, 163}, {36123, 1474}, {36795, 21}, {36921, 4273}, {36944, 3285}, {38955, 6}, {40149, 1875}, {40437, 34079}, {41013, 14571}, {41079, 42750}, {42761, 35012}, {43728, 7252}, {43933, 43925}, {51368, 56973}, {51565, 284}, {52355, 52307}, {52663, 2194}, {54953, 4565}, {55259, 667}, {56753, 3286}, {56757, 4282}, {56759, 5170}


X(57985) = ISOTOMIC CONJUGATE OF X(860)

Barycentrics    (a+b)*(a+c)*(a^2-b^2-c^2)*(a^2-a*b+b^2-c^2)*(a^2-b^2-a*c+c^2) : :

X(57985) lies on these lines: {2, 662}, {69, 4592}, {86, 664}, {95, 261}, {264, 811}, {265, 57685}, {305, 55202}, {306, 1332}, {307, 1444}, {332, 1807}, {759, 1310}, {1414, 36918}, {1944, 57862}, {2373, 36069}, {4558, 26932}, {17019, 18359}, {17195, 33953}, {20947, 51562}, {29574, 36910}, {31631, 44327}, {32014, 54528}, {34016, 57822}, {36589, 56935}, {36889, 56645}, {37140, 37202}, {40437, 57984}, {52380, 57818}

X(57985) = isogonal conjugate of X(44113)
X(57985) = isotomic conjugate of X(860)
X(57985) = trilinear pole of line {63, 525}
X(57985) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44113}, {4, 3724}, {19, 2245}, {25, 758}, {31, 860}, {33, 1464}, {36, 1824}, {37, 52413}, {42, 1870}, {55, 1835}, {65, 52427}, {108, 53562}, {112, 2610}, {162, 42666}, {181, 17515}, {213, 17923}, {225, 2361}, {512, 4242}, {607, 18593}, {1402, 5081}, {1474, 4053}, {1783, 21828}, {1826, 7113}, {1880, 2323}, {1973, 3936}, {1974, 35550}, {1983, 2501}, {2212, 41804}, {2333, 3218}, {2489, 4585}, {4282, 8736}, {4511, 57652}, {6370, 32676}, {6757, 34397}, {8750, 53527}, {8752, 40988}, {14776, 42768}, {39149, 44097}, {40149, 52426}, {41013, 52434}, {52440, 53008}
X(57985) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 860}, {3, 44113}, {6, 2245}, {125, 42666}, {223, 1835}, {6337, 3936}, {6505, 758}, {6626, 17923}, {14838, 35235}, {15526, 6370}, {15898, 1824}, {26932, 53527}, {34591, 2610}, {36033, 3724}, {36909, 53008}, {38983, 53562}, {39006, 21828}, {39054, 4242}, {40589, 52413}, {40592, 1870}, {40602, 52427}, {40605, 5081}, {40618, 4707}, {40625, 44428}, {46835, 51462}, {51574, 4053}
X(57985) = X(i)-cross conjugate of X(j) for these {i, j}: {11064, 348}, {39471, 648}, {44665, 2994}, {52392, 14616}, {57736, 24624}
X(57985) = pole of line {2245, 2361} with respect to the Stammler hyperbola
X(57985) = pole of line {860, 1870} with respect to the Wallace hyperbola
X(57985) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1798)}}, {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(2278)}}, {{A, B, C, X(10), X(18123)}}, {{A, B, C, X(21), X(11103)}}, {{A, B, C, X(29), X(1792)}}, {{A, B, C, X(77), X(1442)}}, {{A, B, C, X(86), X(332)}}, {{A, B, C, X(283), X(3615)}}, {{A, B, C, X(286), X(19607)}}, {{A, B, C, X(336), X(662)}}, {{A, B, C, X(337), X(25536)}}, {{A, B, C, X(345), X(14534)}}, {{A, B, C, X(348), X(32014)}}, {{A, B, C, X(1411), X(1807)}}, {{A, B, C, X(1459), X(17971)}}, {{A, B, C, X(1793), X(6740)}}, {{A, B, C, X(1814), X(37128)}}, {{A, B, C, X(2988), X(46133)}}, {{A, B, C, X(4511), X(52368)}}, {{A, B, C, X(7515), X(37381)}}, {{A, B, C, X(8044), X(40149)}}, {{A, B, C, X(15413), X(40017)}}, {{A, B, C, X(17219), X(26856)}}, {{A, B, C, X(18815), X(24624)}}, {{A, B, C, X(34259), X(43531)}}, {{A, B, C, X(36061), X(51562)}}, {{A, B, C, X(37142), X(52663)}}
X(57985) = barycentric product X(i)*X(j) for these (i, j): {265, 34016}, {304, 759}, {305, 34079}, {310, 52431}, {328, 40214}, {333, 52392}, {339, 9273}, {343, 39277}, {348, 6740}, {1231, 52380}, {1444, 18359}, {1790, 20566}, {1793, 85}, {1807, 274}, {1812, 18815}, {2006, 332}, {2341, 7182}, {3267, 36069}, {4025, 47318}, {14208, 37140}, {14616, 63}, {15419, 51562}, {17206, 80}, {18160, 36061}, {23189, 46405}, {24624, 69}, {52351, 86}, {52379, 52391}, {57736, 76}
X(57985) = barycentric quotient X(i)/X(j) for these (i, j): {2, 860}, {3, 2245}, {6, 44113}, {48, 3724}, {57, 1835}, {58, 52413}, {63, 758}, {69, 3936}, {72, 4053}, {77, 18593}, {80, 1826}, {81, 1870}, {86, 17923}, {222, 1464}, {265, 8818}, {283, 2323}, {284, 52427}, {304, 35550}, {332, 32851}, {333, 5081}, {348, 41804}, {525, 6370}, {647, 42666}, {652, 53562}, {656, 2610}, {662, 4242}, {759, 19}, {905, 53527}, {1411, 1880}, {1437, 7113}, {1444, 3218}, {1459, 21828}, {1790, 36}, {1793, 9}, {1807, 37}, {1812, 4511}, {2006, 225}, {2161, 1824}, {2185, 17515}, {2193, 2361}, {2341, 33}, {2605, 47230}, {4025, 4707}, {4467, 44427}, {4560, 44428}, {4575, 1983}, {4592, 4585}, {5440, 40988}, {6187, 2333}, {6740, 281}, {7254, 53314}, {8287, 35235}, {9273, 250}, {11064, 6739}, {14616, 92}, {15419, 4453}, {17073, 51462}, {17206, 320}, {18359, 41013}, {18604, 52407}, {18815, 40149}, {22094, 2088}, {23090, 53285}, {23189, 654}, {23226, 2624}, {24624, 4}, {32671, 32676}, {34016, 340}, {34079, 25}, {36069, 112}, {36910, 53008}, {37140, 162}, {39277, 275}, {40214, 186}, {45926, 1865}, {46160, 17442}, {47318, 1897}, {51664, 51663}, {52351, 10}, {52380, 1172}, {52383, 8736}, {52391, 2171}, {52392, 226}, {52431, 42}, {56645, 1990}, {56934, 52414}, {56950, 8756}, {57736, 6}


X(57986) = ISOTOMIC CONJUGATE OF X(861)

Barycentrics    b*(a+b-c)*c*(a-b+c)*(a*b*(a^2-b^2)^2+a*(a-b)^2*b*(a+b)*c-(a-b)^2*(a^2+a*b+b^2)*c^2+(a^3+b^3)*c^3+(a-b)^2*c^4-(a+b)*c^5)*(a^5*c+a^4*b*(-b+c)-b^2*(b-c)^2*c*(b+c)+a^3*(b^3+b^2*c-b*c^2-2*c^3)+a^2*(b^4-b*c^3)+a*(-b^5-2*b^4*c+b^2*c^3+b*c^4+c^5)) : :

X(57986) lies on these lines: {69, 4625}, {305, 55213}, {306, 4554}, {307, 4569}, {4572, 20336}

X(57986) = isotomic conjugate of X(861)
X(57986) = trilinear pole of line {85, 525}
X(57986) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(4554), X(4569)}}
X(57986) = barycentric product X(i)*X(j) for these (i, j): {57737, 76}
X(57986) = barycentric quotient X(i)/X(j) for these (i, j): {2, 861}, {57737, 6}


X(57987) = ISOTOMIC CONJUGATE OF X(862)

Barycentrics    b*(a+b)*c*(a+c)*(b^2-a*c)*(a*b-c^2)*(-a^2+b^2+c^2) : :

X(57987) lies on these lines: {2, 799}, {69, 55202}, {264, 57968}, {337, 20336}, {1441, 4572}, {1565, 52608}, {2373, 36066}, {18827, 54982}

X(57987) = isotomic conjugate of X(862)
X(57987) = trilinear pole of line {304, 525}
X(57987) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 41333}, {25, 3747}, {31, 862}, {42, 57654}, {112, 46390}, {213, 2201}, {242, 1918}, {740, 1974}, {1284, 2212}, {1395, 4433}, {1824, 2210}, {1826, 14599}, {1874, 2175}, {1914, 2333}, {1973, 2238}, {3570, 57204}, {4155, 32676}, {4455, 8750}, {7109, 31905}, {18892, 41013}, {35544, 44162}, {40729, 56828}
X(57987) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 862}, {6, 41333}, {6337, 2238}, {6505, 3747}, {6626, 2201}, {15526, 4155}, {26932, 4455}, {34021, 242}, {34591, 46390}, {36906, 2333}, {40592, 57654}, {40593, 1874}, {40618, 21832}
X(57987) = X(i)-cross conjugate of X(j) for these {i, j}: {6393, 57918}, {57738, 40017}
X(57987) = pole of line {862, 2201} with respect to the Wallace hyperbola
X(57987) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(304), X(51314)}}, {{A, B, C, X(337), X(7233)}}, {{A, B, C, X(799), X(4572)}}, {{A, B, C, X(7182), X(7205)}}
X(57987) = barycentric product X(i)*X(j) for these (i, j): {274, 337}, {295, 6385}, {305, 37128}, {1437, 44170}, {1444, 18895}, {1790, 44172}, {1808, 20567}, {3267, 36066}, {4025, 4639}, {4444, 55202}, {15413, 4589}, {15419, 4583}, {17094, 36806}, {17206, 334}, {18268, 40050}, {18827, 304}, {36800, 7182}, {40017, 69}, {40364, 741}, {40708, 8033}, {52608, 876}, {56154, 57918}, {57738, 76}
X(57987) = barycentric quotient X(i)/X(j) for these (i, j): {2, 862}, {3, 41333}, {63, 3747}, {69, 2238}, {81, 57654}, {85, 1874}, {86, 2201}, {274, 242}, {291, 2333}, {295, 213}, {304, 740}, {305, 3948}, {332, 3684}, {334, 1826}, {335, 1824}, {337, 37}, {345, 4433}, {348, 1284}, {525, 4155}, {656, 46390}, {741, 1973}, {873, 31905}, {875, 57204}, {876, 2489}, {905, 4455}, {1231, 7235}, {1437, 14599}, {1444, 1914}, {1565, 39786}, {1790, 2210}, {1808, 41}, {2196, 1918}, {2311, 2212}, {3718, 3985}, {4025, 21832}, {4563, 3573}, {4584, 8750}, {4589, 1783}, {4639, 1897}, {6385, 40717}, {6393, 50440}, {7182, 16609}, {7233, 1880}, {8033, 419}, {15413, 4010}, {15419, 659}, {17103, 56828}, {17206, 238}, {18268, 1974}, {18827, 19}, {18895, 41013}, {20336, 4037}, {30805, 53556}, {36066, 112}, {36214, 40729}, {36800, 33}, {36806, 36797}, {37128, 25}, {40017, 4}, {40364, 35544}, {40708, 52651}, {52137, 52468}, {52379, 14024}, {52608, 874}, {55202, 3570}, {56154, 607}, {57738, 6}


X(57988) = ISOTOMIC CONJUGATE OF X(865)

Barycentrics    (a-b)^2*b^2*(a+b)^2*(a-c)^2*c^2*(a+c)^2*(-b^6+a^4*c^2+b^4*c^2+a^2*(b^4-3*b^2*c^2+c^4))*(a^4*b^2+(b-c)*c^4*(b+c)+a^2*(b^4-3*b^2*c^2+c^4)) : :

X(57988) lies on these lines: {69, 34537}, {305, 44168}, {886, 53202}, {14977, 53080}

X(57988) = isotomic conjugate of X(865)
X(57988) = trilinear pole of line {670, 525}
X(57988) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 865}, {1924, 9035}, {4117, 56430}
X(57988) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 865}, {9428, 9035}
X(57988) = X(i)-cross conjugate of X(j) for these {i, j}: {16084, 670}, {16098, 53202}
X(57988) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(886), X(34537)}}, {{A, B, C, X(4609), X(52940)}}
X(57988) = barycentric product X(i)*X(j) for these (i, j): {4609, 9091}, {16098, 44168}, {53202, 670}, {57739, 76}
X(57988) = barycentric quotient X(i)/X(j) for these (i, j): {2, 865}, {670, 9035}, {6331, 47206}, {9091, 669}, {16098, 1084}, {34537, 56430}, {44168, 16084}, {53202, 512}, {57739, 6}


X(57989) = ISOTOMIC CONJUGATE OF X(866)

Barycentrics    (a-b)^2*b*(a-c)^2*c*(a*b*(a+b)*(a^2+b^2)-a*b*(a+b)^2*c-a*b*(a+b)*c^2+(a^2+a*b+b^2)*c^3-c^5)*(-b^5+a^4*c+b^3*c^2+a^3*c*(-b+c)+a*(b-c)^2*c*(b+c)+a^2*(b^3-b^2*c-2*b*c^2+c^3)) : :

X(57989) lies on these lines: {69, 4601}, {306, 7035}, {889, 42716}, {20336, 31625}, {34767, 41314}

X(57989) = isotomic conjugate of X(866)
X(57989) = trilinear pole of line {668, 525}
X(57989) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 866}, {3248, 56529}
X(57989) = X(i)-cross conjugate of X(j) for these {i, j}: {16085, 668}, {16100, 53203}
X(57989) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(889), X(4601)}}, {{A, B, C, X(41314), X(42716)}}
X(57989) = barycentric product X(i)*X(j) for these (i, j): {16100, 31625}, {53203, 668}, {57740, 76}
X(57989) = barycentric quotient X(i)/X(j) for these (i, j): {2, 866}, {1016, 56529}, {16100, 1015}, {31625, 16085}, {53203, 513}, {57740, 6}


X(57990) = ISOTOMIC CONJUGATE OF X(867)

Barycentrics    (a-b)^2*(a-c)^2*(a^4+b^4+a^3*(b-c)-a^2*b*c-b^3*c+b*c^3-c^4+a*(b-c)^2*(b+c))*(a^4-b^4-a^2*b*c+b^3*c-b*c^3+c^4+a^3*(-b+c)+a*(b-c)^2*(b+c)) : :

X(57990) lies on these lines: {69, 4600}, {264, 52242}, {306, 1016}, {307, 4998}, {4555, 35169}, {7035, 20336}, {17780, 34767}

X(57990) = isotomic conjugate of X(867)
X(57990) = trilinear pole of line {190, 35169}
X(57990) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 867}, {513, 42662}, {663, 51643}, {1977, 42709}, {3248, 16086}, {18210, 56919}
X(57990) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 867}, {39026, 42662}
X(57990) = X(i)-cross conjugate of X(j) for these {i, j}: {1807, 13136}, {16086, 190}, {16099, 35169}, {35550, 99}
X(57990) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(52242)}}, {{A, B, C, X(1011), X(16379)}}, {{A, B, C, X(1016), X(4555)}}, {{A, B, C, X(37165), X(46555)}}
X(57990) = barycentric product X(i)*X(j) for these (i, j): {190, 35169}, {1016, 16099}, {57741, 76}
X(57990) = barycentric quotient X(i)/X(j) for these (i, j): {2, 867}, {101, 42662}, {651, 51643}, {1016, 16086}, {5379, 56830}, {7035, 42709}, {16086, 35122}, {16099, 1086}, {35169, 514}, {40715, 4466}, {57741, 6}


X(57991) = ISOTOMIC CONJUGATE OF X(868)

Barycentrics    (a-b)^2*(a+b)^2*(a-c)^2*(a+c)^2*(a^4+b^4-(a^2+b^2)*c^2)*(a^4-a^2*b^2-b^2*c^2+c^4) : :

X(57991) lies on these lines: {2, 18020}, {3, 55270}, {69, 4590}, {76, 14366}, {95, 14587}, {98, 30786}, {99, 6035}, {248, 57739}, {249, 7771}, {250, 264}, {290, 328}, {305, 31614}, {306, 4600}, {307, 4620}, {316, 39295}, {648, 55267}, {685, 877}, {892, 2395}, {1494, 6394}, {1976, 39292}, {2396, 2419}, {2715, 9150}, {4601, 20336}, {5467, 43113}, {5468, 17932}, {6340, 31632}, {10420, 22456}, {17941, 41173}, {17974, 57864}, {18018, 55272}, {18019, 57799}, {20021, 57845}, {20563, 44174}, {31635, 57829}, {39291, 41209}

X(57991) = isogonal conjugate of X(44114)
X(57991) = isotomic conjugate of X(868)
X(57991) = trilinear pole of line {99, 249}
X(57991) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44114}, {19, 41172}, {31, 868}, {115, 1755}, {125, 57653}, {232, 3708}, {237, 1109}, {240, 20975}, {338, 9417}, {511, 2643}, {656, 17994}, {661, 3569}, {798, 2799}, {810, 16230}, {923, 51429}, {1084, 46238}, {1577, 2491}, {1581, 2679}, {1959, 3124}, {2211, 20902}, {2632, 34854}, {2642, 8430}, {3120, 5360}, {4092, 51651}, {4705, 53521}, {8029, 23997}, {9418, 23994}, {17209, 21833}, {23996, 51441}, {24006, 39469}
X(57991) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 868}, {3, 44114}, {6, 41172}, {2482, 51429}, {5976, 35088}, {19576, 2679}, {23976, 57430}, {31998, 2799}, {35067, 41181}, {36830, 3569}, {36899, 115}, {39058, 338}, {39062, 16230}, {39085, 20975}, {40596, 17994}
X(57991) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 55266}, {98, 2966}, {287, 43187}, {325, 99}, {441, 4563}, {2421, 55270}, {3564, 648}, {6394, 17932}, {14601, 2715}, {17941, 31614}, {31635, 22456}, {40820, 41173}
X(57991) = pole of line {2679, 38974} with respect to the Stammler hyperbola
X(57991) = pole of line {17932, 53379} with respect to the Steiner circumellipse
X(57991) = pole of line {868, 35088} with respect to the Wallace hyperbola
X(57991) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(1316)}}, {{A, B, C, X(30), X(6390)}}, {{A, B, C, X(98), X(2395)}}, {{A, B, C, X(99), X(39295)}}, {{A, B, C, X(250), X(10420)}}, {{A, B, C, X(316), X(7799)}}, {{A, B, C, X(892), X(4590)}}, {{A, B, C, X(1976), X(40820)}}, {{A, B, C, X(2407), X(5468)}}, {{A, B, C, X(2857), X(46142)}}, {{A, B, C, X(3564), X(6530)}}, {{A, B, C, X(11007), X(15000)}}, {{A, B, C, X(14382), X(54086)}}, {{A, B, C, X(23582), X(47389)}}, {{A, B, C, X(31614), X(45773)}}, {{A, B, C, X(36890), X(45774)}}, {{A, B, C, X(53186), X(53221)}}
X(57991) = barycentric product X(i)*X(j) for these (i, j): {3, 41174}, {110, 43187}, {249, 290}, {250, 57799}, {293, 46254}, {1101, 46273}, {1821, 24041}, {1910, 24037}, {1976, 34537}, {2395, 31614}, {2396, 41173}, {2409, 55274}, {2715, 670}, {2966, 99}, {4226, 55266}, {4563, 685}, {4590, 98}, {14601, 44168}, {15628, 7340}, {17932, 648}, {17941, 39291}, {18020, 287}, {18024, 23357}, {22456, 4558}, {23582, 6394}, {32696, 52608}, {34761, 6035}, {36036, 662}, {36084, 799}, {36104, 55202}, {39292, 40820}, {43754, 6331}, {47389, 6531}, {52940, 5967}, {55270, 879}, {57742, 76}
X(57991) = barycentric quotient X(i)/X(j) for these (i, j): {2, 868}, {3, 41172}, {6, 44114}, {98, 115}, {99, 2799}, {110, 3569}, {112, 17994}, {248, 20975}, {249, 511}, {250, 232}, {287, 125}, {290, 338}, {293, 3708}, {325, 35088}, {336, 20902}, {524, 51429}, {648, 16230}, {685, 2501}, {691, 8430}, {1101, 1755}, {1503, 57430}, {1576, 2491}, {1691, 2679}, {1821, 1109}, {1910, 2643}, {1976, 3124}, {2395, 8029}, {2409, 55275}, {2421, 41167}, {2422, 22260}, {2715, 512}, {2966, 523}, {3564, 41181}, {4226, 55267}, {4556, 53521}, {4558, 684}, {4563, 6333}, {4590, 325}, {4601, 42703}, {5649, 23350}, {5967, 1648}, {6035, 34765}, {6394, 15526}, {6531, 8754}, {10313, 38368}, {14355, 2088}, {14366, 34349}, {14587, 41270}, {14601, 1084}, {15628, 4092}, {16081, 2970}, {17932, 525}, {17974, 3269}, {18020, 297}, {18024, 23962}, {20021, 39691}, {22456, 14618}, {23357, 237}, {23582, 6530}, {23963, 9418}, {23964, 34854}, {23995, 9417}, {24037, 46238}, {24041, 1959}, {31614, 2396}, {31636, 53569}, {32661, 39469}, {32696, 2489}, {32716, 52631}, {34369, 51428}, {34761, 1640}, {36036, 1577}, {36084, 661}, {39295, 14356}, {40866, 31953}, {41173, 2395}, {41174, 264}, {41932, 51441}, {43113, 47229}, {43187, 850}, {43665, 23105}, {43754, 647}, {44769, 32112}, {46254, 40703}, {46273, 23994}, {47388, 51404}, {47389, 6393}, {47390, 3289}, {47443, 4230}, {47635, 55384}, {51542, 6784}, {52038, 33919}, {52145, 52628}, {52630, 33752}, {53173, 5489}, {53691, 14998}, {53766, 14113}, {55270, 877}, {55274, 2419}, {57260, 2971}, {57655, 2211}, {57742, 6}, {57799, 339}
X(57991) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5468, 34761, 17932}


X(57992) = ISOTOMIC CONJUGATE OF X(872)

Barycentrics    b^3*(a+b)^2*c^3*(a+c)^2 : :

X(57992) lies on these lines: {10, 41535}, {76, 4602}, {274, 1107}, {308, 29757}, {310, 3741}, {561, 32092}, {670, 17143}, {799, 16552}, {873, 17175}, {1237, 44168}, {1920, 21883}, {1978, 24044}, {3761, 27891}, {4059, 18021}, {5283, 34022}, {17758, 18152}, {18827, 18833}, {28660, 29968}, {41283, 55213}, {52379, 52612}

X(57992) = isotomic conjugate of X(872)
X(57992) = trilinear pole of line {7199, 18071}
X(57992) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 7109}, {12, 9448}, {31, 872}, {32, 1500}, {37, 2205}, {42, 1918}, {59, 7063}, {101, 53581}, {181, 2175}, {213, 213}, {560, 756}, {594, 1501}, {669, 4557}, {692, 50487}, {765, 4117}, {1016, 9427}, {1018, 1924}, {1084, 1252}, {1089, 1917}, {1356, 6065}, {1397, 7064}, {1974, 3690}, {1980, 40521}, {2171, 9447}, {2200, 2333}, {3124, 23990}, {3695, 44162}, {3952, 9426}, {4037, 18897}, {4079, 32739}, {4094, 18267}, {4567, 52065}, {4574, 57204}, {6057, 41280}, {7140, 14575}, {7141, 40373}, {8022, 56196}, {9233, 28654}, {15742, 23216}, {36417, 52386}
X(57992) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 872}, {9, 7109}, {513, 4117}, {661, 1084}, {1015, 53581}, {1086, 50487}, {6374, 756}, {6376, 1500}, {6615, 7063}, {6626, 213}, {9428, 1018}, {34021, 42}, {40589, 2205}, {40592, 1918}, {40593, 181}, {40619, 4079}, {40620, 798}, {40627, 52065}, {52657, 21815}
X(57992) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44168, 4602}
X(57992) = X(i)-cross conjugate of X(j) for these {i, j}: {244, 7199}, {17208, 86}, {18195, 81}, {33947, 1509}, {52619, 4602}
X(57992) = pole of line {213, 872} with respect to the Wallace hyperbola
X(57992) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1107)}}, {{A, B, C, X(2), X(16819)}}, {{A, B, C, X(31), X(17208)}}, {{A, B, C, X(75), X(3739)}}, {{A, B, C, X(76), X(871)}}, {{A, B, C, X(86), X(10471)}}, {{A, B, C, X(269), X(24214)}}, {{A, B, C, X(274), X(310)}}, {{A, B, C, X(330), X(7192)}}, {{A, B, C, X(514), X(18298)}}, {{A, B, C, X(560), X(18195)}}, {{A, B, C, X(596), X(30663)}}, {{A, B, C, X(757), X(16696)}}, {{A, B, C, X(765), X(16552)}}, {{A, B, C, X(849), X(33947)}}, {{A, B, C, X(1088), X(3674)}}, {{A, B, C, X(1111), X(1237)}}, {{A, B, C, X(1928), X(20567)}}, {{A, B, C, X(2665), X(42027)}}, {{A, B, C, X(4384), X(29968)}}, {{A, B, C, X(4602), X(42371)}}, {{A, B, C, X(7035), X(17143)}}, {{A, B, C, X(7199), X(30938)}}, {{A, B, C, X(16709), X(32092)}}, {{A, B, C, X(24037), X(52379)}}, {{A, B, C, X(30945), X(33295)}}, {{A, B, C, X(31002), X(32009)}}, {{A, B, C, X(39717), X(40010)}}
X(57992) = barycentric product X(i)*X(j) for these (i, j): {76, 873}, {244, 44168}, {274, 310}, {313, 57949}, {670, 7199}, {1019, 4609}, {1111, 34537}, {1434, 40072}, {1502, 757}, {1509, 561}, {1928, 593}, {2150, 41287}, {2185, 41283}, {3261, 4623}, {4560, 55213}, {4602, 7192}, {4631, 52621}, {6385, 86}, {15413, 55229}, {15419, 57968}, {16739, 40827}, {17206, 57796}, {18021, 85}, {20567, 261}, {23989, 24037}, {27801, 6628}, {28659, 552}, {28660, 57785}, {33930, 7307}, {40362, 849}, {40495, 4610}, {52379, 6063}, {52612, 693}, {52619, 799}, {57779, 57918}
X(57992) = barycentric quotient X(i)/X(j) for these (i, j): {1, 7109}, {2, 872}, {58, 2205}, {60, 9447}, {75, 1500}, {76, 756}, {81, 1918}, {85, 181}, {86, 213}, {244, 1084}, {261, 41}, {274, 42}, {286, 2333}, {304, 3690}, {305, 3949}, {310, 37}, {312, 7064}, {313, 762}, {314, 1334}, {332, 52370}, {513, 53581}, {514, 50487}, {552, 604}, {561, 594}, {593, 560}, {670, 1018}, {693, 4079}, {757, 32}, {763, 2206}, {799, 4557}, {849, 1501}, {873, 6}, {982, 21815}, {1015, 4117}, {1019, 669}, {1098, 14827}, {1111, 3124}, {1269, 21816}, {1434, 1402}, {1444, 2200}, {1502, 1089}, {1509, 31}, {1920, 21803}, {1928, 28654}, {1969, 7140}, {1978, 40521}, {2150, 9448}, {2170, 7063}, {2185, 2175}, {3122, 52065}, {3248, 9427}, {3261, 4705}, {3673, 21813}, {3733, 1924}, {3766, 46390}, {4509, 42661}, {4572, 21859}, {4590, 1110}, {4602, 3952}, {4609, 4033}, {4610, 692}, {4623, 101}, {4625, 4559}, {4631, 3939}, {4635, 53321}, {4978, 8663}, {6063, 2171}, {6383, 7148}, {6384, 6378}, {6385, 10}, {6386, 4103}, {6628, 1333}, {7034, 43265}, {7058, 1253}, {7182, 2197}, {7192, 798}, {7199, 512}, {7303, 7104}, {7304, 2209}, {7307, 983}, {7340, 2149}, {8033, 20964}, {15413, 55230}, {15419, 810}, {16696, 41267}, {16703, 21035}, {16705, 3725}, {16708, 52020}, {16709, 20970}, {16727, 3122}, {16737, 7234}, {16739, 2092}, {16748, 2667}, {16750, 40934}, {16887, 21814}, {17096, 51641}, {17175, 21753}, {17205, 3121}, {17206, 228}, {18021, 9}, {18152, 40607}, {18155, 3709}, {18157, 20683}, {18891, 4037}, {20567, 12}, {20888, 21820}, {20891, 21700}, {21207, 21833}, {23062, 7143}, {23824, 21835}, {23989, 2643}, {24037, 1252}, {24041, 23990}, {27801, 6535}, {28659, 6057}, {28660, 210}, {30576, 9459}, {30938, 52894}, {30939, 52963}, {30940, 3747}, {30941, 39258}, {30966, 3774}, {32010, 40729}, {33295, 41333}, {33947, 16584}, {34537, 765}, {40050, 52369}, {40072, 2321}, {40075, 4053}, {40364, 3695}, {40495, 4024}, {41283, 6358}, {41535, 21897}, {44129, 1824}, {44168, 7035}, {46103, 2212}, {51370, 5360}, {52379, 55}, {52421, 21794}, {52572, 1962}, {52612, 100}, {52619, 661}, {52621, 57185}, {52935, 32739}, {53236, 21808}, {53538, 1356}, {55202, 4574}, {55205, 23067}, {55209, 56193}, {55213, 4552}, {55229, 1783}, {55231, 8750}, {55233, 56183}, {56660, 4094}, {57129, 9426}, {57200, 57204}, {57214, 21837}, {57779, 607}, {57785, 1400}, {57787, 8736}, {57792, 1254}, {57796, 1826}, {57880, 7147}, {57918, 201}, {57949, 58}
X(57992) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {274, 34021, 16819}


X(57993) = ISOTOMIC CONJUGATE OF X(887)

Barycentrics    (a-b)*b^4*(a+b)*(a-c)*c^4*(a+c)*(2*a^2*b^2-(a^2+b^2)*c^2)*(b^2*c^2+a^2*(b^2-2*c^2)) : :

X(57993) lies on these lines: {512, 670}, {523, 4609}, {689, 9150}, {1978, 4079}, {2422, 43187}, {2489, 6331}, {3228, 6379}, {4705, 6386}, {9178, 53080}, {14603, 18023}, {18024, 51441}, {30736, 34087}

X(57993) = isotomic conjugate of X(887)
X(57993) = trilinear pole of line {76, 3124}
X(57993) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 887}, {163, 1645}, {560, 888}, {798, 33875}, {1917, 9148}, {1924, 3231}, {1980, 52894}, {2234, 9426}, {2642, 41294}, {4117, 5118}, {14406, 46289}, {24041, 33918}
X(57993) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 887}, {39, 14406}, {115, 1645}, {3005, 33918}, {6374, 888}, {9428, 3231}, {31998, 33875}, {36901, 52625}
X(57993) = X(i)-cross conjugate of X(j) for these {i, j}: {9148, 76}
X(57993) = pole of line {887, 14406} with respect to the Wallace hyperbola
X(57993) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(512), X(523)}}, {{A, B, C, X(670), X(689)}}, {{A, B, C, X(698), X(6379)}}
X(57993) = barycentric product X(i)*X(j) for these (i, j): {76, 886}, {1502, 9150}, {1928, 36133}, {3228, 4609}, {32717, 40362}, {34087, 670}
X(57993) = barycentric quotient X(i)/X(j) for these (i, j): {2, 887}, {76, 888}, {99, 33875}, {141, 14406}, {523, 1645}, {670, 3231}, {691, 41294}, {729, 9426}, {850, 52625}, {886, 6}, {1502, 9148}, {1978, 52894}, {3124, 33918}, {3228, 669}, {4602, 2234}, {4609, 538}, {6331, 46522}, {6386, 52893}, {9148, 39010}, {9150, 32}, {32717, 1501}, {34087, 512}, {34537, 5118}, {36133, 560}, {37132, 1924}, {44168, 23342}, {46156, 9494}, {53080, 14609}


X(57994) = ISOTOMIC CONJUGATE OF X(890)

Barycentrics    (a-b)*b^3*(a-c)*c^3*(a*(b-2*c)+b*c)*(2*a*b-(a+b)*c) : :

X(57994) lies on these lines: {514, 1978}, {670, 889}, {689, 898}, {693, 6386}, {3676, 4572}, {4607, 4817}, {4609, 52619}, {6331, 17925}, {6549, 18891}, {21297, 54985}, {31002, 40089}

X(57994) = isotomic conjugate of X(890)
X(57994) = trilinear pole of line {76, 1086}
X(57994) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 890}, {32, 3768}, {560, 891}, {899, 1980}, {1110, 33917}, {1501, 4728}, {1646, 32739}, {1919, 3230}, {1924, 52897}, {2206, 14404}, {14430, 41280}, {14433, 18897}
X(57994) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 890}, {514, 33917}, {6374, 891}, {6376, 3768}, {9296, 3230}, {9428, 52897}, {40603, 14404}, {40619, 1646}
X(57994) = intersection, other than A, B, C, of circumconics {{A, B, C, X(514), X(693)}}, {{A, B, C, X(670), X(689)}}
X(57994) = barycentric product X(i)*X(j) for these (i, j): {76, 889}, {1502, 898}, {1928, 34075}, {1978, 31002}, {3227, 6386}, {4607, 561}, {32718, 40362}, {40495, 5381}, {41683, 4602}
X(57994) = barycentric quotient X(i)/X(j) for these (i, j): {2, 890}, {75, 3768}, {76, 891}, {321, 14404}, {561, 4728}, {668, 3230}, {670, 52897}, {693, 1646}, {739, 1980}, {889, 6}, {898, 32}, {1086, 33917}, {1978, 899}, {3227, 667}, {3261, 19945}, {3264, 14437}, {3596, 4526}, {4572, 52896}, {4607, 31}, {5381, 692}, {6331, 52890}, {6382, 14426}, {6386, 536}, {18891, 14433}, {27801, 14431}, {27808, 52959}, {28659, 14430}, {31002, 649}, {31625, 23343}, {32718, 1501}, {34075, 560}, {35353, 3121}, {35543, 14434}, {36798, 3063}, {36803, 52902}, {37129, 1919}, {40495, 52626}, {41683, 798}, {43928, 1977}, {52626, 14441}


X(57995) = ISOTOMIC CONJUGATE OF X(902)

Barycentrics    b^2*(a+b-2*c)*c^2*(a-2*b+c) : :

X(57995) lies on these lines: {76, 1978}, {88, 17028}, {106, 689}, {310, 670}, {561, 6386}, {1797, 4615}, {3264, 40075}, {3978, 17953}, {4049, 34087}, {4555, 43093}, {4572, 6063}, {4945, 18152}, {4997, 18031}, {6331, 6336}, {6549, 18891}, {9211, 52753}, {18359, 20924}, {18895, 35543}, {20925, 21600}

X(57995) = isogonal conjugate of X(9459)
X(57995) = isotomic conjugate of X(902)
X(57995) = trilinear pole of line {76, 3261}
X(57995) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 9459}, {6, 2251}, {25, 23202}, {31, 902}, {32, 44}, {41, 1404}, {163, 14407}, {213, 3285}, {519, 560}, {667, 23344}, {692, 1960}, {825, 14436}, {1017, 9456}, {1023, 1919}, {1319, 2175}, {1333, 52963}, {1397, 3689}, {1501, 4358}, {1576, 4730}, {1635, 32739}, {1917, 3264}, {1918, 52680}, {1973, 22356}, {1974, 5440}, {1980, 17780}, {2087, 23990}, {2205, 16704}, {2206, 21805}, {3251, 32719}, {3911, 9447}, {4432, 14598}, {4723, 41280}, {7109, 30576}, {8756, 9247}, {9426, 55243}, {14575, 38462}, {40172, 52434}
X(57995) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 902}, {3, 9459}, {9, 2251}, {37, 52963}, {75, 52964}, {115, 14407}, {903, 21781}, {1086, 1960}, {3160, 1404}, {4370, 1017}, {4858, 4730}, {6337, 22356}, {6374, 519}, {6376, 44}, {6505, 23202}, {6626, 3285}, {6631, 23344}, {9296, 1023}, {9460, 6}, {18277, 4432}, {34021, 52680}, {36901, 4120}, {40593, 1319}, {40594, 31}, {40595, 32}, {40603, 21805}, {40618, 22086}, {40619, 1635}, {40624, 4895}
X(57995) = X(i)-cross conjugate of X(j) for these {i, j}: {3264, 76}, {20893, 75}, {21241, 2}, {40075, 310}
X(57995) = pole of line {9461, 32032} with respect to the Steiner circumellipse
X(57995) = pole of line {9461, 53571} with respect to the Steiner inellipse
X(57995) = pole of line {902, 3285} with respect to the Wallace hyperbola
X(57995) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(17230)}}, {{A, B, C, X(10), X(31136)}}, {{A, B, C, X(75), X(4671)}}, {{A, B, C, X(76), X(310)}}, {{A, B, C, X(86), X(31017)}}, {{A, B, C, X(106), X(46150)}}, {{A, B, C, X(334), X(693)}}, {{A, B, C, X(519), X(20893)}}, {{A, B, C, X(670), X(689)}}, {{A, B, C, X(902), X(21241)}}, {{A, B, C, X(903), X(4080)}}, {{A, B, C, X(1088), X(40026)}}, {{A, B, C, X(2481), X(46277)}}, {{A, B, C, X(3226), X(4608)}}, {{A, B, C, X(3264), X(20566)}}, {{A, B, C, X(3661), X(17028)}}, {{A, B, C, X(4600), X(18025)}}, {{A, B, C, X(4660), X(33104)}}, {{A, B, C, X(6384), X(30636)}}, {{A, B, C, X(7018), X(40216)}}, {{A, B, C, X(18891), X(35543)}}, {{A, B, C, X(23989), X(44172)}}, {{A, B, C, X(24624), X(43097)}}, {{A, B, C, X(30690), X(40038)}}, {{A, B, C, X(30991), X(39704)}}, {{A, B, C, X(32947), X(33109)}}, {{A, B, C, X(32948), X(33106)}}, {{A, B, C, X(35153), X(46638)}}, {{A, B, C, X(39997), X(40039)}}, {{A, B, C, X(40072), X(40087)}}
X(57995) = barycentric product X(i)*X(j) for these (i, j): {76, 903}, {106, 1502}, {305, 6336}, {310, 4080}, {561, 88}, {1022, 6386}, {1320, 20567}, {1577, 4634}, {1797, 18022}, {1928, 9456}, {1978, 6548}, {2316, 41283}, {3257, 40495}, {3261, 4555}, {3264, 54974}, {4049, 670}, {4358, 57929}, {4582, 52621}, {4602, 55244}, {4609, 55263}, {4615, 850}, {4674, 6385}, {4997, 6063}, {18023, 52759}, {18895, 27922}, {20568, 75}, {20924, 57788}, {20948, 4622}, {23100, 6635}, {28659, 56049}, {31625, 6549}, {32659, 44161}, {36125, 40364}, {40016, 46150}, {40050, 8752}, {44173, 4591}
X(57995) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2251}, {2, 902}, {6, 9459}, {7, 1404}, {10, 52963}, {63, 23202}, {69, 22356}, {75, 44}, {76, 519}, {85, 1319}, {86, 3285}, {88, 31}, {106, 32}, {190, 23344}, {264, 8756}, {274, 52680}, {304, 5440}, {305, 3977}, {310, 16704}, {312, 3689}, {313, 3943}, {320, 17455}, {321, 21805}, {331, 1877}, {349, 40663}, {514, 1960}, {519, 1017}, {523, 14407}, {561, 4358}, {668, 1023}, {679, 9456}, {693, 1635}, {850, 4120}, {873, 30576}, {901, 32739}, {903, 6}, {1022, 667}, {1111, 2087}, {1233, 51463}, {1266, 20972}, {1269, 4969}, {1320, 41}, {1491, 14436}, {1502, 3264}, {1577, 4730}, {1797, 184}, {1920, 4434}, {1921, 4432}, {1969, 38462}, {1978, 17780}, {2316, 2175}, {2403, 8643}, {3007, 47425}, {3257, 692}, {3261, 900}, {3263, 14439}, {3264, 4370}, {3267, 14429}, {3596, 2325}, {3718, 52978}, {3762, 3251}, {3977, 22371}, {3992, 21821}, {4013, 1500}, {4025, 22086}, {4049, 512}, {4080, 42}, {4358, 678}, {4391, 4895}, {4397, 14427}, {4510, 2242}, {4554, 23703}, {4555, 101}, {4582, 3939}, {4591, 1576}, {4602, 55243}, {4609, 55262}, {4615, 110}, {4618, 32665}, {4622, 163}, {4634, 662}, {4638, 32719}, {4674, 213}, {4945, 2177}, {4997, 55}, {5376, 1110}, {6063, 3911}, {6331, 46541}, {6336, 25}, {6376, 52964}, {6385, 30939}, {6386, 24004}, {6545, 8661}, {6548, 649}, {6549, 1015}, {8752, 1974}, {9268, 23990}, {9456, 560}, {9460, 21781}, {9464, 4141}, {10009, 4759}, {14442, 14637}, {15413, 53532}, {17953, 5168}, {18021, 30606}, {18022, 46109}, {18023, 52747}, {18025, 45144}, {18359, 40172}, {20568, 1}, {20906, 14408}, {20924, 214}, {21606, 57051}, {21615, 4702}, {23100, 6550}, {23345, 1919}, {23598, 4775}, {23838, 3063}, {23989, 1647}, {24002, 53528}, {26234, 39251}, {27801, 3992}, {27808, 4169}, {27922, 1914}, {28659, 4723}, {30519, 9461}, {30596, 4727}, {31227, 3052}, {32659, 14575}, {34230, 9454}, {34387, 4530}, {35517, 51406}, {35518, 14418}, {35519, 1639}, {35550, 40988}, {36058, 9247}, {36125, 1973}, {36791, 8028}, {36814, 21760}, {36887, 1055}, {40075, 51583}, {40215, 52434}, {40495, 3762}, {40704, 53531}, {40833, 2163}, {42026, 21747}, {43922, 1977}, {44129, 37168}, {44190, 56939}, {46109, 42070}, {46150, 3051}, {49780, 52965}, {52553, 7113}, {52574, 1149}, {52621, 30725}, {52622, 4528}, {52627, 33922}, {52753, 1495}, {52755, 3230}, {52759, 187}, {53240, 1475}, {53647, 2429}, {54974, 106}, {55244, 798}, {55263, 669}, {56049, 604}, {57787, 37790}, {57788, 2161}, {57929, 88}


X(57996) = ISOTOMIC CONJUGATE OF X(910)

Barycentrics    b*c*((a-b)^2*(a+b)+(a+b)*c^2-2*c^3)*(a^3-2*b^3-a^2*c+b^2*c+c^3+a*(b-c)*(b+c)) : :

X(57996) lies on these lines: {75, 24014}, {76, 46406}, {103, 789}, {274, 811}, {304, 341}, {305, 1978}, {312, 4554}, {799, 36101}, {911, 4593}, {2400, 31002}, {3263, 51560}, {4583, 15634}, {6063, 7017}, {21609, 34404}, {36036, 36056}, {52781, 57923}, {57796, 57973}

X(57996) = isotomic conjugate of X(910)
X(57996) = trilinear pole of line {75, 2400}
X(57996) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 910}, {32, 516}, {41, 1456}, {58, 51436}, {184, 1886}, {560, 30807}, {604, 41339}, {649, 2426}, {676, 32739}, {911, 42077}, {1106, 51418}, {1395, 51376}, {1397, 40869}, {1416, 56785}, {1501, 35517}, {1918, 14953}, {1919, 2398}, {1922, 51435}, {1974, 26006}, {1980, 42719}, {2175, 43035}, {2206, 17747}, {3049, 4241}, {8638, 56786}, {9426, 55256}, {9454, 56639}, {32657, 42073}
X(57996) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 910}, {10, 51436}, {2968, 46392}, {3160, 1456}, {3161, 41339}, {5375, 2426}, {6374, 30807}, {6376, 516}, {6552, 51418}, {9296, 2398}, {17755, 9502}, {23972, 42077}, {33675, 56639}, {34021, 14953}, {36905, 53547}, {39028, 51435}, {40593, 43035}, {40603, 17747}, {40609, 56785}, {40619, 676}, {45250, 2223}
X(57996) = X(i)-cross conjugate of X(j) for these {i, j}: {7112, 274}, {30807, 75}, {40704, 76}, {45798, 314}
X(57996) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(28), X(31044)}}, {{A, B, C, X(76), X(312)}}, {{A, B, C, X(85), X(16284)}}, {{A, B, C, X(144), X(10004)}}, {{A, B, C, X(253), X(30705)}}, {{A, B, C, X(264), X(31618)}}, {{A, B, C, X(274), X(304)}}, {{A, B, C, X(314), X(20567)}}, {{A, B, C, X(668), X(789)}}, {{A, B, C, X(693), X(34018)}}, {{A, B, C, X(1233), X(33939)}}, {{A, B, C, X(1275), X(34393)}}, {{A, B, C, X(1494), X(37214)}}, {{A, B, C, X(1969), X(32018)}}, {{A, B, C, X(2481), X(40845)}}, {{A, B, C, X(3261), X(18816)}}, {{A, B, C, X(3263), X(18895)}}, {{A, B, C, X(3912), X(4518)}}, {{A, B, C, X(14942), X(35158)}}, {{A, B, C, X(18025), X(52156)}}, {{A, B, C, X(24014), X(30807)}}, {{A, B, C, X(32014), X(40414)}}, {{A, B, C, X(35517), X(46137)}}, {{A, B, C, X(36101), X(36122)}}, {{A, B, C, X(36796), X(40704)}}, {{A, B, C, X(46238), X(52137)}}
X(57996) = barycentric product X(i)*X(j) for these (i, j): {103, 561}, {304, 52781}, {305, 36122}, {312, 52156}, {1502, 911}, {1815, 1969}, {2400, 668}, {2424, 6386}, {3596, 43736}, {4602, 55257}, {15634, 7035}, {18022, 36056}, {18025, 75}, {20567, 2338}, {36101, 76}, {36796, 56668}, {40495, 677}, {57928, 693}
X(57996) = barycentric quotient X(i)/X(j) for these (i, j): {2, 910}, {7, 1456}, {8, 41339}, {37, 51436}, {75, 516}, {76, 30807}, {85, 43035}, {92, 1886}, {100, 2426}, {103, 31}, {274, 14953}, {304, 26006}, {312, 40869}, {321, 17747}, {345, 51376}, {346, 51418}, {350, 51435}, {516, 42077}, {561, 35517}, {668, 2398}, {677, 692}, {693, 676}, {811, 4241}, {911, 32}, {1815, 48}, {1978, 42719}, {2338, 41}, {2400, 513}, {2424, 667}, {2481, 56639}, {3239, 46392}, {3263, 50441}, {3693, 56785}, {3912, 9502}, {4358, 51406}, {4569, 23973}, {4602, 55256}, {6335, 41321}, {9436, 53547}, {9503, 1438}, {15413, 39470}, {15634, 244}, {17264, 28345}, {18025, 1}, {18743, 53579}, {20336, 51366}, {20947, 28346}, {30807, 23972}, {32657, 9247}, {34085, 56786}, {35517, 24014}, {36038, 42756}, {36039, 32739}, {36056, 184}, {36101, 6}, {36122, 25}, {36796, 56900}, {40704, 39063}, {42719, 3234}, {43736, 56}, {45144, 2251}, {46406, 24015}, {52156, 57}, {52213, 52635}, {52781, 19}, {53150, 6591}, {55257, 798}, {56668, 241}, {57928, 100}


X(57997) = ISOTOMIC CONJUGATE OF X(916)

Barycentrics    b^2*c^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^5-a^4*b+(b-c)^2*c^2*(b+c)-a^3*(b^2+c^2)+a^2*(b^3+2*b*c^2-c^3))*(a^5-a^4*c+b^2*(b-c)^2*(b+c)-a^3*(b^2+c^2)+a^2*(-b^3+2*b^2*c+c^3)) : :

X(57997) lies on the Steiner circumellipse and on these lines: {99, 917}, {190, 264}, {331, 664}, {648, 2989}, {668, 1969}, {2973, 36205}, {3868, 18026}, {33297, 46134}, {35174, 57812}, {54952, 56110}

X(57997) = isotomic conjugate of X(916)
X(57997) = trilinear pole of line {2, 46107}
X(57997) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2253}, {31, 916}, {48, 8608}, {184, 1736}, {810, 4243}, {911, 47407}, {9247, 48381}, {22383, 56742}
X(57997) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 916}, {9, 2253}, {1249, 8608}, {23972, 47407}, {39062, 4243}
X(57997) = X(i)-cross conjugate of X(j) for these {i, j}: {916, 2}, {35517, 264}
X(57997) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7431)}}, {{A, B, C, X(69), X(283)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(264), X(331)}}, {{A, B, C, X(317), X(33297)}}, {{A, B, C, X(1797), X(35096)}}, {{A, B, C, X(1896), X(8795)}}, {{A, B, C, X(40005), X(46746)}}
X(57997) = barycentric product X(i)*X(j) for these (i, j): {76, 917}, {264, 2989}, {331, 56110}, {36107, 40495}
X(57997) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2253}, {2, 916}, {4, 8608}, {92, 1736}, {264, 48381}, {516, 47407}, {648, 4243}, {917, 6}, {1897, 56742}, {2989, 3}, {15380, 32657}, {32699, 32739}, {35182, 32656}, {36107, 692}, {46107, 55125}, {48381, 34335}, {52781, 54232}, {56110, 219}, {57752, 1815}


X(57998) = ISOTOMIC CONJUGATE OF X(920)

Barycentrics    b*c*((a^2-b^2)^3-(a^2-3*b^2)*(a^2+b^2)*c^2-(a^2+3*b^2)*c^4+c^6)*(a^6+(b^2-c^2)^3-a^2*(b^2-3*c^2)*(b^2+c^2)-a^4*(b^2+3*c^2)) : :

X(57998) lies on these lines: {75, 921}, {92, 31631}, {304, 20571}, {321, 6504}, {1821, 21582}, {20930, 46746}, {33808, 57806}

X(57998) = isotomic conjugate of X(920)
X(57998) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1609}, {25, 155}, {31, 920}, {32, 6515}, {51, 8883}, {184, 3542}, {454, 39109}, {560, 33808}, {571, 47731}, {1974, 40697}, {2207, 6503}, {2351, 35603}, {14560, 44816}, {15478, 44084}, {34853, 44077}, {39116, 52436}, {40352, 51425}, {41587, 54034}
X(57998) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 920}, {9, 1609}, {6374, 33808}, {6376, 6515}, {6505, 155}
X(57998) = X(i)-cross conjugate of X(j) for these {i, j}: {326, 75}
X(57998) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(20570)}}, {{A, B, C, X(75), X(92)}}, {{A, B, C, X(304), X(8773)}}, {{A, B, C, X(326), X(33808)}}, {{A, B, C, X(897), X(6520)}}, {{A, B, C, X(21582), X(40703)}}, {{A, B, C, X(39733), X(46273)}}
X(57998) = barycentric product X(i)*X(j) for these (i, j): {76, 921}, {254, 304}, {6504, 75}, {13398, 20948}, {15316, 1969}, {20571, 57484}, {39109, 40364}, {46746, 63}
X(57998) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1609}, {2, 920}, {63, 155}, {75, 6515}, {76, 33808}, {91, 47731}, {92, 3542}, {254, 19}, {304, 40697}, {326, 6503}, {921, 6}, {1748, 35603}, {2167, 8883}, {6504, 1}, {8800, 1953}, {13398, 163}, {14206, 51425}, {14213, 41587}, {15316, 48}, {20571, 39116}, {32132, 1820}, {32679, 44816}, {39109, 1973}, {40678, 2180}, {41536, 2181}, {46746, 92}, {57484, 47}


X(57999) = ISOTOMIC CONJUGATE OF X(922)

Barycentrics    b^3*c^3*(a^2+b^2-2*c^2)*(a^2-2*b^2+c^2) : :

X(57999) lies on these lines: {111, 9065}, {561, 4602}, {671, 46132}, {897, 18833}, {923, 46281}, {1969, 57968}, {6386, 18023}, {46234, 46273}

X(57999) = isotomic conjugate of X(922)
X(57999) = trilinear pole of line {561, 20948}
X(57999) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 14567}, {25, 23200}, {31, 922}, {32, 187}, {184, 44102}, {351, 1576}, {468, 14575}, {524, 1501}, {560, 896}, {669, 5467}, {690, 14574}, {1648, 23963}, {1917, 14210}, {1924, 23889}, {1974, 3292}, {2205, 16702}, {2482, 19626}, {3266, 9233}, {3712, 41280}, {4760, 18897}, {5026, 8789}, {5468, 9426}, {5967, 9418}, {6390, 44162}, {7181, 9448}, {9155, 14601}, {9407, 9717}, {9447, 51653}, {14573, 41586}, {14602, 18872}, {19627, 56395}, {21906, 23357}, {32729, 54274}, {32740, 39689}, {33875, 41309}, {40373, 44146}, {41331, 52898}
X(57999) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 922}, {9, 14567}, {4858, 351}, {6374, 896}, {6376, 187}, {6505, 23200}, {9428, 23889}, {15477, 1917}, {15899, 560}, {36901, 2642}, {39030, 5026}, {39061, 31}
X(57999) = X(i)-cross conjugate of X(j) for these {i, j}: {20904, 75}, {21256, 2}
X(57999) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(561), X(1928)}}, {{A, B, C, X(896), X(20904)}}, {{A, B, C, X(922), X(21256)}}, {{A, B, C, X(1577), X(1934)}}, {{A, B, C, X(4602), X(6386)}}, {{A, B, C, X(24037), X(33805)}}
X(57999) = barycentric product X(i)*X(j) for these (i, j): {111, 1928}, {304, 46111}, {561, 671}, {1502, 897}, {1577, 53080}, {1969, 30786}, {4602, 5466}, {14977, 57968}, {17983, 40364}, {18023, 75}, {18833, 31125}, {20948, 892}, {23894, 4609}, {23994, 52940}, {36060, 44161}, {36085, 44173}, {36128, 40050}, {40362, 923}, {46277, 76}, {52632, 799}
X(57999) = barycentric quotient X(i)/X(j) for these (i, j): {1, 14567}, {2, 922}, {63, 23200}, {75, 187}, {76, 896}, {92, 44102}, {111, 560}, {304, 3292}, {310, 16702}, {313, 21839}, {561, 524}, {670, 23889}, {671, 31}, {799, 5467}, {850, 2642}, {892, 163}, {895, 9247}, {897, 32}, {923, 1501}, {1109, 21906}, {1502, 14210}, {1577, 351}, {1926, 5026}, {1928, 3266}, {1934, 18872}, {1969, 468}, {3261, 14419}, {3266, 42081}, {4602, 5468}, {4609, 24039}, {5380, 32739}, {5466, 798}, {5547, 9447}, {5968, 9417}, {6063, 51653}, {6385, 6629}, {9178, 1924}, {9214, 9406}, {14210, 39689}, {14977, 810}, {17983, 1973}, {18023, 1}, {18833, 52898}, {18891, 4760}, {20567, 7181}, {20884, 47426}, {20944, 6593}, {20948, 690}, {23894, 669}, {23994, 1648}, {27801, 4062}, {28659, 3712}, {30786, 48}, {31125, 1964}, {32740, 1917}, {33805, 9717}, {36060, 14575}, {36085, 1576}, {36128, 1974}, {36142, 14574}, {40364, 6390}, {40495, 4750}, {46111, 19}, {46154, 1923}, {46234, 5642}, {46238, 9155}, {46273, 5967}, {46277, 6}, {52632, 661}, {52747, 2251}, {52940, 1101}, {53080, 662}, {57968, 4235}


X(58000) = ISOTOMIC CONJUGATE OF X(928)

Barycentrics    (a-b)*b^2*(a-c)*c^2*(a^4+b^4-(a-b)^2*(a+b)*c-(a+b)^2*c^2+(a+b)*c^3)*(a^4-a^3*b+a*b*(b-c)^2+a^2*b*(-b+c)+(b-c)^2*c*(b+c)) : :
X(58000) = -3*X[2]+2*X[39017]

X(58000) lies on the Steiner circumellipse and on these lines: {2, 39017}, {75, 53209}, {99, 929}, {190, 35519}, {290, 21277}, {313, 35149}, {664, 3261}, {18025, 35516}, {34393, 35517}, {40717, 46133}

X(58000) = isotomic conjugate of X(928)
X(58000) = anticomplement of X(39017)
X(58000) = trilinear pole of line {2, 13006}
X(58000) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 928}, {2149, 52331}
X(58000) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 928}, {650, 52331}, {39017, 39017}
X(58000) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(99), X(190)}}, {{A, B, C, X(286), X(927)}}, {{A, B, C, X(314), X(13136)}}, {{A, B, C, X(655), X(2995)}}, {{A, B, C, X(660), X(6099)}}, {{A, B, C, X(874), X(40717)}}, {{A, B, C, X(919), X(55035)}}, {{A, B, C, X(928), X(39017)}}, {{A, B, C, X(2997), X(51568)}}, {{A, B, C, X(3261), X(35519)}}, {{A, B, C, X(35516), X(35517)}}
X(58000) = barycentric product X(i)*X(j) for these (i, j): {76, 929}
X(58000) = barycentric quotient X(i)/X(j) for these (i, j): {2, 928}, {11, 52331}, {928, 39017}, {929, 6}, {52331, 52330}



This is the end of PART 29: Centers X(56001) - X(58000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)